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Abstract 

The constrllction of the Kemuning Diversion channel is designed to address 

the flooding problem of the city of Sampang, Indonesia. Under the proposed scheme the 

Kemuning River, which causes this flooding (drainage area = 345 km2
), will be divided 

into two channels upstream of the city. The downstream limit for both channels is the 

Strait of Madura. The diversion channel will carry much of the flood waters away from 

the old channel through Sampang (population - I ,000,000). The proposed design, 

which was developed by a local engineering consultant, did not include any analysis of 

possible future channel changes caused by sediment budget imbalances. This thesis is 

concerned with the analysis of the possible char.nel changes associated with relatively 

long periods of operation. The problem was evaluated by using a deductive approach, 

which involved application of a mobile bed mathematical model of the channel, and an 

inductive approach, based on regime theory. 

Using the deductive approach, estimated channel changes were derived by 

solving the sediment-continuity equation together with Laursen's and Yang's method for 

calculating the rate of sediment transport. Initial sediment movement was determined 

using a critical hydraulic shear stress, estimated from available soil data in and around 

the proposed channel. Hydraulic computations, which were also used to calculate the 

rat!! of sl!dimcnt transport, were performed using the standard step method and the 

Manning equation. To simulate twenty years of hypothetical operation, water discharge 

inflows of interest were St"lected using the historical flow duration curve, which was set 

up as a series of discrete discharges. 

The estimated channel changes were simulated using mean sea level (MSL) 

as the downstream boundary condition. The channel bottom was found to exhibit 

aggradation all along its length. 
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1. IN'fRODUCTION 

1.1 Background 

Indonesia (Figure 1.1) is a tropical country with two distinct seasons, a wet 

season and a dry season. The annual variation in flow in Indonesia's rivers is very much 

affected by this seasonal cycle. River flows usually diminish during the dry season but 

increase very markedly during the wet season. These conditions tend to create potential 

nooding problems, which in tum affect the people whose lives are intrinsically tied to 

the various rivers. The particular river with which this thesis is concerned is the 

Kernuning River on Madura Island, in the province of East Java. 

The Kemuning River flows through the city of Sampang (Figure 1.2) which has 

experienced flooding problems almost every year on record. An investigation into this 

problem was conducted by a private engineering firm under the supervision of the Office 

of Irrigation Services (OIS) for the province of East Java. This investigation found that 

the interdependent factors contributing to the flooding problems were the hydrologic 

condition of the Kemuning River basin and hydraulic capacity of the river channel. 

Based on these findings, the Government of Indonesia implemented a two-stage plan for 

coping with the problem. This plan involves the construction of diversion channels and 

the construction of detention basins (reservoirs). 
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Figure 1.1. Map of Indonesia. 

For the first stage, the design of the Kemuning Diversion Channel was undertaken 

by CV.HIDROS, a local engineering consultant. The proposed design for the diversion 

channel is summarized in Figure 1. 3 and Table 1.1. When the proposed diversion 

channel is completed, the Kemuning River will flow into two channels before passing 

through the city of Sampang and then on to the Strait of Madura (Figure 1.4). It is 

hoped that this will ensure that the maximum safe water level within urban areas will not 

be exceeded as a result of flooding . In this respect it is noted that the design of the 
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Table 1. 1. Summary of Diversion Channel Characteristics 

Description Remark Description Remark 

Design discharge 311 m3/s Bottom width !5 m 
Channel shape trapezoidal Water depth 5.6 m 
Bed slope 0.00032 Free board 1. 7 Ill 
Side slope IV: lH Channel length 7131 111 

Kernuning Diversion Channel proposed by CV.HIDROS did not include any analysis of 

possible future channel changes caused by sediment budget imbalances. Such 

imbalances, if severe, could affect the long term hydraulic capacity of the diversion. 

Specifically, the water surface elevation in a given reach and for a given water discharge 

might exceed the height of the banks. In connection with the analysis of possibk 

changes in cross-sectional geometry, data such as discharge records, sediment 

concentrations, soil properties, channel cross-sections and the channcllong-prolilc were 

required. These will be discussed in more detail in the next section. 

1.2 Available Data 

Flow records consisted of 20 years of mean daily discharge. These were obtained 

at the Pangelen hydrometric station, located approximately 2 km upstream of the area 

under consideration. Stage measurements were continuously made at this site by the OIS 

for the province of East Java. For this study, these records were assumed to represent 

the flow coming from the Kemuning River basin because the station is relatively close 

to Sampang, being located only 12 km upstream of Sampang. There are no intervening 

tributaries. The river basin has an area of 345 km2 and a length of 44 km. 
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Figure 1.4. Plan view of proposed diversion channel. 

Limited sediment concentration records were available. These consisted of six 

months of daily instantaneous suspended sediment concentration data at the Pangelen 

station for the period January 1989 to July 1989, inclusive. Although the suspended 

sediment record was very short, the period sampled did include the two seasons which 

characterize the Indonesian climate, the dry season and the wet season, ranging from 

May to October, and from November to April, respectively. 
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Soil characteristics were investigated in and around the proposed divcrsilm 

channel. The subsurface investigation was carried out by making borings from whicll 

soil samples were recovered for identification and testing. The results of this 

investigation were available from CV .HIDROS. In addition to this data, the vane shear 

strength of the soil was directly investigated by this writer in and around the proposed 

channel. Details on the soil characteristics will be presented in Section 4. 

1.3 Objectives of the Study 

As previously mentioned, the analysis of the proposed Kcrnuning Diversion 

Channel did not consider possible erosion or deposition of the banks and bed of the 

channel. These might be expected to occur over a long time span. Therefore, the main 

objective of this thesis was to evaluate possible channel changes associated with a 

relatively long period of operation. 

Two approaches were considered in the context of this evaluation. These were 

the inductive and deductive approaches. The inductive approach involved regime theory, 

and the deductive approach involved a mobile bed mathematical model of the channel 

bed, specifically developed for this research. This thesis emphasized application of the 

deductive approach. The results of these investigations led to recommendations pertinent 

to the final design of the Kemuning Diversion Channel. 
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2. DESCRIPTION OF STUDY AREA 

2.1 Location of Study 

The Kemuning River basin is about 90 kilometers east of Surabaya, the provincial 

capital of East Java. The region lies between 7.2° to 7.3° south altitude and 113.2° to 

113.4" east longitude. The relief is between 4 and 200 m above sea level. Before 

11owing into the Strait of Madura, the Kemuning River passes through the city of 

Sam pang, which is located about 2 kilometers from the sea. The planimetric area of the 

region which is routinely subjected to flooding is about 300 ha. Therefore, in order to 

lessen the consequences of such floods a design for the bifurcation of the Kemuning 

River has been proposed at a site 7 kilometers upstream of the city. The resulting 

diversion channel would be built outsiu.:: of the city and ultimately reach the strait of 

Madura, as shown in Figure l. 4. To the north the Kemuning River Basin is bounded 

by the Tanggulangin mountain range, while on the west it shares a boundary with the 

Klampis River basin . The eastern boundary is the Selo River basin, and the southern 

boundary is Madura Strait, into which the Kemuning River flows. 

Topography and Land Use 

The Kemuning River basin consists of both lowland and upland areas. The 
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lowland area is on the coast of Madura Island and includes some urban arras. Thl' 

elevation of the lowland region ranges from 4 meters to 25 meters above sea lt·vcl. The 

middle region and the upper regions together comprise an upland area which has 

elevations ranging from 25 meters to 200 meters. The headwaters of the Kcmuning 

River originate in the Tanggulangin mountain range, in which the highest elevation is 200 

meters. The average ground slope of the Kemuning River basin is apprnximatdy 25 '.'{, , 

It consists of four sub-basins, as shown in Table 2. I and Figure 2. 1. 

Table 2.1. Sub-basins of the Kemuning River basin 

No Sub Basin Area Length of A vcrage width of 
(km2) river (km) river (m) 

l. Suren 93 8 10 

2. Serpong 97 10 14 

3. Kelokot 88 12 16 

4. Gn.Maddah 67 14 18 

Although the steeply sloping terrain is not well-suited to agriculture, the people inhabiting 

this basin still pursue a predominantly agrarian-based livelihood. ror this reason the 

Kemuning River basin shows evidence of poor soi I conservation and a high degree of 

deforestation. Agriculture occupies the greatest percentage of land usc in this basin, as 

can be seen in Table 2.2 . The land is usually prepared in the wet season for rice paddies 

and in the dry season for dryland crops such as maize, peanuts, red beans, soybean, 

cassava and tobacco. 
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Table 2.2. Land use in the Kemuning River basin 

No Type of land use Percentage (%) 

1. Agricultural area 75 

2. Forest 20 

3. Residential area I others 5 
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Figure 2.1. Kemuning River sub-basins. 
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2.3 Climate and Hydrology 

A previously discussed, the climate of the Kcmuning River basin is trnpi~t.ll. Both 

the wet and dry seasons are affected by the monsoon cycle. Two types of wind hlow 

during the year. During the months of May to Octob~r. a southeast \viml hlnws and 

shifts direction at the equator. Before reaching Indonesia, this wind passes o\'l'r thL· 

Australian desert and thus carries less moisture, bringing the dry sl'asnn. By L'ont rast, 

from November to April, a :1orthwest wind blows, again shifting dirl'rtinn at the: L'q11:1tor. 

This wind picks up a considerable amount of moisture when passing nvcr the: South 

China Sea, bringing the wet season. 

The average annual rainfall in the Kemuning River basin ranges from 900 111111 to 

2400 mm. Annual hydrographs of daily mean discharges for years with reference to wet 

season and dry season are shown in Figures 2.2, 2.3, 2.4. The following characteristic 

discharges were based on a flow duration curve based on daily mean llows over twenty 

years of record (OIS), and on the design flood of the Kcmuning Diversion Channel donl~ 

by CV.HIDROS. 

Flow exceeded 1% of time: 60.4 m3/s 

Flow exceeded 30% of time: 6.5 m3/s 

Flow exceeded 50% of time: 4.1 m3/s 

I in 2 year flood: 160 m3/s 

1 in 20 year flood: 369 m3/s 

1 in 100 year flood: 499 m3/s 

There is only a small variation in solar radiation through the year. During the 
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Figure 2.2. Typical hydrograph for a high annual runoff, 1978. 

200 

"E 
0 
u 

" Ill 

'- 150 " Q 

"' t ... 
~ 
u 100 

.D 
:J 
u 
c -
8 so 
~ 
Cl ..c 
u 
Ill 

0 

100 200 300 365 

Day nuiTt:ler 

Figure 2.3. Typical hydrograph for an average annual runoff, 1962. 
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Figure 2.4. Typical hydrograph for a low annual runoff, 1961. 

dry season, solar radiation intensity increases, and gradually decreases during the wet 

season. On average, the ratio of actual to maximum possible sunshine hours is 60 %. 

In connection with this, daily temperature and humidity fluctuate over the year, with 

annual averages at 27° C and 86% respectively (Department of Transportation, 1989). 

Evapotranspiration does not show significant seasonal variation. The average 

evapotranspiration rate is 3.5 mm/day. 

2.4 Sediment Sources 

The continuing development of agricultural areas in the Kemuning River basin has 

accelerated the process of erosion. The primary moving agent of the eroded materials 

is water, mostly from rainfall. During the wet season, the river flow tends to exhibit a 
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yellowish colour, which indicates a relatively high sediment concentration, while in the 

dry season the river flow is fairly clear, which is indicative of low sediment transport. 

This tendency suggests that the fraction of sediment flowing in the river which can be 

ascribed to the catchment area is relatively high. This high sediment input is aggravated 

by the soil characteristics of the Kemuning River basin, which consist mainly of tine 

sand. This soil is very loose and is easily eroded by the flow of water. Based on this 

writer's experience as an official of the Office of the Irrigation Service for the province 

of l.?.ast Java, it is surmised that most of the sediment load of the Kemuning River comes 

from the catchment area, with as much as 40% - 50% of the sediment being in 

suspension. 
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3. LITERATURE REVIEW 

The design of an artificial channel is usually based on a single relatively lixcd 

value of water discharge. In natural channels, however, the discharge varil'S in response 

to rainfall events which vary both spatially and temporally. The channel geometry 

adjusts itself in response. The questions of channel stability, optimum cross-section, and 

the rate of geometric change are relevant to the design of an earth channel. 

One method commonly used to evaluate channel geometry 'is hascd on the 

premise that an observable condition represents events whose recurrence is predictable 

according to certain mathematical formulae" (Richards 1982). Such a method 

investigates empirically the possibility of the relationship between the conveyed discharge 

(of water and of sediments) and the established channel geometry in the soil material hy 

analyzing available data. This method is called the inductive~ or black-box approach. 

Regime theory makes use of this approach. The second method is based on theoretical 

considerations which seek to identify the fundamental causal mechanisms involved. The 

possible relationship between the channel geometry and the discharge is obtained 

analytically in a rational or physical way by analyzing available data. This method is 

sometimes called the deductive approach. Recently developed mathematical rnudds 

(HEC-6, MOBED, 1-D SED) of movable bed rivers are examples of this approach. 
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3.1 The Inductive Approach 

The inductive approach is concerned with the concept of a regime tlow. This 

concept is based on an empirical approach to data analysis, particularly to field data, in 

order to determine relationships between the parameters under consideration. A channel 

which is designed using relationships of this kind is intended to be stable and capable of 

avoiding velocities which lead to scour or silting. In order to accomplish this, data have 

been collected from channels whose water and sediment discharge are in equilibrium and 

which therefore have no erosion and deposition. The hydraulic relations are generally 

expressed by three independent equations in terms of width, depth, and slope, 

respectively. These equations make up the principle components of what is known as 

regime theory. In the following paragraphs some examples of regime theory will be 

presented. 

Kennedy ( 1895) pioneered the development of regime theory. He formulated his 

classic empirical equation (Table 3.1) after rationalizing data which was collected from 

canals in the Punjab of India. Kennedy thought that canals designed using his equation 

would have velocities that would not promote either erosion or deposition. However, 

Kennedy did not characterize the typical channel section as wide-shallow or narrow-deep. 

This limitation became the subject of much discussion. 

Lindley ( 1919) stated that "the dimensions, depth, width and gradient of a channel 

to carry a given supply loaded with a given silt discharge are all fixed by nature." He 

developed a set of empirical relations based on data which was collected from India and 

Pakistan and which consisted of water surface width, vertical depth and slope. In 
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addition to adjusting the coefficient and exponent of Kennedy's equation. l.indky 

postulated other hydraulic relations based on these data (Table 3.1 ). In this way. he was 

able to more thoroughly express the three empirical equations of regime theory . llis 

equations implied that each channel falling within the regime criteria had a sin~;k 

solution. For a given water depth, channel dimensions could be designed to COII\'l'Y 

water and sediment discharge such that they caused neither erosion nor deposition . 

However, Lindley did not mention how a channel was tixed by nature, nor how to apply 

his equation if the channel being designed varied in both bank and bed conditions; for 

example, alluvial beds and banks that were either rigid or contained residual soils. This 

stimulated further contributions to regime theory. 

Lacey (1930) reanalysed a set of data which had been studied previously by 

Kennedy and Lindley, as well as additional data which he collected (Stevens and Nordin, 

1987). Lacey expanded his equations and introduced the idea of the interrelatedness of 

Table 3.1. Some early regime equations 

Kennedy (1895) Lindley ( 1919) Lacey (1930) 

Vo = 0 .55 0°·64 v 0 = 0.57 0°·57 p = 4.84 Qwlll 

vo = 0.28 W0
·
36 R = 0.47 Qwl/1 f~,· ll l 

w = 7.2 Du11 V0 = 0.44 Ow
1
"' f1. 111 

So = 0.0003 Qw·l/f, fl.\/l 

f~, = l. 76 d ~0 
112 

n == 0.022 f,." 2 
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Vo: Non-silting velocity, m/s 

D: Water depth, m 

W: Channel width, m 

P: Wetted perimeter, m 

Ow: Water discharge, m3/s. 

R: Hydraulic radius, m 

S: Bed slope 

fL: Lacey's silt factor, mm112 

d50: median grain size, mm 

sediment transport in regime theory, as expressed by a so-called "silt-factor". His 

equations (Table 3.1) were useful for design purposes because each dependent variable 

was represented as a function of the water discharge and/or the silt-factor. For a given 

design discharge and a mean grain size, a channel cross-section free from scouring and 

silting could be sized. In introducing his equation, Lacey also used a Manning-type 

resistance equation and his analysis showed that slope was explicitly dependent on 

sediment grain size, but inversely related to water discharge. Other characteristics 

showed that the wetted perimeter was independent of the slope, that the hydraulic radius 

varied with discharge lmt was inversely related to grain size, and that the velocity was 

dependent upon discharge and grain size. However, Lacey neglected the rate of sediment 

transport but introduced instead a silt factor which was proportional to the grain size. 

Consequently, all geometrically similar canals which had identical velocities had to have 

same rate and size of sediment transport. This differs from general experience with 

canal performance in field conditions. Lacey ( 1930) correlated his silt factor to 

Manning's n coefficient, n = 0.022 fL0
·
2

• This condition shows that Lacey's equations 

arc restricted to canals which have n values similar to those values for the canals studied 

by him. As a further extension, many regime theories have been developed with 
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reference to Lacey's equations. Some later theories have adjush:d his original 

formulation. 

Blench (1952) suggested that Lacey's silt-factor be moditicd by ma~;iP~: a 

distinction between the bed and bank effects on channel adjustment. As a further 

development, Blench (1969) used field data taken from the same area as Lacey's study 

and combined this with laboratory data. He considered sediment concentration in his 

equation (see Table 3.2) and both bank and bed factors were taken into account 

separately. Blench concluded that his equations were more generally applicahlc than 

Lacey's and had greater flexibility than other regime theories because in addition to the 

field data, the laboratory data supported his equations. However, Blench did mention 

that his equations were limited to bed load concentrations of less than l 00 mg/L, and that 

they were "unreliable" for concentrations greater than 200 mg/L. His equations arc also 

sensitive to the equation which is used to calculate bed load (Ch) . Therefore, Blench still 

recommended field investigations of a given channel reach, and careful determination of 

both the bank and bed factors when using his equations. 

Stevens and Nordin (1987) reexamined Lacey's silt factor from the point of view 

of the principle of the conservation of mass and on Newton's law of action and reaction. 

They found that Lacey correlated his silt-factor to channel roughness by using a 

Manning/Chezy-type resistance equation, with Chezy's C coefficient calculated by the 

Ganguilet and Kutter equation. In fact the silt factor must be related to sediment 

concentration. Stevens and Nordin proved that two different silt-factors result from 

Lacey's equations. The first one (fvJ was obtained when calculated using the equations 
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in terms of velocity and hydraulic radius. The other silt-factor (fRs) was obtained using 

the equations in terms of hydraulic radius and slope. To compensate for this 

inconsistency, Stevens and Nordin (1990) developed a formulation based on sediment 

concentration, in conjunction with the original silt-factor, and proposed a new set of 

regime equations (sec Table 3.2). Their equations are of practical use if sediment 

concentration data are available. Stevens and Nordin recognized that their equations still 

have limitations, however: namely, cohesionless sediment sizes between 0.1-0.3 mm, 

sediment concentrations less than 100 mg/L, and flow velocities ranging from 0.15 to 

0.75 m/s. 

Application of Lacey's (1930), Blench's (1969), and Stevens and Nordin's (1990) 

equations arc presented in Appendix B. 

Table 3.2. Some relatively recent regime equations 

Blench ( 1969) 

D = (F/Fb2)113 QwltJ 

F'l6 F 1f2 1/4 s = b 3 v 
o 3.63 g Q~6 

( 1 + CJ2330 ) 

F. = 0.009 (sandy loam) to 0.028 (clay 
loam) 

F. = Fb2/8 (gravel-bed rivers) 

Steven and Nordin ( 1990) 

s = l/6 050 000 Q ·I/O C513 
0 t , w 
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Wo: Average of channel width, m F,: Blench's side factor, m2/s·1 

D: Water depth, m p; Kinematic viscosity, m1/s 

So: Bed slope Cb: Bed load concentration, mg/L 

Fb: Dlench'~ bed factor, m/s2 C: Sediment concentration, mg/L 

3.2 The Deductive Approach 

An open channel may be considered to be bounded by a non-rigid boundary that 

can be eroded and transported by flowing water. For any given water discharg~:, the 

flow depth will depend on the final adjusted boundary geometry, which is itself 

dependent upon the value of the given discharge. In response to discharges which vary 

over relatively short periods of time, channel form tends to remain constant. However, 

among these varying discharges there has been found a certain range of discharges which 

manifests the same results as the morphological processes involved in channel formation. 

This discharge is known as the dominant discharge (Richards 1982). The magnitude of 

this discharge is much affected by cross-sectional characteristics, such as size and shape. 

The dimension of cross-sections which are related to the dominant discharge arc 

considered to be located at the bank elevation where overtopping occurs. This is known 

as a "bankfull" cross-section. For this reason, the dominant discharge usually refers to 

the bankfull discharge. To estimate this discharge it is necessary to select a 

representative bankfull cross-section. This usually differs along the channel in 

accordance with the top of bank elevation. The stage-discharge relationship is then 

investigated, and the dominant discharge can be calculated. The estimation of this 
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discharge is therefore greatly affected by the accuracy of the determination of the 

bankfull cross-section. In terms of the return period, its frequency may be different from 

river to river due to differences in channel and river-basin characteristics, but some 

investigations have shown that the return period for the dominant discharge ranges from 

I to 2.33 years (Richards 1982). 

Hydraulic relations for the condition of equilibrium can be successfully expressed 

for certain classes of alluvium and sediment concentration by regime theory. Three 

independent equations relating to the dimensions of width, depth and slope result from 

this approach. However, regime theory does not consider the adjustment that the channel 

undergoes due to both hydrological processes and possible sediment transport imbalances. 

This adjustment process can be predicted mathematically (Dawdy and Vanoni 1986). An 

analytical solution to the problem of geometric change can be estimated using detailed 

computations of the tlow profile, the sediment transport, and the resistance of the 

sediment material which forms the tlow's boundary. Because of the variety of factors 

and the time scale involved, the rate of change in the boundary geometry is generally 

difficult to study in the field. For this reason, many mathematical simulations using 

mathematical models have been developed. Some examples of the mathematical 

modelling of movable bed rivers will be described in the following paragraphs. The first 

are HEC-6 and Fluvial 12, which are coupled models, and the second is Pickup's model 

which is an uncoupled model. It is noted that deductive models in which n is adjusted 

within the model, based on the flow regime, are known as coupled models. Models in 

which changes injlow regime (usually indicated by the Froude number) do not result in 
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a change in n are known as uncoupled models. 

HEC-6 is a computer program package for evaluating scour and lkposition in 

rivers and reservoirs developed by the Hydrologic Engineering Centre, United States 

Army Corps for Engineers in Davis, California. This program is a om:-dimcnsinnal 

model which describes the longitudinal bed profile, longitudinal free surface prolile and 

sediment transport as a function of time and hydraulic tlow conditions. The model was 

originally developed by Thomas (1977). In this model, only the ht•tl in the channel is 

considered mobile, while the horizontal location of the channel banks is assumed to he 

fixed. The hydrograph input is set up as a series of discrete discharges that occur over 

specified periods of time. Each discharge is considered to be steady over the time 

interval. The water surface profile is evaluated section by section, using the standard 

step method, beginning with the downstream sertion and going upstream, while the 

sediment calculations work in the opposite direction. The bed material distributions arc 

represented by size fractions. The channel geometry is adjusted by using the sediment 

continuity equation, and the equilibrium condition is characterized by a water llepth with 

reference to the grain diameter. By entering a discrete discharge, sediment is routed 

through the model and the channel geometry adjusted. The entire process is repeated for 

the next discharge. The water surface elevation ana changes in the hcd elevation arc 

calculated as functions of both location and time. Thomas ( 1977) concluded that by 

using this computer program the geometric changes could indeed he estimated for 

subcritical flows in channels, rivers, and reservoirs, but not for flow in estuaries anti 

tidal channels. 
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Fluvial 12 (Chang, 1990) is a computer package developed by H. Chang of the 

University of San Diego. This program can be used for calculating geometric channel 

changes due to scour and fill for a channel or river. This program is specifically 

designed for erodible channels. The mathematical formulation consists of a series of 

components, including water routing, sediment routing, changes in channel width, 

change~ in channel-bed profile. and changes in geometry due to the curvature effect (a 

special case). Changes in the channel width are associated with increases or decreases 

in the energy gradient. The rate of width adjustment depends on the sediment transport 

rate, the bank configuration, and bank erodibility. For such cases, Chang (1990) 

introduced a bank erodibility factor which ranges from 0 for non-erodible banks to l for 

easily eroded banks. In applying the sediment continuity equation the model also 

considers lateral sediment inflow. The distribution of scour and fill across a section is 

expressed as a power function oi the effective tractive force. The exponent in this power 

function ranges from 0 for a nearly uniform distribution to l for a relatively non-uniform 

distribution. Using his model, Chang found that during aggradation the river channel 

tended to widen, and during degradation tended to become narrower. He concluded that 

an alluvial river will adjust to any change imposed on it, whether natural or man made. 

