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ABSTRACT 

Acoustic backscatter signals from suspended sedinwnl., uhtaitwd at Quec•ns­
land Beach N.S. in 1987, and Stanhope Lane Beach P.E.I. in l!)H9, a1·c~ mi1'1'(1/'fd 

below the main bottom echo. The aim of this study is to test the bypot.lwsis tha.t tlw 
mirrored backscatter signals are the result of the bottom rellec:tE•cl Wi\Vt! scattering 
from sediment suspended above the seabed, and subsequent.ly re-J·eflt~d.ing frum t.he 
bottom back to the transceiver. This hypothesis is tested hy devising an invNsion 
algorithm based on the re-reflection idea, to determine snspenc:lrd sl•dinwnt I'OIH't'n­
tration and comparing to results from multifrequenc.y and optical hadH;cat.I.N t't!~Htlt.s. 
A theoretical analysis of the problem and the outcome of suhsE.•qtwnt data iiiVI'I'· 

sion are presented. Unlike currently used methods, factors suc:h as bt'atll clirer.tivily, 
system constant, and the sediment backscattering form factor are ab:wnt from the 
equation used to determine suspended sediment concentrations. It is conduded t.hat. 
the bottom reflection plays a key role in the formation of the ar.oustk mirror imap;c!, 
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Chapter 1 

Introduction 

1.1 Historical Background 

Over the last 10 to 15 years the use of pulsed acoustic systems has lwp;nu l.o play 

a key role in providing measurements in the field of sediment t.rnnsport. Early f'ouf.J'i. 

butions were made by Urick [1948) on sound absorption in suspensions of day-sizl'd 

particles, and by Flammer [1962] in suspensions of sand. Tlw WC(!Jit lidd nwasnt·e· 

ments have been carried out in several difft.~rent environments, for the most pari. al. 

MHz frequencies. Experiments to detect sediment suspension iu the clt!ep ocean hav(~ 

been carried out by Libicki et al. (1989}, and Lynch ct al. (HHil) as a part of IIEBBLF. 

(High Energy Benthic Boundary Layer Experiment). Measurements ou t.lw cont.ilum-

. tal shelf and slope include those by Orr and Hess [1978), Viucent d al. [l!JH~], Orr 

and Grant [1982). Hay fl983) has measured acoustic backscatter from miue-t.ailing 

1 



dischargf~ in a fjord environment. Many efforts have been made in the nearshore zone 

[Youug cl al., 19H~; Hanes ct al., 1988; Vincent and Green, 1990; ThoJ:"ne e.t al., 1991; 

Vinf'(mt r.l fti., l!HH). H.ec.ently Hay and Sheng [1992) employed a multifrequency 

backscatter system to overcome the size/frrquency ambiguity, encountered wit h sin­

gle fn~quenr.y methods, which enabled simultaneous determination of particle size and 

conr.cntration profiles in an active nearshore environment. 

The use of acoustics in this application is motivated by the non-intrusive n~ture 

of t.he measurement and the lack of interaction with the flow field near the bed. 

Moreover, tl)(.~ soundspeed in water (of order 1500 m/s) provides excellent temporal 

resolution and allows range-gated measurements for profiling of suspended sediment 

at centimetn~ scales. The problem, however, is inverting the backscattered signals to 

determine suspended ~ediment concentration. 

1.2 Thesis Objective 

Illustrated in Figure 1.1 is a representative false colour plot of acoustic data ac­

quired during the October 1987 deployment of RASTRAN (Remote Acoustic Sedi­

ment TRANSport) System l at Queensland Beach, Nova Scotia. The vertical axis 

on the acoustic data represents range in metres from a downward-looking acoustic 

sounder, and the horizont~l axis is time, in minutes. Colour variations in these plots 

represent variations in received signal. The colour palette at the base of Figure 1.1 

2 



Figure 1.1: False colour plot of acoustic data obtained during the October 1987 
RASTRAN deployment at Queensland Beach, Nova Scotia, illustrating the presence 
of mirrored acoustic backscatter data. Significant suspension events and acoustic 
mirroring occur near 2, 3.3, and 5 minutes into the run. 

3 



maps the recorded output signals of the acoustic sounder to ranges in millivolts. The 

strongest signal is the main echo from the seabed at approximately 1.55 m range. 

A J,ow t.h<~ hott.om er.ho are backscatter signals due to particles in suspension. Signif­

kant SIISJWIIsion 1w~nts occur near 2.0, :J.:J, and 5.0 minutes. At ranges beyond the 

hot.t.om ~~d10 are signalf: which mirror the backscatter signals during these events. One 

might argm~ that the mirrm· images are an artifact of backscatter from suspended sed­

iments det.1~cted by the transducer sidelobes. This seems quite unlikely. The strongest 

sidelolw signals would presumably be from the bottom reflection. If important, they 

would TI'Sl:lt. in a much lengthened bottom return which would then completely mask 

t.he mirror signals in the Figure. Some other explana.tion is required. 

Tlw objective of this thesis is to understand the origin and nature of these acoustic 

mirror images. The mirror images are hypothesised to be the result of multiple in­

teraction of the incident acoustic wave with the seabed and the suspended sediment. 

Specifically, it is supposed that the bottom reflected wave is backscattered from sus­

pended sediment near the bottom, and this backscattered wave is subsequently re­

reflecled from the bottom to the transceiver. To check the validity of this hypvthesis 

an inversion algorithm based on this idea is devised to convert raw acoustic data 

into suspended sediment concentration, and these results are compared to estimates 

obtained using multifrequency backscatter and optical backscatter methods. 
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1.3 Thesis Outline 

The thesis is organised as follows: Chapt.t'r ~ prt'st~nts t.ht• t.llt'ory t't'qllin•cl for 

scattering of acoustic waves fmm particlt>s in suspension, aroust.it- rPIIt•t·t.ion from an 

irregular surface, and the model used for determining tlw at.t.t•ntJ<d.iun tint• t.o st·at.l.t•t·­

ing. Chapter :3 dC:'scribes the field site, ·. he data acquisition syst.t•m, and t.lll' srht•nu• 

for inverting acoustic data to sediment concentration bast•d on tlw hypot.ht•sis of st•t·­

tion 1.2. Chapter 4 describes data analysis procedures, and providt>s t.lw hasis for au 

error estimation of the final concentration results. Results from the inwrsion sdwnw 

on two data runs collected during autumn storms at Stanhope Latw Bt•adt, Pl'iun~ 

Edward Island, are provided iu Chapter 5. Chapter (i supplcnwnt.s t.IH' dist~ussion in 

Chapter 2 on the bottom reflect. ion coefficient. Conclusions aw in ( :Impt.c•r 7. 



Chapter 2 

Theory 

In this chapter an expression is obtained for the scattered re-reflected bottom 

wave, which is later used to obtain estimates of the suspended sediment concentration 

within 5 em above the seabed. The two major components of the theory involve 

acoustic scattering from particles suspended in water, and acoustic reflection from 

the seabed. 

Ser.tion 2.1 briefly presents the acoustic pressure scattered by a single particle and 

from <UI ensemble of particles in suspension. Discussion of the monostatic geometry 

used to interpret the post-bottom echo, or mirror signal, follow~ in Section 2.2. Sec­

tion 2.:3 presents the nature of acoustic reflection from a sandy seabed, and whether it 

ran lw t.n~ated as specular or diffuse in the megahertz frequency range. Derivation of 

t]w mirror signal pressure, follows in Section 2.4. Section 2.5 presents the derivation 

of the equation which forms the basis of this thesis. The discussion concludes with a 
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brief summary of the estimation of the attenuation mellident dut• to st·at.tt•rinp;. 

2.1 Scattering from an Ensemble of Particles 

Illustrated in Figure 2.1 is the geometry for a pulsed monost;ttir aronstir syst.<•n1, 

which is to be used in the analysis. Monolitatic simply nwans thai. tilt' samt• t.ransdtiC't'l' 

is nsed to transmit and rerrive acoustic energy. The analysis is nmdudt•d for rart~t·s 

1' greater than the critical range, r·c, which defines the beginuing of tht• farfit!ld rl'p;ion 

of the transducer, given by 7'
0 

= 1ra6j A [Clay and Medwin, I!Ji7, pliif>J whc>rc• a0 is 

the radius of the transducer and A is the wavelength. The t'mnsmittrd inddent WltVt~ 

may then be considered spherical and is expressed as, 

(~.I) 

In Equation 2.1 the harmonic space and time dependence r.i(k,r-wt) is tiiitbst.ood. 

A is a system sensitivity constant, D (13) is the transducer's tlirectivily (a nwasuro of 

its ability to transmit and receive acoustic energy as a function of the angle {1 from 

the acoustic axis), p. is the pressure at reference distance , .• (hoth are coust.ant.s), 

no is the attenuation coefficient due to viscous absorption hy pure water anti clue t.o 

chemical relaxation, assumed to be uniform along all paths, aud ,. is the dist.anr.e from 

the transducer's centre. The a 0 is calculated using the expr('ssions given by Fisht!r 

and Simmons [1977]. 

For an ideal circular piston transducer of radius a0 , the farfield directivity D (#) 
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T 

Pulsed Monostotic System 

Figure 2.1: Backscattering geometry for a monostatic system (From Hay and Sheng, 
1992). 
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is [Clay and Medwin, 19i7, pl44), 

(., '') -·-

where .11 is the cylindrical Bessel function of order I. and ~·,. = ~71' /,\ is tht> ('ompt'Pssion 

wavenumbN of the propagation medium. 

Consider now the backscattered pressure, p~, rer.eiwrl from a splwric·al scat.l.('l'«'t' 

at distance 1'
1 from the transducer and angle {3' from the at"oust.ir. axis. This pt't'SSIII'c' 

is given by, 

Ps(7.') = PiD(/3') [afoo (n, 7r)l e-uor' 
27'1 (~. :n 

where a is the radius of the particle, and foo (a, 1r) is the ba(~ksr.'!-tt.c.~riug form fad.ot· of 

that particle [Neubauer e.t al., 1974]. For a monostatic geometry ,. = r' aucl {J = (J', 

thus, substituting Pi into Equation 2.:J the backscattered pressure hcconws, 

(2.'1 ) 

The scattering of acoustic waves by an ensemble of scatterers is cliswssed iu Mor·sc! 

and lngard (1968, Sect. 8.2). Backscattering measurements using ultrasonic~ puls•~tl 

acoustic systems in volumes containing randomly distributed sratterers have lu••m 

made by Sigelmann and Reid (197:3), and Shung ct al. [1976). For <111 cnsf!IJlbl•! 

of suspended particles insonified by a transmitted pulse, the ensemble nw<ut-square 

scattered pressure in the absence of multiple scattering can he writtm1 as 

(:.u;) 
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when! N is the particle number density, n(a) is the size spectral density, V the 

tlf!l.edf~d volunw, JJ~j is the pressure scattered by the j 111 particle, and the asterisk 

df!IIUI.f•s tlu~ r.ompl(•x conjugate. The particle number density is related to the mass 

conn~nt.ration, 1\1, via the relation, 

(2.6) 

where Pri is the particle's density. In spherical coordinates, 

(2.7) 

For a transmitted pulse of duration r, the detected volume at range 7' is a spherical 

shell segment of thickness cr /2 and angular extent 2{30 and is given by, 

1
r+ e4r riJo 

v (1') = 21!' r-!.!. Jo 7'
12 

sin {3d{3d7'
1 

4 

(2.8) 

where 7' ± ~[ are the far and near boundaries of the pulse as illustrated in Figure 2.1. 

The angle /30 is chosen to be the angle at which the contribution to the received scat-

tcrcd pressure b<!comes negligible. Typically, {30 is the angle at which the directivity 

falls :3 dB below the peak value of the main lobe. For the RASTRAN system {30 is 

nominally 2° [Hay, 1991]. 

Substituting Equations 2.4, 2.6, and 2. 7 into 2.5, p; becomes, 

A:! ( ·) = :?. A:! :l ,:! • F:! 4 JO d I 
•> {lr+tt exp {-4 rr' a dr"} } 

p$ 7 sf p.7./'i, 12 r 
r- e4,. 7' 

(2.9) 

where a is the total linear attenuation coefficient, 

[flo 
l'i. = Jo D4 ({3') sin {3' d/3' (2.10) 
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(~.11) 

and 

M 
f =-

p~ 
(:!.1:!) 

is the volume concentration. Performing the nect•ssary int.c•gmtion owr ,., in Equa-

tion 2.9, 

A2( ) :J A2 2 2F2cr (sinh() 
]J 7' = -o~ p 1' ' - --- -------

11 8 .. • 2 ( 7'2 
(:!.1:.1) 

where 

The total attenuation coefficient has been split into two compotumts: n 0 is a.s cit•-

scribed earlier; a, is the attenuation coefficient due to sr.atf.t~ring from suspttltcbl 

particles along the acoustic path and depends on the acoustic frequency aJUI t.lw si~<' 

and concentration of the suspended sediment. More is said about n., latnr. Tht! l.t!rlll 

(sin~1 () (~.Hi) 

accounts for attenuation across the transmitted pulse, as discussed in Sigdmauu aiJ(I 

Reid [197:1] and Hay (199Ij. 
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2.2 The Acoustic Mirror Image 

Consider t.he two paths to a particle at height z0 above the seabed illustrated in 

Figur1· :l.~. The first path directed along 7' is the direct arrival from the transducer 

lor.al1!d at !wight II above the bottom. Assume for now that the second path directed 

along r 1 and 7'·l is from a specular reflection from the seabed, where specular refers 

t.o t.he. angle of incidence equaling the angle of reflection. The assumption of specular 

rdler.Lion is addressed in the next section. It is important to note that the angles {i 

and {i' are greatly exaggerated in Figure 2.2, as neither of these angles ever exceed 

/30 (2° in the RASTRAN system). Arrival times of transmitted pulses to the particle 

along t,hese paths are calculated below relative to the time of transmission. 

