A HYDROEEOLOGCAL AND HYDROGEOCHEWMCAL STUDY
OF THE EVOLUTION OF GROLNDWATER IN A
FRACTURED GRANTE, HOLYROOD NEWFOUNDLAND

MCOLAS J. SARCENT

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

A HYDROGEOLOGICAL AND HYDROGEOCHEMICAL STUDY OF THE EVOLUTION OF GROUNDWATER IN A FRACTURED GRANITE, HOLYROOD NEWFOUNDLAND

by

Nicolas J. Sargent

A thesis submitted to the school of Graduate
Studies in partial fulfilment of the requirements for the degree of Master of Science

Department of Earth Sciences
Memorial University of Newfoundland
April 1994

Acquisitions and Bibliographic Services Branch

395 Wellington Strset Otlawa. Onlario KIA ONA

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Abstract

An extensive set of hydrogeological and geochemical data has been collected from a 150 m deep borehole in the near coastal discharge area of the Holyrood Granite, Newfoundland. Because of the selected location of the borehole, over the underlying saltwater wedge, it was possible to intersect flow paths that are believed to have extended considerably deeper within the aquifer than the depth of the borehole.

The physical data indicate that the geometric average of the hydraulic conductivity over the length of the borehole is approximately $4 \times 10^{.9} \mathrm{~m} / \mathrm{s}$ and that the open fractures, controlling most of the flow in the aquifer are approximately vertical and parallel to the coast. Fractures of this nature have been postulated by others to have resulted from isostatic post glacial rebound. The hydraulic conductivity (measured at approximately 2 m intervals along the entire length of the borehole) shows a decrease of approximately three orders of magnitude with depth. Based on the hydraulic conductivity measurements made in the study borehole, known hydraulic gradients and probable flow-path length, it is believed that water samples collected may have had residence times of the order of 1000 a .

Inspection of aqueous chemical data reveals that some parameters have a strong correlation with depth while other analytes have a strong inverse correlation with hydraulic conductivity. In general the water quality reflects the effect of lowtemperature weathering of an alumino-silicate rich granite. However, the water samples collected were all relatively rich in chloride. Though there is no direct evidence of the source or sources of chloride in the study area, evidence from other granitic terrains indicate that the likely sources of chloride in the groundwater are from the rock mass (possibly from fluid inclusions) and from seawater.

Study and analysis of fracture plane mineralogy using X-ray diffraction (XRD) and scanning electron microscopy (SEM) has provided evidence for a suite of minerals which may control the groundwater chemistry. Thermodynamic speciation calculations using the water analysis data indicates minerals including calcite, amorphous silica, kaolinite, and some varieties of feldspar may be precipitating. Subsequent mass balance modelling using the groundwater analyses could not identify a groundwater evolutionary scheme that was consistent with the speciation calculations unless both a seawater source of chloride and a rock source of chloride were invoked. However, the results indicated that the percentage of seawater mixed with the groundwater decreased with depth, while the fraction of chloride added from the hypothetical rock source increased with depth. This, together with the inverse correlation of dissolved silica with hydraulic conductivity, probably reflects the increasing importance of rock-water interaction with depth, in-turn reflecting increasing aquifer residence times at increasing depths.

Oxygen and hydrogen isotope data collected during the study indicate that both isotope systems show a strong correlation with depth and both are increasingly enriched in their light isotopes with depth. The decrease in ${ }^{18} \mathrm{O}$ and ${ }^{2} \mathrm{H}$ abundance with depth is consistent with the expected differences in altitudes of recharge between the deepest groundwater samples collected (believed to have been recharged at approximately 170 m above sea level), and the shallowest groundwater samples collected (believed to have been recharged at 60 m above sea level). This evidence indicates that flow through the aquifer (although it occurs in discontinuous fractures) is, on a large scale, roughly equivalent to well ordered porous granular flow.

The interpretation of the isotope data together with the results of mass balance modelling suggests an internally consistent evolutionary scenario. It is proposed that the modelled decline of the saltwater component with depth reflects the addition of
marine aerosols that provide chloride to recharging waters in quantities that decrease with increasing distance inland.

The increase in the modelled rock-derived chloride source with depth is consistent with the increasing degree of low-temperature rock-water mass exchange with increasing depth, itself resulting from increased aquifer residence time with depth.

ACKNOWLEDGEMENTS

Many people have helped me to complete this tome and my other graduate studies. Their help is sincerely appreciated. I hope that I have included all of those who provided assistance in completing analyses, provided advice or who gave a ready ear. I apologise to those I have missed and express my thanks.

The field work would have not have been completed if it had not have been for the diligence and expertise of Frank Mooney. Frank operated the drill and made the drilling enjoyable. Frank also provided assistance with other aspects of the field work. I am most grateful to him for both his help and his friendship. I thank the Jones family of Seal Cove (especially Lemont Jones) who were kind enough to make sure that I was still in the land of the living as did Wes Morgan (who was also the rig watchman) and his family while I was conducting borehole testing after the drilling was completed.

Dr.John Gale provided the drilling and field testing equipment and partial funding for the field work, Dr.John Welhan provided partial funding for the field work and subsequent analytical work. A further $\$ 6,000$ disbursement from the Newfoundland and Labrador Department of the Environment, arranged by Jim Robinson, Provincial Hydrogeologist, assisted in the funding of the project. The funding is appreciated. The Province of Newfoundland and Labrador were kind enough to award me a "Special Scholarship for Students to Pursue Graduate Studies Related to Resource Development". I thank the Province for this award.

My thanks are extended to the many people who helped conduct analyses on the water samples. The ICP-MS analyses were performed by Dr.Simon Jackson and Dr.Henry Longerich and their staff. They also provided extensive advice regarding the quality of analyses. Gert Andrews performed the AA analyses. Dr. Roger

Mason provided help with the use of the Rigaku machine. Caroline Emerson provided training and assistance in the use of the SEM. Dr. Ali Aksu and Helen Gillespie provided help in interpretation of the clay minerals. Other staff within the Department helped by loaning equipment and chemicals and their efforts are appreciated.

Thanks are due to David Van Everdingen (now Dr.David), a fellow graduate student, who provided advice and friendship throughout my graduate studies. The use of a stereonet plotting program (see Chapter 2) which he co-wrote, transformed the task of plotting and interpreting over 800 fracture plane orientations from being a daunting project into a relatively easy one.

Thanks are also due to those Professors in the Faculty of Engineering who gave the many courses that were a requirement of this course. I would also like to thank the technical staff of the Engineering machine shop who fabricated (usually at short notice) many items required for the field project.

Mr.George Trainor of Newfoundland Light and Power (now Newfoundland Power) coordinated the use of the Light and Power Land where the borehole was located. The cooperation of Mr.George Trainor, and the staff of the Seal Cove Power station, helped make the field work pleasant but fortunately not electrifying. The cooperation of Newfuundland Light and Power and their employees is sincerely appreciated.

Several professors, not directly involved with my studies were kind enough to proof lengthy chapters of this thesis. I thank Dr.Peter Cawood and Dr.Toby Rivers for giving the considerable time necessary to proof and provide critical comment on Chapters 2 and 7 respectively.

This thesis would not be in its present form without the meticulous proofing of my graduate advisor Dr.John Welhan, now of Idaho State University. John also provided considerable personal support at some fairly rough times during the graduate process. He has also managed to imbue me with a sense of how science is done. I cannot satisfactorily express my appreciation of his efforts, especially as much of the proof reading was conducted after he had left Memorial and was busy starting a new position at Idaho State University.

Dr.Peter Howard, now of the University of Regina, was a friend with knowledge of the machinations of the University and his friendship and advice was invaluable.

Finally most people will not realise that my wife Wendy has been an equal partner in the completion of this project and has shared in both the highs and the lows of the graduate course. Wendy provided support, love and friendship through a tough process. Our children, Aiden, Chloe and Timo have also been affected by my graduate studies and I thank them for suffering a sometimes cranky Dad.

TABLE OF CONTENTS
CHAPTER 1: INTRODUCTION I
1.1 BACKGROUND 1
1.2 OBJECTIVE AND SCOPE 9
1.2.1 Objective 9
1.2.2 Approach 10
1.2.3 Scope 12
1.3 PHYSICAL SETTING 12
1.3.1 Geology 12
1.3.2 Hydrogeology 20
1.4 STUDY SITE 23
1.5 CONCLUSIONS 26
2.1 INTRODUCTION 27
2.2 GEOLOGICAL DESCRIPTION OF THE CORE 27
2.2.1 Method 27
2.2.2 Core Description 28
2.2.3 Fracture Minerals Logged 30
2.3 DESCRIPTION OF FRACTURE ORIENTATIONS 32
2.3.1 Method 32
2.3.2 Method of Interpretation of Fracture Data 37
2.4 FRACTURE DATA PRESENTATION 43
2.4.1 Fractures Differentiated by Depth Intervals 43
2.4.2 Fracture Differentiated by Fill Material 46
2.4.3 Fractures Differentiated by Rock Type 53
2.4.4 Fracture Orientations in intervals sampled for groundwater 62
2.5 CONCLUSIONS AND INTERPRETATIONS 67
CHAPTER 3: HYDRAULIC CONDUCTIVITY TESTING 70
3.1 INTRODUCTION 70
3.2 METHODS OF HYDRAULIC CONDUCTIVITY AND HEAD TESTING 70
3.2.1 Description of the Straddle Packer Tool 70
3.2.2 Hydrostatic Head measurements 71
3.2.3 Falling (or rising) head test 73
3.2.4 Constant head tests 79
3.2.5 Falling head test while measuring the test cavity pressure 83
3.2.6 Comparison of Hydraulic Conductivity Testing methods 84
3.3 OVERVIEW OF HYDRAULIC CONDUCTIVITY AND HEAD MEASUREMENT RESULTS 84
3.4 CONCLUSIONS 90
CHAPTER 4: GEOCHEMICAL METHODS AND DATA QUALITY 93
4.1 DATA COLLECTED 93
4.1.1 Sampling methods 93
4.1.2 Analytical Methods 97 97
4.1.3 Quality of non isotope analyses 98
4.1.4 Quality of Isotope analyses 111
4.1.5 Quality of $\mathbf{p H}$ and $\mathbf{E h}$ measurements 113
4.1.6 Efficacy of sample interval flushing 115
4.2 CONCLUSIONS 119
CHAPTER 5: GEOCHEMICAL TRENDS AT NSCRV 121
5.1 OVERVIEW OF WATERS AT NSCRV 121
5.1.1 Variations of single chemical parameters with depth and permeability. 121
5.1.2 Description of variations of bulk groundwater chemistry with depth: Piper 124
5.1.3 Description of variations of groundwater chemistry with depth: Mineral stability diagrams. 127
5.2 CONCLUSIONS 132
CHAPTER 6: INTERPRETATION OF AQUEOLS ISOTOPE DATA 1.34
6.1 DISCUSSION 1.34
6.2 CONCLUSIONS 142
CHAPTER 7: ANALYSIS OF FRACTURE MINERALOGY 143
7.1 ANALYSIS OF FRACTURE MINERALOGY 143
7.2 SAMPLE COLLECTION AND ANALYSIS 144
7.2.1 Analysis of Fracture flakes by SEM 144
7.2.2 Analysis of Fracture Minerals by XRi). 145
7.3 METHODS OF DATA INTERPRETATION 145
7.3.1 Interpretation of SEM/EDM data. 145
7.3.2 Method of Interpreting XRD data 148
7.4 RESULTS 148
7.5 ELEMENTS IDENTIFIED. 16.3
7.6 CONCLUSIONS 168
CHAPTER 8: HYDROGEOCHEMICAL MODELLING 170
8.1 INTRODUCTION 170
8.2 DATA AND THERMODYNAMIC DATABASE QUALITY 174
8.2.1 Groundwater Data Cuality 174
8.2.2 Thermodynamic Data 176
8.3 HYDROGEOCHEMICAL MODELLING 180)
8.3.1 Speciation Calculations 180
8.3.2 Mass Balance calculations 186
8.4 TEST OF MASS BALANCE MIXING HYPOTHESIS USING OXYGEN AND HYDROGEN ISOTOPE DATA 192
8.5 TEST OF GEOCHEMICAL MODELLING RESULTS USING CHLORIDE DATA
8.5.1 Discussion

196
203
8.6 CONCLUSIONS 206

CHAPTER 9: CONCLUSIONS \& INTERPRETATIONS
207
9.1 SUMMARY OF RESULTS

207
9.2 FUTURE WORK

211

LIST OF FIGURES

Figure 1.1 Location Map
Figure 1.2 Local Geological Setting 14
Figure 1.3 Flow net of the Holyrood Aquifer 24
Figure 2.1 Synopsis of Core Log 29
Figure 2.2 Core orientation device 34
Figure 2.3 Angles measured to orientate planar features 36
Figure 2.4 Blind zone and borehole orientation 40
Figure 2.5 Number of open fractures per metre 42
Figure 2.6 Pole plots of fracture orientations; depth differentiated 44
Figure 2.7 Pole plots of fracture orientations; mineral differentiated 47
Figure 2.8 Pole plots of fracture orientations; rock type differentiated 54
Figure 2.9 Pole plots of fracture orientations in andesite, mineral differentiated. 56
Figure 2.10 Pole plots of fracture orientations in green granite (mineral differentiated) 59
Figure 2.11 Pole plots of fracture orientations in pink-granite (mineral differentiated) 61
Figure 2.12 Poles to all open fractures sampled 63
Figure 2.13 Poles to open fractures in sample intervals 64
Figure 3.1 Hydraulic conductivity testing configuration 72
Figure 3.2 Formation pressure build-up curves from selected test intervals 74
Figure 3.3 Comparison of result of calculating formation head from constant head test information, or deriving it from shut in tests 82
Figure 3.4 Comparison of results of differing conductivity testing methods 85
Figure 3.5 Summary of hydraulic data from NSCRV 88
Figure 3.6 Line fit to hydraulic Conductivity 89
Figure 3.7 Fractures logged as open versus interval flux 91
Figure 4.1 ICP-MS vs AA analyses 101
Figure 4.2 ICP-MS vs HPLC analyses 103
Figure 4.3 Variations in pH with sample interval flushing 114
Figure 4.4 Effects of sample interval flushing on specific element concentrations 116
Figure 5.1 Correlation of analyte concentrations with both depth and log hydraulic conductivity 123
Figure 5.2 Piper diagram showing analytical results from NSCRV 126
Figure 5.3 Mineral stability diagrams constructed for comparison of thermodynamic data 128
Figure 5.4 Stability diagrams for the NSCRV waters sampled 130)
Figure 6.1 Isotope Data for NSCRV plotted against MWL 135
Figure 6.2 Evapotranspiration diagram for Seal Cove 139
Figure 7.1a ED spectrum for calcite from 53.97 m 153
Figure 7.1b XRD spectrum of calcite from 72.48 m 154
Figure 7.2 SEM photograph of Chlorite from 147.31 m (NSCRV 7lge) 155
Figure 7.3 SEM photograph of Dickite from 136.53 m (NSCRV 16A) 159
Figure 7.4 XRD trace for Montmorillonite/Saponite from 148.31 m 162
Figure 7.5a) ED spectrum of quartz from 71.80 m (NSCRV 14Ige) 164
Figure 7.5 b) XRD trace of quartz from 139.69 m 165
Figure 7.6 SEM photograph of Octahedral crystal, high in iron, from 29.48 m (NSCRV 5A) 167
Figure 8.1 Modelled fractions of chloride concentrations versus physical parameters 200
LIST OF TABLES
Table 2.1 Synopsis of fracture orientation data 39
Table 2.2 Synopsis of mineral differentiated fracture orientation data 50
Table 3.1 Composite table detailing hydraulic conductivity results 76
Table 4.1 Relative analytical errors estimated by comparing different methods of analysis 105
Table 4.2 Compilation showing the average relative differences and the 95% confidence interval (2σ) for the analysis, by ICP-MS, of 20 different elements, at a variety of concentrations in USGS water standards. 106
Table 4.3 Results of all laboratory ${ }^{18} \mathrm{O}$ analyses 112
Table 4.4. $\delta^{18} \mathrm{O}$ values selected as being representative of virgin formation water at NSCRV 119
Table 5.1 Results of statistical test to determine the statistical significance of the correlation of hydraalic conductivity or depth with concentration of an element 122
Table 6.1 Synopsis of Weather data at NSCRV. 138
Table 7.1 Table showing minerals identified by microprobe and XRD 150
Table 7.2 Selection criteria for minerals analyzed by electron microprobe 152
Table 7.3 Selected chlorite compositions, calculated from ED microprobe data 156
Table 7.4 Selected calculated Halloysite compositions 158
Table 7.5 Selected calculated Illite compositions 161
Table 8.1 Comparison of Geochemical Modelling Codes 179
Table 8.2 Minerals approaching saturation derived from speciation calculations 181
Table 8.3 Selected Results of Mass Balance Modelling 188
Table 8.4 Hypothetical mixing of end members of differing isotopic compositions 195
Table 8.5 Results of calculating contributions of end members to chloride budget 201

APPENDICES

APPENDIX A	Core Log
APPENDIX B	Fracture Data
APPENDIX C	Geochemical Analyses
APPENDIX D	Thermodynamic Data Base Review
APPENDIX E	HELGTHEM thermodynamic Data Base Used with
	PHREEQE
APPENDIX F	Results of Mass Balance Calculations
APPENDIX G	Method of Mass Balance Calculation

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

The flow processes occurring in fractured crystalline media are distinctly different from those found in porous intergranular media. The hydrogeochemistry of groundwater in fractured crystalline rocks is dominated by the processes occurring during flow and transport through a virtually impermeable rock mass whose porosity is likely to be dominantly intergranular or microcrystalline, but in which a relatively few fractures act as principal flow pathways.

From point of recharge to point of discharge water in an 'intergranular' aquifer (i.e. an aquifer with only intergranuiar porosity as opposed to water in a fractured aquifer, having intergranular and fracture porosity) normally displays relatively gradual changes in its physical and hydrogeochemical properties. The chemical composition reflects an increasing aquifer residence time with increasing distance from the recharge point. The progressive change in chemical properties seen in the waters of non-fractured porous aquifers is a consequence of the necessity of any discrete packet of water, at a point within the aquifer, having had to arrive there by passage through the intergranular pore spaces, along tortuous pathways. The travel of water via intergranular pathways ensures a progressive increase in the degree of rock-water interaction, at successive points along a flow path. Fractured
crystalline aquifers, on the other hand, apparently do not confine a packet of water to move only via intergranular (or intercrystalline) pathways. A fractured crystalline medium is comprised of:
a) a crystalline rock mass, usually of extremely low hydraulic conductivity material with values reported from 10^{-13} to $10^{-16} \mathrm{~m} / \mathrm{s}$ by Nordstrom et al. (1985) for the Stripa Granite. Though relatively unconductive the crystalline rock mass will still have porosity, resulting from blind fractures, microcracks and intercrystal cracks and voids,
b) an interconnected web of fractures which are the main conduits for groundwater flow through the rock-mass. The average hydraulic conductivity of the bulk fractured rock-mass is orders of magnitude higher than that of the crystalline media. However, the principal flow paths, provided by the interconnected fractures, only account for a fraction of a percent of the total porosity of the rock-mass.

Norton and Knapp (1977) defined three different types of porosity in fractured media; flow porosity (interconnected fractures), diffusional porosity (such as voids and micro-cracks, between crystals, and fluid inclusions), and the residual porosity comprised of blind fractures and other unconnected voids. The velocity of
groundwater through the fractured media is many orders of magnitude higher in the flow porosity, where crack widths range from 10 to $1000 \mu \mathrm{~m}$ (Neretnieks 1980) and through which solutes travel principally by advection. Solutes in the diffusion porosity can only diffuse through an essentially static solvent phase (Gascoyne et al. 1987), in cracks ranging from 0.01 to $10 \mu \mathrm{~m}$ (Neretnieks 1980). As a result of the increased rock-water interaction resulting from long residence times in the diffusion porosity, the concentrations of solutes in the micro-crack fluids will be many times greater than the concentration of solutes in the fluids of the flow porosity.

Knapp (1975) estimated that a fractured crystalline rock-mass has as little as $1-2 \%$ porosity of which $\sim 1 \%$ is flow porosity (or effective porosity), $\mathbf{- 5 \%}$ is diffusion porosity and 94% is residual porosity. For the Stripa Granite Nordstrom et al. (1985) determined the total porosity averaged 0.46% with flow porosity in the order of 10^{-5} to 10^{-4} or 2 to 20% of the total porosity.

The overall hydraulic nature of the fractured crystalline rock-mass is controlled by the geometry of the fracture network. Above a certain minimum volume of the rock-mass (known as the representative elementary volume or REV), the average hydraulic conductivity of the total volume will be relatively uniform. At volumes below the REV the hydraulic conductivity fluctuations calculated for
successively smaller volumes will vary over orders of magnitude. The variations will be damped considerably as the REV is approached. The concept of REV is used widely (i.e. Cacas et al. 1990). When modelling flow through a fractured aquifer the scale of the aquifer (as opposed to the REV) may justify approximating the real system with an equivalent porous media.

Because of the dual nature of porosity in fractured crystalline media, a sample of water and solute mass, collected at a point within the fractured crystalline aquifer is in fact the result of the mixing of two fractions:
i) The fracture component derived from water, and its dissolved solutes, flowing along fractures within the flow porosity and;
ii) The intercrystalline component, derived from water and its dissolved solutes which is contained in intercrystalline spaces (diffusional porosity).

The mixing of these components would be expected to occur locally in the crystalline media and the fractures, but would also be expected to occur during sample collection from any discrete volume of aquifer which contained both flow and diffusional porosity.

In the shallow parts of a fractured aquifer (where the fracture apertures and the fracture permeability tend to be large) the fracture component of water mass in a fluid sample will be many times larger than the intercrystalline component in the sample with the intercrystalline component an insignificant contributor to the mass of water collected. However, the solute mass contributed by the intercrystalline fluids, will be disproportionately large. Conversely the fracture component of the solute mass will be a much less significant contributor to the total solute mass of the sample collected. Furthermore, it can be theorised that the relative proportions of solute contributed by the fracture and intergranular components will change with depth since fracture porosity is a function of depth. At some depth the proportions of solute and solvent contributed to the volume by the flow and diffusional porosity will be in the same proportions as the intergranular to fracture space. At this point the fracture system would be indiscernible from the intergranular microcracks. This may be considered to be a boundary condition.

The manner in which minerals dissolve has been extensively studied. From this information the expected chemical evolution of water in contact with some selected minerals has been deduced. Feldspars are significant contributors to the solvent load of groundwaters and a large amount of effort has been expended in the study of their dissolution mechanisms. Quartz and the micas are relatively poor contributors to the total dissolved solids (TDS) in groundwaters; the dark micas and
amphiboles are thought to be major contributors of chlorine (Edmunds et al. 1984. 1985; Kamineni, 1987).

Rates for feldspar leaching have been calculated by Busenherg and Clemency (1976). A mathematical model was proposed by Paces (1973) for the solution process. Both solution models postulated the formation of a thin $(<50 \mu \mathrm{~m})$ surface layer on the feldspars, the subsequent equilibrium of which was proposed as acting as a rate controlling step in the dissolution of the feldspars. The surface layer was cited as a cause for the initial parabolic dissolution rate of the feldspars, wherein solute is released at a rate proportional to the square root of time.

Holdren and Berner (1979), after exhaustive scanning electron microscope work, questioned the presence of the rate controlling layer and possibly the parabolic step believing it to be an artifact of mineral preparation. Nevertheless they generally agreed with the solution rates determined by Busenberg and Clemency (1976) for the linear phase of feldspar dissolution. The linear phase accounts for the bulk of the dissolution process, with the exception of the first few months. Helgeson (1968) has studied mineral solution from the perspectives of both mass balance and thermodynamic principles, with a view to describing evolutionary pathways for solutions in contact with mineral assemblages. Using this approach Helgeson (1969) developed activity diagrams for the system:

$$
\mathrm{K}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{5}-\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}
$$

at $25^{\circ} \mathrm{C}$ (Gibbsite-Kaolinite-K-Feldspar-Mica) and pathways of evolution for dissolving either or both of K-Feldspar and Albite. The work of Helgeson corroborated the mass balance calculations of Garrels and MacKenzie (1967) who derived the same information for the Sierra Nevada granites.

Several groups have published results and interpretations of observed hydrageochemistry in granite terrains. However, a satisfactory source for the salinity (halides) of the groundwater has still not been found. Edmunds et al. (1984, 1985) attributed the salinity in the groundwaters of the Carnmellis Granite to chloride produced from the weathering of biotite micas. Nordstrom et al. (1985) proposed that the salinity observed in the Stripa Granite (Sweden) could have been entirely derived from gradual leaching and leaking of fluid inclusions in the granite. However this theory has been refuted by Fontes et al. (1989) on the grounds both of lack of mass balance for the system, and the simplifying assumptions made by Nordstrom et al. (1985) Frape et al. (1984), working on the Canadian Shield, admit that a satisfactory source of salinity in the highly saline deep groundwaters of the shield has yet to be found; however they cite remnant Palaeozoic marine transgressions and remnant, highly saline, Permian connate waters derived from evaporites as possible sources of salinity.

The interpretation of groundwater evolution through genchemical modelling requires a variety of input data such as rock mineralogy, fracture minerals in contact with the flow system, groundwater chemistry, and the composition of endmembers (which may mix) in the system. A valid thermodynamic data base for both the dissolved and the solid components is also needed. How the data are used depends on the approach to modelling.

In the inverse approach (Plummer, 1984), a non-thermodynamic mass balance is computed for the observed changes in groundwater chemistry. The mass balance approach can allow for precipitation or dissolution of minerals likely to be available in the flow system; it can also be used to model mixing of end-members, or to apply redox and isotopic constraints to the reactions. The results of these mass balance calculations may or may not be thermodynamically plausible and they must be checked for thermodynamic validity or compared with the calculated saturation states of the minerals of interest in the groundwater. An alternate approach is to model the forward problem and attempt to mimic the known groundwater composition (or predict an unknown groundwater composition) by theoretical addition (or removal) of species to the groundwater. The groundwater modelling process is described by Plummer et al. (1983) and Plummer (1984). The latter paper notes the problems of
geochemical modelling in fractured systems which may result from an inability to model the rapid mixing of geochemically different waters.

1.2 OBJECTIVE AND SCOPE

Recent work in the Holyrood Aquifer has included a study of the relationship between stream-flow and groundwater flow by Schillereff (1991) and some limited interpretation of part of the data of this study by Button (1990).

1.2.1 Objective

As a continuation of the groundwater studies in the Holyrood Granite a project was devised which would allow a detailed hydrogeological investigation in a deep borehole in the discharge area of the Holyrood Aquifer. The detailed investigation was to provide an extensive set of physical-hydrogeological and geochemical data including:
i) punctual hydraulic conductivities (i.e those from intervals of approximately

2 m over the entire borehole length),
ii) a full core which was to provide information regarding fracture orientations and nature of minerals deposited in the fractures,
iii) the chemical and isotopic nature of the groundwater at different intervals in the borehole, to be determined by extensive sampling of intervals having higher hydraulic conductivities.

This data was used to develop a consistent hydrogeological/ hydrogeochemical model of processes in the Holyrood Aquifer.

It was hoped that a location would be selected which would provide artesian conditions throughout its length so that groundwater samples could be collected under optimum conditions with a minimum amount of degassing or other chemical changes.

1.2.2 Approach

The study requirements were met by the coring and detailed logging of fractures in a 150 m (drilled depth) hole, located in the north of the Seal Cove River Valley, at a site which will be referred to as NSCRV (Figure 1.1). After completing coring the hole was extensively packer tested to determine hydraulic conductivities over its length and to collect groundwater samples for analysis of the inorganic and the isotopic composition of the water. The location was selected, after preliminary numerical groundwater flow modelling, to maximise the possibility of intersecting artesian groundwater flow conditions.

Figure I.I Location Map

From 1963 Imperial 1:25,000 Map,"SEAL COVE" 1N/6h

1.2.3 Scope

By limited flow modelling and extensive hydrogeochemical modelling the following study attempts to integrate the data collected at NSCRV in terms of the flow paths, geochemical evolution of the groundwater in the Holyrood Granite, the probable source of solute and solvent, the nature of minerals likely to be precipitated from the groundwater, and the influence of the mineral composition, hydraulic nature and fracture mineralogy of the granite, on the hydrogeochemistry.

1.3 PHYSICAL SETTING

1.3.1 Geology

The study area lies in the Avalon Zone which is the most easterly tectonostratigraphic unit of the Appalachians, described by Williams e! al. (1974). The Avalon Zone runs south, and is approximately coincidental with the eastern seabnard of the United States. It is typified by a sequence of late Proterozoic volcanic and associated sedimentary rocks. This sequence is overlain by shallowwater terrestrial sedimentary rocks of mid Palaeozoic age (Taylor et al. 1979). The sequence is everywhere found intruded by plutonic rocks ranging in age from Proterozoic to Carboniferous. In the study area the plutonic rocks are represented by the Pre-Cambrian Holyrood Plutonic series. The timing of emplacement of the granite, its mode of emplacement and the geological setting during emplacement have
been the source of considerable debate in the literature, as has the probable age of the Holyrood Granite.

All major structural features in the area (faulting and fold axes) trend approximately north-northeast to south-southwest, and the Holyrood Granite is itself somewhat elongated in the main structural direction.

The local geological setting of the study area is shown in Figure 1.2, after King (1990). The Holyrood Granite is bounded on its eastern margin by the Topsail Fault, believed by Hughes (1971) and Hughes and Bruckner (1971) to have resulted from explosive emplacement of the granite, probably at levels as shallow as 2000 m , with subsequent caldera subsidence in an (compressional) island arc setting. Strong and Minatidis (1975) concur with Hughes and Bruckner on the level of emplacement of the granite but believe (from petrographic and relational evidence) that the area represents a tensional, basin-and-range rift setting as the petrochemistry of the Holyrood Plutonic Series closely matches that found in rocks of the Sierra Nevada which are believed to represent a continental rift environment (Strong and Minatidis, 1975).

The granite is bounded on its western side by the volcanics and pyroclastics of the Harbour Main Group. These Pre-Cambrian volcanics are in

Figure 1.2 Local Geological Setting

after King and O’Brien in press (from King 1990)
faulted contact with Cambrian volcanics of the Adeyton Group, along a northerly extension of the Peter's River Fault, on the west side of the study area. The fault bounded block was originally referred to as the Holyrood Horst by McCartney (1969). Harbour Main volcanics have not been mapped in the immediate vicinity of the NSCRV borehole, but are found to the east along the Topsail Fault and also to the north of NSCRV.

The Harbour Main Group has been divided into three members, divided by faults (see King, 1990 for a synopsis of the faulted divisions comprising the Harbour Main Group). The divisions are:
i) The western block, (west of the Holyrood Horst) which includes the type locality of Avondale-Harbour Main, characterised by red, pink, and grey ignimbrites, locally intercalated with fluvial volcanogenic sedimentary rocks, and overlain by terrestrial, fissure-type flows of dark green to purplish, massive and amygdaloidal basalt (McCartney, 1967), previously described as green andesites by Hutchinson (1953).
ii) The central block (west of the Topsail Fault) includes felsic and mafic flows, pyroclastics and minor volcaniclastics. These volcanics are intruded by
high-level granite, quartz monzonite, and granodiorite of the Holyrood Intrusive Suite. NSCRV lies in the central block.
iii) Volcanic and volcaniclastic rocks, dominated by pillow lavas and volcaniclastics, are found east of the Topsail Fault

Though the Harbour Main volcanics seen at NSCRV lay in the central block, they are believed to be representative of the western block unit of the Harbour Main volcanics. The andesite at the NSCRV location was apparently agmatitic in nature (Sederholm, 1967). Agmatite blocks of the green andesite, in the Holyrood Granite, are also to be found in the floor of the Kelligrews River Swimming Pool. These volcanics would appear to be members of the western block.

In the study area, and to the north of the NSCRV borehole location, the Holyrood Granite is unconformably overlain by sediments, predominantly shales and slates of the Conception Group which dip gently (approximately 10°) towards the ocean. A discontinuous basal conglomerate is identified in some areas (notably the bridge across the Manuels River on the Conception Bay highway) though it appears to be absent at the NSCRV location. Contours on the granite/ Lower Cambrian contact appear to reveal an undulating surface with the amplitude increasing and the wavelength decreasing along the contact surface from southwest to nort'ieast. The
axes of the undulations trend approximately down dip and are normal to the strike of the contact. The supposed geometry of the contact surface should, however, be viewed with some scepticism as the Pre- Cambrian/ Cambrian contact is poorly defined, due to sparse outcrop. Attempts by the author to map the contact in greater detail were unsuccessful (again due to lack of outcrop). However, the mapping did seem to confirm the undulating nature of the contact surface. The undulations are possibly a manifestation of a Pre- Cambrian/ Cambrian drainage system or PreCambrian glaciation, the latter recently noted by Grant (1989) but, as noted by Grant, first mooted by Lawson (1890).

The Holyrood Plutonic series has been extensively described and classified. It was first divided into three members by McCartney (1967). It is comprised of:
i) Holyrood Granite: pale pink coarse grained and equigranular with minor aplite veining, composed of 35 to 45% quartz, 33 to 39% orthoclase, 10 to 18% plagioclase, and 4 to 6% chlorite as a pseudomorph of biotite. The granite is altered, with chlorite and epidote replacing biotite. Feldspars are cloudy, a result of sericite.
ii) Quartz Monzonite; of quartz monzonite and quartz diorite, motted pink and green in colour, with less quartz than the Holyrood Granite, but with an increase in abundance of saussirized plagioclase.
iii) Gabbro; closely associated with the granite and quartz monzonite. It occurs only sporadically and varies from fine to medium grained. It is principally composed of hornblende and labradorite.

In the vicinity of NSCRV and in the NSCRV core itself, only the granite and the quartz monzonite members of the Holyrood Plutonic Series were identified. In this study they retain their field classifications of pink granite (Holyrood Granite) and green granite (Quartz Monzonite). No gabbro was recovered at NSCRV nor is it found in the immediate study area. The granite is not in the metallogenically specialized group of granites (Taylor et al. 1979). The only mineral deposit of interest occurring in the granite is a pyrophyllite, associated with late stage pneumatolytic activity of the granite. An active pyrophyllite mine occurs southwest of NSCRV, in the sheared region of the Topsail Fault.

On the basis of petrochemistry Strong and Minatidis (1975) have concluded that the Harbour Main volcanics and the Holyrood Plutonics are not comagmatic.

Their age is believed to be in the vicinity of $\mathbf{6 2 0}$ Ma (Krogh 1983); however, there remains considerable debate regarding this point.

The Quaternary geology of the area is as relevant to this study as the bedrock geology: Based on work presented in this study the Holyrood Granite is estimated to have an average hydraulic conductivity of $4.74 \times 10^{-9} \mathrm{~m} / \mathrm{s}$, a flow porosity in the range of 2 to 20% and an estimated average hydraulic gradient of 0.03 . Given the distance from the nearest groundwater divide to NSCRV of 3.5 km , and a flow path length of approximately 4.5 km , then the average retention time of groundwater in the granite is estimated to be 1560 a, with a possible range of from 156 to 15600 a (\pm an order of magnitude). Thus it is conceivable that the events of the Quaternary (from late Wisconsinan to Holocene) such as sea level and climate changes, and glaciation might have influenced the present groundwater quality in the Holyrood Granite. It is conceivable that the effects of Quaternary events may still be retained in the groundwater geochemistry.

Grant (1989) provides a synopsis of Quaternary events in the Atlantic provinces. These events shaped the contemporary landscape, though the genesis of many of the topographic features may date back to the Proterozoic (Bruckner 1979). The Atlantic region was glaciated during the Quaternary and three major ice centres were believed to have been developed in Newfoundland, with one centred on the

Avalon Peninsula. The glacial events have resulted in Quaternary glacial deposits, of varying thickness and coverage, over most of the island. Glacial tills sporadically blanket the bedrock of the study area.

Of three Quaternary glacial events, the final one culminated in a Late Wisconsinan stadial maximum between 13 and 11 ka . Climate warming occurred approximately 11 ka (MacPherson 1982). Associated with these glacial events were significant sea level changes. Henderson (1972) identified an intertidal platform at -3-10 m above present sea level, on the Avalon, which is also identified in the head of Conception Bay. There is no record for the Avalon of Quaternary marine incursions higher than this level.

1.3.2 Hydrogeology

The area of the Holyrood Granite can be divided into three broad hydrostratigraphic units
i) A Surficial Hydrostratigraphic unit comprised of bogs and intermittent thin (probably 1-4 m) glacial tills,
ii) A Bedrock Hydrostratigraphic unit comprised of the fractured bedrock of the Holyrood Plutonic series and,
iii) the siliclastic rocks of the Conception Group.

There is probably some difference in the hydraulic properties of the Holyrood Plutonic Series and the Conception Group. These differences, however, are unlikely to be as great as the differences between the bedrock units and the surficial deposits.

In the surficial deposits groundwater flow will chiefly be controlled by intergranular movement of groundwater. In the bedrock units all significant flow will be controlled by movement along fractures. It is unlikely, given the age of the bedrock sedimentary deposits, that they have any significant amounts of intergranular porosity remaining. Likewise intercrystalline porosity in the Holyrood Plutonics is likely to be insignificant as far as large scale movement of water is concerned.

The true nature of the Holyrood Aquifer is not known. It can be hypothesised that, even with the thin cover of glacial and bog material, the aquifer is essentially unconfined. The various bogs, lakes and streams indicate the elevation of the water table and can be used to estimate regional hydraulic gradients in the aquifer which are believed to be in the range $0.02-0.03$. Flow boundaries in the aquifer will be represented by the topographic divide at the head of the Seal Cove River Valley, the saltwater freshwater interface near the coast and some depth where the fractures become closed and hydraulic conductivity is reduced to essentially zero.

The hydraulic conductivity in the glacial materials is likely to be extremely variable but on a large scale is probably quite consistent with little significant variation in hydraulic conductivity with depth. Conversely the bedrock aquifer is likely to have relatively high hydraulic conductivities near surface (associated with a high degree of open fractures) and decreasing hydraulic conductivity with depth as open fractures gradually close as a result of overburden pressure.

The geochemical evolution of the groundwater as it flows through the aquifer will be strongly influenced by contact with the surficial and the bedrock hydrostratigraphic units. While flowing through the surficial units meteoric water with a $\mathrm{P}_{\mathrm{co} 2}$ of $10^{-3.5}$ and pH of about 5.7 , is likely to show a sharp increase in $\mathrm{P}_{\mathrm{co} 2}$, by as much as an order of magnitude. The change in $P_{c o 2}$ will primarily be a result of contact with decaying organic matter. The increase in $\mathbf{P}_{\mathrm{co} 2}$ will result in a large reduction in pH . The changes in pH will make the meteoric vater more aggressive and better able to dissolve rock material. The solution of rock material will start in the rock debris of the glacial tills and continue in the bedrock units. Associated with the solution of rock material will be a change to a basic pH and an increase in total dissolved solids.

In order that flow paths within the aquifer could be more readily understood a simple two dimensional flow net was constructed, using the finite difference method. The boundaries used are partially described above, the saltwater interface was estimated using the Ghyben-Herzberg method (see Freeze and Cherry, 1979) and a no flow boundary was arbitrarily placed horizontally at 1000 m below sea-level. The elevation of the free water surface above sea level was estimated along AA' (Figure 1.1) from surface water bodies, rivers, streams and bogs. The grid for the finite difference model had a 250 m spacing. Head values for points not falling on the grid were estimated using the method of Hunt (1983). The method of finite difference flow net construction is described in Freeze and Cherry (1979). All calculations and matrix inversions were performed using the features of Lotus 1-2-3 spreadsheet. The flow net is shown in Figure 1.3 and is provided to give the reader an idea of probable flow patterns in the aquifer. It should be noted that the model is uncalibrated and is used as a simple screening tool. It proved useful for selecting the borehole location.

1.4 STUDY SITE

The location selected for the drilling of the study borehole is in the Seal Cove River Valley, north of the Conception Bay Highway, and is referred to as the North Seal Cove River Valley Location (NSCRV). The location lies approximately

Figure 1.3 Flow net of the Holyrood Aquifer
${ }^{N W}$

50 m east of the Newfoundland Power Seal Cove Power Station, at an elevation of about 12 m , a few metres east of a tributary of the Seal Cove River distributary.

All the outcrop mapped in the area is either Pre-Cambrian Harbour Main Volcanics or Holyrood Granite. No Basal Conglomerates or Lower Cambrian sediments were identified in the area. At the coastline no outcrop occurs in the Seal Cove Valley distributary. Sand and Gravel, often interspersed with large boulders,is being extracted along the coast at Seal Cove. Some of the gravel pits are an estimated 15 m below sea level, with no sign of bedrock. It appears that all the PreCambrian and Cambrian sediments have been eroded by Pleistocene glaciation.

Bedrock is exposed in the Seal Cove River Valley, but generally at elevations greater than 19 m above sea level south of the highway, or at slightly lower elevations adjacent to the highway on its north side. A very small knob of possible outcrop (determined by matching fracture patterns) occurs about 50 m northeast of the power house at an elevation of approximately 10 m . The site selected was located as near to the knob of rock as possible. The borehole orientation was selected to maximise the possibility of intersecting successively older flow lines, based on the flow model.

1.5 CONCLUSIONS

For its intended purpose the hydrogeological setting of the NSCRV location is apparently ideal. Figure 1.3 indicates the strong possibility of upward gradients at the site, in part an effect of the wedging of freshwater over saltwater. The potential to intersect upward hydraulic gradients was an important consideration in site selection as the design of water sampling was predicated on artesian conditions bringing groundwater to surface; furthermore, the upward flexing of deep flow-lines provides the possibility of sampling waters that had evolved at greater depths than the total depth of the borehole.

CHAPTER 2: BOREHOLE GEOLOGY AND CORE DESCRIPTION

2.1 INTRODUCTION

A complete core was collected from B size (60 mm) hole, over an interval from 4.31 m to the total cored depth (TD) of 154.63 m . In general a triple tube coring arrangement (BQ) was used; however, interval 126.85 m to TD was cored using a double tube (BX) system. The triple tube system holds the core essentially motionless as the core barrel spins around it, allowing the recovery of undamaged and (for the purposes of measurement of planar features) accurately aligned core. The borehole orientation, determined purely from the orientation of the drill rig mast, is assumed to be at an azimuth of 135°, plunging at 68°, this direction was used in all calculations of fracture orientations. Orientated core was collected from 9.86 m to TD. Both the core description and the measurements to determine fracture orientations were made in the field.

2.2 GEOLOGICAL DESCRIPTION OF THE CORE

2.2.1 Method

The core was measured on recovery and, where required, broken segments carefully re-fitted, prior to scribing the core. The core was described for rock type and features, fracture fill or coating material.

2.2.2 Core Description

A detailed core \log is contained in Appendix A. A synopsis of this information is provided on Figure 2.1. The core recovered at NSCRV is principally comprised of:
i) andesite presumably of the Harbour Main Volcanic Group (Hutchinson, 1953). The andesite is dark green and fine grained and usually highly fractured with most of the fracture surfaces filled or coated with chlorite.
ii) chloritised green granite, often agmatitic in nature. This is assumed to be the green mottled quartz monzonite described by McCartney (1967) and Bruckner (1979) who proposed that it had been formed by marginal hybridisation of the Harbour Main country rocks. The petrochemical nature of this rock is described in detail by Papezik (1970).
iii) pink, apparently unaltered granite. Described again by McCartney and Bruckner as containing $35-40 \%$ quartz, 35% microperthite, 15% oligoclase, and 5% biotite. With rare exceptions the feldspars are altered to sericite and epidote. The pink granite recovered at NSCRV was coarse grained, with relatively few fractures.

Figure 2.1 Synopsis of Core Log

The core consists of andesite from the surface to a drilled depth of 20 m where predominantly green granite is found. After this point the granite is interspersed with andesite xenoliths of various sizes to a drilled depth of approximately 104 m . The andesite is presumed to represent roof blocks of country rock. From 104 m to 130 m the granite is predominantly pink and unaltered until it reverts back to chloritised green granite at 130 m and thence becomes agmatitic in nature with andesite xenoliths interspersed. Some further pink granite is found near the base of the cored interval before the lithology reverts to being essentially andesite, with only minor pink granite, from a depth of 141 m to TD.

Minor veins of pegmatite and aplite were also logged. Some breccia veins were noted, presumably a result of late stage gas streaming (Reynolds 1950) within the Holyrood Granite. Granite was also described as a vein filling material and was assumed to represent the initial intrusion of the material into the country rock.

2.2.3 Fracture Minerals Logged

Seven different minerals were identified in the core recovered from NSCRV. The descriptions provided below are from field descriptions. In part they have been corroborated by subsequent SEM/XRD work (Chapter 7) conducted on
samples of fracture fill/coating minerals. However, some of the minerals have not been confirmed, and clay minerals identified by SEM/XRD were not detected in the field. Their occurrence and frequency is discussed in more detail in the section on fracture orientations.

Chlorite

Chlorite occurs throughout the NSCRV borehole and was the most common mineral. It was generally dark green in colour and flaky. Some slickensiding was found on chloritised surfaces.

Calcite

Calcite was observed both as fracture coatings and fillings, being white and varying from crystalline to amorphous.

Epidote

Epidote, amorphous and pistachio green in colour occurs as a fracture filling.

Quartz
Quartz occurred as both coatings and fracture fillings being white and cryptocrystalline.

Wolframite

The titanium bearing mineral wolframite was believed to have been observed as a fracture coating with a red coppery hue and a clinkery appearance. A sample from 139.69 m , logged as wolframite was ater found to contain Ti during SEM work (Chapter 7). Wolframite can be found as pneumatolytic vein filling in a variety of settings around the world (Read 1970).

Iron Oxide

Iron was occasionally found as a rusty/dun coloured coating on fracture surfaces. All fractures where iron oxide was observed are believed to have been active water conduits.

Withamite

Withamite, a red variety of epidote, also amorphous was observed filling some fractures.

2.3 DESCRIPTION OF FRACTURE ORIENTATIONS

2.3.1 Method

Core orientation was determined using a Roctest core orientating device. This tool was run inside the core barrel, to the bottom of the borehole, prior
to each core run. The construction of the orientation device is shown in Figure 2.2. Force, applied to the drill string, compresses the device, via its pressure rod which protrudes ahead of the bit face. In the final stages of compression of the device an 'impression' of the exposed stub of the core/ base of the borehole is recorded on movable steel pins located at the perimeter of the device. At the same time the down direction of the borehole is recorded by the impression left in a fixed (relative to the pins) aluminum washer (the mark ring), by a free floating steel ball bearing (the mark ball). Both the mark ball and the mark ring are contained in a telescopic ball chamber which closes on application of force down the drill pipe, leaving the impression of the mark ball (and hence the down direction) on the mark ring. Once the impression is taken the orientation device is recovered, and the core cut. At the end of the core run associated with the particular core imprint (as recorded by the pins) the imprint is matched to the face of the core. Alignment of the core and the orientation device, was assured by the use of a jig; the jig aligned the core section with the orientation device. The down direction, determined from the impression on the (replaceable) washer was then transferred to the reconstructed core, as a line representing the down direction. Although the method worked well for the triple tube core, the jig device did not accurately fit the double tube core recovered, introducing further inaccuracy to the results from double tube coring.

Figure 2.2 Core Orientation Device

Diagram courtesy ROCTEST LTEE, MONTREAL

Measurements, used to calculate fracture orientations, were made in the field using the method described by Goodman (1976). Knowing the orientation of the borehole (and hence the core) two angles are needed to determine the orientation of a fracture;
i) the angle between the axis of the core and the fracture face (α) and, ii) the angle between the reference line and the lowest point of the longest axis of the ellipse (β), formed by the intersection of the planar fracture surface with the circular core. The angle β was measured in a clockwise direction, looking down the direction of drilling, from the reference line to the long axis low point.

Figure 2.3 depicts the relationship of these angles with the core ard a hypothetical planar feature in the core (after Goodman 1976)

Over 800 fracture orientations were measured. Once fracture orientation measurements had been made, fractures were described by recording type of fracture filling or coating material, nature of fracture surface, whether the fracture was natural or induced, its character (planar, curved, irregular) type of weathering and roughr:ss. The rock type in which the fracture occurred was also recorded. An estimate of whether the fracture was opened or closed was made and this included

Figure 2.3 Angles measured to orientate planar features (after Goodman 1976)

ORILLING
DIRECTION
Method of measurement (Gale and Strahle 1988)

a qualitative estimate of how open the fracture was. Note that all subsequent comments regarding fractures refer only to rock discontinuities, open or closed, believed to be natural. Drilling breaks are no longer considered. The complete fracture data set for the core is provided in Appendix B.

2.3.2 Method of Interpretation of Fracture Data

The main intention, regarding the systematic calculation and recording of fracture orientation data was to decide:
a) if any consistent fracture sets could be identified in the NSCRV borehole,
b) if borehole intervals of high groundwater flux (as will be described in chapter 3) had any consistent fracture orientation(s),
c) if b) was found to be true, were these fractures associated with a particular mineral, or minerals, as recorded in the field.

All fracture data in the subsequent sections is presented on equal area Schmidt nets as projections of poles to planes. The method is described in many texts (e.g. Hobbs et al. 1976). The data were plotted and contoured using the program QUICKPLOT (van Everdingen et al. 1992). Eigen vectors of the principle data point clusters and their statistical significance are also calculated by

QUICKPLOT and are presented on the figures. Table 2.1 provides a synopsis of all fracture data.

A borehole which penetrates fractured material, and which is used to count numbers of fractures, will be biased towards planar features or fractures normal to the boret ole (hereafter referred to as the borehole normal fractures). The borehole, in fact, represents a pole to these normal fractures. Conversely fractures parallel to the borehole, which can be visualized as having the same orientations as any planes which are tangential to a cylinder whose central longitudinal axis is represented by the borehole, will be under-sampled. Poles to these borehole parallel fractures will lie on the great circle representing the borehole normal plane A range of sampling biases occur between these two extremes (Terzaghi, 1965). No formal correction will be applied to the data; however, the orientation of the NSCRV borehole and a blind zone (for poles to planes) represented by an area lying within the great circles of planes 10° either side of the borehole normal plane are shown on Figure 2.4. The poles plotted within this blind zone would represent borehole parallel, and sub-parallel, fractures. The blind zone is a band striking northeastsouthwest and dipping at 68° to the northwest. It should be noted that the blind zone must be considered as truly blind and that without information from orthogonal boreholes, or other sampling orientations, no inferences can be drawn regarding the

Table 2.1 SYNOPSIS OF FRACTURE ORIENTATION DATA

Interval	Data Set Num.	First Eigen Poles to pla		Planes	Dip	Dip. dir.	95\% Conf.	K
DATA DIVIDED BY DEPTH (m) (m)		Dip. dir. (${ }^{\circ}$)	$\begin{gathered} \text { Dip } \\ \left({ }^{\circ}\right) \\ \hline \end{gathered}$	Strike (${ }^{\circ}$)	Dip (${ }^{\circ}$)	Dip. dir. (${ }^{\circ}$)		K
9.86	64	19.9	14.2	109.9	75.8	199.9		1.8
$25.00 \quad 50.00$	99	182.2	11.1	272.2	78.9	- 2.2	15.9	1.8
$50.00 \quad 75.00$	109	200.2	10.8	290.2	79.2	20.2	14.7	1.8
$75.00 \quad 100.00$	49	183.7	7.9	273.7	82.1	3.7	24.9	1.7
$100.00 \quad 125.00$	57	252.6	33.3	342.6	56.7	72.6	18.6	2.0
$125.00 \quad 154.46$	132	184.6	23.0	274.6	67.0	4.6	11.0	2.2
DATA DIVIDED BY ROCK TYPE								2.2
Green Granite	207	189.2	6.5	279.2	83.5	9.2	12.4	1.6
Pink Granite	109	294.1	49.8	384.1	40.2	114.1	12.8	2.1
Andesite Breccia	182	189.6	8.8	279.6	81.2	9.6		
	7			90.0	90.0	180.0		
ALL GROUNDWATER SAMPLE INTERVALS								
9.86 154.46	82	199.1	2.2	289.1	87.8	19.1	24.3	1.4
INDIVIDUAL GROUNDWATER SAMPLE INTERVALS								
SAI	8	14.9	14.8	104.9	75.2	194.9	65.1	1.7
SA2	17	208.5	1.8	298.5	88.2	28.5	53.0	1.4
SA3	7	213.2	22.8	303.2	67.2	33.2	24.9	6.8
SA4	11	21.4	5.2	111.4	84.8	201.4	53.5	1.7
SA5	9	196.7	3.8	286.7	86.2	16.7	n/a	n/a
SA6	8	18.7	13.2	108.7	76.8	198.7	38.4	3.0
SA7	3	354.5	8.4	444.5	81.6	174.5	n/a	n/a
SA8	10	192.2	12.9	282.2	77.1	12.2	39.9	2.4
SA9	9	196.0	9.1	286.0	80.9	16.0	59.2	1.7
			Avg.	247.3	79.8			

Figure 2.4 NSCRV BOREHOLE ORJENTATION AND BLIND ZONE (ARBITRARY 10° CONE AROUND THE DRILLHOLE)

blind zone (i.e., a lack of sampled fractures could mean either there are none or that there are many but they have been under sampled).

The distribution of fractures is described in a non-rigorous statistical manner in later sections. However, of primary importance in this study are the fractures which conduct water. Fractures believed to be open (from inspection of the fractures surfaces and the degree of match between mirror surfaces) were logged as such and given an arbitrary weighting, completely open (weighting of 1) or a fraction thereof (usually half or quarter open) or closed with a weighting of zero. Figure 2.5 is a representation of this information and shows the estimated number of open fractures per metre, calculated as a smoothed average. The average was calculated by summing the weightings of the four fractures above and below the data point and dividing by the interval, in metres, that it spanned. This information is presented with the estimated groundwater flux from the interval and the estimated hydraulic conductivity in Chapter 3. There is a reasonable correlation between the fractures logged as open (or being significant water conductors) and the measured hydraulic conductivity.

Open Fractures/metre

2.4 FRACTURE DATA PRESENTATION

2.4.1 Fractures Differentiated by Depth Intervals

Because of the large number of fractures measured, the fracture orientation data for the drilled interval 9.86 m to TD is arbitrarily divided into six intervals each of approximately 25 m length (Figure 2.6). It is apparent that the dominant sampled fracture set, throughout the borehole section, is approximately east-west and vertical. These vertical fracture:, are not contained in the blind zone for the borehole. In the surface interval a set of fractures dipping at approximateiy 30° to the southwest is also present. In addition the fracture sets in this surface interval (sampling andesite) are somewhat less well defined than in the deeper intervals. The blind zone described above seems to be under-represented.

The intervals from 25 to 100 m display a very strong east west striking (or more accurately approximately $280^{\circ}-100^{\circ}$) set of fractures, dipping at $\sim 80-85^{\circ}$ to the north. An apparently conjugate fracture set is also sampled in the interval 5075 m with one pair of the conjugate set striking northeast, dipping at $\sim 12^{\circ}$ to the southeast, and the second striking northwest, dipping at $\sim 12^{\circ}$ to the northeast.

The dominant fracture set over the interval $100-125 \mathrm{~m}$ is associated with the pink granite and strikes approximately north-northwest, dipping at $\sim 57^{\circ}$ to the east. A second conjugate set strikes north-northeast, dipping at $\sim 55^{\circ}$ to the

Figure 2.6 POLE PLOTS OF FRACTURE ORIENTATIONS, DIFFERENTIATED BY DEPTH 9.86 to 25 m

12345

Contours:
1246

Figure 2.6/ continued

southwest. These conjugate fractures appear to have approximately the same orientation as those sampled in the interval $50-75 \mathrm{~m}$.

The final depth differentiated interval is again dominated by an essentially east-west striking fracture set, dipping at $\mathbf{- 7 7 ^ { \circ }}$ to the north.

2.4.2 Fracture Differentiated by Fill Material

The seven fracture coatings/fillings logged in the field (calcite, chlorite, epidote, quartz, iron oxide, withamite and wolframite) are all confined to fracture sets with relatively well-defined orientations. Figure 2.7 shows pole plots of fractures coated/filled with the seven different fracture minerals. Table 2.2 is a tabular synopsis of this information. The depths at which the minerals were recorded were averaged, to provide the mean drilled depth at which minerals occurred, the standard deviation for the data was calculated and the range where these minerals are likely to occur is shown as the 95% confidence interval which is the mean $\pm\left(2^{*}\right.$ the standard deviation).

Chlorite

Chlorite was the most prevalent fracture filling/coating logged (267) in the field. The dominant fracture orientation of chlorite filled fractures was two

Figure 2.7 POLE PLOTS OF FRACTURE ORIENTATIONS, MINERAL DIFFERENTIATED

EPIDOTE

Max. value counted: 6.78 times uniform of $30 / 24$

Eigan volues:
.510 . 292.1969 Eigen vectors: Dip-Dir Dip $202.0 \quad 39.99$ 343.342 .93 93.7420 .52 Contidence Rodius $\mathbf{9 5 \%}$ Signif.: 14.9 deg. $K=2.16$

124 \#
74.58 mean 45.90 SD
4.52 min
154.46 max
43.5 \%OPEN

	\#
62.37	mean
31.85	SD
8.65	min
147.30	max
26.6	\%OPEN

26.6 \%OPEN

Figure 2.7/ continued

FE

Max. value counted: 32.8 times uniform of $270 / 90$

Eigen volues:
.516 .4600 .023
Eigen vectors:
$\begin{array}{ll}344.6 & .6609\end{array}$
255.04 .292 $75.06 \quad 85.70$
Confidence Rodius 95\% Signit.: 61.0 deg. $K=1.36$

151015202530
WITHAMITE

Max volue counted: Mnx. volve counted:
15.6 times uniform of $180 / 90$
Eigeñ volues:
Egen values:
.518 . 113.1675
Eigen vectors: Oip-Dir Dip $325.3 \quad 5.773$ 55.421 .033 155.584 .13

Confidence Rodius 95% Signif:: 42.0 deg $K=2.03$

12 \#
33.65 mean
36.71 SD
8.50 min
$148.31 \max$
37.5 \%OPEN

Figure $2.7 /$ continued

Max Value counted	area of maximum data point concentration
K	Calculated by method of Fisher where 0 would indicate poles' uniform distribution across net, and infinity all poles pointed in eane direction
Eigen	First Eigen Vector (1) is direction of the mean of the dasa (2) \& (3) are orthogonal
Vectors	

Table 2.2 SYNOPSIS OF FRACTURE ORIENTATION, DIFFERENTIATED BY MINERAL TYPE

SYNOPSIS OF DEPTH INTERVALS (metres) OVER WHICH MINERALS WERE LOGGED								NOTE K is an estimate of the clustering of points where 0 is a uniform
	Calcite	Chlorite	Epidote	Fe	Quartz	Withamite	Wolframite	
\#	124	293	76	15	39	12	17	
mean depth	74.58	74.91	62.37	27.13	33.48	33.65	76.62	distribution and infinity is all
sd	45.90	47.48	31.85	32.19	31.29	36.71	16.06	vectors poirting in exactly the
95\% min	0.00	0.00	0.00	0.00	0.10	0.00	44.50	same direction
95\% max	166.37	169.88	126.08	91.51	96.05	107.06	108.75	
min.depth	4.52	5.80	8.65	4.66	8.84	8.50	32.02	-
max. depth	154.46	154.46	147.30	113.40	137.41	148.31	89.63	
mid.depth	79.5	80.1	78.0	59.0	73.1	78.4	60.8	
\%OPEN	43.5	39.9	26.6	56.7	42.3	37.5	0.0	

virtually vertical, orthogonal sets striking east-west and north-south. Chlorite filled/coated fractures are represented over the entire length of the NSCRV borehole.

Calcite

Calcite coated/filled fractures are typically sub or near vertical striking either north-south or east-west. Calcite was the second most prevalent mineral logged (124). Some minor calcite filled fracturing was also logged striking approximately northeast-southwest dipping at $\sim 20^{\circ}$ to the southeast. Calcite filled/coated fractures occur over the entire length of the NSCRV borehole.

Epidote

Epidote filled fractures do not display the dominant east-west sub or near vertical fracture orientation. However, the north-south vertical set is seen in conjunction with an approximately orthogonal set striking west-northwest and dipping at -50° to the north. Epidote filled fractures occur throughout the length of the NSCRV borehole.

Quartz

Quartz filled/coated fractures, though they make up the fourth largest (mineralogically defined) group of fractures (39), are relatively rare when compared with the number of calcite or chlorite filled/coated fractures. Most of the quartz
fractures logged were essentially vertical but displayed less preference for a particular orientation, than chlorite or calcite. Quartz fractures are most common in the upper 75% of the NSCRV borehole.

Wolframite
Wolframite-filled fractures strike approximately northeast-southwest and dip $\mathbf{~} 20^{\circ}$ to the southeast. They occur over a discrete band from 112-139 m.

Iron Oxide

Iron oxide-stained fractures are almost exclusively represented in sub or near vertical fracture sets with the set constrained to the smallest arc striking north-south. A second, approximately orthogonal east-west set is also represented, however fractures in this set span a wider arc than those in the north-south set. The iron oxide fractures occur predominantly in the upper half of NSCRV.

Withamite

Withamite filled/coated fractures occur in a well defined set of fractures striking east-west with sub or near vertical dip. Some other minor orientations are also found. They are represented throughout the borehole but are more prevalent in the upper 75%.

2.4.3 Fractures Differentiated by Rock Type

The dominant fracture orientations, measured in the principal rocktypes (Pink and Green varieties of granite and andesite), are shown in Figure 2.8. These will be discussed below and the fracture orientations will be further sub-divided on the basis of their mineralogy.

Abstract

Andesite Fractures in the andesite are dominated by those orientated east-west and being sub or near vertical (Figure 2.8). Some other minor fracture orientations are also apparent.

Of the fractures in the andesite Figure 2.9 shows them differentiated on the basis of mineralogy. Chlorite, quartz, and calcite fractures are found in the east-west set with some other minor orientations. The epidote fractures have their highest concentrations in horizontal or sub-horizontal fractures. Fractures filled with granite are relatively rare and are found orientated in a variety of directions.

Green Granite

Fractures in the green granite are typically of the east-west striking sub or near vertical set and typically coated/filled with calcite, chlorite, epidote, quartz

Figure 2.8 POLE PLOTS OF FRACTURE ORIENTATIONS; ROCK TYPE DIFFERENTIATED
GREEN GRANITE

Max. value counted:
5.95 times uniform ot 205/84

Eigen volues:
$.619 \quad .214 .1659$
Eigen veciors:
$189.2 \quad 6.530$
$302.3 \quad 73.70$
97.5114 .86 Confidence Radius 95\% Signif:: 12.4 deg. $K=1.61$

Contours:
12345
PINK GRANITE

Mox. value counted: 4.35 times uniform at $125 / 55$

Eigen volues:
.414 . 324.2614
Dip-Dir Dip
$294.1 \quad 49.84$
$184.8 \quad 15.57$
$83.21 \quad 35.89$
Confidence Rodius
95% Signif.: 12.8 deg.
$K=10$

Cortours:
1234

ANDESITE

Mox. volue counted: 4.95 times uniform of $-8 / 64$

Eigen values:
$.526 \quad .271 .2023$
Eigen vectors:
Dip-Dir Dip
$189.6 \quad 8.757$
$302.9 \quad 68.61$
$96.58 \quad 19.33$
Confidence Rodius
95% Signif.: 11.4 deg.
$K=1.82$

$N=162$
Contours:
1234

Max Value counted	area of maximumi data point concentration
K	Calculated by method of Fisher where 0 would indicate poles' uniform distribution across net, and infinity all poles pointed in same direction
Eigen Vectors	Firat Eigen Vector (1) is direction of the mean of the data (2) \& (3) are orthogonal
Confidence Radius	Anguler diameter in which the mean of the dala set is conmined at the 95% confidence level (i.e. it will be centred around (I)
Contours	shown as muliples of uniform distribution

Figure 2.8 continued

Figure 2.9 POLE PLOTS OF FRACTURE ORIENTATIONS IN ANDESITE, MINERAL DIFFERENTIATED CALCITE

Max. value counted: 13.9 times unif Jrm
ot $4 / 69$

Eigen volues:
.663 .230 .1057
Eigen vectors:
Dip-Dir Dip
189.18 .643
$298.5 \quad 65.33$
95.4922 .91 ,

Confidence Rodius 95\% Signif.: 31.2 deg. $k=1.71$

Contours:
136912

CHLORITE

Mox. value counted: 6.40 times uniform ot $340 / 79$

Eigen volues:
Eig . 250.2327
Eigen vectors:
Dip-Dir Dip
181.37 .343
37.5680 .92
$272.0 \quad 5.291$
Confidence Radius
95\% Signif.: 15.8 deg.
$K=1.79$

Contours:
123456

N-16

Max Value counted	area of maximum data point concentration
K	Calculated by method of Fisher where 0 would indicate poles' uniform distribution acroas net, and infinity all poles pointed in same direction
Eigen Vectors	First Eigen Vector (1) is direction of the mean of the data (2) \& (3) ara orthogonal
Confidence Radius	Angular diameter in which the mean of the dace set is conlained at the 95\% confidenco level (i.e. it will be cenired around (1)
Contours	shown as mulliples of uniform distrikution

Figure 2.9 /continued

GRANITE

and iron oxide (Figure 2.10). Those coated or filled with calcite are most likely to be of the east-west vertical set. This is also true of chlorite, though there is more scatter. Quartz filled/coated fractures are predominantly east-west and sub or near vertical, though relatively rare and the same can be said of Fe coated fractures, which number only four. Epidote coats/fills a set of fractures striking west-northwest and dipping at $\sim 50^{\circ}$ to the north.

Pink Granite

The fractures in the pink granite (Figure 2.11) have apparently less well defined fracture orientations; however it should be borne in mind that this interval was drilled with double tube core (resulting in larger fracture measurement errors). The dominant fracture set appears to strike north-northeast dipping at $\sim 40^{\circ}$ to the east-southeast, though there is much scatter.

Of the fracture minerals identified only three calcite fractures and 32 chlorite fractures were recorded in the pink granite. The principal chloritised fracture set has a similar orientation to the overall fracture orientation in the pink granite.

Figure 2.10 POLE PLOTS OF FRACTUKE ORIENTATIONS IN GREEN GRANITE, MINERAL DIFFERENTIATED

Max Value counted	area of maximum data point concentration
K	Calculated by method of Fisher where 0 would indicsue poles' uniform distribution across net, and infinity all poles pointed in same direction
Eigen Vectors	First Eigen Vector (1) is direction of the mean of the data (2) \& (3) are orthogonal
Confidence Radius	Angular diameter in which the mean of the data set is contained of the 95% confidence level (i.e. it will be centred around (1)
Contours	shown as multiples of uniform distribution

Figure 2.10/continued

Max. value counted: 15.5 times uniform ot $173 / 79$

Eigen values:
Eicen vectors: 659
Engen vectors:
Dip-Dir Dip
356.54 .976
264.125 .68

Confidenca Radius
95% Signif.: 51.2 deg.
$K=1.42$

FE

Figure 2.11 POLE PLOTS OF FRACTURE ORIENTATIONS IN PINK GRANITE, MINERAL DIFFERENTIATED CALCITE

Max Vakue counted	area of maximum dala point concentration
K	Calculated by method of Fisher where 0 would indicate poles' unifom distribution across net, and infinity all poles pointed in seme direction
Eigen Vectors	First Eigen Vector (1) is direction of the mean of the data (2) \& (3) are orthogonal
Confidence	Angular diameter in which the mean of the data set is contained at the 95\% Renfinence level (i.e. it will be centred sround (1)
Contours	shown is multiples of uniform distribution

2.4.4 Fracture Orientations in intervals sampled for groundwater

Groundwater samples were collected at NSCRV from nine intervals with relatively high hydraulic conductivities. The sampling methods are described in detail in chapter 3.

Of all the fracture minerals described calcite is believed (mainly on the basis of field observation) to be associated with the highest amount of water flow, all iron oxide coated fractures are also believed to be contemporary conductors of groundwater. Groundwater samples were collected predominantly from andesite (probably rafts in the granite) or the green granite, with no samples collected from the pink granite.

All of the sample intervals, from which groundwater samples were collected, were typified by fractures whose strikes lay in the east to southeast quadrant with a tendency to strike east or east-southeast, as shown on Figure 2.12. Figure 2.13 depicts the fracture orientations for individual intervals. The fractures were close to vertical with dip directions scattered north and south, approximately 10° either side of the vertical. Some minor north-south striking near vertical fractures were also logged.

