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Abstract 

The effect of wave forces on the stability of a sloping seabed is investigated using 

linear wave theory and Biot's theory of poroelasticity. The wave forces on the 

slope, the wave-induced effective stresses and pore pressurP.s are all computed by 

the boundary element method. Full derivations are presented for the boundary 

integral equations and fundamental solutions of the poroelastic theory for the case 

of sinusoidal loading conditions. The wave-induced stress field is combined with the 

in-situ stress field and the Mohr-Coulomb failure criterion is used to determine the 

zone of incipient failure. It is found that wave induced stresses must be analysed 

throughout an entire wave cycle in order to assess the likelihood of failure and also 

that the stability of a slope under waves is strongly dependent on the initial stress 

distribution. 
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Chapter 1 

INTRODUCTION 

Engineering interest in the stability of the seafloor has been motivated by the pres

ence of petroleum beneath the submarine soil. The necessity of locating bottom

mounted structurf's, pipelines and cables on or in the vicinity of seabed slopes has 

made the analysis of submarine slope stability a matter of great importance. One 

of the factors contributing to submarine slope failures is the effect of the loading 

due to water waves. A well known example is the failure of two Shell jacket pile 

platforms in the Gulf of Mexico during Hurricane Camille (1969). Other areas 

susceptible to wave-induced slope instabilities are the Gulf of Alaska and the Nova 

Scotian shelf. Although many researchers (including the author) hcs.ve presented 

stability analyses of a flat seabed under wave loading, few have attempted compre

hensive theoretical studies of seabed slopes. It has been long recognised that there 

is a need for a stress analysis approach to problems of slope stability to supplement 

existing limit equilibrium analyses. In performing such a study the important first 

step is the choice of a soil model. Unfortunately, there is at present no soil model 

1 
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which by itself completely describes the complex behaviour of soil. In choosing a 

model one must therefore identify those aspects of soil behaviour which are most 

pertinent to the problem being addressed. Several researchers (Yamamoto et al., 

1978-1985; Mynett and Mei, 1982; Zienkiewicz et al., 1984; Cheng and Liu, 1986) 

have pointed out that in determining the seabed response to wave loading, the cou

pling between the soil skeleton and pore water is of primary significance. In light 

of this fact, Biot 's poroela.stic model will be used as the basis for the theoretical 

analysis. This model has been experimentally verified for the wave loading of sand 

beds (Yamamoto, 1978 ; Cheng and Liu, 1986). In order to determine the wave 

forces on the slope we shall use linear (Airy) wave theory and the boundary element 

method. The problem of wave propagation over a slope has been studied analyti· 

cally by Stoker (1957) for certain values of the slope angle. For our purposes it is 

necessary to determine the wave force~ jn an arbitrary slope, and to this end the 

boundary element method furnishes a quick and efficient procedure. The boundary 

conditions on the surface of the slope are thus provided in a natural way. 

We distinguish between two features of soil response under wave loading. In 

the terminology of Finn et al., (1983) these are due to "transient" and "residual" 

stresses respectively. The "transient" stresses and pore pressures are the instanta

neous soil response to the passing wave as determined by the constitutive laws and 

equations of motion. Thia response vanishes when the wave passes. The "residual" 

stresses and pore pressures are due to the cumulative effects of the passage of sev· 

eral waves. These induce permanent strains and "residual" pore pressures which 

depend on the relative rates of generation and dissipation. In this thesis only the 

problem of "transient" instability will be addressed. We would emphasise that 
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although the term "transient" is used, we actually determine the steady-state solu

tion to the governing equations under sinusoidal loading. Biot 's po:. .. ,dastic model 

is thus adopted in its basic form i.e. with constant soil properties. Even with these 

simplifications the problem is intractable by analytic methods and we employ the 

boundary element method (BEM) to compute the Y~Tave-induced effective stresses 

and pore pressures. These are combined with the in-situ stresses and the Mohr

Coulomb failure criterion is used to determine the incipient zone of failure. The 

manner in which such failure progresses is a matter which requires further research 

and the methods presented herein may be used as a starting point in this regard. 



Chapter 2 

LITERATURE SURVEY 

We have already mentioned that in the analysis of seabed stability it is important 

to choose an appropriate soil model. We review some of the approaches taken by 

various authors for modelling the saturated submarine sediments. 

2.1 Soil Models 

Some of the early attempts at soil modelling (Putnam, 1949; Sleath, 1970i Mosha

gen and Torum, 1975) neglected soil deformation under loading and thus do not 

provide a complete model. Oner and Janbu {1975) presented an analysis of the 

seabed under offshore storage tanks, in which the soil is modelled by springs and 

dashpots. Bell et al. (1976) performed both stochastic and deterministic analy

ses assuming homogeneous, isotropic, and elastic soil. Moshagen and Monkmeyer 

{1979) have used potential theory to describe the flow within the seabed (as did 

Putnam and Sleath). The soil is assumed to be homogeneous, isotropic, coarse-

4 
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grained and rigid. They have also computed the wave-induced pressure distribu

tion on the surface of a vertical embedded cylinder, as well as the total horizontal 

force and overturning moment generated by the hydrodynamic seepage pressure. 

O'Donnell (1982) has determined the wave-induced pore pressure fields around a 

variety of structures (buried pipelines, breakwaters, seawalls, sheetpile bulkhead, 

offshore foundation) using a potential theory and the Boundary Integral Equation 

Method. Potential theory has also been used by Lai et al. (1975) and Macpherson 

(1978) to determine the wave-induced pore pressure around a buried pipeline, and 

by Liu (1985) to compute the wave-induced pore pressure under a gravity struc

ture. The latter considers the soil skeleton and pore water to be incompressible 

and he has employed the Riemann~Hilbert technique to compute the pore pres

sures. Rahman, Seed and Booker (1977) have computed the wave-induced pore 

pressure history under an axisymmetric tank assuming Darcy's Law and by incor

porating a mechanism for pore-pressure generation and dissipation. Munro et al. 

(1985) have used an elasto-plastic soil model that includes foundation stratigraphy 

and embedment of an offshore structure. They have developed equivalent spring 

stiff'1esses of soil for vertical, horizontal and moment loading. An ela.sto-plastic soil 

model has also been suggested by Prevost et al. (1980). This model incorporates 

both drained and undrained behavior. It describes the anisotropic, elaatopla.stic, 

path dependent, non-linear stress-strain-strength properties of inviscid saturated 

soils. It is assumed that the elasticity of the material is linear and isotropic and 

that non-linearity and anisotropy result from its plasticity. 

Potts and Windle (1985) did a numerical study of the foundation behavior of a 

gravity platform using concepts from critical state soil mechanics (Drammen clay 
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model). Meimon and Lassoudiere (1985) have proposed a.n elastoplastic model 

with multiple yield surfaces and kinematical hardening, and involving eleven mate

rial constants. Zienkiewicz et al. (1982) have also adopted a.n elastoplastic model 

for describing soil behavior. Bouckovalas et al. (1984) have used an empirical 

model describing the cumulative effects of cyclic loading of sands. He draws upon 

an analogy between accumulation of strain during cyclic loading and viscoelastic 

creep, and uses equ<~.tions and rules derived from the behavior of actual sands. A 

viscoelastic model was adopted by Schapery and Dunlap (1978) who, in addition, 

considered non-linear soil properties and the variation of soil properties with depth. 

Using the linear dynamic theory by Biot (1965), Schapery and Dunlap solved the 

elastic-viscous problem of wave-seabed interaction. Kraft et al. (1985) have com

pared this model with field data and have observed good agr-eement. 

While the above approaches have their individual merits, they do not account 

for an important f~ature of wave-soil interaction, viz. the coupled responses of the 

soil 'skeleton' and pore water. Such behaviour must also be considered in problems 

of soil onsolida.tion. The earliest attempt at modelling soil consolidation is due to 

Terzaghi. In this theory the effective stresses (in the soil skeleton) and the pore 

pressure are regarded as autonomous stress systems linked only through the general 

equations of equilibrium ( Zaretskii, 1972) . It has been generally recognised that a 

more accurate picture of the coupled interaction between the solid and fluid phases 

is provided by the Biot theory of three dimensional consolidation, first presented 

by M.A. Biot in 1941 for quasi-static phenomena and later extended by him in a 

series of papers to include soil anisotropy and visco-elasticity (Biot, 1955, 1956, 

1963). A general poroelastic theory including dynamical terms was presented in 
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1962 (Biot,1962). In Biot's formulation the interaction between the soil skeleton 

and pore water is represented through body forces. The coupling between soil 

skeleton and pore water is also considered in a 'mixture' theory by Katsube and 

Carroll (1987). This theory reduces to Biot's when certain terms involving velocity 

gradient are suppressed. These terms account for part of the shear interaction 

between the solid and fluid constituents. However, as pointed out by Katsube 

and Carroll (1987), these terms are unimportant for most practical applications 

requiring the solution of steady state boundary value problems, and Biot's model 

does in fact account for the most significant shear interaction effects (which are due 

to fluid viscosity). 

2.2 The Poroelastic Model of Biot 

This theory has been used by a number of ~uthors for analysing seabed stability. 

The first appears to be Yamamoto et a.l. (1978) and Madsen (1978) who developed 

an analytical solution for wave-induced effective stresses and pore pressures in ho

mogeneous isotropic seabeds. They have analysed beds of infinite depth, while 

Yamamoto (1978) has considered beds of finite depth. Yamamoto et al. (1978) 

have substantiated theit theoretical findings for sand beds by extensive laboratory 

experiments. Subsequently, however, Clukey et al. (1984) and Davies (1985) ha.ve 

indicated discrepancies between their experimental results and Yamamoto's theo

retical findings. They suggest the incorporation of additional features in the Biot 

model, among them hydraulic anisotropy ( as done by Madsen, 1978), layering and 

damping. Yamamoto et al. (1983,1985) introduced into the Biot model the effects 
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of Coulomb damping and non-linear shear modulus via the Hardin-Drnevich (1972) 

formulas and have obtained good correlation with experiments. 

Several other authors have adopted the Biot poroelastic model. Spierenburg 

(1985) has used the analytic solutions of Yamamoto to determine the wave-induced 

forces on a buried pipeline. He has also used these soiutions together with a one 

dimensional version of Biot 's pore pressure equation to develop a model for pore 

pressure generation. Silvestri et al. (1985) have included the effect of soil anisotropy 

and found that the soil is closer to failure than when considex·ed isotropic. Si

mon, Zienkiewicz and Paul (1984) have developed an d.llalytical solution to Biot's 

equations for the transient response of a one-dimensional column of fluid-saturated 

poroelastic solid. Mei (1982) has solved Biot's equations 11sing a boundary layer 

approximation method, his argument being that relative motion between pore wa

ter and soil skeleton is significant only within a boundary layer at the mt:dline. He 

has considered the problem of waves propagat~ng over a horizontal seabed, waves 

passing over a pipe laid on the seabed, waves normally incident on a long cais

son, and the lifting of a large object from the seafloor. Kokkinowrachos {1985) 

has determined the wave-induced pore pressure below an offshore structure resting 

directly on the seabed or embedded in the soil. The two-dimensional problem b 

considered and both the cross-section of the structure and the contour of the sea

bottom can be of arbitrary shape. He has used the macroelE>•nent approach to solve 

Biot 's equations. In this method the cross-section of the structure and the seabed 

contour are approximated by step curves, and the flow field around th~ structure 

and in the soil is subdivided into macro-elements. The method can be extended 

for stratified and inelastic soil. Mynett aud Mei (1982) have considered the wave-
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induced stresses in a saturated, homogeneous, isotropic poro-elastic seabed beneath 

a rectangular caisson. They have analyzed the two-dimensional problem and have 

used Mei's boundary layer approximation in conjunction with Biot's equations. A 

complex variable technique is used to achieve an analytic solution for stresses and 

pore pressure. Barends and Calle (1985) have used the solution of Yama.'iloto et al. 

(1978) to determine thE- response of the seabed to wave loading. They then establish 

a procedure for the assessment of cyclic pore pressure build-up and liquefaction of 

seabeds under random wave loading using a one-dimensional equation for pore pres

sure. Finn et al. (1983) have used Biot's equations for the transient response of the 

seabed, and the Seed-Rahman model of pore pressure generation and dissipation 

(Seed and Rahman, 1978) to assess residual pore presaures. Ishihara and Yamazaki 

(1984) have used the Yamamoto-Madsen solution of Biot's equations a.nd have done 

a liquefaction analysis in terms of cyclic stress :atio. Okusa (1985) has used Biot's 

equations to analyze the wave-induced stresses in unsaturated soils. Mei and Mc

Tigue (1984) have performed an analysis of a submarine ridge and canyon under 

wave loading using the Biot theory. Sabin (1989) has presented analytic formulae 

for effective stresses and pore pressures in a poroelastic seabed under normal and 

shear loads. The author's M.Eng thesis (1985) deals with the analytic solution of 

Biot's equations for wave loading for both the dynamic (i.e. inertia terms included) 

and quasi-static cases. A homogeneous, isotropic seabed is assumed. It is shown 

that the response of sandbeds is es3entially quasi-static, i.e. the inertia terms in 

the governing equations may be ignored. 

For many problems an analytic approach is either too difficult or impos5tble and 

it is necessary to resort to numerical methods. The finite element method (FEM) 
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has been used by a number of authors to solve Biot 's equations for analyzing various 

problems of soil consolidation and flow through porous media (Sandhu and Wil

son,1969 ; Yokoo et al.,l971 ; Ghaboussi and Wilson,1973 ; Smith and Hobbs,l976). 

Zienkiewicz and Shiomi (1984) have used the FEM to solve Biot's equations and 

have introduced various approximations for 'fast' and 'slow' phenomena and for 

the cases of compressible and incompressible fluid. In recent years the boundary 

element method (BEM) has emerged as a significant challenger to the finite element 

method and has been successfully applied in many areas of solid and fluid mechan

ics. One of the advantages of the BEM is that the field equations in the region of 

interest are transformed into integral equations on the boundary of the region, thus 

reducing the dimension of the problem by one. Only the bouiLdary of the region 

needs to be discretised and the user has control over the number of interior points 

at which the solution of the governing equations are found. This contrasts with the 

FEM which requires domain discretisation and necessarily produces solutions at all 

interior nodes. Further, for many. problems, the BEM gives greater accuracy than 

the FEM for the same level of discretisation (Mukherjee et al.,1984). The BEM is 

still undergoing development and it is certain that further research will extend the 

power and range of applicability of the method. Kuroki et al.(1982) and Aramaki 

et al.(1985) have used the BEM in conjunction with Biot's theory but only after 

uncoupling the soil deformation and pore pressure equations. The fully coupled 

equations were solved using the BEM by Ch~ng and Liggett {1984). They have 

assumed homogeneous, isotropic soil and constant soil properties and they have 

used Laplace transformed space to deal with time dependent problems. Cheng and 

Liu (1986) have used the boundary element method and the Biot theory to deter-
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mine wave induced seepage forces on a buried pipeline. They have obtained good 

agreement with experimental results . They have also investigated the sensitivity 

of the pore pressure response to several soil and fluid parameters . A boundary 

element formulation for Biot 's equations including viscoelastic behaviour of the soil 

skeleton has been presented by Predeleanu (1981 ). 

2.3 Slope Stability under Waves 

The stability of underwater slopes was discussed by Terzaghi (1956) who pointed 

out that slope failures occur when the average shearing stress on the potential 

surface of sliding becomes equal to the average shearing resistance along this surface. 

One of the first analyses of slope stability under waves is due to Henkel (1970). 

He presented a total stress analysis (i.e. neglecting pore pressures) based on the 

principle of limiting equilibrium and the assumption of a circular failure surface. 

He used a standing wave as the loading on the slope. Henkel used his model to 

show that the overturning moment produced by large waves on a sloping bed in the 

Gulf of Mexico could exceed the resisting moment provided by the soft sediments. 

Bea (1971) used the same model to investigate the failures of the Shell platforms 

in the Gulf of Mexico during Hurricane Camille in 1969. Rahman et al. (1985) 

have developed a probabilistic analysis for slope stability in which the waves are 

considered as a random process and the undrained shear strength of sediments 

is treated as a random variable. In this paper Henkel's approach is extended to 

develop a method for evaluating the probability of soil failure. Mitchell et al. 

{1972) proposed that slope failures were caused by strength reductions due to wave 
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remoulding, rather than additional driving moments or shear stresses. An effective 

stress method of slices for the stability of seabed slopes has been presented by Finn 

and Lee (1979), which includes both wave and earn.quake loading. Wright (1976) 

developed a finite element model which included gravity stresses and utilized a 

hyperbolic stress-strain relationship. Wave forces were estimated from linear wave 

theory using a constant water depth. The major limitation of the above studies is 

that the interaction between soil skeleton and pore water is not taken into account. 

We therefore choose the poroelastic model for our present study. As mentioned 

previously, Mei and McTigue (1984) have used Biot's poroelastic model to analyse 

the effects of wave loading on a gentle slope. They use an analytic solution valid 

for fiat beds with a modified wave pressure which appronimates the slow variation 

in the wave forces over a gentle s.tope. For certain values of the slope angle the 

analytic techniques of Stoker {1957) may be used to determine the wave forces 

on the slope, but for an arbitrary slope numerical methods are required. Alliney 

(1981) has used linear wave theory and the BEM to determine the wave velocity 

potential over an arbitrary coastal planar slope. In this thesis we determine ( via 

the BEM ) the wave forces on an arbitrary planar slope in the open ocean. The 

major difference between these two problems is that the latter has an additional 

boundary for which appropriate conditions must be specified. We have defined the 

side boundary conditions using the techniques illustrated by Alliney. The wave

induced stress field in the sloping bed is also computed by the BEM using Biot 's 

poroelastic model. To provide boundary conditions on the side boundaries of the 

poroelastic medium we use an analytic solution for flat beds. 



Chapter 3 

Theoretical Background 

The theory of poroela.sticity presented by M.A. Biot in 1962 will be used to model 

the soil medium. Here we present the final equations with an explanation of the 

notation. 

3.1 The Biot Soil Model {Theory of Poroelas

ticity) 

The saturated soil is modelled as a solid, porous, deformable skeleton, the pores 

being completely filled with water. We assume that the soil is homogeneous and 

isotropic. The Cartesian coordinates are denoted by Xtt x2 and x3 • Subscripts 1, 

2, and 3 refer to the Cartesian coordinate directions, unless otherwise specified. 

A repeated suffix indicates summation with respect to that suffix over the range 

1, 2, 3 unless otherwise specified. A comma. followed by a suffix indicates partial 

13 
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differentation with respect to the ajppropriate coordinate direction, e.g. A,i = :~. 
We let u = (u17 u2, u3) be the displacement of the solid matrix at any point;U = 

(U1, U2, U3) be the displacement of the fluid at any point; and /be the porosity of 

the soil. We denote by Tij the total stress components on the bulk material; Tij 

is a j-direction stress acting on a plane normal to the i-axis. The pore pressure is 

denoted by p. For the present, we use the usual sign convention adopted in the 

theory of elasticity, i.e.; 

(a) tensile stresses are positive and, 

(b) a shear stress is reckoned positive when actinl; in a positive coordinate direction 

on a plane whose outward normal points in a positive coordinate direction; or 

when acting in a negative coordinate direction on a plane whose outward normal 

points in a negative coordinate direction. We defer until a later section the use of 

the conventional soil mechanics sign convention, which is exactly opposite to that 

described above. 

We now present the constitutive laws as (Biot, 1962) 

(3.1) 

p= -aMe+M( (b) 

where 

e .. - !(u· · + u .. ) IJ - 2 11J J 11 

e = eu 

5ij is the Kronecker delta. 

The constant pis the shear modulus of the soil skeleton. The other constants Ac,cr 
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and M appearing in ( 3.1) may be expressed in terms of the following familiar elastic 

moduli: 

Kr = bulk modulus of soil grain 

Kb =bulk modulus of soil skeleton 

K1 =bulk modulus of water 

It can be shown that (Biot and Willis, 1957; Stoll,1974) 

M-
D-Kb 

where 

(3.2) 

It is of interest to examine the relationship between ( 3.1) and Hooke's Law. From 

equation ( 3.1) (b) we have 
1 

(= M(p+aMe) 

Substituting this into ( 3.1) (a.) gives 

(3.3) 

From ( 3.2) we find that 

(3.4) 

Here, ,\ is the standard Lame constant of the theory of elasticity. Equation ( 3.3) 

may now be re-written as: 

(3.5) 
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We shall show that this reduces to Hooke's Law when written in terms of effective 

stress. To define the effective stress tensor, we consider a plane area 6A of saturated 

soil normal to the i axis, shown schematically in Figure (3.1). 

We denote by Fij the sum of all inter-granular forces acting on t~.~ area 6A in 

the j direction. The pore pressure p exerts a force p6A in opposition to the normal 

inter-granular forces. Since Tij is the net total stress in the j direction we have the 

following balance of forces on the area c5A : 

We define the effective stress components T:; by 

(3.6) 

Hence the above equation becomes 

(3.7) 

Writing ( 3.5) in terms of effective stress gives 

(3.8) 

For most soils the ratio ~: is negligible (of the order w-4 ) so that a is effectively 

equal to unity (equation 3.2). Thus ( 3.8) reduces to 

(3.9) 

which is Hooke's Law for the soil skeleton. 