The first det~cted arrival is from the direct backscatter, whose raypath lies directly 

between the transducer and the particle. The arrival time of this echo is therefore, 

lt = 2 (~) = ~ ( H- zo) 
c c cos /3' 

(2.16) 

The second arrival is from the direct bottom echo, at vertical distance H from the 

transducer face. The arrival time of this echo is, 

tbottom = 2 (~) . (2.17) 

In practice the bottom echo is often strong enough to saturate the receiving electronics 

· and yields the strongest signal visible in the RASTRAN colour plots (typically bottom 

signals are in excess of 400 m V). The direct bottom echo is utilised only to define 
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Figure 2.2: Direct, and alternate acoustic path to a particle by a bottom interaction. 
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t.lw rang•! to bottom. The third signal received is the specular re-reftected scattered 

wave, and involv~s two interactions with the bottom, via raypaths labelled 7't and 1·2 

in Figure~.~. Tlu~ travel time along these raypaths is, 

(2.18) 

or, 

2 (H + zo) 
t 2 = ; cos/3 · (2.19) 

Now •·onsider the difference between lt and t2 relative to the bottom arrival, tbottom· 

First, 

2 ( H- zo) 
iboltom -it = ~ H - COS 13, 

(2.20} 

then, 

2 (H + zo ) 
l2 - lbottom = - {3 - H • 

c cos 
(2.21} 

For small {3 and {3' the cosines are approximately unity and therefore, 

(2.22} 

Relation 2.22 shows that the arrival from the direct backscatter, and the arrival of 

the re-reAected backscatter, are equally displaced in time, and hence range, from the 

direct bottom arrival. 

It should be noted that another arrival to the transducer exists which follows 

the path along 1·1, 1·2 , and towards the transducer along 7', For narrow beam pulsed 

acoustic systems these arrivals, however, are indistinguishable from the direct bottom 

arrival. 
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2.3 Bottom Reflection 

The detection system employs a coherent, monochromatic tmnsmilt.t•d pulst>. Tht> 

received signals are envelope detected, so that. phase information ft·om pulst• t.o pulst• is 

removed, and both coherent and incoherent wav«>s conldbut.e t.o t.he a.vt•ragt' tlt• l. t•t~ l.t•tl 

signal. The transmitted pulse is incident on an irregular surface cumprist•d of naf.ttt·a.l, 

irregular sand. The reflected wave will generally contain both r.ohert~nt and incoht>rt•nt. 

components. The relative magnitude of the coherent and inroherl'nl. COillJ>Oiltml.s 

depends upon the size of the surface roughness elements <.'Oill(Ht.r<'d l.o t.lu1 ;u·ortst.ic 

wavelength and direction of the incident wave. Stated another way, irn•gularit.y is an 

intrinsic property of the surface, but roughness is a relative property. 

The degree of roughness is approximately assessed hy using t.he H.aylt•igh t'l'if.c1· 

rion [Rayleigh, 1945; Ogilvy, 1991]. Figure 2.:J shows two inddent. myH, initially in 

phase, reflecting from an irregular surface. The phase difference, I{J, hei.Wilt11l t.lw l.wo 

secondary wavelets in the plane of incidence upon reflection is 

'P = kc (6h(cos 01 +cos 02 ) +Ax( sin 01 -·sin 02)) 

where Ah = h1 - h2 is the differenc~ in surface height, 6x = x2 -- ." 1 is the horizontal 

separation of the rays, 91 is the incident angle, and 02 is the rcflcd<1tl ;mgl<!. Both 

of these angles are measured from the normal of a suitable rcfercuce plaue. The 

Rayleigh criterion states that for cp :5 1r /2 the two reflected waves are mo!itly in phase 

and interfere constructively, thus the surface appears smooth. For 1r /2 < cp :5 7r t.hc 
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Figure 2.3: Geometry for definition of the Rayleigh criterion, adapted from Ogilvy 

(1991 ). 
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two reflected waves are mostly out of phase and interfere destructivdy, so the sur·fnft' 

appears rough. 

Surfaces that are generally irregular (6h ::/:- O) may or may not. rPIIt•d t.he inddt•nt. 

energy as though they are rough. In the specular direction (fJ1 = O'l) , tlw phnst~ 

between the reflected waves is given by, 

If this is small compared to 1r for all points on the surface, the smfacc will appt•m· 

as though it is mostly smooth. When this value is no longer small <.'OillJHll't•d t.u 11" 

the amplitude in the ·specular direction will decrease. In the non-spt>cnlar diredions 

(diffuse) the phase difference between the two reflected rays is given by Equation ~.~:J. 

The phase of this energy is generally distributed over 0-211' as 02 varies, and has 110 

fixed relationship with the phase of the incident field. The diffuse compurwnt is callc!d 

the incoherent field. A summary of these statements is presented in Ta.hle ~.I. 

Specular Diffuse 
(}1 = 02 Ot i: 82 

Smooth cp=O None 
~h=O coherent 
Irregular lp = 2kcAh COS Ot lp = kcAh( cos Ot + r.os 02) 
~h::/:-0 +kr.Ax(sin O, -sin O·l) 

coherent & incoherent incohe1·ent 

Table 2.1 : Summary of terminology, and phase relationships based on Ecpmtiou ~ .~:J 

for t.he two reflected rays depicted in Figure 2.:J. 

For randomly irregular surfaces ~h is replaced with the rms surface height u wit.h 

respect to some mean plane of reference. In analogy to E<tuation 2.24, for a surfacP. 
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to he considered relatively smooth in the specular direction requires that, 

7r 
Rr1. = kcf1 COS Ot 5 4 {= 0.78) {2.25) 

where fl" is (~ailed the Rayleigh parameter. The choice of Ra 5 Tr/4 is somewhat 

arbitrary but does represent the essential physics of the problem. From the Rayleigh 

parameter the refler.t.ion will be tuore specular if 61 approaches grazing incidence 

(01 -+ rr/'2), or kr:f1 becomes small (long wavelength lir11it). Otl:erwise, the surface 

appears as though rough and the reflection becomes dominantly diffuse. To estimate 

Rn an estimate for the value of u is required. 

Direc.t surface measurements of u for sand beds have not been made. Pace et al. 

[1985] conducted experiments using acoustic beams normally incident on a surface 

c:omposed of natural smooth cobble. The value of u (1.8 mm) measured by Pace et 

al. for this surface was approximately equal to the halfwidth (2 mm) of the cobble 

size distribution. This result can be understood as follows. Consider a vertical stack 

of a fixed number of particles. If the particles are all the same size, then the height 

of the stack ~ill always be the same. If however, a distribution of sizes exist, then 

building the stack by randomly choosing particles from the distribution will result in a 

distribution of possible heights. The width of this height distribution is proportional 

to the width of the size distribution. To make this clear, the simple case of two 

particle sizes is considered. An idealised bed is made of stacked planes of spherical 

particles. One hundred layers were stacked, and this experiment was repeated 1000 
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times. Histograms of the height of the resulting heights, with the nwan rt'movc•tl, arc 

shown in Figures 2..l(a) and (b). Particles of similar size ( 1~ and l unit.) wc•re ust•d 

to generate Figure 2.4(a}, while particles with a greater size llifft•rt•nce (~ a.ull I unit) 

were used to generate Figure 2A(b). 

The dependence of the surface height distribution on the width of tht> siw dis­

tribution is demonstrated hy Figure 2.4. For a narrow range of pmt.idt• sizt•s in 

Figure 2A(a) the surface height distrihution is likt~wise t:arrow. Similarly, when t.he 

range of particle sizes is broader so is the distribution of surface heights. The• snr­

face height distributions of the top layer of particles in Figure 2.4 dosdy resembles a 

Gaussian distribution. (Note that in the model, the probability, of obtaining a. p;iwn 

height is governed by the binomial distribution, the limiting form of which for a litt•p;c~ 

number of trials is the tiaussian distribution (Morse, p 158, 1969].) Pace f'l (t/, rmnark 

that their measured surface height ciistribution was in poor agreement with the Gaus­

sian distribution, however the acoustic results seemed insensitive to this diserc~paucy. 

Thus it is apparent that the necessity for Gaussian surface statistics can he~ rc~laxed. 

The fullwidth of the size distribution for Stanhope Beach sand is 10JL111 (Hay aiiCI 

Sheng, 1992; Sheng, 1991], therefore following Pace ct a/., fJ ~ :Jf>pm. F'or normal 

incidence 01 = 0, and the resulting Rayleigh parameters are o.:J;J and 0.76 for 2.2!) ami 

5 M Hz, respectively. Thus, the seabed appears moderately rough at hoth frectucnr.ies, 

but less so at 2.25 MHz. 

An often employed formalism in the theory of rough surface wflection is that of the 
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Figure 2.4: Modelled surface height distributions (mean removed) of thf' lOOth stacked 
layer using particle sizes: (a) 1

9
0 and 1 units, and (b) t and 1 units. 
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Helmholtz-Kirchhoff (H-K) integral. Thorne and Pace [l!l8·l) mul Pac.·e d al. [1!)~5] 

have validated the H-K theory, using the second order phast~ approximation of Clay 

and Medwin (1977, p505]. As found in Pace cf al. [198!i), t.lw total t'HSt'lltblt> a.Vt't·a~t·tl 

reflected intensity, (/) for normal incidence backscatter, is given by 

The first term on the right-hand side of Equation 2.26 is the contribution t.u lilt' t'o-

herent reflected field. (Iincoh.) is the contribution to the inrolwrent refled.t•d field, mul 

is discussed below. R is the reflection coefficient, p0 is the density of the propagation 

medium, cis the soundspeed in water, G'2 = 2p0 ci0 T'~ is a sourc<~ term whnre /, is t.he 

sound intensity at range 7'.,, and g is called the roughness parameter, disr.uss<!•l ll«'XI .. 

The roughness parameter is related to the Rayleigh parameter, and for lloJ'JIIid 

incidence and specular reflection is expressed as 

Large and small g correspond to rough and smooth surfaces respectively, and smflu't!s 

with g "' 0( l) are considered moderately rough. Equation 2.26 demonstrates t.ht! 

(exponential) decrease in the amplitude of the coherent field as g increases, a.s energy 

is transferred to the incoherent component of the field. The behaviour of t.lu: reftt!d.ion 

as a function of increasing g is sketched in Figure 2.5. Using the ahove vahw for u, 

the corresponding values of gat frequencies 2.25 and 5 MHz for Stanhope Bt!ac:h are 

approximately 0.5 and 2.2. Both are of order unity, signifying a mocl(!rately rough 
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Reduced 
Coherent 
Field 

-~~~~--~--~f11~se-A 
g >>I 

(c.) 

Figure 2.5: Shown are polar plots of the mirrored incident beam pattern for (a) a 
. relatively smooth surface g ~ 1, (b) a moderately rough surface g ,.... 1, and (c). a 
very rough surface g ~ 1. 
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·' 

surface. 

Estimates of relative contributions to the incoherent and coherent fidd at 2.2!i and 

5 MHz are sought. Figure 2.6 illustrates the general problem. A speeular rnypath 

is denoted by the solid line. The dashed line shows a possible non-spt•cular pat.h 

for the transmitted pul!':e, and the dotted line shows a possible nou-spt~cnlar pat.h 

for the scattered wave. In general, all possible combinations of incident anti wt.nrn 

non-specular raypaths must be accounted for. 

From Pace et al. the contribution to the incoherent field reflected in the spt~t~ular 

direction reduces for normal incidence to, 

( 
T 2 ) 2 -g . 

4 
u 2 9 c A(g, s, T) (2.?.8) 

where T is the surface autocorrelation length, ami W ~ H tan(f:lo) ts t.he lu~am 

halfwidth at range H. The function A(g, .s, T) is given by, 

9n-l 1 
A(g, .s, T) = t;--;! (s T2 + n) 

and is closely related to the confluent hypergeometric class of functions, specifically 

the incomplete gamma function [Abramowitz and Stegun, 1965, p262]. The quantity 

s is given by, 

(2.:JO) 

which for z
0 

«: Hand the frequencies considered here (MHz) reduces to, 

(2.:J I) 

23 



H-

I 

' I 
I 
I 
I 
I 
I 
I z 
I I 

~I 
0 

Figure 2.6: Geometry for specular (- ) and non-specular (- - - ) ray paths from the 
transducer to suspended sediment when the reflecting surface is rough. ( · · · · · ·) shows 
a non-specular scattered raypath. 
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The ratio of incoherent to coherent contributions is then, 

(/inr:oh.} W
2 (k4 2 2) , 

( ) = •) .. :.! 'c U T t\(,q, s, 1) 
fcoh. - ... 0 

( ') ')'') -··'-

where g = 4k;,u2 and D 2 ~ 1 have been used. Equation 2.:12 shows tht• rdatiw 

contribution to the incoherent field decreasing as one moves fartllt.'r £rom th" bottom 

(increasing z0 ), and as the nus surface height u decreases. 

The cobble surface investigated by Pace et al. had a mean particle mtlius of 

a= 0.41 em, T = O.:J3 em, and u = 0.18 em. For their surface, tlwrt{ore, T ~ 2u. 

Following this scaling for Stanhope Beach sand, T ~ 70Jtm. For hot.h fre<tnencics, 

~V ~ 4 em. At height:~ em above the bottom (.::0 = :3 em) values for ... 'f2 are 0.11 

and 0.54, for 2.2.5 anr\ 5 MHz, respectively. Using the above values for g, valut~s of A 

are 1.0 and 1.4, for 2.25 and 5 MHz, respectively. Note that for these parmnetNs, A 

displays weak dependence on frequency, and is of order unity. The ratio of incoherent. 

to coherent reflected intensities estimated from Equation 2.:12 are 0.05 a.nd 1.6, for 

2.25 MHz and 5 MHz, respectively. This calculation indicates that the inmlu~reut, 

component may play the dominant role at ,) MHz. 

The H-K theory, however, requires that surfaces have small slopes, and large radii 

of curvature relative to the insonifying wavelength. This is manifest in the expression 

for the diffuse field as the surface autocorrelation length, T. For t.he H-K theory to 

be valid, the condition 

..!!.. - ~· 4 (T2
) 

~ 2u 
(2.:J:J) 
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must be satisfied [Beckmann aud Spizzichino, 1987, pl9:3). (The values for the left­

hand side of Equation 2.:J:J for Pace e.t al. are 6.3 and 2.5.2 for their choice of frP· 

cpwncies.) Using T = 0.8a, and T = 1.8u from Pace et al., Equation 2.:3:3 reduces to 

ken» 0. 7. This condition is not satisfied since for the Stanhope Beach measurements 

kca"' 0(1) (approximately 0.8 and 1.7, at 2.25 and 5 MHz, respectively). Moreover, 

since natural sand is irregular compared to smooth cobble it is likely that T is even 

smaller for sand relative to a. 

