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Abstract 

The purpose of this project was to study and compare 20 gold occurrences from 

within the Botwood Basin and surrounding lithologies. The Botwood Basin is located 

within the eastern Dunnage Zone of central Newfoundland and encompasses a region 

comprised of Middle Paleozoic cover sequences deposited upon dominantly Ordovician 

rocks. The area has been subdivided into two tectonostratigraphic belts that are separated 

by a major fault (the Dog Bay Line), which has been defined as a major Silurian terrane 

boundary. The Indian Islands Belt to the southeast of the fault encompasses the deep to 

shallow marine Davidsville and Indian Islands groups. The Botwood Belt to the 

northwest of the fault includes the shallow marine to terrestrial Botwood and Badger 

groups. The large bimodal Mount Peyton Intrusive Suite (MPIS) intruded some of these 

units during the Late Silurian to Early Devonian in the central Botwood Basin. The 

MPIS is a composite post kinematic intrusion consisting mainly of gabbro and granite 

with minor tonalite, diorite and granodiorite phases. The relationship between the gabbro 

and granite phases, as well as the relationship of the suite to the surrounding sedimentary 

lithologies, is still poorly understood due to the lack of contact exposures. The auriferous 

occurrences occur dominantly within the Ordovician Davidsville and Silurian Indian 

Islands groups and also within intrusive units throughout the region. A key question to 

be answered was whether regional intrusive suites (granitic to gabbroic) were key 

components of the ore-forming systems, acting as heat sources driving ore fluids, or just 

as rheologically contrasting host lithologies. 

Reconnaissance mapping confirmed the presence of Indian Island Group rocks to 

the southeast and resulted in the discovery of new fossiliferous outcrops in the north. 

These latter localities, at Duder Lake and east ofTen Mile Lake, are significant to 

regional stratigraphy as they contain Wenlock fossils that are characteristic of the Indian 

Islands Group. This extends the group to the northwest of the current location of the Dog 

Bay Line. 

Mapping observations along the eastern margin of the MPIS define the 

relationship between the felsic and mafic phases of the intrusive suite, as well as the 

relationship of the suite to the Indian Islands Group. Field relationships suggest that the 



granite is younger than the gabbro; these include the gabbro's lack of chilled margins and 

gabbro pieces stoped by the granite suggesting the gabbro was cooled prior to the granite 

intrusion. Immediately west of Glenwood, a dioritic dyke, which has been correlated 

with the MPIS, intrudes the Indian Island Group sedimentary rocks. Along Red Rock 

Brook a faulted relationship is inferred between the granite phase of the MPIS and the 

Indian Islands Group, and thus, it is possible that the relationship is a fault-modified 

intrusive contact. 

There are different gabbroic intrusive suites in the region as defined by whole

rock geochemistry. Mafic intrusive dykes to the north of the Trans Canada Highway 

(TCH) are petrographically and somewhat geochemically similar to the mafics of the 

MPIS. However, these dykes contain slightly higher Ti and less Si02 contents. This may 

indicate that the dykes are fractionated equivalents of the MPIS, originated from a 

separate but similar magma source. The intrusive dykes at Duder Lake are 

petrographically and geochemically distinct from all intrusive bodies examined to the 

south inclusive of the dykes north ofthe TCH, the MPIS and the Paul's Pond intrusives. 

The data also indicate that there is an intermediate phase to the 'bimodal' MPIS. The 

sedimentary sequences display subtle differences in trace element contents between 

groups and these differences may be dependant on their locations in the region. 

There are wide ranges in sulphur isotope ratios for sulphide mineral separates 

from different occurrences and the dominant control appears to be the lithological source 

of the sulphur. That is, occurrences within deep marine sedimentary lithologies are 

negative in terms of 834S (%o). Occurrences in proximity to intrusive suites are near 0 %o. 

Occurrences in which S was derived from igneous rocks have ratios that are slightly to 

moderately positive in terms of 834S (%o). 

Trace element compositions of pyrite suggest that different auriferous deposit 

types have recognizable signatures. For example, several of the pyrite grains from the 

Mustang Prospect contained the 'toxic suite of elements' characteristic of Carlin-type 

pyrite. Some pyrite from the Stog'er Tight and Hurricane Prospects contained elevated 

Wand Te recognized in orogenic lode gold occurrences. Pyrite from the Bruce Pond 

Epithermal Prospect resembles that from low-sulphidation epithermal types of 

occurrences. 
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Geochronological data indicate that magmatism in the central to northern 

Botwood Basin was episodic from the Middle Silurian to Early Devonian. Age data also 

show that the granitic phase of the MPIS is younger than the gabbroic phase as (LAM

ICP-MS) U-Pb ages of ca. 430 Ma and 410 Ma were obtained for the diorite and granite 

phases ofthe MPIS, respectively. An intrusive gabbroic dyke to the north ofthe MPIS 

and the Charles Cove granodiorite were also dated at ca. 430 Ma suggesting that at least 

some of the magmatism in the northern Botwood Basin corresponded with MPIS 

magmatism. Thus, the magma may have been more deep-seated and widespread than 

previously thought. With the recognition that the MPIS granite intruded in Early 

Devonian time, it is more feasible to recognize the MPIS as a possible heat source for 

mineralization, at least along its eastern margin. The 494 ± 7 Ma age for the Huxter Lane 

intrusive in the Botwood Basin basement reveals that auriferous mineralization in the 

region spans a significant geological time span (494 to 380 Ma). 

Inherited zircons were common in both the MPIS and Charles Cove Pluton 

granites suggesting that Botwood Basin granitoids may have been generated through 

crustal anatexis oflower crustal material by mantle-derived gabbroic melts. The age of 

inheritance in both intrusions of ca. 1850-1800 Ma suggests that the melts may have 

sampled either Indian Islands Group rocks, or rocks that were their detritus source, as 

detrital components from that Group indicate a source region of a similar (1850 Ma) age. 

There are several auriferous mineralization styles present in the Botwood Basin 

including epithermal, orogenic and perhaps Carlin-type. Although these occurrences 

display similarities in terms of mineralization characteristics, the tectonic and geological 

disparities throughout the region have led to differences between the occurrences. Thus, 

a generic model for 'Botwood Basin-type' auriferous mineralization is unrealistic. 
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1.1 Preamble 

CHAPTER I 

INTRODUCTION 

Structural and geological studies in central Newfoundland have been ongoing for 

over a century and through them knowledge of this tectonically complex region continues 

to evolve. With the development of plate tectonics theories in the 1960's, Newfoundland 

was quickly recognized as a significant region which exposes a well-preserved geological 

cross section through the Appalachian Orogen. The section includes remnants of 

opposing continental terranes, separated by vestiges of the Iapetus Ocean. The rocks and 

structures of the Eastern Dunnage Zone, central Newfoundland, record a geological 

history of closing/accreting oceanic tracts which generated geological environments 

favorable to Au mineralization. 

This project is based on the study and comparison of20 known gold occurrences 

within the area termed the 'Botwood Basin' of the eastern Dunnage Zone. The term 

Botwood Basin has been commonly used in press releases and exploration reports and 

encompasses a region comprised of Middle Paleozoic cover sequences that were 

deposited upon dominantly Ordovician rocks. Mineral exploration in the 1980-1990's 

led to the discovery of numerous auriferous vein-hosted orogenic occurrences on the Baie 

Verte Penninsula (Evans, 2005) and within the Dunnage Zone (Evans, 1996). Several 

styles of mineralization have been recognized in the Botwood Basin such as epithermal, 

orogenic (or mesothermallode), and, more recently, Carlin style has been postulated. In 
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fact, the suggestion of, and evidence for, Carlin-type gold occurrences created a claim 

staking rush in central Newfoundland during 2002. With the recognition of the basin as a 

possible host for gold deposits it has become essential to fully understand the geological 

history of this area and the relations, if any, between the gold occurrences, host 

lithologies, and adjacent intrusions and structures. 

1.2 Location and Access 

The study area is located in central Newfoundland and encompasses areas within 

several!: 50,000 NTS map sheets including: 2D/5, 11, 12, 13, 14, and 15 and 2E/2, 3, 7 

and 8 in UTM grid Zone 21, NAD 27 (Figure 1.1 , p. 7). 

Access to the various occurrences is generally good via a large network of 

forestry access roads owned and operated by Abitibi Consolidated originating from major 

routes such as the Trans Canada Highway (route 1), the Baie d'Espoir Highway (route 

360) and the Gander Bay Highway (route 340). A series of muskeg trails and drill paths 

which once provided fair access to many occurrences are commonly overgrown since the 

last documentation (i.e., Evans, 1996) and trenches at some occurrences have been 

backfilled, preventing observation and sampling in those cases. 

1.3 Physiography, Vegetation and Glacial History 

As the study area is regionally extensive, these parameters can vary and are 

generalized here. Commonly, the region has a gently rolling topography with elevations 

under 200 m dominated by extensive bogs in low lying areas and heavily forested areas at 

2 



higher elevations. The most prominent topographic feature in the region is the Mount 

Peyton Intrusive Suite, which is a 1400 km2 elliptical body in the center of the map area 

that has elevations of up to 400 m above sea level. 

Central Newfoundland experiences warmer summers and cooler winters than the 

rest of the island with relatively less summer precipitation and higher evaporation; these 

conditions lead to enhanced fire frequency. The forested areas are dominated by balsam 

fu with a good population of black spruce and white spruce in burnt over areas. 

Due to extensive glacial till cover and vegetation, outcrop exposure is often limited and 

best observed in ridges or along rivers, ponds and roads. 

The region has a variety of ponds, lakes and rivers and only those that are referred 

to during this study are noted here due to the large extent of the area. The Gander River 

runs throughout the map area from the Great Bend region of the southern Botwood Basin 

to Gander Bay in the north. The southern Botwood Basin region contains Great Rattling 

Brook, Chiouk Brook, Breccia Pond, Swan Lake, Lizard Pond, Greenwood Pond, Paul's 

Pond, Beavers Brook and Coopers Brook. In the central region, Gander Lake, Twin 

Ponds and Salmon River are referred to. In the northernmost area Ten Mile Lake, 

Bellman's Pond, Duder Lake and Rocky Pond are referenced. 

Based on examination of the surficial geology in the Comfort Cove-Newstead and 

Gander River map areas, four ice flow events were defmed for the central and northern 

basin (Scott, 1994). Sediment dispersal was controlled by east to southeastward flow in 

the central region and by northeastward flow in the north (op cit.). 
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1.4 Previous Work 

Evans (1996, 1999) provides the most recent summary with respect to exploration 

for epigenetic gold occurrences within the Dunnage Zone. He described the various 

"epigenetic" gold occurrences within the eastern Dunnage Zone through both his own 

assessments and compilations of previous work. 

Table A1.1 is presented as a compilation of past work conducted within the area 

commonly termed the "Botwood Basin" derived into tectonic, structural, metallogeny, 

geophysical and miscellaneous sections with a brief description of the objective and 

relevant results of each study. The table was compiled based on an extensive literature 

research going back to 1934. It is meant to provide a comprehensive and focused 

collection of relevant geoscientific work for ease of reference for all future work within 

the study region. 

1.5 Methods 

Fieldwork for this project was mainly carried out over five weeks in July-August, 

2003. During this period, the author conducted a general overview of the regional 

geology of the basin, visited and assessed known Au occurrences, and collected samples 

for petrography and geochemical research. A follow-up re-evaluation of selected areas 

was conducted in July, 2004. A total of280 samples were collected from the field area in 

2003 and 18 samples in 2004 including: 1) mineralized samples and host rocks 

(minimum of three samples per showing), 2) regional rock types, 3) samples for 

geochronology, and 4) fossiliferous samples for paleontological dating. The main foci 
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for sample collection and mapping were areas of previously recorded gold occurrences or 

prospects. Sample collection was also aimed towards the intrusive lithologies within the 

basin and mapping efforts in this area were geared towards the contact relationships 

where exposed. However, observation of contact relationships proved difficult as 

exposure is generally limited. Samples were transported to the Department of Earth 

Sciences, Memorial University of Newfoundland at the end of each field season and 

catalogued for storage and analysis. Samples were selected for whole rock geochemistry, 

sulphur isotope chemistry, pyrite trace element chemistry, U-Pb geochronology and 

petrological research. All samples were prepared and analyzed within the Department of 

Earth Sciences, Memorial University ofNewfoundland. 

Polished thin sections were prepared and examined under transmitted and 

reflected light to ascertain rock type, alteration or mineral assemblages. Major and trace 

element geochemical analyses were conducted on 40 samples (both sedimentary and 

igneous in nature), using X-Ray Fluorescence techniques (XRF). The igneous 

geochemical data were utilized to determine if any relationships exist between intrusive 

lithologies throughout the study area and the sedimentary geochemical data were used to 

further defme host lithologies by determining possible source rocks and tectonic 

environments. Sulphur isotopic analyses were carried out on 40 mineralized samples in 

an attempt to characterize the mineralizing events. o34S isotope ratios for pyrite, 

arsenopyrite, galena, and stibnite were analyzed on a VG-PRlSM-903 mass spectrometer. 

U-Pb geochronological studies were conducted on zircon grains from select 

lithologies using a Laser Ablation Microprobe-Inductively Coupled Plasma-Mass 

Spectrometer (LAM-ICP-MS) system to defme the ages of host rocks and to determine 
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the temporal relationship between mineralization and intrusion events. Trace element 

analyses of pyrite grains from gold occurrences were also conducted on the LAM-ICP

MS to ascertain whether there was a definable distinction between deposit types (refer to 

Appendix 3 for description of analytical techniques and Appendix 4 for derived 

analyses). 

1.6 Purpose and Scope 

Due to the enhanced exploration interest in the Botwood Basin auriferous 

occurrences, it is imperative to determine the relationships, if any, between the 

occurrences, host lithologies, adjacent intrusions and structures. Although geological 

knowledge of the area has evolved significantly with exploration, the vastness and the 

general lack of exposure throughout the region leave many unanswered questions about 

the extent of certain units and the contact relationships between each. 

This project evaluated the various gold occurrences and associated geological 

environments within the basin to: 1) review previously defined geological units, 

specifically those known to host Au mineralization, and contact relationships therein, 2) 

determine ages of intruding lithologies both adjacent to, and host to, Au mineralization, 

3) assess physio-chemical properties of the mineralizing fluids, and 4) determine the 

relationship, if any, between Au mineralization and adjacent intrusions and structures. 

These studies will build upon and add to the existing database for Au mineralization in 

the eastern Dunnage Zone and should provide further insight into the mechanisms of 

mineralization at this convergent plate boundary. 
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Figure 1.1: Map of the island ofNewfoundland outlining the study area in blue and 
illustrating major routes and cities/ towns. 
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CHAPTER2 

GEOLOGICAL SETTING 

2.1 Regional Tectonic Setting 

The tectonic history of the island ofNewfoundland is complex as it represents the 

northeastern termination of the Appalachian Orogenic Belt, a Late Precambrian to Late 

Paleozoic mountain belt that extends southward through the Maritime provinces and 

Quebec into the eastern US to Alabama (Williams eta/., 1972; Williams, 1979). The 

Appalachian Orogen is related to the Caledonian Orogen of Greenland and Western 

Europe as both systems once formed a continuous mountain belt some 7500 km long 

prior to the opening of the Atlantic Ocean in Mesozoic time. Examination of the exposed 

cross section of the orogen that constitutes northeastern Newfoundland led to the 

interpretion that the Appalachian Belt is a "two-sided symmetrical system" (Williams, 

1964) with a threefold division, a western platform, the central volcanic belt and the 

Avalon platform (Kay and Colbert, 1965). 

Williams eta/. (1972) proposed the first modem subdivision of the Appalachian 

system within Canada based upon contrasting Ordovician lithologies and structural 

development. Williams eta/. (1974) reassessed the nine proposed zones and presented a 

more detailed description and nomenclature for the zones present in Newfoundland. The 

result was the subdivision of island geology into four NE trending Late Precambrian to 

lower Paleozoic tectonostratigraphic zones based on structural, depositional, tectonic, and 

volcanic-plutonic characteristics. The zones are generally fault bounded (Figure 2.1 , p. 
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40). This more simplified zonal scheme allowed for a better fit into the Appalachian 

Orogen as a whole (Williams, 1978). 

The Humber and A val on Zones (Williams, 1978), or Humber and A val on terranes 

(Williams and Hatcher, 1983), encompass the west and east margins ofthe system 

respectively, and represent continental platforms. Between these marginal zones, the 

central Paleozoic mobile belt (Williams, 1964) is composed ofthe Dunnage and Gander 

Zones or terranes (Williams, 1978; Williams and Hatcher, 1983) which represent relicts 

from the formation, development and subsequent destruction of an Early Paleozoic ocean 

defmed as the "Proto-Atlantic Ocean" (Wilson 1966) or "Iapetus" (Harland and Gayer, 

1972). The fmal closure of Iapetus occurred during the Late Ordovician to Early Silurian 

and resulted in a westward subduction (van Staal, 1994). This ultimately resulted in the 

collision of a continentally derived sedimentary wedge (Gander Zone) (van Staal et al., 

1996; Whalen et al., 1996) and the previously accreted Exploits arc on the margin of 

Gondwana with the Laurentian margin (Humber Zone and Notre Dame Arc). 

The Humber Zone comprises the ancient North American (Laurentian) 

continental margin of crystalline basement overlain by Early Paleozoic shelf-facies 

clastic and carbonate rocks (Whalen et al., 1997). Allochthonous oceanic sedimentary 

and ophiolitic rocks were uplifted and emplaced upon continental margin rocks during 

the Ordovician Taconic Orogeny. Thus, this zone represents the development and 

destruction of an Atlantic-type passive continental margin on theSE margin of Laurentia 

(Swinden et al., 1988); it is separated from the Notre Dame Arc (Dunnage Zone) by the 

Baie Verte Brompton Line-Long Reach Fault system (Williams and St. Julien, 1982). 

9 



The Dunnage Zone is characterized by Lower Paleozoic rocks, dominated by 

mafic volcanic rocks, ophiolitic suites, melanges and associated greywackes, slates, 

cherts, and minor limestones (Williams, 1995). The zone is comprised of Cambrian to 

Silurian oceanic volcanic, hypabyssal, and epiclastic rocks that have been interpreted to 

represent relics of the Iapetus Ocean, which separated the Laurentian and Gondwanan 

continents (Wilson, 1966; Bird and Dewey, 1970; Harland and Gayer, 1972; Williams et 

al., 1974; Williams 1979). Pre- Silurian rocks of this zone represent vestiges of the 

Iapetus Ocean and Cambrian to Middle Ordovician rocks represent accreted island arc

back arc basin systems and melanges. 

The present spatial relationships between the sequences within the zone were 

originally construed to be indicative of the spatial relationships extant within the Iapetus 

Ocean prior to accretion (e.g., Bird and Dewy, 1970). The validity of this interpretation 

has been questioned (e.g., Swinden et al., 1990) based on the argument that the present 

spatial relationships between the units may result from accretionary processes rather than 

their position within the Iapetus Ocean. The Dunnage Zone therefore represents 

remnants from the development, evolution and subsequent destruction of the Iapetus 

Ocean (Williams, 1979). Williams et al. (1988) further subdivided the zone into two 

subzones, the Notre Dame Subzone and the Exploits Subzone (Figure 2.2, p. 41 ). The 

Dunnage Zone rocks are separated from the Gander Zone by the Gander River Ultrabasic 

Belt, a discontinuous belt of ophiolitic rocks (Jenness, 1958; Blackwood, 1982), now 

formally renamed the Gander River Complex (0' Neill and Blackwood, 1989). 

The Gander Zone is characterized by a variety of metamorphic rocks and 

granitoid plutons (Kennedy et al., 1982), as well as abundant pre-Silurian quartzose 
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clastic sedimentary rocks lacking volcanic detritus, which were deposited at or near a 

continental margin (Colman-Sadd, 1980; Colman-Sadd and Swinden, 1984). The rocks 

that comprise the Gander Zone are interpreted to lie structurally below the Dunnage Zone 

lithologies and outcrop in structural windows below the strata of that zone (Colman-Sadd 

and Swinden, 1984; Williams eta/. , 1988). Thus, the Gander Zone is interpreted to 

represent the development and destruction of a continental margin located to the east of 

the Iapetus Ocean that possessed Celtic affinities (McKerrow and Cocks, 1977, 1986; 

Wonderly and Neuman, 1984). The zone was further subdivided into the Gander Lake, 

Mount Cormack, and the North and South Meelpaeg Zones (Williams eta/. , 1988) and is 

separated from the Avalon Zone by the Dover Fault-Hermitage Flexure (Blackwood, 

1976; Hammer, 1981; Williams, 1982; Holdsworth, 1992). 

The A val on Zone is characterized by Late Precambrian volcanic and sedimentary 

rocks overlain by Early Paleozoic shallow marine sedimentary sequences (Kennedy et 

a/. , 1982; Swinden eta/., 1988). During Cambro-Ordovician time, the zone was a stable 

marine platform of predominantly platformal carbonates and siliciclastics. The zone is 

representative of either remnants of rifting and opening of Iapetus during the Precambrian 

(Papezik, 1972) or a subduction cycle that predated the opening of Iapetus (Rast eta/. , 

1976). 

The Newfoundland tectonostratigraphic zones have been variably affected or 

locally deformed by the following events: 1) Precambrian Avalonian Orogeny (Hughes, 

1980), 2) Middle Ordovician Penobscot/ Taconic Orogeny (Rodgers and Neale, 1969; 

Stevens, 1970; Williams, 1975; Colman-Sadd, 1980, 1982), 3) Middle Silurian Salinic 

Orogeny (Karlstrom eta/., 1982; Dunning eta/., 1990), 4) Devonian Acadian Orogeny 
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(Boucot eta/., 1964; Williams, 1983) and 5) Carboniferous Alleghanian Orogeny 

(Bradley et al, 1982; Hyde et al, 1988) (after Churchill, 1994). 

Definition of the different zonal divisions within Newfoundland has been further 

advanced through deep crustal seismic refraction studies across the Newfoundland 

Appalachians (Keen et al., 1986; Quinlan et al., 1992), which have provided insight on 

the crustal basement to the zones and the nature of the boundaries that separate them. 

Keen eta/., (1986) suggested that the geophysical surveys revealed the existence of three 

lower crustal blocks (LCB) to the Newfoundland Appalachians: the western block 

(otherwise referred to as the Grenville LCB), the central LCB, and the A val on LCB to the 

east. The authors inferred that the Grenville and central LCBs extended beneath the 

Dunnage Zone and shared an apparent sutured contact (Keen eta/., 1986). Seismic 

modeling by Quinlan eta/. (1992) ofthe LCBs indicated that two, not three, LCBs are 

present. The earlier interpretation that the A val on and central LCBs cut the Moho (Keen 

eta/., 1986) was dismissed. The new modeling indicated that the eastern block, referred 

to as the Gondwanan plate (correlative with the central and A val on LCBs of Keen et al. , 

1986), had been thrust under the western block or Laurentian plate by at least 200 km 

(correlative with the Grenville LCB of Keen eta/., 1986). The seismic data also provided 

new insight into the boundaries that separate the zones, with particular importance to the 

bounding structures of the Dunnage Zone. The data indicated that the Baie Verte

Brompton Line and the Gander River Complex cannot be traced to any considerable 

depth and therefore do not extend deep into the earth's crust. This conclusion supported 

the suggestion by Colman-Sadd and Swinden (1984) that the Dunnage Zone was 
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allochthonous upon the rocks of the adjacent zones (Keen eta/. , 1986; Quinlan eta/., 

1992). 

2.2 Geological Development of the Dunnage Zone (Pre and Post Accretion) 

The geological development of the Dunnage Zone had originally been described, 

based on stratigraphic observations, as a product of subduction and obduction of oceanic 

crust during the Middle Ordovician (i.e., Williams and Stevens, 1974). This basic model 

interpreted the ophiolites as representing the Cambrian to Early Ordovician oceanic crust 

derived from the opening of Iapetus, and the thick Early to Middle Ordovician volcanic/ 

epiclastic sediments as representing arc material deposited during ocean closing. The 

orogeny was described in terms of two events, an Early to Middle Ordovician Taconian 

Orogeny wherein oceanic terranes were accreted to Laurentia, and a Silurian to Devonian 

Acadian Orogeny that represented a period of granitoid plutonism (Colman-Sadd, 1982). 

However, such a model, which implies that the Dunnage Zone was a single 

comprehensive unit, was assumed to be an oversimplification by subsequent workers. 

Geochemical analysis of representative rocks suggested that some of the ophiolites 

formed in a suprasubduction environment and that some of the volcanic and epiclastic 

rocks did not originate in arc environments (Coish eta/., 1982; Dunning and Chorlton, 

1985; Jenner and Fryer, 1980). Furthermore, geochronological work suggested that some 

of the island arc sequences were older than the oldest known ophiolite sequences 

(Dunning and Krogh, 1985; Dunning eta/. , 1991; Evans et al. , 1990). 
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This evidence was used by Williams et al. (1988) to subdivide the Dunnage Zone 

into two subzones, the Notre Dame Subzone and the Exploits Subzone based on contrasts 

in stratigraphic, geochemical and geophysical relationships. The Red Indian Line, a late 

rectilinear fault or fault system, separates the two subzones. The Exploits Subzone to the 

east of the Red Indian Line is mainly composed of Ordovician deep marine sedimentary 

rocks, Silurian shallow marine to fluvial sedimentary rocks and subaerial volcanics. 

Silurian-Devonian granitic and gabbroic bodies intruded these rocks. Within and along 

the south and southeast margins, structural windows expose rocks of inferred Gander 

Zone affinity (mainly the Mount Cormack and Meelpaeg subzones) (Colman-Sadd and 

Swinden, 1984) (Figure 2.3, p. 42). 

The Notre Dame Subzone lies to the northwest of the Red Indian Line and is 

characterized by metavolcanic rocks that were intruded by alkalic granitic bodies that 

differ from those in the Exploits Subzone. These rocks were deposited during the 

Cambrian to Early Ordovician in intra oceanic island arc and back arc basin 

environments and were eventually accreted to Laurentia during the Taconic Orogeny 

(Coish et al., 1982; Williams and Hatcher, 1983; Swinden, 1991). 

Building on these new observations, the genesis of most of the Dunnage Zone was 

shown to be post obduction (Swinden et al., 1990; Colman-Sadd et al., 1992) with a 

metamorphic and plutonic climax during the Silurian (Currie et al. , 1996; Dunning et al. , 

1990). Structural work promoted these ideas as it was shown that significant deformation 

and movement occurred between the oceanic terrane and its basement rocks (Cawood, 

1989). 
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As previously stated, the Dunnage Zone rocks represent vestiges of the Iapetus 

Ocean (Williams, 1979) and its geological history is therefore best described in terms of 

pre and post accretionary events (Swinden, 1990). 

2.2.1 Pre-Accretion 

This stage records contemporaneous development of island arcs and back arc 

basins in the Iapetus Ocean during the Cambrian to Mid-Ordovician or Early Silurian. 

Distal turbidities were deposited as pre- and syn- accretionary sediments during a lull in 

Middle Ordovician volcanism forming the Caradocian black shale (Dean, 1977). There 

was widespread flyschoid sedimentation within fault-bounded basins of the east-central 

Dunnage Zone during the progressive closure of Iapetus during the Late Ordovician to 

Early Silurian (Dean, 1978; Kean eta/., 1981; Szybinski et al., 1990). 

The Davidsville Group (Kennedy and McGonigal, 1972) was deposited as part of 

these events. It comprises a thick sequence of distal, back-arc turbidities, containing 

detritus derived from older arc systems to the west, that was "deposited on allochthonous 

oceanic basement rocks of the Gander River Complex" (Blackwood, 1982). The Exploits 

Group (Helwig, 1969) was also deposited at this time. 

Geological continuity between most of the arc systems has not yet been fully 

defined (Evans, 1999). The two sub zones of the Dunnage Zone were first discriminated 

based on the differences in pre-Silurian stratigraphy as noted by Williams et al. (1988). 

The Notre Dame Subzone exhibits a widespread sub-Silurian unconformity which 

separates Early Ordovician rocks from the overlying Early Silurian terrestrial volcanics 
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and sediments. In contrast, the Exploits Subzone exhibits a somewhat continuous Middle 

Ordovician to Early Silurian marine sedimentation record (Evans, 1999). Isotopic studies 

(e.g., Swinden, 1987; Swinden et al., 1988) as well as geochronological studies (e.g., 

Dunning and Krogh, 1985; Dunning et al., 1986) support the distinctions between the two 

subzones, further suggesting that the opposing sides of the Red Indian Line represent 

tectonostratigraphically unrelated, juxtaposed Iapetus terranes. 

2.2.2 Post-Accretion 

The Iapetus oceanic terranes began to accrete to the Laurentian margin at the end 

of the Early Ordovician. Crustal thickening resulted in epicontinental style volcanism 

and fluvatile sedimentation. The accretion of outboard terranes was virtually completed 

by the Early Silurian as indicated by overlap sequences and stitching plutons (Williams 

and Hatcher, 1983). Following accretion, the Silurian Botwood (Williams, 1962) and 

Indian Islands (Baird, 1958) groups were deposited as a result of continued 

epicontinental-style volcanism (Coyle and Strong, 1987) and shallow marine 

sedimentation. A period of widespread deformation, plutonism (i.e., Mount Peyton 

Intrusive Suite, Blackwood, 1981) and metamorphism followed cratonization of the 

Iapetus tracts during a climatic Silurian Orogeny (Dunning et al., 1990). 

2.3 Geology and Stratigraphy of the 'Botwood Basin' and Environs 

Murray and Howley (1881) conducted the first geological survey in central 

Newfoundland. They described the geology along eastern Notre Dame Bay, Gander 

16 



River and Gander Lake and reported the first account of gold mineralization in the 

Dunnage Zone. Snelgrove (1934) reported on chromite occurrences associated with the 

ultrabasic rocks across Newfoundland. Subsequent studies concentrated on the mapping 

of coastal outcrops (e.g., Twenhofel and Shrock, 1937; Twenhofel, 1947; Patrick, 1956; 

and Baird, 1958) during which various units were assigned Ordovician and Devonian 

ages. During the 1960s, reconnaissance mapping was completed through the region 

(Williams, 1964, 1970; Anderson and Williams, 1967) at a 1: 50,000 scale and initial 

stratigraphic correlations were postulated (Williams, 1967). Progressive studies and re

mapping conducted along the coast (e.g., Kay, 1969; Currie eta!., 1980; Karlstrom eta!. , 

1982; Williams, 1992) and inland (Blackwood, 1980, 1981; Colman-Sadd, 1981; 

Colman-Sadd and Russell, 1982) built upon this stratigraphic framework. 

This study area lies within the Exploits Subzone of the Dunnage 

tectonostratigraphic zone as defined by Williams eta/. (1988). The subzone is primarily 

composed of Lower to Middle Ordovician sedimentary and volcanic rocks and melanges. 

Shale, conglomerates and mafic volcanics dominate the eastern part of the subzone. 

The areas of interest (here referred to inclusively as eastern Dunnage Zone) lie within the 

region east of the Reach Fault and Noels Pond Line in the north and south, respectively 

and west of the Dunnage-Gander Zone boundary. The geology described herein is 

largely based on previous interpretations and it should be noted that the debate 

concerning the stratigraphy and its inherent relationships in the northern Botwood Basin 

is still very much ongoing. 

The geology of the eastern Dunnage Zone will be presented in stratigraphic 

sequence and includes: 1) Cambrian to Ordovician Gander Zone rocks (exposed in the 
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Mount Cormack tectonic window); 2) Cambrian to Ordovician ophiolitic rocks of the 

Pipestone Pond, Coy Pond, Great Bend, Gander River and Duder Complexes, 

encompassing ophiolite rocks, volcanics and /or sedimentary rocks; 3) Ordovician 

sedimentary and volcanic rocks (Davidsville and Baie d'Espoir groups and Caradocian 

shale); 4) Silurian sedimentary and volcanic rocks (Indian Islands, Botwood and Badger 

groups, Ten Mile Lake Formation and Stoney Lake volcanics); and 5) Siluro-Devonian 

intrusive rocks (Mount Peyton Intrusive Suite) (refer to Figure 2.4, p. 44 and Figure 2.5, 

p. 45 for a general geology map and stratigraphic column, respectively). 