We now re-write the constitutive laws ( 3.1) in a form suitable for deriving the 

boundary integral equations. It is first necessary to write the total stress tensor in 

terms of stresses on the solid and liquid portions of an element of soil : 
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Fig.(3.1) Plane area ~A normal to i-axi s 
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Referring again to Figure (3.1) we define Uij as the net j-direction stress on the 

solid area averaged over the entire area 6A i.e. Uij 6A is the j-direction resultant 

of intergranular and pore pressure forces on the solid area. With this definition we 

find 

which simplifies to (using 3.6) 

(3.10) 

Eliminating r:j between ( 3.7) and ( 3.10) gives 

(3.11) 

where 

u=-fp (3.12) 

We proceed to re-write the constitutive equations ( 3.1) in terms of Uij and CT : 

Writing e = Uk,k we note that 

(=-/(e-e) 

Multiplying equation ( 3.1) (b) by-f gives 

u=Qe+& (3.13) 

where 

(3.14) 

Substituting equation ( 3.1) into { 3.11) gives, using { 3.4) 
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Since the soil grain is practically incompressible we may make the assumption 

I<,-. oo, and thus a-. 1. Then, substituting for M (from 3.2) in ( 3.14) we have 

Q 1-f 
R=!K1 ; -= -

R I 

To complete the model we present the equa.ti...~us of motion as (Biot, 1962) 

where 

Wi = f(Ui- Ui) 

p = (1 - f)p. +I PI 

p, = density of soil grains 

p 1 = density of pore water 

f = porosity 

ko = soil permeability in ms-1 

m = added mass parameter 

(3.16) 

(3.17) 

(3.18) 

The "added mass" parameter m is due to the coupling of soil grains and fluid in 

relative motion. In ( 3.17) and ( 3.18) we have included the body force per unit 

mass Xi. Differentiation with respect to time is denoted by dots. As demonstrated 

in the author's M. Eng. thesis, the terms in Ui and Wi may be deleted from the 

equations of motion for problems of water wave loading on sand beds. This is 

due to the low frequency of the loading and the relative stiffness of sand beds (as 

compared to clay beds, for example). Then using ( 3.11) and ( 3.12) we write the 



governing equations ( 3.17) and ( 3.18) as 

where 

k _ PJ9f 
- ko 
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(3.19) 

(3.20) 

(3.21) 

For convenlenre we record again the constitutive laws from ( 3.15) and ( 3.13) : 

Q2 
(3.22) Cl'jj - 2pei; + (A + R )ec5i; + Qec5i; 

CT - Qe+& (3.23) 

where 

R=fKJ 
(3.24) 

Q = (1- J)K1 

and 

JJ = shear modulus of soil skeleton ; ,\ = Lame constant of soil skeleton 

The relationships between u; ·. u and effective stresses r;; and pore pressure p are 

given by ( 3.10) and ( 3.12). 

3.2 The Biot Model in Conventional Notation 

It h. nstructive to write the basic equations of the Biot soil model in the notation 

used in conventional soil mechanics. The Cartesian coordinate axes are such that 

the x and y axes are horizontal and z axis points vertically downward. Normal 
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stresses in the x, y and z directions are denoted by t7:c, t7u and t7z respectively, 

and shear stresses are denoted by T:c"' r 11.r and Tz:c· The sign convention is exactly 

opposite to that used in classical elasticity, i.e. 

( 1) for normal stresses, compression is positive 

(2) a shear stress is considered positive if (a) it points in a positive coordinate direc

tion when acting on a plane whose outward normal points in a negative coordinate 

direction, or (b) it points in a negative coordinate direction when acting on a plane 

whose outward normal points in a positive coordinate direction. 

Effective stresses are denoted by q:, u~, u:, r;lf, r;z, and -r;:c. In equation ( 3.7) 

we identify subscripts 1, 2, 3 with the x, y, z coordinates axes respectively. Then, 

allowing for the change in sign convention ( 3. 7) becomes 

I I I 

O'z = O':c - p, CTIJ = qiJ- p, O'z = Oz- P 

(3.25) 

I I I 

'T:clf = T:clf 1 T11z = Tyz 1 Tzz = Tz:c 

We have already shown that the constitutive law ( 3.1) (a) or ( 3.22), when written 

in terms of effective stress, is equivalent to Hooke's law for the soil skeleton, equation 

( 3.9). Writing 

this becomes 

2Gv 
G = p, .,\ = 1 - 2v 
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where 

u, v, w are displacements u1, u2, u 3 of the soil skeleton in the x, y, z directions re-

spectively. 

The parameter G is the shear modulus of the soil skeleton, and the Lame con

stant >. is expressed in terms of the more familiar Poisson's ratio v. The constitutive 

law for pore pressure is written from ( 3.23) and ( 3.24) as 

where 

p =-f[{l- f)e + /e] 

au av aw e=-+-+ax 8y az 
au av aw 

s=-+-+-ax ay f}z 

{U, V, W) = (Ut, U2, Ua), the displacements of the pore water. 

(3.26) 
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The governing equations ( 3.17) and ( 3.18) become, neglecting the acceleration 

terms and using ( 3.25) : 

ap 
- -ax 

ap 
- -ay 

Op 
- -az 

Pt9! a - S!iJ + PtX = - -(Il.- u) ko at 

(3.27) 

(3.28) 

where X= (X, Y, Z) is the body force per unit mass; Il.. = (U, V, ~V) ; !! = ( u, v, w). 

Equation ( 3.28) is recognised as Darcy's Law. It reduces to a more familiar form 

by considering no body force X. ,zero displacement of the soil skeleton (Y. = D.) and 

by defining the fluid velocity Il* ={If.. 

It is possible to define a coefficient of consolidation analogous to that defined 

in Terzaghi's consolidation theory. It has been shown by the author (Raman

Nair,1985) that the pore pressure p can be written as the sum of an harmonic 

function r and a function q which satisfies the "heat equation" form . Specifically, 

where 

with 

p(x, z, t) = q(x, z, t) + r(x, z, t) 

V2r =0 

evV2q = oq 
at 

k0 (' 1-2v )-l 
Cv = -P ,-g K

1 
+ -2JJ_,.(-1 --v....,...) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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Equation (3.31) is of the same form as Terzaghi's consolidation equation and the 

coefficient c..J may thus be defined as a consolidation coefficient . To the author's 

knowledge, equations ( 3.29) to ( 3.31) have not previously appeared in the litera

ture. The formula for Cv has been presented without derivation by Cheng and Liu 

(1986), and in different notation using a different analysis by Yamamoto {1978). 

It will not be convenient to use the notation of this section in the following 

development. We shall, however, return to this notation when we consider the 

failure analysis. 

; . 



Chapter 4 

Wave Forces on a Sloping Bed 

4.1 Problem Formulation and Boundary Condi-

tions 

According to Sleath (1984) viscous effects are unimportant when considering the 

wave loading of the seafloor in the absence of strong currents. We shall therefore as

sume that the flow is essentially irrotational. Further, we may ignore shear stresses 

at the mudliue since these are due primarily to the fluid viscosity. For the free sur

face, we employ the assumptions of linear wave theory i.e. that the wave amplitude 

is small relative to the wavelength so that boundary conditions may be applied at 

the still water level. It is worth noting that for the purpose of determining the 

wave forces on the seabed, the error involved in using linear wave theory versus 

higher order wave theories is negligible. For example, in evaluating the dynamic 
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wave pressure on the seaLed under a wave crest, we find that for a wave of length 

300m.,height 24m. in 80m. of water, the linear theory estimate is only 1.3 per cent 

higher than the estimate using Stokes' second order theory. 

We shall assume that there is negligible flow into the seabed i.e. the fluid 

velocity normal to the bed is essentially zero. There have been some attempts in 

the literature to account for flow into the seabed . For example,using Darcy's law 

Dean and Dalrymple (1984) write 

oil/ K op 
- {)y = - -;ay at seabed 

where 

K ko -
"' P!g 

~ - wave velocity potential 

ko - soil permeability 

I" - shear modulus of soil 

PJ - density of water 

y - vertical coordinate 

However, the pore pressure p on the right hand side is not known until the soil 

equations are solved . Dean and Dalrymple obtain an approximate picture of the 

pore pressure by employing a simplified model, viz., the assumption that p obeys 

Laplace's equation in the soil and decays exponentially with soil depth. They 

deduce that for a wave of amplitude 'T/o,wave number k and frequency w in water 
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of depth h, the wave pressure Pat the mudline is given by 

p = PJ9T/O ei{kz-wt) 

cosh kh [ 1 - i~ko tanh kh] 

We note that for 10 second waves in 80m. of water propagating over sandy beds the 

imaginary term in the denominator is of the order 1 o-4 to w-6 so that the above 

equation may be approximated by 

p = PJ9"1o ei{kz-wt) 

coshkh 
(4.1) 

which is the same as would be obtained by assuming negligible flow into the seabed. 

Further support for this assumption comes from the fact that good agreement with 

experimentally measured wave-induced pore pressure was obtained by Yamamoto 

et al. (1978) and Cheng et. al. (1986). They used ( 4.1) to provide boundary 

conditions at the mudline for the poroelastic soil model. 

It is reasonable to assume that the problem is two dimensional i.e. the slope 

is planar and conditions are uniform in the direction normal to the direction of 

propagation of the wave. The problem domain 0 ABC and incident wave direction 

are shown in Figure ( 4.1). The condition of irrotationality guarantees the existence 

of a velocity potential t(x, y, t), where x and y are spatial coordi!lates as shown 

(Figure (4.1)), and tis time. The wave forces on the seabed will be computed from 

the function 4). The flow above the seabed may be considered incompressible and 

the continuity equation then requires that 

(4.2) 

where 
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The boundary conditions are 

onBC 

on OA 
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(4.3) 

(4.4) 

where we have made the assumptions of classical linear wave theory (see Appendix 

A); :: is the normal derivative on BC. 

Since the wave frequency w ~oes not change with water depth, the function ~ 

may be written 

«P(x,y,t) = ¢(x,y)e-iwt (4.5) 

where </J(x, y) is a complex function and it is understood that the physical situation 

is represented by the real part of equation ( 4.5). Thus, equation ( 4.2) with 

boundary conditions ( 4.3) and ( 4.4) may be re-written: 

V'J¢=0 in OABC (4.6) 

8~ onBC (4.7) - . = 0 
8n 

8</J- w2~ = 0 
8y g 

onOA (4.8) 

The boundary OC (Fig. 4.1) experiences waves progressing from the right (incident 

waves) as well as reflected waves from the slope coming from the left. The boundary 

AB ,however, experiences waves travelling in one direction only i.e. towards the 

left. To obtain the boundary conditions on the interfaces OC and AB we foHow 

the approach of Alliney (1981). In the problem considered by Alliney the boundary 

AB (Fig. 4.1) is absent since he considered a coastal situation (i.e. h~ = 0). Here 

we need to determine the boundary condition on AB. First, we obtain the general 

solution ¢11 of equation ( 4.6) in an open-ended two-dimensional domain of constant 



depth h. The boundary conditions are : 

at y = -h 

at y= 0 

Using the technique of separation of variables we assume that 

cf>a(x,y) = X(x}Y(y) 

Substitution into ( 4.6) gives, for sinusoidal behaviour in X, 

cPX 2X <PY 2 -+k =Oand --k Y=O 
dx2 dy2 

where k is a complex constant. The general solutions of these equations are 

Y = C cosh(ky +a) 
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(4.9) 

( 4.10) 

where a, b, C and a are complex constants. From boundary condition ( 4.9) we find 

that a= kh and hence the solution is of the form 

Using ( 4.10) we have the dispersion relation 

w2 
- = ktanh(kh) 
g 

( 4.11) 

( 4.12) 

This equation has two real roots ±ko and an infinity of purely imaginary roots 

±ikt, ±ik2, ... , where ki ~ 0, i = 0, 1, 2 · · · (see Appendix B). Since ( 4.6) is 11. 
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linear equation we obtain its general solution from ( 4.11) as 

tPa = cosh(koy + koh)[coeikoz + d0 e-ikoz] 

+cosh{ -koy- koh)[c;,e-ikoz + cloeikoz] 

00 

+ 2: cosh[ikn(Y + h)J[ene-k":c + dnek":c] 
n=l 
00 

+ L cosh[-ikn(Y + h)][c~eknz + dne-k"z] 
n=l 

This may be written more concisely as 

00 

+ L cos[kn(Y + h)J[ane-knz + bnek"z] 
n=l 
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(4.13) 

The constants A, a0 , an, b,. appearing in ( 4.13) must be interpreted for the external 

regions E and E' which lie outside the problem domain, as illustrated in Figure 

(4.1). 

In the region E to the right of OC in Figure {4.1) we consider an incident 

wave of amplitude q0 , wave number ko and frequency w propagating in the negative 

x direction. It is easily shown (see Appendix A) that the velocity potential 

corresponding to the incident wave is: 

~ ( ) __ igflo cosh[ko(y + ho)] -ikoz 
Y"l x,y - w cosh(koho) e (4.14) 

By putting h = ho in ( 4.13) we see that the term Acosh[ko(y+ho)]e-ikoz represents 

the incident wave, so that for the region E, 

A= -sgflo 
wcosh(koho) 

The term a0 A cosh[ko(y + h0 )]eikoz represents the right running reflected wave, and 

ao can be interpreted as the reflection coefficient. In order that the velocity potential 
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remain finite as x-. oo we must ha.ve bn. = 0 for all n. Hence from ( 4.13) we have 

the velocity potential ¢JE in region E: 

ifJE(x, y) igT}o cosh[ko(Y + ho)] [ iko~ + -iko~J - -- aoe e 
w cosh( koho) 

00 

+ L an cos[kn.(Y + ho)]e-kn: (4.15) 
n=l 

For the region E' to the left of AB we put h = h~ in equation ( 4.1?.) and denote 

the roots by ±k~, ±ik~, n = 1, 2 • · · where k~, k~ ~ 0. Since there is no right running 

wave in this region, the coefficient ao in ( 4.13) must be zero. Also, in order that 

the velocity potential be finite as x --+ -oo we must have an = 0 for all n. Thus, 

from ( 4.13), we have the velocity potential ¢JE' in region E' as 

¢JE'(x, y) =a~ cosh[k~(y + h~)]e-ik~:z:- + E a~ek~:l:' cos[k~(y + h~)] (4.16) 
n=l 

We can now obtain expressions for 4> and its normal derivative on the lateral bound

aries OC and AB. For OC, we put x = 0 in ( 4.15) and its derivative with respect 

to x : 

8¢J -loc 8n 

N+t 

- fo(Y) + L anfn(y), Y E OC 
n=l 

N+l 

- -go(Y) + L an9n(y), Y E OC 
n=l 

where we have used N terms of the infinite series and : 

fo(Y) 
-igTJo cosh[ko(Y + ho)] 

- cosh( !coho) w 

/n(Y) - cos[kn(Y + ho)], n = I, 2, · · ·, N 

Do(Y) 
9TJoko [ko(y + ho)] 

- cosh(koho) w 

Dn(Y) - -kn cos(kn(Y + ho)J, n = 1, 2, · · ·, N 

/N+t(Y) - fo(y), 9N+t(Y) = 9o(y), aN+l = ao 

( 4.17) 

(4.18) 

(4.19) 

(4.20) 



For AB we have 

N 
- a~eik~d cosh[k~(y + h~)] + E a~e-k~d cos[k:(y + h~)] 

84> 
-lAB an 

&4> 
- -OX lAB 

n=l 
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N' 
- ik~a~eik~d cosh[k~(y + h~)] + 2: -a~k:e-k~d cos[k:(y + h~)J 

n=l 

Since the horizontal distance d is large, the terms in e-k~d are effectively zero and 

these equations reduce to 

4> lAB - a~eik~d cosh(k~(y + h~)] 

o¢> lAB - ik~a~eik~d cosh[k~(y + h~)] an 
Thus we have the relation 

which is a well known radiation condition. 

4.2 The Bou&idary Integral Equation 

(4.21) 

The problem defined by ( 4.6) with boundary conditions ( 4. 7), ( 4.8), ( 4.17), 

( 4.18) and ( 4.21), may be solved by the boundary element method with a view 

to determining¢>, and hence the wave pressure, on the seabed BC. The following 

derivation of the boundary integral equation is standard (Brebbia et al. 1984) but 

is presented here for completeness. For an arbitrary function q,•( x, y) we may write, 
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from ( 4.6): 

where 0 denotes the region OABC. 

Assuming that t/J, <P* are continuous and ha:'e c0ntinuous first and second partial 

derivatives in n we use Green's second identity (Sokolnikoff et al., 1966) to get 

(4.22} 

where r denotes the boundary OABC. We choose <P* to be the solution of the 

equation 

(4.23) 

where l:l. denotes the Dirac delta function, **' is the position vector of the point P 

at which the delta function is non-zero, and ~ is the position vector of an arbitrary 

point. The solution of equation ( 4.23} for the case of two dimensions is 

tP• = -~lnr 
211" 

where r = 1~- ~PI (see Appendix D). Using ( 4.23) we have 

(4.24) 

(4.25) 

by the sifting property of the delta function. Substituting ( 4.25) into ( 4.22} gives 

(4.26) 

We now take the point p (position vector ~p) to the boundary r. Since tP* iS singular 

at P, integration along the section of r containing P requires special consideration. 

For generality, we consider P a.t a corner point on the boundary and draw a. circular 
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INTERIOR 

Fig.(4.2) Boundary Point P. 



36 

arc S( of radius t, centre P as shown in Figure ( 4.2). We now write equation ( 4.26) 

for a boundary point ~ : 

(4.27) 

Now, 

lim f </>*a¢> di' - lim f - _!_ In r a,p eli' 
c-o 1 s. an (-o J s. 2~• an 

- --
2
1 aaq, Is. lim[lnf f di'J 
1r n c-o ls. 

- --
2
1 

oafj>ls.lim[(11'+a)dn£)=0 (4.28) 
1r n c-o 

where we have assumed that ~~ is approximately constant on the small arcS,. 

Also, 

{4.29) 

where a is the angle illustrated in Figure (4.2). Substituting ( 4.28) and ( 4.29) 

into ( 4.27) we have for a boundary point P : 

1 a fr a,p· • a¢> 
t/>(~ )(-- -) + (t/>-- 4> -)dr = 0 

p 2 27r r an an (4.30) 

where it is understood that the domain of integration does not include the point 

~p· 
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4.3 Boundary Element Procedure 

The boundary I' is discretised into M straight line segments or "elements" and 

a node is located at the mid-point of each element. We shall assume that ¢ and 

:~ are constant and take their nodal values on each element. The use of these 

"constant" elements gives very good C~.ccuracy, when the boundary does not exhibit 

a significant degree of curvature. The "constant" element is the simplest type of 

discontinous element and avoids the ambiguities present in the value of :! at corner 

points. 

The boundary element technique involves writing the boundary integral equa

tion ( 4.30) for each of the M nodes, i.e. putting ~equal to each node in turn. 

This produces M equations in 2M variables, these being the nodal values of¢> and 

:~. In a well posed problem we know either ¢>, ~~ or a relationship between them 

at each node, which thus reduces the number of unknowns toM. 

We let t/>e and <P: denote the values of¢> and :! respectively at node e, which 

lies at the mid-point of element e as noted above. In equation ( 4.30) we let the 

point._, lie at the j th node, so that cP(*.p) = ¢>; and r = lit- it;l, whel'e ~; is the 

position vector of the j th node and~ is the position vector of an arbitrary point 

on the boundary. 