It is concluded that the H-K theory may not be directly applicable to the present 

problem. Nevertheless, it does serve to illustrate the important point that the inco­

herent component of the reflected intensity increases in importance as one approaches 

the surface, and that it is probably much less important at 2.25 .\1Hz. 

Thus far only reflection in the specular direction has been considered. In general, 

reflection from non-specular directions must be included to obtain the total reflected 

intensity at height z0 (Figure 2.6). Furthermore, the intensity received at the trans­

ducer from the wave backscattered from a particle at height z0 and re-reflected from 

the bottom (Figure 2.6), would in general also include non-specular raypaths (Fig­

ure 2.6). Including such rays in the problem would require knowledge of the angular 

dependence of scattering from sand particles. The angular dependence of scatter­

ing from irregular particles for 0.5 < x < 14 has been considered for the optical 

case [Chylek et al., 1976], the angular dependence of sound scattering from sand in 

suspension is however not known. 
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To simplify the problem, only specular reflection will be considered. F'nrtlwrmort•, 

as both the incoherent and coherent components are proportional to the snnw re­

flection coefficient, R (Equations 2.26 and 2.28}, the problem will he fornwlntt•tl in 

terms of a coherent incident wave. The validity of the approar.h will be lt•stt•ll hy 

comparing suspended sediment concentrations obtained based on this assumption t.o 

concentrations obtained by other methods. 
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2.4 Pressure from the Mirror Signal 

The pre~sure, p~, received at the transducer from a single particle, following the 

specularly reflected paths r·1 and 7'2 in Figure 2.2, is now derived. The vertical distance 

to the sea-bottom is H. First consider the incident pressure, p~, felt by the particle 

via the specular bottom reflection. The total distance traveled by a transmitted pulse 

to the particle is r·1 + 1·2 , and the attenuation integrals are treated separately over the 

paths 7't and 7'2, thus, 

]J~ = RAD({J) p.r. exp {-laco~IJ a d1·'- j-dhJ a dr'} 
{rt + 7'2) 0 co:IJ 

p 1' { loH 1H ·} ~ RAD({J) ( • • ) exp - a dr'- a d1,1 
7't + 7'2 0 T 

(2.34) 

using the small angle approximation for cosines. R is the specular reflection coef-

ficient, assumed independent of {J (for small {3). The incident pressure, p~, is then 

backscattered from the particle thus returning to the transducer by retracing the 

incident path. Analogous to Equation 2.:J, the received scattered pressure is written, 

(2.:35) 

Substituting p~ into p~(r·), 

(2.36) 

where 

7'u = 7't + r2 (2.37) 
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which is the total path length, and for small {3 

(2.:J8) 

The motivation for Equation 2.:J8 is to separate the total attenuation into t't•gion!' 

above and below the range of interest, 7', Forming the product 11~ • ~~~·, the mean 

square scattered pressure from the j 111 particle, p~}(1·0) is, 

p~;(7'o) = A2 D4(!J)R4p~1·~ [ a
2 

I~~;;' 11") 1

2
] exp { -4 (for a d1" + 2111 

a (b.')} . 
(2.:m) 

In complete analogy to the derivation of Equation 2.9, substituting Equations 2.6, 

2. 7, and 2.:19 into 2.5, the ensemble mean square scattered prc8sur<~ from the mirror 

where 

~=~ 
4 

and K and F 2are as previously defined. 

(2.'11) 

The integration over the transmitted pulse in Equation 2.40 must now be per· 

formed. Define this integral to be the function L(1·0 ), 

L(r0 ) = ro+tl ~ exp {-4 ( r a dr' + 2 {H a d1·')} dr~. 
lro-tl ro Jo lr 

(2.42) 
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Substituting q = r·~ - 1·0 , we have, 

L(7'o) =fA ( l . )2 exp {-4 ( ['lH-ro-'l cr d7'1 + 2 [H cr dr')} d7] 
-A q+ro lo 12H-ro-'1 

l fA { (12H-ro-'l lH ) } ~ ~ exp -4 cr d1·' + 2 . cr dr,t d71 
7 o -A 0 2H -ro-tl 

(2.4:1) 

by using TJ ~ 7'0 • After some manipulation of the integrations over r·' in Equation 2.43, 

L( r·0 ) becomes, 

L(7'o) = ~2 exp {-4 ( rzH-ro cr, d7'1 + 2 [H cr, dr·'- t'ocro)} 
7 o lo J2H-rr, 

x j_: exp { -4( cr0 + cr, )71} d7] (2.44) 

where cr has been separated into its constituent parts, cr0 and cr,. The integration 

over 11 yields, 

~ (sinh() 
2 ( 

(2.45) 

which illustrates the origin of 2.15 in Section 2.1. Finally, substituting 2.44, 2.45, and 

ro ~ 2H -1· (2.46) 

the mean square scattered pressure for the mirror signal becomes, 

P~l(,·) = :.A2_n4 F2 2 2cr ~ _,e __ ___,......,.... 3 
( 

• h /") -4(2H-r)oo 

~ 8 IU p.,r., 2 ( (2H- 7')2 

x exp { -4 (J.' a, dr' + 2 t a, dr')}. (2.47) 
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2.5 Ratio of p~2 to p; 

The ratio of the mirror echo to the direct backscatter, p~2 fp:, diminatt~s the c:om-

mon terms involving the backscattering form-factor, beam directivity, and systt•m 

sensitivity constant. 

Explicitly, the ratio of Equation 2.47 to Equation 2.1:1 reduces to, 

,2 { ( H )} 2 ~~ = R 
4 

exp -8 (H- r)cro + 1 cr~ d1·' (2Hr- rP. (2.'18) 

RASTRAN utilises a time variable gain {TVG), which corrects for attenuation .. 
caused by the ambient fluid, a 0 , and the loss due to spherical spreading. As a rt•sult. 

the (2JJ~r)2 term and the term involving cr0 may be dropped from Equation 2.48, lLII<l 

what remains is, 

j/(1·) { lH } p~( 7·) = R 
4 

exp -8 r cr~(7.') dr' (2.'1!)) 

Equation 2.49 is the basis for the inversion algorithn: to c.onvert acoustic signals to 

estimates of suspended sediment concentration near the sea bed. 

There are several important features of the result in Equation 2.49. First, the 

integrated attenuation is due only to scattering between the range 7' and the bot-

tom. Second, the result is independent of the backscatter form factor, J,x;(a, 11'), the 

projected beam's directivity, D({3), and the system constant, A. Fiutally, the result 

depends on R4. 

The exponential term in Equation 2.49 contains a~, which depends on acoustic 

frequency, mass concentration, and particle size. Provided the particle size is known 
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the function a, provides the only connection between measured acoustic pressures on 

t.tu~ l<~ft-hand side of Equation 2.49, and the mass concentration . For N uniformly 

sized particles per unit volume, 

(2.50) 

where E6 is the total scattering cross section for a single partide (Morse and lngard, 

I !J68, p42fi] . 

Slwng and Hay (1988] have constructed a model for the attenuation coefficient a 6 

based on the High-pass model of .Johnson (1977]. The model is a rational polynomial 

that represents the oyerall shape of the data, and has the shape characteristic of a 

high-pass filter, hence its name. The High-pass model is written, 

aa5 Kax4 

-f- = [I+ F<ax4 + ex2J (2.51) 

where/("= (-y~+;:/:3)/6 and 'Yk and {par~ the compressibility and density contrasts 

between the scatterer and the ambient fluid respectively, and X = kca• e is an 

adjustable constant ~ 1. For quartzlike sand, e = 1 is chosen to provide a better 

fit to experimental data at intermediate values of x, and the compressibility and 

density contrasts are ik = -0.9:3 and ;p = 0. 77 respectively, therefore /(" = 0.18. 

Equation 2.51 was shown by Sheng and Hay (1988] to give good agreement with 

experimental attenuation data over the range 0 < x < 25, and has been recently 

·employed by other inv£.stigators [Thorne et al., 1990; Vincent et al., 1991]. For the 

range of particle sizes at Stanhope Beach values of aa5 / f at 5 MHz are roughly 5 to 

32 



8 times larger than at ~.2!> ~~Hz. 

Using Equation 2.12 the mass conn·ntration, M, is t'Xprt•sst•tl tn ll'rtn~-; uf t.ht• 

High-pass nwdel. 

[ l ·IJ ' , ·1 ;l] 
\ + 1 \n,l + .1 
. I = . Po a n .•• 

1\',,.1'·1 
(., r:,.,) ......... 

for particles of uniform size. ln t.ht:> inwrsion sdu:'mt> pn•st•ntt.•d in t.ht• nt•x l chapl.t•r, 

uniform partide sizt> is assnnwd to simplify tlw analysis. Tlw t•lft·<~t of t.his assumption 

on tlw results is testt:>d in ( :tmptPr 5. 



Chapter 3 

Inversion 

This chapter presP.nts the inversion scheme which permits suspended sediment 

concentration to lw inferred from measured acoustic pressures. The left-hand side 

of Equation 2.49 is known completely, and the right-hand side contains the two un­

knowns, a and M, particle size and concentration respectively, through the use of 

Eqnatif)n 2.52. Given a particle size, a, then M can be determined from Equa­

tion 2.49. 

3.1 Description of Field Site and Data 

ThP data analysed in this thesis are from a nearshore sediment transport experi­

nwnt c·arried out at Stanhope Lane Beach in October-November 1989. Other results 

from this experiment have been presented elsewhere [van Hardenberg et al. 1991; 
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Hay and Sheng, 1991]. Stanhope Lane Beach is located on tlw n•ntral north coast. of 

Prince Edward Island, and faces approximatt>ly north into tlw <:ulf of St.. LitWfC'Ill'l'. 

The lwa~h is rharadt>rised hy a nearly continuous slwlving sandy lwach owr a sand-

stone pebble pavement of variable width. \Veil sorted quartz sand with ntt•dian p;min 

sizes ranging between 0.16-0.:JO mm t•omprise the lwaeh mat.t•rial, and as ont• mows 

seaward from the bearhface towards nearshore suhmergt•d baas, tlw nwdian gmiu si~l' 

decreases. 

Three major bars, parallel to the shore, are shown in Figure :u at 100m, ~00 m, 

and :J80 m from the baseline. The RASTRAN instrument fra.nw was tlt~ployt•d ou thn 

seaward face of the second sand bar, as illustrated in this Figure. The nwdian grain 

size at this location is 170 pm. 

Sediment characteristics relevant to the present problem indude grain tlc•usit.y, 

p~, and particle size. Sand at Stanhope Lane Beach is mainly quartz, whkll Ita.-; a 

bulk grain density of 2.65 gfcm3 [Clarke, 1966). Natural sediments gt~twrally follow 

a log-normal size distribution [Hatch and Choate, 1929; Einstein I !)!jO; (!how, I !J!i~; 

Flammer, 1962], where the analytic expression for the log-normal size distrihul.io11 is, 

() 
1 I [ (lna.-lna9 )~] n a = - exp - ~ , 

..;f; In a9 a 2ln " 9 

(:i.l) 

where a9 and q 0 are particle geometric mean radius and geometric standard deviation, 

respectively. For Stanhope Beach, a9 = 79pm and a9 = 1.~5 provide a good fit to 

the data, as illustrated in Figure :J.2 from Sheng [19!H). 
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Figure 3.1: (a) Beach profile at Stanhope Lane, Prince Edward Island. (b) The 
deployment location of the RASTRAN system, showing RASTRAN frame, with no 
vertical exaggeration. \from Sheng, 1991) 
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Figure :3.2: The log-normal size distribution for Stanhope Lane Beach sand. 



Tltc positioning of instruments on the RASTRAN frame is shown in plan and end 

vi(!W in Figrm! ;J.:J. A duster of thret• acoustic sounders operating at the frequencies 

I, :J..:J.5, allfl 5 MHz respectively, and a fourth sounder operating at 2.25 MHz located 

;1 distance of 1.4!) 111 shoreward from the cluster, are mounted approximately l metr~ 

abov(~ tlw S(~ahed. The three r.lustered transceivers are referred to as channels lA, 28, 

and !iC, and the short~ward transducer is designated as channel 20. Connections to th~ 

:-;hore-hased data arquisition system are via armoured cables. Other instruments on 

the seaward end of t.he frame include: a :3 element vertical array of optical backscatter 

:i(~n:-;ors (OBS) !orated at nominal heights of 5, lO, and 1.1 em respectively above the 

li(~alwd, and three Marsh- McBirney electromagnetic ftowmeters to measure on- off­

:-;hore current at nominal heights of 20, 50, and 100 em respectively above the seabed. 

On the shoreward end of the frame, the same number of OBS's and one flowmeter 

were fastened similarly. All data from non-acoustic instruments were recorded on the 

Dalhousie University UDATS (Underwater Digitization and Transmission System) 

system [Hazen et a/., 1987). 

3.2 The RASTRAN System 

A comprehensive description of the RASTRAN system is provided elsewhere [Hay, 

r.l al., l !>88], and only a summary is given here. Acoustic pulses of 20 p.s duration, are 

transmitted at 10 ms intervals into the water column simultaneously by individual 
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Figure :3.3: Instrument frame configuration for the l98B field experiment at. St.iLnhop•~ 
Lane Beach. (a) Plan view. (b) End view, looking shor<!Ward. Distances are in 
metres. (from Sheng, 1991) 



Mesotech HI 0 submersihl<~ uarrowban<l acoustic sounders, operating at the centre fre-

qrwud<!S listed above. A summary of the transducer characteristics for each frequency 

of uptmtf.ion is provi<led in T:t.ble :3.1. 

Freq. (MHz] ll 0 (em] l'c (em] /io (deg.) 
1.00 1.09 25.2 2.00 
2.25 0.47 10.6 2.05 
5.00 0.24 6.1 1.85 

Tahlc.! :J.I: £L 0 is the radius of the transducer. 7'<' is the farfield critical range. ('10 is the 
half b<•amwidth c.hoseu at the -:J dB points of the beam's main lobe. 

Ren~ived edtoes are then TVG corrected and heterodyned down to a centre frequency 

of '1!)5 kHz. The heterodyned signal is full-wave rectified and low-pass filtered in an 

envelope detector. It is noteworthy in the present context that this detection method 

remov<•s phase information, so that both the coherent and incoherent components of 

the signal are detected. Analogue to digital conversion is then performed at a sam-

piing rate of 200 kHz, and 5 consecutive samples are averaged. The information is 

therefore averaged over 25 Jl.S in the data acquisition software, and assuming a sound-

speed in water of 1500 m/s, the vertical resolution for a range bin is approximately 

1.85 em. The results of 4 consecutive pings are then ensemble averaged and stored 

at a rate of 6.6 Hz. 

