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Abstract

This thesis reports a study of the triplet of (purely translational) Slichter modes of
inner core oscillation for a simplified uniformly rotating Earth model with spheri-
cal elastic inner core, spherical rigid fixed mantle and neutrally stratified, com-
pressible liquid core. A variational principle is used to solve the subseismic wave
equation, which is used to mode! the liquid core dynamics. The investigation
shows the utility of the subseismic wave equation for describing a long-period os-
cillation, with the effects of higher order harmonics in the displacement field taken
into account. For the first time, a numerical estimate of error involved in making
the subseismic approximation is given for a particular mode. The eigenperiod of
the Slichter mode is found to be around 5 hours for neutrally stratified liquid core
with total mass constrained by PREM (1981) data. The effect of the Earth’s rota-
tion is to split the mode into a triplet with eigenperiods 1256 shorter, 29 shorter,
and 106 longer. The effects of compressibility of the liquid core and elasticity of
the inner core are to increase the eigenperiod by abouv: 0.6 and 9% respectively.
The study can be regarded as a preliminary numerical attempt to describe

gravitational/inertial oscillations of the Earth by the subseismic wave equation.
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1. INTRODUCTION

[n order to explain an unidentified spectral peak (with period about 86 minutes)
appearing at the lower frequency end of the gravity spectrum recorded during the
large Chilean earthquake of May 22, 1960, Slichter (1961) proposed a new kind of
mode. He suggested that a gravitational perturbation of the approximate observed
magnitude and period could reasonably be produced by translational oscillations
of the inner core as a rigid body in the surrounding liquid core. Because the
period of this Slichter mode would be an extremely sensitive indica.. r of the d-n-
sity contrast across the inner core boundary. a series of efforts has been made to
detect this mode, but so far unsuccessful. For example, after carefully analysing
tke earth tides data from South Pole, Jackson znd Slichter (1974) were unable to
detect evidence of inner core free oscillation in a record of nearly one year dura-
tion (October 1970 to September 1971) there. Theoretical studies of various pos-
sible effects on the mode (rotation, compressibility and viscosity of the liquid cor-,
elasticit=> of the inner core and mantle, elipticity of the Farth a1 geomagnetic

field) have also been carried out since then.

The model that Slichter (1961) considered consists of a rigid inner ¢ ,re, an inviscid
spherical liquid outer core and a rigid spherical mantle. Such a system behaves as
a simple linear vibrator, and the circular frequency of the system is split by the
Earth’s rotation into a polar mode and equatorial modes. »lichter assumed that
gravitation was the dominant restoring force, but also considered the effect of an

additional restoring force due to rigidity of the outer core, small enough ( ~ 10°

N/mg) to be consistent with failure to detect seismic shear waves there.




The effects of Coriolis force due to Earth’s rotation on different polarizations of a
Slichter oscillation were first discussed clearly by Busse {1974). He examined
theoretically the effects of r :ation and the finite radius of the outer core on cal-
culations of the Slichter eigenperiod. and suggested that the action of the Coriolis
force on the motion of the fluid in the outer core and its finite radius may change
the period by as much as 505 from that predicted without taking these effects
into account. He used cylindrical system of coordinates to formulate a mathemsti-
cal approach, but restri-ted quantitative discussion to the polar mode (oscillation
in the direction of the axis of rotation) and left the equatorial modes for a qualita-
tive perturbation analysis. An asymmetric splitting of the irequency happens in
such an oscillation (at least for a small ratio of rotation frequency to the polar fre-

1
quency of the vibration), namely -2-(w++w__) < Wy where wy is the polar .re-

quency, w, , w_ are frequencies of the eastward and westward-travelling waves
respectively due to vibrations in the equatorial plane viewed in the rotating frame.

But note that Busse's equation {21) has misprints, which we take this opportunity

to correct:
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Busse assumed the liquid core .3 incompressible an! homogeneous, but pointed

out that compressibility and stratification would play an important role on the




mode under discussion. The influence of the inner core elasticity on the oscillation

is neglected in Busse's analysis.

The spherical harmonic representation of displacement fields leads to normal
modes of spheroidal and toroidal type, which can exist independently in a non-
rotating spherically-stratified Earth, but are coupled by rotation. Cross'ey (1975)
was the first one to point out that the Slichter mode should be regarded as the
first undertone (period > 1 hour) of the n = 1 set of spheroidal modes, cor-
responding to a displacement field S'l". Rotation of the Earth and compressibility
of the liquid core were taken into account. Fullowing Crossley, we reserve the
term 'Slichter-type oscillation’ for the undertones of longer period which are pos-
sible when the liquid core is stably stratified. In the liquid core, Crossley took into

account both the modification of S'l" due to the Coriolis force ('self-coupling’) and

the toroidal field T, which the Coriolis force induces from S". All further

spheroidal-toroidal couplings were neglected. In the solid inner core and mantle,

only self-coupling was taken into account.

Smith (1976) also used a 2-term expansion to represent the displacement field, but
in both solid :nner core and mantle, as well as in the liquid core. By comparison
with Busse's (1974) results, Smith found that stratification cf the liquid core and
elasticity of the inner core may have a significant influence on the Slichter mode:
about 20 increment in eigenperiod of the polar mode was obtained in Smith’s
calculation for an elastic inner core and neutrally stratified liquia »>re model (T =
7.653 hr), comparing to that of Busse (7 =~ 6.397 hr), which assumed a

homogeneous incompressible liquid core and a rigid inner core. Note that both




models use a same fractional density jump across inuer c¢ore boundary
PIC ™ %o 2 oy s
( . = 0.0328), and N° = 0, where N(r) is the Brunt Vaisald frequency. El-

o

lipticity of the Earth was also taken into account by Smith.

In our study, we will try a different approach to the problem by applying the sub-
seismic wave equation (Smylie and Rochester, 1981) to describe the Slichter mode
for a simplified uniformly rotating Earth model with a spherical homogeneous
eclastic inner core, a spherical rigid fixed mantle and a neutrally stratified self-
gravitating, compressible liquid core. With rotation, elasticity of ti: inner core,
compressibility and stratification of the liquid core taken into account, we hope to
investigate the Slichter mode more economically and completely. It will also be a
test of the utility of the subseismic wave equation in long-period theoretical
geodynamics. We will begin with a restricted Earth model to establish the basic
characteristics of the Slichter mode. We then relax the restrictions step-by-step t»
reach a model which allows for (i) the elastic response of a homogeneous, self-
gravitating inner core to flow pressure of the neutrally-stratified compressible lig-
uid outer core, (ii) rotation, with self-coupling in the inner core and higher cou-
pling in the liquid core. The governing equations are solved by applying a varia-

tional principle.

To fix ideas, we take Earth structure data frrm the PREM model (Dziewonski
and Anderson, 1981): radius of the Earth 6371 km, radius of core-meantle bound-
ary 3480 km, radius of the inner core 1221.5 km; total mass of the Earth

5.971x10%* kg, compressional velocity function (km s’!) in the outer and inner

core a(r),, = 11.0483 - 4.0362(r/c) + 4.8023(1‘/¢.')2 - l3.5732(r/c)3,




a{r), = 11.2622 - 6.3640(r/c)?’, shear velocity function (ki s’'} in the inner
core J(r) = 3.6678 - 4.-4475(1'/c)2 (where ¢ = 6371 km); average density of the in-
ner core p;~ = 12.8938% 103 kg/ma, which is the mean density of PREM; gravita-
tional constant G = 6.6732x 10" m? kg‘1 s A density profile for a neutrally-
stratified, compressible liquid core is obtained later, but as a comp .rison we will

also use that of PREM in eigenperiod computation.

2. STARTING MODEL FOR THE SLICHTER MODE

2.1, Simple Pendulum Model

The simplest model we assume contains a spherical rigid inner core, a spherical

rigid fixed mantle, and a homogeneous, inviscid, incompressible liquid outer core.

The Slichter mode is an oscillation in which the geometric centre of the inner core
suffers a purely translational displacement from the Earth's centre of mass (which
we take as the geocentre). Conservation of linear momentum requires that the lat-
ter point remains fixed in inertial space, so tne geometric centre of the mantle will
have to move in the opposite dit ction to that of the inner core centre, but with a
much smaller amplitude because of the enormous mass of mantle (68°¢ of whole
Earth). Because of this, and also for mathematical simplicity, we will assume here
the core-mantle boundary is rigid-fixed. The principal restoring force on the dis-
placed inner core is the gravitational force, produced by the attraction of that
portion of the outer core fluid (with constant density o, throughout) in the shaded
‘cavity’, on the sphere which has the radius of inner core a and the differential

density Prc " o where P1c is the average density of the inner core (Fig. 1).
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Figure 1: Displaced Inner-Outer Core System.
o: geocentre; CAMB: core-mantle boundary
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Figure 2: Vector Relationships in Displaced Inner-Outer Core System.
1 density of the innercore; o : density of the liquid core;
a: radius of inner core bound 'ty (ICB);

A . .
se,: inner core displacement; o: geocentre;

3
R: field vector; R source vector




The gravitational restoring force on the inner core is

R
= d3 ! — dsk i
Fg ('po'/;arity R /;phere(plc p") R2

where RR = R'-R (Fig. 2)

Since the inner core is spherically stratified, the second integral in expression (1)

can be written as

A

Py )«131?-'i
sphere Ic 0 R'a’-

4r 3
== .—3-(plc -_ po)a _R ) 2.

Thus we have

F o=o¢ sf R
g 3 PO(PIC po)a ‘/;am'ty Y 2

Now suppose {33 is the displacement of the inner core from geocentre (we are free
»
to choose it in the 33 direction for convenience), then R'@S = cosy'. Because of

symmetry (¥Fig. 2), the integral in (2) is

n d3R a R’
/ R =e3/ _ens v ——
cavity R cavity B2

A [2r ¢ . outer boundary of cavity
=e, d¢' | cosy'sinv'd dR".
0 0 a(ICB)

As in Fig. 2, on the outer boundary of the cavity, R’ can be found from relation

@+ 6 =R'*+6+2R"écos v,




ie. R'= — 6cos *¢' + [62cos St 4 (d+é)2—b:]1/2

Substitute R’ and (3) ‘nto (2), we have

Fg = - wab“llC &3. (1)

where MIC is mass of the inner core, and

[y

2 4r 0
w=—=Gp (1 ——)
8 3 [] p'C

which is identical to the expression found by Slichter (1861) and Busse (197 4).