The adjustment may involve channel-bed aggradation and/or degradation, width variation, 

and lateral migration of channel bends. 

Pickup ( 1977) also developed a mathematical simulation of river channel changes. 

Pickup's model describes changes in channel size and shape, as well as in the 

longitudinal slope. The model performs a sequential calculation, starting with water 

23 



surface protile, followed by application of the sediment continuity equation, resulting in 

changes in channel shape and slope. The entire calculation is repeated for the next input 

of flow and sediment. Pickup developed his model based on the principle of moving 

sediment-transport-discontinuities which cause either erosion or deposition. or both. and 

thus lead to changes in channel geometry. To accomplish, this the moJcl changes 

channel morphology at one end of a given reach. As a result, a sediment tr<lllSJXlrt 

discontinuity is created, and this causes the addition of, or reduction in. availahlt: 

sediment at a given location in the bed. Pickup found that geometric changes can he 

developed through sediment discontinuities, called drop elevations or "knickpoints". 

Pickup's (l977) simulations showed that the changes which occur in the long protilc of 

a channel reach over time may develop as a result of the rt•treat of knickpoints rather 

than by rotation (see Figure 3.1 ). In his simulations he assumed that the shape and size 

of the channel cross-section changed systematically with the depth of the incision. 

3.3 Erosion of Cohesive Bed Material 

Flaxman ( 1963) evaluated soil resistance undi!r a range of flows by considering 

soil permeability and shear strength. His evaluation was based on undisturbed soil 

samples and was intended to evaluate resistance to erosion in the field. The samples 

tested were taken together with flow measurements under both eroding and stable channel 

conditions. A regression analysis showed that the unconfined compressive strength 

increased as permeability decreased and vice versa. By contrast, the dry density , the 

percentage of particle finer than 5 microns, and the plasticity index showed only 
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Figure 3. 1. Simulated changes in the long profile of an eroding channel with time 
(after Pickup 1977). 

moderate correlation to the unconfined compressive strength. Flaxman found that soils 

of low permeability and high shear strength showed relatively high resistance to erosion, 

those of low shear strength and high permeability exhibited less resistance, and those of 

low shear strength and low permeability were highly dependent upon the permeability 

characteristics, and therefore might not be stable even under slow flows. However, 

Flaxman's investigation also indicated that accuracy of prediction was to a large degree 

dependent on the educational background and experience of the observer in defining each 

type of channel during soil sampling and flow measurement. For this reason, some soil 
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samples from "stable" channels showed erosion. according to his criteria. It is noted tlml 

Flaxman used noncohesive criteria in determining the boundary between eroding and non

eroding channels when he plotted his results. 

Jaeggi (1986) outlined a method that can be used to analyze shore erosion 

occurring as a result of a new river mouth at the end of a cutoff. According to Jacggi · s 

observations of the Reuss River in Switzerland, deposition developed around the new 

river mouth. To prevent a decrease in canal capacity both the left and right dykes were 

lengthened into the lake into which the river flowed. This resulted in shore erosion, 

especially at the shoreline of the old delta, located near the new river mout~·, . To 

overcome this problem, Jaeggi (1986) proposed a reduction in the length of the river 

channel whir.h extended into the lake, followed by the creation of a natural delta. This 

delta was formed by making river branches in the delta zone such that these branches 

were directed towarrJ the eroded shore. In this way, Jacggi expected that a decline in the 

tra.1sport capacity in the former river canal would result in an excess of sediment, which 

would then flow through the river branches and onto the eroded shore region. According 

to the interval of time involved, it was predicted that equilibrium would occur between 

the erosion process and the sediment supply, and a new delta would be created. Jacggi 

examined his proposal by hydraulic model testing. The results showc<.J that a natural 

delta could be created using river branches, and that shore erosion would oc halted . 

However, the success of this design was greatly affected by assumptions about the 

sediment supply to the river branches, especially of the finer gradations (sand). The 

sediment sources came from materials from the upstream (eroded) channel and the 
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catchment area. If there was a reduction in the sediment supply rate due to improvement 

in both the upstream channel and/or catchment area, neither deposition nor establishment 

of a delta was expected to occur. Instead, erosion was predicted. 

Parthenides (1965) investigated the erosion rate of cohesive soil using laboratory 

flume tests on samples of soil of fine sand, silt and clay, and using water at ocean 

salinity. Partheniades found that the erosion rate was greatly affected by the hydraulic 

shear stress but was independent of the suspended (cohesiv~') sediment concentration and, 

surprisingly, the shear strength of the bed. He also demonstrated that the critical 

hydraulic shear stress was not a single value, but was bounded by the condition for 

eroded materials below which they were deposited, and above which they remained in 

suspension. Partheniades ( 1965) found that the bed erosion pattern, which was 

designated by small, smooth ripples, was a well-defined and relatively straight zone of 

deep scouring. This pattern did not result in any measurable additional resistance to 

flow. Cementation of silt and clay on the bt:d surface did increase erosion resistance, 

however. 

Nicholson and O'Connor (1986) developed a three dimensional model for 

cohesive sediment transport. This model involved four factors which affected cohesive 

sediment transport; namely deposition, erosion, flocculation and slump. The model was 

developed by a numerical solution of the three-dimensional diffusion-advection equation. 

In application to field problems, the model showed reasonable results, and was 

considered to be adaptable to a given set of field conditions. 
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3.4 Special Difficulties 

The foregoing discussion has shown that the inductive and deductive approaches 

to describing mobile bed rivers have limited applicability and cannot cover all possible 

problems. Several limitations of these methods have created difficulties in terms uf their 

applicability to a particular set of conditions. The following discussion addresses some 

of these problems. 

Regime theory is generally related to so-called independent variahlcs such as 

width, depth and slope. These are in turn affected by factors such as the flow, the 

sediment transport rate, and the channel characteristics. The majority of regime 

equations are supported by limited data which have been collected, for the most part, 

under special conditions. Most of the data used to develop regime theory originated from 

canals in the Punjab (India and Pakistan). As a result, such equations might he 

unsuitable for application to locations other than those in which the particular formulation 

was developed. As previously discussed, each regime equation was derived using 

different considerations and assumptions, even though nearly the same data was used. 

This has resulted in different equations having different limitations, limitations which 

should be considered before applying any given regime equation. The most important 

assumptions are probably those pertaining to the rate of sediment supply, cohesiveness 

of the banks, and relative constancy of the flow. 

Channel geometric changes are clearly sediment-related problems. Unfortunately. 

the available methods for calculating sediment discharge arc far from completely 

satisfactory because sediment transport and water flow are complex phenomenon difficult 

28 



to analyze by mathematical formulation. One possible solution is to consider one or 

more dominant factors which govern the rate of sediment transport. Through laboratory 

simulation some of these factors have also been investigated. Finally, the various 

sediment transport equations have been developed using different independent variables. 

This means that sediment transport equations are suitable for application to conditions 

similar to those from which the equations were derived. In general, field conditions are 

difficult to replicate in the laboratory. This problem affects the accuracy of the 

mathematical modelling of movable bed rivers. The other problem common to many 

projects is the dearth of data. To cope with this problem, a model was usually calibrated 

to the observed data or to laboratory tests. Major items which require calibration include 

the roughness coefficient and the sediment transport equation. In other words, before 

applying a mobile bed mathematical model to a given situation, its characteristics and 

limitations should be as fully understood as possible, especially in relation to the site or 

problem being investigated. 

3.5 Summary 

The following important points have emerged from the literature survey. The 

inductive approach (historically associated with "regime theory") shows that hydraulic 

relations can be formulated describing channel geometry for channels in quasi

equilibrium . These formulations are usually expressed in terms of three independent 

variables: width, depth, and slope. Such equations were generally derived by analyzing 

the data associated with a particular set of hydrologic and soil conditions, which leads 
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to limitations to their application. Such equations are limited to conditions similar to 

those from which the formulations were developed. 

The deductive approach has shown that the channel geometric changes (with 

certain difficulties) can be modelled using mathematical models. The applicability and 

accuracy of a given model depends on the degree to which factors affecting the tluvial 

process also affect model performance. These factors include the principle of continuity 

of sediment flux, as well as the flow resistance, the degree of bank stability, and the 

resistance to erosion of the natural bed material. Such models must be calibrated using 

observed field data, and/or laboratory data. 

In this study, various regime equations were applied, but most of the effort was 

concentrated on developing and applying a mathematical model as an example of the 

deductive approach. In the following section, these aspects will be discussed. 
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4. METHOD 

4.1 Application of the Deductive Approach 

As previously discussed, various mathematical models are available to calculate 

the geometric changes in a channel. However, all such models have their own 

limitations, and cannot be applied to all conditions. The soil in and around the area of 

the proposed Kemuning Diversion Channel was found to exhibit cohesiveness. For 

cohesive soil, critical conditions of sediment movement are generally proportional to the 

shear strength of the sediment (Vanoni 1975). For this reason, the mathematical model 

which was developed in this study, which resembles the 1-D uncoupled model described 

by Pickup ( 1977), used a critical hydraulic shear stress as the threshold of initial 

sediment movement. This section discusses the following components of the 

mathematical model developed: 

I. Input data requirements, 

2. Water surface and applied hydraulic shear stress simulation, 

3. Mobile bed simulation, 

4. Output data. 

The tirst step in the ~i"1ulation was a sequential calculation of components 2 and 3, and 
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the entire calculation was repeated for each time step of one day. The model was then 

run at a given level of discharge for the number of time steps appropriate to that 

discharge, based on the historical flow duration curve and a 20 year period of interest. 

The model was written in Quick Basic. A flow chart of the computer program is given 

in Figure 4. L. The listing of the computer program is given in Appendix A. 

4.1.1 Input Data Requirements 

The computer program was divided into six sub-programs. The input data format 

was adjusted to suit each sub-program. In order to simplify the program, the data was 

represented by two types. The tirst type was included as part of the computer program, 

and the second type was available as a file on disk. The first type included critical 

hydraulic shear stress, water discharge, initial channel width, bed slope, Manning's 11, 

sea level, local datum, water properties, soil properties, and suspended sediment 

concentration. The second type consisted of channel cross-sectional geometry and the 

distance between sections. 

4.1.1.1 Critical hydraulic shear stress 

Critical hydraulic shear stress may be defined as the minimum average value of 

the tractive hydrodynamic force per unit of wetted area which is able to put a single 

particle of cohesionless sediment (or an aggregate of particles of a cohesive sediment) 

in motion under critical or threshold conditions. However, noncohesivc and cohesive 

sediments manifest different types of responses to the hydrodynamic forces which act 
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Figure 4.1. Flow chart of computer program developed. 
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upon them. The ability of noncohesive sediments to resist incipient motion d~pcnds nn 

individual particle properties, such as particle shape, size. density. as well as the grain 

size distribution, the existing sediment concentration in the tluid (related in part to 

watershed supply of sediment), and the relative position or prominence of the part ide in 

relation to other particles (Graf 1984). In general, noncohesivc sediments arc transported 

as individual grains. In contrast, the resistance to movement of cohesive sediment 

depends mainly on the strength of the cohesive bond between particles (Ariathurai and 

Arulanandan 1978). The process of initial motion initially involves the erosion of till' 

material in the form of chunks, which is followed by its movement as individual grains 

(Lefebvre et a/ 1985). Furthermore, the critical hydraulic shear stress is usually 

determined by observation in a laboratory flume test which cannot perfecily replicate 

field conditions, including details of the turbulence flow and the exact conditions true 

initial movement in the field (Simons and ~cntiirk 1976). Hence, the value of such tests 

for field conditions is limited. 

In terms uf CC)hesive sediments, the behaviour of fine sediments which interact 

with water is a complicated phenomenon and depends on many factors, including the 

mineral composition and physicochemical environment of the scdi mcnt (Chapuis 19X6). 

However, some attempts to examine the critical hydraulic shcar stress of ~.:ohcsivc 

sediments associated with the beginning of sediment motion have been made. Vanoni 

(1975) has summarized various published criteria regarding the critical hydraulic shc.1r 

stress for erosion of cohesive materials. Dunn (1959) found the critical hydraulic shear 

stress to be: 
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tc = 0.001 ( S~ + 8618.4 ) tan (30 + 1.73 IP ) (4.1) 

where: 

rc: critical hydraulic shear stress (Pa), 

S.,: soil shear strength using a vane shear device (Pa), 

Ir: plasticity index as a percent; argument of the tan function in degrees. 

Dunn's equation was based on cohesive sediment samples from several channels ranging 

from sand to silt clay. Lefebvre et al (1985) found that the critical hydraulic shear stress 

was between 3 Pa and 12 Pa for "soft to firm" clays and between 12 Pa and 22 Pa for 

"stiff" clays. 

The soil in and around the area of the proposed Kemuning Diversion Channel 

(Table 4.1 and Figure 4.2) was found to exhibit properties similar to those studied by 

Dunn (1959), containing a wide range of material, from sand to silt and clay. Based on 

a qualitative comparison with soil strengths published by Al-Khafaji and Andersland 

(1992) it was concluded that this soil could be considered to be a "soft" clay. Table 4.2 

shows the results of the application of Equation 4.1, and of the information of Lefebvre 

t'f a/ ( 1985) for the soil under consideration. With reference to these results, the critical 

hydraulic shear stress of the Kemuning Diversion Channel was considered :o be 5 Pa, 

for the purposes of erodibility considerations in the mathematical model developed. 

4.1.1.2 Determination of range of discharges of interest. 

The water discharge which would flow into the study reach was summarized 

in the form of a flow duration curve, based on two decades of daily flow record (see 
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Table 4. 1. Soil data for proposed diversion channd 

Property * Value 

Water content W, (%) 36.59 

Dry density Q, (tonnes/m3
) 1.831 

Porosity n (%) 51.89 

VoiJ ratio e 1.079 

Angle repose 0 8 

Specific gravity s 2.787 

Liquid limit LL (%) 51.49 

Plastic limit PL (%) 38.66 

Plasticity index ~ (%) 12.H3 

Mean vane shear strength s. (Pa) ** 2200 

Standard Deviation of VSS (Pa) 280 

Fine sand content, 0.177 mm (%) 31 

Very fine sand content, 0.088 mm (%) 42 

Silt and clay content, < 0.062 mm (%) 27 

* CV. HIDROS 1990 

** average of 6 holes with each 5 point measurements per hole (on site 

measurement done in Indonesia by the author). 

Table 4.2. Estimates of critical hydraulic shear stress 

Equation/source Tc (Pa) 

Dunn (1959) 13 

Lefebvre et a/ ( 1985) 3 - 12 

Figure 4.3). In application, this curve was represented as a series of discrete flow levels 

for various percent-exceedances of interest, as presented in Table 4.3. Using a critical 

hydraulic shear stress of 5 N/m2 and mean sea level as the downstream boundary 
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Figure 4.2. Grain size distribution (after CV. HIDROS 1990). 

condition, preliminary results showed that erosion would occur everywhere along the 

channel if the water discharge was greater than 150 m31s, and that the channel was stable 

for all discharges less than 90 m3 Is (Figure 4.4). In accordance with these findings the 

range of flows used as the primary input data to the hydraulic model were from 90 m3 Is 

to 188.8 m31s (the latter being the maximum flow on record). Six discharges were 

selected to represent the flows for this part of the flow duration curve and to permit 

estimation of possible long-term changes in hydraulic geometry. These flows are stated 

in Table 4.3. 
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Table 4.3. Discretization of flow duration curve for the Kemuning River 

Qw Pr (X > x) Days in Mid point Numbers of 
(m3/s) % 7092 days* of Qw ** day*** 

188.8 0.01 1 
159.6 0.05 4 174.20 3 
138.3 0.10 7 150.45 3 
114.8 0.15 11 128.05 4 
101.7 0.20 14 108.25 3 
97.6 0.25 18 99.65 4 
89.9 0.30 21 93.75 3 

Total 20 

* 7092 = 20 years 

** Used for simulations 

***Used for simulation as numbers of time step 
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4.1.1.3 Channel cross-sections 

The typical cross-section shape for the proposed Kcmuning Diversion <. 'hann~l is 

trapezoidal (Figure 1.3). For calculation purposes. the channel geometric data liSl.'d X. 

Y coordinates (see Appendix D) and were measured with reference to a local origin. 

The X coordinates had a positive value which increased in a left-to-right dircl.·tion and 

the Y coordinates were elevations which were based on a local datum. The \'alu~ of th~ 

Y coordin1.te increased positively from the bankfull elevation to the channel hottom. For 

a given water surface elevation the important geometric clements, such as cross-sect ion a I 

arra., wetted perimeter, hydraulic radius, and top width, could then be cakularcd. The 

method used to compute the hydraulic parameters is given in Appendix D. By using a 

series of six points, these calculations were arranged in a computer program and ,:ould 

be developed for any number of coordinate points. 

The long profile was represented by the distance of each section to the 

downstream boundary, denoted section 1 at distance zero (the ocean). There were sixty

five cross sections. The distance between section I and section 65 was 7131 meters. 1\ 

local datum was defined by the bed elevation of the most downstream boundary, name! y 

-4.536 m MSL (CV HIDROS 1990). The Y coordinate increased positively in the 

direction of the water surface to the channel bottom; hence, the datum was given a 

positive value of 20.00 m. 

For the first time step in the computation, the channel dimensions of the proposed 

diversion were used as the initial geometric condition. After each time step, the 

geometric changes were calculated and the new geometry became the condition for the 
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second step. This process was repeated for the necessary number of steps for that 

particular (discretized) level of the flow duration curve. 

4.1.1.4. Rate of sediment inflow to the study reach 

The sediment dischargf. which would flow into the study reach under 

consideration was summarized in the form of a suspended sediment rating curve, based 

on six months of daily instantaneous suspended sediment concentrdlion data at the 

Pangclen hydrometric station. The following formula (Hansen and Bray 1993) was used 

to compute the suspended sediment rating curve (see Figure 4.5). 

where: 

ei = log(CJ - log(C)', 

log(Ci) : log10 of an observation i, 

log(C) • : estimated value of log(C) from regression, 

n: number of observations = 212 

a: constant from regression, 

b: exponent of regression. 

Ow: discharge (m3/s), 

C: sediment concentration (mg/L). 

Using equation 4.2, the results were: 
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where: 

Qs: sediment load (tonnes/day). 

The coefficients of the regression were highly significant and from Figure 4.5, the 

equations developed seem to fit the data points fmally well. 
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Figure 4.5. Suspended sediment rating curve. 

In application, the rate of sediment inflow was accounted for using two assumptions: 

1. The river channel upstream of the study reach was stable, and the sediment demand 

at the most upstream study reach was met entirely by the upstream supply. In 

general, this assumption will be satisfactory for relatively large grain sizes in the 

sediment supply. 
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2. The river channel upstream of the study reach was stable. The sediment demand at 

the most upstream study reach was calculated based on an arbitrary fraction of the 

sediment flux computed using the available suspended sediment rating curve. Based 

on a heuristic consideration of the land use in the Kemuning River basin, the 

available soil data in and around the proposed channel, and field observations, this 

fraction was assumed to be 50 percent. This means that, under this assumed 

up.\'tream boundary condition pertaining to sediment, 50 % of the incoming flux was 

of such a size that it could interact with the bed in the total study reach. This 

assumption may be suitable for relatively fine grain sizes. Unfortunately, no 

information on the grain size distribution of the incoming suspended material was 

available for this study. Under this assumption, the equation (4.4) redu•:es to: 

(4.5) 

4.1.2 Computation of Water Surface Profiles 

Water surface profile computations are a valuable tool in evaluating the hydraulic 

characteristics of a channel. This evaluation may include problems having downstream 

variations in water depth due to a fluctuation of sea level (i.e, the downstream boundary 

condition) and may be extended to consider adjustment in channel shape due to 

unbalanced sediment transport (Pickup 1977). This study investigated possible channel 

adjustment based on the water surface profile computation with reference to one 

particular sea level. The suitable elevation which was considered to represent the sea 
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level over a relatively long period of time was 11ll'tlfl sea level. The computation of th~ 

water surface profile for gradually varied flow was based on numerical solution of the 

dynamic equation of gradually varied flow. The governing ordinary differential ~quat ion 

for st~dy gradually varied open channel flow is: 

dh 

dx 
= ____ S~0_-_s..:..1 __ _ 

cos 6 + « d(V2/2g)/dh 
(4 .6) 

The most common mcth01i of computation of water surface pro tiles, applicable to either 

prismatic channels or nonprismatic (natural) channels, is the standard step method (Chow 

1959). This method, together with Manning's equation, was the one adopted for usc in 

the present study. The standard step method is solved by determining by successive 

trials the depth of flow in a given cross-section. The total head at any two sections "I" 

and "2" are (Figure 4.6): 

Q! 
2 

2 g A1 

Equating total energy at section l and 2, the equation is: 

H 1 = H1 + h1 + h, 

= Hz + 0.5 Ax ( Sfl + Sfl ) + h, 

44 

(4.7) 

(4.S) 

(4.9) 



(1) (2) 

2 
oc.:, V1/2g 

dt, 

Datum 

Figure 4.6. Nomenclature for standard step method. 

Manning's equation is: 

(4.10) 

where: 

H: total head, 

h: depth of flow, 

D: vertical depth of flow, 
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dt: vertical distance of channel bottom above the datum, 

a: kinetic energy coefficir>,t, 

V: mean water velocity, 

Q..,: water discharge, 

A: cross sectional area of the tlow, 

R: hydraulic radius, 

hr: friction loss, 

Sr: friction slope, 

h.: eddy loss, 

L.\x: length of reach between cross sections, 

n: Manning's roughness coefficient, 

0: bottom-slope angle, 

g: gravitational acceleration. 

The computational procedure was as follows: 

1. Calculation of the water surface profile started at section I as the downstream 

boundary (the ocean) and proceeded upstream. Channel dimension of this scctiou 

was specified to calculate the total head elevation. 

2. At the next most upstream section, a trial water surface elevation was used to 

compute total head using equation 4. 7. If this total head was in close agreement with 

the total head obtained using equation 4.9, the calculation then proceeded to the next 

most upstream section, and the procedure was repeated. 

The energy coefficient a accounts for nonuniform distribution of velocities 

over the channel cross-section. In general, this coefficient is affected by the :,hape of the 

channel section, the channel alignment, the existence of channel bends, and the channel 

roughness. For relatively straight prismatic channels the energy coefficient tends to he 
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larger for small channels and smaller for large and deep channels. Since the proposed 

channel is a trapezoidal shape and relatively straight, it may be categorized as a regular 

channel, and given an energy coefficient equal to 1.15 (Chow 1959). This codficient 

was assumed to be constant all along the length of the diversion channel. 

The eddy loss is usually calculated as some fraction of the velocity head, and 

is affected by the existence of expansions or contractions along the channel. The eddy 

loss is equal to zero if the entire channel is prismatic. Since the proposed design is 

prismatic the t:<.idy loss was considered to be negligible. 

The friction slope was calculated using a rearrangement of Manning's formula, 

which is actually only valid for uniform flow. This is a very common and well-accepted 

assumption for tlow which is steady (in time) and gradually varied (in depth) in the 

direction of the long profile (Chow 1959). 

The proposed Kemuning Diversion Channel is an excavated channel with a 

trapezoidal shape, and the soil in and around the channel is comprised of fine sand, silt 

and clay (see grain size distribution, Figure 4.2). The CV HIDROS company selected 

a value of Manning's n of 0.025 in their analysis of the diversion. Resistance to flow 

may be considered to be the sum of the grain resistance andfomz resistance (Garde and 

Ranga Raju 1977). The bed form may change after the beginning of material motion. 

For fine material less than 0.6 mm, the bed configuration may be ripples (Simons and 

Richardson 1971; Simons and ~enttirk 1976). According to Simons and Richardson 

( 1971 ), 

"Resistance to flow is independent of sand size when the bed configuration is 
one of ripples because ripple shape is independent of sand size and the effect of grain 
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roughness is small relative to the form roughness. Thus, there i:- ..., relative roughnc~;s 
effect produced by the ripple bed." 

Simons and Richardson's investigation found that flow over ripples were associated with 

Manning's n values of between 0.018 to 0.3. Therefore, the use of constant n-value may 

not be reasonable to compute the estimated channel change for long term periods of 

interest. However, in order to limit the scope of this study to manageable proportions, 

and due to the lack of time to include the many factors affecting the n-valuc, a range of 

Manning's roughness coefficients was not considered in this model, and it its value was 

assumed to be constant for the period time of interest (20 years). 