RASTRAN data files also contain information from OBS instruments, and flowme-
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ters. Typical field mns lastt•d {).lj miuutt•s and rt•stdt in tilt>s of roughly 1.2 nwgahytt•s. 

An example of RASTRAN data obtained during tlu-· I mm dt•pluynlt'nt at. St.anhopt• 

Beach exhibiting the aeoustic mirror is prt>st•nlt•d in Figmt' :t.t. Tht• t•tr .. ct.s uf iiCOIIS­

tir mirroring are st•t>n in this figure during two main s11spPnsion t'\'t'llls n•Jit.n•cl at. 

approximately O.:l and 4.5 millutt•s, respt>clivdy, and art• strongly forrPhtl.t'cl wi th t.lll' 

OBS and flowmeter ohst>rvations at the top of this ligurt•. 

The naming convention for the RASTRAN 11les is as follows: t.lu~ first. l.hrt•P num­

bers represent the .Julian day when the data was collt~ctcd, and tlw t.lm•t• digit. PX I.t•JI· 

sion represents the sequential data run r.oller.ted on that day. Thus :um.o:m nwans 

this data was the thirtieth (0:30) run collected on .Julian Day :lOO (Od.. ~7) l!lH!L 
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Figure 3.4: Run 300.030 data from Stanhope Lane 1989 deployment. Blue curve is 
the OBS record in units of volts: 1 V = 10 g/.l; green curve is the cross- shore current 
in volts: 1 V = 0.6 cmfs. Beneath these are the colour images of the raw acoustic data 
for the nearshore 2.25 MHz transducer, and the offshore 5 MHz transducer. Colour 
palette values are in m V. 

42 



3.3 The Inversion Scheme 

This sertion presents the inversion algorithm that pt•rmits suspt•tult•tl st•tlinwnt. 

concentration to be romputell from single frt•qm•tu~y aroustit~ data. Althuup;h t.lw 

algorithm depends on reflection from tlu." st•abed, it is shown that t.lw fin;tl n•stdt. is 

independent of the bottom reflection coefficient without approximation. Tht' ttlt'l.ltod 

described below is referred to ht:'nceforth as the rcjlcclion mrlhml. 

Let the variable :: be the height above the bottom using the mordinalt~ t.ransfur­

mation, z = H - 1·, where 7' is the range from the transducer, and II is the ra.np;t• t.o 

bottom from the transducer. Equation 2.49 of Section 2 . .1 ran lw rewril.l.t•n in l.t~rms 

of these coordinates as, 

~if:! = R 
4 

exp { -8 J.' n,(,') d,'}. 

The pressure from the mirror echo, p~
2

(z), is physically due to inl.t~rad.iotJ wit.h 

particles a distance z above the bottom, but will appear visually in tht~ tlisplayt~cl dat.a 

a distance :: below the main bottom echo. A calibration factor, S, relat.es rt~cdVt'd 

acoustic pressure and recorded voltage, v, linearly by, 

v(z) = Sp.,(z) 

permitting Equation :3.2 to be written in terms of recorded voltages, 

::1:: = R 4 exp { -8 J.' a,(z') dz'}. 



Eac-h range bin c.outains one voltage which is the bin average applied to the centre 

of t.hc bin. To reflect the discrete nature .-,f the data, replace z by zN, where ::N is 

t.lw distatH'(' from t.hc (sediment) bottom to the centre of the W" range bin above 

t.lw hot.tom. l"or example, if the main bottom echo is in the 52nd range bin from 

t.hn t.ransduccr, then v(z2 ) corresponds to the voltage in range bin 50, and u'(z2 ) 

mrrc~sponds to the voltage in range bin 54. Furthermore, these voltages are obtained 

after removing any background voltages frnm the total voltage. The background was 

simply taken as the smallest signal in the time series for each range bin. In general, 

if the bottom t~cho is in the b1
" bin from the transducer, that requires data from the 

i11t mnge bin where, 

{ 

b- N for vN(z.v) 

z - b + N for v~ ( z N) 
(:3.5) 

Figure :1.5 illustrates this. Equation :1.5 reveals a limitation of the inversion since 

b + N must be less than, or equal to, the number of range bins in a set. Thus, in the 

above example, b = 52, and the l'atio on the left-hand side of Equation 3.4 cannot be 

evaluated for more than :1 ra:nge bin widths from the bottom since in the Stanhope 

experiment only 55 bins were stored. 

Proceeding, Equation :J.4 is now written, 

v'
2 

{ r } ·u~ = R 4 exp -8 Jo·.v a,(z') dz' 
.v 

(3.6) 

where u~ = tl (:: N) and v~ = v:.!( z N) are used for convenience .. Since a, is required 

to obtain the concentratio:1, 1\tl, it is removed from the exponential in Equation :3.6 
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Figure :J.5: lllustration for example described in the text showing the IISf! of the 
variables v N2 

1 v~ 21 and z N, when the set contains 5.5 bins, and the bottom t~r.ho is i11 
bin 52. Three voltage ratios are formed in this case. 
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hy taking the logarithm of both sides. The equation is then, 

( 
I)'.! r 

In ~: =In R 4
- 8 lo~N a, dz'. ( :3. 7) 

To rmlurt! variance iu the final resu]t a time-average of EC'Juation :3.7, denoted by 

(···),yields, 

( 
I)'.! r 

(In ~: ) =In R 4 -8 lo~N (a,) dz' (:3.8) 

where it is t.acitly assumed that the bottom remains stationary with respect to the 

transducer over the duration of the time-average so that, 

(In R) = In R. (:3.9) 

Defining the quantity, 

(:3.10) 

Equation :1.8 becomes, 

1::N 

rN = lnR 4 -8 
0 

(a,) dz1 (:3.11) 

From Equation :3.11 and the definition of r N it follows that 

1ZN 1 

r N-1 = In R 4 
- 8 0 - (a,) dz1 (:3.12) 

provided N :/: 1, since ro is not defined. Subtracting 3.11 from :3.12 removes all 

dependence on the reflection coefficient and leaves the expression, 

1:N I 

.:1f N = r N-l - f N = 8 (a,)dz , 
~N-1 

(:3.1:3) 
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The integral on the right-hand side of Equation :u :1 is hetwt•t'll two adjan•nt 

bin centres. When the integral is t'xpressec.l as a sum owr discrdt• <lata, l'adt bin 

contributes half of its value to the sum, thus, 

r=N N I 
8 J~ (a,) dz' = 8~= L :; (o.,,i) 

"N-1 i=N-1 ~ 
(:U·I) 

where D.:: is the width of a range bin, and o,,i is tlu.' attenuation <lilt~ t.o scall.l'rin~ 

in the jth bin above the bin containing the bottom echo. The.~ sum on tlu~ ri~ht.-hand 

side of Equation :J.l4 is recognised as being the averag<.~ hPtw<.•c.•n the two <ulj<u'<ml. hin 

centres, and so the average is applied to the boundary betwt•en thcs<~ bins. So it is 

not confused with the time average we denote this average in spa~e lwtwe<m t.lw hin 

centres by an overbar, and define it by, 

(:J. l!'i) 

Using :J.L4 and :3.15 Equation :3.1:3 is 

(:Uf)) 

All of the quantities on the right-hand side of Equation :J.t6 an~ known from 

the acoustic data. The High-pass model of Chapter 2 can be re-expressed l.o give 

suspended sediment concentration at the lower boundary of the Nt" bin in terms of 

the scattering attenuation, 

(:J.J7) 
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where (fL) N is t.hP vertically avPragecl particle size at the lower edge of the N111 bin. 

(.r) = kr(a) N, and us<' has IH'cn made of the approximation, 

[I 4/' ·I 2] [J •If' ( )4 ( ):.!] 
( + 3 \ 0 .C + .C ) _ + 3 \o .X + ;C 

I , I - f' ( )4 1 
\o.X' \o X 

( :tl8) 

which assunu•s that particle size for each height above bottom remains constant over 

tinw. 0VI'r I.IH' duration of l•ach event this is likely to be true. To first order the size 

profilt• should n•main rdatiwly stationary over the duration of the run. 

Equatious :~.I() and :J.l7 enable the sediment mass concentration to be computed 

upon assuming a value of (a) . Values of (a) used in the inversion are from vert ical 
N ,V 

sizt• profil<>s obtained from the multifrequency inversion of Stanl~ope Beach data [Hay 

and Sheng, 1992]. In terms of ilr N' 

(:3.19) 

The rt•sult in Equation :U9 does not depend on the reflection coefficient R. Also, 

the inversion does not permit concentration P.stimates to be made in the first range 

hin above the bottom, since ro is not defined. Moreover, the system utilises a 20 JlS 

pulse and averages over 25 p,s intervals. Thus part of the bottom echo is placed into 

an adjacent range bin above, or below, the range bin containing most of the bottom 

PdiO. As the bottom Pcho is strong, this can contaminate values of r.' thence M 2. 
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Chapter 4 

Data Processing 

This chapter describes computer based methods employed to Pslimat.P mass con­

centrations using the model for the mirror-image echo presentee! in the pn~vious chap­

ter. All software described in this chapter are implemented in Fortmn77, and c·om­

putations are carried out on a RISC based MIPS/120- 5 workstation. · 

There are two major file selection criteria for choosing data appropriat.P to till' 

objective of the thesis. The first criterion is that a file must dearly exhibit t.tu~ minor 

effect. Files that met this criterion also show that wave groups incidt•ut. upon t.lw 

beach were very well defined. The second criterion is that the main bottom Pc~ho 

must clearly occupy one range bin in the RASTRAN colour plot.s (Note t.!Jat this 

does not exclude the possibility of signal leakage into adjacent bins). Moreovr~r, t.lte 

range bin in which the bottom echo resides cannot change over t.lw duraf.iou CJf ;t 

suspension event. 
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It was found that. of the :J frequency transceiver cluster data gathered, the !) 

M Hz trausc:eiver met these aiteria most frequently, and was closer to the bottom, 

thus providiug more range bins in the mirror echo. Data gathered by the shoreward 

:t.~!) MHz transceiver (~D) are also of interest in this study since this transceiver 

is iu sltallow<~r water providing longer post-bottom echoes than the offshore cluster. 

fi'urtlu~rnwre, at 2.2!j MHz the bottom reflection is expected to be more specular 

dmn at!) MHz, and both attenuation due to scattering and chemical absorption are 

decreased. 

4.1 General Processing Scheme 

The treatment of the data is illustrated in Figure 4.1. Raw acoustic data in 

binary format is first smoothed with a 7 set moving average, where a set is a block 

of contiguous range bins as in Figure :!.5. Using a sampling rate of 6.6 Hz a 7 set 

average translates to a 1.1 second average. This preliminary step is the same as the 

mnltifrequency inversion (Sheng, 1991; Ilay and Sheng, 1992). The 7 set smoothed files 

arc further smoothed with a 41 set, or approximately 6 second, moving average. The 

motivation for further smoothing is to reduce the variance in time averaged ln(v~/v~) 

terms. This filters out the effects of individual surface waves (typical period 4- 5 s) 

o:. t.he suspension. 

The programs inv2D and inv5 (described in the next section) read the 2.25 and 

50 



RAW ACOUSTIC INVOFILES 
DATA (size and concentration) 

,, ,, 
1 & 6 second PROFILE.F 

FILTER 

n , 
INVS.F RADFILES -INV2D.F ...... 

, 
Time series of: 

i) VN &v~ 
ii) ~; ArN (N > I) 
iii) (a)N (N > 1) 
iv) MN (N >I) 

. Figure 4.1: Block diagram showing evolution of data from raw form to end result,s. 
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!) MHz chaunels from the 41 set smoothed data, respectively, and require particle size 

information. A program callecl profile, reads the size files from the multifrequency 

invNsion and averages the time series over the duration of the file, producing a file 

contaiuing an average particle size, and standard deviation, for the centre of each 

mng<! hiu - these files are r.alled rad files. Both inv2D and inv5 read rad files, 

proceeding then to invt~rt the acoustic data to obtain mass concentration. The output 

of these inversion programs is a collection of ascii files r 11taining time series of the 

inversion's intermediate computations, and the final mass concentration time series. 

4.2 Description of the Inversion Programs 

Figure 4.2 shows a flow chart of the Fortran programs inv2D and inv5. Only 

major points are discussed here. For the selected file, the required user inputs are: 

the bottom bin number, b; the number of sets for block time averaging, Q, which 

provides the ( · · ·) in Equation :J.8; and the name of the appropriate rad file. Since 

the Mesotech 810 acoustic sounders utilise a factory preset TVG based on temperature 

and salinity values differing from field values, field values ofT and S for a particular 

RASTRAN data run must also be entered to permit a TVG correction. 

The general procedure is to step through the file in contiguous blocks of Q sets 

f'ach. A value of Q = 20 sets produces two estimates of concentration over the filter 

length. Avt>raging over fewer sets is not meaningful. For each block, a loop is executed 
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Figure 4.2: Block diagram for the inversion programs inv2D and inv5. 
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through Q sets, and accumulates acceptable values of ln(v:/u~) , where v~ and vN 

include a background signal subtraction. The value of N spans N = 1 ... 55- b, the 

numlwr of squared-voltage ratios available. The values of ln('u~/v~) considered to be 

acr.ept.ahlt> are those for which the criterion, 

( 4.1) 

wlwre the voltages have been background corrected, is true. If this ratio were other-

wise, it. would imply that the reflection coefficient were greater than unity, which is 

impermissible on physical grounds. A further criterion is that the direct backscatter 

signal must he above a threshold voltage, vr. This avoids computing concentration 

estimates when the above criteria are met, but are meaningless due to low signal 

levels. Once Q sets have been looped through, the average of ln(v:/v!) is computed 

and stored, accounting properly the number of acceptable sets. Next, a: value of ~r N 

is computed. Values of ~r N less than zero are unacceptable since a, must be pos-

itive. When ~r N is negative it is an indication that the method has failed for that 

block of Q sets. For 6.r N > 0 the program proceeds and aomputes the scattering 

attenuation and then the mass concentration, M N, which is archived on disk. The 

case 6.r N = 0 is rare in practice. An example of these intermediate calculations is 

provided in Figures 4.:3 and 4.4. 