Figure 2.12 COMPOSITE POLE PLOTS OF ALL FRACTURES, BELIEVED TO BE OPEN, IN THE NINE GROUNDWATER SAMPLE INTERVALS

Max. value counted: 10.6 times uniform ot 204/90

Eigen values:
.740 . 146 . 1126
Eigen vectors:
Dip-Dir Dip
199.12 .194
$292.2 \quad 54.61$
107.535 .29

Confidence Radius
95% Signif.: 24.3 deg. $\mathrm{K}=1.40$

Contours:
1246810

Max Value counted	ares of maximum data point concentration
K	Calculated by method of Fisher where 0 would indicate poles uniform distribution scross net and infinity all poles pointed in same direction
Eigen Vectors	First Eigen Vector (1) is direction of the mean of the data (2) \& (3) are orthogonal
Confidence	Angular diameter in which the mean of the data set is contained at the 95\% confidence level (i.e. it will be centred around (l)
Contours	shown as mukiples of unifom distribution

Figure 2.13
FIGURE SAMPLE INTERVAL FRACTURES

18.61 to 21.77 m Sample (1)

Figure 2.13/ continued
68.58 to 70.69 m

Eigen values: 842.110 .045 Eigen veclors: Eigan vectors:
Pip-Dir
Dip Dip-Dir
2.3 .37
5.171 $282.9 \quad 58.38$ $114.5 \quad 31.09$ Confidence Redius 95π Signif.: 53.5 deg. $\mathrm{K}=1.69$
70.59 to 76.20 m Sample (5)

73.62 to 76.20 m Sample (2)

Eigen values:
8816.660 .052

Eigan rectiors:
Dip-Dir Dip
$18.65 \quad 13.17$
228.374 .91
110.37 .220

Confidenre Rodius
95π Signif.: 38.4 deg.
$k=3.02$

Figure 2.13/ continued

95.58 to 97.69 m

Sample (4)

2.5 CONCLUSIONS AND INTERPRETATIONS

As noted above most of the fractures believed to be active water conduits have nearly vertical dips and strike approximately east-west. They are chiefly associated with calcite and iron oxide. The near vertical east-west open fractures are believed to be both reopened fractures (principally because they have the same orientation as the some of the older fracture sets) dating back to the emplacement of the granite and possibly modern (Wisconsinan) fractures. The open fractures are believed to be responding to a stress field in the granites which is controlled principally by the overburden pressure (Fertl, 1976) in which $\sigma_{1}>\sigma_{2} \geq \sigma_{3}$ and in this case where σ_{1} is vertical and the two other orthogonal principal stresses are horizontal (Hubert and Willis, 1957). In this instance the apparent preference of the open fractures, for an east-west orientation, incicates that σ_{3} is essentially north south, and is less than σ_{2}, with the σ_{3} stress in the direction of the general slope of the area. This may be evidence that the stresses found in the shallow levels sampled at NSCRV are controlled by isostatic rebound resulting from geologically recent glacial melting. The possibility of faulting, induced by postglacial isostatic rebound has been mooted by many authors (see Grant 1989 for a review). Grant notes that large-scale slumping of mountain sides, observed in the mountains of the Northern

Peninsula, Newfoundland, may also be attributed to isostatic movements following ice cover melting. ${ }^{1}$

All fractures that are not essentially vertical (and even some that are) are believed to be Pre-Cambrian to Cambrian in age. They are thought to have resulted from the violent emplacement of the Holyrood Granite (Hughes 1971) at high pressures, and the associated final escape of fluids from the cooling magma body. It is believed that the horizonal σ_{1} stress orientation occurred during (or shortly after) emplacement of the granite. After granite emplacement the stress field reverted to one controlled by the overburden gradient. The possibility of high pressures near surface may have resulted in σ_{1} being horizontal inducing horizontal fractures to open (σ_{3} vertical). If, as surmised, some of the fracture orientations observed are in fact conjugate, bifurcated by the horizontal plane, then these fractures may also be remnant indicators of this old stress field. Epidote fractures displayed a conjugate fracture set, bifurcated by the horizontal plane, with relatively rare vertical fractures. Fractures logged as wolframite filled/coated were also essentially horizontal. Withamite filled fractures are near vertical. However, in general most of the fracture orientations were near vertical and the majority of the
${ }^{1}$ Note: if fracture fill material in the principal water carrying fractures could be dated an idea of the age when the fractures became active (or were reactivated) could be obtained and thus their relationship to glacial retreat. Such information could provide an answer to the probability of pest glacial slumping as a mechanism for inducirg rock discontinuities and slumps.
chloritised fractures logged were vertical, with some minor near horizontal fracturing. These facts may indicate a stress field which changed from having σ_{1} essentially horizontal to one in which it is essentially vertical.

CHAPTER 3: HYDRAULIC CONDUCTIVITY TESTING

3.1 INTRODUCTION

Between August 15th and November 1st 1989 a totai of 83 intervals in the NSCRV borehole were isolated and tested for hydraulic conductivity and head. providing continuous hydraulic conductivity information along the entire hole. Groundwater samples were collected from those intervals isolated, having the highest hydraulic conductivities. The hydraulic conductivity tests were conducted either as falling or constant head tests, depending on the hydraulic nature of the interval being tested. All conductivity measuring methods were intended to determine the hydraulic conductivity of the bulk rock mass, rather than that of individual fractures.

3.2 METHODS OF HYDRAULIC CONDUCTIVITY AND HEAD TESTING

3.2.1 Description of the Straddle Packer Tool

Three different hydraulic conductivity testing methods were used at the NSCRV location. Several intervals were tested using different methods to determine if the results were comparable.

A straddle inflated packer system, following the design of Raven (1980) and Raven and Smedley (1982) (Figure 3.1a) was used to isolate the test intervals. Depth control was maintained by careful measurement of the length of schedule 80 , $3 / 4$ steel tubing, below which the test tool was run. Hydro/pneumatic connection between the tool and the surface was maintained via a 150 m three core, neoprene sheathed, composite plastic tube bundle, each internal tube having a $1 / 4$ " I.D. One tube was used as a nitrogen line for packer inflation with the other two tubes, open to the sample interval, used for head and flow measurement. The three core bundle was spouled on a drum and thus its length was constant for all tests. During each test the packers were inflated, at the depth of interest, to $\sim 2.4 \mathrm{MPa}$ above hydrostatic pressure. To ensure that the test interval was not pressurized by the inflation process all lines to the cavity were left open, on surface while packer inflation was in progress and a by-pass tube was used to equilibrate hydraulic heads in the interval below the bottom packer with the interval above the top packer. Great care was taken (by opening, closing and joining tubes under water) to ensure that, once the tubing was purged with water, no air was allowed to enter the bundle.

3.2.2 Hydrostatic Head measurements

Once the test tool was properly seated, and prior to hydraulic conductivity testing in each cavity, the cavity was shut-in (isolated) using surface valves. The pressure in the cavity was then allowed to equilibrate (or quasi

Figure 3.1 Hydraulic Conductivity testing Configuration

equilibrate) with the formation pressure. The cavity pressure was measured using a $0-200 \mathrm{kPa}$ gauge at surface. All pressure measurements were corrected for the position of the gauge relative to the datum (the casing collar). This part of the test was the most time consuming often exceeding two to three hours. It can be argued that even this length of time was insufficient for true pressure equilibrium to ie achieved but it is believed that the shape of the formation pressure buiid-up curves, that the final measured interval head pressure gives a good indication of the actual formation pressure. Examples of formation pressure build-up curves are provided in Figure 3.2. The data set is presented on Table 3.1. It should be noted that the shapes of these curves are also a function of hydraulic conductivity and that in general terms the steeper the initial pressure build-up, the higher the hydraulic conductivity. The head measurements indicate that the hydraulic conditions throughout virtually the entire length of the borehole were artesian. The artesian conditions allowed the use of constant head tests (with water flowing from the test interval) and rising head tests, for the measurement of hydraulic conductivity in almost all the intervals. Artesian conditions also permitted relatively simple positive pressure sampling for groundwater.
3.2.3 Falling (or rising) head test

Where the hydraulic conductivity of the test interval was determined to be insufficient to conduct a constant head test a falling (or in some cases rising)

Figure 3.2 Shut-in curves for selected formation tests. All shut-in pressures were subsequently checked by calculation using constant head rest information

Test \#7

Test $\$ 29$

Test $\# 37$

Test \#39

Test $\$ 28$

Test \#35

Test \#38

Figure 3.2 continued

Test \#41

Test \#42

Table 3.1 COMPOSITE PHYSICAL HYDROGEOLOGICAL DATA, NSCRV.

Kch: Hydraulic conductivity from constant head test.
K h: Hydraulic conductivity from falling head lest.
@K: Hydraulic conductivity from falling head test
but using Thiem equation, P2 measured from cavity and and treating each time interval as constant head test.

Flux: refers to calculated flow from $\mathbf{2 m}$ interval with Borehole pressure at 0 m .
Head Refers to formation pressure relative to the estimated datum at 12 m above sea level.

TCAT	Cavity dephs(m):			$\begin{array}{r} \mathrm{R}^{\prime} \mathrm{s}(\mathrm{~m} / \mathrm{s}) \\ \hline \mathrm{Kch} \\ (\mathrm{~m} / \mathrm{s}) \\ \hline \end{array}$	$\underset{(\mathrm{m} / \mathrm{s})}{\mathrm{KITh}}$	$\underset{(\mathrm{m} / \mathrm{s})}{\mathrm{GK}}$	$\begin{aligned} & \text { HEA } \\ & \text { (AD) } \end{aligned}$(m)	$\left(\mathrm{cm}^{3} / \mathrm{min}\right)$	Teal	Cavity deplis(m):			$\mathrm{K}=(\mathrm{m} / \mathrm{s})$				
	$\begin{aligned} & \text { Top } \\ & \text { (m) } \end{aligned}$	$\begin{array}{r} \text { Bim } \\ (\mathrm{m}) \end{array}$	mid (m)							$\begin{aligned} & \text { Top } \\ & \text { (m) } \end{aligned}$	$\begin{array}{r} \mathrm{Btm} \\ \text { (m) } \\ \hline \end{array}$	$\begin{aligned} & \text { mid } \\ & \text { (m) } \end{aligned}$	$\begin{array}{r} \mathrm{Kch} \\ (\mathrm{~m} / \mathrm{s}) \end{array}$	$\begin{gathered} \mathrm{KIT} \\ (\mathrm{~m} / \mathrm{s}) \\ \hline \end{gathered}$	$\begin{gathered} 6 K \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	$\begin{array}{r} (\mathrm{AD}) \\ (\mathrm{m}) \end{array}$	$\begin{array}{r} \text { nux } \\ \left(\mathrm{cm}^{3} / \mathrm{min}\right) \end{array}$
83	3.58	5.69	4.64	6.67E-06			0.22	226.56	38	78.50	80.61	79.56	1.10E-07			6.24	106.82
82	5.61	7.72	6.67	7.23E-06			0.26	295.45	37	80.56	82.67	81.62	1.82E-08			3.25	9.18
81	7.60	9.71	8.66	8.18E-08			0.54	6.85	35	81.52	83.63	82.58	3.01E-09			8.24	3.86
80	9.63	11.74	10.69	2.34E-06			0.86	313.70	34	83.52	85.63	84.58		3.49E-11		1.37	0.01
79	11.69	13.80	12.75	1.69E-06			0.62	162.41	33	85.51	87.62	86.57		1.39E-09		5.90	1.28
78	13.68	15.79	14.74		$1.09 \mathrm{E}-08$	4.55E-08	0.01	0.01	32	87.52	89.53	88.53		$1.63 \mathrm{E}-11$		2.34	0.01
77	15.69	17.80	16.75	1.07E-06			1.22	203.30	31	89.58	91.69	90.64		$8.90 \mathrm{E}-12$		-0.16	0.00
76	17.73	19.84	18.79	3.78E-07			1.24	72.78	30	91.59	93.70	92.65		$2.18 \mathrm{E}-10$		2.59	0.09
75	19.76	21.87	20.82		1.92E-08	1.87E-07	0.16	0.47	29	93.57	95.68	94.63	3.23E-09			3.18	1.59
74	21.73	23.84	22.79		$1.68 \mathrm{E}-08$		0.01	0.02	28	95.85	97.69	96.77	1.05E-07			6.44	104.92
73	23.75	25.86	24.81		9.57E-12	$2.19 \mathrm{E}-12$	1.16	0.05	27	97.56	99.67	98.62		1.22E-11		4.63	0.01
72	25.77	27.88	26.83		1.55E-08	1.22E-07	0.11	0.26	26	99.55	101.66	100.61		6.19E-11		2.28	0.02
71	27.73	29.84	28.79		$1.76 \mathrm{E}-08$	3.35E-08	0.06	0.15	25	101.58	103.69	102.64		3.09E-11		4.53	0.02
70	29.75	31.86	30.81		$1.58 \mathrm{E}-08$	8.17E-08	0.11	0.27	24	103.60	105.71	104.66		0.00E+00		0.00	0.00
69	31.68	33.79	32.74		1.26E-11	$2.44 \mathrm{E}-12$	5.57	0.01	23	105.62	107.73	106.68		1.41E-10		4.63	0.10
68	33.70	35.81	34.76		$2.51 \mathrm{E}-11$	$5.54 \mathrm{E}-12$	5.33	0.02	22	107.69	109.80	108.75		$2.53 \mathrm{E}-11$		2.08	0.01
67	35.74	37.85	36.80		$1.54 \mathrm{E}-11$	7.44E-12	1.38	0.00	21	109.71	111.82	110.77		1.16E-10		3.36	0.06
66	37.72	39.83	38.78		3.03E-09		0.67	0.31	20	111.77	113.88	112.83		2.47E-11		2.28	0.01
65	39.76	41.87	40.82		$9.01 \mathrm{E}-09$		0.55	0.77	19	113.74	115.85	114.80		3.68E-11		3.69	0.02
60	45.17	47.28	46.23		$1.26 \mathrm{E}-11$		0.64	0.00	18	115.49	117.60	116.55		2.67E-11		2.28	0.01
57	46.07	48.18	47.13		9.70E-09		0.64	0.96	17	117.55	119.66	118.61		1.71E-10		5.00	0.13
56	48.09	50.20	49.15		$4.75 \mathrm{E}-11$		2.67	0.02	16	119.59	121.70	120.65		$2.78 \mathrm{E}-11$		3.61	0.02
54	49.71	51.82	50.77		1.73E-11		1.42	0.00	15	121.60	123.71	122.66		1.43E-10		3.30	0.07
53	51.72	53.83	52.78		2.55E-11		5.47	0.02	14	123.57	125.68	124.63		3.23E-11		5.24	0.03
52	53.74	55.85	54.80	3.79E-07			6.92	407.42	13	125.55	127.66	126.61		4.56E-11		1.93	0.01
51	55.75	57.86	56.81	3.78E-06			7.08	4156.60	12	127.53	129.64	128.59	8.06E-10	9.42E-10		2.95 2.51	0.40
50	57.71	59.82	58.77		$3.99 \mathrm{E}-11$		5.30	0.03	11	129.54	131.65 133.65	130.60		4.51E-11 $4.03 \mathrm{E}-10$		2.51 2.90	0.02 0.18
49	59.70	61.81	60.76		1.48E-12		1.67	0.00	10	131.54	133.65 13566	$\begin{array}{r}132.60 \\ 134 \\ \hline\end{array}$		$4.03 \mathrm{E}-10$ $1.02 \mathrm{E}-11$		2.90 1.47	0.00
48	61.70	63.81	62.76 63.65		3.90E-10		1.57 4.55	0.10 2.06	9	133.55 135.54	133.66 137.65	132.60 136.60		1.02E-11		1.98	0.03
46	62.59	64.70	63.65	2.91E-09			4.55 2.69	2.06 0.01	7	135.54 137.54	137.65 139.65	136.61 138.60	4.68E-09			4.15	3.02
45	64.58	66.69	65.64 67.65		2.30E-11		2.69 3.10	0.01 2.77	7	137.54 139.59	139.65 141.70	138.60 140.65	4.68E-09	1.13E-10		3.92	0.07
44	66.59 68.58	68.70 70.69	67.65 69.64	$5.76 \mathrm{E}-09$ $1.79 \mathrm{E}-06$			3.10 6.87	1913.87	5	141.60	143.71	142.66	1.04E-10	$7.09 \mathrm{E}-11$		2.78	0.03
42	70.59	72.70	71.65	3.60E-07			6.72	375.70	4	143.60	145.71	144.66		1.22E-11		3.76	0.01
41	72.56	74.67	73.62	9.33E-09			6.62	9.60	3	145.58	147.69	146.64	2.21E-09			3.45	119
40	74.55	76.66	75.61	9.84E-09			6.25	9.56	2	147.59	149.70	148.65	7.00E-09			4.31	4.70
39	76.56	78.67	77.62	$1.69 \mathrm{E}-07$			6.37	167.66	1	149.59	151.70	150.65	9.97E-10			1.51	0.23

head test was conducted. The configuration for the falling head test is shown in Figure 3.1b. This method of hydraulic conductivity testing was developed by Hvorslev (1951) for the purposes of testing granular porous media; however, it is also frequently used in the testing of fractured media. The relatively good agreement between the falling head and the constant head tests, described below, is an indication that the method is valid for fractured media which approximates porous media.

The test was conducted using a straight vertical translucent $1 / 4$ " I.D. polyethylene tube on surface, attached to a vertical scale, referenced to the datum. As far as possible the head tube was filled (or emptied), prior to starting a test, so that the head in the tube was in excess of 2 m different from that measured in the cavity. The head tube was then connected to one of the tubes to the test cavity, with the other tube blanked-off on surface. The test was started by opening a valve between the head tube and the tubing to the cavity. Recordings of head level variations, with respect to time, were made as the test proceeded. The results of the test were interpreted using the Hvorslev (1951) method, after a line of best fit had been applied to the data points. A programmable calculator was used in the field, to check results. Once a line had been fitted to the data the hydraulic conductivity was calculated using equation 3.1:

$$
\begin{equation*}
K_{h}=\frac{d^{2} L n\left(\frac{2 m L}{D}\right)}{8 L\left(t_{2}-t_{1}\right)} \operatorname{Ln}\left(\frac{H_{1}}{H_{2}}\right) \tag{Equation3.1}
\end{equation*}
$$

Where,
$\mathrm{K}_{\mathrm{h}} \quad$ - Horizontal conductivity [L]/[T]
d - Diameter of falling head tube [L]
D - Diameter of test cavity [L]
t_{1} - Time at start of test [T]
$\mathrm{t}_{2} \quad$ - Time at end of test [T]
H_{1} - Head level in falling head tube at start of test [L]
$\mathrm{H}_{2} \quad$ - Head level in falling head tube at end of test [L]
L - Length of test interval [L]
m - Geometric factor, taken as 1
m is typically calculated using equation 3.1a:

$$
\begin{equation*}
m=\sqrt{\frac{k_{h}}{k_{v}}} \tag{Equation3.1a}
\end{equation*}
$$

where
k. vertical hydraulic conductivity
$\mathbf{k}_{\mathbf{h}} \quad$ horizontal hydraulic conductivity

The use of $m=1$ implies that $k_{v}=k_{h}$ this assumption is worthy of further study and is probably not the case in Holyrood Granite. As is shown later a nearly vertical fracture set is the dominant water conduit in the Holyrood Granite which implies $k v \gg k_{h}$.

This method (using the equipment configuration shown in Figure 3.1b) can be used to quantify hydraulic conductivity up to approximately $1 \times 10^{-8} \mathrm{~m} / \mathrm{s}$ (established by experimentation in the field). This upper limit is a result of pressure losses in the small diameter tubing, used to connect the head tube with the test caviry. Pressure losses in tubing are proportional to the length of the tubing and thus the method would work if the connecting tube length were reduced. The problem of an upper limit of measurement is discussed in the method comparison section.

3.2.4 Constant head tests

Where possible, constant head tests were also conducted to determine the hydraulic conductivity of the test intervals. Once the pressure head in an interval had been determined a constant head test was conducted by allowing outflow from the test cavity to exit (consecutively) at two different, but fixed, levels below the
maximum established head level in the test cavity. The two outflow levels were selected to give a relatively large difference in elevation between each other. At each fixed head level the water from the cavity was allowed to flow until the flow rate was essentially constant. At this time the flow rate, height of the exit tube above datum, and cavity pressure were recorded (a pressure gauge having been attached to the second tube in the test cavity to get a true pressure reading in the test cavity). The measurement of pressure in the test cavity avoided problems of head measurement inaccuracy, resulting from head loss in the small diameter tubing, and also provided additional data on the magnitude of head losses associated with the measurement lines. The results of the constant head test were interpreted using the Thiem equation (Equation 3.2), which is valid for steady state groundwater flow conditions:

$$
\begin{equation*}
K=\frac{Q}{2 \pi \Delta H L} \operatorname{Ln}\left(\frac{r_{\theta}}{\bar{r}_{*}}\right) \tag{Equation3.2}
\end{equation*}
$$

Where
K - equivalent rock mass hydraulic conductivity
$r_{e} \quad$ - The effective radius [L]
$r_{w} \quad$ - The wellbore radius [L]
Q - Flow rate at constant head $\left[L^{3}\right] /[T]$
L - Length of test interval [L]
ΔH - Head difference between true formation head and head in the test cavity [L]

In all cases r_{e} was assumed to be 5 m . By rearranging equation 3.2. and assuming that the effective radius remains constant for differing cavity test pressures (e.g. 5 m), then hydraulic conductivity can be calculated from the two constant head tests at different cavity pressures, without knowing the true formation pressure (at distance r_{e} from the well bore) using equation 3.3:

$$
\begin{equation*}
K=\frac{L n_{n}\left[\frac{r_{\theta}}{r_{w}}\right]\left(\Omega_{h}-Q_{1}\right)}{2 \pi L\left(h_{1}-h_{h}\right)} \tag{Equation3.3}
\end{equation*}
$$

Where

$h_{h} \quad-$ head in the cavity with discharge tube at high level [L]
$h_{1} \quad$ - head in the cavity with discharge tube at low level [L]
$\mathrm{O}_{\mathrm{h}} \quad$ - discharge rate from the cavity with discharge tube at high level $\left[\mathrm{L}^{3}\right] /[\mathrm{T}]$
$Q_{1} \quad$ - discharge rate from the cavity with discharge tube at low level $\left[L^{3}\right] /[T]$

Equation 3.2 can then be re-arranged and the true formation pressure, at the depth of interest, calculated. Figure 3.3 shows a comparison of the results of calculating formation pressure from constant head tests and from shut-in pressures. The graph showing these results and a line of best fit for the data is shown. In general there is excellent agreement between the two methods, with the method of calculating

Figure $3.3 \quad$ Comparison of formation pressure heads calculated from shu!-in pressures and calculated from constant head test data.

Tabulated Results

Test \#	Shut-in	Calculated	Best fit		
	(m)	(m)	(m)		
7	4.43	4.15	4.56	Regression Output:	
29	6.36	6.44	6.29	Constant	0.590
35	2.49	3.18	2.82	Std Err of Y Est	1.428
37	3.86	8.24	4.05	R Squared	0.742
38	6.31	3.25	6.25	No. of Observations	16
39	6.46	6.24	6.38	Degrees of Freedom	14
40	6.16	6.37	6.11		0.897
41	6.62	6.25	6.53	X Coefficient(s)	0.141
42	6.72	6.44	6.62	Std Err of Coef.	
46	4.12	4.55	4.29		
52	6.92	7.56	6.80		
76	0.97	1.24	1.46		
77	1.03	1.22	1.51		
80	0.88	0.86	1.38		
81	0.36	0.54	0.91		
83	0.21	0.22	0.78		

RESULTS PRESENTED GRAPHICALLY

From
Constant
Head Test
(m above daturn)

formation pressure from constant head tests providing marginally higher estimates ot formation pressure.
3.2.5 Falling head test while measuring the test cavity pressure

Falling head tests were conducted with the cavity pressure being measured directly with a pressure gauge blanking-off the spare cavity tube. Using the Thiem equation each time interval of the test was interpreted, with the assumption that flow had reached steady state for the small intervals of the test. This then gave an "instantaneous hydraulic conductivity". All instantaneous hydraulic conductivities for each test were then averaged to provide a value of hydraulic conductivity. When compared with the Hvorslev method of interpretation the results differed by almost an order of magnitude (see Figure 3.4). The method of calculating instantaneous hydraulic conductivities is not considered to be particularly valid; however, it was used for those intervals which could not be tested using the constant head method and, furthermore, had hydraulic conductivities of approximately $1 \times 10^{-8} \mathrm{~m} / \mathrm{s}$. Intervals with hydraulic conductivities of approximately $1 \times 10-8 \mathrm{~m} / \mathrm{s}$, tested in this manner, account for less than 0.015% of the total estimated groundwater flux to the wellbore at NSCRV.

3.2.6 Comparison of Hydraulic Conductivity Testing methods

Figure 3.4 is a graph/table showing intervals whose hydraulic conductivities were measured using at least two of the three methods detailed above. There is a very good agreement in results between the constant head and falling head methods, where both methods were used. Unfortunately there is no comparison dataat hydraulic conductivities of $\geq 1 \times 10-8 \mathrm{~m} / \mathrm{s}$. Data from the third method is provided in Table 3.1. As noted above results from this method are believed to be the least reliable.

3.3 OVERVIEW OF HYDRAULIC CONDUCTIVITY AND HEAD MEASUREMENT RESULTS

A synopsis of the results of hydraulic conductivity and head measurements is provided in Table 3.1. The range of values measured is:
a) for hydraulic conductivity; from $1.48 \times 10-12$ to $7.23 \times 10-6 \mathrm{~m} / \mathrm{s}$ and,
b) for formation head; from $\mathbf{- 0 . 1 6}$ to 8.24 m (approximately 11.84 to 20.24 m above sea level) from datum, with only one interval having a negative head.

Using the hydraulic conductivity and the formation pressure data the flux for each interval was calculated using the Thiem equation (equation 3.2), with

Figure 3.4 COMPARISON OF PERMEABILITY MEASUREMENT METHODS USED AT NSCRV
Kch: Hydraulic conductivity from constant head test.
Kfh: Hydraulic conductivity from falling head test.
$@ \mathrm{~K}: ~ H y d r a u l i c ~ c o n d u c t i v i t y ~ f r o m ~ f a l l i n g ~ h e a d ~ t e s t ~$ but using Thiem equation, P2 measured from cavity and and treating each time interval as const head test.
AD: Above specified datum
Test\# Cavity depths(m):

	Bottom (m)	top (m)	mid (m)	Kch $(\mathrm{m} / \mathrm{s})$	Kfh $(\mathrm{m} / \mathrm{s})$	$@ \mathrm{~m} / \mathrm{s})$ (m)	Head(AD) (m)	flux $\left(\mathrm{cm}^{3} / \mathrm{min}\right)$
78	13.68	15.79	14.74		$1.09 \mathrm{E}-08$	$4.55 \mathrm{E}-08$	0.01	0.01
75	19.76	21.87	20.82		$1.92 \mathrm{E}-08$	$1.87 \mathrm{E}-07$	0.16	0.47
73	23.75	25.86	24.81		$9.57 \mathrm{E}-12$	$2.19 \mathrm{E}-12$	1.16	0.00
72	25.77	27.88	26.83		$1.55 \mathrm{E}-08$	$1.22 \mathrm{E}-07$	0.11	0.26
71	27.73	29.84	28.79		$1.76 \mathrm{E}-08$	$3.35 \mathrm{E}-08$	0.06	0.15
70	29.75	31.86	30.81		$1.58 \mathrm{E}-08$	$8.17 \mathrm{E}-08$	0.11	0.27
69	31.68	33.79	32.74		$1.26 \mathrm{E}-11$	$2.44 \mathrm{E}-12$	5.57	0.01
68	33.70	35.81	34.76		$2.51 \mathrm{E}-11$	$5.54 \mathrm{E}-12$	5.33	0.02
67	35.74	37.85	36.80		$1.54 \mathrm{E}-11$	$7.44 \mathrm{E}-12$	1.38	0.00
12	127.53	129.64	128.59	$8.06 \mathrm{E}-10$	$9.42 \mathrm{E}-10$		2.95	0.37
6	139.59	141.70	140.65	$1.04 \mathrm{E}-10$	$1.13 \mathrm{E}-10$		3.92	0.07

Log K vs Depth for three different permeability measurement methods

an r_{c} of 5 m , and an average hydraulic conductivity, for each interval calculated only from the average of the falling head and constant head interpretations. In the figure indicating the sum of the interval fluxes (given in non consistent units of $\mathrm{cm} 3 / \mathrm{min}$) no attempt has been made to correct the total estimated hole flux for the error associated with overlapping test sections. The integrated flow rate from the borehole of $\sim 8 \mathrm{l} / \mathrm{min}$ approximates the value measured in the field of $10-15 \mathrm{l} / \mathrm{min}$.

An 'average' hydraulic conductivity, for the entire hole section, was calculated using equation 3.4, given by Gutjahr et al. (1978) for porous media, and more recently used by Cacas et al. (1990) for interpretation of data from fractured media:

$$
\begin{equation*}
K_{m}=K_{\text {geom }}\left(1+\frac{\left(\sigma_{\Sigma L n K}^{2}\right)}{6}\right) \tag{Equation3.4}
\end{equation*}
$$

Where
$\mathrm{Km} \quad$ - Estimated mean hydraulic conductivity $[\mathrm{L}] /[\mathrm{T}]$
Kgeom - Geometric mean of the all the punctual (small interval) hydraulic conductivity measurements
$\sigma_{\Sigma \operatorname{LnK}}{ }^{2}$

- Variance of the natural \log of all the punctual hydraulic conductivity measurements.

The average hydraulic conductivity, calculated using equation 3.4 is $4.74 \times 10-9 \mathrm{~m} / \mathrm{s}$. This figure will be used, as the value for hydraulic conductivity, for all subsequent hydraulic calculations. Figure 3.5 summarizes the hydraulic data (over the interval tested). It appears to show that the hydraulic conductivity is at a maximum over the shallowest 25 m of depth and again between 55 to 60 m and 70 to 80 m , below which it decreases again to a value of approximately $10-10$ to $10-12 \mathrm{~m} / \mathrm{s}$. A smoothed value of hydraulic conductivity is also shown, calculated from the average of the two hydraulic conductivity measurements above and below the mid hydraulic conductivity measurement (a total of five measurements). Overall there is a slight trend of decreasing hydraulic conductivity with depth (Figure 3.6). A regression analysis applied to Log hydraulic conductivity versus depth gives a line of best fit with a formula:

$$
\log K=0.1925[\operatorname{Depth}(m)]-7.45796 \quad \text { (Equation 3.5) }
$$

The calculated correlation coefficient r, for this line is 0.468 . The correlation is significant at the 95% level, using a two tailed test (Mendenhall and Sincich 1988). Figure 3.6 shows the hydraulic conductivity data, plotted against depth,

Figure 3.5 COMPARISON OF INTERVAL FLUX, FORMATION HEAD AND HYDRAULIC CONDUCTIVITY

Figure 3.6 GRAPHS SHOWING PUNCTUAL HYDRAULIC CONDUCTIVITY

Punctual Hydraulic Conductivities and Line of Best Fit

with the line of best fit. There is a recognisable trend of decreasing conductivity with depth.

As shown in Figure 3.5 the formation head appears to reach a maximum at the $55-65 \mathrm{~m}$ and $70-80 \mathrm{~m}$ at approximately 7 m above datum. The apparent decrease below this depth may possibly be real or it may be a result of insufficient time allowed for the pressure in the test cavity to equilibrate with the formation pressure. A smoothed head value, calculated in the same manner as for hydraulic conductivity is also shown.

The flux graphs, show that the significant flow from NSCRV is confined to approximately 5 zones, a top 20 m interval and then zones at $57,70,77$ and 97 m . Of these zones the most significant, in terms of flux contribution to the borehole is the one at $\sim 57 \mathrm{~m}$. Figure 3.7 shows flux in conjunction with those fractures logged as open.

3.4 CONCLUSIONS

The results of hydraulic conductivity testing indicate that the major flow at NSCRV borehole (by volume) is from a few discrete fracture zones. However, the frequency of occurrence of high flow zones cannot be estimated from the data collected. The formation head varies from $\mathbf{- 0 . 1 6}$ to 8.24 m and the NSCRV borehole

Figure 3.7 Plots showing the open fractures/metre logged and the hydraulic conductivities measured at NSCRV

Open fractures/ metre logged in the NSCRV core

Hydraulic conductivities measured in the NSCRV borehole

is artesian along virtually its entire length. The average hydraulic conductivity at NSCRV is $4.74 \times 10^{-9} \mathrm{~m} / \mathrm{s}$ calculated from hydraulic conductivity readings ranging from 1.48×10^{-12} to $7.23 \times 10^{-6} \mathrm{~m} / \mathrm{s}$. This value is close to the hydraulic conductivity value ($1 \times 10^{-9} \mathrm{~m} / \mathrm{s}$) used by Nordstrom et al. (1985) as an average for preliminary modelling of flow in the Stripa Granite. The hydraulic conductivity shows a reduction with depth which can be estimated using equation 3.5.

CHAPTER 4: GEOCHEMICAL METHODS AND DATA QUALITY

4.1 DATA COLLECTED

4.1.1 Sampling methods

To ensure the collection of representative samples, and to avoid sampling-induced changes in water chemistry, a strict protocol was followed for groundwater sampling at the NSCRV location. The general nature of the sample suite collected at the NSCRV location and methods used for collection will be discussed in this chapter.

Any zones identified, during hydraulic conductivity iesting as having significant hydraulic conductivity, were sampled prior to deflating the straddle packer system. Zones observed to have significant flow during drilling were also sampled (prior to hydraulic conductivity testing), either using the test tool run on the drilling rig wirt line or run on $1^{\prime \prime}$ schedule 80 steel tubing. The interval tested, for samples collected while drilling, varied between 2.48 and 3.16 m . The depth control of the inflated tool, run on a wireline, was not believed to have been as accurate as for the tool run on the tubing string. It is estimated that the accuracy of placement of the tool run on a wireline was as poor as $\pm 3 \mathrm{~m}$, while placements of the tool made using the tubing string were probably in the order of $\pm 5 \mathrm{~mm}$ per 3 m length of pipe run. leading to a range of accuracy of $\pm 0.25 \mathrm{~m}$ at TD. All samples shown as having tol
configuration $3 / 211 \mathrm{R}$ in Appendix C , were collected during hydraulic conductivity testing, and are believed to have the best depth control.

As all sampled intervals were artesian no pumping was required for sampling; therefore, all samples were collected under positive pressure and are free from degassing-induced chemical effects. The initial time series of samples from the interval 18.61 to 21.77 m was collected using $1 / 4^{\prime \prime}$ polyethylene tubing. All subsequent samples were collected through $3 / 16^{\prime \prime}$ polyethylene. The $3 / 16^{\prime \prime}$ sample tubing was contained in a 3-core bundle with a central wire strain member and an external sheath. The $3 / 16^{\prime \prime}$ bundle was held on a reel for ease of use and its entire length was used regardless of sampling depth: Thus regardless of depth, all samples were collected using the same tube having an invariant length. The sampling configuration used to collect each sample is listed in column five of Appendix C.

Any intervals with high flow rates were also sampled immediately after hydraulic conductivity testing. The test cavity length for this phase of sampling was 2.11 m and sampling was through two tubes, of the $3 / 16^{\prime \prime}$ three core bundle, joined together at surface to provide higher flow rates. For this phase of testing and sampling the tool was only carried on the end of rods.

Once sampling was started water flowing from the test cavity was carefully monitored to ensure the cavity was completely flushed. Approximately eight sample interval volumes (SIVs) were usually flushed before a final sample was collected from an interval. During sampling pH was measured using a Fisher Accumet $\mathrm{pH} / \mathrm{mV}$ meter and pH electrode inserted in a plexiglass flow cell. The temperature compensating probe, of the pH meter, was inserted into a separate port in the flow cell. Temperature readings were apparently affected by sunlight and air temperature, especially in shallower intervals where much of the sample tubing length was above ground. As far as possible the on surface sample tubing was shielded from sunlight and kept cool.

As the time required to flush eight SIVs was sometimes in excess of 24 hours the pH meter was calibrated frequently. Stock pH solutions, brought to the temperature of the out-flowing water, were used for calibration. Conductivity was measured using a conductivity meter calibrated using $1000 \mu \mathrm{~S}$ calibration fluid. Wherever possible Eh readings were also taken using the pH meter with a platinum electrode and an $\mathrm{Ag}-\mathrm{AgCl}$ reference electrode inserted into the flow cell, Eh readings were corrected to read Eh. A series of Eh readings were recorded after the last sample in a time series had been collected. Eh measurements were recorded until the Pt electrode potential had stabilised, sometimes requiring up to $\mathbf{2}$ hours.

At each sampling two 125 ml low density polyethylene bottles, previously leached with $30 \% \mathrm{HNO}_{3}$ and flushed three times with de-ionized, distilled water, were used for sample collection. Prior to collection the bottles were flushed a further three times, with the water to be sampled. Within 6 hours of the collection of a sample alkalinity measurements were made on unfiltered samples. A 20 ml aliquot of sample was added to a 50 ml beaker containing a pH probe. 0.0253 N nitric acid was titrated into the sample and the pH versus titrant volume recorded. An end point was determined graphically from the first derivative of pH vs volume. Alkalinity was calculated using the formula:
(Equation 4.1)

Total Alkalinity $\left(a s \mathrm{HCO}_{3}^{-}\right)(\mathrm{mg} / \mathrm{L})=61 \cdot \frac{\mathrm{mls} \text { titrant } x\left[\mathrm{HNO}_{3}\right] \mathrm{m}}{\mathrm{mls} \text { of acid used }}$

All sample not used for alkalinity titration was filtered through a $0.45 \mu \mathrm{~m}$ cellulose nitrate filter. One filtered 125 ml aliquot was acidified with 1 m . of 16 N ultrapure HNO_{3} to be used for ICP-MS analysis. An unacidified sample was
collected for analysis of $\mathrm{SO}_{4}{ }^{2-}, \mathrm{Cl}^{\text {and }} \mathrm{F}^{-}$by HPLC. At the end of each time series a small (unfiltered) glass bottle was also collected for analysis of ${ }^{18} \mathrm{O}$ and ${ }^{2} \mathrm{H}$.

4.1.2 Analytical Methods

A total of 27 major and trace elements, shown on the pull-out Appendix C, were analyzed on all samples by inductively coupled plasma mass spectrometry (ICP-MS). Li was analyzed, by ICP-MS, on six samples after the main ICP-MS analyses had been performed. Analyses for the elements $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Al}, \mathrm{Fe}, \mathrm{Si}$ were carried out by flame atomic absorption (AA) and ICP-MS, while K and Na were analyzed only by AA. Analyses for the anions $\mathrm{F}, \mathrm{Cl}^{-}$and $\mathrm{SO}_{4}{ }^{2-}$ were made using high performance liquid chromatography (HPLC) in conjunction with a variable wavelength UV detector operated in indirect photometric mode (Small and Miller, 1982). This provided analyses, for Cl^{-}and $\mathrm{SO}_{4}{ }^{2-}$. by two different methods (assuming all S detected by ICP-MS occurs as sulphate).

Oxygen-18 (${ }^{18} \mathrm{O}$) analyses were made on a VG-Instruments PRISM isotope ratio, gas mass spectrometer. Sample preparation involved equilibrating $50 \mu \mathrm{~L}$ aliquots of sample with CO 2 of known isotopic composition, in a sealed tuhe procedure described by Schillereff and Welhan (in prep). Deuterium (2H) analyses were made, at the University of Waterloo, on selected samples using the uranium reduction technique.

4.1.3 Quality of non isotope analyses

Data quality was checked initially by charge balancing four different combinations of data, derived from different analytical methods, using the formula

$$
\begin{equation*}
C B E=\frac{\Sigma z m_{c}-\Sigma z m_{a}}{\Sigma z m_{c}+\Sigma z m_{a}} \times 100 \% \tag{Equation4.2}
\end{equation*}
$$

Where
2 - is the number of charges on a particular ion
$m_{a} \quad$ - number of moles of a particular anion
m_{c} - number of moles of a particular cation
CBE - charge balance error

The value resulting from Equation 4.2 is referred to as the charge balance error (CBE) (Freeze and Cherry, 1979). The four different data set combinations (see final columns Appendix C), based on various combinations of analytical methods are:
i) ICP: All ICP-MS analyses with Na and K from AA and HCO_{3} from alkalinity titrations.
ii) ICP+AA: As for i) but replace the ICP-MS analyses of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Al}, \mathrm{Cl}$. Fe and Si with those made using AA .
iii) AA + HPLC: As for ii) but replace the analyses of $\mathrm{SO}_{4}{ }^{2 \cdot}$ and Cl^{-}by ICP. MS with analyses made using HPLC.
iv) ICP+HPLC: As for i) but replace the analyses of $\mathrm{SO}_{4}{ }^{2-}$ and Cl^{-}by made by ICP-MS with HPLC analyses.

As can be seen in Appendix C, the average CBE, for any data combination from the final values, is always less than 5%. The maximum individual CBE is 8.13%. The average CBE for the ICP-MS data set is slightly larger than any of the selected combinations (though still only -1.02%), however the standard deviation of the CBE derived from this data set is the lowest of any of the sets, resulting in the smallest range of values around zero charge balance. For this reason the ICP-MS data set is selected for all chemical modelling calculations, with the exception of Fe which will be discussed below, Na and K which were only analyzed by AA, and F which was only analyzed by HPLC. It is noticeable that there is a general decrease in the absolute values of charge balance with increased SIV flushing during a time series, and that the final samples (in any of the time series)
have the lowest value of CBE. For these reasons all chemical modelling will use the ICP-MS analyses of the final samples collected from each interval (see Appendix C), as these are likely to be the most representative (Robin and Gilham 1987), having been taken after the greatest sample interval flushing. In some cases, where a particular value for the last sample may be spurious (e.g. SO_{4} value for 71.65 m interval), the average of the previous values in the time series was used.

Except for $\mathrm{I}, \mathrm{K}, \mathrm{La}, \mathrm{Mo}, \mathrm{Na}, \mathrm{P}, \mathrm{Rb}, \mathrm{Ti}$ and U , element specific, data quality checks were also performed on all element analyses. The element specific checks were conducted either by performing linear regressions on elements analyzed by two different methods, and/or by analysing known USGS standards by ICP-MS. The results of these data quality checks are discussed below.

The results of linear regressions performed on element concentrations determined by two different analytical techniques for each sample are shown in Figures 4.1 and 4.2. Figure 4.1 presents ICP-MS analyses plotted against AA analyses and Figure 4.2 shows ICP-MS analyses plotted against HPLC analyses. The ICP-MS analyses are arbitrarily selected as the dependant variable. Normally this selection implies that there is no error associated with the independent variable. This is not the case with these data sets, resulting in a data quality interpretation which is only semi-quantitative.

Figure 4.1
ICP-MS analyses (ppm) vs AA analyses (ppm)

Calcium analyses

Magnesium analyses

Silicon analyses

Calcium
Regression Output:
Constant $\quad-0.4204$
Std Err of Y Est 0.4778
R Squared 0.9987
No. of Observations 27
Degrees of Freedom 25
X Coefficient(s) 0.9921
Std Err of Coef. 0.0071

Magnesium
Regression Output:

Constant	-0.1013
Std Err of Y Est	0.1254
R Squared	0.9852
No. of Observations	27
Degrees of Freedom	25
X Coefficient(s)	1.0573
Std Err of Coef.	0.0259

Silicon
Regression Output:

Constant	0.2885
Std Err of Y Est	0.3724
R Squared	0.9330
No. of Observations	27
Degrees of Freedom	25

X Coefficient(s) 0.9026
Sid Err of Coef. 0.0484

Figure 4.1 (continued)
Iron analyses

Aluminum analyses

Iron

Regression Output:	
	-0.0012
Constant	0.0219
Std Err of Y Est	0.9839
R Squared	19
No. of Observations	17
Degrees of Freedom	
	0.7678
X Coefficient(s)	0.0238
Std Err of Coef.	

Aluminum
Regression Output:

Constant	-0.0293
Std Err of Y Est	0.1431
R Squared	0.8470
No. of Observations	27
Degrees of Freedom	25
X Coefficient(s)	1.0317
Std Err of Coef.	0.0877

Figure 4.2
ICP-MS analyses (ppm) vs HPLC analyses (ppm)

Sulphate

Chloride

Sulphate
Regression Output:

Constant	1.0154
Std Err of Y Est	9.8233
R Squared	0.9074
No. of Observations	16
Degrees of Freedom	14
X Coefficient(s)	1.0348
Std Err of Coef.	0.0884

Chloride
Regression Output:

Constant	3.7671
Std Err of Y Est	5.3594
R Squared	0.9704
No. of Observations	16
Degrees of Freedom	14
X Coefficient(s)	1.0388
Std Err of Coef.	0.0485

If the analyses had been perfectly accurate the slope of the best fit line through the data sets would be +1 , intercept 0 and coefficient of regression +1 (\checkmark Rsquared). The sum of the difference of the slope from 1 and the standard error of the coefficient, expressed in per cent is arbitrarily defined as:
(Equation 4.3)
Estimated Uncertainty $=$
\pm (Standard error of the \mathbf{X} coefficient + Absolute value(1-x-coefficient) $\mathbf{x 1 0 0 \%}$

Based on the data in Figures 4.1 and 4.2 the likely ranges of uncertainties for the six elements $\left[\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}, \mathrm{Si}, \mathrm{Al}, \mathrm{S}\right.$ (as $\mathrm{SO}_{4}{ }^{2-}$) and Cl$]$, estimated using equa: ion 4.3 , ranges from $1.5-25.6 \%$. A synopsis of error estimates, for the six elements listed above and derived using equation 4.2, is presented in Table 4.1. When one considers the large effect that $\mathrm{SO}_{4}{ }^{2 \cdot}$ and Cl should have on the CBE (due to their high concentrations) then the low overall CBE's suggest that the errors associated individually with these two anions is smaller than that estimated by equation 4.3. No error value can be calculated for Na , but the analytical error is believed to be of the same order as Ca i.e. $\sim 1.5 \%$.

The high correlation coefficient for the Fe analyses, in combination with the large deviation of the slope from +1 , points to a systematic error in one of

Table 4.1 Relative analytical errors estimated by comparing different methods of analysis

Table 4.1 Relative analytical errors estimated by comparing two different methods of analysis.	Slope of regression line	Relative \%error (Calculated using Equation 4.3)	Coefficient of Correlation
Element	0.992095	1.505	0.99935
Ca	1.057314	8.320	0.99259
Mg	0.902595	14.577	0.96594
Si	0.767820	25.600	0.99192
Fe	1.031707	11.942	0.92030
Al	1.034756	12.312	0.95256
SO 4	1.033884	8.735	0.98508
Cl			

the Fe analyses. The most significant source of error is believed to be in the ICP-MS analyses and is discussed below.

The analysis of USGS water standards gives further information about the quality of the NSCRV analyses. Table 4.2 is a compilation showing the average relative differences calculated using equation 4.4:

Table 4.2
COMPARISON OF GIVEN CONCENTRATIONS OF ELEMENTS IN USGS STANDARD WATERS WITH VALUES DETERMINED USING ICP-MS

All values in ppb except where noted

	Average relative differences									Lower limit of quantitation	
Element	Full Range					Modified range					
	\% of analyses						alyses				
		$\begin{array}{\|c\|} \hline \text { L. Limit } \\ (\mathrm{ppb}) \end{array}$	$\begin{aligned} & \text { U.Limit } \\ & \text { (ppb) } \end{aligned}$	\%	2d		$\begin{gathered} \text { L.Limit } \\ \text { (ppb) } \end{gathered}$	\%	2d	ICP-MS	Mod.llq
Al	5	49.0	221.0	1.5	6.8					6.4	
As	5	3.7	77.0	24.1	60.7	1	77.0	-5.5	n/a	0.3	77.0
B	5	119.0	363.0	1.2	10.3					21.0	
Ba	5	7.9	191.0	-0.2	4.9					0.4	
Br	1	135.0	135.0	427.0	n/a		n/a			4.0	See text
Ca	5	11.5	70.0	-1.2	5.5					3332.8	11.5
Cd	5	1.9	14.3	0.8	11.7	4	2.9	-1.9	4.8	0.0	2.9
$\mathrm{Cl}(\mathrm{ppm})$	6	46.0	508.0	-15.5	30.7	4	266.0	5.0	1.6	0.3	~ 70
Cu	5	17.0	76.2	-8.3	7.6	4	20.0	-6.6	4.0	0.4	20.0
Fe	5	7.0	159.0	-25.7	45.6	4	33.2	-14.4	7.4	47.8	?
Li	5	16.3	195.0	-0.3	4.5					ng	
Mg	5	2.1	60.4	-2.3	10.5					2.3	
Mn	5	7.2	68.0	-8.2	12.5	4	33.4	-5.2	4.8	0.2	33.4
Ni	5	6.0	54.0	-12.8	11.5					0.4	
Pb	5	8.6	34.6	3.4	9.4	4	10.9	1.3	4.9	0.2	11.0
Si	4	6877.0	24479.0	-0.5	4.5	3	145.5			145.5	
S ppm	6	25.0	182.0	-15.3	7.3					24.3	
Sr	5	61.0	1512.0	-1.9	4.6					0.0	
V	5	5.1	37.9	-2.5	9.4					0.2	
Zn	5	37.4	87.0	8.4	33.9	4	66.0	0.2	9.8	0.9	66.0

N.B. Lower and upper limits refer only to the range of standards analysed

2d is twice the standard deviation for the data set analysed
\% represents \% average difference of analysed values from known concentrations
See text for explanation of modified range
Si (as SiO2)
S (as SO4)

$$
\bar{\delta} R D=\frac{\sum_{i=1}^{i=n}\left(u s g s_{i}-I C P-M S_{i}\right)}{n}
$$

(Equation 4.4)

Where:
\%RD percent relative difference
USGS $_{i} \quad$ published concentration of USGS sample n
ICP-MS ${ }_{i}$ concentration of USGS sample n as measured by ICP-MS
n number of samples tested
and the $\mathbf{9 5 \%}$ confidence interval (2σ) for ICP-MS analysis of 20 different elements, at a variety of concentrations, in USGS water standards. The number of standards analyzed and the total range of their given concentrations is also shown, in the column titled 'Full Range'. Where it was obvious that the lower concentration standards analyzed were in error, those analyses were discarded and the lower limit of quantitation (liq) was raised to reflect the range of concentrations that were satisfactorily analyzed, as shown in the columns 'Modified Range', Table 4.2. The last two columns of table 4.2 show the llq:
a) as reported for $I C P-M S$ analyses, as $10 \times$ the standard deviation of the background for a particular element (Longerich et al. 1986).
b) from inspection of the analytical results of the USGS water standards (where applicable). Some of the llq's normally reported by ICP-MS appear to be too low as the machine is apparently not capable of accurate analysis at this Ilq (i.e., As, $\mathrm{Cd}, \mathrm{Cl}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}$), with the exception of the llq for Ca which is believed to be too high (pessimistic).

Of the 20 elements run as standards only $\mathbf{7}$ had absolute errors greater than 5\%; however, all element data are considered to be usable. Analytical errors associated with specific elements are discussed belnw.

The ICP-MS Fe analyses demonstrate an extremely close linear correlation with the AA analyses (Fig 4.1), however with a slope significantly less than 1.0. Above a concentration of 33.1 ppb they show a relatively low standard deviation of analysis. In view of these facts and the $\mathbf{- 1 4 . 4 \%}$ systematic error shown in the analyses of USGS standards (Table 4.2 modified range), the ICP-MS analyses will be used but will be corrected by a factor of 1.168 (calculated from $100 /(100-14.4)$) and used for all subsequent discussion.

The concentration given by the USGS for Br in their standard (Table 4.2) is considered to be dubious as the error range associated with the given concentration is essentially equal to the concentration given ($135 \pm 130 \mathrm{ppb}$). The Br results measured using the ICP-MS are believed correct for the following reasons:
a) The most probable value listed for the USGS water standard is given as $135 \pm 130 \mathrm{ppb}$ i.e. the concentration of Br in the standard is not accurately known,
b)all of the final sample values presented in Appendix C have $\mathrm{Br} / \mathrm{Cl}$ ratios of 0.013 , which is an unlikely coincidence if the error of analysis is as high as 427\% (the average relative difference calculated for Br using equation 4.3)
c) a seawater sample collected from Conception Bay, diluted with distilled water and analyzed had a chloride concentration of 93.04 ppm and a Br concentration of 0.33 ppm , when analyzed by ICP-MS (Appendix C). The ratio of these values is within 0.12% of the $\mathrm{Br} / \mathrm{Cl}$ mass ratio of seawater of 0.0036 ($67 \mathrm{ppm} / 18800 \mathrm{ppm}$ Krauskopf 1967). This indicates the probable accuracy and precision of the Br analyses, and further supports the contention that the given concentration of the USGS Br standard, is in error. No statement can really be made about the accuracy or precision of the Br
analyses, though the llq can be set at 0.138 ppm as this is the lowest recorded Br concentration in the final sample data set.

The ICP-MS Cl analyses are considered to be good, especially at the concentrations found at NSCRV, with a maximum error of 5% and an uncertainty range of 1.6% at the 95% confidence interval.

As has been found in other studies (i.e. Nordstrom et al. 1985) the accuracy of the sulphate analyses are relatively poor, though they appear to be useable. Comparison of ICP-MS and HPLC analyses indicates a probable uncertainty of determination of 12.3%. Analysis of USGS sulphate standards indicated a systematic error of $\mathbf{- 1 5 . 3 \%}$ for ICP-MS analyses. Using the latter value all ICP-MS values were corrected using the same method as for the Fe analyses.

Li was the only alkali element analyzed by ICP-MS. Li had very little error associated with its analysis (-0.3% average difference from the values given for the USGS standards). The alkaline earth elements $(\mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$ all had errors less than 2.3%, with a maximum 2σ deviation of 10.5% at the 95% confidence level.

The analytical error for Si is believed to be extremely low at -0.5% with an uncertainty of 4.5% at the 95% confidence level.

Though the iodine analyses were not checked by running standards it is believed (S.Jackson and H.Longerich, pers. comm., 1990) that the accuracy of the analyses is poor as a result of both instrument memory effects and the various oxidation states in which iodine may occur.

In conclusion the overall quality of the analyses for the NSCRV samples is believed to be high.

4.1.4 Quality of Isotope analyses

Isotope analyses were performed on 17 samples for ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ and 7 samples for ${ }^{2} \mathrm{H} /{ }^{1} \mathrm{H}$. The results of all isotope analyses are shown in Appendix C . Table 4.3 shows, in detail, the results of all laboratory ${ }^{18} \mathrm{O}$ analyses on both samples and standards. From repeat analyses it was determined that the average standard deviation (σ) of the differences between all repeats was 0.08%. From this value the ${ }^{18} \mathrm{O}$ analytica! error (2σ), comprised of both machine and sample preparation errors, was estimated to be $\pm 0.16 \%$. Only one repeat was conducted for the ${ }^{2} \mathrm{H}$ analyses, with a difference of 1.68%. The value assigned to the analytical error for all the ${ }^{2} \mathrm{H}$ analyses was $\pm 1.68 \%$, which is comparable to the 2σ uncertainty reported by the lab that performed the analyses (University of Waterloo).

Table 4.3 COMPOSITION OF ALL 180 ANALYSES. ALL SAMPLES PREPARED, 112 EXTRACTED AND ANALYZED TOGETHER
> $>$ NOTE: All standard deviations are unbiased estimates
AVERAGES

Sample	Prep\#	dO	Batch	Sample	Prep\#	dO
NSCRV4B	NSI	-8.598	<NSI>	TW	NS6	-5.713
NSCRVIOA	NS2	-8.311		TW	rpt*NS6	-5.679
NSCRV3A	NS3	-8.306		TW	NS7	-5.501
NSCRV5C	NS4	-8.036		TW	rpt*NS7	-5.501
NSCRV5B	NS5	-8.361		TW	NS8	-5.605
TW	NS6	-5.713			average:	-5.600
TW	rpt*NS6	-5.679			std.dev:	0.1057
TW	NS7	-5.501				
TW	rpt*NS7	-5.501				
TW	NS8	-5.605				
NSCRV3D	NS9	-8.498	<NS2>	TW	NS15	-5.622
NSCRVIC	NSIO	-8.269		TW	NS24	-5.578
NSCRV4C	NSII	-8.481			average:	-5.600
NSCRV7B	NS12	-8.271			std.dev:	0.0324

NSCRV4A	NS14	-8.424
NSCRV6A	NS17	-8.213
NSCRV3B	NS18	-8.366
NSCRV3C	NS19	-8.407
NSCRV8A	NS20	-8.337
NSCRV7A	NS21	-8.454
NSCRV11A	NS22	-8.215
TW	NS15	-5.622
TW	NS24	-5.578
NSCRV5A	NS25	-8.209
NSCRV2D	NS26	-8.330
NSCRV3D	NS27	-8.572
NSCRV4C	NS28	-8.481
TW	NS29	-5.600

4.1.5 Quality of $\mathbf{p H}$ and $\mathbf{E h}$ measurements

Great care was taken in the calibration of the pH meter and in field pH measurement. The pH buffer solution temperatures were always allowed to equilibrate with out-flowing sample prior to calibration of the pH meter. All bubbles were removed from the flow cell and a great deal of effort was expended ensuring that the sample tubing was gas free. The relatively high specific conductance of the samples (usually $\mathbf{> 5 0 0} \boldsymbol{\mu} \mathrm{S}$) taken at NSCRV indicates that ionic strength is high enough to expect that pH readings stabilise quickly.

Despite the efforts made to ensure accurate pH readings, inspection of the variability of pH readings, over a time series (Figure 4.3), reveal that the pH readings vary by $\pm 0.15 \mathrm{pH}$ units. This is more than an order-of-magnitude higher than the expected accuracy of pH readings of $\pm 0.01 \mathrm{pH}$ units, under static conditions. Whether the variations in pH readings reflect true variations in groundwater pH , or whether they are a function of instrument errors, or fluctuations in field environmental conditions is not known. However, this variation in pH is comparable to those reported by Bottomley et al. (1984) during the sampling of groundwater in fractured granite rocks. The effect of errors in pH on calculated mineral saturation indices is discussed in Chapter 8.

Figure 4.3 VARIATION OF pH MEASUREMENTS, VERSUS AMOUNT OF SAMPLE INTERVAL FLUSHING FOR SELECTED SAMP!.E INTERVALS: DEGREE OF INTERVAL FLUSHING IS MEASURED IN NUMBER OF VOLUMES DISPLACED (SIV's)
Mid Sample Point 56.81 m

Mid Sample Point 74.91 m

Mid Sample Point 77.41 m

Mid Sample Point 97.41 m

No statement regarding the accuracy of Eh measurements can really be made since no standardization or calibration checks (other than shorting the instrument to zero the voltmeter output) were performed. The reported Eh values should be used with caution.

The accuracy of alkalinity titration was $\pm 0.1 \mathrm{ml}$ of standard acid. This translates to an accuracy of alkalinity determination ranging from ± 5 to $\pm 10 \%$ for the highest to the lowest alkalinity samples at NSCRV. The effects on calculated mineral saturations on inaccuracies in alkalinity measurements will be discussed in Chapter 8.

4.1.6 Efficacy of sample interval nushing

Of the 9 intervals sampled, 6 had more than 2 samples collected over a time series. Some major parameters from the six intervals have been plotted against the number of SIV's flushed prior to collection of a sample, and are presented on Figure 4.4. The presentation of the data in this manner is intended to:
a) justify the general use of the final sample, in any time series, for subsequent chemical modelling,

Figure 4.4 GRAPHS SHOWING EFFECT OF FLUSHING SAMPLING CAVITY ON SPECIFIC ELEMENTS: CONCENTRATION VS SIV FLUSHED (CONCENTRATION IS THE CONCENTRATION AT THE INITIAL SAMPLING DIVIDED BY CONCENTRATION AT SUBSEQUENT SAMPLINGS)
20.19 m

56.81 m

Figure 4.4 (continued)

b) show that all members in a time series (of any particular element) are relevant and,
c) that they can be used to identify spurious analyses (in a time series) resulting either from sampling or analytical errors.

The parameters plotted against SIV are $\mathrm{Cl}, \mathrm{Br}^{-}, \mathrm{Na}^{+}, \mathrm{Si},{ }^{18} \mathrm{O}$ and conductivity. Of the selected parameters $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$and ${ }^{18} \mathrm{O}$ are the most conservative and are believed to be the best indicators of the effect of flushing on the sample interval. Ch:loride has the lowest uncertainty and is considered to be the most reliable indicator of sample flushing. Conductivity should also be a good indicator of sample interval flushing. Na^{+}and Si will be relatively poor indicators of the success of sample interval flushing as they will be affected by chemical reactions (such as precipitation or solution of aluminosilicates).

In general, time variations in $\mathrm{Cl}^{\text {r }}$ and Br^{-}concentrations follow each other. ${ }^{18} \mathrm{O}$ values show relatively little variation over a time series; for this reason the value of ${ }^{18} \mathrm{O}$ for the last sample in the 71.65 m time series is considered spurious and is not used in discussion of variations in ${ }^{18} \mathrm{O}$ values. As the ${ }^{18} \mathrm{O}$ values selected as being representative, are not necessarily the last ones in a time series (whereas all other parameters are) the ${ }^{18} \mathrm{O}$ selected for discussion are summarized below in Table 4.4.

Table 4.4. $\delta^{18} \mathrm{O}$ values selected as being representative of virgin formation watter at NSCRV

Depth (m)	Sample I.D.	SIV's flushed	$\delta^{18} \mathrm{O}$
18.77	$11(17)$	1.70	-8.215
56.81	$10(2)$	8.50	-8.311
69.64	$8(5)$	8.32	-8.337
71.65	$5 \mathrm{~b}(14)$	6.05	-8.361
74.91	2 d	9.85	-8.330
96.64	$4 \mathrm{c}(3)$	8.01	-8.481
97.41	$3 \mathrm{~d}(16)$	9.00	-8.572

Si frequently displays a trend in concentration, with increased flushing, which is opposite to the concentration trends for the two halogens. The relatively monotonic variations in the parameters $\mathrm{Cl}, \mathrm{Br}, \mathrm{Na}^{+}, \mathrm{Si},{ }^{18} \mathrm{O}$ are taken as further evidence that the quality of analyses from NSCRV is good. It should be noted that Br shows relatively more change, through a time series, in the deeper sample intervals.

4.2 CONCLUSIONS

The NSCRV geochemical data set is of good quality; however, analyzed values of SO_{4} and Fe will be corrected before use for chemical modelling. The analysis of samples during flushing of sample intervals, prior to collection of a final
sample, further supports the reliability of the analytical data and final sample values will be used for all subsequent geochemical modelling. The corrected final ${ }^{18} \mathrm{O}$ values presented in Table 4.4 will be used for all subsequent discussion of ${ }^{18} \mathrm{O}$.

CHAPTER 5: GEOCHEMICAL TRENDS AT NSCRV

5.1 OVERVIEW OF WATERS AT NSCRV

In this chapter variations of groundwater chemistry that occur with depth in the NSCRV borehole are described using three different approaches:
a) variations of single chemical parameters versus depth and permeability,
b) variations of bulk groundwater chemistry versus depth described using Piper diagrams,
c) variations of groundwater chemistry with depth described using mineral stability diagrams.
5.1.1 Variations of single chemical parameters with depth and permeability.

Many of the chemical parameters analyzed show a distinct linear correlation with either depth or hydraulic conductivity and, in some cases, with both parameters. This is not surprising as the hydraulic conductivity is itself correlated with depth.

Five genchemical parameters have been selected to illustrate the correlation with depth and hydraulic conductivity (K): $\mathrm{Si}, \mathrm{Cl}^{+},{ }^{18} \mathrm{O}, \mathrm{Na}^{+}$and Li^{+}. Graphs of these
parameters versus hydraulic conductivity and depth are shown on Figure 5.1 together with the results of linear regression analyses. A line of best fit, calculated from the results of the regression analyses, is plotted on each graph. To test whether either hydraulic conductivity and/or depth are correlated with the chemical parameter of interest, a statistical test using the test statistic r (correlation coefficient) as an estimator of rho (the population correlation coefficient) was conducted (see Mendenhall and Sincich 1988). Table 5.1 shows the results of this exercise. Where the test indicates that hydraulic conductivity and/or depth contribute some information about the value of a particular chemical parameter, that table entry is shaded.

Table 5.1 Results of statistical test to determine the statistical significance of the correlation of hydraulic conductivity or depth with concentration of an element

\# samples	Parameter	$x-K$ (r)	$x-$ Depth (r)	significant for r $>t$ (t)
8	Si	0.9381	0.5831	0.707
8	Cl	0.8367	0.7348	0.707
7	$\delta^{18} \mathrm{O}$	0.7416	0.9008	0.754
8	Na	0.8775	0.8307	0.707
5	Li	0.9231	0.9887	0.878

Table 5.1 suggests that information about the likely concentration of Si can only be gained from hydraulic conductivity, and about the likely value of ${ }^{18} \mathrm{O}$ only

Figure 5.1 GRAPHS SHOWING CORRELATION OF ELEMENT CONCENTRATION WITH BOTH LOG HYDRAULIC CONDUCTIVITY (K) AND DEPTH.
[Si] vs K

[Cl] vs K

180 vs K

[Na] vs K

[Li] vs K

[Si] vs Depth

[Cl] vs Depth

180 vs Depth

[Na] vs Depth

[Li] vs Depth

from depth. The implications of this will be discussed more fully in subsequent chapters. Briefly, it is suggested that the correlation of ${ }^{18} \mathrm{O}$ with depth is a reflection of the nature of flow through the Holyrood Granite. That is, above a certain scale length or representative elemental volume (REV), flow is relatively ordered, and flow in the aquifer can be approximated using a simple porous media model. The only statement that can be made about the size of the REV in the Holyrood Granite is that it is less than the scale length of the borehole $(100 \mathrm{~m})$ and possibly as large as 20 m (borehole length divided by the number of sample intervals showing monotonic. chemical and isotopic variations). The correlation of increasing concentration of Si with decreasing hydraulic conductivity, alone, suggests that higher degrees of rock water interaction and silicate dissolution in stagnant low permeability zones determine Si concentrations, rather than mixing or flow between REVs within the aquifer/fracture system.

5.1.2 Descripiuiu of variations of bulk groundwater chemistry with depth: Piper diagrams

The inorganic geochemical data from NSCRV can also be described using Piper diagrams. This simple method of description gives an indication of the bulk changes in groundwater chemistry with depth and points towards a mechanism by which the NSCRV waters may have evolved to their present chemistry.

Relative abundances (as milliequivalents) of the major ions (Ca, Mg, $\mathrm{Na}+\mathrm{K}, \mathrm{Cl}, \mathrm{HCO}_{3}+\mathrm{CO}_{3}, \mathrm{SCi}$) are shown on the Piper diagram (Figure 5.2). The data points representing the relative ion concentrations of the deepest and shallowest waters at NSCRV are identified on Figure 5.2 as \mathbf{D} and \mathbf{S} respectively. The point labelled SW represents seawater composition. The Piper diagram reveals that the shallow waters at NSCRV evolve from being Ca-Na-bicarbonate (with minor chloride) to being an $\mathrm{Na}-\mathrm{Cl}$ type water with some bicarbonate. The trends of the data points in the cation and anion trilinear fields seem to suggest that buik groundwater chemistry either evolves (with depth) towards a seawater-like composition, or possibly a modified seawater composition depleted in SO_{4} and Mg . Alternatively it may define a mixing relationship between two end members. However, the non-linear composition trend shown in the central diamond field indicates that simple mixing, alone, cannot explain the major ion trends.

The progressive change in water chemistry shown in Figure 5.2 is believed to be evidence that the shallow waters may have evolved, in part, by mixing with seawater and in-part by rock-water interaction. As is apparent in the Piper diagram even the shallow waters have a large fraction of Na and Cl , which may be evidence of a significant seawater component. The hypothesis of saltwater mixing, coupled with rock water interaction, will be pursued in Chapter 8.

Figure S.2 PIPER DIAGRAM FOR NSCRV SAMPLE ANALYSES AND SEAWATER

SYMBOLS INDICATE:
D Deepest sample interval
S Shallowest sample interval
SW Seawater
5.13 Description of variations of groundwater chemistry with depth: Mineral stability diagrams.