2.3.1 The Mount Cormack Subzone - Spruce Brook Formation (Late 
Cambrian-Middle Ordovician) 

The Mount Cormack Subzone of the Gander Zone is composed of sedimentary 

rocks that are exposed as a thrust-bound window beneath the overlying allochthonous 

Exploits Subzone (Colman-Sadd and Swinden, 1984). The thrusts are outlined by 

dismembered ophiolitic complexes that were emplaced during the Late Arenig Penobscot 

Orogeny (Colman-Sadd eta!., 1992). The Spruce Brook Formation, Gander Group, is 

composed of interbedded grey sandstone, siltstone and shale with minor conglomerate 

and limestone beds. The unit has undergone greenschist and amphibolite facies 

metamorphism at the Great Bend locality. 
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2.3.2 Pipestone Pond, Coy Pond and Great Bend Complexes (Late 
Cambrian-Middle Ordovician) 

The Pipestone Pond, Coy Pond and Great Bend Complexes surround the Mount 

Cormack Inlier (Colman-Sadd and Swinden, 1984; Zwicker and Strong, 1986) which 

outcrops near the great bend of the Northwest Gander River. The complexes are largely 

composed of ultramafic rocks and gabbros with local diabase and pillow lavas and 

sedimentary units; the sedimentary units consist of interbedded black shale and fine-

grained sandstone, and conglomerate with mafic volcanic clasts (Colman-Sadd, 1985; 

Swinden, 1988; Colman-Sadd, 1989). 

2.3.3 Gander River Complex (Early Ordovician) 

The Gander River Complex (GRC), as defined by 0' Neill and Blackwood 

(1989), contains dismembered ophiolite sequences which were emplaced against the 

Gander Group by major low to high angle thrust faulting during the Acadian Orogeny. 

The Davidsville Group was deposited on the GRC. As such, the GRC defines the NE 

boundary of the Exploits Subzone and is comprised of small mafic-ultramafic rock bodies 

that look like incomplete ophiolite suites (Blackwood, 1978; Blackwood, 1982). 

The GRC forms a narrow linear zone that lies west of, and structurally above, the 

Gander Group. It is mainly composed of pyroxenite, serpentinite, gabbro, talc, tremolite 

zones, mafic flows and related volcanoclastics and trondjemite with associated quartz 

porphyry units (Snow, 1988). 
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2.3.4 Duder Complex (Early Ordovician-Early Silurian?) 

The Duder Complex was postulated to have formed as a result of a significant 

west-directed Lower Ordovician to Silurian subduction along the Dog Bay Line, defining 

an accretionary wedge prism on the hanging wall of the subduction zone (Williams et al., 

1993; Currie, 1995b). There is an ongoing debate concerning the origin of this unit (cf 

Currie and Williams, 1995, Currie, 1995b; Currie, 1997; Dickson, 2005). The Duder 

Group (Currie, 1993) was informally renamed the Duder Complex (Currie, 1994) and it 

has been suggested that it comprises the basement to the region between the Reach Fault 

and the Dog Bay Line (Currie, 1995a). The sedimentary rocks that were assigned to the 

Duder Group were originally identified as part of the Botwood Group (Evans et al., 

1992) but were removed based on the presence of intense cleavage and the lack of 

sedimentary features (Currie, 1993). A section of schist has been mapped in the Duder 

Lake region and is postulated to underlie two thirds of the Duder Complex. Rare 

plagioclase porphyry dykes cut the sedimentary units and the gabbroic bodies (Currie and 

Williams, 1995). 

The complex is now defined as an Early Silurian accretionary prism consisting of 

(Ordovician?) intensively fissile shale and siltstone (Duder Group) and a melange 

(originally called the Garden Point Melange). Tectonic inclusions of exotic gabbro and 

basalt as well as sedimentary blocks have been reported (Williams et al., 1993; Currie 

and Williams, 1995) which range in size from centimeters up to tens to hundreds of 

meters and strike parallel to cleavage (Currie, 1995a). The gabbroic bodies that host 

auriferous mineralization at Duder Lake were originally mapped as dykes (Churchill and 
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Evans, 1992) but were redefmed as tectonic inclusions in the Duder Complex by Currie 

(1994) due to a supposed lack of intrusive relationships both at surface and in drill core 

(refer to Currie, 1995b ). However, Churchill eta/. (1993) state, " drill core samples of 

the gabbro bodies that host the Corvette and Goldstash mineralization have chilled 

margins and host sedimentary rocks are hornfelsed proving the intrusive relationship". It 

was also suggested that the gabbroic blocks could be correlatives of the younger gabbroic 

bodies that cut the Ten Mile Lake Formation to the southwest (Currie and Williams, 

1995). The reconnaissance mapping and literature review conducted during the current 

study does not support the grouping of these gabbroic bodies as tectonic inclusions. For 

instance, the author observed mappable sedimentary units, which had also been 

previously interpreted as tectonic blocks, and Churchill eta/. (1993) observed chill 

margins in the gabbro in drill core. Furthermore, geochemical and petrographic analyses 

of the Duder Lake dykes and the intrusive gabbroic dykes to the southwest do not imply a 

genetic relationship. 

The date of formation of the unit is still uncertain as Williams eta/. (1993) 

suggested an Ordovician age, whereas Currie (1997) prefers a younger age based on an 

interpreted Silurian (with the possibility of an older) deformation of the complex. Currie 

(1997) noted that fossiliferous blocks of limestone in the complex are possibly Indian 

Islands Group. 

Recent work involving the re-mapping of the Indian Islands Group and re

defining its relationships with adjacent units has suggested that much of the area mapped 

as the Duder Complex (i.e., Currie, 1997) is more likely part ofthe Indian Islands Group 

(Dickson, 2005). This interpretation was based on the presence of several fossiliferous 
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horizons resembling Indian Islands Group lithologies and a preliminary correlation 

between the fauna. Furthermore, Dickson (2005) found that the assignment of entire 

islands composed of Indian Islands Group rocks in the north (previously assigned to the 

Indian Islands Group (Currie, 1995b)) as blocks in the Duder Complex (Currie, 1997)) 

may have led to an erroneous interpretation of a Silurian age for the Duder Complex (i.e. , 

Currie, 1997). Dickson also concluded that extensive mappable volcanic units within the 

complex argue against it being a melange. Williams eta/. (1993) also found that the 

igneous rocks in the Duder Group were cogenetic. Dickson (2005) suggests that a more 

acceptable interpretation would be that the Duder Complex is indeed Ordovician, as 

suggested by Williams eta/. (1993), and was subsequently deformed along with the 

Indian Islands Group. 

The Duder Complex appears to be conformably overlain by the Ordovician to 

Silurian Badger and Botwood groups (Currie, 1995a). Currie (1997) also postulated that 

the Ten Mile Lake Formation conformably overlies the Silurian Indian Islands Group and 

has conformably overstepped the Duder Complex in certain places. Dickson (2005) 

argues that such an interpretation with the Ten Mile Formation conformably overlying 

both the Indian Islands Group and the Duder Complex does not make geological sense if 

the Indian Islands Group is supposedly younger than the Duder Complex. His fmdings, 

coupled with the results from the current study make the case for a possible extension of 

the Indian Islands Group to the north and west, which would cross the Dog Bay Line (a 

major terrane boundary). If the group can indeed be extended across the presently 

defmed Dog Bay Line, then either the location for the line is incorrect, or the 

interpretation of the line as a major terrane boundary is incorrect. 
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2.3.5 Davidsville Group (Ordovician) 

The Davidsville Group (Kennedy and McGonigal, 1972) consists of massive, 

homogeneous, intensely cleaved black shale. The group was subdivided into mappable 

units, first by Pickerall (1979) who divided the group into six units without defining a 

formal stratigraphy, and more recently by 0' Neill and Blackwood (1989). The latter 

workers informally divided the group into a lower Weir's Pond Formation, a middle 

Hunts Cove Formation, and an upper Outflow Formation. Currie (1995a) informally 

removed the Weir's Pond Formation from the Davidsville Group and defined it as a 

marine shelf sequence consisting of calcareous quartz sandstone, limestone and limey 

shale. The name Barry's Pond Formation was introduced to represent the breccia and 

conglomerate that had been assigned to the Weir's Pond Formation by O'Neill and 

Blackwood (1989) (Currie, 1992). The proposed redefmed stratigraphy would than 

consist of a basal Barry's Pond Formation (informal), a middle Hunt's Cove Formation 

and an upper Outflow Formation (Currie, 1995). 

The Davidsville Group comprises undivided black slate and/or shale, sandstone, 

siltstone, greywacke, and argillaceous siltstone of island arc provenance and thinly 

bedded turbidites and contourites fed by arc systems located to the NW (Blackwood, 

1982). The group consists of continentally derived sediment, deposited as fming

upwards-turbidite sequences on a somewhat stable slope. The group exhibits isoclinal 

folding. The Davidsville Group contains local volcanic lithologies in the north. The 

volcanics are coarse mafic pyroclastics in massive to thick graded units, pillow lavas, and 

cherts, all interpreted to be disrupted blocks of Carmenville melange (Pajari et al. , 1979) 
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or erosional remnants of a structural slice above the Carmenville melange (Williams et al, 

1991). 

Although the Davidsville Group is considered to be in tectonic contact with the 

GRC, nonconformable contacts have been reported locally. At Weir's Pond, upper 

Llanvirn to lower Llandeilo limestone overlie serpentinite (Stouge, 1979; 0' Neill, 1987) 

and elsewhere conglomerates overlie ultramafics (Kennedy, 1975, 1976; Blackwood, 

1982). The relationship between the Davidsville Group and the units to the west has had 

to be reconsidered with the extension ofthe Indian Islands Group to the south (i.e., 

Williams, 1993) and the introduction ofthe Ten Mile Lake Formation to the north (i.e., 

Currie, 1994). The contact between the Davidsville and Indian Islands (formerly 

considered Botwood) groups was originally observed to vary from conformable to faulted 

(Blackwood, 1982). However, the contact between these two units has only been 

observed along high angle east over west faults. The age of the Davidsville Group is 

constrained by the Arenig obduction of the Gander River Complex (Colman-Sadd et al., 

1992) and the Llandovery deposition ofthe overlying Indian Islands Group. 

2.3.5.1 Weir's Pond Formation (Middle Arenig-Caradoc) 

This lower formation outcrops sporadically along the western margin of the GRC 

and is an assemblage of fossiliferous limestone, graphitic shale, sandstone and 

conglomerate that is structurally imbricated with the GRC. The unit contains faunas 

ranging from Late Arenig-Early Llanvirn to Caradoc (O'Neill and Colman-Sadd, 1993). 
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2.3.5.2 Hunt 's Cove Formation (Caradoc) 

This middle formation has an assumed gradational contact with the Weir's Pond 

Formation and grades upward from a thickly bedded pebble to cobble conglomerate at 

the base into sandstone. The sandstone is fme to coarse-grained with local shaley 

interclasts and is interbedded with grey to black siltstone and slate; the conglomerate 

beds only form a minor component of the unit. The Hunt's Cove Formation has an 

abrupt, conformable contact with the Outflow Formation (0' Neill and Blackwood, 

1989). 

2.3.5.3 Outflow Formation (Caradoc-Ahgill) 

This upper formation comprises the thick shale portion of the Davidsville Group, 

which includes a wide variety oflithologies ranging from siltstone-mudstone rhythmites 

through to mudstone rhythmites and finally various shale types and minor conglomerate 

(0' Neill and Blackwood, 1989). Currie (1995a) suggests that this unit could probably be 

subdivided in future work. 

2.3.6 Baie d'Espoir Group (North Steady Pond Formation) (Middle-Late 
Ordovician) 

The North Steady Pond Formation is exposed in the Great Bend area and is 

composed of graphitic shale and phyllite, local polymictic conglomerate, and felsic, 

intermediate and mafic volcanic flows and/or pyroclastic rocks (Colman-Sadd 1980; 

Colman-Sadd 1985; Swinden 1988; and Dickson, 2000). 
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2.3. 7 Caradocian Shale (Late Ordovician) 

The Caradocian shale is a widespread pelagic unit derived from the drowning of 

Cambro-Ordovician magmatic arc, arc rift and back arc complexes during a high stand of 

Iapetan sea level. Thus, the deposition of this unit signals the end of deep marine 

volcanism within the Exploits Subzone (0' Brien, 2003) and the emplacement of the 

Taconic allochthons (Dean, 1978; Williams and Hatcher, 1982; Williams, 1992). The 

shales were previously interpreted to have been Middle Ordovician ocean floor muds 

encased with manganese nodules adjacent to deep-water vents (Kay, 1975). The rocks 

typically have a cherty base, which was initially thought to indicate deep-water 

deposition, however, the presence of interbedded shallow water limestone, volcanic rocks 

and crossbedded sandstones complicated this interpretation (Dean, 1977). 

The Caradocian black shale overlies the Dunnage Melange (Dark Hole 

Formation) and is also recognized in the adjacent Lawrence Harbour Formation, Exploits 

Group. These shales are overlain by greywacke of the Point Lemington and Samson 

formations, respectively. Equivalent argillaceous facies are noted to occur in the slatey 

rocks of the Davidsville and Indian Islands groups. 

Black carbonaceous argillites and argillaceous siltstones occur in the Duder Lake 

area in fault contact with the Botwood Group (Churchill, 1994) [this has later been 

reassigned to the Ten Mile Lake Formation by Currie (1994)] and graphitic black shale 

occurs in the Glenwood-Appleton area in fault contact with the Davidsville Group 

(Squires, 2005). 
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2.3.8 Badger Group (Late Ordovician-Early Silurian) 

The Badger Group comprises an Upper Ordovician to Lower Silurian marine 

turbiditic overstep sequence in the Exploits Subzone west of the Dog Bay Line (Williams 

eta/., 1993; Williams, 1995). The sequence grades upwards from a basal unit of 

greywacke with siltstone and conglomerate interbeds, through a middle conglomerate 

unit into an upper greywacke and siltstone unit. The group includes the Campbellton 

Greywacke, the Goldson Conglomerate and the Lewisporte Conglomerate (0' Brien, 

2003) and is overlain by the Botwood Group (Williams, 1992). The Badger Group is in 

stratigraphic contact with the Duder Complex and in regionally conformable, but locally 

fault modified, contact with the Botwood Group northeast ofDuder Lake (Currie, 1993; 

Williams, 1993). Details of the subunits of this group are not discussed in the context of 

this study. 

2.3.9 Indian Islands Group (Silurian) 

The Indian Islands Group (Patrick, 1956; Baird, 1958) spans much of Silurian 

time and consists of shallow marine deposits grading upwards into terrestrial redbeds 

(Williams eta/., 1993). The unit was first recognized by Twenhofel (1947) east ofthe 

Dog Bay Line, northern Botwood Basin. The group was defined to comprise phyllitic 

slates, quartzite and calcareous sandstones, thin limestone lenses, conglomerate (Baird, 

1958) and minor felsic volcanic rocks (Patrick, 1956). It was originally assigned to the 

Botwood Group and the boundary between the units was described as being faulted 

(Williams, 1964). Further south, in the Glenwood-Appleton area, units of this group 
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were also assigned to the Botwood Group (Blackwood, 1982; Boyce et al., 1993), but 

were later reassigned to the Indian Islands Group based on the overly shaley and 

calcareous nature ofthe rocks (Williams, 1993). The group is now defmed as isolated 

sequences along the east side ofthe Dog Bay Line (Williams et al., 1993) 

Along the north coast the group is in unconformable contact with a dark shale unit 

of the Ordovician Hamilton Sound Group that has been recognized as Caradocian shale 

(Currie, 1995); this contact was originally interpreted as approximately conformable 

(Currie, 1993; Williams, 1993). Along much of its eastern boundary, the Indian Islands 

Group is in contact with the Ordovician Davidsville Group. The contact was previously 

interpreted as a fault boundary (Williams, 1972) or an unconformity (Currie et al., 1980), 

but was later reinterpreted as conformable (Wu, 1979; Karlstrom et al., 1982). More 

recent work (i.e., Williams, 1993; Squires, 2005; 0' Driscoll and Wilton, 2005) has 

suggested that the contact is possibly conformable but fault modified. The group grades 

upwards into red shale ofthe Ten Mile Lake Formation (Currie, 1995a). 

The Indian Islands Group (1 km thick) represents a Silurian marine shelf 

assemblage (Williams, 1993) in three formations: the Seal Cove Formation, the Charles 

Cove Formation and the Horwood Formation. It exhibits a single period of close upright 

isoclinal folding with the same style as that seen in the Davidsville Group (Currie, 

1995a). 
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2.3.9.1 Seal Cove Formation (Llandovery) 

The Seal Cove Formation encompasses an Early Silurian unit consisting of 

discontinuous coralline and limestone breccias with Halysites (Currie, 1995a). Grey 

calcareous siltstone with fossiliferous limestone beds occur locally and are overlain by 

grey to black shale with thin beds of pale buff siltstone; the basal layer is discontinuous 

and consists of coral-bearing limestone and limestone breccias (Currie and Williams, 

1995). This unit is rich in fossiliferous material and contains Halysites coral 

(Llandovery) and brachiopod fauna. The formation is less than 10 m thick and is 

conformably overlain by the Charles Cove Formation (Currie, 1995a). 

2.3.9.2 Charles Cove Formation (Wenlock) 

The Charles Cove Formation is mainly a shallow marine shale and limestone 

sequence. Greenish-grey, hard calcareous siltstone is present with local fossiliferous 

limestone lenses ranging from 1-5 em wide and up to 50 em long (Currie and Williams, 

1995). A Wenlock fossil was collected from this formation by Wu (1979). The 

minimum thickness of the unit is postulated to be about 600 m and it is conformably 

overlain by the Horwood Formation (Currie, 1995a) 

2.3.9.3 Horwood Formation (Ludlow) 

The Horwood Formation consists of grey to dark grey shale with thin interbeds of 

pale buff siltstone (Currie and Williams, 1995). The thickness of the unit ranges from 20 
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to 50 m and it grades upwards into red shale and siltstone, which has been assigned to the 

Ten Mile Lake Formation (Currie, 1995a). 

2.3.10 Botwood Group (Early Silurian-Early Devonian) 

The Botwood Group (Williams, 1964) dominantly consists of subaerial volcanic 

rocks and sandstones (Dean 1977) and was originally defmed to comprise basal 

conglomerate and mafic volcanics with overlying sedimentary strata. This stratigraphy 

was subsequently revised by Williams (1972) when he subdivided the group to include 

only the Lawrenceton and Wigwam formations. The Goldson Formation had originally 

been assigned as a basal unit to the Botwood Group (Williams 1962, 1972) but was later 

informally reassigned to the Badger Group (Dean 1977, Williams eta/., 1995). The 

Botwood Group is composed of extensive, thick, subaerial, hematite-rich volcanic rocks 

of the Lawrenceton Formation overlain by fluvatile red and grey crossbedded sandstone 

of the Wigwam Formation (Williams, 1993). The group includes an upper polymictic 

conglomerate unit (Williams eta/., 1995) along the western margin. The formations are 

generally conformable but are fault disrupted in places (Williams, 1993; Williams eta/., 

1993). 

O'Brien (2003) reassigned some rock units from the Wigwam and Lawrenceton 

formations to the Badger Group and therefore informally redefined the Botwood Group 

to only include the terrestrial rocks of the Lawrenceton and Wigwam formations. He 

proposed that the group (1 000 m thick) is actually comprised of two formations, a basal 

terrestrial volcanic unit (Lawrencton Formation) and an upper red sandstone unit 
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(Wigwam Formation). The previously interpreted extent of the Botwood Group has been 

tapered along its eastern margin with the introduction of the Ten Mile Formation in the 

north (refer to Currie, 1995; Currie, 1997; Dickson, 2005) and the recognition of the 

Indian Islands Group to the south (refer to Williams 1993; Dickson, 1994; and Colman

Sadd, 1994 for a more detailed description ofunits). 

The Botwood Group subaerial volcanic rocks are interpreted to be in conformable 

contact with the underlying marine greywacke-conglomerate assemblage (Badger Group) 

(Patrick, 1956; Baird, 1958; Williams, 1963; Eastler, 1969; McCann and Kennedy, 

1974). Locally, unconformities between these two units have been reported (i.e., Change 

Islands) (van der Pluijm eta/., 1989). The unit is overlain by the flat lying Stoney Lake 

volcanics in the southern study area and is in fault contact with the Duder Complex and 

Ten Mile Lake Formation to the north. 

2.3.10.1 Lawrenceton Formation 

This is the lower unit of the Botwood Group which conformably overlies the 

conglomerate unit or the Lower Silurian Goldson Formation (Dean, 1977). It comprises 

subaerial to terrestrial volcanic rocks that are faulted against the Wigwam Formation near 

Duder Lake. Elsewhere, a gradational contact has been observed between the units 

(O'Brien, 2003). The subaerial volcanic rocks are purple, red, green to black vesicular 

and amygdaloidal pillow basalts, breccias and porphyritic flows (Williams, 1995). This 

contact may have been originally conformable as seen west of Duder Lake, but is fault 

disrupted locally. The basalt of this formation is grey, fine-grained with amydgules that 
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are partially calcite-filled (Dickson, 1993). Red, laharic breccia of felsic volcanic rocks, 

felsic clast conglomerate and felsic tuff to grey basalt with palgioclase-porphyritic, 

amygdaloidal and massive flows and felsic tuff and minor red sandstone are also 

characteristic (Dickson, 1994). 

The Lawrenceton Formation defmes a bimodal mafic-felsic volcanic unit 

characterized by dominant vesicular basalt flows. Scoriaceous basalt and banded 

ignimbrite represent subaerial volcanic facies ofthe formation (0' Brien, 2003). 

2.3.10.2 Wigwam Formation 

This unit conformably overlies the Lawrenceton Formation and is characterized 

by red micaceous sandstone with local conglomerate at its base. It was deposited in a 

shallow water environment as indicated by cross bedding, ripple marks and mud cracks. 

Thin volcanic layers indicate that volcanism of the Lawrenceton Formation continued 

during deposition of the sandstone. The unit was subsequently intruded by Devonian 

granite and gabbros following the Acadian Orogeny (Dean, 1977). 

The sediments consist ofthin to medium bedded sandstone and siltstone 

(Dickson, 1993) and minor polymictic clast-supported conglomerate with felsic clasts 

typical ofthe underlying Lawrenceton Formation (Dickson, 1994). 

This formation had been mapped as the most prominent unit in the Duder Lake 

area consisting of undivided micaceous and siliceous, red, brown, grey, and green 

siltstone, sandstone and shale. A few thin tuffaceous horizons in the Wigwam Formation 

were also reported east ofDuder Lake (Churchill et al., 1993). However, Currie (1995) 
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notes that this group has not been observed east of the Reach Fault as presumed by other 

authors (i.e., Evans eta/., 1992; Churchill, 1994). The sediments that were originally 

assigned to the group in that region were reassigned to the Ten Mile Lake Formation. If 

this interpretation is correct, it would indicate an unconformity between the Wigwam and 

Lawrenceton formations. 

2.3.11 Stoney Lake Volcanics (Late Silurian) 

The Stoney Lake Volcanics typically consist of grey to pink flow-banded 

rhyolites, rhyolitic tuff and agglomerate, porphyrite (feldspar) grey to purple rhyolite, 

crystal tuff and flow breccia. These lithologies do not resemble volcanic rocks of the 

Victoria Lake Group to the west or the Botwood Group to the north (Anderson and 

Williams, 1970). The Stoney Lake Volcanics are thought to unconformably overlie the 

Botwood Group sandstones because they were not affected by the steep folding observed 

in that unit. Clasts of Botwood Group have also been reported in the Stoney Lake 

Volcanics, which would infer them to be younger (Anderson and Williams, 1970). The 

Stoney Lake Volcanics have been dated at 423 ± 3 Ma by Dunning eta/. (1990). The 

inclusion of Botwood Group clasts within the volcanics, combined with structural 

relationships, therefore suggests that the Stoney Lake Volcanics are younger than the 

Botwood Group, presenting a possible upper age limit of Late Silurian (Ludlow) for that 

group. 

33 



2.3.12 Ten Mile Lake Formation (Late Silurian-Early Devonian) 

The Ten Mile Lake Formation outcrops in the northern Botwood Basin and 

consists of purple to crimson shale interbedded with thin, pink sandstone beds and a few 

thick, pink to grey-green sandstone beds (Currie and Williams, 1995). The formation 

was originally considered to be part of the Wigwam Formation, Botwood Group. 

Williams et al. (1993) first recognized that a large area of homogeneous, red, cross

bedded sandstone and siltstone southwest of the Dog Bay Line were not in stratigraphic 

contact with the Botwood Group. They also suggested that there was a major 

unconformity between the redbeds and the Duder Group (now known as the Duder 

Complex) because of observed differences in structural styles (i.e., the redbeds were 

gently dipping whereas the Duder Group was steeply dipping and very disrupted). The 

redbeds were officially removed from the Botwood Group by Currie (1995) when he 

introduced the term Ten Mile Lake Formation to represent them. Pridolian to Lochoulan 

bivalve fauna have been collected from this formation (Boyce et al., 1993). 

The formation conformably overlies the Indian Islands Group from which it has 

been mapped for up to 10 km to the west (Currie and Williams, 1995; Dickson, 2005). 

The transitional contact between the two aforementioned units was observed at several 

localities near Ten Mile Lake and Rocky Pond; some of these localities yielded fauna in 

limestone interbedded with red sandstone (Dickson, 2005). As previously discussed, the 

formation appears to be in fault contact with the Botwood Group to the west. This unit 

has not been mapped south of the TCH. 
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2.3.13 Mount Peyton Intrusive Suite (Middle Silurian-Early Devonian) 

This gabbro-granite intrusion was informally named the Mount Peyton pluton by 

Strong eta/. (1974). The authors conducted a lithological survey on the northern 

segment of the pluton and the resulting geochemical data defined the pluton as bimodal 

with few intermediate silicate phases. It was later suggested that the granite formed from 

crustal anetexis induced by the intruding gabbro (Strong, 1979; Strong and Dupuy, 1982). 

The intermediate phases were interpreted to result from magma mixing and/ or 

contamination of the mafic magma by sedimentary country rocks. 

The granite is pink and cream, massive, medium to fme-grained, equigranular and 

contains biotite ±hornblende. The gabbro is a grey, massive and dominantly fine

grained, equigranular pyroxene± biotite± hornblende rock (Dickson, 1994). 

Thus, the Mount Peyton Intrusive Suite (MPIS) is a composite Silurian post 

kinematic intrusion consisting of gabbro, tonalite, granodiorite, and diorite (Dickson, 

1992) at lower greenschist facies. The relationship between the gabbro and granite 

phases, as well as the relationship of the suite to the surrounding sedimentary lithologies, 

is still poorly understood due to the lack of contact exposures. Although the contacts are 

not well exposed, the intrusive nature of the gabbro portion of the suite is clearly defmed 

by a well-defined metamorphic aureole (within the Exploits Group) and associated mafic 

dykes and plugs along the western margin (Dickson, 1993). Although no definite 

evidence exits for a Botwood Group-MPIS relationship, several authors (i.e. , Dickson, 

1993; Squires, 2005) have implied that a lack of intrusive evidence along the eastern 

margin may provide the best indication of a faulted contact between the MPIS and Indian 
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Islands Group. The relationship between the Botwood Group along the southern margin 

and the Indian Islands Group along the eastern margin of the intrusion is further explored 

in chapter 4 as part of the current study. 

2.4 Faults 

Numerous faults cut the study area, ranging from minor to regional scale. These 

faults have significance to gold exploration because they could provide structural 

conduits for fluid flow and may localize mineralization events. The structures are 

discussed here in terms of those north and south of the TCH respectively for ease of 

reference. 

2.4.1 Northern Botwood Basin Faults (North ofTCH) 

Two major northeast-trending transcurrent faults occur in the northern Botwood 

Basin ofthe Exploits Subzone; the Reach Fault (Dean, 1978) and the Dog Bay Line 

(Williams, 1993). These faults are significant structures in the tectonic evolution of 

central Newfoundland and may be closely related to the metallogeny of the area. Several 

smaller faults with comparable geometries also outcrop in the area and appear to 

represent latest Silurian or younger movement (Churchill, 1994). 

The Reach Fault has been defined as a brittle structure with a sinistral sense of 

shear and displacements of up to 15 km (Currie, 1993). It has long been debated whether 

this fault represents the fmal suture plane for the closing Iapetus Ocean (Arnott et al. , 

1985; McKerrow and Cocks, 1986; Najjarpour and Upadhyay, 1987) and it has been 
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defmed as the western periphery of the Botwood tectnostratigraphic belt (Williams, 

1993). 

The Dog Bay Line is manifested as a fault zone defined by a series of northeast

trending faults, up to 1 km in width, which exhibit a dominant topographic expression 

(Churchill, 1994). This complex zone has been described as a major Silurian terrane 

boundary (Williams eta/., 1993) but the suggestion that it represents the suture of the 

closing Iapetus has been questioned due to the continuity of faunal successions across it 

(i.e. , Williams, 1993). Despite this continuity, there are contrasts in Silurian strata across 

the line. Thick turbiditic sequences and sub-aerial volcanics west of the Dog Bay Line 

are not present to the east and marine calcareous rocks are absent to the west of the line. 

The fault zone has a curvilinear trace and has been mapped from the Indian Islands to 

Rocky Pond and has been postulated to extend as far southwest as the Mount Peyton 

Intrusive Suite with dextral transcurrent movement and dip-slip displacement (Williams, 

1993). 

East-west to northwest-southeast faults cut major northeast-trending features such 

as the stratigraphy and major faults as previously noted. These secondary faults may 

have been activated during the Early Devonian or Carboniferous as one of these 

structures was observed to truncate the Loon Bay Batholith (Churchill, 1994). These 

findings are in concordance with the work of Lafrance and Williams (1989) who 

suggested that many of the east-west trending faults in the Notre Dame Bay region may 

have been initiated in the Silurian but remained active through the Devonian. 

Northeasterly-directed thrusts have been documented along the Gander River 

Complex (GRC). Sub-parallel thrusts cut the Davidsville Group (Tallman, 1990). In the 
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central-north easternmost Dunnage Zone, a northeasterly trending, westerly dipping 

structure forms a thrust contact between the GRC to the west and the Gander Group to 

the east. Also in this area, the Jonathan' s Pond fault is a east-west trending structure that 

has been defined as a large shear zone or tear fault that may have developed syn

tectonically with the main thrusting event (Snow, 1988). 

2.4.2 Southern Botwood Basin (South of TCH) 

A brittle, low angle thrust, dipping 30° northwest, is recorded between the Indian 

Islands (formerly Botwood) and Davidsville groups at the Aztec Showing near Paul' s 

Pond. The fault zone is defined by a graphitic gouge zone and is surrounded by silicified 

country rock (Tallman, 1990). 

In the Great Bend area, numerous northeast-southwest and northwest- southeast 

trending faults have been mapped. The fault zone that is postulated to separate the 

Botwood Group and the Spruce Brook Formation coincides with a major northeast 

trending linear aeromagnetic anomaly and has a moderately plunging lineation to the 

northeast. Sinistral shear is recorded by southwest striking CS fabrics and the contact 

between the two units is interpreted to be tectonic rather than unconformable due to these 

sheared fabrics (Colman-Sadd and Russell, 1985). 

