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ABSTRACT 

Two major Ordovician siliciclastic units can be recognist~d in wc.~stem 

Newfoundland: the parautochlhonous Goose Tickle group (Llanvim - '?Liandcito·.l. and 

the allochthonous Lower Head Fonnation (Arenig - Llanvirn). This !'tudy has resulted 

in the distinction of two unit!i within the Goose Tickle group: tt;e American Tickle and 

Mainland fomations. The Howe Harbour member has also been newly recognised within 

the American Tickle fonnation. 

All three fonnations ar·e dominated by turbidites, ranging from the deposits of low 

and moderate concentration flows for the relatively sand-poor American Tickle 

formation, to high concentration flows for the sand-rich Mainland and Lower Head 

formations. The American Tickle formation was deposited under anoxk conditions in 

a foreland basin with at least two different sediment input points. The turbiditts and 

debris flows of the Howe Harbour member were locally shed in front of faults generated 

by allochthons (Taconic Allochthons) which were advancing over the eastern margin of 

the basin. The Mainland fonnation was deposited in the southern part of the same basin, 

but in much closer proximity to a third sediment input point, and hils complex 

characteristics related to unusual local topography. The Lower Head Formation exhibits 

complex facies variations and was deposited in a confining trench slope basin or basins. 

Although all three units are petrographically similar, the Lower Head Formation 

is distinct in that it contains a higher feldspar content and a !ewer lithic fragment content 

than the Goose Tickle group. Petr::>graphic characteristics are consistent with mix'!d 

sources for all units. While many of the sources can be related to lithologies now 

present in the Taconic Allochthons, there is no lithology in the allochthons which can be 
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related to felsic volcanic grains and rounded microclines. Mixing of detritus in a now 

destroyed basin or basins is implied, and the overall provenance suggests supply of 

sediment from a major and complex area of uplift of which the Taconic Allochthons are 

only a small and incomplete remnant. This uplifted area included passive margin 

sediments, possibly Grenville basement and a ma;or arc terrane which may have been 

compressed prior to erosion. 

Geochemical analyses also indicate mixed sources and demonstrate that the Lower 

Head Formation is distinct from the Goose Tickle group. Comparison of the behaviour 

of trace elements between the units suggests that weathering of source areas may have 

been more intense during the Llanvirn than the Arenig. 

Although western Newfoundland foreland and trench slope sediments are broadly 

typical of their tectonic setting, variations in sedimentology do exist along the length of 

the system, and they differ in subtle respects from analogous units in Quebec, supporting 

the concept of variations in tectonic style a{ong the length of the Appalachian basin. 
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1. 1 INTRODUCTION 

CHAPTER 1 

INTRODUCTION 

Although western Newfoundland is considered a classic area for study of 

Appalachian geology, there is still considerable disagreement as to the details of 

orogenesis. Sandstoae !Jrovenance studies have been used elsewhere to study the fine 

scale details of compressional orogenesis (e.g. Hiscott, 1979; Dorsey, 1988; Thornburg 

and Kulm, 1987~. but these require a sound stratigraphic framework, and an 

understanding of the regional depositional setting. No serious attempt has been made to 

incorporate infonnation from western Newfoundland sandstones into tectonic models. and 

hence this thesis represents an attempt to provide this infonnation at a regional scale. 

1.2 REGIONAL GEOLOGIC SElTING 

The Appalachian Orogen is an elongate, deeply eroded belt of defonned Paleozoic 

rocks which extends from Newfoundland to Alabama along the eastern seaboard of the 

Nonh American continent. It is continuous with the Ouachita Orogen to the southwest. 

Prior to the opening of the modern Atlantic Ocean. the Appalachian Orogen was also 

continuous with orogenic belts in East Greenland, Britain. and Scandi~avia (Caledonian 

Orogen) and West Africa (Mauritanides) (Williams, 1984). The Appalachian Orogen 

provides a record of latest Precambri,m to Middle Paleozoic ocean opening and closing, 

terrane accretion, and continental collision. The island of Newfoundland, located in the 

nonheast segment of the Appalachians, provides one of the best exposed cross sections 
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through the orogen. This study is mainly concerned with Ordovician sandstones, which 

are related to ocean closing, in western Newfoundland. 

The Canadian portion of the Appalachian Orogen was divided into a number of 

tectonostratigraphic zones by Williams et al. (1974). These zones were defmed on the 

basis on contrasting Ordovician and earlier stratigraphy. The zonation scheme was 

revised by Williams (1978) and expanded to include the entire Appalachian Orogen. The 

present tectonostratigraphic framework for the orogen is based on the scheme of Williams 

(1978) as modified by Williams et al. (1988), Williams et al. (1989), and Colman-Sadd 

et al. (! 990) (See figure 1.1). 

The Humber Zone is continuous along the western edge of the orogen and is a 

sinuous belt of mainly sedimentary rocks which were deposited on Grenville basement 

on the northwestern margin of the Paleozoic Iapetus Ocean (Harland and Gayer, 1972). 

The Iapetus Ocean was created by rifting during the Late Proterozoic or Early Cambrian 

(Williams, 1979; Hatcher, 1987; Williams and Hiscott, 1987; Lindholm and Casey, 

1989). Collision of the continental m:ugin with a volcanic arc terrane occurred during 

the Middle Ordovician Taconic Orogeny. The Humber Zone provide~ a record of the 

entire cycle from rifting to orogenesis. The sinuous outline of the Humbt.~r Zone may 

represent an original orthogonal pattern of transfonn faults which existed from the time 

of rifting of the margin (Thomas, 1977). 

East of the Humber Zone, all of Williams' (1978) zones are now viewed as 
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Figure 1.1: The Humber Zone and suspect terranes in the Newfoundland segment of the 
Appalachian Orogen. showing the location of the study area. 
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pieces of a mosaic of 'suspect terranes' (Coney et al, 1980; Williams and Hatcher, 19R2, 

1983; Williams, 1984) which have been accreted onto the ancient continental margin. 

In Newfoundland, three major terranes are present, the Dunnage, Gander, and Avalon 

zones. Tho: Dunnage Zone lies immediately southeast of the Humber Zone and :onsists 

of arc-related volcanics and marginal basin sediments overlying ancient oceanic crust 

(Williams, 1979; Williams et al., 1988; Cawood et al., 1988). Ophiolites (the Bay of 

Islands Complex and the White Hills Peridotite) which have been transported onto the 

Humber Zone have also been included in the Dunnage Zone by Williams et al. (1989) 

and Colman-Sadd et at. ( 1990). The Dunnage Zone has been interpreted as a probable 

remnant of the lapt.tus Ocean. Farther eastward is the Gander Zone, a sequence of 

mainly siliciclastic metaseoimentary rocks which may represent the ancient southeastern 

margin of the Iapetus Ocean. Still farther east is the A val on Zone which exhibits pre

Paleozoic deformation and appears to have a history unrelated to that of the Humber 

Zcne (O'Brien et al., 1983). The Dunnage and Gander terranes are inferred to have 

been accreted to the margin by the Middle Ordovician, whereas the Avalon Terrane was 

accreted by the Devonian at the latest, (Williams, 1984) but may have been in place 

much farlier. Several publications suggest that Avalon rocks are stratigraphic basement 

to the Gander Zone (O'Brien et al., 1991; Colman-Sadd et al., 1992). 

According to Marillier et al. (1989), the Humber Zone is underlain by crustal 

material of continental affinity known as rhe Grenville Block. The Gander Zone is 

underlain by a subsurface region known as the Central f;l >ek. However, the 

Humber/Dunnage and Dunnage/Gander boundaries are not present at depth in the 
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subsurface, implying that the Dunnage Zone is allochthonous with respect to both the 

Humber and Gander Zones. The A val on Zone is underlain by crust which has a 

different seismic signature than either the Humber or Gander Zones (Marillier et al.. 

1989). It should be noted, however, that subcrustal blocks cannot be unambiguously 

related to the surface tectonostratigraphic zones. 

Thr~e main phases of deformation have affected the Appalachian Orogen, and the 

effects of all three are visible in Newfoundland. The first phase, the Taconic Orogeny. 

occurred during the Early to Middle Ordovician, and is inferred to be related to the onset 

of subduction and closure of the Iapetus Ocean (Williams. 1979). The Silurian-Devenian 

Acadian Orogeny may represent the final collision of the European continent Baltica with 

the North American continent Laurentia. The Carboniferous Alleghenian event involved 

a greater component of convergence in the southern section of the Appalachian Orogen 

than in Newfoundland, and occurred as a result of the collision of the African continent 

with Laurentia. 

Two major factors affected sedimentation on all of the Laurentian continental 

margins during the Cambrian and Ordovician periods. The first was the position of the 

continental margin of the Iapetus with respect to the equator. This ranged from a latitude 

of approximately 30 degrees S in the Cambrian. to 10 degrees S by the middle 

Ordovician (Scotese et al., 1979). In addition, sea level rose throughout the Cambrian, 

dropped at the end of the Early Ordovician, and rose again in the later Ordovician 

(Foney, 1984; Knight et &1., 1991). In the initial phases of each transgression 

siliciclastic sediments were deposited. These are overlain by carbonate platform 
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sediments which were deposited in the very widespread warm shallow seas which existed 

around the margins of the continent (e.g. Don and Batten, 1984). In the Humber Zone 

of western Newfoundland, evidence of rifting, margin destruction and terrane accretion 

is superimposed upon these more general characteristics (e.g. Williams, 1979, 1984). 

1.3 TECTONIC SETTING OF THE HUMBER ZONE 

Western Newfoundland is part of the Humber Zone, or miogeocline (Williams and 

Hatcher, 1982, 1983) which constitutes the Early Paleozoic western margin of Iapetus 

(Williams and Stevens, 1974). The western boundary of the Humber Zone was stated by 

Williams (1979) to be the western limit of Appalachian deformation. In practice, this 

boundary may be difficult to define; Stockmal and Waldron (1990) have raised the 

possibility that some of the relatively undeformed platform sequence may in fact be 

allochthonous. 

In the Canadian Appalachians, the eastern boundary of the Humber Zone is the 

Baie Verte - Brompton line (Williams and St. Julien, 1982), a belt of steeply dipping, 

east facing ophiolites. The western part of the Humber Zone has been affected by 

Taconic and Acadian deformation. whereas its eastern margins near the boundary with 

the Dunnage Zone have been subject to polyphase metamorphism and deformation. In 

western Newfoundland, the main tectonic elements of the Humber Zone are as follows 

(see figure 1.2): 
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Figure 1.2 Tectonic elements of western Newfoundland. 
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1. Crystalline basement of the Long Range Complex which has been affected by 

Grenvillian (1100 Ma) defonnation; 

2. Parautochthonous Cambro-Ordovician sedimentary rocks that record a history of 

rifting, the development of a passive continental margin. and the initial phases of 

dest!Uction of the margin. This succession is described in older literature as 

autochthonous but since pans of it may in fact have been transported a considerable 

distance (Stockmal and Waldron, 1990), the tenn parautochthonous is used. 

The sedimentary rocks of this tectonic element have been traditionally described 

as 'autochthonous' (e.g. James and Stevens, 1982). Here the tenn 'parautochthonous' 

is used because they may have undergone variable degrees of transport, from less than 

10 km (Grenier, 1990) to greater than 30 km (Stockmal and Waldron, 1990); 

3. Allochthonous terranes (the Hare Bay and Humber Ann allochthons) consisting of 

stacked, fault-bounded slices of seJimentary rocks, volcanic rocks and ophiolites. The 

sedimentary rocks are contained within the lower structural slices of the these packages, 

and the volcanics and ophiolites constitute the upper slices. The allochthonous 

sedimentary rocks were deposited as offshore equivalents of the autochthonous 

sedimentary succession. The ophiolitic parts of the allochthonous terranes are considered 

to be isolated portions of the Dunnage Zone (Cawood et al., 1988; Williams et al., 1988). 



1..1 STRATIGRAPHY OF THE HUMBER ZONE 

1.4.1 The Parautochthon 

9 

Grenvillian basement is overlain unconfonnably by mainly siliciclastic rocks of 

the Labrador Group (Precambrian-Lower Cambrian; C~mming. 1983) (figure 1.3) which 

are products of Late Precambrian rifting and subsequent development of the passive 

margin of the Iapetus Ocean. During the Cambrian period, a laterally extensive, 

although narrow (Chow and James, 1987) shallow-water carbonate platform developed 

on the newly formed continental margin and remained stable until the Middle Ordovician. 

The platformal sequence consists of the Cambrian Port au Port Group (Chow, 1986), the 

Upper Cambrian-Lower Ordovician St. George Group (Knight and James, 1987; 

Williams et al., 1987), and the lower part of the Lower-Middle Ordovician Tahle Ht!ad 

Group (Klappa et al., 1980; Stenzel et al., 1990) (figure 1.3). The first indication of 

foreland basin development occurs in the St. George Group where a widespread 

unconformity marks the formation of a peripheral bulge associated with loading of the 

margin (e.g . Jacobi, 1981 ; Knight and James, 1987; Knight et al.. 1991). Subsequent 

collapse of the platform caused deposition of deeper water limestones and olistostromal 

conglomerates of the upper, Middle Ordovician part of the Table Head Group (Stenzel 

et al., 1990). These are overlain by shales of the lower part of the Middle Ordovician 

Goose Tickle group (Quinn, in preparation; Stenzel et al., 1990) (figure I . 3 ). These 

shales represent the initial stages of siliciclastic infilling in the narrow (Bradley, 1989) 

axial region of a flexural foreland basin (Quinlan and 
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Figure 1 . 3: Generalised stratigraphy of western Newfoundland, after James and Stevens 
(1986); Klappa et al. (1980); Cumming (1983); Chow (1986); Knight and James (1987); 
Stenzel et al. (1990); and Quinn (in preparation). 
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Beaumont, 1984; Hisconetal., 1986). The shales are overlain by tlyschofthe Llanvirn 

to latest Llandeilo or earliest Caradoc Goose Tickle group. 

1.4.2 The Allochthons 

The sedimentary strata of the Humber Ann and Hare Bay allochthons (figure 1.4) 

are interpreted as deep-water slope/rise deposits which are mainly coeval with the 

shallow-water pa:.autochthonous succession (Williams, 1979). They consist of a lower 

siliciclastic sequence, a middle carbonate sequence and an upper siliciclastic sequence. 

The lower siliciclastic sequence includes the Maiden Point, Blow me Down Brook, 

Summerside, and Irishtown formations of ?Late Precambrian-Middle Cambrian aye. The 

Maiden Point Fonnation is the oldest sedimentary unit in the Hare Bay Allochthon 

(Cooper, 1937; Tuke, 1968; Williams and Smyth, 1983). The Summerside Formation 

is the oldest unit in the coherent sedimentary sequence of the Humber Arm Allochthon 

(Stevens, 1965; Botsford, 1988) and is overlain by the lrishtown Formation. The Blow 

me Down Brook Formation may be a panial equivalent of the Summerside Formation, 

but is probably older, and is now isolated as a high structural slice in the sedimentary 

assemblage of the Humber Arm Allochthon (Quinn, 1985, 1986, 1988a,b; Lindholm and 

Casey, 1989; Cawood and Botsford, 1991). 

The lower siliciclastic sequence is overlain by carbonate and shale deposits which 

are deeper water equivalents of the carbonate-platfonn deposits of the autochthon. These 

are the Cooks Brook Formation (Stevens, 1965, 1970; Botsford, 1988), a unit of thin 

bedded limestone turbidites and shales in the s0uthem pan of the 
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Figure 1.4: Gt:neralised stratigraphy of the Humber Arm and Hare Bay allochthons. 
After Stevens (1965, 1970); Bruckner. 1966; &otsford, 1988; Williams and Smyth 
(1983). 
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Humber Arm Allochthon, and the spectacular limestone breccias and shales of the Cow 

Head Group (James and Stevens, 1986) in the nonhero pan of the Humber Allochthon. 

The upward change from carbonate to siliciclastic deposition was gradual, panicularly 

in the southern pan of the Humber Arm Allochthon where the transition is represented 

by the Middle Arm Point Formation (Botsford, 1988). In the nonhero pan of the 

Humber Arm Allochthon a transitional unit is not well developed and the carbonates are 

directly overlain by a unit of flysch, the Lower Head Formation (James and Stevens, 

1986). Flysch deposits equivalent to the Lower Head Formation are present in the 

central and southern pans of the Humber Ann Allochthon but they have not been 

formally named. The base of the Lower Head Formation is slightly older (Arenig) than 

its parautochthonous counterpans (James and Stevens, 1986; Botsford, 1988). In the 

Hare Bay Allochthon, a gradual transition from carbonates to siliciclastics may also be 

represented within th~ structurally complex Nonhwest Ann Formation. 

The allochthonous sedimentary suite is structurally overlain by discrete slices of 

volcanic rocks and ophiolites. Melange zones separating these structural slices are 

related to assembly and emplacement of the allochthons. 

The allochthons are interpreted to have been assembled during eastward 

subduction (e.g. Church and Stevens, 1971 ; Williams and Hatcher, 1983; also see Jenner 

et al., 1991 for a reinterpretation of the Bay of Islands Ophiolite suite), accompanied by 

obduction of oceanic crust (upper structural slices) and transpon of pans of the 

continental slope/rise (lower allochthonous slices) across the continental shelf. 

Until recently, a hypothesis for the timing of the emplacement of the allochthons 
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was thought to be well established (Williams and Hatcher, 1983). This model held that 

the ophiolites were the first to move, accreting successive 5lices until the final 

emplacement of the allochthons as complete packages (Williams, 1979). It was thought 

that the sedimentary part of the Humber Ann Allochthon was in place by the Middle 

Ordovician as its leHding edge appeared to be unconformably overlain by sediments of 

the neoautochthonous Caradocian Long Point Group (Rodgers, 1965; Cawood et al., 

1988). 

Now. however. the contact between equivalents of the Lower Head Formation and 

the Long Point Group has been reinterpreted as a thrust (Stockmal and Waldron, 1990). 

In addition, two conflicting theories have arisen as to the relative timing of emplacement 

of the sedimentary and ophiolitic parts of the Humber Arm Allochthon. 

There is structural evidence that the ophiolites, which were formed during the 

period from 480 rna to 494 ma (Dunning and Krogh, 1985), were r.~t emplaced together 

with the sedimentary slices (Schillereff, 1980). Cawood and Williams (1988) have 

suggested, again on structural grounds, that the final em!Jiacement of the ophiolite may 

not have occurred until the Silurian or Devonian. 

It. contrast, Stockmal a••rl Waldron (1990) have argued, on the basis of field 

mapping and seismic data, that major movements took place during the Acadian phase 

of deformation, transporting platfonnal sediments, allochthons and even the Grenvillian 

crystalline basement. In their view the Humber Arm Allochthon had previously been 

emplaced as a complete package. Stockmal and Waldron (1990) believe that the timing 

of emplacement of the ophiolite is constrained by the presence of ophiolitic detritus in 

~ . 
• I • ' .. 
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the Middle Ordovician Lower Head Fonnation and equivalents. Cawood and Williams 

(1988) did not address the issue of ophiolitic detritus in their discussion. Information 

provided in this thesis may have a bearing on this discussion. 

There is general agreement that Acadian movement of the Long Range Complex 

has taken place, since parts of the basement overthrust the northern part of the Humber 

Ann Allochthon (Williams et al., 1985: Cawood and Williams, 1986: Grenier and 

Cawor 1, 1988; Grenier, 1990). The magnitude of transport inferred by these authors 

is far less than that suggested by Stockmal and Waldron (1990). 

1.5 PREVIOUS WORK 

1.5.1 Stratigraphic and Tectonic 

Richardson (in Logan 1863) was the first to erect a stratigraphy for western 

Newfoundland from the Strait of Belle Isle to Bonne Bay (figure 1.2: Table 1.1, 1.2). 

He interpreted the sedimentary rocks of the region as a complete succession divisible into 

It' units designated A to Q in order of decreasing age. Divisions 0 to Q are now known 

to be allochthonous equivalents of units A toN. Parautochthonous Ordovician saradstones 

of interest in this thesis were included with some allochthonous units in Richardson's 

division 0. 

A very e~.tensive stratigraphic study ~"~ f~Ublished by Schuchen and Dunbar in 

1934, who again interpreted the succession as a continuous one. They defined three 

major groups of sandstone, the Labrador Series, the Long Point Series, and the Humber 



I RICHAR~SON-(1863) SCHUCHERT & DUNBAR (1934) CURRENT 
~ 

0 Long Point Series Long Point Group 

0 Long Point C)eries Goose Tickle ':;roup 

K-N Table Head Series Table Head Group 

D-1 St. George Series St. George Group 

March Point Series Port au Port Group 

A-C Labrador Series Labrador Group 

Table 1.1: Equivalency of stratigraphic units of Richardson (1863) and Schuchen and 
Dunbar (1934) with current stratigraphic units in western Newfoundland. 



Richard1on (1863) Sand1tone1 included in divi1ion 0 of 1tratisraphic tequrnce. 

Cooper ( 1937) Goo1e Tickle 1late1, Hare Bay. 

i Bet. ( 1939) En glee formation, Canada Bay. 

Troelaon ( 194 7) Gadd '• Point alatea, Bonne Bay area. 

Tuke (1966, 1968) Goo1e Tickle Formation, Pi1tolet Bay area. 

Steven• ( 1976) Mainland greywacke 1equence, Port au Port Penin•ula. 

I Schillereft' and Williams ( 1979) Mainland sandstone, Port au Port P~ninsula. 

Williams and Smyth (1983) Extended the Goose Tickle Formation to include the Pittold Hay, 
Hare Bay and Canada Bay areu. 

Williams et al. (1984) 

Williams et al. (1985) 

Williams and Cawood (1986) 

Knight ( 1986) 

Quinn (1988) 

Lindholm &l Caaey (1989) 

Stenzel et al. ( 1990) 

Quinn (In prep.) 

!l!iandbar formation, Bonne Bay area. 

Norris Point formation, Bonne Bay Area. Dropped the term Sand· 
bar formation. 

Whale Back formation, area south of the Bay of lshmd1. 

Sugg~sted that the Gooae Tickle Formation wu preKnt in the Table 
Point area. 

Suggested that the Mainland sandstone waa present in the Tab!~ Point 
area. 

Suggested that the name Goo11.: Tickle Formation be Applied to all 
autochthonoua or parautochthonou1 ~:r,.mpl,.• of easterly derived ftyech 
in w~stern N~wfoundland. 

Quoted Quinn'• unpublithed informal term• Goo•e Tickle group, 
Mainland sand1tone and Ameriean Tiekle formation. Propm!d 
the Daniel'• Harbour Member within the Americun Tickle for· 
mat ion. 

Formal propoaal of the Goo11e Tiekle Group, Mainland Formation, 
American Tickle Formation and Howe Harbour Member. 

17 

Table 1.2: History of development of stratigraphic nomenclature for parautochthonous 
Ordovician sandstones of western Newfoundland. 
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Arm Series. The Labrador Series included rocks of Cambrian age. The Long Point 

Series was inferred to be of Middle Ordovician age but is now known to include both 

parautochthonous and allochthonous siliciclastic rocks of Middle and Late Ordovician 

age. The Humber Arm Series was thought to be the young•.!st unit of all (Middle or 

possibly Upper Ordovician) but the lower pan of this series contained sandstones now 

interpreted as being of Cambrian age. The equivalencies of both Richardson's and 

Schuchen and Dunbar's units with modern parautochthonous units are shown in table 

1.1. 

Funher advances required an understanding of the structural configuration of 

western Newfoundland which came about as a result of the work of Rodgers and Neale 

(1963), who recognised the existence of the allochthons in the region. Stevens (1970) 

built on the work of Rodgers and Neale (1963), and Wilson (1966) and included the 

parautochthonous Ordovician siliciclastics in a tectonic-stratigraphic framework which 

reflected a model of passive margin evolution and destruction. Stevens (1970) classified 

sandstones of western Newfoundland into Atlantic type and Pacific type flysch, and 

suggested that a reversal in provenance from west to east was indicated by the presence 

of chromite in all flysch of post-Arenig age. Panicular attention was paid to the Humber 

Arm Allochthon where the sedimentary rocks were divided into lower quanzo-feldspathic 

flysch, carbonate flysch, and upper quanzo-feldspathic flysch. The Blow me Down 

Brook Formation (upper quanzo-feldspathic flysch) was described as an Ordovician unit 

containing ophiolite detritus which indicated that ophiolites were exposed to the east. 

The work of Stevens ( 1970) has provided the basis for all subsequent 
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sedimentary/tectonic models. 

Stevens' (1970) classification of western Newfoundland sandstones and those of 

several subsequent workers (e.g. Quinn, 1986, 1988; Lindholm and Casey. 1989) 

reflected a genetic rather than a strictly lithostratigraphic appro?.ch. Correlations of 

sandstones in western Newfoundland have generally been problc:matic (Quinn, 1985, 

1986, 1988a,b; Lindholm and Casey, 1989) and the disorganisation of the stratigraphic 

nomenclature does not reflect the current understanding of the regional tectonic 

significance of these units. The history of development of the stratigraphic nomenclature 

is outlined in table 1.2. 

The potential confusion over the largely infonnal stratigraphic nomenclature 

which has proliferated for both allochthonous and autochthonous sandstones was 

sidestepped by Quinn ( 1986, 1988a), who offered a genetic classification of sandstones 

in western Newfoundland in relation to the then-current stratigraphic nomenclature. In 

this classification, which is similar to that of Stevens (1970), sandstones were divided 

into two main tectonic categories (Quinn, 1986, 1988a): 

1) Upper Precambrian or Cambrian marine sandstones deposited as a result of rifting and 

initial dev:lopment of a passive continental margin; 

2) Ordovician marine sandstones deposited in an active margin setting. 

Quinn ( 1986, 1988) subdivided these categories to emphasise that differences are 

to be expected between autochthonous sandstones and their equivalents which have been 

transported. The subdivisions are a~ follows : 

la) Autochthonous ?Precambrian-Cambrian rift related sandstones; 
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I b) Sandstones broadly equivalent to 1a which were deposited farther offshore in deeper 

water and have subsequently been transported over the ancient continental margin; 

2a) Autochthonous Ordovician marine sandstones deposited in an active margin setting; 

2b) Sandstones deposited in the same general tectonic setting as those in 2a and 

subsequently transported as pan of an accretionary prism over the ancient continental 

margin. 

Figures 1.5 and 1.6 show the areal distribution of each of the above subcategories. 

The following points regarding the state of the stratigraphic nomenclature at the 

inception of this study are worthy of note. 

1. The Lower Head Formation, defmed in the northern part of the Humber Arm 

Allochthon by James and Stevens (1986), had not been formaJiy extended south of Bonne 

Bay. It had been informally termed the Eagle Island formation by Botsford ( 1988) and 

Cawood et al. (1988), but it is unlikely that this name can be incorporated into the 

stratigraphic literature as it has been pre-empted (H. Williams, 1988, pers. comm.). 

However, the Eagle Island formation has been included as a formal term in subsequent 

papers (Cawood and Botsford, 1991). Lower Head equivalents in the Pon au Port 

Peninsula had not been named. 

2. No suggestion had yet been made as to how to incorporate the newly defined Blow 

me Down Brook Formation (Quinn, 1985, 1986, 1988a; Lindholm and Casey, 1989) into 

the general stratigraphy of the Humber Arm Allochthon, as it had not been incorporated 

into the informal stratigraphic revision of Botsford ( 1988). 

3. The distinction between the Goose Tickle Formation and the Mainland sandstone was 
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Figure 1. 5: Distribution of category 1 sandstones in western Newfoundland (after Quinn. 
1988a,b). A=parautochthonous sandstones; B=allochthonous sandstones. 
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not clear (Knight, 1985; QuiM, 1988a; Lindholm and Casey, 1989), and in fact 

'Mainland sandstone' (Schillereff and Williams, 1979), a widely used name, had never 

been formally proposed. The distinction between both of these units and the Norris Point 

formation (Williams et al., 1985) was also unclear. These problems have been rectified 

by QuiM (in preparation) as discussed in chapter 2 and the simplified stratigraphic 

nomenclature is shown in chapter 2, figure 2.1. 

1.5.2 Sandstone Petrovraphy and Provenance Studies - a Discussion 

Sandstone petrography in western Newfoundland has been used for two purposes: 

1. th:: distinction between superficially similar units in the Humber Arm Allochthon: and 

2. the determination of provenance of Ordovician flysch. 

The first general petrographic description of western Newfoundland sandstones 

was by Schuchen and Dunbar ( 1934) who noted that sandstones of both the Humber Arm 

and Long Point Series were arkosic and lithologically similar. Stevens (1970) definc::d 

a lower quanzo-feldspathic flysch (Cambrian) and an upper quartzo-feldspathic flysch 

(Ordovician) in the Humber Arm Allochthon, reinforcing the idea that two major 

sandstone units of rather similar aspect exist in western Newfoundland. Gonzale;:z

Bonorino ( 1979) c:\rried out petrographic studies of samples from selected sandstone;: 

localities in the nonhern, central, and southern parts of the Humber Arm Allochthon. 

The central locality seemed to be significantly different lithologically rrom the others, but 

Gonzalez-Bonorino (1979) was unable to reach a conchJsion as to the reason for the 

variation. Quinn (1985, 1986, 1988a), based on petro1,• .pl1ic work in the central pan 
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of the Humber Arm Allochthon, outlined a hypothesis wherein much of the sandstone 

which had previously been mapped as Ordovician flysch was reinterpreted as an isolated. 

structurally high slice of ?Precambrian-Cambrian sandstone. The hypothesis was 

supported on structural grounds by Waldron (1985). and was confirmed by Lindholm and 

Casey's (1989) discovery of Early Cambrian fossils in the unit. Using this interpretation 

the variation in petrographic data of Gonzalez-Bonorino (1979) is due to the fact that he 

equated two completely different units. The reinterpreted area included the type section 

of the Blow me Down Brook Fonnation, which had hitherto been regarded as a classic 

example of chromite-bearing Ordovician flysch. 

Stevens ( 1970) inferred a reversal of provenance in the sedimentary succe;;sion 

of western Newfoundland and related this to the change from a passive-margin to an 

active-margin setting. He described three main sources for easterly derived 

allochthonous flysch in the Humber Ann Allochthon: a silicic intrusive source rich in 

microcline granite and sodic granophyre; ophiolites with gabbros. volcanic rocks and 

chromite-bearing ultramat1c rocks; and sediments similar to the older part of the 

allochthonous sedimentary sequence. Stevens (1970) also reported detritus from all units 

of the allochthon in autochthonous flysch near the Hare Bay Allochthon. 

Whereas Stevens ( 1970) dearly indicated that ophiolitic and sedimentary detritus 

was derived from the allochthons, no indication was given of a location for the granitic 

source, although Williams and Stevens ( 1974) suggested that Precambrian basement could 

have been a source. Stevens (1970) also suggested that the presence of ophiolite detritus 

- serpentinite, chromite, and pyroxene crystals (Stevens in Neale ( 1972)) - in Ordovician 
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flysch in western Newfoundland indicates that 'ophiolites ... ... must have been exposed 

to erosion and at lc:ast panially above sea level even though the base was below sea 

level'. Based on this argument. he concluded that the ophiolites and pan of the 

allochthonous sediments were emplaced as migrating islands or archipelagos with fringing 

reefs which also contributed detritus to the flysch. 

Thus provenance information from sandstones was crucial in building a first plate 

tectonic model for the geological development of western Newfoundland. Since the 

publication of this model, there have been few detailed quantitative studies of any 

sandstone unit in western Newfoundland. One exception to this is the work of Gonzalcz

Bonorino (1979), on sandstones of the Humber Arm Allochthon. who noted a large 

proportion of albite in his samples. This he related to a metamorphic source. The 

interpretations of Gonzalez-Bonorino must be regarded as suspect since he failed to 

recognise that he was dealing with both Cambrian and Ordovician units (Quinn, 1985). 

Quinn (1985) point-counted a suite of samples from two units in the; Humber Arm 

Allochthon in the Bonne Bay area. One of these units had previously been thought to 

be correlative with the Blow me Down Brook Formation, but instead was interpreted on 

solely petrographic grounds to be a Cambrian unit with a westerly provenance (Sellars 

formation). Quinn (1985) also provided data on the Barters formation which is an 

equivalent of the Irishtown Formation in the Bay of Islands area. 

Schwab (1991) has recently undenaken a regional quantitative petrographic study 

of various sandstone units across Newfoundland with a view to investigating whether 
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sandstone petrolog) could constrain tectonic models for the evolution of the entire island 

of Newfoundland. Schwab (1991) was unable to distinguish, on the basis of sandstone 

provenance, between a simple model of ocean opening and closing, and a model based 

on accretion of suspect terranes. Schwab ( 1991) grouped his sandstones in 'suites', those 

relevant to this thesis being one from the 'autochthonous Humber Zone' , and three from 

the allochthonous Humber Zone. Schwab (1991) erred in describing the Goose Tickle 

Formation and Mainland sandstone as 'Humber Arm allochthonous' along with the 

Lower Head Formation and the Eagle Island sandstone. Equally serious is his inclusion 

of the Gadd's Point F'Jrmation (a Goose Tickle equivalent) in Cambrian units of the 

Huml>er Arm Allochthon. Since presumably his reason for distinguishing allochthonous 

from autochthonous deposits was tc determine whether equi•,alent deposits had a distinct 

petrographic signature, these errors could have significantly affected his conclusions. 

Data presented in this thesis demonstrate a general similarity between the 

parautochthonous and allochthonous Ordovician sandstones, and Schwab's (1991) overall 

conclusions are unaffected. 

The utility of provenance r,tudies has been demonstrated for OrdJvician flysch 

units in other pans of the Canadian Appalachians. Hiscott (1978) undenook a detailed 

provenance study of the Tourelle Formation, an allochthonous Arenig flysch located in 

the Quebec App~lachians. Assuming from other considerations a southeast dipping 

subduction zone (see Williams and Stevens (1974) for a summary of the evidence), 

Hiscott (1978) was able to relate the detrital content of the Tourelle Formation to the 

tectonic history of the area with a considerable degree of detail. He concluded that acid 



27 

volcanic fragments and fresh albite were related to an ensialic arc associated with the 

closing of the Iapetus Ocean - tentatively identified with the Cambrian-Middle Ordovician 

Tetagouche Volcanics of New Brunswick. Chromite grains and other mafic heavy 

minerals were considered to have been derived from an obducted ophiolite sheet. 

Hiscott (1984) reviewed the available literature on modal proponions of 

framework grains in both allochthonous and autochthonous Ordovician flysch throughout 

the Appalachians, and incmporated trace element geochemical data from all of these 

units. Hiscott (1984) came to the general conclusion that since chromite and related trace 

elements are absent in the U.S. Appalachians, ophiolite obduction was a minor feature 

of the U.S. Appalachians during the Taconic Orogeny. Other notable W.Jrk on the 

provenance of related sandstones includes that of Enos (1969) on the Cloridorme 

Formation in Quebec. The Cloridorme Formation is a parautochthonous flysch of mainly 

Caradoc age (Hiscott et al., 1986). Ko (1985) expanded on the work of Enos, and in 

addition p:-Jvided a comprehensive review of petrographic characteristics of sandstones 

in the Quebec Appalachians. Ko (1985) conciuded that several s.Jurces contributed to the 

Cloridonne Formation including argillaceous limestone, limestone conglomerate, 

feldspathic sandstone, quartzo-feldspathic schist, ophiolite, shale melange, and calc

alkaline volcanic fragments (although it is unclear how he could have identified the latter 

two sources in thin section). Most of these sources were identified with accretionary 

complexes although Ko ( 1985) a::;o suggested some input from an uplifted cratonic 

source. 
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1.6 CURRENT HYPOTHESES 

According to current models for the evolution c.f the geology of western 

Newfoundland, older clastic sediments (category 1) were deposited in relatively shallow 

marine shelf environments or as submarine fans on the continental slope/rise (Hiscott et 

at., 1984; Lindholm and Casey, 1989). The younger clastics (category 2) are interpreted 

by Hiscon et al. (1986) as flysch which was depositC\.i in an elongate foreland basin 

(Quinlan and Beaumont, 1984). Similar basin fill flysch units are present along the length 

of the Appalachian Orogen although the ages of the units vary (Hiscon, 1984). 

According to Quinlan and Beaumont (1984) and Hiscon et at. (1986), the foreland basin 

was formed as a result of load induced :<iubsidence of the continental margin as it was 

driven towards an active, or recently active, oceanward dipping subduction zone. 

Hiscon et al. (1986) suggested thtt one of the few modem analogies for the 

Appalachian foreland basin may be the depressed northern margin of Australia (Banda 

Arc/Timor Trough- Hamilton, 1979), an analogy also made by Ko (1985). Karig et al. 

(1987) and Bradley (1989) have also utilised the Timor analogy and in panicular Bradley 

( 1989) has used it extensively. 

Bradley (1989) has defined the axial zone of a foreland basin as the region 

between the turbidite front (transition from shales of the outer slope to turbidites) and the 

thrust front. The width of the axial part of the foreland basin in the Appalachians has 

been estimated by Bradley ( 1989) as about 15 km based on an analogy with the modem 

Timor foredeep. Hiscon et al. (1986) independently estimated that the foredeep basin 

in the Quebec area was only a few tens of kilometres wide at its deepest axial levels, and 
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may also have Oeen segmented by structural highs at a high angle to the basin axis 

(Hiscott et al., 1986). In Newfoundland, the platfonnal pan of the margin upon which 

the foreland basin developed is thought to have been fairly narrow (Chow and James, 

1987). 

Autochthonous Ordovician flysch in Newfoundland is separated from similar units 

in Quebec by the St. Lawrence Promontory (Thomas, 1977; Williams. 1978) and is 

somewhat older than these units (Hiscott et al., 1986). The age difference has been 

taken by Hiscott (1984) to indicate north - south diachronous closure of the Iapetus 

Ocean, but Bradley (1989) has suggested that a different arc may have collided with the 

continental margin in Newfoundland, and that the rest of the Appalachians underwent 

diachronous collision from south to nonh. 

Since there are contrasts between Newfoundland flysch and Quebec flysch in 

terms of age and relative position along the length of the orogen, narrow comparisons 

between flysch units in Newfoundland and units elsewhere in the Appalachians may not 

be appropriate. as was also suggested by Hiscott (1978). Prior to this study. depositional 

models for Ordovician flysch in western Newfoundland were sketchy at best ~nd were 

arrived at by implicitly making comparisons with better known Quebec examples. Little 

progress on specific details has been made since the work of Stevens (1970) . Most 

subsequent researchers have reiterated the interpretation of Stevens (1970), and have 

emphasised the presence of chromite detritus in the sandstones (e.g. Williams 1979; 

Cawood et al., 1988). The adjective 'chromite-bearing' has frequently been used to 

describe the flysch (e.g. Cawood et al., 1988). and the fact that its bulk composition is 
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quanzo-feldspathic has been largely ignored. Where the quartzo-feldspathic nature of 

the flysch has been pointed out, reference has been made to Hiscott (1978) who 

concluded that quartzo-feldspathic detritus in the Tourelle Fonnation of Quebec was 

derived from older allochthonous sediments, or to Stevens ( 1970) who simply stated that 

the Taconic allochthons were a source of detritus (Stevens, pers. comm., 1987; Hiscott, 

pers. cornm., 1988). The popular idea that the flysch in Newfoundland progressively 

'transgressed' (prograded) across the margin from east to west was suggested by 

Williams and Stevens (1974), and was repeated by Botsford (1988). and Cawood et al. 

(1988), but Quinn (1988 a, b, c) has called this hypothesis into question . 

.Ll.KOPE AND PURPOSE 

This thesis presents the results of an investigation into the depositional setting, 

prov~nance and possible sources of Ordovician flysch (foreland basin deposits) of western 

Newfoundland. 

The study as originally designed had a twofold purpose: 

a) To refine the existing stratigraphic nomenclature for Ordovician sandstones in western 

Newfoundland, which was dis{lrganised and largely informal; and 

b) To determine provenance of the Ordovician flysch in this region. Particular emphasis 

was placed on a clarification of the influence of nearby allochthonous slices on detrital 

composition. 

Sioce the object was a regional investigation of flysch provenance, both 

allochthonous and autochthonous units of Ordovician flysch were included in the study. 
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In addition, six Cambrian units were studied to test the hypothesis that their equivalents 

could have been source rocks for Ordovician flysch. However, since this approach 

required study of a large area, and a proportionately large number of units, no detailed 

investigation of any aspect could be carried out. 

To avoid bias, no ~ priori assumptions were made regarding detrital components 

of the sandstone and early comparisons with Cambrian and Quebec units were avoided. 

Bulk compositional characteristics and general field relationships of the sandstones have 

been emphasised. 

At the inception of this study, it was envisaged that quantitative petrography and 

the determination of provenance would be the main focus of the project, but the 

determination of provenance using quantitative methods is meaningless without a well

understood stratigraphic framework and an understanding of the basinal context of the 

units involved (Ricci Lucchi, 1985). The construction of this framework occupied more 

time than the author anticipated, and with the number of units involved in the study it 

was soon clear that a quantitative study of the rigour which was originally planned would 

unfeasible in the time allowed. Thus the quantitative studies present below must be 

considered of a reconnaissance nature only. 

Despite these shortcomings, the synthesis of stratigraphy, facies and basin 

analysis, petrography, geochemistry. and regional geology presented here is still 

sufficient to provide a more sophisticated provenance analysis for Ordovician flysch than 

has previously been available. 
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1. 8 GENERAL METHODOLQGY 

1 .8. 1 Refinement of Nomenclature and Basin Analysis 

Refinement of nomenclature and basin analysis involved eight months of fieldwork 

in 1985, 1986 and 1987, and the measurement and description of approximately 3000 m 

of section of which about 2000 m of selected examples are presented in this thesis. This 

pan of the study resulted in the definition of three lithostratigraphic units of Ordovician 

flysch. Cambrian sandstone localities were also visited but sections were not measured. 

Six hundred samples of both Ordovician and Cambrian sandstones were collected for 

funher study. An additional 30 samples were provided by Dr. N. James and Dr. H. 

Williams. 

1 .8.2 Deteuninatjon of Provenance of Ordovician Flysch 

A number of different methods, which were used to determine provenance, are 

outlined below. ' · 

Both qualitative and quantitative petrographic analysis were involved in the 

evaluation of all three newly defmed units of Ordovician flysch. This involved qualitative 

description of approximately 200 thin sections, and staining and point counting of 

framework grains in 65 thin sections which were selected as being representative of the 

various units. 

Bulk mineralogy of 20 selected samples was identified by X-ray Diffraction. In 

addition, 25 samples were studied under the Scanning Electron Microscope (SEM), using 

the backscanering mode. Use of the Energy Dispersive Spectrometer (EDS) facility 
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enabled qualitative characterisations of individual minerals. Cathode luminescence 

petrography was also carried out on selected thin sections to verify observations 

regarding alteration patterns in feldspars . All of the above aspects of the study were 

carried out at Brandon llniversity. 

Specific minerals from 12 samples were analysed with the electron microprobe 

at the University of Saskatchewan and the University of Manitoba. Minerals analysed 

included chlorite, chromite, plagioclase feldspar, and potassium feldspar. 

The bulk chemistry of 107 samples was obtained by analyses for major elements 

(Atomic Absorption Analysis and Inductively Coupled Plasma Atomic Emission 

Spectrometry), trace elements (Neutron Activation Analysis and X-ray Fluorescence), and 

some rare earth elements (Inductively Coupled Mass Spectrometry and Neutron 

Activation Analysis). Details of which samples were analysed by which methods are 

given in appendix 4. Most of the analy5es were carried out by Activation Laboratories, 

Ancaster, Ontario, and a small number of analyses were made at Memorial University. 

Cambrian sandstones were investigated by the same methods as above to evaluate 

their potential as source rocks for Ordovician flysch. 

Details of specific methodologies for all of the above approaches are given in the 

appropriate chapters and appendices. 

1.8.3 Terminology 

Where directional terms such as westward and eastward are used, they refer to 

present geographical coordinates. 
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Although a necessary part of this study was the clarification and refinement of 

stratigraphic nomenclature, the names American Tickle fonnation, Goose Tickle group, 

and Howe Harbour member will be shown with their lithostratigraphic designators in 

lower case letters, as a formal stratigraphic nomenclature cannot be proposed in a thesis 

(North American Stratigraphic Code, 1983). 

The tenn flysch will here refer simply to deep water deposits which are syn

orogenic according to the definition of Blatt et al. (1991). 

Bed thicknesses will be expressed as thin, medium, etc. with the quantitative 

meanings of these tenns after Ingram (1954), i.e. very thick-bedded (> 1 m); thick

bedded (30- 100 em); medium-bedded (10- 30 em); thin-bedded (3 - 10 em); very thin

bedded (1 - 3 em); Thickly laminated (0.3- 1 em); thinly laminated ( <0.3 em). 

The tenn facies will be used in the same sense as Pickering et al. (1986) to 

describe a body of rock with specific descriptive physical, chemical and biological 

charactrristics. In this thesis, emphasis will be placed on physical characteristics. 
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CHAPTER 2 

REGIONAL FIELD RELATIONSHIPS AND STRATIGRAPHY 

2.1 INTRODUCTION 

At the inception of this project, parautochthonous Ordovician sandstones of 

western Newfoundland had not been incorporated into a regional stratigraphic 

framework. Some of the allochthonous sandstones have: been included in a stratigraphic 

scheme (James and Stevens, 1986), others have not. As a result of this study a formal 

proposal for a revision of the stratigraphic nomenclature of Ordovician parautochthonous 

sandstones has been prepared (Quinn, in prep.). The recommendations will include the 

elevation of the old Goose Tickle Formation to group status, and new names proposed 

will include the American Tickle formation and the Mainland formation, both to be 

included in the Goose Tickle group. A new member, the Howe Harbour member, has 

also been recognised within the American Tickle formation. Also included in this study 

is the allochthonous Lower Head Formation. 

None of these units have been subjected to a detailed paleontological study, but 

general age relationships are known and available paleontological information may also 

be of use in evaluati~g the possible westerly decrease of the age of the base of these 

sandstones. 

The relationship between a sandstone unit and adjacent units is particularly 
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important in " provenance study, as rocks or sediments of similar composition to these 

units may have provided identifiable detritus to the sandstones. Likely sources of detritus 

in the Goose Tickle group and Lower Head Fonnation include roclcs similar to older 

units which stratigraphically underlie them and lithologie;; similar to those in 

allochthonous terranes which now structurally overlie t!lem. 

In this chapter, a summary of the current stratigraphy, and a general description 

of both parautochthonous and allochthonous Ordovician sandstones will be given along 

with a review of the available paleontological infonnation. The chapter will concentrate 

on the units and their spatial or stratigraphic neighbours. It will be shown that. on the 

basis of fieldwork alone, coarse detritus in two of the three Ordovician sandstone units 

can be traced to immediately adjacent rock units. The data gathered in this chapter will 

be used as a basis for a more detailed discussion in chapter 3 of the sedimentology and 

the basinal context of the units. 

2.2 THE DISTRIBUTION AND STRATIGRAPHY OF ORDOVICIAN SANDSTONES 

IN WESTERN NEWFOUNT)LAND 

The general distribution of ~andstones in western Newfoundland, dassificd 

according to Quinn (1988a,b) (see chapter I) is shown in figures 1.4 and 1.5 . Tlac 

Ordovician sandstones (category 2) are either parautochthonous (category 2a) or 

allochthonous (category 2b). Cambrian sandstones (category I) were investigated solely 

to evaluate their potential as sources of sand-sized detritus and hence they will be 

described in chapter 6. Measured sections and descriptions of selected localities are 
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provided in appendix 2. 

2 .3 PARAUTOCHTHONOUS ORDOVICIAN SANDSTONES 

The stratigraphy of the Middle Ordovician parautochthonous siliciclastic sequence, 

as revised by Quinn (in prep), is shown in figure 2.1. The sequence is now referred to 

as the Goose Tickle group (Quinn, in prep), which contains three formations: the Black 

Cove Formation, the American Tickle formation, and the Mainland formation. The main 

modifications to the previously existing stratigraphy (see table 1.2) include the elevation 

of !he Goose Tickle to group status, the formal delineation of the Mainland fonnation. 

and the introduction of a new unit, the American Tickle formation, which encompasses 

the fanner Goose Tickle formation and other infonnal units (see table 1.2). The 

American Tickle fonnation contains two distinctive members: the Daniel's Harbour 

Member, proposed by Stenzel et al. (1990), and the Howe Harbour member (Quinn, in 

prep). The Black Cove Formation, which was formerly assigned to the Table Head 

Group by Klappa et al. (1980), was reassigned by Stenzel et al ( 1990) to the Goose 

Tickle group (Quinn. in prep), thus making the boundary of the Table Head/Goose 

Tickle groups the onset of deposition of predominantly siliciclastic sediments. 

According to the definition of Quinn (in prep), the Mainland formation is now 

restricted to the Mainland area (appendix 1, location map 1), and the American Tickle 

fonnation extends almost the entire length of the Northern Peninsula from Pistolet Bay 

to northeast of the Port au Pon Peninsula. 
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Figure 2.1: Generalised stratigraphy of the Table Head and Goose Tickle groups. After 
Stenzel et al. (1990) and Quinn (in prep.). The controversial contact between the 
Mainland formation and the Long Point Group is shown as a dotted line. 
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2.3.1 The Black Cove Formation 

The Black Cove Fonnation (Klappa et aJ. , 1980; Stenzel et al. • 1990) is the 

lowennost formation in the Goose Tickle group. At ~ifferent localities, it overlies either 

the Table Point Fonnation or the Table Cove Fonnation of the Table Head Group. It 

is not present on the west coast of the Pon au Pon Peninsula. The Black Cove 

Fonnation consists of a thin (4- 22m) unit of dark grey non-calcareous shales (Stenzel 

et al. 1990). 

The base of the Black Cove Fonnation marks the base of the Goose Tickle group, 

and was defined by Stenzel et a!. ( 1990) as the base of the first black non-cakareous 

shale above the last thin limestone bed of the top of the Table Cove Formation of the 

Table Head Group. 

2.3.2 The American Tickle fonnation 

The American Tickle formation is a unit dominated by silty argillite with minor 

sandstones. It is named for its occurrence at American Tickle in Hare Bay (appendix 1, 

location map 4). The unit extends from Pistolet Bay to the Black Cove area just 

northeast of the Pon au Port Peninsula, although from Bonne Bay to the Pon au Port 

Peninsula it is very poorly exposed. The type section is located at Goose Tickle 

(appendix 1, location map 4) in Hare Bay. 

2.3.2.1 Lithologic Character 

The American Tickle fonnation is a mainly fine-grained siliciclastic unit with 
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minor limestone breccia and polymict conglomerate. Despite difficulties in estimating 

thicknesses (see below), the American Tickle formation is divisible into lithological 

packages. 

The American Tickle in its type area (Goose Tickle, see appendix I. location map 

4; appendix 2, section A2.1 .1 for measured section) is mainly characterised by green 

silty argillite. Massive silty horizons are up to 50 em thick, but mean thickness is about 

20 em. Interbedded with the argillite are black mudstone bands up to 1 em thick which 

are between 4 and 15 em apart. These dominant lithologies are interbedded in places 

with resistant, calcareous, tan weathering fine- to medium-grained sandstones. Sandstone 

beds have a mean thickness of about 30 em and are commonly amalgamated; the deposits 

of single flows are about 15-25 em thick. Common sedimentary structures in the 

sandstones are graded bedding, parallel laminations, ripple or ripple drift cross

lamination, and convolute laminations. These structures are contained in partial or 

complete Bouma ( 1962) sequences. Flute and load casts are also common. lbe tops of 

the beds are commonly marked by asymmetric ripple marks with wavelengths of 20-50 

em. 

Another conspicuous lithology at the type section is thin, tan weathering, 

discontinuous, fine sand which occurs in lenses with irregular ripple laminae, and 

convolute laminae. These lenses have a mean thickness of about 5 em and are regularly 

interbedded at 5 to 20 em intervals with the silty argillite. The uppermost part of the 

section is poorly exposed, but near the contact with the Northwest Ann Formation there 

are at least two beds of conglomerate of the Howe Harbour member (see section 
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2.3.2.6). The conglomerates are not completely exposed, but are probably less than 1 

m thick. 

2. 3. 2. 2 Structure and Thickness 

The American Tickle formation is generally defonned at all localities, except those in the 

extreme west, as a result of its proximity to the bases of the Humber Anu and Hare Bay 

Allochthons. In the Hare Bay and Pistolet Bay areas, the American Tickle fonnation is 

defonned in open (westwards away from the Hare Bay Allochthon) to tight (eastwards 

towards the allochthon) NE to SW trending folds, with a moderate to strong associated 

cleavage (Knight, 1986b). 

In the Table Cove area · .. ,here Quinn (in prep) defined a reference section 

(:tppendix 2, section A2.1.3), the unit is less defonned, being mainly affected by minor 

folding and east-west trending tear faults which were related by Grenier ( 1990) to east

directed !~>_rusting in the area. American Tickle lithologies commonly form the matrix 

to melanges at the bases of the allochthons, and much of what has been mapped by 

Williams and Cawood (1988) as melange in the area north of Bonne Bay is mainlJ 

chaotic American Tickle formation. 

Because of the structural complexity of the American Tickle formation, an 

accurate thickness, even of the fo,_flation stratotype, cannot be obtained (appendix 2, 

section A2.1 .1 ) . A summary of thicknesses previously estimaied for the unit by different 

authors at different localities is given in table 2.1. Most previous authors appear to have 

relied on estimates based on outcrop width. It is not clear whether the variable 
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Table 2.1: Thicknesses estimated by previous workers for the American Tickle and 
Mainland fonnations. All localities are now interpreted as part of the American Tickle 
formation except the Mainland locality . 



44 

thicknesses shown in table 2.1 are a result of deformation or whether they reflect true 

depositional differences. However, examination of field relationships at numerous 

localities suggests that both factors affect the observed apparent thickness of the unit. 

2.3.2.3 Lower Boundary and Character of Underlying Units 

The American Tickle formation gradationally overlies the Black Cove Fonnation. 

The boundary between the Black Cove and American Tickle fonnations is well exposed 

at several localities and was placed by Stenzel et al. (1990) at a point within a transitional 

zone from black shale to greenish silty shale where green siltstone laminae constitute 

more than 30% of the rock. 

2.3.2.4 Upper Boundary and Character of Overlying Units 

The top of the American Tickle fonnation is, in most places, faulted against the 

overriding allochthons, with the most notable exception being in the Table Cove area 

where the top of the unit is simply not exposed. 

Since the stratigraphic units within the allochthons are discordant with the basal 

thrusts, the uppennost American Tickle fonnation is juxtaposed against different 

allochthonous fonnations at different localities. At contacts with the Hare Bay 

Allochthon these include the Northwest Ann Fonnation (chaotic shale, limestone and 

sandstone) and the Maiden Point Fonnation (coarse feldspathic sandstone). At contacts 

with the Humber Ann Allochthon, they include the Blow me Down Brook Fonnation 

(coarse-grained feldspathic sandstone), the Irishtown Formation (quartzose sandstone and 
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shale), the Middle Arm Point Fonnation (variegated shale and dolostone). the Cow Head 

Group (variegated shale, chen, limestone, and limestone conglomerate). and the Lower 

Head Fonnation (coarse-grained lithic sandstone). 

The contact zones vary in style from narrow thrust belts to the more typical wide 

shaly melange zones which contain clasts of local and exotic lithologies. 

2.3.2.5 Daniel's Harbour Member 

The Daniel's Harbour Member is a heterogeneous unit of variable distribution and 

thickness characterised by at least three types of limestone conglomerate and calcarenite 

(Stenzel et al., 1990) ranging from very thick-bedded limestone boulder conglomerate 

(maximum thickness 62 m; Stenzel et al., 1990) to thin-bedded calcarenite. The 

conglomerates and calcarenites are interbedded with siliciclastic lithologies of the 

American Tickle formation at different stratigraphic levels. They appear to be lensoid 

bodies which cannot be correlated to any great lateral extent (Stenzel et al., 1990). A 

detailed study of the Daniel's Harbour Member is included in Stenzel (1992). 

The Daniel's Harbour Member is generally found lower than the Howe Harbour 

Member (see section 2.3.2.6) in any American Tickle section where both members are 

present. 

2.3.2.6 Howe Harbour member 

At the type locality at Howe Harbour (appendix 1, location map 4) , the Howe 

Harbour member is composed of two thick beds of pebble to cobble conglomerate. The 
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conglomerate contains clasts of black siliceous shale, grey argillite, dark green, reddish 

or orange chen, light green chen, laminated fine grained limestone, dolomitic siltstone, 

pyrite nodules, and mafic volcanics. Clasts are subangular to rounded. They may be 

matrix supponed, in which case the matrix consists of sandstone or silty argillite, or they 

may be clast supponed. The maximum long diameter of the clasts is 20 em with a mean 

long diameter of about 3 em. Some clasts are platy and are aligned parallel to bedding. 

Also included in the Howe Harbour member are very coarse sandstone - granule 

conglomerate layers 1 to 2 em thick composed predominantly of black and green shale 

detritus. Towards the contact with the structul'ally overlying Northwest Arm Formation, 

these horizons become thicker, reaching a maximum thickness of 40 em. The thin layers 

are nonnally graded, whereas the thicker layers may be trough cross laminated. All of 

the above lithologies are displayed at the type section for the Howe Harbour member 

(appendix 1, location map 4), which, however. is deformed and possibly imbricated close 

to the contact with the Northwest Ann Formation. 

Both of the conglomerate beds exposed in the northeast area of Howe Harbour 

have a maximum thickness of about 40 em, but vary laterally in thickness as the bases 

of the beds may have as much as 20 em erosional relief. The thickness and number of 

conglomerates in the Howe Harbour member is variable and Williams and Smyth (1983) 

have recorded individual thicknesses of up to 10 m for the conglomerate beds. The 

Howe Harbour member is interbedded with silty argillite of the American Tickle 

formation and is restricted to localities where the American Tickle formation is 

structurally overlain by the Nonhwest Ann Formation of the Hare Bay Allochthon. The 
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clast types within the Howe Harbour Member resemble closely the lithologies present in 

the Northwest Ann Formation. At most localities the Howe Harbour Member is 

de''onned as a result of its close proximity to the faulted contact with the Northwest Arm 

Formation. 

The thin shale chip horizons are included with the Howe Harbour Member 

because they are clearly depositionally related to the conglomerate (see chapter 3, section 

3.2.3). 

2. 3. 2. 7 Regional Lithological Variations 

The American Tickle formation is well exposed at many localities. The most 

significant occurrences are considered to be those which are relatively undeformed, 

exhibit a complete or nearly complete section through the formation, or display specific 

relationships among members and/or facies (see chapter 3). Important localities in the 

Hare Bay/Pistolet Bay area (appendix 1, location map 4) include Shallow Bay (appendix 

2, section A2.1.2), Triangle Point, Nonhwest Arm. Howe Harbour, Goose Tickle 

(appendix 2. section A2.1.1), American Tickle, and Big Springs and Little Springs inlets. 

At all of these localities the lithologies are similar to those found at the type section. 

although at Big Springs a~d Little Springs Inlets, the unit appears more sand rich. Smyth 

(1973) suggested that there is a regional southward fining of the unit and Knight (1986b) 

observed that the formation is finer grained in the Hare Bay area than in Pistolet Bay. 

In the central pan of the Nonhero Peninsula the most important localities are 

Bellburns (appendix 2, section A2. 1.4) and Table Cove (section A2.1.3). At the Table 
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Cove and Bellbums localities sandstone in the American Tickle formation is coarser 

overall and constitutes a higher proportion (80%) of the whole. Sandstone is medium

to thick-bedded, medium- to coarse-grained, amalgamated, and beds vary considerably 

in thickness along strike. Sedimentary structures consist of partial or complete Bouma 

( 1962) sequences. Finer grained material is interbedded with the sandstone and 

resembles the silty argillite which is exposed in the type area. 

South from Bellbums to Bonne Bay (appendix 1, location map 3), the American 

Tickle Formation consists mostly of silty banded argillite with only minor sandstone 

beds. The Daniel's Harbour member is present at several sections in this region, but the 

Howe Harbour member is absent. South of Bonne Bay (appendix 1, location map 3), 

no detailed descriptions of the American Tickle formation are available, however workers 

in the area (e.g. Cawood and Williams, 1986) have given brief descriptions which 

suggest that lithologies are similar to the American Tickle fonnation farther north. 

Northeast of the Port au Port Peninsula the most important locality is that at Black 

Cove. However, a number of localities have also been recorded inland by Schillereff 

( 1980) which he assigned to the Black Cove Formation, but whose description clearly 

places them in the sandstone part of the Goose Tickle group. At the above localities the 

lithologies have some of the characteristics of both the American Tickle and Mainland 

formations. They both consist of thin- to medium-bedded medium- grained sandstone 

interbedded with friable recessive intervals which are siltier than the typical American 

Tickle formation. In places the sandstone beds contain rill markings on the upper 

surface. Current-aligned graptolites are also present. The Daniel's Harbour Member is 



49 

present in the American Tickle formation at Black Cove. These coarser grained 

lithologies in the Pon au Pon area may represent a lateral transition between the 

American Tickle and the Mainland formations. 

2.3.2.8 Age of the American Tickle Formation 

The American Tickle formation is characterised by a graptolite fauna. In 

addition, poorly preserved brachiopods have been recorded at one locality (Smyth, 1973). 

A complete paleontological study of the American Tickle formation has, as yet, not been 

carried out, but collections have been made by various workers (Stevens, 1976; 

Erdtmann 197la, 197lb; Tuke 1968; Schillereff 1980) as well as the author. The 

specimens collected by the author were identified by S.H. Williams of Memorial 

University of Newfoundland. Generally the fossils indicate a middle Llanvirn age (Da 

3 of the Australian scheme; see table 2.2) for the unit and forms present show closer 

affinities with material from other areas of North America and Australasia, rather than 

with material from Wales and other parts of northwest Europe (S.H. Williams, pers. 

comm., 1991). Tuke (1968) recorded poorly preserved specimens ofCiimacograptus cf. 

bicornis and Dicellograptus sp. from Pistolet Bay which might indicate an age younger 

than Llanvirn for some parts of the American Tickle formation. However, Erdtmann 

(1971a) has doubted at least one of the identifications of Tuke (1968), and Williams 

(pers. comm., 1991) has cautioned that few if any specimens collected from these units 

have been figured or photographed in a publication. Incorrect identification of graptolites 

in western Newfoundland sandstones has previously caused problems in structural and 
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COW HEAD ZONES AUSTRALIAN STAGES 

Da3 
Llanvirn 

Da2 
Llanvirn 

u. austrodentatus 
Arenig Dal 

Ya3 
I. y. maximus Ya2 

Yal 
Ca3 

I. y. yictoriae Ca2 

I .y. lunatus Cal 

Ch2 
D. bifidus 

Chl 

Be4 
P. fruticosus 

Be3 

.................................... a·e·:z ................................... . 
T. akbareosis 

Bel 

T. approximatus La3 

Tremadoc La2 

Table 2.2: Graptolite zonation of the Arenig and early-middle Llanvirn. Cow Head 
graptolite zones (Williams and Stevens. 1988; James and Stevens, 1986) shown on the 
left. Australian stages (Thomas. 1960: Vandenberg, 1981) are shown on the right. 
Abbreviations: La= Lancefieldian; Be= Bendigonian; Ch =Chewtonian: 
Ca = Castlemainian: Ya = Yapeen; Da = Darriwilian. Note that the position of the Arenig
Llanvirn boundary is uncertain (James and Stevens. 1986). 
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tectonic reconstructions (see discussions by Schillereff ( 1980) and Quinn ( 1985) of 

Gonzalez-Bonorino (1979)). 

2.3.3 The Mainland fonnation 

The Mainland fonnation is restricted to the western part of the Port au Port 

Peninsula. It consists of a thick package of fine-, medium- and coarse-grained sandstone 

and siltstone. 

2.3.3.1 Lithologic Character 

The Mainland fonnation at its type section (Crow Head/Three Rock Cove; sec 

appendix 1, location map 1; appendix 2, section A2.2.1) consists of two main lithological 

types. The dominant lithology is thin- to thick-bedded fine to medium grained sandstone 

showing abundant partial or complete Bouma (1962) sequences (a complete Bouma 

sequence for a turbidite bed Tis written Tobtde1• The most common sequence is T tx:•• with 

abundant parallel laminations and parting lineations. Flutes. grooves and other tool 

marks are common on bases of beds. Several thin beds show spectacular load casts. 

The sandstone is friable and has a high percentage of argillaceous matrix . Black and 

green shale detritus is abundant on the planes of parallel laminations. 

The second lithologic type is thick- to very thick- bedded (maximum thickness 6 

m) amalgamated medium- to coarse-grained massive or stratified sandstone. Dewatering 

structures are visible in places, and some of the beds have irregular tops. A crude 

parallel stratification is present in this type of sandstones which in wave-washed outcrops 
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shows low angle truncations ( < 15 degrees). Individual sandstone beds commonly 

bc:come amalgamated or pinch out along strike. Relief along the bases of amalgamation 

horizons may be as much as 1 m. 

A less common but striking lithology is a coarse-grained trough cross-bedded 

medium-bedded sandstone which contains lesser amounts of muddy material than either 

of the lithologies described above and which is commonly associated with pinching of 

beds along strike. 

Several rubbly horizons caused by slumping or sliding are present in the section. 

Thin beds of calcarenite punctuate the section at widely spaced intervals. 

Recessive intervals (siltstone and shale) are present in varying proportions within 

the type section, but rarely do they constitute more than 50% of the whole. As the 

outcrop is very friable, structures in recessive intervals are hard to determine. However, 

where seen on wave-washed outcrops, finer grained intervals consist of parallel 

laminated, rippled and convoluted siltstone with minor massive mudstone . 

Upward fining and thinning sequences are present at several levels in the type 

section but are not well developed. 

2 . 3 . 3. 2 Structure and Tl1ickness 

At the type section the unit is a minimum of 620 m thick with neither base nor top 

exposed. At the reference section (at Mainland itself. see appendix A2.2.4 for details) 

a 15 m thickness of Mainland formation is exposed above the Cape Cormorant 

Formation. The detailed structure of the Mainland formation is poorly understood, as 
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the fonnation contains few marker horizons. The type section is interpreted by Waldron 

and Stockmal (1991) as a relatively intact 'horse' preserved between thrust faults. This 

structural situation would explain why neither the base nor the top of the unit are exposed 

at this locality . 

2.3 .3.3 Lower Boundary 

At the type section at Crow Head, the base of the Mainland formation is not 

exposed. An arbitrary base was taken at the base of the lowest completely exposed thick 

bed at the point of Crow Head. 

South of the village of Mainland, the Mainland fonnation overlies limestone 

conglomerates of the Cape Cormorant Formation of the Table Head Group (appendix I. 

location map 1). The contact between the two units was defined by Stenzel et al. (1990) 

as the base of the first bed of green sandstone which appears in the Cape Cormorant 

section. 

2.3.3.4 Upper Boundary 

The uppennost pan of the type section which is considered to be intact is m4'.rked 

by a paired anticline/syncline approximately 1.5 krn south of Crow Head which is shown 

as a major fault on the map of Stockrnal and Waldron (1990). This locality does not 

mark the contact of the unit with any other unit. as Mainland lithologies are exposed 

continuously south of the folds along the coastline to Low Point (see appendix 1, location 

map 1). No stratigraphic contact between the Mainland formation and an overlying unit 
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is exposed anywhere. 

Previous workers (e.g. Schillereff and Williams, 1979) have identified a section 

at Low Point (see appendix 1, location map 1) as the youngest exposed example of 

Mainland lithologies. The approximately 60 m section at Low Point is separated from 

the Three Rock Cove and Mainland sections by faulted and sheared shale containing 10 

to 20 m thick packages of sandstone which is typically medium- to thick-bedded, coarse 

grained, and shows considerable evidence of soft sediment deformation. James and 

Stevens (1982) have reported finding graptolites from this locality which indicate a 

Llandeilo to early Caradoc age. The original reference which mentions these fossils 

(Stevens, 1976) is in error as the fossil locality is apparently somewhere in the ocean. 

Offshore and apparently upsection from Low Point, is an outcrop known as the 

Cow Rocks (appendix 1, location map 1). This outcrop is composed of quartzites 

interbedded with limestone which have yielded fauna of Llandeilo age and are interpreted 

to be part of the Long Point Group (James and Stevens, 1982; Stockmal and Waldron, 

1990). 

Evidence which appeared to indicate that Low Point represents the highest 

exposed level in the Mainland fonnation (Schillereff and Williams, 1979) included: 

1. The continuity of outcrop between the section from Crow Head to Low Point; 

2. The presence at Low Point of graptolites of Llandeilo age (James and Stevens, 1982), 

which is younger than the Llanvirn age assigned to the rest of the Mainland formation; 

3. The broad similarity of lithologies at Low Point with other parts of the Mainland 

fonnation; 
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4. The tendency of sandstone at Low Point to be cross-bedded. calcareous. and more 

quanzose than the rest of the Mainland fonnation - which, combined with 3. was 

interpreted to reflect a transition between the Mainland Formation and Long Point Group; 

5. The similarity of strike and dip between the Low Point section and the offshore Cow 

Rocks (now included with the Long Point Group), suggesting a stratigraphic contact 

between the two units (Schillereffand Williams, 1979; H. Williams. pers . comm . . 1992). 

This hypothesis of stratigraphic continuity between the Mainland F:-rmation and 

the Long Point Group would imply a substantial thickness ( > I . 5 km) for the Mainland 

Formation. Problems with this hypothesis are as follows: 

1. The author has documented several bedding parallel faults within the Mainland 

formation south of Low Point which cast doubt on any assumptions of stratigraphic 

continuity between the Mainland and Three Rock Cove sections and Low Point, and 

between Low Point and the Cow Rocks ; 

2. S.H. Williams (pers. comm., 1991) has pointed out that the collection of fauna from 

the Low Point section has never been figured in a publication. and he considers the 

Llandeilo age to be unsubstantiated; 

3. Recent work (Stockmal and Waldron, 1990; Waldron and Stockmal, 1991) based on 

information from offshore seismic lines, has suggested that the platform and foreland 

basin sediments on the Port au Port Peninsula have been structurally incorporated into 

a triangle zone, and the Long Point Group has in fact been thrust over the Mainland 

Formation, with the thrusted contact being located somewhere between Low Point and 

the Cow Rocks. 
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Three possible interpretations for the rocks at Low Point are possible with the 

currently available information: 

1. Faults at the base of the Low Point section have placed younger over older material, 

and represent smaller faults in the same sense as the main triangle zone fault postulated 

by Stockmal and Waldron (1990) and Waldron and Stockmal (1991). This could be the 

case regardless of whether the Low Point rocks are of Llanvirn or Llandeilo age; 

2. The Low Point section may represent an axial succession of the same age as the rest 

of the Mainland Formation, which has been faulted against more marginal deposits: 

3. The Low Point section may represent upper Mainland rocks whose stratigraphic 

position relative to the main sections is intact, and faults at the base of the Low Point 

section. This again could be the case for Low Point rocks of either Llanvirn or Llandeilo 

age. 

2. 3. 3. 5 Regional Lithological Variations 

The Mainlan(i formation as defined by the author is restricted to the west coast 

of the Pon au Pon Peninsula. However, the area of melange near Victor's Brook 

(appendix 1, location map 1) shown on the map of Williams (1985) has been 

reinterpreted by Corney (1991) and Waldron and Stockmal (1991) as a complete section 

through the upper pan of the Table Head Group and the lower part of the Goose Tickle 

grcup, with the top of the section being marked by the base of the Humber Arm 

Allochthon. The sandstone part of this section has been correlated by these workers with 

the Mainland formation. Corney (1991) has reponed conglomeratic units similar to both 
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the Daniel's Harbour Member and the Howe Harbour member of the American Tickle 

formation interbedded with the sandstone at this locality . 

2.3.3.6 Age of the Mainland formation 

The Mainland formation contains poorly preserved graptolites which are 

commonly unimodally aligned in medium or coarse sandstone. Graptolites are better 

preserved in fine grained horizons of the Mainland formation, but the friable nature of 

the exposure makes it difficult to collect complete specimens. The graptolites are 

indicative of a middle Llanvirn (Da 3, see table 2.2) age (S.H. Williams. pers comm 

1991). Graptolites have been collected by Stevens (1976) (also reported by James and 

Stevens (1982)) which indicate a Llandeilo or early Caradoc age for the uppermost 

Mainland Formation (but see discussion above). Again these specimens have not been 

figured in any publication, but they have been given a GSC number. If these 

identifications are correct, the upper Mainland formation is the youngest part of the 

Goose Tickle Group exposed anywhere. 

2.4 COMPARISONS BETWEEN THE MAINLAND AND AMERICAN TICKLE 

FORMATIONS 

There are fundamental lithological differences between the American Tickle 

formation and the Mainland formation. Very thick-bedded sandstones, rubhly horizons, 

abundant cross-bedding and evidence of bioturbation are not present in the American 

Tickle formation, whereas the extensive laminated argillite and mudstone of the 
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American Tickle formation are not characteristic of the Mainland formation. However, 

the two unit:; were clearly deposited in the same overall tectonic setting, and are at least 

partial time equivalents. Although the Mainland formation is restricted to the west coast 

of the Port au Port Peninsula, a gradatio.aal lateral contact with the American Tickle 

formation may exist nonheast of the Port au Port Peninsula. 

2.5. ALLOCHTHONOUS ORDOVICIAN SANDSTONES 

Allochthonous Ordovician sandstone is exposed in three main areas, all in the 

Humber Arm Allochthon (figure 1.5). There is no equivalent allochthonous sandstone 

exposed in the Hare Bay Allochthon. 

The name Lower Head Formation was introduced by James and Stevens (1986), 

for an Arenig to Llanvirn unit of medium- to coarse-grained, thick-bedded sandstone and 

conglomerate which overlies the Cow Head Group. James and Stevens (1986) considered 

the Lower Head Formation somewhat outside the scope of their study of the Cow Head 

Group and although they did designate a type area for the unit, they did not formally 

designate a type section, nor did they attempt to extend the unit beyond the area nonh 

of Bonne Bay. 

Botsford ( 1988) undertook a revision of the stratigraphic nomenclature of the 

entire allochthonous sequence in the Bay of Islands area. The basic subdivision is as 

follows: a lower siliciclastic group (the Curling group) which would include the 

Summerside and Irishtown formations shown in figure 1.4; a middle carbonate group (the 

Nonhero Head group) which consists of the Cooks Brook Formation and the Middle Ann 
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Point Formation; and an upper siliciclastic fonnation (The Eagle Island formation) which 

is shown in figure 1.4 as the Lower Head Formation. This nomenclature has not been 

formally proposed, although the term Eagle Island fonnation has been used as if it was 

formal in several publications (e.g. Williams and Cawood, 1988; Cawood and Botsford, 

1991). In addition, the nomenclature not been completely integrated with the regional 

stratigraphy; for example, the infonnal terms introduced by Williams et al. (1984), and 

Quinn (1985) have neither been dropped and incorporated into Botsford's scheme, nor 

have they been formally proposed. 

The broad subdivision of Botsford (1988) is compatible with that for the area 

north of Bonne Bay (James and Stevens, 1986), although the lower siliciclastic group is 

not exposed north of Bonne Bay. In addition, Botsford's ( 1988) subdivision is consistent 

with the stratigraphic subdivision of the parautochthon, which is also divided into a lower 

siliciclastic group, a middle carbonate succession (several groups) and an upper 

siliciclastic group (see figure 1.3). 

The upper siliciclastic formation in the Humber Arm Allochthon in the Bay of 

Islands area had previously been referred to the Blow me Down Brook Formation 

(Stevens, 1965), but Quinn (1985, 1986, 1988a) and Waldron (1984, 1985) suggested 

independently that the Blow me Down Brook Formation at its type section had been 

misinterpreted and that it is an upper Precambrian or Lower Cambrian unit. This 

interpretation was subsequently confirmed by Lindholm and Casey ( 1989) who found 

trace fossils indicative of an early Cambrian age, although they later revised their 

interpretation to include an expanded age range from Late Precambrian to Early 
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Cambrian (Lindholm and Casey, 1990). Botsford's ( 1988) map of the distribution of the 

Eagle Island formation does take into account the re-interpretation of Quinn (1985. 1986) 

and Waldron (1985), and hence the extent of the upper siliciclastic unit in the area as 

shown by Botsford (1988) and Quinn (1988a) is much less than had previously been 

thought (see. for example, Williams, 1973). 

The exposures at Rocky Point and Black Point in the Pon au Pon area. while 

generally recognistd as equivalents to the Lower Head and Eagle Island formations, have 

not been clearly designated as part of a stratigraphic unit. However, nomenclature from 

the Bay of Islands has generally been applied in this region (Schillereff and Williams. 

1979). 

Botsford (1988) has suggested that the lithological differences between his Eagle 

Island formation in the Bay of Islands area and the Lower Head Formation north of 

Bonne Bay are sufficiently great that the units merit different formation names. If this 

is true, the Pon au Port occurrences might also merit a different name. However, for 

a regionally consistent stratigraphy, this would presumably require the incorporation of 

all three units in a single group. The author is not convinced that the lithological 

differences have been documented sufficiently to justify the use of two or three different 

formation names. It is here suggested that the term Lower Head Formation be extended 

to include all of its currently recognised equivalents in the Humber Ann Allochthon, with 

the designation of reference sections in each of the three different areas. This does not 

preclude the elevation of the unit to group status and subdivision into formations pending 

further woflc. 
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2.5.1 The Lower Head Formation - Lithologic Character 

The Lower Head Formation in its type area is mainly characterised by thick.- to 

very thick-bedded massive sandstone which is medium- to coarse-grained and poorly 

soned. The sandstone commonly contains scattered granules and pebbles of argillite 

which nucleate spherical concretions (cannonball concretions). Fluid-escape structun:s 

such as pillars and sheet structures are also common and these also have a concretionary 

aspect. In some beds a crude parallel stratification is visible. Some of the thick 

sandstone beds are amalgamated, with patches of shale rip-up clasts and irregular scour 

surfaces marking the bases of depositional events. Some of the beds also have matrix

poor cross-bedded tops. Medium-bedded medium-grained calcareous sandstones showing 

abundant ripple drift cross-lamination are also abundant in the type area. Thin beds of 

fine-grained limestone are found interbedded with the sandstone as high as 250 m above 

the base of the unit. Minor granule to pebble conglomerate is also presem. Lateral 

continuity of individual beds of the Lower Head Fonnation is difficult to evaluate hut at 

one locality a single conglomerate bed is traceable along strike for 1 km. 

2.5.2 Regional Lithologic Variations 

In detail, lithologies of the Lower Head Fonnation vary considerably among 

localities. Key features of the Lower Head Formation are observed at several localities 

in tht: area nonh of Bonne Bay (appendix I, location map 3). These are Man in Point 

Nonh (appendix 2, section A2.3.1), Manin Point South (appendix 2, section A2.3.2), 

Western Brook Pond Nonh (appendix 2, section A2.3.3), Ponland Creek Hill, Ponland 
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Creek, and St. Paul's Inlet. An extensive, although structurally complex, exposure of 

the unit occurs as a large raft in melange (Williams et al., 1985) in the area around 

Lobster Cove, north of Rocky Harbour. The Lower Head Formation at the Lobster 

Cove locality has been studied in detail by Gonzalez-Bonorino (1990). 

The base of the Lower Head Fonnation is sharp, but at several localities red and 

green shale and limestone conglomerate, similar to lithologies of the uppennost Cow 

Head Group, are interbedded with sandstone for several tens of metres upsection from 

the lowest sandstone bed. Sandstone dykes and sills are common at the base of the 

Lower Head Fonnation, at many of the localities where it overlies red and green cherts 

and shales of the Green Point Fonnation of the Cow Head Group; e.g. at Western Brook 

Pond. The dominant lithology in the Lower Head Fonnation is thick- to very thick

bedded massive sandstone, with abundant fluid escape structures (mainly pillars). A 

distinctive lithology consisting of channelised conglomerate containing cobbles of 

limestone and chen supponed by a granule sandstone matrix occurs at several localities, 

notably Manin Point South, the south side of St. Pauls Inlet, Lobster Cove Head, and 

Ponland Hill. The lithologies of the conglomerate clasts resemble those in the 

immediately underlying Cow Head Group. 

Near Ponland Creek, thick-bedded sandstone is interspersed with packages of 

poorly exposed green shale and siltstone which are up to 25 m thick. The sandstone 

contains limestone granule layers up to 20 em thick. At this locality a folded 

olistostromal horizon, several lO's of m thick, is also present. It contains large boulders, 

up to 5 m long diameter, of conglomeratic sandstone in a pebbly mudstone matrix. This 
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horizon is approximately along strike of the Ponland Hill conglomerate locality. Other 

facies in the Lower Head Fonnation include thin-to medium-bedded, rippled, calcareous 

fine grained sandstone and shale, which are best exposed at Western Brook Pond. 

Paleocurrent indicators are few in the Lower Head Fonnation, but most 

measurements by the author indicate flow to the south or southwest. Paleocurrent data 

collected by Gonzalez-Bonorino (1990) in the Lobster Cove area indicate flow to the 

west. Paleocurrent data for selected localities is presented in appendix 2. 

Four main outcrops of the Lower Head Formation exist in the Bay of Islands area 

(appendix 1, location map 2). They are Middle Ann Point, North Arm Point, Eagle 

Island, and Black Brook Nonh. All of these are located in the west of the area. 

Generally the structure of the Humber Arm Allochthon is more complex in the Bay of 

Islands than it is nonh of Bonne Bay (Cawood and Botsford, 1991). The most extensive 

and least structurally complex exposure of the Lower Head Formation is that at Middle 

Arm Point (Botsford, 1988). Here, the unit consists of medium to thick-bedded massive 

sandstone which is medium to coarse-grained and commonly contains spherical 

concretions. Thinner bedded sandstone showing ripples and rill markings is also present 

and is particularly well developed at North Arm Point. The lower part of the unit again 

contains red and green shale and numerous sandstone dykes and sills which have been 

referred to by Botsford (1988) as the 'slump and injection facies'. Conglomerate, 

consisting of dolostone fragments in a coarse sandy matrix, occurs at North Arm Point. 

Two outcrops of the Lower Head Formation exist in the Port au Port region 

(appendix 1, location map 1); they are at R'1Cky Point anti Black Point. The Rocky Point 
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section is structurally complex and consists of thick- to very thick-bedded, massive, 

medium- to coarse-grained sandstone, with few sedimentary structures. Flute casts are 

present on the bases of some beds. Interbedded within the section are some horizcns of 

red and green shale and dolostone similar to those of the underlying Middle Ann Point 

Formation (Botsford 1988). The Black Point section displays a sharp, erosive contact, 

with 3m of relief, between sandstone and dark shale of the Middle Arm Point Fonnation 

(Botsford, 1988). The sandstone is generally very thick-bedded, and coarse-grained to 

conglomeratic. Each bed contains numerous amalgamation surfaces with scour features 

and graded bases. flutes up to 30 em wide and load casts are present on the bases of 

some beds. 

2.5.3 Structure and Thickness 

The numerous exposures of the allochthonous Ordovician sandstone in the area north of 

Bonne Bay are interpreted to be a result of repetition across the regional strike by a 

series of east dipping imbricate thrust faults (Williams et al., 1985; appendix 1, location 

map 3). The structure of the area is considered relatively simple except for the 

northernmost part where some east-dir~cted movement is inferred (Grenier 1990). Later 

movements in the area have thrus. the Grenvillian Long Range Complex over 

the Humber Ann Allochthon (Grenier, 1990). 

The structure in the Bay of Islands area is considered more complex than in the 

area north of Bonne Bay (Botsford 1988; Cawood and Botsford, 1991) wiL'1 early west

directed thrusting being succeeded by easterly directed structures and an eastward 
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increase in the intensi[)' of tectonism. This was succeeded by later gentle folding and 

vertical faulting . Cambrian sediments in this pan of the allochthon have been subjected 

to out-of-sequence thrusting, and the entire area has been interpreted as being pan of a 

large duplex (Lindholm and Casey, 1989). All sections in this area contain shear zones 

and faults, and thicknesses of units are difficult to determine. 

The Black Point section is exposed as pan of a large, probably emplacement

related anticline close to the base of the Humber Arm Allochthon. Thr Rocky Point 

section is structurally complex with several facing reversals, and awaits a structural re

evaluation in light of its i:ifei!ed position close to a major triangle zone thrust (Stockmal 

and Waldron, 1990). 

In all cases, the top of the Lower Head Formation is absent through fauhing. 

However, the maximum thickness observed during the present study is about 320 m at 

Martin Point South (see appendix A2.3.2). 

2.5.4 Lower Boundaries and Character of Underlying units 

Sandstone of the Lower Head Formation overlies various formations of the Cow 

Head Group depending on locality. In northwesterly localities sandstone everlies mainly 

thick to very thick-bedded limestone conglomerate of the Shallow Bay Formation (James 

and Stevens, 1986). In central and eastern areas the Lower Head Formation overlies 

thinner bedded limestone conglomerate, shale and chert of the Green Point Formation. 

In the detached raft at Lobster Cove Head sandstone overlies dolostone and shale of the 

Lobster Cove Head Member of the Shallow Bay Formation (James et al., 1987). 
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In the Bay of Islands area the Lower Head Fonnation overlies red and green shale 

and dolostone of the Middle Ann Point Fonnation. 

At Black PC'int sandstone overlies a 40 m thick unit of grey siltstone, which in 

tum overlies red and green shale of the Middle Ann Point Fonnation (Botsford, 1988 

and unpublished data). At Rocky Point, the Lower Head Formation structurally overlies 

sandstone mapped by Williams (1985) as the basal melange of the Humber Arm 

Allochthon. This may be sandstone of the Goose Tickle group caught up in the basal 

melange, as shown in Waldron and Stockmal (1991). 

2.5.5 Upper Boundaries and Character of Overlying Units 

The stratigraphic top of the Lower Head Fonnation is not exposed anywhere, as 

it has been removed by faulting. The faulting, in most cases, is sharp, and is not 

charac!erised by melange. It juxtaposes the Lower Head Formation with stratigraphically 

older fonnations within the Humber Arm Allochthon. 

The top of the Rocky Point section was previously interpreted as a rather sharp 

stratigraphic contact with the lowennost limestone and quanzose sandstone of the Long 

Point Group, hence the Lower Head Formation near Rocky Point was thought to 

constitute the leading edge of the Humber Arm Allochthon (Rodgers, 1965). The contact 

has recently been re-interpreted as a shear zone related to the development of a triangle 

zone thrust during the Acadian Orogeny (Stockmal and Waldron, 1990; Waldron and 

Stockmal). 
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2.5.6 Age of the Lower Head Formation 

The Lower Head Fonnation in all areas ranges in age from late Arenig to early 

or middle Llanvirn (Cawood and Williams, 1986; James and Stevens. 1986; James et at.. 

1987; Botsford, 1988). Refer to the discussion below for more detail on this point. 

