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A B S T R A C T 

Mount Cormack Terrane, an elliptical tectonic window in 

the Dunnage Zone of central Newfoundland, is a structural 

dome comprising a central zone of variably metamorphosed 

metasediments surrounded by remnants of several ophiolitic 

complexes including the Coy Pond Complex, the subject of 

this study. The ophiolite complexes have been interpreted 

to represent remnants of the early Paleozoic Iapetus ocean 

floor, which was abducted onto the continental margin of 

Gondwana. 

The Coy Pond Complex, is an imbricated, but complete 

ophiolite which is oriented subvertically and dips and 

youngs outward from the tectonic window. 

Analyses of relict olivines, pyroxenes and spinels in the 

Coy Pond Complex indicate that it has an arc-related 

petrogenesis. 

The Coy Pond Complex is composed of two structural slices 

separated by two tectonic melanges. From west to east the 

principal structural elements are: (i) bas.~l structural 

slice composed of harzburgite and dunite; (ii) western 

tectonic melange; (iii) central structural slice comprising 

pyroxenite, gabbro-diabase, pillow lava and sedimen~ary 

rocks; (iv) the eastern tectonic melange. 

Locally the basal structural slice is missing and its 
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place is taken by the mixed lithology slice, which is 

composed of exotic (i.e. non-ophiolitic) lithologies that 

were probably derived froru the tectonically overlying and 

underlying units. 

The tectonic melanges, are composed of ultramafic 

fragments up to 2 m in longest diameter enveloped in an 

ultramafic matrix. They display evidence of brittle 

(fragments) and ductile (matrix) deformation and are 

interpreted tc have formed during fault movement and 

emplacement of the ophiolite. On the basis of the 

lithologies of the fragments, the tectonic m~langes are 

interpreted to have formed from the transition z~ne (dunite) 

and upper part of the mantle tectonite (harzburgite). 

Both fragments and matrix in the tectonic melanges are 

extensively serpentinized and var.iably carbonatized. 

Petrographic evidence indicates that serpentinization 

initially involved hydration of the peridotite and formation 

of a pseudomorphic assemblage of lizardite ± brucite. 

Subsequently most of the original li7.ardite recrystallized 

to antigorite and to schistose serpentinite in the matrix. 

Veins of chrysotile are rare. 

Carbonatization resulted in replacement firstly of brucite 

by magnesite, and subsequently of the serpentine assemblages 

{lizardite and/or antigorite) by magnesite ± talc. Later, 

quartz-magnesite formed by replacement of talc or by 
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breakdown of remaining lizardit~. These assemblages indicate 

a progressive increase in XC02 in the fluid phase during 

formation of the metamorphic assemblages with tempcratu~es 

<300°C for quartz-Magnesite and >300°C f~r talc-magnesite 

assemblages. 

Carbon and oxygen isotopic compositions of magnesite 

coexisting with lizardite, antigorite, talc and quartz were 

measured from the eastern and western tectonic melanges. 

6
1
'0 values of magnesitP vary only slightly, from 12.3 to 

17.5, with higher values occurring in the quartz-magnesite 

assemblages. 6 13C values show considerable variation in 

isotopic composition from -4.2 to -~.1 for magnesite 

associated with lizardite and talc, fro~ -10.8 to -13.6 for 

magnesite associated with antigorite, and from -11 . 9 to 

-20.4 for magnesite associated with quartz (in the western 

tectonic melange). These data are interpreted to indicate 

that the different magnesite assemblages formed from 

different carbon reservoirs, with magnesite associated with 

lizardite and talc having an oceanic and/or average cr.ustal 

carbon isotopic signature, whereas magnesite associated with 

antigorite and quartz shows a progressively more organic 

(continental) carbon isotopic signature. 

Structural, metamorphic and isotopic information have been 

used to construct a tectonic model for the formation and 
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evolution of the tectonic melanges, which involves several 

stages. 

(a) Early serpentinization of dunites during detachment of 

the ophiolitic nappe. 

(b) Initiai~ion of the formation of the tectonic melanges 

during imbr~cation? and obduction of th& ophiolite nappe 

onto the continental margin, together with partial 

carbonatization. At this stage magnesite associated with 

lizardite and with talc was formed. 

(c) Emplacement of Coy Pond ophiolite on top of the 

continental margin, consisting of Spruce Brook Formation. 

(d) Extension of the continental margin induced heat 

transfer into the tectonically underlying sediments {Spruce 

Brook Formation) which were affected by a low-P 

metamorphism. 

(e) This induced isostatic instability in the lower crust, 

with mechanical and thermal doming of the Mount Cormack 

Terrane, followed by renewed imbrication and final 

emplacement of the Coy Pond Complex, by extensional 

faulting, into its present subvertical orientation. It is 

assumed that the formation of the tectonic melanges was 

concluded during the extensional faulting, when magnesite 

associated with antigorite and with quartz assemblages was 

formed in equilibrium with fluids carrying carbon of organic 

origin. 

v 



ACKNOWLEDGEMENTS 

I would like to acknowledge the guidance of several 

people, without whose help and support this project could 

not have been completed. 

It is a great pleasure to thank my supervisors, Toby 

Rivers and Mark Wilson. With great courage they accepted me 

as a graduate student and offered guidance throughout this 

study. During these years I have greatly benefitted from 

their knowledge, hospitality and financial generosity. With 

sympathy and humour I was introduced to mysteries of 

Newfoundland geology, isotopes and the English language. 

Steve Colman-Sadd generously suggested that a study of the 

Coy Pond Complex would be fruitful and made freely available 

his report (which was indispensable) maps, equipment and 

advice. 

John Tuach, who had previously given a financial boost to 

my Canadian life through employment, helped me again with 

his drafting facilities. 

Thanks to the School of Graduate Studies, Memorial 

University of Newfoundland for its generous graduate 

fellowship, and also to Faculty and Staff at the Department 

of Earth Sciences at the Memorial University for help in 

important aspects of this study. 

Thanks to David O'Hanley who during a chance meeting 

vi 



greatly encouraged me, and to all my colleagues who have 

helped me in learning computer skills: Adrian 0., Dennis B, 

Don F., Flemming M., Jim C., Dave E., Jim W., Jahan R., Adam 

S., Jcroen G., and Sung. 

A special thanks to Jeana and Monica who were neglect~1, 

but fully supported me for all these years. 

vii 



'l'ABLB 01' CONTBin'S 

ABSTRACT ••••••••••••••••••••••••••••••••••••••••••••••• i i 
ACKNOWLEDGEMENTS ....•.••••.......••.................... vi 
LIST OF TABLES •.....•.•................•............. xii 
LIST OF FIGURES .••.••••••............................ xi i i 

Chapter 1 
IHTRODUC'l'IOB 

1.1 Subject and scope of the thesis ..................... l 
1.2 Ophiolites in Newfoundland and regional setting ..... ? 
1.3 Locati~", access, description of the study area ..... s 
1. 4 Previous work •...••••.....••.•....•.....•........... 9 
1.5 Present investigation .............................. ll 

Chapter 2 
RBGIOKAL GEOLOGY 

2. 1 Mount Cormack Terrane .•........•...•.......•.•••... 12 
2 • 2 Pipestone Pond Complex ..•••••••••••••••••••..•..... 13 
2. 3 Coy Pond Complex ••.••.......•.••..••.•.......•..... 14 
2. 4 Great Bend Complex ••......•............•.......... 17 
2.5 Baie d'Espoir Group ••.•••..•..........•............ 18 
2.6 Partridgebe:ry Hills Granite ..•••••...•............ 18 
2.7 Age constra1nts .•..•.......•...••.•••............•. 1a 

Chapter 3 
S'l'RUC'l'URAL FRAKDOU 

3.1 Imbricated structure of tha Coy Pond Complex ...•... 21 
3.1.1 Basal slice .•••.••...•••.•••..•...•.............. 26 

3.1.1.1 Asthenospheric structures .•.•••.......... 26 
3.1.1.2 Lithospheric structures .•................ 28 

3.1.2 Mixed lithology slice •.•••.•..•..........•....... 30 
3.1.3 Central slice •••••••••.•.•.•..•....•............. 31 
3.1.4 Tectonic m6langes .•..•.••..•••••.............•... 32 

3.1.4.1 General statement ..•...•..••..•.......... J2 
3.1.4.2 Composition and characteristics of the 

Coy Pond tectonic m6langes ............... 34 
3.2 Serpentinite deformation- experimental data ....... Ja 
3 • 3 summary • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • . . • • . . . • • • • . • 4 o 

viii 



Chapter 4 
THB NAHTLB TBCTOHITBS 

4. 1. Introduction ........................... . ............. 43 
4.2. Rock classification and textures ...••••.••..•..••... 43 
4.3. Distribution and contacts ..••.•••••••.••.••.••...•.• 46 
4. 4. Harzbur·gite ••••••••••.•••••••••••••••••••••••.•••••• 47 

4.4.1. Petrography and microstructures ••.....•..••.. 48 
4.4.2. Discussion and conclusions .•.••.•••.•.•.•••.• 56 

4. 5. Dunite ••.••••••••••••••••••••••••••••••••••.•••.•••• 59 
4.5.~. Petrography and microstructures •••••.•••.•••. 60 
4.5.2. Discussion and conclusions •••.•••.••.••..•••. 63 

4. 6. Pyroxenite dikes .••••••••••••••.••.•...•....•...•••. 64 
4.7. Discussion and conclusions •••••••••.••••.•.•••..•..• 65 

Chapter 5 
THE TRAHSITIOH ZONE 

5.1. Introduction .•••.••..•......•.....•...•............. 67 
5.2. Composition ••••••••••••••...•.•••••.••••.••••••...•• 67 
5. 3. Distribution and contacts .••.••..•.........••...... 70 
5. 4 • Petrography •......•..•.•....•.....••........•...... 7 2 

5 • 4 • 1 • !:>unite ••.•••••••••.•••••••••••••....•••.••••• 7 2 
5.4.2. Clinopyroxenite ..•••.••.••..•.....•...•..••.. 72 
5 . 4 • 3 • Rod ing i te •••••••••••••.•••••.•••••••••••••••. 7 8 

5. 5. Conclusions •••..•••••••.•..•••••.••••....•...•.•••.• 78 

Chapter 6 
TBB TBCTOMXC K!LAHGBS 

6.1 Introduction •••••••••.••••.•••••.•••••••••.••.••.•• 83 
6. 2 MtLANGE FRAGMENTS •••••.••..••.•..•.•.•..••.•....•.. 84 

6.2.1 Serpentinite fragments with pseudomorphic 
textures ........••..•.................. . .... a 5 

6.2.2 Serpentinite fragments with 
non-pseudomorphic textures ••••••••...•.••.. 108 

6.2.3 Talc-magnesite fraqments .•••••..••....•...•• 114 

6.3 MATRIX OF TECTONIC MtLANGES •...•.••........••..... 120 
6.3.1 Schistose serpentinite matrix ••.•.••••.•.••. 125 
6.3.2 Brecciated serpentinite matrix ••••••.••..••• 134 
6.3.3 Talc-magnesite matrix ••••••..••..•••.••..••. l37 
6.3.4 Chlorite blackwall rocks ..••..•.•••.•••..... 146 

6.4 QUARTZ-MAGNESITE ASSEMBLAGE 
6. 4. 1 Introduction •••..••••...•.•.•.••••.•.••..••. 14 7 
6.4.2 Petrographic description .•••••••••.•.••.•.•. 152 
6.4.3 Conclusions on matrix and quartz-magnesite 

rocks •••••••••••••••••••••••••••••••••••••• 16 2 

ix 



6.5 MELANGE BLOCKS ••...•.••...••••...................... 165 
6.5.1 Pyroxenite blocks ...•....................... 166 
6.5.2 Clastic metasedimentary blocks .............. 166 
6.5.3 Volcanogenic metasedimentary blocks ......... 166 

Chapter 7 
MIXED LITHOLOGY SLICE 

7 . ·.Introduction ..........•..•.•........................ 172 
7.2 Metabasic and intermediate 

volcanic/ hypabyssal? rocks ..•.................... l72 
7.3 Pyroclastic rocks ......•.•.......................... 177 
7.4 Actinolite epidote schist ........................... 180 
7.5 Metasedimentary schi~t .............................. 183 
7.6 Origin of rocks in Mixed Lithology Slice .......... . . 188 

Chapter 8 
MINERAL CHEMISTRY 

8. 1 Introduction ....•.......•...•...•................... 189 
8.2 Primary minerals .................................... 190 

8.2.1 Olivine ..............•...................... 190 
8. 2. 2 Orthopyroxene ................................ 19 3 
8. 2. 3 Clinopyroxene ................................ 196 
8.2.4 Spinel .........•............................ 197 
8.2.5 Conclusions ..•...••.......................... 204 

8.3 Secondary minerals ................................. 205 
8.3.1 serpentine minerals .••.....•..•••............ 209 
8. 3. 2 Brucite .••••••.......••.••.........•......... 211 
8.3.3 Talc ..•.•....••...•..•..••................... 212 
8.3.4 Magnesite ••..•••.•••.•....................... 212 
8 . 3 . 5 Opaque phases .•..•••.•...•....•.•.•.......... 219 
8.3.6 Conclusions .....•.......... . ................. 219 

Chapter 9 
PHASE EQUILIBRIA AND METAMORPHIS~ OF THE TECTONIC MELANGE 

9. 1 Introduction ••......••.••••......................... 2 21 
9.2 Serpentinization of peridotites ••.........•......... 222 
9.3 Carbonatization of serpentinite ....•..••..•......... 231 
9.4 Recrystallization of serpentine ........•............ 235 
9.5 Conclusions ................••...•.........•......... 239 

X 



Chapter 10 
CARBON ZSOTOPB GBOCBBKISTRY OF MAGNESITE 

Ilf TBB TICTONIC KiLANGE 

10.1 
10.2 
10.3 
10.4 
10.5 

Purpose and theoretical considerations •...•...... 242 
carbonate and graphite-bearing lithologies ...•... 248 
Previous isotopic studies on magnesite ..........• 2 so 
Analytical techniques .......••.....•••........... 253 
Results, interpretation and discussion ......•...• 254 
10.5.1 Temperature constraints ..••.•••.....•...• 261 
10.5.2 Constraints on fluid composition ....•..... 269 
10.5.3 Differences between the eastern and 

the western tectonic m6langes •........... 278 

10.6 
10. 5. 4 Other carbonates ...••••••••.••••....••...• 2 a o 
Conclusions ...•••••...•••..••••••...••..........• 281 

Appendix 
Appendix 
Appendix 

Appendix 
Appendix 
Appendix 
Appendix 

Appendix 

Appendix 

Appendix 

Appendix 
Appendix 

Appendix 

Appendix 

Chapter 11. 
GEOTECTONZC MODBL FOR TBB FORMATION 

OP TBB COY POND TECTON!C K!LANGES 

1 
2 (A) 
2 (B) 

2 (C) 
3 
4 
5 

6 

7 

8 

9 
10 

11 

12 

•••••• 2 8 6 

REPERENC:!S 
•••••• 3 02 

APPBNDICBS 
serpentine pseudomorphic textures ..•....• 315 
Microanalyser characteristics ••...•....•. 317 
Correction for magnesite analyses 

containing serpentine inclusions .......• 317 
x-ray powder diffraction procedure .•••..• 319 
Microprobe analysen of olivine (4p) •••••• 320 
Microprobe analyses of pyroxenes (5p) ...• 324 
Microprobe analyses of cr-spinel in 

harzburgite (3p) •.•••••...•.••.........• 329 
Microprobe analyses of cr-spinel in 

dunite (3p) ............................. 332 
Microprobe analyses of Cr-spinel in 

pyroxenite (2p) ••.••••••••••••.•.•..•..• 335 
Micropr.obe analyses of c:r-spinel in 

m6lange assemblages (3p) ...••••......... 337 
Microprobe analyses of serpentine (7p) ... 340 
Microprobe analyses of magnesite in 

serpentine (4p) ••••••••••••••••••••••••• 347 
Microprobe analyses of magnesite in 

talc-magnesite (2p) ••••••••••••••••••••• 351 
Microprobe analyses of magnesite in 

quartz-magnesite (4p) ••••••••••••••••••• 353 

xi 



Table 8.1 
Table 8.2 
Table 8.3 
Table 8.4 
Table 8.'1 

Table 8.6 
Table 10.1 

Table 10.2 

Table 10.3 

Table 10.4 

LIST OF TABLES 

Electron microprobe analyses of olivines ... 191 
Electron microprobe analyses of pyroxencs . . . 194 
Calculated compositions of Cr-spinels .. . .... 198 
Electron microprobe analyses of serpentines. 206 
Average magne~ite analyses in different 
assemblages and calculated oxides (in text).214 
Electron microprobe analyses of magnesite ... 215 
Fractionation factors betw~en alkali-earth 
carbonates and water (in text) •......... . .. 247 

Isotopic composition of magnesite from 
Coy Pond m~langes .......... . .......... . .... 255 

Isotopic composition of carbonates other than 
magnesite •..•.•..........•..•......•.. . .. . . 256 

Oxygen isotopic composition of waters 
calculated to be in equilibrium with 
magnesite . .... . ....................... . .... 270 

xii 



fig 1.1 
Fig 1.2 

Fig 2.1 

Fig 3. 1 
Fig 3.2 
Fig 3.3 

Fig 4.1 
Fig 4.2 
Fig 4.3 
Fig 4.4 

Fig 4.5 
Fig 4.6 
Fig 4.7 

Fig 4.8 

Fig 4.9 
Fig 4.10 
Fig 4.11 
Fig 4.12 

Fig 5. 1 
Fig 5.2 
Fig 5.3 

Fig 5.4 

Fig 5.5 

Fig 5.6 

Fig 5.7 

Fig 6. 1 

Fig 6.2 
Fig 6.3 

LIST OF FIGURES 

Slmplified tectonic map of Newfoundland ........• 3 
Geologic map of Mount Cormack Terr~ne . ........• 5 

Ceological map and cross-section of the 
Coy Pond Complex .••......•.................... 16 

Geological map of the western tectonic melange.23 
Geological map of the eastern tectonic melange.25 
Block diagram of the tectonic melange ....... . .. 36 

IUGS nomenclature for ultramafic rocks ......... 45 
Representative view of harzburgite and dunite .. 45 
Harzburgite with porphyroclastic texture ....... 51 
Harzburgite with porphyroclastic and 
neoblastic texture •••...•.............•....... 51 

Harzburgite with porphyroclastic texture ....... 53 
Harzburgite with porphyroclastic ~exture ......• 53 
Detail of harzburgite with porphyroclastic 
texture . ...................................... 55 

Harzburgite with porphyroclastic to 
protomylonitic texture ..••............ • ....... 55 

Harzburgite with mylonitic texture •....•....... 58 
Harzburgite with protomylonitic texture . . . .. .. • 58 
Field photogr.aph ot dunite in harzburgite ...... 62 
Field photograph foliated dunite .............. 62 

Field photograph of pyroxenite layering ....... 69 
Photomicrograph of coarse grained pyroxenite ..• 69 
Photomicrograph of adcumulus texture in 

c 1 i nopyroxene . ................................ 7 s 
Photomicrograph showing low grade metamorph i sm 

in pyroxenite ...••.....••....... . ............ 7 5 
Photomicrograph of serpentinized olivine 

in clinopyroxenlte •....••...........•.......• 77 
Photomicrograph of partial rodingitization of 
clinopyroxenite ..••.•...•••........•........• 77 

Photomicrograph of completely rodingitized 
rock ..... . ... . ................................ 8 o 

Schematic representation of lizardite 
pseudomorphic textures after olivine 
and orthopyroxene •.•...•••.....•...•.•....... 88 
Serpentinized duni te fragment in ml!lange ..... 91 
Serpentinized dunite fragment in tectonic 

ml!lange with pseudomorphic y-mesh texture .... 91 

xiii 



Fig 6.4 

Fig 6.5 
Fig 6.6 
Fig 6.7 

Fig 6.8 
Fig 6.9 
Fig 6.10 

Fig 6.11 

Fig 6.12 

Fig 6.13 
Fig 6.14 
Fig 6.15 

Fig 6.16 

Fig 6.17 

Fig 6.18 

Fig 6.19 

Fig 6.20 
Fig 6.21 

Fig 6.22 
Fig 6.23 
Fig 6.24 
Fig 6.25 

Fig 6.26 

Fig 6.27 
Fig 6.28 
Fig 6.29 
Fig 6.30 
Fig 6.31 

Fig 6.32 

Fig 6.33 

Fig 6.34 

Photomicrograph representing banded growth or 
curtain-like texture .•....................... 94 

Photomicrograph of pure hourglass texture ..... 94 
Detail of 6.5 ................................. 97 
Serpentinized dunite fragment in melange 
with hourglass texture ....................... 97 

Serpentinite fragment with hourglass texture .. 99 
Same as 6.8; plane polarized light ............ 99 
Photomicrograph of partially serpentinized 
harzburgite fragment ........•.............. 102 

Incompletely serpentinized harzburgite 
fragment in tectonic m~lange •............... 102 

Photomicrograph of serpentinized harzburgite 
fragment and bastite types .................. 104 

Same as Fig 6.12 with gypsum plate .......... 104 
Completely serpentinized harzburgite ........ 106 
Photomicrograph of carbonatized 
serpentinized dunite ..•..•...•.............. 106 

Photomicrograph of serpentinite with non­
pseudomorphic texture ........•......•....... 110 

Photomicrograph of serpentinite fragment with 
pseudomorphic and non-pseudomorphic texture.110 

Partially carbonatized serpentinite with 
interpenetrating texture .................... 112 

Photomicrograph of serpentinite 
with interlocking texture ..••••. ,,,,,,,,, .•• 112 

Photograph of talc-magnesite fragments ...... 116 
Photomicrograph of talc-magnesite 

and relict antigorite .......•......•........ 116 
Photomicrograph of talc-magnesite ........... 119 
Talc-magnesite fragment in tectonic m~lange .. 119 
Field photograph of talc-magnesite matrix ... 122 
Field view of tectonic m6lange 
with sheared serpentinite matrix 
and elongated serpentinite fragment ........ 122 

Field photograph showing chaotically 
distributed fragments in matrix ............. 124 

Photograph of schistose serpentinite matrix .124 
Photomicrograph of schistose serpentinite .... 128 
Photomicrograph of schistose serpentinite .... 128 
Photomic~ograph showing matrix foliation .... 130 
Partially recrystallized serpentinite ....... 130 

Photomicrograph of schistose 
serpentinite and antigorite •.•............. 132 

Photomicrograph of m6lange matrix 
illustrating shear sense indicators .•....••. 132 

Photograph of slab of tectonic m6lange with 
small serpentinite fragments ............... 136 

xiv 



---- -------- --------- --------

Fig 6. 35 

Fig 6. 36 
Fig 6.37 
Fig 6.38 
Fig 6. 39 

Fig 6. 40 

Fig 6. 41 
Fig 6.42 
Fig 6. 43 
Fig 6.44 
Fig 6. 4 5 
Fig 6.46 
Fig 6.47 
Fig 6.48 
Fig 6. 49 
Fig 6.50 

Fig 6.51 
Fig 6.52 

Fig 6.53 
Fig 6.54 

Fig 6.55 

Fig 7.1 

Fig 7.2 
Fig 7.3 
Fig 7.4 

Fig 7.5 

Fig 7.6 
Fig 7.7 

Fig 7.8 
Fig 7.9 

Fig 7.10 

Fig 7.11 

Fig 8 . 1 

. . 

Field photograph showing 
talc-magnesite matrix .............. . ....... 136 

Talc-magnesite matrix of the melange ........ 139 
Photograph of slab of talc-magnesite matrix .139 
Photomicrograph of talc-magnesite matrix .... 142 
Photomicrograph showing large skeletal 
cryptocrystalline magnesite .•..•........... 142 

Detail of talc-magnesite matrix in tectonic 
mAlange ....... ............................. . 144 

Photomicrograph of chloritic blackwall ...... 144 
Photograph of quartz-magnesite outcrop .....• 149 
Photograph of quartz-magnesite matrix ....... 149 
Photogra~h of quartz-magnesite outcrop ...... 151 
Photograph of quartz-magnesite .............. 151 
Quartz-magnesite matrix with foliation ...... 155 
Photomicrograph of quartz-magnesite .•....... 155 
Detail or quartz-magnesite ....•.•...•....... 157 
General view of quartz-magnesite ............ 157 
Photomicrograph showing interstitial 
quartz and xenoblastic cryptocrystalline 
magnesite . ............... . .................. 15 9 

Foliated quartz-magnesite matrix •.......... . 159 
Field photograph of a massive coarse-grained 
clinopyroxenite block ........•.............. 168 

Photomicrograph showing metasandstone •...... 168 
Photomicrograph showing fine grained 
volcanogenic metasediment •.••..•....•...... 171 

Detail of figure 6.54 ..•..•.. •• .•....•...... 171 

Photomicrograph of low grade intermediate 
volcanic rock ..•••..•.•....••••••.......... 174 

Low grade, fine-grained basic vclcanic ...... 174 
Metamorphosed basic or intermediate rock .... 176 
Photomir=1ograph of weakly metamorphosed basic 
volcanic rock •..•.....•......••••••••......• 176 

Photomicrograph showing lapilli in 
microcrystalline groundmass ..••••••..••..... 179 

Photomicrograph representing shards ..•...... 179 
Strongly foliated actinolite-epidose 
schist with granonematoblastic texture •..... 182 

Detail of 7.7 . ................. . ........... . 182 
Fine grained metasedimentary rock with 
granolepidoblastic texture ••••.••••••....... 185 

Photomicrograph of strongly foliated and 
retrograde metamorphic garnetiferous schist.187 

Same as 7. 10; crossed polars .•••••••.••••.... 187 

Compositions of Cr-spinel from Coy Pond ...•• 202 

XV 



;f: 

Fig 9.1 
Figs 9.2 

Fig 10.1 

Fig 10.2 

Fig 10.3 

Figs 10.4 

Fig 10.5 

Fig 10.6 

Fig 10.7 

Equilibrium curves for reaction (1) .•••. • ••• 224 
Schematic T-XC01 diagram ..•..•••.....•..••.. 227 

Graph showing the variation of the 
equilibrium fractionation factor with ionic 
radius of alkali-earth carbonates at various 
temperatures ••.•••.•••..........•........•.. 24 5 

Isotopic fractionation curve for 
magnesite-water constructed from Fig 10.1 •.. 245 

6 110 vs cS 13C of magnesite .tn different 
mineral assemblages in tectonic m6langes •.. 259 
Phase diagram showing the isobaric 
equilibrium curves in the model system 
MgO-SiOi-H10-C01 •••••••••••••••••••••••••••• 262 

6110 vs 6 3C diagram showing fields of 
magnesite compositions in m6langes, and the 
6uc ranges of possible carbon sources ....... 27 2 

Isotope distribution of oxygen and carbon in 
magnesite from principal mineral 
assemblages •••••••••••••••••••••••••••••••• 2 8 3 

Chart representing evolution of 613C in 
magnesite in different mineral 
assemblages in tectonic m6langes •.....••... 284 

Fig 11.1 Reconstructed stratigraphic column 
of the Coy Pond Ophiolite complex ana 
evolution model for the tectonic m6langes .. 290 

Fig 11.2 Schematic diagram showing the formation and 
obduction of the Coy Pond Complex onto 
the Gander Zone continental margin •••••••.• 294 

Fig 11.3 The evolution of the Mount Cormack Terrane 
and the Coy Pond Complex after 
obduction of ophiolite nappe onto 
the continental margin •.••••••••••••••••.•.• 297 

sample location aap - veatern tectonic ailanqe (in pocket) 
Sample location aap - eaatern tectonic ailanqe (in pocket) 

xvi 



Chapter 1 

INTRODUCTION 

1.1 Subject and purpose of the thesis 

This thesis is concerned with the deformation and 

associated low grade metamorphism of the ultramafic section 

of an abducted ophiolite. This aspect of the evolution of 

ophiolite complexes has attracted much less attention than 

for example the study of asthenospheric flow in the mantle 

tectonite sections of ophiolites, or studies of the high 

grade metamorphism of the crustal sections of ophiolite 

complexes. The area chosen for this study is the Coy Pond 

Ophiolite Complex in Central Newfoundland (Fig 1.1), a 

little known body (Fig 1.2) that tectonically overlies the 

metasedimentary Spruce Brook Formation (Col~an-Sadd, 1985). 

During the 1988 field season, two formerly unrecognized 

tectonic melanges were mapped in the Coy Pond Ophiolite 

Complex, which are inferred to have formed during transport 

and/or emplacement of the ophiolite onto the Palaeozoic 

co~tinental margin. The tectonic melanges are interpreted to 

mark the sites of major faults, where components of the 

ophiolite with and without the underlying sedimentary 

substrate and overlying sedimentary cover were intimately 

mixed. 

This study focuses on the tectonic melanges for two 

- -- ---- ~-- -- - --- --- . 



Fiq 1.1 Simplified tectonic ma~ of Newfoundland showing 
the four tectonic zones (after Williams, 1984), and the 
location of the main ophiolite complexes. Box represents the 
Coy Pond area. Abbreviations: 
GRUB = Gander River Ultramafic Belt; 
PP = Pipestone Pond ophiolite complex; 
MCT = Mount Cormack Terrane; 
GB = Great Bend ophiolite complex; 
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Piq 1.2 Geological map of Mount Cormack Terrane 
(modified after Colman-Sadd, 1985). Boxes represent the 
locations of maps of the western tectonic m6lange (WM) and 
the eastern tectonic m6lange (EM). Abbreviations: 
A = andalusite isograd; 
8 = biotite isograd; 
s = sillimanite isograd; 
MG = beginning of miqmatization; 
No lithologies are indicated for EM and WM; see text for 
discussion 
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reasons; firstly because similar feature hava not baen 

widely recorded and interpreted in other ophiolite 

complexes, and secondly bacause met~morphic and 

deformational effects are particularly well displayad in 

these units. 

Detailed petrographic and mineral chemical studies ware 

conducted on both tectonic melange units, and on the mantle 

tectonite and the pyroxenite of the transition zone, both of 

which supplied material that was i ncorporated in the 

tectonic melanges . Othar units of the ophiolite complax hava 

been studied in less detail. 

The purpose of the study is to obtain information on the 

metamorphism and deformation of the ophiolite complex during 

and after its formation and subsequent obduction and 

emplacement onto the continental margin. To this and, the 

structure and microstructure of the tectonic melanges have 

been utilized as a framework for deta i led studies of the 

mineralogy, petrography and petrology of their constituant 

fragments and matrix, which have yielded a rich history 

concerning the evolution of the complex. The petrological 

data were subsequently used as the foundation for a stable 

isotope (C,O) study of fluids involved in the metamorphic 

reactions. 
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1.2 Ophiolites in tlewfoundland and the regional setting 

The closure of the Iapetus Ocean (Harland and Gayer, 1972) 

occurred during the early Palaeozoic, at which t i me numerous 

ophiolites were emplaced within the Appalachian/Caledonian 

orogen (Williams, 1964; Wilson, 1966; Dewey and Bird, 1970). 

The island of Uewfoundland, situated in the northeastern 

part of the Appalachian orogen, is well known for the 

occurrence of several complete ophiolite suites (Fig 1.1), 

the better known of which are located in the western part of 

the island (Stevens, 1970). These slicP.s cf oceanic 

lithosphere were detached from the ocean floor, and abducted 

both westwards and eastwards. The former were abducted onto 

the Humber Zone (Fig 1.1) with its Grenvillian basement, 

together composing the Palaeozoic eastern margin of North 

America (Stevens, 1970). The latter were abducted onto the 

eastern margin of Ia~etus, which was the continent of 

Gondwanaland, represented locally by the Avalon Zone, and 

its miogeoclinal prism of turbidites to the west known as 

the Gander Zone. 

Between the two Palaeozoic continental margins, remnants 

of which are currently situated at the eastern and western 

extremities of Newfoundland, is the Dunnage Zone (Fig 1.1). 

Th~ Dunnage Zone comprises remnants of Iapetan oceanic crust 

and associated arc volcanic sequences, which during ocean 
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closure were thrust both westward on top of Humber Zor.e 

(e.g. Bay of Islands Complex) and eastward on top of Gander 

Zone (eg. Coy Pond complex). Gander Zone, which is composed 

of remnants of a continentally-derived Paleozoic sedimentary 

wedge (Colman-Sadd et al., 1991), is predominantly situated 

to the east of the Dunnage Zone, but also crops out as 

several autochthonous tectonic windows through the Dunnage 

Zone. 

One of these tectonic windows is the Mount Cormack 

Terrane, which is surrounded by several little known 

ophiolite bodies. on its western side is located the 

Pipestone Pond Ophiolite Complex, on its eastern side the 

Coy Pond Complex and its northeasterly prolongation, the 

Great Bend Complex (Figs 1.1 and 1.2). 

1.3 Location, access, description of the study area 

The Coy Pond Ophiolite Complex is located in central 

Newfoundland abo1t h~lf way between Grand Falls and 

Milltown. The lines of longitude of 55°40'W and latitude of 

48°25'N intersect in the central part of the ophiolite body. 

The power tra~smission line between B~ie d'Espoir and Grand 

Falls is situated about 2 to 4 km to the west of the 

ophiolite complex, and the Bishop Falls-Baie d'Espoir 

highway is situated about 10 km to the east of it. 

8 
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Access into the western part of the ophiolite body during 

the summer of 1989 was by helicopter from Milltown, with 

exit from the eastern part of the area by car, using a 

recently cut ~1oods road. Apart from this woods road (which 

in the summer of 1991 was only partially usable) there are 

no other roads in the area. The main drainage system in the 

area is the Northwest Gander River, which flows 

approximately northward along the strike of the ultramafic 

units of the ophiolite, then turns northeastward along the 

faulted contact between the Spruce Brook Formation and the 

Coy Pond and Great Bend Complexes. Coy Pond and Huxter Pond 

are the biggest ponds in the area. 

The topography of the area has an average elevation 

between 550 to 600 m for the ophiolite units, higher for the 

pyroxenite ( 650 rn) and lower for the eastern tectonic 

melanges (about 500 m). In the northern part of the area, in 

the tectonically underlying Spruce Brook Formation, the 

relief is about 400 rn. 

1.4 Previous work 

According to Colman-Sadd (1985), the first recorded 

geological observations on ultramafic rocks in the area were 

made by Cormack in 1823, who noted the presence of 

ultramafic rocks at Pipestone Pond. The Coy Pond Complex was 
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discovered by Howley in 1876. In the first half of this 

century, both the Pipestone Pond and Coy Pond complexes were 

explored for chromite occurrences described by Snelgrove in 

1934. The ultramafic part of the Coy Pond Complex was mapped 

by Grady in 1953 (cited by Colman-Sadd, 1985), as part of a 

search by Newfoundland and Labrador Corporation for 

asbestos. Asbestos MineG co. (1963) drilled six holes in the 

western tectonic mAlange with poor results, and H. Tibo and 

Tasu Resources prospected for chromite in 1981. The granites 

in the area were examined by Elias ( 1981) and Elias and 

Strong (1982). Detailed mapping in the Coy Pond Ophiolite 

Complex and surroundings was conducted by Colrnan-Sadd (1985) 

who described the units of the Coy Pond Ophiolite Complex. 

The two tectonic mAlanges in the ophiolitic complex were 

appropriately described as "shear zones". The tectonics of 

the Coy Pond Ophio~ ite and its relation to the Gander Zone 

were discussed by Colman-Sadd and Swinden (1985), who were 

the first to propose the existence of a tectonic window 

through the Dunnage Zone, exposing rocks of the underlying 

Gander Zone. Analysis and age determination of a single 

zircon fraction from the Coy Pond Complex was conducted by 

Dunning and Krogh ( 1985). 
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1.5 Present investigation 

This thesis is based on field work conducted during the 

summer of 1989 and subsequent examination of the sampled 

material. During the field work, about six weeks were spent 

mapping the western tectonic melange and the ultramafic 

units of the Coy Pond Complex and about two weeks mapping 

the eastern tectonic melange. In total about 470 stations 

were established and about 350 samples collected. 

Petrographic examination of about 160 thin sections was 

carried out in order to establish stable mineral 

assemblages, and the various paragenetic sequences in 

ultramafic rocks throughout the area. Microprobe analyses of 

the principal minerals were conducted on about 40 polished 

thin sections at the microprobe facility at Memorial 

University. After X-ray analyses of mineral separates to 

confirm sample purity, carbon and oxygen isotope 

compositions of magnesite and other carbonates were 

determined in the stable isotope lab at Memorial University. 
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Chapter 2 

REGIONAL GEOLOGY 

2. 1 Mount Cormack Terrane 

The Mount Cormack Terrane is an elliptical tecton ic 

window about 60x25 km surrounded by three ophiolite 

complexes, the Pipestone Pond, Coy Pond and Great Bend 

Complexes (Figs 1.1 and 1.2). Mount Cormack Terrane i s 

underlain by metasediments of the Spruce Brook Formation, 

which range in metamorphic grade from greenschist facies 

near the margin of the terrane to upper amphibolitic facies 

in two locations near the center, where they are intruded by 

the Through Hill Granite (Colman-Sadd, 1985). The Spruce 

Brook Formation comprises metamorphosed interbanded quartz­

rich psammitic and pelitic rocks that have been correlated 

with similar rocks in the Gander Group occurring in the 

eastern Gander Zone (Colman- Sadd et al., 1992}. Because of 

the gradational nature of the contacts between pelitic and 

psammitic layers and the general uniformity of rock 

composition , clastic input into the unit is considered to 

have been derived from a single continental source (Colman­

Sadd, 1985). The age of the Spruce Brook Formation has 

recently been discussed by Colman-Sadd et al. (1992), who 

concluded on the basis of fossil and radiometric ages of 

detrital grains that it was deposited between Late 



Precambrian and Late Arenig time. 

The top of the Spruce Brook Formation cannot be defined in 

the study area, as all contacts with the overlying 

ultramafic units are faulted. The Spruce Brook Formation has 

been folded into a dome exposing rocks of low metamorphic 

grade at the margins (chlorite zone) and high metamorphic 

grade at the center (sillimanite-K feldspar zone), where 

migmatization is common. 

The Through :lill Granite intrusions occur in Through Hill 

and in several other places around the metamorphic core of 

the Mount Cormack Terrane. Through Hill Granite is an 

aluminous s-type granite that was probably produced by 

anatexis of metasediments of Spruce Brook Formation at the 

peak of metamorphism (Colman-Sadd et al., 1992). 

2.2 Pipestone Pond Complex 

Pipestone Pond Complex, situated on the wes~ern side of 

Mount Cormack Terrane (Figs 1.1 and 1.2), is a complete but 

disrupted ophiolite, consisting of westward facing sequence 

of mafic and ultramafic rocks (Swinden, 1988). In an east­

west cross-section, the following sequence occurs: 

metasediments of Spruce Brook Formation tectonically 

overlain by harzburgite and minor dunite that pass westward 

into pyroxenite, gabbro with diabase and plagiogranite and 
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rocks of the Baie d'Espoir Group. The ophiolite is in 

tectonic contact with the underlying Spruce Brook Formation 

and with the overlying Baie d'Espoir Group. The ophiolite 

sequence is disrupted by internal faulting and no section 

contains the complete ophiolitic stratigraphy (Swinden, 

1988). 

2.3 coy Pond Complex 

Situated on the eastern site of the Mount Cormack Terrane 

(Figs 1.2 and 2.1), the Coy Pond Ophiolite Complex is about 

7x7 km in size with a roughly rectangular shape, and lies in 

tectonic contact with all the surrounding units except for 

an inferred intrusive contact (Colman-Sadd 1985; Colman-Sadd 

et al., 1992) with the Partridgeberry Hills Granite in the 

south (Fig 2.1). To the west and north, it tectonically 

overlies metasediments of the Spruce Brook Formation, and to 

the east it is in tectonic contact with Baie d'Espoir Group. 

It comprises an imbricated but complete ophiolite 

stratigraphy in a subvertical orientation that faces 

outwards, with the ultramafic unit at the base (similar to 

the Pipestone Pond Complex}. In a west-east cross-section 

(Fig 2.2) the following units occur: (i) harzburgite and 

dunite tectonite, (i~} western tectonic melange, (iii) 

layered pyroxenite, dunite and rodingite of the transition 
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Fiq 2.1 Geological map and cross-section A-A' of the coy 
Pond Complex (partly after Colman-Sadd, 1985). 
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zone, (iv) gabbro and diabase, (v) trondhjemite and 

keratophyre, (vi) pillow lavas, (vii) eastern tectonic 

melange, and (vii) Baie d'Espoir Group. 

2.4 Great Bend Complex 

The Great Bend ophiolite (Fig 1.1 and 1.2) is an 

ultramafic body about 8-10 km in diameter situated on the 

Northwest Gander River just upstream of its confluence with 

Great Gull River, near the Bay d'Espoir Highway. It is 

composed of ultramafic lithologies such as dunite, 

harzburgite and pyroxenite together with gabbroic rocks 

(Zwicker and Strong, 1986). On account of its roughly 

circular shape, lithological zonation and inferred intrusive 

contacts, the Great Bend Complex was previously considered 

to be a classic example of an intrusive mantle diapir 

(Stevens and Strong, 1974; Malpas and Strong, 1974). 

However, recent mapping in the area has shown the exist~nce 

of a basal dynamothermal aureole, composed of mylonitic 

gabbro and amphibolite schist (Dic~son, 1992), implying 

that, as with Coy Pond and Pipestone Pond Complexes, it is 

part of an ophiolite complex. 

The Great Bend and Coy Pond Complexes, are linked along 

the Northwest Gander river by a narrow strip of intensely 

tectonized and carbonatized ultramafic rocks similar in many 
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respects to the eastern tectonic melange of the coy Pond 

Complex. 

2.5 Baie d'Espoir Group 

At its eastern boundary, the Coy Pond Complex is in fault 

contact with volcano-sedimentary rocks of the Baie d'Espoir 

Group (Fig 2.1). The unit, which is widely exposed in south­

central Newfoundland, is dominated by sandstone, siltstone 

and phyllite, but east of Coy Pond it comprises principally 

metavolcanics of intermediate to felsic composition (Colman­

Sadd, 1985). 

2.6 Partridgeberry Hills Granite 

Situated to the south of the Coy Pond Complex (Fig 2.1), 

the Partridgeberry Hills Granite underlies an area of about 

270 square kilometers. It is a biotite and biotite-muscovite 

granite that is widely chloritized. A silica-rich phase 

crops out near Burnt Hill and in the Partridgeberry Hills 

(Colman-S~dd, 1985). 

2.7 Age constraints 

The following age constraints have recently been 
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established. 

(i) The Spr•1ce Brook Formation is older than Llanvirn­

Llandeilo, on the basis of a late Arenig age determination 

from fossils in an unconformably overlying limestone 

conglomerate and it is probably younger than latest 

Preca~~rian (Colman-Sadd et al., 1992). 

(ii) The Through Hills Granite, which intrudes the Spruce 

Brook Formation in the south-central part of Mount Cormack 

Terrane, is considered to have formed by anatexis during the 

regional metamorphism. Its crystallization age was 

determined to be 464 +4/-3 Ma by U/Pb (zircon) geochronology 

(Colman-Sadd et al., 1992). 

(iii) The Mount Cormack Migmatite Complex is situated in 

north-central part of the Mount Cormack Terrane, where 

partial melting of the Spruce Brook Fcrrnation occurred 

during the peak of the regional metamorphism. U/Pb age 

deterrnin~~ions on monazite fractions from leucosomes have 

yielded an age of 465 ±2 Ma (Colman-Sadd et al., 1992), 

which overlap with the age of the Through Hill Granite. 

(iv) The Coy Pond Complex has a minimum age of 489 Ma 

(Pb/Pb age) based on one single zircon fraction from 

trondhjemite (Dunning and Krogh, 1985). 

(v) The Pipestone Pond Complex formed 494 +3/-2 Ma ago 

based on a U/Pb (zircon) age of the intruding trondhjemite 

(Dunning and Krogh, 1985). 
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(vi) Two zircon fractions from a distinctive quartz­

plagioclase porphyry unit known as the Twillick Group Member 

of the Baie d'Espoir Group (Colman-Sadd et al., 1992), have 

yielded an age of 468 ±2 Ma. This unit, which crops out as a 

narrow strip about 70 km long, is mostly enclosed in the 

Baie d'Espoir Group, but its northwestern end is considered 

concordant with the Gander Group (Blackwood, 198J). 

(vii) Coarse-grained and unfoliated microcline porphyritic 

biotite granite representing the Partridgeberry Hills 

Granite, has been dated of 474 +6/-J by the U/Pb zircon 

method (Colman-Sadd et al., 1992). 
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Chapter 3 

STRUCTURAL FRAMEWOP.K 

3.1 Imbricate structure of the coy Pond Complex 

In spite of the imbrication process which occurred during 

the transport and emplacement of the ophiolite nappe, the 

Coy Pond Complex, which is composed of two tectonic slices 

and two tectonic melanges, preserves a complete ophiolite 

stratigraphy. The tectonic units and their petrologic 

components strike about north-south (010 to 030°) and dip 

70-80°E (Fig 2.1). From west to the east, the Coy Pond 

Complex comprises four principal tectonic units, which are 

informally referred to as: (i) the basal slice, (ii) the 

western tectonic melange, (iii) the central slice and (iv), 

the eastern tectonic melange (Figs 2.1, 3.1 and 3.2). Near 

Chrome Brook, between the Spruce Brook Formation and the 

western tectonic melange, another tectonic unit, informally 

referred to as the Mixed Lithology Slice also occurs (Fig 

3.1 aad Chapter 7). The general nature of the three tectonic 

slices is presented first, followed by a more detailed 

discussion of the tectonic melanges, which form the subject 

of investigation of this thesis. 



Fiq 3.1 Simplified qeoloqical map of the western tectonic 
melanqe of the Coy Pond Complex. Abbreviations: 
BS = basal structural slice 
WTM = western tectonic rn6lanqe 
cs = central structural slice 
MS = mixed litholoqy slice 
TZ = former transition zone, larqely replaced 

by WTM (see text for discussion) 
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Fig 3.2 Simplified geological map of the eastern te~tonic 
melange of Coy Pond Complex. Legend as in Fig 3.1, except 
for mafic pillow lava and Baie d'Espoir Group, which ~re 
indicated. Abbreviations: 
cs - central structural slice 
ETM = eastern tectonic melange. 
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3.1.1 Basal slice 

The basal slice is situated between the Spruce Brook 

Formation at the west and north, the western tectonic 

melange at the east, and the Partridgeberry Hills Granite at 

the south. It is about 1 km wide and is exposed for about 9 

km along strike. In the area near the confluence of Chrome 

Brook and Northwest Gander River, the basal slice is missing 

from the tectonic stratigraphy for a distance of about 2.5 

km. 

North of Chrome Brook, the basal slice comprises upper 

mantle tectonites, harzburgite and dunite; south of Chrome 

Brook, it comprises mantle tectonites (poorly exposed) and 

dunite of the transition zone (Figs 2.1 and 3.1). 

