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ABSTRACT 

An extensive set of hydrogeological and geochemical data has heen collected from 

a 150 m deep borehole in the near coastal discharge area of the Holyrood Granite, 

Newfoundland. Because vf the selected location of the horehole, over the underlying 

saltwater wedge, it was possible to intersect flow paths that are helieved to have 

extended considerably deeper within the aquifer than the depth of the borehole. 

The physical data indicate that the geometric average of the hydraulic conductivity 

over the length of the borehole is approximately 4 x 10·9 m/s and that the opt'n 

fractures, controlling most of the flow in the aquifer are approximately vertical and 

parallel to the coast. Fractures of this nature have been postulated hy othus to have 

resulted from isostatic post glacial rebound. The hydraulic conductivity (measured 

at approximately 2 m intervals along the entire length of the borehole) shows a 

decrease of approximately three orders of magnitude with depth. Based on the 

hydraulic conductivity measurements made in the study horehole, known hydraulic 

gradients and probable flow-path length, it is believed that water samples collected 

may have had residence times of the order of 1000 a. 

Inspection of aqueous chemical data reveals that some parameters have a strong 

correlation with depth while other analytes have a strong inverse correlation with 

hydraulic conductivity. In general the water quality reflects the effect of low

temperature weathering of an alumino-silicate rich granite. However, the water 

samples collected were all relatively rich in chloride. Though there is no direct 

evidence of the source or sources of chloride in the study area, evidence from other 

granitic terrains indicate that the likely sources of chloride in the groundwater are 

from the rock mass (possibly from fluid inclusions) and from seawater. 
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Study and Hnalysis of fracture plane mineralO!,')' using X-ray diffraction (XRD) and 

scanning electron microscopy (SEM) has provided evidence for a suite of minerals 

which may control the groundwater chemistry. Thermodynamic speciation 

calculations using the water analysis data indicates minerals including calcite, 

amorphous silica, kaolinite, and some varieties of feldspar may be precipitating. 

Subsequent mass balance modelling using the groundwater analyses could not identify 

a groundwater evolutionary scheme that was consistent with the speciation 

calculations unless both a seawater source of chloride and a rock source of chloride 

were invoked. However, the results indicated that the percentage of seawater mixed 

with the groundwater decreased with depth, while the fraction of chloride added from 

the hypothetical rock source increased with depth. This, together with the invuse 

correlation of dissolved silica with hydraulic conductivity, probably reflects the 

increasing importance of rock-water interaction with depth, in-turn reflecting 

increasing aquifer residence times at increasing depths. 

Oxygen and hydrogen isotope data collected during the study indicate that both 

isotope systems show a strong correlation with depth and both are increasingly 

enriched in their light isotopes with depth. The decrease in 180 and 2H abundance 

with depth is consistent with the expected differences in altitudes of recharge between 

the deepest groundwater samples collected (believed to have been recharged at 

approximately 170 m above sea level), and the shallowest groundwater samples 

collected (believed to have been recharged at 60 m above sea level). This evidence 

indicates that flow through the aquifer (although it occurs in discontinuous fractures) 

is, on a large scale, roughly equivalent to well ordered porous granular flow. 

The interpretation of the isotope data together with the results of mass balance 

modelling suggests an internally consistent evolutionary scenario. It is proposed that 

the modelled decline of the saltwater component with depth reflects the addition of 
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marine aerosols that provide chloride to recharging waters in quantities that denease 

with increasing distance inland. 

The increase in the modelled rock-derived chloride source with depth is consistent 

with the increasing degree of low-temperature rock-water mass exchange with 

increasing depth, itself resulting from increased aquifer residence time with uepth. 
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C~Rl:~ODUCOON 

1.1 BACKGROUND 

The flow processes occurring in fractured crystalline media are distinctly 

different from those found in porous intergranular media. The hydrogeochemistry 

of groundwater in fractured crystalline rocks is dominated by the processes occurring 

during flow and transport through a virtually impermeable rock mass whose porosity 

is likely to be dominantly intergranular or microcrystalline, but in which a relatively 

few fractures act as principal flow pathways. 

From point of recharge to point of discharge water in an 'intergranular' 

aquifer (i.e. an aquifer with only intergranuiar porosity as opposed to water in a 

fractured aquifer, having intergranular and fracture porosity) normally displays 

relatively gradual changes in its physical and hydrogeochemical properties. The 

chemical composition reflects an increasing aquifer residence time with increasing 

distance from the recharge point. The progressive change in chemical properties 

seen in the waters of non-fractured porous aquifers is a consequence of the necessity 

of any discrete packet of water, at a point within the aquifer, having had to arrive 

there by passage through the intergranular pore spaces, along tortuous pathways. 

The travel of water via intergranular pathways ensures a progressive increase in the 

degree of rock-water interaction, at successive points along a flow path. Fractured 
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crystalline aquifers, on the other hand, apparently do not confine a packet of water 

to move only via intergranular (or intercrystalline) pathways. A fractured crystalline 

medium is comprised of: 

a) a crystalline rock mass, usually of extremely low hydraulic conductivity 

material with values reported from 10-13 to 10-16 m/s by Nordstrom et al. 

(1985) for the Stripa Granite. Though relatively unconductive the crystalline 

rock mass will still have porosity, resulting from blind fractures, microcracks 

and intercrystal cracks and voids, 

b) an interconnected web of fractures which are the main conduits for 

groundwater flow through the rock-mass. The average hydraulic conductivity 

of the bulk fractured rock-mass is orders of magnitude higher than that of the 

crystalline media. However, the principal flow paths, provided hy the 

interconnected fractures, only account for a fraction of a percent of the total 

porosity of the rock-mass. 

Norton and Knapp (1977) defined three different types of porosity in 

fractured media; flow porosity (interconnected fractures), diffusional porosity (such 

as voids and micro-cracks, between crystals, and fluid inclusions), and the residual 

porosity comprised of blind fractures and other unconnected voids. The velocity of 
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groundwater through the fractured media is many orders of magnitude higher in the 

flow porosity, where crack widths range from 10 to 1000 1-'nl (Neretnieks 1980) and 

through which solutes travel principally by advection. Solutes in the diffusion porosity 

can only diffuse through an essentially static solvent phase (Gascoyne et al. 1987), in 

cracks ranging from 0.01 to 10 I-'m (Neretnieks 1980). As a result of the increased 

rock-water interaction resulting from long residence times in the diffusion porosity, 

the concentrations of solutes in the micro-crack fluids will be many times greater than 

the concentration of solutes in the fluids of the flow porosity. 

Knapp (1975) estimated that a fractured crystalline rock-mass has as 

little as 1-2% porosity of which -1% is flow porosity (or effecti•.1e porosity), -5% is 

diffusion porosity and 94% is residual porosity. For the Stripa Granite Nordstrom et 

al. (1985) determined the total porosity averaged 0.46% with flow porosity in the 

order of w-5 to 10-4 or 2 to 20 %o of the total porosity. 

The overall hydraulic nature of the fractured crystalline rock-mass is 

controlled by the geometry of the fracture network. Above a certain minimum 

volume of the rock-mass (known as the representative elementary volume or REV), 

the average hydraulic conductivity of the total volume will be relatively uniform. At 

volumes below the REV the hydraulic conductivity fluctuations calculated for 
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successively smaller volumes will vary over orders of magnitude. The variations will 

be damped considerably as the REV is approached. The concept of REV is used 

widely (i.e. Cacas et al. 1990). When modelling flow through a fractured aquifer the 

scale of the aquifer (as opposed to the REV) may justil)' approximating the real 

system with an equivalent porous media. 

Because of the dual nature of porosity in fractured crystalline media, 

a sample of water and solute mass, collected at a point within the fractured crystalline 

aquifer is in fact the result of the mixing of two fractions: 

i) The fracture component derived from water, and its dissolved solutes, 

flowing along fractures within the flow porosity and; 

ii)The intercr:ystalline component, derived from water and its dissolved solutes 

which is contained in intercrystalline spaces (diffusional porosity). 

The mixing of these components would be expected to occur locally in 

the crystalline media and the fractures, but would also he expected to occur during 

sample collection from any discrete volume of aquifer which contained both flow and 

diffusional porosity. 
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In the shallow parts of a fractured aquifer (where the fracture apertures 

and the fracture permeability tend to be large) the fracture component of water mass 

in a fluid sample will be many times larger than the intercrystalline component in the 

sample with the intercrystalline component an insignificant contributor to the mass 

of water collected. However, the solute mass contributed by the intercrystalline 

fluids, will he disproportionately large. Conversely the fracture component of the 

solute mass will be a much less significant contributor to the total solute mass of the 

sample collected. Furthermore, it can be theorised that the relative proportions of 

solute contributed by the fracture and intergranular components will change with 

depth since fracture porosity is a function of depth. At some depth the proportions 

of solute and solvent contributed to the volume by the flow and diffusional porosity 

will be in the same proportions as the intergranular to fracture space. At this point 

the fracture system would be indiscernible from the intergranular microcracks. This 

may he considered to be a boundary condition. 

The manner in which minerals dissolve has been extensively studied. 

From this information the expected chemical evolution of water in contact with some 

selected minerals has been deduced. Feldspars are significant contributors to the 

solvent load of groundwaters and a large amount of effort has been expended in the 

study of their dissolution mechanisms. Quartz and the micas are relatively poor 

contributors to the total dissolved solids (TDS) in groundwaters; the dark micas and 
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amphiboles are thought to be major contributors of chlorine (Edmunds et al. 19S4. 

1985; Kamineni, 1987). 

Rates for feldspar leaching have been calculated by Busenherg and 

Clemency (1976). A mathematical model was proposed by Paces (1973) for the 

solution process. Both solution models postulated the formation of a thin (<50 J,J.m) 

surface layer on the feldspars, the subsequent equilibrium of which was proposed as 

acting as a rate controlling step in the dissolution of the feldspars. The surface layer 

was cited as a cause for the initial parabolic dissolution rate of the feldspars, wherein 

solute is released at a rate proportional to the square root of time. 

Holdren and Berner (1979), after exhaustive scanning electron 

microscope work, questioned the presence of the rate controlling layer ami possibly 

the parabolic step believing it to be an artifact of mineral preparation. Nevertheless 

they generally agreed with the solution rates determined by Busenberg and Clemency 

( 1976) for the linear phase of feldspar dissolution. The linear phase accounts for the 

bulk of the dissolution process, with the exception of the first few months. Helgeson 

( 1968) has studied mineral solution from the perspectives of both mass balance and 

thermodynamic principles, with a view to describing evolutionary pathways for 

solutions in contact with mineral assemblages. Using this approach Helgeson (1969) 

developed activity diagrams for the system: 
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at25°C (Gibbsite-Kaolinite-K-Feldspar-Mica) and pathways of evolution for dissolving 

either or both of K-Feldspar and Albite. The work of Helgeson corroborated the 

mass balance calculations of Garrels and MacKenzie (1967) who derived the same 

information for the Sierra Nevada granites. 

Several groups have published results and interpretations of observed 

hydrngeochemistry in granite terrains. However, a satisfactory source for the salinity 

(halides) of the groundwater has still not been found. Edmunds et al. (1984, 1985) 

attributed the salinity in the groundwaters of the Carnmellis Granite to chloride 

produced from the weathering of biotite micas. Nordstrom et al. (1985) proposed 

that the salinity observed in the Stripa Granite (Sweden) could have been entirely 

deri\'ed from gradual leaching and leaking of fluid inclusiQns in the granite. However 

this theory has been refuted by Fontes et al. (1989) on the grounds both of lack of 

mass balance for the system, and the simplifying assumptions made by Nordstrom et 

al. (19H5) Frape et al. (1984), working on the Canadian Shield, admit that a 

satisfactory source of salinity in the highly saline deep groundwaters of the shield has 

yet to be found; however they cite remnant Palaeozoic marine transgressions and 

remnant, highly saline, Permian connate waters derived from evaporites as possible 

sources of salinity. 



The interpretation of groundwater evolution through geocht!mical 

modelling requires a variety of input data such as rock mineralogy, fracture minerals 

in contact with the flow system, groundwater chemistry, and the composition of end

members (which may mix) in the system. A valid thermodynamic data base for hnth 

the dissolved and the solid components is also needed. How the data arc used 

depends on the approach to modelling. 

In the inverse approach (Plummer, 1984), a non-thermodynamic mass balance is 

computed for the observed changes in groundwater chemistry. The mass balance! 

approach can allow for precipitation or dissolution of minerals likely to he available 

in the flow system; it can also be used to model mixing of end-members, or to apply 

redox and isotopic constraints to the reactions. The results of these mass balance 

calculations may or may not be thermodynamically plausible and they must be 

checked for thermodynamic validity or compared with the calculated saturation states 

of the minerals of interest in the groundwater. An alternate approach is to model 

the forward problem and attempt to mimic the known groundwater composition (or 

predict an unknown groundwater composition) by theoretical addition (or removal) 

of species to the groundwater. The groundwater modelling process is described by 

Plummer et al. (1983) and Plummer (1984). The latter paper notes the problems of 
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geochemical modelling in fractured systems which may result from an inability to 

model the rapid mixing of geochemically different waters. 

1.2 OBJECI'IVE AND SCOPE 

Recent work in the Holyrood Aquifer has included a study of the 

relationship between stream-flow and groundwater flow by Schillereff (1991) and 

some limited interpretation of part of the data of this study by Button (1990). 

1.2.1 Objective 

As a continuation of the groundwater studies in the Holyrood Granite 

a project was devised which would allow a detailed hydrogeological investigation in 

a deep borehole in the discharge area of the Holyrood Aquifer. The detailed 

investigation was to provide an extensive set of physical-hydrogeological and 

geochemical data including: 

i) punctual hydraulic conductivities (i.e those from intervals of approximately 

2m over the entire borehole length), 

ii) a full core which was to provide information regarding fracture orientations 

and nature of minerals deposited in the fractures, 
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iii) the chemical and isotopic nature of the groundwa1er at difft!rent intervals 

in the borehole, to be determined by extensive sampling of intervals having 

higher hydraulic conductivities. 

This data was used to develop a consistent hyurogt!ological/ 

hydrogeochemical model of processes in the Holyrood Aquifer. 

It was hoped that a location would be selected which would provide 

artesian conditions throughout its length so that groundwater samples could ht! 

collected under optimum conditions with a minimum amount of degassing or other 

chemical changes. 

1.2.2 Approach 

The study requirements were met by the coring and detailed logging of 

fractures in a 150 m (drilled depth) hole, located in the north of the Seal Cove River 

Valley, at a site which will be referred to as NSCRV (Figure 1.1 ). After completing 

coring the hole was extensively packer t~sted to determine hydraulic conductivities 

over its length and to collect groundwater samples for analysis of the inorganic and 

the isotopic composition of the water. The location wa!.. selected, after preliminary 

numerical groundwater flow modelling, to maximise the possibility of intersecting 

artesian groundwater flow conditions. 
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1.2.3 Scope 

By limited flow modc!lling and extensive hydrogeochemical muddling the following 

study attempts to integrate the data collected at NSCRV in terms of the tlow paths, 

geochemical evolution of the groundwater in the Holyrood Granite, the prohablt! 

source of solute and solvent, the nature of minerals likely to be precipitated from the 

groundwater, and the influence of the mineral composition, hydraulic nature and 

fracture mineralogy of the granite, on the hydrogeochemistry. 

1.3 PHYSICAL SETI'ING 

1.3.1 Geology 

The study area lies in the Avalon Zone which is the most easterly 

tectonostratigraphic unit of the Appalachians, described by Williams e! al. (l<J74). 

The Avalon Zone runs south, and is approximately coincidental with the eastern 

seab"'Ud of the United States. It is typified by a sequence of late Proterozoic 

volcanic and associated sedimentary rocks. This sequence is overlain by shallow

water terrestrial sedimentary rocks of mid Palaeozoic age (Taylor et al. 1979). The 

sequence is everywhere found intruded by plutonic rocks ranging in age from 

Proterozoic to Carboniferous. In the study area the plutonic rocks are represented 

by the Pre-Cambrian Holyrood Plutonic series. The timing of emplacement of the 

granite, its mode of emplacement and the geological setting during emplacement have 
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been the source of considerable debate in the literature, as has the probable age of 

the Holyrood Granite. 

All major structural features in the area (faulting and fold axes) trend 

approximately north-northeast to south-southwest, and the Holyrood Granite is itself 

somewhat elongated in the main structural direction. 

The local geological setting of the study area is shown in Figure! 1.2, 

after King ( 1990). The Holyrood Granite is bounded on its eastern margin by the 

Topsail Fault, believed by Hughes (1971) and Hughes and Bruckner (1971) to have 

resulted from explosive emplacement of the granite, probably at levels as shallow as 

2000 m, with subsequent caldera subsidence in an (compressional) island arc setting. 

Strong and Minatidis (1975) concur with Hughes and Bruckner on the level of 

emplacement of the granite but believe (from petrographic and relational evidence) 

that the area represents a tensional, basin-and-range rift setting as the petrochemistry 

of the Holyrood Plutonic Series closely matches that found in rocks of the Sierra 

Nevada which are believed to represent a continental rift environment (Strong and 

Minatidis, 1975). 

The granite is bounded on its western side by the volcanics and 

pyroclastics of the Harbour Main Group. These Pre-Cambrian volcanics are in 



Figure 1.2 Local Geological Setting 
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faulted contact with Cambrian volcanics of the Adeyton Group, along a northerly 

extension of the Peter's River Fault, on the west side of the study area. The fault 

bounded block was originally referred to as the Holyrood Horst by McCartney ( 1969). 

Harbour Main volcanics have not been mapped in the immediate vicinity of the 

NSCRV borehole, but are found to the east along the Topsail Fault and also to the 

north of NSCRV. 

The Harbour Main Group has been divided into three members, 

divided by faults (see King, 1990 for a synopsis of the faulted divisions comprising the 

Harbour Main Group). The divisions are: 

i) The western block, (west of the Holyrood Horst) which includes the type 

locality of Avondale-Harbour Main, characterised by red, pink, and grey 

ignimbrites, locally intercalated with fluvial volcanogenic sedimentary rocks, 

and overlain by terrestrial, fisslirt:-type flows of dark green to purplish, massive 

and amygdaloidal basalt (McCartney, 1967), previously described as green 

andesites by Hutchinson (1953). 

ii) The central block (west of the Topsail Fault) includes felsic and mafic 

flows, pyroclastics and minor volcaniclastics. These volcanks are intruded by 
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high-level granite, quartz monzonite, and granodiorite of the Holyrood 

Intrusive Suite. NSCRV lies in the central block. 

iii) Volcanic and volcaniclastic rocks, dominated by pillow lavas ami 

volcaniclastics, are found east of the Topsail Fault 

Though the Harbour Main volcanics seen at NSCRV lay in the central 

block, they are believed to be representative of the western block unit of the Harbour 

Main volcanics. The andesite at the NSCRV location was apparently agmatitic in 

nature (Sederholm, 1967). Agmatite blocks of the green andesite, in the Holyrood 

Granite, are also to be found in the floor of the Kelligrews River Swimming Pool. 

These volcanics would appear to be members of the western block. 

In the study area, and to the north of the NSCRV borehole location, 

the Holyrood Granite is unconformably overlain by sediments, predominantly shales 

and slates of the Conception Group which dip gently (approximately 1 00) towards the 

ocean. A discontinuous basal conglomerate is identified in some areas (notably the 

bridge across the Manuels River on the Conception Bay highway) though it appears 

to be absent at the NSCRV location. Contours on the granite/ Lower Cambrian 

contact appear to reveal an undulating surface with the amplitude increasing and the 

wavelen~th decreasing along the contact surface from southwest to nort ~:u:ast. The 
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axes of the undulations trend approximately down dip and are normal to the strike 

of the contact. The supposed geometry of the contact surface should, however, be 

viewed with some scepticism as the Pre- Cambrian/ Cambrian contact is poorly 

defined, due to sparse outcrop. Attempts by the author to map the contact in greater 

detail were unsuccessful (again due to lack of outcrop). However, the mapping did 

seem to confirm the undulating ni:lture of the contact surface. The undulations are 

possibly a manifestation of a Pre- Cambrian/ Cambrian drainage system or Pre

Cambrian glaciation, the latter recently noted by Grant ( 1989) but, as noted by Grant, 

first mooted by Lawson ( 1890). 

The Holyrood Plutonic series has been extensively described and 

classified. It was first divided into three members by McCartney (1967). It is 

comprised of: 

i) Holyrood Granite: pale pink coarse grained and equigranular with minor 

aplite veining, composed of 35 to 45% quartz, 33 to 39% orthoclase, 10 to 

18% plagioclase, and 4 to 6% chlorite as a pseudomorph of biotite. The 

granite is altered, with chlorite and epidote replacing biotite. Feldspars are 

cloudy, a result of sericite. 
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ii) Quartz Monzonite; of quartz monzonite and quartz diorite, mottled pink 

and green in colour, with less quartz than the Holyrood Granite, hut with an 

increase in abundance of saussirized plagioclase. 

iii) Gabbro; closely associated with the granite and quartz monzonite. It 

occurs only sporadically and varies from fine to medium graint!d. It ts 

principally composed of hornblende and labradorite. 

In the vicinity of NSCRV and in the NSCRV core itself, only the 

granite and the quartz monzonite members of the Holyrood Plutonic Series were 

identified. In this study they retain their field classifications of pink granite (Holyrood 

Granite) and green granite (Quartz Monzonite). No gabbro was recovered at 

NSCRV nor is it found in the immediate study area. The granite is not in the 

metallogenically specialized group of granites (Taylor et al. 1979). The only mineral 

deposit of interest occurring in the granite is a pyrophyllite, associated with late stage 

pneumatolytic activity of the granite. An active pyrophyllite mine occurs southwest 

of NSCRV, in the sheared region of the Topsail Fault. 

On the basis of petrochemistry Strong and Minatidis ( 1975) have concluded 

that the Harbour Main volcanics and the Holyrood Plutonics are not comagmatic. 
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Their age is believed to be in the vicinity of 620 Ma (Krogh 1983); however, there 

remains considerable debate regarding this point. 

The Quaternary geology of the area is as relevant to this study as the 

bedrock geology: Based on work presented in this study the Holyrood Granite is 

estimated to have an average hydraulic conductivity of 4.74 x 10·9 m/s, a flow porosity 

in the range of 2 to 20%o and an estimated average hydraulic gradient of 0.03. Given 

the distance from the nearest groundwater divide to NSCRV of 3.5 km, and a flow 

path length of approximately 4.5 km, then the average retention time of groundwater 

in the granite is estimated to be 1560 a, with a possible range of from 156 to 15600 a 

(:tan order of magnitude). Thus it is conceivable that the events of the Quaternary 

(from late Wisconsinan to Holocene) such as sea level and climate changes, and 

glaciation might have influenced the present groundwater quality in the Holyrood 

Granite. It is conceivable that the effects of Quaternary events may still be retained 

in the groundwater geochemistry. 

Grant (1989) provides a synopsis of Quaternary events in the Atlantic 

provinces. These events shaped the contemporary landscape, though the genesis of 

many of the topographic features may date back to the Proterozoic (Bruckner 1979). 

The Atlantic region was glaciated during the Quaternary and three major ice centres 

were believed to have been developed in Newfoundland, with one centred on the 
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Avalon Peninsula. The glacial events have resulted in Quaternary glacial deposits, 

of varying thickness and coverage, over most of the island. Glacial tills sporadically 

blanket the bedrock of the study area. 

Of three Quaternary glacial events, the final one culminated in a Late 

Wisconsinan stadia! maximum between 13 and 11 ka. Climate warming occurred 

approximately 11 ka (MacPherson 1982). Associated with these glacial events were 

significant sea level changes. Henderson ( 1972) identified an intertidal platform at 

-3-10m above present sea level, on the Avalon, which is also identified in the head 

of Conception Bay. There is no record for the Avalon of Quaternary marine 

incursions higher than this level. 

1.3.2 Hydrogeology 

The area of the Holyrood Granite can be divided into three broad 

hydrostratigraphic units 

i) A Surficial Hydrostratigraphic unit comprised of bogs and intermittent thin 

(probably 1-4 m) glacial tills, 

ii) A Bedrock Hydrostratigraphic unit comprised of the fractured bedrock of 

the Holyrood Plutonic series and, 

iii) the siliclastic rocks of the Conception Group. 
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Tht!re is prohahly some difference in the hydraulic properties of the Holyrood 

Plutonic Series and the Conception Group. These differences, however, are unlikely 

to he as great as the differences between the bedrock units and the surficial deposits. 

In the surficial deposits groundwater flow will chiefly be controlled by 

intergranular movement of groundwater. In the bedrock units all significant flow will 

be controlled by movement along fractures. It is unlikely, given the age of the 

bedrock sedimentary deposits, that they have any significant amounts of intergranular 

porosity remaining. Likewise intercrystalline porosity in the Holyrood Plutonics is 

likely to be insignificant as far as large scale movement of water is concerned. 

The true nature of the Holyrood Aquifer is not known. It can be 

hypothesised that, even with the thin cover of glacial and bog material, the aquifer 

is essentially unconfined. The various bogs, lakes and streams indicate the elevation 

of the water table and can he used to estimate regional hydraulic gradients in the 

aquifer which a re believed to be in the range 0.02-0.03. Flow boundaries in the 

aquifer will be represented by the topographic divide at the head of the Seal Cove 

River Valley, the saltwater freshwater interface near the coast and some depth where 

the fractures become closed and hydraulic conductivity is reduced to essentially zero. 
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The hydraulic conductivity in the: glacial materials is likely to he 

extremely variable but on a large scale is prohahly quite consistent with little 

significant variation in hydraulic conductivity with depth. Conversely the hedrork 

aquifer is likely to have relatively high hydraulic conductivities nt:ar surface 

(associated with a high degree of open fracturt:s) and decreasing hydraulic 

conductivity with depth as open fractures gradually close as a resull of ovcrhunlcn 

pressure. 

The geochemical evolution of the groundwatt:r as it tlows through the 

aquifer will be strongly influenced hy wntact with the surficial and tht: bedrock 

hydrostratigraphic units. While flowing through the surficial units meteoric water with 

a Pcoz of 10- 3·5 and pH of about 5.7, is likely t ~) show a sharp incrt:ase in Pwl• hy as 

much as an order of magnitude. The change in Pmz will primarily he a result of 

contact with decaying organic matter. The increase in Pw2 will result in a large 

reduction in pH. The changes in pH will makt: the meteoric mtter more aggressive 

and better able to dissolve rock material. The solution of rock matt:rial will start in 

the rock debris of the glacial tills and continue in the bedrock units. Associated with 

the solution of rock material will he a change to a hasic pH and an incrca'\e in total 

dissolved solids. 
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In order that flow paths within the aquifer could be more readily 

understood a simple two dimensional flow net was constructed, using the finite 

difference method. The boundaries used are partially described above, the saltwater 

interface was estimated using the Ghyben-Herzberg method (see Freeze and Cherry, 

1979) and a no flow boundary was arbitrarily placed horizontally at 1000 m below 

sea-level. The elevation of the free water surface above sea level was estimated 

along AA' (Figure 1.1) from surface water bodies, rivers, streams and bogs. The grid 

for the finite difference model had a 250 m spacing. Head values for points not 

falling on the grid were estimated using the method of Hunt (1983). The method of 

finite difference flow net construction is described in Freeze and Cherry (1979). All 

calculations and matrix inversions were performed using the feature~ of Lotus 1-2-3 

spreadsheet. The flow net is shown in Figure 1.3 and is provided to give the reader 

an idea of probable flow patterns in the aquifer. It should be noted that the model 

is uncalibrated and is used as a simple screening tool. It proved useful for selecting 

the borehole location. 

1.4 STUDY SITE 

The location selected for the drilling of the study borehole is in the Seal 

Cove River Valley, north of the Conception Bay Highway, and is referred to as the 

North Seal Cove River Valley Location (NSCRV). The location lies approximately 



Figure 1.3 Flow net of the Holyrood Aquifer 
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50 m east of the Newfoundland Power Seal Cove Power Station, at an elevation of 

about 12 m, a few metres east of a tributary of the Seal Cove River distributary. 

All the outcrop mapped in the area is either Pre-Cambrian Harbour 

Main Volcanics or Holyrood Granite. No Basal Conglomerates or Lower Cambrian 

sediments were identified in the area. At the coastline no outcrop occurs in the Seal 

Cove Valley distributary. Sand and Gravel, often interspersed with large boulders,is 

being extracted along the coast at Seal Cove. Some of the gravel pits are an 

estimated 15 m below sea level, with no sign of bedrock. It appears that all the Pre

Cambrian and Cambrian sediments have been eroded by Pleistocene glaciation. 

Bedrock is exposed in the Seal Cove River Valley, but generally at 

el~vations greater than 19m above sea level south of the highway, or at slightly lower 

elevations adjacent to the highway on its north side. A very small knob of possible 

outcrop (determined by matching fracture patterns) occurs about 50 m northeast of 

the power house at an elevation of approximately 10 m. The site selected was 

located as near to the knob of rock as possible. The borehole orientation was 

selected to maximise the possibility nf intersecting succ~ssively older flow lines, based 

on the flow model. 



1.5 CONCLUSIONS 

For its intended purpose the hydrogeological setting of the NSCRV 

location is apparently ideal. Figure 1.3 indicates the strong possibility of upward 

gradients at the site, in part an effect of the wedging of freshwater over saltwater. 

The potential to intersect upward hydraulic gradients was an important consideration 

in site selection as the design of water sampling was predicated on artesian conditions 

bringing groundwater to surface; furthermore, the upward flexing of deep tlow-lines 

prov;des the possibility of sampling waters that had evolved at greater depths than 

the total depth of the borehole. 
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CORE 

A t·omplete core was collected from B size (60 mm) hole, over an 

inteJVal from 4.31 m to the total cored depth (TD) of 154.63 m. In general a triple 

tube coring arrangement (BQ) was used; however, interval 126.85 m to TD was cored 

using a double tube (BX) system. The triple tube system holds the core essentially 

motionless as the core barrel spins around it, allowing the recovery of undamaged 

and (for the purposes of measurement of planar features) accurately aligned core. 

The borehole orientation, determined purely from the orientation of the drill rig 

mast, is assumed to be at an azimuth of 135°, plunging at 68°, this direction was used 

in all calculations of fracture orientations. Orientated core was collected from 9.86 m 

to TO. Both the core description and the measurements to determine fracture 

orientations were made in the field. 

2.2 GEOLOGICAL DESCRIPTION OF TilE CORE 

2.2.1 Method 

The core was measured on recovery and, where required, broken 

segments carefully re-fitted, prior to scribing the core. The core was described for 

rock type and features, fracture fill or coating material. 



2.2.2 Core Description 

A d~tailed core log is contained in Appendix A. A synopsis of this 

information is provided on Figure 2.1. The core recovered at NSCRV is principally 

comprised of: 

i) andesite presumably of the Harbour Main Volcanic Group (Hutchinson, 

1953). The andesite is dark green and fine grained and usually highly 

fractured with most of the fracture surfaces filled or coated with chlorite. 

ii) chloritised green granite, often agmatitic in nature. This is assumed to he 

the green mottled quartz monzonite described by McCartney ( 1 967) and 

Bruckner (1979) who proposed that it had been formed by marginal 

hybridisation of the Harbour Main country rocks. The petrochemical nature 

of this rock is described in detail by Papezik (1970). 

iii) pink, apparently unaltered granite. Described again by McCartney and 

Bruckner as containing 35-40% quartz, 35% microperthite, 15% oligoclase, 

and 5% biotite. With rare exceptions the feldspars are altered to sericite and 

epidote. The pink granite recovered at NSCRV was coarse grained, with 

relatively few fractures. 



Figure 2.1 Synopsis of Core Log 
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The core consists of andesite from the surrace to a drilled depth of 

20m where predomin~ntly green granite is found. After this point the granite is 

interspersed with andesite xenoliths of various sizes to a drilled depth of 

approximately 104 m. The andesite is presumed to represent roof blocks of country 

rock. From 104m to 130m the granite is predominantly pink and unaltered until 

it reverts back to chloritised green granite at 130m and thence becomes agmatitic 

in nature with andesite xenoliths interspersed. Some further pink granite is found 

near the base of the cored interval before the lithology reverts to being essentially 

andesite, with only minor pink granite, from a depth of 141 m to TD. 

Minor veins of pegmatite and aplite were also logged. Some breccia 

veins were noted, presumably a result of late stage gas streaming (Reynolds 1 950) 

within the Holyrood Granite. Granite was also described as a vein filling material 

and was assumed to represent the initial intrusion of the material into the country 

rock. 

2.2.3 Fracture Minerals Logged 

Seven different minerals were identified in the core recovered from 

NSCRV. The descriptions provided below are from field descriptions. In pan they 

have been corroborated by subsequent SEM/XRD work (Chapter 7) conducted on 
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samples of fracture fill/coating minerals. However, some of the minerals have not 

been confirmed, and clay minerals identified by SEM/XRD were not detected in the 

field. Their occurrence and frequency is discussed in more detail in the section on 

fracture orientations. 

Chlorite 

Chlorite occurs throughout the NSCRV borehole and was the most 

common mineral. It was generally dark green in colour and flaky. Some 

slickensiding was found on chloritised surfaces. 

Calcite 

Calcite was observed both as fracture coatings and fillings, being white 

and varying from crystalline to amorphous. 

Epidote 

Epidote, amorphous and pistachio green in colour occurs as a fracture 

filling. 

Quartz 

Quanz occurred as both coatings and fracture fillings being white and 

cryptocrystalline. 



Wolframite 

The titanium bearing mineral wolframite was helieved to have: heen 

observed as a fracture coating with a red coppery hue and a clinkery appc:arance. 

A sample from 139.69 m, logged as wolframite was .ater found to contain Ti during 

SEM work (Chapter 7). Wolframite can be found as pneumatolytic vein filling in a 

variety of settings around the world (Read 1970). 

Iron Oxide 

Iron was occasionally found as a rusty/ dun coloured coating on fracture 

surfaces. All fractures where iron oxide was observed are helieved to have heen 

active water conduits. 

Withamite 

Withamite, a red variety of epidote, also amorphous was ohserved 

filling some fractures. 

2.3 DESCRIPTION OF FRACTURE ORIENTATIONS 

2.3.1 Method 

Core orientation was determined using a Roctest core orientating 

device. This tool was run inside the core barrel, to the bottom of the borehole, prior 
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to each core run. The construction of the orientation device is shown in Figure 2.2. 

Force, applied to the drill string, compresses the device, via its pressure rod which 

protrudes ahead of the bit face. In the final stages of compression of the device an 

'impression' of the exposed stub of the core/ base of the borehole is recordc.>d on 

movable steel pins located at the perimeter of the device. At the same time the 

down direction of the borehole is recorded by the impression left in a fixed (relative 

to the pins) aluminum washer (the mark ring), by a free floating steel ball bearing 

(the mark ball). Both the mark ball and the mark ring are contained in a telescopic 

ball chamber which closes on application of force down the drill pipe, leaving the 

impression of the mark ball (and hence the down direction) on the mark ring. Once 

the impression is taken the orientation device is recovered, and the core cut. At the 

end of the core run associated with the particular core imprint (as recorded by the 

pins) the imprint is matched to the face of the core. Alignment of the core and the 

orientation device, was assured by the use of a jig; the jig aligned the core section 

with the orientation device. The down direction, determined from the impression on 

the (replaceable) washer was then transferred to the reconstructed core, as a line 

representing the down direction. Although the method worked well for the triple 

tube core, the jig device did not accurately fit the double tube core recovered, 

introducing further inaccuracy to the results from double tube coring. 



Figure 2.2 Core Orientation Device 
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Measurements, used to calculate fracture orientations, were made in 

the field using the method described by Goodman (1976). Knowing the orientation 

of the borehole (and hence the core) two angles are needed to determine the 

orientation of a fracture; 

i) the angle between the axis of the core and the fracture face (a) and, 

ii) the angle between the r~ference line and the lowest point of the longest 

axis of the ellipse ( P ), formed by the intersection of the planar fracture surface 

with the circular core. The angle P was measured in a clockwise direct!Qn, 

looking down the direction of drilling, from the reference line to the long axis 

low point. 

Figure 2.3 depicts the relationship of these angles with the core and a 

hypothetical planar feature in the core (after Goodman 1976) 

Over 800 fracture orientations were measured. Once fracture 

orientation measurements had been made, fractures were described by recording type 

of fracture filling or coating material, nature of fracture surface, whether the fracture 

was natural or induced, its character (planar, curved, irregular) type of weathering 

and roughr.o.!SS. The rock type in which the fracture occurred was also recorded. An 

estimate of whether the fracture was opened or closed was made and this included 



Figure 2.3 Angles measured to orientate planar features (after Goodman 1976) 
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a qualitative estimate of how open the fracture was. Note that all subsequent 

comments regarding fractures refer only to rock discontinuities, open or closed, 

believed to be natural. Drilling breaks are no longer considered. The complete 

fracture data set for the core is provided in Appendix B. 

2.3.2 Method or Interpretation af Fracture Data 

The main intention, regarding the systematic calculation and recording 

of fracture orientation data was to decide: 

a) if any consistent fracture sets could be identified in the NSCRV 

borehole, 

b) if borehole intervals of high groundwater flux (as will be described 

in chapter 3) had any consistent fracture orientation(s), 

c) if b) was found to be true, were the~e fractures associated with a 

particular mineral, or minerals, as recorded in the field. 

All fracture data in the subsequent sections is presented on equal area 

Schmidt nets as projections of poles to planes. The method is described in many 

texts (e.g. Hobbs et al. 1976). The data were plotted and contoured using the 

program QUICKPLOT (van Everdingen et al. 1992). Eigenvectors of the principle 

data point clusters and their statistical significance are also calculated by 
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QUICKPLOT and are presented on the figures. Table 2.1 provides a synopsis of all 

fracture data. 

A borehole which penetrates fractured material, and which is used to 

count numbers of fractures, will be biased lowards planar features or fractures 

normal to the bordole (hereafter referred to as the borehole normal fractures). The 

borehole, in fact, represents a pole to these normal fractures. Conversely fractures 

parallel to the borehole, which can be visualized as having the same orientations as 

any planes which are tangential to a cylinder whose central longitudinal axis is 

represented by the borehole, will be under-sampled. Poles to these borehole parallel 

fractures will lie on the great circle representing the borehole normal plane A range 

of sampling biases occur between these two extremes (Terzaghi, 1965). No formal 

correction will be applied to the data; however, the orientation of the NSCRV 

borehole and a blind zone (for poles to planes) represented by an area lying within 

the great circles of planes 100 either side of the borehole normal plane are shown on 

Figure 2.4. The poles plotted within this blind zone would represent borehole 

parallel, and sub-parallel, fractures. The blind zone is a band striking northeast

southwest and dipping at 68" to the northwest. It should be noted that the blind zone 

must be considered as truly blind and that without information from orthogonal 

boreholes, or other sampling orientations, no inferences can be drawn regarding the 



Table 2.1 SYNOPSIS OF FRACTURE ORIENTATION DATA 

Tnlerval First Eigen Vector 

Dala Set Poles to planes Planes Dip Dip. dir. 95% Conf. K 
DATA DIVIDED BY DEPTH Num. Dip. dir . Dip Strike Radius 

(m) (m) (0) (0) (0) (0) (0) (0) 
9 .86 25.00 64 19.9 14.2 109.9 75.8 199.9 1.8 

25.00 50.00 99 182.2 11.1 272.2 78.9 - 2.2 15.9 1.8 
50.00 75.00 109 200.2 10.8 290.2 79.2 20.2 14.7 1.8 
75.00 100.00 49 183.7 7.9 273.7 82. 1 3.7 24.9 1.7 

100.00 125.00 51 252.6 33.3 342.6 56.7 72.6 18.6 2.0 
125.00 154.46 132 184.6 23.0 274.6 67.0 4.6 11.0 2.2 

DATA DIVIDED BY ROCK TYPE 
Green Granite 207 189.2 6.5 279.2 83.5 9.2 12.4 1.6 
Pink Granite 109 294.1 49.8 384. 1 40.2 114.1 12.8 2.1 
Andesite 182 189.6 8.8 279.6 81.2 9 .6 
Breccia 7 90.0 90.0 180.0 

ALL GROUNDWATER SAMPLE INTERVALS 
9.86 154.46 82 199. 1 2.2 289. 1 87.8 19. 1 24.3 1.4 

INDIVIDUAL GROUNDWATER SAMPLE INTERVALS 
SAl 8 14.9 14.8 104.9 75.2 194.9 65. 1 1.7 
SA2 17 208.5 1.8 298.5 88.2 28.5 53.0 1.4 
SAJ 7 213.2 22.8 303.2 67.2 33.2 24.9 6.8 
SA4 II 21.4 5.2 111.4 84.8 201.4 53.5 1.7 
SA5 9 196.7 3.8 286.7 86.2 16.7 n/a n/a 
SA6 8 18.7 13.2 108.7 76.8 198.7 38.4 3.0 
SA7 3 354.5 8.4 444.5 81.6 174.5 n/a n/a 
SA8 10 192.2 12.9 282.2 77.1 12.2 39.9 2.4 
SA9 9 196.0 9. 1 286.0 80.9 16.0 59.2 1.7 

Avg. 247.3 79.8 



Figure 2.4 NSCRV BOREHOLE ORIENTATION AND BLIND ZONE (ARBITRARY 
10° CONE AROUND THE DRILLHOLE) 
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blind zone (i.e., a lack of sampled fractures could mean either there are none or that 

there are many but they have been under sampled). 

The distribution of fractures is described in a non-rigorous statistical 

manner in later sections. However, of primary importance in this study are the 

fractures which conduct water. Fractures believed to be open (from inspection of the 

fractures surfaces and the degree .of match between mirror surfaces) were Jogged as 

such and given an arbitrary weighting, completely open (weighting of 1) or a fraction 

thereof (usually half or quarter open) or closed with a weighting of zero. Figure 2.5 

is a representation of this information and shows the estimated number of open 

fractures per metre, calculated as a smoothed average. The average was calculated 

by summing the weightings of the four fractures above and below the data point and 

dividing by the interval, in metres, that it spanned. This information is presented with 

the estimated groundwater flux from the interval and the estimated hydraulic 

conductivity in Chapter 3. There is a reasonable correlation between the fractures 

Jogged as open (or being significant water conductors) and the measured hydraulic 

conductivity. 

• I • \ ' I - ' , ' • ' J-'' r' ' · \ 



Figure 2.5 NUMBER OF OPEN FRACTURES PER METRE VERSUS DEPTH 42 
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2.4 FRACfURE DATA PRESENTATION 

2.4.1 Fractures Differentiated by Depth Intervals 

Because of the large number of fractures measured, the fracture 

orientation data for the drilled interval 9.86 m to TO is arbitrarily divided into six 

intervals each of approximately 25 m length (Figure 2.6). It is apparent that the 

dominant sampled fracture set, throughout the borehole section, is approximately 

east-west and vertical. These vertical fracture:, are not contained in the blind zone 

for the borehole. In the surface interval a set of fractures dipping at approximateiy 

30" to the southwest is also present. In addition the fracture sets in this surface 

interval (sampling andesite) are somewhat less well defined than in the deeper 

intervals. The blind zone described above seems to be under-represented. 

The intervals from 25 to 100m display a very strong east west striking 

(or more accurately approximately 2800-100") set of fractures, dipping at -80-85° to 

the north. An apparently conjugate fracture set is also sampled in the interval 50-

75 m with one pair of the conjugate set striking northeast, dipping at -12° to the 

southeast, and the second striking northwest, dipping at -12° to the northeast. 

The dominant fracture set over the interval 100-125 m is associated 

with the pink granite and strikes approximately north-northwest, dipping at -5~ to 

the east. A second conjugate set strikes north-northeast, dipping at -55° to the 
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Figure 2.6/ continued 
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southwest. These conjugate fractures appear to have approximatdy the same 

orientat.ion as those sampled in the interval 50-75 m. 

The final depth differentiated interval is again dominated hy an 

essentially east·west striking fracture set, dipping at - Tr' to the north. 

2.4.2 Fracture Differentiated by Fill Material 

The seven fracture coatings/fillings logged in the field (calcite, chlorite, 

epidote, quartz, iron oxide, withamite and wolframite) are all confined to fracture sets 

with relatively well-defined orientations. Figure 2.7 shows pole plots of fractures 

coated/filled with the seven different fracture minerals. Table 2.2 is a tabular 

synopsis of this information. The depths at which the minerals were recorded were 

averaged, to provide the mean drilled depth at which minerals occurred, the standard 

deviation for the data was calculated and the range where the:;e minerals are likely 

to occur is shown as the 95% confidence interval which is the mean±(2*the standard 

deviation). 

Chlorite 

Chlorite was the most prevalent fracture filling/coating logged (267) in 

the field. The dominant fracture orientation of chlorite filled fractures was two 

I ' - - - - - - I - . 

r ~ • -
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Figure 2.71 continued 
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Figure 2.7/ continued 
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Table 2.2 SYNOPSIS OF FRACTURE ORIENTATION, DIFFERENTIATED BY MINERAL TYPE 

Interval First Eigen Vector 

Data Set Poles to planes Planes Dip 

Num. Dip. dir. Dip Strike 

DATA DIVIDED BY MINERAL TYPE (0) (0) (0) (0) 
95% Confidence Interval 

(m) (m) 
Calcite 0.00 166.37 124 3.4 0.3688 93.40 89.63 

Chlorite 0 .00 169.88 293 181.1 7.S37 271.10 82.46 

Epidote 0.00 126.08 76 202 39.99 292.00 50.01 

Fe 0.00 91.Sl IS 344.6 0.6609 254.60 89.34 

Quartz 0.00 96.05 39 353.8 4.049 263.80 85.9S 
Withamite 0.00 107.06 12 325.3 5.773 235.30 84.23 
Wolframite 44.48 108.82 17 303 57.98 33.00 32.02 

SYNOPSIS OF DEPTH INTERVALS (metres) OVER WHICH MINERALS WERE LOGGED 

Calcite Chlorite Epidote Fe Quartz Witharnite Wolframite 

# 124 293 76 IS 39 12 17 
mean depth 74.58 74.91 62.37 27. 13 33.48 33.65 76.62 -sd 4S.90 47.48 31.8S 32.19 31.29 36.71 16.06 

95% min 0.00 0.00 0.00 0.00 0 .00 0.00 44.50 
95% max 166.37 169.88 126.08 91.51 96.05 107.06 108.75 
rnin.depth 4.S2 S.80 8.6S 4 .66 8.84 8.50 32.02 
rnax.depth 154.46 IS4.46 147.30 113.40 137.41 148.3 1 89.63 
mtd.depth 19.S 80.1 78.0 59.0 73. 1 78.4 60.8 
%OPEN 43.5 39.9 26.6 56.7 42.3 37.5 0.0 

Dip. dir. 9S% Conf. K 
Radius 

(0) ( 0) 

183.4 20.2 1.38 
1.1 10.2 1.64 
22 14.9 2.16 

164.6 61 1.36 

173.8 31.2 I.S2 
145.3 42 2.73 

123 25. 1 2.98 

NOTE 
K is an estimate of the clustering of 
points where 0 is a uniform 
distribution and infinity is all 

vectors poir;ting in exactly the 

same direction 



51 

virtually vertical, orthogonal sets striking east-west and north-south. Chlorite 

filled/coated fractures are represented over the entire length of the NSCRV borehole. 

Calcite 

Calcite coated/filled fractures are typically sub or near vertical striking 

either north-south or east-west. Calcite was the second most prevalent mineral 

Jogged (124). Some minor calcite filled fracturing was also logged striking 

approximately northeast-southwest dipping at -20" to the southeast. Calcite 

filled/coated fractures occur over the entire length of the NSCRV borehole. 

Epidote 

Epidote filled fractures do not display the dominant east-west sub or 

near vertical fracture orientation. However, the north-south vertical set is seen in 

conjunction with an approximately orthogonal set striking west-northwest and dipping 

at -500 to the north. Epidote filled fractures occur throughout the length of the 

NSCRV borehole. 

Quartz 

Quartz filled/coated fractures, though they make up the fourth largest 

(mineralogically defined) group of fractures (39), are relatively rare when compared 

with the number of calcite or chlorite fiJled/coated fractures. Most of the quartz 
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fractures logged were essentially vertical but displayed less preference for a particular 

orientation, than chlorite or calcite. Quartz fractures are most common in the upper 

75% of the NSCRV borehole. 

Wolframite 

Wolframite-filled fractures strike approximately northeast-southwest and 

dip -20" to the southeast. They occur over a discrete band from 112-139 m. 

Iron Oxide 

Iron oxide-stained fractures are almost exclusively represented in suh 

or near vertical fracture sets with the set constrained to the smallest arc striking 

north-south. A second, approximately orthogonal east-west set is also represented, 

however fractures in this set span a wider arc than those in the north-south set. The 

iron oxide fractures occur predominantly in the upper half of NSCRV. 

Withamite 

Withamite filled/coated fractures occur in a well defined set of fractures 

striking east-west with sub or near vertical dip. Some other minor orientations are 

also found. They are represented throughout the borehole but are more prevalent 

in the upper 75%. 
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2.4.3 Fractures Differentiated by Rock Type ,· 

The dominant fracture orientations, measured in the principal rock

types (Pink and Green varieties of granite and andesite), are shown in Figure 2.8. 

These will be discussed below and the fracture orientations will be further sub-divided 

on the basis of their mineralogy. 

Andesite 

Fractures in the andesite are dominated by those orientated east-west 

and being sub or near vertical (Figure 2.8). Some other minor fracture orientations 

are also apparent. 

Of the fractures in the andesite Figure 2.9 shows them differentiated 

on the basis of mineralogy. Chlorite, quartz, and calcite fractures are found in the 

east-west set with some other minor orientations. The epidote fractures have their 

highest concentrations in horizontal or sub-horizontal fractures. Fractures filled with 

granite are relatively rare and are found orientated in a variety of directions. 

Green Granite 

Fractures in the green granite are typically of the east-west striking sub 

or near vertical set and typically coated/filled with calcite, chlorite, epidote, quartz 
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Figure 2.8/ continued 
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Figure 2.9 POLE PLOTS OF FRACTURE ORIENTATIONS IN ANDESITE. MINERAL 
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Figure 2.9 /continued 
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and iron oxide (Figure 2.10). Those coated or filled with calcit~ ar~ most likely to 

be of the east-west vertical set. This is also true of chlorite, though then~ is more 

scatter. Quartz filled/coated fractures are predominantly east-west and suh or near 

vertical, though relatively rare and the same can be said of Fe coated fractur~s. which 

number only four. Epidote coats/ fills a set of fractures striking west-northwest and 

dipping at -500 to the north. 

Pink Granite 

The fractures in the pink granite (Figure 2.11) have apparently less well 

defined fracture orientations; however it should be borne in mind that this interval 

was drilled with double tube core (resulting in larger fracture measurement errors). 

The dominant fracture set appears to strike north-northeast dipping at -400 to the 

east-southeast, though there is much scatter. 

Of the fracture minerals identified only three calcite fra,;tures and 32 

chlorite fractures were recorded in the pink granite. The principal chloritised 

fracture set has a similar orientation to the overall fracture orientation in the pink 

granite. 



Fiaure 2.10 POLE PLOTS 0~ FRACTUkE ORIENTATIONS IN GREEN 
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Figure 2.10/ continued 
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Figure 2.11 POLE PLOTS OF FRACTURE ,')RJENT ATIONS IN PINK GRANITE, 
MINERAL DIFFERENTIATED 
CALCITE 
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2.4.4 Fracture Orientations in intervals sampled for groundwater 

Groundwater samples were collected at NSCRV from nin~ intc::rvals 

with relatively high hydraulic conductivities. The sampling methods are dc::scrihed in 

detail in chapter 3. 

Of all the fracture minerals described calcite is believed (mainly on the:: 

basis of field observation) to be associated with the highest amount of water tlow, all 

iron oxide coated fractures are also believed to be contemporary conductors of 

groundwater. Groundwater samples were collected predominantly from andesite:: 

(probably rafts in the granite) or the green granite, with no samples collectc::d from 

the pink granite. 

All of the sample intervals, from which groundwater samples were 

collected, were typified by fra~tures whose strikes lay in the east to southeast 

quadrant with a tendency to strike east or east·southeast, as shown on Figure 2.12. 

Figure 2.13 depicts the fracture orientations for individual intervals. The fractures 

were close to vertical with dip directions scattered north and south, approximately 1 0" 

either side of the vertical. Some minor north·south striking near vertical fractures 

were also logged. 



Figure 2 . 12 COMPOSITE POLE PLOTS OF ALL FRACTURES, BELIEVED TO BE 
OPEN, IN THE NINE GROUNDWATER SAMPLE INTERVALS 
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Figure 2.13 
FIGURE SAMPLE INTERVAL FRACTURES 
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Figure 2.13/ continued 
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Figure 2.13/ continued 
76.35 to 78.46 m 
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2.5 CONCLUSIONS AND INTERPRETATIONS 

As noted above most of the fractures believed to be active water 

conduits have nearly vertical dips and strike approximately east-west. They are 

chiefly associated with calcite and iron oxide. The near vertical east-west open 

fractures are believed to be both reopened fractures (principally because they have 

the same orientation as the some of the older fracture sets) dating back to the 

emplacement of the granite and possibly modern (Wisconsinan) fractures. The open 

fractures are belif.ved to be responding to a stress field in the granites which is 

controlled principally by the overburden pressure (Fertl, 1976) in which o 1 > o 2~a3 and 

in this case where a 1 is vertical and the two other orthogonal principal stresses are 

horizontal (Hubert and Willis, 1957). In this in;;!ance the apparent preference of the 

open fractures, for an east-west orientation, inc.icates that o 3 is essentially north 

south, and is less than a 2, with the o 3 stress in the direction of the general slope of 

the area. This may be evidence that the stresses found in the shallow levels sampled 

at NSCRV are controlled by isostatic rebound resulting from geologically recent 

glacial melting. The possibility of faulting, induced by postglacial isostatic rebound 

has heen mooted hy many authors (see Grant 1989 for a review). Grant notes that 

large-scale slumping of mountain sides, observed in the mountains of the Northern 



Peninsula, Newfoundland, may also be attributed to isostatic movements following ic~ 

cover melting.1 

All fractures that are not essentially vertical (and even some that are) 

are believed to be Pre-Cambrian to Cambrian in age. They are thought to hav~ 

resulted from the violent emplacement of the Holyrood Granite (Hugh~s 1971) at 

high pressures, and the associated final escape of fluids from the cooling magma 

body. It is believed that the horizonal o 1 stress orientation occurr~d during (or 

shortly after) emplacement of the granite. After granite emplacement th~ stress fidd 

reverted to one controlled by the overburden gradient. The pos!:ihility of high 

pressures near surface may have resulted in a 1 being horizontal inducing horizontal 

fractures to open (o3 vertical). If, as surmised, some of the fractur~ orientations 

observed are in fact conjugate, bifurcated hy the horizontal plane, then these 

fractures may also be remnant indicators of this old stress field. Epidote fractures 

displayed a conjugate fracture set, bifurcated by the horizontal plane, with relatively 

rare vertical fractures. Fractures logged as wolframite filled/coated were also 

essentially horizontal. Withamite filled fractures are near vertical. However, in 

general most of the fracture orientations were near vertical and the majority of the 

1 Note: if fracture fill material in the principal water carrying fractures could be dated an ide<t 
of the age when the fractures became active (or were reactivated) could be obtained and thus their 
relationship to glacial retreat. Such information could provide an an~wcr to the probability of post 
glacial slumping as a mechanism for inducir.g rock discontinuities and slumps. 
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chloritised fractures logged were vertical, with some minor near horizontal fracturing. 

These facts may indicate a stress field which changed from having o 1 essentially 

horizontal to one in which it is essentially vertical. 



CHAPTER 3: HYDRAULIC CONDUCfMlY TESTING 

3.1 INTRODUCfiON 

Between August 15th and November 1st 1989 a total of 83 intt!rvals in 

the NSCRV borehole were isolated and tested for hydraulic conductivity and head. 

providing continuous hydraulic conductivity information along the entire hole. 

Groundwater samples were collected from those intervals isolated, having the highest 

hydraulic conductivities. The hydraulic conductivity tests were conducted either as 

falling or constant head tests, depending on the hydraulic nature of the interval being 

tested. All conductivity measuring methods were intended 1.0 determine the hydraulic 

conductivity of the bulk rock mass, rather than that of individual fractures. 

3.2 METHODS OF HYDRAULIC CONDUCfMTY AND HEAD TESTING 

3.2.1 Description of the Straddle Packer Tool 

Three different hydraulic conductivity testing methods were used at the 

NSCRV location. Several intervals were tested using different methods to determine 

if the results were comparable. 
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A straddle inflated packer system, following the design of Raven ( 1980) 

and Raven and Smedley (1982) (Figure 3.la) was used to isolate the test intervals. 

Depth control was maintained by careful measurement of the length of schedule 80, 

3!." steel tubing, below which the test tool was run. Hydro/pneumatic connection 

between the tool and the surface was maintained via a 150 m three core, neoprene 

sheathed, composite plastic tube bundle, each internal tube having a V4' I.D. One 

tube was used as a nitrogen line for packer inflation with the other two tubes, open 

to the sample interval, used for head and flow measurement. The three core bundle 

was spooled on a drum and thus its lt..ngth was constant for all tests. During each test 

the packers were inflated, at the depth of interest, to -2.4 MPa above hydrostatic 

pressure. To ensure that the test interval was not pressurized by the inflation process 

all lines to the cavity were left open, on surface while packer inflation was in progress 

and a by-pass tube was used to equilibrate hydraulic heads in the interval below the 

bottom packer with the interval above the top packer. Great care was taken (by 

opening, closing and joining tubes under water) to ensure that, once the tubing was 

purged with water, no air was allowed to enter the bundle. 

3.2.2 Hydrostatic Head measurements 

Once the test tool was properly seated, and prior to hydraulic 

conductivity testing in each cavity, the cavity was shut-in (isolated) using surface 

valves. The pressure in the cavity was then allowed to equilibrate (or quasi 



Figure 3.1 Hydraulic Conductivity testing Configuration 
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equilibrate) with the formation pressure. The cavity pressure was measured using a 

0-200 kPa gauge at surface. All pressure measurements were corrected for the 

position of the gauge relative to the datum (the casing collar). This part of the test 

was the most time consuming often exceeding two to three hours. It can be argued 

that even this length of time was insufficient for true pressure equilibrium to ~e 

achieved but it is believed that the shape of the formation pressure buiid-up curves, 

that the final measured interval head pressure gives a good indication of the actual 

formation pressure. Examples of formation pressure build-up curves are provided 

in Figure 3.2. The data set is presented on Table 3.1. It should be noted that the 

shapes of these curves are also a function of hydraulic co11ductivity and that in 

general terms the steeper the initial pressure build-up, the higher the hydraulic 

conductivity. The head measurements indicate that the hydraulic conditions 

throughout virtually the entire length of the borehole were artesian. The artesian 

conditions allowed the use of constant head tests (with water flowing from the test 

interval) and rising head tests, for the measurement of hydraulic conductivity in 

almost all the intervals. Artesian conditions also permitted relatively simple positive 

pressure sampling for groundwater. 

3.2.3 Falling (or rising) head test 

Where the hydraulic conductivity of the test interval was determined 

to be insufficient to conduct a constant head test a falling (or in some cases rising) 



Figure 3.2 Shut-in curves for selected formation tests. All shut-in pressures 
were subsequently checked by calculation using constant bead test information 7~ 
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Table 3. 1 COMPOSITE PHYSICAL HYDROGEOLOGICAL DATA, NSCRV. 

Kch: Hydraulic conductivity from consllnt head test. 
Ktb: Hydraulic conductivity from falling head test. 
@K: Hydraulic conductivity from falling head test 

but using Thiem equation, n measured from cavity and 
and treating each time interval as constant head test. 

I CIIJI' l.:av• yaep«nS(mJ: 1\0.S (m/5) Ht.AU 

Top atm mid Kch 1\.lh ((II\. (AD) 
(m) (m) (m) (mil) (m/a) (m/s) (m) 

Ill J..-ss- 3 .69 4.64 6.67E~ 0.22 
12 5 .61 1.n 6.67 7.23E-Q6 0.26 
II 7.~ 9 .71 8.66 8.18E-Q8 0 .54 

10 9.63 11.74 10.69 2.34E-06 0 .86 
19 11.69 13.80 12.75 1.69E-Q6 0 .62 
71 13.68 15.79 14.74 1.09E-Q8 4.55E-Q8 0 .01 
77 15.69 17.80 16.75 1.07E-Q6 1.22 

76 17.73 19.84 18.79 3.78E-07 1.24 
75 19.76 21.87 20.82 1.92E-Q8 J.87E-Q7 0 . 16 
74 21.73 23.84 22.79 1.68E-Q8 0.01 
73 23.75 25.16 24.81 9.57E-12 2.19E-12 1.16 
72 25.77 27.81! 26.83 1.55E-Q8 1.22E-G7 0 . 11 
71 27.73 29.84 28.79 1.76E-o8 3.35E-o8 0.06 
70 29.75 31.86 30.81 1.58E-Q8 8. 17E-o8 0 . 11 
69 31.68 33.79 32.74 1.26E-II 2.44E- 12 5.51 
68 33.70 35.81 34.76 2.51E-II 5.S4E-12 5 .33 
67 35.74 37.85 36.80 I.S4E-11 7.44E- 12 138 
66 37.n 39.83 38.78 3.03E-o9 0 .67 
6S 39.76 41.87 40.82 9 .01E-o9 0 .55 

60 45.17 47.28 46.23 1.26E- ll 0.64 

S7 46.07 48.18 47. 13 9.70E-o9 0 .64 

S6 48.09 50.20 49. 15 4.75E-II 2 .67 

54 49.71 51.82 50.71 1.73E-11 1.42 

S3 51.72 53.83 52.78 2.55E-II 5 .47 

S2 53.74 55.85 54.10 3.79E-Q7 6.92 
Sl 55.15 57.86 56.81 3.78E-o6 7.08 

so 57.11 59.82 58.77 3.99E-II 5 .30 

49 59.70 61.81 ~.76 J.48E-12 1.67 
41 61.70 63.81 62.76 3.90E-JO 1.57 
46 62.59 64.70 63.65 2.9JE-o9 4 .55 
4S 64.58 66.69 65.64 2.30E-11 2.69 
44 6659 68.70 67.65 5.76E-o9 3 .10 
43 68.58 70.69 69.64 1.79E-Q6 6.87 
42 10.59 72.70 71.65 3.60E-Q7 6.n 
41 72.56 74.67 73.62 9 .33E-o9 6 .62 

40 74.55 76.66 7561 9 .84E-o9 6 .2S 

J9 76.56 78.67 77.62 1.69E...07 6 .37 
TOTAL CALCULATED FILOW FRO~ WELL: 

JfuJt 
(cm'/min) 

:Uil.lll 
295.45 

6 .85 
313.70 
162.41 

0 .01 
203.30 
72.78 

0 .47 
O.o:1 
O.<YJ 
0 .:<6 
0 . 15 
0.27 
0 .01 
0 .02 
0.00 
0.31 
0 .77 
0 .00 
0 .96 
0 .02 
0 .00 
O.o2 

407.42 
4156.60 

0 .03 
0 .00 
0.10 
2.06 
0 .01 
2.77 

1913.87 
375.70 
9.~ 
9.56 

167.66 

Flux: refers to calculated Oow from 2m interval 
with Borehole pressure at Om. 

Head Refers to formation pressure relative to the estimated 
datum at 12m above sea level. 