2.6 AGE RELATIONSHIPS 

Graptolites are the characteristic fossils which are diagnostic of age in the hoth 

the Goose Tickle group and the Lower Head Formation. Preservation is poor in the 

American Tickle formation because of the deformation of the unit. Preservation is also 

poor in the Mainland formation and the Lower Head Fonnation because many of the 

graptolites so far collected have been from coarse sandstone. The collection of 

biostratigraphic data has not been a priority of this study, as few workers have 

specialised in graptolites of this age in the North American realm, and study of the 

specimens would require detailed and specialised investigation of Australian correlatives 

(S .H. Williams, pers. comm., 1991). A brief review of paleontological information from 

previous workers and from the specimens collected by the author can provide some input 

concerning the possible diachronous westerly advance of sandstone facies into the 

foreland basin (Stevens, 1970; Botsford. 1988). 

Workers who have collected material from the units in question include 

Ruedemann (1947); Tuke, 1966, 1968; Erdtmann, 197la, b; Stevens, 1976; Gonzalez

Bonorino, 1979; Schillereff, 1980; Cawood and Williams, 1986; James and Stevens, 
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1986; this study. 

The information provided by biostratigraphic data is as follows: 

1. The Lower Head Formation is Arenig to Llanvirn in age; 

2. The oldest Lower Head Fonnation yet found is assigned tc; the zone lsograptus 

victoriae victoriae (late Arenig). This is equivalent to the Castlemanian 2 stage of the 

Australian zonation scheme (see Table 2.2); 

3. The youngest Lower Head Formation yet found has been assigned an age of 

Dariwillian 2 or 3 (latest Arenig to Llandeilo) (Cawood and Williams, 1986); 

4. The age of the base of the Lower Head Formation in the area north of Bonne Bay 

varies slightly among different localities from ! . y. maximus to !J.. austrodentatus zones 

(James and Stevens, 1986; Botsford, 1988); 

5. The base of the Lower Head Formation in the Bay of Islands and at Rocky Point on 

the Port au Pon Peninsula area is older than in the area north of Bonne Bay (!. y . 

victoriae) (Botsford, 1988); 

6. All graptolites collected (e.g. Erdtmann, 1971a, b; this study) from the American 

Tickle and Mainland formations indicate a Middle Llanvirn or Darr:willian 3 age. The 

only exceptions to this are the collections by Tuke ( 1968) from somewhere in Pistolet 

Bay, suggesting possible Llandeilo or Caradoc ages for the American Tickle Formation, 

and an assemblage collected by Stevens (1976) from the top of the Mainland Formation, 

which also may indicate a Llandeilo or Caradoc age. No location for the collection of 

Tuke (1968) is available. The locations given by Stevens (1976) and James and Stevens 

( 1982) for the Mainland collections differ, and it would seem that further study is 
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required to definitively establish whether the American Tickle formation or the Mainland 

formation or both extend into the Llandeilo or the Caradoc. 

Clearly, the youngest age for the Lower Head Formation is poorly constrained. 

and accurate determination of the age of the base of the 1.1nit. because of its variability . 

also requires additional collecting and more detailed investigation. Botsford (1988) was 

unable, because of limited material from the Lower Head Formation, to determine 

whether upper zones in the Cow Head Group had been removed by erosional 

downcutting, or whether sandstone deposition did actually begin later at some localities. 

James and Stevens (1986) did infer erosion of the upper part of the Cow Head Group in 

places. Thus, within the Lower Head Formation there appears to be no simple east-west 

pattern in age of first appearance of the sandstone, and, as anticipated by Botsford ( 1988) 

there is likely to be some complication from erosional downcutting . Deposition of 

allochthonous sandstones in the east began from one to three zones earlier than in the 

parautochthonous succession which was deposited farther west. The resolution of the 

available data does not allow a determination of whether or not the upper parts of the 

Lower Head Formation and the lower American Tickle and Mainland formations were 

deposited coevally. 

It will be shown in chapter 3 that sedimentological evidence in the American 

Tickle formation indicates a middle Llanvirn age for the arrival of the fi rst slice of the 

Hare Bay Allochthon. Since arrival of that slice caused the cessation of sedimentation 

in those parts of the basin, the most likely places to look for sandstone younger than 

Llanvirn is in westerly areas where the American Tickle and Mainland formations do not 
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abut the allochthons. 

An overall east - west progradation of the sandstones apparently took place if the 

allochthonous sandstone was deposited in the same basin as the parautochthonous 

succession. Gonzalez-Bonorino (1990) has stated that it was, but did not discuss his 

evidence. This question will be addressed in more detail in chapter 3. 

2.7 SUMMARY 

Two distinct parautochthonous sandstone units, the American Tickle formation 

and the Mainland formation, are present in the Goose Tickle Group. Only one 

allochthonous sandstone unit, the Lower Head Formation, has been recognised here. The 

Lower Head Formation is late Arenig to ?Liandeilo in age. The Mainland and American 

Tickle formations are at least partly time equivalent and are middle Llanvirn to ?Caradoc 

in age. The available information reveals no obvious progradational relationship within 

the Lower Head Formation, but the Lower Head Formation is at least one graptolite zone 

older at its base than sandstone of the Goose Tickle group. 

The American Tickle formation is characterised by argillite and sandstone with 

a limestone conglomerate member and a polymict conglomerate member. Stenzel et al. 

(1990) have stated that the limestone conglomerate of the Daniel's Harbour Member 

contains clasts of platform sediments which underlie the American Tickle formation. The 

polymict conglomerate of the Howe Harbour Member is restricted to localities where the 

American Tickle formation is structurally overlain by the Northwest Arm Slice of the 

Hare Bay Allochthon. and the clasts within the conglomerate are clearly derived from 
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lithologies now present in the Northwest Arm formation. The Mainland formation is 

characterised by thin- to very thick-bedded sandstone displaying a variety of sedimentary 

structures. 

The Lower Head Formation is a unit of medium- to very thick- bedded sandstone 

which is massive and relatively featureless. Conglomerate horizons in the Lower Head 

Formation have erosive bases, and contain clasts which are clearly derived from 

lithologies similar to the underlying Cow Head Group. The exact nature of the 

conglomerates in each unit will be addressed in chapter 3, but it is clear that in both 

parautochthonous and allochthonous formations at least pan of the detrital content is 

derived from immediately adjacent units. 
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CHAPTER 3 

FACIES AND BASIN ANALYSIS 

3. 1 INTRODUCTION 

Facies and basin analysis were carried out with several objectives in mind: 

1. To integrate the data gathered from the present study with previous work to try to 

refine the foreland basin model for western Newfoundland; 

2. To use field relationships and facies to examine hypotheses concerning the 

sedimentological relationship of the Goose Tickle group and Lower Head Formation to 

the arrival of the Taconic allochthons. 

Given the large number of units covered by this study. the wide region studied, 

and the unsuitability of many of the exposures for vertical measurement, detailed facies 

analyses were not carried out. Previous workers in the area had interpreted the Goose 

Tickle group (Tuke 1966, 1968; Stevens, 1970) and Lower Head Formation (James and 

Steven~. 1986; Gonzalez-Bonorino, 1990) as having been deposited in deep water by the 

actions of turbidity currents. Preliminary investigations by the author indicated that these 

interpretations are valid. 

For the purposes of this study it was deemed most appropriate to make use of the 

classification of Pickering et at. (1986) to arrive at a first order interpretation of the 

depositional processes involved. These authors devised a classification for deep 
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watersediments (summarised in table 3.1) based on an original concept of Mutti and Ricci 

Lucchi (1972, 1974, 1975, 1978). Pickering et al. (1986) identified and subdivided 

facies classes based on grain size differences, internal organization and. for hemipelagic 

and similar sediments, composition. They then separately described and outlin~d the 

likely mode of deposition of each class and subclass. Their three tier classification is 

useful because it is flexible, allowing for different levels of detail depending on the type 

of exposure and the scope of the investigation. The classification of Pickering et al. 

(1986) focuses on the characteristics of each facies which are most likely to provide a 

key to the depositional processes involved. The classification of Pickering et al. (1986) 

is useful for most deep marine sediments, but does not appear to be sufficiently detailed 

to deal with many conglomerate deposits. In this case the facies classification of Surlyk 

(1984) is employed instead. 

Once the processes responsible for the deposition of each facies are identified the 

most likely environment of deposition may be interpreted on the basis of associations of 

the various facies, and for these interpretations appropriate facies and basin models must 

be utilised (e.g. Walker, 1984; Stow and Piper, 1984; Underwood and Bachman, 1982). 

In this study the American Tickle, Mainland, and Lower Head formations were 

subdivided into facies based on lithological information from a number of localities where 

vertical sections were measured, and other localities where field reconnaissance was 

carried out. These facies were generally (but not exclusively) interpreted using the facies 

classification scheme of Pickering et al. (1986). Because in several cases two separate 

facies recognised by the author would fall into the same category, the alphanumeric codes 



Table 3.1 : Facies classification of Pickering et al. (1986), with equivalent facies 
classifications of Walker and Mutti (1973). 



A GRAVELS, MUDDY, GRAVELLY MUDS AND PEBBLY SANDS) 
5~ ~"••I ("'l"iY.Urnt to fAci•• A of W"lk•r and Muui (1973) 

A 1 Diaorsaniaed srateb 
A 1.1 Dilorganiaed ~aYeb 
A1.2 Diaorganioed muddy granbt 
A 1.3 Diaorganiaed graYelly mudo 
A 1.4 Diaorganioed pebbly oando 

A2 Organiaed sra•elo and pebbly oando 
A2.1 Stratified (!r&YfOio 
A2.2 lueroely graded (!ra•elo 
A2.3 Normally graded gra•elo 
A2.4 Graded uratified pebbly oando 
A2.5 Stratified pebbly oando 
A2.6 ln•eroely graded pebbly undo 
A2.7 N<>rmally graded pebbly oando 
A2.8 Graded otralified pebbly oando 

B SANDS 
> 80~ oand srade, <5% pebble grade (equi•alent to facieo D and E of Walhr and Multi (1973)) 
B 1 Dioorsaniled oanda 

81.1 Thick/medium-bedded dioorj!Aniaed oando 
81.2 Thin-bedded coaroe-grained oando 

82 Orf1anioed oando 
82.1 Parall•l-•tralified oando 
81.2 Crooo-otratified oando 

C SAND-MUD COUPLETS AND MUDDY SANDS 
20 • 80% oand grade, <80% mud grade (moolly oil&) (to'lui•alent to fAcieo C And oandy pArll .. r 0 "' Wal .. o·r 
and Multi (1973)) 
Cl Dioorganioed muddy oando 

C1.1 Poorly oortr.d muddy oando 
C1.2 MoUied muddy oando 

C2 Orf!anioed oand-mud couplelo 
C2.1 Very thick/thick·bedded oand·mud co upldo 
C2.2 Medium-bedded oand-mud coupl<lo 
C2.3 Thin·bedd•d oand·mud coupiP.h 
C2.4 Very Thick/thick-bedded, mud-dominated aand·mud cuuplrto 

0 SILTS, SILTY MUDS AND SILT-MUD COUPLETS 
>80% mud grade (of which greater than or equal to 50% io oill), <20% oand !<r&d• (rrtui•ah·nt tu oilty l"'rt uf 
D of Walker and Mutti ( 1973)) 

01.1 Structureleoo oilh 
01.2 Muddy oilto 
01.3 MoUI•d oilto and mudo 

02 Organiaed oilll, muddy oillo and oill-mud coupl.to 
02.1 Graded olratified oilto 
D2.2 Thick irrPgular oilt And mud lamina• 
02.3 Thin regular oill and mud laminae 

E MUDS AND CLAYS 
greatrr than or equal to 95% mud ~ade (of which <4U% io oilt 11rad•l· <5% oand a1od r:nllror•r (!nulr (lnr:lu•lo·rl 
in G of WAlker and Mutti, 1973) 
E1 Oioorganiaed mudo and clay• 

E1.1 Struclureleoo mudo 
E 1.2 VAricoloured muda 
El.l Mottled mudo 

E2 Organioed mudo 
E2.1 Graded mudo 
E2.2 LaminatP.d mudo and clayo 

F CHAOTIC DEPOSITS (F of Walker and Muttl, UTI) 
F 1 Exotic ciao to 

Fl. l Rubble 
F1.2 Oroplloneo ""d ioolllted rjP.cta 

F2 Contortr,d/dioturb•d otr~tta 
F2.1 Coherent foldP.d/r.ontortod otraiA 
F2.2 Oiolocated, brecciated and balled otrata 

G BIOGENIC OOZES, HEMIPELAGITES AND CHEMOGENIC SEDIMENTS 
<5% t•rri11•nouo oand llnd gruel (inclun•d in G nf WAlker And Multi, 1973) 
C 1 Diot~cnlr. oua~• and ada 

G 1.1 Diof!enic ooaeo 
G 1.2 Muddy pelaf1ic ooae (arl) 

G2 Hemipel&f!iteo 
G2.1 HemipPiagile 

G3 Chemof!eDic oedimento 

75 
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of Pickering et at. (1986) are not applied directly. Appendix 2 contains a catalogue of 

data from selected measured sections, including for each locality: paleocurrent data: 

location information; and a graphic log. Other selected localities for which no section 

was measured are also discussed in appendix 2. Appendix l contains a set of maps for 

location of the sections measured. 

This chapter provides a description of the identified facies, and a summary and 

evaluation of vertical and regional variations. The information is then synthesised into 

a basin model. 

It should be noted that in general the sandstone facies described in this chapter 

are of similar composition viz. lithic or feldspathic arenite. Any lithologic type which 

does not have this composition has been described as a separate facies . 

3.2 THE AMERICAN TICKLE FORMATION 

The American Tickle formation contains three distinct lithological types: 

l. Siltstone/mudstone/sandstone; 

2. Limestone breccia and calcarenite (Daniel's Harbour Member); 

3. Shale chip conglomerate (Howe Harbour member). 

Each of the above can be subdivided into facies which are described separately below. 

3.2.1 Mudstone/siltstone/sandstone Litholo~ies 

The American Tickle formation is composed predominantly of silty argillite with 
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minor laminated mudstone and sandstone. 

3.2.1.1 Facies A Tl: Silty Ar~illite 

Facies A Tl (plate 3. 1) consists of massive, grey-green. non-fissile argillite beds 

which are from 4 to 50 em thick with a mean thickness of about 20 em. The e~timated 

grain size ranges from silty mud to muddy silt. The lithology is indurated and appears 

massive in the field, but the bases of the beds are sharp, in some cases erosional. and in 

thin section normal grading is visible. Tops of beds are commonly marked by a sharp 

contact with a thin bedded mudstone facies (facies AT2 below). The silty argillite does 

not appear to be bioturbated. 

The descriptive features of this facies (particularly the graded , sharp bases) are 

most similar to 01.2 (muddy siltc;) of Pickering et al. (1986) whi( hare interpreted by 

these authors as having been deposited by high concentration. mud-dominated turbidity 

currents. Although there is no consensus on the meaning of the term 'h igh 

concentration', Middleton (1970) suggested that the boundary between high and low 

concentration be placed at a density of 1.1 g/cm3
• 

3.2.1.2 Facies AT2: Thin- and Very Thin-Bedded Mudstone and Mudstone Laminae 

Facies A T2 (plate 3.1) consists of dark grey to black indurated (non-tissile) 

mudstone bands up to 3 em thick, with an average th ickness of about 0.5 em. These are 

found interbedded with facies AT I . The bases and tops of the mudstone layers appear 

sharp and there is a marked colour difference between facies AT! and facies AT2. The 
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Plate 3.7: Facies HHl (shale chip layers) of the Howe Harbour member, interbedded 
with silty argillite of the American Tickle formation. Northwest Arm. 

Plate 3.8: Trough cross lamination in facies HHl (shale chip layers) of the Howe 
Harbour member. Northwest Arm. 
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mudstone lacks sedimentary structures but does not appear to be bioturbated. 

Petrographic study shows that it is parallel laminated on a fine scale and contains 

scattered grains and stringers of silt. The mudstone is rich in brownish organic material 

which is concentrated in the laminae. and also contains small nodules of framboidal 

pyrite. 

Although it is possible that mudstone layers might represent the waning stages of 

the same turbidity current which deposited the underlying silty argillite horizon. the sharp 

boundaries between facies ATl and AT2 do not seem to support this hypothesis. 

Considered as a separate facies , the mudstone most resembles E2.2 (laminated muds and 

clays) of Pickering et at. ( 1986) which represent deposition by settling processes or by 

low concentration turbidity currents. The presence of the si:tstone stringers suggests to 

the author that the latter is the case. 

3.2. 1.3 Facies AT3: Thin to Very Thin-bedded Sandstone 

Facies AT3 (plate 3.2) consists of thin- to very thin- bedded, tan weathering 

sandy layers up to 5 em thick which are interbedded with facies AT l. Grain size ranges 

from very fine sand to silt. The horizons are commonly laterally continuous but may 

also be discontinuous. They generally have sharp bases and tops. although in some cases 

they appear to fine vertically into massive siltstone of facies A Tl. load casts are present 

on some of the bases of the beds. Sedimentary structures include irregular asymmetric 

ripple cross-laminae and convolute laminae. These structures do not occur in any readily 

observable consistent sequence. 



~ I .._- ' •' ; -.. • , • "' .. ; f1 

80 

Facies A T3 does not seem to fit precisely into any of the classifications outlined 

by Pickering et al. (1986). The lithology is clearly sandstone which is organised rather 

than massive or chaotic. However, Pickering et al. (1986) described facies class 82 

(organised sands) as cross-stratified or paralld-laminated whereas the structures described 

here are smaller in scale (cross-laminated and convolme-laminated). In addition. 

Pickering et al. (1986) stated that 82.1 (parallel stratified ~dnds) are medium- to thick

bedded. Although they did not give a range of thickness for facies class B2.2. a greater 

thickness is probably implied than is observed for facies AT3. C2.3 (thin-bedded sand

mud couplets) is possible but the sharp tops and bases of facies 3 sandstones precludes 

their description, m most cases, as couplets. The grading, in some cases, of this facies 

into facies AT1 may indicate that C2.3 is the appropriate classification, and it is rossible 

that in most cases the tops of tie beds have been truncated. Pictorially. facies AT3 most 

resembles figure 30 of Pickering et al. (1986) which depicts the graded stratified silt 

facies, 02.1 . Pickering et al. (1986) state that 02.1 overlaps in description with C2.2. 

Thus it is likely that the thin-bedded sandstone facies, whether classifieo as D2. I or 

C2.2 , was deposited by the actions of low concentration turbidity currents , as the vertical 

grain size variation and sharp bases suggest a turbidity current origin. 

3.2. 1.4 Facies AT4: Thin- to Thick-bedded Sandstone 

Facies AT4 can be divided into two subfacies, a) and b) . 

Subfacies a) (plate 3.3) consists of thin- to thick-bedded, fine- to coarse-grained, 

resistant, tan-weathering sandstone. Maximum bed thickness is approximat<~ly 60 em, 

l I I -- ' ---- - -- • - • • ----- . 
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Plate 3.3: Facies AT4 (medium-bedded sandstone). American Tickle formation, Shallow 
Bay. 

Plate 3.4: Facies AT4, subfacies b (medium to thick-bedded sandstone). American 
Tickle formation, Table Cove. 
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average thickness is 30 em. The sandstone beds generally appear to be laterally 

continuous within the scale of the outcrops. In places they are slump folded and in at 

least one case a slumped horizon is associated with an occurrence of the Daniel"s 

Harbour Member (see 3.2.2 below). Facies AT4 a) sandstone beds are commonly 

amalgamated (i.e. they display a clear erosional surface within the bed (Walker. 1968)). 

Each amalgamated bed shows evidence of up to three depositional events. Load casts 

and pseudonodules are commonly present at the bases of the beds. Flute casts arc 

infrequently observed, a., much of the exposure is almost tlat lying, but they are common 

where the bases of beds are exposed. The tlute casts are typically fairly small (3 em 

maximum width), markedly pointed and elongate. These features are typical of those 

found on the bases of beds which begin with the Bouma ( 1962) division b or c (Pen and 

Walker, 1971). lnternall} the sandstones show partial Bouma sequences. of which T." 

or T be and Tc are the most common. Cross-lamination, ripple drift cross-lamination and 

~onvolute lamination are the most common sedimentary structures. The tops of the beds 

are commonly rippled with wavelengths of 15 to 50 em and amplitudes of 2 to 3 em. 

Facies AT4, subfacies b) (plate 3.4) is best exposed in the Bellburns and Table 

Cove sections (appendix 1, location map 3). At these localities the sandstone beds are 

thicker and grain size is generally coarser. The beds show marked lateral thickness 

variations over distances of the order of ten metres, and commonly amalgamate along 

st"'ike. Mean bed thickness is about 30 em with a maximum thickness of about I m. 

T~bce and T _ are the most common Bouma divisions displayed in this facies. Climbing 

ripple laminat!on is common and occurs in sets up to 30 em thick. The climbing ripples 

- - - ------ - - - -. ' . . -
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display a high angle of climb with both stoss and lee sides pre.• · :ed. Ripples in general 

have a variable wavelength ranging from 3 to 10 em and amplitudes of 1 to 3 em. Some 

of the thick-btdded sandstones are cross-stratified either at their bases or above a graded 

interval at the base of the bees. The cross-beds are planar or tangential in sets 

approximately 30 em thick, and occur in very coarse sandstone to granule conglomerate. 

Unimodally aligned graptolites are abundant in Facies 4 at a few localities, 

notably Black Cove (Schillereff, 1980). Graptolites are less common at other localities 

and orientation is va;iable, but Tuke ( 1966) measured orientations of graptolites in 

sandstone in the Pistolet Bay area and concluded that they show an overall preferred 

orientation parallel to the regional paleocurrent direction (northeast-southwest). 

The presence of classical Bouma ( 1962) sequences clearly places both subfacies 

in classes C2.1 and C2.2 (very thick/thick-bedded sand-mud couplets and medium-bedded 

sand-mud couplets) of the classification of Pickering et al. (1986) . Deposition by high 

concentration turbidity currents is indicated. The facies classification of Pickering et al. 

( 1986i does not directly deal with amalgamation of beds, but it is implied by those 

authors that the thickness of sediment deposited by each depositional event is the 

fundamental unit. Thus, some beds of AT4 may also represent facies class C2.3 (thin

bedded sand-mud couplets) whose mud divisions have been truncated or eroded. C2.3 

beds were deposited from more dilute turbidity currents. Subfacies a) above is therefore 

dominated by C2.2 and C2.3 (relatively dilute), and subfacies b) is dominated by C2. l 

and C2.2 (relatively higher concentration) . The high rate of net deposition indicated by 

the high angle of climb of the climbing ripples is considered typical of deposition by 
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turbidity currents (Allen, 1982). 

Generally speaking, dune-type cross-bedding is considered rare in turbidites. 

However. Allen (1970) demonstrated that under circumstances where the grain size of 

sediment supplied to the flow is greater than 0 .025 mm, the decelerating turbidity tlow 

may follow a path which may intersect the stability field of dt~nes. Experiments have 

shown that in fact megaripples are not developed in sedimer1t finer than 0. I mm (Allen. 

1982). Allen ( 1970) therefore suggested that the classical Bouma sequence be revised 

to include an augmented sequence A (graded division); B, (lower division of parallel 

laminations deposited from plane beds of upper phase); C, (division of cross bedding); 

8 2 (intermediate division of parallel laminations deposited from plane beds of lower 

phase); C2 (division of cross lamination); D (upper division of parallel laminations); E 

(mud division). The occurrence of cross-bedding in the coarse grained parts of facies 

AT4, subfacies b) of the American Tickle formation is entirely compatible with the 

model produced by Allen (1970) and relates to the coarse grained nature of the sediment 

supply. The most common sequence in which this cross-bedding is therefore found is 

The preferred orientation cf the graptolites found in facies AT4 suggests that 

they were likely transported into the area by turbidity currents as suggested by Tukc 

(1966). 

3.2. 1.5 Regional Considerations 

At most localities facies ATl is the predominant facies, constituting an estimated 
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70 - 95 percent of the exposures. except for the Bellburns area where it constitutes 10 -

20 percent. Facies AT I normally co mains interbeds of facies A T2 which, however. still 

constiwte less than 10 perct>nt of any exposure. F.:cies AT I contains interbeds of facies 

AT3 at only a few localities and facies AT3 also constitutes less than 10 percent of any 

exposure. Facies AT4 is not present at all localities, but normally makes up iO to 30 

percent of an exposure except in the Bellburns area where it is the predominant facies . 

Jn other words, the American Tickle formation throughout most of its lateral extent is 

<iominated by facies class D (of Pickering et al., 1986), with varying proportions of C 

and small but constant proportions of E. except in the Bellburns area where class C is 

dominant and in the Black Cove area where there are roughly equal proportions of C and 

E (Schillereff, 1980). 

Minor thin- to medium-bedded fine-grained limestone occurs in the exposures at 

Big Springs Inlet and at Croque. The limestone is featureless and micritic, most 

resembling pelagic slope limestone. It occurs in the most easterly exposures of the 

American Tickle formation and its presence may indicate a shallowing trend towards the 

eastern margin of the basin. Tuke (1966) also mentioned thin-bedded fine-grained 

limestones which he described as being characteristic of the middle part ot the section 

but he did not describe at which localities he observed them. 

Only one possible trace fossil was observed by the author in float. Otherwise trace 

fossils were not observed in the unit at any locality nor have they been reported by any 

other author. and banding in the fine grained facies is apparently undisturbed by 

burrowing organisms. It is therefore suggested that anoxic conditions prevailed 

- - -- --- -- -- - -
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throughout the region. 

Paleocurrents in the American Tickle formation as measured by rhe author are 

predominanr!y directed rowards the south (see appendix 2). Previous workers (Knight. 

1986a.b; Williams and Smyth. 1983: Smyth. 1973; Tuke. 1966) have also reported 

paleocurrent directions predominantly to the south. but some directions to rhe west have 

been recorded (Williams and Smyth 1983: Smyth t973) at American Tickle. Ar Big and 

Little Springs Inlet. Smyth (1973) recorded northeasterly directions from tlute casts. 

Plate 3.5 shows probable cross sections of flute casts at Little Springs Inlet which have 

clearly been affected by the strong cleavage in the area. and paleocurrent directions 

obtained from these features should be treated with some caution. At Little Springs Inlet 

the author recorded a bimodal distribution of paleocurrent directions (from ripples) to the 

northeast and southwest, and at Big Springs Inlet the mean direction is to the southeast. 

The exposures at Little and Big Springs Inlets represent some of the easternmost and 

hence most deformed examples of the American Tickle formation. However. the 

possibility cannot be ruled out that a real variation in paleocurrent direction exists at 

these most easte:-ly localities. 

The American Tickle formation is clearly coarser than the underlying Black Cove 

Formation and in that sense a coarsening upwards sequence is present in the foreland 

basin succession. However, within the American Tickle formation , there is no noticeable 

coarsening or thickening upward sequence. In fact, in .he composite section constructed 

by Tuke ( 1966), the resistant sandstone facies (facies ATt~) is more abundant at the base 

of the unit, implying an overall fining upward within the American Tickle formation. 
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Plate 3.5: Cross sections of deformed flute casts. American Tickle formation, Little 
Springs Inlet. 

Plate 3. 6: Clast of American Tickle Formation sandstone in limestone conglomerate of 
the Daniel's Harbour Member. Daniel's Harbour. 
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The measured section provided in this study for Goose Tickle appears to corroborate this 

impression (see appendix 2, section A2.l.l). Fining upwarrl sequences appear to be 

present at localities other than the type section. but in many cases it difficult be sure if 

this relationship truly exists or whether it has been obscured by poor exposure or 

deformation. At some localities facies A T4 occurs as apparently randomly distributed 

single beds or bundles interbedded with the dominant facies AT I. Bundles of sandstones 

are not necessarily present at the top of the unit (see measured sections in appendix 2 for 

typical facies distributions) where it abuts the Hare Bay or Humber Arm allochthons. 

3.2.2 Daniel's Harbour Member 

The Daniel's Harbour Member is treated only brietly here as it is the subject of 

a separate study (Stenzel et al., 1990). The Daniel's Harbour Member (plate 3.6) is a 

unit which is highly variable, ranging from very thick-bedded coarse-grained limestone 

conglomerate to thin-b,;dded calcarenite. In places a conglomerate horizon may he 

overlain by one or two beds of calcarenite, whereas at other localities calcarenite occurs 

separately. The most common lithology in the Daniel's Harbour Member is massive, 

light grey, matrix-poor limestone conglomerate with a maximum bed thickness of 40 m. 

This lithology is typical of the type section at Daniel's Harbour (appendix I, location 

map 3) and localities south of the type section (Stenzel et al., 1990). Clasts in this type 

of conglomerate are commonly disposed in an interlocking texture. North of Table Cove 

(appendix 1, location map 3), a common lithology of the Daniel's Harbour Member is 

a matrix rich dark grey conglomerate with a maximum bed thickness of 62 m. (Stenzel 



89 

et al., 1990). Clasts in the conglomerate, which are angular to subangular. are mostly 

composed of shallow water limestones chruacteristic of the Table Head Group. 

Lithologies typical of the American Tickle formation appear as clasts in both types of 

ccngl(lmerates (plate 3.6), and as matrix in the matrix rich variety (Stenzel et al., 1990). 

Calcarenite beds range in thickness from 5 em to 3 m (Stenzel et al., 1990) and display 

Bouma sequences. In at least one locality, the Daniel's Harbour Membr.r is associated 

with slump folding in facies A T4 of the American Tickle formation. 

The Daniel's Harbour Member has been interpreted as having been deposited by 

debris tlows (conglomerate f:.cies) and turbidity currents (calcarenite facies) (Stenzel, 

pers. comm. 1988; Stenzel et al. 1990). The inferred direction of transport of rhe 

Daniel's Harbour sediments was to the north and west. (Stenzel et al., 1990). A detailed 

swdy of the Daniel's Harbour Member is included in Stenzel (1992). 

3.2.3 Howe Harbour member 

The Howe Harbour member includes numerous beds of shale chip sandstone and 

conglomerate which are situated near the top of the American Tickle formation where 

it abuts the Northwest Arm Formation. Two distinct facies are present. 

3.2.3.1 Facies HH1: Shale Chi;> Layers 

Facies HH l consists of very thin-bedded coarse sand to granule layers which are 

composed predominantly of black and green shale chips (plate 3. 7). The shale chips are 

aligned parallel to bedding and sorting is variable. These horizons, where present, may 

. . - ~ 
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Plate 3.7: Facies HHl (shale chip layers) of the Howe Harbour member , interbedded 
with silty argillite of the American Tickle formation. Northwest Arm. 

Plate 3.8: Trough cross lamination in facies HHl (shale chip layers) of the Howe 
Harbour member. Northwest Arm. 
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thicken upsection, reaching a max1mum thickness of 30-40 em. At these greater 

thicknesses they are not noticeably graded but may display trough cross-lamination (plate 

3.8). The shale chip layers are unusual in that they are very coarse in rc!ation to their 

thickness, are clast supported, and are composed almost entirely of flat shale clasts 

varying from coarse sand size to pebble size. Thus it is not surprislr.g that they are 

difficult to classify using the scheme of Pickering et al. (1986). However, depending on 

grain size, they migh• be described as class Al.1 (disorganised gravels, muddy gravels, 

gravelly muds, and pebbly sands) or 81.2 (thin-bedded coarse-grained sands). 

A 1.1 could result either from high concentration turbidity currents, debris flows, 

or winnowing by bottom currents, whereas 81.2 is interpreted as having been deposited 

under traction processes, possibly through winnowing by strong bottom currents 

(Pickering et al. 1986). The composition and clast size of the shale chip layers is 

considerably different from the rest of the American Tickle formation, and r~working of 

the typical American Tickle detritus by bottom currents is unlikely to have produced this 

facies. The lack of matrix suggests that they are unlikely to be debris flows and so they 

were probably deposited by high concentration turbidity currents. 

3.2.3.2 Facies HH2: Con~lomerate 

Conglomerate in the Howe Harbour member contains clasts of black siliceous 

shale, grey argillite, dark green, reddish or orange chert, light green chert, laminated 

fine grained limestone, dolomitic siltstone, pyrite nodules and mafic volcanics (plate 3. 9). 

This represents a greater variety of clasts than found in facies HH 1, but the black and 



92 

Plate 3.9: Facies HH2 (conglomerate) of the Howe Harbour member. Howe Harbour. 
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green shale/siliceous shale component and grey argillite are similar to clasts within the 

shale chip conglomerate of HH I. Clasts in facies HH2 are subangular to well rounded. 

They are set in a matrix of sandstone or silty argillite and may be matrix or clast 

supported. but are most commonly clast supported. The maximum long diameter of the 

clasts is 20 em with a mean long diameter of 3 em. The conglomerate occurs in lensoid 

beds. generally less than I m thick, with irregular bases . They may contain thin 

interbeds of shale indicating that more than one depositional event has contributed to 

some of the beds. Clasts are generally aligned parallel to bedding, but may also be at 

a high angle to it. 

The poor sorting, irregular bases. characteristic thickness and clast support would 

seem to place the Howe Harbour member conglomerates in facies class A 1.1 

(disorganisrd gravels) of Pickering et at. (1986). The most likely mode of 

depositionwould be a: a debris flow or high concentration turbidity current. with 

winnowing by bottom currents seeming unlikely for the reasons outlined in the previo•Js 

section. Where the matrix content is higher. the facies more closely resembles facies 

A 1.4 (disorganised pebbly sands). which are deposited by high conc,:ntration turbidity 

currents. and in fact Pickering et al. (1986) document the close association of classes 

A I. I and A 1.4. Pickering et al. (1986) describe examples of facies A 1.1 with thin to 

very thin beds or stringers of gravel which may be as little as one pebble thick. The 

rounding of the clasts suggests that they were ultimately derived from subaerial piles of 

unconsolidated sediments. The close association of facies HH I and HH2 within a vertical 

section. their com~msitional similarity, and tl:~ apparent genetic relationship between the 
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two facies classes represented, all support a close depositional relationship between the 

two facies. 

3.2.3.3 Relationship to Northwe~t Arm Formation 

The Northwest Arm Formation is struc::Jrally the lowermost unit of the Hare Bay 

Allochthon. and is composed of chaotic black and green shale ~•hich contains rafts of 

limestone, sandstone and minor volcanic and plutonic rocks. Although the unit is 

chaotic, many of th~ clasts have the appeuance of dismembered beds and display a ghost 

stratigraphy. Tuke ( 1966) measured paleocurrents between dismembered fragments uf 

simiiar lithology and found them to be consistent. Tuke ( 1966, 1968) and Knight ( 1986a) 

have identified a phase of isoclinal folding in the unit which is earlier than the Taconic 

deformation that is usually related to emplacement of the allochthon. This early phase 

of folding represents early deformation related to the movement of the unit as an 

olistostrome. with Taconic deformation overprinting the early folds. 

The Howe Harbour member only occurs in the American Tickle formation where 

it abuts the Northwest Arm Formation. The shale chip facies (HHI) generally appears 

lower in the section than the conglomerate (HH2) facies of the Howe Harbour member 

and both are commonly (although not always) within 50 m (vertical thickness) of the 

contact with the Northwest Arm Formation. Lithologies of clasts in the conglomeratic 

facies of the Howe Harbour member are identical to those in the Northwest Arm 

Formation, and the Northwest Arm Formation contain!' conglomeratic horizons which are 

similar to those of the Howe Harbour member. It is clear that depositionally and 
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compositionally the Howe Harbour member and the Northwest Arm Formation are very 

closely related. 

3.2.4 Overall Interpretation 

It is now appropriate to construct a qualitative model of the basin in which the 

American Tickle formation was deposited. Overall, the unit is composed of 

predominantly tine grained sediments deposited in deep water (below wave base) under 

anoxic conditions. Stow and Piper (1984) have outlined a number of idealised facies 

associations which can occur in fine grained sediments. The common association of silt 

and sand (ATI, AT4, and minor AT2) in the American Tickle formation as a whole most 

resembles their 'silty-sandy distal lobes' or in places the association of silt and mud only 

(ATI, AT2, AT3) resembles 'distal silt-mud lobes'. For most of the American Tickle 

formation, the lateral continuity of beds suggesl5 that deposition probably did not occur 

in channels. In the Bellburns area, the lack of lateral continuity of sandstone beds may 

indicate deposition of sands in small shallow channels incised into the basin floor in a 

setting which was closer to a source of sediment. The American Tickle formation might 

therefore be interpreted as the product of deposition by turbidity currents on the outer 

fan area of a sl!~marine fan or fans. The paleocurrent data indicate that the outer lobes 

of these 'fans· were elongate in response to the narrow, elongate shape of the basin, and 

that th~ regional axis of the basin sloped in a southerly direction. 

The use of the term 'lobe' implies deposition on a submarine fan, and at this point 

it is appropriate to discuss the problem of referring to deposits as ' fans' when a fan-
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shaped geometry cannot be documented. Hiscott et at. ( l9R6) have commented on the 

inappropriateness of using the fan model in cases where a) the shape of the depositional 

system is not known. b) it is not known whether there were one or more feeder channels 

and c) paleotlow is consistently along the axis of the basin. All of these criteria apply 

to the American Tickle formation. Hiscott et at. ( 1986) suggest that if the term fan is 

to be used then it should be specified the system was 'grossly oversupplied' and that the 

deposit shape was determined by basin shape. 

The foreland basin in which the American Tickle formation was deposited was 

not a trench , sensu stricto, as it was constructed on continental rather than oceanic crust 

(see, for example, Quinlan and Beaumont, 1984). However, patterns of deposition may 

still be understood in terms of a trench model, such as that outlined by Underwood and 

Bachman ( 1982) and Bachman ( 1982), as the overall geometry and other tectonic features 

are similar. Underwood and Bachman ( 1982) and Bachman ( 1982) again emphasised that 

the elongate geometry of trenches renders it inappropriate in most cases to interpret 

facies associations using the deep sea fan model. Instead, Underwood and Bachman 

(1982) adopted a 'convergent margin facies model' basing their facies classification on 

publications by Walker and Mutti (1973) and Ricci Lucchi (1975). This model is 

summarbed in figure 3.1. Facies classes shown in the Underwood and Bachman {l 082) 

model are broadly similar to those of Pickering et at. ( 1986) (see table 3. l for 

equivalencies). 

Applying the model of Underwood and Bachman ( 1982) to the American Tickle 

formation, the predominance of facies D with lesser proportions of C and E, the axially 

- - - ----- - - - -.,. - -



Figure 3.1: The facies assoctauons of the Goose Tickle group and Lower Head 
Formation can be explained using the combined convergent margin facies model of 
Underwood and Bachman ( 1982). Equivalents to these in the classification of Pickering 
et al. ( 1986) can be found in table 3. I. The setting inferred for the American Tickle 
formation is the non-channel ised trench floor. The setting inferred for the Lower Head 
Formation is a trench slope basin or basins (satellite basin). 
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directed paleocurrents, combint:d with the lack of obvious thinning and fining upward 

sequences, most resemble a non-channelised trench floor with facies associations 

characteristic of outer 'fan' to basin plain. Underwood and Bachman (1982) state that 

the most common way of transporting sediment into the trench is via large submarine 

canyons which cross the trench slope. rn the American Tickle formation it cannot be 

demonstrated directly that entry of sediment was through submarine canyons, since the 

canyons themselves are not preserved. Evidence for submarine canyon supply may exist 

in the form of the ubiquitous black and green shale detritus present in the American 

Tickle Formation. [f this shale was derived from internal rip-ups, it would presumably 

be associated with sandstone and siltstone clasts, which it is not. Instead, the shale chips 

were probably derived from the previous continental margin basin floor subsequently 

uplifted to comprise the eastern foreland basin slope. The persistence of this type of 

detritus implies substantial erosion of the slope, and thus suggests that the shale chips 

may have been derived directly from canyon walls. The sand/mud ratio of the trench 

floor deposits may be dependent on the proximity of the site of deposition to a submarine 

canyon (Underwood and Bachman. 1982). The regional variations in sand/mud ratio in 

the American Tickle formation might thus be interpreted as being related to the proximity 

of a sediment input point. 

At least three sediment input points, located to the east of the present eastern limit 

of exposure of the formation. are required to account for the pattern of sedimentation 

observed in the American Tickle formation. The easterly location of the input points is 

suggested by the ubiquitous black and green shale detritus in the American Tickle 
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formation. 

To account for the presence of the American Tickle sediments in Pistolet Bay and 

Hare Bay, the first sediment input point would have to be located somewhere northeast 

of Pistolet Bay. The second would be somewhere northeast of but relatively closer to the 

Bellburns area to account for the greater sand/mud ratio and higher degree of 

channelisation in that area, and a lhird might exist somewhere north of Black Cove to 

account for the high sand content of the Mainland formation (see discussion of the 

Mainland formation). The area between Bonne Bay and the Port au Port Peninsula is 

poorly exposed and understood, and it is possible that another sediment input point could 

have existed in that vicinity. 

Underwood and Bachman (1982) also noted the importance of the location of the 

canyon head with respect to sea level. If the canyons head in the slope, and sea level 

is high, then the basin will not receive detritus from the shelf. If on, the other hand . the 

canyons either head in the shelf, or sea level is low, or both, then the basin will receive 

terrigenous detritus from the shelf. It will be demonstrated in chapt~r six that the 

lithologies of the American Tickle formation do contain detritus which is clearly exotic 

to the foreland basin and its trench slope, th\!11 either th1.. main submarine canyons were 

headed on the shelf, or sea level was low. The sea-level curves of Fortey (1984) for the 

Ordovician suggest that sea-level reached a high during the middle Llanvirn, and the 

overall sand-poor nature of the American Tickle formation would indicate a relatively 

high sea level. If this is true, !he submarine canyons most likely headed in the shelf. 

Bidirectional transport along the trench tloor is predicted by the model of 
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Underwood and Bachman (1982). In the case of the American Tickle formation, 

unimodal southwesterly paleocurrent directions are prevalent. However, it should be 

noted that information is sparse from areas north of all of the proposed sediment input 

points. 

Hiscott et a!. {1986) have suggested that the foreland basin in Quebec, during the 

deposition of the Caradocian Cloridorme Formation, was characterised by a flat basin 

floor which would allow for the flow of megaturbidity currents in either direction along 

the axial regions of the basin, but that the basin was segmented by intrabasinal highs 

which generated flow reflections and deflections. 

The American Tickle formation differs from the Cloridorme Formation in Quebec 

in that no occurrences of large scale megatutbidites have been observed, nor have 

instances of reflection of turbidity currents been observed. Thus there is no evidence in 

the American Tickle Basin for the axial highs reported by Hiscott et a!. (1986) in the 

Cloridorme basin. The only variation in paleocurrent directions is in the most easterly 

exposures of the American Tickle formation which, if not caused by deformation, could 

reflect deposition by unconfined turbidity currents nearer the eastern margin of the basin 

on the 'trench fan· of Underwood and Bachman (1982). 

The Daniel's Harbour Member was interpreted by Stenzel eta!. (1990) as having 

been deposited by easterly derived debris flows and turbidity currents derived from uplift 

of platform and foreland basin clastics along shallow thrust faults in fron~ of advancing 

allochthons. The interpretation for the Howe Harbour member (Quinn, 1991) is similar 

but not identical. Both the Howe Harbour member (Quinn, 1991) and the Daniel's 
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Harbour Member (Stenzel et al., 1990) were transported down a slope which lay to the 

east or southeast of the foreland basin. The Howe Harbour member was likely also 

derived from uplift along faults (either thrust or normal faults) in front of advancing 

allochthons, but it appears higher in the American Tickle formation than the Daniel's 

Harbour Member, and was generated by uplift of older passive margin slope sediments 

rather than platform and early foreland basin sediments. Thus the faulting which 

generated the Howe Harbour member was probably deeper seated, located farther east. 

and was active slightly later than that which generated the Daniel's Harbour Member. 

This might be explained by a structural model which involves compression over a period 

of time, and generation of an imbricate thrust package. The Daniel's Harbour Member 

may have been generated by shallow thrusting at the westward periphery of the system. 

whereas the Howe Harbour Member was generated by faulting in the main area of 

compression. 

Underwood and Bachman (1982) noted that sediment may be supplied to the 

trench floor from secondary sources consisting of backgroun~ settling of hemipelagic 

debris and locally derived mass flows including slumps and slides. High porewater 

pressures resulting from tectonically induced dewatering at the base of the eastern slope 

of the foreland basin. combined in some cases with oversteepened slopes. providt!s a 

mechanism for recurrent slope failure which may have resulted in the deb!'is flows and 

high concentration tur'>idity currents of the Howe Harbour member. 

There is abundant evidence for the existence of a slope during the deposition of 

the American Tickle formation. Early folding in the Northwest Arm Formation has 
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already been discussed, and Knight ( 1986a) has also found early recumbent folding 

within the American Tickle formation itself. It has been demonstrated that deposition of 

the high concentration turbidites of the Howe Harbour member was closely related t~ the 

emplacement of the Northwest Arm Formation, which was itself emplaced by gravity 

sliding (Tuke, 1968; Quinn, 1991). Tuke (1966) had previously suggested that fluids at 

the base of a slope generated slumping and resulted in final movement of the Northwest 

Arm Formation. 

Simple slumping of slope sediments is not sufficient to explain the characteristics 

of the Howe Harbour member and the Northwest Arm Formation, because both contain 

extrabasinal clasts of volcanic and plutonic rocks. In addition, the presence of chert 

clasts as well as shale fragments, and the rounding of the limestone clasts indicates at 

least partial lithification of the supplied slope sediments. This implies supply of exotic 

materials which were previously exposed subaerially on a fault scarp. They may have 

later been drowned during sea-level rise and become incorporated in gravity flows or 

they may have been directly derived from a fan-delta source. Despite these complexities, 

it is clear that the coarsening and thickening upwards Howe Harbour member records the 

arrival of at least the first slices of the Hare Bay Allochthon. 

It has been shown that there is little evidence of an overall coarsening upwards 

in the dominant sandstone/siltstone lithologies of the American Tickle formation, yet 

Cawood et at. ( 1988) have cited a coarsening upward sequence at the Black Cove section 

as evidence of westward migration of the depocentre of the foreland basin, and the 

imminent arrival of the Humber Arm Allochthon. Stougc: ( 1986) has also referred to 
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coarsening upwards within the American Tickle formation. If any vertical variation is 

visible in the American Tickle formation. it is a finiml upwards sequence. and since the 

formation is truncated by the Humber Arm and Hare Bay allochthons at different levels. 

the sandstones at Black Cove may simply be a truncated bundle fortuitously juxtaposed 

against the contact with the Humber Arm Allochthon. There is little in the regional 

facies distribution or paleocurrent data from the s iltstone/sandstone lithologies of the 

American Tickle formation to support the concept of a simple relationship between the 

sandstones of the American Tickle formation and the advancing allochthon-'. 

There is also no evidence within the American Tickle formation for a gradual 

westward progradation of sediment into the basin. This is not surprising since the 

inferred width of the axial region of the basin was narrow (Bradley, 1989), as is the 

preserved width of outcrop. In order to infer a westward progradation for sediment into 

the basin, one must thus consider evidence from the allochthons which would presumably 

record a history of the more easterly part of the foreland basin. However. before this 

can be done, the question must be addressed as to whether sandstones previously 

identified as being deposited in a broadly similar tectonic setting in the allochthons (e.g. 

Stevens, 1970; Quinn, 1988a. category 2b; Gonzalez-Bonorino, I 990) were deposited in 

the foreland basin proper or whether they w :re deposited in a trench slope ba'iin. 

The general pattern retlected by the American Tickle formation is one of 

subsidence prior to deposition, as the formation is underlain by the deep water limestone 

of the Table Cove Formation and deep water shale of the Black Cove Formation (Stenzel 

et al., 1990). The interval of subsidence was succeeded by the gradual intlux of a 
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generally fining upward succession of silty/sandy siliciclastic material. Imminent 

emplacement of the Northwest Arm Formation as a result of thrusting along the eastern 

margin of the basin generated localised deposition of the Howe Harbour member, which 

was followed by a cessation of siliciclastic sedimentation in those areas. 

3.3 THE MAINLAND FORMATION 

The Mainland formation is restricted to the west coast of the Port au Port 

Peninsula and contains a much higher proportion of sand than the American Tickle 

formation. A number of different facies may be recognised. 

3.3.1 facies MLI: Thin to Medjym-bedded Sandstone 

Facies ML I consists of thin- to thick-bedded fine- to medium-grained sandstone 

(plate 3. I 0) showing partial or complete Bouma ( 1962) sequences. The most common 

sequence is I...,. with abundant parallel laminations and parting lineations. flutes are 

common on bases of beds as are grooves and other tool marks. Several thin beds show 

spectacular load casts. The sandstone is friable and appears to have a high percentage 

of mud. Black and green shale detritus is abundant on the planes of parallel laminations. 

The beds are laterally continuous and do not vary in thickness. They are separated by 

thin- to medium-bedded recessive silty intervals. 

The facies MLl lithology with its well developed Bouma (1962) sequences can 

be classified as facies C2.2 (medium-bedded sand-mud couplets) and C2.3 (thin-bedced 

sand-mud couplets) using the classification scheme of Pickering et al. ( 1986). All were 
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Plate 3.10: Facies MLl (thin- to medium-bedded sandstone). Three Rock Cove. 

Plate 3.11: Low angle truncations in sandstone of the Mainland formation (facies ML1 
and ML2). Mainland. 
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deposited by low concentration turbidity currents. A notable differer&ce ;,etween 

thesebeds and similar facies (facies AT4) in the American Tickle formation is the relative 

frequency of parallel lamination and the infrequency of ripple drift cross-lamination. 

A nurr1ber of fine-grained thick-bedded parallel-laminated sandstones occur as 

isolated beds throughout the section. These beds seem to be most similar to facies C2.2 

(medium-bedded sand-mud couplets). however they are unusual in that they are fine

grained in comparison to their thicknes~. grading is not well developed. and they are 

dominated by the b division of the Bouma sequence. The parallei lamination is 

completely regular and so despite the fact that they are thick-bedded. they are not 

included with facies ML2 below. They do not resemble facies 82.1 (parallel stratified 

sands) in that the internal stratification is not similar to that described by Pickering et al. 

( 1986). They are most likely related to the dominant ML 1 lithologies. belong to facies 

class C2.2. and were deposited by moderate concentration turbidity currents. 

3.3.2 Facie;; ML2: Thick-bedded to Very Thick-bedded Sandstone 

Facies ML2 consists of thick-bedded to very thick-bedded sandstone (maximum 

thickness 6 m) which ranges in grain size from medium- to coarse-grained. The beds 

range from massive near the bases to parallel laminated near the tops. with a rather 

poorly developed normal distribution grading. On closer examination some of the 

'parallel' lamination shows very low angle truncations similar to those described by Mutti 

and Ricci Lucchi ( 1978) (plate 3.11). The tops of the beds appear to be gradational with 

overlying fine-giained silty horizons which may show ripple cross-lamination. 
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LAminations in the sandy upper parts of the thick beds have a wavy appearance. This 

indicates that the tops of the beds have been deformed, possibly as a result of partial 

liquefaction or variable tluid pressure. A second possibility is that the occurrence of 

these features at the top of the bed may represent a transition into the field of climbing 

ripples with a very high angle of climb. 

ML2 thick beds are commonly amalgamated. with relief on amalgamation 

horizons greater than I m in some cases (plate 3.12). Amalgamation horizons arc 

commonly marked by shale or siltstone chips which are probably rip-up clasts. Large 

20 em wide flute casts are common on the bases of the beds. and occasional longitudinal 

ridges (Ozulinski and Walton. 1968) are observed. Calcite cemented 'cannonball' 

concretions are observed in some of these beds, and in places unimodally aligned 

graptolites are preserved on the surface of the concretion parallel to bedding. It has been 

suggested by S.H. Williams (pers . comm. 1991) that this phenomenon is caused by lack 

of available oxygen to oxidise the graptolites. as a result of early incorporation of oxygen 

into the calcium carbonate cement. Hiscott (1977) has cited evidence for formation of 

cannonball concretions during the early stages of diagenesis. and has suggested that the 

concretion forming process may in fact be enhanced by the presence of organic material. 

Facies ML2 belongs to facies class C2.1 (very thick/thick-bedded sand-mud 

couplets) of Pickering et al. (1986) . Deposition of this facies occurred from high 

concentration turbidity currents. This facies is not present at any locality within the 

American Tickle formation. 
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Plate 3.12: Facies ML2 (thick- to very thick-bedded sandstone). Note deeply scoured 
base of topmost bed. Three Rock Cove. 

Plate 3.13: Facies ML3 (cross-bedded sandstone) subfacies b. Low Point. 
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3.3.3 facies ML3: Cross Bedded Sandstone 

Facies ML3 consists of medium to very thick beds which contain cross-bedding. 

Within cross-bedded sets the sediment is very coarse-grained, contains less muddy matrix 

than all of the facies described above and is better sorted. If a bed within this facies is 

completely composed of cross-bedded sandstone, it commonly has a sharp base and top 

and in places dune-like bedforr .. .: are clearly de" !loped on the tops of the cross-bedded 

horizons. These bedforms may be overlain by finer grained material which appears to 

have settled over them. The cross-sets vary in morphology from tabular to trough. and 

from high to low angle. 

Two possible subfacies have been identified: 

Subfacies a) In this subfacies the cross-bedded lithology is clearly coarser than the 

surrounding sediment and is associated with dune or megaripple forms overlain by finer 

grained sediment within the same bed. The cross-sets or d•Jne forms are rarely greater 

than 30 em thick. These beds tend to show a considerable lateral variation in thickness, 

and may pinch out laterally across strike within approximately 10 metres . (Note that 

strike is considered to be approximately perpendicular to the regional paleocurrent 

direction). The basal contacts of the cross-sets are predominantly sharp and tlat but may 

be slightly erosive in places; 

Subfacies b) Examples of this subfacies are distinguis!1ed mainly by the thickness of the 

cross-sets which can be as great as 1 m (plate 3. 13). This type of cross-bedding is 

characterised by scoured bases within graded beds. The base of the cross-set may be 5 -

10 em from the base of the bed. Shale chips may be distributed along the f0reset of the 
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cross-bed. 

Both subfacies a) and b) appear to belong to facies 82.2 (cross-stratified sand). 

although subfacies b) is unusual in terms of the thickness of the sets and the degree of 

scouring with which they are associated. Facies class 82.2 is interpreted by Pickering 

et ?.1. ( 1986) as having been deposited by reworking of sands through tractional processes 

beneath dilute turbidity currents or strong bottom currents. 

It should be noted that subfacies a) and b) are considered different from the upper 

parts of beds within facies ML2 which contain low-angle truncations, and their 

interpretation here as reworking features suggests that they have a different origin from 

the cross-bedded horizons within the American Tickle formation (facies AT4b). 

3.3.4 Other Characteristics 

At several horizons the Mainland formation shows evidence of sliding and partial 

incorporation of chaotic fine-grained material within the upper part of a sandstone bed 

(plate 3.14). These beds are similar to 'slurried sandstones' of Hiscott (1980) and are 

interpreted as being a result of intraformational sliding within the deposit. 

At one horizon, large (>50 em thick) bulbous features are present at the base of 

a medium ( < 30 em thick) bed of sandstone (plate 3.15). These are interpreted as large 

load features. 

Within the Mainland formation there are no obvious major thinning or fining 

upward sequences. although thick-bedded ML2 facies are overlain by finer grained 

facies. However as one goes upsection. particularly towards Low Point, the inferred top 
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Plate 3.14: Rubbly horizon in Mainland formation similar to 'slurried sandstone' of 
Hiscott (1978). Note large shale clasts. Three Rock Cove. 

Plate 3.15: Large load features in the Mainland formation. Three Rock Cove. 
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of the section, the style of sedimentation changes from an essentially continuous sequence 

of sandstones/siltstones to thick packages of shale/siltstone interbedded with packages of 

sandstone. In addition, upper parts (lf the section appear to contain greater evidence of 

soft-sediment deformation, and cross-bedding is more prominent. At the inferred top 

ofthe Mainland formation, at Low Point (appendix 1, location map 1), there are several 

features which contrast with tho~e lower in the section, notably the thickness of the cro~:;

sets, the abundance of thick (30 em) spectacular convolute laminations. and the 

apparently more malure, morl! calcareous, and more resistant nature of the sandstones. 

Throughout the Mainland formation, horizontal feeding traces are common. and 

small (I em diameter) knob shaped protusions on the bases of some beds may be related 

to vertical burrowing in the finer grained material underneath. Botsford ( 1988) has 

suggested that ichnology is useful in determining the oxygen levels of bottom waters 

which may range from anaerobic (dissolved oxygen < 0.1 mill; no macrobenthos) to 

dysaerobic (0. I - 1 ml/1; some macrobenthos) to aerobic ( > I ml/1; abundant 

macrobenthos; abundant bioturbation). Savrda and Bottjer ( 1986) have suggested certain 

criteria based on the sizes of burrows and the depth of penetration of burrows to 

distinguish between relative oxygen levels within the general dysaerobic realm. This 

scheme was developed for pelagic sediments, so its applicability to sandstone units like 

the Mainland may be limited, but it is worthy of note that the Mainland formation is the 

only formation of the three Ordovician sandstone units which displays vertical burrowing, 

and horizontal traces which could be described as abundant. Vertical burrowing is 

considered to be an indicator of relatively higher levels of oxygen within the dysaerobic 
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realm, as tolerable oxygen levels penetrate to a greater depth within the sediment 

(Botsford, 1988). The higher overall oxygenation levels within the Mainland formation 

may indicate that the Mainland formation was deposited in shallower water than the 

American Tickle formation, or turbidity currents and possibly bouom currents 

periodically or constantly brought oxygenated waters into the basin. Botsford ( 1988) has 

suggested that an increase in bioturbation from the Cooks Brook Formation to the Middle 

Arm Point Formation in the Humber Arm Allochthon indicates an increase in bouom 

current activity. 

At the main Three Rock Cove section (see appendix 2, location map I) the 

paleocurrent directions are predominantly to the south, however at the section overlying 

the Cape Cormorant Formation south of the village of Mainland (see appendix 2, location 

map I) paleocurrent directions are to the northwest. 

In Victor's Brook, a locality not visited by the author, an occurre!lce of sandstone 

previously interpreted as a large clast in melange (Williams, 1984) has been reinterpreted 

by Corney (1991) as a continuous section through the upper part of the parautochthon 

which is terminated by the basal thrust of the Humber Arm Allochthon. Overlying the 

Table Head Group, Corney (1991) has recognised a sandstone unit similar w the 

Mainland formation which contains in its lower part a limestone conglomerate member 

similar to the Daniel's Harbour Member of the American Tickle formation. In the upper 

part of the section a number of conglomerate horizons occur which appear similar in 

their description to the Howe Harbour member, although large rafts of the Humber Arm 

Allochthon shales are incorporated in the section. The total thickness of the section 
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described by Corney (1991) is 500 m. Corney (1991) and Waldron (pers. comm. 1991) 

believe that this sandstone occurrence was once continuous with the Mainland formation 

although the two k..:alities are now separated along the later Round Head shear zone. 

Corney (1991) does not record an upward coarsening within the sandstone part of the 

sequence, and in a similar fashion to the Hare Bay Allochthon. the arrival of the Humber 

Arm Allochthon is entirely recorded by the Daniel's Harbour and Ho.ve Harbour 

lithologies and not by the sandstones. 

3.3.5 Interpretation and Re~:ional Considerations 

The minimum thickness of the Mainland formation is 620 m, but before an overall 

interpretation of its sedimentological setting can be attempted, the question arises as to 

whether the formation might be as thick as the 1.5 km previously estimated (e.g. Stevens 

1970; see Table 2.1). The contact of the Mainland formation with the underlying Cape 

Cormorant Formation appears conformable, but it has also been interpreted by several 

visitors to the outcrop (G. Jenner. pers. comm. 1992) as a bedding parallel fault which 

would presumably place younger material (Mainland) over older (Cape Cormorant). 

There are several other bedding parallel faults within the Mainland formation. If the 

limited faunal evidence available (Liandeilo age for fossils at Low Point, James and 

Stevens ( 1982)) can be believed. some of these faults may also place younger over older 

material. as younger Low Point lithologies would be thrust over older Mainland 

lithologies. 

Stockmal and Waldron ( 1990) and Waldron and Stockmal ( 1991} have interpreted 
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the Mainland formation as being located in a triangle zone which has thrust the younger 

Long Point Group over the Mainland formation. Although the evidence observed by the 

author is admittedly limited, the sense of faulting within the Mainland formation in 

addition to the relationships outlined above would be consiste:1t with an interpretation of 

them being smaller faults in the same sense as the main triangle zone fault. 

In light of the above complexities, it is therefore difficult to obtain an accurate 

estimate for the thickness of the Mainland formation. If the interpretation of the 

structures in the above discussion is valid, younger material may have been thrust over 

older. lf, on the other hand, the sense of thrusting is normal (i.e. older over younger 

rocks), sediments deposited closer to the basin axis (Low Point) may have been thrust 

over a succession which was more proximal to the eastern foreland basin slope. 

Waldron and Stockmal (1991) have assigned the section of sandstones in Vktor's 

Brook to undivided Goose Tickle group. They have interpreted the section through the 

Goose Tickle group in Victor's Brook in the following way. The approaching Humber 

Arm Allochthon caused flexure of the crust, which was accommodated by normal 

faulting along a reactivated rift related fault. The Cape Cormorant Formation (limestone 

conglomerates of the upper part of th! Table Head Group which are restricted to this 

area) represents material eroded off the fault scarp. rn the half graben generated during 

loading of the crusl by the Humber Arm Allochthon, the Goose Tickle group was 

deposited, and includes material derived from submarine erosion of the toe of the 

Humber Allochthon (Waldron and Stockmal, 1991). As the Humber Arm Allochthon 

was emplaced, it incorporated slivers of Goose Tickle group into its chaotic ba'ie. 
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Sedimentation within the basin then ceased as the basin was overridden by the Humber 

Arm Allochthon, preserving a relatively undeformed section through the Goose Tickle 

group. 

Othtr than describing the sandstones in the Victor's Brook area as similar to the 

Mainland formation. Waldron and Stockmal (1991) have not discussed the implications 

of the model ~Jr the main section at Mainland. The main Mainland and Three Rock 

Cove sections appear to have been located south of the southern termination of the 

Humber Arm Allochthon (although the western extent of the Humber Arm Allochthon 

is as yet unclear (Waldron and Stockmal. 1991)). As the minimum thickness of the 

Mainland formation at Three Rock Cove is 620 m. and no conglomerates or rafts of 

material derived from the Humber Arm Allochthon are present in the section. two 

possibilities exist. Either sedimentation in the main Mainland area went on after the 

emplacement of the Humber Arm Allochthon, or subsidence in this area was greater 

(which may be less likely at a greater distance from the allochthon) . allowing for the 

deposition of a greater thickness of sediment. The model of Waldron and Stockmal 

(I 991) clearly allows for continued deposition of Goose Tickle group equivalents in areas 

other than the Victor's Brook area subsequent to the arrival of the Humber Arm 

Allochthon. Therefore, the most likely explanation for the thick Mainland formation on 

the west coast of the Port au Port Peninsula, is that it represents sedimentation in the 

basin both during and after emplacement of the Humber Arm Allochthon. However, 

regardless of when sedimentation took place in the main Mainland area, there must have 

been a deeper depression to accommodate the sediment. Possibly this is related to a 
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greater degree of loading as a result of a thicker Taconic thrusted package in this area. 

or it may be related to the accommodation of subsiden~.:e along a reactivated rift fault. 

rather than by tlexure. 

It is clear that crucial to the hypothesis of the development of the Mainland 

formation in its upper parts is the relocation and recollection of the fossil locality at Low 

Point, as the interpretation of this outcrop as post Llanvirn would confirm that deposition 

of the Mainland formation continued subsequent to the arrival of at least the lower slices 

of the Humber Arm Allochthon (as inferred from the relationships between the American 

Tickle Formation and Howe Harbour member equivalents in the Victor's Brook <lrca). 

The Mainland formation is dominated by facies classes B and C of f>ickcring ct 

al. (1986) and is interpreted as having been deposited by moderate and high concentration 

turbidity currents in the mid fan area of a submarint: fan (e.g. Walker. 1984) uildcr 

relatively well oxygenated conditions (d. the American Tickle formation) . As with the 

American Tickle formation the geometry of the fan cannot be documented and the system 

must be regarded as oversupplied. The fact that some localities at Mainland indicate 

paleocurrents to the northwest may indicate lobe switching, a feature reported by lliscott 

(1980) in the Tourelle Formation and characteristic of areas of high topography. This 

would be consistent with structural models for the area which include a number of 

complex factors: 

l) Large piles of sediment on the basin tloor which now constitute the underlying Cape 

Cormorant Formation might have detlected turbidity tlows in the Mainland formation: 

2) The anomalous paleocurrent c irections are most prevalent at the southernmost outcrop 
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of the Mainland formation, which is the closest to the St. Lawrence Promontory. 

Paleotlow in the Appalachian foreland bao;in tends to be away from major promontories 

(Hiscott et al., 1986); 

3) Changes in the route of sediment supply might have been generated by the choking 

off of supply systems through the arrival of the lower sedimentary slices of the Humber 

Arm Allochthon in the Victor's Brook area. 

The position of the Mainland mid-fan with abundant coarse sediment clearly 

implies the existence of another sediment input point in addition to those outlined in the 

discussion regarding the American Tickle formation. It should also be noted, however, 

that with mounting evidence of structural complexity in the parautochthonous sequence 

(Waldron and Stockmal, 1991) it i;; unclear whether the Mainland formation was closer 

to a sediment input point or whether :, is simply a more marginal facies which has been 

transported westward relative to the more axial facies of the American Tickle fc:-mation. 

These two possibilities are not mutually exclusive. It is suggested that in view of the 

facies present, as well as the sami/mud ratio, that the former was the case. 

The structure of the Mainland Formation is poorly understood but if relative 

vertical stratigraphic relationships are preserved, as is suggested by the limited available 

evidence, then the Mainland formation changes in character as one goes upsection. The 

apparent top of the exposed section (at Low Point) has thicker shale packages which are 

punctuated with sandstones which show spectacular convolute laminations, large scale 

scouring and cross-beds. and in places, overturned cross-bedding. Very strong bottom 

currents and/or dilute as well as concentrated turbidity currents are indicated by the 
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abundant cross-bedding. The increasing shale abundance might suggest an overall finin~ 

upward sequence such as was also suggested for the American Tickle formation. 

If the beds at Low Point are indeed of Llandeilo/Caradoc age, liquefaction and 

overturned cross-bedding (e.g. Allen and Banks. 1972) indicates continued tectonic 

activity after the emplacement of the lower slices of tht Humber Arm Allochthon, which 

would be consistent with current models for the area (Cawood 1989: Stodmal and 

Waldron, 1990; Waldron and Stockmal, 1991). 

3.4 THE LOWER HEAD FORMATION 

J.4.1 lntroduct;on 

The Lower Head Formation is exposed in a series of imbricate thrust slices in the 

area north of Bonne Bay, with smaller outcrops in Bay of Islands and in the Port au Port 

Peninsula area (appendix 1, location maps 3, 2, and 1). In this study most attention was 

paid to the area north of Bonne Bay, as the Lower Head Formation has been studied in 

the Bay of Islands area by Botsford ( 1988), and in the Port au Port Peninsula by Botsford 

(1988) and Gonzalez-Bonorino (1990). In all areas proportions of different sandstone 

facies present at each locality are variable and correlations between different outcrops arc 

impossible. Paleocurrent information is also limited. However, information about the 

overall depositional context of the uni[ is availab ·, i the underlying Cow Head Group 

has been extensively studied (James and Stevens, 1986) as has the Northern Head group 

in the Bay of Islands area (Botsford, 1988). In addition, Gonzalez-Bonorino ( I'NO) has 

conducted a detailed investigation of one locality of the Lower Head Formation in the 
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Plate 3.16: Facies LH1 (conglomerate and very coarse sandstone) of the Lower Head 
Formation. Note sandstone layer within conglomerate bed, and variation in clast 
populations between layers. St. Paul's Inlet. 

Plate 3.17: Facies LH2 (medium- to very thick-bedded sandstone) of the Lower Head 
Formation. Note the concretions on fluid escape structures and shale chips. Lower Head 
North. 
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Plate 3.16: Facies LH 1 (conglomerate and very coarse sandstone) of the Lower Head 
Formation. Note sandstone layer within conglomerate bed, and variation in clast 
populations between layers. St. Paul's Inlet. 

Plate 3. 17: Facies LH2 (medium- to very thick-bedded sandstone) of the Lower He1\d 
Formation. Note the concretions on tluid escape structures and shale chips. Lower Head 
North. 
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also be present. Paleocurrent data derived from measurements of preferred orientation 

of clasts parallel the regional paleocurrent direction as indicated by data from other 

facies. 

Characteristics of the LH l facies vary considerably from locality to locality. In 

the section at Martin Point South (appendix A2.3.1) lensoid con~lomerate horizons occur 

at the bases of well-developed fining upward sequences. Similar features are also present 

at Black Point, where approximately I 00 m of complex amalgamated coarse to granule 

sandstone is inte• ~e-tded with minor conglomerate. At St. Paul's Inlet (appendix I. 

location map 3), a 6 m thic~~:1ess of LH I occurs as an isolated outcrop, and conglomerate 

layers are complexly interbeddtd with sandstone layers. At Lower Head North, one 

conglomerate horizon which is less than 30 em thick is traceable along strike for at least 

I km. At Portland Hill (appendix I, location map 3) the prominent hill marks an 

occurrence of couglomerate within the Lower Head Formation which may be as thick as 

450 m. Generally clasts are larger towards the top of the section and may reach boulder 

size. Exposure on the t.ill is limited, but the conglomerate layers are approximately 30-

100 em thick and may be inversely or normally graded. Despite the poor exposure. it 

is clear that the conglomerate is represented in numerous different horizons. rather than 

in a singk: ~ed. 

Conglomerate of the Lower Head Formation contains a suite of pebble to cobble 

sized clasts which are exclusively sedimentary in origin, including a variety of 

limestones. red. green and black chert, pyrite nodules. and sandstones. The limestone 

and sandstone clasts are rounded. whereas the chert clasts are platy and subangular. 
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Relative proportions of clast types vary from layer to layer within conglomeratic 

horizons, imparting a mark~d inhomogeneity. It is therefore difficult to describe the 

conglomerates in terms of average clast composition, however, a list of clast typP.s based 

on clast counts at two localities is given in table 3.2. 

Comparisons with lithologies in the underlying Cow Head Group (James and 

Stevens. 1986), suggest!; that clasts in the Lower Head Formation are derived from 

lithologies similar to the Cow Head Group. The Cow Head Group can be described in 

terms of a set of numbered 'beds· which consist of limestone and limestone conglomerate 

with rounded clasts (even numbers) and shale and chert (odd numbers). James a'ld 

Stevens (1986) noted that clasts in the conglomerate of the Lower Head Formation are 

identical to lithologies from the uppermost beds 10 through 15 of the Cow Head Group. 

Supporting this contention is the recovery of one limestone clast by the author which 

contained graptolites typical of the upper part of the Cow Head Group (S.H. Williams, 

pers. comm. 1991). 

It is clear. despite ir.ternal inhomogeneities. that conglomerate units from different 

localities vary in overall clast content. For example, the conglomerate on Portland Hill 

is dominated by peloidal limestone and calcarenite clasts, whereas the conglomerate at 

St. Paul's lnleL cor.tains a much higher ;Jroportion of red and green chert (see table 3.2). 

In addition, comparison of the lithologies of conglomerate clasts with directly adjacent 

lithologies of the Cow Head Group shows that the clast population within a specific 

conglomerate unit is largely similar to lithologies in the Cow Head Group immediately 

adjacent to the outcrop. The Cow Head Group in outcrops in the Portland Creek area 



Table 3.2 

Clast counts from Lower Head conglomerates 

St. Paul's Inlet 

I. Siliceous red mudstone (chert) 
2. Siliceous green mudstone (chert) 
3. Fine grained grey limestone 
4. Coarse grained peloidal/bioclastic limestone 
5. Laminated limestone 
6. Impure dolomitic limestone 
7. Fine - coarse grained sandstone 
8. Coarse sparry limestone, cone in cone structure 
9. Limestone/orange chert breccia and conglomerate 
10. White sugary limestone 
II. Pink crystalline limestone 
12. Laminated red and green or grey and black chert 

Ponland Hill 

44 
29 
22 
9 
0 
0 
23 
0 
5 
3 
0 
5 

I. Fine grained peloidal limestone (may be laminated) 107 
2. Buff weathering grey silty or sandy limestone 1 
3. Calcarenite, commonly laminated 28 
4. Micritic limestone 1 
5. Grey green argillite or chert 2 
6. White - buff weathering grainy limestone 19 
7. Green sandstone 5 
8. Fossiliferous limestone 0 
9. Light grey limy siltstone 2 
10. Laminated dolostone 1 
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Clasts were defined as those greater than in 50 mm long diameter, and were counted on 
a ~rid spacing 10 em apart at various angles to bedding. 
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is dominated by calcarenite and limestone conglomerate, whereas in the St. Paul's Inlet 

area, the Cow Head Group is characterised by red and green chert, and thinner limestone 

and limestone conglomerate horizons (some with chert and chert conglomerate caps). 

In the Rocky Harbour area, where conglomerat'! of facies LH 1 was studied in some 

detail by Gonzalez-Bonorino ( 1990), distinctive black siliceous shale with pyrite nodules 

is characteristic of the Cow Head Group, and clasts of similar lithology are prominent 

in the Lower Head conglomerate. Conglomerate in the Bay of Islands area contains 

predominantly dolostone fragments whiC:t are typical lithologies in the underlying Middle 

Arm Point Formation in more easterly localities in the region. 

No examples of facies LH 1 were observed to occur at the base of Lower Head 

Formation, and the facies is not present in all sections. In sections where the 

conglomerate does occur, it is never found in the lowermost 'slump and injection' 

(Botsford, 1988) part of the formation. 

Conglomerate of facies LH 1 was included by Gonzalez-Bonorino ( 1990) in his 

facies association FAI (thick-bedded sandstone and conglomerate). Here a separate facies 

class is introduced for thick- and very thick-bedded sandstone because in the Lower Head 

Formation as a whole there is abundant thick-bedded sandstone which is not very coarse

grained and is not associated with conglomerate. However the finer grained examples 

of facies LH 1 may be gradational with facies LH2. The Lower Head conglomerate is not 

easy to classify using the scheme of Pickering et al. ( 1986), which seems to lack 

sufficient detail for the classification of conglomerates. Facies LH 1 appears to belong 

to facies A but does not conform precisely to any of the subclass d'!scriptions, and upper 



127 

parts of conglomerate horizons resemble facies class 82.1. 

A more useful discussion of conglomerate classification is given by Surlyk ( 1984). 

According to the descriptions given by Surlyk (1984), conglomerates of the Lower Head 

Formation seem to correspond mainly to his facies 9 (graded, matrix-supported 

conglomerate with random fabric), 10 (graded, matrix-supported, imbricated 

conglomerate), and 14 (conglomerate grading into sandstone). Facies 6 (inverse to 

normally graded, matrix-supported conglomerate) is also present in some places. At St. 

Paul's Inlet, the conglomerate beds might best be described in terms of Surlyk's (1984) 

facies 13 (composite conglomerates) in which sandstone layers are complexly interbedded 

with conglomerate layers. 

Facies 9 and 10 are interpreted by Surlyk (1984) to have been deposited as a 

result of direct suspension from high-density turbidity currents, facies 6 was deposited 

by frictional freezing of a basal traction carpet followed by suspension sedimentation 

from high-density turbidity currents, and facies 14 represents a fining upward sequence 

deposited by surging flows. It should be noted that according to Surlyk ( 1984), most of 

the descriptive features of a conglomerate, such as inverse grading and imbrication, 

provide information on the hydrodynamic conditions of deposition and may provide little 

information on the proximity of the flow to the head of a fan or to the source. 

The composite conglomerate, facies 13 (first described by Hendry, 1973) was 

likely deposited by successive pulses of coarse grained gravity flows resulting from 

progressive headward failure on a slope. Comparison of the Lower Head conglomerates, 

particularly those at St. Paul's Inlet, with those described by Hendry (1973) shows many 
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similarities, including large size and poor sorting of the clasts. 'floating' nature of many 

of the clasts. common preferred orientation of a axes of the clasts, erosional bases. and 

the existence of layers of sandstones within the conglomerates. Although sandstone 

layers are not present in all conglomerate beds of the Lower Head Formation. they are 

present in several (see plate 3.16) and their presence, in addition to the variation in clast 

types between the conglomerate layers, suggests that several different events may have 

contributed to the deposition of one bed, thus allowing for application of the term 

'compound' (Hendry, 1973). 

Rip-up clasts within the Lower Head conglomerate horizon were not observed. 

again similar to the situation described by Hendry ( 1 ')73). Hendry ( 1973) interpreted this 

to mean that the transport energy of layers arriving at the depositional site did not vary 

sufficiently to allow erosion and deposition to alternate during the buildup of the 

compound beds, and suggested that individual layers within the beds were related to each 

other in time and space, thus qualifying these beds for the term 'composite'. Hendry 

( 1973) suggested that sands which now constitute the sandy matrix to the conglomerates 

were previously deposited further upslope and were subsequently liquefied, possibly by 

an earthquake. An upper layer of sand would be transported as a gravity tlow down 

slope, leaving a newly exposed layer subject to backrush, liquefaction and failure. Thus 

several successive failures would occur to complete the buildup of the composite bed. 

The presence of fining upward sequences, abundant amalgamation surfaces. and 

a deep basal scour at Martin Point North suggest that here the conglomerates were 

deposited in a channel. The same may also be true of the locality at Black Point where 
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similar features are observed, although the abundant scouring and less well developed 

fining upwards sequence may indicate a shallower channel. Simi:ar features in submarine 

facies have been described by Hein and Walker (1982) . Thus a number of different 

processes may have contributed to the deposition of facies LH 1. 

The fact that within any one conglomerate bed, different layers may be dominated 

by different clast types (plate 3.16) is interpreted as the signature in successive clast 

populations of derivation from different beds of the Cow Head Group. The very local 

relationship between the conglomerate clasts and the underlying units is somewhat at 

odds with the fact that the clasts are rounded and were lithified before becoming 

incorporated in the Lower Head conglomerates. It has been suggested that red and green 

cherts of the Cow Head Group have undergone early lithification (James and Stevens, 

1986). Limestone clasts of the Lower Head conglomerates are single limestone 

fragments only and no limestone conglomerate clasts have been found , suggesting that 

although the chert in the Cow Head Group was lithified. the limestone conglomerate had 

not yet been cemented by the time of the incorporation of these lithologies into the Lower 

Head Formation. Rounded sandstone clasts are interpreted as eroded concretions which 

had an original spherical shape, and these are also typically lithified early (Hiscott, 

1978). Thus it is suggested that the Cow Head Group (and Lower Head Formation) was 

eroded in a post-early lithification phase. 

Comparison of the clast population of cobbles in the Lower Head Formation 

conglomerate with the sandstone and granule matrix shows that the matrix contains grains 

of lithologies similar to the conglomerate clasts, but in addition contains grains typical 



130 

of the entire range of rock fragments and other framework grains found in the Lower 

Head Formation (see chapter 4). In fact, perhaps because the granule sandstones 

associated with these conglomerates are coarser than the average Lower Head Formation 

lithologies, matrix to the conglomerates contains the widest variety of volcanic rock 

fragments seen in the unit. Volcanic rock fragments are never found as cobble-sized 

clasts in the conglomerate. Clearly this implies a mixing of a clast population derived 

exclusively from local examples of the Cow Head Group, with the overall grain 

population supplied to the Lower Head Formation proper. Neither Surlyk ( 1984) nor 

Hendry (1973) discussed the relationship between conglomerate clasts and matrix in 

detail. Hendry ( 1973) did imply a difference in composition between grain types of 

clasts and matrix, although he did not explore the implications of this. 

Thus any hypothesis explaining the origins of facies LH I conglomerate must take 

into account the following observations: 

1. The conglomerate in general was deposited by high density turbidity tlows: 

2. Some conglomerate was deposited in channels (of varying depth) and some appears 

to represent composite beds sensu Hendry (1973) which were deposited by successive 

failure on a submarine slope: 

3. The conglomerate horizons never occur at the base of the Lower Head Formation: 

4. The clast populations of the matrix and the conglomerate are not the same; 

5. The clasts in the conglomerate consist exclusively of Cow Head Group and Lower 

Head lithologies and appear to be very locally derived; 

6. Chert clasts are platy, I imestone and sandstone clasts are rounded, and no clasts of 
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limestone conglomerate have been found. 

3.4.3 Facies LH2: Thick- to Very Thick-bedded Sandstone 

Facies LH2 is dominated by thick- to very thick-bedded, massive, medium- to 

coarse-grained sandstone (plate 3.17). Particularly in the Bay of Islands area, beds may 

be as great as I 0 m thick, although it is unclear as to whether some of these beds may 

be amalgamated. Bases of the beds are commonly non-erosive and tops tend to be friable 

and poorly defined, suggesting a poorly developed normal distribution grading. The only 

structures commonly displayed by the sandstone are a variety of fluid escape structures 

and concretions. The fluid escape structures are cemented by calcite and are resistant 

to weathering. Concretions occur as spherical features in which calcite cementation has 

nucleated around shale chips (cannonball concretions). and in continuous rinds or layers 

up to 10 em thick which may reflect bedding parallel variations in the mud/sand ratio 

wlchin the bed, which are otherwise invisible to the naked eye. Some beds display a 

crude parallel stratification defined by coarser and finer layers of sand which may show 

inverse - normal grading within the layers. The bases of the beds may contain large 

flutes (20 em wide) or grooves. and horizontal feeding trace fossils are present on the 

bases of a few beds. Botsford ( 1988) has identified a suite of trace fossils in the Lower 

Head Formation dominated by Cosmorhaphe and Paleodictyon, which he considered to 

be typical of the low diversity Nereites ichnofacies, and which moreover are 

characteristic of a 'flysch related assemblage ' . Facies LH2 'iandstone beds are laterally 

continuous within the scale of the available outcrop, but may be amalgamated; however, 
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the amalgamation surfaces are difficult to see given the generally structureless nature of 

the sandstones. Minor tangential cross-bedding in sets approximately 20 em thick may 

occur on the tops of the beds. 

Facies LH2 sandstones are interpreted as belonging to facies classes B I. I 

(Thick/medium-bedded disorganised sands) of Pickering ct al. ( 1986). and beds 

displaying crude parallel stratificauon, belong to the related class 82.1 (Parallel-stratified 

sands). Both types were deposited by high concentration turbidity currcr.ts with the 

massive type being deposited by freezing or subsequent liquefaction of a flow. whereas 

the stratified type is interpreted as having been deposited by freezing of traction carpets 

at the base of the flow (Pickering et al.. 1986). The cross-bedded tops of beds are 

interpreted as being the result of reworking by dilute turbidity currents. Thus the 

suggestion that facies LH I and LH2 may be gradational is reasonable. 

Facies LH2 was included by Gonzalez-Bonorino (1990) in his facies association 

I. thick-bedded sandstone and conglomerate. 

3.4.4 Facies LH3: Medium- to Thick-bedded Rippled Sandstone 

Facies LH3 consists of medium- to thick-bedded sandstone showing multiple sets 

of climbing ripples as the dominant sedimentary structure (plate 3.18). This type of 

sandstone is notably calcareous in comparison to most sandstones of facies Uf I and 

LH2. 

Facies LH3 sandstone may be classified as C2.2 (medium-bedded sand-mud 
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Plate 3.18: Facies LH3 (thick-bedded calcareous sandstone with climbing ripples) of the 
Lower Head Formation. Lower Head South. 

Plate 3.19: Thin- to medium-bedded sandstone (LH4), dolostone (LH7- light weathering 
bed on left), and mudstone (LH6), of the Lower Head Formation. Western Brook Pond 
North. 



134 

couplets) although grading is not well developed. This f:cies was probably deposited 

from high concentration turbidity currents (Pickering et al.. 1986). Gonza1ez-Bonorino 

(1990) has suggested that the thickness of facies LH3 beds implies that they were fed by 

long-Jived turbidity currents such as those supplied by rivers in tlood. However. their 

association with slump folding and other indicators of soft sediment deformation might 

indicate a derivation directly from repeated slumping. 

3.4.5 Facies LH4: Thin- to Medium-bedded Sancf~ 

Facies LH4 consists of thin- to medium-bedded. medium-grained sandstone 

showing well developed Bouma sequences with T I<;C as the most commonly preserved 

sequence. On some rippled surfaces, particularly in examples of LH4 in the Bay of 

Islands, rill markings are developed on the rippled surfaces. and these have been 

interpreted as being small scale load features (e.g. Allen. 1984). 

Facies LH4, with its classical turbidite aspect belongs to facies class C2.3 (thin

bedded sand mud couplets) which were deposited by low concentration turbidity currents 

(Pickering et al., 1986). 

3.4.6 Facies LH5: Thin-bedded Ri;>pled Calcareous Sandstone 

Facies LH5 consists of thin-bedded fine-graine.j .:alcareous sandstone. This facies 

is similar to facies LH4 except for its predominantly calcareous nature and its finer grain 

size. The beds are thin ana weather white or tan. T""" Bouma sequences are well 

preserved. 



135 

The interpretation of these beds is similar to that for facies LH4, as the classical 

turbidite features of these beds place them in facies class C2.3 (thin-bedded sand mud 

couplets) of Pickering et al. (1986). which were deposited by low concentration turbidity 

currents. 

3.4. 7 Facies LH6: Mudstone 

Mudstone in the Lower Head Formation tends to weather recessively, is green in 

colour and is massive. On most of the coastal sections studied it is poorly exposed. 

Facies LH6 is present in abundance only at the shoreline section south of Portland Creek 

(see appendix I. location map 3). Other examples of facies LH6 occur at Western Brook 

Pond where the mudstone ranges from black to grey in colour and is interbedded with 

thin to medium beds of dolomitic siltstone. 

Both mudstone and the associated dolomitic siltstone were included by Gonzalez

Bonorino (1990) in his facies association 4. Facies LH6 most resembles facies El.l 

(structureless muds) of Pickering et al. (1986) which may have been deposited by 

hemipelagic settling or by the ponding of thick turbidity currents. There is no evidence 

for the existence of megaturbidites in the Lower Head Formation. Megaturbidites are 

associated with shallow slopes and therefore would not be expected to be associated with 

olistostromes. Thus the association of mudstone in the Portland Creek area with thick 

sandstone beds and an olistostrome. and in Western Brook Pond with dolomitic siltstone, 

suggests that in both cases the mudstone was deposited by hemipelagic settling. 
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3.4.8 Facies LH7: Dolomitic Siltstone 

Facies LH7 consists of thin- to rr.edium-bedded buff- to tan- weathering dolomitic 

siltstone which is massive to ripple cross-laminated (plate 3.19). This facies is only 

exposed in the Rocky Harbour area (Gonzalez-Bonorino. 1990) and in Western Brook 

Pond. It is associated with Facies LH6 mudstone. 

Facies LH7 probably belor:gs to facies class 02.1 (graded-stratified silts) and was 

deposited by low concentration turbidit) currents (Pickering et al. 1986). Gonzalc~

Bonorino (1990) includeci both facies 5 mudstone and facies 6 dolomitic siltstone in his 

facies association 4. He did not. howev~r visit the Portland Creek locality to observe 

that mudstone need not necessarily be associated with dolomitic siltstone. 