All output time series are of approximately 1:30 data points in length. Typical pro-

gram execution time on a complete file of RASTRAN data for one acoustic frequency 
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takes about :30 sec-onds. 

4.3 Confidence Limits based on 

Signal Fluctuations 

Confidence limits for mass concentration time series pn•seut<•d iu Chapt.<•r· !) an• 

based on fluctuations iu ~r N. Recalling that, 

~r N = r N-• - r N 

and, 

r" = (In ( ~:) \ 
the dependence of M N on ~.r N (Equation :J.l9) is, 

_ _ [l + ~ /\0 (x)'1 + (x):l] , (a) N 

M N - J(n(x)-1 Po 8~z ~r N 

Fluctuations in ~r N, thence M N, are related to fluctuatious in the acoust.k dat.a, "! 

and v~. These fluctuations need not be noise, but rather real lluduatiuns iu signal 

due to varying suspended sediment concentrations. 

The inversion programs compute the standard deviation of rN for each N I for (~ac:h 

block of Q sets, indicated by the symbol c.N. It follows that minimum and maximum 

possible values of Equation 4.2 can be reasonably represented hy, 

(4.!)) 
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Figure 4.3: Data from run 300.030, at 5 MHz. (a) Raw voltage for V2 (-)and mirror 
signal Vi(- --). (b) Raw voltage for '\13 (- )and mirror signal v; (-- -) . 
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respectively. Making use of, 

--± l ± 
(cr.,) N = 8.6.: .6r N (4.6) 

f.hc limits M N- a.nd M N+ define minimum and maximum values for thP- mass concen-

tratiou basefl on these fluctuations respectively, where, 

M ± _ [I+ ~Kcw(x)4 + (x)2
] 1 -( ) -( ) ± 

N - Ka(x)4 Po a N cr, N • 
(4.7) 

The values obtained from Equation 4.7 are used for placing confidence limits on results 

prescuted in the next chapter. 
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4.4 Confidence Limits based on 

Errors in Particle Size 

Confidence in mass concentration estimates obtained from Equation '1.7 also dl'-

pend on the uncertainty in (a) N. For the employed inversion scheme this valm• dot's 

not change in time, there~ore what uncertainty exists in the mass c:onct•nt.mt.ion tltH• 

to error in radius will also be invariant in time. A simple t.est of the st•usitivit.y of 

the High-pass model to changes in (a) N' and hence x, is to hold the Vc\lue of t.lw 

attenuation constant for each 2.25 and 5 MHz, while varying a over t.he mnge plus 

and minus one standard deviation from the mean profile radius, denoted hyMN+ a.JHI 

(a) N-, respectively. Thus, Equation 4.7 is written, 

-± 
where (x ±) = kc(a) N • 

Figure 4.5 shows the 6.5 minute averaged particle size vertical prolile for run 

:100.0:30 obtained from the multifrequency inversion, and the program profile. '1'111' 

solid line in this Figure represents (a) N, and the dashed lines represent. tlu~ one st.an-

dard deviation limits on this value The range over which a varies lies approximately 

between 60 JLlll and 140 JLill, the mean value being ncar 100 JLill. 

Recalling Equation 2.51 for the High-pass model, 

aa,,i _ I<ox1 
-f-- [l + ~I<ox1 + xf) 

(4.!J) 
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Figure 4.5: File-averaged (6.5 minutes duration) radius profile for run 300.030. The 
solid line represents the mean value, and the dasheu lines represent one standard 
deviation from the mean. 
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where f = J'v!fp~, and .ri(= k,a) and 0 8,i represent the dimensionless si:w paranwlt•t· 

and scattering attenuation for the i 111 frequenl'y in M Hz. n•stw<.'livt•ly. T•\w a lixt•tl 

time and height above the sea bottom the quantity a/f. is the sanw for any frt'qllt'llt~y. 

To estimate the relP.tive values of thf' srattt~t'ing attt~nttation at tlu.• t.wo fn·qut•ndt•s 

i = 2.25 and i = 5, Equation 4.9 is used to ohtain, 

(·1.111) 

For a typical particle radius of lOO J.Llll, and using /(, = 0.18 for quartz, this n•tlltt•t•s 

to, 

O's,2.25 :::=::: 0.22 O'.t,5• 

A typical value for o,,5 during the peak of an event is 0.04 <:m- 1 whic~lt lmuls t.u a 

predicted value of a,,2 ,2s = 0.009 em-•. 

Using these values for a,,,, M as a function of x (for radii 60 JLI11 to 1~10 Jlln) at. 

2.25 and 5 MHz is depicted in Figure 4.6 by the dashed and :mlid lines rc~spt!d.ivt•ly. 

The circles represent predicted concentrations at x values for a part.ich~ of t.lw ttwau 

radius, lOO p,m. There are two salient features in this figure: first, at t.lw nte<lll t'<ulius 

the two frequencies give nearly identical results, approximately :J g/f in this •~xamplt!; 

second, at 2.25 MHz the possible range of concentratiott is much grcatt~r t.hau ;LI, !j 

MHz, especially for smaller particles. 

The High-pass model given by Equation 2.51 is renorrnaliscd so t.hat neither sidt! 

depends explicitly on the particle radius, a, but rather on the acoustic wavenumber, 
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l.:r:· This is achieved by dividing earh ~ide of Equation 2.!ll hy t.lw dimensiunlt•ss sizt• 

parameter, .r.. The resulting expression is, 

Os /\o.1:
3 

t k" = [I + ~ 1\0 .r·• + .1: 'T (·1.12) 

The right-hand side of this function i::; plotted in Fip;mt> ·1.7 wht•rt> t.IH' drclt•s on 

the curve n~prPsent the range of x spanned by parlides of radius I;I}Jtltl ~ 11 ~ 1·10/tlll 

at 2.25 MHz, and the x's represent the same thing at !l MHz. Ont• can t'!Parly Sl't' 

the sensitivity of the High-pass model near ;c ~ l, or l'flllivalenlly at. 2.2!l M liz for· 

the considered particle size range. In contrast, the curve! is a murh slowt•r dmn~in~ 

function over the same range of particle radii at 5 MHz. This sc~nsit.ivit.y at 2.2!l Mil;~, 

to particle size is supported by Figure 4.6. 
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4.5 Sensitivity of Mass Concentration to 

Background Subtraction 

As shown in Equation 4A, the invPrted concc..mtra.tion, M...,, tlc'JH'Iltls un .:.\.1'"' , 

rewritten h«:>re for convenience, 

Figure 4.8 shows a representative time series, taken from ruu :JOO.O:JO, of lot.al 

signal for the third bin above the bottom, v~. From Figure 4.R it is clt~ar t.hal tlw 

total signals consist of a constant bias, or background, plus tlw signal c-ontaining 

information about a suspension event. (Throughout the t.lwsis t.lw vollap;Ps, vN allCI 

v~, are assumed to be only that part of the total signal containing infonnat.iou about. 

a suspension event.) Assigning the variables VN and V~ for the t.otal signals N hins 

above and below the bottom bin respectively, and the constants vn N and 11
1

1 
N for t.IH' 

• I, 

corresponding background signals, Equation 4.2 becomes, 

D.r N =(In N-1- VB,N-1 ) _(In N- 'I'II,N }. 
( 

V' 
1 

) 2 ( V' 
1 

) 2 

VN-1 - vo,N-1 VN - 11n,N 

It is important to understand how the background signals, and their subs1~cpwut 

treatment, affect the final estimates of mass concentration. Computing ratios in 

Equation 4.14 will introduce uncertainty when the numerator and denominator iusidt~ 

each logarithm approach zero together. This applies directly to Equation 4.14 when 

the total signals, VN and v~, approach the background values, 1) n,N and 1J~.N I almoNt 
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Figure 4.8: Time series from run :300.030 illustrating the voltages lS, v3 , and v8 ,3 • (a) 
. Time seril's of raw signal uncorrected for background, v8 ,3 • The dashed line indicates 

the background level. (b) Same as in (a) except v 8 ,3 has been subtracted. 
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simultaneously near the start and end of a suspension t•vent. Fot· this rt•ason t.lw 

ratios are most stable at the event's pt•ak, wlwn t.lw total sip;nctl is much p;n•at.Pr t.han 

the background. Bt>canst~ of the logarithms in Eqna.t.ion ·1.1·1 lint•m· cltangPs in t. ht> 

amount of background signal snbtractt>d lead to non-litwa.r changt•s iu tilt' ill\'t•rl.t>d 

conct>ntration. A threshold voltage of ·10 111 Von '':v t'lft•d.ivt•ly solws t.ht> lirsl. of t.h«':w 

problems. When the threshold is lower than this Pvt•nts spuriously appt•m· in tilt' 

reflection met bod results at times when significant suspt•nsiou t'Vt'lll.s do twl. <'X ist. 

A sample calculation illustrates direetly the dfects of r<•moviug IHLckp;rouud sip;wd 

on the inverted mass concentration. Using total signal vahws <LI. <t srwcilir l.imt• duriup; 

an event, and uniformly varying the amount of backgrolllHI subtr~u·l.t!d fmm :wro t.o 

the full background level, a general relationship between tlw invmt.ecl muc<•ut.rat.ion 

and the amount of background subtracted can be obtailu~d, for t.hat t.illlt!. Such an 

example is provided in Figure 4.9. This example is complllt!d for t.lw!) Mllz inwrl.t•cl 

result in the third bin above the bottom, at time O.Fi minult•s into ruu :HJo.o:m. Sine<' 

most of the background levels are similar in magnitude, t.ht! ordit!itl.<! axis shows ouly 

the variation.of v' . The Figure shows that the iuvert.ed couc<!ltl.rat.iou irii~J'(!ilSt's a:; 
8,3 

more of the background is subtracted. The increase in inverted cmu~ent.rat.iou wlwn 

the full background level is subtracted is approximately ~0% more t.lrau without. 

subtracting background levels. 
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Chapter 5 

Results 

The inversion process described in Chapter ;J is employed t.o couvt•rl. H.ASTH.A N 

data collected at Stanhope Lane Beach during October-Novcmht!r I!>H9 l.o SIISf)('lltl«'d 

sediment concentration. Concentrations obtained usiug t.Jw rt!fl, ~d.icm mdhod an! 

compared with multi frequency and OBS methods to test wlwthcr lht! ai:oust.it: mirror 

is the consequence of coherent bottom reflection. 

Results for two RASTRAN runs are presented. St~ct.ion !).! presents t't ~sult.s frotH 

run :300.0:30 for the 5 and 2.25 MHz sounders. St~ction !).~ pt't!St!tlls t'I!Sillf.s from 

run :307.025 for the 5 MHz sounder, and describes a case for whkh the rdlt!diou 

method fails. Results are presented in the form of c.oncenlration tinw St!riml dt!riVl!d 

from the reflection method, and are compared with the results of tlw mul t.ifrt!(jlllHU:Y 

backscatter technique, and optical backscatter measurements. 

Linea.r correlation coefficients, R:y1 and the nwan relative difference, 0::11 ~ are 
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providt~d in tablt~s. Tlu~ nwan relative difference is given by, 

D. = ~ ~ IYi - :;i I 
•II I~ Y'" z=l 1 

(5.1) 

wht-: !~ I is the t.otalnumbt!r of data points in the plot used for calculation, y, represents 

the nwasurt•d value, all(! z, is the ralcnlated value. In cases where the correlation 

lwi.Wc!ell the rdlection method and either of t:1e other methods appear significant or 

provides insight, tlw scatterplots are provided. 

Bt!ramm of a failed connector, only OBS data from the shoreward end of the 

instrument frame (Figure :l.:J) are available. All OBS comparisons are made with 

t.he lowest of the :J sP.nsors, OBS 1:1:3. Although the height of the OBS dete.ctor 

above bottom is known for each data run, OBS instrument design imposes some 

limitations on interpretation of the recorded signal. The OBS beam pattern is about 

:mo full width horizontally, 50° vertically, and has a range not more than 20 em (based 

on manufacturer's specifications) [Downing et al., 1981}. Thus at 10 em range the 

OBS beam interrogates a 9 em high vertical section in the water column. M(·reover, 

the d~tected volume decreases with increasing particle concentration, due to nefl.rer 

particles shadowing further ones. OBS calibrations were performed utilising surficial 

sand obtained at the deployment site. Therefore, the 0 BS measurements assume that 

for all heights and times, suspended sediment sizes are the same. 

Finally, all data has been identically filtered with a 6 second moving average 

removing fluctuations at and above the frequencies of the incident gravity waves. 
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5.1 Run 300.030 

Figure :1.4 of Chapter :1 is reproduced in Figure !>.I for convt•nit•nn•. At. t.lw t.op 

of this Figurt> the unfiltered cross shore rurrent rt:•cord is shown. At hoth 2.:!!> t\llb~ 

and 5 MHz, two suspension events are St:'t-'n in Figun.~ !l.l, and t'etl'h is strongly 

correlated with the passing of a well dt>fined wave> group. This is l'onsist.Pnt. with 

earlier observations [Hant:'s and Huntley, 1986; Hay rf al., WHS; Vinrt•nt. and Un•Pn, 

1990). The OBS data at the top of this Figure indicate this as WC'II. gVPnt I starts 

at approximately 0.2 minutes into the run and ends <tt approximat.dy I minult~, ur 

48 s duration. Event ·2 starts at approximately 4.2 minut.c.~s into tlu~ run anti t•nds at. 

approximately 4.8 minutes, or :J6 s duration. 

Figures 5.2( a) and (b) show the filtered direct backscatter and mirror imap;<~ signals 

for the 5 MHz signal near the bottom, respectively. Tinw series in this figu1·t~ art~ wdl 

correlated with each other in time and appear to be unaffected hy tlw lwl,t.om t•t:ho. 

Furthermore, Figure 5 . .J demonstrates the ability of the seaht~d l.o lwhavt~ as a mirror 

since signal amplitudes decrease as one moves further from the st~abml, for hol.lt t.lu~ 

direct backscatter and mirror signals. 