Two main groups of structural features are distinguished 

in the mantle tectonite unit: primary mantle flow structures 

and secondary structures of shallow lithospheric origin. 

These are discussed below. 

3.1.1.1 Asthenospheric structures 

Asthenospheric (primary) structures include layering and 

foliation. The compositional layering is defined by 

variations in olivine to pyroxene ratios and consists of 

rhythmically alternating layers 1 to 5 em in width of 
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pyroxene-rich and pyroxene-poor harzburgite. This feature is 

very common in the northwestern part of the Coy Pond mantle 

tectonite unit, where orthopyroxene layers may form up to 50 

percent of the outcrops. 

Possible mechanisms for the origin of this layering have 

been widely discussed in the literature and include magmatic 

differentiation by gravitational settling (Coombs et al., 

1976), tectonically induced mechanical segregation processes 

of two phases under shear gradients (Dick and Sinton, 1979), 

and metamorphic differentiation accompanying deformation, 

pressure solution creep and anatexis of the peridotite (Dick 

and Sinton, 1979). The latter, deformation-related processes 

appear more likely in the Coy Pond Complex because the 

mantle tectonites, especially the harzburgites, show a 

penetrative foliation which can be seen on outcrop and 

microscopic scales. The foliation is a result of the 

flattening of enstatite and chrome-spinel grains in the 

foliation plane, and is interpreted to have been acquired in 

the mantle during plastic flow. Mantle foliations in the 

harzburgite dip 50 to 60° to the east and strike 

approximately 330-350° throughout most of the unit (Fig 

3. 1) • 

The southern part of the basal slice, situated south of 

Chrome Brook, comprises harzburgite with overlying residual 

dunite, which according to Nicolas and Prinzhofer (1982) 
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occur in the loNer part of the transition zone. In dunite, 

the mantle foliation is defined by deformed Cr-spinel 

strings and lenses which strike about north-south and dip 75 

to 85° east (Fig 3.1). 

3.1.1.2 Lithospheric structures 

Lithospheric structures of shallow origin such as faults, 

cleavage, shear zones and also the tectonic melanges, were 

produced during the transport and emplacement of the 

ophiolite in the brittle or brittle/ductile domain. 

Major faults are confined to the margins of the basal 

~lice. Along the western margin, the basal slice is in 

tectonic contact with the autochthonous Spruce Brook 

Formation along a cryptic northeast-striking fault that is 

inferred to be vertical to ste~ply east dipping (Fig 2.1). 

This fault is interpreted to have had initially a thrust 

sense of displacement (during the emplacement of the 

ophiolite), and was subsequently rotated towards the 

vertical during doming, and may also have been reactivated 

during late extensional faulting. 

To the east, the basal slice is in tectonic contact with 

the western tectonic melange along another northeast­

trending subvertical fault. The origin of this fault is not 

certain, but it, and the western tectonic melange may have 
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developed during obduction and thr~st emplacement of the 

ophiolite nappe onto the continental margin, or they may 

have developed during post emplacement extensional faulting. 

This is discussed more fully in Chapter 11. Along its 

northern margin, the basal slice is cut by late high angle 

normal faults which place it against the Spruce Brook 

Formation along the Northwest Gander River (Fig 3.1). Fault 

breccia composed of ultramafic and sedimentary fragments can 

be seen in the river bed . To the south, the Partridgeberry 

Hills Granite is considered to be in intrusive contact with 

the tectonite unit (Colman-Sadd, 1985; Colman-Sadd et al., 

1992) as well with the other ophiolite units. 

Three sets of fracture cleavages are well-developed in the 

tectonite unit. The two main ones have orientations of 

340/80° E and 260/90° with the third set being 

subhorizontal. These three fracture cleavages sets are 

roughly perpendicular to each other and bound quasi-cubic 

rock volumes. They form the basic fra~ework of the 

serpentinite mesh structure on olivine down to the 

microscopic scale (see Chapter 6). 

Brittle shear zones occur in the tectonite as rather 

poorly defined zones of intensely brecciated harzburgite and 

dunite . They are best exposed in the northern part of the 

unit where the North West Gander River produces large 

exposures. Here, they are a few m in width, several tens of 
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min length and commonly show subvertical dips (Fig 3.1). 

Tectonic melanges, which contain abundant evidence of the 

brittle/ductile response of the ophiolite complex during the 

lithospheric deformation, are discussed in detail in section 

3.1.4. 

3.1.2 Mixed lithclogy slice 

At the base of Coy Pond Complex and situated in an area 

where the basal ultramafic slice is missing (east of Chrome 

Brook near its confluence with the Northwest Gander River), 

there is a small tectonic slice composed of imbricated 

exotic (i.e. non-ophiolitic) rocks of a variety of 

compositions (including pelitic schist and various types of 

metavolcanic rocks) informally referred to as the mixed 

lithology slice (Fig 3.1). This slice, which is about 2 km 

long and 500 m wide, is situated between the western 

tectonic melange to the east and the Spruce Brook Formation 

to the west. To the north and south it is inferred to be in 

fault contact with the mantle tectonite unit. The component 

lithologies form small hills tens to hundreds of meters in 

size which are characteristically covered by thick 

vegetation in sharp contrast to the denuded ultramafic 

surroundings. 

Petrographic characteristics of the component lithologies 
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are described in Chapter 7 and their origin is discussed in 

Chapter 11. 

J.l.J Central slice 

The central slice, situated between the western and 

eastern tectonic melanges, comprises most of the units of 

the Coy Pond Complex: pyroxenite of the transition zone, 

gabbro and diabase, trondhjemite and keratophyre, pillow 

lava and locally overlying metasedimentary rocks. It is 

between 5 to 6 km in width (Figs 2 . 1 and 3.1). 

To the west, the central slice is in fault contact with 

the western tectonic melange, and to the east the boundary 

with the eastern tectonic melange is also a fault. The 

northern contact with the Spruce Brook Formation is 

interpreted to be ~ high angle normal fault, and in the 

south the central slice is intruded by the Partridgeberry 

Hills Granite. A minor ductile shear zone about 10 m wide 

and more than hundred m long occurs about 500 m north of the 

granite, cutting the layered pyroxenite on a west-east 

direction (Fig J.l). 

The ultramafic portion of the central slice comprises 

layered pyroxenite of the transition zone and concordant 

dunite b~nds and lenses. The best exposures occur near the 

southern contact of the unit with the Partridgeberry Hills 
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Granite (Fig 3.1). Generally these formations strike north­

south to 030°, and dip subvertically. Two dikes containing 

rodingite, (initially probably of gabbroic origin), are 

apparently concordant with pyroxenite layers and are visible 

near the contact zone with the granite. 

3.1.4 Tectonic melangec 

3.1.4 . 1 General statement 

The term melange (French = mixture) was introduced into 

the geologic literature by Greenly (1919; cited by Williams, 

1977) to describe "a chaotic mixture of unsorted blocks in a 

much finer, commonly sheared matrix". Melanges are 

classified according to their process of formation: 

sedimentary, diapiric, tectonic or a combination of such 

processes. 

Two main processes contribute to the genesis of any 

melange: (i) the rock fragmentation (resulting from 

different mechanical behaviour of lithologies during 

deformation), and (ii) the mixing (HsU, 1968). 

The intimate relationship between melanges and ophiolites 

was first recognized by Gansser (1974) who also proposed the 

term of ophiolitic melange in order to distinguish it from 

those of purely tectonic or purely sedimentary 

(olistostromal) origin. However I prefer not to use this 
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term, as it does not distinguish ophiolitic melanges of 

sedimentary origin (normally composed of ultramafic blocks 

in a black shale matrix) from those of tectonic origin that 

are composed of ultramafic blocks in an ultramafic matrix. 

In the Coy Pond melanges, both fragments and matrix are 

predominantly of ultramafic composition; sedimentary blocks 

occur only rarely and are restricted to the eastern tectonic 

melange . So the Coy Pond melanges can reasonably be 

considered tectonic melanges. Moreover, the few sedimentary 

blocks that are present (only in the eastern tectonic 

melange) were not incorporated within the melange through a 

sedimentary process (as in the case of an olistostrome) ; 

they were incorporated into the deforming ophiolite nappe 

during displacement and were subsequently mechanically mixed 

with fragments of ultramafic origin. 

In the text which follows two similar terms, namely 

fragments and blocks, are both used to refer to undeformed 

or little deformed bodies situated in a much finer 

schistose matrix. Fragments are elliptical bodies of 

invariably ultramafic origin, (of dunitic and harzburgitic 

protoliths) that are commonly less than 1 to 2 m in size , 

whereas blocks are much larger, tens to hundreds of m in 

size, and are composed of sedimentary rocks (eastern 

tectonic melange) and pyroxenite (western tectonic melange). 
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3.1.4.2 Composition and characteristics of the Coy Pond 

tectonic melanges 

General characteristics of the tectonic melanges include 

the following: 

(i) Fragments and matrix in both western and eastern 

tectonic melanges have a common protolith of ultramafic 

(dunitic-harzburgitic) origin. 

(ii) Both tectonic melanges are composed of sub-rounded 

fragments enclosed in a strongly sheared matrix (Fig 3.J). 

(iii) The fragment size ranges from several em to a few m, 

with an average of about 1 m (Fig 3.3). 

(iv) Although on a small scale the schistose matrix can be 

seen to wrap around the m~lange fragments, at a larger 

outcrop scale the matrix schistosity is consistently 

subparallel to the boundaries of the tectonic m~lange uni~; 

(v) Many individual fragments show evidence around their 

margins of in situ comminution to matrix through progressive 

shearing and recrystallization. 

(vi) The ultramafic protoliths underwent a retrograde 

metamorphism: both fragments and matrix were completely 

serpentinized and later recrystallized and carbonatized to a 

variable degree. 

Particular characteristics of the two tectonic m~langes 

are discussed below: 
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Fiq 3.3 Simplified block diagram showing typical 
shape and spatial arrangement of the fragments and matrix in 
tectonic melange. 
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The western tectonic melange (Figs 2. 1 i 3. 1 and 3. 3) : 

( i) Is composed exclusively of fragments anci matrix of 

ultramafic origin principally duni te and harz burg i te, and in 

its southern part also contains several large (hundreds of 

m) pyroxenite blocks. 

(ii) Both the serpentinite fragments and the matrix are 

parti~lly carbonatized to talc-magnesite assemblages, with 

the matrix typically more carbonatized than the fragments. 

(iii) The assemblage quartz-magnesite is not widespread, 

occurring only in a strip about 1 km long and several 

hundreds of m wide in th~ central part of the tectonic 

melange, at the contact with the central thrust slice . 

The eastern tectonic mUange (Figs 2 . 1 and 3. 2) : 

(i) Is extensively carbonatized and only few relics of 

serpentinite occur between widespread (and commonly mingled) 

talc-magnesite and quartz-magnesite assemblages. 

(ii) On account of the high degree of carbonatization, the 

original nature of the ultramafic protolith cannot be 

determined. 

(iii) Several large (tens to hundreds of m) exotic blocks, 

of sedimentary and volcanosedimentary origin occur in the 

estern tectonic melange. 
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3.2 Serpentinite deformation 

Experimental data on sealed serpentinite specimens at low 

temperatures show that the litho logy has considerable 

strength in comparison to that of granite, but exhibits a 

marked weakening with increasing temperatures. For example, 

mesh textured lizardite deforms little below J00-350°C, 

above which its strength decreases dramatically (Raleigh and 

Paterson, 1965). Deformation is by brittle fracture at 

confining pressures <2 kbars, and by ductile mechanisms 

above 2 kbars (Raleigh and Paterson, 1965). The weakening of 

serpentinite with increasing temperature is related to the 

dehydration of both lizardite and antigorite to forn 

forsterite and talc as the pore pressure of the released 

water reduces the effective confining pressure (Raleigh and 

Paterson, 1965). D~hydration of brucite-bearing serpentinite 

(at 3 kbars confining pressure) occurs at even lower 

temperatures of about 300°C (Scarfe and Wyllie, 1967). 

Experiments on the strength and fracture behaviour of 

rocks having strong planar anisotropy have shown that the 

strength is orientation dependent, and that the orientation 

of the fractures is largely controlled by the orientation of 

the pre-existing structural anisotropies (Donath, 1970) • 

This is particularly of interest for serpentinite, for which 

measured data on samples with a strong shear fabric yield 
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extremely low shear strengths of between 1 and 5 bars (Cowan 

and Mansfield, 1970). These data may help to explain the 

mechanism of displacement of dismembered ophiolite complexes 

as a whole and as individual tectonic slices bound by the 

tectonic melange units. 

On the basis of the protoliths of the fragments and the 

blocks in the western tectonic melange, the tectonic 

melanges units appear to have formed at abcut the level of 

the transition zone in the Coy Pond ophiolite. It can be 

imagined that several factors probably contributed to the 

development of the tectonic melange within the transition 

zone rather than elsewhere. 

(1) The existence of inherited weak, sheared 

(serpentinite) zones above the mantle sequence at this level 

(see also Fig 11 A and B), which can accommodate large 

crustal rotations (up to 45°) between the mantle sequence 

and rotated crustal blocks, as recognized empirically in the 

Josephine and Troodos ophiolites (Allerton and Vine 1 1987; 

Norrel and Harper, 1988) . 

( 2) The presence of sharp compositional and structural 

anisotropies between the harzburgite tectonite and the 

residual dunite at the base of the transition zone. The 

harz burg i te tectonite 1 with a mechanically strong foliation 

(defined by pyroxenite layers) oriented at a high angle to 

the shear or melange zone boundary 1 has a higher shear 
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strength than the underlying dunite with its mechanically 

weaker foliation defined by chromite seams and layers 

oriented subparallel to the shear direction (Donath, 1961). 

Similarly, the upper contact of the dunite at the dunite­

pyroxenite boundary was also a zone of weakness. 

(3) Serpentinization of the dunitic layer at the base of 

the transition zone (the locus of the melange formation), 

which may have occurred in the ocean realm predated melange 

formation, would have produced the well-known sub-cubic 

fracture pattern in serpentinite as a result of the large 

volume increase (up to 48% in serpentinized dunite; 

Hostetler, 1966). 

3.3 Summary 

(i) The Coy Pond Complex is in a subvertical orientati~n 

nd faces outwards from the core of the Mount Cormack 

Terrane. 

(ii) The Coy Pond Complex is in fault contact with all 

adjacent units except the intrusive Partridgeberry Hills 

Granite (Colman-Sadd and Swinden, 1984). Most oi the faults 

are not exposed; some of the faults are interpreted to have 

had an initial thrust sense of moving (e.g. the contact 

between the Spruce brook Formation and the basal slice), but 

there is also considerable circumstantial evidence for 

extensional faulting. 
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(iii) The Coy Pond Complex is an imbricated, but complete, 

ophiolite body comprising two tectonic slices (basal and 

central slice) separated by two tectonic melanges (western 

and eastern melanges) . 

(iv) Stratigraphic and tectonic units (slices and 

melanges) strike about north-south and dip vertically to 70-

80° east; 

(v) The basal tectonic slice is missing for a distance of 

2 km, and its place is taken by the Mixed Lithology Slice, a 

tectonic sliver composed of miscellaneous blocks which were 

derived from both ophiolite slab and underneath 

metasedimentary rocks. 

(vi) The basal tectonic slice, composed mainly of 

harzburgite and dunite tectonite, exhibits asthenospheric 

structures (layering and foliation), and lithospheric 

structures (faults, fracture cleavage and shear zones). 

(vii) The two tectonic melanges, which are composed of 

meter- sized elliptical fragments (formed in the brittle 

domain) enclosed in a schistose serpentinite matr.~ (formed 

in ductile domain), were formed by fragmentation and 

shearing of harzburgite and dunite during the 

detachment/transport and/or emplacement of the ophiolite 

nappe. 

(viii) Most likely, the formation of the tectonic melanges 

started in the brittle domain with mechanical fragmentation 
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of the dunite layer situated between harzburgite and 

pyroxenite, which was alr€ady weakened because of 

serpentinization and transport. The brittle comminution of 

serpentinite fragments was followed by the in situ formation 

of the serpentinite matrix (recrystallized lizardite) in the 

ductile domain. 
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Chapter 4 

THE MANTLE TECTONITES 

4.1 Introduction 

It is widely accepted that peridotites , which constitute 

the basal part of most ophiolites, represent depleted 

oceanic upper mantle {Coleman, 1977; Nicolas et al., 1980). 

The predominant fabric of peridotites in most ophiolites 

reflects the solid state flow deformations produced in the 

upper mantle during the process of se<l-floor spreading. 

Superimposed shear fabrics, typically concentrated near the 

base of ophiolite sections, reflect high strain associated 

with the formation and obduction of ophiolite slices. On 

account of their typically high state of strain, these rocks 

are generally referred as tectonized peridotites or more 

simply as mantle tectonites {Turner and Weiss, 1963 p.39). 

4 . 2 Rock classification and textures 

The rock classification scheme of Streckeisen (1976) and 

the nomenclature of the I.U.G.S. have been used in this 

study {Fig 4.1). 

Modal compositions have been qualitatively assessed with 

the optical microscope. Where serpentinization was minimal 

this can be achieved without difficulty. In cases of 



Fig 4.1 lUGS nomenclature (based on modal mineral 
proportions) for ultramafic rocks with <5\ spinel and 
lacking plagioclase, hornblende and garnet (Streckeisen, 
1976). 

Fig 4.2 Representative view of harzburgite and dunite of 
tectonite unit. Brownish weathering harzburgite with 2 em 
wide dunite layer (horizontal layer across central part of 
the figure) cross-cut by a network of serpentinized (white) 
fractures. Harzburgite exhibits a rough weathering surface, 
with pyroxene and chromite grains standing out in relief, in 
contrast to dunite which weathers to a smooth surface. 
Outcrop located in northwester~ corner of tectonites, 100 m 
east of Northwest Gander River. 
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advanced or complete serpentinization the least deformed 

specimens, having pseudomorphic textures which preserve all 

the main characteristics of the protolith minerals, have 

been used. 

Tectonite textures have been classified using the scheme 

fer textures of ultramafic xenoliths in basalts (Mercier and 

Nicolas, 1975; Pike and Schwarzman, 1977; Harte, 1977) and 

the classification for peridotite textures (Nicolas, 1978; 

Nicolas et al., 1980; Nicolas, 1986). 

4.3 Distribution and contacts 

The mantle tectonites in the coy Pond ophiolite, which 

constitute only a small (<5%) part of the entire ophiolite 

complex, occur in two separate slices in the extreme west of 

the ophiolite, adjacent to the underlying Spruce Brook 

Formation (Fig 3.1). The more northerly slice, situated 

between Chrome Brook and the broad bend in the Northwest 

Gander River, is a well exposed body about (2 km x 1 km) 

consisting of harzburgite and dunite. The southern slice 

situated south of Chrome Brook is in a poorly exposed area 

and consists of several showings of very altered, 

mylonitized harzburgite. 

In terms of its structural position, the tectonite unit 

forms the structurally lowest basal thrust slice in this 
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part of the Dunnage Zone, directly overlying the Spruce 

Brook Formation and underlying the ophiolitic tectonic 

m6lange. 

The tectonized peridotites in the Coy Pond ophiolites are 

composed of two main lithologies, harzburgite and dunite and 

subsidiary rare pyroxenite dikes. 

4.4 Harzburgite 

In outcrop, harzburgite exhibits a yellowish-brown 

weatherir.3 rind (Fig 4.2) that may be up to 1 ern thick. on 

fresh surfaces the rock is dark greenish to black and has a 

hackly conchoidal fracture. The unaltered pyroxene imparts a 

greyish-green colour to the rock, but with serpentinization 

the rock becomes darker. Completely serpentinized 

harzburgite and dunite have a greyish-black coloration. 

Serpentinized harzburgite weathers to a rough surface, 

produced by differential weathering which leaves resistant 

pyroxene "hobnails" and smaller chrornite grains (Fig 4.2). 

Pyroxene grains are up to 1 em in size and have a bronze­

like metallic lustre (schiller). Bands and clusters of 

pyroxene in some sites impart a good foliation to the rock. 

Chrome spinel grains are black and up to several mrn in 

diameter. They commonly occur in trails and fine pods 

defining a compositional banding. Where flattened and 

47 



elongated, spinel grains also define a tectonic foliation in 

the rock. 

4.4.1 Petrography and microstructures 

The primary mineral assemblage of the harzburgite is 

difficult to assess because of subsequent ser~entinization. 

Commonly the harzburgite tectonites are about 30 to 50 per 

cent by volume altered to serpentine minerals. Harzburgite 

specimens collected near the western boundary of the unit, 

near the base of the t~ctonite slice are up to 80 percent 

serpentinized. The average original modal composition of 

harzburgite is estimated to have been: olivine 70-80 %; 

orthopyroxene 20-30 %; chrome spinel 1-2 %; clinopyroxene 

<1 %. 

Olivine and pyroxene are commonly segregated in olivine­

rich and pyroxene-rich bands which confer a foliation to the 

rock. Where this occurs, it is a conspicuous feature on both 

mesoscopic and microscopic scales. Two main textures occur 

in harzburgite: 

(i) coarse porphyroclastic textures 

(ii) protomylonitic textures 

The coarse porphyroclastic textures (Mercier and Nicolas, 

1975; Harte, 1977) are the more primitive and are produced 

by asthenospheric flow (Nicolas, 1986). Such textures, 
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implying an asthenospheric signature with little or no 

overprinting by lithospheric deformation, are restricted to 

harzburgite situated in the northwestern part of the 

tectonite unit. They are characterized by large olivine 

grains (up to 10 mm) which have tabular shapes and straight 

boundaries. Kink banding and undulose extinction are common 

(Fig.4.J). Well-recovered substructures also occur. The 

large composite olivine porphyroclasts may be composed of 

small (<0.5 mm) idioblastic olivine grains (neoblasts) 

produced by subgrain formation. Large porphyroclasts form 

more than 50 per cent of the rock and indicate the low 

degree of recrystallization of the olivine. The neoblasts of 

olivine form a mosaic texture with common 120° triple point 

junctions due to annealing processes (Fig 4.4). 

orthopyroxene (enstatite) up to 5 mm in size generally 

forms clusters of irregularly shaped grains giving a weak 

foliation to the rock. Commonly these grains have olivine 

inclusions and large embayrnents filled with olivine (Figs 

4.5 and 4.6), and many show evidence of brittle or brittle­

plastic deformation (Figs 4.5). 

Spinel typically occurs as small blebs enclosed in olivine 

and orthopyroxene porphyroclasts (Fig 4.7) and rarely occurs 

as interstitial grains with a weakly-developed holly-leaf 

shape between olivine grains, and an idioblastic shape where 

in contact wjth pyroxene. 
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Fig 4.3 Harzburgite with porphyroclastic texture. 
3 large olivine porphyroclasts (high order pink to green 
birefringence colors) with subsidiary orthopyroxene (yellow) 
on the right hand side. The central olivine grain shows 
undulose extinction (from black to purple) and fine 
deformation lamellae. The olivine grains are fractured and 
partially replaced by mesh textured lizardite (white) . 
Specimen 175; X 3.2; crossed polars; bar represents 0.5 mm. 

Fig 4.4 Harzburgite with porphyroclastic and neoblastic 
texture. An example of the recrystallization of olivine by 
grain boundary migration toward a state of minimum 
interfacial energy. In the lower right hand corner three 
olivine bands or subgrains (the middle one showing high 
order birefringence colors between two grains at extinction) 
in contact with unstrained olivine neoblasts (upper half of 
the figure). The 120° triple point junctions are between 
differently oriented bands which act as separate grains. 
Sample 175; X 3.2; crossed polars; bar represents 0.5 mm. 





Fig 4.5 Harzburgite with porphyroclastic texture. 
Highly strained and fractured orthopyroxene porphyroclast 
(grey) in the central part of the figure in a groundmass of 
recrystallized olivine grains. The orthopyroxene grain 
contains olivine in inclusions and embayments, and narrow 
clinopyroxene exsolution lamellae. 
Sample 175; X 3.2; crossed polars; bar represents 0.5 mm. 

Fig 4.6 Detail of harzburgite with porphyroclastic texture. 
Cuspate, fractured orthopyroxene grain (yellow) showing 
several stages of partial melting and replacement by olivine 
(grey, purple and blue). Black is serpentine and magnetite. 
Specimen 184; X 10; crossed polars; bar represents 0.2 mm. 





Fig 4.7 Detail of harzburgite with porphyroclastic texture. 
Elongate, stretched and bent enstatite grain in foliation 
plane. The grain shows undulose extinction, clinopyroxene 
exsolution lamellae, and olivine in inclusions (yellow) and 
embayments. Fractures are developed perpendicular to the 
maximum dimension indicating that the enstatite crystal has 
been stretched in the plane of foliation. In the upper left 
part of the figure there is another orthopyroxene grain 
(grey) with a small spinel inclusion (brown). Olivine grains 
are yellow and reddish, serpentine and magnetite are black. 
Sample 50; X 3.2; crossed polars; bar represents 0.5 mm. 

Fig 4.8 Harzburgite with porphyroclastic to protomylonitic 
texture. 
Detail showing a mylonitic layer band between a highly 
strained and fractured pyroxene grain {blue and purple to 
orange birefringence in the left hand side of the figure) 
and relict olivine porphyroclast (pink and green in the 
bottom right corner) • The pyroxene is partially altered to 
lizardite-bastite {white). Between the olivine and pyroxene 
there is a narrow mylonite zone composed of small olivine 
grains and iron oxides. 
Specimen 79-A; X 10; crossed polars; bar represents 0.2 mm. 





Protomylonitic textures (Nicolas, Boudier and Bou~hcz, 

1980) are com~on in the harzburgite tectonite of the Coy 

Pond ophiolite (Figs 4.8 to 4.10). This texture is a result 

of advanced recrystallization, the olivine neoblasts 

comprising dynamically recrystallized small grains (<0.1 mm) 

with a mosaic t~xture (Figs 4.8 and 4.9). Rare larger (<5 mm 

in size) relict olivine porphyroclasts (Fig 4.8) are still 

present and exhibit strongly undulose extinction. 

Orthopyroxenes are variable in size, from porphyroclasts up 

to 8 mm in length, to small grains about 0.5 mm in size. All 

orthopyroxene grains are highly strained, and clinopyroxene 

exsolution lamellae and bent crystals are common. Elongate 

and stretched grains in the foliation plane also occur (Fig 

4.10). Small spinel grains are commonly flattened and are 

oriented with their long axes in the foliation plane 

(Fig.4.10). 

4.4.2 Discusuion and conclusions 

According to Nicolas (1978; 1986) the coarse­

porphyroclastic textures are achieved by asthenospheric 

deformation at temperatures around 1000-1200 oc, and under 

low deviatoric stresses. The strong recovery is due to very 

active grain boundary migration. A characteristic of 

porphyroclastic textures is the resorption of pyroxene and 
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Fiq 4.9. Harzburgite with mylonitic texture. 
Detail showing mylonitization of olivine between two large 
orthopyroxene grains. The fragmented material in the 
mylonite zone consists of olivine (brownish), chrome spinel 
and magnetite (black), and serpentine (white). 
Specimen 79-A; X 10; crossed polars; bar represents 0.2 mm. 

Fiq 4.10 Harzburgite with protomylonitic texture. 
Spinel (brown) and orthopyroxene (yellow) form a train of 
elongate small grains in a groundmass of mylonitized 
olivine. Spinel grains show fractures approximately 
perpendicular to maximum stretching direction which are 
filled with secondary maqnetite (black). 
section perpendicular to foliation and parallel to 
lineation. 
Specimen 156; X 3.2; crossed polars and partially reflected 
light; bar represents 0.5 mm. 
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replacement "in situ" by olivine (Fig 4.6). This feature 

occurs during partial melting of peridotite and is 

attributed to a reaction such as: 

pyroxene --- olivine + melt 

(Dick and Sinton, 1978; Quick, 1981), with the melt phase 

subsequently being removed. 

Proto~ylonitic textures are generally more common within 

the harzburgite tectonite where they show low-temperature 

(around 800° C), high-stress microstructures and fabrics 

typical of lithospheric deformation at the base of tectonite 

(Nicolas, 1986; Nicolas et al., 1980). 

4.5 Dunite 

About 20% of the mantle tectonites consists of dunite 

bodies. They are i~regularly distributed within harzburgite 

and occur in the following forms: 

(i) broad tabular bodies (Fig 4.2) a few ern to a few min 

width and several hundreds of m in length; 

(ii) smaller irregularly shaped patches, commonly 

interfingering with the harzburgitic host, and having 

decimeter to meter size (Fig 4.11); 

(iii) small tabular bodies (as dunitic walls) between 

clinopyroxene-rich dikes and harzburgitic host. 

Dunite exhibits similar features to the harzburgite in the 
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field, except that it has a smooth weathering surface due to 

the lack of pyroxenes (Figs 4.2, 4.11 and 4.12). In the 

serpentinized samples, the dunite has a black coloration and 

a homogeneous aspect. Locally, layering is defined by the 

relative abundance of chrome spinel (Figs 4.11 and 4.12). 

Layers of chrome spinel up to 2 em thick and few meters in 

length are not uncommon. 

4.5.1 Petrography and microstructures 

The modal composition of the serp~ntinized dunite is 

typically: serpentine 70-80 %, brucite 10-30 %, 

orthopyroxene 0-2 %, magnetite 1-5 %, chrome spinel 1-5 %. 

The original modal composition of dunite is estimated to 

have been: olivine 95-99 %; chrome spinel 1-5 %; 

orthopyroxene 0-2 %. Relict olivine grains, comprising about 

2 to 3 percent of the serpentinized dunite, were found in 

only one specimen (collected from a dunite band). Typically 

the olivine is altered to lizardite + brucite in mesh 

textures or poorly developed hourglass textures, and the 

relict olivine occurs as mesh centers in lizardite mesh 

texture. 

Because of the large degree of alteration, the original 

dunite texture was inferred mainly from serpentine 

pseudomorphs after olivine, in which the original olivine 
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Fig 4.11 Field photograph of harzburgite enclosing an 
irregularly shaped, decimetric-sized patch of dunite 
(central part of figure). Dunite, showing brown-yellow 
weathering color and smooth surface is cut by cr-spinel pods 
and veinlets (black). outcrop location: in the northern part 
of tectonite unit, in the river bed about 500 m south of the 
large bend of the Northwest Gander River. 

Fig 4.12 Field photograph showing dunite with foliation 
defined by layers of Cr-spinel grains. Location: about 150 m 
north of Fig 4.11. 





texture is commonly undisturbed. Detailed petrographic 

observations on lizardite pseudomorphic textures indicate a 

granuloblastic texture for the olivine protolith. The rare 

relict olivine grains noted above (less than 0.3 mm in 

diameter) were part of originally larger grains (5 to 10 mm 

in size) which show vague undulose extinction indicative of 

relatively low strain. 

Chrome spinel grains (<3 mm in size) may form up to 5 

percent of the dunites. They are scattered throughout the 

rock and also occur in layers where they confer a weak 

compositional banding to the rock (Fig 4.11). 

4.5.2 Discussion and conclusions 

Dunite bodies, with granuloblastic texture and evidence of 

weak strain, probably postdated the plastic deformation of 

the harzburgite and may have formed in the crustal 

environment under subsolidus conditions. 

The formation of these late bodies has been attributed to 

replacement of pyroxene by olivine as fluids percolated 

through the harzburgite protolith (Irvine, 1974; Quick, 

1981), or to feeder dikes transporting olivine-rich picritic 

melts from depths (Hopson et al., 1981; Boudier and Coleman, 

1981). Alternatively, since olivine is considered to be the 

most refractory residue produced by partial melting in the 
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mantle, dunite units may represent zones in which partial 

melting was more extensive and removal of the melt mor~ 

complete (Dick and Sinton, 1979). 

4.6 Pyroxenite dikes 

Two pyroxenite dikes within harzburgite occur in the 

northern part of the tectonite unit. One dike is JO em in 

width, the other is about 3-3.5 m. Both dikes cut 

harzburgite and are largely (60-70%) altered to talc and 

lizardite bastite. Most of the rock is crossed by narrow (1-

J mm) serpentine veins. 

The orthopy~oxenite is a coarse-3rained, dark-green rock 

in which the individual crystals can be seen in hand 

specimen. Enstatite comprises roughly 90 per cent of the 

dikes, occurring in a hypidiomorphic granular intergrowth. 

The remaining 10 per cent of the rock consists mainly of 

interstitial olivine (now altered to serpentine), about 1\ 

clinopyroxene and rare Cr-spinel. 

The contacts between grains are interlocking, locally 

irregular. The grain size is rather large, 1 to 15 mm with 

an average of 4-5 mm. Deformation of the pyroxenes has 

produced undulose extinction. Clinopyroxene occurs as rare 

small (<0.5 mm) ragged interstitial grains, and as 

exsolution lamellae within orthopyroxene. The spinel occurs 
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as minute blebs within pyroxene and as anhedral interstitial 

grains <1 mm in size. Late serpentinization reactions have 

resulted in the complete replacement of interstitial olivine 

by mesh-textured lizardite. The large olivine grains (up to 

5 mm diameter) forming the dike walls are also replaced by 

mesh-textured lizardite, but fresh olivine may still be 

found in some of the larger mesh centers. Orthopyroxene is 

largely replaced by talc and in lesser amounts by lizardite­

bastite. The clinopy1oxene grains are also partially altered 

to lizardite-bastite. 

The relatively irregular contacts with the host rock and 

the presence of duni te on dike walls suggest an indigenous 

origin. Comparison with similar dikes reported in the 

literature suggests that the dikes may have formed by 

precipitation of pyroxene from a water-rich solution which 

leached the wall rocks, or from a residual magma which 

reacted with solidified peridotite (wall rock reaction) 

(Green and Ringwood, 1967; Nicolas, 1986). 

4.7 Discussion and conclusions 

The Coy Pond complex shows evidence of three types of 

structure and associated metamorphism that have been 

acquired in three different tectonic environments. 

( 1) Primary or asthenospheric structures were acquired in 
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the mantle during high-temperature, low-stress ductile 

deformation. Compositional layering and foliations defined 

by elongate olivine and pyroxenes such as are seen in the 

Coy Pond complex, are indicative of crystal-plastic flow 

deformation at temperatures higher than 1000°C (Mercier and 

Nicolas, 1975; Nicolas et al. 1980). 

(2) The mylonitic textures involving ductile deformations 

of olivine and pyroxene, and recrystallization of olivine 

neoblasts imply somewhat lower temperatures (800-700° ' :) and 

can be attributed to oceanic detachment and obduction of the 

ophiolite (Boudier and Coleman 1981; Nicolas and Le Pichon 

1980). 

(3) Structures of shallow origin, including fractures, 

faults and cleavages, originated in the upper crustal 

environment and are associated with serpentinization. They 

affect all the earlier structures. The Coy Pond tectonite is 

quite strongly fractured, the degree generally increasing 

toward the margins of the body. Some fractures may have been 

associated with obduction, but it is also likely that many 

faults and cleavages were related to post-obduction 

process,;s. 
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Chapter 5 

THE TRANSITION ZONE 

5. 1. Introduction 

The transition zone in an ophiolite complex is defined as 

the zone situated between the ultramafic and mafic units, 

and it has characteristics in common with both of them 

(Coleman, 1977). The boundary with the underlying tectonite 

unit is defined by the disappearance of orthopyroxene from 

harzburgite, and the boundary with the overlying gabbro is 

marked by the disappearance of peridotites (Nicolas and 

Prinzhofer, 1982). In well-studied ophiolites, the 

transition zone has been shown to be composed of 

inter layered ultramafic ( dunite, wehrli te, pyroxenite) and 

mafic rocks, and its thickness may vary from several meters 

up to 3000 m (Girardeau and Nicolas, 1981). 

5.2 . composition 

The rocks of the transition zone of the Coy Pond ophiolite 

complex are represented mainly by alternations of olivine­

clinopyroxenite, subordinate dunite and minor gabbro dikes. 

The main characteristics of this unit are the regularity of 

the mi neralogic layering (Fig 5 .1), the gradational nature 

of the contacts between adjacent layers, and the marked 



Fig 5.1 Field photograph showing pyroxenite layering in 
transition zone. Medium grained olivine-clinopyroxenite 
layer about 50 em thick (under compass) and fine-grained 
clinopyroxenite layer to the left. The fabric variation over 
short distances is notable. 
Location: about 200 m north of Partridgeberry Hills Granite 
on the western margin of western dunite lens. 

Fig 5.2 Photomicrograph of coarse-grained pyroxenite, in 
which the entire field of view is occupied by a large 
fractured diopside grain at or near extinction. 
Clinopyroxene has narrow orthopyroxene exsolution lamellae. 
Patches with high birefringence colors (white, blue and 
pink) are tremolite-actinolite alteration. 
Specimen 289-A; Xl.S; crossed polars; bar represents 1 mm. 
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variation in strain between adjacent layers. In a west-east 

cross-section in the central part of the ophiolite complex, 

where the transition zone is best exposed, three components 

can be distinguished. 

(i) The base of the transition zone comprises a subzone 

about 1 km thick of dunite overlying the residual mantle 

harzburgite. 

(ii) The central part of the transition zone (also about 1 

kM thick) is co~posed of olivine and clinopyroxene with a 

continuous variation in the proportions between the two 

minerals. The cyclic character of the interlayered o l ivine 

clinopyroxenite and dunite, occurring as bands and lenses 

with thickness scales that range from several tens of 

centimeters up to hundreds of meters, is very characteristic 

of this subzone. 

(iii) The upper part of the transition zone is 

distinguished by the disappearance of dunite and the 

appearance of gabbro. 

5.3. Distribution and contacts 

The present distribution of the transition zone in the Coy 

Pond Ophiolite (partially visible in Fig 3.1) reflects the 

fragmentation and mechanical mixing that occurred during 

ophiolite obduction and emplacement. 
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Most of the lower dunitic part of the transition zone 

(entirely in the northern half of the western tectonic 

melange and partially in the southern half of the western 

tectonic ~clange), and part of the central pyroxenite unit 

(in the southern half of the Nestern tectonic melange), were 

completely separated from the unit, and were recycled to 

form the western tectonic melange. The remainder is best 

exposed north of the Partridgeberry Hills Granite (Fig 3.1) 

which truncates the transition zone. Farther north, rocks of 

the transition zone outcrop only rarely. 

A dismembered section of the transition zone, represented 

by olivine clinopyroxenite, occurs as a tectonic block 

(2.5xl km) in the northeastern part of the ophiolite 

complex. 

Cumulate pyroxenite is easily distinguished from the 

associated dunite due to the presence of layering and its 

grey to brown weathering color (Fig 5.1). The rocks are dark 

green colored when fresh. Commonly they are medium-grained, 

but in the central subzone of the transition zone and also 

in the dismembered tectonic block, the pyroxenites are 

coarse-grained and massive. Cumulate dunite, on the other 

hand, is red brick in color on weathered surfaces, and black 

where fresh. Rodingites, which occur locally, are generally 

grey-white mottled with green. 
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5.4. Petrography 

5.4.1 Dunite 

The dunites are adcurnulates composed almost entirely of 

cumulus olivines which were enlarged by adcumulus growth. 

Chrornite-rich ribbons are common. The composition of the 

olivine is not known because it has been completely replaced 

by serpentine, commonly in very fine interpenetrating (about 

0.05 mm) or interlocking (<0.01 mm) textures. Serpentinized 

dunite cumulates are identical to the serpentinite fragments 

in the tectonic melange in all respects, and detailed 

petrographic descriptions of dunite have been given given in 

the Chapter 4 and are not repeated here. 

5.4.2. Clinopyroxenit~ 

The modal composition of clinopyroxenite is: clinopyroxene 

65-95%, olivine 0-30%, orthopyroxene 0-5%, and chrome spinel 

< 1%. The exact proportions of olivine and orthopyroxene are 

difficult to assess because of subsequent serpentinization. 

The clinopyroxene is an augitic diopside and shows a 

remarkably uniform chemical composition (see Chapter 8) 

across the entire transition zone. 

Two main types of clinopyroxenite occur: coarse and 

banded. 
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coarse clinopyroxenite (Fig 5.2) is massive with 

idiomorphic to hypidiomorphic clinopyroxene grains up to 

several tens of mm in an adcumulus interlocking t~xture. 

These clinopyroxene grains commonly show strain features 

such as bending, crystal fracturing or local shearing (Fig 

5.2) and are locally uralitized. Olivine, which comprises 

less than 10% of the rock volume as an intercumulus phase, 

is invariably replaced by lizardite and magnetite. 

Banded clinopyroxenite is composed of adcurnulus 

clinopyroxene and intercumulus olivine and clinopyroxene in 

proportions between 65-90% and 10-30% respectively. Commonly 

the clinopyroxene grains occur as crystals 2 to 4 mm in size 

surrounded by 0.1 to 0.3 mm clinopyroxene neoblasts (Fig 

5.3). The larger crystals commonly have undulose extinction 

and show strain features such as bending and microfractures. 

Orthopyroxene exsolution lamellae in clinopyroxene are 

widespread. The neoblasts, which have similar chemical 

composition, are undeformed and do not show any of the above 

strain features. 

Hydration is commonly quite advanced in these rocks. 

Orthopyroxene is uralitized and replaced by dense green mats 

of Ca-amphibole (Fig 5.4). Olivine was initially 

serpentinized to lizardite mesh or banded growth textures 

(Fig 5.5), which were commonly recrystallized to 

interpenetrating or interlocking textures. 
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Fig 5.3 Photomicrograph showing adcumulus texture of 
clinopyroxene in a banded clinopyroxenite. Diopside (which 
comprises about 90% by volume of the rock) appears in this 
illustration as large black porphyroblasts (at extinction) 
with orthopyroxene exsolution lamellae (white) and undulose 
extinction (not vi~ible), surrounded by smaller diopside 
neoblasts. In the center of the figure, between the two 
porphyroblasts, a small elongate orthopyroxene grain (pale 
brown) is visible. 
Specimen 257-B; X 1.5; crossed polars; bar represents 1 mm. 

Fig 5.4 Photomicrograph showing advanced low grade 
metamorphism in pyroxenite. In the central part of the 
figure tremolite-actinolite and chlorite aggregates occur 
between two large clinopyroxene grains. At the left margin, 
a clinopyroxene grain at maximum extinction (black) with 
exsolution lamellae of orthopyroxene replaced by bastite 
(white to grey) and minute talc flakes (pale brown) . On the 
right margin of the figure, a tremolite-actinolite aggregate 
(brown) pseudomorphically replaces clinopyroxene. 
Specimen 402; X 10; crossed polars; bar represents 0.2 mm. 
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Fiq 5.5 Photomicrograph of serpentinized olivine in an 
olivine clinopyroxenite band in clinopyroxenite cumulate. 
Fractured olivine (high birefringence colors), is partially 
replaced by lizardite with banded growth texture (grey) and 
magnetite (black). At the right hand side of the figure is a 
clinopyroxene grain at maximum extinction (black) with 
lizardite (grey) in fractures. 
Specimen 257-A; XlO; crossed polars; bar represents 0.2 mm. 

Fig 5., Photomicrograph showing the partial rodingitization 
of clinopyroxenite. In the central part of the figure is a 
sharp contact between two xonotlite grains (or possibly a 
single twinned grain), showing anomalous brown and blue 
birefringence colors (upper part), the other with grey 
birefringence colors (the lower part). At the left and right 
margins of the figure are clinopyroxene grains with bright 
birefringence colors. 
Specimen 379; X 10; crossed polars; bar represents 0.2 mm. 





The clinopyroxenites are the freshest and most resistant 

to hydration among all the phases. However under high strain 

conditions in shear zones and faults, the clinopyroxenites 

were completely replaced by chlorite, tremolite and talc. 

5.4.3. Rodingite 

At the top of the transi~ion zone, north of the 

Partridgeberry Hills Granite, there occurs one relatively 

large (about a hundred meters long and tens of meters wide) 

and several smaller, rodingite layers with medium- to 

coarse-grained granoblastic texture, that are interbedded 

with the clinopyroxenite. These rocks are composed mainly of 

mixtures of diopside and xonotlite (Ca6Si60 17 (0H)
2

] (X-ray 

determination) with minor actinolite, and prehnit9 (Figs 5.6 

and 5.7). Carbonates such as calcite and dolomite occur 

locally. 

5.5. Co~clusions 

Several conclusions can be drawn from the examination of 

the transition zone in the Coy Pond Complex. 

(i) As implied in the name, the transition zone links the 

ultrabasic harzburgite unit with the overlying basic rocks. 
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Fig 5.7 Photomicrograph showing a completely rodingitized 
rock. The left margin of the figure is occupied by a 
prehnite (birefringent yellow-orange) vein with the grains 
perpendicular to the walls. The rest of the figure is formed 
of columnar xenotlite (grey) with good cleavage and high 
relief. 
Specimen 396; X 10; crossed polars; bar represents 0.2 mm. 



80 



(ii) From bottom to top, three mai~ litholog~c subunits 

parts are distinguished, comprising: dunitic, pyroxenitic­

dunitic and pyroxenitic-gabbroic compositions respectively 

(iii) The lower boundary with the underlying tectonite 

harzburgite was obliterated as a result of formation of the 

tectonic melanges; the upper boundary with the gabbros unit 

is only partially exposed in the area near the 

Partridgeberry Hills Granite. 

(iv) The thickness of the transition zone is assumed to 

have been between 2 and 2. 5 krn, comparable to that exposed 

at Blow-Me-Down Mountain (3000 m), the thickest among all 

studied ophiolite complexes (Girardeau and Nicolas, 1981). 

The possibility that the transition zone in the coy Pond 

Complex was thickened by imbrication during transport is not 

ruled out, but no clear evidence of this was found during 

the mapping. 

(v) The principal characteristic feature of the transition 

zone is its regular layering produced by oscillations in 

bulk-rock chemistry, and expressed mineralogically as 

alternations between clinopyroxene-rich and olivine-rich 

layers and lenses in the lower part of the transition zone, 

and lithologically as alternations between cli~opyroxenite 

and gabbro in the upper part of the transition zone. These 

layers commonly pinch and swell and do not show chilled 

margins. Dunites, the most depleted rocks, are considered 
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residues of partial melting, with the pyroxenite and gabbro 

representing the products of melt accumulation and 

impregnation processes (Nicolas and Prinzhofer, 1982). 

(vi) Rodingites cccurring in the upper sections of the 

transition zone represent highly metasomatized pyroxenite 

and gabbro layers which formed in the presence of calcium-

rich waters. 

(vii) Much of the transition zone (mainly the lower 

dunitic part) was transformed into the western tectonic 

melange, which is discussed in detail in the next chapter. 
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Chapter 6 

THE TECTONIC MELANGES 

6.1. Introduction 

In the two tectonic m~langes of the Coy Pond Complex, ~ith 

few exceptions, both fragments and matrix are composed of 

completely serpentinized and variably carbonatized 

ultramafic rocks of ~unitic-harzburgitic origin. On the 

basis of arguments presented in an earlier chapter, i t is 

believed that the fragments and matrix in the tectonic 

melanges were derived principally from the transition zone 

of the Coy Pond ophiolite, with subordinate input from the 

upper mantle tectonites. 