TCIIJI' cavity dcplh&(mJ: K ' s (mfa1· 
lOp tstm m•d 1\.ch 1\.lh (:~ (m) (m) (m) (m/a) (m/a) 

~ 78.50 80.61 79.56 I.IOE-()7 
80.56 82.67 81.62 1.82E-o8 

35 81.52 83.63 82.58 3.01E-o9 
34 83.52 85.63 84.58 3.49E-II 
33 85.51 87.62 86.57 J.39E-o9 
32 87.52 89.53 88.53 1.63E-II 
31 89.58 91.69 90.64 11.90E-12 
30 91.59 93.70 92.65 2.18E-10 
29 93.57 95.68 94.63 3.23E-o9 
28 95.85 97.69 96.77 1.05E...07 
27 97.56 99.67 98.62 1.22E-II 
26 99.55 101.66 100.61 6 .19E-11 
2S 101.58 103.69 102.64 . ).()9E-II 
24 103 .~ 105.71 104.66 O.OOE+OO 
23 105.62 107.73 106.68 1.41E-IO 
22 107.69 109.80 108.75 2.53E- II 
21 109.71 II 1.82 110.77 I. 16E-IO 
20 I 11.77 113.88 112.83 2.47E-II 
19 113.74 115.85 114.80 3.68E-I I 
18 115.49 117 .~ 116.55 2.67E-11 
17 117.55 119.66 118.61 1.71E-10 
16 119.59 121.70 120.65 2.78E-II 
IS 121.~ 123.71 122.66 1.43E-IO 
14 123.57 125.68 124.63 3.23E-11 
13 125.55 127.66 126.61 4.56E-11 
12 127.53 129.64 128.59 8.06E- 10 9 .42E- IO 

II 129.54 131.65 130.~ 4 .51E-11 

10 131.54 133.65 132.~ 4 .03E-10 
9 133.55 135.66 134.61 1.02E- II 
II 135.54 137.65 136.60 9 .81E- II 
7 137.54 139.65 138.60 4 .68E-o9 
6 139.59 141.70 140.65 1.04E- JO I.IJE- 10 
s 141.60 143.71 142.66 7.09E-II 
4 143.60 145.71 144.66 1.22E-11 
3 145.58 147.69 146.64 2.21E-o9 
2 147.59 149.70 148.65 7 .00E-o9 
I 149.59 151.70 150.65 9 .97E-10 

7.506.64 cm'lmin 

Ht.AU 
(AD) llu~t 

(m) (cm'/min) 
6.24 loo.IT 
3.25 9.18 
8 .24 3.86 
1.37 0 .01 
5.90 1.28 
2.34 0 .01 

:-().16 0.00 
2.59 0.09 
3.18 1.59 
6 .44 104.92 
4 .63 0.01 
2.28 0.02 
4 .53 0.02 
0.00 0 .00 
4 .63 0 .10 
2.08 0 .01 
3.36 0 .06 
2 .28 0.01 
3.69 0 .02 
2.28 0.01 
5.00 0 .1 3 
3 .61 0 .02 
3.30 0.07 
5 .24 O.Q3 
1.93 0.01 
2.95 0.40 
2.51 0.02 
2.90 0. 18 
1.47 0.00 
1.911 0 .03 
4 .15 3.02 
3.92 0.07 
2.78 0.03 
3.76 v.OI 
3.45 I 19 
4 .31 4.70 
1.51 0.23 



77 

head test was conducted. The configuration for the falling head test is shown in 

Figure 3.1 b. This method of hydraulic conductivity testing was developed by Hvorslev 

( 1951) for the purposes of testing granular porous media; however, it is also 

frequently used in the testing of fractured media. The relatively good agreement 

between the falling head and the constant head tests, described below, is an 

indication that the method is valid for fractured media which approximates porous 

media. 

The test was conducted using a straight vertical translucent W' I.D. 

polyethylene tube on surface, attached to a vertical scale, referenced to the datum. 

As far as possible the head tube was filled (or emptied), prior to starting a test, so 

that the head in the tube was in excess of 2 m different from that measured in the 

cavity. The head tube was then connected to one of the tubes to the test cavity, with 

the other tube blanked-off on surface. The test was started by opening a valve 

between the head tube and the tubing to the cavity. Recordings of head JeveJ 

variations, with respect to time, were made as the test proceeded. The results of the 

test were interpreted using the Hvorslev ( 1951) method, after a line of best fit had 

been applied to the data points. A programmable calculator was used in the field, 

to check results. Once a line had been fitted to the data the hydraulic conductivity 

was calculated using equation 3.1: 



(Equation 3.1) 

Where, 

~ - Horizontal conductivity [L]/[T] 

d - Diameter of falling head tube [L] 

D - Diameter of test cavity [L] 

t1 - Time at start of test [T] 

t2 - Time at end of test [T] 

H 1 - Head level in falling head tube at start of test [L] 

H2 - Head level in falling head tube at end of test [L] 

L - Length oftest interval [L] 

m - Geometric factor, taken as 1 

m is typically calculated using equation 3.1a: 

(Equation 3.la) 

where 
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kv vertical hydraulic conductivity 

kh horizontal hydraulic conductivity 

The use of m = 1 implies that kv = kh this assumption is worthy of further study and 

is probably not the case in Holyrood Granite. As is shown later a nearly vertical 

fracture set is the dominant water conduit in the Holyrood Granite which implies 

kv >> kh. 

This method (using the equipment configuration shown in Figure 3.1b) 

can be used to quantify hydraulic conductivity up to approximately 1 x 10-8 m/s 

(established by experimentation in the field). This upper limit is a result of pressure 

losses in the small diameter tubing, used to connect the head tube with the test cavit;y. 

Pressure losses in tubing are proportional to the length of the tubing and ~hus the 

method would work if the connecting tube length were reduced. The problem of an 

upper limit of measurement is discussed in the method comparison section. 

3.1.4 Constant bead tests 

Where possible, constant head tests were also conducted to determine 

the hydraulic conductivity of the test intervals. Once the pressure head in an interval 

had been determined a constant head test was conducted by allowing outflow from 

the test cavity to exit (consecutively) at two different, but fiXed, levels below the 
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maximum established head level in the test cavity. The two outflow levels wert:' 

selected to give a relatively large difference in elevation between each other. At each 

fixed head level the water from the cavity was allowed to flow until the flow rate was 

essentially constant. At this time the flow rate, height of the exit tube above datum, 

and cavity pressure were recorded (a pressure gauge having been attached to the 

second tube in the test cavity to get a true pressure reading in the test cavity). The 

measurement of pressure in the test cavity avoided problems of head measurement 

inaccuracy, resulting from head loss in the small diameter tubing, and ''lso provided 

additional data on the magnitude of head losses associated with the measurement 

Jines. The results of the constant head test were interpreted using the Thiem 

equation (Equation 3.2), which is valid for steady state groundwater flow conditions: 

(Equation 3.2) 

Where 

K - equivalent rock mass hydraulic conductivity 

re - The effective radius [L] 

rw - The wellbore radius [L] 

Q - Flow rate at constant head [L3]/[T] 

L - Length of test interval [L] 

A H - Head difference between true formation head and h:ad in the test cavity ( L] 
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In all cases re was assumed to be 5 m. By rearranging e4uatinn .l2. 

and assuming that the effective radius remain:; constant for differing cavity tc~t 

pressures (e.g. 5 m), then hydraulic conductivity can be calculated from the two 

constant head tests at different cavity pressures, without knowing the true formation 

pressure (at distance re from the well bore) using equation 3.3: 

K= 
L1 ~) (Qh - 01) 

21tL (h1 -hh) 

(Equation 3.3) 

Where 

hh -head in the cavity with discharge tube at high level [L] 

h1 - head in the cavity with discharge tube at low level [L] 

Qh - discharge rate from the cavity with discharge tube at high level (L3)/(T) 

Q1 - discharge rate from the cavity with discharge tube at low level [L']/[T] 

Equation 3.? can then be re-arranged and the true formation pressure, at the depth 

of interest, calculated. Figure 3.3 shows a comparison of the results of calculating 

formation pressure from constant head tests and from shut-in pressures. The graph 

showing these results and a line of best fit for the data is shown. In general there is 

excellent agreement between the two methods, with the method of calculating 



Figure 3.3 Comparison of formation pressure heads calculated from shu!-in 
pressures and calcula1ed from constant head test data. 

Tabulated Results 
Test# Shut-in Calculated Best fit 

(m) (m) (m) 

7 4.43 4.15 4.56 Regression Output: 

29 6.36 6.44 6.29 Constant 

35 2.49 3.18 2.82 Std Err of Y Est 

37 3.86 8.24 4.05 R Squared 

38 6.31 3.25 6.25 No. of Observations 

39 6.46 6.24 6.38 Degrees of Freedom 
40 6.16 6.37 6.11 
41 6.62 6.25 6.53 X Coefficient(s) 
42 6.72 6.44 6.62 Std Err of Coef. 
46 4.12 4.55 4.29 
52 6.92 7.56 6.80 
76 0.97 1.24 1.46 
77 1.03 1.22 1.51 
80 0.88 0.86 1.38 
81 0.36 0.54 0.91 
83 0.21 0.22 0.78 

RESULTS PRESENTED GRAPHICALLY 

From 
Constant 
Head Test 
(m above datum) 
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Formation head derived from shut-in pressure 
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0.590 
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formation pressure from constant head tests providing marginally higher estimates ot 

formation pressure. 

3.2.5 Falling bead test while measuring the test cavity pressure 

Falling head tests were conducted with the cavity pressure be!ing 

measured directly with a pressure gauge blanking-off the spare cavity tube. Using the 

Thiem equation each time interval of the test was interpreted, with the assumption 

that flow had reached steady state for the small intervals of the test. This then gave 

an "instantaneous hydraulic conductivity". All instantaneous hydraulic conductivities 

for each test were then averaged to provide a value of hydraulic conductivity. When 

compared with the Hvorslev method of interpretation the results differed hy almost 

an order of magnitude (see Figure 3.4). The method of calculating ir.stantaneous 

hydraulic conductivities is not considered to be particularly valid; however, it was used 

for those intervals which could not be tested using the constant head method and, 

furthermore, had hydraulic conductivities of approximately 1 x 10-s m/s. Intervals 

with hydraulic conductivities of approximately 1 x 10-8 m/s, tested in this manner, 

account for less than 0.015% of the total estimated groundwater tlux to the wellhore 

at NSCRV. 
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3.2.6 Compl'rison of Hydraulic Conductivity Testing methods 

Figure 3.4 is a graph/table showing intervals whose hydraulic 

conductivities were r.teasured using at least two of the three methods detailed above. 

There is a very good agreement in results between the constant head and falling head 

methods, where both methods were used. Unfortunately there is no comparison 

dataat hydraulic conductivities of ~1 x 10-8 m/s. Data from the third method is 

provided in Table 3.1. As noted above results from this method are believed to be 

the least reliable. 

3.3 OVERVIEW OF HYDRAULIC CONDUCI1VI1Y AND HEAD MEASUREMENT 

RESULTS 

A synopsis of the results of hydraulic conductivity and head 

measurements is provided in Table 3.1. The range of values measured is: 

a) for hydraulic conductivity; from 1.48 x 10-12 to 7.23 x 10-6 m/s and, 

b) for formation head; from -0.16 to 8.24 m (approximately 11.84 to 20.24 m 

above sea level) from datum, with only one interval having a negative head. 

Using the hydraulic conductivity and the formation pressure data the 

flux for each interval was calculated using the Thiem equation (equation 3.2), with 



Figure 3.4 COMPARISON OF PERMEABILITY MEASUREMENT METHODS 
USED AT NSCRV 85 

Kcb: Hydraulic conductivity from consrant head test. 
Kfh: Hydraulic conductivity from falling head test. 
@K: Hydraulic conductivity from falling head test 

but using Thiem equation, P2 measured from cavity and 
and treating each time interval as const bead test. 

AD: Above specified datum 
TestJI Cavity depths(m): K's (m.ls) 

Bottom top mid Kch Kfh @K Head( AD) flux 
(m) (m) (m) (m/s) (m/s) (m/s) (m) (cm'/min) 

78 13.68 15.49 14.74 1.09E-08 4.55E-08 0.01 0.01 
75 19.76 21.87 20.82 l.92E-08 l.87E-07 0. 16 0.47 
73 23.75 25.86 24.81 9.57E- 12 2.19E-12 1.16 0.00 
72 25.77 27.88 26.83 l.55E-08 l.22E-07 0. 11 0.26 
71 27.73 29.84 28.79 1. 76E-08 3.35E-08 0.06 0.15 
70 29.75 31.86 30.81 l.58E-08 8.17E-08 0.11 0.27 
69 31.68 33.79 32.74 l.26E-ll 2.44E-12 5.51 0.01 
68 33.70 35.81 34.76 2.51E-ll 5.54E-12 5.33 0.02 
67 35.74 37.85 36.80 1.54E-ll 7.44E-12 1.38 0.00 
12 127.53 129.64 128.59 8.06E- 10 9.42E-10 2.95 0.37 
6 139.59 141.70 140.65 1.04E- 10 l.13E-10 3.92 0.07 

Log K vs Depth for three different permeability measurement methods 
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an r~ of 5 m, and an average hydraulic conductivity, for each interval calculated only 

from the average of the falling head and constant head interpretations. In the figure 

indicating the sum of the interval fluxes (given in non consistent units of cm3/min) 

no attempt has been made to correct the total estimated hole flux for the error 

associated with overlapping test sections. The integrated flow rate from the borehole 

of -8 1/min approximates the value measured in the field of 10-15 1/min. 

An 'average' hydraulic conductivity, for the entire hole section, was 

calculated using equation 3.4, given by Gutjahr et al. (1978) for porous media, and 

more recently used by Cacas et al. (1990) for interpretation of data from fractured 

media: 

(Equation 3.4) 

Where 

Km - Estimated mean hydraulic conductivity [L]/[T) 

Kgeom - Geometric mean of the all the punctual (small interval) hydraulic 

conductivity measurements 

- Variance of the natural log of all the punctual hydraulic conductivity 

measurements. 
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The average hydraulic conductivity. calculated using equation 3.4 is 

4.74 x 10-9 m/s. This figure will be used, as the value for hydraulic conductivity. for 

all subsequent hydraulic calculations. Figure 3.5 summarizes the hydraulic data (over 

the interval tested). It appears to show that the hydraulic conductivity is at a 

maximum over the shallowest 25 m of depth and again between 55 to 60 m ami 70 

to 80 m, below which it decreases again to a value of approximately 10- 10 to 

10-12 m/s. A smoothed value of hydraulic conductivity is also shown, calculated 

from the average of the two hydraulic conductivity measurements above and below 

the mid hydraulic conductivity measurement (a total of five measurements). Overall 

there is a slight trend of decreasing hydraulic conductivity with depth (Figure 3.6). 

A regression analysis applied to Log hydraulic conductivity versus depth gives a line 

of best fit with a formula: 

Log K = 0.1925 [Depth (m)] - 7. 45796 (Equation 3.5) 

The calculated correlation coefficient r, for this line is 0.468. The 

correlation is significant at the 95% level, using a two tailed test (Mendenhall and 

Sincich 1988). Figure 3.6 shows the hydraulic conductivity data, plotted against depth, 



Figure 3.5 
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Figure 3.6 GRAPHS SHOWING PUNCTUAL HYDRAULIC CONDUCTIVITY 

AND LINE OF BEST FIT FOR CONDUCTIVITY MEASUREMENTS 
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with the line of best fit. There is a recognisable trend of decreasing conductivity with 

depth. 

As shown in Figure 3.5 the formation head appears to reach a 

maximum at the 55-65 m and 70-80 m at approximately 7 m above datum. The 

apparent decrease below this depth may possibly be real or it may be a result of 

insufficient time allowed for the pressure in the test cavity to equilibrate with the 

formation pressure. A smoothed head value, calculated in the same manner as for 

hydraulic conductivity is also shown. 

The flux graphs, show that the significant flow from NSCRV is confined 

to approximately 5 zones, a top 20 m interval and then zones at 57, 70, 77 and 97 m. 

Of these zones the most significant, in terms of flux contribution to the borehole is 

the one at -57 m. Figure 3.7 shows flux in conjunction with those fractures logged 

as open. 

3.4 CONCLUSIONS 

The results of hydraulic conductivity testing indicate that the major flow 

at NSCRV borehole (by volume) is from a few discrete fracture zones. However,the 

frequency of occurrence of high flow zones cannot be estimated from the data 

collected. The formation head varies from -0.16 to 8.24 m and the NSCRV borehole 
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Figure 3. 7 Plots showing the open fractures/ metre l"gged and the 
hydraulic conductivities measured at NSCRV 

Open fractures/ metre logged in the NSCRV core 

Hydraulic conductivities measured in the NSCRV borehole 
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is artesian along virtually its entire length. The average hydraulic conductivity at 

NSCRV is 4.74 x 10·9 m/s calculated from hydraulic conductivity readings ranging 

from 1.48 X 10- 12 to 7.23 X 10-6 m/s. This value is close tO the hydraulic conductivity 

value (I x 10-9 m/s) used by Nordstrom et al. (1985) as an average for preliminary 

modelling of flow in the Stripa Granite. The hydraulic conductivity shows a reduction 

with depth which can be estimated using equation 3.5. 
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CHAPTER 4: GEOCHEMICAL 1\tETHODS AND DATA QUAI...IlY 

4.1 DATA COLLECTED 

4.1.1 Sampling methods 

To ensure the collection of representative samples, and to avoid 

sampling-induced changes in water chemistry, a strict protocol was followed for 

groundwater sampling at t:1e NSCRV location. The general nature of the sample 

suite r.ollected at the NSCRV location and methods used for collection will he 

discussed iu this chapter. 

Any zones identified, during hydraulic conductivity testing as having 

significant hydraulic conductivity, were sampled prior to deflating the straddle packer 

system. Zones observed to have significant flow during drilling were also sampled 

(prior to hydraulic conductivity testing), either using the test tool run on the drilling 

rig win:. line or run on 1" schedule 80 steel tubing. The interval tested, for samples 

collected while drilling, varied between 2.48 and 3.16 m. The depth control of the 

inflated tool, run on a wireline, was not believed to have been as accurate as for the 

tool run on the tubing string. It is estimated that the accuracy of placement of the 

tool run on a wireline was as poor as ±3 m, while placements of the tool made using 

the tubing string were probably in the order of ±5 mm per 3 m length of pipe run. 

leading to a range of accuracy of ± 0.25 mat TD. All samples shown as having t<x>l 
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configuration 3/21! R in Appendix C, were collected during hydraulic conductivity 

testing, and are believed to have the best depth control. 

As all sampled intervals were artesian no pumping was required for 

sampling; therefore, an samples were collected under positive pressure and are free 

from degassing-induced chemical effects. The initial time series of samples from the 

intervall8.61 to 21.77 m was collected using 1/4" polyethylene tubing. All subsequent 

samples were collected through 3/16" polyethylene. The 3/16" sample tubing was 

contained in a 3-core bundle with a central wire strain member and an external 

sheath. The 3/16" bundle was held on a reel for ease of use and its entire length was 

used regardless of sampling depth: Thus regardless of depth, all samples were 

collected using the same tube having an invariant length. The sampling configuration 

used to collect each sample is listed in column five of Appendix C. 

Any intervals with high flow rates were also sampled immediately after 

hydraulic conductivity testing. The test cavity length for this phase of sampling was 

2.11 m and sampling was through two tubes, of the 3/16" three core bundle, joined 

together at surface to provide higher flow rates. For this phase of testing and 

sampling the tool was only carried on the end of rods. 

- --- - ' ' . \ . ·. , . 
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Once sampling was started water flowing from the test cavity was 

carefully monitored to ensure the cavity was completely flushed. Approximately eight 

sample interval volumes (SIVs) were usually flushed before a final sample was 

collected from an interval. During sampling pH was measured using a Fisher 

Accumet pH/m V meter and pH electrode inserted in a plexiglass flow cell. The 

temperature compensating probe, of the pH meter, was inserted into a separate port 

in the flow cell. Temperature readings were apparently affected by sunlight and air 

temperature, especially in shallower intervals where much of the sample tubing length 

was above ground. As far as possible the on surface sample tubing was shielded from 

sunlight and kept cool. 

As the time required to flush eight SIVs was sometimes in excess of 24 

hours the pH meter was calibrated frequently. Stock pH solutions, brought to the 

temperature of the out-flowing water, were used for calibration. Conductivity was 

measured using a conductivity meter calibrated using 1000 14S calibration fluid. 

Wherever possible Eh readings were also taken using the pH meter with a platinum 

electrode and an Ag-AgCI reference electrode inserted into the flow cell, Eh readings 

were corrected to read Eh. A series of Eh readings were recorded after the last 

sample in a time series had been collected. Eh measurements were recorded until 

the Pt electrode potential had stabilised, sometimes re<.juiring up to 2 hours. 
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At each sampling two 125 ml low density polyethylene bottles, 

previously leached with 30% HN03 and flushed three times with de-ionized, distilled 

water, were used for sample collection. Prior to collection the bottles were flushed 

a further three times, with the water to be sampled. Within 6 hours of the collection 

of a sample alkalinity measurements were made on unfiltered samples. A 20 ml 

aliquot of sample was added to a 50 ml beaker containing a pH probe. 0.0253N 

nitric acid was titrated into the sample and the pH versus titrant volume recorded. 

An end point was determined graphically from the first derivative of pH vs volume. 

Alkalinity was calculated using the formula: 

(Equation 4.1) 

Total Alkalini ty(as Hco;> (mg/ L) = 61. mls ti ~ran: x [.:0 31 1l1l 
m so ac~ used 

All sample not used for alkalinity titration was filtered through a 

0.45 IJm cellulose nitrate filter. One filtered 125 ml aliquot was acidified with 1 m!. 

of 16N ultrapure HN03 to be used for ICP-MS analysis. An unacidified sample was 
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collected for analysis of SO/. Cl- and F- by HPLC. At the end of each time series 

a small (unfiltered) glass bottle was also collected for analysis of tRo and 2H. 

4.l.2 Analytical Methods 

A total of 27 major and trace elements, shown on the pull-out 

Appendix C, were analyzed on all samples by inductively coupled plasma mass 

spectrometry (ICP-MS). Li was analyzed, by ICP-MS, on six samples after the main 

ICP-MS analyses had been performed. Analyses for the elements Ca, Mg, AI, Fe, Si 

were carried out by flame atomic absorption (AA) and ICP-MS, while K and Na 

were analyzed only by AA. Analyses for the anions F, Cl- and SO/- were made 

using high performance liquid chromatography (HPLC) in conjunction with a 

variable wavelength UV detector operated in indirect photometric mode (Small and 

Miller, 1982). This provided analyses, for CJ- and SO/-- hy two different methods 

(assuming all S detected by ICP-MS occurs as sulphate). 

Oxygen-18 (180) analyses were made on a VG-Instruments PRISM 

isotope ratio, gas mass spectrometer. Sample preparation involved equilibrating 

50 J.'L aliquots of sample with C02 of known isotopic composition, in a sealed tube 

procedure described by Schillereff and Welhan (in prep). Deuterium (2H) analyses 

were made, at the University of Waterloo, on selected samples using the uranium 

reduction technique. 
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4.1.3 Quality or non isotope analyses 

Data quality was checked initially by charge balancing four different 

combinations of data, derived from different analytical methods, using the formula 

(Equation 4.2) 

Where 

z - is the number of charges on a particular ion 

m. - number of moles of a particular anion 

me - number of moles of a particular cation 

CBE - charge balance error 

The value resulting from Equation 4.2 is referred to as the charge 

balance error (CBE) (Freeze and Cherry, 1979). The four different data set 

combinations (see final columns Appendix C), based on various combinations of 

analytical methods are: 

i) ICP: All ICP-MS analyses with Na and K from AA and HC03 from 

alkalinity titrations. 
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ii) ICP+AA: As fori) but replace the ICP-MS analyses of Ca. Mg. AI, Cl. 

Fe and Si with those made using AA. 

iii) AA+HPLC: As for ii) but replace the analyses of SOl· and Cl· hy ICP

MS with analyses made using HPLC. 

iv) ICP+HPLC: As for i) but replace the analyses of SO/ and C1" by 

made by ICP-MS with HPLC analyses. 

As can be seen in Appendix C, the average CBE, for any data 

combination from the final values, is always less than 5%. The maximum individual 

CBE is 8.13%. The average CBE for the ICP-MS data set is slightly larger than any 

of the selected combinations (though still only -1.02% ), however the standard 

deviation of the CBE derived from this data set is the lowest of any of the sets, 

resulting in the smallest range of values around zero charge balance. For this reason 

the ICP-MS data set is selected for all chemical modelling calculations, with the 

exception of Fe which will be discussed below, Na and K which were only analyzed 

by AA, and F which was only analyzed by HPLC. It is noticeable that there is a 

general decrease in the absolute values of charge balance with increased SIV 

flushing during a time series, and that the final samples (in any of the time series) 
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have the lowest value of CBE. For these reasons all chemical modelling will use the 

ICP- MS analyses of the final samples collected frum each interval (see Appendix C), 

as theo;e are likely to be the most representative (Robin and Gilham 1987), having 

been taken after the greatest sample interval flushing. In some cases, where a 

particular value for the last sample may be spurious (e.g. so4 value for 71.65 m 

interval), the average of the previous values in the time series was used. 

Except for I, K, La, Mo, Na, P, Rb, Ti and U, element specific, data 

quality checks were also performed on all element analyses. The element specific 

checks were conducted either by performing linear regressions on elements analyzed 

by two different methods, and/or by analysing known USGS standards by ICP- MS. 

The results of these data quality checks are discussed below. 

The results of linear regressions performed on element concentrations 

determined by two different analytical techniques for each sample are shown in 

Figures 4.1 and 4.2. Figure 4.1 presents ICP·MS analyses plotted against AA analyses 

and Figure 4.2 shows ICP·MS analyses plotted against HPLC analyses. The ICP·MS 

analyses are arbitrarily selected as the dependant variable. Normally this selection 

implies that there is no error associated with the independent variable. This is not 

the case with these data sets, resulting in a data quality interpretation which is only 

semi·quantitative. 
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ICP-MS analyses (ppm) vs AA analyses (ppm) 

Calcium analyses Calcium 
Regression Output: .. 

Constant -0.4204 
Std Err of Y Est 0.4778 .. 
R Squared 0.9987 

1 No. of Observations 27 .. 
z Degrees of Freedom 25 .. .. .. X Coefficient(s) 0.9921 

Std Err of Coef. 0.0071 

• •• .. .. ..._, 
Magnesium analyses Magnesium 

Regression Output: •.. 
Constant - 0.1013 ... 

" ... Std Err of Y Est 0.1254 •.. 
R Squared 0.9852 •.. ... 
No. of Observations 27 1 • ..• 
Degrees of Freedom 25 : ... 

... 

... X Coefficient(s) 1.0573 
0.0 Std Err of Coef. 0.0259 ... ... 

..._, 
Silicon analyses Silicon 

Regression Output: 
Constant 0.2885 
Std Err of Y Est 0.3724 
R Squared 0.9330 

1 No. of Observations 27 

: Degrees of Freedom 25 

X Coefficient(s) 0.9026 
Std Err of Coef . 0.0484 

.. _, 
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Figure 4. 1 (continued) 
Iron analyses Iron 

Regression Output: ... 
D Constant -0.0012 

... / Std Err of Y Est 0.0219 

•.. R Squared 0.9839 

l 
No. of Observations 19 ... 

: Degrees of Freedom 17 ... 
•.. X Coefficient(s) 0.7678 

Std Err of Coef. 0.0238 

-o.• 
D ... ... 

Me-) 

Aluminum analyses Aluminum 
Regression Output: ..• Constant -0.0293 D 

.... Std Err of Y Est 0.1431 ... / 
R Squared 0.8470 

1 •.. No. of Observations 27 

: ... Degrees of Freedom 25 ..• 
D.O •.. X Coefficient(s) ... 1.0317 ... Std Err of Coef. 0.0877 o.• 
• -··· • .... ... ... ... ... 

..... ,.,.., 
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ICP-MS analyses (ppm) vs HPLC analyses (ppm) 

Sulphate Sulphate 
Regression Output: ... 

Constant 1.0154 
110 ... /. Std Err of Y Est 9.8233 
10 R Squared 0.9074 .. 

1 ... No. of Observations 16 

: .. Degrees of Freedom 14 .. .. - X Coe!ficient(s) 1.0348 .. Std l:.rr of Coef. 0.0884 
10 

0 - .. ... 
~-· 

Chloride Chloride 
Regression Output: ... 

Constant 3.7671 ... 
/ 170 Std Err of Y Est 5.3594 ... R Squared 0.9704 ... 

l ... No. of Observations 16 

z ... Degrees of Freedom 14 ... 
110 ... X Coefficient(s) 1.0388 .. Std Err of Coef. 0.0485 .. .. 

"' .. 110 •• ·- ..... ...,_, 
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If the analyses had been perfectly accurate the slope of the best fit line 

through the data sets would be + 1, intercept 0 and coefficient of regression + 1 

( vRsquared). The sum of the difference of the slope from 1 and the standard error 

of the coefficient, expressed in per cent is arbitrarily defined as: 

(Equation 4.3) 

Estimated Uncertainty = 

:% (Standard error of the X coefficient + Absolute value(l-x-coefficient) xlOO% 

Based on the data in Figures 4.1 and 4.2 the likely ranges of 

uncertainties for the six elements (Ca, Mg, K, Si, AI, S (as SO/) and Cl], estimated 

using equ?:ion 4.3, ranges from 1.5-25.6%. A synopsis of error estimates, for the six 

elements listed above and derived using equation 4.2, is presented in Table 4.1. 

When one considers the large effect that SO/ and Cl should have on the CBE (due 

to their high concentrations) then the low overall CBE's suggest that the errors 

associated individually with these two anions is smaller than that estimated by 

equation 4.3. No error value can be calculated for Na, but the analytical error is 

believed to he of the same order as Ca i.e.-1.5%. 

The high correlation coefficient for the Fe analyses, in combination with 

the large deviation of the slope from + 1, points to a systematic error in one of 

' ' ' - • '\ I • ~ (\ 
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Table 4.1 Relative analytical errors estimated by comparing different methods of 
analysis 

Table 4.1 Relative analytical errors estimated by comparing two different 
methods of analysis. 

Slope of Relative Coefficient of 
regression line %error Correlation 

(Calculated using 
Equation 4.3) 

Element 

Ca 0.992095 1.505 0.99935 

Mg 1.057314 8.320 0.99259 

Si 0.902595 14.577 0.96594 

Fe 0.767820 25.600 0.99192 

AI 1.031707 11.942 0.92030 

S04 1.034756 12.312 0.95256 

Cl 1.033884 8.735 0.98508 

the Fe analyses. The most significant source of error is believed to be in the ICP-MS 

analyses and is discussed below. 

The analysis of USGS water standards gives further information about 

the quality of the NSCRV analyses. Table 4.2 is a compilation showing the average 

relative differences calculated using equation 4.4: 



Table 4.2 

Element 

AI 
As 
B 
Ba 
Br 
Ca 
Cd 
Cl(ppm) 
Cu 
Fe 
Li 
Mg 
Mn 
Ni 
Pb 
Si 
Sppm 
Sr 
v 
Zn 

COMPARISON OF GIVEN CONCENTRATIONS OF ELEMENTS IN 
USGS STANDARD WATERS WITH VALUES DETERMINED USING 
ICP-MS 

All values in ppb except where noted 

Average relative differences 
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Futl Range Modified range Lower limit of 
# of analyses #analyses quantitation 

5 
5 
5 
5 
I 
5 
5 
6 
5 
s 
5 
5 
5 
5 
5 
4 
6 
5 
5 
5 

L.Limit U.Limit % 2d L.Limit % 2d ICP-MS 
(ppb) (ppb) (ppb) 

49.0 221.0 J.S 6.8 6.4 
3.7 77.0 24. 1 60.7 1 77.0 -5.s n/a 0.3 

119.0 363.0 1.2 10.3 21.0 
7.9 191.0 -0.2 4.9 0.4 

135.0 135.0 427.0 nla n/a 4.0 
11.5 70.0 -1.2 5.5 3332.8 
1.9 14.3 0.8 11.7 4 2.9 -1.9 4.8 0.0 

46.0 508.0 -15.S 30.7 4 266.0 5.0 1.6 0.3 
17.0 76.2 -8.3 7.6 4 20.0 -6.6 4.0 0.4 
7.0 159.0 -25.7 45.6 4 33.2 -14.4 7.4 47.8 

16.3 195.0 -0.3 4.5 ng 
2.1 60.4 -2.3 10.5 2.3 
7.2 68.0 -8.2 12.5 4 33.4 -5.2 4.8 0.:? 
6.0 54.0 -12.8 11.5 0.4 
8.6 34.6 3.4 9.4 4 10.9 1.3 4.9 0.2 

6877.0 24479.0 -0.5 4.5 3 145.5 145.5 
25.0 182.0 -15.3 7.3 24.3 
61.0 1512.0 -1.9 4.6 0.0 
5.1 37.9 -2.5 9.4 0.2 

37.4 87.0 8.4 33.9 4 66.0 0.2 9 .8 0.9 
N.B. Lower and upper hm.Jts refer only to the range of standards analysed 
2d is twice the standard deviation for the data set analysed 

Mod.Jiq 

77.0 

See text 
11 .5 
2.9 

"1170 
20.0 
? 

33.4 

11.0 

66.0 

% represents % average difference of analysed values from known concentrations 
See text for explanation of modified range 
Si (as Si02) 
S (as S04) 
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i•n 

"iRD = 
E ( usgsi - ICP-MSi) 
i•l 

(Equatioa 4.4) 

n 

Where: 

%RD percent relative difference 

published concentration of USGS sample n 

ICP-MSi concentration of USGS sample n as measured by ICP-MS 

n number of samples tested 

and the 95% confidence interval (2a) for ICP-MS analysis of 20 different elements, 

at a variety of concentrations, in USGS water standards. The number of standards 

analyzed and the total range of their given concentrations is also shown, in the 

column titled 'Full Range'. Where it was obvious that the lower concentration 

standards analyzed were in error, those analyses were discarded and the lower limit 

of quantitation (llq) was raised to reflect the range of concentrations that were 

satisfactorily analyzed, as shown in the columns 'Modified Range', Table 4.2. T~e last 

two columns of table 4.2 show the llq: 
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a) as reported for ICP-MS analyses, as 10 x the standard deviation of the 

background for a particular element (Longerich et al. 1986). 

b) from inspection of the analytical results of the USGS water standards (where 

applicable). Some of the llq 's normally reported by ICP-MS appear to be too 

low as the machine is apparently not capable of accurate analysis at this llq 

(i.e., As, Cd, Cl, Cu, Fe, Mn, Zn), with the exception of the llq for Ca which 

is believed to be too high (pessimistic). 

Of the 20 elements run as standards only 7 had absolute errors greater 

than 5%; however, all element data are considered to be usable. Analytical errors 

associated with specific elements are discussed belnw. 

The ICP-MS Fe analyses demonstrate an extremely close linear 

correlation with the AA analyses (Fig 4.1 ), however with a slope significantly less than 

1.0. Above a concentration of 33.1 ppb they show a relatively low standard deviation 

of analysis. In view of these facts and the -14.4% systematic error shown in the 

analyses of USGS standards (Table 4.2 modified range), the ICP- MS analyses will 

be used but will be corrected by a factor of 1.168 (calculated from 100/(100-14.4)) 

and used for all subsequent discussion. 

... - • ' ~ ' • - ' 1:-->. • # ' • ' 
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The concentration given by the USGS for Br in their standard 

(Table 4.2) is considered to be dubious as the error range associated with the given 

concentration is essentially equal to the concentration given (135± 130 pph). The Br 

results measured using the ICP-MS are believed correct for the following rea~ons: 

a) The most probable value listed for the USGS water standard is given as 

135 ± 130 ppb i.e. the concentration of Br in the standard is not accurately 

known, 

b)all of the final sample values presented in Appendix C have Br/CI ratios of 

0.013, which is an unlikely coincidence if the error of analysis is as high as 

427% (the average relative difference calculated for Br using equation 4.3) 

c) a seawater sample collected from Conception Bay, diluted with distilled 

water .. nd analyzed had a chloride concentration of 93.()4 ppm and a Br 

concentration of 0.33 ppm, when analyzed by ICP-MS (Appendix C). The 

ratio of these values is within 0.12% of the Br/CI mass ratio of seawater of 

0.0036 (67ppm/18800ppm Krauskopf 1967). This indicates the probable 

accuracy and precision of the Br analyses, and further supports the contention 

that the given concentration of the USGS Br standard, is in error. No 

statement can really be made about the accuracy or precision of the Br 

- - - - - - -- - ~ - - I 

' • . l ' • 
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analyses, though the llq can be set at 0.138 ppm as this is the lowest recorded 

Br concentration in the final sample data set. 

The ICP-MS Cl analyses are considered to be good, especially at the 

concentrations found at NSCRV, with a maximum error of 5% and an uncertainty 

range of 1.6% at the 95% confidence interval. 

As has been found in other studies (i.e. Nordstrom et al. 1985) the 

accuracy of the sulphate analyses are relatively poor, though they appear to be 

useable. Comparison of ICP-MS and HPLC analyses indicates a probable uncertainty 

of determination of 12.3%. Analysis of USGS sulphate standards indicated a 

systematic error of -15.3% for ICP-MS analyses. Using the latter value all ICP-MS 

values were corrected using the same method as for the Fe analyses. 

Li was the only alkali element analyzed by ICP-MS. Li had very little 

error associated with its analysis ( -0.3% average difference from the values given for 

the USGS standards). The alkaline earth elements (Mg, Ca, Sr, Ba) all .had errors 

Jess than 2.3%, with a maximum 2o deviation of 10.5% at the 95% confidence level. 

The analytical error for Si is believed to be extremely low at -0.5% with 

an uncertainty of 4.5% at the 95% confidence level. 



Ill 

Though the iodine analyses wert not checked by running standards it 

is believed (S.Jackson and H.Longerich, pers. comm., 1990) that the accuracy of the 

analyses is poor as a result of both instrument memory effects and the various 

oxidation states in which iodine may occur. 

In conclusion the overall quality of the analyses for the NSCRV 

samples is believed to be high. 

4.1.4 Quality or Isotope analyses 

Isotope analyses were performed on 17 samples for 130/1110 and 7 

samples for 2H/1H. The results of all isotope analyses are shown in Appendix C. 

Table 4.3 shows, in detail, the results of all laboratory 180 analyses on both samples 

and standards. From repeat analyses it was determined that the average standard 

deviation (a) of the differences between all repeats was 0.08 o/oo. From this value the 

180 analytical error (2a), comprised of both machine and sample preparation errors, 

was estimated to be ±0.16 %o. Only one repeat was conducted for the 2H analyses, 

with a difference of 1.68 %o. The value assigned to the analytical error for all the 1H 

analyses was ± 1.68 %o, which is comparable to the 2a uncertainty reported by the lab 

that performed the analyses (University of Waterloo). 

Jl'l! ' - "" ' ' ' ' ' . ' , 



Table 4.3 COMPOSITION OF ALL 180 ANALYSES. ALL SAMPLES PREPARED, 112 
EXTRACTED AND ANALYZED TOGETHER 

>>>NOTE: All st.anda;d deviations are unbiased estimates 
AVERAGES 

Sample Prep# dO Batch Sample Prep# dO 
NSCRV4B NSI -8.598 <NSI> TW NS6 -5.713 

NSCRVIOA NS2 -8.311 TW rpt•NS6 -5.679 
NSCRVJA NSJ -8.306 TW NS7 -5.501 
NSCRV5C NS4 -8.036 TW rpt•NS7 -5.501 
NSCRVSB NS5 -8.361 TW NS8 -5 .605 

TW NS6 -5.713 average: -5.600 
I 

TW rpt•NS6 -5.679 std.dev: 0.1057 
TW NS7 -5.501 
TW rpt•NS7 -5.501 
TW NS8 -5.6{l5 

NSCRV3D NS9 -8.498 <NS2> TW NS1S -5.622 
NSCRVIC NSIO -8.269 TW NS24 -5.578 
NSCRV4C NSII -8.481 average: -5.600 
NSCRV7B NS12 -8.271 std.dev: 0.0324 
NSCRV4A NSI4 -8.424 
NSCRV6A NS17 -8.213 
NSCRV3B NSI8 -8.366 
NSCRV3C NS19 -8.407 
NSCRV8A NS20 -8.337 
NSCRV7A NS21 - 8.454 
NSCRVIIA NS22 -8.215 

TW NS15 -5.622 
TW NS24 -5.578 

NSCRV5A NS25 -8.209 <NSJ> TW NS29 3.522 
NSCRV2D NS26 -8.330 
NSCRV3D NS27 -8.572 
NSCRV4C NS28 -8.481 

TW NS29 -5.600 

DATA QUALITY CHECKS 
BETWEEN RUN REPEATS RESULTS OF UNCORRECTED TW'S 
NSCRV3D NS9 -8.498 <NSI> TW NS6 3.394 
NSCRV3D NS27 -8.572 TW rpt•NS6 3.427 

average: -8.535 TW NS7 3.601 
std.dev: 0.0735 TW rpt'NS7 3.601 

TW NS8 3.499 
NSCRV4C NSI1 -8.481 average: 3.5044 
NSCRV4C NS28 -8.481 std.dev: 0.1073 

average: -8.481 <NS2> TW NSI5 3.430 
std.dev: 0.0007 TW NS24 3.472 

average: 3.451 
std.dev: 0.042 

•rpt: refers to the repeat of an <NS3> TW NS29 3.522 
individual preparation on Total averages: 3.493 
the prism Total SO's: 0.0823 

, ' \ ( . ---
~ ' ..._, " \ ~ . 
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4.1.5 Quality of pH and Eh measurements 

Great care was taken in the calibration of the pH meter and in field 

pH measurement. The pH buffer solution temperatures were always allowed to 

equilibrate with out-flowing sample prior to calibration of the pH meter. All huhhles 

were removed from the flow cell and a great deal of effort was expended ensuring 

that the sample tubing was gas free. The relatively high specific conductance of the 

samples (usually >500 IJS) taken at NSCRV indicates that ionic strength is high 

enough to expect that pH readings stabilise quickly. 

Despite the efforts made to ensure accurate pH readings, inspection 

of the variability of pH readings, over a time series (Figure 4.3), reveal that the pH 

readings vary by ~0.15 pH units. This is more than an order-of-magnitude higher 

than the expected accuracy of pH readings of ~0.0 1 pH units, under static conditions. 

Whether the variations in pH readings reflect true variations in groundwater pH, or 

whether they are a function of instrument errors, or fluctuations in field 

environmental conditions is not known. However, this variation in pH is comparable 

to those reported by Bottomley et al. (1984) during the sampling of groundwater in 

fractured granite rocks. The effect of errors in pH on calculated mineral saturation 

indices is discussed in Chapter 8. 



Figure 4.3 VARIATION OF pH MEASUREMENTS, VERSUS AMOUNT OF SAMPLE 

INTERVAL FLUSHING FOR SELECTED SAMPLE INTERVALS: 11-l 
DEGREE OF INTERVAL FLUSHING IS MEASURED IN NUMBER OF 

VOLUMES DISPLACED (SIV's) 

Mid Sample Point 56.81 m 

.•.• ,.--,..-------------------, 

I r: 

Mid Sample Point 74.91 m 

... 

•.• L--:.!-:: .• -~-=" •.• :----::':'"""~~~-.__ .......... _ _.__, ....... __J 

Mid Sample Point 77.41 m 

.... r-r--------------------. 

Mid Sample Point 97.41 m 

-

... . .. 
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No statement regarding the accuracy of Eh measurements can really 

be made since no standardization or calibration checks (other than shorting the 

instrument to zero the voltmeter output) were p~rformed. The reported Eh valut!s 

should be used with caution. 

The accuracy of alkalinity titration was ±0.1 ml of standard acid. This 

translates to an accuracy of alkalinity determination ranging from ±5 to ± 10% for 

the highest to the lowest alkalinity samples at NSCRV. The effects on calculated 

mineral saturations on inaccuracies in alkalinity measurements will be discussed in 

Chapter 8. 

4.1.6 Effic.'lcy of sample interval Oushing 

Of the 9 intervals sampled, 6 had more than 2 samples collected over 

a time series. Some major parameters from the six intervals have been plotted 

against the number of SIV's flushed prior to collection of a sample, and are 

presented on Figure 4.4. The presentation of the data in this manner is intended to: 

a) justify the general use of the final sample, in any time series, for subsequent 

chemical modelling, 



Fiaure 4.4 GRAPHS SHOWING EFFECT OF FLUSHING SAMPLING 
CAVITY ON SPECIFIC ELEMENTS: CONCENTRATION VS 116 
SIV FLUSHED (CONCENTRATION IS THE CONCENTRATION 

AT THE INITIAL SAMPLING DIVIDED BY 
CONCENTRA TJON AT SUBSEQUENT SAMPLINGS) 
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Figure 4.4 (continued) 
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b) show that all members in a time series (of any particular element) are 

relevant and, 

c) that they can be used to identify spurious analyses (in a time series) 

resulting either from sampling or analytical errors. 

The parameters plotted against SIV are CJ·, Br·, Na+, Si, 180 and 

conductivity. Of the selected parameters Cl-, Br-and 180 are the most conservative 

and are believed to be the best indicators of the effect of flushing on the sample 

interval. Chloride has the lowest uncertainty and is considered to be the most 

reliable indicator of sample flushing. Conductivity should also be a good indicator 

of sample interval flushing. Na + and Si will be relatively poor indicators of the 

success of sample interval flushing as they will be affected by chemical reactions (such 

as precipitation or solution of aluminosilicates). 

In general, time variations in et· and Br· concentiations follow each 

other. IRQ values show relatively little variation over a time series; for this reason the 

value of IRQ for the last sample in the 71.65 m time series is considered spurious and 

is not used in discussion of variations in 180 values. As the 180 values selected as 

being representative, are not necessarily the last ones in a time series (whereas all 

other parameters are) the 180 selected for discussion are summarized below in 

Table 4.4. 
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Table 4.4. &180 values selected as being representative of virgin formation water at 
NSCRV 

Depth Sample SIV's 6 ts0 
(m) I. D. flushed 

18.77 11(17) 1.70 -8.215 

56.81 10(2) 8.50 -8.311 

69.64 8(5) 8.32 -8.337 

71.65 5b(l4) 6.05 -8.361 

74.91 2d 9.85 -8.330 

96.64 4c(3) 8.01 -8.481 

97.41 3d(16) 9.00 -8.572 

Si frequently displays a trend in concentration, with increased flushing, 

which is opposite to the concentration trends for the two halogens. The relatively 

monotonic variations in the parameters CJ·, Br·, Na+, Si, 180 are taken as further 

evidence that the quality of analyses from NSCRV is good. lt should be noted that 

Br shows relatively more change, through a time series, in the deeper sample 

intervals. 

4.2 CONCLUSIONS 

The NSCRV geochemical data set is of good quality; however, analyzed 

values of S04 and Fe will be corrected before use for chemical modelling. The 

analysis of samples during flushing of sample intervals, prior to collection of a final 
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sample, further supports the reliability of the analytical data and final sample values 

will be used for all subsequent geochemical modelling. The corrected fina1 180 values 

presented in Table 4.4 will be used for all subsequent discussion of 180. 
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CHAPTER 5: GEOCHEMICAL TRENDS AT NSCRV 

S.l OVERVIEW OF WATERS AT NSCRV 

In this chapter variations of groundwater chemistry that occur with 

depth in the NSCRV borehole are described using three different approaches: 

a) variations of single chemical parameters versus depth and permeahility, 

b) variations of bulk groundwater chemistry versus depth descrihed using 

Piper diagrams, 

c) variations of groundwater chemistry with depth described using mineral 

stability diagrams. 

S.l.l Variations of single chemical parameters with depth and permeability. 

Many of the chemical parameters analyzed show a distinct linear 

correlation with either depth or hydraulic conductivity and, in some cases, with both 

parameters. This is not surprising as the hydraulic conductivity is itself correlated 

with depth. 

Five geochemical parameters have been selected to illustrate the correlation with 

depth and hydraulic conductivity (K): Si, Cr, 180, Na• and u+. Graphs of these 
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parameters versus hydraulic conductivity and depth are shown on Figure 5.1 together 

with the results of linear regression analyses. A line of best fit, calculated from the 

results of the regression analyses, is plotted on each graph. To test whether either 

hydraulic conductivity and/or depth are correlated with the chemical parameter of 

interest, a statistical test using the test statistic r (correlation coefficient) as an 

estimator of rho (the population correlation coefficient) was conducted (see 

Mendenhall and Sincich 1988). Table 5.1 shows the results of this exercise. Where 

the test indicates that hydraulic conductivity and/or depth contribute some 

information about the value of a particular chemical parameter, that table entry is 

shaded. 

Tahle 5.1 Results of statistical test to determine the statistical significance of the 
correlation of hydraulic conductivity or depth with concentration of an element 

#samples Parameter X- K x- Depth significant for r 
(r) (r) > t 

(t) 

8 Si 0.9381 0.5831 0.707 

8 Cl 0.8367 0.7348 0.707 

7 6 180 0.7416 0.9008 0.754 

8 Na 0.8775 0.8307 0.707 

5 Li 0.9231 0.9887 0.878 

Table 5.1 suggests that information about the likely concentration ofSi 

can only he gained from hydraulic conductivity, and about the likely value of 180 only 

. ~ - . . . - " ,. 
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Figure 5.1 
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GRAPHS SHOWING CORRELATION OF ELEMENT CONCENTRATION WITH 
BOTH LOG HYDRAULIC CONDUCTIVITY (K) AND DEPTH. 

[Si] vs Depth 
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from depth. The implications of this will be discussed more fully in subsequent 

chapters. Briefly, it is suggested that the correlation of 1110 with depth is a reflection 

of the nature of flow through the Holyrood Granite. That is, above a certain scale 

length or representative elemental volume (REV), flow is relatively ordered, and flow 

in the aquifer can be approximated using a simple porous media model. The only 

statement that can be made about the size of the REV in the Holyrood Granite is 

that it is Jess than the scale length of the borehole (100m) and possibly as large as 

20 m (borehole length divided by the number of sample intervals showing monotonic 

chemical and isotopic variations). The corrtlation of increasing concentration of Si 

with decreasing hydraulic conductivity, alone, suggests that higher degrees of rock 

water interaction and silicate dissolution in stagnant low permeability zones determine 

Si concentrations, rather than mixing or flow between REVs within the 

aquifer/fracture system. 

5.1.2 Descriptiuu or variations or bulk groundwater chemistry with depth: Piper 

diagrams 

The inorganic geochemical data from NSCRV can also be described 

using Piper diagrams. This simple method of description gives an indication of the 

bulk changes in groundwater chemistry with depth and points towards a mechanism 

by which the NSCRV waters may have evolved to their present chemistry. 
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Relative abundances (as milliequivalents) of the major ions (Ca. Mg. 

Na+K, CI, HC03 +C03, SG4) are shown on the Piper diagram (Figure 5.2). The 

data points representing the relative ion concentrations of the deepest and shallowest 

waters at NSCRV are identified on Figure 5.2 as D and S respectively. The point 

labelled SW represents seawater composition. The Piper diagram reveals that the 

shallow waters at NSCRV evolve from being Ca-Na-bicarbonate (with minor 

chloride) to being an Na-Cl type water with some bicarbonate. The trends of the 

data points in the cation and anion trilinear fields seem to suggest that hulk 

groundwater chemistry either evolves (with depth) towards a seawater-like 

composition, or possibly a modified seawater composition depleted in S04 and Mg. 

Alternatively it may define a mixing relationship between two end members. 

However, the non-linear composition trend shown in the central diamond field 

indicates that simple mixing, alone, cannot explain the major ion trends. 

The progressive change in water chemistry shown in Figure 5.2 is 

believed to be evidence that the shallow waters may have evolved, in part, by mixing 

with seawater and in-part by rock-water interaction. As is apparent in the Piper 

diagram even the shallow waters have a large fraction of Na and Cl, which may be 

evidence of a significant seawater component. The hypothesis of saltwater mixing, 

coupled with rock water interaction, will be pursued in Chapter 8. 



Figure S.2 PIPER DIAGRAM FOR NSCRV SAMPLE ANALYSES AND SEAWATER 

SYMBOLS INDICATE: 

D Deepest sample interval 
S Shallowest sample interval 

SW Seawater 
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5.1.3 Description or variations or groundwater chemistry with depth: Mineral 

stability diagrams. 

The construction of mineral stability diagrams is outlined in Garrels and 

Christ (1965). Before describing the NSCRV waters in the context of mineral 

stability diagrams an important factor should be considered: 

The positions of the phase boundaries on the diagrams are dependant on the 

thermodynamic data used to construct the phase diagrams. The differenct!s 

between the values of thermodynamic properties of identical minerals (for tht! 

enthalpy and equilibrium constant, or free energy, of the mineral dissociation 

reaction), published by different researchers, is usually small; however, even 

small differences in thermodynamic data values may result in large differences 

in the estimated positions of calculated mineral stability boundaries. To 

illustrate this point the mineral stability diagram in Figure 5.3 shows mine::ral 

stability boundaries in Log [K]/[H) vs Log(H4Si04) space, constructed with the 

thermodynamic data of a variety of workers. The thermodynamic data was 

derived from Helgeson et al. (1978), Hemingway et al. (1982) and data 

supplied in a modified data base (See Appendix D for explanations of 

modification of pyrophyllite data) by Lindberg, R.D 1986 et al. (unpublished). 

Data which is internally inconsistent confounds Gibb's Phase Rule and appears 



Figure 5.3 MINERAL STABILITY DIAGRAMS CONSTRUCTED FOR 
COMPARISON OF THERMODYNAMIC DATA 

NOTE: Lines not meeting at triple points highlight inconsistent thermodynamic data 
Oat& of Helgeson et 11 (1978) Dati of Hemingway et al ( 1982) 

(1982) with that of Robie et al (1978) 

Log fK)/fH) VS Log[H4Si04) Log [K]/[H] VS Log[H4Si04] 
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as non-meeting "triple points" on Figure 5.3. The evaluation of the stability 

of minerals with which waters may be in equilibrium may be in error due to 

inconsistencies in the thermodynamic data used to calculate stability 

boundaries. Appendix D describes in detail the comparison of various data 

bases and concludes, (partly on the basis of consistency and partly on the basis 

of usage by various authors) that the Helgeson thermodynamic data base is 

the most reliable, this is reflected in its internal consistency, at least for the 

low ionic strength silicate system. This is the data base used for subsequent 

discussions and the modelling of the common minerals with PHREEOE (using 

the HELGTHEM data base, see Appendix D and E). Additional discussion 

of the data base is provided in Chapter 8. 

In some instances it may be difficult to rationaliz.e the saturation states 

of aluminosilicate minerals, as derived using mineral stability diagrams and 

geochemical modelling with programs such as PHREEQE. This is illustrated in the 

following example: 

Figure 5.4 shows the locations of data points which represent the 

compositions of the NSCRV waters sampled, average seawater (Nordstrom 

et al. 1979), and average seawater equilibrated with anorthite, using 

PHREEQE/HELGTHEM, for the four spaces Log{Na}/{H}, Log{K}/{H}, 



Fi11ure S.4 MINERAL ACTIVITY STABILITY DIAGRAMS 130 
CALCULATED FROM THE DATA OF HELGESON ET AL (1978) 
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Log{Mg}/{H}2 and Log{Ca}/{H}2 vs Log{H4Si04 }. Of particular interest is 

the location of the point representing seawater, equilibrated with anorthite, in 

Log{Ca}/{H}2 vs Log{H4Si04} space. The point is well outside the anorthite 

stability field, in the kaolinite stability field, and reflects the paucity of Ca in 

seawater relative to the activities of other elements. 

Points in Figure 5.4 representing shallowest (S), and deepest (D) waters 

are identified as are points which represent average seawater composition (SW), and 

average seawater composition equilibrated with anorthite (SW+A). The diagrams 

show the stability fields of common aluminosilicates in terms of ions. Activities of 

elements were calculated using PHREEQE with the HELGTHEM data base. 

For all the diagrams shown, with the exception of Log{Ca}/{H}2 vs 

Log{H4Si04}, the NSCRV waters show a trend, with increasing TDS, towards a 

composition which approximates seawater (in terms only of the elements presented 

on the diagrams), but with a higher concentration of H 4Si0 4. The higher 

concentration of H4Si04 may be a result of rock water interaction. Hydraulic 

conductivity has previously been shown to display a strong inverse correlation with 

concentration of H4Si04: The decrease in H4Si04 activity shown by the mid samples 
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is believed to reflect the permeability variations in the sample inter .. als (highest 

permeability in the mid intervals and hence decreased rock-water interaction). 

The transgression across mineraJ stability boundaries by the observed 

trend of chemical evolution is difficult to rationalize. By thermodynamic laws, the 

evolution of a water, once it has reached a mineral stability boundary should, in 

general, proceed along that boundary until one phase disappears during incongruent 

dissolution. The Log{Na}/{H} vs Log{H4Si04 } trend might possibly be consistent 

with such evolution, as might be the {Mg} data. However, for Log{K}/{H} and 

Log{Ca}/{H}2 vs Log{H4Si04} it is difficult to explain the nature of the trends in 

terms of thermodynamic equilibrium alone, even allowing for an error in 

thermodynamic data. This point again indicates the probable significance of mixing, 

but may also be attributable to impure mineral phases (compared with the ideal 

phases of the diagrams), or may reflect the kinetics of the ~ystem. 

S.l CONCLUSIONS 

Strong correlations exist between the activity of H4Si04 and 

permeability and 1SO and depth. Cl, Na and Li are strongly correlated with both 

depth and permeability. 
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The NSCRV groundwaters appear to display an evolutionary trend 

towards seawater composition which is manifest on both Piper and mineral stahility 

diagrams. The trend is apparently a result of a combination of mixing and rock-water 

interaction. Hydrogeochemical trends are also seen, apparently a function of depth 

and permeability. 

The well preserved hydrogeochemical trends (regardless of the validity 

of any assumptions about what the trend may represent) are helieved to be 

reflections of the relatively ordered nature of flow within the Holyrood Granite. 

These trends may further support the assumption that groundwater flow in the 

Holyrood Granite may be modelled using an equivalent porous medium approach 

and an appropriate scale length (possibly on the order of tens of metres). 

- - - - - - -- ' ~ ' 
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CHAPTER6:INTERPRETATIONOFAQUEOUSISOTOPEDATA 

6.1 DISCUSSION 

As a result of isotopic fractionation caused by varying temperatures, 

values of 6180 and cS 2H in precipitation from different latitudes have been found to 

plot on a straight line. This line is referred to as the Meteoric Water Line (MWL) 

and has the general form (Craig, 1%1): 

(Equation 6.1) 

Although the slope of 8 is nearly constant globally, the intercept can 

vary considerably, reflecting local meteorological, topographic and seasonal conditions 

(Gat, 1981). 

The isotope data from NSCRV plots on or near the MWL (Figure 6.1). 

There is no evidence for evaporation having taken place (which will tend to alter the 

isotopic signature of the waters, moving the points off the MWL to the upper right). 



Figure 6. 1 ISOTOPE DATA FOR NSCRV PLOTIED AGAINST THE METEORIC 135 
WATER LINE 

Data plotted showing limited range of possib:.: values for lower 
latitudes 
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The location of the group of points on the meteoric water line is 

consistent with the latitude of NSCRV. A linear relationship between 6180 values 

of average annual precipitation and the average annual air temperature is by given 

by equation 6.2 (Dansgaard, 1964): 

6180IIl = 0.695T- 13.6 (Equation 6.2) 

In Equation 6.2 6180m is the mean annual 6180 value of precipitation 

and Tis the mean annual surface air temperature in degrees centigrade. No estimate 

of error is provided for values calculated using c:.quation 6.2. Yurtsever ( 1975) 

confirmed, for four stations in Greenland and Europe, that average monthly o180 

values ( 6180mo) are linearly related to average monthly surface temperatures in 

degrees centigrade (T) by the equation: 

6 180
1110 

= (0.52l:t0.014)T- 14.96±0.21 (Equation 6.3) 

Where o 180mo is the mean monthly o 180 value. 

Assuming that groundwater isotopic compositions reflect the local 

weighted mean annual isotopic compositions of precipitation (Gat, 1981), the use of 

Equation 6.2, and the average of the final 180 values presented in Table 4.4, results 
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in an estimate of the mean annual air temperature (MAT) at the time of recharge 

of 7.SOC. Using Equation 6.3 the MAT is 12.5°C. However. the position of the 

NSCRV borehole, at the discharge end of a regional flow system makc=s it highly 

unlikely that the isotopic values measured in the individual fractures reprt!sent 

monthly mean precipitation that has preserved its isotopic identity since the time of 

recharge. Therefore, the MAT estimated using Equation 6.2 is considered more 

plausible than the latter value. The MAT for a meteorological station operated hy 

The Atmospheric and Environmental Service of Environment Canada approximatdy 

100 m from the NSCRV location is given as 6.1 °C. A synopsis of the weather data 

at the Seal Cove weather station is provided in Table 6.1. 

The use of the MAT for aquifer calculations implies an assumption that 

water recharging the aquifer represents precipitation falling throughout the year. 

This assumption is incorrect as the aquifer is preferentially recharged at certain times 

of the year: For instance, a smaller portion of summer rain is expected to recharge 

the aquifer and a large part of the snowfall which melts to form runoff may he 

excluded from the aquifer as it runs over frozen ground. The water balance diagram 

Figure 6.2 (Nolan, Davis and Associates Ltd, 1989), constructed using the Seal Cove 

AES data reveals that most recharge is expected to occur in the periods March- April 

and October- November. The mean monthly temperatures for these periods an: 

(averages for the two sets of consecutive months) 1.05 oc and 6.25 oc respectively. 

- - --
' . .. ' . . 



Table 6.1 Synopsis of Weather data at NSCRV 

SEAL COVE 
47"" 27'N 53.4'W 15m 

Dally Maximum Temperature 0.8 0.6 2.7 6.7 11.6 17.3 21.9 21 .0 17.2 12.1 Daily Minimum Temperature ~.5 ~-9 -4.3 -1 .0 2.2 6.7 11.2 11.9 8.1 - 4.1 Deily Temperature -2.e -3.1 -o.e z.e e.e 12.1 11.1 11.5 12.7 8.1 
Slandard Deviation. Daily Temperature 1.9 2.2 1.7 1.2 1.4 1.6 1.4 1.7 1.0 0.8 
Extreme Maximum Temperature 15.0 14.4 16.7 18.3 26.1 30.0 31.7 31.0 26.7 27.8 Years of Record 18 18 18 18 18 17 18 18 19 t9 Exlreme Minimum Temperature -20.6 -26.7 -18.3 -16.0 -7.8 -4.4 0.0 0.0 -1.1 -5.6 Years of Record 18 18 18 18 18 18 18 18 18 18 
Ralntaa 87.8 75.5 81 .5 78.9 74.5 73.6 65.7 100.1 93.2 128.1 Snowfall 51.2 46.5 35.9 9 .9 1.6 0.2 0.0 0.0 0 .0 0.7 Total Precipitation 137.3 124.6 121.2 95.4 75.9 73.6 65.7 100.1 13.2 121.8 
Slandard Deviation, Total Precipitatlon 45.7 63.3 39.5 38.4 24.4 30.9 33.4 76.0 41.0 49.3 
Greatest Rainfall in 24 hours 90.7 61.7 53.3 62.2 31.0 55.4 53.8 71.4 68.1 52.8 Years of Record 19 18 18 18 18 18 19 18 19 18 Greatest Snowfall in 24 hours 38.1 43.2 38.1 38.1 10.2 5.1 0.0 0 .0 0.0 10.2 Years of Record 18 16 18 17 17 19 20 19 20 20 Greatest Precipitation in 24 hours 90.7 61 .7 53.3 62.2 31.0 55.4 53.8 71.4 68.1 52.8 Years or Record 19 17 18 18 18 18 19 18 19 18 
Days with RaJn 7 5 7 9 10 8 8 10 10 14 DayswtthSnow 8 5 4 2 0 0 0 0 0 0 Days with Precipitation 12 11 12 11 11 9 8 10 10 14 

From Environment Canada Canadian Climate Normals 1951-1980, Temperature and Precipitation. 
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Figure 6.2 Evapotranspiration diagram for Seal Cove 
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If one assumes that recharge occurs only during these periods, then an estimation 

of the average temperature of the most significant part of the total recharge is 3.9"C. 