Field values of temperature and salinity <'ollectcd at the shordirw fur t.his par­

ticular run are 9° C and 29 ppt, respectively. These values yield a souruJspeed uf 

1477 m/s [Clay and Medwln, 1977, p88), and a range rewlution of tlz = I.H4f) nu 

per range bin, and are also used to calculate the attenuation dtw to sea waf.f!r. The 
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Figure 5.1: RASTRAN false colour plot for run 300.030. 
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range to the fluid-sediment interface was measured with a LeCroy model 9400 120 

Mllz digital oscilloscope to a resolution of 0.1 em. The details of this procedure are 

th~snibed in Hay and Bowen [199:1]. 

The file-averaged vertical size profile of Figure 4.5, obtained from the multifre­

quenr.y inversion on run :300.0:30, is reproduced here for convenience in Figure 5.:3. 

Data below fi em height provide input for particle radius in the High-pass model. 

Particle sizes from the multifrequency inversion at heights greater than :3 em above 

the bottom have a mean diameter of about 180 p.m, which is only 6% greater than 

the measured mean diameter of 170 JLm near the RASTRAN frame. The particle size 

estimate nearest the bottom is considerably larger. This is the r:esult of bottom echo 

contamination for the multifreqnency inversion in this range bin. 

5.1.1 Results at 5 MHz 

For the 5 MHz transducer the range to bottom for this run was 94.3 ern, placing 

the bottom in the upper portion of the 52nd range bin. The observed position of 

the bottom echo in ~.he RASTRAN acoustic data corroborates this result, so for this 

run squared-voltage ratios of mirror signal and direct backscatter signals are centred 

around the 52nd bin (b = 52). Hence, at 5 MHz three values, r., f2 , and r3, are 

cakulated, yielding two concentration estimates, M, and M 3 , as functions of time. 

In a method described by Hay and Sheng (1992], the mean height of OBS 1:3:3 above 

bottom is determined to be 4.8 em. The OBS values should therefore be compared 
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to those in the thircl range bin abovt.• the bottom for this soundt.•r. 

Time series of concentration for run :wo.o:m from tht• :! inv<•rsion mc~thocls and 

OBS are presented in Figure 5.4 for comparison purposes. Values of Tf.1 nntl M:1 

from the reflection method are illust.rated in Figures ;")A (a) and !l..t( h), n•spPcli Vl'ly. 

Values of iH3 from the multifrequency method and the OBS an• illustrat.l'd in fl..l(<') 

and 5.4(d}, respectively. For all reflection mdhod time st.•ri<•s the t.wo solid litws 

represent 1\11 N±' based on signal lluctuations, as deserilwd JH'eviollsly. Inst.ancc•s wll<'t'c• 

an isolated point in time yielded a result, the confidence limit.s an~ it~diml.t~cl wit.h 

circles (o). Times fc,r which no reflection method result is shown (i.e. IH'I.Wt'Pil t.he 2 

events) indicate that this method has failed either because 1J~jiJN ~ I, or ''N wa.s less 

than the choseu threshold voltage, 40 m V. For the mult.ifrcquency hac.ksc;~tl.t~r n·sult.s 

in 5.4( c) the two solid lines represent ±I standard deviation from t.lte nw;m ovc!l' :w 

sets. 

It is clear from Figures 5.4(a) and 5.4 (c) that the results of the rcfled.ion nwt.hOfl 

and the multi frequency backscatter are r.onsistent. Because M 2 applies t.o llu~ lowc~r 

boundary of the second bin above the bottom bin, and M.1 (multifrecpwnr.y method) 

applies to the centre of the third bin above the bottom bin, these two results iLn! 

1.5 bins apart vertically(~ 2.8 em), with the multifrequency bin bdng farther <thove 

bottom. Peak concentration values are higher for the reflection nwt,hod thau for 

the multifrequency method at similar times. This is an expedcrl n~sult bc~c:ause 

concentra.tions increase as one approaches the seabed. 
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backscatter M3 , and (d) OBS 133. 
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Figures 5.4(b) and 5.4(d) illustrate two featun•s: first, tht• n•llt>dion nwthod pre·· 

diets that concentr.<ttion decreas('S as one increase:; tlw ht'ip;ht. ahoV<' the st•alwd (mm-

pare with 5Aa); second, that at. the t't>lltre of each event, wht•n n•llt·ct.ion nwt.hod 

results are more reliable, the inverted concentrations agrt'(~ Wl'll with tilt' OBS mm-

surement. 

Figure 5.5 shows results similar to those in Figur<-' !)..1 t•xn~pt that. t.lw ttppPr and 

-+ -- -- -+ 
lower concentration estimates, M N and M.v , correspond to using (ct) N and (a) .v 

in Equation :3.19, respectively. The plots show that the coun•nt.mtion t•st.imat.es at. !) 

MHz are rather insensitive to uncertainties in particle size, in acmrtl with t.he analyst!\ 

in Chapter 4. This is especially obvious in Figure 5.5(a) where tlw. l.wo lines cldining 

the range of possible concentrations are barely discernible. It is less obvious in !i.!)(h), 

but still noticeable. The larger difference in the possible range for M:~ is due~ t.o i t 

larger standard deviation in (a) N for that height. 

For further comparison between the reflection method and the OBS, illl(l multi-

frequency methods, a linear regression analysis was perfornwd. A summary of t.lwsP 

results is provided in Table 5.1. Note that liuear regressions nuty not he tlu~ lwsl, 

indicator of the validity of the reflection method. Data can have nearly zero wrreliL· 

tion but can be clustered near the 1:1 line, representing perfect agreement belwePn 

the reflection method OBS/multifrequency technique~, whic:h gerwrally supporf,s the 

reflection method. 

Figures 5.6(a) through (d) show scatterplots where the linear correlation hdweeu 
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Figure 5.5: Run 300.0:JO time series of inverted concentration from single frequency 
reflection at 5 MHz, where the confidence limits (-) are based on the possible range 
of particle radii. 
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reflection estimates of M 2 , OBS I:J:l, and multifrequeru·y mt>thotls appt'<U' si,gnilintllt. 

The dashed line in these figures n•presents the st•mi-major axis of t.hl' Pllipst' l>t'sl. 

confining the data. One observes in Figures !Ui(a) through (tl) t.hat. t.ht' slopt' uf 

the regression line is ronsistt:•ntly less than unity. The l't'stdls of Crawford anti llay 

[ 199:3] suggest that the ratio algorithm t>lllploy<'d for tlw mttlt.ifn•<tllc'tH'Y invPrsiun 

yields concentration estin.1ates which can be low by as much as a farl.or uf 2. This 

could explain the low slope in the scatterplots. Similarly, Figmt•s fl .i(a.) anti (h) 

show the correlation between the reflection method estimates of M ~ a.ncl OBS and 

multifrequency methods, respectively. In general, the rorrdations for M :1 arc~ not. as 

good, and the reasons for this are not entirely clear. 

Reflection OBS Multi frequency Backscat.l<~r 
Method 1:3:3 1\11, lv/2 /VI.'} M., Mr. 

0.4:3 t -0.71 0.20 0.89 t 0.94 t O.HO t 
M2 (0. 78) (0.82) (0. 79) (O.:J6) ( 1.5) (;)A) 

0.58* t 0.45 0.18 -0.25* 0.27* 0.21,.. 
JV! 3 (0.28) (0.89) (0.86) (0.76) (OA I) (2.()) 

Table 5.1: Results at 5 MHz for run :300.0:30. Values for tlw linear ('(~grl'ssiou co­
efficient, R=

11
; values of D.

11 
are in parentheses. The asterisk indkatc~s that. outlic~rs 

have been disregarded in calculating the estimate. t deuotc!s t.ha.t tlw sntf.f.Prplot. is 
provided. 
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Regression for 300.030 at S MHz: R = 0.43 
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Regression for 300.030 at S MHz: R = 0.89 
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Figure 5.6: Scatterplots for run 300.030 showing comparison of M 
2 

at 5 MHz with 
(a) OBS, (b) M3 , (c) M4 , and (d) M5 , from the multifrequency backscatter inversion. 
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5.6 (continued) 
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The multifrequcncy backscatter inversion employs three transceivers with non­

overlapping lwams, one of which was a different height above the bottom. This leads 

to an uun~rtaiut.y with respect to absolute height above the bottom for final con­

c:mlf.rar.iou (•stimates since range to bottom evolves in time and space. Thus, it is 

pl<uJ.sibl{! that t.he multifrcqueucy result M.1 lies closn· to the bottom than expected, 

yiddiug a higher correlation with M 2 than with /\{,. The correlation is expected to 

lw good hdw(~en J'v'/., and the OBS, since the height of the 08[) places Lhe centre 

of it. beam nearer to the third bin above the bottom. Indeed the best correlation of 

0.58 is between M., and the OBt·, shown in Figure 5.7, but could only be obtained 

by disregarding data for which the OBS measurements were less .than 2 g/f in Fig­

ure 5.4(d). This may indicate a susceptibility of the reflection method in coping with 

low concentrations, since signal levels are nearer to the chosen threshold, and are 

more prone to a lower S/N ratio. 
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Regression for 300.030 at 5 MHz: R = 0.58 
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Figure 5. 7: Scatterplot for run aoo.o:m showing comparison of M 3 at fi MHz with 
OBS 13:3 (points omitted from the calculation of R=

11 
and D211 considered outliers are 

denoted by '+' as explained in the text). 
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5.1.2 Results at 2.25 MHz 

For t.he shon~ward ~.~5 ~Hiz transdur.er (~D), the range to hottom is 92.6 rm, 

. 
pladug t.hc~ fluid-sediment interface m~ar the top of the 51st range bin (b =51). This 

is C'Oilfii'IW'd in the~ data and results in 4 Values, rl · • • r ,h and thus three COilr.entration 

t•st.imatt~s, J'v/ 2 , iH ~, and M 4 , fl'' functions of time. The mean height of 0 BS l :3:3 above 

hot.t.om <tl. t.lu~ rwarshort~ t•ml of the instrument frame is :u em, placing it within the 

sc•corHI mngt~ hin abovt~ t.he bottom. 

Timt• seri<•s of concentration for run :300.0:30 at 2.25 MHz from the reflection 

nwt.hod, where the confidence limits are based on signal fluctuations, are presented in 

F'igurt• !l.H. OBS and multifrequency results are the same as shown in the 5 MHz case. 

Although it is St'en in this figure that the concentration decreases as one moves away 

from t.lw st•alwd, the most striking feature of the inw· .. ted results are the large con-

nmtmtion t'stimates, even at the lower bound. Possible reasons for this are reserved 

for disc~ussion later in this section. 

Similar to the I) MHz case, the inversion was run agam at 2.25 MHz but the 

confidence limits were based on the possible range of particle radii. Figure 5.9 shows 

these results. The upper and lower solid lines correspond to using (a) N- and (a} N+ in 

the inversion, respectively. The dashed line indicates the inverted result from using 

the nwan radius, (a) N ' From these computations one can see that the method at 

2.25 M Hz is far more susceptible to uncertainties in particle radius than to signal 
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Figure 5.8: Reflection method results at ~.25 MHz for run :JOO.O:JO. Confi•lmu:'~ limit.s 
(-) are based on signal fluctuations. 
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Fip;ure !U): Reflection method results at 2.25 MHz for run 300.0:30. The mean inverted 
ronct>ntration (---) and confidence limits (- ), based on the possible range of particle 
radii, are Nhown as functions of time. Upper solid lines correspond to using (a}-, lower 
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fluctuations, indicated by tht• incrt•ast•d :-;paring of tht• ronlidt•nrt> limits. This is 

especially trut• for the rasP of using thr smallt•t· radius t•st.imat.t•, (a)·'~. :\~a in. t'\'t'll at. 

tht:' lowt•r bound (lmgt•r partirlt•s) im·t•rtt•d coltt't'lllmtioll:o; St't'lll quil.t• ltiglt <'OIIIflil l't'd 

to all othrt· results, regardless of method. 

Refh•ction OBS .M ul tifrt•qttt•nry Backst·al.t.t•r 
Method 1 :J:J M, M'}. M:, M., ;\I,, 

0.2~* o.:w t 0.06'+' -0.~1 -0.17 -II. I:~ 
i\t/2 ( 1 :J) (0.70) (O.!l:J) (:J!i) ( (i I ) (II 0) 

-0.42* 0.16'1: t 0.2:1'+: t -O.fifi -0.·1!) -U .:11 
M:J ( 11) (0.89) (0.!)0) (~!i) ( ·l·t) (HH) 

-0.46 o.:H -o.:m -O.H7 -0.7!) -lUi I 
Mo~ ( 11) (0.51) ( 1.~) ( 1H) (:!H) ( !">7) 

Table !>.2: Results at 2.2!> MHz (20) for mn :wo.o:m. Values fDI' t.lw liw•;l[' r·t·~n·ssion 
coefficient, R="; values of D :y are in parcn tht•ses. t dt~nott!S that. t.llt' sml.t.t•rplot. is 
provided. 

As before, a regression analysis was performed. The rt•sttll.s of this analysis art• 

summarised in Table 5.2. In general, tlw linl'ar rom•spondPill't' l~t•I.W<'t'll t.ht• l'<'llc•t·t.ioll 

method and the other methods is either low, or tiC'gativdy corrdat.t•tl. Thrt'<' sl'al.l.t•r-

plots are provided in Figures 5.10(a), (b), ant! (<~)for a wmpariso11 of M.l wit.h /1.,1, , 

i\t/ 3 with M,, and J\tl3 with Al2 respectivley. The wsults shown iu Figllrt• !i.IO r•xhihit. 

only .small positive correlation after removing o11tliers from tlw cumput.at.ion, wltil'h 

are mostly from inverted data at the bt~gi nning and end of tWtml.s wlwrt~ n•sttlt.s art~ 

less stable. However, all of these plots exhibit a rdativdy dense~ dnsl.m of poinf.s nc~ar 

the l: 1 line. This indicates that on average the two methods yidcl similar valw~s of 

concentration in this example, and thereby supporf, the reflection methocl. 
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Regression for 300.030 at 2.25 MHz (20): R = 0.28 
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Figure 5.10: Scatterplots for run :300.030 at 2.25 MHz (20) comparing (a) i\t/
2 

wi th 
M., (b) M3 with M2 , and (c) M3 with MP respectively (points omitted from the 
calculation of R=11 and D=

11 
considered outliers are denoted by '+' as explained in the 

text). 
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5.10 (continued) 
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The results iu Figun~ !5.9 demonstrate that the distribution of particle sizes can­

uot, explain tlw disc.repancy h«~tween the reflection method results at 2.25 MHz and 

t.he mult.ifrecpwnc:y results. Other possible explanations are now discussed. For the 

reflection nwt.hocl the inverted c.oncentration is a function of the scattering attenua­

tion, n., thus abnormally high computed concentrations indicate that the computed 

vahws of a, are anomalously high. It has been shown previously [Varadan et al., 

I m~:i] that tlw single-scattering assumption may be violated if the concentrat ion of 

suspended particles is greater than 1% by volume, corresponding to a limit of about 

:JO g/ f. for quartz sand, and beyond this value the scattering attenuation decreases. 