4.1.3 Computation of Geometric Changes 

An artificial diversion channel will experience fluctuations in the supply of 

water and sediment such that water and sediment imbalances may occur, resulting in 

erosion or deposition. Because of these processes, channel geometry will mljust until a 

new equilibrium is reached. The rate of geometric change depends on the relative 

erosion and deposition rates, which actually occur in a three-dimensional pattern due to 

secondary currents. Simulation of this three-dimensional phenomenon is extremely 

complex (Chiu and Chiou 1986; Yen 1979) and beyond the scope of this study. Even 

two-dimensional hydraulic models of rivers are rare (Fennema and Chaudhry 1990). The 

mathematical model which was developed in this study was one-dimensional. Thus, only 

longitudinal bed profiles, longitudinal water surface protiles, and the 1-D sediment 

transport as a function of time and flow conditions were modelled. The threshold of 

sediment motion was the critical hydraulic shear stress. The computation of geometric 
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changes were based on the solution of the equation for the continuity of sediment flux, 

which assumes that sediment transport is a function of time and the distanc\: along the 

channel (Pickup 1977): 

as a Q, 
+ -- = 0 at ax 

where: 

S: sediment storage in a given reach, 

t: time, 

Q~: Sediment transport rate (units of mass/time), 

x: distance along the channel. 

( 4.11) 

Equation 4.11 was expressed in finite difference form between two successive reaches 

along the channel. The rate of erosion or deposition for each reach at each time step, 

in a downstream direction, was given by : 

At 

A S1 

A t 

= 0 

A S = - 2 A t [ Q,(t-1) - Q,(l) ) 
1 

Y, [ A x<t-1> + A x1 ] 

(4.12) 

(4.13) 

(4.14) 

The amount of change in cross-sectional area for each section at each time step was 

computed using: 
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( 1 - n ) A Ab 1 = 2 At [ Q,<Hl - Q,(ll ] 

Y, [ l1 x(i-1) + l1 xJ 

2 At [ Qr(H) - Q,({) ] A Ab
1 

= - ____ __:..::....-;.:: _ ___::.~--
( 1 - n ) Y, [ l1xCi-J) + A.x1 1 

where: 

n: porosity of bed material, 

Qs: mass per unit time based on sediment transport rate, 

~t: time step, 

"Ys: specific weight of sediment, 

i: subscript to indicate cross-section, 

(4.15) 

(4. 16) 

6x<i·ll: reach length (the distance between section i and the next-most upstream section), 

~x;: distance between section i and the next-most downstream section, 

~Ab: amount of change in cross-st.r:tional area. 

Equation 4.14 describes an upstream difference in sediment storage, and is independent 

of the sediment transport rate at the downstream section. The equation also illustrates 

the three "stages" of boundary conditions. If the supply rate of the sediment transport 

Qs<i-n is greater than the local rate of the sediment transport Q~lil• 6S; is positive and 

deposition occurs. If the local rate of the sediment transport is greater than the supply 

of sediment, 6S; is negative and erosion results. Equilibrium is maintained when both 

the supply rate and the local erosion rate from the bed (if any) arc equal, so that 6S, = 

0. This means the bed channel is stable. The rate of sediment transport was calculated 

by using certain sediment transport equations considered appropriate for usc with the hcd 

material size distribution in the area of the proposed diversion . 

50 



•. 

4.1.3.1 Changes of channel shape 

The changes in channel geometry and the rate of erosion or deposition are in fact 

interdependent. Changes in channel geometry, which are caused by erosion or 

deposition, change the local hydraulic shear stress, which in turn affects the rate of 

erosion or deposition. In this study, channel cross-sections were assumed to erode or 

deposit their own material, and the process was considered homogeneous in a given 

reach. Under this assumption, there are several ways of describing the variation in the 

cross-sectional area due to erosion or deposition. One is to assume that the channel bed 

of a given cross-section rises and falls without changing the side slope such that erosion 

or deposition occurs only at the bed (see Figure 4. 7a). This assumption requires that the 

bottom width decreases somewhat for the case of an eroding bed, and increases for a 

depositing bed. A second is to assume that the bed rises and falls with changes in side 

s:0pe (see Figure 4. 7b). Another assumption is that erosion and deposition occur at both 

the bed and the bank. In such cases that cross-sectional shape remains constant (see 

Figure 4. 7c). There are many factors which affect the nature of this geometric change, 

including the sediment properties of the bed relative to the bank, the sediment load, and 

the wat~r discharge flowing through the channel. 

The proposed Kemuning Diversion Channel will be maintained by using bank 

protection consisting of natural stone with mortar. Moreover, the soil in and around the 

proposed channel was found to be cohesive soil, and field observations showed that the 

Kemuning River upstream of the study reach appears to be in a stable condition (neither 

eroding nor silting up). In connection with these ooservations, some reasonable 
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assumptions were made in order to simulate the changes in channel shape of the proposed 

design. These arc summarized below: 

I. During erosion or deposition, the channel banks were considered stable. Geometric 

changes occurred only in the channel bed and the long protile slope. 

2. Since the channel alignment was relatively straight (see Figure L4), the cross-

sections were scoured or deposited homogeneously over any given reach. 

3. The formation of an armor layer was not considered. 

4. Energy losses due to friction were calculated using Manning's formula. The 

roughness coefficient was constant, and the energy slope was taken to be an explicit 

function of the roughness and the other standard hydraulic flow parameters (as 

opposed to considering possibl\! dune formation, for example). 

5. Grain sizes less than 0.06 mm were considered to be wash load, and these were 

excluded from the erosion and deposition process, being transported to the sea after 

one time step. This fraction was assumed to be 27 % based on grain size distribution 

(sec Table 4.1 and Figure 4.2). This meant that the aggradation and degradation 

processes only involved i3 % of the eroded material. 

According to these assumptions, the cross-sectional changes (Figure 4.8) for each section 

at each time step were computed by solving equation 4.16 as: 

2 At [ Q,<i-l) - Q•<•) 1 A Ab1 = - -----"'--''---..:...,:_--
( 1 - n ) Y, [ Ax<i-l) + Ax1 1 

(4.16) 

( W' ± e, ) e, = I 2 At [ Q,(l-1) - Q,((J 1 
( 1 - n ) Y, [ Ax(l-1) + Ax1 1 

(4. 17) 
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where: 

~Ab: cross-sectional changes. 

t;: erosion or deposition thickness, 

W': bottom channel width resulting from erosion or deposition, 

+: representing deposition, 

representing erosion, 

side slope: 45°. 

The channel width and the X Y coordinates which were affected by erosion or deposition 

were then adjusted to the new dimensions. The bed slope was calculated as the average 

of the bed slope for each reach. 

4.1.3.2 Sediment load 

The sediment transport capacity (pertaining to clear water erosion) was 

computed using two sediment transport equations from the literature. Many equations 

are available, and all have their own limitations. The soil in and around the area of the 

proposed channel consists of the fine sand, silt and clay, with a maximum geometric 

mean diameter of 0.177 mm (Figure 4.2). For this reason, the two methods which were 

considered to be adequate for computing the bed material load in this study were Yang's 

method (1972) and Laursen's method (Vanoni 1975; Graf 1984). 

Yang's Method 

Yang (1972) developed a simple method for the calculation of sediment 

concentration. He recommended two kinds of equations with reference to the grain size 
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of the sediment. The tirst equation requires that the average sediment size be less than 

2 mm, and the other equation handles sediment greater than 3 mm in mean diameter. 

- w log C, = ( 5.913 - 0.255 d - 0.004 - ) 
D 

w • ( 1.257 - 0.005 D ) log ( 3.281 V S1 ) 

Q, = 0.0864 C, Qw 

where: 

Ct: total sediment concentration (mg/L), 
-
d: average sediment particle size (mm), 

W /D: width-to-depth ratio, 

V: average water velocity (m/s), 

Sr: energy slope, 

Q,: total load (tonnes/day). 

(4. 18) 

(4. I{)) 

Yang dl!veloped his equations by analyzing both laboratory flume data and ticld data of 

other investigators. Yang ( 1972) correlated the unit stream power, de lined <Is "the time 

rate of potential energy expenditure per unit weight of water in an alluvial channel" with 

the sediment transport, and concluded that his equations can be considered to he quite 

general. His results showed that there was no significant disagreement between observed 

and computed sediment concentrations. For this reason, Yang's method was considered 

suitable for this study, since the sediment size was indeed less than 2 mm (Equations 

4.18 and 4. 19 have been converted into Systcme Intcrnationalc (Sf) units. 
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Laursen's M~>thod 

Laursen's equation (1958) is a total load equation based only on the grain 

resistance of the bed material. Under this method, it is suggested that the bed material 

load may be calculated without differentiating between bed load and suspended load 

because the hydrodynamic forces which r~sult in the motion of bed material and 

suspended material are identical. At the same time however, Laursen's equation takes 

into consideration both bed load and suspended load through the parameters included in 

the equation. Laursen (1958) performed a flume investigation on sediment ranging from 

0.011 mm to 4.08 mm. Some field data from small rivers were also used, and good 

agreement was found. Both the Kemuning River itself and the proposed diversion 

channel (have mean widths of lo n• ~nd 25 m respectively) may be categorized as 

"small" rivers. With reference to this condition, as well as to the soil data from in and 

around the proposed diversion channel, Laursen's method was considered to be a 

reasonable for application to this study for the calculation of the total load. The 

following equations (Vanoni 1975) were modified from Laursen's original formulations 

in order to make 1hem dimensionally homogeneous with any consistent set of units: 

d 7_ I U 
c,. = 0.01 y ~ p ( _]_ ) 6 ( ~ - 1 ) /( -· ) 

1 1 D -r~1 w1 

l d ! 
t~ = p v ( ~ )3 

58 D 
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(4.20) 

(4.21) 



't' cj = t ~ ( Y I - Y ) dj 

1 1 ( w1 = - D P, - P.,. ) g 
1811 

where: 

C0,: sediment concentration in weight per unit volume, 

Qw: water discharge, 

Q,: sediment load, 

D: water depth, 

r0 ': Laursen's bed shear stress due to grain resistance, 

rei: critical shear stress for particles of size di, 

U.: J g R S , bed shear velocity, 

wi: fall velocity of particles of mean size ~ in water, 

r.c: dimensionless critical shear stress to be equa! 0.039 for sediments ranging from 

0.011 mm to 4.08 mm 

-y,: weight density of sediment particles, 

'Y: unit weight of water, 

p,: sediment density, 

p: water density, 

1-1-: dynamic viscosity, 

S: channel slope 

g: gravitational acceleration, 

ds0: median size of sediment, 

di: particles size of sediment, 

pi: % of sediment of size fraction, 

f(U ./wi): a function of the ratio of the shear velocity to the settling velocity. 
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The fall velocity which was calculated by equation 4.24 in cgs units, but Cm and Qw were 

in mg/L and m3/s, respectively, for calculating Q. (tonnes/day). Both U. and ·.vi 

parameters pertain to the suspended load, and the other parameters directly refer to the 

bed load. In addition, Laursen assumes that the contribution of each fr::\ction j for a 

given grain size d gives the total mean concentration. 

4.1.4 Boundary Conditions 

Numerical simulation of mobile bed hydraulics requires boundary conditions. In 

general, there are two types of boundary conditions in modelling problems of this type; 

the external and the imemal boundary conditions (Cunge et a! 1986). There are two 

e:rtemal boundary conditions: 

I. The boundary at the upstream end of the reach, in which the water discharge, the 

sediment load, and river bed elevation are expressed as functions of time. 

where: 

Q,(% = 0) = Fl(t) ; QW(% = 0) = Fl(t) 

d1<% _ 0> = F(t) 

Q.: sediment load, 

Ow: water discharge, 

t: time, 

d,: river bed elevation to datum, 

x: length of reach between sections. 

(4.25) 

2. The boundary at the downstream end of the reach, in which river stages and bed 

elevations are expressed as functions of time, and in which the stage can be 
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presented as function of discharge and an imposed downstream water k\'l'l (in this 

case, the ocean at MSL). 

where: 

Z: river stage, 

z<..:=L) = F(t) 

dt(..:=L) = F(t) 

d,: river bed elevation to datum, 

D: stage at the downstream boundary, 

D<..:=LI = F(Q.) 

Qw: discharge at the downstream boundary. 

t: time 

There are four internal boundary conditions: 

1. The boundary condition due to changes m the river cross-section resulting fro111 

expansion or contraction. The condition is described in Pigurc 4.9a. This may he 

mathematically expressed as: 

where: 

Qw: water discharge, 

Q,: sediment load, 

Z: river stage, 

V: water velocity, 

L\H: expansion or contraction energy loss. 

g: gravitational acceleration. 

i: subscript to indicate cross-section. 
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2. The boundary condition due to tributary inflow (see Figure 4.9b). This may be 

mathematically expressed as: 

Qw(i+l) = Q,.,(i) + Q,.,trib ; QJ(I+ll = Q,({) + Qstrib 

Z ""<i•l)l ·1- •J'J = z + V(,)2 
(l+l) I 2g a l (i) 2g 

where: 

Ow: water discharge, 

Q.: sediment load, 

Qw11;11: water discharge from a tributary, 

Q,111": sedi mcnt load from a tributary, 

i: subscript to indicate cross-section 

Z: river stage, 

V: water velocity, 

.1H: expansion or c.ontraction energy loss, 

g: gravitational acceleration. 

In this case, the initial values, Qwtrib and Qstrib' must be known or assumed. 

(4.28) 

3. The boundary condition owing to tributary confluence. This is described in Figure 

4.9c. 

Q =Q +Q • 
w (I) W!ftribl wri1 ' Qs(t) = Qstribl + Qstrihl 

V triblz 

where: 

Ow: water discharge, 

Q,: sediment load, 

+--
2g 
l 

Vtribz 
= ztribz + 

2g 
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Qwtnbl: water discharge from the tributary l, 

Qwtnb2: water discharge from the tributary 2, 

Qsuibl; sediment load from the tributary 1, 

Qsuib2; sediment load from the tributary 2, 

i: subscript to indicate cross-section 

Z: river stage, 

Z, ..• b\: river stage of the tributary l' 

Zu,b2: river stage of the tributary 2, 

V: water velocity, 

vuibl: velocity at the tributary 1, 

v uib2: velocity at the tributary 2, 

AH: expansion or contraction energy loss, 

4. The boundary resulting from a control structure. This is represented in Figure 4.lJd, 

and may be expressed as: 

Qw(Hl) = Qw(l) ; Q,(ltl) = F(Q,(~ 

Z<•) = F(t) --- Z1 calculated by dam 1s formula 

where: 

Qw: water discharge 

Qs: sediment load 

i: subscript to indicate cross-section 

t: Time 

Z: river stage 

(4 .]0) 

The mathematical model which was developed in this study involved only external 

boundary conditions because there were no tributaries, expansions or contractions, or 

control structures which affecte.d the proposed channel. 
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Figure 4.9. Internal boundary conditions. 
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5. RESULTS AND DISCUSSION 

This section presents the results of the application of the previously described 

mathematical model to the evaluation of possible channel changes occurring over 

relatively long periods of operation of the Kemuning Diversion. These channel changes 

were simulated using the following options: 

1. The sequence of water discharges was assumed to fall into two categories: 

a) A sequence of decreasing discharges starting with 174.2 nr1/s and ending with 

93.75 m3/s. 

b) A sequence of increasing discharges beginning with 93.75 m1/s and ending with 

174.2 m3/s. 

2. Sediment inflow into the reach under consideration was assumed to exhibit two 

possible characteristics: 

a) Sediment demand at the upstream boundary condition (section 65) was met 

entirely by the upstream supply. 

b) Sediment demand at the upstream boundary condition was met hy a constant 

percent (assumed to be 50%) of the concentration computed using the available 

suspended sediment rating curve (see Equation 4.3). 

For comparison purposes, the water discharge and sediment inflow were analyzed using 
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the following combinations: 

Case L1: Laursen's method combined with options 1 a and 2a. 

Case L2: Laursen's method combined with options lb and 2a. 

Case L3: Laursen's method combined with options Ia and 2b. 

Case lA: Laursen's method combined with options lb and 2b. 

Case Yl: Yang's method combined with options la and 2a. 

Case Y2: Yang's method combined with options lb and 2a. 

Case Y3: Yang's method .-·ombincd with options la and 2b. 

Case Y4: Yang's method combined with options lb and 2b. 

Results for all eight simulations are presented in Appendix C. Typical changes 

of cross-section for each case are represented by the cross-sections 2, 32, 63 and 64 

representing downstream, middle, and upstream reaches, respectively. 

For the case of the sequence of decreasing discharges, the application of 

Laursen's equations, and sediment demand at section 65 met entirely by the upstream 

supply (case Ll), the rise in the channel bed was relatively small, ranging from 0.019 

m to 0.057 m, as shown in Figure 5.1 and Appendix C. For the same case but with the 

discharge sequence reversed (case L2), aggradation ranged from 0.012 to 0.080 m, as 

shown in Figure 5.2 and Appendix C. 

For the case of the application of Yang's equations, the sequence of decreasing 

discharges, and sediment demand at section 65 fulfilled entirely by the upstream supply 

(case Y 1), the estimated channel changes were again characterized by slight aggradation. 

The rise of channel bed was between 0.026 and 0.089 m (Figure 5.3 and Appendix C). 
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Figure 5.1. Estimated bed-profile change 
(20 five steps, corresponds to about 20 years). 

For the same case but with the sequence of increasing discharges (case Y2) the 

simulation showed a small degradation at section 63 (0.009 m) while other sections 

manifested abb:-:>riation ranging from 0.030 m to 0.137 m (sec Figure 5.4 ami Appendix 

C). 

Different results were found for the scenarios L3, LA, Y3 and Y4. Changes in 

bed profile were characterized by degradation of certain sections located ncar the 

upstream boundary, and then aggradation in a Jownstrearn direction. 

f o..~r the option of the sequence of decreasing discharges, application of Laursen's 

equations, and 50 % of incoming sediment computed using the available suspended 

sediment rating curve (case L3), erosion was predicted to occur at section 63 to a depth 
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Figure 5.2. Estimated bed profile change 
(20 time steps, corresponds to about 20 years). 

of 0.104 m while the highest aggradation was 0.857 m for section 64. Aggradation for 

other sections ranged from 0.019 m to 0.048 m, as shown in Figure 5.5 and Appendix 

C. A similar scenario with increasing discharges (case U) showed that sections 61 and 

63 manifested erosion as deep as 1.023 and 0.07 m, respectively. The highest 

aggradation, 1.415 m, occurred in section 64, while in other sections this varied from 

0.019 m to 0.454 m (see Figure 5.6 and Appendix C). 

For the case of decreasing discharges, and 50 % of incoming sediment and use 

of Yang's equation (case Y3), degradation was predicted to occur at sections 60, 62 and 

64, with section 64 being the highest at 1.635 m degradation. Other sections were found 

to aggrade with the highest being 0. 795 m section 63, and the others ranging from 
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Figure 5.3. Estimated bed-profile change 
(20 time steps, corresponds to about 20 years). 

0.030 m to 0.070 m, as shown in Figure 5.7 and Appendix C. For the similar scenario 

but using a sequence of increasing discharges sh,._ ..vcd degradation in sections M and ()2 

with the former being the highest at I. 795 m, and the latter at 0.124 111. Tlw highest 

aggradation was estimated to be 0. 745 m in section 63, with others mnging rrom 0.02~ 

m to 0.075 m ( see Figure 5.8 and Appendix C) . 

It can ue seen that the river channel changes involved both long profile and bed 

elevation changes. Taken together, the eight cases showed similar channel changes, 

characterized by aggradation along the channel except between sections 60 and 65, which 

were characterized by some erosion for the cases of L3, lA, Y3 and Y4 . Similarities 

and differences in values for the same sections were affected by many factor!> as will be 
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Figure 5.4. Estimated bed-profile change 
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discussed in the following section. 

5.1 Spatial Variation in Aggradation and Degradation of the Bed 

As described in Section 4 the model computed water surface profile computations 

and applied sediment transport equations to solve the sediment-continuity equation. The 

variation in the estimated channel changes could be affected by both components of the 

computations. The following explanation is presented. 

For a given section. the sediment transport capacity was calculated based on the 

hydraulic data, such as local mean shear stress, which resulted from the water surface 

protile computations. This sediment transport capacity was also used to calculate the 
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Figure 5.5. Estimated bed-prolile change 
(20 time steps, corresponds to about 20 years). 

amount of aggradation and degradation through the sediment-continuity equation. 

Dominant factors affecting the water surface profile computation were water discharge 

and sea level. By using MSL, it was found that all water surface profiles were so-called 

"back-water" curves, such that the energy slope and velocity gradually increased in an 

upstream direction. This curve tended to increase the scdi mcnt transport rate, in 

accordance with the simple equilibrium approach suggested by Lane (1955): 

Q. so oc Q, . d (5 .I) 

where Q is water discharge; So is the bed slope; Q~ is sediment discharge; and d is grain 

size. During the simulation of one time-step, Q and d wt:.rc constant. Because energy 

70 



0.-------------------·------------------------------. 
Estimated Channel Change& 

(Sediment Load be3ed on Leur:~en'3 Mothod) 
SodlmMt 'domi!M' o!l.sumed tab mol 

-1 f.O't fly uostrgam supply lo soct.66 

E Soot.05 

-2 c. 
(J 

<D 

> -3 

lJJ 

-4 

(Case L-1) 

Eotlmaled ohonnol ohongo S e a 

Section 1 

-5~------~----~--~~--~----~--~----~--~-----~~ 

0 750 1500 :l250 3000 J?!iO 4500 5:l50 6000 6750 7500 

Distance (m) 

Figure 5.6. Estimated bed-profile change 
(20 time steps, corresponds to about 20 years). 

slope increased, an increase of Q, was required. Q, was calculated using Laursen's and 

Yang's method. For a given section, the simulations demonstrated that the local rate of 

sediment transport showed an increase in its magnitude when computation proceeded in 

an upstream direction. This indicated that the rate of sediment supply might be greater 

than the local rate of sediment removal; thus aggradation occurred. Such conditions 

were indicated by application of Yang and Laursen's equations, as well as the sequence 

of decreasing and increasing discharges, and when the sediment demand at the most-

upstream was assumed fulfilled by the upstream supply (cases of Ll, L2, Y 1 and Y2). 

However, if the sediment budget into the study was a constant fraction (50%) of the 

computed sediment flux using the available suspended sediment rating curve, the increased 
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Figure 5. 7. Estimated bed-profile change 
(20 time steps, corresponds to about 20 years). 

transport capacity led to a picking up of material and 'l decreased transport capacity, 

causing deposition. This process developed in a downstream direction. This condition 

was shown by r::Jo;:es of L3, L4, Y3 and Y4. Out of interest, the effect of assuming no 

sediment supply to the upstream boundary condition (section 65) was also investigated. 

The results showed a large amount of degradation occurred at the most downstream reach 

of the upstream boundary and then continued to the next-most downstream reach. Tl~is 

result also showed that variation of the sediment inflow into the reach under 

consideration had a significant effect on the bed channel changes. In other words, 

aggradation and degradation process were sensitive to the water surface profile, and their 

rate was greatly affected by the rate of sediment flux to the reach under consideration. 
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Figure 5.8. Estimated bed-profile change 
(20 time steps, corresponds to about 20 years). 

The rate of aggradation and degradation was related to the differen: e between the 

local rate of sediment removal and the rate of sediment supply (see Equation 4. 14). The 

former is a function of time and distance alung the channel. The sediment removal rate 

was calculated by using a sediment transport equation. Hence, the rate of aggradation 

or degradation depends entirely upon the sediment transport equation involved. As 

previously discussed, existing sediment transport equations have been developed using 

different independent variables. Laursen's method involves hydraulic shear stress and 

Yang' s method uses unit stream power. For this reason, the estimated aggradation and 

degradation showed different results for the same initial channel and sediment supply 

spccilications. For back-water curves, the hydraulic shear stress and unit stream power 
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tended to increase their magnitudes when calculation proceeded upstream. Helll'l'. 

sediment transport rate, which was calculated using both methods also incn.•ascd in value 

when the calculation proceeded upstream. Th1s indicated agreement with general 

expression of Lane (1955). This result is confirmed by simulations Ll, Y 1. L2 and Y2 

(application of Laursen and Yang's equation, sequence of decreasing and increasing 

discharges, and the sediment demand to study reach fultillcd by th,· .• pstre<~m supply). 

and by L3, Y3, L4 and Y4 (application of Laursen and Yang's t.•quation. sequence of 

decreasing and increasing discharges, and the sediment demand to study reach wmputed 

as :iO% of the upstream supply). Yang's method showed slightly higher degradation and 

aggradation amounts for the same reach than did Laursen's method, but the di!Tcrcm:es 

were relatively small. In other words, the rate or' channel change was found to he 

sensitive to the sediment removal rate as computed by a sediment transport equation, hut 

at a state of equilibrium the sediment load was found to he less sensitive to the choice 

of sediment transport equation. 

