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Abstract

The effect of wave forces on the stability of a sloping seabed is investigated using
linear wave theory and Biot’s theory of poroelasticity. The wave forces on the
slope, the wave-induced effective stresses and pore pressures are all computed by
the boundary element method. Full derivations are presented for the boundary
integral equations and fundamental solutions of the poroelastic theory for the case
of sinusoidal loading conditions. The wave-induced stress field is combined with the
in-situ stress field and the Mohr-Coulomb failure criterion is used to determine the
zone of incipient failure. It is found that wave induced stresses must be analysed
throughout an entire wave cycle in order to assess the likelihcod of failure and also
that the stability of a slope under waves is strongly dependent on the initial stress

distribution.
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Chapter 1

INTRODUCTION

Engineering interest in the stability of the seafloor has been motivated by the pres-
ence of petroleum beneath the submarine soil. The necessity of locating bottom-
mounted structures, pipelines and cables on or in the vicinity of seabed slopes has
made the analysis of submmarine slope stability a matter of great importance. One
of the factors contributing to submarine slope failures is the effect of the loading
due to water waves. A well known example is the failure of two Shell jacket pile
platforms in the Gulf of Mexico during Hurricane Camille (1969). Other areas
susceptible to wave-induced slope instabilities are the Gulf of Alaska and the Nova
Scotian shelf. Although many researchers (including the author) have presented
stability analyses of a flat seabed under wave loading, few have attempted compre-
hensive theoretical studies of seabed slopes. It has been long recognised that there
is a need for a stress analysis approach to problems of slope stability to supplement
existing limit equilibrium analyses. In performing such a study the important first

step is the choice of a soil model. Unfortunately, there is at present no soil model
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which by itself completely describes the complex behaviour of =o0il. In choosing a
model one must therefore identify those aspects of soil behaviour which are most
pertinent to the problem being addressed. Several researchers (Yamamoto et al,,
1978-1985; Mynett and Mei, 1982; Zienkiewicz et al., 1984; Cheng and Liu, 1986)
have pointed out that in determining the seabed response to wave loading, the cou-
pling between the soil skeleton and pore water is of primary significance. In light
of this fact, Biot’s poroelastic model will be used as the basis for the theoretical
analysis. This model has been experimentally verified for the wave loading of sand
beds (Yarnamoto, 1978 ; Cheng and Liu, 1986). In order to determine the wave
forces on the slope we shall use linear (Airy) wave theory and the boundary element
method. The problem of wave propagation over a slope has been studied analyti-
cally by Stoker (1957) for certain values of the slope angle. For our purposes it is
necessary to determine the wave forces sn an arbitrary slope, and to this end the
boundary element method furnishes a quick and efficient procedure. The boundary
conditions on the surface of the slope are thus provided in a natural way.

We distinguish between two features of soil response under wave loading. In
the terminology of Fimn et al., (1983) these are due to “transient” and “residual”
stresses respectively. The “transient” stresses and pore pressures are the instanta-
neous soil response to the passing wave as determined by the constitutive laws and
equations of motion. This response vanishes when the wave passes. The “residual”
stresses and pore pressures are due to the cumulative effects of the passage of sev-
eral waves. These induce permanent strains and “residual” pore pressures which
depend on the relativerates of generation and dissipation. In this thesis only the

problem of “transient” instability will be addressed. We would emphasise that



although the term “transient” is used, we actually determine the steady-state solu-
tion to the governing equations under sinusoidal loading. Biot’s po: «lastic model
is thus adopted in its basic form i.e. with constant soil properties. Even with these
simplifications the problem is intractable by analytic methods and we employ the
boundary element method (BEM) to compute the wave-induced effective stresses
and pore pressures. These are combined with the in-situ stresses and the Mohr-
Coulomb failure criterion is used to determine the incipient zone of failure. The
manner in which such failure progresses is a matter which requires further research

and the methods presented herein may be used as a starting point in this regard.



Chapter 2

LITERATURE SURVEY

We have already mentioned that in the analysis of seabed stability it is important
to choose an appropriate soil model. We review some of the approaches taken by

various authors for modelling the saturated submarine sediments.

2.1 Soil Models

Some of the early attempts at soil modelling (Putnam, 1949; Sleath, 1970; Mosha-
gen and Torum, 1975) neglected soil deformation under loading and thus do not
provide a complete model. Oner and Janbu (1975) presented an analysis of the
seabed under offshore storage tanks, in which the soil is modelled by springs and
dashpots. Bell et al. (1976) performed both stochastic and deterministic analy-
ses assuming homogeneous, isotropic, and elastic soil. Moshagen and Monkmeyer
(1979) have used potential theory to describe the flow within the seabed (as did

Putnam and Sleath). The soil is assumed to be homogeneous, isotropic, coarse-
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grained and rigid. They have also computed the wave-induced pressure distribu-
tion on the surface of a vertical embedded cylinder, as well as the total horizontal
force and overturning moment generated by the hydrodynamic seepage pressure.
O’Donnell (1982) has determined the wave-induced pore pressure fields around a
variety of structures (buried pipelines, breakwaters, seawalls, sheetpile bulkhead,
offshore foundation) using a potential theory and the Boundary Integral Equation
Method. Potential theory has also been used by Lai et al. (1975) and Macpherson
(1978) to determine the wave-induced pore pressure around a buried pipeline, and
by Liu (1985) to compute the wave-induced pore pressure under a gravity struc-
ture. The latter considers the soil skeleton and pore water to be incompressible
and he has employed the Riemann-Hilbert technique to compute the pore pres-
sures. Rahman, Seed and Booker (1977) have computed the wave-induced pore
pressure history under an axisymmetric tank assuming Darcy’s Law and by incor-
porating a mechanism for pore-pressure generation and dissipation. Munro et al.
(1985) have used an elasto-plastic soil model that includes foundation stratigraphy
and embedment of an offshore structure. They have developed equivalent spring
stiffnesses of soil for vertical, horizontal and moment loading. An elasto-plastic soil
model has also been suggested by Prevost et al. (1980). This model incorporates
both drained and undrained behavior. It describes the anisotropic, elastoplastic,
path dependent, non-linear stress-strain-strength properties of inviscid saturated
soils. It is assumed that the elasticity of the material is linear and isotropic and
that non-linearity and anisotropy result from its plasticity.

Potts and Windle (1985) did a numerical study of the foundation behavior of a

gravity platform using concepts from critical state soil mechanics (Drammen clay



model). Meimon and Lassoudiere (1985) have proposed an elastoplastic model
with multiple yield surfaces and kinematical hardening, and involving eleven mate-
rial constants. Zienkiewicz et al. (1982) have also adopted an elastoplastic model
for describing soil behavior. Bouckovalas et al. (1984) have used an empirical
model describing the cumulative effects of cyclic loading of sands. He draws upon
an analogy between accumulation of strain during cyclic loading and viscoelastic
creep, and uses equations and rules derived from the behavior of actual sands. A
viscoelastic model was adopted by Schapery and Dunlap (1978) who, in addition,
considered non-linear soil properties and the variation of soil properties with depth.
Using the linear dynamic theory by Biot (1965), Schapery and Dunlap solved the
elastic-viscous problem of wave-seabed interaction. Kraft et al. (1985) have com-
pared this model with field data and have observed good agreement.

While the above approaches have their individual merits, they do not account
for an important feature of wave-soil interaction, viz. the coupled responses of the
soil ‘skeleton’ and pore water. Such behaviour must also be considered in problems
of soil consolidation. The earliest attempt at modelling soil consolidation is due to
Terzaghi. In this theory the effective stresses (in the soil skeleton) and the pore
pressure are regarded as autonomous stress systems linked only through the general
equations of equilibrium ( Zaretskii, 1972 ) . It has been generally recognised that a
more accurate picture of the coupled interaction between the solid and fluid phases
is provided by the Biot theory of three dimensional consolidation, first presented
by M.A. Biot in 1941 for quasi-static phenomena and later extended by him in a
series of papers to include soil anisotropy and visco-elasticity (Biot, 1955, 1936,

1963). A general poroelastic theory including dynamical terms was presented in



1962 (Biot,1962). In Biot's formulation the interaction between the soil skeleton
and pore water is represented through body forces. The coupling between soil
skeleton and pore water is also considered in a ‘mixture’ theory by Katsube and
Carroll (1987). This theory reduces to Biot’s when certain terms involving velocity
gradient are suppressed. These terms account for part of the shear interaction
between the solid and fluid constituents. However, as pointed out by Katsube
and Carroll (1987), these terms are unimportant for most practical applications
requiring the solution of steady state boundary value problems, and Biot’s model
does in fact account for the most significant shear interaction effects (which are due

to fluid viscosity).

2.2 The Poroelastic Model of Biot

This theory has been used by a number of _athors for analysing seabed stability.
The first appears to be Yamamotoet al. (1978) and Madsen (1978) who developed
an analytical solution for wave-induced effective stresses and pore pressures in ho-
mogeneous isotropic seabeds. They have analysed beds of infinite depth, while
Yamamoto (1978) has considered beds of finite depth.‘ Yamamoto et al. (1978)
have substantiated their theoretical findings for sand beds by extensive laboratory
experiments. Subsequently, however, Clukey et al. (1984) and Davies (1985) have
indicated discrepancies between their experimental results and Yamamoto's theo-
retical findings. They suggest the incorporation of additional features in the Biot
model, among them hydraulic anisotropy ( as done by Madsen, 1978), layering and
damping. Yamamoto et al. (1983,1985) introduced into the Biot model the effects



of Coulomb damping and non-linear shear modulus via the Hardin-Drnevich (1972)
formulas and have obtained good correlation with experiments.

Several other authors have adopted the Biot poroelastic model. Spierenburg
(1985) has used the analytic solutions of Yamamoto to determine the wave-induced
forces on a buried pipeline. He has also used these soiutions together with a one
dimensional version of Biot’s pore pressure equation to develop a model for pore
pressure generation. Silvestriet al. (1985) have included the effect of soil anisotropy
and found that the soil is closer to failure than when considered isotropic. Si-
mon, Zienkiewicz and Paul (1984) have developed an analytical solution to Biot’s
equations for the transient response of a one-dimensional column of fluid-saturated
poroelastic solid. Mei (1982) has solved Biot’s equations using a boundary layer
approximation method, his argument being that relative motion between pore wa-
ter and soil skeleton is significant only within a boundary layer at the mudline. He
has considered the problem of waves propagating over a horizontal seabed, waves
passing over a pipe laid on the seabed, waves normally incident on a long cais-
son, and the lifting of a large object from the seafloor. Kokkinowrachos (1985)
has determined the wave-induced pore pressure below an offshore structure resting
directly on the seabed or embedded in the soil. The two-dimensional problem is
considered and both the cross-section of the structure and the contour of the sea-
bottom can be of arbitrary shape. He has used the macroelement approach to solve
Biot’s equations. In this method the cross-section of the structure and the seabed
contour are approximated by step curves, and the flow field around thc structure
and in the soil is subdivided into macro-elements. The method can be extended

for stratified and inelastic soil. Mynett and Mei (1982) have considered the wave-



induced stresses in a saturated, homogeneous, isotropic poro-elastic seabed beneath
a rectangular caisson. They have analyzed the two-dimensional problem and have
used Mei’s boundary layer approximation in conjunction with Biot’s equations. A
complex variable technique is used to achieve an analytic solution for stresses and
pore pressure. Barends and Calle (1985) have used the solution of Yamzmoto et al.
(1978) to determine the response of the seabed to wave loading. They then establish
a procedure for the assessment of cyclic pore pressure build-up and liquetaction of
seabeds under random wave loading using a one-dimensional equation for pore pres-
sure. Finn et al. (1983) have used Biot’s equations for the transient response of the
seabed, and the Seed-Rahman model of pore pressure generation and dissipation
(Seed and Rahman, 1978) to assess residual pore pressures. Ishihara and Yamazaki
(1984) have used the Yamamoto-Madsen solution of Biot’s equations and have done
a liquefaction analysis in terms of cyclic stress -atio. Okusa (1985) has used Biot's
equations to analyze the wave-induced stresses in unsaturated soils. Mei and Mc-
Tigue (1984) have performed an analysis of a submarine ridge and canyon under
wave loading using the Biot theory. Sabin (1989) has presented analytic formulae
for effective stresses and pore pressures in a poroelastic seabed under normal and
shear loads. The author’s M.Eng thesis (1985) deals with the analytic solution of
Biot’s equations for wave loading for both the dynamic (i.e. inertia terms included)
and quasi-static cases. A homogeneous, isotropic seabed is assumed. It is shown
that the response of sandbeds is essentially quasi-static, i.e. the inertia terms in
the governing equations may be ignored.

For many problems an analytic approach is either too difficult or impossible and

it is necessary to resort to numerical methods. The finite element method (FEM)
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has been used by a number of authors to solve Biot’s equations for analyzing various
problems of soil consolidation and flow through porous media (Sandhu and Wil-
son,1969 ; Yokoo et al.,1971 ; Ghaboussi and Wilson,1973 ; Smith and Hobbs,1976).
Zienkiewicz and Shiomi (1984) have used the FEM to solve Biot’s equations and
have introduced various approximations for ‘fast’ and ‘slow’ phenomena and for
the cases of compressible and incompressible fluid. In recent years the boundary
element method (BEM) has emerged as a significant challenger to the finite element
method and has been successfully applied in many areas of solid and fluid mechan-
ics. One of the advantages of the BEM is that the field equations in the region of
interest are transformed into integral equations on the boundary of the region, thus
reducing the dimension of the problem by one. Only the boundary of the region
needs to be discretised and the user has control over the number of interior points
at which the solution of the governing equations are found. This contrasts with the
FEM which requires domain discretisation and necessarily produces solutions at all
interior nodes. Further, for many problems, the BEM gives greater accuracv than
the FEM for the same level of discretisation (Mukherjee et al.,1984). The BEM is
still undergoing development and it is certain that further research will extend the
power and range of applicability of the method. Kuroki et al.(1982) and Aramaki
et al.(1985) have used the BEM in conjunction with Biot’s theory but only after
uncoupling the soil deformation and pore pressure equations. The fully coupled
equations were solved using the BEM by Cheng and Liggett (1984). They have
assumed homogeneous, isotropic soil and constant soil properties and they have
used Laplace transformed space to deal with time dependent problems. Cheng and

Liu (1986) have used the boundary element method and the Biot theory to deter-
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mine wave induced seepage forces on a buried pipeline. They have obtained good
agreement with experimental results . They have also investigated the sensitivity
of the pore pressure response to several soil and fluid parameters . A boundary
element formulation for Biot’s equations including viscoelastic behaviour of the soil

skeleton has been presented by Predecleanu (1981).

2.3 Slope Stability under Waves

The stability of underwater slopes was discussed by Terzaghi (1956) who pointed
out that slope failures occur when the average shearing stress on the potential
surface of sliding becomes equal to the average shearing resistance along this surface.
One of the first analyses of slope stability under waves is due to Henkel (1970).
He presented a total stress analysis (i.e. neglecting pore pressures) based on the
principle of limiting equilibrium and the assumption of a circular failure surface.
He used a standing wave as the loading on the slope. Henkel used his model to
show that the overturning moment produced by large waves on a sloping bed in the
Gulf of Mexico could exceed the resisting moment provided by the soft sediments.
Bea (1971) used the same model to investigate the failures of the Shell platforms
in the Gulf of Mexico during Hurricane Camille in 1969. Rahman et al. (1985)
have developed a probabilistic analysis for slope stability in which the waves are
considered as a random process and the undrained shear strength of sediments
is treated as a random variable. In this paper Henkel's approach is extended to
develop a method for evaluating the probability of soil failure. Mitchell et al.

(1972) proposed that slope failures were caused by strength reductions due to wave
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remoulding, rather than additional driving moments or shear stresses. An effective
stress method of slices for the stability of seabed slopes has been presented by Finn
and Lee (1979), which includes both wave and earthquake loading. Wright (1976)
developed a finite element model which included gravity stresses and utilized a
hyperbolic stress-strain relationship. Wave forces were estimated from linear wave
theory using a constant water depth. The major limitation of the above studies is
that the interaction between soil skeleton and pore water is not taken into account.
We therefore choose the poroelastic model for our present study. As mentioned
previously, Mei and McTigue (1984) have used Biot’s poroelastic model to analyse
the effects of wave loading on a gentle slope. They use an analytic solution valid
for flat beds with a modified wave pressure which approximates the slow variation
in the wave forces over a gentle siope. For certain values of the slope angle the
analytic techniques of Stoker (1957) may be used to determine the wave forces
on the slope, but for an arbitrary slope numerical methods are required. Alliney
(1981) has used linear wave theory and the BEM to determine the wave velocity
potential over an arbitrary coastal planar slope. In this thesis we determine ( via
the BEM ) the wave forces on an arbitrary planar slope in the open ocean. The
major difference between these two problems is that the latter has an additional
boundary for which appropriate conditions must be specified. We have defined the
side boundary conditions using the techniques illustrated by Alliney. The wave-
induced stress field in the sloping bed is also computed by the BEM using Biot's
poroelastic model. To provide boundary conditions on the side boundaries of the

poroelastic medium we use an analytic solution for flat beds.



Chapter 3

Theoretical Background

The theory of poroelasticity presented by M.A. Biot in 1962 will be used to model
the soil medium. Here we present the final equations with an explanation of the

notation.

3.1 The Biot Soil Model (Theory of Poroelas-

ticity)

The saturated soil is modelled as a solid, porous, deformable skeleton, the pores
being completely filled with water. We assume that the soil is homogeneous and
isotropic. The Cartesian coordinates are denoted by z;,z; and z3. Subscripts 1,
2, and 3 refer to the Cartesian coordinate directions, unless otherwise specified.
A repeated suffix indicates summation with respect to that suffix over the range

1, 2, 3 unless otherwise specified. A comma followed by a suffix indicates partial

13
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24
oz;’
We let u = (uy, ug, u3) be the displacement of the solid matrix at any point;U =

differentation with respect to the appropriate coordinate direction, e.g. A; =

(Uh, Uz, Us) be the displacement of the ﬂuid‘at any point; and f be the porosity of
the soil. We denote by 7;; the total stress components on the bulk material; =;
is a jdirection stress acting on a plane normal to the i-axis. The pore pressure is
denoted by p. For the present, we use the usual sign convention adopted in the
theory of elasticity, i.e.;
(a) tensile stresses are positive and,
(b) a shear stress is reckoned positive when acting in a positive coordinate direction
on a plane whose outward normal points in a positive coordinate direction; or
when acting in a negative coordinate direction on a plane whose outward normal
points in a negative coordinate direction. We defer until a later section the use of
the conventional soil mechanics sign convention, which is exactly opposite to that
described above.
We now present the constitutive laws as (Biot, 1962)

Ti; = 2pes; + (Ace — aM()6;;  (a) 3.1)

p=—aMe+ M( (b)
where

eij = 3(tij + ;)

€ = Ckk

¢ = —f(Ux — vi)sk
6 is the Kronecker delta.

The constant p is the shear modulus of the soil skeleton. The other constants Ac,«
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and M appearing in ( 3.1) may be expressed in terms of the following familiar elastic
moduli :

K, = bulk modulus of soil grain

K = bulk modulus of soil skeleton

K; = bulk modulus of water

It can be shown that (Biot and Willis, 1957; Stoll,1974)

_ (K- Ky)? 2p
a = 1- % (3.2)
K?
M = D - K,

where

o= fpos ()

It is of interest to examine the relationship between ( 3.1) and Hooke’s Law. From

equation ( 3.1) (b) we have
(= %(P + aMe)
Substituting this into ( 3.1) (a) gives
1i; = 2pei; + 8ij[(Ae — o* M)e — ap] (3.3)
From ( 3.2) we find that

de — a?M = K, — 2?” = (3.4)

Here, A is the standard Lamé constant of the theory of elasticity. Equation ( 3.3)

may now be re-written as:

Tij = 2pe;; + bijde — 6i;ap (3.5)
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We shall show that this reduces to Hooke’s Law when written in terms of effective
stress. To define the effective stress tensor, we consider a plane area 64 of saturated
soil normal to the ¢ axis, shown schematically in Figure (3.1).

We denote by F;; the sum of all inter-granular forces acting on th.e area 64 in
the j direction. The pore pressure p exerts a force péA in opposition to the normal
inter-granular forces. Since 7;; is the net total stress in the j direction we have the

following balance of forces on the area 64 :
Tiy 5A = F,‘j - p6A6,-,-

We define the effective stress components 1';']- by

, P
Tij = ﬁ (3.6)
Hence the above equation becomes
Tij = T;; — pbij (8.7)

Writing ( 3.5) in terms of effective stress gives
7',-} = 2uei; + bi5he + 6;;(1 — a)p (3.8)

For most soils the ratio % is negligible (of the order 10~4) so that a is effectively
r

equal to unity (equation 3.2). Thus ( 3.8) reduces to
T,-'j = 2ue;; + ijAe (3.9)

which is Hooke’s Law for the soil skeleton.
We now re-write the constitutive laws ( 3.1) in a form suitable for deriving the
boundary integral equations. It is first necessary to write the total stress tensor in

terms of stresses on the solid and liquid portions of an element of soil :
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Fig.(3.1) Plane area %A normal to i-axis
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Referring again to Figure (3.1) we define oy; as the net j-direction stress on the
solid area averaged over the entire area 6A i.e. o;;6A is the j-direction resultant

of intergranular and pore pressure forces on the solid area. With this definition we

find
0ijdA = Fij — §;(1 - f)6Ap
which simplifies to (using 3.6)
aij = 7i; — 6i(1 ~ f)p (3.10)
Eliminating r;; between ( 3.7) and ( 3.10) gives
Tij = 0ij + ;50 (3.11)
where

o= —fp (3'12)

We proceed to re-write the constitutive equations ( 3.1) in terms of ;; and o :

Writing € = Uiz we note that
=-fle-e)
Multiplying equation ( 3.1) (b) by —f gives
o=Qe+ Re (3.13)
where
Q=(a-f)fM ; R=fM (3.14)
Substituting equation ( 3.1) into ( 3.11) gives, using ( 3.4)
o = 2peij + 6 [{A+ M(e— f)?}e+ fFM(a — f)e]
= 2pei; + (A + %)eb'.-,- + Qeds; (3.15)
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Since the soil grain is practically incompressible we may make the assumption

K,— o0, and thus a— 1. Then, substituting for M (from 3.2) in ( 3.14) we have

To complete the model we present the equatiuus of motion as (Biot, 1962)

Tiji +pXi = pli+ ppib; (3.17)
—pi+ps Xy = pyii+mi;+ %:—f-tb; (3.18)
where
wy = f(U, - u,-)

p=(=fes + fos

ps = density of soil grains

ps = density of pore water

f = porosity

ko = soil permeability in ms™1

m = added mass parameter
The “added mass” parameter m is due to the coupling of soil grains and fluid in
relative motion. In ( 3.17) and ( 3.18) we have included the body force per unit
mass X;. Differentiation with respect to time is denoted by dots. As demonstrated
in the author’s M. Eng. thesis, the terms in 4; and w; may be deleted from the
equations of motion for problems of water wave loading on sand beds. This is
due to the low frequency of the loading and the relative stiffness of sand beds (as

compared to clay beds, for example). Then using ( 3.11) and ( 3.12) we write the

- s
B
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governing equations ( 3.17) and ( 3.18) as

oiiitos = —pX; (3.19)
o+ fpr,' = fk(U. - ti.‘) (3.20)
where
p19f
k=== 3.21
. .21
For convenienre we record again the constitutive laws from ( 3.15) and ( 3.13) :
Q?
gi; = 2puei;j+(A+ 7)86{:’ + Qebi; (3.22)
o = Qe+ Re (3.23)
where
R= fK;
(3.24)
Q=(1-f)K;
and

4 = shear modulus of soil skeleton ;A = Lamé constant of soil skeleton

The relationships between o:-. o and effective stresses 1',~'J- and pore pressure p are

given by ( 3.10) and ( 3.12).