Since~, is not a corner point, a = 0 and the discretisation of ( 4.30) leads to 

(4.31) 

where r e denotes element e and we recall that ¢>• is given by ( 4.24). Since t/>e and 

¢: are constant on r e we can take them outside the integral sign and ( 4.31) takes 



the form: 

where 

M 

:E(Ae</>e- Bet/>:)= 0 
e=l 

lr 
aq,· 
-di' r. 8n e 

lr 
fJ<t>• 1 -eli'·+r, on J 2 e =J 

The evaluation of the integrals Ae and Be is described in Appendix C. 
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(4.32) 

(4.33) 

We choose Mb M2, M3, M .. elements on OA, AB, BC and CO respectively (Fig

ure (4.1)), the elements (and nodes) being numbered in an anti-clockwise direction 

starting from 0, i.e. 0 is the first point of element 1 and the second point of ele

ment M, where M = M1 + M2 + M3 + M4• From boundary conditions ( 4.7), ( 4.8) 

and ( 4.21) we find that 

2 
on OA <1>: = ~</>e e = 1,2,··· ,M1 

g 

on AB <P: = ik'o<f>e e = M1 + 1, · · · ,M1 + M2 

onBC e = Mt + Af2 + 1, · · · , Mt + M-z + M3 

(4.34) 

( 4.35) 

(4.36) 

On CO we deduce the relationship between 4> and :: as follows. We must first 

choose M4 = N + 1 which is the number of coefficients an appearing in equations 

( 4.17) and ( 4.18). They coordinates of the M• nodes on CO will be denCJted by 

y., y2, · · · YM4 corresponding to nodes M1 +M2 +Ma+ 1, · · ·, M. We write equations 



( 4.17) and ( 4.18) at each of these nodes : 

Mt 

t/J(y~;) - fo(YJc) - L anfn(YJc) 
n=l 

M• 
t/J' (y~;) + 9o(Y~c) - Ean9n(Y~c) 

n=l 

k - 1,2,···,M.a 

These may be written in matrix form : 

where 

{ t/J}co 

{ 4>'}co 

{!} 

{g} 

{a} 

fM. = fo, 

{¢}co-{/}= [F]{a} 

{t/J'}co + {g} = [G]{a} 

= {¢(y~c)}, k = 1 2 ··· M 4 ' , , 
= {¢e}, e = Mt + M2 + M3 + 1, · · · , M 

= {<P'(yk)}, k = 1, 2, · · ·, M 4 

= {¢:}, e = Mt + M2 + M3 + 1, · · · , M 

= {fo(Yk)} k = 1 2 ·· · M 4 , , , 

= {go(Yk)} k = 1 2 ... M 4 ! I I 

={an} n = 1,2,· · ·,M4 

9Mt =go, aM4 = ao 
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( 4.37) 

(4.38) 

Also, F~cn = fn(Y~c), G1m = 9n(Y1c) are the k - n elements of the Mo~ X Mo~ matrices 

[F] and [G] respectively. 

From ( 4.37) 

{a}= [Ft1 ({4>}co- {!}) 
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Substituting in ( 4.38) gives 

{¢'}co = [H) ( { 4> }co - {/})- {g} (4.39) 

where 

[H] = (G](Frt 

We now note that equation ( 4.32) may be written in vector form as 

}
T T I 

{Ae r {</>e}r- {Be}r {<f>e}r = 0 (4.40) 

where {Ae}r, {Be}r, { l/>e}r, { l/>:}r denote theM-dimensional vectors of the quanti

ties Ae, Be, l/>e, 4>: on the closed curve r; the superscript "T" denotes the transpose 

of a vector. In order to apply the boundary conditions we write equation ( 4.40) 

explicitly in terms of quantities defined on each section of the boundary r, i.e. 

{Ae}bA{<f>e}oA 
T I 

{Be}oA{tPe}OA 

+{Ae}~s{l/>e}AB {Be}~s{ </>:} AB 

+{Ae}~c{l/>e}Bc {Be}~c{</>:}sc 

+{Ae}bo{ <l>e}co T '} {Be}co{<f>e co= 0 (4.41) 

From ( 4.34)- ( 4.36) we have 

{ l/>:}oA 
wl 

- -{</>e}OA 
g 

{ f/>:} AB 

, 
- iko{ </>e} AB (4.42) 

{ <t>:}sc - 0 

Substituting equations ( 4.42) together with ( 4.39) into equation ( 4.41) gives 



+{Ae}~c{<Pe}Bc + {{Ae}bo- {Be}bo[H]){<Pe}co 

= -{Be}bo ([H){/}+ {g}) 

This equation may be written : 

= -{Be}bo ([H]{f} + {g}) 

Equation ( 4.43) is the j throw of the complete matrix equation 

[C]{<P} = {b} 

The (j, k) -th element of matrix [C] is 

w2 
Ak- -Bk 

g 
k = 1, .. · ,Mt 
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{ tf>e}OA 

{tPe}AB 

{ tf>e}Bc 

{<Pe}co 

(4.43) 

{4.44) 

Ak- ik~Bk k = Mt + 1, · · · , Mt + M2 

Cjk = Ak 

k = Mt + M2 + Ma + 1, .. ·, M 

(4.45) 

The j th element of vector { b} is 

Mt 

bj = - L BM1+M2+M3 +r h, 
r=l 
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Table 4.1: Comparison of BEM with Analytic Formula for <P on a Flat Seabed 

x coord. of point <P(BEM) x lO"m"s-1 </>(Analytic) x lO"m"s-1 

on Flat Seabed Real I mag Real I mag 
-63.5 0.94559 -0.23239 0.94492 -0.23209 

-50.65 0.84967 -0.47520 0.84919 -0.47499 
-20.95 0.41352 -0.88093 0.41336 -0.88084 
-5.55 0.11285 -0.96644 0.11285 -0.96644 

where h,. is the r th component of the vector [H]{f} + {g} i.e. 

M., 

hr = E H,.do(Yi) + 9o(y,.) 
i=l 

The solution vector is 

{¢} = {¢e}, e = 1,2, .. ·,M 

The wave pressure P is determined from Bernoulli's equation as 

(4.46) 

The accuracy of the computer program was checked by running it for the case 

of a flat seabed under a wave of length 300m. and height 24m. in 80m. of water. 

The boundary values of ¢ were compared with those computed from the analytic 

formula ( 4.14). Excellent agreement was obtained as illustrated in Table (4.1) . 



Chapter 5 

Boundary Integral Formulation 

for Two Dimensional 

Poroelasticity - Sinusoidal 

Loading Conditions 

As noted previously, the boundary element method has been applied to Biot's 

equations by a number of authors. The boundary element formulation for Laplace 

transformed space was accomplished by Cheng and Liggett(1984). Although the 

use of Laplace transforms is convenient for treating the time derivatives, such a 

formulation is not practical for the present problem owing to the difficulty of nu

merically inverting the transforms for problems involving sinusoidal loading. Cheng 
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and Liu (1986) have presented the boundary integral equations and fundamental 

solutions for sinusoidal loading conditions but without derivation. We present here 

these derivations and in addition, the functions required for determining interior 

effective stresses and pore pressure. 

5.1 The Boundary Integral Equations 

The governing equations ( 3.19) and ( 3.20) are recorded again for convenience: 

O'ij,j + U,i - -pX, (5.1) 

(5.2) 

The problem is to solve ( 5.1) and ( 5.2) in a domain n bounded by a closed curve 

r, in two dimensions. Either the displacements u,, Ui or the tractions T, is known 

on r. The tractions a.!'e given by (Sokc.1nikoff, 1956} 

T, = 'Ti;n; (5.3) 

and using ( 3.11) this becomes 

(5.4) 

where n, is the i th ·component of the unit outward normal on r. A reciprocal 

theorem may be deduced as follows. We note that the constitutive laws ( 3.22) and 

( 3.23) are of the form 

Uij - Ae,; +(Be+ Qe)o;; 

u = Qe+& 
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If we consider two independent states of stress, denoted by primed and unprimed 

symbols, we have 

, I I 

smce eii = e 

t7i;e;; + t7e
1 

- Ae,;e;; +(Be+ Qe)e;, + (Qe + Re)e' 

- Ae,;e;; + Bee' + ( Qce' + Qec') + &c' 

Since the right hand side is symmetric with respect to primed and un-primed sym

bols, the left hand side must also be symmetric i.e. 

I I I I 

a,;e,; + t7c = a,;ei; + a c (5.5) 

which is the reciprocal theorem for poroelasticity (Clea.ry,1977). We shall seek 

the steady state solution of the governing equations under sinusoidal loading of 

frequency w, i.e. we shall assume that a quantity A, be it stress or displacement, 

takes the form A= Ae-iwt where tis time. Equations ( 5.1),( 5.2),( 5.4) and ( 5.5) 

then take the form 

CTij,j + iT,i -

iT,i + fpJXi -

'1', -
I I u,;e,; + ue -

-p.X, inn 

-iwfk(Ui- ui) inn 

iTi;n; + ctn, on r 
I I 

iT··e·· + c; e IJ 1J 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

Assuming continuity of the first partial derivatives, we apply the divergence 

theorem to the product CTijU~ : 



i.e. 

Since i and j are dummy indices we can write 

1 , , 
= 2(o-;;u;,; + D';;il;,;) 

1 , , , = 2o-;;(u;J + u;,;) = u;;e;; 

since 0';; = i7;; 

Hence ( 5.10) becomes 

Similarly, we may apply the divergence theorem to a-;;u; to get : 

Applying the divergence theorem to the product o-u; gives 

1.e. 
I , _, I _, 

lo ( ue + u,,U;) dO = lr uU; n; df' 

Similarly, by applying the divergence theorem to u' (J, we have 

We now add equations ( 5.11) and ( 5.13) to get 

l 
, , , _, 

(u··e .. + O'l +it· · ·u· + u ·U· ) dO 0 IJ IJ IJ,J I ,I I 

f - , _, , 
= lr [7iu; + u(U; - u;)n;] di' 
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~5.10) 

. (5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 



Adding ( 5.12) and ( 5.14) gives 

We subtract ( 5.16) from ( 5.15) and use the reciprocal relation ( 5.5) to get 

I I I _, I -

lo [ (cri;,Jili- cri;./ui) + (ii,iUi - a-,iui)] dn 

= £ [tiu~- t;ui + ii(U;- u~)n; 

-ii'(U;- il;)n;] di' 
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(5.16) 

(5.17) 

We now let the primed stresses and displacements correspond to certain special 

loading conditions prescribed via. the body force per unit ma.ss X,. Referring to 

Figure (3.1) we note that the masses of the solid and fluid portions of the area c5A 

are respectively {1- f)p,6A and fpJ6A, where p, is the density of the soil grains 

and PJ is the density of the pore water. The bulk density p of the soil is given by: 

(5.18) 

where P1 = {1- J)p, and P2 = IPJ· 

The body force on the mass p6A shown in Figure (3.1) is 

Here we interpret the terms p1Xi and P2Xi as the body forces (per unit volume) 

acting on the solid and fluid portions of soil respectively. We let the primed stresses 

and displacements correspond to the loading 

PtXf - 211'c5ik~(~, zlje-iwl 

P2Xf - 0 

i, lc - 1, 2 

(5.19) 

(5.20) 
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Here 6(~, E) denotes the Dirac delta function, points ~, 1!. being on the solirl skele

ton. The superscript k on the left hand side indicates the direction of the point load 

and equations ( 5.19), ( 5.20) thus describe two loading situations. This represents 

sinusoidal point loading on the solid skeleton and is analogous to the loading com

monly used for deriving the fundamental solutions for elasticity problems (Brebbia 

et al.,1984). A similar approach was taken by Cheng and Liggett (1984) for Laplace 

transformed space. Since Xi= .Xie-•wc, we have from ( 5.19) and ( 5.20) : 

i,k - 1,2 

(5.21) 

(5.22) 

The stresses and displacements due to the loading ( 5.21) and ( 5.22) will be denoted 

by asterisks and referred to as fundamental quantities. Substituting ( 5.21) and 

( 5.22) into the governing equations ( 5.6) and ( 5. 7), and noting ( 5.18) we have 

a-;;~ - -iwfk(Utlc - uilc) - 21r'Di~c6(~, 1!.) 

u~lc - -iwfk(Utlc- uilc) 

(5.23) 

(5.24) 

Also, for an arbitrary body force xi = Xie-iwt we have from ( 5.6) and ( 5. 7) 

Uij,j - -p1Xi + iwfk(Ui- Ui) 

u,i - -p2Xi- iwfk(Ui- ui) 

(5.25) 

(5.26) 

We replace the primes in equation ( 5.17) by asterisks and use equations ( 5.23) to 

( 5.26) to get 
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+[ -p2Xi- iwfk(U,- u,) ]ii;k + iwfk(ii;k- uik)ii,} dn 

= £ { (T,uik- ftlcili) + o-(ii;k- uik)n,- o-•k([J, - u,)ni} di' (5.27) 

By the sifting property of the delta function, 

(5.28) 

where the integration has been performed with respect to~, and l!. is the position 

vector of the point of application of the point load. Both sides of equation ( 5.27) 

are thus functions of E. E 0 and this equation takes the form 

21rc5i~cili(l!) = £('t;u;~c- t;~cu,) + o-(Vtk- uik)n, 

-a-*"( Vi- il,)ni di' 

+ k X,(ptilik + P2Ut1c) dO (5.29) 

In order to write ( 5.29) for a boundary point E. it is necessary to evaluate the 

Cauchy principal value of integrals involving the fundamental quantities (denoted 

by asterisks), since the quantities are singular at E.· Th;~, operation results in modi

fications to the term in il~c(E.} and the general form of this term is 21r'Oilcili(E.), which 

resembles ( 5.28) in form. 

Thus for any point E. E r, ( 5.29) becomes 

2 - ( ... ' PV ( [(T.- -•lc T-.~c-) + -cu-·lc -•lc) 11'0ilcUi V = Jr iUi - i Ui C7 i - Ui ni 

-o-*"(U,- il,)n,] di' 

+PV fo Xi(Ptililc + Pl(J;Ic) dO (5.30) 

The symbol PV denotes the Cauchy principal value of an integral. The coeP:cient 

Oilc must be evaluated either from the Cauchy principal value of the integrals or by 

using a "rigid body motion" analogy (Brebbia et al.,1984). 
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Equation ( 5.30) is the integral equation for the soil displacements. To derive 

a similar equation for pore pressure we consider the fundamental solutions corre-

sponding to the loading 

l.e. 

pXi - 0 

(p2Xi),i - -21r fkA(~,e)e-iwt 

(5.31) 

(5.32) 

Since p = p1 + P21 equation ( 5.31) implies that PlXi = -ptX;, i.e. the body 

forces on the solid and fluid portions of soil Gancel each other. Equation ( 5.32) 

describes the loading on the fluid portion of soil. We assume that there exists a 

scalar function x such that 

(5.33) 

and hence from ( 5.32) we have 

(5.34) 

We shall denote the stresses and displacements corresponding to the loading ( 5.31 ), 

( 5.32) by superscript 0. These are also called fundamental quantities. From the 

governing equations ( 5.6) and ( 5. 7) and the loading described by ( 5.31) and 

( 5.32) we have 

- o . fk(U-o -o) + q ... = zw . - U· X,· 
IJ1J I I I 

-0 · Jk(r-rO -0) u,i = -zw u, - ui - X,i 

(5.35) 

(5.36) 



Using equations ( 5.25), ( 5.26), ( 5.35) c:IJld ( 5.36) we have from ( 5.17) 

fo { [-ptX, + iwfk(U;- il;))u?- [iwfk(fi? -u?) + x,i]u, 

+(-p2Xi- iwfk(lh- u;)]ti? + [iwfk(ii?- u?) + X,i]U;} dO 

= £ { (fiu?- f'Pu;) +a-( OJ- uJ)n; 
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-a-0(0;- ii;)n;} di' (5.37) 

By collecting terms we find that the left side (L.H.S.) c..J. ( 5.37) reduces to 

r - 0 -o 0 -L.H.S. of ( 5.37) = Jn { X,[-pu, - p2(U, - u, )] + x,,(U,- u,)} dO (5.38) 

From ( 5.36) : 

-o -o t -o u. - u. = -(u . + v ·) 
' ' wfk ·' "-•' 

From ( 5.7) : 

- ' -U.·- ii· = -(a- ·+ Jp,X·) • • wfk ·• • 

Substituting these expressions into ( 5.38) gives 

(5.39) 

By applying the divergence theorem to the product t/nu it is easy to establish the 

identity 

fo rutf;,;dO = - k .,p,,,,dn + £ tf;run;dr 

By putting ru = X,; and t/J = 0' we have 

- - f iiV2xd!l + I ax in,df' 
Jn Jr ' 

- 21r fk fo a-~(;I., 1!) dO+ fr ux,,ni dr 

- 21r fkii(p) + £ ux,inidi' 

(5.40) 

(5.41) 



using ( 5.34) and the sifting property of the delta function. 

We now substitute ( 5.41) into ( 5.39) : 

L.H.S. of ( 5.37) = I -Xi(Pfl? + ipkf <7~) d!l 
ln w • 

Equation ( 5.37) thus becomes 

211"i -(.,.\ -u t:J = 
w 

211'i i lr +-u(E) + - ux ini df' 
w wfk r ' 

fr [(Tiu~ - f'Jui) +it( ftJ - u~)ni 
-o(u- - ) z - 1 .11" -a ·- u · n·- -uv ·n· a1. J ,, J wfk -"·J J 

I x- ( -0 "PJ-o)dn + lo ·i pui + wka,j u 

J - 1,2 
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(5.42) 

(5.43) 

If equation ( 5.43) is written for a boundary point I! the singular integrals involving 

fundamental quantities must be interpreted as Cauchy principal values and extra 

terms in it(f) appear. Thus for a boundary point 1!. : 

211'i8-( ... ' 
--(1 I!J = 

w 
PV £ [(Tiu1- f'Jv.i) +a-( OJ- u~)ni 

-o(u- - ) ' - 1 .11" -a j- Uj nj- ~fie uxJni a1 

+PV I X·(pu~ + ip, c;0.) d!l 
ln 1 3 wk '1 {5.44) 

) - 1,2 

The coefficient () must be determined from the evaluation of the Cauchy principal 

value of the singular integrals or from a "rigid body motion" analogy. For the 

purpose of determining wave-induced stresses and pore pressures we assume that 

there are no body forces present. Thus from ( 5.30) and ( 5.44) we write the 
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boundary integral equations as for 1!. E r as 

211"aikui(f) = PV £ [ (fiuik - 'i'tkui) + u( Utk - u;k)ni 

-o-•k((]j- ui)ni J dr (5.45) 

(5.46) 

where subscripts i, k = 1, 2, and as previously noted, a repeated subscript indicates 

summation. 

5.2 The Fundamental Solutions 

As indicated earlier, the fundamental solutions are the stresses and displacements 

corresponding to the loadings described by equationo ( 5.21), ( 5.22) and ( 5.31), 

( 5.32) . In order to determine these solutions the governing equations ( 5.6) and 

( 5. 7) must be written in terms of displacements via the constitutive relations ( 3.22) 

and ( 3.23). This renders ( 5.6) and ( 5. 7) as 

pui.;; +(A+ p + ~ + Q)u;,;i + (Q + R)U;.;i - -pXi (5.47) 

where, we recall, Q and R are given by ( 3.24). The first set of fundamental 

solutions, denoted by asterisks, is obtained by substituting ( 5.21) and ( 5.22) into 

( 5.47) and ( 5.48) to give 

pui~; +(A+ p + ~ + Q)uj~i + (Q + R)Uj,~i - -211'c5ikA(~,E) (5.49) 

Qu-:k .. + RU!~. + iwfk(O.~k- u~k) - 0 
J,JI J,JI I I (5.50) 



Following Biot (1956) we define 

where 

and 

from which we have 

v'!'k = (H- Q- R) -~k + (Q + R) [J~k 
I H u, H I 

H = >. + 21-' + ( Q + R)
2 

R 

In terms of v;k and w;k equations ( 5.49) and ( 5.50) become 
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(5.51} 

(5.52) 

{5.53) 

(5.54} 

(5.55) 

-2?rc5jJ:Ll(~, 2!) (5.56) 

(5.57) 

But we note from ( 5.24) that 

-·k 
lc 

q . 
u;• - ·' 

i - -iwfk 

so that 

Substituting this into ( 5.56) and ( 5.57) gives 

pv;j; + (H -ll)vjji - -211'c5ur.1(~,£) (5.58) 

(Q + R)v~~. + R( >. + 2~-') w~~. + iwfkw~lr - o (5.59) 
J,JI H I,JJ I 
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Equation ( 5.58) may be compared to the elasticity equation 

(5.60) 

Employing the Papkovitch-Neuber technique we write 

(5.61) 

where 

(5.62} 

The quantities 1/J~,t/Jf are functions of the spatial coordinates z, . We may take 

any one of these functions to be zero without loss of completeness (Eubanks and 

Sternberg,l956). Accordingly, we set t/J~ = 0 . We define the coordinate system by 

Zi =Xi- Pi 

where x,, Pi are the coordinates of the points~ and 1!. respectively. Using ( 5.61) 

and writing 

we find that ( 5.60) becomes 

·p = 2p(l- v) 
1- 2v 

We now integrate over a. circular region !l,centre 1!. and radius e : 

since 

(5.63) 

(5.64) 
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We may define local polar coordinates with l!. as origin by letting 

x1 - P1 = r cos() 

x2 - P2 = r sin 0 

Then,assuming t/Jf is independent of () , we find that the second integral on the left 

hand side of ( 5.64) is easily evaluated as 

(5.65) 

where r is the circular boundary of n . 
The first integral on the left hand side of ( 5.64) is evaluated by noting that for any 

continuously differentiable function tP 

Thus 

k a~,{(Xj- pj)V2t/Jj)dn = lr (xi- pj)V2.,Pjnidf (5.66) 

Changing to polar coordinates and recalling that t/Jf is independent of () ,( 5.66) 

becomes 



- fr.[rcos8V
21/Jf +rsin6V

21/J;] ( ~9 ) di' 
sm8 

_ [ ~o:: [ ecos 9(V2V>~l·=· + , sin 9(V
2.P;).=,] cos 9.' d9] 

fo [£cos 8(V2,Pf)r=c + f sin 6(V2,P~)r=cJ sin 6.£ d(J 

2 [ (V21j.l~)r=c l 2 2 le = 7rf. = 7rf. (V tPi )r=c 

(V2t/J~)r=c 

Then using ( 5.65) and ( 5.67),equation ( 5.64) simplifies to 
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(5.67) 

/37r£2(V2,Pf)r=c - 4(1 - 2v){37rt.( ~f )r=c = -27rbife (5.68) 

We choose t/Jf such that 

V 2t/Jf = 0 at least when ~ #- l!. i.e. r # 0 (5.69) 

Then ( 5.68) becomes 

(a.,p~) 1 
2(1- 2v){J -' = -bile 

8r r=c f. 
(5. 70) 

This equation is satisfied by 

.~ .• ~ 1 I ~ 
'1/ - 2( 1 _ 211) {3 n rvile 

1 
- 41-'(1 _ v) In r8i1e (5.71) 

which also satifies condition ( 5.69) . We thus have from ( 5.61) a solution of ( 5.60) 

as 

(5. 72) 



where we have used r 2 = ZiZi, ZiJ = 6ij and z; = rr,i . 

