WAVE INDUCED OCEAN

BADAL K. PAL

DIFFUSION




an
t

-

f..n.

e o

‘-_' l" 'i SR y p ) ...| -

¢ "“;‘mﬁh m&




WAVE INDUCEL* OCEAN DIFFUSION

BY

Badal K. Pal

A thesis submitted to the School of Graduate
Studies in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Department of Physics
Memorial University of Newfoundland

February 1992

St. John's Newfoundland



B+l

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Service

Ottaw~a, Canada
K{A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in hisfher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without histher per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant & la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des cxemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve ta propriété du droit d'auteur
qui protege sa these, Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN  ©-315-73333-0

Canadi



ABSTRACT

Eddy-diffusion in the ocean is studicd by using drifter data in
the Atlantic Equatorial Undercurrent. The drifter trajectories are
analysed to include a detailed analysis of the space and time scales of
the relative motion. The ratio of Lagrangian integral length scale to the
standard deviation of drifter positions ranged from C,=0.02 to 0.36.
However, on average it was 0.12 in the meridional dircction, thus
confirming the Fahrbach et al.'s (1986) calculations of the meridional
diffusion of salt from the Equatorial Undercurrent. Integral time seales
were found to decrease with increasing velocity. It was shown that
measurement errors have little effect upon estimation of cddy-
diffusivities but biased Lagrangian integral time and length scales
(smaller than they should have been). The Eulerian integral time-scale
for relative velocities is only slightly greater than the Lagrangian integral
time-scale. Joint space-time correlations indicated that the eddy veloctly
changes rapidly compared with time-scales required to advect a particle
over the eddy length-scale.

A perturbation analysis of the 3-D Lagrangian cquations of
motion is used to examine the diffusion induced by a random field of
surface gravity waves in an inviscid and viscous ocean. At sccond order,
the inviscid solutions give a random field of shearing motion in the
horizontal plane. For the viscous case, the Lagrangian cquations of
motion are solved for a spectrum of nondecaying surface gravity waves
and a spectrum of decaying surface gravity waves. At second order, the

zero-frequency nondecaying and decaying solutions show random ficeld of



shearing motion in both horizontal and vertical plane. For zero angle of
interaction hetween the primary waves, the horizontal velocity due to
viscous decaying wave solution is large near the surface compared to the
inviscid and viscous forcing solutions. The three solutions converge
below the depth of the viscous boundary layer for zero angle of
interaction. For interaction with non-zero angle between the primary
waves, the viscous decaying solutions go to inviscid solutions below the
depth of the viscous boundary layer. The viscous nondecaying wave
solutions decay more slowly with depth and remain different from the

inviscid and viscous decaying wave sclutions.

The inviscid solutions exhibit horizontal diffusion identical to
Herterich and Hasselmann (1982). The viscous (decaying and
nondeccaying) solutions show both horizontal and vertical diffusion. The
inclusion of viscosity causes a significant change in the horizontal
inviscid eddy-diffusivity. Near the surface, the single-particle viscous
decaying diffusivity D|Y” is larger than the inviscid diffusivity D/ and
viscous nondecaying diffusivity D{F by factors of 1.2 and 1.7 respectively
for viscosity v=1.0x10"2m%/s. Changing viscosity has very small effect on
the horizontal diffusivity.

The vertical eddy-diffusivity is found to be much smaller than
the eddy-viscosity. A linear increase of vertical eddy-diffusivity with the
viscosity is obscrved. The single-particlc horizontal cddy-diffusivities
increase with wind-speed raised to the power of 3. The single-particle
vertical eddy-diffusivity does not show any power-law dependence with
the wind-speed.
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Chapter 1
INTRODUCTION

Oceanic eddy-diffusion is a complex physical phenomenon
that is caused by a great number of different dynamical processes.
Generally we constrain ourselves to describing the gross statistics of
dispersing material. In the past, eddy-diffusivities have been evaluated
from the statistics of clusters of drifters. The underlying assumption of
the approach was that the dispersive motion of the particles can be
understood by knowing only the statistical properties (e.g., mixing
length, energy) of diffusive motion. Various dynamic processes can be
related to the statistical properties of this motion (Sanderson and Okubo,
1988; Herterich and Hasselmann, 1982),

Taylor (1922) kinematically formulated the basic concept of
the theory of dispersion in homogeneous stationary turbulence in terms
of Lagrangian velocity correlation. Stommel (1949) showed that the
classical Fickian diffusion equation can not properly describe the relative
spread of a cluster of particles with respect to its center of mass.
Instead, he found that Richardson’s (1926) model of the distance-
neighbour concentration describes the oceanic diffusion reasonably well.
A review of oceanic diffusion models was given by Okubo (1962). He
showed that for a radially symmetric two-dimensional diffusion of
passive contaminants the solution to the diffusion equation may be
expressed in terms of a diffusion velocity (Joseph and Sendner, 1958) or
in terms of the rate of turbulent energy transfer-parameter (Ozmidov,

1958). The former class of solutions are characterized by maximum
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concentrations that decrease with time as t2 and the horizontal
variances increase as t2, while the later class of solutions find that they
are t3 and t3 respectively. However, observations show that the
horizontal variances increase with time at a power between 2 and 3
(Okubo, 1971). Davis (1982) examined the relationship between the
transport of scalar properties and the statistics of particle motion and
developed a model for predicting statistics of particle dispersal from
Eulerian statistics of velocity. Kawai (1985) measured horizontal velocity
gradients in the seas around Japan and United States and obscrved that
the magnitude of divergence and vorticity vary as scale raised to the
power of -0.67 for the mesoscale (3 m to 30 km). Krauss and Boning
(1987) used one hundred and thirteen satellite tracked buoys in order to
calculate Lagrangian statistics of eddy field in the northern North
Atlantic. They noticed that the horizontal variance of particle motion is
in good agreement with a t2-law during the first day after relcase and
increases linearly with time during 10 to 60 days. The spectral slope was
found to follow a -2 or -3 power law. A -2 power law of the spectral slope
was observed by Collin de Verdiere (1983) in the eastern North Atlantic.
More recently Osborne et al. (1989) and Sanderson ct al. (1990) have
shown both absolute and relative dispersion to be fractal. Sanderson and
Booth (1991) have formulated a fractal model that provides a better fit to
the data than the Taylor model - the Taylor model being a special case of
the fractal model.

The theory of shear flow dispersion began with Taylor’s (1953)
realization that the sheared velocity profile in a pipe would Interact with
cross-channel molecular diffuusion to produce augmented along-channel
dispersion. Sometimes it is appropriate (e.g, In estnaries Wilson and
OKkubo, 1978) to consider the oceanic motion as a large scale shear and
small scale eddies. The combined effect of diffusion across the shear

produces augmented horizontal diffusion in the along stream dircction.,
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Bowden (1965) considered horizontal diffusion due to shear effect in
alternating currents, steady currents and wind driven currents. Young
ct al. (1982) considered advection diffusion in the oscillatory, sheared

velocity field comprised of internal waves.

Zimmerman (1986) reviewed cascade shear-dispersion and
Lagrangian chaos models of the horizontal dispersion by tidal and
residual currents, In the cascade shear-model tide induced turbulence
is an essential aspect of the dispersion process. Turbulence interacts
with vertical shear producing horizontal dispersion. In turn, that
mechanism interacts with horizontal shear of residual currents giving
rise lo a large effective dispersion in the residual current direction. The
Lagrangian chaos model explains the possibility of dispersion without
recourse to large scale turbulence. However, it is a purely kinematic
model based on the Euler Lagrange transformation. The superposition of
deterministic Eulerian modes in the velocity field, that have different
length and time scales can give rise to Lagrangian trajectories that are

chaolic functions of time.

Most of the above models are limited to semi-empirical scaling
arguments based on dimensional analysis or are largely kinematic in
that details of the motion are not analytic solutions of dynamical
equations. The main philosophy of the proposed study is that much of
the horizontal dispersion of the drifters can be described using solutions
of the equations of motion. Much of the work that has adopted this
approach has been done in a Lagrangian coordinate system. From a
mathematical stand point, the Lagrangian representation of the Navier-
Stokes equations appears more complex than the Eulerian form.
Furthermore, the Navier-Stokes equations in Lagrangian form have not
been studied as extensively as the Eulerian form. However, since one
follows the motion of fluid particles in the Lagrangian description, the
Lagrangian approach has advantage over the Eulerian method for
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describing the diffusion (Okubo, 1967). If an Eulerian coordinate system
is used then one is always confronted with an Euler-Lagrange
transformation in order to obtain eddy-diffusivitics. Also the free

boundary conditions are often more simple in a Lagrangian framework.

The Lagrangian form of the diffusion equation was first given
by Corrsin (1962). An exact analytical solution of the Lagrangian
diffusion equation has been found for time dependent, spatially uniform
Lagrangian deformations and eddy-diffusivities (Okubo et al., 1983).
Later, Sanderson and Okubo (1986) extended this analysis to include
nonlinear Lagrangian deformations.

Pierson (1962) solved the Lagrangian form of the Navicr-Stokes
equations by means of a perturbation technique. He showed that the
solution of the first order equations yield two- and three- dimensional
motions that have some of the properties of mixing and turbulence.
Okubo (1967) applied solutions to the viscous Lagrangian equations of
motion and evaluated the eddy-diffusion caused by these solutions. This
approach is fundamentally different from all prior work in that it found
solutions to the equations of motion that caused eddy-diffusion dircetly.

Tamal (1972) studied diffusion due to a random ficld of deep
water gravity waves using a perturbation analysis of the equations of
motion. He considered two-dimensional motion in the vertical plane, and
therefore observed no eddy-diffusion in the second order in the
perturbation analysis. In the third order interactions Tamai (1972) found
solutions that were valid for short times and caused eddy-diffusion. Bul
his estimates are too small to account for experimentally measured
values. Herterich and Hasselmann (1982) considered the horizontal
diffusion of tracers in the presence of a random field of ocean surface
gravity waves, Instead of solving the Lagrangian equations of motion,
they constructed Eulerian velocities (for second order interactions)
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following the procedure of Hasselmann (1961) and applied Euler-
Lagrange transformation to obtain Lagrangian velocities (from the
Eulerian velocities). These solutions exhibited horizontal eddy-diffusion
as a particular case of zero frequency interactions but no vertical eddy-
diffusion. Recently, Sanderson and Okubo (1988) solved the inviscid,
nonrotating equations of motion in Lagrangian coordinates for a random
field of internal waves. Their study was appropriate for coastal waters, in
that they used normal modes rather than considering waves propagating
vertically. In the second order of their analysis, they found solutions
which gave horizontal eddy-diffusion. In particular they found that an
approximation to the Munk (1981) spectrum resulted in a pair diffusivity
varying as scale raised to the power of 4/3. The solutions also show that
the velocity field is a random function of space.

In this thesis we will study oceanic diffusion by analysing data
as well as making a theoretical study of mixing by surface waves.
Fahrbach et al. (1986) conducted four experiments in the Atlantic
Equatorial undercurrent in order to estimate the salt loss from the
undercurrent. They analysed their data by applying a technique which
has a recently discovered error (Sanderson et al., 1988). Chapter 2
contains a re-analysis of Fahrbach et al.’s drifter trajectories and
calculates eddy-diffusivities by applying the appropriate corrections. The
analysis is further extended to include a detailed study of the space and

time scales of relative motion (Sanderson and Pal, 1990).

The results of the above work indicate that at scales of O (10 -
5000 m) particle dispersion is related to internal waves. Herterich and
Hasselmann (1982) show that surface gravity waves can result in
horizontal diffusivities that fit the small scale O 10 - 100 m) portion of
Okubo’s (1971) diffusivity diagram. Sanderson and Okubo (1988) related
the horizontal eddy-diffusivities to nonrotating internal wave dynamics.
Both Herterich and Hasselmann and Sanderson and Okubo obtained
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solutions that diffuse material only in the horizontal plane, no ditfusion
in the vertical plane. The question to be asked is: can we obtain any
vertical diffusion from the interaction of random waves? One major
objective of this thesis is, therefore, to explore the possibility of relating
random wave motion due to deep water surface gravity waves with
vertical diffusion.

Chapter 3 deals with the solution of the 3-D Lagrangian
equations of motion for surface gravity waves in an inviscid nonrotating
ocean. At second order, the inviscid solutions show a random field of

shearing motion in the horizontal plane, but no vertical motion.

In Chapter 4, the inviscid solutions are cxtended (o inchide
viscosity. The viscous 3-D Lagrangian equations of motion are solved
analytically for a spectrum of nondecaying and decaying surface gravity
waves in a homogeneous nonrotating ocean. At second order, the
viscous (nondecaying and decaying) solutions show a random ficld of
shearing motion in both the horizontal and vertical planes.

The solutions obtained in Chapter 3 and Chapter 4 arc usced (o
calculate single-particle, two-particle and patch eddy-diffusivitics
following the technique of Herterich and Hasselmann (1982) and arc
presented in Chapter 5. The resulting equations are then numerically
integrated to obtain estimates of eddy-diffusivities. Eddy-diffusivities for
an inviscid fluid are then compared with the corresponding quantities for
a fluid with a range of eddy-viscosities.



Chapter 2

PATCH DIFFUSION COMPUTED
FROM LAGRANGIAN DATA

2.1. INTRODUCTION

Katz et al. (1980) calculated a salt budget for the Atlantic
Equatorial Undercurrent. They estimated that most of the salt loss is
due to vertical mixing above and below the equatorial current. However,
they did not have direct measurements of horizontal salt transport
perpendicular to the core caused by eddy-diffusion. Fahrbach et al.
(1986) used four drifter cluster experiments to measure relative
diffusivities and determined that meridional horizontal eddy-diffusion
accounts for about 20% of the salt loss. They calculated eddy
diffusivities using the method of Okubo and Ebbesmeyer (1976). This
method has two shortcomings. First it invokes an arbitrary constant C,
(taken to be 0.1 by analogy with Ozmidov, 1960) that is the ratio of the
Lagranglan integral length scale to the standard deviation of drifter
positions about the cluster centroid. Second the number of degrees of
freedom for the residual velocities is given incorrectly, as discussed by
Sanderson et al. (1988).

Fahrbath et al. (1986) calculated residual velocities by
extracting motion due to time averaged velocity gradients from the
velocities relative to the cluster centroid. They used these residual
velocities to calculate horizontal eddy diffusivities. In this case the
horizontal salt transport would be due to the combined effects of direct
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eddy-diffusion as well as interaction of eddy-diffusion with velocity
gradients (Okubo et al. 1983). However Fahrbach et al. (1986) used
these horizontal eddy diffusivities in a pure eddy-diffusion model,
without consideration of the shear-diffusion effect.

Although each of the three points mentioned above are only
likely to affect the horizontal salt transport in a minor way it is
worthwhile to reanalyze the data. In so doing we confirm the
conclusions of Fahrbach et al. (1986), and also oblain insight Into the
spatial and temporal structure of the dispersive motion.

A detailed description of the cluster experiments is given in
Fahrbach et al. (1986). The four drifter clusters were named CIPREA,
D1, D2, D3 and consisted of 6, 9, 8, 5 drifters respectively. The drogues
were set at depths in the range 70 to 90 m, depending upon the
estimated depth of the salinity core. The ship's radar was uscd to
measure relative drifter poesitions every 30 minutes for periods ranging
from 39 to 50 hours. Experiments D1, D2, D3 were carricd out at ahont
21°W, whereas experiment CIPREA was conducted in the Gulf of Gninca
at about 4°W.

In section 2.2 we use a variation of the method of Okubo et al,
(1976) with modifications recommended by Sanderson ct al. (1988) to
calculate eddy diffusivities from residual velocities relative to the centroid
motion. We then calculate the Lagrangian autocorrelation coefficient of
velocity relative to the centroid as a function of lag. This yields
Lagrangian integral time/length scales, eddy diffusivities and values for
C, (Taylor 1921). Section 2.3 provides a more detailed analysis of the
structure of motion relative to the cluster centroid. We compute the
Eulerian space-time correlation function by correlating the motion of a
drifter at position x at time ¢ with the motion of a different particle at x+r
at time r+t. The analysis is done by resolving motion into components
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that are transverse and along the direction of the space lag vector r
(Middleton and Garrett 1986, Poulain and Niiler 1989).

2.2. CALCULATION OF EDDY DIFFUSIVITIES

In this section we calculate relative eddy diffusivities from
drifier positions and velocities, relative to the cluster centroid.
Positions/vclocities relative to the cluster centroid will be referred to as
relative positions/velocities throughout the following work. The absolute
positions of drifters are not known with nearly the same precision as
relative drifter positions, so it is inappropriate to attempt to calculate
single particle (absolute) diffusivities. Consider positions in a Lagrangian
coordinate system fixed to the cluster centroid so that x;, (i=1,2) is the i'th
coordinate of the »'th particles relative position. Here the x| and x, axes
arc positive towards the east and north respectively. The position of the
n’th drifter in a cluster can be written as the following function of its
Lagrangian relative position coordinates q;,=x; (t=0), and subsequent
displacement x’;,

2.1)

L Wi
Xin=djy +X in*

In a cluster of N drifters we note that
N

N N
Z = 2 = 2 X =0

n=1 n=1 n=1

since all positions are relative to the centroid.

Considering a model for drifter motion that consists of
advection with the patch centroid and diffusion relative to the patch
centroid, then a time-dependent eddy-diffusivity tensor can be defined in
a manner analogous to Okubo et al. (1976) and Sanderson et al. (1988)
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N
Kifin= ( Z ""in""j,'n) [(N=-1), ij=1.2 (2.2)
n=1

N

where X i the time derivative of .r'j".

Eddy diffusivity tensors calculated using (2.2) turn out to be
rapidly fluctuating functions of time, as illustrated by the represen-
tative example in Figure 2.1. However if the relative trajectorics arc
quasi-stationary (quasi-stationarity is discussed later), then averaging
K with respect to time will yield eddy diffusivities F,; that :are
independent of r and might be compared with eddy diffusivities K’ found
by Fahrbach et al. (1986). These and values of C, derived from a ratio of
K/(10KF) are presented in Table 2.1.

Eddy diffusivities for CIPREA and for the x direction in D2 arc a factor of
about 5 greater than those of Fahrbach et al. (1986), indicating valucs
for C, that are substantially larger than 0.1. However eddy diffusivitics
for the other experiments are similar to, or smaller than those of
Fahrbach et al. (1986), indicating that the assumption C,=0.1 is
reasonable. It should be stressed that these values of C, ar¢ not
rigorously defined since Fahrbach et al. (1986) did not define residual
displacements x; in the same way we did. Our reason for using a
different method for calculating residual displacements will now be

discussed.

It is conceivable that the large values of K, are caused hy
larger scale deformation of clusters, We therefore compute the diffusivity
tensor K‘fj(t) from residuals x; that are left when both the centroid
displacement and displacements due to time-varying spatially- uniform
Lagrangian deformations are extracted (Okubo et al., 1976; Sanderson et
al., 1988).



11

Table 2-1: Zonal and meridional components of the time-

averaged eddy diffusivity tensor. K;; is for a model
in which all motion relative to the centroid is
considered diffusive. K¢ is for a model in which
motion relative to the centroid 1s considered to
have a component due to time-varying spattally
uniform Lagrangian deformations, as well as
diffusive motion. K[ are eddy diffusivities
calculated by Fahrbach et al.(1986), and C,; are

coefficients calculated from Kj; and K7, Units for
K)s:m2s~!

=d =d

X K50 ki K22 ST K22 & %

¥ Gl @l @Y i (i)
CIPREA 2 32 EY) 50 87 4.0 0.5 0.8
Dl 16 5.9 9.3 6.1 16.6 8.3 0.1  0.07
D2 109 7.5 107 1.7 18.4 17.2 0.6  0.04
D3 " 19 40 17 13.7 20.2 0.1  0.09

ox;
x‘-,,=ai,,+(£}) oG+ X (2.3)

N
Kd(0)= ( ¥ x",,,i';,.) /(N-3)
"=t 2.4)

Summation with respect to j is implied in (2.?) and the spatially uniform
Lagrangian deformation is represented by (-a-;i)o Average values of K4,
/]

are presented in Table 2.1. If (2.3) is a better model for the velocity field
than (2.2), then we would expect X9; to be significantly less than Kj;. This
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Figure 2-1: Plot of X;;(#) and X,,(¢) for experiment CIPREA.
Error bars represent plus and minus one
standard deviation.

is not generally the case and, in fact, sometimes the reduced number of
degrees of freedom (N-3) in (2.4) as opposed to N-1 in (2.2) leads to
K4, > K;. We conclude that for the present data the cluster dispersion is
better modelled using (2.1) and (2.2) (eddy-diffusion) than (2.3) and (2.4)
(spatially uniform deformation with eddy-diffusion). This contrasts with
the analysis of Fahrbach et al. (1986) who removed motion due to time-
averaged velocity gradients from the residuals.

Assuming that the relative velocity is statistically stationary
we can use the approach of Taylor (1921) to relate patch dispersion to
the Lagrangian autocorrelation of relative velocity and its integral time
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scale. It is quite clear from Okubo (1971) that in general the relative
velocity is not statistically stationary. Yet we might consider it quasi-
stationary, if the time taken for a particle’s relative velocity to become
substantially auto-decorrelated is small, compared with the time taken
for the statistical properties of the relative velocity to change appreciably.
The quasi-stationary assumption held for other cluster data (Pal and
Sanderson (submitted)). We will proceed on the assumption that quasi-
stationarity holds for the present data set, and will later examine our
results for consistency with this assumption. The Lagrangian
autocorrelation function for velocities relative to the centroid, is

N 1 (71 , )
Z '7—_,".0 u,-n(t)uj"(t+'r) dt

_ | n=1
RiO=g U,

(2.5)

where u,=x;, and U; is the root mean square value of «;. Division by the
duration of the experiment 7 rather than T-t is necessary to obtain
unbiased statistics at large lags (Beauchamp and Yuen 1979). An
analysis of relative diffusion that is based on (2.5) yields insight into the
structure of dispersive motion, that is not immediately apparent from
(2.2). The Lagrangian integral time scale t* gives the typical period over
which a drifter velocity remains correlated with its velocity at the start of

the period,

t*l =J‘:R 11 (t)dt
(2.6)

'C*Z =I Rzz(t)dt
0

where for our data we are constrained to integrate between the limits O to
T rather than 0 and «. Figure 2.2 shows that R,(t) generally does
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become small long before t approaches 7. indicating that truncation of
the integral will still yield reasonable estimates for t*, and t%). The typical
distance a drifter moves in the Lagrangian integral time scale is the
Lagrangian integral length scale

27

The relative eddy diffusivity tensor that was previously obtained by
averaging (2.2) with respect to r, can also be written

*2
Ki,-=U}U;j R,.,.(z)dr=-%- (2.8)
0 i

where, again, the integration interval has to be truncated to O to 7.

Values of eddy diffusivity are not biased by measurement
error, whereas Lagrangian integral time and length scales are. Consider
the measured relative velocity «’ to consist of a component due to the
true relative motion w3, and an uncorrelated component due to position
measurement error u,,

=y .+, 1.9)

It follows immediately that the mean square value of the true rclative
velocity is less than that of the measured relative velocity, as in the
following equation

< >=<u?>-<u'?> (2.10)

where < > represents averaging over drifters in a cluster as in (2.5).
Using (2.9) we see that the Lagrangian autocorrelation function of the
measured relative velocity is
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p=J =0
=N <y (0>
=0

<y >+<u 2>
(2.11)
whereas the Lagrangian autocorrelation for the true relative velocity is

<up(t+O)up (>
"= (2.12)
<u 7’.

Using (2.10), (2.11), (2.12) we see that

_f1 =0
Ry '{ R(T)<u?> (2.13)

\ T#(
<u'2>-<ul, 2>

Equation (2.13) indicates that measurement errors will bias
the Lagrangian integral time scale to be smaller than its true value, since

*=J.Rdt=[l ~ ]J'RT,m (2.14)

<u'?>

Similarly, we see from (2.10) and (2.13) that the Lagrangian integral
length scale is biased smaller than its true value since

*2
<w'2>
¢ 1R« ‘/ZJR dr.
<u12> I> Tr

<u'2>l/2J.R(It=[l -

On the other hand (2.10) and (2.13) show that eddy diffusivity is

unbiased by measurement errors since

<u'2»,~,>JRTrdt = <u’2>IR dr.

Equation (2.13) enables us to estimate an unbiased Lagrangian auto-
correlation R,, from the Lagrangian autocorrelation R that is based on
measured velocities and knowledge of the mean square velocity due to
position fixing errors <u'3>. Fahrbach et al. (1986) estimated the position
fixing error to be +200m and the resulting velocity error to be 0.02 m/s.