3.4.9 Facies LH8: Chaotic Pebbly Mudstone 

Two subfacies of chaotic pebbly mudstone are present m the Lower Head 

Formation: 

Subfacies a) consists of pebbles and cobbles of sandstone and limestone sparsely 

distributed in a chaotic matrix of green and red shale. This facies is present in the lower 

30m of the Lower Head Formation only and is present at the Martin Point North section 

(appendix l , location map 3; appendix 2, section A2.3.1). The maximum thickness of 

this horizon is about 5 m. 

Subfacies b) is exposed only in the shoreline section south of Portland Creek 

(appendix I, location map 3) and is composed of large cobbles and boulders of sandstone 

distributed in a muddy/and or sandy matrix. Some of the clasts within the deposit are 
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themselves brecciated, and angular (plate 3.20). The thickness of this horizon is about 

15m. 

Both subfacies are interpreted as olistostromes. and the extent of 

internaldeformation within both subfacies probably places each of them within facies 

class F2.2 (dislocated, brecciated and balled strata). Subfacies a) is predominantly a 

deformation of unlithified Cow Head lithologies, whereas subfacies b) is completely 

intraformational to the Lower Head Formation. 

Neither of the above subfacies were recognised by Gonzalez-Bonorino ( 1990). 

3.4. 10 Other Characteristics and Local Inter:pretations 

An almost ubiquitous characteristic of the lower part of the Lower Head 

Formation is a zone of deformation of shale associated with injection of sandstone dykes 

and sills (plate 3.21 ). This zone. which was referred to by Botsford ( 1988) as the 'slump 

and injection facies'. is of variable thickness, but l:an extend up to 60 m above the base 

of the formation. Sandstone dykes and sills are present in the sections at Western Brook 

Pond, and slumping associated with the formation of olistostromes is present at Martin 

Point North. Both slumping and injection features are present near the base of the Lower 

Head Formation in the Bay of Islands area (Botsford. 1988). and sandstone dykes are 

present at the base of the formation in the Rocky Harbour area. Hiscott ( 1979) has noted 

similar features at the base of the Tourelle Formation in Quebec, and has related their 

presence to the existence of impermeable shale in the section which acted as a seal and 

promoted liquefaction and intrusion of sands. 
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Plate 3.20: Facies LH8 (pebbly to cobbly mudstone) of the Lower Head Formation. This 
is sub facies b. Portland Creek. 

Plate 3. 21: Sandstone dykes in sandstone of the Lower Head Formation. Western Brook 
Pond South. 
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At one locality in the Bay of Islands, Botsford ( 1988) noted that the red and green 

shale of the Midd'e Arm Pomt form:nio~hich underlies the Lower Head Formation 

in this area were deformed prior to deposition of the Lower Head Formation. At Martin 

Point South, complex slump folding is present in sandstone near the base of the section. 

Also present is a gradual steepening of the dip of the beds, which become suddenly 

shallower dipping at the base of the major conglomerate horizon within the section. No 

clear evidence of tectonism is associated with this feature, and it may ;n fact be a 

preserved angular unconformity within thr section. 

Gonzalez-Bonorino ( 1990) did note the presence of slumping within the Lower 

Head Formation. but suggec:ted that interlobe relief may be sufficient to account for it. 

This author disagrees, for three r·~asons : 

I. Slumping occurs at the bases of several of the measured sections, and in at least one 

case prior (Botsford, 1988) to the deposition of the Lower Head Formation. This implies 

uplift of a slope prior to and during the early phases of deposition of the formation; 

2. Slumping occurs within red and green shale, lithologies which are not part of the lobes 

of the Lower Head Formation fans, also indicating a pre-existing slope or 

contemporaneously deforming slope; 

3. The clasts in the Portland Hill conglomerate are predominantly peloidal limestone and 

calcarenite, which are more characteristic of lower parts of the Cow Head Group (James 

and Stevens. 1986). Nowlan and Barnes (1987) reported the occurrence of clasts 

containing Lower Ordovician conodonts. and the apparent lack of clasts representative 

of the upper part of the Cow Head Group may indicate a prior phase of erosion of the 
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Cow Head Group. (Note that Nowlan and Barnes ( 1987) interpreted the Portland Hill 

Conglomerate as part of the Cape Cormorant Formation). This observation. and the 

suggestion by James and Stevens ( 1986) of erosion of the Cow Head Group prior to 

deposition of the Lower Head Formation in places. implies uplift (and presumable 

formation of a slope) of that unit prior to the deposition of the Lower Head Formation. 

James and Stevens ( 1986) have suggested that the Lower Head Formation was 

deposited in a submarine far. setting. The outcrops of the Lower Head Formation at 

Rocky Harbour have been interpreted by Gonzalez-Bonorino ( 1990) as having been 

deposited in shallow, braided, frequently migrating channels in the proximal areas of 

submarine fans. The channels he interpreted as his facies association I (thick-bedded 

sandstone and conglomerate), and at the mouths of these channels he recognised lobes 

(his facies association 2, medium to thick-bedded sandstone). Other facies associations 

he interpreted as having been deposited on the fringes of lobes or in interlobe areas. lie 

interpreted climbing rippled sandstones (assigned in this study to facies LH5) as the result 

of deposition from continuously fed turbidity currents which were generated by discharge 

from small rivers during their tlood stages. He suggested that a number of fans probably 

existed in the area, each with their own separate feeder channel. The author is in general 

agreement with Gonzalez-Bonorino ( 1990) and James and Stevens ( 1986) that the general 

domination of facies classes A and B in the Lower Head Formation. with lesser amounts 

of C. D, and E suggest deposition primarily in an upper or mid 'fan' setting. 

Nevertheless. a few cautionary points should be made. 

1) Gonzalez-Bonorino's (1990) main area of study was the Rocky Harbour area, which, 
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although it is a good wave cut platform section of the rocks and allows for determination 

of lateral variations, is structurally complex and is part of a dismembered raft in 

melange. The building of a regional basin model based largely on this one outcrop may 

be suspect. 

2) The suggestion by Gonzalez-Bonorino ( 1990) that the presence of conglomerate 

indicates proximality is in conflict with the statements of Surlyk (1984). Surlyk (1984) 

has argued that in the well exposed Wollaston Forland Group, Greenland the following 

facts can be determined: there is no down slope change in conglomerate facies to aid one 

in determining a proximal/distal relationship; conglomerate flows appear to have 

originated from all parts of the slope. hence were not necessarily derived frvm the fan 

apex. again rendering the suggestion of proximality suspect. 

3) The Lower Head Formation as a whole satisfies the crite·ia outlined by Hiscott et al. 

(1986) and must be considered 'grossly oversupplied'. 

To provide a more regionally based model it is appropriate to summarise and 

interpret the characteristics of some of the main Lower Head localities. The sections at 

Martin Point North and South are dominated by facies LH2 thick-bedded sandstones with 

slumped horizons at their bases. Martin Point South and Black Point contain examples 

of LH l which is overlain in a succession of fining upwards sequences tO's of m thick 

by monotonous sandstone of facies LH2. Multiple shallow scouring is particularly well 

developed at Black Point. 

Lower Head South, and Western Brook Pond North and South, contain substantial 

monotonous packages of facies LH2 thick-bedded sandstone, but also include a greater 
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proportion of other facies, notably representatives of facies LH3, LH4, LH5, and LH6. 

The Western Brook Pond localities show interbedding of Cow Head lithologies for a 

considerable thickness above the base of the Lower Head Formation (see appendix. 2: 

section A2.3.3). These features suggest that sediments from these localit ies were 

deposited closer to interlobe areas or on the fringes of the lobes. The presence of 

calcareous sediments of LH5 and LH7 may indicate periodic reversions to supply of 

material from carbonate rocks on the western side of the basin. 

Southwest of the Portland Hill conglomerate, approximately along strike. the 

Lower Head Formation is characterised by 20 - 30 m packages of facies LH2 sandstone 

interbedded with 20 m thick packages of LH6 mudstone. The sandstones in the upper 

part of this coastal section display layers and thin beds of granule conglomerate 

containing a similar suite of clasts to those found on Portland Hill. Towards the top of 

this section an intraformational olistostrome (facies LH8, subfacies b) is also found. The 

area of the shoreline section where the granule layers are found may be approximately 

downcurrent from the main conglomerate on Portland Creek Hill (although the map of 

Cawood and Williams (1986) postulates a thrust between the two localities). If these two 

outcrops are continuous, the relationship might imply a rapid downcurrent thinning of 

conglomerate beds, and a downcurrent reduction in grain size of clasts. A more likely 

theory hinges on the interpretations of the associated mudstone and olistostrome as slope 

facies. In this case the Portland Hill conglomerates could represent a major channel 

incised into a slope, with the shoreline packages of sandstones and granule conglomerates 

possibly representing channel overspill. 
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3.4. 11 Interpretation and Re2ional Considerations 

The outcrops of the Lower Head Formation at Rocky Harbour have been 

interpreted by Gonzalez-Bonorino (1990) as representing deposits in shallow, braided, 

frequently migrating channels. This interpretation was based on the fact that 

conglomerates are present as a channel fill (the geometry of the channel-fill can be 

documented in the case of the Rocky Harbour outcrop), but that the fill was apparently 

non-erosive. Gonzalez-Bonorino ( 1990) drew analogies between deposits of the Lower 

Head Formation at Rocky Harbour, and the Cape Enrage Formation in Quebec, which 

was studied by Hein and Walker (1982). 

It is clear that conglomeratic facies at most localities are separated from 

underlying facies by an erosive contact. Demonstration of channel dimensions equivalent 

to those described by Hein and Walker (1982), particularly width, is difficult given the 

type of outcrop, but the at least 15 m of downcutting implied for the Martin Point South 

locality is on a comparable scale to that described by Hein and Walker (1982). A deep 

but narrow channel is suggested as an interpretation for the Portland Hill conglomerate. 

At Martin Point South and Black Point the overall fining upwards sequences appear to 

be of a similar scale to those interpreted by He in and Walker ( 1982) as being indicative 

of the migration of a channel terrace over a channel fill. A shallower channel may be 

implied by the multiple scouring and relativdy minor conglomerate facies at Black Point. 

Surlyk ( 1984) has suggested that all congl )merates need not have been deposited in 

channels derived from the apex of a fan. but could have been originated through slope 
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failure at any point on the fan. an explanation which may account for the composite beds 

observed at St. Paul's Inlet. In other parts of the Lower Head Formation (e.g. Western 

Brook Pond), with a greater variety of facies, the existence of channels cannot be 

established and the associations present are more similar to the unchanneled associations 

described by He in and Walker ( 1982). Thus the Lower Head Formation overall is far 

more variable and contains a greater number of facies than those outlined by Gonzalez

Bonorino (1990). 

Caution should be exercised in too slavishly applying the model of Hein and 

Walker (1982) for two reasons. Firstly, the conglomerates of Hein and Walker ( 1982) 

were deposited in a passive margin setting at a considerable distance from the source. 

and secondly all of the deep and shallow channels recognised by Hein and Walker ( 1982) 

were interpreted as having been formed as part of a braided system within a 300m deep. 

10 km wide deep sea channel deposit. With regard to the first point. it should be 

expected that local tectonic effects will have a greater effect on the sedimentology than 

in the case described by Hein and Walker (1982). With respect to the second point, the 

analogy may yet be valid, if it can be demonstrated that the Lower Head Formation was 

deposited in a system with a similar geometry to that described by Hein and Walker 

(1982). 

The rounding of some of the clasts in the Lower Head conglomerate suggests that 

they may have resided briefly in a fluvial, beach, or shelf setting, although it should be 

noted that the limestone clasts in particular may have been rounded in a previous 

sedimentary cycle. The local derivation of the clasts is consistent with the concept that 
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the shelfal area was narrow in close proximity. The simplest way to account for local 

derivation of clasts in the Lower Head Formation is for gravity flows to have directly 

eroded the underlying Cow Head Group. Thus clasts in the conglomerate would simply 

be construed as rip-up clasts. although they are not intraformational. This hypothesis 

might be supported by the fact that the bases of most conglomerate horizons are clearly 

erosive. Hendry ( 1973) stated that the bases of composite conglomerates are erosive and 

the tlows that deposited them were capable of eroding 'sandy and muddy substrates' . 

He did not clarify whether the flows might have been strong enough to erode lithified 

sediment. 

Evidence of erosion of the Cow Head Group is provided by the work of Botsford 

( 1988) which has indicated that at St. Paul's Inlet, bed 14 of the Cow Head Group is 

missing, and Lower Head sandstone directly overlies bed 13. In addition. at Portland 

Hill, the uppermost beds of the Cow Head Group do not appear to have been available 

to supply clasts to the Lower Head conglomerate at Portland Creek Hill. However, this 

phase of erosion appears to have occurred before deposition of the lower part of the 

Lower Head Formation which is generally characterised by non-erosive thick-bedded 

sandstone of facies LH2. Thus, if the hypothesis that gravity flows eroded the Cow 

Head Group is correct, the tlows must have travelled over an area of semi-lithified Cow 

Head Group which was exposed subsequent to the initial phases of deposition of the 

Lower Head Formation. If the clasts are rip-up clasts, rip-up must have taken place a 

considerable distance from the area of deposition of the conglomerates while the flows 

were in an erosive phase. The range of grain sizes of the clasts from sand to cobble, the 
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variety of clasts implying substantial erosion through several beds of the Cow Head 

Group, and the size of the largest clasts relative to the thickness of individual 

depositional events are all atypical of rip-up clasts and of erosion in a deep-marine setting 

(R. Hiscott, pers. comm., 1991). In addition, the degree of lithification of the clasts 

which is implied by their internal integrity and the platy shapes of the chert clasts may 

argue against this hypothesis. 

A second and favoured alternative involves subaerial exposure of the Cow Head 

Group. Rivers which supplied the main body of Lower Head sands may have eroded the 

Cow Head Group. In addition, the Cow Head Group, which was partly lithified, was 

progressively uplifted and formed scarps which may have generated local fan delta~ at 

the margins of the ba~in which were independent of the main clastic supply. The fan 

deltas would have, at their toes, overlain and intertongued with sands from the Lower 

Head Formation which may have onlapped the slope, and which were supplied by more 

widely mixed sources from further afield. 

The fact that different conglomerate layers are dominated by different populations 

of clasts, indicates successive erosion of different beds of the Cow Head Group and 

suggests that one might expect to observe an unroofing relationship within the 

conglomerates. In this case, sandstone clasts might be expected to be most common at 

the bases of the conglomerates as the Lower Head Formation overlies the Cow Head 

Group. Gonzalez-Bonorino ( 1979) observed that sandstone clasts become more 

prominent towards the !QJ2 of the Rocky Harbour conglomerate unit, implying that 

sandstones may have been unroofed later, and were therefore underneath rather than on 
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top of Cow Head Group sediments. This may support the local fan delta hypothesis 

outlined above. Similarly, the increase in size of conglomerate clasts upsection at 

Portland Hill may also support a reverse unroofing hypothesis. 

Conglomerates are never found directly at the base of the Low!!. Head Formation, 

implying that there was a phase marked only by siliciclastic deposition prior to the major 

uplift of the faults which generated the detritus supplied by the Cow Head Group. 

Taking all aspects of the above discussion into account, the history of deposition 

of the Lower Head Formation might be as follows: 

I. Uplift of the Cow Head Group from the east, probably along faults, accompanied by 

or followed by erosion which. in places, imparted substantial topography to the basin 

tloor: 

2. Sudden intlux of Lower Head sands to the base of the slope, with continued uplift 

implied by slumping, and rapid deposition implied by injection features: 

3. A second phase of uplift (or a drop in sea level, see Fortey, 1984). accompanied by 

erosion and rejuvenation of the main source of sediment which supplied coarse sand and 

granule material to the Lower Head Fr,rmation. The main supply systems or lesser 

tributaries may have eroded and incorporated material derived from local uplifts of the 

semi-lithified Cow Head Group. Lower Head sands may also have onlapped the upper 

~lope and may have been intercalated with Cow Head Group lithologies which were 

deposited by small local fan deltas on the margin of the basin. Slumping on the high 

slope may have resulted in multiple related tlows (composite beds), multiple unrelated 

tlows (simple beds) and supply through main feeder channels may have resulted in 
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deposition in deep channels, shallow channels. and lobe and interlobe (unchannelised) 

areas. 

Evidence used to support the existence of fan delta supply systems is as follows 

(Nemec and Steel. 1988; Surlyk, 1984): 

1. The apparently proximity of the shelf to the basin as indicated by the local 

relationships of the Cow Head clasts in LH 1 conglomerates; 

2. The abundance and diversity of conglomerate and sand facies is similar to those 

described by Surlyk (1984) as having been deposited in submarine fans fed by a fan-delta 

system: 

3. Lack of evidence for fan progradation which could have resulted in a large scale 

coarsening upwards cycle. Surlyk (1984) interpreted this to retlect the fact that in 

submarine fans fed by fan deltas. the steepest slopes and deepest water occur immediately 

adjacent to the source area; 

4. Proximity to an orogenic system in which faulting is likely to have taken place. 

generating steep slopes. 

Nemec and Steel ( 1988) suggest that the only unequivocal evidence for a fan delta 

is the demonstrated existence of an alluvial fan supplying the system. There is clearly 

no evidence for this in the Lower Head Formation. This. however. is not unexpected 

since both Surlyk (1984) and Massari and Colella (1988) suggest that the subaerial part 

of a fan-delta may have a poor preservation potential. 

Belt and Bussieres (1981) have described foreland basin deposits of the Beaupre 

Formation. Quebec as having been deposited on a submarine fan fed by a tan-delta. 
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They postulated a fan-delta because 'it is as probable as a classical delta'. It is here 

suggested that the hypothesis of a fan delta supply to the Lower Head Formation is more 

strongly supported by the evidence than rhat postulated for the Beaupre Formation by 

Belt and Bussieres (1981). 

Gonzalez-Bonorino ( 1990) has suggested that the Lower Head Formation and the 

Goose Tickle Group were deposited in the same foreland basin. Hiscott et al. ( 1986) 

t:onsidered that the Arenig Tourelle Formation in Quebec, which is similar to the Lower 

Head Formation in many respects. was deposited in trench slope basins. The evidence 

cited was that the Tourelle was deposited on uplifted and probably tilted slope and rise 

sediments. Also the transition from passive margin slope and rise deposits into coarse 

grained thick bedded sandstones of facies groups B and C (Hiscott et al.. 1986) in the 

Tourelle Formation is abrupt with slides, slide scars and sandstone injections. 

As described above, similar, although not identical features are observed in the 

Lower Head Formation. The lower slump and injection part of the sequence (which is 

also present in the Tourelle Formation. (Hiscott, 1979)) indicates that deformation and 

uplift was early with respect to the time of deposition of the Lower Head Formation. 

In the Lower Head Formation, no obvious slides have been observed. however the 

transition from the Cow Head Group is abrupt, erosion has occurred. and there is a zone 

of injection. These features were believed by Hiscott et al. (1986) to be more consistent 

with rapid introduction of sands into a small slope basin, or onlap of sheet or channelled 

sands onto a pre-existing slope, than with gradual progradation of a turbidite system into 

a larger foreland basin. The general conditions of deposition of the lower part of the 
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Lower Head Formation are characterised by uplift and slope formation, and contrast 

strongly with those in the Goose Tickle group which are characterised by subsidence. 

Trench slope basins, described by Moore et al. (1980) in the Sunda trench system 

are continuous along strike for only a short distance (a few tens of kilometres) and the 

basin tloors generally exhibit an irregular topography. The highest basins fill first, then 

sediment spills over into the lower slope basins. But as small basins begin to fill they 

generally coalesce to become larger basins. Therefore the largest basins are towards the 

top of the slope, and smaller discontinuous ones are towards the bottom. The position 

of the Lower Head Formation in this model would depend on whether the Bonne Bay, 

Bay of Islands, and Port au Port localities are part of the same basin. 

Nemec and Steel (1988) have shown that a fan-delta supplying a confined system 

will have an extensive and well developed braid plain system. Given this information, 

it is suggested that the analogies drawn here between the facies observed in the Lower 

Head Formation and those observed by He in and Walker ( 1982) in the Cape Enrage 

Formation may in fact be apt. In the case of the Lower Head Formation, the confining 

geometry would not be provided by a deep sea channel as in the case of the Cape Enrage 

Formation, but by the long, narrow shape of the trench-slope basin itself. 

3.5 SUMMARY AND CONCLUSIONS 

Froad regional facies analysis indicates that the American Tickle formation wao; 

deposited under anoxic conditions on a trench tloo~, probably as the outer lobes of 



151 

elongate submarine fans whose geometry was determined by the narrow elongate shape 

of the foreland basin. At least two sediment supply points allowed input of detritus to 

the American Tickle formation, and sediment supply was from the east. No evidence 

was found for the existence of structural highs within the basin. 

In tectonic reconstructions of western Newfoundland the provenance of the Goose 

Tickle group has been deemed important in that detritus in these rocks has been thought 

to place constraints on the time of arrival of the Humber Arm and Hare Bay allochthons 

(Stevens, 1970; Stockmal and Waldron, 1990). Conventional wisdom has it that 

sandstones of the Goose Tickle group were shed directly off the Humber Arm and Hare 

Bay allochthons (Stevens, 1970; Cawood et al., 1988; Bradley, 1989). The only 

sedimentological indication in the Goose Tickle group of the imminent arrival of the 

allochthons is given by the coarsening upward turbidites and debris flows of the Howe 

Harbour member which were precursors to the olistostromes of the Northwest Arm 

Formation. This would imply a Middle Llanvirn age for the emplacement of this slice 

of the Hare Bay Allochthon. However, there appears to be no relationship be~ween the 

distribution of sandstone lithologies of the Goose Tickle group and the arrival of either 

the Hare Bay or Humber Arm allochthons. 

The Mainland formation was deposited during the Llanvirn and possibly Llandeilo 

in the mid fan area of an oversupplied submarint> fan or fans in an area of higher 

topography and greater sediment supply, and more oxygen-rich waters, than the 

American Tickle formation, with lobe switching or overlapping lobes being indicated. 

The Mainland formation was probably deposited close to a third sediment input point 
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within the main foreland basin. and closer to the eastern margin of the basin. However. 

caution should be applied in making regional reconstructions along the length of the basin 

using sand/mud ratios alone, in the light of structural complexities involving the 

parautochthon (Stockmal and Waldron, 1990; Waldron and Stockmal, 1991) 

The Lower Head Formation was deposited during the Arenig to early Llanvirn 

in an oversupplied basin or basins in which facies associations characteristic of middle 

and inner submarine fans were deposited. Deposition was accompanied by uplift. 

probably along faults on the eastern margin of the basin. It was also accompanied by 

probable subaerial erosion of stratigraphically older units and supply of the eroded 

material to the basin in addition to sediment derived from the main source of sand. 

Contrary to the suggestion of Gonzalez-Bonorino ( 1990), the Lower Head Formation was 

probably deposited in a slope basin or basins separate from the main foreland basin floor. 

The lack of lateral continuity of the formation within the allochthon may support the 

hypothesis that it was deposited in several short discontinuous basins, rather than in one 

long basin. 

Although field sedimentology suggests that the Lower Head Formation was 

deposited in a slope basin, as opposed to the foreland basin proper. provenance studies 

may provide independent evidence for this. If. as Gonzalez-Bonorino (1990) suggests, 

small fans in the Lower Head Formation were fed directly by small rivers. this mode of 

supply might have resulted in a significant variation in grain population supplied to each 

individual system, which would suggest that the Lower Head Formation might be 

predicted to be petrographically heterogeneous. Clast populations in the conglomeratic 
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facies are certainly variable, but it will be investigated in Chapter 4 whether the sand-

sized sediment displays the same heterogeneity. 
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CHAPTER 4 

PETROGRAPHY 

4.1 INTRODUCTION 

Considerable attention has been paid in recent years to the study of provenance 

of turbidites. Two approaches have been taken to the collt:ction and interpretation of 

petrographic data from sandstones. The first was outlined by Zuffa (1985. 1987, 1991) 

who relied on a qualitative, interpretive approach, and recognised the loss of information 

which occurs when most quantitative methods are applied. Zuffa's method involves the 

identification of each grain type and an interpretation as to whether it is intrahasinal or 

extrabasinal. The papers of Zuffa (1985, 1987, 1991) outline criteria hy which 

extrabasinal and intrabasinal grains may be distinguished, based only on the descriptive 

characteristics of the grains, and independent of any other knowledge of the basin setting 

in which the sediments were deposited. The limitations of Zuffa 's (1985, 1987, 1991) 

methods involve the difficulty, in some cases, in correctly assigning grain types to the 

appropriate category. Also, once a grain is assigned to the extrabasinal category, no 

further subdivisions exist. This is undesirable, as in many instances extrabasinal grains 

may be important in defining specific sources for turbidites. 

The second approach is quantitative, and relies on point counting methods. 

Problems arising from the second approach include both the methodology for the 

collection of data, and the tectonic interpretation of the data once it is collected. Point 
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counting and the calculation of modal percentages of framework grains have long been 

employed as a means of characterising the grain population of a sandstone, hence paving 

the way for an interpretation of provenance and tectonic setting (e.g . Dickinson, 1970; 

Dickinson and Suczek, 1979; Dickinson and Valloni, 1980; Dickinson et al. 1983; 

Potter, 1984; Dickinson, 1990). 

'Classical' point counting methods involved the simple identification of every 

fragment which landed under the cross-hairs (Ingersoll et al., 1984). Since the 

proportion of rock fragments and feldspars in particular is partly dependent on grain size, 

this led to difficulty in comparing results from different studies. Convention dictated that 

samples counted should be of medium grain size, but in many cases the grain size of the 

available suite of samples made this impossible. 

Dickinson (1970) and Gazzi (1966) independently arrived at a method whereby 

only the individual crystal (whether isolated or part of a rock fragment) under the cross 

hair is counted if it is greater than sand size, and only aphanitic rock fragments are 

counted as rock fragments. This method and the 'classical' method were reviewed by 

Ingersoll et al. (1984) who concluded that use of the Gazzi-Dickinson method, as it is 

now called, largely eliminates the grain size effect. There has been some discussion 

since (e.g. Zuffa, 1987, 1991) regarding the loss of information, particularly with regard 

to plutonic rock fragments, which results from use of the Gazzi-Dickinson method.. The 

interpretation of the data once collected has been equally controversial. 

Dickinson and Suczek (1979), Dickinson et al. (1983), Dickinson (1985), and 

Ingersoll ( 1990), among others, produced diagrams based on parameters derived from 
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point count data, which allow sandstone suites derived from various different tectonic 

settings to be distinguished (see figure 4.5 for a reproduction of the diagrams of 

Dickinson et al. (1983)). Several criticisms of the use of these diagrams have heen 

recorded, including the fact that carbonate grains, which provide useful provenance 

information, are excluded from the parameters, and that the tectonic setting of deposition 

of turbidites may be far removed from the setting of the source area (e.g. De Rosa et al., 

1986). These objections to the method have been outlined by Mack (l984) and Velbel 

(1980, 1985). 

This chapter will include a qualitative discussion of the framework grains of the 

Goose Tickle group and Lower Head Formation followed by a presentation of their 

modal framework percentages utilising the Gazzi-Dickinson point counting method. 

4 .2 QUALITATIVE PETROGRAPHY 

Zuffa (1991) has characterised three different types of deep-sea arenites on the 

basis of their grain types: 

A. Pure extrabasinal: 

B. Pure intrabasinal: 

C. Mixture of extrabasinal with intrabasinal grains. 

Zuffa's (1991) type A arenites are derived from erosion of 'hinterland' rock units located 

on basin margins and are typically deposited in trenches and foreland basins. Based on 

the analysis of the tectonic setting of the Goose Tickle group and Lower Head Formation 

given in chapter 3, it appears that arenites of these units should most closely resemble 
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Zuffa's (1991) type A. The common amalgamation of beds of the Goose Tickle group 

and Lower Head Formation, suggests, however, that a minor intra basinal source should 

be observed in the form of rip-up clasts. 

In the interests of brevity, the fact that both units were discovered to be broadly 

petrographically similar will be utilised in the organisation of the discussion of qualitative 

petrography. General textural and diagenetic features will be described in order to 

characterise the level of alteration of framework grains in each unit. The main framework 

grain types characteristic of both units are summarised in tables 4.1. 4.2, 4.3 . and 4.4, 

and will be discussed with reference to these tables. Specific or unique characteristics 

of each unit will be described separately. Finally. the likely provenance of each grain 

type will be assessed and the constituent grains for each formation evaluated as extra- or 

intrabasinal in terms of Zuffa's (1991) approach. In this chapter, no funher anempt will 

be made to relate the grain types to an actual source. Chapter 6 will discuss in more 

detail the hinterland areas as possible sources of detritus to the western Newfoundland 

foreland basin. 

4.2 .1 General Textural Features 

The grain size of sandstones in the American Tickle formation varies from fine 

to very coarse sand and granule conglomerate. These sandstones are generally poorly 

sorted. and rounding of the grains is variable depending on ~hei,- type (see tables 4.1, 

4.2. 4.3, and 4.4). Grains are generally floating in the matrix, and although there is 

evidence of compaction in soft grains such as shale chips and detrital clay minerals, there 



Table 4.1 : Quartz and feldspar grain types in the Goose Tickle group and Lower Head 
Fonnation. 
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Quartz 

Type 1. Monocrystalline quartz with slightly undulose extinction. Trails of vacuoles common. A 
small proportion of the grains contain needle-like inclusions. Well rounded to angular. 
Variable grain size. 

Type 2. Polycrystalline quartz, commonly with eight to twenty subgrains, which are usually equant, 
and have straight subgrain boundaries. Variable grain size, but commonly larger than the 
mean grain size. Subangular - rounded. 

Type 3. Euhedral quartz, clear, with embayments. 

Type 4. Polycrystalline quartz with highly elongate subgrains. 

Plagioclase feldspar 

Type 1. Grains showing albite twinning, clear with indistinct edges. Smaller than mean grain size. 

Type 2. Grains commonly show Carlsbad twinning, and tend to be cloudy. The grains are subhedral 
and usually display a stubby lath shape. Mean grain size to larger than mean grain size. 

Type 3 . Untwinned cloudy grains, with central areas of different composition to rims. Commonly 
partially serici tised. 

Potassium feldspar 

Type 1. Clear microcline. May be angular or rounded. Minor euhedral grains. Commonly partly 
altered to plagioclase. Variable grain size. 

Type 2. Perthite - usually untwinned, showing stringy perthitic features. Generally larger than 
mean grain size. 

Type 3. Rounded cloudy microcline with indistinct tartan twinning, may be related to type 3 
plagioclase feldspars. 



Table 4.2: Sedimentary and plutonic rock fragments in the Goose Tickle group and 
Lower Head Formation. 
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Sedimentary Rock Fragments 

Type 1. Shale - dark brown laminated organic rich shale chips, may contain scattered silt grains. 
Rounded or may have ragged ends. Commonly larger than the mean grain size but may 
also be smaller. Usually deformed and penetrated by surrounding harder grains. 

Type 2. Shale - light brown/green shale chips. Not noticeably laminated. Vary from mudstone 
with no obvious preferred orientation of clay minerals to material with a strong preferred 
orientation of birefringent clay minerals. Generally rounded. Variable grain size. 

Type 3. Siltstone- cemented by quartz overgrowths and with minor clay matrix. Commonly rich 
in small grains of plagioclase feldspar. Subrounded. 

Type 4. Siltstone- carbonate cemented. Subrounded. 

Type 5. Carbonate - indistinct grains of micrite. Well rounded. 

Type 6. Carbonate - sugary grains with an interlocking texture, ?sucrosic dolomite. 

Type 1. Carbonate - bioclastic limestone. 

Type 8. Carbonate -isolated concentric and radial ooids. 

Type 9. Carbonate - peloidal wackestone with micritic or microspar matrix. 

Type 10. Chert- pale green or red with poorly preserved radiolaria. 

Type 11. Quartzose sandstone with rounded quartz grains, cloudy feldspar and rounded clear micro
cline. Some of the plagioclase is partially sericitised, some is partly altered to carbonate. 

Plutonic Rock Fragments 

Type 1. Chloritised serpentine. May be rounded, or deformed with ragged edges. Mafic. 

Type 2. Grains showing graphic intergrowths of quartz and cloudy plagioclase. May contain 
patches of chlorite. Generally larger than mean grain size. Felsic. 

Type 3. Cloudy equigranular plagioclase feldspar, polycrystalline quartz, some chlorite. Felsic. 

Type 4. Polycrystalline potassium feldspar. Felsic. 

Type 5. Polycrystalline quartz with minor amount of clay. Felsic. 

Type 6. Polycrystalline quartz with cloudy untwinned plagioclase intergrowth. Felsic. 

Type 1. Plagioclase/microcline intergrowth. Felsic. 

Type 8. Microcline and polycrystalline quartz with inclusions, rounded. Felsic. 

Type 9. Coarse grained plagioclase aggregate. Felsic. 



Table 4.3: Volcanic rock fragments in the Goose Tickle group and Lower Head 
Formation. 
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Volcanic Rock Fragments 

Type 1. Indistinct sheaves of feldspar in an opaque matrix. Variolitic texture. Mafic. 

Type 2. Intergrown indistinct plagioclase laths in a chlorite groundmass. Scattered opaques com
monly visible. May display trachytic texture. Rare pyroxene and quartz in the ground
mall. Malic. 

Type 3. Featureless black opaque material with minor chlorite. ? Mafic. 

Type_ 4. Equ~ont granular crystalline aggregate of cloudy silica. May contain brownish alteration 
patches and / or quartz phenocrysts. Fdsic. 

Type 5. Quartz/plagioclase aggregate with chlorite groundmass. Felsic. 

Type 6 . Aphanitic with disseminated opaques, very line grained siliceous material in groundmass, 
and silica spherules. Felsic. 

Type 7 . Brown volcanic glassy material, may be amorphous or have a 'brushed' spherulitic texture. 
? Felsic. 

Type 8 . Quartz and plagioclase phenocrysts in a dark glassy groundmass (porphyritic rhyolite). 
May contain faint microliths. Felsic. 

Type 9. Randomly oriented, poorly defined lat hs of plagioclase in groundmass, with phenocrysts 
of plagioclase. At least one has been v~'ned prior to erosion. May contain some biotite. 
Intermediate. 

Type 10. Cloudy plagiociase feldspar showing spherulites and quartz phenocrysts with resorption 
textures. Felsic . 

Type 11 . Grey-green cloudy microcrystalline quartz or feldspar . Radially arranged around carbon
ate spherulitic features. Prtches of microcrystalline quartz. Plagioclase laths are visible 
in places. Felsic. 

Type 12. Grey-green volcanic composed of microcrystalline quartz or feldspar, quartz phenocrysts, 
and plagioclase which may be phenocrysts altered to carbonate. Felsic. 

TrP!. l3. Plagioclase laths in shuves with quartz microphenocrysts and disseminated opaques. 

Type 14. 

Type 15. 

Felsic. 

Fresh looking plagioclase microphenocrysta in microcrys~alline groundmasa with radiating 
chlorite around carbonate spherules. Intermediate. . I 
Polycrystalline quartz ± chlorite groundmass with small plagioclase phenocrysts. Fel~ 



Table 4.4: Metamorphic rock fragments and accessory minerals in the Goose Tickle 
group and Lower Head Formation. 
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Metamorphic Rock Fragments 

Type 1. Elongate grains, with strongly preferred orientation of birefringent clay minerals, whose 
crystal size is visible at the scale of point counting. 

Type 2. Polycrystalline quartz with elongate subgrains. 

Type 3. Quartz-mica aggregate with oriented micas. 

Type 1. 

Type 2. 

Type 3. 

Type 4. 

Type 5. 

Type 6. 

Type 7. 

Type 8. 

Type 9. 

Type 10. 

Type 11. 

Type 12. 

Type 13. 

Type 14. 

Type 15. 

Type 16. 

Accessory minerals 

Glauconite- rounded, detrital 

Zircon- rounded or subhedral 

Garnet- commonly cracked and altered to calcite around the rims. 

Chlorite- rounded, detrital, may be compacted, some have textures resembling chlorite 
amygdules. 

Chromite- angular, brown transclucent, unaltered, commonly cracked. 

Carbonate - distinct rounded grains of sparry calcite. Commonly larger than mean grain 
size. May be an alteration product of an unstable grain. 

Monazite 

Opaques 

Mica- brown and green biotite 

Rutile 

Amphibole 

Sphene - euhedral 

Sphalerite 

Calcite 

Apatite- rounded 

Pentlandite 
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is no evidence of sutured contacts or pressure solution between quanz grains (plate 4.1 ). 

The amount of matrix is high, and the sandstones are texturally immature; however, it 

is possible that the percentage of matrix in many cases has been ove-restimated. This is 

because the abundant shale chips act as pseudomatrix (Dickinson, 1970) and because 

many 'patches' of chlorite may in fact be altered plutonic or volcanic rock fragments . 

The matrix in these sandstones is predominantly chlorite, but also contains small grains 

of quanz and feldspar. 

In some samples there is evidence of a highly birefringent microcrystalline clay 

mineral (?illite) forming rims around some of the quanz grains, although this is not 

common. The indistinct edges of most quanz grains are ascribed to a minor amount of 

early quartz overgrowth (plate 4.2), without prior formation of clay rims, and some 

possible corrosion or minor replacement by calcite . These incipient quanz overgrowth 

features are lt:ss common where shale chips and shale pseudomatrix are more abundant. 

A later, patchy, pore-filling sparry calcite cement is common in all samplt:s. In some 

samples exfoliation textures are observed, where cracks in framework grains are filled 

with calcite. In many cases calcite cement is spatially associated with carbonate rock 

fragments and apptlrs to have resulted from panial dissolution of these grains. 

In several instances, panicularly in fine grained samples, calcite has replaced 

framework grains, panicularly feldspars, but also chloritised serpentine and quanz. The 

American Tickle formation is generally more altered than the Mainland fonnation (see 

below), panicularly in samples from the Hare Bay and Pistolet Bay areas, where the 

percentage of carbonate cement is higher, and the degree of replacement of framework 
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Plate 4.1 : General appearance of the American Tickle formation in thin section. Pink 
grains are stained plagioclase feldspar. Note abundance of shale fragments. Plane 
polarised light. X32. 

Plate 4.2: Euhedral early quartz overgrowth, followed by later sparry cement. American 
Tickle formation. Crossed polars. X32. 
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grains by carbonate is greater. Albite overgrowths on plagioclase feldspar are also 

observed in samples from these areas, and the grain.; are commonly tlattened parallel to 

the regional cleavage. 

The Mainland formation is broadly similar to the American Tickle formation in 

all the respects described above, although it has a lower degree of alteration. and 

carbonate cement is much less abundant. Some shale chips in the Mainland forrnation 

have been partly silicified around their edges. accounting for the fact that their central 

parts frequently weather out in the field. One sample, from near the top of the unit, 

contains abundant replacive calcite and authigenic k-feldspar overgrowths are observed 

on rounded microclines. This feature was only seen in one sample, and may have 

resulted from enhanced alteration along a fault zone. 

Sandstones of the Lower Head Formation vary in grain size from medium-grained 

to very coarse-grained. Granule conglomerates are common. The sandstones tend to he 

poorly to very poorly sorted, with the poorest sorting in sandstones of the coarsest 

average grain size. The matrix is mostly chlorite, with patchy carbonate cement which 

is more abundant in concretions and fluid escape features. Indistinct edges on some 

quartz grains indicate a minor phase of early quartz overgrowth, similar to that ohserved 

in sandstones of the Goose Tickle group. As with the two formations descrihed ahovc, 

no evidence of pressure solution of quartz was observed. Some feldspars are strongly 

sericitised, some are partly altered to calcite. Some of the coarser samples show a high 

degree of calcite cementation and replacement by calcite. In one case complete outlinc:s 

of relict feldspars are visible in the calcite cement. 
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For all fonnations bulk X-Ray Diffra.;tion (XRD) analysis of selected samples 

(data not provided) indicates mainly quanz, albite, some microcline, and chlorite. The 

chlorite shows only a 7 angstrom peak, which, on the basis that many grains within the 

samples were optically identified as serpentine, was ascribed to the presence of 

serpentine. In light of the discovery that the 'serpentine' grains were, in fact, chlorite, 

it appears that the chlorite identified through XRD may be authigenic. Authigenic 

chlorite may display only a 7 angstrom peak, in contrast with more stable metamorphic 

chlorites which display a 14 angstrom peak; 7 angstrom chlorites, which were interpreted 

as authigenic, have been found in sandstones by Humphreys et al. (1989). Without 

funher XRD and probe analyses, however, the origin of the 7 angstrom peak in these 

samples cannot be resolved. 

The relatively low degree of alteration of the Mainland and Lower Head 

formations is consistent with infonnation provided by Nowlan and Barnes (1987) who 

summarised available infonnation on conodont colour alteration indices (CAl) for rocks 

of various ages in the Canadian Appalachians. In the case of the Pon au Port Peninsula, 

where the Mainland formation is located (appendix 1, location map 1), the CAl for 

Middle Ordovician rocks is given as 1, corresponding to a temperature of 50 - 8<J'C. 

For the area nonh of Bonne Bay (appendix 1, location map 3) the CAl is given as 

between 1.5 and 2 reflecting temperatures of 50- 14<Y'C. In the Hare Bay area, the CAl 

is much higher, up to 5.5, indicating temperatures of up to 400'C, which is consistent 

with the much higher degree of alteration seen in samples from these areas. 



170 

4.2.2 Framework Grains - General Description 

In the following discussion grain 'type' refers to the categorisation of grain types 

given in tables 4 .1, 4.2, 4 .3, and 4.4. The American Tickle , Mainland. and Lower Head 

formations all contain examples of all the types of quartz and feldspar grains referred to 

in table 4.1. They vary somewhat in the types of rock fragments displayed (tables 4.2, 

4.3, and 4.4). 

The American Tickle formation contains sedimentary rock fragments of all types 

except 6, 10, and 11 . Varieties of shale and siltstone are the most abundant types of 

sedimentary rock fragment. A very minor proportion of the type 8 ooid grains are 

chamositic, reaching 1mm in size. Plutonic fragments are dominated hy type I 

chloritised serpentine, with lesser amounts of types 2 and 3 (felsic) . Volcanic fragments 

are present in varying proportions and include types 1, 2, and 3 (all mafic) and 4, 5, and 

7 (felsic). Metamorphic rock fragments in the American Tickle formation are 

uncommon, and mainly consist of type 2 phyllite grains. Accessory minerals include all 

types except 11 (amphibole). Type 14 grains of sparry polycrystalline calcite appear 

detrital, but are interpreted as altered grains of other minerals. 

The Mainland formation contains abundant shale chips of type I and 2 among its 

sedimentary rock fragments. Types 3 and 4 (siltstone) and types 5, 6. 7, 8. and 9 

(various types of carbonate grains), are also present, with type 8 also including minor 

chamositic ooids. Plutonic fragments include type 1 chloritised serpentine, as well as 2, 

4, and 6 (felsic). Volcanic rocks in the Mainland formation are predominantly of type 

2 (dominated by indistinct plagioclase laths - probably mafic) with lesser proportions of 
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types 4 and 10 (both felsic). Metamorphic types in the Mainland fonnation include all 

three types. Accessory minerals include all except 11 (amphibole) and 14 (calcite). 

Comparison of the American Tickle fonnation with the Mainland formation shows 

that the two are petrographically similar in many respects. Slight differences are visible 

in that, particularly in the uppennost pan of the Mainland fonnation, rock fragments of 

metamorphic origin are more prominent, although they are still not very abundant. 

Additionally, glauconite is also more prominent in the Mainland fonnation, although 

again it is not very abundant. The greater abundance of calcite grains in the American 

Tickle fonnation is interpreted to reflect the higher diagenetic grade of this unit - some 

detrital grains have been completely replaced by calcite. 

The Lower Head Fonnation contains a great variety of sedimentary rock 

fragments which include all types. All types of plutonic rock fragments except type 9 

are present and thus the Lower Head Formation contains a variety of felsic plutonic 

fragments as well as chloritised serpentine. The Lower Head Fonnation contains the 

entire range of volcanic rock fragments from type 1 to 18 which include a variety of 

compositions ranging from mafic through intennediate to felsic . The suite of accessory 

minerals is more restricted than in the Goose Tickle group and includes types 2, 4. 5, 

6, 7, 8 and 14. Type 14 calcite is again interpreted as alteted detrital grains. The 

Lower Head Formation, while it is broadly similar to the Goose Tickle group 

petrographically, contains a greater variety of all types of rock fragments. The greatest 

variety of rock fragments, particularly volcanic and plutonic rock fragments, is seen in 

coarse granule sandstones, which are associated with facies LHl (see chapter 3). 



4.2.3 Framework Grains - Individual 

4.2 .3.1 Quartz 
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Type 1 quartz generally displays straight to slightly undulose extinction. and is 

inclusion-free, although a small proportion of the grains contain needle-like inclusions. 

probably of rutile. None of the inclusions were diagnostic of a particular source. and 

therefore have limited value in provenance determination (Boggs, 1992). Many of the 

quartz grains contain trains of vacuoles, which, however, are also of limited value in 

provenance determination (Boggs, 1992). The grains vary from very well rounded to 

angular. Abraded overgrowths are almost never seen. Strain features (Bohrn lamellae) 

are seen in some quartz grains of this type. Many are unrelated to any sedimentological 

feature, and are interpreted as having been generated by strain incurred prior to the 

incorporation of the quanz grain into the sediment. A small number of samples contain 

Bohrn lamellae which are seen radiating from the contacts between two quartz grains, and 

are therefore interpreted as a diagenetic compaction feature. 

The equant subgrains aad straight subgrain boundaries of the polycrystalline 

quartz grains (type 2) are suggestive of a high grade metamorphic or plutonic source 

(Young, 1976). 

Types 3 and 4 quartz are very uncommon in all formations. Type 3 clearly 

indicates a volcanic source, whereas type 4 is indicative of a metamorphic source. 

4.2 .3.2 Plagioclase Feldspars 

Grain edges and cleavage planes on type 1 plagioclase feldspars of all three 
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formations are commonly altered to sericite and calcite. Type 1 plagioclase feldspars 

show albite twinning and tend to be less cloudy than other varieties. Type 2 plagioclase 

feldspars are unzoned, and have a variety of shapes, from equant to stubby laths which 

may show Carlsbad twinning. The majority of plagioclase feldspars (type 3), however, 

are untwinned. Most plagioclase feldspars are dark under cathode luminescence, 

suggesting that they may have undergone alteration at low temperature (Kastner, 1971). 

This does not necessarily imply that they underwent albitisation in the Goose Tickle 

group and Lower Head Formation. 

Some grains which are apparently of potassium feldspar show complex internal 

structures which are visible on stained samples, under cathode luminescence and in the 

backscattering mode of the SEM. Many show cores or internal patches of albite, which 

may mimic the external grain shape. This suggests that at least some of the grains were 

originally albite and have been altered to potassium feldspar, and thus they should be 

categorised as type 3 plagioclase feldspars. It is clear m some cases that alteration of 

albite to potassium feldspar has taken place along cleavage planes, supporting this 

hypothesis. 

Zoning is never observed in plagioclase feldspars from the Lower Head Formation 

and Goose Tickle group. The presence of oscillatory zoning in plagioclase feldspars of 

sand size is commonly taken as indicating derivation from a volcanic or hypabyssal 

source (Pittman. 1963; Lundberg, 1991); however. unzoned feldspars can occur in many 

volcanic rocks (Boggs, 1992), so this is not conclusive evidence that the feldspars were 

derived from a plutonic or metamorphic source. Small laths, such as are typical in 
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volcanic rock fragments of all three rormations, are almost never found as separate 

grains. 

4 .2.3 .3 Potassium Feldspars 

Apparently relatively unaltered, and in many cases very well rounded grains of 

microcline (type 1) are common. Under cathode luminescence these luminesce bright 

blue suggesting that they have a high grade metamorphic or plutonic origin. On staining. 

however, it is clear that many of these grains have a patchy texture. with the patches 

consisting of albite (plate 4 .3). At first, the author suspected that this was an artifact of 

the staining method, but SEM and cathode luminescence studies as well as more careful 

optical,studies (plate 4.4) confirmed that these features are real. In certain cases, the 

patches appear to coalesce and the impression of an albite grain altered to microcline 

around its edges is given. If these two features are related, this would suggest that the 

'patchy' textures of many microclines arise from relict albite, rather than representing 

an irregular 'blebby' perthite structure. In other cases, microcline grains have been 

partly altered around the edges to albite. True perthite (type 2) is also found in these 

samples and contains stringy blebs of albite in potassium feldspar. 

A third type of feldspar (type 3) consists of rounded cloudy microclme with 

indistinct tartan twinning in some cases, and no twinning in others. This type again 

displays cores of albite (and was referred to above in the discussion of plagioclase 

feldspars), and commonly has an very altered appearance. The albite cores mimic the 

shape of the grain, and hence again this is interpreted as the incomplete alteration of 
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Plate 4.3: Potassium feldspar (yellow stain) showing typical 'patches' of albite (pink 
stain). Lower Head Formation. Plane polarised light. X310. 

Plate 4.4: Rounded microcline displaying uneven extinction as a result of internal patches 
of albite. Lower Head Formation. Crossed Polars. XlOO. 
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albite to potassium feldspar. The cloudiness of this potassium feldspar resembles that 

described by Morad et al. (1989) for very lov.: temperature authigenic potassium 

feldspars. 

Since both cathode luminescence and electron microprobe (see below) evidence 

seems to suggest that most, if not all, of the potassium feldspar i~ of metamorphic or 

plutonic origin (figures 4.1, 4.2, 4.3), it would appear that the textures described above 

were not imparted while the grains were within the sediments of the Goose Tickle group 

and Lower Head Formation. The grains may have been incorporated with the alteration 

features already present. 

However, in the mind of the author, this question is not completely resolved. 

The origin of albite in sandstones has been the topic of extensive discussion for several 

years (e.g. Saigal et al., 1988), and the question of whether these patches and cores 

could be the result of in situ albitisation should at least be considered. Saigal et al. 

(1988) suggested a number of criteria for the recognition of albitisation of detrital 

potassium feldspar grains; 

1. Euhedral habit of albite crystals with sharp edges and comers and markedly smooth 

crystal faces; 

2. Generally untwinned albitised grains mostly riddled with minute brownish indusions; 

3. Lack of cathode luminescence in albite; 

4. Homogenous and pure albite composition ( > 99% Ab): 

5. Absence of albitised grains in carbonate cemented zones; 

6. Increase in the percentage and degree of albitised K-feldspar with depth. 
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An 

Figure 4 .1: Fe1dspardiscrimination diagram ofTrevena and Nash (1981) . v=vokanic; 
p = plutonic; m = metamorphic; v + g = volcanic or granophyre; v + p = volcanic or plutonic; 
v+p+m=volcanic or plutonic or metamorphic; p+m+a=p1utonic, metamorphic or 
authigenic. Analyses to the left of the dashed line in the volcanic tield represent 
uncommon low-temperature rhyolites of extreme composition. 
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Figure 4 .2: An-Ab-Or plot of feldspar compositions for the Mainland and American 
Tickle formations. 
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An 

Lower Head 
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Figure 4.3: An-Ab-Or plot of feldspar compositions for the Lower Head Formation. 
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The crystal form described in point 1 was not observed, patches and cores have an 

irregular shape. Albite within the microclines is not noticeably more cloudy than the 

microcline itself, and twin planes in the microcline appear to cross the albite. The albite, 

however, is non-luminescing. Albite in altered patches was not probed, and so no 

comment can be made on the composition of the patches. In carbonate cemented zones, 

'patchy' k-feldspars appeared to be as common as in non-carbonate cemented zones, and 

even in the most altered examples of the American Tickle formation, where albite 

overgrowths are present on ;>lagioclase feldspars, relatively unaltered k-feldspar is still 

present. 

Although Walker ( 1984) suggested that albitisation requires temperatures in excess 

of 100'C, the temperature range suggested by Saigal et al. (1988) for diagenetic 

albitisation of k-feldspar is 65-90°C for Type I albite, and > 90°C for Type II albite. 

Type I albite consists of numerous tiny albite crystals growing along cleavage planes in 

the host grain, and is clearly not similar to the textures observed here. Type II albite 

consists of blocky -:rystals which tend to form pseudomorphs of the host grain. This 

hears a greater similarity to the observed features , and indeed Saigal et al. ( 1988) do 

suggest that alteration textures will resemble patches. The temperature range for type II 

albite is consistent with that inferred for diagenetic grades of the American Tickle and 

Lower Head formations, but is slightly above the temperature inferred for the Mainland 

fonnation from conodont colour alteration indices (Nowlan and Barnes, 1987). 

Type II albitisation is the most likely type to have taken place where either a rim 

of albite is present. or other clear evidence exists that albite is the later phase. In the 
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majority of cases, the evidence is not conclusive in detennining whether albite represents 

the original or secondary phase. In summary, possible explanations for observed text'Jres 

are listed below. 

1. Patchy texture in microclines: 

a) blebby perthite; 

b) type II albitisation of Saigal et al. (1988); 

c) incomplete alteration of earlier albite. 

2. 'Albite core' texture in :.mtwinned k-feldspar: 

a) incomplete alteration of earlier albite. 

3. Alteration of albite to k-feldspar along cleavage planes: 

a) incomplete alteration of earlier albite. 

Further studies of selected grains utilising the secondary electron mode of the SEM on 

chips and polished sections, cathode luminescence, and the electron microprobe arc 

required to resolve this problem. 

4.2.3.4 Feldspar Compositions 

Compositions of both plagioclase and potassium feldspars for the Lower Head, 

Mainland and American Tickle formations are provided in appendix 3, sections. A3 .8, 

A3.9, and A3.10. When plotted on Albite-Anorthite-Orthoclase diagrams and compared 

with typical compositions for detrital fddspars from a variety of sources (Trevena and 

Nash, 1980 (figure 4 . 1), all three formations show similar patterns (figures 4 .2. 4.3). 

Plagioclase feldspars plot in two different fields, the tirst being close to the albite pole, 
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and the second corresponding to a field in the composition of oligoclase (An20- An30). 

The first group falls into the field of plutonic, metamorphic and authigenic feldspars, and 

combining this information with information from cathode luminescence studies, it 

undoubtedly includes some feldspars which have experienced low temperature alteration; 

however, no distinction is possible between feldspars which have been albitised in the 

source rock, and those which were albitised in the present host rock. 

The feldspars of the second group contain very little potassium, and thus they fall 

into the field of plagioclase feldspars with a metamorphic or plutonic provenance rather 

than those with a volcanic provenance. Thus the lack of zoning observed in plagioclase 

feldspars in this case may actually indicate derivation from a plutonic or metamorphic 

source. 

Potassium feldspars contain significant but not large amounts of sodium and also 

fall into the field of feldspars derived from a plutonic or metamorphic source. They also 

typically contain significant proponions of Ba, which is typical, according to Van de 

Kamp and Leake (198:) of k-fcldspars derived from a 'granitoid' source. Authigenic 

potassium feldspars are present in one sample of the Mainland formation, and these are 

very pure onhoclase. plotting at the onhoclase pole. 

4.2.3.5 Sedimentary Rock Fragments 

Shale chips (types 1 and 2) are the dominant sedimentary rock fragment in all 

three formations (plate 4 .5). Dark, organic rich, well laminated shale chips are 

panicularly abundant in the Goose Tickle group. Some of the dark shale chips show 
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Plate 4. 5: Two different types of shale chips in the American Tickle formation. Plane 
polarised light. X32. 

Plate 4.6: Quartz cemented sedimentary rock fragment from the Lower Head Formation. 
Crossed Polars. X32. 
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evidence of minor growth of authigenic dolomite. In one case, a pyrite nodule was 

observed which was detached from a shale chip, suggesting an origin for the fairly 

abundant framboidal pyrite within these samples. Clearly the laminated variety of shale 

chips have undergone significant compaction to form the organic rich laminae, prior to 

incorporation in the sandstones, hence they are not considered to be rip-up shale clasts, 

but material which has been eroded from a pre-existing basin floor. This is consistent 

with Zuffa 's ( 1987) criteria for recognition of extra basinal grains. 

Generally speaking, carbonate grains are p•:edominantly structureless micritic 

grains (type 5). All other types of carbonate grain are much less abundant, and tend to 

be associated with granule conglomerates in facies LHl of the J...ower Head Formation 

(see chapter 3). Sucrosic carbonate grains of type 7 tend to be stained with organic 

material in some samples, panicularly in deformed and altered nonhem samples of the 

American Tickle formation. Some of the peloidal limestones (type 9) have a minor 

bioclastic component and may also contain scattered quanz grains. In almost all cases 

ooid fragments (type 8), which are present in the Mainland and American Tickle 

formations, are single ooids, implying that they were transported prior to cementation. 

Some chert grains (type 10) are partly altered to carbonate. Some also contain 

spherulitic features which are probably radiolaria, and siliceous sponge spicules. 

Subrounded sandstone fragments (type 11), which are quanz cemented, and 

contain well rounded quanz, microcline, and albitised plagioclase, are a minor but 

striking component of the Lower Head Formation (plate 4.6). 

Recognition of grains as extrabasinal is most problematic with sedimentary grains, 
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as the faunal evidence referred to by Zuffa (1985) is not preSt:nt and for most grain types 

textural features are not conclusive. Nevertheless, most sedimentary fragments are 

rounded, and it appears that the majority of sedimentary rock fragments are extrabasinal. 

with the possible exception of some of the unlaminated shale chips. 

4.2 3.6 Plutonic Rock Fragments 

Type 1 graans were optically identified as serpentine on the basis of several 

fealures, i.e. low birefringence, pale green colour in plane polarised light, mesh textures, 

and the fact that they contain possible calcite pseudomorphs after pyroxene. In some 

samples. grains identified as serpentine are altered to quartz and carbonate. This is 

reminiscent of a typical low temperature metamorphic reaction of serpentine (Winkler. 

1979; Springer, pers. comm. 1990) in which serpentine is altered to quanz and 

magnesite; however, SEM work showed that the carbonate surrounding the grains was 

simple calc:i.e. In samples from both the American Tickle and Lower Head formations, 

.:hromite was observed to be associated with the grains, a typical ultramafic association 

supponing their identification as serpentine (plates 4. 7. 4.8). In one of these samples 

red-brown chromite has an opaque rim. Around the chromite is an al~eration halo of 

translucent non-pleochroic mineral. According to R .K. Springer, (1991, pers. comm.) -

the opaque ed~es of the chromite grains are probably magnetite, and the aluminium 

which was released from the chromite has altered the serpentine to chlorite. This is a 

typical alteration sequence in ultramafic rocks and probably occurred before the 

serpentine became a rock fragment. A possible serpentine conglomerate or plutonic 
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Plate 4. 7: Chromite in serpentine grain which has been altered around the margins to 
calcite. American Tickle formation. Plane polarised light. X310. 

Plate 4.8: Same view as above. Crossed polars. 
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breccia was als~ observed, composed of angular fragments of serpentine. Individual 

serpentine grains, and serpentine breccia. :nay contain scattered opaque mineral!;. 

probably magnetite or chromite. 

An attempt was made to confirm the ootical identification of serpt>ntine grains 

using electron microprobe analyses. This proved unsuccessful. partly because the soft 

centres of the grains were removed by the polishing process, but mostly because in all 

cases grains optically identified c.s serpentine turned ol:t to be composed of chlorite. The 

variation in hardness from the interior to the exterior of the grains suggests that a 

chemical reaction has taken place which has altered the grain edge-. more than the 

interiors (see rlates 4.9, 4.10). This could have occurred while the serpentine grain was 

in the area where it was originally eroded, or it could have occurred as a diagenetic 

reaction within the Goose Tickle group and Lower Head Formation. The hypothesis that 

composition varies from the centres of the grains to the edges is supported by probe 

analyses and subsequent qualitative investigations using the SEM, which demonstrated 

that the edges of the grains are generally richer in aluminium and iron relative to 

magnesium, in comparison with the interiors of the grains 'Nhich are richer in magnesium 

relative !o aluminium. 

Henceforth the grains of serpentine will be referred to as 'chloritised serpentine ' . 

Chloritised serpentines in both the Goose Tickle group and the Lower Head Formation 

contain small but significant proportions of Cr and Ni (appendix 3, sections A3. 1 and 

A3.3). Grains from the Goose Tickle group show the highest values of Cr and Ni. 

Typically, Cr and Ni are rarely analysed in chlorites which are not independently known 
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Plate 4.9: Chloritised serpentine grain. Lower Head Formation. Plane polarised light. 
X32. 

Plate 4.10: Same view as above in crossed polars. Note apparently different composition 
of grain edges and grain interior. 
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to have been derived from ultramatic. rocks (Laird. 1988), but 'significant' proportions 

of Cr and Ni are present in chlcrites derived from metamorphism of ultramatk rocks 

(Laird, 1988). Matzat and Shiraki (1972) quote Zeissink (1969) as having identified 

chromian chlorites to be weathering products of ultramatic rocks. hut analyses of 

chromian chlorites provided in Bailey ( 1988) contain weight percent proportions of Cr~O, 

varying from 3.16% to 9%, far greater than those observed in the Lower Head 

Fonnation and Goose Tickle group. Bailey ( 1988) also presented one analysis of a more 

typical clinochlore (nomenclature according to AJPEA recommendations. 1980) whid1 

contains 0.03% Cr20 3• The maximum pro~ortion of Cr20 3 which occurs in chloritised 

serpentines of the American Tickle fonnation is 0.584%. Thus the Cr proportion 

appe:us to be higher than in 'average' chlorites, but lower than in chromian chlorites. 

The maximum abundance of nickel in the American Tickle chlorites is 0 .283% . 

This is comparable to nickel values quoted by Bailey (1988) for chromian chloritcs . 

Burns et al. (1974) quoted typical values of Ni in chlorites from mafic igneous rocks as 

ranging from 150 to 1200 ppm. Nickel values for chlorite derived from mettmorphic 

rocks are also given by Burns et al. (1974) and range from 45 to 210 ppm. Therd'ore 

the proportion of Ni in American Tickle serpentinised chlorites is higher than for 

'average' chlorites. 

If higher than average Cr and Ni values are characteristic only of altered 

serpentines, other detrital grains identified optically as chlorite, and chlorite interstitial 

to plagioclase laths in volcanic fragments mi~ht have notably different proportions of Cr 

and Ni. Some of these types of grains were also probed but the results proved 
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inconclusive as some of these types of chlorite also contain significant amounts of Cr and 

Ni. 

There i ~: no obvious correlation between the behaviour of Cr and Ni in chloritised 

serpentines. Some grains are rich in Cr, others are rich in Ni, still others are rich in 

both. There is also no apparent correlation between these two parameters and the Mg 

content of the chlorites. Thus the Cr and Ni values recorded for chloritised serpentines 

cannot b\! regarded as conclusive proof of an ultramafic origin, and the best evidence 

remains the textural evidence described above. 

Little information is available on the behaviour of serpentine as a sedimentary 

rock fragment (Nichols et al., 1991) and even less is available about its behaviour during 

diagenesis. Much more is known about metamorphism of ultramafic rocks, and Tracy 

and Frost (1991) stated that under conditions up to the highest grades of hornblende 

hornfels r'acies, chlorite is t!te major aluminous mineral in metaperidotites (i.e. the major 

alteration product of serpentine). Tracy and Frost (1991) further suggested that the 

aluminium content of chlorites in metaperidotites should increase with increasing 

metamorphic grade. Aluminium contents of chloritised serpentines of the <loose Tickle 

group and Lower Head Fonnation fall within the fields indicated by Laird ( 1988) for 

metamorphic chlorites (figure 4 .4), suggesting that the bulk of the alteration may have 

taken place prior to incorporation in the sediment. 

In addition to large grains identified as serpentine, some smaller grains of 

phyllosilicate. and some which were interstitial to feldspar laths in volcanic rock 

fragments were probed. particularly for the Lower Head Formation. The difference in 
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Figure 4.4: Plot of Al/(Al+Fe+Mg) vs. Mg/(Fe+Mg) for chlorites, Goose Tickle group 
and Lower Head Formation. U indicates the field for ultramafic chlorites; M -
metamorphic chlorites; P - chlorites derived from pelites. Fields from Laird (1988). 
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composition is clear irom figure 4.4. The small interstitial chlorites fall to the left of the 

mafic field, and some interse<.:.t with the area of felsic rocks as indicated by Laird (1988) 

(not shown on the diagram). In addition. although chloritised serpentines from the 

Lower Head Formation are more Mg rich than those from the Goose Tickle group, none 

of the chlorites fall into the field typical of metamorphosed ultramafic rocks. This would 

imply that al!:~ation of the serpentine involved considerable gain in alumiojum and iron, 

and consequent loss of magnesium. 

It is suggested that the alteration may have taken place in a sedimentary or other 

unusual setting, in which there would be expected to be a greater supply of aluminium 

from other detrital grains, than would be expected in a pure ultramafic rock which was 

subjected to metamorphism. It is al!>O suggested that the degree of alteration of 

serpentines in the Lower Head Formation was not as great as for those in the Goose 

Tickle group, given the higher magnesium contents of these grains. This is supported 

by the generally lower Ni and Cr contents in chloritised serpentines of the Lower Head 

Formation. which implies less breakdown of pyroxenes (Ni) and chromites (Cr) in the 

host rock. 

In some samples, detrital phyllosilicate grains, again texturally similar to 

serpentine, are comp·Jsed of a mineral of moderate relief, which has a platy habit, a well 

developed cleavage, is pale brown or green in plane polarised light, and characteristically 

displays second order birefringence colours. This has tentatively been identified as 

vermiculite. Some chloritised serpentine grains have apparently been recrystallised 

around their edges to a clay mineral which is macrocrystalline, and has a birefringence 
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too high for most forms of chlorite, and too low for most forms of mica and talc. This 

may also be vermiculite, which does occur as an alteration product of chlorite (Charnley. 

1989). 

Vermiculite is known to occur in association with ultramafic rocks, although it 

has mainly been described in ultramafic rocks which have been intruded by pegmatites 

(De Ia Calle and Suquet, 1988). According to Deer, Howie and Zu~sman (1966) 

vermiculite forms at temperatures less than 300 degrees, and it is here suggested that ilt 

least some of the vermiculite, panicularly that which rims detrital grains. may have 

formed in the diagenetic environment. It is also possible that these more highly 

birefringent clay minerals are mixed layer clays such as those recorded by Benison and 

Schiffman (1988) in ophiolitic rocks from California. It should be noted, however. that 

no evidence for either vermiculite or mixed layer clays has yet been encountered dllring 

electron microprobe or scanning electron microscope studies. 

By no means all isolated phyllosilicate grains are altered serpentine. Some 

chlorite grains are probably derived from volcanic fragments ranging from mafic to 

felsic, since several were observed to be attached to plagioclase phenocrysts . However, 

it is believed that the vast majority of sand-sized phyllosilicate grains ( > 95%) were 

originally serpentine. 

Most other plutonic fragments were found in the Lower Head Formation granule 

conglomerates. A typical example of a type 2 plutonic fragment is shown in plate 

4. 11. Type 6 grains are aggregates ot very large Carlsbad twinned, slightly sericitiscd 

feldspars. Type 8 grains were only seen in one sample. In all units it is unusual to find 
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Plate 4.11: Graphic intergrowth of quartz and plagioclase. Felsic rock fragment. Lower 
Head Formation. X32. 

Plate 4.12: Murky felsic volcanic rock fragment. American Tickle formation. Crossed 
polars. X100. 
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potassium feldspar in rock fragments, which are dominated by plagioclase. 

Since syndepositional plutonic rocks are never exposed, all plutonic fragments are 

considered to be extrabasinal. 

4.2.3.7 Volcanic Rock Fragments 

Several of the rock fragments which were interpreted as felsic (e .g . plate 4.12) 

contain quartz phenocrysts, and the presence of spherulitic textures, which are typical of 

devitrified rhyodacite rocks, is consistent with an identification of the fragments as 

rhyolite or dacite (R.K. Springer, pers. comm. 1991). 

One example of a type 2 volcanic fragment was examined using the backscatter 

feature of the Scanning Electron Microscope and was found to contain laths of albite, in 

a groundmass of chlorite. Small amounts of quartz and pyrox~ne with a composition 

most resembling augite were also found in the groundmass. Intermediate to mafic 

volcanic fragments commonly have textures which vary from microlithic (plate 4.13) to 

lathwork with intersenal texture. Calcite or chlorite-filled vesicles may be present. 

All volcanic fragments are rounded to subrounded and are hence considered 

extrabasinal according to the criteria of Zuffa (1985. 1987). 

4.2.3 .8 Accessory Minerals 

The heavy minerals listed in table 4.4 were identified mainly by using the 

Scanning Electron Microscope (SEM) Energy Dispersive Spectrometer (EDS) and 

backscatter capability. The disadvantage of this approach is that for a study of large 
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Plate 4.13: Lathwork volcanic fragment, intermediate to mafic. Note calcite-filled 
vesicle. Lower Head Formation. Crossed polars. X32. 
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numbers of grains, it is difficult to make a link between optical identification and 

identification in backscatter mode. The advantage is that since a standard thin section 

is all that is required, minerals such as apatite, which are destroyed by standard heavy 

mineral processing procedures, are preserved. Also opaque minerals may be identified 

using this methO<' . 

Some electron microprobe analyses from chromites of the Goose Tickle group are 

presented in appendix 3, section A3.7. Malpas and Strong (1975) have provided analyses 

for chromites from the Bay of Islands Ophiolite. These electron microprobe results are 

not directly comparable with those of Mal pas and Strong ( 1975) since all iron in this 

study was analysed as FeO. Some qualitative comparisons, however. can be made. The 

chromite grains probed, which are angular. unzoned and unaltered, display a wide range 

of compositions. The high values of Cr20 3 and correspondingly low value-s for Al20 3 in 

many of the grains are typical of harzburgites which make up the major ponion of the 

Bay of Islands Ophiolite. Some of the values are also within the range exhibited by 

dunites, which are more typical of the upper ultramafic levels of the Bay of Islands 

Ophiolite. None of the chromites show the elevated values for Al20 3 characteristic of 

the basal lherzolite layer of the Bay of Islands Ophiolite. Nor do they show the very 

high values of Cr20 3 characteristic of ultramafic rocks from the Gander River Ultramafic 

Belt in central Newfoundland (Malpas and Strong, 1975). The range of values for 

Cr20 3 , MgO, and Al20 3 , however. is compatible with those exhibited by ophiolites 

elsewhere (Press, 1986). No chromite analyses were conducted for the Lower Head 

Formation, however the grain characteristics are simitar to those in the Goose Tickle 
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group. and qualitative compositional information obtained using the SEM EDS suggests 

a similar range in composition. 

Monazite is common and may be subrounded or subhedral. Mica includes both 

biotite (som: of which has been altered to chlorite). muscovite. and some green biotite. 

Biotite. which was qualitatively examined in SEM EDS. seems to be iron rich. 

Rutile tends to be angular, and in places a titanium compound is observed to be 

associated with calcite. possibly indicating the alteration of sphene, which is found as 

euhedral grains in some samples. 

The heavy mineral population as a whole tends to suggest a mixed sou:ce from 

recycled sediments (rounded zircon. monazite), mafic to intermediate rocks (biotite, 

amphibole), granitic and/or metamorphic rocks (euhedral zircon, sphene, monazite) and 

ultramafic rocks (chromite, pentlandite). 

4.3 QUANTITATIVE PETROGRAPHY 

The qualitative, interpretive approach taken above may be supplemented by a 

quantitative analysis of point-count data. However, the quantitative study described 

below must be considered of a reconnaissance nature only. 

The most rigorous quantitative provenance studies are those such as that by 

LunJberg (1991). They involve point counting of a fairly large number of samples 

which have been previously screened and which display only minimum alteration (e.g. 

Lash. 1987. who only counted samples containing less than 10% lPatrix). The samples 

should be counted for as many parameters as possible using the: Gazzi-Dickinson method. 
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and either a separate tally should be kept of coarse-grained rock fragments, or subsequent 

counts of rock fragments only should be made. In addition, venical. through time, 

variations in modal percentages should be ideally be documented. To adequately 

document vertical variations, other parameters should be controlled. This means that for 

comparative purposes samples should always be collected from the same facies and from 

the same position in the bed. 

Many studies (see for a summary e .g . Schwab (1986, 1991), and point counts 

summarised by Hiscott, 1984) provide quantitative data based on only a few samples per 

stratigraphic unit. Facies infonnation is generally not provided, and vertical variations 

are not documented . Such data, while not treatable statistically, r.1ay yet he useful. 

The quantitative aspect of this study falls between the two extremes descrihed 

above. An ideal quantitative study was impossible to accomplish for several reasons: 

1. The degree of alteration was so high in all samples from nonhero localities of the 

American Tickle formation that unsuitable samples had to be selected for point counting. 

In almost all cases the amount of matrix was high and use of Lash's (1987) matrix 

criterion would have resulted in the point counting of very few samples; 

2. No documentation of vertical variations was attempted because it was considered that 

vertical facies variations would obscure compositional variations. Also the structural 

complexities in many sections where vertical changes might have been documented (e .g. 

Mainland) would have added additional uncertainty; 

3. Among the three units it was difficult to sample from exactly comparahlc facies . 

Although a limited number of samples were point counted, they were selected as 
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being repreM:nt.ltive of a much larger suite of (approximately 200) samples. The method 

employed in point counting grains was the Gazzi-Dickinson method as tested by Ingersoll 

et al. ( 1984) which was described in the introduction and which minimises the effect of 

~rain size variation. The thin sections were first stained for both potassium feldspar and 

plagioclase using a slightly modified version of the method outlined in Quinn ( 1985). Pan 

of each section was masked to allow ~or investigation of textural features which might 

have been obscured by the staining process. The thin sections were then point counted 

perpendicular to bedding using a Swift point counting stage to provide a regular grid 

spacing. The counts were entered into an IBM compatible personal computer directly 

using the program PCOUNT.BAS which causes the computer keyboard to act as a tally 

counter. Thiny counting parameters were employed, which are listed in table 4.5. The 

list was adapted from those of Ingersoll (1990) and Cavazza (1989). The spacing of the 

counting grid was 1 nun, in order to assure good coverage of the thin section. At least 

350 points per thin section were counted, and for most sections, 400 points were counted 

(the number of points counted for each sample is listed in appendix 4, sections A4.1, 

A4.2, and A4.3). The grid spacing was carefully monitored to ensure that it was larger 

than the maximum grain size of grains within the section. Thus the counting error may 

be estimated using the chan of Vander Plas and Tobi (1965). Otherwise, no attempt 

was made to evaluate operator error. 

Because of the choice of a 1mm grid spacing, samples selected for counting had 

a maximum grain size on the boundary between coarse and very coarse sand, with 

coarser samples being excluded from the point counting process. This means that the 
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Table 4.5: Point Counting Parameters 

l. Monocrystalline quartz 
2. Polycrystalline quartz with tectonite fabric 
3. Polycrystalline quartz without tectonite fabric 
4. Plagioclase feldspar 
5. Potassium feldspar 
6. Monocrystalline mica 
7. Mono and polycrystalline phyllosilicate 
8. Opaque mineral 
9. Giauconite 
10. Volcanic with glassy texture 
11. Volcanic with aphanitic or equigranular texture 
12. Volcanic with microlitic or lathwork texture 
13. Slate/phyllite 
14. Semischist 
15. Quartz-feldspar-;:nica aggregate 
16. Polycrystalline mica 
17. Mudstone/shale 
18. Laminated Shale 
19. Micritic limestone 
20. Sparitic limestone 
21 . Bioclast 
22. Ooid 
23. Small grains less than 0.03mm. and recrystallised clay matrix 
24. Carbonate cement 
25. Quartz cement 
26. Unidentified 
27. Non-Opaque heavy mineral 
28. Chert 
29. Siltstone 
30. Altered potassium feldspar/plagioclase feldspar 
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very coarse LH 1 facies of the Lower Head Fonnation was excluded from the counts, but 

it was felt that this should allow for better ..::omparison between the units. The average 

grain size of counted samples was therefore approximately medium- ,.::>coarse-grained. 

Zuffa (1987) suggested that only medium grained sandstones be counted where possible, 

however, since many of the samples collected for this study were coarse grained, 

exclusion of coarse grained samples would have eliminated a large proportion of the 

sample set. In addition, fine-grained sar.tples tended to contain a high proportion of 

pseudomatrix, rendering the likely error higher. However, the grain size of samples 

counted was still fairly restricted, and use of the Gazzi-Dickinsoi! point count method 

minimises vadations in modal percentages as a result of grain size variations (Ingersoll 

et al. 1984: Zuffa, 1985). Some cf the samples counted were considerably altered, 

particularly from the American Tickle fonnation whose generally sand-poor nature 

resulted in fewer available samples, but it was felt that, having defined this as a 

reconnaissance study rather than a rigorous provenance study, the information derived 

from altered samples was nevertheless useful. 

Dickinson et al. (1983) suggested that sandstones with an amount of matrix plus 

cement greater than 25% should not be included on tectonic discrimination diagrams. 

In this case samples with both greater than and less than 25% matrix plus cement are 

plotted on the discrimination diagrams. but are distinguished by different symbols. 

The data produced by the point counting process were imported into a spreadsheet 

(Lotus 1.2.3 version 2.2) and recalculated to give the parameters outlined in appendix 

4, sections A4.1. A4.2. and A4.3 . 
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Some discussion is required regarding the point counting parameters, in panicular 

where they differ from those of Cavazza (1989). Only unaltered or very slightly altered 

grains were counted in category 5 (potassium feldspar). A separate category (3\'l, altered 

potassium feldspar/plagioclase feldspar) was included because in many cases. 

determination of whether the original grain was potassium feldspar or plagioclase was 

not simple (see discu.;sions in sections on feldspars). 

Category 7 (monocrystalline and polycrystalline phyllosilicate) included detrital 

chlorite and grains which were initially identified as serpentine. Discussions ahove have 

shown that although both volcanic and plutonic sources may pro' ide detrital chlorite, the 

vast majority of these grains were probably derived from an ultramafic source. While 

many of the chlorite grains were ultimately of ultramafic origin on textural grounds and 

therefore are plutonic rock fragments, it was felt to be more accurate to simply classify 

these fragments on the basis of the identified minerals rather than on an interpretive 

basis. As well, the Gazzi-Dickinson method does not allow for the counting of plutonic 

rock fragments. Category 12 included volcanic rocks with both microlithic and lathwork 

texture. Several authors have suggested (Dickinson, 1970; Boggs, 1992) that lathwork 

grains with intersertal texture indicate a basaltic origin, whereas microlithic grains 

suggest an intermediate origin. These two categories were not distinguished in point 

counting. However, it should be noted that a ratio of this category to total volcanic 

fragments will give an indication of the proponion of mafic/intermediate fragments in the 

sample, as the other two categories contain only felsic volcanic fragments. 

Category 18 (laminated shale) was included to distinguish distinctive organic rich 
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laminated shale chips which were felt to be imponant provenance indicators. Tds 

category was considered distinct from unlaminated shales and mudstones. Category 19 

includes both micritic and sparry limestone fragments, although for all units, sparry 

limestone fragmems are uncommon. Category 20 (detrital sparry calcite) was reserved 

for grains which appear to represent alterect grains of a pre-existing feldspar or mafic 

mineral. If the origiml mineral could be identified, however, the fragment was counted 

as rhe original mineral. The ooid category (22) includes both calcium carbonate ooids 

and rare chamositic ooids. 

4.3. 1 Petrographic Data 

Raw data and recalculated petrographic parameters for the American Tickle, 

Mainland and Lower Head formations are given in appendix 4, sections A4.1, A4.2, and 

A4.3. The list of parameters which were included in the raw coum is that given in table 

4.5. In appendix 4, information is given regarding the number of grains counted, the 

percentage of ma:rix +cement, and the percentage of matrix +cement +calcite grains. 

The latter parameter is useful because sparry calcite grains are interpreted as altered 

framework grains, and the parameter hence gives a more accurate impression of the ievel 

of alteration within the sample. Calculations of the parameters plotted on triangular 

diagrams in figures 4.6 through 4.11 are also provided. Two additional para.'lleters are 

listed in appendix 4, they are the ratio P/F, and the ratio Lph/Lt. P/F is the ratio of 

plagioclase to total feldspar. Although this ratio has been used in the determination of 

provenance. it is unclear how meaningful it may be in this case, given the alteration 
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characteristics of potassium feldspar. For Lhe same reason, no plots which depend on 

the relative proponions of the two types of feldspar have been presented. The ratio 

Lph/Lt is introduced here arJ is the ratio of the number uf phyllosilicate grains over all 

other total non-carbonate lithic fragments (the traditional Lt). Since the bulk of Lph 

grains are interpreted as being of ultramafic origin (chloritised serpentine), this gives an 

indication of the relative importance of ultramafic fragments within a sample. 

Sixteen samples from the American Tickle formation were counted with average 

values of Q- 56.79 (s.d. 11.14), F- 20.33 (s.d. 7.22), and L- 22.88 (s.d. 11.31). 

Sixteen samples from the Mainland formation were counted, with mean values of Q -

55.83 (s.d. 9.02), F · 17.96 (s.d. 6.01), and L- 26.20 (s.d. 7.69). Eighteen samples 

from the Lower Head Formation were counted showing average values ofQ- 60.12 (s.d. 

7.32), F- 24.93 (s.d. 5.09), L- 14.95 (s.d. 4.45). QFL plots and QmFLt plots for each 

formation are shown in figures 4.6, 4.8, and 4.10. To distinguish trends, and because 

of the statistical invalidity of plotting average values, only individual values are shown, 

following the suggestions of Philip and Watson (1988). 

For all three formations, there is little difference between a plot of QFL and 

QmFLt (figures 4.6, 4.8, 4.10), indicating the minor imponance ofpolycrystalline quanz 

as a rock fragment. The American Tickle formation, which is generally altered (see 

discussion above) shows considerable scatter of points, particularly in the samples with 

high matrix +cement. The most lithic rich samples both come from the Table Cove 

locality, suggesting a local input of lithic fragments, in this case shale chips. The 

Mainland formation shows more scatter than might be expected from its restricted areal 
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extent. Samples from near the top of tne formation tend to be more quanz rich, 

suggesting that the apparent trend shown on the plot might be a result of a variation in 

provenance through time (but see discussion above). However, it could also be a 

function of the greater degree of reworking of sands at this level within the Mainland 

fonnation. A simple variation in depositional processes without r.hange in composition 

of sediment supply can cause a change in modal percentages of grains present (see. e.g. 

Zuffa, 1985). Although the following is not a statistically rigorous statement (see Lash. 

1987; Ingersoll, 1990), it appears that because of overlap of standard deviations, the 

Mainland formation cannot be considered petrographically distinct from the American 

Tickle fonnation. 

The Lower Head Formation shows a fairly good cluster of both matrix and non

matrix rich samples from widely spaced localities, which might be considered surprising 

in light of the complex depositional setting implied for the Lower Head Formation in 

chapter 3 . In addition, the Lower Head Formation can be considered petrographically 

distinct (within one standard deviation) from the other two units as it contains less lithic 

fragments. 

All three units plot in the recycled orogen fields of Dickinson et at. ( 1983) (figure 

4.5), or in or close to the 'mixed' fields of Dickinson (1988). This is to he expected 

from the qualitative description of the rock fragments present. All three units are 

dominated by sedimentary rock fragments (see figures 4 .7, 4 .9, 4.11), but the Lower 

Head Fonnation shows a wider range of volcanic rock fragments vs. sedimentary rock 

fragments . Plots of LvLmLs indicate varyi11g proportions of sedimentary vs. volcanic 
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rock fragments, with only minor input from a metamorphic source. As carbonate 

fragments were not included in the plot, it is clear that shale fragments represent the bulk 

of the sedimentary rock fragments. The importance of Lph varies from sample to 

sample, but is clearly very abundant in some samples. A review of the three types of 

volcanic rock fragments shows that for most samples, siliceous volcanic rock fragments 

dominate. The abundance of siliceous rock fragments in Ordovician sandstones in 

western Newfoundland has previously been unrecognised (see discussion in chapter 1). 

4.4 SUMMARY AND CONCLUSIONS 

Utilising the information in Chapter 3 and this chapter, the following sources have 

been identified for the Lower Head Formation and the Goose Tickle Group from 

consideration of the rock fragments and framework grains present. 

1. Intermediate/mafic volcanic rocks; 

2. Mafic plutonic rocks; 

3. Felsic volcanic rocks; 

4. Felsic plutonic rocks; 

5. Intraformational/intrabasinal sediments of local origin; 

6. Lithified sedimentary rocks; 

7. Shallow water carbonates; 

8 . Black and green shale. 

Clearly all of these can be considered extrabasinal except category 5. In addition, 

utilising information from chapter 3, it is possible to subdivide the extrabasinal category 
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into two types: 

a) sources which were clearly completely extrabasinal (categories 1,2,3, and 4); 

b) 'marginal extrabasinal' which are interpreted to represent materials identifiably eroded 

from the eastern margin C'f the basin. These would include mainly sedimemary rocks i.e. 

8 which is interpreted to represc..nt easterly equivalents of the Goose Tickle group and 

underlying units, and pans of 6 which would include the Cow Head clasts in the Lower 

Head conglomerates. Category 6 also seems to include a pervasive but unrecognisable 

shallow water source with both uncemented oolites and silica cemented quanzo

feldspathic sandstones. 

It is category 8 which is the most abundant rock fragment percentage, suggesting 

a dominant signature from the basin margin. Volcanic fragments are dominated tly 

siliceous varieties and plutonic fragments are primarily chloritised serpemine. 

With regard to framework grains other than rock fr<!gments, one of the most 

obvious questions is the origin of the quanz population, as it is domiua,ed tly 

monocrystalline quanz grains. Quanz is one of the most problematic parameters frona 

which to determine provenance (Basu, 1985), which is unfortunate in view of its 

abundance in most sandstones. Few of the monocrystalline quartz grains in the Goose 

Tickle group and Lower Head Formation are unambiguously of volcanic origin, therefore 

four main possible sources remain: 

1. Plutonic felsic rocks; 

2. Metamorphic rocks; 

3. Recycled sedimentary rocks: 
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4. a combination of any or all of the three listed above; 

Consideration of the rock fragments shows that clearly 1 ,2, and 3 have provided detritus 

to these sandstones. If relative proponions of 1ock fragments only are considered, the 

contribution by 2 and 3 appears minimal in comparison to the contributions by 1; 

however, the extremely well rounded nature of some of the quanz grains suggest~ that 

some at least have been recycled, although abraded overgrowths are few, and that a 

sedimentary source cannot be ruled out for the bulk of the monocrystalline quanz grains. 

Feldspars are enigmatic. Potassium feldspars seem to indicate a plutonic or 

metamorphic source. Plagioclase feldspars may have been supplied directly from a 

plutonic or metamorphic source, or they may have been supplied through recycling of 

a sedimentary or low grade metamorphic rock in which a substantial proponion of 

feldspars had been albitised. The 'altered' grains are generally not euhedral and the 

shape of the cores relative to the exteriors suggests that they may have been incorporated 

in sediments which were buried and then uplifted before alteration of albite to k-spar was 

incomplete. 

Although some plagioclase feldspars may have been supplied by a volcanic 

source, it is thought that the chemistry of the bulk of the feldspars, the paucity of 

preserved individual small plagioclase laths, and the lack of zoned sand-sized crystals 

implies that the supply of feldspars directly from a volcanic source are few. This would 

imply a plutonic or metamorphic or recycled sedimentary source for the majority of the 

plagioclase feldspars. 

Source types as inferred from accessory minerals are in general agreement with 
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those inferred from framework grains. 