The construction of mineral stability diagrams is outlined in Garrels and Christ (1965). Before describing the NSCRV waters in the context of mineral stability diagrams an important factor should be considered:

The positions of the phase boundaries on the diagrams are dependant on the thermodynamic data used to construct the phase diagrams. The differences between the values of thermodynamic properties of identical minerals (for the enthalpy and equilibrium constant, or free energy, of the mineral dissociation reaction), published by different researchers, is usually small; however, even small differences in thermodynamic data values may result in large differences in the estimated positions of calculated mineral stability boundaries. To illustrate this point the mineral stability diagram in Figure 5.3 shows mineral stability boundaries in $\log [\mathrm{K}] / \mathrm{H}]$ vs $\mathrm{Log}\left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]$ space, constructed with the thermodynamic data of a variety of workers. The thermodynamic data was derived from Helgeson et al. (1978), Hemingway et al. (1982) and data supplied in a modified data base (See Appendix D for explanations of modification of pyrophyllite data) by Lindberg, R.D $1986 \mathrm{et} \mathrm{al}. \mathrm{(unpublished)}$. Data which is internally inconsistent confounds Gibb's Phase Rule and appears

Figure 5.3 MINERAL STABILITY DIAGRAMS CONSTRUCTED FGR COMPARISON OF THERMODYNAMIC DATA
NOTE: Lines not meeting at triple points highlight inconsistent thermodynamic data Data of Helgeson et al (1978)

Data of Hemingway et a! (1982)
(1982) with that of Robie et al (1978)
$\log [\mathrm{K}] /[\mathrm{H}]$ vs $\mathrm{Log}[\mathrm{H} 4 \mathrm{SiO} 4]$

Data from PHRTHERM:Sign of LogK
pyrophyllite changed from original PHRTHERM $\mathrm{Log}[\mathrm{K}] /[\mathrm{H}]$ vs $\mathrm{Log}[\mathrm{H} 4 \mathrm{SiO} 4]$

as non-meeting "triple points" on Figure 5.3. The evaluation of the stability of minerals with which waters may be in equilibrium may be in error due to inconsistencies in the thermodynamic data used to calculate stability boundaries. Appendix D describes in detail the comparison of various data bases and concludes, (partly on the basis of consistency and partly on the basis of usage by various authors) that the Helgeson thermodynamic data base is the most reliable, this is reflected in its internal consistency, at least for the low ionic strength silicate system. This is the data base used for subsequent discussions and the modelling of the common minerals with PHREEQE (using the HELGTHEM data base, see Appendix D and E . Additional discussion of the data base is provided in Chapter 8.

In some instances it may be difficult to rationalize the saturation states of aluminosilicate minerals, as derived using mineral stability diagrams and geochemical modelling with programs such as PHREEQE. This is illustrated in the following example:

Figure 5.4 shows the locations of data points which represent the compositions of the NSCRV waters sampled, average seawater (Nordstrom et al. 1979), and average seawater equilibrated with anorthite, using PHREEQE/HELGTHEM, for the four spaces $\log \{\mathrm{Na}\} /\{\mathrm{H}\}, \log \{\mathrm{K}\} /\{\mathrm{H}\}$,
$\log \{K\} /\{\mathrm{H}\}$ v: $\log \{\mathrm{H} 4 \mathrm{SiO} 4\}$

$\log \{\mathrm{Na}\} /\{\mathrm{H}\}$ vs $\log \{\mathrm{H} 4 \mathrm{SiO} 4\}$

S-shalloweat
$\log \left\{\mathrm{Ca}_{\mathrm{a}}\right\} /\{\mathrm{H}\}^{2}$ vs $\log \{\mathrm{H} 4 \mathrm{SiO} 4\}$

$\log \{\mathrm{Mg}\} /\{\mathrm{H}\}^{2} \mathrm{va} \log \{\mathrm{H} 4 \mathrm{~S}: \mathrm{O} 4\}$

SW-seawater

SW+A seawater equilibrated with anorthite
$\log \{\mathrm{Mg}\} /\{\mathrm{H}\}^{2}$ and $\log \{\mathrm{Ca}\} /\{\mathrm{H}\}^{2}$ vs $\log \left\{\mathrm{H}_{4} \mathrm{SiO}_{4}\right\}$. Of particular interest is the location of the point representing seawater, equilibrated with anorthite, in $\log \{\mathrm{Ca}\} /\{\mathrm{H}\}^{2}$ vs $\log \left\{\mathrm{H}_{4} \mathrm{SiO}_{4}\right\}$ space. The point is well outside the anorthite stability field, in the kaolinite stability field, and reflects the paucity of Ca in seawater relative to the activities of other elements.

Points in Figure 5.4 representing shallowest (S), and deepest (D) waters are identified as are points which represent average seawater composition (SW), and average seawater composition equilibrated with anorthite (SW+A). The diagrams show the stability fields of common aluminosilicates in terms of ions. Activities of elements were calculated using PHREEQE with the HELGTHEM data base.

For all the diagrams shown, with the exception of $\log \{\mathrm{Ca}\} /\{\mathrm{H}\}^{2}$ vs $\log \left\{\mathrm{H}_{4} \mathrm{SiO}_{4}\right\}$, the NSCRV waters show a trend, with increasing TDS, towards a composition which approximates seawater (in terms only of the elements presented on the diagrams), but with a higher concentration of $\mathbf{H}_{4} \mathrm{SiO}_{4}$. The higher concentration of $\mathrm{H}_{4} \mathrm{SiO}_{4}$ may be a result of rock water interaction. Hydraulic conductivity has previously been shown to display a strong inverse correlation with concentration of $\mathrm{H}_{4} \mathrm{SiO}_{4}$: The decrease in $\mathrm{H}_{4} \mathrm{SiO}_{4}$ activity shown by the mid samples
is believed to reflect the permeability variations in the sample intervals (highest permeability in the mid intervals and hence decreased rock-water interaction).

The transgression across mineral stability boundaries by the observed trend of chemical evolution is difficult to rationalize. By thermodynamic laws, the evolution of a water, once it has reached a mineral stability boundary should, in general, proceed along that boundary until one phase disappears during incongruent dissolution. The $\log \{\mathrm{Na}\} /\{\mathrm{H}\}$ vs $\log \left\{\mathrm{H}_{4} \mathrm{SiO}_{4}\right\}$ trend might possibly be consistent with such evolution, as might be the $\{\mathrm{Mg}\}$ data. However, for $\log \{\mathrm{K}\} /\{\mathrm{H}\}$ and $\log \{\mathrm{Ca}\} /\{\mathrm{H}\}^{2}$ vs $\log \left\{\mathrm{H}_{4} \mathrm{SiO}_{4}\right\}$ it is difficult to explain the nature of the trends in terms of thermodynamic equilibrium alone, even allowing for an error in thermodynamic data. This point again indicates the probable significance of mixing, but may also be attributable to impure mineral phases (compared with the ideal phases of the diagrams), or may reflect the kinetics of the system.

5.2 CONCLUSIONS

Strong correlations exist between the activity of $\mathrm{H}_{4} \mathrm{SiO}_{4}$ and permeability and ${ }^{18} \mathrm{O}$ and depth. Cl, Na and Li are strongly correlated with both depth and permeability.

The NSCRV groundwaters appear to display an evolutionary trend towards seawater composition which is manifest on both Piper and mineral stability diagrams. The trend is apparently a result of a combination of mixing and rock-water interaction. Hydrogeochemical trends are also seen, apparently a function of depth and permeability.

The well preserved hydrogeochemical trends (regardless of the validity of any assumptions about what the trend may represent) are believed to be reflections of the relatively ordered nature of flow within the Holyrood Granite. These trends may further support the assumption that groundwater flow in the Holyrood Granite may be modelled using an equivalent porous medium approach and an appropriate scale length (possibly on the order of tens of metres).

CHAPTER 6: INTERPRETATION OF AQUEOUS ISOTOPE DATA

6.1 DISCUSSION

As a result of isotopic fractionation caused by varying temperatures, values of $\delta^{18} \mathrm{O}$ and $\delta^{2} \mathrm{H}$ in precipitation from different latitudes have been found to plot on a straight line. This line is referred to as the Meteoric Water Line (MWL) and has the general form (Craig, 1961):

$$
8^{2} H=8.8^{18} O+10
$$

(Equation 6.1)

Although the slope of 8 is nearly constant globally, the intercept can vary considerably, reflecting local meteorological, topographic and seasonal conditions (Gat, 1981).

The isotope data from NSCRV plots on or near the MWL (Figure 6.1). There is no evidence for evaporation having taken place (which will tend to alter the isotopic signature of the waters, moving the points off the MWL to the upper right).

Figure 6.1 ISOTOPE DATA FOR NSCRV PLOTTED AGAINST THE METEORIC

Data plotted showing limited range of possiti:; values for lower latitudes

Note: Data used were only those sariples which had both oxygen and hydrogen isolope data at the same depth and the same time of collection. See Appendix C final sample values.

The location of the group of points on the meteoric water line is consistent with the latitude of NSCRV. A linear relationship between $\delta^{18} \mathrm{O}$ values of average annual precipitation and the average annual air temperature is by given by equation 6.2 (Dansgaard, 1964):

$$
8^{18} O_{m}=0.695 T-13.6
$$

(Equation 6.2)

In Equation $6.2 \delta^{18} \mathrm{O}_{\mathrm{m}}$ is the mean annual $\delta^{18} \mathrm{O}$ value of precipitation and T is the mean annual surface air temperature in degrees centigrade. No estimate of error is provided for values calculated using cquation 6.2. Yurtsever (1975) confirmed, for four stations in Greenland and Europe, that average monthly $\boldsymbol{\delta}^{18} \mathrm{O}$ values ($\delta^{18} \mathrm{O}_{\mathrm{mo}}$) are linearly related to average monthly surface temperatures in degrees centigrade (T) by the equation:

$$
\delta^{18} O_{m o}=(0.521 \pm 0.014) T-14.96 \pm 0.21 \text { (Equation 6.3) }
$$

Where $\delta^{18} \mathrm{O}_{\mathrm{mo}}$ is the mean monthly $\delta^{18} \mathrm{O}$ value.

Assuming that groundwater isotopic compositions reflect the local weighted mean annual isotopic compositions of precipitation (Gat, 1981), the use of Equation 6.2, and the average of the final ${ }^{18} \mathrm{O}$ values presented in Table 4.4, results
in an estimate of the mean annual air temperature (MAT) at the time of recharge of $7.5^{\circ} \mathrm{C}$. Using Equation 6.3 the MAT is $12.5^{\circ} \mathrm{C}$. However, the position of the NSCRV borehole, at the discharge end of a regional flow system makes it highly unlikely that the isotopic values measured in the individual fractures represent monthly mean precipitation that has preserved its isotopic identity since the time of recharge. Therefore, the MAT estimated using Equation 6.2 is considered more plausible than the latter value. The MAT for a meteorological station operated by The Atmospheric and Environmental Service of Environment Canada approximately 100 m from the NSCRV location is given as $6.1^{\circ} \mathrm{C}$. A synopsis of the weather data at the Seal Cove weather station is provided in Table 6.1.

The use of the MAT for aquifer calculations implies an assumption that water recharging the aquifer represents precipitation falling throughout the year. This assumption is incorrect as the aquifer is preferentially recharged at certain times of the year: For instance, a smaller portion of summer rain is expected to recharge the aquifer and a large part of the snowfall which melts to form runoff may be excluded from the aquifer as it runs over frozen ground. The water balance diagram Figure 6.2 (Nolan, Davis and Associates Lid, 1989), constructed using the Seal Cove AES data reveals that most recharge is expected to occur in the periods March- April and October- November. The mean monthly temperatures for these periods are (averages for the two sets of consecutive months) $1.05^{\circ} \mathrm{C}$ and $6.25^{\circ} \mathrm{C}$ respectively.

Table 6.1 Synopsis of Weather data at NSCRV

SEAL COVE
47. $27^{\prime} \mathrm{N} \quad 53^{\circ} 4^{\prime} \mathrm{W} \quad 15 \mathrm{~m}$

Dally Maximum Temperature	0.8	0.6	2.7	6.7	11.6	17.3	21.9						
Daily Mirimum Temperature	-6.5	-6.9	-4.3	-1.0	2.2	6.7	11.2	21.0	17.2	12.1	7.9	3.0	10.2
Dally Temperature	-2.9	-3.1	-0.8	2.9	6.9	12.1	16.6	11.9	8.1 127	4.1	0.9	-3.9	1.9
Slandard Deviation, Daily Temperature	1.9	2.2	1.7	1.2	1.4	1.6	1.4	1.7	12.0	0.8	4.4	-0.5	6.1
Extreme Maximum Temperature Years of Record	$\begin{gathered} 15.0 \\ 18 \end{gathered}$	$\begin{gathered} 14.4 \\ 18 \end{gathered}$	$\begin{gathered} 16.7 \\ 18 \end{gathered}$	18.3	26.1	30.0	31.7	31.0	26.7	27.8	21.1	15.6	0.7 31.7
Exreme Minimum Temperature	-20.6	-26.7	-18.3	18 -16.0	18	17	18	18	19	19	19	19	
Years of Pecord	18	-26.7 18	-18.3 18	$\begin{gathered} -16.0 \\ 18 \end{gathered}$	$\begin{gathered} -7.8 \\ 18 \end{gathered}$	$\begin{gathered} -4.4 \\ 18 \end{gathered}$	0.0 18	0.0 18	-1.1	-5.6	-16.0	-18.9	-26.7
Rainfall	87.8	75.5	81.5					18 100.9	18	18	19	19	
Snowlat	61.2	46.5	81.5 35.9	78.9 9.9	74.5 1.6	73.6	65.7 0.0	100.1	93.2	128.1	114.7	99.3	1072.9
Total Precipitation	137.3	124.6	121.2	9.9 95.4	1.6 75.9	0.2 73.6	0.0 65.7	0.0 100.1	0.0	0.7	6.6	33.3	185.9
Standard Deviation, Total Precipitation	45.7	63.3	39.5	38.4	24.4	30.9	33.4	100.1 76.0	93.2 41.0	120.8 49.3	121.2 45.5	135.8 54.0	1272.9 166.7
Grealest Rainfall in 24 hours Years of Record	$\begin{gathered} 90.7 \\ 19 \end{gathered}$	61.7	53.3	62.2	31.0	55.4	53.8	71.4	68.1	52.8	66.8	79.2	160.7 90.7
Greatesi Snowlall in 24 hours	19 38.1	18 43.2	$\begin{gathered} 18 \\ 38.1 \end{gathered}$	18	18 10.2	18 5.1	19 0.0	18 0.0	19	18	20 27.9	79.2 19	90.7
Years of Record	18	16	${ }_{18} 18$	38.1 17	10.2	5.1 19	${ }^{0.0}$	0.0	0.0	10.2	27.9	29.5	43.2
Greatest Precipitation in 24 hours	90.7	61.7	53.3	62.2	31.0	19 55.4	20	19	20	20	20	19	
Years of Record	19	17	18	18	18	$\begin{gathered} 55.4 \\ 18 \end{gathered}$	$\begin{gathered} 53.8 \\ 19 \end{gathered}$	71.4 18	68.1	52.8	69.9	79.2	90.7
Days with Pain	7	5	7	9	10				10	18	20	19	
Days with Snow	6	5	4	2	10 0	0	8 0	10	10	14	11	9	108
Days with Precipitation	12	11	12	11	11	0	0	0	0	0	1	4	22
				1	1	9	8	10	10	14	12	13	133

From Environment Canada Canadian Climate Normals 1951-1980, Temperature and Precipitation.

Figure 6.2 Evapotranspiration diagram for Seal Cove

If one assumes that recharge occurs only during these periods, then an estimation of the average temperature of the most significant part of the total recharge is $3.9^{\circ} \mathrm{C}$. The disparity between this estimate and that derived from $\delta^{18} \mathrm{O}$ data may be the result of:
a) periods of recharge occurring only during the warmer periods of the recharge seasons (the mean monthly temperature for April is $2.9^{\circ} \mathrm{C}$ and for October $8.1^{\circ} \mathrm{C}$.),
b) underestimation of the significance of recharge during the summer and overestimation of the importance of spring recharge (the latter possibly being reduced due to frozen ground),
c) aquifer recharge occurring during a previous (warmer) climatic period, (the estimated water residence time for the deepest water sample collected is in the range 1560 to 15600 yrs, based on preliminary flow modelling)
d) MAT estimated from the sea level AES station may be an overestimate relative to the MAT of the location of actual system recharge.

Isotope fractionation as a result of variations in temperature arises not only from variations in latitude but also due to variations of altitude at a given location. The latter phenomenon is referred to as the altitude effect. The variation
of $\delta^{18} \mathrm{O}$ with altitude is typically in the range $0.15-0.5 \% \delta^{18} \mathrm{O} / 100 \mathrm{~m}$ of vertical elevation (Gat 1981).

If the flow net for NSCRV (Figure 1.3) is to be believed then the deepest NSCRV samples could have been recharged at altitudes of $\sim 170 \mathrm{~m}$ above borehole elevation and represent groundwater carried along regional flow paths. The shallowest NSCRV samples were likely recharged at a much lower altitude ($\sim 60 \mathrm{~m}$) by local flow systems. If an average altitude effect of $0.325 \% \delta^{18} \mathrm{O} / 100 \mathrm{~m}$ is assumed then the 0.32% range of observed final $\delta^{18} \mathrm{O}$ values is quite reasonable: The calculated difference in $\delta^{18} \mathrm{O}$ between water recharged at 60 m and 170 m would be 0.36%. A linear regression analysis of the final values of the $\delta^{18} \mathrm{O}$ vs. depth in metres shows that the slope of the best fit line is $-0.397 \% \delta^{18} \mathrm{O} / 100 \mathrm{~m}$ of drilled depth; however, as a result of the saltwater wedge, the flowlines at NSCRV are believed to be compressed: 100 m of depth is estimated to represent $\sim 147 \mathrm{~m}$ of altitude (samples from $\sim 20 \mathrm{~m}$ and 95 m , recharged at altitudes of ~ 60 and $\sim 170 \mathrm{~m}$ respectively) and the gradient of the best fit line represents an altitude effect of $0.27 \% / 100 \mathrm{~m}$ of altitude. This value is close to the assumed average altitude isotopic gradient of $0.325 \% / 100 \mathrm{~m}$.

6.2 CONCLUSIONS

The stable isotope data appear to indicate that an altitude effect is preserved in the groundwater samples analyzed at NSCRV, this may be further evidence for the well ordered nature of the flow in the Holyrood Aquifer; therefore, the ${ }^{18} \mathrm{O}$ data could be consistent with a local recharge derivation, at or near current mean annual temperatures of recharge.

CHAPTER 7: ANALYSIS OF FRACTURE MINERALOGY

7.1 ANALYSIS OF FRACTURE MINERALOGY

Hydrogeochemical modelling of the groundwaters of the Holyrood Granite is discussed in Chapter 8. However, prior to the modelling it is useful to identify the minerals, which by precipitating or dissolving within the fracture flow system, control the evolution of groundwater chemistry. The minerals and gases which seem likely to control the groundwater chemistry of a hydrogeochemical system are referred to as plausible phases (Plummer et al. 1983). The selection of a set of plausible phases may, in part, be made by conducting thermodynamic speciation calculations, using chemical analyses of the groundwaters of interest. The speciation calculations help to identify potential or actual phases which are likely to be close to saturation, as well as those minerals present in the rock-mass which are likely to be dissolving. The list of minerals calculated to be at, or close to, saturation in the NSCRV groundwaters is extensive (partly a result of the high number of element analyses): If all the minerals were included in geochemical model the number of variables in the model would make a solution almost impossible. The analysis of fracture minerals helps to limit the number of plausible phases for modelling which, in turn, places constraints on reaction paths for the NSCRV groundwaters.

In order to identify which minerals may be influencing the groundwater chemistry in the Holyrood Granite analyses of fracture surfaces were conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, coupled with energy dispersive electron microprobe analysis (EDM).

7.2 SAMPLE COLLECTION AND ANALYSIS

Samples were collected from fractures which had been logged as likely to be open, or partially open, and hence potentially conducting groundwater.

7.2.1 Analysis of Fracture nakes by SEM

For SEM analysis, flakes picked from fracture surfaces were glued to a glass plate (orientated with the original fracture surface upwards) and coated with a thin film of carbon in an evaporative container.

A total of 18 fracture flakes were photographed by SEM and analyzed using EDM. A photograph of as much of the chip as possible was taken ($\times 20$ magnification) and then a portion of the chip analyzed (approximately $1 / 4$ to $1 / 3$ of the area photographed). Once the initial coarse analysis had been made individual ciystals (or areas on crystals) were selected, photographed and analyzed, at magnifications of approximately $\times 1000$, but in some cases at magnifications of greater
than $\times 3000$. Individual crystals were selected for analysis either on the basis of heing representative of the entire mass or as appearing anomalous. Output from the SEM was in the form of photographs, and output from the EDM was in the form of an energy spectrum, with results of calculations of the relative percentages of selected oxides in the area analyzed.

7.2.2 Analysis of Fracture Minerals by XRD.

Sample collection for XRD analysis was achieved by lightly scraping across fracture surfaces with a knife, the material from this process being collected in individual bottles. The scrapings were subsequently ground with a pestle and mortar in acetone and then spread on a glass plate for XRD analysis. Unfortunately, in many cases, the amount of sample (both available and removed) was insufficient for satisfactory analysis using the equipment available at the time of analysis. A total of 18 powder plates were analyzed using a RIGAKU XRD instrument. As noted above there was frequently a problem with insufficient sample.

7.3 METHODS OF DATA INTERPRETATION

73.1 Interpretation of SEM/EDM data.

The microprobe analyses of mineral aggregates and individual crystals are semi quantitative. The semi-quantitative nature of the analyses is in part a result
of the lack of any measure of either the water content or the CO_{2} content, which may constitute more than 20%, by weight, of some minerals. The lack of OH and CO_{2} analyses precludes the direct calculation of a meaningful chemical formula from the EDM analyses, in the manner outlined by Deer et al. (1966). Instead, a scheme was devised in which all the analyses were successively checked for a variety of minerals. For this purpose, an assumption was made that each analysis represented a particular mineral, with a weight percentage of water, and a number representing the number of oxygen atoms in the unit cell (both representative of the mineral being compared) arbitrarily assigned to each chemical analysis. The analyses were then corrected to the arbitrarily assigned water content and their stoichiometry recalculated using the method outlined in Deer et al. (1966). In this manner the entire set of analyses was scanned for formulae matching those of chlorite, kaolinite/halloysite, pyrophyllite, feldspars, mica and zeolites. Calcite, quartz and iron precipitates were also identified by inspecting the EDM results. The formula used for correcting analyses for water content was verified by using selected analyses from Deer et al. (1966), removing the water content, normalising the remaining oxide values to 100% and then adding water back to the analyses using the method outlined below.

73.1.2 Recalculation Scheme for Mineral Analyses

For a mineral composed of n oxides, h to j, where oxide h is the assigned weight percentage of water $\left(w t \%_{H 2 O}\right)$ then the weight percentage of each oxide (prior to the introduction of water) must be "corrected" to accommodate the introduction of water so that:

$$
\begin{equation*}
\sum_{n=h}^{j} z_{n}=100 \% \tag{Equation7.1}
\end{equation*}
$$

A factor K is calculated, from the assigned percentage of water, where:

$$
\begin{equation*}
K=1+\frac{f_{w}}{1-f_{w}} \tag{Equation7.2}
\end{equation*}
$$

where f_{w} is given by $w t \%_{H_{2} \mathrm{~d}} / 100$. Modifying the scheme outlined in Deer et al. (1966) $\mathrm{T}_{\text {mod }}$ (as opposed to T) is derived by:

$$
\begin{equation*}
T_{\text {mod }}=\sum_{n=1}^{j} \frac{z_{n} \cdot O_{n}}{M W_{n}}+\frac{\%_{\text {watar }}}{2 \cdot M W_{\text {wat tor }}} \tag{Equation7.3}
\end{equation*}
$$

where:
$\%_{\mathrm{n}} \quad$ - percentage of oxide n prior to correction for water MW_{n} - molecular weight of cuide n
$\mathrm{O}_{\mathrm{n}} \quad$ - number of oxygen atoms in the oxide n
MW $_{\text {water }} \quad$ - Molecular weight of water

The number of cations of each element $\left(\mathrm{C}_{\mathrm{n}}\right)$ in the formula is derived from each oxide by:

$$
\begin{equation*}
C_{n}=\frac{1}{K} \cdot \frac{O_{\text {tot }}}{T_{\bmod }} \cdot \frac{\vartheta_{n} \cdot O_{n}}{M W_{n}} \cdot R_{n} \tag{Equation7.4}
\end{equation*}
$$

where:
$\mathrm{O}_{\text {tot }}$ - total number of oxygen atoms in a crystal unit cell (of the assumed mineral)
R_{n} - ratio of cations:number of oxygen atoms in the oxide n

7.3.2 Method of Interpreting XRD data

Most of the XRD data was interpreted using peak matching software available on the RIGAKU. Minerals thought to be clays were glycolated and reanalyzed. Peak shifts noted after glycolation indicated the presence of hydratable clays.

7.4 RESULTS

Due to the large amount of data generated by XRD and SEM/EDM, only selected examples of the results are presented in the following section in
conjunction with Table $\% .1$ which identifies possibilities for mineral matches from the SEM/EDM data and mineral matches obtained from the XRD data. The ranges of atomic properties used to match the SEM data with a variety of minerals is given in Table 7.2. Mineral groups identified are discussed individually. The data set was scanned for zeolites and amphiboles, without success.

Calcite

Calcite was identified on numerous fracture planes at drilled depths from 8.50 m to 137.62 m . The identification of calcite was made using with XRD and SEM/EDM. A typical EDM spectrum for calcite, from a fracture plane at 53.97 m is shown in Figure 7.1a; an XRD spectrum from a calcite fracture coating at 72.48 m is presented on Figure 7.1b.

Chlo-ite

Chlorite was only detected using the SEM and identifications of some certainty were only found at 55.36 m or greater depths. An EDM spectrum for chlorite, made from fracture material at 147.31 m , is shown on Figure 7.2. The results of calculating chemical formulae from the EDM data for selected analyses, using the parameters indicated are shown in Table 7.3. The results indicate that the chlorite composition varies with both Mg and Fe rich varieties occurring.

Table 7.1 Table showing minerals identified by microprobe and XRD

TABLE 7.1/continued

Table 7.2 SELECTION CRITERIA FOR MINERALS ANALYZED BY ELECTRON MICROPROBE

Figure 7.1a ED spectrum for calcite from 53.97 m

Figure 7.1b XRD spectrum of calcite from 72.48 m

Figure 7.2 SEM photograph of Chlorite from 147.31 m

Table 7.3 Selected Chlorite Compositions, ralculated from ED microprobe data.

CHLORITE water> 11.00 HOx> 36.00											$\begin{array}{cc} \text { 7 waters } & 13.00 \\ \text { Tot MOx> } & 36.00 \end{array}$			
Sample Depth	$\begin{aligned} & \text { NSCRV 5B } \\ & 55.36 \end{aligned}$		$\begin{aligned} & \text { F.NSCRV 2A } \\ & 68.64 \end{aligned}$		$\begin{gathered} \text { NSCRV } 16 E \\ 136.53 \\ \hline \end{gathered}$		$\begin{gathered} \text { NSCRV7 } 1 \mathrm{I}_{\mathrm{ge}} \\ 147.31 \end{gathered}$		$\left[\begin{array}{c} \text { NSCRV } 138 \\ 151.81 \end{array}\right.$				$\begin{aligned} & \text { T.NSCRU 2A } \\ & 68.64 \end{aligned}$	
$\begin{aligned} & \mathrm{Si} \\ & \mathrm{Ai} \end{aligned}$	$\begin{aligned} & 728 \\ & 0.72 \end{aligned}$	8.00	$\begin{aligned} & 5.23 \\ & 2.77 \end{aligned}$	8.00	$\begin{aligned} & 6.98 \\ & 1.02 \end{aligned}$	8.00	$\begin{aligned} & 7.55 \\ & 0.45 \end{aligned}$	8.00	$\begin{aligned} & 7.25 \\ & 0.75 \end{aligned}$	8.00	$\begin{aligned} & 6.97 \\ & 1.03 \end{aligned}$	8.00	$\begin{aligned} & 4.97 \\ & 3.03 \end{aligned}$	8.00
A]	1.76		1.41		3.13		2.65		2.18		1.34		0.95	
Ti	0.00		0.00		0.00		0.00		0.00		0.00		0.00	
Fe2+	6.90		3.34		2.18		1.72		4.41		6.61		3.17	
Fe3+	0.00		0.00		0.00		0.00		0.00		0.00		0.00	
Mn	0.15	10.93	0.02	11.86	0.00	11.91	0.00	12.01	0.18	11.73	0.15	10.12	0.02	10.88
Mg	1.48		6.34		5.61		6.47		4.10		1.41		6.02	
Ca	0.39		0.01		0.10		0.55		0.47		0.37		0.01	
Na	0.25		0.75		0.90		0.61		0.38		0.24		0.71	
K	1.31		0.00		0.17		0.00		0.03		1.25		0.00	
Ba	0.03		0.00		0.00		0.00		0.04		0.03		0.00	
Ni	0.00		0.00		0.00		0.00		0.02		0.00		0.00	
Cu	0.05		0.00		0.00		0.00		0.02		0.04		0.00	
2 n	0.01		0.00		0.00		0.00		0.00		0.01		0.00	
S	0.00		0.23		0.00		0.02		0.00		0.00		0.22	
Cr	0.02		0.00		0.00		0.00		0.01		0.02		0.00	
Cl	0.00		0.00		0.05		0.00		0.00		0.00		0.00	

A range of representative formulae derived from the calculated chemical formulae is:

$$
\begin{aligned}
& \mathrm{Mg}_{1.48} \mathrm{Fe}_{6.90} \mathrm{Al}_{1.76}\left(\mathrm{Si}_{7.28} \mathrm{Al}_{0.72}\right) \mathrm{O}_{20}(\mathrm{OH})_{10} \text { to } \\
& \mathrm{Mg}_{6.47} \mathrm{Fe}_{1.72} \mathrm{Al}_{3.10}\left(\mathrm{Si}_{7.55} \mathrm{Al}_{0.45}\right) \mathrm{O}_{20}(\mathrm{OH})_{10}
\end{aligned}
$$

Assuming all iron in the formula is Fe^{3+}, charge balance in the two examples is $53.66^{+}: 56^{-}$and $58.95^{+}: 56^{\circ}$

Halloysite
The presence of halloysite was only detected using the SEM/EDM. It should be noted that in the initial coarse search of EDM data, to identify kaolinite and halloysite, using the parameters identified in Table 7.2, no matches with kaolinite were found. Matches were obtained only at the higher water content of halloysite and then only at depths of 68.64 m or higher. Table 7.4 shows hypothetical halloysite composition calculated using the appropriate water content and molecular structure.

Both halloysite and kaolinite are members of the kandite family of clays, of which only halloysite is capable of swelling. Kandites are noted for their inability to accept inter layer cations and for their inflexibility in composition. These points may cast some doubt on the calculated compositions. Any cation exchange ability that they do have is accommodated on the erds of the clay layers. Figure 7.3

Table 7.4 Selected Halloysite Compositions, calculated from ED microprobe data.

$$
\begin{array}{cc}
\text { HALLOYSITE } \\
\text { water \% }> & 17.43 \\
\text { Tot HOx> } & 18.00
\end{array}
$$

	$\begin{aligned} & \text { NSCRV } 6 A \\ & 6.43 \end{aligned}$			$\begin{aligned} & \text { NSCRV } 68 \\ & 6.43 \\ & \hline \end{aligned}$		$\begin{array}{r} \text { NS lge } \\ 68.64 \end{array}$		$\begin{aligned} & \text { NSI } \\ & 68.64 \end{aligned}$		$\begin{gathered} \text { NSIB } \\ 68.64 \end{gathered}$		$\begin{aligned} & \text { NSCRV } 31 \mathrm{ge} \\ & 68.64 \end{aligned}$		$\begin{aligned} & \text { NSCRV I4A } \\ & 71.80 \end{aligned}$		$\begin{aligned} & \text { NSCRV I6A } \\ & 136.53 \\ & \hline \end{aligned}$		$\begin{gathered} \text { NSCRV \&C } \\ 139.69 \end{gathered}$	
A	Si	3.56	3.56	3.94	3.94	3.90	3.90	4.23	4.23	4.36	4.36	4.27	4.27	3.79	3.79	4.09	4.09	3.91	3.91
	A	1.48		1.73		1.51		2.04		1.78		1.13		1.38		0.43		0.91	
	Ti	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
	Fe2+	1.29		0.68		1.03		0.15		0.42		0.68		0.36		0.60		0.82	
B	Fe3+	0.00	3.33	0.00	3.01	0.00	3.23	0.00	2.42	0.00	2.67	0.00	2.23	0.00	2.02	0.00	1.53	0.00	2.78
	M	0.10		0.02		0.05		0.00		0.01		0.03		0.00		0.01		0.03	
	Mg	0.46		0.57		0.64		0.23		0.46		0.39		0.27		0.49		1.02	
	Ca	0.57		0.42		0.44		0.42		0.02		1.13		0.30		0.78		1.39	
C	Na	0.43	1.21	0.64	1.21	0.48	0.92	0.92	1.33	0.84	0.87	0.27	1.40	0.58	0.88	1.48	2.25	0.18	1.58
	K	0.21		0.16		0.00		0.00		0.00		0.00		0.00		0.00		0.01	
B+C			4.54		4.22		4.15		3.75		3.54		3.63		2.90		3.78		4.36
	Ba	0.06		0.01		0.00		0.00		0.00		0.00		0.01		0.00		0.00	
	Ni	0.04		0.01		0.05		0.00		0.00		0.01		0.00		0.00		0.00	
	Cu	0.06		0.01		0.03		0.00		0.00		0.01		0.00		0.00		0.00	
	Zn	0.03		0.01		0.03		0.00		0.02		0.00		0.00		0.00		0.01	
	S	0.00		0.00		0.00		0.00		0.00		0.00		0.66		0.00		0.00	
	Cr	0.08		0.01		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
	Cl	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
	S	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
$\overline{A+B+C}$			8.10		8.16		8.05		7.99		7.90		7.90		6.68		7.87		8.27

Figure 7.3 SEM photograph of Dickite from 136.53 m (A,B,C are analysis points, indicated on tables)

is an SEM photograph of a sample from 136.54 m , thought to be books of a kandite form, dickite (note that the book form is more common in dickite, another kandite variety). An example formula from the calculated chemical compositions is:

$$
\mathrm{Al}_{1.73} \mathrm{Fe}_{0.66} \mathrm{Mg}_{0.57} \mathrm{Na}_{0.64} \mathrm{~K}_{0.16}\left(\mathrm{Si}_{3.94} \mathrm{AI}_{0.06} \mathrm{O}_{10}\right)(\mathrm{OH})_{8}
$$

Illite
Illite was only inferred from EDM on a sample from 71.80 m . The calculated compositions of the two analyses on a fracture flake from this depth are given in Table 7.5. The analyses presented are somewhat deficient in Al; however, it should be noted that the illite composition presented in Deer et al. (1966,p251\#3) also has considerably less than ideal fractions of Al.

Smectites

Montmorillonite and saponite are believed to have been identified on a fracture surface from 148.31 m , using XRD. The minerals were glycolated to confirm their presence. The XRD traces from these analyses are shown on Figure 7.4.

Pyrophyllite

A possible pyrophyllite match was obtained on samples from 68.64 m although the match with halloysite, which was also obtained, is believed to be more

Table 7.5 Selected Illite Compositions, calculated from ED microprobe data.

Figure 7.4 XRD spectrum for montmorillonite from 148.31 m

5. 10. 15. 20. 25. 30. 35. 40. 45. 50. 55. 60.

probable. Nevertheless, pyrophyllite will be considered as a plausible phase as it is apparently at saturation in the groundwaters of the Holyrood Granite. An active pyrophyllite mine is situated on the east edge of the study area.

Quartz
Quartz was identified on many fracture surfaces below 68.64 m , both by SEM and XRD. Example traces for quartz from toth SEM and XRD are provided on Figure 7.5 a and b.
7.5 ELEMENTS IDENTIFIED.

Using the EDM some elements of interest were also detected on fracture surfaces. Unfortunately in mos: instances it was not possible to associate these elements with a mineral. Elements of note are as follows:

Barium
Barium was detected at 68.64 m in conjunction with high chlorine and iron on a mineral base believed to be chlorite. No sulphur was detected at the same location and thus the barium is not believed to have been associated with barite.

Figure 7．5a）ED spectrum of quartz from 71.80 m （NSCRV 14lge）

MEMORIFL LNVIV．OF NEWFOUNDLAND
ELN ジアーFUGー50 04：4E
Eursor：O DalkE＝O FOI
FOI
（1）ヨ ごロ：ヨ 담

Chlorine

Chlorine, in association with both iron, barium and traces of sulphur, was detected at several locations on the sample from 68.64 m . It was also detected on a generally calcitic fracture surface at 72.48 m .

Iron

Iron is common, especially in analyses that matched chlorite. It was also detected virtually alone at one point at 136.53 m , at a depth where a chlorite match was made, and in conjunction with silica and some aluminum at 29.48 m . The latter analysis was from a distinctive crystal of octahedral shape shown in Figure 7.6. The form of the mineral precludes it being the sheet silicate greenalite (septachlorite group).

Sulphur

Traces of sulphur were detected at 68.64 m .

Titanium

Titanium was detected on the sample from 72.51 m in conjunction with an unmatched analysis which was possibly chlorite and at 139.69 m in conjunction with chlorite. The latter mineral had been logged as the titanium bearing mineral wolframite in the field.

Figure 7.6 SEM photograph of octahedral crystal, high in iron, from 29.48 m (A,B,C are analysis points, indicated on tables)

7.6 CONCLUSIONS

For the purposes of this study the methods used to detect minerals appear to have some value, however it should be noted that this approach is not infallible and it has been used only as an indicator of plausible phases.

Several minerals were identified using XRD and SEM/EDM. The presence of calcite and quartz is confirmed and calcite appears to have been precipitated over the entire NSCRV interval, whereas quartz was only detected on fracture surfaces at 68.64 m or deeper.

Other minerals identified with less certainty, are Fe - and Mg -rich chlorite, found throughout the drilled section; halloysite and illite, found at 68.64 m or deeper, and montmorillonite and saponite only detected on an isolated fracture surface at 148.31 m . Plagioclase feldspar, possibly oligoclase may also be present. Other indirect evidence supports the possibility of the presence of these minerals:
i) the formation of montinorillonite and saponite is favoured under alkaline, low potassium conditions (such as are found in the modern Holyrood Granite groundwaters),
ii) the Holyrood Granite has been noted as being strongly chloritised by McCartney et al. (1966), Papezik (1970) and Strong and Minatidis (1975),
iii) the composition of many of the NSCRV waters plot in the stability fields of plagioclase feldspars.

All of these minerals will be assumed to be plausible phases for the purposes of geochemical modelling, in addition some of the component minerats of granite will be added to the set of plausible phases.

CHAPTER 8: HYDROGEOCHEMICAL MODELLING

8.1 INTRODUCTION

Groundwater flow models can provide information regarding flow paths in aquifers. Geochemical models provide information regarding the probable evolutionary pathways of groundwater in the subsurface. These pathways may be controlled by mixing of groundwater of differing origins and by chemical reactions occurring in the aquifer. The chemical reactions may themselves be controlled by the mineralogy of the aquifer. The information gained from the two models (flow and geochemical) can be used to corroborate results of the other. The uncalibrated flow model used in this study only provides a very general concept of flow patterns in the Holyrood Aquifer. The use of geochemical modelling to define probable endmembers in the mixing and evolutionary sequence of the groundwater lends credibility to the flow model and results in a tenable model for flow and groundwater evolution in the aquifer. The geochemical modelling presented in this section is used to define plausible end-members involved along a reaction path, and define plausible phases involved in the groundwater evolution.

A variety of input parameters are required to successfully model the evolution of an aqueous solution from an initial composition to another intermediate or "end-member" composition. The evolution of the aqueous solution can be driven
by (amongst other things): variations of $\mathrm{P}_{\mathrm{coz}}$ (whether the system is open or closed to CO_{2}), mineral solution or precipitation, temperature and pressure variations, by mixing of aqueous solutions of differing composition, and by reversible exchange of mass between aqueous and solid phases.

All geochemical modelling of the NSCRV waters was conducted with a view to solving the inverse problem defined by Plummer (1984) as "..[an attempt] to find a set of net mass transfer reactions that are thermodynamically feasible and satisfy the mass balance criteria using the available hydrochemical data." To this end geochemical modelling was conducted in two phases as described by Plummer et al. (1983):
a) speciation calculations were performed to determine the saturation states of a variety of minerals, expressed as mineral saturation indices (Sls) ${ }^{2}$. These calculations were intended to identify those minerals likely to be involved in the evolution of the groundwater at NSCRV as a result of their intimate thermodynamic relationship with possibie and actual solid phases. Assuming equilibrium Sls are positive if the solution is oversaturated with respect to a mineral (which should be precipitating) and negative if the solution is undersaturated with respect to a mineral (which should be
${ }^{2}$ SI is defined as Log (IAP/K) and IAP and K are respectively the ion activity product and equilibrium constant
dissolving). The speciation calculations were performed using the computer program PHREEQE (Parkhurst et al. 1980).
b) mass balance calculations, were conducted to define possible evolutionary pathways for the NSCRV waters from a hypothetical starting composition (recharge waters) to the observed composition. A series of calculations were made using a variety of combinations of the plausible phases described in Chapter 7 (with the addition of NaCl). The mixing of two end-member waters of differing compositions was also incorporated into the calculations. Two additional constraints also applied to the mass-balance equations a) redox constraints to determine if oxidation and reduction could be significant processes in the evolution of groundwater, b) mixing constraints (primarily as indicated by chloride concentrations) in an attempt to determine feasible end members for mixing. With the limited isotopic data isotope constraints were not applied as very small variances in isotopic composition would lead to large changes in model results which were not necessarily justifiable in terms of the analytical uncertainties associated with the isotope data.

The mass balance calculations can indicate whether a plausible species has;
i) been lost from the solution (by precipitation if it is a mineral or offgassing for volatile components) or,
ii) been added to the solution; by dissolution of a mineral, or gaseous, phase.

The theory behind chemical mass balance calculations has been described by Parkhurst et al. (1982) and implemented in the mass balance calculation program BALANCE (Parkhurst et al. 1982) and NETPATH (Plummer et al. 1991). In this study the calculations were performed using the matrix inversion and multiplication techniques used in BALANCE and executed on Lotus 1-2-3 spreadsheet software. A summary of this spreadsheet approach is provided in Appendix G.

The results of the mass balance calculations were compared with the saturation states determined from the speciation calculations; plausible reaction combinations were selected from over 50 possible mass transfer models tested.

Ideally the plausible mass balance models would be tested for thermodynamic feasibility by reaction path modelling. In this study a comparison of mass balance models with the results of speciation calculations was used to identify models which are likely to be thermodynamically feasible.

8.2 DATA AND THERMODYNAMIC DATABASE QUALITY

Geochemical modelling requires two broad groups of input parameters before any modelling can be performed;
a) chemical analyses of the aqueous solutions of interest (in this case groundwater and an assumed starting end-member) and,
b) thermodynamic data for both the aqueous species in solution (or believed to be in solution) and the minerals which are believed to be dissolving or precipitating.

The combination of accuracy of the chemical analyses and the consistency and reliability of the thermodynamic data will in a large part dictate how successfully an aqueous reaction may be modelled.

8.2.1 Groundwater Data Quality

As discussed in Chapter 4 the water samples collected from the NSCRV borehole are believed to be representative. Furthermore the concentration of an element in the virgin groundwater, at a particular depth, is considered to be best represented by the last sample collected (in a sequential time series of samples) from any given interval. The last recorded field values (in a time series) of pH, Eh
and alkalinity were "Iso used for modelling purposes. Wherever possible only ICPMS analyses were used for geochemical modelling. Where values of Eh were not available, the value of Eh from an adjacent sample interval was assumed. Results of Eh measurements were used indirectly in some of the mass balance models, all of these were discarded as plausible models as they did not reflect the results of speciation calculations.

For almost all of the common minerals the hydrogeochemical analyses from NSCRV are both complete and saturation sufficient (as defined by Plummer et al. 1983), i.e., there are sufficient chemical data to calculate the saturation indices of the mineral phases considered. However, it is possible that the aluminum analyses in fact represent contamination from dust in the laboratory (H.Longerich pers. comm) rather than true concentrations of Al in native formation waters. The problem of hydrogeochemical data being saturation insufficient with respect to aluminum is a common one and has been discussed by Plummer et al. (1983). If aluminum is omitted from the NSCRV chemical analyses then the data are rendered saturation insufficient for all Al bearing minerals.

For this alumino-silicate dominated system the SI's of the aluminosilicates are of particular interest and omission of aluminum from the data set means that concentration of aluminum must be estimated by some other means. If this is
not done the saturation states of the aluminum bearing minerals cannot be determined, and the results of subsequent modelling (which will be used to interpret plausible evolutionary paths for the NSCRV groundwater) may be difficult to verify. Furthermore it may be difficult to solve a set of mass balance equations, using several aluminum bearing minerals when aluminum is omitted (though this is suggested by Plummer et al.), as many minerals are indistinguishable if their aluminum stoichiometry is omitted (i.e., the omission of Al makes some mass balance equations the same, resulting in an uninvertible matrix). Fortunately, there is evidence that the Al analyses are in fact reasonable (as discussed in Chapter 4) and the analyzed Al concentrations were used for all calculations.

8.2.2 Thermodynamic Data

As noted in Chapter 5, extensive checking was performed on the mineral thermodynamic data base, supplied with PHREEQE. The outcome of this evaluation was a decision to replace the thermodynamic data for Gibbsite, Kaolinite, Low-Albite, Muscovite, Anorthite, Pyrophyllite, Microcline, Chlorite and Na-, K-, Ca-, MgBeidellite (provided in the data base supplied with PHREEQE), with the data of Helgeson (1969) and Helgeson et al. (1978). In addition the following substitutions were made:
a) Chlorite- M and Chlorite- K were removed from the data base and replaced only by Chlorite,
b) Halloysite was removed and replaced by Kaolinite,
c) the original Nontronites ($\mathrm{Na}, \mathrm{K}, \mathrm{Mg}, \mathrm{Ca}$) were replaced by $\mathrm{Na}, \mathrm{K}, \mathrm{Mg}, \mathrm{Ca}$ Beidellites.

The thermodynamic data review is presented in Appendix D. A listing of the thermodynamic data base used for hydrogeochemical modelling is supplied in Appendix E. The re-compiled and checked data base is referred to as HELGTHEM. The following convention is used to differentiate results that may be affected by the data base:
a) upper case names (e.g. CALCITE) indicate minerals for which the original data base information was used,
b) lower case names with the first letter capitalised (e.g. Calcite) designate minerals relying on the Helgeson data.

Thermodynamic data derived by different workers should generally not be mixed as it will be inconsistent (see for instance Nordstrom and Munoz 1985); however the Helgeson data are extensive enough that all of the major minerals are represented, and should be consistent for the phases of interest. The remaining
original data supplies extensive information about minor or rare mineral phases. The problem of mixing data bases is further discussed in Appendix D.

A further check of the modified thermodynamic data base and program was made by comparing SIs derived for various minerals using PHREEQE with the results of other program/data base combinations for the same aqueous solution. Nordstrom et al. (1979) compared the SI's calculated for nineteen (19) different minerals, using 11 different hydrogeochemical modelling programs and data bases, for two analyses of typical seawater and river water. Using typical seawater (as defined by Nordstrom et al. 1979) speciation calculations were made using PHREEQE with both the original data base and the HELGTHEM data base. The results of these calculations are compared with the results from the 11 other hydrogeochemical modelling programs presented by Nordstrom et al. (1979) and presented in Table 8.1.

In Table 8.1 only the minerals Gibbsite and Kaolinite have been modelled using both original thermodynamic data and HELGTHEM. All other minerals were modelled with the original thermodynamic data. The ranges of calcuiated SIs for each mineral, originally published by Nordstrom et al. (1979), are also provided. It can be seen that of the 19 minerals modelled using PHREEQE/HELGTHEM, only 3 (hydroxyapatite, ferric-hydrate, and hematite) fall

Table 8.1 THERMODYNAMIC DATA TEST USING THE SEAWATER TEST CASE OF NORDSTROM ET AL (1979) AND RUNNING PHREEQUE USING THE DATA BASES PHRTHERM.DAT AND HELGTHEM.DAT

| | Current Data
 Bases
 phrtherm Helgthm | | avg | Published SI ranges $\max \quad \min$ | | Comparison Data bases/Programs EQUIL GEOCHEM | | | | SEAWAT ${ }^{-}$ | | WATEQF | | WATSPEC | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mineral | | | | | | EQ3 | | MIRE | | LMNEQ | | ATEQ2 | |
| Calcite | 0.8312 | 0.8312 | | 0.685 | 0.806 | 0.597 | 0.60 | $0.80{ }^{\circ}$ | 0.67 | 0.621 | 0.631 | 0.597 | 0.742 | 0.774 | 0.72 |
| Dolomite | 2.4810 | 2.4810 | 2.373 | 3.439 | 1.790 | 2.30 | 3.439 | 1.79 | 2.277 | 2.305 | 2.219 | 2.330 | 2.394 | 2.30 |
| Siderite | -7.5970 | -7.5970 | -7.922 | -2.650 | -12.420 | -2.65 | -10.726 | -12.42 | -4.077 | | -6.691 | -9.006 | -8.973 | -8.8.3 |
| Rhodochrosite | -3.8481 | -3.8481 | -3.440 | -0.487 | -4.450 | -3.57 | -4.444 | -4.45 | -0.487 | | -3.709 | -3.727 | -3.695 | |
| Gypsum | -0.3409 | -0.3409 | -0.537 | -0.348 | -0.840 | -0.47 | -0.399 | -0.76 | | -0.840 | -0.441 | -0.439 | -0.348 | -0.60 |
| Celestite | -0.6713 | -0.6713 | -0.731 | -0.130 | -1.320 | | | -0.13 | | | -0.988 | -0.610 | -0.609 | -1.32 |
| Barite | 0.0346 | 0.0346 | 1.428 | 7.642 | -0.340 | | | 1.12 | 7.642 | | -0.0501 | 0.097 | 0.097 | -0.34 |
| Hydroxyapatite | -0.2119 | -0.2119 | 3.221 | 7.140 | 0.605 | 4.16 | | 3.53 | | | 7.14 | 0.605 | 0.670 | |
| Fluorite | -0.7490 | -0.7490 | -1.352 | -0.742 | -2.6i0 | -1.61 | | -2.61 | | | -1.048 | -0.742 | -0.751 | |
| Ferric Hydrate | 2.1078 | 2.1078 | -0.504 | 0.712 | -2.930 | | | -2.93 | | | | 0.712 | 0.706 | |
| Goellite | 6.5063 | 6.5063 | 5.774 | 7.809 | 2.580 | 5.64 | | 2.58 | | | | 7.809 | 7.803 | 3.04 |
| Hematite | 18.0212 | 18.0212 | 12.396 | 16.518 | 5.650 | 8.21 | 16.518 | 5.65 | | | | 15.228 | 15.229 | 13.54 |
| Gibbsite | -1.2387 | -0.4087 | -1.733 | 0.216 | -4.954 | -0.63 | 0.216 | -0.57 | | | -4.954 | -1.685 | -1.817 | -2.69 |
| Birnessite | -3.0029 | -3.0029 | -2.332 | -1.010 | -2.993 | | | -1.01 | | | | -2.993 | -2.993 | |
| Manganite | -1.3448 | -1.3448 | -1.567 | -1.335 | -2.030 | | | -2.03 | | | | -1.335 | -1.338 | |
| Chalcedony | -0.5497 | -0.5497 | -0.660 | -0.415 | -1.410 | | -0.415 | -1.41 | | | -0.522 | -0.537 | -0.537 | -0.54 |
| Quartz | -0.0597 | -0.0597 | -0.083 | -0.040 | -0.143 | -0.14 | -0.143 | -0.04 | | | -0.092 | -0.055 | -0.054 | -0.06 |
| Kaolinite | 1.2019 | -0.5781 | -1.334 | 0.645 | -2.384 | -0.47 | 0.645 | -0.67 | | | -2.108 | -2.108 | -2.384 | -2.24 |
| Sepiolite | -1.7296 | -1.7296 | 0.456 | 1.090 | -1.960 | -1.95 | | 1.09 | | | 1.059 | 1.059 | 1.034 | |

\square Minerals with Sl's calculated using PHRTHERM c: HELGTHEM, that fall outside the range of Sl's given by Nordstrom et al (1979)
far outside the SI ranges calculated by other speciation programs and these minerals have such a wide published range of SIs that it cannot be stated whether the PHREEQE/HELGTHEM calculated SI is satisfactory or unsatisfactory.

Based on the thermodynamic data base checks, discussed in Chapter 4 and reviewed above, it is believed that the PHREEQE/HELGTHEM combination provides geochemical modelling results which are consistent with the other commonly used program/database combinations. All subsequent references to PHREEQE will imply the use of the HELGTHEM data base.

8.3 HYDROGEOCHEMICAL MODELLING

8.3.1 Speciation Calculations

Before attempting to solve the forward hydrogeochemical problems at NSCRV, speciation calculations for each NSCRV analysis were made. The NSCRV data are theoretically saturation sufficient (at most sample depths) with respect to 321 phases, contained in the data base. Those phases which approach or exceed saturation, at any of the sampled depths, are presented in Table 8.2. It should be noted that blanks on Table 8.2 indicate that during analysis certain elements present in the indicated mineral's composition, at the depth shown, were not detected (i.e., the analyses are naturally saturation insufficient). The criterion for incorporating a mineral phase into Table 8.2 was that its SI, at any of the sampled depths, should exceed - $\mathbf{0} .2$. If this

Table 8.2 MINERALS FOUND TO HAVE SATURATION INDICIES >-0.2, FROM INITIAL SPECIATION CALCUL.ATIONS

| DEPTH>> | 18.77 | 56.81 | 69.64 | 71.65 | 74.91 | 77.41 | 96.64 | 97.41 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General | | | | | | | | |
| pH | 7.50 | 8.22 | 7.70 | 8.43 | 8.80 | 8.76 | 9.05 | 9.61 |
| CO2(GAS) | -2.6708 | -3.3104 | -2.9789 | -3.5482 | -3.9283 | -3.9170 | -4.2227 | -5.0064 |
| Hydrated Sheet Silicates | | | | | | | | |
| Na-brid | -1.8073 | -0.4358 | -1.9167 | -0.2616 | 1.4115 | -0.6871 | 0.3506 | 3.4817 |
| K-beid | -2.1905 | -0.8665 | -2.3423 | -0.7349 | 0.9128 | -1.2003 | -0.2594 | 2.9645 |
| Ca-beid | -1.4126 | -0.0715 | -1.5544 | 0.0594 | 1.6505 | -0.3917 | 0.5445 | 3.6247 |
| $\mathbf{M g}$-beid | -1.5857 | -0.2321 | -1.7160 | -0.1051 | 1.4806 | -0.5601 | 0.3455 | 3.4344 |
| ILLITE | -2.6547 | -0.8073 | -2.6685 | -0.5772 | 1.2373 | -0.8145 | 0.1690 | 3.3445 |
| MONTMORI | -2.0458 | -0.7021 | -2.1897 | -0.5702 | 1.0201 | -1.0187 | -0.0701 | 3.0091 |
| Kaolinit | 1.1258 | 2.1279 | 1.0239 | 2.1446 | 3.4265 | 1.6640 | 2.3275 | 4.6733 |
| TALC | 78.3611 | -4.176? | -7.3254 | -3.1928 | -2.0024 | -1.3851 | -1.2287 | 2.4695 |
| Pyrophyl | -0.0241 | 0.8914 | -0.2115 | 1.0027 | 2.3279 | 0.5311 | 1.2617 | 3.8821 |
| PREHNTTE | -7.8711 | -4. 1569 | -7.4272 | -3.5159 | -1.4133 | -2.7525 | -1.3604 | 3.0953 |
| Sheet Silicatea | | | | | | | | |
| Muscovit | 1.2550 | 3.3977 | 1.2180 | 3.5695 | 5.8627 | 3.1165 | 4.3067 | 8.7508 |
| ANNITE | -13.4635 | | | | 8.3178 | 4.5116 | -2.9095 | 3.4360 |
| GREENALI | -15.6126 | | | | 3.8616 | 1.0392 | -7.5554 | -3.2603 |
| Carbonate Minerals | | | | | | | | |
| ARAGON!T | -0.9598 | -0.2217 | -0.9020 | -0.1710 | -0.1516 | 0.0800 | -0.1603 | 0.0631 |
| CALCITE | -0.7195 | 0.0186 | -0.6535 | 0.0693 | 0.0887 | 0.3202 | 0.0493 | 0.2747 |
| OTAVITE | -1.0696 | -0.7079 | -1.0804 | -0.5404 | -0.3785 | -0.4904 | -0.3133 | -0.1503 |
| Silica | | | | | | | | |
| CHALCEDO | -0.1099 | -0.1532 | -0.1481 | -0.1059 | -0.0843 | -0.1015 | -0.0863 | 0.0524 |
| QUARTZ | 0.4787 | 0.4354 | 0.4467 | 0.4827 | 0.5044 | 0.4872 | 0.4782 | 0.6187 |
| CRISTOBA | 0.0146 | -0.0287 | -0.0202 | 0.0186 | 0.0403 | 0.0231 | 0.0249 | 0.1646 |
| Feldspars | | | | | | | | |
| Low albi | -1.7364 | -0.5398 | -1.6258 | -0.1623 | 0.9691 | -0.0058 | 0.8631 | 2.9585 |
| ANALBITE | -2.1236 | -0.9270 | -2.0196 | -0.5495 | 0.5819 | -0.3930 | 0.5022 | 2.5956 |
| Microcli | -0.0686 | 0.9855 | -0.0730 | 1.2350 | 2.2898 | 1.2716 | 1.8012 | 4.1789 |
| H SANIDI | -1.1022 | -0.0481 | -1.1167 | 0.2014 | 1.2562 | 0.2380 | 0.8077 | 3.1824 |
| Hydroxides | | | | | | | | |
| BOEHMITE | -0.9149 | -0.3706 | -0.9451 | -0.4095 | 0.2098 | -0.6542 | -0.2684 | 0.7607 |
| Gibbsite | 0.0522 | 0.5965 | 0.0421 | 0.5576 | 1.1769 | 0.3128 | 0.6185 | 1.6535 |
| GOETHITE | 6.8208 | | | | 7.1351 | 6.1658 | 5.8921 | 6.9275 |
| LEPIDOCR | 6.8380 | | | | 7.1523 | 6.1830 | 5.6919 | 6.7435 |
| DIASPORE | 1.0096 | 1.5539 | 0.9925 | 1.5150 | 2.1342 | 1.2702 | 1.6035 | 2.6365 |
| Mengancee Minerals | | | | | | | | |
| PYROLUSI | C. 1119 | 1.8687 | -0.6849 | -5.5647 | -10.8115 | -10.9846 | -5.3895 | -4.8500 |
| BIRNESSI | -0.3303 | 1.4265 | -1.0170 | -6.0069 | -11.2537 | -11.4268 | -6.2697 | -5.6977 |
| NSUTITE | 0.2597 | 2.0165 | -0.4270 | -5.4169 | -10.6637 | -10.8368 | -5.6797 | -5.1077 |
| BIXBYITE | 0.1858 | 2.2594 | -1.6452 | -4.7274 | -9.3411 | -9.6072 | -3.6243 | -1.9372 |
| HAUSMANN | -1.9458 | 0.4445 | -4.8170 | -6.0957 | -10.0762 | -10.4354 | -4.0412 | -1.2082 |
| MANOANIT | 0.4897 | 1.5265 | -0.3970 | -1.9669 | -4.2737 | -4.4068 | -1.5297 | -0.6777 |
| Phoephaces | | | | | | | | |
| FCO3.4PAT | | 13.6281 | ; 4743 | 16.9078 | | 17.8001 | 15.6147 | 17.4967 |
| MNHPO4(C | | -0.6567 | -1.1079 | 0.0504 | -50.3319 | -0.1909 | -0.2495 | -0.3147 |
| FLUORAPA | | 5.3146 | 3.1601 | 7.3519 | | 7.7494 | 7.2232 | 8.1438 |
| Zoolites | | | | | | | | |
| LEONHARD | 8.0353 | 12.6218 | 8.3258 | 13.4213 | 16.8708 | 13.7175 | 15.5686 | 22.8045 |
| LAUMONTI | -2.6734 | -0.3802 | -2.5575 | 0.0195 | 1.7443 | 0.1677 | 1.2098 | 4.8191 |
| PHILLIPS | -0.2287 | 0.8966 | -0.1194 | 1.2101 | 2.3032 | 1.3067 | 1.7820 | 4.0352 |

Table $8.2 /$ continued
Zine Specice
ZN(OH)2 ZNO(ACTI
ZNSIO3 WILLEM!T

| -2.5702 | -1.8672 | -2.3676 | -0.8691 | |
| ---: | ---: | ---: | ---: | ---: |
| -2.3801 | -1.6771 | -2.1775 | -0.6790 | -0.6 |
| 0.9681 | 1.6278 | 1.0463 | 2.6732 | 2.6 |
| -3.4272 | -2.0645 | -3.2033 | -0.0210 | -0.0 |

Iroa Species
FE(OH)3S
5.5379
3.3179
0.5265
8.2241
18.5259
10.0261
13.9252
6.3943
-8.8430

| 5.8522 | 4.8829 | 4.3918 | 5.4434 |
| ---: | ---: | ---: | ---: |
| 3.6322 | 2.6629 | 2.1718 | 3.2234 |
| 7.6294 | 4.7614 | 0.8582 | 4.3039 |
| 8.1588 | 7.2245 | 6.6574 | 7.5689 |
| 19.1545 | 17.2159 | 16.6968 | 18.7656 |
| 10.6547 | 8.7160 | 7.7339 | 9.8371 |
| 21.0281 | 18.1601 | 15.0143 | 18.4040 |
| 9.1082 | 7.3983 | 7.1809 | 10.2775 |
| -0.1194 | -2.7767 | -4.5944 | -1.2182 |

Framework Silicates
Analcime(Na), Wairakite(Ca), Leucite(K)

| LEUCITE | -3.0295 | -1.9322 | -3.0180 | -1.7299 | -0.6968 | -1.6978 | -1.0949 | 1.1375 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| WAIRAKIT | -7.8614 | -5.5682 | -7.7934 | -5.1684 | -3.4436 | -5.0203 | -3.7875 | -0.1923 |
| ANALCIME | $-1595 j$ | -0.3554 | -1.4465 | -0.0252 | 1.0845 | 0.1268 | 0.9802 | 2.9370 |
| | | | | | | | | |
| Others | | | | | | | | |
| BARITE | 0.4324 | 0.1149 | 0.2468 | 0.0950 | -0.6456 | 0.1750 | -0.1165 | -0.5398 |
| CHRYSOTI | -10.7374 | -6.4664 | -9.6566 | -5.5771 | -4.4301 | -3.7783 | -3.5283 | -0.1167 |
| DIOPSIDE | -7.1112 | -4.3676 | -6.5042 | -3.7196 | -2.9088 | -2.4943 | -2.0563 | 0.2530 |
| FLUORITE | -0.0012 | 0.1467 | -0.1538 | 0.0615 | -0.3280 | -0.0327 | -0.1668 | -0.0269 |
| TREMOLIT | -16.1122 | -6.4404 | -13.6513 | -4.1606 | -1.3487 | 0.0977 | 1.0856 | 9.4057 |
| CUPROUSF | 8.7300 | | | | 15.0585 | 13.9729 | 11.5940 | 13.0159 |
| CUPRICFE | 14.8915 | | | | 15.3743 | 13.2793 | 13.1882 | 15.3448 |

criterion was met at any depth then the SI for the mineral at all other derths was included in the table. The selection of an SI of $\mathbf{- 0 . 2}$ is somewhat arbitrary though it has been noted by Plummer (1984) that the SI of simple minerals probably cannot be calcuiated to better than ± 0.1 units of SI and the error of the estimate of SI for more stoichiometrically complex solids may be as much as ± 2.0. These errors are large when it is considered that SI is a logarithmic number.

The results presented in Table 8.2 indicate that the NSCRV waters are super-saturated with respect to quartz at all depths and very close to being saturated with respect to the amorphous silica chalcedony at all depths; however, quartz was only identified in fractures below 68.64 m . The NSCRV waters become saturated below 70 m with respect to the carbonates calcite and aragonite, but never reach saturation with respect to dolomite, probably as a result of the low concentration of Mg , which decreases with depth. Only calcite was identified on fracture planes but it was identified over virtually the entire range of the borehole.

The common aluminosilicates; the feldspars low albite and analbite appear to approach saturation with depth which agrees with the mineral activity diagrams shown in Chapter 5. Microcline is near or exceeds saturation at all depths. The NSCRV waters are undersaturated with respect to anorthite at all depths though
they move towards anorthite saturation with increasing depth. No feldspars were positively identified on fracture plane minerals.

Within the group of clay minerals (hydrated sheet silicates) all the NSCRV waters are super-saturated with respect to kaolinite. They apparently aiso reach saturation with respect to illite and montmorillonite and the beidellites at depths greater than -70 m . The mineral halloysite was possibly identified below 68.64 m . Illite and montmorillonite were possibly identified on fracture planes at 71.80 m.

With depth, the waters become over saturated with respect to pyrophyllite, possibly as a result of the two orders of magnitude increase in Al concentration, and a large increase in pH and silica concentration (see Figure 5.4 for the space $\log \{\mathrm{K}\} /\{\mathrm{H}\}$ vs $\log \left\{\mathrm{H}_{4} \mathrm{SiO}_{4}\right\}$). No positive matches were made with pyrophyllite in fracture plane surfaces.

The aluminum hydroxide, gibbsite, is apparently at (or slightly above) saturation throughout the NSCRV waters. No positive matches were made with gibbsite in fracture plane surfaces.

The NSCRV waters are saturated with respect to barite at shallow depths but become undersaturated with depth, probably a result of the decrease of dissolved barium concentration with depth, rather than variations in SO_{4} with depth. Both barite and sulphate were identified on fracture plane surfaces; however, no positive (or even tentative) matches with barite were made.

The NSCRV waters do not achieve saturation with respect to chlorite (or at least the chlorite included in HELGTHEM) and hence chlorite is not shown in Table 8.2. This result may be reasonable as the chloritisation of the granite probably occurred at much higher temperatures than seen in the present waters.

The manganese minerals, such as pyrolusite, are oversaturated in the surface NSCRV waters but become undersaturated with depth. There was no evidence to reflect this in the fracture plane analyses.

Many other minerals appear to be at or to reach saturation in the NSCRV waters including the framework silicates, zeolites, simple hydroxides and many of the common iron minerals. With respect to the latter, however, Plummer (1984) notes that SI calculations of iron hydroxides may be particularly inaccurate if tie ferric/ferrous iron concentration has not been determined in the field.

Despite the large number of minerals apparently at, or above, saturation only a limited number of those shown in Table 8.2 were detected in the fracture planes; furthermore, and as noted above (and with the caveat than nearly all mineral identifications are tentative) these minerals displayed only an approximate correlation with the calculated SI's. These inconsistencies are probably a function of a variety of factors such as: the system being at partial equilibrium, or the system not reaching equilibrium because of short-circuiting along fractures, inherent errors in the thermodynamic data or aluminum concentration data noted above, and the method of analysing for fracture plane minerals

8.3.2 Mass Balance calculations

Mass balance calculations were made using the NSCRV water analyses and a set of plausible phases selected primarily on the basis of results of fracture mineral analyses. Sodium chloride was added to the list of plausible phases (in addition to the chloride from the seawater mixing noted below) as a surrogate for other Cl^{-}containing phases, such as inclusion fluids and amphiboles. Mixing equations were added to the mass balance; the end members for mixing were considered to be seawater and meteoric water. The selection of these end members was based on the proximity of the ocean, the geological and the glacial history of the area, and the probable mixing scenarios deduced from isotope data.

As discussed previously the isotopic data were not considered to be useful for the purposes of resolving mixing scenarios, though they were used to reject scenarios. This aspect is further discussed in section 8.4.

Over fifty mineral/element combinations were tested; of these combinations many resulted in uninvertible matrices, or mixtures of seawater/ freshwater that had no physical meaning (e.g., apparent mixing of negative amounts of seawater with greater than 100% volumes of meteoric water). From the original combinations a total of 47 were successfully run (i.e., produced invertible matrices). Of the 47 , four models were selected as being of possible interest. The selection process was based on similarity between the mass balance results, and the results of speciation calculations (i.e., that similar combinations of minerals were precipitating or dissolving in both calculations).