The whole-Earth centre of mass now is located between the geocentre and the
centre of the displaced inner core, at distance ¢f from the former. v.hete ¢ is a cor-

4 L )
rection factor. The mass ?(plc—,oo)a3 is distributed spherically about the centre of

the displaced inner core, and the mass M _ + M. + 4rpoa3/:: s distributed
spherically about geocentre, where M _ and M . are mass of the ...atle and li¢

uid core respectively. The definition of the centre of mass gives

4” 3 4” 3, . v
Flric = P 6 — ) = (M, + M, o+ —o,0”)eé (6)

by which the correction factor ¢ is obtained:

Pic ™ Po
¢ = ———V

M iC! ™

where VIC = 4na3/3, M is the mass of whole Earth. For ¢ small cnough we can
reasonably take the geocentre as the centre of whole Earth mass. :.c. assume that

the origin of the inertial reference frame coincides with the geocentre. Referring to
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PREM, 5, - p, = 07273 X 103 kg/ms. ¢ is found to be about 0.001, which is ade-

quate to support our assumption.

2.2. Effect of Flow Pressure in Outer Core

Beside the dominant gravitational restoring force acting on entire inner core, there
is an additional force developed by liquid core flow acting on the inner core
boundary. Recall the equation of motion in a deformable rotating solid subject to
hydrostatic prestress

-puzll + Qiu'p()i)(u =VT7+ pVVl + V(pugo) - gov-(pu\, (8)

(Smylie & Mansinha, 1971, and lecture notes of Rochester, 1986), where 7 and Vl
are respectively the additional stress and the Eulerian disturbance in gravitational
potential due to deformation or/and displacement, and 77 is the constant rotation
speed of the Earth reference frame. For a homogeneous non-rotating rigid inner

core, p == p;~ U = fe3, N = 0, this equation reduces to

2 o d ’ N
=Pic w"bés =VT+ PICV‘I + pICV(res-go). 9)

Integrating (9) over the volume of the deformed inner core,

—PM 8y = /1 STV gy [ TV, + &, MV

= [ F7d5 + o /’ oo Vi + 858,045, (10)

using Gauss' theorem and the spherical shape of the inner core boundary. Invok-
ing the continuity of the normal stress and Vl across the inner core boundary, we

have




s 4.

11

2 A A
—w M te, = —’/;('Br(f’l +oug)dS

A ” A
+ p’C/l(‘Br(‘ , + ies-go)dS, (11)

where all quantities in the integrals are evaluated on the liquid side of f('B. and

P,. the perturbation pressure, is defined by

Fozz — (Pl(r) +o,ug) 1
in the liquid core.

We have assumed a spherical homogeneous rigid inner core and a spherical
. . . . ~A
homogeneous incompressihle liquid uter core, hence g,(r) = - go(rﬁ. A=-Fon

ICB and n = t on CMB.

Substituting (9) and (11) into (8) and using Gauss' theorem give

&~ AA B
- p1c9,0) &3-/ICBrrdS. (12)

Using con! nuity [“'SO]ICB':[“S:&'%]IC‘B' (12) can be written

2A A _ A AA 4o
Mot = - /: 145 = 9alorc = o)) /: S

r A
+ p,C'/;CB‘lrdS‘ (13)

At point r in outer core, Vl(r) can be expressed as




1
Vir)=G 'V (=)dm’
i(r) /LC+ICu R

1 N P,
= GpO/;Cu' -V (E)d‘ "+ Gp,c ﬁes-/;cv (E)d‘ .

First term on the RHS can be written
Y ] ' l l ’ ’ ‘/’i
(:po/;C[V-(u E)—Ev-u]d )

but V'u’' = 0 by incompressible assumption in the liquid core, then

1 1
- ‘Aa' —)dV’ A . (=yd} !
‘l(r)—Gpo/LCV (w Z)dV + Gy 8y /,CV (M

1 1 A
=G '—.n'dS’' + Go,. i€, —N'dS", 15
b0 /lCB+CMBu R DA Ot /;CBR (15)

N
where ' points out of liquid core and N ' is the surface normal of the inner core.

By not.az nu’ = 0 on CMB, and nu' = ﬁ'-é&s on ICB, we finally have

. firds’
VilF) = Glogmaic)y [} =7 (16)

R in (18) is the distance from source point r' to field point r which can be ex-
panded in Legendre polynomials. For r’' < r,

1 1 2
2 =72 (G Pleos ¥,

n=(

where cosy' = # ' -F. Upon using (17), and setting n' = -F' on the ICB, the sur-

i 03

face integral in (16) for r in the outer core or on the ICB is found to be — T30
r
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ix a A
Vl(a) = ?G(P,C - -‘o)a&a'r- (1R)

Substitute Vl(a) and P|= po(\+Vl) into {13), we find that

—M e, = Fg + Fp (19)

where

Fg =(r;c—»,) ICBr( Vi + e, g )dS

- /1 g obi(rIFdS

= —w, "M &, (20)

which is identical to equation (1) (considering non-homogeneity of the inner core

gives the same result), and
F=—p FdS. 21
=% [1ca" (21)
where for mathematical convenience we define

Py(r)

x = — = V(r), (22)

o

(one may call it ‘intermediary potential’ for the role it plays between P,/s, and

V).

In order to evaluate Fp, we look at momentum conservation equation in the liquid

outer core (Smylie & Rochester, 1981)




14
- ugu - 2IJO£ Xu= =V - ﬁgoV-u. {23)

In nur case 7 = 0 (non-rotating), 5 == 0 and V-u = 0 {homogeneous incompres-
sible), the flow motion is then governed by

wou = V. (24)

i.e. flow is irrotational, and v also satisfies Laplace equation V'z\ = 0 in the liquid

core. The latter suggests a solution with a form of

B,

(25)
n=0

There is no ¢ dependence here because of the absence of rotation. A and B, are

of order 4.

Boundary conditions at inner core boundary and ccre-mantle boundary are

nu =0, on CMB (26.a)

fiu =i, onlCB (26.b)
or by equation (24)

nTy =0, on C'MB (27.0)

2-Cy =A@, onICB (27.)
le.

dv

—_—= on CMB{(r =) (28.a)

or

O\

E'- = &cos 8 on ICB(r = a) (28.b)

Substituting (25) into {28). on the core-mantle boundary we have
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B
n
nAn—(n+l);;-+—l-=0, n=2012, - (29.q)

and on the inner core boundary we have

! 2 ‘
Al——3=6w, n=1 (29.0)
a
Bn
—_ = =02 e D
nA_ UH_”F 0, n=023, (29.¢)
From (29), the following results are obtained

A 5w o’ (30.a)
= — §u° X .a

1 bo—ad
B 1 ¢w2a® (20.6)

! 2 343 , .

A2=A$=--'=BO=BQ=BS=~--=O, (30.c)

and without loss of generality we take .4 = O since it merely adds a constant to

v. Thus we arrive at an analytic solution (Lamb, 1932)
wa® b3

(r + —)cos 4. (31)
b3—a? 2r2

A(rf) = —

Placing this expression in (21), we have
F swia b3+243 R eos 6dS
—— sl 0
=l g )% /1013x €

=M, [ &, (52)

where




s Py (b3+203)
2000 $3-a®"

The force Fp is seen to reduce the total restoring force in the system, it is equiv-
alent to an increase of the inertia of the inner core. For PREM (Dziewonski and

Anderson, 1981), f & 0.536, this increase is about 50¢.

Substituting Fg and Fp back to (19), we find the oscillation frequency

w
&

e

w

where w_is as in (5). Thus the simple model we presented here predicts the period
of the Slichter mode for a non-rotating Earth with rigid inner core and mantle,
homogeneous incompressible ligiid oute- core to be

a1+ )12

w
8

(35)

2r
r='—=
)

T is very sensitive to the Earth model adopted. For PREM (1081), by =
12.8036 X 10° kg/m®, », = 12.1663X 10° kg/m® we have T = 194 br. (This
result is reproduced in the limiting-case of our model in Section 7, see uppet left-
hand portion of Table 3.) B: t Pisse (1974) used o, = 12.3x 103 kg/m3, b, =

12.0% 10% kg/m3, which leads him to T = 7.59 hr.




2.3. Effect of Linear Momentum of the Mantle

Finally we need to have a look at the linear momentum of the Earth in the model:

P, .+ P, (momentum of liquid core and inner core )

= My (i) + o, ﬁ ioudV

i,
=i M by + T/;CV\dl
Fp +F °,

3 A -
ts| — + - n db
[ r " :fcameice !

-

F + ndS
g p"_/cztm W]

' A e
F + ]CMBn(Pl — 5, V,)dS ]

i .
= - nPldb—(Fg‘f'po/

av,ds),
W JCAB CMB

using equation {19) and (21). For r in the outer core,

a3

4 A
V‘.-‘r) = ?C(p,c - po) -r—z teyF,

and at core-mantle boundary

03

, Ax A A
Vith) = ?C(o,c - ”o);.'z 84T

Then we have in equation (38)

F,+0, /Cmntlds =0, (39)

Since u-g =0 at core-mantle boundary, we can add a zero integral into (38), i.e.




i
= - (rate of change of momentum of mantle),
W

A
where N = - n at core-mantle boundary, points out of mantle. Because of spheri-
cal symmetry and homogeneity assumption, neither inner core nor outer core exert
a gravitational att-ac .on on mantle, then

!
P+P,.= - [iw (rnomentum of mantle) ]

= - momentam of mantle

= ~iwM_(—). (41)

So by neglecting ¢ we fail by a small amount to conserve momentuin over the

whole Earth.

