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ABSTRACT 

Eddy-diffusion in the ocean is studied by using drifter data In 

the Atlantic Equatorial Undercurrent. The drifter tn\leetorks an· 

analysed to include a detailed analysis of the space and time scales of 

the relative motion. The ratio of Lagrangian integral length scale to the 

standard deviation of drifter positions ranged from c(' =0.02 to 0.3(), 

However, on average it was 0.12 in the meridional direction, thus 

confirming the Fahrbach et al.'s (1986) calculations of the meridional 

diffusion of salt from the Equatorial Undercurrent. Integral time scni<'H 

were found to decrease with increasing velocity. It was shown that 

measurement errors have little effect upon estimation of ccldy­

diffusivities but biased Lagrangian integral time and length scnlcs 

(smaller than they should have been). The Eulerian integral Ume-scale 

for relative velocities is only slightly greater than the Lagrangian lnWgral 

time-scale. Joint space-time correlations indicated t11at the eddy velocity 

changes rapidly compared with time-scales required t.o advect a particle 

over the eddy length-scale. 

A perturbation analysis of the 3-D Lagrangian equations of 

motion is used to exan1ine the diffusion induced by a random field of 

surface gravity waves in an inviscid and viscous ocean. At second order, 

the inviscid soluUons give a random field of shearing motion in the 

horizontal plane. For the viscous case, the Lagrangian equations of 

motion are solved for a spectrum of nondecaying surface gravity waves 

and a spectrum of decaying surface gravity waves. At second order, the 

zero-frequency nondecaying and decaying solutions show random field of 
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shearing motion in both horizontal and vertical plane. For zero angle of 

interaction between the primary waves, the horizontal velocity due to 

viscous decaying wave solution is large near the surface compared to the 

invisefd and viscous forcing solutions. The three solutions converge 

below the depth of the viscous boundary layer for zero angle of 

interaction. For interaction with non-zero angle between the primary 

waves. the viscous decaying solutions go to inviscid solutions below the 

depth of the viscous boundary layer. The viscous nondecaying wave 

solutions decay more slowly with depth and remain different from the 

inviscid and viscous decaying wave solutions. 

The inviscid solutions exhibit horizontal diffusion identical to 

Herterich and Hasselmann (1 982). The viscous (decaying and 

nondccaying) solutions show both horizontal and vertical diffusion. The 

inclusion of viscosity causes a significant change in the horizontal 

lnviscid eddy-diffusivity. Near the surface, the single-particle viscous 

decaying diffusivity D 1 yn is larger than the inviscid diffusivity D 1
1(' and 

viscous nondecaying diffusivity D I rF by factors of 1.2 and 1. 7 respectively 

for viscosity v= I.Ox Jo-2m2/s. Changing viscosity has very small effect on 

the horizontal diffusivity. 

The ve111cal eddy-diffusivtty is found to be much smaller than 

U1e eddy-viscosity. A linear increase of vertical eddy-diffusivity with the 

viscosity is observed. The single-particle horizontal cddy-diffusivitles 

increase with wind-speed raised to the power of 3. The single-particle 

vertical eddy-diffusivity does not show any power-law dependence with 

the wind-speed. 
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Chapter 1 

INTRODUCTION 

Oceanic eddy-diffusion is a complex physical phenomenon 

that is caused by a great number of different dynamical processes. 

Generally we constrain ourselves to descrtbing the gross statistics of 

dispersing material. In the past, eddy-diffusivities have been evaluated 

from the statistics of clusters of drifters. The underlying assumption of 

the approach was that the dispersive motion of the particles can be 

understood by knowing only the statistical properties (e.g.. mixing 

length, energy) of diffusive motion. Various dynamic processes can be 

related to the statistical properties of this motion (Sanderson and Okubo, 

1988; Hertcrlch and Hasselmann, 1982). 

Taylor ( 1922) kinematically formulated the basic concept of 

the theory of dispersion in homogeneous stationary turbulence in terms 

of Lagrangian velocity correlation. Stommel (1949) showed that the 

classical Flckian diffusion equation can not properly describe the relative 

spread of a cluster of particles with respect to its center of mass. 

Instead, he found that Richardson's (1926) model of the distance­

neighbour concentration describes the oceanic diffusion reasonably well. 

A review of oceanic diffusion models was given by Okubo (1962). He 

showed that for a radially symmetric two-dimensional diffusion of 

passive contaminants the solution to the diffusion equation may be 

expressed fn terms of a diffusion velocity (Joseph and Sendner, 1958) or 

in terms of the rate of turbulent energy transfer-parameter (Ozmidov, 

1958). The former class of solutions are characterized by maximum 
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concentrations that decrease \vith time as t-2 and thr horizontal 

variances increase as t2. while the later class of solttUons flnd that tht•y 

are t·3 and t3 respectively. However, observations show that th<' 

horizontal variances increase with time at. a power between 2 mtd =~ 

(Okubo, 1971). Davis (1982) examined the relationship hetwt~Pn the 

transport of scalar properties and the statistics of particle motion and 

developed a model for predicting statistics of particle dispersal frmn 

Eulerian statistics of velocity. Kawai (1985) measured horizontal vdoeity 

gradients in the seas around Japan and United States and observed that 

the magnitude of divergence and vorticity vary as scale raised to tht• 

power of -0.67 for the mesoscale (3 m to 30 kin). J{rauss and Boning 

( 1987) used one hundred and thirteen satellite tracked buoys in order to 

calculate Lagrangian statistics of eddy field in the norlhern North 

Atlantic. They noticed that the horizontal variance of part.ldc n1ot1on Is 

in good agreement with a t2-1aw during the flrst day after release and 

increases linearly with time during 10 to 60 days. The spectral slope was 

found to follow a -2 or -3 power law. A -2 power law of the spectral slope 

was observed by Collin de Verdiere (1983) in the eastern North Atlantic . 

More recently Osborne et al. (1989) and Sanderson ct al. (1 990) hnve 

shown both absolute and relative dispersion to be fractal. Sanderson and 

Booth (1991) have formulated a fractal model that provides a better flt. to 

the data than the Taylor model- the Taylor model being a speeial ease of 

the fractal model. 

The theory of shear flow dispersion began with Taylor's ( 195a) 

realization that the sheared velocity profile in a pipe would Interact. with 

cross-channel molecular diffusion to produce augmented aJong-chrumcl 

dispersion. Sometimes it is appropriate (e.g., In estuaries Wilson and 

Okubo. 1978) to consider the oceanic motion as a large scale shear and 

small scale eddies. The combined effect of diffusion across t.he shear 

produces augmented horizontal diffusion in the along stream dircdfon. 
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Bowden (1965) considered horizontal diffusion due to shear effect in 

alternating currents, steady currents and wind driven currents. Young 

ct al. ( 1982) considered advection diffusion in the oscillatm:y. sheared 

velocity field comprised of internal waves. 

Zimmem1an (1986) reviewed cascade shear-dispersion and 

Lagrangian chaos models of the horizontal dispersion by tidal r:t.'?£! 

residual currents. In the cascade shear-model tide induced turbulence 

is an essential aspect of the dispersion process. Turbulence interacts 

with vertical shear producing horizontal dispersion. In tum, that 

mechanism interacts with horizontal shear of residual currents giving 

rise lo a large effective dispersion in the residual current direction. The 

Lagrangian chaos model explains the possibility of dispersion without 

recourse to large scale turbulence. However, it is a purely ldnematic 

model based on the Euler Lagrange transformation. The superposition of 

deterministic Eulerian modes in the velocity field, that have different 

length and time scales can give rise to Lagrangian trajectories that are 

chaoUc functions of time. 

Most of the above models are limited to semi-empirical scaling 

arguments based on dimensional analysis or are largely kinematic in 

that details of the motion are not analytic solutJons of dynamical 

equations. The main philosophy of the proposed study is that much of 

the horizontal dispersion of the drifters can be described using solutions 

of the equations of motion. Much of the work that has adopted this 

approach has been done in a Lagrangian coordinate system. From a 

n1athe1natical stand point, the Lagrangian representation of the Navier­

Stokes equations appears more complex than the Eulerian form. 

FurU1ennore, the Navier-Stokes equations in Lagrangian form have not 

been studied as extensively as the Eulerian form. However, since one 

follows the motion of fluid particles In the Lagrangian description, the 

Lagrangian approach has advantage over the Eulerian method for 
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describing the diffusion (Okubo. 1967). If an Eulertcm coordinate system 

is used then one is always confronted with an Euler-Lagrange 

transformation in order to obtain eddy-diffusivitlcs. Also the fre(' 

boundary conditions are often more simple in a Lagrangian framcworlt. 

The Lagrangian fonn of the diffusion equation was Brsl given 

by Corrsin (1962). An exact analytical solution of the Lagrangian 

diffusion equation has been found for time dependent. spatially uniform 

Lagrangian deformations and eddy-diffusivities (Okubo et al.. 198:l). 

Later. Sanderson and Okubo (1986) extended this analysis to indude 

nonlinear Lagrangian deformations. 

Pierson (1962) solved the Lagrangian form of the Navicr-Stokes 

equations by means of a perturbation technique. He showed that t.he 

solution of the first order equations yield two- and three- dimensional 

motions that have some of the properties of mixing and turlmlence. 

Okubo (1967) applied solutions to the viscous Lagnmgian equations of 

motion and evaluated the eddy-diffusion caused by these solutions. This 

approach is fundamentally different from all prior work in that it found 

solutions to the equations of motion that caused eddy-(liffttsion direetly. 

Tarnai ( 1972) studied diffusion due to a random field of deep 

water gravity waves using a perturbC::ttion analysis of the equations of 

motion. He considered two-dimensional motion in the vertical plane, and 

therefore observed no eddy-diffusion in the second order in the 

perturbation analysis. ln the third order interactions Tamai ( 1972) f01 mel 

solutions that were valid for short times and caused eddy-diffusion. But 

his estimates are too small to account for experimentally measured 

values. Herterich and Hasselmann (1982) considered the horizontal 

diffusion of tracers in the presence of a random field of ocean surf<u~e 

gravity waves. Instead of solving the Lagrangian equations of motion, 

they constructed Eulerian velocities (for second order intcractJons) 
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following the procedure of Hasselmann (1961) and applied Euler­

Lagrange transformation to obtain Lagrangian velocities (from the 

Eulerian velocities). These solutions exhibited hortzontal eddy-diffusion 

as a particular case of zero frequency interactions but no vertical eddy­

diffusion. Recently, Sanderson and Okubo (1988) solved the inviscid, 

nonrotatlng equations of motion in Lagrangian coordinates for a random 

field of internal waves. Their study was appropriate for coastal waters, in 

that they used normal modes rather than considering waves propagating 

vertically. In the second order of their analysis, they found solutions 

which gave horizontal eddy-diffusion. In particular they found that an 

approximation to the Munk (1981) spectrum resulted in a pair diffusivity 

varying as scale raised to the power of 4/3. The solutions also show that 

the velocity field is a random function of space. 

In this thesis we will study oceanic diffusion by analysing data 

as well as making a theoretical study of mixing by surface waves. 

Fahrbach et al. (1986) conducted four experiments in the Atlantic 

Equatorial undercurrent in order to estimate the salt loss from the 

undercurrent. They analysed their data by applying a technique which 

has a recently discovered error (Sanderson et al., 1988). Chapter 2 

contains a re-analysis of Fahrbach et al. 's drifter trajectories and 

calculates eddy-dlffusivities by applying the appropriate corrections. The 

analysis is further extended to include a detailed study of the space and 

time scales of relative motion (Sanderson and Pal, 1990). 

The results of the above work indicate that at scales of 0 (10-

5000 m) particle dispersion is related to internal waves. Hertertch and 

Hassehnann ( 1982) show that surface gravity waves can result in 

horizontal dlffusivitles that fit the small scale 0( 10 - 100 m) portion of 

Okubo's (1971) diffusivity diagram. Sanderson and Okubo (1988) related 

the horizontal eddy-diffusivities to nonrotatlng internal wave dynamics. 

Both Herterlch and Hasselmann and Sanderson and Okubo obtained 
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solutions that diffuse material only in the hmizonta1 plam~. no diffusion 

in the vertical plane. The question to be asked is: can we obtain any 

vertical diffusion from the interaction of random waves'? One n1<~jor 

objective of this thesis is, therefore, to explore the possibility of relating 

random wave motion due to deep water surface gravity waves with 

vertical diffusion. 

Chapter 3 deals with the solution of the 3-D Lagrangian 

equations of motion for surface gravity waves in an invtscld nonrotating 

ocean. At second order, the inviscid solutions show a random fielcl of 

shearing motion in the horizontal plane, but no vertical motion. 

In Chapter 4, the in viscid solutions are extend eel to inch ule 

viscosity. The viscous 3-0 Lagrangian equations of motion are solved 

analytically for a spectrum of nondecaytng and decaying st trface gravity 

waves in a homogeneous nonrotating ocean. At second order. the 

viscous (nondecaying and decaying) solutions show a random field of 

shearing motion in both the horizontal and vertical planes. 

The solutions obtained in Chapter 3 and Chapter 4 an~ used to 

calculate single-particle, two-particle and patch eddy-diffusivitles 

following the technique of Herterich and Hasselmann ( 1982) <md arc 

presented in Chapter 5. The resulting equations are then numerically 

integrated to obtain estimates of eddy-diffusivitles. Eddy-diffuslvities for 

an inviscid fluid are then compared with the corresponding quantities for 

a fluid with a range of eddy-viscosities. 
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Chapter 2 

PATCH DIFFUSION COMPUTED 
FROM LAGRANGIAN DATA 

2.1. INTRODUCTION 

Katz et al. (1980) calculated a salt budget for the Atlantic 

Equatorial Undercurrent. They estimated that most of the salt loss is 

due to vertical mixing above and below the equatorial current. However, 

they did not have direct measurements of horizontal salt transport 

perpendicular to the core caused by eddy-diffusion. Fahrbach et al. 

( 1986) used four drifter cluster experiments to measure relative 

diffusivities and determined that meridional horizontal eddy-diffusion 

accounts for about 20% of the salt loss. They calculated eddy 

diffuslvities using the method of Okubo and Ebbesmeyer (1976). This 

method has two shortcumings. First It invokes an arbitrary constant Cc 

(taken to be 0.1 by analogy with Ozmidov, 1960) that is the ratio of the 

Lagrangian integral length scale to the standard deviation of drifter 

positions about the cluster centroid. Second the number of degrees of 

freedom for the residual velocities is given incorrectly, as discussed by 

Sanderson et al. ( 1988). 

Fahrbach et al. (1986) calculated residual velocities by 

extracting motion due to time averaged velocity gradients from the 

velocities relative to the cluster centroid. They used these residual 

velocities to calculate horizontal eddy diffusivfties. In this case the 

hmizontal salt transport would be due to the combined effects of direct 
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eddy-diffusion as well as interaction of eddy-dffTusion with veloeity 

gradients (Okubo et al. 1983). However Fahrbach et. al. (1986) ust'd 

these hori'~ontal eddy diffusivities in a pure cddy-difii.tston model. 

without consideration of the shear-diffusion effect. 

Although each of the three points n1entioned above are ortly 

likely to affect the horizontal salt transport in a minor way It i~ 

worthwhile to reanaly~e the data. In so doing we contlrm tlw 

conclusions of Fahrbach et al. (1 986), and also obtain insight Into the 

spatial and temporal structure of the dispersive motion. 

A detailed description of the cluster expelimcnts is given in 

Fahrbach et al. (1986). The four drifter clusters were named CIPREA. 

01, D2, 03 and consisted of 6, 9, 8, 5 drifters respectively. The drogues 

were set at depths in the range 70 to 90 m, depending t tpon the 

estimated depth of the salinity core. The ship's radar was used to 

measure relative drifter positions every 30 minutes for periods ranging 

from 39 to 50 hours. Experiments Dl, 02, 03 were cr1rrir.d out nt about 

21 OW, whereas experiment CIPREA was conducted in the Gulf of Guinea 

at about 4°W. 

In section 2.2 we use a variation of the method of Okubo ct al. 

(1976) with modifications recommended by Sanderson ct. al. (1988) to 

calculate eddy diffusivitles from residual velocities relative to the centroid 

motion. We then calculate the Lagrangian autocorrelation coctnelcnt of 

velocity relative to the centroid as a function of lag. This yields 

Lagrangian integral time/length scales, eddy diffusiviUes and values for 

Ce (Taylor 1921). Section 2.3 provides a more detailed analysis of the 

structure of motion relative to the cluster centroid. We compute t.he 

Eulerian space-time correlation function by correlating the motion of a 

drifter at position x at time t with the motion of a different particle at x + r 

at tiine t+'t. The analysis is done by resolving moUon Into components 

/ 
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that. ::1re transverse and along the direction of the space lag vector r 

(Middleton and Garrett 1986. Poulatn and Niiler 1989). 

2.2. CALCULATION OF EDDY DIFFUSIVITIES 

In this section we calculate relative eddy diffusivities from 

drifter positions and velocities, relative to the cluster centroid. 

Positions/velocities relative to the cluster centroid will be referred to as 

relative positions/velocities throughout the following work. The absolute 

positions of drifters are not known with nearly the same precision as 

relative drifter positions, so it is inappropriate to attempt to calculate 

sing1c particle (absolute) diffusivities. Consider positions in a Lagrangian 

coordinate system fixed to the cluster centroid so that x;,, (i= 1,2) is the i'th 

coordinate of the n'th particles relative position. Here the x1 and x2 axes 

::Jrc positive towards the east and north respectively. The position of the 

n'lh drifter in a cluster can be written as the following function of its 

Lagrangian relative position coordinates a;11 =x;11(t=0), and subsequent 

displacement x';, 

(2.1) 

In a cluster of N drifters we note that 

N N N 
L, X;11 = La;,= L x';11 =0 

11=1 11=1 11=1 

since all positions are re1ative to the centroid. 

Considering a model for drifter motion that consists of 

advection with the patch centroid and diffusion relative to the patch 

centroid, then a time-dependent eddy-diffusivity tensor can be defined !n 

a manner analogous to Okubo et al. (1976) and Sanderson et al. (1988) 
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N 

K;}t)=( 'Lx';11 ."rj11 )/(N-t). i.j=l.2 
n=l 

(2.2) 

where ij11 the time derivative of x'Jn' 

Eddy diffusivity tensors calculated using (2.2) turn out to he 

rapidly fluctuating functions of time, as illusb·ated by the represen­

tative example in Figure 2.1. However if the relative trc-.tjectorlcs arc 

quasi-stationary (quasi-stationarity is discussed later}, then averaging 

Kij(t) with respect to time will yield eddy diffusivlties Kij tJ1at afc 

independent oft and might be compared with eddy diffusivlt.les K"' founcl 

by Fahrbach et al. (1986). These and values of Cl, derived from a ratio of 

KI(JOKF) are presented in Table 2.1. 

Eddy diffusivitles for CIPREA and for the x direction in 02 arc a factor of 

about 5 greater than those of Fahrbach et al. (1986). indicating values 

for Ce that are substantially larger than 0.1. However eddy dlffusiviUes 

for the other experiments are similar to, or smaller than those of 

Fahrbach et al. (1986), indicating that the assumption Ct'=O.I Is 

reasonable. It should be stressed that these values of C
1
, are not. 

rigorously defined since Fahrbach et al. ( 1986) did not deflne residt ml 

displacements x'i in the same way we did. Our reason for using a 

different method for calculating residual displacements will now he 

discussed. 

It is conceivable that the large values of K;; arc caused by 

larger scale deformation of clusters. We therefore compute the diffusivlt.y 

tensor K1}t) from residuals x'j that are left when both the centroid 

displacement and displacements due to time-varying spatially- uniform 

Lagrangian deformations are extracted (Okubo et al., 1976; Sanderson ct 

al., 1988). 
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Table 2-1: Zonal and meridional components of the time-
averaged eddy diffusivlty tensor. K;; ts for a model 
in which all motion relative to the centroid Is 
considered diffusive. K # Is for a model In which 
motion relative to the centroid Is considered to 
have a component due to time-varying spatially 
uniform Lagrangian deformations, as well as 
diffusive motion. K;f are eddy diffusivitles 
calculated by Fahrbach et al.(l986), and Ce; are 
coefficients calculated from K;; and K;[. Units for 
(K)s:m2s-l 

ill i22 
-d Ku -d 

1(22 
F 

Kll 
r 

lt22 

(•2/1) (•2/1) <•2/1) <•2/1) <•2/1) <•2/•) 

ClPRU 22 32 33 .so 4.7 4.0 o • .s 0.8 

Dl 16 5,9 9.3 6.1 16.6 8.3 0.1 0.07 

D2 109 7.5 107 1.7 18.4 17.2 0.6 0.04 

Dl 14 19 40 l7 13.7 20.2 0,1 0.09 

(2.3) 

(2.4) 

Summation with respect to j Is Implied In (2.3) and the spatially unifonn 
~. -

Lagrangian deformation Is represented by (a:)o· Average values of Ki 
1 

are presented In 'fable 2.1. If (2.3) Is a better model for the velocity fteld 

than (2.2), UJen we would expect K1; to be significantly less than Kll' 'Ibis 
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Figure 2-1: Plot of K11(t) and K22(t) for experiment CIPREA. 
Error bars represent plus and minus one 
standard deviation. 

is not generally the case and. in fact. sometimes the reduced num 'Jer of 

degrees of freedom (N-3) in (2.4) as opposed to N-1 In (2.2) leads to 

K1; > K;;. We conclude that for the present data the cluster dispersion Is 

better modelled using (2.1) and (2.2) (eddy-diffusion) than (2.3) and (2.4) 

(spatially uniform deformation with eddy-diffusion). Th.ls contrasts with 

the analysis of Fahrbach et al. (1986) who removed motion due to time­

averaged velocity gradients from the residuals. 

Assuming that the relative velocity is statistically statlonruy 

we can use the approach of Taylor (1921) to relate patch dispersion to 

the Lagrangian autocorrelation of relative velocity and Its Integral time 
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scale. It is quite clear from Okubo (1971) that in general the relative 

velocity is not statistically stationary. Yet we might consider it quasi­

stationary. if the time taken for a particle's relative velocity to become 

substantially auto-decorrelated is small. compared with the time taken 

for the statistical properties of the relative velocity to change appreciably. 

The quasi-stationary assumption held for other cluster data (Pal and 

Sanderson (submitted)). We will proceed on the assumption that quasi­

stationarity holds for the present data set, and will later examine our 

results for consistency with this assumpUon. The Lagrangian 

autocorrelation function for velocities relative to the centroid, is 

N 1 JT-t L, T uj,(t)uj11(t+t)dt 
I II= l 0 

R,/t) = N u~u~ 
l J 

(2.5) 

where uj11 =xj11 and Uj is the root mean square value of uj. Division by the 

duration of the experiment T rather than T -'t is necessary to obtain 

unbiased statistics at large lags (Beauchamp and Yuen 1979). An 

cmalysis of relative diffusion that is based on (2.5) yields insight into the 

structure of dispersive motion, that is not immediately apparent from 

(2.2) . The Lagrangian integral time scale t"' gives the typical period over 

which a drifter velocity remains correlated with its velocity at the start of 

the period, 

(2.6) 

where for our data we are constrained to integrate between the limits 0 to 

T rather than 0 and oo. Figure 2.2 shows that Ru('t) generally does 
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become small long before t approaches T. indicating that truncation of 

the integral will still yield reasonable estimates for t*1 and t*2 . The typical 

distance a drifter moves in the Lagrangian integral Ume scale is the 

Lagrangian integral length scale 

/
>t< -T* 1 II 
,- .. JU I 

(2.7) 

The relative eddy diffusivity tensor that was previously obtained hy 

averaging (2.2) with respect to t, can also be written 

!*" 
K;;=UjUj foo R;;(t)dt= ; .. 

() "i 
(2.X) 

where, again, the integration interval has to be truncated to 0 to T. 

Values of eddy diffusivity are not biased by mcnsurenH~nt 

error, whereas Lagrangian integral time and length scales an~. Conslckr 

the measured relative velocity Lt
1 to consist of a component dt te to the 

true relative motion u7;· and an uncorrelated component due to position 

measurement error u~. 

I I I 

ll =II 'Ji·+ll e 

It follows immediately that the mean square value of the true relative 

velocity is less than that of the measured relative velocity, as in the 

following equation 

(2.10) 

where < > represents averaging over drifters in a cluster as in (2.5). 