The results of the four selected mass balance calculations are presented in Table 8.3 at each of the sample depths. All mathematically possible mass balance models are included in Appendix F. An abbreviated synopsis of the phases and elements used in the calculations is provided on the first two lines of each combination in Table 8.3. The two assumed mixing solutions appear as phases which requires another equation in terms of the mixing proportions. Mix 1 is meteoric water, with a $\mathrm{P}_{\mathrm{co2}}$ of $10^{-2.67}$ as found in the shallowest water from NSCRV. Mix 2 is

Table 8.3 MASS BALANCE CALCULATION RUNS SELECTED FOR PHREFQE

| MASS BALANCE MODEL T_A | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plausible Phases | | COL | Cale | NaCT | Micr | S-min | Na-Beid | Mix | Mix? | Elements |
| Anorth | Alb | | | | | | | | | |
| Ca | TC | Si | Na | AI | Mg | RS | 504 | Cl | Mix | |
| DEPTH (m) | 18.77 | 56.81 | 69.64 | 7.65 | 74.91 | 77.41 | 96.64 | 97.41 | | |
| | mmoles o | 1 plausible | phase add | ded(+) or 1 | 0st (-) irom | the groun | ndwater sy | stem | | |
| Anorth | 0.7699 | 0.6689 | 0.6127 | 0.4931 | -0.4762 | -0.2416 | 0.1260 | -1.4470 | | |
| Alb | 0.7283 | 1.1613 | 0.9900 | 1.4090 | 1.7698 | 1.0994 | 1.9397 | 1.7791 | | |
| CO 2 | 2.0566 | 2.2995 | 1.4994 | 2.1476 | 1.4024 | 1.2776 | 1.6756 | -0.4151 | | |
| Calc | -0.0057 | -0.0004 | 0.1121 | 0.0023 | 0.7049 | 0.7048 | 0.0087 | 1.5534 | | |
| NaCl | 1.8863 | $1.86 ? 2$ | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 | | |
| Micr | -0.0214 | -0.5445 | -0.4203 | -0.9247 | -2.0655 | -1.2060 | -1.7273 | -2.7997 | | |
| S -min | 0.1499 | 0.1630 | 0.1880 | 0.1755 | 0.1967 | 0.2378 | 0.4511 | 1.1216 | | |
| Na-Beid | -0.9642 | -0.8385 | -0.7703 | -0.6308 | 0.5373 | 0.2533 | -0.1990 | 1.6895 | | |
| Mix 1 | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | | |
| Mix2 | 0.0017 | 0.0013 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | | |
| DEPTH(m) | 18.77 | 56.81 | 69.64 | 71.65 | 74.91 | 77.41 | 96.67 | 97.41 | | |
| | mmoles of | f elements | added(+) | or lost (-) | from the g | oundwate | system | | | |
| Ca | 0.7825 | 0.6876 | 0.7461 | 0.5088 | 0.2344 | 0.4750 | 0.1366 | 0.1081 | | |
| TC | 2.0547 | 2.3031 | 1.6159 | 2.1527 | 2.1086 | 1.9850 | 1.6849 | 1.1388 | | |
| Si | 0.1222 | 0.1111 | 0.1076 | 0.1243 | 0.1323 | 0.1269 | 0.1592 | U. 2445 | | |
| Na | 3.1274 | 3.6146 | 3.6799 | 4.1931 | 5.0022 | 4.8064 | 5.9069 | 7.3554 | | |
| Al | 0.0003 | 0.0009 | 0.0003 | 0.0008 | C. 2037 | 0.0005 | 0.0009 | 0.0219 | | |
| Mg | 0.0946 | 0.0988 | 0.1099 | 0.0691 | 0.0295 | 0.0609 | 0.0097 | 0.0086 | | |
| RS | 9.4429 | 10.5070 | 7.4934 | 9.8748 | 6.8891 | 6.7416 | 9.4423 | 5.0986 | | |
| SO4 | 0.2002 | 0.2155 | 0.2463 | 0.2122 | 0.2124 | 0.2701 | 0.4563 | 1.1262 | | |
| Cl | 2.8581 | 2.8765 | 3.1067 | 3.0949 | 3.0964 | 3.7114 | 4.0475 | 5.0263 | | |

| MASS BALANCE MODELT_C | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plausible Pbases | | | | | | | | | | | Elements |
| Anorth | Alb | CO 2 | Calc | NaCl | Micr | $5-\mathrm{min}$ | Q2\% | Na-Beid | MixI | Mix2 | |
| Ca | TC | Si | Na | AI | Mg | K | RS | 504 | CT | MEx | |
| DEPTH (m) | 18.77 | 56.81 | 69.64 | 71.65 | 74.91 | 77.41 | 96.64 | 97.41 | | | |
| mmoles of plausible phase added(+) or lost(-) from the groundwater system | | | | | | | | | | | |
| Anorth | 0.7699 | 0.6689 | 0.6127 | 0.4931 | -0.4762 | -0.2416 | 0.1260 | -1.4470 | | | |
| Alb | 0.7376 | 1.2562 | 1.0639 | 1.5673 | 2.1195 | 1.3040 | 2.2313 | 2.2546 | | | |
| CO 2 | 2.0566 | 2.2995 | 1.4994 | 2.1476 | 1.4024 | 1.2776 | 1.6756 | -0.4151 | | | |
| Calc | -0.0057 | -0.0004 | 0.1121 | 0.0023 | 0.7049 | 0.7048 | 0.0087 | 1.5534 | | | |
| $\stackrel{\mathrm{NaCl}}{ }$ | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 | | | |
| Micr | 0.0337 | 0.0243 | 0.0231 | 0.0241 | 0.0317 | 0.0208 | 0.0212 | 0.0523 | | | |
| S-min | 0.1499 | 0.1630 | 0.1880 | 0.1755 | 0.1967 | 0.2378 | $0.45 i 1$ | 1.1216 | | | |
| Qtz | -C.0917 | -0.9455 | -0.7372 | -1.5773 | -3.4865 | -2.0396 | -2.9067 | -4.7414 | | | |
| Na-Beid | -0.9918 | -1.1233 | -0.9923 | -1.1059 | -0.5129 | -0.3610 | -1.0745 | 0.2613 | | | |
| Mix 1 | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | | | |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | | | |
| DEPTH (m) | 18.77 | 56.81 | 69.64 | 71.65 | 74.91 | 77.41 | 96.64 | 97.41 | | | |
| | mmoles of | f elements | added(+) | or lost(-) | om the g | oundwater | system | | | | |
| Ca | 0.7825 | 0.6876 | 0.7461 | 0.5088 | 0.2344 | 0.4750 | 0.1366 | 0.1081 | | | |
| TC | 2.0547 | 2.3031 | 1.6159 | 2.1527 | 2.1086 | 1.9850 | 1.6849 | 1.1388 | | | |
| Si | 0.1222 | 0.1111 | 0.1076 | 0.1243 | 0.1323 | 0.1269 | 0.1592 | 0.2445 | | | |
| Na | 3.1274 | 3.6146 | 3.6799 | 4.1931 | 5.0022 | 4.8064 | 5.9069 | 7.3554 | | | |
| A | 0.0003 | 0.0009 | 0.0003 | 0.0008 | 0.0037 | 0.0005 | 0.0009 | 0.0219 | | | |
| $\mathbf{M g}$ | 0.0946 | 0.0988 | 0.1099 | 0.0591 | 0.0295 | 0.0609 | 0.0097 | 0.0086 | | | |
| K | 0.0519 | 0.0432 | 0.0442 | 0.0373 | 0.0373 | 0.0325 | 0.0230 | 0.0540 | | | |
| RS | 9.4429 | 10.5070 | 7.4934 | 9.8748 | 6.8891 | 6.7416 | 9.4423 | 5.0986 | | | |
| SO4 | 0.2002 | 0.2155 | 0.2463 | 0.2122 | 0.2124 | 0.2701 | 0.4563 | 1.1262 | | | |
| Cl | 2.8581 | 2.8765 | 3.1067 | 3.0949 | 3.0964 | 3.7114 | 4.0475 | 5.0263 | | | |

Table 8.3/ continued

| MASS BALANCE MODEL S_K | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prastble Phascs | | | | | | | | | Elements |
| Anorth | Alb | COL | Calc | NaCl | Micr | Na-Beid | Mixi | Mix' | |
| Ca | TC | 51 | Na | A1 | Mg | K | CT | Mix | |
| DEPTH | 18.71 | 56.81 | 69.64 | 71.65 | 74.91 | 71.41 | 96.64 | 97.41 | |
| mmoles of piausible phase adjed(+) or lost(-) from the groundwater system | | | | | | | | | |
| Anorth | 0.9059 | 2.0696 | 1.7048 | 2.8299 | 4.6889 | 2.7799 | 4.4322 | 5.5772 | |
| Alb | 0.7829 | 1.7233 | 1.4281 | 2.3466 | 3.8421 | 2.3117 | 3.6674 | 4.5972 | |
| CO 2 | 2.1925 | 3.7002 | 2.5915 | 4.4843 | 6.5676 | 4.2992 | 5.9819 | 6.6090 | |
| Calc | -0.1417 | -1.401: | -0.9800 | -2.3345 | -4.4603 | -2.3167 | -4.2975 | -5.4707 | |
| NaCl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 | |
| Micr | 0.0337 | 0.0243 | 0.0231 | 0.0241 | 0.0317 | 0.0208 | 0.0212 | 0.0523 | |
| Na-Beid | -1.1279 | -2.5261 | -2.0861 | -3.4462 | -5.6858 | -3.3870 | -5.3872 | -6.7734 | |
| Mix1 | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | |
| DEPTH (m) | 18.71 | 36.81 | 69.64 | 71.65 | 74.91 | 71.41 | 96.64 | 97.41 | |
| | mmoles of | elements | dded(+) | lost(-1 | from the gr | roundwate | r system | | |
| Ca | 0.7825 | 0.6876 | 0.7461 | 05088 | 0.2344 | 0.4750 | 0.1366 | 0.1081 | |
| TC | 2.0547 | 2.3031 | 1.6159 | 2.1527 | 2.1086 | 1.9850 | 1.6849 | 1.1388 | |
| Si | 0.1222 | 0.1111 | 0.1076 | 0.1243 | 0.1323 | 0.1269 | 0.1592 | 0.2445 | |
| Na | 3.1274 | 3.6146 | 3.6799 | 4.1931 | 5.0022 | 4.8064 | 5.9069 | 7.3554 | |
| A | 0.0003 | 0.0009 | 0.0003 | 0.0008 | 0.0037 | 0.0005 | 0.0009 | 0.0219 | |
| $\mathrm{Mg}_{\mathbf{g}}$ | 0.0946 | 0.0988 | 0.1099 | 0.0691 | 0.0295 | 0.0609 | 0.0097 | 0.0086 | |
| K | 0.0519 | 0.0432 | 0.0442 | 0.0373 | 0.0373 | 0.0325 | 0.0230 | 0.0540 | |
| Cl | 2.8581 | 2.8765 | 3.1067 | 3.0949 | 3.0964 | 3.7114 | 4.0475 | 5.0263 | |

seawater of the Nordstrom et al. (1979) composition. TC is total carbon as calculated using PHREEQE during the speciation calculations. RS is redox state also calculated by PHREEQE and expressed as THOR in PHREEQE. S-min is an undefined sulphate bearing mineral i.e, no differentiation between for instance. barite or anhydrite) with sulphate at an operational valence (Parkhurst et al. 1980) of 6^{+}. The table shows both the number of millimoles of a mineral precipitated (negative) from the system or dissolved (positive) into the system, and the fraction of the end-member solutions mixed.

The four mass transfer models chosen fall into two series;
i) the $T_{-} A$ and $T_{-} C$ combinations (10 and 11 plausible phases, respectively, requiring the same number of variables), both of which have an unspecified sulphate mineral added and a redox constraint. As noted above the redox value was determined during the PHREEQE speciation calculations, ii) the S_H and S_K combinations (9 and 10 plausible phases) which have no sulphate variable and no redox state constraint.

Close scrutiny of the four mineral combinations presented in Table 8.3 reveals that only one mineral combination has any validity: The phase combination of model T_A can be rejected as a feasible reaction path since the mass balance
requires that anorthite be precipitated. The phase combination T_C also requires precipitation of anorthite and solution of calcite in the deeper sample intervals. The phase combination S_H requires that halite is precipitated which is obviously incorrect at the salt concentrations seen at NSCRV. The only feasible phase combination found is that of model S_K; however, even this combination requires addition of a carbon source $\left(\mathrm{CO}_{2}\right)$ to the deeper sample intervals. Whether there is a mechanism in the Holyrond Aquifer which does this is not known. Carbon isotope data would add a further useful and relevant constraint to the mass balance calculations. Unfortunately no carbon isotope data are currently available for NSCRV.

The results of the balance calculations indicate that:

1) for a successful mass balance result (i.e one that is consistent with calculated sati:ration states) NaCl must always be included as a mineral phase (where NaCl is a surrogate for fluid inclusion or amphibole derived chloride), 2) if NaCl is included, as a mineral phase, then the mixing proportion of seawater decreases with depth,
2) a carbon source is required for a feasible mass balance result. Carbon addition is known to occur in regional groundwater flow (Plummer, 1977) and deep groundwater in granitic rocks can contain large concentrations of
hydrocarbon gases that were apparently generated in-situ (Frape and Fritz. 1987). Carbon isotope data would help to further constrain the mass balance equations,
3) no satisfactory model was found in which seawater was the sole source of Cl.

8.4 TEST OF MASS BALANCE MIXING HYPOTHESIS USING OXYGEN AND HYDROGEN ISOTOPE DATA

The calculated mixing proportions of end member waters implied in mass balance model S_K, may be tested using the analyzed isotope data and assumed isotope compositions for the mixing components (the end-members). In this manner it may be possible to corroborate the results of mass balance modelling. Unfortunately the proportion of seawater mixed is so small that it must have an isotopic composition which is extreme (negative or positive) compared with the isotopic composition of the meteoric component to have any significant effect.

Two diffe:ent mixing scenarios were tested using two different compositions for the minor mixing fraction (Mix 2 the seawater component in the balance calculations) and using a constant composition for the major mixing fraction (Mix 1, shallow groundwater in the balance calculations). Initially, no allowance was
made for the altitude effect described in Chapter 6. The assumed compositions for the end-members are:
i) Major mixing fraction (meteoric water) with isotopic composition: $\delta^{18} \mathrm{O}$ of -8.079, $\delta^{2} \mathrm{H}$ of -55.39 . The isotopic composition of ${ }^{18} \mathrm{O}$ at 0 m depth was calculated from the equation for the line of best fit for the ${ }^{18} \mathrm{O}$ analyses, the value for ${ }^{2} \mathrm{H}$ was then back calculated using the equation for the meteoric water line (Equation 6.1),
ii) The minor mixing fraction assumed to be either:
a) glacial meltwater of approximate composition $\boldsymbol{\delta}^{18} \mathrm{O}$ of -41 (Faure 1986) and a $\delta^{2} \mathrm{H}$ value of -318 (calculated from the equation for the meteoric water line and the $\delta^{18} \mathrm{O}$ value of -41.00)
b) seawater of composition $\delta^{18} \mathrm{O}$ of $0.5, \delta^{2} \mathrm{H}$ of 5.00 (Faure 1986).

Using the two possible mixing combinations (i.e., shallow NSCRV groundwater mixed with glacial meltwater and shallow NSCRV water mixed with seawater), the following two scenarios were considered:

SCENARIO 1: In contradiction to the selected plausible mass balance models. there is no contribution of NaCl from the rock mass and all chloride is derived from the minor mixing fraction. See for instance mass balance model N_A. Appendix F.

SCENARIO 2: There is some contribution of NaCl from the rock mass and the mixing fraction of seawater decreases with depth, as seen in balance model S_K.

Table 8.4 presents a synopsis of the results of these computations. The four possible mixing scenarios are numbered $1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~A}$ and 2 B . The isotope compositions were calculated using equation 8.1:

$$
\begin{equation*}
\delta T o t=X_{m i x 1} \cdot \delta_{m i \times 1}+X_{m i x 2} \cdot \delta_{m i x 2} \tag{Equation8.1}
\end{equation*}
$$

| δ Tot | isotopic composition of observed groundwater |
| :--- | :--- |
| $X_{\operatorname{mix} n}$ | fraction of component n (where n is 1 or 2) |
| $\boldsymbol{\delta}_{\text {mix } n}$ | isotopic composition of component n |

A line of best fit was applied to all results (both actual and calculated) and it is the change in the isotope composition, from 0 m to 97.41 m which is
reviewed. The observed change in isotopic composition at NSCRV is $\mathbf{- 0 . 3 3 5}$ for $\delta^{18} \mathrm{O}$ and -2.94 for $\delta^{2} \mathrm{H}$ (based on a least-squares linear fit to data shown in Figure 5.1, where the deep waters are depleted in the heavy isotope relative to shallow groundwater.

Note that all of the calculated mixing effects in Table 8.4 will have superimposed on them an altitude effect which will result in a further decrease in the $\delta^{18} \mathrm{O}$ values of about 0.33% and for $\delta^{2} \mathrm{H}$ of about 2.94%, respectively, between the shallow waters and the deep waters. Thus, for the four mixing models tested,

Table 8.4 Hypothetical mixing of end members of differing isotopic compositions

| | Modelled change in
 $\delta^{18} \mathrm{O}$ | Modelled change in
 $\delta^{2} \mathrm{H}$ | Observed change
 $\delta^{18} \mathrm{O} / \delta^{2} \mathrm{H}$ |
| :--- | :--- | :--- | :--- |
| HYPOTHESIS 1:MIXING WITHOUT ADDITION OF NaCl (Seawater source
 only) | | | |
| 1A) Mix 2 Glacial | -0.292 | -2.33 | $-0.335 /-2.94$ |
| 1B) Mix 2 Seawater | 0.076 | 0.54 | |
| HYPOTHESIS 2: MIXING WITH ADDITION OF NaCl | | | |
| 2A) Mix 2 Glacial | -0.005 | n/a | |
| 2B) Mix 2 Seawater | -0.013 | -0.09 | |

model 1 A would result in a net change in $\delta^{18} \mathrm{O}$ of approximately -0.61% benveen the shallow and the deep intervals; Model 1 B would result in a change in $\delta^{18} \mathrm{O}$ value of
approximately -0.24%; model 2 A would result in a change of $\delta^{18} \mathrm{O}$ value of -0.32% : and model 2 B would result in a change of -0.33%. Thus model 1A may certainly be rejected, and model 1B should probably be rejected, indicating that Hypothesis 1 is incorrect. This is consistent with the mass balance evidence.

Both of models 2A and 2B appear to produce plausible results; however, model 2A (mixing of meteoric water with glacial meltwater) is completely inconsistent with the indicator originally used to determine the mixing proportions; that is chloride concentration. The only consistent model is one in which seawater mixes with meteoric water to provide part of the chloride concentration with the balance of the chloride derived from an undetermined source in the rock mass.

8.5 TEST OF GEOCHEMICAL MODELLING RESULTS USING CHLORIDE DATA

Nordstrom et al. (1985) proposed that the gradual leaching of fluid inclusions from the rock mass of the Stripa Granite could account for the entire salinity of the Stripa groundwaters (assuming that "ie Stripa groundwater is under static hydrologic conditions). The inclusion fluid at Stripa is believed to be relatively enriched in halides (especially Cl) and represents an estimated 17 L of inclusion fluid per $\mathrm{m}^{\mathbf{3}}$ of rock mass. It averages approximately 3% (by weight) of NaCl , equivalent to a concentration of 278 ppm of chloride in the bulk rock (Nordstrom et al. 1985).

The salt content of the inclusion fluids, expressed in terms of NaCl , is higher in unfractured than fractured parts of the Stripa rock mass (Fontes et al. 1989), being 40% and 17% in the unfractured and fractured parts of the rock respectively. This is equivalent to 210 and 130 ppm Cl in the fractured and unfractured rock respectively (note that the 278 ppm figure is from Nordstrom et al. (1985) while the 210 \& 130 ppm values are from Fontes et al. 1989, hence the apparently incorrect average value)

Assuming a 1% porosity in the granite, Nordstrom et al. (1985) showed that a concentration of Cl of $\mathbf{\sim 2 8} \mathrm{g} / \mathrm{L}$ could develop, in the groundwater, if all the fluid inclusions were leached. To test this theory Nordstrom went on to compare the $\mathrm{Br} / \mathrm{Cl}$ ratios (both elements assumed to be conservative tracers) in fluid inclusions with those in the groundwater. An average $\mathrm{Br} / \mathrm{Cl}$ ratio for samples leached from fluid inclusions in Stripa Granite was 0.0101 ± 0.0015; Stripa groundwater averaged 0.0107 ± 0.001 (in comparisen the average $\mathrm{Br} / \mathrm{Cl}$ ratio for all of the NSCRV waters is an extremely consistent 0.0013 and in seawater is 0.00356). Based on this reasoning Nordstrom et al. (1985) concluded that leaching of fluid inclusions could be invoked as a mechanism for adding salinity to the Stripa groundwaters. Nordstrom et al. (1985) also studied the I / Cl ration of the inclusion fluid and groundiwater but I is not considered to be conservative, being susceptible to reaction with organic matter in a variety of valence states (Fontes et al. 1989).

Fontes et al. (1989) reviewed the hypothesis that fluid inclusions could account for groundwater salinity in the Stripa granite and concluded that it was incompatible with the available facts because:
a) there were possible flaws in the leaching experiments reviewed by Nordstrom et al. (1985),
b) incompatibility of the inclusion data with known groundwater SO_{4} concentrations,
c) a lack of a satisfactory mechanism to account for the transfer of inclusion fluid to the groundwater and no evidence for any flushed voids in ary of the Stripa rocks analyzed, and
d) no evidence to suggest that the groundwater at the Stripa site is in any way stagnant, as required by a fluid inclusion mass calculation.

The possibility that the salinity in the Stripa Granite is derived from dissolution of halide-containing micas was also discounted by Fontes et al. Their argument was based on a probable lack of mass balance between the known amount of alteration of biotite to chlorite (with release of chloride) in combination with probable over-estimation of the chloride content of the biotites. However Edmunds et al. (1985) considered the breakdown of biotite as a plausible means of developing salinity in the Carnmellis Granite, U.K.

Despite the objections of Fontes et al. (1989) to fluid inclusion salinity accounting for the groundwater salinity in the Stripa Granite, fluid inclusions offer a possible source of Cl in the Holyrood Granite. An alternative source might be grain boundary salts, or ejection of chloride from biotites during chloritisation. Therefore recognising that ' NaCl ' is a surrogate for a rock-derived Cl source, the phases selected for mass balance modelling in section 8.3.2 all appear to be plausible and justifiable. Furthermore, the hypo:hesis of seawater addition in small amounts is not inconsistent with the observed shifts in isotope values. The proposed Cl sources are examined in the following section, in light of the expected $\mathrm{Cl} / \mathrm{Br}$ ratio variation expected during mixing.

Figure 8.1 shows the correlation of the fraction of seawater (calculated using mass balance) mixed with NSCRV waters, and the inverse correlation of mmoles of modelled NaCl added to the NSCRV waters, both with respect to Log hydraulic conductivity. Both correlations are significant at the $\mathbf{9 5 \%}$ level. Table 8.5 shows these results in terms of calculated additions of CJ to the NSCRV waters from seawater and from the rock-mass. All rock-mass halide contributions (here assumed to be from fluid inclusions, FI) are designated by a superscript- ${ }^{\circ}$. The values were calculated as follows:

Figure 8.1 CORRELATION BETWEEN MODELLED NaCI AND SEAWATER ADDITIONS TO GROUNDWATER IN THE HOLYROOD GRANITE, AND HYDRAULIC CONDUCTIVITY

Log mmoles NaCl added vs Log K

Regression Output:
For $\mathrm{y}=\mathrm{Mx}+\mathrm{C}$

| C | -1.017 |
| :--- | ---: |
| Err of C | 0.608 |
| R^{2} | 0.739 |
| No. Obs. | 8.000 |
| ${ }^{\circ}$ Freedom | 6.000 |
| | |
| M | -0.547 |
| Std Err of M | 0.133 |

0.608
0.739
8.000
6.000
-0.547
0.133

Log Fraction of Seawater Mixing vs Log K

| C | 0.003 |
| :--- | :--- |
| Err of C | 0.000 |
| R2 | 0.603 |
| No. Obs. | 8.000 |
| ${ }^{\circ}$ Freedom | 6.000 |
| | |
| M | 0.000 |
| Sid Err of M | 0.000 |

Table 8.5 Calculated contributions of halides from seawater and a rock source

| Sample
 Depth | LogK | Seawater fraction calculated from mass | observed | conce | Irations | Calculated ha contributions | eawate | Calculated contributi | rock d | ved halide |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (m) | $(\mathrm{m} / \mathrm{s})$ | balance | $\begin{array}{r} \mathrm{Cl} \\ (\mathrm{ppb}) \end{array}$ | $\begin{array}{r} \mathrm{Br} \\ (\mathrm{ppb}) \end{array}$ | $\mathrm{Br} / \mathrm{Cl}$ | $\begin{array}{r} \mathrm{Cl} \\ (\mathrm{ppb}) \end{array}$ | Br (ppb) | $\cdot \begin{gathered} \mathrm{Cl}^{\circ} \\ (\mathrm{ppb}) \end{gathered}$ | $\begin{array}{r} \mathrm{Br}^{\circ} \\ (\mathrm{ppb}) \end{array}$ | $\mathrm{Br}^{\circ} / \mathrm{Cl}^{\circ}$ |
| 18.79 | -6.42 | 0.0017 | 101321 | 138.7 | 0.001369 | 34020 | 114.9 | 66875 | 23.8 | 0.000356 |
| 56.81 | -5.42 | 0.0018 | 101973 | 138.5 | 0.001358 | 35509 | 119.9 | 66020 | 18.6 | 0.000281 |
| 69.64 | -5.75 | 0.0020 | 110132 | 145.4 | 0.001320 | 39520 | 133.4 | 70117 | 12.0 | 0.000171 |
| 71.65 | -6.44 | 0.0013 | 109715 | 146.1 | 0.001332 | 24852 | 83.9 | 84555 | 62.2 | 0.000735 |
| 75.61 | -8.01 | 0.0005 | 109769 | 145.9 | 0.001329 | 10594 | 35.8 | 99049 | 110.2 | 0.001112 |
| 77.62 | -6.77 | 0.0011 | 131570 | 172.5 | 0.001311 | 21891 | 73.9 | 109410 | 98.6 | 0.000901 |
| 96.64 | -6.98 | 0.0002 | 143485 | 189.7 | 0.001322 | 3472 | 11.7 | 139980 | 177.9 | 0.001271 |
| 98.62 | -10.91 | 0.0002 | 178183 | 239.4 | 0.001344 | 3107 | 10.5 | 175051 | 228.9 | 0.001308 |
| $19805000666872.00 \quad 0.003377$ | | | | | | | | | | |

See rext for explanation for derivation of results
i) contribution of Cl° from the rock mass (equation 8.2):

$$
C 1^{\circ} \mu \mathrm{g} / L=\operatorname{NaCl}(\mu M / L) * M W_{C 1}(g / M)
$$

(Equation 8.2)

Where:
NaCl - moles chloride contributed to the groundwater from the rock mass as calculated using mass balance model S_K
$\mathrm{MW}_{\mathrm{CI}} \cdot$ Molecular weight of chlorine
ii) contributions of Cl and Br , to the groundwater, from seawater (using equation 8.3):
(Equation 8.3)

$$
H(p p m)=\left[X_{g e a} *\left[H_{s g a}\right] M / k g * M W_{H}(g / M)\right] * 1000
$$

Where:
H - calculated halide concentration in ppm
$\mathrm{H}_{\text {sea }} \quad$ - halide concentration in seawater in Moles/kg
$X_{\text {sea }} \quad$ - fraction of seawater contributing to mixture, as calculated using mass balance model S_K
MW_{H} - molecular weight of halide in $\mathrm{g} /$ mole

Rock derived $\mathrm{Br}\left(\mathrm{Br}^{\circ}\right)$ was calculated by subtracting the calculated Br concentration contributed from seawater, from the analyzed Br concentration. This value is shown as the calculated remainder on Table 8.5.

The results shown on Table 8.5 indicate that modelled Cl contribution from seawater decreases from approximately 34%, in the higher permeability zones, to less than 2% in the lower permeability zones, while modelled contributions of rock derived chloride (Cl°) rise from approximately 66% to 98%. The general increase in Cl° is interpreted as a manifestation of increased rock-water interaction, also reflected in the inverse correlation of silica concentration with Log hydraulic conductivity (Figure 5.1).

8.5.1 Discussion

If the interpretations of an isotope altitude effect and the probable ordered nature of flow in the Holyrood Aquifer are coupled with halide contribution inferred from assumed seawater and the rock-mass sources then a possible mechanism for the addition of seawater to the aquifer may be hypothesised.

It is proposed that seawater, in the amounts calculated from the mass balance model S_K, may be (or may have been) provided to the aquifer in precipitation enriched in Cl and other compounds by seawater aerosols. This
mechanism could provide saltwater to the recharging aquifer in amounts which would be an inverse function of the distance of the recharge point from the coast line (and an inverse function of the altitude of recharge). The calculations in Table 8.5 indicate that the modelled seawater (or aerosols) contribute approximately 34 ppm chloride in shallow groundwaters at the NSCRV' site, decreasing to approximately 3 ppm Cl in the deepest groundwater, derived from higher elevations inland. Schillereff (1992) analyzed samples from shallow depths in wells at altitudes between 100 and 120 m , in the Seal Cove River Valley (approximately 2.5 km inland and up the Seal Cove River of the NSCRV location). The samples had Cl concentrations in the range 5.2 to 8.1 ppm , which compare favourably with the calculated seawater chloride addition in deep NSCRV samples of 3.1 to 3.4 ppm in the 90 m sample intervals (which are assumed to have been recharged at an altitude of approximately 170 m), shown on Table 8.5.

McCullough (1984) has published information regarding chloride concentration in precipitation at St.John's airport, with a maximum concentration, for the period of recorded, in December of 0.14 ppm . Samples analyzed during August had no detectable Cl in them. The St.John's site is only $1-2 \mathrm{~km}$ from the coast. Cicerone (1984) has noted that marine precipitation may have chloride concentrations of up to 10 ppm , which is comparable to the calculated figures (in Table 8.5) for non rock-mass chloride contribution at NSCRV.

In Chapter 6 it was noted that recharge to the Holyrood aquifer occurred primarily during March-April and October-November. These are periods when strong northerly winds, which might be expected to have significant fetch over the ocean, carry precipitation to the Newfoundland east coast. These winds are more likely to carry high aerosol salt concentrations than the westerly and southwesterly winds that prevail in summer when aquifer recharge is likely to be minimal. Thus, a significant range of Cl concentrations is likely in precipitation over the study area, and the possibility exists that precipitation during periods of principal aquifer recharge in NSCRV may also be coupled with high levels of chloride in the precipitation.

Unfortunately no precise information is available regarding concentratic: of chloride in near coastal precipitation at NSCRV. If aerosol salt concentrations are high the isotope data corroborate the mass balance model of seawater salt addition. The calculated contributions of aerosol/seawater derived chloride are also consistent with chloride concentrations observed in shallow groundwaters (Schillereff,1992) that are recharged 2.5 km inland from NSCRV. Hewever, it must also be noted that an additional, non-seawater, source of salts has to be invoked in order to explain the observed flow system, and groundwater chemical and stable isotope characteristics.

8.6 CONCLUSIONS

The hydrogeochemical modelling conducted on the NSCRV groundwaters indicates that the chemical evolution of groundwater at NSCRV is consistent with the presence of mineral phases in NSCRV core and with the addition of a seawater like component. However, to achieve consistency with isotope analyses and with data from other parts of the aquifer, an additional rock-mass source of chloride is required in the mass balance models.

At this time there is no direct observational evidence of a chloride source in the rock-mass of the Holyrood Aquifer, or of seawater providing significant amounts of salt to the shallow groundwater near the coast. However, a model in which rock-mass derived NaCl is added to the groundwater in increasing proportions with depth and in which a seawater component is present in decreasing proportions with depth, is the only interpretation consistent with; i) isotopic data; ii) inferred recharge elevations and flow paths in the aquifer; iii) the correlations between ionic concentrations, depth and hydraulic conductivity, and; iv) geochemical data from inland wells at higher elevations.

CHAPTER 9: CONCLUSIONS \& INTERPRETATIONS

9.1 SUMMARY OF RESULTS

The study location lies on the northern perimeter of the Holyrood Granite. The NSCRV borehole is located in the discharge area of the aquifer with artesian conditions along virtually its entire length. The groundwater flow through the Holyrood Granite, as interpreted from results in the NSCRV borehole, appears to be controlled by nearly-vertical east-west fractures. The near-vertical fractures may be a result of post glacial isostatic movements resulting either in reopening of pre-existing fractures, or creation of new fractures.

Groundwater flow boundaries in the study area are the surface/groundwater divide south of the study area, the saltwater freshwater interface and the assumed no flow boundary resulting from essential loss of permeability at depth. Stable isotopic data, ${ }^{18} \mathrm{O}$ and ${ }^{2} \mathrm{H}$ indicate that the NSCRV waters are meteoric and that they may reflect their original altitude of recharge under climatic temperatures similar to the present day. The retention of an altitude dependant isotopic signature appears to indicate that the flow through the Holyrood Granite is well ordered and follows approximately the flow paths derived from a simple flow model.

Based on this simple model the approximate residence time in the aquifer (from recharge to point of sampling in NSCRV borehole) is helieved to be in the range 1560 to 15600 y . This range of residence times assumes an aquifer bulk hydraulic conductivity of approximately $4.74 \times 10^{-9} \mathrm{~m} / \mathrm{s}$, estimated from the results of hydraulic conductivity testing results at NSCRV, a flow porosity in the range 2 to 20% and an average hydraulic gradient of 0.03 .

As a result of rock-water interaction in the granite, minerals precipitated in fractures are calcite, quartz, and with a lesser degree of certainty, Fe and Mg chlorite, halloysite and illite, the smectite clays, montmorillonite and saponite, and iron oxides (These minerals were presumably formed under contemporary hydrogeochemical conditions). Feldspar minerals are inferred to play a role in groundwater evolution in the granite, probably with anorthite, albite and potassium feldspar dissolving.

Examination of groundwater chemical compositions indicate that NSCRV groundwaters lie in or close to the stability fields for kaolinite, KFeldspar/Muscovite, and chlorite. The waters evolved from surface waters of Na bicarbonate composition towards an NaCl dominated composition. The changes in groundwater chemistry can be modelled geochemically using a set of seven minerals (including NaCl) comprised of some of those detected on fracture planes, and mixing
a seawater like end member and a hypothetical dilute groundwater with a $P_{c o 2}$ of $10^{-2.67}$. Feldspars (principally anorthite, plagioclase and microcline) are a necessary requirement in the group of plausible phases used to derive a thermodynamically feasible result from mass balance calculations. A hypothetical NaCl phase is also a necessary member of the group of plausible phases. There is no direct evidence that NaCl (or a rock-mass chluride source) is available in the Holyrood Aquifer, although indirect evidence for its existence is found in studies of other granitic terrains.
CO_{2} cannot justifiably be omitted from any group of plausible phases; however, its inclusion leads to a result which requires a deep source of carbon. This might possibly be in the form of organic acids, though there is no evidence in this study to suggest this. Quartz is noticeably absent from the group of plausible phases used in the successful mass balance calculation. The absence of quartz as a required phase suggests that crystalline quartz is not being deposited from present day groundwaters and that quartz saturation is controlled by amorphous silica varieties.

The integration of a variety of information presented in this thesis provides evidence that the results of mass balance modelling are plausible and that the inclusion of an NaCl phase (assumed to be equivalent to a rock-mass chloride source) and seawater as an aqueous end-member is plausible and necessary. Furthermore, the integration of results does not reveal any inconsistencies between
the physical, hydrogeochemical and isotopic data sets and the models proposed for them.

A positive inverse correlation tas been established between concentrations of such species as Si, Cl and the hydraulic conductivity. The presence of an altitude effect in these groundwaters lends support to the generalized flow model proposed for the aquifer. Examination of various mixing scenarios using plausible isotopic end-members does not discredit the notion of an altitude affect being manifest in the isotope compositions. The modelled mixing fractions of the :wo aqueous end-members and the modelled addition of a chloride phase were used to estimate the chloride contributions from seawater and from the rock mass. The contribution from a seawater source was found to be inversely proportional to distance from the coastline. On the other hand the calculated addition of a chloridecontaining phase was inversely correlated with hydraulic conductivity.

The inverse correlation of hydraulic conductivity with concentration of Si and Cl , the presence of a possible altitude effect, and the range of chloride concentration in shallow boreholes at higher altitudes in the aquifer indicate that both a rock-mass source of chloride (and probably bromide) and a saltwater component were introduced to the aqueous phase during its evolution.

Circumstantial evidence suggests that the addition of a seawater component from precipitation which has entrained marine aerosols. No other scenario can explain the addition of a saltwater component to the aquifer in decreasing amounts away from the coastline. Recent marine inundations may have been partly responsible but appear to have affected only coastal areas below an altitude of 6 to 8 m (relative to present day).

9.2 FUTURE WORK

This research has raised many interesting questions. Regarding addition of a saltwater like component to the aquifer. Can coastal precipitation in the NSCRV area contain concentrations of Cl as high as 34 ppm (in the near coastal environment) or is the chloride source in fact anthropogenic (i.e road salt)?

With regard to the possibility of a rock mass source of chloride it would seem worthwhile to investigate possible sources, within, or associated with, the primary mineral phases of the Hoiyrood Granite. Furthermore it may be possible to differentiate two potential chloride sources using ${ }^{36} \mathrm{Cl}$ as a tracer. Other indicators (though unfortunately not conservative) might be SO_{4} and associated sulphur and oxygen isotope data; sulphate is often a large component of marine aerosols (Cicerone 1984).

Further work on the significance of Br , and the accuracy of its analysis is also necessary as this anion may be an extremely useful tracer. This study has demonstrated that $\mathrm{Cl} / \mathrm{Br}$ ratios are apparently significantly different from seawater. but that they appear to show a remarkable degree of consistency. Further work on $\mathrm{Br} / \mathrm{Cl}$ ratios in primary mineral phases in the Holyrood Granite should be conducted to determine the significance and veracity of these findings.

REFERENCES

BOTTOMLEY, D.J., ROSS, J.D. and B.W. GRAHAM. 1984. A Borehole Methodology for Hydrogeochemical Investigations in Fractured Rocks. Wat. Res. Rsch. v20 no. 9 pp 1277-1300.

BRUCKNER, W.D. 1979. Geomorphology of the Avalon Peninsula of Newfoundland. Government of Newfoundland and Labrador, Department of Mines and Energy. Report 79-4, 42 p.

BUSENBERG, E. and CLEMENCY, C.V. 1976. The Dissolution Kinetics of Feldspars at 25deg. C and 1 atm CO2 partial pressure. Geochim.cosmochim.Acta v40 pp41-49

BUTTON, J.R. 1991. Groundwater evolution in the Seal Cove River Valley. unpublished Honours dissertation, Memorial University of Newfoundland.

CACAS, M.C., LEDOUX, E., DE MARSILY, G., TILLIE, BARBREAU, A. DURAND, E. FEUGA, B. and PEAUDECERF, P. 1990. Modelling Fracture Flow With a Stochastic Discrete Fracture Network: Calibration and Validation 1. The Flow Model. Wat. Res. Rsch. v26 no. 3 pp479-489.

CHEENEY, R.F. 1983. Statistical Methods in Geology. George Allen and Unwin 169 p .

CICERONE, R. 1984. Halogens in Global Trophosperic Chemistry. A Plan for action. Global Trophosperic Chemistry Panel, Board of Atmospheric Sciences and Climate Committee on Physical Sciences Mathematics and resources. National Resources Council. National Academic Press. Washington D.C.

CRAIG, H. 1961. Isotopic variations in meteoric water. Science, 133, pp1702-1703. DANSGAARD, W. 1964. Stable isotopes in precipitation. Tellus, 16, No.4, 436-468.

DEER, W.A., HOWIE, R.A. and ZUSSMAN, J. 1966. An Introduction to the Rock Forming Minerals. Longmans, London. 528p

EDMUNDS, W.M., ANDREWS, J.N., BURGESS, W.G., KAY, R.L.F. and LEE, D.J. 1984. The evolution of saline and thermal groundwaters in the Carnmellis granite. Min.Mag. 48 pp407-424

EDMUNDS, W.M., KAY, R.I.F. and McCARTNEY, R.A. 1985. Origin of Saline waters in the Carnmellis Granite (Cornwall, England): Natural processes and reaction during hot dry rock reservoir circulation. Chem.Geol.v49 pp287-301

FAURE, G., 1986. Principles of Isotope Geology. John Wiley and Sons Inc. 589 p
FERTL, W.H. 1976. Abnormal Formation Pressures. Eisevier Scientific Publishing Company, Developments in Petroleum Science 3. 382 p.

FONTES, J.C. LOUVAT, D. and MICHELOT, J.L. 1989. Some constraints on geochemistry and environmental isotopes for the study of fracture flow in crystalline rocks. The Stripa case. in IAEA . 1989. Isotope techniques in the study of the hydrology of fractured and fissured rocks. IAEA-AG-329. STI/PUB/790.

FRAPE, S.K, FRITZ, P. and McNUTT, R.H. 1984. Water-Rock interaction and chemistry of groundwaters from the Canadian shield. Geochim.cosmochim.Acta v48 pp1617-1627.

FRAPE, S.K. and FRITZ, P. 1987. Geochemical trends for groundwaters from the Canadian Shield: in Saline waters and gases in crystalline rocks, Eds. Fritz, P. and Frape,S.K.; Geol.Soc. Can. Spec. Pap. 33 pp19-38.

FREEZE, R.A and CHERRY, J.A. 1979. Groundwater. Prentice-Hall. Englewood Cliffs, N.J. 604pp

FRITH, R.A. and POOLE, W.H. 1972. Late Pre-Cambrian rocks of eastern Avalon Peninsula, Newfoundland. A volcanic Island arc complex. Can.J.Earth Sci. v9 p72.

GARRELS, R.M. and CHRIST, C.L. 1965. Solutions, Minerals and Equilibria. Harper and Row, New York.

GALE, J.E. and STRAHLE, A. 1988. Site Characterization and Validation-Drift and Borehole Fracture Data. Stage I. Stripa Project IR88-10 Internal Report.

GARRELS, R.M. and MacKENZIE, F.T. 1967. Origin of the chemical composition of some springs and lakes. Adv. Chem. Series 67 pp222-242.

GASCOYNE, M., DAVISON,C.C., ROSS,J.D. and PEARSON,R. 1987. Saline Groundwaters and Brines in Plutons in the Canadian Shield; in Saline waters and gases in crystalline rocks, Editors Fritz P., and Frape S.K.; Geol.Ass. Can Special Paper,1987 pp 53-68.

GAT, J.R. 1981. The isotopes of hydrogen and oxygen in precipitation in P.Fritz and J.Ch.Fontes, eds., Handbook of Environmental Isotope Geochemistry, vol 1A, pp21-47. Elsevier, Arnsterdam, p45 p.

GOODMAN, R.E. 1976. Methods of Geological Engineering in Discontinuous Rocks. West Publishing Co 472 p.

GRANT, D.R. 1989. Quaternary Geology of the Atlantic Appalachian region of Canada; Chapter 5 in Quaternary Geology of Canada and Greenland, R.J.Fulton (ed.); Geol.Surv.Can No.1.

GUTJAHR, A.L., GELHAR, W., BAKR, A.A and McMILLAN, J.R. 1978. Stochastic analysis of spatial variability in subsurface flow, 2, Evaluation and application. Wat. Res. Rsch. v14 no. 5 pp953-960

HELGESON, H.C., DELANY, J.M. NESBITT, H.W. and BIRD, D.K. 1978. Summary and critique of the thermodynamic properties of rock forming minerals. Am.J.Sci. v278a

HELGESON, H.C. 1968. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-I. Thermodynamic relations. Geochim.Cosmochim.Acta.v32 pp853-877

HELGESON, H.C. 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am.J.Sci. v267 pp729-804.

HEMINGWAY, B.S, HAAS, J.L. and ROBINSON, G.R. 1982. Thermodynamic properties of selected minerals in the system $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{CaO}-\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}$ at 298.15 K and 1 bar (10^{5} Pascals) pressure and at higher temperatures. USGS Bull. Nol544 70pp

HENDERSON, E.P. 1972. Surficial Geology of Avalon Peninsula, Newfoundland, GSC, Memoir 368, 121 p.

HOBBS, B.E., MEANS, D.M. and WILLIAMS, P.F. 1976. An outline of Structural Geology. John Wiley and Sons, New-York. 571 p.

HOLDREN,G.R. and BERNER.R.A. 1979. Mechanism of Feldspar weathering-I. Experimental studies. Geochim.Cosmochim.Acta.v43 pp1161-1171

HUBBERT, M.K and WILLIS, D.G. 1957. Mechanics of Hydraulic Fracturing. Trans, AIME, 210: pp 153-168.

HUGHES, C.J. 1971. Anatomy of a granophyre intrusion. Lithos 4, 1971, pp 403415.

HUGHES, C.J. and BRUCKNER, W.D. 1971. Late Pre-Cambrian Rocks of Eastern Avalon Peninsula, Newfoundland- a Volcanic Island Complex. Cand.J.Ea.Sci. Vol 8 pp 899-915

HUNT, B. 1983. Mathematical Analysis of Groundwater Resources. Butterworths. pp271

HUTCHINSON, R.D. 1953. Geology of the Harbour Main Map-Area, Newfoundland. Memoir 275, Geological Survey of Canada, 43 p.

HVORSLEV, M.J. 1951. Time Lag and Soil Permeability in groundwater observations. U.S. Army Corps Engrs. Waterways Exp.Sta.Bull.36, Vicksburg, Miss.

KAMINENI, D.C. 1987. Halogen-bearing minerals in plutonic rocks: a possible source of chlorine in saline groundwater in the Canadian Shield.in Saline waters and gases in crystalline rocks, Editors Fritz P., and Frape S.K.; Geol.Ass. Can Special Paper, 1987 pp69-79.

KING, A.F. 1990. Geology of the St.John's Area. Report 90-2. Geol.Surv. Branch Dept. Min.Energy. Govt.Nfld. and Lab. 88 p.

KNAPP,R.B. 1975. An analysis of the porosities of fractured crystalline rocks: M.S.thesis, University of Arizona, 90 p.

KRAUSKOPF, K.B. 1979. Introduction to geochemistry. 2nd. Edition. McGraw-Hill international series in the planetary sciences. 617pp.

KROGH, T.E., STRONG, D.F. and PAPEZIK, V.S. 1983. Precise U-Pb ages of zircons from volcanic and plutonic units in the Avalon Peninsula in Abstracts with Programs 1983, 18th Annual Meeting Northeastern Section, Geol.Soc.Am Volume 15 page 135.

LAWSON, A.C. 1890. Note on the Pre-Palaeozoic surface of the Archean terranes of Canada; Geol.Soc.Am.Bull v.1, pp 163-174.

LONGERICH, H.P., STRONG, D.F. and KANTIPULY, C.J. 1986. Progress in evaluation of instrumental and other parameters affecting chemical and isotopic analysis by Inductively coupled plasma mass spectrometry (ICP-MS). Can. J. Spectroscopy v31, No. 5 pp 111-121

MacPHERSON. 1982. Postglacial vegetational history of the eastern Avalon, Newfoundland, and Holocene climatic change along the eastern Canadian seaboard; Geographie physique et Quaternaire, v. 36, pp 175-196.

McCARTNEY, W.D. 1967. Geology of the Whitbourne Map-Area, Newfoundland. Geological Survey of Canada. Memoir 341. 135 p.

McCARTNEY, W.D. 1969. Geology of Avalon Peninsula, southeast Newfoundland. pp 115-129 in North Atlantic Geology and continental drift a symposium (M.Kay Editor) Mem 12, Amer.Assoc.Petrol.Geol., Tulsa, Oklahoma. 1082p.

McCARTNEY W.D., POOLE W.H., WANLESS R.K. and WILLIAMS H. 1966. $\mathrm{Rb} / \mathrm{Sr}$ age and geological setting of the Holyrood granite, southeast Newfoundland. Can.J.Earth Sci.v3 p947-957.

McCULLOUGH, P.M. 1984. The Spatial and Temporal Variations of Acidic Precipitation in Newfoundland: from Source to Receptor. MSc Thesis, Memorial University of Newfoundland, Department of Geography.

MENDENHALL, W. and SINCICH, T. 1988. Statistics for the engineering and computer sciences. Collier Macmillan Canada Inc. pp1036.

MORGAN, C.O., and WINNER, M.D. 1962. Hydrochemical facies in the 400 ft and 60 ft sands of the Baton Rouge area, Louisiana. U.S. Geol. Surv. Prof. Paper 450-B, B120-121

MOSER,H., WOLF, M., FRITZ, P., FONTES, J-CH, FLOROWSKI, T. and PAYNE, B.R. 1989. Deuterium, oxygen-18, and Tritium in Stripa Groundwaters.Geochim.cosmochim.Acta v53 pp 1757-1763.

NERETNIEKS, I. 1980. The influence of microfissures in crystalline rock on radionuclide migration. in Predictive Geology with emphasis on nuclear waste disposal Eds Marsily,G. and Merriam, D.F. Computers and Geology v4. Pergamon. pp137-152

NESBITT, H.W and YOUNG, G.M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim.cosmochim.Acta $\mathbf{v 4 8}$ pp1523-1534.

NOLAN, DAVIS AND ASSOCIATES LTD. 1989. Hydrogeology and Groundwater Resources Management Bell Island, Conception Bay, Newfoundland. Governneent of Newfoundland and Labrador. Water resources Report 3-1, Groundwater Series.

NORDSTROM, D.K, ANDREWS J.N., CARLSSON L., FONTES J-C., FRITZ P., MOSER H., and OLSSON T. 1985. Hydrogeological and Hydrogeochemical investigations in boreholes. Final report of the phase I geochemical investigations of the Stripa granite. OECD pub. 85-06

NORDSTROM, D.K. and MUNOZ, J.L. 1985. Geochemical Thermodynamics. Benjamin/Cumming. pp477

NORDSTROM,D.K.,PLUMMER,L.N., WIGLEY,M.L.,WOLERY,T.J.,BALL_J.W., JENNE,E.A., BASSETT,R.L., CRERAR,D.A., FLORENCE,T.M., FRITZ,B., HOFFMANN,M., HOLDREN,G.R., LAFON,G.M., MATTIGOD,S.V., McDUFF,R.E., MORELF., REDDY,M.M., SPOSITO,G., and THRAILKILL,J. 1979. A Comparison of Computerized Chemical Models for Equilibrium Calculations in Aqueous Systems in Chemical Modelling in Aqueous Systems Editor E.V.Jenne. Am.Chem.Soc Symposium Series 93

NORDSTROM,D.K., OLSON, T. CARLSSON, L. and FRITZ, P. 1989. Introduction to the hydrogeochemical investigations within the International Stripa Project. Groundwaters.Geochim.cosmochim.Acta v53 pp 1717-1726.

NORTON, D. and KNAPP, R. 1977. Transport phenomena in hydrothermal systems: The nature of porosit. . Ait.J.Sci. v277 pp913-936

PACES, T. 1972. Chemical characteristics and equilibration in natural water-felsic rock-CO ${ }_{2}$ system. Geochim.cosmochim.Acta $\mathbf{v} 36$ pp217-240.

PACES, T. 1973. Steady-state kinetics and equilibrium between groundwater and granitic rock. Geochim.cosmochim.Acta v37 pp2641-2663.

PAPEZIK, V.S. 1970. Petrochemistry of volcanic rocks, Avalon peninsula, Newfoundland. Can.J.Ea.Sci v7 pp1485-1498.

PARKHURST, D.I., PLUMMER, L.N. and THORSTENSON, D.C. 1982. BALANCE - A computer program for calculation of chemical mass balance. U.S. Geol. Surv. Water Res. Invest. 82-14, 33pp. NTIS Tech. Rpt. PB82-255902, Springfield. VA 22161.

PARKHURST,D.L.,THORSTENSON.D.C. and PLUMMER, N.L_ 1980. PHREEQE - A computer program for geochemical calculations. U.S. Geol. Surv. Water Res. Invest. 80-96 210pp. NTIS Tech. Rpt. PB81-167801, Springfield. VA 22161.

PLUMMER, N.L. 1977. Defining Reactions and Mass Transfer in Part of the Floridan Aquifer. Wat. Res. Rsch. v13 no. 5 pp801-812.

PLUMMER, N.L. 1984. Geochemical Modelling: A comparison of forward and inverse methods.in Hitchcon, B and Wallick, E.I., eds, First Canadian/American Conference on Hydrogeology, Practical Applications of Ground Water Geochemistry: Worthington Ohio, National Water Well Association p.149-177.

PLUMMER, N.L., PARKHURST, D.I. and THORSTENSON, D.C. 1983. Development of reaction models for ground-water systems. Geochim.cosmochim.Acta v47 pp665-686

PLUMMER, N.L., PRESTEMON, E.C and PARKHURST, D.L. 1991. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path. U.S.G.S. Water-Resources Investigations report 91-4078, Reston, Virginia. 227 p

RAVEN, K.G. 1980. Studies in Fracture Hydrology at Chalk River Nuclear Laboratories: 1977/78/79. At. Energy Can. Ltd. Technical Record, TR-113

RAVEN, K.G. and SMEDLEY, J.A. 1982. CRNL ground water flow studysummary of FY 1981 research activities, unpublished National Hydrology Research Institute report submitted to Atomic Energy of Canada Ltd for publication AECL Technica, Record.

READ, H.H. 1970. Rutley's Elements of Mineralogy, 26th Edition. George, Allen \& Unwin 560 p.

REYNOLDS, D. 1950. Gas Fluidisation as a Geological Process. Am.J.Sci. 250
ROBIE, R.A. and HEMINGWAY, B.S. and FISHER, J.R. 1978. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10^{5} Pascals) pressure and at higher temperatures. USGS Bull. No1452 456pp.

ROBIN, M.J. and GILHAM, R.W. 1987. Field Evaluation of Well Purging Procedures. Groundwater Monitoring Review, Fall 1987.

SCHILEREFF, H.S. 1992. A Physical Hydrogeological and Hydrogeochemical Study of Groundwater/ Surface Water Interaction in a Granitic Terrain in Eastern Newfoundland. PhD Thesis, Memorial University of Newfoundland 377 p.

SEDERHOLM, J.J. 1967. Selected Works. Granites and Migmatites. Oliver and Boyd, Edinburgh and London.

SIIALL, H and MILLER Jr., T.E. 1982. Indirect Photometric Chromatography. Anal.Chem v54 No. 3 March 1982. pp 462-469.

STRONG, D.F., O'BRIEN, S.J., TAYLOR, S.W., STRONG, P.G. and WILTON, D.H. 1978. Aborted Rifting in Eastern Newfoundland. Can.J.Ea.Sci v15 ppl17-131.

STRONG, D.F and MINATIDIS, D.G. 1975. Geochemistry and Tectonic setting of the late PreCambrian Holyrood plutonic series of eastern Newfoundland. Lithos 8 pp283-295.

TAYLOR, S.W., O'BRIEN, S.J. and SWINDEN, H.S. 1979. Geology and Mineral Potential of the Avalon Zone and Granitoid Rocks of Eastern Newfoundland. Report 79-3. Mineral Development Division, Department of Mines and Energy, Government of Newfoundland and Labrador.

TERZAGHI, R.D. 1965. Sources of Error in Joint Surveys. Geotechnique, v. 15, pp 287-304.

VAN EVERDINGEN, D.A., VAN GOOL, J.A.M and VISSERS, R.L.M. 1992. Quickplot: A microcomputer based program for processing of orientation data. Computers and Geoscience. Vol 18, No 2/3, pp 183-287.

WILLIAMS, H. KENNEDY, M.J. and NEALE, E.R.W. 1974. The northeastward termination of the Appalachian orogen in The Ocean Basins and Margins Edited by A.E.M. Nairn and F.G.Stehli. New York, Plenum Pub. Corp, Vole 2 p 70-123.

YURTSEVER, Y. 1975. Worldwide survey of stable isotopes in precipitation. Rept. Section Isotope Hydrology, International Atomic Energy Agency, Vienna, November, 1975, 40p.

APPENDICES

APPENDIX A Core Log

GRANITE (GREBN), local nebulous xenoliths

GRANITE (GREBN), highly chloritised/
epidotised, abundant skeins of chlorite/epidote in lower part, increasingly pink

BRECCIA, of GRANITE (GREEN) GRANITE (GREEN), rare xenoliths, $1-2 \mathrm{~cm}$, andesite and basalt

APLITE, vein, white locally pink, sugary texture, abundant epidote veins and skeins local pink granite patches

ANDESITE, dark green

GRANITE (GREEN), overall green hue on coarse white granite, abundant skeins chlorite and epidote, rare pink granite patches, local aplite veins containing xenoliths of granite

GRANITE (GREEN), increasing abundance of pink unaltered granite patches, abundant epidote veins and xenoliths

ANDESITE, dark green

GRANITE (GREEN), increasing abundance of pink unaltered variety

GRANITE (PINK), rare green chloritised patches, occasional aplite and quartz patches

GRANITE (PINK), coarse, rare chloritised patches, local large epidote patches, abundant quartz blebs, some breccia veins

ANDESITE, dark green, 40 cm chloritised border (in granite) at contact with andesite GRANITE (PINK), generally abundant chlorite veins, local breccia areas, locally very chloritised and grading to GRANITE (GREEN)

APPENDIX B Fracture Data

Fracture data from NSCRV
Scribe mark at bottom of core.
Hole azimuth: 135 deg.
Hole plunge : 68 deg .

| COLUMN | |
| :--- | :--- |
| DESCRIPTIONS | |
| Column | Descriptor |
| A | crushed zone begins(B), or stops (S) |
| B | fracture (Y) or blank |
| C | new rock type (Y) or blank |
| D | fracture type sealed (S), coated(C), fresh(F) |
| E | number of fractures |
| SMT | Fracture surface description |
| F | Oricntated (blank) or orientation lost (N) |
| G | Alpha angle |
| H | Beta angle |
| RCK | Rocktype |
| AZ. | Dip Azimuth |
| DIP | Dip angle |
| Open? | field estimate of how open fracture |
| | believed to be, where I is maximum |
| | aperture, blank indicates closed |

| ABBREVIATIONS | |
| :---: | :---: |
| Rock Types | |
| AND | Andesite |
| APL | Aplite |
| BRC | Breccia |
| GRG | Green Granite |
| GRP | Pink Granite |
| PEG | Pegmatite |
| Fracture Fill/Coat | |
| CA | Calcite |
| CL | Chlorite |
| EP | Epidote |
| FE | Iron Oxide |
| PY | Pyrite |
| QZ | Quartz |
| WH | Whithamite |
| WF | Wolframite |
| Fracture surface description | |
| P | Planar |
| C | Curved |
| S | Stepped FIRST LETTER |
| 1 | Irregular |
| R | Rough |
| S | Smooth MODIFIERS |
| K | Slickensides |

| DEPTH | A | | D | | MINERA | SMT | F | G | H | RCK | AZ. | DIP OPEN? | Open fRACS (/m) | Total
 Fractures
 (/m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | B C | | D E | | | | | | | | | | |
| 4.52 | | | | S 1 | | P/R | N | 84 | | AND | | 1 | | |
| 4.59 | | | | S 1 | CA | S/S | N | 90 | | AND | | 1 | | |
| \$.59 | | | | S 1 | CA | P/S | N | 28 | | AND | | | | |
| 4.66 | B | | | | FE | W | N | | | AND | | | | |
| 4.77 | S | | | | FE | W | N | | | AND | | | 5.00 | 5.00 |
| 4.84 | | | | S | CA | S/S | N | 48 | | AND | | | 3.76 | 4.30 |
| 5.04 | | | | S 1 | CA | C/S | N | 90 | | AND | | | 2.97 | 3.96 |
| 5.21 | B | | | C | | W | N | | | AND | | 1 | 3.70 | 3.70 |
| 5.32 | S | | | C | | W | N | | | AND | | 1 | 4.85 | 4.85 |
| 5.52 | | Y | | C 1 | CA | P/S | N | 65 | | AND | | 0.5 | 5.24 | 5.71 |
| 5.60 | | Y | | C 1 | | P/R | N | 62 | | AND | | 0.5 | 6.37 | 6.86 |
| 5.74 | | Y | | C 1 | FE | P/R | N | 50 | | AND | | 1 | 7.14 | 7.69 |
| 5.80 | | Y | c | - 1 | CL | P/S | N | 62 | | AND | | 1 | 7.56 | 9.30 |
| 5.89 | | Y | | C 1 | | P/S | N | 58 | | AND | | 0.5 | 7.14 | 10.99 |

| 6.06 | | Y | | CL | P/S | N | 40 | | AND | | | 1 | 7.14 | 11.90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.12 | | | S 1 | | P/S | N | 56 | | AND | | | | 6.88 | 12.50 |
| 6.18 | | Y | C 1 | FE | P/R | N | 60 | | AND | | | 1 | 4.95 | 10.99 |
| 6.43 | | Y | C 2 | FE | R/R | N | 50 | | AND | | | 1 | 3.89 | 11.11° |
| 6.44 | | | S 1 | CA | P/S | N | 30 | | AND | | | | 3.80 | 12.66 |
| 6.54 | | | S 1 | CA | S/S | N | 60 | | AND | | | | 2.06 | 10.31 |
| 6.71 | | | F 1 | | P/R | N | 55 | | AND | | | | 2.13 | 10.64 |
| 6.79 | | | F 1 | | P/R | N | 70 | | AND | | | | 1.32 | 13.10 |
| 6.85 | | | S 1 | CA | S/S | N | 56 | | AND | | | | 0.63 | 11.25 |
| 7.09 | | Y | C 1 | FE | R/R | N | 85 | | AND | | | | 0.68 | 12.16 |
| 7.12 | | | S 1 | CA | R/R | N | 10 | | AND | | | | 0.85 | 15.25 |
| 7.19 | | | S 1 | CA | R/ | N | 90 | | AND | | | | 2.27 | 13.64 |
| 7.24 | | Y | 1 | | P/R | N | 60 | | AND | | | 0.5 | 3.57 | 12.80 |
| 7.28 | | | S 1 | CA | R/R | N | 90 | | AND | | | | 5.10 | 18.37 |
| 7.30 | | | S 1 | | C / R | N | 50 | | AND | | | | 3.79 | 12.12 |
| 7.45 | | Y | C 1 | CL | P/R | N | 68 | | AND | | | 1 | 3.68 | 10.29 |
| 7.55 | | | S 1 | CA | P/S | N | 0 | | AND | | | 1 | 4.32 | 8.6 .4 |
| 7.58 | | Y | C 1 | CA | P/R | N | 68 | | AND | | | | 4.40 | 7.6 |
| 7.78 | B | | C | FE | | N | | | AND | | | | 3.75 | 5.83 |
| 7.87 | S | | C | FE | | N | | | AND | | | | 4.09 | 0.36 |
| 8.05 | | Y | C 1 | CAFE | P/R | N | | | AND | | | 1 | 4.05 | 6.30 |
| 8.19 | | Y | C 1 | CACL | P/K | N | 54 | | AND | | | 1 | 2.78 | 5.56 |
| 8.50 | | Y | C 1 | CAWH | P/R | N | 55 | | AND | | | 0.5 | 2.59 | 4.02 |
| 8.55 | | | S 1 | CAWH | P/R | N | 41 | | AND | | | | 2.28 | 4.06 |
| 8.65 | | Y | C 1 | CLEP | P/R | N | 60 | | AND | | | 1 | 2.76 | 4.91 |
| 8.84 | | | S 1 | QZCL | C/R | N | 10 | | AND | | | | 2.39 | 4.79 |
| 9.52 | | Y | C 1 | CLQZ | P/R | N | 62 | | AND | | | 1 | 2.41 | 5.42 |
| 9.84 | | | S 1 | QZEP | | N | | | AND | | | | 2.49 | 4.97 |
| 9.86 | | Y | C 1 | CL | P/R | | 40 | 355 | AND | 130 | 85 | 0.500 | 2.32 | 4.6 .4 |
| 10.07 | | Y | C 1 | CL | P/S | | 50 | 280 | AND | 171 | 49 | 0.500 | 2.06 | 5.14 |
| 10.16 | | Y | C 1 | CL | P/S | | 63 | 270 | AND | 180 | 61 | 0.500 | 2.59 | 6.67 |
| 10.36 | | Y | C 1 | CL | P/S | | 35 | 282 | AND | 162 | 35 | 1.000 | 2.27 | 8.18 |
| 10.59 | | | S 1 | CL | P/S | | 23 | 22 | AND | 295 | 69 | | 2.03 | 7.32 |
| 10.59 | | | S 1 | QZ | P/S | | 18 | 225 | AND | 246 | 46 | | 1.96 | 8.82 |
| 10.87 | | Y | C 1 | CL | P/S | | 14 | 270 | AND | 176 | 12 | | 1.47 | 8.82 |
| 10.94 | | Y | C 1 | CL | P/S | | 52 | 270 | AND | 179 | 50 | | 1.00 | 9.00 |
| 11.09 | | Y | C 1 | CA | P/S | | 65 | 205 | AND | 203 | 78 | | 0.00 | 9.41 |
| 11.09 | | Y | C 1 | CA | P/S | | 35 | 22 | AND | 308 | 72 | | 0.48 | 6.67 |
| 11.18 | | Y | C 1 | CA | P/S | | 36 | 297 | AND | 147 | 43 | | 1.20 | 8.4 .3 |
| 11.36 | | Y | C 1 | ClCA | P/S | N | 15 | | AND | | | | 1.25 | 8.75 |
| 11.44 | B | | | | | N | | | AND | | | | 1.12 | 7.87 |
| 11.64 | S | | | | | N | | | AND | | | 0.500 | 0.93 | 6.48 |
| 11.70 | | Y | C 1 | CLQZ | P/S | N | 40 | | AND | | | 0.500 | 0.94 | 6.60 |
| 11.74 | | Y | C 1 | CLQZ | P/S | N | 47 | | AND | | | | 0.84 | 5.88 |
| 11.98 | | Y | C 1 | QZ | P/R | N | 15 | | AND | | | | 0.85 | 5.93 |
| 12.17 | | Y | C 1 | CL | P/R | N | 43 | | AND | | | | 0.87 | 6.96 |
| 12.24 | | Y | 51 | QZ | S/S | N | 15 | | AND | | | | 0.40 | 7.26 |
| 12.55 | | Y | C 1 | CLQZ | P/S | N | 38 | | AND | | | | 0.00 | 5.77 |
| 12.62 | | Y | C 1 | CL | P/S | N | 80 | | AND | | | | 0.00 | 6.43 |
| 12.79 | | Y | C 1 | CLQZ | P/S | N | 48 | | AND | | | | 0.00 | 5.52 |
| 12.94 | | Y | C 1 | CLQZ | P/S | | 46 | 85 | AND | 356 | 47 | | 0.00 | 5.70 |
| 13.30 | | | S 1 | CLQZ | S/S | | 18 | 180 | AND | 252 | 88 | | 0.00 | 6.30 |
| 13.38 | | Y | C 1 | QZCL | P/S | | 90 | | AND | 180 | 88 | | 0.00 | 4.76 |
| 13.80 | | Y | C 1 | CL | P/S | | 31 | 90 | AND | 2 | 32 | | 0.00 | 5.11 |
| 13.82 | | Y | C 1 | | P/S | | 25 | 350 | AND | 115 | 81 | | 0.00 | 5.74 |
| 13.82 | B | | | | | N | | | | | | | 0.00 | 7.37 |
| 14.09 | S | | | | | N | | | | | | | 0.00 | 6.42 |
| 14.16 | | Y | C 1 | CL | P/S | | 15 | 180 | AND | 255 | 88 | | 0.00 | 9.72 |