From equation (30) we see that the only non-zero coefficients of the solution x are
A, and Bl‘ It can readily be proved by spheroidal and toroidal representation of
displacement fields in a spherically-stratified Earth that the only possible con-
tribution to change in location of centre of mass of the inner core (or the whole
Earth) is from n = 1 spheroidal terms. This is the basis of Crossley’s (1975)
description of the Slichter mode as the first undertone of the n = 1 spheroidal

modes.
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Our simple model is still very far from representing the Larth reahstically. To
model the Slichter mode more rigorously. we are going to relax those three restric-
tions (assumptions of a non-rotating reference {frame, homogeneous and incompre -
sible outer core and rigid inner core) imposed on the starting model and try to
find the effects of each restriction on the Slichter mode. Thus we arrive at a rela-
tively more realistic Earth model (i.e. rotating, compressible. n-utrally-stratified
outer core and homogeneous elastic inner core). By [urther generalizing to non-
neutral stratification of the liquid core, we allow negative buoyvancy force 1o exist
there, so all corresponding undertones {of longer period than the first) will appear.

But we will not explore those undertones in the present study.

3. THE SUBSEISMIC WAVE EQUATION IN THE LIQUID
CORE

3.1. The Subseismic Approximation

Several researchers (e.g. Busse (1971), Crossley (1975), Smith (1976)) have shown
that taking off any (or all) restrictions on the simple model discussed in previous
section will greatly increase the complexity and computational difficulty of the
mathematical approach to the problem. While removing some restrictions can be
said only to cause minor difficulties in analysis and computation, the effect of
taking rotation into account is to introduce difficulties which are very grave. From
previous review we see that the classical approach to free oscillation theory is to
represent the perturbation fields as a superposition of spherical harmonics. The

weakness of the spherical harmonic representation for such long-period oscillation

(gravity/inertial) modes is that the presence of Coriolis force due to Earth’s rota-
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tion couples the resulting sets of ordinary differential equations in the liquid core
into an infinitely long chain with coupling parameter of order 1 { ~ 20/.), trun-
cation of which is almost certain to raise serious questions about +onvergence. So
far all attempts to include more terms in the sphericai harmonic expansion have
been severely limited because of the ~~sulting computational burden. For example,
Crossley (1975) and Smith (1976) carried the coupling chain of spherical harmonic

representation only as far as n = 2 in the liquid core.

In the hope of overcoming this particular ifficu.ty, Smylie and Rochester (1631)

suggested [iltering out acoustic modes by neglecting the effect of flow pressure on

compression, compared to the effect of displacement  ough the hydrostatic pres-

sure field. In the liquid core, the perturbation pressure P, is governed by equation

of state

P,

n
= Vu-ug,
o

which can be written as

Pl ug,
—Vu=—+ ' (43)

2 2
P 0 a

wlere a is the compressional wave speed. By applying subseismic approximation

(Smylie and Rochester, 1981), (43) reduces to

“.50
Vg = — —,

a

which is valid only as long as




Pl 9
| =1 < lug,, o”|V-ul, (15)
(/]
ie.
v+ V| < [ug,), |V, (48)

using Pl = "o(“ + Vl).

We assume that the simple model considered in section 2 is a good first ap-
proximation for evaluating eigenperiod of the Slichter mode. This suggests that
results obta‘ned there can be used to estimate y + Vl and u-g_ in (46), with which
to test the validity of the subseismic approximation as we approach a more realis-
tic liquid core model. Because the simple model assumes incompressibility in the

liquid core (@ — o0, V-u — 0), the second term in (46} is not directly involved.

Taking u, x and Vl in the outer core from (24), (31) and (37):

. lv goaa6 3
u-so=—9or'(:§ X )=E’—_a3(l —r—aicosﬁ, (47)

2.3
w, 80 ppc Pgd
=l

(1+f)° %P0 b°—a

)] cos . (48)

Then for subseismic approximation to be valid the following relation must hold:

A_g3 & 3

°IC
w2l = <=5 (49)

=

go /] 63—03

Clearly the difficulties will be greatest as r — b. For T = 4.94 hr, r = 0.9, and
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r ’1c
g(r) =98 ms? wehave. x353x1071s e 32x10%s 2, —= = 106,
o o
3 3 .

"=~ 072, and (1 —=) ~096. Then LHS of (36) ~ 13X 10~2, RIS of (36)
b’ ~a

LIS . _— C
=z 0.271, i 18X 1072, ie the subseismic approximation in liquid core

dynamics involves an error of less than 5% (even fairly close to the core-mantle

boundary).

The error estimated here is rather large, compared to the expected error of order
0.17 frem the sculing argument of Smylie & Rochester (1981). A more reliable
calculation of the error inv slved in the subseismic approximation would require
using the «, Vl, u-g_ for the neutrally-stratified compressible outer core obtained
by invoking that approximation (rather than the more stringent one of incompres-
sibility). This would probably show that subseismic approximation is considerably

better than our simple estimate suggests.

3.2. The Subseismic Wave Equation

Now the equation of state takes the form of (-{4), which can be written

V(pgu) = 0,

where o, is a modified density function (Friedlander, 1988):

rl
p30) = 2, (r) exp ([ —stridW,)

rl
= o (a) exp (—L —zgo(r)dr) for spherical stratification ,
a
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where 4(r) is the stability parameter of the liquid core, which measurcs the size
and sign of any departure of the density gradient from purely adiabatic stratifica-

tion (Pekeris and Accad. 1972).

On substituting (44), the mon.entum conservation equation (23) becomes

A 3
—ueu+2iunqu=—V\+—ngou~go I2)
R

A
where .’k is the angular velocity of :he uniformly-rotating reference frame w~ith

respect to which displacements u are measured. Equation (52) can be abbreviated

as
1 ~
u =TT-F-V\, {3)
w*(e*—1)
where
- (54
0—20 H4.a)
~ D1 AN C*C Y ~
l'=a'l—kk-——B-+kal (54.0)
C=lh((lz-go)-azgo+ iai)(go (54.¢)
22
a'w' A 2 2 A 2 .
B='ﬂ—(a"—l)+a g, +(k-go) (74.d)

(Rochester 1988, Smylie & Rochester 1981).

By combining equations (50) and (53), we obtain the subseismic wave equation

V-(p}Fv) =0 (55)
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(Rochester, 1939), which is subject to the boundary conditions appropriate to the

model adopted.

V)| satisfies Poisson’s equation in the liquid core

v2vl = 411GV (p u)

= 42G(Vp u + poV-u).

But the density of .%e liquid core is subject to the foll~wing equation

po
vPo = (l'—j)—,;sol (57)
a

where a is the compressional wave speed in the liquid core. Then by using equa-

tion (57) and equat‘on of state (44), the Poisson's e;; ticn becomes

u-g
v — 2
V‘l-——‘hcpod pat

a

3.3. Neutral Stratification

For a neutrally stratified outer core, I" reduces to the Poincaré dyadic
-~y o A ~
I"p = o°1 = kk + iok x 1

and p}(r) = 5 (r). Thus (55) reduces to

V‘(ool‘:;,-vx) =0
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or pr = 0, where Lp is a linear operator. Now as 3 — 0, b, (r) satisfies
La: lace’s equation in the neutrally stratified liquid core, i.e. V"!Vl = 0. This
result w:ll be seen, in next section, to have such advantages that we will hence-

forth regard the liquid core as neutrally stratified.

4. ELASTODYNAMICS OF THE INNER CORE

The assumption of a rigid nner core has greatly simplified our analysis of the
problem, but at the same time led us away from reality, especially for the Slichter
modes which are generated by irner core translationel oscillation. Elastic defor-
mation of the inner core reduces the effective gravitational restoring force in the

oscillation, thus increasing its vibration period.

4.1. AJP Deseription of Elastle Deformation of a Rotating,

Homogeneous Inner Core

For simplicity, we consider a homogen~ous, spherical elastic inner core in which
Lamé parameter ), rigidity » and density , . are constant throughout. The

gravity acceleration g (r) in this homogeneous sphere is

g(r)=rr,

where

I’=-é-GpIC. (62)

In a uniformly rotating reference frame, the inner core undergoes an elastic defor-
mation responding to the force Fp, i.e. to the intermediary potential x. The equa-
tion of motion of the inner core in the deformed state is expressed by equation (8),

with p = Prc @ = Uyc




B o A
= bWyt pr,(, !)quIC

= U7+ 0,cVV, + Viopou c8,) — 8,5 (0 )cu0)

But ¥y, = 0 here since we have assumed a homogeneous inner core, )

2 . »
-t .;‘I.IIC + Ztupl(. nk x u,-

= VT4 0,-VV) 4+ 0cV(08) = 0108,V Ve

~ 2 : "

= oVl 8 = 2) VY,

which can be written as
(0 + 20T u e = 4T X(T XU;)
N
= = pyouyc + 2op o Tk XU+ 01 8,V U

=01V (8 8)) = 2;cV V)

The displacement field u, ., must satisfly equation (66) and Poisson's equ.:tion

VQVI == 4'GpICV'“lC' (67)

Following Alterman, Jarosch and Pekeris (1950), we represent u,. and V, in

spherical harmonics as follows:

© n
v = E Z (u:'; + rv"mV - t;"rXV)Y;",

n=() m=—n

= z Z: ’nm(')}}nn’

n=0 m=—n




and use tl.eir y; notations to denote u:'. v:' and db:', each of which is a function

of r:

m
yl—un'

Yy =t
m
y5 = ¢n '
dy,

Y= ~ U0~ Y,

dy, 2y,—nin+l)y,

Vo= z Z (= —-r——n;".

n=0 m=-n

Y- Y,
VXu,,= Z Z {- VX(r(——+——— i

n=0 m=-—n

n(n+1) d
- .[—7—% + ;;(ry.,)?l};n}.

Define y,, y, and yg as

2y,—n(n+1)y, dy,

)+ 2#;:, (73.a)
Y3=4
y‘ = ”(F - r )’ (73'b)
dy, y,
Yg = P(__T) (75.)