The dominance of extrabasinal rock fragments clearly places sandstones of the 

Goose Tickle group and the Lower Head Fonnation as type A arenites of Zutfa ( 1991) 

which is consistent with the depositional setting inferred for these units in chapter 3. The 

'mixed' provenance implied by the data on modal percentages is also consistent with this 

depositional setting. 

Despite the large area over which samples were collected, petrographically tloth 

the Goose Tickle group and Lower Head Formation are fairly homogeneous. This 

combined with the variable rounding of grains suggests mixing of the source materials 

prior to supply of sediment to the main foreland basin and trench slope basin(s) . It 

seems therefore, that petrographic studies at tt.is level of detail will not allow one to 

distinguish whether the Lower Head Fonnation was deposited in one or more than nne 

basin. 

Clearly, the possibility of a substantial sedimentary or metasedin.entary source 

for these rocks requires further investigation, as does the prominent felsic and ultramafic 

signature in the igneous fragments. In addition, a link should be attempted between the 

types of rock fragments identified here, and the 'hinterland' area to the foreland basin. 

These tasks will be undertaken in chapter 6. 
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The discussion in this chapter includes only the bulk geochemical characteristics 

of the Lower Head Formation and the Goose Tickle group. Geochemistry of specific 

minerals has already been discussed in chapter 4, and bulk geochemistry of Cambrian 

sandstones will be discussed in chapter 6. 

5. 1.1 Terminolo~:y 

A major element is one which is normally abundant in rocks, and belongs to a 

standard list of the elements which predominate in rocks, viz. Si, AI, Ti, Fe, Mn, Mg, 

Na. K, and Ca. A trace element is one which is commonly present in small quantities 

in rocks (less than 0.1 %). Rare Earth Elements (REES) are a group of trace elements 

w~ich fall into the transition area of the periodic table and whose similar chemical 

characteristics cause them to behave in a similar fashion chemically. REES will be 

treated separately in this chapter. 

5. I .2 Analytical Methods and Problems 

Nineteen representative samples of both Cambrian and Ordovician sandstone units 

were analysed m the laboratories at Memorial University of Newfoundland. using Atomic 
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Absorption Analysis (AAA) for major elements, X-Ray Fluorescence (XRF) of pressed 

pellets for some trace elements, and Inductively Coupled Plasma Mass Spectrometry 

(ICPMS) for rare earth elements. Some of the original trace element data, particularly 

that for Cr and Ni (which had anomalously low and in some cases negative values) were 

considered suspect and the samples were reanalysed by XRF of pressed pellets at 

Activation Laboratories, Ancaster. Ontario, with additional analyses of some trace 

elements not included in the Memorial package. Activation Laboratories data proved to 

be reproducible whereas Cr and Ni data from Memorial were not, and Activation 

Laboratories data were used for all available elements. 

A further 88 samples were analysed by a combination of Neutron Activation 

Analysis (NAA), and Inductively Coupled Plasma analysis of fused pellets at Activation 

Laboratories, Ancaster, Ontario. Inspection of the NAA data from Activation 

Laboratories showed that some samples from Cambrian units contained much higher 

values of Cr than would have been expected. Further investigation showed that the 

crushing method used by Activation Laboratories involved use of a hard steel mill, which 

can contaminate samples with 20 - 200 ppm chromium. Chromium abundances for the 

Lower Head Formation and Goose Tickle group had not initially been considered to be 

anomalous as they were within the range of values expected from previously published 

information (Hiscott, 1984) but contamination was found to range from approximately 

zero for soft friable samples, to 150 ppm for hard samples from the Cambrian units 

which had originally been identified as anomalous. 

Activation La':>oratories offered to recrush and reanalyse the samples for Cr, but 
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a number of small samples had been completely crushed for the first analysis and could 

not be reanalysed. The original Cr data for these samples were retained and treated in 

the following way. Each formation was considered separately, and samples from the 

same formation were assumed to have similar hardness. Thus a mean vaJue of the 

contamination for each formation was calculated (see appendix 5). This amount was then 

subtracted from the original Cr values for each sample. For all other samples, the 

individual Cr values from the reanalysis were used. Clearly, this is not an ideal or 

rigorous approach, but it may be justified for the following reasons. Firstly, absolute 

vaJues of Cr are high for the L(iOSe Tickle group and Lower Head Formation, and since 

the analytical precision at these concentrations is on the order of 10%, the contamination 

levels can be considered smaJI relative to the uncertainty already incorporated in the data. 

Secondly, the discussion of chromium concentrations in this chapter does not emphasise 

individual absolute values, but rather the variation among values, which will not be 

substantially affected by this treatment. However, if the reader does not accept these 

justifications, then inferences made below regarding the behaviour of Cr in factor 

analysis should be disregarded. 

The geochemical data obtained through the analyses discussed above, as well as 

some of the recalculated parameters referred to in this chapter, are displayed in appendix 

5. sections A5.1 thio•Jgh A5.6. Appendix 5 also contains a brief description of the 

elements and samples analysed by each method and the precision of these methods. 

Means and standard deviations for the data, correlation matrices and other statistical data 

are presented in appendix 6. A t..~y to locality abbreviations (for sample names) is given 
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in appendix I. For comparative purposes the data have been recalculated to 100% 

volatile free. Trace element data have not been recalculated, however, because this does 

not seem to have been the practice among most authors who have studied trace elements 

in sandstones (e.g. Hiscott, 1984; Van de Kamp and Leake, 1985). 

5.1.3 Geochemistry of Sandstones - Discussion 

There has been some disagreement as to whether shales or sandstones can be 

considered more accurate indicators of provenance (e.g. Blatt, 1985: Van de Kl\mp and 

Leake, 1985). Blatt (1985) has argued that mudrocks may in some instances be superior 

to sandstones because of their greater impermeability and hence their greater resistance 

to diagenetic effects. However, shales, with their high clay mineral content. may contain 

a significant amount of adsorbed material which reflects the chemistry of the seawater. 

Seawater chemistry is a function of a number of factors and may not be entirely 

reflective of provenance. Several authors have noted that the most complete 

characterisation of the chemistry of a sedimentary unit should be based on analyses of 

both sandstones and any interbedded shales (Van de Kamp and Leake, 1985: Roser and 

Korsch, 1986, 1988). Van de Kamp and Leake (1985) concluded. on the basis of such 

an integrated study, that chemically, sandstones are better indicators of provenance than 

"hales. 

Interpretation of chemical u:lalyses of sandstones should be made with caution. 

Factors which affect sandstone chemistry are similar to those which affect framework 

grain proportions and include provenance, weathering, mode of deposition and 
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diagenesis. 

As might be expected from petrographic cc.;nsiderations (e.g. Ingersoll et al., 

1984), among sandstones of similar provenance, grain size variations have a significant 

effect on chemistry (Roser and Korsch, 1985, 1986, 1988). Two approaches may be 

utilised to minimise this problem. The first is to analyse only samples from a restricted 

grain size range (e.g. Bhatia, 1983, 1985), but this may result in loss of information for 

certain suites of samples if coarse grained samples are excluded from a study. The 

second approach involves the analysis of the full range of grain sizes available. In using 

this approach, several authors (Van de Kamp and Leake, 1985; Roser and Korsch, 1985, 

1986) have noted that diagrams used to illustrate geochemical variations should show 

plots of individual analyses rather than means of sample populations. The diagrams then 

distinguish trends among sample populations. 

In this study a wide range of grain sizes in sandstones was analysed, from fine 

sand to very coarse sand, but no shales were included. Some geocllemical information 

on shales of the Goose Tickle group and Lower Head Formation is available through the 

work of Garver and students (pers. comm. 1991). Botsford (1988) has also an::lysed 

some shales from the base of the Lower Head Formation. Information from these studies 

will be incorporated into the general synthesis of chemical information from the 

sandstones of these units. 

The potential effects of diagenesis have rarely been directly addressed, but 

Maynard et al. ( 1982) investigated the relationship between the chemistry of sandstones 

and that of associated shales, and concluded in particular that the high N~O content of 
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ancient greywad.es is similar to that of modern greywackes, thus suggesting that the 

sodium has not been introduced through diagenesis. Roser and Korsch ( 1986) have 

admitted that Na and K may become mobile under conditions of diagenesis, although they 

have suggested that the overall bulk chemistry of the rock may not change even under 

conditions of low grade metamorphism. 

Normark ( 1985) has noted the potential effects of facies variations on provenance 

information. For example reworked and unreworked sands from the same source may 

have different chemical compositions, as clay minerals may have been removed during 

the reworking process. This may result in a depletion in the reworked sand of such 

elements as Cr, Ni, Ti, Rb, Y, and Zn. which tend to reside in clay minerals (Van de 

Kamp and Leake 1985). Basu et al. ( 1990) have noted trace element enrichments 

indicative of heavy mineral sorting in fluvial sands. Similarly in turbidites. heavy mineral 

enrichments may occur in the 8 division of the Bouma sequence, so that even the part 

of the bed from which the sample is collected may affect the chemistry. Despite this. 

however. facies information has rarely been incorporated in general investigations of 

sandstone geochemistry. Van de Kamp and Leake (1985) referred to their samples 

simply as sandstones but did provide petrographic data and a general statement of 

environment of deposition. Roser and Korsch described their samples using general 

terms such as greywacke, sandstone, and arkose. Maynard et al. (1982) as well as 

Taylor and McLennan (1985) employed the rather vague term greywacke. However, in 

general, chemical characteristics of these 'greywackes' of the literature should be 

comparable to sandstones in this study, since greywacke (a matrix rich sandstone with 
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abundant feldspar and lithic fragments) is the most common rock type found in turbidites. 

For this study, grain size and sedimentary structures of each sample were recorded and 

are included in the data tables in appendix 5. 

5.2 MAJOR AND TRACE ELEMENT GEOCHEMISTRY 

5.2.1 Djscussjon - Major Elements 

Major element geochemistry of sandstones has been used in several ways to 

enhance or support provenance studies. Several studies have employed variation 

diagrams based on K20/NC1z0 ratios vs. percentage of silica to separate sandstones of 

different provenance (e.g. Maynard et al. 1982; Roser and Korsch, 1986). Maynard et 

al. ( 1982) analysed a number of modern deep sea sands, and suggested that while passive 

margin sandstones and those from forearc basins are chemically distinctive, those from 

other arc-related basins may be indistinguishable from each other. 

Bhatia (1983) suggested that the parameters which most successfully discriminate 

among sandstones of different provenance are (f~03 + MgO)%, Ti02%, AI20/Si02, 

K20/Na20 and AI203/(CaO+N~O). These parameters were used by Bhatia (1983) to 

distinguish four provenance types - oceanic island arc, continental island arc, active 

continental margin, and passive continental margin. Bhatia (1983) stated that there is a 

progressive decrease in (Fe20 3+Mg0)%, Ti02%, and AI20/Si02, and an increase in 

K20/Na20 and AI20/(Ca0+ N~Q) in sandstones from oceanic island arcs to continental 

island arcs, ~o active continental margins. to passive margins. He estimated the range 

of values for these parameters for each of the different provenance types and these are 
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shown in table 5.1. Utilising these parameters, Bhatia ( 1983) showed variation diagrams, 

and also employed the statistical method of discriminant analysis to construct 

discrimination diagrams. His diagrams are limited in that they only apply to sandstones 

in the fine to medium grain size range. The database on which the diagrams were 

constructed was restricted to five Paleozoic turbidite s..:.quences in eastern Australia, and 

did not contain any modern sands from known tectonic settings. 

Roser and Korsch ( 1986) produced a variation diagram based on analyses from 

suites of sandstones and their interbedded shales, and concluded that three main groups. 

arc, active margin, and passive margin may be distinguished on the basis of a plot of 

K20/N~O vs. Si02%. Roser and Korsch (1988) subsequently expanded their work to 

produce variation diagrams using similar parameters to those outlined by Bhatia ( 1983). 

They found that these plots were moderately, but not completely, successful in 

discriminating sandstones from different provenances, and thus they subjected a large 

number of sandstone/mudstone samples of known provenance to discriminant anaJysis. 

The method of discriminant analysis, they suggested, is much more successful in 

discriminating sandstones of different provenance, and reduces but does not completely 

eliminate the grain size effect. 

Roser and Korsch (1988) tested the viability of their discriminant functions on 

chemical anaJyses of numerous sandstones of known provenance from the literature. and 

also on igneous rocks which are potential sources. Rather than trying to distinguish 

sandstones from different plate tectonic settings, Roser and Korsch (1988) discriminated 

on the basis of source lithology, including: PI (mafic - first cycle and Jesser andesitic 



Table 5.1 

Estimates of chemical characteristics of 
sandstones of various provenances 

(from Bhatia, 1983) 

OA CA 

8-14% 5-8% 

0.8-1.4% 0.5-0.7% 

0.24-0.33 0.15-0.22 

0.2-0.4 0.4-0.8 

ACM 

2-5% 

0.25-
0.45% 

226 

Note: OA =Oceanic arc. CA =continental arc. ACM =active margin. No values given 
for passive margin sandstones. They are 'generally enriched in Si02 and depleted in 
Na20, CaO, and Ti02, suggesting their highly recycled and matured nature'. 
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detritus): P2 (intermediate - dominantly andesitic detritus); P3 (felsic- acid plutonic and 

volcanic detritus); P4 (recycled - mature polycyclic quartzose detritus). Roser and 

Korsch (1988) also noted the importance of biogenic carbonate in altering the results. and 

produced a second set of discriminant functions which were designed for samples with 

significant quantities of biogenic carbonate. This second set of functions was considered 

to be less efficient at discrimination among sandstones of different provenance, but was 

felt to be 'adequate'. 

5.2.2 Discussion - Relationships Between Major and Trace Elements 

Few studies of sandstone chemistry have investigated the relationships between 

major and trace elements. One exception is a study by Van de Kamp and Leake ( 1985) 

who plotted various major and trace element parameters on scatter plots to examine 

correlations. A thorough investigation of the relationships of major element parameters 

to each other and to trace element concentrations. clearly characterises the chemistry 

more completely than if major or trace elements are considered separately. Anolher 

advantage of the general approach employed by Van de Kamp and Leak.e (1985) is that 

the major element parameters employed were Niggli numbers. which are defined in table 

5.2. Since Niggli numbers are ratios, their use to some extent reduces the constant sum 

or closure effect which occurs in any set of data expressed in percentages (Van de Kamp 

and Leake, 1985; Chayes, 1960). This constant sum effect is particularly marked in bulk 

rock chemistry, since the dominant oxide in most rock types is silica, and most other 

elements will vary antipathetically with silica (Roser and Korsch, 1986). Some important 
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Table 5.2 

Definitions of Niggli Numbers 

from Tomkeieff ( 1983): Niggli values -The weight percen~ges of the chemical analysis 
of an igneous rock are divided by the molecular weight of the corresponding oxide, 
producing the molecular numbers. These are then regrouped, added and recalculated to 
100 to produce the Niggli values si, at, fm, alk, mg and k. 

Sl = 
mol cont. Si203/moi(AI203+CaO+feO+fe203+MnO+MgO+N~O+K20) 

" 

" 

mg= Mg0/moi(Mg0+fe0+2fe20 3 +Mn0) 

Note: after Van de Kamp and Leake (1985) 
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Niggli parameters (notably al-alk and mg) are independent of the variation in silica 

content. Ratios are also useful for comparative purposes as data irom other sources need 

not necessarily be recalculated. 

A particularly important Niggli parameter is al-alk which measures the aluminium 

present in the material which is in excess of the AI combined with alkalies in feldspar 

(Van de Kamp et al. 1976). Therefore plotting of concentrations of various trace 

elements against al-alk may enable one to determine which elements are present in sheet 

silicates and which are present in feldspar or other minerals. 

The data base for the study of Van de Kamp and Leake ( 1985) was restricted to 

the western U.S.A., but did contain numerous modern sands from known tectonic 

settings as well as Mesozoic and Cenozoic samples. Van de Kamp and Leake ( 1985) 

concluded that combined major and trace element geochemistry of sandstones can be used 

in evaluating sandstone provenance, but that the data should be interpreted carefully. 

They re-emphasised the need to be aware of the effect of grain size on geochemistry. and 

they found general but not specific agreement with the conclusions of Bhatia ( 1983) when 

they plotted suites of rocks of known tectonic setting on his discriminant diagrams. 

5.2.3 Discussion - Trace Elements 

Trace element geochemistry has been used by several authors to aid in the 

determination of provenance. Van de Kamp and Leake (1985) included trace elements 

in their comprehensive study which was discussed in the previous section, and were able 

to use their relationships to major element parameters with some success to ascertain in 
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which minerals trace elements were residing. 

A notable study relevant to this thesis was that carried out by Hiscott ( 1984) who 

studied trace elements from foreland basin and related Ordovician sandstones from the 

entire length of the Appalachian Orogen. He was able to distinguish a significant 

difference in the concentrations of Cr and Ni in sandstones from the northern 

Appalachians vs. those the southern Appalachians. Garver (1990, pers. comm.) and 

students utilised a similar approach to that of Hiscott ( 1984) on Appalttchian shales and 

their results were in general agreement with his. Both of these authors examined 

variations among trace elements by subjecting their data to factor analysis. 

Factor analysis is a statistical method which attempts to reduce a large set of data 

with many variables into a lesser number of underlying variables, each of which may 

then be interpreted in terms of its geological significance (Davis, 1986). Two different 

but related types of analysis, Q and R mode, may be employed. Q mode factor analysis 

involves the analysis of relationships between samples on the basis of all the variables, 

R mode analysis involves comparison of relationships between variables on the basis of 

all samples. Q mode factor analysis has been applied to modal compositions of 

sandstones, in particular heavy mineral compositions (Imbrie and Van Andel, 1964; 

Thornburg and Kulm, 1987). R mode factor analysis has been applied to trace element 

geochemistry (Hiscott, 1984; Weber and Davis. 1990: Garver, pers. comm. 1991). 

Weber and Davis ( 1990) applied a combination of Rand Q mode analysis to trace 

element geochemistry in stream sediments. Hiscott (1984) carried out R mode factor 

analysis of trace element data from Ordovician Appalachian sandstones and was able to 
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isolate and interpret two factors which explained a large percentage of the variar.ce within 

his trace elemt nt data. It should be noted that not all geochemical data may be suitable 

for factor analysis, and appropriate selection of variables is necessary (Davis, 1986). It 

has been suggested, as a rule of thumb (SAS/STA T users guide. 1988), that there should 

be at least three variables corresponding r.o each factor, and that the number of samples 

should exceed the number of variables by at least tifty (Lawley and Maxwell. 1971), 

although this is debatable (Geweke and Singleton, 1980). Weber and Davis ( 1990) 

analysed 35,000 samples, whereas Hiscott (1984) analysed 177 samples for 7 variables, 

and Garver (1990 pers. comm.) analysed 60 samples flr 7 variables. 

Variable selection for factor analysis may involve judgement as to which trace 

element parameters are important for provenance. Several authors (Bjorlykke, 1974; Van 

de Kamp and Leake, 1985: Hiscott, 1984; Garver, pers. comm. 1990) have paid 

particular attention to the behaviour of Cr and Ni as being relatively immobile elements 

indicative, when present in abundance. of an ultramafic source. Other key trace elements 

include Zr, Y, Ti. V, Co, and Cu. Most of the following information regarding the 

behavl~ur of these elements within a sedimentary rock is to be found in Wedehpol 

(1978). 

Chromium in sandstones is considered to be predominantly supplied by the 

mineral chromite (Hiscott, 1984). although clearly the discussion of chlorite analyses in 

chapter 4 indicates that significant concentrations of chrumium may occur in these 

mineral~. and adsorption of the Cr ion on clay minerals is also possible. Nickel may be 

supplied in the mineral pentlandite, and also substitutes in mafic minerals such as olivine 
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and pyroxene. Nickel ions are soluble and are commonly carried in solution until final 

adsorption onto clay minerals within a sediment. Zirconium and yttrium indicate a 

contribution by stable heavy minerals such as zircon, monazite and xenotime. Titanium 

is found in a number of different minerals including ilmenite, rutile. and sphene. and can 

also be found within the structure of certain clay minerals. Vanadium is commonly 

adsorbed on clay minerals, but is also found in minerals such as chromite, ilmenite, 

magnetite, and sphene, in which it substitutes for the major cations. Cobalt commonly 

occurs in sedimentary rocks as an oxide. and may also be adsorbed onto clay minerals. 

Copper occurs in association with sulphide minerals. and may substitute for cations in 

mafic minerals. 

5.2.4 A()proach Used fn This Study 

In treatment of the data from this study, the aim of the author was to provide the 

most complete characterisation possible with the available data. This involved aspects of 

most of the data treatment methods outlined in the previous sections. including: plotting 

of the major element data on variation diagrams of Bhatia (1983) and Roser and Korsch 

(1986): plotting of the major element data L•sing the discriminant diagrams of Roser and 

Korsch ( 1988): examining relationships between major and trace element data in the 

manner outlined by Van de Kamp and Leake ( 1985): and applying the method of factor 

analysis to trace element data {Hiscott, 1984). In addition, the author has extended the 

approach of Van de Kamp and Leake (1985) to combine some of the major and trace 

element data in a factor analysis to better characterise the location of trace elements 
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within the samples and to test whether statistical methods may be used to relate major 

and trace element parameters. 

5.2.5 Major Element Geochemistry 

5.2.5. l Variation DiaKrams From Bhatia Cl983) 

Sandstones from the Lower Head Formation and Goose Tickle group can be 

characterised as generally having int~rmedi<.te silica content (cf. Taylor and McLennan. 

1985). In each unit a small number of samples have low silica content. and these tend 

to be examples of fine grained sands which contain proportionately higher contents of 

carbonate cement and/or shale chips. A qualitative comparison of the major elemem data 

from the Goose Tickle group and Lower Head Formation with the discriminating 

parameters outlined by Bhatia ( 1983) shows the following. 

Sandstones of the American Tickle formation have high values of 

(Fe203+Mg0)% with a mean of 9.16% (standard deviation 2. 78) and a range of 2. 98% 

to 15.06%. High values tend to be associated with sandstones which are finer grained 

and have a higher proportion of carbonate cement and/or shale chips. Ti02% has a mean 

value of 0.51% (s.d. 0. 17). The mean AI20/Si02 ratio is 0.13 (s.d. 0.04). K 20/NaiJ 

values have a mean of 1.05 (s.d. 0.32). Mainland formation rocks have a mean 

(Fe203+Mg0)% of 7.37 (s.d. 1 .99), an AI10 3/Si02 ratio of 0.15 (s.d. 0.18), K101N~O 

of 1.38 (s.d. 0.26) and a mean Ti01% of 0.51 (s .d. 0.22). The two formations a1e 

rather similar, but they do not conform to any of Bhatia's (1983) provenance categories 

defined on the basis of major element chemistry. The high (F~01+Mg0)% of the 
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Goose Tickle group should be characteristic (according to Bhatia, 1983) of sandst·mes 

derived from an oceanic island arc (American Tickle formation), or a continental island 

arc (Mainland formation), although the range of ulues encompasses all provenance 

types, and comparison with grain size information in Appendix 5 shows a clear grain size 

effect on the (Fez03 + MgO)%. Ti02% values are typical of those derived from a 

continental island arc, and K20/Na20 values are typicai of sandstones derived from an 

active margin. 

The Lower Head Formation displays broadly similar major element chemistry to 

the Goose Tickle group with an (Fe20 3+Mg0)% mean value of 7.60% (s.d. 0.15), Ti% 

of 0.56% (s.d. 0.15), AI20 3/Si20 3 of 0.12 (s.d. 0.03) and a K20/Na20 mean value of 

1.00 (s.d. 0.29). 

Judging by the tectonic setting inferred for the Goose Tickle group and the Lower 

Head Formation in chapter 3 and the petrographic elements identified in chapter 4, these 

units should conform most closely to the description 'active continental margin' since 

they were deposited in a foreland basin; however, examination of Bhatia's (1983) 

definition of active continental margin shows that he included only Andean type 

continental margins in this category. 

Given the exclusion of foreland basin settings from Bhatia's (1983) study, it 

should not be surprising that the Goose Tickle group and Lower Head Formation are 

difficult to categorise using his parameters. In addition, many of the sandstones analysed 

were coarser than the recommended medium grain size. Despite all of this, some useful 

information can be derived from plots of major element parameters for the Goose Tickle 
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group and Lower Head Formation on the variation diagrams suggested by Bhatia ( 1983). 

Mafic and ultramafic sources inferred in chapter 4 are probably responsible for 

the high iron and magnesium content, whereas the high potassi•Jm feldspar content is 

reflected in a fairly high K20 to Na20 ratio. The chemistry may be further complicated 

by the possibility that reworked older sediments may have contributed a significant 

proportion of the detritus. 

AI20 3/Si02 vs. (fe20 3 +Mg0)% (figure 5.1) shows a positive correlation for all 

three formations. This is interpreted as a grain size/clay mineral effect, with the liner 

grain sizes showing a higher AI content (greater proportion of clay minerals) 

corresponding to a higher (Fe20 3 + MgO)%, and suggesting that the Fe and Mg is largely 

concentrated in clay minerals for all three formations. The narrower range of 

(Fe20 3 + MgO)% for the Lower Head Formation is interpreted to reflect the narrower 

range of grain sizes analysed for this formation. A similar trend is shown in the plot of 

Ti02% vs. (Fe20 3 +MgO)%, again suggesting that the concentration of Ti01% is partly 

grain size dependent (figure 5.2). 

The plot of K101Naz0 vs. (Fe20 3+Mg0)% (figure 5.3) shows a distinct 

difference between the Lower Head Formation and the Goose Tickle group. The Lower 

Head Formation shows a very wide range of K10/Na20 reflecting the variable 

plagioclase/total feldspar ratio from sample to sample. The American Tickle formation 

shows considerable scatter, reflecting both a wide range of (Fez03 + MgO)% (a grain size 

effect), and a fairly wide range in K20/Na20, although the overall K20/N~O ratio is 

lower than for the Lower Head Formation. The Mainland formation shows a more 
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Figure 5.1: Plot of Al20 3/Si02 vs. (Fe20 3 + MgO)% for the Goose Tickle group and 
Lower Head Formation. Fields after Bhatia (1983). A=Oceanic Island Arc. 
B=Continental Island Arc. C=Active Continental Margin. D=Passive Margin. 
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Figure 5.2: Plot of Ti02 % vs.(Fe20 3 +Mg0)% for the Goose Tickle group and Lower 
Head Formation. Fields keyed as in figure 5 .1. 
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restricted range of (Fez03 + MgO)% and K20/Na20. The diagram of AI20 3/(Ca0+ Na20) 

vs. (Fe20 3+ MgO)% (figure 5.4) is difficult to interpret. but shows a very wide variation 

of AI20/(Ca0+ Na10) for the Lower Head Formation, possibly again related to the 

variation from sample to sample in proportions of different types of feldspars. 

It is abundantly clear that the sandstones of the Goose Tickle group and Lower 

Head Formation bear no relation chemically to any of the fields out! ined by Bhatia 

(1983), and the effect of grain size, probably even within the range alluded to by Bhatia 

(1983), is significant. 

5.2.5.2 Variation Pia~rams From Roser and Korsch ( 1986) 

Roser and Kersch's (1986) paper resorted to the simpler approach of 

discrimination of three broad fields based solely on a plot of K20/Na20 vs. Si01 %. 

Analyses of sJndstones of the Lower Head Formation and Goose Tickle grou(J are plotted 

on figures 5.5 and 5.6, with Roser and Kersch's (1986) fields shown. Sandstones of 

both units generally straddle the boundary between the passive margin and active margin 

fields. Several of the samples. however. plot in the arc field, because they contain low 

Si02 % as a result of their high carbonate cement content. Although it is not clear how 

much of this carbonate is of biogenic origin, it can be inferred from the discussion in 

chapter 4 that at least some of it is derived from dissolution of carbonate rock fragments 

and is hence ultimately of biogenic origin. Roser and Korsch ( 1986) accommodated this 

problem by recalculating the major element parameters to 100% volatile and CaO free, 

and by correspondingly recalculating the field boundaries. The Lower Head Formation 
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Figure 5.4: Plot of Al20 3/(Ca0+ Na.zO) vs. (Fe20 3 + MgO)% for the Goose Tickle group 
and Lower Head Formation. Fields keyed as in figure 5 .1. 
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Figure 5.5: Plot of K20/N~O vs. Si02 % for the Goose Tickle group. Lower diagram 
plots values recalculated to 100% CaO and volatile free. Fields after Roser and Korsch 
(1986). ARC=arc. ACM=Active Margin. PM=Passive Margin. 
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and Goose Tickle group samples are shown plotted individually on a diagram revised in 

this manner with all samples now plotting in the active or passive margin fields. 

Since there is abundant independent evidence to show that the Lower Head 

Formation and Goose Tickle group were deposited in an 'active margin' setting. the 

plotting of a significant number of samples, particularly from the Mainland formation. 

in the passive margin field, must be addressed. There are three possible hypotheses to 

explain this observation: 

1. Most of the sands which plot in the passive margin field are from the Mainland 

formation, and several of those from near the inferred top of the section are particularly 

rich in silica. It is possible that towards the top of the Mainland formation a gradual 

change in provenance to a source richer in silica occurs, as originally suggested by 

Schillereff and Williams (1979). However, this hypothesis is not favoured because not 

all of the silica rich sands occur at the top of the section and in addition, sandstones from 

units stratigraphically above the Mainland form~tion show a similar scatter on either side 

of the passive/active margin boundary, although admittedly the data are sparse (see 

chapter 6, figure 6.11); 

2. A facies variation may be responsible for the chemical variation. The Mainland 

formation, particularly near its tot>, is characterised by several coarse and very coarse 

grained sands which have clearly been reworked and have had some of the fine material 

removed. Carbonate cement is common in these better sorted arenites and may be 
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replacive, particularly of feldspars. This may have affected the K20/N~O ratio in a 

complex way. Although this cannot be tested in a rigorous fashion with the data 

available, an inspection of appendix 5.3 shows that the expected relationship is shown 

in several of the coarse samples. Feldspar dissolution and replacement by calcite is 

particularly evident in the thin section of sample ML 26 and the effect on bulk chemistry 

is clear. Aluminium has presumably been removed from the system during the process 

of diagenesis, and silica has increased correspondingly. 

Thus the observed trend on the Roser and Korsch ( 1986) diagrams may be have 

been caused by a combination of mode of deposition, diagenesis, and the closure effect; 

3. The chemical signature of the source is responsible for the fact that many samples plot 

in the passive margin field. It has already been suggested that much of the siliciclastic 

detritus in the Lower Head Formation and Goose Tickle group may be recycled passive 

margin sediments. 

It is likely that a combination of the latter two hypotheses can best explain the marked 

passive margin 'affinity' of the Lower Head Formation and Goose Tickle group. 

5.2.5.3 Discrimination Dia&rams of Roser and Korsch 0988> 

Sandstones of the Goose Tickle group and Lower Head Formation were treated 

in the manner outlined by Roser and Korsch (1988), to try to determine whether a 

dominant source (basalt, andesite, felsic. recycled) could be identified chemically in these 
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units. Thus discriminant scores were calculated for major element parameters. which in 

this case were ratios of major element oxides to Al!03• The ratios were used rather than 

the individual oxide percentages, because (as discussed above) there may be biogenic 

carbonate in some of the samples, and Roser and Korsch ( 1988) designed the ratio 

discriminant functions to minimise the effect of biogenic carbonate. 

The discriminant scores, once calculated. were plotted on the territorial plot of 

Roser and Korsch (1988) (figures 5.7 and 5.8), but it was found that many of the 

samples did not plot on the diagram, principally because of high loadings on magnesium. 

This was particularly true for fine grained samples of the Goose Tickle group. 

Extrapolation of the fields of Roser and Korsch ( 1988) shows the sandstones plotting 

partly on Plext, which is a zone where PI (basalt) and P4 (recycled) tields overlap, and 

partly on P4. Roser and Korsch (19P8) were forced to constrLJct P 1 ext because certain 

of their samples which were clearly of mafic origin. plotted in the P4 (recycled) field. 

Roser and Korsch ( 1988) stated that the overlap arose because the samples used to 

construct their discriminant functions and hence their territorial plot did not contain 

sufficient representatives of sandstones derived from magnesian-rich mafic rocks. The 

fact that the samples from this study require extrapolation of Roser and Korsch 's (1988) 

fields as a result of high loading on magnesium may indicate a strong chemical signature 

from an ultramafic or mafic source. 

Roser and Korsch ( 1988) considered it unlikely that samples derived from a mafic 

source could be confused with those from a recycled source. It appears in this case that 

one cannot determine the extent of a recycled sedimentary source, since the signature of 
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the ultramafic/mafic source prevents lhis from clearly being identified. However in 

general b01h units would tend to plot on an extrapolated P4 as a resuh of the F I scores, 

suggesting lhat a recycled source did contribute. 

The investigation detailed above suggests that it is unlikely that discrimination 

diagrams have much application in the study of the geochemistry of sandstones from a 

mixed source, since a dominant chemical signature cannot be identified. It is ~lso 

notable that a grain size effect seems marked in these samples, whereas Roser and 

Korsch (1988) claim that the grain size effect is minimised by the use of these 

discrimination diagrams. 

5.2.5.4 Major Element Geochemistry- Discussion 

This study of major element geochemistry has shown a number of things. Firstly, 

a mafic or ultramafic source is suggested by the behaviour of magnesium. Secondly, 

although this signature prevents the clear distinction of any others, several of the 

approaches utilised suggest input from a recycled passive margin source. Although these 

observations are not surprising given the petrographic characteristics described in chapter 

4, they would be far more difficult to interpret in the absence of petrography. This 

indicates the inadvisability of carrying out geochemical investigations without supporting 

petrography. 

In addition, it is clear that grain size has had a major effect on chemistry, and for 

these samples none of the methods discussed above can successfully overcome the grain 

size effect, which is ultimately a consequence of mode of deposition. 
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Mode of deposition determines not only grain size, but proportion of matrix 

(where elements such as aluminium may be abundant) and initial porosity and 

permeability of the sediment. Primary porosity and permeability will intluence diagenetic 

reactions by providing pathways for addition or removal of elements. The effects of all 

of these factors can be observed in the major element geochemistry of the Goose Tickle 

group and Lower Head Formation. Far more attention should be paid to the overall 

sedimentology if major elements are to be used successfully in provenance investigations. 

5.2.6 Trace Element Geochemistry 

Trace element geochemistry has largely been addressed using methods similar to 

those of Van de Kamp and Leake (1985). This means that trace elements have been 

considered in terms both of their relationships to each other and also to major elements. 

5.2.6.1 Grain Size and al-alk 

It is clear from the discussion of major element geochemistry that it is important 

to be able to evaluate grain size effects when studying the chemistry of sandstones. As 

outlined in the discussion at the beginning of this chapter, the parameter al-alk can be 

used for this purpose. 

For data acquired in this study, a number of cautionary factors regarding al-alk 

must be taken into account. Clay minerals in the Lower Head Formation and Goose 

Tickle group arenites have two origins: firstly detrital and secondary clay matrix, which 

by definition is fine grained; and secondly large grains of detrital chlorite, some of which 
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are presumably altered serpentine. An increase in al-alk generally indicates an increase 

in the amount of sheet silicate material within the sample population and hence is often 

correlated with decreasing grain sizes. The samples from this study contain significant 

sand-sized grains of sheet silicate, and an increase in al-alk cannot be automatically 

assumed to be related to a decrease in grain size. Also, some finer grained samples 

contain carbonate cement which has replaced the clay minerals to a considerable extent. 

However, an inspection of the data tables in appendix 5 shows that, in general, fine 

grained sample!; do have higher al-alk, and the expected relationship is preserved even 

in these rather unusual samples. 

Both the Lower Head Formation and the Goose Tickle group show low overall 

al-alk values in comparison with those quoted by Van de Kamp and Leake ( 1985). This 

could indicate the presence of serpentine, as serpentine does not contain aluminium. Al

alk is also controlled by the compositions of the feldspars. An abundance of calcium rich 

feldspars and/or mica will result in high values of al-alk, whereas a paucity of calcium 

rich feldspars mav result in lower values of al-alk (Van de Kamp and Leake, 1985). As 

discussed in chapter 4, serpentine, if present at all , is in insufficient quantities to affect 

the major element chemistry. Thus the low overall values of al-alk are interpreted to 

retlect the dearth of calcium-rich feldspars, which has been demonstrated in chapter 4. 

Low al-alk in some individual samples, as discussed above, is attributed to replacement 

of feldspars or clay matrix by carbonate. 
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5.2.6.2 Correlation Matrices 

Van de Kamp and Leake ( 1985) demonstrated correlations by plotting a very large 

number of graphs showing relationships between various key major and trace element 

parameters. A more complete way of achieving the same goal is to construct a table of 

correlation coefficients for all Niggli parameters and trace elements. These were 

calculated for the Lower Head Formation and the Goose Tickle group using the statistics 

program SAS version 6.01. The results are presented in appendix 6. Variables which 

were below detection limits in all samples were omitted from the tabulation. Certain 

variables were below the detection limit for some individual samples only. In these cases 

values for the variables were set to detection limits to avoid effects produced by 

artificially low values. This follows the approach by Weber and Davis ( 1991) but it does 

lead to some anomalous results, notably the failure of Th to behave similarly to the other 

rare earth elements, because in a relatively large number of cases Th is below the 

detection limit. SAS does not include in the tabulation any samples with missing values. 

5.2.6.3 Correlation Matrix for the Goose Tickle ~roup 

In the Goose Tickle group the correlation between fm (a measure of the 

ferromagnesian content) and al-alk is moderate (0. 72), and there is similarly a moderate 

correlation between Niggli ti and al-alk. indicating that titanium and the ferromagnesian 

elements are largely, but not exclusively concentrated in clay minerals, probably mainly 

chlorite. 
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There is a strong negative correlation between al-alk and CaO%, as well as Niggli 

fm and CaO%, indicative of the fact that carbonate replaces clay minerals, and that some 

samples which have high amounts of carbonate cement, were reworked and were poor 

in clay minerals to begin with. Interestingly, Niggli Mg does not show a similar 

relationship with CaO, suggesting that Mg is present in carbonates to some extent. 

The weak correlation between niggli k and al-alk and between K20% and Ba 

suggests that potassium in these rocks occurs both in potassium feldspar and in clay 

minerals. If potassium feldspar were completely responsible for the variation in k then 

there would be a strong positive correlation between K20% and Ba, and if clay minerals 

were completely responsible there would be a strong positive correlation between k and 

al-alk. The hypothesis that Ba is partly associated with potassium feldspar is supported 

by the barium contents recorded in probe analyses of potassium feldspars (see chapter 

4). 

Al-alk is only weakly correlated with the rare-earth elements and zirconium, 

suggesting that these elements are not only present in clay minerals but also in the heavy 

mineral fraction. Vanadium is also moderately correlated with al-alk. 

Niggli mg does not show a marked correlation with any other parameter. The 

mean value of mg is moderately high, but the maximum value is very high (0.83), as are 

mean absolute values for Cr and Ni. These features were considered by Van de Kamp 

and Leake ( 1985) as indicative of input from an ultramafic source. Chromium is, 

however, only weakly correlated with nickel (0.69). This will be discussed below. 
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5.2.6.4 Correlation Matrix for the Lower Head Formation 

In the Lower Head Formation al-alk shows a weak positive correlation with ti 

(0.66) and a strong positive correlation with fro (0. 91). These relationships suggest that 

ferromagnesian elements are strongly related to the presence of clay minerals. Titanium 

shows some association with clay minerals but the weakness of the correlation is 

compatible with the fact that Ti is also present in opaque ti oxides and sphene. 

Al-alk is strongly negatively correlated (-0.82) with CaO% which indicates the 

absence of clay minerals where carbonate cement is abundant. Again, the relationships 

between K10%, Ba, and al-alk indicate that potassium is housed both within clay 

minerals and in potassium feldspar. 

Al-alk is very weakly correlated with Co, Cu. Ni and V. suggesting that these 

elements are present at least partly in association with clay minerals. 

Chromium shows no correlation with al-alk but is strongly positively correlated 

with Zr (0. 85), suggesting that both elements are present in the heavy mineral fraction. 

Niggli mg is not strongly positively correlated with any parameter, but is weakly 

negatively correlated with all of the rare earth elements and zirconium. Niggli Mg is 

moderately negatively correlated with strontium. 

Chromium, nickel and Niggli mg are higher than the average reported by Van de 

Kamp and Leake ( 1985) again suggesting a contribution by an ultramatic source. 

5.2.6.5 Comparisons Between the Goose-Tickle group and the Lower Head Formation 

The main differences between the Lower Head Formation and the Goose Tickle 
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group are that the Lower Head Formation displays stronger relationships between the 

pairs chromium/zirconium and fm/al-alk, and displays a poorer correlation between 

nickel and chromium. Mean absolute values of chromium and nickel are higher in the 

Goose Tickle group than in the Lower Head Formation, although the standard deviations 

about the mean are very high and overlap between the two units. 

These findings would be consistent with the increasing importance through time 

for an ultramafic source (which may partly be masked by grain size effects), however, 

they contrast with the findings for shales interbedded with the sandstones (Garver, 1991 

pers. comm.) where the average values of chromium and nickel in allochthonous shales 

are higher than those in parautochthonous shales. 

Neither the Goose Tickle group nor the Lower Head Formation preserves igneous 

trends as described by Van de Kamp and Leake (1985), as there is no negative 

correlation between Niggli mg and Niggli si, Cr and Ni do not correlate well with Niggli 

mg, and there is no negative correlation of Ni with al-alk. The rocks are enriched in 

silica with respect to Niggli mg despite the high overall values of mg, indicating that the 

chemical signature is dominated by a sedimentary influence. Thus the sandstones do not 

plot in the field typical of igneous rocks as outlined by Van de Kamp and Leake ( 1985) 

(see figure 5.9). 

Chromium in both units shows a relatively weak relationship with Ni, which is 

in striking contrast to the behaviour of Cr and Ni in shales interbedded with the Goose 

Tickle group and Lower Head Formation (Garver pers. comm. 1990) where the 

correlation coefficient between Cr and Ni is 0.95. 



600 

500 

CJ) 400 

0> 
0> 

z 300 

200 

100 

0 

.50 

600 

CJ) 500 

0> 
0> 

z 400 • 

300 

200 

100 

•• 
• • 

• • 
• • • • • • • • • .. !·· • • 

4lt • • • • 

4lt 

field of typical igneous rocks 

• 

.60 
Niggli Mg 

Lower Head 

• 
• 

• • • 

• 

- f ield of typ ical igneous rocks 

.50 .55 

• 

• 

.70 

• 

• • 
• • 

• 

• 

.60 
Niggli Mg 

255 

Goose Tickle 

• • 

.80 

• • 
• • • • •• • • • 
• • 
• • 

.65 

Figure 5.9: Plot of Niggli Mg vs. Niggli Si for the Goose Tickle group and the Lower 
Head Formation. Fields after Van de Kamp and Leake (1985). 



256 

The lack of clear correlation in both units of Cr with Niggli mg may be indicative 

of the fact that Cr is contained in opaque oxides, as a chromium spinel, and is also 

present in chlorite or adsorbed on clay minerals. Normally, a dominance of chromium 

oxides will result in a negative correlation with Niggli mg, whereas its presence in mafic 

silicates will result in a positive correlation with Niggli mg (Van de Kamp and Leake, 

1985). 

The behaviour of Niggli mg is problematic because of its tendency not to vary 

with any other parameter. However, it shows a moderate negative correlation with Sr 

in the Lower Head Formation, whereas it shows a very weak positive correlation with 

Sr in the Goose Tickle group. In the Goose Tickle group, Sr shows a weak correlation 

with CaO%, thus reinforcing the suggestion that an original trend for Mg has been 

obscured by a complex association of magnesium with carbonate cement. 

Rare Earth Elements in the Goose Tickle Group are strongly correlated with 

K20%, whereas in the Lower Head Formation there is virtually no correlation. This 

relationship is problematic and will be the subject of a later investigation. 

The inspection of the correlation matrices shows clearly that despite some 

similarities, the Lower Head Formation and Goose Tickle group are chemically distinct. 

Whether these differences are entirely a result of provenance variation is less easy to 

determine, but the complex behaviour of Niggli mg does suggest that diagenesis may 

have been a factor in determining the differing chemistry of each unit. 
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5.2.6.6 R-factor Analysis 

The correlation matrices described above can clearly provide useful information, 

but such large matrices are unwieldy. and reduction of the data to a number of 

underlying factors. if possible, seems desirable. R-factor analyses of the Goose Tickle 

group and the Lower Head formation were conducted separately using the procedure 

FACTOR in SAS 6.01 (SAS/STAT Users Guide, 1988). The mathematics of the method 

is thoroughly described in navis ( 1986) and the specifics of the procedure FACTOR are 

detailed in the SAS/STAT users guide (1988). The factors were then subjected to 

varimax rotation (e.g. Davis, 1986) to aid in interpretation. For each set of samples the 

software was instructed to calculate Kaiser's Measure of Sampling Adequacy to 

determine the acceptability of the data (SAS/STAT Users Guide, 1988). 

for each sedimentary unit, two sets of parameters were analysed. The first group 

includes al-alk, Niggli ti, Niggli fm, Zr, Cu. Ni, Co, and Cr and represents an attempt 

to relate the behaviour of key trace elements to that of major elements (see introduction 

to this chapter). Initially an attempt was made to include Niggli mg, but measures of 

adequacy were far below acceptable levels, as Niggli mg does not show a strong 

tendency to vary with any other parameter. 

5.2.6.7 R-factor Analysis for the Goose Tickle 2roug 

for the Goose Tickle group, the overall sampling adequacies were acceptable 

( >0.5) but the individual value for Cr was not. Three factors were isolated (see 

appendix 6). The first factor of the rotated set contains strong loadings on Zr and Niggli 
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ti, with moderate loadings on al-alk, Cu and Co, and is interpreted to reflect a 

heavy/mafic mineral factor. The loading on al-alk for this factor would indicate the 

presence of heavy minerals containing aluminium, such as garnet, biotite, and chlorite. 

Zirconium and Ti are probably present in the heavy minerals zircon, rutile and sph~ne, 

all of which have been observed in the Goose Tickle group, and Cu and Co may 

substitute in the structures of the mafic minerals. 

The second factor exhibits high loadings on fm and al-alk, and moderate loadings 

on Cu. Ni, Co, and Niggli ti., and is interpreted as a clay mineral factor. This indicates 

that ferromagnesian elements and copper, nickel, cobalt, and titanium are associated with 

clay minerals, probably mainly chlorite. 

The third factor is characterised by strong loadings on chromium, nickel, and to 

a lesser extent cobalt and copper, and would, according to Hiscott (1984) and Garver 

(pers. comm. 1992) be interpreted as an ultramafic factor. 

The second group of parameters which was factor analysed for the Goose Tickle 

group was the group Niggli ti, Zr, Y, Cu. Ni, V, Co, and Cr, which is a similar set of 

parameters to those analysed by Hiscott (1984) (with the exception of cobalt). Sampling 

measures were adequate for this group of parameters. The rotated factor pattern involves 

one factor with strong loadings on Zr, Niggli ti, andY, and lesser loadings on V, Co and 

Cu. This is interpreted as the heavy mineral factor analogous to that described above. 

Yttrium is commonly found in some quantities in zircon, and may also be associated with 

the minerals xenotime (which has not been identified in the Goose Tickle group) and 

monazite (which has been found in the Goose Tickle group). Vanadium is commonly 
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found in some quantity in sphene. 

The second factor displays strong loadings on Cr and Ni, with a smaller loading 

on copper, and is interpreted as the ultramafic factor. The third factor shows strong 

loadings on V and Co, with lec;ser loadings on Ni and Niggli ti and is interpreted as the 

clay mineral factor. 

Although factor analyses of the two groups show essentially the same results, it 

is clearly much easier to distinguish the clay mineral from the mafic mineral factor if 

major element parameters are involved in the analysis. 

5.2.6.8 R-factor Analysis for the Lower Head Formation 

For the Lower Head Formation, the same sets of parameters as for the Goose 

Tickle group were factor analysed. The overall sampling adequacy was acceptable, but 

the individual sampling adequacies for zirconium and chromium were not acceptable, 

therefore result~i for the Lower Head Formation cannot be considered statistically 

ngorous. However, factor analysis does seem to bear out the relationships which can 

be deduced based on an inspection of the correlation matrix. 

The first group of parameters discussed is the group which includes major element 

parameters. The first factor shows a very strong loading on Zr and Cr, with a moderate 

loading on Niggli ti and would be interpreted as a heavy mineral factor. The second and 

third factors have moderate loadings on al-alk. The second factor, with strong loadings 

on fm and moderate loadings on Ni and Niggli ti is interpreted as a clay mineral factor. 

The third factor with its fairly strong loadings on copper, cobalt, and moderate loadings 
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on ti and fm is interpreted as a mafic mineral factor. A fourth factor is regarded as an 

artifact of the unsuitability of the data for this treatment. 

Sampliug adequacies on the trace element data for the Lower Head formation 

were below acceptable levels both overall and individually for Ni, Zr, V, and Y. The 

first of the rotated factors contains a strong loading on Cr, Zr, and Niggli ti, mimicing 

the results found for the previous group of parameters and is therefore interpreted as a 

heavy mineral factor. The second factor would again be interpreted as a mafic mineral 

factor, and the third factor again is interpreted as a clay mineral factor. Nickel and 

vanadium in this case show a strong loading on a fourth, less important factor, which 

may be related to the presence of diagenetic pentlandite in some of the sediments 

(Botsford, 1988), or may be an artifact of the inadequacy of the data. 

5.2.6.9 R-factor Analysis- Discussion 

R factor analysis, although not completely satisfactory for the small numbers of 

samples available, does seem to support the observation made by inspection of the 

correlation matrices that chromium in the Lower Head Formation is concentrated in 

heavy minerals. and is not related in its behaviour to nickel, whereas in the Goose Tickle 

Group. chromium shows a stronger relationship to nickel and many elements show a 

stronger correlation to al-alk. 

5.2.6. 10 The Ultramafic Factor - Discussion 

The behaviour of Cr and Ni as indicators of an ultramafic source should now be 
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discussed, since the isolation above of an 'ultramafic factor' for the Goose Tickle group 

does not address the question of where in the sandstone framework these elements are 

housed, or why Cr behaves differently in the Lower Head Formation. 

As discussed in the introduction to this chapter, Cr and Ni may occur in a number 

of different minerals. It is clear from chapter 4 that Cr and Ni may occur in significant 

amounts in chlorites, but that their relationship to each other in the examples of this 

mineral probed shows no readily observable pattern. The major mineral in which Cr is 

usually assumed to reside is chromite, where Cr20 3 may constitute up to 50% of the total 

weight of the mineral. Chromite grains have certainly been identified in heavy mineral 

layers in Goose Tickle group, yet the element Cr does not show a correlation with the 

other heavy mineral tracer elements such as Zr. In addition, Ni is present in chromite 

only in very small proportions, and yet Ni and Cr show a moderate correlation in Goose 

Tickle group sandstones and a very strong correlation in shales (Garver, pers. comm. 

1991). 

The answer to these questions may lie in the fact that Cr and Ni may be adsorbed 

on clay minerals as well as substituting directly within the clay mineral structure. It is 

here postulated that the adsorption effect may not vary in response to the proportion of 

clay minerals present in the sample, but in response to the abundance of Cr and Ni ions 

in the dissolved load supplied along with the sediment load. Thus it is suggested that a 

greater amount of Cr and Ni was supplied in the dissolved load to the Goose Tickle 

group, and it is this factor which is commonly identified as the ultramafic factor. It is 

unclear why Cr would not show some variation with the tracer elements for heavy 
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minerals, but it is possible that an increase in physical supply of chromite correlates with 

an increased supply of dissolved Cr and Ni ions thus masking any tendency of chromium 

to behave similarly to other heavy mineral elements. 

A factor analysis of trace element parameters from all of the sandstones, Goose 

Tickle group and Lower Head Formation combined was carried out (not shown in 

appendix 6) to see if the ultramafic factor could be identified in the combined group of 

samples. The results are not reproduced here as they are not substantially different from 

those oullined above, and despite the larger number of samples, which should have been 

adequate, some sampling adequacies were not acceptable. For the combined set of 

samples, the loading shown by Cr on the heavy mineral factor is very small. The 

number of samples of Goose Tickle group in this analysis only slightly exceeded the 

number of samples of Lower Head Formation, and the behaviour of Cr in the combined 

analysis suggests that the 'ultramafic factor' may mask the tendency of Cr to behave with 

the other heavy minerals. This may explain why Hiscott (1984) did not observe a 

relationship such as that observed in the Lower Head Formation, as the number of 

autochthonous sandstones analysed by Hiscott ( 1984) outnumbered the allochthonous 

sandstones by 29. 

An increased supply of Cr and Ni ions in the dissolved load might imply a greater 

intensity of weathering and breakdown of mafic minerals in the source area of the Goose 

Tickle group relative to the Lower Head Formation. This hypothesis may be supported 

by the (admittedly rather sparse) evidence from probing of chlorites (chapter 4) , that the 

highest values of Cr and Ni implying the greatest degree of alteration of mafic and 
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ultramafic minerals were seen in chlorites of the Goose Tickle group. Possible 

independent evidence for intense weathering conditions in the llanvirn has been provided 

by Casey and Kidd (1981) who observed a strongly hematised weathering profile on the 

Bay of Islands Ophiolite, which they infer to have been exposed in the llanvirn. 

5.2.6.11 Utility of Factor Analysis 

Clearly, the inclusion of major element parameters in a factor analysed group 

above does not substantially affect the perceived relationship between trace elements, and 

hence the inclusion of major elements in the factor analysis can aid considerably in the 

interpretation of trace element behaviour. Al-alk, in this particular case, allows for an 

easier distinction between the clay mineral and mafic mineral factors. 

It is also clear that distinctions may be made between the behaviour of elements 

in different units using the general method of Van de Kamp and Leake ( 1985) and using 

factor analysis, if variables are chosen carefully and if sufficient numbers of samples are 

included in the analysis. Thus the methods may have significance in detailed local 

studies as well as in the more regional studies envisioned by Hiscott (1984) and Garver 

(pers. comm. 1991). Interpretations must be made with reference to sandstone 

petrography, however, and in this context it is clear that comment cannot be made on the 

high values of Cr and Ni recorded by Garver (pers. comm. 1991) in the shales of the 

Lower Head Formation. Botsford ( 1988) has suggested that Cr is present in these shales 

in silt sized grains of chromite, whereas Ni is present in pentlandite, which Botsford 

( 1988) interpreted as being of diagenetic origin. How the petrography of these shales 
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differs from those of the Goose Tickle group is crucial to an interpretation of the trace 

element behaviour and abundance between the two units. 

Davis (1986), in his appraisal of factor analysis, stated that much of the 

information derived from a factor analysis can simply be obtained by inspection of the 

correlation matrix. Although the factor analyses here are generally not statistically 

rigorous, this does not invalidate the interpretations derived from inspection of the 

correlation matrices. The fact that the factor analysis largely bears out the observations 

made from the correlation matrices shows that it can be a useful aid to interpretation. 

5.2.6.12 Other Trace Element lnvesti2ations 

Basu et al. (1990) utilised a number of different plots of key trace and rare-earth 

element parameters to evaluate the behaviour of certain incompatible elements vs. the 

behaviour of compatible elements, and in addition to evaluate the importance of heavy 

mineral sorting of fluvial sands of the Amazon basin. The trace element data may be 

compared using the ternary diagrams Th-Hf-Co (Co representing a strongly compatible 

element, and Th representing an incompatible element), and La-Th-Sc (with Sc 

representing a compatible element and La and Th representing incompatible elements). 

Scandium is a rare earth element (see below), but is a smaller cation, tending to behave 

differently from other rare earth elemen·s and similarly to ferromagnesian cations such 

as V, Cr, Ni, and Co. 

Diagrams showing plots of Th-Hf-Co and La-Th-Sc for the Goose Tickle group 

and Lower Head Formation are shown on figures 5.10 and 5.11. The average values of 
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Figure 5.10: Th-Hf-Co diagram for the Goose Tickle group and the Lower Head 
Formation. UCC = Upper Continental Crust. BCC=Bulk Continental Crust. (values 
from Taylor and McLennan, 1985). 
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Figure 5. 11: La-Th-Sc plot for the Goose Tickle group and the Lower Head Formation. 
Abbreviations as in figure 5.10. 
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these parameters for Upper Continental Crust and Bulk Continental Crust are plotted also 

for comparison (Taylor and Mclennan, 1985). Both the Goose Tickle group and the 

Lower Head Formation show a linear trend towards depletion in Co relative to bulk 

continental crust, but are relatively enriched in Co relative to upper continental crust, 

indicating the influence of a mafic source. A number of samples from the Goose Tickle 

group contain values close to bulk continental crust, probably retlecting their high content 

of mafic minerals. The linear trend indicates that the relative amounts of Th and H f vary 

little and probably represents a trend towards enrichment of Th and Hf by concentration 

of heavy minerals. 

The La-Th-Sc plot appears to show a significant difference between the Lower 

Head Formation and the Goose Tickle group. The Goose Tickle group shows a 

relatively narrow range of Sc values, but varie~ in the relative amounts of Th and La, 

perhaps reflecting variations in heavy mineral content. The Lower Head Formation 

shows a conflicting trend towards a relatively constant concentration of Th with variable 

and higher Sc contents than in the Goose Tickle group. A few samples depleted in Sc 

probably reflect concentration of heavy minerals. 

An inspection of the correlation matrix for the Goose Tickle group shows that Sc 

is very strongly correlated with V (0.90), and moderately correlated with Co (0.73) . It 

shows only a very weak correlation with Cr (0.39) and a weak correlation with Ni (0.53) 

and al-alk (0.57). 

In the Lower Head Formation Sc shows a slightly weaker correlation with V 

(0.83) a slightly stronger correlation with Ni (0.60) and a weaker correlation with Co 
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(0.60). Sc in the Lower Head Formation shows no correlation with Cr (0.17) and al-alk 

(0.31). 

These relationships might suggest that Sc occurs in mafic minerals in the Lower 

Head Formation, whereas it may have a greater tendency to be associated with clay 

minerals and to be present as adsorbed ions in the Goose Tickle group. Thus the trend 

for the Lower Head Formation might reflect an 'unweathered' trend as 'lpposed to a 

'weathered trend' for the Goose Tickle group. 

Alternatively, the trend for the Lower Head Formation is similar to trends shown 

by Taylor et al. ( 1990) as typical of active margin samples, displaying a mixing of upper 

crust and arc sources. The pattern shown by the Goose Tickle group might then be more 

indicative of a 'trailing' edge or passive margin signature. This would be consistent with 

some of the inferences made from major element variation diagrams regarding the 

passive margin affinities of the Goose Tickle group. 

5.2.7 Rare Earth Elements 

Rare earth elements (REES) include the lanthanide elements (La to Lu) as well 

as Y which behaves similarly to the heavy rare earths, and Sc which behaves similarly 

to other small cations such as V and Cr. McLennan ( 1989) has noted that REES and Sc 

have very low solubilities in natural waters and have low residence times in ocean water. 

This means that they have heterogeneous distributions in seawater and so may be useful 

for provenance. Bhatia ( 1985) discussed the significance of rare earth elements for 

provenance studies, and attempted to discriminate provenance on the basis of several 
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REE parameters. 

McLennan ( 1989) suggested that discrimination of provenance on the basis of 

REES is premature since there are not enough data for comparison, much published REE 

data is incomplete, and the quality of the data is variable. These comment'! are relevant 

to this study as the complete suite of REES was not analysed, and in many cases 

measured values are close to the detection limits, resulting in large errors. This is 

particularly true of Th, which is in several cases below detection limits, and other cases 

is at the detection limit. In addition, the complications of using REES to study 

provenance include the fact that concentrations of heavy minerals can (and have in the 

case of the Lower Head Formation and the Goose Tickle group) affect the REE 

concentration. REE concentrations are particularly high in specific minerals such as 

monazite and allanite, and zircon shows an enrichment in heavy REES. 

The production of chondrite normalised plots (figure 5. 12) for these units must 

therefore be considered semi-quantitative only. Individual plots for both the Goose 

Tickle group and Lower Head Formation (not shown in figure 5.12) show generally 

expected patterns with an enrichment of light REES relative to heavy REES. Negative 

europium anomalies predominate in individual samples, although some samples appear 

to have smooth patterns. 

Taylor et al. (1990) have produced typical chondrite normalised plots for 

sandstones of varying provenance but like many other authors, they do not include any 

samples from foreland basins. In terms of overall REE abundance, and light REE 

enrichment, the sandstones from the Goose Tickle group and Lower Head Formation 
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(which are almost identical) display patterns most similar to trailing edge sands of Taylor 

et al. (1990). It seems that on the relatively local scale of this study, REES may be less 

useful than major and trace elements in distinguishing subtle provenance variations. 

5.3 CONCLUSIONS 

5.3.1 Geochemistry of the Goose Tickle iroup and Lower Head Formation 

1. Just as the Lower Head Formation and Goose Tickle group were deemed in chapter 

4 to be petrographically distinct, they are also geochemically distinct on the basis of both 

major and trace element geochemistry. 

2. Sandstones of both the Lower Head Formation and the Goose Tickle group display 

chemical characteristics of both active margin and passive margin sandstones, with a 

marked signature generated by anomalously high values of Mg, particularly in the 

American Tickle formation. This is interpreted as the signature of an ultramafic source. 

which is enhanced by a grain size effect. The passive margin signature is viewed as 

supporting evidence that recycled sediments may have provided the bulk of the quartzo

feldspathic detritus to these units. 

3. High Cr and Ni values appear to define an 'ultramafic factor', but Cr in the Lower 

Head Formation behaves differently to Cr in the Goose Tickle group. In the Lower Head 

Formation Cr is correlated with elements which suggest L."lat Cr is present predominantly 
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in the heavy mineral population. In the Goose Tickle group Cr is more strongly 

correlated with Ni. The difference in behaviour is here ascribed to more intense 

weathering of ultramafic material in the source area of the Goose Tickle group providing 

a greater supply of Cr in the dissolved load. The Cr ions were ultimately adsorbed on 

clay minerals. 

5. 3. 2 Methodolo~:y 

I. Interpretation of provenance based on sandstone geochemistry must be carried out with 

reference to overall sedimentology, including mode of deposition and diagenesis. 

2. None of the presently available major element discrimination or variation diagrams 

seem suitable for analysis of foreland basin sandstones, and in general more study of 

foreland basin sandstone geochemistry is needed (although it should be noted that Schwab 

( 1986) has provided a summary of available geochemical data for these types of 

sandstones - see chapter 7). 

3. The production of a correlation matrix incorporating both major and trace element 

parameters can provide useful information, but if many elements are analysed, the 

process of interpretation may be complex. Correlation matrices can provide information 

on aspects such as diagenesis and climate as well as provenance. It is preferable to 

produce a correlation matrix rather than to select key parameters for graphical plots, 

because the correlation matrix more completely characterises the chemistry of the unit 
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and may show unexpected, but still informative relationships. 

4. R-factor analysis can aid in the interpretation of both major and trace element 

behaviour, but in certain cases where the number ~Jf samples may be too small, or the 

data is unsuitable for factor analysis, useful interpretations based on inspection of the 

correlation matrix can still be made. 

5. Use of the parameter al-alk in correlation matrices and factor analysis allows the effect 

of grain size variation to be accounted for. Thus inspection of correlation matrices which 

include both major and trace element parameters, accompanied where appropriate by 

factor analysis, is considered a more useful approach to provenance investigations than 

the use of major element discrimination and variation diagrarr.s. 

The conclusions regarding methodology are in keeping with those of Molinaroli 

et al. (1991). These authors examined various petrographic and geochemical methods for 

provenance determination (al!hough none of the chemical methods utilised here were 

investigated). Using discriminant function analysis Molinaroli et al. (1991) discovered 

that none of the models they tested could classify with complete success the data which 

were used in the original construction of the models. Molinaroli et al. (1991) suggested 

that deterministic models of provenance interpretation are not successful, and that 

actualistic models of proveuance interpretation constructed on a case by case basis may 

be more appropriate. The reliabilit!' of provenance interpretation, they suggested, must 
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be improved by utilising a combination of different methods of investig~tion. as well as 

statistical analysis of the data. Based on the investigations of geochemical methodology 

in this chapter. the author concurs with these statements. 

The type of geochemical investigation used in this study, viz. the combination of 

analysis of correlation matrices and factor analysis of rr.ajor and trace element parameters 

is, to the author's knowledge a new variation on the study of ge11Chemical data in 

sandstones, and clearly has potential in actualistic studies of the type envisioned by 

Molinaroli et at. (1991). 
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Information from chapters 2 and 3 has suggested that sandstones of the Goose 

Tickle group and Lower Head Formation may not be entirely derived from the Humber 

Arm and Hare Bay Allochthons. Although an intrabasinal source for black and green 

shale fragments has been clearly identified, the general petrographic and geochemical 

characteristics of the two units suggest that multiple sources, most of them extrabasinal , 

have contributed. The overall petrographic uniformity of the units suggests that mixing 

of the extrabasinal ~ources has taken place prior to deposition. The information derived 

from field studies is not, however, adequate to determine whether the sandstones in either 

unit were derived wholly from sources whose equivalents are now preserved in western 

Newfoundland, or whether mixing of sediment fiom exotic and local sources took place 

prior to transport !nt0 the ff'redeep and trench slope basins. 

It is now appropriate to try to identify the possible source terranes for the grain 

types which have been identified in chapter 4. Cambrian sandstones are of particular 

interest as possible sources of recycled siliciclastic detritus. Because of the diver!ie 

nature of the detritus in the Goose Tickle group and Lower Head Formation, information 

from other miscellaneous sandstone units may also have a bearing on provenance. 

Methods for data collection from Cambrian and miscellaneous sandstone units 
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were similar to those outlined in chapters 4 and 5. Petrograrhic dara for these units are 

provided in appendix 4, sections A4.4 and A4.5. Geochemical data are provided in 

appendix 5, sections A5.7 through A5.10. 

Sev~ral possible source terranes for detritus in the Lower Head Fvrmation and 

Goose Tickle group have been suggested by other authors (see chapter I) or are 

possibilities. They are: 

1. Peripheral bulge or related featuie; 

2. Humber Arm and Hare Bay allochthons; 

3. Grenville basement; 

4. Fleur de Lys Supergroup; 

5. Dunnage or similar island arc terrane. 

6 .2 PERIPHERAL BULGE AND OTHER BASIN MARGIN FEATURES. 

6.2. 1 Peripheral Bulge 

Jacobi (1981) proposed a tectonic model for western Newfoundland which 

explained the widespread unconformity in Early and Middle Ordovician Appalachian 

carbonate units as being a result of upwarp on a peripheral bulge along the western side 

of the foredeep basin. He further stated that the paleocontinental margin 'drifted east 

over a peripheral bulge and on into the trench ' . This implies that the peripheral bulge 

is a permanent feature of a foreland basin while it is undergoing loading and tlexure (see 

also Quinlan and Beaumont, 1984). Thus the bulge, which was certainly present during 

the Arenig at the time of deposition of the Lower Head Formation (e.g. Knight et al.. 
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1991), was also a presumably a feature cf the basin during deposition of the Goose 

Tickle group. 

Exposure of the periphe.-al bulge would have generated a supply of detritus from 

the western margin of the basin. This detritus would have been derived from platformal 

sediments which now constitute the majm part of the parautochthonous sequence. The 

uprermost examples include the shallow water carbonates of the Port au Port Group, the 

St. George Group and the Table Head Group, none of which are likely to have been 

major sources for quartzo-feldspathic siliciclastics. 

6.2.2 Faults Alon~ the Western Margin of the Basin 

Some considerable portion of basin subsidence could have been accommodated 

along faults on either side of the foredeep basin (e.g. Bradley, 1989). It has been 

suggested (Waldron and Stock mal, 1991) that these might include reactivated rift faults. 

It has been shown by Stenzel et al. (1990) and Stenzel (1992) that the Cape Cormorant 

Formation, which directly underlies the Mainland formCI.tion, was derived from a fault 

scarp which unroofe<J a considerable section of the carbonate platform along the western 

ma:-gin of the basin. Minor calcarenite beds interbedded with the sandstones of the 

Mainland formation suggest a periodic supply from a similar source, but comparable 

lithologies are not present in the American Tickle formation. Minor calcarenites in the 

Lower Head Formation may also have been derived from the faulted western margins of 

the trench slope basins. 

Again, there is no evidence to suggest that these faults exposed a significant 
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amount of siliciclastic material. 

6.2.3 Faults Alon~ the Eastern Margin of the Basin 

On the eastern margin of the foredeep basin. conglomerates and calcarenites of 

the Daniel's Harbour Member are interpreted to have been derived from unroofing of the 

floor of the foreland basi;1 and the upper part of the carbonate platform along faults 

which may have been generated in the early stages of emplacement of the Humber Arm 

and Hare Bay allochthons (Stenzel et at.. 1990). 

Although this mechanism may supply detritus to the foredeep basin. the Daniel's 

Harbour Member is dominated by ca;bonate detritus. and is unlikely to be closely related 

to sources of siliciclastic detritus in the Goose Tickle group. Faults which generated the 

Howe Harbour member (see chapters 2 and 3) clearly exposed lithologies v:hich were 

unrelated to the basin margin and provided extrabasinal detritus. and these faults are best 

considered as compressional features within the source area. rather than a basin margin 

feature. 

Faulting also took place along the eastern margin of the trench slope basin (or 

basins) in which the Lower Head Formation was deposited. These unroofed sediments 

locally provided a variety of sedime·1tary detritus derived from sediments similar to the 

Cuw Head Group (see chapter 3), but Cow Head type detritus is not otherwise 

widespread in the Lower Head Formation. 
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6.2.4 Older Parautochthonous Sandstones 

Potential sources of siliciclastic sediment in the parautochthon lie below the 

platforrn carbonates, and are rt>lated to rifting and the early phases of development of the 

passive m:u-gin. They include the Bradore, Bateau and Hawke's Bay Formations, along 

with the volcanic Lighthouse Cuve Formation. The bulk of the siliciclastic detritus in 

the parautochthonous sequence was probably derived from Grenville basement. None 

of the sedim~nt supply routes described above appear likely to have penetrated on a 

regional scale through the carbonate platform to the underlying siliciclastics, and thus 

parautochthonous siliciclastic units are unlikely to have been exposed to provide extensive 

detritus to the Lower Head Formation and Goose Tickle group. In addition. the 

interpretation of the Lower Head Formation as a trench slope basin located on the east 

side of the foredeep basin (see chapter 3) makes it unlike.J that sediment from the 

western margin could have penetrated into its area of deposition. 

An investigation into the makeup of Cambrian parautochthonous siliciclastics is , 

however, relevant, as related rocks may have provided detritus which was subsequently 

recycled into the Lower Head Formation and Goose Tickle group. The main 

parautochthonous Cambrian sandstone units are briefly described helow. 

6.:2.4. I Bradore Formation 

The Bradore Formation is a Cambrian unit which unconformably overlies 

Grenvillian crystalline basement (Williams and Stevens, 1969; Hiscott et al., 1984). It 

consists of coarse conglomerates, pink subarkosic sandstones, and white quartzites 
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(Williams and Stevens. 1969: Waring. 1975; Hiscott et al.. 1984). The lower part of the 

unit has been interpreted as having been deposited by braided streams (Hiscott et al.. 

1984) and the upper part is of shallow marine origin. On the islano of Belle Isle. 'Jff t!1c 

northern tip of the Northern Peninsula. the Bradore Formatiou unconformably overlies 

matk volcanics of the Lighthouse Cove Formation (Williams and Stevens. 1969) . These 

volcanics are continuous with mafic dykes which intrude the crystalline basement and arc 

generally interpreted as having been formed during the rifting process. 

Williams and StPvens ( 1969) described the framework constituents of the Bradore 

Formation as quartz and feldspar, with local magnetite and minor metamorphic rock 

fragments . They reported the presence of purplish amygdaloidal basaltic rock fragments 

in places but described these occurrences as being restricted to certain horizons. The 

author was able to study conglomeratic and pebbly sandstones from the Bradore 

Formation collected by N.P. james and also collected some pink pebbly sandstone with 

abundant skolithos burrows from a locality near Hawke's Bay. No samples were point 

counted. 

The grains are well rounded, and are cemented by quartz overgrowths. Quart~ 

and potassium feldspars (both microcline and orthoclase) predominate. The chemistry 

of the Bradore shows very low levels of trace elements reflecting the dilution e ffect of 

abundant silica in the unit. In fact, the loading on silica is so high that the analyses do 

not plot on the discrimination diagram of Roser and Korsch ( 1988) (fil ure 6 . I) . This 

is not surprising, since the diagrams of Roser and Korsch ( 198t') are essentially des igned 

for turbidites. Otherwise the Bradore clearly displays the siJnat~re of having been 
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deposited on a passive margin (figure 6.2). 

On Belle Isle. there is another unit of conglomerates and quartzose sandstones 

known as the Bateau Formation (Williams and Stevens. 1969). The Bateau Formation 

is similar to the Bradore Formation in some respects but is cut by dykes related to the 

Lighthouse Cove Formation. Belle Isle is the only locality where this relationship is 

displayed. however Tuke ( 1966, 1968) noted the existence of quartzose sandstones off 

the northeast coast of the Northern Peninsula which he equated with the Bradore 

Formation, but which Williams and Stevens ( 1969) equated with the Bateau Formation. 

Detailed petrographic information is not available for the Bateau Formation. but field 

descriptions suggest that it is similar to the Bradore and Hawke's Bay (see below) 

formations. 

6.2.4.2 Hawke's Bay Formation 

The Hawke's Bay Formation is a Cambrian unit of variously coloured quartzose 

sandstor.~s with minor shales. The unit has been interpreted as shallow marine in origin 

(Knight, 1983). 

Sandstones of the Hawke's Bay Formation are moderately to poorly sorted ancl 

the grains are. rounded to subangular. Silica cement is ubiquitous and consists of very 

well developed amu.lgamated quartz overgrowths. Variable amounts of opaque oxide 

cement were also observed. A small amount of clay matrix is present in areas of the 

sample where there are no quartz overgrowths. Quartz grains are well rounded and show 

slightly undulose extinction. A small proportion of the grains show multiple vacuoles 
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and contain mineral inclusions. Feldspars include both porassium feldspar and 

plagioclase feldspar. Potassium feldspars (Plate 6.1) are euhedral. cloudy and may 

contain rounded cores of clearer feldspar. or of plagioclase feldspar. Tll~y luminesce 

bright blue under cathode luminescence, which is somewhat at odds with their apparently 

authigenic origin (see e.g. Kastner, 1971). 

Zircon, muscovite, and tourmaline have been identified as accessory minerals. 

Glauconite is present in a section along the south shore of the Port au Port Peninsula 

(appendix 1, location map 1). The grains are rounded. cryptocrystailine. and are 

associated with small opaque iron oxide particles which have grown bOlh within the 

glauconite grains and surrol!nding them. Chemically, the Hawke 's Bay Formation is 

silica rich and shows chemical characteristics of having been deposited in a passive 

margin (figures 6.1 and 6.2). A notable feature of the chemistry of both the Hawke's 

Bay and the Bradore formations is the extraordinarily high concentration of Co which is 

enigmatic but may be associated with opaque cementing materials in both units. 

6.3 THE HUMBER ARM AND HARE BAY ALLOCHTHONS - POTENTIAL 

,SOURCES OF RECYCLED SEDIMENT 

Cambrian siliciclastic units in the Hare Bay and Humber Arm allochthons arc 

important to consider when investigating the provenance of the Goose Tickle group and 

Lower Head Formation, as similar units may have been located in a position where they 

could have provided detritus to younger Ordovician sandstones. These allochthonous 

Cambrian units are interpreted as deeper water slope/rise equivalents of the Cambrian 
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Plate 6.1: General appearance of Hawke's Bay sandstone cemented by opaque material. 
Yellow grains are potassium feldspar. Plane Polarised Light. X32. 

Plate 6.2: Distinctive chlorite grains in the Irishtown Formation. Blue line was used to 
locate the grain. Plane polarised light. X31 0. 
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parautochthonous siliciclastics. They are generally considered to have a westerly 

provenance and the siliciclastic material is probably derived from Grenville basement 

(Stevens, 1970). 

6.3. 1 Blow me Down Brook. Summerside. and Maiden Point Formations 

The Blow me Down Brook and Summerside formations are two units of 

predominantly coarse-grained thick-bedded sandstones with lesser proportions of red and 

green slates, and minor dark grey slates. The sandstones are dominated by the A 

division of the Bouma sequence and are interpreted as having been deposited by high 

concentration turbidity currents (e.g. Lindholm and Casey, 1989). The Summers ide 

Formation was previously thought to be the lowermost formation of the Curling Group 

(Stevens, 1965; Botsford, 1988) and may be late Precambrian or Early Cambrian in age. 

The Blow me Down Brook Formation was once thought to be an Ordovician 

equivalent to what is now known as the Lower Head Formation, but it was later 

interpreted as being late Precambrian or Early Cambrian in age (Quinn, 1985, 1986; 

Waldron, 1985; Lindholm and Casey, 1989, 1990) isolated as the highest thrust slice 

within the sedimentary package of the Humber Arm Allochthon (e.g. Quinn, 1985; 

Cawood and Botsford, 1991). 

As part of this study the author collected acritarch samples from the Blow me 

Down Brook Formation at its type section. These samples were processed and specimens 

identified by P. Cashman of the University of Saskatchewan. He determined the age ao; 

Early Middle Cambrian, which is rather younger than the age inferred by Lindholm and 
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Casey (1990) . The Blow me Down B:-ook Formation may be an equivalent of the 

Summerside Formation, or, as suggested by Quinn (1985), may be older. Both the Blow 

me Down Brook and Summerside Formations have been interpreted as slope/rise deposits 

related to rifting dnd the early development of the continental margin, but this is 

controversial (Williams and Hiscott, 1987; Lindholm and Casey, 1989). 

In the Bonne Bay area, Quinn (1985), mapped an equivalent to the Blow me 

Down Brook Formation which she informally named the Sellars formation. Quinn 

( 1985) carried out a petrographic analysis of the Sellars forJTiation in the Bonne Bay area. 

The results of this analysis are shown in figure 6.3 for comparison with results from 

Cambrian sandstones examined for this study (figure 6.4). Note that Quinn (1985) did 

not use the Gazzi-Dickinson method in her study, but the datasets are still generally 

comparable (see discussion in Quinn, 1985). 

The sandstones of the Blow me Down Brook Formation are poorly to very poorly 

sorted with a high variability in grain size, ranging from matrix to pebble size. 

Framework grains are sub-angular to rounded. They are generally equant and show no 

obvious preferred orientation. The matrix content is very high, and matrix minerals 

consist of chlorite/sericite with some illite identified in the S =:M. Pink pl .. gioclase 

feldspars are very distinctive in some beds of the Blow me Down Brook Format1on. hut 

are not present in others. Generally speaking, the unit h lithic poor, and feldspars are 

almost exclusively plagioclase. Schwab (1991) has also carried out some analyses on the 

Blow me Down Brook Formation which are in general agreement with those of the 

author. 
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Figure 6.3: QFL and QmFLt plots for Sellars formation (Blow me Down Brook 
equivalent), from Quinn (1985). Fields from Dickinson et al. (1 983) (see chapter 4) . 
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Quartz grains in the Blow me Down Brook Formation generally show undulose 

extinction and are free of mineral inclusions. but commonly contain trails of vacuoles. 

They display variable rounding, with some of the well-rounded grains showing a distinct 

blue luminescence. Minor polycrystalline quartz containing only a few subgrains is also 

present. Subgrains may be sutured or simple and vary in size within a single grain. 

Untwinned plagioclase feldspars are cloudy and generally larger than the mean 

grain size. Clear grains of plagioclase showing albite twinning tend to be smaller than 

the mean grain size. Microcline is present in small amounts at r ... e type section in the 

Bay of Islands (appendix 1, location map 2) and many pink plagioclase feldspars show 

evidence that they are altered microcline. as relict cros~-hatch twinning is visible. 

llntwinned potassium feldspar is also present. as is antiperthite containing stringy blebs 

of bright blue luminescing potassium feldspar in dominantly non-luminescing albite 

grains. 

Probe analyses of some feldspars in the Blow me Down Brook formation arc 

shown in figure 6.5. indicating that the feldspars are dominated by pure to nearly pure 

albite, suggesting that original feldspars have been altered and replaced by authigcni<.: 

albite. This is supported by the fact that feldspars in the Blow me Down Brook are 

generally non-luminescing. 

Shale chips, probably of intraformational origin, are present in some samples. 

The most common rock fragments are graphic quartz-feldspar intergrowths. Minor 

metamorphic quartz-feldspar and feldspar aggregates are also present. Rare murky silica 

fragments may be derived from a felsic volcanic source. Glauconite is prominent in 
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samples from the coastal area north of the Port au Port Peninsula. and it is worth noting 

that the Hawke's Bay Formation and the Mainland Formation in that area also contain 

prominent, although not abundant, glauconite suggesting a relationship between all three 

units. Other accessory minerals include biotite, muscovite, chlorite, zircon. garnet. 

tourmaline, monazite, and opaque minerals. 

Sandstones of the Summerside Formation are similar in all respects to those of 

the Blow me Down Brook Formation except that they are more altered. 

The Maiden Point Formation occur!, in the Hare Bay Allochthon and is a '?late 

Proterozoic or Early Cambrian equivalent of the Blow me Down Brook Formation. It 

occupies the same high structural position in the Hare Bay Allochthon as does the Blow 

me Down Brook Formation ill the Humber Arm Allochthon. In the field its appearance 

is similar to the Blow me Down Brook and Summerside Formations, except that it has 

been more strongly metamorphosed and is more indurated. The Maiden Point Formation 

was described by Tuke (1966) and Smyth (1973). 

Tuke ( 1966) described the Maiden Point Formation as containing quartz, 

plagioclase, mica. iron ore, and rock fragments. Tuke ( 1966) suggested. on the basis 

of a bimodal grain size distribution, that quartz was derived from two different sources. 

an igneous and a metamorphic source. He determined that the matrix in most Maiden 

Point sandstones was very abundant (average 40%) and composed of quartz and 

clinochlore. He did not detect any potassium feldspar. and concluded that. the grains 

were probably angular prior to diagenesis. He noted the heavy minerals tourmaline, 

zircon, and rutile. The rock fragments were described as significantly altered, consisting 
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of coarse acidic igneous rock, feldspar porphyry, fine grained acid volcanics, 

metaquartzite, orthoquartzite, altered glass, and in one thin section, oolites. This is 

rather a diverse array of m~k fragments in comparison to those observed by the author. 

and actually resembles the American Tickle suite of rock fragments. The two units can 

appear similar in the field and it is possible that Tuke ( 1966) was mistaken. or that the 

Maiden Point Formation may consist of more than one petrofacies. The small number 

of samples investigated by the author (figure 6.4) do not show such a variety of rock 

fragments, and the Maiden Point Formation. as observed in this study, contains 

predominantly quartz, plagioclase feldspar and sericite matrix. 

All of the Mairlen Point, Blow me Down Brook and Summers ide formations show 

chemical characteristics of passive margin deposition but plot very close to the boundary 

of the active margin field in the diagram of Roser and Korsch (1986) (see figure 6.2). 

In fact, they plot very close to the Goose Tickle group and Lower Head Formation on 

this diagram (see chapter 5) which might be considered anomalous in view of their 

supposed derivation from a cratonic source. Roser and Korsch ( 1986) noted a similar 

unusual chemistry in some Quebec equivalents of the Maiden Point, Summerside. and 

Blow me Down Brook formations, and ascribed this to the contribution of a volcanic 

source. Clearly. volcanic detritus is not abundant in these units, but weathering of 

volcanic rocks in the source area may have left a signature on the chemistry of the clay 

minerals in the matrix. 

All of these units are clearly chemically fairly similar as can be seen by 

examination of figures 6. 1 and 6.2. The diagram of Roser and Korsch (1988) (figure 
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6.1) is certainly successful in discriminating these Cambrian sandstones from the 

chemically distinctive Lower Head Formation and Goose Tickle group. lmerestingly. 

the Cambria1 sandstones plot in the P3 and P2 fields. which is again suggestive of a 

volcanic source not apparent from their petrographic characteristics. 

The chemical similarity among the above units is not the only significant feature 

of the Maiden Point, Blow me Down Brook and Summerside Formations. The quartz 

population is similar in style to that of tl;e Lower Head Formation and Goose Tickle 

group, with the dominance of monocrystalline quartz, the variable rounding and the 

abundance of vacuoles. The abundant untwinned plagioclase in the Cambrian units could 

easily account much of the untwinned plagioclase and altered albite in the Ordovician 

units. The high proportion of matrix suggests that these sediments would have provided 

single grains rather than sedimentary rock fragments as detritus. The lack of cementation 

would have resulted in grains with very few abraded quartz overgrowths, and indeed 

there are very few abraded overgrowths or sandstone fragments in the Goose Tickle 

~roup and Lower Head Formation. 

The fact that the Blow me Down Brook and Maiden Point formations constitute 

the highest sedimentary slices in their respective allochthons may also be significant. 

This is because as high slices their equivalents are mos~ likely to have been exposed 

during emplacement of the sedimentary slices of the allochthon. It is clear that the lower 

sedimentary slices of the allochthons were emplaced at least partly hy submarine gravity 

tlow processes, but the higher slices show evidence of harder thrusting (e.g. Tuke, 1966; 

Williams and Smyth, 1983) and compressional forces may have been sufficient to uplift 
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them above sea level. 

6.3.2 lrjshtown Formation 

The lrishtown Formation is a unit of early Middle Cambrian age which is younger 

than the Summerside Formation and is exposed in the Humber Arm Allochthon in the 

Bay of Islands area (appendix l, location map 2). The unit consists of quartzite beds of 

varying thickness, interbedded with dark grey shales. At several localities in the Bay of 

Islands area and one locality in the Bonne Bay area, there are thick cobble - boulder 

conglomerates with a quartzite matrix. 

The unit has been interpreted as the result of deposition by turbidites, and the 

conglomerates in the Bay of Islands area have been interpreted as having been deposited 

in a submarine canyon (N. P. James. pers. comm.. 1985). The unit was informally 

termed the Barters formation in the Bonne Bay area by Quinn ( 1985) whose petrographic 

analysis (again samples were not counted using the Gazzi-Dickinson method) is 

reproduced in tigure 6.6 for comparison with results from this study (shown in figure 

6.4). 

Sandstones of the lrishtown Formation are moderately sorted. The framework 

grains are subangular to rounded. Most are equant and show no preferred orientation. 

However. some micas are elliptical and aligned with their long axes parallel to bedding. 

Samples contain varying amounts of matrix and quartz cement with minor opaque 

cement. Quartz overgrowths coalesce to form the cement in most cases, with later (at 

least two) generations of calcite and dolomite cement being common. Matrix, where 
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Figure 6.6: QFL and Qmflt piots for Barters formation (lrishtown equivalents), from 
Quinn ( 1985). Fields as for f1gure 6.3. 
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present, is chloritic/sericitic and framework grains are commonly matrix supported. 

Feldspars are locally partially or completely replaced by calcite and are commonly partly 

sericitised. 