| 14.16 | Y | | CL | PIS | 28 | 300 | AND | 135 | 39 | | 0.00 | 9.72 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14.25 | Y | C 1 | CL | P/S | 18 | 45 | AND | 296 | 47 | | 0.00 | 9.09 |
| 14.47 | Y | C 1 | CLQZ | Pis | 28 | 340 | AND | 119 | 72 | | 0.00 | 14.29 |
| 14.52 | Y | | CL | P/S | 19 | 320 | AND | 113 | 52 | | 0.00 | 18.37 |
| 14.54 | Y | C 1 | CL | P/S | 30 | 300 | AND | 138 | 41 | | 0.00 | 18.00 |
| 14.59 | Y | C 1 | CL | P/S | 59 | 180 | AND | 211 | 88 | | 0.00 | 19.57 |
| 14.65 | Y | C 1 | CL | P/S | 41 | 180 | AND | 229 | 88 | | 0.00 | 23.68 |
| 14.65 | Y | C 1 | CL | P/S | 31 | 300 | AND | 139 | 41 | | 0.00 | 22.50 |
| 14.66 | Y | C 1 | CI. | P/S | 20 | 180 | AND | 250 | 88 | | 0.00 | 18.00 |
| 14.71 | Y | C 1 | CL | P/S | 38 | 265 | AND | 186 | 36 | | 0.00 | 12.68 |
| 14.85 | Y | C 1 | CL | P/S | 18 | 280 | AND | 148 | 19 | | 0.00 | 12.00 |
| 14.92 | Y | C 1 | CL | P/S | 5 | 77 | AND | 298 | 13 | | 0.00 | 9.09 |
| 15.04 | Y | C 1 | CLEP | P/S | 44 | 265 | AND | 185 | 42 | | 0.00 | 8.57 |
| 15.30 | Y | C 1 | CL | P/S | 54 | 202 | AND | 214 | 75 | | 0.00 | 7.96 |
| 15.40 | Y | C 1 | Cl | P/S | 30 | 90 | AND | 2 | 31 | | 0.00 | 8.65 |
| 15.64 | Y | C 1 | Cl. | P/S | 57 | 135 | AND | 25 | 68 | | 0.00 | 9.18 |
| 15.71 | | S 1 | QZ | S/S | 86 | 195 | AND | 184 | 87 | | 0.00 | 5.36 |
| 15.84 | | S 1 | QZ | S/S | 83 | 185 | AND | 187 | 87 | | 0.00 | 4.82 |
| 15.89 | | S 1 | QZ | S/S | 53 | 155 | AND | 35 | 76 | | 0.52 | 4.12 |
| 15.90 | | S 1 | EPCI,WH | P/R | 33 | 340 | AND | 124 | 73 | | 1.16 | 4.65 |
| 16.72 | | S 1 | CL | P / R | 17 | 355 | AND | 107 | 85 | | 1.69 | 4.52 |
| 16.96 | Y | | | PR | 35 | 230 | AND | 223 | 49 | | 2.17 | 3.80 |
| 17.34 | Y | C 1 | Q7. | P/R | 52 | 190 | AND | 218 | 82 | 1.000 | 2.06 | 3.61 |
| 17.36 | Y | C 1 | | C/R | 28 | 120 | AND | 43 | 41 | 1.000 | 2.06 | 361 |
| 17.48 | Y | C 1 | | P / R | 98 | 145 | AND | 354 | 84 | 1.000 | 4.10 | 5.74 |
| 17.68 | Y | | | P | 53 | 188 | AND | 217 | 83 | 1.000 | 4.90 | 5.88 |
| 17.83 | | s 1 | QZEP | P/S | 39 | 195 | AND | 230 | 76 | | 5.62 | 6.74 |
| 17.84 | | S 1 | QZCL | S/S | 62 | 75 | AND | 353 | 64 | | 4.60 | 5.75 |
| 17.94 | Y | C 1 | PY | S/S | 87 | 78 | AND | 0 | 88 | 1 | 3.09 | 4.12 |
| 17.98 | | | | | | | | | | | 3.75 | 5.00 |
| 18.23 | | | | | | | | | | | 4.17 | 6.94 |
| 18.23 | | Y | | | | | GRG | | | | 5.06 | 6.33 |
| 18.45 | | | | | | | GRG | | | | 5.62 | 5.62 |
| 18.48 | Y | Y C 1 | GR | P/S | 15 | 280 | AND | 142 | 17 | 1 | 5.95 | 5.95 |
| 18.55 | Y | C 1 | GR | P / R | 52 | 255 | AND | 191 | 52 | 1 | 5.56 | 5.56 |
| 18.63 | Y | C 1 | GR | P / R | 65 | 220 | AND | 200 | 72 | 1 | 3.36 | 3.36 |
| 18.83 | Y | C 1 | GR | P/R | 29 | 145 | AND | 56 | 61 | 1 | 3.50 | 3.82 |
| 18.82 | Y | C 1 | GR | P/R | 20 | 310 | AND | 118 | 44 | 1 | 3.43 | 4.00 |
| 19.13 | | Y | | | | | GRG | | | | 2.89 | 3.47 |
| 19.72 | | | | | | | GRG | | | | 2.69 | 3.59 |
| 20.02 | Y | C 1 | QZCL | P/S | 46 | 200 | AND | 222 | 74 | 0.5 | 2.85 | 3.80 |
| 20.23 | Y | C 1 | CL . | P/S | 41 | 170 | AND | 49 | 84 | 0.5 | 2.49 | 3.31 |
| 20.28 | | γ | | | | | GRG | | | | 2.19 | 3.12 |
| 20.30 | Y | $C 1$ | WH | C/ | 35 | 320 | GRG | 132 | 57 | 0.5 | 4.33 | 5.77 |
| 20.41 | Y | C 1 | | P/R | 83 | 20 | GRG | 354 | 88 | 1 | 6.18 | 6.74 |
| 20.63 | Y | C 1 | QZWH | P/R | 65 | 195 | GRG | 204 | 82 | 1 | 6.67 | 6.67 |
| 20.73 | | Y | | | N | | AND | | | | 7.14 | 6.59 |
| 20.76 | γ | C 1 | | P/R | 63 | 1.48 | AND | 24 | 77 | 1 | 6.50 | 7.00 |
| 20.91 | | Y | | | ' | | GRG | | | 1 | 7.45 | 7.45 |
| 21.13 | Y | C 1 | CIEP | P!C | 44 | 220 | GRG | 219 | 60 | 1 | 8.33 | 8.33 |
| 21.19 | Y | C 1 | Cl . | P/F | 61 | 155 | GRG | 27 | 79 | 1 | 9.21 | 9.21 |
| 21.30 | | S 1 | WH1 | C/R | 3.2 | 110 | GRG | 29 | 38 | | 9.30 | 9.30 |
| 21.35 | Y | $C 1$ | QZ | P/S | 70 | 105 | GRG | 6 | 72 | 1 | 8.70 | 8.70 |
| 21.47 | Y | C 1 | Q7 | P/S | 76 | 310 | GRG | 171 | 78 | 1 | 9.21 | 11.84 |
| 21.49 | Y | $C 1$ | QZ | P/S | 60 | 140 | GRG | 24 | 72 | 1 | 5.77 | 7.69 |
| 21.62 | Y | C 1 | WHQZ | P / R | 16 | 210 | GRG | 252 | 59 | | 4.95 | 6.93 |
| 21.83 | Y | C 1 | | P/R | 10 | 320 | GRG | 102 | 51 | 1 | 6.00 | 6.00 |
| 21.89 | | S 1 | WII | PiR | 26 | 200 | GRG | 243 | 70 | | 5.26 | 5.26 |

| 22.23 | | | | | N | | | GRG | | | | 3.51 | 3.51 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22.31 | | | | | N | | | GRG | | | | 1.75 | 1.75 |
| 22.35 | | | | | N | | | GRG | | | 1 | 1.21 | 1.21 |
| 22.42 | | | | | N | | | GRG | | | | 0.44 | 0.44 |
| 22.63 | | | | | N | | | GRG | | | | 0.38 | 0.00 |
| 23.33 | | | | | N | | | GRG | | | | 0.36 | 0.00 |
| 23.48 | | | | | N | | | GRG | | | | 0.68 | 0.34 |
| 24.17 | | | | | N | | | AND | | | | 0.69 | 0.69 |
| 24.88 B | | | | | N | | | AND | | | | 1.05 | 1.39 |
| 25.09 C | | | | | N | | | AND | | | | 1.20 | 1.68 |
| 25.27 | Y | C 1 | | P/K | | 4. | 140 | AND | 39 | 64 | 1 | 1.63 | 2.03 |
| 25.33 | Y | C 1 | | P/K | | 46 | 310 | AND | 147 | 57 | 1 | 2.55 | 3.06 |
| 25.50 | Y | C 2 | | P/K | | 50 | 65 | AND | 342 | 55 | 1 | 3.23 | 4.5.) |
| 25.71 | | | | | N | | | GRG | 270 | 89 | | 3.45 | 4.6) |
| 25.94 | Y | C 1 | CL | P/S | | 12 | 0 | GRG | 282 | 89 | 1 | 3.23 | 4.84 |
| 26.13 | Y | C 1 | CLEP | P/S | | 41 | 75 | GRG | 345 | 44 | 1 | 3.19 | 4.79 |
| 26.43 | | S 1 | CL | P/R | | 14 | 300 | GRG | 114 | 33 | | 2.73 | 4.92 |
| 26.83 | Y | C 1 | CL | P/S | | 76 | 110 | GRG | 5 | 78 | 1 | 2.33 | 4.65 |
| 27.13 | | S 1 | WH | P/R | | 10 | 320 | GRG | 102 | 51 | | 2.65 | 5.96 |
| 27.21 | Y | C 1 | | P/R | | 62 | 130 | GRG | 19 | 70 | 1 | 2.04 | 6.12 |
| 27.33 | Y | C 1 | CL | P/R | | 58 | 95 | GRG | 4 | 59 | | 1.61 | 7.26 |
| 27.43 | Y | C 1 | CL | P/R | | 69 | 122 | GRG | 12 | 73 | | 1.96 | 8.8.? |
| 27.45 | Y | C 1 | CL | P/R | | 58 | 105 | GRG | 10 | 60 | | 1.28 | 11.5 .4 |
| 27.60 | Y | C 1 | CL | P/R | | 73 | 35 | GRG | 346 | 81 | | 1.35 | 10.81 |
| 27.67 | Y | C 1 | CL | P/R | | 60 | 88 | GRG | 0 | 61 | | 0.00 | 12.31 |
| 27.85 | | | CA | | | 60 | 185 | GRG | 210 | 8.5 | | 0.00 | 11.4 .3 |
| 27.91 | | S 1 | EP | P/S | | So | 85 | GRG | 357 | 51 | | 0.00 | 9.6 .4 |
| 27.95 | | S | | | | 50 | 85 | GRG | 357 | 51 | | 0.00 | 8.2 .5 |
| 27.98 | Y | C 1 | CL | P/R | | 66 | 50 | GRG | 34.5 | 72 | | $0 .(0)$ | 6.78 |
| 28.13 | Y | $C 1$ | CL | P/R | | 51 | 95 | GRG | 5 | 52 | | 0.43 | 6.90 |
| 28.28 | | | EP | P/R | | 55 | 52 | GRG | 338 | 64 | | 0.45 | 7.2! |
| 28.57 | Y | C 1 | CL | P/R | | 42 | 51 | GRG | 326 | 55 | | 0.39 | 6.30 |
| 28.65 | Y | $C 1$ | CL | P/S | | 83 | 175 | GRG | 187 | 89 | | 0.38 | 0.9 ? |
| 29.01 | Y | C | CL | P/S | | 60 | 350 | GRG | 150 | 84 | 0.5 | 0.39 | 7.09 |
| 29.02 | Y | C 1 | CL | P/R | | 61 | 200 | GRG | 208 | 78 | | 0.95 | 8.57 |
| 29.22 | Y | C 1 | CL. | P/R | | 73 | 200 | GRG | 196 | 82 | | 1.12 | (1).11 |
| 29.28 | Y | C 1 | CL | P/R | | 85 | 230 | GRG | 183 | 84 | | 3.17 | 18.29 |
| 29.40 | Y | C | CL | P/S | | 57 | 85 | GRG | 358 | 58 | | 5.00 | 18.(\%) |
| 29.33 | Y | $C 1$ | | P/S | | 60 | 190 | GRG | 210 | 83 | 0.5 | 4.6 .3 | 16.67 |
| 29.46 | Y | $C 1$ | CL | C/R | | 64 | 135 | GRG | 19 | 73 | | 8.11 | 2.4.3? |
| 29.48 | Y | C 1 | FE | PRD | | 50 | 155 | GRG | 37 | 75 | 1 | 11.29 | 29.13 |
| 29.51 | Y | C 1 | FECL | P/R | | 78 | 290 | GRG | 176 | 77 | 0.5 | 18.18 | 41.91 |
| 29.56 | Y | C 1 | CL | P/R | | 52 | 80 | GRG | 353 | 53 | 0.5 | 11.84 | 23.68 |
| 29.59 | Y | C 1 | CL | P/R | | 57 | 70 | GRG | 348 | 10 | 0.5 | 14.81 | 31.33 |
| 29.59 | Y | C | CL | P/R | | 63 | 275 | GRG | 177 | 61 | 0.5 | 14.81 | 33.33 |
| 29.62 | Y | C 1 | CLFE | PRK | | 83 | 170 | GRG | 187 | 89 | 0.5 | 10.34 | 31.03 |
| 29.71 | Y | C 1 | CL | PSK | | 37 | 85 | GRG | 355 | 38 | 0.5 | 6.25 | 22. 50 |
| 29.73 | Y | C 1 | CL | SSK | | 50 | 85 | GRG | 357 | 51 | | 2.13 | 9.57 |
| 29.75 | Y | C 1 | CL | PRK | | 67 | 70 | GRG | 352 | 69 | | 0.94 | 5.6e |
| 29.80 | Y | C 1 | CL | P/K | | 78 | 150 | GRG | 11 | 85 | | () 62 | 5.59 |
| 29.96 | | S 1 | EP | P/S | | 43 | 40 | GRG | 322 | 62 | | 0.19 | 3.38 |
| 30.53 | | S 1 | EP | P/S | | 43 | 80 | GRG | 351 | 45 | | 0.17 | 3.14 |
| 31.18 | Y | C | WH | P/K | | 90 | | GRG | 180 | 88 | | 0.17 | 3.14 |
| 31.23 | Y | C | | P | | 13 | 120 | GRG | 64 | 33 | | 0.17 | 2.76 |
| 32.37 | | F 1 | | | N | | | GRG | | | | 0.18 | 2.54 |
| 32.60 | Y | C | CACL | P | N | | | GRG | | | 0.5 | 0.43 | 2.98 |
| 32.62 | | S 1 | EP | P/C | | 62 | 110 | GRG | 11 | 6.5 | | 0.67 | 3.11 |
| 32.70 | | F | | | N | | | GRG | | | | 0.85 | 2.98 |

| 32.72 | | F | | | N | | | GRG | | | | 1.52 | 5.30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32.88 | Y | C 1 | CL | P/K | | 28 | 78 | GRG | 341 | 31 | 0.5 | 1.74 | 6.09 |
| 33.43 | Y | C 1 | CL | P/K | | 59 | 45 | GRG | 338 | 69 | 0.5 | 1.64 | 5.74 |
| 33.58 | Y | C 1 | Cl , | P/K | | 46 | 90 | GRG | 1 | 47 | 0.5 | 1.80 | 5.04 |
| 33.69 | | F 1 | | | N | | | GRG | | | | 1.75 | 5.59 |
| 33.75 | Y | C 1 | CL | P/R | | 33 | 165 | GRG | 56 | 78 | | 2.11 | 6.34 |
| 33.84 | Y | C 1 | CL | P/K | | 70 | 130 | GRG | 14 | 76 | 0.5 | 3.06 | 9.18 |
| 34.09 | Y | C 1 | CL | P/K | | 55 | 335 | GRG | 147 | 75 | 0.5 | 3.53 | 10.59 |
| 34.15 | | S 1 | EP | S/S | | 27 | 135 | GRG | 54 | 52 | | 2.87 | 10.34 |
| 34.30 | Y | C 1 | CL | P/S | | 54 | 160 | GRG | 35 | 80 | 0.5 | 1.94 | 6.20 |
| 34.41 | Y | C 1 | CL | P/S | | 56 | 160 | GRG | 33 | 80 | 0.5 | 2.14 | 5.71 |
| 34.43 | Y | C 1 | CL | P/S | | 56 | 160 | GRG | 33 | 80 | 0.5 | 1.97 | 5.51 |
| 34.56 | | S 1 | EP | P/R | | 44 | 160 | GRG | 44 | 77 | | 1.39 | 4.17 |
| 35.04 | | F | | | N | | | GRG | | | | 1.70 | 4.08 |
| 35.24 | Y | C 1 | CL | P/R | | 64 | 95 | GRG | 3 | 65 | 0.5 | 1.12 | 3.35 |
| 35.36 | | F | | | N | | | GRG | | | | 1.09 | 3.28 |
| 35.59 | | F | | | N | | | GRG | | | | 1.09 | 3.26 |
| 35.77 | Y | C 1 | CL | P/K | | 72 | 260 | GRG | 183 | 70 | 0.5 | 1.80 | 4.32 |
| 36.20 | | S 1 | CL | P/K | | 38 | 245 | GRG | 208 | 42 | | 1.95 | 4.69 |
| 36.26 | Y | C 1 | QZ | P/S | | 72 | 185 | GRG | 198 | 86 | 0.5 | 1.74 | 4.17 |
| 36.40 | Y | C 1 | QZEP | P/S | | 90 | | GRG | 180 | 88 | 0.5 | 1.80 | 5.04 |
| 36.43 | Y | C 1 | QZEPCL | P/R | | 28 | 265 | GRG | 188 | 26 | 0.5 | 1.84 | 5.88 |
| 36.52 | | F | | | N | | | GRG | | | | 1.90 | 7.62 |
| 36.80 | Y | C 1 | Cl | P/R | | 42 | 10 | GRG | 313 | 82 | 0.5 | 2.40 | 7.69 |
| 36.98 | Y | C 1 | CL | P/S | | 50 | 45 | GRG | 330 | 63 | | 1.32 | 4.64 |
| 37.13 | Y | C 1 | CL | S/R | | 46 | 215 | GRG | 219 | 64 | | 0.77 | 3.08 |
| 37.25 | | S 1 | EP | P/R | | 48 | 100 | GRG | 10 | 50 | | 0.52 | 2.58 |
| 37.30 | Y | C 1 | Cl | P/S | | 48 | 100 | GRG | 10 | 50 | 0.5 | 0.50 | 2.51 |
| 37.91 | | | CL | | | 61 | 310 | GRG | 160 | 67 | | 0.27 | 2.16 |
| 38.38 | | F | | | N | | | GRG | | | | 0.23 | 1.35 |
| 38.46 | | F | | | N | | | GRG | | | | 0.23 | 0.91 |
| 38.79 | | 1 ' | | | N | | | GRG | | | | 0.22 | 0.43 |
| 38.83 | Y | | CA | | N | | | GRG | | | | 0.00 | 0.00 |
| 39.35 | | | | | N | | | AND | | | | 0.74 | 0.00 |
| 39.44 | | | | | N | | | GRG | | | | 0.77 | 0.00 |
| 39.60 | | F | | | N | | | GRG | | | | 0.65 | 0.00 |
| 39.65 | | | | | N | | | AND | | | | 0.61 | 0.00 |
| 39.73 | Y | C | | P/S | | 62 | 122 | AND | 16 | 68 | 1 | 1.29 | 0.65 |
| 39.76 | | | F | | N | | | | | | | 1.13 | 0.56 |
| 40.34 | | | | | | 85 | 180 | PEG | 185 | 88 | | 1.76 | 1.18 |
| 40.48 | | | | | N | | | AND | | | | 1.62 | 1.08 |
| 40.90 | Y | C 1 | CA | S/R | | 68 | 80 | AND | 357 | 69 | 1 | 1.49 | 1.00 |
| 41.21 | | F | | | N | | | AND | | | | 0.97 | 0.97 |
| 41.30 | Y | C 1 | CA | S/R | | 76 | 60 | AND | 353 | 79 | 1 | 0.79 | 1.19 |
| 41.50 | | F | | | N | | | AND | | | | 0.83 | 1.66 |
| 41.74 | | F | | | N | | | AND | | | | 1.00 | 2.49 |
| 41.83 | | | | | N | | | GKJ | | | | 0.51 | 2.56 |
| 42.87 | | S 1 | CL | P/S | | 67 | 275 | GRG | 178 | 65 | | 0.53 | 3.17 |
| 42.89 | | S 1 | CL | P/S | | 60 | 236 | GRG | 198 | 63 | | 0.29 | 3.51 |
| 42.91 | | S 1 | CL | P/S | | 69 | 240 | GRG | 191 | 70 | | 0.62 | 4.35 |
| 43.16 | | S 1 | EP | P/S | | 48 | 105 | GRG | 14 | 51 | | 0.59 | 4.73 |
| 4.3.19 | | S 1 | EP | P/S | N | | | GRG | | | | 1.42 | 8.49 |
| 43.21 | Y | C 1 | CL | P/R | | 74 | 330 | GRG | 166 | 80 | 0.5 | 1.24 | 6.61 |
| 4.3 .35 | Y | C 1 | CL | P/S | | 56 | 245 | GRG | 196 | 58 | 0.5 | 1.06 | 4.26 |
| 43.52 | | S 1 | CLPY | P/S | | 54 | 270 | GRG | 180 | 52 | | 1.23 | 4.29 |
| 43.93 | Y | C. 1 | CL | P/R | | 52 | 102 | GRG | 10 | 54 | 0.5 | 1.32 | 4.09 |
| +4.10 | | F | | | N | | | GRG | | | | 1.89 | 4.07 |
| 44.79 | Y | C. 1 | CLEP | P/R | | 63 | 58 | GRG | 346 | 68 | 0.5 | 1.74 | 4.43 |

| 44.79 | Y | | | | N | | | BRC | | | | 1.24 | 3.47 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 44.90 | Y Y | C 1 | | P/S | | 35 | 345 | GRG | 126 | 77 | 0.25 | 1.66 | 4.21 |
| 44.93 | Y | C 1 | CA | P/S | | 68 | 210 | GRG | 199 | 77 | 1 | 1.08 | 3.35 |
| 44.93 | Y | C 1 | CA | P/S | | 90 | | GRG | 180 | 88 | | 1.94 | 5.6 .3 |
| 45.54 | Y | C 1 | EP | P/S | | 73 | 100 | GRG | 3 | 74 | 0.25 | 1.76 | 5.03 |
| 45.59 | Y | C 1 | ClCA | P/S | | 20 | 60 | GRG | 309 | 35 | 0.25 | 1.50 | 4.50 |
| 46.19 | | 51 | EP | S/S | | 75 | 228 | GRG | 190 | 77 | | 1.30 | 3.79 |
| 46.21 | \bigcirc | C 1 | CL | P/S | | 49 | 270 | GRG | 179 | 47 | 0.5 | 0.7 ? | 3.31 |
| 46.21 | Y | C 1 | CL | R/R | | 0 | 220 | GRG | 271 | 49 | 0.25 | 0.79 | 3.17 |
| 46.90 | Y | C 1 | CLPY | P/S | | 80 | 235 | GRG | 186 | 80 | 0.5 | 0.89 | 3.11 |
| 47.04 | | F | | | N | | | GRG | | | | 1.00 | 3.43 |
| 47.35 | | S 1 | CLEP | P/R | | 23 | 285 | GRG | 146 | 26 | | 1.18 | 3.14 |
| 47.75 | | F | | | N | | | GRG | | | | 1.16 | 3.09 |
| 47.84 | Y | C 1 | CL | P/R | | 68 | 210 | GRG | 199 | 77 | 0.5 | 1.92 | 4.62 |
| 47.94 | | F | | | N | | | GRG | | | | 1.35 | 3.38 |
| 48.12 | Y | C 1 | CLCA | P/S | | 58 | 305 | GRG | 160 | 63 | 0.5 | 2.07 | 4.96 |
| 48.15 | Y | C 1 | CLPY | P/S | | 30 | 18 | GRG | 302 | 74 | 0.5 | 2.48 | 4.96 |
| 48.20 | Y | C 1 | CLPY | P/S | | 32 | 20 | GRG | 304 | 73 | 0.5 | 2.65 | 6.19 |
| 48.52 | | F | | | N | | | GRG | | | | 3.40 | 8.6 .4 |
| 48.56 | Y | C 1 | CLCA | P/S | | 34 | 295 | GRG | 146 | 40 | 0.5 | 4.17 | 1..12 |
| 48.96 | Y | C 1 | CLEP | P/S | | 80 | 195 | GRG | 190 | 85 | 0.5 | 1.77 | 5.51 |
| 48.97 | | S 1 | EP | P/S | | 30 | 265 | GRG | 188 | 28 | | 1.48 | 4.61 |
| 48.75 | Y | C 1 | EP | P/S | | 22 | 305 | GRG | 123 | 40 | 0.25 | 2.25 | 5.74 |
| 48.78 | | S 1 | CL | P/S | | 17 | 60 | GRG | 304 | 34 | | 2.29 | 6.67 |
| 49.42 | | F | | | N | | | GRG | | | | 2.12 | 0.60 |
| 49.72 | Y | C 1 | EP | P/S | | 34 | 315 | GRG | 133 | 53 | 0.5 | 1.77 | 6.19 |
| 49.74 | Y | C 1 | CL | P/S | | 47 | 300 | GRG | 154 | 52 | 1 | 0.94 | 2.8. |
| 49.76 | Y | C 1 | EP | P/S | | 30 | 275 | GRG | 170 | 29 | | 0.79 | 2.26 |
| 50.02 | | F | | | N | | | GRG | | | | 0.87 | 1.98 |
| 50.10 | Y | C 1 | EP | P/S | | 18 | 148 | GRG | 69 | 61 | 0.25 | 0.81 | 2.11 |
| 50.88 | | F | | | N | | | GRG | | | | 0.94 | 2.09 |
| 50.99 | | F | | | N | | | GRG | | | | 0.51 | 2.06 |
| 51.44 | | F | | | N | | | GRG | | | | 0.92 | 2.05 |
| 51.88 | | S 1 | CL | C/R | | 5 | 120 | GRG | 78 | 31 | | 1.18 | 2.17 |
| 52.13 | Y | C 1 | CA | C/R | | 75 | 330 | GRG | 167 | 81 | 1 | 1.89 | 2.8 .3 |
| 52.19 | Y | S 1 | EP | P/R | | 18 | 200 | AND | 251 | 69 | | 2.33 | 3.26 |
| 52.46 | Y | C 1 | | S/R | | 37 | 240 | AND | 214 | 44 | 1 | 2.86 | 4.17 |
| 52.86 | Y | C 1 | CA | P/S | | 64 | 310 | AND | 162 | 69 | 1 | 4.00 | 6. 60 |
| 53.00 | Y | C 1 | CA | P/S | | 24 | 285 | AND | 147 | 27 | , | 4.61 | 6.38 |
| 53.14 | Y | C 1 | EP | S/S | | 16 | 210 | AND | 252 | 59 | 1 | 3.65 | 5.06 |
| 53.36 | Y | C 1 | CA | S/S | | 22 | 285 | AND | 144 | 25 | 0.5 | 4.11 | 5.06 |
| 53.38 | Y | C 1 | CA | S/S | | 24 | 292 | AND | 138 | 31 | 0.5 | 4.55 | 6.61 |
| 53.54 | Y | C. 1 | | P/S | | 23 | 220 | AND | 242 | 52 | 0.5 | 4.42 | 7.08 |
| 53.97 | Y | C 1 | CA | C/R | | 78 | 60 | AND | 354 | 80 | 1 | $4 .(1)$ | 7.21 |
| 54.04 | | F | | | N | | | AND | | | | 4.12 | 8.25 |
| 54.07 | | S 1 | CAEP | P/S | | 36 | 185 | AND | 234 | 84 | | 3.02 | 6.03 |
| 54.13 | Y | C 1 | | P/S | | 36 | 300 | AND | 144 | 44 | 0.5 | 3.51 | 6.14 |
| 54.24 | Y | C 1 | | P/S | | 30 | 320 | AND | 126 | 56 | 0.5 | 4.37 | 6. 80 |
| 54.33 | Y | C 1 | | P/R | | 32 | 290 | AND | 150 | 36 | 0.5 | 4.94 | 7.107 |
| 54.54 | Y | | | | N | | | GRG | | | | 4.29 | 7.62 |
| 54.68 | Y | C 1 | EP | P/R | | 63 | 295 | GRG | 167 | 64 | 1 | 4.81 | 7.6 |
| 55.00 | Y | C 1 | CL | P/S | | 33 | 330 | GRG | 126 | 65 | 5 | 5.49 | 8.79 |
| 55.03 | Y | C 1 | CL | P/S | | 39 | 60 | GRG | 330 | 48 | 0.5 | 5.75 | 9.20 |
| 55.12 | Y | $C 1$ | CL | P/S | | 38 | 50 | GRG | 322 | 53 | 0.5 | 7.35 | 11.76 |
| 55.17 | Y | C 1 | CL | P/S | | 20 | 305 | GRG | 121 | 39 | 0.5 | 8.73 | 14.29 |
| 55.15 | Y | C 1 | QZCL | P/S | | 27 | 325 | GRG | 121 | 59 | 0.5 | 15.28 | 25.00 |
| 55.20 | Y | C 1 | QZCL | C/S | | 35 | 30 | GRG | 310 | 65 | 0.5 | 16.18 | 26.47 |
| 55.22 | Y | C 1 | QZCL | C/S | | 40 | 20 | GRG | 312 | 75 | 0.5 | 22.22 | 33.33 |

| 55.31 | Y | | 1 | 1 QZCL | S/S | | 32 | 315 | GRG | 130 | 52 | 0.5 | 12.24 | 18.37 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 55.36 | Y | | 1 | 1 CA | P/R | | 78 | 80 | GRG | 358 | 79 | 1 | 10.38 | 16.98 |
| 55.37 | Y | | 1 | 1 CL | C/R | | 39 | 65 | GRG | 334 | 46 | 1 | 12.82 | 23.08 |
| 55.39 | Y | | 1 | 1 CL | C/R | | 48 | 52 | GRG | 332 | 58 | 1 | 10.98 | 21.95 |
| 55.66 | Y | C | 1 | 1 CA | S/R | | 13 | 175 | GRG | 77 | 86 | 0.5 | 11.76 | 26.47 |
| 55.68 | | S | 1 | 1 CL | S/R | | 20 | 220 | GRG | 245 | 51 | | 8.97 | 20.51 |
| 55.59 | | S | | 1 CA | P/S | | 87 | 195 | GRG | 183 | 87 | | 6.25 | 20.00 |
| 55.63 | | S | | 1 CA | P/S | | 76 | 325 | GRG | 168 | 80 | | 1.71 | 5.48 |
| 55.65 | | S | 1 | 1 CA | P/S | | 70 | 330 | GRG | 162 | 79 | | 1.53 | 6.11 |
| 55.75 | | F | | | | N | | | GRG | | | | 1.06 | 5.67 |
| 55.77 | | S | 1 | 1 CA | S/S | | 66 | 175 | GRG | 24 | 89 | | 0.97 | 5.16 |
| 56.85 | Y | C | | 1 CACL | S/S | | 28 | 160 | GRG | 60 | 73 | 1 | 0.94 | 5.03 |
| 56.97 | Y | Y C | 1 | 1 CA | | N | | | AND | | | 0.5 | 1.18 | 3.79 |
| 57.09 | | S | | 1 CA | P/R | | 74 | 88 | AND | 0 | 75 | | 1.35 | 3.92 |
| 57.14 | | S | | 1 EP | S/S | | 20 | 100 | AND | 26 | 23 | | 1.42 | 4.27 |
| 57.22 | | S | 1 | 1 EP | S/S | | 31 | 110 | AND | 30 | 37 | | 2.75 | 8.26 |
| 57.76 | | | | | | | 58 | 170 | AND | 32 | 86 | 1 | 2.02 | 9.09 |
| 57.79 | Y | C | 1 | 1 EPCA | P/S | | 37 | 165 | AND | 52 | 79 | 0.25 | 1.69 | 8.99 |
| 57.88 | Y | C | 1 | 1 EP | I/R | | 23 | 100 | AND | 23 | 26 | 0.25 | 1.61 | 8.60 |
| 57.94 | | S | 1 | 1 EP | S/S | | 34 | 85 | AND | 354 | 35 | | 2.91 | 9.30 |
| 57.96 | | S | 1 | 1 EP | S/S | | 24 | 105 | AND | 31 | 29 | | 4.10 | 13.11 |
| 57.98 | | F | | | | N | | | AND | | | | 3.08 | 12.31 |
| 58.07 | | S | 1 | 1 EP | S/S | | 12 | 95 | AND | 24 | 14 | | 1.82 | 7.29 |
| 58.08 | Y | C | 1 | 1 EP | S/S | | 18 | 98 | AND | 24 | 21 | 1 | 1.58 | 6.32 |
| 58.37 | | S | 1 | 1 EPCA | S/ | | 22 | 330 | AND | 114 | 62 | | 1.00 | 3.33 |
| 58.44 | Y | C | 1 | 1 CAWH | P/R | | 90 | | AND | 180 | 88 | 0.5 | 2.63 | 6.58 |
| 58.84 | | Y | | | | N | | | BRC | | | | 2.75 | 6.59 |
| 58.89 | | Y | | | | N | | | GRG | | | | 3.61 | 7.23 |
| 59.46 | | F | | | | N | | | GRG | | | | 3.70 | 11.11 |
| 58.74 | Y | | 1 | 1 CL | P/S | N | | | GRG | | | 0.5 | 3.08 | 7.69 |
| 58.98 | Y | C | 1 | 1 CL | S/S | N | | | GRG | | | 0.5 | 0.93 | 2.48 |
| 58.91 | | S | | 1 CL | P/R | | 20 | 155 | GRG | 68 | 67 | 0.5 | 0.83 | 2.78 |
| 58.9] | Y | C | 1 | 1 CL | P/S | | 55 | 155 | GRG | 33 | 77 | | 0.98 | 3.27 |
| 59.09 | | Y | | | | N | | | AND | | | | 0.59 | 2.35 |
| 60.45 | | Y | | | | N | | | GRG | | | | 0.43 | 2.59 |
| 60.69 | | S | | 1 CLEP | S/R | | 12 | 290 | GRG | 118 | 23 | | 0.19 | 1.94 |
| 60.99 | | F | | | | N | | | GRG | | | | 0.00 | 1.86 |
| 61.29 | | S | 1 | 1 AP | S/S | | 69 | 65 | GRG | 351 | 72 | | 0.00 | 1.53 |
| 61.30 | | S | 1 | 1 EP | P/S | | 45 | 130 | GRG | 33 | 58 | | 0.00 | 2.78 |
| 61.49 | | F | | | | N | | | GRG | | | | 0.00 | 3.77 |
| 61.60 | | S | 1 | 1 AP | S/S | N | | | GRG | | | | 0.00 | 2.14 |
| 61.70 | | Y | | | | N | | | AND | | | | 0.00 | 2.80 |
| 62.25 | | S | | 1 CA | S/S | | 65 | 100 | AND | 5 | 66 | | 0.00 | 2.75 |
| 62.28 | | S | 1 | 1 EP | S/S | | 24 | 155 | AND | 64 | 68 | | 0.00 | 2.91 |
| 63.33 | | F | | | | N | | | AND | 270 | 89 | | 0.00 | 3.43 |
| 63.43 | | S | | 1 CA | S/S | N | | | AND | NOTE:C | HAN | E TO | 0.00 | 3.52 |
| 63.48 | | S | | 1 AP | P/S | | 75 | 170 | AND | 15 | 88 | | 0.00 | 4.67 |
| 63.55 | | S | 1 | 1 EP | S/S | | 4 | 101 | AND | 66 | 13 | | 0.33 | 4.67 |
| 63.64 | | S | 1 | 1 EP | S/S | | 26 | 111 | AND | 36 | 34 | | 0.89 | 12.50 |
| 63.69 | | S | | | S/S | | 16 | 111 | AND | 51 | 27 | | 1.41 | 11.27 |
| 63.75 | Y | | | | P/K | | 20 | 83 | AND | 345 | 22 | | 1.37 | 9.59 |
| 63.78 | Y | C | 1 | 1 CL | P/S | | 53 | 143 | AND | 31 | 70 | 0.5 | 1.90 | 8.86 |
| 63.89 | | S | 1 | 1 EP | S/S | | 16 | 281 | AND | 142 | 18 | | 2.11 | 9.86 |
| 64.14 | Y | | 1 | 1 CL | P/S | | 48 | 147 | AND | 37 | 70 | 0.5 | 1.97 | 9.21 |
| 6.21 | | Y | | | | N | | | GRG | | | | 2.05 | 9.59 |
| 64.34 | Y | | 1 | 1 CA | P/S | | 63 | 157 | GRG | 25 | 81 | 0.5 | 1.33 | 7.08 |
| 64.35 | | S | 1 | 1 CA | S/S | | 82 | 138 | GRG | 6 | 86 | | 0.93 | 6.48 |
| 64.45 | | S | 1 | 1 EP | P/S | | 28 | 267 | GRG | 184 | 26 | | 1.11 | 7.78 |

| 64.48 | | | 1 | EP | S/S | | 27 | 129 | GRG | 51 | 47 | | 1.11 | 778 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64.91 | | | 1 | CL | P/R | | 75 | 124 | GRG | 9 | 79 | | 1.27 | 10.13 |
| 64.97 | | F | | | | N | | | GRG | | | | 0.05 | 10.39 |
| 65.04 | | | 1 | EP | P/R | | 26 | 101 | GRG | 22 | 29 | | 0.59 | 9.41 |
| 65.11 | Y | | 1 | CA | P/R | | 65 | 181 | GRG | 205 | 87 | 0.5 | 0.60 | 9.5? |
| 65.13 | | | 1 | CA | S/I | N | | | GRG | | | | 0.8. | 11.48 |
| 65.12 | | | 1 | EP | P/R | | 28 | 118 | GRG | 41 | 40 | | 0.81 | 11.29 |
| 65.30 | | | 1 | EP | P/R | | 24 | 115 | GRG | 43 | 35 | | 0.66 | 10.53 |
| 65.32 | | | 1 | EP | P/R | | 16 | 106 | GRG | 43 | 24 | | 0.64 | 10.26 |
| 65.52 | | F | | | | N | | | GRG | | | | 0.00 | 7.48 |
| 65.59 | | | 1 | CLEP | S/S | | 50 | 120 | GRG | 23 | 57 | | 0.4 .5 | 7.27 |
| 65.80 | | S | 1 | CL | S/R | | 10 | 101 | GRG | 46 | 16 | | 0.65 | 5.23 |
| 65.89 | | | 1 | CL | S/R | | 16 | 83 | GRG | 341 | 18 | | 0.62 | 4.32 |
| 66.20 | | | 1 | EP | S/S | | 28 | 249 | GRG | 214 | 32 | | 0.68 | 4.08 |
| 66.22 | Y | C | 1 | CA | P/S | | 68 | 295 | GRG | 170 | 68 | 0.5 | 0.6 .3 | 4.38 |
| 66.83 | Y | | 1 | CL | S/R | | 16 | 18 | GRG | 287 | 72 | 0.5 | 0.97 | 4.55 |
| 66.94 | | F | | | | N | | | GRG | | | | 1.48 | 4.1.4 |
| 66.99 | | F | | | | N | | | GRG | | | | 2.50 | $5 .(0)$ |
| 67.19 | Y | | 1 | AU | | N | | | GRG | | | | 2.46 | 4.23 |
| 67.34 | Y | C | 1 | CL | S/R | | 20 | 286 | GRG | 140 | 24 | 0.5 | 3.61 | 5.15 |
| 67.58 | Y | | 1 | CAEP | P/R | | 74 | 203 | GRG | 195 | 82 | 1 | 2.87 | 4.10 |
| 67.60 | Y | | 1 | CA | P/S | | 70 | 173 | GRG | 20 | 89 | 1 | 3.69 | 4.92 |
| 67.64 | Y | | | CL | | N | | | BRC | | | | 3.72 | 5.79 |
| 67.80 | Y | | | | | N | | | GRG | | | 0.5 | 5.00 | 6.36 |
| 68.16 | Y | | C 1 | | P/S | | 54 | 152 | GRG | 33 | 75 | 0.5 | 5.26 | 7.37 |
| 68.21 | Y | | C 1 | CL | P/S | | 67 | 189 | GRG | 203 | 84 | , | 4.0 .4 | 7.07 |
| 68.40 | Y | | C 1 | CA | P/R | | 60 | 189 | GRG | 210 | 83 | | 3.13 | 7.29 |
| 68.44 | | | 1 | CA | P/S | | 53 | 175 | GRG | 37 | 88 | 1 | 3.61 | 9.64 |
| 68.53 | | 5 | 1 | CA | P/S | | 62 | 138 | GRG | 22 | 73 | | 7.29 | 18.75 |
| 68.59 | | S | 1 | CA | S/S | | 48 | 203 | GRG | 220 | 73 | | 8.16 | 18.37 |
| 68.60 | | S | 1 | CA | S/S | | 63 | 189 | GRG | 207 | 84 | | 10.00 | 26.67 |
| 68.63 | | S | 1 | CLEP | S/S | | 41 | 120 | GRG | 30 | 50 | | 8.57 | 20.00 |
| 68.64 | 1 | | C 1 | CL | P/R | | 63 | 181 | GRG | 207 | 87 | 1 | 9.38 | 21.88 |
| 68.70 | Y | | C 1 | CLEP | Pi'K | | 62 | 195 | GRG | 207 | 81 | 1 | 4.48 | 8.96 |
| 68.70 | | , | | EP | | | 38 | 304 | BRC | 143 | 48 | | 4.61 | 7.89 |
| 68.79 | | | | | | N | | | GP.G | | | | 4.25 | 5.66 |
| 68.85 | Y | | C 1 | CL | S/R | | 52 | 203 | GRG | 216 | 74 | 1 | 2.78 | 3.03 |
| 69.26 | | F | F | | | N | | | GRG | NLY L | OG | CT | 2.59 | 3.11 |
| 69.36 | Y | | C 1 | Cl | I/R | | 82 | 157 | GRG | 8 | 88 | 0.5 | 2.02 | 2.43 |
| 69.69 | Y | | C 1 | CA | P/R | | 76 | 175 | GRG | 194 | 89 | 1 | 1.99 | 2.33 |
| 70.62 | Y | | C 1 | AP | P/S | | 77 | 166 | GRG | 13 | 88 | 1 | 2.35 | 2.68 |
| 70.63 | Y | | C 1 | CA | P/S | | 73 | 212 | GRG | 195 | 79 | 0.5 | 1.95 | 2.27 |
| 71.17 | Y | | C 1 | CL | P/S | | 62 | 129 | GRG | 19 | 70 | 1 | 2.24 | 2.56 |
| 71.80 | Y | | C 1 | FE | C'! | | 66 | 175 | GRG | 24 | 89 | 1 | 2.60 | 2.84 |
| 71.83 | Y | | C 1 | | P/R | | 62 | 181 | GRG | 208 | 86 | 1 | 3.28 | 3.54 |
| 72.34 | | F | F | | | N | | | GRG | | | | 2.70 | 3.43 |
| 72.48 | Y | | C 1 | CA | I/R | | 65 | 71 | GRG | 352 | 67 | 1 | 2.25 | 3.15 |
| 72.51 | Y | | C 1 | CL | P/S | | 68 | 180 | GRG | 202 | 88 | 1 | 2.94 | 4.12 |
| 72.60 | | F | F | | | N | | | GRG | | | | 1.87 | 3.27 |
| 72.67 | Y | | C 1 | CL | P/S | | 85 | 78 | GRG | 3.59 | 86 | | 1.69 | 3.37 |
| 73.39 | Y | | C 1 | CACL | P/R | | 55 | 203 | GRG | 213 | 75 | | 1.72 | 4.02 |
| 73.50 | Y | | C 1 | CACL | P/R | | 42 | 207 | GRG | 225 | 68 | 1 | 1.24 | 3.47 |
| 73.97 | Y | | C 1 | CL | P/K | | 47 | 251 | GRG | 197 | 48 | | 1.03 | 3.61 |
| 74.12 | | F | F | | | N | | | GRG | | | | 1.04 | 4.15 |
| 74.22 | Y | | C 1 | CL | P/S | | 45 | 198 | GRG | 224 | 75 | | 1.27 | 443 |
| 74.53 | Y | | C 1 | CA | P/S | | 59 | 186 | GRG | 211 | 85 | 0.5 | 1.18 | 3.55 |
| 74.54 | Y | | C. 1 | FE | IRD | | 90 | 186 | GRG | 180 | 88 | 0.5 | 0.71 | 3.55 |
| 74.60 | Y | | C 1 | CLCA | P/S | | 59 | 269 | GRG | 180 | 57 | | 0.61 | 2.44 |

| 89.35 | | F | | | 1/R | | 90 | | APL | 180 | 88 | | 0.00 | 0.59 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89.44 | Y | C | 1 | | P/S | | 79 | 180 | APL | 191 | 88 | | 0.27 | 1.09 |
| 89.89 | | | | | | N | | | GRG | | | | 0.25 | 1.51 |
| 90.20 | | F | | | | N | | | GRG | | | | 0.41 | 1.63 |
| 90.61 | | F | | | | N | | | GRG | | | | 0.42 | 1.67 |
| 90.90 | Y | C | 1 | QZ | P/R | | 69 | 170 | GRG | 21 | 88 | 0.5 | 0.60 | 1.99 |
| 01.06 | Y | C | 1 | CL | P/S | | 80 | 0 | GRG | 170 | 88 | | 0.65 | 2.10 |
| 91.62 | Y | | 1 | EP | P/S | | 70 | 85 | GRG | 359 | 71 | 0.5 | 0.64 | 2.55 |
| 91.75 | | F | | | | N | | | GRG | | | | 0.63 | 2.51 |
| 91.95 | Y | | 1 | CACLE.P | C/R | | 64 | 85 | GRG | 358 | 65 | 0.5 | 0.69 | 2.78 |
| 92.21 | | F | 1 | CL | C/S | | 54 | 162 | GRG | 35 | 81 | | 0.72 | 2.88 |
| 92.55 | | | 1 | CL | PSK | | 43 | 120 | GRG | 29 | 52 | | 0.73 | 2.43 |
| 93.00 | | F | | | | N | | | GRG | | | | 0.4 .4 | 1.71 |
| 93.06 | | F | | | | N | | | GRG | | | | 0.40 | 1.58 |
| 93.14 | Y | | 1 | QZ | S/R | | 77 | 305 | GRG | 172 | 78 | 0.5 | 0.20 | 1.22 |
| 93.68 | | F | | CACL | P/S | | 50 | 190 | GRG | 220 | 81 | | 0.24 | 1.90 |
| 94.01 | | F | F | CL | | | 73 | 270 | GRG | 180 | 71 | | 0.25 | 1.51 |
| 94.48 | | F | F | | | N | | | GRG | | | | 0.22 | 1.29 |
| 94.66 | | Y | | | | N | | | AND | | | | 0.66 | 1.75 |
| 94.66 | Y | C | C 2 | CL | | N | | | AND | | | | 0.75 | 2.91 |
| 94.99 | | F | F | | | N | | | AND | | | | 1.13 | 2.8. |
| 95.38 | | F | F | | | N | | | AND | | | | 1.43 | 4.29 |
| 95.42 | Y | C | C 1 | CA | PSD | | 60 | 177 | AND | 210 | 89 | 1 | 1.89 | 0.06 |
| 95.67 | Y | C | C 1 | CL | P/S | | 59 | 102 | AND | 8 | 61 | 0.5 | 1.88 | 6.77 |
| 95.78 | Y | C | C 1 | CAEP | P/S | | 60 | 102 | AND | 7 | 62 | 0.5 | 2.12 | 6.78 |
| 95.88 | | | F 1 | CL | P/S | | 64 | 110 | AND | 10 | 67 | | 2.05 | 6.56 |
| 95.98 | Y | | C 2 | CL | | N | | | AND | | | 0.5 | 1.94 | 6.20 |
| 95.99 | | F | F 1 | CL | P/S | | 65 | 229 | AND | 197 | 69 | | 1.32 | 5.30 |
| 96.17 | Y | C | C 1 | CA | PSD | | 66 | 88 | AND | 0 | 67 | | 0.99 | 5.2\% |
| 96.60 | | F | F | | | N | | | AND | | | | 0.68 | 5.44 |
| 96.71 | | F | F | | | N | | | AND | | | | 1.37 | \bigcirc |
| 97.18 | Y | | C 1 | CLCA | P/S | | 61 | 140 | AND | 23 | 73 | 0.5 | 0.99 | 3.95 |
| 97.30 | | | F1 | CA | P/S | | 72 | 108 | AND | 6 | 74 | | 1.71 | 4.11 |
| 97.35 | | | F 1 | CACL | P/S | | 77 | 150 | AND | 12 | 85 | | 2.43 | 4.17 |
| 97.44 | Y | | C 1 | CA | P/S | | 65 | 158 | AND | 24 | 82 | 1 | 2.92 | 4.55 |
| 97.51 | | F | F | | | N | | | AND | | | | 4.66 | 6.78 |
| 97.63 | Y | | C 1 | | P/R | | 75 | 200 | AND | 194 | 83 | 1 | 3.73 | 5.22 |
| 98.04 | Y | | C 1 | CL | S/S | | 58 | 225 | AND | 204 | 66 | 1 | 3.60 | 4.32 |
| 98.25 | Y | | C 1 | CLCA | | N | | | AND | | | 1 | 3.62 | 3.62 |
| 98.36 | Y | | C 1 | CACL | S/S | | 58 | 102 | AND | 8 | 60 | 1 | 3.36 | 3.36 |
| 98.64 | | F | F | | | N | | | AND | | | | 2.42 | 2.42 |
| 98.74 | | Y | | | | N | | | GRG | | | | 2.33 | 2.33 |
| 98.82 | | F | F | | | N | | | GRG | | | | 2.09 | 2.09 |
| 99.00 | Y | | C 1 | CA | I/R | | 78 | 212 | GRG | 190 | 82 | 1.000 | 1.51 | 2.01 |
| 99.70 | | F | F | | | N | | | | | | | 1.24 | 1.98 |
| 99.76 | | F | F | | | N | | | GRG | | | | 1.12 | 1.79 |
| 100.16 | Y | | C 1 | CLCA | P/R | | 60 | 215 | GRG | 205 | 71 | 1.000 | 1.53 | 2.18 |
| 100.35 | | | F 1 | CL | P/K | | 45 | 178 | GRG | 225 | 89 | | 1.54 | 2.20 |
| 100.66 | Y | | C 1 | | P/S | | 41 | 160 | GRG | 47 | 76 | 0.500 | 1.57 | 2.62 |
| 100.97 | | F | F | | | N | | | GRG | | | | 1.81 | 2.71 |
| 101.11 | Y | | C 1 | CL | P/S | | 90 | | GRG | 180 | 88 | 1.000 | 2.18 | 3.88 |
| 101.27 | | | F | | | N | | | GRG | | | | 1.74 | 3.48 |
| 101.61 | Y | | C 1 | CLEP | P/S | | 76 | 72 | GRG | 356 | 77 | 0.500 | 186 | 3.26 |
| 101.97 | Y | | C 1 | CL | P/S | | 76 | 62 | GRG | 354 | 78 | 1.000 | 1.67 | 2.87 |
| 102.22 | Y | | C 2 | | | N | | | GRG | | | 0.500 | 1.84 | 2.87 |
| 102.65 | Y | | C 1 | CL | P/S | | 24 | 120 | GRG | 48 | 39 | 0.500 | 1.14 | 2.28 |
| 102.81 | | | F | | | N | | | GRG | | | | 1.18 | 2.36 |
| 103.06 | | Y | | | | N | | | GRP | | | | 1.07 | 2.50 |

| 103.55 | | C | 1 | CL. | S/R | | 22 | 128 | GRG | 56 | 44 | 1.000 | 0.60 | 2.11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 104.34 | | S | 1 | CL | S/R | | 55 | 180 | GRG | 215 | 88 | | 0.24 | 0.81 |
| 104.57 | | F | | | | N | | | GRP | | | | 0.26 | 1.03 |
| 104.77 | | S | 1 | CL | I/R | | 90 | | GRP | 180 | 88 | | 0.35 | 1.18 |
| 105.53 | | F | 1 | | | | 0 | 130 | GRP | 89 | 40 | | 0.66 | 1.58 |
| 108.86 | | F | | | | N | | | GRP | | | | 0.49 | 1.95 |
| 106.71 | | F | | | | | 66 | 208 | GRP | 202 | 77 | | 0.65 | 1.94 |
| 107.29 | Y Y | C | 1 | clca | P/S | | 70 | 160 | AND | 19 | 84 | 0.500 | 0.85 | 2.38 |
| 107.35 | Y | C | 1 | CL | S/S | | 32 | 240 | AND | 219 | 41 | 1.000 | 1.04 | 2.50 |
| 107.42 | | S | 1 | CL | P/S | | 29 | 200 | AND | 240 | 71 | | -4.22 | -7.23 |
| 107.67 | Y | C | 1 | CACL | P/S | | 47 | 84 | AND | 356 | 48 | 0.500 | 2.35 | 4.70 |
| 107.71 | Y | C | 1 | CACL | PSK | | 38 | 145 | AND | 46 | 64 | 0.500 | 3.15 | 7.21 |
| 107.93 | | F | | | | N | | | AND | | | | 2.70 | 7.21 |
| 108.03 | | S | 1 | | P/S | | 54 | 165 | AND | 35 | 82 | 1.000 | 1.68 | 6.72 |
| 108.20 | | S | 1 | CL | P/S | | 90 | | AND | 180 | 88 | | 1.65 | 5.79 |
| 108.40 | | S | 1 | CL | P/S | | 41 | 95 | AND | 7 | 42 | | 1.64 | 4.61 |
| 108.46 | | S | 1 | CL. | P/S | | 42 | 200 | AND | 227 | 73 | | 1.85 | 4.32 |
| 108.61 | | S | 1 | ClCA | P/S | | 25 | 302 | AND | 130 | 39 | | 2.48 | 4.97 |
| 108.88 | Y | | | | | N | | | GRP | | | | 2.63 | 5.26 |
| 109.23 | Y | C | | CLCA | P/S | | 25 | 330 | GRP | 118 | 63 | 1.000 | 3.60 | 5.76 |
| 109.55 | Y | | 1 | | PRD | | 46 | 120 | GRP | 26 | 54 | 1.000 | 3.45 | 4.83 |
| 109.64 | Y | | 1 | | PRD | | 22 | 310 | GRP | 121 | 44 | 1.000 | 3.57 | 4.29 |
| 109.72 | Y | | 1 | | PRD | | 24 | 320 | GRP | 119 | 54 | 1.000 | 3.44 | 3.75 |
| 109.79 | Y | C | 1 | QZ | P/R | | 12 | 320 | GRP | 104 | 51 | 1.000 | 3.27 | 3.52 |
| 109.91 | | F | | | | N | | | GRP | | | | 2.97 | 3.24 |
| 110.01 | | F | | | P/R | | 56 | 282 | GRP | 171 | 55 | | 2.42 | 2.69 |
| 110.48 | Y | C | 1 | CL | P/R | | 16 | 330 | GRP | 108 | 61 | 0.500 | 2.46 | 2.73 |
| 111.22 | Y | C | 1 | CAEP | P/R | | 48 | 180 | GRP | 222 | 88 | 1.000 | 1.90 | 2.72 |
| 111.40 | | F | | | | N | | | GRP | | | | 1.22 | 2.04 |
| 111.50 | | F | | | | N | | | GRP | | | | 1.61 | 2.41 |
| 111.55 | Y | C | 1 | EP | P/K | | 17 | 330 | GRP | 109 | 61 | 1.000 | 2.05 | 3.18 |
| 111.63 | Y | C | 1 | EP | P/K | \cdots | | | | | | | 3.38 | 4.73 |
| 112.36 | Y | C | 1 | | P/K | | 19 | 112 | GRP | 47 | 30 | 0.500 | 3.08 | 5.38 |
| 112.50 | Y | C | 1 | CLEP | P/R | | 48 | 0 | GRP | 138 | 89 | 1.000 | 3.02 | 5.37 |
| 112.68 | Y | C | 1 | WF | P / R | | 19 | 142 | GRP | 66 | 55 | 0.500 | 2.97 | 4.86 |
| 112.70 | Y | C | 1 | CL | P/R | | 15 | 120 | GRP | 61 | 34 | 1.000 | 2.49 | 4.97 |
| 112.70 | Y | C | 1 | CL | P/R | | 23 | 120 | GRP | 49 | 38 | | 4.24 | 7.63 |
| 112.99 | Y | C | 1 | | P/R | | 27 | 140 | GRP | 56 | 56 | 0.500 | 4.33 | 7.09 |
| 113.40 | Y | C | 1 | CLFE | PRD | | 30 | 142 | GRP | 54 | 59 | 1.000 | 4.87 | 7.96 |
| 113.44 | Y | C | 1 | | P/R | | 25 | 180 | GRP | 245 | 88 | | 3.82 | 6.11 |
| 113.54 | Y | C | 1 | | P / R | | 20 | 140 | GRP | 64 | 54 | 0.500 | 2.65 | 4.64 |
| 113.77 | Y | C | 1 | CLWF | P/R | | 22 | 205 | GRP | 247 | 65 | 1.000 | 3.15 | 4.72 |
| 113.81 | Y | C | 1 | CL | P/R | | 65 | 130 | GRP | 17 | 72 | 1.000 | 2.92 | 4.17 |
| 114.01 | | F | | | | N | | | GRP | | | | 2.73 | 3.91 |
| 114.21 | | F | | | | N | | | GRP | | | | 2.61 | 2.99 |
| 114.26 | | F | | | | N | | | GRP | | | | 2.56 | 2.56 |
| 114.60 | | F | | | | N | | | GRP | | | | 1.18 | 1.18 |
| 114.72 | Y | C | 1 | CL | P/R | N | | | GRP | | | 1.000 | 0.65 | 0.65 |
| 114.88 | | F | | | | N | | | GRP | | | | 0.39 | 0.39 |
| 114.94 | | F | | | | N | | | GRP | | | | 0.35 | 0.35 |
| 115.51 | | F | | | | N | | | GRP | | | | 0.66 | 0.66 |
| 115.55 | | F | | | | N | | | GRP | | | | 0.93 | 0.93 |
| 116.76 | | S | | | P/R | | 63 | 140 | GRP | 22 | 74 | | 0.63 | 0.63 |
| 117.14 | | F | | | | N | | | GRP | | | | 0.54 | 0.54 |
| 117.63 | Y | C | 1 | | P/R | | 15 | 14 | GRP | | | 1.000 | 0.77 | 0.77 |
| 117.96 | Y | C | 1 | | P / R | | 20 | 20 | GRP | 292 | 70 | 1.000 | 0.90 | 1.03 |
| 118.05 | | F | | | | N | | | GRP | | | | 1.49 | 1.66 |
| 118.61 | | F | | | | N | | | GRP | | | | 1.56 | 1.74 |

| 119.41 | Y | C 1 | CL | P/R | | 11 | 340 | GRP | 101 | 70 | 1.000 | 1.70 | 189 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 119.43 | Y | C 1 | | P/R | | 20 | 350 | GRP | 110 | 80 | 0.500 | 1.40 | 1.00 |
| 119.78 | Y | C 1 | CL | S/R | | 50 | 340 | GRP | 142 | 76 | 1.000 | 1.01 | 1.21 |
| 120.02 | | F | | | N | | | GRP | | | | 1.51 | 2.01 |
| 120.28 | | F | | | N | | | GRP | | | | 1.86 | 2.48 |
| 120.46 | | F | | | N | | | GRP | | | | 1.08 | 1.62 |
| 120.52 | | F | | | N | | | GRP | | | | 0.32 | 0.43 |
| 120.60 | Y | 1 | | P/S | | 19 | 0 | GRP | 289 | 89 | 0.500 | 1.04 | 1.39 |
| 121.02 | | F | | | N | | | GRP | | | | 1.27 | 2.54 |
| 121.28 | | F | | | N | | | GRP | | | | 1.50 | 4.00 |
| 124.41 | | F | | | N | | | GRP | | | | 1.02 | 3.40 |
| 121.46 | Y | C 1 | CL | P/R | | 34 | 280 | GRP | 164 | 34 | 1.000 | 0.96 | 2.88 |
| 121.46 | Y | 1 | | | | 0 | 100 | GRP | 83 | 10 | | 0.74 | 2.94 |
| 121.46 | | 1 | | | | 0 | 185 | GRP | 270 | 84 | | 1.40 | 3.93 |
| 121.99 | | F 1 | | P/R | | 23 | 300 | GRP | 128 | 36 | | -2.34 | -7.48 |
| 122.68 | Y | C 1 | CL | P/S | | 34 | 330 | GRP | 127 | 65 | 0.500 | 1.71 | 4.39 |
| 123.06 | Y | C 1 | CLEP | P/S | | 43 | 210 | GRP | 223 | 60 | | 1.40 | 4.19 |
| 123.06 | Y | $C 1$ | CL | P/S | | 50 | 310 | GRP | 151 | 59 | 1.000 | 1.57 | 3.54 |
| 123.34 | Y | C 1 | CL | P/S | | 45 | 320 | GRP | 142 | 62 | | 2.31 | 4.17 |
| 123.51 | Y | C 1 | EPCL | P / K | N | | | GRP | | | 1.000 | 3.19 | 4.79 |
| 123.61 | Y | C 1 | CK | P/R | | 58 | 310 | GRP | 158 | 05 | 0.500 | 3.42 | 5.59 |
| 124.00 | Y | C 1 | CL | PKS | | 28 | 310 | GRP | 128 | 47 | 1.000 | 2.85 | 4.15 |
| 124.15 | Y | C 1 | WF | P/R | | 58 | 125 | GRP | 20 | 65 | 1.000 | 3.11 | 4.52 |
| 124.56 | Y | C 1 | WF | P/R | | 28 | 320 | GRP | 124 | 55 | 1.000 | 3.33 | 4.10 |
| 124.67 | Y | C 1 | WF | P/R | | 34 | 330 | GRP | 127 | 65 | | -9.02 | 11.48 |
| 124.99 | | F | | | N | | | GRP | | | | 2.16 | 2.52 |
| 125.11 | Y | C 1 | WF | P/R | | 22 | 335 | GRP | 114 | 67 | 1.000 | 2.08 | 2.64 |
| 125.46 | Y | C 1 | CLWF | P/R | | 32 | 320 | GRP | 128 | 56 | 1.000 | 2.23 | 3.13 |
| 123.00 | | F | | | N | | | GRP | | | | 1.78 | 2.67 |
| 126.78 | Y | 1 | | P/R | | 42 | 280 | GRP | 168 | 41 | 1.000 | 2.42 | 3.23 |
| 126.80 | Y | 1 | | P/R | | 32 | 290 | GRP | 150 | 36 | 0.500 | 2.59 | 3.30 |
| 126.80 | Y | 1 | | P/R | | 42 | 120 | GRP | 29 | 51 | 0.500 | 2.45 | 3.43 |
| 126.92 | | F | | | N | | | GRP | | | | 1.08 | 1.51 |
| 126.85 | Y | 1 | | 1/R | | 18 | 202 | GRP | 251 | 67 | 0.500 | 3.70 | 5.93 |
| 127.23 | Y | C 1 | WF | P/R | | 28 | 64 | GR1 | 323 | 37 | 1.000 | 2.47 | 4.32 |
| 127.50 | Y | 1 | | 1/R | | 15 | 48 | GRP | 294 | 43 | 0.500 | 2.36 | 3.66 |
| 127.63 | Y | C 1 | WF | P/R | | 30 | 53 | GRP | 316 | 46 | 1.000 | 2.75 | 3.85 |
| 128.13 | Y | 1 | | P/R | | 25 | 18 | GRP | 297 | 73 | | 3.05 | 4.06 |
| 128.42 | | F | | | N | | | GRP | | | | 3.99 | 4.91 |
| 128.71 | Y | 1 | | P/R | | 56 | 286 | GRP | 109 | 56 | 1.000 | 2.93 | 3.72 |
| 128.74 | Y | 1 | | P/R | | 67 | 294 | GRP | 170 | 67 | 1.000 | 2.83 | 3.30 |
| 128.82 | Y | 1 | | P/R | | 45 | 294 | GRP | 157 | 48 | 1.000 | 3.42 | 4.35 |
| 128.86 | Y | 1 | | I/R | N | | | GRP | | | 1.000 | 3.87 | 4.93 |
| 129.38 | | | | | | 5 | 202 | GRP | 265 | 67 | | 4.20 | 5.34 |
| 129.75 | Y | 1 | | PRD | | 65 | 26 | GRP | 338 | 80 | 1.000 | 3.52 | 4.93 |
| 129.74 | Y | 1 | | P / R | | 37 | 48 | GRP | 320 | 54 | 0.500 | 2.78 | 4.32 |
| 129.84 | Y | C 1 | WF | P/R | | 35 | 53 | GRP | 321 | 49 | | 2.20 | 3.85 |
| 130.02 | | F | | | N | | | GRP | | | | 2.17 | 4.35 |
| 130.16 | Y | 1 | | P/R | | 34 | 46 | GRP | 316 | 53 | 0.500 | 3.60 | 6.40 |
| 130.44 | Y | 1 | | P / R | | 20 | 55 | GRP | 305 | 39 | 0.500 | 2.35 | 4.70 |
| 130.68 | Y | 1 | | P/R | | 16 | 253 | GRP | 227 | 21 | 0.500 | 1.82 | 3.64 |
| 130.99 | Y | 1 | | P/R | | 26 | 26 | GRP | 299 | 66 | 0.500 | 1.92 | 3.21 |
| 131.00 | Y | 1 | | P/R | | 45 | 193 | GRP | 224 | 79 | 1.000 | 2.45 | 3.68 |
| 131.23 | | F | | | N | | | GRP | | | | 2.90 | 3.62 |
| 131.49 | | F | | | N | | | GR? | | | | 2.63 | 3.76 |
| 131.58 | | | | | | 6 | 299 | AND | 100 | 30 | | 2.61 | 3.48 |
| 131.79 | Y | C 1 | CL | P/R | | 14 | 9 | AND | 285 | 80 | 1.000 | 1.90 | 1.90 |
| 131.82 | | F | | | N | | | AND | 270 | 89 | 0.500 | 1.48 | 2.22 |

| 132.01 | Y | C 1 | CA | S/R | | 7 | 326 | AND | 98 | 56 | | 1.77 | 2.65 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 132.14 | | F | | | N | | | AND | | | | 2.50 | 3.33 |
| 132.58 | | F | | | N | | | AND | | | 0.500 | 2.61 | 3.48 |
| 132.58 | Y | C 1 | CL | S/S | | 32 | 202 | AND | 236 | 69 | | 2.31 | 3.08 |
| 132.62 | | F | | | N | | | AND | 270 | 89 | | 2.00 | 4.00 |
| 132.78 | Y | C 1 | CLWF | P/S | | 27 | 299 | AND | 135 | 38 | 1.000 | 2.69 | 3.85 |
| 132.94 | | F | | | N | | | AND | | | | 4.55 | 6.06 |
| 133.12 | Y | C 1 | CL | P/S | | 16 | 266 | AND | 192 | 14 | 1.000 | 4.59 | 6.42 |
| 133.26 | Y | C 1 | CACL | | N | | | AND | | | | 5.00 | 10.00 |
| 133.44 | Y | C 1 | CL | P/R | | 56 | 101 | AND | 8 | 58 | 1.000 | 5.88 | 10.92 |
| 133.57 | Y | C 1 | CL | S/S | | 44 | 175 | AND | 46 | 87 | 1.000 | 6.67 | 12.38 |
| 133.67 | Y | C 1 | Cl. | P/S | | 17 | 109 | AND | 46 | 26 | 1.000 | 6.86 | 12.75 |
| 133.82 | Y | C 6 | CL | P/S | | 22 | 357 | AND | 112 | 87 | 1.000 | 7.00 | 13.00 |
| 133.97 | Y | C 1 | Cl.CA | P/R | | 70 | 74 | AND | 355 | 72 | 1.000 | 7.45 | 12.77 |
| 133.99 | Y | 1 | , | P/S | | 20 | 119 | AND | 53 | 36 | 1.000 | 7.07 | 12.12 |
| 134.14 | | F | | | N | | | AND | | | | 6.31 | 11.65 |
| 134.26 | Y | C 1 | CL | P/S | | 48 | 48 | AND | 330 | 60 | 1.000 | 3.20 | 6.40 |
| 134.38 | | | | | N | | | GRP | | | | 2.68 | 2.98 |
| 134.56 | Y | C 1 | WF | P/R | | 67 | 130 | GRP | 16 | 74 | 1.000 | 1.84 | <. 53 |
| 134.70 | Y | 1 | , | P/R | | 0 | 0 | GRP | 270 | 89 | 0.500 | 1.53 | 2.55 |
| 135.54 | | | | | | 37 | 152 | AND | 50 | 69 | | 1.53 | 3.06 |
| 135.65 | | | | | | 44 | 140 | GRP | 39 | 64 | | 1.34 | 3.23 |
| 135.89 | Y | F 1 | | | N | | | GRP | | | | 1.69 | 3.95 |
| 136.10 | Y | C 1 | CL | P/S | | 20 | 184 | GRP | 250 | 84 | 0.500 | 1.23 | 4.29 |
| 136.22 | | F 1 | | | N | | | GRP | | | | 2.02 | 7.07 |
| 136.24 | Y | 1 | | P/S | | 20 | 184 | GRP | 250 | 84 | 0.500 | 2.06 | 8.25 |
| 136.33 | | F 1 | | | N | | | GRP | | | 0.500 | 2.38 | 8.57 |
| 136.33 | Y | | | I/R | | 0 | 317 | GRP | 89 | 47 | | 2.78 | 10.00 |
| 136.53 | Y | C 1 | CL | I/R | | 27 | 317 | GRP | 124 | 52 | 0.500 | 2.43 | 8.74 |
| 136.62 | | F 1 | | | N | | | GRP | | | | 2.99 | 7.69 |
| 136.94 | Y | C 1 | CL | P/S | | 0 | 110 | GRP | 87 | 20 | 0.500 | 2.99 | 7.69 |
| 137.00 | | F 1 | | | N | | | GRP | | | | 3.10 | 6.98 |
| 137.25 | Y | C 1 | CL | P/R | | 0 | 276 | GRP | 79 | 7 | 0.500 | 3.67 | 8.26 |
| 137.41 | Y | C 1 | CAQ: | P/R | | 28 | 259 | GRP | 199 | 28 | 1.000 | 3.74 | 8.41 |
| 137.50 | Y | C 1 | CL | P/S | | 25 | 175 | GRP | 65 | 86 | 0.500 | 4.94 | 11.11 |
| 137.62 | Y | C 1 | CLEP | P/R | | 3 | 294 | GRP | 94 | 24 | 1.000 | 5.26 | 11.84 |
| 137.62 | Y | C 1 | CACL | PRD | | 42 | 97 | GRP | 9 | 43 | | 8.49 | 16.98 |
| 137.69 | Y | | | P/R | N | | | GRP | | | 0.500 | 10.00 | 20.00 |
| 137.75 | | 1 | , | | N | | | GRP | | | | 9.52 | 21.43 |
| 137.76 | Y | 1 | | P/S | | 55 | 76 | GRP | 351 | 57 | 0.500 | 12.86 | 25.71 |
| 137.78 | Y | 1 | | P/S | | 28 | 106 | GRP | 28 | 33 | 0.500 | 9.18 | 18.37 |
| 137.86 | Y | 1 | | P/R | | 48 | 110 | GRP | 18 | 52 | 0.500 | 5.56 | 9.88 |
| 137.92 | Y | 1 | , | P/S | | 70 | 92 | GRP | 1 | 71 | 0.500 | 3.77 | 6.60 |
| 137.97 | Y | C 1 | CL | SSD | | 60 | 184 | GRP | 210 | 86 | 1.000 | 3.54 | 5.22 |
| 138.11 | Y | C 1 | CL | P/S | | 43 | 99 | GRP | 10 | 45 | 1.000 | 3.01 | 4.96 |
| 138.50 | | F | | | N | | | GRP | | | | 3.49 | 5.15 |
| 138.81 | | F | | 1/R | N | | | GRP | | | | 3.82 | 5.34 |
| 139.10 | Y | i | | P/S | | 11 | 257 | GRP | 231 | 15 | 0.750 | 4.23 | 5.38 |
| 139.19 | Y | , | | S/R | | 71 | 112 | GRP | 8 | 73 | | 2.98 | 4.64 |
| 139.22 | Y | C 1 | WFCA | P/R | | 17 | 285 | GRP | 136 | 22 | 1.000 | 3.78 | 5.88 |
| 139.23 | Y | C 1 | WFCA | P/R | | 19 | 289 | GRP | 134 | 26 | 0.750 | 4.59 | 7.14 |
| 139.27 | Y | F 1 | | P/R | | 72 | 92 | GRP | 1 | 73 | 1.000 | 9.02 | 13.11 |
| 139.62 | Y | C 1 | WFCL | S/R | | 23 | 277 | GRP | 161 | 22 | | 5.86 | 8.64 |
| - 39.69 | Y | C 1 | WF | P/R | | 23 | 261 | GRP | 200 | 23 | 1.000 | 5.83 | 7.78 |
| 139.79 | | F | | | N | | | GRP | | | | 4.90 | 7.22 |
| 139.71 | Y | C 1 | WF | C/R | | 20 | 295 | GRP | 128 | 31 | 1.000 | 3.60 | 5.60 |
| 140.00 | | F | | | N | | | GRP | | | | 4.08 | 7.14 |
| 140.12 | Y | C 1 | CL | P/R | | 19 | 268 | GRP | 184 | 17 | 0.500 | 4.74 | 7.37 |