The disparity between this estimate and that derived from 6180 data may be the 

result of: 

a) periods of recharge occurring only during the warmer periods of the recharge 

seasons (the mean monthly temperature for April is 2.9 oc and for October 

8.1 °C.), 

b) underestimation of the significance of recharge during the summer and 

overestimation of the importance of spring recharge (the latter possibly being 

reduced due to frozen ground), 

c) aquifer recharge occurring during a previous (warmer) climatic period, (the 

estimated water residence time for the deepest water sample collected is in 

the range 1560 to 15 600 yrs, based on prL!iminary flow modelling) 

d) MAT estimated from the sea level AES station may be an overestimate 

relative to the MAT of the location of actual system recharge. 

Isotope fractionation as a result of variations in temperature arises not 

only from variations in latitude but also due to variations of altitude at a given 

location. The latter phenomenon is referred to as the altitude effect. The variation 
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of cS 180 with altitude is typically in the range: 0.15 - 0.5o/oo cS 1ll0/100m of vc:rtkal 

elevation (Gat 1981). 

If the flow net for NSCRV (Figure 1.3) is to he ht:lieved then the . 

deepest NSCRV samples could have been recharged at altitudes of -170 m above: 

borehole elevation and represent groundwater carried along regional tlow paths. Tht• 

shallowest NSCRV samples were likely recharged at a much lower altitude ( -60 m) 

by local flow systems. If an average altitude effect of 0.325%o cS 180/100 m is assumed 

then the 0.32%o range of observed final 6 180 values b quite reasonable: The: 

calculated difference in cS 180 between water recharged at 60 m and 170 m would he 

0.36%o. A linear regression analysis of the final values of the 61RO vs. depth in metres 

shows that the slope of the best fit line is -0.397 %o 6 180/100 m of drilled depth; 

however, as a result of the saltwater wedge, the flowlines at NSCRV are believed to 

be compressed: 100m of depth is estimated to represent -147m of altitude 

(samples from -20 m and 95 m, recharged at altitudes of -6() and -170 m 

respectively) and the gradient of the best fit line represents an altitude effect of 

0.27 %o/100 m of altitude. This value is close to the assumed average altitude isotopic 

gradient of 0.325%o/100 m. 

, . - - . - . . . . . ' ' 
., I • ', 



142 

6.2 CONCLUSIONS 

The stable isotope data appear to indicate that an altitude effect is 

preserved in the groundwater samples anal}'7ed at NSCRV, this may be further 

evidence for the well ordered nature of the flow in the Holyrood Aquifer; therefore, 

the 1110 data could he consistent with a local recharge derivation, at or near current 

mean annual temperatures of recharge. 
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CHAPfER 7: ANALYSIS OF FRACfURE MINERALOGY 

7.1 ANALYSIS OF FRACfURE MINERALOGY 

Hydrogeochemical modelling of the groundwaters of the Holyrood 

Granite is discussed in Chapter 8. However, prior to the modelling it is ust!ful to 

identify the minerals, which by precipitating or dissolving within the! fracture tlow 

system, control the evolution of groundwater chemistry. The minerals and gast!s 

which seem likely to control the groundwater chemistry of a hydrogeochemical system 

are referred to as plausible phases (Plummer et al. 1983). The selection of a set of 

plausible phases may, in part, be made by conducting thermodynamic spt!ciation 

calculations, using chemical analyses of the groundwaters of interest. The speciation 

calculations help to identify potential or actual phases which are likely to he close to 

saturation, as well as those minerals present in the rock-mass which are likely to he 

dissolving. The list of minerals calculated to be at, or close to, saturation in the 

NSCRV groundwaters is extensive (partly a result of the high number of element 

analyses): If all the minerals were included in geochemical model the number of 

variables in the model would make a solution almost impossible. The analysis of 

fracture minerals helps to limit the number of plausible phases for modelling which, 

in turn, places constraints on reaction paths for the NSCRV groundwaters. 
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In order to identify which minerals may be influencing the groundwater 

chemistry in the Holyrood Granite analyses of fracture surfaces were conducted using 

X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, 

coupled with energy dispersive electron microprobe analysis (EDM). 

7.2 SAMPLE COLLECTION AND ANALYSIS 

Samples were collected from fractures which had been logged as likely 

to be open, or partially open, and hence potentially conducting groundwater. 

7.2.1 Analysis of Fracture Oak~s by SEM 

For SEM analysis, flakes picked from fracture surfaces were glued to 

a glass plate (orientated with the original fracture surface upwards) and coated with 

a thin film of carbon in an evaporative container. 

A total of 18 fracture flakes were photographed by SEM and analyzed 

using EDM. A photograph of as much c,f the chip as possible was taken (x20 

magnification) and then a portion of the chip analyzed (approximately 1/4 to 1/3 of 

the area photographed). Once the initial coarse analysis had been made individual 

Ciystals (or areas on crystals) were selected, photographed and analyzed, at 

magnifications of approximately xlOOO, but in some cases at magnifications of greater 
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than x3000. Individual crystals were selected for analysis either on the hasis of heing 

representative of the entire mass or as appearing anomalous. Output from the SEM 

was in the form of photographs, and output from the EDM was in the form of an 

energy spectrum, with results of calculations of the relative percentages of selected 

oxides in the area analyzed. 

7.2.2 Analysis of Fracture Minerals by XRD. 

Sample collection for XRD analysis was achieved by lightly scraping 

across fracture surfaces with a knife, the material from this process being collected 

in individual bottles. The scrapings were subsequently ground with a pestle and 

mortar in acetone and then spread on a glass plate for XRD analysis. Unfortunately, 

in many cases, the amount of sample (both available and removed) was insufficient 

for satisfactory analysis using the equipment available at the time of analysis. A total 

of 18 powder plates were analyzed using a RIGAKU XRD instrument. As noted 

above there was frequently a problem with insufficient sample. 

7.3 METHODS OF DATA INTERPRETATION 

7 .3.1 Interpretation of SEM/EDM data. 

The microprobe analyses of mineral aggregates and individual crystals 

are semi quantitative. The semi-quantitative nature of the analyses is in part a result 
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of the Jack of any measure of either the water content or the C02 content, which may 

constitute more than 20%, by weight, of some minerals. The lack of OH and C02 

analyses precludes the direct calculation of a meaningful chemical formula from the 

EDM analyses, in the manner outlined by Deer et al. (1966). Instead, a scheme was 

devised in which all the analyses were successively checked for a variety of minerals. 

For this purpose, an assumption was made that each analysis represented a particular 

mineral, with a weight percentage of water, and a number representing the number 

of oxygen atoms in the unit cell (both representative of the mineral being compared) 

arbitrarily assigned to each chemical analysis. The analyses were then corrected to the 

arbitrarily assigned water content and their stoichiometry recalculated using the 

method outlined in Deer et al. ( 1 %6). In this manner the entire set of analyses was 

sca.nned for formulae matching those of chlorite, kaolinite/halloysite, pyrophyllite, 

feldspars, mica and zeolites. Calcite, quartz and iron precipitates were also identified 

by inspecting the EDM results. The formula used for correcting analyses for water 

content was verified by using selected analyses from Deer et al. (1966), removing the 

water content, normalising the remaining oxide values to 100% and then adding water 

back to the analyses using the method outlined below. 
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7 .3.1.2 Recalculation Scheme for Mineral Analyses 

For a mineral composed of n oxides, h to j, where oxide h is the 

assigned weight percentage of water (wt%H20) then the weight percentage of each 

oxide (prior to the introduction of water) must be "corrected" to accommodate the 

introduction of water so that: 

(Equation 7.1) 

A factor K is calculated, from the assigned percentage of water, where: 

K=l (Equation 7.2) 

where fw is given by wt%H2ol100. Modifying the scheme outlined in Deer et al. 

( 1966) T mod (as opposed to T) is derived by: 

(Equation 7.3) 

where: 

%
0 

• percentage of oxide n prior to correction for water 

MW n • molecular weight of L.~ide n 
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on - number of oxygen atoms in the oxide n 

- Molecular weight of water 

The number of cations of each element (C0 ) in the formula is derived from each 

oxide hy: 

(Equation 7.4) 

where: 

0
101 

-total number of oxygen atoms in a crystal unit cell (of the assumed mineral) 

Rn - ratio of cations:number of oxygen atoms in the oxide n 

7 .3.2 Method of Interpreting XRD data 

Most of the XRD data was interpreted using peak matching software 

available on the RIGAKU. Minerals thought to be clays were glycolated and re-

analyzed. Peak shifts noted after glycolation indicated the presence of hydratable 

clays. 

7.4 RESULTS 

Due to the large amount of data generated by XRD and SEM!EDM, 

only selected examples of the results are presented in the following section in 
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conjunction with Table 7.1 which identifies possibilities for mineral matches from the 

SEM!EDM data and mineral matches obtained from the XRD data. The ranges of 

atomic properties used to match the SEM data with a variety of minerals is given in 

Table 7.2. Mineral groups identified are discussed individually. The data set was 

scanned for zeolites and amphiboles, without success. 

Calcite 

Calcite was identified on numerous fracture planes at drilled depths 

from 8.50 m to 137.62 m. The identification of calcite was made using with XRD and 

SEM/EDM. A typical EDM spectrum for calcite, from a fracture plane at 53.97 m 

is shown in Figure 7.1a; an XRD spectrum from a calcite fracture coating at 72.4R m 

is presented on Figure 7.1b. 

Cblo~te 

Chlorite was only detected using the SEM and identifications of some 

certainty were only found at 55.36 rn or greater depths. An EDM spectrum for 

chlorite, made from fracture material at 147.31 m, is shown on Figure 7.2. The 

results of calculating chemical formulae from the EDM data for selected analyses, 

using the parameters indicated are shown in Table 7.3. The results indicate that the 

chlorite composition varies with both Mg and Fe rich varieties occurring. 



Table 7.1 Table showing minerals identified by microprobe and XRD 
CALCITE AMPHIBOLES CHLORITE CLAYS IT ALC/PYROPHYLLITE FELDSPAR 

QUARTZ %water content 
SAMPLE DEPTH IRON 1 10 11 12 13 ka ha il mt nt bd sp ta py ab olig 
NSCRV 6A 6.43 s 
NSCRV 68 6.43 s 
NSCRV 11A 8.50 
NSCRV 118 8.50 
NSCRV lllge 8.50 X X X 
NSCRV10A 53.97 X 
NSCRV 108 53.97 s -
NSCRV 101ge 53.97 s 
NSCRV 4A 55.36 
NSCRV 41g 55.36 s 
NSCRV 5A 55.36 
NSCRV 5Alge 55 .36 
NSCRV 58 55.36 s s s s 
XRD 67.60 X 
NS 1g 68.64 s 
NSl 68.64 s s s 
NS18 68.64 s s 
NSCRV 2A 68.64 s s s 
NSCRV 28 68.64 
NSCRV 20 68.64 s 
NSCRV 3A 68.64 s s s 
NSCRV 38 68.64 s 
NSCRV 31g 68.64 s s 
r .NSCRV 2A 68.64 s s s s 
r.NSCRV 28 68.64 
r.NSCRV 2C 68.64 
NSCRV 14A 71.80 s s 
NSCRV148 71.80 s 
NSCRV14C 71.80 s 
NSCRV 140 71.80 s 
NSCRV 141ge 71.80 s s 
NSCRV 15A 72.48 X- s 
NSCRV 158 72.48 s 
NSCRV 15C 72.48 s 
NSCRV 150 72.48 s 
NSCRV 15lge 72.48 s 



TABLE 7.1/continued 

SAMPLE 
NSCRV 17A 
NSCRV 178 
NSCRV 171ge 
NSCRV 18A 
NSCRV 188 
NSCRV 181ge 
NSCRV 12A 
NSCRV 128 
NSCRV 121ge 
NSCRV 16A 
NSCRV 16D 
NSCRV 16E 
NSCRV 16E 
NSCRV 16F 
NSCRV 16lge 
XRD 
NSCRV SA 
NSCRV 88 
NSCRV 8C 
NSCRV 81g 
NSCRV 9A 
NSCRV 98 
NSCRV 9C 
NSCRV 91g 
NSCRV 7A 
NSCRV 78 
NSCRV 71g 
XRD 
NSCRV 13A 
NSCRV 138 
NSCRV 131ge 
LEGEND: 

CALCITE AMPHIBOLES CHLORITE 
QUARTZ %water content 

DEPTH IRON 1 10 11 
72.51 
72.51 
72.51 
78.30 X 
78.30 
78.30 
95.42 s 
95.42 
95.42 

136.53 s s 
136.53 s 
136.53 s s 
136.53 
136.53 s 
136.53 
137.62 X 
139.69 
139.69 
139.69 
139.69 s 
139.69 
139.69 s X 
139.69 s 
139.69 s 
147.31 
147.31 
147.31 s s 
148.31 
151.81 s 
151.81 s 
151.81 s s 

Analytical method 
X analysis by XRD at depth shown 
s analysis by electron microprobe at depth 

shown and positions indicated on 
photographs 

12 

s 

s 

CLAYS 

13 ka ha il 

s 

Mmeral Abbreviations 
ka kaolinite 
ha halloysite 
il illite 

mt montmorillonite 
nt nontronite 
bd beidellite 

mt 

X 

nt 

-

X 

T ALC/PYROPHYLLITE FELDSPAR 

bd sp ta PY 

sp saponite 
ta talc 

ab 

py pyrophyllite 
ab albite 

olig oligoclase 

olig 



Table 7.2 SELECTION CRITERIA FOR MINERALS ANALYZED BY ELECTRON MICROPROBE 

' : ~~ : 

w~~% 10 11 12 13 
0 total 28 36 36 36 36 

!IDEAL Al+Si 8-12 8-12 8-12 8-12 8-12 
12 

CRITERIA 

water% 
0 total 

IDEAL 

CRITERIA 

water% 
0 total 

IDEAL 

CRITERIA 

remainder 12 12 12 12 
Al+Si 

remainder 
~. .~. :. :~ 

Si 
remainder 

Si 
remainder 

:nrn: : ~:~ \ !~ ': 

Si 

Mg 
Si 

Mg 

7.8-13 
11.5-12.5 

14.09 
18 

kao 

4.0 
4.0 

3.5-4.5 
3.5-4.5 

4 
24 

talc 
8 
6 

7- 9 
5-7 

7.8-13 
11.5-12.5 

17.43 
18 

hal 

7.8-13 
11.5-12.5 

4.0 Si+Al 
4.0 remainder 

3.5-4.5 Si+Al 
3.5-4.5 remainder 

7.8-13 
11.5-12.5 

8.84 
24 
ill 

8-12 
4 

7-13 
3-5 

7.8-13 
11.5-12.5 

:~ ·:. . :: 

22.8 
24 

mont 
8-12 

4 
7-13 

3-5 

22.64 
24 

beid 
8- 12 

4 
7-13 

3-5 

0 water% 0 
24 0 total 32 

pyroph I All r. A. , .. 

Si 8 IDEAL Si+Al 15.5-16.5 
Al 4 Na+K+Ca 3-4 
Si 7-9 CRITERIA Si+AI 14.5- 17.5 
Al 3-5 Na+K+Ca 2.5- 4.5 

· .. ) ::' .... :· 

22.9 
24 

sapon 
8-12 

6 

7-13 
3-5 

: : : : : ) : : ·: ·: ::· :.r, t-.l'jt· t:f:Hioi ::;::::::' :::::::: ::, ::· ;::::;:::::::}::::~.:::::~::::::::::::::~:,:::,:::,::::;;:::::::: : :. : .: (''{'\ ·' :: ,: :~ .;: ' 

: : 
: : •, : ·:. : :: ( 

water% 

0 total 

IDEAL 

CRITERIA 

::Ml ·::· ·. :: :.:: 

water% 
Ototal 
IDEAL 

CRITERIA 

Si+Al 
Na+K+Ca 

Si+Al 
Na+K+Ca 

9.47 13.35 
80 80 

natro thorn 

"'40 "'40 
"'15 12 

35-45 35-45 
12-17 10-14 

13.91 
80 

scot 

"'40 
8 

35-45 
6-10 

11.94 15.42 
30 72 

mes heul 

"' 15 
3.75 

13-17 
3-4.5 

31-41 
4-8 

2 3 4.5 7 12 water % 
24 24 24 24 24 0 total 

remainder 11.81 ·1417 11.81·1417 11.81·1417 11.81 ·14. 17 11.81-1417 IDEAL 
Na+K+Ca 5.85-8.19 5.85-8.19 5.85-8.19 5.85-8 .19 5.85-8.19 

17.76 
72 

stilb 

"'36 
"'6.5 

31-41 
3.5-6 

remainder 11.3-4.7 11.3-4.7 11.3-4.7 11.3-4.7 11.3-4 7 CRITERIA 
Na+K+Ca 5.5-8.5 5.5-8.5 5.5-8.5 5.5-8.5 5.5-8.5 

22.04 
72 

chabz 

"'36 
"'4 

31-41 
4 .5-8.5 

2 
24 

14.41 
48 

Ia urn 

21-27 
2.5- 5.5 

remainder "' 13 
Na+K+Ca 2-3 
remainder 
Nu+K+Cu 

.; •' . 

16.58 
32 

ph ill 

21-27 
2.5-5 .5 

~ 
Vt 
tv 



Figure 7.la ED spectrum for calcite from 53.97 m 
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Figure 7.lb XRD spc=ctrum of calcite: from 72.48 m 15~ 

Z00543 . AAW 
NSCRV 72.48M (CALCITE 5-586) 
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Figure 7.2 SEM photograph of Chlorite from 147.31 m 



Table 7.3 Selected Chlorite Compositions, ulculated from ED microprobe data . 

CHLORITE 
~water> 11 .00 ~water> 13.00 

Tot IIOx> 36.00 ToiiiOx> 36.00 

Sample INSCRV 58 r.NSCRV 2A NSCRV 16E .NSCRV71ge INSCRV IJB N:SCRV :>B r .N:SCRV ZA 
Depth 55.36 68.64 136.53 147.31 t51.81 55 36 68.64 

Si 7 28 8.00 5.23 8.00 6 .911 8.00 7.55 8.00 7.25 11.\JU fJ .YI I! .UU 4 .Y1 1! .00 

AI 072 2.77 1.02 0 .45 0 .75 1.03 3.03 
AI 1.7fJ T4l 3.13 2 .65 2.18 1.34 0.95 
Ti 0 .00 0 .00 0 .00 0 .00 0.00 0 .00 0.00 

Fc2+ 6.90 3.34 2.18 1.72 4.41 6 .61 3.17 
Fc3+ 0.00 0 .00 0 .00 0.00 0.00 0 .00 0.00 

Mn 0. 15 10.93 0 .02 11.86 0 .00 11.91 0 .00 12.01 0 .18 11.73 0 .15 10.1 2 0.02 10.88 
Mg 1.48 6.34 5.61 6.47 4.10 1.4t 6.02 
Ca 0.39 O.ot 0 .10 0 .55 0.47 0 .37 0.01 

Na 0.2S 0 .7S 0 .90 0 .61 0.38 0 .24 0.71 
K 1.31 0 .00 0.17 0 .00 O.Q3 1.25 0.00 

Ba O.OJ 0 .00 0 .00 \J.O(f ·o.04 O.OJ 0 .00 

Ni 0.00 0.00 0 .00 0 .00 0 .02 0 .00 0.00 
Cu 0.05 0 .00 0 .00 0.00 0.02 0 .04 0.00 

Zn 0.01 0 .00 0 .00 0 .00 0 .00 O.ot 0.00 

s 0.00 0 .23 0 .00 0 .02 0 .00 0 .00 0.22 
Cr O.o2 0 .00 0 .00 0 .00 0 .01 0.02 0.00 
Cl 0.00 0 .00 0 .05 0 .00 000 0.00 0.00 
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A range of representative formulae derived from the calculated chemical formulae 

is: 

Mg1 .48Fe6.<xAI~.76(Si7.28A10.n)020(0H)11, to 

M~.47Fe~.72AI3. 10(Si7.ssA10.45)020(0H)16 

Assuming all iron in the formula is Fe3
+, charge balance in the two examples is 

53.66+:56- dnd 58.95+:56-. 

Halloysite 

The presence of halloysite was only detected using the SEM/EDM. It 

should be noted that in the initial coarse search of EDM data, to identify kaolinite 

and halloysite, using the parameters identified in Table 7.2, no matches with kaolinite 

were found. Matches were obtained only at the higher water content of halloysite 

and then only at depths of 68.64 m or higher. Table 7.4 shows hypothetical halloysite 

composition calculated using the appropriate water content and molecular structure. 

Both halloysite and kaolinite are members of the kandite family of 

clays, of which only halloysite is capable of swelling. Kandites are noted for their 

inability to accept inter layer cations and for their inflexibility in composition. These 

points may cast some doubt on the calculated compositions. Any cation exchange 

ability that they do have is accommodated on the er.ds of the clay layers. Figure 7 .3 



Table 7.4 Selected Halloysite Compositions, calculated from ED microprobe dala. 

HALLOYSITE 
wa&cr'l> 17.43 

To« lOx> 18.00 

NSCRV 6A 
6.43 

A Si 3.56 3.56 
AI 1.48 
Ti 0.00 

Fe2+ 1.29 
B Fe3+ 0.00 3.33 

Mn 0.10 
MJ! 0.46 
Ca u.:n 

c Na 0.43 1.21 
K 0.21 

B+C 4 .)4 

Ba U.lXI 
Ni 0.04 
Cu 0.06 
Zn O.o3 
s 0.00 

Cr 0.08 
Cl 0.00 
s 0.00 

A+B+C 8. 10 

NSCRV 6B INS lge 'NSI !NSIB 
6.43 68 .64 68.64 68.64 
3.94 3.94 3.90 3.9() 4.23 4 .23 4 .36 
1.73 1.51 2.04 1.78 
0.00 0 .00 0.00 0.00 
0.68 1.03 0. 15 0.42 
0.00 3.01 0 .00 3.23 0.00 2.42 0.00 
O.Q2 0 .05 0.00 0 .01 
0.57 0.64 0.23 0.46 
U.4l u.44 0.42 0.02 
0.64 1.21 0.48 0.92 0.92 1.33 0.84 
0. 16 0 .00 0.00 0.00 

4 .:z:l 4 . 1) 3.1) 

U.UI 0 .00 0.00 0.00 
0.01 o.os 0.00 0.00 
0.01 0 .03 0.00 0 .00 
0.01 0 .03 0.00 0 .02 
0.00 0 .00 0.00 0.00 
0.01 0.00 0.00 0.00 
0 .00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

8. 16 s.u:; 7 .99 

INSCRV Jlge INSCRV 14A NSCRVI6A NSU<V ISC 
68.64 71.80 136.53 139.69 

4.36 4.27 4 .27 . 3.79 3.79 4.09 4.09 3.9: J .YI 
1.13 1.38 0.43 U.YI 
0.00 0.00 0.00 0.00 
0.68 0.36 0.60 082 

2.67 0.00 2.23 0 .00 2.02 0.00 I.S3 0.00 2.78 
O.o3 0.00 0.01 0.03 
0.39 0.27 0.49 1.02 
1.13 0.30 0 . Ill I .. JY 

0.87 0.27 1.40 C.58 0.88 1.48 2.2S 0.18 1.58 
0.00 0.00 0.00 0.01 

3 .)4 Lb3 l .'JU 3 .111 4 .3b 

0.00 0.01 0.00 0.00 
0.01 0.00 0.00 0.00 
0.01 0.00 0.00 0.00 
0.00 0.00 0.00 0.01 
0.00 0.66 0.00 0.00 
0.00 0.00 0.00 0 .00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

7 .~ f .'JU ~~ -~- J .8 1 11..:7 

-VI 
00 



Figure 7.3 SEM photograph of Dickite from 136.53 m 
(A,B,C are analysis points, indicated on tables) 
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is an SEM photograph of a sample from 136.54 m, thought to be books of a kandite 

form, dickite (note that the book form is more common in dickite, another kandite 

variety). An example formula from the calculated chemical compositions is: 

All. 73F eo 66M&.s7Nao.64Ko.J6(Si3.94Alo.060JO)( OH )s· 

Illite 

Illite was only inferred from EDM on a sample from 71.80 m. The 

calculated compositions of the two analyses on a fracture flake from this depth are 

given in Table 7.5. The analyses presented are somewhat deficient in AI; however, 

it should be noted that the illite composition presented in Deer et al. (1966,p251#3) 

also has considerably less than ideal fractions of AI. 

Smectites 

Montmorillonite and saponite are believed to have been identified on 

a fracture surface from 148.31 m, using XRD. The minerals were glycolated to 

confirm their presence. The XRD traces from these analyses are shown on 

Figure 7.4. 

Pyropbyllite 

A possible pyrophyllite match was obtained on samples from 68.64 m 

although the match with halloysite, which was also obtained, is believed to be more 
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Table 7.5 Selected lllite Compositions, calculated from ED microprobe data . 

ILLITE 
,water> 8.84 

Tot lOx> 24.00 

Sample iNS(.;KV 14ti :NS(.;RV 14lge 
Depth 71.80 71.80 

lA Si 7 .Tl 11 .00 7 .)1 11.00 
Al 0 .29 0 .69 
AI I. lSI 1.49 
Ti 0 .00 0 .00 

Fe2+ 0 .16 0.67 
B Fe3+ 0 .00 2.54 0 .00 2.54 

Mn 0 .08 0 .00 
Mg 0.00 0 .22 
Ca 0 .48 0 .17 

I~,; Na 0 . 10 0 .65 0 .62 I . )V 

K O.S6 0 .88 

Ba 0 .04 O.ot 
Ni 0 .00 0 .00 
Cu 0 .06 0.01 
Zn 0.00 0.00 
s 0.00 0,02 

Cr O.Q7 O.ot 
Cl 0 .00 0 .00 



Figure 7.4 XRD spectrum for montmorillonite from 148.31 m 162 
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probable. Nevertheless, pyrophyllite will be:: considered as a plausible phase as it is 

apparently at saturation in the groundwaters of the Holyrood Granite:. An active 

pyrophyllite mine is situated on the east edge of the study art~a. 

Quartz 

Quartz was identified on many fracture c;urfaces below 68.64 m, both 

by SEM and XRD. Example traces for quartz from both SEM and XRD are 

provided on Figure 7.5 a and b. 

7.5 ELEMENTS IDENTIFIED. 

Using the EDM some elements of interest were also detected on 

fracture surfaces. Unfortunately in mos! instances it was not possible to associate 

these elements with a mineral. Elements of note are as follows: 

Barium 

Barium was detected at 68.64 m in conjunction with high chlorine and 

iron on a mineral base believed to be chlorite. No sulphur was detected at the same 

location and thus the barium is not believed to have been associated with barite. 
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Figure 7.5a) ED spectrum of quartz from 71.80 m (NSCRV 14lge) 
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Figure 7.5b XRD spectrum, of quartz from 139.69 m 
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Chlorine 

Chlorine, in association with both iron, barium and traces of sulphur, was 

detected at several locations on the sample from 68.64 m. It was also detected on 

a generally calcitic fracture surface at 72.48 m. 

lnm 

Iron is common, especially in analyses that matched chlorite. It was also 

detected virtually alone at one point at 136.53 m, at a depth where a chlorite match 

was made, and in conjunction with silica and some aluminum at 29.48 m. The latter 

analysis was from a distinctive crystal of octahedral shape shown in Figure 7.6. The 

form of the mineral precludes it being the sheet silicate greenalite (septachlorite 

group). 

Sulphur 

Traces of sulphur were detected at 68.64 m. 

Titanium 

Titanium was detected on t.he sample from 72.51 m in conjunction with 

an unmatched analysis which was possibly chlorite and at 139.69 m in conjunction 

with chlorite. The latter mineral had been logged as the titanium bearing mineral 

wolframite in the field. 



Figure 7.6 SEM photograph of octahedral crystal, high in iron, from 29.48 m 
(A,B,C are analysis points, indicated on tables) 
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7.6 CONCLUSIONS 

For the purposes of this study the methods used to detect minerals 

appear to have some value, however it should be noted that this approach is not 

infallible and it has been used only as an indicator of plausible phases. 

Several minerals were identified using XRD and SEM/EDM. The 

presence of calcite and quartz is confirmed and calcite appears to have been 

precipitated over the entire NSCRV interval, whereas quartz was only detected on 

fracture surfaces at 68.64 m or deeper. 

Other minerals identified with Jess certainty, are Fe- and Mg-rich 

chlorite, found throughout the drilled section; halloysite and illite, found at 68.64 m 

or deeper, and montmorillonite and saponite only detected on an isolated fracture 

surface at 148.31 m. Plagioclase feldspar, possibly oligoclase may also be present. 

Other indirect evidence supports the possibUity of the presence of these minerals: 

i) the formation of montmorillonite and saponite is favoured under alkaline, 

low potassium conditions (such as are found in the modern Holyrood Granite 

groundwaters }, 

ii) the Holyrood Granite has been noted as being strongly chloritised by 

McCartney et al. (1966), Papezik (1970) and Strong and Minatidis (1975), 
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iii) the composition of many of the NSCRV wat~rs plot in the stability fields 

of plagioclase feldspars. 

All of these minerals .will be assumed to be plausible phases for the 

purposes of geochemical modelling, in addition some of the component minerals of 

granite will be added to the set of plausible phases. 
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CHAPTER 8: HYDROGEOCHEMICAL 1\fODELLING 

8.1 INTRODUCfJON 

Groundwater flow models can provide information regarding flow paths 

in aquifers. Geochemical models provide information regarding the probable 

evolutionary pathways of groundwater in the subsurface. These pathways may be 

controlled by mixing of groundwater of differing origins and by chemical reactions 

occurring in the aquifer. The chemical reactions may themselves be controlled by the 

mineralogy of the aquifer. The information gained from the two models (flow and 

geochemical) can be used to corroborate results of the other. The uncalibrated flow 

model used in this study only provides a very general concept of flow patterns in the 

Holyrood Aquifer. The use of geochemical modelling to define probable end

members in the mixing and evolutionary sequence of the groundwater lends 

crcdiuility to the flow model and results in a tenable model for flow and groundwater 

evolution in the aquifer. The geochemical modelling presented in this section is used 

to define plausible end-members involved along a reaction path, and define plausible 

phases involved in the groundwater evolution. 

A varit:ty of input parameters are required to successfully model the 

evolution of an aqueous solution from an initial composition to another intermediate 

or "end-member" composition. The evolution of the aqueous solution can be driven 
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by (amongst other things): variations of P co:! (whether the system is open or closed 

to C02). mineral solution or precipitation, temperature and pressure variations. hy 

mixing of aqueous solutions of differing composition, and by reversible exchange of 

mass between aqueous and solid phases. 

All geochemical modelling of the NSCRV waters was conducted with 

a view to solving the inverse problem defined by Plummer (J9X4) as " .. [an attempt) 

to find a set of net mass transfer reactions that are thermodynamically feasible and 

satisfy the mass balance criteria using the available hydrochemical data." To this end 

geochemical modelling was conducted in two phases as described by Plummer et al. 

(1983): 

a) speciation calculations were performed to determine the saturation states of a 

variety of minerals, expressed as mineral saturation indices (Sls).l. These calculations 

were intended to identify those minerals likely to be involved in the evolution of the 

groundwater at NSCRV as a result of their intimate thermodynamic relationship with 

possible and actual solid phases. Assuming equilibrium Sis are positive if the solution 

is oversaturated with respect to a mineral (which should be precipitating) and 

negative if the solution is undersaturated with respect to a mineral (which should he 

2s1 is defined as Log (IAP/K) and lAP and K are respectively the ion activity product and 
equilibrium constant 
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dissolving). The speciation calculations were performed using the computer program 

PHREEQE (Parkhurst et al. 1980). 

b) mass balance calculations, were conducted to define possible evolutionary 

pathways for the NSCRV waters from a hypothetical starting composition (recharge 

waters) to the observed composition. A series of calculations were made using a 

variety of combinations of the plausible phases described in Chapter 7 (with the 

additinn of NaCl). The mixing of two end-member waters of differing compositions 

was also incorporated into the calculations. Two additional constraints also applied 

to the mass-bi:ilance equations a) redox constraints to determine if oxidation and 

reduction could be significant processes in the evolution of groundwater, b) mixing 

constraints (primarily as indicated by chloride concentrations) in an attempt to 

determine feasible end members for mixing. With the limited isotopic data isotope 

constraints were not applied as very small variances in isotopic composition would 

lead to large changes in model results which were not necessarily justifiable in terms 

of the analytical uncertainties associated with the isotope data. 

has; 

The mass balance calculations can indicate whether a plausible species 

i) been lost from the solution (by precipitation if it is a mineral or off

gassing for volatile components) or, 
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ii) been added to the solution; by dissolution of a mineral. or gaseous, 

phase. 

The theory behind chemical mass balance calculations has heen 

described by Parkhurst et al. ( 1982) and implemented in the mass balance calculation 

program BALANCE (Parkhurst et al. 1982) and NETPATH (Plummer et al. 1991). 

In this study the calculations were performed using the matrix inversion and 

multiplication techniques used in BALANCE and executed on Lotus 1-2-3 

spreadsheet software. A summary of this spreadsheet approach is provided in 

Appendix G. 

The results of the mass balance calculations were compared with the 

saturation states determined from the speciation calculations; plausible reaction 

combinations were selected from over 50 possible mass transfer models tested. 

Ideally the plausible mass balance models would be tested for 

thermodynamic feasibility by reaction path modelling. In this study a comparison of 

mass balance models with the results of speciation calculations was used to identify 

models which are likely to be thermodynamically feasible. 
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8.2 DATA AND THERMODYNAMIC DATABASE QUALI1Y 

Geochemical modelling requires two broad groups of input parameters 

before any modelling can be performed; 

a) chemical analyses of the aqueous solutions of interest (in this case 

groundwater and an assumed starting end-member) and, 

b) thermodynamic data for both the aqueous species in solution (or believed 

to be in solution) and the minerals which are believed to be dissolving or 

precipitating. 

The combination of accuracy of the chemical analyses and the 

consistency and reliability of the thermodynamic data will in a large part dictate how 

successfully an aqueous reaction may be modelled. 

8.2.1 Groundwater Data Quality 

As discussed in Chapter 4 the water samples collected from the 

NSCRV borehole are believed to be representative. Furthermore the concentration 

of an element in the virgin groundwater, at a particular depth, is considered to be 

best represented by the last sample collected (in a sequential time series of samples) 

from any given interval. The last recorded field values (in a time series) of pH, Eh 



and alkalinity were ··)so used for modelling purposes. Wherever possible only ICP

MS analyses were used for geochemical modelling. Where values of Eh were not 

available, the value of Eh from an adjacent sample interval was assumed. Results of 

Eh measurements were used indirectly in some of the mass balance models, all of 

these were discarded as plausible models as they did not reflect the results of 

speciation calculations. 

For almost all of the common minerals the hydrogeochemical analyses 

from NSCRV are both complete and saturation sufficient (as defined hy Plummer et 

al. 1983), i.e., there are sufficient chemical data to calculate the saturation indices 

of the mineral phases considered. However, it is possible that the aluminum analyses 

in fact represent contamination from dust in the laboratory (H.Longerich pers. 

comm) rather than true concentrations of AI in native formation waters. The problem 

of hydrogeochemical data being saturation insufficient with respect to aluminum is 

a common one and has been discussed by Plummer et at. (19K3). If aluminum is 

omitted from the NSCRV chemical analyses then the data are rendered saturation 

insufficient for all AI bearing minerals. 

For this alumino-silicate dominated system the Sf's of the alumino

silicates are of particular interest and omission of aluminum from the data set means 

that concentration of aluminum must be estimated by some other means. [f this is 



176 

not done the saturation states of the aluminum bearing minerals cannot be 

determined, and the results of subsequent modelling (which will be used to interpret 

plausible evolutionary paths for the NSCRV groundwater) may be difficult to verify. 

Furthermore it may be difficult to solve a set of mass balance equations, using several 

aluminum bearing minerals when aluminum is omitted (though this is suggested by 

Plummer et al. ), as many minerals are indistinguishable if their aluminum 

stoichiometry is omitted (i.e., the omission of AI makes some mass balance equations 

the same, resulting in an uninvertible matrix). Fortunately, there is evidence that the 

AI analyses are in fact reasonable (as discussed in Chapter 4) and the analyzed AI 

concentrations were used for all calculations. 

8.2.2 Thermodynamic Data 

As noted in Chapter 5, extensive checking was petformed on the mineral 

thermodynamic data base, supplied with PHREEQE. The outcome of this evaluation 

was a decision to replace the thermodynamic data for Gibbsite, Kaolinite, Low-Albite, 

Muscovite, Anorthite, Pyrophyllite, Microcline, Chlorite and Na·, K-, Ca-, Mg

Beidellite (provided in the data base supplied with PHREEQE), with the data of 

Helgeson (1969) and Helgeson et al. (1978). In addition the following substitutions 

were made: 
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a) Chlorite-M and Chlorite-K were removed from the data base and replaced 

only by Chlorite, 

b) Halloysite was removed and replaced by Kaolinite, 

c) the original Nontronites (Na, K, Mg, Ca) were replaced hy Na, K, Mg. Ca 

Beidellites. 

The thermodynamic data review is presented in Appendix D. A listing 

of the thermodynamic data base used for hydrogeochemical modelling is supplied in 

Appendix E. The re-compiled and checked data base is referred to as 

HELGTHEM. The following convention is used to differentiate results that may be 

affected by the data base: 

a) upper case names (e.g. CALCITE) indicate mineral5. for which the original 

data base information was used, 

b) lower case names with the first letter capitalised (e.g. Calcite) designate 

minerals relying on the Helgeson data. 

Thermodynamic data derived by different workers should generally not 

be mixed as it will be inconsistent (see for instance Nordstrom and Munoz 1985); 

however the Helgeson data are extensive enough that all of the major minerals are 

represented, and should be consistent for the phases of interest. The remaining 
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original data supplies extensive information ahout minor or rare mineral phases. The 

problem of mixing data bases is further discussed in Appc:ndix D. 

A further check of the modified thermodynamic data hase and program 

was made by comparing Sis derived for various minerals using PHREEQE with the: 

results of other program/data base combinations for the same aqueous solution. 

Nordstrom et al. (1979) compared the SI's calculated for nineteen (19) different 

minerals, using 11 different hydrogeochemical modelling programs and data bases, 

for two analyses of typical seawater and river water. Using typical seawater (as 

defined by Nordstrom et al. 1979) speciation calculations were made using 

PHREEQE with both the original data base and the HELGTHEM data base. The 

results of these calculations are compared with the results from the 1 1 other 

hydrogeochemical modelling programs presented by Nordstrom et al. ( 1979) and 

presented in Table 8.1. 

In Table 8.1 only the minerals Gibbsite and Kaolinite have been 

modelled using both original thermodynamic data and HELGTHEM. All other 

minerals were modelled with the original thermodynamic data. The ranges of 

calculated Sis for each mineral, originally published by Nordstrom et al. (1979), are 

also provided. It can be seen that of the 19 minerals modelled using 

PHREEQE/HELGTHEM, only 3 (hydroxyapatite, ferric-hydrate, and hematite) fall 



Table 8 . 1 THERMODYNAMIC DATA TEST USING THE SEAWATER TEST CASE OF 

NORDSTROM ET AL (1979) AND RUNNING PHREEQUE USING THE DATA 

BASES P~RTHERM.DAT AND HELGTHEM.DAT 

Current Data Published Sl ranges Comparison Data bases!Programs 
Bases avg mu min EQUIL GEOCHEM SEAWAT. WATEQF WATSPEC 

Mineral phrtherm Helgthm EQ3 MIRE SOLMNEQ WATEQ2 
Calcite 0 .8312 0.8312 0.685 0.806 0.597 0 .60 0.806 0.67 0.621 0.631 0 .597 0 .742 0.774 0.72 
Dolomite 2 .4810 2.4810 2.373 3.439 1.790 2.30 3.439 1.79 2.277 2.305 2.219 2 .330 2.394 2 . ~0 

Siderite -7.5970 -7.5970 -7.922 -2.650 - 12.420 -2 .65 - 10.726 - 12.42 -4 .077 - 6.691 -9.006 -8 .973 - 8 83 
Rhodochrosite -3.8481 - 3.8481 -3.440 -0487 -4.450 -3.57 -4.444 -4.45 -<l.487 -3.709 -3.727 - 3.695 
Gypsum -().3409 -Q.3409 -().537 -().348 -().840 -Q.47 -<l.399 -().76 - 0.840 -<l.441 -<l.439 -().348 -0.60 
Celestite -<l.6713 -0.6713 -o. 731 - 0. 130 -1.320 -0.13 -Q.988 -Q.610 -0.609 - 1.32 
Barile 0 .0346 0 .0346 1.428 7.642 -Q.340 1.12 7.642 -Q.0501 0 .097 O.OQ7 -0.34 
Hydroxyapatite -o.2119 -o.2119 3.221 7.140 0.605 4 .16 3.53 7.14 0 .605 0.670 
Fluorite -0.7490 - 0 .7490 -1.352 - 0.742 -2.6i0 - 1.61 - 2.61 -1.048 -o. 742 -0.751 
Ferric Hydrate 2. 1078 2. 1078 -0.504 0.712 - 2.930 - 2.93 0.712 0.706 
Goethite 6.5063 6 .5063 5.774 7.809 2.580 5.64 2.58 7.809 7.80) 504 
Hematite 18.0212 18.02 12 12.396 16.518 5.650 8.21 16.518 5.65 15.228 15.229 13.54 
Gibbsite -1.2387 -0.4087 -1.733 0.216 -4.954 -().63 0.216 -().57 -4.954 -1.685 -1.817 - 2.69 
Birnessite - 3.0029 -3.0029 - 2.332 - 1.010 -2.993 -1.01 -2.993 - 2.993 
Manganite - 1.3448 - 1.3448 - 1.567 - 1.335 -2.030 - 2.03 ·· 1.335 - 1.3~6 

Chalcedony -o.S497 -0.5497 -0.660 -<l.415 -1.410 -Q.4l.S - 1.41 -o.522 -().537 -0.537 -0.54 
Quartz -<l.0597 - 0.0597 -().083 - 0.040 -0 . 143 -(). 14 -0.143 -0.04 - 0 .092 -o.os5 -0 .054 - 0.06 
Kaolinite 1.2019 -o.5781 - 1.334 0.645 -2.384 -0.47 0.645 - 0 .67 - 2.108 -2 .108 -2 .384 - 2.24 
Sepiolite - 1.7296 - 1.7296 0.456 1.090 - 1.960 -1.96 1.09 1.059 1.059 1.034 

I Minerals with Sl's calculated using PHRTHERM e:: HELGTHEM, that fall outside 

the range of Sl's given by Nordstrom et al (1979) 

..... 
-.J 
\C 
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far outside the SI ranges calculated by other speciation programs and these minerab 

have such a wide published range of Sis that it cannot he stated whether the 

PHREEQE/HELGTHEM calculated SI is satisfactory or unsatisfactory. 

Based on the thermodynamic data hase checks, discussed in Chapter 4 

and reviewed above, it is believed that the PHREEQE/HELGTHEM combination 

provides geochemical modelling results which are consistent with the other commonly 

used program/database combinations. All subsequent references to PHREEQE will 

imply the use of the HELGTHEM data base. 

8.3 HYDROGEOCHEMICAL MODELLING 

8.3.1 Speciation Calculations 

Before attempting to solve the forward hydrogeochemical problems at NSCRV, 

speciation calculations for each NSCRV analysis were made. The NSCRV data are 

theoretically saturation sufficient (at most sample depths) with respect to 321 phases, 

contained in the data base. Those phases which approach or exceed saturation, at 

any of the sampled depths, are presented in Table 8.2. It should be noted that blanks 

on Table 8.2 indicate that during analysis certain elements present in the indicated 

mineral's composition, at the depth shown, were not detected (i.e., the analyses are 

naturally saturation insufficient). The criterion for incorporating a mineral phase into 

Table 8.2 was that its SI, at any of the sampled depths, should exceed -0.2. If this 



Table 8.2 MINERALS FOUND TO HAVE SATURATION INDICIES >-0.2, 181 
FROM INITIAL SPECIATION CALCULATIONS 

DEPTH>> 18.77 56 81 69.64 71.65 74.91 77.41 96.64 97.41 
GcncnJ 
pH 7.50 8 .22 7.70 8.43 8.60 8 .76 9.05 9 .61 
C02(GAS) -2.6708 -3.3104 -2.9789 -3.5482 -3.9283 -3.9170 -4.2227 -5.0064 
H ydraleld Sba:t SUicatca 
Na-b<:id -1 .8073 -().4358 -1.9167 -o.2616 1.4115 -o.6871 0.3506 3.4817 
K-beid -2.1905 -().8665 -2.3423 -o.7349 0 .9128 -1.2003 -o.2594 2.9645 
Ca-bcid -1.4126 -().0715 -l.SS44 0.0594 1.6505 -o.3917 0 .5445 3.6247 
Mg-beid -1.5857 -().2321 -1.7160 -o.1051 1.4806 -o.5601 0 .3455 3.4344 
ILLITE - 2.6547 -().8073 -2.6685 -o.5m 1.2373 -o.8145 0 . 1690 3.3445 
MONTMORJ -2.0458 -().7021 -2.1897 -o.5702 1.0201 -1.0187 -o.0701 3.0091 
Kaolinit 1.1258 2.1279 1.0239 2.1446 3.4265 1.6640 2.3275 4.6733 
TALC ,8.3611 -4. 1767 -7.3254 - 3. 1928 -2.0024 -1.3851 -1.2287 2.4695 
Pyrophyl -().(1241 0.8914 -o.2115 1.0027 2.3279 0 .5311 1.2617 3.8821 
PREHNITE -7.8711 -4.1569 -7.42n -3.5159 -1.4133 -2.7525 -1.3604 3.0953 

Sbect Silic:ata 
Muscovit 1.2550 3.3977 1.2180 3.5695 5.8627 3 .1165 4 .3067 8.7508 
ANNITE -13.4635 8.3178 4 .5116 -2.9095 3.4360 
GREEN ALl -15.6126 3.8616 1.0392 -7.5554 -3.2603 

Carbourc MiDcrab 
ARAGON!T -().9598 -().2217 -o.9020 -o. l710 -o.J516 0.0800 -o.l603 0.0631 
CALCITE -().7195 0.0186 -o.6535 0.0693 0.0887 0 .3202 0.0493 0.2747 
OTAVITE -1.0696 -().7079 -1.0804 -o.S404 -().3785 -Q.4904 -o.3133 -().1503 

Silica 
CHALCEDO -().1099 -().1532 -o.1481 -o.1059 -().0843 -Q. IOI5 -o.0863 0.0524 
QUARTZ 0 .4787 0.4354 0.4467 0.4827 0.5044 0 .4872 0 .4782 0.6 187 
CRJSTOBA 0.0146 -().0287 -o.0202 0.0186 0 .0403 0.0231 0.0249 0.1646 

Fddlpua 
Low albi -1.7364 -o.5398 -1.6258 -o. l623 0 .9691 -o.oo58 0 .8631 2.9585 
AN ALBITE -2.1236 -().9270 -2.0196 -o.5495 0.5819 -o.3930 0.5022 2.5956 
M icrocli -o.0686 0.9855 -o.0730 1.2350 2 .2898 1.2716 1.8012 4 . 1789 
H SANIDI -1.1022 -().0481 -1.1167 0.2014 1.2562 0 .2380 0 .8077 3. 1824 

Hydroxldca 
BOEHMITE -o.9149 -().3706 -o.9451 -o.4095 0.2098 -o.6542 -o.2684 0.7607 
Gibbsite 0 .0522 0.5965 0.0421 0.5576 1.1769 0 .31 28 0.6185 1.6535 
GOETHITE 6.8208 7.1351 6.1658 5 .8921 6.9275 
LEPIOOCR 6.8380 7.1523 6.1830 5 .6919 6.7435 
DIASPORE 1.0096 1.5539 0.9925 1.5150 2. 1342 1.2702 1.6035 2.6365 

Mangancae Minerals 
PYROLUSI C.1119 1.8687 -o.6849 -5.5647 -10.8115 -10.9846 -5.3895 -4.8500 
BIRNESSI -o.3303 1.4265 - 1.0170 -6.0069 -I 1.2537 - 11.4268 -6.2697 - 5.6977 
NSUTITE 0.2597 2.0165 -o.4270 -5.4169 -10.6637 -10.8368 - 5 .6797 -5. 1077 
BIXBYITE 0 .1858 2.2594 - 1.6452 -4.7274 - 9 .3411 -9.6072 - 3.6243 -1.9372 
HAUSMANN -1.9458 0.4445 -4.8170 -6.0957 -10.0762 -10.4354 -4.0412 -1.2082 
MANOANIT 0 .4897 1.5265 -().3970 -1.9669 -4.2737 -4.4068 -1.5297 -().6777 

~ 
FCOHPAT 13.6281 ;.4743 16.9078 17.8001 15.6147 17.4967 
MNHP04(C -().6567 - 1.1079 00504 -50.3319 -o. l909 -o.2495 -o.3147 
FLUORAPA 5.3146 3.1601 7.3519 7 .7494 7.2232 8.1438 

Zeolites 
LEONHARD 8.0353 12.62 18 8.3258 13.4213 16.8708 13.7175 15.5686 22.8045 
LAUMONTI -2.6734 -().3802 -2.5575 0.0195 1.7443 0 . 1677 1.2098 4 .8191 
PHILLIPS -o.2287 0 .8966 -().1194 1.2101 2 .3032 1.3067 1.7820 4 .0352 
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Table 8 .2/ continued 18~ 
Zinc Spccica 
ZN(OH)2 -2.5702 -1.8672 - 2.3676 -o.8691 -o.8861 -1.1067 -0.6545 -0 . 18~5 
ZNO(ACT1 -2.3801 -1.6n1 -2. 1775 -<>.6790 -o.696! -<l.9i6<1 -<>.4()..04 0 .0037 
ZNSI03 0 .9681 1.6278 1.0463 2.6732 2.6779 2.4401 3.2509 :.18322 
WJLLEM!T -3.4272 -2.0645 -3 .2033 -<>.0210 -o.0333 -{) 4916 0 .9979 20305 

Iron Specia 
FE(OH)3S 5.5379 5.8522 4.8829 4 .3918 5.4434 
FERJUHYD 3.3179 3.6322 2.6629 2.1718 3.2234 
FE3(0H)8 0.5265 7.6294 4.7614 0 .8582 4 .3039 
FEOH)2.7 8 .22~1 8.1588 7.2245 f>.6574 7.5689 
HEMATITE 18.5259 19.1545 17.2159 16.6968 18.7656 
MAGri EMIT 10.0261 10.6547 8.7160 7.7339 9 .8371 
MAGNETIT 13.9252 21.02SI 18.1601 15.0143 18.4040 
MAG-FERR ~-3943 9. 1082 7.3983 7 .1809 10.2775 
HERCYN IT -8.8430 -Q. II94 -2.7767 -4.5944 -1.2182 

Framework Silicatea 
Analcimc(Na), Wairaltite/Ca), Leucitc(K) 
LEU CITE -3.0295 -1.9322 -3.0180 -1.7299 -o.6968 -1.6978 -1 .0949 I. 1375 
WAIRAKIT -7.8614 -5.5682 -7.7934 -5.1684 -3.4436 -5.0203 -3.7875 -o.l923 
ANALCIME -1 ~~jj -{).3554 -1.4465 -<>.0252 1.0845 0.1268 0 .9802 2.9370 

Othc:n 
BARITE 0 .4324 0.1149 0.2468 0.0950 -o.6456 0.1750 -o. ll65 -<>.5398 
CHRYSOTI -10.7374 -6.4664 -9.6566 -5 .5nt -4.4301 -3.n8J -3.5283 -o. ll67 
DIOPSIDE -7.1112 -4.3676 -6.5042 -3.7196 -2.9088 -2.4943 -2.0563 0 .2530 
FLUORITE -o.0012 0. 1467 -<>.1538 0.0615 -o.3280 -<>.0327 -o.l668 -<>.0269 
TREMOLIT -16. 1122 -6.4404 -13.&513 -4. 1606 -1.3487 0.0977 1.0856 9 .4057 
CUPROUSF 8.7300 15.0585 13.9729 1! .5940 13.0159 
CUPRICFE 14.8915 15.3743 13.2793 13. 1882 15.3448 
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criterion was met at any depth then the SI for the mineral Cl.t all other der-ths was 

included in the table. The selection of an SI of -0.2 is somewhat arbitrary though it 

has been noted by Plummer (1984) that the SI of simple minerals probably cannot 

be calcuiatf;d to better than ±0.1 units of SI and the error of the estimate of SI for 

more stoichiometrically complex solids may be as much as ±2.0. These errors are 

large when it is considered that SI is a logarithmic number. 

The results presented in Table 8.2 indicate that the NSCRV waters are 

super·saturated with respect to quartz at all depths and very close to being saturated 

with respect to the amorphous silica chalcedony at all depths; however, quanz was 

only identified in fractures bdow 68.64 m. The NSCRV waters become saturated 

below 70 m with respect to the carbonates calcite and aragonite, but never reach 

saturation with respect to dolomite, probably as a result of the low concentration of 

Mg, which decreases with depth. Only calcite was identified on fracture planes but 

it was identified over virtually the entire range of the borehole. 

The common aluminosilicates ; the feldspars low albite and analbite 

appear to approach saturation with depth which agrees with the mineral activity 

diagrams shown in Chapter 5. Microcline is near or exceeds saturation at all depths. 

The NSCRV waters are undersaturated with respect to anorthite at all depths though 
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they move towards anorthite saturation with increasing depth. No feldspars wert> 

positively identified on fracture plane minerals. 

Within the group of clay minerals (hydrated sheet silicates) all the 

NSCRV waters are super-saturated with respect to kaolinite. They apparently also 

reach saturation with respect to illite and montmorillonite and the heidellites at 

depths greater than -70 m. The mineral hal!oysite was possibly identified helow 

68.64 m. Illite and montmorillonite were possibly identified on fracture planes at 

71.80 m. 

With depth, the waters become ever saturated with respect to 

pyrophyllite, possibly as a r~sult of the two orders of magnitude increase in AI 

concentration, and a large increase in pH and silica concentration (see Figure 5.4 for 

the space Lo&{K}/{H} vs Log{H4Si04 }). No positive matches were made with 

pyrophyllite in fracture plane surfaces. 

The aluminum hydroxide, gibbsite, is apparently at (or slightly above) 

saturation throughout the NSCRV waters. No positive matches were made with 

gibbsite in fracture plane surfaces. 
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The NSCRV waters are saturated with respect to barite at shallow 

depths but become undersaturated with depth, probably a result of the decrease of 

dissolved barium concentration with depth, rather than variations in S04 with depth. 

Both barite and sulphate were identified on fracture plane surfaces; however, no 

positive (or even tentative) matches with barite were made. 

The NSCRV waters do not achieve saturation with respect to chlorite 

(or at least the chlorite included in HELGTHEM) and hence chlorite is not shown 

in Table 8.2. This result may be reasonable as the chloritisation of the gmnite 

probably occurred at much higher temperatures than seen in the present waters. 

The manganese minerals, such as pyrolusite, are oversaturated in the 

surface NSCRV waters but become undersaturated with depth. There was no 

evidence to reflect this in the fracture plane analyses. 

Many other minerals appear to be at or to reach saturation in the 

NSCRV waters including the framework silicates, zeolites, simple hydroxides and 

many of the common iron minerals. With respect to the latter, however, Plummer 

( 1984) notes that SI calculations of iron hydroxides may be particularly inaccuwte if 

,;te ferric/ferrous iron concentration has not been determined in the field. 
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Despite the large number of minerals apparently at. or above. 

saturation only a limited number of those shown in Tabk R2 were detected in the 

fracture planes; furthermore, and as noted above (and with the caveat than nearly 

all mineral identifications are tentative) these minerals displayed only an approximate 

correlation with the calculated SI's. These inconsistencies are probably a function of 

a variety of factors such as: the system being at partial equilibrium, or the system not 

reaching equilibrium because of short-circuiting along fractures, inherent errors in the 

thermodynamic data or aluminum concentration data noted above, and the method 

of analysing for fracture plane minerals 

8.3.2 Mass Balance calculations 

Mass balance calculations were made using the NSCRV water analyses 

and a set of plausible phases selected primarily on the basis of results of fracture 

mineral analyses. Sodium chloride was added to the list of plausible phases (in 

addition to the chloride from the seawater mixing noted below) as a surrogate for 

other Cl- containing phases, such as inclusion fluids and amphiboles. Mixing 

equations were added to the mass balance; the end members for mixing were 

considered to be seawater and meteoric water. The selection of these end members 

was based on the proximity of the ocean, the geological and the glacial history of the 

area, and the probable mixing scenarios deduced from isotope data. 
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As discussed previously the isotopic data were not considered to be 

useful for the purposes of resolving mixing scenarios, though they were used to reject 

scenarios. This aspect is further discussed in section 8.4. 

Over fifty mineral/element combinations were tested; of these 

combinations many resulted in uninvertible matrices, or mixtures of seawater/ 

freshwater that had no physical meaning (e.g., apparent mixing of negative amounts 

of seawater with greater than 100% volumes of meteoric water). From the original 

combinations a total of 47 were successfully run (i.e., produced invertible matrices). 

Of the 47, four models were selected as being of possible interest. The selection 

process was based on similarity between the mass balance results, and the results of 

speciation calculations (i.e., that similar combinations of minerals were precipitating 

or dissolving in both calculations). 

The results of the four selected mass balance calculations are presented 

in Table 8.3 at each of the sample depths. All mathematically possible mass balan.:e 

models are included in Appendix F. An abbreviated synopsis of the phases and 

elements used in the calculations is provided on the first two lines of each 

combination in Table 8.3. The two assumed mixing solutions appear as phases which 

requires another equation in terms of the mixing proportions. Mix 1 is meteoric 

water, with a P 002 of 10-2
·
67 as found in the shallowest water from NSCRV. Mix 2 is 



Table 8.3 MASS BALANCE CALCULATION RUNS SELECTED FOR PHREFQE 
MODELLING 

Anorth 
Alb 
C02 
Calc: 
NaCI 
Micr 
S-m.in 
Na-Beid 
Mix I 
Mix2 

Ca 
TC 
Si 
Na 
AI 
Mg 
RS 
504 
Cl 

Anorth 
Alb 
C02 
Calc 
NaCI 
Micr 
S-min 
Qtz 
Na-Beid 
Mix! 
Mix2 

Ca 
TC 
Si 
Na 
AI 
Mg 
K 
RS 
504 
Cl 

mmocso 
0.7699 
0.7283 
2.0566 

-o.0057 
1.8863 

-o.0214 
0. 1499 

-o.9642 
0.9983 
0.0017 

p aus1 e p asc a 
0.6689 0.6127 
1.1613 0.9900 
2.2995 1.4994 

-o.0004 0.1121 
1.86?2 1.9777 

-o.s.ws -o.4203 
0. 1630 0.1880 

-o.8385 -o.7703 
0.9982 0.9980 
0.0013 0.0020 

+ or ost - rom e groun water system 
0.4931 -o.4762 -().2416 0.1260 -1.4-'70 
1.4090 1.7698 1.0994 1.9397 1.7791 
2.1476 1.4024 1.2776 1.6756 -().4151 
0.0023 0.7049 0.7048 0.0087 1.5534 
2.3850 2.7938 3.0861 3.9483 4.9376 

-().9247 -2.0655 -1.2060 -1.7273 -2.7997 
0.1755 0. 1967 0.2378 0.4511 1.1216 

-().6308 0.5373 0.2533 -0.1990 1.6895 
0.9987 0.9995 0.9989 0.9998 0.9998 
0.0013 0.0005 0.0011 0.0002 0.0002 

. . . 
mmolcs of elements added(+) or lost(-) from the groundwater system 

0.7825 0.6876 0.7461 0.5088 0.2344 0.4750 0.1366 
2.0547 2.3031 1.6159 2. 1527 2.1086 1.9850 1.6849 
0.1222 0.1111 0.1076 0. 1243 0.1323 0.1269 0.1592 
3.1274 3.6146 3.6799 4.1931 5.0022 4.8064 5.9069 
o.ooo3 o.0009 o.ooo3 o.ooo8 c .:xm o.ooo5 o.0009 
0.0946 0.0988 0.1099 0.0691 0.0295 0.0609 0.0097 
9.4429 10.5070 7.4934 9.8748 6.8891 6.7416 9.4423 
0.2002 0.2155 0.2463 0.2122 0.2124 0.2701 0.4563 
2.8581 2.8765 3.1067 3.0949 3.0964 3.7114 4.0475 

. . . . . . . 

0. 1081 
1.1388 
u.2445 
7.3554 
0.0219 
0.0086 
5.0986 
1.1262 
5.0263 

mmolcs of plausible phase added(+) or lost(-) from the groundwater system 
0.7699 0.6689 0.6127 0.4931 -o.4762 -().2416 0.1260 -1.4470 
0.7376 1.2562 1.0639 1.5673 2. 1195 1.3040 2.2313 2.2546 
2.0566 2.2995 1.4994 2.14i6 1.4024 1.2776 1.6756 -().4151 

-o.0057 -().0004 0. 1121 0.0023 0.7049 0.7048 00087 1.5534 
1.8863 1.8622 1.9777 2.3850 2.7938 3.0861 3.9483 4 .9376 
0.0337 0.0243 0.0231 0.0241 0.0317 O.Q208 0.0212 0.0523 
0.1499 0. 1630 0.1880 0. 1755 0.1967 0.2378 0.45il 1.1216 

-c.0917 -().9455 -o. 7372 -1.5773 -3.4865 -2.0396 -2.9067 -4.7414 
-o.9918 -1.1233 -Q.9923 -1.1059 -o.5129 -<>.3610 -1.0745 0.2613 

0.9983 0.9982 0.9980 0.9987 0.99<i5 0.9989 0.9998 0.9998 
0.0017 0.0018 0.0020 0.0013 0.0005 0.0011 0.0002 0.0002 

. . . 
mmoles of elements added(+) or lost(-) from the groundwater system 

0.7825 0.6876 0.7461 0.5088 0.2344 0.4750 0.1366 
2.0547 2.3031 1.6159 2.1527 2.1086 i.9850 1.6849 
0. 1222 0. 1111 0. 1076 0. 1243 0. 1323 0.1269 0. 1592 
3.1274 3.6146 3.6799 4. 1931 5 .0022 4.8064 5.9069 
0.0003 0.0009 0.0003 0.0008 0.0037 0.0005 0.0009 
0.0946 0.0988 0. 1099 O.OS91 0 .0295 0 .0609 0 .0097 
0 .0519 0.0432 0.0442 0.0373 0.0373 0.0325 0.0230 
9 .4429 10.5070 7.4934 9.8748 6.8891 6.7416 9.4423 
0.2002 0.2155 0.2463 0.2122 0.2124 0.2701 0.4563 
2 .8581 2.8765 3. 1067 3.0949 3.0964 3.7114 4.0475 

0. 1081 
1.1388 
0.2445 
1.3554 
0.0219 
0.0086 
0.0540 
5.0986 
1.1262 
5.0263 
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Table 8.3/ continued 

Anorth 
Alb 
C02 
Calc 
NaCl 
Ulite 
Mix! 
Mix2 

Ca 
TC 
Si 
Na 
Al 
Mg 
CJ 

Anorth 
Alb 
C02 
Calc 
NaCl 
Micr 
Na- Beid 
Mixl 
Mix2 

c. 
TC 
Si 
Na 
Al 
Mg 
K 
Cl 

. . 
mmoles of plausible phase Added(+) or lost\-) from the groundwater system 

1.2209 2.9607 2.4294 4.0781 6.m3 4.0171 6.4429 8.0125 
0.9438 2.1632 1.7866 2.9607 4.8678 2.9198 4 .6530 5.7966 
2.5646 4.7274 3.4281 5.9198 8.9662 5.7203 8.2879 9.4114 

-o.5280 -2.4622 -1.8445 -3.8165 -6.9362 -3.7843 -6.6n2 -8.3646 
- 1.8931 -7 1622 -5.4408 -10.025 -17.768 -9.1420 -15.630 -19.399 
-1 .4719 -3.514d -2.8892 -4.8331 -8.0082 -4.7624 -7.6252 -9.4781 
o.99J6 o.9823 0.9849 o.9768 0.9631 o.9n3 0.9652 0 .9568 
o.oo84 o.o1n o.Ol51 o.0232 o.0369 0.0221 0.0348 0.0432 

. . . . 
mmoles of elements added(+) or lost(-) from the groundwater system 

0.7825 0.6876 0.7461 0.5088 0.2344 0.4750 0. 1366 
2.0547 2.3031 1.6159 2.1527 2.1086 1.9850 1.6849 
0. 1222 0.1111 0. 1076 0.1243 0.1323 0.1269 0.1592 
3.1274 3.6146 3.6799 4 .1931 5.0022 4.8064 5.9069 
0.0003 0.0009 0.0003 0.0008 0.0037 0.0005 0.0009 
0 0946 0.0988 0. 1099 0.0691 0.0295 0.0609 0.0097 
2.8581 2.8765 3.1067 3.0949 3.0964 3.7114 4.0475 

. . . . . . 