2.5 Regional Deformation and Metamorphism 

A period of intense plutonism, deformation, metamorphism and reactivation of 

major fault systems attributed to the Acadian Orogeny occurred during the Late Silurian 
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to Early Devonian within the eastern Dunnage Zone. A regional northeast-trending 

penetrative cleavage and axial planar rotated isoclinal folds are observed in rocks of the 

Botwood and Davidsville groups. Second phase deformation features can be observed in 

the Davidsville Group as small conjugate kink bands with gently south plunging folds 

that exhibit fl cleavage (Blackwood, 1982). The rocks have been exposed to lower 

greenschist metamorphism (Evans, 1999). 
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LEGEND 

POST ORDOVICIAN OVERLAP SEQUENCES 
Silurian 

-
Bimodal to mainly felsic subaerial volcanic rocks; includes unseperated sedimentary 
rocks of mainly fluvatile and lacustrine facies (Botwood Group; Stoney Lake Volcanics) 

Shallow marine and non-marine siliciclastic sedimentary rocks, including sandstone, 
shale and conglomerate (Botwood Group; Duder Complex?; Ten Mile Lake Formation) 

Polydeformed, grey and buff petite, fine-grained, calcareous and dolomitic sandstone, 
and thin limestone beds (Indian Islands Group) 

DUNNAGE ZONE 
Stratified rocks 
Middle to Late Ordovician - Llandeilo to Ashgill black shale, slate and argillite, including subordinate chert and 

graywacke (Caradoc Shale) 

Cambrian to Middle Ordovician -
-

Marine siliciclastic sedimentary rocks, including shale, slate, argillite, siltstone, sandstone, 
conglomerate and minor unseperated carbonate, volcanic and intrusive rocks and 
schist gneiss and migmitite (Davidsville Group; Exploits Group) 

Submarine mafic, intermediate and felsic volcanic rocks, including mafic volcanic 
rocks of ophiolite complexes; includes unseperated intrusive, sedimentary and 
metamorphic rocks (Gander River Complex, Baie d' Espoir Group, Exploits Group) 

INTRUSIVE ROCKS 
Cambrian and Ordovician --

Mafic intrusions, including unseperated granitoid rocks and gabbro, diabase and 
trondhjemite of ophiolite complexes 

Ultramafic rocks of ophiolite complexes 

POST ORDOVICIAN INTRUSIVE ROCKS 
Silurian and Devonian - Gabbro and diorite intrusions, including minor ultramafic phases 

- Granitiod suites, varying from pretectonic to syntectonic, relative to mid-Paleozoic orogenies 

GANDER ZONE 
Stratified rocks 
Cambrian (?) And Ordovician 
1 1 Quartzite, psammite, semipelite and elite, including minor black slate, conglomerate, 

limestone, mafic and felsic volcanic rocks, and unseperated migmatitic rocks 

Intrusive rocks 
Ordovician - Granite intrusions 



I 
Great Bend Prospects 
1 . Rolling Pond 
2. Chiouk Brook 
3. Lizard Pond North 
4. Lizard Pond South 
5. Swan Lake 
6. Breccia Pond 
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Figure 2.4: Generalized geology map of the Botwood Basin and environs, and specific 
locations of auriferous showings sampled for this study (yellow stars) and location of 
geochronological samples (red circles) from which U-Pb ages were obtained (geology 
modified from Colman-Sadd and Crisby-Whittle, 2002). 
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3.1 Preamble 

CHAPTER3 

AURiFEROUSOCCURENCES 

This section describes the gold and antimony occurrences examined for this study 

in terms of their geological and structural settings. The occurrences were visited and 

assessed in terms of mineralization, alteration, structure and intrusive relationships. Due 

to the scope of this project, detailed trench mapping was not conducted. However, where 

possible, samples were collected of unaltered, altered and mineralized host rocks as well 

as vein material for assay and petrographical analysis. Petrographical investigations were 

performed on polished thin sections using a transmitting/reflecting binocular microscope. 

A general geology map indicating the location of the occurrences visited for this 

project within the Botwood Basin and adjacent area is outlined in figure 2.4. Some of 

these occurrences have previously been described (i.e, Churchill, 1994; Evans; 1996, 

Evans; 1999) in terms of the deposit models discussed in Appendix 2 and the evidence 

for those classifications is presented here. A brief overview of the prospects is outlined 

in table A1.2, along with previously derived assay data. Given that the areal extent of 

this project is extensive, the occurrences are grouped into regional sections as follows: 1) 

the Northern Botwood Basin including all of those occurrences that lie to the north of the 

TCH, 2) the Glenwood-Appleton region which encompass those occurrences adjacent to 

the towns of Glenwood and Appleton along the TCH, 3) the Mount Peyton group which 

consist of those occurrences hosted by, or immediately adjacent to, the northernmost 
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Mount Peyton Intrusive Suite rocks, 4) the Paul's Pond occurrences which comprise 

those occurrences in the southeastern Botwood basin in the vicinity of Paul's Pond and 

adjacent to the Northwest Gander River, and 5) the Great Bend occurrences which are 

present in the southern Botwood Basin and near the Great Bend of the Northwest Gander 

River adjacent to the Baie d'Espoir Highway. 

3.2 Northern Botwood Basin 

This section describes those occurrences north of the TCH, east of the Dog Bay 

Line and west of the Gander Zone and includes the Duder Lake prospects, the Clutha, 

Charles Cove, Knob Hill, Third Pond and Jonathon's Pond prospects. 

3.2.1 Duder Lake Prospects 

The gold showings discussed herein are generally referred to as the Duder Lake 

occurrences due to their proximity to Duder Lake and are inclusive of the Corvette, 

Goldstash, Flirt and Stinger prospects. The region lies approximately 8 km east of Birchy 

Bay (off Highway 331) along a logging resource road, which is in good condition and 

still in use at the time of this project. The occurrences are located between Duder Lake to 

the west, Rocky Pond to the east and Ten Mile Lake to the south on NTS map sheet 2E/7 

(Figure 3.1, p. 91 ); outcrop exposure is fair at approximately 25 %. The area has low 

relief with elongate ridges of gabbro characterizing higher elevations and bogs and marsh 

typical oflow-lying areas (Plate 3.1, p. 1 04). Structures and lake morphologies generally 

trend northeast and a till cover ranges from 1.5 to 15 m thick (Churchill, 1994). 

47 



The Flirt, Goldstash, and Corvette Au prospects consist of shear-controlled 

sulphide disseminated (orogenic lode) mineralization restricted to gabbroic dykes and 

sills (Churchill and Evans, 1992). All three of these occurrences were assessed as part of 

the present study during the 2003 field season. The Stinger Prospect is hosted in Duder 

Complex sedimentary rocks that host the gabbros (Figure 3.2, p. 92). 

The gabbroic intrusions themselves are generally small, irregular, fine to coarse

grained gabbroic to dioritic dykes and sills (redefined as tectonic blocks by Currie, 

1995b) that appear to be elongated in the direction of movement along the major faults in 

the area. They can be up to 55 m wide and 500 m long with boudinage and stretching 

parallel to regional cleavage (Green, 1989). Correlation with similar rocks in the Gander 

Lake region led to the interpretation that the intrusions are Late Silurian to Early 

Devonian (Churchill and Evans, 1992), however, no absolute determinations have been 

made as to either the intrusive or deformation ages. 

The numerous gabbroic bodies occur along a NE trending fault that cuts the 

Duder Complex. The fault has been related to movement along the Dog Bay Line 

(Williams, 1993). The Indian Islands Group lies to the east (Currie and Williams, 1995) 

and consists dominantly of dark green to black laminated slates and shale with thin 

interbeds of light green siltstone, greywacke and argillaceous siltstone sequences (Green, 

1989). 

The style of gold mineralization has been classified as mesothermal hosted by 

gabbroic and graphitic sedimentary rocks; however, the gabbroic mineralization has been 

further subdivided into two categories: 1) shear controlled sulphide dissemination in 

gabbro (Corvette and Goldstash) and 2) shear controlled quartz-carbonate veins with 
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sulphides and minor gold (Flirt). The sedimentary-hosted occurrence (Stinger) was not 

examined during this study but has been described as sediment-hosted, shear-controlled 

quartz vein style of mineralization (Churchill et al., 1993). 

3.2.1.1 Flirt 

The Flirt gold occurrence occurs in a heavily wooded area adjacent to a bog at 

UTM coordinates 670596/5465115, 1 km due east from the tip ofDuder Lake. The 

occurrence consists of a 15 m wide, brittley deformed gabbro sill that is cut by quartz

carbonate veins ranging from 1-30 em wide and containing up to 10% disseminated 

pyrite and arsenopyrite. The gabbro host is weakly carbonatized and moderately 

chloritized and has trace pyrite and arsenopyrite locally. The quartz veins have assayed 

up to 9.29 g/t gold (grab sample) (Green, 1989), however, no significant values have been 

reported from the gabbro host. 

One large, 10 m long trench was examined and the outcrop is comprised of rusty 

(Fe carbonate alteration), chloritized and slightly brecciated sheared gabbro randomly cut 

by quartz and quartz-carbonate veins. The host (Plate 3.2b, p. 104) is a fine to coarse

grained, altered gabbro comprised of subhedral white (carbonate and sericite) and blue

grey (albite) minerals and anhedral light green to black (pyroxene) minerals. 

Petrographically, the gabbro consists of 30% calcite, 15% pyroxene, 15% uralite, 

10% albite, 10% epidote, 7% leucoxene, 5% chlorite and 5% quartz and 3% pyrite (Plate 

3.3, p. 50). Primary igneous phases such as plagioclase and Fe-Ti oxides have been 

metamorphosed to albite-epidote-calcite and leucoxene. Clinopyroxene is subhedral and 
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the plagioclase is albitized and altered to epidote and calcite. Fe-rich chlorite 

( clinochore) occurs with the albite and leucoxene formed from the break down of primary 

Fe-Ti oxides. Carbonate alteration occurs through the section and also in small quartz-

carbonate veinlets. 

Plate 3.3: Photomicrograph of a gabbro from the Flirt Prospect exhibiting leucoxene (Lx) 
alteration ofF e-Ti oxides and uralatization of pyroxene. Plagioclase is albitized and 
contains minor epidote (Ep) and calcite (Ca). Fine-grained calcite and epidote are also 
present as pinkish flecks in the albite and quartz carbonate veinlets cut the pyroxene 
[Field of view~ 7 mm, XP]. 

3.2.1.2 Cloldstash 

The Goldstash Prospect is located approximately 2 km south of the Flirt Prospect 

along an old drill path that is essentially overgrown. Several trenches were located 

during the 2003 field season, however, many were water-filled. The trench at UTM 

coordinates 670488/5464542 has very good outcrop exposure which exposes the contact 

between altered gabbro and a sedimentary unit (Plate 3.4a, p. 104). The sedimentary unit 
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is dark grey, shiny and very cleaved and appears to be dark grey slate. The gabbro 

contains disseminated sulphides and the general trend of schistose gabbro is 021 °/ 90°. 

The mineralized gabbro comprises 30% albite, 20% ankerite, 15% sericite, 10% 

Fe-Ti oxides, 8% pyrite and 2% arsenopyrite, 5% uralitized pyroxene, 5% leucoxene, and 

5% quartz. Fe-carbonate alteration occurs along the grain boundaries of the sulphides 

(Plate 3.5) and chlorite is associated with sulphides as well as ankerite (ferroan dolomite). 

Plate 3.5: Photomicrograph of mineralized gabbro from the Goldstash Prospect 
exhibiting chlorite (Chi), ankerite (Ank) and pyrite (Py). [Field of view ~ 7 mm, PPL and 
XP]. 

3.2.1.3 Corvette 

The Corvette Prospect is located approximately 800 m along strike to the south of 

the Goldstash Prospect. Mineralization and alteration at the Corvette are similar to those 

at the Goldstash, which lie along the same lateral shear zone. Some of the trenches at this 

prospect were located along the resource road (Plate 3.4b, p. 1 04), just north of a 

fossiliferous, Fe-carbonate altered outcrop (see description in chapter 4). Several 

trenches were noted south of the prospect, although there were no trenches in the 
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immediate area as indicated on the Newfoundland Department of Mines and Energy 

(NDME) Mineral Occurrence Database (MOD). 

The first trench, at UTM coordinates 670326/5463622, exposes a very rusty 

outcrop of an altered metamorphosed gabbro. Further up the road at UTM coordinates 

670357/ 5463793, a fairly large outcrop of unaltered gabbro is exposed, suggesting that 

alteration and mineralization are local, related to shearing. 

Petrographical analysis of sample JOD97B collected from the Corvette trench 

reveals a slight fabric in one direction. The sample is coarse-grained and the main fabric 

is defined by quartz and sericite. The section contains 30% luexocene, 20% sericite, 20% 

uralite, 15% albite, 10% quartz and 5% pyrite (Plate 3.6, p. 52). The pyroxene is being 

replaced by uralite, which appears within cracks in pyroxene and Mg-rich chlorite occurs 

around the uralitized pyroxene. 

Plate 3.6: Photomicrographs of mineralized gabbro from the Corvette Prospect 
exhibiting A) uratilized pyroxene (Ur), pyroxene (Pyr) and leucoxene (Lx) replacement 
of Fe-Ti oxides and B) albitized plagioclase (Alb) with epidote alteration, quartz and 
chlorite and [Field of view ~ 7 mm, XP]. 
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3.2.2 Clutha 

The Clutha Prospect is located approximately 4 km south-southwest of the Dog 

Bay Provincial Park access road from route 331 (Figure 3.1 , p. 91) at UTM coordinates 

674900/5475350 on NTS map sheet 2E/07. An abandoned logging road leads to the 

prospect and it is only accessible via all terrain vehicles (refer to Evans, 1996 for a 

description of the Clutha Prospect). The prospect is no longer exposed, as the trenches 

have been backfilled. Outcrop in the immediate area is sparse and mineralization was not 

observed. 

Immediately west of the prospect location, however, the author noted Indian 

Island Group-type rocks, which suggests that the group extends further west than 

currently mapped, as originally proposed by Baird (1958). 

3.2.3 Charles Cove/ Tim's Harbor 

The Charles Cove Prospect is located in the northeast Botwood Basin at UTM 

coordinates 681300/5475920 on map sheets 2E/07 and 2E/08 (Figure 3.1 , p. 91). It is 

approximately 2 km inland from the coast and can be accessed via a 3 km network of 

skidder trials from the highway at the community of Rodgers Cove. The topography is 

generally of low relief consisting of a gentle rise from the coast to a 90 m ridge to the 

west. The main quartz vein is exposed between the coast and this ridge along a smaller 

(~30m asl) ridge. The area between the ridges is swampy and boggy with abundant 

alders and the ridges are tree covered with good outcrop exposure. The only pond in the 

vicinity is Charles Pond from which numerous small streams drain into the coast (Wilton 
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and Taylor, 1999). The author did not visit this prospect; Derek Wilton collected the 

geochronological sample from the host granodiorite in September 2003. 

The prospect consists of an undeformed arsenopyrite-galena-bearing quartz vein 

hosted by the Silurian Charles Cove granodiorite, which intruded sedimentary rocks of 

the Ordovician Davidsville Group and Silurian Indian Islands Group (Wilton, 1997) 

(Figure 3.3, p. 93). This well-exposed quartz vein strikes north-northwest and extends 

for more than 1 km and varies in width from 2 to 15m with offshoots extending for 55 m 

(Wilton and Taylor, 1999). 

The prospect exhibits characteristics of both granophile and meso thermal systems. 

Although a carbon dioxide phase was not present in the Charles Cove quartz vein fluid 

inclusions, both the temperature range (220-260° C) and the salinity (1 up to 6 equivalent 

wt% NaCl) may be characteristic of a mesothermal system (Greenslade, 2002). The vein 

system differs from the other Dunnage Zone mesothermal systems in that it contains W 

and is hosted by a granodiorite. But the auriferous quartz vein appears to be epigenetic 

with respect to the granodiorite intrusion (Greenslade, 2002). 

3.2.4 Knob Hill 

The Knob Hill Prospect is located at UTM coordinates 674259/5445813 on NTS 

map sheet 2E/2 and is hosted by Davidsville Group greywacke. The prospect was 

accessed via the Bellman's Pond Resource Road, which is part of a network of roads 

north of the TCH at Glenwood (Figure 3.4, p. 94). The location as indicated by the MOD 
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was inaccurate and led to a grassy knoll in an area of cutover; no outcrop was located in 

the surrounding wooded area. 

Some quartz float and outcrop was noted along the sides of the new resource road 

at UTM coordinates 674259/5445813. Coarse-grained, mica-rich Davidsville Group 

greywacke is cut by quartz veins that are less than 3 em wide, with no apparent alteration 

occurring along the margin of the veins (Plate 3.7a, p. 105). The veins cut the structural 

fabric of the host and exhibit moderately to well-developed quartz crystals, indicating 

that the veins crystallized post deformation of the greywacke. Evans (1996) noted that 

the greywacke exhibited chloritic alteration. 

Sample JOD15 is composed of 45% very fine-grained muscovite (sericitic 

alteration), 30% quartz, 8% Fe-oxides, 7% pyrite, 5% feldspar and 5% chlorite (Plate 3.8, 

p. 55). Some rare perthite twins were observed in the feldspar. Grains are sub-rounded, 

moderately sorted and are surrounded by ~45% of a fine-grained matrix and therefore this 

rock is classified as a quartzwacke. 

Plate 3.8: Photomicrograph of Davidsville quartzwacke, host to mineralization at the 
Knob Hill Prospect comprised of moderately sorted quartz, feldspar and Fe-Ti oxides in a 
fine-grained sericite matrix [Field of view 7 mm, PPL and XP]. 
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3.2.5 Third Pond 

The Third Pond Prospect is located southwest of the Knob Hill Prospect along the 

Bellman's Pond Resource Road at UTM coordinates 671020/ 5442038 on map sheet 

2E/2. The prospect has been described as quartz veins in Davidsville Group slate (Evans, 

1996). 

At UTM coordinates 671128/ 5442085, a trench exposed two sedimentary units 

and a large bull vein with very large, euhedral quartz crystals (up to 4 em long). A 1 x 

1.5 m elliptical exposure of what appeared to be a very altered unit (referred to as a 

cherty concretion in previous descriptions, i.e., Evans (1996)) is apparently interbedded 

with graphitic shale (Plate 3. 7b, p. 1 05). The wall rock is orange and rusty due to 

hydrothermal alteration and a small ( < 1 em) alteration halo of coarse-grained chlorite is 

present along the margin of the veins within the wall rock. 

The greywacke consists of 45% sericite, 20% quartz, 10% feldspar, 15% calcite, 

5% chlorite and 5% Fe-oxides. The feldspar grains have simple and perthite twins, which 

are more abundant here than at the Knob Hill Prospect. 

The altered 'concretion' comprises 80% platy carbonate (dolomite and chlorite) 

and 20% sericite (Plate 3.9, p. 57). Concretions are solid mineral inclusions found within 

shale units that form secondary to the rock-forming processes and are commonly 

composed of carbonate minerals (American Geological Institute, 1984 ). 
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Plate 3.9: Photomicrograph of carbonate 'concretion' at the Third Pond Prospect. The 
section is comprised of chlorite (Chl), calcite (Ca) and sericite (Sr) [Field of view 7 mm, 
PPLandXP]. 

3.2.6 Jonathon's Pond 

The Jonathan's Pond Prospect is located approximately 15 km north of Gander on 

the west side of highway 330, NTS map sheet 2E/2, 4 km northwest of the entrance to 

Jonathon's Pond Provincial Park (Figure 3.4, p. 94). The prospect can be accessed via an 

abandoned logging road, which is in poor condition and only suitable for A TV s. 

Blackwood (1979, 1982) first recognized Au mineralization in the Jonathon's 

Pond area while conducting regional mapping over the Gander River Complex. 

Geologically the area comprises Lower Ordovician rocks of the GRC that are thrust 

against older psammitic and pelitic sediments of the Gander Group to the east (Figure 

3.5, p. 95). A northeast trending, westerly dipping thrust contact between GRC rocks and 

Gander Group rocks is the most significant structural feature in the area and has been 

observed in drill core as 20 m wide, weakly pyritic, chaulky serpentinitic gouge (Snow, 

1988). 
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The area surrounding the occurrence was traversed on two separate occasions for 

this study but the exact location of the prospect was not ascertained as the area indicated 

by the MOD files did not contain any mineralized outcrop. Generally, this area is heavily 

forested with some grassy clearances and abundant alders. Ridges of silicified gabbro 

were located but no mineralization was observed along them. At UTM coordinates 

677536/ 5440220, ridges of silicified gabbro were cut by multiple quartz veins up to 5 em 

in width. Quartz float at UTM coordinates 677677/5440132 in the forested area 

exhibited an epithermal, interlocking or fibrous texture (Plate 3.1 Oa, p. 1 05) and the 

sample was somewhat rounded indicating transport. 

Traversing further northwest along the resource road, several trenches were 

observed which contained sulphide mineralization. The first observed trench at UTM 

coordinates 676938/ 5441002 consisted of a 2 x 2 m outcrop of a fme-grained, altered, 

green ultramafic unit cut by quartz veins; sulphide mineralization occurred in and 

adjacent to the veins. The quartz veins define tension gashes up to 0.75 m long, up to 2 

em wide and trending 110°. The quartz exhibits a very smooth, ribbon like texture; the 

sulphides (arsenopyrite and pyrite) are semi-massive along the edge of veins and occur as 

fine disseminations within the host (Plate 3.10b, p. 105). The mafic host rock appears to 

be very sheared locally. 

Traversing east, several trenches of quartz-veined green serpentinite were 

observed. Approximately 20m east of the first outcrop, a very large bull quartz vein was 

observed in a pit within a very sheared serpentinite. At UTM coordinates 677703/ 

5440698 an approximately 1 x 0.5 m small trench of magnesite-altered serpentinite, with 

magnesite veins up to 3 em wide was observed. A mineralized sample was collected 
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from the first trench and is comprised of serpentinite, chlorite, quartz, carbonate, 

arsenopyrite and pyrite (Plate 3.11a and b, p. 59). 

Plate 3.11: Sample JOD117-Jonathon's Pond. a) Serpentinized (Sp) and talc altered host 
exhibiting disseminated blebs of pyrite (py) [Field of view 7 mm, PPL]. B) Section form 
quartz carbonate (qtz-cb) vein exhibiting acicular arsenopyrite (asp) [Field of view 2 mm, 
PPL]. 

According to previous maps (refer to Figure 3.5, Blackwood (1982)), the trenched 

areas examined should contain mafic flows and the ultramafic lithologies occur further 

west. This indicates that the mineralization also occurs in ultramafic lithologies in this 

area and that these units occur further east than previously mapped. 

3.2. 7 Big Pond/ Blue Peter 

The area of the Big Pond Prospect can be easily accessed via the North Salmon 

River Access Road, however, since Evans' (1996) documentation, the trenches have been 

backfilled. There was no outcrop in the immediate area but trench float was observed. 

Although the gabbroic host to this prospect was not observed during this study, several 

silicified ridges of gabbro were examined along the Twin Ponds Resource Road just west 

of the prospect. Recent reviews of fossil localities and mapping in this vicinity have led 
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to the supposition that these gabbroic bodies are actually intrusive into the Silurian Indian 

Islands Group (where it is currently mapped as Ten Mile Lake Formation). A sample 

from the northeast trending gabbroic body, as mapped by Blackwood (1982), was 

processed for U-Pb geochronology and the results are presented in Chapter 4. 

The prospect reportedly consisted of shallowly dipping, northeast-striking, 

dilational, gold-bearing quartz veins developed within Fe-carbonate altered, seritized and 

weakly silicified gabbro (Evans, 1991). The gabbro is fine to medium-grained and 

intrudes green and maroon siltstone and sandstone of the Botwood Group (Evans, 1991 ), 

later redefined as the Ten Mile Lake Formation (Currie, 1995a). 

3.3 Central Botwood Basin (Glenwood-Appleton Region) 

The central Botwood Basin region as described herein encompasses the area in 

the immediate vicinity of Glenwood and Appleton, along the TCH and the Gander River 

outflow and includes the Dome, Bullet, Knob, Bowater and Outflow prospects (Figure 

3.4, p. 94). In general, due to the proximity of the occurrences to developed 

infrastructure, access to all of these prospects is generally good. A low topographic relief 

dominated by gentle rolling hill slopes and few high points characterizes physiography of 

this area. A thin, lateral overburden results in poor outcrop exposure. Small streams 

drain westward into the Gander River Outflow. All of the following prospects have been 

previously documented as occurring in Davidsville Group rocks (Figure 3.6, p. 96). 

Thrusting in the region has a northeasterly direction with sub-parallel thrusts cutting the 

Davidsville Group (Tallman, 1990). 
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3.3.1 Bullet 

The Bullet and Knob prospects are located 1 km west of the Glenwood Provincial 

Park entrance, approximately 0.2 km south from the TCH (Figure 3.4, p. 94). A dirt road 

leading to a quarry provides access within 1 00 m of the Bullet Prospect; an overgrown 

skidder trail, the entrance to which is not visible from the dirt road, leads to the trenched 

areas which contain abundant quartz float at UTM coordinates 657424/5425881. 

During this study, several trenches were observed along an overgrown trail, east 

from the dirt road; outcrop was only observed in two of the trenches, as the others were 

either overgrown or water-filled (Plate 3.12, p. 105). One trench is approximately 15m 

long and trends 282°. It has two small exposures of very cleaved, weathered shale with 

no quartz or sulphur mineralization. Piles with large pieces of quartz float containing 

sulphide mineralization were observed in several areas. 

Petrographically, samples from the prospect revealed that the host is fme-grained, 

mainly composed of detrital quartz, minor alkali feldspar, sericite and chlorite, with a 

defmed fabric in one direction (Plate 3.13a, p. 62). Disseminated pyrite occurs 

throughout as thin veinlets (trending along fabric) and large cubic grains. The host rock 

is similar to that at the Knob Hill and Third Pond prospects. The quartz veins contain up 

to 95% quartz and 5% disseminated pyrite with no carbonate (Plate 3.13b, p. 62). 
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Plate 3.13a: Sample W90-1 OA from Davidsville Group host rock to the Bullet Prospect 
consisting of detrital quartz, minor feldspar, fme-grained mica matrix, platey chorite, Fe
oxides and pyrite [Field of view 7 mm, PPL]. 

Plate 3.13b: Sample W90-45B of quartz veins in Davidsville Group rocks at the Bullet 
Prospect. Interstitial fme grains of subhedral quartz occur in clusters as open space filling 
[Field of view 7 mm, XP and PPL]. 

3.3.2 Knob 

The Knob showing is located just west of the Appleton linear trend, 

approximately 0.4 km south of the Bullet Prospect at UTM coordinates 657350/ 5425650 

and it consists of auriferous quartz veins in black argillites and greywacke. 
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The discovery outcrop no longer exists because the site is now part of an active 

quarry. Several trenches are located beyond alders immediately west and northwest of 

the quarry at UTM coordinates 65718115425631 (Plate 3.14a, p. 106). The trenches 

expose quartz veins in Davidsville Group greywacke that has been altered to chlorite. 

Sulphide mineralization is disseminated in the host rock adjacent to quartz. A very small 

fleck of visible gold (1-2 mm) was observed in quartz float adjacent to a trench and 

appears to be from an~ 0.6-1 m wide bull quartz vein (Plate 3.14b, p. 106). The quartz 

crystals are well formed in places. 

In the quarry pit, a contact between greywacke and shale was exposed at UTM 

coordinates 657285/ 5425642. Quartz veins up to 3 em wide cut the sediments and a 

small amount of mineralization was noted in both units and the veins. Also in the quarry, 

a large bull quartz vein is exposed at UTM coordinates 6573341/5425531, which cuts 

cleaved, chloritized shale; pyrite occurs within the vein and adjacent to it. 

3.3.4 Bowater 

The Bowater Prospect is located in a gravel pit in the Town of Appleton at UTM 

coordinates 656026/5426826 on map sheet 2D/15, to the west of the Knob Prospect. 

Although abundant outcrop was observed in the area around the MOD coordinates, the 

exact location of the showing was not ascertained. Nevertheless, mineralized quartz 

veins in both greywacke and graphitic shale units are located throughout the area. Quartz 

veining is dilational and although present in both units, it is more prevalent within the 

greywacke. 

63 



3.3.5 Dome 

The Dome Prospect is part of the 'Linear Group' of claims staked in 1998 by 

Candente Resources Corp., and is located approximately 1 km east of Appleton, north of 

the TCH at UTM coordinates 658632/5428534 on NTS map 2D/15. 

The Dome Prospect consists of a very large knob of quartz protruding out of a 

very large trench (Plate 3 .15a, p. 1 06). In the immediate area to the large vein, pieces of 

the dark grey sedimentary host unit (Davidsville Group) (Plate 3.15b, p.106) are present 

in a quartz breccia. The quartz also exhibits open space filling features in places. A very 

small amount of visible gold was observed to be associated with apple green sericite at 

the main vein. 

3.3.6 Outflow 

The Outflow Prospect can be accessed by traveling through the south side of 

Glenwood along the Gander River outflow. The main road eventually becomes a well

maintained road, which provides easy access within 1 00 m to the property; skidder trails 

and grown over drill paths lead directly to the trenched areas. As the Outflow Prospect 

consists of two large mineralized zones, it is extensive. Trenches were also located by 

traversing an abandoned logging road off the south Salmon River Resource Road 

approximately 2 km from Glenwood. 

Both the Piper and Mustang zones were examined for this study. Locating the 

trenches at the Piper Zone was initially time-consuming because there were no signs of 

trenching activity in the locality defined by the MOD. There was some evidence of 
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drilling or backfilling in the immediate area ofUTM coordinates 653618/5422551, but 

upon much traversing through a thickly wooded area, no outcrop was found. An outcrop 

of black, very cleaved, quartz veined graphitic shale was located at UTM coordinates 

653848/5422593 (Plate 3.16a, p. 106). 

The first trench or stripped area was located at UTM coordinates 653807/ 

5422244 and provided excellent outcrop exposure of a quartz veined, mineralized and 

altered sedimentary unit (Plate 3.16b, p. 106). Quartz veins cut the sedimentary unit and 

quartz breccia with rusty staining is well developed (Plate 3.17a and b, p. 107). The 

brecciated sediment fragments range in size from millimeter scale to 7 em, are variably 

silicified and exhibit original laminations. Quartz veins, up to 3 em wide in places, are 

smooth to vuggy with well-formed, fine-grained quartz. There was also a single, large 13 

em wide massive, milky, homogeneous quartz vein present which is similar to the veins 

observed at Jonathon's Pond. Silicification is present in the wall rock adjacent to the 

quartz veins and excellent comb and fme-grained spectacular quartz textures are present 

as well. Disseminated pyrite occurs more often in the quartz than in the sedimentary unit 

and hematite staining is present throughout. 

A second, 15m long trench that trends 134° was observed at UTM coordinates 

653624/5422060. The trench is mostly grown over, but contains a very small outcrop 

exposure ~ 2 x 2.5 m of a moderately deformed sediment. The cleaved, fme-grained 

sandstone exhibits patchy silicification around quartz veins (similar to those observed in 

trench 1). 

Petrographically, the quartz breccia consists of angular, fine-grained sediment 

clasts altered to clay minerals with disseminated pyrite. The matrix is composed of fine-
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grained carbonate and quartz exhibiting interlocking textures (Plate 3.18a and b, p. 66). 

Vuggy carbonate grains surround sediment fragments and are themselves rimmed by Fe-

oxide (Plate 3.18c and d, p. 67). 

In 2002, Altius Resources suggested that the Mustang Trend, in particular the 

Outflow Prospect, exhibited potential Carlin-type Au deposit characteristics based on a 

variety of evidence that included the presence of dickite, ferroan dolomite alteration, 

decalcification, barite mineralization, and localized silicification, including jasporoid 

development. Altius subsequently entered into a joint venture agreement with Barrick 

Gold on the project which created a staking rush within the Botwood Basin environs. 

Barrick subsequently dropped the joint venture in 2004. 