| 140.20 | Y | C | C 1 | CL | P/S | 56 | 100 | GRP | 7 | 58 | 0.500 | 4.65 | 8.14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 140.52 | Y | C | C 1 | CL | S/R | 22 | 283 | GRP | 148 | 24 | 0.500 | 2.50 | 4.4) |
| 140.60 | Y | | 1 | | P/R | 22 | 256 | GRP | 211 | 24 | 0.500 | 2.76 | 4.83 |
| 140.64 | Y | | 1 | | P/R | 25 | 263 | GRP | 194 | 24 | 0.500 | 2.73 | 4.86 |
| 140.65 | Y | | 1 | | P/R | 19 | 263 | GRP | 199 | 18 | 0.500 | 2.51 | 3.91 |
| 141.27 | | Y | | | 25222 | B 25 | 222 | BRC | 239 | 51 | | 2.67 | 4.00 |
| 141.45 | Y | Y C | 1 | CA | U/S | 27 | 245 | AND | 220 | 34 | 1.000 | 2.67 | 4.00 |
| 141.56 | | F | | CA | S/R | 53 | 118 | AND | 20 | 59 | | 2.70 | 4.05 |
| 141.99 | Y | C | C 1 | CA | U/S | 32 | 254 | AND | 204 | 33 | 1.000 | 2.98 | 3.97 |
| 142.02 | | Y | | | 39313 | BRC | | | 139 | 54 | | 4.79 | 0.38 |
| 142.10 | Y | C | C 1 | CL | U/S | 44 | 108 | BRC | 18 | 48 | 0.500 | 7.35 | 10.29 |
| 142.12 | Y | | 1 | | P/S | 53 | 104 | BRC | 11 | 55 | 0.500 | 6.62 | 10.29 |
| 142.16 | Y | C | C 1 | CL | P/S | 51 | 91 | BRC | 2 | 52 | 1.000 | 14.52 | 21.58 |
| 142.21 | Y | | 1 | | P/S | 39 | 104 | BRC | 17 | 42 | 0.500 | 10.29 | 17.65 |
| 142.13 | Y | | 1 | | P/S | 40 | 113 | BRC | 25 | 46 | 0.500 | 10.61 | 18.18 |
| 142.24 | Y | | 1 | | P/S | 35 | 109 | BRC | 25 | 40 | 0.500 | 7.00 | 12.00 |
| 142.30 | | F | F | | | N | | BRC | | | | 4.11 | 8.22 |
| 142.36 | | F | F | | | N | | BRC | | | | 2.94 | 7.35 |
| 142.43 | | Y | | | | | | GRP | 270 | 89 | | 1.67 | 5.56 |
| 142.62 | | | 1 | | I/? | 51 | 32 | GRP | 326 | 71 | 0.500 | 1.14 | 4.55 |
| 142.89 | | S | 1 | CL | P/R | 68 | 41 | GRP | 344 | 76 | | 1.42 | 3.77 |
| [42.89 | | Y | | | | N | | AND | | | | 1.96 | 4.90 |
| 143.03 | | S | 1 | CL | PSK | 38 | 261 | AND | 191 | 37 | | 1.69 | 4.24 |
| 143.12 | | Y | | | | N | | GRP | | | | 1.59 | 4.76 |
| 143.36 | Y | | 1 | | IRK | 55 | 27 | GRP | 329 | 75 | 1.000 | 1.38 | 5.50 |
| 143.38 | Y | | 1 | | P/S | 18 | 308 | GRP | 116 | 41 | 0.500 | 1.68 | 5.0 .4 |
| 143.61 | | Y | | 112 | 121 | 12 | 286 | | 123 | 19 | | 1.90 | 6.67 |
| 143.88 | | S | 51 | CL | P/S | 20 | 322 | AND | 114 | 54 | | 1.74 | 6.(\%) |
| 143.98 | | S | 1 | CLCA | S/S | 49 | 263 | AND | 186 | 47 | | 1.56 | 6.25 |
| 144.08 | Y | C | C 1 | CLCA | | 14 | 313 | AND | 109 | 4.5 | 6.500 | 0.81 | 6.50 |
| 144.08 | | S | 1 | CL | P/S | 0 | 263 | AND | 283 | 6 | | 0.83 | 6.67 |
| 144.27 | | Y | 1 | | P/R | 24 | 295 | GRP | 134 | 33 | | 0.75 | 6.02 |
| 144.64 | | | F 1 | | | N | | GRP | | | | 0.69 | 4.86 |
| 144.61 | | | F 1 | | | N | | GRP | | | | 0.67 | 4.03 |
| 144.81 | Y | C | C 1 | CLEP | P/R | 54 | 95 | GRP | 4 | 55 | 0.500 | 0.30 | 3.64 |
| 145.21 | | F | F | | 1/R | N | | GRP | | | | 0.32 | 3.82 |
| 145.42 | | F | F | | | N | | GRP | | | | 0.71 | 4.26 |
| 145.57 | | F | F | | | N | | GRP | | | | 1.10 | 3.30 |
| 145.73 | Y | | , | | P/R | 64 | 116 | GRP | 13 | 68 | | 1.10 | 3.31 |
| 145.84 | Y | F | F1 | | I/R | 43 | 218 | GRP | 220 | 61 | | 0.86 | 2.81 |
| 146.05 | Y | | 1 | | P/S | 62 | 204 | GRP | 206 | 77 | 0.500 | 0.90 | 3.59 |
| 146.43 | Y | C | C 1 | WH? | P/S | 33 | 225 | GRP | 228 | 52 | 1.000 | 1.16 | 4.05 |
| 146.62 | | | F 1 | | P/S | 55 | 218 | GRP | 209 | 67 | | 1.40 | 4.41 |
| 146.95 | | Y | | | C/S | 25 | 290 | AND | 141 | 31 | | 1.75 | 4.68 |
| 147.09 | | S | S 1 | CLEP | P/S | 63 | 64 | AND | 348 | 67 | | 2.53 | 5.06 |
| 147.30 | | | S 1 | CLEPCA | A C/R | 50 | 82 | AND | 354 | 51 | 0.500 | 2.92 | 5.84 |
| 147.51 | | S | S 1 | CL | S/S | 75 | 86 | AND | 359 | 76 | 0.500 | 2.76 | 6.30 |
| 147.55 | | | S 1 | CL | S/S | 75 | 86 | AND | 192 | 81 | 0.500 | 4.05 | 7.21 |
| 147.63 | Y | | C 1 | CL | P/R | 32 | 77 | AND | 342 | 35 | 1.000 | 5.15 | 9.28 |
| 147.80 | Y | C | C 1 | CL | 1RD | 63 | 73 | AND | 352 | 65 | 0.500 | 5.62 | 10.11 |
| 147.89 | Y | | C 1 | CL | S/S | 63 | 204 | AND | 205 | 77 | 0.500 | 6.87 | 11.25 |
| 148.06 | Y | | 1 | | 1RD | 64 | 64 | AND | 349 | 67 | 1.000 | 6.33 | 11.39 |
| 148.06 | Y | | $!$ | | IRD | 55 | 222 | AND | 208 | 65 | 0.500 | 5.62 | 8.99 |
| 148.19 | Y | | C . | CLCA | P/S | 65 | 36 | AND | 340 | 76 | | 5.56 | 11.11 |
| 148.31 | Y | | C 1 | CLWH | P/S | 33 | 36 | AND | 310 | 60 | 1.000 | 5.22 | 11.94 |
| 148.34 | Y | | C 1 | CL | P/S | N | | AND | | | | 4.69 | 10.94 |
| 148.52 | | F | F | | | N | | AND | | | 0.500 | 2.70 | 9.45 |
| 148.52 | Y | C | C 1 | CLCA | S/S | 28 | 172 | AND | 62 | 84 | | 2.22 | 7.78 |

| 148.56 | Y | S | 1 | CL | P/S | | 70 | 27 | AND | 342 | 82 | | 2.50 | 7.50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 148.70 | | F | | | | N | | | AND | | | | 0.95 | 4.76 |
| 148.80 | | S | 1 | CLCA | P/R | | 62 | 104 | AND | 8 | 64 | | 0.93 | 4.63 |
| 149.09 | Y | C | 1 | CL | P/R | | 23 | 163 | AND | 66 | 75 | 0.500 | 0.45 | 5.36 |
| 149.11 | | F | | | | N | | | AND | | | | 0.40 | 4.80 |
| 149.39 | | F | | | | N | | | AND | | | | 0.41 | 4.92 |
| 149.60 | | S | 1 | | S/S | | 57 | 168 | AND | 33 | 85 | | 0.36 | 4.35 |
| 149.64 | | | 1 | | I/R | | 63 | 118 | AND | 14 | 67 | | 0.44 | 4.39 |
| 149.81 | | S | 1 | CL | P/R | | 66 | 14 | AND | 337 | 85 | | 0.00 | 3.94 |
| 149.92 | | S | 1 | CL | P/R | | 63 | 9 | AND | 334 | 86 | | 0.00 | 3.18 |
| 150.18 | | F | | | | N | | | AND | | | | 0.27 | 3.23 |
| 150.23 | | F | | | | N | | | AND | | | | 0.27 | 3.19 |
| 150.38 | Y | C | 1 | CL | P/S | | 70 | 154 | AND | 18 | 82 | | 0.28 | 2.82 |
| 150.96 | | F | | | S/S | | 60 | 245 | AND | 194 | 61 | | 0.53 | 2.65 |
| 151.46 | Y | | 1 | | P/S | | 73 | 200 | AND | 196 | 82 | 0.500 | 0.65 | 2.17 |
| 151.52 | Y | S | 1 | CLCA | P/S | | 57 | 41 | AND | 335 | 69 | | 0.67 | 2.67 |
| 151.58 | | F | | | | N | | | AND | | | | 0.90 | 3.14 |
| 151.81 | Y | C | 1 | CACL | P/S | | 56 | 147 | AND | 30 | 73 | 0.500 | 1.10 | 3.85 |
| 152.48 | Y | C | 1 | CL | P/S | | 22 | 236 | AND | 235 | 38 | 0.500 | 1.61 | 5.16 |
| 152.48 | Y | C | 1 | CL | P/S | | 60 | 54 | AND | 342 | 67 | | 1.89 | 5.03 |
| 152.61 | Y | C | 1 | CLCA | S/S | | 48 | 192 | AND | 222 | 80 | 0.500 | 1.64 | 3.83 |
| 152.78 | | S | 1 | CL | P/S | | 71 | 165 | AND | 19 | 86 | | 1.56 | 4.17 |
| 153.01 | Y | C | 1 | CL | P/S | | 63 | 116 | AND | 13 | 67 | 0.500 | 1.87 | 5.97 |
| 153.11 | Y | C | 1 | CLCA | P/R | | 61 | 41 | AND | 338 | 72 | 1.000 | 1.64 | 5.26 |
| 153.41 | | F | | | | N | | | AND | | | | 1.95 | 5.19 |
| 153.73 | | S | 1 | CLCA | P/R | | 75 | 54 | AND | 351 | 79 | | 1.79 | 4.76 |
| 153.82 | | S | 1 | ClCA | P/R | | 71 | 242 | AND | 189 | 71 | | 2.03 | 4.73 |
| 154.00 | Y | C | C 1 | CA | S/S | | 66 | 220 | AND | 199 | 73 | 0.500 | 1.64 | 3.95 |
| 154.15 | Y | C | 1 | CLCA | P/S | | 68 | 30 | AND | 341 | 80 | 0.500 | | |
| 154.46 | Y | C | 1 | CLCA | P/S | | 58 | 85 | AND | 358 | 59 | 0.500 | | |
| 154.49 | | | | | I/R | N | | | | | | | | |
| 154.63 | | | | | | | | | | | | | | |

APPENDIX C Geochemical Analyses

Notes regarding acronyms used in Tables
SIV indicates number of times the sampling cavity was flushed prior to sampling

Temp degC Temperature in ${ }^{\circ} \mathrm{C}$ measured in a surface tlow cell. Samples were collected between August and November and thus showed a large variation in temperature.

APPENDIX C
(E ()CHEMICAI. DAT A FROM NSCRV B NICK SARGENT

| Sample interval and nu all depths in metres | | umber
 SAMPLE MID | $\begin{aligned} & \text { TESTTOO } \\ & 3 /=3 / 16^{\circ} \\ & 4 /=1 / 4^{\circ} \\ & \text { Three digit } \\ & \text { l.ast letter } \end{aligned}$ | L CONFI $\begin{aligned} & \text { number ca } \\ & \mathrm{W}=\text { run on } \end{aligned}$ | URATIO ampling tit ampling tut vity length wireline R | N:
 ube.
 be.
 in cris.
 =run on | rods | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\left\{\begin{array}{c} \text { SAMPLE } \\ \text { MID } \\ \text { DEPTH } \end{array}\right.$ | | | | | ISOTOPE | dATA |
| Fop | Btm. | | Samp \# | rest tool config. | SIV`s | Temp degC | $\begin{gathered} 180 \\ \text { per.mil. } \end{gathered}$ | $\stackrel{2 \mathrm{H}}{\text { per.mil. }}$ |
| 17.71 | 19.82 | 18.77 | | 3/211R | 1.70 | n/a | -8.215 | -56.77 |
| 18.65 | $2 \Gamma .77$ | 20.79 | 13 | 47J16R | 1.59 | 17.6 | | |
| 18.61 | 21.77 | 20.19 | 1 l | 4/316R | 2.23 | 17.6 | | |
| 18.61 | 21.77 | 20.19 | 1b(19) | +/316R | 2.23 | 17.6 | | |
| 18.61 | 21.77 | 20.19 | Ic | 4/316R | 5.37 | 17.6 | | |
| 55.75 | 57.86 | 56.81 | 10(2) | $372 T 1 R$ | 8.50 | n/a | -8.311 | |
| 55.75 | 57.86 | 56.81 | $7 \mathrm{7a}$ (10) | $3 / 211 \mathrm{k}$ | 1.61 | n / a | -8.454 | |
| 55.75 | 57.86 | 56.81 | 7 b (12) | 3/211R | 2.10 | n/a | -8.271 | -55.39 |
| 68.58 | 70.69 | 69.64 | 6 6 (6) | 372TIR | 2.89 | n/a | -8.213 | |
| 68.58 | 70.69 | 69.64 | +6a | $3 / 211 R$ | 2.89 | n/a | | |
| 68.58 | 70.69 | 69.64 | $8(5)$ | 3/211R | 8.32 | 0.7 | -8.337 | |
| 70.59 | 72.70 | 71.65 | 5a(9) | 3/2TIR | 3.70 | 77.1 | -8.209 | |
| 70.59 | 72.70 | 71.65 | 5 b (14) | $3 / 211 R$ | 6.05 | 17.1 | -8.361 | |
| 70.59 | 72.70 | 71.65 | 5 c (1) | $3 / 211 \mathrm{R}$ | 9.44 | 17.1 | ?)-8.036 | -58.19 |
| 73.62 | 76.20 | 77.91 | 2 a | 3/248W | 1.18 | 20.4 | | |
| 73.62 | 76.20 | 74.91 | 2 b | $3 / 248 \mathrm{~W}$ | 3.80 | 20.4 | | |
| 73.62 | 76.20 | 74.91 | 2 b (11) | $3 / 248 \mathrm{~W}$ | 3.80 | 20.4 | | |
| 73.62 | 76.20 | 7491 | 2 c | $3 / 248 \mathrm{~W}$ | 7.46 | 20.4 | | |
| 73.62 | 76.20 | 74.91 | 2 d | $3 / 248 \mathrm{~W}$ | 9.85 | 20.4 | -8.33 | -60.31 |
| 73.62 | 76.20 | 74.91 | $+2 \mathrm{~d}$ | $3 / 248 \mathrm{~W}$ | 9.85 | 20.4 | | |
| 76.35 | 78.46 | 77.41 | $9(4)$ | $3 / 2 \Pi 1 R$ | 1.43 | 2 | | |
| 76.35 | 7846 | 77.41 | $9(18)$ | $3 / 211 \mathrm{R}$ | 1.43 | 2 | | |
| 95.58 | 97.69 | 96.64 | da | 3/2T1R | 1.00 | n/a | -8.424 | |
| 95.58 | $\dot{9} 7.69$ | 96.64 | 4b(15) | $3 / 211 R$ | 6.34 | 7.3 | -8.598 | |
| 95.58 | 97.69 | 96.64 | $4 \mathrm{c}(3)$ | $3 / 211 \mathrm{R}$ | 8.01 | 7.3 | -8.481 | -58.03 |
| 96.17 | 98.65 | 97.71 | 3a(7) | $3 / 248 \mathrm{~W}$ | 1.00 | 6.9 | -8.306 | |
| 96.17 | 98.65 | 97.41 | 3 b (13) | $3 / 248 \mathrm{~W}$ | 2.00 | 6.9 | -8.366 | |
| 96.17 | 98.65 | 97.41 | $3 \mathrm{c}(8)$ | $3: 248 \mathrm{~W}$ | 6.80 | 6.9 | -8.407 | |
| 96.17 | 98.65 | 97.41 | 3d(16) | 3'248W | 9.00 | 6.9 | -8.572 | -60.89 |
| FINAI SAMPLE VALUES | | | | | | | | |
| all depths in metres | | | | | | | | |
| $\text { He } \stackrel{\text { lop }}{>}$ | Btm . | nid. | Samp \# | Test 1001 config | SIV's | Temp | 180 | $2 \mathrm{H}$ |
| 17.71 | 19.82 | 18.77 | 11(17) | | 1.70 | | -8.215 | -56.77 |
| 55.75 | 57.86 | 56.81 | 10(2) | $3 / 211 R$ | 8.50 | n/a | -8.311 | |
| 08.58 | 70.69 | 69.64 | 8(5) | $3 / 211 R$ | 8.32 | 0.7 | -8.337 | -55.39 |
| 70.59 | 72.70 | 71.65 | $5 \mathrm{c}(1)$ | $3 / 211 \mathrm{R}$ | 9.44 | 17.1 | -8.361** | -58.19 |
| 73.62 | 76.20 | 74.91 | 2 d | 3/248W | 9.85 | 20.4 | -8.330 | -60.31 |
| 76.35 | 78.46 | 77.41 | 9(4) | $3 / 211 R$ | 1.43 | 2 | | |
| 95.58 | 97.69 | 96.64 | 4 c (3) | $3 / 211 \mathrm{R}$ | 8.01 | 7.3 | -8.424 | -58.03 |
| 96.17 | 98.65 | 97.41 | 3d(16) | 3/248W | 9.00 | 6.9 | -8.572 | -60.89 |
| DILUTED SEAWATER (CONCEPTION BAY) | | | | | | | *sample | 5b(14) |
| Diluted Seawater CI normalised (see section 4.1.3) | | | | | | | see Tab | ble 4.4 |

| $\begin{gathered} \text { SAMPLE } \\ \text { MID } \\ \text { DEPTH } \end{gathered}$ | $\begin{gathered} \mathrm{Li} \\ \mathrm{ug} / \mathrm{kg} \end{gathered}$ | $\begin{gathered} \mathrm{B}^{*} \\ \mathrm{ug} / \mathrm{kg} \end{gathered}$ | $\begin{aligned} & \text { Mg" } \\ & \text { ug/kg } \end{aligned}$ | $\begin{gathered} \mathrm{Al} \\ \mathrm{ug} / \mathrm{kg} \end{gathered}$ | $\mathrm{Si}_{\mathrm{ug} / \mathrm{kg}}$ | $\begin{aligned} & \mathrm{p} *- \\ & \mathrm{ug} / \mathrm{kg} \end{aligned}$ | $\underset{\mathrm{Lg} / \mathrm{kg}}{\mathrm{~S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18.77 | | 5.71 4.99 6.39 20.71 | 4.09 6.82 4.36 2300.32 | 1.27 4.03 1.23 6.99 | 27.63 33.83 27.33 3432.79 | 19.28 13.57 6.59 5.42 | 75167.64 79172.84 77.337 .25 54.3.9. |
| 20.19 | | 17.66 | 3082.79 | 12.45 | 4173.83^{-} | 19.16 | 5991.00 |
| 20.19 | | 16.94 | 3153.01 | 8.50 | 4236.13 | 44.02 | (0083.0) |
| 20.19 | | 15.24 | 2744.93 | 9.87 | 3785.87 | 4.87 | 4019.02 |
| 20.19 | 7.09 | 12.51 | 3121.44 | 2.31 | 4381.25 | 9.95 | 6132.0) |
| 56.81 | | 20.69 | 2400.94 | 24.03 | 3121.25 | 3.47 | 58.51 .29 |
| 56.81 | | 21.15 | 2168.33 | 16.99 | 3039.66 | 25.97 | 0.377 .83 |
| 56.81 | | 22.31 | 2246.71 | 22.58 | 3163.04 | 3.95 | 61.33 .59 |
| 69.64 | | 18.98 | 2602.40 | 9.08 | 3172.11 | 7.4 | 710.1 .02 |
| 69.64 | | 19.02 | 2345.09 | 8.56 | 31.58 .13 | 3.06 | 7119.68 |
| 69.64 | 15.61 | 20.01 | 2672.18 | 8.07 | 3022.34 | 2.89 | 6089.32 |
| 71.65 | | 25.74 | 1675.37 | 19.50 | 3408.11 | -14.01 | 6151.38 |
| 71.65 | | 26.26 | 1630.87 | 25.55 | 3500.35 | 3.75 | 6126.76 |
| 71.65 | 17.23 | 27.01 | 1680.38 | 22.40 | 3491.96 | 15.76 | 5762.106 |
| 74.91 | | 65.89 | 789.95 | 331.05 | 4352.06 | 0.00 | 5333.00 |
| 74.91 | | 55.60 | 767.45 | 214.12 | 3759.99 | 0.00 | 468000 |
| 74.91 | | 59.81 | 914.57 | 386.98 | 4660.33 | 19.88 | 7511.42 |
| 74.91 | | 48.85 | 730.52 | 155.38 | 386178 | 0.00 | 56.33 .00 |
| 74.91 | 22.55 | 57.35 | 716.33 | 99.92 | 3715.05 | 0.00 | 5767.00 |
| 74.91 | | 51.82 | 718.42 | 107.68 | 3706.40 | 0.00 | 5956.00 |
| 77.41 | | 40.97 | 7480.18 | 13.53 | 3563.81^{-1} | 12.06 | 7335.82 |
| 77.41 | | 41.44 | 1348.98 | 8.91 | 3817.27 | -21.82 | 7134.\% |
| 96.64 | | 105.65 | 254.12 | 22.31 | 4097.09 | 8.77 | 14614.19 |
| 96.64 | | 106.10 | 209.64 | 22.85 | 4409.27 | 9.38 | 11797.83 |
| 96.64 | 31.90 | 117.38 | 234.79 | 23.44 | 4471.69 | 20.01 | 12389.43 |
| 97.41 | | 215.46 | 488.01 | 1418.20 | 7996.78 | 18.21 | 28189.78 |
| 97.41 | | 232.10 | 365.68 | 1151.64 | 7772.54 | 15.81 | 29694.80 |
| 97.41 | | 252.18 | 214.89 | 584.69 | 6947.10 | 81.63 | 31321.39 |
| 97.41 | 55.56 | 220.09 | 210.08 | 589.76 | 6868.68 | 17.21 | 30581.4, |
| | ${ }^{*} \mathrm{Li}$ i | B* | $\mathrm{Mg}^{\text {* }}$ | Al^{*} | Si^{4} | ${ }^{\text {P }}$ * | S^{*} |
| mid. | ppb | ppb ${ }^{\text {d }}$ | ppb | ppb ${ }_{19}$ | Pph ${ }^{\text {P }}$ | ppb | |
| 18.77 | | 6.29 20.71 | 0.63 2300.32 | 1.93 6.99 | 20.47 3432.79 | $117.01)$ -5.42 | $2.54(1)(0)$ 54.35 .92 |
| 56.81 | | 20.69 | 2400.94 | 24.03 | 3121.25 | 3.47 | 5851.29 |
| 69.64 | 15.61 | 20.01 | 2672.18 | 8.07 | 3022.34 | 2.89 | 6689.32 |
| 71.65 | 17.23 | 27.01 | 1680.38 | 22.40 | 3491.96 | 15.76 | 5762.06 |
| 74.91 | 22.55 | 57.35 | 716.33 | 99.92 | 3715.05 | 0.00 | 5767.01 |
| 77.41 | | 40.97 | 1480.18 | 13.53 | 3563.81 | 12.06 | 7335.82 |
| 96.64 | 31.90 | 117.38 | 234.79 | 23.44 | 4471.69 | 20.01 | 12399.43 |
| 97.41 | 55.56 | 220.09 | 210.08 | 589.76 | 6868.68 | 17.21 | 30.581 .46 |
| Din.Sea | 1.01 | 660.86 | 6460.71 | 16.06 | 81.03 | 12.13 | 9881.43 |
| Norm.Sea | 203.60 | 133539.07 | 1305516.60 | 3245.25 | 16373.74 | 2451.11 | 1996741.98 |

| $\begin{gathered} \text { SAMPLE } \\ \text { MID } \\ \text { DEPTH } \end{gathered}$ | CHARGE BALANCE | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | charge balance for: | | | | charge sums | | | |
| | $\begin{gathered} \text { ICP } \\ \% \end{gathered}$ | $\begin{gathered} \text { TCP }+A_{A} \\ \% \\ \hline \end{gathered}$ | $\begin{aligned} & \text { ICP+ } \\ & \text { HPLC } \\ & \% \end{aligned}$ | $\begin{gathered} \hline A A+H P L C \\ \% \\ \hline \end{gathered}$ | $\begin{aligned} & \text { cations } \\ & \text { lCP-MS } \end{aligned}$ | $\begin{aligned} & \text { calions } \\ & A A \end{aligned}$ | $\begin{aligned} & \text { anions } \\ & \text { ICP-MS } \end{aligned}$ | anions HPLC |
| 18.77 | -1.773 | -1.375 | -1.069 | -0.670 | 0.005 | 0.005 | -0.005 | -0.0050 |
| 20.19 | -6.555 | -6.597 | n/a | n/a | 0.004 | 0.004 | -0.005 | |
| 20.19 | -5.223 | -5.712 | n/a | n/a | 0.004 | 0.004 | -0.005 | |
| 20.19 | -5.150 | . 5.063 | n/a | n/a | 0.004 | 0.004 | -0.005 | |
| 20.19 | -4.576 | -5.609 | -1.664 | -3.172 | 0.004 | 0.004 | -0.005 | -0.0045 |
| 56.81 | -2.914 | -3.482 | n/a | n/a | 0.005 | 0.005 | -0.006 | |
| 56.81 | n/a | n/a | n/a | n/a | 0.005 | 0.005 | -0.003 | -0.0032 |
| 56.81 | n/a | n/a | n/a | n/a | 0.005 | 0.005 | -0.003 | -0.0035 |
| 69.64 | n/a | n/a | n/a | $n / 2$ | 0.005 | 0.005 | -0.004 | -0.0035 |
| 69.64 | n/a | n/a | n/a | n/a | 0.002 | n/a | -0.004 | |
| 69.64 | 3.525 | 2.554 | 6.677 | 5.940 | 0.005 | 0.005 | -0.005 | -0.0047 |
| 71.65 | -4.569 | -4.436 | -5.181 | -4.962 | 0.005 | 0.005 | -0.006 | -0.0059 |
| 71.65 | n/a | n/a | n/a | n / a | 0.005 | 0.005 | -0.004 | -0.0032 |
| 71.65 | n/a | n/a | n/a | n/a | 0.005 | 0.005 | -0.003 | -0.0034 |
| 74.91 | 2.652 | 3.120 | n/a | n/a | 0.006 | 0.006 | -0.006 | |
| 74.91 | 3.218 | 4.126 | n/a | n/a | 0.006 | 0.006 | -0.005 | |
| 74.91 | -3.449 | -3.276 | n/a | n/a | 0.006 | 0.006 | -0.006 | |
| 74.91 | 0.212 | 0.725 | n/a | n/a | 0.006 | 0.006 | -0.006 | |
| 74.91 | -0.441 | 0.025 | -2.862 | -2.306 | 0.006 | 0.006 | -0.006 | -0.0058 |
| 74.91 | 0.037 | 0.495 | n/a | n/a | 0.006 | 0.006 | -0.006 | 0 |
| 77.41 | -2.424 | -2.688 | n/a | n/a | 0.006 | 0.006 | -0.006 | 0 |
| 77.41 | -2.366 | -2.407 | n/a | n/a | 0.006 | 0.006 | -0.006 | 0 |
| 96.64 96.64 | -3.612 | -3.342 | -1. 293 | -1.141 | 0.006 | 0.006 | -0.007 | -0.0063 |
| 96.64 | -2.702 | -2.462 | -1.153 | -1.099 | 0.006 | 0.006 | -0.007 | -0.0063 |
| 97.41 | 5.881 | 6.263 | 6.347 | 6.521 | 0.007 | 0.007 | -0.006 | -0.0061 |
| 97.41 | 6.429 | 6.920 | 7.862 | 8.133 | 0.007 | 0.007 | -0.006 | -0.0062 |
| 97.41 | 4.982 | 5.533 | 2.358 | 2.629 | 0.008 | 0.008 | -0.007 | -0.0073 |
| 97.41 | -3.606 | -3.142 | 0.011 | 0.380 | 0.008 | 0.008 | -0.008 | -0.0077 |
| | -1.022 | -0.901 | 0.912 | 0.932 | <<AVER | RAGE | | |
| | 3.785 | 3.998 | 4.101 | 4.094 | <<STD. | DEVn. | | |
| nid. | | | | | | | | |
| 18.77 | -1.773 | -1.375 | -1.069 | -0.670 | 0.005 | 0.005 | -0.005 | -0.0050 |
| 56.81 | -2.914 | -3.482 | n/a | n/a | 0.005 | 0.005 | -0.006 | |
| 69.64 | 3.525 | 2.554 | 6.677 | 5.940 | 0.005 | 0.005 | -0.005 | -0.0047 |
| 71.65 | n/a | n/a | n/a | n/a | 0.005 | 0.005 | -0.003 | -0.0034 |
| 74.91 | -0.441 | 0.025 | -2.862 | -2.306 | 0.006 | 0.006 | -0.006 | -0.0058 |
| 77.41 | -2.424 | -2.688 | n/a | n/a | 0.006 | 0.006 | -0.006 | 0 |
| 96.64 | -2.702 | -2.462 | -1.153 | -1.099 | 0.006 | 0.006 | -0.007 | -0.0063 |
| 97.41 | -3.666 | -3.142 | 0.011 | 0.380 | 0.008 | 0.008 | -0.008 | -0.0077 |
| Dil.Sea | -1.485 | -1.510 | 0.321 | 0.369 | <<AVE | R'AGE | | |
| Norm. ${ }^{\text {Se }}$ | 2.250 | 1.991 | 3.308 | 2.913 | $\ll S T D$. | DEVn. | | |

APPENDIX D Thermodynamic Data Base Review

APPENDIX D: Thermodynamic Data Base Review

INTRODUCTION

The PHREEQE thermodynamic data base originally provided with the program ${ }^{1}$ contains information about the composition of minerals of interest and thermodynamic constants characterizing those minerals. Any mineral composition is stored as a dissociation reaction for that mineral to part of a set of previously defined possible components; either elements or complex species. The dissociation reaction stored in the data base is a string of stoichiometric constants, each one associated with a component of the reaction. Components with positive sign appear on the right side of the dissociation reaction and negatively signed components appear on the left of the reaction, as does the mineral itself. However, the chemical composition of the mineral itself is not stored explicitly in the data base; it can only be derived by summing the stoichiometric constants multiplied by the formulae of their respective components. The dissociation reaction is balanced for both mass and charge.

The thermodynamic information for each mineral dissociation reaction is stored as two thermodynamic constants at $25^{\circ} \mathrm{C}$. The thermodynamic parameters stored are the enthalpy of the dissociation reaction ($\Delta \mathbf{H}^{\circ}{ }_{\text {dinwer }}$.) and the \log of the equilibrium constant of the dissociation reaction ($\log _{\text {dissoc. }}$). For comparison of thermodynamic

[^0]parameters in the database, with published parameters for minerals, it is convenient to transform the database constants to thermodynamic values for the mineral only. Initially only the LogK diswor values have been reviewed.

LogK $_{\text {dissoc }}$ was transposed to $\Delta G^{\circ}{ }_{\text {dissoc. }}$ using equation (1) tecast ats (la)

$$
\begin{equation*}
\Delta \mathbf{G}_{\text {dissuc. }}^{\circ}=-\mathrm{RT} \operatorname{Ln} K_{\text {dissuc. }} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \mathbf{G}^{\circ}=\log K / 1.364 \tag{1:1}
\end{equation*}
$$

A value for the Gibb's standard free energy of formation $\left(\Delta G^{\circ}\right)$, for the mineral was than back calculated using equation (2).

$$
\begin{equation*}
\Delta G^{\circ}{ }_{\text {dissor. }}=\Sigma \Delta G_{\mathfrak{f}}^{\circ}(\text { products })-\Sigma \Delta G^{\circ}(\text { reactants }) \tag{2}
\end{equation*}
$$

The only unknown in equation (2) is ΔG° mineral and is cortained in $\Sigma \Delta G^{\circ}{ }_{r}$ (reactants).

SCRUTINY OF DATABASE

Prior to scrutiny of the database attempts were made to develop mineral stability diagrams for some of the sodium minerals, using the database data. These initial attempts produced spurious results because of inconsistent thermodynamic data in the database; the pyrophyllite-Halloysite (syn kaolinite)boundary occurring at a lower concentration of $\mathrm{H}_{4} \mathrm{SiO}_{4}$ than the Gibbsite-Halloysite boundary. The problem of inconsistent thermodynamic data is discussed by Nordstrom and Munoz (1985), with the case of inconsistency in published $\Delta \mathbf{G}^{\circ}$'s for pyrophyllite specifically addressed to highlight the problem.

Method of database scrutiny

Initial speciation calculations were made for the NSCRV water analyses using PHREEQE with the original unchecked data base. From these initial runs minerals with a Log Saturation Index greater than -1 were extracted as being of possible interest, it is the thermodynamic and compositional data for these minerals which has been scrutinized.

The thermodynamic and compositional constants were entered into a Lotus work sheet and the relevant calculations performed to arrive at a $\Delta \mathbf{G}^{\circ}{ }_{\mathbf{r}}$ for each mineral. All values used for $\Delta \mathbf{G}^{\circ}$ for the mineral components (required for the back
calculation of $\Delta \mathbf{G}^{\circ}$, from $\log _{\text {disoc }}$) were from Robic (1978). Published thermodynamic data was then scoured for values of $\Delta \mathbf{G}^{\circ}$, for the minerals. Where thermodynamic data was available it was entered into the worksheet. The sources of thermodynamic data used to date are Robie et al (1978), Helgeson ct al (1978) and Hemingway et al (1982). Some values have also been found in Nriagu (1975). As yet, no extensive listing has been discovered of thermodynamic data for the chay minerals, some values of clays were published by Helgeson (1969). It will be shown that thermodynamic values published by Helgeson (1969) and Helgeson et al (197\%) are thermodynamically consistent for the minerals of interest.

Because of the lack of thermodynamic data for clay minerals a theoretical value for $\Delta \mathbf{G}^{\circ}$, for the clay minerals was calculated. The method used to calculate mineral $\Delta \mathbf{G}^{\circ}{ }^{\mathbf{\prime}}$'s is analogous to methods described in physical chemistry texts for calculating $\Delta \mathbf{G}^{\circ}$, of compounds, from component species and or elements. For calculation of $\Delta \mathbf{G}^{\circ}{ }_{f(c l a y)}$ the method of Nriagu (1975) was followed. Nriagu assumed that the clay was formed by combination of metal hydroxides and silicon hydroxide of known thermodynamic values as published by Nriagu (1975) and that an empirical correction term can be applied to the calculations. The calculated $\Delta G^{\circ}{ }^{\circ}$'s were then compared to $\mathbf{\Delta} \mathbf{G}^{\circ}$'s back calculated from the database.

Overview of the thermodynamic data reviewed to date.
A few examples of thermodynamic calculations follow to show the inadvisability of mixing thermodynamic data from different workers along with problems of inconsistent data sets published by some authors:

Pyrophyllite and Halioysite.
As noted above, early attempts to compose mineral stability diagrams using the thermodynamic data, from the database, were unsaticfactory and pointed to problems with the value of LogK for pyrophyllite stored in MINTEC; Minor inconsistencies in values of LogK for minerals having common ions may lead to miscalculation of mineral stability boundaries, due to the extremely low $\Delta \mathbf{G}^{\circ}$ of many mineral reactions.

The $\mathbf{\Delta} \mathbf{G}^{\circ}{ }_{\mathbf{f}}$ value for pyrophyllite originally stored in the database approximates the value published by Hemingway et al (1982). Changing the sign of the stored value for $\log K$, which was believed to be the problem, resulted in a back calculated value for Pyrophyllite which was close to the value published by Helgeson et al (1978). However, the value for $\Delta \mathbf{G}^{\circ}{ }_{\text {(pyraphyllite) }}$ published by Helgeson et al (1978) is unlikely to be the required value, as none of the other thermodynamic data in the database appears to be derived from Helgeson et al (1978).

Nordstrom and Munoz (1985) state that there is a systematic crror in the thermodynamic calculations of Helgeson et al (1978), Girst noticed by 1 lemingway et al (1982). The error in the data of Helgeson et al (1978) is attributed wan error in $\Delta \mathbf{G}^{\circ}{ }_{\text {kaolinite }}$, used as a secondary reference phase, which ties together the free energy values obtained in different sets of experiments. Table 1, below, is a symopsis of results for calculations of $\Delta \mathbf{G}^{\circ}$, LogK and the position of mineral stability boundarices ($\mathrm{Log}[\mathrm{Si}]$) with respect to $\left[\mathrm{H}_{2} \mathrm{SiO}_{4}\right]$ for the reactions Giblsite-llalloysite (4) and Halloysite-Pyrophyllite (5).

$$
\begin{align*}
& 2 \mathrm{Al}(\mathrm{OH})_{3}+2 \mathrm{H}_{4} \mathrm{SiO}_{4} \\
& \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}+2 \mathrm{H}_{4} \mathrm{SiO}_{4}-\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}+5 \mathrm{II}_{2} \mathrm{O} \tag{5}\\
& \mathrm{Al}_{2} \mathrm{Si}_{4} \mathrm{O}_{10}(\mathrm{OH})_{2}+5 \mathrm{H}_{2} \mathrm{O}(5)
\end{align*}
$$

The values of $\mathbf{\Delta} \mathbf{G}_{\mathbf{f}}^{\mathbf{o}}$ used for the non mineral species, involved in reactions, were taken from Robie et al(1978). The back calculated value for ΔG° (fyinnite) from the database was used in all the calculations for Table1. $\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}$ is referred to as halloysite. No value for ΔG°, halloysite is listed by Helgeson et al (1978) and kaolinite, of the same chemical formula, has been substituted in these calculations.

The thermodynamic data for Gibbsite/Halloysite/pyrophyllite of llemingway el al (1982) is in error as pyrophyllite appears to precipitate at lower concentrations of
$\mathrm{H}_{4} \mathrm{SiO}_{4}$ than halloysite. These calculations highlight the problem of attempting to mix thermodynamic data form unrelated groups of workers (NOTE:Hemingway et al (1982) and Robie et al (1978) are both USGS groups and their data is generally consistent.)

Table 1. Comparison of mineral stability boundaries calculated using different thermodynamic data sources for $\mathrm{Al} 2 \mathrm{Si} 2 \mathrm{OS}(\mathrm{OH}) 4$ and pyrophyllite. $\Delta \mathrm{G}^{\circ} \mathrm{f}$ (gibbsite) is back calculated from MINTEC. These values represent a mixed thermodynamic source. Note that the Log[Si] shown for the Gibbsite-Halloysite boundary for $\mathrm{HIg} / \mathrm{Hg}$ and $\mathrm{Hg} / \mathrm{Hem}$ data are the same as they are calculated using the same data

| DATA
 SOURCE | Gibbsite-Halloysite | | | Halloysite-Pyrophyllite | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\Delta \mathrm{G}^{\circ}{ }_{\text {r }}$ | LogK | Log[Si] | $\Delta \mathbf{G}^{\circ}{ }_{r}$ | LogK | $\log [\mathrm{Si}]$ |
| $\mathrm{Hem} / \mathrm{HIg}$ | -11.599 | 8.504 | -4.252 | -10.617 | 7.784 | -3.892 |
| $1 \mathrm{lg} / \mathrm{l-ig}$ | -13.682 | 10.0312 | -5.0156 | -8.5342 | 6.25681 | -3.128 |
| Hem/Hem | -9.5313 | 6.98766 | -3.4939 | -13.733 | 10.069 | -5.034 |
| 1 $\mathrm{Hg} / \mathrm{Hem}$ | -13.682 | 10.0312 | -5.0156 | -11.650 | 8.54 | -4.29 |

The above calculations are now repeated using supposedly consistent thermodynamic data, for reactions (4) and (5) for both halloysite and kaolinite. All datia referred to as Hemingways is a combination of Hemingway et al (1982) and Robic et al (1978).

Table 1a Reactions (4) and (5) using kaolinite

| DATA
 SOURCE | Gibbsite-Kaolinite | | | Kaolinite-Pyrophyllite | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ΔG_{r}° | LogK | Log[Si] | $\Delta \mathbf{G}^{\circ}{ }_{r}$ | LogK | $\log [\mathrm{Si}]$ |
| DB | -16.109 | 11.810 | -5.905 | -9.998 | 7.330 | -3.665 |
| Heming | -14.130 | 10.359 | -5.179 | -9.135 | 6.697 | -3.3 .49 |
| Helg | -11.429 | 8.379 | -4.190 | -8.534 | 6.257 | -3.128 |

Table 1 b Reactions (4) and (5) using Halloysite.

| DATA
 SOURCE | Gibbsite-Halloysite | | | Halloysite-Pyrophyllite | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\underline{\Delta G}_{\mathbf{r}}^{\circ}$ | LogK | $\mathrm{Log}[\mathrm{Si}]$ | $\mathbf{\Lambda G ^ { \circ }}{ }_{\mathbf{r}}$ | I .0 gK | 1.og[Si] |
| DB | -11.662 | 8.550 | -4.275 | -14.445 | $10.59(0$ | -5.295 |
| Heming | -9.531 | 6.988 | -3.494 | -13.734 | 10.060 | -5.03 .1 |

N.B. DB indicates the database supplied with the Colorado version of PIIRI:I:QI:

The data in Tables 1, la and 1 b show the quite large differences that will arise in thermodynamic calculations when different data sets are used. The tables also point to errors in the $\Delta \mathbf{G}^{\circ}$, values for halloysite, published by Hemingway et al (1982) and highlight the errors that will result when incompatible data is mixed.

Calculations were also made to construct mineral stability diagrams for Log $[\mathrm{K}] /[\mathrm{HI}]$ vs $\log \left[\mathrm{H}_{2} \mathrm{SiO}_{4}\right]$ space and the mineral assemblage gibbsite-kaolinite-muscovitc-microcline-pyrophyllite, using the three data sets. The results of these calculations
are shown on Figure 5.3. Only the data of Helgeson et al (1978) is entirely consistent. The thermodynamic data from Hemingway/Robie and from MINTEC is inconsistent, as revealed by the kaolinite-pyrophyllite-muscovite-microcline junctions of Figure 5.3. For the databse and Hemingway/Robie data sets it also appears that four phases may be equilibrium at one point, this contradicts the Gibb's phase rule which, for a system of three components $\left(\mathrm{K}^{+}, \mathrm{H}^{+}\right.$, and $\mathrm{H}_{2} \mathrm{SiO}_{4}{ }^{\circ}$) predicts that the maximum number of phases at equilibrium together (zero degrees of freedom) is 3 . Figure 5.3 also reveals the large disparity in thermodynamic data generally: Water compositions plotting in the muscovite stability field defined by Helgeson et al (1982) would still be in the kaolinite stability fields defined by the other thermodynamic data sets. The mineral stability diagram derived using data from MINTEC, but with $\log _{\text {dissoc }}$ for pyrophyllite reversed, reveals little except that data which appears to be consistent on the basis of a particular component space, may not be.

Clay minerals

Table 2 shows the values for $\mathbf{\Delta G} \mathbf{G}^{\circ}$, in $\mathrm{kcal} / \mathrm{mol}$, for some clay minerals, calculated by the method outlined by Nriagu (1975), back calculated from the database, and as listed by Nriagu (1975) from other workers. All $\Delta \mathbf{G}^{\circ}$, values calculated by the Nriagu method are in good agreement with the PHREEQE database and published $\Delta \mathbf{G}^{\circ}$, values.

Table 2. $\Delta \mathbf{G}^{\circ} \mathrm{f}$ values in $\mathrm{kcal} / \mathrm{mol}$ as calculated by the method of Nriagu (1975), back calculated from the PHREEQE thermodynamic data base and as listed by Nriagu (1975)

| | Nriagu Calculated | PHREEQE
 Back Calc. | Nriagu published |
| :---: | :---: | :---: | :---: |
| NA-NONTR | -1399.84 | -1399.84 | |
| K-NONTRO | -1403.80 | -1403.81 | |
| CA-NONTR | -1065.09 | -1065.45 | |
| MG-NONTR | -1063.09 | -1063.81 | |
| MONT | -1280.83 | -1279.26 | -1278.80 |
| ILLITE | -1302.05 | -1301.00 | -1301.00 |

Construction of stability diagrams.

Attempts were made to construct mineral stability diagrams, with ordinates $\log [\mathrm{Na}] /[\mathrm{H}], \log [\mathrm{K}] /[\mathrm{H}], \log [\mathrm{Ca}] /[\mathrm{H}]^{2}$ and $\log [\mathrm{Mg}] /[\mathrm{H}]^{2}$ vs $\log \left[\mathrm{H}_{2} \mathrm{SiO}_{4}\right]$, using thermodynamic data from the database. The diagrams constructed were in error with some of the calculated mineral boundaries contradicting both Le Chatelier's principal and Gibb's phase rule.

As noted earlier the PHREEQE database has apparently been assembled from the Hemingway/Robie thermodynamic data set; however, the $\mathbf{\Delta} \mathbf{G}_{\text {kithsile }}^{\circ}$ value in the database differs by approx $1 \mathrm{kcal} / \mathrm{mol}$ from the Hemingway/Robie value. The value for $\Delta \mathbf{G}_{\text {gibsite }}^{\circ}$ in the database was replaced by the correct figure and halloysite struck
from the data base. The mineral stability diagram constructed from these calculations for Na still contradicted Gibb's phase rule. Furthermore, the formula stored for NaNontronite, due to the inclusion of $\mathrm{Fe}^{3+.}$. precludes the Na -Nontronite stability field from intersecting $\log [\mathrm{Na}] /[\mathrm{H}],\left[\mathrm{H}_{2} \mathrm{SiO}_{4}\right]$ space. This observation holds true for all the nontronites and the other stability spaces studied here. Except for the case of Gibbsite-Halloysite-Pyrophyllite, where the published $\mathbf{\Delta} \mathbf{G}^{\circ}$, for halloysite is in error, it is not known if the source of the inconsistency in thermodynamic data is a result of the approximations within the database or if the Hemingway/Robie data set is truly inconsistent.

The only mineral data set which was successfully used to construct stability diagrams bearing some resemblance to those published by Nesbitt (1983) or Aagard and Helgeson (1983), was that of Helgeson et al (1978), in conjunction with the Beidellite data of Helgeson (1969). However, the thermodynamic data for K-beidellite was not consistent with the other potassium minerals and K-beidellite has been left off the $\log [\mathrm{K}] /[\mathrm{H}]$ vs $\mathrm{Log}\left[\mathrm{H}_{2} \mathrm{SiO}_{4}\right]$ stability diagram. Noticeably, K-montmorillonite is also missing from the diagrams of Nesbitt (1983). As pointed out previously the Hemingway/Robie data set does appear to have some inconsistencies, despite claims to the contrary by Nordstrom and Munoz (1985).

CONCLUSIONS

If one compares the back calculated values for $\mathbf{\Delta} \mathbf{G}^{\circ}{ }_{0}$ in the PHREEQE database, with published values, it seems that the data set has, wherever possible, been assembled from the values of Robie et al (1978) with substitutions of datio of from Hemingway et al (1983) where applicable.

The PHREEQE thermodynamic data cannot be corrected by substituting $\Delta \mathbf{G}^{\circ}{ }_{\text {rthatloynire }}$ with a value for kaolinite and correcting the value for gibbsite. Because of the inconsistency of the gibbsite-halloysite-pyrophyllite data, found in the: Hemingway/Robie data set, all the thermodynamic values from Helgeson et al (1978) for the minerals falling in the spaces $\log [\mathrm{Na}] /[\mathrm{H}], \log [\mathrm{K}] /[\mathrm{H}], \log [\mathrm{Ca}] /[\mathrm{H}]^{2}$ and $\log [\mathrm{Mg}] /[\mathrm{H}]^{2}$ vs $\log \left[\mathrm{H}_{2} \mathrm{SiO}_{4}\right]$ have been substituted into the database, halloysite deleted and the new data base renamed HELGTHEM.

The thermodynamic data for the Nontronite clays, whose thermodynamic source is unknown, has been deleted and repiace with $\mathrm{Na}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$-Beidellites from Helgeson (1969) in the data base HELGTHEM: The data of Ifelgeson et al (1978) combined with that of Helgeson (1969) appears to be the most internally consistent data set available. Nordstrom and Munoz (1985), despite their criticism of the data set of Helgeson et al (1978), used the Helgeson data set to construct mineral stability
diagrams in their publication as did Aagard and Helgeson (1983). Both publications appeared after the publication of the thermodynamic data of Hemingway et al (1982).

Within the PHREEQE datahase only halloysite has been deleted; all other thermodynamic data remain untouched. Both data sets were run for comparison.

NOTE:A third data base, Helhem.dat, is also available in which the Nontronites are replaced by Beidellites from Helgeson (1969). Any minerals with thermodynamic data published by Helgeson or Hemingway/Robie have had their thermodynamic data altered to reflect published thermodynamic values. Where one mineral has values published by both groups, the data of Helgeson is used. All changed values are annotated in the data base, see comments at the end of Helhem.dat

REFERENCES

AAGARD, P. and HELGESON, H.C. 1983. Activity/Composition relations among silicates and aqueous solutions: Il. Chemical and thermodynamic consequences oí ideal mixing of atoms on homological sites in montmorillonites, illites, and mixed layer clays. Clays and Clay Mins. v31 I'o. 3 pp207-217

HELGESON, H.C. 1969. Thermodynanaics of hydrothermal systems at elevated temperatures and pressures. Am.J.Sci. v267 pp729-804.

HELGESON, H.C., DELANY, J.M. NESBITT, H.W. and BIRD, D.K. 1978. Summary and critique of the thermodynamic properties of rock forming minerals. Am.J.Sci. v278a

HEMINGWAY, B.S, HAAS, J.L. and ROBINSON, G.R. 1982. Thermodynamic properties of selected minerals in the system $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{CaO}-\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}$ at 298.15 K and 1 bar (10^{5} Pascals) pressure and at higher temperatures. USGS Bull. Nol54470p

NESBITT, H.W. 1983. Equilibrium diagrams displaying chemical speciation and mineral stabilities in aqueous solutions.MAC Environmental shortcourse. vi0. FLEET, M.E. Ed. ppl-44

NORDSTROM, D.K. and MUNOZ, J.L. 1985. Geochemical Thermodynamics. Benjamin/Cumming. pp477

NRIAGU, J.O. 1975.Thermochemical approximations for clay minerals. Am.Min. v60 pp834-839

ROBIE, R.A. and HEMINGWAY, B.S. and FISHER, J.R. 1978. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (100^{5} Pascals) pressure and at higher temperatures. USGS Bull. Nol452 456 pp

HELGTHEM DATA BASE

| FLEMENTS | | | |
| :---: | :---: | :---: | :---: |
| AG | 4 | 107.8680 | AG |
| AL | 5 | 26.9815 | AL |
| AS | 6 | 141.9431 | H3ASO4 |
| B | 7 | 61.8331 | H31303 |
| BA | 8 | 137.3400 | BA |
| BK | 9 | 79.9040 | BR |
| C | 10 | 60.0094 | CO3 |
| CA | 11 | 40.0800 | CA |
| CI) | 12 | 112.3994 | CI) |
| Cl. | 13 | 35.4530 | Cl |
| CS | 14 | 132.9050 | CS |
| cu | 15 | 63.5460 | $\mathrm{CU}+2$ |
| F | 16 | 18.9984 | F |
| FES | 17 | 55.8470 | FE+2 |
| 1 | 18 | 126.9044 | 1 |
| K | 19 | 39.1020 | K |
| 1.1 | 20 | 6.9390 | 1.1 |
| M19; | 21 | 24.3120 | MG |
| MN | 22 | 54.9380 | $\mathrm{MN}+2$ |
| N | 23 | 62.0049 | NO3 |
| NA | 24 | 22.9898 | NA |
| NI | 25 | 58.7100 | NI |
| 1 | 26 | 94.9714 | 104 |
| P'B | 27 | 207.1899 | 113 |
| RH | 28 | 85.4699 | RB |
| S | 29 | 96.0616 | SO4 |
| SI | 30 | 96.1155 | 114S1O4 |
| SR | 31 | 87.6200 | SR |
| U | 32 | 270.0278 | $\mathrm{UO} 2+2$ |
| v | 33 | 82.9 .390 | VO2 +1 |
| LN | 34 | 65.3699 | ZN |
| M ${ }^{(1)}$ | 35 | 159.9376 | M MOO4-2 |
| NI) | 36 | 144.24 | $\mathrm{NI})+3$ |

| SIPCIES 1 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $11+_{0.000}$ | 0.000 | 1.000 | 0.000 | 0.000 | 9.000 | 0.000 | 0.000 |
| $\begin{array}{ll} 11.000 \\ 2 \end{array}$ | | | | | | | |
| 1:- | 110 | -1.000 | -1.010 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.1000 | | | | | | |
| $\begin{aligned} & 21.000 \\ & 3 \end{aligned}$ | | | | | | | |
| $\begin{aligned} & \mathrm{H} 20 \\ & 0.0000 \end{aligned}$ | $\begin{aligned} & 100 \\ & 0.000 \end{aligned}$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $\begin{array}{ll} 31.000 \\ 4 \end{array}$ | | | | | | | |
| $\begin{array}{r} \mathrm{AG}+ \\ 0.000 \end{array}$ | $\begin{aligned} & 100 \\ & 0.000 \end{aligned}$ | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $+1.000$ | | | | | | | |
| A1, $3+$ 0.000 | $\begin{aligned} & 100 \\ & 0.000 \end{aligned}$ | $0^{3.000}$ | 0.000 | 0.000 | 9.000 | 0.000 | 0.000 |
| 51.000 | | | | | | | |
| 6 | | | | | | | |
| 113.3NO4 | 100 | 0.000 | 5.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| $\begin{array}{r} \text { FECL } 2+ \\ \cdot!1.552 \end{array}$ | $\begin{gathered} 300 \\ 13.600 \end{gathered}$ | 2.000 | 3.000 | 9.000 | 5.000 | 0.000 | 0.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $131.00017 \quad 1.000 \quad 2 \cdot 1.000$ | | | | | | | |
| 121 | | | | | | | |
| $\text { FECL } 2+$ | 300 | 1.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $132.000171 .000 \quad 2-1.000$ | | | | | | | |
| 122 | | | | | | | |
| FECL3 AQ | 300 | 0.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -11.902 | 10.000 | | | | | | |
| $131.000171 .000 \quad 2-1.000$ | | | | | | | |
| 123 | | | | | | | |
| FEOH2 + | 400 | 1.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -18.702 | 26.900 | | | | | | |
| 32.000 | 1-2.000 | 171.000 | 2-1.00 | | | | |
| 124 | | | | | | | |
| FEOH3 AQ | 400 | 0.000 | 3.000 | 0.000 | 0.000 | 0.000 | 1.000 |
| -26.632 | 37.000 | | | | | | |
| 33.000 | 1-3.000 | 171.000 | 2-1.000 | | | | |
| 125 | | | | | | | |
| FEO114 - | 400 | -1.000 | 3.000 | 0.000 | 0.000 | 0.000 | 2.000 |
| -34.632 | 42.500 | | | | | | |
| 34.000 | 1.4 .000 | 171.000 | 2-1.000 | | | | |
| 126 | | | | | | | |
| FEH2PO4 | 400 | 2.000 | 3.000 | 0.000 | 5.400 | 0.000 | 0.000 |
| 11.948 | 5.480 | | | | | | |
| $\begin{array}{lllllllllllll}26 & 1.000 & 1 & 2.000 & 17 & 1.000 & 2-1.000\end{array}$ | | | | | | | |
| 127 | | | | | | | |
| FEF $2+$ | 300 | 2.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -6.833 | 12.699 | | | | | | |
| $161.000171 .000 \quad 2-1.000$ | | | | | | | |
| 128 | | | | | | | |
| FEF2 + | 300 | 1.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -2.232 | 14.800 | | | | | | |
| $162.000171 .0002 \cdot 1.000$ | | | | | | | |
| 129 | | | | | | | |
| FEF3 AQ | 300 | 0.000 | 3.000 | 0.600 | 0.000 | 0.000 | 0.000 |
| 0.968 | 15.399 | | | | | | |
| $163.000171000 \quad 2-1.000$ | | | | | | | |
| 130 | | | | | | | |
| FE(SO4)2 | 300 | -1.000 | 15.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -7.612 14.600 | | | | | | | |
| $\begin{array}{llllll}29 & 2.000171 .000 ~ & 2-1.000\end{array}$ | | | | | | | |
| 131 | | | | | | | |
| FE2(OH)2 | 400 | 4.000 | 6.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -29.014 | 33.500 | | | | | | |
| 32.000 | $1-2.000$ | 172.000 | 0 2-2.000 | | | | |
| 132 | | | | | | | |
| FE3(OH)4 | 400 | 5.000 | 9.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -45.396 | 44.300 | | | | | | |
| 34.000 | $1-4.000$ | 173.000 | 0 2-3.0 | | | | |
| 133 | | | | | | | |
| LISO4 - | 200 | 1.000 | 6.000 | 0.000 | 5.000 | 0.000 | 0.000 |
| 0.640 | 0.000 | | | | | | |
| 201.0002 | 291.00 | | | | | | |
| 134 | | | | | | | |
| SROII + | 300 | 1.000 | 0.000 | 0.000 | 5.060 | 0.000 | 0.000 |
| -13.178 [4.495 | | | | | | | |

| $\begin{array}{r} \mathrm{CLCL}+ \\ 0.430 \end{array}$ | $\begin{aligned} & 200 \\ & 8.6: 0 \end{aligned}$ | 1.000 | 2.000 | 0.000 | 4.000 | 0.000 | 0.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 151.000131 .000 | | | | | | | |
| 150 | | | | | | | |
| $\begin{gathered} \text { CUCL2 AQ } \\ 0.160 \end{gathered}$ | $\begin{array}{r} 200 \\ 10.560 \end{array}$ | 0.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $151.00013 \quad 2.000$ | | | | | | | |
| 151 | | | | | | | |
| $\begin{array}{r} \text { CUCL3 }-2.290 \\ -2 . \end{array}$ | $\begin{gathered} 200 \\ 13.690 \end{gathered}$ | $-1.000 \quad 2$ | 2.000 | 0.000 | 4.000 | 0.000 | 0.000 |
| 151.000133 .000 | | | | | | | |
| 152 | | | | | | | |
| $\begin{gathered} \text { CUCLA } 2- \\ -4.590 \end{gathered}$ | $\begin{gathered} 200 \\ 17.780 \end{gathered}$ | -2.000 | 2.000 | 0.000 | 5.000 | 0.000 | 0.000 |
| 151.000134 .000 | | | | | | | |
| 153 | | | | | | | |
| $\begin{array}{r} \text { CUF }+ \\ 1.260 \end{array}$ | $\begin{aligned} & 200 \\ & 1.620 \end{aligned}$ | 1.0002 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 151.000161 .000 | | | | | | | |
| 154 | | | | | | | |
| CUOII + | $\begin{array}{r} 300 \\ 0.000 \end{array}$ | 1.000 | 2.000 | 0.000 | 4.000 | 0.000 | 0.000 |
| $\begin{array}{cccccc}15 & 1.000 & 3 & 1.000 & 1-1.000\end{array}$ | | | | | | | |
| | | | | | | | |
| $\mathrm{CU}(\mathrm{OH}) 2$ | 300 | 0.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -13.680 | 0.000 | | | | | | |
| 151.0003 | 32.000 | 1-2.000 | | | | | |
| 156 | | | | | | | |
| $\mathrm{CU}(\mathrm{OH}) 3$ | 300 | -1.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -26.899 | 0.000 | | | | | | |
| 151.0003 | 33.000 | 1-3.000 | | | | | |
| 157 | | | | | | | |
| CU(OIL)4 | 300 | -2.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -39.605 | 0.000 | | | | | | |
| $\begin{array}{llllllll}15 & 1.000 & 3 & 4.000 & 1 & 4.000\end{array}$ | | | | | | | |
| | | | | | | | |
| CU 2 (OII)2 | 310 | 2.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -10.359 | 17.539 | 2.497 | 0.0 | | | | |
| $\begin{array}{lllllll}15 & 2.000 & 3 & 2.000 & 1-2.000\end{array}$ | | | | | | | |
| | | | | | | | |
| CUSO4 AQ | 200 | 0.000 | 8.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2.310 | 1.220 | | | | | | |
| 151.0002 | 291.000 | | | | | | |
| 160 | | | | | | | |
| CU(IIS) 3 | 500 | -1.000 | -4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 126.879-180.420 | | | | | | | |
| 151.0002 | 293.000 | 0127.000 | 0224.00 | 00 3-12.0 | 000 | | |
| 161 | | | | | | | |
| $\begin{gathered} \text { CUIICO3 } \\ 13.000 \end{gathered}$ | $\begin{array}{r} 300 \\ +0.000 \end{array}$ | 1.000 | 6.000 | 0.000 | 0.000 | 0.000 | 1.000 |
| $\begin{array}{ccccccc}15 & 1.00010 & 1.000 & 1 & 1.000\end{array}$ | | | | | | | |
| | | | | | | | |
| ZNCL + | 200 | 1.000 | 0.000 | 0.000 | 4.000 | 0.000 | 0.000 |
| 0.430 | 7.790 | | | | | | |
| 341.000131 .000 | | | | | | | |
| 163 | | | | | | | |
| ZNCL2 AQ | 200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.450 | 8.500 | | | | | | |

| $\mathrm{CD}(\mathrm{SO4}) 2$ | | -2.000 | 12.000 | 0.000 | 6.000 | 0.000 | 0.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.500 | 0.000 | | | | | | |
| 121.000292 .000 | | | | | | | |
| 208 | | | | | | | |
| $\begin{array}{r} \text { PBCL }+ \\ 1.600 \end{array}$ | $\begin{aligned} & 200 \\ & 4.380 \end{aligned}$ | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 271.000131 .000 | | | | | | | |
| 209 | | | | | | | |
| PBCL2 AQ | 200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1.800 | 1.080 | | | | | | |
| 271.000132 .000 | | | | | | | |
| 210 | | | | | | | |
| PiBCL3 -
 1.699 | $\begin{aligned} & 200 \\ & 2.170 \end{aligned}$ | -1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $\begin{array}{llll}27 & 1.0001313 .000\end{array}$ | | | | | | | |
| 211 | | | | | | | |
| PIBCLA $2-$ 1.380 | $\begin{aligned} & 200 \\ & 3.530 \end{aligned}$ | -2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $\begin{array}{llllll}27 & 1.000134 .000\end{array}$ | | | | | | | |
| 212 | | | | | | | |
| $\mathrm{PB}(\mathrm{CO} 3) 2$ | 200 | -2.000 | 8.000 | 0.000 | 0.000 | 0.000 | 4.000 |
| 10.640 | 0.000 | | | | | | |
| $27 \quad 1.00010 \quad 2.000$ | | | | | | | |
| 213 | | | | | | | |
| $\begin{gathered} \mathrm{PBF}+ \\ 1.250 \end{gathered}$ | $\begin{aligned} & 200 \\ & 0.000 \end{aligned}$ | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.009 |
| 271.000161 .000 | | | | | | | |
| 214 | | | | | | | |
| PBF2 AQ | 200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 271.000162 .000 | | | | | | | |
| 215 | | | | | | | |
| PBF3. 3.420 | $\begin{gathered} 200 \\ 0.000 \end{gathered}$ | -1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 271.000163 .000 | | | | | | | |
| 216 | | | | | | | |
| $\begin{array}{r} \text { PBF4 } 2 . \\ 3.100 \end{array}$ | $\begin{gathered} 200 \\ 0.000 \end{gathered}$ | $\text { . } 2.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 271.000164 .000 | | | | | | | |
| 217 | | | | | | | |
| $\text { PBOII }+$ | $\begin{gathered} 300 \\ 0.000 \end{gathered}$ | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.0000 |
| 271.0003 | 31.000 | 1-1.00 | | | | | |
| 218 | | | | | | | |
| PB(OII)2 | 300 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -17.120 | 0.000 | | | | | | |
| 271.000 | 32.000 | 1-2.00 | | | | | |
| 219 | | | | | | | |
| PB(OII) 3 | 300 | -1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -28.060 | 0.000 | | | | | | |
| $\begin{array}{cccccc}27 & 1.000 & 3 & 3.000 & 1 & -3.000 \\ 220 & & & & & \end{array}$ | | | | | | | |
| | | | | | | | |
| PB2OHI +3 | 300 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -6.360 | 0.030 | | | | | | |
| 272.000 | 31.000 | 1-1.00 | | | | | |
| 221 | | | | | | | |
| PBNO3 + | 200 | 1.000 | 5.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1.170 | 0.000 | | | | | | |