Using (2.9) we see that the Lagrangian autocorrelation function of the 

measured relative velocity is 
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{
I 't=O R- I I - <u Tt.(t+i:)u Tr(t)> 

'2 , 2 -r;:;t:O 
<u n>+<u e > 

(2.1 I) 

whereas the Lagrangian autocorrelation for the true relative velocity is 
<ur,(t+i:)ur,(t)> 

R1i.=----­
<u~).,> 

Using (2.10), (2.11), (2.12) we see that 

RJr= {I R(i:)<u'2> 

<u'2>-<tl' 2>' e 

(2. I 2) 

(2.13) 

Equation (2.13) indicates that measurement errors Will bias 

the Lagrangian integral time scale to be smaller than its true value, since 

(2.14) 

Similarly. we see from (2.10) and (2.13) that the Lagrangian integral 

length seale is biased smaller than its true value since 

f <u'l> J <u12>1/2 Rdt=[l---]112 <tt1~1.,> 112 R1.,dt. 
<u'2> 

On the other hand (2.10) and (2.13) show that eddy diffusivity is 

unbiased by measurement errors since 

<u'~rr> J Rr,dt = <u'2> J R d't. 

Equation (2.13) enables us to estimate an unbiased Lagrangian auto­

correlation R'l'r from the Lagrangian autocorrelation R that is based on 

measured velocities and knowledge of the mean square velocity due to 

position fixing errors <u'l>. Fahrbach et al. (1986) estimated the position 

fixing error to be ±200m and the resulting velocity error to be 0.02 m/s. 

Figure 2.2 shows the Lagrangian autocorrelation R 11 , R22 and 

' 
··~ 

·~ 
.l 
·~ 
; 
•1 
·' 
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the helicity IlL =(R 12-R21)/2 (Middleton and Garrett 1986) plotted against 

lag. In general/zL is small. indicating that there is no dominant sense for 

rotational motion about the centroid. In all but the CIPREA experiment. 

the values of hL are not significantly difTerent from zero. In CIPREA the 

small negative values of IlL indicate that about 7% of the <.'nergy of 

relative motion can be thought of as being due to a particles relative 

trajectory curving in the clockwise sense. In expe1iments 0 l, 02, oa t lw 

Lagrangian autocorrelation function drops off rapidly with increasing lag 

and then exhibits small amplitude ringing that is probably due to 

internal waves. Statistically significant (at the 50% contlllence kvd) 

dominant periodicities of 12 hours were observed for they component of 

motion in D2; 11 hours for the x component of motion in 03; a broad 

band from 40 to 12 hours for the x component. of motion in CIPREA was 

significant at the 80% confidence level; whereas 01 had no domimmt 

periodicity. Internal waves, propagating in a thermocline, that have 

periods in the range 12 to 40 hours have wavelengths much larg<.~r (50 

km to 170 km) than the patch dimensions, and hence can only em 1se 

small relative velocities. Fahrbach et al. (1986) observe horizontal senles 

of 20 to 40 km for variations in stratification. It is possible that such 

large scale Internal waves could indirectly cause significant rdativ<~ 

velocities via an interaction with other components of the flow field. For 

example the vertical shear above the undercurrent is about 0.02 ,\·- 1• 

Hence a 40 km intenml wave of amplitude 10 m could tip this vert.ical 

shear to produce a horizontal component of shear of 2x lo-\·-1 which at 

the scale of a patch (say 5 km) gives a relative horizontal velocity of ahout. 

0.1 m/ s. Although this process seems reasonabk from a scaling 

perspective, we lack the necessary data to test the idea. 

Internal waves with periods of - 1 hour have wavelengths of 

4000 m and could directly cause significant cluster distortion and could 

also result in the rapid drop off of R observed in experiments 01, 02. 03. 
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Such high frequencies are barely resolvable In our data sets due to our 

sampling Interval and measurement errors, so this suggestion is 

tentative. 

Experiment CIPREA was carried out further to the east than 

D 1, D2, 03. The Lagrangian autocorrelation falls off more slowly for 

CIPREA. On the other hand, magnitudes of relative velocities VI and U2 
are larger for 01. 02, 03 than for CIPREA rrabte 2.2). An association of 

larger relative velocities with shorter Lagrangian integral time scales was 

also observed by Pal and Sanderson (submitted). Similar associations 

between velocity magnitudes and integral time scales have been made by 

Krauss and Boning (1987) for the case of single particle statistics. 

Table 2-2: Time-averaged values of the standard deviation of 
drifter positions a.l' and a

1 
relative to the cluster 

centroid, magnitude of relative velocltles U';· 
Lagrangian integral time-scale 'tj, eddy 
dlffuslvttles K;;. and ratio of Lagrangian integral 
length scale to the standard deviation of drlft.er 
positions ct.l' and cey. The numbers enclosed In 
parantheses are corrected for measurement 
error. 

bpt 0 • 0 
'1 

U' 1 U' 2 
,. 

I 
,. 
2 ill i.u. c ,. b .. ka • 10.2 WI • 10-2 .,. •i.autel •iDutll • 2,. .2, • 

ClPR!A 1.76 1.94 (S,4)S.2 (4 .8)4.6 (123)132. (232)254 22 32 0.23 0.36 

D1 3.04 1.10 (9,6)9,4 (7,5)7.4 (30)31 (17)11 16 S.9 0.06 0.04 

D2 3.81 3.61 (10,4)10.3 (8.4)1.3 (157)160 (17)17 109 7.S 0.26 0.02 

D3 3.54 5.14 (6.8)6. 7 (6.8)6.6 (41)50 (64)67 14 19 0.06 0.05 
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To understand why larger U' might be associated wlU1 smallt•r 

t*, let us assume that the length scales L of the eddies arc constrained to 

be somewhat independent of U'. For relative motion within a cluster of 

drifters this assumption is reasonable since a cont.inumu of eddy scales 

ensures that the energy-containing eddies have length scales comparahl<· 

with the cluster dimensions. For single partlcle statistics t11e scales of 

the energy-containing eddies might be primarily determined by the 

internal Rossby radius. Nevertheless, if the length scale is l1xcd 

independent of U' then energy transfer rates u';u'lJU';flJ.\j, the largest. seale 

eddies (energy-containing eddies) will scale proportional to u'!IIL. This will 

be the rate at which the eddies change their energy U'2/t, whieh gives 

t=L/U' (from U'2/t=U'3/L). Another approach is to consider the 

momentum equations where the field acceleration scales as U'2JL. which 

will cause rates of velocity change that scale as U'/t so the t scales as 

t-=L/U' (from U'/t=U'2/L). 

From Table 2.2 we see that the Lagrangian Integral time seale 

is short compared to the time taken for the cluster to change its 

dimensions significantly. Consequently it appears that the quasi­

stationarity assumption is reasonable. This justifies our definition and 

use of such quantities as relative eddy diffusivities and Lagrangian 

integral time-/length scales. 

Values of ce are calculated for the X andy directions (Cl'.X' cr•y) 

and presented in Table 2.2. Generally Ce is 0(0.1), as assumed by Okubo 

and Ebbesmeyer (1976). However Ce is considerably larger than 0.1 for 

the CIPREA experiment and the x component of relative velocity in 02. 

Values of Ce in Table 2.2 are different from those in Table 2.1, because 

Fahrbach et al. (1986) calculated their residuals, x';· differently from 

ours. Also, Fahrbach et al. (1986) used N-l as the number of degrees of 

freedom (following Okubo and Ebbesmeyer 1976) when they should have 

used N-3 (Sanderson et al .• 1988). Both these effects would cause Ce in 

Table 2.1 to be bigger than the C e in Table 2.2. 
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Averaging over all four experiments gives mean eddy 

dlffusivities of 38 m2/s, 15.5 m2!s for the x, y directions. Corresponding 

values obtained from the analysis of Fahrbach et al. (1986) are 13.4 m2/s, 

12.4 m2/s. Only the y component of eddy diffusivity is important for 

calculating the horizontal salt flux from the core of the equatorial 

undercurrent. Our analysis therefore. confirms the Fahrbach et al. 

( 1986) estimate that only 20% of the salt loss can be due to horizontal 

diffusion. 

2.3. EULERIAN ANALYSIS OF RELATIVE VELOCITIES 

Consider a current meter deployed at position x at time t. At 

time t the current meter will measure a velocity identical to the velocity of 

a drifter that passes through x at time t. The drifter velocity could 

therefore be specified as a function of the Eulerian position x that it finds 

itself in at time t. Alternatively, the drifter velocity at time t could be 

specified as a function of its Lagrangian coordinates a=x(t=O) and time. 

Thus it is the coordinate system in which we analyze drifter data that 

determines whether we obtain Eulertan or Lagrangian velocity statistics. 

In section 2.2 we used a Lagrangian coordinate system, in which each 

dtifter's relative velocity was a function of its initial position. Thus 

averages over the initial drifter positions (or equivalently averages over 

the drtfter identification number, I,~= I), yielded Lagrangian statistics of 

the relative motion. In the following work approximations to the average 

over all of the two-dimensional Eulerian space J dx will be used to obtain 

Euletian statistics of the relative motion. tHere the origin of the 

coordinate system will still be fixed to the cluster centroid, i.e. we filter 

out the mean patch motion.) 

Often in oceanography it is easter to obtain Eulerian statistics 

(such as the Eulerian integral time scale tE) than related Lagrangian 

statistics (viz. t*). Since patch dispersion is dependent upon t* it is of 

:) 
I 

,, 
i 

.. 
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interest to find relationships between t* and tE. These relations also 

yield insight into the processes that disperse clusters. To study the 

space-time patterns of relative motion we will calculate joint spr-we-t inw 

Eulerian correlations. 

The joint space-time correlations of the x and y (Cartesian) 

components of relative velocity can be written 

Ri 
lj 

u;('x,t) u}x+r, t+t) 
(2.15) 

where the overbar represents averaging in both x and t. The x. 1 points 

should be either uniformly or randomly spaced. In nrder to eaknlnte 

unbiased estimates when averaging over data spanning a finite period '/' 
Tt T it is important to use (lfnr - (.)dt rather than I 1/(T-t)IJ -r:(.)dt. Averaging 

Jo o 
with respect to x, t is really only appropriate for stationary and 

homogeneous velocities. Relative velocities are expected to he 

inhomogeneous and nonstationary. However we will proceed on the 

assumption that relative velocity is quasi-hmnogeneous and qltasi­

statlonary, as discussed in the previous section. 

Estimating R1~(r, t) from drifter data presents a special 

difficulty. Drifters follow the flow and will, therefore. preferentially 

sample regions of previous net convergence (Davis 1982). Fahrhaeh et. 

al. (1986) observe that statistically meaningful velocity gradients could 

not be resolved for all experiments apart from CIPREA. Our analysis in 

section 2 confirms this result. Therefore we will not attempt any 

correction for the bias, and expect it to be small. Plots of drifter tracl<s 

for CIPREA (Fahrbach et al. 1986) indicate divergence from the cluster 

centroid for all drifters. It seems especially unlikely. therefore, that the 

R& statistics suffer from biasing by regions of previous net convergenc<!. 
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Following Middleton and Garrett (1986) an estimate of R,j(r, t) is found by 

averaging over Lagrangian coordinates a and b of distinct drifters, (i.e. 

aT-b) 

~ ,J(r, t)=<u;(:x:(a,t)) u~{x(b,t+t)) ~(x(b,t+t)-x(a,t)-r)>(Uiu~- 1 • (2.16) 

The average < > in (2.16) also involves averaging with respect 

to t as well as space x and 8 is the Dirac B function. The position vector 

x is <m Eulerian variable in both (2.15) and (2.16). In (2.15) it is 

assumed that lhe discrete values of x that we average over are either 

randomly or uniformly distributed in space. However in (2.16) the 

discrete values of x that we average over are the Eulerian coordinates 

that correspond to the positions of drifters. The Eulerian position x of a 

drifter depends upon the flow field, time and release position. Such 

positlons are not necessarily, therefore, either randomly or uniformly 

distributed in space. Hence (2.16) is only an estimate of (2.15). 

The data are not sufficiently extensive to calculate statistically 
A . 

meaningful values of R1/r, t), which is a function of three independent 

variables. However we can average over space lags to find the Eulerian 

Ume lagged correlation 

fA . 
. R&(r,t)dr 

R }~(t) =""ll'":"'"---
'1 A . 

R ij(r,t= O)dr 

(2. 17) 

which is plotted in Figure 2.3. The Eulerian autocorrelation functions 

have a shape that is very similar to, but different from, the Lagrangian 

aut.ocorrelations (Figure 2.2). Note that from the Eulerian perspective 

there is no evidence of rotation since H= 1/2(R£)2-R11) is essentially zero 

for all e.Kperiments. This contrasts with the slight amount of clockwise 
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rotation of Lagrangian trajectories indicated by negative values of ltL for 

experiment CIPREA. Integrating the Eulerian antocorrelatlons gives 

Eulerian integral time scales t 1J that are typically slightly larger than th(' 

corresponding Lagrangian integral time scale t ... (Table 2.3}. 

We expect that Lagrangian integral time scales must be less 

than or equal to Eulerian integral time scales. An Eulerian vcloetty 

changes only due to the local change of the velocity Held with respect to 

time. On the other hand, a Lagrangian velocity changes due lu the 

drifter being advected into a region where the velocity is different. as well 

as due to local changes in the velocity field with resped to time. For 

example a frozen eddy field of relative motion could result in a llnik 

Lagrangian integral time scale, but the corresponding Eulerian integral 

time scale would be infinite. Middleton and Garrett (1986} observed 

single particle statistics in which the Eulerian integral time scale was 42 

hours while the Lagrangian integral time scale was 15 hours. This is an 

example where advection through the eddy field leads to a greater rate of 

change of particle velocity than does the change in the eddy field it self. 

The relative velocity field of the present data is caused by proeess(~S with 

time and space scales that are much smaller than those important. for 

the single particle statistics of Middleton and Garrett (1986). For drifter 

clusters CIPREA, Dl. 02, D3 it is clear that drifters traverse only a small 

portion of an eddy structure before the eddy structure has itself 

completely changed. This is the sort of result that might he expected, for 

example, in a random wave field, where particle displacements in a wave 

period are small compared to the wavelength (Herterich and Hasselmann 

1982, Sanderson and Okubo 1988). Thus we will now calculate the lime 

and space scales of the relative velocity field. 

1\ . 
Although the present data are insufficient to calculate R

1
](r; r.), 

we will assume isotropy and obtain useful joint correlations (of relative 

velocity) as a function of the magnitude of space lag r =lrl and t. However 
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Figure 2-3: Plots of Eulerian autocorrelation coefficients of 
velocities relative to the centroid. Error bars 
represent plus and minus one standard 
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in this case it makes little sense to consider x, y components of the 

relative velocity since the lag vector r has no fixed mientation. Rather we 

decompose the relative velocity into components that are longitudinal uf. 

and transverse u7. to the lag vector r (Middleton and Garrett, 1986). This 

gives longitudinalj* and transverse g* relative velocity correlations 

(2.18) 

I I 

u.1{x,t)u7(x+r,t+t) 
g*(r, t) =--====~- (2.19) 

I I I I 

uL(x,t)u~x+r,t+t)- u~x,t)uL (x+r,t+t) 
h*(r, t)= (2.20) 

..Ju?u? 

To calculate t, g•, and 11• relative velocity pairs of distinct drifters were 

binned for space and time lags centred on [r1,r2,r3,r4, ... ]=[0.4,1.2,2.0,2.8, ... ] 

km and lt1,t2, t 3, ... J =[0.5,1.0, 1.5, ... ] hours. Values of helicity h* are small for 

aJI experiments, indicating that there is no preferred sense of rotation at 

any space or time scale. The patterns of correlations indicated by plots 

of l" and g* are complicated, and variable from one experiment to the 

next. Representative plots of f and g* are shown for experiments 

CIPREA and 02 in Figure 2.4a and 2.4b respectively. In the case of 

CIPREA there are some clear structures in the relative velocity field 

correlations, although values of correlations are generally much less 

tl1an 1. However it is equally clear that relative velocity is a rapidly 

changing function of position within the cluster. In D2 we see that the 

time and space scales over which correlation features persist is much 

less than in CIPREA. Again we speculate that the larger relative 

velocities in D2 (compared to CIPREA) lead to more rapid relative velocity 

fluctuations (in space and time). 
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There is a tendency for negative correlations when the space 

lags are large and the tln1e lags are relatively small. This is particularly 

evident for the longitudinal correlation f" in CIPREA at space lags 7 ltm > 

r > 2 km and time lags 4 hours> 't > 0 hours. In general we cxped that 

eddy features with scales similar to the dimensions of the cluster will 

cause relative motion at opposing sides of the cluster to be in opposing 

directions for time lags corresponding to the life time of the eddy. This 

must be generally true for transverse motion if there is to be no net 

motion through a plane traversing the cluster. For longitmtinal motion 

this will be true for singularity structures corresponding to nodes or lhws 

of convergence/ divergence (Okubo 1970). Thus we expect gt to be 

generally negative for large space lags and small Un1e lags. We also 

expect t to be negative for large space lags and small time lags. If the 

dominant cluster-scale eddies have singularity structures corresponding 

to nodes or lines of convergence. By the same argun1ent. saddles and 

vortices would be expected to result in no preferred sign for ./"'. whereas 

spirals would result in slight negative values of t, for large space lags 

and small time lags. The dominant singularity structure for CIPREA is 

that of an outward node, as seen from calculations of velocity gradients 

as well as from visual inspection of relative trajectories (Fahrbach el al. 

1986). Thus it is not surprising that/ is negative at large space lags nnd 

small time lags. Interestingly, the eddy structures apparent in Figtare 

2.4a,b seem to be relatively short-lived (about 3 to 4 hours for CIPREA 

and only 0.5 to 1.5 hours for 02). This is consistent with the eddy Held 

evolving rapidly with time, compared to the rate at which a Lagrangian 

drifter sees the field change due to its advection. 

Similarly wave-like motions that have wavelengths comparable 

to the cluster dimension will cause relative motion at opposing sides of 

the cluster that will be negatively correlated for short time lags, but will 

become positively correlated for time lags greater than half a wave period. 
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Table 2-3: integral time-scales: Lagrangian t 11•, t/: Eulerian 
Cartesian components tEi and t.F:f. All values 
are in minutes and are corrected for 
measurement error. 

Experiment T* t* t* t* T* * u v Eu Ev EL TE'I 

(minutes) (minutes) (minutea) (minutea) (minutes) (minutes) 

CIPREA 132 254 159 330 460 -839 

D1 31 18 33 21 15 41 

D2 160 17 194 17 88 170 

Dl 50 67 63 73 167 -72 

The fact that Figure 2.4a does not show f(r=3km,t) alternating between 

positive and negative values as t increases Indicates that the time scale 

for the persistence of strong negative correlations (t= 4 hours) is more 

indicative of the lifetime of an eddy, than half the period of a wave. We 

aJso note that relative speeds were typically - 0.07 m/s for CIPREA. 

TI1us in 4 hours we expect a drifter to move only about 1 km, which is a 

small distance compared to the scale of the eddy (r=3) km. This is 

consistent with our earlJer explanatlon as to why Eulerian and 

Lagrangian integral time scales were so strntlar. 

Eddy (or wave) features with scales (wavelengths) similar to 

patch dimensions will cause relative motion of particles separated by 

distances small compared to the cluster dimensions to be positively 

correlated for Ume Jags Jess than the time scale of the eddy (or wave). 

Looking along the t axes of plots in Figures 2.4a. b we see some tendency 



CIPREA 

T (hours) 

g•(r, T) CIPREA 

- 5.2 
E 
~ -... 2.8 

0 .4 
0 5 10 15 

T (hours) 

t•(r,T) 
02 

T (hours) 

02 

Figure 2-4: Contour plots showing r and g• as ~ctlons of 
time and space lags. for experiments CIPREA 
(4a) and D2 (4b). Une shading indicates 
negative correlations. Unshaded areas have 
correlations in the range 0.0 to 0.1. Dotted 
shadinlt indicates correlations reater than 0.1. 

20 



31 

for the correlations to fluctuate between positive and negative values in a 

way that is indicative of relative motion due to waves. In Figure 2.4b the 

positive correlations of r at r = .4 k.m, t = 11 hours are consistent with 

our earlier analysis that indicated dominant pe1iodicitles of about 12 

hours for 02. In Figure 2.4a the positive correlations scattered along the 

t axis from 1: = 8 to 1: = 19 hours are indicative of a broad band of periods 

noted earlier for CIPREA. In all cases l and g* drop to zero for r in the 

range .4 krn to 1.5 km and 1: in the range 0.5 hours to 3 hours. which 

indicates a lot of eddy energy at small spatial scales (r= 0.4 to 1.5 km) 

and small time scales (1:""' 0.5 to 3 hours). We cannot properly resolve all 

of these small scales, due to the paucity of data. 

There is a strong pocket of positive g* centred at r = 2 krn and 

t = 2 hours in Figure 2.4a. This means that transverse motions at 

separations of 2 krn become positively correlated after a 2 hour lag. If 

this feature were caused by an eddy of transverse motion propagating 

along r, then we would expect g* to also be positive at r = 1 km and t = 1 

hour. and at all other points between (r = 0, t = 0) and (r = 2 km, t = 2 

hours). This is not the case. Instead what we have is a packet of 

transverse motion that disappears for a while, and then reappears 2 

hours later at a point 2 km away. This is a quite different feature from 

say a propagating wave. We do not know of a mechanism that might give 

rise to such a feature. The dimensions of the correlation pattem about 

the point r = 2 km, t = 2 hours on the plot. indicate that the eddy has 

dimensions of about 0.8 km (about half the standard deviation of drifter 

positions, a) and a lifetime of about 2 hours. 

From Figure 2.4 it is clear that f' and g* are not separable 

functions of r and 1:. Thus it is difficult to analyJ.:e and interpret spatial 

structures (of the relative velocity) independent of associated time scales. 

Nevertheless we define spatial correlations 
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1' 1' J
0 

N(r=O,t)dr: J
0 

N(r.r:)f"'(r,r:)dr 

f(r) 
'/' T 

f N(r,t)dt f N(r=O,t)f"'(r=O,t)dt 
0 0 

(2.21) 

1' 1' J N(r=O,t)dr: J N(r,t)g*(r,r:)tlt 
() () 

g(r)= T T 

f N(r,t)dt f N(r=O,t)g*(r=O,t)dt 
() 0 

(2.22) 

and time lagged correlations 

s: N(r,t=O)dr J~ N(r,t)f"'(r;t}c/r 

F(t) L T 

J N(r,t)dr f N(r,t=O)f•(r,t=<l)dr 
0 0 

(2.23) 

JL N(r;t=O)clr JL N(r,t)g*(r,"C)tlr 

G(t)- () L _L_I_) -----. J N(r,r:)clr J N(r,t=O)g"" (r,t=O)dr 
0 () 

(2.24) 

where we have normalized by the number of correlating velocity pairs 

N(r,t) in the bin with space lag rand time lag t. 

We find that there is a trend for .f{r) and g(r) to be posiUvc for 

small spatial lags, and negative for larger spatial lags (Figure 2.5). This 

applies to both transverse and longitudinal components of motion. The 

resolution of space correlations is poor, due to the small number of 

drifters per patch. Hence the zero crossings of f(r) arc not well 

determined. However for experiment CIPREA zero crossings for Rr) and 
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g(r) are at space scales that are within 15°/o of the Lagrangian integral 

length scale. In the case of D2 the zero crossings are at about twice the 

Lagrangian integral length scale. Generally the relative velocity lleld 

becom~s spatially decorrelated at scales ntuch s•naller than the pateh 

dimensions, and negatively correlated for larger spatial lags. Negative 

values of g(r) are expected in order to ensure that the relative velocity 

does not have any net transport through a plane. Negative values of.ttr) 

for large lags, are not similarly required. These, therefore, indicate an 

interesting structural property of the relative velocity field, that. we 

cannot fully explain for all experiments. Although large scale eddies with 

nodal structures (Okubo 1970) and internal waves with scales shnilar to 

the cluster dimensions would cause negative ftr) for large r. 

Time-lagged correlations of the longitudinal and transverse 

velocities exhibit a different structure from those of t.he Eulerian 

cartesian components. In particular for CIPREA and 03 there were large 

negative lobes for transverse velocity correlations. Eulerian Integral time 

scales for transverse and longitudinal velocities ti~v ti~r arc pn~scnt.cd In 

Table 2.3. They differ greatly from t~1• t~, and tj~11 , tj£1' in t.hal t.hcy are 

larger in magnitude and sometimes negative valued. It appears as 

though the longitudinal-transverse velocity decomposition enables us to 

see temporal structure that the .x-y velocity decomposition misses. We 

might picture this as a consequence of the longitudinal-tnmsverse 

coordinates being more nearly aligned with the eddy causing relative 

motion between particles than the x-y coordinates. 

2.4. SUMMARY 

Drifter cluster data of Fahrbach et al. ( 1986) are reanalyzed to 

include a detailed study of the time and space scales of relative motion. 

In the meridional direction the assumption Ce = 0.1 turns out to he 

reasonable, thereby confirming relative diffuslvitles in the meridional 
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direction calculated by Fahrbach et al. (1986). However the zonal 

dlffusfvJty is substantially different from that of Fahrbach et al. (1986). 