3.2 The Biot Model in Conventional Notation

It i« nstructive to write the basic equations of the Biot soil model in the notation
used in conventional soil mechanics. The Cartesian coordinate axes are such that

the £ and y axes are horizontal and z axis points vertically downward. Normal
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stresses in the z, y and 2 directions are denoted by ¢, o, and o. respectively,
and shear stresses are denoted by 7y, 7, and 7. The sign convention is exactly
opposite to that used in classical elasticity, i.e.
(1) for normal stresses, compression is positive
(2) a shear stress is considered positive if (a) it points in a positive coordinate direc-
tion when acting on a plane whose outward normal points in a negative coordinate
direction, or (b) it points in a negative coordinate direction when acting on a plane
whose outward normal points in a positive coordinate direction.

Effective stresses are denoted by o, ay, o, T,y, yz, and 7,,. In equation ( 3.7)

we identify subscripts 1, 2, 3 with the z, y, z coordinates axes respectively. Then,

allowing for the change in sign convention ( 3.7) becomes

1 : !
0’,=0‘,—p, O'y=0'y—p, 0'2=Oz'—p

(3.25)

[ ’ [
Tw = Ttlh Tyz = Tyn Tzz = TZI

We have already shown that the constitutive law ( 3.1) (a) or ( 3.22), when written

in terms of effective stress, is equivalent to Hooke’s law for the soil skeleton, equation

( 3.9). Writing

2Gv
GE=mi=15
this becomes
= —2Ge, — ( 2GVy)e
0' = —2Gey — ( 2Gyu)e
2G’u
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Toy = ~2pezy

U
Tyz = —2p€y;

where
3u e _-‘/ _@_
=8z V" 5y T Bz
1 {Ou Ov
e:y—i(—ag-}--a;)
1

1{0w Ou
e===5(5;+$)

u,v,w are displacements u,, uz, u3 of the soil skeleton in the z,y,z directions re-
spectively.

The parameter G is the shear modulus of the soil skeleton, and the Lamé con-
stant ) is expressed in terms of the more familiar Poisson’s ratio v. The constitutive

law for pore pressure is written from ( 3.23) and ( 3.24) as

K
p= —7’-[(1 — fle + fe (3.26)
where
_du 0 O
“= 9z oy 0z
L oW
) dy = 0z

(U, V,W) = (lh, Us, Us), the displacements of the pore water.
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The governing equations ( 3.17) and ( 3.18) become, neglecting the acceleration

terms and using ( 3.25) :

30; 67';_” ar;, _ 2}_)_

5 By * 5z —pX = " Oz
or,, OBo, 07, _ op

2y "oy Ty Y T oy 8.27)
ar., Or,, 0o, _ 9p

5: T 9: Toz P2 < "5

o
~ Yo+ oK = —-—-”;fof 2 (U ) (3.28)

where X = (X, Y, Z) is the body force per unit mass; U = (U,V,W) ;u= (u,v,w).
Equation ( 3.28) is recognised as Darcy’s Law. It reduces to a more familiar form
by considering no body force X ,zero displacement of the soil skeleton (¢ = Q) and
by defining the fluid velocity U* = fU.

It is possible to define a coefficient of consolidation analogous to that defined
in Terzaghi’s consolidation theory. It has been shown by the author (Raman-
Nair,1985) that the pore pressure p can be written as the sum of an harmonic

function r and a function ¢ which satisfies the “heat equation” form . Specifically,

p(z,2,t) = q(a:’ z,t) + T'(I, z,t) (3.29)
where
Vir =0 (3.30)
dq
2 — q——
Vg = 5 (3.31)
with

-1
e = ko (L+ 1-2v ) (3.32)
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Equation (3.31) is of the same form as Terzaghi’s consolidation equation and the
coefficient ¢, may thus be defined as a consolidation coefficient . To the author’s
knowledge , equations ( 3.29) to ( 3.31) have not previously appeared in the litera-
ture. The formula for ¢, has been presented without derivation by Cheng and Liu
(1986), and in different notation using a different analysis by Yamamoto (1978).
It will not be convenient to use the notation of this section in the following
development. We shall, however, return to this notation when we consider the

failure analysis.



Chapter 4

Wave Forces on a Sloping Bed

4.1 Problem Formulation and Boundary Condi-

tions

According to Sleath (1984) viscous effects are unimportant when considering the
wave loading of the seafloor in the absence of strong currents. We shall therefore as-
sume that the flow is essentially irrotational. Further, we may ignore shear stresses
at the mudline since these are due primarily to the fluid viscosity. For the free sur-
face, we employ the assumptions of linear wave theory i.e. that the wave amplitude
is small relative to the wavelength so that boundary conditions may be applied at
the still water level. It is worth noting that for the purpose of determining the
wave forces on the seabed, the error involved in using linear wave theory versus

higher order wave theories is negligible. For example, in evaluating the dynamic

25
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wave pressure on the seabed under a wave crest, we find that for a wave of length
300m.,height 24m. in 80m. of water, the linear theory estimate is only 1.3 per cent
higher than the estimate using Stokes’ second order theory.

We shall assume that there is negligible flow into the seabed i.e. the fluid
velocity normal to the bed is essentially zero. There have been some attempts in
the literature to account for flow into the seabed . For example,using Darcy’s law

Dean and Dalrymple (1984) write

—-%% = ---Il-f-g—e at seabed
where
K ko
P
& = wave velocity potential
ko = soil permeability
g = shear modulus of soil
p;s = density of water
y = vertical coordinate

However, the pore pressure p on the right hand side is not known until the soil
equations are solved . Dean and Dalrymple obtain an approximate picture of the
pore pressure by employing a simplified model,viz., the assumption that p obeys
Laplace’s equation in the soil and decays exponentially with soil depth. They

deduce that for a wave of amplitude no,wave number k and frequency w in water
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of depth A, the wave pressure P at the mudline is given by

P= Pf!{'lo _ pi(ke—ut)
iwky

cosh kh [1 — —— tanh kh]

9
We note that for 10 second waves in 80m. of water propagating over sandy beds the

imaginary term in the denominator is of the order 10™* to 10~° so that the above

equation may be approximated by

_ _P19M0_ _i(kz-wt)
P= cosh khe (4.1)

which is the same as would be obtained by assuming negligible flow into the seabed.
Further support for this assumption comes from the fact that good agreement with
experimentally measured wave-induced pore pressure was obtained by Yamamoto
et al. (1978) and Cheng et. al. (1986). They used ( 4.1) to provide boundary
conditions at the mudline for the poroelastic soil model .

It is reasonable to assume that the problem is two dimensional i.e. the slope
is planar and conditions are uniform in the direction normal to the direction of
propagation of the wave. The problem domain OABC and incident wave direction
are shown in Figure (4.1). The condition of irrotationality guarantees the existence
of a velocity potential ®(z,y,t), where z and y are spatial coordiuates as shown
(Figure (4.1)), and ¢ is time. The wave forces on the seabed will be computed from
the function ®. The flow above the seabed may be considered incompressible and

the continuity equation then requires that

Vi =0 (4.2)
where
5 52
2 — e — —
vi= 33 T Oy?
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The boundary conditions are

0d
s 0 onBC (4.3)
' 0%
Frl +g-5-!-l- =0 on OA (4.4)
where we have made the assumptions of classical linear wave theory (see Appendix
A); %3 is the normal derivative on BC.

Since the wave frequency w Juoes not change with water depth, the function ¢
may be written

&(z,y,t) = ¢(z,y)e™" (4.5)

where ¢(z,y) is a complex function and it is understood that the physical situation

is represented by the real part of equation ( 4.5). Thus, equation ( 4.2) with
boundary conditions ( 4.3) and ( 4.4) may be re-written:

V=0 in OABC (4.6)
o
=0 onBC (4.7)
94 _w's _
By - raln on OA (4.8)

The boundary OC (Fig. 4.1) experiences waves progressing from the right (incident
waves) as well as reflected waves from the slope coming from the left. The boundary
AB \however, experiences waves travelling in one direction only i.e. towards the
left. To obtain the boundary conditions on the interfaces OC and AB we foilow
the approach of Alliney (1981). In the problem considered by Alliney the boundary
AB (Fig. 4.1) is absent since he considered a coastal situation (i.e. ky = 0). Here
we need to determine the boundary condition on AB. First, we obtain the general

solution ¢, of equation ( 4.6) in an open-ended two-dimensional domain of constant
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depth h. The boundary conditions are :

9¢a _ =

I 0 aty=—hA (4.9)
O0¢a w'és _ _
ay - P =0 a,t,y._() (4.10)

Using the technique of separation of variables we assume that

¢a(z,v) = X (2)Y{y)

Substitution into ( 4.6) gives, for sinusoidal behaviour in X,

EX | au 2y .,
‘d'z_z'l'kX—Oa.ndE!Tz-—kY—-O

where k is a complex constant. The general solutions of these equations are
X = ae:’kz + be-—s’k:

Y = C cosh(ky +a)

where a,b, C and a are complex constants. From boundary condition ( 4.9) we find

that a = kA and hence the solution is of the form
¢a = cosh(ky + kh)[ce™* + de—*] (4.11)

Using ( 4.10) we have the dispersion relation
w?

— = ktanh(kh) (4.12)

This equation has two real roots k¢ and an infinity of purely imaginary roots

+iky, tiky, ..., where k; > 0,1 =0,1,2..- (see Appendix B). Since ( 4.6) is a
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linear equation we obtain its general solution from ( 4.11) as

¢a = cosh(koy + koh)[coe™* + dye~*07)
+cosh(=kyy — ko Yche ™% + o]

+° cosh(ikn(y + k)][cae ™" + dnetn?]

n=1

+ 32 coshikn(y + B)[cae™ + o]

n=1

This may be written more concisely as

#a = Acosh[ks(y+ k)][age™” + e~*%]

+ i cos[ka(y + h)][ane™** + €7 (4.13)

n=1
The constants A, ag, an, b, appearing in ( 4.13) must be interpreted for the external
regions E and E' which lie outside the problem domain, as illustrated in Figure
(4.1).

In the region E to the right of OC in Figure (4.1) we consider an incident
wave of amplitude 1o, wave number ko and frequency w propagating in the negative
¢ direction. It is easily shown (see Appendix A) that the velocity potential

corresponding to the incident wave is:

_ignocoshlka(y + ko)) _ixe
é1(z,y) = - w  cosh(koho) ° (414

By putting k = ko in ( 4.13) we see that the term A cosh[ko(y + ko)]e~**¢* represents

the incident wave, so that for the region E,

- —igno
"~ wcosh(koho)

The term aoA cosh[ko(y + ho)]e’** represents the right running reflected wave, and

ao can be interpreted as the reflection coefficient. In order that the velocity potential
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remain finite as z — 0o we must have b, = 0 for all n. Hence from ( 4.13) we have

the velocity potential ¢g in region E :

__igng cosh([ko(y + ho)]
w Cosh(koho)

+ i ar cos{ka(y + ho)je™** (4.15)

n=1

$e(z,y) = [ace’™>® + 7]

For the region E’ to the left of AB we put s = h; in equation ( 4.12) and denote
the roots by kg, £ik,,n = 1,2-.- where ky, &, > 0. Since there is no right running
wave in this region, the coefficient ag in ( 4.13) must be zero. Also, in order that
the velocity potential be finite as £ — ~o0o we must have a; = 0 for all n. Thus,

from ( 4.13), we have the velocity potential ¢z in region E' as

85/(z,y) = ap coshlko(y + ho)le ™% + 3 aehn® coslki(y + hy)]  (4.16)

n=1
We can now obtain expressions for ¢ and its normal derivative on the lateral bound-

aries OC and AB. For OC, we put = =0 in ( 4.15) and its derivative with respect

tozx :

N+1

boc = Joly)+ 2 a.fn(y), y€OC (4.17)

n=1
d N41
5, loc ~go(y)+ Y_ angn(y), y€0C (4.18)

n=1

where we have used NV terms of the infinite series and :

—igno cosh[ko(y + ho)]
foly) w - coslt:(kgho)o

fa(y) = cos{kn(y + kO)]s n=12---,N
go(y) = g":k" [fzg(:o’;:))] (4.19)
gn(y) = ~ky cos[k,.(y + ho)]v n=12---,N

fN+1(y) = fo(y), gn+1(y) = 9o0(¥), an41 = ao (4.20)
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For AB we have

¢ |AB = ¢E'(—d) y)
/ ’ ’ N ’ ! ’ ]
= a;e"""" cosh[ko(y + ho)] + E a,,e"‘""' cos[k,.(y + ho)]

n=1

o, _ b,
on 4P oz 47
! ' ’ N 11 q ’ 1
= ikgage'®od cosh[ky(y + ho)] + X ~a, ke~ cos[k,(y + ho)]

n=1l

Since the horizontal distance d is large, the terms in e=*¢ are effectively zero and

these equations reduce to

lap = ape™od coshlky(y + ho)]

6 ) i' ' ’
-é% lap = ikgage kod cosh[kq(y + k)]
Thus we have the relation
a ot
22 |as= ks Lan (4.21)

which is a well known radiation condition.

4.2 The Bou.idary Integral Equation

The problem defined by ( 4.6) with boundary conditions ( 4.7), ( 4.8), ( 4.17),
( 4.18) and ( 4.21), may be solved by the boundary element method with a view
to determining ¢, and hence the wave pressure, on the seabed BC. The following
derivation of the boundary integral equation is standard (Brebbia et al. 1984) but

is presented here for completeness. For an arbitrary function ¢*(x,y) we may write,
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from ( 4.6):
f & viedn =0
where () denotes the region OABC.
Assuming that ¢, ¢* are continuous and have centinuous first and second partial
derivatives in 2 we use Green’s second identity (Sokolnikoff et al., 1966) to get

0¢*

5. =0 (4.22)

2 = t6¢
fevierda+ [(#5t-¢

where T' denotes the boundary OABC. We choose ¢* to be the solution of the

equation
Vit + Alzyz,) =0 (4.23)

where A denotes the Dirac delta function, g, is the position vector of the point P
at which the delta function is non-zero, and gz is the position vector of an arbitrary

point. The solution of equation ( 4.23) for the case of two dimensions is

¢ = —~21;lnr (4.24)

where r = |z — g,| (see Appendix D). Using ( 4.23) we have

[ ¢V ¢d0 =~ [ ¢4 2,)d0 = —d(z,) (4.25)

by the sifting property of the delta function. Substituting ( 4.25) into ( 4.22) gives
0% 9¢"\
~He) + [ (# 52— 450) @ =0 (4.26)

We now take the point P (position vector z,) to the boundary I'. Since ¢* 1s singular
at P, integration along the section of I' containing P requires special consideration.

For generality, we consider P at a corner point on the boundary and draw a circular



Fig.(4.2)
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arc S, of radius ¢, centre P as shown in Figure (4.2). We now write equation ( 4.26)

for a boundary point z, :

—¢(§-P) + Eg‘g - S(¢ 0,‘ _)dr

+ lim f (¢'an a¢-)dr =0 (4.27)

Now,

. .0é o 1 d¢

liy [, #7300 = lim || ~5-largtar
18 .

_-2-1;% lg‘hm[lncf dr)
10

= —.2—11—'3_n |5 hm[(1r+ a)elne) =0 (4.28)

a L) .
where we have assumed that —2 is approximately constant on the small arc S,.

on
Also,

lim ¢a dr' = lim/ b (——-lnr)dF

=0 an c—0

= —-&’-’llim ldI‘

2r =0 s.

c—oO

- _%E_r—_vl(w +a) (4.29)

where «a is the angle illustrated in Figure (4.2). Substituting ( 4.28) and ( 4.29)
into ( 4.27) we have for a boundary point P :

¢(§p)(% o)t / (¢a¢' ¢' an =0 (4.30)

where it is understood that the domain of integration does not include the point

Ep.
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4.3 Boundary Element Procedure

The boundary I’ is discretised into M straight line segments or “elements” and
a node is located at the mid-point of each element. We shall assume that ¢ and
-g—f:- are constant and take their nodal values on each element. The use of these
“constant” elements gives very good accuracy, when the boundary does not exhibit
a significant degree of curvature. The “constant” element is the simplest type of
discontinous element and avoids the ambiguities present in the value of %f—: at corner
points.

The boundary element technique involves writing the boundary integral equa-
tion ( 4.30) for each of the M nodes, i.e. putting z, equal to each node in turn.
This produces M equations in 2M variables, these being the nodal values of ¢ and
g—i. In a well posed problem we know either ¢, g% or a relationship between them
at each node, which thus reduces the number of unknowns to M.

We let ¢. and ¢, denote the values of ¢ and g-% respectively at node e, which
lies at the mid-point of element e as noted above. In equation ( 4.30) we let the
point g, lie at the j th node, so that ¢(z,) = ¢; and r = |z — z;|, where g; is the
position vector of the j th node and z is the position vector of an arbitrary point
on the boundary.

Since g, is not a corner point, a = 0 and the discretisation of ( 4.30) leads to

§+ 2 [ 6 3E - ) =0 (431)

where T, denotes element e and we recall that ¢* is given by ( 4.24). Since ¢, and

¢. are constant on I'. we can take them outside the integral sign and ( 4.31) takes
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the form :
M
Y (Acpe — Be,) =0 (4.32)
e=]
where
4 a - .
T. Bi ¢ e#J
A, =
o¢° 1 .
S, on ity e
(4.33)
Be = Fe¢ dre

The evaluation of the integrals A, and B, is described in Appendix C.

We choose M, M2, M3, M, elements on OA, AB, BC and CO respectively (Fig-
ure (4.1)), the elements (and nodes) being numbered in an anti-clockwise direction
starting from O, i.e. O is the first point of element 1 and the second point of ele-
ment M, where M = M; + M3+ M3 + M,. From boundary conditions ( 4.7), ( 4.8)
and ( 4.21) we find that

2
on OA ¢;=“’?¢, e=1,2---, M (4.34)
on AB ¢,=ik'ode e=M +1,--+, My + M, (4.35)
on BC ¢.=0 e=M+M+1,--- M +M+M, (4.36)

On CO we deduce the relationship between ¢ and -Z—i as follows. We must first
choose My = N + 1 which is the number of coefficients a, appearing in equations
( 4.17) and ( 4.18). The y coordinates of the M, nodes on CO will be dencted by

Y1, Y2, * * Yus, corresponding to nodes My + M +Ma+1,- .-, M. We write equations
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( 4.17) and ( 4.18) at each of these nodes :

M,
d(yx) — folur) = Y anfalyr)

n=1

S+ o) = 3 angalve)

n=1

k= 1,2,-.-, M,
These may be written in matrix form :

{8}co - {f} = [F){a} (4.37)
{¢'}co + {9} = [Gl{a} (4.38)

where

{#lco ={d(ye)}, k=1,2,--+, M,
={¢.}, e=M+M+M+1, - M

{80 ={8w)}, k=1,2,---,M,
={¢}, e=M+M+Ms+1,---, M

{f} ={folye)} k=1,2,---, M,

{9} ={go(yr)} k=1,2,---, M,

{6} ={a} n=12--,M,

qu = f07 dM, = g0, OGM, = Gp

Also, F, = fa(¥k), Gin = gn(ys) are the k — n elements of the My x M, matrices
(F) and {G] respectively.
From ( 4.37)
{a} = [FI" ({¢}co - {f})
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Substituting in ( 4.38) gives

{#}co = [H]({¢}co - {f}) - {9} (4.39)
where
[H] = [G][F]™

We now note that equation ( 4.32) may be written in vector form as

{Ae}g‘. {¢e}[‘ - {Be}g {¢;}[‘ =0 (4.40)

where {A.}r, {Be}r, {®e}r, {¢;}[‘ denote the M-dimensional vectors of the quanti-
ties Ae, B., ®., ¢. on the closed curve I'; the superscript “I” denotes the transpose
of a vector. In order to apply the boundary conditions we write equation ( 4.40)

explicitly in terms of quantities defined on each section of the boundary T, i.e.