Measurements on real sand [Hay, 1991} have confirmed th~ linearity up to approxi­

mately I% by volume. Since the theory employed assumes single-scattering, and the 

computed scattering attenuation is too high it follows that multiple scattering is not 

the mechanism for the discrepancy. This suggests that the problem may lie in the 

inversion algorithm near frequencies of 2.2.5 MHz, more generally near frequencies for 

which the dimensionless size parameter x ~ 1. 

One must ·coo~sider the accuracy of the High-pass model, when compared to mea­

sured values of aa8 / f, where a is the mean particle radius. The measured values 

from experiments by .Jansen [1978; 1979} and Schaafsma and der Kinderen (1986}, 

are summarised in Table II of Sheng and Hay (1988). While the mean percentage 

difference between the High-pass model and the measured values is of order I.J% for 

values of x $ 2, individual measuremen~ ~ can have up to :30% discrepancy, ll'!ually 
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corresponding to the High-pass model m•erestimat.ing 7ifi$/L For .r.:::::: l. t.hP nwasmt'· 

ments are split as to whether or not the High-pass modt•l owr- or undt•rt•st.imal.t•s l.ht• 

nwasurenwnts. RC'cently, it has lwt~n -;hown (pt•rsonal communic-ation from Dr. A. E. 

Hay, Memorial University of Newfoundland) tha.t tilt' lligh-pass motlt•l is inat't'llral.t•, 

and that a modified theory is forthcoming. This will also n•quir<' motlilkat.ion of t.lw 

multifrequency results, which make use of t.lw High-pas::; mudd. 

Another possible explanation for the discrepancy a.t 2.~il M H:t. t•xist.s, ho\\'t'Vt'r. 

This is the contribution from non-specular rctled.ion, and is tliscus::H•tl in Chaplt~r H. 

5.2 Run 307.025 

In addition to presenting the 5 MHz results this section dist~ lll-isc!s t.lw su::wt•pt.ihili t.y 

of the M 2 estimate to contamination in f 1 from the bottom t•chu. This :wction 

will omit much of the discussion provided in the previous scd.ion, as it. is t•qually 

applicable. 

Figure 5.11 shows the RASTRAN false-colour image for run :m7.0:m, ('orrt•sJHHtd­

ing to the 2.5th run collected on November :J, I 989. Five major suspension t!Vt'!ll,s, 

centerP.d near 0.2, 1.7, 2.8, 4.5, and 6.1 minutes, respectively, art! most t~asily :-;c ~tm in 

the OBS signal of this Figure, and are concurrent with tlw acoustic. data. shown IJ• ~Iow 

that. 

Figures 5.12(a) and (b) show the filtered direct back!)catter and mirror imag•~ 
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Figure 5.11: RASTRAN false colour plot for run 307.025. 
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signals for t.ltl! .r; M Hz signal, rC'spectively. The same commentary applies to this 

Figure~ as for Figure !>.2 . 

Fidtl vahu~s of tcmlJwrature and salinity collected at the shoreline for this par­

ticular ruu are !LI:JoC and ~9 ppt, respectively. These values yield a soundspeNl of 

ltJ7!) m/s, atul a range n~solutiun of llz = 1.849 em per range bin. The file-averaged 

V«'t't.ical siz<• profile for this run is providt>d in Figure 5.1:3. For this file data from tht> 

hot.tom I 0 nn of this profile arc used as input to the High-pass model. 

5.2.1 Results at 5 MHz 

For the!) MHz transducer the range to bottom for this run was 9:1.2 em, placing 

t.he bottom in t.he upper portion of the 5l.~t range bin. This is supported by the 

hot,tom echo in the RASTRAN acoustic data, so for this run squart>d-voltage ratios of 

mirror signal and direct backscatter signals are centred around the 51st bin (b =51), 

yidding four values, r1 • • • r4, and ~hree concentration estimates, M 2 , N/3 and Ilt/ 41 

as functions of time. The mean height of OBS 1:1:1 above bottom is 2.4 em, which is 

within the se(:ond range bin above the bottom for this sounder. 

Time series of inverted concentration for run :307.025 from the two inversion meth­

mls and OBS are illustrated with identical scaling in Figure 5.14 for comparison pur­

pus<•s. lnwrt.<•d ~·onct.•ntrations for M 2 and M 3 from the reflection method are shown 

in Figures !).l4(a) and 5.14(b), respectively. Figure 5.l4(c) shows concentr<t.t.inns for 

M2 , 1\t/3 , and M4 obtained from the multifrequency b:tckscatter method. The standard 
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deviations on thP- results in Figure !j,l4(c) are omitted, but are similar in magnitude 

l.u t.lw standard clc~viat.ions in the multifrequency results for run :300.0:30. As before, 

for rdl<•diou mdho(l t.imc series in Figure !5.14 the two solid lines, and circles ( o ), 

reprt~~wul, lv/ N±, based on signal fluduations. The 0 BS, and reflection method result 

for M 4 , an• d«~notl'd by the solid and dashed lines, respectively, in Figure 5.14(d). 

OvPrall, the tlm"'P different methods have produced concentrations of the same 

order, ancl the reflection method has registered the five major events. One observes 

in Figure !).14( c.) that concentrations decrease further from the seabed. It is not clear 

from Figurt•s .ri.l4( a) and 5.14(b) that the concentration decre~ses further from the 

st•ah: ·d, exn~pt possibly for the events near 0.2 and 4.5 minutes rt>spectively. The 

relied. ion method has failed in its estimates of Nl 2 and lvl 3 during the second event, 

r.cnten•d at I. 7 minutes, since both the multi frequency result and OBS easily register 

the peak of this event. This failure of the reflection method during the second event 

is discussed later. 

Figure .1.15 shows results similar to those in Figure 5.14 except that the upper and 

-+ - -- -+ lower concentration estimates, M N and M N-, corresvond to using (a) N and (a) N 

in Equation :J.l9, respectively. Once more the uncertainties in inverted concentration 

at 5 MHz is due primarily to signal fluctuations, rather than uncertainties in particle 

size. Note however that M 
3 
+ and M 

4 
+ concentrations are slightly higher ~han the 

upper concentration bound due to signal fluctuations. This slight inrrf.:'Me in inverted 

concentration is due to the use of the smaller particle size. 
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A summary of the linear re.~n:·ssiun analysis is pr~·stmtt•d in Tnhlt• fi.:t Bt•t'allst' t.lw 

total duration of s11spension evt•nts deert'CI ... <;t'S fmtlwr from t.he hottom, tht• nllmht•t· of 

sets available for the invet·sion det~rrast•s, t.hl'l't>fore n•gn•ssions involvint-!: M 
4 

art• not. 

computed since only five data points exist for tlw comparison in t.his t•xamplt•. 

Reflection OBS M u\tifrequency Backscal.t.t•r 
Mrthod I :J:l lv/1 M'}. Ma M., Mr. 

0.(i5* t -OA5* -0.1 i OAT+< 0.42* u.:tn 
J\;f 'l (0.:17) (0.6:1) (O.R:l) (0.!)0) ( ·Ui) (S.2) 

0.27 -0.66 -O.!i I O.Gn* t O.:J!l * () .!l!l 

M:J {0.6:1) (0.67) (0.!17) (O.:J2) (2.7) ( 5.:J) 

Table 5.:1: Results at 5 MHz for run :107.025. Val11es for t.lw liut•ar I'Pt-!:l't'ssion t'o­
c>fficient, R=

11
; values of D •

11 
are in parentheses. t denotes that t.ht• scatterplot. is 

provided. 

Figures 5.l6(a) and 5.ll)(b) show sca.Ucrplots comparing rdlt~d.ion nwt.hod ttsl.i-

mates of OBS with A·/ 2 , and !v/3 with /H a, rt•spt~ctively. Note that in Parh t'fiSt' points 

considered outliers (indicated by the'+' symbols) wen~ t~Xd11tbl from t.ht~ mkui;LI.ioll. 

Points that were considered outliers in Figure 5.l6(a.) r.orrt~spoucl t.o l.inws wiU'Il l'it.lwr 

method yielded concentrations less than l g/f. 

5.2.2 A case where the method fails 

The failure of the reflection method to properly deduce 1\t/2 ru•ar 1.7 miuul.es into 

run :107.025 is now investigated. To keep the notation simple, cmly t.lw proportionality 

of M N to ~r N is required. From Equation 4.4, 
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Regression for 307 .02S at S MHz: R = 0.64 
6 

(O) 
s 

4 

.... .... - 3 Cll t lXI + 
0 

0 

2 

+ 

Reflection Method: M2 

Regression for 307 .02S at S MHz: R = 0.69 

+ 

+ 

+ + 

+ 

s 6 

Reflection Method: M3 

Figure 5.16: Scatterplots for run 307.025 at 5 MHz showing compari:;on of (a) OBS 
·with JH 2 , and ('"} M3 with M3 from the multifrequency backscatter method. 
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recalling that .!lr 2 = r t - r 2 and, 

( 
u' ) '1 

l'N = ( In v:: } (fl . :~) 

and must be negative. Dec.rpasc•s in A/2 orcur wht>n r, appt·oarlws r'.!• In t.lll' I'CISI' 

being examined it is reasonable to asstmw r 2 to hc• l'OtTt'rt llt'nLIISt' it. is isolat.t•cl from 

the bottom ~rho. This implit~s that t't is decreasing (lwroming mon• 11(')-!;al.i\'t') \Vhc•n 

it shouldn't. This can be due to V1 inrrc•asing, or ''; decrc•asi ng. 

Figure 5.17(a) shows v: and v., used to obtain r,; Figurt• fl.L7(h) shows II: antii'J• 

used to obtain r2. Shown in Figure 5.17(c) are r,, r2 and ~1"'2 • Only t. inws whc·t·c· 

both rt and r2 are less than zero produce a positive value of ~1'2. Tht! J'(!ilSOJI for 

the low estimate of iH 2 for the times 1.6 to l. 7 minult!S in Figure l'i.l7( d) rotTc•sponcls 

to ~r2 being nearly zero in Figure 5.17(c). As stated Parlier, the position of t.llt' 

fluid-sediment interface lies in the upper portiou of tlw hot torn hin. It is t.hc•rpfon• 

expected that part of the bottom echo has contributed to the hiu l'l'St!I'Vt!d for "•. 

This would explain the tendency for r, to be lower than it. should he in t.his t'Xatllp!P, 

hence reducing the computed concentration for M 2 • 

The decrease in M 3 during the same times may be due to extra cout.ril111t.ions t.o 

v~ from non-specular components of the reflection, which lie near tlw sc•abt!d wlwrc! 

concentrations are higher. Note that based on geometry. r.outrilmtions f.o mirror 

signals from non-specular components of reflection will become more a.ppareut iu t.lw 

concentration estimates, the farther one goes above the seabed. 
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Figure 5.17: Failure of the reflection method during the second event for run :307.02.5. 
!!!_ustra.ted are: (a.) v~ and v:2

, (b) v: and v~2 , (c) f 1 (o), f 2 (+), .6.f2 (x), and {d) 
At1 • 
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Chapter 6 

The Bottom Reflection Coefficient 

This chapter discusses the treatment of the acoustic bottom reflediou codlici(~Jit. , 

R, and the effects of sand ripples on the acoustic measurements. In S«~d.ion H. I l.lu! 

effects of sand ripples on the measurement geometry are disc.ussccl. In S<•d.ion fi.:J 

an estimate of the possible range of values for fi. is «:akulat<•cl based· 011 sPclirrwn l. 

properties for Stanhope Laue Beach. Finally, Section H.4 prest~nts t!stimat«!d vahws 

of R based on acoustic data from Stauhope Laue. 

In Chapter :3 it was shown that the reflection codficient do«!S uut mttt!r din!dly 

into the inversion scheme. However, the rp,flection coeffic:icnt and the d«!gfl!(! t.o whidt 

the bottom relief plays a role in the reflection deserves rliscussion. There is a gn!al. 

volume of reference material on bottom interacting acoustics. Notable nu •1:.ographs on 

this subject include those by Hampton [1974, r.d.], Kuperman aud .Jensen [W80], Pat:t\ 

(198:1], and Aka! and Berkson (1986]. The monograph by Beckmann and Spizzir.hino 
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[ 1 HH7] c.ovc~rs most aspec:ts of sr.attering from rough surfaces. Most recently, a book 

IJy Ogilvy [I !HH J reviews sr.atteriug from random rough surfaces. Standard acoustics 

f.pxf.s such as Clay alH.l Medwin (1977], and Tolstoy and Clay [1987], cover the general 

aspc~ds of rdl£'ct.iou aud rough surface scattering. 

6.1 Effects of Sand Ripples 

Tht• wavdt•ngth of the incident acoustic signal serves as a convenient measure by 

which f.o sc~parate t.he small and large scale features of the bottom. For RASTRAN 

operating at. ~.25 and !) MHz, the wavelength in seawater is of order 0. 7 mm and 

O.:J mm, respectively, so characteristics with length scales much greater than l mm 

arc rousidt•red large scale features for this discussion, and small scale otherwise. Fig­

ure 6.1 shows sr.hematically a fluid-sediment interface including both small and large 

sc·ale features. The large scale features at Stanhope Lane Beach are of interest here. 

The bedforms at Stanhope Lane beach are of the vortex-ripple type [Sieath, 

I !184, pl24]. For this type of bedform the generally accepted value of the mean ripple­

height to ripple-spacing ratio, hr/ An lies between 0.1 and 0.25, implying mean surface 

slopes < 15°. The maximum steepness angle is of order :30°, and is related to the 

maximum angle of repose (Sleath, 1984, pll8]. For the Stanhope site hr and Ar are, 

un average•, roughly :1 and 12 em respectively. 