The Lagrangian autocorrelation of relative velocity falls off on a time scale 

that Is short compared to that for substantial changes in cluster 

dimension, which jusunes treating relative velocity as being quasi­

statlonruy. Of course this result can only apply approximately (i.e. on a 

local time and space scale), since it is well known (Okubo 1971) that 

duster variance grows fa&ter than t, indicating that the Lagrangian 

autocorrelation does not converge for large t. 

The analysts indicated that, for the present data set, there was 

little to be gained by using an advection-diffusion model for cluster 

spreading, rather than a pure eddy-diffusion model. Measurement 

errors were shown to have little effect upon estimation of eddy 

dlffusivftles but biased Lagrangian integral time and space scales 

towards values that were sn1aller than they should have been. 

An Eulerian analysis of the relative velocities gave integral 

time scaJes only slightly greater than the Lagrangian integral time scales. 

This indicates that fluctuations of the relative particle trajectories are 

largely temporal, rather than advective. 

Joint space-time correlations of relative velocity indicate a 

complicated nonseparable dependence on space and time lags. In the 

case of ClPREA the correlations are coherent over a wider range of space 

«:md time lags than for D2. Integral time scales for transverse, 

longitudinal velocity components differed greatly from those for x, y 

velocity components. 
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Chapter 3 

RESIDUAL MOTIONS ASSOCIATED WITH 
INVISCID GRAVITY WAVES 

3.1. INTRODUCTION 

The purpose of the following two chapters is lo invesligatc the 

oceanic mixing caused by surlace gravity waves. As mentioned In 

Chapter 1. oceanic mixing is caused by many dynamical processes. '1\vo 

basic difficulties in modelling these processes are ( 1) the broad range of 

scales of the natural eddy-spectrum of the ocean and (2) t.he st.ron~ 

nonlinearity of many of the dynamical processes. There Is some evidence 

that at smaller scale surface waves may yield an important contribution 

to horizontal diffusion. Diffusion measurements of Schott d al. ( 1978) 

indicate that the coefficient of horizontal diffusion depends on t.he 

surface-wave height. The relationship between surface waves ami 

vertical diffusion is still unknown. The measurements of vertical 

diffusion by Kullenberg (1971. 1976. 1977) show that the cocffielcnt of 

vertical diffusion is very small and inversely proport.fonal to vert kal 

stratification (N) and weakly dependent on wind stress. We will 

investigate the extent to which weak nonlinear interactions of surface 

waves can contribute to eddy-diffustvities. This investigation will solve 

the Navter Stokes equations of motion in a Lagrangian coordinnl.e 

system . 

One of the earliest attempts to study the diffusion due to a 

random field of deep water surface gravity waves was by Tamal ( 1972) . 
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Tamai used a perturbation technique to solve the equations of motion. 

However, at a crucial stage, he chose only to consider two-dimensional 

motion in the vertical plane, and therefore observed no eddy-diffusion at 

second order in the perturbation analysis. In the third order interactions 

THmcli ( 1972) found solutions that were valid for short times and caused 

eddy-diffusion. By transforming the x-component of velocity into a 

spectral representation of two wave groups, he estimated coefficients of 

surface diffusivities which turned out to be too small to account for 

experimentally measured values. Herterich and Hasselmann (1982) 

considered the horizontal diffusion of tracers in the presence of a random 

field of ocean surface gravity waves. Instead of finding solutions t., the 

Lagrangian equations of motion, they constructed Eulerian velocitie . for 

second order interactions following the procedure of Hasselmann (1961) 

and others. The second order Eulerian solutions could not cause eddy­

diffusion at zero-frequency interaction. Second order Lagrangirm 

solutions were obtained from the sum of the second order Eulerian 

solutions and a Stokes drift due to Euler-Lagrange transformation of the 

first. order Eulerian solutions. The Stokes-drift-part of their second order 

Lagrangian solution exhibited horizontal diffusion as a particular case of 

zero-frequency interactions but no vertical diffusion. Recently, 

Sanderson and Okubo (1988) solved the inviscid, nonrotatlng equations 

of motion in Lagrangian coordinates for an internal wave field . They 

found solutions which gave horizontal eddy-diffusion. 

The present approach solves the 3-D Navier Stokes' equations 

of motion in a Lagrangian coordinate system by applying a perturbation 

technique. In this manner we solve for particle motion directly. The 

Eulerian analysis. on the other hand, requires a nonlinear 

transformation to obtain particle motion. At second order we obtain 

solutions that result from zero-frequency wave interaction, that disperse 

mate1ial. 
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The motivation for the present work is to solve the 3-D 

Lagrangian equations of motion for a spectnun of surface waves in an 

inviscid irrotational ocean. We will consider the zero-frequency motion 

resulting from interactions of statistically independent random wav<~ 

packets. The zero-frequency second-order Lagrangian pm·ucle veloelty 

will therefore be a random function of position and will fluctuate as wave.~ 

packets propagate by (Herterich and Hasselmann, 1982). lt will lw 

shown that this second order velocity field is horizontally nondivergent. 

This ilnplies that the solutions can cause only horizontal dispersion httt 

no vertical dispersion. This character of the solutions is changed when 

we introduce viscosity in the equations of motion as discussc.~d in tlw 

next chapter. 

This chapter is organized as follows. The matJ1cmatical 

formulation of the problem is given in section 3. 2. Section 3.3 de a Is with 

the solution of the first order Lagrangian equations of motion. In sed ion 

3.4, the second order equations are solved by considering zcro-freqneney 

interaction of two groups of primary waves. The chapter is condt Hletl 

with a summary in section 3.5. 

3.2. MATHEMATICAL FORMULATION 

Consider an homogeneous incompressible ocean of infinite 

depth and horizontal extent. A right-handed Cartesian coordinate system 

is chosen with the x- and y- axes along the undisturbed sea surface and 

the z-axis pointing vertically upwards. The motion is dcscribecl hy using 

a Lagrangian coordinate system. Let a fluid particle has Lagrangian 

coordinates (a,b,c), the undisturbed state being 

x=a, y=b, z=c, p=fJ0 -pxc..· 

where p is the fluid pressure, p
0 

the atmospheric pressure, p the wakr 



39 

density and g the acceleration due to gravity. The Lagrangian equations 

of motion for inviscid fluid are given by 

(3.1) 

(3.2) 

(3.3) 

Here the subscripts a, b, c, t indicate differentiation. The equation of mass 

conservation is 

( I ) d(x,y,z) ( 1 O) p a, J,c,t p a, J,c, 
d(a,IJ,c) 

(3.4) 

i)( n' ~) 
where il · •· ·- is the Jacobian. Assuming that the fluid is incompressible, 

r (u,h,c) 

then (3.4) reduces to 

which becomes 

p(a,b,c,t) = p(a,b,c,O) 

CJ(x,y,z) 

CJ(a,b,c) 

when the Jacobian is expanded. 

(3.5) 

(3.6) 

Now assume that x. y. z and p can be expressed as a r-ower 

series 
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x = a+r.x 1 +e
2x2+e3x.~ 

Y = h+ey t +e2y2+e3YJ 

(.lX) 

(~.10) 

(J.II) 

The parameter e is the wave steepness and will be small providing wave 

amplitude is small compared to wavelength. Substituting t.he abov(' 

power series into the equations of motion (3.1) - (3.3) and cont.hmity 

equation (3. 7) we find that the zero order equations arc sat Is fled 

identically. Equating the coefficients of e and c2 one ohtains the first 

order equations 

and second order equations 

respectively. 

Pta 
Xtll+gzta+p-=0 

fJ 1/) 
Ytu+gz",+P=O 

Pte 
'"tu+gzlt·+-=O p 

(3.12) 

(3.13) 

(3. 14) 

(3. 15) 
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The surface boundary condition is that the pressure at the 

surface is zero 

p0 =p(a,b,c =O,t)=O (3.20) 

and the perturbation particle displacements tend to zero as the depth 

tends to infinity 

x1 (a,b, c=-oo,t)=x2 (a,b, c=-oo,t) =0 

Yt (a,b,c=-oo, t)=y2 (a,b, c=-oo, t) =0 

z1 (a,b, c=-oo, t)=z2 (a,b, c=-oo, 1)=0. 

3.3. SOLUTION OF THE FIRST ORDER EQUATIONS 

(3.21) 

Under the assumption that x1,y1,z1,p1 are stationary random 

processes with respect to a,b,c,t, let the spectral representations of the 

first order solutions be 

J
+1tf+oof+oo x 

1 
= ei(kco.~ea+ksin8/J-ror)d~x(k,ro,e,c) 

-n -oo -oo 

(3.22) 

J +1tf +ooJ +oo y 
1 
= ei(kms8a+ksin81,-<ot)tJ~yCk,ro,e,c) 

-n -oo -oo 

(3.23) 

J 
+1tf +oof +oo z 1 = ei(kcos8a+ksin8b-rot)d~::(k,ro,e,c) 
-n -oo -oo 

(3.24) 

(3.25) 

where d~x· d~y· d~:: and tl~P are spectral density functions of the first order 

components of the displacement and pressure. They have a functional 

dependence on the independent variable c, and depend on the frequency 

(1), wave number k and direction of wave propagation e. 
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Eliminating p from (3.12) and (3.14) gives 

Xlm·-zltra=O 

Similarly, eliminating p fron1 (3.13) and (3.14) 

Cl27) 

Using (S.26) and (3.27) to eliminate x1 and y1 fi·om (3.15) we obtain 

z ltlct·+zlu/Jh +z luaa =0. (3.2X) 

Substituting (3.24) into (3.28) gives 

d~:cc-k2cJ~: =0. (.3.21J) 

The solution of (3.29) that satisfies the boundary condition (3.21) Is 

d~= =-i'1' elk 1 c d~ 1 (w.e). (.3.30) 

Substituting (3.22) and (3.24) into (3.26) and using (3.30) gives 

d~x=cosSelk lt'd~ 1 (w,S). (3.31) 

Similarly, substituting (3.23) and (3.24) into (3.27) and using (:{.30) gives 

d~y=sinSelkl ~"d~ 1 (w,S). (3.32) 

Substituting (3.22). (3.24) and (3.25) into (3.12) and applying the 

boundary condition (3.20) 

(3.33) 

and 
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(3.34) 

Hence the solutions for the first order equations can be written as 

(3.35) 

(3.36) 

z [N = J +1t J +oo -il ~I ei(kcos!:la+ksin!:l/J-wf) ero2c/g d~ 1 ( w,e) 
-1t -oo 

(3.37) 

p (N =0 (3.38) 

where the superscript IN denotes inviscid wave dynamics. The spectral 

density function for the horizontal displacements ~1 is a random complex 

valued function such that 

= 0 otherwise. 

where S 1 is the wave spectrum, <.> represents ensemble average and the 

superscript* denotes the complex conjugate. 

3.4. SOLUTION OF THE SECOND ORDER EQUATIONS 

Pierson ( 1962) demonstrated that substitution of the solutions 

of the first order differential equations (3.35) to (3.38) into the second 

order equations (3.16) to (3.19) gives inhomogeneous linear second order 

equations which are solveable. Herterich and Hasselmann ( 1982) and 

Srutderson and Okubo ( 1988) showed that it is possible for two waves of 

frequencies w and ro' to give a zero-frequency interaction if oo'=-oo. It is 
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also possible to have interactions with rot:- ro'. The latter type of 

interactions give solutions that are oscillatory in Ume and do not cans(' 

any diffusion. So the interactions with rot:- ro' will not be considered in 

this thesis. Therefore, constcleting zero-frequency interadion equations 

(3.16)- (3.19) reduce to 

where 

8 = 0~2 (1 +cos(S-8') )eik(y,a + .. 6./J > e2(1l
21'/x 

<I>== ro4 I I +cos(S-8') 12 eik(y,a + y"!.h I e2m2r/x 
2.':2 

"(I = cos8- cos8' 

· e · e' "(z=.'WI -.'il/1 • 

(3.39) 

(3.41) 

Ct42) 

(3.43) 

(3.44) 

The terms on the right hand side of (3.39)-(3.42) come from the nonlinear 

quadratic in first order solution terms in equations (3.16)-(3.19). 

It is clear from (3.39) - (3.44) that .xz, y2,7~ cannot be periodic 

in time since none of the inhomogeneous terms on the right hand side of 

(3.39). (3.40), (3.41) and (3.42) show time dependence. Excluding the 
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possibility of accelerated motion (i.e., steady state), the equations (3.39) -

(3.41) are not independent. 

This system of equations can be solved by consideling the 

vorticity equations in a manner similar to that first used by Pierson 

(1962). Sanderson and Okubo (1988) also followed a similar technique 

to solve the diffusion due to random internal wave motions. 

Differentiating (3.2) with respect to c and (3.3) with respect to b and 

subtracting gives 

(3.45) 

Differentiating (3.1) with respect to b and (3.2) with respect to a and 

subtracting gives 

Noting the following identities 

(x,r·a +YuYa +zllza)h =(X ,X a +y,y a +z,z)hr- (xt2+Y?+z, 2>atJ2 

it is clear that equations (3.45) and (3.46) may be written as 

(xtrb +YrYb +ztzb)ct-(X,Xc+Y,Y c +z,zc)bt =0 

(xtra+Y,Y a+z,za),,- (x,xb+y,y,+z,zb)at = 0. 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 
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Considertng the case where unperturbed fluid has no vorticity, we ean 

integrate the above e 1uations to give 

The vorticity equations (3.53) and (3.54) give 

(yzt+X I r lb+YtrYtb+ZtrZ IIJ)c- (z2r+X lrr tc+YtrYtc+z t,Z lt')h =0 

(3.53) 

(3.54) 

(3.55) 

at second order in E. (The first order vorUcity equations are sattsned hy 

the first order solutions (3.35-3.38)). Substituting tl1c first order 

solutions (3.35). (3.36), (3.37) into (3.55). (3.56) and considering zero­

frequency interactions. one obta.Jns 

x2tb-Y2ta =-i J+7t J+7t J+""' rok2sin(8'-8) (I +co.\·(8-8')1 e21k It' eik(y,a+y2h) 

-7t -7t -oo 

d~ 1 (w,8)d~ 1 (-w,8') (35X) 

where 

(3.5<J) 

Equations (3.57), (3.58) and the continuity equation (3.42) may he used 

to solve for u2
1N, v2

1N and wlN where u2
1N, vlN and w2

1N denote the inviseid 

Lagrangian velocities x21,y21 andz21 respectively. Differentiating (3.42) with 

respect to t and b and using (3.57) and (3.58) to eliminate u21N, wz'N we 

have 
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sin(S'-6)111 +cos(6-8')]e2 1kl c eik(yta+y2b} dl;1 (ro,8)dl;1 (-ro,6'). 
(3.60) 

Equation (3.60) has a particular solution of the form 

(3.61) 

where 

AIN = rokll +cos(6-8')]/2 (3.62) 

Using (3.61) in (3.58), the solution for the inviscid Lagrangian velocity 

uz'N is given by 

f +1tJ +1tf +oo ulN = -1t -1t -oo (cos9+cos9') AIN e2lk lc eik(yla+yzb>ds 1(co,9) ds1 (-ro,9'). 

(3.63) 

The solutions (3.61) and (3.63) satisfy the boundary conditions (3.20) 

and (3.21). Therefore, it is not necessary to consider homogeneous 

solutions. 

Equations (3.61) and (3.63) are zero-frequency horizontal 

Lagrangian velocities. They are the zero-frequency particle motion 

resulting from superpositions of deep water surface gravity waves that 

have wavenumber components represented by ky1 and ky2 in the a and b 

axis directions respectively. The resultant wave number is 

K =k [Yt2+ylJ 1/2 

along a direction at 
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measured counterclockwise relative to the a axis. Figure (3. 1) shows Uw 

schematic of two primary waves interacting to produce zcro-frcqttcncy 

second order motion. The zero-frequency component of the horizontal 

velocity (uiN, vlN) fluctuates as a function of space as Indicated hy tlw 

dashed lines oriented along the K vector in Figure 3.1. Nolc lhat. 

therefore the motion is horizontally nondlvergent. This type of mot ion 

cannot cause any vertical motion. The solutions of 1-lcrterieh and 

Hasselmann (1982) and Sanderson and Okubo (1988) an~ aJso 

horizontally nondivergent. Therefore their inviscid soh.tlions did not. give 

any vertical motion. In the following chapter it will be shown thnt 

introduction of viscosity into the equations of motion makes the flow field 

horizontally divergent. This. in turn, causes vertlcaJ motion. 

The solutions (3.61) and (3.63) are identical to solutions of 

Herterich and Hasselmann (1982). For 8=8'=0, (3.63) gives 

Invoking the diflnition for the wave an1plitude, A 0 , 

(3.66) 

the equation (3.65) reduces to 
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b 

a 

Figure 3-1: Surface waves with wavenumbers k and k travel 
in the 9 and 9' directions respectively. The 
resulting zero-frequency second-order 
interaction causes motion with wave number 
components k:y1, ky2, which have a resultant 1n 
the e, direction. The zero-frequency velocity is 
in the horizontal plane and Is parallel to the angle 
bisector (dashed line). It is also sheared in the 
horizontal plane as indicated by the sinusoidally 
varying flow pattern. 
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which is the Stokes' (1847) classical result. 

3.5. SUMMARY 

Navier-Stokes' equations of motion ru-e solved for deep water 

surface gravity waves in an inviscid, irrotatlonal, homogeneous ocean. 

The analysis is in the Lagrangian coordinate system. We consider zpJ·o­

frequency interaction between pairs of primary waves interacting at. any 

arbitrary angles. The solutions agree with those of Hcrterkh an<l 

Hasselmann (1982) who solved the same problem by using m1 Eulerian 

frame of reference. 

We obtain solutions that are nondivergcnt in the horizontal 

plane. For 9=9'=0, the above solutions reduce to Stoke's (1847) dasskal 

result. 

The solutions (3.61, 3.63) cause random shearing motion in 

the horizontal plane. Such a velocity field cannot change the area of a 

patch of tracer. However, its shape can be greately distorted, then~hy 

changing the moments of its distribution. Sanderson and Okubo ( 1988) 

and Herterich and Hasselmann (1982) showed how to caleulat<~ cddy­

diffusivities from the random waves. These will be discussed in detaJI In 

Chapter 5. 

The above solutions show that for inviscid fluid the zero­

frequency interactions of random gravity waves can cause horizontal 

eddy-diffusion, but no vertical eddy-diffusion. However, water is not a 

perfectly inviscid liquid. It has some small but finite viscosity. In the 

next chapter, we solve the viscous equations. It will be shown that. the 

introduction of viscosity changes the solutions in a manner that leads to 

both vertical and horizontal diffusion. 
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Chapter 4 

RESIDUAL MOTIONS ASSOCIATED WITH 
VISCOUS GRAVITY WAVES 

4.1. INTRODUCTION 

It was demonstrated in the last chapter that small-amplitude 

surface gravity waves induce a flow that disperse material in the 

horizontal plane. The analysis was based on the assumption of 

irrotaUonal flow originally suggested by Stokes' in 1847. Longuet­

Higglns ( 1953, 1960) introduced viscosity and showed that the presence 

of small viscosity produces significant changes in the mass transport not 

only in the thin boundary layers near the surface, but also in the interior 

of the fluid. His analysis was based on solving the equations of motion in 

an Eulerian curvilinear coordinate system attached to the moving 

st 1rJ~we boundary. By dropping the temporal wave decay terms he 

implicitly assun1ed that the wavefield is maintained by an external 

device. 

Russel and Osorio (1957) found that the mass transport 

observed in a laboratory simulation agrees best with the Stokes' inviscid 

thcmy when the water depth is large (compared to wavelength) while for 

shallower water depth Longuet-Higgins solutions were then the best 

available comparison. They concluded, however, that except for the 

velocity prome at the bottmn of the channel, no theory satisfactorily 

predicts mass transport. Swan and Sleath ( 1990) extended the work of 

Longuet.-Higglns (1953) by deriving a fourth order solution for the mean 
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drift induced by the steady train of waves in water of constant depth and 

conducted an experi1nent to measure mass transpm·t velocity in t lw wavl' 

tank. They found that the fourth order viscous tht'ory shows hdtt'r 

agreement with the experiment than the second order viscous tlwory. 

Chang (1969) and Unluta and Met (1970) cakulatt'd tlw mass 

transport using a Lagrangian coordinate system for the two dunl'nsional 

case of one horizontal and one vertical dimension. Chan~ (I~)()~)) 

considered a random wavefield and obtained a solution for the S('cond 

order hmizontal mass transport velocity that docs not decay with dt'pth. 

Unluta and Mei (1970) incorporated the boundary lay('r concepts into tlll' 

Lagrangian equations. At second order, they considered only OJH' 

horizontal dimension and therefore. the soluUon of Unlnta and M<•i did 

nut show any diffusion. In addition, their solution remains tmbm m<kd 

as the depth approaches infinity. Huang ( 1970) also pointed 011t 

deficiencies in the Longuet-Higgins analysis, in partienlar that tlw mass 

transport velocity becomes unbounded as the depth approacht's infinity. 

Weber (1983a) used perturbation analysis in a Lagran~i:m 

coordinate system to derive time dependent results for mm;s transport 

due to swell in the deep rotating ocean with viscosity. In a subsequent 

paper Weber (1983b) investigated the zero-fi·equcncy wave lndneed 

cmTents due to a variable wind stress. In bot.h papers, he eonsldere<l 

solutions for single frequency sine waves in the horizontal ph-uw with 

waves interacting at zero angle. Therefore his solutions did not show any 

diffusion. Later, Weber (1985) extended his computations from a singl<~ 

wave to a pair of crossing waves. One of these waves traveJJed at an angle~ 

e relative to the a-direction and the other at an angle -e. The solution 

indicated that nondecaying deep water surface gravity waves lncllleed roll 

motion in a viscous fluid. He reduced the three dimensional problem to 

a two dimensional problem by averaging the second order eq1mt ions over 

one wave-length in the a-direction. Therefore. his solutions are 



53 

nondivergcnt. in the vertical (a-c) plane. He also showed that the 

solutions arc capable of producing roll motion similar to Langmuir 

circulation (Leibovich 1983). Jenkins (1986, 1987) generalized Weber's 

( 1983a, b) solutions by including spatially varying windstress and depth 

vmying viscosity. 

The objective of the present work is to solve the 3-D 

Lagrangian equations of motion for a spectrum of nondecaying surface 

waves in a viscous nonrotating ocean. We will search for zero-frequency 

motion resulting from wave-wave interactions through the nonlinear 

terms. In particular we search for such solutions that can diffuse 

material vertically and I or horizontally in the ocean. The problem is 

solved by using two approaches. First, following the technique of 

Longuet-Higgins (1953), Unluta and Mel (1970) and Weber (1983b, 

1985), it will be assumed that the waves are nondecaying waves. This 

implies that the primary waves are maintained by a suitably adjusted 

stress. The second approach is to consider decaying waves (Chang 1969. 

Weber 1983a). It will be shown later in this section that, unlike the 

nondccaying case, the space and time coordinates of the homogeneous 

solutions arc not separable. The homogeneous equations are solved 

sul~ject. to an initial condition. 

The mathematical formulation of the problem is given in 

section 4.2. Section 4.3 derives the surface boundary conditions. The 

nondccaying wave problem is fom1ulated and solved in section 4.4. In 

section 4.5, we solve the decaying wave problem. Difflcultie~ encountered 

in solving the second order momentum equations, for the latter problem, 

by using a separation of variables arP also discussed. 
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4.2. MATHEMATICAL FORMULATION 

To describe the ntodel. we consider <Ul ocean with a vi~c011~ 

incompressible homogeneous lluid of infinite depth and tmlimitt'd 

horizontal extent. When undisturbed. the surface is horizontal. A. 

cartesian coordinate systen1 is chosen such that the (.r. y)-ax('~ an· 

situated at the undisturbed surface and the :-axis is po~it tv<.' IIJl'·"ards. 