| $\underset{1.300}{\mathrm{NIF}+}$ | $\begin{aligned} & 200 \\ & 0.000 \end{aligned}$ | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 251.000161 .000 | | | | | | | |
| 237 | | | | | | | |
| $\begin{array}{r} \mathrm{NIOH}+ \\ -9.860 \end{array}$ | $\begin{gathered} 300 \\ 12.420 \end{gathered}$ | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.1000 |
| $\begin{array}{llllllllllll}25 & 1.000 & 3 & 1.000 & 1 & 1.000\end{array}$ | | | | | | | |
| 238 | | | | | | | |
| $\mathrm{Nl}(\mathrm{OH}) 2$ | 300 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -19.000 | 0.000 | | | | | | |
| $\begin{array}{lllllllllll}25 & 1.000 & 3 & 2.000 & 1 & \mathbf{2} .000\end{array}$ | | | | | | | |
| 239 | | | | | | | |
| $\mathrm{NI}(\mathrm{OH}) 3$ | 300 | -1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -30.000 | 0.000 | | | | | | |
| $\begin{array}{llllllll}25 & 1.000 & 3 & 3.000 & 1 & 3.000\end{array}$ | | | | | | | |
| 240 | | | | | | | |
| NISO4 AQ | 200 | 0.000 | 6.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2.290 | 1.520 | | | | | | |
| 251.000291 .000 | | | | | | | |
| 241 | | | | | | | |
| NICL2 AQ | 200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.960 | 0.000 | | | | | | |
| $\begin{array}{lllllll}25 & 1.000 & 13 & 2.000\end{array}$ | | | | | | | |
| 242 | | | | | | | |
| NHHCO3 + | $+300$ | 1.000 | 4.000 | 0.000 | 0.000 | 0.000 | 1.000 |
| 12.470 | 0.000 | | | | | | |
| $\begin{array}{lllllllllll}25 & 1.000 & 10 & 1.000 & 1 & 1.000\end{array}$ | | | | | | | |
| 243 | | | | | | | |
| NICO3 AQ | 200 | 0.000 | 4.000 | 0.000 | 0.000 | 0.000 | 2.000 |
| 6.870 | 0.000 | | | | | | |
| $25 \quad 1.00010 \quad 1.000$ | | | | | | | |
| 244 | | | | | | | |
| $\mathrm{Nl}(\mathrm{CO} 3) 2$ | 200 | . 2.000 | 8.000 | 0.000 | 0.000 | 0.000 | 4.000 |
| 10.110 | 0.000 | | | | | | |
| $25 \quad 1.000 \quad 10 \quad 2.000$ | | | | | | | |
| 245 | | | | | | | |
| $\mathrm{NI}(\mathrm{SO4}) 2$ | 200 | -2.000 | 12.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1.020 | 0.000 | | | | | | |
| 251.000292 .000 | | | | | | | |
| 246 | | | | | | | |
| AGBR AQ | 200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 4.240 | 0.000 | | | | | | |
| $41.000 \quad 91.000$ | | | | | | | |
| 247 | | | | | | | |
| AGBR2 - | 200 | -1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 7.280 | 0.000 | | | | | | |
| 41.000 | 92.00 | | | | | | |
| 248 200 0.000 0.000 0.000 | | | | | | | |
| AGCL, AQ | 200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 3.270 | -2.680 | | | | | | |
| 41.000131 .000 | | | | | | | |
| 249 | | | | | | | |
| AGCL2 - | 200 | -1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 5.270 | -3.930 | | | | | | |
| $41.00013 \quad 2.000$ | | | | | | | |
| 250 | | | | | | | |
| $\mathrm{AGCL}_{3} 2$. | 200 | -2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 5.290 | 0.00 | | | | | | |

```
    4 1.000)}13\quad3.00
251
AGCIA -3 200 
    5.510 0.000
    4!.00013 4.000
252
AGF AQ 
        0.360 -2.830
    4 1.000 16 1.000
253
AGIIS AQ 
    47.710 -60.140
    4 1.000 29 1.000) 1 9.000 2 8.000 3-4.000
254
A(;(ISS)2 500 
    85.770 -120.280
    4 1.000 29 2.000 11 18.000 2 16.000 3-8.000
255
AGI AQ 200 0.000
        6.600 0.000
    4 1.000 18 1.000
256
A(;12 - 200 -1.000 0.000 0.000
    10.680 0.000
    4 1.000 18 2.000
257
A(;011 AQ 
        -12.000 0.000
    41.000 3 1.000 1 1.000
258
AG(011)2 300 
    -24.000 0.000
    4 1.000 3 2.000 1-2.000
259
AGSO4 - 200 -1.000 6.000 0.000
            1.290 1.490
            41.000 29 1.000
260
AGNO3 AQ }200
    .0.290 0.000
    41.000 23 1.000
261
AG(NO2)2 
        59.360 -87.520
    4 1.000 2.3 2.000 1 4.000 2 4.000 3-2.000
262
AGBR3 2- 200 
    8.710 0.000
    4 1.000 9 3.000
26.3
AG13 2- 200 -2.000 0.000 0.000
        13.370 -27.030
    41.000 18 3.000
264
AGI4 -3 200 
        14.080 0.000
    +1.000 18 4.000
265
```

| $\begin{array}{r} \text { H2ASO3 } \\ 10.216 \end{array}$ | $\begin{gathered} 400 \\ .23 .455 \end{gathered}$ | -1.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11.000 | 61.000 | 22.000 | 3-1.000 | | | | |
| 266 | | | | | | | |
| $\text { HASO3 } 2 .$ -1.886 | $\begin{gathered} 300 \\ -15.816 \end{gathered}$ | -2.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 61.000 | 22.000 | 3-1.000 | | | | | |
| 267 | | | | | | | |
| ASO3-3 | 400 | -3.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -15.300 | -9.765 | | | | | | |
| 1-1.000 | 61.000 | 22.000 | 3-1.000 | | | | |
| 268 | | | | | | | |
| $\underset{19.139}{\mathrm{H} 4 \mathrm{ASO}}+$ | $\begin{array}{r} 400 \\ -30.015 \end{array}$ | 1.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 13.000 | 61.000 | 22.000 | 3-1.000 | | | | |
| 269 | | | | | | | |
| $\begin{array}{r} \text { H2ASO4 } \\ -\mathbf{2 . 2 4 3} \end{array}$ | $\begin{gathered} 200 \\ -1.690 \end{gathered}$ | -1.000 | 5.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 61.000 | 1-1.000 | | | | | | |
| 270 | | | | | | | |
| $\text { HASO4 } 2$ -9.001 | $\begin{gathered} 200 \\ -0.920 \end{gathered}$ | -2.000 | 5.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 61.000 | $1-2.000$ | | | | | | |
| 271 | | | | | | | |
| ASO4 -3 | 200 | -3.000 | 5.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -20.597 | 3.430 | | | | | | |
| 61.000 | 1-3.000 | | | | | | |
| 272 | | | | | | | |
| HCO3. | 210 | -1.000 | 4.000 | 0.000 | 5.400 | 0.000 | 1.000 |
| 10.330 | -3.617 | -6.498 | 880.023 | 379290 | 02.39 | | |
| 273 | | | | | | | |
| | | | | | | | |
| II2CO3 AQ | Q 210 | 0.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 16.681 | -2.247 | . 21.3415 | $15 \quad 0.05$ | 5657 | 6307.1 | | |
| 101.000 | J 2.000 | | | | | | |
| 274 | | | | | | | |
| IISO4. | 210 | -1.000 | 6.000 | 0.000 | 4.500 | 0.000 | 0.000 |
| 1.987 | 4.910 | -5.3505 | 50.0183 | 412557 | . 2461 | | |
| 291.00011 .000 | | | | | | | |
| 275 | | | | | | | |
| IF AQ | 200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 3.169 | 3.460 | | | | | | |
| 161.000 | 11.000 | | | | | | |
| 276 | | | | | | | |
| HF2. | 200 | 1.0000 | 0.000 | 0.000 | 3.500 | 0.000 | 0.000 |
| 3.749 | 4.550 | | | | | | |
| 162.000 | 11.000 | | | | | | |
| 277 | | | | | | | |
| H2F2 AQ | 200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 6.768 | 0.000 | | | | | | |
| 162.000 | 12.000 | | | | | | |
| 278 | | | | | | | |
| $\begin{array}{r} \text { IIPO4 } 2- \\ 12.346 \end{array}$ | $\begin{aligned} & 200 \\ & . \mathbf{3 . 5 3 0} \end{aligned}$ | -2.000 | 0.000 | 0.000 | 5.006 | 0.000 | 1.000 |
| 251.000 | 11.000 | | | | | | |
| 279 | | | | | | | |
| $\begin{array}{r} \mathrm{H} 2 \mathrm{PO} 4 \\ 19.553 \end{array}$ | $\begin{aligned} & 200 \\ & .4 .520 \end{aligned}$ | -1.000 | 0.000 | 0.000 | 5.400 | 0.000 | 0.000 |

| 280 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H3PO4AQ | 200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 21.700 | -2.620 | | | | | | |
| $261.000 \quad 3.000$ | | | | | | | |
| 281 | | | | | | | |
| H2S AQ | 400 | 0.000 | -2.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $40.654 \quad .65 .440$ | | | | | | | |
| $110.000 \quad 291.000 \quad 288.000 \quad 3-4.000$ | | | | | | | |
| 282 | | | | | | | |
| S2- 40 | $400-2.0$ | $0000-2$. | 0000 | 0.0005 | 5.000 | 0.000 | 2.000 |
| $20.742-48.040$ | | | | | | | |
| $18.000291 .000288 .000 \quad 3-4.000$ | | | | | | | |
| 283 | | | | | | | |
| UOII +3 | 400 | 3.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $8.560 \quad-22.715$ | | | | | | | |
| 3-1.000 1 | 13.000 | 321.000 | 22.00 | | | | |
| 284 | | | | | | | |
| $U(\mathrm{OH}) 2+$ | 300 | 2.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 6.9.76-16.700 | | | | | | | |
| 12.000321 .00022 .000 | | | | | | | |
| 285 | | | | | | | |
| $\mathrm{U}(\mathrm{OH}) 3$ + | 400 | 1.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $4.281-11.785$ | | | | | | | |
| $\begin{array}{lllllllllllllllll}3 & 1.000 & 1 & 1.000 & 32 & 1.000 & 2 & 2.000\end{array}$ | | | | | | | |
| 286 | | | | | | | |
| U(O11)4 ${ }^{\text {a }}$ | 300 | 0.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.718 | -9.670 | | | | | | |
| $32.000321 .000 \quad 22.000$ | | | | | | | |
| 287 | | | | | | | |
| U(0)1)5. | 400 - | -1.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -3.904 | -6.855 | | | | | | |
| $3 \mathbf{3 . 0 0 0} 1$ | 1-1.000 | 321.000 | 022.00 | | | | |
| 288 | | | | | | | |
| $1 \mathrm{~F}+3$ | 500 | 3.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $17.875 \quad 29.380$ | | | | | | | |
| $\begin{array}{lllllllllllllllll}16 & 1.000 & 32 & 1.000 & 2 & 2.000 & 1 & 4.000 & 3 & -2.000\end{array}$ | | | | | | | |
| 289 | | | | | | | |
| UF2 $22+$ 23.67 .3 | 500 .27 .230 | 2.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| | | | | | | | |
| 290 | | | | | | | |
| UF3 + 1 | 500 | 1.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $28.331-27.280$ | | | | | | | |
| $\begin{array}{llllllllllllllllll}16 & 3.000 & 32 & 1.000 & 2 & 2.000 & 1 & 4.000 & 3 & -2.000\end{array}$ | | | | | | | |
| 291 | | | | | | | |
| UF4 AQ | 500 | 0.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 32.856 -29.830 | | | | | | | |
| 16 4.000 321.000$) 22.000 \quad 14.000 \quad 3.2 .000$ | | | | | | | |
| 292 | | | | | | | |
| 11F5-1 | $500-1$ | 1.000 4 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 34.454 -29.580 | | | | | | | |
| $165.000 .321 .000=2.000 \quad 14.000 \quad 3-2.000$ | | | | | | | |
| 29.3 | | | | | | | |
| WF6 $2-$ | $500 \quad .2$ | 2.0004 | 4.0000 | 0.000 | 0.000 | 0.000 | 0.000 |
| . $66.9 .34-31.130$ | | | | | | | |
| $\begin{array}{cc}166.000 ~ 32 ~ 1.000 ~ & 294\end{array}$ | | | | | | | |
| | | | | | | | |

| $\begin{array}{r} \mathrm{UCL}+3 \\ 10.554 \end{array}$ | $\begin{gathered} \mathbf{5 0 0} \\ -24.497 \end{gathered}$ | 3.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{llllllllllllllllll}13 & 1.000 & 32 & 1.000 & 2.000 & 1.000 & 3.000\end{array}$ | | | | | | | |
| 295 | | | | | | | |
| $\text { USO } 42+$ 14.677 | $\begin{gathered} 500 \\ -30.730 \end{gathered}$ | 2.000 | 10.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 291.00032 | 21.000 | 22.000 | 014.000 | 3-2.00 | | | |
| 296 | | | | | | | |
| $\begin{array}{r} \mathrm{U}\left(\mathrm{SO} \mathrm{~S}_{1} 2\right. \\ 18.965 \end{array}$ | $\begin{aligned} & 500 \\ & .26 .830 \end{aligned}$ | 0.0001 | 16.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $292.000321 .00022 .00014 .000 ~ 3-2.000$ | | | | | | | |
| 297 | | | | | | | |
| $\begin{gathered} \text { UIIPO4 } 2+ \\ 33.659 \end{gathered}$ | $\begin{gathered} 500 \\ -26.930 \end{gathered}$ | 2.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $\begin{array}{lllllllllllll}26 & 1.000 & 1 & 5.000 & 32 & 1.000 & 2 & 2.000 & 3 & -2.00\end{array}$ | | | | | | | |
| 298 | | | | | | | |
| U(IIPO4)2 | 500 | 0.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 56.049 | -32.730 | | | | | | |
| $\begin{array}{lllllllllll}26 & 2.000 & 1 & 6.000 & 32 & 1.000 & 2 & 2.000 & 3 & -2.000\end{array}$ | | | | | | | |
| 299 | | | | | | | |
| U(HPO4)3 | 500 | -2.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 76.780 | -42.230 | | | | | | |
| 263.000 | 17.000 | 321.000 | 022.000 | 3-2.00 | | | |
| 300 | | | | | | | |
| U(HPO4)4 | 500 | -4.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.0000 |
| 97.699 | -60.930 | | | | | | |
| 264.000 | 18.000 | 321.000 | 022.000 | 3-2.000 | | | |
| 301 | | | | | | | |
| $\mathrm{UO2OH}+1$ | 1300 | 1.000 | 6.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -5.090 | 10.216 | | | | | | |
| $32 \quad 1.000 \quad 31.000 \quad 1-1.000$ | | | | | | | |
| 302 | | | | | | | |
| U02)20112 | 300 | 2.000 | 12.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -5.645 | 10.2 .20 | | | | | | |
| $\begin{array}{llllllllllll}32 & 2.000 & 3 & 2.000 & 1 & \mathbf{2} .000\end{array}$ | | | | | | | |
| 303 | | | | | | | |
| U02)3015 | 300 | 1.000 | 18.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -15.593 | 25.075 | | | | | | |
| 323.000 3 | 35.000 | 1-5.000 | | | | | |
| 304 | | | | | | | |
| U02CO3 1 | 210 | 0.000 | 10.000 | 0.000 | 0.000 | 0.000 | 2.000 |
| 10.071 | 0.840 | -9.56 | 0.03434 | 42809 | | | |
| 321.000101 .000 | | | | | | | |
| 305 | | | | | | | |
| U02CO3)2 | 210 | -2.000 | 14.000 | 0.000 | 0.000 | 0.000 | 4.000 |
| 17.008 | 3.480 | 14.14 | 40.0096 | | | | |
| $321.00010 \quad 2.000$ | | | | | | | |
| 306 | | | | | | | |
| U02CO3)3 | 200 | -4.000 | 18.000 | 0.000 | 0.000 | 0.000 | 6.000 |
| 21.384 | -8.780 | | | | | | |
| $\begin{array}{llll}32 & 1.00010 \quad 3.000\end{array}$ | | | | | | | |
| 307 | | | | | | | |
| U02F + | 200 | 1.000 | 6.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 5.105 | . 0.450 | | | | | | |
| 321.00016 | 161.000 | | | | | | |
| 308 | | | | | | | |
| UO2F2 AQ | 200 | 0.000 | 6.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 8.920 | -0.900 | | | | | | |

| V(OH) 3 A | 400 | 0.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11.590 | - 44.230 | | | | | | |
| 31.00011 .000331 .00022 .000 | | | | | | | |
| 324 | | | | | | | |
| VSO4 + 1 | 500 | 1.000 | 9.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 24.050 -44.230 | | | | | | | |
| $291.000331 .00022 .00014 .000 \quad 3 \mathbf{- 2 . 0 0 0}$ | | | | | | | |
| 325 | | | | | | | |
| V2(OII) 3 | 400 | 3.000 | 6.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $37.720-88.460$ | | | | | | | |
| 3-1.000 115.0003312 .00024 .000 | | | | | | | |
| 326 | | | | | | | |
| V2(0H)2 | 400 | 4.000 | 6.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 41.470 | -88.460 | | | | | | |
| 3-2.000 1 | 16.0003 | 332.000 | 24.000 | | | | |
| 327 | | | | | | | |
| $\mathrm{V}(\mathrm{OH}) 3+$ | 400 | 1.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $11.260-29.320$ | | | | | | | |
| 31.000 | 11.000 | 331.000 | 21.000 | | | | |
| 328 | | | | | | | |
| 112V204 + | 300 | 2.000 | 8.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 27.420 | -58.640 | | | | | | |
| 12.000332 .00022 .000 | | | | | | | |
| 329 | | | | | | | |
| $\begin{aligned} & \text { VOF }+ \\ & 20.270 \end{aligned}$ | $\begin{gathered} 500 \\ -27.420 \end{gathered}$ | 1.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $161.000331 .00021 .00012 .000 \quad 3 \cdot 1.000$ | | | | | | | |
| 330 | | | | | | | |
| VOF2 AQ | 500 | 0.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $22.670-25.820$ | | | | | | | |
| $162.000331 .000 \quad 21.00012 .000 \quad 3 \cdot 1.000$ | | | | | | | |
| 331 | | | | | | | |
| VOF3 -1 | 500 - | 1.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $24.230-24.420$ | | | | | | | |
| $163.000331 .00021 .00012 .000 \times 1.000$ | | | | | | | |
| 332 | | | | | | | |
| VOF4 2 - | 500 | 2.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $25.040-22.920$ | | | | | | | |
| $164.000331 .000 \quad 21.000122 .000 \quad 3-1.000$ | | | | | | | |
| 333 | | | | | | | |
| VOSO4 AQ | Q 500 | 0.000 | 10.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $19.380-25.600$ | | | | | | | |
| $3341.00331 .00021 .00012 .0003-1.000$ | | | | | | | |
| | | | | | | | |
| VOCL +1 | 500 | 1.000 | 4.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 16.950-29.320 | | | | | | | |
| $131.000331 .000 \quad 21.00012 .000 \quad 3 \cdot 1.000$ | | | | | | | |
| 335 | | | | | | | |
| $113 \mathrm{VO}+\mathrm{AQ}$ |) 300 | 0.000 | 5.000 | 0.000 | 0.000 | 0.000 | 0.060 |
| -3.300 10.630 | | | | | | | |
| $331.000312 .0001-1.000$ | | | | | | | |
| 336 | | | | | | | |
| H2VO4-1 | 300 | . 1.000 | 5.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| . 7.090 | 11.330 | | | | | | |
| 331.000 | 32.000 | 1-2.000 | | | | | |
| 337 | | | | | | | |
| HVO4 2. | 300 | -2.000 | 5.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -15.150 | 14.930 | | | | | | |

| 16 | 4.000 | 3 | 0.500 | 321 | 1.0002 | 2.000 | 4.000 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UIIPO4) 2 | 2, 5 | | 4.00 | -60.80 | 38.27 | 0 | 0.000 | UIIPO4 |
| 26 | 2.000 | 1 | 6.000 | 32 | 2.00032 | 1.000 | $2 \quad 2.000$ | |
| NINGYO | OH5 | | 4.00 | -63.12 | 32.16 | 0 | 0.000 | NiNGY |
| 11 | 1.000 | 26 | 2.000 | 32 | 1.0002 | 2.000 | 4.000 | |
| U03 (C) |) 3 | | 6.00 | 7.72 | -19.32 0 | | 0.000 U | U03 |
| -2 | 2.000 | 32 | 1.000 | 31 | 1.000 | | | |
| GUMMI | ITE: | 3 | 6.00 | 10.40 | -23.01 | 0 | 0.000 | GUMMI |
| -2 | 2.000 | 32 | 1.000 | 31 | 1.000 | | | |
| 13-U02(0) | 011 | 3 | 6.00 | 5.54 | -13.73 | 0 | 0.000 | B-U02 |
| -2 | 2.000 | 32 | 1.000 | 32 | 2.000 | | | |
| SCIIOEI | 1 T | 3 | 6.00 | 5.40 | -12.05 | 0 | 0.000 | SCIIOE |
| -2 | 2.000 | 32 | 1.000 | 33 | 3.000 | | | |
| RUTHE: | RFO | 2 | 10.00 | -14.44 | 4-1.44 | 1 | 0.000 | RUTIIE |
| 32 | 1.000 | 10 | 1.000 | | | | | |
| 4.54 | | . 0.3318 | - 2716 | | | | | |
| (U02)3(1) | (1) 2 | | 18.00 | -49.04 | 94.90 | 0 | 0.000 | (U02) |
| 32 | 3.000 | 26 | 2.000 | | | | | |
| H-AUTU | UN1 3 | 3 | 12.00 | . 47.93 | -3.60 | 0 | 0.000 | H-AUT |
| 2 | 2.000 | 32 | 2.000 | 26 | 2.000 | | | |
| NA-AUTU | UN | 3 | 12.00 | -47.41 | -0.46 | 0 | 0.000 | NA-AU |
| 24 | 2.000 | 32 | 2.000 | 26 | 2.000 | | | |
| K-AUTU | UNi | 3 | 12.00 | -48.24 | 5.86 | 0 | 0.000 | K-AU'T |
| 19 | 2.000 | 32 | 2.000 | 26 | 2.000 | | | |
| URAMPI | IIIT | 6 | 6.00 | -289.90 | 0383.81 | 0 | 0.000 | URAMP |
| 32 | 2.000 | 26 | 2.000 | 23 | $2.000 \quad 3$ | -6.000 | 20.000 | |
| 216 | 16.000 | | | | | | | |
| Salimilt | TE 3 | 3 | 12.00 | -43.65 | -20.18 | 0 | 0.000 | SALEE |
| 32 | 2.000 | 21 | 1.000 | 26 | 2.000 | | | |
| AUTUNI | ITE: | 3 | 12.00 | -4.3.93 | 3 -14.34 | 0 | 0.000 | AUTUN |
| 32 | 2.000 | 11 | 1.000 | 26 | 2.000 | | | |
| SR-AUTU | UN | 3 | 12.00 | -44.46 | -13.05 | 0 | 0.000 | SR-AU |
| 32 | 2.000 | 31 | 1.000 | 26 | 2.000 | | | |
| URANOC | CIR | 3 | 12.00 | .44.63 | 3-10.10 | 0 | 0.000 | UILANO |
| 32 | 2.000 | 8 | 1.000 | 26 | 2.000 | | | |
| BASSETIT | ITT 3 | 3 | 14.00 | -44.49 | -19.90 | 0 | 0.000 | BASSE |
| 32 | 2.000 | 17 | 1.000 | 26 | 2.000 | | | |
| TORBER | RN: | 3 | 14.00 | -45.28 | $8 \quad-15.90$ | 0 | 0.000 | TORBE |
| 32 | 2.000 | 15 | 1.000 | 26 | 2.000 | | | |
| PRZIII:V | VAI. | 3 | 12.00 | . 44.37 | 7 -11.00 | 0 | 0.000 | PRZIIE |
| 32 | 2.000 | 27 | 1.000 | 26 | 2.000 | | | |
| URANO | Plin | 4 | 12.00 | 17.4 | 490.00 | 0 | 0.000 | URANO |
| 1 -6 | 6.000 | 32 | 2.000 | 11 | 1.00030 | 2.000 | | |
| AlOII3(A) | (A) 3 | 3 | 0.00 | 10.38 | -27.05 | 0 | 0.000 | ALOH3 |
| 51 | 1.000 | 3 | 3.000 | 1 -3 | 3.000 | | | |
| Al.oniso | ()4 | 4 | 6.00 | -3.23 | 0.00 | 0 | 0.000 | ALOIIS |
| 1 . | -1.000 | 5 | 1.000 | 29 | 1.0003 | 1.000 | | |
| Alat(0)I) | $1)^{1} 4$ | | 6.00 | 22.70 | 0.00 | 0 | 0.000 | ALA(0 |
| 1.1 | 10.000 | 5 | 4.000 | 29 | 1.000 3 | 10.000 | | |
| AIUN K | K 4 | 4 | 12.00 | -5.17 | 7.22 | 0 | 0.000 | ALUM |
| 19 | 1.090 | 5 | 1.000 | 29 | 2.0003 | 12.000 | | |
| AlUNIT | TE | 5 | 12.00 | -1.35 | 3.92 | 0 | 0.000 | ALUNI |
| 19 | 1.000 | 5 | 3.000 | 29 | 2.0003 | 6.000 | -6.000 | |
| ANIIYD | RIT | 2 | 6.00 | -4.64 | -3.77 | 0 | 0.000 | ANIIYD |
| 11 | 1.000 | 29 | 1.000 | | | | | |
| aragon | NIT | 2 | 4.00 | -8.36 | - 2.62 | 1 | 0.000 | ARAGO |
| 11 | 1.000 | 10 | 1.000 | | | | | |
| . 10.21 | | 0.0217 | $7 \quad 0.0$ | | 5.171:.05 | | | |

| 11 | 1.000 | 29 | 1.000 | $\begin{aligned} & 3 \\ & 1.58 \end{aligned}$ | 2.000 | 0 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HALITE | E | | 0.00 | | 0.92 | | 0.000 | HaLIT |
| 24 | 1.000 | | 1.000 | | | | | |
| hlemat | TITE | 4 | 6.00 | 22.06 | -50.85 | 0 | 0.000 | hemat |
| -6. | -6.000 | 3 | 3.000 | $17 \quad 2$ | $2.000 \quad 2$ | -2.000 | | |
| HUNTIT | TE: 3 | 3 | 16.00 | -29.97 | -25.76 | 0 | 0.000 | IlUNTI |
| 21 | 3.000 | 11 | 1.000 | 10 | 4.000 | | | |
| HYIDRM | Magn | 4 | 16.00 | 0 -8.77 | 77 -52.21 | 0 | 0.000 | 0 HYDRM |
| 21 | 5.000 | 10 | 4.000 | 1 -2 | 2.0003 | 6.000 | | |
| JAROSI | SITE: 6 | 6 | 21.00 | 27.90 | -66.18 | 0 | 0.000 | JAROS |
| - | -6.000 | | 1.000 | 292 | 2.0003 | 6.000 | $17 \quad 3.000$ | |
| 2 . | -3.000 | | | | | | | |
| JaROSI | ITl: 6 | 6 | 21.00 | 24.30 | .61.28 | 0 | 0.000 | JAROS |
| - | -6.000 | | 1.000 | 292 | 2.0003 | 6.000 | $17 \quad 3.000$ | |
| 2. | -3.000 | | | | | | | |
| JAROSI | ITE: 5 | | 21.00 | 27.00 | -85.15 | 0 | 0.000 | JAROS |
| - | -5.000 | 29 | 2.000 | 37 | $7.000 \quad 17$ | 3.000 | $2 \quad-3.000$ | |
| MACKIN | INAW | 5 | 0.00 | .38.31 | 160.14 | 0 | 0.000 | O MACKI |
| 1 | 8.000 | 17 | 1.000 | 29 | 1.0002 | 8.000 | $3 \quad \mathbf{4 . 0 0 0}$ | |
| magad | DIIT | 4 | 0.00 | -14.30 | 0.00 | 0 | 0.000 | iMAGAD |
| 1 - | -1.000 | 3 | -9.000 | 241 | 1.00030 | 7.000 | | |
| maghif | EMIT | 4 | 6.00 | 32.45 | $5 \quad-20.00$ | 0 | 0.000 | 0 Magile |
| 1 - | -6.000 | 3 | 3.000 | $17 \quad 2$ | 2.0002 | -2.000 | | |
| Magnt | ESIT | 2 | 4.00 | -8.03 | -6.17 | 0 | 0.000 | Magne |
| 21 | 1.000 | 10 | 1.000 | | | | | |
| Magnli | l:TIT | 4 | 8.00 | 29.80 | -71.46 | 0 | 0.000 | MAGNE |
| - | . 8.000 | 17 | 3.000 | 34 | $4.000 \quad 2$ | -2.000 | | |
| MEIAN | NTER | 3 | 8.00 | -2.47 | $7 \quad 2.86$ | 0 | 0.000 | MEIAN |
| 17 | 1.000 | 29 | 1.000 | 3 | 7.000 | | | |
| MIRABI | 11.13 | 3 | 6.00 | -1.11 | 18.99 | 0 | 0.000 | Mirab |
| 24 | 2.000 | 29 | 1.000 | 310 | 10.000 | | | |
| Natron | N | 3 | 4.00 | -1.31 | 15.74 | 0 | 0.000 | NATRO |
| 24 | 2.000 | 10 | 1.000 | 310 | 10.000 | | | |
| NESQU | UELIO | 3 | 4.00 | -5.62 | 2.5.79 | 0 | 0.000 | NESQU |
| 21 | 1.000 | 10 | 1.000 | 3 | 3.000 | | | |
| PIII.OG | GOII | 5 | 0.00 | 66.30 | -86.36 | 0 | 0.000 | PIILOG |
| 1 -1 | 10.000 | 19 | 1.000 | 21 | 3.0005 | 1.000 | $30 \quad 3.000$ | 00 |
| PYRITE: | E 5 | | 0.00 | -85.80 | 131.58 | 0 | 0.000 | PYRIT |
| 11 | 16.000 | 2 | 14.000 | 17 | 1.00029 | 2.000 | $3 \quad \mathbf{- 8 . 0 0 0}$ | |
| QUART | TZ 2 | 2 | 0.00 | -4.01 | 6.22 | 0 | 0.000 | QUART |
| 3 - | -2.000 | 30 | 1.000 | | | | | |
| SEPIOL | LIT 4 | 4 | 0.00 | 18.78 | 0.00 | 0 | 0.000 | SEPIO |
| 3. | -0.500 | 21 | 2.000 | 30 | 3.0001 | -4.000 | | |
| SIIIERI | ITE 2 | 2 | 6.00 | -10.55 | .5.33 | 0 | 0.000 | SIDER |
| 17 | 1.000 | | 1.000 | | | | | |
| SIO2(A, | ,G 2 | | 0.00 | -3.02 | 4.44 | 1 | 0.000 S | SIO2(|
| 3 - | -2.000 | | 1.000 | | | | | |
| 0.33880 | 0 -0. | . 00007 | 8889 -840 | 10.1 | | | | |
| SIO2(A, | ,1 2 | | 0.00 | -2.71 | 3.91 | 1 | 0.000 S | S102(|
| 3. | -2.000 | 30 | 1.000 | | | | | |
| 0.3380 | | 0.0107 | 889 -840 | 41.1 | | | | |
| SRF2 | 2 | | 0.00 - 8 | .8.54 | 1.250 | | 0.000 SR | SRF2 |
| 31 | 1.000 | 16 | 2.000 | | | | | |
| STIREN | NiIT | $+$ | 3.00 | -13.37 | -12.03 | 0 | 0.000 | STREN |
| 26 | 1.000 | 3 | 2.000 | 17 | 1.0002 | -1.000 | | |
| STRON | NTiA | 2 | 4.00 | .9.25 | -0.69 | 0 | 0.000 | STRON |
| 31 | 1.000 | 10 | 1.000 | | | | | |
| TALC | 4 | | 0.002 | 23.06 | . 35.01 | 0 | 0.000 T | TALC |

| 3 -4 | 4.000 | | 3.000 | 304 | 4.0001 | -6.090 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| THENAR | RDI | 2 | 6.00 | -0.18 | -0.57 | 0 | 0.000 | TILI:NA |
| 242 | 2.000 | 29 | 1.000 | | | | | |
| THERV:O | ONA | 3 | 4.00 | 0.13 | $3 \cdot 2.80$ | 0 | 0.000 | TILERN |
| 242 | 2.000 | 10 | 1.000 | 1.000 | | | | |
| TREMOL | LIT | 5 | 0.00 | 56.55 | . 96.61 | 0 | 0.000 | TREMO |
| 3 -8 | -8.000 | 11 | 2.000 | 21 | 5.00030 | 8.000 | $1 \cdot 14.000$ | |
| VIVIANI | IT 3 | | 6.00 | -36.00 | 0.00 | 0 | 0.000 | VIVIA |
| 173 | 3.000 | 26 | 2.000 | 38.000 | | | 0.000 | |
| WITHER | RIT | 2 | 4.00 | -8.59 | 0.36 | 0 | | WITIIE |
| 81 | 1.000 | 10 | 1.000 | | | | | |
| PYROLU | USI | 4 | 4.00 | 41.37 | -54.94 | 0 | 0.000 | PYROL. |
| 1 -4 | -4.000 | 2 | -2.000 | 32. | 2.00022 | 1.000 | | |
| BIRNES | SSI 4 | 4 | 4.00 | 43.60 | -25.76 | 0 | 0.000 | BIRNE: |
| -4 | -4.000 | 2 | -2.000 | | 2.00022 | 1.000 | | |
| NSUTITE | TE. 4 | 4 | 4.00 | 43.01 | -25.76 | 0 | 0.000 | NSUTI |
| -4 | -4.000 | 2 | -2.000 | | 2.00022 | 1.000 | | |
| BIXBYIT | TE 4 | 4 | 6.00 | 50.40 | -66.76 | 0 | 0.000 | BIXBY |
| 1 -6 | -6.000 | 3 | 3.000 | $22 \quad 2$ | 2.0002 | . 2.000 | | |
| HAUSM | UNN | 4 | 8.00 | 61.5 | $4 \quad-80.14$ | 0 | 0.000 | IIAUSM |
| 1 -8 | -8.000 | 2 | -2.000 | 223 | 3.0003 | 4.000 | | |
| PYROCR | ROI | 3 | 2.00 | 15.09 | -22.59 | 0 | 0.000 | PYROC |
| 1 -2 | -2.000 | 22 | 1.000 | 32 | 2.000 | | | |
| MANGA | ANIT | 4 | 3.00 | 25.27 | $7 \quad-25.76$ | 0 | 0.000 | MANCA |
| 1 -300 | -3.000 | 3 | 2.000 | 221 | $1.000 \quad 2$ | -1.000) | | |
| RHODO | OCIIR | 2 | 6.00 | - 10.4 | 41 -2.08 | 0 | 0.000 | (RIIODO) |
| 22 | 1.000 | 10 | 1.000 | | | | | |
| MNCL2, | 2, 4 3 | 3 | 2.00 | 2.71 | 17.38 | 0 | 0.000 | MNCL 2 |
| 22 | 1.000 | 13 | 2.000 | $\begin{array}{lll} & 3 & 4.000\end{array}$ | | | | |
| MNS GR | GREE | 5 | 0.00 | -29.86 | $6 \quad 54.35$ | 0 | 0.000 | MNS G |
| 18 | 8.000 | 22 | 1.000 | 29 | 1.0002 | 8.000 | $3-4.000$ | |
| MNSO4 | 42 | 2 | 8.00 | 2.67 | -15.48 | 0 | 0.000 | MNSO4 |
| 22 | 1.000 | 29 | 1.000 | | | | 0.000 | |
| MN2(SO | O4) 3 | 3 | 24.00 | 45.30 | -90.58 | 0 | | MN2(S |
| 29 | 3.000 | 22 | 2.000 | 2. | 2.000 | | | |
| MN3(1)0 | O4) 2 | 2 | 6.00 | -23.83 | 2.12 | 0 | 0.000 | MN3(P |
| 22 | 3.000 | 26 | 2.000 | | | | | |
| CU MET | ETAL | 2 | 0.00 | . 11.48 | 15.48 | 0 | 0.000 | CU ME |
| 22 | 2.000 | 15 | 1.000 | | | | | |
| NANTO | OKIT | 3 | 1.00 | . 9.48 | 8.33 | 0 | 0.000 | Nanto |
| 13 | 1.000 | 15 | 1.000 | 2 | 1.000 | | | |
| CUF | 3 | | 1.00 | 4.36 -1 | -14.02 0 | 0 | | CUF |
| 16 | 1.000 | 15 | 1.000 | 2 | 1.000 | | 0.000 C | CUPRI |
| CUPRIT | TE | 4 | 2.00 | -6.99 | 2.94 | 0 | 0.000 | |
| 1 -2 | -2.000 | 3 | 1.000 | $15 \quad 2$ | $2.000 \quad 2$ | 2.000 | | |
| Cilalc | COCl | 5 | 0.00 | . 73.72 | $2 \quad 106.19$ | 0 | 3
 3 $\mathbf{0 . 0 0 0}$ | CHALC |
| 1 | 8.000 | 15 | 2.000 | 210 | 10.00029 | 1.000 | | |
| DJURLE | EIT | 5 | 0.00 | -72.66 | 104.94 | 0 | 0.000 | D.JURL. |
| 1 | 8.000 | 15 | 1.934 | 29 | 9.86829 | 1.000 | $3 \quad .4 .000$ | |
| ANILITE | TE 5 | 5 | 0.00 | . 69.62 | 101.20 | 0 | 0.000 | ANILI |
| 1 | 8.000 | 15 | 1.750 | 29 | 9.50029 | 1.000 | $3 \quad .4 .000$ | |
| BIAUBI | BLEI | 5 | 0.00 | . 63.12 | 58.82 | 0 | 3

 0.000
 0.000 | H1/AUB |
| 1 | 8.000 | 15 | 1.400 | 28 | 8.80029 | 1.000 | | 0 |
| blaubl | LEI | 5 | 0.00 | -58.37 | 59.81 | 0 | 0.000 | $0^{\text {BIAUB }}$ |
| 1 | 8.000 | 15 | 1.100 | 2 | 8.20029 | 1.000 | $3 \quad-4.000$ | |
| covel | LLIT | 5 | 0.00 | . 56.70 | 84.15 | 0 | 0.000 | Covel |
| 1 | 8.000 | 15 | 1.000 | 29 | 1.0002 | 8.000 | | |
| CU2SO4 | 43 | 3 | 8.00 | -7.39 | -7.86 | 0 | | CU2SO |

| 29 | 1.000 | | 2.000 | 2 | 2.000 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CUPRO) | UUSF | 4 | 4.00 | 1.39 | -15.45 | 0 | 0.000 | CUPRO |
| 1 . | -4.000 | 3 | 2.000 | $15 \quad 1$ | $1.000 \quad 17$ | 1.000 | 0.000 | MELAN |
| MEIAN | volil | 2 | 2.00 | 3.73 | 3 -12.32 | 0 | | |
| 15 | 1.000 | 13 | 2.000 | | | | | Cucos |
| cucos | 3 | | 6.00 | . 9.63 | 0.00 |) | 0.000 | |
| 15 | 1.000 | 10 | 1.000 | | | | | |
| CUF2 | 2 | | 2.00 | . 0.62 - | -13.32 | 0 | 0.000 | CUF2 |
| 15 | 1.000 | 16 | 2.000 | | | | 0.000 | CUF2, |
| Cult 2 | 2113 | | 2.00 | . 4.55 | -3.65 | 0 | | |
| 15 | 1.8010 | 16 | 2.000 | 3 | 2.000 | 0 | 0.000 | $\mathrm{CU}(\mathrm{OH}$ |
| CU(OH) |)2 3 | | 2.100 | 8.64 | -15.25 | | | |
| 1 -2 | -2.000 | 15 | 1.000 | 32 | 2.000 | | 0.000 | AtACA |
| AJACAN | M1T | 4 | 4.00 | 7.34 | . 18.69 | 0 | | |
| -3 | -3.000 | 15 | 2.000 | 3 3 | 3.00013 | 1.000 | 0.000 | CU2(0 |
| CU2(0)1 | (1) 34 | | 9.00 | 9.24 | -17.35 | 0 | | |
| 1 -3 | -3.000 | 15 | 2.000 | 33 | 3.00023 | 1.000 | 0.000 | ANTLE |
| ANTIMER | lit | 4 | 12.00 | 8.29 | 0.00 | 0 | | |
| -4 | -4.000 | 15 | 3.000 | 3 | 4.00029 | 1.000 | 0.000 | 0 BROCII |
| BROCII | IAN' ${ }^{\text {d }}$ | 4 | 14.00 | 15.3 | 340.00 | 0 | | |
| -6 | -6.000 | 15 | 4.000 | 36 | 6.00029 | 1.000 | | |
| IANGIT | IT: + | | 14.00 | 16.79 | -39.61 | 0 | 0.000 | LANGI |
| 1 -6 | -6.000 | 15 | 4.000 | 37 | 7.00029 | 1.000 | | |
| TIENORI | rite: | 3 | 2.00 | 7.62 | -15.24 | 0 | 0.000 | TENOR |
| 1 -2 | -2.000 | 15 | 1.000 | 31 | 1.000 | | 0.000 | - CUOCU |
| cuocus | 1504 | 4 | 10.00 | 11.53 | $3-35.58$ | 0 | | |
| 1 -2 | 2.060 | 15 | 2.000 | 31 | 1.00029 | 1.000 | | |
| Cu3(1)0 |)4) 2 | | 6.00 | . 36.85 | 0.00 | 0 | 0.000 | CU3(1) |
| 15 | 3.000 | 26 | 2.000 | | | | | CU3(1) |
| Cu3(1) |)4) 3 | | 6.00 | -35.12 | 0.00 | 0 | 0.000 | |
| 15 | 3,000 | 26 | 2.000 | 33 | 3.000 | | 0.000 | CUSO4 |
| cusot | ? | | 8.00 | 3.01 | -18.14 | 0 | | |
| 15 | 1.000 | 29 | 1.000 | | | 0 | 0.000 | Clinle |
| chalde | ANT | 3 | 8.00 | -2.64 | 1.44 | | | |
| 15 | 1.000 | 29 | 1.000 | 35 | 5.000 | 0 | 0.000 | |
| DIOMTA | Ast: 3 | | 2.00 | 6.50 | -8.96 | | | DIOPr |
| 1 - 2 | -2.010 | 15 | 1.000 | 30 | 1.000 | | 0.000 | |
| CUlRMIC | CFE | 5 | 8.00 | 31.94 | -58.69 | 0 | | CUl'kl |
| 1 .8. | -8.000 | 15 | 1.000 | 3 4 | $4.000 \quad 17$ | 2.000 | -2.000 | 00 CIIALC |
| CHAlico | COY | 6 | 0.00 | -102.59 | $9 \quad 155.76$ | 60 | 0.000 | |
| 11 | 16.000 | 15 | 1.000 | 17 | 1.00029 | 2.000 | 216.00 | |
| 3 -8 | .8.000) | | | | | | | |
| culb | 3 | | 1.00 | -10.93 | 11.43 | 0 | 0.000 | CUBR |
| 9 | 1.000 | 15 | 1.000 | 21 | 1.000 | | 0.000 C | CUI |
| CUI | 3 | | $1.00-1$ | 4.61 | 18.490 | | | |
| 18 | 1.000 | 15 | 1.000 | 2 | 1.000 | 0 | 0.000 | ZN ME: |
| ZN MEEI | IAl. | 2 | -2.00 | 25.76 | -36.78 | | | |
| 3.4 | 1.000 | 2 | 2.000 | | | | | |
| ZNC1.2 | 2 | | 0.00 | 7.03 | -17.48 | 0 | 0.000 | ZNCL2 |
| 3.4 | 1,010 | 1.1 | 2.000 | | | 0 | | |
| smitis | SON | 3 | 4.00 | -10.00 | - 4.36 | | 0.000 | SMITII |
| 3.4 | 1.000 | 10 | 1.000 | | | | | |
| ZNCOS, | , 13 | | 4.00 | . 10.26 | 0.00 | 0 | 0.000 | 2NCO3 |
| 3.4 | 1.000 | 10 | 1.000 | 3 | 1.000 | | | |
| ZNF2 | 2 | | 0.00 | -1.52-13 | -13.08 0 | 0 | 0.000 | ZNF2 |
| 3 | 1.000 | 16 | 2.000 | | | 0 | | |
| ZN(OII) | $) 3$ | | 0.00 | 12.45 | 0.00 | | 0.5.5 | ZN(OII |
| 1.2 | 2.000 | 3 | 1.000 | 32 | 2.000 | | | |

| $\mathrm{ZN}(\mathrm{OH}) 2$ | 23 | | 0.00 | 12.20 | 0.00 | 0 | | 0.000 | ZN(OH1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 -2 | 2.000 | | 1.000 | 3 | 2.000 | | | | |
| ZN(OII)2 | 23 | | 0.00 | 11.75 | 0.00 | 0 | | 0.000 | ZNiO11 |
| -2 | 2.000 | | 1.000 | 3 | 2.000 | | | | |
| $\mathrm{ZN}(\mathrm{OH}) \mathbf{2}$ | $) 23$ | | 0.00 | 11.71 | 0.00 | 0 | | 0.000 | ZN(O)H |
| 1 -2 | 2.000 | 34 | 1.000 | 3 | 2.000 | | | | |
| ZN(OII)2 | $) 23$ | | 0.00 | 11.50 | 0.00 | 0 | | 0.000 | ZNiOH |
| -2 | 2.000 | 34 | 1.000 | 3 | 2.000 | | | | |
| ZN2(OH) | 1)3 4 | | 0.00 | 15.20 | 0.00 | 0 | c | 0.000 | LN2, ${ }^{(1)}$ |
| $1-3$ | 3.000 | | 2.000 | 3 | $3.000 \quad 13$ | | 1.000 | | |
| ZN5(OH) | 1)8 4 | | 0.00 | 38.50 | 0.00 | 0 | 0 | 0.000 | 2N5(0) |
| -8 | 8.000 | | 5.000 | 3 | $8.000 \quad 13$ | | 2.000 | | |
| 2N2(OH) | I)2 4 | | 6.00 | 7.50 | 0.00 | 0 | - | 0.000 | ZN2(0) |
| $1-2$ | 2.000 | | 2.000 | 3 | 2.00029 | | 1.000 | | |
| 2N4(OII) | I) $6+$ | | 6.00 | 28.40 | 0.00 | 0 | 0 | 0.000 | ZN+(0) |
| $1-6$ | 6.000 | | 4.000 | 3 | 6.00029 | | 1.000 | | |
| 2NNO3) |)2, 3 | | 10.00 | 3.44 | 5.51 | 0 | 0 | 0.000 | ZNN(3) |
| 34 | 1.000 | | 2.000 | 3 | 6.0000 | | | | |
| ZNO(AC | CTI 3 | | 0.00 | 11.31 | 0.00 | | 0 | 0.000 | ZNOA |
| 1 -2 | 2.000 | | 1.000 | 3 | 1.000 | | | | |
| ZINCITE | E 3 | | 0.00 | 11.14 | -21.86 | 0 |) | 0.000 | ZINCI |
| 1 -2 | 2.000 | | 1.000 | 3 | 1.000 | | | | |
| ZN3O(SO | SO4 4 | | 12.00 | 19.02 | 2.62 .00 | | 0 | 0.000 | ZN30(|
| -2 | -2.000 | 34 | 3.000 | 29 | 2.0003 | | 1.000 | | |
| 2N3(PO4) | 4) 3 | | 0.00 | -32.04 | 0.00 | 0 |) | 0.000 | 2N3(1) |
| $34 \quad 3$ | 3.000 | 26 | 2.000 | 03 | 4.000 | | | | |
| ZNS (A) |) 5 | | -2.00 | -42.71 | 63.81 | 0 | | 0.000 | ZNS |
| 18 | 8.000 | 34 | 1.000 | 29 | 1.0002 | | 8.000 | $3-4.00$ | |
| SPILALE | ER1 5 | | -2.00 | -45.28 | $8 \quad 68.39$ | | 0 | 0.000 | Sl'IIAL |
| 8 | 8.000 | 34 | 1.000 | 29 | 1.0002 | | 8.000 | $3-4.00$ | |
| IWURTZI | ITTE | 5 | -2.00 | -43.3- | $34 \quad 65.20$ | | 0 | 0.000 | WURTZ |
| 18 | 8.000 | 34 | 1.000 | 29 | 1.0002 | | 8.000 | $3 \quad-4.00$ | |
| 2NSIO3 | 34 | | 0.00 | 2.93 | .18.27 | 0 | | 0.000 | ZNSII) |
| $1-2$ | -2.000 | 3 | -1.000 | 34 | $1.000 \quad 30$ | | 1.000 | | |
| WILIEM | MIT 3 | 3 | 0.00 | 15.33 | 3 -23.37 | | 0 | 0.000 | Whli.l: |
| 1 -4 | -4.000 | 34 | 2.000 | 30 | 1.000 | | | | |
| ZINCOS | SIT 2 | | 6.00 | 3.01 | -19.20 | | 0 | 0.000 | ZINCO |
| 34 | 1.000 | 29 | 1.000 | | | | | | |
| ZNSO4, | , 13 | | 6.00 | -0.57 | -10.64 | 0 | | 0.000 | ZNSO4 |
| 34 | 1.000 | 29 | 1.000 | - 3 | 1.000 | | | | |
| BIANCH | H1T 3 | | 6.00 | -1.76 | . 0.16 | | 0 | 0.000 | BIANC |
| 34 | 1.000 | 29 | 1.000 | - 3 | 6.000 | | | | |
| GOSLAR | RIT 3 | 3 | 6.00 | -1.96 | 63.30 | | 0 | 0.010 | cosin |
| 34 | 1.000 | 29 | 1.000 | 03 | 7.000 | | | | |
| ZNBR2, | , 23 | | 0.00 | 5.21 | -7.51 | 0 | | 0.000 | ZNB1K2 |
| 34 | 1.000 | 9 | 2.000 | 3 | 2.000 | | | | |
| ZNI2 | 2 | | 0.00 | 7.23 | -13.44 0 | | | 0.000 | ZNI2 |
| 34 | 1.000 | 18 | 2.000 | | | | | | |
| CD MEI | IRL | 2 | -2.00 | 13.49 | -19-18.00 | | 0 | 0.000 | CD ME: |
| 12 | 1.000 | 2 | 2.000 | | | | | | |
| GAMMA | A CD | 2 | -2.00 | 13.5 | . 59 -18.14 | | 0 | 0.000 | 0 GAMMA |
| 12 | 1.000 | 2 | 2.000 | | | | | | |
| otavite | TE 2 | | 4.00 | -13.74 | -0.58 | | 0 | 0.000 | OTAVI |
| 12 | 1.000 | 10 | 1.000 | | | | | | |
| CDCl 2 | 2 | | 0.00 | -0.68 | -4.47 | i | | 0.000 | CldCl 2 |
| 12 | 1.000 | 13 | 2.000 | | | | | | |
| CDCL2, | 13 | | 0.00 | -1.71 | -1.82 | 0 | | 0.000 | CDCL 2 |
| 12 | 1.000 | 13 | 2.000 | - 3 | 1.000 | | | | |

| 18 | 3.000 | 1 | 5.000 | . 1 | - 1.000 | | 1.000 | 2.000 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ORIPME | ENT | 5 | 0.00 | -200.8 | 84323. | | 0 | 0.000 | ORIPM |
| 3 | 34.000 | 3 | -20.000 | 6 | 2.000 | 2 | 28.000 | $29 \quad 3.000$ | |
| REALGA | AR | 5 | 0.00 | . 72.85 | $5 \quad 120.7$ | | 0 | 0.000 | REMIC |
| 1 | 13.000 | 2 | 11.000 | 3 -8 | -8.000 | 6 | 1.000 | $29 \quad 1.000$ | |
| AS2O5 | 2 | | 10.00 | 6.70 | -5.41 | 0 | 0 | 0.000 | AS205 |
| 6 | 2.000 | 3 | -3.000 | | | | | | |
| ZN(BO2) | $2) 24$ | | 0.00 | 8.29 | 0.00 | | 0 | 0.000 | ZN(11) |
| 3 -2 | . 2.000 | 1 | -2.000 | 34 | 1.000 | | 2.000 | | |
| $\mathrm{CD}\left(\mathrm{BO}_{2}\right.$ | $2) 24$ | | 0.00 | 9.84 | 0.00 | | 0 | 0.000 | Cl(130) |
| 3 -2 | -2.000 | 1 | -2.000 | 12 | 1.000 | | 2.000 | | |
| $\mathrm{PB}(\mathrm{BO} 2)$ | $2) 24$ | | 0.00 | 7.61 | -5.80 | | 0 | 0.000 | P13(130) |
| 3 -2 | -2.000 | 1 | -2.000 | 27 | 1.000 | | 2.000 | | |
| MNILPO | O4(C | 3 | 2.00 | -25.40 | $40 \quad 0.0$ | | 0 | 0.000 | MNIIP() |
| 22 | 1.000 | 26 | 1.000 |) | 1.000 | | | | |
| PBHPO4 | 43 | | 0.00 | -23.90 | 0.00 | | 0 | 0.000 | PRIIPO |
| 27 | 1.000 | 26 | 1.000 | 1 | 1.000 | | | | |
| PB3(PO | 4) 2 | | 0.00 | -44.50 | 0.00 | | 0 | 0.000 | P133(1) |
| 27 | 3.000 | 26 | 2.000 | | | | | | |
| SULFUR | R 4 | | 0.00 | -35.77 | 55.94 | | 0 | 0.000 | SULIFU |
| 18 | 8.000 | 2 | 6.000 | 29 | 1.000 | 3 | -4.000 | | |
| ALASO4 | 4.24 | | 5.00 | 4.80 | 0.00 | | 0 | 0.000 | AlASO |
| 5 | 1.000 | 6 | 1.000 | 32 | 2.0001 | | -3.000 | | |
| CA3(ASO | SO4 4 | 4 | 10.00 | 22.30 | 0.00 | | 0 | 0.000 | CA3 ${ }^{\text {a }}$ |
| 11 | 3.000 | 6 | 2.000 | 3 | 4.000 | | -6.000 | | |
| CU3(AS | 504 | | 16.00 | 6.10 | 0.00 | | 0 | 0.000 | CU3 ${ }^{\text {(A }}$ |
| 15 | 3.000 | 6 | 2.000 | 3 | 2.000 | 1 | -6.000 | | |
| FEASO4 | 4.25 | | 8.00 | 13.43 | -10.00 | | 0 | 0.000 | $0^{\text {Flichso }}$ |
| 6 | 1.000 | 3 | 2.000 | 1 -3 | $3.000 \quad 17$ | | 1.000 | $\begin{array}{ll} 2 & -1.000 \\ & 0.000 \end{array}$ | |
| MN3ASO | O42 | 4 | 16.00 | 12.50 | 500.0 | | 0 | | MN3AS |
| 22 | 3.000 | 6 | 2.000 | 3 | 8.000 | | -6.000 | | |
| NI3(ASO | 044 | | 10.00 | 15.70 | 0.00 | | 0 | 0.000 | NI3(A |
| 25 | 3.000 | 6 | 2.000 | 3 | 8.000 | 1 | -6.000 | | |
| PB3(ASO | S 4 | 3 | 10.00 | 5.80 | 0.00 | | 0 | 0.000 | P133(A |
| 27 | 3.000 | 6 | 2.000 | 1 - | -6.000 | | | | |
| ZN3ASO | 0424 | 4 | 10.00 | 13.65 | 50.00 | | 0 | 0.000 | ZN3AS |
| 34 | 3.000 | 6 | 2.000 | 3 | $2.500 \quad 1$ | | -6.000 | | |
| BA(ASO | 04) 3 | | 10.00 | -8.91 | 2.64 | | 0 | 0.000 | 13A(AS |
| 8 | 3.000 | 6 | 2.000 | .6 | 6.000 | | | | |
| \checkmark META | AL 4 | 4 | 0.00 | 19.74 | -18.67 | | 0 | 0.000 | \checkmark MET |
| 2 | 5.000 | 33 | 1.000 | 1 | 4.000 | 3 | -2.000 | | |
| vo | 4 | | $2.00-9$ | 9.53 | 16.21 | 0 | | 0.000 | vo |
| 1 | 2.000 | 3 | -1.000 | 2 | 3.00033 | | 1.000 | | |
| VCL2 | 5 | | 2.00 | -4.64 | 8.43 | 0 | | 0.000 VCL 2 | |
| 13 | 2.000 | 2 | 3.000 | 33 | 1.000 | 1 | 4.000 | $3 \quad-2.000$ | |
| V203 | 4 | | $3.00-1$ | 17.71 | 24.51 | 0 | | 0.1000 V 203 | |
| 1 | 1.000 | 3 | -0.500 | 33 | 1.0002 | 2 | 2.000 | 0.000 | V (OH) |
| V (OLI) 3 | 34 | | 3.00 | -14.96 | 4.4 .23 | | 0 | | |
| 1 | 1.000 | 3 | 1.000 | 33 | 1.000 | 1 | 2.000 | | |
| VCL3 | 5 | | 3.00 | -0.88 | 0.27 | 0 | | 0.000 VCl 3 | |
| 13 | 3.000 | 33 | 1.000 | 0 | 2.000 | 1 | 4.000 | $3 \quad-2.000$ | |
| VOCL | 5 | | 3.00 | -13.20 | 18.06 | | 0 | 0.000 | vocl. |
| 13 | 1.000 | 3 | -1.000 | 1 | 2.000 | | 1.000 | 22.000 | |
| V204 | 2 | | $4.00-1$ | 12.66 | 15.25 | 0 | | 0.000 | V204 |
| 33 | 1.000 | 2 | 1.000 | | | | | | |
| VO(OII) | 12 | | 4.00 | . 11.08 | 29.32 | | 0 | 0.000 | VO OHI |
| 3 | 1.000 | 33 | 1.000 | 2 | 1.000 | | | | |
| VF4 | 5 | | 4.00 -2 | 2.00 - | -18.27 | 0 | | 0.000 VF4 | |

| 3 | .2.000) | 16 | 4.000 |) | 4.00033 | 1.000 | 1.000 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VoSS 4 | 4 (C 5 | | 10.00 | -13.36 | 8.60 | 0 | 0.000 | VOSO4 |
| 29 | 1.000 | | 3.000 | 02 | 1.0001 | 2.000 | $3 \cdot 1.000$ | |
| (VO)3(1) | (10) 5 | | 4.00 | . 25.30 | 29.32 | 0 | 0.000 | (vo) 3 |
| 260 | 0.666667 | | 331.00 | 002 | 1.0001 | 2.000 | -1.000 | |
| vocl. 2 | 25 | | 4.00 | -4.14 | 1.12 | 0 | 0.000 | VOCl. 2 |
| 13 | 2.000 | 33 | 31.000 | 02 | 1.000 | 2.000 | $3-1.000$ | |
| V205 | 3 | | 5.00 | -0.72 | -4.16 0 | | 0.000 V | V205 |
| 1 | -1.000 | 33 | 1.000 | 3 | 0.500 | | | |
| IYUYA | AMUN | 5 | 11.00 | 02.0 | . $04-18.30$ | | 0.000 | - TYUYA |
| 1 | .4.000 | 11 | 0.500 | 32 | $1.000 \quad 33$ | 1.000 | 2.000 | |
| cavan | NAI) | | 5.00 | 2.83 | $3 \quad-10.13$ | 0 | 0.000 | CA-VA |
| 1 | -2.000 | 11 | 0.500 | 33 | $1.000{ }^{3}$ | 1.000 | | |
| Cn3(VO | (1) 4 | | 5.00 | 19.48 | -35.07 | 0 | 0.000 | CA3(V |
| - | . 4.000 | | 1.500 | 33 | 1.0003 | 2.000 | | |
| Cn2V20 | 074 | | 5.00 | 8.75 | -19.06 | 0 | 0.000 | Ca2V2 |
| 1 . | -3.000) | | 1.000 | 33 | 1.0003 | 1.500 | | |
| FE-VAN | NA1) | | 6.01) | -1.86 | -7.37 | 0 | 0.000 | FEVA |
| 1 - | -2.100) | i7 | 0.500 | 33 | 1.0003 | 1.000 | | |
| MC.VA | ANAl) | 4 | 5.00 | 5.64 | $+\quad-16.33$ | 0 | 0.000 | MG.VA |
| 1 | -2.000 | 21 | 0.500 | 33 | 1.0003 | 1.000 | | |
| M(;2V2 | 207 | 4 | 5.00 | 13.18 | -30.50 | 0 | 0.000 | MG2V2 |
| 1 . | -3.000 | 21 | 1.000 | 33 | 1.0003 | 1.500 | | |
| MN.VAN | ANAl) | 4 | 6.00 | 2.45 | $5-11.05$ | 0 | 0.000 | MN.VA |
| 1 - | . 2.000 | 22 | 0.500 | 33 | 1.0003 | 1.000 | | |
| NIIAVO | 35 | | 2.00 | -116.39 | 183.28 | 0 | 0.000 | NIITNO |
| 1 | 8.000 | 33 | 1.000 | 3 -2 | -2.00023 | 1.000 | $2 \quad 8.000$ | |
| NA.VAN | Nal) | | 5.00 | 3.71 | . 7.01 | 0 | 0.000 | NA.VA |
| 1 - | -2.000 | 2.4 | 1.000 | 33 | 1.0003 | 1.000 | | |
| Na3vor | 44 | | 5.00 | 36.94 | - 44.42 | 0 | 0.000 | NA3VO |
| 1 - | . 4.000 | 24 | 3.000 | 33 | 1.0003 | 2.000 | | |
| NATV20 | 074 | | 5.00 | 18.70 | -24.03 | 0 | 0.000 | NA4V2 |
| 1 - | . 3.000 | | 2.600 | 33 | 1.0003 | 1.500 | | |
| Pl3.3(V) | O4) 4 | | 5.00 | 3.07 | -8.68 | 0 | 0.000 | PB3(V |
| 1 - | -4.000 | 27 | 1.500 | 33 | 1.060 | 2.000 | | |
| P132V20 | 074 | | 5.00 | -0.95 | -3.22 | 0 | 0.000 | P132V2 |
| 1 - | . 3.000 | 27 | 1.000 | 33 | 1.0003 | 1.500 | | |
| (ARNO | OTT | | 11.00 | 0.23 | $3 \quad-8.70$ | 0 | 0.000 | CARNO |
| 1 - | -4.000 | 19 | 1.000 | 32 | $1.000 \quad 33$ | 1.000 | 32.000 | |
| mi-van | NAI) | | 5.00 | 0.77 | 0.00 | 0 | 0.000 | AG-VA |
| 1 - | . 2.000 | 4 | 1.000 | 33 | 1.0003 | 1.000 | | |
| AG2IlV | VO4 4 | | 5.00 | 1.48 | 0.00 | 0 | 0.000 | AG2IVV |
| 1 - | . 3.000 | 4 | 2.000 | 33 | 1.0003 | 2.000 | | |
| Ac.3112 | Vos | | 5.00 | 5.18 | 0.00 | 0 | 0.000 | AG3112 |
| 1 - | -4.000 | 4 | 3.000 | 33 | 1.0003 | 3.000 | | |
| VO2Cl. | . | | 5.00 | 2.81 | -9.65 | 0 | 0.000 | V02CL |
| 33 | 1.000 | 13 | 1.000 | | | | | |
| V305 | 4 | | 10.00 | -48.92 | 6-4.43 | 0 | 0.000 | V305 |
| 1 | 2.000 | 3 | -1.000 | 25 | 5.00033 | 3.000 | | |
| Vf()7 | 4 | | 14.00 | . 60.58 | 78.13 | 0 | 0.000 | V407 |
| 1 | 2.000 | 3 | -1.000 | 26 | 6.00033 | 4.000 | | |
| V6013 | 4 | | 26.00 | .60.86 | 64.89 | 0 | 0.000 | V6013 |
| 1 - | -2.000 | 33 | 6.000 | 3 | 1.0002 | 4.000 | | |
| LIME: | 3 | | 0.00 | 32.80 | .46.26 | 0 | 0.000 L | LIME |
| 1 - | -2.000 | 11 | 1.000 | 3 | 1.000 | | | |
| PORTL | ANI) | 3 | 0.00 | 22.67 | 7-30.69 | 0 | 0.000 | ['ORTL |
| 1 -2 | -2.000 | 11 | 1.000 | 32 | 2.000 | | | |
| wustit | IE: 4 | | 1.89 | 11.69 | -24.85 | 0 | 0.000 | WUSTI |

| - | . 2.000 | | 0.947 | 3 | 1.000 | -0.106 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PERICL | LAS | 3 | 0.00 | 21.51 | . 36.13 | 0 | 0.000 | l'ERIC |
| - | -2.000 | 21 | 1.000 | 3 | 1.000 | | | |
| HERCY | NIT | 4 | 2.00 | 27.16 | $6 \quad-78.36$ | 0 | 0.000 | IIERCY |
| 1 -8 | -8.000 | 17 | 1.000 | 5 | $2.000 \quad 3$ | 4.000 | | |
| SPINEL | 1 | | 0.00 | 36.33 | -89.09 | 0 | 0.000 S | SPINE: |
| - | -8.000 | 21 | 1.000 | 5 | 2.0003 | 4.000 | | |
| MAG-FE | ERR | 5 | 6.00 | 42.83 | 3 3 -86.64 | 0 | 0.000 | Ming. ${ }^{\text {F }}$ |
| 1 - | -8.000 | 21 | 1.000 | 3 | $4.000 \quad 17$ | 2.000 | $2 \quad .2 .000$ | |
| CRYOL | LITE | 3 | 0.00 | . 31.49 | 910.90 | 0 | 0.000 | CRYOl. |
| 5 | 1.000 | 24 | 3.000 | 16 | 6.000 | | | |
| WOLLA | ASTO | 4 | 0.00 | 13.00 | 00-19.50 | 0 | 0.000 | WOI.IA |
| 3 - | -1.000 | 1 | -2.000 | 30 | 1.00011 | 1.000 | | |
| P-WOLJ | .JST | 4 | 0.00 | 13.85 | $5 \quad-21.07$ | 0 | 0.000 | PWOL |
| 3 - | -1.000 | 1 | -2.000 | 30 | 1.00011 | 1.000 | | |
| CA-OLI | IVI 3 | | 0.00 | 37.65 | -54.69 | 0 | 0.000 | Cabol. |
| - | -4.000 | 30 | 1.000 | 11 | 2.000 | | | |
| LARNIT | TE 3 | 3 | 0.00 | 39.14 | -57.24 | 0 | 0.000 | IARNI |
| 1 - | -4.000 | 30 | 1.000 | 11 | 2.000 | | | |
| CA3SIO | 054 | | 0.00 | 73.87 | -106.33 | 0 | 0.000 | CA3SI |
| 1 - | -6.000 | 30 | 1.000 | 11 | $3.000 \quad 3$ | 1.000 | | |
| MONTI | ICEL | 4 | 0.00 | 30.27 | 27 -.49.42 | 0 | 0.000 | MON'I |
| - | -4.000 | 30 | 1.000 | 11 | 1.00021 | 1.000 | | |
| AKERM | MINI | 5 | 0.00 | 47.47 | 7 -76.44 | 0 | 0.000 | AKIERM |
| 3 - | -1.000 | 1 | -6.000 | 30 | 2.00011 | 2.000 | $21 \quad 1.000$ | |
| MERWI | VINIT | 4 | 0.00 | 68.5 | + -107.11 | 0 | 0.000 | Ml:RWI |
| - | -8.000 | 30 | 2.000 | 21 | 1.00011 | 3.000 | | |
| KALSIL | LIT 4 | | 0.00 | 12.84 | -28.92 | 0 | 0.000 | KAlsi |
| 1 - | -4.000 | 30 | 1.000 | 5 | 1.00019 | 1.000 | | |
| LEUCII | TE | 5 | 0.00 | 6.42 | -22.08 | 0 | 0.000 | I.EUCI |
| 3 - | -2.000 | 1 | -4.000 | 30 | 2.0005 | 1.000 | 191.000 | |
| Microcli | li 5 | | 0.00 | 0.19 | -11.58 0 | | 0.000 A | IICRO |
| 3 - | -4.000 | 1 | -4.000 | 30 | 3.0005 | 1.000 | 191.000 | |
| II SANI | II)1 5 | | 0.00 | 1.06 | .14.25 | 0 | 0.000 | II SAN |
| 3 - | -4.000 | 1 | -4.000 | 30 | 3.0005 | 1.000 | $19 \quad 1.000$ | |
| NEPIIE | ELIN | 4 | 0.00 | 14.22 | $2-33.20$ | 0 | 0.000 | NI:PIIE: |
| 1 - | -4.000 | 30 | 1.000 | 5 | 1.000 24 | 1.000 | | |
| GEIILE | ENIT | 5 | 0.00 | 56.82 | 2-116.13 | 0 | 0.000 | (illlile |
| 1 -1 | -10.000 | 5 | 2.000 | 30 | 1.00011 | 2.000 | $3 \quad 3.000$ | |
| LEPIDO | OCR | 4 | 3.00 | 14.40 | (0)-10.00 | 0 | 0.000 | I.EP1S |
| 1 - | -3.000 | 3 | 2.000 | 17 | 1.0002 | -1.000 | | |
| Na-beid | d 5 | | 0.00 | 8.20 | -45.77 0 | | 0.000 N | Na-he |
| 1 . | .7.332 | 3 | -2.667 | 5 | 2.33324 | 0.333 | $30 \quad 3.670$ | |
| K-beid | 5 | | 0.00 | 8.06 | -44.63 0 | | 0.000 K- | -Inei |
| 1 - | -7.332 | 3 | -2.667 | 5 | 2.33319 | 0.333 | $30 \quad 3.670$ | |
| 1 - | -7.320 | 3 | -2.680 | 5 | 0.33019 | 0.330 | $30 \quad 3.670$ | |
| Ca-beid | d 5 | | 0.00 | 8.03 | . 47.170 | | 0.000 Ca | Ca-be |
| 1 -7 | -7.333 | 3 | -2.667 | 5 | 2.33311 | 0.167 | $30 \quad 3.670$ | |
| 1.7 | .7.320 | 3 | -2.680 | 50 | 0.33011 | 0.165 | $30 \quad 3.670$ | |
| Mg-beid | d 5 | | 0.00 | 8.00 | -47.98 0 | | 0.000 M | Mk-be |
| 1 - | -7.333 | 3 | -2.667 | 5 | 2.33321 | 0.167 | $30 \quad 3.670$ | |
| $\mathrm{FE}(\mathrm{OII})$ |) 3 S 4 | | 3.00 | 15.70 | -10.00 | 0 | 0.000 | FE(O)II |
| 3 | 3.000 | 1 | -3.000 | 17 | 1.0002 | -1.000 | | |
| HYDRO | OXYA | 4 | 0.00 | -39.3 | $38-38.92$ | 0 | 0.000 | IIYI)R(|
| 11 | 5.000 | 26 | 3.000 | 3 | 1.0001 | -1.000 | | |
| FLUOR | RAPA | 3 | 0.00 | -61.30 | $30-14.77$ | 0 | 0.000 | FIUOR |
| 11 | 5.000 | 26 | 3.000 | 16 | 1.000 | | | |

HNI)
Modified data base Nick Sargent MUN 09/Dec/1990
NLW IAATA BASE: RIEFERRED TO AS IIEL.GTIM.DAT
LOOK MIN dita modified from original MINTEC data base stored as phrtherm.dat

- Halloysite struck original data follows:

| IIALILOYSI | 4 | 0.00 | 8.99 | -39.73 | 0 | 0.000 | IIALLO | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 2.000 | 30 | 2.000 | 3^{3} | 1.000 | 1 | -6.000 | |

*All modified data is from Ilelgeson (69) and Helgeson et al (1978) and is
denoted by an upper case first letter followed by lower case letters
i.e(Kaolinit as opposed to KAOLINIT)
*Generally modification was by replacement only. However, the original MINTEC
Nontronites were completely replaced by the equivalent Beidellites.