By comparing ( 5.60) with ( 5.58) we have the analogy : 

Hence 

u~ --+ 
I 

.\ --+ H -2p 
,\ 

v= --+ 
2(..\+p) 

H- 2~-& 

2(H-~-&) 

\Ve thus construct from ( 5. 72) the function v;lr as 
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(5.73) 

To determine u;;lr (defined by 5.53) we again note from ( 5.24) that w;" is the 

gradient of a scalar function. Writing 

(5.74) 

we have from ( 5.59) 

Integrating with respect to Xi and setting the integration constant equal to zero 

(since we are only interested in a particular solution) gives 

(Q + R)v~~ + R(..\ + 2f')V2 c/>lr + iwfk¢" = o 
M H {5.75) 



To evaluate vj~ we make use of the following results : 

Xi- Pi 
r· -•• r 

r,ir,i = 1 

T" = 
D&j _ r,,r J ,., 
r r 

(r JT,k)J -
r,lc 
r 

which are easily deduced from the definition 

Then differentiating vJk (from ( 5.73)) with respect to Zj we get 

v~~ = _ _!_(In r) 1c ,,, H , 

Substituting in ( 5. 75) gives 

2 1c iwfkH 1c [ Q + R l 
V tP + R(>. + 2J£) tP = R(>. + 21') (lnr),ic 

We let 

where 

Since (see Appendix D) 

<P~ - c~;~) {ln r),lc 

_ -i(Q+R)r,k 
wfkH r 
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(5.76} 

(5.77) 

(5.78) 
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we have 

(5.79) 

where the right hand side must be interpreted as the derivative of a generalized 

function. Substituting ( 5.77) into ( 5.76) and then using ( 5.78) and ( 5.79) gives 

'V2;,.k iwfkH ;,.k = _ 2n-(Q + R) 8 [A( ""'] (5.80) 
Y-'2 + R(>. + 2J£) Y-'

2 iwfkH 8xk *"' 0 

We define the constant a by 

a2 = iwfkH 
R(~ + 21') 

(5.81) 

This will be expressed in a. more convenient {orm later. Equation ( 5.80) becomes 

'V2r/Jir- 2r/Jir = 2n-i(Q + R) 8 [A( )] 
2 a 2 wfkH 8:ck ~,p_ (5.82) 

Integration with respect to Xk gives 

(5.83) 

where 

k wfkH j k 
1J = i(Q + R) <P2d:ck (no sum on k) (5.84) 

A solution to ( 5.83) is (Bleistein, 1984) 

r," = -Ko(ar) (5.85) 

where K0 is the modified Bessel function of the second kind of order zero, and 

r = 1~- ~I· From ( 5.83) and ( 5.84) it is clear that 

;,.k
2 

-i( Q + R) 8 [ v ( )] 
'f' - wfkH O:Ck .no ar 

i(Q + R) 
- wfkH ar,kKt(ar) (5.86) 
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where K1 is the modified Bessel function of the second kind of oruer 1. Now 

substituting ( 5.77) and ( 5.85) into ( 5.76) we have 

1e i(Q+ R) 1 
t/> = wflcH ar,~c[Kt(ar)- ;,:-l 

The function wi" may now be obtained from ( 5.74) as 

-•k i(Q+R)a
2

{[ 2 K( )] 
wi - wflcH a2r2 - 2 ar r,;r,k 

+Silc[Kt(ar) _ __!_]} 
ar a2r 2 

where we have used the results 

2 
Kz(ar) = Ko(ar) + -Kt(ar) 

ar 
a 1 

ax/Kt(ar)] = -2ar,;[Ko(ar) + K2(ar)] 

Using ( 5.73) and ( 5.88) we recover u;" and Vtlt: from ( 5.54) and ( 5.55) : 

u;" - ( ~~--;) r,;r,~e - ( ~Jl+;) In rDik 

i(Q +R)2a 2 2 
- wfkH2 {[a2r2 - K2(ar)]r,ir,k 

(5.87) 

(5.88) 

+SiL[Kt(ar) __ 1_]} ( 
"' ar a2r2 5.89) 

Ui" - ( ~Jl-:) r,iT,k - ( ~Jl+;) ln rDile 

i(H- Q- R)(Q + R)a2 2 
+ wfkH2 {[a2r2 - K2(ar)]r,ir,k 

+c5i~t:[Kt(ar) __ 1_]} ( ) 
ar a2r2 5.90 

The tractions 'i't" and c;•k are now obtained from ( 5.8) and the constitutive 

laws ( 3.22) and ( 3.23) i.e. 

'i't" - 2peifn; + (~ + ~ + Q)e*"ni + (Q + R}e*"n, (5.91) 

a-·" - Qe*" + &-~c (5.92) 
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where 

Thus substituting ( 5.89) and ( 5.90) into ( 5.91) and ( 5.92) we obtain after some 

manipulations 

In these derivations the following relations were used 

2n 
Kn+t(z) = Kn-l(z) + -Kn(z) 

z 

, 1 
Kn(z) = -2[Kn-l(z) + Kn+t(z)) 

(5.93) 

(5.94) 

The second set of fundamental solutions, denoted by superscript 0, is obtained by 

substituting ( 5.31) and ( 5.33) into ( 5.47) and ( 5.48). This gives 

p'V~v.? + (~ + p + ~· + Q)v.~J• + (Q + R)Of.;, = o 

Qu1J• + RUJ,;, + x.• + iwfk((//- v.?) = 0 

(5.95) 

(5.96) 



where x is found from ( 5.34). The solution of ( 5.34) is (see Appendix D) 

X= -fklnr 

We define 

-0 V· = ' 
-0 W· = ' 

from which we have 

-0 U; = v~- (Q +R) w~ 
' H ' 

m 
' - v? + ( 1 - Q ~ R) w? 

From ( 5.36) we note that 

-«? = (iT0 + X,i) w, . fk 
-~w . 

·' 
which implies that 
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(5.97) 

(5.98) 

(5.99) 

(5.100) 

(5.101) 

(5.102) 

Using ( 5.100), { 5.101) and ( 5.102) we express ( 5.95) and ( 5.96) in terms of 

-o -o. V;, W;. 

ll V2v~ + (H - lt)v'? .. = o 
r , r '''' 

(Q + R) -o + R(~ + 2p)V2 -o +. fk -o fkr,; -0 
V · .. W· ZW W·- -

J.J• H ' • r 

We note that vf = 0 is a solution of ( 5.103), and ( 5.104) then becomes 

where we ha.ve used ( 5.81). We let 

r· 
- 0 ·' + W· = -.- n& ' zwr ., 

(5.103) 

(5.104) 

(5.105) 

(5.106) 



By using the results 

8i; r,r·· . .i 1 
r,ij = -;: - -r- ; r,;; = ; ; r ·r · = 1 ,J ,, 

it is easily shown that 

( ) 
r i r,i 

r ·r · · = --!.. • r .. · - -•' ,, ,, r ' MJ - r2 

Hence from ( 5.106) we have 

We substitute ( 5.106) and ( 5.107) ini.o ( 5.105) to find 
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(5.107) 

(5.108) 

From ( 5.106) we see that it would be convenient to seek a solution of ( 5.108) of 

the form 

1/i = r,i/(r) 

Substituting this into ( 5.108) gives 

d~/ df 
r 2 

- + r - - ( a 2 r 2 + 1 )/ = 0 
dr2 dr 

Putting x = ar and g(x) = /(~) this equation becomes 
a 

(5.109) 

We recognise ( 5.1 09) as the modified Bessel equation of order 1 and hence we can 

write a solution as 

g(x) = Kt(x) 
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Thus f(r) = Kt(ar) and we write a solution of ( 5.108) as 

In Appendix E we verify by direct substitution that this is a solution of ( 5.108). 

It is clear that 

(5.110) 

also satisfies ( 5.108) so that from ( 5.106) we have 

_ 0 -ar,i 1 ) 
W · = -.-[K1(ar)--1 tw ar 

(5.111) 

The fundamental solutions u? and Of can now be written from ( 5.100) and ( 5.101): 

-0 U· -I ( Q+R) 1 . H ar 1[K1(ar)- -) 
tw ' ar 

(j~ 
I - ( Q .,. R- 1) a.r,, [Kt(ar)- .!_] 

H tw ar 

since v? = 0. 

Equation ( 5.8) and the constitutive laws ( 3.22), ( 3.23) imply 

Tf - 2Pe?;n; + (.,\ + ~'l + Q)eOni + (Q + R)t>ni 

a-0 - Qe!l + &-{) 

where 

-0 1 -0 -0 
eij = -(u· · +U··) 2 I,J J,l 

tJ = -0 U · . 
'•' 

tJ - 0~'. 
'·' 

' 

(5.112) 

{5.113) 

(5.114) 

(5.115) 
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Using ( 5.112) and ( 5.113) in ( 5.114) and ( 5.115) gives, after the necessary algebra, 

.2pa'l (Q + R) 8r 2 
-~~ H {r,; 8n [a:zr:z - K2(ar)] 

1 1 1 
+n;[2K2(ar) + 2Ko(ar)- a2r 2 ]} {5.116) 

iTO = - fkKo(ar) (5.117) 

It is desirable to express the fundamental solutions in terms of familiar material 

constants. We first recall that 

{5.118) 

where k0 is the soil permeability is ms-1 , f is the soil porosity, p J is the density of 

the pore water and g is the gravitational acceleration. Also, from { 3.24) we write 

the constant H, defined in ( 5.52), as 

(5.119) 

where >. and p are the Lame constant and shear modulus respectively of the soil 

skeleton, and K1 is the bulk modulus of the pore water. The parameter>. may be 

written in terms of the mo.~ ~l.IIliliar Poisson's ratio v: 

,\ = 21'11 
1-2v 

and equation ( 5.119) may be re-written: 

H = 2p(I - v) + K, 
1- 2v f 

(5.120) 

(5.121) 

Using ( 3.24), ( 5.118), ( 5.120) and ( 5.121) we express the parameter a2
, defined 

in ( 5.81 ), as 

(5.122) 
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We can now summarize all the fundamental solutions as follows : 

-•k (H-~) (H+~) U· - 2~H r,ir,1c - 2~H In r6ilc I 

ikoK}a2 2 
- wf2plgH2 {[a2r2 - K2(ar)]r,iT,Jc 

+5iJc[Kt(ar) __ 1_]} 
ar a2r2 (5.123) 

[J~Ic 
I - (H-~) (H+~) 2~H rl;r1/c - 2~H In r6ilc 

i(H- K, )K1koa2 2 
+ f2 H2 {[22- K2(ar))r1,r11c w PJ9 a r 
+5ik[K1(ar) __ 1_]} 

ar a2r2 (5.124) 

t..•lc 
I - ( H - ~) r ;r 1c or ~ 1 or -2 -!..-!-..- + --(r ~en;- r ;n~c- -8,~c) H r on Hr I I on 

i2~KJkoa3 {or «h[~ _ K2(ar)) 
wf2p,gH2 on I a3r3 ar 
or 8 

+arl,ri~:[K3(ar)- 33] n ar 
2 3K2(ar) 

+rl~cn;[33 + - K3(ar)J a r ar 
+r ,n~c[2_ _ K2(ar)]} 

I a3r3 ar (5.125) 

c;•lc - (aK') 1 H ri~;[K1(ar)- ;,:1 (5.126) 

-0 CK'a) 1 (5.127) Uj - - - r ,[Kt(ar)- - ) wH ' ar 

[J~ 
i K, 1, 

(5.128) - -(1 - -)ar i[Kt(ar)--I w H I ar' 

t.~ 
. 2~K,a2 or 2 - -1 {r ,-[--K2(ar)] I wH I on a2r2 

1 1 1 
+ni[2K2(ar) + 2Ko(ar)- 02r2]} (5.129) 

UO - -p~:p Ko(ar) (5.130) 

where the constants H and a are given by ( 5.121) and ( 5.122) respectively, and 
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suffixes i and k take the values 1 and 2. 

5.3 Evaluation of aik and (} 

As previously mentioned,the coefficients aik and I) appearing in the boundary in

tegral equations ( 5.45) and ( 5.46) may be determined from the evaluation of the 

Cauchy principal values of the integrals. However,as will be seen below, it is not 

necessary to know these quantities explicitly. They will be determined by a method 

known as the "rigid body motion" analogy,which is frequently used in the bound

ary element literature. First we rewrite the boundary integral equations ( 5.45) and 

( 5.46) so that pore pressure p appears explicitly. To do this we substitute 0' = - fp 

and define the fundamental solutions rl: and po by 

Substituting these in ( 5.45) and ( 5.46), multiplying ( 5.46) by i; and using 

( 5.97) gives the boundary integral equations in the form 

2 - (D) PV { (T.- -·k r.-·k- ) ( --•k --ak- ) di' 
?r'Oi/cUi "- = Jr iUj - i Uj - P'l'n - p Vn 

i,k=1,2 

21r8p(.E) = PV frcna?1
- f'i01u;)- (fiii~1 - p01vn)dr 

i = 1,2 

(5.131) 

(5.132) 
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where we have written 

Vn - j((j.- il·)n· ' J J J 

-·k J(frk -·k) vn -- i - ui ni 

-01 -w-o 
U· - if ui I 

jj~1 
I - =!:!.m> 

if I 
(5.133) 

f'~l -w -o 
• - if T, 

-o 
tfl -w ::O wa - if p = if2 

-01 (f:l1 01 1 Br 
vn - /( -fl. )n,- --

I I Tan 

The position vector of the point P on the boundary (at which r is zero) is denoted 

by £_. To determine the coefficient Oik we notice that the governing equations 

( 5.47) and ( 5.48) admit the following trivial constant solutions for the case of zero 

body forces: 

(a) fit = 01 = 1 and ii2 = 02 = 0 => Vn = 0 

(b) iit = U1 = 0 and ii2 = 02 = 1 => Vn = 0 

where it is implicit that w = 0. No stresses or pore pressures are induced by these 

cases, as is easily verified from the constitutive relations, i.e. '1', = 0 and p = 0. 

Substituting the first case (a) into ( 5.131) gives : 

r - k 
21ro1k = - lr T1* dr 

Similarly, the second case (b) produces from ( 5.131) 
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Thus we have 

2·.rr..,k = -£ 'i't" di' i, k = 1, 2 (5.134) 

To determine the parameter 0 we consider (again for no body forces) the case of 

unit pore pr-essure and zero displacement of the soil skeleton, i.e.,p = 1, ui = 0 and 

w = 0. From the constitutive laws ( 3.22) and ( 3.23) we have (using u = -fp) 

1 
€ = --and iTij = -(1- f)Sij K, 

Thus for a compressible fluid (K, :/: oo),the fluid displacement fh is non-zero. We 

note also ,from ( 5.8),that the tractions fi are non-zero. Since w = O,the parameter 

a defined in ( 5.122) is zero. Hence,in the boundary integral equations we must 

use the limit of the fundamental solutions as a --. 0. We now examine the funda-

n1 ... . ~al solutions appearing in (5.132). It will be shown in section (6.2) that the 

func~:"ns u?1, 'i'P1
, p01 possess logarithmic singularity at ar = O,(See 6.29). From 

the definitions ( 5.133) and ( 5.127),( 5.128), ( 5.130),it is clear that u?l, 'i'pt, f 1 all 

approach zero as a _. 0. The function ii~1 ,on the other hand, behaves differently. 

From ( 5.133), ( 5.127) and ( 5.128) we have 

01 [ ( ] 1 or vn = -ar,i K1 ar)- 1/ar ni- --
8 r n 

The first term tends to zero as a --. 0, as can be seen from ( 6.22). Thus putting 

p = 1, Ui = 0 in ( 5.132) and taking limits of the fundamental solutions as a--. 0 

we have 

fr 18r 
2Tr0 = - -df 

r r8n 
(5.135} 



Chapter 6 

Boundary Element Procedure 

In this chapter we outline the numerical details of the boundary element method 

used for solving a boundary value problem. The accuracy of the method is illus

trated by comparison with the analytic so!ution for the wave loading of a horizontal 

isotropic poroelastic seabed which is briefly described in Appendix I 

6.1 Discretisation of Boundary Integral Equa-

tions 

Using ( 5.134) and ( 5.135), the boundary integral equations ( 5.45) and ( 5.46) 

become 

(6.1) 
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f {.::.. -01 ..:..Dl - - (.::..01 .::.01) .:.01 - ro 8r [- - J} Jr Ti iii - Ti iii- p f Ui - ui n, + p 'Vn +-;an p- p(£.) dr = 0 

(6.2) 

where ( 5.46) was multiplied by ro (r0 is an arbitrary length) and we have defined 
I' 

the following dimensionless quantities : 

.::..•k =-k 
T. =roT· I I 

..::.01 -01 ui = r0 u, 

.::..01 r2 =ill 
Ti = ....!!Ti 

I' 

(6.3) 

.::..01 _,()l u. = roU· I I 

2 
.:.Ot ro.,..ot 
p =-p 

I' 

It is understood that the integrals are evaluated in the Cauchy principal value sense 

and we recall that E. denotes the position vector of the point at which r = 0. We 

now discretise the boundary r into M straight line segments re, e = 1 toM. Each 

segment is termed a "boundary element" and a node is located at its midpoint. On 

each element we make the assumption 

.:....e -e .::.. -
where Ti and u, denote the values of Ti and Ui at node e. For this reason the 

elements are termed "constant" elements. 

If we let point f. be the jth node (i.e. r = 0 at node j) then equation ( 6.1) 

becomes 

(6.4) 

=0 



The second term on the left hand side is 

where we have defined s~, as 

s:, -
e=J 

i, k = 1, 2 

We now note that ( 6.1) may be written in the form 

M ( ~ ) I: m, r, + s:, ti; 
e=l 

i = 1 to 3, 

where we have defined fta = Un and 

Se lr :..•k JT" 
k3 = P UJ. e r. 

k = 1,2 

=0 

k = 1,2 

k = 1,2 

i = 1,2 

i=3 
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(6.5) 
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Writing T3 = -p and discrt>tising ( 6.2), we obtain 

(6.6) 

Proceeding as done earlier we write the last term on the left hE-nd side as 

M (.::..e ~) fr r 0 8r L T3 -1·3 ---8 di'e = 
e=l r. r n 

where ve is defined as 

(6.7) 

e=J 

Equation ( 6.6) may thus be written in the form 

(6.8) 

i = 1 ~0 3 



whare 

.R;i= 
J ..:.01~ U• U.L e 
r. ' 

Se-
3i-

-T· df'e lr 
..::.Dl 

r. ' 

{ Jf1 df'e 
lr. 

i = 1,2 

i = 1, 2 

i = 3 

Combining ( 6.5) and ( 6.8) we have 

M ( ~ ) [; .Wrn Ti + SZJfa - 0 

i,k=1to3 
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(6.9} 

where we recall that ft3 = Un and T3 = -p. Equation ( 6.9) is in fact the discretised 

boundary integral equation. The formulae for Jlii and Szi may be written more 

compactly if we make the following definitions: 

fori= 1, 2 (6.10} 

k = 1,2 

(6.11} 

::.•lc k = 1,2 - p 
.:...•lc 
Ta - (6.12) 

..:J)l 
k=3 -p 
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Then 

J u-;3 dl'e + ve i=k=3 
r. 

Rki= (6.13) 

lr :.role df U· e r. I 
otherwise 

M 1 •role i,k=l,2 
L Ti di'. 

s:i = 
••l Gamma, 

(6.14) •"#j e=J 

- T· J ~·le 
re I 

dl'e otherwise 

6.2 Function Approximations 

To evaluate integrals R%i, SZi we need to take a closer look at the integrands. It 

will be noted that the fundamental solutions are functions of ar, r,i a.nd ni, these 

quantities being defined in Chapter 5. From ( 5.81) we note that a2 may be written 

~.a the form 

(6.15) 

where 
wfkH 

c= ~..;_.-~ 
R(,\ + 2~) (6.16) 

The constant cis real and positive and has dimensions of (length)-1• From ( 6.15) 

we have 

(6.17) 

The Bessel functions of argument ar may now be separated into real and imaginary 

parts via the relations (Abramowitz and Stegun, 1970). 