There are some compositional differences between the two 

tectonic melanges, which are interpreted to be largely a 

function of the later metamorphism, which has resulted in 

the eastern tectonic melange consisting principally of 

quartz-magnesite and talc-magnesite assemblages, whereas the 

western tectonic m~lange consists predominantly of 

serpentinite and is less, but variably carbonatized. 

In the description of the tectonic melanges which follows, 

the matrix and the fragments are discussed separately (with 

one exception - see below) as they exhibit different 

mineralogical and textural features and appear to have 

behaved to some degree independently from both metamorphic 



and rheological perspectives. Emphasis in this chapter is 

placed on the mineralogical and textural features of the 

tectonic melanges in order to trace their mineralogical 

development, which will be utilized in interpretation of the 

metamorphic evolution (Chapter 9}, and in order to constrain 

petrographically the choice of samples for stable isotope 

work (Chapter 10). The exception noted above is for the case 

of quartz-magnesite assemblages, in which fragments and 

matrix are treated together because in this lithology there 

are only minor differences (main!y in grain size, the matrix 

being coarser grained) between fragments and matrix (see 

section 6.4 this chapter). 

Background information on the nomenclature and 

interpretation of serpentine textures is given in Appendices 

1 and 2 (C) , to which the reader is referred for discussion 

of terminology used in this study. 

6.2 MELANGE FRAGMENTS 

Dunite of the transition zone and subordinate harzburgite 

of the mantle tectonites form the bulk of the material that 

was reworked into fragments and matrix in both western and 

eastern tectonic melanges. Although harzburgite and dunite, 

both underwent brittle deformation, to form the fragments up 

to 1-2 m in size, matrix in both tectonic melanges shows 
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abundant evidence of ductile deformation features, implying 

that the tectonic melange had strongly inhomogeneous 

rheological properties. 

The different rheological behaviour of the fragments and 

matrix is also reflected in the metamorphic mineral 

assemblages. Serpentinite fragments are less recrystallized 

and carbonatized than serpentinite in the matrix, and thus a 

range of textures and mineral assemblages is commonly 

present in a single hand specimen and thin section. 

Serpentinite fragments have been subdivided 

petrographically into those that have pseudomorphic and 

those that have non-pseudomorphic textures, and are 

discussed bellow. 

6.2.1 Serpentinite fragments with pseudomorphic textures 

Included in the following descriptions of serpentine 

textures in the fragments is microstructural information for 

associated phases such as brucite, magnesite, talc, opaques 

(Cr-spinel, magnetite) and chlorite, which all form 

important phases in serpentine-bearing assemblages. Other 

opaque minerals, such as pentlandite, heaslewoodite, 

linneaite and awaruite, although occurring only in trace 

amounts in serpentinite, talc-magnesite or quartz-magnesite 

assemblages, are also mentioned because they are indicators 
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of oxygen fugacity. 

Approximately one quarter of the fragments in the western 

coy Pond tectonic melange exhibit good pseudomorphic 

textures {Figs 6.1 to 6.9) after olivine and pyroxene. Of 

these fragments, about 80% were derived from dunites, with 

the remaini~g 20% having a harzburgitic orotolith. 

Serpentine pseudomorphs show that the dunites generally 

contained <5% orthopyroxene, whereas the harzburgites 

contained up tc 20-30% orthopyroxene and traces of 

clinopyroxene (<1%). 

The p3eudomorphic hydration of olivine to serpentine along 

grain boundaries and fractures has produced a tessellation 

of polygonal cells resulting in mesh texture (Fig 6.1.a), 

hourglass texture (Fig 6.1.b) and less commonly, a banded 

growth texture (Fig 6.l.c). The alteration of pyroxenes to 

serpentine (bastite) was also grain boundary and fracture 

controlled, and resulted in the formation of orthopyroxene­

bastite (Fig 6 . 1.e and Appendix 1) and less common 

clinopyroxene-bastite. 

Mesh texture is invariably fine-grained and composed of a 

quasi-cubic arrangement of cross-fibre veinlets (Figs 6.1.a 

and 6.2) or mesh rims which enclose mesh centers. Each mesh 

center and its surrounding mesh rim constitutes a mesh cell, 

which is surrounded by very narrow strip of serpentine (the 

central parting) which separates each mesh cell from its 
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Piq 6.1 Schematic represe~tation of serpentine 
pseudomorphic textures after olivine (A,B,C and D) and after 
pyroxene (bastite) E. (Modified after Francis, 1956). 
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neighbours. Mesh centers (with sizes from 0.05 to o.7mm, 

average 0.2rnm) display variable shapes from symmetrical to 

highly asymmetrical, and are composed of various types of 

material. Relict ~livine mesh centers (Figs 6.l.a and 6.2) 

have been found only rarely. Most commonly mesh centers are 

filled with fibrous felted mats of either a- or both a- and 

~-serpentine or are occupied by isotropic or nearly 

isotropic lizardite (serpophite). Commonlt mesh centers are 

colorless ~nd show lower birefringence than the mesh rims. 

Minute grains of disseminated magnetite dust are common 

throughout the mesh centers in some samples, whereas in 

others magnetite cnncentr~ted at the mesh rim boundaries. 

Mesh rims are bands (0.05 mm wide on average) composed of 

a-serpentine which under high magnification is seen to be 

composed of "apparent fibres" lying at high angle (commonly 

varying within the same thin section from 45° to 90°) to the 

rim walls (Figs 6.1.a and 6.2). Compared to the mesh 

centers, the mesh rims exhibit a pale yellow-green color in 

plane polarized light, extinguish with an undulatory pattern 

(suggesting that they consist of fine fibres) and typically 

show higher relief and higher birefringence than the mesh 

centers. Rarely the mesh rims may contain minute magnetite 

grains. 

The central parting of the mesh rims is a very narrow 

(0.005 to 0.02 mm) strip, most commonly composed of ~-
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Piq f.2 Serpentinized dunite fraqment in m6lange with 
pseudomorphic a-mesh texture. Photomicrograph shows a large 
mesh cell with a relict olivine mesh center (purple) 
surrounded by a colorless lizardite + brucite c~rona (cream 
and brownish) enclosed in lizardite mesh rim (blue) . The 
lizardite mes~ rim is composed of a-serpentine pseudofibres 
inclined to the walls. Also visible is the very narrow 
central parting separating the mesh cells. In the lower 
right hand corner, a mesh cell with a lizardite + brucite 
mesh center is visible 
Specimen 103; X 20; crossed polars; bar represgnts 0.1 mm. 

Pig f.3 Serpentinized dunite fraqment in tectonic melange 
with pseudomorphic 1-mesh texture. 1-serpentine lizardite 
composes the mesh rims (white) and also the nearly isotropic 
(blue) mesh centers. Large brucite grains (buff) contain 
numerous magnetite inclusions (black). 
Specimen 205-B; X 10; crossed polars; bar represents 0.2 mm. 





serpentine having high birefringence (Fig 6.2), but in some 

cases of unidentified isotropic material . 

"'(-serpentine mesh texture (Figs 6.l.d and 6.3) is a less 

common mesh texture having mesh rims of positive elongation. 

Much of the difference between the ordinary (a- mesh) and 'Y-

serpentine mesh textures occurs in the mesh rim. The 'Y-

serpentine mesh rim is commonly a very narrow band with high 

birefringence, positive elongation and higher relief than 

the mesh center. Mesh rims have sharp contacts with the mesh 

centers and do not display the obvious pseudofibrous 

character of a-serpentine mesh rims. Where the serpentine 

elongation can be determined, the mesh centers have been 

found to have the same positive elongation as the mesh rim, 

but more commonly they are composed of isotropic or nearly 

isotropic serpentine with very low birefringence. 

Banded qrowt~ or curtain-like texture occurs rarely in 

fragments of coy Pond tectonic m6langes. Such a texture is 

similar to regular mesh textures except that one set of 

subparallel mesh rims is developed at the expense of the 

adjacent mesh rims at right angles (Figs 6.l.c and 6.4). All 

serpentinite specimens with banded growth texture are 

composed of rows of a-serpentine. 

Hourqlass texture (Figs 6.1.b and 6.5 to 6.9) occurs quite 

commonly in tectonic m6lange fragments, all of them being 

composed of "(-serpentine. Mesh cells are on average 0.2 mm 
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Piq 6. 4 Photomicrograph representing banded growth or 
curtain-like texture. Oriented vertically are bands of a-· 
serpentine lizardite (at extinction). Vertical bands are 
separated by narrow isotropic (black) central partings 
consisting of isotropic serpentine. Small magnetite grains 
are in black. 
Specimen 203-B; X 10; crossed polars; bar represents 0.2 mm . 

Fiq 6.5 rhotomicrograph showing representative general view 
of pure hourglass texture. Pseudofibrous 1-serpentine 
lizardite comprises the cells, which are bordered by very 
narrow central partings. A few small magnesi te grains are 
distinguished by their high birefringence colors. 
Specimen 79-C; X 40; crossed polars; bar represents 0.04 mm. 
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in diameter (range 0.05 to 0.5 mm) having polygonal or oval 

shapes. The very narrow (<0.01 mm) central parting is 

invariably composed of a high birefringent serpentine strip 

(Figs 6.6 and 6.7) commonly outlined by minute magnetite 

grains (Figs 6.8 and 6.9). The hourglass texture varies from 

pure (Figs 6.5 and 6 . 6) to incomplete (Figs 6.7 to 6.9). In 

the case of pure hourglass textures, the recrystallization 

of serpentine was uninterrupted from the ce~tral parting to 

the cell center and is common in smaller cells. Large cells 

have either a core of isotropic serpentine (composed of a 

very fine a- and ~-serpentine intergrowth) as in Fig 6.7, or 

consist of a brucite-lizardite intergrowth (Figs 6.8 and 

6.9) . Brucite intimately intergrown with lizardite has been 

found in the centres of hourglass textures where it shows a 

fibrous habit, lower relief than lizardite and exhibits 

anomalous honey-yellow birefringence colors (Figs 6.8 and 

6. 9) • 

The presence in brucite-bearing samples of opaque minerals 

such as awaruite (Ni1Fe) and heazlewoodite (Ni
3
S

1
) provides 

evidence of the ext~emely oxygen-deficient environment 

during serpentinization (see also Moody, 1976). 

Bastite, the serpentine texture after pyroxenes, is very 

common in serpentinite melange fragments. Orthopyroxene­

bastite, the most common form of basti~e, 



Pig '·' Detail of 6.5. In the central part of the 
photomicrugraph, a pure hourglass cell of pseudofibrous ~­
serpentine lizardite. Central partings appear as two 
parallel lines. High relief brownish material in the left 
and bottom parts of the figure is skeletal magnesite, 
preferentially replacing the central partings. 
specimen 79-C; X 40; crossed polars; bar represents 0.04 mm. 

Piq '·' Serpentinized dunite fragment in m6lange with 
hourglass texture. In center, incomplete hourglass texture 
with isotropic (deep blue) mesh center is developed. In the 
upper left hand corner, is a small pure hourglass cell 
(rectangular shape) with ~-serpentine pseudofibrous 
lizardite developed in the centers between two narrow 
central partings (vertical). Small pure hourglass cells are 
also visible in the lower right hand corner of the 
microphotograph. several grains of magnesite (pale brown) 
occur in the figure. 
Specimen 79-C; X 20; crossed polars; bar represent 0.1 mm. 
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Fiq '·' Serpentinite fragment in tectonic m6lange with 
hourglass texture. Bluish is ~-serpentine lizardite, 
yellowish to brown is brucite-lizardite intergrowth. 
Specimen 196; X 20; crossed polars; bar represents 0.1 mm. 

Fiq '·• Same as 6.8; plane polarized light. Hourglass cells 
are outlined by trains of magnetite grains located in 
central partings. Also visible is brucite-lizardite 
intargrowth (brownish) developed towards the centers of the 
cells conferring a fibrous appearance. Specimen 196; X 20; 
bar represents 0.1 mm. 
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occurs as a minor phase, <5% in serpentinized dunite 

fragments and up to 20-30% in serpentinized harzburgite 

fragments. Clinopyroxene-bastite is rare (<1 %) and occurs 

only in serpentinized harzburgite fragments. 

The dominant feature of the orthopyroxene-bastite is the 

uniform replacement of the parent pyroxene by y-serpentine. 

The bastite may appear to be either pseudofibrous (Figs 

6.l.e; 6.10; 6.12 and 6.13) with the fibres parallel to the 

length of the pyroxene prism, or smooth featureless plates 

(Figs 6.11 to 6 . 14). Clinopyroxene-bastite occurs mainly as 

serpentinized clinopyroxene exsolution lamellae in 

orthopyroxene (Figs 6.12 to 6.14), and rarely as 

replacements of clinopyroxene grains, where it 

characteristically develops in an intergrowth of a- and y­

sarpentine fibres (visible in Fig 6.13). Such intergrowths 

have a yellow to green color, low birefringence and are 

commonly isotropic. 

Magnesite is an ubiquitous phase in m6lange fragments with 

pseudomorphic texture. All m6lange fragments containing 

lizardite in mesh and banded growth textures are affected by 

carbonatization in variable proportions between 10 and 50,. 

Magnesite does not occur in fragments which contain the 

assemblage lizardite-brucite. 

Magnesite replaces mesh textured lizardite 

pseudomorphically in tectonic m6lange fragments. 
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Fiq 6.10 Photomicrograph of partially serpentinized 
harzburgite fraqment in tectonic m6lange. Central part of 
the photomicrograph is a large orthopyroxene grain (cream) 
with an embayed outline due to partial replacement by 
olivine (high birefringence colors). Orthopyroxene has 
olivine inclusions, shows good cleavage and numerous 
fractures. The large orthopyroxene is surrounded by smaller 
fragments produced by fragmentation and pulling-apart during 
crustal deformation. The upper half of the crystal has been 
replaced by pseudofibrous a-lizardite bastite (white), which 
preserves the original cleavage and fractures. The blue­
black material in the middle of the bastite is a relict 
olivine grain serpentinized to mesh texture with visible 
rims and mesh centers. Specimen 175; X 2,5; crossed polars; 
bar represents 0.5 mm. 

Fiq 6.11 Incompletely serpentinized harzburgite fragment in 
tectonic m6lange. Relict elongate and stretched 
orthopyroxene grain (yellow), partially replaced by platy 
lizardite-bastite (white). Blue-black is isotropic 
serpentine intergrown with fine-grained brucite inclusions 
(yellow). 
Specimen 175; X 10; crossed polars; bar represents 0.2 mm. 





Piq 1.12 Photomicroqraph of serpentinized harzburgite 
fragment in m6lange showinq bastite types. In the upper left 
hand corner is a larqe clinopyroxene-bastite with serpentine 
intergrowth. In the right of centre and in the lower right 
hand corner there are several platy orthopyroxene-bastites 
(white) with bastitized clinopyroxene exsolution lamellae. 
Serpentine mesh texture after olivine (with isotropic mesh 
centers and colorless mesh rims) occurs between bastite 
grains. In pale brown are magnesite grains, and in black are 
aggregates of magnetite grains. 
Specimen 450-C; X 10; crossed polars; bar represents 0.2 mm. 

Piq 1.13 Same as Fig 6.12 with gypsum plate inserted 
(orientation shown at edge of photomicrograph) to show 
constitution of bastite grains. a- and ~-serpentine 
intergrowth in clinopyroxene-bastite grain in upper left 
hand corner; a-serpentine of orthopyroxene-bastite in the 
right half of the figure. The mesh rims of the mesh texture 
(a-serpentine) are represented by short strips colored in 
blue and orange color dependent on the orientation of the 
lizardite pseudofibres with respect to the gypsum plate. 
Specimen 450-C; X 10; crossed polars; 6.14 crossed polars 
and qypsum plate; bar represents 0.2 mm. 
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Fiq 6.14 Completely serpentinized harzburgite fragment in 
melange. In central part of the fiqure large, an 
orthopyroxene grain is broken ir.to two fragments, one being 
slightly rotated with respect to the other (mantle 
deformation). The grains are replaced by platy 
orthopyroxene-bastite with clinopyroxene-bastite in 
exsolution lamellae. The surrounding olivine has been 
replaced by isotropic serpentine, but a few relict grains 
(reddish) are preserved near the upper left margin of the 
figure. Brucit.e occurs as small flakes (yellow) within 
isotropic lizardite (black). Brucite occurrences in 
harzburgites have not been previously mentioned in the 
literature. 
Specimen 313; X 10; crossed polars; bar represents 0.2 mm . 

Fiq ,.15 Photomicrograph of a serpentinized dunite fragment 
in melange showing carbonate pseudomorph after mesh textured 
lizardite. Lizardite (green to bluish) occurring as a­
serpentine mesh texture, is partially replaced by magnesite 
(light brown). The central parting and the mesh rim are 
replaced by clear, light brown magnesite, whereas the 
impurities are concentrated in the mesh centers (dark 
brown). To the left of the large magnesite is an isotropic 
serpentine vein (bluish and black) cut by short chrysotile 
qash veins (high birefringent colors). Chrysotile veinlets 
with a rect&nqular pattern formed as a result of volume 
increase during serpentinization. 
Specimen 432-C; X 2.5; crossed polars; bar represents 0.5 
mm . 
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Details of the original lizardite mesh texture are easily 

recognizable where large composite magnesite grains replace 

several lizardite mesh cells (Fig 6.15). Mesh centers are 

typically replaced by cryptocrystalline magnesite and mesh 

rims by spathic magnesite. 

A large part of the magnesite is found as isolated 

cryptocrystalline patches or aggregates chaotically 

distributed throughout the rock. These patches may be 

rounded or irregular in form, up to 3 mm in diameter (Fig 

6. 15), contain many minute inclusions, and are not 

apparently connected to each other in the plane of the 

section. Locally parts of the carbonate aggregates have 

recrystallized into carbonate grains with crystallographic 

faces, good cleavages and few impurities (spathic 

magnesite). 

In serpentinized harzburgite fragments, the lizardite­

bastite seems to be unaffected by carbonatization. 

Conclusions on pseudomorphic textures 

Pseudomorphic textures of serpentine after olivine and 

pyroxene outline the grain shapes of the original minerals 

and provide information about the primary texture of the 

ultramafic protolith. The abundance of small (<2 mm) 

individual mesh cells unrelated to each other, and the 

scarcity of regions with a regular rectangular mesh texture 

107 



imply that the dunite protolith had a granoblastic texture. 

The original cumulate fabric of these dunites was probably 

obliterated during shearing and production of the tectonic 

m6langes. Several serpentinized harzburgite fragments show 

tectonite fabrics, including orthopyroxene porphyroclasts 

(Figs 6.10 and 6.11) that resulted from extensive plastic 

deformation and recrystallization under mantle conditions. 

In serpentinized samples, these now appear as orthopyroxene­

bastite pseudomorphs (which preserve the elongate, stretched 

and commonly pulled-apart porphyroclastic texture) in a 

mosaic of individual serpentine mesh cells. Kink bands and 

exsolution lamellae (Figs 6.12 to 6.14) are also recorded by 

the bastites. Petrographic details show that the 

porphyroclastic texture of serpentinized harzburgite 

fragments in the tectonic m6langes is similar to that in the 

unserpentinized harzburgite tectonite. 

6.2.2 Serpentinite fragments with non-pseudomorphic textures 

Approximately 75\ of Coy Pond serpentinite fragments 

display non-pseudomorphic te:<tures which may be subdivided 

into interpenetrating and interlocking types. 

Interpenetrating texture is the most common non­

pseudomorphic texture in tectonic melange fragments (Figs 

6. 16 to 6.18) • x-ray powder diffraction analyses have shown 

108 



Fig 6.1, Photomicrograph showing serpentinite fragment in 
tectonic m6lange with non-pseudomorphic texture. Antigorite 
blades with ragged margins are arranged in an 
interpenetrating texture. Some of the blades are fan-shaped, 
others are in radiating arrangement. The velnlet with high 
birefringence colors is chrysotile composed of cross-fibres 
normal to the walls. 
Specimen 160-B; X 20; crossed polars; bar represents 0.1 mm. 

Fig 6.17 Photomicrograph ot serpentinized fragment in 
m6lange showing the transition from pseudomorphic to non­
pseudomorphic texture. The left two thirds of the figure 
shows mesh-~9xtured lizardite with cells having isotropic 
centers (dark green to black) and wide mesh rims ( white and 
pale yellow). Most of the mesh cells arP. undisturbed and 
have regular rectangular or square shapes. In the lower 
right hand corner, antigorite blades (bluish) in 
interpenetrating texture have replaced lizardite. Anhedral 
brownish grains are magnesite. Dark brown and cloudy 
material is cryptocrystalline magnesite which preferentially 
replaces mesh-textured lizardite; pale brown, clear material 
is crystalline magnesite which replaces ant1gorite. 
Aggregates of secondary magnetite are black. 
Specimen 450-C; XlO ; crossed polars; bar represents 0.2 mm. 
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Pig t.18 P4rtially carbonatized serpentinite fragment with 
interpenetrating texture. Antigorite blacles (blue) in tine 
interpenetrating texture are replaced by magnesite (brown) 
along fractures. In the upper right hand corner is a talc­
carbonate aggregate (orange) on relict bastite (white). 
White veinlet in the upper left part of the figure is a 
relict chrysotile vein. Specimen 343-D; X 1.5; crossed 
polars; bar represents 1 mm. 

Piq 6.19 Photomicrograph of serpentinite fragment in 
m6lange with interlocking texture. In the upper left and 
lower right hand corners, small magnesite grains with high 
birefringence colors are repl~;ing antigorite. 
Specimen 252-E; X 40; crossed polars; bar represents 0.04 
mm. 
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that these textures consist mainly of antigorite. 

Interpenetrating texture begins to develop as isolated 

blades or flakes or fan-shaped bundles of blades of y­

serpentine antigorite (Fig 6.17) associated with all types 

of pseudomorphic textures. Usually the recrystallization 

starts at mesh centers and progresses until the blades begin 

to interfere with one another in an interpenetrating fabric. 

The radiating antigorite blades commonly do not exceed 0.5 

mm in length (Fig 6.16). Specimens completely transformed to 

interpenetrating textured antigorite are common, but many 

still contain relict mesh textures (Fig 6.17). Optically 

the antigorite has a fibrolamellar to platy form (Fig 6.16) 

with crystals elongated parallel to the (001) cleavages. 

Most have feathery, ragged terminations. Under plane light 

the antigorite is colorless and has higher relief than 

lizardite. Under crossed polars antigorite exhibits wavy 

extinction, positive elongation and commonly anomalous 

bluish birefringence colors. 

Interlocking texture occurs in several of the coy Pond 

m~lange fragments, all of them being composed of antigorite 

(X-ray powder diffraction determinations). Under high power 

it can be seen that the texture is composed of very small 

(<0.05 mm ), equant and irregular antigorite flakes that 

form a tight interlocking fabric (Fig 6.19). 

Magnesite is a major component of m6lange fragments with 
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non-pseudomorphic textures, comprising amounts from several 

percent to more than 50 \ of the rock volume. Magnesite 

occurs in both microcrystalline and spathic (crystalline) 

varieties in both lizardite and antigorite serpentinite. 

Spathic magnesite occurs as disseminated grains (Fig 6.17) 

or forms a sub-rectangular, locally anastomosing network of 

grains enclosing relict antigorite patches (Fig 6.1e). 

Commonly the grains contain a core of brownish 

cryptocrystalline magnesite surrounded by a cle~r 

crystalline magnesite rim. Cryptocrystalline magnesite 

occurs on antigorite in trace amounts as minute rhombohedral 

grains. 

6.2.3 Talc-magnesite fragments 

The assemblage talc-magnesite occurs in fragments in the 

tectonic m6langes in which >50\ of the serpentine has been 

replaced; relict serpentine, where present is commonly 

antigorite. In the western tectonic m6lange, about 20\ of 

the fragments and most of the matrix are composed of talc­

magnesite, whereas in the eastern tectonic m~lange talc­

magnesite forms less than half of the total material. 

In talc-magnesite bearing fragments (Fig 6.20), talc 

replaces antigorite in interpenetrating or interlocking 

textures. Talc begins to form on serpentine minerals as 
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Piq 1.20 Photograph of representative specimens of talc­
magnesite fragments in m6lanqe. 
Specimen 270 (black) is composed largely of magnesite (80 to 
90') and talc, and contains very finely disseminated 
magnetite (3-5') which confers the black color to the rock. 
Specimens 272 (central upper part of the figure) and 252-E 
are examples in which there was segregation of magnetite 
(black) in veins rluring the carbonatizati~n of the 
serpentinite&. Brownish material is talc-magnesite. Specimen 
252-E shows an alteration rind (brick red color, 1 em thick 
composed of magnesium hydrocarbonates (hydromagnesite) and 
iron oxides) which is very characteristic of most of the 
tectonic m6lange rocks. 

Piq 1.21 Photomicrograph of talc-magnesite fragment in 
m6lange. Relict antiqorite (blue) with interpenetrating 
texture replaced by magnesite grains (brown) in left part of 
the fiqure. small patches with high birefringence replacing 
antigorite and surrounding magnesite grains are aggregates 
of talo flakes. Talc is also visible as inclusions in some 
of the magnesite grains. The yellow-qreenish elongated platy 
mineral in the center of the fiqure is chlorite. 
Specimen 432; X 10; crossed polars; bar represents 0.2 mm. 
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patches of minute flakes (Fig 6.21) which grow until, in 

completely reacted specimens, talc is a major component 

constituting between 40 and 70\ of the rock volume. At this 

stage, talc constitutes the matrix phase enclosing carbonate 

grains or occurs as pockets among carbonate masses (Figs 

6.22 to 6.24). The texture of talc-magnesite m~lange 

fragments is commonly massive and granoblastic (Fig 6.23) or 

poorly granolepidoblastic depending upon the size and 

arrangement of the mineral grains. 

Magnesite in talc-magnesite fragments is a major phase 

forming between 30 and 60% of the rock volume. As in 

serpentine-bearing assemblages, it occurs in both 

microcrystalline and crystalline varieties. Microcrystalline 

magnesite forms isolated crystals and aggregates of pale­

brown grains with serpentine and magnetite inclusions, 

whereas crystalline (spathic) magnesite, which may form as 

much as half of the total magnesite, is commonly found as 

rims around microcrystalline grains (Fig 6.23), but also 

occurs as individual crystals. Spathic grains are typically 

less than 1 mm in size, with an elongate subhedral shape. 

Generally the grains show a preferred dimensional 

orientation which confers a crude foliation to the rock. 

curved laths and fragmentation into subgrains are common. 

Chlorite occurs in talc-carbonate fragments in amounts <10 

%of the rock volume (Figs 6.21 and 6.23). In less 

117 



Piq 1.22 Photomicroqraph of talc-magnesite fragment in 
tectonic m6lange. Centre and upper right hand corner show 
relict antigorite with interpenetrating texture overgrown by 
talc flakes (yellow-orange) and small magnesite grains 
(brown). In the rest ot the tiqure, small talc grains 
(brown-red birefringence colora) with interlocking texture 
coexist with large magnesite grains (high relief) . Minute 
talc inclusions are visible in the large magnesite grains at 
maximum extinction. 
Specimen 432-C; X 10; crossed polars; bar represents 0.2 mm. 

Piq 1.23 Talc-magnesite fragment in t~ctonic melange. 
Aggregate of magnesite grains with high relief is set in 
scaly talc groundmass. Magnesite grains are xenoblastic with 
microcrystalline centers and spathic rims. In the center of 
the figure, relict chlorite (deep blue) is partially 
replaced by talc. 
Specimen 272; X 10; crossed polars; bar represents 0.2 mm. 





carbonatized specimens chlorite occurs as plates (Fig 6.21) 

and aggregates of fine grains, whereas in talc-magnesite 

assemblages the chlorite occurs as diffuse relict patches in 

talc masses (Fig 6.23) or bordering magnesite grains. 

Magnetite is commonly concentrated in veinlets (Fig 6. 20) 

up to several mm in width and as a result the rock takes on 

a lighter color, typically pale green to yellow-green. 

During the carbonatization, larger Cr-spinel grains seem to 

become more fractured and pulled apart than in serpentinite 

fragments, although the smaller grains seem to be 

unaffected. Minute grains of high-sulfur minerals such as 

pentlandite (Fe,Ni) 9S8 and linnaeite (Co,Ni) 35 4 present in 

talc-magnesite fragments, indicate a relatively higher f 02 

(and also fS2) during carbonatization compared to that 

during serpentinization (Ekstrand, 1975; Moody, 1976). 

6.3. MATRIX OF TECTONIC MtLANGES 

The matrix for.ms between 10 to 25 per cent of most 

outcrops of the tectonic mUanges and typically weathers low 

compared to the fragments. The main structural feature of 

the matrix is the foliation, which at map scale is parallel 

to the boundaries of the unit. On outcrop scale, however, 

the foliation may be straight (Fig 6.24), anastomosing 
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Piq & • 24 Field view of talc-magnesite matrix with 
subvertical foliation. In this example the talc-magnesite 
matrix constitutes a rectiplanar layer oriented parallel to 
the tectonic m6lange boundaries. Location: outcrop 34 3 (see 
sample map) • 

Pig & • 25 Field view of tectonic m6lange with sheared 
serpentinite matrix and elongated serpentinite fragment in 
center of the figure. The sheared serpentinite matrix is 
strongly foliated and the central serpentinite fragment is 
oriented with its long axis in the plane of the foliation. 
Note minor brittle fractures in the fragment which extend 
beyond the margins into the matrix, indicating in situ 
conversion of fragment to matrix. Note also the evidence of 
sinistral shear of fragment causing extension parallel to 
foliation (as viewed in present position). Location: outcrop 
343. 
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Piq &.26 Field photograph showing chaotically distributed 
serpentinite fragments (brick red) of various sizes in an 
anastomosing foliated matrix (black). Location: outcrop 343 
(see sample map). 

Fiq 6.27 Schistose serpentinite matrix slab cut normal to 
the foliation surface. The slab has a typical phacoidal 
shape (and is breakinq down to smaller phacoids) produced by 
the shearinq process. Black is schistose serpentinite (the s 
planes are visible only in thin section), and light colored 
veinlets are carbonate, mostly cryptocrystalline magnesite, 
developed along c planes. 
Specimen 255-C; scale in em. 
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around large blocks (Fig 6.25), or irregular (Fig 6.26), 

reflecting the inhomogeneous nature of the shearing in the 

tectonic melange unit. In general, areas of straight 

foliation correlate with a lower proportion of fragments and 

are interpreted to be loci of higher s~~ain in which former 

fragments are comminuted and obliterated. 

As can be readily seen in Fig 6.26 the first stage of 

matrix formation involved fragmentation and comminution of 

ultramafic blocks and fragments in the tectonic melanges, 

resulting in the formation of sheared schistose 

serpentinite, coupll . with progressive obliteration of all 

original structures. Subsequent stages of development of the 

melange matrix involved more pervasive shearing (with a 

major component of simple shear) and pervasive to partial 

carbonatization (Figs 6.24 and 6.27 respectively). 

In this study, the matrix of t~e tectonic melange has been 

classified into four categories with respect to lithology 

and texture: 

1. Schistose serpentinite matrix 

2. Brecciated serpentinite matrix 

3. Talc-magnesite matrix 

4. Chlorite blackwall matrix 

6.3.1. Schistose serpentinite matrix 

In contrast to massive serpentinite in the fragments which 
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characteristically weathers to a brick-red to orange-red 

colour, schistose serpentinite is brownish in outcrop (Fig 

6.25) and grey on fresh surfaces (Fig 6.27). Schistose 

serpentinite is made up of slip-fibre serpentinite, which 

developed at the expense of massive serpentinite during 

shearing along planes of weakness, together with minor 

carbonate and oxide phases. The slip-fibre serpentine, which 

has been identified as lizardite with minor antigorite on 

the basis of XRD patterns, forms flattened phacoidal flakes 

which self-replicate at progressively finer scales with 

increasing degrees of shearing (Fig 6.27). Each flake has 

smooth polished surfaces, but a lineation is not present. 

Lizardite in schistose serpentinite occurs in two forms, 

recrystallized and relict. In thin section, the 

recrystallized platy lizardite has a pale green color (Figs 

6.28 and 6.29) and slightly higher relief than relict 

lizardite. Recrystallized lizardite, commonly forms platy 

grains < 5 mm in length that define the schistosity (S) 

planes (Figs 6.28 to 6.32), or more rarely occurs as longer 

grains defining microshear sets (C planes). In both cases 

lizardite is colorless and shows a sweeping extinction. 

Relict lizardite on the other hand, displays disturbed 

mesh or banded growth textures (Fig 6.30 and 6.31). It 

commonly occurs in elongate bands or lenses that lie in the 

foliation planes and are truncated by microshear sets. The 
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Piq 6.28 Photomicrograph of schistose serpentinite matrix. 
Elongate lizardite plates (pale green) in parallel 
arrangement define the schistosity (S) (from upper left to 
lower right corner) which is also outlined by angular cr­
spinel fragments and magnetite grains and films (black). 
Schistosity is truncated by the C planes, in a vertical 
orientation at the right margin of the figure, which are 
defined by magnetite (black) and cryptocrystalline magnesite 
(greyish). 
Specimen 255-B; X 1.5; plane polarized light; bar represents 
1 mm. 

Piq 6.2t General view of schistose serpentinite matrix. 
C planes are oriented horizontally and defined by magnesite 
with magnetite inclusions (grey). Schistosity trends from 
upper left to lower right. In this figure the recrystallized 
lizardite is pale brownish and the relict lizardite pale 
green (lensoid shaped). 
Specimen 250-D; X 1.5; plane polarized light; bar represents 
1 mm. 





rig 1.30 Photomicrogr~ph showing matrix foliation (S) 
defined by the parallel arrangement of elongate 
recrystallized lizardite (pale green and yellow) and lenses 
of relict mesh-textured lizardite (dark green), which 
because of the low magnification is not obvious. In the 
lower right hand corner are magnesite veins with brownish 
birefringence colors and magnetite (black). 
Specimen 252-C; X 3.2; crossed polars; bar represents 0.5 
mm. 

rig 1.31 Partially recrystallized schistose serpentinite 
with relict elongate "boudin" of mesh textured lizardite 
situated in foliation plane (central lower part of the 
figure). Beneath the boudin is a small deformed cr-spinel 
grain (black) also oriented with its long axis parallel to 
foliation plane. Magnesite veinlets are brown, magnetite is 
black. 
Specimen 250-D; X 1.5; crossed polars; bar represents 1 mm. 
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Fig &.32 Photomicrograph of schistose serpentinite and 
antigorite. Along the left margin, in a vertical orientation 
is a band of interlocking-textured antigorite (blue) and 
spathic magnesite grains (brown and black). Elongate 
recrystallized lizardite grains (yellowish) define the 
foliation in the matrix trending from the upper left to 
lower right. To the right of centre is an ellipsoidal 
"boudin" of antigorite with interpenetrating texture. 
Pseudofibrous magnesite (brown) and magnetite (black) also 
define the matrix foliation. The coexistence of both 
serpentine types in this matrix sample is probably due to 
the in situ transformation of a fragment, initially 
containing both lizardite and antigorite, to matrix. 
Specimen 450-D; X 2.5; crossed polars; bar represents 0.5 
mm. 

Fig 6.33 Photomicrograph of m6lange matrix illustrating a 
shear sense indicator. In the central part of the tigure a 
deformed cr-spinel grain shows apparent sinistral sense of 
displacement. To the l~ft of the cr-spinel is part of a 
relict lizardite lens with abundant magnetite (black). 
Lighter colored material is recrystallized lizardite . Grey 
material in subvertical orientation at the both right and 
left margins of the figure is pseudofibrous magnesite 
defining c planes and containing magnetite dust. 
Specimen 250-D; X 1.5; plane polarized light; bar represents 
1 mm. 





relics vary in length from several mm to several em and also 

contain lizardite-bastite after orthopyroxene, and Cr-spinel 

and magnetite. Lizardite-bastite appears to be resistant to 

recrystallization to platy lizardite and commonly forms 

small relics (augen) surrounded by platy lizardite. 

Relict antigorite, which is colourless with higher relief 

and lower order birefringence colours (commonly blue) than 

lizardite, accounts for <10% by volume of the schistose 

serpentinite, and occurs in two characteristic textures, 

interpenetrating and interlocking. Interpenetrating-textured 

antigorite (Fig 6.32) is invariably found in small lenses (1 

to 5 mm in size) with their long axes oriented parallel to 

foliation planes and enveloped in platy lizardite. Where in 

interlocking textures, antigorite occurs as larger patches 

oriented parallel to the foliation and composed of very fine 

(<0.05 mm) equant grains (Fig 6.32). 

Carbonates, which occur as minor phases (<15% by volume) 

in schistose serpentinite matrix, are predominantly 

magnesite, rarely dolomite. Magnesite commonly occurs in 

microshear (C) planes as layers up to 5 mm in width (Figs 

6.27 to 6.33). Elsewhere magnesite forms solitary crystals, 

commonly strain free, up to several ~m in length 

demonstrating syn- or post-tectonic growth. Larger layers, 

with several generations of carbonate grains, are 

characterized by the presence of very elongate 
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cryptocrystalline magnesite aggregates which may be 

distinguished by their pseudofibrous habit (Fig 6.27). These 

features, and the common presence of serpentine i~clusions 

in magnesite grains, imply that carbonatization occurred 

during and after the event which produced the foliation and 

the recrystallization of the lizardite. 

Opaque phases comprise <5% by volume of schistose 

serpentinite. Magnetite is widespread, occurring as fine 

dust or disseminated grains and grain aggregates that confer 

tl&~ nark colour to the rock (Fig 6.27). With an increas~ of 

shearing, magnetite becomes more concentrated in foliation 

and microshear planes (Fig 6.28 and 6.29) and locally forms 

veinlets following carbonate. 

Relict euhedral or subhedral Cr-spinel grains exhibit 

evidence of progressive deformation in the schistose 

serpentine matrix with fractured and pulled apart grains 

(Fig 6.33), evidence of grain size reduction and augen-like 

shapes (Fig 6.28). 

6.3.2. Brecciated serpentinite matrix 

Brecciated serpentinite is a relatively minor component of 

the matrix that occurs as material between serpentinite 

fragments. It is composed of randomly oriented fragments of 

serpentinite in a carbonate and/or serpentine matrix (Fig 
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Fiq 6.34 Photograph of slab of tectonic m6lange with 
several small serpentinile fragments (black) enclosed in a 
matrix of brecciated serpentine (grey) and carbonate (medium 
brown) • 
Scale is in em. Sample 343 (see sample map). 

Fiq 6.35 Field photograph showing talc-magnesite matrix 
(purple) enclosing elongate serpentinite fragments (rusty 
brown) that are oriented with their long axes parallel to 
the foliation. 
Scale is in em. Location: c·1tcrop 343. 
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6.34), but in contrast to typical melange fragments, these 

fragments do not show preferred orientation, are smaller in 

size (<10 em) and have angular shapes. These fragments are 

commonly composed of antigorite serpentil :;e with 

interpenetrating or highly disturbed mesh textures. In some 

sites the rock may be highly carbonatized and invaded by 

chlorite. The brecciated serpentinite matrix is interpreted 

to form in areas of relatively low strain, but in other 

respects seems to be comparable to schistose serpentinite. 

6.3.3. Talc-magnesite matrix 

Talc-magnesite schist is the dominant component among 

matrix lithologies. It occurs as foliated layers up to 

several meters thick (Fig 6.24) along shear zones which 

anastomose around hard kernels of less deformed and 

carbonatized serpentinite fragments (Fig 6.35). The rock is 

soft and readily eroded, and is commonly exposed in 

locations where it is shielded by more resistant 

lithologies. It is inferred that talc-magnesite schist forms 

the bulk of the melange unit, but is largely unexposed. 

The rock has a distinctive brown to purple weathering 

color (Fig 6.35) and is pale brown to black when fresh (Fig 

6.36 and 6.37). The content of talc is variable. The rock is 

characteristically layered, with talc-rich and magnesite-
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~iq '·3' Talc-maqnesite matrix of the mAlange exhibiting 
the phacoidal shape typical for sheared matrix rocks. Buff 
colored material is talc, brownish auqen and veins are 
magnesite, black is Cr-spinel and magnetite. Visible fabric 
is c planes that are outlined by thin films of magnetite. 
Wavy pattern of foliation is due to incipient shear band 
formation. Schistosity (S) surface defined by talc is 
visible in thin section. 
Scale is in em. 

Fiq ,.37 Photograph of slab of talc-maqnesite matrix 
showing magnetite- rich magnesite (black) lenses with their 
long axes parallel to the foliation plane (horizontal), 
separated by bands of talc (light greenish). 
Scale is in em. 



139 



rich layers. Magnesite rich varie~ies are commonly also rich 

in magnetite which gives a darker color to the rock (Fig 

6.37). such specimens are harder and exhibit a weaker 

foliation than talc-rich specimens. Talc-rich varieties are 

greasy and crumbly, and easily split along cleavage 

surfaces. 

Talc-carbonate rocks have a simple mineralogy, being 

composed mainly of talc and magnesite in variable 

proportions, with minor amounts of accessory opaque 

minerals. Relict serpentin~ is very rare. 

The granolepidoblastic texture is conferred by the medium­

grained magnesite set in a finer grained talc matrix. Talc 

typically defines the foliation (S) which is 

characteristically cut at low angles by shear planes (C) 

outlined by fine magnetite films (Figs t.36 and 6.38). 

Fracturing along shear planes produces so called "phacoids" 

(Figs 6.27, 6.36 and 6.37) resembling the shape of the 

strain ellipsoid. 

Magnesite is present in both cryptocrystalline and 

crystalline varieties. Cryptocrystalline magnesite (Fig 6.39 

and 6.40) forms less than half of the total magnesite and 

has similar features to that already described. However, the 

grain shapes tend to be more elongate, and exhibit a 

dimensional preferred orientation. Rarely cryptocrystalline 

magnesite still preserves the outline of the original mesh 
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Fiq ,.38 Photomicroqraph of talc-maqnesite matrix of 
tectonic m6lange showing cryptocrystalline magnesite grains 
(brownish) and colorless spathic magnesite forming grain 
aggregates parallel to the foliation plane (left side of 
figure). Talc is colorless with low relief and forms bands 
oriented parallel to the foliation (S) which is vertical. In 
the right hand side of the figure, shear planes (C) outlined 
by magnetite cut the foliation at low angles. In black, and 
commonly concentrated along c planes, are cr-spinel and 
magnetite. 
Specimen 177-C; X 1.5; plane polarized light; bar represents 
1 mm. 

Piq ,.39 Photomicrograph showing large skeletal dusty 
cryptocrystalline magnesite (brownish) which still preserves 
the outline (cells and rims) of the original lizardite mesh 
texture (left margin, centre and right margin of the 
figure). The mesh centers are occupied by talc or chlorite 
(platy irregular grain in the lower right hand corner 
beneath the dark magnesite). To the left of centre is a 
vertical vein with a fine-grained talc core (high 
birefringence colors) and a margin composed of spathic 
subidioblastic magnesite grains (colorless) growing 
perpendicular to the walls. 
Specimen 177-D; X 10; crossed polars; bar represents 0.2 mm . 
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Piq ,.40 Detail of talc-maqnesite matrix of tectonic 
m6lange showing evidence for rotational strain. Elongate 
cryptocrystalline magnesite (brownish) set in fine-grained 
talc matrix with weak preferred orientation. Asymmetric 
pressure fringes composed of large late grains of talc and 
subordinate spathic magnesite (black at right hand end) 
indicate an apparent counterclockwise sense of movement in 
this photomicrograph. The vaque sigmoidal pattern in the 
cryptocrystalline magnesite implies syntectonic growth of 
magnesite in a periodically open fracture. 
Specimen 343-C; X 10; crossed polars; bar represents 0.2 mm. 

Fiq '·41 General view of chlorite blackwall matrix. 
Green and blue birefringent material is clinochlore, pink 
highly birefringent grains with high relief are sphene. 
Foliation (from upper right, to lower left) is defined by 
chlorite. 
Specimen 197; X 20; crossed polars; bar represents 0.1 mm. 
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texture (Fig 6.39). 

Spathic magnesite forms coarse elongate grains (Fig 6.39) 

or grain aggregates which typically show preferred 

dimensional orientation in the foliation plane (Fig 6.38). 

Undulose extinction, polygonization into subgrains and 

recrystallization adjacent to old grains are common . These 

features suggest syntectonic growth. Another characteristic 

feature of spathic magnesite is the presence of small 

syntectonic grains (< 0,5 mm in length) in pressure shadows 

adjacent to the larger grains (Fig 6.40). 

Talc occurs in narrow lenses and layers <2 mm in width 

that pinch and swell, and also in irregularly-shaped 

crystal aggregates . In layers or lenses, minute talc flakes 

define a strong foliation with s and c components which may 

be deformed into microfolds and microfaults produced by 

shortening subparallel to the foliation. Talc also occurs in 

scaly aggregates of minute flakes, without any preferred 

orientation, typically at the margins of the talc layers, 

within some lenses, and in talc aggregates. 

cr-spinels are commonly pulled apart and extended ~ver 

several mm in the talc-magnesite matrix, and chlorite occurs 

in trace amounts adjacent to and replacing Cr-spinel grains. 

Very fine magnetite layers less than 0.02 mm in width and 

several mm in length commonly occur within talc layers and 

along and along schistosity (S) planes. 
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6.3.4. Chlorite blackwall rocks 

Chlorite-rich rocks occur locally in the outer parts of 

the tectonic m~langes as narrow zones at contacts between 

ultramafic and metasedimentary rocks . They are dark green to 

black, several ern to several tens of em thick, strongly 

foliated and have sharp contacts with both serpentinite and 

metasediments. The blackwall rocks, which are composed 

almost entirely of chlorite, were formed probably at low-T 

(based on lack of amphibole). X-ray powder diffraction 

analyses have identified magnesium-rich chlorite 

(clinochlore) as the main component. In thin section 

extremely fine-grained chlorite forms an homogeneous mat, 

nearly isotropic under crossed polarizers (Fig 6.41). Larger 

chlorite grains are rare. Relict serpentine occurs in trace 

amounts as veins and in bastite~. Small corroded spinel 

grains occur locally. Some specimens contain small epidote 

and sphene grains, the latter comprising up to 15% of the 

rock volume (Fig 6.41). 
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6.4 QUARTZ-MAGNESITE ROCK 

6.4.1. Introduction 

In the Coy Pond tectonic m~langes, quartz-magnesite rocks 

were produced by pervasive carbonatization of talc-magnesite 

or serpentinite assemblages. Commonly the process affected 

both the fragments and the matrix, so that large portions of 

the m6langes were transformed to quartz-magnesite 

assemblages. Locally the carbonatiza~ion affected only the 

matrix, which in this case generally encloses talc-magnesite 

fragments. Serpentinite relics were not found in quartz­

magnesite assemblages. 