5.2 Spatial Variation in llydraulic Shear Stress 

As previously discussed the hydraulic shear stress tended to incrca~c in upstream 

direction for the back-water curve, and the geometric channel changes were generally 

characterized by aggradation. This meant that the aggradation process started at the must 

downstream reach of the upstream boundary condition and progressed in a downstream 

direction to the sea. If the aggradation reach{!d the sea and was still in progress, the 

subsequent process might be expected to depend upon the hydraulic condition of the 
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estuary, which is itself influenced by many factors, including tidal action, the forces of 

ocean waves and variations in river channel discharges. Unfortunately, these factors 

were beyond the scope of this study. However, if the tidal action and the wave forces 

arc relatively small factors in the estuary, the aggradation process may develop in two 

possible directions. First, the aggradation process may progress continuously in a 

downstream direction, auJ the sediment may be deposited continuously in the sea. If the 

aggradation process continues in a downstream direction, the channel slope will tend to 

increase. Second, if the aggradation reaches the estuary and is still in progress, the 

aggradation may reverse, to an upstream direction. The bed slope would then decrease. 

This means that the more aggradation might occur in downstream reaches. For 20 time 

steps, it was found that the aggradation occurred more in the upstream reaches, so that 

the aggradation might eventually progress in a downstream direction. However, both 

types of progressing aggradation could affect the estuary, which might experience 

shallowing and delta formation over a relatively long period of time. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

This research has demonstrated the application of a mathcn1.1tical model for the 

evaluation of the proposed design of the Kcmuning Diversion Channel in terms of 

possible channel changes associated with a relatively long period of operation. This 

study involved two sediment transport equations: Laursen's equation and Yang's 

equation. The assumed sequence of inflows was based on the historkal flow duration 

curve, and used t· .vo scenarios: an increasing discharge sequence and a decreasing 

discharge sequence. The rate of sediment inflow into the study under consideration was 

based on two assumptions: 

(i) sediment demand at the most upstream st'Jdy reach was met entirely by the 

upstream supply. 

(ii) a constant percent (50%) of the concentration computed using the available sediment 

ratbg curve (see Equation 4.3). The incoming load was the 50 % of the suspended 

sediment load, as estimated by a historical suspended sediment rating curve (sec 

Equation 4.5). 

6.1 Conclusions 

1. Estimated channel changes of the proposed design indicate that future channel 
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adjustments will be characterized by channel bed aggradation. This indicates that the 

channel will seek equilibrium by slight changes in bed elevation and long profile 

slope. This finding is based on the assumption that sediment demand at the most 

upstream study reach is met entirely by the upstream supply. 

2. Aggradation and degradation processes were found to be sensitive to the water surface 

profile, and their respective rates were sensitive to the rate of sediment transport, as 

calculated by a sediment transport equation. The equilibrium sediment load, on the 

m11er hand, was less sensitive to the sediment transport equation. 

3. By using the historical flow duration curve and the variation in the sediment inflow 

into the study reach, it was found that the water surface profile was characterized by 

backwater curves and the estimated channel change characterized by channel-bed 

aggradation. For the case where the computed sediment flux into the study reach was 

assumed to be constant percent of the total concentration, computed using the 

available sediment rating curve, estimated channel changes tended to show both 

channel-bed aggradation and degradation. 

4. It was found that the highest channel bed aggradation according to Yang's method was 

less than 0.1 m (see Case Y2 and Figure 5.4). It can therefore be concluded that the 

proposed design of the Kemuning Diversion Channel is reasonable in terms of 

possible future channel changes caused by sediment budget imbalances. 

5. Assumptions regarding the two categories of sequences of decreasing and increasing 

discharges did not show significant differences in the computed channel changes. 

This finding comes cases Ll and L2 (see Figure 5.1 and 5.2), cases Yl and Y2 (see 
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Figure 5.3 and 5.4), cases L3 and L4 (sec Figure 5.5 and 5.6) as well as cases \' J 

and Y4 (see Figure 5.7 and 5.8). However. assumptions regarding the percentage of 

sediment influx which enters budget from the watershed were found to have a 

significant effect on the results (see Figure 5.5. 5.6. 5.7 and 5.8). 

6. By using regime theory, it was found that the channel tend to widen and llnttcn. The 

widening is not expected because both left and right-hand-side along the diversion 

channel will eventually have human settlements. It can be concluded that hank 

protection for future maintenance is reasonable. 

7. Regarding the bank protection, it was found that regime theory is not wmplctdy 

applicable for evaluation of channel geometry. 

6.2 Recommendations 

The possible future channel changes of the Kcmuning Diversion Channel were 

analyzed by using both inductive and deductive mathematical models. However, the 

following suggestions are presented for possible future work on the analysis of possible 

channel changes: 

1. Further investigation into the critical hydraulic shear stress of this particular bed 

material should be made so that the threshold condition for sedim~nt motion can be 

represented more accuratdy. 

2. Further investigations should be implemented to provide a better suspended sediment 

rating curve, together with bed load discharge, into the study reach. More detail and 

confidence is needed on the nature of these contributions. 
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3. The rationale for a long-term maintenance strategy, including reaches requiring 

regular dredging due to the aggradation process, is f\ possible topic for further 

analysis. 
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Appendix- A 

CJmputer Program for Estimating Geometric Channd Changes 

This appendix gives the computer coding which was used to estimate geometric 

channel changes. The program was written using Quick Basic. This program is 

comprised of set of 27 subroutines for each stage of 6 stages. The input and output Iiles 

are differentiated for Yang's and Laursen ' s methods, except for the input for step I at 

stage one. The program is initiated at stage one, which consists of 3 steps. Each stage 

has different numbers of step (see Table 4.3). For stage two and beyond, stage nne is 

re(X'ated with a different input. The initial input is the output of the last step and the 

former stage. Yang's and Laursen's methods, arc run sequentially. Results (outputs) arc 

presented for both methods in printed and digital form. Final interpretation of results 

was performed using Lotus 123 (see Appendix-C). 
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.............................. 
'Description of vanables 
................................................ 

'0, water discharge 
'So, hcd slope 
'Z, water surface level 
'D, cumulative: di~tancc 
'llu, head velocity 
'A, wet ar~ 
'SY, sediment Jm;d 
'Vs, unit ~\ream power 
'Y, ordinntc point 
'X, 11tation point 
'Os, sediment intlow 
................................. 
· Suhroutines 
............................... 
CLS 

B, base width 
g, gravitation 
T, water derth 
dx, distance 
P, wt:t penmeter 
V, water velocity 
ss, s~ific gravity 
Tn, normal dt:pth 
m, number of point 
f, sidt: slope 
tol, tolerance 

(JQSUB INJTIALIZATION.STAGE.I 'for stage of 1 only 
GOSUB INITIALIZATION. I 't:xluded stage of I 
GOSUB NORMAL.CRITICAL.DEPTH.l 
GOSUB WATERSURFACE.PROFILE.I 

n, Manning coefficient 
Eo, datum ( + 20) 
NITER, number of iteration 
H. head velocity 
SF. friction slope 
R, hydraulic radius 
vv, kinematic viscosity 
d, diameter (d35) 
ST, hydraulic sheJr stress 
NSEC, number of section 
CSS, critical hydraulic shear stress 

GOSUB CTYANG.SEDIMENT.I 'for using Yang's method only 
GOSUB LURSEN.SEDIMENT.I 'for using Laursen's method only 
GOSUB RESUME.RESULT.I 
GOSUB NEW.COORDINAT.l 
GOSUil NORMAL.CRITICAL.DEPTH.2 
GOSUB WATERSURFACE.PROFILE.2 
GOSUil CTY ANG.SEDIMENT.2 'for using Yang's method only 
GOSUIJ LAURSEN.SEDIMENT.2 'for using Laursen's method orly 
GOSUB RESUME.RESULT.2 
GOSUB NEW.COOPDINAT.2 
GOSUB NORMAL.CRITICAL.DEPTH.3 
GOSUB WATERSlJRFACE.PROFILE.3 
GOSUil CTY ANG.SEDIMENT.3 'for using Yang's method only 
GOSUB LAURSEN.SEDIMENT.3 'for using Laursen's method only 
GOSUB RESUME.RESULT.J 
GOSUil NhW.COORDINAT.3 
GOSUB NORMAL.CRITICAL.DEPTH.4 
GOSUB WATERSURFACE.PROFILE.4 
GOSUB CTY ANG.SEDIMENT.4 'for using Yang's method only 
GOSUB LAURSEN.SEDIMENT.4 'for using Laursen's method only 
GOSUB RESUME.RESULT.4 
GOSUB NEW.COORDINAT.4 
GOSUB PRINT.STEP 
END 

'Input data 
................................ 

CLS 
DIM Hul(65), Hl(6~). Zl(65), SF1(65), Pl(65), ST1(65) 
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DIM R1(65), D(70). AFR1(65), Al(65), Tl(65), Vl(65) 
DIM SY1(70), RASY1(70), ErY1(70), 81(65), 1'2(65). BSY1(65) 
REM $DYNAMIC 
DIM na1(15), nb1(15), ncl(15), bmc1(15). fcn1(15), 8(65) 
DIM ca1(15), cbl(15), cc1(15), bkcl(l5), fccl(l5) 
DIM X(70, 70), Y(70, 70), X1(70, 70). Yl(70. 70), MAX(65) 
READ Q, n. So, g, f. Eo. NITER. Zl(l), Tl(l), ss 'gcncr41 input 
DATA 174.2,0.025.0.00032.9.81.1.20.00,1000,15.464.4.536.2.787 
nsec = 65: m = 6: : del = 1: tol = .001 'section numher 
dk = .000088: dg = .000177: dms = .00012: ik = .42: ig = .31 'grain si7.c 
vv = .000001007#: pet = .6: CSS = 5: pros = .S.) 'soil and sediment 
vvd = .00998: Qs = 3.5425 * (Q " 1.5279) 'sediment rating curve 
INITIALIZATION .STAGE . I: 
OPEN "B:DATAKl.PRN" FOR INPUT AS #1 'input tile 
OPEN "B:WIDTH.PRN" FOR IN~UT AS #2 'input fik 
OPEN "B:Cardinat.PRN" FOR ll'lPUT AS #3 'input tile 
FORi =· 1 TO nsec 
INPUT #1. D(i) 
INPUT #2, B(i) 
FORj = l TOm 
INPUT #3, X(i. j), Y(i. j) 
NEXTj 
NEXT i 
CLOSE #1 
CLOSE #2 
CLOSE #3 
RETURN 
INITIALIZATION.1: 
OPEN "B:DATAKl.PRN" FOR INPUT AS 114 'input tile 
OPEN "B:UYANG3A.PRN" FOR INPUT AS #5 'input-output file for Yang's method only 
OPEN "B:Y93S3U.PRN" FOR INPUT AS #6 'input-output tile for Yang's method only 
OPEN "B:UY ANG3B.PRN" FOR INPUT AS 117 'input-output file for Yang's method only 
OPEN "B:URSEN3A.PRN" FOR INPUT AS 115 'input-output file for Laursen's method only 
OPEN "B:L93S3U.PRN" FOR INPUT AS 116 'input-output file for Laursen's method only 
OPEN "B:URSEN3B.PRN" FOR INP•.iT AS #7 'input-output file for Laursen's method only 
FOR i = l TO nsec 
INPUT #4, D(i) 
INPUT #5, B(i) 
FORj = 1 TOm 
INPUT #6, X(i, j), Y{i, j) 
NEXTj 
NEXTi 
CLOSE #4 
CLOSE #5 
CLOSE #6 
INPUT 117, So, Eo, Tl(1) 
CLOSE #7 
RETURN 
..................................................................... 

'Normal and critical depth, step 1 
....................................................................................... 
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NORMAL.CRITICAL.DEPTH.I: 
FOR ii = I TO 15 
IF ii = I THEN 
nal(ii) =.I: nhl(ii) = 8: ncl(ii) = 112 • (nal(ii) + nbl(ii)) 
fat =n"2+Q"2•(B(I)+ 2*na)(ii)"'((l + f"2)".5))"'(413) 
fla-== So"' (((8(1) + f * nal(ii)) • nal(ii)) "(10 I 3)) 
fan! = I · fal I fla 
fbi = n" 2 • Q" 2 * (8(1) + 2 .. nhl(ii) * ((1 + f" 2)" .5))"' (4 I 3) 
flh =-~So"' (((B(l) + f • nhl(ii)) • nbl(ii)) ... (10 I 3)) 
lhnl = I • fh I I fl h 
tel = n" 2 • Q "2"' (8(1) + 2 * ncl(ii) "'((1 + f" 2) .... 5)) ... (4 I 3) 
ftc = So • (((8(1) + f • ncl(ii)) * ncl(ii)) ... (10 I 3)) 
lcnl(ii) = I • fcl I ftc 
cal(ii) =.I: chl(ii) = 8: ccl(ii) = I 12 * (cal(ii) + cb1(ii)) 
flea = Q ... 2 * (8(1) + 2 • cal(ii) *f) 
Ida= g • ((B(l) + f • cal(ii)) • cal(ii)) ... 3 
fcal = I ·flea I fCla 
flch = Q ... 2 • (8(1) + 2 • cbl(ii) • f) 
fclh = g * ((8(1) + f"' cbl(ii)) * cbl(ii)) ... 3 
khl = I - fleh I fclb 
flee = Q ... 2 • (8(1) + 2 • ccl(ii) •!) 
Ide = g "'({B(I) + f"' ccl(ii)) "'ccl(ii)J ... 3 
fccl(ii) = I ·flee I fclc 
ELSEIF ii > I THEN 
IF fiml • fc11l(ii- I) < = 0 THEN nbl(ii) = ncl(ii- 1): nal(ii) = nal(ii • 1) 
IF lhnl "'fcnl(ii- I) < = 0 THEN na1(ii) = ncl(ii- 1): nbl(ii) = nbl(ii- 1) 
ncl(ii) = I 12 "'(nal(ii) + nbl(ii)) 
fcl = n ... 2 "'Q ... 2 "'(B:l) + 2 * ncl(ii) "'((l + f ... 2)" .5))" (41 3) 
ftc = So"' (((B( I) + f * •:cl(ii)) * ncl(ii)) ... (10 I 3)) 
fcnl(ii) = I • fcl I ftc 
IF leal "'fccl(ii- 1) < = 0 THEN cbl(ii) = cc1(ii • 1): cal(ii) = cal(ii- 1} 
IF fch1 "'fccl(ii- I) < = 0 THEN ca1(ii) = ccl(ii- 1): cb1(ii) = cbl(ii- l) 
::cl(ii) = 1 /2"' (cal(ii) + cbl(ii)) 
flee = Q ... 2"' (B(I) + 2 "'ccl(ii) *f) 
li.:lc == g "'((8(1) + f * cc1(ii)) "'ccl(ii)) ... 3 
tccl(ii) = 1 -flee 1 ~etc 
END IF 
bmcl(ii) = ABS(nbl(ii)- ncl(ii)) 
IF hmcl(il) < = tol THEN Ynl = nbl(ii) 
hkcl(ii) = ABS(cb1(ii)- ccl(ii)) 
IF bkcl(ii) < = tol THEN Yet = cbl(ii) 
NEXT ii 
RETURN 
............................................................... 

'Water surface profile, step I 

··~···························· 
WATERSURFACE.PROFJLE.l: 
AI( I)= (B(l) + f"' Tl(l)) * Tl(l): Pl(l) = (8(1) + 2.8284 * Tl(l}) 
Rl(l) = Al(l) I Pl(l): Vl(l) = Q I Al(l) 
AFRI(I) = ((Q"' 2 "'(B(I) + 2 "'Tl(l))) I (g"' Al(l)" 3)) ... . 5 
SFI(I) = (Vl(l) "'2) "'(n .. 2) I (Rl(l)"' (4 I 3)) 
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bb1 = 1.15 "'(Vl{l) .. 2) I (2 "'g): STl(l) = 9789"' Rl(l) "'SFl(l) 
Hl(l) = ZIP)- bhl: Hul(l) = Hl(l): tol = .001: in!:r = .0('101 
FOR i = 2 TO nsec 
il = i- 1 
dx = D(i)- D(il) 
sum= 0 
FOR c = 1 TO NITER 
sum = sum + incr: Zl(i) = Zl(il)- sum 
Tl(i) = Eo- Zl(i)- So * D(i) 
IF Tl(l) < = Ynl THEN 
IF Tl(i) > Ynl THEN Tl(i) = .99 "'Ynl 
ELSEIF Tl(1) > Yn1 THEN 
IF Tl(i) < Yn1 THEN T1(i) = 1.01 "'Ynl 
END IF 
MAX(i) = Y(i, l) 
FOR j = 1 TO m - 1 
IF MAX(i) < Y(i, j) THEN MAX(i) = Y(i, j) 
NEXTj 
j = 2 
DO UNTIL Y(i, j) > = (MAX(i)- Tl(i)) 
j = j + 1 
LOOP 
k = m- 1 
DO UNTIL Y(i, k) > = (MAX(i)- Tl(i)) 
k = k - 1 
LOOP 
yLEFT = MAX(i) - Tl(i) 
IF Y(i, j) < > yLEFT THEN 
SLOPE. LEFT= (Y(i, j)- Y(i, j - 1)) I (X(i, j)- X(i, j- i)) 
xLEFT = X(i, j) - ((Y(i, j) - yLEF1) I SLOPE. LEFT) 
ELSE 
xLEFT = X(i, j) 
END IF 
yRIGHT = yLEFT 
IF Y(i, k) < > yRIGHT THEN 
SLOPE.RIGHT = (Y(i, k) - Y(i, k + l)) I (X(i, k)- X(i, k + I)) 
xRIGHT = X(i, k)- ((Y(i, k)- yRIGHD I SLOPE.RIGHD 
ELSE 
:<.RIGHT = X(i, k) 
END IF 
P1(i) = SQR((X(i, j)- xLEFn ... 2 + (Y(i, j)- yLEFT) A 2) 
P1(i) = P1(i) + SQR((xRIGHT - X(i, k)) A 2 + (yRIGHT- Y(t, k)) .. 2) 
FOR L = j TO k - 1 
Pl(i) = P1(i) + SQR((X(i, L)- X(i, L + 1)) A 2 + (Y(i, L)- Y(i, L + I)) .. 2) 
NEXT L 
A1(i) = (X(i, j + 1)- xLEFT) * (Y(i, j)- (MAX(i)- Tl(i))) I 2 
A1(i) = Al(i) + (xRIGHT- X(i, k- 2))"' (Y(i, k- I)- (MAX(i)- Tl(i))) / 2 
FOR L = j TO k - 3 
Al(i) = Al(i) + (X(i, L + 2) - X(i, L)) * (Y(i, L + 1) - (MAX(i)- Tl(i))) I 2 
NEXT L 
TPW = xRIGHT · xLEFT: AFRI(i) = ((Q A 2 "'TPW) I (g "'Al(i) A 3)) .. . 5 
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Rl(i) = Al(i) I Pl(i): Vl(i) = Q I Al(iJ: Vi2 = 1.05 * (Vl(i})" 2 
Wi = Vi2 I (2 *g): Ht(i) = Zl(i)- Wi 
SFl(i) = (Vl(i)" 2) * (n " 2) I (Rl(i) A (4 I 3)) 
asf = .5 * (SFI(i) + SFI(il)): Dasf = dx * asf: Hul(i) = Hul(il)- Dasf 
dif = ABS(H l(i) - Hu I (i)) 
IF dif < = tol THEN 
lfl(i) = Hl(i): SFI(i) =· ::.Ft(i): Hul(i) = Hul(i): Zt(i) = Zl(i) 
Tl(i) = Tl(i): Pl(i) = Pl(i): Al(i) = Al(i): Rl(i) = Rl(i): Vl(i) = Vl(i) 
AFRI(i) = AFRl(i) 
GOTi1 50 
END IF 
NEXT c 
50 AKU = 0 
NEXT i 
RETURN 

'Sediment transport rate of step I 
'********************~************* 

CTYANG.SEDIMENT.t: 
CLS 
FOR i = I TO nscc 
ayk = 5.913 - .255 + 1000 "'dk - .004 "' (B(i) I Tl(i)) 
ayg = 5.913- .255"' 1000 "'dg - .004 "'(B(i) I Tl(i)) 
hyk = 1.257 - .005 "' (B(i) I Tl(i)) 
hyg = 1.257 - .005 "' (B(i) I Tl(i)) 
Cyk = 10 ... (ayk + byk"' (.434295 * LOG(3.28I * Vt(i) * SFl(i)))) 
Cyg = 10 ... (ayg + byg + (.434295 + LOG(3.281 "'Vl(i) + SFJ(i)))) 
SYI(i) = (Cyk + Cyg) * Q * .0864 
'IF i = nscc THEN SYI(i) == pet* Qs 'for constant sediment inflow 
NEXT i 
RETURN 
LAURSEN .SEDIMENT .1: 
CLS 
tcr = .039 
FOR i = I TO nsec 
Usl = (3.281 ... 2 "'g "'Rl(i) "'So) ... . 5 
wlk = (1822.78 * (dk) ... 2 * (ss - I)* g) I vvd 
wig = (1822.78 * (dg) ... 2 * (ss- 1) *g) I vvd 
rlk = Usl I wlk 
rig = Usl I wig 
IF rlk > = .01 AND rlk < == .6 THEN tU-. == 10.60499 * r1k " .240737 
IF rlk > .6 AND rlk < = 2.5 THEN tlk = 15.68325 "' rlk " .982138 
IF rlk > 2.5 AND rlk < = 30 THEN flk = 6.078651 * rlk " 2.167448 
IF rlk > 30 AND rlk < = 100 THEN flk == 245.1002 "' rlk " 1.050231 
IF rlk > 100 THEN flk = 6946.656 "' rlk "' .307833 
IF rig > = .01 AND rig < = .6 THEN flg = 10.60499"' rig A .240737 
IF rig > .6 AND rig < = 2.5 THEN flg == 15.68325 * rig " .982138 
IF rig > 2.5 AND rig < = 30 THEN flg = 6 .078651 *rig "2.167448 
IF rig > 30 AND rig < = tOO THEN flg = 245.1002"' rlg" 1.050231 
IF rig > 100 THEN tlg = 6946.656 * rig " .307833 
tlk = tcr "'62.4 "'(ss- I)"' dk "'3.281 
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tlg = tcr * 62.4 * (ss- I)* dk * 3.281 
toak = (1.94"' (3.281 * V1(i))" 2 "'(dms I T1(i)) ... (I I 3)) I 58 
toag = (1.94"' (3.281 "'Vl(i)) ... 2"' (dms I Tl(i)) ... (I I 3)) I 58 
Cmk = ((dk I Tl(i)) ... (7 I 6)) * (toak I tlk- I) * flk 
Cmg = ((dg I Tl(i)) ... (7 16)) "'(toag I tlg- \)"' tlg 
tCm = .01 "'62.4"' (Cmk + Cmg) 
SYl(i) = tCm * Q * 385.75 'tot/day (3.281 "3) * .4536 * 86-$00 I 1000 
'IF i = nsec THEN SYI(i) = pet * Qs 'for constant scdim~~nt intlow 
NEXTi 
RETURN 

'change of channel bed of step 1 
'******************************* 
RESUME.RESULT.I: 
OPEN "B:UYANGIA.PRN" FOR OUTPUT AS #50 'input-output file for Yang's method only 
OPEN "B:URSEN1A.PRN" FOR OUTPUT AS #SO 'input-output tile for Lmtrsen' s mdhoJ only 
FOR i = 1 TO nsec 
STl (i) :-: 9789 * R 1 (i) * SF 1 (i) 
BSYI(i) = SYl(i + 1)- SYl(i) 
IF STl(i) < = CSS THEN 
IF i = 1 THEN RASY l(i) = 0 
IF i > 1 THEN 
IF BSYI(i) < = 0 THEN RASYl(i) = 0 
IF BSYI(i) > 0 THEN RASYl(i - I) = 0 
RASYl(i) = BSY1(i) I (.5 * (D(i + I)- D(i- I))) 
END IF 
ELSEIF STl(i) > CSS THEN 
IF i = 1 THEN RASY1(i) = 0 
IF i > 1 THEN RASYI(i) = BSY1(i) I (.5 * (D(i + I)- D(i- I))) 
END IF 
IF i = nsec THEN RASY1(i) = 0: BSYI(i) = 0: PQsYl = SYI(i) I Qs 
IF RASY1(i) < = 0 THEN ErYI(i) =-(8(i)-(B(it2-(4*dct*ABS(RASYI(i))/(ss*{l-pros))))"'.5)12: 
Bl(i) = B(i) + 2 * ErYI(i) 
IF RASY1(i) > 0 THEN ErYI(i) =(-8(i)+(B(i)"2+(4*det"'ABS(RASYI{i))l{ss*(l -pms))))" .S)I2: 
Bl(i) = B(i) + 2 * ErY1(i) 
WRITE #50, B1(i) 
NEXT i 
CLOSE #50 
RETURN 
.......................................................................................................... 