0.1081 
1.1388 
0 .2445 
7.3554 
0.0219 
0.0086 
5.0263 

mmoles of piausibloe phase adJed(+) or lost(-) from the groundw~ter system 
0.9059 2.0696 1.7048 2.8299 4.6889 2.n99 4.4322 5.5772 
0 .7829 1.7233 1.4281 2.3466 3.8421 2.3117 3.6674 4 .5972 
2. 1925 3.7002 2.5915 4.4843 6.5676 4.2992 5.9819 6.6090 

-o.t417 - J.401l -o.9800 -2.3345 -4.4603 -2.3167 -4.2975 -5.4707 
1.8863 1.8622 t.97n 2.3850 2.7938 3.0861 3.9483 4.9376 
0.0337 0.0243 0.0231 0.0241 0.0317 O.Q208 0.0212 0.0523 

- t.t279 - 2.5261 -2.0861 -3.4462 -5.6858 - 3.3870 - 5.3872 -6.n34 
0.9983 0.9982 0.9980 0.9987 0.9995 0.9989 0.9998 0.9998 
0 .0017 0.00i8 0.0020 0.0013 0.0005 0.0011 0.0002 0.0002 

. . . . , . . . 
mmolea of elements added(+) or lost(-) from the groundwater system 

0 .7825 0.6876 0.7461 0 .5088 0.2344 0 .4750 0. 1366 
2.0547 2.3031 1.6159 2.1527 2.1086 1.9850 1.6849 
0 .1222 0. 1111 0.1076 0. 1243 0.1323 0.1269 0.1592 
3.1274 3.6146 3.6799 4. 1931 5.0022 4.8064 5.9069 
0.0003 0.0009 0.0003 0.0008 0 .0037 0.0005 0.0009 
0 .0946 0.0988 0.1099 0.0691 0.0295 0 .0609 0.0097 
0 .0519 0.0432 0.0442 0.0373 0.0373 0 .0325 0.0230 
2.8581 2.8765 3.1067 3.0949 3.0964 3.7114 4.0475 

0. 1081 
1.1388 
0.2445 
7.3554 
0.0219 
O.OOS6 
0.0540 
5.0263 
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seawater of the Nordstrom et al. (1979) composition. TC is total carbon <ls 

calculated using PHREEQE during the speciation calculations. RS is redox state also 

calculated by PHREEQE and expressed as THOR in PHREEQE. S-min is an 

undefined sulphate bearing mineral :i.e. no differentiation between for instance. 

barite or anhydrite) with sulphate at an operational valence (Parkhurst et at. 19HO) 

of 6+. The table shows both the number of millimoles of a mineral precipitated 

(negative) from the system or dissolved (positive) into the system. and the fraction 

of the end-member solutions mixed. 

The four mass tran-;fer models chosen fall into two series; 

i) the T_A and T_C combinations (10 and 11 plausible phases, respectively, 

requiring the same number of variables), both of which have an unspedfied 

sulphate mineral added and a redox constraint. As noted above the redox 

value was determined during the PHREEQE speciation calculations, 

ii) the S_H and S_K combinations (9 and 10 plausible phases) which have no 

sulphate variable and no redox state constrl:iint. 

Close scrutiny of the four mineral combinations presented in Table 8.3 

reveals that only one mineral combination has any validity: The phase combination 

of model T_A can be rejected as a feasible reaction path since the mass balance 
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requires that anorthite be precipitated. The phase combination T _ C also requires 

precipitation of anorthite and solution of calcite in the deeper sample intervals. The 

phase combination S_H requires that halite is precipitated which is obviously 

incorrect at the salt concentrations seen at NSCRV. The only feasible phase 

combination found is that of model S_K; however, even this combination requires 

addition of a carbon source (C02) to the deeper sample intervals. Whether there is 

a mechanism in the Holyrood Aquifer which does this is not known. Carbon isotope 

data would add a further useful and relevant constraint to the mass balance 

calculations. Unfortunately no carbon isotope data are currently available for 

NSCRV. 

The results of the balance calculations indicate that: 

I) for a successful mass balance rt:sult (i.e one that is consistent with 

calculated sat•.;ration states) NaCI must always be included as a mineral phase 

(where NaCI is a surrogate for fluid inclusion or amphibole derived chloride), 

2) if NaCI is included, as a mineral phase, then the mixing proportion of 

seawater decreases with depth, 

3) a carbon source is required for a feasible mass balance result. Carbon 

addition is known to occur in regional groundwater flow (Plummer, 1977) and 

deep groundwater in granitic rocks can contain large concentrations of 
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hydrocarbon gases that were apparently generated in-situ (Frape and Fritz. 

1987). Carbon isotope data would help to further constrain the mass balance 

equations, 

4) no satisfactory model was found in which seawater was the sole source of 

CI. 

8.4 TEST OF MASS BALANCE MIXING HYPOTHESIS USING OXYGEN AND 

HYDROGEN ISOTOPE DATA 

The calculated mi.xing proportions of end member waters implied in 

mass balance model S_K. may be tested using the analyzed isotope data and assumed 

isotope compositions for the mixing components (the end-members). In this manner 

it may be possible to corroborate the results of mass balance mO<J.!IIing. 

Unfortunately the proportion of seawater mixed is so small that it must have an 

isotopic composition which is extreme (negative or positive) compared with the 

isotopic composition of the meteoric component to have any significant effect. 

Two diffe: ~nt mixing scenarios were tested using two different 

compositions for the minor mixing fraction (Mix 2 the seawater component in the 

balance calculations) and using a constant composition for the major mixing fraction 

(Mix 1, shallow groundwater in the balance calculations). Initially, no allowance was 
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made for the altitude effect described in Chapter 6. The assumed compositions for 

the end-members are: 

i) Major mixing fraction (meteoric water) with isotopic composition: 6 180 of 

-8.079, &2H of -55.39. The isotopic composition of 180 at 0 m depth was 

calculated from the equation for the line of best fit for the 180 analyses, the 

value for 2H was then back calculated using the equation for the meteoric 

water line (Equation 6.1), 

ii) The minor mixing fraction assumed to be either: 

a) glacial meltwater of approximate composition &180 of -41 (Faure 1986) 

and a 62H value of -318 (calculated from the equation for the meteoric water 

line and the 6180 value of -41.00) 

b) seawater of composition 6 180 of 0.5, 62H of 5.00 (Faure 1986). 

Using the two possible mixing combinations (i.e., shallow NSCRV 

groundwater mixed with glacial meltwater and shallow NSCRV water mixed with 

seawater), the following two scenarios were considered: 
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SCENARIO 1: In contradiction to the selected plausible mass balance models. 

there is no contribution of NaCI from the rock mass and all chloride is derived 

from the minor mixing fraction. See for instance mass balance model N _A. 

Appendix F. 

SCENARIO 2: There is some contribution of NaCI from the rock mass and 

the mixing fraction of seawater decreases with depth, as seen in balance model 

SK. 

Table 8.4 presents a synopsis of the results of these computations. The 

four possible mixing scenarios are numbered lA, 1 B, 2A and 28. The isotope 

.-:ompositions were calculated using equation 8.1: 

ll Tot 

(Equation 8.1) 

isotopic composition of observed groundwater 

fraction of component n (where n is I or 2) 

isotopic composition of component n 

A line of best fit was applied to all results (both actual and calculated) 

and it is the change in the isotope composition, from 0 m to 97.41 m which is 
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reviewed. The observed change in isotopic compositim., at NSCRV is -0.335 for 

6 IRQ and -2.94 for 62H (based on a least-squares linear fit to data shown in 

Figure 5.1, where the deep waters are depleted in the heavy isotope relative to 

shallow groundwater. 

Note that all of the calculated mixing effects in Table 8.4 will have 

superimposed on them an altitude effect which will result in a further decrease in the 

6 1110 values of about 0.33%o and for 62H of about 2.94%o, respectively, between the 

shallow waters and the deep waters. Thus, for the four mixing models tested, 

Table 8.4 Hypothetical mixing of end members of differing isotopic compositions 

Modelled change in 
6180 

Modelled change in 
62H 

Observed change 
o1S0/62H 

HYPOTHESIS 1: MIXING WITHOUT ADDITION OF NaCI (Seawater source 
only) 

lA) Mix 2 Glacial -0.292 -2.33 -0.335/-2.94 

lB) Mix 2 Seawater 0.076 0.54 

HYPOTHESIS 2: MIXING WITH ADDITION OF NaCI 

2A) Mix 2 Glacial -0.005 n/a 

2B) Mix 2 Seawater -0.013 -0.09 

model I A would result in a net change in &1110 of approximately -0.61%o berween the 

shallow and the deep intervals; ModellB would result in a change in 6180 value of 
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approximately -0.240A~o; modei2A would result in a change of 6 1s0 value of-0.3:!%o; 

and model 2B would result in a change of -0.33%o. Thus model lA may certainly he 

rejected, and model lB should probably be rejected, indicating that Hypothesis 1 is 

incorrect. This is consistent with the mass balance evidence. 

Both of models 2A and 2B appear to produce plausible results; however, model 2A 

(mixing of meteoric water with glacial meltwater) is completely inconsistent with the 

indicator originally used to determine the mixing proportions; that is chloride 

concentration. The only consistent model is one in which seawater mixes with 

meteoric water to provide part of the chloride concentration with the balance of the 

chloride derived from an undetermined source in the r':lck mass. 

8.5 TEST OF GEOCHEMICAL MODELLING RESULTS USING CHLORIDE 

DATA 

Nordstrom et al. (1985) proposed that the gradual leaching of fluid 

inclusions from the rock mass of the Stripa Granite could account for the entire 

salinity of the Stripa groundwaters (assuming that ·:1e Stripa groundwater is under 

static hydrologic conditions). The inclusion fluid at Stripa is believed to be relatively 

enriched in halides (especially Cl) and represents an estimated 17 L of inclusion fluid 

per m3 of rock mass. It averages approximately 3% (hy weight) of NaCI, equivalent 

to a concentration of 278 ppm of chloride in the bulk rock (Nordstrom et at. 1985 ). 
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The salt content of the inclusion fluids, expressed in terms of NaCI, is higher in 

unfractured than fractured parts of th! Stripa rock mass (Fontes et al. 1989), being 

40%o and 17%o in the unfractured and fractured parts of the rock respectively. This is 

equivalent to 210 and 130 ppm Cl in the fractured and unfractured rock respectively 

(note that the 278 ppm figure is from Nordstrom et al. (1985) while the 210 & 

130 ppm values are from Fontes et al. 1989, hence the apparently incorrect average 

value) 

Assuming a 1% porosity in the granite, Nordstrom et al. ( 1985) showed 

that a concentration of Cl of -28 giL could develop, in the groundwater, if all the 

fluid inclusions were leached. To test this theory Nordstrom went on to compare the 

Br/CI ratios (both elements assumed to be conservative tracers) in fluid inclusions 

with those in the groundwater. An average Br/CJ ratio for samples leached from fluid 

inclusions in Stripa Granite was 0.0101 ±0.0015; Stripa groundwater averaged 

0.0107±0.001 (in comparison the average Br/Cl ratio for all of the NSCRV waters 

is an extremely consistent 0.0013 and in seawater is 0.00356). Based on this 

reasoning Nordstrom et al. (1985) concluded that leaching of fluid inclusions could 

be invoked as a mechanism for adding salinity to the Stripa groundwaters. 

Nordstrom et at. ( 1985) also studied the 1/CJ ration of the inclusion fluid and 

groundwater but I is not considered to be conservative, being susceptible to reaction 

with organic matter in a variety of valence states (Fontes et al. 1989). 
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Fontes et a!. ( 1989) reviewed the hypothesis that fluid inclusions cnuld 

account for groundwater salinity in the Stripa granite and concluded that it was 

incompatible with the available facts because: 

a) there were possible flaws in the leaching experiments reviewed hy 

Nordstrom et al. ( 1985), 

b) incompatibility of the inclusion data with known groundwater so4 

concentrations, 

c) a lack of a satisfactory mechanism to account for the transfer of inclusion 

fluid to the groundwater and no evidence for any flushed voids in ar.y of the 

Stripa rocks analyzed, and 

d) no evidence to suggest that the groundwater at the Stripa site is in any way 

stagnant, as required by a fluid inclusion mass calculation. 

The possibility that the salinity in the Stripa Granite is derived from 

dissolution of halide-containing micas was also discounted hy Fontes et al. Their 

argument was based on a probable lack of mass balance between the known amount 

of alteration of biotite to chlorite (with release of chloride) in comhination with 

probable over-estimation of the chloride content of the biotites. However Edmunds 

et al. (1985) considered the breakdown of biotite as a plausible means of developing 

salinity in the CarnJTiellis Granite, U.K. 
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Despite the objections of Fontes et al. ( 1989) to fluid inclusion salinity 

accounting for the groundwater salinity in the Stripa Granite, fluid inclusions offer a 

possible source of Cl in the Holyrood Granite. An alterr.ative source might be grain 

boundary salts, or ejection of chloride from biotites during chloritisation. Therefore 

recognising that 'NaCI' is a surrogate for a rock-derived Cl source, the phases 

selected for mass balance modelling in section 8.3.2 all appear to be plausible and 

justifiable. Furthermore, the hypo~hesis of seawater addition in small amounts is not 

inconsistent with the observed shifts in isotope values. The proposed CJ sources are 

examined in the following section, in light of the expected CI/Br ratio variation 

expected during mixing. 

Figure 8.1 shows the correlation of the fraction of seawater (calculated 

using mass balance) mixed with NSCRV waters, and the inverse correlation of 

mmoles of modelled NaCI added to the NSCRV waters, both with respect to Log 

hydraulic conductivity. Both correlations are significant at the 95% level. Table 8.5 

shows these results in terms of calculated additions of CJ to the NSCRV waters from 

seawater and from the rock-mass. All rock-mass halide contributions (here assumed 

to he from fluid inclusions, FI) are designated by a superscript-0
• The values were 

calculated as follows: 



Figure 8. 1 CORRELATION BETWEEN MODELLED NaCI AND SEAWATER 
ADDITIONS TO GROUNDWATER IN THE HOLYROOD GRANITE. 
AND HYDRAULIC CONDUCTIVITY 

Log mmoles NaCl added vs Log K Regression Output: 
For y=Mx + C 

LS 

a.o ... ... c 
Err of C 

..a ... ,... R2 .... .; 
0 :u 

! ... 
u 

No. Obs. 
°Freedom 

&.0 .. .... M 
L4 

u Std Err of M 
0.0 ... ... -· 

Log Fraction of Seawater Mixing vs Log K 
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-1.017 
0.608 
0.739 
8.000 
6.000 

-0.547 
0.133 



Table 8.5 

Sample LogK 
Depth 

(m) (m/s) 

18.79 -6.42 

56.81 -5.42 

69.64 -5 .15 
71.65 -6.44 

75.61 -8.01 
71.62 -6.11 
96.64 -6.98 
98.62 -10.91 

Calculated contributions of halides from seawater and 1 rock source 

Seawaler fraction observed halide concentrations Calculated halide Calculated rock derived halide 
calculated from mass contributions from seawate contribution 
balance Cl Br Rr/CI Ct Br Cl 0 Br0 Br0 /CI 0 . 

(ppb) (ppb) (ppb) (ppb) (ppb) (ppb) 
0.0017 101321 138.7 0.001369 34020 114.9 66875 23.8 0 .000356 
0.0018 101973 138.5 0.001358 35509 119.9 66020 18.6 0.000281 
0.0020 110132 145.4 0.001320 39520 133.4 70117 12.0 0.000171 
0.0013 109715 146.1 0.001332 24852 83.9 84555 62.2 0.000735 
0.0005 109769 145.9 0.001329 10594 35.8 99049 110.2 0 .001112 
0.0011 131570 172.5 0.001311 21891 73.9 109410 98.6 0 .000901 
0.0002 143485 189.7 0.001322 3472 11.7 139980 177.9 0.001271 
0.0002 178183 239.4 0.001344 3107 10.5 115051 228.9 0 .001308 

19805000 66872.00 0.003377 

See text for explanation for derivation of results 

N 
0 



202 

i) contribution of Cl0 from the rock mass (equation 8.2): 

Cl 0 ~g/ L = NaCl (~M/ L) •MWcl (g/ M) (Equation 8.2) 

Where: 

NaCl - moles chloride contributed to the groundwater from the rock mass as 

calculated using mass balance model S_K 

MW c1 - Molecular weight of chlorine 

ii) contributions of Cl and Br, to the groundwater, from seawater (using 

equation 8.3): 

(Equation 8.3) 

H (ppm) = [X.sea * [if88a]M/kg * MWH(g/M)] •1000 

Where: 

H - calculated halide concentration in ppm 

Hsca - halide concentration in seawater in Moles/kg 

~ -fraction of ~eawater contributing to mixture, as calculated using mass balance 

model S_K 

MW H - molecular weight of halide in g!mole 
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Rock derived Br (Br·) was calculated by subtracting the calculated Br 

concentration contributed from seawater, from the analyzed Br concentration. This 

value is shown as the calculated remainder on Table 8.5. 

The results shown on Table 8.5 indicate that modelled Cl contribution 

from seawater decreases from approximately 34%, in the higher permeability zones, 

to less than 2% in the lower permeability zones, while modelled contributions of rock 

derived chloride (CI0
) rise from approximately 66% to 98%. The general increase 

in Cl0 is interpreted as a manifestation of increased rock-water interaction, also 

reflected in the inverse correlation of silica concentration with Log hydraulic 

conductivity (Figure 5.1 ). 

8.5.1 Discussion 

If the interpretations of an isotope altitude effect and the probable 

ordered nature of flow in the Holyrood Aquifer are coupled with halide contribution 

inferred from assumed seawater and the rock-mass sources then a possible 

mechanism for the addition of seawater to the aquifer may be hypothesised. 

It is proposed that seawater, in the amounts calculated from the mass 

balance model S_K, may be (or may have been) provided to the aquifer in 

precipitation enriched in Cl and other compounds by seawater aerosols. This 
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mechanism could provide saltwater to the recharging aquifc:r in amounts which would 

be an inverse function of the distance of the recharge point from the coast line (and 

an inverse function of the altitude of recharge). The calculations in Tahk X.5 

indicate that the modelled seawater (or aerosols) contribute approximately 34 ppm 

chloride in shallow groundwaters at the NSCR \' site, decreasing to approximatdy 

3 ppm Cl in the deepest groundwater, derived from higher elevations inland. 

Schillereff (1992) analyzed samples from shallow depths in wells at altitudes betwec:n 

100 and 120 m, in the Seal Cove River Valley (approximately 2.5 km inland and up 

the Seal Cove River of the NSCRV location). The samples had CJ concc:ntrations 

in the range 5.2 to 8.1 ppm, which compare favourably with the calculated seawater 

chloride addition in deep NSCRV samples of 3.1 to 3.4 ppm in the 90 m sample 

intervals (which are assumed to have been recharged at an altitude of approximately 

170m), shown on Table 8.5. 

McCullough (1984) has published information regarding chloride 

concentration in precipitation at St.John's airport, with a maximum concentration, for 

the period of recorded, in December of 0.14 ppm. Samples analyzed during August 

had no detectable CI in them. The St.John's site is only 1-2 km from the coast. 

Cicerone (1984) has noted that marine precipitation may have chloride 

concentrations of up to 10 ppm, which is comparable to the calculated figures (in 

Table 8.5) for non rock-mass chloride contribution at NSCRV. 

- - - - - - --- ----. ' 
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In Chapter 6 it was noted that recharge to the Holyrood aquifer 

occurred primarily during March-April and October-November. These are periods 

when strong northerly winds, which might be expected to have significant fetch over 

the ocean, carry precipitation to the Newfoundland east coast. These winds are more 

likely to carry high aerosol salt concentrations than the westerly and southwesterly 

winds that prevail in summer when aquifer recharge is likely to be minimal. Thus, 

a significant range of Cl concentrations is likely in precipitation over the study area, 

and the possibility exists that precipitation during periods of principal aquifer 

recharge in NSCRV may also be coupled with high levels of chloride in the 

precipitation. 

Unfortunately no precise information is available regarding 

concentrati<'~ of chloride in near coastal precipitation at NSCRV. If aerosol salt 

concentrations are high the isotope data corroborate the mass balance model of 

seawater salt additi011. The calculated contributions of aerosol/seawater derived 

chloride are also consistent with chloride concentrations observed in shallow 

groundwaters (Schillereff,I992) that are recharged 2.5 km inland from NSCRV. 

However, it must also be noted that an additional, non-seawater, source of salts has 

to be invoked in order to explain the observed flow system, and groundwater 

chemical and stable isotope characteristics. 



8.6 CONCLUSIONS 

The hydrogeochemical modelling conducted on the NSCRV 

groundwaters indicates that the chemical evolution of groundwater at NSCRV is 

consistent with the presence of mineral phases in NSCRV core and with the addition 

of a seawater like component. However, to achieve consistency with isotope analyses 

and with data from other parts of the aquifer, an additional rock-mass source of 

chloride is required in the mass balance models. 

At this time there is no direct observational evidence of a chloride 

source in the rock-mass of the Holyrood Aquifer, or of seawater providing significant 

amounts of salt to the shallow groundwater near the coast. However. a model in 

which rock-mass derived NaCI is added to the groundwater in increasing proportions 

with depth and in which a seawater component is present in decreasing proportions 

with depth, is the only interpretation consistent with; i) isotopic data; ii) inferred 

recharge el~vations and flow paths in the aquifer; iii) the correlations between ionic 

concentrations, depth and hydraulic conductivity, and; iv) geochemical data from 

inland wells at higher elevations. 
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CHAYfER 9: CONCLUSIONS & INTERPRETATIONS 

9.1 SUMMARY OF RESULTS 

The study location lies on the northern perimeter of the Holyrood 

Granite. The NSCRV borehole is located in the discharge area of the aquifer with 

artesian conditions along virtually its entire length. The groundwater flow through 

the Holyrood Granite, as interpreted from results in the NSCRV borehole, appears 

to be controlled by nearly-vertical east-west fractures. The near-vertical fractures 

may be a result of post glacial isostatic movements resulting either in reopening of 

pre-existing fractures, or creation of new fractures. 

Groundwater flow boundaries in the study area are the 

surface/groundwater divide south of the study area, the saltwater freshwater interface 

and the assumed no flow boundary resulting from essential loss of permeability at 

depth. Stable isotopic data, 180 and 2H indicate that the NSCRV waters are 

meteoric and that they may reflect their origi11al altitude of recharge under climatic 

temperatures similar to the present day. The retention of an altitude dependant 

isotopic signature appears to indkate that the flow through the Holyrood Granite is 

well ordered and follows approximately the flow paths derived from a simple flow 

model. 



20~ 

Based on this simple model the approximate residence timt! in the 

aquifer (from recharge to point of sampling in NSCRV borehole) is believed to he 

in the range 1560 to 15 600 y. This range of residence times assumes an aquifer hulk 

hydraulic conductivity of approximately 4.74 x 10-9 m/s, estimated from the results 

of hydraulic conductivity testing results at NSCRV, a flow porosity in the range 2 to 

20%o and an average hydraulic gradient of 0.03. 

As a result of rock-water interaction in the granite, minerals 

precipitated in fractures are calcite, quartz, and with a lesser degree of certainty, Fe 

and Mg chlorite, halloysite and illite, the smectite clays, montmorillonite and saponite, 

and iron oxides (These minerals were presumably formed under contemporary 

hydrogeochemical conditions). Feldspar minerals are inferred to play a role in 

groundwater evolution in the granite, probably with anorthite, albite and potassium 

feldspar dissolving. 

Examination of groundwater chemical compositions indicate that 

NSCRV groundwaters lie in or close to the stability fields for kaolinite, K

Feldspar/Muscovite, and chlorite. The waters evolved from surface waters of Na

bicarbonate composition towards an NaCI dominated composition. The changes in 

groundwater chemistry can be modelled geochemically using a set of seven minerals 

(including NaCl) comprised of some of those detected on fracture planes, and mixing 

~" • l \ I f • - • 
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a seawater like end member and a hypothetical dilute groundwater with a P co~ of 

w-2·
67

• Feldspars (principally anorthite, plagioclase and microcline) are a necessary 

requirement in the group of plausible phases used to derive a thermodynamically 

feasible result from mass balance calculations. A hypothetical NaCI phase is also a 

necessary member of the group of plausible phases. There is no direct evidence that 

NaCI (or a rock-mass chloride source) is available in the Holyrood Aquifer, although 

indirect evidence for its existence is found in studies of other granitic terrains. 

C02 cannot justifiably be omitted from any group of plausible phases; 

however, its inclusion leads to a result which requires a deep source of carbon. This 

might possibly be in the form of organic acids, though there is no evidence in this 

study to suggest this. Quartz is noticeably absent from the group of plausible phases 

used in the successful mass balance calculation. The absence of quartz as a required 

phase suggests that crystalline quartz is not being deposited from present day 

groundwaters and that quartz saturation is controlled by amorphous silica varieties. 

The integration of a variety of information presented in this thesis 

provides evidence that the results of mass balance modelling are plausible and that 

the inclusion oi an NaCI phase (assumed to be equivalent to a rock-mass chloride 

source) and seawater as an aqueous end-member is plausible and necessary. 

Furthermore, the integration of results does not reveal any inconsistencies between 
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the physical, hydrogeochemical and isotopic data sets and the modds proposed for 

them. 

A positive inverse correlation t:as been established between 

concentrations of such species as Si, CI and the hydraulic conductivity. The presence 

of an altitude effect in these groundwaters lends support to the generalized t1nw 

model proposed for the aquifer. Examination of various mixing scenarios using 

plausible isotopic end-members does not discredit the notion of an altitude affect 

being manifest in the isotope compositions. The modelled mixing fractions of the two 

aqueous end-members and the modelled addition of a chloride phase were used to 

estimate the chloride contributions from seawater and from the rock mass. The 

contribution from a seawater source was found to be inversely proportional to 

distance from the coastline. On the other hand the calculated addition of a chloride

containing phase was inversely correlated with hydraulic conductivity. 

The inverse correlation of hydraulic conductivity with concentration of 

Si and Cl, the presence of a possible altitude effect, and the range of chloride 

concentration in shallow boreholes at higher altitudes in the aquifer indicate that both 

a rock-mass source of chloride (and probably bromide) and a saltwater component 

were introdur.ed to the aqueous phase during its evolution. 
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Circumstantial evidence suggests that the addition of a seawater 

component from precipitation which has entrained marine aerosols. No other 

scenario can explain the addition of a saltwater component to the aquifer in 

decreasing amounts away from the coastline. Recent marine inundations may have 

been partly responsible but appear to have affected only coastal areas below an 

altitude of 6 to 8 m (relative to present day). 

9.2 FUTURE WORK 

This research has raised many interesting questions. Regarding 

addition of a saltwater like component to the aquifer. Can coastal precipitation in 

the NSCRV area contain concentrations (\f Cl as high as 34 ppm (in the near coastal 

environment) or is the chloride source in fact anthropogenic (i.e road salt)? 

With regard to the possibility of a rock mass source of chloride it would 

seem worthwhile to investigate possible sources, within, or associated with, th~ 

primary mineral phases of the Holyrood Granite. Furthermore it may be possible to 

differentiate two potential chloride sources using 36CI as a tracer. Other indicators 

(though unfortunately not conservative) might be S04 and associated sulphur and 

oxygen isotope data; sulphate is often a large component of marine aerosols 

(Cicerone 1984). 
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Further work on the significance of Br, and the accuracy of its analysis 

is also necessary as this anion may be an extremely usdul tracer. This study has 

demonstrated that CI/Br ratios are apparently significantly different from seawater, 

but that they appear to show a remarkable degree of consistency. Further work on 

Br/Cl ratios in primary mineral phases in the Holyrood Granite should he conducted 

to determine the significance and veracity of these findings. 
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~ LITHOLOGICAL DESCRIPTION 
~ BOULDERS and fluvial material 
~ 
Q 

Set Casing at 4.52m 

ANDESITE, dark green, abundant fractures 
chloritised and calcite filled, local rubble 
zones 

GRANITE (GREEN), dark green highly 

ANDESITE 

GRANITE (GREEN) 

' • J ' - - - - - ..... ' I I .. , / • ' ·~ ' ' '. I - I • 



PEGMATITE 
Agmatitic area of GRANITE (GREEN) and 
ANDESITE 

ANDESITE, dark green, veins and spots of 

chloritisation and epidote 

GRANITE (GREEN), contact with andesite 

highly brecciated 



GRANITE (GREEN), local nebulous xenoliths 

GRANITE (GREEN), highly chloritised/ 
epidotised, abundant s.keins of chlorite/epidote 
in lower part, increasingly pink 

BRECCIA, of GRANITE (GREEN) 
GRANITE (GREEN), rare xenoliths, l-2cm, 

vein, white locally pink, sugary 
texture, abundant epidote veins and skeins 
local pink granite patches 

ANDESITE, dark green 

GRANITE (GREEN), overall green hue on 
coarse white granite, abundant skeins chlorite 

~~~ and epidote, rare pink granite patches, local 
f; aplite veins containing xenoliths of granite 



GRANITE (GREEN), increasing abundance of 
pink unaltered granite patches, abundant 
epidote veins and xenoliths 

ANDESITE, dark green 

GRANITE (GREEN), increasing abundance 
~~~~~+--.......--p.,.nk unaltered variety 

0 ~ . 

. . 
~ . 

~ . 

. . 

GRANITE (PINK), rare green chloritised 
patches, occasional aplite and quartz patches 

GRANITE (PINK), coarse, rare chloritised 
patches, local large epidote patches, abundant 
quartz blebs, some breccia veins 

ANDESITE, dark green, 40cm chloritised 
at contact with andesite 

GRANITE (PINK), generally abundant chlorite 
veins, local breccia areas, locally very 
chloritised and grading to GRANITE (GREEN) 



. . . . 
.. . 

_,., ... . 

. . 

0 

... . 

0 ... . 

GRANITE (PINK), 
bl 

but increasingly 
and ve· 

is highly sheared 

ANDESITE, dark green, highly fractured 

reen hue contact 
is planar & foliated, local intrusion of 
granite into andesite 

GRANITE (PINK), generally unaltered 

BRECCIA, very dark green with abundant 
crystals of granite and fragments of andesite 
ANDESITE, dark green 

GRANITE (PINK), locally abundant chlorite 
veins, locally sheared and chloritized and 
brecciated, contact with andesite not visibly 
altered 



ANDESITE, dark green 

otal Drilled Depth, 154.63m 

0 



APPENDIX B Fracture Data 



Fracture data from NSCR V 

Scribe mark at bottom of core. 

Hole azimuth: 135 deg. 

Hole plunge : 68 deg. 

COLUMN DESCRIPTIONS 

Column Descriptor 
~- crushed zone begins(B), or stops (S) 

8 fracture (Y) or blank 

c new rock type (Y) or blank 

D fracture type sealed (S), coated(C), fresh(F) 

E number of fractures 

SMT Frac.ture surface description 

F Orientated (blank) or orientation lost (N) 

G Alpha angle 

H Beta angle 

RCK Rocktype 

AZ. Dip Azimuth 

DIP Dip angle 

Open? field estimate of how open fracture 

believed to be, where I is maximum 

aperture, blank indicates closed 

DEPTH A BCD E MINERA SMT F G H 

4.52 s CA P/R N 84 
4.59 s CA SIS N 90 
... 59 s CA PIS N 28 
4.66 B FE w N 
4.77 s FE w N 
4.84 s CA SIS N 48 
5.04 s CA CIS N 90 
5.21 B c w N 
5.32 s c w N 
5.52 y c I CA PIS N 65 
5.60 y c I P/R N 62 
5.74 y c I FE P/R N 50 
5.80 y Cl CL PIS N 62 
5.89 y Cl PIS N 58 

ABBRE\'IA TIONS 

Rock Types 

AND Andesite 

APL Aplite 

BRC Bre-ccia 

GRG Green Granite 

GRP Pink Granite 
PEG Pegmatite 

Fracture Fill/Coat 

CA Calcite 

CL Chlorite 

EP Epidote 

FE Iron Oxide 
py Pyrite 

QZ Quartz 

WH Whithamite 

WF Wolframite 
r--· 
Fracture surface description 
p Planar 

c Curved 

s Stepped FIRST LETTER 

I lrn:gular 

R Rough 

s Smooth MODIFIERS 

K Slickensides 

Open Total 

RCK AZ. DIP OPEN? tRACS Fractures 
(/m) (/m) 

AND 
AND 
AND 
AND 
AND 5.00 5.00 
AND 3.76 4.30 
AND 2.97 3.96 
AND I 3.70 3.70 
AND I 4.85 4.85 
AND 0.5 5.24 5.71 
AND 0.5 6.37 6.86 
AND 1 7.14 7.69 
AND 1 7.56 9.30 
AND 0.5 7.14 10.99 



6.06 y c 1 CL PIS N 40 AND 7.14 11.90 
6.12 S I PIS N 56 ANO 6.88 12.5.0 
6.18 y c 1 FE PIR N 60 AND 4.95 IO.~Y 

6.43 y c 2 FE RIR N 6G AND 3.89 11.11 
6.44 s 1 CA PIS N JO AND 3.80 1.?.6{1 
6.54 s 1 CA SIS N 6(J AND 2.06 10.31 
6.71 F I PIF<. N 55 AND 2. 13 10.64 
6.79 F I PIR N 70 AND 1.32 LU<i 
6.85 s 1 CA SIS N 56 AND 0.63 11 .25 
7.09 y C I FE RIR N 85 AND 0.68 U . l(l 
7.12 S I CA RIR N 10 AND 0.85 15 . .?5 
7. 19 S I CA Rl N 90 AND 2.27 l.l . (!4 
7.24 y I PIR N 60 AND 0.5 3.57 I!.So 
7.28 s 1 CA R/R N 90 AND 5.10 IIU7 
7.30 s 1 CIR N 50 AND 3.79 12 .12 
7.45 y C I CL PIR N 68 AND 3.68 10.29 
7.55 S I CA PIS N 0 AND 4.32 1! .().1 
7.58 y Cl CA PIR N 68 AND 4.40 7 . (I') 
7.78 B c FE N AND 3.75 5.81 
7.87 s c FE N AND 4.09 6.30 
8.05 y C I CAFE PIR N AND I 4.0'J o.3h 
8. 19 y Cl CACL PIK N 54 AND I 2.78 5.5h 
8.50 y C I CAWH PIR N 55 AND 0 .5 2.59 4.02 
8.55 s I CAWH PIR N 41 AND 2.28 ·I. Oil 
8.65 y Cl CLEP PIR N 60 AND 2.76 ·I . 'J I 

8.84 S I QZCL CIR N 10 AND 2.39 ·•. "/') 
9.52 y Cl CLQZ PIR N 62 AND 2.41 5..t2 
9.84 S I QZEP N AND 2.49 4.'J7 
9.86 y C I CL PIR 40 355 AND IJO 85 0.500 2.32 4.M 

10.07 y c 1 CL PIS 50 280 fl.ND 171 49 0.500 2.00 5.1 ·1 
10.16 y Cl CL PIS 63 270 AND 180 61 0.500 2.59 6. (> 7 
10.36 y C I CL PIS 35 282 AND 162 35 1.000 2.27 11.11! 
10.59 S I CL PIS 23 22 AND 295 69 2.03 Ll!. 
10.59 s 1 QZ PIS 18 225 AND 246 46 J.C)(j 8.!!2 
10.87 y C I CL PIS 14 270 AND 176 12 1.47 8.1!2 

10.94 y C I CL PIS 52 270 AND 179 50 1.00 9.00 

11.09 y C I CA PIS 65 205 AND 203 78 O.<XI 9AI 

11.09 y C I CA PIS 35 22 AND 308 72 0.48 6.()7 

11.18 y C I CA PIS 36 297 AND 147 43 1.20 KA .I 

11.36 y C I CLCA PIS N 15 AND 1.25 1!.75 
11.44 8 N AND 1.12 7. 1!7 
11.64 s N AND 0.500 0.93 (J.-18 

11 .70 y c 1 CLQZ PIS N 40 AND 0.500 0.94 (J.(J{) 

11.74 y C I CLQZ PIS N 47 AND 0.1!4 5.1!!1 
11.98 y c 1 QZ PIR N 15 AND 0.85 5. ()) 
12. 17 y c 1 CL PIR N 43 AND 0.87 6.% 

12.24 y S I QZ SIS N 15 AND 0.40 7. /.() 

12.55 y C I CLQZ PIS N 38 AND 0.00 5.77 

12.62 y C I CL PIS N 80 AND 0.00 ().4) 

12.79 y c 1 CLQZ PIS N 48 AND 0 .00 5.51 
12.94 y C I CLQZ PIS 46 85 AND 356 47 0 .00 5.70 

13.30 s 1 CLQZ SIS 18 180 AND 252 88 0 .00 1) . )() 

13.38 y Cl QZCL PIS 90 AND 180 88 0 .00 4.76 

13.80 y C I CL PIS 31 90 AND 2 32 O.<X> 5. II 
13.82 y c 1 PIS 25 350 AND 115 81 O.<X> 5.74 

13.82 8 N 0.00 7.37 

14.09 s N 0.00 6.42 

14.16 y c 1 CL PIS 15 180 AND 255 88 O.<X> 9.72 



14. 16 y C l CL PtS 28 300 A:--: D 135 39 0.00 9.72 

14.25 y C l CL PIS 18 45 AN D 296 47 0.00 9.09 

14.47 y C l CLQZ PiS 28 340 AND 119 72 0.00 14.29 

14.52 y C l CL PiS 19 320 Al': D 113 52 0.00 18.37 

14.54 y C l CL PIS 30 300 AND 138 4 1 0.00 18.00 

14.59 y Cl CL PIS 59 180 Al': D 21 1 88 0.00 19.57 

14.65 y C l CL PIS 41 183 AND 229 88 0.00 23.68 

14.65 y C l CL PiS 31 300 AN D 139 4 1 0.00 22.50 

14.66 y C l CL PIS 20 180 AND 250 88 0.00 18.00 

14.71 y Cl CL PIS 38 265 AN D 186 36 0.00 12.68 

14.85 y Cl CL PiS 18 280 AND 148 19 0.00 12.00 

14.92 y Cl CL PIS 5 77 AND 298 13 0.00 9.09 

15.04 y C l CLEP PIS 44 265 AN D 185 42 0.00 8.57 

15.30 y C l CL PIS 54 202 AN D 214 75 0.00 7.96 

15 .40 y C l CL PIS 30 90 AND 2 31 0.00 8.65 

15.64 y Cl CL PIS 57 135 A I\D 25 68 0.00 9. 18 

15.71 s I QZ SIS 86 195 A I' D 184 87 0.00 5.36 

15 .84 s I QZ SIS 83 185 AND 187 87 0.00 4.82 

15.89 S I QZ SIS 53 155 AND 35 76 0.52 4.12 

15.90 s I E PCLW II PIR 33 340 AND 124 73 1. 16 4.65 

16.72 s I CL 1'/R 17 355 AND 107 85 1.69 4.52 

16.96 y I' R 35 230 AN D n 3 49 2.17 3.80 

17 .34 y c QZ PIR 52 190 AND 21 8 82 1.000 2.06 3.61 

17.36 y c CIR 28 120 AND 43 41 1.000 2.06 3 61 

17.411 y c PIR 98 145 AND 354 £4 1.000 4.10 5.14 

17.611 y p 53 188 AND 21 7 83 1.000 4.90 5.88 

17.83 s I Q ZEP PIS 39 195 AN D 230 76 5.62 6.74 

17.84 s I QZCL SIS 62 75 AND 353 64 4. 60 5.75 

17 .94 y C l PY SIS 87 78 AND 0 88 3.09 4.12 

17.98 B N 3.75 5.00 

18.23 s N 4.1 7 6.94 

111 .23 y N G RG 5.06 6.33 

111 .45 N GRG 5.62 5.62 

18.48 y y c CiR PIS 15 280 AN D 142 17 5.95 5.95 

18.55 y c GR PIR 52 2S5 AND 191 52 5.56 5.56 

18.63 y c G R P/R 65 220 AND 200 72 3.36 3.36 

18.83 y c GR PIR 29 145 AND 56 61 3.50 3.82 

1!1.82 y c G R PIR 20 310 AND 118 44 3.43 4.00 

19.13 y N GRG 2.89 3.47 

19.72 N G RG 2.69 3.59 

20.02 y c QZC'L PIS 46 200 AND 222 74 0. 5 2. 85 3.80 

20.23 y c CL PIS 41 170 AND 49 84 0 .5 2.49 3.31 

Z0.28 y N GRG 2. 19 3.12 

.!0.30 y c Wll Cl 35 320 G RG 132 57 0 .5 4. 33 5.77 

20.4 1 y c PIR 83 20 GRG 354 88 I 6. 18 6.74 

20.63 y c QZW II PIR 65 195 G RG 204 82 I 6.67 6.67 

20.73 y N AND 7.1 4 6.59 

20. 16 y c P/R 63 148 AND 24 77 6.50 7.00 

20.9 1 y N G RG 7.45 7.45 

21. 11 y c CLEP P!C 4 -t 220 G RG 219 60 8. 33 8.33 

2l. l9 y c CL PIF 61 155 GRG 27 79 9.21 9.L I 

21.30 s Wll C/R 3 .~ 110 G RG 29 38 9.30 9.30 

21 .35 y c QZ PIS 70 105 GRG 6 72 8.70 8.70 

21.47 y c QZ PIS 76 310 G RG 171 78 9.21 11.84 

21.-19 y c QZ PiS 60 140 G RG 24 72 5.77 7.69 

21.62 y c WIIQZ P/R 16 210 G RG 252 59 4.95 6.93 

2t .!D y c P/R 10 320 GRG 102 51 6.00 6.00 

21.&9 s WII PIR 26 200 G RG 243 70 5.26 5.26 



22.23 r-; GRG 3.51 3.51 
22.31 N GRG I. 75 lh 
22.35 N GRG 1.21 1.21 
22.42 N GRG O.·U 0.44 
22.63 N GRG 0.38 0.(~) 

23.33 N GRG 0 .31> O.IXl 
23.48 N GRG 0 .68 0 .. 14 
24.17 y N AND 0.69 0.69 
24.88 B N AND 1.05 l.JI) 
25.09 c N AND I . 2h l.hK 
25.27 y c PIK 44 140 AND 39 64 l.tl3 .! .O.l 
25.33 y c P/K 46 310 AND l·H 57 2.55 .Hlh 
25.50 y c 2 PIK 50 65 AND 342 55 3 .23 4 .5.! 
25.71 y N GRG 270 1!9 3 .45 ·1.!10 
25 .94 y c CL PIS 12 0 GRG 282 1!9 J .n 4 .84 
26.13 y c CLEP PIS 41 75 GRG 345 44 3 . 19 ·U9 
26.43 s CL PIR 14 300 GRG 114 33 2 .73 ·1.92 
26.83 y c CL PIS 76 110 GRG 5 78 2.:n 4 .1>5 
27.13 s WH PIR 10 320 GRG 102 51 2.M 5.96 
27.21 y c P/R 62 130 GRG 19 70 2 .04 h. I.! 
27.33 y c CL PIR 58 95 GRG 4 59 I. tll 7.26 
27.43 y c CL PIR 69 122 GRG 12 73 1.96 I! .K.> 
27.45 y c CL PIR 58 105 GRG 10 60 1.2!1 11 .5·1 
27.60 y c CL PIR 73 35 GRG 346 I! I 1.35 10. R I 
27.67 y c CL PIR 60 88 GRG 0 61 0 .00 l.UI 
27.85 s CA 60 185 GRG 2 10 R5 0.00 11.4.1 
27.91 s EP PIS 50 85 GRG 357 51 0.00 1Ul·l 
27.95 s 50 85 GRG 357 51 0 .00 !U.'i 
27.98 y c CL PIR 66 50 GRG 345 72 0.00 Ct.7R 
28.13 y c CL P!R 51 95 GRG 5 52 0.43 6.1JO 
28.28 s EP PIR 55 52 GRG 338 64 0.45 1.2! 
28.57 y c CL PIR 42 51 GRG 326 55 O.J9 (I,]() 

28 . ..5 y c CL PIS 83 175 GRG 187 89 0.38 (J .'Jl 

29.01 y c CL PIS 60 350 GRG ISO 84 0.5 0 .39 7.09 
29.02 y c CL PIR 61 200 GRG 208 7!! 0.95 !!.:'17 
29.22 y c Cl. P/R 73 200 GRG 196 82 I. 12 I o. I I 
29.28 y c CL PIR 85 230 GRG 1!13 84 1.17 1·1. :.H) 

29.40 y c CL PIS 57 85 GRG 358 58 5 .00 I R.Oo 
29.33 y c PIS 60 190 GRG 210 RJ 0.5 4 .()] Ill . h7 
29.46 y c CL CIR 64 135 GRG 19 7J lUI 2-U! 
29.48 y c FE PRD 50 155 GRG 37 75 I 11 .29 29 .0] 
29.51 y c FECL P/R 78 290 GRG 176 77 0.5 l it IR 40 91 
29.56 y c CL PIR 52 80 GRG 353 53 0 . 5 li .R4 23.6R 
29.59 y c CL PIR 57 70 GRG 348 (,() 0.5 14 .81 :u .:n 
29.59 y c CL PIR 63 275 GRG !77 61 0 .5 14.!11 )J_3J 
29.62 y c CLFE PRK 83 170 GRG 187 89 0 .5 10.34 11 .0 .1 
29.71 y c CL PSK 37 85 GRG 355 38 0) 6 .25 2J. . so 
29.73 y c CL SSK 50 85 GRG 357 51 2 .1) 9.57 
29.75 y c CL PRK 67 70 GRG 352 69 0.94 ) ,(,(, 

29.80 y c CL PIK 78 ISO GRG II 1!5 0 ()2 5.W 
29.96 s EP PIS 43 40 GRG 322 ()2 0 . 19 1.18 
30.53 s EP PIS 43 80 GRG 351 45 0 . 17 3. !4 
31.18 y c WH PIK 90 GRG 180 88 () 17 .! . 14 
31.23 y c p 13 120 GRG 64 JJ 0.17 '). .'!(, 

32.37 F N GRG 0 . 18 2.54 
32.60 y c CACL p N GRG 0.5 0.41 2.9!1 
32.62 s EP PIC 62 110 GRG II 65 ()(,·/ 1.11 
32.70 F N GRG ().S!5 7..9R 

: ~ .., , / II c. '..- ,. ' r • 



32.72 F N GRG 1.52 5.30 

32.88 y Cl CL PIK 28 78 GRG 341 31 0.5 1.74 6.09 

33.43 y Cl CL PIK 59 45 GRG 338 69 0.5 1.64 5.74 

33 .58 y Cl CL PIK 46 90 GRG I 47 0.5 1.80 5.04 
33 (;9 F I N GRG 1.75 5.59 

33.75 y Cl CL PIR 33 165 GRG 56 78 2. 11 6.34 
33.84 y Cl CL PIK 70 130 GRG 14 76 0.5 3.06 9.18 
34.09 y Cl CL P/K 55 335 GRG 147 75 0.5 3.53 10.59 
34.15 S I EP SIS 27 135 GRG 54 52 2.87 10.34 
)4.30 y Cl CL PIS 54 160 GRG 35 80 0.5 1.94 6.20 
34.41 y Cl CL PIS 56 160 GRG 33 80 0.5 2.14 5.71 
34.43 y Cl CL PIS 56 160 GRG 33 80 0.5 1.97 5 .51 
34.56 S I EP PIR 44 160 GRG 44 77 1.39 4.17 
35.04 F N GRG 1.70 4.08 
35.24 y Cl CL PIR 64 95 GRG 3 65 0.5 1.12 3.35 
35 .36 F N GRG 1.09 3.28 
35 .59 F N GRG 1.09 3.26 
35.77 y Cl CL PIK 72 260 GRG 183 70 0.5 1.80 4.32 
36.20 S I CL PIK 38 245 GRG 208 42 1.95 4.69 
36.26 y Cl QZ PIS 72 185 GRG 198 86 0.5 1.74 4 . 17 
36.40 y Cl QZEP PIS 90 GRG 180 88 0.5 1.80 5 .04 

36.43 y Cl QZEPCL PIR 28 265 GRG 188 26 0.5 1.84 5 .88 
36.52 F N GRG 1.90 7 .62 
36.80 y c CL PIR 42 10 GRG 313 82 0 .5 2 .40 7 .69 
36.98 y c CL PIS 50 45 GRG 330 63 1.32 4.64 
37.13 y c CL SIR 46 215 GRG 219 64 0.77 3 .08 
37.25 s EP PIR 48 100 GRG 10 50 0.52 2.58 
37.30 y c CL PIS 48 100 GRG 10 50 0.5 0.50 2.51 
37.91 CL 61 310 GRG 160 67 0.27 2.16 
38 .38 F N GRG 0.23 1.35 
]H.46 F N GRG 0.23 0 .91 
38.79 F N GRG 0.22 0.43 
38.83 y CA N GRG 0.00 0.00 

39.35 y N AND 0.74 0 .00 
39.44 y N GRG 0.77 0 .00 
39.60 F N GRG 0.65 0.00 
39.65 y N AND 0.61 0.00 
:w.73 y c PIS 62 122 AND 16 68 1.29 0 .65 
39.76 F N 1.13 0.56 
40.34 y 85 180 PEG 185 88 I. 76 1.18 
40.48 y N AND 1.62 1.08 
40.90 y Cl CA SIR 68 80 AND 357 69 1.49 1.00 
41.21 F N AND 0.97 0 .97 
41.30 y c CA SIR 76 60 AND 353 79 0.79 1.19 
41 .50 F N AND 0.83 1.66 
41.74 F N AND 1.00 2 .49 

41.83 y N GKu O.:'i1 2.56 

42.87 s CL PIS 67 275 GRG 178 65 0.53 3 . 17 

42.89 s CL PIS 60 236 GRG 198 63 0.29 3.51 

4.!.91 s CL PIS 69 240 GRG 191 70 0.62 4.35 
43. 1(> s EP PIS 48 105 GRG 14 51 0.59 4.73 
4:;.19 S I EP PIS N GRG 1.42 8.49 

43.2 1 y C1 CL PIR 74 330 GRG 166 80 0.5 1.24 6.61 
4.1.35 y C1 CL PIS 56 245 GRG 196 5i! 0.5 1.06 4.26 

43.52 S I CLPY PIS 54 270 GRG 180 52 1.23 4.29 

43.93 y C1 CL PIR 52 102 GRG 10 54 0.5 1.32 4 .09 
44. 10 F N GRG 1.89 4 .07 

44.79 y C1 CLEP PIR 63 58 GRG 346 68 0.5 1.74 4.43 

I - \ \ • ' ..,. • ' ' \ • 1 



44.79 y N BRC 1...!4 JA7 
44.90 YYC CA PIS 35 3 .. 5 GRG 126 77 0 . ..!5 1.66 ·U..! 
44.93 y c CA PIS 68 210 GRG 199 77 I 1.08 .US 
44.93 y c I CA P/S 90 GRG 180 88 1.94 5.oJ 
45.54 y c I EP PIS 73 100 GRG 3 7-l 0.25 I. 76 ~ . hJ 

45.59 y c I CLCA PIS 20 60 GRG 309 35 0025 1.50 4o50 
46.19 s I EP SIS 75 228 GRG 190 77 I.JO .1079 
46.21 y Cl CL PIS 49 270 GRG 179 .. 7 0 05 0072 .l..ll 
46021 y Cl CL RIR 0 220 GRG 271 ·19 0025 Oo79 .U7 
46.90 y Cl CLPY PIS 80 235 GRG 186 80 005 0089 .l oll 
47004 F N GRG 1000 ol.4J 
47035 s CLEP PIR 23 285 GRG 146 26 I. 18 .lo 14 
47.75 F N GRG l.l h .l o09 
47.84 y c CL PIR 68 210 GRG 199 77 0 .5 1.92 ol.h2 
47094 F N GRG I.JS olo .1!1 
48.12 y c CLCA PIS 58 305 GRG 160 (>J 0.5 2.07 ·1 . <)(> 

48015 y c CLPY PIS 30 18 GRG 302 7 .. 005 2.48 40% 
48o20 y c CLPY PIS 32 20 GRG 304 7J 005 2.h5 h. II) 
48052 F N GRG :1.40 go M 
48056 y c CLCA PIS 34 295 GRG 146 40 005 .• 017 J.l . 12 
48.96 y Cl CLEP PIS 80 195 GRG 190 85 005 1.77 5051 
48097 s I EP PIS 30 265 GRG 188 28 1.4!1 4.hl 
48075 y Cl EP PIS 22 305 GRG 123 40 0 .25 2025 501·1 
48078 s I CL PIS 17 60 GRG 304 )4 2029 6oh7 
49042 F N GRG 2012 houo 
49.72 y Cl EP PIS 34 315 GRG 133 S.l 0.5 1.77 C1 . I'> 
49.74 y Cl CL PIS 47 300 GRG 154 52 I 0094 :. . !12 

49.76 y Cl EP PIS 30 275 GRG 170 29 0079 Lll> 
50002 F N GRG 00 !17 I.IJ!I 

50.10 y Cl EP PIS 18 148 GRG 69 61 0025 0 .81 Lll 
50088 F N GRG Oo94 2 0 ()I) 
50o99 F N GRG 0051 Lllh 

51.44 F N GRG 0092 2.05 
51.88 s CL CIR 5 120 GRG 78 31 I. 18 2.17 
52013 y Cl CA CIR 75 330 GRG 167 81 1.89 2 .8.1 
52.19 y s I EP PIR 18 200 AND 251 69 2033 :1 .2(, 

52.46 Y C I SIR 37 240 AND 214 44 I 20!111 4 . rl 

52.86 y Cl CA PIS 64 310 AND 162 69 I 40CXI ().{ )() 

53.00 y Cl CA PIS 24 285 AND 147 27 I 4o(J! fdK 
53.14 y Cl EP SIS 16 210 AND 252 59 I )0(,5 5. ()(, 

53036 y Cl CA SIS 22 285 AND 144 25 005 4. 11 o'i. ()() 
53.38 y Cl CA SIS 24 292 AND 138 31 0 05 4055 (,(l) 

53.54 y \.I P/S 23 220 AND 242 52 0 05 4 042 '/ 008 
53.97 y Cl CA CIR 78 60 AND 354 80 I 4009 7.2'7 

54.04 F N AND 4012 !1 025 
54007 s I CAEP PIS 36 185 AND 234 84 3002 (,(1) 

54013 y Cl PIS 36 300 AND 144 44 005 3051 lLI4 

54.24 y Cl PIS 30 320 AND 126 Sf> 005 4o :n t, . 80 

54.33 y Cl P/R 32 290 AND 150 36 0 .5 4JJ.1 7007 
54.54 y N GRG 4029 7062 
54.68 y Cl EP P/R 63 295 GRG 167 64 I 4081 '/ .()1) 

55.00 y Cl CL PIS 33 330 GRG 126 65 I 5049 !U9 

55.CJ y Cl CL PIS 39 60 GRG 330 48 o.s 5075 ') 0 20 
55012 y Cl CL PIS 38 50 GRG 322 53 005 7 .35 II .'ltJ 

55017 y Cl CL PIS 20 305 GRG 121 39 005 lUJ 14 .:1.') 

55. 15 y Cl QZCL PIS 27 325 GRG 121 59 005 15028 25.()() 
55020 y Cl QZCL CIS 35 30 GRG 310 65 005 I (JoiR '26.47 
55022 y Cl QZCL CIS 40 20 GRG 312 75 005 Uo22 11 . 1~ 



55.31 y c QZCL SIS 32 315 GRG 130 52 0.5 12.24 18.37 
55.36 y c CA PIR 78 80 GRG 358 79 I 10.38 16.98 
55.37 y c CL CIR 39 65 GRG 334 46 I 12.82 23.08 
55.39 y c CL C/R 48 52 GRG 332 58 I 10.98 21.95 
55.66 y c CA SIR 13 175 GRG 77 86 0.5 II. 76 26.47 
55.6!1 s CL SiR 20 220 GRG 245 51 8.97 20.51 
55.59 s CA PIS 87 195 GRG 183 87 6.25 20.00 
55.63 s CA PIS 76 325 GRG 168 80 I. 71 5.48 
55.65 s CA PIS 70 330 GRG 162 79 1.53 6 . 11 
55.75 F N GRG 1.06 5 .67 
55.77 s CA SIS 66 175 GRG 24 89 0.97 5 . 16 
56.85 y c CACL SIS 28 160 GRG 60 73 I 0.94 5.03 
56.97 y y c CA N AND 0.5 1.18 3.79 
57.09 s CA P/R 74 88 AND 0 75 1.35 3.92 
57. 14 s EP SIS 20 100 AND 26 23 1.42 4.27 
57.22 s EP SIS 31 110 AND 30 37 2.75 8.26 
57.76 F 58 170 AND 32 86 I 2 .02 9.09 
57.79 y c EPCA PIS 37 165 AND 52 79 0.25 1.69 8.99 
57.88 y c EP 1/R 23 100 AND 23 26 0.25 1.61 8.60 
57.94 s EP SIS 34 85 AND 354 35 2.91 9 .30 
57.96 s EP SIS 24 105 AND 31 29 4.10 13 . 11 
57.98 F N AND 3.08 12 .31 
58.07 s EP SIS 12 95 AND 24 14 1.82 7.29 
58.08 y c EP SIS 18 98 AND 24 21 1.58 6.32 
58.37 s EPCA Sf 22 330 AND 114 62 1.00 3.33 
58.44 y c CAWH P/R 90 AND 180 8& 0.5 2.63 6.58 
58.84 y N BRC 2 .75 6.59 
58.89 y N GRG 3.61 7 .23 
59.46 F N GRG 3.70 I I. II 
58.74 y c CL PIS N GRG 0.5 3.08 7.69 
58.98 y c CL SIS N GRG 0.5 0.93 2.48 
58.91 s CL P/R 20 155 GRG 68 67 0.5 0.83 2.78 
58.91 y c CL PIS 55 155 GRG 33 77 0 .98 3.27 
59.09 y N AND 0 .59 2 .35 
60.45 y N GRG 0.43 2.59 
60.69 S I CLEP SIR 12 290 GRG 118 23 0.19 1.94 
60.99 F N GRG 0.00 1.86 
61.29 s AP SIS 69 65 GRG 351 72 0.00 1.53 
61.30 s EP PIS 45 130 GRG 33 58 0.00 2 .78 
61.49 F N GRG 0.00 3.77 
61.60 s AP SIS N GRG 0.00 2.14 
61.70 y N AND 0.00 2.80 
62.25 s CA SIS 65 100 AND 5 66 0.00 2 .75 
62.28 s EP SIS 24 155 AND 64 68 0.00 2.91 
oJ.JJ F N AND 270 89 0.00 3 .43 
6l·B s CA SIS N AND NOTE:CHANGE TO 0.00 3.52 
63.48 s AP PIS 75 170 AND 15 88 0.00 4.67 
63.55 s EP SIS 4 101 AND 66 13 0.33 4.67 
6J.IH s EP SIS 26 Ill AND 36 34 0.89 12.50 
63.69 s SIS 16 Ill AND 51 27 1.41 11.27 
63.75 y P/K 20 83 AND 345 22 1.37 9.59 
63.78 y c CL PIS 53 143 AND 31 70 0.5 1.90 8.86 
63.89 s EP SIS 16 281 AND 142 18 2 . 11 9.86 
64.14 y c CL PIS 48 147 AND 37 70 0.5 1.97 9 .21 
64.21 y N GRG 2.05 9 .59 
64.3-l y c CA PIS 63 157 GRG 25 81 0 .5 1.33 7.08 
64.35 s CA SIS 82 138 GRG 6 86 0.93 6 .48 
64..15 s EP PIS 28 267 GRG 184 26 I. 11 7.78 



64.48 s EP SIS 27 129 GRG 51 -t7 1.11 7 78 
64 .91 s CL PIR 75 12-t GRG 9 79 1.!.7 10.13 
64.97 F N GRG O.oS 10 .. 19 
65.04 s I EP PIR 26 101 GRG 22 29 0.59 9 .-tl 
65.11 y Cl CA PIR 65 181 GRG 205 87 0.5 0.60 95.? 
65.13 s I CA Sll N GRG 0.8..! 11.-18 
65.12 s I EP PIR 28 118 GRG -tl -tO 0.!11 11 . ..!9 

65.30 s I EP PIR 2-t 115 GRG -t3 35 O.N> 1051 
65.32 s I EP PIR 16 106 GRG 43 2-t O.b·~ 10 .?(> 

65.52 F N GRG 0.00 7.48 

65.59 s CLEP SIS 50 120 GRG 23 57 0.45 7.!7 
65.80 s CL SIR 10 101 GRG 46 16 0.65 5.!.1 

65.89 s CL SIR 16 83 GRG 3-H IS O.b! -t .J! 
66.20 s I EP SIS 28 249 GRG 214 32 0.68 4 .08 

66.22 y Cl CA PIS 68 295 GRG 170 68 0 .5 O.bJ 4 .. 1~ 

66.83 y C I CL SIR 16 IS GRG 287 72 0.5 0 97 -tS\ 

66.94 F N GRG 1.48 -t . I·~ 
66.99 F N GRG !.50 5 .1Kl 

67.19 y c AU N GRG 2.-lh ·~ . !.I 

67.34 y C1 CL SIR 20 286 GRG 140 24 0.5 J.(d 5.15 
67.58 y Cl CAEP PIR 74 203 GRG 195 8..! I '.? .!17 4 . 10 

67.60 y Cl CA PIS 70 173 GRG 20 89 I 1.6'1 4.92 
67.64 y CL N BRC :U! 5 .79 

67.80 y N GRG 0.5 5.00 6.36 
68.16 y Cl PIS 54 152 GRG )) 75 0 .5 5.2() 7 .37 

68.21 y Cl CL PIS 67 189 GRG 201 84 I .1.()4 7 .07 

68.40 y Cl CA PIR 60 189 GRG 210 83 1.11 7. '}I) 

68.44 s I CA PIS 53 175 GRG 37 88 ].61 9 . 6-~ 

68.53 s I CA PIS 62 138 GRG 22 73 7.29 l!U5 

68.59 s I CA SIS 48 203 GRG 220 73 K.lh IK.T/ 

68.60 s I CA SIS 63 189 GRG 207 84 10.00 1(,_(,7 

68.63 s I CLEP SIS 41 120 GRG 30 50 8.57 20.00 

68.64 ' c I CL PIR 63 181 GRG 207 87 <).]8 21.811 

68.70 y c I CLEP P/K 62 195 GRG 201 1\1 ·1.41! 8.9h 

68.70 { EP 38 30-t BRC 143 48 4.61 7.89 

68.79 y N GP.G 4.25 5 .()6 

68.85 y c CL SIR 52 203 GRG 216 74 I 2. 7!! :nn 
69.26 F N GRG ONLY LOG FRJ\CT L.S<J 1.11 

69.36 y c CL 1/R 82 157 GRG 8 88 0 .5 2.02 !..I] 

69.69 y c CA PIR 76 175 GRG 194 89 I I.<)<) 2..H 

70.62 y Cl AP PIS 77 166 GRG n 88 I :us l.fJK 
70.63 y Cl CA PIS 73 212 GRG 195 79 0 .5 1.95 2.27 

71.17 y Cl CL PIS 62 129 GRG 19 70 I 2.24 2. Sfi 

71.80 y Cl FE C.'R 66 175 GRG 24 89 I 2.6h 1.84 

71.83 y Cl PIR 62 18.1 GRG 208 86 I 1.2!! 1 .54 

72.34 F N GRG :uo 3.41 

72.48 y C1 CA 1/R 65 71 GRG 352 67 L1S :us 
72.51 y C1 CL PIS 68 180 GRG 202 88 2,1).1 4 . 17. 