Quartz-magnesite assemblages outcrop as prominent 

elongated knobs, covered with ochrous gossan and laced with 

a quartz stockwork. Weathering produces a very rough 

surface, a resul~ of surficial leaching of magnesite leaving 

a framework of quartz and hobnails of Cr-spinel (Fig 6.42). 

The lenticular shapes of the fragments enclosed in the 

matrix (Figs 6.42 and 6.43), a feature inherited from the 

sheared ultramafic precursor, are still visible. The 

fragments are medium to light brown, and mottled due to the 

presence of Cr-spinel grains or finely disseminated 

magnetite (Fig 6.45). The matrix is lighter colored, buff to 

pale brown and characterized by a weak foliation, and is 

outlined by the elongate shape of the fragments and the 
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Pig 6.42 Photograph of quart~-maqnesite outcrop in the 
western tectonic mAlange showing subround quartz-magnesite 
fraqmento enclose~ in quartz-magnesite matrix. White " dust" 
on the outcrop is a lacy network of quartz veinlets. Larger 
quartz veins cutting the foliation at high angle (top of the 
photograph) are typical of this part of the m6lange. 

Piq 6.43 Photograph of quartz-magnesite matrix with a few 
small quartz-magnesite fragments (reddish colored patches). 
The schistosity is oriented horizontal in the figure. White 
quartz patches are remnants of quartz veins parallel to 
foliation. Outcrop situated in the southern extremity of the 
western tectonic mAlange. 
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Fiq I.U Quartz-magnesite outcrop situated in the southern 
extremity the eastern tectonic m6lange cut by numerous 
quartz veins. Note that in this example quartz veins are 
subparallel to foliation and have variable widths over short 
distances, and some pinch out. 

Fiq 6.45 Fracpnent (left hand side of the figure) composed 
of quartz-magnesite cut by a quartz vein (white). Quartz­
:nagnesite matrix at right hand side of the figure has a 
vertical foliation outlined by Fe oxides (brown to black) 
quartz and magnesite veins. 
Scale in em. 
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subparallel distribution of grey magnetite stringers. 

Commonly the quartz-magnesite ro~ks are cut by veins of 

white quartz {Figs 6.42 to 6.45) and buff magnesite (Fig 

6.45). These veins may be subparallel to the foliation (Fig 

6.44), situated on C planes (Fig 6.46), or may be cross­

cutting (Fig 6.42). They are commonly undeformed and suggest 

that the quartz-magnesite assemblage developed late, after 

the bulk of deformation in the tectonic melange. 

6.4.2 Petrographic description 

Quartz-magnesite rocks have a relatively simple mineralogy 

being composed almost entirely of magnesite + quartz ± talc 

+opaque phases (Cr-spinel, Fe-oxides). All quartz-magnesite 

specimens indicate that carbonatization of serpentinite was 

pervasive. Relict serpentine does not occur, but talc is 

commonly found (Fig. 6.47) in the eastern tectonic melange 

and occurs locally at the southern end of the western 

tectonic melange. 

Textures are commonly granular, the rock has a massive 

appearance and does not show a tendency to fracture parallel 

to foliation planes inherited from serpentinite. In some 

specimens, a weak foliation (S) is defined largely by the 

crude mineralogical banding due to segregation among quartz, 

magnesite and talc. The width of the bands is variable from 
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a few mm up to several em, and they commonly pinch and 

swell. In some samples the foliation is overprinted by shear 

(C) planes that are commonly outlined by boudin~ or veins of 

quartz. Foliation planes are locally pinched-out and sheared 

into the C planes. In other samples, veins are late and 

undeformed. 

Magnesite in quartz-magnesite rocks forms between 30' and 

95% of the rock volume, commonly about 85%-90\. As with its 

occurrence in serpentinite and talc-magnesite bearing rocks, 

magnesite occurs in two varieties, microcrystalline and 

crystalline. 

(i) microcrystalline magnesite occurs in both fragments 

and matrix in quartz-magnesite rocks, forming about half of 

the total carbonate and composing the groundm~ss for 

crystalline magnesite and quartz. It occurs as agglomerates 

of grains less than 0.1 mm in size with rounded shapes, 

strong relief and a brown color (Figs 6.48 and 6.51). It 

always contains impurities such as minute magnetite grains 

and a brown dust interpreted to be iron oxides. Under 

crossed polars it can be seen that microcrystalline 

magnesite nas a pale brown birefringence and poor 

extinction. Commonly the original serpentinite mesh texture 

is completely obliterated by carbonatization, but in some 

instances, usually in fragments where the microcrystalline 

grains are very fine, the relict texture may be vaguely 
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Fiq ,,46 Example of quartz-magnesite matrix from southern 
part of the western tectonic m6lange. The foliation (S) 
defined by C"~ompositional banding [magnesite (brown), quartz 
(white), talc (greenish) and Fe oxides (black)] is truncated 
by a shear plane (C plane) marked by a quartz vein (white), 
trending from lower left to upper right. 

Fiq ,,47 Representative photomicrograph of quartz-magnesite 
rock. Brown is cryptocrystalline magnesite, pale brown to 
white is spathic magnesite, black is aggregates of 
magnetite. Note the lack of quartz in this sample. 
Specimen 85-A; X 2.5; plane polars; bar represents 0.5 mm. 
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Fiq l.ta Detail of quartz-magnesite rock. Brownish with 
dirty appearance is cryptocrystalline magnesite, white 
inclusion free grains are spathic magnesite, black is 
aggregates of magnetite grains which are common in 
cryptocrystalline magnesite. The regular arrangement of 
magnetite is inherited from mesh textured serpentinite. Note 
the lack of quartz in this sample. 
Specimen 85-A; X 10; plane polars; bar represents 0.2 mm. 

Fig 6.49 General view of quartz-magnesite in the matrix of 
the tectonic m6lange. On the right hand side of the figure 
is a large spathic magnesite grain in a vertical orientation 
and several smaller grains at extinction. Spathic magnesite 
shows good cleavage and few inclusions. To the left of the 
magnesite is a vertical band ot strongly foliated talc 
schist. In the lett part of the fiqure are magnesite grains 
sat in a matrix of talc (green-yellowish) and quartz grains 
(yellow, bluish and black in the upper left hand corner of 
the figure). The foliation of the rock (S) is vertical. 
Specimen 143-A; X 1.5; crossed polars; bar represents 1 mm. 





Fiq ,.50 Photomicroqraph showing interstitial quartz 
(central part of fiqure) between xenoblastic 
cryptocrystalline magnesite. 
Specimen 85-F; X 10; crossed polars; bar represents 0.2 mm. 

Piq ,.51 Quartz-magnesite matrix with strong foliation. 
Quartz vein (horizontal orientation in middle ~f figure) 
composed of grains showing undulose extinction and grain 
boundary recrystallization. Randomly oriented talc flakes 
(brownish) form the groundmass for larger spathic magnesite 
grains (high relief and high birefringence colors), and 
quartz grains (yellow). 
Specimen 143-A; X 2.5; crossed polars; bar represents 0.5 
mm. 





distinguished. In such cases, the original partings of the 

mesh texture can be recognized (Fig 6.48). This feature 

indicates that quartz-magnesite is chiefly a replacement 

assemblage in which the larger structure of serpentinite was 

retained during the conversion of serpentine to magnesite 

and quartz. However, the process is not entirely a simple 

replacement as the grains of both magnesite and quartz are 

generally too coarse to preserve the fine serpentine 

textures. 

(ii) crystalline or spathic magnesite is more abundant in 

the matrix than in the fragments. The grain size is variable 

between 0.15 and 2-3 mm in diameter, the larger grains 

occurring in the matrix. It is colorless and rarely contains 

magnetite inclusions. The grains are commonly xenoblastic, 

granular or lath shaped with good to perfect cleavage in one 

or two directions (Fig 6.49). Usually the extinction is 

straight, but undulose extinction is common in the larger 

grains. Polygonization into subgrains is very common, 

suggesting the presence of minor strain during or after the 

carbcnatization. Small idioblastic magnesite rhombs commonly 

occur within talc with their long axes oriented parallel to 

the foliation. Commonly these magnesite grains are 

inclusion-free and do not exhibit undulatory extinction. 

These features suggest a post-tectonic growth. 

Quartz in quartz-magnesite assemblages forms between 5% 
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and 25 \ of the rock volume, occurring in larger amoc~ts in 

fragments than in the matrix. The earliest quartz occurs 

between cryptocrystalline carbonate as minute (<0.1 mm) 

interstitial grains (Fig 6.50). With an increasing degree of 

carbonatization, quartz tends to occur as larger grains, 

quartz aggregates or veins (Fig 6.51). The veins are 

variable in size ranging up to several tens of em in width. 

In the matrix, quartz and magnesite veins commonly develop 

in shear (C) planes and are coarser grained than in 

fragments (Fig 6.46). Quartz, interstitial or veined, 

commonly exhibits undulose extinction and polygonization 

into subgrains. Locally quartz may c~ntain minute flakes, 

rhombs, or irregular grains of magnesite. The replacement of 

quartz by talc is also common, oc~urring both marginally and 

throughout entire quartz grains. Talc appears to 

preferentially replace poorly crystallized quartz grains 

with vague extinction and also those grains containing 

impurities. 

Talc occurs commonly in quartz-magnesite of the eastern 

tectonic melange in amounts ranging up to 30\ of the rock 

volume. It forms bands a few mm wide (Fig 6.49), or occurs 

as interstitial material between carbonate and quartz grains 

(Fig 6.51). Where compact and pure, talc (steatite) bands 

exhibit a pale green translucent color. 

Talc occurs in two situations: most commonly in the 
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groundmass as small (<0.01 m~) randomly oriented flakes (Fig 

6.51), and also as larger grains {up to 0.2 mm) lying in the 

foliation (Fig 6.49). 

Opaque minerals present in quartz-magnesite assemblages 

occur in amounts less than 1 percent of the rock and are 

rna inly cr-spinel. The larger ( 1-2 mm) spinel grains, which 

commonly exhibit pull-apart structures, are reddish in color 

and may be bordered by green chlorite. Where present, 

magnetite gene~ally occurs as fine dust, small grains or 

grain aggregates that are in~orporated in quartz and 

microcrystalli~e magnesite; locally it occurs in thin veins 

(Fig 6.48). 

6.4.3 Conclusions on matrix and quartz-magnesite rocks 

The examination of the matrix rocks associated with the 

tectonic melanges leads to the following conclusions. 

( i) The matrix forms up to one quarter of the exposed 

outcrops of the tectonic melange, but because of its 

softness relative to the melange fragments it is believed to 

underlie large parts of the unexposed tectonic melanges. 

(ii) The main microstructural characteristic of the matrix 

rocks is the strong foliation parallel to the boundaries of 

the unit. 

(iii) Formation of the matrix was initiated by a brittle 
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comminution of serpentinite fragments, followed by ductile 

deformation and recrystallization into schistose 

serpentinite matrix. 

(iv) Ingress of fluids into the tectonic melanges provided 

the appropriate conditions for recrystallization of 

lizardite into schistose serpentinite and the formation of 

antigorite; fluids also were the vehicle for transport of 

C02 which controlled the carbonatization processes. 

(v) The matrix rocks, because of their foliated nature, 

were pathways for the passage of the fluids and consequently 

are the most strained, recrystallized and carbonatized among 

all melange assemblages. 

(vi) Talc-rr.agnesite assemblages in the western tectonic 

melange form characteristic rectiplanar layers (parallel to 

the melange boundaries), situated in the zones of high 

strain and representing major pathways for fluid 

circulation. However, in the eastern tectonic melange, 

because of the pervasive development of quartz-magnesite and 

its co-mingling with talc-carbonate, this feature is less 

obvious. 

(v) During recrystallization and carbonatization of matrix 

rocks, some of the phases were mobilized and/or removed. For 

instance, in schistose serpentinite, magnetite was 

concentrated along C surfaces, and in talc-magnesite 
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assemblages, magnesi t::e was concentrated along schistosity 

planes. This is interpreted to indicate the loci of fluid 

pathways on a local scale, implying that the planar fabric 

elements was a major co!"trol of fluid infiltration. As a 

result of remobilization (and partial removal) of magnetite, 

talc-magnesite and especially quartz-magnesite assemblages 

become lighter in color compared to their serpentinite 

parent. 

(vi) Narrow planar blackwall rocks, occurring locally at 

the contacts between serpentinite and metasediments, 

represent a local metasomatic effect occurring between units 

of contrasting bulk composition. 

(vii) Based on petrographic observations (and stable 

isotopic compositions (Chapter 10), quartz-magnesite 

asser.~blages ( listwaenites) are considered to be the latest 

stage of mineralogical evolution in the rocks of the 

tectonic melanges. In contrast to other assemblages, they 

are at least in part post-tectonic. 

(viii) The composition of the quartz-magnasite assemblages 

is variable with magnesite forming from 30 to 95%, quartz 

from 70 to 5%, talc from o to 30%. The significant local 

variation in modal abundance of quartz points to the 

mobility of silica during the formation of the assemblage, a 

conclusion also supported by the abundance of quartz veins 

at all scales. More limited mobility of magnesite is 
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indicated by the presence of rarer magnesite veins. 

(ix) Petrographic observations show that quartz-magnesite 

rocks were formed from two different protoliths: 

serpentinite in the western tectonic melange, and talc­

magnesite in the eastern tectonic melange. 

(x) The formation of quartz-magnesite assemblages requires 

the presence of C02 bearing fluids. These fluids had no 

apparent effect on the stability of Cr-spinel, but caused 

significant breakdown of magnetite (though some still 

remains), resulting in the light color of the quartz­

magnesite rocks. 

6.5 MELANGE BLOCKS 

Blocks (ten to hundred of meters in size) occur in both 

tectonic melanges of the Coy Pond ophiolite. They are 

oriented with their long axes parallel to the foliation and 

the boundaries of the melanges, in a manner similar to the 

smaller fragments. 

In the western tectonic melange, and exclusively in its 

southern part, four pyroxenite blocks have been mapped (Figs 

3.1 and 6.52). They range from 200 to 300m in leng-~ and 

are about 100 m in width. In the eastern tectonic m6lange, 

there are several blocks of non-ophiolitic origin, including 
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psammites and volcanogenic metasediments (Fig 3.2) . In both 

tectonic melanges the blocks form less than 5% of the 

melange. 

6.5.1 Pyroxenite blocks 

Apart from their lensoid shape (3.1) and polished smooth 

surfaces (Fig 6.52) pyroxenite blocks do not show any 

effects of shearing or associated metamorphism, and 

petrographically they are indistinguishable from the layered 

pyroxenites of the transition zone from which they 

originated. For this reason, the pyroxenite blocks are not 

described separately here. Their petrography and mineral 

chemistry are discussed in Chapters 5 and 8 respectively. 

6.5.2 Clastic metasedimentary blocks 

Several blocks are composed of fine-grained (0.1 mm) 

detrital material, consisting principally of quartz and 

about 10% feldspar grains. The grains are angular and are 

poorly sorted. The blocks are little deformed internally, 

but are cut by several generations of late veins composed of 

prehnite with radiating structure (Fig 6.53). 

6.5.3 Volcanogenic metasedimentary blocks 

Volcanogenic metasediments have well-defined bedding 

defined by the alternations of detrital and volcaniclastic 
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Pig 6.52 Field photograph showing a massive coarse-grained 
clinopyroxenite block about 200 m long situated in the 
western tectonic m6lange. The block is oriented with its 
long axis parallel to the boundaries of the tectonic 
m6lange. 

Pig 6.53 Photomicrograph showing a metasandstone occurring 
in a large block in the eastern m6lange. Fine grained 
clastic. material (riqht hand side of the figure) comprising 
principally quartz and subsidiary feldspar is cut by a vein 
of prehnite (large grains with undulose extinction). 
Specimen 438; X 2.5; crossed polars; bar represents 0.5 mm. 





material. Quartz, feldspar and calcite (about 10\ of the 

rock volume), which form the detrital part of the rock are 

fine grained (< 0.2 mm, most <0.1 mm in size) and have 

rounded shapes. Volcanogenic input is indicated by vitric 

pyroclastic fragments (<0.2 mm in size), rare varioles and 

the fine-grained poorly crystallized and partially 

chloritized matrix (Figs 6.54 and 6.55) . Fe-Ti oxides form 

<5% of the rock volume. 
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Fiq &.5t Photomicroqraph showing general view of fine 
grained volcanoqenic metasediment occurring in a block in 
the eastern tectonic m6lange. The rock is a mixture of 
volcanic and sedimentary clastic material. 
Specimen 452; X 2.5; crossed polars; bar represents 0.5 mm. 

Fiq ,.55 Detail of figure 6.54 showing pyroclastic 
material. Angular to subrounded quartz grains (colorless) 
occur in a groundmass of poorly crystallized and chloritized 
pyroclastic material (dark green). In the central part of 
the figure is a rounded variole (colorless rim) filled with 
iron oxides (dark brown). Calcite grains (pale brown), are 
situated close to the margin of the figure. Relatively fresh 
plagioclase with polysynthetic twinning is visible locally. 
Specimen 452; X 20; crossed polars; bar represents 0.1 mm. 





Chapter 7 

MIXED LITHOLOGY SLICE 

7.1. Introduction 

Throughout most of the Coy Pond Complex, the basal slice 

of the ophiolite, composed of harzburgite and dunite 

tectonite, is in thrust contact with, and overlying the 

autochthonous Spruce Brook Formation. However, in the Chrome 

Brook-Northwest Gander River confluence area, the basal 

slice is missing for a distance of about 2 km and its 

position is taken by the Mixed Lithology Slice composed of 

slivers of exotic (i.e. non-ophiolitic) material. The Mixed 

Lithology Slice is at least 2 km long and several hundreds 

of m wide (Fig 3.1), and consists of imbricate rock slivers 

of metasedimentary and metavolcanic origin. The lithologies 

in the Mixed Lithology Slice have been subdivided 

petrographically on the basis of their original protolith. 

7.2 Metabasic and intermediate volcanic/hypabyssal ? rocks 

Weakly metamorphosed basic and intermediate volcanic 

rocks, and relatively little metamorphosed diabase (Figs 

7.1) are included under this heading. Characteristically, 

the rocks show evidence of brecciation, they are weakly 

foliated 



,, 
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Pig 7.1 Low grade intermediate volcanic rock composed of 
quartz-feldspar assemblage partially altered to chlorite and 
subordinate sericite. Chlorite (blue) in central part of the 
figure defines a weak foliation. 
Specimen 118; X 2.5; crossed polars; bar represents 0.5 mm. 

Piq 7.2 Low grade, fine-grained basic volcanic rock with 
intersertal texture. Partially altered plagioclase 
microlites (colorless) are set in a groundmass (brownish) of 
chlorite with subordinate sericite. Weak foliation (from 
upper right corner to lower left corner) is outlined by 
secondary chlorite band (deep blue). Light brown grains and 
veinlets are calcite. 
Specimen 453; X 2.5; croesed polars; bar represents 0.5 mm. 





Fiq 7.3 Metamorphosed basic or intermediate rock (? pillow 
lava) with disrupted quartz-feldspar veins (pinkish). 
Groundmass (qreenish color) comprises chlorite-sericite and 
subordinate calcite. 
Specimen 505-C; X 2.5; plane polarized light; bar represents 
0.5 mm. 

Fiq 7.4 Photomicroqraph showing weakly metamorphosed basic 
volcanic rock, probably a pillow lava. Altered plagJ.oclase 
microlites (white} are set in felted, te~tured groundmass of 
chlorite, iron oxldes (black) and late carbonate (brown). 
Specimen 505-A; X 10; crossed polars; bar represents 0.2 mm. 

-- ---- ----~~--~ . . . . -. . 
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(Figs 7.1 to 7.3) and are partially hydrated to a 

subassemblage of chlorite-sericite. commonly the foliation 

is outlined by chlor.ite (Figs 7.1 and 7.2) or by disrupted 

quartz-feldspar veins (fig 7.3), suggesting that the 

deformation took place under hydrous low grade metamorphic 

conditions. 

Most commonly the basic rc~k consists of chlorite, Fe-Ti 

oxides, carbonate {calcite) and rare altered plagioclase 

laths (Fig 7. 4) occurring in a phacoid-shaped structure that 

is visible in outcrop. The ellipsoidal-shaped phacoids are 

less than 10 em in size and oriented with their long axes in 

a parallel array. Their shape and arrangement resembles that 

of the much larger pillow structure in pillow lavas. Their 

origin is puzzling, however they may result from shearing of 

original pillow breccia during late {extensional) faulting 

of the ophiolite. 

7.3 ~yroclastic rocks 

Consolidated pyroclastic rocks occur in ttle Mixed 

Lithology Slice in two localities. The lithology is composed 

of lapilli and ash in approximately equal proportions (Fig 

7.5). The lapilli are very variable in size, with irregular 

contours commonly outlined by rounded and concave shapes. 

Lapilli contain quartz grains in microlitic texture and in 
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Fig 7.5 Photomicrograph showing several lapilli (blue) set 
in microcrystalline groundmass. Large lapilli are situated 
in the corners of the figure, and the centre of the upper 
right hand one is filled with iron oxides. Generally the 
lapilli have vitric rims (dark blue) and devitrif~ed centers 
which are clearly visible in the small oval lapillus 
situated to the left of centre of the figure. The lapillus 
situated in the lower left corner contains several quartz 
phenocrysts. In the fine grained quartzofeldspathic 
groundmass (blue-grey), are quartz (colorless) and 
plagioclase (polysynthetic t~inned). The quartz grain 
situated in central upper left hand side of the figure shows 
corrosion. Late carbonate alteration occurs, especially in 
the groundmass (pale brown). 
Specimen 139; X 1.5; crossed polars; bar represents 1 mm. 

Fiq 7.6 Photomicrograph showing shards (dark green) having 
contours outlined by concave lines. Large elongate shards in 
the left side of the figure are flattened, the smaller o~es 
in the upper right hand corner still preserve their 
vesicular form. Small vesicle in the upper left hand side of 
the fig~re is filled with q~artz grains. The groundmass 
contains devi trified material, large quartz (grey) and 
plagioclase (central right hand margin) nnd calcite (pale 
brown). 
specimen 133; X ~ . 5; crossed polars; bar represents 0.5 mm. 





places quartz and plcgioclase phenocrysts. 

Characteristically, the grain size in the central part of 

nicrolite is larger than that clo~e to the margins (Fig 

7.5), showing a difference in the cooling rate. The quartz 

phenocrysts, where present are commonly corroded. Some 

lapilli are filled with dark-brown iron oxides. 

Elongated and flattened shards of devitrified glass, which 

are relics of an early spongy texture, occur commonly (Fig 

7.6). The matrix of the shards and lapilli is composed of a 

fine-grained quartz (but coarser grained than in lapiili) 

and chlorite. Quartz and plagioclase (the latter with 

polysynthetic twinning) phenocrysts also occur, and are 

commonly corroded. Late calcite in veins and porphyroblasts 

forms about 5% of the rock volume. 

7.4 Actinolite epidote schist 

Actinolite epidote schist is co~posed mainly of 

actinolite, epidote and subsidiary albite (X-ray powder 

determination). The rock is composed of fine grained epidote 

and albite with epidote porphyroblasts set in a 

nematoblastic schistose matrix (Figs 7.7 and 7.8). 

Actinolite laths up to 1 mm long in a radial arrangement are 

also common. 

such rocks were likely produced by hidrothermal 
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Fiq 7.7 Strongly foliated actinolite-epidote schist with 
granonematoblastic texture. Elongate actinolite laths (pale 
green) impart a strong foliation (subvertical) to the rock. 
Also in the foliation plane are epidote and albite bands. To 
right of centre is a porphyroblastic aqgregate of epidote 
grains having its long axis parallel to the foliation. 
Specimen 124; X 10; plane polarized light; bar represents 
0.2 mm. 

Fiq 7.8 Detail of 7.7. Coarse-grained recrystallized 
epidote grains set in a finer grained foliated matrix of 
epidote-feldspar (foliation from upper left to lower right). 
The larger epidote grain in the left central part of the 
figure has a fractured core (orange) and an unfractured 
overgrowth (yellow) on the rim. In the upper left corner of 
the figure occurs a rare plagioclase grain. Note local 
absence of actinolite. 
Specimen 124; X 2.5; crossed polars; bar represents o.s mm. 





metamorphism of basaltic rocks, and formed under greenschist 

facies metamorphic (Yardley, 1989). 

7.5 Metasedimentary schist 

Coarse to fine grained (0.01 to 0.1 mm) metasediments very 

similar to parts of the Spruce Brook Formation are 

predominantly composed of quartz, feldspar and chlorite ± 

garnet. In muscovite- chlorite schist, subparallel flakes of 

muscovite largely replaced by chlorite, form about < 5 % of 

the rock volume (Fig 7.9). 

Garnet-muscovite schist consists of coarse garnet 

porphyroclasts up to several mm diameter set in a fine 

grained retrogressed matrix of sericite and chlorite with 

relict plagioclase and quartz (Figs 7.10 and 7.11). 

Grade of metamorphism in these rocks is not easy to 

determine due to extensive regression to hydrous greenschist 

facies assemblages. The as~emblage quartz-plagioclase­

muscovite is stable over a wide range of metamorphic 

conditions, the presence of garnet suggests that at least 

upper greenschist facies conditions were attained, the 

coarse grain size perhaps being more compatible with an 

amphibolite facies assemblage. 
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Fiq 7.9 Fine grained metasedimentary rock with 
granolepidoblastic texture originally composed of quartz -
albite - muscovite - accessory opaque oxide. Muscovite is 
largely replaced by a green chlorite which forms weak planar 
fabric or schistosity. 
Specimen 134; X 2.5; crossed polars; bar represents 0.5 mm. 
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Pig 7.10 Strongly foliated and retrogresRed metamorphosed 
garnetiferous schist. Garnet porphyroblast (strong relief in 
7.10 and isotropic in 7.11) is broken and pulled apart in 
the foliation plane. The lepidoblastic groundmass of 
chlorite and sericite confer a strong foliation to the rock. 
Also in foliation pla~e are ~ligned elongate quartz­
plagioclase veins aggregates (best visible in 7.11 in 
central right margin). 
Specimen 505-D; X 2.5; plane polarized light; bar represents 
0.5 mm. 

Pig 7.11 Same as 7.10; crossed polars. 
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7.6 Origin of rocks in Mixed Lithology Slice 

Clearly, all lithologies in the Mixed Lithology Slice arc 

exotic with respect to the lower part of the ophiolite which 

surrounds them. The volcanogenic lithologies have no clear 

correlatives within the immediate vicinity. They are 

tentatively considered to have been derived from the 

stratigraphically higher levels of the local Ordovician 

stratigraphy, namely the Baie d'Espoir Group, on account of 

the variety of lithologies present and their low grade of 

metamorphism. 

The metasedimentary rocks, on the other hand, are 

tentatively correlate~ with the Spruce Brook Formation. 

These rocks were incorporated into the Mixed Lithology Slice 

after their peak of metamorphism. The extensive 

retrogression, which characterizes this lithology, may have 

occurred during the emplacement of the tectonic slice. 



8.1. Introduction 

Chapter a 

MINERAL CHEMISTRY 

Analyses of minerals from the ultramafic part of the Coy 

Pond complex were carried out on the electron probe 

microana lyzer facility in the Department of Earth Sciences, 

Memorial University. Details of the instrument and operating 

conditions are described in Appendix 2.A. 

Mineral chemistry of the following ultramafic units and 

their main lithologies were investigated: the mantle 

tectonite composed of harzburgite and dunite, the tectonic 

melanges composed of serpentinized and variably carbonatized 

fragments and matrix, ana the tr~nsition zone comprising 

layered clinopyroxenite and dunite. 

Chemical data on the primary minerals (olivine, pyroxenes 

and spinel) can potentially provide information about the P­

T conditions of formation, the occurrence of partial melting 

and the depletion of the ocean crust, and about the 

environment (mid ocean ridge or island arc) in which the 

ophiolite formed. Secondary minerals generated during 

widespread serpentinization (lizardite, brucite and 

magnetite), serpentine recrystallization (antigorite and 

chrysotile) and during carbonatization (magnesite, talc, 

quartz) furnish additional information about temperature, 



redox conditions and the fluid composition during these 

processes. 

This chapter has been divided into two parts on the basis 

of the primary or secondary origin of the minerals. 

8. 2 Primary minerals 

Hydration and carbonatization processes have affected all 

of the lithologies to varying degrees, but some primary 

minerals have survived in the basal tectonite and pyroxenite 

cumulates. In contrast, in the tectonic ml!langes, shearing 

and extensive fluid circulation have resulted in complete 

replacement of all primary minerals, with the exception of 

cr-spinel, which is apparently exceptionally resistant to a 

variety of hydration and carbonatization processes, even in 

the most sheared rocks. 

8.2.1 Olivine 

Twenty three microprobe analyses of olivine from various 

lithologies have been performed: twelve are from 

harzburgite, seven from dunite and four from the dunitic 

wall of an orthopyroxenite dike in harzburgite. The analyses 

are listed in Table 8.1 and Appendix 3. 

The forsterite content of olivines from the mantle 
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Table 8.1. Electron microprobe analyses of oli~ine 
from Coy Pond ultramafics 

• • •=•• •- aza••••••••• • •••• ~•••- ••••==•••••- =• • • : 
specimen 
rock 
mean of 

333 
Hz 
3 

156 
Hz 
3 
2 

184 
Hz 
1 
3 

9 
4 

175 
Hz•• 

2 
5 

::- = --= =- = ==·=='~~~'•·--- --------- --···==----- -= == t 
Si02 40.52 37.30 40.30 39.31 40.63 

MgO 50.45 49.44 50.30 50.23 51.14 

Al203 0.01 0.01 nd 0.01 nd 
Feo• 8.61 11.78 8.70 9.69 8.71 

Na20 0.02 0 .02 nd 0.02 nd 

CaO O.QI 0 .00 nd 0.00 nd 

Ti02 O.QI 0.16 nd 0.08 nd 
Cr203 0.00 0 .01 nd nd 0.04 

MnO 0.13 0.16 0.13 1'.14 0.12 
NiO 0.35 0.52 nd 0.43 nd 
Total 100.11 99.26 99.44 99.60 100.66 

tetrahedral formulae based on 4 oxygens 
Si 4+ 0.988 0.939 0.982 0.971> 0.985 
Al3+ nd nd nd nd nd 

sum 0.988 0.939 0.982 0.970 0.985 

octahedral 
Mg2+ 1.835 1.855 1.853 1.848 1.84P 

Fe 2+ 0.175 0.247 0.177 0 .200 0.176 
Mn2+ 0.002 0.003 0.002 0.002 0.002 

sum 2.012 2. 10!5 2.032 2.050 2.028 

XMg= 100Mg2+/{Mg2+) +(Fe2+) + (Mn2+) 
Fo 91.2 88.1 9L2 90.1 91.2 

• FeO as Fe total 
Hz • harzburgite 
Hz** • harzburgita fragment in m61ange 
column 4 • avar•.ge of columns 1 -3 
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T.8.1 p.2 

--------------···---------··-·----- ····----·-· specimen 
rock 
mean of 

299 
Dun+ 

3 
6 

103 
Dun+ 

4 
7 

me11n 

7 
8 

108 
Dun++ 

4 

9 
• ••===~ • • •~•••=• • • • a•••••••••• ••••••••••••••• ~ 
Si02 40.39 40.83 40.64 40.43 
MgO 50.08 52.47 51.44 50.56 
Al203 nd nd nd nd 
FeO* 9.00 7.22 7.98 9 .32 
Na20 nd nd nd nd 
CaO 0.02 nd nd nd 
TI02 nd nd nd nd 
Cr203 0.03 0.00 nd 0.03 
MnO nd 0.10 nd 0 .14 
NiO 0.18 nd nd nd 
Total 99.70 100.S3 100.23 100.48 

totrahe drat formulae based on 4 oxygens 
Sl 4+ 0.989 0.983 0 .986 0 .984 
Al3+ 0.000 0.000 0.000 0 .000 
sum 0.989 0.983 0 .986 0 .984 

octahedral 
Mg2 + 1.650 1.884 1.784 1.835 
Fe 2+ 0. 183 0.1-15 0.161 0 .189 
Mn2 + 0.000 0 001 0 .001 0 .002 
sum 1.833 2.030 1.946 2 .028 

Fo 90.9 92.8 91.9 90.6 

• Fe O as Fe total 
column 8 • average of columna 8-7 
Dun + • dunite in harzburgite 
o ~n++ - duni~cwall ln 

pyroxenite dike 
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tectonite varies from 88.1% to 92.8%. In detail, the range 

of forsterite content in harzburgite is larger and slightly 

lower, from 88.1% to 91.3%, compared to that in dunite, 

where the range is between 90.9% and 92.8%. Four mj.croprobe 

analyses (Table 8 . 1.) from the dunitic wall rock to a 

pyroxenite dike in harzburgite (the orthopyroxenite dike is 

separated from its host harzburgite by a dunite layer 

several em thick) has a forsterite content of 90.6%. In 

general, higher forsterite contents in olivine occur i n more 

strongly depleted peridotites, and forsterite content shows 

an inverse relationship with NiO content (NiO varies from 

0.52% in harzburgite olivine to 0.18% in dunite olivine). 

There are no significant differences in the MnO content of 

olivine from harzburgite (0 . 14%) and dunite (0.10 %). 

Cr20 3 in olivine from both dunite and harzburgite is below 

the limit of detection. 

8.2.2 Orthopyroxene 

Of a total of thirteen microprobe analyses of 

orthopyroxenes, seven are from harzburgite and six are from 

an enstatitite oike . The orthopyroxene and clinopyroxene 

microprobe analyses are listed in Table 8.2 and Appendix 4. 

Orthopyroxene from harzburgite and from enstatitite dikes 
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Table 8.2 Electron microprobe analyses and calculated formulae 
of pyroxen•• from Coy Pond ultramafics 

---------------------------------------------· specimen 3a3 158 184 175 108 
rock Hz Hz Hz Hz Hz dike 
mean of 2 3 2 7 3 3 
analysis 1 2 3 4 5 15 
••••~•••••••• • • • •••••••a••••••••••~•••••••••• t 
Si02 56.79 53.97 57.12 55.116 57.13 57.62 
MgO 35.03 35.34 34.80 35.08 35.14 35.07 
Al203 0.42 0 .79 0.63 0.61 0.50 0 .33 
Fao• 5.45 7.10 5.81 6.12 5.89 6 .1 4 
Na20 0.02 0 .06 nd 0.03 0.05 0.02 
K20 0.00 0 .00 0.00 0.00 0.00 0 .00 
CaO 0.78 1.13 0.94 0.9!5 0.78 0 .57 
Ti02 0.02 0 .02 0.00 0.01 0.00 nd 
Cr203 0.26 0 .51 0.33 0.37 0.31 0 .02 
MnO 0.10 0.14 0.11 0.12 0.14 0.13 
NiO nd 0.13 nd 0.04 nd nd 
Total 98.97 99.20 99.55 99.24 99.78 100.20 

tetrahedral formulae based on 8 oxygens 
S i4+ 1.978 1.904 1.973 1.951 1.872 1.981 
Al3+ 0.018 0.032 0.025 0.024 0.02!5 0.013 
sum 1.992 1.938 1.998 1.87!5 1.997 1.994 

octah•dral 
Mg2 + 1.&18 1.8!58 1.791 1.822 1.791 1.788 
Fe2+ 0.157 0.208 0.167 o.1n 0.167 0 .176 
Ca2+ 0.029 0.041 0.033 0.034 0 .033 0 .020 
sum 2.002 2.107 •. 991 2.033 1.991 1.994 

XMg•100Mg2+/(Mg2+) + (Fe2+) + (Ca2+) 
Mg 90.7 88.2 90.0 89.6 90.0 90.2 
Fa 7.8 lUI 8.4 8.7 8.4 8 .8 
Ca 1.4 1.9 1.7 1.7 1.7 1.0 

• FeO as Fe total 
Hz • harzburgite 
1- 5 • orthopyroxene in harzburglta 
6 • orthopyroxene In orthopyroxenlte dike 
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T.8.2 p.2 
•••• •• a=•••••= ==s • •••s•••••••••••• • •••••g• •••: 
tpecimon 108 94-C 94-C 404-B 304 304 
rock clinopyroxenite cumulate 
mean of , 3 3 3 3 3 
analyaia 7 8 i 10 11 12 

--------------····-----------------·-------- -1 Na20 56.18 0.06 0.04 0.11 0.08 
MgO 22. US 16.17 16.47 16.40 16.97 
Al203 1.92 1.97 2 .04 2.58 1.10 
SiO 2.57 54.09 53.56 52.85 53.96 
K20 0.93 0.00 0.00 0.01 0.01 
CaO 0.08 23.02 22.86 24.17 24.11 
Ti02 11.59 0.14 0 .11 0.17 0.01 
Cr203 0.05 0.51 0 .!58 0.43 0.48 
MnO 0 .44 0.11 0.11 0.11 0.09 
Feo• 0.13 3.43 3 .88 3.88 2.89 
NIO 0.11 0.06 0 .00 0.00 0.02 
total 96.14 99.56 99.61 100.71 99.69 

tetrahedral formulae t. · .ad on 6 oxygen• 
Si4+ 2.040 1.973 1.959 1.924 1.969 
Al3+iv 0.000 0.084 0.088 0.109 0.047 
aum 2.040 2.0!57 2.047 2.033 2.016 

octahedral 
Mg2+ 1.200 0.878 0.897 0.889 0.924 
Fe2+ 0.078 O.t04 0.118 0.117 0.087 
Ca2+ 0.451 0.899 0.895 0.942 0.944 
sum 1.729 1.881 1.910 1.948 1.955 

XMg• 100Mg2+/(Mg2+) + (Fe2+) + (Ca2 +) 
Mg 89.4 48.7 4!5.!5 44.8 
Fa 4.!51 !5.!5 6.2 8.0 
Ca 26.1 47.8 46.9 48.4 

•Feo •• Fa total 
apac:lman 7 • c:Hnopyroxe na in o rthopyroxenita dike 

304 • cllnopyroxenite bloc:k In m61ange 
9,11 and 12 • porphyroclatl in c:Hnopyroxenita 

10 and 13 • neoblatt in c:linopyroxanite 
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46.8 
4.5 

48.3 

0.03 
17.24 

1.02 
52.16 

0.01 
24.n 

0.08 
0.32 
0.09 
2.82 
0.03 

98.!57 

1.939 
0 .044 
1.983 

0.9!55 
0.087 
0.986 
2.028 

46.9 
4.3 

48.6 



which cut the harzburgite, is unzoned, Mg-rich with an 

enstatite component from En 87.1 % to En 89.8% in 

harzburgite, and from En 89.2% to 89.9\ in orthopyroxenite 

dikes. They have similar contents of other elements except 

for All~ and cao which are slightly higher in harzburgite 

(0.59% and 0.92% respectively) than in enstatitite dikes 

(0.33% and 0.57% respectively). 

8.2.3 Clinopyroxene 

A total of sixteen analyses of clinopyroxene were 

performed, one from an en~tatitite dike in harzburgite and 

fifteen from layered pyroxenite cumulate of the transition 

zone. 

In rocks of the transition zone (mantle-crust transition), 

clinopyroxene is the main component in layered 

clinopyroxenite and olivine pyroxenite. Characteristically 

it shows a remarkably uniform composition across the entire 

zone, with minor chemical variations in the proportions of 

Ca:Mg:Fe. Mineralogically is an augitic diopside. No 

chemical variations between core and rim have been observed. 

Aluminum, chromium and titanium contents are very low (<2.5 

<0.56 and <0.14% respectively). 

Analyses of granular and recrystallized clinopyroxene 
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(free of exsolution lamellae) from two clinopyroxenite 

specimens, one in situ (94-C) and another as a block in 

melange (304), show no notable differences in chemical 

composition (analyses 8 and 10 in Table 8.2, and Appendix 

4) • 

In harzburgite, clinopyroxene occurs as thin exsolution 

lamellae in enstatite grains and could not be resolved 

adequately with the electron microprobe. In orthopyroxenite 

dikes, clinopyroxene occurs as small interstitial anhedral 

grains (<0.5 mm) forming less than one per cent modal of the 

rock. Overall, clinopyroxene in harzburgite is generally 

replaced by lizardite-bastite which rendered probe analyses 

difficult. 

8.2.4 Spinel 

Accesory spinel occurs in ultramafic assemblages in small 

amounts, about 1% in harzburgite, 2% in dunite and in trace 

am~unts (<1%) in pyroxenite cumulate. Because of its 

exceptional resistance to secondary chemical and mechanical 

processes, the spinel is present even in the tectonic 

melanges and can be utilized to determine the nature of the 

ultramafic protolith. Characteristically, cr-spinels in all 

assemblages possess a magnetite rim a few microns wide. 

Electron microprobe analyses of Cr-spinels are given in 
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Table 8.3 : Calculated c:ompoeitione (mol 'I of Cr- epmel 
in Coy Pond ultramafic: a 

--------------------------------------------- , apaelmen 79-A 144-.t. t75 175•• 184 
rock Hz Hz Hz Hz Hz 
anllyeia• 2 3 4 5 

----------·-------------------------····-----t Sp MgAI204 23.45 13.17 7.07 us 864 
MgChr MgCr204 30.72 32.18 34.08 31 .25 34 82 
Mgf MgFe204 1.57 0.65 1.28 1.51 0 95 
Uap FeTi204 0.00 0 .00 0.03 000 0.00 
Her FeA1204 18.38 15.28 950 10 34 10 70 
Chr FeCr204 24.08 37.31 45.80 47 19 43 14 
Mt FeFe204 1.23 0 .75 1.72 2.28 I 17 

chrome fl 58.71 70.97 82.82 8202 80.13 
magn (II 58.08 4e.32 42.67 39.84 44 67 
ferric II 11 .45 503 957 11 .30 7.19 

--------------------------·--------·-------·-· apecimen 94-8 251-.t. 251-B 305 389 
rock Dun Dun Dun Dun Dun 
analyeia 8 7 8 9 10 

----------~----------------------------------· Sp MgAI204 2.2e 3 .15 2.20 109 9.61 
MgChr MgCr204 8.81 2St.08 111.28 2030 20.43 
Mgf MgFe204 4.50 3.04 2.72 3.15 6 05 
Uap FeTi204 0.35 0 .07 010 0.04 0 25 
Her FeAI204 12.14 5.88 8.77 3.2St 18.76 
Chr FeCr204 48.11 52.57 511.30 81 .30 35.63 
M1 FaFe204 24.12 5.50 11.38 9.52 10 55 

chrome II 71U8 1023 811.78 94110 8801 
magn II 15.72 35.82 24.54 2488 38.44 
ferric: II 20.80 8 .81 11 .28 12.115 18.76 

Dun • dunite 
• each analylia repreHnta an average of three meaauremenll 
•• margin (all othera are core analya") 
Hz • harzburgita 
Sch Sp • ec:hilto" Hrpentinita Mgf • mtgneeioferrole 
T - M • talc: megnaaite Uap • ulvoap'"el 
Q - M • quartz-magnaaite · Her • harcu 
Sp • apinal Chr • chromita 
MgChr • m8gnelioc:hromite M1 • magnetite 
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Table 8.3 continued 

--~---·----------------------------------~--8 ! specimen 94-C 251-0 289-A 

rock Pyrox Pyrox Pyrox 
analysis 11 12 13 

---------------·-----------------------------: Sp MgAI204 20.12 10.01 4.21 
MgChr MgCr204 13.34 1!5.80 9.16 
Mgt MgFe204 4.3!5 3.66 4.66 
Usp FeTi204 0.24 0.17 0.20 
Her FeAI204 32.14 23.58 18.84 
Chr FeCr204 21.31 37.22 40.99 
Mt FeFe204 6.94 8 .62 20.86 

chrome II 39.87 61 .21 68.51 
magn II 38.50 29.81 18.26 
ferric II 11.49 12.42 25.86 

Pyrox • pyroxenite 

---------------·------·---------------------- ~ tpecomen 255-B 177-C 160 142-A 85-B 

rock Sch Sp T-M T-M 0-M 0-M 

analysis 14 15 18 17 18 

---------------·----------------------------- ~ Sp MgAI204 2.81 1.73 14.09 9.38 4.41 
MgChr MgCr204 19.48 18.43 28.80 34.17 38.11 

Mgf MfFe204 3.24 4. I 4 0 .54 1.53 1.84 

Usj; FeTi204 0.04 0.28 0 .00 0.03 C.03 
Her FeAI204 8.04 !5.29 18.13 11.28 !5.46 

C"'r FeCr204 5!5.82 56.43 37.06 41.10 47.19 
Mt Fefe204 9.30 12.67 0.70 1.84 2.28 

chrome II 87.41 91.44 87.15 78.48 89.64 
magn II 2!5.87 24.62 43.72 45.40 44.68 
ferric II 12.70 17.01 1.25 3.81 4.1!5 

---------------------------------------------
Sch Sp • echieto .. eerpentinite 
T-M- talc magnnite 
0-M • quartz-magnnlte 
Sp- epinel 
MgChr • magnulochromlte 
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Appendices 5,6,7 and 8, and calculated end-member 

proportions from different ultramafic assemblages are given 

in Table 8.3. The total iron (as FeO) determined by electron 

microprobe analysis has been assigned to the octahedral and 

tetrahedral sites in accordance with the "ideal" formula. 

The amount of FeO and Fe~01 was calculated (using a Newpet 

program) by assuming that the RO/R~03 ratio in the chromian 

spinel is 1/1 (Irvine 1965). Several features are 

characteristic: 

(i) In contrast to the silicate minerals in the ophiolite, 

the chromian spinels show a considerable range in chemical 

composition. Small compositional variations are detectable 

between grains in the same mineral assemblage, and between 

core and margin of the individual grains (Appendix 8). 

(ii) The compositional plots of Cr# (Cr*100/Cr+Al) against 

Mg# (Mg*100/Mg+Fe2+) of chromian spinel in Coy Pond 

ultramafics are shown in Figure 8.1, together with various 

compositional fields of chromites derived from different 

geological environments (from Irvine and Findlay,l972 and 

Dick and Bullen, 1984). With the exception of one 

harzburgite having the Cr# close to 60 (Cr# = 56.71) and one 

pyroxenite from the upper levels of the transition zone (Cr 

= 39.87), all Coy Pond spinels have the Cr# > 60. 

(iii) The richest spinels in Cr are those from dunite with 
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Fig 8.1 Compositions of Cr-spinel from coy Pond Complex 
plotted as Mg# versus Cr#. Also represented are composition 
fields for spinels from abyssal peridotites and layered 
intrusions (Irvine, 1967), boninites (Cameron et al., 1970), 
Troodos Complex and TWin Sisters Dunite (Dick and Bullen, 
1984). Cr# • 60 separates Type I peridotites formed at a 
mid-ocean ridge (Cr#<60) from Type III peridotites (Cr#>60) 
formed in an island-arc environment (Dick and Bullen, 1984). 
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the highest Cr# ( 68-94. O), followed by those in harzburgi te 

(56. 7 to 82. B), and layered pyroxenite (39.8 to 68. 5). 