Figure 2.2 shows the Lagrangian autocorrelation Ry, Ry, and
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Figure 2-2: Plots of Lagrangian autocorrelation and helicity
(Ry3 Ry 2 for velocities relative to the cluster
centroid. Error bars represent plus and minus
one standard deviation.
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the helicity i, =(R|,—R;)/2 (Middleton and Garrett 1986) ploited against
lag. In general i, is small, indicating that there is no dominant sense for
rotational motion about the centroid. In all but the CIPREA experiment,
the values of h; are not significantly different from zcro. In CIPREA the
small negative values of /;, indicate that about 7% of the energy of
relative motion can be thought of as being due to a particles relative
trajectory curving in the clockwise sense. In experiments D1, D2, D3 the
Lagrangian autocorrelation function drops off rapidly with increasing lag
and then exhibits small amplitude ringing that is probably duc to
internal waves. Statistically significant (at the 50% confidence level)
dominant periodicities of 12 hours were observed for the y component of
motion in D2; 11 hours for the x component of motion in D3; a broad
band from 40 to 12 hours for the x component of motion in CIPREA was
significant at the 80% confidence level; whercas D1 had no dominant
periodicity. Internal waves, propagating in a thermoclinc, that have
periods in the range 12 to 40 hours have wavelengths much larger (50
km to 170 km) than the patch dimensions, and hence can only catuse
small relative velocities, Fahrbach et al. (1986) observe horizontal scales
of 20 to 40 km for variations in stratification. It is possible that such
large scale internal waves could indirectly cause significant relative
velocities via an interaction with other components of the flow ficld. For
example the vertical shear above the undercurrent is about 0,02 s~!.
Hence a 40 km internal wave of amplitude 10 m could tip this vertical
shear to produce a horizontal component of shear of 2x 10-%~! which at
the scale of a patch (say 5 km) gives a relative horizontal velocity of ahont
0.1 m/s, Although this process seems reasonable from a scaling

perspective, we lack the necessary data to test the idea.

Internal waves with periods of ~1 hour have wavelengths of
4000 m and could directly cause significant cluster distortion and could
also result in the rapid drop off of R observed in experiments D1, D2, D3.
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Such high frequencies are barely resolvable in our data sets due to our
sampling interval and measurement errors, so this suggestion is

tentative.

Experiment CIPREA was carried out further to the east than
D1, D2, D3. The Lagrangian autocorrelation falls off more slowly for
CIPREA. On the other hand, magnitudes of relative velocities U} and U
are larger for D1, D2, D3 than for CIPREA (Table 2.2). An association of
larger relative velocities with shorter Lagrangian integral time scales was
also observed by Pal and Sanderson (submitted). Similar associations
between velocity magnitudes and integral time scales have been made by
Krauss and Boning (1987) for the case of single particle statistics.

Table 2-2: Time-averaged values of the standard deviation of
drifter positions o, and o, relative to the cluster
centroid, magnitude of relative velocities U’
Lagrangian integral time-scale 1}, eddy
diffusivities X;;, and ratio of Lagrangian integral

length scale to the standard deviation of drifter
positions C,, and C,,. The numbers enclosed in
parantheses are corrected for measurement

error.
Expt o o, U vy L ‘I‘; i“ i”_ e 5
-2 -2 . 2 2
= ke x10°m/s =x10 “ /s winutes minutes a“/s n/»

CIPREA 1.76 1.94 (5.48.2 (4.8)4.6 (123132 (232)2%4 2 k¥ 0.23 0.)6

Dl 3.0 1.80 (9.6)9.4 (7.5)7.4 (30)31 (17)18 16 5.9 0.06 0.04

D2 3.81 3,68 (10.4)10.3 (8.4)8.3 (157)160 an 109 7.5 0.26 0.02

D3 354 S.1 (6.8)6.7 (6.8)6.6 (48)50 (64)6?7 14 19 0.06 0.05
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To understand why larger U’ might be associated with smaller
", let us assume that the length scales L of the eddies are constrained to
be somewhat independent of U’. For relative motion within a cluster of
drifters this assumption is reasonable since a continuum of eddy scales
ensures that the energy-containing eddies have length scales comparable
with the cluster dimensions. For single particle statistics the scales of
the energy-containing eddies might be primarily determined by the
intermal Rossby radius. Nevertheless, if the length scale is fixed
independent of U’ then energy transfer rates H',?Zaug./a.\-j. the largest scale
eddies (energy-containing eddies) will scale proportional to U%/L. This will
be the rate at which the eddies change their energy U?/t, which gives
=L/’ (from U?r=U%L). Another approach is to consider (he
momentum equations where the field acceleration scales as U’?/L, which
will cause rates of velocity change that scale as U’/t so the T scales as
t=L/U’ (from U'ft=U"2/L).

From Table 2.2 we see that the Lagrangian integral time scale
is short compared to the time taken for the cluster to change its
dimensions significantly. Consequently it appears that the quasi-
stationarity assumption is reasonable. This justifies our definition and
use of such quantities as relative eddy diffusivities and Lagrangian
integral time-/length scales.

Values of C, are calculated for the x and y directions (C,,, C,,y)
and presented in Table 2.2. Generally C, is 0(0.1), as assumed by Okizho
and Ebbesmeyer (1976). However C, is considerably larger than 0.1 for
the CIPREA experiment and the x component of relative velocity in D2.
Values of C, in Table 2.2 are different from those in Table 2.1, because
Fahrbach et al. (1986) calculated their residuals, x;, differently from
ours. Also, Fahrbach et al. (1986) used N-1 as the number of degrees of
freedom (following Okubo and Ebbesmeyer 1976) when they should have
used N-3 (Sanderson et al., 1988). Both these effects would cause C, in
Table 2.1 to be bigger than the C, in Table 2.2,
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Averaging over all four experiments gives mean eddy
diffusivities of 38 m%/s, 15.5 m%/s for the x, y directions. Corresponding
values obtained from the analysis of Fahrbach et al. (1986) are 13.4 m%fs,
12.4 m¥s. Only the y component of eddy diffusivity is important for
calculating the horizontal salt flux from the core of the equatorial
undercurrent. Our analysis therefore. confirms the Fahrbach et al.
(1986) estimate that only 20% of the salt loss can be due to horizontal

diffusion.

2.3. EULERIAN ANALYSIS OF RELATIVE VELOCITIES

Consider a current meter deployed at position x at time ¢. At
time / the current meter will measure a velocity identical to the velocity of
a drifter that passes through x at time ¢, The drifter velocity could
therefore be specified as a function of the Eulerian position x that it finds
itself in at time ¢, Alternatively, the drifter velocity at time ¢ could be
specified as a function of its Lagrangian coordinates a=x(t=0) and time.
Thus it is the coordinate system in which we analyze drifter data that
determines whether we obtain Eulerian or Lagrangian velocity statistics.
In section 2.2 we used a Lagrangian coordinate system, in which each
drifter’'s relative velocity was a function of its initial position. Thus
averages over the initial drifter positions (or equivalently averages over
the drifter identification number, Ll), yielded Lagrangian statistics of
the relative motion. In the following work approximations to the average
over all of the two-dimensional Eulerian space I dx will be used to obtain
Eulerian statistics of the relative motion, THere the origin of the
coordinate system will still be fixed to the cluster centroid, i.e. we filter

out the mean patch motion.)

Often in oceanography it is easier to obtain Eulerian statistics
(such as the Eulerian integral time scale 1£) than related Lagrangian
statistics (viz. t*). Since patch dispersion is dependent upon t* it is of
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interest to find relationships between t* and tE. These relations also
yield insight into the processes that disperse clusters. To study the
space-time patterns of relative motion we will calculate joint space-time
Eulerian correlations.

The joint space-time correlations of the x and y (Cartesian)

components of relative velocity can be written

i u x,0u j(x+r, +71)

i (2.15)

(12 uy?)12

where the overbar represents averaging in both x and r. The x, ¢ points
should be either uniformly or randomly spaced. In order to calculate
unbiased estimates when averaging over data spanning a finite period T
it is important to use (lmj(;r—t(.)(lt rather than II/(T—t)IL;r_t(.)(II. Averaging
with respect to x, ¢ is really only appropriate for stationary and
homogeneous velocities. Relative velocities are cxpected (o be
inhomogeneous and nonstationary. However we will proceed on the
assumption that relative velocity is quasi-homogeneous and qnasi-

stationary, as discussed in the previous section.

Estimating R,{-(r,t) from drifter data presents a special
difficulty. Drifters follow the flow and will, therefore, preferentially
sample regions of previous net convergence (Davis 1982). Fahrbach et
al. (1986) observe that statistically meaningful velocity gradients could
not be resolved for all experiments apart from CIPREA. Our analysis in
section 2 confirms this result. Therefore we will not attempt any
correction for the bias, and expect it to be small. Plots of drifter tracks
for CIPREA (Fahrbach et al. 1986) indicate divergence from the cluster
centroid for all drifters. It seems especially unlikely, therefore, that the

Rd: statistics suffer from biasing by regions of previous net convergence,.
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Following Middleton and Garrett (1986) an estimate of R,f(r,t) is found by
averaging over Lagrangian coordinates a and b of distinct drifters, (i.e.
azb)

ﬁ’,j(r,'c)=<u;(x(a,t))u}(x(b,t-i-'c))6(x(b,t+t)—~x(a,t)-r)>(U{Ué)". (2.16)

The average < > in (2.16) also involves averaging with respect
lo t as well as space x and § is the Dirac § function. The position vector
x is an Eulerian variable in both (2.15) and (2.16). In (2.15) it is
assumed that the discrete values of x that we average over are either
randomly or uniformly distributed in space. However in (2.16) the
discrete values of x that we average over are the Eulerian coordinates
that correspond to the positions of drifters. The Eulerian position x of a
drifter depends upon the flow field, time and release position. Such
positions are not necessarily, therefore, either randomly or uniformly

distributed in space. Hence (2.16} is only an estimate of (2.15).

The data are not sufficiently extensive to calculate statistically
meaningful values of ?f{j(r,'c). which is a function of three independent
variables. However we can average over space lags to find the Eulerian

time lagged correlation
»

Ri
JIR U-(r,t)dr

(A Fyrerrs
R ,f(r,t= O)dr

2.17)

which is plotted in Figure 2.3. The Eulerian autocorrelation functions
have a shape that is very similar to, but different from, the Lagrangian
autocorrelations (Figure 2.2). Note that from the Eulerian perspective
there is no evidence of rotation since H=1/2(Rg,~RE,) is essentially zero
for all experiments. This contrasts with the slight amount of clockwise
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rotation of Lagrangian trajectories indicated by negative values of i, for
experiment CIPREA. Integrating the Eulerian autocorrelations gives
Eulerian integral time scales t,; that are typically slightly larger than the
corresponding Lagrangian integral time scale t* (Table 2.3).

We expect that Lagrangian integral time scales miist be less
than or equal to Eulerian integral time scales. An Eulerian velocity
changes only due to the local change of the velocity field with respeet to
time. On the other hand, a Lagrangian velocity changes duc to the
drifter being advected into a region where the velocity is different, as well
as due to local changes in the velocity field with respect to time. For
example a frozen eddy field of relative motion could result in a finile
Lagrangian integral time scale, but the corresponding Eulerian integral
time scale would be infinite. Middleton and Garrett (1986} obscrved
single particle statistics in which the Eulerian integral time scalc was 42
hours while the Lagrangian integral time scale was 15 hours. This is an
example where advection through the eddy field leads to a greater rate of
change of particle velocity than does the change in the cddy ficld itsclf.
The relative velocity field of the present data is caused by processes with
time and space scales that are much smaller than those important for
the single particle statistics of Middleton and Garrett (1986). For drifter
clusters CIPREA, D1, D2, D3 it is clear that drifters traverse only a small
portion of an eddy structure before the eddy structure has itself
completely changed. This is the sort of result that might be expected, for
example, in a random wave field, where particle displacements in a wave
period are small compared to the wavelength (Herterich and Hasselmann
1982, Sanderson and Okubo 1988). Thus we will now calculate the time

and space scales of the relative velocity field.

Although the present data are insufficient to calculate ?(,f(r,'c).
we will assume isotropy and obtain useful joint correlations (of relative

velocity) as a function of the magnitude of space lag r=|r| and 1. However
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in this case it makes little sense to consider x, y components of the
relative velocity since the lag vector r has no fixed orientation. Rather we
decompose the relative velocity into components that are longitudinal )
and transverse u3 to the lag vector r (Middleton and Garrett, 1986). This

gives longitudinal f* and transverse g* relative velocity correlations

P (X, (AT, H47T) 218

Vi 2up?

Uy x,t)u.'(x+r,t+'c)
o (=T (2.19)

'\Ill 1:2 ll7'~2

1) (X, D1 (XA, +T) ~ U7 (X, DU (X+T,HT)
ht(r, 1) =t A T, (2.20)

Vi 2ug?

To calculate f*, ¢*, and h* relative velocity pairs of distinct drifters were
binned for space and time lags centred on [r,ry,ry,ry...1=[0.4,1.2,2.0,28,...]
km and [t},T5,13,...]={0.5,1.0,1.5,...] hours. Values of helicity #* are small for
all experiments, indicating that there is no preferred sense of rotation at
any space or time scale. The patterns of correlations indicated by plots
of f* and g* are complicated, and variable fromm one experiment to the
next. Representative plots of f* and g* are shown for experiments
CIPREA and D2 in Figure 2.4a and 2.4b respectively. In the case of
CIPREA there are some clear structures in the relative velocity field
correlations, although values of correlations are generally much less
than 1. However it is equally clear that relative velocity is a rapidly
changing function of position within the cluster. In D2 we see that the
time and space scales over which correlation features persist is much
less than in CIPREA. Again we speculate that the larger relative
velocities in D2 (compared to CIPREA) lead to more rapid relative velocity

fluctuations (in space and time).
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There is a tendency for negative correlations when the space
lags are large and the time lags are relatively small. This is particularly
evident for the longitudinal correlation f* in CIPREA at space lags 7 km >
r> 2 km and time lags 4 hours > t© > 0 hours. In general we expeet that
eddy features with scales similar to the dimensions of the cluster will
cause relative motion at opposing sides of the cluster to be in opposing
directions for time lags corresponding to the life time of the eddy. This
must be generally true for transverse motion if there is to be no net
motion through a plane traversing the cluster. For longitudinal motion
this will be true for singularity structures corresponding to nodes or lines
of convergence/ divergence (Okubo 1970). Thus we expect g' (o be
generally negative for large space lags and small time lags. We also
expect f* to be negative for large space lags and small time lags, if the
dominant cluster-scale eddies have singularity structures corresponding
to nodes or lines of convergence. By the same argument saddles and
vortices would be expected to result in no preferred sign for /*, whereas
spirals would result in slight negative values of f*, for large space lags
and small time lags. The dominant singularily structure for CIPREA is
that of an outward node, as seen from calculations of velocily gradients
as well as from visual inspection of relative trajectories (Fahrbach ¢t al.
1986). Thus it is not surprising that f* is negative at large space lags and
small time lags. Interestingly, the eddy structures apparent in Figure
2.4a,b seem to be relatively short-lived (about 3 to 4 hours for CIPREA
and only 0.5 to 1.5 hours for D2). This is consistent with the eddy field
evolving rapidly with time, compared to the rate at which a Lagrangian
drifter sees the field change due to its advection.

Similarly wave-like motions that have wavelengths comparable
to the cluster dimension will cause relative motion at opposing sides of
the cluster that will be negatively correlated for short time lags, hut will
become positively correlated for time lags greater than half a wave period.
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Table 2-3: integral time-scales: Lagrangian t,*, 1,°; Eulerian

Cartesian components tg;" and Ttz r. All values
are in minutes and are corrected for
measurement error.

: * " * * % i
Experiment T T " ey Tn Ter

(minutes) (minutes) (minutes) (minutes) (minutes) (minutes)

CIPREA 132 254 159 330 460 ~-839
Dl k3 | . 18 3 21 15 41
D2 160 17 194 17 88 170
D3 50 67 63 73 167 =72

The fact that Figure 2.4a does not show f'(r=3km,t) alternating between
positive and negative values as t increases indicates that the time scale
for the persistence of strong negative correlations (t=4 hours) is more
indicative of the lifetime of an eddy, than half the period of a wave. We
also note that relative speeds were typically ~ 0.07 m/s for CIPREA,
Thus in 4 hours we expect a drifter to move only about 1 km, which is a
small distance compared to the scale of the eddy (r=3) km. This is
consistent with our earlier explanation as to why Eulerian and
Lagrangian integral time scales were so similar.

Eddy (or wave) features with scales (wavelengths) similar to
patch dimensions will cause relative motion of particles separated by
distances small compared to the cluster dimensions to be positively
correlated for ime lags less than the time scale of the eddy (or wave).
Looking along the t axes of plots in Figures 2.4a, b we see some tendency
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Figure 2-4: Contour plots showing f* and g* as functions of
time and space lags, for experiments CIPREA
(4a) and D2 (4b). Line shading indicates
negative correlations. Unshaded areas have
correlations in the range 0.0 to 0.1. Dotted
shading indicates correlations greater than 0.1.



31

for the correlations to fluctuate between positive and negative values in a
way that is indicative of relative motion due to waves. In Figure 2.4b the
positive correlations of f* at r = .4 km, 1 = 11 hours are consistent with
our earlier analysis that indicated dominant periodicities of about 12
hours for D2. In Figure 2.4a the positive correlations scattered along the
T axis from 1 = 8 to 1= 19 hours are indicative of a broad band of periods
noted earlier for CIPREA. In all cases f* and g* drop to zero for r in the
range .4 km to 1.5 km and t in the range 0.5 hours to 3 hours, which
indicates a lot of eddy energy at small spatial scales (r= 0.4 to 1.5 km)
and small time scales (t= 0.5 to 3 hours), We cannot properly resolve all
of these small scales, due to the paucity of data.

There is a strong pocket of positive g* centred at r = 2 km and
T = 2 hours in Figure 2.4a. This means that transverse motions at
separations of 2 km become positively correlated after a 2 hour lag. If
this feature were caused by an eddy of transverse motion propagating
along r, then we would expect g* to also be positive at r= 1 kmandt= 1
hour, and at all other points between (r=0,1=0)and (r =2 km, t= 2
hours). This is not the case. Instead what we have is a packet of
transverse motion that disappears for a while, and then reappears 2
hours later at a point 2 km away. This is a quite different feature from
say a propagating wave. We do not know of a mechanism that might give
rise to such a feature, The dimensions of the correlation pattern about
the point » = 2 km, t = 2 hours on the plot, indicate that the eddy has
dimensions of about 0.8 km (about half the standard deviation of drifter
positions, ¢) and a lifetime of about 2 hours.

From Figure 2.4 it is clear that f* and g* are not separable
functions of r and 1. Thus it is difficult to analyze and interpret spatial
structures (of the relative velocity) independent of associated time scales.

Nevertheless we define spatial correlations
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T T
I N(@r=0,t)dt N T (. D)dT
_J0 0

N - T
N(rt)dr N(r=0,0)* (r=0,7)dlT
0 0
2.21)
T T
j N@=0,%)dt N, Dg*(rT)dt
0 0
80)=— =
j N(r1)dt J- N(@r=0,7)g* (r=0,1)dt
0 0
(2.22)
and time lagged correlations
L L
I N(@rt=0)dr J- N( T (rdr
F(T)= ()L '1' 0
J N(r,X)dr J. N@re=0)* (ryt=0dr
0 0
(2.23)
L L
j NQr1=0)dr j NG et (r1)dr
0 0
Go)= L L
J Neodr | NGye=0)g! (ra=0)dr
0 0
(2.24)

where we have normalized by the number of correlating velocity pairs
N(r,7) in the bin with space lag r and time lag t.

We find that there is a trend for f{r) and g(r) to be positive for
small spatial lags, and negative for larger spatial lags (Figure 2.5). This
applies to both transverse and longitudinal components of motion. The
resolution of space correlations is poor, due to the small number of
drifters per patch. Hence the zero crossings of f{r) are not well

determined. However for experiment CIPREA zero crossings for f{») and
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Figure 2-5: Plots of spatial correlations fi), g for
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g(r) are at space scales that are within 15% of the Lagrangian integral
length scale. In the case of D2 the zero crossings are at about twice the
Lagrangian integral length scale. Generally the relative velocity ficld
becomes spatially decorrelated at scales much smaller than the patch
dimensions, and negatively correlated for larger spatial lags. Negative
values of g(r) are expected in order to ensure that the relative velocity
does not have any net transport through a plane. Negative valucs of f{r)
for large lags, are not similarly required. These, therefore, indicate an
interesting structural property of the relative velocity field, that we
cannot fully explain for all experiments. Although large scale eddics with
nodal structures (Okubo 1970) and internal waves with scales similar (o

the cluster dimensions would cause negative f{r) for large r.

Time-lagged correlations of the longitudinal and transverse
velocities exhibit a different structure from those of the Eulerian
cartesian components. In particular for CIPREA and D3 there were large
negative lobes for transverse velocity correlations. Eulerian integral time
scales for transverse and longitudinal velocities 1%, .1} are presented in
Table 2.3, They differ greatly from t),7|, and 1%,,1%, in that they arc
larger in magnitude and sometimes negative valued. It appears as
though the longitudinal-transverse velocity decomposition enables us to
see temporal structure that the x-y velocity decomposition misses. We
might picture this as a consequence of the longitudinal-transversc
coordinates being more nearly aligned with the eddy causing rclative

motion between particles than the x-y coordinates.

2.4. SUMMARY

Drifter cluster data of Fahrbach et al. (1986) are reanalyzed to
include a detailed study of the time and space scales of relative motion.
In the meridional direction the assumption C, = 0.1 turns out to he

reasonable, thereby confirming relative diffusivities in the meridional
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direction calculated by Fahrbach et al. (1986). However the zonal
diffusivity is substantially different from that of Fahrbach et al. (1986).
The Lagrangian autocorrelation of relative velocity falls off on a time scale
that is short compared to that for substantial changes in cluster
dimension, which justifies treating relative wvelocity as being quasi-
stationary. Of course this result can only apply approximately (i.e. on a
local time and space scale), since it is well known (Okubo 1971) that
cluster variance grows faster than ¢t indicating that the Lagrangian

autocorrelation does not converge for large t.

The analysis indicated that, for the present data set, there was
little to be gained by using an advection-diffusion model for cluster
spreading, rather than a pure eddy-diffusion model. Measurement
errors were shown to have little effect upon estimation of eddy
diffusivities but biased Lagrangian integral time and space scales

towards values that were smaller than they should have been.

An Eulerian analysis of the relative velocities gave integral
time scales only slightly greater than the Lagrangian integral time scales.
This indicates that fluctuations of the relative particle trajectories are

largely temporal, rather than advective.

Joint space-time correlations of relative velocity indicate a
complicated nonseparable dependence on space and time lags. In the
case of CIPREA the correlations are coherent over a wider range of space
and time lags than for D2, Integral time scales for transverse,
longitudinal velocity components differed greatly from those for x, y

velocily components.
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Chapter 3

RESIDUAL MOTIONS ASSOCIATED WITH
INVISCID GRAVITY WAVES

3.1. INTRODUCTION

The purpose of the following two chapters is to investigate the
oceanic mixing caused by surface gravity waves. As mentioned in
Chapter 1, oceanic mixing is caused by many dynamical processes. Two
basic difficulties in modelling these processes are (1) the broad range of
scales of the natural eddy-spectrum of the ocean and (2) the strong
nonlinearity of many of the dynamical processes. There is some cvidence
that at smaller scale surface waves may yicld an important contributtion
to horlzontal diffusion. Diffusion measurements of Schott ¢t al. (1978)
indicate that the coefficient of horizontal diffusion depends on the
surface-wave height. The relationship between surface waves and
vertical diffusion is still unknown. The measurements of vertical
diffusion by Kullenberg (1971, 1976, 1977) show that the cocfficicnt of
vertical diffusion is very small and inversely proportional to vertical
stratification (N) and weakly dependent on wind siress. We will
investigate the extent to which weak nonlinear interactions of surface
waves can contribute to eddy-diffusivities. This investigation will solve
the Navier Stokes equations of motion in a Lagrangian coordinate

system.

One of the earliest attempts to study the diffusion due to a
random field of deep water surface gravity waves was hy Tamai (1972).
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Tamal used a perturbation technique to solve the equations of motion.
However, at a crucial stage, he chose only to consider two-dimensional
motion in the vertical plane, and therefore observed no eddy-diffusion at
second order in the perturbation analysis. In the third order interactions
Tamai {1972) found solutions that were valid for short times and caused
eddy-diffusion. By transforming the x-component of velocity into a
spectral representation of two wave groups, he estimated coefficients of
surface diffusivities which turned out to be too small to account for
experimentally measured values. Herterich and Hasselmann (1982)
considered the horizontal diffusion of tracers in the presence of a random
field of ocean surface gravity waves. Instead of finding solutions t~ the
Lagrangian equations of motion, they constructed Eulerian velocitie . for
second order interactions following the procedure of Hasselmann (1961)
and others. The second order Eulerian solutions could not cause eddy-
diffusion at zero-frequency interaction. Second order Lagrangian
solutions were obtained from the sum of the second order Eulerian
solutions and a Stokes drift due to Euler-Lagrange transformation of the
first order Eulerian solutions. The Stokes-drift-part of their second order
Lagrangian solution exhibited horizontal diffusion as a particular case of
zero-frequency interactions but no vertical diffusion. Recently,
Sanderson and Okubo (1988) solved the inviscid, nonrotating equations
of motion in Lagrangian coordinates for an internal wave field. They

found solutions which gave horizontal eddy-diffusion.