The motion is described by formulating the equations of motion in a 

Lagrangian coordinate system. Let a Huid partid<.• initially hav<' 

coordinates (a, h, c). Its position (.r, y, :) and pressure fJ at later times will 

then be functions of a, 11. c and time t. The Lagrangian <.•quatlons of 

motion for viscous fluid are given by Pierson ( 1962) 

I iJ(jJ,)',Z) t7 ') 
---+Vv ~r 

p iJ(a,/J,c) /.. I 
( ..t.l ) 

I (J(x.p.z) V 'l 
Yu= +v ~v 

piJ(a,h,<') L- I 

I iJ(x, v,p) " ') 
~ + ~- . + v \' ~-
~// , - piJ(a,h,c) L·r 

where iJ(., .•. )f(J(a ,b,c) is the Jacobian and the Laplacian operator V L:.! In 

Lagrangian form is given by 

(J(x,,y,z) iJ(x,x,,z> iJ(x.y ,x,) 
CJ( ,y,z) CJ(x. ,z) iJ(x. v. ,: ) 

CJ(a,b,c) CJ(a.h,C') · d(a,/J,c) ------+ +---------
(J(a,/J,(') iJ(a,b,c) iJ(a,/J,c) 

(4.4) 

Similar expressions will result for V CYr and Vlz,. The equation 

of continuity does not change by inclusion of the visem1s term and Is 

given by (3.6). Again we assume that x, y, z and fJ can he expressed as a 

power series. Substituting (3.8) - (3.11) into (4.1) to (4.3) and equat lng 

the equal powers of E, one obtains 
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at first. order in E, and 

\. + ""' +P2a -vt72\. --z z -y y -:X \" + · 211 .., .. 2a - v • 2t- la 111 Ia Itt l(r ltt p 

VI X Ia V2.r It+ Yla V 2y It+ z Ia VZz It- 2(xl,,urr Ia +X ltbl~lb +X ltcc2 lc 

+X ltah(yla+XI!J) +XIwc<z la+X~c) + Xlt/Jc(ylc+z I h))-X Ita V2x I­

xlthV'2yl-xltcV2zll 

P211 
Y2tt + gz2h +p-VV2Y2t=-Ztti ltt-YII,Yiu-XIlrr Itt+ 

VI xlh V2
xlt+ Yth V2y It+ z 111 Y'2z It- 2(ylwaXJa + Ytthl~Jb + Yttcc2 lc 

+ Y I tablv Ia +xI /J) + Y lwc<z Ia +xI c)+ Y Jt/}(·U'Ic+z IIJ))-Yt ta V 2
x I -

Ylt/JV'
2
Yi-YitcV

2
zl J 

(4.5) 

(4.6) 

(4.7) 

(4.H) 

(4.9) 

(4.10) 
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VI XtcV'
2x lt + Y lc\7

2
.\'tt + Z 1cV2

: It- 2(z lttllrr Ia +: ltb/ .. \'1/1 +: ltn·= k 

+ z I tall()' la+X If,)+ z I tal'(.: la+x I r) + = lt!lt'Lv,,.+: 1/,))-= 1111 V:!.r 1 -

~ V2., - ~ o:!~ I 
-(1/J .'J -I/I' V ·1 

X2a +J'2/J +z2c+Y Ill: lc+X I a= I c+.r laY I ,-y 1 •. : I ,-.r lc: la-X thY Ia::: ( l 

at second order in £. Here 

') ()2 ()2 ()2 
V'-=-+-+-

CJa2 u!J2 ilc2 

(4. 11) 

(4.12) 

is the usual Laplacian operator. The equations reduce to an identity at 

zeroth order in e. The continuity equations (4.8) and (4.12) are sanw as 

(3.15) and (3.41) respectively for the inviscid case. 

The perturbation parameter c (which Is the maximtJlll waw 

slope) is not the only small parameter for surface gmvit.y wav('s in a 

viscous ocean. Another small paramder that is imposed by tlw preseJH~<~ 

of the small viscous terms is e 1 -l/l~\\~/2 where Rll'{ =w/{vk2)) is the wave 

Reynold's number. The wave Reynold's number is the ratio of tlw 

acceleration term to the viscous tenn. The surface viscous boundary 

layer has a thickness /=~2v/w. thus e1 can also he thought of as a ratio of 

the viscous boundary layer thickness to the wave length. c1-k/. Tlw 

magnitude of e1 is much smaller than the wave slope E except when wave 

slope is very small and viscosity is large {see discussion at the end of 

section 4.4). The presence of two smaJI parameters give one a choice 

whether to use a boundary-layer approach by introdtJcing scparale 

equations for different regimes (e.g., Longuctt-Higgins, 195:3; Unh 1ta ancl 

Mei, 1970) or to consider a single equation governing the enUre fluid 

column (e.g., Chang, 1969; Weber, 1983a, b, 1985). In this dissertation. 

we will follow the later approach. 
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4.3. BOUNDARY CONDITIONS 

The boundary conditions at a free surface are obtained by the 

vertical and horizontal baJance of forces. A two dimensional derivation of 

these equations in the vertical plane is given by Kinstnan (1984). Chang 

( 1969) used Kinsman's boundary conditions for her calculations but the 

equation for the vertical component (equations 89 and 91 of Chang 1969) 

is wrong. Kinsman ( 1984) used a geometrical approach to derive the 

boundary conditions at the surface. In this section, we apply a 

generalized tc~hnique to derive the surface boundary conditions for the 

three dimensional motion of a viscous, incompressible liquid. 

Consider an element ds of sloping free surlace of a viscous 

Incompressible Newtonian fluid. Let the equation of the free surface be 

z=n(x.y.t). (4.13) 

" Let r be a unit vector tangential to this surface whose equation is given 

hy (Og. 4 . 1) 

" " " " t =cos$cos8i +sin<P cos9j +sin8k (4.14) 

" 1\ " where i • j , k are the unit vectors along the (x,y, z) directions. The unit 

vector normal to this free surface is given by 

1\ " 1\ 1\ 
11 =- cos$sin8i -simi'sin8j +cm8k. (4.15) 

Let fJ0 be the atmospheric pressure at the surface and t be the 

" external tangential wind stre5s parallel to the t direction. The fluid 

ntotlon will give rise to stresses In the Interior of the fluid that balance 

the external stresses at the surface. We have neglected surface tension. 

The equilibrium condition requires that the vector sum of the external 
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z 

FlUid 
surface 

y 

Figure 4-1: Balance of forces on an elevated fluid surface. 

forces must balance the intemal forces at the surface. In tensor notation, 

this is given by (neglecting forces due to surface tension) 

-p n·ds+'tt·ds=CJ··n·ds 
0 ' ' lj J 

(4.16) 

where a;i is the intemal stress tensor. Water is a Newtonian fluid so, aij 

is given by 

au. OU· 
J ' CJ •• =-pB .. +pv(-+-). 

'1 '1 OX· OX· 
l J 

(4.17) 
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SubsUtutlng t; and n; from (4.14) and (4.15) into (4.16) one obtains the 

following equations 

p 
0 

CO.\'~.\'ill 6 +t cos<!> cos S =-a II t'O.\' cp sinS- a 12 Sill$ sinS+ a 13 cos S 
( 4.1 X) 

/}0 Sill ~.\'ill 6 +tSill cp cosS =-a2l CO.\' cpsinS- 0"22 Sill $sill 8 +CJ23 C0.\'8 
(4. 19) 

(4.20) 

which are respectively the balance of the x, y, z components of force at the 

surface. 

If we assume that p0 =0 at the free surface, the above 

equations reduce to 

-a11 co.,·!psin8- a12 sin$sin8+a13 cos8=t1 

-a21 cos$ sinS- Gzz sin $sin 6 + CJ23 cos8 = 'tz 

(4.21) 

(4.22) 

(4.23) 

where t 1, t 2 and 't3 are x, y and z components of surface stress 

respectively. 

The angles S and $ in the above equations can be related to 

the derivatives of 11 (x,y) through the relation 

~ ,A 
v (z-11 (X,y,t)) = C II (4.24) 

1 1\() A() A{) 
where c is an arbitrary constant and 'V=i :~+j :;-+k ::-..· Substituting (4.15) 

uX uy u. 

1\ A 1\ 
in (4.24) and equating the coefficients of unit vectors i. j and k from 

both sides of (4.24), one obtains 
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, I 
C=--

cos8 

all= cos ~ta11 e ux 
~~=sin~tane 

(4.2511) 

(4.25/J) 

(4.251") 

Using (4.25a.b) to eliminate 8 and q, in (4.21) through (4.23) gives 

ufl ufl 
-Ott--crt,-+crt~ =tt ux -ay . 

(4.27) 

<4.2Xl 

We must now transform the Eulerian surfac<~ q(x.y.l) to its 

Lagrangian equivalent z(a,b,c=O,f). At the free surface (i.e .• c=O) x, y and : 

are all functions of (a,/J,t). In Lagrangian coordinates. the <liff(~rc~nllal 

a a fi operators i>x' a_v trans arm to 

() () 

a Yb C>a-y a oh 
--ax XaYh-YaXh 

a a 
a x --x1-

a C>b 1 da 
( 4.2tJ) ay XaYh -ywrh 

Using (4.29) to transform (4.17) into Lagrangian coordinate system and 

writing u=x,, v = y1, w=z1, the components of the stress tensor cr;j (4. 17) are 

given by 
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v(x,,y,z) 
cr 11 =-p+2 pv--­

v(a,b,c) 

a(.r,yl'z) 
cr,2 =-p + 2 pv ':1 

- u(a,/J,C) 

o(x,y,z,) 
cr:n=-p+2pv---
.. o(a,b,c) 

o(yl,y,z) CJ(x,x,,z) 
cr12=cr21 = pv I + I 

o(a,b,c) CJ(a,b,c) 

o(zl,y,z) CJ(x,y,x,) 
cr =cr =pvl + l 13 31 o(a,h,c) CJ(a,b,c) 

o(x,z,,z) d(x,y,yl) 
cr =cr =pv[ + I 23 32 CJ(a,b,c) d(a,b,c) 

(4.30) 

where iJ( .•. ,.) is the Jacobian. Equations (4.26)-(4.28) can also be 
(}((/)I ,t:) 

tnmsformed into a Lagrangian system using (4.29). Substituting (4.30) 

into the resulting equations gives 

v(xl,y,z) CJ(y,.y,z) CJ(x,x,,z) 
lp-2pviJ( 1 ·>Hy1,za-Yaz11)-~pvr-a, -1 ·)+o( h )J a, J,t ,a, J,t a, ,c 

(4.31) 

at c=O, 

at c={), 
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at c=O. 

for the x. y, z cmnponents respectively of the force lmlcmee at the sttrf~we. 

Equations (4.31) - (4.33) represent the Lagrangian form of the boundary 

conditions at the free surface c=O. 

Applying a perturbation expansion by substituUng (3.8) -

(3.11) and 't;=Et/ +E2t/'+0(E3) into (4.31)-(4.33) and equating coefficients of 

e and e2 one obtains first order surface k=O) boundary conditions 

-pI +2pvz I tc = t' J 

and second order surface (c=O) boundary conditions: 

pv[x2tc+2 2ta+X ltl.x la-X ltcllc+xltcY lb-x lti,Y J c.+z lta2 lc-2 1tcz la+ 

PVIY2tc+2 2t/J+y ltcYlb-Ylt/,X lc+YitcX la-YttaX I c+Zttlll c·-zltrz lh + 

z ltlrtla-z ltcrtlb-x lth2 la-Ylta2 I a -2Ytth2 Ih l+fJtZ lh =t{ 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.3X) 

( 4.3<J) 

The surface boundary conditions given by (4.34) to (4.39) are identical to 
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Weber's ( 1985) surface boundary conditions. The lower boundary 

conditions are simply that perturbation pressures and displacements 

tend to zero as c ~ -oo. 

4.4. SOLUTION FOR NONDECAYING VISCOUS GRAVITY 

WAVES 

The approach adopted here is similar to those of Weber (1985) 

but it differs in two respects. First, Weber (1985) started by constructing 

first order solutions by considering two single frequency primary waves 

propagating at oblique angles, as opposed to a continuous spectrum. 

Second, he averaged the equations of motion over one wave-length along 

x-direction. Thus his solutions are non-divergent in the vertical plane. 

The following work considers a continuous spectrum of random waves 

interacting at any arbitrary angle and presents the full three dimensional 

solution. This enables calculation of the eddy-diffusivities resulting from 

the spect.Ium of deep water viscous gravity waves by 11sing the technique 

of Hertertch and Hasselmann (1982). Chapter 5 investigates analytically 

and numerically the horizontal and vertical eddy-diffusivities calculated 

from deep water surface gravity waves with viscosity. 

4.4.1. THE FIRST ORDER SOLUTION 

In this section we solve the first order equations (4.5) - (4.8) 

subject to the boundary conditions (4.34) - (4.36) to find nondecaying 

waves. Under the assumption that x1,y1.z1,p1 are stationary random 

processes with respect to a, b,c,t, the spectral representations of the first 

order solutions are 
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(4..10) 

J+ltJ +ooJ +oo Yt = -1t -oo -oo ei(kcosiJa+ksine/J-(OI)d~(y)(k,<t>,S·c) (4.41) 

(4.42) 

J 
+1tJ +ooJ +oo p 1 = -1t -oo -oo ei(kcosiJa+ksineb-<ot)d~(p)(k,w,S·c) (4..13) 

where d~(.t)' d~(y)• d~<=> and d~(p) are spectral density functions of the nn~t 

order components of the displacement and pressure. Elhninating p 1 front 

(4.5) and (4. 7) by cross differentiation and subtracting p;ivcs 

Similarly, eliminating p1 from (4.6J -md (4. 7) yields 

Ytuc-zlub= VV
2
<Yttc-z I ttJ 

(4.44) 

(4.45) 

Differentiating (4.44) with respect to a, (4.45} wHh respect. t.o 11 and 

adding and using the continuity equation (4.8} gives the following 

equation for z 1: 

z lttaa+zlttbh +z lucc = vV2
(zltaa +z ltfll,+z ltn·). 

Similarly, one can also obtain the equation for x 1 

(4.47) 
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Substituting (4.42) into (4.46) gives the following fourth order 

hornogenot IS equation in d~(:l 

The solution of {4.48) that satisfies the lower boundary condition for 

deep-water gravity waves. i.e .. displacement tends to zero as depth 

c ~ -oo, is 

(4.49) 

where 

(4.50) 

Similarly. the solution of equation (4.47) may be written as 

(4.51) 

where subscript x on d~x and d~x' does not denote differentiation with 

respect to .r. Substituting equations (4.40). (4.41) and (4.42) for x 1• y1 and 

: 1 respectively in tl1e first order continuity equation (4.8) and using (4.49) 

cmd (4.51) to replace c/~C:) and cl~(x) one obtains the following relation for 

d~(\') in terms of d~x· d~'x· c/~1· d~'l 

d~(v) =-cotS { elkl<'d~x<o;,8)+ePcd~'x<ro.e) J 

-~8 { lk!elklcd~ 1 (ro,9)+~ePrd~' 1 (ro,9) 1. 
It\ Sill 

(4.52) 
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We substitute (4.40) and (4.42) into the vorticity equation (4.44) ami l11-'<' 

(4.49) and (4.51) to obtain 

Jt: i~ ro.\S Jt: 
l '-,,· l S I · . lkl 

1\vo of the three boundary conditions given by (4.~4) - (4 .:~()) are now 

used to relate the unknown spectral density f11netions dE,'.,. df:,'1 to t!E, 1• 

The other boundary condition will determine the magnilnde of tlw 

applied external stress required in order to maintain the wave a~ain1-'t 

decay. 

The general forms of the bo11ndary conditions wen· dPriv<'d in 

section 4.3. Since t.he ocean Is viscous. th~~ suri~lcc gravity waves will 

attenuate in time if no surface stress is applied. (This will h<· calle<l tlw 

decaying wave problem and is treated in the next. section.) The fre<Jllency 

of decaying waves is complex and the imaginary part of the fi·equcncy Is 

responsible for the decay of the waves. In this section. we will considc~r 

nondecaying waves that are maintained by applying a suitable st.n•ss at 

the surface. Naturally the frequency of such waves will be real. Lamb 

(1932) demonstrated that nondecaying waves could he achieved eithc~r l>y 

choosing a suitable tangential stress or by applying a vert teal stress at 

the surface. Weber (1983b) showed that t.he choice of horizontal stress 

as a means of maintaining the permanent wave leads to an unhonnclecl 

solution. By choosing a vertical stress he obtained a solution that de«~ays 

with depth. F'ollowing Weber (1983b, 1985), we consider a vertical 

surface stress t'3 that transfers exactly enough (~nergy to the wave 

motion to compensate for the loss due to viscous dissipation. 

Accordingly at c = 0, the first order surface boundruy conditions (4.:~4 -

4.36) reduce to 
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z tw+x 111.= 0 

when! '!1' is determined later. 

(4.54) 

(4.55) 

(4.5n) 

Substituting (4.40) <md (4.42) in the x 1-boundary condition (4.54) and 

t aslng (4.49). (4.51) and (4.53) yields 

(4.57) 

Simih-u·ly. substituting (4.41) and (4.42) into y 1-boundary condition (4.55) 

and using (4.49), (4.52) and (4.53) one obtains 

( 4.5X) 

Now substituting (4.58) into (4.57) gives 

(4.51)) 

and (4.59) substituted into (4.58) gives 

(4.60) 
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Finally, substituting equations (4.53). (4.59) and (4.HO) in <'<(nations 

(4.49), (4.51) and (4.52). c/~(.r)· c/~(y)• t/~<:l may lw writtt'n as 

I~ _iksine
1 

I kit' 2Pikl lir 11~: L) ( "(\') ___ (' ---:;---::;£' ( I:,J((I},, ). 
· lk I ~~-+k-

To exp··~ss d~Cp) in terms of d~ 1 • substitute (4.40), (4.42) and (4.4:1) Into 

.r1-momentum equation (4.5) and use (4.61) and (4.()3} to glvt' 

Now, we apply the third boundary condition (4.5()) to 

determine the necessary vertical stress -c3' at the surface to maintain lhl' 

wave against decay. Assume that -c3' has speetr«l form 

(4N)) 

Substituting (4.42), (4.43). (4.63), (4.64) and (4.65) into the remaining 

boundary condition (4.56) and evaluating at c=O gives 
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( 4.fifi) 

F'or snrfacc waves on water, the ratio ro/(vk2) (wave Reynold's number, Rwl 
Is very Jarge (Chang, 1969). 'fherefore. it is always safe to make the 

following approximation 

~=I I+ (l-i)2~ 11/2:::: (1-i)( ~ )1/2 » I 
k 2vk2 2vk2 

(4.fi7a) 

hence 
k 
- « I p (4.fi7b) 

where r3 is given by (4.50). Equation (4.66) reduces to 

(4.6X) 

where we usc (4.67) to eliminate the small terms. Since the wave does 

not decay, the frequency must be real. If we choose df,t to be imaginary 

then the real part of (4.68) gives the dispersion relation 

(4.69a) 

wher~" (tl0 is the real frequency. The imaginary part of (4.68) gives the 

surfhcc stress required to maJntain a nondecaying wave 

(4.69/J) 
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Equation (4.69b) is equivalent to 

l-L70) 

which is identical to Weber's (1985) eqnat ion (/\6). 

The viscous length scale lis related to w
0 

and lias follows 

P=2V/I (I)(} I 
1-i f3=-, (1)>0 

A-_l+i 
IJ (I)< 0. 

I 
(-t.71) 

It is the distance over which the molecular- or <~ddy- viscosity will dilT11s(' 

momentum in one wave period. The viscous length scale grows with 

increasing viscosity and decreases with increasing frequency. As an 

example, consider the typical frequency range (0.3 - l.O) s· 1 of the <k<~p 

water snrface gravity waves. For w= I s-1, and eddy-viscosity v=!Ul I n/!-.,· 1 

equation (4.71} gives l - 0.06 m, and for (J)=OJ s- 1 the viscous len~lh 

scale is l -0.26 m. Thus the viscous lengU1 scale is ver-y small c:ompan~d 

to the scale of the wave (63- 600 m). For molecular diffusion. the viscous 

length scale is even smaller. Nevertheless, Longuct.-J·Iigglns ( 195:~) has 

demonstrated that the inclusion of viscosity changes the solutions. 

The first order solutions are therefore obta ined by suhstituling 

(4.61) to (4.64) into (4.40) to (4.43) with w replaced by (1)
0

• 

(4.72a) 
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(4.72/J) 

ztF =f+rtJ+r"' _ ik 1 elklr _ 2k: elk jei(kros{:la+ksin{:JIHoJ) dS,,(ro,9) 
() -C>"J lkl ~ 

(4.72c) 

. f+1tJ+<>"' ik 2~k2 . . fJ t'' = _ p --·-.,-elk et(kmsfJa+k.wnUh-(J)0 /) d~ 1 ( (0,8) 
o _,.., lk I p .. 

(4.72d) 

where the superscript VF has been used to denote solutions 

corresponding to viscous dynamics in which the waves are nondecaying 

(or viscous forced). Equations (4. 72) reduces to first. order inviscid 

solutions (3.35 - 3.38) if v is set equal to zero. The effect of introducing 

the viscosity is to reduce the first order inviscid displacements by 

introducing additional terms with e~r depth dependence. These e~c terms 

arc small compared to the inviscid elklc terms: the relative size being the 

ratio of the viscous length scale to the wave length. By equation (4. 71) 
1-i 

efk=e(-1 )c. Thus efk has both real and imaginary arguments. From the 

exponential of the imaginary argument, e~c: fluctuates rapidly (in a 

sinusoidal manner) with depth (since 1// » k). The term also decays with 

depth due to the exponential of the real argument with an e-folding scale 

l, the thickness of the viscous boundary layer. 
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4.4.2. THE SECOND ORDER SOLUTIONS 

Substitution of the first ordC'r soluUons (4.72a) - ('t.72d into 

the second order differential equations (4.9) to (4. 1 1) and eon tim tlty 

equation (4.12) and considering only the zero frequ('twy interact ion yidds 

P2r V" f+1tf+1tf+.,..,IC' \'1; "lklr' (' \'/: lklr'+r·/1 - +r,.. + -V ~- - t•- + t' "2tl ·""2c - "2r- II ·22 p • - ~ -1[ -OC) 

+ c 1 \te2dtleil.(yla+y2hl d/;1 ( to,UJ ds1 ( -t•J.O'J 
. . (.t.75J 

where 

A 1 Y F = ( I +cos(0-9') /~ I i "( 1 - k2J2y3 ( I +cos(0- 9')) I 

A2~F = kl k llw21 Y3 (cosy-siny )(I +cos(S-8')) - i Y1 (co.\'y+siny) I+ 

k3f2w2( y3f cos]( I +3cos(8- 8')) + I ~I/ (2cos2(8- 8') + 3l'Os(8- 8')- I ) 

c c k2t2 (' t' 
(CO,\'f+sinf)-2 ,\'illj(l-cos(8-8')) l-iy11 SillfC:oS(fJ-8') 

lkll (.' (.' k2t2 c ) - 2 (cos(9-9')-l)(co,,·r-sin7)-2 co.,·7(1-cos(8-e')) I/ 
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A3~F =-k3/2(J)2 ( Y:lll +2cos(8-8') +k2t2(cos2(8-8')-cos(8-8')) I+ 

k2J2 ) iy112-c:os(8-8')- 2 ct-2cos(9-9')) I 

IJ 1 rF = ( I +cos( 9-9')) k~ I i Yz-k2t2y4 ( I +cos( 9-9') bigg IJJ I 

JJ2~1 .. =k I k I/(J)21 y4(c:o.\·7-sinl)( I +c:os(8-8')) -i y2 (cosy+sinJ) I+ 

{i Pw2 ( y4 1cos]< I+ 3cos(8-8')) +I ~I/ (2cos2(9-8')-cos(9-8') + I) 

(' (' J.:2f2 (' (' lkl/ 
(c·o.,·1+sill/) - 2 .\·i"/ (l-c·os(8-9')) 1- i y2 1 si11t:os(8-8') - 2 ( l-cos(8-8')) 

(' (' J.:2J2 c ) (co.,·7-.,·in7)-2 cos7( l-cos(8-8')) I 

/I]~F =-k'3t2w2 ( y4 11 + 2c:os(8-8')+k2t2 (cos2(8-8')-cos(8-8') )I+ 

J.:2t2 ) i y21 2-cos(8-8')- 2 (I -2 cos(8-8') I 

C 1 \[F =lk lw2 (I +cos(8-8')) 

c2~F =-21 k jw2cosy cos(9-9') +k2tw2 (cosy+ sin]) (c:os(8-8')-l) + 

k21 kl J2 w2( -siny( l-2cos(8-8')) -lk Jl(cos]-sinJ) (cos2(8-8')-

3cos(8-8') +I) +k2t2 c:osy(cos2(8-8')-cos(8-8') +I)) 
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D 1 \'"' =k2 ( 1 +cos(0-0'))'2./2 

D2~F = -2k2 co,\·J cos( 0-0')-{!I k II (cos7 + ,\·ini) ( co.\·2( A-8') + I )­

k4P.sill}<·os(A-0') 

D3~F=J...4P ( l+cos2(0-0')) 

y1 =(cosO-cosO') 

y2 = (si110-sin8') 

y3 = ( cosS +cosO') 

y4 =(si118+sinO'). H.77l 

Note that kl is a small parameter and the terms with l>old parenthesis arc 

higher order in kl. Therefore these terms are smaJI but we will keep tlwm 

for now in order to solve the following fourth order differential <~quatlons 

by balancing both sides of the equations. The right hnnd sides of 

equations (4. 73) - (4. 76) are independent of time. If we consider the 

possibility of unaccelerated motion (i.e., steady stale), we can rwgkd the 

acceleration terms in (4. 73) - (4. 76). In order to solve these moment ttm 

equations we follow the same procedure as in section (4.4.1 ). An 

equation for u2 (i.e., x21) alone can be derived hy adding 
aa a daa a 1 112 
~1;--(4.73)-':\(4.74)] an ':\1;-(4.73)-':\(4.75) 1 an( using v--(4.76) to replace 
ub ub ull ul' uc cui Cl(/1)/ 

va1,+wac· The result is 

(4.7X) 

Similarly, for w2 equation 
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vV4w2 = f+1t f+1t f+"" I c2 VFelklc+dl + CJ VFe2dll eik(yla+"f2/J) 
-7t -1t --<><> 

d~ 1 ( ro,8) dl; 1 ( -ro,8') ( 4.79) 

where 

A I VF =k5J2w2 (I +cos(8-8'))3 y3 

AlF = 2 ro2k ( y311 k l//(cos7+sinl) (I +co.\·(8-8')) + k2 sin.J(5cos(8-8')+3) I 

+ iy)l I kill (co.\·]-sinl)(l-cos(8-8')) +k2cos7(cos(8-8') + l) I) 
- 2k31 k II ro2( y3 (co.\·7-sinJ) ( l +3cos(8-8') + 2cos2(8-8'))-

iy1 (cos]+sin})(3cos(8-8')-1)) 

A/1,.= 4k3w21 y3 (I +2cos(8-8'))-iy1 (2-cos(8-8')) J 

c2 w· = 4k21 k I oo2 cos] (I - cos(8-8') )2 + 4A.4 /oo2 (cos(8-8')- cos2(8-8')) 

(cos]+ si "I)-4k41 k I f2w2 (2cos2( 8-8')3cos(8-8') + 1 ) si "I 
C3VF =-4k4/ro2 1 cos2(8-8')-3cos(8-8')+ 21. 