( iv) Cr-spinel in harzburgite is characterized by higher 

Al
1
0

1 
contents reflected in higher mol percent of calculated 

"true" spinel (MgA1 20~) (6.85 to 23.45) compared with spinel 

from duni te cumulate which yields less spinel ( 1. 09 to 9. 61 

mol per cent) . 

(v) Ti02 contents in Cr-spinels are very low, (<0. 20%) a 

feature typical for alpine-type peridotites, and there is a 

smaller than expected increase towards higher stratigraphic 

levels (Pallister and Hopson, 1981). 

Conclusions on spinel chemistry 

With minot exceptions, the Cr# of chromian spinel for the 

coy Pond ultramafi~s is higher than 60, the lower limit for 

Type III alpine-peridotite of Dick and Bullen (1984), having 

an arc-related petrogen~sis. Only spinels from the Troodos 

Complex and the Twin Sisters Dunite have similar 

compositions, which in modern analogs occurs in arc-related 

volcanics and intrusive rocks, oceanic plateau basalts and 

continental intrusive assemblages. The absence of diopside 

in the Coy Pond melting residue of peridotites, which 

consist of harzburgite and dunite, is typical for Type III 
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peridotites showing a high degree of depletion that waR 

strongly influenced by the presence of water {Dick and 

Bullen, 1984). 

This situation is opposite to that of the Bay of Islands 

ophiolite where clinopyroxene is present, the spinel in 

harzburgite is richer in Cr than spinel in dunite {Malpas 

and Strong, 1975) and the Cr# is variable (>60 but also 

<60) . All these later features ~re typical for Type I 

peridotites formed at mid-ocean ridges, of which Bay of 

Island ophiolite is a classic example. 

8.2.5 Conclusions 

(i) Olivine is unzoned and shows systematic variations in 

Fo-content (100Mg/Mg•Fe2•), which increases from an average 

of 90.1 in harzburgite to an average of 91.1 in dunite, 

confirming that the dunites are the most refractory residue 

produced by partial melting of the harzburgitic upper 

mantle. 

( ii) The extremely low clinopyroxene content (<1\) in 

harzburgite (it occurs entirely as exsolution lamellae in 

orthopyroxene\ also shows the extreme depletion of 

harzburgite; 

(iii) Clinopyroxene in pyroxenite and olivine pyroxenite 
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is unzoned and chemically homogeneous across the entire 

sampled section of the transition zone. 

( i v) With minor exceptions, the Cr# of chromian spinel for 

the Coy Pond u 1 trama f ics is higher than 6 0, the 1 ower limit 

for Type III alpine-type peridotites of Dick and Bullen 

(1984), having an arc-related petrogenesis. 

(v) The absence of diopside is typical for Type III 

peridotites showing a high degree of depletion as a result 

of partial melting in the presence of water (Dick and 

Bullen, 1984). 

(vi) cr-spinels in harzburgite are characterized by high 

Al20 1 contents reflected in higher mol percent of calculated 

"true" spinel (MgAl204 ) (from 6.85 to 23.45) compared with 

duni te cumulate which yields less MgAl204 spinel (from 1. 09 

to 9. 61 mol per cent) , 

(vi) Ti02 content in Cr-spinels is very low, (<0.20%) a 

feature typical for alpine-type peridotites and shows a 

smaller increase than expected towards higher stratigraphic 

levels of the ophiolite (Pallister and Hopson, 1981), 

8. 3 Secondary minerals 

Secondary minerals include the three serpentine minerals 

( lizardite, chrysotile and antigorite), magnetite, brucite 
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Table 8.4 : Electron microprobe analya .. lor 10rpentlne 
brucite and talc In m61ange auemblagea 

----······-·····---------·······-··-·······--· 
specimen 432-D 432-D 450-C 450-C 203-B 203-B 
serp.type L L L L L. L 
mean of 3 3 2 2 3 3 

rim cora rim core rim 
analyaia 1 2 3 4 5 8 

·----····---·······-···············----------· 
Na20 0.01 0.03 0.00 0.02 0.05 0.04 
MgO 39.54 40.02 40.10 39.32 38.65 38.81 
Al203 0.14 0.02 0.14 0.23 0.05 0 .11 
SlO 41.21 41 .70 40.72 42.25 43.36 44 .29 
K20 0.00 0.00 0.01 0.00 0.01 0.00 
CaO 0.01 0.01 0.03 0.04 0.02 0.02 
TiO 0.01 0.01 0.02 0.01 0 01 0.00 
Cr203 0.02 0.02 0.01 0.12 0.03 0 .03 
MnO 0.03 0.03 0.02 0.03 0.07 0.09 
Feo• 5.08 3.58 5.68 4.89 4.60 4.47 
NiO 0.33 0.30 0.17 0.14 0.14 0.23 
total 88.23 85.97 88.88 87.08 87.08 80.11 
H20+•• 13.n 14.03 13. 13 12.92 t2.94 1 t.89 

number of lona on tha baaia of 14 oxygen• 
Sl 3.810 3.852 3.752 3.852 3.1138 3.1184 
AI 0.000 0.000 0.000 0.028 0.004 o.ooe 
total 3.810 3.852 3.752 3.878 3.1140 3.1172 

Fe 0.148 0.274 0.436 0.389 0.248 0.332 
Cr 0.000 0.000 0 .000 0.008 0.000 0.000 
Mn 0.000 0.000 0 .000 0.000 0.108 0.004 
Mg 5.448 5.480 5.512 5.346 5.232 5.178 
Ca 0.000 0.000 0 .000 0.000 0.000 0.000 
total 5.598 5.754 5.948 5.723 5.588 5.5t4 

L • H:~:ardite 

• FeO at Fe total .. calculated by difference 
analyala 1-4 • lzardlte, meah texturu 
analyaia 5 • Uzardlte, banded growth texturea 
analytil 8-7 • tizardite, gamma melh texturu 

206 



T 1.4 c.ontinued 

------------····---------------~-------------~ e~c:lmen 203-B 188-C 181-C 450-C 1118-C 450-C 
eerp.ty~ l L L c c L 
mean of 3 2 2 3 3 3 

core rtm core 
analyela 7 I 8 10 11 12 

-------------···------------------··--·-···--· Na20 0.04 0.05 0.02 0.03 0.01 0.02 
MgO 31.35 40.54 38.75 40.17 41.04 38.75 
Al203 0.08 0.02 0.01 0.24 0.01 0.50 
SIO 44.23 42.51 41.20 44.n 42.81 42.08 
1<20 0.01 0.00 0.01 0.01 0.01 0.01 
CaO 0.01 0.02 0.02 0.01 0.00 0.03 
TIO 0.00 0.00 0.04 0.03 0.00 0.00 
Cr203 0.04 0.01 0.01 0.05 0.02 0.52 
MnO 0.12 0.05 0.11 0.01 0.04 0.03 
Feo• 4.53 1.95 2.31 2.47 1.68 4.03 
NiO 0.26 0.08 0.29 0.15 0.04 0.08 
total 87.71 8!5.20 83.74 87.~ 8!5.4!5 88.10 
•• 20+·· 12.29 14.81 18.27 12.08 14.!5!5 13.90 

number of Ions on the basil of 14 oxygen• 
Sl 3.978 nd nd 3.968 4.224 3.880 
AI 0.008 nd nd 0.022 0.000 0.048 
total 3.98e nd nd 3.880 4.224 3.908 

Fe 0.234 nd nd 0.184 0.134 o.3oe 
Cr 0.000 nd nd 0.000 0.000 0.038 
Mn 0 .030 nd nd 0.000 0.000 0.000 
Mg !5.142 nd nd !5.310 !5.512 !5.220 
Ca 0 .000 nd nd 0.000 0.000 0.000 
to tel 5.4oe nd nd 5.494 5.646 1.112 

L • bardlte 
C • chryaotlle 
• FeO at Fe total 
•• celcul~ted by difference 

analyaia 8-8 • lzardlte, hourgtan texture 
analyaia 10-11 • chryaotile, veined cro11fl brea 
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T 8.4 continued 

·········-----······-·····-·--··············· 
specimen 313 203-B 450-C 313 196-C 256-A 
aerp.type L A A B B T 
mean of 3 3 3 1 I I 
analyala 13 14 15 18 17 18 

------------·-·········---------·------------· Na20 0.03 0.01 0.00 O.OSI 0.00 0.00 
MgO 40.42 3SI.53 38.58 88.83 57.ee 30.88 
Al203 0.10 0.20 O.SI8 0.01 0.00 0.02 
SiO 41.43 45.73 44.62 3.68 8.ea 82.13 
1<20 0.01 0.01 0.00 0 .05 0.00 0 .00 
CeO 0.02 0.01 0.04 0 .02 0.00 0 .00 
TiO 0.00 0.01 0.01 0 .00 0.20 0 .00 
Cr20: 0.47 0.00 0.22 0 .00 0.00 0 04 
MnO 0.12 0.05 0.05 0.56 0.52 0 .00 
Feo• 1.12 2.85 3.40 3.05 1 O.SIO 1.84 
NiO 0.05 0.14 0.17 0 .08 0.10 0.06 
lotal 83.78 88.56 88.15 74.15 78.09 94.97 
H20+** 16.22 11 .44 11.85 25.85 23.91 5.03 

number of ion a on the baaia ol14 oxygen a lor at rpentlne, 
1 oxygen for brucite, 24 oxygen• for talc 

Si 3.428 4.026 3.984 0.033 0.245 8.084 
AI 0.008 0.018 0.102 0.000 0.000 0.000 
lolal 3.43e 4.044 4.088 

Fe 0.076 0.206 0.252 0.023 0 .083 0.128 
Cr 0.090 0.000 0.012 0.000 0.000 0.000 
Mn 0.004 0.012 0.000 0.004 0 .015 0.000 
Mg 4.988 5.188 5.120 0.904 0 . 7SIO 5.990 
Ca 0 .000 0.000 0.000 0.000 0.000 0.000 
total 1.031 1.081 1.on 
XMg 97.5 90.5 
X Fe 2.5 9.5 

L • Uzardite 
A • antigorite 
B • brucite 

T • talc 
• FeO •• Fe lotal .. calculated by difference 

analyaie 12-13 • fizardite, orthopyroxene baatltn 
analyaia 14-15 • antigorite, in1erpane1tatlng texturu 
analyaie 18 • brucite, fine grained in vein 
analyaia 17 • brucite, large gralna 
analyaia 18 • talc large grain e. veined 
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and talc. These minerals occur in subordinate amounts in 

harzburgite and pyroxenite and as the main phases in the 

assemblages of the tectonic melanges. 

8.3.1 Serpentine minerals 

Forty one microprobe analyses carried out on serpentine 

minerals are reported in Tables 8.4. and Appendix 9. Most of 

the analyzed serpentines are from the tectonic melange units 

(fragments and matrix), and a few are from serpentinized 

dunite of the transition zone. 

During hydration of peridotite, olivine is initially 

replaced commonly by lizardite with pseudomorphic textures 

(mesh, ~-mesh, hourglass or banded-growth). During 

recrystallization, the pseudomorphic textures are replaced 

by non-pseudomorphic textures such as interpenetrating 

(composed of antigorite) or interlocking (composed of 

antigorite ± lizardite) textures. The less common chrysotile 

has a fibrous habit and occurs in late veins associated with 

both lizardite and antigorite varieties. Similarly, 

pyroxenes are hydrated (to a lesser degree than olivine) to 

bastite, which most commonly is lizardite. 

The main chemical differences determined in serpentinite 

among various pseudomorphic varieties of lizardite and 

between lizardite an~ recrystallized antigorite or 
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chrysotile of the Coy Pond Complex are the silica, magnesia, 

water and iron contents: 

(i) Antigorite has a higher Si02 content (42.9J% to 

46.32%) than lizardite (40.02 to 43.61%) and slightly higher 

than chrysotile (42.34 to 45.41\). Pseudomorphic lizardite 

in hourglass textures (Si02 41.07 to 42.69\) and ~-mesh 

textures (44.01 to 44.48\) have chemical compositions 

intermediate between those of antigorite and pseudomorphic 

mesh textures. 

(ii) Antigorite has lower MgO contents relative to 

lizardite and chrysotile: 37.79% to 39.80\ compared to 

39.23% to 40.64% and 39.63% to 41.15 t respectively. Again, 

the recrystallized l-mesh textured lizardite has MgO close 

to antigorite values of 37.88\ to 38.89\. 

(iii) The water content (determined by difference) of 

antigorite is less than that of lizardite and chrysotile: 

9.99% to 13.64 % compared to 12.56% to 14.79 % and 12.62 to 

15.96 %, respectively. 

(iv) The iron content is higher in lizardite mesh textures 

(3.56% to 5.68%), than in lizardite hourglass textures 

(1.94% to 2.31%) and is lowest in antigorite 

interpenetrating textures (2.85\ to 3.40%). 

(v) In mesh textures, the iron content in mesh rims (4.48% 

to 5.98%) is higher than in mesh centers (2.32% to 4.98\). 
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(vi) Lizardite bastites show a relatively large variation 

in iron content (average from 1.12% to 4.03%). 

(vii) The iron content of chrysotile is the lowest amongst 

all serpentine minerals (1.55% to 2.52%). 

(viii) The average NiO values decrease from mesh-textured 

lizardite (0.25%) to antigorite (0.15%) and chrysotile 

(0.09%). 

(ix) The Al20 3 content, which is about 0.1% in dunite 

serpentinite (pyroxene free), increases to about 0 . 23% in 

serpentinite of harzburgitic origin; 

8.3.2 Brucite 

In the tectonic m6langes, brucite was found only in a few 

serpentinite fragments. Elsewhere it has been destabilized 

by widespread carbonatization. In two hopefully 

representative brucite analyses (Table 8.4), FeO content (as 

Fe total) varies widely from 3.05 to 10.90% yielding 

chemical formulae of Mg97.,,Fe2.5 (0Hh and Mq90_5,Fe9.5 (0Hh. 

Brucite is more common in serpentinized dunite within the 

tectonites, where it occurs in intergrowths with lizardite. 
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8.3.3 Talc 

Talc in association with magnesite is the product of 

carbonatization of serpentine and occurs widely in the 

tectonic m6langes (both fragments and matrix), and less 

commonly is formed during pyroxene alteration. 

For reasons unknown, all attempts to probe talc were 

unsuccessful, yielding unreasonably low oxide totals. For 

this reason only one chemical analysis of talc is listed in 

Table 8.4; it is from a coarse-grained vein. However all 

analyses have shown that talc is a ferroan variety with FeO 

between 1.5 and 2 weight %. 

8.3.4 Magnesite 

Magnesite is found chiefly in the tectonic m6langes, 

forming assemblages with lizardite, antigorite, talc, 

quartz, and in subordinate amounts with serpentinite in 

layered pyroxenite. 

A total of forty one microprobe analyses of magnesite in 

diverce assemblages have been carried out: eight magnesites 

associated with lizardite (three of them are schistose 

serpentinite), six with antigorite, ten with talc and 

seventeen are of magnesite associated with quartz. 

Almost all magnesite contains very tine inclusions of 
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serpentinite which could not be avoided during analyses. As 

a result, the measured Fe/Mg ratio of the magnesite must be 

corrected for inclusions of serpentine. The correction 

scheme adopted utilizes the Si02 content, which varies from 

more than 5\ in some analyses of magnesite coexisting with 

lizardite, to about 0.7\ in quartz-magnesite assemblages. 

After complete removal of the Si02 content, the excess iron 

(serpentine related) is also removed (Appendix 2.8 and Table 

A.S.l for details). The corrected microprobe analyses are 

listed in Table 8.6 and Appendices 10, 11 and 12. 

In Table 8.5 are presented average analyses of magnesite 

(in we1ght percent oxides) associated with lizardite, talc, 

antigorite and quartz. Measured values are given at the top 

of the table, corrected values are given at the bottom. 
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Table 8.5 

--------------------------------------
lizardite talc antigorite quartz 

measured oxide values 

Si02 2.73 0. 72 1. 73 0.68 

MgO 40.22 38.6 36.04 38.51 

cao 0.12 0.06 0.23 0.14 

FeO 1.11 7.79 12.26 5.51 

corrected and calculated values 

MgC03 97.6 89.7 83.4 92.4 

caco3 1.1 0.1 0.3 0.5 

FeC03 },.J 10.2 },6.4 7!0 

Table a.s Microprobe analyses of magnesite in association 

with lizardite, talc, antigorite and quartz. Measured values 

are given at the top, corrected values at the bottom. For 

details of the correction procedure, see Appendix 28. 

Sio2 (as silicate impurities) in magnesite (Table 8.5 and 

Table 8.6) is larger in serpentinite assembl~ges (in 

lizardite from 2.33 to 5.22%; in antigorite average 1.73\) 

than in talc (average 0.72%) or quartz-magnesite (average of 

0.68\) assemblages. An exception is pseudofibrous magnesite 
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Table 8.5 Elee!ton microprobe analyses lor magnesite 
In m61ange auemblagu 

·-·-······,········-----------·--··----------: apecimen 343-B 432-0 255-A 94-B 343-0 
rock type L L L L A A 
mean of 3 2 5 3 3 3 

2 3 4 5 

SI02 5.22 2.33 4.08 0.51 1.42 2.03 
MgO 39.54 41.8S 40.48 39.81 35.04 37.03 
CaO 0.03 0.08 0.04 0.26 0.27 0.18 
Feo• 1.38 0.98 1.21 0.115 14.27 10.25 
total 46.16 45.48 45.89 41.55 51.00 49.49 

Sl 0.102 0.035 0.075 0.010 0.021 0.030 
Mg 0.878 0.1151 0.1107 0.971 0.776 0.830 
c. 0.014 O.OUI 0.015 0.004 0.004 0.002 
Fe 0.020 0.012 0.017 0.015 o.1n 0.128 
total 1.102 1.035 1.075 1.010 0.978 1.014 

Mg•• 0.972 0.974 0.1173 0.982 0.808 0.861 
Ca 0.014 0.016 0.015 0.004 0.004 0.002 
Fe 0.014 0.010 0.012 0.014 0.190 0.137 
total t.OOO 1.000 1.000 1.000 1.000 1.000 

MgC03 97.2 97.4 117.3 98.2 80.8 86.1 
CaC03 1.4 1.8 1.5 0.4 0.4 0.2 
FeC03 1.4 1.0 1.2 1.4 19.0 13.7 

• FeO •• Fe total 
•• column of normalized mole fraction a aher removal of serpentine 

L • Uzardite 
A • antigorite 
analyala 1 ;2;4;5 • ma11lve fragments 
analyaia 3 • tQhlttOM matrix 
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Table 8 .8 continued 

-----····-······------------------···-···-···· apeclmen 177-0 270 252 
rock type A T-M T-M T-M T-M 
mean of 6 4 3 3 10 
analyala e 7 8 

Si02 1.73 0.11 0.80 1.24 0.72 
MgO 38.04 38.62 40.68 38.51 38.60 
CaO 0.23 0.03 0.00 0.15 0.06 
Feo• 12.26 8 .89 8.31 10.16 7.79 
total 50.25 45.65 47.80 48.06 47.17 

Sl 0.026 0 .001 0.012 0.019 0.0 11 
Mg 0.803 0 .908 0.910 0.847 0.888 
Ca 0.003 0 .000 0.000 0.002 0.001 
Fe 0.153 0 .311 0.078 0.1 31 0.173 
total 0.996 1.002 1.012 1.0111 1.011 

Mg•• 0.834 0 .908 0.921 0.882 0.897 
Ca 0.003 0.000 0.000 0.002 0.001 
Ft 0.164 0.091 0.079 0.136 0.102 
total 1.000 1.000 1.000 1.000 1.000 

MgC03 83.4 90.8 112.1 88.2 89.7 
CaCC3 0.3 0.0 o.o 0.2 0.1 
FeC03 16.4 11.1 7.9 13.~ 10.2 

• FeO aa Fe total 
•• column of normafized mole fraction• alter removal of aerpentine 

T-M • talc- magneaite 
analyala 6;8 • tchlatoae matrix 
analyala 7 • maaelve fragment 
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Tab!e 8.8 continued 
•••••••••••••••••••••••••••••••••••••••s•••••: 
apeclmen 
rock type 
mean ol 
analy•l• 

Sl02 
MgO 
CeO 
Feo• 
total 

Si 
Mg 
Ca 
Fe 
total 

Mg•• 
Ca 
Fe 
total 

MgC03 
CaC03 
FeC03 

342 
a-M 

9 
9 

1.07 
38.25 

0.17 
6.06 

45.57 

0 .017 
0.900 
0.002 
0 .079 
1.017 

0.917 
0.002 
0.080 
1.000 

91 .7 
0.2 
8.0 

• FeO at Fe total 

85-F 
Q-M 

5 
10 

0.34 
38.63 
0.08 
5.28 

44.33 

0.005 
0.923 
0.000 
0.070 
t .005 

0.928 
0.012 
0.059 
1.000 

92.8 
1.2 
u 

142-C 
0-M 

3 
11 

0.09 
3SI.08 

0.13 
4.26 

43.55 

0 .000 
0.940 
0.001 
0 .056 
1.001 

0 .941 
0.001 
0.056 
1 .000 

94.1 
0.1 
5.8 

C-M 
17 

0 .68 
38.51 

0.14 
5.51 

44.85 

0.010 
0.914 
0.001 
0.072 
1.011 

0.924 
0 .005 
0 .070 
1.000 

92.4 
0.5 
7.0 

•• column of renormallzed mole fraction a after removal of serpentine 
0-M • quartz-magneaite 
analysis 9;10"' maulve fragment• 
analysis 11 .. schietoae matrix 
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in schistose serpentinite which contains the smallest amount 

of serpentinite inclusions (specimen 255-B with o. 51% SiO! 

in Table 8.6). 

Because of variable amounts of siderite ( FeCOd in solid 

solution, the magnesite is a ferroan variety (bruennerite}. 

The amount of siderite solid solution in magnesite is 

depend~:r:t on the redox conditions and the resultant degree 

of reduction of coexisting magnetite. In an evolutionary 

path the siderite content in magnesite is as foll.,ws: 

magnesite in lizardite-magnesite assemblages is poorest in 

siderite [Mg.976 , Fe.013 ,Ca 011 (C03)); siderite contents are higher 

in talc-magnesite assemblages [Mg M97 , Fe 102 , Ca tKH (C03) , and reach 

a maximum in antigorite-magnesite assemblages 

[MgM3HFe 1~,Ca002 (C03 )), and decrease in quartz-magnesite 

The amount of the calcite compone:nt in magnesite is about 

1. 5% in pseudomorphic lizardite b\:t is negligible in all 

other rock types. 

Discrete dolomite grains have not been observed in 

serpentinites, but dolomite occurs locally as late veins 

associated with magnesite. Analysis of a single grain 

(Appendix 9) yielded the chemical formula 

(Mg.516 , Fe.033 , Cam) COp 
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8. 3. 5 Opaque phases 

opaque minerals, ubiquitous in all serpentinized 

peridotites, are represented mainly by magnetite which 

occurs in amounts less than 5% of the rock volume. SEM 

investigations have also shown the presence in brucite­

bearing serpentinite of trace amounts of awaruite {Fe,Ni 

alloy) and pentlandite {Fe,Ni) 9 58 , and in talc-magnesite the 

presence of pentlandi te and linnaeite {Co, Ni) 354 • 

8.3.6 conclusions 

{i) Secondary minerals, represented by lizardite ±brucite 

+ magnetite have replaced the original assemblages 

completely in dunite and partially in harzburgite. 

{ii) The iron originally present in olivine was 

redistributed during serpentinization, entering into solid 

solution in lizardite and brucite and also forming opaque 

phases such as magnetite, awaruite and pentlandite. 

(iii) The relatively low iron content in brucite may 

indicate a high temperature of serpentinization {Moody, 

1976). 

{ iv) The presence of trace amounts of awaruite (Ni3Fe) and 

pentlandi te (Fe, Nih58 in parageneses w.;_th brucite suggests a 
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reducing environment during serpentinization. 

(v) The ubiquitous presence of serpentine inclusions in 

magnesite associated with all assemblages (2.73% Si01 in 

lizardite-magnesite, 1.73% Si02 in antigorite-magnesite, 

0.72% Si02 in talc-magnesite and 0.68% Si02 in quartz­

magnesite) shows that carbonatization occurred rather slow 

and was incomplete. 

(vi) The carbonatization process, which produced talc­

magnesite (especially in matrix rocks) and quartz-magnesite, 

occurred by introduction of C02 and removal of HJO. 

(vii) Several authors have noted that carbonatization 

takes place under relatively oxdizing conditions compared to 

serpentinization (Ekstrand, 1975). Evidence presented in the 

next chapter is in accord with this interpretation. 

(viii) Recrystallization of lizardite to antigorite could 

be explained by a progressive metamorphic event (Evans, 

1976; Evans et al., 1977; Moody, 1977), but also by 

stabilization of F~· in the octahedral sheet, which 

stabilizes antigorite, a mechanism that is dependent on pH 

(O'Hanley and Oyar, in press). 
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Chapter 9 

PHASE EQUILIBRIA AND METAMORPHISM OF THE TECTONIC M!LANGE 

9.1 Introduction 

The presence of relict minerals (e.g. cr-spinel in the 

lower sections of the ophiolite) and the serpentine (± 

magnesite) mineralogy with relict pseudomorphic 

serpentinization textures demonstrates that both the western 

and eastern tectonic m6langes have an ultramafic origin. 

During shearing and low grade metamorphism, rocks of 

dunitic-harzburgitic composition were converted to a large 

variety of metamorphic assemblages cortaining not only 

serpentine minerals (lizardite, antigorite and chrysotile) 

but also brucite, magnesite, talc and quartz. 

Three low P-T metamorphic events can be distinguished 

which have profoundly affected the tectonic m6langes, but 

had only a limited effect on the rest of the ophiolitic 

complex. 

(1) The first event was the hydration of the peridotite, 

which resulted in pervasive and complete serpentinization of 

the dunitic-harzburgitic component of the tectonic m6langes, 

complete serpentinization of dunite in both the mantle 

tectonite and the pyroxenite, and partial serpentinization 

of the harzburgite tectonite. 

(2) The second event involved the partial carbonatization 

of serpentinite in the tectonic m6langes with both fragments 



and matrix being affected to some degree. Carbonatization 

was in part pervasive, in part related to fractures, and it 

affected the serpentinites very inhomogeneously. 

(3) The third major metamorphic event was the partial 

recrystallization of serpentine: pseudomorphic lizardite was 

locally replaced by non-pseudomorphic antigorite (± 

lizardite). 

These th~ee metamorphic events are discussed in more 

detail below, utilizing petrogr~chic evidence and relevant 

petrologic information from the literature. 

9.2 Serpentinization of peridotite 

Serpentinization of peridotite resulted in the formation 

of lizardite-bearing assemblages from olivine. It took place 

as a result of pervasive hydration of the parental 

ultramafic assemblage (olivine ± pyroxene) both within the 

tectonic m6langes and elsewhere in the ophiolite. Two 

pseudomorphic mineral assemblages developed: (i) lizardite + 

brucite, which is the main assemblage in serpentinized 

dunite within the tectonite, but is rare (relics) in m~lange 

fragments; and (ii) a secondary assemblage, lizardite ± 

magnesite, which is widespread in the tectonic melanges (in 

both fragments and matrix), but does not occur in the 

peridotite tectonites. 
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Before discussing possible reactions applicable to the Coy 

Pond Complex, two observations are pertinent. Firstly, the 

rate of serpentinization of minerals in peridotite is 

olivine > orthopyroxene > clinopyroxene {Coleman 1971) , the 

rates being controlled by diffusion and being geologically 

fast (Martin and Fyfe 1970). Secondly, the presence of iron­

bearing olivine {Moody 1976) lowers the reaction temperature 

and increases the rate at which serpentinization takes 

place. 

Temperature of serpentiniz~tion is dependent upon the 

serpentine mineral species produced. There are few 

experimental and no thermodynamic data on lizardite, the 

species formed initially {from petrographic evidence) in the 

Coy Pond serpentinites. O'Hanley et al . {1989) has recently 

produced some information on Al-rich lizardite, but this is 

not very relevant to the Al-free lizardite in this study. 

The temperature of lizardite formation is therefore only 

broadly constrained in this study by the data for 

antigorite, computed by Berman (1988) to be less than 380°C 

at 2 kbars (Fig 9.1). 

In the absence of petrographic observations that indicate 

specific reaction paths, the serpentine-bearing mineral 

assemblages noted above could in principle have been 

generated by any of the following idealized serpentinization 

reactions: 
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Figure 9.1 Equilibria In the system Mg0-SI02·H20·C02 

computed for a(H20) = 1. After Berman (1988). 

Abbreviations: Fo=forsterlte; Tc=talc; Br=bruclte; 

Atg =antigorite; Chr =chrysotlle; W =water; 
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( 1) 

forsterite serpentine brucite 

forsterite antig/chrys magnesite 

( 3) 

forsterite enstatite serpentine 

For olivines of the composition occurring in the Coy Pond 

Complex, and noting the presence of abundant magnetite in 

the product assemblage, reaction (1) would be modified to: 

3 0 (Mg09 , Fe01 bSiO_. + 41 H20 

olivine 

15 Mg3Si205 (OH) 4 + 

serpentine 

brucite magnetite 

(lA) 

As written, this reaction ignores the measured small amounts 

of iron present in both serpentine and brucite. Of 

particular importance is the partial reaction: 

(lB) 
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which implies that the oxygen required to produce magnetite 

was derived from the decomposition of water (~0 = 1/202 + 

H2). This reaction enriches the fluid phase in H~, generating 

a strongly reducing environment which is characteristic of 

serpentinization reactions (Thayer 1966; 1977; Barnes and 

O'Neil 1969; Frost 1985; Abrajano et al., 1988; Stevens, 

1992). Petrographic observations, SEM and microprobe data 

(not listed) on minor phases occurring in brucite-bearing 

serpentinite in the Coy Pond Complex, have confirmed the 

existence of minerals such as awaruite (NiJFe) and 

pentlandite (Fe,Ni) 9S1 indicative of an environment of very 

low oxygen fugacity at this time. 

Reaction (2) has been modelled in the MgO-Si~-Hp-co2 

system and occurs at extremely small values of XC02 (< 0.5 

mole percent) for reasonable estimates of P and T (Greenwood 

1967; Johannes, 1969) as shown in Figure 9.2. Reaction (J) 

represents serpentinization of a harzburgitic rock (Martin 

and Fyfe, 1970). 

Several lines of observation lead us to conclude that 

serpentinization in the Coy Pond Complex took place through 

reactions (1) and (J), but not through reaction (2). 

(i) The presence in dunite tectonites of only lizardite ± 

brucite assemblages. 

(ii) Where mesh-textured lizardite occurs with magnesite, 
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Fig 9.2 (a). Phase diagram showing the Isobaric 

equilibrium curves In the model system 

Mg0-SI02-H20-C02 calculated from thermody­

namic data. After Berman (1988). Reactions: 

1: Atg=4Tc+18Fo+27H20; 2: Atg+45C02= 

=17Tc+45Mst+45H20; 3: Mst+Qtz=En+C02; 

1.0 

4: Mst+Tc=4En+H20+C02; 5: Tc=3En+Qtz+H20; 

6: Antho+9Mst=8Fo+H20+9C02; 7: En+2Mst= 

=2Fo+2C02. Abbreviations as In Fig 9.1; 

Mst =magnesite; Qtz =quartz; Anth =anthophyllite; 

En= enstatite. 

227 



500 

450 

Ql 

~ 400 .. 
ltl 
~ 

Ql 

c. 
E 
Ql 

1-

350 

300 

18Fo+4Tc+21W 

A 

4 

P = 2 kbar 

0.05 0.1 0.15 0.2 

X (C02) 

Fig 9.2.8: Diagram representing the water rich part of Fig 9.2.A 

Abbreviations and reactions number as In text and In 

Flg.9.1.A; 2: 34Fo+31W+20C02=A+20Ms; 4: Br+C02=Mst+W; 
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the latter phase commonly also preserves details of the mesh 

texture implying that magnesite formed later, pseudomorphing 

lizardite. 

(iii) Magnesite grains associated with lizardite always 

contain abundant minute lizardite inclusio~s, indicating 

that lizardite was replaced by magnesite. 

(iv) Brucite is known to be a very common phase during the 

early phases of serpentinization of dunite and high-olivine 

peridotite (Hostetler et al., 1966, Wicks and Whittaker, 

1977). In the Coy Pond Complex, brucite is very common in 

serpentinized dunite, but occurs only rarely in dunite 

fragments in the tectonic melanges, where it is a relict 

phase. It is therefore inferred that carbonatization 

reactions in the tectonic melanges destabilized pre-existing 

brucite, implying that the formation of the brucite­

serpentinite assemblage predated carbonatization. 

The P-T coordinates of reaction (1) in the model MgO-Si02-

H10 system have been determined experimentally for pure 

forsterite as the reactant and chrysotile as the serpentine 

product by Johannes (1968), and Moody (1976) repeated the 

experiments for iron-bearing olivine (Fo93). These 

experimental investigations on reaction (1) with chrysotile 

as the product have shown that serpentinization ln the 

presence of pure water can occur below 380°C (Johannes, 
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1968), or 365°C (Moody, 1976 for Fo93) at 2 kbars, results 

that are generally concordant wit~ phase equilibria computed 

by Berman (1988) for chrysotile and antigorite (Fig 9.1). 

The reaction is not very pre~sure sensitive (it takes place 

at 500°C at 15 kbars) and so can occur at considerable depth 

if water is available (Coleman and Keit~ 1971). Taking into 

account that natural brucite can accommodate a large amount 

of ferrous iron, (between 6 and 72 mole percent Fe(OH)~ or 

15 mole percent on average (Hostetler et al., 1966), and 

following the conclusion of Moody (1976) that the iron 

content of brucite is inversely related to the temperature 

of serpentinization, it may be tentatively concluded from 

the low iron contents of two relict brucites in m~lange 

fragments of the Coy Pond Complex [Mg97_5 , Fe2.s (OH) 2 and 

Mg90_5 , Fe9J (OH) 2], that the temperature of serpentinization was 

probably elevated, close to its upper limit. 

There are many estimates of the temperature of 

serpentinization in the geologic literature. Coleman (1966; 

1967) concluded that serpentinization occurred at 

temperatures as low as 240°C and Bonatti (1983) proposed 

temperatures <250°C. Temperature estimates obtained using 

the serpentine-magnetite geothermometer (Wenner and Taylor, 

1969; 1972) suggest that setpentinization occurs at lower 

temperature for continental lizardite (about 85-115°C), than 
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for oceanic liz.;;rdite {about 130-185°C). 

9. 3 Carbonatization of the serpentinite 

carbonatization characterizes the second metamorphic 

event, which started when C02 became available, most likely 

during the obduction of the ophiolitic slab onto the 

continental margin (see Chapter 11). Carbonatization 

affected only serpentinite assemblages in the tectonic 

melanges and in the adjoining pyroxenite, but serpentinized 

dunite within harzburgite tectonites is unaffected. 

Serpentinite lenses (former dunite) in layered pyroxenite 

are carbonatized only locally and to a lesser degree than 

serpentinite in the tectonic melanges. From examination of 

mineral assemblages, several carbonatization reactions are 

inferred to have occurred in the tectonic melanges. 

Brucite is virtually absent from the tectonic melanges, 

which in contrast contain abundant magnesite. In Figure 9.2, 

it can be seen that at a given P and T a higher XH20 is 

required to stabilize brucite than serpentine, so brucite is 

the first candidate to react as XC02 increases in the fluid. 

The formation of magnesite from brucite occurs at extremely 

low values of XC02 (< 0.5 mol% C02 at P = 2 kbar (Johannes, 

1967) according to reaction: 
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( 4) 

Based on the location of reaction ( 4) on the T-XCO~ plane, 

brucite likely decomposed at the first appearance of C02 in 

fluids passing through the tectonic melanges. The widespread 

presence of the assemblage lizardite + brucite in dunite 

tectonite and its absence in the tectonic melange (which is 

situated on the fringe of the tectonite unit), is explained 

by several arguments. 

(i) The serpentinization process in general and the 

production of brucite in particular produces a large 

increase in volume (up to 40%, Hostetler et al. 1966), which 

in the case of dunite at the base of the transition zone of 

the Coy Pond Complex, apparently resulted in intense 

fracturing (see Fig 11.1) which was a precursor to the 

formation of the fragments in the future melange. 

( ii) On the other hand, in the tectonic melanges, which by 

definition are extensively sheared, fluid ingress was 

possible and most brucite was destabilized by the co1-

bearing fluids. Local occurrences over a small distance of 

"incompatible" minerals such as brucite and magnesite may 

indicate that the rate of diffusion of fluids, rather than 

availability of fluids, was locally the rate-limiting factor 

at the reaction site. 
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(iii) The occurrence in the tectonic melanges, of 

predominantly serpentine in the melange fragments and 

magnesite in the matrix can be explained in terms of 

variable infiltration and buffering potential. It is 

inferred that infiltration of C02 bearing fluid in the 

matrix of the melanges resulted in the formation of 

magnesite bearing assemblages, whereas rock-dominated 

processes occrred in the less permeable fragments and 

consequently serpentine remained stable. 

Following the destruction of brucite, the C02 

concentration of the fluid could increase until it reached 

the equilibrium curve for the stability of serpentine in the 

presence of c~ (Fig 9.2.8). The idealized reaction is : 

serpentine + C02 = talc + magnesite + H20 (5) 

However in the presence of magnetite, a second reaction also 

occurs: 

Fe304 + 3C02 = 3FeC03 + 1/202 ( 5A) 

magnetite siderite 

leading to the combined reaction: 
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2Mg3Si20s(OH)J + Fep~ + 3C02 = Mg3SiJ010 (0Hh + (58) 

+ 3(Mg,Fe)C03 + 3H10 + 20, 

(ignoring the small amounts of Fe+2 in serpentine and talc). 

The change of oxidation state of iron from Fe-'+ to Fe2t 

releases some oxygen into the fluid simultaneously with the 

formation of siderite, the latter forming a solid solution 

with magnesite (breunnerite). Also present in talc-magnesite 

assemblages are pentlandite (Fe,Ni) 9 S8 and linnaeite 

(Co,Ni) 3S4 , which reflect an environment with generally low 

f02 values but higher than that of the serpentinization 

environment (Eckstrand, 1975). 

At 2 kbars (Fig 9.2 B), the equilibrium C02 content of the 

fluid for the serpentine breakdown (reaction (5)) is about 

0.5 mole percent at temperature of 350°C and about 1 mole 

percent at about 450°C. 

The formation of quartz and magnesite from talc may have 

occurred either as a result of a decrease in temperature 

(and) or due to an increase in the mole fraction of C02 in 

the fluid (Fig 9.2). In either case, talc became Ynstable 

and was replaced by quartz and magnesite, according to 

reaction (6): 
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Mg3Si4010 (0H) 2 + 3C02 = 3MgCOl + 4Si02 + H20 (6) 

talc magnesite quartz 

(Greenwood, 1967) 

As can be seen in Figure 9.2, at 2 kbar fluid pressure 

reaction (6) at 3 mole percent C02occurru at 350°C, and at 

about 30 mole percent it occurres at about 400°C. 

9.4 Recrystallization of serpentine 

During serpentinite metamorphism, above about 200°C, 

chrysotile (or lizardite) react with talc to yield 

antigorite or, at about 300°C they react on their own to 

produce antigorite+ brucite (Evans et al. 1976, Evans 1977, 

and Fig 9.1). 

It is widely accepted (Evans et al. 1976, Wicks and 

Whittaker 1977, Moody 1977, caruso and Chernosky 1979, 

O'Hanley et al. 1989) that antigorite is a product of 

prograde metamorphism (primarily due to temperature 

increase, and to a lesser extent to pressure increase), 

which develops as non-pseudomorphic replacement of lizardite 

and chrysotile. 

In the western tectonic m6langes, about 75% o~ the 

serpentinite fragments are composed of non-pseudomorphic 
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(interpenetrating or less commonly interlocking textured) 

antigorite ± recrystallized lizardite. The frequent 

coexistence in same thin sections of recrystallized 

antigorite ± lizardite with the original mesh-textured 

lizardite is very difficult to explain if antigorite was 

formed as a product of progressive metamorphism. Several 

observations suggest that the assumption of progressive 

metamorphism for the formation of the antigorite is not 

correct. 

(i) In the western tectonic melange, serpentinites still 

containing relict lizardite are not confined to specific 

areas, but on the contrary are widespread without any 

discernible pattern. Taking into consideration the rather 

small thickness of the melange (about 1 km), it is hard to 

imagine large P-T variations during the prograde 

metamorphism on a such small scale. 

(ii) Petrographic details (Figure 6.17) show antigorite 

coexisting with undisturbed mesh-textured lizardite on a 

microscopic scale; the antigorite-lizardite boundary is 

commonly sharp, with only a few mm of lizardite-antigorite 

mixture separating the two zones. Again, this is hard to 

explain by T or P induced recrystallization unless there is 

extensive metastability. 

(iii) The sheared serpentinite matrix, which displays the 

highest strain among all tectonic melange assemblages, is 
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composed almost entirely of lizardite, and thus does not 

support the concept of antigorite produ~tion during shearing 

conditions (Francis 1956) or even simple lithostatic 

pressure (t~;oody 1976). 

It is concluded that the observations do not fit an origin 

of antigorite by progressive metamorphism and that another 

explanation must be sought. In a recent Mossbauer 

investigation of the Fe1
• distribution between oct~~edral 

and tetrahedral sites of serpent~~e minerals, O'Hanley and 

Dyar (in press) enumerated several observations which ~re 

relevant to the assemblage at Coy Pond. 

(i) Serpentine recrystallization (via solid-solid 

reaction) can be an H20-conservative, heat-consuming 

reaction (where lizardite mesh texture recrystallizes to 

lizardite hourglass or lizardite ± chrysotile ± antigorite 

interlocking texture), or can be caused by infiltration 

metasomatism in which silica was added, stabilizing 

antigorite at the expense of lizardite according to the 

reactions: 

lizardite = chrysotile 

or: lizardite + 0.11 Si02 aq.,. antigorite +0.07 H20 

or: lizardite + C~ = antigorite + magnesite + H20 

In the coy Pond tectonic m6langes, co2-rich solutions 

responsible for carbonatization could also have been silica-
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rich. Silica could have originated in the underlying 

metasediments and have been mobilized during the regional 

metamorphism, or could have been released during partial 

serpentinization of pyroxene in harzburgite and pyroxenite, 

a process which most likely occurred after olivine was 

completely serpentinized. 

(ii) O'Hanley and Oyar (1992) also suggested that oxygen 

fugacity, which played an important role during 

serpentinization, loses some of its importance during 

recrystallization in favour of pH, which controls the 

F~·/Fe2 • ratio in the octahedral sites in the serpentine 

polymorphs. High pH stabilizes high Fe3•, and consequently 

enhances the stability of lizardite. 

Petrographic details such as the coexistence of lizardite­

antigorite coexistence on a small scale and the sharp 

boundaries between these two minerals are much more easily 

explained by the presence of a low pH front causing 

stabilization of antigorite and recrystallization of 

lizardite, rather than a pressure-temperature related 

recrystallization. 

Using the serpentine-magnetite geothermometer of Wenner 

and Taylor (1969), O'Hanley and oyar (1992) determined 

temperatures between 350 and 220°C for the serpentine 

recrystallization process, and mentioned that during the 
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process temperature was dropping. These determinations are 

in reasonable agreement with the relatively high 

temperatures (>300°C) proposed for contemporaneous 

carbonatization reactions based on the idealized equilibrium 

phase diagram (Berman 1988) . 

9.5 Conclusions 

(i) Dunites at the base of the Coy Pond Complex (in the 

harzburgite and also in the transition zone) were initially 

pervasively serpentinized to the assemblage lizardite + 

brucite. 

(ii) The waters involved in serpentinization were C02-

poor, most likely ocean waters. 

(iii) Based on information in the geologic literature, 

temperature below 250°C is inferred for the serpentinization 

event. 

(iv) The restriction of carbonatization mainly to the 

tectonic melange assemblages demonstrates that C02-bearing 

fluids were present after serpentinization ended, during and 

after the formation of the tectonic melanges, and that the 

tectonic melanges were more permeable that the rest of the 

ophiolite. 

(v) The first formation of magnesite in the tectonic 
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melanges occurred when brucite was destabilized in the 

presence of col-bearing fluids at xco2 > 0.005 at 2 kbar 

(Fig 9.2; Johannes 1969). 

(vi) The formation of talc-magnesite from serpentinite in 

the presence of C01-rich fluids (at 2 kbar fluid pressure) 

could have occurred at temperatures above 350°C if xco2 > 

0.005, or at temperatures< 350°C if xco2 < o.oos (Fig 9.2). 

(vii) Partial recrystallization of lizardite to 

antigorite was chemically driven, probably by lowering of 

the pH which stabilized antigorite [the cause of the low(er) 

pH is not known]. Based on the carbon isotopic composition 

to be presented in Chapter 10, it is concluded that the 

serpentine recrystallization process occurred late, after 

the talc-magnesite assemblages formed, at temperatures 

between 200 and 350°C. 

(viii) Formation of quartz-magnesite in the tectonic 

melanges occurred by the action of co1-rich fluids on 

serpentinite and talc-magnesite. To produce quartz-magnesite 

at temperatures> 350°C (at 2 kbar), the fluid would have to 

have had XC01 > 0.03; at temperatures < 350°C the fluid would 

have to have had XC01 < 0.03. From the available evidence, 

quartz-magnesite could have formed at any temperature below 

450°C (Fig 9.2), and petrographic or isotopic information do 

not provide any temperature constraints other than that 
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assemblage formed last, at the end of carbonatization 

process. 

(ix) Quartz-magnesite specimens (especially those in the 

western tectonic m~lange) containing between 5 and 20 % 

quartz demonstrate that at least in its latest stages 

carbonatization was metasomatic and large amounts of Si02 

were removed in solution. 
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Chapter 10 

carbon isotope qeoch .. iatry of maqneaite 

in the tectonic m6lanqes 

10.1 Purpose and theoretical considerations 

Carbon and oxygen isotopic analyses were employed in this 

study in order to: (1) assess the sources of oxygen and 

carbon in the fluids that contributed to the carbonatization 

process and (2) place constraints on the tectonic setting of 

the ophiolite during the different stages of metamorphism. 

The majority of analyses were of magnesite, but a few 

samples of graphite, dolomite, calcite, aragonite and 

hydromagnesite were also analyzed. 

The isotopic composition of oxygen and carbon in a mineral 

is a function of temperature and the isotopic composition of 

the fluid from which it formed. If the temperature of 

formation can be determined either by isotopic thermometers 

or by other means, the oxygen isotopic composition of fluids 

can be calculated . O'Neil (1977) determined empirically that 

oxygP.n isotope fractionation factors between minerals and 

water vary according to the relationship: 

( 1) 



where a is the fractionation factor (equilibrium constant) 

between the mineral and water in units of per mil, T is the 

absolute temperature, and A and B are consta~ts. 