Plate 3.18: a,b) Photomicrograph from the Mustang Trend sample W0-49A, Outflow 
Prospect quartz breccia. Matrix is composed of quartz and carbonate and the fragments 
are altered to clay [Field of view 7 mm, PPL and XP]. 
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Plate 3.18: c) Photomicrograph exhibiting quartz breccia and quartz veins of sample 
DW90-50A [Field of view 7 mm, PPL]. d) Close-up of fragment from sample DW90-
49 A surrounded by radiating carbonate crystals [Field of view 2 mm, XP]. 

3.4 Central Botwood Basin (Mount Peyton Prospects) 

The Mount Peyton Prospects as described herein are hosted by, or are 

immediately adjacent, to the Mount Peyton Intrusive Suite and include the Hurricane, 

Corsair, Slip and Jumper's Brook prospects on NTS map sheets 2D/14 and 2Eil (Figures 

3.7 and 3.8, p. 97). 

Of the five showings along Salmon River, Tallman (1990) identified the Corsair 

and the Hurricane as the most important and as such, only these two prospects were 

examined. A fairly poor resource road leading from the southern Salmon River Access 

Road provides ATV access to the Salmon River. A series of occurrences are located 

along the Salmon River such as the Hurricane, Corsair, Mount Peyton and Sabre. The 

Slip and Jumper's Brook prospects are located fairly close to major routes so access is 

very good. 
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3.4.1 Hurricane Prospect 

The Hurricane Prospect is located approximately 7 km. west of Glenwood, along 

the Salmon River and can be accessed via abandoned logging roads from the South 

Salmon River Resource Road at UTM coordinates 645161/5425138 on NTS map sheet 

2D/14. 

The prospect is exposed in a small riverbank outcrop (exposure now< 1 x 1m) 

along the southwest bank of the river, just down stream from a small island (Plate 3 .19a, 

p. 1 07). The exposure is mostly grown-over and allows only for a trend of 022° to be 

estimated (Plate 3 .19b, p. 1 07). The mineralization is hosted in medium-grained diorite 

of the Mount Peyton Intrusive Suite (Plate 3.19c, p. 107). The host exhibits a white to 

grey sericitic alteration close to the mineralized zone. The diorite is locally plagioclase 

porphyritic and sulphides are abundant, occurring as veinlets, patches and disseminations. 

Two drill collars were found in the boggy area adjacent to the river but transects through 

the wooded area adjacent the riverbank did not reveal any outcrop or trenches. 

Sample JOD22 is comprised of30% plagioclase, 20% hornblende, 15% sericite, 

10% biotite, 10% quartz (reaction rim with biotite), 5% pyroxene, 5% apatite, (with some 

rare oscillatory zoning) and 5% oxides. The edges of the hornblende are replaced by 

biotite and rare simple twins are observed in plagioclase. The textures suggest that the 

pyroxene formed first, followed by hornblende, then biotite and plagioclase (Plate 3 .20, 

p. 69). 
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Plate 3.20: Photomicrograph of JOD22 from the Hurricane Prospect consisting of 
hornblende (Hb ), plagioclase (Pl), biotite (Bt), pyroxene, apatite, 5% oxides and 10% 
quartz (note reaction rim with biotite). Dusty alteration is sericite [First photomicrograph 
has 7 mm field of view in PPL. Second photomicrograph has 2 mm field of view in PPL]. 

Sample JOD23, an altered and mineralized sample, contains 15% plagioclase, 

35% sericite (replaces feldspar), 15% quartz, 5% apatite (occurring in plagioclase), 20% 

Fe-Ti oxides, and 10% sulphides (Plate 3.21, p. 69). Tiny sulphide veinlets and quartz 

run through the sample and the sulphides are also disseminated throughout. There is 

almost complete replacement of original igneous phases in this section indicating that it is 

severely altered. 

Plate 3.21: Photomicrograph of sample JOD23 from the Hurricane Prospect comprised 
of plagioclase, sericite (replaces feldspar), quartz, apatite, Ti-Fe oxides, pyrite and 
arsenopyrite. Sulphides are mainly concentrated along the edges of the quartz veins and 
in tiny sulphide veinlets [Field of view 7 mm, PPL and XP]. 
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3.4.2 Corsair Prospect 

The Corsair Showing is located upriver from the Hurricane Prospect at UTM 

coordinates 644408/5425289. The showing outcrops along the riverbank and is partly 

submerged in the Salmon River. It is ~2m wide and extends~ 4 m out into the river. 

The diorite host exhibits green carbonate and sericite alteration. The outcrop is highly 

sericitic with very little visible sulphide; however, surficial rusting indicates that 

sulphides are present. 

3.4.3 Slip 

The Slip Showing is located in the Neyles Brook quarry at UTM coordinates 

64354115438244 on NTS map sheet 2E/03, approximately 15 km west of Glenwood. 

The quarry began operation in 1995 and is easily accessed via a 500 m dirt road from the 

TCH. Outcrop is best exposed along blasted pit walls as the glacial till and soil cover in 

the surrounding area is about 3m thick (Roffe, 2003). The Slip Showing consists of 

mineralization within a miarolitic granitic dyke on the south side of the quarry. 

At UTM coordinates 64354115438244 at the back edge of the pit there is a rusty, 

mineralized zone in the granite containing galena, pyrite and arsenopyrite. Aside from 

this large mineralized zone in the pit wall, mineralized mylonitic cavities in pegmatite are 

present near the beginning of the pit at UTM coordinates 643564/5438321. Random 

quartz carbonate veins were also noted throughout the quarry. 

Petrographically, sample JOD27B contains 50% alkali feldspar, 30% quartz, 10% 

carbonate and 10% plagioclase (Plate 3.22, p. 71). The rock is therefore classified as 
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medium-grained, alkali feldspar granite. A low temperature granophyric texture of 

intergrown quartz and alkali feldspar is prevalent. The alkali feldspar has undergone 

sericitic alteration. A large quartz-carbonate vein cuts the sample. Prismatic ( euhedral) 

quartz crystals occur at the edges of the vein, surrounded by anhedral carbonate. The 

carbonate occurs in one cluster and is not associated with the feldspar. 

Plate 3.22: Photomicrograph of sample JOD27B of the Slip Prospect. a) intergrown 
prismatic quartz (grey) and carbonate [Field of view 7 mm, XP]. b) Granophyric texture 
from intergrown quartz and alkali feldspar [Field of view 7 mm, PPL]. 

3.4.4 Jumper's Brook 

The area as indicated by the MOD was traversed extensively. The only outcrop 

exposure is in the brook as either side of the brook is generally marshy with gently rolling 

hills littered with abundant boulders of hornfelsed sandstone. The only mineralization 

located was in subcrop along the brook at UTM coordinates 617185/5428579 (Plate 

3.23a, p. 108). These boulders are very angular, very fme-grained, silicified hornfels that 

contain patches and small veinlets of sulphides (Plate 3.23b, p. 108). A vuggy quartz 

vein cut the hornfels and some mineral banding of mica was observed. 
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Modal percentages were difficult to determine for sample JOD118 from Jumper' s 

Brook due to alteration. In general, the sample comprised 70% fme-grained matrix 

(quartz, feldspar and sericite) and 25% non-orientated grains of hornblende, biotite, 

chlorite and cordierite as well as 5% pyrite veinlets and disseminations (Plate 3.24, p. 72) 

Hornblende is almost entirely altered to chlorite and plagioclase is altered to sericite. 

Sub-parallel quartz veins run through the section with sulphide blotches occurring around 

these veins. 

Plate 3.24: Photomicrograph of sample JOD 118 from Jumpers Brook showing non
orientated grains of chlorite altered hornblende in a sericite-altered, fme-grained matrix 
of feldspar and quartz [Field of view, 2 mm, PPL and XP]. 

3.5 Southeastern Botwood Basin (Paul's Pond Region) 

With the exception of the Beaver Brook Mine (Hunan Prospect), the following 

gold occurrences are located in the vicinity of Paul's Pond and include the LBNL, Goose, 

Road Showing, Aztec, Hornet, Greens Pond #2 and A-zone prospects; all can be accessed 

via a series of forestry access roads from the steel bridge along the east side of the 

Northwest Gander River. Many of these roads are no longer in use and are only 

negotiable via A TV s. Some well maintained trails in the vicinity are kept in good 
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condition by owners of a nearby hunting lodge. The Hunan Prospect is an antimony 

occurrence on the west side of the Northwest Gander River and access to this property is 

excellent along the wide, well maintained Salmon River Access Road (Figure 3.9, p. 98). 

The Paul' s Pond prospects cover a 20 km2 area and the property is centered on 

Paul' s Pond and Greenwood Pond on NTS map sheet 2D/11. The prospects occur near 

the boundary between the Davidsville and Indian Islands groups (Figure 3.10, p. 99). A 

regional till survey was conducted in this area between 1986-87 but the results were poor 

due to the thickness of the till cover. A lake bottom survey conducted in 1988 defined a 

large anomalous area and follow-up prospecting led to the discovery of mineralized 

outcrops. 

3.5.1 Hunan (Beaver Brook Mine) 

The Beaver Brook Mine (Hunan Antimony Prospect) is located at UTM 

coordinates 629855/5395490 on NTS map sheet 2D/11 , 1 km west of the Northwest 

Gander River. The mine is ~ 40 km south-southwest of the town of Glenwood and can 

be accessed by a wide, very well maintained resource road from the TCH. Physiography 

is characterized by a gentle rise from the Northwest Gander River to the east of the 

property to the higher ranges of the Mount Peyton to the west. Two northwest trending 

brooks, Beaver and Cooper Brooks, transect the area, along which outcrop is readily 

exposed. The prospect consists of fracture-controlled stibnite veins, hosted in lower 

greenscist facies Silurian metasediments, and has been classified as an Acadian, 

epithermal style mineralization (Tallman, 1991). The sedimentary host rocks are 
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currently mapped as part of a thrust slice of Davidsville Group sediments within the 

Indian Islands Group (figure 3.11 , p. 1 00) 

The Hunan Prospect was assessed during the 2003 field season at a trenched and 

stripped area south of Cooper Brook. The outcrop consists mainly of shale and 

greywacke beds with abundant quartz veining. The veins appear more linear in the 

greywacke unit and are slightly sheared at the margins. Movement seems to be enhanced 

along a contact between the shale and greywacke units. The shale is much more affected 

by deformation and exhibits brecciation in places. The stibnite mineralization occurs 

more massively at the boundary between the shale and greywacke and within the quartz 

veins. Some carbonate veins occur with quartz-filled centers, and some openings have 

voids where quartz is better formed. The widths of the veins are generally 1 em wide. 

Semi massive cubic and disseminated pyrite blebs were noted within quartz veins and the 

host rock and veins of massive stibnite, up to 4 em wide, were also noted. 

The Beaver Brook Mine was developed between 1994 and 1998 by Roycefield 

Resource Inc. who erected a 450 ton/ day mill in 1998. A short period of production 

ensued from 1998-1999, but the world antimony market was flooded by production from 

China, causing the price to plummet. The site was acquired by Beaver Brook Resources 

Ltd. in 2002, and in 2003 VVC Exploration Corp. (VVC) acquired all of the mine assets. 

3.5.2 LBNL 

The LBNL prospect is located at UTM coordinates 636504/5391062 and is 

exposed in a very small outcrop obscured by alders along a trail which veers off an old 
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resource road. It consists of a very limited exposure of a cherty, fine-grained granitic 

rock with conjugate tension gashes trending at 074/32 Nand 000/70 N. The host rock 

intrudes Davidsville Group rocks that are exposed just to the northwest and the tension 

gashes are not observed within the sediments. Pyrite and arsenopyrite are present as 

disseminations. 

Polished thin sections were cut from a sample of mineralized granitic host rock 

(JOD45B and JOD45B). Sample JOD45B is a sample of pervasively altered, granitic 

host. The original modal petrography is only estimated due to pervasive alteration, 

which is dominantly sericitic with some chlorite. The section contains 55% alkali 

feldspar, 20% quartz, 20 % sericite and 10% sulphides consisting of cubic pyrite and 

rhombic arsenopyrite (Plate 3.25, p. 75). This rock is classified as fine-grained 

leucogranite. A low temperature granophyric texture of intergrown quartz and alkali 

feldspar is preserved where it is not altered to sericite. 

Plate 3.25: Photomicrograph of sample JOD45B consisting of a large rhombic 
arsenopyrite (Ar) grain in a pervasively sericite (Sr) altered leucogranite. Some primary 
feldspar (Fdspr) exhibiting a granophyric texture remains [Field of view 2 mm, PPL]. 
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3.5.3 Goose 

The Goose Prospect is located at UTM coordinates 635743/ 5390002, 

approximately 1.5 km southwest of Paul' s Pond. An overgrown, boggy drill path leads to 

the prospect, south from the LBNL. The trenches were filled with water, so little outcrop 

was observed. The samples collected for this study were trench float from along the sides 

of the trenched areas. Some of the float in the area was mineralized, white granite, as 

seen at the LBNL Prospect. Other float consisted of mineralized Davidsville Group 

greywacke in which bedding is sub parallel to cleavage. The greywacke is silicified and 

exhibits sericitic alteration. Large, randomly orientated, needle-like arsenopyrite grains, 

up to 0.5 em long, and elongate pyrite grains, up to 3 mm long, were observed in grab 

samples. 

3.5.4 Road Gabbro Showing 

The Road Gabbro Showing is located at UTM coordinates 635216/ 5391238, west 

of the LBNL Prospect. The trench has been backfilled and is overgrown with alders; 

outcrop is not visible in the area. A mound of very angular trench material, covered in 

vegetation, contained mineralized gabbro float with quartz veining. The mineralization 

consisted of disseminated, fme-grained pyrite and the gabbro was silicified. The prospect 

has been described as consisting of pyrite-arsenopyrite and quartz veins in silicified and 

carbonatized gabbro. The gabbroic intrusion cuts Davidsville Group sedimentary rocks 

(Evans, 1996). The best assay obtained by Noranda from a grab sample at the prospect 

was 2.24 g/t over 1.0 m (Tallman, 1989). 
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3.5.5 Aztec Prospect 

The Aztec Prospect is located approximately 1 km southwest of Greenwood Pond 

and 2.2 km east of the Northwest Gander River at UTM coordinates 6306041/ 5388967. 

It can be accessed via a network of abandoned logging roads. This prospect is exposed in 

an open area with multiple large trenches and stripped areas (Plate 3 .26a, p. 1 08). The 

host rock consists of an intensely silicified and seritized breccia. In general, the outcrop 

appears to be most affected by hydrothermal fluids towards the north-northwest. The 

sedimentary host unit is heavily jointed with dominant cleavage directions at 111/69S, 

126/37N, 047/90, and 167/66W. A large silica sinter, as well as quartz breccia and 

chalcedonic quartz were exposed at surface (Plate 3.26b, p. 108). 

3.5.6 Hornet 

The Hornet Prospect is located at UTM coordinates 628844/5388101 down a 

muskeg trail from the Aztec Prospect. There are several large trenches with fairly good 

outcrop exposure and minor overgrowth. The surrounding, unaltered country rock 

resembles Indian Island Group sediments, consisting of green-grey silicified siltstone to 

green micaceous siltstone that weather to a brown color. In general, most of the outcrop 

is altered and exhibits rusty patches. V einlets, patches and disseminations of arsenopyrite 

and pyrite were identified in outcrop and occur within a medium-grained unit (called a 

felsite in earlier reports (Evans, 1996)), which resembles a K-feldspar granite. The 

mineralized zone exhibits crosscutting (conjugate), vuggy quartz carbonate veins ranging 

from 1 to 3 em wide and trending 158/47 Nand 045/30 N (Plate 3.27a, p. 108). 
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In a polished thin section from sample JOD80A, the sample is pervasively altered 

to sericite and the original grain boundaries are barely visible making rock identification 

difficult. The sample contains 30% sericite, 40% K-feldspar, 20% quartz, 10% 

carbonate, 5% pyrite and Fe oxides (Plate 3.28a, p. 78). A quartz-carbonate vein cuts the 

unit (Plate 3.28b, p. 78). 

Plate 3.28: Photomicrograph of sample JOD80A from the Hornet Prospect. a) Very [me
grained, pervasively seritized host rock with cubic pyrite grain [Field of view 7 mm 
PPL]. b) Close-up ofk-feldspar grain (fspr) surrounded by carbonate (cb), quartz (qtz) 
and sericite (sr) [Field of view 2 mm, XP]. 

3.5. 7 Greenwood Pond #2 

The Greenwood Pond #2 Prospect occurs along an ATV trail southeast of the 

Aztec at UTM coordinates 630400/5387150. It consists of a large exposure that has 

been stripped and/or blasted. The host is a fme-grained gabbro with very large quartz 

veins that generally trend 045°. The gabbro is intensely Fe carbonate altered and is also 

rusty from the weathering of sulphides (Plate 3 .27b, p. 1 08). 

Sample JOD81A indicates that the lithology is fine-grained with 30% sericite, 

20% chlorite, 20% albite, 12% Fe-oxides, 10% quartz, 5% hornblende and 3% sulphides 
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(Plate 3.29, p. 79). Grain boundaries are not well defmed and are aligned in a slight 

fabric indicating low-grade deformation. 

Plate 3.29: Photomicrograph of section from sample JOD81A from the Greenwood Pond 
#2 Prospect showing a fme-grained, sericite (Ser) and chlorite altered gabbro with some 
original quartz, hornblende (Hb) and albite (Ab) preserved. Hornblende is being altered 
to chlorite and cubic pyrite disseminations are also present [Field of view 2 mm, PPL]. 

3.5.8 A-Zone Extension 

The A-Zone Prospect is located along an ATV trail, just south-southwest of the 

Hornet Prospect at UTM coordinates 631150/5388800. The prospect is exposed in 

trenches for over 250 m and the gold mineralization is hosted by discontinuous 

extensional quartz-carbonate veins and veinlets developed within choloritized and 

potassically altered Davidsville Group greywacke. The greywacke unit occurs as a 15-20 

m wide bed within grey-green siltstone. An assay value of2.60g/t Au over 7.0 m was 

obtained from this prospect (Tallman, 1989). Two extensively trenched areas were 

examined which exposed mineralized greywacke with siltstone interbeds. Pyrite and 
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arsenopyrite occurred in veinlets, up to 0.5 em wide, and patches and is locally semi

massive near quartz-carbonate veins that are up to 2 em wide. 

3.6 Southern Botwood Basin (Great Bend Region) 

This area is referred to as the Great Bend Region because the large bend here in 

the Northwest Gander River has historically been referred to as the "great bend" (Figure 

3.9, p. 98). The region is characterized by gently rolling hills covered by black spruce, 

scattered bogs and lakes with drainage to the north and is cross-cut by a series of 

abandoned logging roads. However, outcrop exposure is limited due to a 3-5 m thick till 

cover. The Rolling Pond and Chiouk Brook prospects occur on the north side of the 

Northwest Gander River, whereas the Breccia Pond, Lizard Pond and Swan Lake 

prospects are on the south side. 

With the exception of the Rolling Pond, Swan Lake and Huxter Lane prospects, 

the following properties described herein are underlain by the Great Bend Complex, 

which occurs adjacent to sedimentary rocks of the Ordovician Spruce Brook Formation 

(Mount Cormack Subzone), Cambro-Ordovician ophiolitic rocks of the Coy Pond 

Complex, and Ordovician sedimentary rocks of the Davidsville Group and North Steady 

Pond Formation (Botwood Group) respectively. The Rolling Pond Prospect occurs 

within rocks of the North Steady Pond and Spruce Brook formations, the Swan Lake 

Prospect is hosted within Indian Islands Group sediments, and the Huxter Lane Prospect 

occurs within the Coy Pond Complex (see Figure 3.9, p. 98 for prospect locations and 

figure 3.14, p. 103 for geology of the prospects hosted within the Great Bend Complex). 
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The Great Bend Complex is an ophiolite complex that is in fault contact (possibly 

overthrust) with the Early Ordovician Spruce Brook Formation (Dickson, 1992) and was 

tectonically emplaced as a major allocthon (Colman-Sadd and Swinden, 1984). 

The best-exposed rocks of the Great Bend Complex are banded or serpentinized 

peridotite, magnesite-altered peridotite and sheared serpentinized peridotite to 

serpentinite schist and lesser siltstone. Pervasive Fe-carbonate alteration, silicification 

and talc carbonate alteration with quartz and magnesite veining is characteristic of the Au 

mineralized areas (Dickson, 1992). 

3.6.1 Rolling Pond 

The property is located at the boundary between Botwood Group sediments and 

Spruce Brook Formation metasediments (Dickson, 1991). This interpretation differs 

from the work of Colman-Sadd and Russell (1988), who mapped the property entirely 

within Botwood Group rocks; the Spruce Brook Formation was mapped to the south. 

The MPIS outcrops to the northeast of the property and the Stoney Lake Formation 

volcanic rocks occur approximately 16 km west of the property (Barbour eta!., 1999). A 

major east-northeast trending fault zone, marked by ophiolitic rocks, that runs through 

Miquel's Lake, marks the boundary between the Botwood Group and Spruce Brook 

Formation to the east (refer to Figure 3.12, p. 101) (Colman-Sadd and Russell, 1981). A 

detailed geology map of the property was presented by Barbour eta!. (1999) (Figure 

3.13, p. 102). 
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The prospect was accessed via a woodcutting road off the Baie d'Espoir highway, 

40 km south of the TCH-Highway 331 junction. A 1999 fieldtrip guidebook (Barbour, 

1999) leads to a quartz sinter at UTM coordinates 611423/ 5391239. Here, subcrop of 

very white quartz, with vugs up to 15 x 7 em in size, were observed with very well

formed quartz crystals up to 2 em long (Plate 3.30a, p. 109). Arrays of distinctive 

epithermal textures are present including cockade textures, quartz rosettes (silica sinter) 

and silica replaced lattice blades. Approximately 6 m north, there is a large flat outcrop 

of very massive white quartz, presumably sinter. Quartz-brecciated float is abundant in 

the area, which increases in amount to the north (Plate 3.30b, p. 109). 

At UTM coordinates 611366/5391302 subcrop of quartz breccia with a very 

small outcrop of host rock composed of fme-grained sandstone that is green-grey on fresh 

surface and brown on the weathered surface is exposed. The host contains some shiny 

quartz (5%) and exhibits carbonate alteration. At UTM coordinates 611393/5391270 

there are both outcrop and subcrop exposures consisting mainly of quartz breccia with 

angular pieces of wallrock. The brecciated fragments consist of a grey, fine to medium

grained, variably silicified sedimentary rock. The fragments vary in size from a few mm 

to several centimeters and are very foliated. Some of the fragments are red in places, 

indicating hematite alteration. Trenches, or well-exposed outcrops of host rock, were not 

located in a radius traversed about the sinter. Along the path to the woodcutting road, a 

conglomerate outcrop is exposed at UTM coordinates 61117115391587. The 

conglomerate is foliated and clast-supported with a grey sandy matrix and is interbedded 

with green/grey fine to medium-grained sandstone. 
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3.6.2 Chiouk Brook 

The Chiouk Brook Prospect is located at UTM coordinates 616099/5383976 

along Chiouk Brook (Plate 3.31, p. 1 09) which enters on the north side of the great bend 

in the Gander River on NTS map sheet 11D/2. It is approximately 6 km east of highway 

360 and can be accessed via an old resource road and drill path. Outcrop is very limited 

and the physiography is characterized by a low relief, gently rolling topography. A large 

fire swept the area in 1986 so the majority of the land is burnt over making traversing 

difficult. 

The outcrop is mainly exposed along the north-northeast side of the river and 

consists of a 6 x 3 m zone. The host rock is dark grey, silicified, very fine-grained 

sandstone that contains disseminated pyrite and arsenopyrite. Down the brook, at UTM 

coordinates 616144/5383959, an outcrop of less silicified, black slate is exposed. This 

outcrop is very deformed and the main cleavage is sub-parallel to the bedding that trends 

026°. The unsuccessfully trenched area was observed along the northeast side of the 

brook at UTM coordinates 616209/ 5383967 and a very small outcrop of black 

serpentinized material was exposed in close proximity. The Chiouk Brook Prospect is 

located at the northern margin of the Great Bend Complex. 

3.6.3 Breccia Pond 

The prospect can be accessed via an abandoned logging road approximately 8 km 

from the Baie d'Espoir Highway, and is located approximately 3 km south of the 

resource road at UTM coordinates 616675/5380345 and is reachable by traversing 
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through difficult terrane of thick forest and marsh. An old drill path was noted in the 

vicinity of the prospect and three trenches were observed between the drill path and 

Breccia Pond. 

The main trench, immediately adjacent to the pond at UTM coordinates 616675/ 

5380345, exposes an extremely altered orange to red ultramafic host rock (Plate 3.32a, p. 

11 0). In some places, the host is less altered and exhibits chromite grains ~ 1 mm in 

diameter. A few thin quartz veins cut the host rock and range from 0.5- to 1.0 em wide. 

Quartz crystallized in fractures following deformation because the crystals are perfectly 

formed and have not been affected by alteration. There were probably multiple fluid 

phases as some quartz veins crosscut others. The host rock is very hematized around 

fractures, forming haloes up to 3 em wide (Plate 3.32b and c, p. 110). A very minuscule 

amount of disseminated mineralization was noted in outcrop and a green alteration 

mineral (possibly malachite) was present. A rosette of yellow and green elongate crystals 

was noted at one locality and was later identified as an aggregate of tarnished, acicular 

millerite crystals. Due south, a second trench was found at UTM coordinates 616723/ 

5380287. This trench contains the same unit as observed in trench 1, although there is 

semi massive pyrite present at this locality. 

The third trench is located at UTM coordinates 616768/5380397 and the outcrop 

consists of un-mineralized, very red, siliceous jasporoid (Plate 3 .32d, p.11 0). The trench 

is approximately 40 m in length and exposes abundant outcrop. The outcrop is generally 

very silica-rich and this area exhibits the most intense alteration at the prospect as 

indicated by the brecciation and the intense red color of outcrop. In places, the rock 
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exhibits white coatings of magnesite and beautiful crystalline quartz with very shiny 

surfaces. 

Sample JOD36B was collected from the second trench and is composed of 40% 

hematite, 30% magnesite, 20% quartz, 5% oxides and 5% serpentinite (Plate 3.33, p. 85). 

Petrographical analysis revealed that the red alteration mineral was hematite and that 

quartz occurs as interlocking anhedral crystals in veins that contain sulphides. There are 

multiple generations of quartz and magnesite veining as indicated by the crosscutting 

relationships. Thus, this rock consists of silicified and hematized, brecciated serpentinite. 

Plate 3.33: Photomicrograph of JOD36B exhibiting magnesite (Mg) and quartz (Qtz) 
brecciated hematized serpentinite (Hm-Sp) [Field of view 7 mm, PPL]. 

3.6.4 Swan Lake 

The Swan Lake Prospect is located along the west side of Swan Lake at UTM 

coordinates 613387/ 5378508. The prospect was difficult to locate, as the trenched area 

is located behind the south tree line at the back of a large marsh. 

One trench was located during the 2003 field season that was approximately 60 m 

long with limited outcrop exposure. The south end of the trench is in glacial till, 
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however, outcrop of green, laminated Indian Islands Group siltstone is exposed. Quartz 

veins cut through the unit and are up to 2 em wide, however, no mineralization was 

found. At the north end of the trench, a black fme-grained slate unit is exposed in a very 

small outcrop. Abundant quartz breccia float, although not observed in situ, was also 

found at this end of the trench (Plate 3.34, p. 110). The brecciated pieces consisted of 

silicified slate and pyrite mineralization was noted in some grab samples. The vegetation 

cover in this area is extensive and no other outcrop localities were located. The prospect 

is located within Indian Islands Group sediments near a faulted contact with the Great 

Bend Complex. 

3.6.5 Lizard Pond South 

The Lizard Pond South Prospect was discovered by BP Canada in 1989 and is 

located along the southern end of Lizard Pond at UTM coordinates 614200/5379550. It 

comprises a series of isolated, fault-controlled quartz breccia veins in grey to brown, 

siliceous, locally brecciated, magnesite-altered serpentinite of the Great Bend Complex. 

The large stripped area on the south end of Lizard Pond was examined during the 

2003 field season (Plate 3.35a, p. 111). Abundant outcrop was exposed in a very large 

open trench/ stripped area and the units appeared extremely deformed as indicated by 

foliation. In general, the main unit is a very altered ultramafic that is cut by quartz veins 

up to 0.5 m wide (Plate 3.35b, p.111). In places, openings are filled with well-formed 

quartz crystals and some also contain carbonate that is rimmed by quartz. The original 

rock appears to have been a serpentinite-altered ultramafic as chromite is still present 
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locally, however, most of the unit has been altered to magnesite and has been extremely 

Fe-carbonatized. A dominant, well-exposed quartz breccia vein cuts this altered unit at 

067°/70° S. The brecciated fragments do not seem to be altered ultramafic and contain 

sulphides. 

A polished thin section of sample JOD50 from a trench at the Lizard Pond South 

Prospect is composed of 60% serpentinite, 20% magnesite, 10% quartz, 5% chromite, 2% 

Fe oxides and 3% pyrite. The section is very fme-grained with multiple vein systems. 

The veins are composed of magnesite and lesser quartz, and one large vein cuts a 

perpendicular smaller vein, which is offset in several places (Plate 3.36, p. 87). The 

sample is a magnesite-altered serpentinite with well-preserved serpentinite mesh textures. 

Plate 3.36a, b: Photomicrograph of magnesite-altered serpentinite ultramafic host to the 
Lizard Pond South Prospect. Multiple generations of magnesite (Mg-carbonate) veining. 
Note mesh like texture and oxides from breakdown of igneous minerals. The second 
section exhibits blotchy pyrite mineralization [Field of view 2 mm, PPL and XP]. 

Sample JOD52A from the main trench (Plate 3.37, p. 88) is comprised of20% 

serpentinite, 40% magnesite, 20% quartz, 15% acicular pyrite and 5% Fe oxides. The 

hand specimen was collected from a very siliceous zone of quartz veins with semi 

massive pyrite. 
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Plate 3.37: Photomicrograph of sample JOD52A from a sample collected from the large 
stripped area at the Lizard Pond South Prospect [Field of view 2 mm, PPL]. a) Pyrite 
mineralization in quartz and magnesite with some serpentinite preserved. b) Mesh like 
texture of magnesite altered serpentinite with pyrite [Field of view 7 mm, PPL]. 

3.6.6 Lizard Pond North 

The Lizard Pond North Prospect is located at the northwestern tip of Lizard Pond 

at UTM coordinates 613612/ 5380831 on NTS map sheet 2D/11. The two trenches that 

were excavated at this prospect were examined. The first trench at UTM coordinates 

613612/5380831 is large (~15m long) and has abundant exposure of a greyish blue 

peridotite. The second trench, approximately 190m away at UTM coordinates 6134711 

5380697, is only 5-6 m long and exposes a highly talc-carbonate altered zone and an 

ultramafic shear zone that trends 115/58 N. Disseminated arsenopyrite and pyrite were 

noted in a magnesite-altered schist. 

Sample JOD55A from this prospect is a silicified, light grey ultramafic with 10% 

green talc and white magnesite. It weathers orange-brown at the surface and still has 

visible chromite. There are a few small (~2 mm) quartz veins and the rock is very dense. 
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Petrographically, the sample is comprised of 10% talc, 10% serpentine, 75% magnesite, 

3% chromite and 2% pyrite. The sample is therefore a magnesite-altered serpentinite. 

The magnesite exhibits a snakeskin texture (Plate 3.38, p. 89). 

Plate 3.38: Photomicrograph of sample JOD55A illustrating a snakeskin texture common 
in magnesite (Mg) altered serpentinite (Sp ). A grain of chromite is visible in the section 
[Field of view 7 mm, PPL]. 