(4.HO) 

Equations (4. 78) and (4. 79) are valid in the whole fluid and 

determine the wave induced drift current. These inhomogeneous 

differential equations can be solved by applying the technique of 

tmdetermined coefficients. Particular solutions to these equations are 

(4J~2) 
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Note that the particular solution for the vertical velocity "':.''Fr' (4.82) i~ 

smaller than the horizontal velocity u·{Ff' (4.81) by nn order of (kij2 , 

Substituting (4.81) and (4.82) into the continuity equation <lift~!rcntlah'd 

with respect to t (i.e, ~(4.76)) gives 
ot 

where 

A l'P = (I +cos(8-8')) e21k l~'-21 k II (I +cos(8-8')) (cos7+sin}) elk 1,· +I'// 

+ k2 f2 ( 2 ( 1 - cos(8-8')) si11J elk Jc + 1'/1 + (I + 2cos(8-8')) e2d1) 

Br"' = -21 kl/ ( 1-cns(8-8')) (cos7-,\·in7)£•lk Jc+c/l 

+k2 f2 ( 2 (3-5cos(8-8')) cos] elk It:+ ell -(2- cos(8-8')) t•21'/l) 

cl'F' = { I k I ( l-cos(8-8'))2cos]-k21 (CO.\']+sin7) (3 ('(},\'2(8-e') -4 ('0.\'(8-8') + 2) 

- t2 k21 k lsi "I (2 cos\8-8')- 12 L'os2(8-8') + I 3 cos(8-8')-2) } elk I 1'+1'// 

+ k;l (cos2(8-8')- 3 cos(8-8') + 2) e2,.11. 
(4.X4) 

If we set v=O then u{l'iJ, v{FP in (4.81), (4.83) reduce to the inviseid lluid 

solutions given by (3.63), (3.61). Also the vertical velocity w{FP given in 

(4.82) becomeo zero when v is set to zero. The viscosity causes solutions 

to differ greatly from inviscid solutions in the thin surface layer of 

thickness l. We will sui"'sequently refer to this as the~ vorticity layer. 

Below the vorticity layer the viscous particular solutions are effectively 

identical to the lnviscid solutions. 
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Weber (1983b) and Chang (1969) did not consider the terms 

with form (.)e21'/l (4.84) in their solutions. Although these terms are small 

compared to the (.)elklr+r/1 terms, the vertical gradient of the (.)e2cl1 terms 

ncar the surface is the same magnitude as the (.)elklc+dl terms (i.e., 

O(kl)). Therefore, neglecting these terms from the solutions will introduce 

an error near the surface of the flow when the solutions are matched to 

the surface boundary conditions. 

The above solutions satisfy the boundary condition at depth 

i.e .. wave amplitude goes to zero as c -4 -oo. We must also ensure that the 

solutions (4.81) - (4.83) satisfy the second order surface boundary 

conditions (4.37) - (4.39). The zero-frequency second-order motion is 

driven by interactions between first-order viscous wave solutions. We 

therefore consider the case with no applied wind stress in the second 

order boundary conditions (4.37) - (4.39). The second order surface 

boundary conditions (c=O) are: 

-p2+pv[2z2tc+2z I tc.x Ia +2z I tcY I /J -2z It bY I c-2z I taX I e-x i.'!'z la-z llclz Ia­

Yltczll,-z1tbz1bl lc=O =0. 

(4.85) 

(4.86) 

(4.87) 

Equations (4.85) to (4.87) are identical to Weber's (1985) second-order 

boundary conditions without any wind forcing. Substituting the first­

order solutions (4.72) into the second-order surface boundary conditions 
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(4.85) and (4.86) and considering only zero frequency tntcradions mw 

finds 

The vertical boundary condition (4.87) does not provide any m;ef11l 

information because p2=0 at the surface. We still need a surface 

boundary condition for the vertical velocity. We consider that. the verlieaJ 

drift velocity n1ust be zero at the surface (set.. -'lso Weber, 1985) i.e. , 

w2 =0 at c=O (4.90) 

Since w2=0 at the surface, (4.88) reduces to 

and (4.89) becomes, 
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The particular solutions (4.81) - (4.83) do not satisfy the ahove boundary 

conditions at the free surface. Accordingly. the complPt<.' r,olution muHt 

also include solutions of the homogeneous versions of the <.'qmttlonH 

(4.78) - (4.79). The homogeneous equations are 

V4u{~-"11 =0 

V4w{,..ll = () 

and the time derivative of the homogeneous version of the conthntily 

equation (4. 76) i:~ 

(4.95) 

Solution for v{Fh is obtained by substituting the solutions of (4.~J:i) and 

(4.94) into the equation (4.95). The homogeneous soh ttions mttst also 

satisfy the lower boundary condition 

u{F"=O c ~ -oo 

I'{Fh=() ('-)-oo 

wi_'Fh =0 c ~ -oo • 

(4.%) 

The solutions of the equations {4.93) and {4.94) involve finding the roots. 

It is clear that each equation has four roots of which two of them are 

e-e' 
m1 ;:;;12ksin-

2
- l 

. 0-8' 
m2 = - 12 k,\'lll-

2
- 1. 

The other two roots are repeated roots. The negative roots are 

unacceptable because of the boundary conditions (4.96). Therefore, we 

can wrtte the hmnogeneous solutions to the equations (4.9~3} and (4.94} 
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(4.98) 

Substituting (4.97) and (4.98) into (4.95) gives 

VFh ·• 0 ·• · ' • ' 2kcj>c· f+1tf+1tf+oo (L'(J•.o-L'o•·S') 
v2 = -1t -1t -Otl (sinS-sinS') l(d~2.r+td~2.r)+c(d/;3x+ld/;3x)Je 

where 

. S- S' 
<P =I sm-

2
-1. (4.100) 

The unkno'\\111 functions for the second order homogeneous solutions 

d~2.r• d/;2/.d~2::.d~3x, d~1/,d~2::, and c/~3:: are to be determined from the 

surface boundary conditions. We noticed that some of these constants 

are not independent. By taking : (4.75)-: (4.73)] of the homogeneous 
ua uc 

versions of the second order momentum equations (4.73) and (4.75) and 

considering steady state 01.1e obtains 

Substituting (4.97) and (4.98) for u{FII and w{Fh into the above equation 

and equating the real and imaginruy parts to zero gives 
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dS1r=O 

I): I I . 8+8' IJ'C. 
( ":J3x =- .\'111-2- t S.\:' ( ·LI 0 I a) 

To determine the remaining constants we substitute the n'suiUng 

expressions for ulF=u{'~'+u,YFII, ,,2\'F=,·{~-'fi+,·{FII, and w2\'f.'=\l'{"'''+"'i,.Fh 

into surface boundary conditions (4.91), (4.92). (4.90) and solve real and 

imaginary parts to give 

d1;2==2k3t2ro (I -cos(S-8'))2 dl; 1 (ro,8) dl; 1 (-ro.S') 

rok2 
di;3==T$G d1;1(ro,8)d1;1(-ro,8') 

where 

F=k I ( ocos(9-9')-2)-.t2 t2(3- 13 cos(9-9')) 

and 

G = k I ( 6 cos(9-9')-2) - k2t2 ( 4cos2(9-9')- 21 cos(8-9') + 7) (4.101/J) 

Therefore, the total solutions satisfYing the boundary conditions nt the 

surface and at great depth are: 
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u2 VF = u{Ffl-+ u{Fh 

. J+rtJ+rtJ+"" mk. . . . 112 VI·= y(A VI· Y?J +i BVI· Yl) etk(y,a+y2b)cJ~ I (oo,8)d~l(-oo,8') 
-7t -7t _., 

(4.102) 

(4.104) 

where 

A VF =(I +cos(8-8'))e21k I ~'-21k I/ (I +cos(8-8')) (cos]+sini) elklc+ c/l_(l-

,2k<Jlr . 
cos(8-8'))T+ 2k2f2( J-c:os(8-8'))sinyelklc+c/l +k2 f2 (1 +2c:os(8-8')) e2c/l, 

fJVI··= -21kl/(l-cos(8-8')) (cos~ siu])elkk+c/l +I (F-G/2)/(2~)+ckG/21 

e2k<Jir + 2 k2f2 (3- 5cos(8-8')) cos] elk II.'+ c/1-k2f2 (2-cos(8-8')) e2c/l, 

c"F= c~k G/2e2k«Pc 

+ 2 k2f21 -( l-cos(8-8'))2 cos] elk I c+dl + ( l-cos(8-8'))2 e2k$c ], 

(4.105) 

and F. G are given by (4.101b). The above solutions (4.102 - 4.104) 

represent spatially varying horizontal and vertical shears in 3-D velocity 

Held. Note that at first order in k/, the solution for vertical velocity does 

not equal zero. 

Substituting 8=8' =0 and neglecting k2f2 terms (4.102) reduces 

to 
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u/F= J: ~k 14e2lklc_g lkll (co.\·]+sin])l'lk k+c/11 d~ 1 (w.9)d~ 1 (-(l),e'). 

(4.10(,) 

Substituting fm the wave runplitude from (3.66) and usinv; t h(' 

approximation lkl « 1// (as used by Weber (1983b)), equation (4. 10H) 

reduces to 

(4.107) 

Equation (4.107) is Weber's solution (1983b. eqn. (5.2)). Note also that 

(4.102) and the particular solution (4.81) arc identical fore= 0' = 0. Thus 

for e = 8' = () the particular solution satisfies the boundary comltt ion 

automatically. no homogeneous solution is therefore neecssary to satisfy 

the boundary condition (see also Weber (1983b)). However, if we consid<•r 

a random wave field of waves interacting al arbitrary angles then tlu~ 

particular solutions do not satisfy the surface boundary c~ondillons. In 

this case we need homogeneous solutions to satisfy the surl~1ce boundary 

condition. 

Thus inclusion of viscosity leads to solutions which const ltute 

a random field of mass transport velocity both in the horlzonhll and 

vertical directions. Comparing the viscous solutions (4.102) and (4.1 o:~) 

with the corresponding Jnviscid solutions (3.63) and (3.61) one finds that 

the coefficients ofe2lklc in IN;.VF and v2VF (4.102, 4.103) (i.e., invisdd part 

of the viscous solutions) are identical to inviscid solutions (3.63, 3.61 ). 

The additional terms in (4.102) and (4.103) arise from the inclusion of 

the viscosity. These additional terms reduce the magnitude of the zero 

frequency second order velocity from that of the inviscid solutions. In 



84 

the limiting case of viscosity tending to zero, the viscous velocities (4.1 02. 

4. 1 03) do not reduce to inviscid solutions. Specifically, the homogeneous 

part of the horizontal solutions ulF". vlFh (e.g., d~2r. 4.101b) are nonzero 

for the zero viscosity (see also Weber (1985)). This must be due to 

applied external surface forcing which acts through the first order 

solutions to cause this nonzero velocity even when viscosity is zero. In 

the following section it will be shown that, in the absence of the applied 

external forcing (Le., decaying wave case), the viscous solutions reduce to 

inviscid solutions as the viscosity goes to zero. 

The vertical component of the mass transport velocity 

(wl1''!1 + w/1'."). goes to zero as v --+ 0. It is also worth mentioning here 

that the dominant contribution in the total vertical solution is due to the 

homogeneous part w.J1'11 of the solution (c<j>kG/2, 4.105) which has a 

magnitude of order kl. The particular part w2 VFp is of order (k/)2 but is 

required to satisfy the surface boundary condition (4.90) for the vertical 

velocity. Neglecting w.JFP will cause O(k2f2) vertical velocity at the surface 

(c·=O). Later, in chapter 6, it will be shown by numerical integration that 

the vertical diffusion is almost totally due to the homogeneous part w.J"" 
of the solution. 

The equations (4.102-4.105) represent solutions of the 

equations of motion up to second order in a perturbation expansion. As 

mentioned in the beginning of this chapter, these solutions have two 

small parameters in them: {1) perturbation expansion parameter e and 

(2) c1 (= kl). The perturbation expansion parameter e (=Aft) is the wave 

slope (i.e .. ratio of the wave amplitude to the wave length). For surface 

gravity waves, LeBlond and Mysak. ( 1978) estimated the maximum value 

of E= 1/14=0.07. An upper limit of 0.1 for e Js also reported by Kinsman 

( 1984) from observations. It is conceivable that the lower limit of e may 

be anything between 0.1 and zero. Now to estimate the second small 

parruneter, e1=k/, we know that e1 is related to the eddy viscosity through 
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the viscous length scale I= ~2V/(I). Viscosity in the ocr an has a lnr~t' range 

having a lower limit of molecular viscosity (l.Oxto-h)m~/.\', For a typkal 

large value of eddy-viscosity V=(I.Oxto-2)m2J,,· and the fn•qm•twy rang<' tt) = 
(0.3-1.0) .v-1, k and I take the values from (0.009 - 0. l) m- 1 and (0.2() 

-0.14) m respectively. These give a range of values for c 1 = (0.002 -

0.014). Hav!ng found the ranges of the two small parameters c and 

e1( =k/) it is important to realize that terms of 0(e2t::12) may sometimes ht> 

of same order as O(e3e1). The point we are trying to make Is that If th<' 

third order perturbation solutions happen to contain terms of 0(c1°) ami 

O(e1) then these terms may be of srune order of magnitude as some tc·rms 

of second order solution. In that case the third order pert urhnt ion 

solutions must be included. This is specially true for s<.~cond onll·r 

vertical solution (4.104) where the dominant. terms in the solution arc~ of 

0(c1) and O(c12). Nevertheless. we did not attempt to solve thr third onkr 

perturbation equations of motion, therefore, t.he order of c 1 in t lw onkr 

e3 vertical velocity field solution is unknown. This r<'mains to IH' 

explored in the future. 

Providing eddy-viscosity and wave amplitude are snch that 

e3e 1 < E2e12 i.e., c < e1, then we can be assured that we don't neC'd to 

consider O(e3) solutions. Since e < e1 is not generally true (except for v<.~ry 

small amplitude waves and large eddy-viscosity) it follows that o11r 

solutions are not necessarily accurate up to O(e2 ~:: 1 2 ) . Thus we retain only 

terms up to O(e2e1) when calculating eddy-dlffuslviUes. The O!t:2 t: 1
2) 

terms in equations (4.1 05) have boxes drawn around them for ease of 

identification. However, we do not discard them totaJly since they wot1ld 

be useful should the O(e3) solutions ever be explored in the fut11re. Note 

that O(e2e1) terms (i.e., c~kG/2e2k~Pt· (4.105)) still have vcrllectl zero 

frequency velocities. 

To visualize the spatial behaviour of these sollltions. 
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ul~-". v2 VF. wlF (equations 4.102-4.1 04) are plotted as functions of a, b, c. 

FJg1 1rc 4.2 shows the plot of the mass transport velocity due to two 

primary waves of frequency ro=l.43 rad/s each interacting at an angle 

± 45° with the a-axis. The arrow corresponding to u. \' components of 

velocity is seen to be sheared fn the hmizontal plane as observed by the 

alternating direction of the arrows in the top plot. The direction of this 

random shearing changes as the angle of interaction changes. The 

motion in the vertical plane changes direction with the depth as shown 

in the lower plot. 
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SURFACE VELOCITY 

---
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----------
w-1.43.1.- 9 •46, 8' --•~ 
- • :ow.O em/a 

VERTICAL SECTION 
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' ' ' \ ' \ \ \ ' 1111111111 
I I I I I I I I I I 
, , , , , , , , , , 
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w-1.43. 9 -.s. 
- • 0.2 em/a 
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Figure 4-2: Interaction of two primary· waves to give a 
horizontally and vertically sheared mean flow. 
The arrows show the magnitude and direction of 
current as a function of position (a,b,c). (a) A 
horizontal section through the surface c=O. Plot 
shows ll2, VF and v2 VF velocities are sheared in the 
horizontal plane. (b) A vertical section in the (b,c) 
plane. Plot shows v2VF and w2VF are sheared 
with respect to band c. The parameters used are 
co = 1.43 s-1• a = 45°, 9' = - 45°, a=b=20 m and v 
= 0.01 m2Js 
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4.5. SOLUTION FOR DECAYING VISCOUS GRAVITY WAVES 

In thjs section we consider that the waves are established at 

lime t = 0 r~nd that no further energy is supplied. Then, owJng to viscous 

clissipaUon, the waves will attenuate in amplitude and eventually the 

whole motion will go to zero. The governing equations {4.1) to {4.3) and 

the continuity equation (3.6) remain unchanged from the nondecaying 

viscous wave problem. 

4.5.1. FIRST ORDER SOLUTIONS 

The first order momentum and continuity equations are given 

hy (4.5) lo (4.8). These equations are solved using a similar technique to 

that of nondecaying wave problem (section 4.4.1). Once again we will 

assume that spectral representations of first order solutions are given by 

('quations (4.40)- (4.43). If there is no applied wJnd stress, then the 

general form of the first order boundary conditions (4.34) to (4.36) reduce 

to 

and also 

= lra+x,,c=O 

-p1+2pvz1,c=O 

at c=O, 

(4.10X) 

(4.109) 

(4.1 10) 

The surface boundary conditions for the horizontal component of the 

stress (4.1 08) and (4. 1 09) are identical to nondecaying wave case (4.54, 

4.55) . The surface boundary conditions for the vertical component of 
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stress (4.56) was used to obtain the dispersion relation and magnttud<' of 

the applied stress t( Therefore. the rclaU!ms (4.til) to (4.<14) for tlw 

spectral density functions cl~_,.. d~_,.. cl~= and c/~1, nre still sa tisHed. The 

vertical boundary condition (4.110) is diffP.rC'nt (zero nppliecl str<'ss) from 

that of the nondecaying wave case (4.56) in whieh a stn•ss t.\' was 

applied . Substituting for : 1 and p 1 from (4.42) and (4.4:-J) into tlw 

boundary condition (4.110) and using (4.63) and (4.64} to <'xpress d~: ancl 

d~P in terms of dt;1 one obtains the following dispersion r<'lation 

., .., 2 2v 2lkiA ~{2 ., .., 2v 
w .. =~lkl+k-w (-. )--...!:1'-+k-<ll-(-. )1. 

' /(1) p2+k2 p /(1) 

(4. I II> 

Neglecting terms that are small compared to I using (4 .fi7h) and 

applying successive approximations gives 

(4. 112) 

where w
0 

is the real frequency given by (4.69a) tmd v is being replaced hy 

Pw)2 using (4. 71). By applying binomial expansion, <•J may he written as 

oo = 00
0

( I -ik2f2) + 0 (k/)4. 
(4.113) 

Thus the frequency consists of real tmd imaginary parts given hy 

W = Wu + j CJ)I 
(4. I 14a) 

where the real part is given by 
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(1),'{ = w}= R I k I 
(4.114/J) 

and the imaginary part is given by 

(4.114c) 

l·lcnce, for the decaying wave problem, the frequency of the waves is 

eomplex (contrary to nondecaying wave case where frequency was real in 

the present limit of our approximation, equation 4.69a ). 

Substituting (4.61) to (4.64) into (4.40) to (4.43) respectively 

and using equation (4.114) for m one obtains the following first order 

soh 1tions 

X I VI>= s::s:: cose I elk II' 2~ I elk I ei< kcusfJa+ksinfJ/J-w,t )-2vk
2
t d~l (m,O) 

(4.115a) 

y I\'/)= J :: J ::sine I elk I(' 2~ I ePr I ei ( kms8a+ksinfJb- wnt )-2vk
2
t ds I ( ro,O) 

(4.115/J) 

; \'/) = --1 elk lr __ eJk 1 JCkcosfJa+ksin8h-W(/)-2vk•t dr. (W 0) 
J

+TCJ+"'"' ik 2k2 'l 

I -rr - oo I k I ~2 "'I ' 
( 4.115c) 

J

+TCJ+oo ik 2J:k2 
Pt 1'0 = p- 14ilklvro elklc--ePc l 

- rr -<>0 I k I o ~2 

(4.115d) 

" 
.c 

,; 

' 
i 

·J 
:,-; 

! :. 



91 

The superscript VD has been used to denote solutions corresponding to 

viscous dynamics in which the waves are decaying. The solutions <kcay 

in time due to the term e-2vk\ Apart from this decay term, the 

nondecaying wave solutions (4. 72a) - (4. 72e) are identical to decaying 

wave solutions (4.115a) - (4.115c). However, the pressure solution 

(4. 72d) (for nondecaying wave) is different from (4.115d). Equation 

(4.115d) contains an additional term -4kpvw
0
elkk (compared to 4.72d) 

which plays a dominant role in balancing the first. order S\ n'fa<~e 

boundruy condition for the vertical component of stress. It will be shown 

latter that this term and the exponentially decaying term in the llrst 

order solutions cause a significant change in the second order snrface 

boundary conditions on the horizontal component. of the stress 

(compareci. to the nondecaying waw.: surface boundary conditions). In the 

limiting case of zero viscosity, the first order solutions rech tcc to invlseld 

solutions (3.35) - (3.38). 

Using (4.53) to replace d~ 1 in (4.115) by d~.r one obtains 

x 
1 
C = J+1tf+ool elk lc 2~ I ePr 1 ei ( kco.~IJa+ksinfJ/J-Ct),.f)-2vk'!t dl;,x(w,fl) 

-1t -oo 1-' 
(4.11 (ul) 

y
1 
C = J+nJ+oo tane [elk I c: 2~ I ePr 1 ei ( km.tiJa+ksinUh-(J),t )-2vk2

t d~_rC CJl,8) 
-1t -oo 1-' 

(4.1116/J) 

z c =J+nf+oo-ik cose 1 elk 1 c 2k
2 ePc~ 1 ei(kcosl3u+ksi11Ul1- (J),.t)- 2vk2t dl; (o>,8) 

I -1t -oo lkl p2 X 

(4.1J(w) 

(4.1 J()d) 

These are the 3·D extensions of the Chang's (1969) first order solutions 

(superscript C stands for Chang}. For 9=0 the above solutions should 

reduce to Chang's (1969) first order solutions. For e == 0, equation 



92 

(4. 1 16a) and Chang's first order x 1-solution are identical. However, 

solutions for z1C and p 1C ( 4.116c and 4.116d ) do not agree with those of 

Chang's. In Chang's paper, first order z1 a.'ld p 1 solutions, have a sign 

cliscrepency in front of the viscous term. Further examination shows that 

due to this sign discrepency, Chang's first order so:utions do not satisfy 

the first order continuity equation. 