A narrow acoustic beam of halfwidth 2° placed 1 m above such a bedform will cover 
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Figure 6.1: Beach fluid-sediment interface, showing both the large and small s<:ale 
· characteristics. 
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a11 ar~!a of roughly 7 em in diameter, a length comparable to the ripple spacing. Thus 

o11 tlw largr~ sr:alr~ there will not appear to be any random, or irregular, variation 

in hot.l.ntn topography ar.ross the width of the heam. Therefore the beam will be 

s<.~nsit.ivr~ l.o whet.lu~r it lies over a ripple r.rest or trough [Stanton, 1984). To further 

romplir:ate the matter, ripples migrate through the beaw over time [Hay and Bowen, 

I!)!):J). The rates of migration appear to be rather slow (of order several em/hr.), 

however, although this number is not well known. It is assumed here that the ripples 

are stationary during a 6.5 minute run. 

For any point on a ripple, the surface slope has the effect of rotating the surface 

normal into a non-vertical orientation, and thus acoustic waves previously considered 

as normally incident 'tow slightly graze the surface. The Rayleigh Criterion ( Equa­

t.ion 2.2:J) shows that the reflected wave will be more specular when the incident wave 

approaclws the surface at grazing angles. 

Illustrated in Figure 6.2 are two possible geometries for bottom reflection when 

tlw ripple wavelength and the main lobe (denoted by dotted lines) dimensions near 

the bottom are of similar scale. For simplicity only the specular rays are considered, 

although as before non-specular components do exist. Figure 6.2(a) shows the case 

for a particle inside the main lobe. The wave scattered from this particle after the 

bottom reflection is able to contribute to the mirror signal in two ways: the usual 

re-reflection of the backscattered wave (solid lines), and the wave scattered by the par­

ticle in the direction of the transducer without re-reflection from the bottom (dashed 

107 



. . 
: . . . . 

. . 

. . . . . . . . 

I 
I 
I 

t 
I 

. .. ······-............ 

. . 

. . 

···············­···•·············•··· . . , ......................... .. 

<a> 

... .......... ''"'' ....... ....... ... . . . . . . . .. .. . ..... , ...••.............................. , ....... . .....•....••..•..........•....................•.•... , 
~····················································· ................•..........•.••...................••.•.... : .......•....•......••...........................•...•....•... 

•·•········ ···························•·•·············•··························· .......•••..••...•....•.•..•..•••..•...•••••••.••...••••••...•.•••.•..•.•••..•...•.. ..........•...................•.•.•....••.•••••.•....•••••.....•...........•..••.... ..........••• ,, ....... , ...•. ,., ...... ~ ... , ............. ,,,, ...........•.... ,, ... . 

. . 
. . . 

: 

-...... . ........ . 

. . . 

. . . . . 
. .•••••....... .•••..•............ . ........................... 

(b) 

4 ••••••••••••••••••••••••••••••••• • ..........•............................••.•..•.. ....................................•...•.•....... ..........•.......•.................•........•...•.• . ......•.•.........................•................... . ....•.................................................... 
·········· ···········•··•••···············•·······················•····•··• .•........•........•....•..••••••••.........•.••..••.•••.••....••••.....••.••••.••.. •...............••..•••.•.....•..•......•.••....................•...•........•.•..•. 
··································~················································· 

Figure 6.:3: The effects of ripples on the measurement geometry. (a) Case of partie!~ 
inside the beam's main lobe, and (b) case of particle outside the beam's main lob1~. 
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line). The bottom reflected specular ray now propagates closer to the bottom, so 

I'OIWI'IJtra.tiou (•st.imat.es for height ::0 above t.he bottom are contaminated by higher 

t'ollf"f'lll.ral.ions rwarer t.ht• bottom. This may help explain the higher estimates of scat­

l.l!rillp; itl.l.1•nuation, hence concentration, based on the reflection method compared to 

t.h<! mult.ifr«!CJIIf!llCY backscatter and OBS methods. 

F'igur«! ().:l{h) shows th.e case for a particle outside the main lobe. In this case 

t.lu• W<LVe scattered by t.he particle can only contribute to the mirror signal via the 

inddl'lit pat.!:. Again, this particle lies closer to the bottom where the concentrations, 

lwnn! scattering attenuation, are generally much higher. This too, then, may account 

for the high scattering attenuations computed for the 2.25 MHz case in Chapter 6. 

6.2 Bottom Penetration 

The penetration of sound past the fluid-sediment interface into the bottom is 

discussed. McCann and McCann [1985] have used a modified Biot theory [Biot, 

I !l!lH] using a distribution of pore sizes, to predict compressional wave attenuation in 

non-cohesive sediments. 

Grain sizes in the logarithmic phi-scale are expressed as, ,P = -log2 (grain diameter 

in mm). For quartz beach sand of mean size ,P = 2.5, McCann and McCann obtain 

a predktt~d att.c.•nuation at 5 MHz of 1678 db/m. Using 1 neper = 8.686 db, the 

corn~sponding attenuation is 19:1 nepers/m. Hence thee-folding scale at 5 MHz, 65 , 
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is of order 5 mm. The wawlt~ngth at !l MHz in the st>dinwnt. is of ortlt•r o.:H; mm. 

which gives an attenuation t>-foltling st·alt• of approximatt>ly 1/i \\'awlt·n~t.hs lwlow t.ht> 

fiuid-st>dinwnt interface. A similar calculation for 2.2!i i\·lllz yic•ltls lin~. = ll.i mm. 

or 15 wavelengths below the fluid-sediment inkrfan•. 

For Stanhope Lane the mean grain size is tb = :UW, so tlwst~ n•sttlt.s art' lwlit•vl'd 

to be of tht> same order, and therefore it is expPctt•tl that sound which has pt'lll'l. rat.t•tl 

the fluid-sediment interface will be~ effectively att.enuat.t•d hdon~ rt•-t•nu•rging. This 

also means that bottom penetrating er:hoPs cannot rontrihut.t~ to t.hc• mirror t~rho at. 

distances more than 1 em from below the sea.lwrl (i .e. unly 11; a.lft'd.t•cl, if at all). 

6.3 Estimated Value for Ii based on Sediment 

Properties 

In this section an estimate of the plane wave relleetion codlkicmt., /{., is calcu-

lated on the basis of bulk sediment r>roper·ties. These c•stimatt~S igJI(>I'C! t.lw irr·c!glllill' 

character of the surface on the small scale. 

The plane wave reflection coefficient is written for nurmal inciclt~IH'I' rays it..'l [Clay 

and Medwin, 1977, p6:J), 

R = pjcj- PoC 

PoC + p~c~ 
(H. I ) 

where Po and p~ are the mean bulk densities of seawater and sediment., resped.ively, r:~ 

is the compressional soundspeed in the sediment, and cis t.lw soundsp(!ed in !wawat(!r, 
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VaiiJt!S of r. and Po aw rPadily available, only reasonable values of Ps and c8 are required 

to c!stimalt~ R. 

llamilt.ou and Bachman (1982] have provided a set of regression equations inter­

rdating Sl!dinwnt. propert.it:'s. Spedfir.ally, they provide equations to obtain porosity, 

bulk sc•diment density, and sound velocity from mean grain size, for three marine 

f•nvironments: shelf and slope, abyssal hill, and abyssal plain. Their values of com­

pressional wave velor.ity were measured in the laboratory by a pulse technique, oper­

ating 1war 200 kHz. For Stanhope Beach, mean particle size in phi units is¢>= 2.66, 

and Hamilton's results yield a porosity, 77 = ( 44 ± 7)%. From the porosity the bulk 

sediment density and soundspeed are estimated to be 1.97 ± 0.11 g/cm3 and 1747 ± 5 

m/s respectively. Using typical field values for water temperature and salinity of 8°C 

ami 29 ppt gives c = 1477 m/s. Equation 6.1 then yields an estimate of, 

RHcuni/ton ~ 0.40. (6.2) 

An (.'arlier paper by Faas [1969] relates sedir,,ent porosity directly to the reflection 

coefficient. The data used by Faas was obtained for the most part near 100 kHz. 

Assuming Hamilton's equations provide a reasonable estimate of the porosity, Faas' 

work indicates that we should expect, 

RFnns = 0.35 ± 0.06 (6.:3) 

in accord with Hamilton's result. 
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6.4 Estimated Value for R based on Acoustic Data 

It is of interest to estimate the mnge of values for tlw rdledion t•ol'flidt•nt hmw" 

solely on the acoustic data. One possible way to t•stimate surh a range of valm.•s is t.o 

utilise Equation :J.8 of Chapter :J. namely, 

:l 

(In (v~) ) =In ll 4
- H rN (o.,) d::'. 

VN k ( 11.·1) 

Considering the case for N = :J, and rewriting the integral as a sum, ont• limls, 

(v') 2 

( 1- - - ) (In u: } = 41n R- 8~:: 2(o-,) 1 + (n,)'l + (o,):~ , (lUi) 

Solving Equation 6.5 for the reflection coefficient, R, 

((Ui) 

where the definition for r N from Equation :J.IO has been used. To obtain a!Jsolul.t~ 

minimum estimates of R from the ciata, the attenuation terms in Equation (),() arP 

set to zero, and thus for any N, 

(H. 7) 

For the first suspension event of run :JOO.O:JO Figure 6.:J(a) shows t.inw sl~rit!s uf 

Rm,n3 , Rm,n3 , and Rm'"4 at 2.2.5 MHz, and Figure 6.:J(b) shows t.ime series of /l'"'"3 arul 

R 
3 

at 5 MHz. The noticeable feature of these results is that thes(~ minimum values m1n 

fall in the range 0.4 to 0. 7, generally higher than the estimated values ba.'!ecl tm bulk 

sediment properties of 0.35 and 0.4, but nonetheless of the right order. ( Not.e that. 
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Figure 6.4: Time series of the reflection coefficient minimum values for run 300.o:30 
based on acoustic data. (a) Rmon'J (-), Rminl (---),and Rmin4 (-·-·-)at 2.25 MHz; 
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Pace et al. estimated reflection coefficit.•nts of O.();J and O.ili for their cohhlt> surfan• 

based on the measured coherent intensity and the first tt>rm of Equation ~.:W, and hy 

extrapolating data from Hamilton [1970] basel! on particle siLt>, n•spt•l'l.iwly). 

Using the definition of r..,., and ignoring the t ime averagt~, Equaliou li.7 nmy lw 

expressed in terms of the recorded voltages as, 

R = t/2 (v~) 
monN e V ' 

N 

( (i.X} 

Assuming that N > l so neither voltage is contaminated hy the hott.om «'t:ho, tht~ll 

high values of Rm,nN are likely due to values of v~ larger than t~xpectt•d using purdy 

specular reflection arguments. If the non-specular component of the smface r«'IIPC'I.ion 

is allowed to contribute to the mirror signals, then t.his may c~xplain higher Pst.illliLI.c•s 

of RmonN' 
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Chapter 7 

Conclusions 

The goal of this research was to explain observations in field data of mirroring of 

t.he acoustic backscatter signal from suspended sediment. Assuming that the mecha­

nism for getu~rating the mirror signal was the result of a specularly reflected bottom 

t~cho scattering from suspended sediment, and subsequently re-reflecting off the bot­

tom, an inversion algorithm to obtain suspended sediment concentration was devised 

to quantify the validity··of the approach. The approach is considered valid if concen­

tmtions obtained using this method ar-.: in accord with concentrations obtained via 

multifrequency acoustic backscatter and optical backscatter tec:~niques. 

Conceutrations obtained using the reflection method at 5 MHz are generally higher 

than those obtained with a multifrequency inversion and in-situ OBS measurements, 

but are within accepted limits. Linear regression analysis shows moderate correlation 

of the reflection method with the other techniques, but also indicates that the method 
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may have difficulty detecting lower concentrations. It has Lwt•n shown at. !) M liz 

that the uncertainty in concentration is primarily due to variations in sigual, mt.hc·r· 

than errors in particle size. Uncertainties due to t.he amount. of hack~ro11ntl si~nal 

subtracted are less than 20%. 

Inverted concPntrations obtained with the reflection nwlhotl at. :!.:!!"1 M liz lt•ss 

than the upper limit of the theory ( :JO g/ f), are found mostly thrri11p; t.llt' pt•a k of a 

suspension twent. Near the start and end of suspension t'Vl'nts, wlwr<' t.ht• rdlt•l'l.iun 

method becomes less likely to perform well, concentrations are g<>twra.lly mndt h igllt'r 

than the theory physically permits. Because the assumpt.iou of spernlar, coht•t't•nl. 

bottom reflection should be better at 2.25 MHz than at!) Mllz, llwst! t'l':mll.s sttggesl. 

a problem with the method. One possibility is that tlw hea.m is stmsing l.llt' hol.l.om 

topography (ripples), which are not accounted for in the theory (St•t• tlisrnssion of 

Figure 6.1 ). It is also possible that the incoherent contribution to t.lw rdlt!dt!d WiLW 

needs to be included {see discussion in Section 2.:J). 

Results at 2.25 MHz indicate that the High-pass model for smlt.ering itl.l.enual.ion 

is st.>nsitive at this frequency to the range of particle sizes a.t. St.aulropt~ Bt•<u~h, 11111f'h 

more so than at 5 M Hz. This accounts for a large part of t.he tlisrrt!paru:y at. :l.~!i M II~ 

when comparing with other methods. The accuracy of t.lw High-pass nwdd it.sdf has 

been questioned, especially near x ~ 1. A more accurate model of tltt! sr.atl.1!riug 

· attenuation may improve the results for the 2.2!) MHz cast!. 

Estimates of the relative contributions to the reflected fidd (Chapter~) awl anal-
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ysis of tlu~ data haw~ shown that assuming the bottom reflection to be mostly specular 

is signifkaut., anrl probably incorr<:>ct. It is suggested that measurements be carried 

out. in future• o11 surfaces at. dose range for which 9 "" l aml T "' 7i are common 

JH'oJu•rt.ic·s of t.lw PXJH•ri nwntal arraugement to quantify the assumption that has been 

made• and to aicl in further dewlopment of the theory. It is also suggested that expt>ri­

rrwnt.s hca carric•d out in a controlled environment, such as in wave flumes. Regardless, 

it. sc•C'IJIS lik<'ly that to first order at least, the mirror image is produced by the bottom 

r<'llc•ct.<><l W<lVP sratt<·ring from suspended sediment near the seabed and subsequently 

n•-rdl<•rt.ing from thP s(•ahed - in effect the. seabed acting as an acoustic mirror. 
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