For kinetic reasons, the fractionation factors for the 

magnesite-~ater system have not been determined 

experimentally. An attempt to resolve this problem was made 

by Aharon (1988). Due to the fact that the per mil 

fractionation factors for alkali-earth carbonates are 

inversely related to the ionic radius of the cation 

(Golyshev et al., 1981), he proposed that fractionation 

factors for magnesite can be extrapolated from the known 

fractionation factors for other alkali earths (Fig 10.1). 

The oxygen isotope fractionation factor hatween magnesite 

and water has been determined by Aharon (1988) in this way 

to be: 

This result {plotted in Fig 10.2) is in good agreement with 

two experimentally determined oxygen isotope fractionation 

factors between hydromagnesite and water measured at oo and 

25°C by O'Neil and Barnes (1971) which also are plotted on 

Fig 10.2. The effect of crystal structure on the 

fractionation factors must also be considered, as magnesite 
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Piq 10.1 The variation of the equilibrium fractionation 
factor (a) with ionic radius of alk3li-earth carbonates at 
temperatures from 100 to 400°C (data from O'Neil et al., 
1969; Whittaker and Muntus, 1970). Maqnesite-water 
fractionation factors for this study were obtained by 
extrapolation of the data points to the Mq endmember (after 
Aharon 1988). 

Piq 10.2 Isotopic fractionation curve for magnesite-water, 
constructed from Fiq 10.1. Note the close agreement with 
hydromagnesite-water traction3tion factors (stars) from 
O'Neil and Barnes (1971). 
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is trigonal and BaCOJ and SrCOJ are both orthorhombic. 

However the 180 per mil fractionation between aragonite and 

calcite at 25°C is 0.5-0.7 (Tarutani et al., 1969; Golyshev 

et al., 1981), which are rather small values that become 

even less at higher temperatures. This suggests that the 

extrapolation of the fractionation factors for magnesite are 

not critically dependent on the crystal systems. 



Table 10.1 Fractionation factors between alkali-earth 

carbonates and water at various temperatures (O'Neil et al. , 

1969; ionic radii ar a from Whittaker and Muntus, 1970) . Data 

for hydromagnesite (asterisks) at 0 and 25°C are from O'Neil 

and Barnes (1971), and are plotted on Fig 10.2. 

====~==========================~==:E:::====================~ 

Temperature Mg sr Ba 

0.80 J.. 1. 08 J.. 1.33 J.. 1. 50 J.. 

============================================================ 
0 37.8* 

25 31. 7* 

100 17.09 16.09 14.24 

150 12.65 11.79 10.13 

200 9.54 8.78 7. 26 

250 7.27 6.59 5.17 

300 5.58 4.95 3.60 

350 4.27 3.69 2.39 

400 3. 2:2 ~.70 lz~4 



10.2 Carbonate and graphite-bearing lithologies 

Magnesite is by far the most abundant carbonate species in 

the Coy Pond melange, but hydromagnesite [Mg(OH)!(COJhl I 

calcite and dolomite also occur locally . Aragonite occurs in 

several outcrops in sheared serpentinized harzburgite, but 

not in the tectonic melanges. Calcite occurs commonly 

outside the tectonic melanges, in rodingitized pyroxenite 

and in gabbro and basalt in the upper levels of the 

ophiolite. 

As discussed in detail in Chapter 6, magnesite occurs as a 

stable phase in assemblages with lizardite, talc, antigorite 

and quartz in both fragments and matrix of the tectonic 

melanges. These assemblages formed as a resu l t of different 

metamorphic reactions (chapter 9) that occurred under 

different temperat•Jre and/or XC02 conditions. In order to 

investigate the sources of C02 in the different 

carbonatization reactions, magnesite was separated from each 

of the assemblages noted above, and analyzed to determine 

its 0 and c isotopic composition. Microstructural details of 

the magnesite (cryptocrystalline or spathic) in the main 

assemblages are given in Table 10 . 2. 

Minor amounts of other carbonates occur locally in the 

tectonic melanges and in other units of the ophiolite, as 
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previously stated. However these are not products of 

carbonatization sensu stricto (i.e. produced by the action 

of co2-bearing fluids on ultramafic silicate assemblages) 

but are seafloor or late alteration products. 

Isotopic measurements were made on a total of twenty-nine 

magnesite-bearing samples. Fourteen were from serpentinite 

(five from lizardite, four from antigorite and five from 

lizardite-antigorite mixtures), nine from talc-rich 

assemblages and six from quartz-rich assemblages. 

To facilitate comparison of the results from the Coy Pond 

Complex with other isotopic studies of seafloor altered 

basalts and ophiolites, the isotopic compositions of 

thirteP.n samples of carbonates other than magnesite were 

also measured. These samples were: three graphitic 

metasedimentary blocks, seven calcite-bearing samples (three 

from gabbro, two from rodingite, one from a blackwall rock 

in the eastern tectonic melange and one from a 

metasedimentary block in the eastern tectonic m6lange), and 

one aragonite-bearing sample (in harzburgite), one dolomite­

bearing sample (vein in antigorite fragment in the western 

tectonic m6lange) and a hydromagnesite-bearing sample (crust 

and vein in a brucite-bearing lizardite fragment in the 

western tectonic m6lange) • 
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10.3 Previous isotopic studies of magnesite 

Magnesite occurrences in nature have been grouped into 

four major categories by Pohl and Siegl (1986): 

(i) strata-bound massive, crystalline magnesite commonly 

associated with Proterozoic and Palaeozoic sedimentary 

deposits; 

(ii) cryptocrystalline magnesite associated with 

ultramafic rocks, mostly serpentinite; 

(iii' fine-grained magnesite associated with modern 

hypersaline environments; 

(iv) magnesite associated with lacustrine environments. 

The isotopic composition of magnesite was measured for the 

first time by Perry and Tan (1972) on early Precambrian 

(sedimentary or metasomatic origin) massive crystalline 

magnesite from South Africa. Based on c5 13C (between -1.0 

and -9.6) and 6180 (maximum 28.8) values of magnesite and 

other carbonate~ (calcite, dolomite and siderite), the 

authors remarked that "the extremely limited isotope 

exchange between vein carbonate and matrix suggests that 

magnesite may be an unusually suitable mineral for the 

preservation of primary ratios". 

Strata-bound magnesites from the Lower Proterozoic Rum 

Jungle Uranium Field, Australia, yielded c5 13C and 6uo values 

o~ 1.0 to 5.8 and 11.2 to 14.6, respectively (Aharon, 1988). 
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These were interpreted to have formed at 100-200°C from an 

epigenetic-metasomatic replacement of dolomite by magnesite 

due to interaction with Mg-rich basinal fluids. 

The isotopic composition of magnesite associated with 

serpentinite was first reported by Barnes et al. (1973) who 

studied the Red Mountain Deposit, California. Magnesite 

there has 613C and 6110 values from -11.4 to -14.1 and 27.7 to 

28.2 respectively, which were similar to nearby 

hydromagnesite weathering crusts (O'Neil and Barnes, 1971), 

suggesting that it formed at about 10°C from locally derived 

meteoric waters that mixed with some metamorphic C02 • 

Strata-bound magnesite deposits associated with ophiolitic 

serpentinite in the Dinarides have 6 1~ values between -15 

and 5 and 6110 values between 24 to 36 (Fallick et al. 1991). 

These were interpreted to have formed from C02 produced 

during decarboxilation of organic material (613C < -10) that 

mixed with carbonated meteoric waters ( 613c > -10) at 

temperatures between 20 and 105°C. 

carbon and oxygen isotopic compositions of magnesite 

associated with serpentinite in Western Tauern, Austria 

(Schoell et al., 1975) show a very narrow range of 613c and 

6 1'0 values from -3.7 to -4.1 and 7.8 to 8.6, respectively. 

These isotopic compositions are identical to those of 

carbonate in the metamorphic country rocks, leading the 
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authors to conclude that all of the carbonates formed at 

high temperatures (between 450 and 600°C) from metamorphic 

fluids. 

In two recent studies of carbonate metasomatism in the 

Archean Abitibi greenstone belt (Ontario), several isotopic 

compositions of magnesite are presented. At the asbestos 

Munro mine (Schandl and Wicks 1991), magnesite in 

serpentinite formed from evolved meteoric water at 250°C 

(fluid-inclusion data) and has a narrow range 6180 and cS''c 

values (11.72 to 16.47 and -7.54 to -7.88 respectively). The 

carbon is considered to be organic in origin. Magnesite from 

the Slade-Forbes asbestos deposit has 6180 values from 10.1 

to 14.1 and cS 13c values from -0.7 to -4.7 suggesting sea 

water as a possible source (Schar.dl and Naldrett 1992). 

In general, studies concerning the isotopic composition of 

magnesite are few in number and suggest that magnesite can 

form over a wide range of temperatures from meteoric, 

basinal or metamorphic fluids. Furthermore, the work of 

Perry and Tan (1972) suggests that magnesite is resistant to 

isotopic resetting, and so might retain a considerable 

memory of the fluid-dominated metamorphic event in which it 

formed. In the case of the Coy Pond tectonic m6langes, with 

petrographic evidence of four distinct magnesite-bearing 

assemblages, the aim was to fingerprint each metamorphic 
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event. As the results below indicate, this was indeed 

possible, and the isotopic compositions of magnesite produce 

a very specific array compared to the previous studies cited 

above. 

10.4 Analytical techniques 

For all of the specimens involved in this isotopic 

investigation, the serpentine minerals and other silicate 

phases were first identified by petrographic and microprobe 

methods, and subsequently characterized by XRD analysis. 

Most samples contained fine-grained cryptocrystalline 

magnesite and therefore whole-rock powders were used for 

isotopic analysis; however spathic magnesite from several 

coarser grained samples was hand-picked from the 75-100 

micron size fraction. 

All samples reported in this study were reacted with 

anhydrous phosphoric acid (McCrea, 1950) in sealed pyrex 

tubes for 72 hours at 100°C which produced a 100\ yield of 

C01 gas. During evacuation of the sample tube, the acid was 

isolated in a smaller pyrex tube contained inside the larger 

sample tube . 

Seven repeat analyses of an internal magnesite standard 

(specimen 142-C), reacted between 72 and 156 hours, yielded 
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a sue value of -11.1 ± 0.1 and c5uo value of 13.4 ± o.3. 

Calcite and aragonite in this study were reacted at 2s•c for 

24 hours, dolomite and hydromagnesite at 25°C for 48 hours. 

Graphitic samples were pre-treated with HCl to remove 

carbonate, then mixed with a ten times excess of cuo, and 

combusted at 900°C to produce C02 gas for isotopic analysis. 

Isotopic measurements were made on a MAT 252 mass 

spectrometer in the Department of Earth Sciences, Memorial 

University and are reported using the conventional 6 

notation in units of per mil relative to SMOW for oxygen and 

PDB for carbon (Craig, 1957). The stable isotope facility at 

Memorial University reports a &13C value of 1.99 and a s••o 

value of 28.60 for the NBS-19 carbonate standard, and 6 13C 

values of -28.30 for NBS-21 graphite. The oxygen isotope 

fractionation factor between magnesite and that of the acid­

extracted C02, at 100°C was 1.00929 (Rosenbaum and Sheppard, 

1986). 

10.5 Results, interpretation and discussion 

Isotopic composition of analysed samples are given in 

Tables 10.2 and 10.3, together with information on the 

microstructural setting of the magnesite (Table 10.2). 

Magnesite from different lithologies in the tectonic 
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Table 10.2: laoloplc compCMillofta and mlcr0811Uctu1111 dataKa ol 
magna .. • in clifl•ant a-mblagea trom the 

Coy Pond taclOftiO m"-ngaa 

··························-························· 
Sample 

no . 
di:S 
PO& 

d110 
SMOW 

Oaacripllon ol magnaaita 
and hoa& rock ...•................................................ 

250-C 
252-A 
255-A 
432-E 
343-8 

351 
350 
251-A 
450-C 
250-A 

~-a 
343-0 
1110-C 
337-A 

272 
270 
372 
432-A 
378 
450-A 
252-0 
343-C• 
tn-o• 

-4.2 
-7.8 
-8.0 
-1.1 
-8.11 

13.8 
13.8 
14.2 
15.2 
15.0 

rock. .... 

10,., Ma(et); l mellh tuture 
5-10,., lb(et)paaudollbroua;achlltoael matrix 
10,., Ma(cr) paaudollbtoua; achilloaa l malrlx 
15,., Ma(et); l mellh tutura 
25,., Ma(et); l mellh tutura 

···-······-··· llurdlle- anllgOflleroclc. .•• _ .• 

-5.4 
-8.7 
-8.1 
-a. a 
-11.1 

-10.8 
-12.0 
-12.0 
-13.11 

l:t.:l 
13.4 
14.2 
14.3 
13.11 

25,., MI(CI): racryllallzad L +A 
~ Ma(et); racryalallzad L+A 
~ Ma(cr> ap):L• mallh:A• intarpanlltatlng 
1~ Ma(CI);recryalllzad L+A 
40,., Ma(cr>ap);l+A lnterpanllt.+ln*'«M:klng 

antlgorh rock .. 

12.5 
15.5 
17.2 
14.2 

1~ Ma(ap>c:r); A•lnterpanatratlng texture 
4~ lh(cr• ap); A•interpanatratlng taxtura 
25,., lh(ct• ap); A•lnterpenatratlng texture 
1~ Ma(cr•sp); A•interpenatrating texture 

...•......... talc - magnalite rookl .... 

-1.11 13.11 80,., Ma(cr• ap); 40,., T; 
-3.3 14.3 7!1,., MI(IIP >CI); 1!1,. T; abundant magnadta 
-4.1 13.5 50,., Ma(ap • Cl); 25,., T; relict Sp; 
-0.7 15.0 ~ Ma(ap > crl: 25,. T; 15,., relict A; 
-7.4 12.0 30,., Ma(ap > crl: 7G-.. T; no Sp; 
-7.8 13.11 115,., Ma(ap > crj; 35,., T; 
-8.0 14.11 20-~ Ms(ap•cr); 70-.,., T; 
-11.3 18.2 50,., Ma(ap > crj; ~ T; lchiiiOH mlltlx 
-11.4 18.8 50,., Ma(ap • crj; ~ T; lchilloaa malrix 

....... ............ ........ quartz - magna.lla rocka. ...................... . 

470 
447-C 
142-C 
342 
85-A 
15-F 

-5.11 
-7.3 

-11.11 
-17.8 
-18.2 
-20.4 

A • antigorite 
Cc • ceicile 

18.5 
14.0 
13.5 
17.5 
17.2 
17.2 

cr • cryptocryllalllna 
l • ~zardite 

80-7~ Ma(ap>cr); 25,., Q; 1~ T: 
85-115,., Ma(ap>cr): 5,., Q; 5,., Co; noT; 
~ Ma(cr> ap); 1~ Q; noT; 
75,., Ma(ip•CI); 25,., Q; ~ T; 
~ Ma(ap • Cl); ~ Q ; noT; 
80-115,., Ma(ap•cr); 5-1~ Q; noT; 

Ma • magnnila 
0 • quartz 
liP • apa&hic 

T • talc 



Table 10.3: laotoplc compotldon of 0 and C In carbonat .. other 
lhan magn .. ltt and In organic: carbon from lhe 

Co·t Pond Ophlolte Complu 

------------------------------------~-----·-· · Sample 
no: 

d13va 
POB 

d18ve 
SMOW 

Deac:rlpllon ol occurrence 

--------------------------------------------·· 438• -0.1 15.8 calcite vein In metaeadlmant• 
453 -1.4 13.5 calcite in gabbro 
457 -12.9 8.8 calcite in gabbro 

379 9.6 11.2 calcite in rodlngita 
396 -10.5 11.1 calcite in rodlnglte 

467 -10.3 14.1 calcite in blackwell 

505-A -5.3 7.6 calcite vein In volcanic a 

158 -16.5 23.4 aragonite In harzburgite 

305• -4.3 10.0 dolomite vein In 
ttlpentlnlta 

196-A" 0.2 28.2 hydromagn .. lteln 
aarpantlnlte 

471• -20.11 graphite In metaMdlmanta 
121-A -23.3 graphite In metaMdlment• 
201-B -25.9 graphite In mataMdimente 

• specimen• In m61anga 
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m~langes has a narrow range of 6180 values (from 12.0 to 

17.5), and a wide range of 613C values (from -1.6 to -20.4). 

The isotopic compositions are related to the mineralogy of 

the metamorphic assemblage and, in some cases, to whether 

the sample is from the eastern or western tectonic m~lange 

(Fig. 10.3). The isotopic results define a weak trend with 

lower 613C values corresponding to slightly higher 6180 values 

(Fig. 10.3). Lizardite-bearing serpentinite with 

pseudomorphic mesh textures contains magnesite with 613C 

values from -4.2 to -8.9, and in two samples of highly 

sheared and recrystallized lizardite serpentinite, magnesite 

has ollc values of -7.8 and -8.0. In antigorite-bearing 

serpentinite, the 613c values of magnesite vary between -10.8 

and -13.6, and in serpentinite with lizardite-antigorite 

mixtures, the o13C values are from -5.4 to -9.1. cS 180 values 

of magnesite from these different types of serpentinite 

broadly overlap from 12.3 to 17.2 (Fig 10.3). 

Magnesite from talc-magnesite assemblages has cSnc values 

from -1. 6 to -8.0, and 6180 values between 12. 0 and 15.0. Two 

samples of highly sheared talc-magnesite from the matrix of 

the m~lange have distinctly lower 613C values (-11.3 and -

11.4) and higher cS 180 v.1lues (16.2 and 16.8) compared to 

unsheared assemblages. 

The quartz-magnesite rocks have the widest range of 
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Fiq 10.3 6110 vs 6uc of magnesite in different mineral 
assemblages from the Coy Pond tectonic m6langes. Fields of 
magnesite co-existing with lizardite, talc, antigorite and 
quartz are shown. Samples from the western and eastern 
tectonic m6lange are identified for reference. 
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isotopic compositions compared to all other lithologies, and 

this is the only assemblage whose isotopic composi t .i.on shows 

a geographic dependence. Quartz-magnesite in the eastern 

tectonic melange has 611C values between -5.9 and -7. J, and 

6 1 ~0 values between 14.0 and 16.5, which are similar to those 

of magnesite from lizardite and talc assemblages. In the 

western tectonic melange, most of the magnesite has much 

lower 613C values ( -17.6 to -20.4) and higher 6 1 ~0 values 

(17.2 to 17.5) that are distinct from all other magnesite­

bearing assemblages. One exception is a sheared, coarse­

grained sample from the matrix of the western tectonic 

melange, which has a 613C value of -11.9 and a 6 1~0 value of 

13. 5. 

Isotopic results for other carbonates are given in Table 

10. 3. Two calcite samples from gabbros have 6 11C values close 

to zero (-0 . 1 and -1.4) and 6180 values of 15.8 and 13.5, 

respectively, and a third calcite sample has lower 6nc (-

12.9} and 6180 (8.8) values. Two disseminated calcites from 

rodingitized pyroxenite have similar 6 11c (-9. 6 and -10. 5) 

and 6180 (11.2 and 11.1) values to calcite from a vein hosted 

by chloritic blackwall rocks in the eastern tectonic 

melange. A calcite sample from a vein cutting a 

metasedimentary block in the melange has 613C and ouo values 

of -5.3 and 7.6, respectively. Aragonite from harzburgite 
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and dolomite and hydromagnesite from the melange have o13C 

values of -16.5, -4.3 and 0.2, and o'Ko values of 23.4, 1.0.0 

and 28.2, respectively. Finally, 6' 13C values of the three 

graphitic samples are -20.6, -23.3 and -25.9 (Table 10.2). 

10 . 5.1 Temperature constraints 

In order to calculate the oxygen isotopic composition of 

fluids that produced magnesite in the different mineral 

assemblages, their formation temperatures must be known or 

estimated. 

It is evident from Figure 9.2 B that at constant pressure, 

reactions in the MgO-Si02-H20-C02 system depend on 

temperature and the C02-content of the fluid. Based on 

experimental, field and thermodynamic data the following 

temperature constraints are available: 

(1) The serpentinization reaction: forsterite + water = 
chrysotile + brucite ( has been experimentally determined to 

take place at temperatures < 380°C (Johannes 1.969) in the 

end-member {pure forsterite) model MgO-Si02-H20-C02 system, 

and at < 365°C for olivine of composition Fo93 (Moody 1.976). 

This reaction is metastable; thermodynamic data of Berman 

(1988) show that at 2 kbar fluid pressure (Fig. 1.0.4 A), 

antigorite can be stable up to 500°C. Field observations 
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~ 
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G) 
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G) 
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4Fo+ W
+sco2 

A 
5Mst+Tc 

4 

rc+3co2 

3Mst+H20 
40tt+ 

P = 2 kbar 

0.05 0.1 0.15 

X (C02) 

Fig. 1 0.4a. Phase diagram showing the Isobaric equilibrium 

curves at low temperatures and low values of X(C02) In the 

model system Mg0-SI02-H20-C02 (from Berman 1988). 

Abbreviations: Atg=antlgorlte; Br=bruclte; Mst=magneslte; 

Otz=quartz; Fo=forsterlte; Tc=talc; W=water. Reactions as 

0.2 

In text; 2: 34Fo+31W+20C02=A+20Mst; 4: Br+C02=Mst+W; 

5: 2Atg+45C02=45Mst+17Tc+45W. 
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500 

400 

300 

200 

18Fo+4Tc+27W 

A 

34Fo+51 

X(C02) 

Fig 1 0.4b Schematic T -X(C02) diagram for relevant phases 

in the Mg0-Si02-H20-C02 system for P=2kbar. X(C02) 

scale is schematic and non-linear for clariry. Circles 

represent the estimated T -X conditions for mineral 

assemblages in the Coy Pond tectonic melanges (L-8: 

lizardite-brucite; L-M:Iizardite-magnesite; A-M:antigorite­

-magnesite; T-M:talc-magnesite; Q-M:quartz-magnesite) 

Arrows indicate the direction of change of metamorphic 

conditions as inferred from microstructures petrography 

and isotopic data. Petrogenetic grid information from 

Berman (1988). Abbreviations as in Fig. 1 0.4a. 
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show that at 2 kbar, the antigorite stability field is up to 

480°C at XC02 < 0.02, both the temperature and xco2 being 

greater than for lizardite or chrysotile stability 

(Trommsdorf and Evans 1977). For this reason, an upper 

temperature limit of 450°C was considered for the stability 

of lizardite and chrysotile in the Coy Pond tectonic 

melanges. 

(2) The carbonatization reaction: serpentine + CO: 

= talc + magnesite + water (at P fluid = 2 kbar) occurs at 

350°C for xco2 = o.oos, at 400°C for xco1 0.01 and at 500°C 

for XC02 = 0.07 (Berman 1988 in Fig 10.4). Taking into 

account the fact that the talc-magnesite assemblage 

comprises a substantial volume of the tectonic m~lanqes (it 

forms the bulk of the matrix and part of the fragments in 

the western tectonic m~lange, and about half of the entire 

eastern tectonic melange), it i s reasonable to assume that 

the metasomatic fluid had a somewhat higher XC02 value, 

probably >> 0.005. This higher XC02 value yields a formation 

temperature for the talc-magnesite assemblage between 350 

and 450°C. However, as seen in Fig 10 . 4 . A it is possible 

(but less probable) that carbonatization of serpentine to 

talc-magnesite could have occurred at temperatures < 350°C, 

if there was an influx of very large amounts of fluid having 

XC02 values< 0.005. At such low temperatures {< 350°C), the 

264 



co2-poor fluid would have to maintain its XC02 between narrow 

limits (0.005 > xc~ < o.oJ for T=J50°C, see Fig. 10.4.A) 

otherwise a quartz-magnesite assemblage would be produced 

(Fig 10.4). 

(3) Based on metamorphic constraints (Evans et al., 1976; 

Evans 1977), the temperature of recrystallization of 

lizardite to antigorite is about 300°C or greater (see 

Chapter 9 for details). O'Hanley and Offler (1992) using the 

magnetite-serpentine thermometer of Wenner and Taylor 

(1969), determined the temperatures between 350 and 220°C 

for serpentine recrystallization at Woodsreef (New South 

Walles, Australia). Using the same method, O'Hanley et al . 

(in press) have determined temperature of serpentine 

recrystallization at Cassiar, British Columbia to have been 

JOO ± 36°C at P(H20) < 800 bars. In the Coy Pond tectonic 

melanges, the constraints described above suggest that the 

partial recrystallization of serpentine likely occurred in a 

similar temperature interval between 220 and 350°C. 

Petrographic information and also carbon isotopic 

composition (Figs 10.3 ancl 10.7) suggest that the 

recrystallization of serpentine occurred later following the 

formation of the talc-magnesite assemblage. 

(4) The reaction: talc + C02 = quartz + magnesite + H10 at 

constant fluid pressure (2 kbar) depends on XC02-fluid and 
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temperature as follows: at XCO~ < 0.02 it occurs anywhere 

below J50°C and is strongly temperature dependent; at XCO: > 

0.02 the reaction depends strongly on XC02 and less on 

temperature (Fig 10.4). 

In the eastern tectonic melange, the quartz-magnesite and 

talc-magnesite assemblages are closely intermingled and both 

contain magnesite with similar carbon isotopic compositions 

to that of magnesite in the serpentinites. The common 6uc 

values suggest that formation of magnesite associated with 

lizardite, talc and quartz occurred as a result of a single 

fluid having a constant isotopic composition over time. 

Furthermore, the temperature and XC02 of the fluid was 

probably close to the talc-quartz phase boundary (Fig 10.4) 

which would explain the intermixed nature of the talc­

magnesite and quartz-magnesite assemblages. The preservation 

of some serpentinite fragments unaffected by carbonate 

metasomatism could imply that the carbonatization process, 

in the eastern tectonic melange, took place in the xco,-poor 

region of the phase diagram close to the talc-quartz phase 

boundary (Fig 10.4). As such, a fluid having a temperature < 

J50°C and xco2 < 0.02 is inferred for the formation of the 

quartz-magnesite in the eastern tectonic melange. In 

contrast, the quartz-magnesite assemblage in the western 

tectonic melange has distinctive petrographic and isotopic 

266 



features that suggest it formed late in the paragenesis from 

isotopically distinct waters (Fig 10.3) having XC02 values > 

0.02 (quartz-magnesite assemblage is very poor in talc) at 

temperatures < 350°C. 

(5) The Spruce Brook Formation which underlies the 

ophiolite consists of metasediments in the sub-biotite to 

biotite zones, regionally metamorphosed under greenschist 

facies conditions, with temperatures qualitatively estimated 

at about 400°C (Deveau 1992). 

(6) Within the tectonic m~langes, and at the contacts with 

the country rocks, occurrences of narrow chloritic blackwall 

assemblages imply that these rocks (which typically form 

during serpentinization of ultramafics) formed at 

temperatures < 400°C, otherwise at higher temperatures the 

chlorite would have been replaced by amphibole. 

Based on mineral equilibria and the regional geological 

context, temperatures less than 400°C down to ambient 

values, are reasonable for the formation of the metamorphic 

assemblages (carbonate metasomatism) in the tectonic 

m~langes of the Coy Pond ophiolite. Elevated temperatures at 

the higher end of the range could have been achieved via 

several different mechanisms: (i) the abducted ophiolite 

complex was still hot; (ii) the ophiolite was originally 

cold but hydrvthermal fluids from below were hot; or (iii) 



the heat was induced during regional metamorphism. Although 

no metamorphic sole was found at the faulted contact between 

the metasediments and the Coy Pond Complex, there are 

several arguments that suggest the Coy Pond ophiolite was 

hot during emplacement: (1) the igneous age of the ophiolite 

complex is 494 Ma (Dunning and Krogh, 1985), and it was 

emplaced prior to 474 +6/-3 Ma, which is the age of a 

stitching pluton, the Partridgeberry Hills granite (Colman­

Sadd et al., 1992). This allows less than 20 M.y. between 

formation, detachement, obduction and emplacement of the 

ophiolite, time most likely insufficient for cooling prior 

to emplacement on the continental margin; (2) the recent 

description of a metamorphic sole of amphibolite schist 

beneath the nearby (and contiguous) Great Bend ophiolite has 

been reported by Dickson (1992), suggesting it was emplaced 

while hot. 

In summary, the ophiolite was probably still hot during 

emplacement, after which it became involved in regional 

metamorphism, which reached at least greenschist facies 

conditions (about 400°C and muscovite-chlorite stable in 

pelites) in the underlying Spruce Brook Formation . 
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10.5.2 Constraints on fluid compositions 

Direct measurements of the fluid composition, such as from 

the study of fluid inclusions, are not available, and so the 

source of the solutes and the waters can only be constrained 

indirectly using the isotopic compositions of magnesite. 

The isotopic compositions of magnesite in the Coy Pond 

tectonic m~langes clearly comprise three separate 

populations indicating that the formation of magnesite was a 

result of at least three fluids with different compositions, 

each possibly representing a distinct event (Figs 10.3 and 

10.6). 

(i) Type 1 fluid - marine/crustal source 

Type 1 fluids include those that formed magnesite in both 

the lizardite and talc assemblages (Fig 10.5). The oxygen 

isotopic composition of waters calculated to be in 

equilibrium with magnesite in lizardite and talc assemblages 

(assuming formation temperatures between 300 and 450°C) is 

between 5.2 and 11.7 (Table 10.4). This is in the general 

range of metamorphic waters (Taylor, 1974), more 

specifically, those derived via sea floor metamorphism of 

the oceanic crust which have 6110 values between 4 and 12 

(Muehlenbachs et al., 1974; Sheppard, 1977; Heaton and 

Sheppard, 1977). The oxygen isotopic composition of the 
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Table t0.4: Oxygen Isotopic compolitlona of watell calculated 
to be In equlillfium wtth ma;nelilie from dlfterent 
anemblagea at apeclfled temperature• 

--------·-······------------------------------------magnesite 
In; 

formation 
temperature 

ma;nealte-water 
fract. factor 

18 
Owater 

-------·---------------··---------------------------
lzardlte 

450 
400 
350 
300 

3.5 
4 .4 
5 .4 
8 .8 

tO.t to t1.7 
1 .2to tO.I 
1.2 to 1 .1 
8.1to 1 .4 

----------------------------------------------------
talc 

talc 

(achi•oM matrix) 

450 
400 
350 
300 

450 
400 
350 
300 

3.5 
4.4 
5.4 
8.1 

3.5 
4.4 
5.4 
8 .1 

1.5 to 11 .5 
7.8 to 10.8 
8.8 to 1.8 
5.2 to 1 .2 

12.7to 13.3 
11.11o 12.4 
10.1 to 11.4 
1 .4 to 10.0 

----------------------------------------------------
antigorite 

350 
300 
250 
200 

5 .4 
1 .1 
8.1 

11 .0 

7.1 to 11.11 
5.7 to 10.4 
3.1a to 8.8 
t.5 to 8.2 

----------------------------------------------------350 5.4 11.1 to 12.t 
300 8.1 t0.4to t0.7 

qtz - ma;naaile 250 1.8 1.8to 1.1 
200 t 1.0 1 .2 to 1.5 

(tast) 150 14.3 2.1to 3.2 
100 18.0 -t .8 to -t.5 
50 2e.t -l.lto -1.8 

••-••••••-•• -•oooOOMOOoo oooouoo oooon-••-••-••-•• - oo u oo-

350 5 .4 8.8to 11.t 
300 8 .8 7 .2to Sl.7 

qtz - ma;ntlile 250 8.1 5.4to 1.a 
200 11 .0 3.0to 5.5 

(we.., 150 14.3 -0.3to 2.2 
100 1SI.O -5.0to -2.5 
50 28.t -12.1to -e.8 

----------------------------------------------------
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fluids varied about 6.5 per mil, and the carbon isotopic 

composition varied from about -1 to -9. This relatively 

large range of 611C values (Table 10.2; Figs 10.3 and 10.5) 

suggests that the carbon was derived from different sources. 

The high 613C values (ca. -1) are consistent with marine 

carbon (Keith and Weber, 1964; Schidlowsky et al., 1974}, 

whereas the 613C values from -4 to -9 probably reflect 

average oceanic, crustal or magmatic sources, although the 

lowest values might reflect a very small component of 

organic carbon (Fig 10.5). 

Hoefs (1965) has shown that, in small amounts, carbon 

exists in all igneous rocks in both reduced (about 200 ppm) 

and oxidized form {<100 to several thousand ppm), and he 

also demonstrated that the average carbon isotopic 

composition in the Earth's crust and upper mantle is about 

-1. However, the measurements of deep seated carbon in 

carbonatites and kimberlites are in the range of -2 to -8 

(Deines and Gold, 1973). C02 vesicles in ocean floor basalts 

h-:tve average 613C values of -7.6 (Pineau et al., 1976), -6.2 

(Sakai et al., 198~\ or range between -4 to -9 (Pineau and 

Javoy, 1983) or -5 to -7 (Des Marais and Moore, 1984). 

Submarine hot springs and hydrothermal vents have similar 

sue values of -5 to -8 (Craig et al. 1980), and reported 613C 

values from Hawaiian fumaroles are in the range of -7 to 
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magnesite composition In Coy Pond tectonic melanges, 

.I13 
and the o C ranges of possible carbon sources. 
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-9 (Gerlach and Thomas, 1986). Finally, the peculiar methane 

gas seeps in the Zambales ophiolite, considered to be of an 

abiogenic origin, have 6°C values of about -7 (Abrajano et 

al., 198&). 

Regardless of the precise 613C value of average oceanic 

crustal carbon, the 613C values of magnesite in the lizardite 

and talc assemblages of the Coy Pond Complex are consistent 

with their formation while the ophiolite \'Jas in an oceanic 

environment. 

Magnesite associated with quartz in the ees::;tern tectonic 

melange has o13C and 61x0 Values that are similar to those 

that occur with lizardite and talc, yet differ substantially 

from those of quartz-magnesite from the western tectonic 

melange (Fig 10.3). If quartz-magnesite formed at T > 200°, 

the oxygen isotopic composition of fluids would have been 

between 6. 2 and about 12; however, if it formed at T < 

200°C, the oxygen isotopic composition of fluids would have 

been between about -9 and 6. 5 (Table 10.4). In the former 

case, the calculated fluid is consistent with metamorphic 

fluids (Sheppard, 1977), in the latter case, with meteoric­

hydrothermal fluids (Sheppard, 1987). However, in the 

absence of reliable temperature data, the role of ground 

water ir. the eastern tectonic melange cannot be ruled out. 

The 6 13C values of magnesite associated with quartz in the 
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eastern tectonic melange are -5.9 and -7.3 (samples 470 and 

447-C in Table 10.2). This contrasts with much lower values 

for magnesite in the western tectonic melange (between -11.9 

and -20.4), indicating that carbon in each tectonic melange 

was derived from different sources (Figs 10. 3 and 10. 5) . 

Because the quartz-magnesite event is petrographically late 

in both tectonic melanges, the cS 13C values probably reflect 

differences in the nature of the fault systems that served 

as conduits for the C02-rich fluids. The eastern tectonic 

melange contains no magnesite with low cS 13C values suggesting 

that the carbon was locally derived from within the 

ophiolite, whereas the magnesite in the western tectonic 

melange was formed from carbon derived in part from the 

metamorphic basement (discussed below). 

( ii) Type 3 fluid - organic source 

Type 3 fluids are those that formed magnesite associated 

with quartz in the western tectonic melange, and they are a 

component of the Type 2 fluids that formed antigorite (Fig 

10.5). As was discussed previously for quartz-magnesite in 

the eastern tectonic melange, if quartz-magnesite assemblage 

in the western tectonic melange formed at T > 200°C, the 

calculated oxygen isotop~c composition of the fluids would 

be from 5.4 to 11.1. For temperatur~s less than 200°C, the 
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o1so values of fluids would be between 5. 5 and -12.1 (Table 

10.4). For reasons discussed earlier, the preferred scenario 

for the formation of the quartz-magnesite assemblage is that 

it formed in equilibrium with metamorphic fluids similar to 

those which produced magnesite with antigorite and schistose 

talc. 

With one exception (sawple 142-C) , the carbcn isotopic 

composition of magnesite associated with Type 3 fluids 

exhibits a narrow range (< 3 per mil) betweer. -17.6 to -20.4 

(Table 10.2 and Figs 10.3 and 10.5). These values can only 

be derived from an organic source, most likely from graphite 

in the underlying continental sediments (5~e below). 

Orqanie matter in sediments 

The average amount of reduced carbon in sedimentary rocks 

is estimated at 0.40 wt %, and tor Cambria~ and Ordovician 

sediments fr~m North Ameri~a, the amount is estimated to be 

0.68 wt % (Zemann, 1972). The transformation and evolution 

of organic matter starts with diagenesis and catagenesis 

when petroleum, coal, methane and C02 are formed (Tissot and 

Welte 1984). Under metamorphic conditions, the orgdnic 

matter is commonly converted to C02 , CH4 and graphitic 

carbon. Three o13C analyses of graphitic material from 

sediments of the Spruce Brook Formation yield values between 
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-20.6 and -25.9. These are within the range of o13C values of 

organic materials preserved in sed1mentary rocks (-20 to 

-40; Oegens, 1969) and a:r.e close to the o13C values of 

magnesite in the quartz-magn£site assemblage. Calculations 

have shown that at 500°C and 5 kbars an average pelitic rock 

undergoing devolatilization during regional metamorphism 

will produce a volume of fluid equal to about 12% of the 

rock volume, or 2 moles of fluid per kg of rock with about 

72 mol % H20 and 28 mol % C02 (Walther and Orville, 1982; 

Wilkinson, 1991). 

The metamorphic grade in the Mount Cormack Terrane 

underlying the Coy Pond ophiolite ranges from greenschist to 

upper amphibolite and in places partial melting has 

occurred. Metamorphism of these continental sediments is 

considered to be the source of co2-rich fluid. The fluid 

circulation was focused along the western tectonic melange 

where it produced magnesite with characteristically low o13C 

values. 

(iii) Type 2 fluid - mixe~ sources 

Type 2 fluids are those that were in equilibrium with 

magnesite in antigorite ass~mblages and in the schistose 

talc matrix (Fig 10.3). As discussed previously, the 

recrystallization of lizardite to antigorite probably 
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occurred in a temper~ture interval between 200 and 350°C. 

The oxygen isotopic composition of fluids calculated to be 

in equilibrium with this magnesit.e is between 1.5 and 11.8 

(Table 10.4.A). These isotopic compositions are at the upper 

limit of metamorphic waters produced during sea floor 

hydrothermal metamorphism, but they are in the general 

compositional range of metamorphic waters produced during 

metamorphism of sedimentary and igneous rocks (which can be 

as high as 25 per mil; Sheppard, 1987). Metamorphic waters 

are those released during metamorphic dehydration reactions 

in equilibrium with metamorphic minerals (Sheppard, 1984). 

The carbon isotopic compositions of magnesite associated 

with antigorite and schistose talc matrix are between -10.8 

and -13.6 (Table 10.2 and Fig 10.3}. These values are lower 

than those associated with carbon from magmatic or average 

oceanic crustal sources, but they are higher than those 

associated with organic sources (Fig 10.5}. The 613C values 

can best be interpreted as a mixture of these two distinct 

sources. 

Petrography and phase relations (Fig 10.4.8) suggest that 

magnesite in the antigorite assemblage formed later than 

that in the lizardite and talc assemblages, but earlier than 

that in the quartz assemblage. From the perspective of 

carbon isotopic arguments, it is reasonable that the 
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progressive lowering of 613C values in magnesite from 

lizardite to antigorite to quartz assemblages represents the 

influx of 13c-depleted co2 from the metasedimentary basement. 

In this scenario, both the antigorite and the quartz 

assemblag~s formed after emplacement of the ophiolite on the 

continental margin, with antigorite forming before oceanic 

crustal C02 in the melange had been completely flushed from 

the system. 

10.5.3 Differences b=tween the eastern and western tectcnic 

melanges 

There are significant lithologic and isotopic differences 

between the western and eastern tectonic melanges. 

Eastern tectonic m6lanqe: 

(i) generally, t~e eastern tectonic melange exhibits a 

pervasive carbonatization; most of the original lithologies 

(serpentinite) have been replaced by talc-magnesite and 

quartz-magnesite assemblages; 

(ii) relict assemblages such as serpentinite (lizardite) 

are still preserved in fragments, but the matrix is entirely 

replaced by quartz-magnesite; 

(iii) petrographic evidence shows that the predominant 

quartz-magnesite assemblage formed by carbonatization of 
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talc-magnesite, with which it is intimately associated; 

(iv) isotopically, magnesite associated with all min~ral 

assemblages (with lizardite, talc and quartz) is very 

homogeneous, with o13C and 6" 180 values between -5.9 and -8.8, 

and 13.3 and 16.5 respectively. 

Western tectonic melanqe: 

(i) carbonatization of the western tectonic melange was 

less pervasive, leaving some fragments unaffected (i.e. 

brucite-bearing); 

(ii) fragments in the mel~nge are less carbonatized than 

the matrix, which largely is composed of the talc-magnesite 

assemblage; 

(iii) the 613C values of magnesite associated with 

antigorite and with schistose talc matrix are much lower 

(< -11) than any magnesite in the eastern melange; 

(iv) magnesite associated with quart~ : , ... s the lowest 6 11C 

values (-11.9 to -20.4), lower than any magnesite in either 

the eastern or western tectonic melanges. 

These observations suggest that in the eastern tectonic 

melange, all of the carbonate metasomatism resulted from a 

relatively homogeneous fluid at around 300 - 350°C with the 

XC02 near the talc-quartz and serpentine-talc phase 

boundary. In the western tectonic melange up to a point, the 

carbonate metasomatism occurred under similar conditions 
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being caused by similar fluid. However in the final stage of 

carbcnatization, fluids with unusually low o13C values 

formed the quartz-magnesite assemblage in the western 

tectonic melange. 

10.5.4 Other carbonates 

The isotopic compositions of other carbonates are quite 

variable {Table lL.J) further suggesting that, like 

magnesite, different fluids have affected the Coy Pond 

ophiolite at different times. The carbon and oxygen isotopic 

compositions of hydromagnesite, dolomite, calcite and 

aragonite reflect formation from low to high temperatures 

from fluids that derived their carbon from marine, crustal 

and organic sources. For example, hydromagnesite which 

occurs as white crumbling crusts associated with brucite­

beat· ing 1 izardi te fragments, has a S13C value of 0. 2 and o180 

value of 28.2, consistent with formation as a low­

temperature weathering product of brucite (e.g. O'Neil and 

Barnes, 1971) with a marine source for the carbon. 

Two calcite veins, one in metasediments and the other in a 

gabbro, have sue values of -o. 1 and -1.4, and o180 values of 

15.8 and 13.5 respectively. Though a marine source of carbon 

is likely, the o180 values suggest the calcites formed from 
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metamorphic fluids at elevated temperatures. 

Two disseminated calcite samples of rodingite and a 

calcite vein in a blackwall chloritic rock have similar c51.'c 

and 61so values (-9.6, -10.5, -10.J and 11.2, 11.1 and 14.1 

respectively). The fluids were most ~ikely metamorphic in 

origin, but the low 613C values suggest that a small 

component of organic carbon was present. 

The wide variation of isotopic compositions of carbonates 

from throughout the ophiolite indicate that further work, 

beyond the scope of this study, will yield significant 

information regarding the complexity of carbonatization of 

oceanic crust. 

10.6 Conclusions 

A comparison between the published studies and the results 

of this work shows that in terms of oxygen isotopic 

compositions, magnesite from the Coy Pond m~langes is within 

the range of other magnesites reported previously (Barnes et 

al., 197J; Schoell et al., 1975; Schandl and Wicks 1991; 

Schandl and Naldrett 1992). In terms of carbon isotopic 

compositions, the Coy Pond magnesite specimens cover the 

entire range of values previously reported (reflecting its 

complex geologic history) with magnesite associated with 
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quartz (in the western tectonic melange) having values lower 

than any magnesite previously reported (Fig 10.6). 

Magnesite associated with different mineral assemblages 

records the complete history of the Coy Pond tectonic 

melange (Fig 10.7). The earliest carbonatization events 

produced magnesite-lizardite and magnesite-talc assemblages 

having 613c values of -1.6 to -8.9, the carbon being derived 

from oceanic/crustal sources (Fig 10.5). This event can best 

be related to the transport of the ophiolite nappe in an 

ceanic environment, though the lowest 613C values may reflect 

the first phase of its interaction with the continental 

margin (Fig 10.7). 

The next phase of carbonatization was associated with 

metamorphism of the underlying Spruce Brook Formation, and 

the generation of large amounts of C02 (low 6 13C values) 

produced by decarboxilation of the organic material in the 

sediments. This phase of carbonatization, which occurs only 

in the western tectonic melange, is associated with the 

recrystallization of most of the lizardite to antigorite, 

and with the formation of the schistose talc-~agnesite in 

the matrix of the melange. 

Quartz-magnesite was the last assemblage to form during 

carbonatization of serpentinite. The large difference in o13C 

values for magnesite from both tectonic melanges reflects 
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Fig. 1 0.6 Isotopic distribution of oxygen and carbon in crypto­

crystalline and spathlc magnesite from principal mineral assem­

blages In the Coy Pond tectonic melanges. For comparison, data 

for magnesite from Red Mountain Deposit California (RDMC) 

(Barnes et al., 1973), Western Tauern Austria (WTA) 

(Schoen et al., 1975), Munro Asbestos Mine Ontario (MAMO) 

(Schandl and Wicks 1991), and Slade-Forbes Asbestos Deposit 

Ontario (S-FADO) are shown. The legend Include observations 

for magnesite (M), llzardlte (L), antigorite (A), talc (T) 

and quartz (Q). 
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Fig 10.7 The evolution of 013C values of magnesite and the different 

mineral assemblages in tectonic melanges of the Coy Pond ophiolite 

Time Increases to the right. Inferred environments, Including 
metamorphism when the ophiolite was in the seafloor environment 
In transport to the continental margin, and emplced on the 
continental margin, are indicated below. Abbreviations: A=antigorite 

B= brucite; L=lizardite; M= magnesite; O=quartz; T= talc. 
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differences in the plumbing system that controlled fluid 

flow. Only the western melange was affected by C0
1
-rich 

fluids from the metasediments (low 61JC valu~s) . This 

assemblage and the antigorite-magnesite assemblage formed 

after the ophiolite was emplaced onto the continental 

margin. 

Isotopic results for magnesite and other carbonates 

demonstrate the existence of distinct carbon sources which 

have had variable contributions to carbonatization 

throughout the history of thP. tectonic melanges. 