The present approach solves the 3-D Navier Stokes' equations
of motion in a Lagrangian coordinate system by applying a perturbation
technique. In this manner we solve for particle motion directly. The
Eulerian analysis, on the other hand, requires a nonlinear
transformation to obtain particle motion. At second order we obtain
solutions that result from zero-frequency wave interaction, that disperse
material.
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The motivation for the present work is to solve the 3-D
Lagrangian equations of motion for a spectrum of surface waves in an
inviscid irrotational ocean. We will consider the zero-frequency motion
resulting from interactions of statistically independent random wave
packets. The zero-frequency second-order Lagrangian particle velocity
will therefore be a random function of position and will fluctuate as wave
packets propagate by (Herterich and Hasselmann, 1982), It will he
shown that this second order velocity field is horizontally nondivergent,
This implies that the solutions can cause only horizontal dispersion bt
no vertical dispersion. This character of the solutions is changed when
we introduce viscosity in the equations of motion as discussed in the

next chapter.

This chapter is organized as follows. The mathematical
formulation of the problem is given in section 3.2. Section 3.3 dcals with
the solution of the first order Lagrangian equations of motion. In scction
3.4, the second order equations are solved by considering zero-frequency
interaction of two groups of primary waves. The chapler is conclhuded

with a summary in section 3.5.

3.2. MATHEMATICAL FORMULATION

Consider an homogeneous incompressible ocean of infinite
depth and horizontal extent. A right-handed Cartesian coordinate system
is chosen with the x- and y- axes along the undisturbed sea surface and
the z-axis pointing vertically upwards. The motion is described by using
a Lagrangian coordinate system. Let a fluid particle has Lagrangian
coordinates (q, b,c), the undisturbed state being

x=d, y=h, z=c¢, p=p,—pyc

where p is the fluld pressure, p, the atmospheric pressure, p the water
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density and g the acceleration due to gravity. The Lagrangian equations
of motion for inviscid fluid are given by

p

Xkt et @+2)2, +B€=O (3.1
Py

XXty 842,02, +F=O (3.2)
Pe

xllx(‘+yllyc+(g+zll)z(.‘+F=0 (3-3)

Here the subscripts «, b, ¢, t indicate differentiation. The equation of mass
conservation is

o ety P2 o0 be.0) 3.4)

da,b,c)

where g(((:; ¢)) is the Jacobian, Assuming that the fluid is incompressible,

pla.b,e,t)=pla,b,c0) (3.5)
then (3.4) reduces to
d(a,b,c)
which becomes
XD iPe XY a2 X0 Zu =XYoo =X eZp =N Ypa = | (3.7)

when the Jacobian is expanded.

Now assume that x, y, z and p can be expressed as a f.ower

series
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.\'=a+t-:.\'|+82.\'2+e3.\'3 3.8

2 3
y=D+eEy |+E-Y+EY,y 3.9
Z=('+EZ|+‘222+8323 (3. 10)
P=p,—PLCteEp| +t:2p2+s3p3. (.10

The parameter ¢ is the wave steepness and will be small providing wave
amplitude is small compared to wavelength. Substituting the above
power series into the equations of motion (3.1) - (3.3) and continuity
equation (3.7) we find that the zero order cquations are satisfied
identically. Equating the coefficients of € and ¢2 onc obtains the first

order equations

Py

Xyyrtoz g r—=0 (3.12)
P
?yp
Y18z ypt—=0 (3.13)
P
Pre
zlu’“&’zn-"'—l"=" (3.14)
P
X1ty e=0 (3.15)
and second order equations
P2y o
x2u+322a+"‘;‘+z 12t 1 1t 16 1= 0 (3.16)
f2 =0 317
qu”f!»’zzb’f‘?“ YY1t S 1= (3.17)
P2, L
i e VAR T AR B T =0 (3.18)

Yoot 20 Y 121X 211 V1 X 1 2L X Y 1 =0 (319)

respectively.
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The surface boundary condition is that the pressure at the

surface is zero

po=pa,b,c=0,0)=0 (3.20)

and the perturbation particle displacements tend to zero as the depth

tends to infinity

Xy (a,b,c=~o0,)=X4 (a,h,c=—o0,1) =0
Yy (a,b,c=—00,0)=y,(a,h,c=—00,1)=0

2y (a,b,c=—o0,0)=25(a,h,c=—0o0,1)=0. (3.21)

3.3. SOLUTION OF THE FIRST ORDER EQUATIONS

Under the assumption that x,,y,z[,p| are stationary random
processes with respect to «,b,c,t, let the spectral representations of the
first order solutions be

P 4T oo 4o
X = T ei(kc'asﬁa+ksir19h—ml)d& t(k,(o,e,c) (3.22)
Y Y o oo -

C+T oo oo

b= + L,i(k(‘asBa+ksir:9b—(ol)d&y(k’m’e’ ) (3.23)

VeI¥ -0 % oo

4T +o0 Poa ,
7= e:(kmsea+ksu:9b—ml)dgz( k,,0,c) (3.24)

¥ Y —00¥ —0a

f+oo (4o .
Py = J' L,t(k('os9a+ksmeh-col)dﬁp(k,m,9’C) (3.25)

Y Y —oov —oo

where €,.d€.dE; and df, are spectral density functions of the first order
components of the displacement and pressure. They have a functional
dependence on the independent variable c, and depend on the frequency

w, wave number & and direction of wave propagation 6.
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Eliminating p from (3.12) and (3.14) gives

e 141 =V (3.20)

Similarly, eliminating p from (3.13} and (3.14)
Y= 1ap=0- (3.27)

Using (5.26) and (3.27) to eliminate x; and y, from (3.15) we obtain

Zrreet 2 by e L ga = - (3.28%)

Substituting (3.24) into (3.28) gives

€, —k2dE_ =0, (3.29)
The solution of (3.29) that satisfies the boundary condition (3.21) is
(I§:=—illl:—:|c|k“‘dE,l(m.9). (3.30)

Substituting (3.22) and (3.24) into (3.26) and using (3.30) gives
dE, =cos8 Ak dE, (0,0). (3.3

Similarly, substituting (3.23) and (3.24) into (3.27) and using (3.30) gives

€, =5inBelk1CdE (,9). (3.32)

Substituting (3.22), (3.24) and (3.25) into (3.12) and applying the

boundary condition (3.20)

dgp%p ""k‘c(mz_glkl) dE,;(w,0) (3.33)

and



{ e, (3.34)

Hence the solutions for the first order equations can be written as

X {N - ) +mC()S9 ei(kcoseu+ksin 8h-we) emzclg dﬁ l(w,e ) (3.35)
Ly -1 Y o0

y {N = (7 .+°°S,~, © ei(kmsﬁu+ksin91)—(01) emz(‘/g dE_, i (,0) (3.36)
L

2 {N = [+ f m_;'_g_! o (kcosBu+ksin@h—ar) ew'"'c/g dﬁ l(w’e) (3.37)

I_nd_m

PiN=0 (3.38)

where the superscript IN denotes inviscid wave dynamics. The spectral
density function for the horizontal displacements §; is a random complex

valued function such that
<dE(0,8) € *(w",8")>=S(00,0)dwdB; w=w", 8=0"

=() otherwise.
where §; is the wave spectrum, <.> represents ensemble average and the

superscript * denotes the complex conjugate.

3.4. SOLUTION OF THE SECOND ORDER EQUATIONS

Pierson (1962) demonstrated that substitution of the solutions
of the first order differential equations (3.35) to (3.38) into the second
order equations (3.16) to (3.19) gives inhomogeneous linear second order
equations which are solveable. Herterich and Hasselmann (1982) and
Sanderson and Okubo (1988) showed that it is possible for two waves of

frequencies w and w’ to give a zero-frequency interaction if w'=-w. It is
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also possible to have interactions with w=®’. The latter type of
interactions give solutions that are oscillatory in time and do not cause
any diffusion. So the interactions with w# w’ will not be considered in

this thesis. Therefore, considering zero-frequency interaction equations
(3.16) - (3.19) reduce to

[)za +R L 4T £ +oo ,
xz,,+g22,,+F=J. j 0,dE |(0,0)d (1.6 (3.39)
Y- -0

1)2[) +RX L+ L too ,
Yot '221)*'?:_[ n'[ . O, dE | (0 .8)dE (00,8

(3.40)
Poe  [HRLHT p4oo ,
22""'&'22(."'—:]. J J. @C(lﬁl(w.e)dﬁl(-m,e )
P —¥ - ¥ —o0
(341
+TT L+ [ +oo '
XputYopt2o, =J- j D (0,8) dE(~0,0)
~nvY-mY —oo
(3.42)
where
2 , »
@=9-22—[ 1+cos(0~0") ek (Yya+1h) p2w%c/y (3.43)
4 . )
@ =2§ [ 1+cos(8-0")|2 etk +Tah1 p20°cly (3.44)
2

¥y =cos8—cosd’

Yo =sin@-sin@’.

The terms on the right hand side of (3.39)-(3.42) come from the nonlincar
quadratic in first order solution terms in equations (3.16}-(3.19}.

It is clear from (3.39) - (3.44) that x),y,,2, cannot be periodic
in time since none of the inhomogeneous terms on the right hand side of
(3.39). (3.40), (3.41) and (3.42) show time dependence. Excluding the
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possibility of accelerated motion (i.e., steady state), the equations (3.39) -
(3.41) are not independent.

This system of equations can be solved by considering the
vorticity equations in a manner similar to that first used by Pierson
(1962). Sanderson and Okubo (1988) also followed a similar technique
to solve the diffusion due to random internal wave motions.
Differentiating (3.2) with respect to c and (3.3) with respect to b and
subtracting gives

Kbty ¥egzp)e— X Y Yotz )y =0 (3.45)

Differentiating (3.1) with respect to b and (3.2} with respect to a and
subtracting gives

CX Y a2z — Oty Ve 2y 2n)g =0 (3.46)

Noting the following identities

_— . 2:u24,2
XYt 22 o = X ¥ Y 1Y g ¥2(2 gy = (XY “+2,%) 1/ 2

(3.47)
XYY+ 202 = O+ Yy 42,24 gy~ ("}2"')’ 242 rz)ab/ 2
(3.48)
N Xtz e = Xy ¥z zy) o — (x,2+y 4z rz)bcj 2
(3.49)
XX AV Y 220y = KX Y Y (22, py = (x,2+y 12+Z rz)bc,/ 2
(3.50)
it is clear that equations (3.45) and (3.46) may be written as
(xr"b"'y Itz !zb)cl - (xlxt'+y W c+zlzc)bl =0 (3.51)

(XYY gt 22 = Xty ptz2p) g, =0. (3.52)
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Considering the case where unperturbed fluid has no vorticity, we can

integrate the above e juations to give
(.\',.\'b'l')’ 34 l)+ztzb)(‘ - ('\‘I'\.('+y dete l:(')l) =() (3.53)

(xr"u'l'y Va2 u)h - (.\}\'1,'*')’,,\’1,"'2 lzl))(l =(0). (3.54)

The vorticity equations (3.53) and (3.54) give

Oartx iyt Yt 22 in)e— Gt X etV 191 2121 Dp =0
(3.55)

(ot Xy X1 116 2121 D0~ O 1 X 1Y 1Y 1521 2 1) =0 .
(3.56)

at second order in e. (The first order vorticity equations arc satisfied by
the first order solutions (3.35-3.38)). Substituting the first order
solutions (3.35), (3.36), (8.37) into (3.55), (3.56) and considering zcro-

frequency interactions, one obtains

+IT [T o0 ‘
Y22 = j j ko (sin@+in®’) [ 14c0s(0-0")|/g 21k 1¢ pikly\ @ +12h)

dE(0,8)dE | (-w.0) (3.57)

+TL 4T oo ;
XY == f J j WkZsin(8'~0) | 1+cos(8-0")| 21K 1¢ ciktyja+1,h)
-’ —~ Y —-o0

(1&1((1),9)(1&,1(—(0,9') (3.58)

where

lkl=w?/g. (3.59)

Equations (3.57), (3.58) and the continuity equation (3.42) may be uscd
to solve for u,'V,v,/N and w,~ where 1V, v,/Nandw,’V denote the inviscid
Lagrangian velocities x,,y,,and z, respectively. Differentiating (3.42) with
respect to t and b and using (3.57) and (3.58) to eliminate !V, w,/N we
have
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FIUpHT 400 o )
Voua V4V N4vy, IN =J. J. j k3[2(sinB+sin®’)—(cos8-cos8’)
-d-nY o

3in(0'-0)] | 1+cos(6-8")]e21FIc K a+ B gt | (0,0) dE  (-0,0").
(3.60)

Equation (3.60) has a particular solution of the form

T PR oo ,
vytN =j J. j (sin@+sin®’) AIN 21 klc oikCya + YDE  (0,0)dE (-w,0")
Y -V oo

(3.61)

where

AN = wk] 14¢0s(6-6"))/2 (3.62)
Using (3.61) in (3.58), the solution for the inviscid Lagrangian velocity
!N is given by

+I0 T p oo .
142’N =j J. J- (cosO+cos8) AN e2|k|Ce’k(yl"‘“/zb)d&l((o,e)dE,l(—co,B').
Y -nY —eo
(3.63)

The solutions (3.61) and (3.63) satisfy the boundary conditions (3.20)
and (3.21), Therefore, it is not necessary to consider homogeneous

solutions.

Equations (3.61) and (3.63) are zero-frequency horizontal
Lagrangian velocities. They are the zero-frequency particle motion
resulting from superpositions of deep water surface gravity waves that
have wavenumber components represented by ky; and 4y, in the a and b
axis directions respectively. The resultant wave number is

K=k[yj2+m, "2

along a direction at
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O,=tn" "yz/yl

measured counterclockwise relative to the a axis. Figure (3.1) shows the
schematic of two primary waves interacting to produce zero-frequency
second order motion. The zero-frequency component of the horizontal
velocity (u,/N, vy/N) fluctuates as a function of space as indicated by the
dashed lines oriented along the K vector in Figure 3.1. Note that

IN4,

Uy, ZI)IN =(), (3.64)

therefore the motion is horizontally nondivergent. This type of motion
cannot cause any vertical motion. The solutions of Herterich and
Hasselmann (1982} and Sanderson and Okubo (1988) arc also
horizontally nondivergent. Therefore their inviscid solutions did not give
any vertical motion. In the following chapter it will he shown that
introduction of viscosity into the equations of motion makes the flow ficld

horizontally divergent. This, in turn, causes vertical moton.

The solutions (3.61) and (3.63) are identical to soliitions of
Herterich and Hasselmann (1982). For 6=0"=(), (3.63) gives

400
uz’N:j 20k 2kl () dG ) (~w).

(3.65)
Invoking the difinition for the wave amplitude, A,
9 +oa
Aj2= j 2 dE | (0) dE | (~w),
(3.66)

the equation (3.65) reduces to
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Figure 3-1: Surface waves with wavenumbers k and k& travel

in the 0 and 6’ directions respectively. The
resulting zero-frequency second-order
interaction causes motion with wave number
components ky;, ky;, which have a resultant in
the ©, direction. The zero-frequency velocity is
in the horizontal plane and is parallel to the angle
bisector (dashed line). It is also sheared in the
horizontal plane as indicated by the sinusoidally

varying flow pattern.
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which is the Stokes' (1847) classical result.

3.5. SUMMARY

Navier-Stokes’ equations of motion are solved for deep water
surface gravity waves in an inviscid, irrotational, homogencous ocean.
The analysis is in the Lagrangian coordinate system. We consider zero-
frequency Interaction between pairs of primary waves interacting at any
arbitrary angles. The solutions agree with those of Herterich and
Hasselmann (1982) who solved the same problem by using an Eulerian

frame of reference.

We obtain solutions that are nondivergent in the horizontal
plane. For 6=6"=0, the above solutions reduce to Stoke’s (1847) classical
result.

The solutions (3.61, 3.63) causc random shearing motion in
the horizontal plane. Such a velocity field cannot change the arca of a
patch of tracer. However, its shape can be greately distorted, thereby
changing the moments of its distribution. Sanderson and Okubo (1988)
and Herterich and Hasselmann (1982) showed how to calculate cddy-
diffusivities from the random waves. These will be discussed in detall in
Chapter 5.

The above solutions show that for inviscid fluid the zero-
frequency interactions of random gravity waves can cause horizontal
eddy-diffusion, but no vertical eddy-diffusion. However, water is not #
perfectly inviscid liquid. It has some small but finite viscosity. In the
next chapter, we solve the viscous equations. It will be shown that the
introduction of viscosity changes the solutions in a manner that leads to
both vertical and horizontal diffusion.
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Chapter 4

RESIDUAL MOTIONS ASSOCIATED WITH
VISCOUS GRAVITY WAVES

4.1. INTRODUCTION

It was demonstrated in the last chapter that small-amplitude
surface gravity waves induce a flow that disperse material in the
horizontal plane. The analysis was based on the assumption of
irrotational flow originally suggested by Stokes’ in 1847. Longuet-
Higgins (1953, 1960) introduced viscosity and showed that the presence
of small viscosity produces significant changes in the mass transport not
only in the thin boundary layers near the surface, but also in the interior
of the fluid. His analysis was based on solving the equations of motion in
an Eulerian curvilinear coordinate system attached to the moving
stirface boundary. By dropping the temporal wave decay terms he
implicitly assumed that the wavefield is maintained by an external

device.

Russel and Osorio (1957) found that the mass transport
observed in a laboratory simulation agrees best with the Stokes' inviscid
theory when the water depth is large (compared to wavelength) while for
shallower water depth Longuet-Higgins solutions were then the best
available comparison. They concluded, however, that except for the
velocity profile at the bottom of the channel, no theory satisfactorily
predicts mass transport. Swan and Sleath (1990) extended the work of
Longuct-Higgins (1953) by deriving a fourth order solution for the mean
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drift induced by the steady train of waves in water of constant depth and
conducted an experiment to measure mass transport velocity in the wave
tank. They found that the fourth order viscous thcory shows better

agreement with the experiment than the sccond order viscous theory.

Chang (1969) and Unluta and Mei (1970) calcnlated the mass
transport using a Lagrangian coordinate system for the two dimensional
case of one horizontal and one vertical dimension. Chang (1969)
considered a random wavefield and obtained a solution for the second
order horizontal mass transport velocity that does not decay with depth.
Unluta and Mei (1970) incorporated the boundary layer concepts into the
Lagrangian equations. At second order, they considered only one
horizontal dimension and therefore, the solution of Unluta and Mei did
not show any diffusion. In addition, their sohition remains unbounded
as the depth approaches infinity., Huang (1970} also pointed out
deficiencies in the Longuet-Higgins analysis, in particular that the mass

transport velocity becomes unbounded as the depth approaches infinity.

Weber (1983a) used perturbation analysis in a Lagrangian
coordinate system to derive time dependent results for mass transport
due to swell in the deep rotating ocean with viscosity. In a subsequent
paper Weber ({1983b) investigated the zero-frequency wave induced
currents due to a variable wind stress. In both papers, he considered
solutions for single frequency sine waves in the horizontal planc with
waves interacting at zero angle. Therefore his solutions did not show any
diffusion. Later, Weber {1985) extended his computations from a single
wave to a pair of crossing waves. One of these waves travelled at an angle
0 relative to the a-direction and the other at an angle -6. The solution
indicated that nondecaying deep water surface gravity waves induced roll
motion in a viscous fluid. He reduced the three dimensional problem to
a two dimensional problem by averaging the second order cquations over

one wave-length in the «-direction. Therefore, his solutions arc
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nondivergent in the vertical (¢v-c) plane. He also showed that the
solutions are capable of producing roll motion similar to Langmuir
circulation (Leibovich 1983). Jenkins (1986, 1987) generalized Weber's
(1983a, b) solutions by including spatially varying windstress and depth

varying viscosity.

The objective of the present work is to solve the 3-D
Lagrangian equations of motion for a spectrum of nondecaying surface
waves in a viscous nonrotating ocean. We will search for zero-frequency
motion resulting from wave-wave interactions through the nonlinear
terms. In particular we search for such solutions that can diffuse
material vertically and / or horizontally in the ocean. The problem is
solved by using two approaches. First, following the technique of
Longuet-Higgins (1953), Unluta and Mei (1970) and Weber (1983b,
1985), it will be assumed that the waves are nondecaying waves. This
implies that the primary waves are maintained by a suitably adjusted
stress. The second approach is to consider decaying waves (Chang 1969,
Weber 1983a). It will be shown later in this section that, unlike the
nondecaying case, the space and time coordinates of the homogeneous
solutions arc not separable. The homogeneous equations are solved

subject to an initial condition.

The mathematical formulation of the problem is given in
scction 4.2, Section 4.3 derives the surface boundary conditions. The
nondecaying wave problem is formulated and solved in section 4.4. In
section 4.5, we solve the decaying wave problem. Difficulties encountered
in solving the second order momentum equations, for the latter problem,

by using a separation of variables are also discussed.
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4.2. MATHEMATICAL FORMULATION

To describe the model, we consider an occan with a viscous
incompressible homogeneous fluid of infinite depth and unlimited
horizontal extent. When undisturbed, the surface is horizontal. A
cartesian coordinate system is chosen such that the (v, y)-axes are
situated at the undisturbed surface and the :-axis is positive upwards,
The motion is described by formulating the cquations of motion in «
Lagrangian coordinate system. Let a fluid particle initially have
coordinates («, b, ¢). Its position (v, y, 2) and pressure p at later times will
then be functions of a,h,¢ and time . The Lagrangian cquations of

motion for viscous fluid are given by Pierson (1962)

1 a(p,y.z)+ V2,

X, =—= vV,x 4.1)
T odhey ! (
[ d(xp.2) n
Sk ARV VT {4.2)
Vi P d(a.b,e) -
SRLLCOUY (43)

z,+ 8 <
" 0 d(u.bh,c) I‘ f

where 9(....)0(a.h.c) is the Jacobian and the Laplacian operator V2 in
Lagrangian form is given by

['y'l (‘r i ) a(‘ y.\ )
)
V2y = (a(alu) )+ ( b)) )+(( a(ubl)
L= el ((X:XQ) Ha.be) Na,b,c)

(4-4)

Similar expressions will result for V2y, and V2z,. The equation
of continuity does not change by inclusion of the viscous term and is
given by (3.6). Again we assume that x,y,z and p can be expressed as a
power series. Substituting (3.8) - (3.11) into (4.1) to (4.3) and cquating
the equal powers of ¢, one obtains
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Xy ,,+gz|"+1%i=vV2.\'l / (4.5)
yl,,+gz”,+,-)bl—’3=vV2y“ (4.6)
z|”+gz|‘.+’—)é(—‘=vvzz“ 4.7)

.\'|"+y|b+zh.=() (4.%)

at first order in g, and

P2y
. - - 2 - - - -
Yt 8720t 57 VW= 2 V1 X Kt

. 2. 2., 20 (e v . .
VI"Iuv "ll+yluv )ll"'zluv “I¢ 2(*‘lhur‘lu+"ltblrylb"'"ltn'zlr
. . X v , , " . 2. _
X b D11 X0 g8 ) F X e 142 1)) X1, VN

X1V =51V | 4.9)

U 1 54 I)zb_ V2, - -y —_ "
AR ARt e L U U U L U

. 2. 2 2 .
VIV 21V 1+ 20, V2 = 200 10 Y 1Y 1 Y 1P e
» - + - - ’ - -— 2y -
Y Uab V1) TP 110 D Y b O 2 1)) =Y 10, VX

A GIRS TR
(4.10)
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Py V2 i
It 8%, +‘b"— VYV ==ttt e et

- 2. 20 - 2. _¢- . - . - -
VIS Vx4 Vo0 2y Voo = 2G g V1t Sl 1 e e
e (v v Yam e e Ve v ae W m P24
* 21 Ot 1)+ 2o 10 )+ S Ve ) = 2y Vo
. U2y - V2
2V V=V (11

. ) - [ S . I I U ) v, e 9
Nttt I 1 B L S ALY Y S N L L I e =Y D)

at second order in ¢. Here

2 2 2

V2=_a_q+.9_;+2.7,.

a= dh- de-
is the usual Laplacian operator. The equations reduce (o an identity at
zeroth order in e. The continuity equations (4.8) and (4.12) are same as

(3.15) and (3.41) respectively for the inviscid case.