{AYou{deloa — {Be}bald.}oa
+{AYip{¢}as — {B.Yin{d.}as
+{Ac}pe{de}se — {Be}bc{d.}sc
+{Ac}o{e}oo — {Beleo{de}co =10 (4.41)

From ( 4.34) - ( 4.36) we have
2
{$.Joa = ?g—{@}m

{634 = iko{de}an (4.42)
{¢.}c = 0

Substituting equations ( 4.42) together with ( 4.39) into equation ( 4.41) gives

2
{Ae - %Be}gA{¢e}OA + {Ae - ik(’)Be}ia{qse}AB
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+{A}ac{de} e + ({Ae}o — {Be}YeolH{delco

= —{B:}go ([HI{f} + {g})
This equation may be written :
( {¢¢}OA \
W oo ., r r r {¢e}am
[{Ae - —Bc}OA {Ae - zkoBc}AB {Ac}Bc {Ae}co - {Bc}CO[H]]
g {¢e}BC
k {¢e}CO )
= —{B.}Zo ({HI{f} + {4}
(4.43)
Equation ( 4.43) is the j th row of the complete matrix equation
[CH{¢} = {b} (4.44)
The (j, k) -th element of matrix [C] is
( 2
Ar— B, k=1,---,M
g
Ax — iko By k=M+1,--- M) + M,
Cit =1 A k=M +M+1,- M+ M + My

M,
Ax — T2 By Mo+ My 4r He oMy =My~

k=M +Ma+My+1,--- .M
(4.45)

The j th element of vector {b} is
Ma
bj = =3 BMy+My+Mair by

r=1
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Table 4.1: Comparison of BEM with Analytic Formula for ¢ on a Flat Seabed

z coord. of point | $(BEM) x 10°m?s~! | ¢(Analytic) x 10°m?*s~1
on Flat Seabed | Real Imag Real Imag
-63.5 | 0.94559 -0.23239 0.94492 -0.23209
-50.65 | 0.84967 -0.47520 0.84919 -0.47499
-20.95 | 0.41352 -0.88093 0.41336 -0.88084
-5.55 | 0.11285 -0.96644 0.11285 -0.96644

where h, is the r th component of the vector [H}{f} + {9} i.e.

M,
h, = Z Hyi fo(yi) + 90(yr)
i=1
The solution vector is

{¢} ={¢e}7 e=112""1M

The wave pressure P is determined from Bernoulli’s equation as
P = —p,—aai: = iwpype (4.46)

The accuracy of the computer program was checked by running it for the case
of a flat seabed under a wave of length 300m. and height 24m. in 80m. of water.
The boundary values of ¢ were compared with those computed from the analytic

formula ( 4.14). Excellent agreement was obtained as illustrated in Table (4.1) .



Chapter 5

Boundary Integral Formulation
for Two Dimensional
Poroelasticity - Sinusoidal

Loading Conditions

As noted previously, the boundary element method has been applied to Biot’s
equations by a number of authors. The boundary element formulation for Laplace
transformed space was accomplished by Cheng and Liggett(1984). Although the
use of Laplace transforms is convenient for treating the time derivatives, such a
formulation is not practical for the present problem owing to the difficulty of nu-

merically inverting the transforms for problems involving sinusoidal loading. Cheng

43



44

and Liu (1986) have presented the boundary integral equations and fundamental
solutions for sinusoidal loading conditions but without derivation. We present here
these derivations and in addition, the functions required for determining interior

effective stresses and pore pressure.

5.1 The Boundary Integral Equations
The governing equations ( 3.19) and ( 3.20) are recorded again for convenience :

oiji+oi = —pX; (5.1)
oi+forXi = fh(U; — i) (5.2)

The problem is to solve ( 5.1) and ( 5.2) in a domain §? bounded by a closed curve
T, in two dimensions. Either the displacements u;, U; or the tractions 7; is known

on I'. The tractions ave given by (Sokc'nikoff, 1956)
T = mijn; (3.3)
and using ( 3.11) this becomes
T; = oijn; + on; (5.4)

where n; is the ¢ th -component of the unit outward normal on I'. A reciprocal
theorem may be deduced as follows. We note that the constitutive laws ( 3.22) and

( 3.23) are of the form

oi; = Ac.'j+(Bc+QE)6.'j
o = Qe+ Re
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If we consider two independent states of stress, denoted by primed and unprimed

symbols, we have

a.-,-e:-,- +oc = Ae.-,-e:-,- + (Be + Qe)e; + (Qe+ Re)e'
= Ae.-,-e:-,- + Bee' + (Qee’ + Qee') + Ree’

sinceey; =€
Since the right hand side is symmetric with respect to primed and un-primed sym-

bols, the left hand side must also be symmetrici.e.
a'.-,-e:-,- +oc = a',fje.-,- +o'e (5.5)

which is the reciprocal theorem for poroelasticity (Cleary,1977). We shall seek
the steady state solution of the governing equations under sinusoidal loading of
frequency w, i.e. we shall assume that a quantity A, be it stress or displacement,
takes the form A = Ae~** where ¢ is time. Equations ( 5.1),( 5.2),( 5.4) and ( 5.5)
then take the form

Gijj+0; = —pX; inQ (5.6)

i+ foyXi = —iwfk(U;i—%) inQ {5.7)
T; = &yn;+06n; onT (5.8)

Gijé,; +0E = G+ E (5.9)

Assuming continuity of the first partial derivatives, we apply the divergence

theorem to the product &;;d :

/0(5-'517:-).5 dQ = /r &ijt;n; dT
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ie.
/‘l(&.-,-ﬁ:-d + Gij5,5 t-l:) dQ) = -/I‘&ijﬁ:nj dr (5.10)
Since ¢ and j are dummy indices we can write

- ! 1 P | - !
Oiju;; = E(Ul'jui.j‘i'ajiuj,i)

1_ .. _t
= $Gij(#; 5 + ;) = 5;&;;

2

since G;; = Gj;

Hence ( 5.10) becomes
L(&;,—E:-j + &,'j,jﬁ;) dQ = -/I‘&‘jﬁ;nj dr’ ©(5.11)
Similarly, we may apply the divergence theorem to &;J-ﬁ.- to get :
/ﬂ (31;8ij + 335 51:) dQ = /r &;;a;n; dT (5.12)
Applying the divergence theorem to the product 3U; gives
/n (50)),:d0 = /r &0in; T
ie.
-t ot _ f_ - .
/0 (38 +5,0;)d2 = [ 50in;dr (5.13)
Similarly, by applying the divergence theorem to & U; we have
/n (0’2 +50;)d2 = fr & Din; dT° (5.14)
We now add equations ( 5.11) and ( 5.13) to get
/ﬂ (5ijéy; + 58 + 3y 58, + 6,:0;) dO
= /r [T:5; + 3(0; ~ @;)n;] dT (5.15)
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Adding ( 5.12) and ( 5.14) gives
/n (5,385 + 06+ 3, ;i + 5,0:) d
= _/r [T;5 + & (U; — 4;)n;] dT (5.16)
We subtract ( 5.16) from ( 5.15) and use the reciprocal relation ( 5.5) to get
/n [(3:358; — &33,) + (2,0; - 3,0:) | dQ
= [ (%3 - Tjai + o(0; - a)n;
~& (U; - @;)n; ] dT (5.17)
We now let the primed stresses and displacements correspond to certain special
loading conditions prescribed via the body force per unit mass X;. Referring to
Figure (3.1) we note that the masses of the solid and fluid portions of the area § A

are respectively (1 — f)p,6A4 and fps6A, where p, is the density of the soil grains
and p; is the density of the pore water. The bulk density p of the soil is given by :

p=p1+p2 (5.18)

where py = (1 = f)p, and p32 = fpy.
The body force on the mass p§A shown in Figure (3.1) is
pXi6A= ;X + ;1 X;)5A

Here we interpret the terms p; X; and p2.X; as the body forces (per unit volume)
acting on the solid and fluid portions of soil respectively. We let the primed stresses
and displacements correspond to the loading
pXt = 2764A(z,p)e™ (5.19)
ng!‘ =0 (520)

ik = 1,2
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Here A(z, p) denotes the Dirac delta function, points g, p being on the solid skele-
ton. The superscript k on the left hand side indicates the direction of the point load
and equations ( 5.19), ( 5.20) thus describe two loading situations. This represenis
sinusoidal point loading on the solid skeleton and is analogous to the loading com-
monly used for deriving the fundamental solutions for elasticity problems (Brebbia
et al.,1984). A similar approach was taken by Cheng and Liggett (1984) for Laplace

transformed space. Since X; = X;e~™, we have from ( 5.19) and ( 5.20) :

pnXE = 2r64A(z, p) (5.21)
p Xt =0 (5.22)
i,k = 1,2

The stresses and displacements due to the loading ( 5.21) and ( 5.22) will be denoted
by asterisks and referred to as fundamental quantities. Substituting ( 5.21) and

( 5.22) into the governing equations ( 5.6) and ( 5.7), and noting ( 5.18) we have

i = —iwfk(O* - a7%) — 2764 A(z, p) (5.23)

&F = —iwfk(0* - ) (5.24)
Also, for an arbitrary body force X; = X;e~"** we have from ( 5.6) and ( 5.7)

giji = —nXi+iwfk(U; —&) (5.25)
Gg; = —p2X; — iwfk(U,' - %) (5.26)

We replace the primes in equation ( 5.17) by asterisks and use equations ( 5.23) to
( 5.26) to get

/n {[~ 1% + iwfR(T; — @;)]at* — [iwfh(T* — a2%) — 226 A(z, p) i



49

H[—paXi — iw fR(O; = 8)10* + iw k(U — a7*)0;} 4
= /P ((Ba* - Tr*a) + 5(07* — a*)ng — 50 — a)ng } T (5.27)
By the sifting property of the delta function,
[n 2m 6 A(z, p)i dQ = 2m6iiii(p) (5.28)

where the integration has been performed with respect to z, and p is the position
vector of the point of application of the point load. Both sides of equation ( 5.27)

are thus functions of p € Q1 and this equation takes the form
2r6uiti(p) = /r (Tiad* — Trka) + 6(07* - a%)n,

—&.k(ff.‘ - ﬁ.-)n; dr

+ /n Xi(prat* + paU7F) dO2 (5.29)
In order to write ( 5.29) for a boundary point p it is necessary to evaluate the
Cauchy principal value of integrals involving the fundamental quantities (denoted
by asterisks), since the quantities are singular at p. This operation results in modi-
fications to the term in #:(p) and the general form of this term is 27w #i(p), which

resembles ( 5.28) in form.

Thus for any point p € T, ( 5.29) becomes
2rali(p) = PV /r [(Tar* — Trkag) + a(0% — at%)n;
—&*F(U; — 1;)n; 1dT
+PV jn Xi(pras® + poUs*) dO (5.30)
The symbol PV denotes the Cauchy principal value of an integral. The coef".cient

a;, must be evaluated either from the Cauchy principal value of the integrals or by
using a “rigid body motion” analogy (Brebbia et al.,1984).
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Equation ( 5.30) is the integral equation for the soil displacements. To derive
a similar equation for pore pressure we consider the fundamental solutions corre-

sponding to the loading

pXi = 0
(p2Xi)i = —2rfkA(z,pe™
i.e.
pXi = 0 (5.31)
(p2Xi)y = —2nfkA(z,p) (5.32)

Since p = p1 + pa, equation ( 5.31) implies that p;X; = —p; X;, i.e. the body
forces on the solid and fluid portions of scil cancel each other. Equation ( 5.32)
describes the loading on the fluid portion of soil. We assume that there exists a
scalar function x such that

paXi = x4 (5.33)

and hence from ( 5.32) we have
Vix = -2n fkA(z, ) (5.34)

We shall denote the stresses and displacements corresponding to the loading ( 5.31),
( 5.32) by superscript 0. These are also called fundamental quantities. From the
governing equations ( 5.6) and ( 5.7) and the loading described by ( 5.31) and
( 5.32) we have

5% . = iwfk(0? — a9) + x; (5.35)

id

6% = —iwfk(UP - a9) — x4 (5.36)
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Using equations ( 5.25), ( 5.26), ( 5.35) and ( 5.36) we have from ( 5.17)
[ {=onKi  iwfK(O: - 8)ja8 — [iwfk(TF - &) + x5
+[—pXi — wfk(U; — )]0 + liwfR(Uf — @3) + x4U: } 42
= [{(T:a? — TPa) + 5(07 - @D,
-5%U; — @;)n; } dT (5.37)

By collecting terms we find that the left side (L.H.S.) v. ( 5.37) reduces to

L.H.S. of (5.37) = fn { Xi[-ptd - p2(U? — @) + xi(0i — 0:)}dQ  (5.38)

From ( 5.36) :
770 _ 59 — i 5° .
Us' ug fk (a.t + X.l)
From ( 5.7) :
0 — s = —— (3 + for X
Ui -t = wfk(a" + fPfX-)
Substituting these expressions into ( 5.38) gives
= [ | —x(o0 + P50 4 X
L.HS. of ( 5.37) = /0 [ Xipud + ZFa2) + 2 ] 4o (5.39)

By applying the divergence theorem to the product #; it is easy to establish the
identity
/(; 7 dQ = — /n ¥n0iid2 + /r Ynindl’ (5.40)

By putting n; = x,; and ¥ = & we have
5:.d0 = — [ av? 5y s
LX.-U,. i = /(;aV x dQ +‘/[:ax,.n.dt‘
= onfk /n 54(z, p)d + /r & i dT
= orfka(p) + /r &y nidl’ (5.41)
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using ( 5.34) and the sifting property of the delta function.
We now substitute ( 5.41) into ( 5.39) :

L.H.S. of ( 5.37) = / —X(pﬁ°+ L5%)dn

+'2£-(2)+ of% ke ax,.-n.-dl" (5.42)

Equation ( 5.37) thus becomes

-—a(p) fr (T;85 - T)w;) + &(179 —@)n;

=3°(0; - i;)n; — —=&xn;}dT

fk
+ [ Xi(pal + £ ”’ %) dQ (5.43)

J = 1,2

If equation ( 5.43) is written for a boundary point p the singular integrals involving
fundamental quantities must be interpreted as Cauchy principal values and extra

terms in 5(p) appear. Thus for a boundary point p:

210

__d(e)

PV [ (T~ T9a,-) +5(09 - adn;

=5%U; — @j)nj — -—dx,jn; ] dT

fk
+PV / Xi(pud + Ll iy L5%) df (6.44)

J = 1,2

The coefficient § must be determined from the evaluation of the Cauchy principal
value of the singular integrals or from a “rigid body motion” analogy. For the
purpose of determining wave-induced stresses and pore pressures we assume that

there are no body forces present. Thus from ( 5.30) and ( 5.44) we write the
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boundary integral equations as for p€ I as

2rapii(p) = PV /l_‘[(f'.‘l'l:‘t - T,-'kﬁ.') + 5‘([7,-"‘ - ﬁ,?“)n.-

—5"*(0; — @)mi] dT (5.45)
Z’Z’)iﬂ-(g) = PV /P[(T,-a? - T0a;) + &(0P — @9)n;
—&(T; — @i)m; — wakax,.-n.- ]dT (5.46)

where subscripts i,k = 1, 2, and as previously noted, a repeated subscript indicates

summadtion.

5.2 The Fundamental Solutions

As indicated earlier, the fundamental solutions are the stresses and displacements
corresponding to the loadings described by equations ( 5.21), ( 5.22) and ( 5.31),
( 5.32) . In order to determine these solutions the governing equations ( 5.6) and
( 5.7) must be written in terms of displacements via the constitutive relations ( 3.22)

and ( 3.23). This renders ( 5.6) and ( 5.7) as
2 — —
B+ (A+p+ %— + Q)5+ (Q+ R)Ujsi = —pX; (5.47)
Qi+ RU;ji + fps Xi = —iwfk(Ui—u;) (548)
where, we recall, Q and R are given by ( 3.24). The first set of fundamental

solutions, denoted by asterisks, is obtained by substituting ( 5.21) and ( 5.22) into
( 5.47) and ( 5.48) to give

2 —
uaG+ (At p+ %— +Q)Eh+ (Q+ AT = -2m6ul(z,p)  (5.49)
Quk: + RUK +iwfk(07* - ai*) = 0 (5.50)
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Following Biot (1956) we define

o7k = (_1-1_:_3-_3) gk + (Q}{f—) U (5.51)
where
H=A+2p+(—Q—-;;ﬂz- (5.52)
and
& =0t - az* (5.53)

from which we have

it = 5t (Q%-}-l- ot (5.54)
Uk = a;"+(1-9—};£) wr* (5.55)

In terms of 57* and w* equations ( 5.49) and ( 5.50) become

=9 =" + R - 0, - >
"va.,’;J + (H ") ]SI (ij{_—l(wi,’;j - ij'.' = —2#6.'}_-A(£, 2) (5.5b)

(Q +R)--k R() 4 2u) ok

T Wi iwfka* = 0 (5.57)

But we note from ( 5.24) that

so that

Substituting this into ( 5.56) and ( 5.57) gives

ut’:,‘j,-l—(H BT = —2réA(z,p) (5.58)

JuJi
R('\ + 2“) ~ak

g + ikt

(@ + R)B}; + 0 (5.59)
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Equation ( 5.58) may be compared to the elasticity equation
puii + (A + p)uf; = —216:A(z,p) (5.60)

Employing the Papkovitch-Neuber technique we write

= ok + 28) — 41— ) (5.61)

where
p= (5.62)
=30+ -62)

The quantities f,1¥ are functions of the spatial coordinates z; . We may take
any one of these functions to be zero without loss of completeness (Eubanks and

Sternberg,1956). Accordingly, we set ¥ = 0 . We define the coordinate system by
L=Ti—Di

where z;, p; are the coordinates of the points z and p respectively . Using ( 5.61)

and writing

)
p=t2 (5.63)

we find that ( 5.60) becomes
d 2,k 2,k
Bal(zi =pi) V7] = 2(1 = ) BV = —2m6ix A (2, )
]
We now integrate over a circular region §2,centre p and radius € :
ﬂ/ i[(:1:- - p;)ViyF)da - 2(1 - 21/),6/ V3FdQ = =276, (5.64)
Q dz; 7 ’ n ! ' )

since

LA@QM:I
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We may define local polar coordinates with p as origin by letting

xy—p; =rcosd
Ty —p; =rsind

Then,assuming ¥¥ is independent of § , we find that the second integral on the left
hand side of ( 5.64) is easily evaluated as

[ vietda = [ k) de

/r "b?.j"j dr

Ot
e 9n &

—/o (ar)rzccda

= 2me (9'35) _ (5.65)

or

where I' is the circular boundary of {} .
The first integral on the left hand side of ( 5.64) is evaluated by noting that for any

continuously differentiable function ¢

3¢ . _ ‘
n O0z; dt = ./rdm'dr
Thus
._..a 2.k 2,k
/n el (@i — RV 1 = fr (z; — pj) Vi dT (5.66)

Changing to polar coordinates and recalling that ¥ is independent of  ,( 5.66)

becomes

[ e -Vl d0
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= /r [r cos 6V*¢% + rsin 0V k]

sin@
o 2,k : 2,k
‘L [e cos(VP])r=c + €5in 0(V?1)7),=.] cos f.€db

2
/ [€ cos (V34h¥), = + esin O(V*pf),_.] sin 0. dO
0

\vZ k e
= el (V31) = me} (V*F),=. (5.67)

(V243)r=e

Then using ( 5.65) and ( 5.67),equation ( 5.64) simplifies to
22,k oyt
Bre (Vi )rme — 4(1 — 21/)3776(—67)1»:: = —2xb; (5.68)

We choose 9¥ such that

V3 = 0 at least when z # pie. r # 0 (5.69)
Then ( 5.68) becomes
AR
2(1 — 2V)ﬂ (—a'T) . = z&.‘k (570)

This equation is satisfied by

Inré;

1
o 2(1 —2v)p3

1
= I"—(l—_'u—) lnrb',-,, (5.71)

which also satifies condition ( 5.69) . We thus have from ( 5.61) a solution of ( 5.60)

as

1 1
ko (2 ) — = .
= T =) (25 Inré;i) p In ré;

= m—s—_—-_——yj[rl;r,k+(—3 + 4v) In 78] (5.72)
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where we have used r? = z;z;, 2;;=6;; and z; =rr; .

By comparing ( 5.60) with ( 5.58) we have the analogy :

Hence

A — H-2
) = A . H-2u
2(A + ) 2(H — p)

We thus construct from ( 5.72) the function 57* as

_ H-y H+y
sk _(ZZ__Elpyp,— .
oit = ( Y )r..r,k ( oull ) In rég (5.73)

To determine w;* (defined by 5.53) we again note from ( 5.24) that @* is the

gradient of a scalar function. Writing
w* = ¢ (5.74)

we have from ( 5.59)

@+ Ryp3h) + L2 () il (4 =0

H a.’c.' '

Integrating with respect to z; and setting the integration constant equal to zero

(since we are only interested in a particular solution) gives

R(X + 24)

V3¢* +iwfkegt =0 (5.75)
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To evaluate 7}% we make use of the following results :

o — .
r'.- - .—rpl
rir; = 1
o 6"5 rir J
T = T
Tk
(ryre)s = -

which are easily deduced from the definition
r? = (zi - pi)(zi — pi)
Then differentiating #3* (from ( 5.73)) with respect to z; we get

—ek _

1
bii = —E(ln r) .k

Substituting in ( 5.75) gives

We let
¢" = ¢f + 45 (5.77)
where

é = (%ftk%) (Inr).

-i(Q+ R)rs

wikH T (5.78)

Since (see Appendix D)
Vi(lar) = 2rA(z, p)
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we have

Vigk = (z?a;cg) (Vinr),

_ 27(Q+R) 0
T iwfkH aa:k[A(I’B)]

where the right hand side must be interpreted as the derivative of a generalized

(5.79)

function. Substituting ( 5.77) into ( 5.76) and then using ( 5.78) and ( 5.79) gives
wfkH

2 4k x_ _2rn(Q+R) 0
We define the constant a by ‘
1 _ _WwfkH
a‘ = B0+ 20) (5.81)
This will be expressed in a more convenient form later. Equation ( 5.80) becomes
2mi(Q+ R) 0
24k _ 24k .
V ¢2 a ¢2 (-l)ka a.‘l:k[A(L:,B)] (5 82)
Integration with respect to zx gives
Vii* - a?n* = 27A(z,p) (5.83)
where
7t = ;(-%% / ¢%dz). (no sum on k) (5.84)
A solution to ( 5.83) is (Bleistein, 1984)
n* = —~Ko(ar) (5.85)

where K, is the modified Bessel function of the second kind of order zero, and
r = |z —p|. From ( 5.83) and ( 5.84) it is clear that

_ -i(Q+R) D
¢,‘.: = wka azk[Ko(ar)]

——t(u?f-;c-lf) arK;(ar) (5.86)




where K, is the modified Bessel function of the second kind of oruer 1.

substituting ( 5.77) and ( 5.85) into ( 5.76) we have

#= LD i ar) - 2

The function @}* may now be obtained from ( 5.74) as

. z R
ID.-" = (?g;kﬂ)a {[a2r2 — Kj(ar)jrirs
+6; [Kl(ar) a,l,_gl}

where we have used the results
2
Kj(ar) = Ko(ar) + ;Kl(ar)

a_i_..[[{l (ar)] = —%GT‘.;[KQ(GT) + Kg(df‘)]

Using ( 5.73) and ( 5.88) we recover @* and U7* from ( 5.54) and ( 5.55) :

_ H—y H+p
ok _ ey .
] ( Sl )r,,rk ( 2all )lnrb'.k

z(?o;- kfi)z {[azr’ — Ka(ar)lrirs
soa B _ Ly

- H-yu H+yp
o _ (2 ,
ur = ( ol ) Ttk — ( Sl )lnr&.k

i(H~Q —R)Q +R 2
+1( wa k;}g = {[azr’ ~ Kalar)lrira
Kl(ar) _ 1

ar air2

+6ir| 1}
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Now

(5.87)

(5.88)

(5.89)

(5.90)

The tractions T* and 5°* are now obtained from ( 5.8) and the constitutive

laws ( 3.22) and ( 3.23) i.e.