Carbonatization seems to have been related to the position 

of the ophiolite nappe relative to the continental margin. 
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Chapter 11 

GEOTECTONIC MODELS FOR THE FORMATION OF THE TECTONIC 

M!:LAHGES 

AND EVOLUTION OF THE CC..'Y POND OPHIOLITE COMPLEX 

The formation of the ophiolitic tectonic m~langes was 

probably related to tectonic processes that occurred during 

the transport, emplacement and deformation of the ophiolite 

sheet. Based on structural, petrographic and geochemical 

information obtained during this study, an attempt is made 

to reconstruct the evolution of the tectonic melanges in 

this chapter. Three hypoth~ses are explored: (i) that the 

formation of the tectonic m~langes occurred relatively early 

during tl ... nsport and obduction of the ophiolite nappe onto 

the continental margin; (ii) that the formation of the 

tectonic melanges occurred relatively late, after obduction 

ceased, mainly during and after emplacement; and (iii) that 

the formation involved both early and late stages, 

incorporating parts of both the earlier, and later 

movements. The hypotheses differ not only in the timing of 

melange formation, but also on the principal cause for the 

melange formation. However the :)asic mechanisms required to 

form the tectonic melanges are similar in all hypotheses. 

Before relating the formation of the tectonic melanges to 

one or another major tectonic event, it is important to note 



that based on petrographic information, at the time of 

melange formation, olivine in the participating dunite and 

harzburgite was completely and partially serpentinized 

respectively, and orthopyroxene was partially serpentinized. 

oxygen isotopic compositions of the serpentine minerals are 

not yet available to specify the nature of the waters 

involved in the serpentinization process, and thus allow 

inferences to be made concerning the environment in which 

the process occurred (ocean floor or continental}. It is 

clear, however that the waters responsible for the 

serpentinization were chemically different to those fluids 

(C02-bearing} which subsequently affected the melange 

assemblages. 

Bearing in mind that: ( i} once in contact with water, the 

serpentinization of peridotite proceeds very rapidly (Martin 

and Fyfe, 1970); and (2) that there is a comple~e absence of 

carbonate minerals in the serpentinized mantle tectonite 

unit underlying the western tectonic ml!lange, it appears 

reasonably safe to affirm that the waters responsible for 

the serpentinization were effectively C02-poor. Thus it is 

most likely that serpentini~ation of the Coy Pond peridotite 

(including dunite within the mantle tectonite, those at the 

base of the transition zone, those inter layered with 

pyroxenite and partially those within the harzburgite 
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tectonite) occurred on tl:e ocean floor and was caused by 

oceanic waters some time before, during or soon after 

detachment of the ophiolitic slab, but before obduction onto 

the continental margin. 

In contrast, the carbon isotopic compositions of magnesite 

in assemblages such as schistose talc-magnesite, antigorite­

magnesite and especially quartz-magnesite (see Ch~pter 10), 

which subsequently replaced the earlier formed serpentinite, 

strongly point to an organic source for the carbon which 

could have been available only if the ophiolite sheet was 

already emplaced onto the continental margin at the time of 

carbonatization. 

Hypothesis 1. In this model, the displacement of the coy 

Pond ophiolite nappe, about 7 krn thick (Fig ll.l.A and B), 

produced high frictional shear stresses at its base that 

exceeded the shear strength of the serpentinite and produced 

shear zones. These shear zones would have developed along 

the weakest zones, namely the conta~,;ts of serpentinized 

dunite of the transition zone with the contiguous units (Fig 

ll.l.C). Both the underlying harzburgite and the overlying 

pyroxenite were (and still are) barely serpentinized and 

were rheologically more competent units. on the other hand, 

the dunites, already fracturen and ~artially serpentinized, 

deformed easily. The increase in volume associated with 

serpentinization of dunite produced the typical orthogonal 
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Fig 11.1. A- Reconstructed stratigraphic column of the Coy 
Pond Ophiolite complex. Thickness of the mantle tectonite 
ar.d also of pillow lava and sediments, is variable from o to 
less than 1 km. 
B to E Model for evolution of tectonic m6langes. 
B - Initial stage showing the dunite layer at the base of 
transition zone between layered pyroxenite and harzburgite 
tectonite. 
C- Shear stresses induced during either (i), transport and 
emplacement of the ophiolite nappe or (ii), late extensional 
faulting of already emplaced ophiolite. serpentinization 
(wavy l~nes) took place early in this process, possibly on 
sea floor. 
D - During the dismemberment stage, part of the dunitic­
harzburgitic material was comminuted in the brittle domain 
to meter-sized fragments. Remaining material underwent grain 
size reduction in the ductile domain to become the enclosing 
matrix. Fluid penetration through matrix caused 
recrystallization to a variety of mineral assemblages. 
E - Continued strain resulted in mechanical corrosion of 
fragments to elliptical shapes enclosed in a variably 
carbonatized matrix. Rare large blocks of ophiolitic origin 
(pyroxenite in the western tectonic m6lange) or non­
ophiolitic origin (metasediments in the eastern tectonic 
m6lange) are also shnwn . 
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fracture pattern in serpentinites (Coleman, 1971; see Fig 

ll.l.C). The formation of many suitably oriented fractures 

allowed for additional shear deformations, producing more 

fractures which led to fragmentation and dismembering of the 

ultramafic rocks (Fig 11.1.D). Fragmentation and comminution 

of dunitefperidotite occurred in the brittle domain and 

resulted mainly in the formation of melange fragments. 

During shearing, fragments were greatly reduced in size by 

mechanical comminution and fluid ingress enhanced ductile 

recrystallization to form the enclosing matrix (Fig 11.1.0 

and E). This is compatible with experimental results which 

have shown that brucite-bearing lizardit~ at 3 kbars 

confining pressure deforms in the ductile domain below about 

300°C, and in the brittle domain above about 300°C (due to 

dehydration; Scarfe and Wyllie, 1967). Shearing of 

serpentinite and its concomitant recrystal.ization occurred 

in the locus of plastic flow, producing the flaky schistose 

matrix (Chapter 6). The formation and development of the 

tectonic melanges was probably a function of the relative 

shear stresses along the ophiolitic nappe/autochthon 

boundary and those set up internally in the deforming nappe 

during tectonic transport. 

The ophiolite nappe most probably advanced by gliding 

partially on the sedimentary substrate, partially on the 

western tectonic m~lange. In this way, under modest stress 
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and at relatively low temperatures, the large imbricated 

ophiolite nappe could have been tectonically transported a 

great distance on the upper crust (Fig 11.2). After 

transport ceased, during doming of the Mount Cormack 

Terrane, the ophiolite nappe was tilted into a subvertical 

orientation and emplaced in its present-day position, 

probably by extensional faulting. In this hypothesis, the 

tectonic melanges were formed early, during obduction and 

imbrication, and subsequ~ntly acted as passive units during 

the deformation on the continental margin. This is the model 

of Rivers et al., (1989). 

Hypothesis 2. The central idea of the second hypothesis is 

that the formation of both tectonic melanges occurred late 

after transport of the ophiolite had terminated, and was 

related to rotation of the ophiolite from its original 

subhorizontal to present subvertical orientation. The 

impetus for this hypothesis comes from the observation that 

tectonic melanges are unusual features of ophiolites in 

general, implying that there may be special circumstance 

behind thair formation in the Coy Pond Complex (and also the 

Pipestone Pond Complex; swinden, 1988). Inasmuch as all 

ophiolite complexes are transported, but not all contain 

tectonic melanges, it would seem possible that the formation 

of the tectonic melanges may be unrelated to the transport 

of the ophiolite, and have occurred some time later after 

292 



Fiq 11.2 Schematic diagram showing the inferred tectonic 
setting for the formation and obduction of the Coy Pond 
Complex onto the Gander Zone continental margin. 
Abbreviations: A • asthenosphere, AW = ac~reted wedge, cc -
continental crust, LM • lithospheric mantle, FA = fore arc, 
IA = island arc, OC • oceanic crust. 

A - Idealized plate tectonic section across Iapetus Ocean in 
central Newfoundland, in Cambrian (after van Staal et al., 
1991) • 
B - Initiation of rifting and formation of a back-arc basin 
in late Cambrian probably occurred by asthenospheric 
injection (Tatsumi et al., 1988). 
c - Formation of the Coy Pond Ophiolite at a young spreading 
centre in an island arc environment occurred in mid­
Tremadocian (Dunning and Krogh, 1985). 
D - Reversal of polarity from divergent to convergent 
tectonics occurred during early Arenig, resulting in 
collision of the western Dunnage Zone with the Laurentian 
continental marqin (Humber Zone) and the eastern Dunnage 
Zone with the Gondwanan continental margin (Gander Zone). 
E - Coy Pond Complex was emplaced on the Gondwana 
continental margin before mid-Arenig when it was intruded by 
the Partridgeberry Hills granite of 474 +6/-3 Ma (Colman­
Sadd et al., 1992). 
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transport ended. In this second model, it is therefore 

assumed that the Coy Pond ophiolite, although partially 

serpentinized along shear zones, was emplaced onto the 

continental margin without significant internal def~rmation. 

The recent discovery of an amphibolite sole in the 

contiguous Great Bend Complex suggests that gabbros may have 

formed the glide horizon for the emplacement of the 

ophiolite, at least locally. 

After emplacement, a period of extensional tectonism on 

the Gondwana continental margin with its ophiolitic cover is 

envisaged (Fig 11.3). The evidence for this is 

circumstantial and comes principally from the low-P 

metamorphic field gradient in the underlying Spruce Brook 

Formation. Thompson and England {1984) and Thompson and 

Ridley (1987) have pointed out that low-P metamorphic 

sequences are related to thinning of the upper crust by 

extension, allowing the isotherms to move towards the 

surface, creating a high geothermal gradient. Such a 

scenario is compatible with the situation in the Mount 

Cormack Terrane in which early subhorizontal structures in 

the Spruce Brook Formation, interpreted to be associated 

with ophiolite obduction, pre-date the metamorphic peak and 

the establishment of the isograds {Deveau, 1992). 

The low-P metamorphism caused upper amphibolite facies 

metamorphism and migmatization at shallow crustal levels (J-
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Fig 11.3 The evolution of the Mount Cormack Terrane and Coy 
Pond Complex after obduction of ophiolite nappe onto the 
continer.~al margin. Abbreviations: 
ON s ophiolitic nappe, SBF • Spruce Brook Formation, GB = 
Gander basement, BEG • Baie d'Espoir Group, WTM = western 
tectonic m6lange, ETM • eastern tectonic m6lange, A = 
andalusite, B • biotite, s • sillimanite. 

A - Collision tectonics ceased about mid-Arenigian when the 
large ophiolite nappe (comprising the actual Coy Pond, 
Pipestone Pond, Great Bend complexes and other ophiolitic 
remnants surrounding the Mount Cormack Terrane) was emplaced 
onto the Gondwana continental mar7in. Note that the 
continental margin comprises a weakened basement (due to 
extensional faulting during earlier rifting and back-arc 
formation) and a craton-related sedimentary wedge (Spruce 
Brook Formation). 

B - The Dunnage-Gander collision is inferred to have been 
followed by a period of extension, when the basement was 
stretched and thinned by newly formed faults, or reactivated 
listric extensional faults (Jackson, 1980; Wernicke and 
Burchfield, 1982). Thinning of the lithosphere produced 
upwelling of the asthenosphere and heating of the 
continental margin to give rise to a low-P, high-T 
geothermal gradient. Vertical movements along extensional 
faults separating basement blocks may have ben resulted in 
fragmentation of the initially continuous ophiolite nappe. 

c - During Llanvirn-Llandeilo time, the thermal and 
mechanical doming rEsulted in intrusions of granite, 
migmatization and metamorphism of the metasediments in 
andalusite-sillimanite facies, all features typical of low-P 
metamorphism (Myashiro, 1972; 1980; Thompson and Ridley, 
1987). On account of its high-temperature and low-density, 
the Spruce Brook Formation and associated s-type granitoids 
are inferred to have acted as a diapir, uplifting the 
ophiolite and rotating it into a subvertical orientation at 
the margins of Mount Cormack Terrane. The development of 
western tectonic m6lange started by extensional faulting (or 
continued if started earlier) during tilting of the 
ophiolite by ductile flow along weak dunite zone located at 
the base of transition zone. 
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4 Y.bars, about 10-12 Y.m, Deveau, 1992) and melt formation at 

slightly greater depth (e.g. Through Hill Granite). The 

melts were buoyant, moved upwards in the crust, and were 

emplaced in the upper amphibolite facies metamorphic rocks. 

It is postulated that the high geothermal gradient 

resulted in gravitational instability of the crust loca l ly , 

as follows. The pelitic and semipelitic rocks have a density 

in the range 2.63-2.70 gfcm1
, whereas the density of 

ultramafic rocks is about 2.68-2.86 gfcm1 (based on 

measurements of samples from the Spruce Brook Formation, 

Through Hill Granite and Coy Pond and Pipestone Pond 

Complexes, by Deveau, 1992). Densities >J gmfcm3 are likely 

for unserpentinized samples. These values indicate the 

presence of a significant density contrast, that would have 

been enhanced by the temperature contrast between the Spruce 

Brook Formation (400-700°C) and the Coy Pond Complex 

(<J50°C) during metamorphism. Diapiric emplacement of the 

metamorphic rocks into the overlying ophiolitic carapace is 

suggested from the dome shape of Mount Cormack Terrane (ar~ 

also Meelpaeg Terrane to the south-west) and by the 

observation that there is no tectonic fabric associated to 

the dome itself (Deveau, 1992). Earlier fabrics (Sl and 52, 

Deveau, 1992) form a concentric pattern , subparal l el to the 

margins of the Mount Cormack Terrane, but there is no 
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evidence for a superimposed fabric associated with the dome 

itself. This lack of superimposed fabric is difficult to 

explain in a fold superposition model considering the very 

steep dips of the surrounding ophiolitic rocks (>80°), but 

is compatible with a diapiric origin (Fig 11.1). 

The final stage of the model involves extensional faulting 

of the ophiolite off the flanks of the diapir. Extensional 

faults initiated in zones of weakness in the ophiolite (i.e. 

dunite contacts in the transition zone), and the tectonic 

melanges developed as a result of gravitational sliding off 

the margins of the dome (Fig ll.J). Some of the extensional 

faults must have cut down to the underlying Spruce Brook 

Formation, and transported these and low grade rocks (Baie 

d'Espoir Group ?) in t~~ Mixed Lithology Slice, which was 

emplaced against the higher grade metamorphic rocks of the 

Spruce Brook Formation. The emplacement of low grade rocks 

over those of higher grade is consistent with extensional 

faulting, and e·1idence of the cataclastic/brittle nature of 

the deformation in the pelitic fsemipelitic units is 

compatible with the high level process envisaged. Fluid 

invasion in the extensional shear zones was important, and 

re&ulted in the formation of hydrous sericite-chlorite 

assemblages in the Mixed Lithology Slice and in the 

extensive carbonatization of the tectonic m6langes. 

Hypothesis 3. Without the benefit of stable isotopic 
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analyses, it would not be possible with the available data 

to choose between the two hypotheses. However, based on 

stable isotopic data, which show involvement of average 

crustal andjor marine carbon in magnesite associated with 

early lizardi te and talc, and of organic (continental) 

carbon in magnesite associated with antigoritP. and quartz, a 

third hypothesis for the origin of the tectonic melanges is 

envisaged. In this scenario, development of the tectonic 

melanges was initiated during transport of the ophiolite 

thrust sheet on the ocean floor, and was completed during 

later phases of extensional faulting after th"l ophiolite was 

emplaced on the continental margin. At this time, co2-

bearing fluids reacted with early formed lizardite and talc, 

resulting in antigorite-magnesite and finally quartz­

magnesite assemblages. 

Based on age constraints (Dunning and Krogh, 1985; Colman­

Sadd et al., 1992), a time span of about 20 Ma elapsed 

between the formation of the Coy Pond complex at a spreading 

center and its emplacement on the continental margin. 

After emplacement, low-P metamorphism produced a doming 

and diapiric uplifting of the Mount Cormack Terrane, 

emplacing the Coy Pond Complex in a subvertical orientation 

by extensional faulting. During extensional faulting, the 

fcrwi\tion of tectonic melanges was completed and most of the 
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lizardite recrystallized to antigorite or was replaced by 

quartz-magnesite. 

The history of development of the tectonic melanges is 

constrained by carbonatization events that occurred whi la 

the ophiolite was in an oceanic realm and after its 

emplacement on the continental margin. 
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Appendix 1 
serpentine pseudomorphic textures 

Pseudomorphic textures (Fig 6.1) are produced during 
initial serpentinization, whereas nonpseudomorphic textures 
are produced during serpentine recrystallization. Providing 
that the state of strain is low, pseudomorphic textures are 
produced during the serpentinization of almost all minerals 
in ultramafic rocks. According to Wicks (1984), such 
teY.tures may form during either retrograde or mild prograde 
metamorphism. Pseudomorphic textures are commonly valuable 
for the determination of the nature of the protolith an~ for 
the interpretation of the history of the ultramafic rocks as 
the pseudomorphs may preserve the outline and some details 
of the solid-state deformation textures of olivine and 
pyroxene. In case of perfect pseudomorphism, it is not 
difficult to recognize kink bands and undulatory extinction 
in olivine and elongation of pyroxenes. 

However deformation events during or after 
serpentinization may disturb or replace pseudomorphic 
textures with non-pseudomorphic textures such as 
interpenetrating and interlocking. Non-pseudomorphic 
textures are produced by recrystallization of lizardite to 
antigorite (interpenetrating texture) or to lizardite ± 
chrysotile ± antigorite (interlocking texture) . 

Mesh texture 
ThG regular, pclyhedral or irregular central areas 

enclosed by the mesh·"ork have been called cores (Francis, 
1956; Deer et al. 19f2, Grub 1962) or meab centers (Wicks 
and Whittaker 1977). The outer zones surrounding the mesh 
centers are composed of pseudofibrous serpentine that has 
been referred to as a collar (Francis 1956), veinlet (Coats 
1967), cord (Maltman 1978; Lauder, 1965) or mesh rim (Wicks 
et al. , 1977) • 

Mesh texture -· development and nomenclature 
The process of serpentin i zation suggested by Wicks and 

Wittaker (1977) firstly involves the formation of well­
crystallized and well-oriented lizardite mesh rims, followed 
by the production of fine grained, randomly oriented 
serpentine within mesh centers (Fig 6.1). However Cressey 
(1979), proposed another process based on electron 
microscopy observations of the products of the experimental 
hydration of olivine to serpentine and brucite performed by 
Martin and Fyfe ( 1970) • In this model the mesh rim, with its 
well-crystallized serpentine was formed by recrystallization 
of the first-formed, poorly crystalline serpentine. 
According to this mechanism, serpentine recrystallization 
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started virtually simultaneously with serpentinization. If 
the serpentinization front advanced more rapidly than the 
recrystallization front, one may expect to find mesh centers 
with poorly crystallized serpentine remaining (Fig 6. 4). A 
pure hour-glass texture is to be expected when suitable 
conditions were maintained and the whole serpentine had 
recrystallized (Fig 6.7 and 6.8). If for some reason the 
recrystallization stopped before reaching the cell center, 
an incomplete hourglass texture will be produced (Fig 6.9). 

In optical descriptions of serpentine minerals and 
textures, the terms a- and y-serpentine (Francis 1956) are 
c,.,mmonly used. a-serpenti•te is length-fast, with apparent 
fibers having negative elongation, and y-serpentina length­
low, with apparent fibers having positive elongation. It was 
determined (Wicks and Zussman, 1975) that a-serpentine is 
peudofibrous lizardite, and that y-serpentine can be 
chrysotile, lizardite or antigorite. For this reason the 
authors recommend the use of a- and -y-serpentine only as 
petrographic terms, and conventionally the elongation of the 
mesh rims gives the character of the entire mesh texture 
regardless of the optical orientation of the serpentine in 
the mesh centers. Electron microscopy of ion-thinned samples 
(Cressey,1979) has shown that the mesh rim consists of 
parallel stacks of lizardite plates. 

Banded growth texture 
Banded growth (Figs 6.1 and 6.4) textures were first 

described by Francis (1956) and attributed to the effect of 
local shearing on regular mesh textures. The same texture 
was referred to as "ribbon" by Maltman (1978) who considered 
it to be derived from mesh texture during regional shear­
stress. Wicks et al. ( 1977) considered banded growth texture 
to be a variant mesh texture which reflects the fracture 
pattern of the olivine rather than the shear stress during 
or after the serpentinization. 

Bastite texture 
The serpentinization process of pyroxenes appears to 

proceed similarly to that of olivine, beginning at grain 
boundaries and fractures and following cleavages and 
fractures (Figs 6.1; 6.10 and 6.11). This phenomenon may be 
seen in partially serpentinized specimens. A close 
topotactic relationship between lizardite bastite and its 
parent silicates has been found to exist. (Wicks and Zussman 
1975; Dungan 1979). 
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APPENDIX 2 

(A) MICROANALYSER CHARACTERISTICS 

Electron microprobe analyses were done with a JEOL JXA 50-
A Electron Probe Microanalyzer with 3 wavelength dispersive 
crystal spectrometers situated at the Department of Earth 
Sciences, Memorial University of Newfoundland. The 
instrument is operated through a PDP-11 computer. Counts 
were collected for 30 seconds, or up to 30 000 counts were 
recorded. Operating conditions were: accelerating voltage 15 
kv, beam current 22 nA and a size beam size 10 microns was 
used for silicates, and a 30 microns beam for carbonate 
(magnesite). The total iron was expressed in FeO. 

In order to evaluate analytical errors, at the beginning 
and also during each microprobe session, natural olivine, 
orthopyroxene, clinopyroxene or cr-spinel standards were 
analyzed. All the analytical errors associated with repeated 
microprobe analysis of the olivine, orthopyroxene and 
clinopyroxene standards were <3\ and for Cr-spinel <4\. 

(B) CORRECTION FOR MAGNESITE 
ANALYSES CONTAINING SERPENTINE INCLUSIONS 

Electron microprobe analyses of carbonates were done with a 
30 micron diameter beam and 10 nA current. Magnesite, 
especially in serpentinite rocks contains minute serpentine 
inclusions (often visible under crossed polars) indicated by 
Si02 in the analytical results. 

Corrected magnesite compositions have been calculated by 
removal of silicate (serpentine) component from the 
magnesite analysis in the following manner: 

(i) Specimen 432-D was chosen as an average lizardite 
composition to be subtracted from all magnesite analyses 
containing silicate inclusions. 
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NA Mg Al Si Ca Ti cr Mn Fe* Ni Total 
============================================================ 
.02 40.0 .02 41.02 .01 .00 .03 .04 4.71 .40 86.24 
------------------------------------------------------------
FM* 2.857 1.966 0.188 5.027 
------------------------------------------------------------
Si/Mq = 0.688; Si/Fe = 10.407; 
Fe* = FeO as Fe total 
FM* s number of ions based on 7 oxyqens (calculated) 

Table A.8.1 Composition of average lizardite from sample 
432-D used to correct magnesite analyses with lizardite 
inclusions. 

(ii) Si/Mg and Si/Fe cation ratios (as ions) were 
calculated from average lizardite (Table A.9.1). 

(iii) For each magnesite analysis which contained Si 
(serpentine inpurities), Si was subtracted entirely, and Mg 
and Fe reduced accordingly to the Si/Mg and Si/Fe ratios 
determined in average lizardite. 

(iv) After subtraction, the sum of Ca and the remaining Mg 
and Fe in magnesite were normalized to 1 cation. 
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(C) X-RAY POWDER DIFFRACTION PROCEDURE 
In thin sections, the nature of serpentine polymorphs was 

determined petrographically using criteria described by 
Wicks and Whittaker (1977), and afterwards verified and 
confirmed by X-ray means. 

Representative samples of all observed serpentine textures 
were ground to a fine powder, and any magnetite present, was 
removed magnetically. The powder was mixed with acetone and 
the slurry spread on glass slides which, after drying, were 
placed in a standard X-ray diffraction unit (Rigaku CN 4148 
C1 R-RU 200) employing CuKQ radiation. A scan rate of 
1°20/minute generate ~atisfactory patterns. 

The specific serpentine minerals were determined using 
criteria suggested by Whittaker and Zussman (1956), and by 
comparison with JCPDS (Joint Commitee on Pow~er Diffraction 
Standards) standard patterns. 

Antigorite is distinguishable from lizardite and 
chrysotile by: 

(i) the absence of a major peak at 20 = 19.2 - 19.4° 
(ii) a major peak at 20 = at 35.5° 
(iii) a moderate peak at 20 = 59.0 - 59.1° 

In contrast, lizardite and chrysotile have: 
(i) a moderate asymmetric peak at 20 = 19.2 - 19.4° 
(ii) a major peak at 20 • 35.9 - 36° 
(iii) a moderate single peak at 28 • 60.2° 

Chrysotile and lizardite were distinguished by their (204) 
and (208) peaks. The lizardite (204) peak occurs at 
20=42.07° and (208) peak occurs at 28=61.74°. The chrysotile 
(204) peak occurs at 28=43.16°, and no peak is present in 
the region 28=61.7°. 
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Appendhc 3: Mlcroprob4i analyau of oUvine 
j 

---------------------------------------------· 
.I 
j 

apecimen 333 333 333 156 156 156 l 
rock Hz Hz Hz Hz Hz Hz ~ 

i 
analy&il 1 2 3 4 5 6 ' 
---------------------------------------------~ j Na20 0.02 0.02 0.30 0.01 0.01 0.05 
MgO 49.76 51.21 50.38 49.4fi 49.90 48.96 
Al203 0.00 0.00 0 .20 0.00 0 .00 0.02 • 
Si02 41.11 40.66 39.79 37.19 37.57 0.14 j 
CaO 0.02 0.00 0.00 0.02 0 .00 0.01 ~~ 
Ti02 0.00 0.20 0.00 0.00 0 .00 0.00 ' , 
Cr203 0.00 0.00 0 .00 0.00 0.00 0.02 ~ 
MnO 0.15 0.11 0.14 0.18 0 .21 0 .11 ·~ 

Feo• 8.52 8.86 8 .47 12.25 11 .93 11,18 
NiO 0 .34 0.39 0.32 0.49 0 .56 0.51 
Total 99.91 101 .27 99.15 99.61 100.19 98.00 

number of ions on the basis ol4 oxygene 
Na 0.000 0.000 0.000 0.000 0.000 0.002 
Mg 1.800 1.844 1.852 1.854 1.857 1.856 
AI 0.000 0.000 0.000 0.000 0.000 0.000 
Sl 1.002 0.982 0.981 0.935 0 .938 0.945 
Ca 0.000 0.000 0.000 0.000 0 .000 0.000 
n 0.000 0.000 0.000 0.000 0 .000 0.000 
Cr 0.000 0.000 0.000 0.000 0.000 0.000 
Mn 0.020 0.020 0.002 0.00~ 0.003 0.002 
Fe 0.173 0.178 0.174 0.257 0 .249 0.237 
Nl 0.006 0.070 0.050 0.009 0.011 0.010 ' 
Total 2.994 3.014 3.015 3.059 3.059 3.053 

I 
Fo 91.0 88.1 89.2 87.5 87.7 88.3 o! 

J 
!. 

•feO as Fe total continued i 
Hz • harzburgite I 

320 

---- --·-- - - - - ----



appendix 3 (continued) 

---------·····----------··-----·-----· -------l apecimen 184 184 184 175 175 
rock Hz Hz Hz Hz Hz 
analysis 7 8 9 1 o•• ,, .. 
--------------------------··-········ · ···----' Na20 nd nd nd nd nd 
MgO 51 .39 50.44 50.58 51 .43 50.86 
Al203 nd nd nd nd nd 
Si02 39.90 40.41 40.08 40.32 40.94 
CaO nd nd nd nd nd 
Ti02 nd nd nd nd nd 
Cr203 0.00 0.00 0 .02 0.00 0.09 
MnO 0.14 0 .11 0.14 0.15 0.09 
Fee• 8.72 8.84 8.55 8.75 8.68 
NiO nd nd nd nd nd 
Total 100.16 99.80 99.36 100.66 100.66 

Na 
Mg 1.870 1.836 1.851 1.861 1.835 
AI 
Si 0.974 0.988 0.984 0 .979 0 .991 
Ca 
Ti 
Cr 0.000 0.000 0.000 0.000 0.001 
Mn 0.002 0.002 0 .002 0.002 0.001 
Fe o.1n 0.180 0 .175 o .1n 0 .175 
Nl 
To1al 3.024 3.008 3.013 3.019 3.004 

Fo 91 .4 91.1 91.4 91.3 91.3 

continued 
• FeO a1 Fe total 
•• fragment in m"ange 
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Appendix 3 (continued) 

······-------··········-··-············==•••3: 
apecimen 299 299 299 103 103 103 
rock Oun• Dun• Oun• Dun•• Dun•• Oun•• 
analysis 13 14 15 16 17 18 

---------------------------------------------· Na20 nd nd nd nd nd nd 
MgO 49.71 49.74 50.80 52.21 52.44 52.59 
Al203 nd nd nd nd nd nd 
Si02 40.63 40.14 40.39 40.63 41 .03 40.89 
CaO nd nd nd nd nd nd 
no2 nd nd nd nd nd nd 
Cr203 0.02 0.00 0.04 0.00 0.00 0.02 
MnO 0.02 0.06 0.00 0.07 0.09 0.09 
FeO* 8.46 10.27 8.27 7.23 7.14 7.42 
NIO 0.11 0.24 0.19 nd nd nd 
Total 98.95 100.48 99.69 100.13 100.70 101.00 

Na 
Mg 1.284 1.816 1.851 1.885 1.880 1.883 
AI 
Sl 1.000 0.983 0.986 0.983 0.987 0.982 
c. 
n 
Cr 0.000 0.000 0.000 0.000 0.000 0.000 
Mn 0.000 0.010 0.000 0.001 0.001 0.001 
Fe 0.174 0.209 0.168 0.148 0. 143 0.148 
Ni 0.001 0.004 0.003 
Total 2.998 3.014 3.009 3.015 3.011 3.015 

Fo 88.0 89.5 91.5 92.8 92.9 92.7 

• FtO as Fe total continued 
Dun• • dunite in pyroxenite 
Dun•• • dunite in harzburgite 
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Appendix 3 (continued) 
=•=====z=============================== 
specimen 103 108 108 108 108 
rock Dun** Dun Dun Dun Dun 
analysis 19 20 21 22 23 
•=•=a===•===========•================== 
Na20 nd nd nd nd nd 
MgO 52.65 50.15 50.57 50.69 50.84 
Al203 nd nd nd nd nd 
Si02 40.79 40.54 40.30 40.56 40.34 
CaO nd nd nd nd nd 
Ti02 nd nd nd nd nd 
Cr203 0.00 0.03 0.02 0.03 0.02 
MnO 0.16 0.11 0.16 0.16 0.13 
FeO* 7.09 9.03 9.21 9.37 9.69 
NiO nd nd nd nd nd 
Total 100.69 99.86 100.25 100.81 101.02 

Na 
Mg 1.890 1.828 1.840 1.835 1.839 
AI 
Si 0.982 0.991 0.983 0.985 0.979 
Ca 
Ti 
Cr 0.000 0.000 0.000 0.000 0.000 
Mn 0.002 0.002 0.002 0.002 0.002 
Fe 0.143 0.184 0.188 0.190 0.196 
Ni 
Total 3.017 3.004 3.013 3.012 3.0 17 

Fo 93.0 90.9 90.7 90.6 90.4 

---------------------------------------
*FeO as Fe total 

analysis 20-23 (specimen 108)= olivine from 
dunitic wall of a pyroxenite dike 
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Appendix 4: Microprobe analytu of pyroxenu 

---------------------------------- - - - ~ - ------ · analysis 2 3 4 5 6 
•••••••••••••••••••••••••••••••••••a z zz• • ••••1 
Na20 0.00 0 .04 0.07 0.04 0.06 0 .00 
MgO 34.62 35.45 35.55 35.26 35.21 34.67 
Al203 0.36 0.48 0.77 0.74 0.86 0.59 
Si02 56.14 57.44 53.62 54.33 53.78 57.05 
CaO 0.93 0.64 1.08 1.25 1.07 0 .73 
Ti02 0.03 0 .01 0.03 0.02 0.02 0 .03 
Cr203 0.27 0 .26 0.41 0.63 0.51 0 .30 
MnO 0.07 0 .14 0.16 0.12 0.16 0. 11 
Feo• 5.33 5.57 7.23 7.11 6.97 5.72 
NiO 0.04 0.11 0.11 0.16 0.12 nd 
Total 97.80 100.15 99.22 99.65 98.75 99.20 

tetrahedral fo rmulae bated on 6 oxygen• 
AUv 0.014 0.019 0 .031 0.030 0.035 0.023 
Sl 1.976 1.975 1.901 1.907 1.904 1.979 
Total 1.990 1.994 1.932 1.937 1.939 2 .000 

octahedral 
AM 0.000 0.000 0 .000 0.000 0.000 0.002 
Na 0.000 0.002 0 .004 0.002 0.003 0.000 
Mg 1.815 1.817 1.872 1.846 1.858 1.793 
Ca 0.035 0.023 0.040 0.046 0.039 0.026 
n 0.000 0.000 0 .000 0.000 0.000 0.000 
Cr 0.007 0.006 0 .010 0.018 0.013 0.008 
Mn 0.020 0.004 0 .004 0.003 0.004 0.003 
Fe 0.158 0.159 0 .212 0.208 0.206 0.166 
Nl 0.001 0.002 0.002 0.004 0.003 0.000 
Total 2.034 2.013 2.144 2.125 2.126 1.998 

Enatatite 89.2 90.3 87.3 86.9 87.4 89.7 

•FeO 11 Fe total continued 
analyaea 1 - 2 (specimen 333) • orthopyroxene In harzburgite 
analyaea 3 - 5 (specimen 156) • orthopyroxene In harzburgite 
analyse• 6 - 7 (specimen 184)• orthopyroxene in harzburgite 
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App.4 continued 
•••••••••••••••••••••••••••••••••••• s•• •••••• ; 

analysia 7 8 ~ 10 11 12 

-------------------------------------·--·---·· Na20 0.00 0.04 0.04 0.09 0.00 0 .00 
MgO 34.94 35.43 34.54 35.46 34.39 35.16 
Al203 0.68 0.40 0.58 0.53 0.39 0 .28 
SI02 57.20 56.45 57.54 57.~ 57.79 57.43 
CaO 1.15 0.43 1.01 0.91 0.46 0.64 
no2 0.00 0.00 0.03 0.00 0.00 0 .00 
Cr203 0.35 0 .32 0.30 0.30 0.30 0.27 
MnO 0.11 0.15 0.15 0.13 0.14 0.16 
FeO* 5.91 5.67 5.76 5.64 6.25 6.43 
NIO nd nd nd nd nd nd 
Total 100.35 98.89 99.95 100.45 100.27 100.38 

tetrahedral formulae based on 6 oxygena 
AUv 0.027 0.016 0.023 0.021 0.015 0.0 11 
Sl 1.967 1.967 1.983 1.969 1.985 1.975 
Total 1.994 1.983 2.000 1.990 2.000 1.986 

octahedral 
AM 0.000 0.000 0.006 0.000 0.000 0.000 
Na 0.000 0.002 0 .002 0.005 0.000 0.000 
Mg 1.790 1.839 1.774 1.813 1.790 1.803 
Ca 0 .041 0.015 0.036 0.033 0.016 0.023 
n 0 .000 0.000 0.000 0.000 0.000 0.000 
Cr 0 .009 0.008 0.008 0.008 0.008 0.007 
Mn 0.003 0.004 0 .004 0.003 0.004 0.004 
Fa 0 .169 0.165 0.166 0.161 0 .179 0.185 
Ni 0.000 
Total 2 .012 2.033 1.998 2.023 1.997 2.022 

Enstatite 89.(, 90.5 88.9 89.8 89.6 89.2 

• FaO as Fa total c:ontlnued 
analyau 8 - 10 (specimen 175) • orthopyroxane ln harzburgite 

lragmentin m61anga 
analysn 11-13 (specimen 108)• ortho pyroxene in pyroxenite dike 
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App.4 continued 

····-········-···········--······--··-3·-·--· ' 
analyaia 13 14 15 16 17 18 

------------------------------------·=···----1 Na20 0.06 0.93 0.00 0.11 0.10 0.00 
MgO 35.12 22.16 15.67 16.23 16.63 16.73 
Ai203 0.33 1.92 2.11 2.03 1.77 2.05 
SiO 57.65 56.16 53.81 54.06 54.42 53.54 
1<20 0.00 0 .00 0.01 0.00 0.00 0.00 
CaO 0.62 11 .59 23.19 22.72 23.15 22.39 
Ti02 0.00 0.05 0.10 0 .25 0.09 0.14 
Cr203 0.31 0.44 0.56 0 .45 0.52 0.62 
MnO 0.11 0.13 0.11 0.16 0.06 0.09 
FeO• 5.76 2.57 3.56 3.40 3.34 4.04 
NiO nd 0.11 0.09 0.04 0.05 0.00 
total 99.96 96.14 99.23 99.45 100.11 99.61 

formulae basad on 6 oxygens 
Na 0.004 0.065 0.000 0.007 0.006 0.000 
Mg 1.801 0.122 0.857 0.883 0.898 0.912 
AI 0.000 1.200 0.090 0.086 0.075 0.088 
Si 1.984 2.040 1.975 1.975 1.974 1.958 
K 0.000 0.000 0.000 0.000 0.000 0.000 
Ca 0 .022 0.451 0.911 0.8~ 0.899 o.8n 
n 0.000 0.001 0.002 0.006 0.002 0.003 
Cr 0.008 0.012 0.016 0.013 0.014 0.017 
Mn 0.003 0.003 0.003 0.004 0.001 0.002 
Fe 0 .166 0.078 0.108 0.103 0.101 0.123 
Ni nd 0.002 0.002 0.001 0.001 0.000 
total 2.004 1.934 3.964 3.967 3.972 3.980 

•FeO as Fe total continued 
analyaia 14 (specimen 1 08) • cUnopyroxene 
analyaia 15-17 (epecimen 94-C)• cUnopyroxene porphyroblaet 
analysis 18-20 (specimen 94-C) • clinopyroxene neobiast 
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App.4 (4) continued 

=============~;=-====================== 
analysis 19 20 21 22 23 
===================·==~=====·========== 
Na20 0.14 0.02 0.08 0.13 0.11 
MgO 16.48 16.21 16.58 15.93 16.68 
Al203 1.98 2.11 2.!:18 2.51 2.58 
SiO 53.86 53.31 54.35 51.77 52.43 
1<20 0.00 0.00 0.00 0.03 0.01 
CaO 23.02 23.18 23.86 24.23 24.43 
Ti02 0.13 0.09 0.16 0.11 0.23 
Cr203 0.53 0.53 0.46 0.40 0.43 
MnO 0 .09 0.14 0.22 0.09 0.03 
FeO* 3.83 3.72 4.04 4.00 3.61 
NiO 0.00 0.00 0.00 0.00 0.00 
total 100.05 99.30 102.33 99.18 100.62 

formulae based on 6 oxygens 
Na 0.009 0.001 0.005 0.008 0.007 
Mg 0.894 0.887 0.882 0.880 0.906 
AI 0.084 0.090 0.108 0.108 0.110 
Si 1.960 1.958 1.941 1.920 1.911 
K 0.000 0.000 0.000 0.001 0.000 
Ca 0.897 0.912 0.913 0.962 0.954 
Ti 0.003 0.002 0.004 0.002 0.006 
Cr 0.015 0,015 0.012 0.011 0.012 
Mn 0.002 0.003 0.006 0.002 0.000 
Fe 0.116 0.113 0.120 0.123 0.109 
Ni 0.000 0.000 0.000 0.000 0.002 
total 3.980 3.979 3.991 4.017 4.017 

*FeO as Fe total continued 
analysis 21-23 (specimen 404j = clinopyroxene porphyrocl< 

in pyroxer.it« 
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App.4 continued 
••••• • ••••••••••••••••••••••••••••••z=a•••••• r 
•nalytis 24 25 26 27 28 29 
••••••-••••••••••••••••••••••••••••c •• a•••••• s 
Na20 0.14 0.00 0.03 0.00 0.02 0.08 
MgO 16.86 17.03 17.02 16.92 17.46 17.35 
Al203 1.05 1.38 0.88 1.04 0.96 1.07 
SIO 53.93 53.43 54.21 52.49 51 .66 52.34 
K20 0.00 0.02 0.00 0.00 0.01 0.02 
CaO 24.27 23.68 24.37 25.10 24.91 24.29 
TI02 0.10 0.14 0.05 0.05 0.07 0.1 1 
Cr203 0.55 0.43 0.46 0.32 0.27 0.37 
MnC 0.04 0.13 0.10 0.11 0.07 0.09 
Feo• 2.87 3.04 2.76 2.95 2.70 2.82 
NIO 0.05 0.00 0.00 0.00 0.04 0.04 
total 99.89 99.28 99.89 98.97 98.18 98.57 

formulae based on 6 oxygen• 
Na 0.009 0.000 0.002 0.000 0.001 0.005 
Mg 0.917 0.931 0.924 0.933 o.g12 0.960 
AI 0.045 0.059 0.037 0.044 0.042 0.045 
Sl 1.970 1.960 t .976 1.943 1.929 1.944 
K 0.000 0.000 0.000 0.000 0.000 0.000 
Ca 0.950 0.930 0.952 0.995 0.996 0.966 
n 0.002 0.003 0.001 0.001 0.001 0.002 
Cr 0.015 0.012 0.013 0.008 0.007 0.011 
Mn 0.001 0.003 0.002 0.003 0.001 0.002 
Fe 0.066 0.092 0.083 0.091 0.083 0.087 
Ni 0.001 0.000 0.000 0.000 0.001 0.000 
total 3.997 3.989 3.990 4.019 4.032 4.023 

•FeO aa Fe total 
24-28 • (specimen 304) cQnopyroxene porphyroclasl 

in pyroxenite 
27-29 • (epecimen 304) cUnopyroxene neoblast 

in pyroxenite 
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Appendix 5: Microprobe analyttl of Cr-aplnel ln harzburgite -----------------------.. ----.------- ...... ---.. , 
specimen 

wt% 
analysis 

79-A 
~ore 

~orrected cation• 
1 

wt% 

144-A 
core 

correclcd catlone 
2 

•••••••••••••••••••••••••••••••••:.••= • s::•••••• a 
MgO 12.06 12.06 0.557 9.52 9.52 0.460 
Al203 23.02 23.02 0.841 14.98 14.98 0.572 
TI02 0.00 0.00 0.000 0.00 0.00 0.000 
V02 0.16 0.25 
Cr203 44.96 44.96 1.102 54.59 54.59 1.3gg 
MnO 0.2t 0.21 0.006 0.24 0.24 0.007 
Feo• 19.03 20.71 
NiO 0.05 0.02 
Sum 99.50 100.32 
Fe203 0.00 2.42 0.056 0.00 1.16 0.028 
FeO 19.03 16.85 0.437 20.71 19.67 0.533 
Sum 99.28 99.52 3.000 100.04 100.16 3.000 

endmember mol% mol"' 
Sp MgA1204 23.45 13.17 
MgChr MgCr204 30.72 :"2.19 
Mgt Mgfe204 1.57 0.65 
Uep Fel1204 0.00 0.00 
Her FeAI204 18.38 15.26 
Chr FeCr204 24.08 37.31 
Mt FeFe204 1.23 0.75 

Cr100/ 
Cr +AI 56.71 70.97 
Mg100/ 
Mg+Fe2+ 58.06 48.32 
Fe3+100/Fe3+ 
Cr +AI 11.45 5.03 

•FeO ae Fe total continued 
FeO aa Fe203 obtained aesumlng RO/R203 ratio in chromlan spinel ie 1/1 (Irvine 19t 
wt%•analyaea with ele~tron microprobe 
corrected• calculated (Newpet program) 
Sp•aplnel 
MgChr• magneslochromi1e 
Mgf• magnesioferrlte 
Uep•ulvoepinel 
Her•hercinite 
Chr•chromite 
Mt• magnetite 
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App.!S continued 
---- ........... ----------- .......... -- :: ..... = :r -:. -=-· - ~ : 
specimen 175 175 

core marg;n 
wt% corrected cation a wt% corrected cations 

analysit 3 4 
••••••••••••••••••••••••••••••••••••z•••••• •• : 
MgO 8.40 8.40 0.425 7.85 7.85 0.396 
A1203 8.33 8.33 0.333 8.67 8.67 0.346 
TI02 0.02 0.02 0.001 0.00 0.00 0.000 
V02 0.29 0.17 
Cr203 59.86 59.86 1.606 58.96 se.96 1.578 
MnO 0.17 0.17 0.005 0.20 0.20 0.396 
Fao• 22.24 23.82 
NiO 0.03 0.02 
Sum 99.36 99.70 
Fe203 0.00 2.36 0.060 0.00 2.99 0.076 
FeO 22.24 22.12 0 .571 23.82 2 1.13 0.598 
Sum 99.02 99.26 3.000 99.80 3.000 

endmember mol% mol% 
Sp MgAI204 7.07 6.85 
MgChr MgCr204 34.~ 31 .25 
Mgf MgFe204 1.28 1.51 
Utp FtTI204 0.03 0.00 
Her FtAI204 9.50 10.34 
Chr FeCr204 45.80 47.19 
Mt FeFe204 1.72 2.28 

Cr100/ 
Cr +AI 82.82 82.02 
Mg100/ 
Mg+Fe2+ 42.87 39.84 
Fa3+100/Ft3+ 
Cr +AI 9.57 11 .30 

continued 
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App.5 continued 

--------····--=-·· ------------···.--.- .; .... ----•: apeclmen 

wt% 
analyaia 

184 
core 

co ~rected cations 
5 

---------····----------------·········-; MgO 9.07 9.07 0.444 
Al203 10.0S 10.0S 0.389 
Ti02 0.00 0.00 0.000 
V02 0.24 
Cr203 60.40 60.40 1.568 
MnO 0.21 0.21 0.006 
FeO* 21.58 
NiO 0.04 
Sum 101.59 
Fe203 0.00 1.72 0.043 
FeO 21 .58 20.03 0.550 
Sum 101 .31 101 .48 3.000 

mol% 
Sp MgAI204 8.64 
MgChr MgCr204 34.82 
Mgt MgFt204 0.95 
Usp FeTi204 0.00 
Her FeA1204 10.70 
Chr FeCr204 43.14 
Mt FeFe204 1.17 

Cr100/ 
Cr +AI 80.13 
Mg100/ 
Mg+Fe2+ 44.67 
Fe3+100/Fe3+ 
Cr +AI 7.19 

· · ~------Sp • 1plnel Her • hereinite 
MgChr • magneslochromite Chr • chromlte 
Mgt • magnesloferrlte Mt • magnetite 
Usp • ulvospinel 
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Appendix 6: Microprobe analya .. of Cr- a pine I in dunite 
•••••••••••••••••••••••••••••••••••• • •=~••a~a : 

apecimen 94-B 251-A 
wt% corrected cationa ox wt% corrected cations 

analyals 1 2 

----------------------·-------------··==··---: MgO 2.98 2.98 0.155 6.88 
Al203 7.13 7.13 0.293 4.39 
1i02 0.16 0.16 0.004 0.04 
V02 0.30 0. 11 
Cr203 40.43 40.43 1.116 60.43 
MnC 0.60 0.60 0.018 0.29 
F\•O• 48.45 28.14 
NiO 0.60 0.03 
Sum 100.11 100.30 
Fe203 0.00 0.58 0.583 0.00 
FeO 48.45 0.83 0.831 28.14 
Sum 101.97 3.000 

mol% 
Sp MgAI204 2.26 
MgChr MgCr204 8.61 
Mgt MgFe204 4.50 
Uap FeTi204 0.35 
Her FeAI204 12.14 
Chr FeCr204 46.18 
Mt FeFe204 24.12 