Although the unit is texturally dissimilar to the Blow me Down Brook, 

Summerside and Maiden Point formations, the grain types are similar. Again albite, 

predominantly untwinned, is the dominant feldspar. Some antiperthite is present and 

intraformational shale chips are ubiquitous. In the conglomerates, a wider suite of clasts 

is present including granite, grey-green gneiss, bioclastic limestone, fine grained 

limestone, quartz feldspar intergrowths, Bradore-type sandstone, and oncolitic limestones 

similar to those in the Forteau Formation, a part of the Labrador group (N.P. James, 

unpublished material). All of these fragments indicate derivation from older platformal 

sediments similar to those now exposed in the parautochthonous sequence, and from 

Grenville basement. 

The most distinctive feature of the lrishtown Formation is a grain type whi..::h 

consists of chloritised biotites interlayered with muscovite. These grains show strong 

berlin blue interference colours (Plate 6.2). A plot of electron probe data for the 

chlorites is shown in figure 6. 7 and it indicates that they are metamorphic chlorites 

derived from pelites. This suggests a low grade metamorphic source in part for the 

lrishtown. Although occasional examples of these distinctive grains are seen in the Blow 

me Down Brook and Maiden Point formations, they are ubiquitous in the lrishtown. 

For several reasons, lrishtown Formation equivalents are considered less likely 

to have been major sources for the bulk of the siliciclastic material in the Goose Tickle 
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group and Lower Head Formation. Firstly, the greater induration ar:d early silica 

cementation of the lrishtown in comparison with the Maiden Point and Blow me Down 

Brook Formations would likely have provided sedimentary rock fragments rather than 

loose grains. and the Goose Tickle group and Lower Head Formation do not contain 

many of the distinctive pelitic chlorite grains (although a very few have been observed). 

Secondly, the lrishtown. as part of the structurally lowest sedimentary package within 

the Humber Arm Allochthon, may not have been in as favourable a structural position 

to supply detritus. 

6.3.3 Provenance of Allochthonous Passive Mar~in Siliciclastic Units 

Although the provenance of the Cambrian sandstones is generally considered to 

be westerly and from the Grenville basement, some authors have studied shales of 

allochthonous units and noted more subtle variations in provenance. 

Evidence of a change in provenance of passive margin sediments through time is 

provided by Botsford ( 1988) who noted an increase in chlorite abundance at the base of 

the Cooks Brook Formation (Late Middle Cambrian). At the base of the Middle Arm 

Point Formation (Tremadoc) he noted another change in provenance with shales of this 

unit apparently showing geochemical affinities to the early Middle Cambrian Irishtown 

Formation. 

Sucheki et al. ( 1977) investigated the clay mineralogy of the Cow Head Group 

(which is equivalent to the Cooks Brook and Middle Arm Point formations) and noted 

three distinct clay mineral suites. They identified a late Middle Cambrian to early Lower 
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Ordovician illite-chlorite suite, a Lower Ordovician illite-expandable chlorite suite. and 

a late Lower to Middle Ordovician corrensite-illite-smectite suite. 

The early change to material richer in chlorite was probably not related to detritus 

supplied by an ophiolite. Since a carbonate bank was present to the west. the chlorite 

may have ultimately been derived from island arc volcanics which were present in 

Iapetus as early as the Middle Cambrian (Fyffe and Swinden. 1991 ). Sucheki et al. 

( 1977) suggested that corrensite was the product of diagenetically altered magnesium-rich 

volcanogenic detritus, and the late Lower Ordovician appearance of corrensite may he 

the first indication of input by ophiolitic material. 

The change in provenance at the base of the Middle Arm Point Formation to 

shales which show geochemical relationships to the lrishtown Formation is interesting. 

It may be the first indicator of offshore equivalents of the lrishtown Formation heing 

uplifted to provide the initial phases of detritus which was later provided by units similar 

to the Maiden Point and Blow me Down Brook Formations. The possibility o f a 

contribution by Irish town equivalents also raises the spectre of another source for Cr. 

since the Irish town shales are unusually rich in Cr. a feature which was not explained by 

Botsford (1988). lrishtown sandstones do not display similarly elevated values of Cr. 

6.3.4 Discussion 

Several problems arise when trying to evaluate the importance of Cambrian 

allochthonous siliciclastic units as potential sources of detritus for Ordovician foredeep 

and trench slope basin sandstones: 
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I. From the above rev1ew. it can be seen that there is little information on the 

petrographic makeup of Cambrian siliciclastics. and the chemical information provideri 

here combined with previous work on shales. suggests that the provenance of Cambrian 

siliciclastic units may not be as well understood as has been thought. This clearly hJ'i 

an effect when evaluating their significance as possible sources: 

2. Albitisation of feldspars in these Cambrian sandstones is ubiquitous. and is also 

problematic (see e.g. Ogunyomi et al. . 1980; Quinn, 1985). A complete understanding 

of the significance of these feldspars as detr;tal grains is precluded by a lack of 

knowledge as to how and when they were altered: 

3. Allochthonous Cambrian sandstones do not close-ly resemble their parautochthonous 

equivalents in terms of detrital makeup. Some of these differences clearly relate to 

differing depositional environments, but again the controversy as to the exact age and 

depositional environment of the allochthonous Cambrian units must hinder an 

understanding of them as sources of detritus; 

4. Two types of grains which are clearly resedimented are found in the Goose Tickle 

group and Lower Head Formation but not in the allochthonous Cambrian sandstones. 

Microcline grains which are generally more rounded than the rest of the quarrz and 

feldspar population are abundant. There are also a very few silica cemented sandstone 

fragments containing rounded grains of quartz, microcline and plagioclase . Although 

microcline is present in the Cambrian units, it is not abundant. is frequently w~olly or 

partly replaced by albite. and is not as well rounded as that found in the Ordovician 

sandstones. The microcline in the Goose Tickle group and Lower Head Formation most 
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resembles grains found in the Bradore Formation. However. when microcline is found 

in the quartz cemented sedimentary rock fragments it is associated with plagioclase. 

which is not common in the Bradore Formation. 

Although it was earlier asserted that no direct evidence of exposure of lower 

siliciclastic platformal sediments exists, it is not impossible to envisage a scenario in 

which units like the Bradore could have been exposed in the source area. Grenville 

basement has certainly become involved in thrusting during later phases of orogenesis 

(Grenier, 1990), and it is possible that cover units equivalent to the Bradore could have 

been exposed during early phases of basement uplift. Also relevant to this discussion are 

the grains of shallow water carbonate sediments, including ooids. which are common in 

the Lower Head Formation and Goose Tickle group. It could be argued that these were 

derived from older carbonates of the platformal succession which might have been 

exposed in association with the Bradore equivalents. However. according to Chow 

( 198o) ooids in the lower platformal succession were cemented together very soon after 

deposition, and thus are unlikely to have provided single ooids as detritus. Therefore. a 

source for rounded microcline and silica cemented sandstones cannot be unequivocally 

identified from siliciclastic sedimentary units currently present in western Newfoundland. 

Despite these problems, it is clear that allochthonous Cambrian siliciclastic units 

seem to closely resemble likely source lithologies for much of the recycled sediment 

detritus in the Goose Tickle group and Lower Head Formation. The lithologies most 

likely to have been sources are those now seen in the Summerside, Blow me Down 

Brook, and Maiden Point formations. 
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6.4 OPHIOLITES ANP VOLCANIC ROCKS IN THE HUMBER ARM AND HARE 

BAY ALLOCHTHONS 

6.4. I Ophiolites 

Within the both the Hare Bay and Humber Arm Allochthons ophiolitic rocks 

constitute the highest structural slices. In the Humber Arm Allochthon. the Bay of 

Islands Complex (BOfC) has long been considered a classic example of the complete 

ophiolite suite, whereas in the Hare Bay Allochthon, only the lower ultramafic parts of 

the ophiolite are preserved as the White Hills Peridotite. Lithologies within the BOIC 

include harzburgite, lherzolite, gabbro. trondhjemites and basalt. Chemically, the 

volcanics vary from basalts to basaltic andesites (Jenner et al. 1991). Previously, the 

BOIC was thought to have been formed at a mid-ocean ridge, but has now been re

interpreted as having been formed in a back-arc basin (Jenner et al.. 1991). 

Another high slice within the Humber Arm Allochthon is the Little Port Complex. 

Dunning et al. (1991) describe the Little Port Complex as 'a structuratly complex 

assemblage of mafic and felsic volcanic rocks and trondhjemite comprising the highest 

and most westerly structural unit of the Bay of Islands area. Recent detailed geochemical 

studies (Jenner et al., unpuulished data) strongly indicate an island arc origin for the 

complex. Felsic volcanics in the complex are geochemically similar to the dated 

trondjhemite, suggesting contemporaneity of volcanism and plutonism. Spatially 

associated matic lavas are island arc tholeiites'. The Little Port Complex has been 
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restricted by Jenner et al. ( 1991) to include only separate thrust sheers h.> the west of the 

main BOIC blocks. 

It is important to consider the role of the Bay of Islands and Hare Bay ophiolites 

in potentially supplying chromite and serpentine detritus to the Lower Head Formation 

and Goose Tickle group. A complete ophiolite suite, if exposed, might also have 

supplied mafic volcanic detritus to these units. Stevens ( 1970) first noted the presence 

of chromite detritus in western Newfoundland Ordovician sandstones. From this he 

inferred that ophiolites must have been exposed by the Middle Ordovician. Bradley 

( 1989) quoting the report of chromite in the Goose Tickle group and Lower I lead 

Formation by Quinn ( 1988) stated categorically that the Ordovician flysch in the foreland 

basin was derived from the Bay of Islands Ophiolite. 

The presence of detrital chromite in Arenig and Llanvirn sandstones of western 

Newfoundland has been used by several previous workers to infer that the ophiolites 

were either very close to final emplacement by that time or nad already be:n obducted 

(e.g. Stevens, 1979; Ko, 1985; Hiscott, 1978; Bradley, 1989). Stockmal and Waldron 

(1990) later used the presence of detrital chromite to place constraints on the arrival time 

of the entire Humber Arm Allochthon. 

Chromite is characteristically associated in abundance with the ultramafic part of 

an ophiolite (see, e.g. Hiscott, 1978). Both Stevens (quoted in Smyth. 1973) and the 

author have directly confirmed this association with the discovery of grains of chromite 

included in (chloritised) serpentine grains (see chapter 4, plates 4. 9 and 4. I 0). 

Serpentine has been observed in both the Lower Head Formation and the Goose Tickle 
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group (Stevens in Smyth, 1973; Stevens in Neale (1972)) and this study. 

Chemical indicators of an ultramafic wurce are elevated levels of Cr and Ni in 

the trace element assemblages of sediments (see chapter 5). Botsford ( 1988) in 

investigating the shale geochemistry of the Middle Arm Point Formation, which under I ies 

the Lower Head Formation in the Bay of Islands area, has noted that Cr and Ni values 

remain constant through the Middle Arm Point Formation, but sharply rise near the base 

of the Lower Head Formation. Botsford ( 1988) was able to directly relate the presence 

of Cr and Ni to the presence of heavy mineral silt layers which included detrital chromite 

and diagenetic pentlandite. This would appear to p!n down the appearance of an 

ultramafic source to approximately the base of the Lower Head Formation in the Bay of 

Islands area (upper Arenig). 

Since clearly the existence of ultramafic detritus in the Goose Tickle group and 

Lower Head Formation is considered a key element in building a tectonic model, and 

since it appears to have a bearing on the current controversy regarding the timing and 

mechanism of the emplacement of the allochthons. it is worthwhile to review the possible 

sources which could have supplied ultramafic material to the foreland basin. 

Ultramafic detritus may have been generated in the source area of the foreland 

basin in a number of ways: 

I. Exposure of the Bay of Islands and/or Hare Bay ophiolites: 

2. Exposure of ultramafic material along emplacement related faults within the Humber 

Arm and/or Hare Bay allochthons; 

3. Ultramafic material exposed under compression within an arc terrane; 
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4. Ultramafic material erupted in the forearc area of a subduction zone: 

6.4. 1. 1 Exposure of the Bay of Islands and/or Hare Bay Ophiolites 

Bradley ( 1989) has stated specifically that chromitt~ in the foreland basin was 

derived from the Bay of Islands Ophiol ite. The ultramafic part of an ophiolite, which is 

presumably the main supplier of abundant chromite, lies approximately 7 km below the 

surface (assuming normal oceanic crust). Dunning and Krogh ( 1985) documented Lower 

to Middle Arenig age dates for formation for the BOIC. If normal oceanic crust and 

simple vertical uplift is assumed, the ophiolite would theoretically have been uplifted a 

minimum vertical distance of 7 km during the Arenig to bring ultramafic material to the 

surface. In order for supply of ultramafic detritus to the earliest Lower Head sandstones 

in the late Arenig, the ultramafic material must have been uplifted above sea level. which 

would imply an uplift of another 3 to 4 km. The ophiolite would have had to have been 

formed (485 my - Dunning and Krogh, 1985), and its ultramafic part uplifted and 

exposed within as little as 9 my (latest Arenig is 476 my, Harland et al.. 1990) This 

may be an unrealistic expectation. 

If the ophiolite underwent simple vertical uplift, evidence of gradual unroofing 

might be expected in any sediments which received detritus •·rom the gradually emerging 

ophiolite. This may be difficult to corroborate since it is difficult to specify whether a 

particular volcanic grain of sand has been derived from an ophiolite suite or other 

volcanic unit (see discussion below). Other ophiolitic lithologies, including gabbro and 

trondhjemite, might be equally problematic since both of these are coarse grained 
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lithologies and it would be difficult to identify contributions from these in fine grained 

sandstones. Nevertheless, mafic volcanic detritus is clearly not abundant in the Goose 

Tickle group and Lower Head Formation. 

Published structural configurations (t'.g. Williams, 1975; Cawood, 1990) would 

suggest that the ophiolite was right way up throughout the emplacement process i.e. 

overturning, imbrication or other anomalous exposure of the lower parts of the ophiolite 

is not implied. However, all massifs which constitute the Bay of Islands Ophiolite have 

a synclinal structure. This has previously been interpreted as early deformation which 

occurred prio:- to complete assembly and emplacement of the Humber Arm Allochthon 

(Williams, 1973). This early folding could have tilted the blocks such that the ultramafic 

parts might have been exposed. However, Cawood (1990) has suggested that the folding 

could in fact postdate Taconic emplacement, which would remove that possibility. 

Casey and Kidd (1981) suggested that at least one part of the Bay of Islands 

Ophiolite was tilted and subaerially exposed relatively early. The ophiolite is inferred 

to have been exposed during the late Llanvirn, subsequent to the formation of the 

dynamothermal aureole at the base of the ophiolite (469 my, Dallmeyer in Dunning and 

Krogh, 1985 - recalculated age from Dallmeyer and Williams, 1975). The ophiolite was 

subsequently submerged, again during the Llanvirn. 

The evidence (detailed in Casey and Kidd, 1981) for this comes from an area in 

the Bay of Islands. where a relationship is preserved in which the tilted Bay of Islands 

Ophiolite shows an erosion surface with considerable relief (300m) marked by extensive 

intense weathering and soil formation. Submarine breccias overlie this unconformity, 
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and these breccias are overlain by grey mudstones which contain marine fossils of 

Llanvirn age. Clasts in the breccias do include ultramafic rocks, but these are by far the 

n ·rest type associated with this unit. The breccias also include clasts from the 

m~tamorphic aureole dating them as having formed subsequent to the aureole, suggesting 

that at least part of the ophiolite must have been above sea level by 469 my. 

The highest unit in the sedimentary succession overlying the ophiolite is a unit of 

red, coarse grained sandstones which are cross-bedded in places (Casey and Kidd. 1981) 

and may be shallow marine or terrestrial. Sandstones collected by the author from this 

unit contain framework grains which are predominantly hematised volcanic clasts with 

aligned plagioclase phenocrysts (trachytic texture). No serpentine or chromite grains 

were observed. Grains are cemented by calcite. A sample from these sandstones was 

geochemically analysed and contained low values of Cr and Ni, supporting the 

petrographic evidence of low or no input from ultramafic sources. 

The above r;~lationships, which are rather tightly constrained, imply that at least 

part of the Bay of Islands Ophiolite was upl ifted by the latest Llanvirn. and the structural 

configuration is such that ultramafic rocks could have been exposed to provide detritus. 

although they appear to have been only minor suppliers of detritus locally. 

However, these relationships provide no evidence of exposure of the ophiolite 

during the Arenig or early Llanvirn, when the Lower Head Formation and the Goose 

Tickle group respectively were being deposited. 

A note of caution should be applied in evaluating the above arguments, as errors 

on the ab~olute dates of Ordovician age boundaries are comparable to the lengths of the 
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ages themselves (DNAG time scale, 1983). 

Regardless of whether the BOIC was exposed during the Arenig, it is unlikely to 

have provided detritus to the northern plrt of the foreland basin, since transport along 

the basin was towards the south. However, there is evidence that the Hue Bay Ophiolite 

may have been exposed earlier than the Bay of Islands Ophiolite. The age of the 

metamorphic aureole in the Hare Bay Ophiolite is older than that of the Bay of Islands 

ophiolite (489 my) . Equivalents of this peridotite could have been exposed near the 

northern part of the basin during the Arenig and Llanvirn to provide chromite and 

serpentine detritus which was then longitudinally transported to all parts of the foredeep 

and trench slope basins. 

6.4.1.2 Emplacement Related Faults 

Both Tuke (1966) and Cawood (1990) have stated that emplacement of upper 

structural slices of the allochthons was probably lubricated by serpentinite. Occurrences 

of serpentinite along faults are a well documented feature at various localities associated 

with ophiolite emplacement (Lockwood, 1971 ; Saleeby, 1981). Ultramafic material 

associated with such faults would likely be emplaced by a combination of tectonic 

processes and diapiric movement. It is therefore possible that the chromite and 

serpentine could have been derived from ultramafic 'protusions' (Lockwood, 1971) along 

faults which were active prior to final emplacement of the ophiolites. No evidence has 

been found in this study which either supports or refUles this possibility. 
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6.4. I .3 Material from the Base of an Arc Tenane 

In the class;c area of the Sierra Nevada, California, ultramafic material, which 

was formerly the base of a volcanic arc. has been faulted upwards in a compressional 

regime to become associated at the surface with its andesitic cap (Moores and Day. 1984 

- see figure 6.8)). In general ophiolitic rocks exposed along fauhs in the area are 

dominated by ultramafic material, emplaced by a combination of tectonic and diapiric 

processes. Thus a volcanic arc terrane exposed in a compressed and uplifted source area 

could have provided ultramafic detritus to the foreland basin. 

6.4. I .4 Serpentine Volcanoes in a forearc Reeion 

fryer et at. ( 1989) and fryer ( 1992) have investigated occurrences of submerged 

serpentine seamounts in the forearc area of the Marianas trench. The serpentine occurs 

in a variety of forms, from massive serpentinised peridotite to unconsolidated serpentine 

mud volcanoes. The serpentine mud may contain blocks of peridotite and various types 

of volcanic rocks as well as chert. Some of the volcanic rocks clearly have island arc 

affinity, but others are mid-ocean ridge basalts. The massive serpentine is inferred to 

have been transported to the surface from the underlying mantle through diapiric 

intrusion along faults. The mud material was emplaced through a combination of 

grinding into 'rock tlour' and diapiric intrusion. 

The serpentine in the Lower Head Formation and Goose Tickle group, while 

altered, appears to have been supplied as grains of sand size, and there is no evidence 

for abundant serpentine mud in either of these units. Although the discovery of 
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Figure 6. 8: This figure shows a cross section through the Smartville Belt, Sierra Nevada, 
California, after Moores and Day (1984). The Smartville Belt consists of a sequence 
from bottom to top, of minor layered gabbro, massive gabbro and trondhjemite, a 
sheeted dike complex, pillow lava and andesitic volcaniclastic sedimentary rocks. It is 
interpreted as an oceanic island arc - marginal basin complex. Under compression this 
terrane has been involved in thrust faulting. The thrust faults shown in the diagram are 
marked by ultramatic material, and are typical of thrust faults throughout the Sierra 
Nevada. Ultramafic bodies along thrust faults in the Sierra Nevada can be several 
kilometers wide, and tO's of kilometers long (R.K. Springer, pers. comm., 1992). This 
provides a mechanism whereby abundant ultramafic material can be associated at the 
surface with felsic and intermediate volcanic material, thus eliminating the need for 
unroofing of a complete ophiolite complex to generate ultramafic detritus. The surface 
width of the Smartville Complex in this cross section is about 30 km. 
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serpentine mud volcanoes means that 'ultramafic detritus is potentially available at any 

consuming plate margin and uplift and erosion are unnecessary' (examiners comment -

Colman-Sadd, 1992), a means of transporting the grains in a submarine setting and 

mixing the ultramafic detritus with other types of detritus is required in the case of the 

western Newfoundland foreland b~~in. It seems that only the massive serpentine bodies 

could have supplied sand-sized grains as detritus, and would have had to be uplifted and 

eroded to do so. In view of these points it is hard to envisage serpentine material from 

this setting being supplied to the foreland basin without prior up I ift and erosion. 

6A.1 .5 Evaluation of Potential Ultramafic Sources 

For the Goose Tickle group and Lower Head Formation in western 

Newfoundland, it is difficult to establish which of the types of sources of ultramafic 

material listed above might have been responsible for the detritus in these units. 

Derivation from the Bay of Islands Ophiolite is unlikely because of its position south of 

a major part of the basin, and because a source which was composed predominantly of 

ultramafic material would better explain the lack of evidence of unrooting of a complete 

ophiolite sequence. Derivation from the Hare Bay Ophiolite is possible, however, since 

it is unknown whether the peridotitic part of the Hare Bay Complex ever had a mafic 

cap. Serpentine lubricated faults and serpentine seamounts are both possible but the 

author favours the hypothesis of ultramafic material associated with a major arc terrane, 

as this would best explain the association of felsic volcanic material (which is apparently 

exotic to the allochthons - see section 6.4.2) with ultramafic material. 
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{;.4. 1.6 Implications for Tjmjn~ of Emplacement of Allochthon;: 

The most compelling evidence for timing of arrival of the allochthons was 

previously considered to be the overlapping relat~onship between the neoautochthonous 

Long Point Group and the Lower Head Formation on the Port au Port Peninsula. This 

bracketed the time of final emplacement of the Humber Arm Allochthon within the 

Middle Ordovician, based on the assumption that the Humber Arm and Hare Bay 

allochthons were emplaced as a single pre-assembled stack (e.g. Williams, 1975). 

Cawood and Williams ( 1988) and Cawood ( 1990) suggested that the allochthons were not 

emplaced as single stacks but that the ophiolites arrived at their present positions 

subsequent to the emplacement of the sedimentary parts of the allochthons, possibly 

during the Silurian or Devonian. This hypothesis echoed those of Tuke ( 1966, 1968), 

and Schillereff (1980) who had implied that the sedimentary slices of the Hare Bay and 

Humber Arm allochthons respectively were in plar.e prior to the final emplacement of the 

ophiolites. 

With these ideas and the reinterpretation of the contact between the Lower Head 

Formation and the Long Point Group as a thrust (Stockmal and W1ldron. 1990), the 

question of timing of arrival of the allochthons was reopened. To resolve this question, 

Stockmal and Waldron (1990) suggested that the presence of chromite detritus in Middle 

Ordovician sandstones of the Mainland formation, as reported by Stevens ( 1970) and 

Quinn ( 1988), constitutes the only remaining evidence for a Middle Ordovician 

emplacement dati! for the allochthons. based on the argument that the allochthons were 

emplaced as a complete package of sedimentary slices and ophiolites. 
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The timing of arrival of the lowest sedimentary slices of both the Humber Arm 

and Hare Bay allochthons can be inferred as Middle Ordovician from the evidence 

provided by the Howi.! Harbour Member (see chapters 2 and 3), similar lithologies have 

been recognised by Waldron and Stockmal (1991) in the Victor's Brook area of the Port 

au Port Peninsula. However, given the discussion above of potential sourc~s of 

ultramafic detritus, it is clear that the presence of chromite in the Lower Head Formation 

and the Goose Tickle group does not constrain the timing of approach of the ophiolite. 

and the argument of Stockmal and Waldron ( 19'Xl) is undermined. The hypothesis of 

Cawood and Williams (l988) and Cawood (1990) for Silurian or Devonian final 

emplacement of the ophiolites would appear at thi': point to have the greater weight of 

supportmg evidence. 

6.4.2 Volcanic Rocks 

6.4.2.1 Mafic Volcanic Rocks 

Any discussion of the Taconic allochthons as possible sources for detritus in 

Ordovician sar.dstones must include a complete evaluation of volcanic rocks within the 

allochthons. Volcanic rocks, the majority of which are mafic, occur in a number of 

different structural settings within the Taconic allochthons: 

Setting I. Pillow lavas associated with the ophiolite itself: 

Setting 2. Discrete slivers and megablocks of structurally sub-ophiolitic volcanic rocks 

which occur along the eastern and southern margins of the ophiolite in the Humber Arm 

Allochthon (e.g. f.: :!~Pr, 1978; Godfrey, 1983: Schillereff, 1980; Quinn. 1985): 
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Setting 3. Volcanic rocks of the Little Port Complex. 

In the Humber Arm Allochthon the volcanics from setting 2 occur in at least two 

structural positions. both closely associated with the Blow me Down Brook Formation: 

a) at the structural top of the formation. directly beneath the ophiolite; 

b) near the basal thrust which separates the Blow me Down Brook from other 

sedimentary units in the Humber Arm Allochthon; 

Probably the best known example of the high volcanic slices (type a) directly 

beneath the ophiolite is the Skinner Cove Formation, a distinctive alkaline suite of 

relatively unaltered rocks interpreted by Baker ( 1978) as a unit, chemically unrelated to 

the Bay of Islands Ophiolite, which originated at an oceanic seamount. Although th~ 

Skinner Cove volcanics are closely associated with fossils of Ordovician age, Baker 

( 1978) interpreted this association as tectonic. thus the age of the Skinner Cove volcanics 

is unknown. Jenner et al. (1991) have confirmed a relationship between Skinner Cove 

volcanics and other volcanics in high slices in the Humber Arm Allochthon. 

Quinn (1985) noted the presence of volcanics which occur at the structural base 

of the Blow me Down Brook Formation (type b). The questiC'n of whether there is a 

stratigraphic relationship between these volcanic rocks and the Blow me Down Brook 

Formation is a controversial one. There is some evidence of such a stratigraphic 

relationship on Woods Island (Appendix I, location map 2), where volcanic rocks are 

apparently overlain by the Blow me Down Brook Formation (Williams 1973; Kidd and 

Idleman l9!Q). Gonzalez-Bonorino (1979) and Stevens (R.K. Stevens, pers. comm. 

1988) believed that there is a stratigraphic contact between the Blow me Down Brook 
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Formation and volcanic rocks on the east side of South Arm, Bonne Bay, although Quinn 

( 1985) disputed this. Botsford ( 1988) cited an example of volcanic rocks associated with 

the Summerside Formation, a unit which is probably partially or wholly equivalent to the 

Blow me Down Brook Formation. 

Supvorting evidence for volcanic rocks of at least two different origins within the 

lower slices of the allochthons may be obtained by consideration of equivalents of the 

Blow me Down Brook Formation, such as the Maiden Point Formation in the Hare Bay 

Allochthon. The Maiden Point Formation includes near its structural base tholeiiti" 

mafic vulcanics showing geochemical affi"nities to the rift related Lighthouse Cove 

Formation (Williams and Smyth 1983; Jamieson, 1976). Alkaline rocks of different 

geochemical affinities intrude the Maiden Point Formation near its structural top and may 

be geochemically related to the Skinner Cove Formation (Jamieson, 1976). They arc 

chemically unrelated to structurally overlying ophiolitic rocks (Jamieson. 1976), but they 

are chemically related to separate and dismembered volcanic slice~ which are structurally 

directly underneath the ophiolite. 

The presence of tholeiitic volcanics at or near the bases of the Maiden Point and 

Blow me Down Brook formations may be related to rifting processes along a young 

continental margin, but Lindholm and Casey ( 1989) have disputed this. They argued that 

as the Blow me Down Brook Formation was deposited under deep marine conditions, the 

rifting process must have been completed by the time of deposition of the unit, and that 

rift related volcanics were therefore unlikely to be associated with the unit. They also 

noted that volcanic detritus is absent in the Blow me Down Brook Formation, which they 
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felt precluded any stra .. graphic association with volcanic rocks. However, Lindholm and 

Casey ( 1989) did not include an evaluation of the better documented relationships in the 

Maiden Point Formation in their discussion, nor did they point out that the 

parautochthonous Bradore Formation, which is clearly associated with rift related 

volcanic rocks, is largely devoid of volcanic detritus. 

Volcanics in the Little Port Complex are considered to be arc related and older 

than the Bay of Islands Ophiolite (Dunning et al., 1991). It is tempting, in view of the 

reinterpretation of the Bay of Islands Ophiolite (Jenner et al., 1991) and the westerly 

structural position of the Little Port Complex (Cawood, 1990; Jenner et al., 1991), to 

consider the Little Port Complex as a possible remnant of an arc which was located on 

the foreland (west) side of the back arc basin which eventua!ly produced the Bay of 

Islands Ophiolite. Mafic, felsic, and plutonic rocks of Little Port equivalents might thus 

have been structurally well situated to provide detritus to the Lower Head Formation and 

Goose Tickle group. 

As a result of the above discussion it is therefore possible that at least four mafic 

volcanic sources from within the allochthons could have provided detritus to the Goose 

Tickle Group and Lower Head Formation: 

1. Ophiolitic volcanics: 

2. Volcanics, pos·;ib:y related to a late phase of rifting, stratigraphically associated with 

the Blow me Down Brook and Maiuen Point formations; 

3. Assorted tholeiitic and alkaline volcanics now preserved as high slices within the 

allochthons and possibly formed in an oceanic seamount setting; 
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4. Arc-related rocks of Little Port Complex equivalents. 

All of these mafic rock types would be difficult to distinguish when preserved 

only as sand-sized grains. This discussion shows that there are several possible non

ophiolitic sources for the rather small number of mafic volcanic fragments in the Goosz 

Tickle group and Lower Head Formation. 

6.4.2.2 Felsic Volcanic and PIL•.tonic Rocks 

The only possible source in the allochthons for felsic rock fragments found in the 

Goose Tickle group and Lower Head Formation is the Little Port Complex. However. 

the proportion of felsic rocks in the Little Port Complex does not seem sufficient to 

account for all of the observed felsic detritus. As stated in the previous section, an arc 

related to the Little Port Complex might have been in structurally favourable position to 

provide detritus. But numerous arc terranes might have been available to provide detritus 

(e.g. Fyffe and Swinden, 1991). It is here suggested ~hat the felsic detritus was most 

likely derived from an arc terrane under compression in the source area, possibly. but 

not necessarily one related to the Little Port Complex. 

6.5 FLEUR DE L YS SUPERGROUP 

The Fleur de Lys Supergroup has been described as a sequence of 

metasedimentary rocks (Hibbard, 1983) which may have similar origins to the Blow me 

Down Brook and Maiden Point formations. The Fleur de Lys Supergroup was described 

by Schwab (1991) as being quartz rich and having a high ratio of potassium feldspar to 
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plagioclase, in contrast to the Blow me Down Brook and Maiden Point formations. It 

would be interesting to know the origins of the potassium feldspar in the Fleur de Lys 

Supergroup, for if original plagioclase has been altered to potassium feldspar by 

metamorphic processes, then a possible source for potassium feldspars in the Goose 

Tickle group and Lower Head Formation may have been identified. Crucial to rhis 

argument is some knowledge of the timing of metamorphism of the Fleur de Lys 

Supergroup. It has been suggested by Dunning et al. (19'JO) and Waldron and Milne 

( 1991) that peak metamorphism in Fleur de Lys equivalents was of Silurian age or older. 

Thus it is unlikely that metamorphosed Fleur de Lys lithologies may have provided 

detritus to the Goose Tickle group and Lower Head Formation. However, this hypothesis 

requires further investigation. 

6.6 DUNNAGE ZONE 

The Dunnage Zone is a predominantly volcanic terrane containing a complex 

assemblage of rocks of both arc and non-arc affinities (Dunning et al., 1991) ranging 

from Cambrian to post-Middle Ordovician in age and probably representing a complex 

series of collisions of various arc segments along subduction zones of unknown and 

possibly variable polarity. Structural and stratigraphic evidence (Williams and Hatcher, 

1983) indicates that the western part of the Dunnage Zone (Notre Dame Subzone) was 

in proximity to the western Newfoundland foreland basin. In fact, ophiolites of the 

Taconic allochthons are now viewed by some authors (e.g. Williams et al., 1988) as 

having been continuous with the Notre Dame Subzone before dissection by erosion. 
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However, the details of this are debatable, as paleontological evidence (Nowlan and 

Barnes, 1987) suggests that the Taconic allochthons (and therefore presumably the 

ophiolites) may not have extended much farther than their present areal limits. Given 

the close relationship between ophiolites of the Notre Dame Subzone and those of the 

Taconic allochthons, the distinction of Dunnage rock fragments from fragments of the 

Taconic allochthons in sandstones would likely be impossible. However, the structural 

configuration of the region suggests that the Notre Dame Subzone was located on the 

'other side' of an uplifted area which supplied detritus to the foreland basin, and may 

have been less likely to supply detritus than units which are now between the Dunnage 

Zone and the remnants of the foredeep basin. 

6.7 GRENVILLE BASEMENT 

Grenville basement is presently uplifted in the Long Range Inlier and has been 

thrust westwards over the Humber Arm Allochthon. Grenier ( 1990) has suggested that 

this uplift and thrusting took place during the Acadian Orogeny, and thus the Long Range 

Complex would be unlikely to have provided detritus to the Goose Tickle group and 

Lower Head Formation. 

However, it might be argued that basement could have been uplifted to the east 

of the foreland basin. It is admittedly be difficult to dtstinguish first cycle from second 

cycle Grenville detritus. however, certain plagioclase feldspars are present in Ordovician 

foreland basin sandstones which resemble those in the Blow me Down Brook Formation. 

They have clearly been albitised at temperatures below metamorphic levels, suggesting 



321 

that they were derived from previously buried sediments rather than directly from 

Grenville basement. However a better understanding of albitisation of feldspars of both 

Cambrian and Ordovician sandstones is in order before this evidence can be considered 

unequivocal. 

It might be argued that microcline detritus in the Low~r Head Formation and 

Goose Tickle group could be directly derived from the Grenville basement, but the 

presence of similar grains in sedimentary rock fragments suggests that although the 

microcline might ultimately have been derived from Grenville basement, it has gone 

through at least one sedimentary cycle and has become mixed with other detrital elements 

before deposition in the foreland basin. Microcline could also be derived from the 

plutonic roots of an arc terrane, or from an as yet unidentified metamorphic terrane. 

Dating of the microcline grains would go some way towards resolving this question. 

For the reasons given, it is therefore suggested that the Grenville basement was 

probably not a direct supplier of detritus to the foreland basin. 

6.8 MISCELLANEOUS SANDSTONES 

Two other groups of sandstone, which may be relevant to the ideas outlined in 

this thesis, were briefly investigated. The first group included sandstones of the Clam 

Bank Formation, Cow Rocks outcrop (appendix I, location map 1), and Winterhouse 

Formation, which are all units younger than the Mainland formation. Petrographic and 

geochemical information on these sandstones clearly demonstrates their affinities with the 

Mainland formation (figures 6.9 through 6.12), although the Clam Bank Formation may 
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Figure 6.11: Plot of K20 vs. Si02 for miscellaneous sandstones. Fields after Roser and 
Korsch (1986) . Keyed as for tigure 6.6. 
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contain a higher proportion of volcanic rock fragments. suggesting a continued eltposure 

of a volcanic source long after the time of deposition of the Mai~land formation, in 

combination with a reduced input of sedimentary rock fragments derived from the eastern 

slope of the foreland basin. 

The most interesting information is provided by sandstones of the second group. 

the Northwest Arm Formation. The Northwest Arm Formation is a chaotic unit of black 

and green shales. limestones and sandstones which constitute the lowest sedimentary slice 

in the Hare Bay Allochthon. Sandstones in the Northwest Arm Formation are clearly 

petrographically and chemically identical to those in the American Tickle form:Jtion 

(figures 6.9 through 6.12). The Northwest Arm Formation is considered to be of 

Tremadoc age (Stevens, 1976), so either sandstone deposition in the foreland basin began 

significantly earlier than has previously been realised, or the Northwest Arm Formation 

represents a highly condensed section from the Tremadoc through the Arenig, with 

American Tickle-like sandstones near the top. Similar condensed sections have been 

reported in allochthonous units of this time period elsewhere in western Newfoundland 

(Botsford, 1988). To the auL'·10r's knowledge, this is the first time the similarities 

between Northwest Arm sandstones and American Tickle sandstones have been 

documented and interpreted. 

6.9 SUMMARY AND CONCLUSIONS 

It is clear from discussions above that the most likely source terranes for 

extrabasinal framework grains in the Goose Tickle group and the Lower Head Formation 
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art: those which lay to the east and northeast of the foreland basin, since sources from 

the western margin of the basin are unlikely to have contributed a cignificant amount of 

detritus. It is here suggested that the source of felsic volcanic and plutonic grains, as 

well as ultramafic plutonic fragments, was a major volcanic arc terrane. This terrane 

may have been located to the west of the back arc basin in which the Bay of Islands 

Ophiolite was formed (figure 6.13). Mafic volcanic fragments could have been derived 

from a number of sources including older rift related volcanics. Much of tne quartz and 

feldspar detritus was likely derived from uplifted sediments like the Blow me Down 

Brook and Maiden Point formations which themselves were ultimately derived from 

Grenville basement. Rounded resedimented microcline, shallow water carbonates and 

silica cemented sandstone fragments could have been derived from shelf areas of the 

basin in which detritus from these multiple sources is inferred to have been mixed. The 

microcline and sandstone fragments may ultimately have been derived from the plutonic 

roots of the postulated arc terrane, from Grenville basement and cover, or from an 

unknown metamorphic terrane. 

It is worth noting that although much of the detritus in the Lower Head Formation 

and Goose Tickle group can be tentatively identified with lithologies now found in the 

Humber Arm and Hare Bay allochthons, there is no obvious source within either 

allochthon for abundant rounded microcHne, or for the bulk of the felsic volcanic 

detritus. If sediment was eroded from the allochthons and supplied directly to the basin, 

material from other sources would be expected to form distinct petrofacies. This has not 

been observed, and the overall petrographic homogeneity of the units implies that mixing 



Figure 6.13: This schematic diagram, modified from Lundberg and Dorsey's (1988) 
analysis of the Taiwan collision system, shows how detritus within foreland and trench 
slope basin sediments in the Newfoundland system could have been mixed in a forearc 
basin and/or an upper trench slope basin could have been recycled into the foredeep 
basin. In Taiwan, the forearc basin was eventually caught in collision. If a similar 
scenario existed in Newfoundland, the preservation potential of the forearc basin would 
have been poor. The Goose Tickle group is inferred to have been deposited in the 
foredeep basin proper. The Lower Head Formation is inferred to have been deposited 
in a trench slope basin. The uplifted area to the east of the foredeep basin would have 
mainly consisted of deep water passive margin sediments, but basement could also have 
been incorporated. The arc terrane is shown cut by faults under a regional compressicmal 
regime. Ultramafic material could have been uplifted along these faults and exposed at 
the surface to provide ultramafic detritus to the system. This arc terrane may or may not 
have been relateo :o the Little Port Complex. East of the arc terrane is a back arc basin, 
which may have been the locus of formation of the Bay of Islands Ophiolite. Note that 
the inferred width of the Taiwan system from eastern margin of the foredeep basin to the 
eastern margin of the arc is uf the order of 100-150 km. 
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of the detritus has occurred. Hence field evidence that the Goose Tickle group and Lower 

Head Formation were not shed directly into the foreland basin from the Humber Arm and 

Hare Bay allochthons is borne out by provenance investigations. 

This last point may seem to be overemphasised. but. to the casual reader of west 

Newfoundland literature, the overriding impression given is that the sands in the foreland 

basin were derived by direct erosion, lateral transport and deposition of material from 

the allochthons, and that in particular ult:aril:'lfic material was derived from ophiolites 

which we now see exposed in western Newfound:·md. In view of the discussions in th is 

thesis, this is clearly a vastly oversimplified scenario. 

lr should be noted that in order to explain the detrital makeup .Jf the Lower Head 

Formation and Goose Tickle group, the author has hypothesised two major features 

which may have lain to the east of the foreland basin: 

1. A major arc terrane: 

2. A major upper slope or forearc basin in which mixing of detritus from multiple 

sources must have taken place. 
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7._1 REVIEW OF THE GOOSE TICKLE GROUP ANC LOWER HEAD FORMATION 

7.1. 1 Stratj~raphy 

Three units of Ordovician sandstone have been r~cognised in this study (see 

chapter 2). Two of the units, the American Tickle formation (Llanvirn) and the 

Mainland formation (Llanvirn- ?Liandeilo), are parautochthonous, and are at least partial 

time equivalents. These two units constitute the Joose Tickle group. Formal 

stratigraphic definitions of these units are pending as a result of this study (Quinn, in 

prep.). The allochthonous unit is designated the Lower Head Formation (Arenig -

Llanvirn), and this name is extended from its original use north of Bonne Bay to describe 

all equivalents in western Newfoundland. 

7.1.2. Sedimento1o~y 

All three units defined above consist of sandstones and shales which were 

deposited mainly from turbidity flows. The American Tickle formation is generally 

sand-poor, whereas the Mainland and Lower Head formations are sand-rich. 

The American Tickle formation extends from the tip of the Northern Peninsula 

to the Port au Port Peninsula, and is interpreted to retlect deposition in an oversupplied 

foredeep basin (see chapter 3). Variations in the sand/mud ratio within the unit are 

interpreted to reflect proximity to sediment input points, of which there were at least two 



332 

supplying thr. northern and central parts of the basin. The Howe Harbour member is 

interpreted as a coarsening upwards sequence of gravity flow deposits generated by 

faulting in the source area, and, like the Daniel's Harbour Member. is a precursor to the 

arrival of the lower slices of the Taconic allochthons. 

The Mainland formation. which is restricted to the Port au Port Peninsula. 

indicatrs the existence of a third sediment inr;,t point at the southern end of the same 

oversupplied basin (see chr.pter 3), but this formation was deposited in a tectonically and 

topographically complex area characterised by lobe switching and reactivation of pre

existing rift-related faults prior to the emplacement of the Humber Arm Allochthon. The 

Mainland formation in its type area was somewhat removed from the leading edge of the 

Humber Arm Allochthon, however, it shows abundant evidence of rapid deposition and 

active tectonism. 

The Lower Head Formation represents a series of several submarine fans which 

were probably deposited in a small trench slope basin or basins. Clast population> within 

conglomerates in these deposits indicate that the eastern shelf margin of the basin(s) was 

very narrow, suggesting supply by fan deltas on steep slopes, and that contemporaneous 

uplift of pre-existing slope/rise sediments was taking place to the east. 

Field relationships in all three units do not support the notion of a flysch shed 

directly from and obtaining its character wholly from the advancing Humber Arm and 

Hare Bay a!lochthons. 
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7. 1.3 Petro~raphy 

The Goose Tickle group and Lower Head Formation are petrographically similar 

(see chapter 4) and are in general matrix rich. The units are variably altered, with the 

American Tickle formation in particular showing consicferable replacement of frame~ork 

grains by calcite. Both fine and coarse grained clay minerals are apparently 

preferentially replaced by calcite, but feldspar is also frequently calcitised, and less 

frequently, quartz. 

Bulk compositions of the Goose Tickle group and the Lower Head Forn.:-ttior. are 

similar, and all three units are quartz-intermediate to quartz-rich (sensu Taylor and 

McLennan, 1985), with a high proportion of feldspar relative to similar units elsewhere 

(e.g. Schwab, 1986), and a low prop. rtion of lithic fragments. Ratios of plagioclase to 

total feldspar are variable, and feldspars generally are difficult to interpret. Potassium 

feldspars are predominantly rounded microclines which show central cores or scattered 

patches of albite. These feldspars could be of metamorphic or plutonic origin. 

Plagioclase feldspars are unzoned and frequently untwinned. These may have a 

metamorphic or plutonic origin, and only a few of the plagioclase feldspars likely have 

a volcanic origin. Lithic fragments are dominated by sedimentary rocks. dominantly 

mudstones and shales. An unusual feature of all of these units is the abundance of 

monocrystalline phyllosilicate grains, most of which are interpreted to be chloritised 

serpentine. 

Although there is a general petrographic similarity among all three units, similar. 

te Lower Head Formation may be considered petrographically distinct from the other two 
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on the basis mainly of a higher feldspar and lower lithic fragment content. 

Detritus was contributed to all units from a variety of sources. both extrabasinal 

and intrabasinal. Source rocks included: 

a. mafic volcanic rocks \extrabasinal): 

b. mafic plutonic rocks (extrabasinal): 

c. andesitic/rhyolitic volcanic rc~ks (extrabasinal): 

d. felsic plutonic rocks (extrab~ inal): 

f. cemented quartzofeldspathic sandst.>nes and oolites (extrabasinal): 

g. black and green shales (marginal to the basin): 

h. low grade metamorphic rocks (extrabasinal); 

e. intraformationallintrabasinal sediments: 

The petrographic uniformity in these rocks suggests mixing of detritus from 

different extrabasinal sources prior to transport and deposition into the foreland basin 

proper. but more subtle compositional variations within the American Tickle and Lower 

Head formations, may, on further investigation, reflect input of a slightly different grain 

population different sediment input points. 

7.1.4 Geochemistry 

The Goose Tickle group and Lower Head Formation are generally similar, but 

certain features of the geochemistry highlight subtle differences between the two units 

(see chapter 6). Both units are difficult to interpret using any of the standard variation 

or discrimination diagrams produced by various authors (Bhatia. 1983: Roser and 
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Korsch, 1986, 1988). Their high iron and magnesium contents in tandem with their high 

sodium and potassium contents are distinctive, reflecting their mixed sources. There is 

a marked effect of grain size in elevating iron and magnesium major element parameters 

in particular. 

Both units contain elevated levels of Cr and Ni, which are generally attributed to 

a contribution by an ultramafic source. The behaviour of Cr with respect to Ni and to 

other trace and major elements is different in the Lower Head Formation than in the 

Goose Tickle Group. In the Lower Head Formation, Cr is strongly correlated with Zr 

and Hf, as well as being moderately correlated with the rare earth elements. It is not 

correlated with Ni or with al-alk. Conversely, in the Goose Tickle group, Cr shows 

virtually no correlation with Zr but shows a strong correlation with Ni. This suggests 

that in the Lower Head Formation Cr is concentrated mainly in heavy minerals, whereas 

in the Goose Tickle group Cr may also occur adsorbed onto clay Minerals, and hence 

will have a tendency to behave similarly to Ni. Thus it is suggested that a greater 

amount of Cr and Ni .vas provided as dissolved load to the Goose Tickle group, 

indicating not necessarily an increasing supply of ultramafic detritus to the depositional 

area. but perhaps a greater degree of weathering in the source area. 

The Lower Head Formation shows a linear trend on the La-Th-Sc plot which may 

indicate the preserved signature of an arc source. A similar trend is not preserved in the 

Goose Tickle group, which may again suggest the influence of weathering in obscuring 

the signature of the source in the Goose Tickle group. 

Rare earth element patterns are variable for individual samples, but all units show 
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enrichment of LREES and a negative Eu anomaly. typical of passive margin sedimentary 

rocks, again retlecting the mixed geochemical signatures of these rocks. 

7.1.5 Provenance 

The simplest explanation for the origin of the mafic volcanic fragments in the 

Goose Tickle group and Lower Head Formation is that they were supplied by an 

ophiolite; However, although mafic volcanic fragments are present in the Goose Tickle 

group and Lower Head Formation, they are far outnumbered by grains of chloritiscd 

serpentine. and seem depleted in comparison with what might be expected from material 

derived from an exposed complete ophiolite. A similar observation was also made by 

Hiscott (1978). As has been described in chapter 6, there are a number of possible 

sources for mafic volcanics besides the basalts of an ophiolite, including seamount and 

rift volcanics. and it is possible that none of the mafic material was supplied by an 

ophiolite. 

Andesitic/rhyolitic volcanics are thought to have been derived from an island arc 

which was located to the east of the foreland basin (figure 6. 13). The extent of rhyolitic 

material as a contributor to the sandstones in western Newfoundland has not hitherto been 

recognised. Felsic plutonic rocks may have been derived from the plutonic roots of this 

arc. 

Black and green shale chips, despite their similarity to lithologies currently 

interbedded with the sandstones, have undergone a greater degree of diagenetic alteration 

than the sandstones themselves. and must therefore represent material eroded from the 
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eastern margins of the foredeep, providing independent evidence (other than chromite) 

that the sandstones were derived from the east. These detrital components are 

instrumental in recording the arrival of the sedimentary parts of the allochthons in middle 

Ordovician time. 

Ooids and clean, quartz cemented sandstones and siltstones may have been 

derived from shelves fringing the uplifted source area. Their scarcity suggests that these 

shelf areas were not very extensive, and they were unlikely to have been marginal to the 

foreland basin, but instead fringed a basin closer to the uplifted area. Alternatively they 

may represent cover to Grenville basement which was uplifted somewhere in the source 

area. 

I ntraformational/intrabasinal clasts are interpreted as np-up clasts from 

immediately underlying sediments. 

The abundance of ultramafic detritus relative to mafic material is notable. The 

ophiolite may have been exposed and oriented in such a way that it supplied only 

ultramafic detritus to the sediments, as suggested by Hiscott ( 1978). It is also possible 

that only ultramafic material was exposed at the •ime of deposition of the sandstones. 

A number of ways of achieving this have been outlined in chapter 6. The favoured 

hypothesis is that compression within an arc terrane exposed ultramafic parts of their 

roots. similar to documented occurrences in the Sierra Nevada of California (Saleeby, 

1981). These features would then have been subject to erosion and could acted as a 

source of serpentine and chromite, which might Je found without associated mafic 

detritus, but with felsic detritus. 
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The origin of the quartz and feldspar in the Goose Tickle group and Lower Head 

Formation is the most problematic aspect of all. The bulk of the evidence suggests that 

most single feldspar grains do not originate from a volcanic source. but from a 

metamorphic or plutonic source, and a number of the plagioclases may also have been 

derived from recycled sedimentary sources. For the plagioclase the author favours dual 

sources, one from recycled sediments similar to the Blow me Down Brook. Summerside. 

and Maiden Point formations now found in the Humber Arm and Hare Oay allochthons. 

and the second from plagiogranite similar to that found in rock fragments in coarser 

samples. 

For the rounded potassium feldspar. a metamorphic or plutonic source is 

favoured. Possibilities include the plutonic roots of the arc terrane, Grenville basement 

and/or cover uplifted in the source area, or a hitherto unidentified metamorphic terrane. 

Both field relationships and provenance studies suggest that the the Humber Arm 

and Hare Bay allochthons in western Newfoundland could not have been the sole 

providers of detritus to the Ordovician sandstones. It is clear that sedimentary units 

similar to some of those now found in the allochthons may have provided the bulk of the 

quartzo-feldspathic detritus. Evidence indicates that the sediment was not shed directly 

off the Humber Arm and Hare Bay Allochthons but was trapped and mixed in a now 

destroyed basin prior to its deposition in the lower trench slope and foreland area. 
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7.2 COMPARISONS WITH OTHER UNITS IN THE APPALACHIAN FORELAND 

BASIN 

The general petrographic characteristics of the Goose Tickle group and Lower 

Head Formation are comparable with those quoted for other units within the Canadian 

Appalachians (e.g. Hiscott, 1984; Schwab, 1986). Units from the U.S. Appalachians do 

not contain serpentine, and chromite is much less abundant (0. Rowley, pers. comm., 

1985), a feature which is also reflected in their chemistry (Hiscott, 1984). 

The most notable aspect of the Goose Tickle group and Lower Head Formation 

in comparison to other units from the Appalachian foreland basin is in the relative 

abundance of feldspar, and relative paucity of lithic fragments. Several factors could 

account for this. Some of these are methodological. Compilations such as those of 

Schwab (1986), and Hiscott (1984) do not provide information as to the point counting 

methodology used in individual cases. If the Gazzi-Dickinson method is used, this will 

tend to move the results away from the lithic pole. If a dual staining method (for 

potassium and plagioclase feldspar) is not used, an underestimation of plagioclase 

feldspar content can occur, through difficulties in identifying untwinned plagioclase. 

Comparisons of this work with the work of Schwab (1991) on the same units in 

western Newfoundland, despite his errors in equating autochthonous and allochthonous 

sandstones, show similarities in feldspar abundances. This suggests that the relative 

abundance of feldspars in the Goose Tickle group and the Lower Head Formation reflects 

real differences (the greater importance of a plutonic and/or metamorphic source) in the 

provenance of Newfoundland sandstones from those in the rest of the basin. 
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The unit most analagous to the Lower Head Formation in terms of age. tectonic 

position, and proximity is the Tourelle Formation in Quebec (Hiscott, 1977, 1978). The 

quartz and feldspar, as well as the volcanic and metamorphic fragments in the Lower 

Head Formation, are very similar in description to those in the Tourelle. The abundance 

of feldspar is higher, 24% as opposed to 12% in the Tourelle Formation. The other 

notable difference between the Lower Head Formation and the Tourelle Formation is the 

abundance of chloritised serpentine, which is not abundant in the Tourelle. 

The unit most analogous to the Goose Tickle group in terms of tectonic 

position and proximity (although not age), is the Cloridorme Formation in Quebec. 

According to Ko ( 1985) the feldspar content of the Cloridorme is again lower than in the 

Goose Tickle group. Ko also probed a number of feldspars. and like those of this study, 

none fell into the volcanic fields on the diagrams of Trevena and Nao;h ( 1981 ). 

Metamorphic fragments are more important in the Cloridorme Formation, perhaps 

reflecting the fact that the unit was deposited later, after substantial deformation and 

metamorphism had taken place in the Appalachian Orogen. Serpentine is important in 

the Cloridorme Formation reaching up to 8% (Enos. 1969). 

In summary, although the Lower Head Formation and Goose Tickle group 

are petrographically broadly similar to units elsewhere in the Canadian Appalachians and 

show the mixed provenance of foreland basin deposits in general, the Newfoundland units 

are distinctly different than their nearest equivalents. In a very long foreland basin such 

as the Appalachian basin. this is to be expected rather than otherwise (see e.g. Lash, 

1987), particularly in view of Bradley's ( 1989) suggestion that a different arc collide with 



341 

the margin in Newfoundland, than collided with the rest of the Appalachian foreland 

basin. If the author's suggestion (Jf an association between ultramafic and felsic 

fragments in an arc terrane is correct, the greater proportion of plutonic fragments as 

well as the presence of ultramafic fragments may imply a greater degree of compression 

(to produce ultramafic material) and unroofing (to produce plutonic material) in the arc 

terrane which fed the northern parts of the Appalachian foreland basin. If the feldspars 

are of metamorphic origin. this could mean a greater degree of Grenville basement or 

related cover units in the source area. 

7.3 COMPARISONS WITH OTHER FORELAND BASINS 

It is now appropriatl!, having arrived at an interpretation for the general tectonic 

setting of the Lower Head Formation and Goose Tickle group, to embark on a general 

discussion on the similarities and differences between the western Newfoundland foreland 

basin and other selected foreland basins. 

7.3.1 The Foredeep Basin 

The geology of the Apennine foreland b:asins has been extensively summarised by 

Ricci Lucchi (1985. 1986). and provides an excellent model for comparison of the 

sedimentology of flysch units in general. The Apennine system of basins is built 

entirely on continental crust. and the thrust belt is structurally overlain by a high 

allochthonous slice of oceanic aftinity. The schematics of subduction and accretion are 

controversial, but analogies may still be made between the Apennine basins and the 
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Appalachian bas:n. Of particular interest in Ricci Lucchi's ( 1986) paper is his discussion 

of the complexity of sediment dispersal patterns. and the relationship between satellite 

basins and the foredeep basin proper. 

According to Ricci Lucchi (1986) the foredeep basin proper should show a 

number of features which are listed and discussed below. 

7.3.1.1 Lateral Thickness Variations 

Ricci-Lucchi (1986) described wedging of sandstones away from the steep side 

of the basin (orogen side) towards the ramp (foreland) side. This has not been 

documented by the author in the western Newfoundland case. 

7.3.1.2 Presence of Sljde-Siump features 

'Slide-slump bodies' as described by Ricci-Lucchi (1986) are deposited in front 

of (but nol directly on) thrusts. Their maximum thickness occurs in the vicinity of the 

thrust, and like sand bodies they may wedge out in the direction of the foreland . 

The olistostrome which constitutes the Northwest Arm formation (see chapters 

2 and 3) in the Hare Bay Allochthon may represent such a feature . According to Ricci 

Lucchi (1986) these features may have a lateral extent (along the basin axis) of 20 km, 

which is not dissimilar to the lateral extent of the Northwest Arm Formation. Again, 

westward wedging or thinning of the Northwest Arm Formation has not been observed 

by the author. 

Some might argue that the Northwest Arm Formation cannot represent a foreland 
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basin 'slump-slide' feature. since its Tremadoc age would indicate that it represents 

passive margin rather than foreland sedimentation; however, new evidence presented in 

chapter 6 has shown that the sandstones in the upper part of the Northwest Arm 

Formation are similar in modal composition and chemistry to those of the Goose Tickle 

group, and therefore the Northwest Arm Formation may represent a condensed section 

through the transition from passivt: margin to foreland basin deposition. Botsford ( 1988) 

has shown that the passive margin section in equivalent units within the Humber Arm 

ALochthon is also condensed. Demonstration of a condensed section in the Northwest 

Arm Formation. however, awaits paleontological evidence. 

7.3.1.3 Pelitic Lenses and Drapes 

'Pelitic' lenses and drapes may occur in a foreland basin associated in a variety 

of fashions with turbidit~s. According to Ricci Lucchi (1986) they are broadly 

interpreted as slope deposit.> and are commonly associated with extrabasinal olistostromes 

at the tops of clastic wedges. Parts of the Northwest Arm Formation may conform to 

this description since slope sediments (black and green shales) are associated with 

extrabasinal components (minor volcanic and plutonic blocks). However. the draping 

relationship between the sha!.es and the turbidites described by Ricci Lucchi ( 1986) has 

not been observed in the Newfoundland case. 

7.3.1.4 Lon~itudinal Transport 

According to Ricd-Lucchi, sediment from the thrust belt can be transported by 
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more than one route to the foreland basin: through the foreland: longitudinally: and 

directly from the thrust ~elt. A supply route through the foreland is unlikely to be of 

importance in the Appalachian situation. as this is specific to the Apennines where pre

deformed Alpine rocks existed in the foreland. However. Ricci Lucchi's (1986) model 

for direct lateral and longitudinal supply of sediment is very similar to that outlined for 

western Newfoundland in chapter 3. with sediment being supplied to higher, larger slope 

basins first, and then being funnelled longitudinally. with sporadic direct supply centres 

at spaced sediment input points. 

7.3.1.5 Control of Sedimentation by Transverse Features 

In the Apennine basin (Ricci-Lucchi, 1986). transverse structures segment the 

orogen and are reflected in the sedimentary record by variations in subsidence and 

thickness along strike. In the Appennine basin the features themselves are not clear. but 

it is suggested that they were not major strike slip faults. and the movement along them 

was predominantly vertical (Ricci-Lucchi, 1986). 

Such faults may have created zones along which sediment could access the basin, 

thus controlling sediment input points. and movement along these faults may have 

generated earthquakes which resulted in sediment failure and consequent release of 

sediment to the basin. They may also have allowed for the ponding or detlcction of 

turbidity currents. 

The existence of transverse features in the western Newfoundland foreland basin 

cannot be documented solely from the record of sedimentation within the sandstones, as 



345 

the evidence for sediment input points along the exposed margin of the basin is limited 

to variations in the sand/mud ratio. In any case Cawood and Botsford ( 1991) argued that 

such cross-strike or tra11sverse discontinuities must be demonstrated to have been active 

through several phases of an orogenic cycle, such that it can be demonstrated that they 

are not late stage fault features. 

Cawood and Botsford ( 1991) have inferred the existence of four cross-strike 

discontinuities in western Newfoundland and these are shown in figure 7. I, along with 

the possible sediment input points inferred by the author in chapters 2 and 3. It can be 

seen that there is some agreement between the two models. 

Other evidence for such a lateral transverse feature is at the southern end of the 

Humber Arm Allochthon, where the deposition of the Mainland formation and the 

emplacement of the Humber Arm Allochthon (lower slices) may have taken place 

contemporaneously and the southern termination of the allochthon may have acted as a 

transverse feature which allowed funnelir.g of sediment into the foredeep basin. 

No evidence for axial highs within the western Newfoundland foredeep basin has 

yet been found. 

7.3.2 The Trench Slope. Satellite. or Piggy Back Basin 

Ricchi Lucchi (1986) produced a diagram which shows different possible 

configurations of a foreland basin (figure 7.2). Sub-basins within the foredeep basin may 

be created either in a sequence (B in figure 7.2) or at the same time (C in figure 7.2) 

with subequal or different sizes. The term piggyback basin was introduced by Ori and 



Figure 7. 1 Model for the evolution of the western Newfoundland foreland basin based 
on interprewtions made in this thesis. The location map on the right also shows major 
structural discontinuities which have been inferred by Cawood and Botsford (1991). The 
fundamental aspects of the model are: relatively steep slop on the eastern margin of the 
basin (as compared with Quebec examples); deposition of granule conglomerates. pebble 
to cobble conglomerates, and olistrostromes in advance of allochthons; locations of at 
least three sediment input points; presence of slightly older satellite basins fed by sandy 
fans and bounded by faults; lobe switching and activation of rift related faults in the 
Mainland area. Note the general agreement of the inferred sediment input points, and the 
independently inferred structural discontinuities. 
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Figure 7.2 Models for the structural evolution of a foreland basin as suggested by seismic 
records. After Ricci Lucchi (1986). 
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Friend (1984) to describe a thrust-based basin marginal to a foredeep (0 in figure 7.2). 

Ricci Lucchi (1986) extended the definition to simply include any minor or 'satellite' 

basin associated with the main foredeep. 

Satellite basins should show many of the same features as the main foredeep basin 

including dominantly turbidite sediments, wedging of sand bodies, slumps-olistostromes, 

multisourced supply (in part from the same sources), predominance of longitudinal 

dispersal. With the exception of wedging of sand bodies, the Lower Head Formation 

shows all of these characteristics. 

The satellite basin may also show the following features : rapid lateral facies 

changes: topographic variations: resedimented deposits are more immature and 

disorganised: local sources and cannibalised input (including recycling of sand from 

previous clastic cycles or derivation of material from the basin margin). Lateral facies 

changes and topographic variations are not well documented, but there is a considerable 

variability in facies from locality to locality. A greater immaturity of resedimented 

deposits has not been documented, but local sources and cannibalised input are prominent 

in the Lower Head Formation. 

The evidence appears to be overwhelming that the Lower Head Formation 

represents a satellite basin or basins peripheral to the main foredeep basin, and formed 

only slightly prior to the formation of the main foredeep basin. Thus the use of age 

relationships within the Lower Head Formation to determine whether the sandstone 

deposition ' transgressed' across the foreland basin is erroneous, as the Lower Head 

Formation and the Goose Tickle group were not deposited in the same basin. Sandy 
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sediment was indeed supplied slightly earlier to the satellite basin. and local structural 

variations allowed for the supply of sediment to different parts of the satellite basin(s) 

at slightly different times (e.g. Botsford. 1988). 

Ricci Lucchi ( 1986) suggested that different satellite basins may display different 

provenances, as lateral features may isolate one basin from another. This does not seem 

to be the case with the Lower Head Formation. where the provenance does not seem to 

vary significantly from location to location. However. qualitative observations made by 

the author suggest that subtle variations between localities may occur. and investigation 

of this must await further study. This is particularly true of the Portland Creek/Portland 

Hill locality which appeared to contain more fragments of felsic volcanics containing 

potassium feldspar. and whose sedimentology may be controlled by the transverse feature 

which marks the northern termination of the Humber Arm Allochthon. 

7.3.3 The Emire Foreland Basin System 

Ricci Lucchi ( 1986) suggested that in the interpretation of a foreland basin system 

two aspects are particularly problematic: how to infer paleotopography from ancient 

sediments; and how to determine if foredeep splitting took place before or after 

sedimentation. 

7.3.3. 1 Paleotopoera..Qhy 

According to Ricci Lucci ( 1986) it is possible to determine the paleotopography 

of a foreland basin to some extent. Evidence for a slope would include localised sand 
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lenses, wedging of sands into petites, and intraformational slumps. On the other hand, 

parallel layers of great lateral continuity, and particularly megabeds, are taken as 

evidence of a tlat bottom. 

Clearly, slope indicators are present in both the Goose Tickle group and the 

Lower Head Formation, although as noted above stratigraphic and structural control is 

not sufficient to infer the presence of wedging or sand lenses. No megabeds have been 

found in either the Goose Tickle group or the Lower Head Formation. This is in 

contrast to Appalachian foredeep deposits in Quebec, which do show megaturbidites 

(Hiscott et al., 1986) indicative of a more shallowly dipping eastern margin than that in 

western Newfoundland. 

According to Ricci Lucchi ( 1986), inferring topography from facies changes and 

thickness variations in turbidites may not be simple, particularly in the case of a 

constricted basin such as the western Newfoundland foreland basin. For example, sand

rich horizons interbedded with laterally continuous finer grained deposits might be 

interpreted as interfingering of lobe deposits (e.g. Ricci Lucchi, 1986), or they might 

have been caused by variation in subsidence rate generated by thrusting. In addition, sea 

level changes could also cause these kinds of relationships. 

In light of the above statements one cannot be too specific about the 

interpretation, particularly of the Lower Head and Mainland formations, as submarine 

fans or complexes of fans since the geometry of those fans cannot be thoroughly 

documented. In addition, caution must be applied in attempting to extend a model 

developed at one locality (e.g. Gonzalez-Bonorino (1990) for the Lower Head Formation 



352 

at Rocky Harbour) to an entire basin. 

7.3.3.2 Foredeep Splittin2 

Complex foredeeps (8 in figure 7.2) are those with thrusts active in their 

substratum. and it is here suggested that the abundant evidence for syndepositional 

deformation in both the Goose Tickle group and the Lower Head Formation as well as 

the near-contemporaneity of the two units qualities the basin system in western 

Newfoundland for the title 'complex'. Specific aspects of basin evolution have varied 

along the length of the foreland basin in western Newfoundland. These will be discussed 

further below. 

Ricci Lucchi ( 1986) warned that many obscure unconformities may he present in 

the sediments of satellite basins. These can include erosional surfaces, angular contacts 

and lithofacies changes. In the Lower Head Formation, this <!ppears to be entirely 

possible, as the history of events outlined in chapter 3 suggests. An unconformity may 

exist between the Cow Head Group and the Lower Head Formation in places as 

discussed by Botsford ( 1988) and by the author in chapter 3. In addition. even the rapid 

lithofacies change between shales and sandstones may represent an unconformity. The 

lower part of the formation is characterised by slumping, sliding and sandstone injection, 

followed by an abrupt change to conglomeratic facies. At Martin Point South, the 

bedding relationships documented in chapter 3 may also represent a syntectonic angular 

unconformity. 

Despite the evidence of tectonic activity during the deposition of the Lower Head 
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Formation there is little evidence regarding development of the western margin of the 

basin, however dolomitic siltstones may be derived from the western margin, and minor 

recrystallised calcarenites within the formation which appear to be of shallow water 

origin may indicate sporadic contribution of material from the western margin. 

It been noted (chapter l) that there does not appear to be an equivalent to the 

Lower Head Formation in the Hare Bay Allochthon. The identification of sandstones 

similar to those in the Goose Tickle group within the Northwest Arm Formation of the 

Hare Bay Allochthon raises the question of whether these sands were deposited in another 

satellite basin, or whether they represent deposition near the bottom of the eastern slope 

to the main foreland basin. 

The fact that the entire Northwest Arm Formation has itself been involved in 

slumping tends to obscure relationships, and in addition only a thin section through the 

sequence is exposed. As well, the author did not realise the significance of the unit at 

the time and did not study the transition in detail. However, the transition from passive 

margin to active margin sedimentation does seem to be marked by the subsidence typical 

of the Goose Tickle group, rather than the uplift characteristic of the Lower Head 

Formation. The sandstone lithologies are also more similar to the American Tickle 

formation than they are to the Lower Head Formation, although the beds are thicker than 

those usually found in the American Tickle formation. 

Thus it is here suggested that the sandstones in the Northwest Arm Formation do 

not represent a satellite basin, but instead represent an easterly part of the foreland basin 

tloor which has been uplifted close to a thrust fault. The collection of fossils from these 
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sandstones should be attempted to try to place constraints on the timing of deposition. 

and hence the evolution of this most easterly preserved part of the foredeep basin. If this 

interpretation is correct, the model for the foreland basin in this area would be similar 

to 8 (in figure 7.2) in the case of the Hare Bay area and the Northwest Arm Formation. 

whereas the situation in the Humber Arm Allochthon area would be similar to D. 

7.3.3.3 Comparison With Oyebec Se~ment of the Foreland Basin 

A comparison of the Lower Head Formation with the Tourelle Formation. whk:h 

is a similar unit of similar age to the Lower Head Formation in the Quebec Appalachians 

(Hiscott, 1978) shows that while the Tourelle Formation resembles the Lower Head 

Formation in many respects, conglomeratic facies are not as abundant, indicating that the 

basin margin was not cannibalised to the same extent. 

The relationship between the Tourelle Formation and the Cloridorme Formation 

differs in another important W?.y in that there is a much larger time gap between 

deposition in the Tourelle (Arenig) trench slope basin (Hiscott et at. , 1986) and the 

foredeep basin which is represented by the Cloridorme Formation (Caradoc). The time 

gap is much less between the Lower Head Formation (Arenig- Llanvirn) and the Goose 

Tickle Group (Llanvirn - ?Llandeilo). 

In addition, the eastern slope to the Newfoundland segment of the foredeep basin 

appears to have been steeper than that in Quebec, as evidenced by slumping, gravity 

flows and the absence of megaturbidites. 
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7.3.3.4 Comparisons Wjth Other FeatUres Observed in Foreland Basins 

Ori et al. (1986) have documented complex seismic features in the Apennine 

basins which they believe represent the products of erosion from structural highs. 

Althourh lithological information which supports the information from these seismic 

features is limited, it is believed they may be characterised by either sandstones and 

conglomerates, or slumped units. Ori et al. (1986) suggested that sandstones and 

conglomerates indicate subarea! erosion of the thrust front, whereas slumping indicates 

submarine erosion. They refer to the deposits generated by these processes as 

'denudation complexes'. Clearly the Northwest Arm Formation represents such a 

denudation complex, and it may in fact represent an evolving denudation complex, from 

conglomerates and shale chip conglomerates of extrabasinal and marginal basin origin, 

to slump deposits generated in a submarine setting, possibly as sea level rose during the 

Llanvirn. In addition, the conglomerates of the Lower Head Formation could also be 

described as such a 'denudation complex' this time derived by subaerial erosion. 

Karig et al. (1987) describe similar features in the Timor trough, which, since it 

involves the flexing of continental crust in response to the collision of the Banda Arc 

with the Australian continental margin, is considered a good analogue for the 

Appalachian situation, at least for the earlier phases of the Taconic Orogeny. Slumping 

in the Timor trough, however. is not related to thrusting, but to normal faulting , which 

is interpreted as the reactivation of older rift related faults in response to the collision. 

This raises the possibility that the faults responsible for the cannibalisation of the eastern 

margin of the Lower Head basin(s) may have been normal faults. 
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Karig et al. (1987) also noted that the Timor Trough contains a wide variation in 

sediment thickness, caused by the evolution of laterally discontinuous folds and thrusts. 

Sediment in the trough is very fine grained clastic and biogenic carbonate sediment. 

which is interpreted by Karig et al. ( 1987) to indicate that no submarine canyons supplied 

sediment to the trough and most of the sediment was trapped in basins in the trem.:h slope 

area. The lower slope in the area of their survey is underlain by thrust and fold sikes 

of the Australian passive margin sequence. which form linear ridges which can be traced 

along strike for approximately 30 kilometres. The structural lows between rite ridges arc 

trench slope basins, which may have an along strike extent of 30 - 50 km. Karig ct al. 

( 1987) did not state the width of these basins, but indicated that spacing between the 

ridges is variable, and that the entire width of the lower slope is only 20 km. This 

suggests that :hese basins are at most only a few km wide. 

These features are in good agreement with the structural and sedimentological 

setting of the finer grained Goose Tickle group (except for the sparsity of sediment in 

the Timor trough), and the coarser grained Lower Head Formation, which was most 

likely deposited in a lower slope basin. Karig et al. (1987) also identified an upper slope 

basin. An upper slope basin may have been present in the Newfoundland foreland basin 

system which would have facilitated mixing of the sediment that was ultimate!~ supplied 

to the trench slope basins and foredeep proper (figure 6. 13). This aspect is expanded on 

below. 

Another possible analogue is the Taiwan region, in which the Luzon arc has 

collided with the Chinese passive margin, uplifting the fold and thrust belt which now 
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constitutes the island of Taiwan (Lundberg and Dorsey, 1988). The most interesting 

aspect here is the discussion by Lundberg and Dorsey (1988) of a Plio-Pleistocene basin 

located :.~etween the thrust belt and the arc (see figure 6.13). These authors state that it 

should be expected that linear orogens will shed detritus laterally to both side:; into basins 

deepened by tectonic loading. According to this model, the basin located towards the arc 

(figure 6.13) (a forearc basin subsequently caught in collision) would receive sediment 

both from the 'dying arc' and from the uplifted orogen. In the western Newfoundland 

situation, the 'uplifted orogen' would consist of compressed and uplifted remnants of the 

passive margin. It may be this type of basin. not preserved in western Newfoundland. 

which was the locus of sediment deposition prior to transport of detritus into the 

Newfoundland foreland basin. 

Modern analogues within the Taiwan system are available for study because the 

collisional zone has propagated to the south of Taiwan, and Lundberg and Dorsey (1988) 

suggested that comparison shows that sedimentation in a forearc basin of this type may 

vary considerably. At certain times the basin may have contained widespread shallow 

water deposits, at others. a shallow shelf may not have been well developed and deep 

water sediments may instead have been deposited. Detritus in the basin includes 

sedimentary and metasedimentary rock fragments derived from the 'orogen', with 

subordinate amounts of volcanic and ophiolitic detritus. Transport of detritus from this 

type of basin into the Newfoundland foreland basin could easily account for both the 

compositional and textural variability of the detritus in the Newfoundland foreland 

basin. 
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A comparison of the Newfoundland foreland basin with the main foredeep basin 

(see figure 6. 13) in the Taiwan orogen shows considerable similarity between the two. 

but a notable difference between the Taiwan system and the Appalachian basin in western 

Newfoundland is that sandstone composition in both Taiwan basins documents 

progressive unroofing of the orogen (Dorsey, 1988). This has not been documented by 

the author for the foreland basin in western Newfoundland, nor has such a relationship 

been observed by other workers in the Canadian Appalachians (e.g. Ko. 1985). and 

generally in foreland basins it appears to be uncommon (Schwab, 1986). 

Metamorphic fragments in the Newfoundland examples are less abundant than 

reported by Dorsey (1988), although it is possible that potassium feldspar in western 

Newfoundland sandstones originated at a hitherto unidentified metamorphic source. 

The recent reinterpretation by Jenner et at. (1991) and Elton ( 1991) of the Bay 

of Islands ophiolite may have a bearing on this aspect of the discussion. If the Bay of 

Islands Ophiolite was formed in a back arc basin, this necessarily implies the existence 

of an arc, which, if the subduction zone was dipping east, would have been located to 

the east of the foreland basin (and west of the back arc basin - see figure 6.13). Thus 

a forearc basin may have existed to the east of the foreland basin, and may have received 

sediment from both the arc and uplifted remnants of the ancient passive continental 

margin producing a situation analogous to the one described by Lundberg and Dorsey 

(1988). This sediment may subsequently have been funneled into the foreland area via 

structural irregularities in the uplifted area. The area of mixing of sediment could also 

have included a high trench slope basin or system of basins, whic.:h have subsequently 
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been overriden by the orogen, or which were themselves uplifted and eroded. 

7.3.3,5 Synthesis 

The fundamental characteristics of the western Newfoundland foreland basin 

system (see figures 6.13 and 7.1) which can be derived from the d iscussions in this 

chapter are: 

I. A long narrow, confined, foredeep basin: 

2. A relatively steep slope on the eastern margin of the basin (as compared with Quebec 

examples); 

3. At least three sediment input points to the basin: 

4. Agreement of positioning of sediment input points with independently inferred 

structural discontinuities; 

5. Deposition of granule conglomerates, pebble-cobble conglomerates and olistrostromes 

related to faulting in advance of allochthon emplacement: 

6. Presence of slightly older satellite basins fed by sandy fans and bounded by faults; 

7. Syndepositional tectonic activity within both satellite and main foreland basins: 

8. Lobe switching and reactivation of rift-related faults in the Mainland Area: 

9. Probability of major system of basins on the east side of the foreland basin in which 

mixing of detritus took place: 

10. Supply of sediment from a major and complex area of uplift which included passive 

margin sediments. possibly Grenville basement, and a major arc terrane which was under 

compression. 



360 

7.4 FUTURE WORK 

This project has provided a reconnaissance-style overview of foredeep basin and 

related sandstones in western Newfoundland. Many problems remain to be solved. This 

study, for example, has not involved a detailed statistical petrographic comparison 

between localities within units, which might have separated local source areas from 

regionally mixed sediment supply in the manner outlined by Ingersoll (1990). Nor has 

a study to investigate petrographic variation through time been attempted (e.g. Dorsey, 

1988). 

A more rigorous attempt might have been made to relate geochemistry to modal 

composition, but this would likely have involved restriction of the grain sizes considered, 

and would have obscured some of the important relationships indicated by the variation 

in the geochemical parameter al-alk. 

A study of the diagenetic behaviour of serpentine in these rocks would be of 

considerable interest, as would a varietal study of heavy minerals in relation to modal 

composition such as that carried out by Thornburg and Kulm (1986). A study of this 

type might also allow for an investigation into the relationship between chromite 

abundances and detrital chloritised serpentine, to shed further light on the behaviour of 

Cr and Ni in these sediments. 

The method of bulk analysis of volcanic fragments by electron microprobe, may 

have some useful applications in more closely characterising volcanic source areas, 

particularly in the Lower Head Formation. Dating of individual zircon grains may al5o 

provide clues as to the ages of the sources. The most crucial grains to be dated are 
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feldspars, in particular rounded microcline, in order to reduce the number of hypotheses 

for their origin. 

One of the most pressing requirements for further advancement in knowledge 

regarding the units investigated in this study is the collection of new paleontological sites, 

and the recollection of existing sites, to place better time constraints on the events 

outlined in this thesis. 

The author plans to pursue many of these aspects as part of her future research 

career. Despite the shortcomings necessarily involved in such a wide ranging study, the 

author believes that this thesis represents a significant contribution to the geology of 

western Newfoundland such that the hypotheses presented here may be tested using some 

of the approaches OIJtlined above. 

The main contributions of this thesis have included: 

1. Placement of foreland basin sandstone units in a stratigraphic framework; 

2. Description. interpretation and basin-wide analysis of their sedimentological 

characteristics; 

3 . A qualitative and quantitative characterisation of their petrography which did not 

previously exist; 

4 . A qualitative and quantitative characterisation of their geochemistry which did not 

previously exist: 

5. An investigation into various methodologies for interpretation of geochemical data for 

sandstones; 

6. An evaluation of provenance of western Newfoundland foreland basin sandstone units 
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in light of geochemical and petrographic data from older sedimentary rocks whose 

equivalents may have acted as sources. and for which information was previously sparse 

or non-existent; 

7. Integration of all of the above into a current model for the tectonic t!volution of the 

western Newfoundland foreland basin. 
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APPENDIX 1 

SECTION Al . l: LIST OF LOCATION ABBREVIATIONS 

ABBREVIATION LOCATION FORMATiON 

BA Bakeapple Is. (4) American Tickle 
BB Bellbums (3) American Tickle 
BBN Black Brk. N. (2) Lower Head 
BI Raleigh (4) American Tickle 
BMD Blow me Down Brk. (2) Blow me Down 
BP Black Point (2) Lower Head 
BURNT Burnt Island ( 4) American Tickle 
CB Clam Dank ( 1) Clam Bank 
CBB Crabbe Brook (2) Crabbe Brook 
CR Cow Rocks ( 1) Long Point Gp. 
DB Degras (1) Hawke's Day 
EI Eagle Island (2) Lower Head 
E-WP White Point (2) Irishtown 
GM Gros Mome (3) Hawke's Bay 
GT Goose Tickle (4) American Tickle 
HAN Humber Ann North (2) Summers ide 
IRI Irishtown (2) Irish town 
LHN Lower Head Non.h (3) Lower Head 
LHS Lower Head South (3) Lower Head 
LP Low Point ( 1) Mainland 
LSI Little Sp~ings ln. (4) American Tickle 
MAID Maiden Point (4) Maiden Point 
MAP Middle Ann Point (2) Lower Head 
ML Mainland (1) Mainland 
MPN Martin Point N. (3) Lower Head 
MPS Martin Point S.(3) Lower Head 
MP Maiden Point ( 4) Lower Head 
NWA Northwest Ann (4) Northwest Arm 
PCF Portland Crk. Feeder(2) Lower Head 
PCP Portland Crk. Pond (2) Lower Head 
pp Parsons Pond (2) American Tickle 
PORT Portland Crk. (2) Lower Head 
RPA Rocky Point ( 1) Lower Head 
SAINT Mt. St. Margaret (-) Bradore 
SB Shallow Bay (4) American Tickle 
SAB Shallow Bay ( 4) American Tickle 
SAB 3 Saint Anthony Bight (4) Maiden Point 
SPI St. Paul's Inlet (3) American Tickle 



TC 
TRC 
TP 
WBN 
WBS 
WH 
WI 
WF 

Table Cove (3) 
Three Rock Cove ( 1) 
Triangle Point (4) 
Western Brook Pond N.(2) 
Western Brook Pond S.(2) 
Winterhouse (1) 
Woods Island (2) 
Fox I sian(' River (-) 

American Tickle 
Mainland 
Northwest Arm 
Lower Head 
Lower Head 
Winterhouse 
Blow me Down 
Blow me Down 
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(Note : numbers in brackets indicate location map. Not all of the individual localities are 
marked on location maps. Individual locations are given in the following list) 
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A 1.1.1 GRID REFERENCES FOR SAMPLES 

119-86-2 NTS 12H/12 VE 352832 

BA 3 NTS 2M/12 WH 800158 
BA 4 

BB 82 NTS 12116 & 12115 VF 600706 
BB B4 
BB 89 

BBN NTS 12G/1E VE 163401 

BI 83 NTS 2M/12 WH 882133 

BMD 2 NTS 12G/1E VE 097351 
BMD 5 NTS 12G/1E VE 103351 
BMD 7 NTS 12G/1E VE 133348 
BMD 8 NTS 12G/1E VE 128349 

BP 3 NTS 128/10 UD 756846 
BP 7 " 

BP 10 

BURNT 2 NTS 2M/12 WH 863117 

CB 9 NTS 128/11 UD 528910 
CB 10 
CB 11 

CB 81 NTS 12G/1E VE 176533 

CR 82 NTS 128/11 UD 395833 

CROQ6 NTS 2M/4 WG 877619 

DB 4 NTS 12B/6 UD 406728 
DB 9 

E-WP NTS 12G/1E VE 230406 

EI 2 NTS 12G/1E VE 163463 
El 4 
EI 6 
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GM I NTS 12H/12 Ve 426932 
GM 3 

GT I NTS 12P/8 WG 675823 south to 12P/1 WG 672776 
GT 85 
GT 810 

HAN 85 NTS 12A/13 VE 288249 
HAN 87 NTS 12G/ 1E VE 185347 section north to 179358 
HAN 812 

HAS 86 NTS 12G/ 1 E VE 166303 

H8 I NTS 121111 VG 867054 
H8 6 NTS 121111 VG 832048 

IRI 1 NTS 12G/ 1E VE 176287 
IRI 3 

LHN B4 NTS 12H/ 13 446353 
LHN B6 

LHS B2 NTS 12H/13 448343 
LHS 85 
LHS B6 
LHS 88 
LHS BJO 
LHS B12 

LP B1 NTS 128 / 11 402833 

LQ-82-163 NTS 12H/5 VE 390763 
LQ-83-51 NTS 12H/5 VE 409731 

LSI 1 NTS 2M/4 WG 815737 
LSI 5 

M:'ID I NTS 2M/4 WG 834739 

MAP Bl NTS 12G/1E VE 163427 
MAP B3 
MAP 87 
MAP BlO 
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ML 4 NTS 12B/ll UD 386 north to 393818 
ML 8 
ML 11 
ML 12 
ML 15 
ML 20 
ML 21 
ML 22 
ML 23 
ML 24 " 
ML 25 
ML 26 
ML AlO 
ML A1.4 
ML B7 
ML B8 " 
ML B9 

MP B1 NTS 2M/5 & 2M/6 WG 988903 
MP B5 NTS 2M/5 & 2M/6 WG 982947 

MPN 5A NTS 12H/13 VF 341124 
MPN 5B 
MPN 7B " 
MPN 8 
MPN 12 

MPS 11 NTS 12H/13 VF 341124 
MPS 13 
MPS 23 

N 239 G Bradore Formation. Labrador. no location available 

NWA 10 NTS 12P/8 WG 663898 
NWA 12 

PCF 1 400m N of mouth of Portland Creek Feeder, no location available . 
PCF 2 
PCF 4 

PCI 1 NTS~ 12114 VF 607607 
PCI 2 

PCP B1 NTS 12114 VF 645622 
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PH 4 NTS 121/4 VF 556550 

PORT 1 NTS 12114 VF 537546 
PORT 2 NTS 12114 VF 536544 
PORT 82 " 

pp 81 NTS 12H/13 VF 570321 

RPA 2 NTS I 28/10 VF 554898 nonh to 562908 
RPA 5 
RPA 10 
RPA 11 
RPA 14 

SA8 1 NTS 2M/5 & M/6 XG 011930 
SA8 3 
SA8 9 NTS 2M/ 12 WH 780082 
SA8 10 

SAINT 1 3 km S of Mt. St. Margaret microwave tower 197 on access road, 
no gr:d reference available. 