We now substitute (68)-(73) into equations (68) ana (87). Crossley and Rochester

(1980) showed that the latter can be written, for n = 1,
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LA 3 3 o (2) dys -
T+2—H+u yl—-2,;rl[my3 - g{m+-)y7 ]+l'(y1—2y3)+-‘7:==0. {74)
o, B4 : 3 21y 2 % o .
TA-}—-r- ;i-"_(r’n+u ys—un[m(yl+y3)+g1m+ )y7 ]-r Bt i (75)
9 1 2
r [-—('y-,( - ._ —y N+ y-,(‘)—gw!?[my-,"’—(‘l—m)(y,—y3!l= " (76)
1 & 2 i}
-——(rys)——-y,)—-'}l'A (77)
where
dyl
A= _; + 2(3/["!’3)/'9 (78)
dy3
H=-J'r__(y1'-y3)/r» (49)
. A2
al= -—":, (80)
PIC
§2 = ——. (81)
°I1c

a and B are respectively compressional and shear wa speeds in sc:id inner core.

N.te that in (76) we take into account only self-coupling by dropping terms in y,

and y, of degree 3. Superscript (2), which will be dropped later, indicates degree 2.
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4.2. Boundary Conditions at ICB and a Load Love Number

If we represent x as

1r,9,¢) = E E \"m(r)F':(coaH)e'.mé.

n=| m=m—n

the boundary conditions prescribed at inner core boundary are

y,(a) =9, (83)

Yoia)
ray,(a) — y¢(a) — m =y, (a), (84)
3ry (a)
ysla) = - ;ys(a) e y,la. (85)

which are based respectively on continuity of the shear stress, of the radial com-
ponent of the normal stress, and of the gravitational potential and gravitational
flux across /CB. Here we emphasize that by assuming the liquid core to be
neutrally stratified, th- subseismic approximation permits us to take V, as har-

m-nic there.

Now by analogy with the Love number concept from Earth tiles analysis we

. « m .
represent the degree-1 radial displacement u," at inner core boundary as

x, (a)

urlo) = (o) = K"




where h;n 'is a load Love number of degree 1 which describes the di;ylacement of
the inner core in response to the ‘intermediary potential’ x. Load Leve nrmbers n
> 1 ccald be similarly defined by the response u:'(a) to the Ic d \;"(a), but for

simplicity, we here neglect all fields of degree n > 1 in the inner core.

Upon substitution of (86) and use of boun.ary conditions (83)-(85), we can solve

equations (74), (75), (76) and (77) to find the load Love number u: ‘. For details

see appendix A. Here we write the solution

1 s,a) w(u-—QmD)p,C
—_—=1- - (1+€),
h;" , rc rpo(a)

where e is the elastic correction factor

fagfa) — Soic  2mg
{ Jl_ — )}}2

1-
werre l rof’o(a)1

e~

2m
5(1-7)(1-—_3)
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In the case of rigid iuner core, a — o0,e — 0, (88) reduces to

po(a) w(w-—?ﬂlﬂ)plc
I (a)

If further let 2 — 0 in (80), we get A, for the case of non-rotating, homogeneous

rigid inner core limit
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5
90(0) w P]C

. 1
X =1- (91)

Pic rPo(a)‘

(with m dropped because it is superfluous when rotation is ignored.)  Using (5),
(31), (34), (61) and (62) it can be shown that (91) is consistent with the results of

section 2.

5. VARIATIONAL PRINCIPLE FOR THE SUBSEISMIC WAVE
EQUATION IN THE LIQUL) CORE

o.1. Establishing a Variational Principle

We appeal to a variational principle to solve the subseismic wave equation (55) in
the liquid core which is assumed neutrally-stratified and compressible. We define

the functional

= * 14 0
F /ch Ldv, (92)

integrated over the liquid core, with LP given by (60). The variation

6F = LV + *[ &dV. 93)
ﬁcx Lp\ /ch N (

We wish to show that if §F = 0 (i.e. F is stationary) for arbitrary é, then y must

satisfy the subseismic wave equation, i.e.

pr =0, and (pr)* =0. (94)

From (93),

oF — /Lc[éx‘pr + 51(pr)‘]dv
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==/LC[X"LP5X — &(L X))V

= [Ty T = AT Vv

= A *p I - - .
—[LCIV (x pol"p Vc‘\) pon l'p Vi

+ puva.Fp *Vy* — Vi, Fp*-V\‘)]dV. (95)

From (59) I"; is Hermitean, so this last expression reduces to
Av*s P . D — E K v IV A g
/;CV (x ’, I'p Uy fxp, I'p Vi*)dV

"‘I‘ Véy —-¢ ""V *IndS
ICB+CAfB Po[\ X A t J

—_— TR o NN R A T
_/;C'Bpoh I’p &x E\FP x*|rdS

s [\*4u-t) — sxu-£}dS,

'2 2]
+ 3021
“Ao™=1) [ 5o

= — o¥o%-1) /1 ool () — P (081, (96)

using rigid-iixed boundary condition on CAMB. Substituting (86) and (87) into

above result, we finally have
- * * r
F = [ ot L+ Ly

P( ) . :
= Yo" —l)—— o (a)P] €™ — (ex)x | H(a)P] e~ *™0]dS

() IcB

"0,(a)

= —n——(—)—— gt (@5 @) = S Tan T @)P)dS

=0, (97)
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using the orthogonality properties of the spherical harmonics. This establishes the

validity of the variational principle based on the functional F. Now

= * dV
T v Y,
/LC‘ (v P Mol
—_— 0 * . — *. . -
—/LCC (x Polpc)()‘” ﬁcﬂock IpC\d‘

= *p B-FUxdS - Vi T TrdV
icg+cas” fo P /Lc’ ot p Y

_ N2 3. - I g
=—uo l)p"(a)/lCB\*rudS /choV\* r, Thdl’

The surface integral in the last expression,

—HoP-1 *f-udS
w(o )po(a)/lCB\ r

KT o (a)’

oc q
22 Pe —ipo MM |\ tmo
w0 l)—go(a) ﬁCBZ E Y P:(t)e Y i’;’(r)e drdo

¢=0 p=-¢q

n 0 h;n'po(a)02 had m m 1
= RoP=t) o 3 \Tlang ez [ PP ks
o7 o=lml

(14m)t v (" =1)s fa)a
T(=m) Gope

AT (e,

where z = cos6. The final form of the functional is therefore

(1+m)! WX (e®=1)p (a)a
T (-m) G

A e - /wpov\*-'r}vxdv.

As mentioned eatlier, when we lete — 0,2 — 0 and p (r) = o la), we reduce to
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the simple model of a non-rotating, homogeneous incompressible hquid core and
rigid inner core. It must be interesting to test what result we will get by putting

those limits into the functional (100). Using (5) and (91) we have

1 41000(0)
h'= — = X (101)
pole) W 3(w,"—v0)

Prc rﬂo(a)
In order to avoid zeros in the denominator we build up a new functional by
modifing (100) to

v = AP A F \102)

When e — 0,2 — 0andp (r) = p (a), this becomes

2 m 2
u'po(a)alxl (a)}- (wa2—u2

)
— 2 [ — V *. "' . "
J = an® (a)| e - /LC *TrdV] (103)

65.2. Trial Functions and Boundary Conditions

The trial function x used in F need not saiisfy the prescribed boundary conditions
since the latter have been used when developing the functional (100). An explicit
demonstration of this follows for the case e — 0,2 — 0 and s,(r) = » a). By

choosing x as same as in section 2 (expression (25)), we have

Bl
yla)=A,a+—, (104)
a

and

U *-VdVv
/LC VVy




B
/ {4, (n+|)——][q4 I {qr P ()P (1)
7

Bn (1-r )dP(:)dP(z)

) 2 dr

yre *drdrd

LA

9

pin+l a.u+l B -

E ———nA '+(n+l)(———]

n+l

) wzpo(a)a B, )
2= po(a)[ 307 (Ala + ';;)

0o pin+l _gn*! B"

— (v, —-uz)z ————-———(nA 2+(n+1)(———)].

n +l
n==0 )

For J to be stationary,

aJ oJ

—_— =0, =0,1,2, - - - 107
EXY " (107)

n

From (107) we find that the only non-zero quantities are A, and B, which satisfy

(108.a)

(103.5)

A non-trivial solution requires the determinant of the coefficients of A4, B, to

vanish,

0, w=w,, (.08)




ud
or w= -, (110)
(+n'/?
Root {110) is identical to (34) in section 2, but root (109) was not predicted by
simple model analysis. However it is clear from (101) that this root is just a math-

ematical by-product, since w = w, makes hl' — oc, which is physically inadmis-

sible. Substituting (110) into { 108) we find Al = ZBl/bs in agreement with (30).

The fact that we have obtained the correct expression for the Slichter eigenfre-
quency and eigenfunction by invoking the variational principle based on (73),
using a trial function which does not satisfy the boundary conditions in advance,

is evidence that we can do the same when we use (100).

6. DENSITY PROFILE IN THE LIQUID CORE

6.1. PREM Density Profile in the Liquid Core

For density distribution in the inner core and mantle, we have adopted the PREM
(Dziewonski and Anderson, 1981). As written in section 3, the density gradient in

the liquid outer core is given by

Vo, = (1-p)p 8,/ a>. (111)

For a spherically-stratified configuration, this becomes

dp

— == (1=t 9,/o", (112)

For a neutrally stratified liquid core, # = 0, i.e. the Adams-Williamson condition

is satisfied. So far we haven't known exactly what g looks like in the liquid core,
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but many authors have taken constant value of 1t through the liquid core for ccn-
vepience (Pekeris and Accad 1972, Crossley 1975, ete.). It has been pointed out
that the liquid core density profile might be more complicated than this. A more
realistic model might be stable in some region and neutral or unstable in other
regions. For example, Kennedy & Higgins (1973) and Gubbins (19582) suggested
that it is unstable and convective ( 4 > 0) near the inner core boundary, and
neutral or stable (8 < 0) in the rest of the outer core. PREM (1981) is so con-
structed that it has an almost neutrally-stratified outer core, tending slightly
towards stable stratification near the ICB and slightly towards unstable stratifica-
tion pnear the CMB. Table 1 lists the density and 3 distribution in the lignid core
for PREM (1981). Note that the density coefficients here are modified to use a

radial variable u = r/b.