T = augiing + O+ & + Qe +(Q+ Ben,
a,-k —_ QEOk_*_Re-‘k

(5.91)
(5.92)



62

Where
1
é-'-Jk ( —k | l—-k

—uk

ek = g

o
i

gt = U

Thus substituting ( 5.89) and ( 5.90) into ( 5.91) and ( 5.92) we obtain after some

manipulations

_ H ik 6 1 7
(L I

on
_2u(Q + R)’a® 3 (sl
wfkH? c';'n a3r3

i} 8
+-—7:r,,-r,k[K3(ar) — =3

an
2 3Kq(ar
+"-’¢""[aa e + :S_ ) — Kj(ar)]

KZ(ar)]

+r,,-ng[a32 = - K"f:’)]} (5.93)

—s Q+R 1
™ = a ( £2) rala(ar) - — (5.94)
In these derivations the following relations were used
Kn+1(2) = Kaa(2) + —K (2)

K (2) = =3 (Kana(2) + Kasa(2)]

The second set of fundamental solutions, denoted by superscript 0, is obtained by

substituting ( 5.31) and ( 5.33) into ( 5.47) and ( 5.48). This gives

2
pV2a + (N + p + 9—- + Q)i +(@+ R =0 (5.95)
Qal; + RU,‘{,, +xi+iwfe(0? -a))=0 (5.96)
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where x is found from ( 5.34). The solution of ( 5.34) is (see Appendix D)

x =—fklnr (5.97)
We define
o) = @i+ (Q; R) (0P - ) (5.98)
o) = U2 - (5.99)
from which we have
a) = B~ (Q;R o? (5.100)
U} = &2+ (1 - Q;R) a? (5.101)

From ( 5.36) we note that

which implies that
VZa) = w); (5.102)

Using ( 5.100), ( 5.101) and ( 5.102) we express ( 5.95) and ( 5.96) in terms of

22, ol
pV0 + (H — p)pd;; =0 (5.103)
(Q+ R)%j; + EQIJ;—Z-‘i)-V’w? + iwfkw? — f ’:"" =0 (5.104)

We note that &Y = 0 is a solution of ( 5.103), and ( 5.104) then becomes

2.,
V2 — ol + f';ﬁ =0 (5.105)

w° = T + 05 (5.106)
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By using the results

6.- r"n" 1
rij = _:'-_r—" 1 Tdi =70 rti=1
rl. rl-
(rrs).i ‘r" v Tiijj ;5'
it is easily shown that
v2 (%) =0
T
Hence from ( 5.106) we have
Via! = Vi (5.107)

We substitute ( 5.106) and ( 5.107) into ( 5.105) to find
Vigi—a’n; =0 (5.108)

From ( 5.106) we see that it would be convenient to seek a solution of ( 5.108) of

the form
m =rif(r)
Substituting this into ( 5.108) gives
d‘!
d)':"' —(a*r*+1)f =0

Putting z = ar and g(z) = f(-g-) this equation becomes

2ggz+mﬂ-—(w +1)g =0 (5.109)
We recognise ( 5.109) as the modified Bessel equation of order 1 and hence we can

write a solution as

9(z) = K1 (=)



65

Thus f(r) = Ki(ar) and we write a solution of ( 5.108) as
ni = r;Ki(ar)

In Appendix E we verify by direct substitution that this is a solution of ( 5.108).
It is clear that

%= %.?K;(ar) (5.110)
also satisfies ( 5.108) so that from ( 5.106) we have

-0 ar’,

W, = [Ki(ar) — —] (5.111)

The fundamental solutions #¢ and U? can now be written from ( 5.100) and ( 5.101):

a = (?:HR) ar{Ki(ar) — —] (5.112)
0° = (Q—H-’Z - 1) 2hi 1 Ky (ar) — —-] (5.113)

since ¥{ = 0.

Equation ( 5.8) and the constitutive laws ( 3.22), ( 3.23) imply

- 2
TP = 2u&dn; + (M + =+ Q)é%n; + (Q + R)&%n; (5.114)
8° = Q&®+ R (5.115)
where
& = g+l
& = U
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Using ( 5.112) and ( 5.113) in ( 5.114) and ( 5.115) gives, after the necessary algebra,

- 2ua® (Q+ R or, 2
= T () gl — alan)
1 1 1
+n.~[§Kg(ar) + EKo(ar) - ;1-;1‘_2]} (5.1186)
5° = —fkKy(ar) (5.117)

It is desirable to express the fundamental solutions in terms of familiar material

constants. We first recall that

_piaf
k= e

where kq is the soil permeability is ms™!, f is the soil porosity, py is the density of

(5.118)

the pore water and g is the gravitational acceleration. Also, from ( 3.24) we write

the constant H, defined in ( 5.52), as

H=/\+2p+-{(}!- (5.119)

where A and u are the Lamé constant and shear modulus respectively of the soil
skeleton, and K is the bulk modulus of the pore water. The parameter A may be

written in terms of the mo.. “miliar Poisson’s ratio v:

2uv
= 12
2= (5.120)
and equation ( 5.119) may be re-written:
-y K
H= - + 7 (5.121)

Using ( 3.24), ( 5.118), ( 5.120) and ( 5.121) we express the parameter a?, defined
in ( 5.81), as

a,=—zwp;g[ 1-2v + f

L 122
ke 2p(l—v) @ Ky (5.122)



We can now summarize all the fundamental solutions as follows :

ak =

s

Tk

H-p\ H+u _
(2”1{ )r,.r,k ( oull )lnr&k

ikoK}az

2
—wfzp!gH2 {[azrz - K2(‘"’)]".i1‘.k
K
o[ 1er) 1(07‘) am]}

H—-p H+pu
(5=8) i () s,

H— KK koa?® . 2
i w f? Pi)gﬂfzkoa {[azrz = Ka(ar)lrr
Kl(“")

+8ip[——=
H p)
(%5
_i9pKkoa® 8 (a2 _
wftp,gH? a0 a3l ar
rr,;r.;,[K3(ar) -5

Lor
on

2 3K2(a1‘)

ar

+T.kni[aar3 +

+ring| 32 =~ Kga(ar)]}

(%52) raliar) - 2

zK;a) ) 1

- (E£) ralkistan) - )

] K 1

=(1- —i)ar..-m(ar) -
2[1de

az,a]}
,.rkar u 1 . or +)
r dn

- Ks(ar)]

wH “oH 6n[ Kz(:r)]
+ni[§K2(m‘) + §K°(‘"') ~ apal)
____—pg]f’ Ko(ar)
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(5.123)

(5.124)

(5.125)
(5.126)
(5.127)

(5.128)

(5.129)

(5.130)

where the constants H and a are given by ( 5.121) and ( 5.122) respectively, and
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suffixes : and k take the values 1 and 2.

5.3 Evaluation of «a;; and 6

As previously mentioned,the coefficients a;; and 6 appearing in the boundary in-
tegral equations ( 5.45) and ( 5.46) may be determined from the evaluation of the
Cauchy principal values of the integrals. However,as will be seen below, it is not
necessary to know these quantities explicitly. They will be determined by a method
known as the “ rigid body motion” analogy,which is frequently used in the bound-
ary element literature. First we rewrite the boundary integral equations ( 5.45) and
( 5.46) so that pore pressure p appears explicitly. To do this we substitute & = — fp
and define the fundamental solutions 7** and §° by

6.0 = _f-o
Substituting these in ( 5.45) and ( 5.46), multiplying ( 5.46) by _:_}u_ and using
( 5.97) gives the boundary integral equations in the form
2ranii(B) =PV [(Ra* - Trka) - (o3t - 5"5)dl  (5.131)
k=12
2n65(B) = PV [(Taf! - Tw) - (po%' = p™0u)dl  (5.13)

t=1,2
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where we have written

-01 _ Yo
;. = 7 U,
9 = 90
vt = it (5.133)
701 . —Wao
Ti - 3f ]
M o= T wa?

if if?

_ 19r

01 __ o1 _ o1y, _ 97
vn - f(U'O s )nl ran

The position vector of the point P on the boundary (at which r is zero) is denoted
by P. To determine the coefficient oz we notice that the governing equations
( 5.47) and ( 5.48) admit the following trivial constant solutions for the case of zero
body forces:
(a) ﬁ1=[-]1=landt'13=l_]3=0=>t7,.=0
(b)ﬁ1=5’1=0andﬁ2=l72=1=‘¢17”=0
where it is implicit that w = 0. No stresses or pore pressures are induced by these

cases, as is easily verified from the constitutive relations, i.e. T; = 0 and 5 = 0.

Substituting the first case (a) into ( 5.131) gives :
—_ Frak
2rany = /P TirkdT
Similarly, the second case (b) produces from ( 5.131)

2Ty = -/;T;"d[‘
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2'; g — — ] .,’ = l, ,l 4
T ~ j i dPIk 2 (5 3)

To determine the parameter 6 we consider (again for no body forces) the case of
unit pore pressure and zero displacement of the soil skeleton, i.e.,p = 1, %; = 0 and

w = 0. From the constitutive laws ( 3.22) and ( 3.23) we have (using & = —fp)

. 1 _
E= —-I",—; and &;; = —(1 - f)é;;

Thus for a compressible fluid (K, # 00),the fluid displacement U; is non-zero. We
note also ,from ( 5.8),that the tractions T; are non-zero. Since w = 0,the parameter
a defined in ( 5.122) is zero. Hence,in the boundary integral equations we must
use the limit of the fundamental solutions as a — 0. We now examine the funda-
m. .'al solutions appearing in (5.132). It will be shown in section (6.2) that the
funciinns @¥, T, 5° possess logarithmic singularity at ar = 0,(See 6.29). From
the definitions ( 5.133) and ( 5.127),( 5.128), ( 5.130),it is clear that 4!, T, 5 all

approach zero as a — 0. The function 99! ,on the other hand, behaves differently.

From ( 5.133), ( 5.127) and ( 5.128) we have

p = —ar,;[Ki(ar) - 1/ar]n; - 10r

rdn

The first term tends to zero as @ —+ 0, as can be seen from ( 6.22). Thus putting
p=1,4; =0 in ( 5.132) and taking limits of the fundamental solutions as a —+ 0

we have

o = lg’larr (5.135)

rron



Chapter 6

Boundary Element Procedure

In this chapter we outline the numerical details of the boundary element method
used for solving a boundary value problem. The accuracy of the method is illus-
trated by comparison with the analytic solution for the wave loading of a horizontal

isotropic poroelastic seabed which is briefly described in Appendix I

6.1 Discretisation of Boundary Integral Equa-

tions

Using ( 5.134) and ( 5.135), the boundary integral equations ( 5.45) and ( 5.46)

become

JAT& 4T 0B - 8] - 55 +57 5.} ar = 0 (6.1)

[
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. =01 . . fa01 N a
_/;‘{T, i =T, - ﬁf(U —Ti?l) ni+5 By + -"3—7‘ [p p(B)]}dP 0
(6.2)
where ( 5.46) was multiplied by r_:_ (ro is an arbitrary length) and we have defined

the following dimensionless quantities :

~wk —ak =nk k
i = MY U, = "‘TJ;
=sk =k ~uk sk
i =Tody; P =Top
(6.3)
=01
=01 —
u'- = rou?l U’ = roﬁ?l
7 _ "(2),-[-101 201 _ 7‘(2)?.01
i =T =
H 7

It is understood that the integrals are evaluated in the Cauchy principal value sense
and we recall that P denotes the position vector of the point at which r = 0. We
now discretise the boundary I'" into M straight line segments ., e = 1 to M. Each
segment is termed a “boundary element” and a node is located at its midpoint. On
each element we make the assumption

=

T, =T,

s?

&l
I
=h

where :’f: and #; denote the values of T: and #; at node e. For this reason the
elements are termed “constant” elements.

If we let point P. be the jth node (i.e. r =0 at node j) then equation ( 6.1)

becomes
Aozt [ ek Mfzi  ze FoF ar 6.4
ET.‘ /I:‘u; dPe+§(ui"’ui) /P.T.' e (6.4)



The second term on the left hand side is

S (@-#) [T = 3

eml

e#j

=4z/

ce=l

e#J
= Z Skl i
e=1
where we have defined S§; as
( ~xk
- r T" dFe
(]
ki =
M =k
T' ﬂ‘r
> kT
o
t,k=1,2

S (5l -

..) /r ?:k T,
dr-z#/

e=l

e

e=]

We now note that ( 6.1) may be written in the form

f (Rij_'f + Sk; .)

e=1
t=1103,

where we have defined i3 = ¥, and

Sta= [ F*ar

73

(6.5)



Writing Ts = —p and discretising ( 6.2}, we obtain

S H[ @ a3 [ F

e=1 e=
TiTa_/ f( l l_:-n)n.dl.",=

M

e=1 e=]

Proceeding as done earlier we write the last term on the left hand side as

M M

eml

e#;

e=1

where V* is defined as

To or

L e#J

A

Ve

1‘067‘ .
g-/r.ran ¢=J

\ ot

Equation ( 6.6) may thus be written in the form

L[ (nn) [ 2

S (f-7) [ -2oa = R(B-T) [ 2o

M
ZTs/ --r—"-ﬁdr‘ +'T"E/ "°a'
e#J

4

(6.7)

(6.8)
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where

( =01
/ —T“ dre 1= 1, 2
Fa
S5 =
‘ / % dT, i=3
Combining ( 6.5) and ( 6.8) we have

M - .
> (Ri- T+ Siiﬁf) = 0 (6.9)
e=1

i,k=11t03

where we recall that &i; = 5, and T3 = —p. Equation ( 6.9) is in fact the discretised
boundary integral equation. The formulae for Rj; and S§; may be written more

compactly if we make the following definitions:

=, T =T, fori=12 (6.10)
f)':.k k=1,2
= (6.11)
=01 .
\ f( f —E?l) ng k=3
-5 k=12

=~k
T3 =4 (6.12)
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Then ’
iy dl.+Ve i=k=3
Rj; = (6.13)
| / ‘fi:k drl’. otherwise
M 2k i, k = 1,2
S =1 = ’ e=j (6.14)
ek
- / T, dr. otherwise
\ I‘e

6.2 Function Approximations

To evaluate integrals R§;, S§; we need to take a closer look at the integrands. It
will be noted that the fundamental solutions are functions of ar,r; and n;, these
quantities being defined in Chapter 5. From ( 5.81) we note that a® may be written
:a the form

a? = —ic? (6.15)
where

o _wfkH
~ R(A+2u)

The constant ¢ is real and positive and has dimensions of (length)~!. From ( 6.15)

(6.16)

we have

ar = cre™'4 (6.17)

The Bessel functions of argument ar may now be separated into real and imaginary

parts via the relations (Abramowitz and Stegun, 1970).

Ko(ze™'%) = kerz—ikeiz (6.18)



and

Ki(ze'%) = —(keiyz+iker )

= __.I_.(ker' T + kei' ) - —z——(ker' z — kei' )

V2 v2

Knpa(2) = Kaa(2) + = Ka(2)

n integer, 2 real or complex

7

(6.19)

(6.20)

To evaluate the Kelvin functions ker, kei, ker', kei' we use the polynomial approx-

imations given by Abramowitz and Stegun, Sec. 9.11. These have been tested

against IMSL routines for the Kelvin functions and have been found to be ex-

tremely accurate. The use of the IMSL routines directly in the BEM program is

not comnputationally efficient owing to the large number of function evaluations

required. Using the polynomial representations,therefore, we write expressions for

the following functional groups involving the Besse] functions, which appear in the

fundamental solutions. The algebra involved is quite extensive and is not recorded.

The final results are

Ko(ar) = 1n(-°21)ao(cr) + Bio(cr)

Ki(ar 1 cr. . .
1:" ) = ln(?)ul(cr) + B1(cr)
Ka(ar) = =5 = (5 )ia(er) + 8a(cr)
K’(f:r) - 032 == 1n(—c2r-)i23(cr) + Wa(er) + glr'fa(“ )
Ko(ar) = LH_ 21 Tyiy(er) + hu(er) + (o)
SKa(ar) + 3 Ko(ar) = = = ta()is(er) + in(er)

Ks(ar) — % = In( 5 )io(er) + die(er) + —:;-Ee(cr)

(6.21)
(6.22)
(6.23)
(6.24)
(6.25)
(6.26)
(6.27)
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where for any n

fin(T) = un(z) + tu_(z)

Ba(2) = vn(z) + iv,(z)
(6.28)

Wn(z) = wn(z) + iw,(z)

£a(2) = 2a(2) + i2)(3)

. ? ' ] [} . s
The functions u,, ¥, Vn, v,y Wn, W,, 2, 2, are recorded in Appendix F. These ex-

- ~ wk
pressions enable us to express the fundamental solutions ﬁ,-k and T; as

5,7" ln(%r-)ff.'k +Ga
(6.29)
- ~ 1 -~

T, = ln(-(;—)ﬂk+Qik+-c-r- ik(er)
where

Ay = Hy+iHy Gu=Gi +iG
Py = Pi+iPy Qu=Qu+iQy (6.30)
Z-.-k = Zi +iZ,fk

These functions ( 6.30) are defined in Appendix G.

6.3 Evaluation of Integrals

As can be seen from Appendix F and Appendix G the functions I?,-‘",é;",ﬁ,-"’,
Q3%, Z2*, defined in ( 6.30), possess no singularities. We see from ( 6.7) and ( 6.29)
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that the integrands of Rf; and S§; (equations 6.13 and 6.14) possess terms of order
1 : : - -

- for certain values of i and k. It will be noted,however, that it is not neccessary
to integrate these expressions over the element on which r = 0 (element 7). Hence

all intearals may be considered of the form
e T T o
I= /P In(5 )f(ro.r..,n.) +g(;,- 4 i) ]dle (6.31)

where the functions f and g are non-singular at r = 0 and I'. is an arbitrary
element e. Special procedures are.required for the case e = j, owing to the presence
of the logarithmic singularity on this elemert. In addition, we make note of the
following facts concerning the nature of functions f and g in ( 6.31). The functional
approximations used (Appendix F) change form at the value ¢r = 8. When
writing an integral in the form ( 6.31) we have employed the following programming
device. For the range cr > 8 the function f has been set to zero and the entire
functional form of the integrand has been assigned to the function g. The result
is that both f and g are discontinnous at cr = 8, while the entire form of the
integrand in ( 6.31) is not. This must be taken into consideration only on element
7, since it is only on this element that it is necessary to separate the integrands
into logarithmic and non-logarithmic parts.

We now describe the details of the integration procedure. We consider that
the boundary I lies in the z — z plane with the z and 2 coordinate axes directed
to the right and vertically downward respectively. We recall that the problem is
two dimensional, i.e. conditions are uniform in the y direction. We denote the
coordinates of the end points of an arbitrary element I, by (., z.) and (%41, Ze41)
and define the integration direction from the former point to the latter. Since there

are M elements, (Tam41,2M+1) = (%1, 21). The z and z coordinates of a point on T',
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are represented parametrically as
1 1
T = ‘2‘(1 —§)ze + ‘2'(1 + )Tenr
1 1
2= 5(1 =8z + 5(1+ Ezen
where —1<¢<1

The point p from which r is measured is located at node j (mid-point of element

T;). Denoting the coordinates of p by (xo, 20) we have

1 1 .
o =5(z5+2in) 2= 5(z+2zjn) (6.32)

Since r = |z — p| we have

r=(z —20) + (2 — 20)’]>

=g = (6.33)
. _Or_ z-2
=8z v

It is easily verified that the unit outward normal n; for anticlockwise integration

around I is given by

1 1
n = -2—'7:(2,, -_— z¢+1) y N2 = ‘2—.]:(25.4.1 - :1:,) (634)
where
1
J. = E[(3e+1 - -’Be)2 + (Zeg1 — Ze)zl% (6-35)
The line element dT', is given by
dl’, = Jede (6.36)

For the case e # j it is thus quite easy to express ( 6.31) in the form

I= /_ F(e)de (6.37)
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by using ( 6.32) through ( 6.36). Standard Gaussian quadrature can now be applied
to ( 6.37). Integration along element I'; must be considered in two cases, viz. inte-
gration before and after the mid-point (zo, 2), at which the logarithmic singularity
occurs. We shall denote these two integrals by I, and I respectively.