'New cross-section coordinat of step 1 
....... ***"'"'*****"'**********"'*******"'** ··~· 
NEW.COORDINAT.CfY ANG.1: 
OPEN "B:UYANG1B.PRN" FOR OUTPUT AS 1151 'input-output file for Yang's method only 
OPEN "B:Y174S1U.PRN" FOR OUTPUT AS #52 'input-output file for Yang's method only 
OPEN "B:URSEN1B.PRN" FOR OUTPUT AS 1151 'input-output file for Laursen's method only 
OPEN "B:Ll74SIU.PRN" FOR OUTPUT AS #52 'input output file for Laursen's method only 
FORi = 1 TO nse-: 
FORj = 1 TOm 
IF i > = 1 THEN 
IF j > = 1 AND j < 3 THEN Xl(i, j) = X(i, j): Y1(i, j) = Y{i, j) 
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IF j > = 3 AND j < 4 THEN Xl(i, j) = (X(i, j) • ErYl(i)): Yl(i, j) = (Y(i , j) • ErYl(i)) 
IF j > = 4 AND J < 5 THEN Xl(i, j) = (X(i, j) + ErYl(i)): Yl(i, j) ::.: ( ··(i, j)- ErYI(i)) 
IF j > = 5 THEN Xl(i, j) = X(i, j): Yl(i, j) = Y(i, j) 
IF j > = I THEN Sola = (YI(l, 3) • Y1(20, 3)) I (0(20) • D(l)): 
Solh = (Yl(20, 3) • Yl(40, 3)) I (D(40) • 0(20)): 
Sole = (YI(40, 3) • Yl(nsec, 3)) I (D(nsec) • D(40)): 
Sol = (Sola + Solb + Soic) . 3: Eol =- Yl(l, 3): T2(1) = Eol • Zl(l) 
END IF 
NEXT.i 
NEXT i 
FOR i = I TO nscc 
WRITE 1151, Sol, Eol, T2(1) 
WRITE #52, Xl(i, I), Yl(i, 1), XJ(i, 2), Yl(i, 2), Xl(i, 3), Yl(i, 3},: 
Xl(i. 4), Yl(i, 4), Xl(i, 5}, Yl(i, 5}, Xl(i, 6), Yl(i,6) 
NEXT i 
CLOS:~ #51 
CLOSE #52 
RETURN 

'Normal anc.l critical depth of step 2 
........................................ 
NORMAL.CRITICAL.DEPTH.2: 
ERASE nat, nhl, ncl, hmcl. fcnl, cal, cbl, eel, bkcl, feel 
ERASE X, Y, MAX, 8 
DIM Hu2(65), H2(65), Z2(65), SF2(65), P2(65), ST2(65), R2(65), AFR2(65) 
DIM A2(65), T3(65), V2(65), SY2(70), RASY2(70), ErY2(70), B2(65), BSY2(65) 
REM $DYNAMIC 
DIM na2(15), nb2(15}, nc2(15), hmc2(15}, fcn2(15) 
DIM ca2(15), cb2(15), cc2(15), bkc2(15), fcc2(15) 
DIM X2(70, 70), Y2(70, 70), MAX1(65) 
FOR ii = l TO 15 
IF ii = I THEN 
nu2(ii) = .I : nb2(ii) = 8: nc2(ii) = I I 2 * (na2(ii) + nb2(ii)) 
fa2 = n "'2 • Q A 2 "'(81{1) + 2 "'na2(ii) "'((1 + f"' 2)" .5)) A (4 13) 
t2a =Sol "'(((81(1) + f"' na2(ii)) + na2(ii)} A (10 I 3)) 
fan2 = I - fa2 I fla 
fh2 = n "'2"' Q" 2 "'(81(1) + 2 "'nb2(ii) "'((1 + f" 2)" .5))"' (4 I 3) 
t2h = Sol "'(((Bl(l) + f"' nb2(ii))"' nb2(ii)) A (10 I 3)) 
fhn2 = I - fb2 I flb 
fc2 = n "'2 "'Q A 2 "'(81(1) + 2 "'nc2(ii) "'((1 + f"' 2)" .5))"' (4 I 3) 
flc = Sol * (((81(1) + f * nc2(ii)) * nc2(ii)) A (10 I 3)) 
fcn2(ii) = I - fc2 I t2c 
ca2(ii) = .I : cb2(ii) = 8: cc2(ii) = I I 2 + (ca2(ii) + cb2(ii)) 
t2ca = Q"' 2 • (Bl(l) + 2 "'ca2(ii) + t) 
fc2a = g * ((81(1) + f * ca2(ii)) * ca2(ii)) ... 3 
fca2 = 1 - flea I fc2a 
12cb = Q ... 2 • (Bl(l) + 2 "'cb2(ii) "' t) 
tc2b = g "' ((B 1 (I) + f"' cb2(ii)) "' cb2(ii)) .. 3 
fch2 = I • flcb I fc2b 
t2cc = Q .. 2 * (81(1) + 2 • cc2(ii) • t) 
fc2c = g * ((81(1) + f"' cc2(ii)) * cc2(ii))"' 3 
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fcc2(ii) = l - f2cc I fc2c 
ELSEIF ii > 1 THEN 
IF fan2 "' f<:n2(ii - I) < = 0 THEN nb2(ii) = nc2(ii - 1): na2(ii) -= na:!(ii - 1) 

IF tbn2 "' fcn2(ii - l) < = 0 THEN na2(ii) = nc2(ii - 1 ): no2(ii) = nh2(ii - I) 

nc2(ii) = I I 2 "' (na2(ii) + nb2(it)) 
fc2 = n ... 2 "'Q ... 2 "'(81(1) + 2. "'nc2(ii) "'((1 + f ... 2) .... 5)) ... (4 i 3) 
t2c = Sol * (((Bl(l) + f * nc2(ii)~ ~ nc2(ii)) .. (10 I 3)) 
fcn2(ii) = 1 - fc2 I f2c 
IF fca2 "'fcc2(ii- I) < = 0 THEN cb2(ii) = cc2(ii- 1): l'a2(ii) = ca2(1i - I) 

IF fcb2 + fcc2(ii - I) < = 0 THEN ca2(ii) = cc2(ii - I): ch2(ii) == l·h2(ii - I) 
cc2(ii) = l I 2 "' (ca2(ii) + cb2(ii)) 
t2cc = Q A 2 + (Bl(l) + 2 "'cc2(ii)"' f) 
fc2c = g + ((Bl(l) + f + cc2(ii)) "'cc2(ii)) ... 3 
fcc2(ii) = l - flee I fc2c 
END IF 
bmc2(ti) = ABS(nh2(ii) - nc2(ii)) 
IF bmc2(ii) < = tal THEN Yn2 = nb2(ii) 
bkc2(ii) = ABS(cb2(ii)- cc2(ii)) 
IF bkc2(ii) < = tal THEN Yc2 = cb2(ii) 
NEXT ii 
RETURN 

'Water surface profile of step 2 
.............................................................. 

W ATERSURF ACE. PROFILE. 2: 
Z2(1) = Zl(l): A2(1) = (81(1) + f"' T2(1)) "'T2(1): P2(1) = (UI(I) + 2.8284 + T2(1)) 
R2(l) = A2(1) I P2(1): V2(1):..: Q I A2(1): SF2(1) = (V2(1)"' 2) + (n" 2) I (R2(1)" (·I I I)) 
AFR2(1) = ((Q ... 2 + (81(1) + 2 "'T2(1))) I (g + A2(1) ... 3)) A .5 
bb2 = 1.15 "'(V2(1) A~) I (2 *g): ST2(1) = 9789. R2(1) ... SF2(1) 
H2(1) = Z2(1)- bb2: Hu2(1) = H2(1): tal = .001: incr = .0001 
FOR i = 2 TO nsec 
i1 = i- I 
dx = D(i)- D(i 1) 
sum= 0 
FOR c = 1 TO NITER 
sum = sum + incr: Z2(i) = Z2(i I) - sum 
T2(i) = Eo1 - Z2(i)- Sol "' D(i) 
IF T2(1) < = Yn2 THEN 
IF T2(i) > Yn2 THEN T2(i) = .99 * Yn2 
ELSEIF T2(1) > Yn2 t'HEN 
IF T2(i) < Yn2 THEN T2(i) = 1.01 "' Yn2 
END IF 
MAXI(i) = Yl(i, 1) 
FORj = I TOm- I 
IF MAX1(i) < Y1(i, j) THEN MAX1(i) = Yl(i, j) 
NEXTj 
j = 2 
DO UNTIL Y1(i, j) > = (MAX1(i)- T2(i}) 
j = j + I 
LOOP 
k = m- 1 
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DO UNTIL YI(J, k) > = (MAXI(i)- T2(i)) 
k = k- I 
LOOP 
yLEFT = MAXI(i)- T2(i) 
IF Yl(i, j) < > yLEFT THEN 
SLOPE.LEFT = (YI(i,j)- Yl(i,j- I)) I (XI(i,j)- Xl(i,j- I)) 
xLEFT = Xl(i, j)- t(YI(i, j)- yLEF11 I SLOPE. LEFT) 
ELSE 
xLEFT = Xl(i, j) 
END IF 
) RIG liT = yLEFT 
IF Yl(i, k) < > yRIGHT THEN 
SLOPE.RIGIIT = (YI(i, k)- Yl(i, k + I)) I (XI(i, k)- Xl(i, k + I)) 
xRIGIIT = Xl(i, k)- ((YI(i, k)- yRIGHT) I SLOPE.RIGHD 
ELSE 
xRIGIIT = Xl(i, k) 
END IF 
P2(i) = SQR((X l(i, j) - xLEFT) ... 2 + (Y l(i, j) - yLEFn " 2) 
P2(i) = P2(i) + SQR((xRIGHT- Xl(i, k))" 2 + (yRIGHT- Yl(i, k))" 2) 
FOR L = j TO k - I 
P2(i) = P2(i) + SQR((XI(i, L)- Xl(i, L + I))" 2 + (YI(i, L)- Yl(i, L + I)) ... 2) 
NEXT L 
A2(i) = (XI(i,j +I) -xLEFT) *(Yl(i,j)-(MAXl(i)-T2(i))) 12 
A2(i) = A2(i) + (xRIGHT- X l(i, k- 2)) * (YI(i, k - I)- (MAXI(i)- T2(i))) I 2 
FOR L = j TO k - 3 
A2(i) = A2(i) + (XI (i, L + 2)- Xl(i, L)) * (Yl(i, L + 1)- (MAXI(i)- T2(i))) I 2 
NEXT L 
TPW = xRIGHT - xLEFT: AFR2(i) = ((Q " 2 * TPW) I (g "' A2(i) "' 3)) " .5 
R2(i) = A2(i) I P2(i): V2(i) = Q I A2(i): Vi2 = 1.05 * (V2(i)) "' 2 
Wi = Vi2 I (2 "' g): H2(i) = Z2(i)- Wi: SF2(i) = (V2(i) " 2) * (n " 2) I (R2(i) ... (4 I 3)) 
a.o;f = .5 • (SF2(i) + SF2(i 1)): Dasf = dx * asf: Hu2(i) = Hu2(i I)- Dasf 
dif = ABS(H2(i) - Hu2(i)) 
IF dif < = tot THEN 
H2(i) = H2(i): SF2(i) = SF2(i): Hu2(i) = Hu2(i): 72(i) = Z2(i) 
T2(i) = T2(i): P2(i) = P2(i): A2(i) = A2(i): R2(1} = R2(i): V2(i) = V2(i) 
AFR2(i) = AFR2(i) 
GOTO 60 
END IF 
NEXTc 
60 AKU = 0 
NEXT i 
RETURN 

'Sediment transport rate of step 2 
.................................................................. 

CTYANG.SEDIMENT.2: 
CLS 

JR i = I TO nsec 
ayk = 5.913- .255 * 1000"' dk- .004"' (Bl(i) I TI(i)) 
ayg = 5.913- .255"' 1000 • dg- .004"' (Bl(i) I TI(i)) 
hyk ::: 1.257- .005 "'(Bl(i) I T2(i)) 
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byg = 1.257 - .005 * (B 1 (i) I T2(i)) 
Cyk = 10" (ayk + byk * (.434295 * LOG(3.281 * Y2(i) • SF:!(i)))) 
Cyg = 10" (ayg + byg * (.434295 * LOG(3.281 • V2(i) * SF2(i)))) 
SY2(i) = (Cyk + Cyg) * Q * .0864 
'IF i = nsec THEN SY2(i) = pet * Qs 'for constant s~oimt:nt intlow 
NEXT i 
RETURN 
LAURSEN .SEDIMENT.2: 
CLS 
tcr = .039 
FOR i = I TL nsec 
Usl = (3.281 "2 * g"' R2(i) *Sol)" .5 
wlk = (1822.78 * (dk) ... 2 * (ss • 1) *g) I vvd 
wig== (1822.78 * (dg) ... 2 * (ss- 1) *g) I vvd 
rlk = Usl I wlk 
rig = Usl I wig 
IF rlk > = .01 AND rlk < = .6 THEN tlk = 10.60499 • rlk .. . 240737 
IF rlk > .6 AND rlk < = 2.5 THEN flk = 15.68325 "'rlk ... 982138 
IF rlk > 2.5 AND rlk < = 30 THEN flk = 6.078651 * rlk " 2 . 167448 
IF rlk > 30 AND rlk < = 100 THEN flk = 245.1002 * rlk " 1.050231 
IF rlk > 100 THEN flk = 6946.656 * rlk A .307833 
IF rig > = .01 AND rig < = .6 THEN flg = 10.60499 ... rig A .240737 
IF rig > .6 AND rig < = 2.5 THEN flg = 15.68325 +rig" .982138 
IF rig > 2.5 AND rig < = 30 THEN tlg = 6.078651 *rig " 2.167448 
IF rig > 30 AND rig < = 100 THEN tlg = 245.1002 * rig " 1.050231 
IF rig > 100 THEN tlg = 6946.656 * rig A .307831 
tlk = tcr "'62.4 * (ss • I)* dk * 3.281 
tlg = tcr "'62.4 * (ss • I)* dk * 3 .281 
toak = (1.94 "'(3.281 "'Y2(i)) .. 2 * (dms I T2(i))" (I I 3)) I 58 
toag = (1.94 "'(3.281 *' V2(i))" 2 * (dms I T2(i)) A (I I 3)) I 58 
Cmk = ((dk I T2(i)) " (7 I 6)) * (toak I tlk • I) * tlk 
Cmg = ((dg I T2(i)) .. (7 I 6)) * (toag I tlg • I) * tlg 
tCm = .01 "' 62.4 * (Cmk + Cmg) 
SY2(i) = tCm * Q * 385.75 'tot/day (3.281 "3) * .4536 "'86400 I 1000 
'IF i = nsec THEN SY2(i) = pet "' Qs 'for costant sediment inflow 
NEXTi 
RETURN 
'*******"'*"'**********"'********"'"' 
'change of channel bed of step 2 
.............................................................................................. 

OPEN "B:UYANG2A.PRN" FOR OUTPUT AS #53 'input-output file for Yang's method only 
OPEN "B:URSEN2A.PRN" FOR OUTPUT AS #53 'input-output file for Laursen's method only 
RESUME.RESULT.2: 
FOR i = 1 TO nsec 
ST2(i) = 9789 * R2(i) + SF2(i) 
BSY2(i) = SY2(i + 1) - SY2(i) 
IF ST2(i) < = CSS THEN 
IF i = I THEN RASY2(i) = 0 
IF i > I THEN 
IF BSY2(i) < = 0 THEN RASY2(i) = 0 
IF BSY2(i) > 0 THEN RASY2(i • I) = 0 
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RASY2(i) = BSY2(i) I (.5 • (D(i + I) - D(i - I))) 
END IF 
ELSEIF ST2(i) > CSS THEN 
IF i = I THEN RASY2(i) = 0 
IF i > I THEN RASY2(i) = BSY2(i) I (.5 • (D(i + 1)- D(i- 1))) 
END IF 
IF i = nscc THEN RASY2(i) = 0: BSY2(i) = 0: PQsY2 = SY2(i) I Qs 
iF RASY2(i) < = 0 THEN ErY2(i) = ·(Bl(i) (8l(i)"'2-(4*det"'ABS(RASY2(i))l(ss * (1 - pros)))) .... 5)12: 
B2(i) = 8 I (i) + 2 • ErY2(i) 
IF RASY2(i) > 0 THEN ErY2(i) = (-81(i)+(BI(i) ... 2+(4•det"'ABS(RASY2(i))l(ss"'(l • pros))))'"'.5)12: 
B2(i) :::: B 1 (i) + 2 • ErY2{i) 
WRITE #53, B2(i) 
NEXTi 
r,LOSE 1153 
khfURN 

'New cross-section coordinat of step 2 
.......................................................... 

NEW.COORDINAT.CTYANG.2: 
OPEN "B:UYANG2A. PRN" FOR OUTPUT AS 1154 'input-output file for Yang's method only 
OPEN "B:Yl74S2U.PRN" FOR OUTPUT AS 1155 'input-output file for Yang's method only 
OPEN "B:URSEN2A.PRN" FOR OUTPUT AS 1154 'input-output tile for Laursen's method only 
OPEN "B:Ll74S2U.PRN" FOR OUTPUT AS #55 'input-output file for Laursen's method only 
FOR i = I TO nsec 
FORj =I TOm 
IF i >= I THEN 
IF j > = I AND j < 3 THEN X2(i, j) = Xl(i, j): Y2(i , j) = Yl(i, j) 
IF j > = 3 AND j < 4 THEN X2(i, j) = (XI(i, j)- ErY2(i)): Y2(i, j) = (YI(i, j)- ErY2(i)) 
IF j > = 4 AND j < 5 THEN X2(i, j) = (Xl(i, j) + ErY2(i)): Y2(i, j) = (YI(i, j)- ErY2(i)) 
IF j > = 5 THEN X2(i, j) = Xl(i, j): Y2(i, j) = Yl(i, j) 
IF j > = I THEN So2a = (Y2(1, 3) - Y2(20, 3)) I (0(20) - 0(1 )): 
So2h = (Y2(20, 3) - Y2(40, 3)) I (0(40) - 0(20)): 
So2c = (Y2( 40, 3) - Y2(nsec, 3)) I (D(nsec) - 0(40)): 
So2 = (So2a + So2h + So2c) I 3: Eo2 = Y2(1, 3): T3(1) = Eo2- Z2(1) 
END IF 
NEXTj 
NEXTi 
FOR i = I TO nscc 
WRITE #54, So2. Eo2, T3(1) 
WRITE #55, X2(i . 1), Y2(i, 1), X2(i, 2), Y2(i, 2), X2(i, 3), Y2(i, 3),: 
X2(i, 4), Y2(i, 4), X2(i, 5), Y2(i, 5), X2(i, 6), Y2(i,Lj 
NEXTi 
CLOSE 1154 
CLOSE 1155 
RETURN 

·······~············~··············· 
'Normal 1tnd criticlll depth of step 3 
.......................................................... ...... 

NORMAL. CRITICAL. DEPTH.3: 
ERASE na2. nh2, nc2, bmc2, fcn2, ca2. cb2, cc2, bkc2, fcc2 
ERASE XI. Yl. MAXI 
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DIM Hu3(65), H3(65), Z3(65), SF3(65), P3(65), ST3(65). R3(65), AFRJ(o;) 
DIM A3(65), T4(65), V3(65), SY3(70), RASY3(70), ErY3(70), qJ(65), BSY3t65) 
REM $DYNAMIC 
DlM na3(15), nb3(15), nc3(l5), bmd( 15), ti:n3( 15) 
DIM ca3(15), cb3(15), cc3(15), bkc3(l5), fcc3(15) 
DlM X3(65, 65), Y3(65, 65), MAX2(65) 
FOR ii = I TO 15 
IF ii = I THEN 
na3(ii) = .I: nb3(ii) = 8: nc3(ii) = I 12 * (na3(ii) + nh3(ii)) 
fa3 = n " 2 * Q " 2 * (82( I) + 2 * na3(ii) * ((I + f" 2) .... S)) " (4 I ~) 

f3a = So2 * (((82(1) + f * na3(ii))"' na3(ii)) ... ( 10 I 3)) 
fan3 = 1 - fa3 I fJa 
fb3 = n " 2 * Q A 2 * (82( 1) + 2 * nb3(ii) * (( 1 + fA 2) A .5)) A (·~ I 3) 
f3b = So2 * (((82(1) + f * nb3(ii)) "' nb3(ii)) " ( 10 I 3)) 
fbn3 = 1 - fb3 I f3b 
fc3 = n A 2 * Q A 2 * (82(1) + 2 • nc3(ii) * (( l + fA 2) A .5)) A (4 I 3) 
f3c = So2 * (((82( q + f "' nc3(ii)) "' nc3(ii)) " ( 10 I 3)) 
fcn3(ii) = I - fc3 I f3c 
ca3(ii) = .I: cb3(ii) = 8: cc3(ii) = I I 2 * (ca3(ii) + ch3(ii)) 
f3ca = Q A 2 "' (82(1) + 2 • ca3(ii) "'f) 
fc3a = g * ((82( l) + f * ca3(ii)) * ca3(ii)) A 3 
fca3 = I · f3ca I fc3a 
f3cb = Q ... 2 "' (82(1) + 2 • cb3(ii) "'f) 
fc3b = g * ((82( l) + f * ch3(ii)) * ch3(ii)) A 3 
fcb3 = I - f3cb I fc3b 
f3cc = Q ... 2 "' (82(1) + 2 * cc3(ii) • f) 
fc3c = g * ((82( 1) + f * cc3(ii)) * cc3(ii)) ... 3 
fcc3(ii) = I - f3cc I fc3c 
ELSEIF ii > 1 THEN 
IF fan3 * fcn3(ii - I) < = 0 THEN nb3(ii) = nc3(ii · 1): na3(ii) = na3(ii · I) 
IF fbn3 "' fcn3(ii - I) < = 0 THEN na3(ii) = ncJ(ii · I): nh3(ii) = nh3(ii · I) 
nc3(ii) = l I 2 "' (na3(ii) + nb3(ii)) 
fc3 = n A 2 • Q A 2 * (82(1) + 2 * nc3(ii) *((I + fA 2) A .5))" (4 I 3) 
f3c = So2 * (((82(1) + f"' nc3(ii)) "'nc3(ii)) A (10 I 3)) 
fcn3(ii) = l - fc3 I f3c 
IF fca3 * fcc3(ii - 1) < = 0 THEN cb3(ii} = cc3(ii · I}: ca3(ii) = ca3(ii · I) 
IF fcb3 * fcc3(ii - l) < = 0 THEN ca3(ii) = cc3(ii · 1): cb3(ii} = ch3(ii · I) 
cc3(ii) = I I 2 "' (ca3(ii) + cb3(ii)) 
f3cc = Q" 2 "' (82(1) + 2 • cc3(ii) * f) 
fc3c = g * ((82(1) + f"' cc3(ii)) "' cc3(ii)) ... 3 
fcc3(ii) = I - f3cc I fc3c 
END IF 
bmc3(ii) = A8S(nb3(ii) - nc3(ii)) 
IF bmc3(ii) < = tot THEN Yn3 = nb3(ii) 
bkc3(ii) = A8S( cb3(ii) - cc3(ii)) 
IF bkc3(ii) < = tol THEN Yc3 = cb3(ii) 
NEXTii 
RETURN 

'Water surface profile of step 3 
.......................................................................................... 
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WATEkSURFACE. PROFILE.3: 
Z3(1) = Zl(l): A3(1) = (B2(1) + f"' T30)) "'T3(1) 
P3(1) = (82(1) + 2.8284 + T3(1)): R3(1) = A3(1) I P3(1) 
V3(1) = Q I A3(1): SF3(1) = (V3(1) A 2) • (n A 2) I (R3(1) A (4 I 3)) 
AFR3(1) = ((Q A 2 ... (B2(1) + 2 ... T3(1))) I (g * A3(1) A 3)) A .5 
hh3 == 1.15 ... (V3(1) A 2) I (1 ... g): ST3(l) = 9789. R3(1) ... SF3(1) 
113(1) = Z3(1)- hh3: Hu3(1) = H3(1): tol = .001: incr = .0001 
FOR i = 2 TO nSt!C 
it = i - I 
dx = D(i) - D(i I) 
sum= 0 
FOR c = I TO NITER 
sum == sum + incr: Z3(i) = Z3(i I) • sum 
T3(i) = Eo:?. - Z3(i) - So2 * D(i) 
IF T3(1) < = Yn3 THEN 
IF T3(i) > Yn3 THEN T3(i) = .99 * Yn3 
ELSEIF T3(1) > Yn3 THEN 
IF T3(i) < Yn3 THEN T3(i) = 1.01 • Yn3 
END IF 
M AX2(i) = Y2(i, I) ' = Mx2(i) 
FOR j = I TO m - 1 
IF MAX2(i) < Y2(i, j) THEN MAX2(i) = Y2(i, j) 
NEXTj 
.i = 2 
DO UNTIL Y2(i, j) > = (MAX2(i)- T3(i)) 
.i = j +I 
LOOP 
k = m- I 
DO UNTIL Y2(i, k) > = (MAX2(i)- T3(i)) 
k = k- I 
LOOP 
yLEFT = MAX2(i) - T3(i) 
IF Y2(i, j) < > yLEFT THEN 
SLOPE. LEFT= (Y2(i, j)- Y2(i, j- I)) I (X2(i, j)- X2(i, j - 1)) 
xLEFT = X2(i, j) - ((Y2(i, j) - yLEFT) I SLOPE. LEFT) 
ELSE 
xLEFT = X2(i, j) 
END IF 
yRIGllT = yLEFT 
IF Y2(i, k) < > yRIGHT THEN 
SLOPE.RIGHT = (Y2(i, k)- Y2(i, k + I)) I (X2(i, k) - X2(i, k + 1)) 
xRIGHT = X2(i, k) - ((Y2(i, k) - yRIGHT) I SLOPE.RIGHT) 
ELSE 
xRlGHT = X2(i, k) 
END IF 
PJ(i) = SQR((X2(i, j) - xLEFT) " 2 + (Y2(i, j) - yLEFT) " 2) 
PJ(i) = P3(i) + SQR((xRIGHT- X2(i, k)) A 2 + (yRIGHT - Y2(i, k)) A 2) 
FOR L = j TO k - I 
P3(i) = P3(i) + SQR((X/.(i, L) - X2(i, L + I)) .. 2 + (Y2(i, L)- Y2(i, L + 1)) A 2) 
NEXT L 
AJ(i) = (X2(i. j + 1) - xLEF11 * (Y2(i, j) - (MAX2(i) - T3(i))) I 2 

98 



A3(i) = A ·. 1 + (xRIGHT • X2(i, k · 2)) * (Y2(i, k • l} · (MAX2(i) · T3(i))) I 2 
FOR L = J 1'0 k • 3 
A3(i) = A3(i) + (X2(i, L + 2) - X2(i, L)) * (Y2(i, L + I) • (MAX2(i) - T3(t))) I .! 
NEXT L 
TPW = xRIGHT - xLEFT: AFRJ(i) = ((Q .. 2 * TPW) I (£ * A3(i) .. 3)) .... 5 
R3(i) == A3(i) I P3(i): V3(i) == Q I AJ(i): Vi2 = 1.05 * (VJ(i)) " 2 
Wi = Vi2 I (2 * g): H3(i) = Z3(i) - Wi 
SF3(i) = (VJ(i) .. 2) * (n .. 2) I (R3(i) .. (4 I 3)): asf = .5 * (S FJ(i) + SF J(i I)) 

Dasf == dx • asf: Hu3(i) = Hu3(i 1) • Dasf: dif = ABS(HJ(i) - Hu3(i)) 
IF dif < = tot THEN 
H3(i) = H3(i): SF3(i) = S'.=J(i): Hu3(t) = Hu3(i): ZJ(i) = ZJ(i) 
T3(i) = T3(i): P3(i) = P31i): A3(i) = A3(i): R3(i) = R3(i): V3(i) = VJ(i) 
AFR3(i) == AFR3(i) 
GOTO 70 
END IF 
NEXTc 
70 AKU = 0 
NEXTi 
RETURN 

'Sediment transport rate of stt!p 3 
........................................................ 