S8 2 NTS 2M/12 Wtl 780083 
S8 8 
S8 83 " 
S8 82 " 

SPI 81 NTS 12H/13 VF 518215 

TC 3 NTS 121/6 & 12115 VF 619779 
TC 4 
TC 6 
TC 7 
TC A3 
TC A6 
TC A12 
TC A16 

TP 5 NTS 2M/12 WH 818072 
TP 83 NTS 2M/5 & 2M/6 WH 820054 
TP 87 NTS 2M/12 WH 818072 

TRC I NTS 128/11 UD 420851 south to 408837 
TRC 3 " 



TRC 4 
TRC 5 
TRC 7 
TRC Al 
TRC A5 
TRC A7 
TRC AJO 
TRC Al3 
TRC Al6 
TRC A20 
TRC A2l 
TRC A25 
TRC A28 

WBN 3 
WBN 6 
WBN A3 
WBN Al5 

WBS l 
WBS 9 
WBS Bl 
WBS B2 

WF-75-85 

WF-76-85 

WH 

WI B2 
WI B3 
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II 

NTS l2H/l3 VF 402153 to 413152 

II 

NTS 12H/l3 VF 395147 to 394144 

Blow me Down Brook Fonnation north of Fox Island River, nu 
location available 

NTS 128/10 UD 626979 

NTS 12G/lE VE 105387 
II 



SECTION A1.2 GENERAL LOCATION MAP 

General location map showing key to detailed location maps. 
I =Pon au Pon Peninsula. 2=Bay of Islands area. 3=area nonh of Bonne Bay. 
4 = Pistolet Bay and Hare Bay areas. 
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SECTION A1.3 LOCATION MAP 1 PORT AU PORT PENINSULA 

Dashed lines= faults. Solid lines= stratigraphic boundaries. ML =Mainland. CR =Cow 
RtX:ks. LP=Low Point. TRC=Three Rock Cove. RP=Rocky Point. BC=Biack Cove. 
BP=Biack Point. CH =Crow Head. Note that the 'Three Rock Cove Section' is 
measured from Crow Head south, although folded Mainland formation is also exposed 
from Three Rock Cove to Crow Head. Note also that the Mainland formation is 
restricted to the west coast of the Pon au Pon Peninsula. Map after Williams ( 1985) and 
Waldron and Ste:::kmal. 1991 ). 
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SECTION A1.4 LOCATION MAP 2 BAY OF ISLANDS 

Dashed lines=faults. Dotted lines=stratigraphic boundaries. BMD=Biow me Down. 
WI=Woods Island. MAP=Middle Arm Point. EI=Eagle Island. NAP=North Ann 
Point. CB=Crabbc Brook. BBN=Biac!< Brook North. Map after Williams and Cawood 
(1988). 
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SECTION Al.5 LOCATION MAP 3 NORTH OF BONNE BAY 

Dashed Jines= faults. Solid lines= stratigraphic boundaries. Toothed lines =major thrust 
faults. MPN=Manin Point Nonh. MPS=Manin Point South. WBPN=Westem Brook 
Pond Nonh. WBPS=Westem Brook Pond South. SPI=St. Paul's Inlet. PORT=Ponland 
Creek. PH=Portland Hill. DH=Daniel's Harbour. BB=Bellburns. TC=Table Cove. 
Map after Williams and Cawood ( 1988) 
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SECTION A 1.6 LOCATION MAP 4 HARE BAY AND PISTOLET BAY 

Dashed lines=faults. Solid lines=stratigraphic contacts. SB, SAB=Shallow Bay. 
TP=Triangle Point. NWA=Nonhwest Arm. GT=Goose Tickle. HH=Howe Harbour. 
AT=American Tickle. BSI=Big Springs Inlet. LSI=Little Springs Inlet. MP=Maiden 
Point. Map after Williams and Smyth (1983). 
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APPENDIX 2: LOCALITY DESCRIPTIONS AND MEASURED SECTIONS 

LEGEND - STRATIGRAPHIC SECTIONS 
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SECTION A2.1 AMERICAN TICKLE FORMATION 

A2.l.l Goose Tickle 

Grid Reference: NTS 12P/8 WG 675823 south to 12P/l WG 672776. 

Exposure: Coastal, intertidal zone, low lying, very poorly exposed near the top. 

Structure: Almost flat lying, cleaved in places, folded about axes piunging shallowly SW. 

Underlying unit: Black Cove Formation with scattered limestone nodules. Gradational 
contact. Base of the section taken at the first prominent sandstone unit. 

Overlying unit: Nonhwest Arm Formation. Contact not exposed. 

Other comments: The structure of the top of the section is not clear, as only the two 
conglomerates (which are assigned to the Howe Harbour member) are exposed. The 
inferred thicknesses between the two conglomerates are an estimate only, as structural 
interpretations differ (see e.g. Willi.ams and Smyth, 1983; Stouge, 1986). This is the type 
section for the American Tickle formation. 

Paleocurrent data: 
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Ripples 

N=l3 



Goose Tickle 

,. - ···-' ·:... · · .... 

:11 '" ·-
i 

, I 
I I 

I 

i 

. :I il 
~ i I 
; iII 

I ' 

20: II 
. ~ I 1 

1 
I 
1 
~ ~ 

,. 

~: 
··~ 

~ •_;_= ;· ~ 

1,· ~-== 

1 

GT1 L-~ 
1

-::.-·: ·-' 
0 - -:=~-~v 

r---, ·r t ~ r·-, 
CSFMC 

. j i 
~~ . -
~- --
1 _ :-.. 

t--= --· ____ ,. __ 
50 j ----t-- __ _ , 

1-··=--- · 

1
- . 
- -·:- · 

- ' 

) 
:----- ... - -

- · -- , 

' r 
40J 

1 

30 ~ 
r·· -r• · ,.---r-1 

CSFMC 

I 

t=t. 
~ 

- ' 

408 



i-

1-
l---L=.-
f---
J--

~ 

1---=-110c:_ 
7-71 
J ·-:... 

1-
p 

100 4 

t 

1
1 . . - -· 

·-

t--=---
~-· ·-

··--

·-- ---.._ ___ _ 

; ---
~·-·· ·--

~-- -, _ 
~-=- -··-

120 - . 1 ·1 

'[SF MC 

r- -~ . 

} ._._ 

170 

150 

l 
t 

J
j 

--
I _ , 

1 
l 
i 
I -
-' I .... 

1 
I 

1 

T I l l 

CSFMC 

409 



[ __ · - J 

r-~--
i -----( ~ ... 
l . ---~ 
~ ... ~ 

·- ' .... 
_ I 

-t 
_ I 

... 
190 1 - --- _,_ 

j 

, ____ 
J 

r ~--

--
180 

1 -·r-r--r-r-~ 

CSFMC 

:::;:::::::::===-=·-4--175 m 

T 
1-r-:--
~ 

r---
1::: . 

230 1 

r--

-

220~ 

~ r=:-
J~ 
~r-1 

CSF MC 

. .-210m 

410 



.t II 

A2.1.2 Shallow Bay 

Grid Reference: NTS 2M/12 WH 780083. 

Exposure: Low lying coastal exposure. mostly intenidal. 

Structure: Fairly simple. Folded al<mg shallowly SW plunging axes. 

Underlying unit: Black Cove Fonnation, gradational contact. Base of the section taken 
at first prominent sand~tone bed. 

Overlying unit: Top not exposed. 

Other comments: This is one of the sections which contains the Daniel's llarhour 
Member (conglomeratic member near the base of the section). 

Paleocurrent data: 

Ripples 

N=S 
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A2.1.3 Table Cove 

Grid Reference: 12116 & 12115 Vf 619779 

Exposure: Low lying coastal exposure. imenidal (access only at low tide). 

Structure:: Simple. 

U nder1ying unit: Black Cove Formation, gradational contact. Base of the section taken 
at W'! first prominent sandstone bed. 

Overlj·ing unit: Top not exposed. 

Other comments: This is a reference section for the American Tickle: formation. as it ht!st 
represents the more sand rich examples of the unit. 

Pa1eocurrem data: 

Cross Beds Paning Lineation 

N=l3 N=2 
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A2.1.5 Bellbums 

Grid Reference: NTS 121/6 and 12115 VF 600706 

Exposure: Low lying coastal exposure. Intertidal zone. accessible at low tide only. 

Structure: Simple, some shallowly southwest plunging folds. 

Underlying unit: Black Cove formation, gradational contact. In this section. the hasc 
of the section is the top of the Table Cove Formation and the entire Black Cove 
Formation is included in the section. 

Overlying unit: The top of ~he unit is not exposed. 

Other comments: Another example of sand-rich American Tickle formation. 

Paleocurrent data: 
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A2.1.6 Other Localities 

Note: other localities are noted because they display some imponant feature not shown 
by the selected sections above. 

1. Howe Harbour. 

Grid Reference : NTS 2M/5 and 2M/6 WG 740895. 

Exposure: Low lying coastal exposure. Intenida1 zone. 

Comments: The type locality for the Howe Harbour Member. Several HH2 ~onglomerate 
beds approximately 1 m thick are exposed here as well as HH I shale chip layers 
interbedded with silty argillites of the American Tickle formation. The uppermost 
contact of the American Tickle formation with the Nonhwest Ann Formation is in close 
proximity but is poorly exposed. Complex structure. 
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SECTION A2.2 MAINLAND FORMATION 

A2.2.1. A2.2.2. A2.2.3 Three Rock Cove 

Grid Reference: NTS 12B/ll UD 12B/11 UD 420851 to 408837 

Exposure: Cliff-like exposure with wide pebbly beach. 

Structure: Within the main Three Rock Cove section, no obvious major structural 
discontinuities were observed. Faults occur between the top of the main Three Rock 
Cove section and Three Rock Cove A, and between Three Rock Cove A and B. Between 
the faults Three Rock Cove A and B appear to be intact. It is not known whether Three 
Rock Cove A and B represent sections which are younger, older, or equivalent in age 
to the main section. 

Underlying unit: The base of the unit is not exposed. The base of the main section was 
taken as the lowermost exposed thick bed at Crow Head. 

Overlying unit: The top of the unit is not exposed. 

Other comments: This is the type section for the Mainland formation. 

Paleocurrent data: 
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A2.2.4 Other Localities 

Note: other localities are noted because they display some imponant feature not shown 
by the selected sections above. 

1. Mainland 

Grid Reference: NTS 128/11 UD382803. 

Exposure: cliff-like exposure with a wide pebbly beach. 

This is a 15m section which overlies the type section of the Cape Connor:mt Fonnation. 
It consists of thin-medium bedded turbidites, and shows anomalous paleocurrent 
directions to the northwest. 

2. Low Point 

Grid Reference: NTS 128/11 UD399831. 

Exposure: Low lying coastal exposure. 

This is a 64 m section which may represent the topmost Mainland formation . The 
section overlies sheared grey-green shales, and contains mainly thick to very thick
bedded sandstones. showing cross-bedding in sets up to 1 m thick. Graptolites indicative 
of a Llandeilo age have been reported from this locality (James and Stevens, 1982). 
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SECTION A2.3 LOWER HEAD FORMA TJON 

A2.3.1 Martin Point North 

Grid Reference: NTS 12H/13 VF 349133 . 

Exposure: Low lying coastal exposure. Intertidal zone. 

Structure: Appears simple. 

Underlying unit: Green Poi.at Fonnation of the Cow Head Group. Contact not well 
eXfl·Jsed, but appears sharp. Base of the section is at the inferred contact between the 
Cow Head Group and the Lower Head Fonnation. 

Overlying unit: The top of the urit is nut exposed. 

Other comments: Displays chaotic shales at its base. 

Paleocurrent data: Insufficient data available. 



Martin Pomt North 

~ "T ...... 

10 ~ ,, 
~ 

J 
:I 

~ 

MPH 12 
:' 

~ . . 

·--~ 
;r · 
.. .. . ····· ·· .. ,, 

so ; 
:r··· ·· 
' . . :=, ·l 
~ -'~ . . . 11 • . . - . -j . . . 
,,.. . . · . . . .... . 

" ' , ... . . ........ ... 
:i 

r·r r -,-·-~ 

CSFMC 

432 

E 60J -- --· -- ·· , 
r- r ---r-r-,-, 

CSFMC 



433 

A2. 3. 2 Martin Point South 

Grid Reference: NTS 12H/13 VF 341124. 

Exposure: Low lying coastal exposure. Intertidal zone. 

Structure: Appears simple. Some features may indicate syndepositional tectonics. 

Underlying unit: Green Point Fonnation of the Cow Head Group. Contact not well 
exposed. but appears sharp. The base of the section is at the inferred contact hctwecn 
the Cow Head Group and the Lower Head Fonnation. 

Overlying unit: The top of the unit is not exposed. 

Other comments: This section displays good examples of facies LH 1 conglomerates and 
very coarse sandstones. 

Paleocurrent data: Insufficient data available. 
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A2.3.3 Western Brook Pond North 

Grid Reference: NTS 12H/13 VF 402153 to 413152 

Exposure: Low cliff-like exposure at edge of pond. 

Structure: Section is exposed in the western limb of an upright syncline. Appears simple 
within the section shown, but the base of the unit is a complex folded/faulted zone 
consisting of a basal zone of sandstones a few m thick overlain by folded and faulted 
shales and cherts of lithologies similar to the Cow Head Group. 

Underlying unit: Green Point Fonnation of the Cow Head Group. The base of the 
section shown is taken at the first undeformed bed above the deformed zone of red and 
green shales. Since the base of the Lower Head Fonnation is defined as the first 
sandstone bed, the deformed zone of red and green shales is included in the Lower Head 
Formation. Hence a considerable thickness of Lower Head Fonnation may have been 
excluded from the section. 

Overlying unit: Top of the unit is not exposed. 

Other comments: This section is of interest because it contains a wider variety of facies 
than many of the coastal sections. Given that this represents only a partial section 
through the unit, the Western Brook Pond North Section probably represents one of the 
thickest sections through the Lower Head Formation. 

Paleocurrent data: Insufficient data available. 
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A2.3.4 Other Localities 

Note: other localities are noted because they display some imponant feature not shown 
by the selected sections above. 

1. Black Point 

Grid Reference: NTS 128/10 UD 756846. 

This cliff-like coastal section is approximately 120 m thick and contains excellent 
examples of LHl facies (conglomerates and very coarse sandstones). with multiple 
spectacular amalgamation surfaces. 

2 . Ponland Hill 

Grid Reference: NTS 12H/13 VF 552548. 

This prominent hill, although exposure is poor, appears to contain a very thick section 
(?450 m) of facies LHl. and may possibly represent a narrow, deep channel fill. The 
lithology is pebble to cobble conglomerate, with clasts dominated by fine grained 
limestone and calcarenite. 

3. Ponland Creek 

Grid Reference: NTS 211/4 VF 559568. 

This is a low lying coastal exposure, which is only exposed at low tide. It is structurally 
more complex than many Lower Head sections, and the top and base of the unit are not 
exposed. However a minimum of 300m of section is exposed. Facies present include 
thick packages of LH6 mudstone interbedded with LH2 medium to very thick-bedded 
sandstone. An olistostrome is exposed near the top of the exposed section. The LH2 
facies near the top of the exposed section contain granule layers similar tc clasts in the 
Ponland Hill conglomerate. 
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APPENDIX 3 ELECTRON MICROPROBE DATA 

The majority of electron microprobe analyses were carried out at the University of 
Manitoba on a CAMECA SX 50 microprobe, under operating 15 kv and 20 namp with 
a 5 micron beam. Other analyses were carried out at the University of Saskatchewan on 
a JEOL superprobe under similar operating conditions. 

The designators ldot, 2dot, #, kspl, pl5 etc . are internal designators for location 
of spots on specific grains. 

Note that for feldspars and chromite, totals under 97% and over 102% were 
excluded from further consideration. For chlorites all totals were considered. Poor 
polish was responsible for low totals. This is a common problem in chlorites, and it has 
been suggested (Laird, 1988) that the proportions of elements present are not 
substantially altered. 

Recalculation of ions for chlorite was carried out u:;ing the procedure in Deer, 
Howie and Zussmann (1966). Chlorites were recalculated on the basis of 28 oxygens . 



CHLORITE DATA GOOSE TICKLE 

PCP-01 PCP-01 PCP-Bl PCP-Bl PCP-Bl PCI'-Bl PCP-01 PCP-IH PCP-IH P C P-lH PCP-8 1 
WOT 3DOT SOOT 7UOT IIDOT .IJ>OT #10 #11 # 12 IDOT I DOT 

Na:!O 3 551 0 .000 0 .012 0001 0 .000 0.000 0 .048 0.0~!0 0.005 ().(){)4 0 .000 

Ft!O 10.-152 19.377 21.485 22.1l 1·1 20.803 26.058 21.153 25 .0:U 17.!H4 28.-135 21.011 

1{.!0 O.Oti-t 0 .011~ 0.022 O.O:i3 0 .022 0.628 0 .002 0 .013 0.014 0 .004 0 .023 

1\lgO ... 2·111 18.685 16.061i lli.315 18.!)17 t :~ . IJ51 17.51i8 t5 .n :s 21.708 10.784 17 . 1:!6 

TiOJ 0. 117 0 .000 0.000 0 .000 0 .029 0 .000 0 .0041 IJ.tMMJ 0.()()() 0 .043 0000 

SiO:! 43.0-17 :.!!Hl3 :.!8.210 :m.l57 2!.1.-111!.1 31.517 :.!11 .8:.!:.! :.!11 .·15!.1 2'.)0!.1! '!5 .558 211.375 )"' 

w 
.. u~o3 25. I:S6 17.-l'.!li I') 125 17.6011 18.016 U.68'1 

. 
18 :U\5 15.580 16.6·&:J :.!2 .377 18 !121) ~ 

1\lnO O. IOIJ 0 .487 0 .058 O.Oti7 0 .005 0 .184 IJ.02!.1 0 .174 0.211:S 0:.!63 0 .076 

CaO 0.-165 0 .2-1'.) 0 .21!) 0.:.!21 0.:.!24 0 .118 0 .31)5 ll. ll3 0.087 0.092 0.337 

NiO 0.083 O.O!Jii 0 .283 0 .:.!08 0 .278 0 .117 11.2:!9 0 .02:! o.oc.o 0 .023 0 .291 

P~O~ 0.176 0 .000 0 .000 0 .0011 O.IMlO 0 .1100 11.001 ()()(Jil O.UIItl 0 .()4!) 0025 

C'r -~01 0.000 0.0~8 0 .2!13 0. ~6~ O.lH 0.046 0 .282 0 .0:.!5 0.315 0 .039 0 .148 

TOTAL 87.-UJ 85.789 85.773 87 .0!.13 87.937 85.-108 86.924 85.165 86.071 87.671 86.338 



CHLORITE DATA GOOSE TICKLE (continued) 

TC-1 II>OT TC-1 2 D«lT TC-1 3l>OT TC-t5DOT TC·ItiDOT 

Na~O 0 () 1·1 0.000 0 .0·17 o o:m 0 ():.! 1 

FeO 2fi.'Jii5 21.'J71 22.:.!1'.) :.!:.! .:.!:11 :.!:.!. IIi!) 

K~o 0.0:17 0.0~!:1 01177 ll .lki:J O.IICi:.! 

MI!O 18.615 15.'J:H 16. 1111 16. 171 16.7111 

Ti<h ll.llflll () (IIIII 0 .1155 IIIII III 0 .01111 

SiO·! :m .011 2!Uti2 :.!'J . .!!)I :.!K .5.rs 2!1 10·1 

AI~0-1 17. ·111-1 19 ll-17 18.7!.1-1 I'J !U7 III.JIS 

MuO O.Oii I O.ll53 0 .101 0 .0:17 O.O-t9 

f'aO ll .:.!lli 0 .270 1U71 II.:.!H 0. 1'.)5 

NiO ll.ll·t:l 0 .100 II IIIII 0 .072 IIU!Hi 

P!O~ 11.00'.) 0 .11112 0 OliO 01100 0 .0110 

Cr-~03 0.511-1 11.:.!5:1 0 .1)'.)7 11. 1 :.!'J O.IH-1 

TOTAL 88.072 87 .012 87 1111 87.463 86.798 



A 3.2 447 

Goose Tickle Chlorite Ions 

PCP-81 PCP-81 PCP-Bl PCP Bl 
(l dot) (1 dot) (2 dot) (3 dot) 

Na 0.00 0.00 1. 28 0.00 
Fe 5.08 3.67 1. 63 3. 37 
K 0.00 0.01 0.02 0.00 
Mg 3. 4 3 5.33 1.18 5.80 
Ti 0.01 0.00 0.02 0.00 
Si 5.46 5.92 8.02 6.12 
Al 5.63 4. 6 5 5 . 52 4.28 
Mn 0.05 0.01 0.02 0.09 
Ca 0.02 0.08 0.09 0.06 
Ni 0.00 0.05 0.01 0.01 
p 0.01 0.00 0.03 0.00 
Cr 0.01 0.02 0.00 0.01 

Fe/Mg 1. 48 0 . 69 1. 38 0.58 
Fe/Fe+Mg 0.60 0.41 0.58 0.37 
Mg/Fe+Mg 0.40 0.59 0.42 0.63 
Al/(Al+Fe+Mg) 0.40 0.34 0.66 0 . 32 

PCP Bl PCP 81 PCP 81 PCP Bl 
(5 DOT) (7 DOT) ( 8 DOT) (4 DOT) 

Na 0.00 0.00 0.00 0.00 
Fe 3.78 3.81 3.55 4.72 
K 0.01 0.01 0.01 0.17 
Mg 5.04 5 . 04 5.76 4.21 
Ti 0.00 0.00 0 . 00 0.00 
Si 5.94 6.25 6.01 6.82 
Al 4. 7 4 4.30 4.34 3.49 
Mn 0.01 0.01 0.01 0.03 
ca 0.05 0.05 0.05 0.03 
Ni 0.05 0.03 0.05 0.02 
p 0.00 0.00 0.00 0.00 
Cr 0.05 0.08 0.02 0.01 

Fe/ Mg 0.75 0.76 0.62 1.12 
Fe; Fe+Mg 0.43 0.43 0.38 0.53 
Mg/Fe+Mg 0.57 0.57 0.62 0.47 
Al/ (Al+Fe+Mg) 0.35 0.33 0. 32 0.28 



448 

PCP-Bl i10 PCP-Bl U1 PCP-81 112 TC4 lOOT 
Na 0.02 0.01 0.00 0.01 
Fe 3.67 4.54 3.10 3.58 
K 0.02 0.00 0.00 0.01 
Mg 5.43 5.08 6.68 5.66 
Ti 0.00 0 . 00 0.00 0.00 
Si 5.98 6.17 6.00 6.12 
Al 4.49 3.98 4 . 05 4.20 
Mn 0.01 0.03 0.04 0.01 
Ca 0.08 0.03 0.02 0.05 
Ni 0.04 0.00 0 . 01 0.01 
p 0.00 0 . 00 0.00 0.00 
Cr 0.05 0.00 0.05 0.09 

Fe/Mg 0.68 0.89 0.46 0.63 
Fe;Fe+Mg 0.40 0.47 0.32 0.39 
Mg;Fe+Mg 0.60 0.53 0.68 0.61 
Al/(Al+Fe+MgJ 0.33 0.29 0.29 0.31 

TC4 2DOT TC-l 3DOT TC4 SCOT TC4 6DOT 
Na 0.00 0.02 0.01 0.01 
Fe 3.80 3.85 3.84 3.86 
K 0.01 0.02 0.02 0.02 
Mg 4.92 4.98 4.98 5.18 
Ti 0.00 0.01 0.00 0.00 
Si 6.08 6.07 5.89 6.06 
Al 4. 6 5 4.59 4 . 85 4.49 
Mn 0.01 0.02 0.01 0.01 
ca 0 . 06 0.06 0.05 0.04 
Ni 0.02 0.01 0.01 0.02 
p 0.00 0.00 0.00 0.00 
Cr 0.04 0.02 0.02 0.01 

Fe/Mg 0.77 0.77 0.77 0.74 
Fe/Fe+Mg 0.44 0. 44 0.44 0.43 
Mg/Fe+Mg 0.56 0. 56 0.56 0.57 
Al/(A1+Fe+Mg) 0.35 0.34 0.35 0.33 



CHLORITE DATA LOWER IIEAD 

El6 # 12 El6 # 13 El6 #15 El6 2DOT BPIO 8 DOT BPIO SQUARE BPlO 7 DOT BPIO 3DOT BPIO 4DOT 

Na:!O 0 .010 0 .008 0.000 0.008 0.025 0.022 0.027 0.000 0.000 

FeO 17 .171 18.533 30.950 20.140 21.170 18.448 2!).013 31.538 26.461 

K:!O 0 .409 0.050 0 .004 0 .020 0 .042 0.065 0.035 0.020 0 .003 

MgO 18.722 20.199 11.6·10 19.743 19.395 20.454 13.187 11.616 14.427 

Ti02 0 . 118 0.012 0 .033 0.039 0.038 0 .000 0.037 0.028 0.024 

Si02 27.079 1.7.099 24 .340 31.108 30.655 31.131 27 .315 25.345 26.212 )" 

w 
AI!OJ 20.5:.11 I !J.183 18.·105 13.784 16.015 18.037 16.701 17.739 18.960 . 

w 
MnO 0 .185 0.156 0 .293 0.189 0 .388 0 .226 0 .309 0.·154 0.337 

CaO 0 .057 0.094 0 .009 0.093 0 .132 0 .319 0.178 0 .030 0.014 

NiO 0 .090 0. 128 0 .014 0.122 O.ot5 0.080 0.031 0.028 0.032 

P~O!> 0 .000 0.000 0.000 0.004 0 .053 0 .000 0 .000 0.002 0.000 

Cr20l 0 .160 0.067 0 .029 0.042 0 .038 0.197 0 .018 0 .025 0.058 

85 132 85.529 85.717 85.892 87.966 88.979 86.851 86.825 86.588 



CHLORITE DATA LOWER IIEAD- cootinuecl 

Elu 3DOT El6 4DOT El6 5DOT El6 #6 El6 #7 El6 #8 El6 #9 Elll #HI BPIO <JI>OTS 

Na~o O.Uflll 0 .026 0 .00() 0 .000 0 .0117 0 .000 0 .1122 01123 11.004 
•·eo 19 .li~5 27.805 18.667 19.242 30.2-10 11l.752 17.555 17.819 18.059 
K,O 0.022 0 .967 0 .034 0 .021 0 .0413 0.027 0 .004 0 .033 0 .024 
M~O 19.690 8.595 20.422 19.371 12.957 20.761 21.79 22.11111 19.996 
Ti01 0 .031 1) .04)1) 0 .0410 0 .0410 0.017 0 .0410 0.1)22 O.lliiO 1).055 
SiO~ 29114 29.liH 3U5U 29.2117 2!l .HI 30.377 32 .Still 31 rHI5 311 !135 
AI103 lri.Ju7 111.525 17.731 17.710 1-1 .785 lll.H7 lti .IIH I 5 .5119 lll .OtiO 
MnO 0 .156 0 .225 I} 1111 0.097 11.254 O.O!lll 0 .117 O. lli2 0 .291 
CaO 0.073 0 .036 O. llll O.OC>IJ 0 .036 0 .0!16 0 .113 0 .104 11.200 
NiO 0.049 0 .073 0 .1211 0 .141 I) .IJI)I) 0 .1411 0.0~1 0 .1193 IJ.OII!l 
1'20~ 0 .010 O.I}()(J 1).1)(15 0 .04)1) 11.005 U.ll19 O .(N)I) 11 .1120 11.1100 

Cr203 0 .01111 0 .014 0 .080 0.078 0 .0110 0075 O.OJ!l 0 .020 O.llll 

TOTAL 117.2!15 85.940 87 .8ti6 85 .987 87.745 811 .79:.! 11!1.164 ll7 .tru!l 87.784 



CIILOUITE DATA LOWER IIEAD - continued 

BPIO SOOT BPIO 6DOT UPIO 2DOT BPIO IDOT E l6 #16 Elti #17 El6 #Ill 

Na,o 0.015 0 .016 0 .038 0 .025 0 .0011 11.012 0 .0110 

FeO 17.207 19 .3~3 12.5-411 28.459 17.454 18H9 16 .399 

K 10 O.OJS 0.045 0.040 0 .043 0 .019 0 .016 0 .011 

~lt:O 20.681 20.172 23.965 15.140 20.992 19.222 20.297 

Ti01 0.000 0.11211 0 .006 0.002 0 .0011 0.000 0 .01)() 

SiO, 31.169 31.1411 33.766 29.0211 2!UIIJ 29.513 30.717 

AI ,O~ 18.126 lli.409 14.972 14.523 111.1)51 111 .WS 16.1116 

1\fnO 11 .220 0 233 0 .23-t 0 .349 01-11 tl. ll6 0 .1116 

CaO 0 .252 0.0110 0 .357 0 .108 0 131i 0 .103 0.1113 

NiO 0.105 0.082 0 .1:.13 0.0-47 0 .0!)1 0 .104 0.147 

r~o~ 0.000 0.000 O.ot5 0.002 0 .001) 0 .010 0 .000 

CrlOJ 0.0-12 0 .023 0 .171 0.000 0 .034 0.042 0.079 

TOTAL 87.852 87.559 86.235 87.726 86.801 86.022 84.755 



A 3.4 
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Ollorite Ions Lower Head 

EI6 #11 EI6 U2 EI6 U3 EI6 US 

Na 0.03 0.00 0.00 0.00 

Fe 5.31 3.10 3.23 5.81 

K 0.01 0.11 0.01 o.oo 
Mg 5. 47 5 . 82 6.28 3.89 

Ti 0.00 0.02 0.00 0.01 

Si 4.19 5.65 5.65 5.4f; 

Al 5.81 5.05 4. 72 4.87 

Mn 0.04 0.03 0.03 0.06 

ca 0.02 0.01 0.02 0.00 

Ni 0.03 0.02 0.02 0.00 

p 0.00 0.00 0.00 0.00 

Cr 0.01 0.03 0.01 0.01 

Fe/Mg 0.97 0.53 0.51 1. 49 

Fe/Fe+Mg 0.49 0.35 0.34 0.60 

Mg/FuMg 0.51 0.65 0.66 0.40 

Al/(Al+Fe+Mgl 0.35 0.36 0.33 0.33 

EI6 #16 EI6 #li EI6 U8 BP10 900TS 

Na 0.00 0.00 0.00 0.00 

Fe 2.97 3.23 2.83 3.03 

K 0.00 0.00 0.00 0.01 

Mg 6.36 5.91 6.25 5.99 

Ti 0.00 0.00 0.00 0.01 

Si 5.95 6.09 6.34 6.21 

Al 4.47 4.40 4.09 4.27 

Mn 0.02 0.02 0.03 0.05 

Na 0.03 0.02 0.02 0.06 

Ni 0 . 01 0.02 0 . 02 0.01 

p 0.00 0.00 0 . 00 0.00 

Cr 0.01 0.01 0.01 0.00 

Fe/Mg 0.47 0.55 0.45 0.51 

Fe/ Fe+Mg 0.32 0.35 0 . 31 0.34 

Mg/ Fe+Mg 0 .6 8 0.65 0.69 0.66 

Al/(Al+Fe+Mg) 0. 32 0.32 0.31 0.32 



453 

BP10 8 DOT BPlO SQUARE BPlO 7DOT BPlO 3DOT 
Na 0.01 0.01 0.01 0. 00 
Fe 3.62 3. 06 5.28 5.85 
K 0.01 0.02 0.01 0. 01 
Mg 5.91 6.06 4.28 3. 84 
Ti 0.01 0.00 0.01 0.00 
Si 6.27 6.18 5.94 5.62 
Al 3.86 4.22 4.28 4.64 
Mn 0.07 0.04 0.06 0.09 
Ca 0 . 03 0.07 0.04 0.01 
Ni 0.00 0.01 0 . 01 0.00 
p 0.01 0.00 0.00 0.00 
Cr 0.01 0.03 0.00 0.00 

Fe/Mg 0.61 0.51 1. 23 l. 52 
Fe/Fe+Mg 0.38 0.34 0.55 0.60 
Mg/Fe+Mg 0.62 0.66 0.45 0. 40 
Al/(Al+Fe+Mg) 0.29 0.32 0.31 0. 32 

BP10 4DOT BP10 SOOT BP10 6DOT BP10 2DOT 
Na 0.00 0.01 0.01 0.01 
Fe 4.76 2. rn 3.28 2.06 
K 0 . 00 0.01 0.01 0.01 
Mg 4.63 6.16 6.10 7.08 
Ti 0.00 0.00 0.00 0.00 
Si 5.64 6 . 22 6.32 6.70 
Al 4.81 4.27 3.92 3. 50 
Mn 0 . 06 0.04 0.04 0 . 04 
Ca 0.02 0.05 0 . 02 0.08 
Ni 0.01 0.02 0.01 0.02 
p 0.00 0.00 0.00 0.00 
Cr 0.01 0.01 0.00 0.03 

Fe/Mg 1. 03 0.47 0.54 0.29 
Fe/Fe+Mg 0.51 0.32 0.35 0.23 
Mg/Fe+Mg 0.49 0.68 0.65 0. 77 
A1/(Al+Fe+Mg) 0.34 0.32 0.29 0.28 



454 
BPlO lOOT EI6 2DOT EI6 3DOT EI6 400T 

Na 0. 0 .! 0.00 0.00 0.01 
Fe 5.10 3 . 63 3.37 5 . 04 
K 0.01 0.01 0.01 0.27 
Mg 4.84 6.16 6.00 2.78 
Ti 0.00 0.01 0.00 0.00 
Si 6.22 6.51 5.95 6.44 
Al 3.67 3 . 40 4 .4 3 4.73 
Mn 0.06 0 . 03 0.03 0.04 
Ca 0.02 0 . 02 0.02 0.01 
Ni 0.01 0.02 0.01 0 . 01 
p 0.00 0.00 0.00 0.0 0 
Cr 0.00 0.01 0.01 0.00 

Fe/Mg 1. 05 0.59 0.56 1. 82 
Fe/Fe+Mg 0 . 51 0.37 0.36 0.64 
MgjFe+Mg 0.49 0 . 63 0 . 64 0.36 
A1 / ( Al+Fe+Mg) 0.2 7 0.26 0 . 32 0 . 38 

EI6 SOOT EI6 lt6 EI6 #7 EI6 # 8 
Na 0.00 0.00 0. 00 0.00 
Fe 3.15 3 . 3 3 5.45 3 . 13 
K 0.01 0.01 0. 00 0.01 
Mg 6.13 5.98 4. 16 6.17 
Ti 0.00 0.00 0.00 0.00 
Si 6.15 6.06 6.35 6.06 . 
.l\1 4.21 4.32 3.76 4. 3 3 
Mn 0 . 03 0. 02 0.05 0.02 
Ca 0.03 0.01 0 . 01 0.02 
Ni 0.02 0.0 2 0. 00 0.0 2 
p 0.00 0.00 0 . 00 0.00 
Cr 0.01 0.01 0 . 00 0.01 

f'e / Mg 0.51 0. 5 6 1. 31 0.51 
f'e / Fe+Mg 0.34 0.36 0 . 57 0.34 
Mg/ Fe+Mg 0.66 0. 64 0. 4 3 0 . 66 
A1/(Al+Fe+Mg) 0.31 0 . 32 0. 28 0.~2 
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EI6 t9 EI6 uo 
Na 0.01 0.01 
Fe 2.89 3.00 
K 0.00 0.01 
Mg 6.38 6. 62 
Ti 0 . 00 0.00 
Si 6.40 6.39 
Al 3.90 3.67 
Mn 0.02 0.03 
Ca 0.02 0.02 
Ni 0.01 0.02 
p 0.00 0.00 
Cr 0.01 0.00 

Fe/Mg 0 . 45 0.45 
Fe/Fe+Mg 0 . 31 0.31 
Mg/Fe+Mg 0.69 0.69 
Al/( Al+ Fe+f1g) 0.30 0.28 



CHLORITE DATA IRISHTOWN 

lltll IRil IRil IRil IIlii IIlii tnll IHII 1R 11 IIlii 
'.!DOT 3DOT 4DOT 5DOT 6DOT 7DOT 8IH>T 9DOT IOOOT IIIHlT 

Na-lO 0 .015 0 1100 o.nn 11.000 0 .000 0 .1100 O.Oti2 1111110 0 .01111 0 .0110 

Fo:O 30.60') 29.952 27 .295 28.971 29.633 30.414 27.717 311.81i5 29.348 30.772 

K!O ().0()0 0 .224 1.:170 0.007 0 .393 0 .028 0 .797 0.021 0 .3\)(l 0 .082 

MgO 9.360 9 .298 8 .·1511 lOA fill 8 .5113 9 .884 8 .938 9 .592 9 .241 Ill.! II 

TiO.l 0.012 0 . 106 0.063 0 .000 0.000 0 {)()() 0.008 O.Oti I 0.1126 0074 

Si01 23 .!)!):1 2·1.618 27.073 H .6H 25 .05'.! 
:r:-

23.105 25.527 :H.03:1 24 .730 24 .064 w . 
AI~01 2:!.fil6 22 .53·1 23 .880 23 .457 216:1-t 24 243 23 .11 ·11> 22 .656 22.457 23 .253 

lJ1 

MuO 11.078 0 .082 11.107 0 . 113 111173 0.103 0 .0711 0 .040 0.115 11.138 

CaO 0 .1116 0 .000 II. 008 ()I)(H} ().()(10 111101 11.1119 IIIHI9 11111111 0 .000 

NiO 11.012 0 .05·1 0 .015 0 .0·19 0 .0·1 1 0 .1145 o.o:ss 0 .013 0 .030 0.000 

PJ05 ll.OUO 0 .01111 ll.OIIO 0.023 0.00() 0 .0 I 9 0 .0110 11.(11)1 0 .11011 0 .000 

Cr103 (}().13 () II:H O.Ofi2 0 .0:10 0.01111 11.027 11.053 u o:m ll.llll 0 .()(12 

TOTAL llli.75·1 llfi .ll!l5 1111.31i3 87 .7H 115.337 117.81i!) 87.072 87 .3311 86.348 88.496 



A 3.6 457 

IRil 2DOT IRil 3DOT IRI 1 4DOT IRil SOOT 
Na 0. 01 0.00 0 . 01 0.00 
Fe 5. 61 5.46 4.81 5.19 
K 0. 00 0 . 06 0 . 37 0.00 
Mg 3 . 06 3.02 2. 65 3.34 
Ti 0. 00 0.02 0.01 0.00 
Si 5. 26 5.37 5 . 70 5.27 
Al 5. 84 5.79 5.93 5 . 92 
Mn 0. 01 0.02 0.02 0.02 
ca 0. 00 0.00 0 . 00 0.00 
Ni 0. 00 0.01 0.00 0.01 
p 0. 00 0.00 0 .0 0 0.00 
Cr 0. 01 0.00 0 .01 0.01 

Fe/ Mg 1. 83 1. 81 1. 81 1. 55 
Fe/ Fe+Mg 0. 65 0.64 0.64 0.61 
Mg/ Fe+Mg 0.35 0.36 0.36 0.39 
Al / (Al+Fe+Mg) 0. 4 0 0.41 0. 44 0.41 

IRil 6DOT IRil 7DOT IRil BOOT IRil 9DOT 
Na 0.00 0.00 0 . 03 0.00 
Fe 5.50 5 .5 0 4.97 5.63 
K 0.11 0 . 01 0. 22 0.01 
Mg 2. 81 3.19 2.86 3.12 
Ti 0. 00 0.00 0.00 0.01 
Si 5. 56 5.00 5.48 5.24 
A1 5.66 6.18 6.03 5.82 
Mn 0.01 0.02 0 .0 1 0.01 
Ca 0.00 0.00 0. 00 0.00 
Ni 0.01 0.01 0. 01 0.00 
p 0 . 00 0.00 0 . 00 0.00 
Cr 0 . 00 0.00 0.01 0.01 

Fe/ Mg 1. 96 1. 7 3 1. 7 4 1. 81 
Fe/ Fe+Mg 0.66 0.63 0.64 0 .64 
Fe+Mg 0. 3 4 0.37 0 . 36 0. 36 
Al / (Al+Fe+Mg) 0.41 0.42 0.44 0.40 



458 

I RI 1 lOCOT IRil llDOT 

Na 0.00 0.00 
Fe 5.37 5.53 
K 0.11 0.02 
Mg 3.02 3.24 
Ti 0.00 0.01 
Si 5.41 5.17 
Al 5.79 5.89 
Mn 0.02 0.03 
ca 0.00 0.00 
Ni 0.01 0.00 
p 0.00 0.00 
Cr 0.00 0.00 

Fe/ Mg 1. 78 1. 71 
Fe/Fe+Mg 0.64 0.63 
Mg/ Fe+Mg 0.36 0.37 
Al/(Al+Fe+Mg) 0.41 0.40 
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Goose Tickle Chromite 

ML12 ML12 ML12 ML12 ML12 

CORE RIM CORE RIM 

AL203 31.87 31.67 22.66 18.71 18.32 

TI02 0.5 o.s 0.02 0.04 0.05 

MGO 14.06 11.26 13.67 10.85 10.69 

FEO 21.77 22.01 19.57 18.57 18.65 

MNO 0.27 0.18 0.29 0.36 0.38 

NiO 0.19 0.06 0.12 0.05 0 

CR203 32.41 31.9 43.61 51.24 51.44 

v 205 0.01 0.01 0.01 0.01 0.01 

TOTAL 101.08 97.59 99.95 99.83 99.54 

PCF1 PCF1 PCI PCI PCI 

CORE RIM 
AL203 29.34 36.4 23.56 23.49 34.45 
TI02 0.31 0.07 0 0.02 0.13 
MGO 13.56 16.69 13.77 13.6 12.4 6 
FEO 21.44 13.41 15.61 15.71 23.12 

MNO 0.27 0.19 0.19 0.17 0.33 
NiO 0.22 0.13 0.09 0.1 0.07 

CR203 33.99 33.98 46.85 46.86 28 . 89 

v 205 0.01 0 0 0.01 0.01 

TOTAL 99.14 100.87 100.07 99.96 99.46 

PCI PCI ML19 ML19 TRC4 
CHLORITE 

CORE 
AL203 15.86 16.96 2 6. 91 14.23 32.17 

TI02 0. 08 0.01 0.05 0.93 0.15 

MGO 8. 61 11.25 13.54 7.48 13.98 
FEO 26.86 18.7 18.21 27.96 21.33 
MNO 0.4 0.33 0.3 0.34 o. 28 
NiO 0. 07 0.07 o.os o.os 0.06 

CR203 4 7. 03 53.65 40.33 47.09 33.09 

v 205 0.01 0.01 0.01 0.01 0.01 

TOTAL 98.92 100.!38 99.4 98.09 101.07 

TRC4 

AL203 13.79 
TI02 0.06 
MGO 8.84 
FEO 22.47 
MNO 0.45 
NiO 0 
CR203 54.77 
v 205 0.01 

TOTAL 100.39 



A 3.8 

American Tickle Feldspars: 
460 

BA4 KSP1 BA4 KSP2 BA4 KSP3 
Na20 0.427 0.513 1. 292 
Fe203 0.199 0.208 0.188 
K20 16.33 16.215 14.635 
Al203 18 . 848 18.76 1?.132 
Ti02 0 0 0 
Si02 64 . 678 65.312 64 . 728 
MgO 0 0 0 
MnO 0.029 0.034 0 . 027 
cao 0.024 0 0.062 
sao 0.356 0.402 0.868 
SrO 0 0.112 0.111 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 100 . 891 101.556 101.04 3 

BM PL1 BA4 PL2 BA4 PL3 
Na20 8.74 2 11. 4 19 11.248 
Fe203 0.2 4 2 0 . 288 0.313 
K20 0.368 0. 418 0 . 081 
Al203 24.076 20. 7 36 20. 29 
Ti02 0.052 0.01 4 0 
Si02 62.432 68.557 68. 13 3 
MgO 0 0.134 0.006 
MnO 0 0.001 0.036 
cao 4.805 0.023 0.5 47 
BaO 0 0.026 0.0 19 
SrO 0 . 051 0.038 0.049 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 100.768 101.654 100.722 

BA4 PL4 BA4 PL5 BA4 PL6 
Na20 10.284 11.74 8.757 
Fe203 0.162 0.058 0.099 
K20 0.477 0.097 0.194 
Al203 22 .787 20.165 2 4 .008 
Ti 02 0.022 0.042 0.001 
Si02 65.849 68 . 889 62.002 
MgO 0.012 0 0 
MnO 0 0 0 
cao 2.037 0 . 041 4. 7 22 
BaO 0 0.07 0.058 
sro 0.078 0.027 0 . 14 1 
FeO na na na 
NiO na n a na 
Cr20J na na na 

TOTAL 101.708 101.12 9 9 9 . 9 82 



American Tickle Feldspars 461 

PC1-1 KSP1 PC1-1 KSP2 PC1-1 KSP3 
Na20 o. 416 0.278 0.394 
Fe203 0.088 0.246 0.187 
K20 16.388 16.771 15.87 
Al203 18.906 18.894 18.924 
Ti02 0 0.041 0 
Si02 65.14 64.362 63.737 
MgO 0 0 0.007 
MnO 0 0 0 
CaO 0.001 0.03 0.024 
sao o. 217 0. 113 1. 052 
SrO 0 0 0. 016 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 101.156 100.735 100.211 

PC1-1 KSP4 PC1-1 PL1 PC1-1 PL2 
Na20 0. 256 9.251 11.574 
Fe203 0.07 0.154 0.115 
K20 16.614 0.078 0.02 
Al203 18 .788 23.441 19.967 
Ti02 0 0.042 0.034 

Si02 64.743 63.597 68.5 46 
MgO 0 0 0 
MnO 0 0.002 0.037 

CaO 0.024 4 .ll5 0.056 
BaO 0.23 0. Oll 0.021 

sro 0.027 0.164 0 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 100.752 100.855 100.37 

PC1-1 PL3 PC1-1 PL4 PC1-1 PL5 
Na20 9.589 10.805 11.596 
Fe203 0.668 0.468 0.167 
K20 1. 853 0.387 0.117 
Al203 22.877 20.797 20.08 
Ti02 0 0 0 
Si02 64.938 67.628 69.431 
MgO 0 . 352 0.205 0 
MnO 0.014 0.015 0 . 00 7 
cao 0 .74 1 0.564 0.064 
BaO 0.101 0.037 0 . 109 
sro 0 .129 0.01 4 0.054 
FeO na na na 
NiO na na na 
Cr20J na na na 

TOTAL 101.262 100.92 101.625 



American Tickle Feldspars 
462 

PC1-1 PL6 PC1-1 PL6 PCl-1 PL7 
Na20 8. 172 11.875 2.464 
Fe203 0.104 0.113 0.042 
K20 0.186 0.027 0.012 
Al203 24.935 20.016 3.552 
Ti02 0 0 0 
Si02 61.693 68.724 12.332 
MgO 0 0 0 
MnO 0.001 0.026 0 
cao 5.853 0.082 0.006 
BaO 0 0.022 0.012 
SrO 0.083 0 0 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 101.027 100.885 18.42 

TCA12 KSP1 TCA12 LSP2 TCA12 KSP3 
Na20 1. 237 0. 303 0.842 
Fe203 0.034 0.074 0.053 
K20 14.764 16.486 15.496 
Al203 19.114 18.763 18.989 
Ti02 :1 0 0 
Si02 63.241 64.396 64.043 
MgO 0 0 0 
MnO 0.008 0.008 0 
cao 0 0 0.005 
BaO 1.142 0.265 0.519 
SrO 0.207 0 0 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 99.747 100.295 99.947 

TCA12 KSP4 TCA12 PL1 TCA12 PL2 
Na20 0.712 11.565 11.355 
Fe203 0. 031 0.365 0.029 
K20 15.816 0.047 0.163 
Al203 18.731 20.061 20.072 . Ti02 0 0 0 
Si02 64.695 69.092 68.882 
MgO 0 0 0.015 
MnO 0 0 0 
cao 0. 013 0.184 0. 028 
BaO 0.101 0 . 017 0. 075 
sro 0. 041 0. Oll 0.04 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 100.14 101.342 100.659 



463 
American Tickle Feldspars 

TCA12 PL3 TCA12 PL4 TCA12 PLS 
Na20 9.632 9.187 11.67 
Fe203 0.095 0.095 0.209 
K20 0.153• 0.09 0.056 
Al203 22.68 23.4 19.926 
Ti02 0 0 0.008 
Si02 64.088 63.595 69.039 
MgO 0 0 0 
MnO 0.042 0 0.008 
cao 3.136 4.193 0.114 
BaO 0.002 0.06 0.064 
SrO 0.03 0.066 0 
FeO na na na 
NiO · na na na 
Cr203 na na na 

TOTAL 99 .8 58 100.686 101.094 

TCA12 PL6 
Na20 8.769 
Fe203 0.141 
K20 0.219 
Al203 24 . 116 
Ti02 0.037 
Si02 63.081 
MgO 0 
MnO 0 
CaO 4 . 689 
BaO 0.028 
SrO 0.073 
FeO na 
NiO na 
Cr203 na 

TOTAL 101.153 



A 3.9 464 
Mainland Feldspars 

TRC A28l<SP1 TRC A28KSP2 TRC A28KSP:3 

Na20 0.712 0.337 11.24 
Fe203 o. 044 0.041 0 

K20 15.677 16. 2 61 0.4 

Al203 18 . 67 18.512 19.881 

Ti02 0 0 0.021 

Si02 64.947 64.346 69.057 

MgO 0. 004 0 0.003 

MnO 0 0 0 

cao 0. 048 0.008 o. 309 
BaO 0.332 0.136 0.031 
SrO 0. 024 0 . 04 0 

FeO na na na 
rHo na na na 

Cr203 na na na 

TOTAL 100.458 99.681 100 . 942 

TRC A28KSP4 TRC A28PL1 TRC A28PL2 

Na20 0.676 11.856 11..018 

Fe203 0. 013 0.016 0.02 2 
K20 15.82 0.059 0 . 024 

Al203 18.874 19.691 19. 77 6 

Ti02 0 0 0 

Si02 64.941 68.463 68.768 
MgO 0 0 . 004 0 

MnO 0 0 0.003 

cao 0.009 0 . 136 0.196 
BaO 0. 452 0 0.06 

sro 0.068 0 . 088 0.019 
FeO na na na 

NiO na na na 
Cr203 na na na 

TOTAL 100 . 853 100.313 100 . 286 

TRC A2 8PL3 TRC A28PL4 TRC A2 8PL5 

Na20 11 .7 15 11.903 11 .3 9 5 
Fe203 0.076 0.008 0.182 
1<20 O. OH 0.023 0.08 7 
Al203 19.795 19 .88 7 2 0 .71 
Ti02 0. 009 0 0 
Si02 70. 164 68.695 66 . 911 
MgO 0 0 0 . 00 5 
MnO 0.001 0.0 3 3 0.002 
cao 0.05 o. 072 0. 731 
BaO 0 . 005 0 0.007 
SrO 0 0.005 0 . 1 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 101 . 8 29 100. 626 100. 13 



465 
Mainland Feldspars 

TRC-lKSPl TRC-1KSP2 TRC-1KSP3 

Ua20 1. 237 1. 441 0.037 
Fe203 0.158 0 . 062 0 . 025 
K20 15 . 068 14.823 16 . 679 
Al203 18.601 18.525 18.784 
Ti02 0.005 0 0.015 
Si02 64.6 ... 2 64.649 63 . 854 
MgO 0 0 0 . 037 
MnO 0.008 0.024 0.026 
cao 0 0 . 041 0 . 04 
BaO 0.02 0.24 0 
SrO 0.018 0.024 0 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 99.777 99.829 99.497 

TRC-1KSP4 TRC- 1PL1 TRC-1PL2 

Na20 o. 271 11.802 11.709 
Fe203 0 0 . 098 0.1 
K20 16.658 0 . 018 0.03 
Al203 18 . 725 20.326 19 . 916 
Ti02 o. 041 0.0 12 0 
Si02 64 . 317 67 .823 68.978 
MgO 0 0 0.007 
MnO 0 0.038 0 . 019 
cao 0.019 0 . 209 0 . 124 
BaO 0.358 0.055 0.054 
SrO 0.004 0.1 0.024 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 100 . 393 100 . 481 100.961 

TRC-1PL3 TRC-1PL3 TRC- 1PL4 

CORE RI M LAMEL 
Na20 8. 707 11.262 11 .5 16 
Fe203 0 . 069 0.009 0.003 
K20 0 . 182 0.035 0.098 
Al203 24. 109 19.8 29 19.753 
Ti02 0.055 0.042 0 . 026 
Si02 61 . 657 67 .868 68.83 
MgO 0 0 0 
MnO 0.025 0 0 
cao 4.787 0.3 77 0 . 129 
BaO 0.009 0 0.065 
SrO o. 021 0.04 2 0.016 
FeO na na na 
NiO na na na 
Cr~OJ na na na 

TOTAL 99. 6 21 99 . 464 100 .4 36 



466 
Mainland Feldspars 

TRC-1PL4 TRC-1PL5 TRC-1PL6 

Na20 0.358 9. 40 4 11.459 
Fe203 0 0.153 0.042 
K20 16.611 0.151 0.063 
Al203 18.812 22.871 20 . 159 
Ti02 0 0 0.024 
Si02 63.953 63.756 67.42 
MgO 0 0 0 
MnO 0.053 0 0 . 005 
cao 0.03 7 3 . 832 0.305 
BaO 0.084 0 . 0 1-i 0.083 
SrO 0 0. 144 0.068 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 99 . 908 100 . 325 99 . 628 

TRC A10 TRC A10 TRC A10 

Na20 0.35 9.43 8.94 
Fe203 na na na 
K20 15.47 0.29 0.22 
A1203 18. 31 22.81 22.25 
Ti02 0 0.02 0 
Si02 65.81 64.52 64. 7 3 
MgO 0.01 0 0 
MnO 0 . 01 0 0.03 
cao 0.02 4 . 33 4.08 
BaO na na na 
SrO na na na 
FeO 0.07 0.1 0.07 
NiO 0 na na 
Cr203 0.07 na na 

TOTAL 100.62 10 1 .5 100. 3:· 

TRC A10 TRC A10 TRC A10 

Na20 0.52 1. 09 10. 27 
Fe203 n a na na 
K20 16.19 u .8 2 0.05 
Al 203 17.73 17 . 92 20.61 
Ti02 0 0 0 
Si02 64. 2 7 65.81 73.45 
MgO 0 0 . 01 0.2 
MnO 0 0. 02 0 . 03 
cao 0.0 4 0 0 . 54 
BaO na na na 
SrO na na na 
FeO 0 0.06 0.25 
NiO 0.04 0 0 
Cr203 0 0 0 

TOTAL 98. 7 9 99.73 10 5 .4 



Mainland Feldspars 

Na20 
Fe203 
K20 
Al203 
Ti02 
Si02 
MgO 
MnO 
cao 
BaO 
SrO 
FeO 
NiO 
cr203 

TOTAL 

Na20 
Fe203 
K20 
Al203 
Ti02 
Si02 
MgO 
MnO 
cao 
BaO 
SrO 
FeO 
NiO 
Cr203 

TOTAL 

Na20 
Fe203 
K20 
Al203 
Ti02 
Si02 
MgO 
MnO 
cao 
BaO 
SrO 
FeO 
NiO 
Cr203 

TOTAL 

TRC A10 

0.63 
na 

17.5 
17.51 

0.02 
64.48 

0 
0 
0 

na 
na 

0.06 
na 
na 

100.2 

TRC A10 

0.49 
na 

18.17 
17.47 

0 
65.55 

0.01 
0 

0.07 
na 
na 

0 
na 
na 

101.76 

TRC A10 

9 . 18 
na 

0.75 
21. 9"5 

0.02 
63.32 

0.02 
0 

2.98 
na 
na 

0 
0 
0 

98.22 

TRC A10 

10.65 
na 

0.57 
20.27 

0.03 
67.54 

0.06 
0 

0 . 59 
na 
na 

0.16 
0 
0 

99.87 

TRC .!\10 

0.39 
na 

16.64 
18.03 

0 
64.54 

0.01 
0 
0 

na 
na 

0.07 
0 
0 

99.68 

TRC A10 

1. 83 
na 

13.95 
18.73 

0 
66.56 

0 
0 

0 . 02 
na 
na 

0.09 
0 
0 

101.18 

TRC AlO 

0.88 
na 

16.72 
18.32 
0.06 

64.09 
0 
0 
0 

na 
na 

0.05 
na 
na 

100.12 

TRC AlO 

11.39 
na 

0.13 
19.07 
0.01 

68.68 
0 

0.06 
0. 2 2 

na 
na 

0.1 
0 
0 

99.66 

ML24 

o. 72 
na 

17.61 
18.16 
0.04 
65.4 

0 
0.01 
0.01 

na 
na 

0 . 02 
na 
na 

101.'37 

467 



468 
Mainland Feldspars 

HL24 ML24 ML24 

Na20 0.05 9.31 0.98 
Fe20J na na na 

K20 18.66 0.21 16.66 

Al203 17.32 22.29 17.36 

Ti02 0 0. 02 0.03 
Si02 65.21 6~.67 63.32 

MgO 0 0.01 0.01 

!1n0 0.03 0 0.03 

cao 0.06 ~.05 0 

BaO na na na 

sro na na na 

FeO 0.03 0. OJ 0.03 

tHO na 0 na 

Cr:'03 na 0 na 

TOTAL 101.36 100.59 98 . .;2 

ML24 ML24 r·iLZ ~ 

Na20 0.51 0.32 0.02 
Fe203 na na na 
K20 17.3 16.05 0 

Al203 17.71 18.17 14.65 

Ti02 0.06 0 0.05 

Si02 63.73 63.98 28.56 

MgO 0.02 0 18.34 

11no 0 0 0 . 05 

cao 0.01 0 0.14 

BaO na na na 

Sr.O na na na 

reo 0.06 0.05 20.73 

NiO na 0 n<J. 

Cr203 na 0.03 na 

TOTAL 99.4 98.6 82.54 

ML24 

Na20 11.24 
Fe203 na 
K20 0.1 
Al203 20.08 
Ti02 0 
Si02 73.86 
MgO 0.01 
MnO 0 
cao 0.11 
BaO na 
SrO na 
FeO 0.01 
NiO 0 
Cr20J 0 . 01 

TOTAL 105.42 
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Lower Head Feldspars 

MPS-2JKSP1 MPS-23KSP2 MPS-23KSP3 

Na20 0. 833 0 . 277 0. 451 

Fe203 0. 032 0 . 116 0. 082 

K20 15. 906 16. 4 98 16.098 

Al203 18. 637 18 . 887 18. 7 34 

Ti02 0 0 0 

Si02 65. 122 6 4 .785 64.839 

MgO 0 0 . 001 0 

11n0 0. 02 7 0 0. 005 

cao 0. 05 6 0 0. 001 

BdO 0. 192 0.862 0. 7 12 

SrO 0. 036 0.089 0 
reo na na na 

NiO na na na 

Cr20J na na na 

TOTAL 100.841 101 . 515 100.922 

MPS-2 3KSP4 MPS-23PL1 MPS-2 3PL1 

RIM RHl2 
Na20 0. 3 3 4 1. 425 10 . 904 

Fe203 0. 021 1.392 0. 71 
K20 16. 516 9.789 0. 099 

Al203 18 . 614 30. 7 55 2 0. 198 

Ti02 0 0 0. 0 57 
Si02 65 . 1 4 5 5 1 . 687 67.953 

f.! gO 0 1. 584 0. 038 
MnO 0. 024 0.006 0 

cao 0 ().093 0. 7 85 
BaO 0. 2 09 0 . 107 0 
sro 0 0 . 008 0. 068 
reo na na na 
NiO na na na 
Cr203 na na na 

TOTAL 100.863 96.846 100.812 

MPS-23PL2 MPS- 2 3PL J MPS-2 3PL4 

Na20 11.424 8 . 704 11.872 
Fe203 0.0 7 6 0 .12 5 0. 065 
K20 0.1 4 1 0.335 0. 02 4 
Al 203 2 0 . 563 24. 463 20.0 26 
Ti02 0 0 0 

S i 0 2 68 . 6 4 4 6 2.106 70.039 
MgO 0 0 0 
MnO 0.01 9 0.006 0. 011 
CaO 0.576 5.058 0. 1 54 
BaO 0.137 0 0. 00 3 
SrO 0.1 7 6 0. 141 0. 04 8 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 101. 7 56 100.938 102. 24 2 



470 
Lower Head Feldspars 

MPS-23PLS MPS-:?3PL6 MAP B3KSP1 

Na20 10.776 8.254 0 . 639 
Fe203 0.09 0 . 078 0.()82 
K20 1.161 0. 2:31 16.065 
Al203 19.752 24.254 18.503 
Ti02 0 0 0 
Si02 69.47 6 2. 162 63.905 
MgO 0 0 0 . 001 
MnO 0 0 0 
cao 0.175 5 . .;91 0 . 018 
BaO 0.014 0 0.169 
SrO 0.037 0.074 0.139 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL : o1..; 75 100 .54 4 99. 521 

MAP B3KSP2 MAP 83KSP3 MAP B3KSP4 

Na20 1. 381 0 . 495 o . 499 
Fe203 0.183 0.171 0.17 
K20 14.645 16 . 316 16.103 
Al203 18.948 18 . 9i 2 18 . 641 
Ti02 0 o . 031 0 

Si02 64.683 65. 263 65. 2 31 
MgO 0 0 0 
MnO 0 0.009 O.OH 

cao 0.054 0 0 
BaO o .. n9 0. 35 5 0.109 
sro 0.099 0 .06 0 
FeO na na na 
tHO na na na 
Cr203 na na na 

TOTAL 100.472 101.672 100 .797 

MAP BK3SP5 MAP 83PL1 MAP 83PL1 

CORE RIH 
Na20 0.383 11.764 0 . 6 2 5 
Fe203 0.12 6 0.185 0. 361 
K20 16 . 458 0. 201 15 . 891 
Al203 18 . 616 2 0. 105 18. 619 
Ti02 0 0 . 01 0 
Si02 64.433 68.709 63 . 691 
MgO 0 . 004 0 . 013 0.112 
MnO 0 . 005 0 . 038 0 
CaC' 0 0 . 166 0 
BaU 0.378 0.025 0.6 
SrO 0 0.1 2 0.09 9 
FeO na na na 
NiO n a na na 
Cr203 na na na 

TOTAL 100.403 101 . :! 36 99 . 9 98 



471 
Lower Head Feldspars 

11AP 83PL2 HAP 83PL3 MAP 83PL4 

Ua20 11. ::sa 10.326 9.06 
Fe203 0.:22 0.376 0.203 
K20 0.084 0.74 0.097 
Al203 20 . .;22 20.338 22.972 
Ti02 0 0 0.014 
Si02 68.244 66. 3 52 62.375 
MgO 0 0.168 0 
MnO 0.018 0.008 0.051 
cao 0.755 0.233 4. ll 
SaO 0.03 0.05 0.004 
SrO 0.103 0 0.031 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 101.136 98.591 98.917 

MAP 83PL5 WBS B1KSP1 WBS B1KSP2 

Na20 8.562 0.687 l. 255 
Fe203 0.127 0.166 0.102 
K20 0.105 16.197 15.268 
Al203 24.291 18.91 18.915 
Ti02 0.03~ 0 0 
Si02 61.839 63.585 64.347 
MgO 0 0 0 
MnO 0.034 0 0.005 
cao 5.142 0 0 
BaO 0 0. 043 0.148 
SrO 0.078 0.042 0 
FeO na na na 
NiO na na na 
Cr203 na na nCI 

TOTAL 100.216 99.63 100.04 

1-lBS B1KSP3 1-lBS B1KSP4 lvBS B1PL1 

Na20 0.196 0. 906 9. 326 
Fe203 0.102 0.111 0.14 
K20 16.522 15.799 0.243 
Al203 18.365 18.711 23.105 
Ti02 0 0 0 
Si02 63.95 64.506 62.847 
Mgo 0 0 0 
MnO 0.022 0.05 0.002 
cao 0 0.031 3.843 
SaO 0. 327 0.067 0.056 
sro 0 0.037 o. 22 
FeO na na na 
NiO na na na 
cr:03 na na na 

TOT.:O..L 99.484 100.218 99.782 



472 

Lower Head Feldspars 

t-JBS B1PL2 WBS B1PL3 WBS 81PL4 

Na20 11.856 8.555 8. 892 
Fe203 0 . 077 0.154 0. 048 
K20 0 . 04 4 0 . 408 0. 094 
Al203 19 . 978 24.022 23. 74 
Ti02 0.036 0 0 
Si02 69.199 62 . 1-H 62. 7 08 
MgO 0 0.003 0 
MnO 0 o. 011 0 . 05J 
cao 0.027 4 .949 4. 556 
BaO 0 0.049 0. 002 
sro 0 0.181 0. 03 
FeO na na na 
NiO na na na 
Cr203 na na na 

TOTAL 101. 2 1 7 100 . ~ " 3 100. 1 23 

WBS BlPLS WBS 8 1P L6 

Na20 11.59 11. 1 77 
Fe203 0 . 058 (j 

K20 0.043 0.208 
Al203 19.862 20.364 
Ti02 0 0.002 
Si02 69.075 66.2 28 
MgO 0 0 . 009 
MnO 0 0.009 
cao 0. 12 0. 7 81 
sao 0 . 058 0 
SrO 0.06 0 
FeO na na 
Ni O na na 
Cr203 na na 

TOTAL 100.866 98 .778 



A 3.11 

canbrian Sandstones Feldspars 

!la20 
Fe203 
K20 
Al203 
Ti02 
Si02 
!1g0 
!1nO 
cao 
BaO 
SrO 
FeO 
rlio 
Cr203 

TOTAL 

Na20 
Fe203 
K20 
Al203 
Ti02 
Si02 
MgO 
MnO 
cao 
SaO 
sro 
FeO 
NiO 
Cr.:!03 

TOTAL 

Na20 
Fe203 
K20 
Al203 
Ti02 
Si02 
MgO 
MnO 
cao 
BaO 
sro 
FeO 
NiO 
Cr203 

TOTAL 

BMD2 PL1 
11 . .;oJ 

0.065 
0 .0 53 

19.694 
0 

69.::.; 
0 
0 

0.:.5~ 
0 

0 . 014 
na 
na 
na 

100.::97 

EMD2 PL.; 
11.:76 

0.11 
0. 031 

19.S4J 
0 

68.:17 
0 

0.039 
0.076 
0.049 
0. 073 

na 
na 
na 

99.S1.; 

119-86-2 
11. .;s 

na 
0.08 

19.58 
0.03 

72.29 
0 

0.03 
0.!6 

na 
na 

0.01 
0. 02 

0 

103.65 

81102 PL2 
11.568 
0.071 
0.041 

19.875 
0 

69.318 
0 

0.063 
0.129 
0. 041 
0.032 

na 
na 
na 

101.138 

EMD2 PLS 
11. .;57 
0.025 
0.069 

20.038 
0.024 

67.656 
0 
0 

0.293 
0.018 
0.022 

na 
na 
na 

99.602 

119-86-2 
12.5 

na 
0.05 

18.81 
0.02 

68.64 
0 
0 

0.08 
na 
na 

0.08 
na 
na 

100 . 18 

BMD2 PL3 
10.826 
0.103 
0. 829 

21.084 
0 

66.777 
o. 017 

0 
0.054 

0 
0 

na 
na 
na 

99.69 

BMD2 PL6 
11.667 

0.035 
0.022 

19.813 
0 

1')8.645 
0 

0.004 
0.198 

0 
0.042 

na 
na 
na 

100.426 

119-86-2 
0.15 

na 
11.36 
29.52 

0.33 
49.01 

1. 25 
0.03 
0.07 

na 
na 

4.54 
na 
na 

96. 26 

473 



474 
Cambrian Sdndstones Feldspars 

119-86-2 119-86-2 119-86-2 
Na20 11.62 11.31 2.66 
Fe203 na na na 
K20 0.0 4 0.03 0 
Al203 19.01 19.52 31 . 06 
Ti02 0 0. 02 0.21 
Si02 68 . .;3 70.44 35.68 
MgO 0 0 5 . 7::: 
MnO 0 0 0 

cao 0.0 4 0.11 0.:5 
BaO na na na 

.SrO na na na 
FeO 0.16 0.04 9.52 
NiO 0 0 na 
Cr203 0.04 0.05 na 

TOTAL 99 . 34 101. 5 2 85.1 

119-86-2 
Na20 3.11 
Fe203 na 
K20 13.51 
Al203 18 . 57 
Ti02 0.05 
Si02 63.95 
MgO 0 
MnO 0 
CaO 0 
BaO na 
SrO na 
FeO 0.21 
NiO na 
Cr203 na 

TOTAL 99 . 4 
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APPENDIX 4 POINT COUNT DATA 

These tables provide raw data and recalculated parameters mostly according to 
Ingersoll ( 1990). A key to abbreviations is given in chapter 4, tabie 4.5. 

N =Number of points counted. 
C =Amount of cement. 
M=Amount of matrix. 
A=Number of altered grains. 

Other recalculated parameters as in Ingersoll ( 1990) except for Lph/Lt 
(phyllosilicate grains/total lithic fragments). See chapter 4 for discussion of this 
parameter. 

Ls =sedimentary rock fragments 
Lv=volcanic fragments 
Lm = meumorphic fragments 
Lt =total lithic fragments 
Q =total quartz 
F =total feldspar 
L =lithic fragments (excluding polycrystalline quartz) 
Qm = monocrystalline quartz 
P =total plagioclase 

-

• w - .. • 
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American Tickle Point Count Data 

ba3 bib3 tc7 gtb5 bbb4 
quartz 163 150 83 97 160 
polyqzwfa 0 0 Cl 1 0 
polyqznfa 2 1 2 J 0 
plag 4 3 .;:, 27 4 1 2 4 
kspar 0 6 11 0 1 
rnonomica 0 1 4 0 0 
phyllosil 2 39 J2 1 8 
opaque 1 0 3 0 0 

glauc 0 0 0 0 0 

volcglass 1 4 0 0 0 

volcaph 1 7 15 4 6 
volcnicr 3 10 1 2 3 
slate 0 0 2 0 0 

semischis 0 0 0 0 0 

qfrnagg 0 0 0 0 0 

polymic 0 0 0 0 0 
mudstor:e 21 19 67 13 4 3 
lamsh 18 A 13 7 7 .. 
micrlst 23 15 5 33 2 
calcite 0 5 7 9 63 
bioclast 0 0 0 0 0 

ooid 0 0 0 0 0 
matrix 45 83 1 2 0 165 50 
carbcem 72 23 6 14 10 
qzcern 2 0 1 3 7 
unident 0 0 0 0 0 
heavy 0 3 0 1 1 
chert. 0 0 0 0 0 
slt.st.one 8 0 3 7 2 
altk 4 3 9 10 20 

N 4 09 41 6 411 411 407 

H+C 29.10 2 5 . -t8 30.90 44. 28 16.46 

M+C+A 29.10 26 . 68 32. 60 46 . .f7 3 l. 94 

Ls/Lt 87.04 51.11 80.58 7 2 .97 85.25 
Lv/Lt 9.26 46 .67 15 .53 16.2 2 14 . 7 5 
Lm/Lt 3.70 2. :2 3 . 88 10.81 - 0. 00 

Q+F+L 264.00 24 7. 00 233.00 185.00 266.00 
Q 6 2 .50 61.13 36 . 48 54. 59 60.15 
F 17 . 80 21.0 5 20 . 17 27.57 16.92 
L 19.70 17.81 4 3 .35 17 .84 22 .93 

Qm+F+Lt 26 4 .00 247.00 2 33.00 185.00 266.00 

Qm 61.7 4 60 . i3 35 . 62 5 :2. .. 3 60 . 15 

F 17 .80 21.05 20.17 27 . 57 16. 92 

Lt 20.45 18.22 44 . 2 1 20.00 22. 9 3 

P/F 0.91 0.83 0 .57 0 . 8 0 0. 53 

Lph/Lt 0.04 0.87 0. 31 0 . 03 0.13 
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A!'lerican Tickle Point count Date. 

tc3 tcaJ tc6 pci2 sb8 
quar'tz 72 191 187 103 73 
polyqz•.vfa 0 0 0 1 0 
polyqznfa 0 2 0 1 0 
plag 34 1.; 16 32 35 
!<spar 4 0 0 0 5 
monomica 1 1 0 0 2 
phyl!osil 10 6 40 2 2 
opaque 3 0 0 2 2 
glauc 0 0 0 0 0 

volcglass 0 0 0 0 0 

volcaph 8 16 17 5 3 

volcmicr 0 2 2 0 2 
slate 0 1 1 1 1 
semischis 0 0 0 0 0 
qfmagg 0 0 0 0 0 
polymic 0 0 0 0 0 

mudstone 112 3.; 30 12 17 
lamsh 19 1:: 7 1 4 

micrlst 4 5 1 3 7 
calcite 0 3.; 15 21 28 
bioclast 0 0 0 0 0 
ooid 0 0 0 0 0 
matrix 97 49 49 92 180 
carbcem 28 11 2 4 12 10 
q zcem 1 7 3 0 3 
unident 0 0 0 0 0 

heavy 0 0 1 0 0 
chert 0 1 0 0 0 
sltstone 0 6 4 1 0 
altk 13 12 11 20 7 

N 406 405 4 08 309 381 

M+C 31.03 16.54 18.63 33.66 50.66 

M+C+A 31.03 24.9 4 2 2 .30 40.45 58.01 

Ls/Lt 94.24 72 .00 6 7 .21 63. 64 77.78 
Lv/Lt 5.76 24.00 31. 15 22 .73 18.52 
Lrn /Lt 0.00 4.00 1. 64 13 . 64 3. 7 0 

Q+F+L 262.00 29 2. 00 2 75 . 00 177 .00 1 47 .00 
Q 27. 4 8 66.10 68.00 59. 3 2 49 . 66 
F 19.47 8.90 9.82 29.38 31.97 
L 53.05 25.00 2 2.18 11.30 18.3 7 

Qm+F+Lt 262.00 292 . 00 275.00 177 .00 147.0C 

Qm 27 . 48 65.41 68 . 00 58. 1 9 49.66 
F 19 . . .p 8.90 9.8 2 29. 3 8 31.97 
Lt 53 . 05 25.68 22 .18 12 . 4 3 18.3 7 

P/F 0.67 0.5 4 0.59 0.6 2 0 .74 

Lph/Lt 0.0 7 o.os 0.66 0.09 0.07 
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American Tickle Point Count Data 

tca16 pcf~ ppb1 lsi1 sab9 
quartz 173 146 12-l 103 1-l4 
polyqz•.-Jfa 0 0 0 J 0 
polyqznfa 3 2 4 1 3 

plag 12 59 2-l 25 J2 
kspar 11 10 5 ~ 0 
monomic3. 0 0 0 0 0 
phyllosil 14 9 3 8 3 
opaque 4 0 1 0 2 
glauc 0 0 0 0 0 
volcglass 0 0 0 0 0 
volcaph 9 . 5 4 J .. 
volc:nicr 1 1 2 1 3 

slate 0 0 0 0 0 
semischis 0 0 0 0 0 

qf:nagg 0 0 0 0 0 
polymic 0 0 0 0 0 
mudc;tone 34 21 42 14 38 
lamsh "' 3 23 7 5 J 

micrlst 2 3 1 3 9 
calcite 10 10 11 89 10 
bioclast 0 0 0 0 0 

ooid 0 0 0 0 0 
matrix 83 27 100 138 1:!3 
carbcern 17 99 42 8 9 
azcem 1 1 1 0 2 
unident 0 0 0 0 0 
heavy 3 0 0 0 " 
chert 0 0 0 0 \) 

sltstone 1 0 3 2 1 
altk 5 19 5 11 15 

N 406 41.; 401 418 4 02 

M+C 24.88 30.68 35.66 34.93 JJ. JJ 

M+C+A 27.34 3J.09 38.40 56.22 35.82 

Ls/Lt 74.51 77 . .;2 86.90 79.31 83.0:! 
LV/Lt 19.61 16.13 8.) J 17.24 11. J2 
Lrn/Lt 5.88 6.45 4.76 3.45 5.G6 

Q+F•L 272.00 265.00 242.00 172.00 2 4~ . 00 
Q 64.71 55.85 52.89 60 . .;7 60.25 
F 17.65 33.21 14 . 05 23.26 19.:6 
L 17.65 10.94 33.06 16.28 20 . .;9 

Qrn+F+Lt 272.00 265.00 242.00 172.00 244.00 

Qrn 63.60 55.09 si. 24 59.88 59.02 

F 17.65 33.21 14.05 2J.26 19.26 
Lt 18.75 11.70 34.71 16.86 21.72 

P/F 0.67 0.6 7 0.71 0.63 0.63 

Lph/Lt 0.27 0.29 0.04 0.28 0.06 

- . . . ~ 



. . . I ~ • , • . H • , • .: • • 

479 

American Tickle Po in': count Data 

pcf4 
quart:: 225 
polyqz'Nfa 0 
polyqznfa 2 
plag 30 
kspar 1 
rnonomica 1 
phyllosil 9 
opaque 1 
glauc 0 
volcglass 0 
volcaph 20 
volcr::icr 1 
slate 0 
semischis 0 
qfr:1agg 1 
polymic 0 
mudstone 25 
lamsh 1 
micrlst 3 
calcite 5 
bioclast 0 
ooid 0 
ma~rix 37 
car be em 2R 
qzcem 7 
un1dent 0 
hez..vy 2 
chert 0 
sltstone 5 
altk 18 

N 422 

M+C 17. Of' 

M+C+A 18.~5 

Ls/Lt 56.36 
Lv/Lt 38. 18 
Lm/Lt 5. 4 5 

Q+F+L 329 .00 
Q 69 . 00 
F 14.89 
L 16.11 

Qm+F+Lt 329 . 00 

Qm 68.39 
F 14 . 89 
Lt 16. 72 

f'/F 0.61 

Lph/Lt 0.16 
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Mainland Formation Point count Data 

mlb7 mla14 nl25 mlb8 nl18 
quartz 101 97 165 103 1J1 
polyqz~.,rfa 0 0 0 0 0 
polyqznfa 2 6 3 J 2 
plag 23 23 24 47 20 
kspar 1 1: 1 0 0 
monomica 0 8 0 0 1 
phyllosil 31 .:.7 10 36 42 
ocaaue 2 11 0 1 1 
giauc 1 0 1 0 0 
volcglass 0 0 1 J 0 
volcaph 10 9 J 3 J 

volcnicr i 1 1 1 4 
slate 0 1 0 1 0 
semischis 0 0 0 0 0 
qfr.:agg 0 0 1 0 0 
polymic 0 0 0 0 0 
mudstone 78 64 27 53 41 
lamsh 25 3 1 0 15 
micrlst 4 25 

.., 6 9 "-

calcite 6 5 0 1 1 
bioclast 0 0 0 0 0 
ooid 1 0 0 0 0 
matrix 61 55 lJ 51 26 
carbcem 27 16 84 63 36 
qzcem 11 5 0 5 2 
unident 1 1 ' 1 0 

~ 

heavy 0 0 0 0 1 
chert 0 0 1 1 1 

sltstone J 0 1 0 :) 

altk 15 17 23 24 16 

N 404 410 363 403 357 

M+C 24.50 18. 5~ 26.72 29.53 17.93 

M+C+A 25.99 19.76 26.72 29./8 18.21 

Ls/Lt 89.08 79.76 76.92 83.08 87.32 
Lv/Lt 9.24 11.90 12.8 2 10 . 77 9 . 36 
Lm/Lt 1. 68 8. 3 J 10.26 6.15 2.32 

Q+F+L 259.00 237.00 252.00 239.00 233.00 
Q 39.77 43.46 66.67 44.35 55.38 
F 15.06 23.63 19.05 29.71 15.13 
L 45.17 32.91 14.29 25.94 28.9'::1 

Qm 39.00 40.93 65.48 4 3. 10 55.04 

F 15.06 23.63 19.05 29.71 15. lJ 

Lt 45.95 35.44 15.48 27.20 29.33 

P/F 0.59 0.50 0.50 0. 66 0.56 

Lph/Lt 0.26 0.56 0.26 0.55 0.59 
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Hainland Fu!"rnation Point Count Data 

mll5 ml21 rnl2 0 nlb2 r.tl22 
quart:z 103 17~ 149 171 176 
polyqzwfa 0 0 1 0 0 
polyqznfa 1 1 6 4 2 
plag 56 24 34 23 24 
kspar 7 0 0 0 0 
monomica 0 0 0 1 0 
phyllc•sil J2 25 19 23 19 
opaque 12 2 1 4 1 
glauc 0 0 0 0 0 
volcglass 0 0 0 3 0 
volcaph 3 8 8 16 10 
volcrnicr 1 5 1 6 2 
slate 0 0 0 0 0 
semis chis 0 0 0 0 0 
qfrnagg 0 0 1 0 0 
polymic 0 0 0 0 0 
mudstone 34 57 63 32 ~6 

lamsh 0 1 12 11 i 
rnicrlst 5 2 0 4 1 
calcite 2 1 0 13 5 
bioclast 0 0 0 0 0 
ooid 0 0 0 0 0 
matrix 82 31 21 42 16 
carbcem 74 61 58 18 78 
qzcem 0 1 

., 3 4 .J 

uni~ent 0 0 0 0 1 
heavy 1 0 0 0 0 
chert 0 0 2 3 5 
sltstone 0 0 3 1 2 
altk 7 20 16 11 13 

N 420 413 400 389 ~ 06 

M•C 37. 14 22.52 21.00 16.20 24.14 

M+C+A 37.62 22.76 21.00 19.54 25. J7 

Ls/Lt 87.18 80.56 82.47 61.84 79 . .;1 
LV/Lt 10.26 18.06 9.28 32. 89 1 7. 65 
Lm/ Lt 2.56 1.39 a.:5 5.26 2. 94 

Q+F+L 212.00 290.CO 296.00 281.00 2 a 1. oo 
Q 49.06 60.34 52.70 62. 2 8 63 .35 
F 33.02 15.17 16.89 12. 10 13. 17 
L 17.92 24.48 30.41 25.62 23.49 

Qm 48.58 60.00 50.34 60.85 62.63 
F 33.02 15. 17 16.39 12. 10 13.17 
Lt 18. 4 0 24.83 32.77 27 .05 24.::0 

P/F 0.80 0.55 0.69 0.68 0.65 

Lph/Lt 0. :2 0.35 o.:o 0 . 30 o. :.;a 
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Mainland Formation Point count Dat;. 

ml23 r.~la10 trca5 trc5 trca25 
quartz 192 127 198 139 1:,4 
polyqzwfa 0 0 IJ 0 0 
polyqznfa 0 2 2 1 2 
plag 27 15 23 47 22 
kspar 0 0 1 10 8 
monomica 1 0 0 1 0 
phyllosil 4 50 46 JO 24 
opaque 1 1 2 5 c. 
glauc 0 0 0 0 0 
volcglass 1 1 0 0 0 
volcaph 15 3 7 17 8 
volc::~icr (,; 2 5 8 8 
slate 3 0 1 1 1 
semischis 0 0 0 0 0 
qfmagg 1 0 0 0 0 
polymic 0 0 0 0 0 
mudstone 15 44 38 57 32 
larnsh 1 12 8 9 9 
micrlst 2 4 9 1 4 
calcite 0 14 27 23 12 
bioclast 0 0 0 0 0 

ooid 0 0 0 0 0 

matrix 4 85 13 46 53 
car be em 111 15 6 15 52 
qzcern 0 14 12 4 6 
unident 0 1 0 0 0 

heavy 0 0 0 0 0 
chert 2 0 1 0 0 
sltstone 0 2 7 1 2 
altk 20 13 11 6 12 

N 400 405 417 H6 409 

M+C 28.75 28.15 7.43 15.63 27.14 

M+C+A 28.75 31.60 13.91 21. 15 30.07 

Ls/Lt 47.37 87.88 78.26 71.28 69.35 
LV/Lt 42. 11 9 . 09 17.39 26.60 2J.S1 
Lt:~/Lt 10.53 3.03 4. 35 2.13 4.84 

Q+F+L 277.00 221.00 302 . 00 291.00 258.00 

Q 69.31 58.37 66 .2 3 48.11 60.-07 
F 16.97 12.67 11. !;9 19 . 93 16.28 
L 13. 72 28.96 22. 19 31.96 23 . 26 

Qm 69. 31 57 .47 65.56 47.77 59.69 

F lb. '37 1~. 6 ... 11.59 19.93 16.28 

Lt 13.72 29.86 22.85 32.30 24.03 

P/F 0.57 0.54 0.66 0. 72 0.5 2 

Lph/Lt 0. 11 0.76 0.67 o. 32 0.39 
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Mainland Formation Point Count Data 

trca21 
quart:: 163 
polyqz•.vfa 0 
polyqznfa 3 
plag 32 
kspar J. 
monomica 0 
phyllosil 25 
opaque 3 
glauc 0 
volcglass 0 
volcaph 9 
volcmicr 3 
slate 4 
semischis 0 
qfmagg 0 
polymic 0 
mudstone 71 
lamsh 5 
micr lst 9 
calcite 7 
bioclast 0 
ooid 0 
matrix 46 
car be em 7 
qzcem 0 
unident 0 
heavy 0 
chert 0 
sltstone 2 
altk 20 

N 410 

M+C 12.93 

M+C+A 14.63 

Ls / Lt 80 . 41 
Lv/Lt 12.37 
Lm/Lt 7.:::2 

Q+F+L Jl3. 00 
Q 5J. 04 
F 1 6 . 93 
L JO. OJ 

Qm 52.08 

F 16.93 
Lt 30.99 

P/F 0 . 60 

Lph/Lt 0. :! 6 
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Lower Head Form:ation Point count Data 

mpn7b rnpn5b mpn5a mpn12 mapb10 
quart:: 130 139 114 193 167 
polyqzwfa 0 0 0 0 0 

polyqznfa 0 0 0 0 1 
plag 50 53 73 32 63 
kspar. 0 0 0 2 0 
monom1ca 0 0 1 0 J 

phyllosil 41 20 32 16 9 
opaque 4 4 7 3 5 

glauc 0 0 0 0 0 
volcglass 0 1 0 1 0 
volcaph 4 6 7 16 ::!2 

volcl':licr 5 2 2 4 J 

slate 1 1 0 2 0 
semischis 0 c 0 0 0 
qfrnagg 1 0 0 0 0 

polymic 0 0 0 0 0 

mudstone 17 28 15 8 10 
lamsh 5 2 1 2 0 
micrlst 1 5 5 4 3 
calcite 0 1 0 4 1 
bioclast 0 0 0 0 0 
ooid 0 0 0 0 0 
matrix 72 45 13 1• 77 67 
carbcem 7 49 2 21 ]2 
qzcem 1 0 10 4 13 

unident 0 0 0 0 0 
heavy 0 0 0 0 0 

chert 1 0 1 0 1 

sltstone 0 0 1 2 1 

altk 12 25 3 ::J 15 

N 352 381 ~05 414 416 

M+C 22.73 24 . 67 ]5. 31 24.64 2 6. ':1 2 

M+C+A 22.73 24.93 35. Jl 25.60 27. 16 

Ls/Lt 67.65 75.00 66.67 34.29 31.58 
Lv/Lt 26.47 22.50 33.33 60.00 65. 79 
Lm/Lt 5.88 2.50 -0.00 5.71 2. 6] 

Q+f+L 226.00 257.00 217.00 285 . 00 28 3. 00 
Q 57.52 54.09 52.53 67.72 59. 36 
F 27.43 30.35 35.02 20 . 00 27. 56 
L 15.04 15.56 12.44 12.28 lJ. 07 