3.6. 7 Huxter Lane 

The Huxter Lane Prospect is located in the southern Botwood Basin, 

approximately 11 km west of the Baie d'Espoir highway and is hosted in intrusive rocks 

of the Coy Pond Complex at UTM coordinates 603859/ 5367584 within mapsheet 2D/5 

(figure 3.9, p. 98). The prospect was discovered in 2002 and is currently under joint 

venture between Rubicon Minerals Inc. and Meridian gold Inc.. Samples were collected 

from the prospect by Derek Wilton in 2003 and comprise a light greenish grey 

porphyritic intrusive cut by quartz breccia veins. The brecciated host contains 
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disseminated pyrite and arsenopyrite and the rims of the breccia pieces and veins are 

rimmed in massive arsenopyrite. Disseminated sulphides also occur in the un-brecciated 

host rock. There is no published information on this prospect. However, a BSc. Honors 

thesis was conducted by Seymour (2003) on the Reid property, near this prospect, which 

has similar characteristics. A polished thin section was cut from sample W03-38 (Plate 

3.39, p. Ill) and comprises 35% plagioclase, 30% quartz, 15% alkali feldspar and 10% 

biotite, 5% hornblende and 5% pyrite (Plate 3.40, p. 90). The sample therefore has an 

intrusive dacitic composition that is further defined by geochemistry (chapter 5). 

Plate 3.40: Photomicrograph of sample W03-38 from Huxter Lane illustrating 
porphyritic fragments in a very fme-grained matrix [Field of view 2 mm and 7 mm, PPL]. 
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Figure 3.1: Location map for the Duder Lake, Clutha and Charles Cove Prospects. 
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Corsair Hurricane 

Figure 3.7: Location map for Mount Peyton Prospects, central Botwood Basin. 

Figure 3.8: General geology map of the northern Mount Peyton area (geology modified 
from Colman-Sadd and Crisby-Whittle, 2002) [refer to figure 2.4 for legend]. 
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Figure 3.12: Geology in the Great Bend Region (north of the Northwest Gander River). The Rolling Pond property is 
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Plate 3.1: a) Looking north towards the northern tip ofDuder Lake along the resource 
road, b) View east from elongate northeast trending ridge. Shear zone outline by valley 
below and mineralized sandstone and fossil outcrop exposed near vehicle to the west of 
the shear zone (indicated by arrow) [S. Heulin for scale]. 

Plate 3.2: a) Grab sample from trenched area exposing Fe-carbonate altered, quartz 
veined, mineralized sandstone unit (Sample JOD96H). b) Grab sample from Flirt 
Prospect trench (Sample JOD99). The white mineral is carbonate and sericite, the blue
grey mineral is albite and the black mineral is pyroxene [penny for scale]. 

Plate 3.4: a) Goldstash Trench (S. Hinchey for scale). b) Corvette Fe-carbonate altered 
trench. 
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Plate 3.7: a) Quartz veins in deformed greywacke at the Knob Hill Prospect, b) 
Quartz veins in altered greywacke or cherty concretion at the Third Pond Prospect 
[camera lens for scale, 5 em wide]. 

Plate 3.10:a) Quartz float boulder with bladed texture, b) quartz veined, mineralized and 
talc altered serpentine from Jonathon's Pond Prospect. 

Plate 3.12: Bullet Prospect overgrown trench (S. Hinchey for scale). 
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Plate 3.14: a) Trench at Knob Prospect, northwest of quarry [S. Hinchey for scale], b) 
Large bull quartz vein containing visible gold in greywacke [hammer for scale]. 

Plate 3.15: a) the main trench and stripped area of the Dome Prospect [J. 0' Driscoll for 
scale], b) Laminated, stripped outcrop along the 'Appleton Linear' exposing Davidsville 
slate [utility knife for scale]. 

Plate 3.16: a) Graphitic, deformed shale north of the trenched area at the Piper Zone, 
Outflow Prospect, b) View of a trenched area exhibiting silicification and large quartz 
veins. 
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Plate 3.17: a) Rusty, silicified and brecciated outcrop at Outflow Prospect [hammer for 
scale]. b) Quartz brecciated laminated siltstone within the trenched area [camera lens for 
scale]. 

Plate 3.19: a) View up the Salmon River with D. Wilton and S. Hinchey at the Hurricane 
Prospect, b) close-up of Hurricane Prospect (marked by flagging) which is grown over 

· [hammer for scale], c) Quartz veined, mineralized diorite from the Hurricane Prospect 
[penny for scale]. 
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Plate 3.23: a) View along Jumper's Brook where angular mineralized subcrop was 
observed [backpack for scale], b) close up of mineralized boulder [tack for scale]. 

Plate 3.26: a) Large stripped area at the Aztec Prospect exposing a large silica sinter and 
rusty, mineralized sedimentary rocks. b) Piece of quartz breccia [camera lens for scale]. 

Plate 3.27: a) Conjugate quartz veins in felsite at the Hornet Prospect [camera lens for 
scale] , b) massive quartz veins in hydrothermally altered and mineralized gabbro at the 
Greenwood Pond #2 prospect [backpack for scale]. 
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Plate 3.30: Rolling Pond Prospect. a) Vuggy, well formed quartz crystals [penny for 
scale], b) Quartz breccia subcrop [pencil for scale]. 

Plate 3.31: View along Chiouk Brook with S. Hinchey standing at the Chiuok Brook 
Prospect. 
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Plate 3.32: Breccia Pond Prospect. a) Main trench and stripped area, b) Hematite 
alteration halo around quartz veins in carbonized ultramafic rocks, c) Grab sample from 
trench 1 exhibiting alteration halo around small quartz vein, d) Red siliceous jasporoid. 

Plate 3.34: Swan Lake Prospect. a) Quartz breccia with dark graphitic fragments. b) 5 em 
thick quartz carbonate vein with sulphide staining exposed in trench apparently between a 
green siltstone unit and a black graphitic unit. 



Plate 3.35: Lizard Pond South Prospect. a) Main trench and stripped area [J. 0' Driscoll 
and S. Hinchey for scale], b) Large quartz breccia vein [hammer for scale]. 

Plate 3.39: Huxter Lane Prospect sample consisting of quartz breccia. Brecciated felsic 
material is mineralized along grain boundaries. The sulphide mineralization is primarily 
arsenopyrite with minor pyrite. 
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4.1 Preamble 

CHAPTER4 

REGIONAL MAPPING 

This project involved mapping and lithological sampling along a series of 

transects across the Davidsville-Botwood boundary and locally into the Mount Peyton 

Intrusive Suite. The rationale was that the regional geological framework of the Botwood 

Basin and environs requires greater definition, especially with respect to the metallogeny 

of the numerous gold occurrences and prospects present in the basin. Regional mapping 

in the northern portion of the current study area substantiates previous work which 

suggested that the contact zone between the Davidsville and Botwood groups is 

complicated with an extensive shallow marine shale and limestone sequence, the Indian 

Islands Group, present between the two groups. This chapter outlines mapping, 

petrographic and paleontological observations of the regional lithologies, mainly in the 

northern and central portions of the basin. 

A number of fossiliferous samples were collected during the fieldwork, some of 

which had identifiable faunal assemblages (Douglas Boyce of the NLDNR made the 

paleontological identifications). The distinctly different faunal assemblages in the deep 

marine (Caradocian) Davidsville Group shale vs. the shallow marine Indian Islands 

Group, combined with regional stratigraphic correlations, provide the most definitive 

means of distinguishing between those units. Several previously reported fossil localities 

were re-evaluated and several new localities were discovered. Samples with definable 
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fossils are listed in table A4.1 and previous paleontological work conducted in the region 

is outlined in table A1.3. 

Mapping transects were undertaken at various localities throughout the basin 

including: 1) the Duder Lake area, 2) the Bellman' s Pond area, 3) the Twin Ponds to Ten 

Mile Lake area, 4) the Glenwood-Appleton area, 5) Salmon River, 6) Red Rock Brook, 

and 7) Careless Brook. The observations made are of a reconnaissance nature, hence a 

more detailed and systematic mapping program may be needed to better define the 

overall regional stratigraphy. Conclusions derived herein are based on interpretation of . 

previous work in conjunction with the observations made during the current study. 

4.2 Duder Lake Area 

4. 2.1 Mapping Observations & Petrography 

Reports on the geology of this area are contradictory (i.e. , Churchill, 1994; Currie, 

1994; Currie, 1997; Dickson, 2005). The main lithologies previously mapped in the 

Duder Lake area include the Ten Mile Lake Formation, Duder Complex and Davidsville 

Group [refer to chapter 2]. The gabbroic hosts to auriferous mineralization had been 

previously mapped as dykes, intrusive to the Botwood Group (Churchill and Evans, 

1992; Evans eta/., 1992; Churchill, 1994). Later studies removed the Botwood Group 

from the local stratigraphic column and defined the Duder Complex as comprising 

intensely cleaved sedimentary rocks which formed the matrix to variably sized tectonic 

blocks, including the gabbroic bodies previously mapped as dykes (cf Currie, 1994; 

Currie, 1995; Currie, 1997). Based on mapping observations and a review of previous 
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literature, the author supports the defmition of these bodies as intrusive to this area [refer 

to chapter 2]. During this study, the author noted several new fossiliferous localities that 

had been uncovered as a result of trenching; these fossiliferous horizons, combined with 

mapping observations may have implications for the redefinition of the stratigraphy in 

this region. 

At UTM coordinates 670020/ 5462754, a trenched area exposes laminated 

siltstone and interlayered fossiliferous limestone beds (sample JOD96E) (Plate 4.1, p. 

150); the fossils present in this sample are described below in section 4.2.2. Overall the 

outcrop weathers white and brown with cherty green, silty layers in some exposures. 

Bedding laminations are very fme, striking at ~346° with near vertical dips. Pyrite is 

disseminated in the siltstone layers. Approximately 6 m north, the beds appear to be less 

carbonaceous and fossils were not observed in hand specimen; here the predominantly 

silty beds strike at 344°/ 85° E and exhibit subparallel cleavage. The sedimentary 

lithologies are variably silicified. 

Further north, at UTM coordinates 669996/ 546281, an outcrop of poorly sorted 

sandstone with quartz veins and visible sulphides is interbedded with laminated siltstone. 

The 0.2 to 1 em wide quartz-filled tension gashes were only observed in the coarse

grained layer, although outcrop of the siltstone beds is limited. At one locality, the 

sedimentary unit is in contact with a sheared foliated unit. The fabric of the deformed 

material strikes northeast, parallel to the general trend of the contacts in the region. 

Detritus within the sandstone unit becomes coarser-grained towards the contact with the 

sheared lithology. The sandstone unit contains abundant pyrite associated with quartz-
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filled tension gashes near the shear, suggesting that sulphide mineralization may have 

been related to the shearing event. 

The sandstone unit also contains vesicle-like holes that may represent weathered 

out fossiliferous material, although no fossil impressions are observed in outcrop. 

Bedding trends 015°/ 85° E, whereas the shear zone trends 017°/ 90°, approximately 

parallel to the bedding. 

Petrographic thin sections were cut from samples JOD96K and JOD96J of the 

siltstone layer and the sheared unit, respectively. Sample JOD96K (Plate 4.2, p. 115) is 

an un-deformed, moderately sorted sedimentary rock. Most of the lithic material was too 

fme-grained to be identified. The larger fragments in thin section are predominantly 

quartz. 

Plate 4.2: Photomicrograph of sample JOD96K from the Duder Lake transect; note lithic 
quartz detrital grains in a fine-grained matrix [Field of view 7mm, PPL]. 

Sample JOD96J (Plate 4.3, p. 116) is likewise a sedimentary rock which, in this 

case, consists of 40% dolomite, 30% epidote and 30% Fe-oxides. The minerals are 

slightly aligned in one direction suggesting that the sample had undergone a small degree 

of strain or deformation, which is consistent with the observations made at the outcrop. 
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The protolithology was probably a limestone; hence the unit would belong to the Indian 

Islands Group as opposed to either the Davidsville or Botwood groups. 

Plate 4.3: Photomicrograph of sample JOD96J from Duder Lake transect. A) Large 
dolomite crystal [Field of view 2mm, PPL]. B) Epidote alteration around Fe-oxide [Field 
of view 7mm, PPL] (Dol=dolomite; Ox=Fe-carbonate staining; Ep=epidote). 

Directly east of this outcrop, a trenched area exposes a very small outcrop from 

which fossiliferous sample JOD96I was collected. The fossils present in this sample are 

described below in section 4.2.2. 

Sample JOD71B, from a trench at Duder Lake that was not previously mapped, 

consists of fme-grained sandstone with disseminated pyrite and local, large pyrite cubes. 

The trench exposes an interlayered coarse and fine-grained sedimentary unit. Randomly 

orientated quartz veins, ranging from 1 mm to 1 em wide, cut both types of layers. 

At UTM coordinates 669658/ 5468720, an unaltered and unmineralized ridge of 

gabbro (previously mapped as part of Duder Complex melange by Currie and Williams, 

1995) was sampled for geochronological and petrographical studies (sample JOD66A) 

(Plate 4.4, p. 150). The ridge comprises medium-grained gabbro with distinctive white, 

chaulky weathering at the surface. This unmineralized gabbroic body occurs within 
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cleaved, slightly micaceous, grey-green siltstone which has been previously mapped as 

part of the Duder Complex by Currie (1995). Petrographically this gabbro is composed 

of 45% uralitized pyroxene, 30% serpentinite, 10% plagioclase, 5% epidote, 5% biotite 

and 5% Fe-oxides (Plate 4.5, p. 117). Augite is altered to uralite (i.e. , hornblende 

pseudomorphs pyroxene). Thus, this rock is classified as an altered phaneritic pyroxene 

gabbro. 

Plate 4.5: Photomicrograph of an altered phaneritic pyroxene gabbro collected north of 
Duder Lake. Elongate, subhedral pyroxene (augite) crystals exhibit uralite alteration (Ur) 
with Ca-plagioclase (Pl) and serpentinite (Sp) occupying spaces between crystals. Minor 
epidote overprints the minerals and minor biotite is also present [Field of view 7mm, 
PPL]. 

4.2.2 Paleontology 

Sample JOD-096E was collected from a limestone bed that was interlayed with 

cherty siltstone (Plate 4.1 , p. 150) near the Duder Lake auriferous occurrences at UTM 

coordinates 670020/5462754. The sample was slightly deformed and the fossils 
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identified includeAnthozoa_Tabulata_Favosites (sp. undet.) and Bryozoa_ 

Stictopora _ Scalpellum (Lonsdale) (branching stick forms). 

The tabulata is an extinct group of colonial corals composed of tubes with 

prominent tabulae and poorly developed septa. The largest sub order is the Favositida 

and the typical genus is Favosites (Figure 4.1 , p. 117). The name is derived from the 

Latin word favus (honeycomb), as the corallites are closely packed and hexagonal, 

resulting in the honeycomb skeletal appearance. The Favositids are the most common 

corals of mid-Paleozoic reefs and grew with diameters of up to several meters. The 

corallites connect by wall openings and septal spines projecting from the walls may be 

present (6 or 12 in number). Numerous complete horizontal tabulae are usually present. 

The geologic time range for the Favosites is Upper Ordovician to Middle Devonian 

(Stearn and Carroll, 1989). 

D. Favosites 

Figure 4.1: Block diagram illustrating the internal structure of the tabulate coral 
Favosites (Late Ordovician to Middle Devonian) (from Stearn and Carroll, 1989). 

The Byrozoa have a geologic time range of Ordovician to Recent. The most 

common byrozoan members grew in shallow water environments and had massive 
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calcareous skeletons and grew in thick branching, hemispherical and encrusting colonies 

of the order Trepostomata (Stearn and Carroll, 1989). The bryozoan fossils from sample 

JOD96E have been identified as Stictopora Scalpellum (Lonsdale) (branching stick form) 

(Figure 4.2, p. 119). The genera Stictopora consist of erect or strap like colonies of 

bryozoans with boxlike zooecia openings on both sides and belong to the order 

Cyrptostomata (Stearn and Carroll, 1989). This species is common in Wenlock (Middle 

Silurian) limestone. 

A. Stictopora 

Figure 4.2: Genera Stictopora, Order Cryptostomata. On the right, complete specimen 
about natural size; on the left, the surface enlarged to show the zooecia (after Stearn and 
Carroll, 1989). 

Sample JOD-0961 was also collected from the vicinity of the Duder Lake 

occurrences, north of the aforementioned fossiliferous outcrop. This sample consists of 

deformed limestone and due to the greater deformation (shearing) at this locality, only a 

small, badly warped fossil was found within a large cobble. The fauna were identified as 

Brachiopoda_Articulata (Gen. et sp (p)). Although an order was not identified, it was 

determined that the articulate brachiopod is not Orthambonites, the most common Late 

Arenig to Early Llanvirn genera in central Newfoundland. 
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During the Early Ordovician there was a brachiopod explosion as these calcareous 

brachiopods increased in both abundance and diversity. Articulate brachiopods are the 

largest class and valves are composed of calcium carbonate with interlocking teeth and 

sockets along the hinge (Figure 4.3 , p. 120). The geologic time range for articulate 

brachiopods is Lower Cambrian to Recent. 

pedicle opening 

brachial~"'---.~
valve 

A. 
B. 

brachial 
valve 

Figure 4.3: The living brachiopod Magelania. A) Dorsal view of the shell. B) Side view 
showing the pedicule and brachial valve and the position of the pedicle (from Stearn and 
Carroll, 1989). 

4. 2. 3 Discussion 

The exposed fossiliferous beds contain Silurian fauna, thus providing evidence for 

the existence of a shallow marine Silurian unit in the Duder Lake area. Although the 

fossil identifications are broad, correlation of the green micaceous siltstone units as well 

as limestone and fossiliferous beds in this region with those in the Glenwood area, 

suggests that the Indian Islands Group is present east of Duder Lake where rocks have 

previously been mapped as part of the Duder Complex (Currie, 1995b). Currie (1995b) 

does note the existence of possible Indian Island Group sediments within the Duder 

Complex and explains their presence as tectonic inclusions. This interpretation is 
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problematic in that interbeds within the group appear continuous throughout a broad area. 

If the observed outcrops are from several included tectonic blocks, one would expect to 

observe different orientations in the bedding planes, and if they are indeed from one large 

tectonic block it would then have to be quite extensive. Dickson (2005) re-evaluated the 

area and suggests that observed interbeds of fossiliferous Indian Island Group sediments 

may indicate a possible extension of the group to the west of its currently mapped 

position. In order to do so, the position and significance of the Dog Bay Line would need 

to be revisited. A more detailed study on a local scale is recommended for the area to 

unravel the existing stratigraphic enigma. 

4.3 Bellman's Pond Conglomerate 

4. 3.1 Mapping Observations and Petrography 

A small sliver of conglomerate crops out along the eastern shoreline of Bellman' s 

Pond, northern Botwood Basin, within shale-siltstone mapped as part of the Outflow 

Formation, Davidsville Group (Blackwood, 1982). The conglomerate has been variously 

mapped as a thrust slice of Davidsville Group (Evans et al. , 1992) and as a separate 

Devonian unit (Currie, 1995). It was assumed that definition of the age and lithotectonic 

affinity of the conglomerate would aid in unraveling the structural history of the 

Davidsville -Indian Islands group contact. As a result, some time was spent mapping the 

unit and an attempt was made to date a volcanic tuffaceous clast (see Chapter 8). 

Although the contact was not exposed, the conglomerate is assumed to be in contact with 
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interbedded sandstone and siltstone of the Davidsville Group, which was mapped to the 

northeast of the outcrop. 

The Bellman's Pond conglomerate crops out at UTM coordinates 670052/ 

5447120, extending approximately 90 m northeast along the Bellman's Pond shoreline, 

and contains clasts ranging from 2 mm to 15 em in diameter. The clasts are rounded to 

sub-rounded and the conglomerate varies locally from matrix-supported to predominately 

clast-supported. The cl~ts consist mainly of red and green siltstone, red sandstone, and 

possibly limestone and volcanics in a red sandstone matrix. At the start of the outcrop, 

the conglomerate has a general strike of 040°. Bedding generally runs northeast and 

foliation runs north-south with foliation becoming more dominant to the southwest. 

Several features were noted in mapping this conglomerate unit, including: 1) 

deformed, laminated green, black siltstone beds that appear to have been ripped up in a 

debris flow, 2) a load clast from a conglomerate interbed into siltstone, indicating a top 

direction towards the east, 3) an oval clast with a weathered rind, indicating that the clast 

had been weathered prior to incorporation within the conglomerate, 4) round depressions, 

presumably resulting from the weathering out of carbonate material, and 5) large clasts of 

presumably volcanic material with abundant sulphide. 

The presumed volcanic fragments were only noted on the south end of the outcrop 

where foliation was more prevalent. A large clast (JOD08, diameter=15 em) of volcanic 

material was collected at UTM coordinates 670009/5447133 (Plate 4.6, p. 151). Any 

remaining conglomerate material that was attached to the clast was carefully removed 

before the sample was processed for U-Pb geochronology. When these edges were cut 

by saw, the clast was revealed to have an abundance of porphyritic igneous grains (Plate 
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4.7, p. 151). Zircons from the igneous sample were dated by LAM-ICP-MS in an attempt 

to define the age and possible source of detritus, and hence the correct unit designation 

(refer to chapter 8). As well, sulphide separates from this sample were analyzed for their 

sulphur isotope ratios (refer to chapter 6). 

A polished thin section was cut from the igneous fragment to help ascertain the 

lithology. The section is comprised of 45% fine-grained matrix (epidote and quartz 

replacing glass fragments), 35% quartz and plagioclase (anhedral, interlocking perthite), 

10% chlorite and 10% Fe-oxides and sulphide minerals (Plate 4.8, p. 123). Thus, this 

clast was derived from a very altered aphanitic igneous lithic tuff. 

Plate 4.8: Photomicrograph of sample JOD08, a clast in the Bellman' s Pond 
Conglomerate exhibiting altered feldspar (Fdr) and quartz (Qtz) porphyoblasts in a fine
grained matrix (Mtx) [Field of view 7mm, XP]. This section indicates that a felsic 
volcanic lithology is present in the conglomerate. 

Along the shoreline at UTM coordinates 670065/ 5447353, a shiny black, fibrous 

limestone clast was removed from a subcrop conglomerate boulder. This clast, JOD09, 

although slightly deformed and re-crystallized was sent to D. Boyce for fossil analysis. 
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No macro-fossils were identifiable due to the deformation and re-crystallization of the 

specimen, however, the sample might contain conodont fossils . 

4.3.2 Discussion 

Based on the mapping conducted during this study, it appears that the Bellman' s 

Pond conglomerate is actually an interbed in the Ordovician Davidsville Group. This 

agrees with Evans et al. (1992) interpretation but is at odds with the interpretation that the 

unit is a thrust slice (Evans et al., 1992) or a later Devonian unit (Currie, 1995). The 

conglomerate was likely deposited at the base of a continental slope, which would 

account for the presence of limestone and weathered clasts and also its relationship with 

the deep marine Davidsville Group slate and siltstone. The presence of a lithic tuff clast 

may help to confirm the source of detritus of the Davidsville Group (refer to Chapter 8). 

4.4 Twin Ponds to Ten Mile Lake Area 

4. 4.1 Mapping Observations and Petrography 

The most prominent geological features in this area are gabbros mapped by Evans 

et al. (1992) north of the Trans Canada Highway (TCH), along forestry resource roads. 

Several gabbro samples (JOD57A, JOD100, JOD101 , JOD102 and JOD04-09) were 

collected from various outcrops for this study. At various localities throughout this 

paper, these intrusive bodies are referred to as the ' linear' gabbros based on their NE 

trending linear expression on the map produced by Evans et al. (1992). The gabbro 
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represented by sample JOD57 A, from UTM coordinates 662766/ 5450790 (along the 

resource road that leads to Birchy Bay) (Plate 4.9, p. 152), intruded green siltstone with 

thin, brown and limey interbeds. Based on these interbeds, these sedimentary rocks are 

interpreted to be correlatives of the Indian Islands Group; they had previously been 

mapped as Ten Mile Lake Formation (Currie, 1995a). Bedding in the siltstone is 354°/ 

23° E and there are multiple cleavage directions at 061 o; 90°, 098°/50° S, and 154°/ 52° 

W. As multiple joints also cut the gabbro, it is assumed that deformation in both units 

postdated the intrusive event itself. The cleavage and joint directions are different due to 

the different properties of both lithologies. The contact with the gabbro is not exposed, 

but the sedimentary rocks do not appear to have been affected by the gabbro intrusion. 

The gabbro is cut by small (1 to 3 em thick) K-feldspar veins as well as joints at 090°/ 

33° Sand 077°/ 76° S. 

Sample JOD04-09 was collected from a gabbroic dyke 100 m southeast of the 

previous location at UTM coordinates 662775/ 5450772 (Plate 4.1 0, p. 152); it is 

presumably the same dyke previously discussed. The outcrop exposure is limited and 

consists of a flat gabbroic body, which was uncovered by excavation of the resource road. 

Petrographically the gabbro comprises 35% dusty feldspar, 25% hornblende, 20% 

clinopyroxene (augite), 14% Fe oxides, 2% sulphides, and 5% biotite; hence it is 

classified as an aphanitic hornblende-pyroxene gabbro (Plate 4.11, p. 126). 

Sample JOD04-13 is of an unmapped gabbroic body along the Ten Mile Lake 

Resource Road, to the east of the previously described gabbroic units and Ten Mile Lake 

at UTM coordinates 66755115456465. This knobby exposure intrudes a green, fme

grained sedimentary unit in which fossiliferous interbeds are present. 
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Plate 4.11: Photomicrograph of sample JOD04-09 collected from an intrusive body west 
ofTen Mile Lake. The sample comprises hornblende (Hb), plagioclase (Pl), 
clinopyroxene (Cpx) and Fe-Ti oxides and is classified as an aphanitic gabbro [Field of 
view 7mm, PPL]. 

Thus, it is thought to intrude Indian Island Group rocks. Petrographically the 

gabbro is composed of 40% plagioclase feldspar, 15% clinopyroxene (augite), 15% 

titanite, 15% hornblende and 12% Fe oxides and 3% sulphides (some apicular) (Plate 

4.12, p. 127). This aphanitic gabbro is similar in composition to the intrusive on Birchy 

Bay Resource Road; however, it is finer grained, contains elongate titanite grains, less 

pyroxene and amphibole, and no biotite. Thus, this rock is classified as an aphanitic 

hornblende-pyroxene gabbro. The presence of titanite may indicate a possible correlation 

to the gabbroic bodies at Duder Lake as Churchill and Evans (1992) had defined 

melanocratic type gabbros that were characterized by an enrichment in Ti. 

Several samples were collected north of Twin Ponds, approximately 15 km 

southeast of sample JOD57 A, from a second elongate gabbro dyke mapped by Evans et 

al. (1992). Disseminated sulphides were observed in the gabbroic outcrops and the 
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Plate 4.12: Photomicrograph of sample JOD04-13 from an unmapped intrusive body east 
of Ten Mile Lake. The sample is comprised of plagioclase (PI), clinopyroxene (Cpx), 
hornblende (Hb ), titanite (Ti), minor Fe-Ti oxides and disseminated sulphides [Field of 
view 7mm, PPL]. 

surrounding sedimentary rocks (green siltstone) are intensely silicified. Quartz veining 

was not observed so it is assumed that the siltstone was saturated with replacement silica. 

In general, the silicified siltstone is somewhat similar to the green siltstones of the Indian 

Islands Group, however, it was mapped as the Ten Mile Lake Formation by Currie 

(1995a). 

Gabbro sample JOD 100 was collected from an outcrop at UTM coordinates 

652973/ 5438288 (Plate 4.13, p. 153). Petrographically this gabbro comprises 30% 

altered plagioclase (simple and lamellar twins), 40% anhedral hornblende (interstitial 

growth between colorless grains), 5% biotite, 5% chlorite and 12% Fe-oxides and 3% 

sulphide minerals, and thus would be classified as a phaneritic hornblende gabbro (Plate 

4.14, p. 128). 
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Plate 4.14: Photomicrograph of sample JOD 100 collected from an intrusive body as 
mapped by Evans et al. (1992). The sample comprises plagioclase (Pl), hornblende (Hb), 
and minor clinopyroxene, biotite, chlorite and opaque minerals [Field of view 7mm, 
PPL]. 

4.4.2 Paleontology 

Sample JOD04-12 (Plate 4.15, p. 153) was collected from a re-crystallized 

fossiliferous limestone outcrop exposed along the Ten Mile Lake Resource Road as a 

significant area of slightly deformed pink and white rock (Plate 4.16, p. 154). The fossils 

in this sample were identified as Echinodermata (P)-Crinozoa(SP)-Crinoidea (C) (Gen. 

Et sp (p). undet.) (Douglas Boyce, personal communication) which consist ofre-

crystallized columnals. Crinoidea were abundant in the Palaeozoic, living in shallow 

water and attached to the seafloor by a stalk. Crinoids have a cup-shaped head (the 

calyx), which are attached to long, branching arms. The calyx is usually connected to the 

bottom via a stem (which is generally preserved in the fossil record) (Plate 4.17, p. 129, 

after Steam and Carroll, 1989). 

128 



Plate 4.17: Polished slab of Lower Carboniferous limestone composed mostly of crinoid 
columns; view is about 16 em across (after Steam and Carroll, 1989). 

Sample JOD04-14 (Plate 4.18, p. 154) was collected from a 1 x 1m purple 

fossiliferous outcrop or subcrop that has been identified as medium to coarse-grained 

pebbly sandstone or conglomerate (Plate 4.19, p. 155). It contains several identifiable 

fossils including: 1) Brachiopoda-Articluata (Genet sp. undet.-heavily ribbed form), 2) 

Byrozoa (Genet sp. undet.), Cnidaria-Anthozoa-Zoantharia-Tabulata-Favosites (Genet 

sp (p). undet.) and 3) Echinodermata-Crinoidea (Genet sp(p) undet.-columnals). The 

fossils were poorly preserved, possibly due to proximity to a large shear zone (the 

previously defined location of the Dog Bay Line). The Brachiopoda, Byrozoa, and 

Cnidaria Phylums have been discussed in section 4.2.2 and the Echinodermata has been 

described above. 

Sample JOD04-15 was collected from a large fossiliferous bed interlayer in red 

siltstone or mud. It contains Stictopora Bryozoans of Wenlock age. The stictopora are 

discussed in section 4.2.2. 

129 



4. 4. 3 Discussion 

This transect crossed several gabbroic bodies south of Duder Lake in the northern 

Botwood Basin. These gabbros vary slightly in grain size and modal mineral 

percentages; pyroxene was less common in the gabbros towards the south. 

Reconnaissance work on the economic potential of these gabbros may be warranted due 

to the proximity of the bodies to auriferous occurrences, the presence of disseminated 

sulphides within the gabbros and silica saturation of the adjacent country rock. In 

general, all of these bodies intrude Ten Mile Lake Formation sedimentary rocks (Currie, 

1995a) that resemble Indian Island Group rocks. 

Several new fossil localities to the east ofTen Mile Lake, i.e. , west of the Dog 

Bay Line, contain Silurian fauna. The faunal identification is broad due to the 

deformation of the samples and further work with a more detailed sampling program will 

be required to obtain more precise ages for the fossiliferous units (such a program was 

initiated by the NDME in 2005; refer to Dickson (2005)). The samples were collected 

just to the west of the Dog Bay Line, which may account for the observed deformation. 

4.5 Glenwood-Appleton Area 

4. 5.1 Mapping Observations and Petrography 

A large gravel pit located on the south side of the town of Appleton, along the 

Gander River, exposes a contact between shale and a sandstone unit of the Davidsville 

Group at UTM coordinates 655978/ 5426930. The Davidsville Group greywacke sits on 
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top of Bagder Group Caradocian shale and as such, the Davidsville Group was thrust 

upon the Badger Group. 

The Caradocian shale is quite distinct with black-blue color and a very rich 

graptolite assemblage at the top edge of the cliff face. Disseminated sulphides were 

concentrated in shale around quartz veining. One vuggy quartz vein appears to run along, 

or quite close to, the general trend of contact and the shale appears to be brecciated and 

cemented by quartz near the contact. Below the contact exposure, there was abundant 

blasted float of mineralized, altered Davidsville greywacke with vuggy quartz veins 

(Plate 4.20, p. 155). Greywacke is also exposed above the pit and appears to be silicified 

with a general cleavage direction of 04 7°. 