J(0(xe-if) = ker x-i kei x (6.18) 

'· 



and 

J<1 (xe-if) - -(kei1 x + i ker1 x) 

1 (k I k , I ) i (k I k ,I ) - - .J2 er x + e~ x - v'2 er x - ez x 

2n 
I<n+l(z) = Kn-t(z) + -Kn(z) 

z 

n integer, z real or complex 
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(6.19) 

(6.20) 

To evaluate the Kelvin functions ker, kei, ker', kei' we use the polynom~al approx

imations given by Abramowitz and Stegun, Sec. 9.11. These have been tested 

against IMSL routines for the Kelvin functions and have been found to be ex

tremely accurate. The use of the IMSL routines directly in the BEM program is 
. 

not computationally efficient owing to the large number of function evaluations 

required. Using the polynomial representations,therefore, we write expressions for 

the following functional groups involving the Bessel functions, which appear in the 

fundamental solutions. The algebra involved is quite extensive and is not recorded. 

The final results are 

Ko(ar) = ln(~ )uo(cr) + vo(cr) 

_K.;;;..:1 (_ar~) - - 1- = ln( ~)tit ( cr) + Vt ( cr) 
ar a2r 2 2 

K2(ar)- ; 2 = ln(cr
2 

)u2(cr) + u2(cr) 
ar 

K2(ar) 2 ln(cr)N ( ) _ ( ) 1 _ ( ) 
- 3_'\ = -

2 
U3 cr + W3 cr + - z3 cr 

M ar cr 

K ( ) 3K2(ar) 2 1 (cr)N ( ) N ( ) 1 _ ( ) 
3 ar - --= n- u4 cr +w4 cr + -z4 cr 

ar a3r 3 2 cr 

~K2(ar) + ~Ko(ar)- a2
1
r2 =In(~ )us(cr) + us(cr) 

K3(ar)- a:r3 = ln(; )t16(cr) + wa(cr) + ! z6(cr) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

(6.27) 



where for any n 

iln(x) = Un(x) + iu~(x) 

Vn(x) = Vn(x) + iv:(x) 

Wn(x) = Wn(x) + iw~(x) 

Zn(x) = Zn(x) + iz:(x) 
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(6.28) 

The functions Un, u~, Vn, v~, Wn, w~, Zn, z~ are recorded in Appendix F. These ex

pressions enable us to express the fundamental solutions u;k and it as 

:•k cr - -
U· - In( 2 )Hik + Gik • 

(6.29) 

"'*k cr - - 1 -
Ti - In( 2 )P,~; + Q,~; + ~Z,~;(cr) 

where 

ilik - Bile+ iH;~; Gik = Gile + iG;k 

pik - Pile+ iP;~; Qile = Qile + iQ~k (6.30) 

zik - zik + iz;" 

These functions ( 6.30) are defined in Appendix G. 

6.3 Evaluation of Integrals 

As can be seen from Appendix F and Appendix G the functions ii;" ,Gi" ,Pt", 
{J;", Zf", defined in ( 6.30), possess no singularities. We see from ( 6.7) and ( 6.29) 
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that the integrands of R~i and S£i (equations 6.13 and 6.14) possess terms of order 

! for certain values of i and k. It wni be noted,however, th"at it is not neccessary 
r 
to integrate these expressions over the element on which r = 0 (element j). Hence 

all integ1'als may be considered of the form 

I= f [ln(cr
2 

)/( ~; r,ii ni) + g( ~; ~.ii ni)) eire 
Jr. ro ro 

(6.31) 

where the functions f and g are non-singular at r = 0 and r e is an arbitrary 

element e. Special procedures are required for the case e = j, owing to the presence 

of the logarithmic singularity on this elemer.t. In addition, we make note of the 

following facts concerning the nature of functions f and gin ( 6.31). The functional 

approximations used (Appendix F) change form at the value cr = 8. When 

writing an integral in the form ( 6.31) we have employed the following programming 

device. For the range cr > 8 the function f has been set to zero and the entire 

functional form of the integrand has been assigned to the function g. The result 

is that both f and g are discontin,tous at cr = 8, while the entire form of the 

integrand in ( 6.31) is not. This must be taken into consideration only on element 

j, since it is only on this element that it is necessary to separate the integrands 

into logarithmic and non-logarithmic parts. 

We now describe the details of the integration procedure. We consider that 

the boundary r lies in the x - z plane with the x and z coordinate axes directed 

to the right and vertically downward respectively. We recall that the problem is 

two dimensional, i.e. conditions are uniform in the y direction. We denote the 

coordinates of the end points of an arbitrary element fe by (xe, ze) and {xe+t1 Ze+t) 

and define the integration direction from the former point to the latter. Since there 

are M elements, (xM+I, ZM+t) = (xlt z1). The x and z coordinates of a point on re 
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are represented parametrically as 

1 1 
X = 2{1 - e)ze + 2{1 + ~~)Xe+t 

1 1 
z = 2{1- Oze + 

2
{1 + e)z~+l 

where - 1 < e :5 1 

The point l!. from which r is measured is located at node j (mid-point of element 

r;). Denoting the coordinates of l!. by (xo, z0 ) we have 

Since r = l:t - 1!.1 we have 

1 
zo = -(z; + z;+t) 

2 

r = [(x- xo)2 + (z- z0) 2)t 
8r x -xo 

r,l =ax= r 
8r z-zo 

r,:l = 8z = r 

(6.32)' 

{6.33) 

It is easily verified that the unit outward normal ni for anticlockwise integration 

around r is given by 

where 

Je = ~({xe+l- Xe)2 + {ze+l- Ze)2]t 

The line element eli' 11 is given by 

For the case e :/: j it is thus quite easy to express ( 6.31) in the form 

{6.34) 

{6.35) 

(6.36) 

(6.37) 

.. 
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by using ( 6.32) through ( 6.36). Standard Gaussian quadrature can now be applied 

to ( 6.37). Integration along element r; must be considered in two cases, viz. inte

gration before and after the mid-point (x0 , z0 ), at which the logarithmic singularity 

occurs. We shall denote these two integrals by Ia and Ib respectively. 

Case( a): Integration from (x;, z;) to (xo, z0 ) 

We define Tmaz to be the distance from (x;, z;) to {xo, zo), i.e. 

(6.38) 

We find by putting (xe, Ze) = (x;, z;) and (xe+l, Ze+t) = (xo, zo) in { 6.32) to { 6.36) 

that 

Hence we have 

1 
r = 2(1 - e)rma:: 

Xj- Xo 
r,t -~ 

Tma: 

nt = r,2 

8r ... 
-=r ·n·-U 8n - •' '-

Zj- Zo 
r,2 = 

Tma:t' 

n2 = -r,t 

! 11 
{ 1 ~c(l - e)rmaz]f[(l- e)rma:t'. .• ·] Ia -

2
rma: nl . 

2 
, r,., n, 

-t ~ ro 

[(1 - e)rma:t' 1 } +g 
2 

;r,,;n, de 
ro 

(6.39) 

(6.40) 

We note that r,1 and n, are constant on r;. Because of the discontinuities in the 

functions f and gat cr = 8, the integral Ia must be evaluated in two cases also : 

{1) CTmaz < 8 

In this case the discontinuity does not lie in the ra.nge of the integration. By 

isolating the logarithmic singularity (at e = 1) and making appropriate changes of 
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variable we can express ( 6.40) as 

(6.41) 

(2) CT'mcu: > 8 

The discontinuity at cr = 8 now lies within the range of integration. We define the 

value eo such that cr = 8 at e =eo. From ( 6.39) we ~~hus have 

16 
eo=l---

C7"ma: 
(6.42) 

We express ( 6.40) as the sum of two integrals: one from -1 to eo and the other from 

eo to 1, making use of the fact that for e < eo ( i.e. cr > 8), f is identically zero. 

Again by isolating the logarithmic singularity and making appropriate changes of 

variable we wri~e ( 6.40) as 

where 

1( ) 11 [(1-s)rmaz ] -4 1 + eo r ma:z: g 2 ; r,ii ni de 
-1 ro 

1 ( t ) 11 l (CTma:z:) ((1- t)rmaz ) [(1 - t)rmaz +
4
- 1- ._o rma: n - 4- f 

2 
; r,ii ni + g 

2 
; r,ii ni)de 

-1 r 0 . r0 

+-4
1 

rmaz(1 -eo) ln(l -eo) 11 
/[(u;mcu: j r,ii ni]de . 

-1 ro 
1 ( ) [ 1 ( 1) (V rmaz } - 2rmaz 1- eo lo ln e J ~;r,,; ni de 

s = !{1 + eo)(1 +e)- 1 

t = lll +eo+ e(l -eo)] 

u = !{1 - eo)(1 +e) 

v = e(1- eo) 

{6.43) 



Case (b): Integration from (xo,zo) to (Xj+t,Zj+t) 

Here we define Tmaz as the distance from (x0 , z0) to (Xj+t, Zj+t) so that 

1 
r = 2(1 + e)rma: 

Xj+l- Xo 
r,1 = 

Tma: 

n1 = -r,2 

8r an= r,mi = 0 

Zj+t- Zo 
r,2 = 

Tma:~: 

As before, it is necessary to consider two sub-cases : 

(1) CTma:~: < 8 

The result is 
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(6.44) 

(6.45) 

! 11 l (CTma:~:)/((1 + e)rmaz. .. ·] + [(1 + e)rma:~:. .. ·)d~ 
2rmaz n 4 2 ,r,1lnl g 2 ,r,1ln, ~ 

-t ro ro 
1 11

1 (3+e)
1

.(a+e)rmaz ]dt 
+4rmaz _

1 
n - 2- l 4ro i r,ii ni 1, 

1 £1 
( 1) [(erma:- ] --

2
rmaz In -; f 

2 
; r,ii ni de 

.o ~ ro 
(6.46) 

(2) CTmo:~: > 8 

Again, we define eo by the relation cr = 8 ate= eo. From ( 6.45) we find that 

16 
eo=---1 

erma:~: 

Noting again that f::: 0 when e >eo we have the final result as 

1 11 [(1 + s)rmoz ] Ib = -
4

(1 - (o)rmoz g 
2 

; r,ii n, de 
-1 ro 

(6.47) 



where 
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1 11 {erma~) [{1 + t)rmaz ) [(1 + t)rma~ )dC +-
4

(1 + eo)rmaz In - 4 - f 2 ; r,ii ni + g •• ; r,ii ni ~ 
-1 ro "'ro 

1 { ) 11 
[{urmaz ]d +-

4
{1 +eo) ln 1 +eo Tmaz f 

2 
j r,ii ni e 

-1 ro 

1 [ 1 (1) [(vrma~ ] 
-2(1 + eo)rmaz lo In e f 2ro ; r,ii ni de 

s = ![e(l -eo)+ 1 +eo] 

t = t[e(l +eo)- 1 +eo] 

u = !{1 + eo)(1 + e) 

v = e(1 +eo) 

(6.48) 

We now write ( 6.31) for the case e = j, i.e. 

where / 4 is given by ( 6.41) or ( 6.43) and Ibis given by ( 6.46) or ( 6.48) depending 

on whether crmaz is less than or greater tha.n 8. We note that in ( 6.41) and 

( 6.43) the quantities r, r,i, ni and eo are given by ( 6.38), ( 6.39) and ( 6.42); 

whereas in ( 6.46) and ( 6.48) these quantities are given by ( 6.44), ( 6.45), and 

( 6.47). The integrals 14 and Ib are evaluated by standard Gaussian quadrature. 

We draw attention to the fact that the last term in the expressions for / 4 and Ib 

involves a logarithmic singularity. These terms are written in a form suitable for the 

application of the quadrature rules designed for such cases (Brebbia et al., ~~o4). 
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6.4 Determination of Unknown Boundary Data 

The discretised form ( 6.9) of the boundary integral equation may be written 

(6.49) 
e=l 

i, k = 1 to 3; j = 1 to M 

where the argument j has been included to emphasize the fact that ( 6.49) must 

be written for each node on the boundary r, i.e. each node must serve in turn as 

node j, the node at which r = 0. The coeffic: "'nts Jlti and Ski are determined using 

the methods described in the previous section. In a well posed problem, exactly 

half of the boundary data is known. At each node the boundary data consists of 

six quantities : rr;' il~' i = 1 to 3}. 

We let { x~e, i = 1 to 3} denote the three known values at node e, and { x~, i = 
1 to 3} denote the three unknown values at node e. We denote the coefficients of 

x~e and x~ in ( 6.49) by F~1 and Ffi respectively. Then equation ( 6.49) may be 

written 

M 

L Fki(j)xi = b~;(j) (6.50) 
e=l 

i, k = 1 to 3; j = 1 to M 

where 
M 

bk(j) = - L F~i(j)x~e (6.51) 
e=l 

For a given value of j, equation ( 6.50) generates three rows of the final matrix 

equation as k takes the values 1 to 3. Specifically, ( 6.50) is the n th row of the 

matrix equation, where 

n = 3j- (3- k) k = 1 to 3; j = 1 to Arf 
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The final 3M x 3M matrix equation may be written in the form 

[G]{y} = {c} (6.52) 

It can be verified that the elements of the matrix [G) and vector { c} are produced 

by the following algorithm: 

For j = 1 toM 

Fork= 1 to 3 

n = 3j- (3- k) 

Fort= 1 tv M 

For p :' 3t - 2 to 3t 

Gnp = F~,p-a(t-t) 

, - e 
A given input value xie must be identified either as 'i'i or fi~ so that proper assign-

ments can be made to the quantities F;1 and Ffi· The solution vector {y} consists 

of the 3M unknown nodal values { xf, i = 1 to 3, e = 1 to M}. 
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6.5 Determination of Interior Stresses and Pore 

Pressure 

We recall that for an interior point~ the coefficients a,~; and() in equations ( 5.131) 

and ( 5.132) respectively become 

Using the definitions ( 6.3) and ( 6.10),( 6.11), ( 6.12) we write ( 5.131) and ( 5.132) 

for an interior point ~ : 

_ f ~ , !!.*lc Jr ""•k ar = , 
211'uk(~) = Jr Ta(4.-)U0 (r, ai,'n)- Ta (r, ai,'n)ua(L)df (6.53) 

k= 1,2 

211'ro _ lr ~ I !!.*3 ar '=- •3 ar !!. 1 

-p(it) = Ta(4.-)ua (r,-a ,n) -Ta (r,-a ,,n)ua(L)df 
JJ r .L L 

(6.54) 

v..!\ere r = I~' -*.I· In the above equations the integration is performed with respect 

to i_ E r, and the subscript a is summed from 1 to 3. In order to determine the 

effective stresses at point it, we must evaluate derivatives of il~c with respect to 1£ 

and then use the constitutive laws. We note that a comma followed by a subscript 

denotes differentiation with respect to one of the coordinates of i. = (z~,z;). 

Differentiation with respect to *- will be written explicitly. For exampl~, since 

r2 = (zj- z;)(zj- z;), we have 

z~- Xi ar 
r · - ---r· ·'- , a - ·' r Xi 

a 1 
and -a (r,i) = -(r,ir J- c5i;) 

z; r 
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Again, repeated suffixes denotes summation. Using the constitutive relation ( 3.9) 

with 

~ = 2JJII 
1- 2v 

we can write from ( 6.53) 

21f' I lr «. -
-f),; = (T a Dale; - fia Sale; ) eli' 
JJ r 

k,j=1,2, a=1,2,3 

where 

~:·lc ~ '!:.·j 2 ~=-·i 

D uU0 uu0 ( II ) uU0 £ 
a/cj = -a + -a + 1 2 -a U/cj 

Xj X1c - ll Xi 

-=-•lc -=-•j -=-•i 

S aT a aT a ( 2v ) 8T a £ 
a/cj = -a + -a + 1 2 -0 OJej 

Xj X/c - II Xi 

(6.55) 

{6.56) 

(6.57) 

Using the definitions ( 6.29), ( 6.30) and Appendix G we can perform the dif

ferentiations indicated in ( 6.56) and ( 6.57). The algebra involved is again quite 

extensive. The results are listed in Appendix H. 

Discretisation of ( 6.55) leads to 

where 

P~lcj = { Dalcjdi'e lr. 
Q~lcj = { Sa~c;di' e lr. 

k,j=1,2; a=1,2,3; e=l toM 

Similarly, the pore pressure at*- is found by discretising ( 6.54): 

27rro_( ) = ~TeAe- :::eBe p a: Lti Cl a Ua Cl 

JJ e=l 

(6.58) 

(6.59) 

(6.60) 
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where 

a = 1 to 3 , e = 1 to M (6.61) 

Since 34 is not on the boundary r, the integrals ( 6.60) and ( 6.61) are all non

singular and are evaluated by standard Gaussian quadrature. 

6.6 Wave loading of Flat Homogeneous Isotropic 

Seabed. Comparison with Analytic Solu-

tion. 

We consider a horizontal distance of one quarter of the wavelength L, as illustrated 

in Figure (6.1). The x axis is at the mudline as shown and the z axis is vertically 

downward. The wave pressure on OC is of the form 

where k = 2{ and w is the circular frequency. Hence 

From linear wave theory, the formula for Po is given by 

Po= PJ(f)g 
cosh(kh) 

(6.62) 

(6.63) 
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where H is the wave height and h is the water depth. From ( 3. 7) and ( 5.3) we 

have 

and we recall that 

Ta= -p 

The boundary conditions are as follows : 

On OC, f;2 = 0, f~2 = 0, p = Poe'kz. 

In terms of T, these become 

T"" 0 r"" Po ik:: r"' Po •~= 1 = , 2 = -e , a = - -e 
II 1-' 

OnAB: 

~i = 0 ~or i = 1, 2, 3 

(6.64) 

(6.65) 

(6.66) 

{6.67) 

Periodicity conditions must be used on the side boundaries OA and BC. A given 

function f ( x, z) may be expressed as 

f(x, z) = F(z)e'k:z: (6.68) 

I)-

where f(x, z) represents u,, [Th .:r:; or p. From ( 6.68) we deduce that since k = ~ 

!(~ ,z) = if(O,z) (6.69) 

Equation ( 6.69) ca.n be used to express the boundary conditions on BC in terms 

of those on OA. It is easy to show that 

u,( ~' z) = a~ui(O, z) no sum on i 

7\( ~' z) = a~T,(O, z) no sum on i 
(6.70) 
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where a: and o~ are complex constants defined by 

a"_ { i u-

-z 

n = 1,2 

n=3 

{ 

-z 
aT= i 

n = 1,2 

n=3 

Conditions ( 6.66), ( 6.67) and ( 6.70) must now be used in the discretised boundary 

integral equation ( 6.9). Since the boundary conditions on BC are expressed in 

terms of those on OA we choose the same number of elements M1 on each of these 

boundary segments. On AB and CO we choose M2 and M3 elements respectively. 

The total number of elements is thus M = 2M1 + M2 + M3. The first element is 

taken on OA and the last one on CO. The direction of integration is anticlockwise 

around the boundary. 

Using ( 6.70) we have 

"'-Mt+M2+e · "'-Mt+l-e r. - a7-T1 I 

:.M1+M2+e i :.Mt+l-e 
U· - auui I 

e - 1 to Mt, no sum on z 

We let 

RM1+M2+e 
ki - R' Mt+l-e 

ki 

gMt+M:~+e 
ki - g' Mt+l-e 

lei 

e - 1 to Mt 



Then it is easily shown tha.t 

Substituting into ( 6.9) gives 

Mt -e 
""{oe i R'e)T- (Se •s'e):.e LJ .nki + aT ki i + ki + au ki ·u, 
e=l 

Ml -M +e + 2)R~t+e 'i'i 1 + Stft+e fi~•+e) 
e=~ 

+ i:(R~flt+M2+e T:Mt+M2+e + S~ttt+M2+e ij~M1M2+e) = Q 
e=l 

We now dei1ne the following 

Fnr e = 1 to M1 

R•e _ De + i R'e 
ki - nki aT ki 

S•e - se + i s' e ki - ki 0 u ki 
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(6.71) 
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Fore= 1 to M3 

With these definitions, equation ( 6. 71) becomes 

M• 

E Rr:Hi)Tr + SZi(i)u';e = o i, k = 1 to 3 (6.72) 
e=l 

where M* = M1 + M2 + M3 

The unknowns are 

(6. 73) 

{u;Mt+M3+e, e = 1 to Ma} 

where i = 1 to 3, i.e. a total of (6M1 +3M2+ 3M3) or 3M unknowns. Equation 

( 6. 72) must be written with each boundary node serving as r = 0, i.e. as j takes the 

values 1 to M. This produces 3M equations. For a given j, row number 3j-(3- k) 

of the matrix equation is generated. 