Qm 57.52 54.09 52.53 67.72 59. 01 

F 27.43 30.35 35.02 20.00 27 . 56 
Lt 15 . 04 15.56 12.44 12.28 13.43 

P/f 0.81 0.68 0.96 0.56 0.81 

Lph/Lt l. 21 0.50 1. 19 o . 46 0. 24 
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Lower Head Formation Point Count Data 

port2 lhnb4 T:'lps11 wbna15 wbs1 
quartz 226 135 191 199 179 
polyqz•,.,fa 0 0 0 1 0 
polyqznfa 2 0 3 1 1 
plag 30 66 47 35 46 
kspar 0 0 4 2 0 
monomica 0 1 1 2 1 
phyllosil 3 22 6 6 14 
opaque 1 4 1 4 1 
glauc 0 0 0 1 0 
volcglass 0 2 0 0 0 
volcaph 13 9 7 7 2 
volcmicr 4 4 6 1 8 
slate 1 11 0 0 0 
semischis 0 0 0 0 0 
qfmagg 0 0 0 0 0 
polyrnic 0 0 0 0 0 
mudstone 11 10 31 14 14 
lamsh 1 4 3 6 1 
micrlst 10 3 8 0 4 
calcite 6 2 4 10 2 
bioclast 0 0 0 0 0 
ooid 0 0 0 0 0 
matrix 25 63 66 73 so 
car be em 36 57 9 17 9 
qzcem 0 0 4 2 0 
unident 0 0 0 0 0 
heavy 0 0 1 0 0 
chert 1 1 0 r 0 
sltstone 5 0 4 2 2 
altk 25 16 21 17 15 

N 400 410 41 7 400 379 

M+C 15.25 29.27 18.94 23 . 00 23 . 48 

M+C+A 16.75 29 . 76 19.90 25.50 24 . 01 

Ls/Lt 47 .37 36.59 70.37 68 .7 5 60.71 
LV/Lt 44. 74 36.59 24.07 25.00 35.71 
Lm/Lt 7.89 26.83 5 . 56 6. 25 3.57 

Q+F+L 319 . 00 258 . 00 317. 00 285.00 268.00 
Q 71. 4 7 52.33 61.:0 70 . 53 67.16 
F 17.24 J 1. 78 22.71 18.95 22 .7 6 
L 11. 29 15 . 89 16 . 09 10.53 10.07 

Qm 70.85 52.33 60. 25 69.82 66.79 
F 17.24 31.78 22.7 1 18.95 22.76 
Lt 11.91 15.89 17. OJ 11.:3 10.45 

P/F 0.55 0.80 0.65 0.65 0. 7 5 

Lph/Lt o.os 0 . 54 0. 11 0 . 19 0.50 
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Lower Head Formation Point Count Data 

wbn3 rpa10 rpa5 ph4 lhsb6 
quartz 138 119 95 215 159 
polyqzwfa 0 0 0 0 0 
polyqznfa 1 0 0 J J 
plag 49 41 .n 29 52 
!<spar 0 1 5 2 0 
monomica 2 2 0 0 1 
phyllosil 11 11 20 4 12 
opaque 1 1 3 0 5 
glauc 0 0 1 0 0 
volcalass 0 0 0 1 0 
volcaph 5 10 7 14 3 
volc:':licr 3 1 0 5 6 
slate 0 0 1 1 0 
semischis 0 0 0 0 0 
qfmagg 0 0 0 0 0 
polymic 0 0 0 0 0 
mudstone 16 23 30 20 32 
lamsh 9 2 3 3 6 
micrlst 1 0 2 6 4 
calcite 2 0 4 1 2 4 
bioclast 0 0 0 0 0 
ooid 0 0 0 0 0 
matrix 50 74 60 31 74 
carbcem 94 5 124 39 25 
qzcem 0 1 0 3 0 
unident 0 0 0 0 0 
heavy 1 0 0 0 0 
chert: 0 0 0 0 0 
sltstone 0 2 0 0 1 
altk 19 17 10 21 16 

N 402 310 406 409 40J 

M+C 35.82 2 5. 81 45.32 17.85 24.57 

M+C+A 36.32 25.81 46.31 20.78 25.56 

Ls/Lt 73.53 71.05 80.49 48.94 76.47 
Lv/Lt 23.53 28.95 17.07 42.55 17.65 
Lm/Lt 2 . 94 0.00 2.44 8.51 5.88 

Q+F+L 240.00 216.00 192. 00 314.00 278.00 
Q 57.92 55.09 49.48 69.43 58.27 
F 28.33 27 . J 1 29.17 16.56 24.46 
L 13.75 17.59 21.35 14. 01 17.27 

Qm 57.50 55 . 09 49.48 68.47 57.19 

F 28.33 27. Jl 29.17 16.56 24.46 

Lt 14. 17 17.59 21. J5 14.97 18. J 5 

P/F 0. 72 0.69 0.73 0.56 0.76 

Lph/Lt 0.32 0. 29 0 . 49 0.09 0.24 
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Lcwer Head Formation Point Count Data 

rnapbl ei2 portb2 
quartz 185 109 185 
polyqzwfa 0 0 0 
polyqznfa 2 0 0 
plag 64 40 45 
kspar . 0 1 1 4 
monom1ca 0 1 0 
phyllosil 4 5 12 
opaque 2 9 1 
glauc 0 0 0 
volcglass 0 0 0 
volcaph 6 1 3 
volcmicr 1 2 1 
slate 0 2 0 
semischis 0 0 0 
qf:nagg 0 0 u 
polymic 0 0 0 
mudstone 32 40 20 
lamsh 5 17 3 
micrlst 3 5 7 
calcite 0 0 3 
bioclast 0 0 0 
ooid 0 0 0 
matrix 90 149 42 
carbcem 13 10 65 
qzcem 7 9 3 
unident 0 0 1 
heavy 0 0 0 
chert 0 0 0 
sltstone 0 1 0 
altk 0 10 10 

N 414 411 415 

M+C 26.57 40.88 26.51 

M+C+A 26. 5 7 40. 88 27 . 2 3 

Ls/Lt 80 . 43 92.06 85.19 
Lv/Lt 15.22 4. 76 14.81 
Lm/Lt 4.35 3 . 17 -0 . 00 

Q+FH 295 . 00 22 3.00 2 81. 00 
Q 63.39 48.88 65.84 
F 21.69 22.8 7 2 4 .56 
L 14.92 28.2 5 9. 6 1 

Qm 62.71 48.88 65.84 
F 21.69 22.87 24.56 
Lt 15.59 28.25 9.61 

P/F 1. 00 0.78 0.65 

Lph/Lt 0.09 0. OS 0. 44 
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Cambrian Sandstones Point count Data 

bmd5 br:ld7 bmd5 wib2 wf7585 
quartz 195 183 174 235 172 
polyqzwfa 0 0 0 0 0 

polyqznfa 2 1 1 1 0 
plag 83 65 86 59 94 
kspar 0 0 0 0 0 
monomica 1 23 2 1 4 
phyllosil 6 0 0 0 1 

opaque 5 0 2 0 1 
glauc 0 0 0 0 1 
volcglass 0 0 0 0 0 
volcaph 0 0 1 1 0 
volcmicr 0 0 0 0 0 
slate 0 0 0 0 0 
semischis 0 0 0 0 0 
qfmagg 0 0 0 0 0 
polymic 0 0 0 0 0 
mudstone 1 0 0 0 0 
lamsh 0 0 0 0 0 

micrlst 0 0 0 0 0 
calcite 0 0 0 0 2 
bioclast 0 0 0 0 0 
ooid 0 0 0 0 0 

matrix 96 135 135 83 97 
carbcem 9 0 1 13 34 
qzcem 0 1 0 7 2 
un i dent 0 0 0 0 0 

heavy 1 0 0 0 0 
chert 0 0 0 0 0 
sltstone 0 0 0 0 0 
altk 2 0 0 0 0 

N 401 408 40 2 400 408 

M+C 26 . 18 33.33 33.33 25.75 32. 6 0 

M+C+A 26.18 33.33 3 3. 83 25. 7 5 33.09 

LS/Lt 100.00 0 . 00 0.00 0 . 00 0.00 
LV/Lt 0 . 00 0.00 100.00 100.00 0.00 

Lm o.oo o.oo o.oo 0.00 0 . 00 

Q+f+L 282 .00 2 4 9 . 00 262.00 296.00 266 . 00 

Q 69.15 73.49 66. 41 79 . 39 64 . 66 
F 30.14 26.10 32.82 19 .9 3 35 . 34 

L o. 71 o. 40 0. 76 0.68 -o.oo 

Qm 69. 1 5 73.49 66. 41 79 . 39 64.66 
F 30.14 26.10 32. 82 19.93 35.3 4 

Lt 0.71 o . .;o 0. 76 0 . 68 -o. oo 

P/F 0.98 1. 00 1. 00 1. 00 1. 00 

Lph/Lt 6.00 o.oo 0.00 0.00 0.00 
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Cambrian Sandstones Point Count Data 

hanb7 mpb5 croq6 sabJ db9 
quartz 285 174 134 184 261 
polyqzwfa 0 0 0 0 0 
polyqznfa 0 1 2 9 0 
plag 44 86 63 64 3 
kspar 0 0 0 0 1 1 
monomica 0 2 1 0 0 
phyllosil 4 0 0 1 1 
opaque 3 2 1 4 0 
glauc 0 0 0 0 0 
volcglass 0 0 0 0 0 
volcaph 0 1 1 0 0 
volcmicr 0 0 0 0 0 
slate 0 0 0 0 0 
semischis 0 0 0 0 0 
qfmagg 0 0 0 4 0 
polymic 0 0 0 0 0 
mudstone 1 0 0 2 0 
lamsh 0 0 0 0 0 
micrlst 0 0 0 1 0 
calcite 0 0 0 0 0 
bioclast 0 0 0 0 0 
acid 0 0 0 0 0 
matrix 55 135 114 1 43 101 
carbcem 0 1 1 0 0 
qzcem 20 0 0 0 2 8 
unident 0 0 0 0 0 
heavy 0 0 0 0 0 
chert 0 0 0 0 0 
sltstone 2 0 0 0 0 
altk 0 0 0 0 7 

N 414 40 2 317 41 2 41 2 

M+C 18.12 33.83 36.28 34 . 71 31.31 

M+C+A 18. 12 33.83 36.28 34. 7 1 31.31 

Ls/Lt 100.00 0.00 0. 00 33.33 0 . 00 
Lv/Lt 0 . 00 100.00 100.00 0 . 00 0 . 00 
Lm 0.00 0.00 0.00 66.67 0.00 

Q+F+L 329.00 26 2 .00 200.00 261.00 282.00 
Q 86.63 66.41 67 . 00 70 . 50 92 . 55 
F 1J. 37 32.82 3 l. 50 24.52 7. 45 
L -o.oo 0. 76 1. 50 4.98 -0 . 00 

Qm 86.63 66. 41 67.00 70 . 50 92.55 
F 13. 3 7 J :2 .S 2 31.50 24 . 52 7.45 
Lt -0.00 0 .7 6 l. 50 4.98 -o.oo 

P/F 1. 00 1. 00 l. 00 1. 00 0.14 

Lph/Lt 1. 3 3 0 . 00 0.00 0.1 7 o. oo 
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cambrian Sandstones Point Count Data 

hb1 grn3 hanb5 iri3 
quartz 342 336 135 303 
polyqzwfa 0 0 0 0 
polyqznfa 1 0 0 0 
plag 7 5 80 25 
kspar 1 0 0 0 
monornica 0 1 1 2 
phyllosil 0 0 0 0 
opaq-.te 0 1 2 1 

glauc 0 0 0 0 
volcglass 0 0 0 0 
volcaph 0 0 0 0 
volcrnicr 0 0 0 0 
slate 0 0 0 0 
sernischis 0 0 0 0 
qfnagg 0 0 0 0 
polymic 0 0 0 0 
mudstone 0 0 0 0 
larnsh 0 0 1 0 
micrlst 0 0 0 0 
calcite 0 0 0 0 
bioclast 0 0 0 0 
acid 0 0 0 0 
matrix 0 6 174 33 
carbcem 0 1 5 0 
qzcem 39 24 2 35 
unident 0 0 1 0 
heavy 0 0 1 1 
chert 0 0 0 0 
sltstone 0 0 0 0 

altk 21 26 0 1 

N 411 400 402 401 

M+C 9.49 7. 7 5 45.02 16.96 

M+C+.ll. 9.49 7 .75 45.02 16.96 

Ls/Lt o.oo 0.00 100 . 00 0.00 
Lv/Lt 0.00 0. 00 0.00 0.00 
Lm o.oo 0.00 0.00 0 . 00 

Q+F•L 372.00 367 . 00 215.00 329.00 
Q 91.94 91.55 62. 79 92.10 
F 7.80 8 . .; 5 37. 21 7 .9 0 
L 0.27 0. 00 0.00 -o. oo 

Qm 91. ~).\ 91.55 62.79 92.10 
F 7.80 8.45 37.21 7.90 
Lt 0. 27 0.00 0.00 -0.00 

P/F 0.24 0. 16 l. 00 0.96 

Lph/Lt 0.00 0.00 0.00 0.00 
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!1iscellaneous Sandstones Point Count Data 

cb9 cblO nwalO tpb7 
quartz 214 204 131 64 
polyqzwfa 2 1 0 0 
polyqznfa 0 1 3 1 
plag 54 89 .;2 22 
kspar 8 19 8 4 
monomica 0 0 2 0 
phyllosil 17 2 5 2 
opaque 2 0 6 5 
glauc 0 0 0 0 
volcglass 0 0 0 0 
volcaph 16 31 7 8 
volcr.~icr 6 ~ ... 3 J 

slate 1 0 4 0 
semischis 0 0 0 0 
qfmagg 1 0 0 0 
polymic 0 0 0 0 
mudstone 0 3 12 23 
lamsh 1 0 0 13 
micrlst 2 0 1 17 
calcite f) 0 4 36 
bioclast 0 0 0 0 
ooid 0 0 0 0 
matrix 62 26 12 ... 92 
carbcem 0 0 38 55 
qzcem 2 0 1 0 
unident 0 0 0 0 
heavy 0 1 0 0 
chert 0 0 0 0 
sltstone 1 0 0 4 
altk 11 18 8 1 

N 400 400 400 350 

M+C 16.00 6.50 40.75 42.00 

N+C+A 16.00 6.50 41.75 52.29 

Ls/Lt 7. 14 7.32 40.00 76.92 
LV/Lt 78.57 87. so 36 .67 21. 15 
Lm 14. 29 4.88 23.33 1. 92 

Q+F+L 315.00 371. 00 219.00 143.00 
Q 68. 57 55.26 59.82 44.76 
F 23.17 33.96 26.48 18.88 
L 8.25 10.78 13.70 36. 36 

Qrn 67.94 54.99 59.82 44.76 
F 23.17 33.96 26.48 1a. sa 
Lt 8.89 11.05 13.70 36 . 36 

P/F 0.74 0.71 0.7~ 0.81 

Lph/ Lt 0.61 0.05 0.17 0.04 
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APPENDIX 5 BULK GEOCHEMICAL OAT A 

The majority of the samples (88) in the following data tables were analysed by 
ACTLABS, Ancaster. Ontario using a combination of Instrumental Neutron Activation 
Analysis (INAA) (Au. Cr. Ir. Sc. U, Nd. Yb, As. Cs. Mo. Se. W, Sm. Lu, Br. Hf. Rb. 
Ta, La, Eu, Co, Hg, Sb. Th, Ce. Tb) and all other major and trace elements were 
analysed by Inductively Coupled Plasma Emission Spectrometry (ICAP) on fused pellets. 

For this grade (exploration) analysis ACTLABS quotes precision as plus or minus 
100% at detection limits, plus or minus 50% at twice detection limits. and plus or minus 
10% at ten times detection limits. Detection limits were quoted as follows (;JIJ data are 
quoted in ppm unless otherwise indicated): 

Au (5 ppb), Cr (2), lr (5 ppb), Sc (0.1), U (0.5), Nd (5), Yh (0.2), As (2). Cs 
(0.5), Mo (5), Se (3), W (3), Sm (0.1), Lu (0.05), Br (1), Hf (0.5), Rb (20), Ta ( 1), La 
(0.5), Eu (0.2), Co (1), Hg (1), Sb (0.2), Th (0.5), Ce (3), Tb (0.5). 

Also Ag (0.1), Al203 (0.01%), Ba (1), Be (1), Bi (50), Br (1), CaO (0.01%), 
Cu (1), Fe203 (0.01 %), K20 (0.03%), MgO (0.01 %), Mn (100). Na20 (0 . 1 %). Nh 
(50), Ni (5), P205 (0.01 %), Pb (50), Si02 (0.01 %), Sn (50), Sr (1), Ti02 (0.001 %). 
V (3), Y (1), Zn (5), Zr (1). 

Total iron is expressed as Fe20 3. Data are recalculated to 100% volatile free . 

As discussed in chapter 4, samples were contaminated with chromium during the 
crushing process. Average chromium contamination was 58 ppm for the American 
TickJe formation, 77 ppm for the Lower Head Formation. and 81 ppm for the Mainland 
formation. Samples whose Cr valne!ll rose (only 2 samples) on the second analysis were 
not included in the contamination caiculation, as the rise was ascribed to inhomogeneity 
in the sample. Samples for which there was no second analysis available had the 
appropriate 'contamination factor ' subtracted from their original values. These samples 
were Bl 83, PP Bl. SAB 3. TCA3 , TCA6, TCA12, EI4. MAPBl. MAPB3. RPA2. 
RPAll, WBSB2, WBNA15. MLll, ML15, TRC AlO. TRC Al3 , TRCAI6, TRCA20 
(these samples may be marked with an asterisk in some tables). 

Nineteen samples were analysed by a combination of other methods. These 
methods included: XRF analysis of pressed lCIIets for Co (5ppm), Cr (5ppm), Cu 
(5ppm), Ni (5ppm), Pb (5ppm), V (5ppm), Zn (5ppm), by ACTLABS; XRF analysis of 
pressed pellets at Memorial University (other trace elements). Atomic Absorption 
Analysis (major elements) at Memorial University, and ICP-MS at Memorial University 
(rare earth elements). Detection limits are quoted in Longerich and Veinott ( 1986, 
Memorial University internal repl'n) and details of the ICP-MS method are given in 
Longerich et al. (1990), and Jermer et at. (1990). Note that high Barium values in several 
of the samples analysed may render values for Europium suspect. The samples analysed 
by this combination of techniques were GMl. SAB10, HAS 86, LQ-82-163. BMD 8, 
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WF-75-85, LQ-83-5A, HB6, MAP 87, LP81, 239G, HAN 812, LHS 812, RPA 14, 
MIA, MLB9, DB4, SAINT!, SB82. (These samples may be marked with a# in some 
tablesJ. 

Some of the major recalculated parameters, panicularly Niggli values (after Van 
de Kemp and Leake 1985) are also provided in these tables. These were the values 
incorporated into the statistical analyses in appendix 6. 
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American Tickle Hajor Elements 

BB 82 88 84 88 89 PCF 2 
grainsize f medjcrs crs f 
structure lam x-bed ::lass lam 

Si02 69.27 72. 78 77.33 70.53 
Ti02 0.55 0.32 0.42 0.39 
Al203 10.35 5.05 6.66 8.06 
Fe203 4.87 3.09 3.91 2.92 
MnO 0.21 0.40 0.13 0.15 
MgO 3.42 3.82 3.29 2 .03 
cao 7.09 12.40 5.80 12.05 
Na20 2.08 1. 02 1.10 l. 96 
K20 2.04 1. 08 1. 27 l. 90 
P205 0.11 0.05 0.08 0.02 

LOI 7 .99 12.30 6.21 10.32 
analytical total 100.04 99.64 100.66 100.77 

al-alk% 11.55 5.18 11.06 6.55 
Nig Ti 1. 7 3 0.96 1. 72 l. 16 
Nig Fm 29.46 28.66 35.05 17.03 
Nig K 0.39 0.41 0.43 0.39 
Nig Mg 0.57 0.68 0.62 0.57 
Nig Si 287.15 289.55 417.92 281. 88 

PCP 81 pp 81 SPI 81 TC AJ 
grainsize c=-stvcrs fjcrs f/med crstvcrs 
structure mass lamjcon rip x-bed 

Si02 69.01 69.72 58.86 80.89 
Ti02 0 .4 5 0.46 0.45 0.22 
Al203 6.42 9 . 41 9. 71 5.57 
Fe203 3.40 4.79 6.46 3.47 
MnO 0.33 0.13 0.55 0.12 
MgO 2.44 4.24 8.6 1 2.71 
cao 15.37 8.03 11.76 4.97 
Na20 l. 61 1. 24 1. 56 1. 06 
K20 0.91 1. 91 1. 93 0.96 
P205 0.05 0.07 0.12 0.02 

LOI 12.22 9 . 46 15.70 5.55 
analytical total 100.19 100.66 100.37 98.85 

al-alk% 5.94 12.60 8. 10 10.44 
Nig Ti l. 24 1. 40 0.91 1. 08 
Nig Fm 13.85 33.23 42.76 34 .7 0 
Nig K 0.2 7 0.50 0. 45 0.) 7 

:Hg Mg 0.56 0.63 0. 71 0.60 

Nig Si 250.08 281. 06 159 .99 515 .33 



American Tickle Major Element:s 

TC ;..6 TC A12 TC A16 BI B3 
g r ainsize crs;vcrs med/crs f rned 
structure mass mass lam mass 

Si02 i9. 76 77. 2 4 70.40 68.71 
Ti02 0.31 c. ~0 0.60 0.56 
Al203 5.49 6.02 10 . 70 7.79 
Fe203 3.67 3.57 5 . 39 5 . 32 
MnO 0 . 10 0.14 0.06 0.14 
MgO 2.87 3.39 5.03 6.23 
cao 5.94 7.04 3.85 9.27 
Na20 0. 92 1. 08 1. 68 1. 02 
K20 0. 88 1.10 2 . 15 0.94 
P205 0.06 0.02 0 . 13 0.02 

LOI 5.83 7.07 6.04 9.43 
analytical total 98.67 97.89 100 . 00 99.12 

al-alk 1> 10.61 9. 30 14 . 36 10 . 90 
Nig Ti 1. 40 1. 5 4 1. 95 1. 52 
Nig fm 34.19 33.68 41.64 ..; 1. 46 
Nig K 0. 39 o. 40 0. 46 0.38 
Nig Hg 0.60 0.64 0.65 0.69 
Nig Si 47 5 .22 3 99. 03 305.79 249.74 

BURNT 2 GT 1 GT B5 GT 810 
grainsize f f crs crs 
structure mass I l.:m lam mass gr/mass 

Si02 62.67 64. 57 68 . 36 56.08 
Ti02 0.65 0.96 0. ,;2 0.57 
Al203 10 . 04 11 . 42 9.78 7.79 
fe20J 4.08 5. i 1 4.59 5 . 25 
MnO 0 .2 9 0.33 0.12 O.J5 
MgO 2.97 4.87 4.20 5.40 
cao 15.18 7.82 8 . 0 22. 4 6 
Na20 2.46 2.00 1. 55 0.87 
K20 1. 65 2 .21 2 . 28 1. 20 
P205 0 . 02 0.11 0.02 0. 02 

LOI 12.68 9.80 9.87 1f.90 
analytical total 98.86 100.4 2 93.57 98. 5 3 

al-alk~ 7 .81 12. OJ 10.83 7.35 
Nig Ti 1. 53 2.57 1. 80 1. 06 
l'lig fr.l 19.51 3 4 .41 31. 2 6 25.45 
Nig K O. J l 0. 42 o. 49 0. 4 8 
Nig Mg 0.5 7 0.61 0. 64 0.65 
Nig S i 197 . 01 2 29. 47 2 63 .99 13 8. 15 
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American Tickle Major Elements 

SB 2 SB 83 SAB 3 LS I 5 
gra insize r.~ed f f f 
s~ruc~ure con lam lar.~ l am 

Si02 69.53 s:;.~s 43.37 65.16 
Ti02 0.73 0.67 0.29 0.66 
Al203 12.34 11.31 6. ~2 10 . 34 
Fe203 5.10 4 . 66 3. 7 1 5.85 
MnO 0.05 0.20 0.69 0.11 
MgO 3.76 4.63 7.61 6. 30 

cao 3.95 18.32 35.09 s. Jl 
Na20 1. 63 3.08 1. 7 8 1. 55 

K20 2.3 2 1. 61 1. 02 1. 7 0 
P205 0.08 0.07 0.03 0.02 

LOI - ~- 15.75 26.56 8.67 :J.-.:J 

analytical to~al 99. 7 8 100.45 98.90 98.30 

al-alk% 17.32 6.78 2 . 46 11.99 

Nig '!'i 2.45 1. 29 0.38 1. 69 

Nig Frn 33.72 22.55 23.34 J9. 95 

Nig K 0. 53 0.26 0.2 7 0.42 

Nig Mg 0 . 59 0.65 o. 77 0.68 

Nig Si 309.60 141. 7 5 75.99 222.64 

SAB 10 SB 82 
grainsize r:1ed;crs f/ rned 
s~ruc~ure ::nass;gr? lam 

Si02 70.05 41.71 
Ti02 0.65 0.3 4 
Al20J 11. 7 5 6.27 
Fe20J 5.89 3.76 
MnO 0 . 06 0. 4 1 
MgO 3. 40 10.73 
cao 3.32 34. 2 5 
Na20 1. 86 l.Jl 
K20 2. 4 8 1. 07 
P205 0 . 08 0.14 

LOI 6.31 27.45 
analy~ical total 99.08 98.40 

al-alk% 16.66 2 . 90 
Nig Ti 2.29 0.42 
Nig Fr.t 34.6 4 29. 5 4 
Nig K 0 . .: i 0.35 
Nig r1g 0 . 53 0 . 83 
tlig S i 3 32 . 2 2 69. 4 3 
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American Tickle Trace Elements 

Element BB B2 BB B4 BB B9 PCF 2 PCP B1 
Ba 518 263 300 496 302 

Sr 205 237 126 166 207 

Zr 259 123 181 166 214 
y 24 14 14 12 16 
Be <1 <1 <1 <1 <1 
Cu 40 25 20 25 20 
Ni 110 110 160 50 180 
Pb <50 <50 <50 <50 <50 
v 50 36 42 30 46 

Zn 130 80 85 85 iS 

Ag 1 2.1 0.4 0.3 0.1 

Nb <30 <30 <30 <30 <30 
Au 52 78 11 14 14 
As 13 14 18 2 i 
Br <1 1 <1 <1 <1 
Co 21 9 17 8 15 

Cr 330 350 520 180 1100 
Cs 2.1 1.2 1.4 <0.5 <0.5 

Hf 5.9 2.6 3.8 3.2 4.8 

Hg <1 2 <1 <1 <1 
Ir <5 <5 <5 <5 <5 
rvlo <5 <5 <5 <5 <5 
Rb 72 22 45 59 36 
Sb 12 23 5 4 2.9 
Sc 8.2 4.4 6.i 4.9 6.1 
Se <3 <3 <3 <3 <3 
Ta <1 <1 <1 <1 <1 
Th 6.4 3-• I 4.8 3.6 4.1 
u 2.2 0.8 1.2 1.5 1.5 
w <3 <3 <3 <3 <3 
La 22.3 12.1 14.4 12.8 13.7 
Ce 54 29 37 30 33 
Nd 23 14 15 15 15 
Sm 4.3 2.4 2.9 2.5 2.7 
Eu 0.9 0.5 0.7 0.7 0.6 
Tb 0.8 <0.5 <0.5 0.5 0.5 
Yb 1.8 1 1.3 1.1 1.2 

Lu 0.28 0.14 0.19 0.17 0.22 

LaN/ YbN 8.1 i i.99 7.31 i .6i 7.53 
La/ Yb 12.39 12.10 11.08 11.64 11.42 
La/Sm 5.19 5.04 4.9i 5.12 5.07 
Hf/ Yb 3.28 2.60 2.92 2.91 4.00 
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American Tickle Trace Elements (cont.) 

Element PP B1* SPI B1 TC A3* TC A6• TC A12* 
Ba 333 315 311 281 322 
Sr 153 104 152 195 165 
Zr 187 142 63 81 188 
y 16 18 12 14 16 
Be <1 <1 <1 <1 <1 
Cu 30 35 20 iO 20 
Ni 50 80 liO 130 160 
Pb <50 <50 <50 <50 <50 
v 54 40 38 42 46 
Zn 80 100 110 130 80 
Ag <0.1 0.5 0.4 0.1 0.2 
Nb <30 <30 <30 <30 <30 
Au 7 19 17 8 23 
As 4 4 9 i 4 
Br <1 <1 <1 <1 <1 
Co 12 17 15 21 17 
Cr 120 110 370 870 620 
Cs 2.1 1.6 <0.5 0.9 <0.5 
H£ 4.7 3 1.4 2..1 4.3 
Hg <1 <1 <1 <1 <1 
lr <5 <5 <5 <5 <5 
Mo <5 <5 <5 <5 <5 
Rb 62 66 32 28 33 
Sb 1.6 8.9 5.5 2.3 1.7 
Sc 6.8 7.3 5.6 5.9 6.7 
Se < 3 <3 <3 <3 <3 
Ta <1 <1 <1 < 1 <1 
Th 6.2 5.6 2.7 3.2 3.9 
u 2.-1 2 1.3 1.1 1.6 
w <3 <3 <3 <3 <3 
La 18.7 17 10.2 12.2 14.6 
Ce 45 42 24 31 37 
Nd 20 16 12 15 18 
Sm 3.8 3.7 2.2 3.2 3.1 
Eu 0.6 O.i 0.4 O.i 0.8 
Tb 0.7 0.6 <0.5 < 0.5 0.5 
Yb 1.5 1.6 0.8 1 1.3 
Lu 0.24 0.25 0.13 0.15 0.18 

LaN/YbN 8.22 7.01 8.4 8.05 7.41 
La iYb 12.47 10.63 12.75 12.20 11 .23 
La i Sm 4.92 4.59 4.64 3.81 4.11 
Hf/ Yb 3.13 1.88 1.75 2.40 3.31 
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American Tickle Trace Elements (cont.) 

Element TC A16 BI B3* BURNT 2 GT 1 GT B5 
Ba 505 192 6964 443 407 
Sr 116 189 336 228 138 
Zr 232 159 203 344 200 
y 18 16 18 26 18 
Be <1 <1 <1 <1 <1 
Cu 35 50 25 30 30 
Ni 140 260 100 130 40 
Pb <50 <50 <50 <50 <50 
v 60 70 56 64 48 
Zn 85 95 80 95 iS 
Ag <0.1 <0.1 0.4 0.2 0.2 
Nb <30 <30 <30 <30 <30 
Au <5 13 18 21 <5 
As 4 9 2 5 2 
Br <1 <1 <1 I <1 
Co 17 34 11 20 9 
Cr 300 1440 180 300 130 
Cs 2.2 l.i 1.6 3.3 1.9 
Hf 5.1 4.1 5.3 8.7 5.2 
Hg <1 <1 < 1 <1 <1 
Ir <5 <5 <5 <5 <5 
Mo <5 <5 <5 <5 <5 
Rb 68 21 35 64 64 
Sb 1.1 3.6 6.1 4.1 3 
Sc 9.5 14 i.5 10 7.6 
Se <3 <3 <3 <3 <3 
Ta <1 <1 <1 <1 <1 
Th 6.8 3.9 5.6 8.4 5.6 
u 2.3 1.2 <0.5 2.4 1.5 
w <3 <3 <3 <3 <3 
b 20.8 14.8 18.6 27.4 21 
Ce 52 34 44 67 50 
Nd 23 12 19 25 24 
Sm 4 2.5 3.3 5.1 3.9 
Eu 0.9 0.6 0.9 1.1 1 

Tb 0.6 0.5 0.5 0.7 0.6 
Yb l.i 1.2 1.-l 2.2 1.5 
Lu 0.27 0.19 0.22 0.37 0.24 

LaN/ YbN 8.08 8.13 8.76 8.22 9.23 
La/ Yb 12.24 12.33 13.29 12.45 14.00 
La/Sm 5.20 5.92 5.64 5.37 5.38 
Hf.'Yb 3.00 3.42 3.79 3.95 3.47 
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American Tickle Trace Elements (cont.) 

Element GT 810 SB 2 SB B3 SAB 3* LSI 5 
Ba 227 1243 352 320 444 
Sr 488 114 305 4M 227 
Zr 148 210 100 4:9 180 
y 18 20 22 20 20 
Be <1 <1 <1 <1 <1 
Cu 30 40 15 15 45 
Ni 180 100 40 10 230 
Pb <50 <50 <50 <50 <50 
v 68 62 44 14 62 
Zn 85 )1)0 100 75 90 
Ag <0.1 <0.1 <0.1 <0.1 0.1 
Nb <30 <30 <30 <30 <30 
Au 6 7 6 10 5 
As 3 3 4 2 i 

Br <1 <1 < 1 <1 <1 
Co 20 15 17 7 28 
Cr 1400 160 110 48 580 
Cs <0.5 3.3 2 1.7 1.6 
Hf 3.9 5.5 2.6 1.4 4. i 

Hg <1 <1 <1 <1 <1 
Ir <5 <5 <5 <5 <5 
Mo <5 <5 <5 <5 <5 
Rb 25 79 43 35 i1 
Sb 2.8 0.8 2 2.2 4.9 
Sc 13 10 7.8 3.6 13 
Se <3 <3 <3 <3 <3 
Ta <1 < 1 < 1 < 1 <1 
Th 3.9 7.6 5.3 2.9 5.1 
u <0.5 2.3 1.4 1 1.3 
w <3 <3 <3 <3 <3 
La 13.5 28.1 19.9 12.7 19.7 
Ce 33 67 49 34 45 
Nd 13 31 20 18 20 
Sm 2.8 4.8 4.5 3.5 3.5 
Eu 0.8 1 1 0.9 0.9 
Tb 0.5 0.6 0.6 0.7 O.i 
Yb 1.:.! l.i 1.7 1.4 1.6 
Lu 0.21 0.28 0.25 0.19 0.25 

LaN / YbN 7.42 10.91 7.73 5.98 8.12 
La/ Yb 11.25 16.53 ll.il 9.07 12.31 
La/Sm 4.82 5.85 4.42 3.63 5.63 
Hf/Yb 3.25 3.24 1.53 1.00 2.94 



American Tickle Trace Elements (cont.) 

Element SAB I Ox 
Ba 619 
Sr 115 
Zr 182 
y 21 
Be n/a 
Cu 21 
Ni 76 
Pb 13 
V H 
Zn 63 
Ag n/a 
Nb 14 
Au n/a 
As n/a 
Br n/a 
Co 46 
Cr 11 i 
Cs n / a 
Hf 4.338 
Hg n;a 
lr n/ a 
Mo n / a 
Rb i2 
Sb n/ a 
Sc S 
Se n / a 
Ta 1.426 
Th 10 
u 4 
W n/a 
La 26.059 
Ce 53.335 
Nd 22.914 
Sm 4.44 
Eu 0.925 
Tb 0.521 
Yb 1.621 
Lu 0.249 

LaN / YbN 10.61 
La / Yb 16.08 
La /Sm 5.8i 
Hf.'Yb 2.68 

SB B2x 
3602 
363 
103 

21 
nta 

9 
36 

<12 
36 
32 

nta 
6 

n/a 
n;a 
n;a 

20 
80 

nta 
2.i92 

nta 
n;a 

I nta 
25 

n;a 
10 

ni a 
0.584 

3 
<16 
n t a 

1 i.093 
34.859 

16.68 
3.66 

0.-!ii 
0.50i 
1.5i3 
0.:.!2 

i.1 i 
10.8i 
4.6i 
l.ii 
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Mainland Major Elements 

MLS ML 11 ~IL 15 ML 23 

Grainsize vcrs vcrs ( med/crs 
Structure mass/lam masstlam lam mass 

Si02 71.53 75.82 63.12 73.33 

Ti02 0.65 0.29 1.01 0.22 

Al,03 7.99 5.25 7.98 3.88 

Fe203 4.95 3.40 4.32 1.92 

MnO 0.18 0.14 0.36 0.32 

MgO 3.73 3.58 3.52 1.16 

CaO 8.21 9.52 16.27 17..!0 

Na20 1.22 0.90 1.41 0.72 

K20 1.40 0.95 1.78 1.03 

P20s 0.16 0.15 0.23 0.02 

LOI 8.24 8.03 12.68 12.35 

Analytical total 98.38 98.90 99.12 97.80 

al-alk 11.37 7.51 6.91 3.71 

Nig Ti 2.13 1.00 2.38 0.67 

Nig Fm 32.70 31.31 22.55 10.86 

Nig K 0.43 0.41 0.45 0.48 

Nig ~lg 0.59 0.67 0.60 0.50 

Nig Si 309.11 352.53 198.43 293.38 

Fe203+MgO 8.67 6.98 7.83 3.07 

Al203/ Si02 0.11 0.07 0.13 0.05 

K20/Na2 0 1.15 1.05 1.26 1.42 

Al,03/(Ca0..J...Na20) 0.85 0.50 0..15 0.21 
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Mainland .Major Elements (cont.) 

ML 26 TRC3 TRC5 TRC 7 

Gra.insize crsi vcrs f f/m { 

Structure massive lam lam lam 

SiOl 82.58 59.99 72.65 69.96 

TiOl 0.23 0.69 0.47 0.78 

AhOJ 3.25 9.16 8.73 10.19 

Fe203 1.68 4.18 4.55 5.26 

MnO 0.10 0.43 0.10 0.12 

MgO 1.30 3.12 4.20 3.86 

CaO 9.26 18.60 5.99 6.03 

Na2 0 0.62 l.iO 1.46 1.49 

K20 0.95 1.99 l.i3 2.18 

P,Os 0.02 0.1-l 0.13 0.13 

LOI 7.-18 14.67 6.85 6.84 

Analytical total 97.96 100.03 98.14 99.53 

al-alk 4.51 7.12 11.88 13.72 

Nig Ti 1.11 1.49 1.60 2.52 

Nig Fm 16.94 18.91 36.37 33.88 

Nig K 0.50 0.44 0.44 0.49 

Nig ?-.lg 0.59 0.57 0.64 0.59 

Nig Si 525.87 ! 72.2-l 328.30 302.34 

Fe2 0 3+Mg0 2.98 7.30 8.74 9.13 

Al,03/ Si02 0.0-l 0.15 0.12 0.15 

K,O;'NatO 1.54 1.17 1.19 1.46 
Al20 3 / (Ca0+Na20) 0.33 0.45 1.17 1.36 
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Mainland Major Elements (cont.) 

TRC A1 TRC AS TRC :\7 TRC A10 

Grainsize crs crstvcrs f/crs f 

Structure mass lam lam/gr con 

Si02 76.01 78.7 .t 73.31 69.03 

Ti02 0.44 0.25 0.45 O.i2 

:\1,03 7.09 5.14 8.0i 10.13 

Fe203 4.02 3.05 4.50 5.44 

l\InO 0.10 0.14 0.12 0.18 

~I gO 3.77 3.18 4.45 4.08 

CaO 5.88 7.5i 6.26 6.41 

Na20 1.19 O.il 1.10 1.62 

K20 1.43 1.09 1.65 2.1 i 

P,Os 0.09 0.13 0.09 0.22 

LOI 6.57 i...l8 7.01 7.61 

Analytical total 100.12 99.23 97.75 99.78 

al-alk 10.69 8.87 11.95 12.54 

Nig Ti 1.6i 1.02 1.5.J 2.21 

Nig Fm 36.54 32..!6 38.30 34.-12 

Nig K 0.4-l 0.50 0.50 0.-ti 

Nig Mg 0.6-l 0.66 0.66 0.59 

Nig Si 384.78 42-1.95 333.01 286.80 

fe20 3+Mg0 7.79 6.24 8.95 9.52 

Ah03/Si02 0.09 0.07 0.11 0.15 

K20/Na20 1.21 1.54 1.50 1.3t 

:\1,03/(Ca0+Na20) 1.00 0.62 1.10 1.26 
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Ma.inland Major Elements (cont.) 

TRC Al3 TRC Al6 TRC A20 TRC A25 

Grainsize { f f crs/ vcrs 

Structure lam lam mass mass 

Si02 
66.1; 69.75 73.89 72.61 

Ti02 0.75 0.78 0.64 0.34 

Al,03 10.90 10.56 8.90 5.47 

Fe,03 5.36 5.23 4.72 3.03 

MnO 0.22 0.09 0.09 0.27 

MgO 4.90 4.04 4.03 2.62 

CaO 7.39 5.54 4.57 13.55 

Na20 1.73 1.62 1.29 0.92 

K20 2.38 2.25 1.79 1.18 

P,Os 0.18 0.15 0.09 0.02 

LOI 9.18 6.57 5.59 10.72 

Analytical total 98.16 97.98 99.41 99.20 

al-alk 11.93 13.84 13.99 6..13 

Nig Ti 2.09 2.52 2.36 1.03 

Nig Fm 35.16 34.71 38.52 21.-U 

Nig K 0.48 0.48 0.48 0.46 

Nig Mg 0.63 0.60 0.62 0.61 

Nig Si 244.58 300.38 362.41 294.51 

Fe,03Tl\lg0 10.26 9.27 8.75 5.65 

Ah03/Si02 0.16 0.15 0.12 0.08 

K20 / Na20 1.38 1.39 1.39 1.28 

Ah03/(Ca0+Na,O) 1.19 1.48 1.52 0.38 
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Mainland .Major Elements (cont.) 

TRC A28 LP Bl ML~ ML B9 

Grainsize m / crs med r med/crs 

Structure xbed mass con mass 

Si02 76.68 78.78 38.82 69.92 

Ti02 0.45 0.26 0.4~ 0.36 

Al203 6.28 6.57 7.95 6.40 

Fe~,o3 3.34 3.04 4.30 3.48 

MnO 0.1 i 0.11 0.72 0.23 

l\IgO 2.84 2.54 3.4-l 3 .38 

CaO 7.68 6.02 -11.46 13.50 

Na20 1.10 1.11 0.82 1.07 

K20 1.34 1.48 1.93 1.50 

P20s 0.11 0.09 0.18 0 .09 

LOI 7.19 6.85 26.69 11.82 

Analytical total 99.88 98.88 98.81 99.97 

al-alk 9.1-! 10.69 4.55 6.66 

Nig Ti l.i5 1.13 0.57 1.02 

Nig Fm 28.92 28.95 12.58 24.44 

Nig K 0.44 0.47 0.61 0.48 

Nig ?\Ig 0.61 0.61 0.57 0 .64 

Nig Si 393.53 -153.60 66.40 261.54 

Fe203+ .MgO 6.18 5.58 7.74 6.86 

Al,03 / Si02 0.08 0.08 0.20 0.09 

K20/ Na20 1.22 1.33 2.35 1.40 

AI,03/(CaO+Na20) 0.71 0.92 0.18 0.43 
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Mainland Formation Trace Elements 

Element ML8 ML 11* ML 15* ML 23 ML 26 
Ba 227 263 283 143 163 
Sr 124 147 168 108 117 
Zr 143 90 361 67 98 
y 18 16 30 16 12 
Be <1 <1 <1 <1 <1 
Cu 30 25 30 15 15 
Ni 110 170 110 40 90 
Ph <50 <50 <50 <50 <50 
v 70 38 58 20 28 
Zn 80 70 i5 50 60 
Ag <0.1 <0.1 <0.1 <0.1 0.2 
Nb 30 30 30 30 30 
Au <5 <5 <5 <5 115 
As 5 10 13 4 6 
Br <1 2 2 2 2 
Co 15 15 19 6 11 
Cr 290 510 1030 230 i40 
Cs 1.3 1 1.3 1.3 <0.5 
Hf 2.6 1.9 8.3 1.9 2.8 
Hg <1 <1 <1 <1 <1 
Ir <5 <5 <5 <5 <5 
Mo <5 <5 <5 <5 <5 
Rb 53 21 33 28 21 
Sb 1.2 1.4 1.1 0.8 4 
Sc 10 6 9.6 3.-1 4.2 
Se <3 <3 <3 <3 <3 
Ta <1 <1 2 <1 <1 
Th 4.2 2.9 6.4 2.6 3.1 
u 1.9 1.3 1.9 1.-1 1.1 
w <3 <3 <3 <3 <3 
La 16 12.i 25.6 13 12.3 
Ce 40 33 62 31 28 
Nd 1i 16 23 12 H 
Sm 3.5 2.8 4.9 2.2 2.1 
Eu 0.9 0.6 1.2 0.5 0.5 
Tb O.i 0.5 0.9 <0.5 <0.5 
Yb 1.4 1.1 2.2 0.9 0.8 
Lu 0.'?1 0.15 0.36 0.16 0.13 

LaN / YbN i.53 i.61 i .68 9.52 10.13 
La/Yb 11.43 11.55 11.64 14.-14 15.38 
La/Sm 4.5i 4.54 5.22 5.91 5.86 
Hf/Yb 1.86 l.i3 3.7i :!. ! ~ 3.50 



Element 
Ba 
Sr 
Zr 
y 
Be 
Cu 
Ni 
Pb 
v 
Zn 
Ag 
Nb 
Au 
As 
Br 
Co 
C'.-
Cs 
Hf 
Hg 
Ir 
Mo 
Rb 
Sb 
Sc 
Se 
Ta 
Th 
u 
w 
La 
Ce 
Nd 
Sm 
Eu 
Tb 
Yb 
Lu 

LaN/Yb.N 
La/Yb 
La iSm 
H!/Yb 

:\lainland Formation Trace Elements (cont.) 

TRC 3 TRC 5 TRC 7# 
320 720 550 
224 135 144 
301 160 610 

26 16 26 
<1 
30 

100 
<50 

54 
85 

<0.1 
30 
6 
5 
2 

13 
350 
1.3 
6.8 
<1 

9 
<5 
45 

1.3 
9.1 
<3 
<1 

6 
1.6 
<3 

22.4 
5-t 
24 

4.2 
1.1 
0.7 

2 
0.32 

; .19 
l ~ .20 
5.33 
3.-10 

<1 
35 

140 
<50 

54 
90 

0.5 
30 
32 
4 
1 

15 
260 
1.3 
3.5 
<1 
<5 
<5 
58 
12 

8.3 
<3 

1 
5 

1.6 
<3 

16.2 
40 
19 

3.3 
0.9 
0.5 
1.4 

0.23 

i.63 
11.5i 
4.91 
2.50 

<1 
35 

120 
<50 

66 
120 
0.1 
30 
<5 

6 
2 

18 
630 
1.~ 

16 
<1 
<5 
<5 
65 

2.3 
10 
<3 
<1 
11 

2.9 
<3 

29.8 
iO 
30 

5.3 
l.l 
0.6 
2.8 

0.48 

7.02 
10.64 
5.62 
5.71 

TRC AI 
290 
124 
144 
16 
<1 
25 

!40 
<50 

52 
80 

<0.1 
30 
<5 

5 
2 

13 
430 
1.5 
3.4 
<1 
<5 
<5 

<20 
1.6 
7.6 
<3 
<1 

4 
1.7 
<3 

15.4 
3i 
16 

3.2 
O.i 
0.5 
1.2 
0.2 

8.46 
12.83 
4.81 
2.83 

TRC A5 
269 
146 
i8 
18 

<1 
20 

160 
<50 

42 
90 

<0.1 
30 

7 
10 

1 
21 

4i0 
<0.5 

1.9 
<I 
<5 
<5 
26 
1.8 
5.i 
<3 
<1 
2.9 
IA 
<3 

14.i 
41 
20 

3.7 
O.!J 
0.5 

1 
0.16 

9 .7 
14.70 
3.97 
1.90 
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Mainland Formation Trace Elements (cont.) 

Element TRC A7 TRC A10• TRC A13* TRC A16* TRC A20* 
Ba 326 395 408 430 359 
Sr 140 1 i9 144 144 119 
Zr 225 484 366 534 394 
y 18 26 26 26 18 
Be <1 <1 <1 <1 <1 
Cu 30 40 40 35 30 
Ni 140 130 110 130 150 
Pb <50 <50 <50 <50 <50 
v 52 56 58 58 64 
Zn 110 130 90 110 100 
Ag <0.1 0.2 0.6 <0.1 <0.1 
Nb 30 30 30 30 30 
Au <5 <5 5 <5 38 
As 6 6 5 6 5 
Br <1 <1 <1 <1 <1 
Co 17 23 19 20 22 
Cr 4i0 3i0 290 540 i50 
Cs 1.5 2.3 2.2 1.8 l.i 
HC 4.i 9.8 8.i 13 8.6 
Hg <1 <1 <1 <1 <1 
lr <5 <5 <5 <5 <5 
Mo <5 <5 <5 <5 <5 
Rb 46 69 64 65 43 
Sb 1.1 2.5 2.-1 1.6 1.5 
Sc i.3 9.4 10 9 8.i 
Se <3 <3 <3 <3 4 
Ta <1 <1 <1 <1 <1 
Th 5.6 i.8 8 9.3 i.6 
u 2.3 2.9 2.3 2.4 2.8 
w <3 <3 <3 <3 <3 
La 18.8 25.3 25 25.6 20.6 
Ce 4i 62 61 65 52 
Nd 22 2i 28 27 21 
Sm 3.i 5.2 5 4.9 3.9 
Eu 0.8 1.1 1.1 1.1 0.9 
Tb 0.5 0.9 0.8 0.8 0.6 
Yb 1.5 2.5 2.-1 2.5 1.8 
Lu 0.25 0.-1 0.-!3 0.39 0.3 

LaN /Yb~ 8.26 6.68 6.8i 6.i5 i.55 
La;Tb 12.53 10.12 10.42 10.24 11.44 
La/ Sm 5.08 ·L8i 5.00 5.22 5.28 
Hf/ Yb 3.13 3.92 3.63 5.20 4.78 
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Mainland Formation Trace Elements (cont.) 

Element TRC A25 TRC A28# LP B1x ML4# l\IL B9# 
Ba 23i 328 361 3021 325 
Sr 186 H9 73 190 137 
Zr 126 168 83 93 74 
y 18 18 14 29 16 
Be <1 <1 0 / & n1a n;a 
Cu 20 20 12 11 13 
Ni 120 110 112 45 151 
Ph <50 <50 9 12 10 
v 38 40 53 61 60 
Zn 140 85 38 35 38 
Ag <0.1 <0.1 n/ a n; a n;a 
Nb 30 30 5 7 4 
Au 7 7 n/a n{a n/a 
As 6 5 nta n /a n/a 
Br 1 <1 n; a nja n/a 
Co 17 14 42 17 33 
Cr 430 760 216 ;g 278 
Cs <0.5 1.1 n/a n1a n;a 
Hf 2.8 3.7 2.222 2.518 1.881 
Hg <1 <1 n/a n ; a Of a 
Ir <5 <5 n/a n; a n/ a 
Mo <5 <5 n/a n ta n/a 
Rb -20 31 37 45 35 
Sb 1.8 1 n/a n;a n/ a 
Sc 5.9 6.4 10 7 13 
Se <3 <3 n/a n i a n/ a 
Ta <1 <1 0.751 0.559 0.575 
Th 3.3 4 4 7 i 
u 1.5 1.3 <16 < 16 < 16 
w <3 < 3 n/ a n / a n/ a 
La 15.5 16.2 12.813 25.681 15.83 
Ce 39 43 26.169 51.375 30.974 
Nd 17 17 11 .544 23.165 13.996 
Sm 3.2 3.6 2.3055 4.264 2.633 
Eu 0.7 0.8 0.493 0.655 0.664 
Tb 0.6 0.5 0.314 0.629 0.360 
Yb 1.3 1.4 0.928 1.575 1.113 
Lu 0.19 0.18 0.134 0.236 0.136 
LaN/ YbN 7.87 7.62 9.11 10.76 9.38 
La /Yb 11.92 11.57 13.81 16.31 14.22 
La iSm 4.84 4.50 5.56 .')..!),') 6.01 
Hf/Yb 2.15 2.64 2.39 1.60 1.69 
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Mainland Formation Trace Elements (cont.) 

Element ML 8 ML 11* ML 15* ML 23 ML 26 
Ba 227 263 283 143 163 
Sr 124 147 168 108 117 
Zr 143 90 361 67 98 
y 18 16 30 16 12 
Be <1 <1 <1 <1 <1 
Cu 30 25 30 15 15 
Ni 110 170 110 40 90 
Ph <50 <50 <50 <50 <50 
v 10 38 58 20 28 
Zn 80 iO i5 50 60 
Ag <0.1 <0.1 <0.1 <0.1 0.2 
Nb 30 3Ll 30 30 30 
Au <5 <5 <5 <5 115 
As 5 10 13 4 6 
Br <1 2 2 2 2 
Co 15 15 19 6 11 
Cr 290 510 1030 230 i40 
Cs 1.3 1 1.3 1.3 <0.5 
Hf 2.6 1.9 8.3 1.9 2.8 
Hg <1 <1 <1 <1 <1 
Ir <5 <5 <5 <5 <5 
Mo <5 <5 <5 <5 <5 
Rb 53 21 33 28 21 
Sb 1.2 1.4 1.1 0.8 4 
Sc 10 6 9.6 3.4 4.2 
Se <3 <3 <3 <3 <3 
Ta <1 <1 2 <1 <1 
Th 4.2 2.9 6.4 2.6 3.1 
u 1.9 1.3 1.9 1.4 1.1 
w <3 <3 <3 <3 <3 
La 16 12.i 25.6 13 12.3 
Ce 40 33 62 31 28 
Nd 1i 16 23 12 14 
Sm 3.5 2.8 4.9 2.2 2.1 
Eu 0.9 0.6 1.2 0.5 0.5 
Tb O.i 0.5 0.9 <0.5 <0.5 
Yb 1.4 1.1 2.2 0.9 0.8 
Lu 0.21 0.15 0.36 0.16 0.13 
LaN / YbN i.53 i .61 i .68 9.52 10.13 
La1Yb ll..t3 11.55 1 1.6-t 14.44 1:5.38 
La1Sm 4.5i 4.54 5.22 5.91 5.86 
Hf/ Yb 1.86 l.iJ J.ii 2.11 3.50 



. . . ---- . -

512 

:\'lainland Formation Trace Elements (cont.) 

Element TRC3 TRCS TRC i# TRC AI TRC AS 
Ba 320 720 550 290 269 
Sr 224 135 144 124 146 
Zr 301 160 610 144 i8 
y 26 16 26 16 18 
Be <1 <1 <1 <1 <1 
Cu 30 35 35 25 20 
Ni 100 140 120 140 160 
Ph <50 <50 <50 <50 <50 
v 54 54 66 52 42 
Zn 85 90 120 80 90 
Ag <0.1 0.5 0.1 <0.1 <0.1 
Nb 30 30 30 30 30 
Au 6 32 <5 <5 i 

As 5 4 6 5 10 
Br 2 1 2 2 1 

Co 13 15 18 13 21 
Cr 350 260 630 430 -liO 
Cs 1.3 1.3 1.9 1.5 <0.5 
Hf 6.8 3.5 16 3.4 1.9 
Hg <1 <1 <1 <1 < I 
Ir 9 <5 <5 <5 <5 
Mo <5 <5 <5 <5 <5 
Rb 45 58 65 <:!0 26 
Sb 1.3 12 2.3 l.6 1.8 
Sc 9.1 8.3 10 i.6 S.i 
Se <3 <3 <3 <3 <3 
Ta <1 1 <1 <1 <1 
Th 6 5 11 4 2.9 
u 1.6 1.6 2.9 l.i 1.4 
w <3 <3 <3 <3 <3 
La 22.4 16.2 29.8 15.4 14.7 
Ce 54 40 70 37 41 
Nd 24 19 30 16 20 
Sm 4.2 3.3 5.3 3.2 3.7 
Eu 1.1 0.9 1.1 O.i 0.9 
Tb O.i 0.5 0.6 0.5 0.5 
Yb 2 1.4 2.0 1.2 I 
Lu 0.32 0.23 0.48 0.2 0.16 

LaN/ YbN i .39 i.63 i .02 8A6 9.7 
La/Yb 11.20 11 .5i 10.64 12.83 14.70 
La/Sm 5.33 4.91 5.62 4.81 3.97 
Hf( Yb 3..!0 2.50 S.il 2.83 1.90 
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Mainland Formation Trace Elements (cont.) 

Element TRC A1 TRC A10*' TRC A13* TRC A16* TRC A20* 
Ba 326 395 408 430 359 
Sr 140 179 144 144 119 
Zr 22.5 484 366 534 394 
y 18 26 26 26 18 
Be <1 <1 <1 <1 <1 
Cu 30 40 40 35 30 
Ni 140 130 110 130 150 
Pb <50 <50 <50 <50 <50 
v 52 56 58 58 64 
Zn llO 130 90 110 100 
Ag <0.1 0.2 0.6 <0.1 <0.1 
Nb 30 30 30 30 30 
Au <5 <5 5 <5 38 
As 6 6 5 6 5 
Br <1 <1 <1 <1 <1 
Co 17 23 19 20 22 
Cr 470 3i0 290 540 750 
Cs 1.5 2.3 2.2 1.8 1.7 
Hf 4.7 9.8 8.7 13 8.6 
Hg <1 <1 <1 <1 <1 
Ir <5 <5 <5 <5 <5 
Mo <5 <5 <5 <5 <5 
Rb 46 69 64 65 43 
Sb 1.1 2.5 2.4 1.6 1.5 
Sc 7.3 9.4 10 9 8.7 
Se <3 <3 <3 <3 4 
Ta <1 <1 <1 <1 <1 
Th 5.6 7.8 8 9.3 7.6 
u 2.3 2.9 2.3 2.4 2.8 
w <3 <3 <3 <3 <3 
La 18.8 25.3 25 25.6 20.6 
Ce 47 62 61 65 52 
Nd 22 27 28 27 21 
Sm 3.7 5.2 5 4.9 3.9 
Eu 0.8 1.1 1.1 1.1 0.9 
Tb 0.5 0.9 0.8 0.8 0.6 
Yb 1.5 2.5 2.4 2.5 1.8 
Lu 0.25 0.4 0.43 0.39 0.3 
LaN/ YbN 8.26 6.68 6.87 6.75 7.55 
La/Yb 12.53 10.12 10.42 10.24 11.44 
La/Sm 5.08 4.87 5.00 5.22 5.28 
Hf/Yb 3.13 3.92 3.63 5.20 4.78 



514 

Mainland Formation Trace Elements (cont.) 

Element TRC A25 TRC A28# LP B1x ML4# 1\IL B9# 
Ba 23i 328 361 3021 325 
Sr 186 149 jJ 190 13i 
Zr 126 168 83 93 74 
y 18 18 14 29 16 
Be <1 <1 n/a n1a nt a 
Cu 20 20 12 II 13 
Ni 120 110 112 45 I 51 
Pb <50 <50 9 I2 10 
v 38 40 53 61 60 
Zn 140 85 38 35 38 
Ag <0.1 <0.1 n/a n; a n/ a 
Nb 30 30 5 - .. ' 
Au i 7 n; a n/ a n/ a 
As 6 5 n/a n/ a n;a 
Br 1 <1 n; a n; a n/ a 
Co 1i 14 42 li 33 
Cr 430 i60 216 ;g 278 
Cs <0.5 1.1 n1a nta n; a 
Hf 2.8 3.7 2.:!:!2 2.518 1.881 
Hg <1 <1 n/ a nja n; a 
Ir <5 <5 n/ a I I nta nt a 
Mo <5 <5 n/a n; a n/a 
Rb -20 31 3i 45 35 
Sb 1.8 I n1a n/a n/ a 
Sc 5.9 6.4 10 7 13 
Se <3 <3 n/a n/ a n/ a 
Ta <1 <I 0.751 0.559 0.575 
Th 3.3 4 4 i 7 
u 1.5 1.3 <16 < 16 <16 
w <3 <3 n/a n/ a n/a 
La 15.5 16.2 12.813 25.68I I5.83 
Ce 39 43 26.169 51.3i5 30.974 
Nd 1i 1i 1I.5.;4 23.165 I3.996 
Sm 3.2 3.6 2.3055 4.26-t 2.633 
Eu O.i 0.8 0.493 0.65.') 0.664 
Tb 0.6 0.5 0.314 0.629 0.36f) 
Yb 1.3 1.4 0.928 l..')i5 1.113 
Lu 0.19 0.18 O.IJ.t 0.236 O.I36 

LaN/YbN 7.8i i.62 9.11 10.16 !1.38 
La/ Yb 11.92 11.5i 13.81 I6.31 I4.22 
La/ Sm 4.84 4.50 5.56 .1.5.') 6.01 
Hf/ Yb 2.15 2.64 2.39 1.60 1.69 
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Lower Head Formation Major Elements 

Element BBN 1 EI 2 EI 4 EI 6 
Grainsize f f/vcrs med med 
Structure rip lam/ gr mass mass 

Si02 73.19 81.13 76.40 76.75 
Ti02 0.76 0.46 0.47 0.56 
Al,03 10.56 7.59 7.53 9.73 
Fe,03 5.76 3.88 3.83 4.25 
MnO 0.19 0.11 0.10 0.05 
MgO 3.51 2.91 2.39 3.64 
CaO 2.42 1.16 6.34 1.29 
Na20 2.33 1.11 1.99 2.14 
K20 1.18 1.62 0.94 1.52 
P,Os 0.08 0 .02 0.02 0.06 

LOI ~.40 3.43 6.43 3.11 
TOTAL 98.95 99.50 98.32 97.62 

a·-alk 16.57 17.16 10.13 15.60 
Nig Ti 2.95 2.51 1.87 2.45 
Nig Fm 27.82 32.36 19.37 31.77 
Nig K 0.25 0.49 0.24 0.32 
Nig Mg 0.5-! 0.59 0.55 0.63 
Nig Si 3ii.-!4 591 .08 405.3-1 445.38 

Fe,03+Mg0 9.27 6.80 6.22 7.89 
Ah03/ Si02 0.14 0.09 0.10 0.13 
K20/Na2 0 0.51 1.46 0.47 O.il 
Ah03/(Ca0..L.Na, O) 2.22 3.3-! 0.90 2.84 
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Lower Head Formation Major Elements (cont.} 

Element 11AP B1 11AP B3 MAP BlO MAP B7 
Grainsize med/crs f med med 
Structure mass mass x-bed mass 
Si02 79.89 70.85 i ·l. i3 76.95 
TiOz 0.49 0.85 1.03 0.63 
Ab03 i.67 11.43 i.32 8.43 
Fe203 3.99 5.5i 5.04 4.67 
MnO 0.14 0.54 0.21 0.06 
MgO 3.43 4.32 2.53 3.36 
CaO 1.92 2.09 6.62 2.64 

NazO 1.84 l.ii 1.68 1.53 

KzO 0.61 2.46 0.83 1.67 

PzOs 0.02 0.13 0.02 0.08 

LOI 3.48 4.87 6.09 4.35 
TOTAL 97.82 98.28 97.68 99.22 

al-alk 15.11 16.26 11.11 14.14 
Nig Ti 2.37 2.99 3.9i ') --.... ' 
Nig Fm 33.i9 32.4i 20.34 29.54 
Nig K 0.18 0.48 0.25 0.42 
Nig Mg 0.62 0.58 0.49 0.59 
Nig Si 515.92 333.43 385.1 i 448.64 

Fez03+1[g0 7.42 9.89 7.57 8.03 
Al20 3/ Si0z 0.10 0.16 0.10 0.11 

KzO/ NazO 0.33 1.39 0.49 1.09 
Alz03/ (Ca0+Naz0} 2.04 2.97 0.88 2.03 
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Lower Head Formation Major Elements (cont.) 

Element LHN B4 LHN B6 LHS B2 LHS B5 

Grainsize crs crs f med/crs 

Structure mass mass lam mass 

SiOz 65.37 67.65 53.89 69.84 

Ti02 0.57 0.63 0.73 0.66 

Ah03 9.14 9.39 11.62 10.30 

Fe203 4.49 3.87 6.35 5.33 

MnO 0.18 0.16 0.13 0.07 

MgO 3.23 2.75 4.94 4.43 

CaO 13.31 11.54 18.41 5.44 

Na20 1.84 1.84 1.49 1. 78 

K20 1.84 2.15 2.41 2.11 

P20s 0.02 0.02 0.02 0.04 

LOI 11.18 9.72 15.45 6.47 

TOTAL 99.06 99.7i 99.15 98.27 

al-alk 8.29 8.87 9.79 12.71 

Nig Ti 1.46 1.78 1.39 2.11 

Nig Fm 16.97 15.83 18.97 28.20 

Nig K 0.40 0.43 0.52 0.44 

Nig Mg 0.58 0.5i 0.60 0.62 

Nig Si 223.33 252.97 136.67 295.54 

Fe203+MgO i.i2 6.62 11.30 9.i6 

Ah03/ Si02 0.14 0.14 0.22 0.15 

K,O/Na,O 1.00 1.1 i 1.62 1.19 

Al203/(CaO+Na20) 0.60 0.70 0.58 1.43 
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Lower Head Formation Major Elements (cont.) 

Element LHS B8 LHS B10 MPN 8 MPS 11 
Grainsize crs med/crs crs vcr" 
Structure mass mass mass mass 
SiOz 69.71 72.12 66.21 78.76 
Ti02 0.55 0.82 0.52 0.32 
Ah03 9.20 10.27 8.06 7.25 
Fe203 4.46 5.85 3.38 3.48 
MoO 0.10 0.04 0.37 0.07 
MgO 3.68 4.80 2.52 2.92 
CaO 8.42 1.84 15.43 4.02 
NazO 1.93 2.15 1.61 1.49 
K20 1.93 2.09 1.88 1.67 

P20s 0.02 0.02 0.02 0.02 

LOI 8.05 3.73 12.41 4.98 
TOTAL 99.12 97.65 99.45 100.48 

al-alk 9.35 12.64 6.77 10.50 
Nig Ti 1.66 2.96 1.32 1.45 
Nig Fm 22.48 34.54 13.87 26.26 
Nig K 0.40 0.39 0.44 0.43 
Nig l\Ig 0.61 0.62 0.57 0.62 
Nig Si 281.12 346.13 27.5.31 468.70 

Fe203..;..MgO 8.15 10.65 5.91 6.40 

Al203/ Si07 0.13 0.14 0.12 0.09 

K20 / Na20 1.00 0.97 1.1 7 1.13 
Ah03/(Ca0+Naz0) 0.89 2.57 0.47 1.32 
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Lower Head Formation Major Elements (cont.) 

Element ~IPS 13 ~·IPS 23 PORT 1 PORT 
Gra.insize crs med f f 
Structure mass mass rip/ lam lam 
Si02 ii.26 i7.20 70.38 78.42 
TiO:z 0.49 0.49 0.55 0.31 
AI,03 7.98 7.84 8.69 5.82 

Fe203 4.13 3.97 3.34 2.04 
MnO 0.05 0.05 0.11 0.09 
MgO 4.13 3.52 2.61 1.57 
CaO 2.74 3.78 10.31 8.85 
NazO 1.64 1.55 1.96 1.64 
K20 1.56 1.56 2.03 1.20 
P20s 0.02 0.02 0.02 0.07 

LOI 4.07 4.75 9.12 7.43 
TOTAL 99.14 99.37 100.69 99.14 

al-alk 11.79 11. 7'9 7.80 5.86 
Nig Ti 2.07 2.04 1.67 1.24 
Nig Fm 3-!.50 29.46 16.18 13.09 
Nig K 0.38 0.40 0.40 0.33 
Nig ~lg 0.66 0.63 0.60 0.59 
Nig Si 429. 7'7 -!29. 70 286.10 425.13 

Fe203+!\lg0 8.26 7A9 5.95 3.61 
Alz03/Si0z 0.10 0.10 0.12 0.07 
Kz0 / Na2 0 0.95 1.01 1.03 0.73 
AhOJ / (CaO+NazO) 1.82 1.4i 0.7'1 0.56 
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Lower Head Formation Major Elements (cont .) 

Element PORT B2 WBN 6 WBN AJ WBN Al5 

Grainsize crs ers t vcrs ers t vcrs crs 

Structure mass mass mass mass 

Si02 75.31 i6.63 75.51 79.71 

Ti02 0.34 0.49 0.49 0.37 

AI, OJ 6.i8 8.83 9.09 i .02 

Fe20J 2..16 -!.Oi -t50 3..t8 

MnO 0.11 O.Oi O.Oi 0.05 

MgO 1.90 3.55 3.3!l 2.85 

CaO 9.72 2.85 3.42 3.79 

Na,O 1.84 1.66 1.63 1.3i 

K2 0 1.52 1.83 1.86 1.32 

P,Os 0.02 0.02 0.02 0.02 

LOI 8.53 4.66 ·Li9 4.65 

TOTAL 99.18 99.82 1C0.1 i 100.02 

al-alk 5.90 13.54 13.89 12.30 

Nig Ti 1.22 2.07 1.99 l.i3 

Nig Fm 13.90 29.90 2i.53 26.8i 

Nig K 0.35 0.42 0.43 0.39 

Nig .Mg 0.59 0.63 0.59 0.61 

Nig Si 358..10 -!27. i8 405.81 498. iS 

Fe203~MgO 4.35 7.62 7.90 6.33 

Ai:?03/ Si02 0.09 0.12 0.12 0.09 

K20/ Na20 0.83 1.10 1.1-l 0.96 

Ab03/(CaO+Na20) 0.59 1.96 1.80 1.36 
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Lower Head Formation Major Elements (cont.) 

Element WBS 9 WBS B1 WBS B2 LHS B12 

Grainsize med/vcrs med/ crs crs j vcrs vcrs 

Structure mass mass mass mass 

SiO, 78.12 72.66 75.76 65.34 

Ti02 O..tl 0.48 0.53 0.51 

Al20 3 7.57 8.01 9.56 8.27 

Fe, OJ 2.92 3.52 3.84 3.37 

.:\I nO 0.08 0.18 0.13 0.09 

MgO 2.79 2.-13 4.06 2.27 

CaO 4.92 9.38 2.52 16.48 

Na20 1.62 1.64 1.64 !.82 

K 10 1.5-t 1.62 1.94 1.79 

P20s 0.02 0.09 0.02 0.06 

LOI 5.19 8.31 4.38 12.54 

TOTAL 97.51 100.59 99.08 99.17 

al-alk 10.82 9.32 1-1.94 6.50 

Nig Ti 1. 76 1.59 2.11 1.27 

Nig Fm 24.01 16.78 32.81 11..!9 

Nig K 0.38 0.40 0.44 0.39 
Nig Mg 0.65 0.56 0.67 0.56 

Nig Si -!43 .56 323.09 403.62 216.52 

Ft-203~ 1\IgO - -., 
;). j- 5.95 7.90 5.64 

Ah03 t Si02 0.10 0.11 0.13 0.13 

K:10 1Na20 0.95 0.99 1.18 0.98 

AhOJ/(CaO + Na?O) 1.16 0.73 2.30 0.45 
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Lower Head Formation :Major Elements (cont.} 

Element BP 3 BP 7 BP 10 RPA 2 

Grainsiz,.: crs crs ; vcrs med / vcrs f 

Structure mass mass mass mass 

Si02 72.24 75.15 62.06 71.21 

TiOz 0.71 0.59 0.61 0.63 

:\1,03 10.1-l 9.03 8.62 11.22 

Fe203 5.20 4.63 4.02 5.38 

~I nO 0.08 0.06 0.74 0.08 

:-.I gO 3.95 4.36 3.33 4.21 

CaO 3.95 2.82 17.39 3.14 

;.;azO 1.85 1.61 2.03 l.i5 

K20 1.82 1. i1 1.18 2.31 

P20s 0.06 0.02 0.02 0.06 

LOI 5.60 4.49 ll.41 5.01 

TOTAL 97.96 98.01 99.25 100.90 

al-alk 1-*.32 13.82 i.05 15.9i 

~ig Ti ') -- 2.29 1.37 2.19 -. ;)\) 

Nig Fm 28.26 33.97 16.i0 29.jl 

Nig K 0.39 0.41 0.28 0.47 

~ig :O.Ig 0.60 0.65 0.58 0.60 

;.;ig Si 342.78 389.33 185.06 330.84 

Fe20 3- l\lg0 9.15 8.99 i.35 9.59 

:\120-3/ SiOz 0.14 0.12 0.14 0.16 

K~~ /NazO 0.98 1.06 0.58 1.32 

:\1,03/(CaO~NazO) 1.75 2.04 0.44 2.29 
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Lower Head Formation ~lajor Elements (cont.) 

Element RPA 11 RPA 14 

Grainsize med /crs erst vcrs 

Structure mass mass 

SiOz i8.10 72.10 

TiOz 0.46 0.51 

Ab03 8.08 ] '].37 

Fe203 4..!0 5.08 

MnO 0.1 -! 0.10 

MgO 4.00 3.48 

CaO 2.23 4.51 

Na20 1.16 1.61 

K20 1.42 2 .16 

PzOs 0.02 O.Oi 

LOI 4.18 6.53 

TOTAL 100.18 99.6i 

al-alk 16.19 15.06 

Nig Ti 2.04 1.83 

Nig Fm 35.94 25.03 

Nig K 0..!5 OAi 
Nig ~lg 0.63 0 .5 i 

Nig Si 461.9i 342.26 

FzOJ..;..~fgO 8..!0 8.5i 

AbOJt Si02 0.10 O.H 

Kz0 / Na20 1.:::3 1.34 

AlzOJ / (CaO + NazO) 2.39 1.69 
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Lower Head Formation Trace Elements 

Element BBN 1 EI 2 EI 4* E! 6 MAP 81 * 

Ba 558 ii6 1116 262 223 

Sr 158 110 246 85 97 

Zr 385 189 231 226 261 
y 20 14 16 1-1 14 

B• <1 <1 <1 <1 <1 

Cu -15 90 15 25 25 

Ni 120 40 80 120 120 

Ph 50 50 50 50 50 

v 56 64 -14 52 -18 

Zn 95 90 iO 80 ;o 
Ag 0.1 1 0.9 0.4 0.1 

~b 30 30 30 30 30 

Au 8 37 19 10 < 5 

As r, <2 5 5 j 

Br <1 <1 1 <1 

Co 15 19 9 13 13 

Cr 320 220 213 21C 383 

Cs <0.5 2.i <0.5 <0.5 <0.5 

Hf 8.6 4.2 5.i 5.9 6.6 

Hg <1 <1 < 1 <1 <1 

Ir <5 <5 <5 <5 < 5 

Mo <5 <5 <5 <5 <5 

Rb 35 -15 < ~0 59 23 

Sb 3.1 13 8.1 .t,.t -l .i 

Sc 8 6.5 6.2 i...t i.1 

Se <3 <3 <3 <3 < 3 

Ta <1 <1 < 1 1 < 1 

Th 7.8 5.5 5.3 5.8 6.i 

u l.i 1.8 1..) 2.1 1.5 

w <3 <3 <3 <3 <3 

La 22.3 li.1 15.i Ii.!J 19.4 

Ce 53 39 J i 40 4.'5 

Nd 22 12 16 15 21 

Sm 4.3 2.8 2.9 3 3.2 

Eu 0.9 0.6 O.i O.i 0.8 

Tb 0.5 0.5 0.5 f).5 0 .. 5 

Yb 2.1 1.2 1.3 1..1 l.i 

Lu 0.29 0.23 0.21 0.21 0.26 

La:'-1 IYbN i .OO 9.40 i.!Ji 8. -l:l 7.53 
LatYb 10.62 14.25 12.08 12.i9 11.-ll 
La /Sm 5.19 6.12 5.-H .) .97 6.0fi 

Hf.'Yb 4.10 3.50 4.38 ·L21 3.88 
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Lower Head Formation Trace Elements (cont.) 

SAMPLE ~AP B3• :VlAP BIO MAP B7x LHN B4 LHN 86 

Ba 405 240 432 655 390 

Sr 136 235 148 113 108 

Zr 322 1293 297 191 267 
y 22 34 16 16 20 

Be <1 <1 n/ a <1 <1 

Cu 40 15 16 20 25 

Ni iO 100 i.21 120 110 

Pb 50 50 14 50 50 

v 88 64 7i 54 52 

Zn 85 i5 47 70 iO 

Ag <0.1 <0.1 n/a 0.1 <0.1 

.:'Jb 30 30 9 30 30 

Au <5 <5 n/a 6 6 

As <2 6 n/a 2 6 

Br <1 <1 n/a I 1 

Co 37 15 -!3 14 14 

Cr 273 1100 406 310 320 

Cs 4.1 <0.5 n/a 1.5 2.8 

Hf 8.3 28 eA56 4.7 6.2 

Hg <1 <1 nta <1 <1 

Ir <5 <5 nta <5 <5 

Mo <5 <5 n/a <5 <5 

Rb llO <20 43 66 58 

Sb 1.8 1.6 n/a 1.5 1.1 

Sc 10 8.1 5 9.5 9.3 

Se <3 9 n/a <3 <3 

Ta <1 <1 1.286 <1 <1 

Th 8.5 21 10 4.8 6.1 

u 2.3 3.5 <1 1.4 1.6 

w <3 <3 nta <3 <3 

La 23.1 45. i 21.925 17.5 20.1 

Ce 55 103 45.956 41 49 

Nd 22 40 19.4 15 21 

Sm 4 6.5 3.5ii 2.9 3.6 

Eu 0.9 1.3 O.i36 0.7 0.9 

Tb 0.6 O.i 0...1·!4 0.5 0.6 

Yb 2 3.1 l.i03 lA l.i 

Lu 0.31 0 !':') 0.256 0.21 0.26 ·"-
La.N / YbN i.62 9 . i:! 8..!9 8.24 7.80 

La . Yb 11.55 14.; -t 12.8i 12.50 11.82 

La.Sm 5.i8 7.03 3.06 6.03 5.58 

Hf Yb U5 9.U:J 4.96 3.36 3.64 
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Lower Head Formation Trace Elements (cont.) 

SA.MPLE 
Ba 
Sr 
Zr 
y 
Be 
Cu 
~i 

Pb 
v 
Zn 
Ag 
Nb 
Au 
As 
Br 
Co 
Cr 
Cs 
Hf 
Hg 
lr 
:Vlo 
Rb 
Sb 
Sc 
Se 
Ta 
Th 
u 
w 
La 
Ce 
Nd 
Sm 
Eu 
Tb 
Yb 
Lu 

LaN / YbN 
La,Yh 
La,Sm 
Hf.Yb 

LHS B2 LHS 85 LHS B8 
246 563 555 
204 102 101 
1 i4 209 152 
26 16 14 
<1 
35 

110 
50 
64 
80 

<0.1 
30 
<5 

9 
<1 
20 

160 
2.3 
4.2 
<1 
<5 
<5 
48 

0.9 
10 
<3 
<1 
6.4 

2 
<3 

26.3 
63 
26 

4.9 
1.1 

1 
2.1 

0.34 

8.26 
12.52 
5.36 
2.00 

<1 <1 
25 25 

140 120 
50 50 
64 56 
80 70 

<0.1 0.1 
30 30 
<5 10 

4 2 
<1 <1 
18 15 

330 210 
2.2 <0.5 
5.9 3.8 
<1 <1 
<5 <5 
<5 <5 
t t .50 

O.i 0.7 
11 9 

<3 <3 
<1 <1 
6.3 4.7 
1.6 1.2 
<3 <3 

18.3 15.7 
45 37 
18 l 7 

3.3 2.0 
0.8 0.7 
0.6 0.6 
1.5 1.-l 

0.26 0.23 

8.04 7.39 
12.20 11.21 

.').5.1 !U I 
3 .!J3 2 .71 

LHS 810 
804 
100 
443 

18 

MPN 8 
322 
122 
226 

18 
<1 <1 
35 25 

150 90 
50 50 
82 44 
75 60 

<0.1 0.1 
30 30 
6 <5 
2 3 

<1 1 
19 11 

650 270 
<0.5 l 

9..! 5.2 
<1 <1 
<5 <5 
<5 <5 
65 63 

0.7 2.5 
12 7.3 

<3 <3 
< 1 <1 
7.3 5.5 
1.7 1.9 
<3 <3 

20.5 17..1 
52 42 
21 1-t 

3.6 3.1 
0 .!) 1).8 
o.:; <~J.;; 

1.9 l.f.i 
0.32 0.25 

7.12 7.18 
10.7') IO.Ri 

.').6!} .5.61 
4.!.15 3.25 

526 
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Lower Head Formation Trace Elements (cont.) 

SA~fPLE MPS 11 MPS 13 ~IPS 23 PORT 1 PORT2 
Ba 475 351 353 479 263 

Sr i5 i3 79 173 164 
Zr 105 205 194 296 165 
y 12 12 14 18 10 
Be <1 <1 <1 <1 <1 
Cu 20 30 25 20 15 
Ni 100 130 120 60 50 
Pb 50 50 50 50 50 
v 42 56 56 34 24 

Zn 75 i5 95 95 70 
Ag 0.1 <0.1 0.3 0.2 0.3 
Nb 30 30 30 30 30 
Au <5 8 1~ 8 9 
As 4 2 3 <2 <2 
Br 2 2 2 <1 <1 
Co 11 15 14 9 7 
Cr 170 480 570 380 330 
Cs 1 2 <0.5 1.5 <0.5 
Hf 3.1 5.9 6.1 i .J 3.6 
Hg <1 <1 <1 <1 <1 
Ir <5 <5 <5 <5 <5 
~lo <5 <5 <5 <5 <5 
Rb 36 42 53 5i 28 

Sb 2.4 1.1 4.1 4.3 6.4 
Sc 6.5 8.6 8.7 5.i 3.7 
Se <3 <3 <3 <3 <3 
Ta <1 <1 <1 <1 <1 
Th 3.5 5.6 5..1 5.8 3.5 
u 1.1 1.7 l.i 1.6 0.6 
\V <3 <3 <3 <3 <3 
La 12.1 15.9 15. i 16.6 10.7 
Ce 30 38 38 43 26 
Nd 10 16 19 19 13 
Sm 2.3 2.8 3 3 l.8 

Eu 0.6 0.7 O.i 0.8 0.5 
Tb 0.5 0.5 O.i 0.6 0.5 
Yb 1.1 1.3 1.5 1.5 0.8 
Lu 0.15 0.23 0.25 0.27 0.15 

LaN; YbN 7.25 8.07 6.90 6.84 8.84 
La, Yb 11.00 12.:.!3 l O.·l 7 l0.3i 13.38 
La; Sm 5.26 5.68 5.23 5.53 5.94 
Hf. Yh 2.81 -!.5-t 4.Ui 4.56 4.50 
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Lower Head Formation Trace Elements (co.tt .) 

SA:.OIPLE PORT B2 WBN 6 WBN A3 WBN A15• WBS 9 

Ba 369 449 319 239 666 
Sr 146 91 99 85 103 
Zr 156 190 199 161 191 
y 10 12 1-t 12 14 
Be <1 <1 <1 <1 <1 
Cu 20 25 25 20 ,) 

Ni JG 120 110 90 80 
Pb 5C 50 50 50 .')0 

v 28 50 58 44 H 

Zn i5 iO 120 60 60 

Ag <0.1 0.2 < 0.1 <0.1 <0.1 
Nb 30 30 30 30 30 
Au <5 <5 5 <5 <5 
As <2 3 3 <2 •) <.. -
Br 1 <1 <1 < 1 < 1 
Co i 13 13 11 9 

Cr 240 2i0 300 263 290 

Cs <0.5 1.5 1.2 <0.5 1.5 

Hf 3.4 -!.5 4.6 3.6 -l.6 
Hg <1 <1 <1 <1 < I 

lr <5 <5 <5 <5 <5 
Mo <5 <5 <.5 <5 <.: .5 

Rb 48 62 59 31 39 

Sb 0.9 O.i 0.6 1.3 <0.:! 

Sc 4.5 8.3 9.1 6.9 -~ '·-
Se <3 <3 <.. 3 <3 <3 

Ta <1 <1 < 1 < 1 <', 1 

Th 3.-t 5.1 5.1 3.6 4.3 

u 1.2 1.2 1.3 1.1 1.2 

w <3 <3 <3 <:J < J 

La 11.-t 14 14.6 11.6 12.!.1 

Ce 2i 3!) 35 28 31 
Nd 11 15 15 11 14 
Sm 2 2.6 2 .6 2.2 2.l 

Eu 0.5 0.6 0.6 O.fi 0 .7 

Tb 0.5 0.5 < O . .'i ..-: 0.5 < 0.5 

Yb 0.9 1.3 1.3 1.1 

Lu 0.15 0.10 0.:.! 0.15 0.18 

LaN / YbN 8.35 i .10 i .·ll ; .li6 7.i3 

La1Yb 12.6i 10. 'jj 11.:!3 11.60 11. i :J 
La1Sm .1. ;n 5.38 .") .62 r: ., ..... 

·>·- ' 5.38 

Hf/Yb :J. iR 3..l6 3 .5 l :u;o 4.18 
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Lower Head Formation Trace Elements (cont.) 

SAMPLE WBS B1 WBS B2• LHS Bl 2x BP 3 BP 7 
Ba 281 350 289 514 318 
Sr 133 94 120 109 88 
Zr 254 205 244 354 26i 
y 18 14 15 22 18 
Be <1 <1 nta <1 <1 
Cu 20 30 12 25 25 
Ni 60 100 97 120 120 
Pb 50 50 14 50 50 
v 48 54 81 60 60 

Zn 55 75 34 80 iO 

Ag <0.1 <0.1 nta <0.1 <0.1 
Nb 30 30 9 30 30 
Au <5 <5 nta <5 10 
As 2 4 n; a 3 3 
Br <1 <1 n, a 1 <1 
Co 11 25 33 13 15 
Cr 340 243 -Ul 400 410 
Cs 1.2 2.1 n. a 1.8 <0.5 
Hf 5.9 4.1 7.611 8.5 6.7 

Hg <1 < 1 nt a <1 <1 
Ir <5 <5 n: a <5 <5 
Mo <5 <5 n; a <5 <5 
Rb 50 iO 44 48 50 
Sb 0.6 0.8 nt a 1.3 1.1 
Sc 8.1 9.1 16 9.5 8.6 
Se <3 <3 n: a <3 <3 
Ta <1 <1 0.865 <1 <1 
Th 4.6 4.8 7 7.9 7.2 
u 1.5 1.4 <4 1.8 1.6 
w <3 <3 n,a <3 <3 
La 16.3 15.3 19.798 22.6 19.4 
Ce 41 3i 39.2:!9 53 46 
Nd 18 16 16.361 22 18 
Sm 3.1 2.7 3.107 3.9 3.4 

Eu 0.8 0.6 0.5i3 0.9 0.7 
Tb <0.5 <0.5 0.398 0.6 0.6 
Yb 1.6 1.3 1.498 1.9 1.4 
Lu 0.23 0.2:! 0.231 0.29 0.28 

LaN /YbN 6.72 ',,' 8. 7:! i .85 9.13 
La. Yb 10.19 11 .77 13.:!1 11.89 13.86 
La , Sm .'} .26 .i .6i 3.19 5.79 5.71 
HLYb 3.67 3.15 5.08 4.4i 4.79 
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Lower Head Formation Trace Elements (cont.) 