The Bowater Prospect occurs within 10 m of the pit, and although the actual 

trenches could not be located, a portion of the prospect was observed as a large (up to 6 

em wide) vuggy vein, with euhedral quartz crystals, hosted in greywacke. The vein trends 

135°/ 70° NE but seems to fill a large tension gash. 

Gerry Squires (personal communication, 2003) reported a very altered, brown, 22 

em wide dyke striking along the bedding plane at UTM coordinates 656077 I 542977 and 

a ~4-5 em dyke 5 m down hill with some sulphides at UTM coordinates 656078/ 

5426975. Two samples, JOD120A and JOD120B, were collected from these dykes. 

Subsequent geochemical analyses revealed that the exposures were actually Mn-rich 

interbeds. These interbeds contain disseminated sulphides and small quartz veins. 

A gravel pit, just west of Glenwood off of the Salmon River Access Road, was 

also examined. The pit exposes what appears to be a gabbroic dyke intruding Indian 

Islands Group sedimentary rocks. Petrographically, sample JOD04-20, collected from 
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the intrusion (Plate 4.21, p. 132), comprises 50% plagioclase, 25% altered hornblende, 

10% pyroxene (augite), 8% Fe oxides, 5% biotite and 2% sulphides associated with the 

amphibole. This is therefore an aphanitic hornblende gabbro. This dyke has been 

previously correlated to the MPIS by Dickson (1996) and the significance of this is 

further explored in section 4.6.2. 

Plate 4.21: Photomicrograph of sample JOD04-20 exhibiting plagioclase (PI), 
hornblende (Hb) and minor pyroxene and biotite [Field of view 7mm, PPL]. 

4.5.2 Paleontology 

Two fossil localities, originally described by Blackwood (1982) were examined 

along the Salmon River Resource Road, just north of the TCH. Fossils were collected 

from these localities for comparison with the fauna from the new localities further north. 

The fossils were identified by Doug Boyce and are described below. 

The first locality is in a woodcutting pit at UTM coordinates 654920/ 5430998. 

The pit has minimal outcrop exposure as it was mostly filled with sawdust, but at the far 

end of the pit a fossiliferous outcrop of grey siltstone is exposed. The siltstone is cleaved, 
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foliated and crosscut by randomly oriented thin quartz-carbonate veins. A conjugate set 

of quartz veins is orientated at 140°/ 50°S and 005°/ 55° NE. The fossils are contained in 

limey brown beds, interbedded with slightly silicified green siltstone and some of the 

fossil casts are re-crystallized. 

Another exposure at the beginning of the pit (UTM coordinates 654875/ 5431010) 

consists of Indian Islands Group micaceous siltstone with brown and black laminations. 

Bedding is 210°/90° and the rocks become more micaceous and less limey to the west. No 

fossils were observed here. 

Sample JOD-113 was collected from a small fossiliferous outcrop within 

interbedded limey and non-limey siltstone located at the back of the pit. The rocks are 

readily identifiable as Indian Islands Group based on the presence of abundant Bryozoa 

(gen. et sp. undet.) (branching stick forms), abundant Echinodermata- Crinoidea (gen. 

et sp. undet.) and Mollusca_Cephalopoda? (gen. et sp. undet.) (straight form). 

The Byrozoa and Echinodermata fossils have been discussed in sections 4.2.2 and 

4.4.2 respectively. The Mollusca Phylum is subdivided into eight classes of un

segmented, coelmate metazoans. The Class Cephaolopods can be further subdivided into 

three subclasses and occur from Late Cambrian to Recent. Early Paleozoic cephalopods 

are generally nautiloids and the shells of these early cephalopods are commonly straight 

or lightly curved and can be up to 9 m long (Figure 4.4, p. 134). Nautiloid cephalopods 

have smoothly curved septa, which produce simple, straight sutures (Steam and Carroll, 

1989). 
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Figure 4.4: A) Paleozoic straight nautiloids (arrows indicating centers of gravity and 
buoyancy respectively). B) A straight nautoloid Armenoceras (Ordovician) with a heavy 
siphuncle (light colored). The specimen has been cut longitudinally and polished so that 
the siphuncle is seen in section. The specimen is 16 em long (from Steam and Carroll, 
1989). 

The second fossil bed is located 1 km further to the south in a overgrown gravel 

pit (UTM coordinates 654515/ 543003) on the west side of the resource road as mapped 

by Blackwood (1982). The outcrop consists of grey, fme-grained, somewhat silicified 

sandstone. The protruding outcrop is ~ 4 m x 2 m, fossiliferous and cut by 2 to 3 em 

wide, randomly orientated, quartz-carbonate veins. 

Sample JOD-114 was collected from this locality, and this limey siltstone 

containsAnthozoa_Tabulata- ?Favosites (sp. undet.), Bryozoa (gen. et sp. undet.) 

(branching stick forms), and Echinodermata- Crinoidea (gen. et sp. undet.). All of these 

phylums have previously been discussed in this chapter; this sample is therefore, also a 

representative of the Indian Islands Group. 
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Sample JOD-086D, from the gravel pit at the south end of the main Appleton Pit, 

is a black slate. It contains (P) Chordata-(SP)Hemichordata _(C) Graptolithina -

Climacograptus bicornis (Hall), a distinctive Caradoc fauna (Ordovician) and 

Hemichordata Graptolithina Climacograptus sp (p) (Figure 4.5, p. 135). This unit, thus, 

is definitively Caradocian shale. 

"< 
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-r 

Figure 4.5: Climagraptus (after Stearn and Carroll, 1989). 

4.6 Salmon River and Red Rock Brook 

4. 6.1 Introduction 

The Mount Peyton Intrusive Suite (see description in chapter 2) has been studied 

and mapped by several authors (i.e. , Dickson, 1992, 1993, 1996; Hynes and Rivers, 2002; 

Hoffe, 2003). However, the relationship between the gabbro and granite phase, as well as 

the relationship of the suite to the surrounding sedimentary lithologies, is still poorly 

understood due to the lack of contact exposures. Thus, an attempt to locate and examine 

the contact along the eastern margin of the suite was made during this study. 

Two areas of contact were observed. The frrst, along Salmon River was 

encountered while walking upriver between the Hurricane and Corsair auriferous 



prospects. Here, there is an exposed contact relationship between the mafic and felsic 

phases of the MPIS. Dickson (1993) reported several contact relationships in the vicinity 

of Salmon River including exposed contacts between the main felsic and mafic phases of 

the suite 1.5 km to the south of the Salmon River and plugs of granite (same lithology as 

main phase of MPIS granite) intruding the gabbro to the northwest. Along Salmon River 

pink, fine-grained biotite granite was reported to have partially assimilated gabbro, 

producing a buff-colored fine-grained granodiorite that is exposed for 200 m along the 

river. Pink medium-grained granite dykes cut these intermediate rocks, as well as the 

main mafic unit. The intermediate unit, referred to as a hybrid of the main gabbro and 

granite phases by Dickson (1993), is the host to the Corsair and Hurricane prospects and 

has been mapped as a diorite in several metallogenic studies (i.e., Tallman, 1990, 1991; 

Evans, 1996). To the south, granitic dykes containing very large blocks of angular 

gabbro with small granite veinlets are present along the contact (Dickson, 1993). 

Observations made along Salmon River during the current study do not support the 

hybridization theory for the formation of the intermediate phase that hosts the auriferous 

occurrences. 

The second contact locality was located along Red Rock Brook where a granite 

phase of the MPIS is juxtaposed against sedimentary rocks. Although the actual contact 

is not directly exposed (the two units outcrop ~60 m apart), evidence of the relationship 

between the two units was ubiquitous. The sedimentary rocks and their relationship to 

the granite at this locality were first described by Dickson (1993). He had tentatively 

assigned the sedimentary rocks to the Indian Islands Group following Currie (1992) (see 

section 4.7.1) and described them as highly folded and reverse faulted, medium bedded, 
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brown sandstone. The contact was also re-visited by Squires (2005), who suggested a 

brittle-fault contact because the granite was heavily brecciated and locally sheared near it. 

4.6.2 Granite-Gabbro Relationships in the Salmon River 

At UTM coordinates 6450921 5425251 along the Salmon River between the 

Corsair and Hurricane prospects, a relative chronological relationship was observed with 

a granite phase intruding a gabbro phase of the MPIS batholith (Plate 4.22, p. 156). The 

granite is interpreted to be a plug of the main granite phase of the batholith. Small pieces 

of the gabbro had been stooped along fractures by the granite and no chill margins were 

observed in the gabbro, suggesting that it had formed prior to the granite intrusion. 

Further upriver, at UTM coordinates 644887 I 5425295, multiple fractures and 

three cleavage directions (conjugate joint set) were observed in gabbro. The main 

cleavage was at 006°157° SE with strong Fe-carbonate and epidote alteration. Quartz and 

carbonate crystallized in the ~2 mmjoints with a black alteration halo extending ~2-3 em 

in width around it. A second cleavage is at 291 o I 90° and both of those cleavages are cut 

by later vein systems. 

The relationship at this locality further supports the findings of Dickson ( 1992) 

that "intrusive relationships indicate that the granitic rocks are younger than the gabbroic 

rocks". However, the diorite host to the auriferous prospects along Salmon River must 

have formed as an intermediate phase before the formation of the granite rather than by 

hybridization as the granite would not have been of a sufficient temperature to assimilate 

the gabbro. The granite would only have been able to stope off pieces of the gabbro and 
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contain blocks as inclusions as partially observed along the Salmon River during the 

current study and as reported by Dickson (1993) to the south. Age data presented chapter 

8, provides additional support to this interpretation. 

4. 6. 3 MP IS Granite at Red Rock Brook 

Along Red Rock Brook, pink granite of the MPIS batholith and a sedimentary 

unit (grey, micaceous sandstone and siltstone), possibly part of the Indian Islands Group 

(Squires, 2005), are exposed. There is a gap of 60 m between the granite and siltstone 

and sandstone unit. The siltstone and sandstone beds are extremely convoluted in the 

outcrop nearest to the contact and exhibit a strong cleavage at 052°/47° SE. The 

sediment is also intensely weathered to a brown orange color, whereas it is grey on fresh 

surfaces. Further to the east, the sandstone is less deformed and the cleavage is sub

parallel to bedding at 134°/47° SE. The granite is extremely jointed along the river. 

Thus, the contact appears to be structural as suggested by the deformation observed in the 

granite and sedimentary units and the lack of an alteration halo. This conclusion agrees 

with the interpretations of Dickson (1993) and Squires (2005). 

Sample JOD90B was collected at the first exposed outcrop of granite along the 

river at UTM coordinates 641210/5408962 and JOD90A was collected approximately 

100m upriver. Geochemically (Chapter 5) the granite exhibits no unusual chemistry due 

to interaction with the sedimentary unit and the granite collected closest to the contact 

does not differ from granite collected away from the contact. 
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During the 2004 field season, a third sample of the granite was collected 

approximately 4 km southwest of the aforementioned location at UTM coordinates 

638577/5412140. Sample JOD04-17 (Plate 4.23, p. 139) is comprised of25% anhedral 

quartz, 60% subhedral perthitic k-feldspar (microcline) intergrown with quartz, 5% 

plagioclase, 5% minor biotite and 5% opaque minerals. The K-feldspar is coated by 

secondary hematite. The rock is classified as a micrographic alkali feldspar granite. 

Although the granite was jointed in outcrop, no deformation is evident in thin 

section. Dickson (1993) suggested that the fact that the granite near the contact zone 

was fme-grained and micrographic could lead to an interpretation of a chill margin in the 

granite. However, he also notes that these properties extend for several kilometers, as 

also indicated by this study, and the existence of such a large chill margin would be 

unlikely. 

Plate 4.23: Photomicrograph of sample JOD 04-17 which consists of quartz (Qtz), 
microcline (Me), plagioclase (Pl) and minor biotite (Bt) [Field of view, 7mm PPL]. 
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4. 6. 4 Discussion 

Tallman (1990) noted that the red and green siltstones presumed at that time to be 

part of the Botwood Group were slightly hornfelsed adjacent to the northeast quadrant of 

the intrusive. This is important to regional mapping because relationships between the 

Mount Peyton Intrusive Suite and the sedimentary unit along its eastern margin are 

poorly understood. Dickson (personal communication, 2005) has not identified any 

definite intrusive relationships between these two units on the eastern side of the MPIS; 

however, he noted that in a previous season he identified hornfelsed sandstone just 

northwest of the Beaver Brook Mine. 

An intrusive relationship has been postulated for the MPIS and the Badger Group 

sediments along the western margin of the intrusion based on the observed extensive 

metamorphic aureole. The Badger Group ranges from Late Ordovician to Early Silurian 

and is conformably overlain by the Silurian Botwood Group. The relationships between 

the Botwood Group and Indian Islands Group to the MPIS are poorly understood. 

The lack of intrusive evidence along the eastern margin may provide the best 

indication of a faulted contact. Several authors have implied such a contact, and it has 

been even suggested that the faulted contact along the eastern edge of the MPIS might 

represent the southern extension of the Dog Bay Line (i.e., Dickson, 1993; Squires, 

2005). 

Williams et al. (1993) also proposed that the Dog Bay Line might extend to the 

southwest, but suggested that the structure may be actually truncated by the MPIS rather 

than cutting it in the central Botwood Basin. These authors trace the structure from the 

140 



north to the TCH where it separates grey siltstone of the Indian Islands Group from red 

micaceous sandstone of the Botwood Group. 

No definite evidence was available to extend the line to the southwest of the 

MPIS, but it was suggested that it might follow the deformed Ordovician mafic volcanics 

there as it does at Dog Bay and that the lack of surface expression may be due to a 

terrestrial sandstone cover that has been assigned to the Botwood Group. To the extreme 

southwest it was assumed that the Dog Bay Line lies between the Botwood Belt and Noel 

Paul' s Line, or the Gander-Dunnage Zone boundary (Williams et al. , 1993). 

If in fact the contact along the eastern margin of the MPIS is a continuation of the 

Dog Bay Line, the geochronological data presented in this study could aid in constraining 

the timing of movement along the fault as movement would be post plutonic. 

Geochronological data for the MPIS, coupled with structural studies to better define the 

faulted contact along the eastern margin could help provide a better definition on the 

relationship between the MPIS and adjacent units in the central map area and could have 

important implications on constraining the timing of Au mineralization and delineating a 

possible driving heat source (refer to chapter 8). 

In terms of the relationship between the MPIS and the Indian Islands Group, the 

presence ofthe intrusive dyke in the pit west of Glenwood, reported in section 4.5.1 , 

would suggest an original intrusive relationship as Dickson (1996) correlated this dyke to 

the MPIS. Recent work by Lake and Wilton (2006) also supports an intrusive relationship 

as these authors present evidence for an intrusive contact between the MPIS granite and 

the Indian Islands Group along the southeast quadrant of the intrusion. These fmdings 
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cannot disprove the presence of a fault along the eastern margin of the pluton, rather they 

imply that perhaps the relationship is a fault-modified intrusive contact. 

4. 7 Careless Brook 

4. 7. 1 1 ntroduction 

Careless Brook is located about 13 km southwest of Glenwood and is accessed 

via the Salmon River Access road. The sedimentary rocks in this area had originally 

been assigned to the Silurian Botwood Group (i.e., Blackwood, 1982; Dickson, 1992) but 

subsequent workers have re-assigned the rocks to the Indian Islands Group. The 

suggestion to extend the Indian Islands Group to this locality was first made by Dickson 

(1993) when he extrapolated the work of Currie (1992) and Williams (1993) from the 

north. These other authors found that the Botwood Group did not actually extend as far 

east into map areas 2E/2 and 2D/15 as hypothesized by previous workers (i.e. , 

Blackwood, 1982; Evans eta/., 1992). Dickson (1993) tentatively assigned the exposed 

rocks to the west of the Northwest Gander River to the Indian Islands Group as defined 

by Currie (1992). Previous fossil collections from Careless Book have been described by 

Williams (1993) and Boyce eta/. (1993, 1994) (refer to table A1.3). 

4. 7. 2 Mapping Observations and Petrography 

The streambed is underlain by laminated, brown and black Indian Islands Group 

siltstone. In general, the bedding trends175°/ 75° SE with bedding tops upriver as 
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indicated by sedimentary features such as burrows and crossbedding (Plate 4.24a). 

Conjugate cleavage sets have directions at 188°/ 61 o SE, 032°/ 70° NW and 177°/ 67° SE 

and are filled with quartz and carbonate. The outcrops become more fossiliferous 

downriver towards a contact with another sedimentary unit. 

At UTM coordinates 647447/5418287, a 3-5 em wide quartz carbonate vein was 

sampled which cuts bedding at 149°/70° W. The vein locally cements brecciated pieces 

of laminated Indian Islands Group. The vein pinches and swells and appears to have 

carbonate along its edges. 

Further down river, a fossiliferous debris flow? (L. Dickson, pers. comm., 2003) 

was sampled (JOD37A) for fossil analysis (Plate 4.24b and c, p. 156). As described 

below the fossils are Silurian. 

Further down river, a contact between the Indian Islands Group and shale of either 

the Davidsville Group or Caradocian shale is implied (Plate 4.24d, p. 156). Williams 

(1993) collected graptolite fossils from this shale, which he dated at Cardoc-Ashgill age. 

He described the unit as silty shale from a ' rather coarse, non-fissile, siliceous mudstone' . 

Although Caradocian shale is typically associated with the Lawrence Harbor Formation, 

such a rock type is atypical of that formation. He suggested that it either represents the 

top of a black shale unit passing gradationally into sandstone or is an argillite lens in a 

coarser sandstone unit. Either of these conclusions is feasible and evidence can be 

presented for both. Williams eta/. (1993) included this Caradocian shale as the top unit 

of the Davidsville Group, which grades up into limestone, siltstone, shale and redbeds of 

the Indian Islands Group. The contact has not been observed but is assumed to be 

conformable where not structurally modified. 
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Squires (2005) also visited the fault-bounded Caradocian shale along Careless 

Brook, which he stated were related to the structural complexity of the area. Fault

bounded lenticular shales of Caradocian affinity have also been mapped by Dickson 

(1993) and Williams eta/. (1993) at two localities to the southwest, near the Beaver 

Brook Mine. 

Although the actual contact was not observed, a graphitic fault gouge zone was 

present, which would seem to imply that the contact here is faulted and therefore not 

conformable, further supporting the case for a fault bounded wedge of shale. However, 

brown silty layers from the Indian Islands Group were observed to be interbedded with 

the shale unit near the fault zone during this study, suggesting that the contact between 

the units was initially gradational. This supports the interpretation that Caradocian shale 

is the top of the Davidsville Group, which is both conformable and fault modified with 

the Indian Islands Group along Careless Brook. The fault gouge would have been caused 

by a later event (possibly movement along the Dog Bay Line), which would be expected 

to exploit this zone of weakness, resulting in wedges of Caradocian shale. 

Two samples (JOD39A and JOD39B) were collected from a 0.6 m wide outcrop 

of the dark, dense shale unit. In thin section (Plate 4.25, p. 145) the shale consists of a 

30% fme-grained matrix of clay, quartz and feldspar, 30% quartz (subhedal 

porphyroblasts), 10% feldspar and 8% dolomite, 2% sulphides, 10% lithic fragments and 

10% Fe oxides. The sample is well sorted with subangular grains, hence would be 

classified as a lithic arkose. The arkose is cut by minute, randomly orientated quartz

carbonate veins which probably resulted from fluid movement along the fault. 
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Plate 4.25: a) Photomicrograph of sample JOD39A exhibiting subangular quartz grains 
in a fine-grained matrix. b,c) Photomicrograph of sample JOD39B exhibiting a quartz
carbonate vein [Field of view 7mm, PPL and XP]. 

4. 7.3 Paleontology 

Sample JOD-037 A, from Careless Brook consisted of a micaceous, fme-grained, 

dark grey calcareous sandstone. Fossils within the sample have been identified as 

Anthozoa_Tabulata- ?Favosites (sp. undet.) (Silurian age) and Echinodermata_-

Crinoidea (gen et sp. undet.). As such this unit would be classified as Indian Islands 

Group. Boyce eta/. (1993) had previously identified a latest Silurian to earliest 

Devonian bivalve fauna (Cuneamya arata (Hall, 1860)) upstream from this area. 

4. 7. 4 Discussion 

Caradocian graphitic chert has been mapped at Careless Brook by Williams 

(1993) and to the southwest, near Beaver Brook, by Dickson (1991, 1992) and Williams 

(1993). Previous workers have identified the Caradocian unit as a fault bounded 

lenticular unit (i.e., Squires, 2005) and the fault gouge observed during this study 

supports this supposition. However, the presence of what have been defined as interbeds 

during this study, provides evidence for a gradational contact between the Davidsville 
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and Indian Islands groups in the central Botwood Basin. If the contact was gradational, a 

fault caused by a later movement could have exploited the Caradocian shale, present as 

the upper unit of the Ordovician Davidsville Group. 

The presence of interlayed brown siltstone and black Caradocian shale along 

Careless Brook supports the previous interpretation of Williams et al. (1993) that the 

contact between the Davidsville and Indian Islands Group is conformable, yet also locally 

fault-modified. The identification of Silurian fauna in Careless Brook concurs with the 

ages reported for previous collections and indicates the presence of the Indian Islands 

Group in this area and further adds to the paleontological database for Silurian fossils of 

central Newfoundland. 

4.8 Coopers Brook 

4. 8.1 Introduction 

Blackwood (1981) first discovered Middle Ordovician (Caradocian) graptolites in 

a graphitic shale horizon along Beavers Brook (southwest of Coopers Brook). He 

interpreted the horizon to be a discontinuous thrust wedge of Ordovician Davidsville 

Group strata in Botwood Group sediments. The thrust wedge was extended to the 

southwest based on the discovery of additional Caradoc-Ashgill fossils by Dickson 

(1992). In addition to this extension of the unit, the pebble greywacke host to the Hunan 

prospect was reinterpreted to be a similar fault block of Devonian or younger material 

based on the observation of poorly observed bedding. Dickson (1996) inferred that the 

sediments along the southeastern contact with the MPIS, previously interpreted as 
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Silurian Botwood Group (i.e., Anderson and Williams, 1970; Blackwood, 1981; Dickson, 

1992) were actually part of the Indian Islands Group. Mapping observations from this 

study provide further evidence for the extension of this group to the south. 

An attempt to redefine the stratigraphy in this area based on fossil evidence was 

made by Williams and Tallman (1995). These authors did not agree with the 

interpretation that the Early to Middle Ordovician sequence was a fault-bounded wedge 

(Blackwood, 1981; Dickson, 1992). Rather, they proposed that the sequence youngs to 

the southeast and is a continuation from the east of the Davidsville Group or its 

equivalents. 

Additional fossils were collected from the Beaver Brook locality of Blackwood 

(1981) by Williams and Tallman (1995) and the Caradocian age was confirmed. They 

correlated this unit with the Lawrence Harbour Formation that Williams (1995) says is 

widespread in the Exploits Subzone. Williams and Tallman (1995) collected additional 

graptolites along Coopers Brook, 1 km to the east-northeast and dated them as Late 

Arenig (Early Ordovician), in disagreement with Dickson (1992) who dated the fossils as 

Caradocian. This new interpretation suggested that several graphitic shale horizons were 

present in this vicinity. 

The problem with this interpretation was that the fossil ages indicated that the 

succession youngs to the southeast which conflicts with regional stratigraphic 

relationships. The authors postulated that Coopers Brook is entirely underlain by 

Ordovician lithologies that extend from the Northwest Gander River to the MPIS, which 

excluded the presence of the Indian Islands Group in the vicinity as implied by Dickson 

(1992). However, they did not provide an explanation for the conflict that the fossil ages 
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provide with respect to the regional stratigraphy. An attempt to reinterpret this evidence 

is made here. 

4. 8. 2 Mapping Observations 

A mapping transect was conducted along Coopers Brook, north of the Hunan 

Prospect. The brook exposes interbedded red to buff siltstone beds with brown limestone 

beds. Throughout the sequence, the limestone beds are boundinaged to form buff to 

white nodules (Plate 4.26, p. 157). No fossils were recovered, possibly due to the 

prevalent deformation in the immediate area caused by movement along the Coopers 

Brook fault as informally defmed by Williams and Tallman (1995). The fault is a late 

dextral fault trending 100° that is outlined by geophysical surveys. 

4. 8. 3 Discussion 

Based upon a review of literature, coupled with mapping observations in the 

Coopers Brook and Hunan Prospect vicinities, several ideas are proposed. First, with 

respect to the fossil evidence presented by Williams and Tallman (1995), rather than 

disproving the case for a fault-bounded wedge of the Ordovician Davidsville group, it 

supports it. Williams and Tallman (1995) propose that the succession along Coopers 

Brook is a continuation of the Davidsville Group, however, the fossil evidence they 

presented suggests that the succession youngs to the southeast, in disagreement with the 

regional stratigraphy. Those authors also dated the fossils as ranging from Early to 

Middle Silurian and correlated the unit with the Davidsville Group to the east. Thus, it is 
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herein postulated that the succession is possibly part of a fault-bounded wedge of the 

group that was transported west, and subsequently rotated from its original orientation. 

The presence of Caradocian shale further supports the presence of the Davidsville Group 

here as it has been previously presented as the top unit of the group (see section 4.7.3). 

The deformation observed along Coopers Brook emphasizes the structural complexity of 

the area and further work is required to unravel the complexities of the stratigraphy of the 

Beaver Brook area. A MSc. thesis study on the geology and geochemistry of the Beaver 

Brook antimony deposit was initiated in 2005 and is being conducted by Justin Lake. 

The suggestion that the Davidsville Group be extended further west to the MPIS 

is also discredited based on mapping observations east of the Beaver Brook deposit, in 

the vicinity of the Northwest Gander River. Sediments along transect are now mapped 

definitively as Indian Islands Group (Dickson, 1996). 
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Plate 4.1: Interlayered siltstone and limestone beds with laminations parallel to 
pencil. A fossiliferous layer where fossils have been weathered out, leaving 
impressions, is outlined in red. 

Plate 4.4: Hand specimen JOD66 from the knobby gabbro exposure north of 
Duder Lake [Penny for scale] 
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Plate 4.6: Sample JOD08 photographed where it was removed from outcrop of 
the Bellman's Pond Conglomerate (sample is approximately 15 em in length). 

Plate 4.7: Cut section from sample JOD08left over from removal of the volcanic 
clast. Several smaller volcanic clasts (red arrow) were identified in this section. 
The outline of the fragment is also noticeable on the left hand side (blue arrow) [penny 
for scale]. 
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Plate 4.9: Gabbro exposure along Birchy Bay Resource road from which sample 
JOD57 A was collected [S. Huelin for scale]. 

Plate 4.10: Gabbroic body along Birchy Bay Resource Road (southwest ofDuder Lake) 
as mapped by Evans et al. (1992) and Currie (1995a). A) Rounded, weathered exposure 
of jointed gabbro [S. Heulin for scale], B) Sub-parallel quartz veins in gabbro [field book 
and rock hammer for scale]. 
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Plate 4.13: Gabbro exposure of elongate ridge near Twin Ponds as mapped 
by Evans et al. (1992) [field notebook for scale]. 

Plate 4.15: Hand specimen (JOD04-12) bearing re-crystallized fossil casts. Are
crystallized crinoid column is outline in red [pencil for scale]. 
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Plate 4.16: Re-crystallized, deformed limestone 
outcrop along Ten Mile Lake Resource Road 
from which sample JOD04-12 was collected 
[pencil for scale]. 

Plate 4.18: Hand Specimen (JOD04-14) bearing fossils. Re-crystallized 
crinoid columns are outlined in red [Penny for scale]. 

154 



Plate 4.19: Ten Mile Lake Resource Road, purple fossiliferous bed from which sample 
JOD04-14 was collected [GPS for scale]. 

Plate 4.20: A) Hand sample 120, collected from dark, dense sedimentary interbeds in 
Davidsville group shale in the Appleton Pit. The sample is cut by a 4 em wide quartz 
vein and exhibits sub-parallel quartz filled tension gashes. B) Close up of sample JOD120 
showing disseminated sulphide mineralization in altered sediment [tack for scale]. 
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Plate 4.22: A-B) Gabbro (Ga)- granite (Gr) contact at Salmon River. The outlined area 
in A illustrates a piece of gabbro stoped by the intruding granite [rock hammer for scale]. 

Plate 4.24: A) Load casts in Indian Islands Group siltstone [pencil for scale], B) View 
upriver, X marks fossil debris flow location, 3) close up of fossil local [pen for scale], 4) 
D. Wilton and S. Hinchey at contact of Indian Islands Group and Caradocian shale. 
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Plate 4.26: Cooper Brook outcrop exhibiting red and green interbedded siltstone with 
boudinaged limey beds [rock hammer for scale]. 
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CHAPTERS 

WHOLE ROCK GEOCHEMISTRY 

5.1 Preamble 

This chapter discusses the major and trace element geochemistry of various 

intrusive and sedimentary lithologies sampled throughout the Botwood Basin. These data 

are used for two main purposes: 1) to compare with previously derived geochemical data 

compiled for several intrusive lithologies throughout the basin (i.e., Churchill, 1994) 

with particular emphasis on relationships, if any, between the extensive data set for the 

Mount Peyton Intrusive Suite derived by Dickson (1996), and 2) to better understand the 

petrology of sedimentary host lithologies in the region. 

In terms of the first objective, Churchill (1994) had defined geochemical data for 

fresh volcanic rocks and altered gabbroic rocks at the Duder Lake showings, which he 

postulated, were Silurian-Devonian. He also presented data for a fresh gabbro sample 

from the Clutha Prospect and a fresh gabbro sample from near Dan's Pond to the 

immediate north and south ofDuder Lake, respectively. Churchill's (1994) altered 

gabbro dataset was not utilized for comparison in the current study as it was compiled to 

determine alteration at the prospects rather than geochemical compositions of the original 

rocks. To the south, Dickson (1996) derived an extensive geochemical database for the 

Mount Peyton Intrusive Suite that cuts the Silurian rocks of the basin. 

Conversely, there are no geochemical data for the gabbros mapped by Evans eta/. 

(1992) and Currie (1995a) to the north of the Trans Canada Highway, intrusive into the 
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Late Silurian to Early Devonian Ten Mile Lake Formation. There was also no 

geochemical data available for gabbro and granite intrusives to the south at the 

Greenwood Pond #2 and LBNL Prospects, respectively, that intrude Ordovician 

Davidsville Group rocks. 

The objective for the geochemical study of the intrusives, therefore, was to 

geochemically compare intrusive rocks from the region and to evaluate the petrogenesis 

of several host lithologies to gold mineralization. Due to the number of prospects and 

their extensive areal extents, the purpose was not to directly classifY the various alteration 

systems related to gold mineralization, but rather to ascertain if there are geochemical 

relationships between the various intrusive bodies. Such relationships may provide links 

to common source areas and possibly the definition of a deep-rooted, areally extensive 

magma system. 

The igneous samples will be discussed first to ascertain if there are definable 

relationships between the different intrusive bodies through the region. Secondly, the 

geochemical data for the sedimentary samples will be evaluated and combined with 

petrographic observations to better delineate host and country rock lithologies and to 

determine source rocks and the tectonic environments of origin and deposition. 

Where possible, only "fresh" samples were used. Samples with intense alteration, 

weathering rims or veining, were not selected for analysis. A total of 34 whole rock 

samples (20 igneous and 14 sedimentary) were analyzed for major oxides and trace 

element compositions via pressed powder pellets using an X-Ray Fluorescence (XRF) 

spectrometer (after Longerich, 1995); sample numbers and locations are listed in table 

A3 .1. All geochemical analyses were completed at the Department of Earth Sciences 
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laboratories, Memorial University of Newfoundland. The sampling protocol, analytical 

methods, as well as the precision and accuracy are outlined in Appendix 3 and the 

derived data are presented in Appendix 4. 