Fore= 1 to (M2 + M3 ) we define 

Fe _ s•Mt+e 
ki- ki 

if T:"Mt +e is known • 



and 

r:>'e _ ""'*Mt+e 
L'Jri - . ki 

Fe _ R*Mt+e 
ki- ki 

if u!Mt+e is known 
I 

Then equation ( 6. 72) becomes 

~ ~+~ ~+~ 

:L) RZi Tt + s;; uic) + L: Fki xi = - L F~i x;e 
e=l e=l e=l 

This may be written in matrix form 

[G]{y} = {b} 
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(6.74) 

(6.75) 

It can be verified that the following algorithm generates the matrix [G] and vector 

{b} : 

For j - 1 toM 

Fork - 1 to 3 

n = 3j- (3- k) 
M,+M3 

bn - - 2: F;'jx;e 
e=l 

RZ~p-3t+3 p = 3t- ~to 3t, t = 1 to M1 

Sk~p-3(M,+t-t) p = 3Mt + 3t- 2 to ~3Mt + 3t), t = 1 to Mt 

F~,p-J(2M,+t-t) p = (6Mt + 3t- 2) to (6Mt + 3t), t = 1 to (M, + 1\13) 

The solution vector is given by ( 6. 73). The interior atresses are computed as 

described in Section (6.5). In order to test the accuracy of the BEM we compare 

'...:•' 
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Table 6.1: Comparison of BEM with Analytic Solution at (1,2) 

Stresses BEM (20r 'ements) Analytic 
x 104 Nm-2 Real I mag Real Imag 

fu 0.9047 0.1253 0.9068 0.1310 _, 
-0.9104 0.2007 -0.9064 0.1952 T22 _, 
-0.0075 0.1535 -0.0075 0.1527 Tu 

p 4.5129 0.3004 4.5116 0.3044 

Table 6.2: Comparison of BEM with Analytic Solution at (5,5) 

Stresses II BEM (200 elements) Analytic 
x 104 Nm-2 Real I mag Real Imag 

fu 0.8639 0.0845 0.8639 0.0852 _, 
-0.9307 -0.1081 -0.9310 -0.1088 T22 _, 
-0.0431 0.3670 -0.0430 0.3666 Tu 

p 4.4466 0.4330 4.4449 0.4342 

the results with the analytic solution which is briefly described in Appendix I. 

The data for the test case was OA = 25m, water depth =70m, wave period = 

15 sec. (which corresponds to a wavelength L of 311.812m), wave height = 24m. 

Details of the input data. for the soil (fine sand) can be found in Chapter 8. Tables 

(6.1), (6.2) and (6.3) show the stresses inN /m2 at three interior points (coordinates 

defined by axes in Figure (6.1) ) obtained by the two methods . There is excellent 

agreement between the BEM and the analytic solution. The BEM results were 

obtained with eight point Gaussian quadrature. 
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Table 6.3: Comparison of BEM with Analytic Solution at (35,12) 

• 
Stresses BEM (200 elements) Analytic 

x 104 Nm-2 Real Imag Real Imag 
Tn 0.5517 0.4725 0.5517 0.4725 _, 

-0.5790 -0.4955 -0.5790 -0.4955 T22 
-' -0.5811 0.6753 -0.5809 0.6749 Tn 
p 3.4689 2.9490 3.4686 2.9489 



Chapter 7 

Stress Analysis of Sloping Seabed 

Under Wave Loading 

7.1 Wave !nduced Effective Stresses and Pore 

Pressure in a Bed of Arbitrary Slope 

The problem domain is ill'ustrated in Figure (7.1). The x and z axes are chosen with 

origin at o' as shown. The incident wave is travelling in the negative X direction. 

The boundary conditions on the seabed BDEC are that the normal and shear 

effective stresses are zero (there is no applied inter-granular load) and the pore 

pressure p is equal to the wave pressure P acting normal to the bed (determined 

from equation 4.46). In terms of the tractions fi, these become: 

OnBD 
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On DE 

On EC 

Tt = -iWPJ~ IDE sinP, 1'2 = iwp,(i> IDE cos /3, Ta = -iwpf¢ IDE 

Tt = 0, f':t = iwp,¢ lEe, Ta = -iwpJ¢ lEe 

where 4> is the velocity potential in the sea. as determined from t;be techniques of 

Chapter 4. At the interface with the bedrock base RS we have : 

To provide boundary conditions on the side boundaries BRand SC we make 

usc of the author's analytic solution (hereafter referred to as A.S.) described in 

Appendix I. We first determine from ( 4.15) the velocity potential on the seabed 

in the region to the right of o' c. The coefficients On in ( 4.15) are determined by 

solving ( 1.37) for the vector {a}. The numerical results indicate that the infinite 

sum on the right hand side of ( 4.15) is negligible compared to the other terms. 

Neglecting this term, we write the velocity potential on the seabed to the right of 
,_ 

o'c as: 

~ lt>er~= -'t9'fJo [aoe•ko~ + e-iko~]e-iwt 
wcosh(koho) 

(7.1) 

Hence from ( 4.46) the wave pressure on the seabed in this region is : 

p !bee~= PJ9"1o [aoe•ko~ + e-iko~]e-iwt 
cosh{koho) 

(7.2) 

which is in a form suitable for applying the A.S. We can determine the effective 

stresses and pore pressure (and hence 1',) on SC by superposing the results obtained 

from the A.S. for the following two cases: 

(1) Incident Wave conditions : 

k - -ko 

Po = PJ9T/o 
cosh(koho) 



(2) Reflected Wave conditions: 

k = ko 

Po = aoPJ9'1o 
cosh(koho) 
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The r;j and p at desired soil depths are evaluated a.t x = 0 in each case. We can 

now write the boundary conditions on SC, noting that (ntt n2) = (1,0) : 

For the region to the left of BR, the wave velocity potential on the seabed is, from 

( 4.16) 

(7.3) 

where we have neglected the infinite sum on the right hand side of ( 4.16). The 

coefficient a~ may be determined from the numerically determined value of ~ at B: 

(7.4) 

Again, from ( 4.46) and ( 7.3) the wave pressure on the seabed in this region is: 

I 'LI • 
= iwp,a0e-•,.o::e-11

"'
1 

= iwpl~ Is e-ik~de-i(k~z+wc) (7.5) 

where we have used ( 7.4). 

The effective stresses and pore pressure on BR may thus be determined from 

the A.S. using 

I • - - 'le1 d k = -k0, Po= IWPJfJ Is e ' o , x = -d 
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On BR, (nttn2) = (-1,0) and we write the boundary conditions as 

With the boundary conditions thus specified, we determine the unknown boundary 

data and wave-induced interior stresses as descrioed in Chapter 6. 

7.2 Initial Stresses 

The in-situ stresses in soil depend not only on gravitational forces, but also on 

the stress history due to the geological processes involved in the formation of the 

soil deposit. Thus the standard constants of elasticity theory must be modified 

to adequately model the in-situ stress field. For example, for a flat seabed under 

hydrostatic conditions the effecti· ·e stresses at depth z are, in conventional notation, 

I I 

O'z = "(Z 

I 

Ko;
1

z (7.6) O'z -
I 

0 T:z = 

where "t' is the buoyant unit weight of the saturated soil and u:, 0':, r;z are the ef

fective vertical, horizontal and shear stresses respectively at depth z (soil mechanics 

sign convention). The parameter K0 is the coefficient of lateral earth pressure at 

rest which attempts to account for the stress history of the soil. It is usually em

pirically determined. For a sloping bed it is possible to determine the gravitational 

stress field from the theory of elasticity using a numerical technique (finite element 

or boundary element method) since no analytic solution exists for the geometry 
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of the problem considered. In this approach it would be necessary to modify the 

elastic constants for the reasons discussed above. However, no adequate method of 

doing this is currently available and we employ the concept of conjugate strP.sses 

introduced by Taylor (1948) in which it is possible to account for the stress history 

of the soil via a parameter analogous to K0 • The concept is strictly valid only for 

infinite slopes. Accordingly, the representation of in-situ stresses by this method in 

the vicinity of the lines DG and EF (Figure 7.1) is only approximate. 

'We shall first consider an infinite slope of dry soil inclined at an angle {J as 

illustrated in Figure (7.2). 

The element ABCD, located at distance z below the surface of the slope as 

shown, has sides AB and CD parallel to the slope. Taylor ( 1948) has shown that 

the total stresses on the element may be represented by Uv in the vertical direction 

and UfJ parallel to the slope. The stresses U 11 and up are called conjugate stresses. 

Considering the weight of material above AB it is easily seen that 

Uv = idZ COS {3 (7.7) 

where id is the unit weight of the dry soil. Following Chowdhury (1977), we assume 

that there exists a constant K, called the conjugate stress ratio, such that 

i.e. 

(7.8) 

We now determine the Cartesian stress tensor Tij at a point. As before, the unit 

outward normal on a plane is denoted by (nl, n,) and the tractions n are given by 
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( 5.3). On AB, Figure (7.2), 

This gives 

Tu sin ,8 - T12 cos f3 = 0 ( i) 

'T21 sin ,8 - T22 cos {3 = ''fdZ cos ,8 ( ii) 

OnBC, 

Tt = -upcos{3, T2 = -upsin/3, n1 = l,n2 = 0 

This gives 

Tn - - K ''fdZ cos2 ,8 (iii) 

'T21 - -K"(dZ sin{3 cos ,8 (iv) 

From (ii) and (iv) we have 

'T2: ~ -")'dz(l + K sin2 {3) (v) 

It ifJ easily verified that the expressions givel.l by (iii),( iv) and ( v) satisfy ( i). 

The above expressions give the effective stress tensor at a point in a slope of dry 

soil. If we now consider the effective stress field in a submerged slope we note that 

icl is now replaced by ;', the buoyant unit weight of the soil. Hence the effectivt: 

strE"ss tensor in a submerged slope is given by expressions (iii), (iv) and (v) above 

with "Yd replaced by ;'. Using the conventional soil mechanics notation and sign 

conventions (described in Section 3.2) we have the in-s~~11 effective stress field in 

the region DEFG (Figure 7.1) as 

0': = "/
1 

z(l + K sin2 ,8) 
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u: - J( "'/ z cos2 {3 (7.9) 

T;z - K ,./ z sin {3 cos {3 

where we recall that z denotes depth below the sloping surface DE. We can define 

[(0 ,the coefficient of earth pressure at rest, in the usual way as the ratio of the 

horizontal to vertical effective stress ,i.e. 

Ko = K cos
2 

{3 
1 + K sin2 {3 

The value of K can thus be determined from measurements of K0 , or from commonly 

accepted empirical formulae for K0 (Bowles, 1984). 

The principal stresses u~, u; are given by : 

which gives 

I 1 I ~ 
0'1,3 = 2-y z[l + K ± K 2 - 2K cos2{3 + 1] (7.10) 

The limiting values of the conjugate stress ratio K are determined by the Mohr

Coulomb failure criterion which is written for cohesionless soils as 

(7.11) 

where 4>' is the (effective) ang1e of internal friction of the soil. From ( 7.10) and 

( 7.11) we have 

K 2 cos2 4>' - 2K( cos 2{3 + sin2 </>') + cos2 4>' = 0 (7.12) 

which has roots 

(7.13) 
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... 
Table 7.1: Limiting V,lues of K 

... ....• 

Slope Angle Limits forK 
,8 (deg.) <P = 30° <P = 35° 

5 0.34- 2.95 0.27- 3.64 
10 0.35- 2.82 0.29- 3.50. 
15 0.39- 2.59 0.31- 3.25 
20 0.44- 2.27 0.34- 2.92 
25 0.54- 1.84 0.40- 2.50 

We note that the roots are real if <P' ~ ,8. Equation ( 7.13) gives the limiting 

values of K, i.e. the range of values of K for which the in-situ stresses do not 

violate the Mohr-Coulomb failure criterion. These values are presented in Table 

(7.1) for various slope angles and values of the angle fjJ'. The upper and lower 

limits for K correspond to states of passive and active failure respectively in the 

undisturbed soil. The initial stresses in the regions BDGR and ECSF (Figure 

(7.2)) are estimated from equations ( 7.6),where z is depth below BD and EC 

respectively. 

7.3 Failure Analysis 

The basis for the failure analysis will be the Mohr-Coulomb failure criterion which 

is widely accepted in the geotechnical community. We shall identify "zones of 

overstress" in the soil, i.e. regions of soil in which the failure criterion is violated. 

It should be noted, however, that when such violation of the failure criterion has 

taken place, the stress field is, strictly speaking, invalid. The zone of overstress must 
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therefore be regarded as the approximate region of failure. Further, we note that 

owing to the effect of stress transfer when the failure condition is violated, the zone 

of overstress denotes the minimum region of soil failure. An eJastoplastic analysis 

is then required to determine the failure zone more accurately. In this thesis we 

provide the first stage of such an analysis, via the locatio~ .. a'£ the-overstressed- zones . . . .... . 

determined by a single application of the failure criterion. This type of failure 

analysis has also been employed by Yamamoto (1978), Mynett and Mei (1982) and 

Mei and McTigue (1984). The limitations of such analysis was also pointed out by 

Mei and McTigue (1984) who nevertheless recognised the utility of the approach in 

providing a good first approximation of the extent of the failure zone. 

We employ the conventional soil mechanics notation and sign convention de

scribed in Section (3.2). The initial effective stresses determined from Section 

(7.2) will be denoted by u:<o>,u:<o>,r;~o). The wave-induced effective stresses will 

be denoted by u:<t), u:(l), r;~t) where we take the real part of the complex stresses 

computed by the BEM. 

The resultant effective stresses u:, u:, 'T;z are thus given by : 

u' = u'(o) + u'(t) 
:r; :r; :r: 

u' = u'(o) + u'(t) 
z % z (7.14) 

r' = r'(o) + r'(t) 
:r:z :r:z :r:z 

These stresses may be plotted on a Mohr circle as illustrated in Figure (7.3). 

The coordinates (u, r) of any point Don the circle are the normal and shear stress 

acting on a particular plane, the inclination of which is determined from the angle 

DCA in Figure (7.3). 
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The Mohr-Coulomb failure envelope is the line 

,. = u tan q,' (7.15) 

and is illustrated in the figure. It intersects the T axis at the origin 0. We define 

the stress angle 0 as the angle between the u axis and the tangent to the circle 

from the failure envelope intercept 0. The stress anglE;..is a f\ladion of the stress .......---........... _____.,...,. ..... ~--

-·--··-·-"-· ---· ..... -st-~0';,--u~,-~;), ailcf .. by·~~;-;aring its value with q,' we determine the "distance" 

between the current stress state and the failure state. The condition of failure is 

thus conveniently expressed as 

(7.16) 

From the geometry of Figure (7.3) we find that 

(7.17) 

from which 0 can be calculated. The overstressed zones are then determined from 

( 7.16). We would comment at this point that for the purpose of determining 

the stress angle no significant reduction in accuracy is observed by using four point 

Gaussian quadrature (instead of eight point quadrature). when com?uting the wave

induced effective stresses by the BEM. 



Chapter 8 

Results and Discussion 

We first present the wave pressures on a sloping seabed as computed by the methods 

of Chapter 4. Figures (8.1) and (8.2) illustrate the wave pressures on a 12 degree 

slope due to wave lengths ( L) of 300m and 150m respectively. The coordinates 

of the points on the slope are as defined in Figure (7.1). The bed slopes upward 

between x = -5m and x = -60m (points E and D in Figure (7.1)). The incident 

wave height is 24m and the water depth between x = Om and x = -5m is 80m. 

At time t = 0, the wave crest is vertically above the point x = Om (point C in 

Figure (7.1)). The graphs illustrate the progression in time of the wave pressures, 

the maximum pressures being experienced by points under the wave crest. The 

maxima at the left end of the slope are slightly greater than at the right end owing 

to the smaller water depth at the left end. We note also that negative pressures are 

experienced at certain instants of the wave cycle. At wt = 1r and wt = 3; the wave 

pressures are the negative of those illustrated for wt = 0 and wt = ; respectively. 
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Thus we would expect, for example, positive wave-induced pore pressures at wt = ; 

and ney,ative wave-induced pore pressures at wt = 3; . We have also investigated 

the wave pressures on a 12 degree slope in shallower water. A wave of length 150m 

in 80m of water would have a length of 133.5m in 30m of water over a fiat bed. 

Figure (8.3) illustrates the wave pressures on a 12 degree slope, the wave length 

and water depth at the base of the slope being 133.5m and 30m respectively. The 

incident wave height is set at 16m. Even at this reduced wave height, the maximum 

wave pressures are more than twice those illustrated in Figure (8.2), owing to the 

smaller water depths. 

We now examine the wave-induced failure zones in the soil. As described in 

Section (7.3), the approximate extent of the failure zone may be determined by 

computing the strt.dS angle () at several points in the soil and comparing with the 

angle of friction 4>'. For this purpose it is convenient to plot contours of the stress 

angle. If the angle of friction of the soil is, for example, 4>' = 30°, we can determine 

the failure zone approximately as the region in which {) > 30°. We emphasize again 

that this provides only an estimate of the minimum failure zone, owing to the 

fact that violation of the Mohr-Coulomb criterion invalidates the stress field. The 

meaning of "failure" in the Mohr-Coulomb sense is that frictional resistance in the 

soil has been exceeded on some plane. The failure zone is thus an unstable region 

and further research is needed to study the manner in which failure progresses. 

Stress angle contours for a fine sand and coarse sand with slope angles of {3 = 
2°, 5°, 12°, 20° and wave lengths of L = 150m, 225m, 300m are given in this chapter 

and in Appendix J. The contours were produced by the graphics package SURFACE 

II at Memorial University. Because of the interpolation and smoothing performed 
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Figure 8.1: Wave Pressure on 12 deg. Slope : L = 300m., H = 24m. 
Water Depth at Slope Base (x = 0) = 80 m. 
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Figure 8.2: Wave Pressure on 12 deg. Slope: L = 150m., H = 24m. 
Water Depth at Slope Base (x = 0) = 80 m. 
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Figure 8.3: Wave Pressure on 12 deg. Slope : L = 133.5m., H = 16m. 
Water Depth at Slope Base (x = 0) = 30m. 
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by SURFACE II the contours are to be regarded as an approximate representation 

of the actual numerical results. In all cases (except figure 8.11) a wave height of 24m 

was used. The conjugate stress ratio K was taken to be 0.5 except in figures (8.13) 

to (8.15). The distances d, do, cl'o in Figure (7.1) are 65m, 5m and 5m respectively. 

The water depth at C (Figure 7.1) was kept at 80m and the depth at B varied from 

18m for the 2° slope to 60m for the 20° slope. Similarly, the soil depth lo at C was 

kept at 20m, with the depth l~ at B varying from 22m for the 2° slope to 40m for 

the 20° slope. In only two cases was it necessary to deviate from this pattern, viz.· 

the cases of fine sand, f3 = 20° with L =225m and 150m. ln these cases we chose 

10 = 17m,/~ = 37m and lo = 14m, l~ = 34m respectively. The reason for these 

changes is that numerical overflow problems were encountered when generating the 

boundary conditions on BR (using the method of Appendix 1). The effect of the 

changes is that the boundary conditions on RS (Figure 7.1) is applied a.t a smaller 

depth than would otherwise have been the case. In order to investigate this further 

we have tested the case of Figure (8.4) (fine sand, L = 300m,f3 = 20°) with the 

location of the boundary RS determined by 10 = 14m and l~ =34m. The contours 

obtained (shown in Figure J.l) are of the same pattern as in Figure (8.4), although 

in some places the failure zone ( 8 ~ 30°) is not as deep. 

The soil data is as follows : 
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Shear modulus G (Nm-2 ) 1.0 X 107 

Poisson's ratio 11 0.33 

Porosity f 0.3 

Permeability k0 (ms-1 ) 1.0 x IQ-4 ( fine sand) 

1.0 x 10-2 (coarse sand) 

Density of soil grains p.(kgm-3 ) 2.7 X 103 

The bulk modulus of the pore water, K1, was taken as 2.3 x 109Nm-2 • 

As exp~cted, the plots indicate that for a given slope angle the longer wave

lengths produce the greater failure zones, and for a given wavelength the greater 

failures are observed in the steeper slopes. In most cases, there is no significant 

difference in the extent of the failure zones (hereafter termed the failure profile) for 

fine sand (ko = IQ-4ms-1 ) and coarse sand (ko = IQ-2ms-1). We observe, however, 

for f3 = 20°,L =300m and 225m the failure zones (0 > ~0°) in fine sand (Figures 

8.4 and 8.5) are slightly deeper than in coarse sand (Figure!; 8.(. Mld 8. 7). Also, in 

these cases, failure conditions in fine sand persist at wt = 1r, whereas this is not so 

in coarse sand. 

The plots also illustrate the variation in the failure profile throughout the course 

of a wave cycle. The contours are shown for the instants wt = O, i' 1r, 
3
;. As the 

wave cycle progresses in time the responses of the soil skeleton and pore water also 

go through a cycle, out of phase with the wave cycle. The phase lag is quite easily 

computed from the arguments of the complex effective stresses and pore pressures 

determined by the boundary element method. We emphasize that the skeleton and 

pore water do not respond independently : the responses are coupled as described 
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by the Biot equations. At certain instants in the wave cycle the effective stresses 

at several points are such that the Mohr circles touch or cross the failure criterion. 

At other instants the effective stresses produce Mohr circles which are quite distant 

from the failure criterion, this being the result of negative wave-induced pore pres

sures. It is therefore necessary to examine the stability characterisitcs of the slopE> 

throughout the wave cycle in order to assess the likelihood of failure. For the time 

instants plotted, the greatest failure zones are observed at wt = i in most cases. 