The perturbation parameter ¢ (which is the maximum wave
slcpe) is not the only small parameter for surface gravity waves in a
viscous ocean. Another small parameter that is imposcd by the presence

of the small viscous terms is g,~1/R, /2 where R (=w/(vk?)) is the wave

W W
Reynold’'s number. The wave Reynold's number is the ratio of the
acceleration term to the viscous term. The surface viscous boundary
layer has a thickness /=V2v/w, thus g, can also be thought of as a ratio of
the viscous boundary layer thickness to the wave length, ¢ ~kl. The
magnitude of ¢; is much smaller than the wave slope & exeept when wave
slope is very small and viscosity is large (see discussion at the end of
section 4.4). The presence of two small parameters give onc a choice
whether to use a boundary-layer approach by introducing separate
equations for different regimes (e.g., Longuectt-Higgins, 1953; Unluta and
Mei, 1970) or to consider a single equation governing the entire fluid
column (e.g., Chang, 1969; Weber, 1983a, b, 1985). In this dissertation,

we will follow the later approach.
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4.3. BOUNDARY CONDITIONS

The boundary conditions at a free surface are obtained by the
vertical and horizontal balance of forces. A two dimensional derivation of
these equations in the vertical plane is given by Kinsman (1984). Chang
(1969) used Kinsman's boundary conditions for her calculations but the
cquation for the vertical component (equations 89 and 91 of Chang 1969)
is wrong. Kinsman (1984) used a geometrical approach to derive the
boundary conditions at the surface. In this section, we apply a
generalized technique to derive the surface boundary conditions for the

three dimensional motion of a viscous, incompressible liquid.

Consider an element ds of sloping free surface of a viscous
incompressible Newtonian fluid. Let the equation of the free surface be
=N, y.0). (4.13)
Let ! be a unit vector tangential to this surface whose equation is given
by (fig. 4.1)

f= cosdcos 0 ? +8in ¢ cosej"\ +s1'n()7‘E 4.14)

where 1, f % are the unit vectors along the (x,y,2) directions. The unit

vector normal to this free surface is given by

A P A T AR A
n==coshsinQi ~sinQsinbj + cos0k . 4.15)

Let p,, be the atmospheric pressure at the surface and t be the
external tangential wind stress parallel to the ¢ direction. The fluid
motion will give rise to stresses in the interior of the fluid that balance
the external stresses at the surface. We have neglected surface tension.

The cquilibrium condition requires that the vector sum of the external



58

Fluid
surface

Figure 4-1: Balance of forces on an elevated fluid surface.

forces must balance the internal forces at the surface. In tensor notation,
this is given by (neglecting forces due to surface tension)

—pon,-d$+1:t‘-ds=0'un]ds “ 16)

where ¢; is the internal stress tensor. Water is a Newtonian fluid so, o
is given by

o-..=—p8..+pv(iﬁ+a—u':). 4.17)
y v ax,- 3xj



59

Substituting ¢; and »; from (4.14) and (4.15) into (4.16) one obtains the
following equations

P, cos§sin@+1cos 9 cos@=—0y cos @ sin®— oy,8in¢sin0+0,4cos 6

(4.18)
P, Sinosin @ +18ind cos@ =~y o8 h Sin8= Gop SinGsin@+0y; cosO

(4.19)
=D, co50+Tsin@=—~0y  cos Qxin@— G 8in ¢ sin 8+ 033 cos0

(4.20)

which are respectiveiy the balance of the x, y, z components of force at the

surface.

If we assume that p,=0 at the free surface, the above

equations reduce to

-0 cosPsin®- 0y sin¢sin@+03c050=1 (4.21)
=0p oS PSinO- oy Sinsin0+0,1c050=1, (4.22)
~O3 1 COSQSinG - O30 Sinsin0+033c050="14 (4.23)

where 1, 75 and 13 are x, y and z components of surface stress

respectively.

The angles 0 and ¢ in the above equations can be related to

the derivatives of n (x,y) through the relation

V-nGy)=cn (4.24)
p NI AD ND
where ¢’ is an arbitrary constant and V=i oAl 5}“‘5' Substituting (4.15)

in (4.24) and equating the coefficients of unit vectors ? ;\ and  from
both sides of (4.24), one obtains
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, 1
v 2
¢ ‘_-()‘\'9 (4...5(')
%1= costan® (4.250)
A\
Q-r—]=.\'in Oran® (4.25¢)
dy

Using (4.25a.b) to eliminate 6 and ¢ in (4.21) through (4.23) gives

on
—O| | =—=O =+ 1=T
11 v lzay 13 | .5
(4.26)
an an
—0y) == Oy —+03 =1
Zla\. 223), 213179
(4.27)
oy M, Mgy =1
3l ax 32 dy 13T 4
(4.28)

We must now transform the Eulerian surface nivy.r) to is

Lagrangian equivalent z(a, b, ¢c=0,1). At the free surface (l.c., e=0)x, y and ¢

are all functions of (4,b.r). In Lagrangian coordinates, the differential

operators 9—. 9 {ransform to
v’ dy

, 9_,9
JRETICET:

I XaYb~ V'
Y ) —x
a_"“ab "da

—=— —. (4.29)
y Xg¥p=YaXp

Using (4.29) to transform (4.17) into Lagrangian coordinate system and

writing u=x, v=y, w=z, the components of the stress tensor o; (4.17) are

given by
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5 A(xp¥,2)
Cu=mrt pVa(a,b,c)
o(x.y,,2)
=—p+2
On=7r* pvE)(a,b,c)
+2 va(.r,y,z,)
Ca3==p
BTPTER d(a,b.c)
Aypp7) O(XX,2)
0|2=02|=p\’[ +

d(a,b,e) Iaby)

o Vla(z,,y,z)+a(x,y,xr)
135031=P A a,b,c) Ia,bc)
. v[a(x,z,,z)+a(x,y,y,)
3= O =Y e T aab)

(4.30)

d(..s))
A abe)

transformed into a Lagrangian system using (4.29). Substituting (4.30)

where is the Jacobian. Equations (4.26)-(4.28) can also be

into the resulting equations gives

v,y Jd(y y,;) A(x,x,,2)
I(-}h a~Va h) ~pv vI ,’ :

In—2pv

ola.b,c {a,b,0) E)(a b,c)
d(zpp2) I(xy.x)

(X”Z,,-.\'[,Z")-!-p [a(a,l),c)+a(a,b 10 Xadh~ ya"b) T 4.31)

at ¢=A),

vi a(v,’y-2)+9(-\'r\‘,,2)l =2 Ax.y,2) o
p T E(;bza .Yu;b pP—2pv @b X, 2y=Xp2,)

(v,zp2) O(r,y.y,)

’ 10,y =YX =Tz (4.32)

v +
da,b,e) dab,c)
at ¢=0),
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vl8(2,,y,2)+9(.\'.,\u',) " ) lE)(.\'.:,‘:) vy,
- Vi 2,=Y . 2) =PV +
P dab,c) Nabe) @ Yacp) =P ANuh.) b,
Jv.yv.z,)
Wz~ 22 =10 =2pV Hu.b,¢) M, Y=Y X)) =14 (4.33)

at =0,

for the x, y, z components respectively of the force balance at the surtace.
Equations (4.31) - (4.33) represent the Lagrangian form of the bovndary
conditions at the free surface ¢=0.

Applying a perturbation expansion by substituting (3.8) -
(3.11) and T;=et;+&21"+ O(?) into (4.31)-(4.33) and cquating cocfficients of

e and €2 one obtains first order surface (¢=0) boundary conditions

VI 2ty I=T) (4.34)
PVIY etz 1=T (4.35)
P +2pvzy,. =T} (4.36)

and second order surface (¢=0)) boundary conditions:
pV[.tz,L.+22m+.\' N1 1 e 1~ 1 1e P21 e et la™

212 a1 WY1 Z 12 12101214 =T)

4.37)
VY2t 2ot 1t 11 1 e LY 1S L e 2 1 el 1yt
. )
2 102l X1 1 a1 2 b2 1 P 21, =T
(4.38)
PPV 22,422 1 X1+ 221, 1221 V122 1K 1K VBt E N
ylt(:zll)—zlll)zlbl=t3 :
(4.39)

The surface boundary conditions given by (4.34) to (4.39) are identical to
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Weher's (1985) surface boundary conditions. The lower boundary
conditions are simply that perturbation pressures and displacements

tend to zero as ¢ > —o,

4.4. SOLUTION FOR NONDECAYING VISCOUS GRAVITY
WAVES

The approach adopted here is similar to those of Weber (1985)
but it differs in two respects. First, Weber (1985) started by constructing
first order solutions by considering two single frequency primary waves
propagating at oblique angles, as opposed to a continuous spectrum.
Second, he averaged the equations of motion over one wave-length along
x-direction. Thus his solutions are non-divergent in the vertical plane.
The following work considers a continuous spectrum of random waves
interacting at any arbitrary angle and presents the full three dimensional
solution. This enables calculation of the eddy-diffusivities resulting from
the spectrum of deep water viscous gravity waves by using the technique
of Herterich and Hasselmann (1982). Chapter 5 investigates analytically
and numerically the horizontal and vertical eddy-diffusivities calculated
from deep water surface gravity waves with viscosity.

4.4.1. THE FIRST ORDER SOLUTION

In this section we solve the first order equations (4.5) - (4.8)
subject to the boundary conditions (4.34) - (4.36) to find nondecaying
waves. Under the assumption that x,y;,z;,p; are stationary random
processes with respect to a,b,¢,t, the spectral representations of the first

order solutions are
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P4+ 400 P 4o . R
Xp= pli(kcosBatksinBb-wn), !E_,( ot kw.8-¢) (4.40)
o _nd —00 ¥ —po )
.+n ~+°° -+oq 3 N
yi= et(k¢'osea+ks1neb-(m)([g(v)( £,00,8-¢) (441

Y- ¥Y —co ¥ —oo

P e 400
2 = R oo ei(k(‘osB(Hksin(-)b-ml)([&(:)(k’m‘e. ¢) (4.42)

YooY —c0 ¥ ~00

MU pboa phoa s
py= j i tkeostiat S’"9”‘“”)115(/’)(/(.(1).9-(') (4.43)

Y-fi¥ —00¥ -0

where df,, d&,(y), dﬁ(:) and di(p) are spectral density functions of the first
order components of the displacement and pressure. Eliminating p, from
(4.5) and (4.7) by cross differentiation and subltracting gives

N2 ™ sz(-"llc"z L) (4.44)

Similarly, eliminating p, from (4.6} and (4.7) yields
Nue=Cun= sz(}’u(-"zl ) (4.45)

Differentiating (4.44) with respect to «, (4.45) with respeet to h and
adding and wusing the continuity equation (4.8) gives the following
equation for z:

o2
21 gt e = VY Cliaat 2102 o) (4.40)

Similarly, one can also obtain the equation for x;

, | [ v /]
X1 ar™ bt uce = V VX ga X1 1) (4.47)
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Substituting (4.42) into (4.46) gives the following fourth order

homogenous equation in dg.,

AE 2y coe— (kP10 V)dE g (R=iOKE V)G ) =0 (4.48)

The solution of (4.48) that satisfies the lower boundary condition for
deep-water gravily waves, i.e., displacement tends to zero as depth
¢ = —oo, is

&, =K 1°dE (0,0)+¢P dE’ | (0,0) (4.49)

where
B=(k2-iw/v)172 . (4.50)

Similarly, the solution of equation (4.47) may be written as

(I&m =elkl "(IE,_‘,((D,G)+chdE_,'x((1),9) 4.51)

where subscript v on o, and d§;” does not denote differentiation with
respect to v, Substituting equations (4.40), (4.41) and (4.42) for x;, y; and
z; respectively in the first order continuity equation (4.8) and using (4.49)
and (4.51) to replace (€, and d§, one obtains the following relation for
€y in terms of €. dE’\. dE,. dE,

ey =—cor® { el*1°dE (,8)+ePedE’ () }

‘Tﬂ-lm—e' |kl elkICdE  (0,0)+BePedE! | (0,0) ).
(4.52)
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We substitute (4.40) and (4.42) into the vorticity cquation (4.44) and use
(4.49) and (4.51) to obtain

(IE_,'. (453)

Two of the three boundary conditions given hy (4.34) - (4.36) are now
used to relate the unknown spectral density functions &', @&’} to 5.
The other boundary condition will determine the magnitunde of the
applied external stress required in order to maintain the wave against

decay.

The general forms of the boundary conditions were derived in
section 4.3. Since the ocean is viscous, ths surface gravily waves will
attenuate in time if no surface stress is applied. (This will be called the
decaying wave problem and is treated in the next scction.) The frequency
of decaying waves is complex and the imaginary part of the frequency is
responsible for the decay of the waves. In this section. we will consider
nondecaying waves that are maintained by applying a suitable stress al
the surface. Naturally the frequency of such waves will be real.  Lamb
(1932) demonstrated that nondecaying waves could be achicved cither by
choosing a suitable tangential stress or by applying a vertical stress al
the surface. Weber (1983b) showed that the choice of horizontal stress
as a means of maintaining the permanent wave leads to an unhonnded
solution. By choosing a vertical stress he obtained a solution that decays
with depth. Following Weber (1983b, 1985), we consider a vertical
surface stress 1’y that transfers exactly enough cnergy to the wave
motion to compensate for the loss due to viscous dissipation.
Accordingly at ¢ =0, the first order surface boundary conditions (4.34 -
4.36) reduce to
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a1 =0 (4.54)
yll('+zllb=() (4.55)
—-/)l+2pvz|“.=t3' (4.56)

where t7” is determined later.

Substituting (4.40) and (4.42) in the x;-boundary condition (4.54) and
using (4.49), (4.51) and (4.53) yields

28 ) +lE'y =~ kfwe dE’,. . (4.57)

Similarly, substituting (4.41) and (4.42) into y;-boundary condition (4.55)
and using (4.49), (4.52) and (4.53) one obtains

dE’ =£l[_3—cm'9 dE’ . (4.58)

Now substituting (4.58) into (4.57) gives

dE’ | =— 24 dlE (4.59)
Rz ! '
and (4.59) substituted into (4.58) gives
(fE7 = 2kBeos® e (4.60)

Bz+k2
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Finally. substituting equations (4.53). (4.59) and (4.60) in cquations
(4.49). (4.51) and (4.52). €. d€ . dE ., may be written as

ikcos 2
‘@(.r)zl—;":l;eh“" —[[l“ el e (0.0),
Lo
iksin® 281k .
‘lé(y)-—m—l elkle— lsﬂikg«'l“ | dE | (.9).
(4.62)
(/&( )= | ‘:“\ll 2k A (Ih I‘/E,.|((l) 0).
(-1.03)

To express d&(p) in terms of «§;. substitute (4.40), (4.42) and (4.43) into
yi-momentum equation (4.5) and use (4.61) and (4.63) to give

(’5(,,)—11-%(0)2—1/4&')&“ +[3 ul“ | dE ((©0.8) . (4.0-4)
+

Now, we apply the third boundary condition (4.56) to
determine the necessary vertical stress 13" at the surface to maintain the

wave against decay. Assume that t;” has spectral form

+ +o00 P 4on
1;3’ = J. HJ‘ J L,i(/u'usUu+k.\'in()h—ml)([En_ . (4.65)
-nY —~on® —co

Substituting (4.42), (4.43), (4.63), (4.64) and (4.65) into the remaining
boundary condition (4.56) and evaluating at ¢=( gives
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B

e (2t ) 2PBRS
dt =]~ [“(w -1k|g) ﬁ

(4.66)

For surface waves on water, the ratio w/(vk?) (wave Reynold's number, R)
is very large (Chang, 1969). ‘Therefore, it is always safe to makc the

following approximation

Bl 1 (=i C 1R (1) ()

4.67a)
hencee ’
—«l (4.()7[))
B
where f} is given by (4.50). Equation (4.66) reduces to
=1 ~-Etai{k1p ~2ipvIkI S LN
(4.68)

where we use (4.67) to eliminate the small terms. Since the wave does
not decay, the frequency must be real. If we choose €, to be imaginary
then the real part of (4.68} gives the dispersion relation

w?=0,2=glk| (4.69q)

wher~ o, is the real frequency. The imaginary part of (4.68) gives the

surface stress required to maintain a nondecaying wave

dE. = —-4ipvw|k|dE;. (4.69h)
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Equation (4.69b) is equivalent to

Ty=dpvry,. at e=0 H70)

b

which is identical to Weber's (1985) equation (AG6).

The viscous length scale lis related to w, and f§ as follows

P=2v/jw,|

I=i
=— >{
{

il

w<()
, )

+.7hH

It is the distance over which the molecular- or eddy- viscosity will diffuse
momentum in one wave period. The viscous length scale grows with
increasing viscosity and decreases with increasing {requency.  As an
example, consider the typical frequency range (0.3 - 1.0) s™! of the deep
water surface gravity waves. For w=1 s}, and eddy-viscosity v=0.01 m? !
equation (4.71) gives [ ~ 0.06 m, and for w=0.3s"! the viscous length
scale is [ ~0.26 m. Thus the viscous length scale is very small compared
to the scale of the wave (63 - 600 m). For molecular diffusion. the viscous
length scale is even smaller. Nevertheless, Longuet-Higgins (1953) has

demonstrated that the inclusion of viscosity changes the solutions,

The first order solutions are therefore obtained by substituting
(4.61) to (4.64) into (4.40) to (4.43) with o replaced by o,

+7¢ f -too .
'r lVl:':I J‘ C()Se [ el k ' L‘_Z!g_leﬂ(‘ lei( kl'('.\'o(""ksl”UI)’O)"I ) (IE.)I (0)’6)
{) ¥Y—oo

(4.72u)
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. [T ptm 0 2k @ opn -
ylw.___jl) J' sin@] clkle— lﬂleﬂf|e'(""59‘”‘-""9”"“’0’)dli,(co,e)

(4.72h)
) +T P4 2 2 . .
ZIW' =J-” ] _if/:/‘_ll e|k[p__2BL2_’_,|ir Iel(k('asea+ksmHb—(n)‘,l)([él(w,e)
(4.72¢)
L LT en i Yk ) ,
» |W' _ J‘ ~p I_l,:I\_I 2;3/; b ‘,l(k;'r}.\‘ﬁu+k.w:0b—(n,,f)d{;l((0‘9) (4.72d)
()} “—on <

where the superscript VF has been used to denote solutions
corresponding to viscous dynamics in which the waves are nondecaying
(or viscous forced). Equations (4.72) reduces to first order inviscid
solutions (3.35 - 3.38) if v is set equal to zero. The effect of introducing
the viscosity is to reduce the first order inviscid displacements by
introducing additional terms with ¢f depth dependence. These ¢P¢ terms
are small compared to the inviscid ¢/l¢ terms; the relative size being the
ratio of the viscous length scale to the wave length. By equation (4.71)
el’"=v($)v. Thus ¢B¢ has both real and imaginary arguments. From the
exponential of the imaginary argument, ¢f¢ fluctuates rapidly (in a
sinusoidal manner) with depth (since 1// » k). The term also decays with
depth due to the exponential of the real argument with an e-folding scale
l, the thickness of the viscous boundary layer.
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4.4.2. THE SECOND ORDER SOLUTIONS

Substitution of the first order solutions (4.72a) - (4.72¢} inlo
the second order differential equations (4.9) to (4.11) and continuity
equation (4.12) and considering only the zero frequency interaction yiclds

Dy, +X 4T
ot g T m,j j j A YERE 4 ANF kel

+ A Fe2N) RN 0B E (0,8 dE | (—n )
(4.73)

I)z +T L4+ +oo "
)’2[(+g22[;+'Fb—VV2y2,=J‘ I J. |B|| L"'“I‘ +Hn¥’ l'”\l‘ﬂ /[+
-n¥-n

BT o2 R by g8 (o 0) dE S) 79‘)
(4.7:)

])2. -HT +n
R f j (C PRI L ST kel
-t Y ~oo

+ Oyl oY) g8, (03,0) Al (~0. )
(+.75)

+T P+ P00
"\.2a+y2h+221‘=J. J J |DlVI “plk "+D W ‘,Il\ le+ellyn) H(,..( /I|
—n ——

eiktna+ah) e ((0,0)dE (-0
(-1.70)

where
AF=(1+cos(0- 9))———|I'Yl lc217'y3( l+cu.\'(9—6'))l

A2g1:= Kk 1602 1 ( C(M.‘T'_S,',,fll)( I+c0s(6-0)) =i, (cu.\'f,:-m-,-n%) |+

k3I2w2( T4l ('().S'LT'( 143¢0s(6-0") + —“;—“(2 cos2(6-6") + 3cos(6-0")— 1)
2/2
(w.s,+.wz )- 3 sins (l—w\(ﬂ o) |- tyllsm-(m(()—ﬂ)

2 2
I“[(CO\(Q -0")— l)(u)s—-sm )———cm—(l—cm(ﬂ -0 ))l\
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Ayt ==k3 12072 (73 | 142¢05(0-8") +k22(cos2(0-6") - cos(8~6")) | +
k2/2
i) 2=cos(0-8") — = (1 ~2cos(8-6") )
VI gm0 o (BB hivor
By1" =(+cos(0-0') =iy, —k 12'74( 1 4+cos(06-6")biggrp |

B =k k| 102 Yy(cos—sin%) (1+cas(O-8') =i Yy (cosz+sin) |+
{

k:‘lzmz( Y4 ! (‘().s';( 14+3cos(6-0")) +I-I‘%I(2('n.s'2(9—9') -cos(0-0")+1)
¢ e K2 ¢ , . A i) ,
(('().s'7+.s'1;17) ——-2—-.\1"7 (1-cos(8-0")) | =i ¥, | .wn-l-cos(e—e ) —-—2—( 1—-cos(8-06))

oo K¢ Y
(u)‘s-l-—.\m—l-) —Z—L()S7(l cos(© 9))])

=t (Y“' 1 +2c085(8-8")+ k212 (cos2(8-8") - cos(8-0') )] +
k212
i Y| 2-cos(6-0") - _2_( 1=2c0s(0-6") )
C Y =k|w? (1+cos(6-6")

C 25’ "=-2lk |w2c'osfl-‘ cos(0-0) + k2lw? (cos% + sin-‘,:) (cos(0-0")-1)+
K2|k|2 w2( —.w'n‘7' (1=2¢05(0-0")) || /(c-o.v§'—.\~in§') (cosX(0-0")—

3cos(0-0")+ 1) +k2 2 cos%' (cos%(0-0")—cos(0-0) + 1) )

ChF = kP32 ( 1 -4cos(0-8") )
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D \\F=k2(1+cos(0-0)2/2

DY =—242 (m—(m(e—ﬁ) ~k=~ IAII(( os—-+\1n-)(¢ o8- (9 -0+ -

-

k“l—.\'ln-{-w.\'((‘)-e )

D 3%/[-‘:/\412 ( [+cos2(0-0") )
Y, =(cos0—cos0’)

Yo =(sin@—ysin@")

Y3=(cos0 +cos’)

Y4=(8in@+sin@"). 477

Note that 4/ is a small parameter and the terms with bold parenthesis are
higher order in 4/. Therefore these terms are small but we will keep them
for now in order to solve the following fourth nrder differential equations
by balancing both sides of the equations. The right hand sides of
equations (4.73) - (4.76) are independent of time. If we consider the
possibility of unaccelerated motion (i.e., steady state), we can negleet the
acceleration terms in (4.73) - (4.76). In order to solve these momentum
equations we follow the same procedure as in scction (4.4.1). An
equatjon for uy f(i.e., xp) alone can be derived by adding

0 0 b el
= I57(4 73)——(4 74)] and 7I5;(4.73)—5;(4.75)| and using mm.m to replace

Vaptwye- The result is

+MT P47 p+oo . i .
VV4“2=I J‘ J (A, VAR e g VE GlkLescll 4 p VE 200
L L

RN GE L (00,0) dE j (~0,0').
(4.78)

Similarly, for w, equation
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+TL PATT 400 .
VV4W2= J j J [C2V/"e|k|(‘+(‘/1+ C 3VI" (_,2¢'/I| eik(y a+,b)
-nv-xn

. (63,0) dE | (~0,0) 4.79)

where

AVF =152 (1+c05(8-6))3 v
AV =2 o2k ( Val Ik VlCcos + .w'n%) (14+c0S(6-6"))+ K2 sm§ (5co8(8-0')+3) |

+iv | 1k (coss— .w'nf) (1-cos(0-0")) + k2 cnsg (cos(0-6")+1)]
| I /

24Nk 02 2 (cosE—sint) (143cos(0-6") +2c0s2(6-8")) -
T3

| l
i (C()S-L/:+sin-;:) (3cos(6-0)-1) )

AT = 4302 v, (1+ 2c08(8-6) —iy; (2—cos(6-6)) |
CoYF =42 k| w? cns;(l - 05(6-9")2 + 4kA w2 (cos(6-0")— cos2(0-0"))

(ms§+ .vi,:;) — 45k | Pt (2c0s2(0—0")3cos(0-0") +1 ).w'n%

Y == 4k410? | cos2(0-0") - 3cos(6-0")+21.