SA~IPLE BP 10 RPA 2* RPA 11* RPA 1-lx 
Ba 615 446 316 383 
Sr 109 115 82 123 
Zr 313 198 186 141 
y 24 20 16 20 
Be <1 <1 <1 nt a 
Cu 20 25 25 16 
Ni iO 160 150 130 
Pb 50 50 50 13 
v 46 56 46 6i 
Zn 80 90 85 54 

Ag <0.1 <0.1 <0.1 n/ a 
~b 30 30 30 10 
Au <5 <5 <5 n/ a 
As 3 3 5 nta 
Br <1 2 <1 n/ a 
Co 11 13 12 26 
Cr 320 153 383 156 
Cs <0.5 1.2 <0.5 n/ a 
Hf 6.6 4.5 4 3..t18 
Hg < 1 <1 <1 nt a 
Ir <5 <5 10 n/ a 
Mo <5 <5 <5 n/ a 
Rb 2 84 42 .59 
Sb 2 1 0.6 n; a 
Sc 8.3 8.i 6.4 15 
Se <3 <3 <3 n; a 
Ta <1 <1 <1 0.924 
Th 6.2 6.1 5.5 6 
u 1.6 2.3 1.9 1 
w <3 <3 <3 n/a 
La 23.8 20 16.6 20.267 
Ce 53 48 40 41.609 
Nd 19 22 15 18.661 
Sm 3.8 3.8 3.1 3.i33 

Eu 0.9 0.9 0.6 0.80.'> 
Tb 0.5 O.i 0.6 0.52·1 
Yb 1.8 l. i 1.4 l.H!J 
Lu 0.28 0 .,~ 

·-' 0.19 0.21 i 

LaN iYb~ 8.i2 i. if'i i .8l !J.23 

Lat Yb 13.22 11. if'i 11.86 l3.!J!J 
LatSm 6.26 5.26 .5.35 2.7 1 

Hf/ Yb 3.67 2.6.1 2.86 2.Ja 
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Cambrian Sandstones Hajor Elements 

SA11PLE BHD 2 W1 83 WF-76-85 BHD 8 
grainsize crs crs crs crs 
struct:Jre mass mass mass mass 

Si02 81.32 78o6 4 87.35 76o30 
Ti02 Oo52 Oo59 0. 42 0.66 
Al203 8.19 10o87 5. 7 6 11.89 
Fe20J 2o68 3 o63 1. 99 4o94 
HnO 0.07 Oo05 Oo 1 l Oo04 
HgO Oo57 1. 03 0. 4 3 1. 06 
cao 3 0 03 Oo90 1. 58 Oo56 
Na20 2 oll 1. 95 1. 7 5 2. 18 
K20 1. 49 2o31 Oo 59 2 o23 
P205 0 0 02 Oo02 0.02 Oo12 

LOI 3o3 4 2o33 2 o36 2o61 

Analytica l Total 99 o69 100. 2 3 100.50 99o33 

al-alk 14 0 09 22o26 15 o24 2 3o71 
nigmg 1. 00 1. 00 1. 00 Oo99 
nigfm 14 o78 21.55 1 7 .13 23o81 
nig k 0.32 0. 4 4 Oo18 Oo40 
nigti Oo03 0.03 Oo04 Oo03 
nigsi 626. 28 57 4 o91 1010o97 521.72 

Fe203+Mg0 2.68 3.63 1. 99 4o94 
Al203/Si02 Oo10 Oo14 0.07 Oo16 
K20/Na20 Oo 7 1 1. 1 8 Oo 34 1. 02 
Al203/(CaO+Na 2 0) 1. 59 3.82 1. 7 3 4o3 4 
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Cambrian Sandstones Major Elements 

SAMPLE LQ 83 5A HF 75 85 MP 81 MP 85 
grainsize crs crs crs crs 
struc~ure mass nass mass mass 

Si02 79.43 75.88 75.67 78.50 
Ti02 0.66 0 . ..:.; 0.64 0.66 
Al203 9.81 8.59 12. 31 10.98 
Fe203 4.14 2. 68 4.35 3.70 
MnO 0.05 0.56 0.05 0.05 
MgO 0.69 0.70 1. 24 0.89 
cao 0.85 7.75 0. 91 0. 86 
Na20 1. 80 2.22 2.14 2. 40 
K20 2.48 1.16 2.68 1. 92 
P205 0 . 08 0.02 0.02 0.02 

LOI 2.14 7 ... ;) 2.25 1. 73 

Analytical Total 98.95 98.50 97.72 99.37 

al-alk 19.44 11.54 22.34 21.27 
nigng 0.99 1. 00 1. 00 1. 00 
nigfn 20.83 13.-+7 22.68 20.15 
niq k 0.48 0.26 0.45 0.34 
nigti 0.04 0. 02 0.03 0.04 

nigsi 628.08 403.36 487.23 572.47 

Fe203+Mg0 4.14 2. 68 4.35 3. 70 
Al203/Si02 0.12 0. 11 0.16 0.14 
K20/Na20 1. 38 0. 52 1. 25 o. 80 
Al203/(CaO+Na20) 3.71 0.36 4.04 3. 3 7 
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Cambrian Sandstones Major Elements 

SAMPLE HAID 1 SAB 1 E-WP IRI 1 
grainsize crs crs crs crs 
structure mass r.~ass r.~ass mass 

Si02 89.96 78.64 93.07 90.73 
Ti02 0.46 0.52 0. 26 0.20 
Al203 5.14 10.60 2 . 94 4. 38 
Fe203 2.44 3.89 1.15 1. 86 
MnO 0.02 0.17 0.01 0.02 
MgO 0.46 1. 07 0. 34 0. 59 
cao 0.26 1. 07 1. 02 0.75 
Na20 0.30 2.74 0.93 0.97 
K20 0.95 1. 28 o. 27 0.48 
P205 0.02 0.02 0.02 0. 02 

LOI 1. 09 2.03 1. 22 1. 40 

Analytical Total 98.34 100.02 99.01 97.96 

al-alk 36 .7 1 19.64 13.70 21.42 
nigrng 1. 00 1. 00 1. 00 1. 00 
nigfn 27.90 22.77 19.46 25.68 
nig k 0.68 0.24 0.16 0.2 4 
nigti 0 . 06 0.03 0.04 0. 02 
nigsi 1545.55 558.72 1921.02 1457.33 

Fe203+Mg0 2.44 3.89 1.15 1. 86 
Al203/Si02 0.06 0.13 0.03 0.05 
K20/Na20 3.17 o .. ;? 0 .29 0.49 
Al203 I (CaO+Na20) 9.26 2.78 1. 51 2.55 
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cambrian sandstones Hajor Element:s 

SAHPLE HAN B12 HAS 86 LQ 82 163 HAN 85 
grainsize crs crs crs crs 
st:ructure mass r.1ass mass mass 

Si02 89.79 95. 27 92.94 7 3.38 
Ti02 0 . 21 0.16 0.21 0.91 
Al203 5.05 2.23 2.54 14.48 
Fe203 1. 35 0.01 1. 29 4.01 
MnO 0.02 0.40 0.02 0.05 
MgO 0.67 0.33 0.40 0.61 
cao 0.93 0.49 1. 62 0.52 
Na20 0 .62 0.08 0.62 2.56 
K20 0.81 0.05 0.27 3.45 
P205 0.06 0.97 0.08 0 . 02 

LOI 2.11 1. 32 2.08 2.03 

Analytical Total 99. 00 99.02 98.38 99.77 

al-alk 27.37 43.21 14. 13 2 3.68 

nigmg 0.99 0. 7 7 0.99 1. 00 
nigf:n 2 5. 2 0 29.33 21. f'i1 15.19 
nig k 0. 4 6 0. 2 9 0.22 0.47 

nigti 0 . 02 0. 04 0 . 03 0.04 

r..igsi 1321.36 34 23 .60 1316.43 451.71 

Fe203+Mg0 1.35 0.01 1. 29 4.01 
Al203/Si02 0.06 0.02 0 . 03 0 .20 
K20/Na20 1. 30 0 .6 3 0.43 1. 35 
Al 203/(CaO+Na 20) 3.26 3.39 1.13 4. 70 
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Cambrian Sandstones :1ajor Elements 

SA!1PLE Saint 1 N 239 G DB 4 GM 1 
grainsize crs crs crs crs 
structure r:~ass mass mass mass 

Si02 90 . 38 91.57 97.48 85.67 
Ti02 0.73 0.20 0.16 0.44 
Al203 ·L 05 4.31 1.12 5.88 
Fe203 2.02 0.35 0.42 2.82 
MnO 0 . 00 0.00 0.00 0.02 
MgO 0.07 0.03 0.08 0.81 
CaO 0.00 0.02 0. 02 0.46 
Na20 0.07 0.08 0. 03 0. 3 6 
K20 2.67 3.43 0.67 3.27 
P205 0.00 0.01 0.01 0.27 

LOI 0.50 o • .;3 0.48 1. 21 

Analytical Total 99.20 99 . 59 99.37 101.01 

al-alk 12.19 5.44 14.55 11.90 
nigmg 1. 00 1. 00 0.99 0.97 
nigfm 17 .26 3.56 19.77 26.34 
nig k 0. 96 0.97 0.94 0. 86 
nigti 0.11 0.03 0 . 09 0.04 
nigsi 1798 . .;3 1830.66 6871. 97 987.12 

Fe20J+Mg0 2.02 0.35 0.42 2.82 
Al203/Si02 0.04 0.05 0.01 0.07 
K20/Na20 37.71 42.50 22.00 9.06 
A1203/(CaO+Na20) 57.14 42.70 22.20 7 . 16 



Cambrian Sandstones Major El~ments 

SAMPLE 
grainsize 
structure 

Si02 
Ti02 
Al203 
Fe203 
MnO 
MgO 
cao 
Na20 
K20 
P205 

LOI 

Analytical Total 

al-alk 
nigmg 
nigfl':l 
nig k 
nigti 
nigsi 

Fe203+Mg0 
Al203/Si02 
K20/Na20 
Al203/ (CaO+Na20) 

HB 6 
crs 

mass 
97.11 

0.04 
0.77 
0.73 
0.01 
0.17 
0.04 
0.02 
0. 44 
0.02 

0.40 

99.02 

9.27 
0.99 

50.44 
0.94 
0.02 

6042.80 

1. 38 
0.01 

22.00 
12.67 

536 
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Cambrian Trace Elements 

Element BMD 2 IV! 83 1-lF-76-85 BMD 8 LQ 83 5A 
Sa 363 425 139 676 427. 77 

sr 82 83 63 73 70 

Zr 293 294 316 354 383 
y 14 1~ 10 21 15 
Be <1 <1 <1 n/a nja 
cu 45 15 5 12 16 

Ni 10 20 10 29 26 
Pb <50 <50 <50 30 20 
v 24 36 16 50 47 

Zn 90 70 50 63 42 
Ag O.J 0. 1 0. 1 n;a nja 
tlb <30 <30 <JO 12 13 

Au 41 <5 5 n;a nja 
As <2 <2 J n/a nja 
Br <1 <1 <1 n;a nja 
Co 5 10 4 54 38 

Cr 40 55 2? 37 42 
Cs 1.6 1.3 <0.5 n;a nja 
Hf 6.6 7.:. 6.7 8. 505 7. 521 
Hg <1 <1 <1 nja n; a 
Ir <5 <5 <5 n;a n;a 
Mo <5 <5 <5 n;a nta 
Rb 65 93 <20 62 74 

Sb 4.6 0.4 0.6 n;a n/a 
Sc 5.5 6.:: 2.4 5 4 

Se <3 <3 <3 n;a n/a 
Ta <1 <1 <1 1.048 0. 697 
Th 7.7 8.5 6.9 15 6 

u O.i 2 1 0 <1 
w <3 <3 <3 n/a nja 
La 19 21.9 19.4 28.974 26.921 
Ce 45 52 45 59.715 55.395 
Nd 21 23 17 26.476 23.677 
Sm 2.3 3. 5 2. 6 5.315 4.0145 
Eu 0.7 0.9 0.6 1. 197 o. 729 

Tb 0.5 <0.5 <0.5 0.661 o. 437 

Yb 1.1 1.5 0.8 2. 039 1. 729 
Lu 0.17 0.::! 0.15 0. 329 0. 28 

L3N/Ybtl 10.60 7.7i 14.57 5.72 6. 74 

La/Yb 17.27 14.60 24.:5 14.21 15.57 
La/Sm 6.79 6.26 7.46 5.45 6. 71 
Hf,'Yb 6.00 4.93 8.38 4. 17 4. J 5 
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cambrian Trace Elements 

Element: WF 75 85 MP 81 MP 85 MAID 1 SAB 1 
Ba 361 720 501 282 319 
Sr 178 120 92 24 102 
Zr 297 3 0 ~ ~ 11 32 7 227 
y 16 12 14 8 12 
Be n j a < 1 <1 < 1 <1 
cu 8 35 30 2 0 2 0 
Ni 18 20 10 10 10 
Pb 16 <50 <5 0 < 50 <50 
v 31 ~6 3 ~ 2 2 30 
Zn 31 1 2 0 120 65 3 5 
Ag n/a 0 . 1 1.9 0 . ~ 0 . 2 
Nb 6 <30 <30 < JO <)0 

Au n/ a 12 26 0 7 5 
As nta 2 4 3 <2 

Br nja <1 <1 <1 <1 
Co 51 13 9 4 10 

Cr 32 6 4 57 35 48 
Cs n / a 2 .6 1.3 <0 . 5 <0 .5 

Hf 8. 892 7. 9 9 . 1 8. 7 6 . 1 
Hg nt a <1 <1 < 1 <1 

Ir nta <5 <5 < 5 <5 

Mo nja <5 <5 <5 <5 

Rb 35 93 67 37 39 

Sb nja 8 .9 17 3 .6 1. 6 
Sc 6 6 . 9 6 3 5. 4 

Se nj a <3 <3 <3 <J 

Ta 1. 399 1 <1 < 1 <1 

Th 13 9 .5 9 .3 8.3 7 . 5 

u 0 1. 6 1. 5 1. 4 1.2 
H n/a <3 <3 < 3 <3 

La 20 . 5 J 7 2 7. 2 24 . 9 21. 4 22 . 3 

Ce 44. 8 2 8 63 58 4 7 50 

Nd 17 . 77 1 2 3 2 3 15 20 

Sm 3. 498 5 3 . 3 3. 3 2 . 1 3. 3 

Eu 0 . 8 95 0. 9 0 . 9 0. 5 0 . 8 

Tb 0. 44 8 0. 5 0 .6 0 .5 0 . 5 

Yb 1. 25 6 1. ] 1.5 0.9 1 ., . ~ 
Lu 0. 197 0 . .2 5 0 . ::J 0 . 17 0. ~2 

La N/YbN 9. 2 8 8. 9 7 7.77 12.95 a . 97 

La/Yb 16 . 35 2 0 .92 16.60 2 3. 72 1 7 . 15 
La / Sm 5. 3 7 7 . 16 6 . 55 1 0 . 19 6. 76 

Hf/Y b 7 .08 6 . 08 6 . 07 9. 67 4 . 69 
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cambrian Trace Elements 

Element E-WP IRI 1 HAN 812 HAS 86 LQ 82 163 
~a 90 109 263 73 106 
Sr 57 28 29 14 30 
Zr 304 231 235 236 254 
'{ a 6 7 5 4 
Be <1 <1 n/a nja nja 
cu 65 5 6 6 5 
Ni 10 10 11 5 7 

Pb <50 <50 5 5 5 
v 12 14 20 10 1 1 
Zn 75 65 17 14 13 
Ag 1.3 0.6 n;a nja nja 
Nb <30 <30 5 J 3 
AU 66 11 n; a nja n/a 
As 4 <2 n; a nja nja 
Br <1 <1 n; a n;a n;a 
Co 3 ' 133 207 164 ... 
cr 31 25 23 12 5 
cs <0.5 <0 . 5 n; a n;a n/a 
Hf 6.5 5 4. 892 4. 571 6. 883 
Hg <1 <1 n/a n;a nta 
Ir <5 <5 n;a nja nja 
Mo <5 <5 n;a n;a n;a 
Rb <20 24 30 5 10 
Sb 14 4 . 7 n;a nja nja 
Sc 2 2 . 1 n/a n;a nj a 
Se <3 <3 nja n/a n;a 
Ta <1 <1 2. 241 3. 086 2. 321 
Th 2.9 2.3 4 4 3 

u 1.4 0.6 0 0 2 
w <3 <3 n;a n;a nja 
La 9.3 8.9 13.995 8.505 7 . 2 61 
Ce 24 23 29.607 17.97 15.03 7 
Nd 10 8 12 . 22 7.618 6.2 2 
Sm 1.6 1.5 2.11 1. 368 1. 2 86 
Eu 0.5 0.~ 0. 477 0. 2 76 0. J 1 
Tb <0 . 5 <0.5 0. 2 36 0.143 0. 1 36 
Yb O.'i 0.5 0. 83 0.573 0.591 
Lu 0.13 0 . 09 0. 136 0 . 085 o. 086 

LaN/YbN 16.65 23.31 14.04 20.34 19. 7 2 
La/Yb 13. 29 17. 8 0 16.36 14.8 4 12. 2 9 
La/Sm 5.81 5. 9 3 6. 63 6. 22 5 . 65 
Hf/Yb 9. 29 10.00 5 . 89 7 . 98 11 . 65 
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Cambrian Trace Elements 

Element HAN 85 SAINT 1 N239G DB 4 GH 1 

Ba 721 381 663 179 869 

sr 78 34 7~ 11 87 

Zr 685 445 100 379 680 
'{ 18 7 3 7 27 

Be <1 n;a n;a n/a n;a 
cu 30 5 5 58 18 

Ni 10 9 5 5 17 

Pb <50 5 5 5 9 

v 26 34 7 8 27 

zn 75 5 5 5 20 

Ag 0.3 n;a n;a n;a n 1 a 
Nb <30 15 3 2 10 

Au 7 nta n;a nta n;a 
As 11 n;a n/a n;a n;a 
Br <1 n;a n/a nta n;a 
co ... 169 333 124 76 

I 

cr 24 19 5 1 40 

Cs 2.3 n;a n/a nta n;a 
Hf 16 J. 12 1.183 4.707 12.706 

Hg <1 n/a n/a n/<'l. n;a 
Ir <5 n;a n;a n/a n;a 
Mo <5 nta n;a n;a n;a 
Rb 100 55 5~ 11 46 

Sb 3. 2 n;a nja n/a n;a 
Sc 5.6 n;a nja n/a n;a 
Se <3 n/a n/a n;a nta 
Ta <1 1. 751 3.572 1.104 0.95 

Th 8.7 5 5 6 8 

u 1.6 3 0 2 1 

\V <3 n;a n/a n/a n;a 
La 23.6 10.797 13.21 4.26 16.961 

Ce 55 20.843 26.958 9. 371 45.889 

Nd 26 7 . 666 8.36 3.234 20.843 

Srn 4. 7 1.2655 1. 122 0. 6915 5.0265 

Eu 1.3 0. 285 0.262 0.192 1. 27 

Tb 0.7 0.17 0.066 0. 151 0.802 

Yb 2 0. 756 0. 349 0.347 2 . 45 

Lu 0. 32 0.115 0.062 0. 141 0. 391 

LaN/Ybtl 5.83 15.4 2 33.40 13.76 4.76 

La/Yb 11. ao 14.28 37.35 5.03 6.92 

La/ srn 5.02 8.53 11.77 6. 16 J. 37 

Hf/Yb 8.00 4.13 3.39 5.56 5. 1 'J 



cambrian Trace Elemenes 

Element 
Ba 
Sr 
Zr 
'l 
Be 
cu 
Ni 
Pb 
v 
Zn 
Ag 
Ub 
Au 
As 
Br 
Co 
Cr 
Cs 
Hf 
Hg 
Ir 
Mo 
Rb 
Sb 
Sc 
Se 
Ta 
Th 
u 
\-J 
La 
Ce 
Nd 
Srn 
Eu 
Tb 
Yb 
Lu 

LaN /YbN 
La/Yb 
La ISm 
Hf/Yb 

HB 6 
120 

6 
136 

4 
n/a 

6 
5 
5 
5 
5 

nja 
1 

n/a 
n/a 
n/a 
191 

5 
n/a 

2.286 
n/a 
n/a 
nta 

5 
n/a 
n/a 
n/a 

2.923 
3 
0 

n/a 
7.012 

.5.609 
5.393 
0.906 
0.143 
0.06 

0.354 
0.061 

32.93 
19.31 
7.74 
6.46 

541 
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Miscellaneous Major Ele~ents 

SA!·1PLE WH 1 C8 10 CB 11 C8 81 CR 82 
Si02 74.61 81.65 65 . 64 39.39 85.30 
Ti02 0.52 0.17 0. 70 2.64 0. 0 2 
Al20J 6.31 9.23 11. 76 13.95 0.88 
Fe203 1. 77 1. 23 3.81 10.29 0.:?6 
MnO 0.07 0 . 03 0.23 0.:?5 0.0 1 
MgO 1. 6 4 1. J2 2. 24 2. 4 0 0.08 
cao 11.43 1.10 9.30 24 .22 1:?.7 7 

Na20 1. 51 2 .73 3.59 3.31 0.3 7 

K20 1. 97 2 .53 2.')8 2 . 38 o.:: 7 

P205 0 . 18 0.02 0.15 1.16 0. 02 

LOI 10.10 1. 39 8.52 17 . 09 8.33 
TOT.l\L 100.41 99.96 99 . 37 99.56 96.16 

SA11PLE NHA 10 NWA 12 TP 5 TP 83 TP 8 7 
Si02 68.21 71.12 6 4 . 55 73.61 63.89 
Ti02 0 . 63 0.62 0. 29 0.53 0. 30 
Al203 9.69 10.47 6.61 9 . 03 6.76 
Fe203 4 .76 5.40 3.81 5.73 3.92 

MnO 0.31 0.15 0.19 0.12 0. 19 
MgO 3 . 34 3.97 3.05 3.89 3. OJ 

CaO 9. 4 3 4 . 7 5 19. 07 4.03 19. 2 6 
Na20 2.17 1. 76 0. 86 1. 81 0 . 95 
K20 1. 4 2 1. 72 1. 55 1. 21 1. 49 

P205 0.04 0.04 0.0 2 0.0 4 0. 2 1 

LOI 9 . 17 6.03 1 4 . 64 5 . 50 14. 4 6 
TOT.;L 100.56 100. 2 2 98 . .;2 100.0 5 9 9 . 0 7 
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Miscellaneous Trace Elements 

SA11PLE NWA 10 tlt-JA 12 TP 5 TP 83 TP 87 
Ba 407 .;J2 393 267 316 

sr 186 184 4 56 141 463 

Zr 261 249 82 130 69 
y 16 16 20 12 22 
Be <1 <1 <1 <1 <1 
cu JO 35 20 30 JO 
r: i 110 130 20 140 30 

Pb <50 <50 <50 <50 <50 

v 64 60 40 70 40 

Zn 85 95 75 75 75 

Ag 0.1 0.2 0.1 0.1 0.1 

tlb <30 <30 <30 <30 <30 

Au 17 9 <5 <5 6 

As J 4 9 <2 9 

Br <1 <1 <1 <1 <1 

co 15 18 9 18 10 

Cr 440 380 120 510 120 
cs <0.5 2.3 1.5 1.6 1.2 

Hf 5.7 4.9 2.3 4 2 . :; 

Hg <1 <1 <1 <1 <1 

Ir <5 <5 <5 <5 <5 
Mo <5 <5 23 <5 33 

Rb JO 56 35 53 26 

Sb 3.1 4. 5 2 . 1 0.6 1.9 

Sc 11 9.8 5.4 11 5.4 

Se <3 <3 <3 <3 <3 

Ta <1 1 <1 <1 <1 

Th 5.9 5.9 4. 9 4. 2 4.5 

u 1.7 1.8 2 1.1 1.4 
\-J <3 <3 <3 <3 <3 

La 17.5 18.8 16.4 10.9 16.3 
Ce 43 46 40 26 41 

Nd 17 21 18 12 16 

Srn 3. 2 3.4 3. 6 2. 3 3.9 

Eu 0.7 0.6 0.9 0.6 0.9 

Tb 0.6 0.5 0.6 <0.5 0.7 

Yb 1.6 1.5 1.3 1.1 1.5 

Lu 0.26 0.24 0.22 0.2 0.25 
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Miscellaneous Trace Elements 

SA1~PLE tVH 1 CB 10 CB 11 CB 81 CR 82 
Ba 285 750 570 573 40226 
Sr 103 350 200 338 893 
Zr 341 85 208 136 40 
y 24 8 28 36 4 
Be <1 <1 <1 2 <1 
cu 15 5 20 10 5 
Ni 20 20 50 10 10 
Pb <50 <50 <50 <50 <50 
v 14 28 66 52 2 
Zn 10 70 65 110 90 
Ag 0. 1 0.5 0.9 0.1 0.5 

Nb <30 <30 <30 <30 <30 
Au <5 10 <5 7 32 
As 2 3 5 6 <2 
Br 8 2 <1 <1 l 

Co 5 4 12 16 <1 
cr 330 ~20 350 44 120 
Cs <0.5 <0.5 1.7 <0.5 <0.5 

Hf 7.8 2 5. J 7.2 1.6 
Hg <1 <1 <1 <1 <1 

Ir <5 <5 <5 <5 <5 
Mo <5 <5 <5 <5 <5 
Rb 37 <20 <20 <20 <20 

Sb 0.9 5.3 ~.9 3.6 6.5 
Sc 4.5 5.9 11 9.1 0.4 

Se <3 <3 <3 <3 <3 
Ta <1 <1 <1 4 <1 

Th 6.1 J. 3 5.2 6 0.9 
u 1.6 <0.5 1.3 1.1 <0.5 
tv <3 <3 <3 <3 <3 

La 18.2 12.6 19.7 54.8 3. 2 
Ce 54 30 58 123 7 

Nd 25 14 30 57 <5 
Sm 5 2 5.7 9.9 0.5 
Eu 1.2 0.6 1.4 2.9 <0.2 

Tb 0.9 0.5 0.8 1.2 <0. 5 
Yb 2. 2 0.8 2. 2 3. 1 0.2 

Lu 0.35 0.14 o. 31 0.46 <0.05 



APPENDIX 6 STATISTICS 545 

This appendix includes reformatted tables outputted from SAS/STAT v. 6.03 
statistical software package. It includes for the Goose Tickle group and the Lower Head 
Formation. means and standard deviations for Niggli parameters and trace elements, 
maximum and minimum values for the same parameters. and correlation matrices. 

The factor analysis outpuTs include two analyses for each unit, one including 
Niggli (major element) parameters and the other including only trace element parameters. 
Note that the unrotated factor pattern, the amount of variance explained by each factor. 
and the rotated factor pattern are all included. Calculation of eigenvalues and panial 
correlations are steps in the factor analysis process, as are prior communality estimates 
(see Davis, 1986 and SAS/STAT users guide, 1988 for more details of the method) . 

The most imponant fearure in evaluating the quality of the analysis is Kaiser's 
measure of sampling adequacy, which should be > 0.5 for all individual values and 
overall. Clearly none of the analyses can be considered ideal, probably because of the 
relatively small number of samples involved. In panicular. the Lower Head Formation 
data must be considered unsuitable for factor analysis. 
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Goose Tickle Correlation Matrix 
Means and Standard Deviations 

variable N Mean Std Dev sum 

al-alk 42 9.54 3.59 400.75 
NIG Ti 42 1. 52 0.59 63.95 
NIG f'm 42 29.88 8.04 1255.00 
NIG K 42 0.44 0.07 18.27 
NIG Mg 42 0.62 0.06 26.25 
NIG Si 42 290.04 110.61 12182.00 
cao 42 9.65 6.06 405.36 

K:O 42 1. 43 0.49 60.01 
Ba 42 670.88 1194.00 28177.00 
Sr 42 183.00 89.12 7686.00 

Zr 42 197.93 129.69 8313.00 
y 42 18.98 4 . 68 797.00 

cu 42 27.64 11.83 1161.00 
Ni 42 117.14 52.34 4920.00 
v 42 50.62 14.19 2126.00 
zn 42 85.86 25.28 3606.00 
Ag 37 0.26 0.37 9.50 
Au 37 16.24 22.48 601.00 

As 37 6.22 3.63 230.00 

Co 42 18.24 8.28 766.00 

Cr 42 441.38 339.05 18538.00 

Cs 37 1. 46 0. 72 54.10 

Hf 42 4.68 3.10 196.75 

P.b 42 44.81 18.34 1882.00 

Sb 37 3.70 4.27 136.90 

Sc 42 8.03 2.54 337.20 

Th 42 5.33 2.13 224.00 

u 39 1. 7 3 0. 72 67.30 

La 42 18.26 5.29 767.08 

Ce 42 43.78 12.51 1839.00 

Nd 42 19.20 5.13 806.30 

Sm 42 3.59 0.91 150.70 

Eu 42 0.81 0.21 33.81 

Tb 42 0.58 0.13 24.53 

Yb 42 1. 51 0.48 63.21 

Lu 42 0.24 0.09 9.94 
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Minima and Maxima 

Variable Minimum Maximum 

al-alk 2.46 17.32 
NIG Ti 0.38 2.57 
NIG Fm 10.86 42.76 
NIG K 0.26 0.61 
NIG Mg 0.50 0.83 
NIG Si 66.40 525.87 
CaO 3.08 29 . 90 
K20 0.74 2.66 
Ba 143.00 6964.00 
Sr 73.00 488.00 
Zr 49.00 610.00 
y 12.00 30.00 
Cu 9.00 70.00 
Ni 10.00 260 . 00 
v 14.00 75.00 
Zn 32.00 140.00 
Ag 0.10 2.10 
Au 5.00 115.00 
As 2.00 18.00 
Co 6.00 46.00 
Cr 48.00 1440.00 
Cs 0.50 3.30 
Hf 1. 40 16.00 
Rb 20.00 79.00 
Sb 0.80 23.00 
Sc 3. 40 14.00 
Th 2.60 11.00 
u 0.50 4.00 
La 10.20 29.80 
Ce 24.00 70.00 
Nd 11.54 31.00 
Sm 2.10 5.30 
Eu 0.40 1. 20 
Tb 0.31 0.90 
Yb 0.80 2.80 
Lu 0.13 0.48 
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Correlation Coefficients 

al-alk NIG Ti NIG Fm NIG K NIG Hg NIG Si 

al-alk 1. 00 0.81 0. 72 0.33 -0 .26 0.37 
NIG Ti 0.81 1. 00 0. 47 0.23 -0.38 0.21 
NIG Fm 0.72 0.47 1. 00 0.09 0.37 0.27 
NIG K 0.33 o.:3 0.09 1. 00 -0.:9 0.20 
NIG Mg -0.26 -0.38 0. 37 -0.29 1. 00 -0.33 
NIG Si 0.37 0.21 0.21 0.20 -0.33 1. 00 
cao -0.80 -0.65 -0.66 -0.20 0.29 -0.75 
K,O 0.73 0.74 0.32 0.41 -0.33 -0.09 
sa -0.17 -0.14 -0.26 -0.17 0.04 -0.36 
Sr -0.47 -0.37 -0.29 -0.53 0.44 -0.63 
Zr 0.51 0.78 0.27 0.21 -0.26 - 0.07 
'{ 0.13 0.42 -0.05 0.20 -0.09 -0.56 
Cu 0.54 0.48 0 . 54 0.05 -0 . 07 0.11 
Ni 0.33 0.25 0.48 -0.02 0.03 0.35 
v 0.66 0.62 0.40 0.3t. -0.21 -0.05 
zn 0.44 0.43 0.40 -0.1) -0.14 0.21 
Ag -0.15 -0.16 0.02 -0.10 0 . 12 0.00 
Au - 0.26 -0.18 - 0.18 0.02 -0.02 0 . 32 
As -0.02 0.02 0.13 -0.01 0.00 0.31 
Co 0.40 0.23 0.35 0.13 -0 . 01 0.11 
cr 0.01 0.16 0.09 -0.06 -0.04 0 . 19 
Cs 0.59 0.60 0.38 0.16 0.05 -0.35 
Hf 0.50 0.76 0.24 0.22 -0.24 -0.09 
Rb 0.66 0.59 0.37 0.24 -0.23 -0.16 
Sb -0.16 -0.22 0.07 -0.17 0.18 -0.03 
Sc 0.41 0 .4 1 0.40 0.15 0.17 -0.28 
Th 0.63 0.73 0.27 0. 37 -0.31 -0 . 19 
u 0. 72 0.69 0 .41 0.45 -0.35 0.10 

La 0.52 0.70 0.17 0.37 -0.25 -0.33 
Ce 0.56 0.76 0.24 0.32 -0.23 -0.27 
Nd 0.54 0.68 0.22 0 . 33 -0.18 -0.23 
Sm 0.47 0.66 0.25 0.22 -0 . 08 -0.35 
Eu 0.45 0 . 72 0.19 0.09 -0.17 -0.27 
Tb 0.21 0.48 0.09 0 . 08 -0.10 -0.36 
Yb 0.43 0.68 0.25 0 . 17 -0.08 -0.37 

Lu 0 .46 0.71 0.24 0.20 -0.15 -0.33 
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Corr~lation Coefficients (cont.) 

cao 1<20 sa sr zr y 

c.l-alk -0.80 0.73 -0.17 -0.47 0.51 0.13 
NIG Ti -0.65 0 . 74 -0.14 -0.37 0.78 0.42 

NIG f'm -0.66 0.32 -0.26 -0.29 0.27 -0.05 
NIG K -0.20 0.41 -0.17 -0.53 0.21 0.20 

NIG M9 0.29 -0.33 0.04 0.44 -0.26 -0 . 09 
NIG Si -0.75 -0.09 -0.36 -0.63 -0.07 -0.56 

cao 1. 00 -0.42 0.37 0.66 -0.32 0.27 

1<20 -0.42 1. 00 0.01 -0.35 0.63 0.50 

Ba 0.37 0.01 1. 00 0.34 -0. OS 0.15 

sr 0.66 -0.35 0.34 1. 00 -0 . 15 0.16 
zr -0.32 0.63 -0.05 -0 . 15 1. 00 0.63 
y 0.27 0.50 0.15 0 . 16 0.63 1. 00 

Cu -0.46 0.32 -0 .17 -0.10 0.37 0.12 
Ni -0.45 -0.16 -0.24 -0.13 0.13 -0.19 
v -0.32 0.53 0.07 -0.19 0.43 0.36 
zn -0.46 0 . 25 -0.26 -0.03 0.44 0.13 

A9 -0.03 -0.03 0.07 0.05 -0.08 -0.12 

Au -0.06 -0.20 -0.01 -0.05 -0.14 -0.31 

AS -0.20 -0.25 -0.23 -0.19 0.00 0.00 

Co -0.26 0.18 -0.10 -0.18 0.06 0.12 

Cr -0.11 -0.35 -0.28 0.12 0.17 -0.09 
Cs -0.24 0.76 0.13 -0.08 0.46 0.55 
Hf -0.29 0.62 -0.01 -0.11 0.99 0.64 
Rb -0.36 0.88 -0.04 -0.26 0.52 0.42 
Sb -0.01 -0.09 0.10 0.10 -0.15 -0 .2 0 
Sc -0.11 0.34 0.04 0.09 0.33 0 . 35 
Th -0.27 0.84 0.06 -0.23 0. 77 0.66 
u -0.55 0.75 -0.25 -0.52 0.62 0.48 

La -0.10 0.83 0.15 -0.13 0. 74 0.85 
Ce -0.19 0.82 0.07 -0.13 0.80 0.83 

Nd -0.18 0.82 0.10 -0.12 0.74 0. 77 
Sm -0.08 0. 74 0.07 -0.01 o. 72 0.87 

Eu -0.17 0.68 -0.02 0.06 0.70 o. 73 

Tb 0.03 0.47 -0.09 0.09 0.61 0.75 
Yb -0.09 0.70 0.04 0 . 00 0.89 0.85 

Lu -0.14 0.71 0.01 -0.03 0.91 0.82 
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correlation Coefficients (cont.) 

Cu Ni v Zn Ag Au 

al-alk 0. 54 0.33 0.66 0.44 -0.15 -0.26 
NIG Ti 0. 48 0.25 0.62 0.43 -0.16 -0.18 
NIG rm 0.54 0.48 0 .4 0 0 . 40 0.02 -0.18 
NIG K 0.05 -0.02 0.34 -0.10 -0.10 0.02 
NIG Mg -0.07 0.03 -0.21 -0.14 0.12 -0.02 
NIG Si 0.11 0.35 -0.05 0.21 0.00 0. 32 
cao -0.46 -0.45 -0.32 -0.46 --0. 0 3 -0.06 
K.O 0. 32 -0.16 0.53 0.25 -0.03 -0.20 
sa -0 . 17 -0.24 0.07 -0.26 0.07 -0 . 01 
Sr -0.10 -0.13 -0.19 -0.03 0.05 -0. OS 
zr 0. 37 0.13 0.43 0.44 -0.(19 -0.14 
y 0.12 -0.19 0.36 0.13 -0.12 -0.31 
Cu 1. 00 0.39 0. 31 0.64 0.00 -0.18 
Ni 0. 39 1. 00 0.40 0 .2 9 -0 . 07 -0.06 
v 0. 31 0.40 1. 00 0.03 -0.17 -0.26 
zn 0.64 0.29 0.03 1.00 0.03 -0.15 
Ag 0.00 -0.07 -0.17 0.03 1. 00 0.56 

Au -0.18 -0.06 -0.26 -0.15 0.56 1. 00 
As 0.04 0.40 -0.04 0.12 0. 4 3 0.23 

Co 0.11 0.38 0.65 -0 . 10 -0.18 -0 . 17 
Cr 0. 34 0 . 69 0.19 0.22 -0.20 0.05 
Cs 0. 34 -0 . 19 0.44 0.18 0 .0 1 -0. 18 
Hf 0. 37 0.11 0.44 0.41 -0.10 -0.14 
Rb 0.37 -0 . 16 0.40 0.27 0.00 -0.20 

Sb 0.05 0 . 02 -0.14 0.05 0.93 0.59 

Sc 0.34 0.47 0.80 0.00 -0.22 -0.31 

Th 0.25 -0.05 0.63 0.20 -0.05 -0.16 
u 0.19 -0.08 0.52 0.26 -0.18 -0.18 
La 0.25 -0 . 15 0.55 0.20 -0.13 -0.24 
Ce 0. 33 -0.10 0.47 0 . 36 -0.15 -0.28 
Nd 0. 31 -0.17 0.38 0. 34 -0.12 -0.25 

Sm 0. 30 -0.21 0.40 0.35 -0.16 -0.34 

Eu 0. 37 -0.04 0.40 0 . 40 -0. Z2 -0.36 

Tb 0. 36 -0 . 15 0.13 0.41 -0.03 -0.18 

Yb 0. 32 -0.09 0 .4 2 0 . 36 -0.11 -0.29 

Lu 0. 36 -0.04 0.44 0.38 -0.12 -0.27 
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correlation Coefficients (cent.) 

As co Cr Cs Hf Rb 

al-alk -0.02 0.40 0.01 0.59 0.50 0.66 

NIG Ti 0.02 0.23 0.16 0.60 0.76 0.59 

NIG Fm 0.13 0.35 0.09 0.38 0.24 0.37 

NIG K -0.01 0.13 -0.06 0.16 0.22 0.24 

NIG Mg 0. 00 -0.01 -0.04 0.05 -0.24 -0.23 
NIG Si 0. 31 0.11 0.19 -0.35 -0.09 -0 . 16 

cao -0.20 -0.26 -0.11 -0.24 -0.29 -0.36 

K~O -0.25 0.18 -0.3 5 0.76 0.62 0.88 

Ba -0.23 -0.10 -0.28 0.13 -0.01 -0.04 

Sr -0.19 -0.18 0.12 -0.08 -0.11 -0.26 

Zr 0.00 0.06 0.17 0.46 0.99 0.52 
y 0.00 0.12 -0.09 0.55 0.64 0.42 

Cu 0.04 0 . 11 0. 34 0.34 0.37 0.37 

Ni 0. 40 0.38 0. 69 -0.19 0.11 -0.16 

v -0.04 0.65 0.19 0.44 0.44 0 . 40 

Zn 0.12 -0.10 0. 22 0.18 0.41 0.27 

Ag 0.43 -0.18 -0.20 0.01 -0.10 0.00 

Au 0.23 -0.17 0. OS -0.18 -0.14 -0.20 

As l. 00 0.30 0. 29 -0.15 -0.03 -0.22 

Co 0.30 1. 00 0.16 0.17 O.C7 0.14 

Cr 0.29 0 . 16 1. 00 -0.39 0.17 -0.40 

Cs -0.15 0.17 -0.39 1. 00 0.47 0.69 

Hf -0.03 0 . 07 0.17 0 . 47 1. 00 0.51 

Rb -0.22 0 . 14 -0.40 0.69 0.51 1. 00 

Sb 0. 39 -0.11 -0.15 -0.04 -0.16 0.01 

Sc -0.05 0.59 0. 29 0.42 0. 36 0.29 

Th -0.10 0.34 -0.16 0.72 0.79 0.73 

u -0.09 0.49 -0 . 2 3 0.58 0.58 0.68 

La -0.11 0.20 -0.19 0.76 0.76 0.70 

Ce -0.10 0.08 -0.13 0 . 75 0.81 0.69 

Nd -0.17 0.00 -0.25 0.70 0.74 0. 71 

Sm -0.12 0 . 10 -0.21 0.71 0. 72 0.65 

Eu -0.19 0.04 -0.03 0.55 0.69 0.57 

Tb 0.05 -0.15 -0.07 0.51 0.57 0.51 

Yb -0.08 0.09 -0.08 0.64 0.88 0.63 

Lu -0.10 0. 06 -0.01 0 . 63 0.91 0.63 



552 

Correlation Coefficients (cont.) 

Sb sc Th u La Ce 

al-alk -0.16 0.41 0.63 0.72 0.52 0.56 

NIG Ti -0.22 0.41 0.73 0.69 0. 70 0.76 

NIG Fm 0.07 0.40 0.27 0.41 0.17 0.24 

NIG K -0.17 0.15 0. 37 0.45 0.37 0.32 

NIG Mg 0.18 0.17 -0.31 -0.35 -0.2 5 -0.23 

NIG Si -0.03 -0.28 -0.19 0.10 -0.3 3 -0. Z7 

cao -0.01 -0.11 -0.27 -0.55 -0.10 -0.19 

K:O -0.09 0 . 34 0.84 0.75 0.83 0.82 

Ba 0.10 0.04 0.06 -0.25 0.15 0.07 

Sr 0.10 0.09 -0. 2.3 -0.52 -0.13 -0.13 

zr -0.15 0.33 0. 77 0.62 0.74 0.80 

y -0.20 0.35 0. 66 0.48 0. 8 5 0.83 

Cu 0 . 05 0.34 0.2.5 0.19 0.25 0 . 33 

Ni 0.02 0.47 -0. OS -0.08 -0.15 -0.10 

v -0.14 0 . 80 0.63 0.52 0.55 0.47 

zn 0.05 0.00 0.20 0 . 26 0 . 20 0.36 

Ag 0.93 - 0.22 -0. OS -0.18 -0.13 -0.15 

Au 0.59 -0.31 -0.16 -0.18 -0.24 -0.28 

As 0.39 -0 . 05 -0. 10 -0.09 -0.11 -0.10 

Co -0.11 0.59 0.34 0.49 0.20 0.08 

Cr -0.15 0.29 -0.16 -0.23 -0.19 -0.13 

cs -0.04 0.42 0. 72 0.58 0.76 0.75 

Hf -0.16 0.36 0.79 0.58 0.76 0.81 

Rb 0.01 0.29 0. 73 0.68 0.70 0.69 

Sb 1. 00 -0.15 -0.10 -0 . 25 -0.20 -0.23 

Sc -0.15 1. 00 0.43 0.21 0.41 0.35 

Th -0.10 0.43 1. 00 0 . 81 0 . 90 0.86 

u -0 . 25 0.21 0 . 81 1. 00 0.73 0.70 

La -0.20 0.41 0.90 0.73 1. 00 0 . 97 

Ce -0.23 0.35 0.86 0.70 0.97 1. 00 

Nd -0. 2 2 0.24 0.80 0.6A 0.92 0.95 

Sm -0.24 0.31 0. 79 0.68 0.92 0 . 96 

Eu -0.26 0.35 0.67 0.48 0.76 0.85 

Tb -0 . 12 0 . 15 0. 46 0.44 0. 6 3 0. 71 

Yb -0.18 0.40 0.82 0.63 0.89 0. 92 

Lu -0.19 0.40 0 . 82 0.64 0.87 0.91 
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Correlation Coefficients (cont.) 

Nd sm Eu Tb Yb Lu 

al-alk 0.54 0.47 0.45 0.21 0.43 0. 46 
NIG Ti 0.68 0.66 0.72 0.48 0.68 0. 71 
NIG Fm 0.22 0.25 0.19 0.09 0.25 0.24 
NIG K 0. 3 3 0.22 0.09 0.08 0.17 0. 20 
NIG Mg -0.18 -0.08 -0.17 -0.10 -0.08 -0.15 
NIG Si -0.23 -0.35 -0.27 -0.36 -0.37 -0.33 
cao -0.18 -0.08 -0.17 0.03 -0.09 -0.14 
K.O 0.82 0.74 0.68 0.47 0.70 0.71 
Ba 0.10 0.07 -0.02 -0.09 0.04 0.01 
Sr -0.12 -0.01 0.06 0.09 0.00 -0.03 
Zr 0.74 0.72 0.70 0.61 0.89 0.91 
y 0. 77 0.87 0.73 0.75 0.85 0.82 
Cu 0.31 0.30 0.37 0.36 0.32 0.36 
Ni -0.17 -0.21 -0.04 -0.15 -0.09 -0.04 
v 0.38 0.40 0.40 0.13 0.42 0.44 
zn 0.34 0.35 0.40 0.41 0.36 0.38 
Ag -0.12 -0.16 -0.22 -0.03 -0.11 -0.12 
Au -0.25 -0.34 -0.36 -0.18 -0.29 -0.27 
As -0.17 -0.12 -0.19 0.05 -0.08 -0.10 
Co 0.00 0.10 0.04 -0.15 0.09 0. 06 
Cr -0.25 -0.21 -0.03 -0.07 -0.08 -0.01 
cs 0.70 0.71 0.55 0.51 0.64 0. 63 
Hf 0. 74 0.72 0. 6 9 0.57 0.88 0.91 
Rb 0. 71 0. 65 0.57 0.51 0.63 0. 63 
Sb -0.:!2 -0.24 -0.2 6 -0.12 -0.18 -0.19 
Sc 0.24 0.31 0.35 0.15 0.40 0. 40 
Th 0.80 0.79 0.67 0.46 0.82 0.82 
u 0.68 0.68 0.48 0.44 0.63 0.64 
La 0.92 0.92 0.76 0.63 0.89 0.87 
Ce 0.95 0.96 0. 85 0.71 0.92 0.91 
Nd 1. 00 0.93 0.82 0.67 0.86 0.85 
sm 0.93 1. 00 0.84 0. 74 0.92 0. 89 
Eu 0.82 0.84 1. 00 0.68 0.81 0.80 
Tb 0.67 0.74 0.68 1. 00 0.76 0.74 
Yb 0.86 0.92 0. 81 0.76 1. 00 0.98 
Lu 0.85 0.89 0. 80 0.74 0. 98 1. 00 
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Lower Head Formation 
Correlation Statistics 

Means and Standard Deviations 

Variable N Mean Std Dev Sum 

al-alk 34 11.82 3.41 401.84 
NIG Ti 34 2.03 0.61 69.05 
NIG Fm 34 32.81 9. 36 1116.00 
NIG K 34 0.39 0.08 13.22 
NIG l1g 34 0.60 0 . 04 20.36 
NIG Si 34 365 . 67 100.83 12433.00 
cao 34 5. 72 4.28 194.46 

K=O 34 1. 56 0.40 52.95 
Ba 34 441.82 194.74 15022.00 
Sr 34 121.35 42.44 4126.00 
Zr 34 261.47 196.19 8890.00 
y 34 16.85 4.89 573.00 
cu 34 25.41 13.82 864.00 
Ni 34 103.18 31.63 3508.00 
v 34 55.68 15.77 1893.00 
zn 34 74.56 15 . 74 2535.00 
Ag 31 0.18 0.22 5.70 
Ag 31 7.74 6 .25 240.00 
As 31 3.61 2.01 112.00 
Co 34 15.97 8.16 543.00 
Cr 34 337.76 174.92 11484.00 
Cs 31 1. 25 0.90 38.60 
Hf 34 6.18 4.31 210.11 
Rb 34 50.47 18.69 1716.00 
Sb 31 2.39 2. 72 74.20 

Sc 34 8.39 2.53 285.30 
Th 34 6.24 2.99 212.30 

u 32 1. 61 0. 51 51.60 

La 34 18.49 6.11 628. 49 
Ce 34 43.44 13.52 1477.00 
Nd 34 17.87 5.39 607.42 

Sm 34 3.23 0.87 109.92 

Eu 34 0.75 0.17 25. 61 

Tb 34 0 . 55 0.11 18 .7 7 

Yb 34 1. 53 0.42 52.05 

LU 34 0.24 0 . 07 8.31 
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Lower Head Formation 
correlation Statistics 

Means and Standard Deviations 

variable N Mean Std Dev Sum 

al-alk 34 11.82 3.41 401.84 
NIG Ti 34 2.03 0.61 69.05 
NIG Fm 34 32.81 9.36 1116.00 
NIG K 34 0.39 0.06 13.22 
NIG :-tg 34 0.60 0.04 20.36 
NIG Si 34 36 5. 67 100.83 12433.00 
cao 34 5. 72 4.28 194.46 
K2 0 34 1. 56 0.40 52.95 
Ba 34 441.82 194.74 15022.00 
Sr 34 121.35 42.44 4126.00 
zr 34 261.47 196. 1 9 8890.00 
'{ 34 16.85 4.89 573.00 
Cu 34 25.41 13.82 864.00 
Ni 34 103.18 31.63 3508 . 00 
v 34 55 . 68 15.77 1893.00 
zn 34 74.56 15.74 2535.00 
Ag 31 0.18 0 .22 5 .7 0 
Ag 31 7.74 6.25 240.00 
As 31 3.61 2.01 112.00 
Co 34 15.97 8.16 543 . 00 
Cr 34 337.76 174.92 11484.00 
cs 31 1. 25 0.90 38.60 
Hf 34 6 . 18 4.31 210.11 
Rb 34 50.47 18.69 1716.00 
Sb 31 2.39 2. 7 2 74.20 
Sc 34 8.39 2.53 285.30 
Th 34 6.24 2.99 21 2 .30 
u 32 1. 61 0.51 51.60 
La 34 18.49 6.11 628.49 
Ce 34 43. 44 13.52 1477.00 
Nd 34 17.87 5 . 39 607.42 
Sm 34 3. 2 3 0 . 8 7 109.92 
Eu 34 0.75 0. :. 7 25.61 
Tb 34 0.55 0.11 18.77 
Yb 34 1. 53 0.42 52.05 
Lu 34 0. 2 4 0.07 8 . 31 
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Minima and Maxima 

variable Minimum Maximum 

al-alk 5.86 17.16 
NIG Ti 1. 22 3.97 
NIG Fm 15.70 45.74 
NIG K 0.18 0.52 
NIG Mg 0.49 0.67 
NIGSI 136.67 591.08 
cao 1.11 15.42 
K20 0.58 2.30 
Ba 223.00 1116.00 
sr 73.00 246.00 
zr 105.00 1293.00 
"{ 10.00 34.00 
Cu 5.00 90.00 
Ni 30.00 160.00 
v 24.00 97.00 
Zn 34.00 120.00 
Ag 0.10 1. 00 
Au 5.00 37.00 
As 2.00 9.00 
Cs 7.00 43.00 
Cr 153.00 1100.00 
Cs 0.50 4.10 
Hf 0.34 28.00 
Rb 20.00 110.00 
Sb 0.20 13.00 
Sc 3.70 16.00 
Th 3.40 21.00 
u 0.60 3.50 
La 10.70 45.70 
Ce 26.00 103.00 
Nd 10.00 40.00 
Sm 1. 80 6.50 
Eu 0.50 1. 30 
Tb 0.40 1. 00 
"ib 0.80 3 . 10 
Lu 0.15 0 . 52 
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Correlation Coefficients 

al-alk NIG Ti NIG Fm NIG K NIG Mg NIG Si 

al-alk 1. 00 0.67 0.91 0.15 0.24 0.55 

NIG Ti 0.67 1. 00 0.65 -0 . 21 -0.21 0. 36 

NIG Fm 0.91 0.65 1. 00 0.10 0.47 0.62 

NIG K 0.15 -0.21 0.10 1. 00 0.33 -0.18 

NIG Mg 0.24 -0.21 0. 47 0.33 1. 00 0.31 

NIG Si 0.55 0.36 0.62 -0.18 0.31 1. 00 

cao -0.84 -0.63 -0.89 0.02 -0.38 -0.82 

K 2 0 0.17 -0.08 0. 11 0.87 0.27 -0.36 

Ba 0.02 0.06 0.04 -0.11 -0.12 . 0.01 

Sr -0.28 0.15 -0.43 -0.31 -0.72 -0.26 

Zr 0.03 0. 71 0.02 -0.41 -0.58 -0.04 
y 0.06 0.47 -0.07 -0.06 -0.59 -0.47 

Cu 0.48 0.31 0. 42 0.28 0.04 0.26 

Ni 0. 4 7 0.32 0. 54 0.12 0.27 -0.05 

v 0.45 0.47 0. 38 0.34 -0.15 -0.14 

Zn 0.34 0.24 0.33 0.05 0.11 0.14 

Ag 0.14 0.05 0. 06 -0.10 -0.16 0 . 42 

Au 0.22 0.11 0 .16 0.05 -0.07 0.43 

As 0 . 24 0.26 0.09 -0.30 -0.29 -0.11 

co 0.32 0.34 0.25 0.35 -0.08 -0.08 

cr -0. OS 0.59 0.09 -0.37 -0.29 0.06 

cs 0.22 0.10 0.10 0.61 0.07 -0.17 

Hf 0.01 0.71 0.03 -0.41 -0.54 -0.03 

Rb 0.26 0.07 0.20 0.65 0.22 -0.30 

Sb 0.11 0.06 0 . 01 -0.21 -0.21 0.44 

Sc 0.10 0.05 0.04 0.29 -0.07 -0.46 

Th 0.18 0.76 0.13 -0.28 -0.55 -0. OS 

u 0.29 0.62 0.19 -0.05 -0.41 -0.18 

La 0.13 0.65 0.05 -0.21 -0.59 -0.28 

Ce 0.13 0.66 0.07 -0.18 -0.55 -0.29 

Nd 0.14 0.64 0.07 -0.22 -0.49 -0.29 

Sm 0.21 0.62 0.10 -0.11 -0.55 -0.35 

Eu 0.09 0.52 0.01 -0.13 -0.49 -0.42 

Tb 0.05 0.10 0.02 0.30 -0.01 -0.35 

Yb 0.17 0.66 0.09 -0.19 -0.55 -0.34 

Lu 0.14 0.68 0.11 -0.17 -0.47 -0.30 
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Correlation Coefficients (cont.) 

cao K20 ea Sr :Z:r 'i 

al-alk -0.84 0.17 0.02 -0.28 0.03 0.06 

NIG Ti -0.63 -0.08 0.06 0 . 15 0. 71 0.47 

NIG fm -0.89 0.17 0.04 -0.43 0.02 -0.07 

NIG K 0.02 0.87 -0.11 -0.31 -0.41 -0.06 

NIG Mg -0.38 0.27 -0.17 -0.72 -0.58 -0.59 

NIG Si -0 . 82 -0.36 0.01 -0.26 -0 . 04 -0.47 

cao 1. 00 -0.01 -0.07 0.35 -0.02 0.26 

K.O -0 . 01 1. 00 -0.01 -0.26 -0.33 0.04 

sa -0.07 -0.01 1. 00 0.20 -0.08 -0.04 

Sr 0.35 -0.26 0.20 1. 00 0 . 49 0.52 

zr -0.02 -0.33 -0 . 08 0.49 1. 00 0. 72 

'i 0.26 0.04 -0 . 04 0.52 0. 72 1. 00 

Cu -0.30 0.19 0 .2 2 -0.11 -0.07 0.01 

Ni -0.33 0.26 -0.06 -0.35 0.03 0.14 

v -0.20 0. 4 5 0.05 -0.03 0.20 0.39 

Zn -0.29 0. 12 0.09 -0.04 0 . 04 0.09 

Ag -0 . 18 -0.23 0.54 0.29 -0 . 11 -0.19 

Au -0.22 -0.13 0.47 0.11 -0.11 -0.18 

As 0 . 06 -0.27 -0 . 16 0.36 0.25 0.42 

Co -0.12 0.39 -0.09 0.03 0 . 07 0.18 

Cr -0.08 -0.35 -0.14 0 .2 2 0 . 85 0. 4 5. 

cs 0.00 0.63 0.04 -0.03 -0.1 2 0.16 

Hf -0.02 -0.34 -0.09 0.46 0.98 0.68 

Rb - 0 . 11 0.85 -0.03 -0.28 -0 . 22 0.03 

Sb -0.14 -0.35 0.36 0.26 -0.07 -0.18 

Sc 0.15 0.44 -0.02 -0.17 0.04 0.29 

Th -0.07 -0.21 -0.13 0 .4 7 0.94 0.77 

u -0.03 0.02 -0.13 0.31 0. 72 0.79 

La 0.12 -0 .12 -0.12 0.49 0.87 0.91 

Ce 0 . 10 -0.08 - 0.10 0.49 0.87 0.93 

Nd 0.07 -0 . 06 - 0.15 0.51 0.82 0.88 

Sm 0 . 11 0 . 00 -0.09 0.48 o.n 0.95 

Eu 0 .1 8 0.04 - 0 . 02 0. 4 7 0.70 0.93 

Tb 0.20 0.29 - 0.20 0. 31 0 .1 9 0.55 

Yb 0 .1 0 - 0.03 -0.09 0. 45 0.81 0.91 

Lu 0.0 7 -0.02 - 0.07 0.45 0 . 84 0.88 
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Correlation Coefficients (cent.) 

Cu Ni v zn Ag Au 

al-alk 0.48 0.47 0. 4 5 0.34 0.14 0.22 

NIG Ti 0.31 0.32 0.47 0.24 o.os 0.11 

NIG Fm 0 . 42 0.54 0.38 0.33 0.06 0.16 

NIG K 0.28 0.12 0.34 0.05 -0.10 0.05 

NIG Mg 0.04 0.27 -0.15 0.11 -0.16 -0.07 

NIG Si 0.26 -0.05 -0.14 0.14 0.42 0.43 

cao -0.30 -0.33 -0.20 -0.29 -0.18 -0.22 

K.O 0.19 0.26 0.45 0.12 -0.23 -0.13 

sa 0.22 -0.06 0.05 0.09 0.54 0.47 

Sr -0.11 -0.35 -0.03 -0.04 0.29 0.11 

Zr -0.07 0.03 0.20 0.04 -0.11 -0.11 
y 0.01 0.14 0.39 0.09 -0.19 -0.18 

Cu 1. 00 -0.12 0.21 0.42 0.48 0.70 

Ni -0.12 1. 00 0.42 0.07 -0.36 -0.33 

v 0.21 0.42 1. 00 -0.18 -0.05 0.07 

Zn 0.42 0.07 -0.18 1. 00 0.11 0.18 

Ag 0.48 -0.36 -0.05 0.11 1. 00 0.91 

Au 0.70 -0.33 0.07 0.18 0.91 1. 00 

As 0.07 0.30 0.10 0.15 -0.05 -0.11 

Co 0.15 0.18 0.81 -0.32 -0.06 0.04 

Cr -0.14 0.14 0.16 0.00 -0.18 -0.12 

Cs 0.42 -0.12 0.47 0.12 0.04 0.11 

Hf -0.07 0.04 0.19 0.03 -0.11 -0.11 

Rb 0.20 0.~2 0.41 0.21 -0.23 -0.18 

Sb 0.54 -0.44 -0.14 0.15 0.89 0.87 

Sc -0.03 0.43 0.76 -0.23 -0.35 -0.25 

Th -0.03 0.17 0.41 -0.01 -0.10 -0.08 

u 0.20 0.22 0.43 0.26 -0.02 0.00 

La 0.04 0.19 0.45 0.02 -0.14 -0.11 

ce 0.07 ~.20 0.39 0 . 11 -0.17 -0.14 

Nd -0.04 0.27 0.39 0.10 -0.23 -0.21 

Sm 0.08 0.29 0.50 0.08 -0.18 -0.14 

Eu 0.02 0.24 0.36 0.11 -0.25 -0 . 24 

Tb 0.10 0.22 0.08 0. 34 -0.16 -0.11 

Yb 0.07 0.27 0.44 0.11 -0.24 -0.21 

Lu 0.13 0.21 0.43 0.14 -0.14 -0.08 
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correlation Coefficients (cont.) 

As Co Cr Cs Hf Rb 

al-alk 0.24 0.32 -0.05 0.22 0.01 o.:6 

NIG Ti 0 . 26 0.34 0.59 0.10 0. 71 0.07 

NIG Fm 0. 09 0.25 0.09 0.10 0.03 0.20 

NIG I< -0.30 0.35 -0.37 0 . 61 -0.41 0.65 

NIG Mg -0 . 29 -0.08 -0.29 0.07 -0.54 0.2~ 

NIG Si -0.11 -0.08 0.06 -0.17 -0.03 -0. 30 

cao 0.06 -0.12 -0.08 0.00 - 0.02 -0.11 

K.O -0.27 0.39 -0.35 0.63 -0.34 0.85 

Ba -0.16 -0.09 -0.14 0.04 -0.09 -0.03 

Sr 0.36 0.03 0.22 -0.03 0.46 -0. 28 

zr 0. 25 0.07 0.85 -0.12 0.98 -0.22 
y 0. 4 2 0.18 0.45 0.16 0.68 0.04 

Cu 0.07 0.15 -0.14 0.42 -0.07 0. 20 

Ni 0.30 0.18 0.14 -0.12 0.04 0.22 

v 0.10 0.81 0.16 0.47 0.19 0. 41 

Zn 0.15 -0.32 0.00 0.12 0.03 0.21 

Ag -0. OS -0.06 -0.18 0.04 -0.11 -0.23 

Au -0.11 0.04 -0.12 0.11 -0 . 11 -0.18 

AS 1. 00 0.08 0.06 -0.07 0.25 -0. 29 

Co 0.08 1. 00 0.04 0.69 0 .11 0. 37 

cr 0.06 0.04 1. 00 -0.23 0.87 -0.27 

cs -0.07 0.69 -0.23 1. 00 -0.09 0.61 

Hf 0. 25 0 . 11 0.87 -0.09 1. 00 -0.21 

Rb -0.29 0.37 -0.27 0.61 -0.21 1. 00 

Sb 0.02 -0.08 -0.12 0.01 -0.06 -0. 31 

Sc 0.10 0.45 0.06 0.38 0.02 0. 38 

Th 0.34 0.32 0.78 0.00 0.94 -0.13 

u 0.34 0.13 0.52 0 .1 6 0.72 0. 17 

La 0. 46 0.30 0.65 0.07 0 . 85 -0.08 

Ce 0. 46 0.22 0.66 0.10 0.85 -0.03 

Nd 0.48 0.22 0.65 0.07 0.81 -0.02 

Sm 0. 55 0 . 30 0.53 0.12 0.74 0.01 

Eu 0. 48 0.12 0.46 0.16 0.67 0.05 

Tb 0. 4 3 -0.06 0.09 0.21 0.18 0. 15 

Yb 0.50 0. 27 0.61 0 . 10 0.00 0.04 

Lu 0 .4 0 0.25 0.67 0.11 0.84 0.04 
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Correlation Coefficients (cont.) 

Sb Sc Th u La ce 

al-alk 0.11 0.10 0.18 0.29 0.13 0.14 
NIG Ti 0.06 0.05 0.76 0.62 0.65 0.66 
NIG Fm 0.01 0.04 0.13 0.19 0.05 0.07 
NIG K -0.21 0.29 -0.28 -0 . 05 -0.21 -0.18 
NIG Mg -0.21 -0.07 -0.55 -0.41 -0.59 -0.55 
NIG Si 0.44 -0.46 -0. OS -0.18 -0.28 -0.29 
cao -0.14 0.15 -0.07 -0.03 0.12 0.10 

K:O 0.35 0.44 -0 .21 0.02 -0.12 -0.08 
Ba 0. 36 -0.02 -0.13 -0.13 -0.12 -0.10 
Sr 0.26 -0.17 0.47 0.31 0.49 0.49 
Zr -0.07 0 . 04 0.94 0. 72 0.87 0.87 
y -0.18 0.29 0. 77 0.79 0.91 0. 93 
Cu 0.54 -0.03 -0.03 0.20 0.04 0.07 
Ni -0.44 0.43 0 . 17 0.22 0.19 0.20 
v -0.14 0.76 0.41 0 . 43 0.45 0.39 
zn 0.15 -0.23 -0.01 0.26 0.02 0.11 
Ag 0.89 -0.35 -0 . 10 -0.02 -0.14 -0.17 
Au 0 . 87 -0.25 -0 .08 0 . 00 -0.11 -0.14 
As 0.02 0.10 0.34 0.34 0.46 0.46 
Co -0.08 0.45 0.32 0.13 0.30 0.22 
Cr -0.12 0.06 0.78 0.52 0.65 0.66 
Cs 0.01 0 . 38 0.00 0.16 0.07 0.10 
Hf -0.06 0.02 0.94 0. 72 0.85 0. 85 
Rb -0.31 0.36 -0.13 0.17 -0.08 -0.03 
Sb l. 00 -0.47 -0.07 -0.03 -0.10 -0.13 
Sc -0.47 1. 00 0.14 0.36 0.27 0.22 
Th -0.07 0.14 1. 00 0.75 0.94 0.92 
u -0.03 0 . 36 0.75 l. 00 0.82 0.84 
La -0.10 0 .2 7 0.94 0.82 1. 00 0.98 
Ce -0.13 0.22 0.92 0.84 0.98 1. 00 
Nd -0.19 0.25 0.88 0.76 0.93 0. 95 
Sm -0.16 0.32 0.86 0.82 0.97 0.97 
Eu -0.21 0.25 0.73 0.76 0.87 0.91 
Tb -0.19 0.06 0.26 0.50 0.43 0.50 
Yb -0.18 0 . 28 0.86 0.80 0.94 0.96 
LU -0.09 0.26 0.86 0.83 0.95 0.97 



Correlation Coefficients (cont.) 

Nd sm Eu Tb Yb Lu 

al-alk 0.14 0.21 0.09 0.05 0.17 0.14 

NIG Ti 0.64 0.62 0.52 0.10 0.66 0.68 

NIG Fm 0.07 0.10 0.01 0.02 0.09 0.11 

NIG K -0.22 -0.11 -0.13 0.30 -0.19 -0.17 

NIG M9 -0.49 -0.55 -0.49 -0.01 -0.56 -0.47 

NIG Si -0.29 -0.35 -0.42 -0.35 -0.34 -0.30 

cao 0.07 0.11 0.18 0.20 0.10 0.07 

K.O -0.06 0.00 0.04 0.29 -0.03 -0.02 

sa -0.15 -0.09 -0.02 -0.20 -0.09 -0 . 07 

Sr 0.51 0.48 0.47 0.31 0.45 0.45 

zr 0.82 0.77 0.70 0 . 19 0.81 0.84 
y 0.88 0.95 0.93 0.55 0 . 91 0.88 

Cu -0.04 0.08 0.02 0.10 0.07 0.13 

Ni 0.27 0.29 0.24 0.22 0.27 0.21 

v 0.39 0.50 0.36 0 . 08 0.44 0 . 43 

zn 0.10 0.08 0.11 0 . 34 0.11 0.14 

Ag -0.23 -0 . 18 -0.25 -0.16 -0.24 -0.14 

Au -0.21 -0.14 -0.24 -0.11 -0.21 -0.08 

As 0.48 0.55 0.48 0.43 0.50 0.40 

Co 0.22 0 . 30 0.12 -0.06 0.27 0.25 

cr 0.65 0.53 0.46 0.09 0.61 0.67 

Cs 0.07 0.12 0.16 0.21 0.10 0.11 

Hf 0.81 0.74 0.67 0.18 0.80 0.84 

Rb -0 . 02 0.01 0.05 0.15 0.04 0.04 

Sb -0 . 19 -0.16 -0.21 -0.19 -0.18 -0.09 

Sc 0.25 0.32 0.25 0.08 0.28 0.26 

Th 0.88 0.86 0.73 0.26 0.86 0 . 88 

u 0.76 0.82 0.76 0. 50 0.80 0.83 

La 0.93 0.97 0.87 0.43 0.94 0.95 

Ce 0.95 0.97 0.91 0.50 0.96 0.97 

Nd 1. 00 0 . 94 0.91 0.56 0.94 0.94 

Sm 0.94 1. 00 0.93 0.55 0.96 0.94 

Eu 0.91 0.93 l. 00 0. 59 0.93 0.90 

Tb 0 . 56 0.55 0.59 1. 00 0. 46 0.51 

Yb 0.94 0 . 96 0.93 0.46 l. 00 0.95 

Lu 0.94 0.94 0.90 0.51 0.95 1. 00 
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GOOSE TICKLE MAJOR AND TRACE ELEMENT PARAMETERS 

Initial Factor Method: Principal Factors 

Partial Correlations Controlling all other Variables 

ALALK NIGTI NIGFM ZR 

ALALK 1.00000 0.73307 0.46215 -0.24725 
NIGTI 0.73307 1.00000 -0.21899 0.67530 
NIGFM 0.46215 -0.21899 1.00000 0.06708 
ZR -0.24725 0.67530 0.06708 1.00000 
cu 0.24421 -0.05548 0.24717 0.07159 
NI 0.15239 -0.09436 0.34766 -0.06842 
co 0.30688 -0.11180 -0.00179 -0.03493 
CR -0.37849 0.23812 -0.18938 0.03093 

cu NI co CR 

ALALK 0.24421 0.15239 0.30688 -0.37849 
NIGTI -0.05548 -0.09436 -0.11180 0.23812 
NIGFM 0.24717 0 . 34766 -0.00179 -0.18938 
ZR 0.07159 -0.06842 -0.03493 0.03093 
cu 1.00000 -0.08824 -0.23104 0.33984 
NI -0.08824 1.00000 0.15269 0.72551 
co -0.23104 0.15269 1.00000 0.09559 
CR 0.33984 O.i2551 0.09559 1.00000 

Kaiser's Measure of Sampling Adequacy: 
Over-all MSA - 0.65268151 

ALALK NIGTI NIGFM ZR 
0.639433 0.623187 0.751817 0.678088 

cu NI co CR 
0.802332 0.626399 0.730372 0.434221 

Prior Communality Estimates: SMC 

ALALK NIGTI NIGFM ZR 
0.865987 0. 860130 0.657516 0.656290 

cu NI co CR 
0.~82789 0.688903 0.301640 0.665815 
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Eigenvalues of the Reduced Correlation Matrix: 

Total - 5.17906894 Average - 0.64738362 

1 2 3 4 
Eigenvalue 3.402513 1.234847 0.691171 0.249526 
Difference 2.167666 0.543676 0.441645 0.268615 
Proportion 0.6570 0.2384 0.1335 0.0482 
Cumulative 0.6570 0.8954 1.0289 1.0770 

5 6 7 8 
Eigenvalue -0.019089 -0.085307 -0.115749 -0.178843 
Difference 0.066218 0 . 030442 0.063094 
Proportion -0.0037 -0.0165 -0.0223 -0.0345 
cumulative 1.0734 1. 0569 1.0345 1.0000 

3 factors will be retained by the PROPORTION criterion. 

Factor Pattern 

FACTOR! FACTOR2 FACTOR3 

ALALK 0.87422 -0.29516 -0.25173 
NIGTI 0 . 83771 -0 . 35471 0.25597 
NIGFM 0. 72281 0 . 01586 -0.39346 
cu 0.64799 0.08336 0.04511 
ZR 0.61600 -0.31691 0.44571 
co 0.38243 0.16290 - 0.28614 
CR 0.36126 0.68863 0 . 34948 
NI 0.58132 0.64307 -0.05260 

variance explained by each factor 

FACTOR! FACTOR2 FACTOR3 
3.402513 1.234847 0.691171 

Final Communality Estimates: Total - 5.328531 

ALALK NIGTI NIGFM ZR 
0.914741 0.893092 0.677513 0.678545 

cu NI co CR 
0.428877 0.754243 0.254665 0.726854 
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Rotation Method: Va r imax 

Orthogonal Transformation Matrix 

1 
., 

3 ~ 

1 0.68217 0.65054 0.33383 
2 -0.48789 0.06491 0.87049 
3 0.54462 -0.75669 0.36168 

Rotated Factor Pattern 

FACTOR! FACTOR2 FACTOR3 

NIGTI 0.88392 0.32825 0.06346 
ZR 0.81757 0.04290 0.09098 
cu 0.42594 0.39283 0.30519 
NIGFM 0.27105 0.76897 0.11280 
ALALK 0.60327 0.74004 -0.05613 
co 0.02556 0.47588 0.16598 
CR 0.10080 0.01527 0.84644 
NI 0.05416 0.45972 0.73482 

variance explained by each factor 

FACTOR! FACTOR2 FACTOR3 
2. 082310 1. 840922 1. 405299 

Rotation Method: Varimax 

Final Communality Estimates: Total - 5. 328531 

ALALK NIGTI NIGFM ZR 
0.914741 0.893092 0.677513 0.678545 

CU NI CO CR 
0.428877 0.754243 0.254665 0.726854 
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GOOSE TICKLE TRACE ELEMENT PARAMETERS 

Initial Factcr Method: Principal Factors 

Partial Correlations Controlling all other Variables 

NIGTI ZR y cu 

NIGTI 1. 00000 0.66837 -0. 21873 0.28100 
ZR 0.66837 1. 00000 0. 56139 -0.02674 
'l -0 . 21873 0.56139 1 . 00000 0 . 03010 
cu 0. 28100 -0 . 02674 0. 03010 1.00000 

NI -0. 00289 0.06508 -0.33710 0.18244 
v 0. 43674 -0.11832 0. 26324 -0.01567 
co -0. 07792 -0.14204 0. 06797 -0.08416 
CR -0. 13058 0.14622 0.01064 0.10945 

NI v co CR 

NIGTI -0. 00289 0.43674 -0 . 07792 -0.13058 
ZR 0. 06508 -0.11832 -0.14204 0.14622 
'l -0. 3371 0 0. 2 6324 0. 06797 0.01064 
cu 0 .18244 -0.01567 -0. 08416 0.10945 
NI 1 . 00000 0.20151 0.1963 2 0.62352 
v 0. 20151 1.00000 0.57880 -0.05207 
co 0.19632 0.57880 1 . 00000 -0.05493 
CR 0 . 62352 - 0 . 05207 -0.05493 1.00000 

Kaiser's Measure of Samp1 ing Adequacy: 
Over-all l'!SA - 0. 6 527072('1 

NIGTI ZR y cu 
0.661573 0.624904 0.58484 1 0.852406 

NI v co CR 
0 . 6291 26 0.684040 0 . 621490 0.617600 

Prior Communality Estimates: SMC 

NIGTI ZR 'l cu 
0.748917 0. 748869 0.545542 0.333740 

NI v co CR 
0.640169 0.688519 0 . 514151 0.5155 7 8 



Eigenvalues of the Reduced Correlation Matrix: 
Total • 4.73548601 Average- 0.59193575 

Eigenvalue 
Difference 
Proportion 
Cumulative 

Eigenvalue 
Difference 
Proportion 
Cumulative 

1 
2.929900 
1.503066 

0.6187 
0.6187 

5 
-0.037555 

0.097468 
-0.0079 

1.1024 

2 
1.426833 
0.697574 

0.3013 
0.9200 

6 
-0.135024 
0.028251 
-0.0285 
1.0739 

3 
0.729260 
0.557457 

0.1540 
1.0740 

7 
-0.163275 

0.023181 
-0.0345 

1.0394 

4 
0.171803 
0.209358 

0.0363 
1.1103 

8 
-0.186456 

-0.0394 
1. 0000 

3 factors will be retained by the PROPORfiON criterion. 

Factor Pattern 

FACTOR! FACTOR2 FACTOR3 

NIGTI 0.82133 -0.25927 0.11527 
v 0. 77188 0.04535 -0.41475 
ZR 0. 73819 -0.43631 0.26667 
cu 0.52356 0.12504 0.25903 
NI 0.51549 0.67742 0.10967 
CR 0.40066 0.55087 0.29682 
'{ 0.45107 -0.56635 -0.06779 
co 0.45908 0.26161 -0.54866 

variance explained by each factor 

FACTOR! FACTOR2 FACTOR3 
2.929~00 1.426833 0.729260 

Final Communality Estimates: Total - 5.085993 

NIGTI ZR Y CU 
0.755092 0.806401 0.528816 0.356847 

NI V CO CR 
0.736663 0.769872 0.580221 0.552081 
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ZR 

1 
2 
3 

Rotation Method: varimax 

Ortnogonal Transformation Matrix 

1 

0.73365 
-0.63332 
0.24630 

Rotated 

FACTOR! 

0.88358 

2 

0.47472 
0.73703 
0. 48107 

3 

0.48620 
0 . 23602 

-0 . 84137 

Factor Pattern 

FACTOR2 FACTOR3 

0.15715 0.03156 
NIGTI 0.79516 0.25427 0.24116 
y 0.67291 -0.23589 0.14268 
NI -0.02382 0.7g675 0. 31825 
CR 0.01818 0.73900 0.07508 
cu 0.36872 0.46532 0.06612 
co 0 . 03599 0.14681 0.74657 
v 0.43542 0 . 20033 0.73495 

Variance explained by each factor 

FACTOR! FACTOR2 FACTOR3 
2.193537 1.604126 .!.288329 

Final Communality Estimates: Total • 5.085993 

NIGTI ZR Y CU 
0.755092 0.806401 0.528816 0.356847 

NI V CO CR 
0.736663 0.769872 0.580221 0.552081 
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LOWER HEAD MAJOR AND TRACE ELEMENT PARAMETERS 

Initial Factor Method: Principal Factors 

Partial Correlations Controlling all other Variables 

ALALK 
N!GTI 
NIGFM 
ZR 
cu 
NI 
co 
CR 

ALALK 
NIGTI 
NIGFM 
ZR 
cu 
NI 
co 
CR 

ALALK 

1. 00000 
0.30809 
0.65920 
0.16998 
0.11243 
0.15072 
0.08952 

-0.65255 

cu 

0.11243 
0.15691 
0.01583 

-0.13205 
1.00000 

-0.41310 
-0.03818 
-0.01598 

NIGTI 

0.30809 
1.00000 
0.40791 
0.75172 
0.15691 

-0.14529 
0.39295 

-0.00071 

NI 

0.15072 
-0.14529 

0. 20772 
0.02968 

-0.41310 
1.00000 
0.10794 
0.12104 

NIGFM 

0.65920 
O.t.0791 
1.00000 

-0.67555 
0.01583 
0.20772 

-0.30223 
0.60851 

co 

0.08952 
0.39295 

-0.30223 
-0.34702 
-0.03818 

0.10794 
1. 00000 
0.10963 

ZR 

0.16998 
0.75172 

-0.67555 
1.00000 

-0.13205 
0.02968 

-0.34702 
0.60589 

CR 

-0.65255 
-0.00071 

0.60851 
0.60569 

-0.01598 
0.1£104 
0.10963 
1.00000 

Kaiser's Measure of Sampling Adequacy: 
Over-all MSA • 0.56914490 

ALALK NIGTI NIGFM ZR 
0.640677 0.664392 0.535563 0.441954 

CU NI CO CR 
0.709741 0.706217 0.461493 0.486577 

Prior Communality Estimate~: SMC 

ALALK NIGTI NIGFM ZR 
0.~28266 0.943667 0.930832 0.932479 

CU NI CO CR 
0.407615 0.465307 0.268090 0.865792 
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Eig@nvalues of the Reduced Correlation Matri~: 
Total • 5.7420474 Average- 0.71775593 

1 2 3 4 
Eigenvalue 3.176269 1.947176 0.589805 0.203008 
Difference 1.229093 1.357371 0.386798 0.132313 
Proportion 0.5532 0.3391 0.1027 0.0354 
Cumulative 0.5532 0.8923 0. 9950 1. 0303 

5 6 7 8 
Eigenvalue 0.070694 -0.036309 -0.060249 -0.148347 
Difference 0.107003 0.023941 0. 088098 
Proportion 0.0123 -0.0063 -0.0105 -0.0250 
Cumulative 1.0427 1.0363 1. 0258 1.0000 

4 factors will be retained by the PROPORTION criterion. 

Factor Pattern 

FACTOR! FACTOR2 FACTOR3 FACTOR4 

NIGTI 0.93579 0.25376 0.14911 0.08653 
~IGFM 0.84785 -0 . 43311 -0.12211 -0.18944 
ALALK 0.83410 -0.49651 0.03660 0.00829 
ZR 0.49150 0.82486 0.11162 0.01442 
CR 0.44984 0.79237 -0 . 11253 -0.11697 
cu 0.34012 -0.32338 0 . 48804 -0.07961 
NI 0.46025 -0.15927 -0.53588 0.04308 
co 0.33848 -0.10245 0.02920 0.37078 

Variance explained by each factor 

FACTOR! FACTOR2 FACTOR3 FACTOR4 
3.176269 1.947176 G.589805 0.203008 

Final Communality Estimates: Total .. 5.916258 

ALALK NIGTI NIGFM ZR 
0 . 943651 0.969811 0.957232 0 . 934625 

cu NI co CR 
0.464776 0.526222 0.263396 0.856547 



1 
2 
3 
4 

ZR 
CR 
NIGTI 
NIGFM 
NI 
ALALK 
cu 
co 

Rotation Method: Varimax 

Orthogonal Transformation Matrix 

1 

0. 51892 
0.84619 
0.06834 

-0.10003 

2 

0.60971 
-0.33993 
-0.69166 
-0.18523 

3 

0.50012 
-0.39823 

0.71342 
-0.28691 

Rotated Factor Pattern 

FACTOR! 

0.95922 
0.90794 
0.70187 
0.08408 
0.06312 
0.01436 

-0.05583 
0.05385 

FACTOR2 

-0.06060 
0.10442 
0.36513 
0.78372 
0.69743 
0.65049 

-0.00551 
0.15232 

FACTOR3 

-O.OC718 
-0.13729 

0.44850 
0.56374 

-0.10106 
0.63861 
0.66990 
0.12453 

4 

0.32994 
-0.09906 

0.08925 
0.93454 

FACTOR4 

0.10389 
-0.04943 

0.37779 
0.13471 
0.16006 
0.33540 
0.11341 
0.47094 

variance explained by each factor 

FACTOR! FACTOR2 FACTOR] FACTOR4 
2.254350 1.694877 1.420164 0.546868 

Final Communality Estimates: Total - 5.916258 

ALALK NIGTI NIGFM ZR 
0.943651 0.969811 0.957232 0.934625 

CU NI CO CR 
0.464776 0.526222 0.263396 0.856547 
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LOWER HEAD TRACE ELEMENT PARAMETERS 

Initial Factor Method: Principal Factors 

Partial Correlations Controlling all other Variables 

NIGTI ZR y cu 
NIGTI 1.00000 0.69592 -0.45228 0.56678 
ZR 0.69592 1.00000 0.79093 -0.34032 
y -0.45228 0.79093 1.00000 0 .14 "/44 
cu 0. 56673 -0.34032 0.14744 1.0!1000 
~I 0.54399 -0.49582 0,28143 -0.55161 
v 0.06799 -0.13896 0.32012 0.37468 
co 0.17433 -0.06223 -0 . 10887 -0.39538 
CR -0.27729 0.78720 -0.58864 -0.01288 

NI v co CR 

NIGTI 0.54399 0.06799 0.17433 -0.27729 
ZR -0.49582 -0.13896 -0 . 06223 0.78720 
y 0.28143 0.32012 -0.10887 -0.58864 
cu -0.55161 0.37468 -0.39538 -0.01288 
NI 1. 00000 0.40261 -0.41692 0.24005 
v 0.40261 1.00000 0.84066 0.27078 
co -0.41692 0.84066 1.00000 -0.15357 
CR 0.24005 0.27078 -0.15357 1.00000 

Kaiser's Measure of Sampling Adequacy: 
Over-all MSA • 0.45391882 

NIGTI ZR Y CU 
0 . 541373 0.462836 0.451962 0.180582 

NI V CO CR 
0 . 212448 0.553799 0.442432 0.535246 

Prior Communality Estimates: SMC 

NIGTI ZR 'l CU 
0.818509 0.940667 0.760234 0.525169 

NI V CO CR 
0.570989 0.854525 0.781688 0.832617 
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Eigenvalues of the Reduced Correlation Matrix: 
Total • 6.08439825 Average • 0.76054~78 

1 2 3 4 
Eigenvalue 3.238518 1.561873 0.688423 0.467338 
Difference 1.676644 0.!!73451 0.221085 0.137605 
Proportion 0.5323 0.2567 0.1131 0.0768 
Cumulative 0.5323 0.7890 0. 9021 0.9789 

5 6 7 8 
Eigenvalue 0.329732 0.034289 -0.083573 -0.152202 
Difference 0.295443 0.117862 0.068629 
Proportion 0.0542 0.0056 -0.0137 -0.0250 
Cumulative 1. 0331 1.0388 1. 0250 1.0000 

5 factors will be reta!ned by the PROPORTION criterion. 

Factor Pattern 

FACTOR! FACTOR2 FACTOR3 FACTOR4 FACTORS 

ZR 0.83840 -0.51586 0.08480 -0.09873 -0.02947 
NIGTI 0.83665 0.03034 0.17562 0.32489 -0.03504 
CR 0.72433 -0.46407 -0.10099 0.06765 -0.28360 
v 0.70204 0.63092 -0.06662 -0 . 07286 -0.00743 
y 0.69656 -0.19898 0.02309 -0.27321 0.41382 
co 0.46613 0.68142 -0.05386 -0.29717 -0.19338 
cu 0.12550 0.34003 0.60108 0.21961 0.0856~ 

NI 0.31602 0.24878 -0.52060 0.36190 0.17658 

Variance explained by each factor 

FACTORl FACTOR2 FACTOR3 FACTOR4 FACTORS 
3.238518 1.561873 0.688423 0.467338 0.329732 

Final Communality Estimates: Total ~ 6.285884 

NIGTI ZR Y CU 
0.838532 0.986832 0.771213 0.548228 

Nl V CO CR 
0.594937 0.900716 0.810209 0.835216 
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Rotation Method: varimax 

Orthogonal Transformation Matrix 

l 2 3 4 5 

1 0.73965 0.45056 0.40053 0.16392 0.25025 
2 -0.50908 0.73573 -0.17662 0.32591 0.24924 
3 0.05466 -0.09139 0.05838 0.78645 -0.60S60 
4 0.16479 -0.41002 -0.43028 0.46301 0.63656 
5 -0.40449 -0.28148 0.78729 0.18446 0.32141 

Rotated Factor Pattern 

FACTOR! FACTOR2 FACTOR3 FACTOR4 FACTORS 

CR 0.89234 0.04624 0.11380 -0.13293 0.07867 
ZR 0.88302 0.03924 0.45114 -0.01515 -0.04244 
NIGTI 0.68069 0.25988 0.17262 0.42911 0.30613 
co 0.02418 0.89256 0.03883 0.08287 0.06778 
v 0.18543 0.81855 0.19137 0.23321 0.324S1 
y 0.40536 0.16088 0.75884 0.01732 0.06983 
cu -0.04588 0.137€3 -0.00178 0.721S9 -0.08054 
NI 0.06685 0.17491 0.03555 -0.07641 0.74349 

Variance explained by each factor 

FACTOR! FACTOR2 FACTOR3 FACTOR4 FACTORS 
2.245204 1.613307 0.861514 0 . 790120 0.775739 

Final Communality Estimates: Total • 6.285884 

NIGTI ZR y cu 
0.838532 0.986832 0.771213 0.548228 

NI v co CR 
0.594937 0.900716 0.810209 0.83S216 