72.60 F N GRG 1.87 327 

72.67 y Cl CL PIS 85 78 GRG 359 86 l.W L 17 

73.39 y Cl CACL PIR 55 203 GRG 213 75 1.72 4 .02 

73.50 y Cl CACL PIR 42 207 GRG 225 68 1.24 1 .47 

73.97 y C1 CL PIK 47 251 GRG 197 48 I .03 3. 6 I 

74.12 F N GRG 1.04 4 . 15 

74.22 y Cl CL PIS 45 198 GRG 224 75 1.27 4 4] 

74.53 y C I CA PIS 59 186 GRG 211 85 0 .5 1.18 3.55 

74.54 y C I FE JRD 90 186 GRG 180 88 0 .5 0.71 3.55 

74.60 y C I CLCA PIS 59 269 GRG 180 57 0. r, I 2.44 



74.97 F N 1.28 3 .21 

75.19 F N 2.31 3.85 

75.38 F N 1.89 3 .03 

75 . 7() y 67 195 APL 202 82 1.06 1.59 

75.78 y Cl QZ PIS 67 195 APL 202 82 1.06 1.06 

75.83 y Cl QZ PIS 78 147 APL 10 84 !.OS 1.05 

75.86 y GRG 270 89 1.12 1.35 

76.49 F N GRG 1.38 i.58 

76.85 F N GRG 1.79 1.98 

17('1) F N GRG 1.55 1.94 

77.61 y Cl CL PIK N GRG 0.5 1.33 1.89 

78.29 y Cl CA C/R 72 30 GRG 345 82 I 1.73 2.60 

78.30 y Cl CA PIR 75 340 GRG 166 83 I 1.84 2.76 

78.41 y Cl PIR 60 238 GRG 197 63 0.5 1.81 2 .71 

78.50 Y Y C I CL PIS 52 9 AND 323 84 0.5 2.45 3.43 

78.80 y Cl CL PIS 41 18 AND 313 76 0.5 2.53 3 .37 

19 02 F N AND 1.81 2 .59 

79.30 F N AND 1.08 1.73 

79.65 y Cl CL CIS 90 AND 180 88 1.02 1.63 

80.07 F N AND 1.02 1.63 

80.23 F N AND 0.81 1.63 

80.72 F N AND 1.23 2.05 

80.95 y Cl CLCA SIS 70 20 AND 341 84 0.5 1.38 2 .75 

81.25 y Cl CLCA PIS 73 38 AND 347 80 0 .5 1.10 3.30 

81.48 F I CL CIS N AND 1.16 4 .07 

81.74 y Cl SIS 61 171 AND 29 87 1.30 5 . 19 

81.83 F I N AND 1.85 5 .56 

81.89 F I N AND 1.88 6 .02 

81.95 F I N AND 1.18 4 . 14 

82.26 F I N AND 1.60 4 .49 

82.57 y Cl CL PIS 57 330 AND 150 73 0.89 3.55 

82.58 F N AND 0.83 2.76 

83.17 F N AND 0.83 2.21 

83.30 y Cl CLCA PSK 59 298 AND 164 61 0 .5 0.82 2.19 

83.52 F N AND 0.93 2 .48 

83.70 F' N AND 0.26 1.54 

83.76 F N AND 0.81 2.15 

84.('/) y Cl CL PIR 44 70 AND 342 48 1.20 2.40 

84.18 y Cl CL PIR 63 30 AND 337 77 1.54 2.56 

84.53 F N AND 1.77 3 .03 

85.03 y Cl CL PIS 75 87 AND 0 76 I 1.57 2.69 

85.38 y Cl CL PIS 56 \24 AND 21 63 I 1.89 3.30 

85.47 y Cl CL CIS 44 55 AND 331 54 I 1.91 2 .97 

85.68 y Cl CL PIS 46 151 AND 40 71 0.5 2.23 2.68 

85.99 F 1/R N AND 2.27 3. 18 

86.2 1 y Cl CLEP PIS 6) 74 AND 353 65 0.5 1.93 2.90 

86.54 y C I CL PIS 24 199 AND 245 71 0.5 1.43 2.38 

86.77 F N AND 0.5 0.92 1.83 

87.23 y F CIS 66 60 AND 336 88 0.78 1.56 

87.45 F N AND 0.59 1.58 

87 .57 F N AND 0.42 1.26 

87.86 F N AND 0.22 0.87 

87.91 y 30 198 GRG 302 73 0.00 1.09 

88.74 y Cl EPCL PIR 57 72 GRG 350 59 0.00 0 .58 

88.92 y liS 12 115 APL 343 87 0.00 0 .56 

89.06 y 82 129 GRG 352 89 0.00 1.27 

89.07 F N GRG 0.00 1.01 

89. 17 y 1/R 90 APL 180 88 0.00 1.37 

" J ,. ' . - . ' \. . . . . ' 



89.35 F IIR 90 APL 180 88 0.00 0.59 
89.44 y c I CA PIS 79 ISO APL 191 88 0 . .!7 1.09 

89.89 y N GRG 0.25 1.51 

90.20 F N GRG O.·U l.tl_, 

90.61 F N GRG 0.4! t.o 7 

90.90 y Cl QZ PIR 69 170 GRG 21 88 0.5 O.t>O 1.99 

91.06 y C I CL PIS 80 0 GRG 170 88 0.65 .! . I o 
91.62 y Cl EP PIS 70 85 GRG 359 71 0.5 0 .~ ! .55 

91.75 F N GRG 0.63 .! .51 
91.95 y Cl CACLEP CIR 64 85 GRG 358 65 0.5 0.09 2.78 

92.21 F I CL CIS 54 162 GRG 35 81 0.7.! 2.sa 
92.55 F I CL PSK 43 120 GRG 29 s> 0.73 2.-n 

93.00 F N GRG OA·• 171 

93.06 F N GRG o .. m 158 

93. 14 y C I QZ SIR 77 305 GRG 172 78 0 .5 lL'O I.!.! 

93.68 F CACL PIS 50 190 GRG 220 81 0.2·• J.l)() 

94.01 F CL 73 270 GRG 1!10 71 0.25 1.51 

94.48 F N GRG 0.:!2 U'J 

94.66 y N AND o.ob 1.15 

94.66 y c 2 CL N AND 0.75 !. .01 

94.99 F N AND I.U 2.82 

95.38 F N AND 1.43 ·12'J 

95.42 y Cl CA PSD 60 177 AND 210 89 I 1.1!9 h .ll(l 

95.67 y Cl CL PIS 59 102 AND 8 61 0 .5 1.811 6.77 

95.78 y C I CAEP PIS 60 102 AND 7 62 O.'i 2. 12 6.78 

95.88 F I CL PIS 64 110 AND 10 67 2.05 () .56 

95.98 y c 2 CL N AND O.'i I.'H 11.20 

95.99 F I CL PIS 65 229 AND 197 69 l..l2 5.)0 

96. 17 y Cl CA PSD 66 88 AND 0 67 0.99 'i .'!.l> 

96.60 F N AND 0.68 'i .44 

96.71 F N AND 1.17 _;_48 

97. 18 y c CLCA PIS 61 140 AND 23 73 0 .5 0.99 3.95 

97.30 F I CA PIS 72 108 AND 6 74 1.71 4. 11 

97 .35 F I CACL PIS 77 ISO AND 12 85 2.43 4. 17 

97.44 y Cl CA PIS 65 158 AND 24 82 2.92 4.5'i 

97.51 F N AND 4.66 6.78 

97.63 y Cl CA PIR 75 200 AND 194 83 3.73 'i .l.l 

98.04 y Cl CL SIS 58 225 AND 204 66 3.60 4 .. 1".1 

98.25 y Cl CLCA N AND ) .62 ) .61. 

98 .36 y Cl CACL SIS 58 102 AND 8 60 3.36 l.)(, 

98.64 F N AND 2.42 2.42 

98.74 y N GRG 2.H 2.:n 
98.82 F N GRG 2.09 2.09 

99.00 y c CA 1/R 78 212 GRG 190 82 1.000 1. 5 I :.1.01 

99.70 F N 1.24 I.'JI! 

99.76 F N GRG 1.12 I. 79 

100. 16 y C I CLCA PIR 60 215 GRG 205 71 1.000 1.51 £. 18 

100.35 F I CL PIK 45 178 GRG 225 89 1.54 2. 20 

100.66 y Cl CL PIS 41 160 GRG 47 76 0.500 1.57 211'2 

100.97 F N GRG 1.81 2.71 

101.1 I y Cl CL PIS 90 GRG 180 88 1.000 2. 18 3.88 

101.27 F N GRG 1.74 ).48 

101.61 y Cl CLEP PIS 76 72 GRG 356 77 0.500 I 86 3. 26 

101.97 y Cl CL PIS 76 62 GRG 354 78 1.000 1.67 2.87 

102.22 y c 2 CL N GRG 0.500 1.84 2.117 

102.65 y C I CL PIS 24 120 GRG 48 39 0.500 1.14 7. .28 

102.81 F N GRG 1.18 7.. 36 

!03.06 y N GRP 1.07 2.~0 



103.55 YYC CL SIR 22 128 GRG 56 44 1.000 0 .60 2 . 11 

104.34 s CL SIR 55 180 GRG 215 88 0 .24 0 .81 

104.57 y F N GRP 0.26 1.03 

104.77 s CL fiR 90 GRP 180 88 0 .35 1.18 

105.53 F 0 130 GRP 89 40 0.66 1.58 

108.86 F N GRP 0 .49 1.95 

106.71 F 66 208 GRP 202 77 0.65 1.94 

107.29 YYC CLCA PIS 70 160 AND 19 84 0 .500 0.85 2 .38 

107.35 y c CL SIS 32 240 AND 219 41 1.000 1.04 2 .50 

107.42 s CL PIS 29 200 AND 240 71 -4.22 -7.23 

107.67 y c CACL PIS 47 84 AND 356 48 0.500 2 .35 4 .70 

107.71 y c CACL PSK 38 145 AND 46 64 0 .500 3.15 7 .21 

107.93 F N AND 2.70 7.21 

108.03 s PIS 54 165 AND 35 82 1.000 1.68 6.72 

108.20 s CL PIS 90 AND 180 88 1.65 5 .79 

108.40 s CL PIS 41 95 AND 7 42 1.64 4 .61 

108.46 s CL PIS 42 200 AND 227 73 1.85 4.32 

108.61 s CLCA PIS 25 302 AND 130 39 2.48 4.97 

108.88 y N GRP 2 .63 5.26 
109.23 y c CLCA PIS 25 330 GRP 118 63 1.000 3 .60 5 .76 

109.55 y PRD 46 120 GRP 26 54 1.000 3.45 4 .83 

109.64 y PRD 22 310 GRP 121 44 1.000 3 .57 4 .29 

109.72 y PRD 24 320 GRP 119 54 1.000 3.44 3 .75 

109.79 y c QZ PIR 12 320 GRP 104 51 1.000 3.27 3.52 

109.91 F N GRP 2 .97 3 .24 

110.01 r PIR 56 282 GRP 171 55 2.42 2 .69 

110.48 y c CL PIR 16 330 GRP 108 61 0.500 2 .46 2 .73 

I I 1.22 y c CAEP PIR 48 180 GRP 222 88 1.000 1.90 2 .72 
111.40 F N GRP 1.22 2 .04 

II 1.50 F N GRP 1.61 2.4 1 
111.55 y c EP PIK 17 330 GRP 109 61 1.000 2.05 3 .1 8 
111.63 y c EP PIK :>I 3.38 4 .73 
I 12.36 y c PIK 19 112 GRP 47 30 0.500 3.08 5.38 
112.50 y c CLEP PIR 48 0 GRP 138 89 1.000 3 .02 5 .37 
112.68 y c WF PIR 19 142 GRP 66 55 0.500 2.97 4 .86 
I 12.70 y c CL PIR 15 120 GRP 61 34 1.000 2.49 4 .97 
112.70 y c CL PIR 23 120 GRP 49 38 4.24 7 .63 

112.99 y c PIR 27 140 GRP 56 56 0.500 4 .33 7 .09 
113.40 y c CLFE PRD 30 142 GRP 54 59 1.000 4 .87 7 .96 
113.44 y c PIR 25 180 GRP 245 88 3 .82 6 . 11 
113.54 y c PIR 20 140 GRP 64 54 0 .500 2 .65 4.64 
113.77 y c CLWF PIR 22 205 GRP 247 65 1.000 3.15 4 .72 
113.81 y c CL PIR 65 130 GRP 17 72 1.000 2 .92 4 . 17 
114.01 F N GRP 2 .73 3.91 
114.21 F N GRP 2.61 2.99 
114.26 F N GRP 2 .56 2 .56 

114.60 F N GRP 1.18 1.18 

114.72 y c I CL PIR N GRP 1.000 0 .65 0 .65 
114.88 F N GRP 0.39 0.39 
114.94 F N GRP 0.35 0 .?5 
115.51 F N GRP 0.66 0.66 
115.55 F N GRP 0.93 0.93 
116.76 s PIR 63 140 GRP 22 74 0.63 0 .63 
117. 14 F N GRP 0.54 0.54 
117.63 y c PIR 15 14 GRP 1.000 0.77 0.77 
117.96 y c PIR 20 20 GRP 292 70 1.000 0 .90 1.03 
118.05 F N GRP 1.49 1.66 

118.61 F N GRP 1.56 1.74 



119.41 y C1 CL PIR 11 3~0 GRP 101 70 1.000 1.70 I 89 
119.43 y Cl PIR 20 350 GRP 110 80 0.500 1.40 I(J() 

119.78 y Cl CL SIR 50 3~0 GRP 142 76 1.000 1.01 1.21 
120.02 F N GRP 1.51 2.01 
120.28 F N GRP 1.86 2.48 
120.46 F N GRP 1.08 1.62 
120.52 F N GRP 0 . .12 0.43 
120.60 y PIS 19 0 GRP 289 89 0.500 1.04 1.39 
121.02 F N GRP 1.27 2 . 5~ 

121.28 F N GRP 1.50 4 .00 
124.41 F N GRP 1.02 3.40 
121.46 y c I CL PIR 34 280 GRP IM 34 1.000 0.96 2.88 
121.46 y I 0 100 GRP 83 10 0.74 2.94 
121.46 1 0 185 GRP 270 84 1.~0 3.9.' 
121.99 F I PIR 23 300 GRP 128 36 -2 . .14 -7.4R 
122.68 y Cl CL PIS 34 330 GRP 127 65 0.500 1.71 4 . .19 
123.06 y Cl CLEP PIS 43 210 GRP 223 66 1.40 4 . IIJ 
123.06 y Cl CL PIS 50 310 C.RP 151 59 1.000 1.57 3 .5·l 
123.34 y Cl CL PIS 45 320 GRP 142 62 2.3 1 4.17 
123.51 y C I EPCL PIK N GRP 1.000 3. 19 4 .79 
123 .61 y Cl CK PIR 58 310 GRP 158 65 0.500 3.42 5.59 
124.00 y Cl CL PKS 28 310 GRP 128 o.l7 1.000 2.85 4 . 15 
124.15 y C I WF PIR 58 125 GRP 20 65 1.000 3.11 4.52 
124.56 y Cl WF PIR 28 320 GRP 124 55 1.000 3.33 4 . 10 
124.67 y Cl WF PIR 34 330 GRP 127 65 - 9.02 11.48 
124.99 F N GRP 2.16 2 .52 
125.11 y Cl WF PIR 22 335 GRP 114 67 1.000 2.08 2 .64 
125.46 y c 1 CLWF PIR 32 320 GRP 128 56 1.000 2.23 3 . 13 
123.00 F N C.RP I. 78 2.67 
126.78 y PIR 42 280 GRP 168 41 1.000 2.42 3.23 
126.80 y PIR 32 290 GRP 150 36 0.500 2. 59 3 .30 
126.80 y PIR 42 120 GRP 29 51 0.500 2.45 3.4) 
126.92 F N GRP I. OR 1.51 
126.85 y IIR 18 202 GRP 251 67 0.500 3.70 5 .93 
127.23 y c WF PIR 28 64 GRP 323 37 1.000 2.47 4 .32 
127.50 y 1/R 15 48 GRP 294 43 0.500 2.36 3.66 
127.63 y c WF PIR 30 53 GRP 316 46 1.000 2.75 3 .!!5 
128.13 y PIR 25 18 GRP 297 73 3.05 4 .06 
128.42 F N GRP 3.99 4 . 9 I 
128.71 y PIR 56 286 GRP 169 56 J.()()IJ 2.93 3.72 
128.74 y PIR 67 294 GRP 170 67 1.000 2. 83 ).30 

128.82 y PIR 45 294 GRP !57 48 1.000 3.42 4 .35 
128.86 y IIR N GRP 1.000 ).!!7 4 .9) 

129.38 5 202 GRP 265 67 4.20 5 .34 
129.75 y I PRD 65 26 GRP 338 80 1.000 3.52 4.93 
129.74 y I PIR 37 48 GRP 320 54 0.500 2.7R 4 .32 
129.64 y Cl WF PIR 35 53 GRP 321 49 2.20 3 .!15 
130.02 F N GRP 2. 17 4 .35 
130. 16 y PIR 34 46 GRP 316 53 0.500 3.60 6.40 
130.44 y PIR 20 55 GPP 305 39 0.500 2.35 4 .70 

130.68 y PIR 16 253 GRP 227 21 0.500 1.!!2 J .M 
130.99 y PIR 26 26 GRP 299 66 0.500 1.92 3 .21 

131.00 y PIR 45 193 GRP 224 79 1.000 2.45 3.68 

131.23 F N GRP 2.90 ) .62 

131.49 F N GR? 2.63 3 .76 

131.58 y 6 299 AND 100 30 2.61 3.48 

131.79 y c I CL PIR 14 9 AND 285 80 1.000 1.90 1.90 

131.82 F N AND 270 89 0.500 1.48 2 .22 



132.01 y Cl CA SIR 7 326 AND 98 56 1.77 2.65 
132. 14 F N AND 2.50 3.33 
132.58 F N AND 0.500 2.61 3.48 

132.58 y Cl CL SIS 32 202 AND 236 69 2.31 3.08 
132.62 F N AND 270 89 2.00 4.00 
132.78 y Cl CLWF PIS 27 299 AND 135 38 1.000 2 .69 3.85 
132.94 F N AND 4.55 6.06 
133.12 y Cl CL PIS 16 266 AND 192 14 1.000 4.59 6.42 
133.26 y Cl CACL N AND 5.00 10.00 
133.44 y Cl CL PIR 56 101 AND 8 58 1.000 5.88 10.92 
133.57 y Cl CL SIS 44 175 AND 46 87 1.000 6.67 12.38 
133.67 y C1 CL PIS 17 109 AND 46 26 1.000 6.86 12.75 
133.82 y c 6 CL PIS 22 357 AND 112 87 1.000 7.00 13.00 
133.97 y Cl CLCA PIR 70 74 AND 355 72 1.000 7.45 12.77 
133.99 y I PIS 20 119 AND 53 36 1.000 7.07 12.12 
134. 14 F N AND 6.31 11.65 
134.26 y Cl CL PIS 48 48 AND 330 60 1.000 3.20 6.40 
134.38 y N GRP 2.68 'l.98 
134.56 y Cl WF PIR 67 130 GRP 16 74 1.000 1.84 ~-~3 

134.70 y I PIR 0 0 GRP 270 89 0.500 1.53 2.55 
135.54 y 37 152 AND 50 69 1.53 3.06 
135.65 y 44 140 GRP 39 64 1.34 3.23 
135.89 y F I N GRP 1.69 3.95 
136. 10 y c 1 CL PIS 20 184 GRP 250 84 0.500 1.23 4.29 
t:l6.22 F I N GRP 2.02 7.07 
136.24 y I PIS 20 184 GRP 250 84 0.500 2.06 8.25 
136.33 F I N GRP 0.500 2.38 8.57 
136.33 y I IIR 0 317 GRP 89 47 2.78 10.00 
136.53 y c I CL 1/R 27 317 GRP 124 52 0.500 2.43 8.74 
136.62 F I N GRP 2.99 7.69 
136.94 y Cl CL PIS 0 110 GRP 87 20 0.500 2.99 7.69 
137.00 F I N GRP 3. 10 6.98 
137.25 y Cl CL P/R 0 276 GRP 79 7 0.500 3.67 8.26 
137.41 y Cl CAQ~'. P/R 28 259 GRP 199 28 1.000 3.74 8.41 
137.50 y Cl CL PIS 25 175 GRP 65 86 0.500 4.94 11.1 1 
137.62 y Cl CL.EP P/R 3 294 GRP 94 24 1.000 5.26 11.84 
137.62 y Cl CACL PRO 42 97 GRP 9 43 8.49 16.98 
137.69 y I P/R N GRP 0.500 10.00 20.00 
137.75 I N GRP 9.52 21.43 
137.76 y I PIS 55 76 GRP 351 57 0.500 12.86 25.71 
137.78 y I PIS 28 106 GRP 28 33 0.500 9.18 18.37 
137.86 y I PIR 48 110 GRP 18 52 0.500 5.56 9.88 
137.92 y I PIS 70 92 GRP I 71 0.500 3.77 6.60 
137.97 y Cl CL SSD 60 184 GRP 210 86 1.000 3.54 5.22 
138. 11 y Cl CL PIS 43 99 GRP 10 45 1.000 3.01 4.96 
138.50 F N GRP 3.49 5.15 
138.81 F 1/R N GRP 3.82 5.34 
139. 10 y l P/S II 257 GRP 231 IS 0 .750 4.23 5.38 
139.19 y I SIR 71 112 GRP 8 73 2.98 4.64 
139.22 y Cl WFCA P/R 17 285 GRP 136 22 1.000 3.78 5.88 
139.23 y Cl WFCA P/R 19 289 GRP 134 26 0.750 4.59 7.14 
139.27 y F I P/R 72 92 GRP I 73 1.000 9.02 13. 11 
139.62 y Cl WFCL SIR 23 277 GRP 161 22 5.86 8.64 
i39.69 y Cl WF P/R 23 261 GRP 200 23 1.000 5.83 7.78 
139.79 F N GRP 4.90 7.22 
139.71 y C1 WF CIR 20 295 GRP 128 31 1.000 3.60 5.60 
1-10.00 F N GRP 4.08 7. 14 
140.12 y C1 CL P/R 19 268 GRP 184 17 0.500 4.74 7.37 



140.20 y C I CL PIS 56 100 GRP 7 58 0.500 4.65 8. 14 
140.52 y C I CL SIR 22 283 GRP 148 24 0 .500 2.56 4..l9 
140.60 y 1 PIR 22 256 GRP 211 2-t 0.500 2 .7b 4 .8.1 
140.64 y 1 PIR 25 263 GRP 194 2-t 0 .500 2.-d 4.1!6 
140.65 y 1 PIR 19 263 GRP 199 !8 0 .500 2.51 ).91 
141.27 y 25 222 8 25 222 BRC 239 51 2.67 4.00 
141.45 YYCJ CA U!S 27 245 AND 220 34 1.000 2.67 4 .00 
141.56 F CA SIR 53 118 AND 20 59 2.70 4.05 
141.99 y c CA UIS 32 254 AND 204 33 1.000 2.98 3.97 
142.02 y 39 313 BRC 139 54 4 .79 h .. l8 
142.10 y c CL UIS 44 108 BRC 18 48 0.500 7.35 10.29 
142.12 y PIS 53 104 BRC II 55 0.500 6 .62 10.29 
142. 16 y c CL PIS 51 91 DRC 2 52 1.000 14.52 .'2.58 
142.21 y PIS 39 104 BRC 17 42 0 .500 10.29 17.65 
142. 13 y PIS 40 113 DRC 25 46 0 .500 IO.bi 18. 18 
142.24 y PIS 35 109 DRC 25 40 0.500 7.00 12.00 
142.30 F N DRC 4.11 8.22 
142.36 F N DRC 2.94 7.35 
142.43 y GRP 270 89 1.67 5.5h 
142.62 I/? 51 32 GRP 326 71 0.500 1.14 4.55 
142.89 s CL PIR 68 41 GRP 344 76 1.42 J.Tl 
!42.89 y N AND 1.96 4 .90 
143,03 s CL PSK 38 261 AND 191 J7 1.69 ·1.2·1 
143.12 y N GRP 1.59 ·1.7h 
143.36 y IRK 55 27 GRP 329 75 I . 000 1.38 5.50 
143.38 y PIS 18 308 GRP 116 41 0.500 1.68 5 ().j 

143.61 y 121 12 286 123 19 1.90 6.67 
143.88 s CL PIS 20 322 AND 114 54 1.7·1 (J,(l'J 

143.98 s CLCA SIS 49 263 AND 186 47 1.56 6.25 
144.08 y c CLCA 14 313 AND 109 45 ~i . 500 0.81 1> .50 
144.08 s CL PIS 0 263 AND 283 6 0.83 6.h7 
144.27 y PIR 24 295 GRP 134 33 0.75 h .O:l 

144.64 F N GRP 0. 69 4 .86 
144.61 F N GRP 0.67 ·I. OJ 
144.81 y c CLEP PIR 54 95 GRP 4 55 0.500 0.30 364 
145.21 F 1/R N GRP 0.32 ].!IJ. 
145.42 F N GRP 0 .71 4 .2(, 
145.57 F N GRP 1. 10 3.30 
145.73 y PIR 64 116 GRI> 13 68 1.10 3.3 1 
145.84 y F 1/R 43 218 GRP 220 61 0 .86 2.117 
146.05 y PIS 62 204 GRP 206 Tl 0. ~00 0.90 3 .59 
146.43 y c WH? PIS 33 225 GRP 228 52 1.000 1.16 4.05 
146.62 F PIS 55 218 GRP 209 67 1.40 4 .4') 
146.95 y CIS 25 290 AND 141 31 I. 15 4.6!1 
147.09 s CLEP P/S 63 64 AND 348 67 2.53 5.06 
147.30 s CLEPCA CIR 50 82 AND 354 51 0 .500 2.92 5 .!14 
147.51 s CL SIS 75 86 AND 359 76 0 .500 2.76 (J.30 
147.55 s CL SIS 75 86 AND 192 81 0 .500 4 .05 7 .21 
147.63 y c CL PIR 32 77 AND 342 35 1.000 5 . 15 9 .28 
147.80 y c CL 1RD 63 73 AND 352 65 0 .500 5.62 I 0 . II 
147.89 y c CL SIS 63 204 AND 205 77 0 .500 6.87 11 .25 
148.06 y 1RD 64 64 AND 349 67 1.000 6.33 11 .39 
148.06 y IRD 55 222 AND 208 65 0 .500 5.()2 1! .9CJ 
148.19 y c CLCA PIS 65 36 AND 340 76 5.56 11.11 
148.31 y c CLWH PIS 33 36 AND 310 60 1.000 5.22 11.94 
148.34 y c CL PIS N AND 4.69 HJ. 94 
148.52 F N AND 0.500 2.70 9 .41) 

148.52 y c CLCA SIS 28 172 AND 62 84 2 .22 7.78 



148.56 y s CL PIS 70 27 AND 342 82 2.50 1.50 

148.70 F N AND 0.95 4.76 

148.80 s CLCA PIR 62 104 AND 8 64 0.93 4.63 

149.09 y c CL PIR 23 163 AND 66 75 0 .500 0.45 5.36 

149.11 F N AND 0.40 4.80 

149.39 F N AND 0.41 4.92 

149.60 s SIS 57 168 AND 33 85 0.36 4.35 

149.64 F !IR 63 118 AND 14 67 0.44 4.39 

149.81 s CL PIR 66 14 AND 337 85 0.00 3.94 

149.92 s CL PIR 63 9 AND 334 86 0.00 3. 18 

150. 18 F N AND 0.27 3.23 

150.23 F N AND 0.27 3.19 

150.38 y Cl CL PIS 70 154 AND 18 82 0.28 2.82 

150.96 F SIS 60 245 AND 194 61 0.53 2 .65 

IS !.46 y PIS 73 200 AND 196 82 0 .500 0.65 2.17 

IS !.52 y s CLCA PIS 57 41 AND 335 69 0.67 2.67 

IS !.58 F N AND 0.90 3.14 

IS !.81 y c CACL PIS 56 147 AND 30 73 0.500 1.10 3.85 

152.48 y c CL PIS 22 236 AND 235 38 0.500 1.61 5.16 

152.48 y c CL PIS 60 54 AND 342 67 1.89 5 .03 

152.61 y c CLCA SIS 48 192 AND 222 80 0.500 1.64 3.83 

152 78 s CL PIS 71 165 AND 19 86 1.56 4 .17 

153.01 y c CL PIS 63 116 AND 13 67 0.500 1.87 5.97 

153.11 y c CLCA PIR 61 41 AND 338 72 1.000 1.64 5 .26 

153.41 F N AND 1.95 5. 19 

153.73 s CLCA PIR 75 54 AND 351 79 1.79 4 .76 

153.82 s CLCA PIR 71 242 AND 189 71 2.03 4.73 

154.00 y c CA SIS 66 220 AND 199 73 0.500 1.64 3.95 

154. 15 y c CLCA PIS 68 30 AND 341 80 0.500 

154.46 y c CLCA PIS ss 8S AND 358 59 0.500 

154.49 y IIR N 
154.63 END 



APPENDIX C Geochemical Analyses 

Notes regarding acronyms used in Tahk:s 

SIV indicates number of times the sampling l'avity was fluslwd prior 
to sampling 

Temp degC Temperature in oc measured in a surface !low cell. Samples 
were collected between August and Nowmhcr and thus showed 
a large variation in temperature. 



APPENDIX C C-1 

(jEOCIIEMICAL DATA FR0.\1 r>;SCRV 8 :--;JCK SARGE\'T 

- - · -- - ·- -- TES'"r TOOL co·N::-:-,.,.F:-:JG:o--::U-,.R==--A-=-=1'-=-=Io,...,.l'\-=-. :-----O-P...,..j_D_A_I A-
Sample Interval and number 31=3116• Sampling tube. 
all depths in me !res 41= 1/4 • Sampling tube . 

A'1.-IP[ . Thrt!e d1g1t number cavity lt!ngth m ems . 
MID Last leiter W=run on wirehne R=run on rods 

-- -- DEPTII !SOTi 
Top I Samp # fest tool I SlY's Temp oc---...,-21'TH 

____ config. d<!gC per.mil. per.mll. 

17.71 19.82 18.77 
I S~6r --2T77~(f.l..-t---'-.~ 

-8.215 -56.77 

18.111 21.77 20. 19 
18.61 21.77 20. 19 
18.61 21.77 20.19 

-· - 55.75--STSo-sO. 
55.75 57.86 56.81 
55.75 57.86 56.81 -55.39 

----GS'.-58·- . -7fJ.6 
68.58 70.69 
68.58 70.69 

-~a:-s9--·n::Jo-

7o.59 72.70 
70.59 72.70 -58. 19 - n 62--7no- ---."""-t-
73.62 76.20 
73.<>2 76.20 
73.62 76.20 
7.l. ()'!. 76.20 -8 .33 -60.31 
13.62 76.20 

-76~3s----"7S ... -r---......-rr-t--"''77'+-rr-.-..-.---t--.r-T.----..+-------
76.35 78 46 1.43 

-95. 58'~7:6·~-~rrl--'--r'-i TOO -8.424 
95.58 6.34 7.3 -8 . 598 
95.58 97.69 96.6-t 8.01 7.3 -8.481 -58.03 

--96.17·- - 9&-:-65'----.;. -i -:no 6.9 -8 .306 
96. 17 98.65 97.41 2.00 6.9 - 8.366 
90.17 98 .65 97 .41 6 .80 6.9 -8.407 
96.1'7 98 .65 97.41 9 .00 6.9 -8.572 -60.89 

TlNAT.-~Amu·~,.-AT'T1rrr-+--:...._;-t----+-------t-------

:11l J.:pths in mctrt!s 
Top Btm. mid. Samp # Test tool SlY's Temp 180 ~H 

lid > config d.:gC per.mil. per. mil. 
17 .71 19.82 18.77 11(17) 3/2llR 1.70 n/a - 8.215 - 56.77 
55.75 57.R6 56.81 10(2) 3/211R 8.50 n/a - 8.311 
o8.58 70.69 69.64 8(5) 3/211R 8.32 0.7 -8.337 -55.39 
70.59 72.70 71.65 Sctl) 3/2llR 9.44 17.1 - 8.361• -58. 19 
7J .62 76.20 74.91 2d 3/248W 9.85 20.4 -8. 330 -60.31 
7b.35 78 .46 77.41 9(4) 3/211R 1.43 2 
95.58 97.69 96.64 4c(3) 3/2llR 8.01 7.3 -8.424 -58.03 
96.17 98.65 97.41 3d(l6) 3/248W 9 .00 6.9 -8.572 -60.89 

DlLUITD SEAWi\TER I I A ) •samp e :> ) 
Diluted St>awatcr Cl normalised (s.:.: section 4.1.3) seel1ff51e 4.4 



SAMPLE 
MID 

DEPTH i\1~--- - --t\(1(-

Eh pE ppm m~qutv 

mY (calc ulated) lhcoJ-] lh.:o3 - ] --
pi i l'ntlllu,·tt\' tly 

II Ill' ro. S 

I 
18.77 n/a n/a I i 5 .7 1. ~ 7.Sll ni;t 

20 . 19 n/a nra 138 .9 ___ 2-:-J-·---

20 . 19 n/a n/a 131. 2 2.2. 
20 . 19 n/a n/a 13 1. 2 2. 2 
20 . 19 n/a n/a 138 .9 2.3 

- 7.22 4 ~ 5 
7.2-:i ·I Hl 
7. Y'i -110 
7. 'i-1 ·llll 

56.8T n/a ilT.1 138~ 2-:J--
56.81 n/a n'a n /a n/a 
56.81 n/a n/a n h t n/a 

69.()4 n /a ·11ta - --

69.64 n /a n/ a 

69.64 543 10.01 92.6 1.5 

8. 22 5()0 
nia Y/U 
n/a 'ih'i 
n/a ti10 
n/a h \() 

7.70 )(>() 

71.65 337 5.86 f1lC9 
2:1" ___ 

7 1.65 337 5.86 n /a n/a 

7 1.65 337 5.86 n /a n/a 

14:VT 14!! 23) 12T.5 ~:n-· -

74 .91 148 2.55 123.5 2 .0 
74.9 1 148 2.55 123 .5 2 .0 
74 .91 148 2.55 13 1.2 2.2 
74 .9 1 148 2.55 13 1. 2 2.2 
74 .91 148 2.S.'i 13 1.2 2.2 

77 .4 1 O.Uu 123~5----2-:-o ·- ··· · 

77.41 0.00 123 .5 2.0 

96.64 n/a n/a 108-:-0 r.r--
96.64 252 4.54 115.7 1.9 
96.64 252 4.54 108 .0 1. 8 

91AT :lU:> J':7(f - - --- n /a n ra-· . 

97.41 205 3.70 n /a n /a 

97.4 1 205 3.70 n /a n /a 
97.41 205 3.70 84 .9 1.4 -

·,i/a n/a 
n/a (,_\0 

!!. -ll h hO 

'9.0& 615 
8. «) i (, \() 
8.9 1 (, .\() 
8 . ~1 h20 
8. 80 (,\() 
8. f!O tdO 

--s. 7G 7CJO 
!\.7 () 7 ()() 

n /a n/a 
9.05 f!.J() 
9 .05 f!.'() 
9.8 790 

9 . f!'J K-10 
9 .!!7 'J .~() 
9 .h l 'J.!(J 

Alk A1k 
mid. E h(corr) pE ppm mequiv 

mV lhco3-) [hco3-) 
18.77 n/a n/a 115.7 1.9 

56.81 n/a n/a 138.9 2.3 

69.64 543 10.0 1 9 2. 6 1.5 
71.65 337 5.86 n/a n/a 

74.91 148 2.55 131.2 2.2 
77.4 1 0.00 123.5 2 .0 
96.64 252 4.54 108.0 1.8 
97.4 1 205 3.70 84 .9 1.4 

pll Coud . 
m i c ro . S 

7.50 n/a 
!! . :.u )'J{) 

7 . 70 )(,() 
8.43 (,(,() 
8. 80 (,1() 
8.76 7!)() 
9 .05 l\20 
9.t, : no 

-



C-3 
MAJOR IONS 
lun not~Stion: 

negative results indicate analyte 
concentration below that in blank 

@ 
• 

AA analysis 
ICP-MS analysis 
HPLC analysis SAMPLE • 

MID 
DEPTH 

correcled with data from USGS slds 
·~~~c~ Mg@ Fe 

mg/kg mg/kg mg/kg mg/kg 

2.44 0.07 2.03 
2.87 n/a 1.19 
2.85 n/a 1.13 
2.86 0.3 1.17 
2.88 n/a 1.03 
2.36 o--1.69 
2.33 0 1.71 
2.35 0 1.69 
2.42 0 1.7 

29.8 2.47 0 1.73 
21.7 I. 81 0 1.49 
20.5 1.72 0 1.57 
21.3 1.71 0 1.46 
6.80 0.96 n/a r.o4 
8.80 0.95 n/a 1.52 

9 0.98 0.3 1.64 
9.60 0.86 n/a 1.34 

10.00 0.81 n/a 1.46 
10.10 0.80 n/a 1.46 

19.2 1.44 o- 1.27 
18.9 1.42 0 1.23 
n/a n/a n/a n/a 
5.1 0.22 0 0.92 
5.4 0.23 0 0.9 
4.6 0.46 -o.7 2.19 
4.6 0.39 0.6 2.17 
4.9 0.24 0.2 1.77 
4.7 0.22 0.3 2.11 

Ana.lysis 
Dale for Ca@ Mg@ Ft'@ K@ 

mid. ICP- MS(- mg/kg mg/kg mg/kg mg/kg 
dd/mm/yy 

18.77 2812190 32.9 2.44 0.07 2.03 
56.81 28/2/90 28 2.36 0 1.69 
69.64 28/2190 29.8 2.47 0 1.73 
71.65 2812/90 21.3 1.71 0 1.46 
74.91 27/9/89 10.00 0.81 n/a 1.46 
77.41 28/2/90 19.2 1.44 0 1.27 
96.64 28/2/90 5 . .J 0.23 0 0.9 
97.41 28/2/90 4.7 0.22 0.3 2.11 

1m.-sea ~ZlB/90 1.88053 
Norm.Sea 380 

I 

mg/kg mg/kg 

71.9 0 3.9 
43.10 0.30 4.20 
42.80 0.00 4.40 

43.8 0 3.5 
45.30 0.00 4.00 

83.1 o~T 
84.6 0 3.1 
85 .3 0 3 
86.1 0 3.2 

84.6 0 3.3 
94.9 0 3T 
98.7 0 3.7 
96.4 0 3 

123. 10 -cf.SO 5.20 
119. 10 0.60 4.80 

119.4 0.4 4.7 
117.60 0 .40 4 .10 
115.00 0.30 4.60 
116.10 0 .30 4.40 

110.5 0 3.5 
110.5 0 3.8 

n/a n/a n/a 
135.8 0 4.6 
135.8 0 4.3 
147.6 1.2 8.1 

158 0.9 8.2 
167.7 0.5 7 
169.1 0.5 7.2 

Na@ AI@ Si@ 
mg/kg mg/kg mg/kg 

71.9 0 3.9 
83.1 0 2.7 
84.6 0 3.3 
96.4 0 3 

115.00 0.3il 4.60 
110.5 0 3.5 
135.8 0 4.3 
1.69.1 0.5 7.2 

53.2983 <kiauskopf 
10770 <krauskopf 



<.: ... 

SAMPLE 
MID 

DEPTH Ba• La' Pb• -u• h:• h:(corrr-NI" - · ru• . 
ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg Uti kg 

3./1 --u.U1 B.JlJ-""9:"80-- o::n 3 .13 
-0.08 0.00 3.93 0.(1') 5.57 o.51 O.!J 3.24 
-0.07 0.00 4.01 0 .00 3A9 4.07 0.1o .u~ 

165.56 0.09 0. 18 22.27 56.81 66.37 0 . 1(1 10.29 
13.7s-J4T.69-:Joo-:-Jr- l-:-62 - '7:71 "" 
14.08 162.69 190.06 0. 1-l J .:U 
13.89 188.82 220.58 O.W 6..10 
I 1.02 174.34 203.67 -0.07 0.<>.! 
35.88 -I r.o2--::-rr.ss-cr.1o-·-· rs6 
36.54 1.19 1.39 o.n 11 .68 
37.72 12.85 15.01 0. 19 -U9 

0 iS" - 5.81 -<>.7~ "0'.03 ).55-
35.52 24.45 28.57 -0.0 1 .US 

0. 19 36.53 - 12.48 - 14.58 O.o7 4 .. '\5 
.7LJ'Cf.09-T5:3LIS":T3-o: 19 . 9 .4-l 

71.65 71.24 0.22 1.26 30.47 4 .87 5.69 0.46 2Ll1 
71.65 71.01 0.25 1.91 31. 10 -9.64 -11.26 0 . 14 4 .78 

-14.91 :rLoo:-&oJ·o:t ~o7 _ __ o.62 - · 41 .59 
74.91 15.65 1.29 30.81 164.60 192.29 0 .87 2 1.42 
74.91 17.61 1.08 30.74 191.77 224.03 0 .11-1 20. I 6 
74.91 13.89 1.32 28.12 94.39 110.27 0.54 14.'25 
74.91 12.50 0.51 27.87 52.99 61.90 0.05 5. 15 
74.91 12.61 0.56 27.33 64.02 74.79 0 .35 6. 14 

25.:>9 5.9o--O.S9- - 0.08 -- ·:1.'60-
23.52 -10. 14 - 11.85 -0.011 0.95 
II. 9T--o.74-T.88--0:2-r-- - -6. R9 ·-
14. 15 7.95 9.29 0 . 17 7.SR 
14.71 6.25 7.31 0 .2 1 7.26 

.3.r-57!J.6ooob.Oo-·o :o~ 1 . JJ . .tl 
97.41 50.55 0.43 4.37 17.02 452.36 528.46 0.20 9.42 
97 .41 42.19 0.16 3.0-1 15 .09 200.48 234.20 I. 17 10.55 
97.41 39.25 0.32 1.93 15 . 13 208.12 243 . 13 OA2 8 .Y9 

------· · 

Ba• La* Pb• u• Fe* Fc(corr) Ni * c u• 
mid. ppb ppb ppb ppb ppb ppb pph ppb 

0 . 12 0.00 0 .06 0 .02 14.33 0 . 13 0. 11 
18.77 165.56 0.09 0 .18 22.27 56.81 66.37 0 . 1h 10.29 
56.81 74.49 0.16 0 .21 35.88 - 11.07. -- 12.81! 0 . 10 2.!HJ 
69.64 83 .72 0.22 0.19 36.53 -12.48 - 14 .58 0 .07 4.35 
71.65 71.01 0.25 1.91 31.10 - 9 .64 .. 11 .26 0 . 14 4.78 
74.91 12.50 0.13 0.51 27 .87 52.99 61 .90 0 .05 5. 15 
77.41 68.59 0.18 0.25 25 .59 5.90 6.89 0 .01! 3.60 
96.64 25.58 0. 12 0.26 14.71 6.25 7.31 0 .2l 7.26 
97.41 39.25 0.32 1.93 15.13 208.12 243 . 13 0 . 4~ !! . 99 

15if. ea 6 0.03 23.8/Ln~~-oq - - 1.50 
Norm.Se -21.02 8.28 72.14 6.47 4823.62 5635 .07 218.24 303.71 

- - --- --- - -·-



C-5 

SAMPLE 
MID 

DEPTH zn.-- As* Br• Rb* Sr• Mo• ca• *I 
ug/kg ug/kg ug/kg ug/kg ug/kg ugikg ug/kg ug/kg 

. 4--=u:tJo--9:U5 0.19 0.44 0.04 --u:\)3 I.U6 
3 .78 0.04 13.42 0 . 19 0.45 O.Q7 0.04 18.76 
3 .31 0 .04 8.98 0.18 0.42 0.05 0.03 14.80 

94.60 0.54 138.69 1.79 248.12 35.27 0 .29 537.22 
t57 .5:r--07a-snt 1.51 200.58 13.4r-G.25 0.00 
110.04 0.76 85.79 1.48 199.89 13.17 0.24 0 .00 
105.33 0.51 105.o3 1.43 192.27 12.89 0.24 14.34 
84.40 0.88 81.34 1.47 199.04 13.49 0.18 0.00 

-J7"17 0.48 138.46 t.;o 323 .20 41.37 0.20 2~ 
143.83 0.43 145.88 1.71 317.54 43.63 0.32 224.41 
102.91 0.66 144.39 1.70 320.73 43.41 0.26 216.54 

~89~8l-o~S/14o.lJI 1.70 315.02 41.15 0.28 15g:-g:r 
281.24 0.52 148.14 1.73 316.27 41.66 0.30 152.06 

63.07 0.62 145.42 1.81 324.64 40.81 0 .24 229.52 
--nT:"D 0 58 152.68 1.19 276.07 43.24 0.31 2•b.96 

25!.61 0.68 148.97 1.32 260.37 43 .52 0.38 241.91 
199.97 0.59 146.10 1.26 258 .67 42.28 0 .25 237.30 
04.18 1.16 161.50 T.W~).J) 67.75 0.46 fmf.48-

114.46 1.41 151.76 1.94 104.30 62.82 0 .45 857 .00 
115.13 1.07 176.00 2.05 108.01 61.37 0.40 388.83 
93.34 1.36 148.55 1.67 124.59 61.08 0.37 873.55 
89.10 1.30 145.93 1.52 138.08 61.99 0.29 1385.45 
87.78 1.25 150.16 1.58 138.43 61.16 0.27 1410.49 

3-:12 0.7:ri72.47 1.07 261.80 48.54 0.23 286.49 
34 .31 0.75 175.76 1.04 264.34 51.33 0 .23 475 .93 
92. 14 0.87 226.11 ().8"8 112.01 72.10 0.38 2[J.g8 

96.64 107.Q3 0.62 189.85 0 .64 83.77 75. 12 0.29 274.01 
96.64 102.46 0.79 189.67 0.64 86.70 73.64 0 .31 323.20 

- - 9T.4 .JJ4.8T"-r.69 212.47 2.74 59. 13 133.33 0.51 543.57 
97.41 248.63 1.90 22-U5 2.51 58.'.W 130.02 0.43 504.55 
97.41 166.67 2.23 245.40 1.81 59.71 116.97 0 .53 385.67 
97.41 93.79 2.26 239.42 1.74 59.31 112.47 0.42 456.92 

Zn• As• Br• Rb• Sr• Mo• Cd• •I 
miJ. ppb ppb ppb ppb ppb ppb ppb ppb 

0.28 0.09 1.21 0 .01 0.00 0.02 0.05 68.34 
18.77 94.60 0.54 138.69 1.79 248. 12 35.27 0 .29 537.22 
56.81 37.17 0.48 138.46 1.70 323.20 41.37 0 .20 220. 15 
69.64 63.07 0.62 145.42 1.81 324 .64 40.81 0 .24 229.52 
71.65 199.97 0.59 146.10 1.26 258.67 42.28 0.25 237.30 
74.91 89. 10 1.30 145.93 1.52 138.08 61.99 0.29 1385.45 
17.41 53.32 0.72 172.47 1.07 261.80 48.54 0.23 286.49 
96.64 102.46 0.79 189.67 0 .64 86.70 73.64 0.31 323.20 
97.41 93.79 2.26 239.42 1.74 59.31 112.47 0.42 456.92 

I . ea - . 00.42 331.17 0.97 38. 15 0.33 -0.03 -0.09 
Norm.S('a -141.25 85.68 ••••••• 196.82 7707.97 66.48 -5.66 -17.98 
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:J 
~-··- ·- --

MID 
DEPTH I Mg• At• ----si•- . - -- ·p· - - s•· 

ug/kg ug/kg uglkg ug/kg ug/k~ u~lkg u~/kg 

.w- I.n--· ·--zTo.r - -l9."2R 75Hi7.b4-
4.99 6.82 4 .03 33.83 IJ .57 71JI72.114 
6.39 4.36 1.23 27 .3_1 . 6.59 77.U7 . !5 

18.77 20.71 2300.32 6.99 3-r12 .79 . 5.42 5·05.92 
30&n9 r2.:ts- · -417J .s2-- . 19.16 5991.00 

16.94 3153.01 8.56 4Do.IJ 44.02 bOII.l .LlO 
15.24 2744.93 9 .87 37R5.87 4 .87 ·thl9 . 0.~ 

7.09 12.51 3121.44 2 .31 4381.2:'\ 9 .95 h l.l! .OO 
• 4~or-"l 121 ~ 25 - -- "1:47 5R51.21) -21.15 2168.33 16.99 30:19.66 '25 .97 h:1T/.IU 

22.31 2246.71 22.58 3163 .04 3.95 61.H.W 
__ u-~~os-----3172-:-11 -- --- 7:;11 710-1.02 

19.02 2345.09 8.56 3158. 13 3.06 71l'J .hll 
15.61 20.01 2672. 18 11 .07 302.U4 2.8') ()(,II') . J2 

-5.74 107r:J7--19~5o--3408TI --- - 1~ . 01 ci l5 1.18 
26.26 1630.87 25.55 35oo.:;s :us h l}h. 7h 

17.23 27.01 1680.38 22 .40 3491.% 15.7h Ylhl .Oh 
65.89 ---"789':'~331J)5'-·U5TO(i-- - o.OO 5JJJ .OO 
55.60 767A5 214. 12 3759.99 () . ()() 4h8ll .OO 
59.81 914.57 386.98 4600.33 19.8& 7511.42 
48.85 730.52 155.38 3861.78 0 .00 5631 .00 

22.55 57.35 716.33 99 .92 3715 .05 0.00 57<17 .00 
51 .82 718.42 107 .68 3706.40 0.00 595(1.()0 

'80:18 13:53- ·156J:8 ,- ---r2.0G 73)5 .82 
41 .44 1348.98 8.91 3817 .27 -21.82 7134 .7-1 

.65 254.TI--n. 31--4097:09 ___ 8.77 14614. 19 
106.10 209.64 22 .85 4409.27 9 .311 1171J1 . Ill 

31.90 117.38 234 .79 23 .-U 4-17l .W :w.ot lll119 ·II 
15 .46 4sro-r---r.ns:2o-·- - ·7996.7!r- 18.2 I - 21! 11\9.71\ 

97.41 232. 10 365.68 1151.64 7772.54 15.81 29()1)4 . 1!0 
97.4 1 252.18 214 .89 584.69 6947. 10 81 .63 3132 1. _I') 
97.4 1 55.56 220.09 210.08 589.76 6868.68 17.21 3058 1.-HJ ---- -~- ·- ·····---·- - -- .. - . -

"Li 8" Mg• AI• Si• p• s• 
mid. ppb ppb ppb ppb pph ppb pph 

6.29 0.68 1.93 20.47 117.00 '2540 .00 
18.77 20.71 2300.32 6.99 3432.79 -5.42 'i4l'i .<Jl 
56.81 20.69 2400.94 24.03 31 21.25 3.47 ~l!'i I . l.IJ 
69.64 15.61 20.01 2672. 18 8.07 3022.34 2.119 668CJ .Tl 
71.65 17.23 27 .01 1680.38 22.40 3491.96 15 .76 5762 .06 
74.91 22.55 57.35 716.33 99.92 3715.05 0 .00 5767 .00 
77.41 40.97 1480. 18 13.53 3563 .81 12.06 7335 .8'1. 
96.64 31.90 117.38 234.79 23 .44 4471.69 20.01 1231!9 .43 
97.41 55 .56 220.09 210.08 589.76 6868.68 17 .21 30511 1.4(1 

D1l.Sea I 1.01 660.86 6460.71 ro.oo- s rm- -- ,z. l3-- · · 9&81.43 
203.60 133539.07 1305516.60 3245.25 16373.74 2451.11 19%741.98 Norm.Sea . --
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SAMPLE 
MID 

DEPTH I' ISU~ Icorr-15041+ Cl+ Cl" F+ 
ug/kg ug/kg mg/kg mg/kg ug/kg mg/kg 

o;rr.oo 
96380.00 
96151.00 

18.77 16287.41 19229.52 13.25 97.17 101321.00 2 .0 7 
·--20-:JIJ 03r-21193 . 12 77548.00 

20.19 13226.23 21518.57 77051.00 
20.19 13839.78 16339.76 77842.00 
20. 19 18373.05 21691.91 7 .87 71.50 75769.00 1.28 

1753 1.96 20698.89 101973.00 
19109.61 22561.52 20 .62 94.27 105974.00 2.70 
18377.82 21697.54 34.38 95.46 105251.00 2.64 

LT28s:-4s-----zsno. 44 25.28 104. 17 112899.00 2.40 
21332.39 25185.82 110771.00 
20042.92 23663 .43 16.55 98.49 110132.00 1.75 

31.1 I 1T760.46 23 .37 107.17 I 125so.oo--2-:-JO 
18357.35 21673.37 22.87 96.01 111322.00 2 .08 
17264.60 20383.24 8.91 109.23 109715.00 2.78 
15979.04 18865.45 I I 1077.00 
14022.48 16555.47 106411.00 
22506. 16 26571 .62 130812.00 
16877.92 19926.70 111008.00 
17279.41 20400.73 23.1 1 110.46 109769.00 2.62 
17845.71 21069.31 109449.00 

LT98U:OI 25950.43 13157{f."QO 
21377 .52 25239.10 130056.00 

.51 49544 .88 154803.00 
35349.33 41734.75 143678.00 3 .83 
37121.93 43827 .54 143485.00 4.64 

2.00 5.68 
88973.25 105045. 16 77.74 152.02 162800.00 6 .74 
93846.93 110799.21 104.50 169.63 177559.00 7.18 
91629.91 108181.71 72 .56 159.81 178183.00 6.16 

JSOW (S04lcorr [S04)+ C1+ Cl• F+ 
mid. pph ppb ppm ppm ppb ppm 

7293.59 97 .76 
11U7 16287 A I 19229.52 13.25 97.17 101321.00 2 .07 
56.81 17531.96 20698.89 101973.00 
69.ti4 20042.92 23663.43 16.55 98.49 110132.00 1.75 
71.65 17264.60 20383.24 8.91 109.23 10971 5.00 2.78 
74.91 17279.41 20400.73 23 .11 110.46 109769.00 2.62 
77.41 21980.01 25950.43 131570.00 
96.64 37 121.93 43827.54 30.01 130.50 143485.00 4 .04 
97.41 9!629.91 108181.71 72.56 159.81 178183 .00 6 . 16 

l'J.r.Sea 29007:3o-"""J:l95::>.49 93037.00 
Norm.Sea 5982752. 18 7063461.85 0.00 0.00 18800000.00 0.00 



SAMPLE 
MlD 

DEPTH I -v Mn..-----Br!C1 
ug/kg ug/kg ug/kg 

:o9 o.or- ·----
289.35 5.85 0.12 0.01 
722.53 5.44 0 . 19 0.00 

18.77 31363.09 0.58 0.88 527.87 0 .00 1)7 
r--r2r.r.n--- 0.00109 -

0 .66 1210.1'i 0.00111 
0 .42 1180.29 0 .001)5 
0.63 1232.65 0 .00107 

. 9 40~1s--o ~oo J:\6 _ ___ 
1.05 39.25 O.OOIJ8 
1.42 40.60 O.OOIJ7 
1.42 ___ ----:?ns -·-- o:oono- - · 
1.42 25.87 0.00134 
1.42 21.63 O.OOI.H 
Dr-- ;ro.67;- · -·o:ootJ6 . 
1.37 45 . 10 O.l)()l34 
I. 20 42.66 0 .00131 

- :r.m> 28':40 -- - 0~00145-- - .. 
9. 10 3.46 27.92 0 .0014l 

11.47 3 .42 29.20 O.OOU5 
5.77 3. 17 30. 16 0 .00134 
5.01 2.79 33.25 0 .00133 
5.65 2 .83 33.79 0.00137 
1.33 nr--Jnz-·o:ooDt -- ·-- ··· 

0.73 1.66 25.67 0.00135 
-0.45 --5:19 3a:ou- - <r oot46 ------

1.39 1.79 14.77 0 .00132 
1.52 1.67 14.44 0 .00112 

21.17 T.l,---35.'3'5--o: 00136 
97.41 19.26 7.44 28.68 0.00138 
97.41 !0.29 6.26 14.58 0 .0013!! 
97.41 9.95 5.39 15.78 0 .00134 

-- -- - · ·-··--- -- .. . 

Ca• Ti• v• Mn• Br/CI 
mid. ppb ppb ppb ppb 

999.83 0 . 18 O.D7 0.05 
18.77 31363 .09 0 .58 0.88 527.87 0 .00137 
56.81 27558.70 0.91 1.39 40. 18 0.00136 
69.64 29901.69 0.99 1.42 21.63 0 .00132 
71.65 20392.70 i.31 1.20 42.66 0.00133 
74.91 9394.00 5.01 2.79 33.25 0 .00133 
77.41 19039.11 1.33 1.84 32.92 0 .00131 
96.64 5473.40 1.52 1.67 14.44 0 .00132 
97.41 4334.02 9 .95 5.39 15.78 0 .00134 

D1l.Sea 940.95 0.39 2.41 O:Ju-0~00356-· 

Norm.Sea 392208.05 79.21 486.58 60.22 0 .00356 
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CIIARGE BALANCE 

SAMPLE 
MID ---cn3rge&aJ3nceTor: 

DEPTH ICJI ICP•AA !CJI> AA•ffP a mons amo~ 
HPLC ICP-MS HPLC 

% % % % 

-1.375 -1.069 -0.670 0.005 0.005 -0.005 -0.0050 
.004 -0.005 

-5.712 0.004 0.004 - 0.005 
·5.063 0.004 0.004 -0.005 
-5 .609 0.004 0.004 -0.005 -0.0045 
- 3.482 n/a n/a 

n/a n/a n/a 0.005 0.005 -0.003 -0.0032 
n/a n/a n/a 0 .005 0.005 -0.003 -0.0035 
na -0.004 -0.0035 
n/a 0.002 n/a -0.004 

3.525 2.554 0.005 0.005 -0.005 -0.0047 
- .. og---4 ..!36 0.005 -·0.006 -0.0059 

n/a nla 0.005 -0.004 -0.0032 
n/a n/a 0.005 -0.003 -0.0034 

- T.052 0.006 -0.006 
3.218 4. 126 0.006 0.006 -0.005 

-3.449 - 3.276 0.006 0.006 -0.006 
0.212 0.725 0.006 0.006 -0.006 

-0.441 0.025 0.006 0.006 -0.006 -0.0058 
0.037 0.495 n/a n/a 0 .006 0.006 - 0.006 0 

=2-:-42:t -2.688 nTa--nTa (> 0.006 -0.006 ---u 
-2.366 -2.407 n/a n/a 0 .006 0.006 - 0.006 0 

0.006 -0.007 -0.0063 
0.006 -0 .007 -0.0063 

7 -0.006 -0.0061 
0.007 -0.006 -0.0062 
0.008 -0.007 - 0.0073 
0.008 -0.008 - 0.0077 

<<A AGE 
3.998 4. 101 4.094 <<STD.DEYn. 

mid. 

18.77 - I. 773 -1.375 - 1.\)69 -0.670 0.005 0.005 -0.005 -0.0050 
56.81 -2.9 14 -3.482 nla n/a 0.005 0.005 -0.006 
69.64 3.525 2.554 6.677 5.940 0.005 0.005 -0.005 -0.0047 
71.65 n/a n/a n/a n/a 0.005 0.005 -0.003 -0.0034 
H.91 -0.441 0.025 -2.862 -2.306 0.006 0.006 -0.006 -0.0058 
77.41 -2.424 -2.688 n/a n/a 0.006 0.006 - 0.006 0 
96.64 -2.702. -2.462 -1.153 - 1.099 0.006 0.006 -0 .007 -0.0063 
97.41 -3.666 -3. 142 0.011 0.380 0.008 0.008 - 0 .008 -0.0077 

"Dif. ca -n s,--TITo- -cr.:nl 0. <<A AGE 
Norm.Se 2.250 1.991 3.308 2.913 <<STD.DEYn. 
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APPENDIX D: Thermodynamic Data Base Review 

INTRODUCTION 

The PHREEQE thermodynamic data hase originally provided with the program1 

contains information ahnut the composition of mineral:; of interest and 

thermodynamic constants characterizing those minerals. Any mineral composition is 

stored as a dissodation reaction for that mineral to part of a set of previously defined 

possihlc components; either elements or complex species. The dissociation reaction 

stored in the data base is a string of stoichiometric constants, each one associated 

with a component of the reaction. Components with positive sign appear on the right 

side of the dissociation reaction and negatively signed components appear on the left 

of the reaction, as does the mineral itself. However, the chemical composition of the 

mineral itself is not stored explicitly in the data base; it can only be derived by 

summing the stoichiometric constants multiplied by the formulae of their respective 

components. The dissociation reaction is balanced for both mass and charge. 

The thermodynamic information for each mineral dissociation reaction is stored as 

two thermodynamic constants at 25°C. The thermodynamic parameters stored are the 

enthalpy of the dissociation reaction (~H0d;.-oc.) and the log of the equilibrium 

constant of the d!:;sociation reaction (LogKdl~socJ. For comparison of thermodynamic 

1 This version of PHREEQE was provided by Colorado State 
University and included a variant of the MINTEQ data base 
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parameters in the database, with published parameters for mint>rals, it is ronwnil'nt 

to transform the database constants to thermodynamic valm•s for the mitll'ral only. 

Initially only the LogKdb"'"' values have been reviewed. 

LogKdissoc was transposed to ~G0d; .. .,c. using equation (I) It:e<tst as (Ia) 

(I) 

~Go = l..ogK/1.364 (I a) 

A value for the Gibb's standard free energy of formation (~G0r), for the mineral was 

than hack calculated using equation (2). 

~Go . = :E6.G0 (products)-I:~G0 1rcact·tnts) dassoc. { 1\ < 
(2) 

The only unknown in equation (2) is ~G\ .. 1 .. .,..1 and is cor.taim:d in L:~Go,{ rcactants). 
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SCRUTINY OF DATABASE 

Prior to scrutiny of the database attempts were made to develop mineral stability 

diagrams for some of the sodium minerals, using the database data. These initial 

attempts produced spurious results because of inconsistent thermodynamic data in 

the database; the pyrophyllite-Halloysite (syn kaolinite )boundary occurring at a lower 

concentration nf H 4Si04 than the Gibbsite-1:-lalloysite boundary. The problem of 

incon-;istcnt thermodynamic data is discussed by Nordstrom and Munoz (1985), with 

the case of inconsistency in published ~Go's for pyrophyllite specifically addressed to 

highlight the problem. 

Method uf database scrutiny. 

Initial speciation calculations were made for the NSCRV water analyses using 

PHREEQE with the original unchecked data base. From these initial runs minerals 

with a Log Saturation Index greater than -1 y,ere extracted as being of possible 

interest, it is the thermodynamic and compositional data for these minerals which has 

been scrutinized. 

The thermoJynamic and compositional constants were entered into a Lotus work 

sheet and the relevant calculations performed to arrive at a 4.G0 r for each mineral. 