8.2. Modifying the Density Proflle to a Prescribed 3

In Section 3, we have assumed the liquid core is neutrally stratified. Consistent
with that assumption we wish to modify the PREM density profile so that it is ex-
actly neutrai. We will do this as a special case, with the method we now develop,

for fitting any prescribed 5.

From (112),  is expressed as
a2 dpo

f=14——, (113)
b9, dr

then 8, computed by (113) using our density profile, should be reasonably close to

its prescribed value everywhere in the liquid core.
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In order to reduce numerical computation error and make our analysis easier, we
first scale the density function in the outer core in such a way *hat average den-

sity of outer core is unity, i.e.

. 1
4nb p*u2du
«'./b

[42(b3—a®)/3] B

that is, the total mass of the outer core in this non-dimensional :ystem is numeri-

cally equal to its volume

1 4z
4n® / o*uldy = — (b3—a%),
afb 3

where u = r/b, @ and b are inner and outer core radius respectively, p* is dimen-

sionless density after scaling, which satisfies the relation

b, = pp*. (.18)

Here scaiing factor 7 is the average density of the outer core before scaling

M

=
4x(b3-a3)/3
Similarly, « and g, in (113) can also be scaled into dimensionless quantities

= a ", (118)
9o = 9,9", (119)

where a, = a0), the compressional wave speed in outer core for r = 0, g, is

proportional to gravity at core-mantle boundary g o(b). With new variable u,

Yo 10 120
dr — bdu’ (120




then (83) can be rewritten
at? do*

p.g.“,—,"+u11—d)=0. (121)

For determining a best-fitting function p*, we us» a Galerkin method with weight-

ing functions u*! to build up following staternent

1 0:2 do*

_/;/b ui‘l[p*g‘ -“,% + u{1-4)]du = 0. for each (123)

We choose a representation p* as

AY
*_ d"'uj_l
g Z J !
=1

then

N
M=% (j—l)dj‘u"z,
=2

substituting (125) into (123), we form a set of non-linear equations

N
E dj‘_4'.j= F,, i=12,--,N-1 (126)
=2

where
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1 a"‘! .-
A= -1) / o w34y, (127)
1 i-1
F.=- u'/;/b(l-ﬁ)u du. (128)

Applying an iteration procedure, (126) can be solved to obtain coefficients d*,,

d‘

g e d* .. Here we use mass conservation as only constraint to the problem,

leaving the total moment of inertia of outer core unconstrained (but this - »n-

straint could eas:ly be added). From mass conservation {115), we have

A LT @ 120
)3 jﬁ/bu u=z0-) (129)
J=1
Thus dl* is found to be
N
d*=1-3 !1--*- (130
72 pres ()" ), (130)
where
aa__l
y={1-=)"" (131)
b3

Note that in the iteration process for solving the non-linear system (123), we use
previous results of dj""s to compute p* and g*, so A.-J. can be integrated numeri-

cally. In the outer core, gravity at ris

GM,, 3GMy, N d;*
94N ==+ ’Zk ut? — (a/6)*?) (132)

3 9
.ub b
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we write this as

3G(M, + M, )
g,lr) = - g* = 3g [(blg*. (133)

where g (3) is the gravity at core-mantle boundary. Then scaling factor

g9, = 3¢.(b), (134)
and
N d.* \ N d.* a,
-_— — — -— — - +2 e
(1 5)72 et t l (1- ehz LD » ], (135)
k=1 k=1
where
‘ M, .
§ = e em— o
MictM

We also adopted o(r) in the outer core from PREM (as written in section 1)

4
alr) =Y el (137)
=1

By definition (118) we have

4
at=5 e tul~l. (128)
=1
where
¢ 0
a—(l_?) . (139)
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4 r
I~ 1
b= d, V", (140)
{==1

where dl = 12.5818, d,2 = -1.2638, d3 = -3.6426 and dq = -5.5281. By definition

(1186)
N )
=Y dj‘u’—'. (141)
=1
where
d; g
221
d; b'(R)r' (142)

For N = 4, we can choose starting vaiue as dl‘ = 1.154193, d,_,‘ = -0.063328,
d,* = -0.0997012 and dq" = -0.0826488. But from computational experiments we
have learned that for a good g profile (10" can be considered as a gend ap-
proximation to prescrived zero value of 3 in neutrally stratified case), /N must be
expanded to at least 10. The starting values of d.*, dg*, ..., d,,* can be chosen to
be zero. Iteration is stopped by examining the difference of computed and
< r

prescribed A value at chosen points in the liquid core, say Id—"preacribcdll'

where z is a pre-chosen error limit. In our case, Borescribed — 0, we choose z =
0.5% 10>, Table 2 contains computed density coefficients dj"s, the density dis-
tribution and the g distribution {(which is evaluated by using computed density
profile) for a neutraliy stratified liquid core. For non-neutrally stratified cases, one

only needs to prescribe A(r) as a function (e.g. linear or non-linear), then cor-

responding density coefficients will be produced by the same procedure as in

neutrally stratified case.
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Table 1: Density and 3 Distribution in the Liquid Core for
PREM(1981)

---Density Coefficients---

d, = 12.5815
d, = -0.6903
d, = -1.0868
d, = -0.9009

---Density--- --3(u)---
(% 103 kg/m?)

0.35101 12.166332 -0.02822
0.38346 12.106194 -0.01828
0.41591 12.041584 -0.01052
0.44835 11.972318 -0.00484
0.48080 11.898212 -0.00088
0.51325 11.819080 0.00134
0.54570 11.734738 0.00240
0.57815 11.645001 0.00247
0.61060 11.519684 0.001%2
0.64305 11.448603 0.00067
0.67550 11.341572 -0.00073
0.70795 11.228408 -0.00213
0.74040 11.108926 -0.00316
0.77285 10.982941 -0.0013%8
0.80530 10.850267 -0.00473
0.83775 10.710721 -0.00431
0.87020 10.564118 -0.00201
0.80265 10.410273 -0.00035
0.93510 10.2.49001 0.00361
0.96755 1.080118 0.00917
1.00000 9.903438 0.01655
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Table 2: Density and 3 Distribution for neutrally stratified Liquid Core
---Density Coefficients---

d* = LI547830
d,* =-0.1180724
= 03201199
=-15822028

= 30509420
—-4.0044424

= 37203018
—-2.2307839

*+ — 07866311
d),* =-0.1260219

===U-- ---Density--- - u)X 105.--
(=r/b) (% 10° kg/m?)

0.35101 12.168237 -0.102434
0.38348 12.109420 -0.177723
0.41591 12.045681 0.014823
0.44835 11.976896 -0.031802
0.48080 11.9026°7 -0.120505
0.51325 11.823764 -0.130272
0.54570 11.739219 -0.062772
0.57815 11.649221 0.001734
0.61060 11.553662 0.025610
0.64305 11.452420 -0.001624
0.67550 11.345361 -0.030754
0.70795 11.232331 -0.047418
0.74040 11.113152 -0.020070
0.77285 10.987622 0.017656
0.80530 10.855506 0.048758
0.83775 10.716534 0.028150
0.87020 10.570393 -0.006532
0.80265 10.416724 -0.042587
0.93510 10.255109 -0.019283
0.96755 10.085067 0.031823
1.00000 2.906041 -0.102484




15

7. SLICHTER MODE EIGENFREQUENCIES: NUMERICAL
RESULTS

When using the variational principle based on (100), we have F as a functional of

X

F = F(x). (113)

Upon choosing a trial function \, we can find eigenfrequency for the Slichter oscil-
lation by requiring functional F to take an extremal value. Initially we chose a
trial function as

In(r a) I;r(r—a)

N b
= Z Z [cos + 1sin ]P’"(co:. g)e'™?,

=1 n=I

but some extra (false) roots were obtained besides the true one. The situation be-
came worse when we increased N, L. Thus it is apparently important to choose a

trial function which has a form more directly suggested by the analytic solution to

the simple case (non-rotating, homogeneous incompressible liquid outer core, rigid

inner core), as shown by expression {25).

Based on this idea, we now choose the trial function to have a form

N-1 L

x(r6,0) = E E dj+(2N—2)(l-1)r j"N"'”P;"(cos 6je'™?
=1 I=1

IN=-2 L

_N_ .
*Z E +(2N=-2)(1-1)" ( l’l":"(cosa)e""*",

=N =1




(2N-2L
drde) =Y e,
k=1

where

ip =, |

<5<
<J<

v= j—(N+1) for 1
v=j—(N-1) for N

k= j+(2N-2)(-1)

N and L are pre-assigned integers specifying the truncation levei for the powers of

radius and degree of Legendre function ruspectively. Then the functional has the

form

(2N=2)L (2N-2 1.

F= Y Y 444,
j=1

k=1

For F to be extremal, we require that

oF 0 1,2 2N=-2)L
ad— ' p= 7;"'v(1_)
P
that is

(2N-2)L
Z dj Hpj= 0, =12, .- (2N=2)L

=1

HD=0.

For non-trivial D ,

Det( H) = 0.
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Frequencies which satisfy equation (152) will be the eigenfrequencies of the Slich-
ter mode. Table 3 contains results for the various cases discussed here, using (i)

PREM density function, and (ii) density function calculated in the present study

to ensure § = 0.

8. DISCUSSION

The Earth model we have considered in this study is simplified, but has most of
the essential aspects to satisfy our requirement for numerical investigation, hence
the results presented here can be regarded as a complement to or as extension of
previous research on ine Slichter mode, and in particular a good demonstration of
the utility of the subseismic approximation in a long-period caiculation. Qur ach-

ievernents can be summarised as follows:

(1) One of the principal achievements of this study is to demonstrate the utility of
the variational principle in long-period free oscillation calculations based on the
subseis.aic approximation. The main advantage of adopting a VP is reduction of
computational effort, especially since integrals involving second derivatives of x
can be eliminated from the functional by using the 'natural’ boundary conditions
(26) and (87). For a neutrally stratified, compressible liquid core, the remaining in-
tegrals can be evaluated analytically. Even for a non-neutrally stratified 'iquid
core, only one integral needs to be solved by numerical integration. Of course in
order to ensure that F provides a variational principle, the linear operator Lp in
our partial differential equation must be Hermitezn, and the boundary conditions

(26) and (87) ensure this.