CTYANG.SEDIMENT.3: 
CLS 
FOR i = 1 TO nsec 
ayk = 5.913- .255"' 1000 * dk- .004 * (82(i) I T3(i)) 
ayg = 5.913- .255 + 1000 + dg- .004 * (82(i) I T3(i)) 
byk = 1.257 - .005 * (B2(i) I T3(i)) 
byg = 1.257 - .005 "' (82(i) I T3(i)) 
Cyk = 10 A (ayk + byk * (.434295 * LOG(3.281 + V3(i) * SFJ(i)))) 
Cyg = 10"' (ayg + byg • (.434295 • LOG(3.281 * VJ(i) • SF3(i)))) 
SY3(i) = (Cyk + Cyg) * Q * .0864 
'IF i == nsec THEN SY3(i) = pet * Qs 'for constant sediment inflow 
NEXT i 
RETURN 
LAURSEN .SEDIMENT.3: 
CLS 
tcr = .039 
FOR i = 1 TO nsec 
Usl = (3 .281 A 2 * g • R3(i) + So2)" .5 
wlk = (1822.78 * (dk) A 2 + (ss- 1) +g) I vvd 
wig = (1822.78 + (dg) "2 * (ss- I) • g) I vvd 
rlk = Usl I wlk 
rig = Usl I wig 
IF rlk > = .01 AND rlk < = .6 THEN flk = 10.60499 * rlk " .240737 
IF rlk > .6 AND rlk < = 2.5 THEN tlk = 15.68325 * rlk .. . 982138 
IF rlk > 2.5 AND rlk < = 30 THEN flk = 6.078651 * rlk A 2.167448 
IF rlk > 30 AND rlk < = 100 THEN flk = 245.1002 * rlk A 1.050231 
IF rlk > 100 THEN flk = 6946.656 * rlk .... 307833 
IF rig > = .01 AND rlg < = .6 THEN flg -= 10.60499 *rig .... . 240737 
IF rig > .6 AND rig < = 2.5 THEN flg = 15.68325 +rig ... 982138 
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IF rig > 2.5 AND rig < = 30 THEN flg = 6.078651 • rig ... 2.167448 
IF rig > 30 AND rig < = 100 THEN flg = 245. 1002 • rig ... 1.050231 
IF rig > 100 THEN flg = 6946.656 • rig .... 307833 
tlk = tcr "'62.4"' (ss • I) • dk "'3.281 
tlg = tcr • 62.4 • (ss • I) • dk * 3.281 
toKk == ( 1.94 • (3.281 • V3(i)) A 2 • (dms I T3(i)) A (I I 3)) I 58 
toag ::: ( 1.94 "' (3.281 + V3(i)) A 2 • (dms I T3(i)) A (I I 3)) I 58 
Cmk = ((dk I T3(i)) ... (7 I 6)) * (toak I tlk - I) "' flk 
Cmg = ((dg I T3(i)) .... (7 I 6)) • (toag I tlg - I) * flg 
tCm == .0 I • 62.4 * (Cmk + Cmg) 
SY3(i) = tCm • Q * 385.75 'to tlday 13.281 A 3) * .4536 * 86400 I 1000 
'IF i == nscc THEN SY3(i) = pet • Qs 'for constant sediment inflow 
NEXT i 
RETURN 
.......................................... 
'change of channd bed of step 3 
........................................ 
RESUME.RESULT.3: 
OPEN "8: UY ANG3A. PRN" FOR OUTPUT AS 1156 'input-output file for Yang's method only 
OPEN "B:URSEN3A.PRN" FOR OUTPUT AS 1156 'input-output file for Laursen's method only 
FOR i = I TO nscc 
ST3(i) = 9789 + R3(i) + SF3(i) 
DSY3(i) = SY3(i + I) - SY3(i) 
IF ST3(i) < = CSS THEN 
IF i = I THEN RASY3(i) = 0 
IF i > 1 THEN 
IF BSY3(i) < = 0 THEN RASY3(i) = 0 
IF BSY3(i) > 0 THEN RASY3(i- I) = 0 
RASY3(i) = BSY3(i) I (.5 * (D(i + 1) - D(i - I))) 
END IF 
ELSEIF ST3. I I > css THEN 
IF i = I THEN RASY3(i) = 0 
IF i > I THEN RASY3(i) = BSY3(i) I (.5 * (D(i + I) - D(i • 1))) 
END IF 
IF i = nsec THEN RASY3(i) = 0: BSY3(i} = 0: PQsY3 = SY3(i) I Qs 
IF RASY3(i) < = 0 THEN ErY3(i) = -(B2(i)-(82(i)"2-(4"'det*ABS(RASY3(i))/{ss*(l -pros))))" .5)/2: 
B3(i) = B2(i) + 2 + ErY3(i) 
IF RASY3(i) > 0 THEN ErY3(i) = (-B2(i)+(B2(i}"2+(4"'det*ABS(RASY3(i))/(ss*(l- pros))))" .5)/2: 
B3(i) = B2(i) + 2 + ErYJ(i) 
WRITE 1156, B3(i) 
NEXTi 
CLOSE 1156 
RETURN 
............................................................ 

'New cross-section coordiuat of step 3 
.............................................. 
NEW.COORDINAT.CTY ANG.J: 
OPEN "B:UYANG3B. PRN" FOR OUTPUT AS 1157 'input-output file for Yang's method only 
OPEN "B:YI74S3U.PRN" FOR OUTPUT AS 1158 'input-output file for Yang' s method only 
OPEN "B:URSEN3B.PRN" FOR OUTPUT AS #57 'input-output file for Laursen's method "~Y 
OPEN "B:Ll74S3U.PRN" FOR OUTPUT AS 1158 'input-output file for Laursen's method onl) 
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FOR i = 1 TO nsec 
FORj = 1 TOm 
IF i > = 1 THEN 
IF j > = 1 AND j < 3 THEN X3(i, j) = X2(i. j): Y3ti. J) = Y2(i, j) 
IF j > = 3 AND j < 4 THEN X3(i, j) = (X2(i, j) - ErYJ(i)): YJ(i, j) = (Y2(i. j)- ErYJ(i)) 
IF j > = 4 AND j < 5 THEN X3(i. j) = (X2(i. j) + ~' t YJ(i)): YJ(i. j) = (Y2li. j)- ErYJ(i)) 
IF j > = 5 THEN X3(i, j) = X2(i. j): YJ(i. j) == Y2(i. j) 
IF j > = 1 THEN So3a = (Y3(l, 3) - Y3(20, 3)) I (D(20) - D( 1)): 

So3b = (Y3(20. 3)- Y3(40. 3)) I (0(40)- 0(20)): 
So3c = (Y3(40, 3) - Y3(nsec, 3)) I (D(nsec} - D(40)): 
So3 =(SoJa + So3b + So3c) I 3: Eo3 = Y3(1, 3): T4(1) = Eo3 - ZJ(I) 
END IF 
NEXTj 
NEXTi 
FORi= 1 TOn~ 
WRITE #57, So3, Eo3, T4( 1) 
WRITE #58, XJ(i, 1), Y3(i, I), X3(i, 2), Y3(i, 2), XJ(i, 3). YJ(i, 3),: 
X3(i, 4), Y3(i, 4), X3(i, 5), YJ(i, 5), XJ(i, 6), Y3(i,6) 
NEXTi 
CLOSE #57 
CLOSE #58 
RETURN 

'Nonnal and critical depth of step 4 
'**"'******************************** 
NORMAL.CRITICAL.DEPTH.4: 
ERASE na3, nb3, nc3, bmc3, fcn3, ca3, cb3, cc3, hkc3, fcc3 
ERASE X2, Y2, MAX2 
DIM Hu4(65), H4(65), Z4(65), SF4(65), P4(65), R4(65) , A4(65), AFR4(65) 
DIM V4(65), SY4(70), ST4(65), RASY4(65), ErY4(70), 84(65), T5(65), BSY4(65) 
REM $DYNAMIC 
DIM na4(15), nb4(15), nc4(15), bmc4(15), tcn4(15) 
DIM ca4(15), cb4(15), cc4(15), bkc4(15), fcc4(15) 
DIM X4(70, 70), Y4(70, 70), MAX3(65) 
FOR ii = 1 TO 15 
IF ii = 1 THEN 
na4(ii) = . 1: nb4(ii) = 8 : nc4(ii) = 1 I 2 "' (na4(ii) + nb4(ii)) 
fa4 = n A 2 * Q A 2 * (B3(1) + 2 * na4(ii) * ((1 + fA 2) A .5)) A (4 I 3) 
f4a = So3 * ({(83( 1) + f • na4(ii)) "' na4(ii)) A ( 10 I 3)) 
fan4 = 1 - fa4 I f4a 
fb4 = n A 2 * Q A 2 * (B3(1) + 2 "'nb4(ii) * ((1 +fA 2)" .5)) A (4 I 3) 
f4b = So3 * (((83(1) + f * nb4(ii)) * nb4(ii)) A (10 I 3)) 
fbn4 = 1 - tb4 I f4b 
fc4 = n A 2 * Q A 2 * (B3(l) + 2 * nc4(ii) * ((1 + fA 2) A .5)) A (4 I 3) 
f4c = So3 "' ({(83(1) + f * nc4(ii)) "' nc4(ii)) "' (10 I 3)) 
fcn4(ii) = 1 - fc4 I f4c 
ca4(ii) = .1: cb4(ii) = 8: cc4(ii) = 1 I 2 * (ca4(ii) + cb4(ii)) 
f4ca = Q A 2 * (83(1) + 2 * ca4(ii) * f) 
fc4a = g * ((83( 1) + f * ca4(ii)) * ca4(ii)) A 3 
fca4 = I - f4ca I fc4a 
f4cb = I) A 2 • (83(1) + 2 * cb4(ii) * f) 
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k4h = g "' (( 83( I) + f • cb4(ii)) • cb4(ii)) • 3 
fch4 = I • f<kh I fc4h 
f4cc = Q • 2 • (83(1) + 2 "'cc4(ii) "' f) 
fc4c = g • ((83( I) + f "' cc4(ii)) "' cc4(ii)) " 3 
fcc4(ii) = I · f<kc I fc4c 
ELSEIF ii > 1 THEN 
IF fan4 • fcn4(ii • I) < = 0 THEN nb4(ii) :::: nc4(ii - 1 ): na4(ii) :::: na4(ii - I) 
IF fhn4 "'fcn4(ii- I) < = 0 THEN na4(ii) := nc4(ii- 1): nb4(ii) = nb4(ii- I) 
nc4(ii) = I I 2 "' (na4(ii) + nb4(ii)) 
fc4 = n • 2 "' Q • 2 • (83(1) + 2 • nc4(ii) "'((1 + f" 2)" .5)) A (4 I 3) 
f4c = Su3 • (((83(1) + f"' nc4(ii}) "'nc4(ii)) A (10 I 3)) 
fcn4(ii) = I - fc4 I f4c 
IF fca4 "'li:c4(ii - I) < = 0 THEN cb4(ii) = cc4(ii- 1): ca4(ii) = ca4(ii- I) 
IF li:h4 "'fcc4(ii - 1) < = 0 THEN ca4(ii) = cc4(ii · 1): cb4(ii) = cb4(ii- 1) 
cc4(ii) = I I 2 "' (ca4(ii) + cb4(ii)) 
litcc = Q .. 2 * (83(1) + 2 * cc4(ii) * f) 
fc4c = g"' ((83(1) + f * cc4(ii)) * cc4(ii)) " 3 
fcc4(ii) = 1 - f4cc I fc4c 
END IF 
hmc4(ii) = ABS(nh4(ii) - nc4(ii)) 
IF hmc4(ii) < = tol THEN Yn4 = nb4(ii) 
hkc4(ii) = A8S(ch4(ii) - cc4(ii)) 
IF hkc4(ii) < = tol THEN Yc4 = cb4(ii) 
NEXT ii 
RETURN ................................................................ 
'Water surface protile of step 4 
.............................................. 
WATERSURFACE.PROFILE.4: 
Z4(1) = Zl(l) 
A4(1) = (D3(1) + f * T4(l)) * T4(1): P4(1) = (83(1) + 2.8284 * T4(1)) 
R4(l) = M(l) I P4(1): V4(1) = Q I A4(1): SF4(1) = (V4(1)" 2)"' (n"' 2) I (R4(1) .. (4 I 3)) 
AFR4(1) = ((Q ... 2 + (83(1) + 2 ... T4(1})) I (g ... A4(1) A 3)) A .5 
hh4 = 1.15 "' (V4(1) "' 2) I (2 "'g): ST4(1) = 9789 * R4(1) "' SF4(1) 
114(1) = Z4(l)- hb4: Hu4(1) = H4(1): to!:::: .001: incr = .0001 
FOR i = 2 TO nscc 
it = i - I 
d.\ = D(i)- D(i I) 
sum= 0 
FOR c = I TO NITER 
sum = sum + incr: Z4(i) = Z4(il) -sum 
T4(i) = Eo3 - Z4(i) - So3 • D(i) 
IFT4(1) <= Yn4THEN 
IF T4(i) > Yn4 THEN T4(i) = .99 • Yn4 
ELSEIF T4(1) > Yn4 THEN 
IF T4(i) < Yn4 THEN T4(i) = 1.01 "'Yn4 
~ND IF 
MAX3(i} = Y3(i, I) 
FOR j = I TO m - I 
IF MAX3(i) < Y3(i, j) THEN MAX3(i) = Y3(i, j) 
NEXTj 
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j = 2 
DO UNTIL Y3(i, j) > = (MAX3(i) · T4(i)) 
j = j + 1 
LOOP 
k = m- 1 
DO UNTIL YJ(i. k) > = (MAX3(i)- T4(i)) 
k = k. 1 
LOOP 
yLEFT = MAX3(i)- T4(i) 
IF Y3(i, j) < > yLEFT THEN 
SLOPE. LEFT = (YJ(i, j) • Y3(i, j · I)) I (XJ(i, j) - XJ(i, j - I)) 
xLEFT = X3(i, j) - ((Y3(i, j) - yLEFn I SLOPE. LEFT) 
ELSE 
xLEFT = X3(i, j) 
END IF 
yRIGHT = yLEFT 
IF Y3(i, k) < > yRIGHT THEN 
SLOPE. RIGHT = (Y3(i, k) - Y3(i, k + 1)) I (X3(i, k) - XJ(i. k + I)) 
xRIGHT = X3(i, k) - ((Y3(i, k) - yRIGHn I SLOPE.RIGHT) 
ELSE 
xRIGHT = X3(i, k) 
END IF 
P4(i) = SQR((X3(i, j) - xLEFn A 2 + (Y3(i, j) - yLEFT) .. 2) 
P4(i) = P4(i) + SQR((xRIGHT - X3(i, k)) A 2 + (yRIGHT- YJ(i, k)) " 2) 
FOR L = j TO k - 1 
P4(i) = P4(i) + SQR((X3(i, L) - X3(i, L + I)} .. 2 + (YJ(i, L) - YJ(i, L I I)) A 2) 
NEXTL 
A4(i) = (X3(i, j + I) - xLEFT) "'(Y3(i. j)- (MAX3(i)- T4(i))) 12 
A4(i) = A4(i) + (xRIGHT- X3(i, k- 2)) "'(Y3(i, k- I)- (MAXJ(i)- T4(i))) I 2 
t-'OR L = j TO k - 3 
A4(i) = A4(i) + (X3(i, L + 2) - XJ(i, L)) + (YJ(i, L + I) - (MAXJ(i) - T4(i))) I 2 
NEXTL 
TPW = ltRIGHT - ltLEFT: AFR4(i) = ((Q" 2 "'TPW) I (g "' A4(i)" 3)) " .5 
R4(i) = A4(i) I P4(i): V4(i) = Q I A4(i): Vi2 = 1.05 "' (V4(i)) " 2 
Wi = Vi2 I (2 * g): H4(i} = Z4(i) - Wi 
SF4(i) = (V4(i) A 2) * (n" 2) I (R4(i)" (4 I 3)): asf = .5 "'(SF4(i) + SF4(il)) 
Dasf = dx "'asf: Hu4(i) = Hu4(i 1)- Dasf: dif = ABS(H4(i) - Hu4(i)) 
IF dif < = tol THEN 
H4(i) = H4(i}: SF4(i) = SF4(i): Hu4(i) = Hu4(i): Z4(i) = Z4(i) 
T4(i) = T4(i): P4(i) = P4(i): A4(i) = A4(i): R4(i) = R4(i): V4(i) = V4(i) 

A.F~4(i} = AFR4(i) 
GOTO 80 
END IF 
NEXTc 
80 AKU = 0 
NEXTi 
RETURN 
............................................................................................ 
'Sediment tnmsport rate of step 4 
.............................. ~ .................................................. ... 

CTY ANG.SEDIMENT.4: 
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CLS 
FOR i = I TO nscc 
ayk = 5.913-.255"' 1000"' dk- .004 • (B3(i) I T4(i)) 
ayg = 5. 913 - .255 "' 1000 "' dg - .004 "' (B3(i) I T4(i)) 
hyk = 1.257 - .005 "' (B3(i) I T4(i)) 
hyg = 1.257 - .005 "' (B3(i) I T4(i)) 
Cyk = 10 A (ayk + byk "'(.434295"' LOG(3.281 • V4(i) * SF4{i)))) 
Cyg = 10 A (ayg + hyg "'(.434295"' LOG(3.281 "' V4(i) * SF4(i)))) 
SY4(i) = (Cyk + Cyg) "'Q"' .0864 
'IF i = nscc THEN SY 4(i) = pet • Qs 'for cunstant sediment inflow 
NEXTi 
RETURN 
LAURSEN.SEDIMENT.4: 
CLS 
tcr = .039 
FOR i = I TO nsec 
Us!= (3.281 "'2 * g "'R4(i) + So3)" .5 
wlk = (1822.78 • (dk)" 2"' (ss - I)"' g) I vvd 
wig= (1822.78"' (dg)" 2 "'(ss - I)"' g) I vvd 
rlk = Usl I wlk 
rig = Usl I wlg 
IF rlk > = .01 AND rlk < = .6 THEN flk = 10.60499 * rlk A .240737 
IF rlk > .6 AND rlk < = 2.5 THEN flk = 15.68325 • rlk A .982138 
IF rlk > 2.5 AND rlk < = 30 THEN flk = 6.078651 * rlk A 2.167448 
IF rlk > 30 AND rlk < = 100 THEN flk = 245.1002 * rlk A 1.050231 
IF rlk > 100 THEN flk = 6946.656 * rlk A .307833 
IF rig > = .01 AND rig < = .6 THEN tlg = 10.60499 *rig A .240737 
IF rig > .6 AND rig < = 2.5 THEN tlg = 15.68325 *rig A .982138 
IF rig > 2.5 AND rig < = 30 THEN tlg = 6.078651 "'rig A 2.167448 
IF rig > 30 AND rig < = 100 THEN flg = 245.1002 *rig A 1.050231 
IF rig > 100 THEN tlg = 6946.656 *rig A .307833 
tlk = lcr + 62.4 • (ss- I)+ dk "'3.281 
tlg = tcr .;. 62.4 * (ss - I) * dk "' 3.281 
toak = (1.94 "'(3.281 * V4(i)) .... 2 * (dms I T4(i)) A (11 3)) I 58 
toag = (1.94 "'(3.281 * V4(i)) .... 2 * (dms I T4(i)) A (1/ 3)) I 58 
Cmk = ((dk I T4(i)) A (7 I 6)) "' (toak I tlk - 1) * flk 
Cmg = ({dJ I T4(i)) " (7 I 6)) * (toag I tlg - I) * tlg 
tCm = .01 "'62.4 * (Cmk + Cmg) 
~Y4(i) = tCm"' Q * 385.75 'to tlday (3 .281 "3)"' .4536 * 8640011000 
'IF i = nscc THEN SL4(i) = pet * Qs 'for constant sediment inflow 
NEXTi 
RETURN 

'change of channel bed of step 4 .......................................................................... 
RESUME. RESULT.4: 
OPEN "B: UY ANG4A. PRN" FOR OUTPUT AS 1159 'input-output file for Yang's method only 
OPEN "B:URSEN4A.PRN• FOR OUTPUT AS #59 'input-output file for Laursen's method only 
FOR i = I TO nsec 
ST4(i) = 9789 * R4(i) • SF4(i) 
BSY4(i) = SY4(i + 1)- SY4(i) 
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IF ST4(i) < = CSS THEN 
IF i == 1 THEN RASY4(i) = 0 
IF i > 1 THEN 
IF BSY4(i) < = 0 THEN RASY4(i) = 0 
IF BSY4(i) > 0 THEN RASY4(i- 1) = 0 
RASY4(i) = BSY4(i) I (.5 * (D(i + 1) ·· D(i- 1))) 
END IF 
ELSEIF ST4(i) > CSS THEN 
IF i == 1 THEN RASY 4(i) = 0 
IF i > l THEN RASY4(i) = BSY4(i) I (.5 "' (D(i + l)- D(i- l))) 
END IF 
IF i = nsec THEN RASY4(i) = 0: BSY4(i) = 0: PQSY-l = SY-t(i) I Qs 
IF RASY4(i) < = 0 THEN ErY4(i) = -(B3(i)-(B3(i}"'2-(4"'uct"'ABS(RASY4(i))l(ss + ( l - pros))))• .W.!: 
B4(i) = 83(i) + 2 * ErY 4(i) 
IF RASY4(i) > 0 THEN ErY4(i) = (-B3(i)+(B3(i)"2+(4"'uet*ABS(RASY4(i))/(ss * (I - pros))) •. 5)/'~: 
B4(i) = 83(i) + 2 "' ErY 4(i) 
WRITE 1159, B4(i) 
NEXTi 
CLOSE 1159 
RETURN 