4.5.2. THE SECOND ORDER SOLUT!ONS 

Substitution of the first order solutions into the second order 

differential equations (4.9) - (4.12) and consideling only zero frequency 

interactions yields 

\. +"Z -t--vV2\. = lA VD,,2iklc+A VDelklc+l'/1+ Pza f +nf +1tf +oo 
· 211 ,., 2a · 2t 11 ... 22 

p -1t -7t -0<> 

(4.117) 

833 VDe2c/l~ik(yla+y2h) -ot d~1(ro,8) d~1(-ro,8') 
(4.118) 

- +"- +----vo2.,. - [C VDe21klc+C VDelklc+dl+ /)1.1' f+1tf+1tf+oo 
-'211 ,.,-21' v '"21- 11 22 

p -7t -7t -oo 

c33 VDe2,·,'!]eik(yla+"(z/J) - ~~d~1 (ro,8) d~1 (-ro,8') 

(4.119) 

.;,; 
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(4.120) 

where 

A 11 \'IJ = (I +co.\·(9-8')) kctJ
2

1i y1 (I +k414co.\·(9-9'))-k2f2y,(cos(H-9')+ J )I 2 .1 

c (' k~ 12 (' (' 
(co.,·7+sin7)+-j-sin7(3-cos(8-8')) l-iy11sint·os(9-9') 

I k II c c f.:2f2 c ) -2 (cos(9-9') -3) (co.,·,-.,·ill/)-
2

co.,·7( I -7 cos(H-H'll I 

A:B VD =-k3 f2ro2 ( y3 ( I +2co.,·(8-8') +k2f2(ms2(0-H'l + cos(H-0')- 2l I+ 

i y 1 I 2-c:os( 8-8') + k~2 (I + ti ms(9-9')) I 

B II VJJ = (I +cos(9-9')) k~2 
r iy2 ( 1 +1.4 14co.\·(8-9')) -k2/2y4 (c'O,\'{f)-0')+ 3) I 

822 VD = klk I/(J)2 r Y4 (cos7-,\'illy) (I +cos(S-8'))- i Yzl (<'0.\'y+siny> I 

+k3f2w2( y4 (cosy( I +3cos(8-9')) + lk
2
1/ (2cos2(8-9') + 3c:os(9-9')- I l 

c c k212 c c 
(co.,·7+sin7) +2 .,·in7(3-cos(0-9')) 1- i y2(sin7co,\(8-e') 

lkl/ c: c k2J2 (' ) -2 (cos(9-8')- 3)(co.,·1-sin7)-2 co.,·1( I -7 cos(S-8')) I 

8 33 VD =-k3/2ro2 ( y4 (1 + 2c:o.\·(8-9') +k2J2 (cos2(9-9') + cos(S-9')- 2)1 + 

i Y2f 2 -cos (9-6') + ki\ I + 6 cos(9-0') I ) 
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C 1 1 VIJ =I k 1m2 (I +cos(8-8') )(I + A.4 14cos(8-8')) 

C22 VIJ = -21 k I(J)2cosy cos(fJ-8') +k21oo2 (cosy+ siny)(cos(8-8')-1) + 

k2 1kl/2 (J}2{ -siny( I +2cos(8-8')) +I k ll(siny- cosy)(cos2(8-8')­

cos(8-8')-l) +k2t2cos7(cos2(8-B')-cos(8-8')-3)) 

C :B \'/J = A.4 l1w2(1 - 2cos(8-8')) 

D I 1 VJJ =k2( I +co.\'(8-9'))2/2 

D22 VIJ =-2k2 ms] cos(8-8')-k21 k II( cos]-+si "I) ( cos2(8-8')+ I) 

-.l..4 J2si n]cos(8-9') 

D;n VJJ =A.4 t2( I +cm·2(9-8')) 

o=4vk2• 
(4.121) 

Note that right hand sides of equations (4.117) - (4.120) are time 

dependent. In the nondecaying wave case, right hand sides of the 

second order momentum equations (4:13) - (4. 76) are independent of 

tJme. In equations (4.117) to (4.121), tenns up to 0 (kt)2 are identical to 

nondecaying case (4. 73) to (4. 77). Only the terms of order (k/)3 and (k/)4 

are changed by the introduction of the time-decay term e-2v/..21
• Major 

differences appear, however, in the second order boundary conditions 

(derived latter) which will in tum effect the homogeneous solutions. 

The x2-momentum equation (4.117) reduces to Weber's 

(l983b) eqn. (4.1) if we drop (kU2 order terms, horizontal derivative terms 

(e.g .. z2a• P2a• x211111 and x21bb which are small compared to vertical derivative 

term x211'1') and substitute 8=8'=0. Weber solved this u2-momentum 

equation (accurate to first order in k/) to get the u2-component of the 

mass transport velocity. He did not solve for the vertical component of 
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the mass transport velocity. The fact that the vertical gradient of th(' 

pressure is not neg1igible compared to the vertical gradient of th<' velo<'ity 

in w2- equation of motion (4.11 9), huplies tlmt (4.1 19) cannot lw ~olvt'cl 

using the Weber's technique. Therefore, Weber's technique i~ of Itt t k 

help in solving the three dimensional problem. Since we are consid('ring 

decaying wave problem we will not consider the steady state ca~e (a~ in 

section 4.4.2). A more general approach is adopted to solvt' 

(4.117)-(4.120). 

Following the san1e procedure as in st!ction (4.4.2). t lw 

momentum equations (4.117) - (4.119) can he expressed as lhc following 

single variable equations in x2• y2 and z2: 

(4.122) 

(4.123) 

(4. 124) 

where 
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A 1 Vt> = -k5J2CJJ2( I +cos(9-9')P(3+cos(9-9')) [ Y;,- i k212y1 j 

A2 VI>=- 2(J)2k ( y3 [I kill (cm:y+.,·iny)( I +cos(9-9')) +k2sin-J(5cos(8-9')+3) J 

-iy1 II kIll (cos~ siny) (cos(S-8')-1) +k2 cosy (cos(9-8')+ 1) l) 

+ 2k31k l/ro2( y3 (cosf-siny)cos(8-6')(2cos(8-9')+5) 

-iy1 (co.,·]+siny)(cos(9-9')-2)) 

A 3 V IJ = -y34k3c.ll2( I + 2cos(9-8')) + i y 1 4k3w2(2-cos( 9-9')) 

/l 1 VD =-k5J2w2( 1 +cos(9-9'))2(3+cos(9-9')) [ y4- i k212y2 ] 

112 VD =-2ro2k ( y4 11kl/l(cos]+siny)(l +cos(6-9')) +k2sini(5cos(8-8')+3) J 

-iy2 11 kIll (co.\·]-siny) (cos(9-9')-l) +k2 co.\'I(cos(9-9')+ 1)]) 

+ 2{~1 k II ro2( y4 (cos~ siny)cos(9-9')(2cos(8-9')+5)l 

-iy2 (co.,·]+siny)(cos(9-9')-2)) 

R 3 V D = -4k3ro2y 4 (I+ 2cos(8-9')) + i y24k3w2(2-cos(8-9')) 

C 1 v 0 = 2k61 k 114ro 2( 1 +cos(9-9'))2 (3+cos(8-8')) 

c2 \1/) = -4k21 k 1 w2 c:os7< 1-cm·(8-9'))2+4~tro2 cos2(9-9') (cosJ+sini) 

+ 4.(.41 k 1 f2ro2 ( cos2(9-8')+cos(8-9')+ 3) sin] 

C:~ VD =4k4tw21 cos2(9-9')-3cos(9- e')+2 ]. 

(4.125) 

Now if we carefully examine the equations (4.122) - (4.124) we will see 

that. for time variation of the form e-2 v {!1• the acceleration term V2x211 

and friction term vV4x21 are of equal magnitude. The acceleration term 

cannot, therefore, be neglected. This is in contrast to inviscid and 
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nondecaying wave cases where we have dropped the aecch'ratlon term by 

assuming that the mass transport velocity does not have aec<'lcratton. 

Furthermore, an attempt to solve the above cqt mtions eonsidf'rln~ 

unaccelerated motion gave particular solutions which do not r('dttce to 

inviscid solutions (3.63) to (3.61) as v ~ 0. Therefore these <'quations 

are solved in a different manner frmn that used to solve the inviscid ancl 

nondecaying wave problems. 

Retaining both the acceleratlon and friction terms in equations 

(4.122) to (4.124) and applying the technique of 'mdetennhwd 

coefficients, the particular solutions to these equations arc given hy 

dl; 1(w,9)dl; 1(-wJ)') (4.12(1a) 

Y2 VDp= J+1t J+1t J+oo-~~ (A'\ID'Y4 +i B'VDy2)eik(yla+"fi'>-flt 
-1t -1t -oo ds1<w,e) ds1t-w.e'> t4.126/J) 

(4.12(w). 

The particular solution for pressure is obtained hy subst.itullng (4. 12Ge) 

into second order z2-momentum equation (4.119) 

where 
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,'\'VIJ = (I +c:os(8-9'))e21k I ~'-21k 11 (I +cos( S-f)')) (cos]+sinl) elk II'+ dl 

+k2f2 ( 2(1 -co.\·(8-S'))sin]elkfc'+c/1+ (1 +2cos(9-S'))e2c//) 
tJ'VI> = -21kl/ ( l-cos(9-9')) (cos~· ,\·in]) elk lc+c/l_k2J2 ( ( 1 +cns(S-9')) 

e21k I,. -2 (3-5cos(8-8')) cos] elk I r+dl + (2 -cos(S-9')) e2cll) 

c'VIJ =~(I +cos(S-8')) e21klc + ( I k I (I -cos(e-e'))2 cosf-k2 1 (CO.\']+sin]> 
(3cos2(8-9') -4 cos(9-8') + 2)- t2 k21 k 1 sin] (2 cos3(8-8')- 12 cos2(e-8') + 

13 cos(S-8')- 2) ) elk I c+c/1 + k:l (cos2(8-8')-3 cos(9-9') +2) e2c/l 

o 'V/J =I ('(J,\'y( I -cos(S-8'))2-kl (cos]+sin]> (3 cos2(e-e')- 5 cos(e-e') + 2) 

- t2 k2 ,,·in](2cos3(9-8'>- 12 cos2(9-9')+ 15 cm·(S-9')-3) 1 elk lc+c/1 

(4.126e) 

The solutions (4.126) represent second order displacements and pressure 

due to a group of decaying deep water surface gravity waves. Once again 

lhe vertical displacement z{0 P (4.126c) Is smaller than the horizontal 

displacements by a factor B=2k2J2w. By differentiating (4.126a) - (4.126c) 

with respect to t one obtains particular solutions for the velocities 

(u{Df', v{DP, wi'IJP) for decaying waves 
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where A'"0 .B'vn,c'VD are given by equations (4.126l'). The abow 

solutions satisfy the lower boundary condition for the dct'p water surf~tcl' 

gravity waves i.e., u{DP, ,.i'l>t'. w{1'1' ~ 0. c· -7 -oo. Far below the vort icily 

layer /, u{0P, v{l>p tend to the inviscid solutions (~t63) and (:3.(1 1). Tlw 

particular solutions u{/Jf' and \'i_'l>P are very shnilar to u{Ff' and r{' .. '' fell' 

nondecaying waves (4.81, 4.83) except that. u{1>1' and \'i' IJf' each hnve onl' 

additional term of order k2f2 (see n•VF and ll'\' IJ terms. eqnat tons 4.R4, 

4.126e). Similarly, nondecaying vertical velocity wi',..'' (4.H2) and 

decaying vertical velocity w.J.'f>p (4.127c) solutions are similar· except that 

C'vo (4.126e) has one additional term than that of C'\',.. (4.84). In the 

limiting case of 9=8'=0, u{/Jf' (4.127a) reduces to Wchcr's( 19H:ia) and 

Chang's(1969) particular solutions. 

The solutions (4.127) represent damped wave motion. Snch 

motion will decay with time. In order to estimate the magnliiJ(k of 

damping produced by the surface gravity waves ust mlly encmmtered in 

the ocean (typical frequency range 0.3 to 1.0 rad/s) lhc wave nnmher k 

ranges between .009 to 0.1 m- 1 . For v=O.OI m2/s, 8=2k2/2(1) lies IJ<'tw<'en 

3xl0-6 to 4xJo-4 s- 1• So the dan1ping is slow and can be neglected if the 

time interval under analysis is of the order of minutes. 

Now the solutions must match the boundary conditions at the 

surface. The second order surface boundary conditions are oh!nined hy 

substituting first order solutions (4.115) into the boundmy eqnat ions 

(4.85) to (4.87) and considering zero frequency interaction. Using the 

same argument as in section (4.4.2) the vertical velocity at the stJrfac<~ 

must be zero i.e. 

(4.12X) 

The boundary conditions are therefore 
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The boundary conditions (4.129). (4.130j for a, b-components of surface 

stress involve terms of smaller order in kl than the surface boundruy 

conditions (4.91), (4.92) for surface stress in the case of nondecaying 

wave. The large magnitude of the surface values for the nondecaying 

waves may be attributed to the applied surface stress and also dropping 

of the decaying part (e-01) of the solution. Unluta and Mel (1970) and 

Weber ( 1983a) reported that the second order boundary conditions are of 

order (k2f2) and they set the light hand side of (4.129) and (4.130) equal 

to zero. If we drop k2;~2 term in first order z 1 and p 1 solutions (4.115c) 

(4.115d) (as done by Chang, 1969), then the boundary conditions 

become of the same order as those of Unluta and Mel (1970) and Weber 

(1983a) i.e .. 0(k2J2). The k2;~2 term is small (O(k2f2)) but its gradient at the 

surface is of the order kl. 

The particular solutions (4.126) do not satisfy the above 

boundary conditions (4.128)-(4.130). Accordingly. the complete solution 

must also include the homogeneous solutions of the homogeneous 

versions of the equations (4.122) - (4.124). That is, the homogeneous 

equations are 
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(..t.l.t!) 

where u{D11, v{IJh and w{DII represent velocities from tlw homo~em·ons 

solutions. The homogeneous solutions must satisfy the condition at 

c=-oo which are 

u{1Jh =0 c ~ -oo 

v{IJII =0 (' ~ -oo 

w{/Jh =0 (' ~ -oo. 

(4.1.Hl 

Attempts to solve equations (4.131) to (4.133) subject to condition (4.1:~4) 

using a separation of variables technique (similar to nondceaying-wavc 

case) were unsuccessful. The differential equations (4. 131) - (4. 1 :~:~) 

have four roots namely. 

e-e' 
m1•2= ± 2lksin-

2
-l 

e-e' 
m3.4 = ± 2ilkcos-

2
-l 

of which only one root m 1 (with + sign) gives solution which decays with 

depth. The other 3 roots are unphysical because they are either 

oscillatory with depth or increase exponentiaJly with depth. Moreover, 

the root m 1 leads to a stngulruity when boundary conditions are appliecl 

as e approaches 9'. The reason is that when the hmizontaJ length scale 

of the forcing function (which is from the nonlinear interaction of the first 

order solutions) tends to infinity (i.e., when 9=0') and when the forelng 
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terms have been acting for an infinitely long time in one direction (i.e .. 

when (J)=(J)1, then momentum will diffuse to infinite depth. This explains 

why zero frequency, zero angle interaction cannot satisfy the condition 

u, v, w 4 o as c: 4 - oo. 

Weber ( 1983a) used a different approa'-h to solve the 

homogeneous part of his x2-momentum equation (eqn. 4.117 with 

0=-6'=0). He applied a Laplace transform by introducing an initial 

condition for the homogeneous velocity. Following Weber (1983a) we also 

assume that the second order homogeneous solutions are zero at time 

t=O i.e .. 

u/011 =0 at t=O 

"2V/Jh=O at t=O 

wzVIJh=O at t=O. 
(4.135) 

Physically the above initial conditions mean that initially we will start 

with a wave field given by the particular solutions (4.127). The wave field 

described by the particular solutions (4.127) decay in time because of the 

action of viscosity. But since the original momentum cannot be 

destroyed, the homogeneous solutions (which are zero initially) satisfying 

the surface boundary conditions distribute the momentum from the 

surface to the layer below. The depth of this layer is initially 

infinitesimally small and grows to order k-1 in the time taken for the wave 

lleld to decay (Longuet-Higgins, 1 969). 

Equations (4.131) to (4.133) are solved subject to the 

boundary conditions (4.128) to (4.130) and initial conditions (4.135) by 

applying the Laplace transforn1 in the time variable. The Laplace 

trru1sform of a functlonjtf) is given by 

. . 

·' .I 
! 

~ 
'1 . ·~ 
1 
I 
~ 

.l 
l 
} 

J .~ 
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where sis the Laplace transform oft. Therefore. the Laplace transform of 

the equations (4.131) to (4.133) are 

'V2u2 vm'-vls t;4u21' I>It =0 

(.t. U7) 

(4.1JX) 

where u2VJJh, v2VDir, w2VJ>h are the Laplace transforms of the seeoncl ordl'r 

homogeneous velocities u/0". ,,l/>11, w2
1'1Jh respectively and s being tlH' 

Laplace transform of t. Equations (4.136) to (4. 138) arc f(Jnrth onl<·r 

differential equations in (a, b, c) spatial variables only (t clepend<•nc<· 

appears as a coefficient of the spatial derivatives). Assuming same (a,/1) 

dependence as in particular solutions (4.127) i.e., eil.:(yla+y!./J), the 

equations (4.136)-(4.138) are now solved for unknown dependence in r. 

Out of four roots (two positive and two negative) of the above equations. 

only two ( positive roots) are acceptable. The negative roots resnlt In 

solutions that do not decay as c -7 -oo. The homogeneous solutIons are. 

therefore, given by 
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(4.139c) 

where 

(4.139d) 

The unknown constants d~2rvn, d~2/VD, d~3_,/D, d~1./VD. c/~2/D. d~2_v'VD, 
d~~/D. d~3_v'VIJ, t/~2= \ID. and d~3/0 are determined by satisfying the Laplace 

transform of the boundary conditions (4.128) - (4.130), homogeneous 

versions of the continuity equation (4.120) and one vorticity equation. 

The continuity and vorticity equations are used to relate some of the 

constants which are not independent. Solving the real and imaginary 

parts of the resulting equations as in section 4.4.2, the constants are 

given by 

(1~"'-···"IJ klklwy3 (1+cos(6-8')) J: ~ , 
~ •• (s +B) A., d-, 1 (oo,8)d~ 1 (-ro,e) 

1~ ,1,0 = ( Y1 Q v "-2 A. 2 . 8+8' 
t ~2.r (s+B)A.

1
2k(l -cos(8-8')) \·(s+B)[Xj(Q+ I R)sm(-2-)]} 

d~ _l'IJ =0 11 

d~ I ( ro,6) d~ I ( -ro,8') 
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d~ tVD Jl= ~'D . 9+9' 
t;3x =-c "'3: Stll(-2-) 

Yz Q v A2 ~ 0+8' 
d~z.v'v0 = { I (Q '\ 'R) ( ) II 

":l (s+B)A.1 2k(l-cos(e-e'))s(s+8) A.
1 

+11.( co.'i 2 
d~ 1 (m,e) c/~ 1 (-ro,e') 

where 

Q=20/ro(l-cos(9-9')H (l-3cos(9-9'))+ ~ (5-llcos(S-9')) I 

and 
R = ~l (2cos2(9-9')-3 cos(S-9')+3)-~ (II cos2(9-9')- 13ms(43-8') +6) 1. 

(4. I:Wt•) 

The solutions (4.139) are accurate up to the order of {k/)2. Perfonnlng the 

inverse Laplace transform on (4.139) gives homogeneous solutions (not 

presented here for brevity) which contain many terms including terms of 

order (k/)2• These solutions fail to satisfy the initial condition (4.l:i5) by a 

small tetm of the order 0 (k/)2• Hildebrand (1962, page 73) showed 

through an example that (in the case of simultaneous equations 

resulting from two differential equations). the method of Laplace 

transform may supply erroneous solutions which fail to satisfy certain 

prescribed initial conditions i.e. the same initial conditions used to do 
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the transformation initially. Clearly, the solutions with the coefficients 

given by (4.139e) fall in this catagory. But the order of the error is O(k£)2 

and the solutions satisfy the boundary conditions and initial conditions 

np to the O(kl). Also note that O(kl) terms are the dominant terms in the 

solutions and latter on we will drop the 0(kf)2 terms anyway. 

The next logical step is, therefore, to see if the initial condition 

is still violated if we drop the small terms of order (k/)2 from the particular 

solutions (4.127) and repeat the procedure of Laplace transform to solve 

the same homogeneous equations (4.136) - (4.138) as before. The second . 

order boundary conditions (4.129) and (4.130) are now similar to Unluta 

and Mei (1970) and Weber (1983a) (as we drop k2;p2 term from (4.115c, 

d) ) as discussed before (i.e. , O(k2f2)). Therefore, the surface boundary 

condillons for the horizontal component of the stress are now 

112lD lc=o=O 

"2cy [) lc=O = 0 (4.140) 

The homogeneous solutions thus obtained (in Laplace transformed 

variables) are similar to equations (4.139) . But the coefficients 

d~2r''D.d~2../VD,d~2/0 etc. (equation 4.139e) are now given by 

1: ' \'/) - 'Yt .3 . ' v Q A:l . 9+9' 
ds2r - I (. o)A. k fro( 1-cos(9- 9 )) - (. B) [ ~ sm(-

2
-)] ) 

,\+ I s .\+ I'I.J 
d~ 1 ( ro,9) d~ 1 ( -ro,9') 
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'VD Y2 ~ ' v Q ~ 8+8' 
d~2y = { k·/ro( I - cos(e-e )) + 1-ros(-.,-)11 

(s+B)A.1 s(s+B) A. 1 -
d~ 1 ( ro,S) d'S 1 (-m,8') 

d~3;: VD =-Vs(.~B) d~ 1 (ro,8)d~ 1 (-ro,8') 

Q = 20/ro (I - cos(S-9') )2 

(4.141) 

The inverse Laplace transform of (4.139a-4. 1 ~39c) with 

d~2rVD, d~2/VD, d~3)'D etc. given by (4.141) give the homogeneo11s 

solutions for the decaying wave problem 
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(4.142a) 

d~ 1 ( ro,9) d~ 1 (-ro,9') (4.142/J) 

w.j'l>ll= s::s::s:~f !..4 /vro(l-cos(9-9'))2 ( (l-cos(9-6')) 

J t e- 'J-._/v ~ Elfc( ~I<: I ) d~ +(I + cos(9- 9')) e-Ot J 1 
ef>~- 'Alv ~ EJfc( ~I c I ) d~ ) 

o 4v~ o 4v~ 

- k
2;(1) (l - cos(9 -9'))2( l-e- 01)e~c:] eik(yla+•M>> d~ 1 (ro,9) d~1 ( -ro,G') 

(4.142c) 
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Notice now that the above homogeneous solutions satisfy the initial 

condition (4.135). For e=e'=O and using the approximation k/«1, 

equation (4.142a) reduces to 

(4.143) 

Using the relation for the monochromatic wave amplitude as in (:~.(:)(i), 

u{011 can be written as 

(4.144) 

which is the Weber's solution (1983a, eqn. 6.7) with ~=t-r 1 • 

By dropping the 0 (k2P) terms from the particular solu t.ions 

(4.127) the horizontal velocities are not significantly clumged. We also 

lose w{0 P, the particular solution for the vertical velocity (4.127c) (which 

is 0 (k2P)). This is the limitation of our solution. However, this will dfed 

the total vertical velocity solution w{I> in an insignificant way he eat 1se 

the homogeneous solution for the vertical velocity w~011 is of order (k/} 

whereas the particular solution w{DP is of order k2J2. The error 

introduced by dropping 0 (k2J2) terms from w{Df! solution is estimated to 

be of order 0.1 to 0.2 % of the total solution which is quite negligible. In 

the nondecaying wave case (section 4.4.2) the homogeneous solution len· 

the vertical velocity w{FII (4.98) (see G in 4. 101 h) is of order 0 (k/) whereas 

the corresponding particular solution w{""P ( 4 .82) is of order 0 (k2/2). 

The above homogeneous solutions (4.142a-4.142c) are 

different from those of the viscous nondecaying-wave solutions (4.81) -

(4.83) and they decay with depth and time. The solutIons of Chang 

(1969) do not decay with depth (because Chang (1969) chose an 
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oscillatory root for the solution to her homogeneous equation that 

satisfies the boundary condition at the surface only). A most interesting 

point is that the homogeneous decaying wave solutions (4.142) go to zero 

as viscosity goes to zero implying that the total viscous decaying wave 

solutions reduce to the inviscid solution as viscosity tends to zero. This 

is contrary to nondecaying wave case where homogeneous solutions 

(4.97 and 4.99) do not go to zero as viscosity is set equal to zero 

(probably because of the applled forcing}. 

The total solutions for the viscous decaying waves are 

therefore: 

"2 \'/J = v{Df' + v{IJir 

(4. 1 45c) 

where 

A I'D =I (I +cos(S-8')) e2ik lc-21 kll (I +cos(S-6')) (cos}tsini) elk lc+c/1] e-ot 

.• 

i ,, 
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BVD = -21k II ( t -ros(8-$')) (cosJ-sin]) t'lk I c+c/1 e-or 

cVD = k3/v (1-cos(8-6'))2 ( ( 1-cos(S-6')) ft e-A.lv~ E1j('( .l1_}c/~ 
o ..J4vr, 

+( 1 +ros(8-8')) e-orJ
1 
e0~- A.lv~ E1.td J.1..)tl~) 

o -l4vr, 

- ;' (l-cos(8-8'))2(1-e- 0')eA.J.~" 1 eik<y,a+Yzh> c/~ 1 (ffi,8)c/S"(-(JJ,(·}') 

(4.145c/) 

In order to understand the three solutions (e.g .. inviscid (:-3.61. 