(i) A second major achievement of this study is that the effects of higher har-
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Table 3: Eigenperiod of Slichter Mode (in hr)

. Using density function of the liquid core from PREM
N.L non-rotating rotating
m=+1 m=0

(1) Rigid inner core, homogeneous incompressible liquid core

N=2 [=2
N=31=4

4.938
4.938

1.381
4.386

4.854
4.857

(2) Rigid inner core, neutrally stratified liquid core

N=21=2
N=3,I.=4

4.968
4.968

4412
4.415

4.880
4.884

(3) Elastic inner core, neutrally stratified liquid core

N=2I1[=2
N=3,1=3
N=4,1=—4
N=5,1.=5
N=6.I=6

5.411
5.412
5.412
9.412
5.412

4.755
4.759
4.759
4.759
4.759

5.2906
5.301
5.301
5.301
5.301

II. Using density function for a strictly neutral liquid core

JV' I/

(1) Rigid inner core, homogencous incompressible liquid core

N=2,L=2
N=3,IJ=4

non-rotating

4.945
4.945

m=+1

4.389
4.391

rotating
m=0

4.860
4.863

(2) Rigid inner core, neutrally stratified liquid core

N=2 =2
A’=3,11=4

4.974
4.974

4417
4419

4.886
4.889

(3) IZ1a: tic inner core, neutrally stratified liquid core

N=21=2
N=31=3
N=1I=4
N=53 =5
N=6.1.=6

5.420
5.420
5.420
5.420
5.420

4.761
4.765
4.765
4.765
4.765

5.304
5.309
5.309
5.300
5.309
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monics in the displacement field of the liquid c¢ore are readily taken into account.
In our numerical calculation, we have effectively extended the cow pling chain
beyond Crossley {(1975) and Smith (1976), and have clearly obtained convergence
to 0.02°% by going to L = 3. By choosing simple models of inner core and mantle,
we have been able to focus our attention and computing effort on the -~presen-

tation of the field y in the liquid core.

(1ii) It is significant that carrying terms in the trial function beyond L = 3 yields
no change in the eigenperiod (to within 0 02°¢). This would appear to confirm a
result of which Dahlen and Sailor (1979) were uncertain, namely that second-order
perturbation theory is accurate enough to give the effects of rotation on the eigen-
period of the Slichter mode (which these authors describe as | S,). This follows
from the fact that L = 3 represents taking the second stage from L =1 in the

Coriolis coupling chain.

(iv) For the first time we have estimated the numerical error committed in adopt-
ing the subseismic apyproximation for a particuli.r long-period mode. A better (a
posteriori) estimate of error would use the computed eigenfinctions for v (and
from them the appropriate V| and u-g,). but we reserve this for later study.
Meanwhile the computational advantages of the subseismic approximation impel

us to go ahead with calculations based on it.

(v) This study shows that choosing a proper trial function is quite critical. As we
discussed in Section 7, one should be guided, in choosing a trial function, by the

form of solution found for a simplified model. If a very different trial function is
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used, its own unnecessary coinplexities may (as in our experience) introduce

destructive inputs.

(vi) It was also demonstrated that it 1s easy to separate the eifects on the eigen-

perind of rotation, of elasticity of the inner core and of compressibility of the

outer core. In programming, this is controlled by appropriate parameters. The ef-
fect on the Slichter eigenperiod of liquid core compressibility is much smallc-

(0.6C5) than that of elasticity (9%) or rotation (splitting by 12°¢). Our results

reproduce one noted by Smith (1976)

wiin=+1) + wim=-1) < 2{m=0).

The 5-hr-eigenperiod Slichter mode found in the study appears to be the only un-
dertone which exists in a strictly peutrally-stratified liquid core. Higher undertones
can be obtained by extending the search range in conjunction with a properly
modified stability parameter 3. By ‘properly’ here we mean that it will ensure the
(negative) value of 3 does not make the integrand, in one of the terms of the func-
tional, singular at any point in the liquid core (otherwise the variational principle
must be replaced by a Galerkin procedure applied to the subseismic wave equa-

tion).

As mentioned earlier, our model is still far from reality in representing the Earth.
For further understanding of the translational inner core oscillations, we should
try to include more natural properties of the Earth, roughly in order of probable
importance: mantle elasticity, non-neutral stratification of the liquid core, higher-
degree displacement fields in the solid inner core due to Coriolis coupling , and el-

lipticity of the Earth strata. It would also be interesting to compare mappings of
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eigenfunctions obtained by applying the subseismic approximation, with those »f

Crossley (1975) and Smith {1976). Finally, the subseismic approximation itself

could be replaced by the exact two-potential description of outer core dynamics

suggested by Wu and Rochester (1980).
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Appendix A

LOAD LOVE NUMBER h"’
OF THE INNER CORE

The dynamics of a spherical, homogeneous, rotating, elastic inner core is governed
by equations (74)-(77), and boundary conitions (83), (34) and (85). The procedure
we follow is an extension of that outlined by Lapwood & Usami (1931, pp. 87 - 88,

219 - 220). First we do transforms
4 75, 74 0
(Fir(@3i] = (74)}/r =0,

d 2 _ 2 o
[dr+;](‘4)—;(u)— :

we get

3 d 3
B2LH + oo — mumH = (I + mu)d + w{m+2)(=+ Yy,
5 dr r

9 9 6 d 3
a®L A + (' + 4NA = 2(r + mu)H — —(m+2)(—+ =)y,
h) dr r

Equation (76) and (77) can be written as
L2y7 + 32!/7 = t2(y1 - y3)'

Ly, =3ra,

where L, and L, are linear operators L forn=1,2




n{n+1)

r~

a wl{w-mn/3)

="
g

wm-2)
3s?

8

¢2

1

Eliminating H from (a.1) and (a.2), we have a single fourth-order ordinary dif-

ferential equation in A:

w(w—mf) e 2(r+mun)2
J[L, + —J
62 a2 azd‘

ir
(L, + 1A -

Buwm+2) Aw—3mn)-2r d 3
+ —[L, + ( +<ly-=0,
5a° r

.d2 jc.r

which suggests a combination of spherical Bessel functions as a solution. By refer-

ence to Pekeris & Jarosch's (1958) analytical solutions for a u.iiform non-rotating

sphere, we assume here
2
A= Z Ajp,r) + Bjlar)
=]
2
H= Z L'.jl(pl.r) + Aljl(ar)

=]

2
Yy, = Z Q.‘j-z(p,'r) + Rj2(81‘)

ymm]
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2
Y1~ Y3 = Z K.‘jz(pir) (a.6.4)

=1

Substituting (2.8) into (2.1) and using the recurrence relations

djl(p,'r) | I .
dr = : ]l(Pl-f) - p,‘]g(p‘r)
djz(p.'r) 3 . .
— = = Jolpyr) + Py (Pir)
we have

o 2 3

[w{ v—m0) — B‘p.."]L'. = (r+ mwA; + ;wﬂ(m+2)pl.Q'.. (a.7)
LI 3

[wlw—mn) — 38°|M = (r+mw)B + -s-wn(m+2)sR (a.8)

Similarly, from (a.2) we have

” 6
[} + 48— o%p A, = 2 + mu)L; — -S-Jn(m+2)p‘-Q|., (a.9)
2 a0 6
[w° + 45— a*s°|B = r+muw)M — ';w()(m+‘2)sR (a.10)

and from (a.3)

(6° - p1Q; = 'K, (a.11)
N ie.
*K;
Q.=—. (a.12)
g sz_piz

From the definition of H, we capn write




d
;(rys) =y, + rH. (a.13)

Differentiate (a.13) and use (a.6),

2 2
Ll(ry3) = E (A" + 41’,‘) ].l(p,"') - rz p,'L.' j.z(P;")
1=1 =1
+ (B + 4M)j, (sr) — reMj,(sr). (a.11)

By observation we know that the solution of (a.14) has the following form

ry3 = fljl(p,'r) + fgrjz(p,'r) + fsjl(sr) + f4rj2(3r)- {a. l-r).l)

Then
Ll(ry3) == flLljl(p"r) + f2Ll[rj2(p.-r)]

+ fL,4,(sr) + [, L [riyler)], (a.15.2)

where
Lyjylp;r) = —p%i\(p;7)
L jy(er) = — 8%j (ar)
L,lrifpr)l = 2.3 \(p;r) = B riglp;r)
L,[rjy(8r)] = 285 (sr) - 82rj2(sr)

By substituting (a.15) into (a.14), the f's are found to be

2 A,.+2Ll.
h=-Y — (a.16.1)
i=1 Pi
2 L.
=S — (a.16.2)
=37

jem] !




B+2M

For homogeneous equation L, (ry,)=0, there is a gene-al solution like

F
ry, = Er +—,
.

so we finally have a solution of y,

2 4+2L
_E+———E > Jl‘p"r)

1=1

+Z—11pr)

1=1 P

+2M M
7 e + = ,(sr) (a.17)

Then y, can be obtained from (a.13)
d

w=gin-r4

1 2 A +2L

_F———-—Z

=1

)l(P,-")

B+2M
Jl(sr) + j,(ST‘) ((118)

+ E —Jm(p g

jo=]

Substituting y, and y, into (2.6.4). we have

3F 2 ASL B-M 2
-5+ _J (p;r) + Jok8r) = K j,(p;) (a.18)
R Y A=Y Ki,

=1 =1
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So we conclude that the assumption of {(a.6.4) is verified, with

mT oA
|
=

By putting (a.20) into (a.12), the latter yields
2 (A-L)

Pi(s*~p;’)
Then from (a.7) and (a."), we obtain two expres:ions for L /A,
(..'.’I)QI m2-4)

r+mol+———; =
L. 58'(8"—p..")