Case(a): Integration from (z;,2;) to (2o, 20)

We define 74, to be the distance from (z;, z;) to (2o, 20), i.e.
1 2 214
Tmaz = -2-[(-1:,' — z0)* + (2j — z0)°)2 (6.38)

We find by putting (z., z.) = (zj, z;) and (Te41, 2e41) = (0, 20) in ( 6.32) to ( 6.36)
that
r= 1*(l é)r
- 2 max

Ty —T 2= Z
3 0 5] 0
1‘.1 o r'z ==
Tmax Tmaz (6 39)

ny=ra ng =-—-rj
or R
So=Erin = U

n

Hence we have

Ia = -;-Tma:: ‘/_ll{ lni(:(l _‘f)rma:]f[(l —Zilrmaz;r,l'; ni]
+ol I i g (6:40)

We note that r; and n; are constant on I';. Because of the discontinuities in the

functions f and g at cr = 8, the integral I, must be evaluated in two cases also :
(1) ermaz < 8

In this case the discontinuity does not lie in the range of the integration. By

isolating the logarithmic singularity (at ¢ = 1) and making appropriate changes of
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variable we can express ( 6.40) as

L= grmes [ Tz e g (LB

2
+irma=/ ln(3 f) [(3 Elrm"a .n"w]df
;rmm/ ln( )f [ggrzz;r';;n;]df (6.41)
(2) ermaz > 8

The discontinuity at cr = 8 now lies within the range of integration. We define the

value {o such that cr = 8 at £ = ;. From ( 6.39) we %hus have
bo=1-—r (6.42)

We express ( 6.40) as the sum of two integrals: one from —1 to £ and the other from
& to 1, making use of the fact that for £ < & (i.e. cr > 8), f is identically zero.
Again by isolating the logarithmic singularity and making appropriate changes of

variable we wrice ( 6.40) as

Ia = “]i(l'i'fo)rmaa:/_llg['(—_"";’%r’_n'ﬁ ra ;]df

+%(1 - £0)Tmaz _/l ln(crmu)f[(1 - tl’_.m"; r.i; 1l +9[’(—1‘:2'tr)oi"ﬂ; ri3 ng]dE

+-‘rma=( 60) ln(l = 60)_/ f[(u Tmu’ ran ,]df

1
4
~grmesll = &) [ In(p)[pmes

VT max,

i nglde (6.43)

where

s=3(1+&)(1+¢) -1

=31+ &+£(1 - b))
u=3(1-&)(1+¢)
v=¢(1 - &)
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Case (b): Integration from (zo,20) to (Zj11, 2j+1)

Here we define rma: as the distance from (zo, zp) to (zj41, 2j+1) so that
Tmar = [(31'4-1 - 30)2 + (ZJ'+1 - 20)2]% (6‘44)
We put (z., 2.) = (20, 20) and (Tc41, 2Ze41) = (Tj41,2j41) in ( 6.32) to ( 6.36) to find

r= %(1 + €)Tma::

Tiv1 — To Zi+1 — 2
S Sk R 1= Rk
Tyaz Tmar
n=-ra N2 =7y
ar
- (6.45)

As before, it is necessary to consider two sub-cases :
(1) crmez < 8

The result is

L = %rm / In(F225) [(Hirm’ aml + [g'u-{)?&’ i
+4rm¢,_./ ln(3 -i"g)f'(3 +£1rm“;r..'; ng)dé
;rma::/ In(Z )f[ £rm“ ri;nijdé (6.46)

(2) crmaz > 8

Again, we define { by the relation cr = 8 at { = &. From ( 6.45) we find that

§o = L (6.47)

crmaz:

Noting again that f = 0 when { > { we have the final result as

I = —(1 (0) ma:/lg[(l%i n -]df
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max max 1 max
+:11'(1 + £0)Tmaz _/_ll ln(cr4 )f[(l +2i)or $ 745 ) +9[("'-%"‘;r,e; n;)d¢

L P o(Urmes
+7(1+ &) In(1 + 6)rimas [ 1 T g
1

_.-2-(1 + £0)rmaz [Jl ln(-;-)f[(v;:“; ri; i) dE (6.48)

where
8= %[5(1 — o)+ 1 + &)

t = 3[6(1 + &) — 1 + &0
u=31+&)1+¢)

v = (1 + &)

We now write ( 6.31) for the case e = j, i.e.
ITonlj=1I+4+1

where I, is given by ( 6.41) or ( 6.43) and I is given by ( 6.46) or ( 6.48) depending
on whether crpmq is less than or greater than 8. We note that in ( 6.41) and
( 6.43) the quantities r, r;, n; and & are given by ( 6.38), ( 6.39) and ( 6.42);
whereas in ( 6.46) and ( 6.48) these quantities are given by ( 6.44), ( 6.45), and
( 6.47). The integrals I, and I, are evaluated by standard Gaussian quadrature.
We draw attention to the fact that the last term in the expressions for I, and I
involves a logarithmic singularity. These terms are written in a form suitable for the

application of the quadrature rules designed for such cases (Brebbia et al., 1554).
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6.4 Determination of Unknown Boundary Data

The discretised form ( 6.9) of the boundary integral equation may be written

M ~e
L (RL()T; + S5(5)E) =0 (6.49)

e-li,k =1tod;j=1to M

where the argument j has been included to emphasize the fact that ( 6.49) must
be written for each node on the boundary I, i.e. each node must serve in turn as
node j, the node at which r» = 0. The coeflic -nts R§; and S§; are determined using.
the methods described in the previous section. In a well posed problem, exactly
half of the boundary data is known. At each node the boundary data consists of
six quantities : {T, &, i =1 to 3}.

We let {z?, { =1 to 3} denote the three known values at node e, and {25, i =
1 to 3} denote the three unknown values at node e. We denote the coefficients of

z¢ and z¢ in ( 6.49) by F5 and F§; respectively. Then equation ( 6.49) may be

written
M
> Fe()as = bild) (6.50)
e=xl
tk=1t03j=1to M
where
M ' . )
(i) = - 3 Fi()e (6.51)
e=1

For a given value of j, equation ( 6.50) generates three rows of the final matrix
equation as k takes the values 1 to 3. Specifically, ( 6.50) is the n th row of the

matrix equation, where

n=3—-3-k) k=1to3;j=1to M
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The final 3M x 3M matrix equation may be written in the form

[GH{y} = {c} (6.52)

It can be verified that the elements of the matrix [G] and vector {c} are produced

by the following algorithm :

Forj=1to M
Fork=1to3
n=23j—(3—-k)

M ’ 1}
== Fiiz
e=1
Fort=1t M
For p=:3t —2to 3¢

Gnp = F l:,p-S(t—l)

A given input value z.* must be identified either as f‘: or #; so that proper assign-
ments can be made to the quantities F}§ and F{;. The solution vector {y} consists

of the 3M unknown nodal values {z{,i=1to 3,e =1 to M}.

ﬂ\.
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6.5 Determination of Interior Stresses and Pore

Pressure

We recall that for an interior point z the coefficients o; and 8 in equations ( 5.131)

and ( 5.132) respectively become

Using the definitions ( 6.3) and ( 6.10),( 6.11), ( 6.12) we write ( 5.131) and ( 5.132)

for an interior point z :

_ _ F 1 ~ek gr_ =nk g_ ~ '
2rin(e) = [ Tol@) 8 r 5om) - T2 (r g mial) . (659)
k=1,2
270, \ [ & (. yze3,. O =e3 O .
(@) = [ T@) 80, 5w - T, (ngmn)i@dr (654)

where r = |z —z|. In the above equations the integration is performed with respect
to . € T, and the subscript a is summed from 1 to 3. In order to determine the
effective stresses at point z, we must evaluate derivatives of i with respect to &
and then use the constitutive laws. We note that a comma followed by a subscript
denotes differentiation with respect to one of the coordinates of g, = (zj,z).
Differentiation with respect to z will be written explicitly. For exampla, since
r? = (z; — z;)(z; — ;), we have

’
z,—z Or
Chlarakl il

d 1
and 375(".-') = —(rir; — ;)
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Again, repeated suffixes denotes summation. Using the constitutive relation ( 3.9)

with

we can write from ( 6.53)

27
"I"Tk, —/ (T DakJ ua akJ)dP
(6.55)
k,i=12, a=1,2,3
where
aur o’ % \ 85
Darj = 0z; + Oz + (1 —21’) oz; Bks (6.56)
~ wk = uj = i
oT. oT. 2 \ 0T,
Sakj = dz; T oz T (1—21/) dz; Bes (6.57)

Using the definitions ( 6.29), ( 6.30) and Appendix G we can perform the dif-
ferentiations indicated in ( 6.56) and ( 6.57). The algebra involved is again quite
extensive. The results are listed in Appendix H.

Discretisation of ( 6.55) leads to

27l' ! =e -4 e
';'Tk;(I) E(TaP ok — BaQoki) (6.58)

e=]

akj =/ Dag;dl.
Ci = / Sax;dTe (6.59)
k,i=1,2 a=1,2,3; e=1to M

where

Similarly, the pore pressure at z is found by discretising ( 6.54):

21rro

2r0 0 = 3 T A2 — 25 B2 (6.60)

e=1



where

a=1ltod ,e=1to M
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(6.61)

Since z is not on the boundary I', the integrals ( 6.60) and ( 6.61) are all non-

singular and are evaluated by standard Gaussian quadrature.

6.6 Wave loading of Flat Homogeneous Isotropic

Seabed. Comparison with Analytic Solu-

tion.

We consider a horizontal distance of one quarter of the wavelength L, as illustrated

in Figure (6.1). The z axis is at the mudline as shown and the z axis is vertically

downward. The wave pressure on OC is of the form

P=P, ei(k:—wt)

2r

where k = I

1‘5 = PO eikz

and w is the circular frequency. Hence

(6.62)

From linear wave theory, the formula for F, is given by

_ p(R)g
Fo= cosh (kh)

(6.63)
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where H is the wave height and & is the water depth. From ( 3.7) and ( 5.3) we

have
Ti=mynj—pmi  (i=12) (6.64)
and we recall that
I3=—p (6.65)

The boundary conditions are as follows :
On OC, 7, =0, 7, = 0, p = Pre'*=,

In terms of T'.- these become

Fr=0, Ty = Rgite fy = _Dogise (6.66)
p P
On AB:
f=0iori=123 (6.67)

Periodicity conditions must be used on the side boundaries OA and BC. A given

function f(z,z) may be expressed as
f(z,2) = F(2)e'* (6.68)
where f(z,z) represents 1'1,-,[7.',‘?',-'1- or p. From ( 6.68) we deduce that since k = -QL——'
1327 =if(0,2) (6.69)

Equation ( 6.69) can be used to express the boundary conditions on BC in terms

of those on OA. 1t is easy to show that

i(‘i‘,z) = al #;(0, z) no sum on ¢

=it

(6.70)

e 4

i(%, z) = a;‘ri'".-(o, Z) no sumon §
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where a and o are complex constants defined by

1 n=12
al = <
-t n=3
4
-t n=1,2
ar = 4
| i n=3

Conditions ( 6.66), ( 6.67) and ( 6.70) must now be used in the discretised boundary
integral equation ( 6.9). Since the boundary conditions on BC are expressed in
terms of those on OA we choose the same number of elements M; on each of these
boundary segments. On AB and CO we choose M; and Mj elements respectively.
The total number of elements is thus M = 2M; + M; + M;. The first element is
taken on OA and the last one on CO. The direction of integration is anticlockwise
around the boundary.

Using ( 6.70) we have

~ My +Mz+e i A

i = arT;
=My+Mate ¢ =Mi+l-e
U; = :

e = ltoM,, nosumon:

We let

My +Mz+e ! My+1-e
Rkil - Rki

’ -
S’ﬁ!ﬁMﬂc o Sk,M"H e

e = ltoM;
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Then it is easily shown that
l

M, M
M. = My+Ma+e
Z Rﬂl"‘ 2+eT.~ = ZQTR

e=1 e=1

& MitMatezMisMate _ o\ ;i clese
1+Ma+te =My 2re i oles
Z Ski u; = zauski"i

e=1 e=1
Substituting into ( 6.9) gives

M

> (R + a‘TR'f):i'*? + (S5 + LSS
e=l
+ Z(RM' e TS | gMute gMitey (6.71)
+ i(R:y’*‘M’*'e T?MI+M3+G + S-k_)?ﬁ_'_Mz.'_e ,ﬁ?MlMl'*'e) =0
e=1

We now detine the following
Fore=1 to M;
Ri = Rj; + o R

Sgs = S + i Sis

=e

BC
Iy =
we __ €
Ug” = U

Fore=1 to M;:
RZI‘WHe = Rﬁx+e
S-M:+e — SN_!1+e

T,
]

~ A
u:Mrl-e —_ u'_ 1+€
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For e =1 to M,
2Mi+Mate _ p2Mi+Mate
Ry = Ry
S;‘M1+Mz+e = Sz'Mx+Mz+e

=~ 2My +May+e
sMi+Mate _
‘l." 1 2 = i

u;M;+Mg+e - a?Mx+Ma+e
With these definitions, equation ( 6.71) becomes
M.
Y REG)T + Sii(Gui* =0 i,k=1t03 (6.72)
e=]

where M* = M, + Ma 4 M,
The unknowns are
{T?e, ut®, e=1to M}
{TrMite, e=1to M) (6.73)

{ui Mi¥Mate o — 1 to M3}
where i = 1 to 3, i.e. a total of (6M; + 3Mz + 3M3) or 3IM unknowns. Equation
( 6.72) must be written with each boundary node serving as r = 0, i.e. as j takes the
values 1 to M. This produces 3M equations. For a given j, row number 3; — (3 — k)

of the matrix equation is generated.

For e = 1 to (M3 + M3) we define

N\

:z::-" —_ T‘_-M1+e

Fs = By
* i Ty M+ i known

e . . tMite
Ty =u;

Fg =St

.
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and :
z;e — u;Mﬁ-e
Fis = s
' b if ufMi+¢ j5 known
zf = Ty
Fi = Ryl
Then equation ( 6.72) becomes
My Ma+M; Ma+Mj " s
ARSI+ S uif)+ ), Fuzi=-— ) Fgizf (6.74)
ex] e=1 e=1
This may be written in matrix form
(Gl{y} = {8} (6.75)

It can be verified that the following algorithm generates the matrix [G] and vector

{5} :

Forj = 1toM

Fork = 1to3
n = 3-(3-k)
My4+Ms "
bn = = Z Fkgﬂ;'"e
e=1

(

R a3 P=3t—2to0 3t,t=1to M
WP +3

G’np = ‘ Sz,‘p—3(M1+t-1) p = 3Ml + 3t - 2 tO (3Ml + 3t)'t = 1 to Ml

Fg.p—3(2Mx+t—l) p= (6M1 + 3t - 2) to (6M1 + 3t),t =1 to (Mz + .Ms)

\

The solution vector is given by ( 6.73). The interior stresses are computed as

described in Section (6.5). In order to test the accuracy of the BEM we compare



Table 6.1: Comparison of BEM with Analytic Solution at (1,2)

Stresses | BEM (200 ‘ements) Analytic
x 108 Nm~? [ Real Imag Real | Imag
"r"l'l 0.9047 0.1253 0.9068 | 0.1310
Tag -0.9104 |  0.2007 -0.9064 | 0.1952
Fia -0.0075 | 0.1535 || -0.0075 | 0.1527
P 4.5129 0.3004 4.5116 | 0.3044

Table 6.2: Comparison of BEM with Analytic Solution at (5,5)

Stresses || BEM (200 elements) | Analytic
x 10* Nm~? | Real Imag Real Imag
11 0.8639 0.0845 0.8639 | 0.0852
1 -0.9307 | -0.1081 -0.9310 | -0.1088
Fig -0.0431 0.3670 -0.0430 | 0.3666
P 4.4466 0.4330 4.4449 | 0.4342

the results with the analytic solution which is briefly described in Appendix I.
The data for the test case was OA = 25m, water depth =70m, wave period =
15 sec. (which corresponds to a wavelength L of 311.812m), wave height = 24m.
Details of the input data for the soil (fine sand) can be found in Chapter 8. Tables
(6.1), (6.2) and (6.3) show the stresses in N/m? at three interior points (coordinates
defined by axes in Figure (6.1) ) obtained by the two methods . There is excellent
agreement between the BEM and the analytic solution. The BEM results were

obtained with eight point Gaussian quadrature.



Table 6.3: Comparison of BEM with Analytic Solution at (35,12)

Stresses || BEM (200 elements) Analytic
x 10* Nm~? | Real Imag Real | Imag
T 0.5517 0.4725 0.5517 | 0.4725
oy -0.5790 | -0.4955 || -0.5790 | -0.4955
Ty 05811 | 0.6753 || -0.5809 | 0.6749
p 34689 | 29490 | 3.4686 | 2.9489




Chapter 7

Stress Analysis of Sloping Seabed

Under Wave Loading

7.1 Wave Ynduced Effective Stresses and Pore

Pressure in a Bed of Arbitrary Slope

The problem domain is illustrated in Figure (7.1). The z and z axes are chosen with
origin at O’ as shown. The incident wave is travelling in the negative z direction.
The boundary conditions on the seabed BDEC are that the normal and shear
effective stresses are zero (there is no applied inter-granular load) and the pore
pressure P is equal to the wave pressure P acting normal to the bed (determined

from equation 4.46). In terms of the tractions T:, these become :

OnBD : T,=0, Ty = iwpsd |p, Ts = —iwp;$ |BD

98
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OnDE : Ty = —iwp;é |pE sinB, Tz = iwpsd |pE cos B, Ts = —iwp;d | pE

OnEC : T1)=0 Th= inN.S lec, Ts = —iwpf$ lec

where ¢ is the velocity potential in the sea as determined from lhe techniques of

Chapter 4. At the interface with the bedrock base RS we have :
i =ly=1t3=0

To provide boundary conditions on the side boundaries BR and SC we make
use of the author’s analytic solution (hereafter referred to as A.S.) described in
Appendix I. We first determine from ( 4.15) the velocity potential on the seabed
in the region to the right of O'C. The coefficients a, in ( 4.15) are determined by
solving ( 4.37) for the vector {a}. The numerical results indicate that the infinite
sum on the right hand side of ( 4.15) is negligible compared to the other terms.
Neglecting this term, we write the velocity potential on the seabed to the right of
O'C as: )

_ —igno ikox —ikoT) , —iwt
® |bed— w————COSh(koho) [aoe +e ]e (7.1)

Hence from ( 4.46) the wave pressure on the seabed in this region is :

— P19 ¢ ikex  -ikoz],—iwt
P |peq cosh(koho)[aoe + e7*%e (7.2)

which is in a form suitable for applying the A.S. We can determine the effective
stresses and pore pressure (and hence T;) on SC by superposing the results obtained
from the A.S. for the following two cases:

(1) Incident Wave conditions :

k = =k

P19Mo
i cosh(koho)
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(2) Reflected Wave conditions :

k =k

- Qop 1970
cosh(kohg)

The 1“',-',- and j at desired soil depths are evaluated at z = 0 in each case. We can

now write the boundary conditions on SC, noting that (n,,n3) = (1,0) :
Tl = ‘Fl'l - P T? = 7';2'1a Ta = -—p

For the region to the left of BR, the wave velocity potential on the seabed is, from
( 4.16)

o Ibed= a;e—ik;:e—iut (73)

where we have neglected the infinite sum on the right hand side of ( 4.16). The

coefficient a; may be determined from the numerically determined value of ¢ at B:

% |5= age™ (7.4)

Again, from ( 4.46) and ( 7.3) the wave pressure on the seabed in this region is :

. vt s
P Ibed = iwpage 'ko’e fwt

= iwpsd s e—iFodg—i(kgzHwt) (7.5)

where we have used ( 7.4).
The effective stresses and pore pressure on BR may thus be determined from
the A.S. using

k=—ky Po=iwpsdlpe ™, z=—d
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On BR, (n1,n3) = (—1,0) and we write the boundary conditions as
Ti=-fy+p Th=—%y, Ta=-p

With the boundary conditions thus specified, we determine the unknown boundary

data and wave-induced interior stresses as descrioed in Chapter 6.

7.2 Initial Stresses

The in-situ stresses in soil depend not only on gravitational forces, but also on
the stress history due to the geological processes involved in the formation of the
soil deposit. Thus the standard constants of elasticity theory must be modified
to adequately model the in-situ stress field. For example, for a flat seabed under

hydrostatic conditions the effecti e stresses at depth z are, in conventional notation,

o, = 7z
o, = Kov'z (7.6)
., =0

where v’ is the buoyant unit weight of the saturated soil and o,0,,7., are the ef-
fective vertical, horizontal and shear stresses respectively at depth z (soil mechanics
sign convention). The parameter Kj is the coefficient of lateral earth pressure at
rest which attempts to account for the stress history of the soil. It is usually em-
pirically determined. For a sloping bed it is possible to determine the gravitational
stress field from the theory of elasticity using a numerical technique (finite element

or boundary element method) since no analytic solution exists for the geometry
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of the problem considered. In this approach it would be necessary to modify the
elastic constants for the reascns discussed above. However, no adequate method of
doing this is currently available and we employ the concept of conjugate stresses
introduced by Taylor (1948) in which it is possible to account for the stress history
of the soil via a parameter analogous to Ky,. The concept is strictly valid only for
infinite slopes. Accordingly, the representation of in-situ stresses by this method in
the vicinity of the lines DG and EF (Figure 7.1) is only approximate.

We shall first consider an infinite slope of dry soil inclined at an angle 3 as
illustrated in Figure (7.2).

The element ABCD, located at distance z below the surface of the slope as
shown, has sides AB and CD parallel to the slope. Taylor (1948) has shown that
the total stresses on the element may be represented by ¢, in the vertical direction
and oy parallel to the slope. The stresses o, and g5 are called conjugate stresses.

Considering the weight of material above AB it is easily seen that
Oy = Y4zC08 3 (7.7)

where 7, is the unit weight of the dry soil. Following Chowdhury (1977), we assume

that there exists a constant K, called the conjugate stress ratio, such that
op =Ko,

i.e.
og = Ky4zcos B (7.8)

We now determine the Cartesian stress tensor 7;; at a point. As before, the unit

outward normal on a plane is denoted by (n,,n2) and the tractions T; are given by
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Fig.(7.2) Conjugate Stresses in Infinite Slope
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(5.3). On AB, Figure (7.2),

T'=0,T, =0, ny=sinf,n;=—cosf

This gives
Tsinfl— Tzco88 = 0 (i)
Tsing — mac08f = ygzcosf (i)
On BC,
Ty = —0opcos B, Ty = —opsinB, my=1n;=0
This gives
1 = —Kyazcos*B  (ii1)
T21 = =—Kvyzsinficosf (iv)

From (it) and (iv) we have
1y = —v3z(1 + Ksin®* )  (v)

It is easily verified that the expressions given by (ii1),(iv) and (v) satisfy (7).

The above expressions give the effective stress tensor at a point in a slope of dry
soil. If we now consider the effective stress field in a submerged slope we note that
a4 is now replaced by 7', the buoyant unit weight of the soil. Hence the effective
stress tensor in a submerged slope is given by expressions (i), (iv) and (v) above
with 4 replaced by v'. Using the conventional soil mechanics notation and sign
conventions (described in Section 3.2) we have the in-si.u effective stress field in

the region DEFG (Figure 7.1) as

o, = +z(1+ K sin’p)
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o, = K+y'zcos®B (7.9)

1., = K+'zsinfcosp

where we recall that z denotes depth below the sloping surface DE. We can define
Ko ,the coefficient of earth pressure at rest, in the usual way as the ratio of the
horizontal to vertical effective stress ,i.e.