All values useJ for ~Gor for the mineral components (required for the back 
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calculation of b.G0 r from LogKdL ... oc) were from Rnhie ( 197:-\). Puhli~lwd 

thermodynamic data was then scoured for values of b.G0 r for the mint•rals. \VIwrt• 

thermodynamic data was available it was entered into the wurksh~.:d. The sourrt·s 

of thermodynamic data used to date are Robie ct al ( 197X), Helgeson t't at (I <J7S) 

and Hemingway et al (1982). Some values have also been found in Nriagu (1975). 

As yet, no extensive listing has been discovered of thermodynamic data for tht· day 

minerals, some values of clays were published hy Helgeson ( 1%9). It will he shown 

that thermodynamic values pub lis hell by I 1elgcson ( 1969) ami I klgcs< m l't at (I '.Jhi) 

are thermodynamically consistent for the minerals of intaest. 

Because of the lack of thermodynamic data for clay minerals a theoretical value for 

b.G0 r for the clay minerals was calculated. The methm.l used to calculate mineral 

b.G0 ,'s is analogous to methods described in physical chemistry texts for cakul:ating 

b.G0 r of compounds, from component :-.pecies and or clements. Fnr calculation of 

b.G0 r(c:lay) the method of Nriagu ( 1975) was followed. Nriagu assumed that till: clay 

was formed by combination of metal hydroxides and silicon hydroxide of known 

thermodynamic values as published by Nriagu (1975) and that an empirical correction 

term can be applied to the calculations. The calculated b.Gor's wen.; then compared 

to A.G0 r's back calculated from the database. 
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Overview of the thermodynamic data re,·iewed to date. 

A few examples of thermodynamic calculations follow to show the inadvisability of 

mixing thermodynamic data from different workers along with problems of 

inconsistent data sets published by some authors: 

Pyrophyllite and Halioysite. 

As IIOteu ahove, early attr;:mpts to compose mineral stability diagrams using the 

thermouynamic uata, from the database, were unsatdactory and pointed to problems 

with the value of LogK for pyrophyllite stored in MINTEC; Minor inconsistencies 

in values of LogK for minerals having common ions may lead to miscalculation of 

mineral stability boundaries, due to the extremely low ~Gor of many m ineral reactions. 

The ~G0r value for pyrophyllite originally stored in the database approximates the 

value published by Hemmgway et at ( 1982). Changing the sign of the stored value 

for LogK, which was believed to be the problem, resulted in a back calculated value 

for Pyrophyllite which was close to the value published by Helgeson et al (1978). 

I lowcver, the value for ~G\1,)ruphyllllr) published by He lgeson et al (1978) is unlikely 

to be the required value, as none of the other thermodynamic data in the database 

appears to be derived from Helgeson et al (1978). 
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Nordstrom and Munoz ( 1985) state that there is a systl~matir l'rmr in the 

thermodynamic calculations of Helgeson et al ( 197~), first noticed by I kmingway ct 

al (1982). The error in the data of Helgeson d al (197~) is attributed to an error in 

~iG\aollnll•' used as a secondary reference phase, which ties together thl~ free l'nngy 

values obtained in different sets of experiments. Table I, below, is a synopsis of 

results for calculations of ~G0., LogK and the position of mineral stability boundaries 

(Log[Si]) with respect to [H2Si04] for the react ions Gibbsitc-llallnysit l~ (4) ami 

Halloysite-Pyrophyllite (5). 

.... 

The values of ~G0r used for the non mineral species, involved in reactions, were wken 

from Robie et a1(1978). The hack calculated value for ~G0

11~u.h,il<l fror]!__!_)J~ l!~l_t;_~>_;__~~c 

was used in all the ca lculations forTablel. AI2Si20 5(01-1)4 is r~.:fcrrcd to as halloys ite . 

No value for ~G0

1 halloysite is listed by H e lgeson c t al (1()7H) and ka olinite, of the 

same chemical formula, has been substituted in these calculations. 

The thermodynamic data for Gibbsite/Halloysitc/pyrophyll itc of I kmingway e t a ! 

(1982) is in e rror as pyrophyllite appears to precipitate at lower concent rations o l 
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li4Si04 than halloysite. These calculati,ms highlight the problem of attempting to 

mix thermodynamic data form unrelated groups of workers (NOTE:Hemingway et 

al (1982) and Robie et al (197H) are hoth USGS groups and their data is generally 

con:-.istent.) 

Table 1. Comparison of mineral stability boundaries calculated using different 
thermodynamic data sources for AI2Si205(0H)4 and pyrophyllite . .iG0 f(gibbsite) is 
back cakulatcu from MINTEC. These values represent a mixed thermodynamic 
source. Note that the Log[Si) shown for the Gibbsite-Halloysite boundary for 
1-llg/lllg and Hlg!Hem data are the same as they are calculated using the same data 

DATA I G ihbsite-Ha Jloysite II Ha lloysite-Pyrophyllite 

SOURCE I AGo, I LogK I Log[Si] II 4Gor I LogK I Log[Si] 

Hcm/Hig -11.599 8.504 -4.252 -10.617 7.784 -3.892 

lllg/1-llg -13.682 10.0312 -5.0156 -8.5342 6.25681 -3.128 

llem/1-km -9.5313 6.lJ8766 -3.4939 -13.733 10.069 -5.034 

Hlg!Hcm -13.682 10.0312 -5.0156 -11.650 8.54 -4.29 

The above calculations are now repeated using supposedly consiste nt 

thcrmouynamic data, for react ions (4) and (5) for both halloysite and kaolinite. All 

Jata referred to as Heminbrways is a combination of Hemingway et al (1982) a nd 

Robit: ct a! ( llJ78). 

.. 

I 
I 



Table 1a Reactions (4) and (5) using kaolinite 

DATA I Gibbsite-Kaolinite II K<Hllinite-Pyrophyllitc _j 
SOURCE 

I I I Log[SiJ]I I I I AG0
, LogK .A. Go, LogK Log!Si] 

DB -16.109 11.810 -5.905 -9.99~ 7.:no <H65 

Heming -14.130 10.359 -5.179 -9.135 6.697 -3.3-\9 

Helg -11.429 8.379 -4.190 -8.534 6.257 -3. 12H 

Table lb Reactions (4) and (5) using Halloysitc. 

DATA I Gibbsite-Ha lloysi te II llalloysitt.!-Pyrophyllitc J SOURCE -

I AG0 I LogK I Log[Si] II .A.Gor I l.ogK I l.og!SiJ] -r 

DB -11.662 8.550 -4.275 -14.445 I O.SlJ() -5.2l)) 

Heming -9.531 6.988 -3.494 -13.734 I O.!l(>') -5.03-\ 

N.B. DB indicates the database supplied with the Colorado vt.!rsion of l'IIREI-:<)1 ~ 

The data in Tables 1, la and lb show the quite large differences that will a rise in 

thermodynamic calculations when different data sets arc used. The tables als11 p11int 

to errors in the AG0 r values for halloysite, published by I kmingway t..:1 al ( IIJX2) ami 

highlight the errors that will result when incompatible data is mixed. 

Calculations were also made to construct mineral stability diagrams for Logj K Ifill] 

vs Log[H
2
Si04] space and the mineral assemblage gibbsite-kaolinite-muscovite-

microcline-pyrophyllite, using the three data sets. Tht.! rt.!sults of these calculations 
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are shown on Figure 5.3. Only the data of Helgeson et al (1978) is entirely consistent. 

The thermodynamic data from Hemingway/Robie and from MINTEC is inconsistent, 

as revealed hy the kaolinite-pyrophyllite-muscovite-microcline junctions of Figure 5.3. 

For the databse and Hemingway/Robie data sets it also appears that four phases may 

be equilibrium at one point, this contradicts the Gibb's phase rule which, for a system 

of three components (K+, H+, and H 2Si04°) predicts that the maximum number of 

phases at equilibrium together (zero degrees of freedom) is 3. Figure 5.3 also reveals 

the large disparity in thermodynamic data generally: Water compositions plotting in 

the muscovite stability field defined by Helgeson et al (1982) would still be in the 

kaolinite stability fields defined by the other thermodynamic data sets. The mineral 

stability diagram derived using data from MINTEC, but with LogKdissoc for 

pyrophyllite reversed, reveals little except that data which appears to be consistent 

on the basis of a particular component space, may not be. 

Clay minerals 

Table 2 shows the values for ~G0r in kcal/mol, for some clay minerals, calculated by 

the method outlined hy Nriagu (1975), back calculated from the database, and as 

listed hy Nriagu ( 1975) from other workers. All AG0 r values calcula ted by the Nriagu 

mdhod arc in good agreement with the PHREEQE database and published AG0
r 

values. 
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Table 2. AG0 f values in kcal/mol as calculated hy the method of Nriagu ( 1975), hark 
calculated from the PHREEQE thermodynamic data base and as listed by Nriagu 
(1975) 

Nriagu PHREEQE Nriagu 

Calculated Back Calc. puhlished 

NA-NONTR -1399.84 -1399.84 

K-NONTRO -1403.80 -1403.81 

CA-NONTR -1065.09 -1065.45 

MG-NONTR -1063.09 -1063.81 

MONT -1280.83 -1279.26 -1278.80 

ILLITE -1302.05 -1301 .00 -1301 .00 

Construction of stability diagrams. 

Attempts were made to construct mineral stability diagrams, with ordina tes 

Log[Na}I[H], Log[K]/[H], Log[Ca]/[Hf and Log[Mg]/lH]2 vs Log III2Si0,1J, using 

the rmodynamic data from the database. The diagrams constructed were in error with 

some of the calculated mineral boundaries contradicting both Le Chatclier's principal 

and Gibb's phase rule. 

As noted earlier the PHREEQE database has apparently bt!en assembled from the 

Hemingway/Robie thermodynamic data set; however, the ~Go~thh,lt• value in the 

database differs by approx 1 kcal/mol from the Hcmingway/Robie value. The value 

for ~Go~thbsll• in the database was replaced by the correct figure and halloysite struck 
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from the data base. The mineral stability diagram constructed from these calculations 

for Na still contradicted Gibb's phase rule. Furthermore, the formula stored for Na

Nontronite, due to the inclusion of FeH· precludes the Na-Nontronite stability field 

from intersecting Log[Na]i[H], [H2Si04] space. This observation holds true for all the 

nontronites and the other stability spaces studied here. Except for the case of 

Gibbsite-Halloysite-Pyrophyllite, where the published AG0 r for halloysite is in error, 

it is not known if the source of the inconsistency in thermodynamic data is a result 

of the approximations within tlv.! database or if the Hemingway/Robie data set is truly 

inconsistent. 

The only mineral dLJta set which was successfully used to construct stability diagrams 

bearing some resemblance to those published by Nesbitt ( 1983) or Aagard and 

Helgeson ( 1983), was that of Helgeson et at (1978), in conjunction with the Beidellite 

data of Helgeson (1969). However, the thermodynamic data forK-beidellite was not 

consistent with the other potassium minerals and K-beidellite has been left off the 

Log[K]/[H] vs Log[H 2SiO~J stability diagram. Noticeably, K-montmorillonite is also 

missing from the diagrams of Nesbitt (1983). As pointed out previously the 

I kmin!,TWay/Robie data set does appear to have some inconsistencies, despite claims 

to the contrary by Nordstrom and Munoz (1985). 



CONCLUSIONS 

If one compares the back calculated values for AGo, in the PHREEQE database, 

with published values, it seems that the data set has, wherever possihk, bn·n 

assembled from the values of Robie et al ( 1978) with substitutions of dat:l of from 

Hemingway et al (1983) where applicable. 

The PHREEQE thermodynamic data cannot he corrected by substituting A.G0 r111.,11,.,,11.) 

with a value for kaolinite and correcting the value for gibbsite. Because of the 

inconsistency of the gibbsite-halloysite-pyrophyllite data, found in the 

Hemingway/Robie data set, all the thermodynamic values from Helgeson ct al ( JIJ7H) 

fer the minerals falling in the spaces Log[Na]/[11), Log[K]/[H], Log[Ca]l[llf and 

Log[Mg]/[Hf vs Log (H2Si04] have been substituted into the database, halloy~ite 

deleted and the new data base renamed HELGTHEM. 

The thermodynamic data for the Nontronite clays, whose thermodynamic source is 

unknown, has been deleted and replace with Na, K, Ca, Mg -Beidcllites from 

Helgeson (1969) in the data base HELGTHEM: The data of llt.:lgesun ct al ( J<J7X) 

combined with that of Helgeson (1969) appears to he the most internally consistent 

data set available. Nordstrom and Munoz ( 1985 ), despite their criticism of the data 

set of Helgeson et al ( 1978), used the Helgeson data set to construct mineral stability 
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diagrams in their publication as did Aagard and Helgeson (1983). Both publications 

appeared after the publication of the thermodynamic data of Hemingway et a! ( 1982). 

Within the PHREEQE database only halloysite has been deleted; all other 

thermodynamic data remain untouched. Both data sets were run for comparison. 

NOTE:A third data base, Helhem.dat, is also available in which the Nontronites are 

replaced by Bcidellites from Helgeson (1969). Any minerals with thermodynamic 

data published by Helgeson or Hemingway /Robie have had their thermodynamic data 

altered to reflect published thermodynamic values. Where one mineral has values 

published by both groups, the data of Helgeson is used. All changed values are 

annotated in the data base, see comments at the end of Helhem.dat 
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APPENDIX E IIELGTIIEiVt thermodynamic Data Base Used with PHREEQE 



HELGTHEM DATA BASE 

1 



El.E!\1 E:\TS 
AG 4 107.8680 AG 
AL 5 26.91US AL 
AS 6 141.9431 113AS04 
II 7 61.8331 1131103 
IIA 8 137.3400 BA 
IIR 9 79.9040 BR 
c 10 60.0094 C03 
CA 11 40.0800 CA 
CD 12 112.3994 CD 
CL 13 35.4530 CL 
cs 14 132.9050 cs 
cu IS 63.5460 CU+2 
... 16 18.9984 F 
FE 17 55.8470 FE+2 
I It! 126.9044 I 
K 19 '39.1020 K 
1.1 20 6.9390 1.1 
J\1(; 21 24.3120 1\IG 
MN 22 54.9380 MN+2 
N 2J 62.0049 N03 
NA 24 22.9891! NA 
Nl 25 51!.7100 Nl 
I' ~6 94.9714 1'04 
I'll 27 207.11!99 I'll 
Rll 2R 85.4699 RB 
s 29 96.0616 S04 
Sl 30 96.1155 114SI04 
SR :\I 1!7.6200 SJ{ 

u .\2 270.0278 U02+2 

" .\.\ 82.9.\90 V02+1 
ZN -'" 65.3699 ZN 
MO 35 159.9376 M00-'-2 
ND .\6 144.2-' NIH3 

SPECIES 
I 

II+ 100 1.000 11.1100 0.000 9.000 0.000 0.000 
0 .000 0.000 
1.000 

2 
E- 11)0 -1.000 -l.OtlO 0.000 0 .000 0.000 0.000 

0 .000 0.1100 
2 1.0110 
.\ 

1120 100 0.000 0.000 0 .000 0 .000 0.000 0.000 
11.000 0.000 

3 1.000 

" AG+ 100 1.000 0.000 0 .000 0.000 0.000 0.000 
0 .0110 0.1100 

4 1.000 
5 

AI. 3+ 100 .\.000 0 .000 0 .000 9.000 0 .000 0.000 
0.000 0.000 

5 1.000 
6 

II.\AS04 100 0 .0110 5 .000 0 .000 0.000 0.000 0 .000 

2 



0.000 0.000 
6 1.000 
7 

H3B03 100 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 

7 l.GOO 
8 

BA 2+ 100 2.000 0.000 0.000 5.000 0.000 0.000 

0.000 0.000 
8 1.000 
9 

BR- 100 -1.000 0.000 0.000 4.000 0.000 0.000 
0.000 0.000 

9 1.000 
10 

C03 2· 100 ·2.000 4.000 0.000 5.400 0.000 2.000 
0.000 0.000 

10 1.000 
11 

CA 2+ 101 2.000 0.000 0.000 6.000 0.165 0.000 

0.000 0.000 
11 1.000 
12 

CD 2+ 100 2.000 0.000 0.000 0.000 0.000 0.000 

0.000 0.000 
12 1.000 
13 

CL- 101 -1.000 0.000 0.000 3.000 0.015 0.000 

0.000 0.000 
13 1.000 
14 

CS+ 100 1.000 0.000 0.000 0.000 0.000 0.01\0 

0.000 0.000 
14 1.000 
15 
cu 2+ 100 2.000 2.000 0.000 6.000 0.000 0.000 

0.000 0.000 
15 1.000 
16 

F- 100 -1.000 0.000 0.000 3.500 0.000 0.000 

0.000 0.000 
16 1.000 
17 

FE 2+ 100 2.000 2.000 6 .000 0.000 0.000 0.000 

0.000 0.000 
17 1.000 
18 

1- 100 -1.000 0.000 0.000 0.000 0.000 0.000 

0.000 0.000 
18 1.000 
19 

K+ 101 1.000 0.000 0.000 3.000 0.015 0.0110 

0.000 0.000 
19 1.000 
20 

Ll + 100 1.000 0.000 0.000 6.000 0.1100 O.OIIIJ 

0.000 0.000 
20 1.000 

3 



21 
MG2+ 101 2.000 0.000 0.000 6.500 0.200 0.0011 

0.000 0.000 
21 1.000 
22 

MN2+ 100 2.000 2 .000 0.000 6.000 0.000 0.1100 

0.000 0.000 
22 1.000 
23 

N03- 100 -1.000 5.000 0.000 3.000 0.000 0.000 

0.000 0.000 
23 1.000 
24 

NA+ lOi. 1.000 0.000 0.000 ~ .000 O.o75 ().()01) 

0.000 0.000 
24 1.000 
25 

N12+ 100 2.000 0.000 0.000 0.000 0.000 0.000 

0.000 0.000 
25 1.000 
26 

P04 3- 100 -3.000 0.000 0.000 S.ilOU 0.000 2.000 

0.000 0.000 
26 1.000 
27 

PB 2+ 100 2.000 0 .090 0.000 0.000 0.0110 0 .000 

0.000 0.000 
27 1.000 
28 

Rll+ 100 1.000 0.000 0.000 o.noo 0.000 o.uoo 
0.000 0.000 

28 1.000 
29 

S04 2· 101 -2.000 6.000 0.000 4.000 -0.040 0.000 

0.000 0.000 
29 1.000 
30 

H4SI04 100 0.000 0.000 0.000 0.000 0.000 0.0110 

0.000 0.000 
30 1.000 
31 

SR 2+ !00 2.000 0 .000 0.000 5.000 0.000 0.110(1 

0.000 0.000 

31 1.000 
32 
U02 2+ 100 2.000 6.000 0 .000 0.000 0.000 0.000 

0.000 0.000 
32 1.000 
33 

V02 1+ 100 1.000 5.000 0 .000 0.000 0.000 0.000 

0.000 0.000 
33 1.000 
34 

ZN 2+ 100 2.000 0.000 0.000 6.000 ().000 0.0011 

0.000 0.000 

34 1.000 
35 
M004 2- 100 -2.0 0.0 4.5 0.0 

4 



0.0 1).() 

35 1.0 
36 

:"'I> 3+ 1110 3.0 0.0 0 .0 0.0 

0 .0 0.0 

3fo 1.0 
51 
IUAS03 400 0.000 3.000 0.000 0.000 0.000 0.000 

I 9 .444 -30.015 

6 1.000 2 2.000 I 2.1100 3 -1.000 

52 
Cll+ 2()0 J.Oftll 1.000 0.000 2.500 0.000 0.000 

2.720 1.650 

IS 1.000 2 1.0110 

53 
FE 3+ 200 3.000 3.1100 9.01l0 0 .000 0.000 0.000 

-1."\.032 10.000 

17 1.000 2 -1.000 
54 

I\1N ."\+- 200 .Hill II 3.000 0.000 9.000 0.000 0.000 

-25.507 25.760 

22 1.000 2 -1.(1110 

55 
N114 + 400 1.000 -3.000 0.000 2.500 0.000 0.000 

II 9.077 -IR7.055 

2.1 1.01111 3 -3.01111 I 10.000 2 8.000 

5(• 
NO:!- 400 -1.000 3.000 0 .000 0 .000 0.000 0.000 

2N.570 -43.761! 

H 1.000 I 2.000 2 2.000 3 -1.000 

57 
liS- 4()0 -1 .0110 -2.000 0.000 3.500 0.000 1.000 

.\.\.660 .(.0 . 1411 

29 1.000 I 9 .000 2 H.OOO 3 -4.000 

5H 
S<H 2- 400 -2.000 4.0110 0.000 0.000 0.000 0.000 

-."\.650 -2.900 

29 1.000 I 2 .000 2 2.000 3 -1.000 

59 
ll J+ 400 3.000 3.000 0 .000 0 .000 0.000 0.000 

0.420 -l\1.030 

.\2 1.000 2 3.000 I 4.000 3 -2.000 

60 
lJ 4+ 4UO 4.000 4.000 0.000 0 .000 0.000 0.000 

9.216 -.\4.4.\0 

32 1.1100 2 :2.0110 I 4.000 3 -2.000 

61 
ll02 + 200 1.000 5.000 0.000 0 .000 0.000 0.000 

2 .71!5 -3 .. '00 
."\2 1.000 2 1.000 

62 

5 



V:!+ 400 2.0011 2.000 0.000 0.000 0.000 0.000 

18.380 -35.J30 
33 1.000 2 3.000 1 4.000 3-2.000 

63 
v 3+ 400 3.000 3 .000 0.000 0.000 0.000 0.000 

22.6i0 -·U . ~31l 

33 1.000 2 2.000 l 4.000 3 -2.000 

64 
VO 2+ 400 2 .000 4 .000 0.000 0.000 0.000 II. OliO 

16.930 -29.320 
33 1.000 2 1.000 1 2.000 3 -1.000 

65 
011- 200 -1.000 0.000 0.000 3.500 0.000 1.000 

-13.998 13.~5 

3 1.000 1 -1.000 
66 

113Sl04 • 210 -1.000 0.000 0.000 4.000 0.000 1.110!1 

-9.930 R.935 6.368 -0.016346 -3405.9 

30 1.000 I -1.000 
67 
Il2SI04-- 210 -2.000 0.1100 0.000 5.400 0.000 2.0110 

-21.619 29.714 39.478 -0.065927 -12355.1 

30 1.000 I -2.000 
68 

SIF6 2· 400 -2.000 0.0110 0.000 5.000 0.000 11.11110 

30.180 -16.260 
30 1.000 16 6.000 1 4.000 3 -4.000 

69 
112ll03. 200 -1.000 0.000 0.000 2.500 11.000 1.11011 

·9.240 3.224 
7 1.000 1 -1.000 

70 
BF(011)3· 200 -1 .000 0.000 0.000 2.500 0.000 11.0110 

-0.399 1.850 
7 1.000 16 1.000 

71 
BF2(011)2 400 -1.000 0.11110 0.000 2.500 0.000 0.1100 

7.630 1.635 
7 1.000 1 .. 6 2.000 3 -1.000 l 1.000 

72 
BF3011 • 40G -1.000 0.000 0.000 2.500 0.000 0.000 

13.667 -1.580 
7 1.000 16 3.000 3 -2.000 1 2.000 

73 
UF4. 400 -1 .000 0.000 0.000 2.500 0.000 11.11110 

20.274 -1.795 
7 1.000 16 4.000 3 -3.000 I 3.000 

74 
N113 AQ 410 0.000 -3.11110 0.000 0.000 0.000 0.000 

109.825 -174.575 0.6322 -0.001225 -2835.76 

1 9.000 23 1.000 3 -3.000 2 11.000 

75 
NII4S04- 500 -1.000 3.000 0.000 5.000 0.000 0.01)0 

120.187 -187.055 

29 1.000 23 1.000 ~' -3.000 I 10.000 2 8.000 

76 
MGOIJ + 3 10 1.000 0.000 0 .000 6.500 0.00() 0.000 

-11.790 15.935 -3.53 0.00513 -2917.1 

6 



21 1.111111 .1 1.11011 1 -1.000 

77 
MGF + 200 1.000 0.000 0 .000 4.500 0.000 0.000 

I.H21J 4.674 
21 1.0110 16 I.UOIJ 

7M 
MGCOJ AQ 2111 0.000 4.000 ().000 0.000 0.600 2.000 

2.~110 2.022 0.991 0.00667 

21 1.0110 10 1.0110 
79 

MGIICOJ + Jill 1.000 4.000 0.000 4.000 0.000 1.000 

11.400 -2.430 -4.179 0.012734 2902.39 2.29lH2E-05 

21 1.0110 I 0 1.000 I 1.000 
HO 

I\1GS04 AQ 200 0.000 6.000 0.000 0.000 0.000 0.000 

2.250 1.399 
21 1.000 29 1.1100 
81 

1\1(;1'04 • 200 -1.0(10 0 .000 0.000 5.400 0.000 0.000 

6 .5H9 3.1 Of) 

21 1.11110 2lt 1.000 
82 

MGll21'04 300 1.000 0.000 0.000 5.400 0.000 0.000 

21.1166 -1.120 
21 1.000 26 1.0110 I 2.1100 

83 
1\ 1C; 111'04 A 300 0.1100 0.000 0.000 0.000 0.000 0.000 

15.220 .().230 

21 1.000 26 1.11011 I 1.000 

84 
CAOII + _,Oil 1.000 0.000 0.000 6.000 0.000 0.000 

- 12.5'.111 14.5.l5 

II 1.000 3 1.tl00 1 -1.000 
85 

C<\110)3 + _,10 LOOO 4.000 0.000 6.000 0.000 l.OilO 

11 .330 1.790 ·9.44H 0.03709 2902.39 

11 1.000 10 1.000 1 1.000 

86 
CAC03AQ 210 0.000 4.000 0.0011 0.000 0.000 2.000 

3 .150 4.030 -27.393 0.05617 4114.0 

II 1.000 10 1.000 
87 

CAS04AQ 200 o.noo 6.000 0.000 0.000 0.000 0.000 

2.309 1.470 
II l.tlOO 29 1.01111 

88 
CAIII'04 A 300 o.ono 0.000 0.000 0.000 0.000 0.000 

15.0115 -0.2.'0 
11 1.000 26 1.000 I 1.000 
89 

CAI'04- 200 -1.000 0.000 0.000 5.400 O.O(JO 0.000 

6 .459 .:UOO 

11 1.00(1 26 1.000 

90 
CAII21'04 300 1.000 0.000 0.000 5.400 0.000 0.000 

20.960 -1.120 

11 1.000 26 1.000 t 2.000 

91 
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CAF + :!00 1.000 0.000 0.000 5.000 0.000 O.llllll 

0.9~0 3.798 
11 1.000 16 1.000 
92 

l"AC03- 200 -1.000 4.000 0.000 5AOO 0.000 2.000 

1.268 8.911 
24 1.000 10 1.000 
93 

NAHC03 A 300 0.000 ~.000 0 .000 0 .000 0.000 1.000 

10.080 0.000 
24 1.000 LO 1.000 1 1.000 

94 
NASO~- 200 -1.000 6.000 0.0110 5.400 11.000 0.11()0 

0.700 1.120 

24 1.000 29 1.1100 
95 

NAIII'04- 30(; -1.000 ~.000 0.000 5 .400 0.000 0.000 

12.636 0.001. 
24 1.000 26 1.0011 1 1.000 
96 

NAF AQ 200 0.000 0.000 0.000 0 .000 0.000 0.0011 

-0.790 0.000 
24 1.000 16 1.000 
97 

KS04 - 210 -1.000 6.000 0.000 5.400 0.000 0.0110 

0.850 2.250 3.106 0.0 -673.6 

19 1.000 29 1.000 
98 

KHP04- 300 -1.000 0.000 0.000 5.400 0.000 0.000 

12.640 0.000 
19 1.000 26 1.0011 1 1.000 

99 
ALOII 2+ 300 2.000 0.000 0.000 5.400 0.000 0.000 

-4.990 11.899 
5 1.000 3 1.000 1 -1.000 

100 
AL(011)2+ 300 1.000 0.000 0.000 5.400 0.000 0.000 

-10.100 0.000 
5 1.000 3 2.000 1 ·2.000 

101 
AL(OH)4· 300 -1.000 0.000 0 .000 4.500 0.000 1.000 

-23.000 44.060 
5 1.000 3 4 .000 I -4.000 

102 
ALF 2+ 200 2.000 0.000 0.000 5.400 0.000 0.000 

7.010 0.000 
5 1.000 16 1.000 

103 
ALF2 + 200 1.000 0.000 0 .000 5.400 0.000 0.000 

12.i'50 20.000 

5 1.000 16 2.000 
104 
ALF3 AQ 200 0.000 0.000 0 .000 0 .000 0.000 0.000 

17.020 2.500 
5 1.000 16 3.000 

105 
ALF4- 200 -1.000 0.000 0.000 4.500 0.000 0.000 

19.720 0.000 

a 



s I . 000 I (, • .I.( )II() 

106 
AI~~O~ + 200 1.000 6.000 0.000 4 .500 0.000 0.000 

3.020 2.150 
s 1.000 29 1.000 

1117 
ALf~')4)2 200 -1.000 12.000 0.000 4 .500 0.000 0.000 

4.920 2.1i40 
s 1.000 29 2.0110 

lOH 
AL(OII)3 300 0.000 0.000 0.000 0.000 0 .000 0.000 

-16.000 0.000 
s 1.000 3 3.000 1 -3.000 

109 
FEOII + 300 1.000 2.000 0.000 0 .000 0.000 1.000 

-9.500 1.1.199 
17 1.000 3 I .OliO I -1 .0110 

110 
FEOII3 -1 300 -1 .000 2.000 0.000 0.000 0 .000 3.000 

-31.000 30.300 
17 1.000 3 J .OIIO I -3.000 

Ill 
FES04 AQ 200 0.000 !!.000 0.000 0.000 0.000 0.000 

2.250 J.BO 
17 1.000 29 1.000 

111 
FEII21'04 3011 1.0110 2.000 0.000 0.000 0 .000 0.000 

22.253 -4.520 
17 1.1100 26 1.000 I 2.000 

113 
FEOIJ2 AQ 300 0.0110 2.000 0.000 0.000 0.000 0.000 

-20.570 28.565 
17 1.000 3 2.000 1 -2.000 

114 
FEJ11'04 A 3011 0.000 2.000 0.000 0.000 0.000 1.000 

15.946 -3.530 
17 1.000 26 1.000 1 1.000 

115 
FE(IIS)2 500 0 .000 ·2.000 0.000 c.ooo 0.000 2.000 

76.270 -120.2!!11 

17 1.000 29 2.000 I IR.OOO 2 16.000 3 -8.000 

116 
FE(IIS)3 500 -l.OOO -4.000 0.000 0.000 0.000 3.000 

111.937 -180.420 
17 1.000 29 } .000 I 27.000 2 24.000 3-12.000 

117 
FEOJI1+ 400 2.000 3.000 0.000 0 .000 0.000 0.000 

-15.222 20.-'99 

3 1.000 I -1.000 17 1.000 2 -1.000 

IIH 
FElll'04 + 4011 1.000 3.000 0.000 0.000 0.000 0.000 

4.74!! 11.1.'0 
26 1.000 I 1.000 17 1.000 2 -1.00fl 

119 
FES04 + _.,00 1.000 9.000 0.000 0 .000 0.000 0.000 

-9.112 L\.910 

29 1.000 17 1.000 2 - 1.000 

120 
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FECL2+ ~00 2.000 3.000 'l.OOO .3.000 t).()OO 0.1100 
• '.1.552 15.600 

13 1.000 17 1.000 2 ·1.000 
121 
FECL2 + 300 1.000 3.000 0.000 0.000 0.000 0.000 

-10.902 10.000 
13 2.000 17 1.000 2 -1.000 

122 
FECL3 AQ 300 0.000 .3.000 0.000 0.000 0.000 0.000 

-11.902 10.000 
13 3.000 17 1.000 2 -1.000 

123 
FEOII2 + 400 1.000 3.000 0.000 0.000 0.000 O.Utltl 

-18.702 26.900 
3 2.000 1 -2.000 17 1.000 2 -1.000 

124 
FE0113 AQ 400 0.000 3.000 0.000 0.000 0.000 1.0()0 

-26.632 37.000 
3 3.000 1 -3.00(} 17 1.000 2 -1.000 

125 
FE0114· 400 -1.000 3.000 0.000 0.000 0.000 2.000 

-34.632 42.500 
3 4.000 1 -4.000 17 1.000 2 -1.000 

126 
FEH2P04 400 2.000 3.000 0.000 5.400 0.000 0.000 

11.948 5.4SO 

26 1.000 1 2.000 17 1.000 2 -1.000 
127 
FEF2+ 300 2.000 3.000 0.000 0.000 0.000 0.000 

-6.833 12.699 
16 1.000 17 1.000 2 -1.000 

128 
FEF2+ 300 1.000 3.000 0.000 0.000 0.000 0.000 

-2.232 14.800 
16 2.000 17 1.000 2 -1.000 

129 
FEF3 AQ 300 0.000 3.000 o.coo 0.000 0.000 0.000 

0.968 15.399 
16 3.000 17 1 000 2 -1.000 

130 
FE(S04)2 300 -1.000 15.000 0.000 0 .000 0.000 0.000 

• 7.612 14.600 
29 2.000 17 1.000 :z -1.000 

131 
FE2(0H)2 400 4.000 6.000 0.000 0.000 0.000 0.000 

-29.014 33.500 
3 2.000 1 -2.000 17 2.000 2 -2.000 

132 
FE3(011)4 400 5.000 9.000 0.000 0.000 0.000 0.01)0 

-45.396 44.300 
3 4.000 1 -4.001) 17 3.000 2 -3.000 

133 
LIS04 • 200 -1.000 6.000 0.000 5.000 0.000 0.000 

0.640 0.000 
20 1.000 29 1.000 

134 
SROll + 300 1.000 0.000 0.000 5.000 0.000 0 .000 

-13.178 14.495 
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31 1.1100 3 1.11110 I • J.OOIJ 

135 
UAOII + 300 1.000 0.000 0.000 5.000 0.000 0.000 

-13.358 15.095 
8 1.000 3 1.000 I • 1.000 

136 
1\fNCI. + 200 1.000 2.000 0.000 5.000 0.000 0.000 

0.607 0.000 
22 1.000 13 1.000 

137 
MNCJ.2 AQ 200 0.000 2.000 0.000 0.000 0.000 0.000 

0.041 0.000 
22 1.000 13 2.000 

13M 
MNC1..3 • 200 -1.000 2.000 0.000 5.000 0.000 0.000 

-0.305 0.000 
22 1.0110 13 3.000 

139 
MNOII + 3011 1.000 2.0110 0.000 5.000 0.000 0.000 

-10.590 14 . .399 
22 1.0011 3 I.OUO 1 -1.000 

140 
MN(OII).'\ .\00 -1.000 2.noo 0.000 5.000 0.000 0.000 

-~.!100 0.0110 
22 1.000 ] 3.000 1 .].000 

141 
MNF + 200 ) .000 2.000 0.000 5.000 0.000 0.000 

0.!150 0.000 
22 1.000 16 1.000 

142 
MNS04 AQ 2011 0.000 8.000 0.000 0.000 0.000 0.000 

2.260 2.1711 
22 1.000 29 1.000 

143 
l\1N(N03)2 200 0.000 12.000 0.000 0.000 0.000 0.000 

0.600 -0.396 
22 1.000 23 2.000 

144 
MNIIC<E + .'00 1.0110 6.000 0.000 5.000 0.000 1.000 

11.600 0.000 
22 1.000 I 0 1.000 1 1.000 

145 
CliCJ.2. ,,00 -1 .000 1.000 0.0110 4.000 0.000 0.000 

8.220 1.230 
13 2.000 15 1.000 2 1.000 

146 
ClJCI.J 2· 300 ·2.000 1.000 0.000 5.000 0.000 0.000 

R.420 1.910 
13 .3.000 15 1.000 2 1.000 

147 
ClJC03AQ 200 0.000 6.000 0.000 0.000 0.000 2.000 

6.7.'0 0.000 

IS 1.000 10 1.01111 

148 
CU(C03)2 2011 ·2.000 10.000 0.000 0.000 0.000 4.000 

9.!1.\0 0.0110 

15 1.000 10 2.000 
149 
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CUCL + 200 1.000 1.000 0.000 ~.000 0.000 o.onn 
0.430 8 .650 

15 1.000 13 1.000 
150 
CUCL2 AQ 200 0.000 1.000 0.000 0.!100 0.000 0.000 

0.160 10.560 
15 1.000 13 2.000 

151 
CUCL3- 200 -1.000 2.000 0.000 ~.000 0.000 0.000 

-2.290 13.690 
15 1.000 13 3.000 

152 
CUClA 2- 200 -2.000 2.000 0.000 5.000 0.0110 0.0110 

-4.590 17.71!0 
15 1.000 13 ~.000 

153 
CUF + 200 1.000 2.000 0.000 0.000 0.000 0.000 

1.260 1.620 
15 1.000 16 1.000 

154 
CUOll + 300 1.000 2.000 0.000 4.000 0.000 0.11110 

-8.000 0.000 
15 1.000 3 1.000 1 -1.000 

ISS 
CU(OH)2 300 0.000 2.000 0.000 0.000 0.000 0.000 

-13.680 0.000 
15 1.000 3 2.000 1 -2.000 

156 
CU(Oil)3 300 -1.000 2.000 0.000 0.000 0.000 0.000 

-26.899 0.000 
15 1.000 3 3.000 1 -3.000 

157 
CU(OII)4 300 -2.000 2.000 0.000 0.000 0.000 0.000 

-39.600 0.000 
15 1.000 3 4.000 1 -4.000 

158 
CU2(011)2 310 2.000 4.000 0.000 0.000 0.000 0.000 c 

-10.359 17.539 2.497 0.0 -3833.0 

15 2.000 3 2.000 1 -2.000 

159 
CUS04 AQ 200 0.000 8.000 0 .000 0.000 0.000 0.000 

2.310 1.220 
15 1.000 29 1.000 

160 
CU(IIS)3 500 -1.000 -4.000 0.000 0.000 0.000 0.000 

126.879 -~80.420 

15 1.000 29 3.000 l 27.000 2 24.000 3-12.000 

161 
CUIIC03 + 300 1.000 6.000 0.000 0.000 0.0011 1.000 

13.000 0.000 
15 1.000 10 1.000 1 1.000 

162 
ZNCL + 200 1.000 0.000 0.000 4.000 0.000 0.000 

0.430 7.790 

34 1.000 13 1.000 

163 
ZNCL2 AQ 200 0.000 0.000 0.000 0.000 0.0011 0.000 

0.450 8.500 
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~ I. OliO 13 2 .IIIlO 
1~ 

Z:-iCLJ. 200 -1 .000 0.000 0.000 4.000 0.000 0.000 

0.500 9.560 

~ 1.000 13 3.000 
165 
Zl'iCIA 2· 200 -2.0110 0 .1100 0.000 s.ooo 0.000 0.000 

II. I 99 10.960 

-~ 1.1100 13 4.000 
166 
ZNV + 200 1.000 0.1100 0.000 0.000 0.000 0.000 

1.150 2.220 
~ 1.11110 16 1.0110 

167 
ZNOII + 300 I.OOi) 0.1100 0.000 0.000 0.000 0.000 

-8.980 13.399 
~ 1.000 3 1.0011 1 -1.000 

168 
ZN(OII)2 3110 0.000 O.MO 0.000 0 .000 0.000 0.000 

-16.899 20.800 
34 1.1100 J 2.000 I -2.11UO 

169 
ZN (011)3 300 -1.000 0 .000 0.000 0.000 0.000 0.000 

-28.399 29.300 

-~ 1.000 3 3.000 1 -3.000 

1711 
ZN(OII)4 300 ·2.000 0 .0011 0.1100 0.000 0.000 0.000 

-41.199 43.7110 
34 1.0110 .\ 4 .0011 1 -4.000 

171 
ZNOIICL A 400 0.000 0.000 0.000 0.000 0.000 0.000 

-7.480 0.000 

-~ 1.000 J 1.1100 1 -1.000 13 1.000 

172 
ZN(IIS)2 500 0.000 -4.000 0.000 0 .000 0.000 0 .000 

82.260 -120.280 

.\4 1.000 29 2.000 1 18.000 2 16.000 3 -8.000 

173 
ZN(IIS)3 500 -1.000 -6.000 0.000 0 .000 0 .000 0.000 

117.1180 - 180.420 

~ 1.000 29 3.000 I 27.0011 2 24.000 3-12.000 

174 
ZNS04 AQ 200 0.000 6.000 0.000 0.000 0.000 0.000 

2..'70 1.360 

-~ 1.1100 29 1.11110 

175 
ZN (S04)2 200 -2.000 12.000 0.000 0.000 0.000 0.000 

.l280 0.0110 

-~ 1.0110 29 2.000 
176 
ZNIII{ + 200 1.000 0.000 0.000 0.000 0.000 0.000 

-II.SHII 0.1100 

.l4 1.000 9 1.000 

177 
ZNBR2 AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

-0.9110 0.000 

.\4 1.000 9 2.000 

1711 
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Z:\1 + :!00 1.000 0.000 0.000 0.000 0.000 0.0~10 

-2.910 0.000 
34 1.000 18 1.000 

179 
ZN12 AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

-1.690 0.000 
34 1.000 18 2.000 

180 
ZNIIC03 + 300 1.000 0.000 0.000 0.000 0.000 O.tiOil 

2.100 0.000 
34 1.000 10 1.000 1 1.000 

181 
ZNC03AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

5.300 0.000 
34 1.000 10 1.000 

182 
ZN(C03)2 200 -2.000 0.000 0.000 0 .000 0.000 0.000 

9.630 0.000 
34 1.000 10 2.000 

183 
CDCL + 200 1.000 0.000 0.000 0.000 0.0110 0.000 

1.980 0.590 
12 1.000 13 1.000 

184 
CDCL2 AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

2.600 1.240 
12 1.000 13 2.000 

185 
CDCL3- 200 -1.000 0.000 0.000 0.000 0.000 0.000 

2.399 3.900 
12 1.000 13 3.000 

186 
CDF + 200 1.000 0.000 0.000 0.000 0.000 0.000 

1.100 0.000 
12 1.000 16 1.000 

187 
CDF2 AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

1.500 0.000 
12 1.000 16 2.000 

188 
CD(C03)3 200 -4.000 12.000 0.000 0.000 0.000 6.000 

6.220 0.000 
12 1.000 10 3.000 

189 
CDOH + 300 1.000 0.000 0.000 0.000 0.0110 0.000 

-10.080 13.100 
12 1.000 3 1.000 L -1.000 

190 
CD(OII)2 300 0.000 0.000 0.000 0.000 0.11110 0.000 

-20.350 0.000 

12 1.000 3 2.000 L -2.000 

191 
CD(011)3 300 - 1.000 0.000 0.000 0.000 0.000 0.000 

-33.300 0.000 
12 1.000 3 3.000 1 -3.000 

192 
CD(OII)4 300 -2.000 0.000 0.000 0.000 0.000 0.000 

-47.350 0.000 
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12 1.01111 ·' .$.000 I ·4.000 

193 
CU2011 +3 300 3.000 0.000 0.000 0.000 0.000 0.000 

·9.390 IIJ.H99 
12 2.000 3 1.000 1 -1.000 

194 
CI>OilCL i\ 400 0.000 0.000 0.000 0.000 0.000 0.000 

-7.404 4.355 

12 1.000 3 1.000 1 ·1.000 13 1.000 

195 
CDN03 + 200 1.000 5.000 0.000 0.000 0.000 0.000 

0.399 -5.200 
12 1.000 23 1.000 

196 
CDS04 AQ 200 0.000 6.000 0.000 0.000 0.000 0.000 

2.460 1.080 
12 1.000 29 1.000 

197 
CI>JIS + 500 1.000 ·2.000 0.000 0.000 0.000 0.000 

4J.830 -60.140 
12 1.000 29 1.000 1 9 .000 2 8.000 3 -4.000 

198 
CD(IIS)2 5110 0.000 -4.000 0.000 0.000 0.000 0.000 

H.lH50 -120.2!10 
12 1.000 29 2.000 I 18.000 2 16.000 3 -H.OOO 

199 
CD(IIS)3 500 -1.000 -6.000 0.000 0 .1100 0.000 0.000 

119.690 ·I 811.4211 
12 1.0110 29 J.OOO 1 27.000 2 24.000 3-12.000 

200 
CD(IIS)4 500 ·2.000 -8.000 0.000 0 .000 0.000 0 .000 

155.540 -2-t0.560 

12 1.000 29 4.000 I 36.000 2 32.000 3-16.000 

201 
CDIIR + 200 1.000 0.000 0.000 0.000 0.000 0.000 

2.170 -0.810 
12 1.000 9 1.000 

202 
CJ>IUU AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

2.899 0.0110 

12 1.fl00 9 2.000 
203 
em+ 200 1.000 0.000 0.000 0.000 0.000 0 .000 

2.150 ·2.370 
12 1.000 18 I .OtlO 

20-t 
Cl>l2 AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

3.590 0.000 
12 1.000 18 2.1100 

205 
CDHCOJ + 300 1.000 4.000 0 .001) 0.000 0.000 1.000 

12.400 0.000 

12 1.000 10 1.000 I 1.000 

206 
CDCOJ AQ 200 0.000 .t.OOO (l.OOO 0.000 0.000 2.000 

5.399 0.000 

12 1.000 10 1.000 
207 
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CD(S04):! :!00 -:!.000 l:!.OCO 0.000 <i.OOO 0.000 0.000 
3.500 0.000 

12 1.000 :!9 2.000 
208 
PBCL + :!00 1.000 0.000 0.000 0.000 0.000 0 .1100 

1.600 4.380 
27 1.000 13 1.000 

209 
PBCL2 AQ :!00 0.000 0.000 0.000 0.000 0.0011 0.000 

1.800 1.080 
27 1.000 13 2.000 

210 
PBCL3 • 200 -1.000 0.000 O.OIJO 0.0011 0.000 0.000 

1.699 2.170 
27 1.000 13 3.000 

211 
PHCIA 2· 200 -2.000 0.000 0.000 0 .000 0.000 0.000 

1.380 3.S30 
27 1.000 13 4.000 

212 
PB(C03)2 200 -2.000 8.000 0.000 0.000 0.1100 ..s.ooo 

10.640 0.000 
27 1.000 10 2.000 

213 
I'BF + 20C) 1.000 0.000 0.000 0.000 0.0110 0.00!1 

1.250 0.000 
27 1.000 16 1.000 

214 
PBF2 AQ 200 0.000 0.000 0.000 0 .000 0.000 11.000 

2.560 0.000 
27 1.000 16 2.000 

215 
PBF3 • 200 -1.000 0.000 0.000 0.000 0.000 0.000 

3.420 0.000 
27 1.000 16 3.000 

216 
l'HF4 2· 200 -2.000 0.000 0.000 0.000 0.000 11.11110 

3.100 0.000 
27 l.COO 16 4.000 

217 
PBOII + 300 1.000 0.000 0.000 0.0110 0.000 o.ouo 

-7.710 0.000 
27 1.000 3 1.000 1 -1.000 

218 
1'8(011)2 300 0.000 0.000 0.000 0 .000 0.000 0.000 

-17.120 0.000 
27 1.000 3 2.000 1 ·2.000 

219 
PB(011)3 300 · 1.000 0.000 0.000 0.000 0.000 0.000 

-28.060 0.000 
27 1.000 3 3.000 l -3.000 

220 
PB2011 +3 300 3.000 0.000 0.000 0.000 0.11110 0.000 

-6.360 o.oao 
27 2.000 3 1.000 I -1.000 

221 
PBN03 + 200 1.000 5.000 0.000 0.000 0.000 0.000 

1.170 0.000 
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27 1.11110 2J I.IIIJO 

222 
I'US04 A() :!00 0 .000 6.000 0.000 0.000 0.000 0.000 

2.750 0.1100 

27 1.000 29 i.OOO 
223 
I'JI(IIS)2 500 0 .000 -4.000 0.1100 0.000 0.000 0 .000 

1!2.590 -1:!0.280 

27 1.000 29 2.000 I 11!.000 2 16.000 3 -8.000 

224 
I'II(IIS)J 500 -1.000 -6.000 0.000 0.000 0 .1100 0 .000 

117.550 -11!0.420 

27 1.000 29 .3.000 I 27.000 2 24.000 3-12.000 

225 
I'IB(OIIJ4 .300 2.000 0.000 0.1100 0.000 0.000 0.000 

-2.3.1!1!0 26.500 
27 .lOOO J 4.noo I -4.000 

226 
1'11111{ + 2()0 1.00() 0.000 0.000 0.000 0.000 0.000 

1.770 2.1!!10 

27 1.000 9 1.0110 

221 
I'IIJIIU AQ 200 0.000 0.000 0.000 0.000 0.000 O.OliO 

1.4411 0.000 
27 1.000 9 2.000 

221! 
I'BI + 200 1.000 0.000 0.000 0.000 0 .000 0 .000 

1.9411 0.000 
27 1.11110 IH 1.1100 

229 
1'111:! AQ :!00 0 .000 0.000 0.000 0.000 0.000 0 .000 

.3.199 0.000 

27 1.0110 II! 2.1100 

2.\0 
PIICO.\ AQ :wo 0 .0110 4 .000 0.000 0.000 0.000 2.000 

7.:!40 11.000 

27 1.0110 Ill 1.000 

231 
1'11(011)4 .~110 -2.000 0.000 0.000 0.000 0.000 0 .000 

•. \9.699 0.11110 

27 1.111111 3 4.000 1 -4.000 

2.\2 
1'8(S04):! 200 -2.000 12.000 0.1100 0.000 0.000 0.000 

.3.470 0.1100 

27 1.0011 2') 2.11110 

2.\.\ 
1'1111('03 + .\00 1.000 ... 0011 0.000 0.000 0.000 1.000 

l.UOO 0.000 

27 1.0011 10 1.000 I 1.0110 

234 
NIIIU.+ :!00 1.000 0.000 0.000 0.000 0.000 0 .000 

0.~00 o.oon 
:!5 1.01111 9 1.0110 

235 
NICL + 200 1.000 0.000 0.000 0.000 0.000 0.000 

o .. wq 11.0110 

25 1.1100 IJ 1.000 

2.\6 
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NIF + :!00 1.000 0.000 0.000 0.000 0.000 0.0110 

1.300 0.000 
25 1.000 16 1.000 

237 
NIOH + 300 1.000 0.000 0.000 0.000 0.000 o.noo 

-9.860 12A20 
25 1.000 3 1.000 1 -1.000 

238 
NI(OH)2 300 0.000 0.000 0.000 0.000 0.000 0.000 

-19.000 0.000 
25 1.000 3 2.000 1 -2.000 

239 
NI(OH)3 300 -1.000 0 .000 0.000 0.000 0.000 0.000 

-30.000 0.000 
25 1.000 3 3.000 1 -3.000 

240 
NIS04 AQ 200 0.000 6.000 0.000 0.000 0.000 0.000 

2.290 1.520 
25 1.000 29 1.000 

241 
NICL2 AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

0.960 0.000 
25 1.000 13 2.000 

242 
NIHC03 + 300 1.000 4.000 0 .000 0.000 O.OOd 1.000 

12.470 0.000 
25 1.000 10 1.000 1 1.000 

243 
NIC03 AQ 200 0.000 4 .000 0.000 0.000 0.000 2.000 

6.870 0.000 
25 1.000 10 1.000 

244 
NI(C03)2 200 -2.000 8.000 0.000 0.000 0.000 4.000 

lO.llO 0.000 
25 1.000 10 2.000 

245 
NI(S04)2 200 -2.000 12.000 0.000 0.000 0.000 0.000 

1.020 0.000 
25 1.000 29 2.000 

246 
AGBR AQ 200 0.000 0.000 0 .000 0.000 0.000 0.000 

4.240 0.000 
4 1.000 9 1.000 

247 
AG8R2 • 200 -1.000 0.000 0.000 0.000 0.000 O.OIJO 

7.280 0.000 
4 1.000 9 2.000 

248 
AGCL AQ 200 0.000 0 .000 0.000 0.000 0.000 0.000 

3.270 -2.680 
4 1.000 13 1.000 

249 
AGCL2 • 200 -1.000 0.000 0.000 0.000 0.000 0.000 

5.270 -3.930 
4 1.000 13 2.000 

250 
AGCL3 2· 200 -2.000 0.000 0.000 0.000 0.000 0.000 

5.290 0.000 
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4 1.000 13 3.000 
251 
A<;CIA -3 200 -3.000 0.000 0.000 0.000 0.000 0.000 

5.510 0.000 
4 1 .000 13 4.000 

252 
AGFAQ 200 0.000 0.000 0 .000 0.000 0.000 0.000 

0.360 -2.8]0 
4 1.000 16 1.000 

253 
AGIIS AQ 500 0.000 -2.000 0 .000 0.000 0.000 0.000 

47.710 -60.140 
4 1.000 29 1.000 I 9.000 2 8.000 3 -4.000 

254 
AG(IIS)2 500 -1.000 -4.000 0 .000 0.000 0.000 0.000 

HS. 770 -120.280 
4 1.000 29 2.000 I 11!.000 2 lti.OOO 3 -8.000 

255 
AGI AQ 200 0 .000 0.000 0.000 0.000 0.000 0.000 

6.600 0.000 
4 1.000 IK 1.000 

256 
AGI2 . 200 ·1 .000 0.000 0.000 0.000 0.000 0.000 

10.680 0.000 
4 1.000 IK 2.000 

257 
AGOII AQ JOO 0.000 0.000 0 .000 0.000 0.000 0.000 

·12.000 0.000 
4 1.000 3 LOOO I ·1.000 

2511 
AG(OII)l 300 -1.000 0.000 0.000 0.000 0.000 0.000 

·24.000 0.000 
4 1.1100 3 2.000 I -2.000 

259 
AGS04 • 200 -1.000 6.000 0.000 0.000 0.000 0.000 

1.290 1.490 
4 1.000 29 1.000 

260 
AGNOJ AQ 200 0.000 5.000 0.000 0.000 0.000 0.000 

-0.290 0.000 
4 1.000 23 1.000 

261 
AG(N02)2 500 -1.000 6.000 0.000 0.000 0.000 0.000 

S9.360 -87.520 
4 1.000 23 2.000 1 4.000 2 4.000 3 -2.000 

262 
AGHR3 2· 200 -2.000 0.000 0.000 0.000 0.000 0.000 

H.710 0.000 
4 1.000 q .HlOO 

263 
AGI.\ 2· 200 -2.000 0.000 0.000 0.000 0.000 0.000 

LU70 -27.030 
4 1.000 I.H .\.000 

264 

AGI4 ··' 200 -3.000 0.000 0.000 0.000 0.000 0.000 

14.080 0.1100 

4 1.000 IH 4.000 
265 
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112ASOJ- 400 -1.000 3.000 0.000 0.000 0.000 0.000 
10.216 -23.455 

1 1.000 6 1.000 2 2.000 3 ·LOOO 
266 
HAS03 2- 300 -2.000 3.000 0.000 0.000 0.000 0.000 

-1.886 -15.816 
6 1.000 2 2.000 3 -1.000 

267 
ASOJ -3 400 -3.000 3.000 0.000 0.000 0.000 0.000 

-15.300 -9.765 
1 -1.000 i; 1.000 2 2.000 3 ·LOOO 

268 
H4ASOJ + 400 1.000 3.000 0.000 0.000 0.000 0.000 

19.139 -30.015 
1 3 .000 6 1.000 2 2.000 3 ·1.000 

269 
112AS04- 200 -1.000 5.000 0.000 0.000 0.000 0.000 

-2.243 -1.690 
6 1.000 l -1.000 

270 
HAS04 2- 200 -2.000 5.000 0.000 0.000 0.000 0.000 

-9.001 -0.920 
6 1.000 1 -2.000 

27L 
AS04 -3 200 -3.000 5.000 0.000 0.000 0.000 0.000 

-20.597 3.430 
6 1.000 1 -3.000 

272 
HC03- 210 -1.000 4.000 0.000 5.400 0.000 1.000 

10.330 -3.617 -6.498 0.02379 2902.39 
10 1.000 1 1.000 

273 
112C03 AQ 210 0.000 4.000 0.000 0.000 0 .000 0.000 

16.681 -2.247 -21.3415 0.05657 6307.1 
10 1.000 I 2.000 

274 
llS04- 210 -1.000 6.000 0.000 4.500 0.000 0.000 

1.987 4.910 -5.3505 0.0183412 557.2461 
29 1.000 1 1.000 

275 
IIF AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

3.169 3.460 
16 1.000 I 1.000 

276 
IIF2 - 200 -1.000 0.000 0.000 3.500 0.000 0.000 

3.749 4.550 
16 2.000 1 1.000 

277 
112F2 AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

6.768 0.000 
16 2.000 1 2.000 

278 
llP04 2- 200 -2.000 0.000 0.000 5.00(} 0 .000 1.000 

12.346 -3.530 
26 1.000 1 1.000 

219 
H2P04- 200 -1.000 0.000 0.000 5.400 0.000 0.000 

19.553 -4.520 
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26 1.000 I 2.0110 
2KO 
1131'04 AQ 200 0.000 0.000 0.000 0.000 0.000 0.000 

21.700 ·2.620 
26 1.000 I 3.000 

2111 
112S AQ 400 0.000 -2.000 0.000 0.000 0.000 0.000 

40.654 -65.440 
I 10.000 29 1.000 2 R.OOO 3 -4.000 

282 
s 2- 400 -2.000 -2.000 0.000 5.000 0.000 2.000 

20.742 -48.040 
I 8.000 29 1.000 2 8.000 3 -4.000 

2113 
UOII +3 400 3.000 4 .000 0.000 0.000 0.000 0.000 

11.560 ·22.71 5 
3 ·I .000 3.000 32 1.000 2 2.000 

2114 
U(OII)2 + 300 2.000 4.000 0.000 0.000 0.000 0.000 

6.946 -16.i00 
I 2.000 .\2 1.1100 2 2.000 

2R5 
U(OII)3 + 400 1.000 4.000 0.000 0.000 0.000 0.000 

4.2111 -11.7115 
3 1.000 I 1.000 32 1.000 2 2.000 

2116 
ll(011)4 A 300 0.000 4.000 0 .000 0.000 0.000 0.000 

0.7111 -9.670 
3 2.000 32 J.HOO 2 2.000 

2117 
lf(OII)5 • 400 -1.000 4.000 0.000 0.000 0.000 0.000 

-3.904 .t •. 855 
3 3.000 I -1.000 32 1.000 2 2.000 

2R8 
liF +3 500 .\.000 4.000 0.000 0.000 0.000 0 .000 

17 .R7S -29.3110 
16 1.000 32 1.01111 2 2.000 I 4.0110 3 -2.000 

2!!9 
UF2 2 + SOU 2.000 4.000 0 .000 0.000 0.000 0.000 

23.67.\ -27.230 
16 2.000 32 1.000 2 2.000 I 4.000 3 -2.000 

290 
UFJ +1 500 t .000 4.000 o.ooo 0.000 0.000 0 .000 

211.3.\1 -27.2110 
16 3.000 32 1.00(1 2 2.000 1 4.000 3 -2.000 

291 
UF4 AQ 500 0.1100 4.000 0.000 0.000 0.000 0.000 

32.R56 -29.830 
16 4 .000 32 1.0011 2 2.000 l 4.000 3 -2.000 

292 
tIt'S ·I 5011 ·1.1100 4.000 0.000 0.000 0.000 0.000 

.l-$.4!\4 -29.580 
16 5.0tltl .\.2 1.1100 2 2.000 I 4.000 3 ·2.000 

293 
liF6 2· 500 -2.1100 4.000 0.000 0.000 0.000 0.000 

36.9.\4 •. \( . l.\0 
16 6.000 32 1.000 2 2.000 1 4.000 3 -2.000 

294 
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UCL +3 :000 3.000 .woo 0.000 0.000 0.()0{1 0.000 
10.554 -2.t . .t97 

13 1.000 32 1.000 2 2.000 1 4.000 3 ·2.000 
295 
US04 2+ 500 2.000 10.000 0.000 0.000 0.000 0.000 

14.677 -30.730 
29 1.000 32 1.000 2 2.000 I 4.000 3 -2.000 

296 
U(S04)2 500 0.000 16.000 0.000 0.000 0.000 0.000 

18.965 -26.830 
29 2.000 32 1.000 2 2.000 1 4.000 3 ·2.000 

297 
UHP042+ 500 2.000 4.000 0.000 0.000 0.000 0.000 

33.659 -26.930 
26 1.000 1 5.000 32 1.000 2 2.000 3 -2.000 

298 
U(HP04)2 500 0.000 4.000 0.000 0.000 0.000 0.0110 

56.049 -32.730 
26 2.000 1 6.000 32 1.000 2 2.000 3 -2.000 

299 
U(HP04)3 500 -2.000 4.000 0.000 0.000 0.000 0.000 

76.780 -42.230 
26 3.000 1 7.000 32 1.000 2 2.000 3 -2.000 

300 
U(I!P04)4 500 -4.000 4.000 0.000 0.000 0.000 0.000 

97.699 -60.930 
26 4.000 1 8.000 32 1.000 2 2.000 3 -2.000 

301 
U020ll -+1 300 1.000 6.000 0.000 0.000 0.000 0.000 

-5.090 10.216 
32 1.000 3 1.000 1 -1.000 

302 
U02)20112 300 2.000 12.000 0.000 0.000 0.000 0.000 

-5.645 10.:1.~0 

32 2.000 3 2.000 1 -2.000 
303 
U02)30115 300 1.000 18.000 0 .000 0.000 0.000 0.000 

-15.593 25.075 
32 3.000 3 5.000 1 -5.000 

304 
U02C03 A 210 0.000 10.000 0.000 0.000 0.000 2.000 

10.071 0.840 -9.56 0.03434 2809.0 
32 1.000 10 1.000 

305 
U02C03)2 210 -2.000 14.000 0.000 0.000 0.000 4.000 

17.008 3.480 14.14 0.0096 
32 1.000 I 0 2.000 

306 
U02C03)3 200 -4.000 18.000 0.000 0.000 0.000 6.000 

2t.384 -8.780 
32 1.000 10 3.000 

307 
U02F +1 200 1.000 6.000 0.000 0.000 0.000 0.000 

5.105 -0.450 
32 1.000 16 1.000 

308 
U02F2 AQ 200 0.000 6.000 0.000 0.000 0.000 0.000 

8.920 -0 .900 
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32 1.000 16 2.000 
309 
U02F3 · I 200 .1,00() 6.000 0.000 0.000 0.000 0.000 

11 .364 -0.850 
32 1.000 16 3.000 

310 
U02F4 2· 200 -2.000 6.000 0.000 0 .000 0.000 0.000 

12.607 -1.100 
32 1.()00 16 4.1}00 

311 
U02CL +1 200 1.000 6.000 0.000 0.000 0.000 0.000 

0.220 1.233 
32 1.000 13 1.000 

312 
U02S04 A 210 0.000 12.000 0.000 0 .000 0.000 0.000 

2.709 5.100 11.384 -0.07088 0.0 1.40277£-04 

32 1.000 29 1.000 
313 
U02S04)2 210 -2.000 18.000 0.000 0.000 0.000 0.000 

4.183 6.100 12.130 -0.068297 0.0 l.3987E-04 

32 1.000 29 2.000 
314 
li021JP04 300 0.000 6.000 0.000 0.000 0.000 0.000 

20.1U4 -2.100 
32 1.000 26 1.000 1 1.000 

315 
()02111'04) 300 ·2.000 6.000 0.000 0 .000 0.000 0.000 

42.988 ·11 .399 
32 1.000 26 2.000 l 2.000 

316 
\1021121'04 300 1.000 6.000 0.000 0.000 0.000 0.000 

22.64.:\ -3.700 
32 1.000 26 1.000 l 2.000 

.:\17 
U021121'0~ 300 0.000 6.000 0.000 0.000 0.000 0.000 

44.700 -16.500 
32 1.000 26 2.000 1 4.000 

318 
l1021121'04 300 ·1.000 6.000 0.000 0.000 0.000 0.000 

66.245 -28.600 
32 1.000 26 3.000 I 6.000 

319 
1102113SIO 300 1.000 6.000 0.000 0.000 0.000 0.000 

-2.400 0.000 
32 1.000 .10 1.000 1 -I.OOQ 

320 
von+ 400 1.000 2.000 0.000 0 .000 0.000 0.000 

12.740 •• 15.3.10 
3 ·1 .000 1 3.000 33 1.000 2 3.000 

321 
VOII 2+ 400 2.000 3.000 0.000 0 .000 0.000 0.000 

20 . .\10 -~.880 

3 -1.000 1 3 .000 .u 1.000 2 2.000 
.122 
\'(011)2 + 300 ).000 .tooo 0.000 0 .000 0 .000 0.000 