(4.80)

Equations (4.78) and (4.79) are valid in the whole fluid and
determine the wave induced drift current. These inhomogeneous
differential equations can be solved by applying the technique of

undetermined coefficients. Particular solutions to these equations are
. +T0 P P +00 (). . .
“2‘/I'[)=J. J J _0';_/‘ AVF"Y:;+iBw"'Yl)elk(Yla+72b)d§](w,9)dél("(l),e')
—NY - ¥ —e0
(4.81)
. [HT AT oo L
“12‘/,'”:]. J‘ J. _2‘2/20)6“/[" elk(‘Yl(l+‘Yzb) dgl(w,e) d&](_w’el)
-tY Yoo
(4.82)
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Note that the particular solution for the vertical velocity w,V/7 (4.82) is
smaller than the horizontal velocity u«,""? (4.81) by an order of (kD2
Substituting (4.81) and (4.82) into the continuity equation differentiated
with respect to t (i.e, %(4.76)) gives

+TT P +TT P +oo
‘,\/Ip J. J' j u\k A\/I:,Y +IB"I"Yr,)("‘(vl"+7’l’)dsl((l)e)llu_,l(—(l)ﬁ)

(4.8

where

AV = (1 +¢0s(8-8") 2K 12| k|1 (1 +¢05(8-0")) (vo.s"-l.+sinl—l') elklescll
+k2[2 ( 2(1-cos(8-6") sm‘7' elklexelly (1 +2005(0-6")) «'2"/')
BYI" = <21 k|1 (1~cos(8-8")) (m.s-‘}-.s-m%') elkle+ell
+h212 ( 2(3=Scox(8-8) coselk1e+ el —(2—cos(@-9) ! )

CYI" ={ |k)(1-cos(@- 9))~m-—A%(cos-+un- (3 cos2(0-0") -4 cos(0-6")+2)
~12 k2 k| smT €2 cos3(0-8") = 12 c0s2(8-0") + 13 cos(0=0')—2) | el kIl

2
+£4_{ (C()Sz(ﬂ—e’)_ 3 (‘().\'(9—9') +2) ‘_12"/[‘
(4.84)

If we set v=0 then u"?, v)/'? in (4.81), (4.83) reduce (o the inviscid fluid
solutions given by (3.63), (3.61). Also the vertical velocity w) " given in
(4.82) becomes zero when v is set to zero. The viscosity causcs solutions
to differ greatly from inviscid solutions in the thin surface layer of
thickness I We will suisequently refer to this as the vorticily layer.
Below the vorticity layer the viscous particular solutions arc cffectively
identical to the inviscid solutions.
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Weber (1983b) and Chang (1969) did not consider the terms
with form (.)e2/! (4.84) in their solutions. Although these terms are small
compared to the ()e!¥1**+ ! terms, the vertical gradient of the ()¢ terms
ncar the surface is the same magnitude as the ()elkle+dl terms (i.e.,
O(kl)). Therefore, neglecting these terms from the solutions will introduce
an error near the surface of the flow when the solutions are matched to

the surface boundary conditions.

The above solutions satisfy the boundary condition at depth
i.e., wave amplitude goes to zero as ¢ — —~. We must also ensure that the
solutions (4.81) - (4.83} satisfy the second order surface boundary
conditions (4.37) - (4.39). The zero-frequency second-order motion is
driven by interactions between first-order viscous wave solutions. We
therefore consider the case with no applied wind stress in the second
order boundary conditions (4.37) - (4.39). The second order surface

boundary conditions (c=0) are:

PVEN2 1+ 200 B 1 X 1 X 1 X 1 L X 1Y 16 2 1 10 12 10 B 1

21 W21 1a X 102 WY 1P 1~ 221102 1] P 1214 le=0=0

(4.85)
PVDY 2t 2ot Y 1Y 1 D18 1 1KY 1 e 2 P 12 e f
21102 1 1 b 10V 1l 12 2121 |=0 =0
(4.86)
PPV 22942211 X1+ 221, Y 152216916221 1K 1 X 102 Va2 V10
Y21t 1l le=0 =0
4.87)

Equations (4.85) to (4.87) are identical to Weber's (1985) second-order
boundary conditions without any wind forcing, Substituting the first-

order solutions (4.72) into the second-order surface boundary conditions
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(4.85) and (4.86) and considering only zero frequency interactions one
finds

+7T P+ ptoo ]
Uyt Wa, |y =J. J J [(—2k|k|+k3l)wy_;—ik-‘lwyl
—nY Y ~co

—i k3| k] Py, (1+c0s(0-07))/2) [ RN+ YD (B (0,0) g (—0.07)  (4.88)

+7 f+T £ +oo
Vo +Wop gy =j J J L(=2kk [+ &3 wyy=ikHoy,
MY =¥ ~c0

— k3| k] 2oy, (1+c05(8-0"))/2) ]| KN+ YD) 4E (00, 0)lE | (—0,0)).  (4.8v)

The vertical boundary condition (4.87) does not provide any uscinl
information because p,=0 at the surface. We still necd a surface
boundary condition for the vertical velocity. We consider that the vertical

drift velocity must be zero at the surface (see ~\Iso Weber, 1985) i.c.,

wy=0 ar c=() (4.90)

Since w,=0 at the surface, (4.88) reduces to
+R P+T ftoo
Uy, |C=() =J- j J- [(_2“ kl +IL3[)(!)'YT‘I/\3[(D'Yl
—¥ - * ~—oco

~i k3| k| 2avyy (1+c0s(8-0)/2)) ¢kCha+¥aD) 4E | (0,0)dE | (~0.0")  (4.91)

and (4.89) becomes,
HTC AT P oo
Vacleco =j J' j [ (=2h1k ]+ 63 oy - KBy,
~T ¥ -R Y —co

~ik3)k| Py, (1+c05(8-0"))/2) ke + 1) g (00,0)d | (~,0").  (*92)
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The particular solutions (4.81) - (4.83) do not satisfy the above boundary
conditions at the free surface. Accordingly. the complete solution must
also include solutions of the homogeneous versions of the cquations
(4.78) - (4.79). The homogeneous equations are

VA Fh=g (1.93)

VA Fh=( (190

and the time derivative of the homogeneous version of the continuity
equation (4.76) is

ty VFI vy VER gy VI (4.95)

Solution for v)/*# is obtained by substituting the solutions of (4.93) and
(4.94) into the equation (4.95). The homogencous sohitions must also
satisfy the lower boundary condition

uf =0 ¢ - —eo

=0 ¢ — oo

wyth=() ¢ — —eo
(4.90)

The solutions of the equations (4.93) and (4.94) involve finding the roots.

It is clear that each equation has four roots of which two of them are

m =|2ksin&-—e—|

2

my=-|2 k.s'ingl;—)-[.

The other two roots are repeated roots. The ncgative roots arc
unacceptable because of the houndary conditions (4.96). Therefore, we

can write the homogeneous solutions to the equations (4.93) and (4.94)



80

+1T 4T oo .
uyF’ /'—j ! J [, +idEg,") PO 40 (dEs +idE ) 2RO | oik(Vid+12h)
- on

(4.97)

. HTL L +TL f 400 .
WZVI'h_: J- J‘ J [ (15:22 2k 4o déj{: kP ] ekna+yb)

(4.98)

Substituting (4.97) and (4.98) into (4.95) gives

+I A +TT £ 400 e e . , . , .
=’ j j e [y e+ (Bt idE ) 2

ikCYya+Yal) T i d 163, /K] €240
e +J I j o (57716 g,,,e)[2¢((1§2-+¢‘(§3 ) b, k] e
ek a+v,0) (4.99)

where

¢=|.s-me_‘29— ! (4.100)

The unknown functions for the second order homogeneous solutions
d&y . dby/ dEy s, b3 dE,., and dE;. are to be determined from the

surface boundary conditions. We noticed that some of these constants

are not independent. By takin 1(4.75)--9-(4.73)] of the homogeneous
g da dc

versions of the second order momentum equations (4.73) and (4.75) and

considering steady state one obtains

V2“°V!'I¢ V2 Vlh =0

Substituting (4.97) and (4.98) for uy"" and w}*" into the above equation

and equating the real and imaginary parts to zero gives
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(IE_,}.‘.-_-()

' . 040’
(IE-G.\' == S’”Te'ldgjr L101a)

To determmine the remaining constants we substitute the resulting
expressions for uy"F=wyfP+u}Fh v V<o T JTh and w0 = w0 40T
into surface boundary conditions (4.91), (4.92), (4.90) and solve real and
imaginary parts to give

—kwy3 (1=cos(8-6"))
(/gz\.= 3 ¢

(& 1(,8) lE, (~0,8")

G

, F ,
(l&z\. =(Ok'Yl l:i_q) x¢](l§|((o,9)d£_,|(-m,9 )

' G ,
@&z, =Wk 7 (@0 dL (-0
dE . =2k32w (1 —cos(8-8"))% dE | (w,0) dE | (~w,0)

.2
ngZ =—0-)-2£—¢G (I& 1 ((0,6) dgl (—0),9')

where
F=kl(6cos(0-0)-2)—k212(3-13cos(0-0"))

and
G =kl (Gcos(0-0")-2)— k22 (4cos2(8-0")~21 cos(6-6")+7) (4.101h)

Therefore, the total solutions satisfying the boundary conditions at the
surface and at great depth are:
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+T £+ p+on
i "j f J m("w V3 +iBVEy)) eROha+ D) fE  (.0) dE y (-w.8")
-7t —on
(4.102)
v VF =y FD 4y Pl
+T £+ +oc .
2" _I .[ I Ok APy 4 BV ) e+ dE 1 (0,0) dE (~0,6)
(4.103)
WZVI "= WZVFI) + WZVF”
N +7T £+ p+oo L
=[] kY knen ) gy ) ey -0
(4.104)

where
AVE = (14+¢05(0-0")) 4K Ie=2| k| (1+c05(6-0")) (co.\'%ﬂ'in%) elkterell (-
c0s(8-6")) ;‘b +2k2 2(1 - cos(0-0") sin- e|“‘+‘/1+A212(l+2cos(6—6 ) 211,
BYF = 2|k |1(1-cos(0-8")) (co.v‘7'—.vm-‘l-') ekletell 1| (F=G[2)/2) + kG2 ]
e2kbe 42422 (3—5m.s-(e—e'))cosfli elkle+cll 222 — co5(0-07)) €2/,

CVF =k G224

+2k22| —=(1-cos(6-90"))2 cos-(l-' elklerelly (1—c0s(6-08"))2 e2k0¢ ],
(4.105)

and F, G are given by (4.101b). The above solutions (4.102 - 4.104)
represent spatially varying horizontal and vertical shears in 3-D velocity
ficld. Note that at first order in £/, the solution for vertical velocity does

not equal zero.

Substituting 8=0"=0 and neglecting k%2 terms (4.102) reduces

to
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. +o00 A . '
1,V =I 92i| 4e2kle-g |k} ((-o.v‘7+.\-m‘7) elRlet el gg | (0,0) dE | (—0.8").

(4.106)

Substituting for the wave amplitude from (3.66) and using the
approximation k|« 1/l (as used by Weber (1983bh))., cquation (4.106)

reduces to

1T =A 2 k| K12k (conrsingye ).

(«+.107)

Equation (4.107) is Weber's solution (1983b. eqn. (5.2)). Note also thal
(4.102) and the particular solution (4.81) are identical for 6 =6"=0. Thus
for 8=60"=0 the particular solution satisfies the boundary condition
automatically, no homogencous solution is therefore necessary to satisly
the boundary condition (see also Weber (1983Dh)). However, if we consider
a random wave field of waves interacting at arbitrary angles then the
particular solutions do not satisfy the surface boundary conditions. In
this case we need homogeneous solutions to satisfy the surface boundary
condition.

Thus inclusion of viscosity leads to solutions which constitute
a random fileld of mass transport velocity both in the horizontal and
vertical directions. Comparing the viscous solutions (4.102) and (4.103)
with the corresponding inviscid solutions (3.63) and (3.61) one finds that
the coefficients of ¢2/¥1¢ in u,VF and vyVF (4.102, 4.103) (i.c., inviscid part
of the viscous solutions) are identical to inviscid solutions (3.63, 3.61).
The additional terms in (4.102) and (4.103) arise from the inclusion of
the viscosity. These additional terms reduce the magnitude of the zero

frequency second order velocity from that of the inviscid sohitions. In
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the limiting case of viscosity tending to zero, the viscous velocities (4.102.
4.103) do not reduce to inviscid solutions. Specifically, the homogeneous
part of the horizontal solutions u,"", v,/ (e.g., d&,,. 4.101b) are nonzero
for the zero viscosity (see also Weber (1985)). This must be due to
applied external surface forcing which acts through the first order
solutions to cause this nonzero velocity even when viscosity is zero. In
the following section it will be shown that, in the absence of the applied
external forcing (i.e., decaying wave case), the viscous solutions reduce to

inviscid solutions as the viscosity goes to zero.

The vertical component of the mass transport velocity
(WP +wyVFh), goes to zero as v —» 0. 1t is also worth mentioning here
that the dominant contribution in the total vertical solution is due to the
homogeneous part w)** of the solution (c¢kG/2, 4.105) which has a
magnitude of order k/. The particular part w,"'? is of order ()2 but is
required to satisfy the surface boundary condition (4.90) for the vertical
velocity. Neglecting w)'? will cause O(%2) vertical velocity at the surface
(¢=0). Later, in chapter 6, it will be shown by numerical integration that
the vertical diffusion is almost totally due to the homogeneous part wy/’™”

of the solution.

The equations (4.102-4.105) represent solutions of the
equations of motion up to second order in a perturbation expansion. As
mentioned in the beginning of this chapter, these solutions have two
small parameters in them: (1) perturbation expansion parameter € and
(2) €;(=kl). The perturbation expansion parameter € (=A,/A) is the wave
slope (i.c., ratio of the wave amplitude to the wave length). For surface
gravity waves, LeBlond and Mysak (1978) estimated the maximum value
of £=1/14=0.07. An upper limit of 0.1 for & is also reported by Kinsman
(1984) from observations. It is conceivable that the lower limit of € may
be anything between 0.1 and zero. Now to estimate the second small
parameter, €=/, we know that ¢, is related to the eddy viscosity through



85

the viscous length scale /=V2v/w. Viscosity in the occan has a large range
having a lower limit of molecular viscosity (1L.Ox10"%m%s. For a typical
large value of eddy-viscosity v=(1.0x10")m?y and the frequency range © =
(0.3-1.0) 7!, & and / take the values from (0.009 - 0.1) m'! and (0.26
-0.14) m respectively. These give a range of values for ¢;= (0.002 -
0.014). Having found the ranges of the two small parameters ¢ and
g((=k/) it is important to realize that terms of 0(£2£|2) may sometimes he
of same order as O(e,). The point we are trying to make is that if the
third order perturbation solutions happen to contain terms of Ow,") and
O(g)) then these terms may be of same order of magnitude as some terms
of second order solution. In that case the third order perturbation
solutions must be included. This is specially truc for sccond order
vertical solution (4.104) where the dominant terms in the solution are of
O(g,) and O(,?). Nevertheless, we did not attempt to solve the third order
perturbation equations of motion, therefore, the order of £, in the order
3 vertical velocity fleld solution is unknown. This remains to he

explored in the future.

Providing eddy-viscosity and wave amplitude are such that
e'e,; < e2¢? i.e., € < g, then we can be assured that we don’t need to
consider O(e?) solutions. Since € < g; Is not generally true (except for very
small amplitude waves and large eddy-viscosity) it follows that our
solutions are not necessarily accurate up to O(e?e ,2). Thus we retain only
terms up to O(?e;) when calculating eddy-diffusivitics. The O?e?)
terms in equations (4.105) have boxes drawn around them for case of
identification. However, we do not discard them totally since they would
be useful should the 0(e?) solutions ever he explored in the future, Note
that O2e)) terms (L.e., c¢kGRe2¥ (4.105)) still have vertical zero

frequency velocities.

To visualize the spatial hehaviour of these sohitions,
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Y vV woVT (equations 4.102-4.104) are plotted as functions of a,b,c.
Figure 4.2 shows the plot of the mass transport velocity due to two
primary waves of frequency w=1.43 rad/s each interacting at an angle
*45” with the w-axis. The arrow corresponding to w.v components of
velocity is seen to be sheared in the horizontal plane as observed by the
alternating direction of the arrows in the top plot. The direction of this
random shearing changes as the angle of interaction changes. The
motion in the vertical plane changes direction with the depth as shown

in the lower plot.
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Figure 4-2: Interaction of two primary waves to give a

horizontally and vertically sheared mean flow.
The arrows show the magnitude and direction of
curtrent as a function of posiion (a,b,¢). (a) A
horizontal section through the surface ¢=0. Plot
shows u,"F and v,"F velocities are sheared in the
horizontal plane. (b) A vertical section in the (b,¢)
plane. Plot shows v,YF and w,"F are sheared
with respect to b and c. The parameters used are
®=143s"1,0=45%6 =-45° g=b=20m and v
=0.01 m2/s
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4.5. SOLUTION FOR DECAYING VISCOUS GRAVITY WAVES

In this section we consider that the waves are established at
time =0 and that no further energy is supplied. Then, owing to viscous
dissipation, the waves will aitenuate in amplitude and cventually the
whole motion will go to zero. The governing equations (4.1} to (4.3} and
the continuity equation (3.6) remain unchanged from the nondecaying

viscous wave problem.

4.5.1. FIRST ORDER SOLUTIONS

The first order momentum and continuity equations are given
hy (4.5) to (4.8). These equations are solved using a similar technique to
that of nondecaying wave problem (section 4.4.1). Once again we will
assume that spectral representations of first order solutions are given by
cquations (4.40)- (4.43). If there is no applied wind stress, then the
general form of the first order boundary conditions (4.34) to (4.36) reduce

to
20t ¥ e =0 (4.108)
21ty =0 (4.109)
= +2pvzy,.=0 @.110)

at ¢=0,

and also
Xp Yy — 0 as ¢ » —eo

The surface boundary conditions for the horizontal component of the
stress (4.108) and (4.109) are identical to nondecaying wave case (4.54,
4.565). The surface boundary conditions for the vertical component of
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stress (4.56) was used to obtain the dispersion relation and magnitude of
the applied stress t;". Therefore. the relatinns (4.61) to (4.64) for the
spectral density functions «€,. d&_\,. d€, and g, are still satisfied,  The
vertical boundary condition (4.110) is different (zero applied stress) from
that of the nondecaying wave case (4.56) in which a stress ty was
applied. Substituting for z; and p; from (4.42) and (4.43) into the
boundary condition (4.110) and using (4.63) and (4.64; to express J€. and

(15,, in terms of &, one obtains the following dispersion relation

9 - 1'2 7
ﬂ)__%l_é_lﬁl ‘.li..f.k?-(.)z (:!

3 . D 2
w-=p k| +h-w* (= -
s141 (zw p2442" B iw

)
(4111

Neglecting terms that are small compared to 1 using (4.67h) and

applying successive approximations gives

3
W=, ~4ivk?w,+0 (L—‘)

=, 2(1-2ik2%2)+0 ().
(4.112)

where u, is the real frequency given by (4.69a) and v is being replaced by

12(0“/2 using (4.71). By applying binomial expansion, w may be written as

w=w, (1-ik%2)+O (kY.
(4.113)

Thus the frequency consists of real and imaginary parts given by
W=wp+iw,
(4.114a)

where the real part is given by
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(0R2=(D”2=g [k
(4.114h)

and the imaginary part is given by

0y =—k2Pw,=-2vi%
(4.114¢)

Hence, for the decaying wave problem, the frequcncy of the waves is
complex (contrary to nondecaying wave case where frequency was real in

the present limit of our approximation, equaticn 4.69a ).

Substituting (4.61) to (4.64) into (4.40) to (4.43) respectively
and using equation (4.114) for w one obtains the following first order

solutions

1T oo .
_‘.IVI)= J’ ('()SBIL'IH" ZIB“ e[h" L,l'(kcus9u+ksinﬁb-wnl)—2vk2!d§l(w,9)
o -y —on

“.115q)
VP = B [k |c_2|é‘_| o | i eosasksindh-uw,)~2vE¥ gE (13,6)
o ..n' 00
(4.115h)

v [Tk
<y = ——

.2 "
T | [ u| ki 4'_2l‘2 cﬁv ] ei(k('us()u+ksinﬁh-m 1)-2vket "51 (©.,8)
LY JC e Y

(4.115¢)

+T f+oo Pl ) 2
l,lw>=J- J P-’-A-'-I 4,'|k|kuelkl(~_%e[34.l
~-n |k p-

itkeosBa+ksin@h-w )-2vk dE (©,0). (4.115d)
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The superscript VD has been used to denote solutions corresponding to
viscous dynamics in which the waves are decaying. The solutions decay
in time due to the term e 2%, Apart from this decay term, the
nondecaying wave solutions (4.72a) - (4.72¢) are identical to deccaying
wave solutions (4.115a) - (4.115¢). However, the pressure solution
(4.72d) (for nondecaying wave) is different from (4.115d). Equation
(4.115d) contains an additional term -4kpvaw,el*l¢ (compared to 4.72d)
which plays a dominant role in balancing the first order surface
boundary condition for the vertical component of stress. It will be shown
latter that this term and the exponentially decaying term in the first
order solutions cause a significant change in the second order surface
boundary conditions on the horizontal component of the stress
(compared to the nondecaying wave surface boundary conditions). In the
limiting case of zero viscosity, the first order solutions reduice to inviseid
solutions (3.35) - (3.38).

Using (4.53) to replace &, in (4.115) by d€ . one obtains

C= [+ [+ ;lklt'_.gl_k_l B 1 ol (keosBa+ksin®b—m }-2vk2r
x| [e el e : d€ (0.0)
Y Y 00 B -
@.116a)
le= T tan@ [ ¢lklc 2“"‘0&']‘,{ (keosQa+ksinbb-w 1 }-2vk*1 € (0,0)
¥ tY —oo B X
(4.1116h)
2,C= [T J' 1ok 012K B itkcostusksindl-o,-20k% dE (,0)
. 2 ) £
dnd e ]
4.116¢)
+TC f+o0 oo 2 " 2,2 i
I’IC":_" J J P cos® [(wz—lk[g)e‘“"+MeB‘~|
—~fI ¥ —00 ¥ —00 k BZ
ollkcosButksinBb-w,n-2vkk dE (©,9) (4.116d)

These are the 3-D extensions of the Chang’s (1969) first order solutions
(superscript C stands for Chang). For 6=0 the above solutions should
reduce to Chang's (1969) first order solutions. For 0=(), cyuation
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{(4.116a) and Chang's first order x;-solution are identical. However,
solutions for z;C and p,C (4.116¢c and 4.116d ) do not agree with those of
Chang's. In Chang's paper, first order z, and p,; solutions, have a sign
discrepency in front of the viscous term. Further examination shows that
due to this sign discrepency, Chang's first order so.utions do not satisfy

the first order continuity equation.