The stress angle contours in a flat bed of coarse sand (computed from the 

analytic solution), with L =300m, K = Ko = 0.5 are shown in Figure (8.8). If we 

compare this with the plots for slopes of 5° and 2° in coarse sand witl.! L = 300m 

(Figures 8.9 and 8.10) we notice that the failure profiles and failure depths are 

similar. This means that for gentle slopes of the order of 5° or less we can determine 

approximately the extent of the failure zones by using the analytic solution for a 

flat seabed described in Appendix I. 

In Figure(8.11 ), we illustrate the stress angle contours in coarse sand correspond

ing to the wave loading described by Figure (8.3), i.e. a wave of length 133.5m and 

16m height in 30m of water incident on a 12° slope. We have already noted that 

such a wave would produce more than twice the maximum pressures than it would 

in 80m of water at a wavelength of 150m, and a greater height of 24m. The stress 

angle contours for this latter case are illustrated in Figure(8.12). Accordingly, the 

failure zones illustrated in Figure (8.11) are much greater than those illustrated in 

Figure {8.12). 

We ha.ve also investigated the effect of the initial stress distribution as deter

mined by the value of the conjugate stress ratio K. Stress angle contours in coarse 
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Table 8.1: In Situ Stress Angle 60 (deg) 

{3 (deg) K=0.5 K=0.1 K= 1.0 
2 19.6 10.4 2.0 
5 20.1 11.3 5.0 
12 ~2.7 15.7 12.0 
20 27.6 22.3 20.0 

sand at wt = i (L =300m) are shown in Figures (8.13) and (8.14) forK = 0.7 

and 1.0. We find that at these values of K the extent of the failure zones is con

siderably smaller than at K = 0.5 (compare, for example, Figures (8.13),(8.14), 

f3 = 20° with Figure (8.6), wt = ; ). The reason for this becomes obvious when we 

examine the stress angle Oo under in-situ stress conditions. This is easily computed 

from equations ( 7.9) and ( 7.17) as 

(J _ • _ 1[(K
2

- 2K cos2/3 + I)t] 
0- SID K + 1 (8.1) 

For normally consolidated soils the in-situ horizontal effective stress is less than the 

vertical effective stress, i.e. u~(o) < a:(o). From ( 7.9) we find that 

u'(o) < u'(o) ==> K < 1 
% z cos 2{3 (8.2) 

Values of 80 for different values of K and fJ satisfying ( 8.2) are given in table 

(8.1). During the parts of the wave cycle in which the horizontal effective stress is 

decreased and the vertical effective stress is increased, the stress angle 0 increases 

above its in-situ value. If it increases to the extent that (} > ,p', failure occurs in 

a manner analogous to "active" failure, e.g. at wt = ~· We note from table (8.1) 

that the in-situ stress angle 00 decreases as K goes from 0.5 to 1.0. This means that 
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at K = 0.5 the unloaded slope is closer to wave induced failure than at K = 1.0. In 

some cases, e.g. L = 150m, /3 = 12°, K = 0. 7 and 1.0, there is only minimal failure 

(Figures J.21 and J.22). 

In some soils the in-situ horizontal effective stress is larger than the vertical 

effective stress i.e. O':(o) > q:(o), S•tch a situation may occur if the soil has been 

subjected in the past to heavy overburden stresses which have since been removed 

over the course of its history. In this case the stress angle is increased during the 

parts of the wave cycle in which the horizontal effective stresses are increased and 

the vertical effective stresses reduced. Again if 8 ~ ,p' failure occurs, but this time 

in a manner analogous to "passive" failure. Such a situation is shown in Figure 

(8.15) for a coarse sand, L =300m, (3 = 20° at wt = 1r, where we have taken K = 2. 

As an example we examine the stress state at the point with horizontal and vertical 

coordinates of (-54.5, -7.6} in Figure (8.15). The in-situ stresses are (for K = 2} 

u'(o) = 0.1155 x 106 Nm-2 
:z: 

We note that u~(o) > a:<o>. The in-situ stress angle 00 is 27.6°. The wave induced 

stresses are shown in table (8.2) at several instants in the wave cycle. At wt = 0 

and ; the wave reduces the horizontal effective stresses and increases the vertical 

effective stresse:J thus tending to reduce the stress angle from its in-situ value. The 

resultant stress angles are in fact 21.7° and 25.1° at wt = 0 and i respectively. 

At wt = 11' and 
3
2
11' the wave pressures are reversed and the Mohr circle expands 

as the horizontal stress increases and the vertical stress decreases. The resultant 
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Table 8.2: Wave Induced Stresses (x104 Nm-2 ) at (-54.5,-7.6) in Figure (8.15) 

Stress Component wt= 0 wt-.,.. -2 wt = 71' wt =~ 
u:e -0.9694 -2.143 0.9694 2.143 

I 

0.5819 0.3287 -0.5819 -0.3287 uz 
I 

-0.7634 -0.4510 0.7634 0.4510 T:ez 

stress angles are 33.8° and 31.0° respectively, indicating that the failure criterion 

(8 2: 30°) has been violated. The failure zone at wt = 1r is particularly extensive a.S 

shown in Figure (8.15). 
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Chapter 9 

Summary and Conclusions 

In this thesis we have accomplished the following: 

1. Implementation of a boundary element procedure for determining the forces 

due to uni-directional waves on a plane seabed of arbitrary inclination within 

the context of linear (Airy) wave theory. 

2. Implementation of a boundary element procedure for determining the wave

induced effective stresses and pore pressures in a sloping poroelastic seabed 

using the results from (1) above. 

3. Determination of the approximate extent of the minimum failure zones in 

various slopes under different soil and wave conditions. 

In addition, we have provided a derivation of the boundary integral equations and 

fundamental solutions for Biot 's linear theory of poroelasticity under quasi-static 

sinusoidal loading conditions. This derivatior has not previously been recorded in 

the literature. 
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The following conclusions may be drawn : 

(a). The boundary element technique is very accurate, as evidenced by the com

parisons made with analytic solutions for flat beds. 

(b). As expected, for a given slope angle the longer wave lengths produce the 

greater failure zones and for a given wavelength, the greater failures are ob

served in the steeper slopes. Also, a wave that is relatively harmless in deep 

water can cause significant failure in shallower water. 

(c). There is no significant difference in the extent of the failure zones for fine 

sand (ko = 10-4ms-1 ) and coarse sand (ko = 10-2 ms-1 ) although in some 

cases the failure zone in fine sand is slightly deeper. 

(d). It is necessary to evaluate the stability characteristics of the slope throughout 

the wave cycle in order to assess the likelihood of failure. 

(e). For gentler slopes, of the order of 5° or less, the failure zones may be located 

with sufficient accuracy hy using the analytic solution of Appendix I, i.e. we 

can avoid the complexity of the BEM for such cases. 

(f). The failure profile is strongly dependent on the initial state of stress in the 

slope as determined by the conjugate stress ratio K. For normally consoi

idated soils, the failure zone decreases in sizes as K increases, with K re

maining in the range for which o-~0) < a:<o). In such soils the maximum 

wave-induced failure occurs in a manner analogous to active failure. For 

some overconsolidated soils we may have a:<o) > a:<o> and in such cases the 
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maximum wave induced failure occurs in a. manner analogous to passive fail

ure. In these cases , larger K values mean that the in-situ soil condition is 

closer to passive failure. 

Suggestions for Further Research 

(1) In order to account for the volume changes of soil under cyclic loading modifi

cations to the original Biot formulation are required, as suggested by Verruijt 

(1985). Perhaps the phenomenon of pore pressure buildup under cyclic load

ing may be analysed in this way. Further research is also required to model 

the non-linear, time dependent a.nd anisotropic behaviour of soil. 

(2) The propagation of the soil failure illustrated in this thesis needs to be studied 

by means of some form of elasto-pla.stic analysis. 

(3) Wave-induced stresses of layered soils can be easily studied by the methods 

described in the thesis. It will be necessary to divide the domain into sub

domains, generate a system of equations for each sub-domain, and match 

boundary condaions at common boundaries. 

(4) Earthquake-induced stresses in a poroelastic medium ca.n be determined by 

including the acceleration terms in the governing equations. This would in

volve the derivation of a new boundary integral equation and fundamental 

solutions. 

(5) The study of axisymmetric and three-dimensional problems is a fruitful ex

tension of the methods presented herein. 
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Appendix A 

Fundamentals of Linear Wave 

Theory 

Referring to Figure (4.1), we assume inviscid a.nd hence irrotational flow above the 

seabed. Therefore then exists a velocity potential ~(x, y, z, t) such that 

{A.l) 

fJ2 a:z fJ2 
In general, V 2 = fJx:Z + oy:z + f}z'J. The z axis (not shown) is normal to the x - y 

plane. We assume negligible flow into the seabed, i.e. 

{}~ 
- = 0 on BC on (A.2) 

We now determine the boundary condition at the water surface. The water surface 

may be represented by the equation 

({x,y,z,t) = 0 (A.3) 
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from which we have 

d( 8( . 8( . a( . a( - = -x+ -y +-z+ -=0 dt ax ay az at (A.4) 

on the water surface, where the dots denote differentation with respect to time t. 

This equation may be written 

(A.5) 

on the water surface ,since 

(A.6) 

z 

If 17(x, z, t) denotes the elevation of the water surface above the mean water level 

0 A, then the equation of the water &urface is given by y = 71( x, z, t) or 

From ( A.3) and ( A.7): 

from which we get 

71(x,z,t)- y = 0 

((x,y,z,t) = r,(x,z,t) -y 

at7 
- fJt 

a'l . ( ') a'l L - -t+ -J_ +-a 
ax az 

(A.7) 

(A.S) 

(A.9) 

(A.lO) 

Here i,i,k. are unit vectors in the x,y, z directions respectively. Substituting ( A.9) 

and ( A.lO) into ( A.5) gives 

a,., a~ _ at + a,., a~ = _a,., 
Ox Ox 8y 8z az at 

(A.ll) 
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on the water surface. 

In linear wave theory we assume that the water surface elevation TJ is small compared 

to the wct.ve length so that equation ( A.U) may be applied at the mean water level 

y = 0. Further, we neglect the non-linear terms in ( A.ll) which thus becomes 

at y = 0 (A.12) 

Equation ( A.12) is known as the linearized kinematic free surface condition. An

other condition at the free surface may be deduced from the Bernoulli equation, 

which is 
8! + !~4) ~4» + .P... + gy = f(t) 
~ 2 PJ 

(A.13) 

where pis water pressure and PI is water density; f(t) is an arbitrary function of 

time t. If we consider a purely hydrostatic condition, 4» = 0, p = -PJ9Y for all 

time, so that /( t) is indentically zero. 

We write equation ( A.13) at the water surface and neglect the non-linear term: 

84) at + 9'1 = 0 at y = TJ i.e. at y = 0 approximately (A.14) 

Equation ( A.l4) is called the linearized dynamic free surface condition. 

The linear wave theory model is described by equation ( A.l) with boundary 

conditions ( A.2), { A.l2) and ( A.l4). Equations ( A.l2) and ( A.14) may be 

combined by eliminating q: 

824» at 
ar~ + g oy = 0 at y = 0 (A.15) 

To derive the velocity potential due to the incident wave, as given in equation 

( 4.14), we consider a. flat seabed, constant water depth h0 , and a. wave of surface 
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elevation 

(A.16) 

This represents a wave propagating in the positive or negative x direction according 

as k > 0 or k < 0. For the two dimensional problem, ~ is independent of z and we 

write 

~(x, y) = g(y)ei(kz-wc) 

Substituting in ( A.l) gives 

fr"m which we have 

g(y) = C cosh(ky + o) 

Applying ( A.2) on the seabed y = -h0 implies that o = kh0 , so that 

~(x, y) = C cosh(ky + kho)ei(lc:r-wc) 

Now, using ( A.14) we find that 

and hence 

C =- tUTJo 
wcosb(kho) 

~(x,y) = -IU'lo cosh(ky + kho)ei(lc:r-wc) 
wc·lsh(kho) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

A dispersion relation is obtained by substituting ( A.19) into ( A.l5), which gives: 

w2 = gk tanh( kh0) (A.22) 

For an incident wave propagating in the negative x direction we set k = -ko, th~ 

negative real root of ( A.22). This gives the incident velocity potential as 

~r(x,y) = -zgqo cosh(koy + koho)e-i(ko:r+wt) 
w cosh(koho) 

(A.23) 
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Appendix B 

The Roots of the Dispersion 

Relation {Linear Wave Theory) 

The dispersion relation ( 4.12) is 

This is of the form 

w'J 
- = ktanh(kho) 
g 

(B.l) 

a 
- = tanh X (B.2) 
:r: 

w2ho 
where x = kh0 and a == -- > 0. The sketch graph Figure (B.l) shows that 

g 

equation ( B.2) has two real roots :r: = ±:co. Thus equation ( B.I) has two real 

roots ±ko = ± ~:. To obtain the imaginary roots of ( B.l) we put k = ik where k 

is real. Then ( B.l) becomes 

- w'Jho 
where x = kh0 , and a = -. 

g 

a -- = tanx 
X 
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(B.3) 
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y 

Fig.(B .1) Real roots of Dispersion Relation 



Fig.(B .2) Imaginary Roots of Dispersion 
Relation 
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The sketch graph Figure (B.2) shows that ( B.3} has an infinity of roots ±x1, ±x2, ••• 

so that 
- Xt X2 

k = ± ho ' ± ho' • • • (B.4) 

i.e. the imaginary roots of ( B.l) are given by ±ik1where 

(B.5) 

To obtain accurate values of the roots of ( B.3), it is necessary to provide good 

estimates of these roots. From Figure (B.2) we note that the nth positive root of 

( B.3) is of the form 

Xn = n1r- y (B.6) 

where y > 0 and depends on n. Substituting ( B.6) into ( B.3) gives 

a 
tany- = 0 

n7r -y 
(B.7) 

The value of y is small and becomes smaller as n increases, so we may make the 

approximation tany ~ y. This renders equation ( B.7) as 

y':l - mry + a = 0 

which has two positive roots: 

11' na y = -[n ± n2 - -J 2 1t'2 

The root of interest is the smaller value, i.e. 

y = ![n- Jn•- 4a] 2 1t'2 

2 
for n >-yO. 

1t' 

2 
for n > -va 

11" 
(B.8) 

We therefore solve ( B. 7) for values of n > ~y(i, each time providing an estimate 
11' 

of y from ( B.S). The nth root of ( 8.3) is then given by ( B.6). For values of 
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n < !J(i we obtain the roots directly from ( B.3) using Xn = n1r as an estimate. 
1r . 

The imaginary roots of( B.l) are then ± '::, n = 1, 2, · · ·· The equations ( 8.2), 

( B.3), ( B. 7), may be solved using the IMSL routine ZREAL. 



ApPendix C 

Evaluation of the Integrals 

(Potential Problem) 

We refer to equations ( 4.33). We consider a typical element f e as shown in Figure 

(C.l) with end points (xe, Ye), (ze+t1Ye+t)· The direction of integration and the 

unit outward normal g. are indicated in the figure. The directioa of iategration 

is such that the interior of the problem domain lies to the left. The element r eis 

represented in terms of parameter e as follows: 

On fe 

1 1 
X = 2(1 - e)ze + 2(1 + {)ze+l 

1 1 
Y = 2(1 - e)Ye + 2(1 + {)Ye+l 

where - 1 ~ e < 1 (C.1) 
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( xe•t , Ye•t ) 

\ 
1\, 

Fig.(C.1) Element r:' (Wave problem) 



J.59 

The line element ds is given by 

(~;r = (:r + (~~r 
from which we obtain 

(C.2) 

where 

(C.3) 

We have defined the distance r as r = 1~ - ~j I where ~ is an arbitrary point on 

r e and ~j is the position vector of node j. Since node j lies on the mid-point of 

element rj we have the coordinates (xo, y0 ) of node j as: 

Thus 

1 
:to= -(Xj + XjH) 

2 
1 

Yo = -(yj + YHt) 
2 

r = [(x- xo)2 + (y- Yo)2]~ 
8r X- Xo 

ax= r 

for x,y Ere 

8r y- Yo 
By= r 

The unit normal n is given by 

n= ( ::) where 

1 1 
nt = 2Je (Ye+l - Ye) i n2 :.:; 2Je {:te- Xe+t) 

(C.4) 

(C.5) 

If e -:/: j, integration along r e presents no difficulty. An integral of the form 

he f(r,r,,, n,)dre is transformed into one of the form j_1

1 
g(e)de by use of the for

mulae ( C.l) to ( C.5) and then straight-forward Gaussian integration is performed. 
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Integration along I'j, however, requires special consideration owing to the logarith-

mic singularity of the integrand. Putting e = j in ( C.1) to ( C.5) we find that on 

f;, 

r = I{IJ; 

8r _ (Xj+t - Xj) 1_ , 8r = (Yi+l - Yi) 1_ 
ax - 2J; 'lei ' By 2Jj 1e1 

_ Yi+t- Yi 
n1- 2Jj 

x · -x·+1 
n - ' ' 2- 2J· 

J 

Equations ( C.7), ( C.S) imply that 

;: = 0 on f; 

We consider the integral 

£, lnrdri = /_
1

1
lnfi{IJ;]Jjde 

- J; In J; /_:de + J; /_
1

1 
In I{ Ide 

- 2Ji lnJ; + 2J; fo1

ln{d{ 

- 2Jj(lnJ;- 1) 

We can now evaluate the integrals Ae and Be. From ( 4.24) 

From ( 4.33): 

¢>* = _ _!_In r 
211' 

8¢>* 1 or 
=>-=---

8n 21rr8n 

e =J 

(C.6) 

(C.7) 

(C.S) 

(C.9) 

(C.10) 
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Using ( C.9), this becomes 

(C.ll) 
e=j 

Also, from ( 4.33) and ( C.lO) 

{ 

_..!_ r ln r dl'e 
B - 21r Jre e-

J· 
: (1-lnJj) 

e#j 
(C.l2) 

e=J 

As stated before, the integrals for e =/= j can be simply evaluated using standard 

Gaussian quadrature. 



Appendix D 

Fundamental Solution (Laplace's 

Equation) 

The following derivation is a classical one and can be found in any standard text on 

the boundary element method, e.g. Brebbia (1984). Referring to equations ( 4.23) 

or ( 5.34) we need to consider an equation of the form 

(D.l) 

where k is a constant. 

We recall the following familiar property of the delta function: 

(D.2) 

where the integration is performed with respect to*-· We integrate ( D.l) over a 
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circular region n, centre ~, and radius e: 

where we have used ( D.2). By the divergence theorem, 

where r is the boundary of n. From ( 0.3) and ( D.4): 

I 8¢~ elf' = -k 
lr 8n 
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(0.3) 

(0.4) 

(0.5) 

We define polar coordinates with*" as origin: r = 1~- ~I;() is measured anti

clockwise from the x-axis through ~· On r, r = e, and :! = ~~ so that ( 0.5) 

becomes 

k2~ ( !: ) r=e e dO = - k 

Assuming that c/> is independent of 0, we have 

which is satisfied by: 
k 

¢ = --lnr 
211' 

(0.6) 

(0.7) 

(0.8) 



Appendix E 

A Solution of Equation (5.108) 

The equation is 

where a is a real or complex constant. We verify that a solution of ( E.l) is 

where r = I~- ~I· We first note that for real or complex z, and integer n: 

Kn+I(z) = Kn-t(z) + 2n R',(z) 
z 

r,j 
Xj- Pi - r 

r,;j - Dij _ r,; r,j 

' r 
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(E.l) 

(E.2) 

(E.3) 

(E.4) 

(E.5) 



1 
r,;; - -

r 

r,;r,; - 1 

We have from ( E.2) 

Also, using ( E.5) it is easy to show that 

( ) 
r,; 

r,i r,,; ,; = -
r 

Differentiating ( E.6) with respect to z; gives 

Tfi,jj = -a{r,; r,; [-Kt(ar) - :r K2(ar)]ar,; +K2(ar)(r,ir,; ),j} 

+6i;{ .!.[-Ko(ar)- _!_Kt(ar)]ar,,;- r,~ Kt(ar)} 
r ar r 

- a{ar,; [Kt(ar) + _!K2(ar)]- r,; /(2(ar)} 
ar r 

{ a ( ) 2r,J )} +6;i -;r,,; Ko ar -7K1(ar 
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(E.7) 

{ ( ) 2J•,,K ( ) r,i ( ) r,; v ( ) 2r,iK ( )} - a ar,;Kt ar +- 'l ar - -/(2 ar --.no ar - - 2 1 ar 
r r r ar 

- a{ar,;K1(ar) + r,i[K2(ar)- K0(ar)- _!Kt(ar)J} 
r ar 

- a2r,i K 1(ar) = a2'fl; 

1.e. 