5.2 Igneous Rocks 

5.2.1 Sample Overview 

Table A3 .1 lists the sample numbers, locations and detailed description of the 

igneous rock samples analyzed for this study. 

Samples JOD21 and JOD22 were both collected from the Hurricane Prospect 

along the Salmon River. JOD21 is a fine-grained, slightly seritized, unmineralized 

diorite host, whereas JOD22 is an unaltered, albeit somewhat mineralized sample, from 

the same locale. Sample JOD25 was collected further upstream at the Corsair Prospect 

and contains trace amounts of disseminated sulphide. All three samples are mapped as 

part of the Mount Peyton Intrusive Suite (Dickson, 1992). Sample JOD04-20 was 

collected from a dyke (or sill) in Indian Islands Group sediments in a gravel pit just west 

of the town of Glenwood and east of the Salmon River Showings as mapped by Dickson 

(1992). 

Samples JOD45A, JOD45B, JOD46B and JOD81A were collected from intrusive 

bodies into the Davidsville Group sedimentary rocks and host auriferous mineralization 

in the Paul' s Pond area. Samples JOD45A and JOD45B were collected from the LBNL 

prospect host rock and consist of fme-grained leucogranite with a small amount of 

disseminated sulphide. The LBNL prospect has been previously mapped as a granitic 
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intrusion into the Davidsville Group (Evans, 1996). Sample JOD46B was collected from 

subcrop at the location of the Road Gabbro showing and comprises an unmineralized 

fme-grained gabbro. Sample JOD81A is from a small, fme-grained gabbro body at the 

Greenwood Pond #2 prospect that may have been altered by hydrothermal fluids but does 

not contain any sulphide mineralization in hand sample. 

Sample JOD04-09 was collected from an elongate gabbro ridge (Evans et al., 

1992; Currie, 1995), west of Ten Mile Lake. The sample comprises an unmineralized 

fine-grained gabbro that intrudes green siltstone previously mapped as the Ten Mile Lake 

Formation (Currie, 1995a). Sample JOD04-13 is from an unmapped gabbro body, east of 

the aforementioned ridge, along the Ten Mile Lake Resource Road. 

Samples JOD100, JOD101, and JOD102 were collected from gabbroic intrusions, 

possible dykes or sills (Evans et al. , 1992; Currie, 1995) intruding the Early Silurian to 

Early Devonian Ten Mile Lake Formation (Currie, 1995), north of the Trans Canada 

Highway. These outcrops were previously mapped as a single elongate gabbroic body, 

south west of the previously sampled intrusion (JOD04-09). These three samples appear 

to be geochemically unaltered. 

Samples JOD90A and JOD90B were collected from Red Rock Brook. The 

granite samples, from different locations along the river, are fresh and represent the main 

body of Mount Peyton Intrusive Suite granite. 

Sample JOD96D was collected from an exposed pink volcanic wedge, in the 

Duder Complex, south of the auriferous prospects at Duder Lake. Sample JOD97B is 

from the Corvette Prospect and samples JOD98 and JOD98A, which contain 
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disseminated sulphides, were collected from the Goldstash Prospect at Duder Lake ( cf, 

Churchill, 1994). Hydrothermal fluids may have affected these samples. 

Sample W03-35 was collected from the Huxter Lane Prospect in the southern 

most Botwood Basin. The sample is a finely mineralized, felsic intrusive rock with a 

quartz breccia vein in the Coy Pond Complex. The vein was removed before 

geochemical analysis of the host lithology. 

The geochemical data from this study were compared with a small representative 

data set from the northern Botwood Basin (Churchill, 1994) and a very extensive data set 

from the Mount Peyton Intrusive Suite (Dickson, 1996). Churchill's study mainly 

concentrated on the altered and mineralized gabbro intrusions. However, four regional, 

and presumably unaltered, igneous samples were reported as representative of the 

igneous lithologies in the northern region. Churchill had included these samples in an 

attempt to determine if there were any genetic relationships between igneous lithologies 

on a regional scale. He found that three of the samples had a calc-alkaline affinity but no 

direct conclusions about a genetic relationship between the samples were inferred. The 

data were collected for two volcanic samples (RC-92-04 and RC-91-62) which were 

presumed at the time to be from the Lawrenceton Formation, Botwood Group, one 

sample (DE-90-51) from the gabbroic host to the Clutha Prospect and one sample (JH-

92-310) from a gabbroic body 25 km southwest ofthe Duder Lake Prospects, near Dan' s 

Pond. 

Since that study, the volcanic and intrusive rocks in the vicinity of the Duder Lake 

Prospects, including the host to the Clutha Prospect, have been remapped as tectonic 

blocks in the Duder Complex (Currie, 1995b ). As already discussed (refer to chapter 2) 
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the inclusion of mappable volcanic and intrusive units in this complex has recently been 

questioned (i.e., Churchill, 1994; Dickson, 1995). Because of this controversy, no 

inferences as to the petrogenetic origin of these rocks are made here and the geochemical 

data are evaluated to determine if there is any recognizable association with the other 

samples included in this study. The two volcanic samples collected near Duder Lake 

were defined by Churchill (1994) to comprise lower greenschist facies basalt. The 

intrusive gabbroic sample from the Clutha Prospect was described as a deformed, fine to 

medium-grained rock that may have been affected by Fe-carbonate alteration. The fourth 

sample from Dan's Pond was collected from a gabbroic body that intrudes the Ten Mile 

Lake Formation. 

All samples contain S and some of the samples have very high S contents. The 

samples with the greatest S contents were collected from known Au occurrences. Some 

samples also had high Fe contents up to 23.6 wt.% Fe203, which reflects hydrothermal 

pyrite in the samples. In general, the oxide and trace element data show some variability 

within different lithological groups, due either to metamorphic overprinting or by the 

hydrothermal episode producing gold mineralization and it is thus assumed that original 

chemistry is not preserved. 

5. 2. 2 Trace element discrimination diagrams for rock classification 

5. 2. 2.1 Introduction 

The geochemical data were plotted on discrimination diagrams to group the 

samples according to rock type and magma series. These diagrams were created for 
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volcanic rocks and most samples in this study are intrusive plutonic, thus conclusions 

must be treated with caution. The diagrams do, however, provide a solid basis for 

distinguishing between different lithologies and recognizing common origins. 

When dealing with metamorphosed or altered rocks, the plot ofNb/Y vs. Zr/Ti02 

of Winchester and Floyd (1977) is commonly used. The Zr/Ti02 ratio indicates the 

extent of fractional crystallization as the ratio increases with fractionation due to the 

incompatibility of Ti. The Nb/Y ratio relates to the parent magma and the degree of 

alkalinity in the source since it rarely varies during fractionation (i.e. , Nb increases from 

tholeiitic to alkalic compositions (cf Barrett and MacLean, 1994)). 

A tertiary AFM plot and a bivariate alkalinity index plot of Si02 vs. alkalies 

(Irving and Barager, 1971) were used to determine the chemical affinity of the rocks. 

The alkali-silica diagram is one of the most useful classification schemes for volcanic 

rocks (Rollinson, 1993). However, these diagrams must be interpreted with caution as 

they are based on mobile elements, and the rocks from this study have undergone 

variable amounts of alteration related to ore-forming processes, as well as low-grade 

metamorphism. The total alkalies vs. silica diagram can be used to discriminate between 

two major magma series, alkaline and subalkaline (originally termed tholeiitic) 

(Rollinson, 1993). 

5. 2. 2. 2 Results 

The Si02 contents in the samples from this study range from 33.0 to 70.7 wt.% 

(weight percent). Seven samples (JOD04-20, JOD04-09. JOD04-13, JOD100, JODlOl , 
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JOD102 and JOD81A) had Si02 contents between 33.0 to 50 wt.% indicative ofbasaltic 

to basaltic andesite compositions. The lowest values (33.0 to 40.9 wt. %) were obtained 

from samples at the Duder Lake Prospects (JOD97B, JOD98 and JOD98A). Five 

samples (JOD21, JOD22, JOD25, JOD96D and W03-35B) had Si02 contents between 

53.53 to 60.9% indicating a rhyodacite to dacite composition, whereas another five 

samples (JOD45A, JOD45B, JOD90A and JOD90B) have Si02 contents ranging from 

63.3 to 70.7 wt.% defining a rhyolitic composition. 

The Winchester and Floyd (1977) plot ofNb/Y vs. Zr/Ti02 (Figure 5.2, p. 195) 

defines three groups from this study. The first group with Zr/Ti02 ratios between 0.008-

0.02 and Nb/Y ratios between 0.1 and 0.3 plot as basalt to basaltic andesite. The samples 

that plot within this compositional range include the gabbro samples JOD46B, JOD81A, 

JOD97B, JOD98, JOD98A, JOD100, JOD101, JOD102 and JOD04-13, hence their 

plotting within or along the basalt field is expected. 

Samples JOD100, 101, 102 and JOD04-09 from the linear gabbroic bodies 

southwest ofDuder Lake (as mapped by Evans eta/., 1992) and JOD04-13 from the 

unmapped intrusion east ofTen Mile Lake plot near the dividing line of the andesite and 

andesitic basalt fields. This suggests that these mafic intrusive rocks in the north of the 

MPIS have similar compositions. The samples from the Duder Lake gabbros have 

slightly lower Nb/Y and Zr/Ti02 ratios relative to the above gabbroic intrusions. 

Samples in the second group have Zr/Ti02 ratios ranging from 0.04 to 0.06 and 

Nb/Y ratios that vary between 0.2 and 0.5 placing them in the rhyodacite/ dacite 

compositional range. The samples in this group include JOD21, JOD22, JOD25, 

JOD96D, JOD04-20 and W03-35B. These samples, with the exception of JOD96D and 
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W03-35B were collected from, or immediately adjacent to, the MPIS near Glenwood. 

Sample W03-35B was collected from the south region and JOD96D was collected in the 

north. 

The third group plot (Zr/Ti02 ratios between 0.1 to 0.2 and Nb/Y ratios between 

0.2 and 0.5) within the rhyolite compositional field. These samples include JOD45A and 

JOD45B, JOD90A and JOD90B. Samples JOD90A and JOD90B were collected from 

the granitic phase of the MPIS, sample JOD45A and JOD45B are from a leucogranitic 

intrusion in the Paul's Pond area and thus all four samples were expected to plot within 

this field. 

For Dickson's (1996) extensive MPIS geochemical dataset the majority of the 

mafic rocks plot in the andesite field (Figure 5.2, p. 195). Some of the rocks plot in the 

rhyolite/ dacite field indicating a more intermediate phase of the suite and several 

samples plot in the upper andesitic basalt field. There are also outliers in other fields . 

The felsic intrusive rocks from this study plot within or near the dataset compiled by 

Dickson (1996) for the MPIS granitic phase. 

The northern rock samples from Churchill (1994) range from sub alkaline basalt 

to andesite in composition on the Winchester and Floyd (1979) diagram. The Clutha 

Prospect sample plotted in the andesitic basalt field as did the samples from the Duder 

Lake Prospects from this study (Figure 5.2, p. 195). However, Churchill' s sample 

collected from a gabbroic body near Dan's Pond plots with slightly higher Nb/Y vs. 

Zr/Ti02 ratios on the dividing line between the andesite and dacite fields . Although this 

sample was collected from a gabbroic intrusion into the Ten Mile Lake Formation, the 

sample consistently plots away from the gabbroic intrusions that intrude that unit from 
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this study. In fact, the Churchill sample consistently plots with the MPIS diorite samples 

from the current study. The two volcanic samples from Churchill plot in different fields, 

one as andesitic basalt and another as subalkaline basalt. 

The Irvine and Barager (1971) alkalinity plot for samples from this study 

indicates that they are mostly sub-alkaline with similar natural groupings to previous 

plots (Figure 5.3, p. 196). The exceptions are the two samples from the Duder Lake 

auriferous prospects, which plot with lower Si02 contents and higher alkali contents. All 

samples from the previous studies plot as subalkaline. 

Irvine and Barager's (1971) AFM plot indicates that the samples from this study 

plot in both the calc-alkaline and tholeiitic fields (Figure 5.4, p. 197). The calc-alkaline 

samples generally include the felsic samples JOD90A, JOD90B, JOD96D and W03-35B. 

The Huxter Lane sample (W03-35B) and the volcanic sample JOD96D from Duder Lake 

are distinctly different in that they clearly plot away from the other samples in the middle 

of the calc alkaline field. The samples that plot amid the two fields include intermediate 

JOD21 , JOD22 and JOD25 and felsic JOD45A and JOD45B, and the samples that clearly 

plot in the tholeiitic field are mafic samples JOD46B, JOD81A, JOD97B, JOD98, 

JOD98A, JOD100, JOD101 , JOD102, JOD04-09, JOD04-13 and JOD04-20. This 

indicates that the different groups identified in the AFM plot (Figure 5.2) still plot 

together. The exceptions are JOD45A and JOD45B as they plot slightly higher (in the 

tholeiite field) than the rest of the felsic group. Many of the samples from this study 

contained fmely disseminated or invisible sulphides, which would have caused the 

samples to plot higher on this diagram due to an increased Fe content. Therefore, 

interpretation of this diagram must be treated with caution. 
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On the AFM plot (Figure 5.4), the felsic samples from Dickson (1996) plot in the 

calc alkaline field with a trend line towards and eventually crossing over into the 

tholeiitic field. The mafic samples from Dickson's (1996) dataset plot mainly in the calc

alkaline field but there is also some cross over and scatter into the tholeiite field. In fact, 

the MPIS samples defme a distinct trend line, which borders the tholeiitic-calc alkalic 

boundary defmed by Irving and Barager (1971). Upon initial observation of this graph, 

one would assume that since the mafic samples from the current study plot distinctly in 

the tholeiite field, apart from the MPIS dataset, that these intrusives are unrelated to the 

MPIS. However, as previously mentioned, several samples from the current study 

contained disseminated sulphides, which may cause them to plot in the tholeiitic field. 

This issue is further explored on a graph based on immobile elements by MacLean and 

Barrett (1993) in section 5.2.4.2. Churchill's (1994) samples plot among the MPIS 

dataset with the exception of one of the volcanic samples, which plots in the tholeiitic 

field. 

On a Pearce and Cann (1973) tectonic discrimination diagram, the mafic rocks 

from this study plot mainly within two distinctive groups in fields C and D indicating that 

the samples represent calc-alkalic and within plate magmas, respectively (Figure 5.5, p. 

198). There is minor overlap into the B (ocean floor field), but in general, the samples 

that plot there (JOD98A and JOD100) border on the boundary between the D and C 

fields respectively. The samples that plot in the calc-alkalic basalt field include JOD21 , 

JOD22, JOD25, JOD46B, JOD81A and JOD04-13. The samples that plot within the 

within plate field are JOD97B, JOD98, JOD98A, JOD101 , JOD102 and JOD04-09. The 

felsic group of samples, in addition to the diorite sample JOD04-20, plots with Dickson' s 
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(1996) MPIS felsic samples, outside of the recognized fields. These samples display low 

Ti contents and, in general, the rocks from the northern portion of the Botwood Basin 

have slightly higher Ti than those from the central to southern Botwood Basin regions. 

The rocks from the northern region therefore plot as within plate basalts whereas those 

from the central to southern regions have lower Ti values and plot as calc-alkaline 

basalts. 

Dickson's (1996) mafic dataset plot dominantly within the C and B fields on the 

Pearce and Cann (1973) diagram. This indicates that these rocks have calc alkaline 

affinities. The felsic rocks from that dataset plot in a linear trend below the recognized 

fields among the felsic rocks from the current study (JOD90A, JOD90B, JOD45A and 

JOD45B). 

On a Pearce and Norry ( 1979) diagram of Zr vs. Zr/Y, the majority of felsic to 

mafic rocks from this study and previous studies plot as within plate basalts (Figure 5.6, 

p. 199). These samples show a continental influence as they all have Zr/ Y ratios greater 

than 3. The exception to this are several samples from the Dickson (1996) dataset which 

plot within the mid ocean ridge and island arc basalt fields indicating an oceanic arc 

influence in those rocks. 

The samples were also plotted on Meschedes (1986) tectonic discrimination plot 

to further assess the validity of results from the previous diagram (Figure 5.7, p. 200). 

This diagram is based on a tertiary plot ofNb-Zr-Y and most of the samples from the 

three datasets plot within the C field (within plate tholeiite). Samples JOD97B and 

JOD98A plot within the D (N-MORB) field, however, it should be noted that they plot 

near the C field. Several of the mafic samples from Dickson (1996) also plot in D field. 
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Sample W03-35B from Huxter Lane plots within the All (within plate alkalic basalt to 

tholeiite) field. Sample JOD45B plots on the dividing line between the AI and All fields. 

Two samples, JOD04-20 and JOD96D plot outside all fields and are very enriched in Zr 

and depleted in Nb and Y in comparison with the other rocks. 

The Meschedes (1986) tectonic discrimination diagram was also used to 

determine if the mafic intrusive rocks from the various studies implied similar 

paleotectonic environments (Figure 5.7). The two volcanic samples from Duder Lake 

and the gabbroic sample from Dan' s Pond from Churchill's dataset plot in the C (arc) 

field as do the majority of the samples from the MPIS mafic dataset of Dickson. The 

sample from the Clutha Prospect plots close to the Duder Lake gabbro samples from the 

current study and plots in the D field, near the dividing line with the C field. Some of the 

samples from the current study, as well as the MPIS study, also plot in the D field 

indicating N-MORB affinities. The majority of samples from all studies plot in the C 

field and this implies that the majority of the samples from the all three datasets have 

within plate tholeiitic affinity. As this diagram uses immobile and incompatible 

elements, it is assumed to be more reliable than the AFM diagram previously discussed. 

The samples were also plotted on a bivariate Till 00 vs. V diagram (Shervais, 

1982) (Figure 5.8, p. 201). Island Arc Tholeiites (IAT) typically exhibits Ti andY 

depletions and this feature can be used to construct a discrimination diagram that 

separates them from Mid Ocean Ridge Basalts (MORB) and Within Plate Basalts (WPB). 

Ti has to be plotted against a compatible index of fractionation because evolved lA T can 

contain the same Ti contents as MORB or WPB due to the effects of fractional 

crystallization. V is used as this index and is plotted against Till 000 to distinguish 
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between volcanic arc tholeiites and alkali basalts (Shervais, 1982). The MPIS dataset 

from Dickson (1996) was added to this diagram to further illustrate the various amounts 

of fractionation present in the basin with respect to this large intrusive body. The 

Churchill ( 1994) dataset was not used because V content was not measured for that study. 

In general, the mafic samples from the southern and northern Botwood Basin are more 

enriched in V and Ti than those from the central Botwood Basin (i.e. , MPIS dataset 

[Dickson, 1996] and current study) initially suggesting that those intrusions further away 

from the MPIS are more fractionated. Samples JOD90A and JOD90B were both 

collected from the main granite phase of the MPIS and plot amongst the MPIS granite 

from Dickson (1996). The majority of the samples plot within the alkaline basalt field 

with the exception of mafic samples JOD98A, JOD46B, JOD81A, JOD101 , JOD102 and 

JOD04-09. Sample JOD98A is the most depleted inTi of the northern Botwood Basin 

samples, which may account for its plot away from the rest of the group. The samples 

collected from the linear gabbros in the north as mapped by Evans et al. (1992) are more 

enriched in Ti than any of the other samples from current and previous datasets and 

illustrate a trend of increasing Ti with respect to V. 

5.2.3 Harker Bivariate Plots 

5.2.3.1 Introduction 

Several major element bivariate plots were utilized to illustrate variation between 

samples and to determine trends. Harker variation diagrams are bivariate plots using 

Si02 along the X-axis and major oxides along theY-axis. The major elements are plotted 
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against Si02 because it is the most abundant oxide in igneous rocks and exhibits a wide 

variation in composition. These diagrams are particularly useful for large quantities of 

data and yield an approximation of inter-element variations for a group of samples. 

Thus, the samples from the current study were not assessed separate from previous data 

sets via this method. 

As the following diagrams are built upon mobile elements, they must be viewed 

with caution as the rocks from the current study have been subjected to hydrothermal 

fluid and low-grade metamorphism. Rocks that are genetically related through fractional 

crystallization typically exhibit variation with: 1) decreases in Ti02, FeO, MgO and CaO, 

and 2) increases in K20 and Na20 and Ab03 with increasing Si02 content (Rollinson, 

1993). Although these parameters are useful in determining fractionation trends, Harker 

diagrams cannot defme a defmite genetic link. As the MPIS dataset of Dickson ( 1996) is 

the most voluminous, the current study dataset and Duder Lake dataset (Churchill, 1994) 

will be compared against it in an attempt to defme or disprove any genetic relationship 

between the rocks throughout the Botwood Basin. 

5.2.3.2 Results 

The three datasets were plotted on four Harker variation diagrams ofSi02 vs. 

FeO, MgO, K20 and Ti02 (a symbol key for identifying the samples is presented in figure 

5.1 , p. 194). Generally, the Duder Lake gabbros have the lowest Si02 contents ofthe 

mafic samples, indicating they may be different. On the plot of Si02 vs. FeO, the MPIS 

data define a smooth, negative, slightly curvilinear trend of decreasing FeO content with 
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increasing Si02 content reflecting fractional crystallization (Figure 5.9a, p. 202). In 

regards to the current study, the samples from the southern and central region generally 

plot along the trend but the samples from the north define a different trend line, 

suggesting a variation in fractionation away from the main pluton. Initially, one would 

assume that the increased Fe content in the Duder Lake samples was a reflection of the 

mineralization, however, several of the samples from the linear gabbroic bodies mapped 

by Evans et al. (1992) did not contain much sulphides, but also have higher Fe contents. 

In fact, this graph suggests that Fe contents increase to the north in proportion to distance 

from the MPIS pluton. Of the four samples from Churchill's (1994) dataset, three plot 

along the trend defined by the MPIS dataset. The mafic samples collected from the 

Clutha prospect or Dan's Pond did not contain the elevated Fe contents of the northern 

samples from the current study. One of the volcanic samples from Duder Lake did plot 

along the trend defined by higher Fe contents. 

A plot of Si02 vs. MgO defmes a smooth, negative, curvilinear trend for the 

MPIS data, again indicating fractionation (Figure 5.9b, p. 202). The data from the 

current study generally agree with the trend, with the exception of the Duder Lake 

gabbros and to a lesser extent, the linear gabbros. In fact, these samples defme a similar 

trend line, which is offset by decreased silica. The Duder Lake volcanic samples from 

Churchill ( 1994) lie along the trend defmed by the MPIS intrusives, with the exception of 

the Clutha sample, which has lower MgO contents. 

On a plot of Si02 vs. K20 a smooth linear positive trend is defined by the MPIS 

data (Figure 5.9c, p. 203). Most of the samples from the current study fall along, or 

slightly above the trend line with the exception of JOD97B and JOD98A from Duder 
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Lake, which are low in Si02 and K20 content and displaced to the left of the trend line. 

Sample JOD25 from the MPIS diorite and samples JOD45B (LBNL) and W03-35B 

(Huxter Lane), both felsic samples from the southern Botwood Basin, all have slightly 

elevated K20 contents with respect to the main dataset. The Dan's Pond gabbro and the 

two volcanic samples from Churchill (1994) all have lower K20 contents than the MPIS 

dataset, whereas the Clutha gabbro sample once again plots among the MPIS mafics. 

A plot of Si02 vs. Ti02 illustrates a negative, slightly hooked trend for the MPIS 

data (Figure 5.9d, p. 203). The samples from the current study show the greatest 

deviation from the MPIS dataset on this plot. Samples JOD90A, JOD90B, JOD21, 22 

and 25, all collected from the MPIS, fall along the trend line defined by the Dickson 

(1996) MPIS data. The most significant deviation are the samples collected in the 

northern Botwood Basin. Samples JOD97B, JOD98A and JOD98 all demonstrate 

increasing Ti02 content with increasing Si02 content. The samples from the linear 

gabbros have various elevations ofTi02 (2.0-3.7 wt. %) with similar Si02 (48-52 wt. %) 

contents. The two gabbro samples from the Paul's Pond region (JOD81A and JOD46B) 

also have slightly elevated Ti02 with respect to the MPIS data, but lower concentrations 

than those of the northern intrusives. The samples from the Churchill (1994) study 

generally plot amongst the MPIS data with the exception of volcanic sample RC-92-04, 

which also has increased Ti02 contents. It should also be noted that the Clutha gabbro 

does not seem to contain such elevated contents, as it once again plots among the MPIS 

mafics. 

One could attribute the increased Ti02 content of the northern linear gabbro 

samples to fractionation of the MPIS magma source. However, the samples do not have 
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increased Si02, which would be expected if the magma were more evolved. Thus, the 

linear gabbros probably are not genetically related to the MPIS through fractionation but 

could possibly be fractionated equivalents of a similar magma source. The Duder Lake 

gabbros have higher Fe and Ti contents than the MPIS dataset, but the very low Si02 

contents distinguish these gabbros from all of the other samples. Petrographical 

observations also show differences between the Duder Lake gabbro and the intrusives 

south of it. 

Thus, Harker bivariate diagrams are useful in defining a fractionation trend for the 

MPIS dataset for a direct comparison against Churchill' s (1994) Duder Lake dataset and 

the current study dataset. The plots show that the intermediate to felsic samples collected 

from the MPIS during the current study agrees with the previously compiled data from 

Dickson (1996). Although the Evans eta/. (1992) gabbros generally fit the trends 

defined by the MPIS dataset they are more likely evolved from a fractionated equivalent 

rather than the MPIS magma source itself. The Duder Lake samples are distinct from the 

entire dataset. 

5. 2. 4 Bivariate trace element diagrams for magmatic affinity 

5. 2. 4.1 Introduction 

Trace element data from the current study were combined with datasets from 

previous studies (Dickson, 1996; Churchill, 1994) and their magmatic affinity assessed 

on bivariate trace element diagrams (i.e. , Barrett and MacLean, 1994, 1999; MacLean 

and Barrett, 1993). These data are used to compare different rock suites, to arrange them 
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into tholeiite, calc alkaline and transitional groups, and also to identify if any genetic 

relationships exist between intrusive lithologies throughout the region. 

5. 2. 4. 2 Results 

The plot of Zr vs. Ah03 (Figure 5.1 0, p. 204) illustrates that the rocks in this 

study range from basalt to andesite in composition just as defined by the Winchester and 

Floyd (1977) diagram. This plot is interesting in that it seems to defme two distinct 

fractionation trends with the MPIS dataset. If the pluton evolved successively, one would 

expect to see a straight linear fractionation trend, however, the felsic rocks seem to form 

a separate horizontal trend that may suggest that there was significant lag time between 

the evolution of the mafic and felsic phases respectively. This observation supports the 

conclusions of Strong (1979) and Strong and Dupuy (1982) that both phases of the MPIS 

evolved from separate sources in that the mafic rocks formed from mantle melts and the 

felsic rocks formed from crustal melts. The minor intermediate phase was postulated to 

form as a result of magma mixing or contamination. This plot indicates that the MPIS 

mafic dataset of Dickson (1996) may actually include a number of intermediate samples. 

Further evidence against coincident formation is presented in the geochronological results 

presented in chapter 8. This diagram does not indicate a significant mass gain/ loss in the 

samples from this study with the exception of JOD22 and JOD45B, which have 

experienced mass loss. 

The plot of Zr vs. Ti02 illustrates a fractionation trend that has been defined by 

the MPIS dataset (Figure 5.11 , p. 205). The MPIS granite samples from this study plot 
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among the Dickson' s (1996) MPIS granite and the samples seem to define a linear 

alteration line. The intermediate samples from the current study also plot between the 

main mass of mafic MPIS and the felsic MPIS. However, the mafic samples from both 

the northern (JOD97B, JOD98, JOD98A, JODlOO, J0101 , JOD102, JOD04-09) and 

southern (JOD46B and JOD81A) Botwood Basin all have greater Ti02 than the MPIS 

region. The high Ti02 suggests that either the rocks are unrelated and formed from a 

different magmatic suite or that the rocks are related and the magma differentiated away 

from the main pluton. This graph again indicates that the MPIS mafic dataset of Dickson 

(1996) must be inclusive of a significant intermediate phase. 

The plot of Zr vs. Y is very useful in determining the magmatic affinity of the 

igneous rocks, both in the current and previous studies. As earlier mentioned, the AFM 

diagram presented a complexity in that the mafic samples from this study seemed to be 

tholeiite whereas the MPIS dataset of Dickson (1996) plotted on the boundary between 

calc alkaline and tholeiitic and the samples from Churchill (1994) plotted as calc alkaline. 

The bivariate graph of MacLean and Barrett (1993) is considered more reliable than the 

AFM plot because it is based on immobile elements. The graph illustrates that the 

samples from the current study are in fact transitional in nature and that the entire dataset 

inclusive of all three studies range from transitional to tholeiitic in nature (Figure 5.12, p. 

206). This lends credence to the suggestion that the samples from the current study have 

increased Fe content due to sulphide mineralization, which caused them to plot as 

tholeiitic on the AFM diagram. The samples from Dickson' s (1996) MPIS study are 

transitional to tholeiitic with some scatter into the calc alkaline field. The majority of the 

MPIS felsic samples plot in the transitional field whereas the mafic samples plot about 

177 



50:50 in the tholeiitic and transitional fields. The split in mafic rocks may reflect the 

presence of a significant intermediate phase in the MPIS that has been grouped with the 

mafic dataset. Although the mafic rocks from Churchill (1994) also plot as tholeiitic to 

transitional, the Duder Lake samples from the current study appear different from the 

MPIS because they plot between the transitional and calc alkaline fields. The Huxter 

Lane sample is also distinct as it plots away from the other datasets, down in the calc 

alkaline field. 

5.3 Sedimentary Rocks 

5.3.1 Sample Overview 

The sedimentary samples analyzed in this study include JOD15, JOD20, JOD39, 

JOD44A, JOD46A, JOD57B, JOD80A, JOD82A, JOD83A, JOD86B, JOD96G, JOD96J, 

JOD120A and JOD120B. 

Samples JOD 15 and JOD20 are from the Knob Hill and Third Pond Prospects, 

respectively, to the north of Glenwood. Both samples comprise least altered and 

unmineralized Davidsville Group greywacke. Sample JOD39 was collected from a 

contact between the Indian Islands Group and Caradocian shale along Careless Brook 

(see Chapter 4). The sample is dark grey, fme-grained, and dense, with little alteration. 

Sample JOD44A is of a sedimentary country rock to the LBNL prospect in the Paul' s 

Pond region and is presumably from the Davidsville Group. Sample JOD80A was 

collected from the host rock to the Hornet Prospect in the Paul' s Pond area. The host has 

previously been identified as a felsite (Evans, 1996) in Davidsville Group sedimentary 
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rocks. Samples JOD82A and JOD83A are Davidsville Group greywacke host rocks to 

the A-Zone Extension Prospect and the Knob Prospects, respectively. Both samples are 

mineralized and slightly altered by hydrothermal fluids. Sample JOD86B is Davidsville 

Group greywacke host rock collected from the vicinity of the Bowater Prospect. 

Sample JOD57B is green siltstone from the Ten Mile Lake Formation (Currie, 

1995) and was collected from where a gabbroic body as mapped by Evans et al. (1992) 

intrudes it. 

Samples JOD96G and JOD96J are metasedimentary samples collected 

immediately south of the Duder Lake Prospects. The samples are slightly deformed due 

to their proximity to a shear zone that runs NE through the area. The sedimentary rocks 

to the west of this zone had previously been mapped as Botwood Group (Churchill, 

1994), but have been reassigned to the Duder Complex by Currie (1995b) (see Chapter 2 

and 4). 