A; ) o (w)mi—g)
.J(.J—wﬂ)—ﬂ'p"-%-—-——n = "
33%(s”—p;7)

L. ' 553(32——;)'.2)

(«2)(m*—1)
2A{r+mod—s——7r—"
56-(8._}’;- )

These can be greatly simplified by examining

(«)(m*—1) < 10 1
) D — v '
5"'(‘2‘1’.") 5 g ISQ—P,-QI

(a.20.1)

(a.20.2)
(a.20.3)

(a.21)

(a.22

{a.23)

(a.24)

If we take wx~ 3.5 x107* s}, (i.e. T =5 hr), 0 =173X 107° s}, 4 =35x%10"m

-1

A2 .
s, a= 100X 10% m 5!, then («..7)2 ~53x1073 m2 pl.z has a size of 2x 107"

m~2, as suggested in Pekeris & Jarosch's non-rotating solid sphere dynamics
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(Pekeris & Jarosch, 1958), then |se—pl.2| is of order 2x 107" m™2, and RHS of
(a.21) is of order 2X 10710 52, whereas r+m.f and *+ U‘-u“!p'.2 are of order 10°°
s™=. Thus (3.22) and (a.23) can be approximated as

LI r+ m.

a o
i wlw—mn)=5"p~
WHar—op ?

2Ar+m.)

Li
A,

These give a quadratic equation in pl."3

4 'uz—mwﬂ w2+-U"‘ 9
Pi —1 o + 2 P
3 a®

l a B o
+ (s + 4N —m.) - 2Ar+men)’] = 0.
a“g*®

with roots

ﬁ2

Ao +40) (2 ~mun)-8(r+mun)® | 2y
- |

0252

Placing B = M into (a.8) and (a.10). two more related expres-ions are obtained

6 o -
g;ﬂ(m+2)aR =[—-w"—4r+ a-8® + 2r + mun)|M (a.29)

6
s um + 2)sR = 22 — mun — 8°8% — (I + mun)| M (a.30)

(3w? — a%8% — 25°6° — 4mu + NM = 0.
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This will bold only if M = 0, then B = 0, I? = 0 follow, and only two terms are

left in A, H and Yq of (a.6).

Equation (a.4) indicates a solution with form of

5= Nj|(P"r)-

Substituting y into {a.4), N is found as

_—3rz—

t=lp

. . . . J
Adding the general solution of homogeneous equation Lly6 =0 iey =Gr+ =,

gives

J : A4
Yy =Gr+ — - 31‘2: —le(p‘r).

r i=1

Here we are seeking solutions of y.'s which must be regular at r = 0 in a solid

sphere, this requirement sets J = O (F = 0 already). Hence

2 A+2L p 4

—E—-Z Jl(P r)+:—1,(p )

=]

2A+2L zL

—'E-—Z Jl(p r)+Z_JI(P 1),

=1 1=1

2 A
—Gr—3l‘z ——11 (p,7),
=1
A+L;
2 1.2(1),")-
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Substituting &, H, y,, 4, ¥, and y, 1nto equation (74), we obtain

G = (I'= J* + 2m.n)E,

SO

2 4.
Yy = (I = o2+ 2mun)rE — 3r 3~ — jtp) (a.38)

s=1

So finally we are left with constants .4, A, and E to be determined in terms of
\T(a) by the boundary conditions (83), (84) and (85) ( we have dropped an ad-
ditional boundary condition yg = 0 here since we ignored the Coriolis induced-

toroidal field in the inner core). As defined in (73) and (70),

dyl

Y, = 2+ ‘217;'
dy

=(a®=2%)o;d + 209 0 =

1

422 A, L
=a plC[Z Apr) - "‘E 12(p ) (a.39)

1==1 =1
dys Y3—¥,

2
=u [H + :(yl_y3)]

o 2 ) 2 2 Ai—Li
=orcly_ Linlpin) + 737 ——iolp il (a.40)




r) (a.41)

Since x'l"(a) is arbitrary, we set x'ln(a) = - Ia” to obtain yl(a) = h'l" ‘a. The

boundary condition (84) becomes

L;
2 A, {-Jolpﬂ) + —u - '—)Jl(Pﬂ)
=1
2 Prc L;

1
- ———[J,(p, ) - —;-—(l - —)J,(pa)]}
a* P8

i
wlw—2m NE

T —a= - 1. (a.42)

+

Whereas boundary condition {85) is

L, pola) | 2L,
Z A, {—-(l - "‘)J|(P a) — l——J,(p a) - —(l + ——v,(p a)]}

=1

’J(J—2mn) s (a) E

=0. (a.-43)
l
r brc 8

Using (86), we can get an expression of h'l'l ‘ from definition (a.34)

2 2L.

m, E l LI
hl = + v A [—],,(PO) —702(1 + I)Il(Pla)l (a.41)

l—l

Thus (a.43) will be reduced to
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2 A L

) ) wAw=2mn) E po( 1) m
25" ——{(1 = —)j,(p;a) — —=—h"
i'zl pi.az ."'- g r a P,C 1

E
(a.15) can be changed by substituting T from (a.44) into

rpo(a) m 2 1
— ———————— h L A — _.
b u(w--2mn)plcl 1 '—z:l '{p'aJ-’-(pfa)
-~ p.-z“gl t e—2ma) T o—2ma). _‘I.IJI pa)}.

Form equation (2.25) and (a.26) we will have

) 2r 201 r LI a'pi'
+ ——— + D —
Hw=2mii)

23% L;
- = ———— ] 4 ——),
uu—‘Zmn)}I wlw—=2mil) a* .4'.,

and this relation will further change (a.46) into
rpo(a) 2 l
n-—m A= Z A[—1j.(p.a)
wlw=2mn 1 Ypa'-?
( )plC' i=1 pa
1 a® 232 L

02 olo—2mn) I+ F I')Jl(P,a)]

Now using (a.49) to reduce (a.42) as

i A,-{'-l'jn(l’.a) - 02,-, :I—C-[Jl(pa)
=1 p.‘l ® ra* Po(a) !

45 1 Ll' . pola) m
-‘0—25(1 —I‘)JQ(P,")]} +1=- e hy "

and using boundary condition y,(a) = 0 to further reduce (a.49) as

(a.43)

“l.-"t)

(a.47)

(e.48)

(a.49)




lll(p a)])

Boundary condition (83) and equation (a.48) and (a.50) are basic equations from

which hm * will be obtained. Those equations cz.1 be rewritten into the form

L,' J)(p a)

ZAJIPG){ +2(l——)—am} (a.51)

1=1

2 Jlpa) ol 232 L,

A j (p.a){———— — 1+—-—)
El 'Jl(p'a){P'-aJl(P.-a) a?"-(‘:—‘lm{))l 2 A }

ry (@)

m

=[l-—

2 Jop, ﬂ) o2 ?ic e L
A S LS T
2 Ao ){POJ,(pa) gt Al

=1
ola) m
=—-ll+ hl ']. (0’)3)
’ic
By expanding j,z(p..a)/p'.ajl(p'a) in power series, we can make [ollowing ap-
proximation
jo(p'a) 1

—————~«—n+:)
paj,p)

where
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and other higher order quantities in (a.54) were omitted.

Defining .Aj,(p,a) = ¢, then from (a.51) we get

[1+3L'+ (1 L‘)]
-— e z — —
2a, YT
6, = — c,.
) 3ly L, !
14— 4r(l——
[+ 5+ AZH

Substituting (2.54) and (a.55) into {a.52)

t][BL“)-\-L(z} - BL(?')“.L“)]
po(a) r02 plcu(w—‘lmn)
— [V — m, y 5
T e 0211 Io la) Ay Xy

Similarly (a.53) turas to be

e [E(X,(2) = Ej2)¥,(1)]

p,(8) rq2 o la)
] ra r + [+ h;n . ].\_L(.-))‘
’ic

= - l

°1Cc a*

where
_ 0t Ly
BL(a) =1+ <A } (1+z)),
a H
25% L;
EL(l') =1+ —"-I- Z(l+1‘i),

4
3l L,

X, ()= - — (1 = —
L(') l+ 2A'+ t'(l Al-),

a
a.

g RN

Y=o 2mn):.
Sa




a° rpo(a)

502 °Ic

)

Divide (a.37) by (a.56)

o,(a) (Y- 2 W
(—+—1-0"'=1+ . — 158
h’l"‘ f I1c BL(”'\L(2) - BL(?)‘\L“) {a-5¥)
where
plc..-'(..l—?mﬂ)
- Iy a)
i 3 L’.’ 3 Ll
W=(1+ .tl)(E - IQ)I— (1+r, (5 - zl)‘—“—l.
Now we make another approximation r, = 0. (a.58} becomes
1 [l po(a) plcu'(u—27n0)|
h’l"‘ ’ 1c rpo(a)
o pcelw — 2ma) rp (a) Y
~ [1- 1 - ] - . (a.59)
rp (a) o cwlw — Imn) 14°
] - — —
3a°
. 13° .
By quantities of w, 12 and a adopted earlier, ¥’ =~ 1/5000, Lut — = which al-
3a

low Y to be omitted in the denominator of the RHS of (a.59). Finally we obtain
the load Love number h'l" ’
e la)  pyoulw—2ma)

1
—_— - - -e). .60
h'ln ' l ’I1c rpo(tﬂ (1=el (260

where the elastic correction factor is




I

"
l'apo(a) e
[ { {

2mn

1 —
: '*"’P,C‘ rPo(a)‘

I~

1)

o
2

2mn
5(1 — —u—)“ -

B
13-

—)

3a”

{a.b1)
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Appendix B

PROGRAMME CODE FOR
EIGENPERIOD COMPUTATION

* The following routines are written in FORTRAN-T7. and executed on
VAX/VMS at Computing Service of Memorial University of Newfoundlar d. Ex-
ecuting time ranges from less than 1 second to 5 minutes, depending on the mode

computed and on the degree of truncation.