16.780 -44.2.10 

I 2.000 .u 1.000 2 2.000 

32.\ 
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\'(011)3 A 400 0.000 3.000 0.000 0.000 0.000 0.0011 

11.590 -44.230 
3 1.000 l 1.000 33 1.000 2 2.000 

324 
VS04 +l 500 1.000 9.000 0.000 0.000 0.000 0.000 

24.050 -44.230 
29 1.000 33 1.000 2 2.000 l 4 .000 3 ·2.000 

325 
V2~011)3 400 3.000 6.000 0.000 0.000 0.000 0.000 

37.720 -88.460 
3 ·1.000 1 5.000 33 2.000 2 4.000 

326 
V2(0H)2 400 4.000 6.000 0.000 0.000 0.000 0.000 

41.470 -88.460 
3 ·2.000 6.000 33 2.000 2 4.000 

327 
V(Oll)3 + 400 1.000 4.000 0.000 0.000 0.000 0.000 

ll.260 -29.320 
3 1.000 1 1.000 33 1.000 2 1.000 

328 
112V204 + 300 2.000 8.000 0.000 0.000 0.000 0.01111 

27.420 -58.640 
1 2.000 33 2.000 2 2.000 

329 
VOF + 500 1.000 4.000 0.000 0.000 0.000 0.000 

20.270 -27.420 
16 1.000 33 1.000 2 1.000 1 2.000 3 -1.000 

330 
VOF2 AQ 500 0.000 4.000 0.000 0.000 0.000 0.000 

22.670 -25.820 
16 2.000 33 1.000 2 1.000 1 2.000 3 -1.000 

331 
VOF3 ·1 500 -1.000 4.000 0.000 0.000 0.000 0.000 

24.230 -24.420 
16 3.000 33 1.000 2 1.000 1 2.000 3 -1.000 

332 
VOF4 2· 500 ·2.000 4.000 0.000 0.000 0.000 O.OilO 

25.040 -22.920 
16 4.000 33 1.000 2 1.000 l 2.000 3 -1.000 

333 
VOS04 AQ 500 0.000 10.000 0.000 0.000 0.000 0.000 

19.380 -25.600 
29 1.000 33 1..000 2 1.000 1 2.000 J -1.000 

334 
VOCL +L soo 1.000 4.000 0.000 0.000 0.000 0.000 

16.950 -29.320 
13 1.000 33 1.000 2 1.000 I 2.000 3 -1.000 

335 
113\'04 AQ 300 0.000 5.000 0.000 0.000 0.000 0 .0110 

-3.300 10.630 
33 1.000 3 2.000 I ·1.000 

336 
J!2V04 ·I 300 -1.000 5.000 0.000 0.000 0.000 0.000 

-7.090 11.330 
33 1.000 3 2.000 I -2.0011 

337 
HV04 2· 300 -2.000 5.000 0.000 0.000 0 .000 0.0110 

·15.150 14.930 
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33 1.000 J 2.000 I -3.000 
338 
V04 ·3 300 -3.000 5.000 0.000 0.000 0.000 0.000 

-28.400 19.~30 

33 1.000 3 2.000 I -4.000 
339 
V207 -4 300 -4.000 10.000 0.000 0.000 0.000 0.000 

-29.080 0.000 
33 2.000 3 3.000 1 -6.000 

340 
IIV207 ·3 300 -3.000 10.000 0.000 0.000 0.000 0.000 

-16.320 0.0110 
33 2.000 J 3.000 I -5.000 

341 
113V207- 300 -1.000 10.000 0.000 0.000 0.000 0.000 

-3.790 0.000 
33 2.000 3 3.000 I -3.000 

342 
V309 -3 300 -3.000 15.000 0.000 0.000 0.000 0.000 

-15.880 0.000 
33 3.000 3 3.000 I -6.000 

343 
V4012 -4 300 .. uoo 20.000 0.000 0.000 0.000 0.000 

-20.790 0.000 
33 4.000 3 4.000 I -8.000 

344 
V10028- 300 -6.000 50.000 0.000 0.000 0.000 0.000 

-17.530 0.000 
33 10.000 3 8.000 1-16.000 

345 
IIVI002R 300 -5.000 50.000 0.000 0.000 0.000 0.000 

-I 1.350 21.520 
33 10.000 3 14.000 1-15.000 

346 
112VI0028 300 -·UOO 50.000 0.000 0.000 0.000 0.000 

-7.710 0.000 
3.1 10.000 3 8.000 1-14.000 

.147 
V02F AQ 200 0.000 5.000 0.000 0.000 0.000 0.000 

3.120 0.000 
33 1.000 16 1.000 

348 
V02F2 -1 200 -L.OOO 5.000 0.000 0.000 0.000 0.000 

5 .670 0.000 
3:\ 1.000 16 2.000 

.149 
V02F.1 2- 200 -2.000 5.000 0.000 0.000 0.000 0.000 

6.970 0.000 
33 1.000 16 3.000 

350 
\'02F4 -3 200 -.\.000 5.000 0.000 0.000 0.000 0.000 

7.070 0.000 
33 1.000 16 4.000 

J51 
V02S04- 200 -1.000 11.000 0.000 0.000 0.000 0.000 

1.710 0.000 
33 1.000 29 1.000 

.152 
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\'021'03 A 200 0.000 10.000 0.000 0.000 0.000 0.000 

-0.430 0.000 
33 1.000 23 1.000 

353 
HS03- 400 -1.000 4.000 0.000 0.000 0.000 0.000 

3.570 -1.620 
1 3.000 29 1.000 2 2.000 3 -1.000 

354 
H2S03 AQ 400 0.000 4.000 0.000 0.000 0.000 0.000 

5.340 3.990 
1 4.000 29 1.000 2 2.000 3 -1.000 

355 
CUS03- 500 -1.000 5.000 0.000 0.000 0.000 0.000 

6.880 -1.250 
29 1.000 l 2.000 2 3.000 3 -1.000 IS 1.000 

356 
CU(S03)2 500 -3.000 9.000 0.000 0.000 0.000 0.000 

4.030 -4.150 
15 1.000 2 5.000 29 2.000 1 4.000 3 -2.000 

357 
CU(S03)3 500 -5.000 13.000 0.000 0.000 0.000 0.000 

1.120 -7.050 
IS 1.000 2 7.000 29 3.000 1 6.000 3 -3.000 

358 
AGS03· 500 -1.000 4.000 0.000 0.000 0.000 0.000 

1.950 -2.900 
4 1.000 29 1.000 1 2.000 2 2.000 3 -1.000 

359 
AGS03)2· 500 -3.000 8.000 0.000 0.000 0.000 0.000 

1.380 -5.800 
4 1.000 29 2.000 1 4.000 2 4.000 3 -2.000 

360 
AGS03)3· 500 -5.000 12.000 0.000 0.000 0.000 0.000 

-1.950 -8.700 
4 1.000 29 3.000 1 6.000 2 6.000 3 -3.000 

361 
AG2S03) 500 0.000 4.000 0.000 0.000 0.000 0.000 

4.960 -2.900 
4 2.000 29 1.000 1 2.000 2 2.000 3 -1.000 

362 
02 AQ 300 .000 4.000 .000 .000 .000 .000 

-86.080 134.790 .OOOOOE+OO .OOOOOE+OO .OOOOOE+OO .OOOOOE+OO .OOOOOE+OO 

3 2.000 1 -4.000 2 -4.000 

LOOK MIN 
URANINIT 2 4.00 -13.92 15.80 0 0.000 URANI 

32 1.000 2 2.000 
U02 (Al\1 2 4.00 -8.28 8.20 0 0.000 U02 

32 1.000 2 2.000 
U409 (C) 4 18.00 -40.25 36.49 0 0.000 U409 

1 -2.000 2 6.000 3 1.000 32 4.000 

U308 (C) 4 16.00 -6.54 -12.73 0 0.000 U308 

1 -4.000 2 2.000 3 2.000 32 3.000 

USI04 (C 4 4.00 -16.84 19.88 0 0.000 USI04 

30 1.000 32 1.000 2 2.000 3 -2.000 

UF4 (C) s 4 .00 -27.82 15.53 0 0.000 UF4 

16 4.01)0 32 1.000 2 2.000 1 4.000 3 -2.0110 

UF4.2.511 s 4.00 -36.79 33.84 0 0.000 llF4.2 
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16 4.000 3 0.500 3.2 1.000 2 2.000 1 4.000 

UIIP04)2, 5 4.00 -60.80 38.27 0 0.000 UIIP04 

26 2.000 l 6.000 3 2.000 32 1.000 2 2.000 

NINGYOIT 5 4.00 -63.12 32.16 0 0.000 NINGY 

11 1.000 26 2.000 32 1.000 2 2.000 1 4.000 

U03 (C) 3 6.00 7.72 -19.32 0 0.000 U03( 

I -2.000 32 1.000 3 1.000 

GUMMITE 3 6.00 10.40 -23.o! 0 0.000 GUMMI 

1 -2.000 32 1.000 3 1.000 

n-U02(0II 3 6.00 5.54 -13.73 0 0.000 B-U02 

1 -2.000 32 1.000 3 2.000 

SCIIOEI'IT 3 6.00 5.40 -12.05 0 0.000 SCIIOE 

I -2.000 32 1.000 3 3.000 

RUTIIERFO 2 10.00 -14.44 -1.44 0 .000 RUTilE 

32 1.000 10 1.000 
4.54 .o.o.ms -2716.0 

(ll02)3(1' 2 IR.OO -49.04 94.90 0 0.000 (U02) 

.u 3.000 26 2.000 
II-AUTUN I 3 12.00 -47.93 -3.60 0 0.000 II-AUT 

I 2.000 32 2.000 26 2.000 

NA-AUTUN 3 12.00 -47.41. -0.46 0 0.000 NA-AU 

24 2.000 32 2.000 26 2.000 

K·AliTllNI 3 12.00 -48.24 5.86 0 0.000 K-AUT 

19 2.000 32 2.000 26 2.000 

URAMI'IIIT 6 6.00 ·289.90 3U81 0 0.000 URA.MP 

J2 2.000 26 2.000 23 2.000 .~ -6.000 l 20.000 

2 16.000 
SAI.EJo:JTE 3 12.00 -43.65 -20.1.8 0 0.000 SA LEE 

32 2.000 21 1.000 26 2.000 

AUTUNITE 3 12.00 -43.93 ·14.34 0 0 .000 AUTUN 

32 2.000 II 1.000 26 2.000 

SR-AUTUN 3 12.00 -44.46 ·13.05 0 0.000 SR-AU 

32 2.000 31 1.000 26 2.000 

URANOCIR 3 12.00 -44.63 -10.10 0 0.000 UI{ANO 

32 2.000 H 1.000 26 2.000 

BASSET IT ·' 14.00 -44.49 -19.90 0 0.000 UASSE 

32 2.000 17 1.000 26 2.000 

TORIJERNI 3 14.00 -45.28 -15.90 0 0.000 TOR BE 

32 2.000 IS 1.000 26 2.000 

I'RZIIEV.I\1. 3 12.00 -44.37 -11 .00 0 0.000 PRZIIE 

J2 2.000 27 1.000 26 2.000 

URANOI'II.I\ 4 12.00 17.49 0.00 0 0.000 URANO 

I -6.000 32 2.000 11 1.000 30 2.000 

AI.OIL\(A) 3 0.00 HUH -27.05 0 0.000 AL0113 

s 1.000 3 3.000 -3.000 
ALOIIS04 4 6.00 .J.23 0.00 0 0.000 .I\ LOllS 

I ·1.000 5 1.000 29 1.000 3 1.000 

AL4(011)1 4 6 .00 22.70 0.00 0 0.000 AIA(O 

1 -10.000 s 4.000 29 1.000 3 10.000 

ALUM K 4 12.00 -5.17 7.22 0 0.000 ALUM 

19 1.01Hl 5 1.000 29 2.000 3 12.000 

ALUNITE s 12.00 -1.35 3.92 0 0.000 ALUNI 

19 1.000 s 3.000 29 2.000 3 6.000 1 ·6.000 

ANilYI>RIT 2 6.00 -4.64 ·3.77 0 0.000 .1\NIIYD 

11 1.000 29 1.000 
ARAGON IT 2 4.00 ·8 .• \6 · 2.62 0.000 .1\RAGO 

ll 1,(){)0 10 1 .. 000 
-10.21 0.0217 0.0 ·5.17E-OS 
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ART1NITE 4 4.00 9.60 -28.74 0 0.000 ARTI~ 

1 -2.000 21 2.000 10 1.000 3 5.000 
BAF2 2 0.00 -5.76 1.00 0 0.000 UAF2 

8 1.000 16 2.000 
BARITE 2 6.00 -9.98 6.28 0 0.000 U:\RIT 

8 1.000 29 1.000 
BOEHMITE 3 0.00 8.58 -28.13 0 0.000 HOElll\1 

1 -3.000 5 1.000 3 2.000 
BRll:::ITE 3 0.00 16.79 -25.84 0 0.000 BRll<.:l 

21 1.000 3 2.000 1 -2.000 
CALCITE 2 4.00 -8.48 -2.59 0.000 CALC1 

11 1.000 10 1.000 
13.543 -0.0401 -3000.0 

CELESTIT 2 6.00 -6.47 -0.47 0 0.000 CELES 

31 1.000 29 1.000 
CHALCEDO 2 0.00 -3.52 4.61 0 0.000 CllALC 

3 -2.000 30 
CIIRYSOTI 4 

1 -6.000 21 
CLINOENS 4 

3 -1.000 21 
CRISTOBA 2 

3 -2.000 30 
DiASPORE 3 

1 -3.000 5 
DIOPSIDE 5 

3 -2.000 11 
DOLOMITE 3 

11 1.000 21 
EPSOMITE 3 

21 1.000 29 
SEPIOLIT 4 

3 -0.500 21 
FEHRIIIYD 4 

1 -3.000 3 
FEJ(OII)8 4 

1 -8.000 17 
FEOH)2.7 5 

1 -2.700 3 
FES PI•T S 

1 8.000 17 
FE2(S04) 3 

29 3.000 17 
FC03APAT S 

11 9.496 21 
FLUORITE 2 

11 1.000 16 
FORSTEIU 3 

I -4.000 21 
Gibbsite 3 

1 -3.000 s 
GOF.TIIITE 4 

1 -3.000 3 
GREENALI 4 

1 -6.000 17 
GREIGITE 5 

1 32.000 17 
GYPSUM 3 

1.000 
0.00 32.19 -52.49 
3.000 30 2.000 3 
0 .00 11.34 -20.01 
1.000 30 1.000 1 
0.00 -3.59 5.50 
1.000 
0.00 6.87 -24.63 

1.000 3 2.000 
0.00 19.89 -32.28 
1.000 21 1.000 30 

8.00 -17.01) -8.29 
1.000 10 2.000 
6.00 -2.14 2.82 
1.000 3 7.000 

0.00 15.91 -27.27 
2.000 30 3.000 1 
3.00 17.92 -10.00 

3.000 17 1.000 2 
8.00 46.29 -20.00 
3.000 ;\ R.OOO 2 

3.00 9.99 -10.00 
2.700 13 0.300 17 

0.00 -37.58 60.14 
1.000 29 1.000 2 

24.00 29.64 -79.12 
2.000 2 ·2.000 
4.80 -114.40 39.39 
0.144 26 4.800 10 
0.00 -10.96 4.71 
2.000 

0 
1.000 
0 
-2.000 

0 

0 

0 
2.000 

0 

0 

0 
-4.0CO 
0 

-1.000 
0 
-2.000 

0.000 CIIRYS 

0.000 CLINO 

0.000 CRIST 

0.000 DIASJ• 

0.000 DHWS 
-4.000 

0.000 DOI.Ol\1 

0.000 EJ>SOI\1 

0.000 SEI'IO 

0.000 FERRI 

0.000 FE..l(O 

0 0.000 FEOII) 
1.000 2 -1.000 

0 0.000 FES I' 
8.000 3 -4.000 

0 0.000 FE2(S 

0 0.000 FCOJA 
1.200 16 2.480 

0 0.000 FLUOR 

0.00 28.30 -48.5 I 0 o.ooo FOnST 

2.000 30 1.000 
0.00 7.94 -22.79 0 

1.000 3 3.000 
3.00 13.53 -24.4H 

2.000 17 1.000 2 
6.00 20.81 0.00 
3.000 30 2.000 3 
0.00 -153.61 220.56 
3.000 2 30.000 29 
6.00 -4.85 0.26 

o.ooo <anus 

0 0.000 GOETII 
-1.000 
0 0.000 GHEEN 

1.000 
0 0.000 GIH:IG 

4.000 3 -16.000 
0 0.000 GYI'SU 
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II 1.000 29 1.000 3 2.000 
HALITE 2 0.00 1.58 0.92 0 

24 1.000 13 
HEMATITE 4 

I -6.000 3 
IIUNT1TJ·: 3 

21 3.000 11 
IIYDRMAGN 4 

21 5.000 10 
JAROSITE 6 

I -6.000 24 
2 -3.000 

1.000 
6.00 22.06 -50.85 

3.000 17 2.000 2 
16.00 -29.97 -25.76 

1.000 10 4.000 
16.00 -8.77 -52.21 

4.000 I ·2.000 3 
21.00 27.90 -66.18 
1.000 29 2.000 3 

0.000 !LALIT 

0 
·2.000 
0 

0 
6.000 

0 
6.000 17 

0.000 HEMAT 

0.000 IIU:'I:TI 

0 .000 IIYDR!\1 

0.000 .JAROS 
3.000 

JAIWSITE 6 21.00 24.30 -61.28 0 0.000 JAROS 
I -6.000 19 1.000 29 2.000 3 6.000 17 3.000 
2 -3.000 

JAROSITE S 
I -5.000 29 

MACKINAW 5 
I ltoOO 17 

MAGADIIT 4 
I -1.000 3 

21.00 27.00 -85.15 
2.000 3 7.000 17 

0.00 -38.31 60.14 
1.000 29 1.000 :t 
0.00 -14.30 0.00 

-9.000 24 1.000 30 

0 
3.000 2 
0 

8.000 3 
0 
7.000 

0.000 JAROS 
-3.000 
0.000 MACKI 
-4.000 

0.000 MAGAD 

MAGIIEMIT 4 6.00 32.45 -20.00 0 0.000 MAGIIE 

I -6.000 3 
MAGNESIT 2 

21 1.000 10 
1\lAGNETIT 4 

I -8.000 17 
MEI.A.NTER 3 

17 1.000 29 
MIRAIULI .\ 

24 2.000 29 
NATIWN 3 

24 2.000 10 
NESQUEIIO 3 

21 1.0410 10 
I'IILOGOPI 5 

I -10.000 19 
I'YRITE 5 

I 16.000 2 
QUARTZ 2 

3 -2.000 30 

~.000 17 2.000 2 
4.00 -8.03 -6.1 i 
1.000 
8.00 

3.000 
29.80 • 70.46 

3 4.000 2 
8.00 

1.000 3 
-2.47 2.86 

6.00 -l.ll 
7.000 

18.99 
1.000 3 I 0.000 

4.00 -1.31 15.74 
1.000 3 10.000 

4.00 -5.62 -5.79 
1.000 3 3.000 
0.00 66.30 -86.36 
1.000 21 3.000 5 

0.00 -85.80 131.5R 
14.000 17 1.000 29 
0.00 -4.01 6.22 
1.000 

-2.000 
0 

0 
-2.000 
0 

0 

0.000 MAGNE 

0.000 MAGNE 

0.000 l\IEI.AN 

0.000 MIRAU 

0 0.000 NATRO 

0 0.000 NESQU 

0 0.000 PIILOG 
1.000 30 3.000 

0 0.000 PYRIT 
2.000 3 -8.000 

0 0.000 QUART 

SEI'IOLIT 4 0.00 18.78 0.00 0 0.000 SEPIO 
3 -0.500 21 2.000 30 3.000 I -4.000 

SIDERITE 2 6.00 ·1 0.55 -5.33 0 
17 1.000 10 1.000 

SI02(A,G 2 0.00 ·3.02 4 .44 

3 ·2.000 ·'" 1.000 
0.3380 -0.0007889 -840.1 

SI02(A,I' 2 0.00 ·2.71 3.91 
3 -2.000 30 1.000 

O.JJHO -O.IHI078H9 ·840.1 
SRFZ 2 0.00 -8.54 1.25 0 

31 1.000 16 
STREN<;IT 4 

26 1.000 3 
STIWNTIA 2 

31 1.000 10 
TALC 4 

2.000 
.\.00 -1.:\.37 
2.000 17 
4.00 -9.25 
1.000 

0.00 2.\.06 

·12.0.\ 
1.000 2 

-0.69 

-35.01 0 

0 
-1.000 

0 

0.000 SIDER 

0.000 SI02( 

0.000 SI02( 

0.000 SRF2 

0.000 STREN 

0.000 STRON 

0.000 TALC 
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3 -~.000 :!1 
THENARDI 1 

24 2.000 :!9 
THER1\:0NA 3 

24 2.000 10 
TREl\IOLIT 5 

3 ·8.000 1 L 
VIVIANIT 3 

17 3.000 26 
WITHERIT 2 

8 1.000 10 
PYROLUSI 4 

1 -4.000 2 
BIRNESSI 4 

1 -4.000 2 
NSUTITE 4 

1 -4.000 2 
BIXB\1TE 4 

1 -6.000 3 
IL\USMANN 4 

1 -8.000 2 
l'YROCROI 3 

L -2.000 22 
MANGANIT 4 

1 -3.000 3 
RIIODOCIIR 2 

22 l.OfiO 10 
MNCL2, 4 3 

22 1.000 13 
MNS GREE 5 

1 8.000 22 
MNS04 2 

22 1.000 29 
MN2(S04) 3 

29 3.000 22 
MN3(P04) 2 

22 3.000 26 
CU METAL 2 

2 2.000 15 
NANTOKJT 3 

13 1.000 15 
CUF 3 

16 1.000 15 
CUPRITE 4 

L -2.000 3 
CllALCOCI 5 

1 8.0110 15 
DJURLEIT 5 

1 8.000 15 
ANILITE S 

1 8.000 15 
BI..AUBLEI 5 

1 8.000 IS 
BLAUBLEI 5 

1 8.000 15 
COVELLIT 5 

1 8.000 IS 
CU2S04 3 

3.000 30 ~.000 I 
6.00 -0.18 -0.57 
1.000 

4.00 0 .13 -2.80 
1.000 3 1.000 
0.00 56.55 -96.61 

2.000 21 5.000 30 

-6.000 
0 

0 

0 
8.000 1 

0.000 Til E:'\A 

0.000 Til ERI\I 

0.000 TREMO 
-1~.000 

6.00 -36.00 0.00 0 0.000 \'1\'IA 

2.000 3 8.000 
4.00 -8.59 0.36 
1.000 
4.00 41.37 -54.94 

-2.000 3 2.000 22 
4.00 43.60 -25.76 
-2.000 3 2.000 22 
4.00 43.01 -25.76 
-2.000 3 2.000 22 
6.00 50.40 -66.76 
3.000 22 2.000 2 

8.00 6l.54 -80.14 
-2.000 22 3.000 3 

2.00 15.09 -22.59 
1.000 3 2.000 

3.00 25.27 -25.76 
2.000 22 1.000 2 

6.00 -10.41 -2.08 
1.000 

0 

0 
1.000 

0 
1.000 

0 
1.000 

0 
-2.000 

0 
4.000 
0 

0 
-1.000 

0 

0.000 WITHE 

0.000 J>YROI. 

0.000 HIRNE 

0.000 NSUTI 

0.000 BIXBY 

0.1100 JJ ,\ US!\1 

0.000 1'\'IH>C 

0.000 l\lANGA 

0.0110 RJIOJ)O 

2.00 2.71 17.3!! 0 0.000 l\1NCL2 
2.000 3 4.000 
0.00 -29.86 54.35 0 0.000 MNS (; 

1.000 29 l.OOO 2 8.000 3 -4.000 
!tOO 2.67 -15.48 0 0.000 MNS04 

1.000 
24.00 45.30 -90.58 0 0.000 MN2(S 

2.000 2 ·2.000 
6.00 -23.83 2.12 0 0.000 I\IN3(1' 

2.000 
0.00 ·I 1.48 15.48 0 0.000 CU ME 

1.000 
1.00 -9.48 8.33 0 0.0110 NANTO 

1.000 2 1.000 
1.00 4.36 -14.02 0 0.000 CUF 

1.000 2 1.000 
2.00 -6.99 2.94 
1.000 15 2.000 2 
0.00 -73.72 106.19 

2.000 2 I 0.000 29 
0.00 -72.66 104.94 
1.934 2 9.868 29 

0.00 -69.62 101.20 
1.750 2 9.500 29 
0.00 -63.12 58.82 
1.400 2 8.800 29 
0.00 -58.37 59.81 
1.100 2 8.200 29 
0.00 -56.70 84.1 s 
1.000 29 1.000 2 

8.00 -7.39 -7.86 

0 
2.000 
0 
1.000 3 

0 
1.000 3 

0 

0 

l.OOO 3 
0 

1.000 3 
0 

1.000 3 
0 
8.000 3 

0.000 CUI'RI 

0.01111 
-4.000 

CIIALC 

0.0110 D.l U It L 
-4.000 

0.000 ANILI 
-4.000 

0.000 
-4.000 

0.000 
-4.000 

0.000 
-4.000 

lli..AUJI 

BI..AUJI 

COVEL 

0.000 Cll2SO 
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29 1.1100 15 2.000 2 2.0110 

<..:UI'IWUSF "' 
4.00 1.39 -15.45 0 0.000 CUI'IW 

I .. uoo 3 2.000 15 1.000 17 1.000 

MEI.A!'iOTII 2 2.00 3.73 ·12.32 0 0.000 MEI.AN 

15 1.01111 u 2.000 
CUCOJ 2 6.00 -9.63 0.0() () 0.000 CUCOJ 

IS 1.0011 Ill ).000 

<..:UF2 2 2.00 -0.62 .J 3.32 0 0.000 CU.F2 

IS J.CIUII 16 2.000 

Cl!F2, 211 ·' 2.00 .. us -3.65 0 0.000 CUF2, 

IS 1.0110 It• 2.000 3 2.000 

CU(011)2 ·' 2.00 H.M -15.25 0 0.000 CU(Oll 

I -2.01111 15 1.000 3 2.000 

t\.TACAMIT "' 
4.00 7.3.S -18.69 0 0.000 ATACA 

I -3.0CIO 15 2.000 3 3.000 13 1.000 

Cll2(0IIP 4 9.00 9.24 -17.35 0 0.000 CU2(0 

1 -3.000 15 2.000 3 3.000 23 1.000 

t\.NTLEIUT 4 12.00 !1.29 0.00 0 0.000 ANTLE 

1 -4.000 15 3.000 3 4 .000 29 1.000 

UIHKII.-\NT 4 14.00 15.~ 0.00 0 0.000 IHWCII 

1 -6.000 15 4.000 3 6.00() 29 1.000 

I.!.N<;JTE 4 14.00 16.79 -39.61 0 0.000 LANG I 

I -6.001) 15 4.000 3 7.000 29 l.fliiO 

TENOIUTE ·' 2.00 7.62 -15.24 0 0.000 TENOR 

I -2.000 15 1.000 3 1.000 

< "lJOClJS04 4 10.011 11.53 -35.58 0 0.000 cuocu 
I -2.0110 15 2.000 3 l.OOO 29 1.000 

Cll."\(1'04) 2 6.00 .• \b.H5 0.00 0 0.000 CUJ(I' 

15 3.000 u. 2.000 

CI.B(I'04) 3 6.00 -.\5.12 0 .00 0 0.000 CU3(1' 

15 3.HIHJ 26 2.000 3 3.000 

ClJS04 2 !WO 3.01 -18.14 0 0.000 CUS04 

15 1.0011 29 1.000 

CIIALCANT 3 IUJO ·2.64 1.44 0 0.000 CIIALC 

15 1.000 :!9 1.000 3 5.000 

UIOI'Tt\.SE 3 2.00 6.50 -8.96 0 0.000 DIOI'T 

I -2.\100 15 1.000 .\0 l.OOO 

CUI'IUCFE 5 8.00 31.94 -58.69 0 0.000 CUI'Rl 

I -8.000 15 1.000 3 4.000 17 2.000 2 ·2.000 

CHALCO I'\' 6 0.00 -102.59 155.76 0 0.000 Cllt\.LC 

I 16.0011 15 1.000 17 1.000 29 2.000 2 16.000 

-' -KOCIII 

ClJBR 3 1.011 -10.9.' 11.43 0 0.000 CUBR 

9 l.tltlll IS 1.000 2 1.000 

Clll J 1.110 · 1H1 18.49 0 0.000 CUI 

18 1.0110 15 1.000 2 1.000 

ZN 1\IETAL 2 ·2.00 25.76 -36.78 0 0.000 ZN l\IE 

J4 I .OUO 2 2.000 

ZN<"J.2 2 0.00 7.0.' -17.48 0 0.000 ZNCL2 

."\4 1.0110 1.\ 2.000 

SI\11TIISON 2 .too ·10.00 -4.36 0 0.0110 SMITH 

34 1.000 10 1.000 

ZNCO.\, l -' 4.00 ·10.26 0 .00 0 0.000 ZNC03 

J4 1.0110 10 1.000 J l.OOO 

ZNFZ 2 0.00 -1.52 - 13.01! 0 0.000 ZNF 2 

.'4 1.000 !ti 2.000 

Z~(OII)Z J 0.110 1.2.45 0.00 0 O.'JH; ZN(Oil 

I -2.000 .l-1 1.000 3 :.:!.000 
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ZN(OII):! 3 0.00 12.20 0.00 0 0.000 Di(OII 

I -:!.000 ~ 1.000 3 :!.000 
ZN(011)2 3 0 .00 11.75 0.00 0 0.000 ZN!Oll 

I -:!.000 34 1.000 3 :!.000 

ZN(Oil):! 3 0 .00 11.71 0.00 0 0.000 ZN(Oil 

1 -:!.000 34 1.000 3 :!.000 

ZN(Oil)2 3 0.00 11.50 0.00 0 0.000 ZN (OII 

1 -2.000 -'" 1.000 3 :!.000 
ZN2(011)3 4 0.00 15.:!0 0.00 0 0.000 Z!'\2 (0 

1 -3.000 34 2 .000 3 3.000 13 1.000 

ZN5(01l)8 " 0.00 38.50 0.00 0 0.000 ZNS (O 

1 -8.000 3-1 5.000 3 8.000 13 2.000 

ZN2(011)2 " 6 .00 7.50 0.00 0 0.000 ZN:!(O 

1 -2.000 3-1 2 .000 3 :!.000 29 1.0110 

ZN4(011)6 4 6.00 28.40 0.00 0 0.000 ZN4(0 

1 -6.000 3-1 4.000 3 6.000 29 1.000 

ZNN03)2, 3 10.00 3.44 5.51 0 0.000 ZNNO.l 

34 1.000 23 2.000 3 6.0110 

ZNO(ACTI 3 0 .00 11.31 0.00 0 0.000 ZNO(A 

1 -2.000 34 1.000 3 1.000 

ZINCITE 3 0.00 11.14 -21.86 () 0.000 ZINCI 

1 -2.000 34 1.000 3 1.000 
ZN30(S04 4 12.00 19.02 .( • .2.00 0 0.000 ZN30 ( 

1 -2.000 34 3 .000 29 2.1100 3 1.000 

ZN3(P04) 3 0.00 -32.04 0.00 0 0.000 ZN.\(1' 

34 3.000 26 2.000 3 4.000 

ZNS (A) s -2.00 -42.71 63.81 0 0.000 ZNS ( 

1 8.000 34 1.000 29 1.000 2 8.000 3 -4.000 

SPIIALERI 5 -2.00 -45.28 68.39 0 0.000 Sl' IIAL 

1 8.:l00 34 1.000 29 1.000 2 8.000 3 •. t,O()O 

WURTZITE s -2.00 -43.34 65.20 0 0.000 \\'lJ RI'Z 

1 8.000 3-1 1.000 29 1.000 2 8.000 3 -4.000 

ZNSIOJ 4 0.00 2.93 -18.27 0 0.000 ZNSIO 

1 -.2.0110 3 - 1.000 34 1.000 30 1.000 

WILI.EM1T 3 0.00 15.33 • 'l'\.37 0 (1.000 WILLE 

1 -4.000 34 2.000 .\0 1.000 

ZINCOSIT 2 6 .00 3.01 -19.20 0 0.000 ZINC<> 

34 1.000 29 1.000 
ZNS04, 1 3 6.00 ·0.57 -10.64 0 0.000 ZNSO-' 

~ 1.000 29 1.000 3 1.000 
BlANC JilT 3 6.00 -1.76 -0.16 0 0.000 BlANC 

34 1.000 29 1.000 3 6.000 

GOSLAIUT 3 6.00 -1.96 3.30 0 0.000 GOSIA 

34 1.000 29 1.000 3 7.000 

ZNBH2, 2 3 0.00 5.21 -7.51 0 0.000 ZNIIR2 

34 1.000 9 2.000 3 2.000 

Z.N12 2 0 .00 7.23 -13.44 0 0.000 ZN12 

34 1.000 18 2.000 
CU METAL 2 -2.00 13.49 -18.00 0 0.000 CJ> l\1E 

12 1.000 2 2.000 
GAMMA CD 2 -2.00 13.59 -18.14 0 0.000 GAl\fMA 

12 1.000 2 2 .000 
OTAVJTE 2 4 .00 ·13.74 -0.58 0 0.000 OTAVI 

12 1.000 10 1.000 

CDCL.2 2 0.00 -0.68 -4.47 {i 0.000 CUCL2 

12 1.000 13 2.000 
CUCL2, 1 3 0.00 ·1.71 -1.82 0 0.000 CUCL2 

12 1.000 13 2.000 3 1.000 
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CUC1.2,2. 3 
1Z 1.000 13 

CJ)F2 2 
12 1.000 16 

CD(011)2 3 
I ·2.000 12 

CD(OII)2 3 
I -2.1100 12 

CI>OIICL 4 
I -1.000 12 

CU3(011)4 4 
1 -4.000 12 

CD30112(S 4 
1 -2.000 12 

Cll4(011)6 4 
1 -6.000 12 

MONTEI'ON 3 
1 -2.000 12 

CD3(1'04) 2 
12 3.01111 26 

CDSI03 4 
3 -1.000 12 

CDS04 2 
12 1.000 29 

CllS04, I 3 
I 2 1.000 29 

CI>S04,2. 3 
12 1.000 29 

GlmENOCK 5 
14.000 12 

CJ>JIIU, 4 3 
12 1.000 9 

CI>I2 2 
12 1.000 18 

I'll METAL 2 
21 1.000 2 

COTUNNIT 2 
27 1.000 13 

MATLOCKI 3 
27 1.000 13 

I'IIOSGENI 3 
27 2.000 13 

CERRUSIT 2 
27 1.000 10 

I'BF2 2 
27 1.000 16 

1\lASSICOT 3 
I -2.000 27 

LITIIARGE 3 
1 -2.000 27 

1'110, .. m 3 
1 -2.000 27 

1'1120CO.l 4 
I ·2.000 27 

LARNAKJT 4 
-2.000 27 

I'B302S04 4 
I -4.000 27 

0.00 -1.94 1.71 0 0.000 CDC1.2 

2.000 J 2.500 
0.00 -2.98 ·9.72 0 0.000 COF2 

2.11011 
0.00 13.73 -20.77 0 0.000 CD(OII 

1.000 3 2.000 
0.00 13.65 0.00 0 0.000 CD(Oil 

1.000 3 2.000 
0 .00 3.52 -7.41 0 0.000 CDOiiC 

1.000 3 1.0!10 13 1.000 
6 .00 22.56 0.00 0 0.000 CD3(0 

3.000 3 4.000 29 1.000 
12.00 6.71 0.00 0 0.000 CD301l 

3.000 3 2.000 29 2.000 
6.00 28.40 0.00 0 0.000 CD4(0 

4.000 3 6.000 29 1.000 
0.00 15.12 -24.76 0 0.000 MONTE 

1.000 3 1.000 
0.00 -32.60 0.00 0 0.000 CD3(1' 

2 .000 
0 .00 9.06 ·16.63 0 0.000 CDSIO 

1.000 30 1.000 1 -2.000 
6.00 -0.10 -14.74 0 0.000 CJ>S04 

1.000 
6.00 -1.66 -7.52 0 0.000 CUS04 

1.000 3 1.000 
6.00 ·1 .87 -4.30 0 0.000 CDS04 

1.000 3 2.670 
-2.00 -49.59 76.50 0 0.000 GREEN 

1 .000 29 1.000 2 8.000 3 -4.000 
0.00 -2.42 7.23 0 0.000 CDIIR2 

2.000 3 4.000 
0.00 -3.61 4.01! 0 0 .000 CDI2 

2.000 
-2.00 4.27 0.40 0 0.000 I'll ME 

2.000 
0.00 -4.77 5.60 0 0.000 COTUN 

2.000 
0.00 -9.43 7.95 0 0.000 MATLO 

1.000 16 1.000 
4 .00 -19.81 0.00 0 0.000 I'IIOSG 

2.000 I 0 1.000 
4.00 -13.13 4.86 0 0.000 CERIW 

1.000 
0 .00 -7.44 -0.70 0 0.000 l'HF2 

2.000 
0 .00 12.91 -16.78 0 0.000 MASSI 

1.000 3 1.000 
0.00 12.72 -16.38 0 0.000 UTIIA 

1.000 3 1.000 
0 .00 12.98 0.00 0 0.000 1'110, 

1.000 3 1.330 
4.00 -0.50 ·1L46 (I 0.000 1'1120C 
2.000 3 1.000 10 1.000 
6.00 -0.28 -6.44 0 0.000 LARNA 

2.000 29 1.000 3 1.000 
6.00 10.40 -20.75 0 0.000 1'11302 

3.000 29 1.000 3 2.000 

33 



PB403S04 4 6.00 :!2.10 -35.07 0 0.000 1'840.'\ 

1 -6.000 27 4.000 29 1.000 3 3.000 
CLPYR0!\10 3 0.00 -84.43 0.00 0 0.000 CLPYK 

27 5.000 26 3.000 13 1.000 
HXYPYROI\1 4 0.00 -62.79 0.00 0 0.000 IIXYl'Y 

1 -1.000 27 5.000 26 J.OOO 3 1.000 
1'8302C03 4 4.00 11 .02 -26.43 0 0.000 l'll.'\02 

1 -4.000 27 3.000 10 1.000 3 2.000 
PLUMBGUM s 0.00 -32.79 0.00 0 0.000 I'Llll\111 

1 -5.000 27 1.000 s 3.000 26 2.000 3 6.000 

JIINSDALI 6 6.00 -2.50 0.00 0 0.000 IIINSD 
1 -6.000 27 1.000 s 3.000 26 1.000 29 1.000 

3 6.000 
TSUMEBIT 5 2.00 -9.79 0 .00 0 0.1100 TS li i\IE 

1 -3.000 27 2.000 15 1.000 26 1.000 3 6.000 

1'8SI03 4 0.00 7.32 -9.26 0 0.000 l'IISIO 

3 -1.000 1 -2.000 27 1.000 30 1.000 
P82SI04 3 0.00 19.76 -26.00 0 0.000 l'li:!Sl 

1 -4.000 27 2.000 30 1.000 
ANGLESIT 2 6.00 -7.79 2 .15 0 0.000 ANGLE 

27 1.000 29 1.000 
GALENA s -2.00 -48.79 79.54 0 0.000 GALEN 

1 8.000 27 1.000 29 1.000 2 11.000 3 -4.0110 

PLATTNER 4 2.00 49.30 -70.73 0 0.000 l'LATI" 
1 -4.000 2 -2.000 27 1.000 3 2.000 

1'8203 4 2.00 61.04 0.00 0 0.000 I'H203 

1 -6.000 2 -2.000 27 2.000 3 3.000 
MINIUM 4 2.00 73.69 -102.76 0 0.000 1\llNill 

1 -8.000 2 -2.000 27 3.000 3 4.1100 
1'8(011)2 3 0.00 8.15 -13.99 0 0.000 1'11(011 

1 -2.000 27 1.000 3 2.000 
I.AURIONI 4 0.00 0.62 0.00 0 0.000 IAUIU 

1 -1.000 27 1.000 13 l.OOO 3 1.000 
1'82(011)3 4 0.00 8.79 0.00 0 0.000 l'll2(0 

1 -3.000 27 2.000 3 3.000 13 1.000 
IIYDCERRU 4 8.00 -17.46 0.00 0 0.000 IIYHCE 

1 -2.000 27 3.000 10 2.000 3 2.000 

PB20(0IIj 3 0.00 26.20 0.00 0 0.000 1'1120( 

1 -4.000 27 2.000 3 3.000 
P88R2 ~ 0.00 -5.18 8.10 0 0.000 I'IIIIIU 

27 1.000 9 2.000 
P88RF 3 0.00 -8.49 0.00 0 0.000 I'UIUU' 

27 1.000 9 1.000 16 1.000 
P812 2 c.oo -8.07 15.16 0 0.000 I'IU2 

27 1.000 lH 2.000 
P84(011)6 4 6.00 21.10 0 .00 0 0.000 1'114 (0 

1 -6.000 27 4.000 29 1.000 3 6.000 

NIC03 2 4.00 -6.84 -9.94 0 0.000 NIC03 

25 1.000 10 1.000 
N1(011)2 3 0.00 10.80 30.45 0 0.000 NI(OII 

1 -2.000 25 1.000 3 2.000 
Nl4(011)6 4 6.00 32.00 0.00 0 0.000 Nl4(0 

1 -6.000 :5 4.000 29 1.000 3 6.000 

BUNSENIT 3 0.00 12.45 -23.92 0 0.000 IIUNSI·: 

1 -2.000 25 1.000 3 1.000 
NI3(P04) 2 0.00 -31.30 0.00 0 0.000 NIJ(J> 

25 3.000 26 2.000 
MILLER IT s -2.00 -41.70 62.64 0 0.0110 MILLE 
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I 8.000 :!5 1.000 29 1.000 :! 8.000 3 •. uoo 
RETGERSI J 6.00 ·:!.04 1.10 0 0.000 HETGE 

1.000 J 6.000 25 1.000 29 
MORENOSI J 6.00 ·2.36 :!.94 0 0.000 MOREN 

25 1.000 29 1.000 J 7.000 

NI2SI04 3 0 .00 14.54 ·33.36 0 0.000 1'12SI 

I ·4.000 :!5 2.000 30 1.000 

A<; METAL 2 -1.00 ·13.51 25.23 0 0.000 AG ME 

4 1.000 2 1.000 
HROMYRIT 2 0.00 ·12.27 20.17 0 0.000 RROMY 

4 1.0110 9 1.000 
CERAHGYn Z 0.00 -9.75 15.65 0 0.000 CERAR 

4 1.000 13 1.000 
AG2COJ 2 4 .00 ·11.07 9.5.\ 0 0.000 AG2CO 

4 2.000 I 0 1.000 
A<a·.m2<> 3 o.oo o.ss 4.27 0 0.000 AGF.4 

4 1.000 16 1.000 3 4.000 
IOUYHITE 2 0 .00 -16.07 26.82 

4 1.000 18 1.000 
A<;20 3 0 .00 12.58 -10.43 0 

i -2.000 4 2.000 3 1 000 
A<;:wo4 2 o.oo -17.55 o.oo 0 

4 3.000 26 1.000 
ACANTIIIT 5 ·2.00 -69.71 113.44 

I 8.000 4 2.000 29 1.000 2 
A<;2S04 2 6 .00 -4.92 4.:!5 0 

4 2.000 29 1.000 
ANALCIME 5 0.00 6.72 -22.8-1 

24 1.000 5 1.000 30 2.000 3 
Kuolinil 4 0.00 7.51 -37.81 0 

5 2.000 ]0 2.000 3 1.000 
LEONIIAIU> 5 0.00 16.49 -85.36 

.1 -1.000 -16.000 II 2.000 30 
Low ulhi 5 0.00 .lB -18.25 0 

24 1.0011 5 t .000 30 3.000 1 
ANAUiiTE 5 0.00 3.51 ·20.00 

24 1.000 5 1.000 30 3.000 1 
1\tuSCO\'it -1 0.00 14.65 -60.44 0 

0 0.000 

0.000 AG20 

0.000 AGJI'O 

0 A CANT 
8.1100 3 

0.000 
-4.000 

0.000 AG:!SO 

0 0.000 ANALC 
-1.000 1 -4.000 

0.000 KAOLI 
-6.000 

0 0.000 LEONII 
8.000 5 4.000 

0.000 LOW A 
·4.000 3 -4.000 

0 0.000 ANALU 
-4.000 3 -4.000 

0.000 MUSCO 

19 1.000 5 3.000 30 3.000 
ANNITE 5 6.00 23.29 -65.72 

·10.000 
0 0.000 ANNIT 

19 1.000 17 3.000 s 1.000 30 
AnorthiC 4 0.00 27.:!6 -73.69 0 

II 1.000 5 2.000 30 2.000 
l'yrophyl 4 0.00 1.:!5 -31.04 0 

5 2.000 JO 4.000 3 -4.1100 
IAUI\~DNTI 4 0.00 14.46 -50.45 

II l.tHIO 5 2.000 ]0 4.000 I 
WAIRAKIT 5 0.00 18.87 -63.15 

II 1.000 5 2.1100 .10 4.000 1 
MAIACIIIT 4 8.00 -5.18 -15.61 

15 2.000 3 2.000 10 1.000 l 

AZURITE 4 14.00 · 16.9:! -23.77 
15 3.tHIO 3 2.000 10 2.000 1 

ARSENOJ.l -1 12.011 ·80.58 134.39 
3 -IO.tHIO 6 4.000 2 !WOO 1 

12.00 -80.84 133.35 CIAUDE"J'J 4 
J -10.000 6 4.0110 2 8.000 

ASIJ 5 .1.00 -15.:!9 31.89 0 

3.000 1 -10.000 
0.000 ANORT 

.s.ooo 
0.000 I'YIWJ> 

-6.000 
0 

-8.000 
0 
·!1.000 3 
0 
-2.000 
0 
-2.000 
0 

8.000 
0 

8.000 

0.000 

0.000 
-2.000 

0.000 

0.000 

0.000 

0.000 

LAUMO 

WAIIV\ 

MAI.AC 

AZURI 

ARSEN 

CLAUD 

0.000 ASI3 
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18 3.000 1 5.000 J -~.000 6 1.000 2 2.0110 

ORIPMENT 5 0.00 -200.8~ 323.3~ 0 0.000 ORII':\1 

1 34.000 3 -20.000 6 2.000 2 28.000 29 3.000 

REALGAR 5 0.00 -72.85 120.70 0 0.0110 UE:\I.G 

1 13.000 2 11 .000 3 -8.000 6 1.000 29 1.000 

AS205 2 10.00 6.70 -5.41 0 0.000 AS :!OS 

6 2.000 3 -3.000 
ZN(B02)2 4 0.00 8.29 0.00 0 0.000 ZN(UO 

3 -2.000 1 -2.000 34 1.000 7 2.000 
CD(B02)2 4 0.00 9.84 0.00 0 0.000 CI>(UO 

3 -2.000 1 -2.000 12 1.000 7 2.000 
PB(B02)2 4 0.00 7.61 -5.80 0 0.000 I'II(UO 

J -2.000 1 -2.000 27 1.000 7 2.000 
MNIIP04(C 3 2.00 -25.40 0.00 0 0.0110 MNIII'O 

22 1.000 26 1.000 1 1.000 
PBHI'04 3 0.00 -23.90 0.00 0 0.000 1'1HIPO 

27 1.000 .26 1.000 1 1.000 
PB3(P04) 2 0.00 -4~.50 0.00 0 0.000 I'HJ(P 

27 3.000 26 2.000 
SULFUR 4 0.00 -35.77 55.94 0 0.000 SULFU 

1 8.000 2 6.000 29 1.000 3 -4.000 
ALAS04.2 4 5.00 4.80 0.00 0 0.000 AI.ASO 

5 1.000 6 1.000 3 2.000 1 -3.000 
CA3(AS04 4 10.00 22.30 0.00 0 0.000 CAJ(A 

11 3.000 6 2.000 3 4.000 1 -6.000 
CU3(AS04 4 16.00 6.10 0.00 0 0.000 CUJ(A 

IS 3.000 6 2.000 3 2.000 1 -6.000 
FFAS04.2 5 8.00 13.43 -10.00 0 0.000 FEASO 

6 1.000 3 2.000 -3.000 17 1.000 2 -1.0110 

MN3AS042 4 16.00 12.50 0.00 0 0.000 MNJAS 

22 3.000 6 2.000 3 8.000 1 -6.000 

NIJ(AS04 4 10.00 15.70 0.00 0 0.000 NI3(A 

25 3.000 6 2.000 3 8.000 I -6.000 
P83(AS04 3 10.00 5.80 0.00 0 0.000 1'113(A 

27 3.000 6 2.000 1 -6.000 
ZN3AS042 4 10.00 13.65 0.00 0 0.000 ZNJAS 

34 3.000 6 2.000 3 2.500 1 -6.000 

BA(AS04j J 10.00 -8.91 2.64 0 0.000 IIA{AS 

8 3.000 6 2.000 -6.000 
V METAL 4 0 .00 19.74 -18.67 0 0.000 v MJ·:r 

2 5.000 33 1.000 1 4.000 3 -.2.000 

vo 4 2.00 -9.53 16.21 0 0.000 vo 
1 2.000 3 -1.000 2 3.000 33 1.000 

VCL2 5 2.00 -4.64 8.43 0 0.000 VCL2 

13 2.000 2 3.000 33 1.000 I 4.000 3 -2.000 

V203 4 3.00 -17.71 24.51 0 0.000 V203 

1 1.000 3 -0.500 33 1.000 2 2.000 

V(OII)3 4 3.00 -14.96 44.23 0 0.000 V(Oil) 

1 1.000 3 1.000 33 1.000 2 2.000 

VCL3 5 3.00 -0.88 0.27 0 0.0110 VCJ..J 

13 3.000 33 1.000 2 2.000 I 4.000 3 -2.000 

VOCL 5 3.00 -13.20 18.06 0 0.000 VOCL 

13 1.000 3 -1.000 1 2.000 3.'• 1.000 2 2.000 

V204 2 4.00 -12.66 15.25 0 0.000 V204 

33 1.000 2 1.000 
V0(011)2 3 4.00 -11.08 29.32 0 0.000 VO(OJJ 

3 1.000 33 1.000 2 1.000 
VF4 5 4.00 -2.00 -18.27 0 0.000 VF4 
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3 ·2.11110 16 4.000 1 4.000 33 1.000 2 1.000 

VOS04 (C S 
29 1.000 33 

10.00 ·13.36 8.60 
1.000 2 1.000 1 

0 0.000 VOS04 
2.000 3 ·1 .000 

(V0)3(1'0 S 0 0.000 (V0)3 

26 0.666667 33 
4.00 ·25.30 

1.000 2 
29.32 

1.000 I 2.000 3 -1.000 

VOCL2 S 
13 2.000 33 

V205 3 
1 ·1 .000 33 

'1YLIYAMUN 5 
1 -4.0011 II 

CA-VANAH 4 
1 ·2.1100 II 

CAJ(V04) 4 
1 -4.1100 11 

CA2V207 4 
1 ·3.11110 II 

FE-VANAD 4 
1 ·2.11110 i7 

MG·VANAD 4 
I ·2.11110 .21 

MGZ\'207 4 
I ·3.11110 21 

MN-VANAI> 4 
I ·2.1100 .22 

NII4V03 5 
11.000 .lJ 

NA-VANAU 4 
1 ·2.11110 24 

NA3V04 4 
I -4.000 24 

NM\'207 4 
1 •• \.000 .24 

I'IU(V04) 4 
I -4.11110 27 

I'U2\'.207 4 
I -3.000 27 

CAH.NOTIT 5 
I -4.000 19 

A<;.\'ANAI> 4 
I ·2.000 4 

AG21JV04 4 
I ·3.000 4 

A<:.m2vos 4 
I -4.0011 4 

4.00 ·4.14 1.12 0 0.000 VOCL2 

1.000 2 1.000 I 2.000 3 ·1.000 

5.00 -0.72 ·4.16 0 0.000 \'205 

1.000 3 0.500 
11.00 2.04 -18.30 0 0.000 TI'UYA 

0.500 
5.00 
0.5110 

5.00 
1.500 

5.00 
1.000 
6.0<) 
0.5110 

5.011 
0.500 
5.00 

32 1.000 33 
2.83 ·I 0.13 

.u 1.000 3 
19.48 -35.07 
33 1.000 3 
8.75 -19.06 

33 1.000 3 
-1.86 -7.37 

33 1.000 3 
5.64 -16.~13 

1.000 3 33 
13.18 

1.0110 .\3 
-30.50 

1.000 3 
6.011 .2.45 -11 .05 

0.500 33 1.000 3 
2.00 -116.39 183.21! 
1.000 3 -2.000 23 
5.00 3.71 • 7.01 
1.000 33 1.000 3 

5.00 36.94 -44.42 
3.000 33 1.000 3 

5.110 1 H. 70 -.24.03 
2.000 33 1.000 3 

5.00 3.07 -8.6!1 
1.500 33 1.000 3 

s.oo -0 .95 -3.22 
1.000 33 1.000 3 
11 .00 0.2.3 -8.711 
1.000 32 1.000 33 
5.00 0.77 (J.I)(I 

1.000 33 1.000 3 
5.00 1.4!1 0.00 
2.000 33 1.000 3 
5.00 5.18 0.00 

3.000 33 1.000 3 

1.000 3 2.000 
0 0.000 CA-VA 

1.000 
0 0.000 CA3(V 

2.000 
0 0.000 CA2V2 

1.500 
0 0.000 FE· VA 

1.000 
0 0.000 MG-VA 
1.000 

0 0.000 MG2V2 
1.500 
0 0.000 MN-VA 
1.000 

0 0.000 NJI4\'0 
1.000 2 8.000 

0 0.000 NA-\'A 
1.000 

0 0.000 NAJVO 
2.000 

0 0.000 NA4V2 
1.500 

0 0.000 JlBJ(V 
2.000 

0 0.000 PU2V2 
1.500 

0 0.000 CAH.NO 
1.000 3 2 .000 

0 0.000 AG-VA 
1.000 

0 0.000 AG211V 
2.000 

0 0.000 AG3H2 
3.000 

\'OZCL 2 5.00 2.81 ·9.65 0 0.000 V02CL 

J.l 1.000 13 1.000 
\'.305 4 10.00 -48.9.2 ~.43 0 0.000 V305 

1 2.000 J -1.000 2 5.000 .B 3.000 
\'407 4 14.00 -60.58 78.1 ."\ 0 0.000 \'407 

1 2.000 .l -1.000 2 6.000 .u 4.000 
\'6013 4 26.00 -60.86 64.89 0 0.000 \'6013 

1 -2.000 3.' 6.000 3 1.000 2 4.000 

1.11\tE J 0.00 ."\2 .80 -46.26 0 0.000 LIME 

1 ·2.0110 11 1.000 3 1.000 

I'ORTI.ANU 3 0.00 22.67 -311.69 0 0.000 PORTL 

1 -2.000 II 1.000 3 2.000 

WUSTITE 4 1.89 11.69 -24.!!5 0 0.000 WUSTI 
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l ·2.000 17 
PERICLAS 3 

1 ·2.000 21 
HERCYNIT 4 

1 -8.000 17 
SPir-;EL 4 

l -8.000 21 
MAG-FERR 5 

l -8.000 21 
CRYOLITE 3 

s 1.000 24 
WOLLASTO 4 

3 ·1.000 1 
P-WOLLST 4 

3 ·1.000 l 
CA-OLIVI 3 

1 -4.000 30 
LARNITE 3 

1 -4.000 30 
CA3SI05 4 

1 -6.000 30 
MONTICEL 4 

1 -4.000 30 
AKERMINI 5 

3 -1.000 1 
MERWINIT 4 

l -8.000 30 
KALSILIT 4 

1 -4.000 30 
LEUCITE 3 

3 ·2.000 
Microcli 5 

3 -4.000 
II SANII>I 5 

3 -4.000 1 
NEI'IIELIN 4 

1 -4.000 30 
GEIILENIT 5 

1 -10.000 s 
LEPIDOCR 4 

-3.000 3 
Na-beid 5 

1 -7.332 3 

K-beid S 
1 -7.332 3 

-7.320 3 
Cu-beid 5 

1 -7.333 3 
1 -7.320 3 

Mg-beid S 
1 -7.333 3 

FE(Oil)JS 4 
3 3.000 1 

HYDROXYA 4 
11 5.000 26 

FLUORAPA 3 
11 5.000 26 

0.947 3 1.000 2 
0.00 21.51 -36.13 
1.000 3 1.000 
2.00 27.16 -78.36 
1.000 5 2.000 3 

-0.106 
0 0.000 l'ERIC 

0 0.000 IIERCY 
4.000 

0.00 36.33 -89.09 0 0.000 Sl'lNE 

1.000 5 2.000 3 
6.00 42.83 -86.64 

1.000 3 4.000 17 
0.00 -31.49 I 0 .90 
3.000 16 6.000 

0.00 13.00 -19.50 
-2.000 30 1.000 11 

0.00 13.85 -21.07 
-2.000 30 1.000 II 
0.00 37.65 -54.69 

1.000 11 2.000 
0.00 39.14 -57.24 
l. 000 11 2.000 

0.00 73.87 ·106.33 
1.000 11 3.000 -~ 

0.00 30.27 -·&9.-'2 
1.000 11 1.000 21 
0.00 47.47 -76.44 

-6.000 30 2.000 11 
0.00 68.54 ·107.11 

2.000 21 1.000 II 
0.00 12.84 -28.92 
1.000 5 1.000 19 

0.00 6.42 -22.08 
-4.000 30 2.000 5 

0.00 0.19 -11.58 0 
-4.000 30 3.000 5 
0.00 1.06 -14.25 
-4.000 30 3.000 5 

0.00 14.22 -33.20 
1.000 s 1.000 24 
0.00 56.82 -116.13 
2.000 30 1.000 11 
3.00 14.40 - 10.00 

2.000 17 1.000 2 
0.00 8.20 -45.77 0 

-2.667 5 2.333 24 

0.00 H.06 -44.63 0 
·2.667 5 2.333 19 
-2.680 5 0.330 19 

0.00 8.03 -47.17 0 
-2.667 5 2.333 11 

-2.680 5 0.330 11 
0.00 8.00 -47.98 0 

-2.667 5 2.333 21 
3.00 15.70 -10.00 
-3.000 17 1.000 2 

0.00 -39.38 -38.92 
3.000 3 1.000 1 
0.00 -61.30 -14.77 
3.000 16 1.000 

4.000 
0 0.000 1\tA<:-F 
2.000 2 -2.000 

0 0.000 CRYOL 

0 0.000 WO Ll A 

1.000 
0 0.000 1'-WOL 
1.000 

0 0.000 CA-01. 

0 0.000 I..ARNI 

0 0.000 CA3SI 
1.000 
0 0.000 MONTI 
1.000 

0 0.000 AKEHI\1 
2.000 21 1.000 
0 0.000 MERWI 
3.000 

0 0.000 KALSI 
1.000 

0 0.000 LEUCI 
1.000 19 1.000 

0.000 l\IICIW 
1.000 19 1.0110 

0 0.000 II SAN 
1.000 19 1.000 
0 0.000 NEI'JII•: 
1.000 
0 0.000 (;EHLE 
2.000 3 3.000 

0 0.0110 LEI'ID 
-1.000 

0.000 Na-bc 
0.333 30 3.670 

0.000 K-bci 
0.333 JO 3.670 
0.330 JO 3.670 

0.000 Ca-bc 
0.167 JO 3.670 

0.165 30 3.670 
0.000 

0.167 30 
Mk-bc 

0 
- 1.000 

0 
-1.000 

3.670 
0.000 FE(OJI 

0.000 IIYDIW 

0 0.000 FLUOI~ 
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PJU:IIl'o'rn: 4 0.00 33.63 -7H.04 0 0.000 PREIIS 

11 2.000 s 2.000 30 3.000 1 ·10.000 

1'111 J.LI1'S 6 0.00 1.95 0.00 0 0.000 PlllLL 

24 0.500 19 0.500 s 1.000 30 3.000 1 -4.000 

3 -3.000 
ILLITE 6 0.00 12.12 -49.79 0 0.000 ILLIT 

19 0.600 21 0.250 s 2.300 30 3.500 -8.000 

3 -2.000 
MONTMOIU 5 0.00 8.62 -47.99 0 0.000 ~IONTM 

11 0 .170 s 2.330 30 3.670 1 -7.330 3 -2.670 

Chlorite 5 0.00 73.72 -158.62 0 0.000 CIILOR 

21 5 .000 5 2.000 30 3.000 3 6.000 1 ·16.000 
NA2S03 5 4.00 4.95 ·2.96 0 0.000 NA2SO 

24 2.000 29 1.000 I 2.000 2 2.000 3 -1.000 

K2Sfl.l s 4.00 8 .. H ·2.18 0 0.000 K2S03 

19 2.000 29 1.000 1 2.000 2 2.000 3 -1.000 

t:ASO.UII 5 4.00 -3.48 3.05 0 0.000 CAS OJ 

11 1.000 J 1.000 29 1.000 1 2.000 2 2.000 

CAS03.511 5 4.00 -3.14 -0.40 0 0.000 CAS OJ 

11 1.000 3 -0.500 29 1.000 1 2.000 2 2.000 

MGSOJ 5 4.00 6.50 -18.41 0 0.000 MGSOJ 

21 1.000 29 1.000 1 2.000 2 2.000 3 ·l.OOO 

UAS03 5 4.00 ·5.37 4.40 0 0.000 BAS OJ 

8 1.0011 29 1.000 1 2.000 2 2.000 3 -1.000 

AG2SOJ s 4.00 -10.18 18.77 0 0.000 AG2SO 

4 2.0011 29 1.000 l 2.000 2 2.000 3 ·1.000 
t:II4((;AS) 4 -4.00 -41.08 61.00 0 0.000 CII4(G 

Ill I .OliO 2 8.000 l 10.000 3 -3.000 
C02((;AS) 3 4.00 -18.16 0.53 0 0.000 C02(G 

10 1.000 2.000 3 -1.000 
02(GAS) J 4.00 1!3.12 -136.63 0 0 .000 02(GA 

J 2.0110 -4.000 2 -4.000 
ND(011)3S J 0.0 11!.87 0.0 0 

.\6 1.0 I . J .O .l 3.0 
ND(OII)JR J 0.0 15.59 ·11.66 0 

36 1.0 1 -3.0 3 3.0 
Nll2C03)3 2 4.0 ·33.0 0.0 0 

.\6 2.0 10 .lO 

t:AM004 2 0.0 -7.72 0.7 0 

II 1.0 35 l.O 
IIAM004 2 0.0 -7.46 3.0 0 

8 1.0 35 1.0 

ENU 
Modified d:1ta base Nick Sargent MUN 09/l)ec/1990 
NEW UATA UASE REFERRED TO AS IIELGTHM.DAT 
LOOK MIN dat;1 modified from original MINTEC daw huse stored us phrtherm.dat 
• Jlulloysite s truck ori~:inal data follows: 
JIALI.OYS I 4 0.00 8.99 -39.73 0 0.000 IIALLO 

5 2.000 30 2.000 3 1.000 1 -6.000 

•,\11 rnodifit•d data is from Helgeson (69) and Helgeson et al (1978) and is 
denoted h.)' an IIJ)pcr case first letter followed by lower case letlers 
i.r(Knolinit us opposed to KAOLINIT) 
•Gcnen•ll.)' modincation was by replacement only. llowe\·cr, the original MI NTEC 
Nontroniles \H're completely replaced !Jy the equivalent Reidellites. 
•clii.OR-M anti CIILOR-F are struck from thb datu base. 
•AIIthrrmodynamic \'alucs of ionic spec:es, used to back calculate thermodynamic 
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constants ror mineral dissociations, abstracted from Robie et ul (1978). 
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APPENDIX F Results uf Mass Balance Calculations 



APPENDIX F: RESULTS OF MASS BALANCE CALCULATIONS F-1 

See Appendix G for explanations of derivation of results 

N_A 

Kaol Calc Mix! 