3.63), viscous with forcing (4.102-4.104) and viscous decaying (4. 145a­

c}), the second order zero frequency velocities at a= 10m, h= I Om nrc now 

plotted as a function of depth. The real part of the vcloclllcs are 

computed for single frequency interaction for amplitude cqunl to 1 n1. (A 

bigger wave amplitude is possible which will give a larger magnlt ttde for 

these velocities). Figure (4.3a) shows the plot of a-component of motion 

against depth of the inviscid u~N. viscous decaying u{1J and vlscotJH 

nondecaying (forcing) u2 VF solutions. The top plot In Figure 4-3 shows 

that when 8=8' =0 the velocity due to decaying wave solution u{0 fs the 

largest near the surface. The next largest velocity at the surface Is that 

due to inviscid solution u.J.N which overlaps u{F. The viscous 

nondecaying solution u{F generates the smallest of the three veloefties 

near the surface for 8=8'=0 interactions. The three solutions tend to 
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converge below the surface. Figures (4.3b) and (4.3c) display the san1e 

velocities for the nonzero angles of interaction. In these cases the inviscid 

u~N and viscous decaying u{0 solutions are almost in phase and of 

similar magnitude. The viscous nondecaying solution u2 VF not only 

decays more slowly with depth but also has a different direction and 

amplitude from that of the fnviscid and viscous decaying motions. The 

vertical motions generated by the viscous decaying w{0 and viscous 

non decaying w2 VF solutions are at different directions (Fig. 4.3d). The 

invfscid solution does not give any vertical motion. The vertical motion 

due to the viscous forcing solution, w2VF, is larger than w{0 and decays 

more slowly with depth compared to the viscous decaying motion w{0 . 

4.5.3. SUMMARY 

The 3-D Lagrangian equations of motion are solved 

analytically for a homogeneous, nonrotating and viscous ocean. The 

ocean is considered to be deep so that the waves do not feel the effect of 

the bottom. The solutions are obtained following two approaches: 

decaying and nondecaying wave solutions. 

The nondecaying wave solutions are based on application of a 

small external stress (along the vertical direction) that are just enough to 

maintain the wave against decay. The solutions so obtained decay with 

depth 0Jut do not decay in time). The solutions show random motion in 

both horizontal and vertical plane. The horizontal component of the 

velocity (4.102) reduces to Weber's (1983b) solution as 8=8' =0. The total 

solutions do not reduce to inviscid solutions as the viscosity is set equal 

to zero. 

The decaying wave solutions, on the other hand, decay with 

both depth and time. The particular solutions of the horizontal motions 

(4.127a, 4.127b) are similar to nondecaying wave case (4.81, 4.83) for 



115 

time t=O. Unlike nondecaying wave case. the time and space depl~ndl'twe 

of the homogeneous solutions are inseparable. Homogeneous <'quations 

are solved by applying Laplace transform following the tl~ehniqtH' of 

Weber (1983a). The total horizontal solutions reduce to Weber's ( \ 9H:~a) 

solutions for the monochromatic wave situation with fl=fl' =0. The total 

solutions (4.145a, b) also reduce to inviscid solutions (:3.63) and (:tH l) 

when viscosity is set to zero. 

The magnitude of the a- component. of the viscous de('ayln~ 

wave solution u{D is large near the surface for 9=8' =0 <~om pared to 

inviscid ulN and viscous decaying solutions u/n (Fig. 4.3a). How<~ver. t<n· 

interactions with non-zero angle between the primary waves, u~N can 

cause larger horizontal motion at the surface (e.g .. Fig. 4.3c} than that 

for the viscous solutions. On the other hand, the viscous decaying 

solution u{0 and inviscicl solution ulN decays more quickly with d<'plh 

compared to viscous nondecaying solution (Fig. 4.~3h.4.~k). The zt'ro­

frequency vertical velocity for viscous decaying w{1) ami vlsc01ts 

nondecaying u{F waves have different directions Wit;. 4.:Jd,e). Once 

again, the viscous nondecaying solution w{F decays more slowly with 

depth and penetrates deeper. 



116 

Chapter 5 

CALCULATION OF EDDY 
DIFFUSIVITIES 

5.1. INTRODUCTION 

In the last two chapters it was shown that, surface waves can 

cause zero-frequency motions in both the horizontal directions and the 

vertlcal direction. The zero-frequency velocity of a fluid particle may be 

viewed as the average velocity of a particle at a given depth for the 

averaging time large compared with the wave period. It is also averaged 

over the wave group. Since the wave field consists of a superposition of 

statistically independent waves, the zero-frequency velocity associated 

with individual particles will experience fluctuations relative to the mean 

value for small time. From random walk theory, such random velocity 

fluctuations can result in a particle dispersion which, for large dispersion 

Urnes (compared to integral time scale) can be represented as a Fickian 

diffusion process. Experiments by Schott et al. (1978) show that the 

horizontal components of diffusion coefficients tend to increase with the 

increase of the surface wave height. We are now in a position to 

investigate how the viscous surface waves might contribute to the eddy­

diffusion. Herteri!:!h and Hasselmann (1982) calculated horizontal 

components of single-particle, two-particle and patch diffusivities from 

their solutions for the zero-frequency drift velocities. They did not find 

solutions resulting in vertical diffusion. In this chapter, we derive 

expressions for the eddy-diffusivity tensor for single particle, two-particle 

and cluster of particles following the technique of Herterich and 
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Hasselmann (1982) and Sanderson and Okubo (1988). T'lw (~quatton~ t(lr 

both vertical and horizontal eddy-dtlli.1siviUes are then integratl'd 

numerically by using the Pierson-Moskowitz spectrum (Picr:-;on and 

Moskowitz, 1964) for a fully developed sea. Eddy-diffusivitlcs ti·mn the 

Viscous solutions will then be compared with the cddy-diffustvtttes ti·om 

the inviscid solutions. 

5.2. MATHEMATICAL DERIVATION 

SINGLE-PARTICLE DIFFUSION 

The single particle eddy-diffusivity tensor, /Ji}' f(n· long-tim(' 

(relative to integral time scale) is defined as 

JJ+on D··=- R -- (t)dt 
I) 2 I) 

-oo 

(5.1) 

D ··=nG .. (()) I) I} · (5.2) 

where 

RiJ(t) = <u/(f+t) u/(1)> (5.:\) 

is the covariance function and 

G .. (ffi)=-
1 J+"" R -·('t)e-iortdt 

I) 21t I) 
-oo 

(5.4) 

is the cross-spectrum of the particle velocity fluctuations u';=ll;-<11;>· The 

angle brackets represent averages over an ensemble of partldes. l-Ien~ 

II; (i= 1,2,3) denotes velocities in the a. h and c directions. As t.he wave 

groups propagate by, the velocities of individual water particles fluet.uatc 

randomly as functions of space and time. 

The integral time scale is a measure of the time interval for 

which a particle's motion remains correlated to its initial value. 

Herterich and Hasselmann (1982) argued that for narrow bandwidth 
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deep water surface gravity waves, the integral time scale is of the order of 

the Inverse of the spectn1ms' bandwidth. We will use the frequency band 

appropriate to the Pierson-Moskowitz spectrum (ro = (1.0 - 0.3) 1/ s]. 

Following the argument of Herterich and Hasselmann (1982), this gives 

an estimation of the range of integral time scale of (1 - 3) s. By definition, 

the integral covariance time scales are 

"( .. 
I) 

(5.5) 

For t much greater than tij the covariance of the positions of an infinite 

ensemble of particles is 

(5.6) 

which increases linearly with time (Taylor, 1921). If t is less than the 

Integral covariance time scale, then the diffusion is non-Fickian and 

spreading increases proportional to time raised to a power greater than 

I. In that case, (5.6) is given by 

(5.7) 

where 

f
t' 

Ku(t')= ,R;/t)dt. 
- I 

In calculating the diffusivity tensor Dij, we shall use the 

spectral representation (5.2) rather than the correlation integral (5.1). 

Setting the first-order spectrum to zero at zero frequency, only the 
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second-order perturbation velocities contribute to the zcro-fn•qtwm·.y 

energy density. 

Before we proceed to derive the expression for the diffusivlly 

tensor, we will first rewnte the mass transport velocities (u2fN. u2}'"'. u2}'1') 
in a more convenient notation. The second order inviseid sohtUon~ (:u.;:~ 

and 3.61) may be Wiitten as 

where 
i = 1,2 

and 

IN _ (J)kAIN a 1 -- Y'}. 2 . 

mk 
N IN- AIN"'} 
""2 -T ,4 

(5.lJ) 

and A1N is given by (3.62) y1, y2, y3, y4 are given by (4.'77). SimJhuly, lhe 

second order viscous forced (nondecaying) solutions, u2Y,.. (4.102-4.104), 

are expressed as 
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i= 1,2,3 and 

arF= ~k(AVFy3+iBVFyl) 

VF _ rok(AVF + ·BVF ) a2 -y 'Y4 1 Y2 

a.JF =rokCVF. 

(5.1 0) 

(5.11) 

A VF, (lVI .. , cVF are given by (4.105). Following the same procedure, the 

second order viscous decaying wave solutions, u2}'0 (4.145a-4.145c), can 

be expressed as 

where 

and 

i= 1, 2, 3 

arD= ~k(A~'Dy3+iBVDyl) 

afD= ~k(AVDy4+iBVDyz) 

and A \'0, B''t>,cvn are given by (4.145d). 

(5.12) 

(5.13) 

The single particle diffusivity tensor for times greater than the 

integral time scale is given by 
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l5.14) 

where 

aij=ex;aj (5.15) 

<d~ 1 (m,S)d~ 1 *(ro",S") > =S 1 (w.S) dwde dS' 
w=co",8=8" (5.16) 

<d~ 1 (ro,8)d~ 1 "'(ro",8")>=0 ot/wrwise. 

The angle brackets represent the ensemble average and lhc s11pcrscrlpl 

asterisk denotes the complex conjugate. The symbol s1 represents thl' 

wave spectrum. For inviscid motion, the single pm·!iclc diffnsivit.les. n;fN. 
are similar to (5.14) except that aij is replaced by a;/N where 

ex . .IN= a)N ex .fN 
l) I J ' (5.17) 

Similarly, the single particle diffusivities for viscous forced motton. ni{"'. 
are similar to (5.14) except that aij is replaced by <Y.i'F where 

(5.1 X) 

A similar expression holds for viscous decaying diffusivily (/J ;/ 0 ) where 

exij in (5.14) is replaced by au'v'D where 

r~ . .VD:rvYOaYD 
v.l} " 't ~ • (5.1 !J) 
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PAIR DIFFUSION 

The particle pair diffusion equation is useful for interpreting 

experiments with clusters of drifters. In such experiments the reference 

point for single particle diffusion, i.e., ensemble mean velocity, is not 

always well defined by the finite buoy cluster. A dispersion formulation 

in terms of pair separations avoids this difficulty. For a pair of particles 

that are Initially separated by a distance r;. the zero-frequency 

component of the relative velocity is calculated following Herterich and 

Hasselntann (1982). Let (a1,b1,c1) and (a2,b2,c2) be the positions of two 

particles. Then the relative motion between them is given by 

(5.20) 

where 

To get a picture of the two-particle eddy-dlffuslvity by varying 

all tl1c three variables (i.e., a, /J, d is difficult because of the anisotropy of 

tl1e velocity. Herterich and Hasselmann (1982), Sanderson and Okubo 

( 1988) calculated two-particle eddy-dJffusivities only as a function of 

horizontal separation between a pair of particles. They did not consider 

separation in the vertical plane in their calculations of two-particle 

diffusivities. Here we will consider two cases: 1) the two particles are 

initially at the same depth level but located at two horizontal positions 

(i.e., hmizontal separation) and 2) the two particles are initially in the 

same vertical plane but separated by a vertical distance (i.e., vertical 

separation). 

."~ 

:-:; . . , 



123 

CASEl 

Let the two partJcles be at. same depth but at. two different 

horizontal positions given by (a1, h1, c1) and (a1+r1• h1+r2• r: 1). Tlwn thl' 

two-particle inviscid velocity, U2{.N(2), is similar to il1c single particle 

inviscid velocity u2fN (5.8) except that afN; i= 1.2 is rcplaecd l>y 

a/N (2) = a~N {1 -eik(r·ose-,·os8')r1 + ik(.~in0-.~inll')r2 }. (5.21) 

The inviscid two-particle diffusivity tensor D;/N (2), is tlwn-fore 

given by (5.14) with aij replaced by a;jN <2l, when.~ 

Following the same technique, the viscous forced two-particle veloeit lt·s 

are given by (5.10) with aYF replaced by 

aYF (2) = aYF( 1 -eik(t'osO-,.o,,·(:)')r1 + ik(sinU-sin0')r21 (5.23) 
I I 

and the forced viscous two-particle diffusivity tensor, D;j"' <2l, is given hy 

(5.14) with a;j replaced by a;yF<2>, where 

a;yF(2)=2a;yFt I -coslk(co.,·S-c:os9')r1 +k(sin9-sin9')r21) . (5.24) 

Similarly, for viscous decaying wave motion, the two-particle edcly­

diffusivity tensor, DJ1J<2>, is given by 5.14 with aij replaced hy ct.;Y0 C2l, 

where 
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CASE2 

Now consider the situation that the two particles are at same 

horizontal position but separated by a vertical distance r3. Let the 

coordinates of the two particles be (a,!J,c1) and (a,b,c2). The components 

of the velocities will then depend on the distance of vertical separation 

between the two particles. In this case. the inviscid two-particle velocities 

for a palr of particles separated by a vertical distance (r3=c2-c1) are given 

by 

and the two-particle viscous diffusion tensor D'/J<2> is given by (5.14) 

with a;j replaced by a'jN (2), where 

and 

(5.27) 

Shnilarly, the viscous forced two-particle diffusion tensor D'}{ <2> is given 

by (5.14) with aij replaced by a'}}F(2) where 

a' YF(2)=a'YF(2) a'Yf(2) 
lJ I } 

and 

a'}'F<2>=aYFcc1)-aYF<c1 +r3). (5.28) 

Note that palr-diffusivity goes to zero as the separation scaler ~ 0. 

·~ 
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Following the same procedure, one could also write an 

expression for the two-particle diffusivity tensor for the viscotts decaying 

waves (5.12). However, the viscous decaying (5.10) and inviscid (5.H) 

solutions behave somewhat similarly to one another (see Figure 4.:1). 

Besides, the viscous decaying solutions take large computational time 

since it involves four dimensional integration. Thcrdorc. two-partide. 

patch- and patch-averaged diffusivitles for the viscous deeaying wav<' 

solutions will not be pursued. 

PATCH DIFFUSION 

Often in real cases of practical importance one is not 

interested in the motion of pairs of particles. rather one is interested in 

the diffusion of the whole patch. In that case one has no re(~oursc other 

than to consider dispersion relative to the motion of the centroid of the 

tracer patch. The centroid position and velocity of the pateh at. a given 

depth is defined by 

x2; = J J x2;C(a',!J')d:t' d!J' 

U2;=J J U2;C(a',IJ')da' d/1' 

where C(a',h') is the normalized tracer concentration (Hcrtcrleh and 

Hasselmann, 1982). The motion of a particle relative to the centroid or a 

patch of material is the same as the single particle case except that. u.; is 

replaced by 

o}P>=a; { 1-J f C(a',b')eik(cosO-msfJ')(u'-a)+ik(sinO-.tiiiO')(h'-h>da' dll). 

(5.2l)) 

The inviscfd eddy-diffusion relative to the patch centroid, uw(Jl>, is given 

by (5.14) except that a0 is replaced by 
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aw(p) =a.W {I +cnz2+.mz2- 2cm cos(k(c· 'S9-cos9')a+k(sin9-.sin9')b] 

- 2sm sin(k(cos9-cos9')a +k(sin9-sin9')b]} (5.30) 

where 

em= I I C(a',b')coslk(cos9-cos9')a' +k(sin8-sin9')b'lda' db' 

(5.31) 

sm =I I C(a',b') sinlk(cos9-cos9')a' + k(sin9-sin9')b'] da' db'. 

(5.32) 

The viscous nondecaying (forced) patch-eddy-diffusivity tensor D'({<P>, is 

given by (5.14) with a.ij replaced by a.ijF(p) where 

a.}j"'' (p) = a.},JF { I + cnz2 + .mz2-2 em cos[k( cos9-cos9')a + k(sin9-s in9')b] 

- 2smsin[k(cos9-cos9')a+k(sin9-silz9')bl}. (5.33) 

For very large patch, em-tO, sm--tO, and a.W<P>, and a.}jF<P> 
reduces to aw. and a.Jt respectively. Thus the patch diffusivity tends to 

single particle diffusivity. As the patch slze becomes much smaller than 

the scale of the surface waves, em~ 1, sm--) 0, and the patch diffusivity 

tends to zero. 

Note that the patch diffusivity (5.30 - 5.33) is a function of 

position within the patch. In experiments, one usually has insufficient 

data to detennine the diffustvity as a function of position within the 

patch. Rather. it is usual to determine the diffustvity averaged 

throughout the area of the patch. This patch averaged diffusivity for the 

inviscid motion, D;/N(pa>, can therefore be calculated from (5.14) by 

replacing aij with 
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(5.34) 

where a.JN(p) is given by (5.30 - 5.32). Similarly. to obtain tlw patdl­

averaged diffusivity for the viscous forced motion. JJ;/F(pal. repi<Wl' a.iJ In 

(5.14) with 

(5J5) 

where a.i{F(p) given by (5.33). 

5.3. NUMERICAL CALCULATION 

In order to obtain an estimate of the magnitude of lhe eddy­

diffusivities derived in the previous section. the equations (5.14) are 

numerically integrated for the cases of single-parl.lcle, lwo-partlde ancl 

patch diffusion. The wave spectnJm Is assumed lobe separable Into a 

frequency dependent part}tro) and an angular spreading pru·l 8(9) I.e. , 

(5J(l) 

The spectrum used In this calculation is the empirical spectrun1 of 

Pierson-Moskowitz (1964) for the fully developed sea given hy 

(5.37) 

where a"=O.OOXI is the Phillip's constant and oom is the peak frequency. 
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The parameters in (5.37) are chosen from Hasselmann et al. (1973}. The 

peak frequency CJ>111 is determined by the wind speed U at 19.5 m height 

above the sea level through the relation 

w111 =0.14021tg/U. (5.38) 

The peak frequency of the fully developed Pierson-Moskowitz spectrum 

for the wind speed U= 10 m/s is 0.88 rad/s. The angular spreading term 

9(9) is normalized such that 

J7t 0(9)d9= 1. 
-7t 

First, we calculate the single particle eddy-diffusivities as a function of 

the narrowness of the spreading function 8(8). Single particle eddy­

dJffusiviUes are calculated by numerically integrating equation (5.14) 

with S 1 (w,9) specified by (5.36) and using Pierson-Moskowitz spectrum 

(5.37). The narrowness of the spreading function is represented by 

8(9) =A,cos"(9) I 9 I< 1t/2 
(5.39) 

8(9)=0 7t/2<191>1t 

where the exponent 11 characterizes the narrowness and the coefficient A
11 

is given by 
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A = 2 X 4 X () • • • XII 
11 1 X 3 X 5 . . . X (11-1 )7t 

11 even. 

and (5.40) 

A =I lx3x5 ... XII 
11 

odd. 
11 22x4xo ... x(n-1) 

The infinite range of integration for frequency. co, is replaced hy a flnite 

range from 0.3 to 5.0 nulls. Single-particle ecldy-diffnsivtttes for invlsci<l, 

viscous forcing and viscous decaying solutions are calculated for two 

vis~usities: t.Oxto-6 (i.e., molecular viscosity ) and l.Oxto-2 m2 /s. The 

latter viscosity is used by Weber (1985) to calculate the mass transport 

velocity from U1e zero frequency interaction of two deep water Sllrlitce 

gravity waves. In order to use any large viscosity in our caleulation, we 

must ensure that the viscous length scale I and wave number k satis(y 

the condition kl « I. Using the peak frequency ro111 and V= I.Oxlo-2m2/s one 

finds that kl ==0.0 I. It is, therefore, safe to use the latter viscosity In m u· 

calculation. 

o.YD 
ll 

Figure 5.1 plots the single particle diffusiviUes DuiN• Dii1' f and 

against the directionality parameter n. The invisci<l solutions 

reproduce Herterich and Hasselmann's result (Hcrlerich and 

Hasselmann, 1982 Fig.1). The inviscid and viscous (forced ~md decaying) 

eddy-diffusivities are strongly anisotropic. With the increase of the 

narrowness parameter n, the eddy-diffustvity in the a- direction Increases 

and in the b-direction decreases. The change in the cddy-difTusivity 

along b-direction is very small compared to that along the a-direction for 

the same change in the directionality n. The plot demonstrates that for 

eddy-viscosity v =0.0 I nz2/s the viscous decaying diffusivity 0 1 Y/J is larger 

than the inviscid diffusivity D1
1(' and the viscous forced dlffusivily DY;~-' hy 

factors of 1.2 and 1. 7 respectively at the surface. This can also he seen 
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in Figure 4.3 which shows that the velocity due to the viscous forcing 

solution u2 VF' is smaller than the inviscid uiN and viscous decaying u2 VD 

velocities. Thus the viscous forced solutions give smaller horizontal 

diffusivities than the inviscid solutions, whereas the viscous decaying 

solutions give larger horizontal dfffusfvities than the inviscid solutions. In 

the case of viscous forced solutions an increase of viscosity v by four 

orders of magnitude resulted in horizontal diffusivities being decreased 

by less than a factor of 2. 

For a symmetrical spreading about the wind direction which 

we define as the a-axis, 8(9) = l/27t. The non-diagonal components of the 

diffusivity tensor vanish for the isotropic case. Unless explicitly specified 
I we will take 8(8) = Z1t throughout the following work. 

One might think that effect of viscosity is felt up to the depth 

of the viscous length scale I below which viscous and nonviscous 

solutions merge together. The viscous length scales /=(2v/ro111 ) 112 for the 

two viscosities I.Oxlo-6 and I.OxJ0-2 m2/s are respectively 1.5 em and 

15.0 em. In order to investigate the depth dependence of the single­

particle diffusivitles, figure 5.2 plots the horizontal component of eddy­

dlfTusiviUes against depth for the inviscid and the two viscous cases. The 

viscous decaying and inviscid diffusivities converge to the same solution 

slightly below the depth of the viscous length scale. The viscous forcing 

dlfTusivity D;;VF decays more slowly \vith depth until it converges with the 

invfscid and viscous decaying diffusivities at a depth of about 10m. The 

e-folding depth for the fnviscid diffusfvity (which is half the Stokes' depth 

= l/(2xk111)} is about 3.3 m. Also recall that the total viscous forcing 

solutions (4.1 02-4.1 04) do not reduce to inviscid solutions (3.63, 3.61) as 

viscosity tends to zero. But the viscous decaying solutions (4.145) go to 

fnvfscid solution when viscosity is set equal to zero. The primary effect of 

viscosity in the viscous decaying solution is to create additional shear 
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and diffusion near the surface. but otherwise to leave things tmchangPd 

from the inviscid case. 

The Pierson-Moskowitz spectrum (5.37) Is dependent upon 

wind speed through the relation (5.37). It is, therefore. a matter of 

interest to investigate how the eddy·diffusivlties depend on the wind 

speed U. For the given Pierson·Moskowitz speclnun (5.37) togellwr wH h 

(5.38), the horizontal eddy-diffusivity (5.14) may be expressed as 

,u:._ 
D;j=0.37 ai' .. _Dij 

~ 

i.j= 1.2 

( 5.40) 

where Dij is a nondimensional cliffusivity. Substituting equation (5. 1'1) 

into (5.14) and applying transformation of variables. the inviscid non­

dimensional diffusivity DW is given by 

where 
i= 1,2 k=3.4 and 

(J)/11 

y=w· (5.41/J) 

Thus the horizontal eddy-diffusivity increases with wind speed raised to 

the power of 3. Herterich and Hasselmann (1982) also obtained a similar 

power law between the wind speed and the inviscid cddy-diffusivit.y from 

dimensional arguments. However, their relation has a printing mistake 

(Herterich and Hasselmann, 1982, eqn. 3.5; g appears as muJUplicalive 

constant instead of division) that makes it dimensionally incorrect. 

Nevertheless Herterich ;-Uld Hasselmann (1982) do give the correct. 
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exponent for U. A similar power law holds between the viscous forc<•<l 

eddy-diffusivity D}/" and the wind speed U. Figure 5.3 shows the plot. of 

the a-component of the inviscid and viscous forced cd<ly-diffuRivit ie:-; 

(D / 1N, D 1 YFJ as a function of wind speed. A tilll expreRsion for tlw non­

dimensional diffusivity, D}?'" (which involves a large number of term:-; ). i:-; 

avoided for the sake of brevity. Keeping only the dominant l<'rms. the 

nondimensional form of the viscous forcing horizontal diffnsivity n}/'" is 

given by 

(5.42) 

From Figure 5.3, the slope of the lines is observed to he :3. 