- CIII.OR-M and CIILOR-F are struck from this data base.
-All thermodynamic values of ionic species, used to back calculate thermodynamic
constants for mineral dissociations, abstracted from Robie et al (1978).

APPENDIX F Results of Mass Balance Calculations

See Appendix G for explanations of derivation of results

| N_A | | | | Mix1 | Mix2 | MODEL RUN | | 97.41 DEPTH | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anorth | Alb | Kaol | Calc | | | P PHASES | | | |
| Ca | TC | Si | Na | Cl | Mix | K "ELEME | | | |
| DEPTH | 18.77 | 56.81 | 69.64 | 71.65 | 74.91 | 77.41 | 96.64 | | |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1.1063 | |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 | |
| Kaol | 0.3634 | -0.0056 | -0.5512 | -0.5540 | -1.5313 | -0.8039 | -1.9624 | -3.3357 | |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 | |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 | |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.6055 | 0.0066 | 0.0072 | 0.0089 | |

| $\begin{array}{ll} \\ \text { Anorth } \end{array}$ | Alb | QizSı | Calc | Mix 1 | Mix2 | | MMOLES OF P PHASES LOST OR ADDED TO GROUNDWATER | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ca | TC | | Na | Cl | Mix | | | |
| | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1.1063 |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Qu | 0.7269 | -0.0112 | -1.1024 | -1.1080 | -3.0626 | -1.6078 | -3.9249 | -6.6714 |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| Mixi | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix? | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| N_C | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anorth | Micro | Qtz | Calc | Mix1 | Mix2 | | | |
| Ca | TC | Si | K | Cl | Mix | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1.1063 |
| Micro | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Qiz | 2.7567 | 3.4599 | 1.9818 | 3.5663 | 4.0350 | 3.3687 | 3.5351 | 2.5766 |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| N_D | | | | | | | | |
| Anorth | Micro | Qiz | Chlor | Calc | Mixl | Mix2 | | |
| Ca | TC | Si | Mg | K | Cl | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1. 1063 |
| Micro | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Quz | 2.8669 | 3.5687 | 2.0974 | 3.7057 | 4.1983 | 3.5490 | 3.7658 | 2.8650 |
| Chlor | -0.0367 | -0.0363 | -0.0385 | -0.0464 | -0.0544 | -0.0601 | -0.0769 | -0.0961 |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| Mix1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| N_E | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anorth | Micio | Qu | Chlor | Calc | Mixl | Mix2 | | |
| Ca | TC | Si | Mg | K | Cl | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1.1063 |
| Micro | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Qux | 2.8669 | 3.5687 | 2.0974 | 3.7057 | 4.1983 | - 3.5490 | 3.7658 | 2.8650 |
| Chlor | -0.0367 | -0.0363 | -0.0385 | -0.0464 | -0.0544 | -0.0601 | -0.0769 | -0.0961 |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| N_F | | | | | | | | |
| Qug | Alb | Kaol | Calc | Mont | Mix 1 | Mix2 | | |
| Ca | TC | Si | Na | Cl | Al | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Qiz | 9.1378 | 10.8916 | 5.3030 | 10.3724 | 10.5776 | 9.2242 | 7.9743 | 2.8572 |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Kaol | 8.6751 | 10.7944 | 5.7740 | 10.8159 | 11.9920 | 9.9195 | 9.8114 | 6.0712 |
| Calc | $2.04{ }^{\circ}$ | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| Mont | -7.7.u: | -9.7572 | -5.3914 | -9.9436 | -11.2986 | -9.2105 | -9.4660 | -6.5078 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mixz | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| N_G | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Qux | Alb | Kaol | Calc | Mont | Mix 1 | Mix 2 | | |
| Ca | TC | Si | Na | Cl | Al | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Qtz | 9.1378 | 10.8916 | 5.3030 | 10.3724 | 10.5776 | 9.2242 | 7.9743 | 2.8572 |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Kaol | 8.6751 | 10.7944 | 5.7740 | 10.8159 | 11.9920 | 9.9195 | 9.8114 | 6.0712 |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| Mont | -7.7361 | -9.7572 | -5.3914 | -9.9436 | -11.2986 | -9.2105 | -9.4660 | -6.5078 |
| Mixl | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| N_H | | | | | | | | |
| Qiz | Alb | An | Calc | Illite | CO2 | Mixl | Mix 2 | |
| Ca | TC | Si | Na | Cl | K(1) | Al | Mix | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Qtz | -1.2251 | -2.1595 | -1.8906 | -2.9062 | -4.5166 | -3.0355 | -4.5926 | -5.7738 |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| An | -0.3344 | -0.5523 | -0.4801 | -0.7285 | -1.1309 | -0.7390 | -1.1143 | -1.4327 |
| Calc | 1.0635 | 1.1886 | 1.1715 | 1.1848 | 1.3127 | 1.1546 | 1.1895 | 1.4574 |
| Illite | -0.0025 | -0.0176 | -0.0231 | -0.034? | -0.0343 | -0.0615 | -0.0878 | -0.0667 |
| CO 2 | 0.9804 | 1.1036 | 0.4327 | 0.9563 | 0.7842 | 0.8165 | 0.4802 | -0.3375 |
| Mix1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| N_I | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Qiz | Alb | Micro | Calc | Mont | CO 2 | Mixl | Mix2 | |
| Ca | TC | Si | Na | Cl | K@ | Al | Mix | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| QLz | -0.8383 | -1.5092 | -1.3187 | -2.0390 | -3.1865 | -2.1328 | -3.2358 | -4.0689 |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Micro | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Calc | 0.7778 | 0.7162 | 0.7605 | 0.5611 | 0.3454 | 0.5207 | 0.2340 | 0.2309 |
| Mont | -0.2890 | -0.4871 | -0.4292 | -0.6507 | -0.9962 | -0.6800 | -1.0217 | -1.2793 |
| CO 2 | 1.2660 | 1.5759 | 0.8436 | 1.5798 | 1.7514 | 1.4502 | 1.4355 | 0.8838 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.6051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| N_J | | | | | | | | |
| Quz | Alb | Micro | Calc | Chlor | CO 2 | Mix 1 | Mix2 | |
| Ca | TC | Si | Na | Cl | K@ | Al | Mix | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | $71.6+50$ | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Qu. | -0.8889 | -1.5944 | -1.3938 | -2.1529 | -3.3608 | -2.2518 | -3.4140 | -4.2928 |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Micro | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Calc | 0.7287 | 0.6334 | 0.6875 | 0.4505 | 0.1760 | 0.4051 | 0.0603 | 0.0134 |
| Chlor | -0.3366 | -0.5675 | -0.5000 | -0.7581 | -1.1605 | -0.7922 | -1.1902 | -1.4904 |
| CO2 | 1.3151 | 1.6587 | 0.916 .5 | 1.6904 | 1.9208 | 1.5658 | 1.6092 | 1.1063 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix? | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| N_K | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| QLz | Alb | Micro | Calc | Chlor | illite | CO 2 | MixI | Mix 2 |
| Ca | TC | Si | Na | Mg | Cl | K (1) | Al | Mix |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Qiz | -1.2075 | -2.1589 | -1.8842 | -2.9090 | -4.5361 | -3.0298 | -4.5976 | -5.7742 |
| Alb | 0.6751 | 1.1465 | 1.0142 | i. 5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Micro | 0.2234 | 0.3879 | 0.3323 | 0.5132 | 0.8090 | 0.5122 | 0.7823 | 1.0056 |
| Calc | 0.7287 | 0.6334 | 0.6875 | 0.4505 | 0.1760 | 0.4051 | 0.0603 | 0.0134 |
| Chlor | -0.0180 | -0.0031 | -0.0097 | -0.0020 | 0.0147 | -0.0143 | -0.0073 | -0.0090 |
| illite | -0.3749 | -0.6640 | -0.5769 | -0.8896 | -1.3827 | -0.9152 | -1.3917 | -1.7428 |
| CO 2 | 1.3151 | 1.6587 | 0.9165 | 1.6904 | 1.9208 | 1.5658 | 1.6092 | 1.1063 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix 2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| R_A | | | | | | | | |
| Qtz | Alb | Calc | CO 2 | MixI | Mix2 | | | |
| Ca | Si | Na | Cl | RS | Mix | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Qtz | -1.9034 | -3.3286 | -2.9355 | -4.4888 | -6.9041 | -4.7393 | -7.1433 | -8.8840 |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Calc | 0.7287 | 0.6334 | 0.6875 | 0.4505 | 0.1760 | 0.4051 | 0.0603 | 0.0134 |
| CO 2 | 1.3994 | 1.7592 | 0.9329 | 1.7663 | 1.2942 | 0.9782 | 1.9708 | 0.8522 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| R_B | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Qtz | Alb | Calc | CO 2 | kaol | Mixl | Mix2 | | |
| Ca | Si | Na | Cl | Al | RS | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Qtz | -1.2286 | -2.1831 | -1.9215 | -2.9521 | -4.5625 | -3.1179 | -4.7102 | -5.8632 |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Calc | 0.7287 | 0.6334 | 0.6875 | 0.4505 | 0.1760 | 0.4051 | 0.0603 | 0.0134 |
| CO 2 | 1.3994 | 1.7592 | 0.9329 | 1.7663 | 1.2942 | 0.9782 | 1.9708 | 0.8522 |
| kaol | -0.3374 | -0.5728 | -0.5070 | -0.7684 | -1.1708 | -0.8107 | -1.2166 | -1.5104 |
| Mixl | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| R_C | | | | | | | | |
| Qtz | Alb | Calc | | kaol | CH 2 O | Mix 1 | Mix2 | |
| Ca | Si | Na | Cl | Al | C | RS | Mix | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9:00 | 77.4050 | 96.6350 | 97.4100 |
| QLI | -1.2286 | -2.1831 | -1.9215 | -2.9521 | -4.5625 | -3.1179 | -4.7102 | -5.8632 |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Calc | 0.7287 | 0.6334 | 0.6875 | 0.4505 | 0.1760 | 0.4051 | 0.0603 | 0.0134 |
| CO2 | 1.3994 | 1.7592 | 0.9329 | 1.7663 | 1.2942 | 0.9782 | 1.9708 | 0.8522 |
| kaol | -0.3374 | -0.5728 | -0.5070 | -0.7684 | -1.1708 | -0.8107 | -1.2166 | -1.5104 |
| CH2O | -0.0841 | -0.1003 | -0.0162 | -0.0757 | 0.6268 | 0.5878 | -0.3614 | 0.2543 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix 2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| R_D | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Qiz | Alb | Micro | Calc | CO 2 | kaol | CH2O | Mixl | Mix2 |
| Ca | Si | Na | Cl | AI | K | C | RS | Mix |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Qtz | -1.2255 | -2.1619 | -1.8939 | -2.9110 | -4.5214 | -3.0441 | -4.6049 | -5.7832 |
| Alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Micro | -0.0015 | -0.010ú | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Calc | 0.7287 | 0.6334 | 0.6875 | 0.4505 | 0.1760 | 0.4051 | 0.0603 | 0.0134 |
| CO 2 | 1.3994 | 1.7592 | 0.9329 | 1.7663 | 1.2942 | 0.9782 | 1.9708 | 0.8522 |
| kaol | -0.3366 | -0.5675 | -0.5000 | -0.7581 | -1.1605 | -0.7922 | -1.1902 | -1.4904 |
| CH2O | -0.0843 | -0.1005 | -0.0164 | -0.0759 | 0.6266 | 0.5876 | -0.3616 | 0.2542 |
| Mix1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.99 il |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| R_E | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calc | CO 2 | CH2O | Mixl | Mix 2 | | | | |
| Ca | Cl | C | RS | Mix | | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 0.7287 | 0.6334 | 0.6875 | 0.4505 | 0.1760 | 0.4051 | 0.0603 | 0.0134 |
| CO 2 | 1.3996 | 1.7594 | 0.9331 | 1.7665 | 1.2943 | 0.9784 | 1.9710 | 0.8523 |
| CH2O | -0.0843 | -0.1005 | -0.0164 | -0.0759 | 0.6266 | 0.5876 | -0.3616 | 0.2542 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix 2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| R_G | | | | | | | | |
| Calc | CO 2 | Mixl | Mix2 | | | | | |
| Ca | Cl | C | Mix | | | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 0.7287 | 0.6334 | 0.6875 | 0.4505 | 0.1760 | 0.4051 | 0.0603 | 0.0134 |
| CO 2 | 1.3151 | 1.6587 | 0.9165 | 1.6904 | 1.9208 | 1.5658 | 1.6092 | 1.1063 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| R_H | | | | | | | | |
| Calc | CO 2 | Anorth | Mixl | Mix2 | | | | |
| Ca | Cl | Si | C | Mix | | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 0.6677 | 0.5780 | 0.6339 | 0.3885 | 0.1101 | 0.3419 | -0.01s0 | -0.1085 |
| CO2 | 1.3760 | 1.7141 | 0.970 i | 1.7524 | 1.9867 | 1.6290 | 1.6886 | 1. 2283 |
| Anorth | 0.0609 | 0.0554 | 0.0536 | 0.0620 | 0.0659 | 0.0632 | 0.0793 | 0.1219 |
| Mix1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix? | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| R_I | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calc | quz | Anorth | Mix 1 | Mix 2 | | | | |
| Ca | Cl | Si | C | Mix | | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| qtz | 2.7521 | 3.4282 | 1.9403 | 3.5047 | 3.9734 | 3.2580 | 3.3771 | 2.4565 |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1.1063 |
| MixI | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| R_J | | | | | | | | |
| Calc | qlz | Anorth | micr | Mix 1 | Mix2 | | | |
| Ca | Cl | Si | K | C | Mix | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 2.0438 | 2.292 .1 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| qtz | 2.7567 | 3.4599 | 1.9818 | 3.5063 | 4.0350 | 3.3687 | 3.5351 | 2.5766 |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1.1063 |
| micr | -0.0015 | -0.0106 | -0.0158 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Mixl | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix 2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| R_K | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calc | qiz | Anorth | micr | Albite | Mixl | Mix 2 | | |
| Ca | Cl | Si | K | Na | C | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| qtz | 0.7315 | 0.0205 | -1.0608 | -1.0464 | -3.0009 | -1.4970 | -3.7669 | -6.5513 |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1.1063 |
| micr | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Albite | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 |
| Mix1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0672 | 0.0089 |
| R_L | | | | | | | | |
| Calc | qtz | Anorth | micr | Chlor | Mix1 | Mix2 | | |
| Ca | Cl | Si | K | Mg | C | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| 912 | 2.8669 | 3.5687 | 2.0974 | 3.7057 | 4.1983 | 3.5490 | 3.7658 | 2.8650 |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1. 1063 |
| micr | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Chlor | -0.0367 | -0.0363 | -0.0385 | -0.0464 | -0.0544 | -0.0601 | -0.0769 | -0.0961 |
| Mixl | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix? | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| R_M | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calc | qtz | Anorth | micr | Kaol | Mixl | Mix2 | | |
| Ca | Cl | Si | K | Al | C | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| qiz | -2.5074 | -3.1979 | -1.7126 | -3.2380 | -3.6965 | -2.9693 | -3.0089 | -1.9725 |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1.1063 |
| micr | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Kaol | 2.6320 | 3.3289 | 1.8472 | 3.4022 | 3.8658 | 3.1690 | 3.2720 | 2.2745 |
| Mixl | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| R_N | | | | | | | | |
| Calc | qtz | Anorth | micr | illite | Kaol | Mix 1 | Mix 2 | |
| Ca | Cl | Si | K | Al | Mg | C | Mix | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 2.0438 | 2.292: | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 |
| qti | -3.7563 | -4.4308 | -3.0221 | -4.8171 | -5.5462 | -5.0125 | -5.6230 | -5.2415 |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1.1063 |
| micr | 0.4393 | 0.4246 | 0.4483 | 0.5368 | 0.6323 | 0.6842 | 0.8700 | 1.1138 |
| illite | -0.7346 | -0.7252 | -0.7703 | -0.9289 | -1.0881 | -1.2019 | -1.5377 | -1.9230 |
| Kaol | 3.8809 | 4.5618 | 3.1567 | 4.9813 | 5.7155 | 5.2122 | 5.8861 | 5.5436 |
| Mixl | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| R_P | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calc | CO 2 | Anorth | Mix 1 | Mix 2 | | | | |
| Ca | Cl | Si | C | Mix | | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 0.6677 | 0.5780 | 0.6339 | 0.3885 | 0.1101 | 0.3419 | -0.0190 | -0.1085 |
| CO 2 | 1.3760 | 1.7141 | 0.9701 | 1.7524 | 1.9867 | 1.6290 | 1.6886 | 1.2283 |
| Anorth | 0.0609 | 0.0554 | 0.0536 | 0.0620 | 0.0659 | 0.0632 | 0.0793 | 0.1219 |
| Mix1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| R_Q | | | | | | | | |
| Calc | CO 2 | Anorth | micr | Mixl | Mix 2 | | | |
| Ca | Cl | Si | K | C | Mix | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 0.6654 | 0.5622 | 0.6131 | 0.3577 | 0.0793 | 0.2865 | -0.0980 | -0.1686 |
| CO 2 | 1.3783 | 1.7299 | 0.9909 | 1.7832 | 2.0175 | 1.6844 | 1.7676 | 1.2883 |
| Anorth | 0.0632 | 0.0712 | 0.0744 | 0.0928 | 0.0968 | 0.1186 | 0.1583 | 0.1820 |
| micr | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| R_S | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calc | CO 2 | Anorth | micr | Chlor | Mix 1 | Mix 2 | | |
| Ca | Cl | Si | K | Mg | C | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 0.6103 | 0.5078 | 0.5554 | 0.2881 | -0.0023 | 0.1964 | -0.2134 | -0.3178 |
| CO 2 | 1.4334 | 1.7843 | 1.0487 | 1.8528 | 2.0991 | 1.7745 | 1.8829 | 1.4325 |
| Anorth | 0.1183 | 0.1256 | 0.1321 | 0.1624 | 0.1784 | 0.2087 | 0.2737 | 0.3262 |
| micr | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Chlor | -0.0367 | -0.0363 | -00385 | -0.0464 | -0.0544 | -0.0601 | -0.0769 | -0.0961 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| R_T | | | | | | | | |
| Calc | CO 2 | Anorth | micr | Kaol | Mix 1 | Mix2 | | |
| Ca | Cl | Si | K | A! | C | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 95.6350 | 97.4100 |
| Calc | 0.7901 | 0.6931 | 0.7477 | 0.5219 | 0.2485 | 0.4862 | 0.1651 | 0.1335 |
| CO 2 | 1.2537 | 1.5990 | 0.8563 | 1.6190 | 1.8483 | 1.4846 | 1.5044 | 0.9862 |
| Anorth | -0.0614 | -0.0598 | -0.0602 | -0.0714 | -0.0725 | -0.0812 | -0.1048 | -0.1201 |
| micr | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| Kaol | 0.1246 | 0.1310 | 0.1346 | 0.1641 | 0.1693 | 0.1997 | 0.2631 | 0.3021 |
| Mix1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| R_U | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calc | CO 2 | Anorth | micr | Illite | Kaol | Mix 1 | Mix 2 | |
| Ca | Cl | Si | K | Al | Mg | C | Mix | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 0.1656 | 0.0767 | 0.0930 | -0.2677 | -0.6763 | -0.5354 | -1.1420 | -1.5010 |
| CO2 | 1.8781 | 2.2154 | 1.5110 | 2.4086 | 2.7731 | 2.5063 | 2.8115 | 2.6208 |
| Anorth | 0.5630 | 0.5567 | 0.5945 | 0.7181 | 0.8524 | 0.9405 | 1.2023 | 1.5145 |
| micr | 0.4393 | 0.4246 | 0.4483 | 0.5368 | 0.6323 | 0.6842 | 0.8700 | 1.1138 |
| llite | -0.7346 | -0.7252 | -0.7703 | -0.9289 | -1.0881 | -1.2019 | -1.5377 | -1.9230 |
| Kaol | 0.1246 | 0.1310 | 0.1346 | 0.1641 | 0.1693 | 0.1997 | 0.2631 | 0.3021 |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| R_V | | | | | | | | |
| Calc | CO 2 | Anorth | micr | chlor | mont | Kaol | Mixl | Mix2 |
| Ca | Cl | Si | K | Al | Na | Mg | C | Mix |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 2.7373 | 4.0132 | 3.6816 | 4.9757 | 7.0503 | 5.1788 | 7.2139 | 8.9448 |
| CO 2 | -0.6936 | -1.7211 | -2.0776 | -2.8348 | -4.9536 | -3.2079 | -5.5444 | -7.8251 |
| Anorth | -2.0087 | -3.3798 | -2.9941 | -4.5252 | -6.8743 | -4.7737 | -7.1536 | -8.9314 |
| micr | -0.0015 | -0.0106 | -0.0138 | -0.0205 | -0.0206 | -0.0369 | -0.0527 | -0.0400 |
| chlor | -0.0367 | -0.0363 ${ }^{\text {. }}$ | -0.0385 | -0.0464 | -0.0544 | -0.0601 | -0.0769 | -0.0961 |
| mont | 3.9710 | 6.7438 | 5.9660 | 9.0446 | 13.7960 | 9.5406 | 14.3176 | 17.8978 |
| Kaol | -5.1598 | -8.8695 | -7.8213 | -11.9091 | -18.2630 | -12.5246 | -18.8456 | -23.5848 |
| Mixl | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix: | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |

| R_W | | | | | | | | | F-16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calc | CO 2 | Anorth | micr | alb | ill | Kaol | Mix 1 | Mix 2 | |
| Ca | Cl | Si | K | Al | Na | Mg | C | Mix | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | |
| Calc | 1.5377 | 1.4530 | 1.5783 | 1.2086 | 0.8006 | 1.2288 | 0.7757 | 0.8931 | |
| CO 2 | 0.5169 | 0.8499 | 0.0375 | 0.9439 | 1.3078 | 0.7560 | 0.9090 | 0.2455 | |
| Anorth | -0.7551 | -0.7654 | -0.8322 | -0.6998 | -0.5662 | -0.7538 | -0.6392 | -0.7850 | |
| micr | -1.1944 | -1.2196 | -1.3274 | -1.2322 | -1.1376 | -1.4371 | -1.4435 | -1.7592 | |
| alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | i. 6219 | 2.4340 | 3.0426 | |
| ill | 0.3785 | 0.3951 | 0.4397 | 0.2765 | 0.1179 | 0.2436 | 0.0386 | 0.0346 | |
| Kaol | -1.2255 | -2.1619 | -1.8939 | -2.9110 | -4.5214 | -3.0441 | -4.6049 | -5.7832 | |
| Mix 1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 | |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 | |
| R_X | | | | | | | | | |
| Calc | quz | Anorth | micr | alb | ill | Kaul | Mixl | Mix 2 | |
| Ca | Cl | Si | K | Al | Na | Mg | C | Mix | |
| DEPTH | :8.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | |
| Calc | 2.0438 | 2.2921 | 1.6040 | 2.1409 | 2.0968 | 1.9709 | 1.6695 | 1.1197 | |
| qlz | -4.4314 | -5.5773 | -4.0363 | -6.3547 | -7.8916 | -6.6344 | -8.0570 | -8.2842 | |
| Anorth | -1.3151 | -1.6587 | -0.9165 | -1.6904 | -1.9208 | -1.5658 | -1.6092 | -1.1063 | |
| micr | 0.4393 | 0.4246 | 0.4483 | 0.5368 | 0.6323 | 0.6842 | 0.8700 | 1.1138 | |
| alb | 0.6751 | 1.1465 | 1.0142 | 1.5376 | 2.3453 | 1.6219 | 2.4340 | 3.0426 | |
| ill | -0.7346 | -0.7252 | -0.7703 | -0.9289 | -1.0881 | -1.2019 | -1.5377 | -1.9230 | |
| Kaol | 3.2059 | 3.4154 | 2.1424 | 3.4437 | 3.3702 | 3.5903 | 3.4521 | 2.5010 | |
| Mix1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 | |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 | |

| R_Y Calc | CO 2 | Anorth | micr | Xna/Mg | ill | Kaol | Mix 1 | Mix2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ca | Cl | Si | K | Al | Na | Mg | C | Mix |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Calc | 1.3086 | 2.0255 | 1.8182 | 2.3506 | 3.3151 | 2.2333 | 3.0144 | 3.6818 |
| CO 2 | 0.7460 | 0.2775 | -0.2025 | -0.1981 | -1.2067 | -0.2484 | -1.3297 | -2.5432 |
| Anorth | -0.6069 | -1.4192 | -1.1600 | -1.9293 | -3.1683 | -1.8632 | -2.9923 | -3.7159 |
| micr | -0.3904 | -0.9709 | -0.7900 | -1.3295 | -2.2033 | -1.2875 | -2.0786 | -2.5718 |
| $\mathrm{Xna} / \mathrm{Mg}$ | -0.3375 | -0.5732 | -0.5071 | -0.7688 | -1.1727 | -0.8110 | -1.2170 | -1.5213 |
| ill | 0.6520 | 1.6044 | 1.2979 | 2.1858 | 3.6421 | 2.0893 | 3.3820 | 4.2265 |
| Kaol | 0.1246 | 0.1310 | 0.1346 | 0.1641 | 0.1693 | 0.1997 | 0.2631 | 0.3021 |
| Mix1 | 0.9949 | 0.9949 | 0.9945 | 0.9945 | 0.9945 | 0.9934 | 0.9928 | 0.9911 |
| Mix2 | 0.0051 | 0.0051 | 0.0055 | 0.0055 | 0.0055 | 0.0066 | 0.0072 | 0.0089 |
| S_F | | | | | | | | |
| Anorth | Alb | Micr | Calc | Musc | NaCl | Mixl | Mix 2 | |
| Ca | TC | Si | Na | K | Al | Cl | Mix | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | -1.3476 | -1.6596 | -0.8694 | -1.6439 | -1.7875 | -1.4993 | -1.4420 | -0.8154 |
| Alb | 0.9807 | 1.1550 | 0.5710 | 1.1003 | 1.0914 | 0.9964 | 0.8600 | 0.3052 |
| Micr | -0.9201 | -1.1001 | -0.5173 | -1.0386 | -1.0268 | -0.9332 | -0.7804 | -0.1929 |
| Cale | 2.0357 | 2.2919 | 1.6158 | 2.1525 | 2.1300 | 1.9874 | 1.7112 | 1.1922 |
| Musc | 0.8783 | 1.0884 | 0.5618 | 1.0757 | 1.1714 | 0.9786 | 0.9351 | 0.5135 |
| NaCl | -2.1529 | -0.0604 | 3.1224 | 3.0798 | 8.8325 | 4.4061 | 11.0870 | 19.2823 |
| Mix1 | 0.9911 | 0.9948 | 1.0000 | 1.0000 | 1.0101 | 1.0012 | 1.0124 | 1.0252 |
| Mix? | 0.0089 | 0.0052 | 0.0000 | 0.0000 | -0.0101 | -0.0012 | -0.0124 | -0.0252 |

| S_G | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anorth | Alb | CO 2 | Calc | NaCl | Mix 1 | Mix 2 | | |
| Ca | TC | Si | Na | Al | C ! | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | -0.0304 | -0.0273 | -0.0268 | -0.0307 | -0.0307 | -0.0316 | -0.0396 | -0.0452 |
| Alb | 0.0611 | 0.0554 | 0.0539 | 0.0622 | 0.0651 | 0.0637 | 0.0800 | 0.1124 |
| CO 2 | 1.2195 | 1.5155 | 0.7877 | 1.5029 | 1.6477 | 1.3686 | 1.3195 | 0.7497 |
| Calc | 0.8406 | 0.8055 | 0.8418 | 0.6770 | 0.5094 | 0.6435 | 0.4123 | 76 |
| NaCl | 4.3250 | 7.6851 | 6.7645 | 10.3924 | 16.0616 | 10.9762 | 16.5816 | 20.6407 |
| Mixl | 1.0026 | 1.0085 | 1.0065 | 1.0129 | 1.0229 | 1.0128 | 1.0222 | 1.0276 |
| Mix2 | -0.0026 | -0.0085 | -0.0065 | -0.0129 | -0.0229 | -0.0128 | -0.0222 | -0.0276 |
| S_H | | | | | Illite | Mixl | | |
| Anorth | Alb | CO 2 | Cale | NaCl | milite | | | |
| Ca | TC | Si | Na | Al | Mg | Cl | Mix | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | 1.2209 | 2.9607 | 2.4294 | 4.0781 | 6.7773 | 4.0171 | 6.4429 | 8.0124 |
| Alb | 0.9438 | 2.1632 | 1.7866 | 2.9607 | 4.8678 | 2.9198 | 4.6530 | 5.7966 |
| CO 2 | 2.5646 | 4.7274 | 3.4281 | 5.9198 | 8.9662 | 5.7208 | 8.2879 | 9.4114 |
| Calc | -0.5280 | -2.4622 | -1.8445 | -3.8165 | -6.9362 | -3.7843 | -6.6772 | -8.3646 |
| NaCl | -1.8931 | -7.1622 | -5.4408 | -10.0247 | -17.7684 | -9.1420 | -15.6305 | 19.3989 |
| Illite | -1.4719 | -3.5146 | -2.8892 | -4.8331 | -8.0082 | -4.7624 | -7.6252 | -9.4781 |
| Mixl | 0.9916 | 0.9823 | 0.9849 | 0.9768 | 0.9631 | 0.9773 | 0.9652 | 0.9568 |
| Mix2 | 0.0084 | 0.0177 | 0.0151 | 0.0232 | 0.0369 | 0.0227 | 0.0348 | 0.0432 |

| S_I Anorth | Alb | CO 2 | Calc | NaCl | Micr | Illite | Mix 1 | Mix2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ca | TC | Si | Na | Al | Mg | K | Cl | Mix |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | -1.0507 | -2.3123 | -1.9138 | -3.1480 | -5.1739 | -3.0954 | -4.9126 | -6.1723 |
| Alb | -0.0303 | -0.0978 | -0.0758 | -0.1378 | -0.2569 | -0.1301 | -0.2163 | -0.2859 |
| CO2 | 0.1895 | -0.7858 | -1.1131 | -1.6357 | -3.5297 | -1.7158 | -3.5851 | -5.4197 |
| Calc | 1.8730 | 3.1109 | 2.7460 | 3.8209 | 5.6954 | 3.7331 | 5.3247 | 6.6275 |
| NaCl | 4.9683 | 8.7647 | 7.6779 | 11.8016 | 18.3301 | 12.3411 | 18.6686 | 23.4456 |
| Micr | -0.6288 | -1.4596 | -1.2023 | -2.0003 | -3.3083 | -1.9688 | -3.1434 | -3.9265 |
| llite | 1.2003 | 2.6883 | 2.2200 | 3.6674 | 6.0508 | 3.6045 | 5.7330 | 7.2082 |
| Mixl | 1.0037 | 1.0104 | 1.0081 | 1.0154 | 1.0269 | 1.0153 | 1.0258 | 1.0326 |
| Mix2 | -0.0037 | -0.0104 | -0.0081 | -0.0154 | -0.0269 | -0.0153 | -0.0258 | -0.0326 |
| S_J | | | | | | | | |
| Anorth | Alb | CO 2 | Calc | NaCl | | Mont | Illite | |
| Ca | TC | Si | Na | Al | Mg | K | RS | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | 1.8787 | 2.5550 | 1.9034 | 3.0353 | -0.2121 | -0.7882 | 6.3754 | 3.5872 |
| Alb | 0.8292 | 1.3303 | 1.0442 | 1.6764 | 1.1989 | 0.5469 | 3.0956 | 2.5776 |
| CO2 | 3.0207 | 3.9184 | 2.5763 | 4.3406 | 1.2659 | 0.5141 | 7.3248 | 4.0129 |
| Cale | -0.9810 | -1.6312 | -0.9730 | -2.2034 | 0.8612 | 1.4852 | -5.6729 | -2.8809 |
| NaCl | -1.0859 | -1.2947 | -0.2113 | -0.9777 | 8.0754 | 7.5727 | -4.6605 | 3.2755 |
| Micr | 0.6727 | 0.7029 | 0.4937 | 0.7470 | -1.1037 | -0.9437 | 1.8719 | 0.4096 |
| Mont | -1.1144 | -1.8517 | -1.4522 | -2.3524 | -1.8877 | -0.8778 | -4.2944 | -3.7129 |
| llite | -1.1575 | -1.2295 | -0.8525 | -1.3096 | 2.0570 | 1.7473 | -3.3528 | -0.6473 |
| Mixl | 0.9930 | 0.9920 | $0.99+1$ | 0.9928 | 1.0088 | 1.0968 | 0.9846 | 0.9969 |
| Mix- | 0.0070 | 0.0074 | 0.0059 | 0.0072 | -0.0088 | -0.0068 | 0.0154 | 0.0031 |

| S_K | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anorth | Alb | CO 2 | Calc | NaCl | Micr | Na-Beid K | Mixl | Mix2 Mix |
| Ca | TC | Si | Na | Al | Mg | K | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | 0.9059 | 2.0696 | 1.7048 | 2.8299 | 4.6889 | 2.7799 | 4.4322 | 5.5772 |
| Alb | 0.7829 | 1.7233 | 1.4281 | 2.3466 | 3.8421 | 2.3117 | 3.6674 | 4.5972 |
| CO 2 | 2.1925 | 3.7002 | 2.5915 | 4.4843 | 6.5676 | 4.2992 | 5.9819 | 6.6090 |
| Calc | -0.1417 | -1.4011 | -0.9800 | -2.3345 | -4.4603 | -2.3167 | -4.2975 | -5.4707 |
| NaCl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 |
| Micr | 0.0337 | 0.0243 | 0.0231 | 0.0241 | 0.0317 | 0.0208 | 0.0212 | 0.0523 |
| Na-Beid | -1.1279 | -2.5261 | -2.0861 | -3.4462 | -5.6858 | -3.3876 | -5.3872 | -6.7734 |
| Mixl | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 |
| S_L | | | | | | | | |
| Anorth | Alb | CO 2 | Calc | NaCl | Micr | Na-Beid | Mixl | Mix2 |
| Ca | TC | Si | Na | Al | Mg | K | Cl | Mix |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 |
| Anorth | 0.9059 | 2.0696 | 1.7048 | 2.8299 | 4.6889 | 2.7799 | 4.4322 | 5.5772 |
| Alb | 0.7829 | 1.7233 | 1.4281 | 2.3466 | 3.8421 | 2.3117 | 3.6674 | 4.5972 |
| CO 2 | 2.1925 | 3.7002 | 2.5915 | 4.4843 | 6.5676 | 4.2992 | 5.9819 | 6.6090 |
| Calc | -0.1417 | -1.40.1 | -0.9800 | -2.3345 | -4.4603 | -2.3167 | -4.2975 | -5.4707 |
| NaCl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 |
| Micr | 0.0337 | 0.0243 | 0.0231 | 0.0241 | 0.0317 | 0.0208 | 0.0212 | 0.0523 |
| Na-Beid | -1.1279 | -2.5261 | -2.0861 | -3.4462 | -5.6858 | -3.3870 | -5.3872 | -6.7734 |
| Mix 1 | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 |

S_K
Ca
$\begin{array}{lr}\mathrm{CO} 2 & 2.1925 \\ \text { Calc } & -0.1417\end{array}$
$\begin{array}{ll}\mathrm{VaCl} & 1.8863 \\ \text { Micr } & 0.0337 \\ & 1.1279\end{array}$
$\begin{array}{ll}\text { Na-Beid } & 0.9983 \\ \text { Mixl } & 0.99817 \\ \text { Mix2 } & 0.001\end{array}$

S_L

| S_M | | | | | | | | | F-21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anorth | Alb | Calc | NaCl | qtz | Na -Beid | Mixl | Mix2 | | |
| Ca | TC | Si | Na | Al | Mg | Cl | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | |
| Anorth | -1.2867 | -1.6306 | -0.8867 | -1.6544 | -1.8786 | -1.5192 | -1.5497 | -1.0318 | |
| Alb | 0.0460 | 0.4852 | 0.5600 | 0.8470 | 1.6465 | 0.8744 | 1.6689 | 2.3844 | |
| Calc | 2.0509 | 2.2991 | 1.6115 | 2.1499 | 2.1073 | 1.9825 | 1.6843 | 1.1383 | |
| NaCl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 | |
| qtz | -1.4239 | -2.4574 | -1.7108 | -2.9870 | -4.3805 | -2.8674 | -4.0026 | -4.3742 | |
| Na -Beid | 1.0848 | 1.1918 | 0.5209 | 1.0569 | 0.9075 | 0.9290 | 0.6143 | -0.1283 | |
| Mixl | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | |
| S_N | | | | | | | | | |
| Anorth | Alb | CO 2 | Calc | NaCl | Na -Beid | Mixl | Mix2 | | |
| Ca | TC | Si | Na | Al | Mg | Cl | Mix | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | |
| Anorth | 0.8227 | 2.0099 | 1.6478 | 2.7706 | 4.6109 | 2.7287 | 4.3801 | 5.4484 | |
| Alb | 0.7495 | 1.6993 | 1.4053 | 2.3228 | 3.8108 | 2.2911 | 3.6465 | 4.5455 | |
| CO 2 | 2.1094 | 3.6405 | 2.5345 | 4.4251 | 6.4895 | 4.2480 | 5.9297 | 6.4802 | |
| Cale | -0.0585 | -1.3414 | -0.9231 | -2.275 2 | -4.3822 | -2.2655 | -4.2454 | -5.3419 | |
| NaCl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.086: | 3.9483 | 4.9376 | |
| Na -Beid | -1.0278 | -2.4541 | -2.0174 | -3.3748 | -5.5918 | -3.3254 | -5.3244 | -6.6182 | |
| Mal | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | |
| Mix? | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | |

| S_O | | | | | | | | | | F-22 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| qı2 | Alb | CO 2 | Calc | NaCl | $\mathrm{Na}-\mathrm{Be}$:d | Mixl | Mix 2 | | | |
| Ca | TC | Si | Na | Al | Mg | Cl | Mix | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | | |
| qLI | -0.5554 | -1.3567 | -1.1123 | -1.8702 | -3.1124 | -1.8419 | -2.9566 | -3.6777 | | |
| Alb | 0.4751 | 1.0290 | 0.8557 | 1.3988 | 2.2730 | 1.3811 | 2.1857 | 2.7285 | | |
| CO 2 | 1.2867 | 1.6306 | 0.8867 | 1.6544 | 1.8786 | 1.5192 | 1.5497 | 1.0318 | | |
| Calc | 0.7642 | 0.6685 | 0.7248 | 0.4954 | 0.2287 | 0.463? | 0.1347 | 0.1065 | | |
| NaCl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 | | |
| Na -Beid | -0.2038 | -0.4413 | -0.3671 | -0.6000 | -0.9740 | -0.5925 | -0.9377 | -1.1616 | | |
| Mixl | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | | |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | | |
| T_A | | | | | | | | | | |
| Anorth | Alb | CO 2 | Calc | NaCl | Micr | S-min | Na -Beid | Mixl | Mix 2 | |
| Ca | TC | Si | Na | Al | Mg | RS | SO4 | Cl | Mix | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | | |
| Anorth | 0.7699 | 0.6689 | 0.6127 | 0.4931 | -0.4762 | -0.2416 | 0.1260 | -1.4470 | | |
| Alb | 0.7283 | 1.1613 | 0.9900 | 1.4090 | 1.7698 | 1.0994 | 1.9397 | 1.7791 | | |
| $\mathrm{CO2}$ | 2.0566 | 2.2995 | 1.4994 | 2.1476 | 1.4024 | 1.2776 | 1.6756 | -0.4151 | | |
| Calc | -0.0057 | -0.0004 | 0.1121 | 0.0023 | 0.7049 | 0.7048 | 0.0687 | 1.5534 | | |
| NaCl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 | | |
| Micr | -0.0214 | -0.5445 | -0.4203 | -0.9247 | -2.0655 | -1.2060 | -1.7273 | -2.7997 | | |
| S-min | 0.1499 | 0.1630 | 0.1880 | 0.1755 | 0.1967 | 0.2378 | 0.4511 | 1.1216 | | |
| Na -Beid | -0.9542 | -0.8385 | -0.7703 | -0.6308 | 0.5373 | 0.2533 | -0.1990 | 1.6894 | | |
| Mix1 | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | | |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | | |

| T_B | | | Calc | NaCl | | Micr | S-min | Na -Beid | Mix 1 | $\begin{aligned} & \text { F-23 } \\ & \text { Mix2 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anorth | Alb | | Calc | NaCl | | | RS | SO4 | Cl | |
| Ca | TC | Si | Na | Al | | | | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | | |
| Anorth | -1.7051 | -2.0493 | -1.3058 | -2.9719 | -2.2946 | -1.9364 | -1.9648 | -1.4470 | | |
| Alb | -2.8599 | -2.2667 | -1.9688 | -1.5384 | -0.5628 | -0.6788 | 0.7195 | 2.8262 | | |
| CO 2 | -0.4185 | -0.4186 | -0.4191 | -0.4175 | -0.4160 | -0.4172 | -0.4152 | -0.4151 | | |
| Calc | 2.4693 | 2.7177 | 2.0305 | 2.5673 | 2.5232 | 2.3996 | 2.0995 | 1.5534 | | |
| NaCl | 4.0545 | 4.0120 | 3.8974 | 4.3164 | 4.7237 | 4.4010 | 4.9271 | 4.9376 | | |
| Musc | -0.7096 | -0.3118 | -0.4477 | 0.0216 | 0.5431 | 0.3600 | 0.9928 | 1.7400 | | |
| Micr | 0.7096 | 0.3118 | 0.4477 | -0.0216 | -0.5431 | -0.3600 | -0.9928 | -1.7400 | | |
| S-min | 1.0759 | 1.0737 | 1.0678 | 1.0895 | 1.1105 | 1.0938 | 1.1211 | 1.1216 | | |
| Na -Beid | 3.3003 | 2.9999 | 2.3503 | 2.4205 | 1.7465 | 1.6447 | 0.5260 | -1.4551 | | |
| MixI | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | | |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | | |
| T_C | | | | | | | | | | |
| Anorth | Alb | CO2 | Calc | NaCl | Micr | $\boldsymbol{S}-\mathrm{min}$ | Qtz | -Beid | | |
| Ca | TC | Si | Na | Al | Mg | K | RS | SO4 | Cl | ix |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | | |
| Anorth | 0.7699 | 0.6689 | 0.6127 | 0.4931 | -0.4762 | -0.2416 | 0.1260 | -1.4470 | | |
| Alb | 0.7376 | 1.2562 | 1.0639 | 1.5673 | 2.1195 | 1.3040 | 2.2313 | 2.2546 | | |
| CO_{2} | 2.0566 | 2.2995 | 1.4997 | 2.1476 | 1.4024 | 1.2776 | 1.6756 | -0.4151 | | |
| Calc | -0.0057 | -0.0004 | 0.1121 | 0.0023 | 0.7049 | 0.7048 | 0.0087 | 1.5534 | | |
| NaCl | 1.8863 | 1.8522 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9.883 | 4.9376 | | |
| Micr | 0.0337 | 0.0243 | 0.0231 | 0.0241 | 0.0317 | 0.0208 | 0.0212 | 0.0523 | | |
| S-min | 0.1499 | 0.1630 | 0.1880 | 0.1755 | 0.1967 | 0.2378 | 0.4511 | 1.1216 | | |
| Qto | -0.0917 | -0.9455 | -0.7372 | -1.5773 | -3.4865 | -2.0396 | -2.9067 | -4.7414 | | |
| Na-Beid | -0.9915 | -1.1233 | -0.9913 | -1.1059 | -0.5129 | -0.3610 | -1.0745 | 0.2613 | | |
| Mix | 0.9983 | 0.998 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | | |
| Mix? | 0.001: | 0.0018 | 0.0030 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | | |

| | | | | | | | | | | F-24 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T_D | | | | | | | | | | |
| Anorth | Alb | CO 2 | Calc | NaCl | Micr | S-min | Kao | | | Mix? |
| Ca | TC | Si | Na | Al | Mg | K | RS | SO4 | Cl | Mix |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | | |
| Anorth | 0.7699 | 0.6689 | 0.6127 | 0.4931 | -0.4762 | -0.2416 | 0.1260 | -1.4470 | | |
| Alb | 0.7829 | 1.7233 | 1.4281 | 2.3466 | 3.8421 | 2.3117 | 3.6674 | 4.5972 | | |
| CO 2 | 2.0566 | 2.2995 | 1.4994 | 2.1476 | 1.4024 | 1.2776 | 1.6756 | -C 4151 | | |
| Calc | -0.0057 | -0.0004 | 0.1121 | 0.0023 | 0.7049 | 0.7048 | 0.0087 | 1.5534 | | |
| NaCl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 | | |
| Micr | 0.0337 | 0.0243 | 0.0231 | 0.0241 | 0.0317 | 0.0208 | 0.0212 | 0.0523 | | |
| S-min | 0.1499 | 0.1630 | 0.1880 | 0.1755 | 0.1967 | 0.2378 | 0.4511 | 1.1216 | | |
| Kao | 0.1359 | 1.4007 | 1.0921 | 2.3368 | 5.1652 | 3.0215 | 4.3062 | 7.0242 | | |
| Na -Beid | -1. 1279 | - $\uparrow .5261$ | -2.0861 | -3.4462 | -5.6858 | -3.3870 | -5.3872 | -6.7734 | | |
| Mix1 | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | | |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | | |

| T_E
 Anorth | Alb | CO2 | Calc | NaCl | Micr | S-min | Mont | Na -Beid SO4 | MixI
 Cl | $\begin{aligned} & \text { F-25 } \\ & \text { Mix } 2 \\ & \text { Mix } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ca | TC | Si | Na | Al | Mg | K | RS | | | |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | | |
| Anorth | 0.7933 | 0.9094 | 0.8002 | 0.8943 | 0.4106 | 0.2772 | 0.8653 | -0.2410 | | |
| Alb | 0.6920 | 0.7867 | 0.6979 | 0.7841 | 0.3885 | 0.2914 | 0.7881 | -0.0994 | | |
| CO 2 | 2.0566 | 2.2995 | 1.4994 | 2.1476 | 1.4024 | 1.2776 | 1.6756 | -0.4151 | | |
| Cale | -0.0057 | -0.0004 | 0.1121 | 0.0023 | 0.7049 | 0.7048 | 0.0087 | 1.5534 | | |
| NaCl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 | | |
| Mier | 0.0337 | 0.0243 | 0.0231 | 0.0241 | 0.0317 | 0.0208 | 0.0212 | 0.0523 | | |
| S-min | 0.1499 | 0.1630 | 0.1880 | 0.1755 | 0.1967 | 0.2378 | 0.4511 | 1.1216 | | |
| Mont | -0.1373 | -1.4146 | -1.1030 | -2.3600 | -5.2166 | -3.0516 | -4.3491 | -7.0940 | | |
| Na -Beid | -0.8550 | 0.2864 | 0.1068 | 1.2459 | 4.6854 | 2.6799 | 3.2593 | 7.3305 | | |
| Mix 1 | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 | | |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 | | |
| T_F | | | | | Micr | S-nin | illite | Na -Beid | Mix ${ }^{1}$ | Mix2 |
| Anorth Ca | $\begin{aligned} & \text { Alb } \\ & \text { TC } \end{aligned}$ | $\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{Si} \end{aligned}$ | $\begin{aligned} & \text { Calc } \\ & \mathrm{Na} \end{aligned}$ | $\mathrm{NaC}^{\text {Al }}$ | Micr Mg | | RS | SO4 | Cl | Mix |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | | |
| Anorth | 0.7739 | 0.7093 | 0.6442 | 0.5605 | -0.3272 | -0.1544 | 0.2502 | -1.2444 | | |
| Alb | 0.7280 | 1.1579 | 0.9873 | 1.4034 | 1.7574 | 1.0922 | 1.9294 | 1.7622 | | |
| CO 2 | 2.0574 | 2.3076 | 1.5057 | 2.1610 | 1.4322 | 1.2951 | 1.7005 | -0.3746 | | |
| Calc | -0.0057 | -0.000 4 | 0.1121 | 0.0023 | 0.7048 | 0.7048 | 0.0086 | 1.5533 | | |
| NaCl | 2.0942 | $4.00+9$ | 3.6484 | 5.9597 | 10.6954 | 7.7083 | 10.5359 | 15.6830 | | |
| Micr | -0.0110 | -0.4364 | -0.3360 | -0.7444 | -1.6670 | -0.9729 | -1.3950 | -2.2577 | | |
| S-min | 0.1607 | 0.2738 | 0.2744 | 0.3604 | 0.6054 | 0.4769 | 0.7918 | 1.6774 | | |
| illite | 0.0810 | 0.8345 | 0.6507 | 1.3922 | 3.0774 | 1.8002 | 2.5655 | 4.1849 | | |
| Na-Beid | -1.0518 | -1.7419 | -1.4747 | -2.1379 | -2.7941 | -1.6954 | -2. 9763 | -2.8409 | | |
| Mixl | 0.9986 | 1.0030 | 1.0010 | 1.005 i | 1.0134 | 1.0071 | 1.0115 | 1.0188 | | |
| Mix? | 0.0014 | -0.0030 | -0.0010 | -0.0051 | -0.0134 | -0.0071 | -0.0115 | -0.0188 | | |

| | | | | | | | | | | F-26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T_G
 Anorth | Alb | CO 2 | Calc | NaCl | Micr | S-min | Chlor | Na-Beid | Mix1 | Mix 2 |
| Ca | TC | Si | Na | Al | Mg | K | RS | SO4 | Cl | Mix |
| DEPTH | 18.7650 | 56.8050 | 69.6350 | 71.6450 | 74.9100 | 77.4050 | 96.6350 | 97.4100 | | |
| Anorth | 0.7781 | 0.7532 | 0.6784 | 0.6338 | -0.1653 | -0.0597 | 0.3852 | -1.0242 | | |
| Alb | 0.6726 | 0.5866 | 0.5419 | 0.4503 | -0.3494 | -0.1402 | 0.1730 | -1.1028 | | |
| CO2 | 2.0582 | 2.3164 | 1.5125 | 2.1757 | 1.4645 | 1.3140 | 1.7275 | -0.3306 | | |
| Calc | -0.0057 | -0.0005 | 0.1120 | 0.0022 | 0.7047 | 0.7047 | 0.0085 | 1.5532 | | |
| NaCl | 2.3202 | 6.3334 | 5.4639 | 9.8443 | 19.2818 | 12.7312 | 17.6944 | 27.3597 | | |
| Mier | 0.0419 | 0.1079 | 0.0883 | 0.1635 | 0.3400 | 0.2011 | 0.2782 | 0.4716 | | |
| S-min | 0.1724 | 0.3943 | 0.3683 | 0.5613 | 1.0495 | 0.7367 | 1.1621 | 2.2813 | | |
| Chlor | 0.0084 | 0.0871 | 0.0679 | 0.1453 | 0.3211 | 0.1878 | 0.2677 | 0.4366 | | |
| Na -Beid | -0.9817 | -1.01190 | -0.9110 | -0.9318 | -0.1281 | -0.1359 | -0.7537 | 0.7846 | | |
| Mixl | 0.9990 | 1.0061 | 1.0042 | 1.0119 | 1.0286 | 1.0159 | 1.0241 | 1.0395 | | |
| Mix2 | 0.0010 | -0.0061 | -0.0042 | -0.0119 | -0.0286 | -0.0159 | -0.0241 | -0.0395 | | |

APPENDIX G: The Spreadsheet Approach to hydrogeochemical mass balance

 modelling
INTRODUCTION

An explanation of the concepts behind mass balance modelling of changes in groundwater chemistry, and the linear algebra required to solve mass balance problems is provided by Parkhurst et al (1982) and Plummer et al (1983).

Included in Parkhurst et al (1982) is a FORTRAN code (BALANCE) for solving groundwater (or any other), mass balance calculations. However, with the advent of PC's and spreadsheet programs it is now easier to make these calculations using the matrix multiplication and inversion features found in modern spreadsheet programs, in combination with their increasingly powerfu! macro features. This approach was selected for the mass balance modelling in this work. The spreadsheet approach to mass balance modelling has not been seen published in any articles by this author. Because of its simplicity, and flexibility, with the additional benefit that input and ouput are seen on the same screen, that graphing features of the spreadsheet program can immediately be used once a calculation is made, the flexible requirements for the input format (rather than the relatively rigid requirements for FORTRAN input format) and the ease with which data can be moved between differing spreadsheets, this approach is worthy of note.

REVIEW OF MASS BALANCE MODELLING

In brief, if the groundwater chemistry at two points along a flow path is known then by selection of phases (typically minerals gases or mixing condmembers) which are likely to be precipitating or dissolving (in the aquifer of interest) the net transfer of these minerals into (dissolving) or out of the groundwater (precipitating) can be calculated, assuming the stoichiometry of the plausible phases is known, and the net change in the concentration of the elements composing the plausible phases is also known. For J plausible phases selected then J elements (eath element must be contained in at least one of the plausible phases) must be selected. The element mass balance equation is given by Parkhurst et al (1082):
(Equation (9-1)

$$
\sum_{p=1}^{p} \alpha_{p} B_{p}, k=m_{T, k(f i n a l)}-m_{T, k(i n i t i a l)}=\Delta m_{T, k}
$$

For each clement $k=1$ to J
where the notation is as follows:
P - number of total reactant and product phases in the net reaction,
$\alpha_{p} \quad-\quad$ is the calculated mass transfer of the $\mathrm{p}^{\text {th }}$ phase,
$b_{p, k}$ - denotes the stoichiometric coefficient of the $k^{\text {th }}$ element in the $p^{\prime \prime \prime}$ phase,
$\mathrm{m}_{\mathrm{T}, \mathrm{k}}$ - is the total molality of the kth element in solution, and

J - is the number of elements included in the calculation.
In problems with only element mass balance equations (no redox or mixing) $P=J$.

For problems where mixing of two end members is involved $\mathrm{P}=\mathrm{J}-1$, two of the phases are replaced by the end members with the compositions of the end members reflected in the stoichiometries of the elements of interest, for each end member. An equation is included (with the loss of an element) of the form:

$$
\alpha_{1}+\alpha_{2}=1
$$

(Equation G.2)
where α_{1} and α_{2} are respectively the mixing fractions of the two end-members which combine, along with mineral reactions, to give the composition of the final solution.

These two simple types of mass balance equations can be further embellished to allow for redox reactions and isotope calculations, as explained in Parkhurst et al (1982).

THE SPREADSIIEET APPROACH TO MASS BALANCE MODELLING

A partial mass balance spreadsheet, designed for the particular problem at NSCRV is shown in Table G.1. Not shown on Table G. 1 is the macro (which runs the calculations) or the inverted matrix of $[\mathrm{A}]\left([\mathrm{A}]^{-1}\right)$ which is multiplied with matrix
[B] to give matrix [C]. In all cases the example is for data from a depth of 97.41 . Some other data, which will be discussed later, is also not seen but would typically be included on a mass balance spreadsheet.

Matrix [A] is the matrix expression of the linear equations provided by the summed part of Equation G. 1 for the p phases and k elements of the mass balance model S_K. In matrix terminology it is the coefficient matrix. Marrix [B] shows the molar concentrations of the k elements of interest (expressed in mundes) for the particular problem i.e the difference in concentration for a particular element between the initial and final solutions, with the value in the final row derived from the mixing equation, equation G.2.

From matrix algebra a solution for the p unknown phase (in this calse the mmoles of the plausible phases added or lost from the groundwater) and the relative mixing fractions of the end-members, can be found by inverting $|\lambda|$ and multiplying it by $[\mathrm{B}]$ to provide C :

$$
\begin{equation*}
[A]^{-1}[B]=[C] \tag{:.3}
\end{equation*}
$$

Proof of equation G. 3 can be found in most linear algebra textbooks. As matrix inversion and multiplication are both features of spreadsheets it is a simple problem
to calculate [C]. Table G .2 shows the macro which powers this mass balance spreadsheet (in Lotus macro language); however, once the method is understood the compiling of a macro to meet particular data requirements is relatively simple. Spreadsheet range names, and locations of blank rows and colurnns, must conform to the macro shown, and thus it may not be possible to simply copy the macro. This particular macro inverts $[A]$ (with $[A]^{1}$ not shown) and successively replaces the first six rows of $[B]$ (by importing the groundwater data from a matrix not shown in Table G. 1) and multiplies $[A]^{-1}$ by $[B]$ and generating $[C]$ at the appropriate position on the spreadsheet.

For the purposes of deriving data for input into PHREEQE, the original input molarities of the elements (i.e the analyzed data) can be recalculated by equation Ga.

$$
[A][B]=[D]
$$

(Equation G.4)

The matrix $[D]$ contains exactly the same values as the input molarities used to construct [B], with the addition of a row for the mixing equation. This step only really checks the veracity of the solution. The k element contributions from the rock mass can be calculated using equation G.5:

$$
\begin{equation*}
d_{k}-C . S_{k}=R_{k} \tag{Fiquation6.5}
\end{equation*}
$$

Where;
$d_{k} \quad-$
is the total contribution of element k (from both the rock mass and the seawater component) to the groundwater,

C - is the calculated mixing fraction of seawater,
$S_{k} \quad-\quad$ is the molar concentration of element k in seawater,
$R_{k} \quad-\quad$ moles of element k contributed from the rock mass

REFERENCES
SEE MAIN REFERENCE LIST

TABLE G. 1 Output of the mass balance spreadsheet
MINERALS \& ELEMENTS

| Minerth | Alb | CO | Calc | NaCl | Micr | $\mathrm{Na}-\mathrm{Beid}$ | Mixl | Mix2 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Ca | TC | Si | Na | Al | Mg | K | Cl | Mix |
| ROWS | 9 | | | | | | | |
| COLS | 9 | | | | | | | |

| Anorth | | Alb | CO 2 | Calc MTX $\|A\|$ | NaCl | Micr | Na-Bcid | $\begin{gathered} \text { Mixl } \\ \text { Mixl }^{*} \end{gathered}$ | Mix2 NORDSEA | Sample Point 97.41 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | |
| | | | | | | | | | | |
| Ca | 1 | 0 | 0 | 1 | 0 | 0 | 0 | $0.0 \mathrm{E}+00$ | 10.662 | 0.108 |
| TC | 0 | 0 | 1 | 1 | 0 | 0 | 0 | $1.8 \mathrm{E}-04$ | 2.126 | 1.139 |
| Si | 2 | 3 | 0 | 0 | 0 | 3 | 3.67 | 0.0E+00 | 0.074 | 0.245 |
| Na | 0 | 1 | 0 | 0 | 1 | 0 | 0.333 | $0.0 \mathrm{E}+00$ | 485.44 | 7.355 |
| Al | 2 | 1 | 0 | 0 | 0 | 1 | 2.33 | $0.0 \mathrm{E}+\infty 0$ | 0.000 | 0.022 |
| Mg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $0.0 \mathrm{E}+00$ | 55.086 | 0.009 |
| K | 0 | 0 | 0 | 0 | 0 | 1 | 0 | $0.0 \mathrm{E}+00$ | 10.579 | 0.054 |
| Cl | 0 | 0 | 0 | 0 | 1 | 0 | 0 | $0.0 \mathrm{E}+00$ | 565.76 | 5.026 |
| Mıx | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $1.0 \mathrm{E}+00$ | 1.000 | 1.000 |

| DEPTII | 18.77 | 56.81 | 69.64 | 71.65 | 74.91 | 77.41 | 96.64 | 97.41 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Anorth | 0.9059 | 2.0696 | 1.7048 | 2.8299 | 4.6889 | 2.7799 | 4.4322 | 5.5772 |
| Alb | 0.7829 | 1.7233 | 1.4281 | 2.3466 | 3.8421 | 2.3117 | 3.6674 | 4.5972 |
| CO2 | 2.1925 | 3.7002 | 2.5915 | 4.4843 | 6.5676 | 4.2992 | 5.9819 | 6.6090 |
| Calc | -0.142 | -1.401 | -0.980 | -2.334 | -4.460 | -2.317 | -4.298 | -5.471 |
| NaCl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 |
| Micr | 0.0337 | 0.0243 | 0.0231 | 0.0241 | 0.0317 | 0.0208 | 0.0212 | 0.0523 |
| Na- leid | -1.128 | -2.526 | -2.086 | -3.446 | -5.686 | -3.387 | -5.387 | -6.773 |
| Mix1 | 0.9983 | 0.9982 | 0.9980 | 0.9987 | 0.9995 | 0.9989 | 0.9998 | 0.9998 |
| Mix2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 |$=\mathrm{C}$

TOTAL (mmoles of elements)

| 18.77 | 56.81 | 69.64 | 71.65 | 74.91 | 77.41 | 96.64 | 97.41 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.7825 | 0.6876 | 0.7461 | 0.5088 | 0.2344 | 0.4750 | 0.1366 | 0.1081 |
| 2.0547 | 2.3031 | 1.6159 | 2.1527 | 2.1086 | 1.9850 | 1.6849 | 1.1388 |
| 0.1222 | 0.1111 | 0.1076 | 0.1243 | 0.1323 | 0.1269 | 0.1592 | 0.2445 |
| 3.1274 | 3.6146 | 3.6799 | 4.1931 | 5.0022 | 4.8064 | 5.9069 | 7.3554 |
| 0.0003 | 0.0009 | 0.0003 | 0.0008 | 0.0037 | 0.0005 | 0.0009 | 0.0219 |
| 0.0946 | 0.0988 | 0.1099 | 0.0691 | 0.0295 | 0.0609 | 0.0097 | 0.0086 |
| 0.0519 | 0.0432 | 0.0442 | 0.0373 | 0.0373 | 0.0325 | 0.0230 | 0.0540 |
| 2.8581 | 2.8765 | 3.1067 | 3.0949 | 3.0964 | 3.7114 | 4.0475 | 5.0263 |
| n / a |

EIL:MIENT CONTRIBUTION FROM ROCK MATRIX (mmoles)

| | 18.77 | 56.81 | 69.64 | 71.65 | 74.91 | 77.41 | 96.64 | 97.41 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Ca | 0.7642 | 0.6685 | 0.7248 | 0.4954 | 0.2287 | 0.4632 | 0.1347 | 0.1065 |
| TC | 2.0510 | 2.2993 | 1.6117 | 2.1500 | 2.1075 | 1.9826 | 1.6845 | 1.1385 |
| Si | 0.1221 | 0.1110 | 0.1074 | 0.1242 | 0.1322 | 0.1268 | 0.1592 | 0.2445 |
| Na | 2.2936 | 2.7443 | 2.7112 | 3.5840 | 4.7425 | 4.2699 | 5.8218 | 7.2792 |
| Al | 0.0003 | 0.0009 | 0.0003 | 0.0008 | 0.0037 | 0.0005 | 0.0009 | 0.0219 |
| Mg | $-\mathrm{HE}-18$ | $-4 \mathrm{E}-18$ | $5 \mathrm{E}-18$ | $3 \mathrm{E}-18$ | $-2 \mathrm{E}-18$ | $1 \mathrm{E}-18$ | $1 \mathrm{E}-20$ | $2 \mathrm{E}-19$ |
| K | 0.0337 | 0.0243 | 0.0231 | 0.0241 | 0.0317 | 0.0208 | 0.0212 | 0.0523 |
| Cl | 1.8863 | 1.8622 | 1.9777 | 2.3850 | 2.7938 | 3.0861 | 3.9483 | 4.9376 |
| Mix 2 | 0.0017 | 0.0018 | 0.0020 | 0.0013 | 0.0005 | 0.0011 | 0.0002 | 0.0002 |

TABLE G. 2 Spreadsheet Macros ALT_M: \{GOTO\}nitx~
/re. $\{E N D\}\{D\}\{E N D\}\{R\} \sim$
\{GOTO\}out~
/re. END $\}$ R $\}$ \{END $\}$ \{D\}~
\{GOTO)phr~
/re.\{END\}\{D\}\{END\}\{R\}~
\{GOTO\}ир~

/dmiput \sim max \sim
\{GOTO\}dep~
\{coro\}mix~
/racmot~.\{END\}\{D\}\{END\}\{R\}~
\{GOTO\}dep~
\{GOTO\}imi~
/rncaun ~ $\{E S C\}\{E S C\}$ aug ~ $\{E S C\}$ D $\}$ \{END $\}\{D\} \sim$
\{GOTO\}dep~
\{IC\}
/dmmmor ~atig~oui~
\{R\}
\{ic $\}$
/dmin $\sim \sim\{K\} \sim$
\{R\}
\{IC $\}$
/dmmin $\sim\{R\} \sim$
\{R\}
(IC)
/dmm~~\{R\}~
\{R\}
(ic)
/dum $\sim \sim\{R\rangle \sim$
\{R\}
$\{\mathrm{IC}\}$
/dmm~~\{R\}~
\{R\}
\{IC\}
/dmin $\sim \sim\{R\} \sim$
\{R\}
\{IC\}
/dmin~~\{R\}~
/rudaug~
/ridentor ~
\{GOTOYPIR~.
CELS~\{L\}~
\{GOTO\}OUT~
\{U\}
/RNCPDEP~.\{END\}\{R\}~
\{GOTO PHRR~
/CPEEP~\{U\}~
/RNDPDEP~
\{GOTO\}OUT~
/RNCOUTI~.\{END\}\{D\}~
\{GOTO\}PHR~
/DMMPUT~OUTI~PHR~
/DMM~\{ESC\}\{R\},\{END\}\{D\}~\{R\}~
\{R\}
\{DAMA~\{ESC\}\{R\}.\{END\}|D\}~\{R\}~
\{R)
/DMM~\{ESC\}\{R\}.\{END\}\{D\}~\{R\}~
\{R\}
\{DMM~\{ESC $\}$ R $\}$.\{END $\}$ \{D $\} \sim\{R\} \sim$
\{R\}
iDNAM~\{ESC\}\{R\}.\{END\}|D\}~\{R\}~
\{R\}
\{DMM~\{ESC $\}\{R\} \cdot\{E N D\}\{D\} \sim\{R\} \sim$
\{R\}
\{DMM~\{ESC\}\{R\}.\{END\}\{D\}~\{R\}~
/RNDPUT~
RNDDOUTI~
\{IF \}

[^0]: 1 This version of PHREEQE was provided by colorado state University and included a variant of the MINTEQ data base