Ko = K cos? B
°T 1+ Ksin’ B
The value of K can thus be determined from measurements of Kg, or from commonly
accepted empirical formulae for K, (Bowles, 1984).

The principal stresses o,, a5 are given by :

' 1 . ' ’1 . , ,
013 = '2'(0: +o, + Z(a: - az)2 + Tri

which gives

a';'s = %7'z[1 + K+ \/K2 — 2K cos28 + 1) (7.10)

The limiting values of the conjugate stress ratio K are determined by the Mohr-

Coulomb failure criterion which is written for cohesionless soils as
[ [ [ [ - [
0y, — 03 = (0, +03)sin ¢ (7.11)

where ¢' is the (effective) ang.e of internal friction of the soil. From ( 7.10) and
( 7.11) we have

K?%cos’ ¢’ — 2K (cos28 +sin®¢) + cos’ ¢ =0 (7.12)

which has roots

Ky, K; = E—()le?-[cos 28 + sin® ¢ + 2cos ,B\/sinz @' —sin? f] (7.13)



Table 7.1: Limiting Values of K

Slope Angle Limits for K
B (deg.) é = 30° ¢ =35°
5 0.34 - 2.95 | 0.27 - 3.64
10 0.35 - 2.82 | 0.29 - 3.50.
15 0.39 - 2.59 | 0.31 - 3.25
20 0.44 - 2.27 | 0.34 - 2.92
25 0.54 - 1.84 | 0.40 - 2.50

We note that the roots are real if ¢ > B. Equation ( 7.13) gives the limiting
values of K, i.e. the range of values of K for which the in-situ stresses do not
violate the Mohr-Coulomb failure criterion. These values are presented in Table
(7.1) for various slope angles and values of the angle ¢'. The upper and lower
limits for K correspond to states of passive and active failure respectively in the
undisturbed soil. The initial stresses in the regions BDGR and ECSF (Figure
(7.2)) are estimated from equations ( 7.6),where z is depth below BD and EC

respectively.

7.3 Failure Analysis

The basis for the failure analysis will be the Mohr-Coulomb failure criterion which
is widely accepted in the geotechnical community. We shall identify “zones of
overstress” in the soil, i.e. regions of soil in which the failure criterion is violated.
It should be noted, however, that when such violation of the failure criterion has

taken place,the stress field is, strictly speaking, invalid. The zone of overstress must
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therefore be regarded as the approximate region of failure. Further, we note that
owing to the effect of stress transfer when the failure condition is violated, the zone
of overstress denotes the minimum region of soil failure. An elastoplastic analysis

is then required to determine the failure zone more accurately. In this thesis we

provide the first stage of such an analysis, via the location of the Gvérstressed. zones o

determined by a single application of the failire criterion. This type of failure
analysis has also been employed by Yamamoto (1978), Mynett and Mei (1982) and
Mei and McTigue (1984). The limitations of such analysis was also pointed out by
Mei and McTigue (1984) who nevertheless recognised the utility of the approach in
providing a good first approximation of the extent of the failure zone.

We employ the conventional soil mechanics notation and sign convention de-
scribed in Section (3.2). The initial effective stresses determined from Section
(7.2) will be denoted by 09,0, 719, The wave-induced effective stresses will
be denoted by oV, 5.(1), 7.1) where we take the real part of the complex stresses
computed by the BEM.

The resultant effective stresses o.,,0", 7., are thus given by :

ot =l 4.5
o, =09 4 oM (7.14)

' ' ’
Tze = T::(zO) + T::(zl)

These stresses may be plotted on a Mohr circle as illustrated in Figure (7.3).
The coordinates (o, 7) of any point D on the circle are the normal and shear stress
acting on a particular plane, the inclination of which is determined from the angle

DCA in Figure (7.3).



109

Fig.(7.3) The Stress Angle ©
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The Mohr-Coulomb failure envelope is the line
T=0tang (7.15)

and is illustrated in the figure. It intersects the 7 axis at the origin O. We define

the stress angle 6 as the angle between the o axis and the tangent to the circle

from the failure envelope intercept O. The stress angle is-afumetiomrofthe stress
—gtuteto TG s Ton ), and by dc“;mparmg 1ts value with ¢ we determine the “distance”
between the current stress state and the failure state. The condition of failure is

thus conveniently expressed as

6>¢ (7.16)
From the geometry of Figure (7.3) we find that

(o) - a';)2 + 41;1]_%_
oy +o;

sinf =

(7.17)

from which 8 can be calculated. The overstressed zones are then determined from
( 7.16). We would comment at this point that for the purpose of determining
the stress angle no significant reduction in accuracy is observed by using four point
Gaussian quadrature (instead of eight point quadrature) when comouting the wave-

induced effective stresses by the BEM.



Chapter 8

Results and Discussion

We first present the wave pressures on a sloping seabed as computed by the methods
of Chapter 4. Figures (8.1) and (8.2) illustrate the wave pressures on a 12 degree
slope due to wave lengths (L) of 300m and 150m respectively. The coordinates
of the points on the slope are as defined in Figure (7.1). The bed slopes upward
between z = —5m and x = —60m (points E and D in Figure (7.1)). The incident
wave height is 24m and the water depth between 2 = O0m and z = —5m is 80m.
At time t = 0, the wave crest is vertically above the point 2 = Om (point C in
Figure (7.1)). The graphs illustrate the progression in time of the wave pressures,
the maximum pressures being experienced by points under the wave crest. The
maxima at the left end of the slope are slightly greater than at the right end owing
to the smaller water depth at the left end. We note also that negative pressures are
experienced at certain instants of the wave cycle. At wt = v and wt = gf- the wave

2
pressures are the negative of those illustrated for wt = 0 and wt = -12[ respectively.

111
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Thus we would expect, for example, positive wave-induced pore pressures at wt = -g—
and negative wave-induced pore pressures at wt = §2lr— We have also investigated
the wave pressures on a 12 degree slope in shallower water. A wave of length 150m
in 80m of water would have a length of 133.5m in 30m of water over a flat bed.
Figure (8.3) illustrates the wave pressures on a 12 degree slope, the wave length
and water depth at the base of the slope being 133.5m and 30m respectively. The
incident wave height is set at 16m. Even at this reduced wave height, the maximum
wave pressures are more than twice those illustrated in Figure (8.2), owing to the
smaller water depths.

We now examine the wave-induced failure zones in the soil. As described in
Section (7.3), the approximate extent of the failure Zone may be determined by
computing the streas angle 6 at several points in the soil and comparing with the
angle of friction ¢'. For this purpose it is convenient to plot contours of the stress
angle. If the angle of friction of the soil is, for example, ¢ = 30°, we can determine
the failure zone approximately as the region in which 8 > 30°. We emphasize again
that this provides only an estimate of the minimum failure zone, owing to the
fact that violation of the Mohr-Coulomb criterion invalidates the stress field. The
meaning of “fajlure” in the Mohr-Coulomb sense is that frictional resistance in the
soil has been exceeded on some plane. The failure zone is thus an unstable region
and further research is needed to study the manner in which failure progresses.

Stress angle contours for a fine sand and coarse sand with slope angles of 8 =
2°,5°,12°,20° and wave lengths of L = 150m, 225m,300m are given in this chapter
and in Appendix J. The contours were produced by the graphics package SURFACE

IT at Memorial University. Because of the interpolation and smoothing performed
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Figure 8.1: Wave Pressure on 12 deg. Slope : L = 300m., H = 24m.
Water Depth at Slope Base (z = 0) = 80m.
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Water Depth at Slope Base (z = 0) = 80m.
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by SURFACE II the contours are to be regarded as an approximate representation
of the actual numerical results. In all cases (except figure 8.11) a wave height of 24m
was used. The conjugate stress ratio K was taken to be 0.5 except in figures (8.13)
to (8.15). The distances d, dy, dy in Figure (7.1) are 65m,5m and 5m respectively,
The water depth at C (Figure 7.1) was kept at 80 and the depth at B varied from
78m for the 2° slope to 60m for the 20° slope. Similarly, the soil depth I at C was
kept at 20m, with the depth I at B varying from 22m for the 2° slope to 40m for
the 20° slope. In only two cases was it necessary to deviate from this pattern, viz.'
the cases of fine sand, 8 = 20° with L = 225m and 150m:. In these cases we chose
lo = 17m,ly = 37Tm and lo = 14m,l, = 34m respectively. The reason for these
changes is that numerical overflow problems were encountered when generating the
boundary conditions on BR (using the method of Appendix I). The effect of the
changes is that the boundary conditions on RS (Figure 7.1) is applied at a smaller
depth than would otherwise have been the case. In order to investigate this further
we have tested the case of Figure (8.4) (fine sand, L = 300m, S = 20°) with the
location of the boundary RS determined by lp = 14m and I, = 34m. The contours
obtained (shown in Figure J.1) are of the same paitern as in Figure (8.4), although
in some places the failure zone (6 > 30°) is not as deep.

The soil data is as follows :
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Shear modulus G (Nm~2) 1.0 x 107
Poisson’s ratio v 0.33
Porosity f 0.3
Permeability ko (ms=1) 1.0 x 10~4( fine sand)

1.0 x 102 (coarse sand)
Density of soil grains p,(kgm=3) 2.7 x 103
The bulk modulus of the pore water, Ky, was taken as 2.3 x 10° Nm™2,

As expected, the plots indicate that for a given slope angle the longer wave-
lengths produce the greater failure zones, and for a given wavelength the greater
failures are observed in the steeper slopes. In most cases, there is no significant
difference in the extent of the failure zones (hereafter termed the failure profile) for
fine sand (kg = 10™4ms~?) and coarse sand (ko = 10~2ms~!). We observe, however,
for 8 = 20°,L = 300m and 225m the failure zones (§ = 20°) in fine sand (Figures
8.4 and 8.5) are slightly deeper than in coarse sand (Figures 8.¢. and 8.7). Also, in
these cases, failure conditions in fine sand persist at wt = 7, whereas this is not so
in coarse sand.

The plots also illustrate the variation in the failure profile throughout the course
of a wave cycle. The contours are shown for the instants wt = 0, 12[’"’ 37# As the
wave cycle progresses in time the responses of the soil skeleton and pore water also
go through a cycle, out of phase with the wave cycle. The phase lag is quite easily
computed from the arguments of the complex effective stresses and pore pressures
determined by the boundary element method. We emphasize that the skeleton and

pore water do not respond independently : the responses are coupled as described
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by the Biot equations. At certain instants in the wave cycle the effective stresses
at several points are such that the Mohr circles touch or cross the failure criterion.
At other instants the effective stresses produce Mohr circles which are quite distant
from the failure criterion, this being the result of negative wave-induced pore pres-
sures. It is therefore necessary to examine the stability characterisitcs of the slope
throughout the wave cycle in order to assess the likelihood of failure. For the time
instants plotted, the greatest failure zones are observed at wt = -721 in most cases.

The stress angle contours in a flat bed of coarse sand (computed from the
analytic solution), with L = 300m, K = Ko = 0.5 are shown in Figure (8.8). If we
compare this with the plots for slopes of 5° and 2° in coarse sand with L = 300m
(Figures 8.9 and 8.10) we notice that the failure profiles and failure depths are
similar. This means that for gentle slopes of the order of 5° or less we can determine
approximately the extent of the failure zones by using the analytic solution for a
flat seabed described in Appendix 1.

In Figure(8.11), we illustrate the stress angle contours in coarse sand correspond-
ing to the wave loading described by Figure (8.3), i.e. a wave of length 133.5m and
16m height in 30m of water incident on a 12° slope. We have already noted that
such a wave would produce more than twice the maximﬁm pressures than it would
in 80m of water at a wavelength of 150m, and a greater height of 2dm. The stress
angle contours for this latter case are illustrated in Figure(8.12). Accordingly, the
failure zones illustrated in Figure (8.11) are much greater than those illustrated in
Figure (8.12).

We have also investigated the effect of the initial stress distribution as deter-

mined by the value of the conjugate stress ratio K. Stress angle contours in coarse
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Table 8.1: In Situ Stress Angle 6, (deg)

B(deg) [K=05] K =07] K =1.0
2 196 104 2.0
5 20.1 11.3 5.0
12 22,7 15.7 12.0
20 27.6 92.3 20.0

sand at wt = % (L = 300m) are shown in Figures (8.13) and (8.14) for K = 0.7
and 1.0. We find that at these values of K the extent of the failure zones is con-
siderably smaller than at K = 0.5 (compare, for example, Figures (8.13),(8.14),
B = 20° with Figure (8.6), wt = g) The reason for this becomes obvious when we
examine the stress angle 0y under in-situ stress conditions. This is easily computed

from equations ( 7.9) and ( 7.17) as

K- 2K ¥
_1[( 2K<i:sl2ﬂ +1) ] 1)

0o = sin

For normally consolidated soils the in-situ horizontal effective stress is less than the

vertical effective stress, i.e. 0.9 < 7., From ( 7.9) we find that

(82)

Values of 6, for different values of K and g satisfying ( 8.2) are given in table
(8.1). During the parts of the wave cycle in which the horizontal effective stress is
decreased and the vertical effective stress is increased, the stress angle f increases

above its in-situ value. If it increases to the extent that 8 > ¢', failure occurs in
Ll
2
that the in-situ stress angle 6, decreases as K goes from 0.5 to 1.0. This means that

a manner analogous to “active” failure, e.g. at wt = —. We note from table (8.1)
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at K = 0.5 the unloaded slope is closer to wave induced failure than at K =1.0. In
some cases, e.g. L = 150m, 8 =12°, K = (.7 and 1.0, there is only minimal failure
(Figures J.21 and J.22).

In some soils the in-situ horizontal effective stress is larger than the vertical
effective stress i.e. 0¥ > 0%, Such a situation may occur if the soil has been
subjected in the past to heavy overburden stresses which have since been removed
over the course of its history. In this case the stress angle is increased during the
parts of the wave cycle in which the horizontal effective stresses are increased and
the vertical effective stresses reduced. Again if 8 > ¢’ failure occurs, but this time
in a manner analogous to “passive” failure. Such a situation is shown in Figure
(8.15) for a coarse sand, L = 300m, f = 20° at wit = 7, where we have taken K = 2.
As an example we examine the stress state at the point with horizontal and vertical

coordinates of (-54.5, -7.6) in Figure (8.15). The in-situ stresses are (for K =2)

019 =0.1155 x 105 Nm™
o (® =0.8064 x 105 Nm™

7.0 = 04199 x 10° Nm™

We note that o® > 00. The in-situ stress angle 8y is 27.6°. The wave induced

stresses are shown in table (8.2) at several instants in the wave cycle. At wt= 0
n . . - .

and 3 the wave reduces the horizontal effective stresses and increases the vertical

effective stresses thus tending to reduce the stress angle from its in-situ value. The
T
2

the wave pressures are reversed and the Mohr circle expands

resultant stress angles are in fact 21.7° and 25.1° at wt = 0 and - respectively.
3

2

as the horizontal stress increases and the vertical stress decreases. The resultant

At wt = 7 and
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Table 8.2: Wave Induced Stresses (x10* Nm~=2) at (-54.5,-7.6) in Figure (8.15)

Stress Component | wt=0lwl=Z |wi=7|wt==
o 09694 | -2.143 | 0.9694 | 2.143
o, 0.5819 | 0.3287 | -0.5819 | -0.3287
o -0.7634 | -0.4510 | 0.7634 | 0.4510

stress angles are 33.8° and 31.0° respectively, indicating that the failure criterion

(6 > 30°) has been violated. The failure zone at wt =  is particularly extensive as

shown in Figure (8.15).



























Chapter 9

Summary and Conclusions

In this thesis we have accomplished the following:

1. Implementation of a boundary element procedure for determining the forces
due to uni-directional waves on a plane seabed of arbitrary inclination within

the context of linear (Airy) wave theory.

2. Implementation of a boundary element procedure for determiring the wave-
induced effective stresses and pore pressures in a sloping poroelastic seabed

using the results from (1) above.

3. Determination of the approximate extent of the minimum failure zones in

various slopes under different soil and wave conditions.

In addition, we have provided a derivation of the boundary integral equations and
fundamental solutions for Biot’s linear theory of poroelasticity under quasi-static
sinusoidal loading conditions. This derivatior has not previously been recorded in

the literature.
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The following conclusions may be drawn :

(a).

(b).

{c).

(d).

().

().

The boundary element technique is very accurate, as evidenced by the com-

parisons made with analytic solutions for flat beds.

As expected, for a given slope angle the longer wave lengths produce the
greater failure zones and for a given wavelength, the greater failures are ob-
served in the steeper slopes. Also, a wave that is relatively harmless in deep

water can cause significant failure in shallower water.

There is no significant difference in the extent of the failure zones for fine
sand (ko = 10™*ms~?) and coarse sand (ko = 10~?ms~?) although in some

cases the failure zone in fine sand is slightly deeper.

It is necessary to evaluate the stability characteristics of the slope throughout

the wave cycle in order to assess the likelihood of failure,

For gentler slopes, of the order of 5° or less, the failure zones may be located
with sufficient accuracy by using the analytic solution of Appendix I, i.e. we

can avoid the complexity of the BEM for such cases.

The failure profile is strongly dependent on the initial state of stress in the
slope as determined by the conjugate stress ratio XK. For normally consol-
idated soils, the failure zone decreases in sizes as K increases, with K re-
maining in the range for which ¢f? < 0®. In such soils the maximum
wave-induced failure occurs in a manner analogous to active failure. For

some overconsolidated soils we may have o(? > ¢(®) and in such cases the
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maximum wave induced failure occurs in a manner analogous to passive fail-
ure. In these cases , larger K values mean that the in-situ soil condition is

closer to passive failure.

Suggestions for Further Research

(1)

(2)

(6)

(4)

(5)

In order to account for the volume changes of soil under cyclic loading modifi-
cations to the original Biot formulation are required, as suggested by Verruijt
(1985). Perhaps the phenomenon of pore pressure buildup under cyclic load-
ing may be analysed in this way. Further research is also required to model

the non-linear, time dependent and anisotropic behaviour of soil.

The propagation of the soil failure illustrated in this thesis needs to be studied

by means of some form of elasto-plastic analysis.

Wave-induced stresses of layered soils can be casily studied by the methods
described in the thesis. It will be necessary to divide the domain into sub-
domains, generate a system of equations for each sub-domain, and match

boundary conditions at common boundaries.

Earthquake-induced stresses in a poroelastic medium can be determined by
including the acceleration terms in the governing equations. This would in-
volve the derivation of a new boundary integral equation and fundamental

solutions.

The study of axisymmetric and three-dimensional problems is a fruitful ex-

tension of the methods presented herein.
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Appendix A

Fundamentals of Linear Wave

Theory

Referring to Figure (4.1), we assume inviscid and hence irrotational flow above the

seabed. Therefore ther = exists a velocity potential &(z, y, z,t) such that

Vi =0 (A.1)
In general, V? = & + 2.2 The z axis (not shown) is normal to the z —
& YT T 02 gy 82 r y
plane. We assume negligible flow into the seabed, i.e.
0%
= 0 on BC (A.2)

We now determine the boundary condition at the water surface. The water surface

may be represented by the equation

((=z,9,2,1) =0 (A.3)
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from which we have

¢ _9¢. 9. 8. 9¢_
dt = 9z + ayy + 9z° + ot 0 (A-4)

on the water surface, where the dots denote differentation with respect to time ¢.
This equation may be written

=%
Y ¥® =~ " (A.5)

on the water surface ,since

o=y (A.6)

If 5(z, z,t) denotes the clevation of the water surface above the mean water level

OA, then the equation of the water surface is given by y = 5(z, z,t) or

n(z,2,8) —y =0 (A.T)
From ( A.3) and ( A.7):
¢(z,y,2,t) = 5(z,2,8) —y (A.8)
from which we get
% - %% (A.9)
¥ = -g%i +(-3) + g—z (A.10)

Here i, 7, k are unit vectors in the z,y, z directions respectively. Substituting ( A.9)
and ( A.10) into ( A.5) gives

nd® 9  dnod an

920z Oy 520z = ot (A11)
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on the water surface.
In linear wave theory we assume that the water surface elevation 5 is small compared
to the wave length so that equation ( A.11) may be applied at the mean water level

y = 0. Further, we neglect the non-linear terms in ( A.11) which thus becomes

0% Oy _
T = ot aty=0 (A.12)

Equation ( A.12) is known as the linearized kinematic free surface condition. An-
other condition at the free surface may be deduced from the Bernoulli equation,
which is

0% 1

0tV T+ Tty = f() (A.13)

where p is water pressure and p; is water density; f(t) is an arbitrary function of
time ¢. If we consider a purely hydrostatic condition, ® = 0, p = —p gy for all
time, so that f(2) is indentically zero.

We write equation ( A.13) at the water surface and neglect the non-linear term:

%?- +g9gn=0 aty=n ie. aty= 0 approximately (A.14)

Equation ( A.14) is called the linearized dynamic free surface condition.