Appendix F 

Functions Required for Kelvin 

Function Approximations 

These functions are defined in equations ( 6.21) to ( 6.27) a.nd ( 6.28). 

uo(x) = 

vo(x) = 

- [ 1 + a1 ( ~) 
4 

+ a2 ( ~) 
8 

+ · · · + ar ( ~) 
28

] 0 < x $ 8 

0 x>8 

~ (~)' ~dP. (~)' +P· (~r +. ··+P1 (~)"] o < z ~ s 

+ [ao +at(~) 
4 

+ a2 (~) 
8 

+ · · · + ar (~) 
28

] 

x>S 
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0 x>S 

~ [ 1 + at ( ~) 
4 

+ a~ ( ~) 
8 

+ · · · + or ( ~) 
28

] 0 < x < 8 

-Gr [b. +h. m· +~ (~r + ···+l>r m"J 
- J7r e"(z) sin ..\(x) V2; x>S 

Ut(X) = 

0 x>S 

1 [ (x)" (x)s · (x)24] 82 f3t + p, 8 + /33 S + ... + f3r 8 0 <X $8 

1f' [ 1 (X)2 1 (X)6 I (X)26] I +4 at 8 + 02 8 + .. ·+Or 8 - 9o(x) 

Vii~ e11(z){ s~(x)[sin ;\(x) +cos ;\(x)] + t4>(x)[sin ;\(x) -cos ..\(x )]} x > 8 
(2x)~ 



(x)2 (x)6 (x)~6 a~ 8 + a; 8 + ... + a~ 8 0<x~8 

u~ (x) = 

0 x>B 

,fi~ e11<~> { s.p(x )[cos ..\(x) -sin ..\(x )] + t.p(x )[cos ..\(x) +sin ..\(x )]} 
(2x), 

u;(x) = u~(x) + 2u~(x) 

v2(x) = vo(x) + 2v1(x) 

v;(x) = v~(x) + 2v~(x) 

0 

0<x~8 

x>B 
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0<x~8 

x>B 



1 [11' { 1 (X) 1 (X)3 8¥'2 4 (,81 + 2o1) 8 + ( -ol + 2,81) 8 

(,82 + 2o;) (~) 
5 
+ ( -o2 + 2,8;) (~) 

7 

+ ... + ( -07 + 2,8~) (~) 
27

} 

+(bt + 2a~> (i) +(at- 2b~> (:r 
+(b2 + 2a~) (~) 

5 

+ (a2- 2b~) (~) 
7 

0 < x $ 8 

+ · · · + ( a7 - 2b~) ( ~) 
27 

+ :2 { -01 (~) + ,82 (~)
3

- 02 (~) 
5 
+ ,83 (~) 

7 

+ ... + ,87 ( ~ r3 - a7 ( ~) 25} l 
V: e"(:) [cos ,\( x) + sin,\( x )+ 
2x:~ 

! {s,(x) sin..\(x)- t41(x) cos,\(x) }] + ~ x > 8 

O<x$8 

0 X> 8 
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0 

1 [7r { ' (X) 1 (X)3 SJ2 4 (.8t + 2a1 ) 8 +(at- 2,81) B 

+(.82 + 2a;) (~) 
5 

+ (a2- 2,8;) (~) 
7 

+ · · · + (ar- 2/J;) (~) 
2r} 

+( -bt- 2a~) (i) +(at- 2b~) (~) 
3 

x>S 

+(-~-2a;)(~)
5 

+(a2-2b;)(~)
7 

0<x:58 

+ · · · + ( ar - 2b~) ( ~) 
27 

+ : 2 {a, ( ~) + fJ2 ( ~) ~ + a2 ( ~) 
5 

+ .83 ( ~) 
7 

+ ... + .Br ( i) 23 + ar ( ~) 25} l 

V: e11(r) [cos ..\( x) + sin ..\( x )+ 
2X2 

2 . }] V2 ;{stl>(x) cos ..\(x) + ttl>(x) sin..\(x) - x3 
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0 X> 8 

1 
z4(x) = z3(x) + V2 

vs(x) = vo(x) + Vt(x) 
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1 
za(x) = 4za(x) + y2 

{ 

1 O<x<S 
'-'s(x) = -

0 X> 8 
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Functions needed for the above are as follows: 

For 0 < x ~ 8: 

(x)4 (x)8 (x)28 fo(x)=ao+at 8 +a2 8 +···+a1 8 

(x)2 (x)6 (x)26 
9o (:c) = bt 8 + ~ 8 + ... + b-r 8 

I I (£)2 I (X)6 I (X)26 f0 (x) =at g + a2 B + "· + a7 B 

For x > 8: 

(8) (8)2 (8)3 '8) 6 
x v(x) =eo- c1 ; + c2 ; - ca ; + · .. + Cs \; - v'2 
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List of Coefficients 

a1 = -64 a2 = 113.77777774 

a3 = -32.36345652 a4 = 2.64191397 

as = -0.08349609 a6 = 0.00122552 

07 = -0.00000901 

f3t = 16 !32 = -113.77777774 

(33 = 72.81777742 !34 = -10.56765779 

f3s = 0.52185615 (36 = -0.01103667 

f3r = 0.00011346 

I 

a 2 = 14.22222222 

a; = -6.06814810 a~ = 0.66047849 

a~= -0.02609253 a~= 0.00045957 

I 

a 7 = -0.00000394 

p~ = -10.66666666 (3~ = 11.37777772 

(3~ = -2.31167514 (3~ = 0.14677204 

(J~ = -0.00379386 (J~ = 0.00004609 
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ao = -0.57721566 a1 = -59.05819744 

a2 = 171.36272133 a 3 = -60.60977451 

a4 = 5.65539121 as = -0.1963634 7 

as = 0.00309699 a1 = -0.00002458 

bt = 6. 76454936 ~ = -142.91827687 

b3 = 124.23569650 b4 = -21.30060904 

bs = 1.17509064 ba = -0.02695875 

b.,= 0.00029532 

a~ = -3.69113734 a; = -21.42034017 

a;= -11.36433272 a~= 1.41384780 

a~ = -0.06136358 a~ = -0.00116137 

a; = -0.00001075 

b~ = 0.21139217 b~ = -13.39858846 

b~ = 19.41182758 b; = -4.65950823 

b~ = . 0.33049424 b~ = -0.00926707 

b~ = 0.00011997 b~ = 0 
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Co = 0 Ct = 0.0110486 

C2 = 0 C3 = -0.0000906 

C4 = -0.0000252 Cs = -0.0000034 

CG = 0.0000006 

do = -\1.3926991 d1 = -0.0110485 

d2 = - 0.0009765 d3 = - 0.0000901 

d4 = 0 ds = 0.0000051 

d6 = 0.0000019 

So = 0.7071068 St = -0.0625001 

s2 = -0.0013813 s3 = 0.0000005 

s4 = 0.0000346 8 5 = 0.0000117 

86 = 0.0000016 

to= 0.7071068 

t2 = 0.0013811 

t., = 0.0000338 

ts = -0.0000032 

tl = -0.0000001 

ts = 0.0002452 

ts = -0.0000024 
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Appendix G 

Real and Imaginary Parts of the 

Poroelastic Fundamental 

Solutions 

The real and imaginary parts of the fundamental solutions are defined in equation 

( 6.30). The functions u,, Vn 1 w, and Zn used in the following take argument cr 

where the parameter cis defined from ( 6.16} as 

2 wfkH 
c = ~.;.._~ 

R(A + 21') 

The parameters fl, k and H are given by ( 3.24), ( 5.118) and ( 5.121) respec

tively. The following dimensionless groups are useful in describing the fundamental 
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liS 

solutions 

IT - .f!__ 1 
11 

- H - 2{1 - v) + K1 
1-2v p.f 

Kl 

n6 = KI = e 
H 2(1- v) + K1 

l.- 2v p.f 

1- 2v llf 
lie= 2{1- v) + K1 

Thus in defining c, Ilc:u llb a.nd Ilc is necessary to know the following material con

stants: porosity/, permeability ko(ms-1), shea.r modulus of soil skeleton p(Nm-'l), 

Poisson's ratio of soil skeleton v, density of pore water PJ(kg m-3 ), bulk modulus 

of pore water K1(Nm-2). 

The following dimensionless groups occur in the fundamental solutions. The 

symbol ro reprei!ents an arbitruy length. 

where 



where 

where 

where 

where 

I' ITs=-= IIa 
H 

rr _ i2pK}koa3ro = ( _ ')IT' 
s- f2 H2- 1 z 9 

w PJ9 

2 rr' - PJYWTo 
12- pko 

The functions defined in equation ( 6.30) are given below. 

179 



Function Hils 

Fori= 1, 2 

Fork= 1,2 

Fork= 3 

Fori=3 

Fork= 1,2 

Fork= 3 
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Function Hi~r 

Fori= 1, 2 

Fork= 1,2 

Fork= 3 

Fori=3 

Fork= 1,2 

Fork= 3 
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Function G;& 

Fori= 1, 2 

Fork= 1,2 

Fork= 3 

Fori= 3 

Fork= 1,2 

Fork= 3 
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Function d;k 

Fori= 1, 2 

Fork= 1,2 

Fork= 3 

Fori- 3 

Fork= 1, 2 

Fork= 3 
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,.., 2 8r 
li;L = - c ror-vt ,,.. 8n 



Function P;k 

Fori= 1, 2 

Fork= 1,2 

Fork= 3 

Fori= 3 

Fork= 1, 2 

Fork= 3 
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Function Pi~c 

Fori= 1, 2 

Fork= 1,2 

Fork= 3 

Fori- 3 

Fork= 1,2 . 

Fork= 3 
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Function 9ilc 

Fori= 1,2 

Fork= 1,2 

Fork= 3 

Fori-3 

Fork= 1,2 

Fork= 3 
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Function Q;k 

Fori= 1, 2 

Fork= 1,2 

Fork= 3 

Fori= 3 

Fork= 1,2 

Fork= 3 
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Function Zile 

Fori= 1,2 

Fork= 1,2 

zil~ = 

Fork= 3 

Fori- 3 

.)• · .. -· 
. ....... 

188 

or or 
II1cro on r,ir,k- Ilscro( on 6ik + r,mk- r,~;ni) 

I Or I 8r I + II9(( 8n Oik + r,in~;)(z3 + z3) - an r,ir,k(Ze + za) 

+ r,kni(z,. + z~)] 

zik = o 

Zik = 0 for k = 1, 2, 3 



Function z;k 
Fori= 1,2 

Fork= 1, 2 

Fork= 3 

Fori- 3 
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, 
zil~ = o 

z;k = 0 fork= 1,2,3 
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Appendix H 

Functions Required for the 

Evaluation of Interior Effective 

Stresses and Pore Pressure 

These functions are the integrands occurring in equations ( 6.60)and ( 6.61). In the 

following, 

TJ = 
1 

.:.
11

211 
where v is Poisson's ratio of the solid skeleton 

2 • 2 _ilt c (1 .) a = -~c , a = e • c = v'2 - ' 

K 0 and K 1 are the modified Bessel functions of the second 1.;11d of orders 0 and 1 

respectively. 

K 0 (ar) - ker(cr)- i kei(cr) 
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K1(ar) = - ~[ker'(cr) + kei'(cr)] + ~[kei'(cr)- ker'(cr)] 

where ker 1 kei 1 ker' 1 kei' are the Kelvin functions. 

2 2 
- --Ko(ar)- -K1(ar) 

a2r2 ar 

- -ker(cr) + ~kei'(cr) 
. cr 

+iL; 
2 
+ kei(cr) + ~ker'(cr)] 

t.-r cr 

• .:.•3 ..:..•3 
The functions Da~e;, Sakj, U 01 , T cr are defined below. 



Function Daki 

For a= 1,2 

For k = 1, 2 and j = 1, 2 

Forq=3 

1 
-lit ;{2r,ac5kj + r,kc5aj + r,,;c5ak- 4r,ar,jr,k) 

1 
+II2-{r,jDak + r,kDa;) 

T 

2 
+Ila{ -Ft(ar)[r,aDkj + r,~cc5aj + r,;c5ak- 4r,ar,jr,k] 

r 

+2aKt ( ar )r,or,jr,k} 

1 
-7lr,ac5kj[;(Ilt- II2)- l13aKt(ar)] 

For k = 1, 2 and j = 1, 2 

192 



Function Saki 

For a= 1,2 

For k = 1, 2 and j = 1 , 2 

For g = 3 

-4(r,ar,knj + r,ar,;nk + r,kr .;na)] 

Kt(ar) ar 
+ [-a (r JCak + r,aCkj + r,k601;- 8r,01r,kr,;) 

r n 

+r,0 (r,knj + r Jnk) + ncw(3r,kr J- c5k;)) 
ar 

+aKo(ar)(-an r,cwr,kr,; + r,kr,;ncw]} 

1 8r 
+7Jc5~c;{2rofis"""'i(ncw- 2r,cw-8 ) 

r n 

(1 ')II'{Kt(ar)( 2 ar) + - z 9 new - r,cw -a 
r n 

ar 
+aKo(ar)(n"'- r,cw an)]} 

For k = 1, 2 and j = 1, 2 
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For a= 1,2 

Eorq-3 

U= •3 _ (1 - i) n' 8r K ( ) 
a - y'2 6 Bn 1 ar 

-=-•3 
Function Ta 

For a= 1,2 

...:..•3 , { ( 8r ) } T a = -iiT10 2r,a Bn - na F1 ( ar) + Ko( ar )na 

For q = 3 

-=-•3 , 
T a = -iTI12Ko( ar) 



Appendix I 

Wave loading of a Flat 

Homogeneous Isotropic 

Poroelastic Seabed - Analytic 

Solution 

For the case of a. flat seabed, it is possible to determine by analytic mea.ns the 

wave induced effective stresses and pore pressures. We present here a. summary of 

the technique used by the author in his M.Eng thesis (Raman-Nair, 1985). It was 

demonstrated that for sand beds the acceleration terms may be deleted from the 

governing equations. We thus obtain from ( 3.17) and ( 3.18), for no body forces, 

Tij,j = 0 (1.1) 
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where 

P!9 · -p,i= -Wi 
ko 

We also recall from ( 3.5) and ( 3.26) the constitutive laws in the form 

196 

(1.2) 

(1.3) 

(I.4) 

where we have used the fact that Kr _. oo,so that a ~ 1. Substituting ( 1.3) into 

( 1.1) gives 

ILU . .. + (A + ll)U . .. = p . r I.JJ ,- J,JI ,I (1.5) 

We shall rewrite equation ( 1.2) in terms o£ the soil displacement vector Ui 

(rather than Wi)· Differentiating ( 1.2) with respect to Xi gives 

(1.6) 

From ( 1.4): 

Substituting this into ( 1.6) gives: 

(1.7) 

This is the so-called storage equation derived in a different way by Verruijt (1969) 

and Biot (1941). 

The system of equations ( 1.5) and ( I. 7) must be solved subject to appropriate 

boundary conditions. We take the x-axis on the flat seabed and parallel to the 
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direction of propagation of the wave. The z-axis is vertically downward into ·~be 

soil. The problem domain is two dimensional in the ::t - z plane and is illustrated 

in Figure (I.l). The boundary conditions are: 

(a) r;. = r;. = 0 at z = 0 

(b) p( in bed ) = Poei(k.zo-~&~t) 

where Po is the amplitude of the wave induced pressure on the seabed, k is the 

wave number and w is the circular wave frequency. 

(c) Ut = u2 = 0 at z = zo 

where u 1 and u2 denote the x and z components of the soil displacement vector y. 

(d) ~~ -::- 0 at z = zo 

The value of Po is determined from the wave velocity potential c) which is given by: 

~~ ~. ~-q c)(z, z, t) = ~(cosh k(z +h)- kh smh k(z + h)]e' z "' (1.8) 

where TJo is the wave amplitude. Then from Bemoulli's.equation, 

so that 

P0 ei(A:z-wt) = - p 1 (}c) at z = 0 at 

w2 
Po= PJflog[cosh(kh) - gk sinh(kh)] 

In view of the dispersion relation 

w'l = gktanh(kh) 

(1.9) 
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we can write ( 1.9) more compactly as 

Po= PJTJo9 
cosh{kh) 

Equation ( 1.5) is satisfied by the function 

where 
,\ 

v = 2(,\ + p) (Poisson's ratio) 

provided that 

2p( 1 - v) ( l 2 ) ( ) 2 

1 
_ 

211 
V <P + x;V t/J; ,i- 4p 1- v V tPi = P,i 

199 

(1.10) 

(1.11) 

(1.12) 

Equation ( 1.11) is the well known Papkovich-Neuber solution of the equilibrium 

equations of the>ry of elasticity, <P and tPi being functions of x, z , and t. Any one 

of the functions </J, tPlt t/J2 may be taken to be zero without loss of completeness 

provided that the coordinate system is chosen in an appropriate way and 4v is not 

a positive integer. We choose 

t/J = 0 and t/12 = t/J 

Then equations ( 1.12) become 

where 

2p/i!(V2</J+zV2 t/J)= :: 

a op 
2p{i oz(V2

</J + zV21/J)- 4J£(1- v)Vlt/J = az 

1-11 
{J = -1 ---2-11 

(1.13) 

(1.14) 

(1.15) 



200 

Equations ( 1.13) and ( I.14) represent equation ( 1.5) in terms of the functions q, 

and 1/J. Using ( 1.11), we express ( 1.7) in terms of <P and t/J: 

ko 2 f 8p a [ 2 2 ( lJt/Jl -V p---=- V f/>+zV ,P-21 ~2v)~ 
PJ9 K 1 8t 8t Oz 

(1.16) 

It can be shown (Raman-N'\.ir, 1985) that the solution of ( 1.13), ( 1.14) and ( 1.16) 

is of the form 

(1.18) 

where 

B 
-4pf3a2 

- oo 

D 
-4pf3a• 

-
oo 

Oo - -2(1- v)[_L + - 1-t1 

K1 2p{J 

and 

where 

At - -4p{Jka2 

A2 - 4pf3ka4 

A a - 2pf3[(k')2
- k2]as 

A• - 2p,8(( k')2 
- k2]a6 

(k')2 - k2-~ 
c 

c - ko [ f 1 r 
P/9 K1 + 2p{J 
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Using the constitutive laws the effective stress components T;; are written in terms 

of t/J and t/J: 

I 

Tii = 2p[t/J,;; + zt/J,;;- (1- 2v)(tPi.i + tP;,i)] 

+6;; ( 1 ~;v) [V
2t/J + zV2t/J- 2(1- 2v) ~~] (1.20) 

Hence the effective stress components and pore pressure can be expressed in terms 

of the six constants ah a:h · · · a5. The six boundary conditions lead to an equation 

of the form 

[A]x = b (1.21) 

where 

( Po T 
b = 0,0, 2p,8'0,0,0) 

The elements ai; of the matrix [A) are given by 

an - /c2 

a12 -2k,8[1 + 4(1 - v)p] - ao 

a13 - /c2 

at• - -a12 

au; ·- /c2 + ,8[(k')2 - k2j 

ate - au 

a:11 - -k 

a22 - 1 + 4(1- v)p 

ao 

a:Ja - lc 



' f •• 
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a2-4 - a22 

a2s - -k' 

a26 - k' 

a at - 0 

aa2 - -2k 

a33 - 0 

aa4 - 2k 

a as - (k')2
- k2 

a36 - a as 

a41 - e-kzo 

a42 - -k"<) ( 1 4p.{3) zoe ---
ao 

a4a - ekzo 

a44 - zoekzo (1 - 4P.f3) 
ao 

a4s -k' "<) - e 

I 

a45 - e/c IO 

as1 - -ke-kzo 

a112 = . [-kzo + 1 + (kz0 + 3- 4v) 
4
P.f3]e-kzo 
ao 

as3 - kekzo 

as• - [kzo + 1 + ( -kz0 + 3- 4v) 
4

1'f3]ekzo 
ao 

ass - -k' e-lc'zo 

a sa - k' elc' zo 

aa1 - 0 
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a6:z - 2k2e-k.ro 

a63 - 0 

Ot)-l - 2k2ekzo 

a as - -k'[(k')2- k2]e-k'zo 

066 - k'[(k')2 - k2]eA:'zo 
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Figure J .10: Stress Angle Contours( degrees ):Fine Sand,!( = 0.5, L = 150 m, {3 =5° 
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Figure J.ll: Stress Angle Contours( degrees ):Fine Sand,!( = 0.5, L = 150 m, (J = 2° 
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Figure J .12: Stress Angle Contours( degrees ):Coarse Sand,/{ = 0.5, L = 300 m, (3 = 12° 
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Figure J.l5: Stress Angle Contours(degrees):Coarse Sand,!{= 0.5, L =225m, {3 = 2° 
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Figure J.l7: Stress Angle Contours(degrees):Coarse Sand,K = 0.5, L =150m, {3 =5° 
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Figure J.l9: Stress Angle Contours(degrees):Coarse Sand, L =225m, wt = -, K = 0.7 
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Figure J. 21: Stress Angle Contours( degrees ):Coarse Sand, L = 150 m , wt = 2, /( = 0. 7 
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Figure J . 22: Stress Angle Contours(degrees):Coarse Sand, L = 150m, wt = 2, J( = 1.0 
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