(I) Main programme EIGENVALUE: This programme is used to search the eigen-
period of the Slichter mode by computing the valu» of the determinant det(ll) at
every minute in the range of p, - p, (using subroutine VALUE). O..ce the value of

det(H) changes sign, it calls a subroutine FINDROOT to locate the eigenperiod

more accurately

The input consists of end-points of search range (PyP,)
1. m:=0
2. for p,:=p,.P,-step 1
2.1 1f »=0 then
2.1.1 p,:=p;.Vv,=0

2.1.2 call VALUE(p,.vv)




2.1.3 v°:=vv.m:=1
else
2.1.4 v :=0,p,:=p;
2.1.5 call VALUE(p,.vV)
2.1.6 v =V
2.1.7 it vev < 0 then
2.1.7.1 x°:=p°,xl:=p1.t°:=v°,fl:=v
2.1.7.2 call FINDROOT(xo,x!,to.fI)
else
2.1.7.3 p:=p;. V=V,

2.2 continue

3. halt

(I) Subroutine FINDROOT(p,, p,, v, v,): This programme is used to locate the

oY

eigenperiod exactly

The input consists of two points p, and p, for which vo(po)‘vl(pl) < 0.

Parameter E is used to stopping calculation

1. 5,:"P,. y°:=yl+0.2, ) %

2. while Ip;-y,| > E
214ty # 5,
then
2.1.1 a:=l(p-p,) (v, /v )]/ (1-v /¥ )
2.1.2 if sign(d.d) # sign(p,-y,.p,"7,)

or il > Ip,-y,l




then

2.1.2.1 d:=(p,~y,) /2

else

2.1.3 d:=(p,~y,)/2
Po:=Py Voi=Vye By
call VALUE{p,,vd)
v1:=vd, Y=Y Yo'
it v#ov <0
then
2.6.1y,:=p,

2.0 continue

AL vl < v,
then
3.1 output eigenperiod {p }

else

3.2 output eigenperiod {p,}

. halt




72

(11If) Subroutine VALUE(p,vd}): Computing the clements of the determinant at

period p.. Subroutine PIVOT is callec to compute the value of the determinant

The input consists of period p,, density p, order N and degree L of the trial fune-

ticn, control parameters "homi’, 'rot’, 'elas’ and mode parameter m(-1, 0, +1)

homi=0: homogeneous, incompressible liquid core, po=po(a)

homi=1: compressible, neutrally stratified liquid core, po=po(l‘)

rot=0: non-rotating

rot=1: rotating

elas=0: rigid inner core
elas==1: elastic inner core
1. w:=21/p, N:=rot*, ¢:=0
2. 1f olas 7 0 and homi 0
then
2.1 e:=equation (68)
o le)

2 4!
Cwg :=?Gn°(l) (1- )
°Ic

Qw : =w’2° (w2-2mﬂc~') (1+e)

a p:’(a)a(H-ml!

T 22— 402
. qraci=—w (w™—4077) oo (Im)

. N2:=2N-2
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6. for il:=1, L
6.1 for ip:=1, N2
6.1.1 for ik:=1, L
6.1.1.1 for iq.=1, N2
1:=1p+N2(11-1)
j:=iq+N2(ik-1)
H“:=0
7. for i1:=1, N2
7.1 for j:=1, N2
7.1.14i2 1 < N-1
then
7.1.1.1 iv:=N+1
slse
7.1.1.2 iv:=N-1
7121t j < N-1
then
7.1.2.1 jv:=N+1

else

7.1.2.2 jv:

N-1
= iej-iv-jv

7.1.3 Hij.-—qrac‘r‘

8. for il1:=1, L

8.1 for ip:=1, N2




8.1.1 for ik:=1, L
8.1.1.1 for iq:=1, N2
8.1.1.1.1 i:=(i1-1)*N2+ip
8.1.1.1.2 j:=(ik-1)*N2+iq
8.1.1.1.3if ip < N-1
then
8.1.1.1.3.1 iv:
else
8.1.1.1.3.2 iv:
4if iq < N-1
then
8.1.1.1.4.1 jv:
else
8.1.1.1.4.2 jv:=N-1
6 PR1:=0, PR2:=0, PR3:=0, PR4:=0
6 FP:=0, FM:=0
7 if il = ik, then
FP:=Fact(il+1,m), FM:=Fact(il-1,m)
if m=0 or (m #* 0 and i1 > 2)
then
PR1:=PR1+2(il+m)%sFU

/(2¢i1-1) (2#11+1)2

:=PR2+2(i1+m) 2(il+1) ¢FM

/(2¢i1-1) (2¢il1+1)2




™

:=PR2

:=PR4+2(ilem)2(il+1) 2eFM

/(2%i1-1) (2+i1+1)2

:=PR1+2(il-m+1) >sFP
/(2¢11+3) (2%i1+1)2
;=PR2-2¢i1(il-m*1) 2sFP
/(2¢11+3) (2+i1+1)2
:=PR2
:=PR4+2¢11%(i1-m+1) 2eFP
/(2811+3) (20i1+1)?
8.1.1.1.8 else if ik = il+2, then
PR1:=PR1+2(il-m+1) (ik+m)*FP
/(28i1+1) (29ik+1) {2¢i1+3)
:=PR2-2+il (i11-m+1) (ik+m) *FP
/(2#i1+1) (28ik+1) (2411+3)
:=PR3+2(i1-m+1) (ik+1) (ik+m) *FP
/(2811+1) (2+ik+1) (2¢i1+3)
- zPR4-2#i1(il-m+1) (ik+1) (ik+m)
+FP/(2#i1+1) (28ik+1) (2 11+3)
8.1.1.1.9 else if ik = il-2, then
PR1:=PR1+2(il+m) (ik-m+1) +FM
/(2811+1) (28ik+1) (2¢11-1)

:=PR2+2(ik-m+1) (1141) (i1l+m) sFM
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/(2¢i1+1) (2¢ik+1) (2¢il1-1)
PR3:=PR3-2#ik(ik-m+1) (il+m) *FM
/(29i1+1) (2¢ik+1] (2¢il-1)
PR4:=PR4-2+ik(il+1) (ik-m+1) (il+m)
¢FM/(2011+1) (2#+ik+1) (2¢il1-1)
8.1.1.1.10 WA:=0, WM:=0, RPA:=0
8.1.1.1.11 pa:=ip+iq-iv-jv+l
8.1.1.1.12 if homi ¥ O
then
8.1.1.1.12.1 for ii:=0, i,
(iy:power of density function)
0:=nn+ii
if 2 = 0, then
RPA:=RPA+p_ .
*(dlog(b) ~-dlog(a))
else
RPA:=RPA+p, , (b"
-a")/n

else

8.1.1.1.12.2 if as = 0, then
RPA:=HPA*p°(l)

(dlog(b)-dlog(a))




8.1.1.1.13 if
FT:

WA:

8.1.1.1.14 W:

8.1.1.1.16 Hij
9. js:=(2N-2)
10. call PIVOT(js, H,VD)
11. output {VD)

12. halt

7

else
RPA:=RPA+/_(s) (b""
-a")/m
il = ik %hen
=Fact(il,m)
=-8mr.Q_ (nnsRPA) sFT
/(2¢i1+1) -4n.?
Qw[(ip—iv)(iq-jv)*il(il+1)]
sRPA*FT/ (2¢i1+1)
=8r2°Q_*RPA
»[(ip-iv) (iq-jv)*PR1
+(ig-jv) *PR2+ (ip-iv) *PR3+PR4)

:=Hij+|A*lﬂ

e
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(IV) Subroutine PIVOT(N H.det): computing the value of a determinant by the

Gaussian Elimination

Input NN matrix H
1. D:=1.0, TINY:=1.0¢10"%°
2. for i:=1, N
2.1 MAX:=0
2.2 for j:=1, N
it IHij > MAX

then

2.2.1 MAX:=IH,, |

2.3 if MAX =0
stop
2.4 V:=1/MAX
. for j:=1, N
3.14if § > 1
then
3.1.1 for i:=1, j-1
3.1.11 SUN:=H11
3.1.1.242i>1
then

3.1.1.2.1 for k:=1, i-1

SUM: =SUM-Hu‘ij




i:=j, N

1 SUI(:=Hij

.2 14if § > 1
then

3.3.2.1 for k:=1, j-1

8U¥:=SU¥-Hik‘ij

3.3.2.2 Hij:=SUH
DUH:=V1‘ISUH|
if DUM > MAX
then
3.3.4.
3.3.4.

3.411 j # ix

then

3.4.1

3.4.2
3.4.3

3.5 INDIX:




3.6 41t § # N
then
3.6.1 it Hjj=°
3.6.1.1 Hjj:=TINY
3.6.2 DUH:=1/H”
3.8.3 for i:=j+1, N
Hij:=Hij.DU"
4. it H_=0
4.1 H :=TINY
5. DETLOG:=0, SIGN:=1
d. for i:=1, N
6.1 DETLOG:=DETLOG+DLOG10(IH,, 1)
6.2 sign:=siga*H  /IH,. |
7. iE:=idint (DETLOG)
8. DETLOG:=DETLOG-DFLOAT (iE)
9. Det:=Dssigns (10¢DETLOG)
10. output {Det}

11. halt
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(k+m)t

(V) Function FACT(k,m): computing ratio of factorials ra.

Input integer k, m
1. §,:=km, j,:=k-m, QL:=1.0, QJ:=1.0
2. while j, > 1
2.1 1:=1, N1:=0
2.2 N1:=1+1
2.3 QL:=QL#N1
2.4 if N1 < §,
then
2.4.1 1:=N1, N1:=0
2.4.2 go to 2.2
3. while j, > 1
3.1 j:=1, N2:=0
3.2 N2:=j+1
3.3 QJ:=QJsN2
3.4 if N2 ¢ §,
then
3.4.1 j:=1, N2:=0
3.4.2 go to 3.2
4. Fact:=QL/QJ
6. output {Fact}

8. halt