4.5.2. THE SECOND ORDER SOLUTIONS

Substitution of the first order solutions into the second order
differential equations (4.9) - (4.12) and considering only zero frequency

interactions yields
P + L 4T too ot 1 arn
X829 ;” VVZ"'Z:JI j .[ 1A YPeAkIC+ Ay Delklerly

A 33V[) 20| pik(Yya+Yh) = ﬁldg [(©.8) dE (-,
4.117)

1)
"’ll+'~'22b+“_“ VV"J’z, J‘ J I [BllVDeQ|“¢+322VDe|LI(+L/[

B33VDL,2('/I k(Y a+y;h) ~ &t d€,(00,8) dt(-0,0")
4.118)

l’ +T P 4T
DaytRip 5 VVzm, _[ j j [CyVPeAklerCppVDelk el y

C33"Peds] ket 1yh) - SIgE, (,0) B (-00,8)
(4.119)
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+N £+ 400
. - D 2 ke SREWY o S
'\2(1.{.)'2[).{-‘,_2‘_: J. I j l Dl l‘ I)L' II\ '( +D22"’l)(,IA '( +(/l+D33v[)‘,..( /[ |
—-tY —

oK+ =81 g2 (0,8) lE, | (~w,0")
(4.120)

where

.01y
AP =( l+z'o.s'(9-9'))%l)— iy (1+k3 P eos(8-8") = k22 (cos(8-8")+3)]
A22VD=k|k| lw? 173 (C().v%—sin%)( [+cos(0-0") ~iy, [k|k| Imz(('ns(—[.+.\'in‘7.)| +

|1

k3202 ( T Lm—(l+?c()s(6 _gry+ AU 20052(0-0") + 3cos(0-0")— 1)

k212
(L()\7+ sin )+ 5

el
|MI(ms(G -8 - ’%)(ws-——wn—)-—é-[—(m[(l—7(m(9~(-) ))I)

sins (1—( 0x(0~00) | =i, | \m—( ‘0s(0-6")

AP =-K Pu? (y3 [ 142¢05(0-8")+ k212 (cos2(0-6') + cos(8-0") —2) | +

/(2[2
ivy12~cos(6-0") + T( 1+0cos(0-6)) |
PRV,
B VP =(1+c0s(6-8") A—;’— [y (1443 ¢cos(0-0")— k22, (cas(8-0")+3) |

By"P= Ik |10y (cosy—sin7) (1+cos(0-80) =i Ty (cos +sin7) |

31

+/c312(02( Y4l ('0.\'(7‘(\ +3c05(0-0"))+ T(zmﬂ(e-—e'} +3cos(0-0)—-1)

AZ
(cm + Sin= )+

] 3 \m (3—cm(9 o) l-—:yzlwz—cm(e—ﬂ)

. . 122 .
—l—lizl—l(cn.\'(e—e') -3 (('().\'-Li—.\'r' II%) —5—21— co.v-ci( 1 =7 cos(6-0")) | )

By3VP=—3202 ( Y41 1 +2¢08(0-8") + k22 (cos%(8-6) + cos(8-8") - 2)| +

k212
21 2-c05(8-8)+ (1 +6.c0s(6-6) | )
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Cy VP =1k (14+c05(8-6") (1 +k414cos(8-0")

(.'22W )=k IO)ZC()S-;: cos(0-9") +k2w? (cns-;-. + Sl'n%) (cos(8-8"-1)+
K2 | k| 12 0)2( —sin%( 142¢05(0~6")) +| k| I(sin-f-— c().s§)(cos2(e-e') -

cos(0-6")—1) +k212 cos%(cosz(e—e') -cos(6-6")~-3) )

Ca3 VP = KABw(1 - 2c0s(0-6"))
D,"P =k2(1+cos(6-0))%/2

z>22vn=_2k2(-n.s-£[' co.s-(e—e')—k2|/c|i(cos‘7‘+sm§)(cos2(e—e')+1)

—/ﬁﬂs:‘n;cu.s-(e—e')

1243YP =k412(14c0s2(8-0"))

S=4vi2
4.121)

Note that right hand sides of equations (4.117) - (4.120) are time
dependent. In the nondecaying wave case, right hand sides of the
second order momentum equations (4.73) - (4.76) are independent of
time. In equations (4.117) to (4.121), terms up to O(k/)? are identical to
nondecaying case (4.73) to (4.77). Only the terms of order (k)3 and (k/)*
arc changed by the introduction of the time-decay term 2k Major
differences appear, however, in the second order boundary conditions

(derived latter) which will in turn effect the homogeneous solutions.

The x,-momentum equation (4.117) reduces to Weber's
(1983b) eqn. (4.1) if we drop (kl)? order terms, horizontal derivative terms
(€.8.. 2940 Pays Xpq @0 Xy, Which are small compared to vertical derivative
term .,,) and substitute 6=0'=0. Weber solved this u,-momentum
equation (accurate to first order in 4/) to get the u,-component of the

mass transport velocity. He did not solve for the vertical component of
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the mass transport velocity. The fact that the vertical gradient of the
pressure is not negligible compared to the vertical gradient of the velocity
in wy- equation of motion (4.119), implies that (4.119) cannot be solved
using the Weber's technique. Therefore, Weber's technique is of little
help in solving the three dimensional problem. Since we are considering
decaying wave problem we will not consider the stcady state case (as in

section 4.4.2). A more general approach is adopted to solve
(4.117)-(4.120).

Following the same procedure as in section (4.4.2), the
momentum equations (4.117) - (4.119) can hc expressed as the following

single variable equations in xy, y, and z,:

HT LT 400
. . arg /. Sk e+ /1) ,2.
Vz—‘z;;‘VV4-‘21=I I J' |A VDK VDGIK el g VD20l
~f¥Y - Y~

RN, = 81 (e (00,0)dlE ((~0.0")

(4.122)
T T p oo
V2y0,—vV,= J. J. f |BVPeKI 4B VD ety VD o2
eikCna+h) =8t g (w,0)dE,(-0,8")
(4.123)
+IL P+ oo
V22211—VV4221=J- J J. [C P2kl e CyVDelkl ety VD2
kN ar1h) =B (e (0,O)lE | (~00,0")
(4.124)

where
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A YD =5 2022 (14+005(8-0')2(3+¢0s(0-0") [ 3 — i k22, |
AP =— 20% ( L (co.\'%+ .w'n%)( I +cos(6-9"))+ k%‘in% (5¢os(8-0")+3) |
—iyy 1kt (co.s'-;:—sin-?) (cos(0-6")—1)+K2 cos% (cos(6-8")+1 )1)
+ 26k 1m2( 3 (cossin)cos(8-8")2cos(8-0)+5)
\ c .C ’
- (co.s'-l-+.s'm-l-)(cos(B—B )——2))

AP =—7,45302(142c085(8-0")) + i1, 4k3002(2—cos(6-6))
B VP = k512002 (1 4005(8-0"))X(3+cos(8-0")) [ v4— i K42y, |

B,YP =-20% (y4l IVl (cos’+sin%)(1-+cos(©-8") +KZsins (5cos(®~8)43) ]
~ivy [k (co.s'%'—sin;) (cos(0-0")—-1)+k2 co.s'; (cos(0-6")+1) ])
+ 2k k|1 (oz( Y (cos%—.s-in%')cos(e—e')(2cos(e-9')+5)]
~iY, (co.s'%‘+sinc7')(cos((-)—B')—Z) )

B3YP =—4i302y,(1+2c03(8-6") + iv,4k3w(2-cos(6-6"))
C VP =2k k| Pw?(1+cos(8-8"))2 (3+cos(6-6")
C, VD =42k jw? (;(;‘s‘%( 1—c0os(8~8")2 + 44102 cos2(6-9") (cos—%ksi n-?)

+ 4k k) 2002 (cos(0-0")+cos(8-0")+3) si n-cl-

C4VP =44 w?| cos?(8-0')-3cos(6-0")+21.

(4.125)

Now if we carefully examine the equations (4.122) - (4.124) we will see
that, for time variation of the form ¢~2V#", the acceleration term V2x,,
and friction term vV4x2r are of equal magnitude. The acceleration term

cannot, therefore, be neglected. This is in contrast to inviscid and
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nondecaying wave cases where we have dropped the acceleration term by
assuming that the mass transport velocity does not have aceeleration.
Furthermore, an attempt to solve the above equations considering
unaccelerated motion gave particular solutions which do not reduce to
inviscid solutions (3.63) to (3.61) as v —» (. Therefore these equations
are solved in a different manner from that used to solve the inviscid and
nondecaying wave problems.

Retaining both the acceleration and friction terms in equations
(4.122) to (4.124) and applying the technigne of unndetermined
coefficients, the particular solutions to these equations are given by

T P+ oo : ,
_‘.ZVDp = - % (A'VD Y3+ iB’VP YI) k(e +Y,h) - &

YooY —ntY oo
dE (0.0) dE | (~w.0")  (4.126a)
£+~ +TT p+oo - ,
y,VPP= _ % (AVDy, + [ BVD ) ik vy =81
o __Tc. _n. -—O0

dE(w,0) dE | (-.0") (4.126D)

PR AT fho0 ,
ZzVDp= C'VD pikty a+y,0) -5t (/&1(0).9) (1&1(*(0.9 )

v ~tY =1L ¥ =00

(4.12G¢).

The particular solution for pressure is obtained by substituting (4.126c¢)
into second order z,-momentum equation (4.119)
+1T T f+oo ,
I)ZVDP=—J J- -“ (1)2p pvp e’k(YI”"'Yzh)_s’ (12-:,](0),9) dE_,,(—m,O')
Y- -
(4.126d))

where
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¢

AYD = (14¢05(0-0")) 2 K122 |k |1 (14cos(0—0") (cos: [+sm§) elkle+ et

+4212 ( 2(1-cos(6-8")) .s-in.‘ll elkle+dlly (1 +2¢05(0~8)) elcﬂ)
BYP = 221kl (1-cos(0-0") (('us-;-‘-sinf,:) elklerell _g2p2 ( (1+cos(6-6"))

Akle —2(3=5¢0s(0-0")) w.\'-(l-'e| kle+ell 4 (2 —cos(0-0")) ¢2¢/ )

C'VP = -12: (1+cos(0-8)) 2K+ { |k | (1 - cos(0-6"))2 co.\'-Ll:—k2 / (co.\'f/"- + .vi;r?)
(3 cos(0-0") —4cos(0-0")+2) - 2k k |sin§ (2 cos3(6-0")—=12cos2(8-0") +

2
13¢0s(0—-0")=2) } elkle+e/l +54_’(cos2(e—e') —3¢c0s(0—0") +2) ¢2c/l

pvD = |¢-o.\-‘7'(| — cos(0-0")) 2~k (cos%hw'n;) Beos2(0-0")—5 cos(0—0")+2)

- /2k2.s-in‘7'(2 c083(0-0")— 12 cos2(0—0")+ 15 cos(0-0) —3) | el Kl e+l
(4.126¢)

The solutions (4. 126) represent second order displacements and pressure
due {0 a group of decaying deep water surface gravity waves. Once again
the vertical displacement z/PP (4.126c) is smaller than the horizontal
displacements by a factor 8=2422w. By differentiating (4.126a) - (4.126c¢)
with respect to t one obtains particular solutions for the velocities
(eePP,vyPp )PP for decaying waves
qu””= J-+zt J- +7T J- +00 _(Pzi ( ATVD Y3 +i RVD D) oik(Ya+Y,b) -t d&,(w,e) (1{;](—(0,9')
T 4.127a)

+7 41T 400, 1. :
‘.2111),) ==J- J. %/‘_ (A D 'Y4 + iB'VD Y2) g‘k(Yiu + ‘Yzl))—ﬁl d& 1 (w’e) d&,(—w,e’)
=%~ —oo
4.127b)
+T L+ oo o
Y= *> -0

4.127¢)
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where AYD B'YD.C'VD are given by equations (4.126¢). The above
solutions satisfy the lower boundary condition for the deep water surface
gravity waves le., u)?P,vdP0,w PP 50, ¢ - -e0, Far below the vorticity
layer /, uyPP,v}Pr tend to the inviscid solutions (3.63) and (3.61). The
particular solutions ) andv}”? are very similar to " and v}*? for
nondecaying waves (4.81, 4.83) except that 1" and v'” cach have one
additional term of order k22 (see BV and 8’VP terms. cquations 4.84,
4.126e).  Similarly, nondecaying vertical velocity wy’” (4.82) and
decaying vertical velocity wy™ (4.127¢) solutions are similar except that
C'YP (4.126e) has one additional term than that of C'V* (4.84). In the
limiting case of 8=60'=0, uy’’ (4.127a) reduces to Weber's(19834) and
Chang's(1969) particular solutions.

The solutions (4.127) represent damped wave motion. Such
motion will decay with time. In order to estimatec the magnitude of
damping produced by the surface gravity waves usually encountered in
the ocean (typical frequency range 0.3 to 1.0 rad/s) the wave number &
ranges between .009 to 0.1 m-!. For v=0.1 m?/y, §=2k%2% lics hetween
3x1070 to 4x1074 571, So the damping is slow and can be neglected if the

time interval under analysis is of the order of minutes.

Now the solutions must match the boundary conditions at the
surface. The second order surface houndary conditions arc obtained by
substituting first order solutions (4.115) into the boundary equations
(4.85) to (4.87) and considering zero frequency inleraction. Using the
same argument as in section (4.4.2) the vertical velocity at the surface
must be zero l.e,

wVP =0 at ¢=0 (4.128)

The boundary conditions are therefore



100

HUpA+TT pbon
“2(YI)|‘-=()=j I J- |k3lwy3—ik3lwv|(1 +|k[I(14¢05(0-6"))/2)|
ok +yyh) =8t dE (0.9)dE | (-0.,8") (4.129)

+T L +TC f4on .
= [ 10w 3 an,(1 HEI+cos8-8)2)
Y -nY-m
k(N a+Y,h) -8 d€,(00)dE (-0,0") (4.130)

The boundary conditions (4.129), (4.130) for a, b-components of surface
stress involve terms of smaller order in k/ than the surface boundary
conditions (4.91), (4.92) for surface stress in the case of nondecaying
wave, The large magnitude of the surface values for the nondecaying
waves may be attributed to the applied surface stress and also dropping
of the decaying part (¢™9) of the solution. Unluta and Mei (1970) and
Weber (1983a) reported that the second order boundary conditions are of
order (k2/2) and they set the right hand side of (4.129) and (4.130) equal
to zero. If we drop %/B? term in first order z, and p,; solutions (4.115¢)
(4.115d) (as done by Chang, 1969), then the boundary conditions
become of the same order as those of Unluta and Mei (1970) and Weber
(1983a) i.e.. O(k2/2). The k%p? term is small (O(k%%) but its gradient at the

surface is of the order Ikl

The particular solutions (4.126) do not satisfy the above
boundary conditions (4.128)-(4.130). Accordingly, the complete solution
must also include the homogeneous solutions of the homogeneous
versions of the equations (4.122) - (4.124). That is, the homogeneous

equations are
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Vzuz}’l)h_vv-i”z\ ‘Dh=(

(131
VZ‘.z}’Dh_ \,V4‘.2"l)h =()

(h.132)
Vzwzlw oh— \'V4w2W Mh=()

(+.133)

/ / 1
where 3 Ph, v}Ph and w}P represent velocitics from the homogeneous
solutions. The homogeneous solutions must satisty the condition at

¢=—eco which are
uyPh=0 ¢ — oo
\!:_,‘”)”=() ¢—>—oo
wyPh=() ¢ = —eo,

(h.134)

Attempts to solve equations (4.131) to (4.133) subject to condition (4.134)
using a separation of variables technique (similar to nondecaying-wave
case) were unsuccessful. The differential equations (4.131) - (4.133)

have four roots namely,

’

my == 2|ksin 3

’

my q=12ilkcos 5

of which only one root m| (with + sign) gives solution which decays with
depth. The other 3 roots are unphysical because they arc ecither
oscillatory with depth or increase exponentially with depth. Morcover,
the root m; leads to a singularity when boundary conditions are applicd
as 0 approaches 6°. The reason is that when the horizontal length scale
of the forcing function (which is from the nonlinear interaction of the first

order solutions) tends to infinity (i.e., when 0=0°) and when the forcing
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lerms have been acting for an infinitely long time in one direction (i.e.,
when w=0)), then momentum will diffuse to infinite depth. This explains
why zero frequency, zero angle interaction cannot satisfy the condition

nyw=0as ¢ = —co,

Weber (1983a) used a different approach to solve the
homogeneous part of his iy-momentum equation (eqn. 4.117 with
=—6’=0). He applied a Laplace transform by introducing an initial
condition for the homogeneous velocity. Following Weber (1983a) we also
assume that the second order homogeneous solutions are zero at time

(=0 1i.e.,

wYPh=0 at t=0
wPh=() at 1=0

wyPh=() ar =0,
(4.135)

Physically the above initial conditions mean that initially we will start
with a wave field given by the particular solutions (4.127). The wave field
described by the particular solutions (4.127) decay in time because of the
action of viscosity. But since the original momentum cannot be
destroyed, the homogeneous solutions (which are zero initially) satisfying
the surfacc boundary conditions distribute the momentum from the
surfacc to the layer below. The depth of this layer is initially
infinitesimally small and grows to order £~! in the time taken for the wave
field to decay (Longuet-Higgins, 1969).

Equations (4.131) to (4.133) are solved subject to the
boundary conditions (4.128) to (4.130) and initial conditions (4.135) by
applyinz the Laplace transform in the time variable. The Laplace

transform of a function A1) is given by

SR TR

e
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Fy=| fnestde
0

where s is the Laplace transform of t. Therefore, the Laplace transtorm of
the equations (4.131) to (4.133) are
V2, VDR _y /¢ VAULVYDI ~q)

(+4.130)
VZVZVI)I;__ v/s V4V2\’I)h =)

(+1137)
VW, VP —yfy VAW, VDI =)

(.13%)

where U,VPh v, VP w,VPh gre the Laplace transforms of the second order
homogeneous velocities u,VPh, v,)VPh w, VPl respectively and s being (he
Laplace transform of r. Equations (4.136) to (4.138) arc fourth order
differential equations in {(«,h,¢) spatial variables only (/ dependence
appears as a coefficient of the spatial derivatives). Assuming same (u, )
dependence as in particular solutions (4.127) i.e., effhetnh = he
equations (4.136)-(4.138) are now solved for unknown dependence in e,
Out of four roots (two positive and two negative) of the above equations,
only two ( positive roots) are acceptable. The negative rools resull in
solutions that do not decay as ¢ — -, The homogencons solutions are,
therefore, given by
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+T PR +on
UyPh= _[ J f [(dEy, VP +idE,y V)M +(l3, VP +idEs, VD) et |
-KY-f¥ —oco
SAE+TY.)  (4.1394)

pHTT T P 4on
V2Vl)h= I ' (d&zvVD +id€2y'v”) L’;‘l" + ({Ig:‘yVD + i(l&:;v'VD) ‘!ML‘ ]

YooY —-Y —~on )
KN +1b) - (4.139h)

szm ) T LT J- +eo | l1§2;VD oM ¢ [1&3:Vl) (_,A?_L'] kY a+¥3b)
J Y-ty —oo
(4.139¢)
where
A= \l%+2k2( 1-cos(0-9"))
Ay =V242(1 -cos(0-6")
(4.139d)

The unknown constants d€,'P, d&) /P, d&, V0, d&; VP, &y, VP, dty, VP,
dEy VP, s,/ VP, dEy VP, and dE4 P are determined by satisfying the Laplace
lra.nsform. of the boundary conditions (4.128) - (4.130), homogeneous
versions of the continuity equation (4.120) and one vorticity equation.
The continuity and vorticity equations are used to relate some of the
constants which are not independent. Solving the real and imaginary
parts of the resulting equations as in section 4.4.2, the constants are

given by
klklwyz (1 +cos(0-0")
VD _ ~ ) o
dEq, GO, € (0,9)dE | (—0,0")
Y Q v Ay

o 20+ 0 2R sin®Y
GTOVA, (T —cox@0)) 3G+ 1, 2 MR sinT)

d& | ((0.9) dé] (—0),9')

d E.‘?.r'vn ={-

dE; VP =0



@8, VP =, VP sin(e;e )
klklwy, (1 +cos(6-6"))
VD - o
d§2}' = (S +457)"l dél(w-e)da-»l( (l).e )
? ’YZ Q V A’Z 9 9+9’
VDo (_ i 2y s 040
oy = R, T =@ NG %, @ MR cost=

(1& i ((D,e) d& 1 (-—(0,6')

, 0+0’
d§3y VD = "'d&3ZVD COS(-—Z—)

0+M2R
VD —_ - 6
dE,."P==v S g (0,8) dE ((~,0")
Q+A 2R
VD 0.0’
30 =V — s I8 (0,8)  (-0.8)
where

Q =281 (1 -cos(0—6")[ (1 =3 cos(6-0") +%I (5-11cos(6-07) }

and
R =§25[ (2 cos*(0-0")—3 cos(0-6') +3) —’%’u 1cos2(8-8") — 13cos(9-8') +6) |.

(4.13Y%¢)

The solutions (4.139) are accurate up to the order of (k/)2. Performing the
inverse Laplace transform on (4.139) gives homaogeneous solutions (nof
presented here for brevity) which contain many terms including terms of
order (k)2. These solutions fail to satisfy the initial condition (4.135) by a
small term of the order O®/)?. Hildebrand (1962, page 73) showed
through an example that (in the case of simultaneous ecquations
resulting from two differential equations), the method of Laplace
transform may supply erroneous sclutions which fail to satisfy certain

prescribed initial conditions i.e. the same initial conditions used to do
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the transformation initially. Clearly, the solutions with the coefficients
given by (4.139e) fall in this catagory. But the order of the error is O(/)?2
and thc solutions salisfy the boundary conditions and initial conditions
up to the O(kl). Also note that O(kl) terms are the dominant terms in the

solutions and latter on we will drop the O(kl)2 terms anyway.

The next logical step is, therefore, to see if the initial condition
is still violated if we drop the small terms of order (k)2 from the particular

solutions (4.127) and repeat the procedure of Laplace transform to solve

the same homogeneous equations (4.136) - (4.138) as before. The second .

order houndary conditions (4.129) and (4.130) are now similar to Unluta
and Mei (1970) and Weber (1983a) ( as we drop k%p? term from (4.115c,
d) ) as discussed before (i.e., O(k%?)). Therefore, the surface boundary

conditions for the horizontal component of the stress are now

VD|

e " ==

vD| (4.140)

V2, —0=()
The homogencous solutions thus obtained (in Laplace transformed
variables) are similar to equations (4.139). But the coefficients

o Pl VP, dEy, VP ete. (equation 4.139e) are now given by

k|kloys(1+cos(6-6")) (1+kl)
(.\' - 8) }\41

dE, VP = dE 1 (@.0) dE (-,8)

, Q 2 9’
'V _ 3 - -0’

(1&_,,((0,9) dg (—w 9)

d&; VP =0

, . 0+0
@€ VP ==dEy VP sin(——)

G LS PN Y

AL T+ e 8 e e e
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k|klwy, (1+cos(@-0) (1+k/)

(I&Z.VVD = s+ 8) )\.l llt‘; ] ((0,9) (Ig l("(l)»B’)
1) Q 8+0’
WD _ 31— e e B0 v 2
(15,2), {(s+5)llk lo(1 -cos(0-0 ))+s(.s'+6)| ¥ cos( 5 Yt

& (©,8)d€ | (~0.0%)

(IF';},VD =()

2

, 0+0’
By VP =~dE3."P cos(—-)

déz_:VD =V R (lga) (Ié l((ﬂ,ﬂ) dE_, ] (_U),B’)

Q
s(s+0)

dé;.YP=—v d& ((0,8) dE | (—0),8")

0=2k310(1 ~cos(6-0"))2

(4.141)

The inverse Laplace transform of (4.139a-4.139¢)  with
d€, VD, dE, VD, dE; YD ete.  given by (4.141) give the homogencous
solutions for the decaying wave problem
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S APy -
106~ M V-
£ Wy

VDh v b
] J' j J‘Iqukllxl(nkl)(lﬂm(e ~o) Ve j” G

2
— ANy k3
+iy,m/<3/(1—cos(e-e'))«l!e-&f AR Sl
T 0 .\[z 2

(I ~cos(@— 9))2\/\'('[ i—-————‘-‘-y-gdﬁ—e S!J”L 4VC IC)
)

i1y k2l
_722 un(e )(1—cos(@—0")) (1 -¢= 1) ¢hat] eik(Yia+Y2h)

dE | (@.8) dE | (~00,8") (4.142a)

- ,00 J\ZVC-—
‘,vuh_J Im |y4wk|k|(l+kl)(l+cm(e 9’)\/" ‘s’jlc——'—\[‘:——gc
0

— o C Afz v C—-——- i (l)k3/
+ iy @k3(1 = cos(8~0")) VL. ~8f J‘ ¢ W, ot - Yo
T 0 VT 2

2
= AV 1 oBL-AV -
-C -8M)2 ! li_.:__4_v_c. — Ot ¢ 4VC
{1 - cos(6-6")) \/n(jo : dC—e J IC)

Y ‘
- 22 .\'1'11(92e )(1-cos(@-0") (1 —¢~ 81 ehat ] ek Ma+1,0)

d€(w,8) dE(-,8") (4.142h)

HIU 4T oo
wy Ph= j J' J [ v (1 —cos(®-6%)2 ( (1 —cos(0-6")

t ’ {
MV B _'-‘-'—)1 +(1 0-0) e | SE-AVE gy —'i)z )
L) rfe( = dC+(1 +cos( ) e IOL rfe( = dl

2
—"ﬂu-(m(e =001 =¥t KNI+ o (@,8) dy (-.0)

(4.142¢)
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Notice now that the above homogeneous solutions satisfy thc initial
condition (4.135). For 6=0'=() and using the approximation k/«1,

equation (4.142a) reduces to

T R
MZVD},___J 4k ,‘N! i [ ¢ At dG |(/€l (w) (IE_,I(—(D)
oo ToJdo T

(4.143)

Using the relation for the monochromatic wave amplitude as in (3.66),

uyP" can be written as

¥
-

.
o I(_)&;"'_
wPh=2AZ o ed[ T g
" (4.144
ad)

which is the Weber's solution (1983a, eqn. 6.7) with {=1-1,.

By dropping the O(4%?) terms from the particnlar sohitions
(4.127) the horizontal velocities are not significantly changed. We also
lose wyPP, the particular solution for the vertical velocity (4.127¢) (which
is O(k%%)). This is the limitation of our solution. However, this will effect
the total vertical velocity solution w)” in an insignificant way because
the homogeneous solution for the vertical velocity whP! is of order (k)
whereas the particular solution w)™ is of order k%2. The ecrror
introduced by dropping O (:2/2) terms from w/"? solution is estimated to
be of order 0.1 to 0.2 % of the total solution which is quite negligible. In
the nondecaying wave case (section 4.4.2} the homogeneous solution for
the vertical velocity w)" (4.98) (see G in 4.101b) is of order O (k) whereas
the corresponding particular solution w)/? ( 4.82) is of order O (}%/2).