'New cross-section coordinat of step 4 
'************************************* 
NEW.COORDINAT.CTYANG.4: 
OPEN "B:UYANG4B.PRN" FOR OUTPUT AS 1160 'input·output tile for Yang's method only 
OPEN "B:Y174S4U.PRN" FOR OUTPUT AS #61 'input-output tile for Yang's method only 
OPEN "B:URSEN4B.PRN" FOR OUTPUT AS #60 'input-output tile for Laursen's mclhod only 
OPEN "B:L174S4U.PRN" FOR OUTPUT AS #61 'input-output tile li1r Laursen's method only 
FOR i = I TO nsec 
FORj = 1 TOm 
IF i > = l THEN 
IF j > = 1 AND j < 3 THEN X4{i, j) = X3(i, j): Y4(i, j) = Y3(i, .iJ 
IF j > = 3 AND j < 4 THEN X4{i, j) = (X3(i, j)- ErY4(i)): Y4{i, j) = (Y3(i, j)- ErY4(i)) 
IF j > = 4 AND j < 5 THEN X4(i. j) = (X3(i, j) + ErY4(i)): Y4(i, j) = (YJ(i, j) - ErY4(i)) 
IF j > = 5 THEN X4(i, j) = X3(i, j): Y4(i, j) = Y3(i, j) 
IF j > = 1 THEN So4a = (Y4(1, 3)- Y4(20, 3)) I (0(20) - D(l)): 
So4b = (Y4(20, 3) - Y4(40, 3)) I (D(40)- 0(20)): 
So4c = (Y4(40, 3)- Y4(nsec, 3)) I (D(nsec) - D(40)): 
So4 = (So4a + So4b + So4c) I 3: Eo4 = Y4(l, 3): T5(1) = Eo4- Z4(1) 
END IF 
NEXTj 
NEXTi 
FOR i = 1 TO nsec 
WRITE 1160, So4, Eo4, T5(1) 
WRITE 1161, X4(i, 1), Y4(i, 1), X4(i, 2), Y4(i, 2), X4(i, 3), Y4(i, 3),: 
X4(i, 4), Y4(i, 4), X4(i, 5), Y4(i, 5), X4(i, 6), Y4(i,6) 
NEXTi 
CLOSE 1160 
CLOSE #61 
RETURN 
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................................... 
'Output of stage I ................................. 
PRJNT.STEP: 
LPRINT "USING CTYANG'S METHOD" 'for Yang's method only 
LPRJNT 
LPRINT "USING LAURSEN'S METHOD" 'for Laursen's method only 
LPRINT 
LPRINT "STEP I, TIME STEP (DT) =I DAY" 
LPRINT 
LPRINT "HYDRAULIC GEOMETRY Q = "; Q; "m3/s"; ";So="; So;"; %Qs65to inflow= "; PQsYI 
L P R I NT • ------------------ --------------------------------------------------------------------------------------------------" 
LPRINT" Sec Z(m) T(m) H(m) Huh) P(m) A(m2) R(m) V(m/s) SF " 
L P R I NT "----------------------------------------------.. ---------------------------------------------------------------------" 
DIS = "Ill/ ##.#1111 #.### 111/.11## #11.1111# ##./IIIII ###.111111 #.### 11.111/# #.Ill/#####" 
OPEN "B:AI74SIU.PRN" FOR OUTPUT AS Ill 'input-output file for Yang's method only 
OPEN "B:CI74SlU.PRN" FOR OUTPUT AS #1 'input-output file for Laursen's method only 
FOR i = I TO nscc 
LPRINT USING Dl$; (i); Zl(i); Tl(i); Hl(i); Hul(i); Pl(i); Al(i); Rl(i); Vl(i); SFI(i) 
PRINT 1/1, USING Dl$; (i); Zl(i); Tl(i); Hl(i); Hul(i); Pl(i); Al(i); Rl(i); Vl(i); SFl(i) 
NEXT i 
CLOSE Ill 
LPRJNT 
LPRINT "THE SED. LOAD, THE ER(-) & DP( +)RATE, WIDTH, E/D DEPTH FOR Q = "; Q; " m3/s" 
L P R I NT "---------------------------------------------------------------------------·----------------·· -------··--··---------" 
LPRINT" Sec ST QS.L'SEN DELTA QS ER.RATE ER(-)DP{+) WIDTH FROUD.N 
LPRINT " (N/m2) (t/d) (t/d) (t/d) (m) (m) 

LP R I NT "------------------------------------------------·-----------------·--------·--------------------------·-------------" 
D2$ = "fill ##.#Ill/ fl####fl.flll ####.fiN ###.II# #.#fill 11#.#1111 fllf.##ll " 
OPEN "B:B174SIU.PRN" FOR OUTPUT AS #2 'input-output file for Yang's method only 
OPEN "B:DI74S1U.PRN" FOR OUTPUT AS #2 'input-output file for Laursen's method only 
FOR i = I TO nscc 
!.PRINT USING 02$; (i); STI(i); SYI(i); BSYI{i); RASYI{i); ErYI(i) ; Bl(i); AFRI(i) 
I'RINT #2, USING 02$; (i); STI(i); SYI(i); BSYI(i); RASYI(i); ErYJ(i); Bl(i); AFRI(i) 
NEXT i 
CLOSE 1/2 
LPRINT 
LPRINT "STEP 2, TIME STEP (DT) = I DAY " 
LPRINT 
LPRINT "HYDRAULIC GEOMETRY Q ="; Q; "m3/s"; "So=="; Sol;"; %Qs65to inflow= "; PQsY2 
L I' R I NT "--· -------------------------------- ---·---------------------------·-----------------------------------·-------------" 
LPRINT " St!e Z(m) T(m) H(m) Hu(m) P(m) A(m2) R(m) V(m/s) SF " 
LPR I NT "-------------------------·-------------------------------------------------·----------------------------------------" 
DJ$ = "#II 11#.111111 #.### 1111.#11# ##.1/1111 ##.II## ###.#II# #.##If #.Nil# #.##Nil###" 
OPEN "B:AI74S2U.PRN" FOR OUTPUT AS #3 'input-output file for Yang's method only 
OPEN "B:CI74S2U.PRN" FOR OUTPUT AS #3 'input-output file for Laursen's method only 
FOR i = I TO nscc 
LPRINT USING 03$; (i); Z2(i); T2(i); H2(i); Hu2(i); P2(i); A2(i); R2(i); V2(i); SF2(i) 
PRINT f/3, USING DJ$; (i); Z2(i); T2(i); H2(i); Hu2(i); P2(i); A2(i); R2(i); V2(i); SF2(i) 
NEXT i 
CLOSE #3 
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LPRINT 
LPRINT "THE SEO.LOAO, THE ER(-) & DP(+) RATE. WIDTH, E/D DEPTH FOR Q-= "; (.1;- m.l ls" 
LPRINT "----------. ----------------------------------------------------------------------------------..... ____ . _. ··- . ...... .. 
LPRINT "Sec ST QS.L'SEN DELTA QS ER.RATE ER(-)OP( ;..) WIDTH FROLID.N 
LPRINT " (N/m2) (t/d) (t/d) (t/d) (m) (m) 
LPRINT "------------------------------------------------------------------------------------------------·---------.---.. --.- • 
D4$ = "Ill/ 1111.111111 11111111##.1111 11111111.1111 lfl/11.1111 #.##II 1111./illll 1111.111111 
OPEN "B:Bl74S2U.PRN" FOR OUTPUT AS #4 'input-output till! for Yang's method only 
OPEN "B:Ol74S2U.PRN" FOR OUTPUT AS 114 'input-<mtput tile for Lmarscn's method only 
FOR i = I TO nsec 
LPRINT USING 04$; (i); ST2(i); SY2(i); BSY2(i); RASY2(i); ErY2(i); B:!(i); AFR2(i) 
PRINT #4, USING D4$; (i); ST2(i); SY2(i}; BSY2(i); RASY2(i); ErY21i); B2(i); AFR2(i) 
NEXT i 
CLOSE 114 
LPRINT 
LPRINT "STEP 3, TIME STEP (DT) = I DAY " 
LPRINT 
LPRINT "HYDRAULIC GEOMETRY Q = "; Q; "mJ/s"; "So="; So2; "; %Qs65 to inllow : "; PQsY.\ 

LPRI NT "------------------------------------------------· ------------------------------------------------- ·-------·· · ---· · · · • 
LPRINT " Sec Z(m) T(m) H(m) Hu(m) P(m) A(m2) R(m) V(m/s) SF " 

LPRINT "------------------------------------------------------------------------------------------------------· --·-· · · ·---· · • 
D5$ = "Ill/ 1111.111111 11.111111 1111.111111 ##.IIIII/ 1111.111111 111111.111111 11.111111 11.111111 11.11111111111111" 
OPEN "B:A174S3U.PRN" FOR OUTPUT AS 115 'input-output file for Yang's method only 
OPEN "B:Cl74S3U.PRN" FOR OUTPUT AS 115 'input-output tile for Laurscra's method only 
FOR i = I TO nsec 
LPRINT USING 05$; (i); Z3(i); T3(i); H3(i); Hu3(i); P3(J); A3(i); R3(i); V3(i); SF3(i) 
PRINT 115, USING 05$; (i); Z3(i); T3(i); HJ(i); HuJ(i); PJ(i); A3(i); RJ(i); VJ(i); SF.l(i) 
NEXT i 
CLOSE #5 
LPRINT 
LPRINT "THE SEO.LOAD, THE ER(-) & OP( +)RATE, WIDTH, E/D DEPTH FOR C) -=- "; C);" m3/s" 
LPRINT "------------------------------------------------------------------------------------------------·-----------·-- ·--·-" 
LPRINT "Sec ST QS.L'SEN DELTA QS ER.RATE ER(-)DP( t-) WIDTH FROUD.N 
LPRINT " (N/m2) (t/d) (t/d) (t/d) {m) (m) 
LPRI NT "---------------------------------------------------------------------------------------------------------.... --.--.-" 
D6$ = " 1111 .~11.11#11 111111111111.1111 II II##. #II 111111.1111 11.111111 II# .111111 1111 .1111# 
OPEN "B:Bl74S3U.PRN" FOR OUTPUT AS 116 'input-<mtput file t<>r Yang's mt:thod only 
OPEN "B:Ol74S3U.PRN" FOR OUTPUT AS 116 'input-output tile for Laursen's method only 
FOR i = l TO nsec 
LPRINT USING 06$; (i); ST3(i); SY3(i); BSY3{i); RASY3(i); ErY3(i); B3(i); AFR3(i) 
PRINT #6, USING 06$; (i); ST3(i); SY3(i); BSY3(i); RASY3(i); ErYJ(i); llJ(i); AFIOCi) 
NEXT i 
CLOSE 116 
LPRINT 
LPRINT "STEP 4, TIME STEP (On = 1 DAY " 
LPRINT 
LPRINT "HYDRAULIC GEOMETRY Q = "; Q; " mJ/s"; "So="; So3; "; %Qs65 to 1111luw ·= "; J>()-;Y4 

LPRINT "------------------------------------------------------------------------------------------- ----------- ··· ···· -· -·---" 
LPRINT " Sec Z(m) T(m) H(m) Hu(m) P(m) A(m2) R(m) V(m/s) SF " 

LPRI NT "------------------------------------------------------------------------------------------- ·--·-------· ·--· · · · ·-· · · ·" 
D7$ = .. fit/ f/11.111111 11.1111# 1111.111111 11#.#1111 f/11.#1111 111111.111111 11.111111 11.111111 11.11#/lflllt/11" 
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OPEN ~B:AJ74S4U.PRN" FOR OUTPUT AS #7 'input-output tile for Yang's method only 
OPEN ~B:CI74S4U.PRN" FOR OUTPUT AS 111 'input-output file for Laursen's method only 
FOR i = I TO nSt!C 

LPRINT USING 07$; (i); Z4(i); T4(i); H4(i); Hu4(i); P4(i); A4(i); R4(i); V4(i); SF4(i) 
PRINT /17, USING 07$; (i); Z4(i); T4(i); H4(i); Hu4(i); P4(i); A4(i); R4(i); V4(i); SF4(i) 
NEXT i 
CLOSE 11"7 
LPRINT 
LPRINT "THE SED.LOAD, THE ER(-) & DP( +) RA'fE, WIDTH, E/D DEPTH FOR Q = "; Q; " m3/s" 
L P R IN T " -------------------------------------------------------------------------------------------------------------------- " 
LPRINT" Sec ST QS.L'SEN DELTA QS ER.RATE ER(-)DP(+) WIDTH FROUO.N 
LPRINT " (N/m2) (t/d) (t/d) (t/d) (m) (m) 

L P R I NT " ----------------• -----· ---------------------------------------------------------------------------------------------" 
D8$ = " 1111 1111.111111 111111111111.#11 ##1111.1111 111111.111 11.111111 1111.111111 1111.111111 
OPEN ~R: RI74S4U.PRN" FOR OUTPUT AS #8 'input-output file for Yang's method only 
OPEN "R:DI74S4U.PRN" FOR OUTPUT AS #8 'input-output file fo1 Laursen's method only 
FOR i = I TO nscc 
LPRINT USING 08$; (i); ST4(i); SY4(i); BSY4(i); RASY4(i); ErY4(i); B4(i); AFR4(i) 
PRINT #8, USING 08$; (i); ST4(i); SY4(i); BSY4(i); RASY4(i); ErY4(i); B4(i); AFR4(i) 
NEXT i 
CLOSE 118 
RETURN 

108 



Appendix- B 

Application of Regime Theory (Inductive Models) 

This appendix gives the application of Lacey's, Blench ' s, and Stevens and 

Nordin's equations. Calculation were based on a dominant discharge of 160 m1/s (Q .• , 

see chapter 2) and a median grain size of 0. 12 mm, representing the soil in and around 

the proposed channel. Unfortunately, no information on the bedload scdi mcnt 

concentration of the incoming sediment inflow was available for this study . Therefore, 

in application of Blench's equation, as well as the Stevens and Nordin 's C(JUations, the 

sediment concentration computed is based on the maximum limitation of both equations 

of 100 mg/L, or 17% , of the computed suspended sediment rating curve. 
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B.l Input data. for calculation of the channel dimension. 

Q ... : 160 m3/s Shape: Trapezoidal 

dso: 0.12 mm Side slope: lV: lH 

g: 9.81 m/s2 C: 41.0009 QO.S279 mg/L 

v: 0.000001007 m2/s 

B.2 Results 

Table B. I. Channel dimensions using Lacey's equations (1930) 

Regime equation Trapezoidal channel 
dimensions 

fl. P(m) R(m) A(m2) V(m/s) So D(m) A(m2
) W(m) 

0.61 61.22 3.01 184.22 0.87 0.000056 3.34 184.28 51.76 

Table B.2. Channel dimensions using Blench's equations (1969) 

Regime equation Trapezoidal channel 
dimensions 

Ch=%C cb Fb D(m) wo So D(m) W(m) 

17 101.58 0.45 2.83 50.47 0.000139 2.83 47.65 

Table B.3. Channel dimensions using Stevens and Nordin's equations (1990) 

Regime equation Trapezoidal channel dimensions 

c P(m) R(m) A(m) V(m/s) So D(m) ,b,(mZ) W(m) 

100 61.22 2.41 151.09 1.06 0.000153 2.68 151.10 53.63 

110 



Table B.4. Trapezoidal channel dimensions 

Description Water depth Bottom width Bed slope 
D(m) W(m) S,, 

Proposed design 5.60 25.00 0.(XKB20 
Lacey's equations 3.34 51.76 0.000056 
Blench's equations 2.83 47.65 0.000139 
Stevens and Nordin's equations 2.68 53.63 0.000153 

The results of applying the Lacey and Blench equations, as well as the Stevens and 

Nordin equations, were that the computed channel widths were all wider than the 

proposed design. Slopes were also flatter. Also, the computed long prolilcs were llatter 

slope than the design slope. These result indicate that the channel should tend to widen 

and flatten in order to achieve of the state of equilibrium (if the regime equations arc 

completely applicable). However, both left and right-hand-side along the diversion 

channel will eventually have human settlements, so that the proposed design cannot be 

wider than 25 m. To overcome the pm.·.ible widening of the channel dimensions, this 

d\version will be maintained by bank protection using natural stone with mortar. By this 

means the channel bed may be expected to rise or fall in the adjustment process. 
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26.00 m 
::::: Proposed design V ~ 
N 

47.65 m 
Based on Blench's equations K ~ 
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Based on Lacey's equations K ~ 
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Based on Stevens and If------------------~ 
NordIn's equations 

Figure 8 .1. Channel dimensions based on Regime Theory . 



Appendix- C 

Results of the Simulation of Channel Changes associated with 20 years of Operation 

The appendix gives the long profile and certain cross-sectional changes resulting 

from the application of the (deductive) mathematical model. These results arc presented 

in Tables C.l to C.l2. Typical changes for 20 time steps (corresponding to about 20 

years of flow record) for the cross-section in each case arc represented by cross-sections 

2 (most downstream), 32 (middle), 63 and 64 (most upstream). The estimated changes 

for these cross-sections are shown in Figures C. I to C.8. 
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Table C.l. Estimated long-profile change after 20 time steps, cases Ll and Yl 
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0.0'21 25042 -4.327 0.031 :5.063 
O.Oll 25.063 -4.278 omo 25.099 
0031 2.1.019 -4.::19 0.030 2.1.000 
0.0'23 25.041 -4.190 0.036 2.1.073 
0.0'21 25.043 -4.155 0.032 2.1.065 
O.<r.!l 2505!1 -4.112 0.043 25.0116 
0.0"...5 :5050 -1.078 0.039 25.019 
0.0'28 25.056 -4.044 0.036 25.013 
O.Oll ::.5.061 ·3.'19C5 0.049 ::.s.cm 
o.rn:: 25.043 ·3.967 0.032 25.064 
0.011 2.1.061 .].931 0.041 2.1.094 
0.17"...5 2.1.0!10 ·3.1192 0.037 2.1.075 
O.cr-9 ::.sma .],853 0.04-t ::.5.0118 
0.17"...5 ::.5.051 ·l.lr.ll 0.037 ::.5.075 
0032 ::.SUM .) .790 0.048 ::.5.096 
0.032 :5.065 ·3.756 0.049 :!097 
O.<r.9 2M 59 ·3.1"..4 0.043 ::.5.0117 
0.032 2.1 .064 ·1.684 0.047 2.1.09!1 
0.032 ::.5.064 ·3.643 0.048 25.096 
o.a:1 ::.5.053 ·3.613 0,0311 :5.076 
0.037 :5.074 ·3.»1 O.O!Il ::.5.110 
0.033 ::.5.00 ·1.529 0.0411 ::.s.cm 
0.030 :.S.OM .],491 0.04-t 2.1.0119 
0.0"..6 ::.5.053 .].464 0.037 lS.OU 
0.041 23.0112 -3.414 0.061 23.121 
O.OJJ 23.066 ·3.389 0 .049 ::.5.097 
0.031 25.062 ·3.339 0.044 :5.0119 
0.038 25.076 ·3.317 0.055 23.110 
0.038 ::.5.077 ·3.279 0.056 ::.5.112 
0.03) ::.S.OM ·3.245 00411 2.1.096 
0.031 25.062 .].212 0.044 ::.5.0117 
0,(141] 25.!1110 -3.166 0 f'IS9 2.1.119 
0.040 l.I.OI«l .]. 138 Ov..O ::.5.101 
0.0)9 23.0711 -3.09.1 0.056 ::.5.11 1 
0.036 :5.073 ·3.059 0.052 25.105 
0.0)] ::.5.00 ·3.030 0.045 ;:..1.0119 

0.044 23.0811 ·2.~ 0.063 :5. 1~ 
O.Ql5 25.069 ·2.955 0.048 2.1.096 
0.041 2.1 .0112 ·2.908 0.059 25.119 
0.033 ::.5 .066 ·2.1182 0.046 ::.5.092 
0.036 ::..,.072 ·2.1411 0 .049 ::.5.096 
0.046 ;:..1.091 ·2.1Q2 0.00 ::.5.129 
0 0-*1 ;:..1.081 ·2.76'1 0.057 ::.!1.11) 
0.0~3 ;:..1 ,00 ·2.739 0.00 2.1.0119 
0.041 ::.5.0111 ·2.693 oms 2J.Il6 
oms 23.071 ·2.669 0.048 ::.5.096 
0.043 :5.086 ·2.6;:..1 0.061 ::.5. 1~ 

0.039 ll.077 ·2 . .196 O.OH ::.5.106 
0.041 25.083 ·2 • .154 O.OSII :OUI7 
O.OH 2.1.069 ·2.!126 0.047 ::.3.09!1 
0.1136 ::.s.on ·2.49] 0.0411 2J.095 
0.04.1 ::3.091 .:,4-6j 0.00 2J. I29 
0.033 2.1.00 -2.4~ 0.043 25.0111 
0048 :5.096 ·2.377 0.063 25.126 
O.<r.9 ::.5.0.19 ·2.365 0.0)9 ::.5.079 
0.017 :5.01! ·l.lll 0.041 2J.094 
0.0411 ::.5.096 ·2.278 0.071 25.142 
0.17"..6 ;:..1.0.12 ·2.ZI7 0.0"..6 ::.5.053 
0.057 ::.S.IU ·2.196 0.089 ::.5.1711 
0.()'10 ::..5 .000 ·2.::.54 O.IXXl 1.1.000 
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Table C.2. Estimated long-protile change after 20 time steps. cases L:! and Y2 

Soc: 

I 
2 
3 
4 
~ 

6 

7 
8 
9 

10 
II 
12 
13 
14 
u 
16 
17 
18 
19 
:n 
Zl 
:2 
!3 
24 
:l5 
~ 

27 
:X 
::9 
)() 

31 
32 
)) 

)4 

)~ 

36 
37 
38 
)9 

40 
41 
42 
4) 
~ 

4$ 
4(1 

~7 

48 ., 
50 
~I 
52 
j) 

S4 

~5 

56 
n 
S8 
S9 
w 
61 
62 
6) 

6ol 
llS 

O.:.i&n 

Diol&nce ll<d El. 

7131 ··U36 
'1Im ..1.49~ 

Nm ..1.-1(() 
6796 -1.4::9 
6676 .. I.)Oj() 

M76 -1 .• 1~ 
64111 -4.3:11 
6;:<lo! ·4.~ 

6163 -4.::::6 
ro.lO ·4.11r7 
.l~l -l.l.l~ 

~11::! -1. 117 
.!70~ ..1.080 
.!~97 -4.04.! 
S4S4 .].9'>.1 

~)~) · 3.967 
nJJ ·l.<nY 
~Ill .) 897 

"')] .J.RilS 
4949 ·3.838 
4847 .).I!Oj 

47:9 ·3.767 
461S ·3.7ll 
~91 ·3 691 
436.5 ·l.llSI 

·~ .J 619 
41)] .un 
.xxl) .J.SJS 
JH97 .)."'1 
381S ·3.47.! 
369'1 ·3.4}8 
3~91 .1.403 
349~ ·3.372 
JJ79 •J.))l 
)~ . ) .293 
Jill ·l.lS6 
lOll ·l :!5 
::917 .) . IIlli 
;:ao) ·3.151 
~79 · 3.111 
!S64 ·3.073 
Z46.S ·3.043 
:340 .].00) 

2Zl8 ·2.967 
2106 ·2.9211 
::010 · l .V97 
1915 ·2.867 
1787 ·2.826 
16.!7 ·2.7U 
15.!4 ·2.751 
1447 ·2.717 
13-e9 ·2.6116 
1234 ·2.649 
1118 ·2.612 
996 ·2.5n 
1196 ·2.541 
799 ·2 • .!10 
681 ·2.4n 
S80 ·2.440 
468 ·2.404 
317 ·2.3111 
291 ·2.349 
1114 ·2.313 
96 ·Z.211' 
0 ·2.2.S4 

• A a: oi&J1IIIatim ( + I 
Dt: def.tOIIatim H 

\lo",.hh llctJ ~J. 