The linear wave theory model is described by equation ( A.l) with boundary
conditions ( A.2), ( A.12) and ( A.14). Equations ( A.12) and ( A.14) may be
combined by eliminating 5:

%9

W+_.;;%::l=o aty =0 (A.15)

To derive the velocity potential due to the incident wave, as given in equation

( 4.14), we consider a flat seabed, constant water depth kg, and a wave of surface
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elevation
7= noei(kr-wt) (Alﬁ)

This represents a wave propagating in the positive or negative z direction according

as k >0 or k <0. For the two dimensional problem, ® is independent of z and we

write
&(z,y) = g(y)e'*= (A.17)
Substituting in ( A.1) gives
99 2=
dy? §=
frrm which we have
g(y) = C cosh(ky + a) (A.18)

Applying ( A.2) on the seabed y = —hq implies that a = khq , so that
®(z,y) = C cosh(ky + khg)e'(k=-v) (A.19)

Now, using ( A.14) we find that

C = ig 7o

= wcosh(kko) (A-20)
and hence
O(z,y) = __ig cosh(ky + khg)e'*k=—t) (A.21)
' w cash(kho)
A dispersion relation is obtained by substituting ( A.19) into ( A.15), which gives:
w? = gktanh(kho) (A.22)
For an incident wave propagating in the negative z direction we set k = ~ko, the

negative real root of ( A.22). This gives the incident velocity potential as

&r(z,y) = wT;;Tg(%th) cosh(koy + kohg)e—(o=+ut) (A.23)



Appendix B

The Roots of the Dispersion

Relation (Linear Wave Theory)

The dispersion relation ( 4.12) is

= ktanh(kho) (B.1)

talﬁn

This is of the form

% =tanh z (B.2)

w2 ho

where ¢ = khy and a = > 0. The sketch graph Figure (B.1) shows that
equation ( B.2) has two real roots z = +z¢. Thus equation ( B.1) has two real
roots tko = i%g. To obtain the imaginary roots of ( B.1) we put k = ik where k
0
is real. Then ( B.1) becomes
a
- - =tanz (B.3)

2
where z = khy, and a = wghO.
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Fig.(B.1) Real roots of Dispersion Relation
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Fig.(B.2) Imaginary Roots of Dispersion

Relation
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The sketch graph Figure (B.2) shows that ( B.3) has an infinity of roots +z,, +x,,...
so that

F=gl 402
k—:!:ho,iho,... (B.4)
i.e. the imaginary roots of ( B.1) are given by +¢k;where
Ty
k; = = (B.5)

To obtain accurate values of the roots of ( B.3), it is necessary to provide good

estimates of these roots. From Figure (B.2) we note that the nth positive root of

( B.3) is of the form
Tn=n%T —Yy (B.6)

where y > 0 and depends on n. Substituting ( B.6) into ( B.3) gives

tany — -0 (B.7)
nw—y

The value of y is small and becomes smaller as n increases, so we may make the

approximation tany = y. This renders equation ( B.7) as
Yy’ —-nxy+a=0
which has two positive roots:
T 4a 2
y =E[n:i: n? — ;r—z-] for n>;\/5
The root of interest is the smaller value, i.e.
T 4a. 2
y= -2-[n —y/n? - ;3] for n> ;\/E (B.8)

We therefore solve ( B.7) for values of n > %\/E, each time providing an estimate

of y from ( B.8). The nth root of ( B.3) is then given by ( B.6). For values of
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n < %\/E we obtain the roots directly from ( B.3) using z, = nr as an estimate.

120

TN = 1,2, ... The equations ( B.2),
0
( B.3), ( B.7), may be solved using the IMSL routine ZREAL.

The imaginary roots of( B.1) are then £



Appendix C

Evaluation of the Integrals

(Potential Problem)

We refer to equations ( 4.33). We consider a typical element I, as shown in Figure
(C.1) with end points (Ze,¥e), (Te+1,¥e+1). The direction of integration and the
unit outward normal n are indicated in the figure. The direction of iutegration
is such that the interior of the problem domain lies to the left. The element I.is

represented in terms of parameter ¢ as follows:

On T,
z =31~ &+ (1 +E)zens

y= ';'(1 - f)ye + ';'(1 + g)ye+l
where —1<€<1 (C.1)
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(Xeo + You)

(X, %)

Fig(C1) Element T, (Wave problem)
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The line element ds is given by
( .d_s. )2 _ d_z 2 + dy 2
&) — \d¢ dé

dl. = ds = J.df (C.2)

from which we obtain

wkere
1
Je = 5l(zess = 2e)? + (Wers — )] (C.3)
We have defined the distance r as r = |x — x;| where x is an arbitrary point on
T and x; is the position vector of node j. Since node j lies on the mid-point of
element I'; we have the coordinates (zg, yo) of node j as:
1
To = 5(“’:‘ + 241)
1
Yo = 5(v; +yin)

Thus

r=[(z —2)+(y—y)’)} forz,yeT,

- r ‘ay. r (C4)
The unit normal p is given by
n
n= where
ng
= 57 (ett = )i 72 = 5@ = Tera) (©5)
ny = 2J. Yedl — Ye)y N2 == 2J. Te — Tetl ’

If e # j, integration along I'. presents no difficulty. An integral of the form
1

/r f(rr:,n;)dT, is transformed into one of the form / . g(€)d¢ by use of the for-

mulae ( C.1) to ( C.5) and then straight-forward Gaussian integration is performed.
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Integration along I';, however, requires special consideration owing to the logarith-

mic singularity of the integrand. Putting e = j in ( C.1) to ( C.5) we find that on

Lj,

r = [¢]J;
3_r=(x_ﬂ;z_)i §:=(y_f«r_y:;)_€_
oz 2J; €] ' By 2J; ] Iél

i T¥io T i
M=y TMT T
Equations ( C.7), ( C.8) imply that
or
3 = 0 onlj

We consider the integral

lnrdl’ 1l d
[ardr; = [ inflel;1de

1 1
= lean_/;ldf-l-Jj _/;11n|£|d§

1
= 2J;InJ; +2J; /0 In £d¢

2J;(InJ; — 1)

We can now evaluate the integrals A, and B,. From ( 4.24)

= on 2rr On

From ( 4.33):
1 10r .
Ae= —.é;./r.;a_n'dre e#.’

1 10r 1 .
5 vty e =

(C.6)
(C.7)

(C.8)

(C.9

(C.10)



Using ( C.9), this becomes

1‘/1c33rd[\e et

to={ T B
— e=j

Also, from ( 4.33) and ( C.10)

1 .
P = St

%(l—anj) e=j

161

(C.11)

(C.12)

As stated before, the integrals for ¢ # j can be simply evaluated using standard

Gaussian quadrature,



Appendix D

Fundamental Solution (Laplace’s
Equation)

The following derivation is a classical one and can be found in any standard text on
the boundary element method, e.g. Brebbia (1984). Referring to equations ( 4.23)

or ( 5.34) we need to consider an equation of the form
V34 + kA(z,z,) =0 (D.1)

where k is a constant.

We recall the following familiar property of the delta function:

l g, €Q

[ Al -z,)d0 = (D-2)

0 2, € O

where the integration is performed with respect to x. We integrate ( D.1) over a
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circular region , centre 2, and radius ¢:

/n $idQ+ k=0 (D.3)

where we have used ( D.2). By the divergence theorem,

_ [ 9%,
./n @i d) = ./r on (D-4)
where " is the boundary of §). From ( D.3) and ( D.4):

3 ..
[ 50dl = —k (D.5)

We define polar coordinates with g, as origin: r = |z — z,|; 0 is measured anti-

clockwise from the z-axis through g,. On T, r = ¢, and g—ﬁ = g—f so that ( D.5)
becomes
'is 3¢
jo (E)'=¢ edd = —k (D.6)
Assuming that ¢ is independent of 8, we have
0¢ -k
(E)'u "~ 2me (D.7)

which is satisfied by:

= -ék;lnr (D.8)



Appendix E

A Solution of Equation (5.108)

The equation is

Vini—a’p =0 (E.1)

where a is a real or complex constant. We verify that a solution of ( E.1) is
i = ry; Ki(ar) (E.2)
where r = |x — p|. We first note that for real or complex z, and integer n:
2n
Kn1(2) = Kn-1(2) + 7Kn(z) (E.3)

%[Kn(z) = --]2-[K,‘_1(z) + Kyn1(2)) (E.4)
Also, since r? = (z; — pi)(z; — p;),

Zj = Pj
r
r

Ty =

Tyij =

(E.5)
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rij =

Ll I N

r,j r,,- =

We have from ( E.2)

1
Nij = T [—-Ko(ar)—-—K;(ar)]ar,',-+r,.-_,- Kiy(ar)
K;(ar)

= —aryT,j lKo(ﬂ") + _“Kl( )] + u
= —aryn; Kyar) + ‘(“')5 (E.6)
Also, using ( E.5) it is easy to show that
Ty
(rirg)y =" (E.7)

Differentiating ( E.6) with respect to z; gives

l.e,

Ni.sj

—a{ryr,; [~ Ky(ar) - %Kg(ar)]ar,,- +E(ar)(ryiry )5}
+65{ -1~ Kofar) ~ K (ar)ar, ; =Ky (ar)}

a{ary; [Ku(ar) + —Z—Kg(ar)] _ D K,(ar)}

Hbi{~2r, Ko(ar) Kl(ar)}

a{ar,; K(ar) + 2 K,(ar) B o(ar) - D Kofar) - 25K (ar))
afar, Ki(ar) + T[Kz(ar) ~ Kolar) ~ 2K (ar)]}

a’r,; Ky(ar) = a*y;

VIr,; K\ (ar)] = a’*[r ;K1 (ar))



Appendix F

Functions Required for Kelvin

Function Approximations

These functions are defined in equations ( 6.21) to ( 6.27) and ( 6.28).

uo(z) = <

‘Uo(z) = {

( 4 8 28
-[1+a1(§) +ai(3) ++ar(3) ] 0<z<8

0 z>8

\

O ORI O R
8

fora @) ra@) v )’

24
] O0<z<8

ool 8
el N

o &)
‘ 5y € cos Az) z>8
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( (%)2 [ﬂ1+ﬂz (%)4+ﬁ3 (g)s+---+ﬂ7 (%)“] 0<z<8

tg(x) = 4
° z>8
Z‘;'[I+a1(§)4+a2(§)8+“.+a7(§)23] 0<e<a
vy | @) frrn (@) e @) v (3]

- [T o) o
L g & sin A(z) z>8

()48 +n(3) - ra () v<oss

uy(z) = ¢

0 z>8

81—,[ﬂ1+ﬂz(§)‘+ﬂa(§)8+---+ﬂ7(§)24] 0<z<8

STSORSIORSERONEE

‘U](.’C) = 3

N

(2z)%

¢’ {s4(z) [sin A(z) + cos A(z)] + t4(z) [sin A(z) — cosA(z)]} z> 8




w(2) = |

1 ) (T 2 , r <] ' T 28
“1(5) +°'=(§) +"'+“7(§) 0<z<8

s
4

vy(z) =+

VT
(2z)}

uz(z) = 3

0 z>8

SR ORE N

RAGELIGRERIONRE

") {s4(z)[cos M(z) — sin M(z)] + t4(z)[cos A(z) + sin A(z)]}

-1
T2

ug(z) = uo(z) + 2111(2:)
uy(z) = u(2) + 2u4(2)
v3(z) = vo(z) + 2v4(z)

vy(z) = vo(3) + 2v3(2)

o5l —2a) (3) + (—ou +26)) (g)
H-tr—20) (2) +(~aa +28) (5)

7
+---+(—a7+2ﬂ;)(§)2] 0<z=8
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0<z<8

z>8



o [ 2e) (D) + (e r 28 (B

(B2 +203) (£) + (00 + 2132) al
+- +(—a7+2ﬂ7) }
+(br+20) (3 ) + (a1 — 267) (g)
+(b2+2a'2)( ) + (az — 28)) (%) 0<z<8
+---+(a1—2b.,)( )
rg e (5) +a (5) - (3) +a ()
enGF )

-2{:—7;- ") [cos A(z) + sin A(z)+

%{34,(3) sin A(z) — t4(z) cos A(z) }] + g z>8

(

(ao—2b;,+%) G<z<8

Sl

z3(z) = <

0 z>8
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| 2{o ()m()m(

' g%[(ﬂl + 20'1) (%5) + (= + 2ﬁ;) (%23
+(B2 + 2a3) (g) + (-2 + 26;) (%)

: 4ot (=ar+28) (2) ) 0<z<8

0 z>8

sl @ -G

+(B2 + 203) (8)5 + (a2 — 283) (§)7
+...+(a7-2ﬂ;)(’°)2'}
)3

=t = 2a) (3) + (a1~ 28)
)7 0<z<8

+«h-%9@f+@:2m(
16}

®|y

wo|l8

+-- +(“7—2b1)( )

)+
en @)

%/—E; e@ [cos \(x) + sin A(z)+
23

vz

2 foole) cos X2) +to(2) sin N }| - L 2> 8
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Qg — 2b +
—_———0 3 0 < &
V2 <
z(z) = 4
0 r>8

u4(z) = us(z) + \/-[“1(3) + "1(3)]
wa(z) = wa(z) + %{vl(z) +vy(2)]

24(z) = z3(z) +

SI

() = ug(a) = (@) = v ()]
wy(z) = wy(e) = Zli(z) ~ vi()]
()= #(@)+ =
zy(z) = z(z) + 72

us(z) = uo(z) + wi(x)

v5(z) = vo(z) + i ()
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ug(z) = ug(z) + vy (@)
v5(2) = vo(2) + vy ()

ug(z) = dus(e) + Zslua(e) + uy(2)]
we(z) = dus(z) + =[r(z) + vi (=)

26(2) = dz3(z) + 71_5

ug(z) = duy(z) — %tw(z) - uy ()]

z

w() = dws(z) - ﬁ[vx(m) ~vy(2)]

£4(0) = 42i(2) + 5

1 0<x<8
118(.‘C)=
0 z>8
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Functions needed for the above are as follows:

For0<z<8:
o\ 4 8 28
fo($)=ao+at(-8-) +az(§) +---+a7(-§‘)

go() = by (§)2+b2 (%)6+---+ br (%)26

. g

= 3 s ) 05 ()"

8

o) =+ (5) + 5 (5) +-+ 0 (5)”

Forz>8:

v(z) =co— 1 (‘S)-I-cg(g)z—qa (§)3+"'+Cs(‘g)6~%
A(z) = do — dy (g) + d; (g‘)z-—ds (g)3+"'+d6 (g)e— z

=

36(2) = (s0+to)—(s1+1) (-S—) +(s2+13) (g)z-—(33+t3) (.3_)3+, - +(s6-+1s) (g)e

e LG S P

e _,.c_:..:;;;...g..‘r.‘.’n;.-'.'i{n&‘ai‘l
T . ~ . B Y O



0€

oy = —64 oz = 113.77777774
as = —32.363456562 a4 = 2.64191397
as = —0.08349609 g = 0.00122552

az = —0.00000901

pr =16 P2 = =113.77777774
B3 = 72.81777742 B4 = —10.56765779
Bs = 0.52185615 fBg = —0.01103667

B7 = 0.00011346

oy = —4 oy = 14.22222222
oy = —6.06814810 oy = 0.66047849
ay = —0.02609253 o = 0.00045957

ay = —0.00000394

A = —10.66666666 B; = 11.37777772
By = —2.31167514 G, = 0.14677204
B; = —0.00379386  S; = 0.00004609

Br=0
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ap = —0.57721566 @, = —59.05819744
az = 171.36272133 a3 = —60.60977451
ag = 5.66539121 a5 = —0.19636347

ag = 0.00309699 a7 = —0.00002458

by = 6.76454936 b, = —142.91827687
bs = 124.23569650 b, = —21.30060904
bs = 1.17509064  bg = —0.02695875

by = 0.00029532

ay = —3.6011373¢ @, = —21.42034017
ay = —11.36433272 a, = 1.41384780
ag = —0.06136358 a5 = —0.00116137

a;, = —0.00001075

by = 0.21139217 b, = ~13.39858846
b, = 19.41182758 b, = —4.65950823
b, = 0.33049424 b, = —0.00926707

bg = 0.00011997 &, =0



i
=

c2
cq = —0.0000252

cg = 0.0000006

dy = —0.3926991
d; = —0.0009765
d4 =0

dg = 0.0000019

8o = 0.7071068
s; = —0.0013813
84 = 0.0000346

sg = 0.0000016

to = 0.7071068
t; = 0.0013811
t4 = 0.0000338

ts = —0.0000032

¢; = 0.0110486
cz = —0.0000906

¢s = —0.0000034

dy = —0.0110485
ds = —0.0000901

ds = 0.0000051

8y = —0.0625001
33 = 0.0000005

g5 = 0.0000117

t, = —0.0000001
ts = 0.0002452

ts = —-0.0000024
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Appendix G

Real and Imaginary Parts of the
Porcelastic Fundamental

Solutions

The real and imaginary parts of the fundamental solutions are defined in equation
( 6.30). The functions u,,v,,w, and 2, used in the following take argument cr

where the parameter ¢ is defined from ( 6.16) as

o _wfkd
~ R(A+2p)

The parameters 12,k and H are given by ( 3.24), ( 5.118) and ( 5.121) respec-

tively. The following dimensionless groups are uceful in describing the fundamental
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solutions
=B 1
. = H 21-v) K,
1-2v  uf
Ky
_K
II"‘H‘2(1—u) K;
1-2v wf
_1=-2v  pf
IL. 21-v)  K;

Thus in defining ¢, II,,II; and II, is necessary to know the following material con-
stants: porosity f, permeability ko(ms=1), shear modulus of soil skeleton g( N'm=?),
Poisson’s ratio of soil skeleton v, density of pore water pys(kg m~3), bulk modulus
of pore water K;(Nm™?).

The following dimensionless groupe occur in the fundamental solutions. The

symbol rp reprecents an arbitrary length.

_H—-p 1.
_H+p_1
=g = 2(1+11,,)

_ ikoKyaly  IRII.
T wfipgH? T P

2
o, = K}‘;{"" = —ill,
where
' H;,c’ro
I, =
' f

_ tkoa’K 6 11,
T wfpgH ~

1-1,
Ng =arp= (—\7-53-)1'16




where
[}
ne = CT 0

_2H ) o
= S5 =21 -10)

IIg =

II7

=TI,

SIS

i2;1K2koa3ro -
[lg = Lo =1~
® T wilpigH? (1=t

where

v V22 erg
Hg = ———,—f?_

2,2
Kfa 7’0 oamp!

where

where

The functions defined in equation ( 6.30) are given below.
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Function Hy

Fori=1,2
For k=1,2
For k=3
Fori=3
Fork=1,2
For k=3

180

Hy = —z6ikus + Ma(uarrx — ur i)

! ’
H,‘k = II,,rr,,-ul

or

Hy, = Hs(—uzr,ka—n + uyny)
Hy = —¢:21'01'--a-£u'l

on
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Function Hlfk

Fori:=1,2
For k=1,2

Hyy, = Ta(ugrre — uybix)
For k=3

H,-',, = —H;rr'.-ul
1=

For k=1,2

’ ’ 61' )

Hik = Hs —'u2r'k5;; <+ ulnk

For k=3

’ r
H; = c*ror—u,

on
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Function G

Fori=1,2
For k=1,2

G = Thrirs + H26;,,[ln(§) ~ (1= ug)ln (-°21)] + Ta(varir s — v1628)

For k=3
Gi = H;rr‘.’v;
7 =
For k=1,2
or
Gix = Hs(—vzr.ka; + v1ng)
For k=3

Br '
Gir = ~c*ror—v,

an
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Function G,

|

Fori=1,2
Fork=1,2

Gy = Ma(vyrir i — vy6)
Fork=3

' ’
G.'k = —II‘TT,.‘U]

For k=1,2
' ar ’
G = Ms(~varie - +vamk)

Fork=3

GI _ 2 ar
ik = —CTrorz—Wni

on



184

Function P

Fori=1,2
Fork=1,2

’ ar ' 3 U Y
Py = Hg{(a—n' ik + rane)(us + ug) — a—;T,iT.k(uB + ug) + rani(uq + uy}

For k=3
Py = Il'w{—u;(Zr,.-g—; — 1) + ugn;}
Fori=3
For k=1,2
Py = H;r'kru;
For k=3

(] r
Py = I 5uq
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Function Pi'k
Fori=1,2
Fork=1,2

Pi'k = H; {-— (-g-g ik + T,,'n;,) (ua - u;,) + g—:-r'.-r,k(ue - u;) — r,kn;(u4 - u;)}

For k=3
P, = Myp{ua(2 o ;) + uoni}
ik = ljplUalar; an n, Uon; |
Fori=3
For k=1,2
P-"k = —n:ﬂ'.k"“l
For k=3

’

’
Py, = —Iljuo
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Function Qi

Fori=1,2

For k=1,2

'] a ’ a » ’
Qir =1y {(5;;-5.1 + ) (ws + wy) — E%T.ir,k(we + wg) + rani(we + w4)}

For k=3
(2 Fi a ’
Qir =Tl {—02(2",-'3—; —ni) + von-‘}

For k=1,2

Qi = Myr k1o,
For k=3

! !
Qir = II;5u
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Function Q:-&

Fori=1,2
Fork=1,2

2 14 a 1 a ! ’
Qi = Ho{-(a—;&k + ring)(wa — wy) + 5’2?‘.#‘.::(108 — wg) — Tani(wq — wy)}

Fork=3
] ] 87'
Qi = Hm{vz(zr,ia—n —n;) — von;}
E‘QI i == 3
For k=1,2
Q:'k = _n:tr.krvl
For k=3

’ ’
Qi = —1;,v0
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Function Z;¢

Fori=1,2
For k=1,2
or d
T = — H-rcr;a—nr,.'r,k - Hscro(a—;&'k + ring —rin;)
1) r ' 6r )

+ Hs[(‘é;;&'k +rin)(2s + 23) — gorir k(26 + 2)

+ raniz+ 2,)
For k=3

Zi=0

For: =3

Zig=0for k=1,2,3



Function Z,fg
Forz = 1,2

For k=1,2

o

For k=3

or
%5&

ar
+ r..-nk) (0= 50) o a(an = 75) = r il = 24)

Z; =0for k=1,2,3

189



Appendix H

Functions Required for the
Evaluation of Interior Effective

Stresses and Pore Pressure

These functions are the integrands occurring in equations ( 6.60)and ( 6.61). In the

following,
n= ] V2V where v is Poisson’s ratio of the solid skeleton
a=—ic* , a=e¥Fe=—(1-i)
V2

Ky and K, are the modified Bessel functions of the second Lind of orders 0 and 1

respectively.
Ky(ar) = ker(cr) —ikei(cr)
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L

! J i o !
Ky(ar) = —\/é.[ker (cr) + kei' (cr)] + -\/-E[kez (er) — ker (cr)]

where ker, kei, ker', kei' are the Kelvin functions.