The above homogeneous solutions (4.142a-4.142¢) arc
different from those of the viscous nondecaying-wavc solutions (4.81) -
(4.83) and they decay with depth and time. The solutions of Chang
(1969) do not decay with depth (because Chang (1969) chosce an
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oscillatory root for the solution to her homogeneous equation that
satisfles the boundary condition at the surface only). A most interesting
point is that the homogeneous decaying wave solutions (4.142) go to zero
as viscosity goes to zero implying that the total viscous decaying wave
solutions reduce to the inviscid solution as viscosity tends to zero. This
is contrary to nondecaying wave case where homogeneous solutions
(4.97 and 4.99) do not go to zero as viscosity is set equal to zero
(probably because of the applied forcing).

The total solutions for the viscous decaying waves are

therefore:

VD =iy VDp 4. VDR

i 2

+IL 4T oo
"2Vl)=_[ j J- mk(AV’)y +iBYPy) ekia+%:b) gt , (0,0) b (~00,8")
-n

(4.145a)
vV =y O 4y D

+T L+ £ 400 ). .
nyVP = _[ J‘ j %A—(AV”Y4+iBVDyz)e’k(Yl"+Yz”) d€1(0,8) € 1 (-0.8")

(4.145b)
V0= /P 4 YD
+7 L+ f+oo .
WZVI) =J‘ I J kaVD el‘(Yl(l"'Yzb) (151(0),9) dal(_w,el)
4.145¢)

where

AYP =] (14¢05(8-0) XK1 ¢=2 [k (14cos(89")) (cos.j.#sm-j-) elklecll) g8t

2
- )5C-MZVC-'—
(1D +cos(@-8N LS [ ot AT
+ 2|k |(1+kD(1 + cos(B 9))\/nc -[0 T €

Y SA L nn s o

DI SI-J S . U CE NP
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BYD = 2|k}l (1-cos(8-9")) (m.\-‘l-'-.\-m%) AR e+l =01

- )SC" ;va C-"‘—"—
+2421(1 - cos(0-6") \/xe-&f"____i\:é i
ToJ VC

. ,_szq—_‘_‘z_ ’SC A--y N g :
(1 - cos(®~82Y ( Ly S [ MY )
T\Jo T 0

—kl Sin(—ﬁ)( 1 —cos(0—0")) (1 —e~ S har

CcVP= k31v(1—ms(e-e'))ﬁ((l—cm(e 6") e—% VE Erfeq I ')dc_,
Vavg

+(1 +cos(0—6") e‘5’j

eS-2NE Eppe( L (n;)
0

_Ez_l(] __(.05.(9_9'))2(] - 8!) et | USRS ‘IE:I((”’B)‘IE:I(‘U)'W)
(4.145¢)

In order to understand the threce solutions (e.g., inviscid (3.61,
3.63), viscous with forcing (4.102-4.104) and viscous decaying (4.145a-
c)), the second order zero frequency velocities at a=10m, h=10m are now
plotted as a function of depth. The real part of the velocilics are
computed for single frequency interaction for amplitude equal to 1 m. (A
bigger wave amplitude is possible which will give a larger magnitude for
these velocities). Figure (4.3a) shows the plot of «-component of motion
against depth of the inviscid uf¥, viscous decaying u}” and viscous
nondecaying (forcing) u,"" solutions. The top plot in Figure 4-3 shows
that when 0=0"=0 the velocity due to decaying wave solution uz"“ is the
largest near the surface. The next largest velocity at the surface is that
due to inviscid solution V¥ which overlaps u}*. The viscous
nondecaying solution u)/" generates the smallest of the three velocities

near the surface for 8=0’=( interactions. The threce solutions tend to
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Figure 4-3: Plots of inviscid (3.63, 3.61), viscous nondecaying
(4.102-4.104) and viscous decaying (4.145a-c)
solutions versus depth. Note that magnitude and
direction of the velocities vary as 6 and 6’
change. Parameters used in the calculations are
shown on the plots.
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converge below the surface. Figures (4.3b) and (4.3c) display the same
velocities for the nonzero angles of interaction. In these cases the inviscid
ujV and viscous decaying uyP solutions are almost in phase and of
similar magnitude. The viscous nondecaying solution u,"/ not only
decays more slowly with depth but also has a different direction and
amplitude from that of the inviscid and viscous decaying motions. The
vertical motions generated by the viscous decaying wZVD and viscous
nondecaying w,"" solutions are at different directions (Fig. 4.3d). The
inviscid solution does not give any vertical motion. The vertical motion
due to the viscous forcing solution, w,"”, is larger than wy” and decays
more slowly with depth compared to the viscous decaying motion wy?,

4.5.3. SUMMARY

The 3-D Lagrangian equations of motion are solved
analytically for a homogeneous, nonrotating and viscous ocean. The
ocean is considered to be deep so that the waves do not feel the effect of
the bottom. The solutions are obtained following two approaches:

decaying and nondecaying wave solutions.

The nondecaying wave solutions are based on application of a
small external stress (along the vertical direction) that are just enough to
maintain the wave against decay. The solutions so obtained decay with
depth (but do not decay in time). The solutions show random motion in
both horizontal and vertical plane. The horizontal component of the
velocity (4.102) reduces to Weber’s (1983b) solution as 8=0"=0. The total
solutions do not reduce to inviscid solutions as the viscosity is set equal

to zero.

The decaying wave solitions, on the other hand, decay with
both depth and time. The particular solutions of the horizontal motions
(4.127a, 4.127b) are similar to nondecaying wave case (4.81, 4.83) for
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time r=0. Unlike nondecaying wave case, the time and space dependence
of the homogeneous solutions are inseparable. Homogencous equations
are solved by applying Laplace transform following the technique of
Weber (1983a). The total horizontal solutions reduce to Weber's (1983a)
solutions for the monochromatic wave situation with 6=6"=0. The total
solutions (4.145a, b) also reduce to inviscid solutions (3.63) and (3.61)
when viscosity is set to zero.

The magnitude of the «- component of the viscous decaying
wave solution u)? is large near the surface for 9=6=0 compared to
inviscid #4V and viscous decaying solutions u,'" (Fig. 4.3a). However, for
interactions with non-zero angle between the primary waves, ufV can
cause larger horizontal motion at the surface (e.g.. Fig. 4.3¢) than that
for the viscous solutions. On the other hand, the viscous decaying
solution uy” and inviscid solution «fV¥ decays more quickly with depth
compared to viscous nondecaying solution (Fig. 4.3b.4.3¢). The zevo-
frequency vertical velocity for viscous decaying wi? and viscous
nondecaying u,” waves have different directions (Fig. 4.3d.¢). Once
again, the viscous nondecaying solution wy* decays more slowly with
depth and penetrates deeper.
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Chapter 5

CALCULATION OF EDDY
DIFFUSIVITIES

5.1. INTRODUCTION

In the last two chapters it was shown that, surface waves can
cause zero-frequency motions in both the horizontal directions and the
vertical direction. The zero-frequency velocity of a fluid particle may be
viewed as the average velocity of a particle at a given depth for the
averaging time large compared with the wave period. It is also averaged
over the wave group. Since the wave field consists of a superposition of
statistically independent waves, the zero-frequency velocity associated
with individual particles will experience fluctuations relative to the mean
value for small time. From random walk theory, such random velocity
fluctuations can result in a particle dispersion which, for large dispersion
times (compared to integral time scale) can be represented as a Fickian
diffusion process. Experiments by Schott et al, (1978) show that the
horizontal components of diffusion coefficients tend to increase with the
increase of the surface wave height. We are now in a position to
investigate how the viscous surface waves might contribute to the eddy-
diffusion.  Herterich and Hasselmann (1982) calculated horizontal
components of single-particle, two-particle and patch diffusivities from
their solutions for the zero-frequency drift velocities. They did not find
solutions resulting in vertical diffusion. In this chapter, we derive
expressions for the eddy-diffusivity tensor for single particle, two-particle
and cluster of particles following the technique of Herterich and
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Hasselmann (1982) and Sanderson and Okubo (1988). The equations for
both vertical and horizontal eddy-diffusivities are then integrated
numerically by using the Pierson-Moskowitz spectrum (Picrson and
Moskowitz, 1964) for a fully developed sea. Eddy-diffusivities from the
viscous solutions will then be compared with the cddy-diflusivities from
the inviscid solutions.

5.2. MATHEMATICAL DERIVATION

SINGLE-PARTICLE DIFFUSION

The single particle eddy-diffusivity tensor, D, for long-timc

ij’
(relative to integral time scale) is defined as

1 [+
Dy=3) Ry (5.1)
where
R; (0= <u/(+T)u j’(r)> (5.3)

is the covariance function and

G,.j(m)=:2'E j +MR‘-j(t)c'i"“(It
- (5.4)
is the cross-spectrum of the particle velocity fluctuations «';=u;—<u;>. The
angle brackets represent averages over an ensemble of particles. Here
iu; (i=1,2,3) denotes velocities in the ¢, h and ¢ directions. As the wave
groups propagate by, the velocities of individual water particles fluctuate

randomly as functions of space and time.

The integral time scale is a measure of the time interval for
which a particle’s motion remains correlated to its initial valuec.
Herterich and Hasselmann (1982) argued that for narrow bandwidth
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deep water surface gravity waves, the integral time scale is of the order of
the inverse of the spectrums’ bandwidth. We will use the frequency band
appropriate to the Pierson-Moskowitz spectrum [w = (1.0 - 0.3) 1/s].
Following the argument of Herterich and Hasselmann (1982), this gives
an cstimation of the range of integral time scale of (1 - 3) s. By definition,
the integral covariance time scales are

+oo

Rij(t)dt

. 21G,;(0)
TR

= = )
J._w G,-j(o))do)
(5.5)
For 1+ much greater than T the covariance of the positions of an infinite

enscemble of particles is

<(xl'_<ri>)(Xj"<Xj>)>=2Dijt (5.6)

which increases linearly with time (Taylor, 1921). If ¢ is less than the
integral covariance time scale, then the diffusion is non-Fickian and
spreacding increases proportional to time raised to a power greater than

1. In that case, (5.6) is given by

t
<X-<x>) (xj-<xj>)>=J‘0K ,-j(t’) dr 5.7

where

¢
Kl'_f(t’) =J' 'Rij (T) dt.
-{

In calculating the diffusivity tensor Dy, we shall use the
spectral representation (5.2) rather than the correlation integral (5.1).
Setting the first-order spectrum to zero at zero frequency, only the
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second-order perturbation velocities contribute to the zevo-frequency
energy density.

Before we proceed to derive the expression for the diffusivity
tensor, we will first rewrite the mass transport velocitics (5N, 1,1, 15} 1)
in a more convenient notation. The second order inviscid solutions (3.63

and 3.61) may be written as

+T L+ P +oo ,
p IV —_-J' J' j odN ek a+ 10 gE  (0,8) | (~.8")
“KY - —eo

(5.8)
where
i=1,2
and
ok
“lw= 5 AINY3
0k
a21N= T AIN-Y 4
(5.9)

and AV is given by (3.62) v,,7,.73. 74 are given by (4.77). Similarly, the
second order viscous forced (nondecaying) solutions, ./ (4.102-4.104),

are expressed as
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e +L P 4T L 4oo L.
uz}"= J j j oc}’" cik(Yya +v,b) dEl(w,B)dEI(—w,B')

~¥ -~
(5.10)
where
i=1,2,3 and
: 0k ; . '
o=~y +iBYy)
” wk 2 . 3
aZW .___?(AVI 'Y4+lerY2)
o =wkC',
5.11D

AVE  BYF CYF are given by (4.105). Following the same procedure, the
sccond order viscous decaying wave solutions, 1,/? (4.145a-4.145c), can

be expressed as

L+ ptoo .
up!P = j f _[ of P o+ 1:0) g (,6) d j (~,6)
-nY -1

(5.12)
where
i=1,2,3
and
wk 7 .
wk .
Ot3VD=(1)kCVD
(5.13)

and AYP, BVD cVD are given by (4.145d).

The single particle diffusivity tensor for times greater than the
integral time scale is given by
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+R £ +TT oo
DU-"“GU(()):”J I J. oz,jS,(co.e)S,(w.e’)dmdede'
~MY T —o0

(5.1
where
0= 00; (5.15)
<d€ (0,0)dE;*(0",0”")>=$(w.0) dwd® d&’
w=w",0=0" (5.16)

<d€(w,0)dE, " (0",8")>=0 atherwise.

The angle brackets represent the ensemble average and the superseript
asterisk denotes the complex conjugate. The symbol §; represents the
wave spectrum, For inviscid motion, the single particle diffusivitics, I),.j’N.

are similar to (5.14) except that ay; is replaced hy (x,-j’N where

IN - IN o IN
0 =0 0L, (5.7

Similarly, the single particle diffusivities for viscous forced motion, I)l.l.""',

are similar to (5.14) except that oy, is replaced by o,/ where

VE_q VI o VF
o =0y ot (5.18)

A similar expression holds for viscous decaying diffusivity (1,'") where
o in (5.14) is replaced by o;"” where

VD _ o VD o VD
0 =0y o (5.19)
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PAIR DIFFUSION

The particle pair diffusion equation is useful for interpreting
experiments with clusters of drifters. In such experiments the reference
point for single particle diffusion, i.e., ensemble mean velocity, is not
always well defined by the finite buoy cluster. A dispersion formulation
in terms of pair separations avoids this difficulty. For a pair of particles
that are Initially separated by a distance r;, the zero-frequency
component of the relative velocity is calculated following Herterich and
Hasselmann (1982). Let (a;,b,c)) and (ay,b,,c,) be the positions of two
particles. Then the relative motion between them is given by

Uzl-(z)(l'l,l'z, 1'3) =U2i((ll’bl’ Cl)“UZi((IZ, [)2, C2) i=1 ,2, 3
(5.20)

where
(I'l s I'3) = (02""0 1 bz"bl »yE9—C l)

To get a picture of the two-particle eddy-diffusivity by varying
all the three variables (i.e., a, b, ¢} is difficult because of the anisotropy of
the velocity. Herterich and Hasselmann (1982), Sanderson and Okubo
(1988) calculated two-particle eddy-diffusivities only as a function of
horizontal separation between a pair of particles. They did not consider
separation in the vertical plane in their calculations of two-particle
diffusivities. Here we will consider two cases: 1) the two particles are
initially at the same depth level but located at two horizontal positions
(i.c., horizontal separation) and 2) the two particles are initially in the
same vertical plane but separated by a vertical distance (i.e., vertical

separation).

o
. LY ]
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CASE 1

Let the two particles be at same depth but at two different
horizontal positions given by (), by, ¢)) and (uy+r. by+rs. ). Then the
two-particle inviscid velocity, U,/N®, is similar to the single particle
inviscid velocity U,V (5.8) except that ofV;i=1,2 is replaced by

al_lN 2= a}N{ 1- eik(msﬂ—m.\‘ﬂ’)rl + ik (sinO-sin0))r, ), (5.21)

The inviscid two-particle diffusivity tensor D,/N ), is therefore
given by (5.14) with a; replaced by o,V ), where

o ‘.}N =2 ai}N {1 ~coslk(cos®-cos®')r + lc(.\‘iuﬂ—\\'inﬂ')rz 1. (5.22)

Following the same technique, the viscous forced two-particle velocities
are given by (5.10) with «}” replaced by

aiVF (2)= OL‘W" [ 1 = pik(eost-cost)r) +ik(sint-sind")ry | (5.23)

and the forced viscous two-particle diffusivity tensor, D} ), is given hy
(5.14) with o; replaced by o,/ @), where

ai}!”" @=2 a,-}’F {1 =coslk(cos®-cos®')ry +k(xinO-sin® )y} (5.24)

Similarly, for viscous decaying wave motion, the two-particle cddy-

diffusivity tensor, DY@, is given by 5.14 with oy replaced by ofP®),
where

a,-}VD 2)=2 a,-}”){ 1 =coslk(cos8-cos®)ry +k(sin@-sin®’)ryl ). (5.25)
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CASE 2

Now consider the situation that the two particles are at same
horizontal position but separated by a vertical distance r3. Let the
coordinates of the two particles be (a,b,c;) and (a,b,c;). The components
of the velocities will then depend on the distance of vertical separation
between the two particles. In this case, the inviscid two-particle velocities
for a pair of particles separated by a vertical distance (r;=c,~c,) are given

by

UINa,b,r)=UfN@a,b,c)-UMa,b,cp) i=1,2,3 (5.26)

and the two-particle viscous diffusion tensor D',{I’-V @ is given by (5.14)

with o replaced by o; /N @), where

?IN (2) = y’!IN (2) 5/IN (2
o N D=g/IN DI @

and
Y D=afe)-of¥e 13, 527

Similarly, the viscous forced two-particle diffusion tensor D} @ is given
by (5.14) with oy; replaced by o} @ where

P VF(2) e py'VF (2) yVF (2
o D= YF D oyF @

and
@ ®=alfep-afFic +ry) (528

Note that pair-diffusivity goes to zero as the separation scale r — 0.
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Following the same procedure, one could also write an
expression for the two-particle diffusivity tensor for the viscous decaying
waves (5.12). However, the viscous decaying (5.10) and inviscid (5.8)
solutions behave somewhat similarly to one another (see Figure 4.3).
Besides, the viscous decaying solutions take large computational time
since it involves four dimensional integration. Therefore, two-particle,
patch- and patch-averaged diffusivities for the viscous decaying wave

solutions will not be pursued.

PATCH DIFFUSION

Often in real cases of practical importance one is nol
interested in the motion of pairs of particles, rather one is interested in
the diffusion of the whole patch. In that case one has no recoursc other
than to consider dispersion relative to the motion of the centroid of the
tracer patch. The centroid position and velocity of the patch at a given
depth is defined by

Xo;= j J‘ X0, C e’ 0 )det’ dly’

Uy=[ [ Uyt iy v

where C(d,b’) is the normalized tracer concentration (Herterich and
Hasselmann, 1982). The motion of a particle relative to the centroid of &
patch of material is the same as the single particle case except that o, is
replaced by

ai(l’) =o {1 _J‘ J. C(’ ) eik(cost-cost)(a"—a) + ik(sinO-sind"Yb"=b) o’ (fly' ).

(5.29)

The inviscid eddy-diffusion relative to the patch centroid, ij’-" M, is given
by (5.14) except that o is replaced by
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afj’-v P = a{IN {14+ cm2 +sm2 =2 cm cos[k(cs8-c050")a +k(sinO-sin®”)b)

=2sm sinjk(cos0—cos0’)a +k(sinB—sind®’)b]}  (5.30)

where
cm=| | C(d'b’) cos|k(cos®-cosO )a’ + k(sin@—sin®")b’| da’ b’

(5.31)
sm=| | Cld'b’) sinlk(cosO—cos®’)a’ + k(sin®—sin®" )b’ da’ db’.

(5.32)

The viscous nondecaying (forced) patch-eddy-diffusivity tensor D)%), is
given by (5.14) with o; replaced by off ) where

a}l’-’ = a};’ U1 4 em2 4+ sm2 =2 emcos[k(cos@-cos®)a+ k(sinB—sin®")b]

=2smysinlk(cosO-cosO )a+k(sinB—sind’)b]}. (5.33)

For very large patch, cm—0, sm—0, and o/¥®), and o}F @)
reduces to ofY, and o} respectively. Thus the patch diffusivity tends to
single particle diffusivity. As the patch size becomes much smaller than
the scale of the surface waves, cm— 1, sm— 0, and the patch diffusivity

tends to zero.

Note that the patch diffusivity (5.30 - 5.33) is a function of
position within the patch. In experiments, one usually has insufficient
data to determine the diffusivity as a function of position within the
patch. Rather, it is usual to determine the diffusivity averaged
throughout the area of the patch. This patch averaged diffusivity for the
inviscid motion, D;/¥®4), can therefore be calculated from (5.14) by

replacing a;; with
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o /N @) =_f j o, /N Oa,b) Ca, ) dadb (3.34)

where o,/N®) is given by (5.30 - 5.32). Similarly, to obtain the patceh-
averaged diffusivity for the viscous forced motion, D0, replace o
(5.14) with

T
o ¥ (a) =“a,. i Pab) Cla. b) dadb (5.35)

where o ) given by (5.33),

5.3. NUMERICAL CALCULATION

In order to obtain an estimate of the magnitude of the eddy-
diffusivities derived in the previous section, the cquations (5.14) arc
numerically integrated for the cases of single-particle, two-particle and
patch diffusion. The wave spectrum is assumed to be separable into a

frequency dependent part flw) and an angular spreading part ©(0) i.c.,

S1(0,0) =f(w) O(0). (5.36)

The spectrum used in this calculation is the empirical spectrum of
Pierson-Moskowitz (1964) for the fully developed sea given by

(0
flwy=0,, g% 05 exp|~5/4 (?;B I (5.37)

where a,=0.0081 is the Phillip's constant and w,, is the peak frequency.
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The parameters in (5.37) are chosen from Hasselmann et al. (1973). The
peak frequency 0, is determined by the wind speed U at 19.5 m height

above the sea level through the relation

w,,=0.1402mg/U. (5.38)

The peak frequency of the fully developed Pierson-Moskowitz spectrum
for the wind speed U=10m/s is 0.88 rad/s. The angular spreading term

©(0) is normalized such that

n
J. O(0)do=1.
-1

First, we calculate the single particle eddy-diffusivities as a function of
the narrowness of the spreading function ©(8). Single particle eddy-
diffusivilies are calculated by numerically integrating equation (5.14)
with §,(0,0) specified by (5.36) and using Pierson-Moskowitz spectrum
(5.37). The narrowness of the spreading function is represented by

O(8)=4,cos"8) 18] <n/2
(5.39)

00)=0 n2<|0|>n

where the exponent » characterizes the narrowness and the coefficient 4,

is given by
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_ o 2X4x6.. . Xn
P ix3x5 ... x(n-Dr

h even,

and (5.40)

[ Ix3x5...%n

"=3axaxe xop " o

The infinite range of integration for frequency. o, is replaced by a finite
range from 0.3 to 5.0 rad/s. Single-particle eddy-diffusivitics for inviscid,
viscous forcing and viscous decaying solutions are calculated for two
viscusities: 1.0x107¢ (i.e., molecular viscosity ) and 1.0x10-2 m2/s, The
latter viscosity is used by Weber (1985) to calculate the mass transport
velocity from the zero frequency interaction of two decp water surface
gravity waves. In order to use any large viscosity in our calenlation, we
must ensure that the viscous length scale / and wave number & satisfy
the condition 4/ « 1. Using the peak frequency ,, and v=1.0xI10"2m%s one
finds that 4/=0.01. It is, therefore, safe to use the latter viscosily in our
calculation.

Figure 5.1 plots the single particle diffusivities D,/V, DY and
D;VP against the directionality parameter n. The inviscid solutions
reproduce Herterich and Hasselmann's result (Herterich and
Hasselmann, 1982 Fig.1). The inviscid and viscous (forced and decaying)
eddy-diffusivities are strongly anisotropic. With the increase of the
narrowness parameter n, the eddy-diffusivity in the «- direction increases
and in the b-direction decreases. The change in the eddy-diffusivity
along b-direction is very small compared to that along the «-direction for
the same change in the directionality n. The plot demonstrates that for
eddy-viscosity v=0.01 m¥s the viscous decaying diffusivity D,{” is larger
than the inviseid diffusivity D{]¥ and the viscous forced diffusivity DY by

factors of 1.2 and 1.7 respectively at the surface. This can also be seen
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Figure 5-1: Plots of single particle diffusivities as a function

of exponent n of the dlrectionalltl'y function (eqn.
5.39). (a) inviscid case, (b) D;'" with viscosity

v=1.0x10"5 m%s, (0 D;YF with viscosity
v=1.0x102m¥s and (d) D,YP with v=1.0x10"2 m%s.
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in Figure 4.3 which shows that the velocity due to the viscous forcing
solution u,""" is smaller than the inviscid u,/¥ and viscous decaying u,"”
velocities. Thus the viscous forced solutions give smaller horizontal
diffusivities than the inviscid solutions, whereas the viscous decaying
solutions give larger horizontal diffusivities than thie inviscid solutions. In
the case of viscous forced solutions an increase of viscosity v by four
orders of magnitude resulted in horizontal diffusivities being decreased

by less than a factor of 2.

For a symmetrical spreading about the wind direction which
we define as the ¢-axis, ©(0)=1/2r. The non-diagonal components of the
diffusivity tensor vanish for the isotropic case. Unless explicitly specified
we will take O(O):-zlu- throughout the following work.