The vertical component of the eddy-diffusivities n.\/1 .. and 

D3/ 0 are calculated by using (5.14) with aij replaced by (5.18) and (!i. J H) 

respectively. Once again the Pierson-Moskowitz spectrum (5.37) is 11sed. 

The vertical component of the viscous forced cddy-diff••sivity /J:u VI' 

depends on depth c, viscosity v (through !), and on wind speed U. The 

vertical component of the viscous decaying eddy-diffusivity depends on 

all of the above mentioned parameters and time t. First.. we will 

investigate how the vertical component of the cddy-diffusivities lJ:u VF and 

o33 VD (viscous forcing and viscous decaying) compare to one another. 

Figure 5.4 plots n33VF and n3/ 0 as a function of depth. The vertical 

component of the viscous decaying ecldy-diffusivity JJ11VIJ is zero at. the 

surface and increases up to a depth of 1 m. Below this depth, 1>1:\vn 

decreases with the increase of depth. The viscous forcing eddy-
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diffusivity. 0 33 VF. is also zero at the surface and reacheg a maximum 

value at a depth of about 4 m below the surface. It decays more slowly 

with depth than the viscous decaying eddy-diffttsivity O:u\~n. Note that 

D3/F and n33 VD are smaller than the eddy-viscosity v by magnit mks of 

approximately 4 decades and 6 decades respectively. 

Since the viscous nondecaying diffusivity n_\.\vF has larg<~r 

magnitude and also penetrates deeper in the wat<~r column than that of 

the o33" 0 • the behaviour of the former diffnsivity is further investigatecl. 

The vertical component. of the viscous forcing edcly-diffnsivily 

D VF consists of terms that arc contributed fn:m1 both particnlnr and 33 

homogeneous solutions. In order to find the dominant terms in n \\t. 
D3~F may be written explicitly by using (5.14) and (5.18) 

==term I + tern12 +term?. (5.41) 

where cvt: is given by (4.105). Taking the square of c vF and reananging 

( - ( 1-cos(S-8') )2 cosy elk I c+r/1 + ( I-eos( 8-8') )2 l!2k<!lr) dmd8 de'. 
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( -( 1-cos(S-9'))2 £'0.\'J elk lc+c·/1 + ( 1-co.\·(8-8'))2 £'2k<jlc) 2 c/(l)t/0 dO'. 

(5.44) 

The constant G js given by (4.1 01 b) and terml, ft'lm2, term.""\ repre:.;ent 

contributions from different terms in (5.43) grouped in ascending powers 

of (kl). 

Figure (5.5) shows the plot's of different terms in n.\~?· as a 

function of c for viscosity v= I.Oxto-6 m2/s. Total contribution from all 

three terms are also shown on the san1e plot. (Fig. 5.5). First note that 

the vertical eddy-diffusivity is much smaller than tJ1c viscosity. Tlw top 

curve is due to term I and to within the plots resolution it over lies tlw 

diffusivity obtained from all three terms. The other two lines are dt ae to 

term2 and term3. It is clear on the plot that the main contribution to the 

vertical diffusivity comes from the terml which constitutes tlw 

homogeneous part of the solution. Recall that the homogeneotts soh tt ion 

(4.98) has a term which is of O(k/) (G. lOlb) and the rest of the terms an• 

of O(kf)2 or higher. therefore, 1nuch smaJler. Equation (5.4:1) may. 

therefore, be simplified by keeping only term I and dropping remaining 

terms in (5.44). This analysis also supports our previous assumption in 

section 4.5.2 that the particular solution (4.127c) of second order vi scotts 

decaying waves is negligible compared to the homogeneous sol11Uon that 

forms the dominant part in the total solution (4.145c) of t.he vlscotJs 

decaying problem. 

From equations (5.43) and (5.44) it is clear that the vertical 

eddy-diffusivity D33 VF is a function of viscosity, wind speed nnd depth. 

The depth dependence is shown in Figure 5.5, in which IJ n VF (t.op line) is 
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depth for v= l.Oxl~ m2 /s. Contributions from 
different tenns In (5.44) are shown. The top Une 
corresponds to terml and total D33VF. The middle 
lli·•e (dashed) and the bottom line (solid) are due 
to tenn2 and term3 respectively. 
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plotted as a function of c. As e,..,1)ected. the vertical diffusivity D.n\'F Is 

zero at the surface and increases to a maximum value at about 4 m 

depth. Beyond this depth D33''F decreases monotonically with depth ,. 

(Figure 5.5. top line). The effect of vruying the viscosity v appears in 

Figure 5.6 where D33VF is plotted as a funcUon of viscosity v. The plot 

also demonstrates how the different terms in equation (5.4:3) contrlhut<· 

to the vertical diffusion. Figure 5.6 again demonstrates that total 

dtffusivtty D33 \'F (the top line) is mainly due to term I. Th(' slope of tlw 

total D33 VF line (top line) is unity. The appan~nt deviation from the 

straight line (towards the end of the top line. Figure 5.6) lndieatPs that 

term2 and term3 become important as v increases. Nevt~rt hdt•ss. tlw 

condition that kl« 1 imposes a limitation on the maximum valne of v that 

can be used in our calculaUon of eddy-diffusivit.ies. Thus it reassures 

our preVious conclusion that dropping the O(k/)2 terms docs not affpd t lw 

accuracy of our solution. 

As the wind speed increases. the peak of the Pi<'rson­

Moskowltz spectrum shifts towards the low frequency end of tlw 

spectrum. The dependence of vertical eddy-diffusivity D:n''"' on the wind 

speed U is shown in Figure 5. 7. The vcrHcal eddy-dilTusivity /J:u \IF 

increases rapidly with the wind speed up to U= 10 m/s. Beyond that 

speed, o33 VF increases slowly with U with a tendency to saturate t~fter 

U=20 m/s. EA1Jeriments by Kullenberg (1971) also show that vertical 

diffusivity increases with wind speed. 

An order of magnitude estimate of the vertical edcly-diffusivity 

may be done using a scaling argument. For a random wave Held 

characterized by a narrow spectrum of bandwidth t:\<.t>= 1.0-0.3 ,\·-- 1• tlw 

integral time scale 't- (.1-ro)-1. The vertical velocity w roughly seales as 

<w>::::(kl)<u>. Taking <u>=0.1-0.2rn/s, v=<J.OI m2!s and using IJ:n "' <w2>'t for 

the vertical eddy-diffusivity we have D33 ::: 2x I o-6-7x I o-5 m2/.\·. This is 
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comparable with the orders of magnitudes of the vertical eddy-diffusivity 

ohtaJned by the numerical integration of equation (5.43) (see Fig. 5.4). 

The two-particle diffusivities are calculated both as a function 

of hmizontal separation r and vertical separation r3 for the inviscid and 

viscous forcing solutions. For the horizontal diffusivities. we will consider 

depth c=O.O. Single-particle diffusivity is plotted (Fig. 5.8) as a straight 

line since separation scale has no meaning for single particle diffusivity. 

For two-particle and patch diffusivity. the separation in the b direction is 

set to zero. Figure 5.8 displays the plots of inviscid D 1
1(" and viscous 

forcing D1 YF diffusivitles as a function of horizontal separation r. Patch­

diffuslvitlcs arc calculated only for horizontal separation r . For patch­

diffusion, r is the distance of a particle from the centroid of the patch. 

The patch diffusion is computed for an isotropic, normalized Gaussian 

tracer concentration 

(5.46) 

with a horizontal scale given by A centered at the origin of the coordinate 

system. The patch scale A is chosen as 200 m. This will ensure that the 

patch is neither sufficiently small for the patch to move as a single 

particle (single particle diffusion limit), nor sufficiently large for the two 

particle diffusion limit. Choosing b=O, (5.30) becomes 

a;/N(p)=a.;/N II +cm2-2cmcos[k(cos8-cos8')a]} (5.47) 

where 

A similar expression holds for a.;/'FCJJ). From Figure 5.8. the two-particle 

difl'usivity is twice the single particle diffusivity and the patch-diffusivit.y 

is in between the two- and single- particle diffusivities. 

However. when the two particles designated by (a1,b1,c1) and 

ta 1.1,1.c2) are separated by a vertical distance. we get a different result. 
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Figure 6-8: Single-particle, two-particle and patch-diffusivlty 
plotted as a function of horizontal scparaUon 
scale r. (a) lnvJscld case, (b) viscous forcing with 
v= l.OxHr-2 m2 /s and (c) viscous forcing with 
v= l.Oxto-2 m2 /s. Parameters used were c=O.O, 
).;:200m. 
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Figure 5-9: Two-particle diffuslvitfes DJ'f<2) and D1YF<2> as 
a function of vertlcal separation r3 for c=O. The 
solid line Is for Dlf'C2> and the broken Unes are 
due to v1yF<2> for v= J.Oxto-6 and v= t.OxJ0-2 
rrn2/s respectively. 
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Two-particle cliffusivity as a function of vertical separation r3 is 

calct tlated from (5.14) with aiJ replaced by a'i/N(2) (5.26). In this case, 

the diffusivity depends not only on the vertical separation between the 

two particle~ but also on the initial depth of the reference particle with 

respect lo which lhe separation is measured. Figure 5.9 shows the pJot 

of the a-component of the eddy-diffusivities D11
1N<2>, D11 \'F<2) against 

vertical separation r3 . For sr. l.ill separation the diffusivity is zero. As the 

separation increases the two-particle diffusivities increases reaching to a 

maxJmum value which is equal to the single-particle diffusivity at the 

reference depth f 1, in this case, surface. The reason for this is that the 

velocity of one of the two particles at large depth goes to zero for large 

vertical separation. As a result, for vertical separation, two-particle 

cliffusivity is not twice the single-particle diffusivity. 

Figure (5.10) shows the plot of the vertical diffusivities D33\IF (2) 

as fimction of vertical separation r3• In this case also D3¥F(2) is zero 

when r3 is smaJI and increases to a maximum value equivalent to the 

single-particle cliffusivity of the reference particle. 

Diffusion experiments in the ocean have been performed on a 

variety of space and time scales (Okubo. 1971; Kawai, 1985; Krauss and 

Boning, 1987). However, most of them are for hmizontal diffusion. Few 

experiments have been conducted to 1neasure vertical diffusivity. Hardly 

any. however, has been combined with sufficiently detailed wave 

measurements to determine how much of the observed diffusion may 

have been due to waves. Most of the experiments on vertical diffusion in 

the coastal ocean are reported by Kullenberg (1971 , 1976, 1977). 

l<ullenberg (1971) used a dye tracing technique to measure vertical 

rliffusivily in stratified shallow waters in weak to moderate (5 - 10 m/s) 

wind conditions. At a depth between 2 m and 21 m the vertical eddy­

diffusivities observed by Kullenberg are scattered in the range of 

(O.OX-60) x to-4 m2/s. In another set of experiments in the Baltic thermo-
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c=0 . 05 rTl I 
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Figure 5-10: 1\vo-partfcle dlffusivity D3~F(2) as a function 
of vertical separation r3 for e=0.05 m. The solid 
lJne fs due to V= l.OXI~ and the broken line Is 
due to v= l.OxHJ"2 m2 /s respectively. 
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and haloclinc layer, Kullenberg ( 1977) obtained vertical diffusivities in 

the range of ( J.0-4.5)x 10-om2/,\· in the depth range (30 - 55) m. The Baltic 

has a stably stratified (()p/dz < o) water column having stratification 

parameter N2=_J:~P in the range of (9.0x to-4-9.0x J0-3) .c 2. Kullenberg 
P": 

(I 97 J) found an empirical relation connecting vertical eddy-diffusivity 

(/J:nl and wind speed (U), stratification parameter N2 and vertical shear 

tlqldz given by 

where q is t.hc horizontal velocity. Gargett (1984) also observed that 

vertical eddy-diffusivity (estimated from dissipation rate measurements) 

is a decreasing function of buoyancy frequency (N) . 

The vertical eddy-diffusivities estimated from the theoretical 

caknlations are at the lower bound of the above mentioned 

experimentally observed eddy-diffuslvities. This implies that the 

dymunics In the real ocean is more complex than that described in this 

model. It is possible that some other mechanism (or mechanisms) may 

have domimmt role in the ocean. For example, wave breaking, vertical 

shear, internal waves, stratification, etc. may control the dynamics at 

depth in the real ocean. The theoretical model described here mr-ty be 

appropriate to a small cunplitude wave (e.g., swell) travelling through a 

relatively calm sea. 
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Chapter 6 

SUMMARY AND CONCLUSIONS 

Patch diffusion computed from Lagrangian data: 

Eddy-diffusion in the ocean has bePn st11died <'XJH'I·inwntally 

by using diifter trajectories. The Atlantic Equatorial Undercnrrcnt drogtu· 

expe1;ments of Fahrbach et al. (1986) arc rcanalysed In chaph·r 2. Ed<ly­

diffusivities were calculated by subtracting: (I) cPniJ·oid mot ion (p11n· 

diffusion model) and (2) centroid displacement and displact'ment dnc to 

uniform Lagrangian deformations (advection dilft 1sion mod<•l). Tl w 

average .. iiffusivities calculated using (I) are compared with t hos<' ol' 

Fahrbach et al. (1986). In the meridional direction lh<' ass11mptlon 

Ce=O.I (i.e .. integral length scales are one tenth the standard devialion ol' 

diifter positions) turns out to be reasonable, thereby eonflrmin~ r('lat iv<· 

diffusivities in the meridional direction calculated by Fahrhach t't al. 

(1986). However, the zonal diffusivity is s11bstantially cliff(~rc·nt from thnl 

of Fahrbach et al. {1986). The analysis also indicated that a diffusion 

model described the cluster dispersion every bit as well as an ad wet ion 

diffusion model. 

Measurement errors were shown to have lit tie effect upon 

estimation of eddy-diffusivfUes but biased Lagrangian integral tIme and 

space scales (which were smaller than they should have h<.~en). Ktnet k 

energy was increased by the measurement er~or. 

An Eulerian analysis of the relative velocities revealed that 
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Eulerian Integral time scales are slightly larger than the Lagrangian 

integnd t.imc scales. Joint space-time correlations indicated that the 

eddy velocity changes rapidly compared with time-scales required to 

advcct a particle over the eddy length scale. In the case of experiments 

0 l, 02, D3 (which had large relative velocities) the relative velocity 

became spatially decorrelated at scales small compared with cluster 

dimensions. The spatial scales of the relative velocity were larger for the 

CIPREA experiment which had weaker relative velocities than 01, 02 

and 03. Integral time scales for transverse, longitudinal velocity 

components differed greatly for tl1e x, y velocity components suggesting 

that the longitudinal-transverse coordinates are more aligned with the 

eddy em Ising relative motion between particles than the x-y coordinates. 

Oifft Jsion by surface gravity waves: 

We have also studied smaller scale ocean diffusion 

theoretically by solving the Navier-Stokes' equations of motion for deep 

water surface gravity waves. A perturbation expansion is used to solve 

the Lagrangian equations of motion analytically for an irrotational. 

lnvlscid, homogeneous ocean. The first order solutions are oscillatory in 

time. The second order momentum equations are solved for the zero­

frequency interaction between two primary waves. Other types of 

solutions with w '* ct>' are also possible. These latter solutions are 

oscillatory in Ume and do not cause any diffusion. So they were not 

studkd in the present work. 

The second order zero-frequency inviscid solutions are a field 

of random shearing motions in the horizontal plane but have no vertical 

motion. These solutions are identical to solutio~s of Herterich and 

Hasselmann ( 1982) who used the Euler-Lagrange transfonnation to 
l 
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derive mass transport velocities from the Eulerian ~olution~ . Fore =H' =0. 

the inviscid solutions reduce to Stokes' solutions. 

The inviscid dynamics is then extended to lndu<}(' the vt:-;cosity 

(in chapter 4). Surface boundary conditions are d£•rived by consi<l<'ring 

the balance between vertical and hmizontal stn•sses at thl' fn'<' sul"i~H'<' . 

The solutions are obtained for both nondecaylng (permarwnt primary 

waves) and decaying waves. In order to maintain thl' permanent primary 

waves against decay. a vertical stress is applied to tlw surfael' following 

Weber (1985). 

The zero-frequency second order viseons nomkcaying 

solutions are obtaJned by consideting steady state motion. Tht'S<' 

solutions have both horizontal and vertical random motion that decays 

with depth . The particular part of these solutions u2V~-'J' ancl1·2 1' ~-'1 ' n ~diH'< ~ 

to inviscid solutions u/N and ,.iN when viscosity s('t to :t.<'ro. The s<'cond 

order nondecaying solutions do not. however. reduce to the invis<~lcl 

solutions when viscosity is set to zero. This is because the homogerwous 

part of the non decaying solution is nonzero when viseosHy is set to :t.<'ro. 

For a monochromatic wave, the a-component of the velocity u/ F rcd1 u·<·s 

to Weber's (1983b) solution when 8 =8' =0. 

The viscous decaying solutions, were obtained by solving t IIIH' 

dependent equations of motion in three dimensions. The homogene011s 

second order solutions for zero-frequency interactions are obtained 

subject to an initial condition similar to Weber (198:~a). The sol11tions 

satisfy boundary conditions at the surface and also at. depth. This is in 

contrast to Chang's (1969) solutions. The second orciC'r u2-component of 

motion given by the Chang's solution (Chang's equation 121) docs not 

decay with depth. In fact her u2 solution oscillates sinusoidally up to 

infinite depth. For 8=8'=0, the second order viscous decaying solution 

u2VD (4.145a) reduce to Weber's (1983a) solution for a monm:hromatic 
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wave situation. Furthermore, setting v=O, the viscous decaying solutions 

u2 VIJ. vl/J reduce to fnviscfd solutions uiN and viN· 

f<:ddy-diffusivities are calculated fron1 the inviscid and viscous 

solutions following Herterich and Hasselmann ( 1982). A Pierson­

Moskowitz spcctn1m (Pierson and Moskowitz, 1964) for a fully developed 

sea was used in this calculation. The inviscid solutions reproduce 

Hcrterlch and Hassclmann's (1982) result of directional dependence of 

eddy diffuslvltfes. The inviscid and viscous horizontal single-particle 

cddy-dlffusivltfes are highly anisotropic. The inclusion of viscosity, 

causes a significant. change in the horizontal inviscld eddy-diffusivlty. At 

the surface, the viscous decaying diffusivity D 11 VD is larger than the 

invlscld diffuslvity D 11 1N and viscous forced diffusivity D11 \'F by factors of 

1.2 and l. 7 respectively for the viscosity equal to l.Ox J()-2 m2/s. The 

viscous decaying diffusivity D 11 \1/) and inviscid dlffusivity D 11
1N tend to 

converge below the depth of the viscous boundary layer. The viscous 

forcing diffuslvity D11 VF decays more slowly with depth and remains 

different from the lnviscid dlffusivlty D 11
1N even below the Stokes depth 

which Is about 6.6 m. 

An analytical expression for the vertical eddy dlffusivity due to 

wave-wave interaction at zero freq11ency is given for the firs!. time. The 

vertical eddy-diffusivity due to viscous gravity waves is much smaller 

t.han the eddy-viscosity. Changing viscosity has only a small effect on the 

horizontal cddy-diffusivities (as the eddy-viscosity is increased by an 

order of 4. the horizontal eddy-diffusivity is changed by less than a factor 

of 2). However, the vertical eddy-diffuslvity was observed to change 

dramatically (by order of 4) as the eddy-viscosity is changed (Increased 

by order of 4). A linear Increase of ve1iical eddy-diffusivity D3/F with 

vi~cosity v is observed. However, the choice of maximum viscosity is 

limited by the condition kl <c I. 
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The viscous and inviscid singlc-parUdt~ horizontal t•tldy· 

diJTusivitles increase with the wind speed raised to th<' power of :J. Tht' 

single-particle vertical eddy-diffusivity DJ.l. n:. howcwr. did not show any 

power-law dependence with the \vim\ speed (althm1~h it does imn·ast• 

slightly with increased "\vind speed). l{ullPnber~ ( 1971 ). fnun dyt' 

experiments. reported that the vertical cddy·diffusivlty incn•ast•s wllh t lw 

square of the wind speed coupled with vertical shc·ar nml lmoyancy 

frequency. 

The theoretically calculated single particle wrtt<~al t•ddy­

diffusivitles using the nondecaying wave solution In the depth rang<' 

( 1.0-1 0) m is (0.(,2--{l.ll)x I o-6 m2!s for U = 1 0 m/s. v =0.0 I nP·/s. Th<•n• Is no 

report of systematic m.easurement of vertical diffuslvity ami wind sp<·t·d 

to compare our theoretically calculated eddy·clilft Jsivltles wllh t ht' 

observations. At depths between 2 m ami 21 111, the vert leal <'ddy­

diffusiviUes observed by Kullenberg (1971) arc scallered In the range 

(0.01-oO)xlo-4 m2/s. Other estimates of U1c vertical eddy-dtffnsiviii<'S in 

the same area (Hansen. 1968) show that t11c vertical eddy-dlffllslvlllt•s li<' 

in the range (O.I-0.7)xl!t4 nP/.\', (Depth range in this case Is unknown). 

The experhnental site had stratified water and shallow depth (less than 

50 m). Our calculations are for deep water waves In a hon1ogeJWOIJS 

ocean. The wave length corresponding to the peak·fi·cquency <t>111 of the 

Plerson·Moskowitz spectrun1 is about 71 m. Therefore deep water theory 

is applicable for these observations. The theoretl<:al estimates of t.hP 

single particle vertical eddy-diffusivUics using the present model are at 

the lower boundary of the experimentally observed cddy·dlffusivltles of 

1\ullenberg (1971). It is quite possible that the dynamics causing vertical 

diffusion in the real ocean are different from those used In I his model. 

Other dynaillics such as wave breaking, tert.lruy lnvtscid zero-frequcney 

interactions may be important ;n the real oceanic situation. A wave wit.h 

small amplitude (e.g .. swell moving into a calm sea) may giv<~ rise to 

eddy-diffusivities similar to theoretically calculated vah 1cs. 
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Two-particle diffusivitles are calculated for horizontal 

scparaUon r and also for vertical separation r3. Patch-diffusivity is 

calculated for horizontal separation r only. Concentration distiibution of 

the patch is taken as Gaussian with horizontal scale !..=200m (5.45). For 

horizontal separation r, the two-particle diffusivity was found to be twice 

the single-part.lcle diffusivity and patch-diffusivity Is in between the two 

diffusivities similar to Herterich and Hasselmann (1982) and Sanderson 

and Okubo (1988). For vertical separation (r3) between a pair of 

parlides, the two-particle diffusivity was observed to increase from zero 

(at. zero separation) to a maximum value (for large separation) which Is 

the single particle diffusivity at the reference depth with respect to which 

r3 Is measured. This could be explained as follows. The zero-frequency 

velocity varies sinusoidally with a. b coordinates and decreases 

exponentially with depth. For two-particle velocity with large vertical 

separation belween the two particles, the velocity of one of the particles 

at large depth is zero. So the two-particle velocity reduces to a single­

particle velocity when one of the particles is at great depth. 

Consequently, the two-part.icle eddy-dlffusivity reduces to single-particle 

diffuslvity of the particle at shallow depth. For horizontal separation, 

however, the velocity of a paJr of particles (at same depth) separated by a 

horizontal distance varies sinusoidally as a function of separation (see 

5.2l, 5.23). As a result. the two-particle eddy-difTusivity is increased by 

a factor of 2. 

The limitation of this model is that the model assumes e2e1 >> E3 

which Is valid when wave amplitude is small and eddy-viscosity is large. 

But usually e.l is greater than E2e1• This implies that the zero-frequency 

third order inviscid solution will be larger than the zero-frequency second 

order viscous solutions. It Will be interesting to investigate the third 

order inviscid equations and look for the zero-frequency vertical solution. 

The study shows that random surface wave field can produce 
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both horizontal and vertical diffusion. The obs~rvations of l<nllenhPrp: 

(1971) and Hansen (1 968) indicate that our vertical diffusive nwdumiHnt 

is only large enough to account for the lower limit of the ol>H<'Jved v<•rtkal 

eddy-diffuslvity. But our work does agree with nwaHun·nwntH of 

horizontal diffusion at the scale of surface gravity wav<·s. (i'or <'xample. 

Figure 5.ld shows that at c=O, n=2, the singlc-partid<• horizontal <'<hly­

diffusivity Is 0.013 m2/.\'. The diffusion diagrams of Okubo ( 1971) Hhow 

that we can expect similar range of eddy-diffuslvitics at 10 - 100 m s1·ah·. 
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