2 2
Fi(ar) = pr Ko(ar) — ;—;Kl(ar)

2, .
= - \+ —ker
ker(cr) + crkez (er)

. . 2.
+z[c2—2r2— + kei(cr) + zr-ker (er)]

The functions Dak;, Sa,.,-,ﬁf,i—‘;?’ are defined below.
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Function Duy;

Fora=1,2
For k=1,2and j =1,2
1
Dor; = -1 ;(21‘,06;‘,' + 7 k60j + 7,0k — 47 oT 5T k)
1
+Hz;(1‘,j5ak + 7 x6a;)
2
+I'I3{-T-F1(ar)[r,0,6k,' + r,kb',,,- + r,jé'a,, - 41".,,1",'1'.;‘]
+2aK,(ar)r or v}
1
—ﬂr.aﬁk,’[;(nl - II3) - HaaKI(ar)]

For a =3
For k=1,2and j =1,2

2 d
Dakj = ~]lg {;Fl(ar) [-a%(&u - 41"1:1‘,_7') + rin; + r_,-nk]

i
+a5£K1(a1‘)[21‘,j7',k + '75k:']}
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Function Sag;

Fora=1,2
Fork=1,2and j=1,2

Sok; = roH7ri2{-g%(2r,06kj + 7 k0aj + 7,0k — Brar T i)
+ra(ran; + rng)}
roll 5 {2(ms Bk + mabos) — 21, (5B + r.ame)
—2r k('g_"‘"saj + ranj) = 2(8kj — 2rir i Ing}
+2(1 = §)Iy{——== Fl(ar) [4——-(61' als b T — Tabk; — T 48a; — 7 i6ak)
+nab; + nkﬁaj + nj5ak
—4(rorgnj + ror 0k + T )]
+H (‘"')[ 3 (ribak + ki + rbaj — 8rarar;)
r
+ra(ren; + rjng) + na(3rr; — 6;))
+aKo(ar)[—-aa—:-;-r,ar,kr,j + i1 i)}

1 or
+n6k_,-{2roH3 —a(na - 21"0 a—n )

Kl(ar)( n — or

+(1 - )H9{ .a%)

+aKo(ar) (na - r.a’a';)] }

Fora=3
Fork=1,2and j=1,2

Sak; = =i {(1 + 1)6:; Ko(ar) + Fi(ar)(6x; — 2rsr )}
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. ~e3
Function .

—_—
Fora=1,2
> %3 1 Jpu—
Uy = E:H,,rr,a[Fl(ar) + Ko(ar)]
Foaa=3
=23 _ (1 - i) » Or
U, = 7 H“an Ki(ar)
~»3
Function T’

Fora=1,2

=3

T, =—ill, { (2r,a§£ - na) Fi(ar) + Ko(ar)na}

~»3

T, = —ill;;Ko(ar)



Appendix I

Wave loading of a Flat
Homogeneous Isotropic
Poroelastic Seabed - Analytic

Solution

For the case of a flat seabed, it is possible to determine by analytic means the
wave induced effective stresses and pore pressures. We present here a summary of
the technique used by the author in his M.Eng thesis (Raman-Nair, 1985). It was
demonstrated that for sand beds the acceleration terms may be deleted from the

governing equations. We thus obtain from ( 3.17) and ( 3.18), for no body forces,
Tijj =0 (I.1)
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.= P19
Dsi ko w; (1.2)
where
w; = f(U; — ;)

We also recall from ( 3.5) and ( 3.26) the constitutive laws in the form

Tij = 2pe;i + bijAe — §;p (1.3)
__Q=)
7T

where we have used the fact that K, — co,s0 that a ~ 1. Substituting ( I.3) into

Kye + Kye (1.4)

( L1) gives
uti ;i + (A + p)ujzi = p (1.5)

We shall rewrite equation ( I.2) in terms of the soil displacement vector u;

(rather than w;). Differentiating ( I.2) with respect to z; gives

_psgf @

~Pi =" (e €) (1.6)
From ( I.4):

Kie—e)=—-p— ﬁfl-e
Substituting this into ( 1.6) gives:

koo, L O Oe

V=i wt B (L7)

This is the so-called storage equation derived in a different way by Verruijt (1969)
and Biot (1941).
The system of equations ( 1.5) and ( 1.7) must be solved subject to appropriate

boundary conditions. We take the z-axis on the flat seabed and parallel to the

PR TERI N I el
~ - [,
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direction of propagation of the wave. The z-axis is vertically downward into ke
soil. The problem domain is two dimensional in the £ — z plane and is illustrated

in Figure (I.1). The boundary conditions are:
(@7, =1,=0 at z=0

(b) p( in bed ) = Pyeilkz=vt)

where P, is the amplitude of the wave induced pressure on the seabed, k is the

wave number and w is the circular wave frequency.
Jur=u=0 atz=2
where u; and uy denote the  and z components of the soil displacement vector u.
(d)—g—f—-o atz=2
The value of P, is determined from the wave velocity potential ® which is given by:
&(z,z,t) = "'—:2[cosh k(z+h) — f";’% sinh k(z + h)]e'(k=-wt) (18)
where np is the wave amplitude. Then from Bernoulli's equation,

iCkz— a®
Pyeilke-ut) = Ty at z2=0

so that
2

Py = pynoglcosh(kh) — :—k sinh(kh)] (19)

In view of the dispersion relation

w? = gk tanh(kh)
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Wave Form: tl: " eL(kI-wn
[ ]
STIL _WATER LEVEL
SEA h
SEABED Y X
—y— ypm—ct v P pp——y <

SOIL Z, !

IMPERMEABLE BEDROCK

FIG.(11) Wave Loading of Flat Seabed
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we can write ( 1.9) more compactly as

__PsMog
P = cosh(kh) (L.10)

Equation ( I.5) is satisfied by the function

u; = (¢ + z;95), — 4(1 — v)es (I.11)
where
y = -2-(7\—};5 (Poisson’s ratio)
provided that
20D (V242,930 — 4L = V)V = s (112

Equation ( 1.11) is the well known Papkovich-Neuber solution of the equilibrium
equations of theary of elasticity, ¢ and 1; being functions of z,z , and t. Any one
of the functions ¢, 1,12 may be taken to be zero without loss of completeness
provided that the coordinate system is chosen in an appropriate way and 4v is not

a positive integer. We choose

Y=0and 3 =¢
Then equations ( 1.12) become
s -a— 2 2 = @
2,1ﬁaz(V ¢+ 2V%) = 32 (1.13)
2 2 2 dp
2pﬂ-é—z-(v ¢+ 2V%) —4pu(1 - )V = % (1.14)
where

f==V (1.15)
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Equations ( L13) and ( I.14) represent equation ( I.5) in terms of the functions ¢
and 1. Using ( 1.11), we express ( 1.7) in terms of ¢ and ¢:

ko o, £ O _ 0 [ 2 _ 91 - 2) 2
PIng K!at—at[v¢+zv¢ 2(1 21/)6z (1.16)

It can be shown (Raman-Nair, 1985) that the solution of ( I.13), ( 1.14) and ( I.16)

is of the form

#(z, z,t) = [(&1 + aaz)e™™ + (a3 + aqz)e” + a;e"‘" + aee""]e‘("“”"(l.17)

P(z,2z,t) = (Be* 4 Det*)eilk=-wt) (1.18)
where
B = —~4pfa;
Op
D = _4”ﬂa‘
0o
= -201- )l—+ -
o = g 2upB
and
p(z,z,t) = (A;c"" + Age** + Aae"‘" + mek")e‘(""“") (1.19)
where
A = —4pfkay
A, = 4pfkag
Ay = 2uB[(K')? - K)as
Av = 2up((K')? - K?]ag
(k) = K==

P19 [ K! 2#ﬂ]
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Using the constitutive 1aws the effective stress components 7"-',- are written in terms

of ¢ and 7:
"'.",-. = 2pbs; + 295 — (1 — 2)(i5 + ¥5.4)]

2 3
+6; (1 _f‘;u) [V2¢ 4 2V —2(1 — 2u)a—f (1.20)

Hence the effective stress components and pore pressure can be expressed in terms
of the six constants a;, a3, ag. The six boundary conditions lead to an equation

of the form

[Alx =b (L21)

where
x = (a1,4a3, as, a4, as, aa)”
Po
b= 0107 ,0,0,0 T
( 2P )

The elements a;; of the matrix [A] are given by

an = k?

apa = =2kB[1+ 4—(1—;'0i)£‘-]
a3 = k*

iy = —an

as = K+ (k) — &%
g = a5

an - -k

a3 = 1+ —-——4(1 —v)K

Qap

023=k



a4

Gas

Qe

as

a3z

Q33

a34

aas

Q3

a4

aq

as

Q44

1713

a4

asi

ass

as3

Qsq

ass

Qs

Qg1

It

~2k
2k

() — &

a3s

—ke~k=

|~kzo+ 14 (k2o +3— 4u)%‘£]e"“°
0

k ekzo

[kzo + 1+ (—k2o +3 — 4u)%‘g]e"'°
0

_k'e—k'zo
' k’zo
ke

0
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ag2

Qg3

Qg4

ags

ags

ok2e—Fk

0

k2 k= N
k'[(K')? — k®le”

—'[(k')z _ kzlek'zo

k
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Appendix J

Stress Angle Contours

204



Depth (m.)

Depth (m.)

Horizontal Distance (m.) Horizontal Distance (m.)

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10

-5

0

665 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 O

Jl T Yllllllllllltll["l[1rt"lf‘t""'Tr7‘Tllllllllllllllll’h 0 TT WASERENES AR EEEE R AR EAEE SRR R R AN NS E SRR R R RS AR RE SRR RE RS
] |
]
-5 b 5 -8}
1 -
10: :‘10 - ‘U:‘\
= 4 g I
- 1 E :
15 4-18 ~ o
-20 F J]-20 B C
- 2 Q.-20f
C 3 ) C
o " -
-25 4 -2§8 L
- -1 -
50: wl=0 ] 20 o
- 1 b
LAd 0 iaa it aanisgl i i tayetisieiraaeeqeriooqgedisiiany -AlllllllllllllllllIllIllljjllllllllllllllllllllll‘llllllllllljll

L1 a1t ap ety

IR EE SN

-10

-20

-25

-30

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
Horizontal Distance (m.) Horizontal Distance (m.)

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

0 ] 0 0_ IllllllllIIllllllIlllllllllllllflllIIllIllIIlIIIIIIlllIII_

h 5 —SE ]

1-10 - —1OE ]

1-18 g -1s F ]

C ] i g - ]

- o - = [ ]

ao: 20 o 20: .

F o o .

-25 | s O -as| ;

o ] C wl=nx ]

-30 f 1-30 30 F ]

o ] C F\ ]

L1 4000132040 08008 a et at s a i AtraaaatiaaItititas L1 N A4 12 40430000001 40410 e a0 i a k48 0 8 yatd e adadesa e il italrritres

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -6& ~65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10

o

Figure J.1: Stress Angle Contours(degrees): Fine Sand, A = 0.5, L = 300 m, g = 20°
lo=14 m,{, = 34 m

-5

o

20

-25

-30

S0¢



Depth (m.)

m
LI B B O B 2 S BN N I O S R B 14
4

Depth (m.)"

Horizontal Distance (m.)
-55 -GS0 45 -40 35 -30 -25 -20 -15 -10 -5

0

-65 -60
0

IARARESRE RS NEERERR R R E R R AR AR AR R R R AR SRR RRERREE]

-20

-25

-30

44 i i e g adara e il adn it areadppqdtosaaiaapaaigiisns

O S S R A A |

U S B 0 U0 B B O B W I 1

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5

Horizonta! Distance (m.)
685 -60 &5 -50 -45 -40 -35 -30 -25 -20 -t5 -10 -6

“10: - ]
e — =
"15: 1
C 20 b
-20 / .
-2s | ]
- wt= 32X ]
- 2 ]
_50_ -4
hll‘llllllllllIllllIIlllllllllllllAlllJllllLlLlll]llIllllllllllll-

o

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 10 -5

o

-20

-25

-30

-20

n
“n

-30

Depth (m.)

Depth (m.)

Horizontal Distance (m.)

‘65 -60 55 -50 -45 -40 -35 -30 -25 -20 -15 10 -5 0
0 TTTTT lllllllllllllll'['TIYTr’TTllllllIIIIIIIIIIITTIIYTUTIYIIY_‘ 0
5k ~ Seab 1 s
\50 ed ]
: O T ]
15 F i s
-20 f i eo
-2s f i es
o wt = x ]

F 2 ]
-30 | {-30
—llllllllllllllllLlLlLJlllllllllllAll‘llllAlLJ_lLLLJlllAAJll‘Allll-‘

65 -60 55 50 -45 -40 -35 -30 25 -20 -15 10 -5 O
Horizontal Distance (m,)

65 -60 -55 -50 -45 -40 -35 -30 -25 -20 15 -10 -5 0

l. \\‘ X7 l‘llll“lﬁliillFIIIIIIIIIYTFIYIIIllllTTllllIlITllllll'l’_‘ U

) 4

_5?\\ ] s
10 :,\ :
15 F

r
20 f
s 24
-30 F

hlllllllllllllllilllllllllllllllllJAllllllllllLLJAlllllllllJJllll~

65 -60 55 -50 45 -40 -35 -30 25 -20 15 -10 -5 0

Figure J.2: Stress Angle Contours(degrees): Fine Sand, k" = 0.5, L = 300 m, j = [2°

90¢



Horizontal Distance (m.)

25
-65 -60

-65 -60 -55 -50 -45 -40 35 -30 -25 -20 -15 10 -5 0
0 T IRANEEAREE RS RN AE AR ERREEERRRE]
-5 ;\
= - .
E -10 F
= r ]
o 5: ]
« _15 L 4
Q - ]
(13 3 i
Q C ]
by wt=0 ]
25 hlllllllllllillIllllllll‘llllllllllllllllllillll‘lllllllllllllLLL‘
-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -§ 0
Horizontal Distance (m.)
665 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
-5
1
E’ -10 ]
_'c p
- -15 B
Q 4
o 1
(] ]
-20 -

-18

-10 -5

[=]

-85 -50 -45 -40 -35 -30 -25 -20

-20

-25

-20

-25

Depth (m.)

Depth (m.)

5
65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5§

Hotizontal Distance (m.)

65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 10 -5 0
0 TTrT |IllT'llllII’]lI‘IITIIlll""'llllllIIII"IIIIIITTIII_
e |
= -
- 30 4
C ]
10[ 1
15t ]
-eo0f x ]
- wl = — .
r 2 ]
_25 -.llllllllll‘lllIllllllljllllllllllllllllllllllllljllllllll,LLlllll.‘
’65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -§& 0
Horizontal Distance (m.)
-85 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 Q@
0 TYTTTT T I I T T T I T I I I I VI Y TN AT A v YT T T T Iy I T o T rTT
P Seabed ]
-5 F 14 i
Ot 14\-\\:.
ik ]
L- -
-20fF ]
i wlz=nx ]
—Ll_llllllllll‘llllllllllllllIlllllIL‘[‘LLLLAAALJLIAIIIIIlllllllllll‘-

[=]

Figure J.3: Stress Angle Contours(degrees):Fine Sand, A" = 0.5, L = 300 m, § = 5

10

-15

-20

-25

[==)

-15

-20

-25

L0Z



Depth (m.)

Depth (m.)

Horizontal Distance (m.) Horizontal Distance (m.)

n

-
o

-
"

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
0 TT TTT T TTVrrirTrrTrrTrrrrreyTrryrryyrrTTT TITTYJTTTITIOTTY [] U TT17T TTrY TTTVITTI T TV IV AT T I T T RTITIT vRrI I T T Trr TIr(T 1J
el N e

L ] :-/\A
3 5 - B
i 30 P ——— ]

SE ] '5 '5: 50 : -5
| @OM\ E - 1
-10 4-10 ~ -10F 4-10
A ] £ i 1
i ] e L ]

L 4 Q L 4
-15 | 1-18 @ 15} {-15
L ] (o) L t » }

C wt=0 ] C wl = —— ]

i ] B 2 ]
-20 ¢ 4-20 -20 } 4 -20
-lll‘lllllIlllllllllll‘Allllll]llLllIIllIllllllllllllllllll‘lllll-‘ _lllllIllIllllijlllll]l‘ll‘lllllllllllLLliLlJl_lllLllLLJllllllllll—‘
-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 a -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5§ 0
Horizontal Distance (m.) Horizontal Distance (m.)

.65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -§ 0
0 _ T 0 0 TTTTT T I Y T U T I r T IT RIS TT T I T IT I vYT LRELAR AN LA

Seabed™
B TBW
] Q 10—
-5 4 5 -5 £ :_
- - B ]OU—/—/\—
_10: :—1[] = -10 1.
i ] N [ ]
- ren
L 4 Q_ - e
-15 C :] -15 8 15 : .
[ T 4 B wl = ]
L wl= -2— 4 - ':T i
L 2 ] : ]
-20} 4-20 e 4-20
hjleLLLLJ_LllllllllllllllllllllllllllllllllllllllljlljlllllIlllll-‘ L“‘l“l“““““lllllllll‘lllllllllll‘l‘ll]‘]‘|11|‘|“_LJ‘1‘||_
-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 -65 -60 -55 -50 -45 -40 -35 -20 -25 -20 -15 -10 -§ 0

Figure J.4: Stress Angle Contours(degrees):Fine Sand,A' = 0.5, L = 300 m, g = 2°

80¢



Depth (m.}

Depth (m.)

Horizontal Distance (m.)

-65 -60 -55 -50
0

-45 -40 -35 -30 -25 -20 -15 -10 -5 0

_llll lllllllllIlTlllllllfTrl'"ll’lll|III"IIIIIIIIII"I"III'II 0
- 4

-5 F E 5

10} -0

-20 F J-20
r ]

. [ ] .25

est wt=0 ]@

-30 | 1-30
-lllllllllllllllllllllllJLlllllllJllllllllllllllllll]llllllLlllll-
65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

Horizontal Distance (m.)

;65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 .

-5 _:_ -5

10 F 1-10
C 1 T———— .

15 F ///—‘f—_ i-15
-a0 | d-20
u ]

-25 [ ]-as
C wl= —3,'. ]

- 2 ]

_50 L = '50
'—llllllllllllllllllllIllIIllllllllllllllllllllllll‘llIlllllllllll_‘

-65 -60 -55 -50

-45 -40 -35 -30 -25 -20 -16 -10 -&

o

-30

Horizontal Distance (m.)

085 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -§

0

TTTTYV IR AR RN A AR SRS R RO RAREER A NSRS ARREERRRER A ]

)

0 Seabed

4500\\__
T

T

u)t = _2[_
2

TTTI T T T rrrrTTT 1112;)

AL L4 L1 A8 a 4 d Al At d A td Al st iR il IaaaiEiy

L 11)yg g1

N EEEE AN S EE NN

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5

Horizontal Distance (m.)

665 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5

-5
= -10
=
~

-15
L
a
db -20
(@]

-25

-30

0

0

AR N A R SRR R R R R

wl=m

LA JLUL A0 B 5 B I S N ¢ Krj

Al 40 ataan o gy e 0 tet a1 0000ty a st e iasnsrgry

Ly a1 1811

-65 -60 -55 50 -45 -40 -35 -30 -25 20 -i15 -10 -5

Figure J.5: Stress Angle Contours(degrees):Fine Sand,K' = 0.5, L =226 m, = 12°

(=]

-2o

-25

-30

-20

-25

-50

60¢C



Horizontal Distance (m.)

-85 -60 -55 -50 45 -40 -35 -30 -25 -20 -15 -10 -§& 0]
0 TTITTTV TTVrT VI TP AT T TTTTI T T FYNTITONNTOT OIS AT FL TN T FITFITRTITNRITITNTT

sl
g -1of :
< r ]
o 5 ;
43 - i
0 C ]
-20 F ]
- wt=0 ]
- 5—llllljlljllllllllllIlllllllllllllllllllllllllllJllllllllllllllLi
-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

Horizontal Distance (m.)
685 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
-5

£ -10f ]
£ C ]
o [ ]
[+}) . i
] - ]
-20 4 E
L wt = 3 p
[ 2 ]
. -IIIAlIllljlllllLlllJlllllllllllllllllIIIIIAAlllllllLlJ_llJJll,lLJJ—

5
-65 -60 -55 -50 -45 -40

-35 -30 -25 -20 -15 -10 -6& 0

-20

-25

-20

-5

Depth (m.)

Depth (m.)

-10
-15

-20

25
-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10

25
-65 -60 -55 -50 -45 -40 -35 -30 -25 -20

Horizontal Distance (m.)

-45 -40 -35 -30 -25 -20 -15 -10 -5

0

685 -60 -55 -50

LA RN A AN A RN RS NN SN e

Seabed

wl= —
2

A4 A 0Lyt g b aa s a1 n ey diagaia iy iaauiisieatiig

I S TN TN N T U T T Y T TN O G S S

a

-5
Horizontal Distance (m.)
-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -8
0 TTT TVTTV VT T T TV FO IR RSN T AT TR TR I T T g Py rIITrrrTT
-5}
ok
st
20k .
[ wl=7®
-llllIllLlJJllll‘lJlllll]‘l‘lI‘IIl‘lllllllll‘AII‘III‘JL“IIIII‘II

T N B U A A |

-15 -10 -5

Figure J.6: Stress Angle Contours(degrees):Fine Sand,K = 0.5, L = 225 m, = 5°
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Figure J.7: Stress Angle Contours(degrees):Fine Sand, K = 0.5, L =225 m, g = 2°
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Figure J.8: Stress Angle Contours(degrees):Fine Sand, A = 0.5, L = 150 m, = 20°
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Figure J.9: Stress Angle Contours(degrees):Fine Sand,K = 0.5, L = 150 m, = 12°
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Figure J.10: Stress Angle Contours(degrees):Fine Sand, A" = 0.5, L = 150 m, # = 5°
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Figure J.12: Stress Angle Contours(degrees):Coarse Sand,A’' = 0.5, L = 300 m, § = 12°
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Figure J.13: Stress Angle Contours(degrees):Coarse Sand, i\ = 0.5, L = 225 m, g = 12°
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Figure J.14: Stress Angle Contours(degrees):Coarse Sand,k = 0.5, [ = 225 m, =25
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Figure J.15: Stress Angle Contours(degrees):Coarse Sand,K = 0.5, L = 22
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Figure J.16: Stress Angle Contours(degrees):Coarse Sand, ' = 0.5, L = 150 m, f§ = 20
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Figure J.17: Stress Angle Contours(degrees):Coarse Sand, A = 0.5, L, = 150 m, 8 = 5
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Figure J.18: Stress Angle Contours(degrees):Coarse Sand,A’ = 0.5, L = 150 m, § = 2°
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Figure J.19: Stress Angle Contours(degrees):Coarse Sand, L = 225 m, wt = , K =07
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Figure J.20: Stress Angle Contours(degrees):Coarse Sand, L = 225 m, wt
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Figure J.21: Stress Angle Contours(degrees):Coarse Sand, L = 150 m, wt =
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Figure J.22: Stress Angle Contours(degrees):Coarse Sand, L = 150 m, wt =
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