Si Na Cl 

Anorth Alb 

Ca TC 
DEPTH 18.77 56.81 69.64 71.65 

A north -1.3151 -1.6587 -0.9165 -1.6904 

Alb 0.6751 1.1465 1.0142 1.5376 

Kaol 0.3634 -0.0056 -0.5512 -0.5540 

Calc 2.0438 2.2921 1.6040 2.1409 

Mix I 0.9Y49 0.9949 0.9945 0.9945 

Mix2 0.0051 0.0051 0.0055 0.0055 

:--'_9 
A north Alb Qtz Calc Mix! 

Ca TC s. Na Cl 
18.7650 56.8050 69.6350 71.6450 

A north -1.3151 -1.6587 -0.9165 -1.6904 

Alb 0.6751 1. 1465 1.0142 1.5376 

Qtz 0. 7269 -0.0112 -1.1024 -1.1080 

Calc 2.0438 2.2921 1.6040 2.1409 

\lixl 0.9949 0.9949 0.9945 0.9945 

Mix.:! 0.0051 0.0051 0.0055 0.0055 

!MODEL RUN I 
Mix2 ["fPHASES =:J 
Mix IK "ELEMENTS" I 

74.91 77.41 96.64 97.41 IDEPTH I 
-1.9208 -1.5658 -1.6092 -1.1063 

2.3453 1.6219 2.4340 3.0426 

-1.5313 -0.8039 -1.9624 -3.3357 

2.0968 1.9709 1.6695 1.1197 

0.9945 0.9934 0.9928 0.9911 

O.C055 0.0066 0.0072 0.0089 

MMOLES OF P PHASES 

Mix2 LOST OR ADDED TO GROUNDWATER 

Mix 
74.9100 77.4050 96.6350 97.4100 

-1.9208 -1.5658 -1.6092 -1.1063 

2.3453 1.6219 2.4340 3.0426 

-3.0626 -1.6078 -3.9249 -6.6714 

2.0968 1.9709 1.6695 1.1197 

0.9945 0.9934 0.9928 0.991 I 

0.0055 0.()()66 0.0072 0.0089 



F-2 

N_C 

A north Micro Qtz Calc Mix! Mix2 

Ca TC Si K CJ Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

A north -1.3151 -1.6587 -0.9165 -1.6904 -1.9208 -1.5658 -1.6092 -1.1063 

Micro -0.0015 -0.0106 -0.0!38 -0.0205 -0.0206 -0.0369 -0.0527 -0.0400 

Qtz 2.7567 3.4599 1.9818 3.5663 4.0350 3.3687 3.5351 2.5766 

Calc 2.0438 2.2921 1.6040 2. 1409 2.0968 1.9709 1.6695 1.1197 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 

N_D 
A north Micro Qtz Chlor Calc Mix I Mix2 

Ca TC Si Mg K CJ Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

A north -1.3151 -1.6587 -0.9165 -1.6904 - 1.9208 - 1.5658 -1.6092 -1.1063 

Micro - 0.0015 -0.0106 -0.0138 -0.0205 -0.0206 -0.0369 -0.0527 - 0.0400 

Qtz 2.8669 3.5687 2.0974 3.7057 4. 1983 3.5490 3.7658 2.8650 

Chlor -0.0367 -0.0363 -0.0385 -0.0464 -0.054~ -0.0601 -0.0769 -0.0961 

Calc 2.0438 2.2921 1.6040 2. 1409 2.0968 1.9709 !.6695 1.1197 

Mix I 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0 .0055 0.0055 0 .0055 0.0066 0.0072 0.0089 



F-3 

N_E 
A north Micio Qtz Chlor Calc Mix! Mix2 

Ca TC Si Mg K Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

A north -1.3151 -1.6587 -0.9165 -1.6904 -1.9208 -1.5658 -1.6092 -1.1063 

Mi.:ro -0.0015 -0.0106 -0.0138 -0.0205 -0.0206 -0.0369 -0.0527 -0.0400 

Qtz 2.8669 3.5687 2.0974 3.7057 4. 1983 
. 

3.5490 3.7658 2.8650 

Chlor -0.0367 -0.0363 -0.0385 -0.0464 -0.0544 -0.0601 -0.0769 -0.0961 

Calc 2.0438 2.2921 1.6040 2.1409 2.0968 1.9709 1.6695 1.1197 

Mix I 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 

N_F 
Qtz Alb Kaol Calc Mont Mix! Mix2 

Ca TC Si Na Cl AI Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Qtz 9.1378 10.8916 5.3030 10.3724 10.5776 9.2242 7.9743 2.8572 

Alb 0.6751 1.1465 1.0142 1.5376 2.3453 1.6219 2.4340 3.0426 

Kaol 8.6751 10.7944 5.7740 10.8159 11.9920 9.9195 9.8114 6.0712 

Calc 2.0·P 0 2.2921 1.60-!0 2. 1409 2.0968 1.9709 1.6695 1.1197 

r..tont - 7. 7: ... . : - 9.7572 -5.3914 -9.9436 -11.2986 -9.2105 -9.4660 -6.5078 

Mix I 0.994Y 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

l\1 ix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 



F··.$ 

N_G 
Qtz Alb Kaol Calc Mont Mix! Mix:! 

Ca TC Si Na Cl AI :-.1ix 

DEPTH 18.7650 56.8050 69.6350 71.6.$50 74.9100 77.4050 96.6350 97AIOO 

Qtz 9.1378 10.8916 5.3030 10.3724 10.5776 9 .2242 7.9743 :?..8572 

Alb 0.6751 1.1465 1.0142 1.5376 2.3453 1.6219 2.4340 3.0426 

Kaol 8.6751 10.7944 5. 7740 10.8159 11 .9920 9.9195 9.8114 6.0712 

Calc 2.0438 2.2921 1.6040 2 . 1409 2.0968 1.9709 1.6695 1.1197 

Mont -7.7361 -9.7572 -5 .3914 -9.9436 -1 1.2986 -9.2105 -9.4660 -6.5078 

Mix I 0.9949 0.9949 0 .9945 0 .9945 0 .9945 0.9934 0.9928 0 .9911 

Mix2 0.0051 0.0051 0 .0055 0.0055 0.0055 0.0066 0.0072 0.0089 

N_H 

Qtz Alb An Calc Illite C02 Mix I Mix2 

Ca TC Si Na Cl K@ AI Mix 
DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Qtz -1.2251 -2. 1595 -1.8906 -2.9062 -4.5166 -3.0355 -4.5926 -5.7738 

Alb 0.6751 I. 1465 1.0142 1.5376 2.3453 1.6219 2.4340 3.0426 

An -0.3344 -0.5523 -0.4801 -0.7285 -1.1309 -0.7390 -1.1143 - 1.4327 

Calc 1.0635 1.1886 1.1715 1.1848 1.3127 1.1546 1.1895 1.4574 

Illite -0.0025 -0.0176 -0.0231 -0.0342 -0.0343 -0.0615 -0.0878 -0.0667 

C02 0.9804 1.1036 0.4327 0.9563 0.7842 0 .8165 0.4802 -0.3375 

Mix! 0.9949 0.9949 0.9945 0.9945 0 .9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0 .0051 0.0055 0 .0055 0.0055 0.0066 0.0072 0.0089 



F-5 

N_l 

Qtz Alb Micro Calc Mont C02 Mix! Mix2 

Ca TC Si Na Cl K@ AI Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Qtz -0.8383 -1.5092 -1.3187 -2.0390 -3.1865 -2.1328 -3.2358 -4.0689 

Alb 0.6751 !.1465 1.0142 1.5376 2.3453 1.6219 2.4340 3.0426 

Micro -0.0015 -0.0106 -0.0138 -0.0205 -0.0206 -0.0369 -0.0527 -0.0400 

Calc 0.7778 0.7162 0.7605 0.5611 0 .3454 0.5207 0.2340 0.2309 
Mont -0.2890 -0.4871 - 0.4292 -0.6507 -0.9962 -0.6800 -1.0217 -1.2793 

C02 1.2660 1.5759 0.8436 1.5798 1.7514 1.4502 1.4355 0.8838 

Mix I 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 

N_J 
Qtz Alb Micro Calc Chlor C02 Mix! Mix2 

Ca TC Si Na Cl K@ AI Mix 

DEPTH 18.7650 56.8050 69.6350 71.6-+50 74.9100 77.4050 96.6350 97.4100 

Q!1. -0.8889 -1.5944 -1.3938 -2.1529 -3 .3608 -2.2518 -3.4t4o -4.2928 

Alb 0.6751 1.1465 1.0142 1.5376 2.3453 1.62 19 2.4340 3.0426 
!\·lic ro -0.00 15 -0.0106 -0.0138 -0.0205 - 0.0206 -0.0369 - 0.0527 - 0.0400 

Calc 0. 7287 0.6334 0.6875 0.4505 0.1760 0.4051 0.0603 0.0134 

Chlor - 0.3366 -0.5675 -0.5000 -0.7581 -1.1605 -0.7922 -1.1902 -1.4904 

\.02 1.3151 I. 6587 0.9165 1.6904 1.9208 1.5658 1.6092 1.1063 

\1ixl 0.9949 0.9949 0.9945 0 .9945 0.9945 0.9934 0.9928 0.9911 

\1ix! 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 



F-6 
N_K 

Qtz Alb Micro Calc Chlor illite C02 Mix1 \tix2 

Ca TC Si Na Mg Cl K@ AI Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Qtz -1.2075 -2.1589 -I. 8842 -2.9090 -4.5361 -3.0298 -4.5976 -5.7742 

Alb 0.6751 1.1465 1.0142 i .5376 2.3453 1.6219 2.4340 3.0426 

Micro 0.2234 0.3879 0.3323 0.5132 0.8090 0.5122 0.7823 1.0056 

Calc 0.7287 0.6334 0.6875 0.4505 0. 1760 0.4051 0.0603 0.0134 

Chlor -0.0180 -0.0031 -0.0097 -0.0020 0.0147 -0.0143 -0.0073 -0.0090 

illite -0.3749 -0.6640 -0.5769 -0.8896 -1 .3827 -0.9152 -1.39li -1.7428 

C02 1.3151 1.6587 0.9165 1.6904 1.9208 1.5658 1.6092 1.1063 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 

R_A 

Qtz Alb Calc C02 Mix! Mix2 

Ca Si Na Cl RS Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Qtz -1.9034 -3.3286 -2.9355 - 4.4888 -6.9041 -4.7393 -7. 1433 -8.8840 

Alb 0.6751 1.1465 1.0142 1.5376 2.3453 1.6219 2.4340 3.0426 

Calc 0.7287 0.6334 0.6875 0.4505 0. 1760 0.4051 0.0603 0.0134 

C02 1.3994 1.7592 0.9329 1.7663 1.2942 0.9782 1.9708 0.8522 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 



F-7 

R_B 

Qtz Alb Calc C02 kaol Mixl Mix2 
Ca Si Na Cl AI RS Mix 
DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.t'i350 97.4100 

Qtz -1.2286 -2.1831 -1.9215 -2.9521 -4.5625 -3 .1 179 -4.7102 -5.8632 

Alb 0.6751 1.1465 1.0142 1.5376 2.3453 1.6219 2.4340 3.0426 

Calc 0.7287 0.6334 0.6875 0.4505 0. 1760 0.4051 0.0603 0.0134 

C02 1.3994 1.7592 0.9329 I. 7663 1.2942 0.9782 1.9708 0.8522 

kao1 -0.3374 -0.5728 -0.5070 -0.7684 -1.1708 -0.8107 -1.2166 -1.5104 

Mix1 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 

R_C 
Qtz Alb Calc C02 kaol CH20 Mix I Mix2 

Ca Si Na Cl AI c RS Mix 

DEPTH 18.7650 56.8050 69.6350 71 .6450 74.9!00 77.4050 96.6350 97.4100 

Qtz -1.2286 -2. 1831 - 1.9215 -2.9521 -4.5625 -3.1179 -4.7102 -5.8632 

Alb 0.6751 1.1465 1.0142 1.5376 2.3453 1.6219 2.4340 3.0426 

Calc 0.7287 0.6334 0.6875 0.4505 0. 1760 0.4051 0.0603 0.0134 

C02 1.3994 1.7592 0.9329 1.7663 1.2942 0.9782 1.9708 0.8522 

kaol -0.3374 - 0.5728 -0.5070 -0.7684 -I. 1708 -0.8107 -1.2166 -1.5104 

CH20 -0.084! -0.1003 -0.0162 -0.0757 0.6268 0.5878 -0.3614 0.2543 

~1ix I 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0 .0055 0.0055 0.0066 0.0072 0.0089 



F-8 

R_D 

QU Alb Micro Calc C02 kaol CH20 Mix1 Mix2 

Ca Si Na Cl AI K c RS Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Qu -1.2255 -2.1619 -1.8939 -2.9110 -4.5214 -3.0441 -4.6049 -5.7832 

Alb 0.6751 1.1465 !.0142 1.5376 2.3453 1.6219 2.4340 3.0426 
Micro -0.0015 -O.OIOU -0.0138 -0.0205 -0.0206 -0.0369 -0.0527 -0.0400 

Calc 0.7287 0.6334 0.6875 0.4505 0. 1760 0.4051 0.0603 0.0134 

C02 1.3994 1.7592 0.9329 1.7663 1.2942 0.9782 1.9708 0.8522 

kaol -0.3366 -0.5675 -0.5000 -0.7581 -1 .1605 -0.7922 -1.1902 -1.4904 

CH20 -0.0843 -0.1005 -0.0164 -0.0759 0.6266 0.5876 -0.3616 0.2542 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.99i l 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 



F-9 

R_E 
Calc C02 CH20 Mix I Mix2 

Ca Cl c RS Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 0.7287 0.6334 0.6875 0.4505 0.1760 0.4051 0.0603 0.0134 

C02 1.3996 1.7594 0.9331 1.7665 1.2943 0.9784 1.9710 0.8523 

CH20 -0.0843 -0. 1005 -0.0164 -0.0759 0.6266 0.5876 -0.3616 0.2542 

Mix I 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 

R_G 

Calc C02 Mix! Mix2 

Ca Cl c Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 0.7287 0.6334 0.6875 0.4505 0.1760 0.4051 0.0603 0.0134 

C02 1.3151 1.6587 0.9165 1.6904 1.9208 1.5658 1.6092 1.1063 

Mix I 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 

R_H 

Calc C02 A north Mix! Mix2 

Ca Cl Si c Mix 

DEPTH 18.7650 56.8050 69.6350 71 .6450 74.9100 77.4050 96.6350 97.4100 

Calc 0.6677 0.5780 0.6339 0.3885 0.1101 0.3419 -0.0190 -0.1085 

C02 1.3760 1.7141 0.9701 1.7524 1.9867 1.6290 1.6886 i.2283 

:\north 0.0609 0.0554 0.0536 0.0620 0.0659 0.0632 0.0793 0.1219 

Mix I 0.9949 0.9949 0.9945 0.994) 0.9945 0.9934 0.9928 0.9911 

M1x2 0.0051 0.0051 0 .0055 0.0055 0.0055 0.0066 0.0072 0.0089 



F-10 

R_l 
Calc qtz A north Mix! Mix2 

Ca Cl Si c l\1 ix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 2.0438 2.2921 1.6040 2. 1409 2.0968 1.9709 1.6695 1.1197 

qtz 2.7521 3.4282 1.94m 3.5047 3.973-t 3.2580 3.3771 2.4565 

A north -1.3151 - 1.6587 -0.9165 -1.6904 -I. 9208 -1.5658 -1.6092 -1.1063 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 

R_J 
Calc qtz A north mtcr Mix! Mix2 

Ca Cl Si K c Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4 100 

Calc 2.0438 2.297. 1 1.6040 2. 1409 2.0968 1.9709 1.6695 1.1197 

qtz 2.7567 3.4599 1.9818 3.5663 4.0350 3.3687 3.5351 2.5766 

A north - 1.3151 -1.6587 -0.9165 -1.6904 - L9208 -1.5658 -1.6092 - 1.1063 

micr -0.0015 -0.0106 -O.OI ::i iS -0.0205 -0.0206 - 0.0369 -0.0527 -0.0400 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 



F-11 

R_K 
Calc qtz A north micr Albite Mixl Mix2 

Ca Cl Si K Na c Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 2.0438 2.2921 1.6040 2. 1409 2.0968 1.9709 1.6695 1.1197 

qtz 0.7315 0.0205 -1.0608 -1.0464 -3 .0009 -1.4970 -3.7669 -6.5513 

Anorth -1.3151 -1 .6587 -0.9165 -1.6904 -1.9208 -1.5658 -1.6092 -1.1063 

micr -0.0015 -0.0106 -0.0138 -0.0205 -0.0206 -0.0369 -0.0527 -0.0400 

Albite 0.6751 1.1465 1.0142 1.5376 2.3453 1.6219 2.4340 3.0426 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 

R_L 

Calc qtz A north micr Ctolor Mix1 MIX2 

Ca C1 Si K Mg c Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 2.0438 2.2921 1.6040 2. 1409 2.0968 1.9709 1.6695 1.1197 

qtz 2.8669 3.5687 2.0974 3. 7057 4.1983 3.5490 3.7658 2.8650 

A north -1.3151 - 1.6587 -0.9165 -1.6904 -1.9208 - 1.5658 -1.6092 -1.1063 

ffiiCf -0.0015 -0.0106 -0.0138 -0.0205 -0 .0206 -0.0369 -0.0527 - 0.0400 

Ch1or -0.0367 -0.0363 -0.0385 -0.046-t -0.0544 -0.0601 -0.0769 -0.0961 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 



F-1::! 

R_M 

Calc qtz Anorth micr Kaol Mix! Mix2 

Ca Cl Si K AI c Mi~ 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 7iA050 96.6350 97.4100 

Calc 2.0438 2.2921 1.6040 2.1409 2.0968 1.9709 1.6695 1.1197 

qiZ -2.5074 -3.1979 -I. 7126 -3.2380 -3.6965 -2.9693 -3.0089 -1 .9725 

A north -1.3151 -1.6587 -0.9165 -1.6904 -1.9208 -1.5658 -1.6092 -1.1063 

micr -0.0015 -0.0106 -0.0138 -0.0205 -0.0206 -0.0369 -0.0527 -0.0400 

Kaol 2.6320 3.3289 1.8472 3.4022 3.8658 3.1690 3.2720 2.2745 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0 .0066 0.0072 0 .0089 

R_N 
Calc qiZ A north micr illite Kaol Mix I Mix2 

Ca Cl Si K AI Mg c Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 2.0438 2.2921 1.6040 2. 1409 2.0968 1.9709 1.6695 1.1197 

qtz -3.7563 -4.4308 -3.0221 -4.8171 -5.5462 -5.0125 - 5.6230 -5.2415 

A north -1.3151 -1.6587 -0.9165 -1.6904 -1.9208 -1.5658 -1.6092 -1.1063 

m1cr 0.4393 0.4246 0.4483 0.5368 0.6323 0.6842 0.8700 1.1138 

illite -0.7346 -0.7252 -0.7703 -0.9289 -1.0881 - 1.2019 -1.5377 -1.9230 

Kaol 3.8809 4.5618 3.1567 4.9813 5.7155 5.2122 5.8861 5.5436 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 



F-13 

R_P 

Calc C02 A north Mix! Mix2 

Ca Cl Si c Mix 

DEPTH 1&.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 0.6677 0.5780 0.6339 0.3885 0. 1101 0.3419 -0.0190 -0.1085 

C02 1.3760 1.7141 0.9701 I. 7524 1.9867 1.6290 1.6886 1.2283 

A north 0.0609 0.0554 0.0536 0.0620 0.0659 0.0632 0.0793 0. 1219 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 

R_Q 

Calc C02 A north micr Mix! Mix2 
Ca Cl Si K c Mix 
DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 0.6654 0.5622 0.6131 0.3577 0.0793 0.2865 -0.0980 -0. 1686 

C02 1.3783 1.7299 0.9909 1.7832 2.0175 1.6844 I. 7676 1.2883 

A north 0.0632 0.0712 0.0744 0.0928 0.0968 0.1186 0.1583 0.1820 

macr -0.0015 -0.0106 -0.0138 -0.0205 -0.0206 - 0.0369 - 0.0527 -0.0400 

Mix I 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 



F-14 

R_S 
Calc C02 Anorth micr Chi or Mix. I Mix.2 

Ca Cl Si K Mg c Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 0.6103 0.5078 0.5554 0.2881 -0.0023 0.1964 -0.2134 -o.3n8 

C02 1.4334 1.7843 1.0487 1.8528 2.0991 1.7745 \.8829 1.4325 

A north 0.1183 0.1256 0.1321 0.1624 0.1784 0.2087 0.2737 0.3262 

micr -0.0015 -0.0106 -0.0138 -0.0205 -0.0206 -0.0369 -0.0527 -0.0400 

Chi or -0.0367 -0.0363 -0 0385 -0.0464 -0.0544 -0.0601 -0 .0769 -0.0961 

Mix. I 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix.2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0 .0089 

R_T 
Calc C02 A north micr Kaol Mix. I Mix2 

Ca Cl Si K AI c Mix 

DEPTH 18.7650 56.8050 69.6350 71 .6450 74.9100 77.4050 95.6350 97.4100 

Calc 0.7901 0.6931 0.7477 0.5219 0.2485 0.4862 0.1651 0.1335 

C02 1.2537 1,5990 0.8563 1.6190 1.8483 1.4846 1.5044 0.9862 

A north -0.0614 -0.0598 -0.0602 -0.0714 -0.0725 -0.0812 -0.1048 -0.1201 

micr -0.0015 -0.0106 -0-0138 -0.0205 -0.0206 -0.0369 -0.0527 -0.0400 

Kaol 0.1246 0.1310 0. 1346 0.!641 0. 1693 0.1997 0.2631 0.3021 

Mix I 0.9949 0.9949 0.9945 0.994S 0.9945 0.9934 0.992!1 0 .9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 



F-15 

R_U 
Calc C02 A north micr Illite Kaol Mix I Mix2 

Ca Cl Si K AI Mg c Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 0. 1656 0.0767 0.0930 -0.2677 -0.6763 -0.5354 -1.1420 -1.5010 

C02 1.8781 2.2154 1.5110 2.4086 2.7731 2.5063 2.8115 2.6208 

Anorth 0.5630 0.5567 0.5945 0.7181 0.8524 0 .9405 1.2023 1.5145 

micr 0.4393 0.4246 0.4483 0.5368 0.6323 0.6842 0.8700 1.1138 

Illite -0.7346 -0.7252 -0.7703 -0.9289 -1.088 I -1.2019 -1 .5377 - 1.9230 

Kaol 0.1246 0. !310 0. 1346 0.1641 0.1693 0 . 1997 0.2631 0.3021 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.99 11 

Mix2 0.0051 0.0051 0.0055 0.()(155 0.0055 0.0066 0.0072 0.0089 

R_V 
Calc C02 A north m1cr chi or mont Kaol Mix! Mix2 

Ca Cl Si K AI Na Mg c Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 2.7373 4.0132 3.6816 4.9757 7.0503 5. 1788 7.2139 8.9448 

C02 - 0.6936 -1.7211 - 2.0776 -2.8348 -4.9536 -3.2079 -5.5444 -7.8251 

A north - 2.0087 - 3.3798 -2.9941 -4.5252 -6.8743 -4.7737 -7.1536 -8.9314 

m1cr -0.0015 - 0.0106 -0.01J8 -0.0205 -0.0206 -0.0369 -0.0527 -0.0400 

chlor -0.0367 -0.0363 . -0.0385 -0.0464 -0.0544 -0.0601 -0.0769 -0.0961 

mont 3.9710 6.7438 5.9660 9.0446 13.7960 9.5406 14.3176 17.8978 

Kaol - 5. 1598 -8.8695 -7 .8213 - 11.9091 - 18.2630 - 12.5246 - 18.8456 -23.5848 

1\1 ix I 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

~1ix2 0.0051 0.0051 0.0055 0.0055 0.0055 0.0066 0.0072 0.0089 



R_W F-16 

Calc C02 A north micr alb ill Kaol Mix ! :v1 ix2 

Ca Cl Si K AI Na Mg c Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 i4.9100 77.4050 96.6350 97.4 100 

Calc 1.5377 1.4530 1.5783 1.2086 0 .8006 1.2288 0 .7757 0 .8931 

C02 0.5!69 0.8499 0.0375 0.9439 1.3078 0. 7560 0 .9090 0.2455 

A north -0.7551 -0.7654 -0.8322 -0.6998 -0.5662 -0.7538 -0.6392 -0.7850 

micr -1.1944 - 1.2196 -1.3274 - 1.2322 -1.1376 -1.4371 -1.4435 -1.7592 

alb 0.6751 1.1465 1.0142 1.5376 2.3453 i.6219 2.4340 3.0426 

ill 0 .3785 0.3951 0.4397 0.2765 0 .1 179 0.2436 0.0386 0 .0346 

Kaol -1.2255 -2. 1619 -1.8939 -2.9110 -4.5214 -3.0441 -4.6049 -5.7832 

Mix! 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0 .9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0.0055 0.0055 0 .0066 0 .0072 0 .0089 

R_X 
Calc qtz A north mtcr alb ill Kaol Mix I Mix2 

Ca Cl Si K AI Na M g c Mix 

DEPTH :8.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Calc 2.0438 2.2921 1.6040 2. 1409 2.0968 1.9709 1.6695 1.1197 

qtz -4.4314 - 5.5773 -4.0363 -6.3547 -7.8916 - 6.6344 - 8.0570 -8.2842 

A north - 1.3151 -1.6587 -0.9165 -1.6904 -1.9208 -1.5658 -1.6092 -1.1063 

micr 0.4393 0.4246 0.4483 0.5368 0 .6323 0.6842 0.8700 1.1138 

alb 0.6751 1.1465 1.0142 1.5376 2.3453 1.6219 2.4340 3.0426 

ill -0.7346 - 0.7252 -0.7703 -0.9289 -1.0881 -1.2019 - 1.5377 - 1.9230 

Kaol 3.2059 3.4154 2.1424 3.4437 3.3702 3.5903 3.4521 2.5010 

Mix. I 0.9949 0.9949 0.9945 0.9945 0.9945 0.9934 0.9928 0.9911 

Mix2 0.0051 0.0051 0 .0055 0.0055 0.0055 0.0066 0.0072 0 .0089 



R_Y F-17 

Calc C02 A north mtcr Xna/Mg ill Kaol Mix ! Mix2 

Ca Cl Si K AI Na Mg c Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4 100 

Calc 1.3086 2.0255 1.8182 2.3506 3.3151 2.2333 3.0144 3.6818 

C02 0.7460 0.2775 -0.2025 -0.1981 -1.2067 -0.2484 -1.3297 -2.5432 

A north - 0.6069 -1.4192 -1.1600 -1.9293 -3 . 1683 -1.8632 -2.9923 -3 .7159 

mtcr -0.3904 - 0.9709 -0.7900 - 1.3295 -2.2033 -1.2875 -2.0786 -2.5718 

Xna!Mg -0.3375 -0.5732 -0.5071 -0.7688 -1. 1727 -0 .8110 -1.2170 -1.52 13 

ill 0.6520 1.6044 1.2979 2.1858 3 .6421 2.0893 3.3820 4 .2265 

Kaol 0. 1246 0.1310 0.1346 0 . 1641 0. 1693 0. 1997 0 .2631 0 .3021 

Mix! 0.9949 0.9949 0.9945 0 .9945 0.9945 0.9934 0 .9928 0.9911 

Mix2 0.0051 0.0051 0.0055 0 .0055 0 .0055 0.0066 0 .0072 0.0089 

S_F 

A north Alb Micr Calc Muse NaCI Mix! Mix2 

Ca TC Si Na K AI Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71 .6450 74 .9100 77A050 96.6350 97.4100 

A north -1.3476 -1 .6596 -0.8694 -1 .6439 -I. 7875 - 1.4993 -1.4420 -0.8154 

Alb 0.9807 1.1550 0.5710 1.1003 1.0914 0.9964 0.8600 0.3052 

Micr -0.9201 -1.1001 -0.5173 -1.0386 -1.0268 -0.9332 -0.7804 - 0 . 1929 

Calc 2.0357 2.2919 1.6158 2.1525 2.1300 1.9874 1.7112 1.1922 

Muse 0.8783 1.0884 0 .5618 1.0757 1.1 714 0.9786 0.9351 0 .5135 

NaCI -2. 1529 -0.0604 3. 1224 3.0798 8.8325 4.4061 11.0870 19.2823 

~1ixl 0 .9911 0.9948 1.0000 1.0000 1.0101 1.0012 1.0124 1.0252 

Mix2 0.0089 0.0052 0.0000 0 .0000 -0.0101 -0.0012 -0.01 24 - 0.0252 



S_G 
F-18 

Anorth Alb C02 Calc :-.:act Mix! \1ix2 

Ca TC Si Na AI C! ~!ix 

DEPTH 18.7650 56.8050 69.6350 71.6450 R9100 77.4050 96.6350 97.4100 

A north -0.03Q.t -0.0273 -0.0268 -0.0307 -0.0307 -0.0316 -0.0396 -0.0-l52 

Alb 0.0611 0.0554 0.0539 0.062:! 0.0651 0 .0637 0.0800 0.1124 

C02 1.2195 1.5155 0. 7877 1.5029 1.6477 1.3686 1.3195 0.7497 

Calc 0.8406 0.8055 0.8418 0.6770 0.5094 0 .6435 0.41 23 0.4476 

NaCI 4.3250 7.6851 6.7645 10.3924 16.0616 10.9762 16.5816 20.6407 

Mix! 1.0026 1.0085 1.0065 1.0129 1.0229 1.0128 1.0222 1.0276 

\1tx2 -0.0026 -0.0085 -0.0065 -0.0129 -0.0229 -0.0128 -0.0222 -0.0276 

S_H 
A north Alb C02 Calc :-:act Ill it.: ~l i xl M1-.2 

Ca TC Si Na AI fv!g Cl l\·1 ix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

A north 1.2209 2.9607 2.4294 4.0781 6.7773 4.0171 6.4429 8.0124 

Alb 0.9438 2. 1632 I. 7866 2.9607 4.8678 2.9198 4.6530 5.7966 

C02 2.5646 4.7274 3.4281 5.9198 8.9662 5.7208 8.2879 9.4114 

Calc -0.5280 - 2.4622 -I. 8445 -3.8165 - 6 .9362 -3.7843 -6.6772 -8.3646 

NaCI -I.S931 - 7. 1622 -5.4408 -10.0247 -17 .7684 -9.1420 -15.6305 -19.3989 

Illite -1 .4719 -3.5146 -2.8892 -4.8331 -8.0082 -4.7624 -7 .6252 -9.4781 

Mix! 0.9916 0.9823 0.9849 0 .9768 0.9631 0.9773 0.9652 0.9568 

Mix2 0.0084 0.0177 0.0151 0.0232 0 .0369 0.0227 0.0348 0.0432 



S_l 
F- 19 

A north Alb C02 Calc NaCI Micr Illite Mix! Mix2 

Ca TC Si Na AI Mg K Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

A north -1.0507 -2.3123 -1.9138 -3 . 1480 -5.1739 -3.0954 -4.9126 -6.1723 

Alb -0.0303 -0.0978 -0.0758 -0.1378 -0.2569 -0.1301 -0.2l63 -0.2859 

C02 0. 1895 -0.7858 -1.1131 -1.6357 -3.5297 -1.7158 -3.5851 -5.4197 

Calc 1.8730 3. 1109 2.7460 3.8209 5.6954 3.i331 5.3247 6.6275 

NaCI 4.9683 8.7647 7.6779 11.8016 18.3301 12.3411 18.6686 23.4456 

Micr - 0.6288 -1.4596 -1 .2023 -2.0003 -3.3083 -1.9688 -3.1434 -3.9265 

Illite 1.2003 2.6883 2.2200 3.6674 6.0508 3.6045 5.7330 7.2082 

Mix I 1.0037 1.0104 1.0081 1.0154 1.0269 1.0153 1.0258 1.0326 

l'v1Ix2 -0.0037 -0.0104 -0.0081 -0.0154 -0.0269 -0.0153 -0.0258 -0.0326 

S_J 
A north .\lb C02 Calc NaCI ~vt icr Mont lllite Mix! Mix2 

Ca TC Si Na AI Mg K RS Cl Mix 

DEPTH 13.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97 .4100 

A north 1.8787 2.5550 1.9034 3.0353 -0.2121 -0 .7882 6.3754 3.5872 

Alb 0.8292 1.3303 1.0-l42 1.6764 1. 1989 0.5-l69 3.0956 2.5776 

C02 3.0207 3.9184 2.5763 4.3406 1.2659 0.5141 7.3248 4.0129 

Calc -0.9810 -1.6312 -0.9730 -2.2034 0.8612 1.4852 -5.6729 -2.8809 

N:tCI - 1.0859 - 1.2947 -0.2113 -0.9777 8.0754 7.5727 - .U605 3.2755 

~l1cr 0.6727 0. 7029 O..t93 i 0. 7470 -1. 1037 - 0.9437 1.8719 0.4096 

:0.1ont -I. 1144 - I. 8517 -1.4522 -2.3524 - 1.8877 -0.8778 -4.2944 -3.7129 

Illite: -1.1575 -1.2295 -0.8525 -1.3096 2.0570 I. 7473 - 3.3528 -0.6473 

\led 0.9930 0 .9926 0.9941 0.9928 1.0088 1.0068 0.9846 0.9969 

\1!:\~ 0.0070 0.0074 0.00:'9 0.0072 -0.0088 -0.0068 0.0154 0.0031 



S_K F-20 

A north Alb C02 Calc NaCI ~icr :-.ia-Beid :vhxl ~hx2 

Ca TC Si Na AI !\lg K Cl ~1ix 

DEPTH 18.76.50 56.8050 69.6350 71.~50 74.9100 77 .4050 96.6350 97.4100 

A north 0.9059 2.0696 I. 7048 2.8299 4.6889 2 .7799 4 .4322 5.5772 

Alb 0.7829 1. 7233 1.4281 2 . 3~66 3 . 8~21 2.3117 3.6674 ~.5972 

C02 2.1925 3. 7002 2.5915 4.4843 6.5676 4.2992 5.9819 6.6090 

Calc -0.1417 -1.4011 -0.9800 -2.3345 -4.4603 -2.3167 -.1.2975 -5.4707 

:'>laC1 1.8863 1.8622 1.9777 2.3850 2.7938 3.0861 3.9483 4.9376 

Micr 0.0337 0.0243 0.0231 0.0241 0.0317 0.0208 0.0212 0.0523 

Na-Beid -1.1279 -2.5261 -2.0861 -3.4462 -5.6858 -3.387G -5.3872 -6.7734 

Mix I 0.9983 0.9982 0.9980 0 .9987 0.9995 0.9989 0.9998 0.9998 

Mix2 0.0017 0.0018 0.0020 0.0013 0.0005 0.001 I 0.0002 0.0002 

S_L 

A north Alb C02 Calc NaCI Micr Na-Beid Mix I Mix2 

Ca TC Si N:~ AI Mg K Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

A north 0.9059 2.0696 1.7048 2.8299 4.6889 2.7799 4.4322 5.5772 

Alb 0.7829 1.7233 1.4281 2.3466 3.8421 2.31 17 3.6674 4.5972 

C02 2. 1925 3.7002 2.5915 4.4843 6.5676 4.2992 5.9819 6.6090 

Calc -0. 1417 -1.40tl -0.9800 -2.3345 -4.4603 -2.3167 -4.2975 -5.4707 

NaC1 1.8863 1.8622 1.9777 2.3850 2.7938 3.0861 3.9483 4.9376 

Micr 0.0337 0 .0243 0 .0231 0.0241 0.0317 0.0208 0.0212 0.0523 

Na-Beid -1.1279 -2.5261 -2.0861 -3.4462 -5.6858 -3.3870 - 5.3872 - 6.7734 

Mix I 0.9983 0.9982 0 .9980 0 .9987 0.9995 0.9989 0.9998 0.9998 

Mix2 0.0017 0.0018 0.0020 0 .0013 0.0005 0.0011 0.0002 0.0002 



S_M F-21 

A north Alb Calc NaCI qtz Na-Beid Mix I Mix2 

Ca TC Si Na AI Mg Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

A north -1.2867 -1.6306 -0.8867 -1.6544 -1.8786 -1.5192 -1.5497 -1.03!8 

Alb 0.0460 0.4852 0.5600 0 .8470 1.6465 0.8744 1.6689 2.3844 

Calc 2.0509 2.2991 1.6115 2.1499 2.1073 1.9825 1.6843 1.1383 

NaCI 1.8863 1.8622 1.9777 2.3850 2.7938 3.0861 3.9483 4.9376 

qtz -1.4239 -2.4574 -1.7108 -2.9870 -4.3805 -2.8674 -4.0026 -4.3742 

Na-Bcid 1.0848 1.1918 0.5209 1.0569 0.9075 0 .9290 0.6143 -0. 1283 

Mix I 0.9983 0.9982 0.9980 0.9987 0 .9995 0 .9989 0.9998 0.9998 

Mix2 0.0017 0.0018 0.0020 0 .0013 0 .0005 0.0011 0.0002 0.0002 

S_N 
A north Alb C02 Calc l'aCI Na-Beid Mix I r.lix2 

Ca TC Si Na AI Mg Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Anorth 0.8227 2.0099 1.6478 2.7706 4 .6109 2.7287 4.3801 5.4484 

Alb 0. 7495 1.6993 1.4053 2.3228 3.8108 2.2911 3.6465 4.5455 

C02 2.1094 3 .6405 2.5345 4.4251 6.4895 4 .2480 5.9297 6.4802 

Cak - 0.0585 -1.3414 -0.9231 -2.2752 -4.3822 -2.2655 -4.2454 -5.3419 

:-.:aCI 1.8863 1.86:22 1.9777 2.3850 2.7938 3.086! 3.9483 4.9376 

Na-Beid - 1.0278 -2.4541 -2.0174 -3.3748 -5 .5918 -3.3254 -5.3244 -6.6182 

~1i\ I 0.9983 0.9982 0.9980 0.9987 0 .9995 0.9989 0 .9998 0.9998 

~1ix2 0.0017 0 .0018 0 .0020 0 .0013 0 .0005 0 .0011 0.0002 0.0002 



s_o F-22 
qtz Alb C02 Calc NaCI Na-Be:d M;xl ~1ix2 

Ca TC Si Na AI Mg Cl ~1ix 

DEPTH 18.7650 56.8050 69.6350 71.~50 74.9100 77.4050 96.6350 97.4100 

qtz -0.5554 -1.3567 -1.1123 -I. 8702 -3.1124 -1.8419 -2.9566 -3.6777 

Alb 0.475 I I 0290 0.8557 1.3988 2.2730 1.381 I 2 .1857 2 .7285 

C02 1.2867 1.6306 0.8867 1.6544 I. 8786 1.5192 1.5497 1.0318 

Calc 0.7642 0.6685 0.7248 0.4954 0.2287 0.46~: 0.1347 0. 1065 
NaCI 1.8863 1.8622 1.9777 2.3850 2. 7938 3.0861 3.9483 4.9376 

l'ia-Bt-id -0.2038 -0.4413 -0.3671 -0.6000 -0.9740 -0.5925 -0.9377 -1.1616 

Mid 0.9983 0.9982 0.9980 0.9987 0 .9995 0.9989 0.9998 0 .9998 

Mix2 0.0017 0.0018 0.0020 0.0013 0.0005 0.0011 0 .0002 0.0002 

T_A 

A north Alb C02 Calc NaCI Micr S- min Na-Beid Mix I Mix2 

Ca TC Si Na AI Mg RS 504 Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71.~50 74.9100 77.4050 96.6350 97.4100 

Anorlh 0.7699 0.6689 0.6127 0 .4931 -0.4762 -0.2416 0.1260 -1.4470 

Alb 0.7283 1.1613 0. 9900 1.4090 I. 7698 1.0994 1.9397 1.7791 

C02 2.0566 2.2995 1.4994 2. 1476 1.4024 1.2776 1.6756 -0.4151 

Calc -0.0057 -0.0004 0. 1121 0.0023 0.7049 0.7048 0.0087 1.5534 

NaCI 1.8863 1.8622 1.9777 2.3850 2.7938 3.0861 3.9483 4.9376 

Micr -0.0214 -0.5445 -0.4203 -0.9247 -2.0655 -1.2060 -1.7273 -2.7997 

S-min 0.1499 0. 1630 0. 1880 0.1755 0.!967 0.2378 0.4511 1.1216 

Na-Bcid -0.9642 -0.8385 - 0.7703 -0.6308 0 .5373 0.2533 -0.1990 1.6894 

Mix! 0.9983 0.9982 0.9980 0 .9987 0.9995 0.9989 0.9998 0.9998 

Mix2 0.0017 0.0018 0.0020 0.0013 0 .0005 0.0011 0.0002 0.0002 



T_B F-23 

A north Alb C02 Calc NaCI Muse Micr S-min Na-Beid Mix I Mix2 

Ca TC Si Na AI Mg K RS S04 Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

Anorth -1.7051 -2.0493 -1.3058 -2.0719 -2.2946 -1.9364 -1.9648 -1.4470 

Alb -2.8599 -2.2667 -1.9688 -1.5384 -0.5628 -0.6788 0.7195 2.8262 

C02 -0.4185 -0.4186 -0.4191 -0.4175 -0.4160 -0.4172 -0.4152 -0.4151 

Calc 2.4693 2.7177 2.0305 2.5673 2.5232 2.3996 2.0995 1.5534 

NaCI 4.0545 4.0120 3.8974 4.3164 4.7237 4.4010 4.9271 4.9376 

Muse -0.7096 -0.3118 -0.4477 0.0216 0.5431 0.3600 0.9928 1.7400 

Micr 0.7096 0.3118 0.4477 -0.0216 -0.5431 -0.3600 -0.9928 -1.7400 

S-min 1.0759 1.0737 1.0678 1.0895 1.1105 1.0938 1.1211 1.1216 

Na-Beid 3.3003 2.9999 2.3503 2.4205 1.7465 1.6447 0.5260 -1.4551 

Mix I 0.9983 0.9982 0.9980 0.9987 0.9995 0.9989 0.9998 0.9998 

Mix:?. 0.0017 0.0018 0.0020 0.0013 0 .0005 0.0011 0.0002 0.0002 

T_C 

A north Alb C02 Calc NaC! Micr S- min Qtz Na-Beid Mix I Mix2 

Ca TC Si Na AI Mg K RS S04 C1 Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

A north 0.7699 0.6689 0 .6127 0.4931 -0.4762 -0.2416 0.1260 - 1.4470 

Alb 0.7376 1.2562 1.0639 1.5673 2.1195 1.3040 2.23 13 2.2546 

CO.! 2.0566 2.2995 1.4994 2. 1476 l..t024 1.2776 1.6756 -0.4151 

Calc -0.0057 -0.0004 0. 1121 0.0023 0.7049 0. 7048 0.0087 1.5534 

SaC I 1.8863 1.8622 1.9777 2.3850 2.7938 3.G861 3.9483 4.9376 

~tier 0.0337 0.0243 0.0231 0.0241 0.0317 0.0208 0.0212 0.0523 

S-min 0. 1499 0.!630 0. i8SO 0.1755 0 .1967 0.2378 0.4511 1.1216 

Qt7 -0.091/ -0.9455 -0.737~ -1.5773 -3.4865 -2.0396 -2.9067 --U414 

\a-Beid -0.991S -1.1~33 -0.9923 -1.1059 -0.5129 -0.3610 -1 .0745 0.2613 

~!ixl 0.9983 0.9982 0.9980 0.9987 0.9995 0.9989 0.9998 0.9998 

\tix2 O.OCW 0.00 IS 0.0020 0.0013 0.0005 0.0011 0.0002 0.0002 



F-2~ 

T_D 
A north Alb C02 Calc NaC1 Mtcr S-min Kao ~a-Beid \tix.l \ttx2 

Ca TC Si Na AI :V1g K RS so~ Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71.~50 74.9100 77.4050 96.6350 97.4100 

A north 0.7699 0.6689 0.6127 0.4931 -0.4762 -0.2416 0.1260 -1 .4470 

Alb 0.7829 1.7233 1.4281 2.3466 3.8421 2.3117 3 .6674 4.5972 

C02 2.0566 2.2995 1.4994 2.1476 1.4024 1.2776 1.6756 -c 1!51 

Calc -0.0057 -0.0004 0.1121 0.0023 0.7049 0.7048 0.0087 1.5534 

NaC1 1.8863 1.8622 1.9777 2.3850 2.7938 3.0861 3.9483 4.9376 

Micr 0.0337 0.0243 0.0231 0.0241 0.0317 0.0208 0.0212 0.3523 

S-min 0.1499 0.1630 0.1880 0. 1755 0 .1 967 0.2378 0.4511 1.1216 

Kao 0.1359 1.4007 1.0921 2.3368 5. 1652 3.0215 4.3062 7.0242 

Na-Beid -1.1279 -".5261 - 2.0861 -3.4462 -5.6858 -3.3870 -5.3872 -6.7734 

Mix! 0.9983 0.9982 0.9980 0.9987 0.9995 0.9989 0.9998 0.9998 

Mix2 0.0017 0.0018 0.0020 0.0013 0.0005 0.0011 0.0002 0.0002 
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A north Alb C02 Calc NaCI Micr S-min Mont Na-Beid Mix! Mix2 

Ca TC Si Na AI Mg K RS S04 Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

A north 0.7933 0.9094 0.8002 0.8943 0.4106 0.2772 0.8653 -0.2410 

Alb 0.6920 0.7867 0.6979 0.7841 0.3885 0.2914 0 .7881 -0.0994 

C02 2.0566 2.2995 1.4994 2. 1476 1.4024 1.2776 1.6756 -0.4151 

Calc -0.0057 - 0.0004 0. 1121 0.0023 0.7049 0 .7048 0.0087 1.5534 

NaCI 1.8863 1.8622 1.9777 2.3850 2.7938 3.0861 3.9483 4.9376 

Micr 0.0337 0.0243 0.0231 0.0241 0.0317 0 .0208 0.0212 0.0523 

S-min 0.1499 0.1630 0. 1880 0. 1755 0. i967 0 .2378 0.4511 1.1216 

Mont -0.1373 -1.4146 -1.1030 -2.3600 -5.2 166 -3.0516 -4.3491 - 7.0940 

l':a-Beid -0.8550 0.2864 0 . 1068 1.2459 4.6854 2.6799 3.2593 7.3305 

Mix! 0.9983 0.9982 0 .9980 0 .9987 0 .9995 0 .9989 0.9998 0.9998 

Mix2 0.0017 0.0018 0.0020 0 .0013 0 .0005 0.0011 0.0002 0.0002 

T_F 
A north Alb C02 Calc NaCI Micr S- n,in il!ite Na-Beid Mix! Mix2 

Ca TC Si Na AI Mg K RS S04 Cl Mix 

DEPTH 18.7650 56.8050 69.6350 71.6450 74.9100 77.4050 96.6350 97.4100 

A north 0.7739 0.7093 0 .6442 0.5605 -0.3272 -0. 1544 0.2502 -1.2444 

Alb 0.7280 U579 0.9873 1.4034 1.7574 1.0922 1.9294 1.7622 

C02 2.0574 2.3076 1.5057 2.1610 1.4322 1.2951 1.7005 -0.3746 

Calc -0.0057 -0.()()()4 0.1121 0.0023 0.7048 0.7048 0.0086 1.5533 

l':aC1 2.0942 4.0049 3.6484 5.9597 10.6954 7.7083 10.5359 15.6830 

\ ti.:r -0.0110 -0.4364 -0.3360 -0.7444 -1.6670 -0.9729 - 1.3950 - 2.2577 

S-mm 0.1007 0 .2738 0.2744 0.3604 0.605~ 0.4769 0.7918 1.6774 

ill ito! 0.0810 0.8345 0 .6507 1.3922 3.0774 1.8002 2.5656 4.1849 

:-.:a- Beid -1.0518 -1.7419 -1.4747 -2.1379 -2.7941 -1.6954 -2.9763 -2.8409 

\lix I 0 .9986 1.0020 1.0010 1.005 i 1.0134 1.0071 1.011 5 1.0188 

\1ix2 0 .0014 -0 .0020 -0.0010 -0.0051 -0.01 34 -0.0071 -0.0115 -0.0188 
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T_G 

A north Alb C02 Calc NaCI Micr S-min Chi or Na-Beid ~ti:w.l M1:w.2 

Ca TC Si Na AI Mg K RS 504 C\ MIX 

DEPTH 18.7650 56.8050 69.6350 71 .6450 74.9100 77.4050 96.6350 97.4100 

A north 0.7781 0.7532 0.6784 0.6338 -0.1653 -0.0597 0.3852 -1.0242 

Alb 0.6726 0.5866 0.5419 0.4503 -0.3494 -0.1402 0.1730 -1.1028 

C02 2.0582 2.3164 1.5125 2. 1757 1.4645 1.3140 I. 7275 -0.3306 

Calc -0.0057 -0.0005 0.1120 0 .0022 0.7047 0.7047 0 .0085 1.5532 

NaCI 2.3202 6.3334 5.4639 9.8443 19.2818 12.7312 17.6944 27.3597 

Micr 0.0419 0. 1079 0.0883 0.1635 0.3400 0.2011 0.2782 0.4716 

S-min 0.1724 0.3943 0.3683 0.5613 1.0495 0.7367 1.1621 2.2813 

Ch1or 0.0084 0.0871 0.0679 0. 1453 0.3211 0.1878 0.2677 0.4366 

Na- Beid -0.9817 -1.0190 -0.9110 -0.9318 -0.1281 -0.1359 -0.7537 0.7846 

Mix I 0.9990 1.0061 1.0042 1.0119 1.0286 1.0159 1.0241 1.0395 

Mix2 0.0010 -0.0061 -0.0042 -0.0119 -0.0286 -0.0159 -0.0241 -0.0395 
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APPENDIX G Method of !\lass Balance Calculation 



APPENDIX G: The Spreadsheet Approach to hydrogeochemical mass balance 

modelling 

INTRODUCTION 

An explanation of the concepts behind mass balance modelling of 

changes in groundwater chemistry, and the linear algebra required to solve mass 

balance problems is provided by Parkhurst et al ( 1982) and Plummer et al ( 1983). 

Included in Parkhurst et al (1982) is a FORTRAN code (BALANCE) 

for solving groundwater (or any other), mass balance calculations. However, with the 

advent of PC's and spreadsheet programs it is now easier to make these calculations 

using the matrix multiplication and inversion features found in modern spreadsheet 

programs, in combination with their increasingly powerful macro features. This 

approach was selected for the mass balance meddling in this work. The spreadsheet 

approach to mass balance modelling has not been seen published in any articles by 

this author. Because of its simplicity, and tlexibility, with the additional benefit that 

input and output are seen on the same screen, that graphing features of the 

spreadsheet program can immediately be used once a calculation is made, the flexible 

requirements for the input format (rather than the relatively rigid requirements for 

FORTRAN input format) and the ease with which data can be moved between 

differing spreadsheets, this approach is worthy of note. 
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REVIEW OF MASS BALANCE MODELLING 

In brief, if the groundwater chemistry at two points along a tlnw path 

is known then by selection of phases (typically minerals gases or mixing end-

members) which are likely to be precipitating or diswlving (in the aquifer of intt.:rest) 

the net transfer of these minerals into (dissoh·ing) or out of the groundwater 

(precipitating) can be calculated, assuming the stoichiometry of the plausihk phast·s 

is known, and the net change in the concentration of the clements composing the 

plausible phases is also known. For J plausible phases sdertnl then J dements (cad! 

element must be contained in at least one of the plausible phases) must be selected. 

The element mass balance equation is given hy Parkhurst ct al (I 9X2): 

p 

L fi.PBP' k = mT,k(tinal) - mT, k(initial) = ta.m1',k 
p•l 

(Equation G-l) 

For each clement k = I to J 

where the notation is as follows: 

p number of total reactant and product phases in the net reaction, 

is the calculated mass transfer of the p'11 phase, 

denotes the stoichiometric coefficient of the k'" clement tn the p'" 

phase, 

mT,k is the total molality of the kth element in solution, and 
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J is the numher of elements included in the calculation. 

In prohlt!ms with only element mass balance equations (no redox or 

mixing) P = J. 

For problems where mixing of two end members is involved P = J - 1, 

two of the phases are replaced hy the end members with the compositions of the end 

members reflected in the stoichiometries of the elements of interest, for each end 

member. An equation is included (with the loss of an element) of the form: 

a 1 + a 2 = 1 (Equation G.2) 

where o
1 

and o
2 

arc respectively the mixing fractions of the two end-members which 

combine, along with mineral reactions, to give the composition of the final solution. 

These two simple types of mass balance equations can be further 

embellished to allow for redox reactions and isotope calculations, as explained in 

Parkhurst et al (1982). 

THE SPREADSHEET APPROACH TO MASS BALANCE MODELLING 

A partial mass balance spreadsheet, designed for the particular problem 

at NSCRV is shown in Tahk G. I. Not shown on Table G.l is the macro (which runs 

the calculations) or the invcrtt:d matrix of [A) ([A)"1
) which is multiplied with matrix 
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(B] to give matrix [C]. In all cases the exam ph! is for data from a depth of lJ7A I. 

Some other data, which will be discussed later, is also not St.'l'll hut would typirally 

be included on a mass balance spreadsheet. 

Matrix [A] is the matrix expression of the linear t.~quations provided by 

the summed part of Equation G.l for the p phases and k elements of the mass 

balance model S_K. In matrix terminology it is the coefficient matrix. Matrix IBI 

shows the molar concentrations of the k elements of interest (expressed in mnlllks) 

for the particular problem i.e the difference in concentration for a particular ekmcnt 

between the initial and final solutions, with the value in the final row derived from 

the mixing equation, equation G.2. 

From matrix algebra a solution for the p unknown phase (in this c;1se 

the mmoles of the plausible phases added or lost from the groundwater) and the 

relative mixing fractions of the end-members, can he found by inverting l/\1 and 

multiplying it by (B] to provide C: 

(Equation G.]) 

Proof of equation G .3 can be found in most linear algebra textbooks. /\s matrix 

inversion and multiplication are both features of spreadsheets it is a simple problem 
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to cakulatc [C]. Table G .2 shows the macro which powers this mass balance 

~prcat.lshcct (in Lotus macro language); however, once the method is understood the 

compiling of a macro to meet particular data requirements is relatively simple. 

Spreadsheet range names, and locations of blank rows and columns, must conform 

to the ma~:ro shown, and thus it may not be possible to simply copy the macro. This 

particular macro inverts [Al (with [Ar1 not shown) and successively replaces the first 

six rows of (13) (by importing the groundwater data from a matrix not shown in Table 

G.l) aml multiplies (Ar 1 by [B) and generating [C) at the appropriate position on the 

spreadsheet. 

For the purposes of deriving data for input into PHREEQE, the 

original input molarities of the elements (i.e the analyzed data) can be recalculated 

by cq ua t ion G4· 

[A][B) = [D) (Equation G.4) 

The matrix (D) contains exactly the same values as the input molarities used to 

construct (13), with the addition of a row for the mixing equation. This step only 

really checks the veracity of the solution. The k element contributions from the rock 

mass can be calculated using equation G.S: 



(j -(> 

\Etluatiun (;.~) 

is the total contribution of dement k (frnm both till~ ruck mass aud the 

seawater component) to the groumlwata, 

is the calculated mixing fraction of seawater, 

is the molar concentration of element k in seawater, 

moles of element k contributed from the rock mass 

REFERENCES 

SEE MAIN REFERENCE LIST 



TABLE G. I Output of the mass balance spread~;heet 

MINERALS & ELEMENTS 
A north Alb C02 Calc NaCI Micr Na-Bc:id Mix. I Mix2 

Ca TC Si Na AI Mg K Cl Mix. 

ROWS 9 
COLS 9 

Sample 

A north Alb C02 Calc N3Cl Micr Na-Bc:id Mix! Mix.2 Point 

MTXIAI Mix I• NORDSEA 97.41 

car-~- 0 0 I 0 0 0 O.OE+OO 10.662 0. 10~ 

TC 0 0 1 I 0 0 0 1.8E-04 2.126 1.139 

Si 2 3 0 0 0 3 3.67 O.OE+OO 0.074 0.245 

Na 0 I 0 0 I 0 0.333 O.OE+OO 485.44 7.355 

AI 2 I 0 0 0 1 2.33 O.OE+OO 0.000 0.022 

Mg 0 0 0 0 0 0 0 O.OE+OO 55.086 0.009 

K 0 0 0 0 0 I 0 O.OE+OO 10.579 0054 

Cl 0 0 0 0 I 0 0 O.OE+OO 565 .76 5.026 

MIX. 0 0 0 0 0 0 0 l.OE+OO 1.000 1.000 

DEPT II 18.77 56.81 69.64 71.65 74.91 77.41 96.64 97.41 MTX [D) 

Anorlh 0.9059 2 .0696 1.7048 2.8299 4.6889 2. 7799 4.4322 5.5772 

Alb 0.7829 1.7233 1.4281 2.3466 3.8421 2.3117 3.6674 4.5972 

C02 2.1925 3.7002 2.5915 4.4s.t3 6.5676 4.2992 5.9819 6.6090 

Call: - 0.142 -1.401 -0.980 -2.334 -4.460 -2.317 -4.298 -5.471 

NaCI 1.8863 1.8622 1.9777 2.3850 2.7938 3.0861 3.9483 -1.9376 MTX[C) 

Micr 0.0337 0.0243 0.0231 u.ow 0 .0317 0 .0208 0.0212 0.0523 

Na -Bcid - I.! 28 - 2 .526 -2 .086 -3.446 -5.686 -3 .387 -5.387 -6.773 

Mix! 0 .99!!3 0 .9982 0.9980 0.9987 0.9995 0.9989 0.9998 0.9998 

Mix2 0.0017 0 .0018 0.0020 0.0013 0.0005 0 .0011 0.0002 0.0002 =C 

TOTAL (nunolcs of clements) 
18.77 56.81 69.64 71.65 74.91 77 .41 96.64 97.41 

Ca 0.7825 0.6876 0.7461 0.5088 0.2344 0 .4750 0.1366 0. 1081 

TC 2.0547 2 .3031 1.6159 2.1527 2. 1086 1.9850 1.6849 1.1388 

Si 0 . 12-:!2 0 . 1111 0. 1076 0.1243 0. 1323 0.1269 0.1592 0.2445 

Na 3.1274 3.6146 3.6799 4.1931 ) .0022 4.8064 5.9069 7.3554 

AI 0 .0003 0.0009 0.0003 0.0008 0 .0037 0.0005 0.0009 0.0219 MTX[D] 

Mg 0.0946 0.()')88 0. 1099 0.0691 0.0295 0.0609 0.0097 0.0086 

K 0.0519 0 .0432 0.0442 0.0373 0.0373 0 .0325 0.0230 0.0540 

Cl 2.8581 2 .8765 3.1067 3.0949 3 .0964 3.7114 4.0475 5.0263 

Mix n/a n/a n/a n/a n/a n/a n/a n/a 

ELEMENT CONTRIDUTION FROM ROCK MATRIX (mmoles) 
18./7 56.81 69.64 71.65 74.91 77.41 96.64 97 .41 

Ca 0.7642 0 .6685 0.7248 0.4954 0.2287 0.4632 0 . 1347 0.1065 

TC 2.0510 2.2993 1.6117 2.1500 2.1075 1.9826 1.6845 1.1385 

Si 0 . 1221 0.1110 0. 1074 0.1242 0.1322 0 . 1268 0. 1592 0.2445 

Na 2.2936 2 .7443 2.7112 3.5840 4.7425 4 .2699 5 .8218 7.2792 

AI 0.0003 0.0009 0.0003 0.0008 0.0037 0 .0005 0.0009 0.0219 

Mg - -$E- 18 --$E-18 5E- 18 3E- 18 -2E-18 IE-18 IE-20 2E-19 

K 0 .0337 0.0243 0.0231 0.0241 0.0317 0 .0208 0.0212 0.0523 

('I 1.8863 1.8622 1.9777 2.3850 2.7938 3 .0861 3.9483 4.9376 

Mix 2 0.0017 0 .0018 0 .0020 0.0013 0.0005 0.0011 0.0002 0.0002 



TABLE G.2 Spreadshe-et Macros 
ALT_M: {GOTO}mtx"' Al.T _F : IREHEAD"-' 

lr.: {END} {D} {END} {P.}"' (GOTO}IIEAOJ·" 
{GOTO}out"-' .'C {END}(R}{L} "- IIl't\DI" 
lr~. {END} {R}{END}{D}"' IRT . {END} {R }{L}" lll: AP:'' 
{GOTO}phr"- {GOTO}IIEr\D-1"-
Ir.:. {END} {D} {END}{R}"' IRT . {END} {D} ,,IIEAD!"' 
{GOTO}inp"' IC .{END}{D}"'IIEAOt>"· 
lrncput"' \END} {R} {L} {END}{D}"' 
ldmipul"'llll~"' 
{GOTO}dcp"' Al.T_C : IC . {ENO}{D} "- INN ·" 
{GOrO}mtx"' 
lrncmtot"-'. {END} { D} {END}{R}"' 
{GOTO}dcp"' 
{GOTO}inn"-' 
lrnc11u~"' {ESC} {ESC}11ug"' {ESC} (D} . {END} {D}"' 
{GOTO}d"P"' 
{\C} 
/dmmmtot "'-'U\1~"' (.lUI --v 

{R} 
{\C} 
/dmm"'"'{R}"' 
{R} 
{\C} 
ldmm"' "'{R}"' 
{R} 
{\C} 
ldmm"-"-{R}"
{R} 
{\C} 
hilum"'"' {R}"' 
{R} 
{\C} 
/dmm"-"'{R}"
{R} 
{\C} 
/dmm"'"' {R}"' 
{R} 
{\C} 
/dmm"'"'(R}"
/rmlllu);"' 
lrHl.ltntu!"' 
{GOTO}PIIR"· 
ICELS"-{Ll"' 
{GOTO}OUT"
{U} 
IRNCPDEP"- .{END}{R}"' 
{GOTO}PIIR-v 
/CPCEP"-'{U}"' 
/RNDPDEP"
{GOTO}OUT"' 
/Rl'!COUTl"' .{END}{D}"' 
{GOTO}PHR"' 
/DMMPUT "'OUTI"' PIIR"' 
/DMM-v{ESC}{R} . {END}(D}"' {R} •• 
(R} 
IDMM"' {ESC} {R}.{END}(D} "' {R}"' 
{R} 
/DMM...,{ESC} {R} . {END}(D}"' {R}"' 
{R} 
/DMM"' {ESC } {R} . { E ND}{D} "' {R}"' 
{R} 
/DMM "- {ESC}{R} . {END}{D}"' {R} "' 
{R} 
!DMM"-{ESC}{R} . {END}{D}"' {R} "' 
{R} 
IDMM"- {ESC}{R} . {END}{D}"' {R}"' 
/RNDPUT"' 
/ RNDOUTI"' 
{\F} 