Cr100/(Cr+An 79.18 

Mg100/(Mg+Fe2+) 15.72 

Fe3+100/(Fe3+ +Cr+AQ 20.60 

•FeO aa Fe total 
FeO and Fe203 obtained assuming RO/R203 ratio in spinel 

Is 1/1 (Irvine, 1965) 
wt% • analyzed with electron• microprobe 
corrected • recalculated by Newpet program 
Sp • spinel 
MgChr • magnesiochromite 
Mgt • m agnesioferrite 
Uap • ulvoapinel 
Her • herclnite 
Chr • chromite 
Mt • magnetite 
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6.88 0.354 
439 0.178 
0.00 0.001 

6Q.43 1.647 
0.29 O.C08 

6.64 0.172 
22.16 0.639 

100.84 3.000 

mol% 
3.15 

29.09 
3.04 
0.07 
5.69 

52.57 
5.50 

90.23 

35.62 

8.61 

continued 



App. 6 continued 

····--··=····--····=·········· ··-·-·· ~- -·· · · ' 1pecimen 25t-B 
wt% corrected cations 

analysis 3 
•••••••••••••••••••••••••••••••••••••~:•a•••• • 

MgO 4.63 4.63 0.243 
Al203 4.38 4.38 0.182 
Tl02 0.05 0.05 0.001 
V02 0.19 
Cr203 57.22 57.22 1.591 
MnO 0.41 4.63 0.012 
Feo• 33.02 
NIO 0.03 
Sum 99.93 
Ft203 0.00 8.49 0.225 
FtO 33.02 25.38 0.746 
Sum 100.56 3.000 

mol% 
Sp MgAI204 2.20 
MgChr MgCr204 19.28 
Mgf MgFe204 2.72 
Usp FtT1204 0.10 
Her FeAI204 8.77 
Chr FeCr204 59.30 
Mt FtFe204 8.38 

Cr100/{Cr+AQ 89.76 

Mg100/{Mg+Fe2+) 24.54 

Fe3+100/{Fe3+ +Cr+ AQ 11 .26 

*FeO u Fe total continued 
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App.e continued 
••••••••••••••••••••••••••••••••••••••s•• • • •• : 
apaclman 305 389 

wt% corrected cations wt% corrected cations 
analyala 4 s 

-------····---------------------------·-----·: MgO 4.68 4.68 0.246 7.33 
Al203 2.14 2.14 0.089 13.52 
no2 0.02 0.02 0.001 0.18 
V02 0.18 0.27 
Cr203 59.37 59.37 1.653 42.85 
MnO 0.43 0.43 0.013 0.21 
Feo• 33.91 34.78 
NiO 0.07 0.07 
Sum 100.79 99.20 
Fa203 0.00 9.69 0.257 0.00 
FaO 33.91 25.19 0.742 34.78 
Sum 101.52 3.000 

mol% 
Sp MgAI204 1.09 
MgChr MQCr204 20.30 
Mgf MgFt204 3.15 
Uap FtTi204 0.04 
Her FeAI204 3.29 
Chr FeCr204 61.30 
Mt FeFe204 9.!52 

Cr 1 00/(Cr + AQ 94.90 

Mg100/(Mg+Fe2+) 24.88 

Fa3+100/(Fe3+ +Cr+AQ 12.85 

*FeO as Fa total 
FaO and Fe203 obtained assuming RO/R203 ratio In spinel 
wt% • analyzed with electron• microprobe 
corrected • recalculated by Newpet program 
Sp • apinal 
MgChr • magnulochromita 
Mgf • magnuloltrrlte 
Uep • ulvoapinel 
Her • hercinlte 
Chr • chromlte 
Mt • magnetite 
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7.33 0.364 
13.52 0.530 
0.16 0.004 

42.65 1.126 
0.21 0.006 

13.33 0.334 
22.79 0.634 

mol % 
9.61 

20.43 
6.05 
0.25 

16.76 
35.63 
10.55 

ea.o1 

36.44 

16.76 



Appendix 7: Microprobe anaiysia of Cr- spinel In pyroxenite 

------------------------------------ -~ ---···-apeclmen 

analysis 

94-C 
corrected 

1 
cation• 

251-0 
wl% correct\}d cations 

2 

-----------·····-----------··------· ~ ·--····- 1 MgO 8.22 8.22 0.381 5.98 5.98 0.296 
Al203 28.93 28.93 1.060 17.30 17.30 0.678 
1i02 0.17 0.17 0.004 0 . 10 0.10 0.002 
V02 0.32 0 .40 
Cr203 28.59 28.51J 0.703 40.70 40.70 1.070 
MnO 0.54 0.54 0.381 0 .30 0.30 0.008 
Fee• 32.22 34.02 
NiO 0.05 0 .04 
Sum 99.04 98.84 
Fe203 0.00 IJ.79 0.229 0 .00 9.91 0.248 
FeO 32.22 23.41 0.609 34.02 25.10 0.698 
Sum 99.65 3.000 99.39 3.000 

a pinal mol% mol % 
Sp MgAI204 20.12 10.01 
MgChr MgCr204 13.34 15.80 
Mgf MgFe204 4.35 3.66 
U•p FeT1204 0.24 0.17 
Her FeAI204 32.14 23.58 
Chr FeCr204 21.31 37.22 
Mt FeFe204 6.94 8.62 

Cr100/(Cr+ AQ 39.87 61 .21 

Mg100/(Mg+Fe2+) 38.50 29.81 

Fe3+1 OO/(Fe3+ +Cr+M 11 .49 12.42 

*FeO aa Fe total continued 
FeO and Fe203 obtained asauming RO/R203 ratio in •pine I 

ia 1/1 {Irvine, 1965) wt" • analyaes with electrone microprobe 
corrected • recalculated with Newpet program 
Sp • spinel 
MgChr • magnesiochromite 
Mgt • magneaioferrlte 
Uap • ulvo•plnel 
Her • hercinite 
Chr • Chromita 
Mt • magnetite 
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App. 7 continued 
••••••••••••••••••••••••••• • •••••• • •••~=•••as : 

apecimen 
wt% 

analyala 

289-A 
corrected 

3 
cation• 

-------------------------------------2·······: MgO 3.61 3.61 0.181 
Al203 11.74 11.74 0.466 
TI02 0.10 0.10 0.003 
V02 0.56 
Cr203 38.07 38.07 1.013 
MnO 0.36 0.38 0.010 
Feo• 47.12 
NIO 0.03 
Sum 101.59 
Fe203 0.00 20.35 0.516 
FeO 47.12 28.81 0.811 
Sum 103.84 3.000 

apinel mol% 
Sp MgAI204 4.21 
MgChr MgCr204 8.16 
Mgf MgFe204 4.68 
Uap FeTI204 0.20 
Her FeA1204 18.64 
Chr FeCr204 40.99 
Mt FeFe204 20.86 

CrtOO/(Cr+AI) 68.51 

Mg100/(Mg+Fe2+) 18.26 

Fe3+100/(Fe3+ +Cr+AI) 2!5.88 
Cr+AI 

•FeO" Fe total 
FeO and Fe203 obtained auumlng RO/R203 ratio In a pine I 

Ia 1/1 (Irvine, t 885) 
wt% • analyau with electron• microprobe 
corrected • rec alculated with Newpet program 
Sp • spinel 
MgChr • magnealochromlta 
Mgf • magnu ioferrlte 
Uep • ulvoeplnel 
Her • harcinlte 
Chr • Chromlte 
Mt • magnetite 
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specimen 
rock 

analyele 

Appendix 8: Microprobe analysla of Cr-tplnel 
in melange assemblages 

wt% 

255-B 
Sch Sp 

corrected cation• 
1 

---------------------------------------·---··· MgO 4.85 4.95 
Al203 5.38 5.38 
TI02 0.02 0.02 
V02 0.23 
Cr203 55.70 55.70 
MnO 0.43 0.43 
FeO* 34.05 
NIO 0.04 
Sum 100.79 
Fe203 0.00 9 .74 
FeO 34.05 25.28 
Sum 101.51 

mol% 
Sp MgAI204 2.81 
MgChr MgCr204 19.48 
Mgf MfFt204 3.24 
Uap FeTI204 0.04 
Her FeAI204 8.04 
Chr FeCr204 55.82 
Mt FeFt204 9.30 

Crt 00/(Cr+A~ 

Mg100/(Mg+Fa2+) 

Fe3+100/(Fe3+ +Cr+A~ 

Sch Sp • achiatoae 81rpentinite 
*FeO aa Fe total 

0.258 
0.220 
0.001 

1.525 
0.430 

0.254 
0.732 
3.000 

87.41 

25.87 

12.70 

FeO and Fe203 obtained auumlng RO/R203 ratio 
In eplnella 1/1 (Irvine, 19611) 

w1% • analy11d by electron• microprobe 
corrected • recalculated by Newpet program 
T-M • talc-magnulte 
Q-M • quartz-magnesite 
Sp • apinel 
MgChr • magnulochromite 
Mgf • magneaioferrlte 
Uap • ulvoapinel 
Her • herclnite 
Chr • chromlte 
Mt • magnetite 3 3 7 

continued 



App.8 continued 

-------------------------------------=:=--···1 apeclmen 177-C 160 
rock T-M T-M 

wt% corrected cations wt% corrected cations 
analytla 2 3 
•••••••••••••••••••••••••••••••••••• •a~2••••• 1 

MgO 4.68 4.68 0.245 9.00 ~.00 0.434 
Al203 3.41 3.41 0.142 17.01 17.01 0.649 
Ti02 0.14 0.14 0.004 0.00 o.co 0.000 
V02 0.20 0.20 
Cr203 54.27 54.27 1.512 51.83 5!.83 1.326 
MnO 0.32 0.32 0.010 0.25 0.25 0.007 
Faa• 36.95 21 .57 
NIO 0.03 0.04 
Sum 89.88 99.92 
Fe203 0.00 12.80 0.339 0.00 !.02 0.025 
FeO 36.95 25.43 0.749 21 .57 20.65 0.559 
Sum 101.03 3.000 99.76 3.000 

mol% mol% 
Sp MgAI204 1.73 14.09 
MgChr MgCr204 18.43 28.80 
Mgf M1Fe204 4.14 0.54 
Uap FeTi204 0.28 0.00 
Her FeA1204 5.29 18.13 
Chr FeCr204 58.43 37.06 
Mt Fefe204 12.87 0.70 

Cr100/(Cr+A~ 91.44 67.15 

Mg100/(Mg+Fe2+) 24.62 43.72 

Fe3+100/(Fe3+ +Cr+AQ 17.01 1.25 

Sch Sp • achlato11 11rpentinite continued 
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App. 8 continued 

------------·····---------·-- -------- ~~~ ·-·*· ' apecimen 142-A 85-B 
rock 0-M a-M 

wt" corrected catlona wt" corrected cation a 
analyala ~ ~ 

---------------------------------------------1 MgO 9.02 9.02 0.451 8.57 8.57 0.444 
Al203 10.52 10.52 0.416 4.96 4.96 0.199 
TI02 0.02 0.02 0 .001 0.02 0.02 0.001 
V02 0.20 0.15 
Cr203 57.11 57.11 1 .515 63.96 63.96 1.717 
MnO 0.23 0.23 0 .007 0.23 0.23 0.007 
Feo• 21.7~ 22.28 
NiO 0.03 0.03 
Sum 98.87 100.18 
Fe203 0.00 2.68 0.068 0.00 3 25 0 .083 
FeO 21.75 19.34 0 .543 22.28 19.36 0.550 
s .. ;l 98.92 3 .000 100.55 3.000 

mol" mol% 
Sp MgAI204 9.38 4.41 
MgChr MgCr204 34.17 38.11 
Mgt MfFe204 1.53 1.84 
Uap Fen~04 0.03 0.03 
Her FeA1204 11 .28 5.46 
Chr FeCr204 41.10 47.19 
Mt FeFe204 1.84 2.28 

Cr1 00/(Cr +A~ 78.46 89.64 

Mg100/(Mg+Fe2+) 45.40 44.88 

Fe3+1 OO/(Fe3+ +Cr+A~ 3.81 4.15 
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Appendix II: Mlcroproba analyaea ol aerpantine 
•••••••••••••••••••• • •••••••••••••••••••• : ~ ~zaa aaaaa 

analylla 2 3 4 5 7 
rim rim rim cora cora C t;l -_' rim 

••••••••••••••••••••••••••••• •••••••••• • ••~ ~ =s•••••• 

Na20 0.00 0.02 0.00 0.00 0.04 O.C;:; 0.00 
MgO 311.23 40.00 311.38 311.52 40.84 ; ;J.9 1 40.45 
Al203 0.20 0.20 0.02 0.00 0.05 0.00 0.14 
910 40.78 41 .02 41 .85 41 .48 43.81 i'J.0 2 40.91 
K20 0.00 0.01 0.00 0.00 0.00 0.0 1 0.01 
CaO 0.02 0.01 0.01 0.02 0.02 0.00 0.04 
TIO 0.00 0.00 0.04 0.00 0.00 0.03 0.03 
Cr203 0.02 0.03 0.00 0.03 0.04 0.00 0,00 
MnO 0.01 0.04 0.04 0.00 0.08 o.u4 0.02 
Fao• 5.118 4.71 4.48 4.37 2.32 ~ . 00 5.46 
NIO 0.24 0.40 0.35 0.211 0.27 J .3S 0.16 
total ae.211 86.24 86.18 85.68 87.03 J5.2 1 87.21 
H20t•• 13.71 13.78 13.84 14.32 12.97 1 ~ .79 12.79 

number ollons on the basis of 14 oxygens 
Na 0.000 0.000 0.000 0.000 0.005 c.005 0.000 
Mg 5.837 5.717 5.605 5.656 5.647 5.745 5.735 
AI 0.000 0 .000 0.000 0.000 0.005 0.000 0.014 
91 3.11211 3 .1134 3.995 3.981 4.065 3.943 3.892 
I( 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Ca 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
n 0.000 0 .000 0.000 0.000 0.000 0.000 0.000 
Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Mn 0.000 0 .000 0.000 0.000 0.000 0.000 0.000 
Fa 0.481 3.780 0.355 0.350 0.182 0.317 0.429 
Nl 0.014 0.028 0.023 0.187 0.019 0.023 0.009 
total 10.061 10.057 11.1182 11.982 9.1121 10.038 10.085 

• FaO •• Fa total continued 
""H20+ calculatac:l by dllleranca 

analyala 1 - 3 (apaelman 432-D)• Uzardlta mash rim 
analylla 4 - 8 (apaclmen 432- 0) • lizardlta mesh centar 
analyala 7- 8 (apaclman 450-C)• Hzardlta meah rim 
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App.ll continued 

s••••••••••••••••••••••••••••••••••••••••• ,r~• •••••• 
8 II 10 11 12 1J 14 

rim cora cora rirn 
••••••••••••••••• • •••••••••••c•••••••••••••: • ••••••• 
Na20 0.00 0.04 0.00 0.07 0.00 0 Ud 0.02 MgO 311.74 311.05 311.51 38.114 37.88 3\1 . 1~ 38.48 Al203 0.14 0.411 0.01 0.02 0.05 0.01 0 .12 $10 40.52 41.71 42.711 43.77 43.14 4J. IG 44.33 K20 0.01 0.00 0.00 0.01 0.02 0.00 0 .00 
CaO 0.02 0.04 0.04 0.04 0.00 0.02 0.01 no 0.01 0.02 0.00 0.00 0.01 0.02 0.00 
Cr203 0.02 0.23 0.01 0.02 0.05 O.OJ 0.04 
MnO 0.02 0.05 0.00 0.01 0.14 O.OG 0 . 14 Fao• 5.110 4.118 . 711 4.98 4.70 4.1J 4.54 
NIO 0.17 0.14 v 14 0.02 0.19 0.21 0 .31 
lOIII 88.54 8fl.72 87.44 88.011 86.18 8G.9:l 87.118 H20+** 13.411 13.28 12.56 11.!11 13.82 1308 12.04 

numbar cllona on lila bula cl14 011ygana 
Na 0.000 0.005 0.000 0.010 0.000 0.014 0 .002 
Mg 5.893 5.5311 5.544 5.412 5.372 5.496 5.338 
AI 0.014 0.051 0.005 0.000 0.004 0.004 0 .010 $1 3.892 3.1187 4.023 4.082 4.104 4.0GO 4.128 
K 0.000 0.000 0.000 0.000 0.000 0.000 0 .000 e. 0.000 0.000 0.000 0.002 0.000 0.000 0.000 
Tl 0.000 0.000 0.000 0.000 0.000 0.000 0 .000 
Cr 0.000 0.014 0.000 0.000 0.002 0.002 0.000 
Mn 0.000 0.000 0.000 0.008 0.010 0.324 0 .008 
Fa 0.471 0.3112 O.:i73 0.388 0.372 0.014 0 .352 
Nl 0.0011 0.005 0.005 0.0 10 0.014 0.008 0.003 
total 10.080 11.1177 11.!154 11.9 12 8.878 !1.1118 11.8511 

*FaO aa Ft total con1inu~d 
••H20+ calculated by dilfaranca 

analyalall - 10 (apedman 450-C)•IIzardlto maah canter 
analyala 11-13(apaclman 203-8) •lizardlta;bandad growth ta•lutc 
analyala 14- US(spaclman 203- 8) • rlm.Mzardlla;gamma maah taxtuto 
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App. a continued 

································----·····= ~ :::.:: a••••• 
15 HI 17 18 19 20 21 

rim rim core cora cora rim rim 
••••••••••••••••••••••••a••• ~•••~••••••••• •= ~ •• ••••• 

Na20 0 .00 0.03 0.01 0.07 0 .05 0 .00 0.011 
MgO 311.411 38.47 38.811 37.88 38.28 40.54 40.53 
Al203 0 .08 0 .13 0.12 0.08 0 .07 0 .02 0.02 
SlO 44.00 44.48 44.37 44.32 44.01 ~0! .69 42.32 
K:IO 0 .00 0.01 0.00 0.01 0.01 0.00 0 .00 
CaO 0 .04 0.00 0.00 o.oo 0.04 o.v2 0.02 
TiO 0 .00 0.00 0.00 0.00 0.00 \.l. iJU 0.00 
Cr203 0 .01 ?.04 0.02 0.05 0.05 U.Vv 0.01 
t.lnO 0 . 11 0.01 0.11 0.11 0 .13 u.o:• 0.08 
Feo• 4 .611 4. 111 4.64 4.31) 4 .58 l ,, 1.97 
NIO 0.12 0.26 0.43 0.19 0 .15 i.J .C:J 0.12 
total 88.811 87.71 88.70 87.10 87.34 85 2J 85.16 
H20 t•• 11.34 12.29 11.30 12.90 12.68 H77 14.84 

numb lit of ions on lha basis of 14 oxygen• 
Na 0.008 0.002 0.016 0.010 0.080 nJ nd 
Mg 5.440 5.334 5.364 5.292 5.344 nJ nd 
AI 0.008 0.012 0.010 0.008 0 .004 IIJ nd 
Si 4.070 4. 138 4.104 4.154 4. 124 IIJ nd 
K 0.000 0.000 0.000 0.000 0.000 nd nd 
Ca 0.002 0.000 0.000 0.000 0 .002 nd nd 
Tl 0.000 0.000 0.000 0.000 0.000 nd nd 
Cr 0.000 0.002 0.000 0.002 0.002 nd nd 
Mn 0.008 0.004 0.080 0.008 0.008 nd nd 
Fe 0.360 0.324 0.358 0.340 0 .035 nd nd 
Nl 0.008 0.018 0.030 0.014 0 .010 nd nd 
lOla! 9.1104 11.834 11.890 8.828 11.858 nd nd 

• FeO as Fe total continued 
••H20 + calculated by difference 

analyaia17-1SI(spacimen 203- Bl • center,Uz. gamma mesh texture 
analyais 20-21 (specimen 196- Cl z rim, Uz. hourglasa texture 
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App.9 (4) continued 
•••~a••••••••••••••••••••••••••••••••••• ~ - - ....... 

22 23 24 25 26 .. 18 
core core 

·········································· --·-
Na20 0.00 0,03 0.00 0.05 003 {) l\l) 0.00 

MgO 39.74 39.75 40.33 40.54 39.83 ~1.\lCI 41 . 1~ 

Al203 0.00 0.02 0.25 0.211 0 . 17 0 00 0.00 

SiO 41 .32 41.07 44.45 45.41 44 .45 t: ' ti,'" 42.34 

K20 0.00 0.01 0.01 0.01 0.01 0.02 

CaO 0.00 0.04 0.00 O.:l2 0 .00 0 00 

TiO 0.04 0.03 0.04 0.01 O.OJ 0.00 

Cr203 0.00 0.02 0.05 0.05 0 .04 •J \IU 0 02 

MnO 0 . 11 0.10 0.00 0.00 0.04 tl ••K oo;• 
Feo• 2. 15 2.47 2.52 2.49 2.4 I , ··!l 1.64 

NiO 0.04 0.54 0.08 ().18 0 .20 u t>l 0 OJ 

total 83.39 84.08 87.74 89.05 87.02 H'"~ 'll) 9U2 

H20+"" 16.61 1~.92 12.26 10.95 12.!)8 II -II 14. /8 

number of iona on the baa~a ol 14 oxygana 
Na nd nd 0 .000 0.005 0 .005 U l JI IU 0.000 

Mg nd nd 5.544 5.483 5 .493 1 ·~~:; 7. 76~ 

AI nd nd 0 .023 0.021) 0 .014 0 000 0.000 

Si nd nd 4.097 4.121 4.130 ~. J!I5 5.357 

K nd nd 0.000 0.000 0 .000 0 000 0.000 

Ca nd nd 0.000 0.000 0 .000 0.000 0.000 

Ti nd nd 0.000 0.000 0 .000 u.OOO 0.000 

Cr nd nd 0.000 0.000 0 .000 0 u!IO 0.000 

Mn nd nd 0.000 0.000 0 .000 0.005 0.000 

Fe nd nd 0.191 0.191 0 .187 O. l ll3 0.173 

Ni nd nd 0.005 0.009 0 .009 0.0!10 0.000 

tolal nd nd 9.865 9.837 9 .842 1J ~58 13.295 

• FeO as Fa total continuotJ 

• • H20 + calculated by diHerenca 

analyaia 22-23 (specimen 196-C)• center, lizardite hourl)laaa 
analyais 24-215 (specimen 450-C)• fibrous chrysolite 
analyaia 27-29 (specimen 196-C)•Iibroua chrysolite 
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App. 9 c;ontinuod 

-------·····----------------·· ···---~ - - --= --- - - - - ··· 29 30 31 32 33 34 35 
••••••••••••••••••••••••••••••c=•••z= • •• ••~•••••• = •• 

Na20 0.02 0 .00 0.05 0.00 0 C5 0 .00 0.04 
MgO 40.91 37.93 39.39 38.94 40.:2 40.20 40.54 
Al203 0.04 0 .51 0.45 0.55 O.C7 0.10 0.12 
SIO 42.62 41.32 43.17 41.74 4 1. 17 41 .57 41.54 
1<20 0.00 0.02 0.00 0.01 O.Ct 0 .02 0.00 
CaO 0.00 0.02 0.02 0.04 0.02 0.00 0.05 
TiO 0.01 0 .00 0.00 0.00 o.cc 0.00 0.00 
Cr203 0.04 0.43 0.57 0.56 0.~ :: 0 .46 0.46 
MnO 0.03 0 .00 0.00 0.09 O.t b 0 .09 0.10 
Feo• 1.80 4.43 3.58 4.07 1.C'J , .17 1.20 
NiO 0.06 0.01 0.15 0.07 0 .08 0 .07 0.00 
total 85.53 84.83 87.38 86.08 83.59 83.70 84.04 
H20~·· 14.470 15.170 12.620 13.920 16.410 16.300 15.960 

number of ion a on the baaia of 14 oxygene 
Na 0.000 0 .000 0.005 0.000 o.oco 0 .000 0.004 
Mg 5.772 5.215 5.488 5.539 5.772 5.766 5.817 
AI 0.000 0.056 0.047 0.058 O.O:lO 0.011 0 .011 
Si 4.032 4.004 4.032 3.981 4 .03Z 4.015 3.997 
K 0.000 0.000 0.000 0.000 o.occ 0.000 0.000 
Ca 0.000 0.000 0.000 0.000 0 .000 0.000 0.000 
Tl 0.000 0.000 0.000 0.000 0 .000 0.000 0.000 
Cr 0.000 0.028 0.042 0.042 0 .000 0.032 0 .000 
Mn 0.000 0.000 0.000 0.005 0 .000 0.004 0.004 
Fa 0.140 0.359 0.275 0.322 0.140 0.091 0.095 
Ni 0.000 0.009 0.009 0.000 0 .000 0 .004 0.000 
total 9.951 9.935 9.898 9.945 9 .951 9 .947 9.965 

analysia 30- 32(spec;imen 450-C) • Iizardite.orthopyroxena bastite 
analyaia 33-35(spec;imen 313) • lizerdite, orthopyroxene bastite 

continued 

344 



App. 9 continued 
::E=======•a:aa=====•=====:===•==~;-==~==:w3:a 

36 37 38 39 40 41 
==============================;======= = ====a~& 

Na20 0.02 0.00 0.00 0.00 0.00 0.00 
MgO 39.77 39.46 39.36 38.46 37 79 39.80 
Al203 0.12 0.26 0.21 0.77 1.68 0 50 
SiO 45.83 45.93 45.44 42.93 :~ .60 46.32 
1<20 0.02 0.00 0.00 0.00 0.00 0.00 
cao 0.01 0.01 0 .00 0.02 0.01 0.10 
TiO 0.03 0.00 0.00 0.02 0.02 0 00 
Cr203 0.00 0.00 0.00 0.22 0 44 0.00 
MnO 0.05 0.09 0.00 0.00 0.09 0 OS 
FeO* 3.30 3.03 2.22 3.76 3.31 3.13 
NiO 0.10 0.21 0.11 0.18 0.14 0.19 
1otal 89.25 89.00 87.43 86.36 88.07 90.01 
H20+** 10.75 11.00 12.57 13.64 11 .93 9.99 

number of Ions on the basis of 14 oxygens 
Na 0.020 0.000 0.002 0.000 0.000 0 .000 
Mg 5.386 5.348 5.408 5.4 18 :>.186 5.332 
AI 0.010 •) .026 0.022 0.084 0 180 0.052 
Si 4.166 4.176 4.188 4.055 4.108 4 164 
K 0.000 0.000 0.000 0.000 0.000 0 .000 
Ca 0.000 0.000 0.000 0.000 0.000 0 000 
Ti 0.000 0.000 0.000 0.000 0.000 0.000 
Cr 0.000 0.000 0.000 0.014 0.030 0.000 
Mn 0.002 0.040 0.000 0.000 0.004 0.002 
Fe 0.250 0.230 0.170 0.294 0.254 0.234 
Ni 0.004 0.012 0.004 0.009 0.008 0.012 
total 9.822 9.798 9.792 9.875 9 .770 9.796 

analysis 36-38 (specimen 203- B)= interpenetrating antigorite 
analysis 39-41 (specimen 450-C) = interpenetratin'J antigorite 

continued 
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App. 9 continued 
•===============z============;=:--============ 

42 43 44 45 :s 
================&:::::==========~ = :::========; 
Na20 0.09 0.04 0.07 0.00 0 07 
MgO 66.63 69.90 29.46 30.88 29.82 
Al203 0.01 0.00 0.07 0.02 0.02 
SIO 3.68 0.05 62.54 62.13 62.31 
K20 0.05 0.00 0.00 0 .00 0.01 
CaO 0.02 0.02 0.02 0 .00 0.00 
TIC 0.00 0.00 O.Q1 0.00 0.02 
Cr203 0.00 0.00 0.01 0.04 0.04 
MnO 0.56 0.69 0.00 0.00 0.00 
Feo• 3.05 2.66 1.66 1.84 1.64 
NiO 0.08 0.06 0.03 0.06 0.06 
total 74 .15 73.42 93.88 94.97 93.99 

42 and 43 = Ions based on 1 oxygen 
44 to 46 = ions based on 22 oxygens 

Na 0.002 0.001 0.011 0.000 0.011 
Mg 1.205 1.295 5.660 5 .885 5.731 
AI 0.000 0.000 0.006 0.000 0.000 
Sl 0.044 0.000 8.063 7.942 8.030 
K 0.001 0.000 0.000 0.000 0.000 
Ca 0.000 0.000 0.000 0 .000 0.000 
Ti 0.000 0.000 0.000 0 .000 0.000 
Cr 0.000 0.000 0.000 0 .000 0.000 
Mn 0.006 0.007 0.000 0 .000 0.000 
F9 0.031 0.027 0.176 0 .193 0.1 71 
Nl 0.001 0.000 0.000 0.000 0.000 
total 1.288 1.331 13.921 14.025 13.954 

analysis 42-43 (specimen 313) = brucite 
analysis 44-46 (specimen 256-A)= talc 
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Appendix 10: Microprobe analyses of magnesite 
from serpentinite 

======:====a==••===~•===•========• - -•=;a:;::::::::a:a 
specimen 94-B 94-B 94-B 94-B 3 J 3-'3-0 3-'3-0 
serp.host A A A A ,, A A 
mean of 3 
analysis 2 3 5 6 
aa====•====••===================== 

~ ~=-·==========-= Si02 1.14 1.35 1.77 1.42 2 16 2 21 172 
MgO 35.66 34.45 35.00 35.04 36.68 38 00 36 41 
CaO 0.18 0.30 0.31 0 27 0.18 0 17 0 .18 
reo• 13.98 14.11 14.74 14.27 9.7 : 9 17 11 .88 
total 50.96 50.20 51 .82 51.00 48.72 49.55 50.19 

Sl 0.016 0.020 0.025 0.021 "'133 0 033 0025 
Mg 0.790 0.776 0.763 0.776 10 0 849 0.800 
Ca 0.002 0.004 0.004 0.004 ,. 102 0002 0.002 
Fe 0.173 0.178 0.180 0.177 0 124 0.115 0.146 
total 0.982 0.978 0.973 0.978 1 033 1.034 0.974 

Mg•• 0.815 0.805 0.800 0.806 0 866 0875 0 840 
Ca 0.002 0.004 0.004 0.004 0002 0002 0.002 
Fe 0.183 0.191 0.196 0.190 (\ 132 0.123 0 158 
total 1.000 1.000 1.000 t.OOO : 000 1.000 1.000 

MgC03 81 .5 80.5 80.0 80.6 86.6 87.5 84 .0 
CaC03 0.2 0.4 0.4 0.4 0.2 0.2 0.2 
FeC03 18.3 19.1 19.6 19.0 13.2 12.3 15.8 

* FeO as Fe total continued 
•• column of normalized mole fractions after removal of serpentine 

A = antigorite 
analysis 1-3 (specimen 94-B) = magnesite-an1igori1o assemblage 
analysis 4-6 (specimen 343-D)= magnesite- antigo• ate assemblage 
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App. tO continued 
••••••••• • ••••••••••••••••••• • • • •••••••• •• • c • • •••••• 
apecimen 343-0 343-B 343-B 343-B 343-B 432-D 432-D 
rock type L L L L L L L 
munol 4-6 7-ll 
anaty~a 7 8 II 10 11 

················································---· 
Si02 2.03 1.82 4.54 11.211 5.22 1.83 2.83 
MgO 37.03 39.50 39.64 3!U8 39.54 41 39 42.30 
CaO 0.18 0.05 0.04 0.00 0.03 0.07 0.04 
Feo• 10.25 0.95 1.112 1.26 1.38 0.89 1.03 
total 49.4ll 42.33 48.14 50.02 48.18 44 . 46 48.49 

Sl 0 .030 0.030 0.070 0.134 0.102 0028 0.042 
Mg 0.830 0.957 0.905 0.850 0.878 0 959 0 .944 
Ca 0.002 0.001 0.001 0 .000 0.000 0.001 0 .001 
fa 0.128 0.013 0.025 0.015 0.020 0 .012 0 .013 
total 1.014 1.030 1.071) 1.134 1.102 1.028 1.042 

Mg•• 0.861 0.972 0.963 0.984 0.972 0974 0.975 
Ca 0.002 0.011 C.015 0.013 0.014 0 .016 0.015 
Fa 0 .137 0 .011 0.022 0.003 0.014 0 .010 0.010 
total 1.000 1.000 1000 1000 1.000 1000 1.000 

MgC03 88.1 97.2 98.3 98.4 97.2 97.4 97.5 
CaC03 0.2 1.7 1.5 1.3 1.4 1.8 1.5 
FaC03 13.7 1.1 2.2 0.3 1.4 1.0 1.0 

. FeO as Fe total continued 
• • column o1 normalized molelractlons alter removal o1 nrpentine 

L • Uzardite 
analysis 4-8 (specimen 343-0) • ~gnesite-antigorite .. semblaga 
analysis 7-9 (specimen 343- B)• magnesita-tizardilt assembla ge 
analysis I0-1 1(specimen 432- 0)• magnesite- ~zard~e assemblage 
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App.1 0 continued 

--------------------------------·········----· apecimen 432-0 255-A 255-A ~55-A 255- A 
rock type L L L L L 
mean of 10-11 12- 14 
analyaia 12 13 14 

------------······--·····--------········--·-· Sl02 2.33 0 .32 0.02 1.20 0.5 1 
MgO 41.85 40.41 39.53 39.50 39.81 
CaO 0 .08 0.36 0.30 0.11 O.Z6 
F10* 0 .96 0 .66 0.83 1.36 0.95 
total 45.48 41 .76 40.68 42.20 41.55 

Si 0.035 0.005 0.000 0.020 0.010 
Mg 0.951 0.960 0.983 0.960 0.971 
Ca 0 .001 0.006 0 .005 0.002 0 004 
Fe 0 .012 0.009 0.012 0.019 0 015 
total 1.035 1.005 1.000 1.020 1.010 

Mg•• 0 .974 0.974 0.983 0.980 0.982 
Ce 0.016 0.016 0.005 0.002 0.004 
Fe 0 .010 0.010 0.012 0.018 0.014 
total 1.000 1.000 1.000 1.000 1.000 

MgC03 97.4 97.4 98.3 98.0 98.2 
CeC03 1.6 1.6 0.5 0.2 0.4 
FeC03 1.0 1.0 1.2 1.8 1.4 

• FeO •• Fa total continued 
•• column of normalized molelractlona after ram oval ol aerpentine 

L • Uzardite 
analyala 10-11 (apecimen 432- 0) • magnulto-Uzardlte asaemblage 
analysis 12-1 4(apeclmen 255- A) • magnesite -lizardito anemblege 
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App.t 0 continued 

------------------------------·---·-==== •••••: 
specimen 
roc~ type 
analyala 

Do 
255-A 

L 
15 

256-A 
L+A 

HI 

450-C 
L+A 
17 

-·······-----·-············ · ······-· · · · ------~ Sie2 0.47 4.06 1.71 
Mge 21 .98 39.78 41 .91 
Cae 26.31 0.27 0.02 
Fee• 1.38 1.37 2.34 
total 50.39 45.48 46.43 

Sl 0.008 0.063 0.025 
Mg 0.524 0.916 0.916 
Ca 0.451 0.004 0.006 
Fe 0.018 0.018 0.028 
total 1.008 1.063 0.974 

Mg .. 0.516 0.982 0.966 
Ca 0.451 0.004 0.006 
Fe 0.033 0.014 0.028 
total 1.000 1.000 1.000 

MgCe3 51.6 98.2 96.6 
CaCe3 45.1 0.4 0.6 
FeCe3 3.3 1.4 2.8 

• Fee aa Fe total 
•• column of normalized mole fractions after removal of serpentine 

Do • dolomite 
L+A • lizardite +antigorite anemblage 
analysis 15(apecimen 255-A) • dolomite in Uz. serpentinite 
analysis 16(apeclmen 258-A) • r,agnesiteln Hz. + antigorite 
analyals 17(specimen 450-C) • magnesite in h.+ antigorite 
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AppendUI I 1: Mlctoproba analyoao ol magnaaila 
lrom laic- magnaaita 

••·•·······••·······•···•·•··••••••••··••· ·· ··•·••·· opacimen 177-0 177-0 177-0 171-0 171-0 210 270 
maanol 1-4 
analyaio 2 3 4 5 • .................................................... 
Si02 0.011 0.03 0.00 0.32 0 . II 0 .8) 0 .40 
MgO 37.110 38.86 38.9a 38.78 38.82 ~ ' . 7!) 39.71 
CaO 0.08 0.02 0.00 0 .02 0.03 0 t1 1 0 .00 
Fao• 7.40 8.85 11.80 8.50 8.89 I .: ' 5.08 
total 45.48 45.75 45.77 45.81 45.85 !,d I J 45.211 

Si 0.000 0.000 0.000 0.005 0.001 0.0 12 0 .008 
Mg 0.900 0.910 0.91' 0.1109 0 .1108 0.8!15 0 .928 
Ca 0.000 0.000 0.000 0.000 0.000 0 .000 0000 
Fa 0.098 0.091 0.088 0.085 0.091 0.09 3 0 060 
total 1.002 1.000 1.000 1.005 1 002 1.012 1.006 

Mg•• 0.1100 0.910 0.911 0.9 14 0.'~08 0 .905 0 .934 
Ca 0.000 0.000 0.000 0.000 0.000 0.000 0 .000 
Fa 0.100 0.0110 0.089 0.088 0.091 0.095 0 .088 
total 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MgC03 110.0 91 .0 91.1 91 .4 90.8 90 5 113.4 
CaC03 0 .0 0.0 0.0 0.0 0.0 0 .0 0.0 
feC03 10.0 9.0 8.9 8.8 9. 1 9 .5 8.11 

• FeO aa Fa total c:onflnuecf 
•• column ol normalized molalrectlona after removal ol aarpanlina 

analyaia 1- 4 (apacimen 17 7 - 0) • apalhlc magnaalla 
In lollated matrix 

analyaia 5-7 (apaclman 270) • apathlc magnaalla 
In maaaiva fragment 
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App. II continued 

·········································· ~ ········· 
specimen 270 252-D 252-0 252-D 252-D 
m .. nol 5-7 8- 10 
analyaia 8 II 10 

········-··········································· 
$102 1. 17 0.311 0.37 1.48 1.87 1.24 
MgO 40.47 13.411 311.011 37.07 36.38 38.51 
CaO 0.00 0.00 0.14 0.18 O. UI 0.15 
Feo• 8.08 2.02 12.78 8.14 11.57 10. 16 
tOial 47.70 15.110 411.311 44.85 49.i& 48.06 

$1 0.017 0.008 0.005 0.023 0.028 0.019 
Mg 0.1107 0.302 0.828 0.891 0.823 0.847 
Ca 0.000 0.000 0.002 0.002 0 002 0.002 
Fa 0.078 0.025 0. 184 0.082 0 . 146 0. 131 
IOial 1.0111 0.340 1.006 1.022 1.028 1.019 

Mg•• 0.922 0.921 0.832 0.913 0 .843 0.862 
Ca 0.000 0.000 0.002 0.002 0 .002 0.002 
Fe 0.078 0.079 0.188 0.085 0 . 155 0 .138 
IOial 1.000 1.000 1.000 1.000 1.000 1.000 

MgC03 112.2 112.1 83.2 111 .3 8 4.3 88.2 
CaC03 0.0 0.0 0 .2 0.2 0.2 0.2 
F.C03 7.8 7.11 18.6 8.5 15.5 13.8 

• FaO aa Fe IOial 
• • column ol n01maUzed mole fraction a allOt' removal ol aerpantine 

analyaia 5-7 (specimen 270) • apathic magneaile 
in massive lragment 

analysis 8- 10 (specimen 252- 0)• apalhic magnesite 
in po01 foliated ma1rix 
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Appendix 12: Microprob~ analyses of magneaile 
lrom quartz-magnesite 

••••••3••••••••••••••••••••••••••••••••••••••••••••a 
apeclmen 342 342 342 342 342 342 342 
mean of 1 - 3 
analyais 2 3 4 5 e ...............•........•...........••.............. 
$102 0.00 0.00 0.02 0.00 0.09 0.03 0.04 
MgO 38.211 38.47 39.03 38.117 39.13 39.40 311. 19 
CaO 0.27 0.25 0.08 0.20 0.22 0.36 0 .10 
Feo• 9.21 8.811 5.18 7.75 7 4~ 6.55 7 05 
total 47.74 47.58 44.30 46.62 411.88 41134 46.38 

Sl 0.000 0.000 0.000 0.000 O.OOt 0.000 0 000 
Mg 0.877 0.882 0.930 0.896 0.899 0.909 0.!106 
Ca 0.004 0004 0.000 0.003 0003 0006 0.001 
Fe 0.119 0.113 0.069 0.101 0.096 0.084 0.0!12 
total 1.000 0.999 1.000 0.999 1.001 1.000 0 !)<.19 

Mgo•• 0.877 0.882 0.931 0.896 0.900 0.909 0 !lOG 
Ca 0.004 0.004 0.000 0.003 0.003 0.008 0.001 
Fe 0.119 0.113 0.089 0. 101 0.097 0.085 0.092 
total 1.000 0.999 1.000 1.000 1.000 1.000 0.9<)9 

MgC03 87.7 88.2 93.0 89.8 110.0 110.11 90.11 
CaC03 0 .4 0.4 0.0 0.3 0.3 0.11 0 .1 
FeC03 11.9 11.3 11.11 10.1 8.7 8.5 9 .2 

• FeO as Fe total continued 
• • column of normalized mole fractions alter removal of S8fpentina 

analyais 1 - 3(spacimen 342) • spalhlc magnesite in veon 
analysis 3 - ll(spacimen 342) • apathic magneaite 
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App. l2 continued 
•••••••••••••••••••••••••••••••••••••••••aca aa aaaaaa 
apaciman 342 342 342 342 342 142 - C 142-C 
maanol m .. n4-ll m .. n 7-9 
analyala 7 8 9 10 II 
•••••••••••• ••••••••• • • • ••••~•••• • ••••• • • = =;aa• • • ••• 
SI02 0.0:1 3.25 2.118 3.~2 3.111 0.03 0.18 
MgO 39.24 311.91 311.12 37.49 36.86 38.79 39.22 
CaO 0.23 0.0~ 0.11 0.11 0.10 0.06 0.02 
Fao• 7.02 2.34 3.47 4.50 3.43 2.86 2.93 
total 4&.53 42.58 42.38 45.73 43.58 41 .74 42.3:1 

Sl 0.000 0.053 0.044 0.057 0.052 0.000 0.002 
Mg 0.90:1 0.913 0 .90:1 0.882 0.900 0.959 0.957 
Ca 0.003 0.001 0.001 0.001 0.001 0.000 0.000 
Fa 0.090 0.032 0.048 0.059 0.046 1).041 0.040 
total 1.000 1.054 1.048 1.057 1.052 1.000 1.003 

Mgo•• 0.905 0.968 0.950 0.938 0 .951 0 .959 0.980 
Ca 0.003 0.001 0.001 0.001 0.001 0 .000 0.000 
Fa 0.091 0.031 0.048 0.083 0.048 0 .04 1 0.040 
tolal 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MgC03 80.5 118.8 !15.0 93.11 95.1 95.9 98.0 
CaC03 0.3 0.1 0 .1 0.1 0 .1 0 .0 0.0 
FaC03 9. 1 3.1 4.!1 11.3 4.8 4. 1 4.0 

• FaO as Fe tolal conlinued 
• • column ol nO<malizad mole fraction a alter removal olaarpantina 

analyala 3 - 6 (apaclmen 342) • apathlc magneaita 
enalyala 7 - 9 (apaciman 342) • cryptocryllaiUna magnesite 
analyala 10-12(apeclmen 142-C) • apathlc magnesite 

354 



App. 12 contlnuod 

···············-··········-························· apeclmen 142-C 142-C 85-F 85-F 85-F 85- r 
m..nof 10- 12 3- ~~ 
analyala 12 13 14 15 

···········································-~······· Sl02 0.05 0.02 0.12 0.011 0 . 111 0. 13 
MgO 311.23 311.08 311.17 38.83 311.75 39.2~ 
CaO O.Ul 0.12 0.02 0.08 0.07 0.06 
Feo• 8.98 4.25 4 .50 4. 15 4.57 4 40 
tolal 48.55 43.54 43.80 43. 14 44 .~8 43.84 

Sl 0.000 0.000 0.001 0.000 0.002 0.001 
Mg 0.1105 0.114:Z 0.1138 0.945 0.938 0.9J8 
Ca 0.004 0.001 0.000 0.000 0.000 0.000 
Fe 0.090 0.057 0.080 0.058 0.060 0.058 
tolal 1.000 1.001 1.001 1.001 1.003 1.002 

a.. 11o·· 0.9•J5 0.942 0.11~0 0.1145 0.1140 0.941 
Ca 0.0:>4 0.001 0.000 0.000 0.000 0.000 
Fe 0.090 0.057 0.060 0.055 0.060 0.059 
lola I 1.000 1.000 1.000 1.000 1.000 1.000 

MgC03 90.5 114.2 94.0 'J4.5 94.0 ~~~I 
CaC03 0.4 0.1 0 .0 0.0 0 .0 0.0 
FeCOJ 9.0 5.7 8 .0 5.5 8 .0 5.'J . FeO as Fe total conhnued 
• • column olnormalized mole lracllonl alt., removal o1 181'J)enllne 

analysis 10- 12(specimen 142- C) • apalhic magneaite 
analysl1 1 3-15(speclmen 85- F) • apathic magnesite 
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App.12 continued 

apeeimen 
mean of 
analysis 

85-F 

16 

85-F 85-F 
16- 17 

17 
••• ••• • a ••••• • ••••••••••ft=• =a • ••= = = r. :;:: : === = :: =•: 
Si02 0.57 0.75 0.66 
MgO 38.52 36.87 37.69 
CaO 0.11 0.14 0.12 
FeO• 6.93 6.23 6.58 
total 46.13 43.99 45.06 

Si 0 .008 0.012 0.010 
Mg 0 .898 0.900 0.899 
Ca 0 .001 0.002 0.001 
Fe 0 .090 0.085 0.087 
total 1.009 1.011 1.0 10 

Mgo•• 0 .908 0.911 0.9 10 
Ca 0 .001 0.002 0.001 
Fe 0.091 0.087 0.089 
total 1.000 1.000 1.000 

MgC03 90.8 91 .1 91.0 
CaC03 0.1 0.2 0.1 
FeC03 9.1 8.7 8.9 

. FeO as Fe total 
•• column of normalized mole fractions after removal o f serpentine 

analysis t6 -1 7(speeimen 85- F) • cryptocrystalline magnesite 
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