One might think that effect of viscosity is felt up to the depth
of the viscous length scale / below which viscous and nonviscous
solutions merge together. The viscous length scales /=(2v/v,,)!/2 for the
two viscosities 1.0x10~% and 1.0x10~2 m2/s are respectively 1.5 cm and
15,0 cm. In order to investigate the depth dependence of the single-
particle diffusivities, figure 5.2 plots the horizontal component of eddy-
diffusivities against depth for the inviscid and the two viscous cases. The
viscous decaying and inviscid diffusivities converge to the same solution
slightly below the depth of the viscous length scale. The viscous forcing
diffusivity D;¥F decays more slowly with depth until it converges with the
inviscid and viscous decaying diffusivities at a depth of about 10 m. The
e-folding depth for the inviscid diffusivity (which is half the Stokes’ depth
=1/(2xk,)) is about 3.3 m. Also recall that the total viscous forcing
solutions (4.102-4.104) do not reduce to inviscid solutions (3.63, 3.61) as
viscosity tends to zero. But the viscous decaying solutions (4.145) go to
inviscid solution when viscosity is set equal to zero. The primary effect of
viscosity in the viscous decaying solution is to create additional shear
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and diffusion near the surface, but otherwise to leave things unchanged

from the inviscid case.

The Pierson-Moskowitz spectrum (5.37) is dependent upon
wind speed through the relation (5.37). It is. therefore, a matier of
interest to investigate how the eddy-diffusivities depend on the wind
speed U. For the given Pierson-Moskowitz spectrum (5.37) together with
(5.38), the horizontal eddy-diffusivity (5.14) may be expresscd as

Dy=0.37 . 2‘; 1) (5.40)

i.j=1,2

where 5!'! is a nondimensional diffusivity. Substituting equation (5.17)
into (5.14) and applying transformation of variables, the inviscid non-
dimensional diffusivity DI is given by

—— (T LT 5 4w, %
DiilN=I J- . y Y 2(1 +cos@®- 9))20"y e 'vz dy dfde’
(541w
where
i=1,2 k=3,4 and
y=?ﬂv (5.410)
w

Thus the horizontal eddy-diffusivity increases with wind speed raised to
the power of 3. Herterich and Hasselmann (1982) also obtained a stmilar
power law between the wind speed and the inviscid cddy-diffusivity from
dimensional arguments. However, their relation has a printing mistake
(Herterich and Hasselmann, 1982, eqn. 3.5; g appears as multiplicative
constant instead of division) that makes it dimensionally incorrect.
Nevertheless Herterich and Hasselmann (1982) do give the correct
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Figure 5-2: Single-particle diffusivity DN, D,'F, D;YP
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135

exponent for U. A similar power law holds between the viscous foreed
eddy-diffusivity D} and the wind speed U. Figure 5.3 shows the plot of
the (z-component of the inviscid and viscous forced eddy-diffusivitics
@Y, b{F) as a function of wind speed. A full expression for the non-
dlmensmnal diffusivity, D” (which involves a large number of terms ), is
avoided for the sake of brevity. Keeping only the dominant terms, the
nondimensional form of the viscous forcing horizontal diffusivity l)" is

given by
4T 4T 4w, 2 4(1)”,"Qu
DV’~J I y 2[72(1+cos(0—6)2 e~ o T+ 279,21 —cos(9- 0) e T
2\11:*(6 —0)y2 20,1+ 5
3 ¢ u""?",‘_"""lc"i-"‘(!yd(){le'
(5.42)

From Figure 5.3, the slope of the lines is ohserved to be 3.

The vertical component of the eddy-diffusivitics D;,Y" and
D33"P are calculated by using (5.14) with a;; replaced by (5.18) and (5.19)
respectively. Once again the Pierson-Moskowitz spectrum (5.37) is used.
The vertical component of the viscous forced eddy-diffusivity 14,V
depends on depth ¢, viscosity v (through /), and on wind spced U. The
vertical component of the viscous decaying eddy-diffusivity depends on
all of the above mentioned parameters and time ¢  First, we will
investigate how the vertical component of the eddy-diffusivities ;""" and
D4,¥P (viscous forcing and viscous decaying) compare to one another.
Figure 5.4 plots D3;"" and D33Y” as a function of depth. The vertical
component of the viscous decaying eddy-diffusivity 1)33"” is zero at the
surface and increases up to a depth of 1 m. Below this depth, D4,Y"

decreases with the increase of depth. The viscous foreing cddy-
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Figure 5-3: Single-particle diffusivities D)}’ and D{F plotted
as a function of wind speed U. The following
parameters are used : ¢=0, v=1.0x10"6m?s.
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diffusivity, D3,¥F, is also zero at the surface and reaches a maximum
value at a depth of about 4 m below the surface. It decays more slowly
with depth than the viscous decaying eddy-diffusivity 4;"”’. Note that
D+3YF and D3P are smaller than the eddy-viscosity v by magnitudes of

approximately 4 decades and 6 dccades respectively.

Since the viscous nondecaying diffusivity 1;,"" has larger
magnitude and also penetrates deeper in the water column than that of
the D3P, the behaviour of the former diffusivity is further investigated.

The vertical component of the viscous forcing cddy-diffusivity
D-%¥ consists of terms that are contributed from both particular and
homogeneous solutions. In order to find the dominant terms in D4,

D4%" may be written explicitly by using (5.14) and (5. 18)
DYF =nj J J WU2CVIS (0.0)S (0.8 der ) 1B’
)

=terml +term2 +term3 (5.43)

where CV¥ is given by (4.105). Taking the square of C¥" and rearvanging

T X (oo
rerml=nj J J W2 2U492G24 AR (0.8)S, (0.0 o>l Y’
-nt¥ —1rv ()

T fo froo
turmZ=1tj J J 2652w 9G ¢2M9 51(0,0)8 (0,8
-~ -1 ()

( - (1=c0s(8-9"))2 ms% e kletell (1 —c0s(0-07))2 2k ) dwd de’,
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T opm poo
term3= ItJ. J J 40%UOH S (.0)S(0.8"
-0

( —(I—cos(0-8"))2 m.s-‘T' AT+l g (| pox(@-07))2 (240 )2 dwdd dey.
(5.44)

The constant G is given by (4.101b) and rernml, term2, term3d represent
contributions from different terms in (5.43) grouped in ascending powers
of (k/).

Figure (5.5) shows the plot's of different terms in D) as a
function of ¢ for viscosity v=10x10"%n%/s. Total contribution from :ill
three terms are also shown on the same plot (Fig. 5.5). First note that
the vertical eddy-diffusivity is much smaller than the viscosity. The top
curve is due to ferml and to within the plots resolution it over lies the
diffusivity obtained from all three terms. The other two lines are due to
term2 and rerm3. It is clear on the plot that the main contribution to the
vertical diffusivity comes from the rterml which  constitutes  the
homogeneous part of the solution. Recall that the homogeneous solution
(4.98) has a term which is of O(k/) (G, 101b) and the rest of the terms are
of O(k/N? or higher, therefore, much smaller. Equation (5.43) may,
therefore, be simplified by keeping only rerml and dropping remaining
terms in (5.44). This analysis also supports our previons assumption in
section 4.5.2 that the particular solution (4.127c) of second order viscous
decaying waves is negligible compared to the homogeneous solition that
forms the dominant part in the total solution (4.145c¢) of the viscous
decaying problem.

From equations (5.43) and (5.44) it is clear that the vertical
eddy-diffusivity D4;"" is a function of viscosity, wind speed and depth.
The depth dependence is shown in Figure 5.5, in which D ;3" (top line) is
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Figure 5-5: Single-particle diffusivities Dj§f as function of
depth for v=1.0x10 m2/s. Contributions from
different termns in (5.44) are shown. The top line
corresponds to terml and total Dq3'F. The middle
lize (dashed) and the bottom line (solid) are due
to term2 and term3 respectively.
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plotted as a function of ¢. As expected, the vertical diffusivity D" is
zero at the surface and increases to a maximum value at about 4 m
depth. Beyond this depth D;;'" decreases monotonically with depth ¢
(Figure 5.5, top line). The effect of varying the viscosity v appears in
Figure 5.6 where D" is plotted as a function of viscosity v. The plot
also demonstrates how the different terms in equation {5.43) contribute
to the vertical diffusion. Figure 5.6 again demonstrates that total
diffusivity D4;Y (the top line) is mainly due to terml. The slope of the
total D.,YF line (top line) is unity. The apparent deviation from the
straight line (towards the end of the top line. Figure 5.6) indicates that
term2 and rerm3 become important as v increases. Nevertheless, the
condition that 4/« 1 imposes a limitation on the maximum value of v that
can be used in our calculation of eddy-diffusivities. Thus it reassures
our previous conclusion that dropping the Ok/)? terms does not affeet the

accuracy of our solution.

As the wind speed increases, the peak of the Pierson-
Moskowitz spectrum shifts towards the low frequency cend of the
spectrum. The dependence of vertical eddy-diffusivity /4, on the wind
speed U is shown in Figure 5.7, The vertical eddy-diffusivity 0"
increases rapidly with the wind speed up to U=10 m/s. Beyond that
speed, D4,V" increases slowly with U with a tendency to saturate after
U=20mfs. Experiments by Kullenberg (1971) also show that vertical
diffusivity increases with wind speed.

An order of magnitude estimate of the vertical eddy-diffusivity
may be done using a scaling argument. For a random wave ficld
characterized by a narrow spectrum of bandwidth Aw=10-03s"!, the
integral time scale 1~(Aw)~!. The vertical velocity w roughly scales as
<w>=(kl)<u>. Taking <u>=0.1-0.2mfs, v=0.01m%s and using Dq3=<w?>1 for
the vertical eddy-diffusivity we have Dj33=2x1070-7x1075 m2/s. This is
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comparabhle with the orders of magnitudes of the vertical eddy-diffusivity
obtained by the numerical integration of equation (5.43) (see Fig. 5.4).

The two-particle diffusivities are calculated both as a function
of horizontal separation r and vertical separation r; for the inviscid and
viscous forcing solutions. For the horizontal diffusivities, we will consider
depth ¢=0.0. Single-particle diffusivity is plotted (Fig. 5.8) as a straight
line since separation scale has no meaning for single particle diffusivity.
For two-particle and patch diffusivity, the separation in the b direction is
set to zero. Figure 5.8 displays the plots of inviscid D" and viscous
forcing DY diffusivities as a function of horizontal separation r. Patch-
diffusivities are calculated only for horizontal separation r. For patch-
diffusion, r is the distance of a particle from the centroid of the patch.
The patch diffusion is computed for an isotropic, normalized Gaussian

tracer concentration
1

=y expl-(@2+61)/(2A2)]
n

Cla,b)=

(5.46)
with a horizontal scale given by A centered at the origin of the coordinate
system. The patch scale A is chosen as 200 m. This will ensure that the
patch is neither sufficiently small for the patch to move as a single
particle (single particle diffusion limit), nor sufficiently large for the two
particle diffusion limit. Choosing h=0, (5.30) becomes

a,-j’ N(p) =a,-j' N {1+ em?-2cmeos| k(cosB—cos8’)a) (5.47)
where

cm=exp| kA2 (1 -cos(6-6")))

A similar expression holds for o, /¥ ). From Figure 5.8, the two-particle
diffusivily is twice the single particle diffusivity and the patch-diffusivity
is in between the two- and single- particle diffusivities.

However, when the two particles designated by (a;.b;,c|) and

(ay.by.cp) are separated by a vertical distance. we get a different result.
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Figure 5-9: Two-particle diffusivities D|{*?® and D,\F®) as

a function of vertical separation r; for c=0. The
solid line s for D}¥?) and the broken lines are
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Two-particle diffusivity as a function of vertical separation r; is
calculated from (5.14) with o;; replaced by o', /¥ (5.26). In this case,
the diffusivity depends not only on the vertical separation between the
two particles but also on the initial depth of the reference particle with
respect to which the separation is measured. Figure 5.9 shows the plot
of the «-component of the eddy-diffusivities D,//N@, D, ,VF@ against
vertical separation rq. For sruidl separation the diffusivity is zero. As the
separation increases the two-particle diffusivities increases reaching to a
maximum value which is equal to the single-particle diffusivity at the
reference depth ¢y, in this case, surface. The reason for this is that the
velocity of one of the two particles at large depth goes to zero for large
vertical separation. As a result, for vertical separation, two-particle
diffusivity is not twice the single-particle diffusivity.

Figure (5.10) shows the plot of the vertical diffusivities D4;""?
as function of vertical separation ry. In this case also D34 is zero
when ry is small and increases to a maximum value equivalent to the

single-particle diffusivity of the reference particle.

Diffusion experiments in the ocean have been performed on a
variety of space and time scales (Okubo, 1971; Kawai, 1985; Krauss and
Boning, 1987). However, most of them are for horizontal diffusion. Few
experiments have been conducted to measure vertical diftusivity. Hardly
any. however, has been combined with sufficiently detailed wave
measurements to determine how much of the observed diffusion may
have becn due to waves. Most of the experiments on vertical diffusion in
the coastal ocean are reported by Kullenberg (1971, 1976, 1977).
Kullenberg (1971) used a dye tracing technique to measure vertical
diffusivity in stratified shallow waters in weak to moderate (5 - 10 m/s)
wind conditions. At a depth between 2 m and 21 m the vertical eddy-
diffusivities observed by Kullenberg are scattered in the range of
(0.08=60)x 10~4 m¥/y. In another set of experiments in the Baltic thermo-
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and halocline layer, Kullenberg (1977) obtained vertical diffusivities in
the range of (1.0-4.5)x10"%mZ/s in the depth range (30 - 55) m. The Baltic
has a stably stratified (Jdp/dz<0) water column having stratification
parameter N2==2% in the range of (9.0x104-9.0x1073) s~2, Kullenberg

(4

(1971) found an empirical relation connecting vertical eddy-diffusivity

(N43) and wind speed (U), stratification parameter N2 and vertical shear

dqldz given by

K3 =8.1x1078 | U2N -2 dgldz||

where ¢ is the horizontal velocity. Gargett (1984) also observed that
vertical eddy-diffusivity (estimated from dissipation rate measurements)

is a decreasing function of buoyancy frequency (V).

The vertical eddy-diffusivities estimated from the theoretical
calculations are at the lower bound of the above mentioned
experimentally observed eddy-diffusivities. This implies that the
dynamics in the real ocean is more complex than that described in this
model. It is possible that some other mechanism (or mechanisms) may
have dominant role in the ocean. For example, wave breaking, vertical
shear, internal waves, stratification, etc. may control the dynamics at
depth in the real ocean. The theoretical model described here may be
appropriate to a small amplitude wave (e.g., swell) travelling through a

relatively calm sea.



Chapter 6
SUMMARY AND CONCLUSIONS

Patch diffusion computed from Lagrangian data:

Eddy-diffusion in the ocean has heen studied experimentally
by using drifter trajectories. The Atlantic Equatorial Undercurrent droguie
experiments of Fahrbach et al. (1986) arc recanalysed in chapter 2. Eddy-
diffusivities were calculated by subtracting: (1) centroid motion (pure
diffusion model) and (2) centroid displacement and displacement due to
uniform  Lagrangian deformations (advection diffusion model).  The
average dJiffusivities calculated using (1) are comparced with those of
Fahrbach et al. (1986). In the meridional dircction the assumption
C,=0.1 (L.e., integral length scales are onc tenth the standard deviation of
drifter positions) turns out to be reasonable, thereby confirming relative
diffusivities in the meridional direction calculated by Fahrbach et al.
(1986). However, the zonal diffusivity is substantially different from that
of Fahrbach et al. (1986). The analysis also indicated that a diffusion
model described the cluster dispersion every bit as well as an advection

diffusion model.

Measurement errors were shown to have little cffect upon
estimation of eddy-diffusivities but biased Lagrangian integral time and
space scales (which were smaller than they should have been). Kinetie

energy was increased by the measurement ervor,

An Eulerian analysis of the relative velocities revealed that
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Eulerian integral time scales are slightly larger than the Lagrangian
integral time scales. Joint space-time correlations indicated that the
cddy velocity changes rapidly compared with time-scales required to
advect a particle over the eddy length scale. In the case of experiments
D1, D2, D3 (which had large relative velocities) the relative velocity
became spatially decorrelated at scales small compared with cluster
dimensions. The spatial scales of the relative velocity were larger for the
CIPREA experiment which had weaker relative velocities than D1, D2
and D3. Integral time scales for transverse, longitudinal velocity
components differed greatly for the x, y velocity components suggesting
that the longitudinal-transverse coordinates are more aligned with the

eddy causing relative motion between particles than the 1-y coordinates.

Diffusion by surface gravity waves:

We have also studied smaller scale ocean diffusion
theoretically by solving the Navier-Stokes' equations of motion for deep
water surface gravity waves. A perturbation expansion is used to solve
the Lagrangian equations of motion analytically for an irrotational,
inviscid, homogeneous ocean. The first order solutions are oscillatory in
time. The second order momentum equations are solved for the zero-
[requency interaction between two primary waves. Other types of
solutions with w=«" are also possible. These latter solutions are
oscillatory in time and do not cause any diffusion. So they were not

studied in the present work,

The second order zero-frequency inviscid solutions are a field
of random shearing motions in the horizontal plane but have no vertical
motion. These solutions are identical to solutions of Herterich and
Hasselmann (1982) who used the Euler-Lagrange transformation to

e e
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derive mass transport velocities from the Eulerian solutions. For 8 =0"=0,

the inviscid solutions rediice to Stokes’ solutions.

The inviscid dynamics is then extended to include the viscosity
(in chapter 4). Surface boundary conditions are derived by considering
the balance between vertical and horizontal stresses at the {ree surface.
The solutions are obtaincd for both nondecaying (permanent primiary
waves) and decaying waves. In order to maintain the permanent primiry
waves against decay, a vertical stress is applicd to the surface following
Weber (1985).

The zero-frequency second order viscous nondecaying
solutions are obtained by considering steady state motion. These
solutions have both horizontal and vertical random motion that decays
with depth. The particular part of these solutions 1,7 and v,V reduce
to inviscid solutions 1,V and v,/N when viscosity set to zero. The second
order nondecaying solutions do not, however, reduce to the inviscid
solutions when viscosity is set to zero. This is hecause the homogencous
part of the nondecaying solution i{s nonzero when viscosity is set to zero,
For a monochromatic wave, the a-component of the velocity " reduces
to Weber’s (1983b) solution when 6=0"=(),

The viscous decaying solutions, were obtained by solving time
dependent equations of motion in threc dimensions. The homogencous
second order solutions for zero-frequency interactions are obtainerd
subject to an initial condition similar to Weber (1983a). The solutions
satisfy boundary conditions at the surface and also at depth. This is in
contrast to Chang's (1969) solutions. The second order ny-component of
motion given by the Chang's solution (Chang’s equation 121} does not
decay with depth. In fact her 1, solution oscillates sinusoidally 1p (o
infinite depth. For 0=0’=(, the second order viscous decaying solution

15¥P (4.1453) reduce to Weber's (1983a) solution for a monochromatic
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wave situation. Furthermore, setting v=(), the viscous decaying solutions

VP, v, reduce to inviscid solutions u,/V and vV,

Eddy-diffusivities are calculated from the inviscid and viscous
solutions following Herterich and Hasselmann (1982). A Pierson-
Moskowitz spectrum (Pierson and Moskowitz, 1964) for a fully developed
seca was used in this calculation. The inviscid solutions reproduce
Herterich and Hassclmann's (1982) result of directional dependence of
ceddy diffusivities. The inviscid and viscous horizontal single-particle
cddy-diffusivities are highly anisotropic. The inclusion of viscosity,
causcs a significant change in the horizontal inviscid eddy-diffusivity. At
the surface, the viscous decaying diffusivity D;"” is larger than the
inviscid diffusivity D, /N and viscous forced diffusivity D,,*" by factors of
1.2 and 1.7 respectively for the viscosity equal to 1.0x1072 m?s. The
viscous decaying diffusivity D,;*” and inviscid diffusivity D,V tend to
converge below the depth of the viscous boundary layer. The viscous
forcing diffusivity D,,V" decays more slowly with depth and remains
different from the inviscid diffusivity D,V even below the Stokes depth
which is about 6.6 m.

An analytical expression for the vertical eddy diffusivity due to
wave-wave interaction at zero frequency is given for the first time. The
vertical eddy-diffusivity due to viscous gravity waves is much smaller
than the eddy-viscosity. Changing viscosity has only a small effect on the
horizontal cddy-diffusivities (as the eddy-viscosity is increased by an
order of 4. the horizontal eddy-diffusivity is changed by less than a factor
of 2). However, the vertical eddy-diffusivity was observed to change
dramatically (by order of 4) as the eddy-viscosity is changed (increased
by order of 4). A linear increase of vertical eddy-diffusivity D;;"F with
viscosity v is observed. However, the choice of maximum viscosity is

limited by the condition 4/«1.
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The viscous and inviscid single-particle horizontal eddy-
diffusivities increase with the wind speed raised to the power of 3. The
single-particle vertical eddy-diffusivity D;;'", however, did not show any
power-law dependence with the wind speed (although it does increase
slightly with increased wind speed). Kullenberg (1971), from dye
experiments, reported that the vertical eddy-diffusivity increases with the
square of the wind speed coupled with vertical shear and buoyancy

frequency.

The theoretically calculated single particle vertical eddy-
diffusivities wsing the nondecaying wave solution in the depth range
(1.0-10) m is (0.62—0.10)x1070 w2y for U=10 mfs, v=001 m3s. There Is no
report of systematic measurement of vertical diffusivity and wind speed
to compare our theoretically calculated cddy-diifusivities with the
observations. At depths between 2 m and 21 m, the vertical eddy-
diffusivities observed by Kullenberg (1971) arc scattered in the rangge
0.01=60)x10~4 m¥Ys. Other estimates of the vertical eddy-diffusivities in
the same area (Hansen, 1968) show that the vertical eddy-diffusivilles lie
in the range (0.1-0.7)x10™* m%s. (Depth range in this casc Is unknown),
The experimental site had stratified water and shallow depth (less than
50 m). Our calculations are for deep water waves in a homogencous

ocean. The wave length corresponding to the peak-frequency m,, of the

m
Pierson-Moskowitz spectrum is about 71 m. Therefore deep water theory
is applicable for these observations. The theoretical estimates of the
single particle vertical eddy-diffusivities using the present model are al
the lower boundary of the experimentally observed eddy-diffusivities of
Kullenberg (1971). It is quite possible that the dynamics causing vertical
diffusion in the real ocean are different from those used in this model.
Other dynamics such as wave breaking, tertiary inviseid zero-frequency
interactions may be important in the real oceanic sitnation. A wave with
small amplitude (e.g., swell moving into a calm sca) may give rise to

eddy-diffusivities similar to theoretically calculated vahies.
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Two-particle  diffusivities are calculated f{or horizontal
separation r and also for vertical separation r;.  Patch-diffusivity is
calculated for horizontal separation r only. Concentration distribution of
the patch is taken as Gaussian with horizontal scale A=200m (5.45). For
horizontal separation », the two-particle diffusivity was found to be twice
the single-particle diffusivity and patch-diffusivity is in between the two
diffusivities similar to Herterich and Hasselmann (1982) and Sanderson
and Okubo (1988). For vertical separation (r;) between a pair of
particles, the two-particle diffusivity was observed to increase from zero
(at zcro separation) to a maximum value (for large separation) which is
the single particle diffusivity at the reference depth with respect to which
ry Is measured. This could be explained as follows. The zero-frequency
velocily wvarles sinusoidally with «.b coordinates and decreases
cxponentially with depth. For two-particle velocity with large vertical
separation hetween the two particles, the velocity of one of the particles
at large depth is zero. So the two-particle velocity reduces to a single-
particle wvelocity when one of the particles is at great depth.
Consequently, the two-particle eddy-diffusivity reduces to single-particle
diffusivity of the particle at shallow depth. For horizontal separation,
however, the velocity of a pair of particles (at same depth) separated by a
horizontal distance varies sinusoidally as a function of separation (see
5.21, 5.23). As a result, the two-particle eddy-diffusivity is increased by

a factor of 2,

The limitation of this model is that the model assumes €2, » ¢’
which is valid when wave amplitude is small and eddy-viscosity is large.
But usnally ¢! is greater than €%, This implies that the zero-frequency
third order inviscid solution will be larger than the zero-frequency second
order viscous solutions. It will be interesting to investigate the third

order inviscid equations and look for the zero-frequency vertical solution.

The study shows that random surface wave field can produce
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both horizontal and vertical diffusion. The observations of Kullenberg
(1971) and Hansen (1968) indicate that onr vertical diffusive mechanism
is only large enough to account for the lower limit of the observed vertical
eddy-diffusivity. But our work does agree with measurements of
horizontal diffusion at the scale of surface gravity waves. For example,
Figure 5.1d shows that at ¢=0, n=2, the single-particle horizontal cddy-
diffusivity is 0.013 m?/s. The diffusion diagrams of Okubo (1971) show

that we can expect similar range of eddy-diffusivitics at 10 - 100 m seale.
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