!5.<XXJ -l..l\11 
!5.<XXJ ..1.476 
~.<XXI ..l.ololl 
~.000 -4.404 
::,.oo.l ..1.)70 
::,.ooo -1.)18 
::,.001 ..l.::<ll! 
!5.001 -1::30 
!.5001 -l.:lO: 
!5.001 -1.166 
!5.001 ..a.m 
!5.001 -1.09: 
!5.<XXJ ..I.O.lZ 
!.5.000 ..lOll 
!.1.000 .].9711 
!.1.001 ·M36 
::,.001 .].904 

!5.1Xll .] .8fll! 
!.5.001 -l.H40 
!5.001 .).1106 
!5.<XXJ .,m 
!.S.<XXJ .).7JH 
:l5.IXXI ·3.tm 
!.1.000 ·3 fi.IH 
!.1.000 ·36~ 

!.1000 ·UMI 
!.S.UOO ·I S-14 
!.1.000 .] ."'~ 

!.1.000 .un 
!.1.001 .).4)) 
!.S.<XXJ .) .40~ 

:.!.lXXI ·J.m 
!.1.000 ·1.334 
!.5.000 .J.~.M 

2.5.00! .].U>O 
:l5.0Cll .J~ 

::,.ooo .).1116 
!.S<XXJ ·3.147 
!.1.000 ·3.112 
!.1.000 ·3.074 
!.5.000 .) .IJ4j 

!.5.000 ·2.'1'18 
!.1.000 ·2.910 
!.S.IXXI ·2.'7'.4 
!.5.000 ·2.R96 
!.5.000 ·2.1164 
!.5.000 ·2.1:1 
!.S.<XXJ ·2.784 
!.1.000 ·2.75] 
!.S.<XXJ ·2.-m 
:l5.<XXJ ·2.6114 
!.5.000 ·2.612 
!.S.IXXI ·2.611 
!.5.000 ·2.~ 

!.1.001 ·2.$39 
!.5.001 ·2.~ 

!.5.000 ·VIM 
25.<XXJ ·2.447 
25.<XXJ ·2.38~ 

:l5.<XXJ -2.1n 
!.S.<XXJ ·2.).46 
!.5.000 ·2.272 
!.5.000 ·2.301 
!.5.000 ·2.lll~ 

!.5.000 ·2.2.14 

C'uo L! Cue\-: 

Aa.l1ra • \\"..tlh liN I'J. "'·'"'' . WO.hh 

O.Wl ~In! "'~.'tl 0 l\ll !.1 lUI 
0.019 ~.0\R -~~ 00~ !.1 IIC\1 
0.019 ::3 OJM ..1.411 00;:<1 ~.1 01~ 

0 \r'..l ~.0'0 -1.)~ now !.'tiN 
O.OJJ !5.().«) -1 . 1~~ 0011 !..'llttt 
0 .1}3) "'J"".Jl 41:11 00~1 !.\llit'C) 

001~ !.1.1164 ..-::n 111111 Z,.\ I ll! 
001~ :'.5 0)9 ..... :.N 011~1 !.\UN) 
o.m4 !.1 047 ..I.IIW 0017 !.1 074 
o.m1 !5.l).!! -4 . 1~ 0.1111 !5 Ill> I 
110:11 !.10~ ·4. 1IZ oo.n !I I'll~ 
0.11'..1 !5.0'0 oo~on 011411 !..\ON 
o.ms !.1056 ·4 04l IIIII.! !.1 11~1 
0.0.12 !.1 OOo4 ·l <Hl OO'tl !.\101 
00.!1 !.~ .,..2 l.WR 00~1 !,\C)ttl 

0.031 !S .Iitl~ ·l .YIY 011-111 !.\ IJiltt 
0.11'..1 !.SO'fl ·l .MY2 0 llll :..1un 
00~) !.1 0~9 .1 Hj~ 0 IJ.I~ !I l~ll 
011'..1 !.11110 1H10 01111 !.11171 
om: !5.llt>l ·1.7'10 011-111 !ICPitl 
OOJJ !.l.lltiS · 1.7~ O.O·N !11~111 
01129 !.S.Ol8 .J . T'.A ().1).11 !\UKl\ 
0.012 !.S.Ot\.l ·I fll!4 011-17 !.\ ,,,, 

O.UlJ !IIlilS · IMI II IIIII !,\ ,,.,~ 

11.1125 !.11111 1.616 01111 !.\ ,)JU 

DOll !.\ 1)75 1.161 01116 !.\ 11~ 
0011 !.llll'oll u:x UI).N !.\IJI>.' 
0.030 !1.Atl ·l-IllY 11046 2\()')J 
0 0".4 !.1 11-19 ·14~) IIIII I 2.1 ,,.1 
0.042 !.S.UIIl ·l 41Z OUM !I.W 
0 0)) !.11167 ·3.111'1 0 1~1'1 ::.Hm 
0010 2..1.om ·I . \(II 0 11-lZ 2..\11{4 
0.018 !5.076 ·).317 011, 2.\IIPI 
O.OJ9 :J 0711 -un II O~M 1.\.111 
O.OJJ !10M ·1 2.W 0()4•) ~\rPM 

0010 2.50H) ·l.21A 1111411 2.\111'1 
0 0)9 2$0711 -l . IM lllltll 1.\ll.t 
0041 !.1UKI ·l . ll'l 111).19 2.11PI7 
0 0)9 :.!079 .J .O?~ II 016 2.\ .lll 
0.037 !1.074 10~ IIIISS !5 1111 
0.010 :.!.010 ·l.lll6 01119 !5un 
004~ !.11)9( ·2.97l II.IWI 2.5.11\ 
0.0)] ~ot.1 ·2.9$11 ~~~' l.l II{'/ 
0.04] :!.1.00 ·2.'104 0111\l l.I.IU. 
O.Ol2 !.10fl.l 2.812 11046 2.1 lrll 
O.Oll l.l 0117 2.H.l4 111>41 2.\111\ 
0.046 :.s.•m ·21101 II liM 2.1112 
0 042 2.lllll4 ·2 7fl.l Ollfol l~ 12.1 
0.6'1 !.1.0111 ·2.7~ ()1).111 1.\.IHI 
0042 !5 llll4 ·2 N!') 0 0112 l.1.12.l 
00)) !.Slll\7 ·2.675 0042 2.~ II{\ 
O.ll44 !.51.1(11 ·2 622 lllll\ol 2-' 127 
0.018 !.1 07$ ·2.l'IY OOlll !.5. 1111 
004] 2.1 IJII6 ·2.)lll 01Jt>2 2.1.124 
00~ !.1111'>11 ·2.ll.l 1)1)<11 2.11117 
0012 !.1 06S ·2.ltn (J 019 2.111n 
ooso !.5100 ·2.4111 111174 2.!.1411 
1)02.! !.SI)lll ·2.4lH (Jf11.1 2.\llfoll 
OOH 2.5.110 2.367 001) 2.5.147 
0.027 !.10$.! ·2.367 ll.1Jl1 2.l on 
0.032 !.S 0113 ·2.J.e7 01111 2.l ,,, 

0.0~7 !.S 114 ·2.!.55 11.(1}4 !.S.II!H 
0.012 2.1.1124 ·2.322 0 .1111 24.'1111 
O.IHI 2.51«1 ·2.1411 Ill 17 l.l21l 
0000 !.S (JJ) 2 2.14 orm l.IIJJJ 
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Table C.3. Estimated long-profile change after 20 time steps, cases L3 and Y3 

Soc 

I 
2 
3 
4 

I ,, 
7 

" 'I 
10 
I! 
12 
13 
14 
I) 

1ft 
17 

'" 1'1 
:Jl 
21 
n 
2.1 
24 
2j 

:II 
~7 

2M 
2<1 
1() 
11 
12 
11 
14 
H 
ltl 

37 
JM 
1~ 

411 
41 
42 
41 
44 

45 
46 

47 

"" 4~ 

XI 
~I 
~: 

~3 
)4 

~5 

~ 

57 
~ 

39 
ftO 
~I 

~~ 

C\.1 
M 

Cl.\ 

llooiiiiJ 

[);,~&~><& [lad £1. 

7111 ~-~36 
11112 -4.4?! 
NJ<T]. -44ffl 
67% ~.429 

(tfJ76 ~.390 

IU7~ ~.3.13 

64111 -4328 
6~,. ~ -::.6'1 
61~] -4.226 
~ -4.187 
!941 -4.1!S 
Sl!Zl ·4.117 
l1113 -4.080 
~l91 -4.04S 
m• ·3.999 
mJ .].?6/ 

ltll -3929 
Sill ·3 ~97 
~]J ·3 86.1 
4'}.1') ·l .MJH 
4K47 ·3 IllS 
4n'l ·1.767 
44\IS .J.T.JI 
44~1 ·3.691 
4"\IU -1.6.11 
426.1 .].619 
41l1 -un 
<41101 .J.SJ! 
JIN7 -Lllll 
1MI~ ·3.47~ 
wn -3 438 
3~?1 -3.403 
34~5 -l.Jn 
11N .).))! 

3244\ -1.N.l 
lin .J.%3e 
'l(JJS -3.22.:1 
2917 ·3.11!11 
;!Ill) -3.151 
:619 -3.111 
::.!164 -J.07S 
::4IU .].()4] 

2l411 .],)))) 

:::::8 ·2.961 
2106 -l.<n:ll 
:JIIO ·2.1l97 
19U -~.867 

11117 ·l.B::6 
16.17 ·2.1'114 
IU4 ·2.751 
1447 -2.717 
134~ ·2.686 
123-1 -~.649 

IllS ·2.612 
9'llo -~.31) 

11'16 -l.541 
m ·2.510 
Nil -2.~7:: 

51Wl .. : .+«1 
4NI ·'!.«M 
387 .. ~.318 

~ ·2.349 
IR~ ·2.31) 
96 ·'! .~ 

0 ·2.:54 

0 Aa: aurodalim ! +) 

Da: dearodalim 1-1 

Wodtb 

lS.!XrJ 
lS.OOJ 
lS.OOJ 
lS.OOJ 
lSOOJ 
2.1.00J 
lS.OOJ 
lS.OOJ 
25.00J 
25.00J 
25.00J 
lS.OOJ 
lS.OOJ 
lS.IXXI 
lS.OOJ 
2.1.00J 
2.1.00J 
lS.OOJ 
2.1 OOJ 
2.1.00J 
lS.IXXI 
lS.OOJ 
lS.OOJ 
lS.WI 
::I.OOJ 
lS.OOJ 
2.1.00J 
2.1.00J 
lS.IXXI 
25.Wl 
lS.OOJ 
2.1.00J 
lS.OOJ 
2.1.00J 
lS.OOJ 
lS.OOJ 
2.100J 
25.1XXJ 
lS.OOJ 
lS.IXXJ 
lS.OOJ 
lS.WI 
2.1.00J 
::.!1.000 
2.1.000 
::1.000 
lS.OOO 
15.000 
25.1XXJ 
lS.OOJ 
::.!I.OOJ 
lS.IXXI 
::1.000 
::.!1.000 
15.000 
15.000 
lS.OOO 
::!.lXXI 
lS.OOJ 
lS.<m 
lS.IXXI 
::I.OOJ 
::.!1.000 
15.000 
15.00J 

e-Ll c-YJ 

Bod El. A&.D<&. Widlh Bed El. A"Do& • Width 

-4.~36 O.OOJ lS.OOJ ~.536 O.OOJ lS.OOJ 
-4.476 0.019 2.1.038 -4.465 0.030 lS.OOl 
~.441 0.019 2.1.039 -4.430 0.030 ::1.06) 
~-«14 0.00.~ 2.1.049 -4.390 0.039 2.1.078 
-4.370 0.020 2.1.040 ~-3!9 0.031 ::.!1.063 
-4.337 0.001 2.1.042 ·4.327 0.031 2.1.06) 
-4.2'17 0.031 25.063 -4.1111 0.0!10 25.099 
-4.249 0.020 25.039 -4.239 0.030 2.1.060 
-4.203 0.023 2.1.047 -1.190 0.036 ::.!1.01] 
-4.1~ 0.021 25.043 -4.1!5 0.032 lS.06l 
-4.121 o.o:s 25.0~~ -4.112 0.04) ::.!1.086 
~.0?2 0.~ lS.OSO -4.078 0.039 2.1.079 
-4.0S2 o.o:s ::.!1.0!6 -4.044 0.036 2.1.013 
-4.014 0.031 2.1 .063 -3.996 0.049 lS.cm 
·3.917 0.022 2.1.043 .].967 0.032 2.1.064 
. ].9]6 0.0]1 25.061 .].9:!1 0.047 ::.!1.094 
-3.904 00"'...5 2.1.0!10 -3.892 0.037 ::.!1.075 
.J.W 0.029 lS.O.IS .].8SJ 0.044 2.1.088 
.).840 0.025 25.051 . ) .S:S 0.037 ::.!1.073 
.].1106 0.032 ::.!1.064 .].790 0.048 ::.!1 .096 
-1.m 0.032 2.S.06l ·3.156 0.049 25.091 
·3.738 0.029 lS.OS9 ·3.7::4 0.043 ::1.081 
.).699 0.032 25.064 . ] .684 0.?47 25.1J9S 
·3.1U9 0.032 25.064 .].643 0.048 25.096 
.).62-4 o.<m 2.1.0!3 •).613 0.038 ::.!1 .076 
·Uir2 0.037 ::1.074 .).!64 o.oss ::1.110 
·3.!44 0.0)) 2.1.06l •J.S29 0.048 2.1.097 
.J.SO! O.oJO 2.1.06) .].491 0.044 ::.!1 .089 
.J.47S 0.0"'..6 25.053 .] .464 0.037 25.074 
.].4)4 0.041 25.00 .).414 0.061 2.1.121 
·J.«JS 0.03] 25.066 -3.389 0.049 ::.!1 .091 
.] .Jn 0.0]1 25.062 .J.3S9 0.044 25.089 
-3.334 0.038 2.1 .076 ·3.317 o.oss ::.!1.110 
.).2'17 0.038 2.1.on . ) .21? 0.03e ::.!1.11% 
-3.260 0.033 2S.066 ·3.24S 0.048 2S.096 
. J.n.:l 0.031 2S.062 -3.212 0.044 lS.IJ87 
.J.ISS 0.~ 25 .080 -3.1~ O.OS9 2S. II9 
-3.148 0.040 25.0111 .].138 o.osa lS.IOI 
· J.II2 0.039 2S.018 .J.09S 0.056 ::.!1.111 
.).075 0.036 25.1113 -3.0j9 O.OS2 25.10! 
-3.04% 0.03] ::1.06l .J.<J:lO 0.04! ::.!1 .()89 
·2.999 0.044 ::.!1 .088 ·2.91l> 0.063 2.1.1:6 
·2.968 OOJS 25.069 ·2.9" 0.048 ::1.096 
·2.926 0.041 2.1.00 -2.908 0.059 2S.II9 
·1.89! 0.033 ::1 .066 -~.882 0.046 2S.0?2 
·2.861 0.036 2.1.07% ·2.8411 0.049 2.1.098 
-2.821 0.046 2S.091 ·2.1102 0.06l 2.1.129 
-2.716 0.040 25 .0111 ·'2.769 O.OS7 2.1.115 
-2.m 0.033 ::1 .06l -2.139 0.045 25.089 
-2.710 0.041 25 .~1 ·2.693 0.058 ::1.116 
-~.61r2 O.QJ' 25.071 ·2.669 0.048 ::.!1.096 
-2.643 0.043 25 .086 ·2.62.~ 0.061 ::.!1.12:2 
-~.610 0.039 2S.on •2,,96 O.OSJ 2S. I06 
·2.371 0.041 25.083 ·'2-'54 0.058 15.117 
-2.5)9 0034 15.069 -%.,::6 0.047 2.1.U95 
-2.SOS 0.036 2S .012 ·1.~93 0.048 2.1.095 
-2.46.5 0.045 2.1.091 -2.445 0.065 2S.I29 
-~.440 0.032 25.06~ -VJO 0.042 ::1.08S 
-2.3112 0.048 2S.096 ·2.370 0.070 ::1.141 
-2.375 0.029 25.058 ·2.414 ~.010 14.911) 
-2.340 0.038 2.1.075 ·2.107 0.271 lS.S43 
-~.119 0.060 ::.!1.120 -2.793 .0.444 2-4.111 
-2.•17 .0.104 2-4.793 · UII 0.79S ::6.,90 
-1.•211 0.1137 :6.713 ·3.920 ·1.635 21 .729 
-2.154 O.OOJ 15.000 ·2.154 0.000 lS.OOO 
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Table C.4. Estimated long-profile change after 20 time steps, cases L4 and Y4 
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21 
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Zl! 
29 
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37 
}8 

39 
40 
41 
42 
43 
44 
4.1 
ol6 
47 
4R 
49 

50 
.ll 
.12 
.ll 
S4 
.IS 
$6 
51 
58 
59 
60 
61 
62 
6J 
64 
6.l 

O..i"' 

O...w.r. BedEl. 
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Table C.5. Estimated change of eros-section 2, cases Ll, L2, L3, I.A 

Design Estimated cross-section changes, Laursen's method after 20 steps 

Any section Case Ll, Case L2, Case L3, Case L4, 
section 2 section 2 section 2 section 2 

X y X y X y X y X y 

0.000 2.800 0.000 2.800 0.000 2.800 0 .000 2.800 0.000 2.800 
4.745 -1.945 4.745 -1.945 4.745 -1.945 4.745 -1.945 4.745 -1.945 
7.295 -4.495 7.276 -4.476 7.276 -4.476 7.276 -4.476 7.276 -4.476 

32.295 -4.495 32.314 -4.476 32.314 -4.4i6 32.314 -4.476 32.314 -4.476 
34.845 -1.945 34.845 -1.945 34.845 -1.945 34.845 -1.945 34.845 -1.945 
39.590 2.800 39.590 2.800 39.590 2.800 39.590 2.800 39.590 2.800 

Table C.6. Estimated change of cross-section 32, cases Ll, L2, L3, L4 

Design Estimated cross-section changes, Laursen's method after 20 steps 

Any section Case Ll, Case L2, Case L3, Case lA, 
section 32 section 32 section 32 section 32 

X y X y X y X y X y 

0.000 3 .892 0.000 3.892 0.000 3.892 0.000 3.892 0.000 3.892 
4.745 -0.853 4.745 -0.853 4.745 -0.853 4.745 -0.853 4.745 -0.853 
7.295 -3.403 7.264 -3.372 7.265 -3.373 7.264 -3.372 7.265 -3.373 

32.295 -3.403 32.326 -3.372 32.325 -3.373 32.326 -3.372 32.325 -3.373 
34.845 -0.~53 34.845 -0.853 34.845 -0.853 34.845 -0.853 34.845 -0.853 
39.590 3.892 39.590 3.892 39.590 3.892 39.590 3.892 39.590 3.892 
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Table C.7. Estimated change of cross-section 63, cases Ll, L2, LJ, L4 

Design Estimated cross-section changes, Laursen's method after 20 steps 

Any section Case Ll, Case L2, Case L3, Case L4, 
section 63 section 63 section 63 section 63 

X y X y X y X y X y 

0.000 4.982 0.000 4.982 0.000 4.982 0.000 4.982 0 .000 4.982 
4.745 0.237 4.745 0.237 4.745 0 .2:17 4.745 0.237 4.745 0.237 
7.295 -2.313 7.269 -2.287 7.283 -2.301 7.399 -2.417 8 .318 -J .. \.\6 

32.295 -2.313 32.321 -2.287 32.307 -2.301 32.191 -2.417 31.272 -LB6 
34.845 0.237 34.845 0.237 34.845 0.237 34.845 0 .237 34.845 0.2.\7 
39.590 4.982 39.590 4.982 39.590 4.982 39.590 4.982 39.590 4.1)82 

Table C.8. Estimated change of cross-section 64, cases Ll, L2, LJ, lA 

Design Estimated cross-section changes, Laursen's method after 20 steps 

Any secth..~ •• Case Ll, Case L2, Case L3, Case I.A, 
section 64 section 64 section 64 section 64 

X y X y X y X y X y 

0.000 5.010 0.000 5.010 0.000 5.010 0.000 5.010 0.000 5.010 
4.745 0.265 4.745 0.265 4.745 0 .265 4.745 0.265 4 .745 0.265 
7.295 -2.285 7.238 -2.228 7.215 -2.205 6.438 -1.428 S.HHO -0.870 

32.295 -2.285 32.352 -2.228 32.375 -2.205 33.152 -1.428 33.710 -0.870 
34.845 0.265 34.845 0.265 34.845 0.265 34.845 0.265 34.845 0 .265 
39.590 5.010 39.590 5.010 39.590 5.010 39.590 5.0i0 39.590 5.010 
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Table C .9. Estimated change of cross-section 2, cases Yl, Y2, Y3, Y4 

Design Estimated cross-section changes, Yang's method after 20 steps 

Any section Case Yl, Case Y2, Case Y3, Case Y4, 
section 2 section 2 section 2 section 2 

X y X y X y X y X y 

0.000 2.800 0.000 2.800 0.000 2.800 0.000 2.800 0.000 2.800 
4.745 -1.945 4.745 -1.945 4.745 -1.945 4.745 -1.945 4.745 -1.945 
7.295 -4.495 7.265 -4.465 7.265 -4.465 7.265 -4.465 7.265 -4.465 

32.295 -4.495 32.325 -4.465 32.325 -4.465 32.325 -4.465 32.325 -4.465 
34.845 -1.945 34.845 -1.945 34.845 -1.945 34.845 -1.945 34.845 -1 .945 
39.590 2.800 39.590 2.800 39.590 2.800 39.590 2.800 39.590 2.800 

Table C.IO. Estimated changes of cross-section 32, cases Yl, Y2, Y3, Y4 

Design Estimated cross-section changes, Laursen method's after 20 steps 

Any section Case Yl, Case Y2, Case Y3, Case Y4, 
section 32 section 32 section 32 section 32 

X y X y X y X y X y 

0.000 3.891 0.000 3.892 0.000 3.892 0.000 3.892 0.000 3.89:: 
4.745 -0.853 4.745 -0.853 4.745 -0.853 4.745 -0.853 4.745 -0.853 
7.295 -3.403 7.251 -3.359 7.253 -3.361 7.251 -3.359 7.253 -3.361 

32.295 -3.403 32.339 -3.359 32.337 -3.361 32.339 -3.359 32.337 -3.361 
34.845 -0.853 34.845 -0.853 34.845 -0.853 34.845 -0.853 34.84:> ' -0.853 
39.590 3.892 39.590 3.892 39.590 3.892 39.590 3.892 39.590 3.892 
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Table C.ll. Estimated change of cross-section 63, cases Y I, Y2. Y J, Y -l 

Design Estimated cross-section changes, Yang's method after 20 steps 

Any section Case Yl, Case Y2, Case Y3, Case Y4, 
section 63 section 63 section 63 section 6J 

X y X y X y X y X y 
.. 

0 .000 4.982 0.000 4.982 0.000 4.982 0.000 4.982 0.000 4.982 
4.745 0.237 4.745 0.237 4.745 0.237 4.745 0.237 4.745 0.2.\7 
7.295 -2.313 7.269 -2.287 7.304 -2.322 6.500 -1.518 6.550 -I .568 

32.295 -2.313 32.321 -2.287 32.286 -2.322 33.090 -1.518 33.040 -I. 5C!H 
34.845 0.:37 34.845 0.237 34.845 0.237 34.845 0 .237 34.845 O.B7 
39.590 4.982 39.590 4.982 39.590 4.982 39.590 4.982 39.590 4.982 

Table C.l2. Estimated change of cross-section 64, cases Yl, Y2, YJ, Y4 

Design Estimated cross-section change, Yang's method after 20 steps 

Any section Case Yl, Case Y2, Case Y3. Case Y4, 
section 64 section 64 section 64 section 64 

X y X y X y X y X y 

0.000 5.010 0.000 5.010 0.000 5.010 0.000 5.010 0 .000 5.010 
4.745 0.265 4.745 0 .265 4.745 0.265 4.745 0.265 4.745 0.265 
7.295 -2.285 7.206 -2.196 7.158 -2.148 8.930 -3.920 IJ.01X) -4.mm 

32.295 -2.285 32.384 -2.196 32.432 -2.148 30.660 -3.920 30.500 -4.0!H> 
34.845 0.265 34.845 0.265 34.845 0.265 34.845 0.265 34.H45 0.265 
39.590 5.010 39.590 5.010 39.590 5.010 39.590 5.010 39.590 5.010 
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Appendix- D 

Equations used for Hydraulic Geometry Calculations 

This appendix gives the computation of the geometric elements using X, Y 

coordinates. The geometric elements are cross-sectional area, wetted perimeter, 

hydraulic radius, and top width (see Figure D.l). 

There were two possible conditions for the intersection of the water surface with 

the channel banks. The first intersection was located at either the coordinate point at the 

left bank (point 1, and 2), the right bank (point 5, and 6) or both. The second possible 

intersection was between two coordinate points such that the calculation of their 

geometric elements was solved by interpolation. The calculation of the geometric 

clements 'lre summarized as follows: 

The wetted perimeter P was calculated as the summation of the distances between 

adjoining coordinate points, from water level at left bank to water level at right bank. 

P: { (Y2 - Y,cr)2 + (X2 - Xter)2 pn + { (Y3 - Y2f + (X3 - X:z)2 pn + 

{(Y4- Y3)2 + (X4 - X3) 2 } 1n + { (Y5 - Y4) 2 + (X5 - X4) 2 pn + 

{(Yraht- Ys)2 + <Xraht- Xs)2 
}

112 (D.l) 
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The cross-sectional area A was taken as the total area of the series of triangles l32E, 

C3F, E4G, and FSH. 

The hydraulic radius R and width of top surface width TW were calculated as: 

R: A/P 

TW: Xrght - Xter 

where: 

Y lllAX: the largest Y coordinate, in this case, Y3 

D: water depth, 
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