Samples JOD120A and JOD120B are shales collected from the Appleton gravel 

pit, due west of the Bowater prospect. Gerry Squires (pers. comm., 2003) had suggested 

that this was a possible intrusion into the Davidsville Group shale; however, geochemical 

and petrographic data (see chapter 4) suggest that these samples are actually sedimentary 

in nature. The samples are dark grey, fme-grained, very dense and exhibit disseminated 

sulphide. Both samples are from the same location. 

0 ' Reilly (2005) collected samples ~40 km southwest of Glenwood and ~ 5 km 

northeast of the Beaver Brook Mine at the O'Reilly auriferous prospect. Altius 

Resources Inc. discovered this prospect in late 2002 along the Mustang Trend. The 

prospect is located within Indian Islands Group rocks in a northeast to southwest trending 
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dextral shear zone (0' Reilly, 2005). O'Reilly analyzed the sediment geochemistry of 

the various lithologies at the prospect. The main units present were fine-grained, tan to 

grey siltstone that had undergone intense silica alteration and minor hematite alteration 

and medium-grained interbedded siltstone/ sandstone. Data for both of these units are 

incorporated into the current study as representatives of the Indian Islands Group 

sedimentary rocks. One purpose of O'Reilly's study was to determine the tectonic setting 

of deposition for the host lithologies. He classified the host rocks as siliciclastic, calc

alkaline affinitive, sedimentary rocks of the Indian Islands Group. He also found them to 

have a continental margin provenance. 

Churchill (1994) analyzed 12 sedimentary samples of what he presumed to be 

Davidsville Group sedimentary rocks from drill core at Duder Lake. His primary purpose 

was to evaluate the extent of sulphide present in the sedimentary rocks at Duder Lake. 

The rocks initially mapped as Davidsville group (i.e., Evans et al., 1992) have been 

reassigned to the Duder Complex by Currie (1995b ). The samples include fine-grained 

argillaceous siltstones to coarser grained rocks such as sandstones and greywacke. 

5.3.2 Trace element and petrographic discrimination diagrams 

All samples from the current study, with the exception of JOD57B (mapped as 

Ten Mile Lake Formation by Currie (1995)) and JOD96G and JOD96K (mapped as 

Botwood Group by Churchill (1994) but remapped as Duder Complex by Currie (1995b)) 

have been assigned to the Davidsville Group. Sample JOD39 is from Caradocian Shale, 

but this unit has been included as an upper unit of the Davidsville Group (i.e., Williams, 
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1993). The petrography of samples JOD15, JOD20, JOD44A, JOD80A and JOD120 are 

discussed in chapter 3 and the petrography of sample JOD39 is presented in chapter 4. 

Geochemical data from the Duder Complex (Churchill, 1994) and Indian Islands Group 

sediments (O'Reilly, 2005) are also utilized to provide a larger dataset. These 

sedimentary samples are analyzed to determine: 1) what, if any, differences or similarities 

can be established between Davidsville and Indian Islands Group sedimentary host rocks 

throughout the Botwood Basin and 2) if tectonic environment and source rock 

environments can be established for the different groups. Several tectonic discrimination 

diagrams based on either element geochemistry or petrographical analysis were utilized 

during this study to aid in classifying the sedimentary rocks. 

First, the elemental abundances of each sedimentary rock from this study were 

assessed. Most of the samples are enriched in Ba with values ranging from 92 to 1923 

ppm. The normal range for Ba in siltstone is between 10 and 99 ppm and in sandstone, 

580 ppm (Hsu eta/. , 1995). Many of the samples are also enriched in As with values 

ranging from 18 to 9807 ppm. The exceptions are samples JOD39, JOD44A, JOD46A 

and JOD57 A as As contents in these samples are below detection limits. Normal ranges 

for As in shale and sandstone are 10 ppm and 8 ppm respectively (Hsu eta/. , 1995). 

Samples 120A and JOD120B are much more enriched in MnO than they other samples 

(generally< 1.0 wt. %) with values of 12.03 and 9.74 wt.% respectively. 

Roser and Korsch (1986) and Hsu eta/. (1995) have demonstrated that tectonic 

environments can be established for different sandstones, mudstones and sandstone

mudstone pairs based on Si02 contents and K20/Na20 ratios. The authors have 

established three first-order tectonic categories for depositional settings. These 
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environments are Passive Continental Margin (PM), Active Continental Margin (ACM) 

and Oceanic Island Arc (ARC) (Figure 5.13, p. 207). It is important to note that when 

assessing the tectonic setting of sediments deposited in basins related to active plate 

boundaries, that they may be either related to either a continental magmatic arc (ACM) or 

an island arc (ARC). 

The ARC field consists of low K20/Na20 and Si02 sedimentary rocks that are 

derived from volcanogenic sources in subduction related basins. Sediment sources from 

this category are derived from an island arc source and the rocks were subsequently 

deposited in a variety of settings including fore-arc, intra-arc, back-arc basins and 

trenches. The ACM field consists of mid K20/Na20 and Si02 sedimentary rocks that are 

derived from volcanogenic sources in subduction related basins, continental collision 

basins and pull apart basins. The PM field consists of quartz-rich sedimentary rocks 

deposited at stable continental margins or intracratonic basins. Roser and Korsch (1986) 

have suggested that the presence of silica cement and/ or a later episode in which silica 

rich fluids affected the rocks will cause the sediments to plot in the PM field. 

The sedimentary rocks analyzed for this study plot within all three fields (Figure 

5.13). The samples that plot within the ARC field are JOD20, JOD46A, JOD83A, 

JOD120A, JOD120B, JOD96G and JOD96J. Samples JOD20, JOD83A, JOD120A and 

JOD120B were all collected from the Davidsville Group near Glenwood in the central 

Botwood Basin region suggesting island arc sources for these sedimentary rocks. 

Samples JOD96J and JOD96G were collected from the Duder Complex and plot in the 

ARC field but it must be considered that these samples were collected adjacent to a shear 
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zone and therefore the elements on which this diagram has been constructed may have 

been mobilized. 

The samples that plot within the ACM field include JOD57B, JOD80A, JOD82A, 

and JOD39. Samples JOD80A and JOD82A were both collected from Davidsville Group 

greywacke at auriferous occurrences in the Paul' s Pond region, northern Botwood Basin. 

Sample JOD39 from the Caradocian shale and sample JOD57B from the Ten Mile Lake 

Formation, also plot within this field. The samples from the Duder Complex collected 

east ofDuder Lake (Churchill, 1994) plot within the ACM and PM field. 

Samples JOD15, JOD44A and JOD86B plot in the PM field. All three of these 

samples were collected from Davidsville Group fine-grained sandstone at auriferous 

occurrences that have undergone silicification. It is assumed that these samples were 

enriched in Si02 due to variable amounts of silicification observed in hand sample. 

The Indian Island Group samples from 0' Reilly (2005) all plot within the PM 

field. Only two of the samples consist of altered siltstone so the plot is considered 

reliable. The Duder Complex samples plot in both the PM and ACM fields. The results 

of this graph are considered reliable because the rocks were not reported to be altered. 

The samples were, however, obtained form drill core at Duder Lake and it may be 

possible that the drill core actually contained Indian Islands Group rocks along with 

Duder Group rocks. Either the reports by Currie (1995b) that Indian Islands Group 

tectonic blocks are present in the complex or the suggestion of Dickson (2005) to extend 

the Indian Islands Group further west would support this. 

Tectonic environments for different sedimentary rocks can also be determined 

from petrographic descriptions based on the work of Dickinson and Suczec (1979). Their 
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tertiary diagram uses modal abundances of quartz, feldspar and lithic fragments to define 

different tectonic environments. The diagram defines Continental Block Provenances, 

Recycled Orogen Provenances and Magmatic Arc Provenance, each of which are further 

subdivided into smaller divisions to further classify the tectonic processes that define 

each category. Only the 'least altered' samples from this study could be plotted on this 

tertiary diagram and include JOD15, JOD20, JOD39 and JOD044A (Figure 5.14, p. 209). 

Samples JOD 15, JOD20 and JOD44A were variably silicified and may plot higher on the 

diagram than an unaltered equivalent. The rocks from the Davidsville Group and the 

sample from the Caradocian shale plot just below the Recycled Orogen Provenances field 

and have a high ratio of oceanic to continental components. The recycled orogen 

provenances represent zones of plate convergence. The samples that plot within this field 

can be related to subduction complexes, collisional orogens and foreland uplift. The 

source rocks are generally characteristic of uplifted suture zones and consist of 

sedimentary and metamorphosed sedimentary and igneous rocks. Generally, the 

sediments that are related to subduction will plot near the bottom of the field, whilst 

collision and uplift derived sediments will plot throughout (Boggs, 2001 ). The samples 

from this study show a high oceanic component. 

Several of the Indian Islands Group samples from 0' Reilly (2005) plot within the 

craton interior subdivision of the continental block provenance field. Interior craton 

sediments are considered to be quartz rich and contain very little feldspar (<10%) and 

plot near the quartz apex. Several other samples plot outside of the magmatic arc 

provenance field and O'Reilly (2005) attributed this to be a result of numerous obscure 
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clasts and the presence of unidentifiable altered fragments, which caused a shift to the 

lithic fragment corner. 

Due to the observed alteration, both in hand sample and thin section, for the 

majority of the sedimentary samples from the current study, it is best to rely on elements 

with known low chemical mobility. The trace elements such as La, Ce, Nd, Y, Th, Zr, 

Hf, Nb, Ti and Sc are best used for provenance and tectonic studies because they have 

low chemical mobility during chemical processes and have a short residence time in 

seawater (Holland, 1978). These elements undergo very little chemical dissolution as 

they are transported into clastic sedimentary rocks and thus provide a representative 

example of parent material (Hsu et al., 1995). The samples from the current study were 

plotted against the samples from the Indian Islands Group of O'Reilly (2005) and the 

Duder Complex of Churchill (1994). 

On a Zr vs. Nb diagram, the samples show some variation that appears to be 

related to their respective locations in the Botwood Basin (Figure 5.15a, p. 209). For 

example, the Davidsville Group rocks from the southern and central region plot in 

separate groups. The Davidsville Group sediments collected from the southern Botwood 

Basin as part of the current study plot with the highest Zr and Nb contents, whereas the 

samples collected from the central region for the current study plot with the lowest 

contents of these elements. The Duder Complex samples are also elevated in Nb with 

respect to the samples aside from the southern Davidsville Group. The samples from the 

Ten Mile Lake Formation plot among 0' Reilly's (2004) Indian Islands Group samples 

with intermittent values to the remaining dataset. 
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On a Zr vs. Y diagram the same trends as observed in the last diagram are noted 

(Figure 5.15b, p. 209). The southern Davidsville Group samples contain the highest Y 

contents. Two of the Indian Islands Group samples have high Y values but in general the 

samples plot together at median values. Once again the sample from the Ten Mile Lake 

formation plots with 0' Reilly' s (2004) Indian Islands Group samples. The central 

Botwood Basin Davidsville Group samples plot with lower values than the combined 

dataset and the northern Duder Complex samples plot with higher values than all samples 

with the exception of the southern Davidsville Group. 

There was not any significant variation in Ah03 values on a plot of Zr vs. Ah03 

(Figure 5.15c, p. 210). On a diagram ofTi02 vs. Zr, the Duder Complex samples, both 

from Churchill (1994) and the current study, display the highest Ti02 contents with 

variations in Zr values. The samples from the central Davidsville Group have the lowest 

Ti02 values whereas, the Davidsville Group samples from the southern region plot with 

values similar to the Duder Complex. The Indian Islands Group generally plots with 

median values and the Ten Mile Lake Formation sample has similar Ti02 contents to the 

Indian Islands group sediments from 0 ' Reilly (2004). 

These diagrams illustrate that there is a definable distinction between Davidsville 

Group sediments in the central and southern regions. The sediments from the south are 

generally more enriched in trace elements (Zr, Nb andY) than those from the north and 

central regions respectively. The samples from the Duder Complex are the most enriched 

in Ti and the remaining samples and those from the southern region were more enriched 

inTi than the sediments from the central region (Figure 5.15d, p. 210). The Indian 

Islands Group sediments exhibit values that are typically intermediate to those from the 
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Duder Complex and the central Davidsville Group and the Ten Mile Lake Formation 

consistently plots with that group. It is interesting to note that the intrusive lithologies 

from the northern and southern region also exhibited elevated Ti and Zr respectively. 

Since the southern Davidsville Group sediments also contained elevated Ti contents, it is 

valid to assume that the sediments are more enriched in Ti away from the central region. 

Once the tectonic environment or potential origin or source rock has been 

determined, immobile elements can be used to determine the composition of source 

rocks. Potential source areas can be identified for sedimentary and metasedimentary 

rocks based on a ratio plot of Ah03-Ti02-Zr as proposed by Fralick and Kronberg (1997) 

and Fralick (2003). The diagram is based on immobile elements and therefore the 

elemental ratios from the sedimentary rocks should reflect that of the source rocks. The 

diagram shows that the source rocks for the sedimentary samples from the Botwood 

Basin primarily have calc-alkaline volcanic to intrusive compositions (Figure 5.16, p. 

211). Samples JOD15, JOD20, JOD39, JOD80A, JOD83A, JOD86B, JOD120A, 

JOD120B all plot within or immediately adjacent to the calc alkalic field. This field has 

been further subdivided into felsic and intermediate subfields and samples JOD20, 

JOD39 and JOD86B plot within the intermediate sub-field. All other samples plotted 

outside of both the calc alkaline and tholeiite volcanic fields; however, due to their ratios 

it is presumed that the composition of the source rocks for these samples would more 

likely be calc-alkaline than tholeiitic. None of the samples from the study plotted within 

the tholeiite field indicating that tholeiite volcanic rocks were unlikely to have been 

source rocks for the sedimentary rocks. 
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A triangular quartz feldspar lithic fragment diagram of McBride (1986) was 

utilized in an attempt to classify the samples to identify the host rock (Figure 5.17, p. 

212). This diagram is also based upon petrographic observations and plot in the same 

area as on figure 5.14. The diagram is divided into eight fields based upon modal 

abundance of quartz feldspar and lithic fragments. The samples from this study are 

dominantly feldspathic litharenite. 

5.4 Discussion 

Most of the igneous and sedimentary rocks selected for geochemical study are 

variably affected by alteration associated with hydrothermal processes and low-grade 

metamorphism. However, several observations can be made based upon immobile 

elements that were not overly affected by these processes. 

5. 4.1 Igneous Rocks 

The igneous rocks assessed for this study range from mafic to intermediate to 

felsic in composition. The mafic rocks were collected from throughout the Botwood 

Basin including gabbroic dykes to the north, previously mapped by Evans et al. (1992), 

gabbroic bodies near Duder Lake in the north that host auriferous mineralization, and the 

hosts to the Greenwood Pond #2 and Paul's Pond prospects in the south. 

Intermediate rocks include those from a diorite phase of the MPIS that hosts the 

Hurricane and Corsair auriferous prospects near Glenwood, a previously mapped dioritic 
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dyke near Glenwood (Dickson, 1996), an unknown volcanic unit at Duder Lake, subcrop 

from the Road Gabbro Prospect and the host to the Huxter Lane Prospect. 

The felsic samples were collected from a volcanic unit as mapped by Evans 

(1992) south ofDuder Lake, the granitic host to the LBNL Prospect near Paul's Pond and 

the felsic host to the Huxter Lane Prospect, which intrudes the Coy Pond Complex. 

A direct comparison of the chemical affinities of the current geochemical data 

with previous datasets could not be achieved using an AFM plot because of the elevated 

levels ofFe20 3 in the current samples. Alkali abundances were assumed to represent the 

original chemistry based upon an intergroup element abundance comparison but the 

elevated Fe contents, due to the presence of pyrite, caused those samples to plot higher on 

the tertiary plot. Although the samples from the current study plotted in the tholeiitic 

field on the AFM diagram, the samples from the MPIS dataset of Dickson (1996) 

appeared to border the boundary between, and also plot within, both the tholeiitic and 

calc alkaline fields. The samples from this study as well as from previous datasets are 

subalkaline in nature. A bivariate plot using the immobile elements Zr and Y (MacLean 

and Barrett, 1993) was considered more reliable for the determination of magmatic 

affinity because these elements are considered unaffected by alteration processes. This 

plot illustrated that the mafic samples from the current study are generally transitional in 

nature, which verifies the assumption that the AFM plot was influenced by elevated Fe 

contents. The samples from previous datasets plot as transitional to tholeiitic in nature. 

Interestingly, the mafic samples from Dickson's (1996) study plot 50: 50 in the tholeiitic 

and transitional fields whereas the majority of the MPIS felsic samples plot within the 

transitional field. This either illustrates the evolution of the magma from more primitive 

189 



to a more fractionated state or indicates the presence of an intermediate phase inclusive to 

the mafic dataset. The samples collected from the current study plot among the MPIS 

data suggesting a possible common magmatic affinity or an equivalent. The exception is 

the samples from Duder Lake, which plot along the boundary of the transitional to calc 

alkaline fields suggesting that these gabbros are more evolved and thus distinct from the 

MPIS mafics and the gabbroic samples mapped by Evans et al. (1992). Churchill (1994) 

also concluded that the Duder Lake gabbros are calc alkaline, further demonstrating that 

they are unrelated to the intrusives to the south. 

On immobile element tectonic discrimination diagrams, the mafic samples from 

this study have within plate alkaline affinities and plot within the same fields as the 

Duder Lake and MPIS datasets. This suggests that there may be some geochemical 

relation between the MPIS and select intrusive lithologies throughout the Botwood Basin 

in that the tectonic environment of formation is similar. Although the samples plot 

suggest that been formed in similar tectonic environments, subtle differences were noted. 

For example, on the Pearce and Cann (1973) diagram the samples generally plotted as 

calc-alkalic and within plate magmas with minor overlap in the ocean floor field. The 

samples from the northern Botwood Basin, however, contain slightly elevated Ti with 

respect to the intrusives from the central and northern region. Thus, the northern samples 

plotted as within plate magmas whereas the central and southern samples plotted as calc

alkalic magmas. Other diagrams (Pearce and Norry (1979) and Meschedes (1986)) plot 

all samples as within plate magmas. A Shervais (1982) diagram suggests that the 

intrusives may have formed in the same tectonic environment, but that some intrusives 

are more fractionated than others. The samples from the northern Botwood Basin, and to 
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a lesser extent the southern Botwood Basin, contain more elevated V and Ti than the 

MPIS samples indicating either increased fractionation away from the MPIS or a 

fractionated magmatic equivalent from a similar magma source. The decreased Si02 

content of the samples to the north indicates that a fractionated equivalent would be more 

plausible than increased fractionation of the same magma source. 

Harker bivariate plots and trace element bivariate plots were utilized in 

conjunction with all three datasets to further demonstrate any fractionation trends and to 

evaluate the fit of the intrusive rocks collected away from the MPIS. The trace element 

plots were also useful in assessing the degree of alteration. These diagrams indicate that 

the samples collected in the north and to a lesser extent south are more fractionated with 

respect to the MPIS and that some of these samples have undergone mass loss or mass 

gain. This suggests that either the Duder Lake intrusives are genetically unrelated to the 

MPIS gabbro or that significant differentiation occurred as the magma traveled further 

away from the main chamber. As seen in section 5.3 .2, the sediments from the Duder 

Lake Complex and to a lesser extent the Ten Mile Lake Formation, contain higher Ti 

levels than the sediments from the Davidsville Group in the central and southern region. 

This geochemistry might explain the presence of high Ti values in the gabbros from the 

north as more Ti must be available for sampling in that region. 

The high levels of Fe and Ti have previously been recorded in the Duder Lake 

gabbros by Churchill and Evans (1992) who mapped the Duder Lake gabbros and defmed 

two types: melanocratic and leucocratic. The melanocratic gabbros were more refractory 

and had an abundance of Fe and Ti rich minerals. Even though both the Duder Lake and 

gabbros mapped by Evans et al. (1992) contained high Ti contents, the intrusives seem 
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distinct from one another as the linear gabbros contain higher Ti and more Si02 than the 

Duder Lake gabbros and generally the two groups do not plot together. 

5. 4. 2 Sedimentary Rocks 

The sedimentary rocks analyzed for this study consist of black graphitic 

Caradocian shale, siltstone and sandstone of the Davidsville Group, and siltstone from the 

Ten Mile Lake Formation. Data for siltstone and sandstone of the Duder Complex and 

siltstone and metasediment from the Indian Islands Group from other authors was also 

compiled. Overall, the Davidsville Group samples from this current study are enriched in 

Ba and As which probably reflects proximity to Au bearing systems. 

Petrographical analysis and discrimination plots indicate that the Davidsville 

Group greywacke may be classified as feldspathic litharenite, derived from volcanogenic 

sources in subduction related basins. The Davidsville Group and Caradocian shale both 

have high oceanic components with Recycled Orogen Provenances suggesting that these 

rocks were deposited at a zone of plate convergence with a relation to subduction, which 

is consistent with the tectonic history of the region. In fact, Blackwood (1982) and 

Scheuing and Jacobi (1990) both postulated that the sedimentary rocks of the Davidsville 

Group might have been derived from the island arc systems of the Notre Dame Bay 

subzone. The fmdings in the current study support these ideas. 

The comparison of the different groups of sedimentary rocks illustrates that 

bivariate immobile plots can be utilized to differentiate between them. Although the 

differences are subtle, the groups did plot together and variations in trace element content 
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were related to the location from which the samples were collected (i.e. , higher trace 

element values such as V, Nb, Y and Zr in the south and higher Ti02 in the north). 

Interestingly, some of these variations are also reflected in the igneous rocks. Major 

disparities between the Davidsville and Indian Islands groups and Caradocian shale were 

not strongly evident. However, this small dataset indicates that there may be small 

geochemical inconsistency between the Davidsville Group rocks in different sections of 

the Botwood Basin. Further, more detailed study would be required to delineate these 

differences. Also, a sample collected from the Ten Mile Lake Formation consistently 

plots with 0' Reilly's (2004) Indian Islands Group samples. Based on field observations 

and the presence of Wenlock fossils , the author has suggested (refer to chapter 4) that the 

Indian Islands Group may extend westward and such an extension would also account for 

these samples plotting together. 



X Duder Lake gabbroic dykes or sills (northern) 

~ Duder Lake pink volcanic (northern) 

* Linear gabbroic dykes or sills (northern) 

+ MPIS diorite (central) 

c:{F MPIS granite (central) 

• Paul's Pond mafic intrusions (southern) 

0 Paul's Pond felsic intrusions (southern) 

L. Huxter Lane felsic intrusion (southern) 

* Churchill (1994) Dan's Pond gabbro (northern) 

X Churchill (1994) Clutha Prospect gabbro (northern) 

• Churchill (1994) Duder Complex volcanics (northem) 

• Dickson (1996) MPIS gabbro (central) 

• Dickson (1996) MPIS granite (central) 

Figure 5.1: Symbol key for geochemical diagrams for igneous rocks. All samples in 
black were analyzed as part of the current study and the samples represented by colored 
symbols were taken from Churchill (1994) and Dickson (1996) as indicated. 
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Figure 5.2: Nb/Y vs. Zr/Ti02 discrimination diagram (Winchester and Floyd, 1977) which illustrates the compositions 
of the igneous rocks from the current study (black) in relation to pre-existing datasets from Duder Lake (Churchill, 1994) 
[green symbols] and MPIS (Dickson, 1996) [red and blue symbols] (refer to symbol key, figure 5.1). 
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Figure 5.3: Irvine and Barager (1971) N~O+~O vs. Si02 plot illustrating the sub-alkaline nature of the current study, Duder 
Lake (Churchill, 1994) and MPIS (Dickson, 1996) igneous rocks (refer to figure 5.1 for symbol key). 
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Figure 5.4: AFM plot of Irvine and Baragar (1971) indicating the chemical affinity of 
igneous rocks from the current study [black], Duder Lake (Churchill, 1994) [green] , and 
MPIS (Dickson, 1996) [blue] (refer to figure 5.1 for symbol key). 

197 



TI/100 

Island- arc A, 8 

Ocean-floor 8 

Calc-alkali 8,C 

Within-plate D 

Zr Y*3 

Ti/100 

Zr Y*3 

Figure 5.5: Ti-Zr-Y diagram (Pearce and Cann, 1973) illustrating the possible paleotectonic 
environments for the current [black], Churchill (1994) [green] and Dickson (1996) 
[blue and red] studies igneous rocks (refer to figure 5.1 for symbol key). 
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Figure 5.6: Zr vs. Zr/Y diagram (Pearce and Norry, 1979; Pearce, 1983) for igneous rocks from the current study, Dickson's (1996) 
dataset and Churchill's (1994) dataset illustrating a within plate, continental arc signature (refer to figure 5.1 for symbol key). 
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Figure 5.7: Tectonic discrimination diagram ofMeschede (1986) indicating the tectonic 
affinity of igneous rocks from the current study [black], Churchill (1994) [green] and 
Dickson (1996) [red and blue] (refer to figure 5.1 for symbol key). 
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Figure 5.8: Ti vs. V diagram (Shervais, 1982) for igneous rocks from the current study [black] and Dickson (1996) [red and blue], illustrating 
a relative enrichment inTi in the northern region (refer to figure 5.1 for symbol key). 
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Figure 5.9a: Bivariate plot of Si02 vs. FeO illustrating a negative linear 
trend for the igneous rocks from the current study [black], Dickson (1996) 
and Churchill (1994) (refer to figure 5.1 for symbol key). 
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Figure 5.9b: Bivariate plot of Si02 vs. MgO illustrating a negative curvilinear 
trend for the igneous rocks from the current study [black], Dickson (1996) and 
Churchill (1994) (refer to figure 5.1 for symbol key). 
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Figure 5.9c: Bivariate plot of Si02 vs. ~0 illustrating a positive linear 
trend for the igneous rocks from the current study [black] , Dickson (1996) 
and Churchill (1994) (refer to figure 5.1 for symbol key). 
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Figure 5.9d: Bivariate plot of Si02 vs. Ti02 illustrating a negative linear 
trend for the igneous rocks from the current study [black], Dickson ( 1996) 
and Churchill (1994) (refer to figure 5.1 for symbol key). 
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Figure 5.10: Zr vs. Al20 3 bivariate plot (after MacLean and Barrett, 1993) illustrating a fractionation trend in the Botwood 
Basin igneous rocks. The mafic samples collected from the north for the current study either define a separate trend, or have 
experienced mass gain (refer to figure 5.1 for symbol key). 
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Figure 5.11: Zr vs. Ti02 bivariate plot (after MacLean and Barrett, 1993) illustrating a fractionation trend in the Botwood 
Basin igneous rocks. The mafic samples from the current study have higher Ti values (refer to figure 5.1 for symbol key). 
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Figure 5.12: Zr vs. Y. diagram (after MacLean and Barrett, 1993) for igneous rocks in the Botwood Basin illustrating the 
transitional nature of the samples from the current study and the overall transitional to tholeiitic nature of all combined data 
(refer to figure 5.1 for symbol key). 
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Figure 5.13: Roser and Korsch (1986) tectonic discrimination diagram for the Botwood basin sedimentary samples from the 
current study, Churchill's (1994) study at Duder Lake in the northern Botwood Basin and O'Reilly's (2005) study at the 
O'Reilly prospect in the central Botwood Basin. 
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Figure 5.15a: Zr vs. Nb plot of sedimentary samples from the Botwood Basin 
(refer to figure 5.13 for symbol key). 
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Figure 5.15b: Zr vs. Y plot of sedimentary samples from the Botwood Basin 
(refer to figure 5.13 for symbol key). 
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CHAPTER6 

SULPHUR ISOTOPE GEOCHEMISTRY 

6.1 Preamble 

Light stable isotope systems (0, C, H, and S) are now commonly used to 

characterize, interpret, and explore for hydrothermal mineral deposits. Isotopic data 

alone cannot provide definitive answers because characteristics can vary in the same ore 

forming system depending on physio-chemical conditions. However, combined with 

geologic, mineralogic and geochemical analyses, these data provide information on 

several aspects of ore genesis including the characteristics of ore-forming fluids 

(Ohmoto, 1986). Sulphur isotope ratios are particularly useful for characterizing the ore 

forming fluids and mechanisms of ore precipitation. 

When using sulphur isotope ratios, it is essential to consider that the interpretation 

of isotope ratios for sulphides associated with auriferous mineralization is fraught with 

difficulties unless the isotopic compositions of regional lithologies and local redox 

relationships are understood. For instance, different gold deposit types define wide 

ranges and/or non-diagnostic ratios. Bierlein and Crowe (2000, p. 121) suggest that while 

sulphides in most Phanerozoic orogenic lode gold deposits occurrences "cluster around 

0 %o", sediment-hosted deposits such as the Meguma in Nova Scotia can have ratios of up 

to +10 to +30 %o (after Kontak and Smith, 1993). 

In Carlin-type gold deposits, sulphur isotope variations can be even more 

extreme. A compilation of sulphur isotope data by Hofstra and Cline (2000) indicates 
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that ratios range from 0 to + 1 7 %o in main ore stages of Carlin deposits, but can be as 

high as -32 %o in the distal edges of ore-forming systems (Figure 6.1, p. 224). Arehart 

(2003) defmed pre-ore pyrite as having sulphur isotope ratios between -5 and + 10 %o, 

main ore pyrite as up to+ 20%o, and post-ore pyrite as -15 to -30 %o. Ion microprobe 

analysis of individual pyrite grains from Carlin deposits (Arehart eta/., 1993) indicated 

that primary pyrite in host igneous rocks had isotope ratios of~ 9 %o, whereas primary 

sedimentary pyrite had ratios of -4 to -6 %o. Auriferous arsenian overgrowths on ore 

zone pyrites had ratios up to + 20 %o and in later non-auriferous arsenian overgrowths, the 

sulphur isotope ratios were -12 to -29 %o. The sulphur isotope data derived to date for 

the Botwood Basin occurrences are too preliminary to develop any similar detailed 

paragenetic models (0' Driscoll and Wilton, 2005). 

Sulphur isotope ratios for sulphides associated with the auriferous occurrences 

assessed for this project were compiled to determine whether there was any relation 

between the ore forming systems. Specifically, are there common sulphur sources, and if 

so, are these sources of primary magmatic origin, or derived from an external source (i.e. , 

seawater sulphate or biogenic sources). 

6.2 Sulphur Isotope Systematics 

Sulphur is both abundant and widely distributed throughout the lithosphere, 

biosphere, hydrosphere and atmosphere. There are four naturally occurring sulphur 

isotopes, and the natural terrestrial abundances of each are: 32S (95.02 %), 33S (0.75 %), 

34S (4.21 %) and 36S (0.02 %). Isotope ratios between the two most abundant isotopes 
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34S P2S are measured more precisely than absolute abundances and are expressed in per 

mil (%o) relative to a calibration standard. Troilite (FeS) from the Canon Diablo iron 

meteorite (CDT) is the standard for reporting o34S values and has a 34S P2S ratio of 

0.0450045. The CDT is used as a standard because it is believed to represent the 

composition of the bulk undifferentiated earth (Ohmoto and Rye, 1979). Isotopic 

composition is expressed in terms of o34S defmed as: 

where 34S /32Ssampte and 34S P2Scor are the 34S /32S ratios from the sample and the CDT 

respectively. Typical ranges of sulphur isotope compositions in geological systems are 

summarized in figure 6.2, p. 225. 

It is reasonable to assume that there is no fractionation between mantle sulphur 

and magmatic sulphur, thus o34S (magmatic sulphide);:::::: o34S (magma);:::::: o34S (parental 

rock) ;:::::: 0 %o. Therefore, primary sulphur in magmas can be assumed to inherit the o34S 

characteristics of their parent mantle melt and mantle source region and usually lie in the 

range of 0 ± 3 %o (Ohmoto and Rye, 1979). The o34S of any terrestrial sulphur is 

therefore representative of the amount of change in isotopic composition since derivation 

from its primary source reservoir. Sulphides in igneous rocks are isotopically similar to 

those in meteorites with average o34S close to 0 %o; sedimentary sulfates are enriched in 

34S ( + 10 to + 30 %o ); and sedimentary sulphides show a wide spread of o 34S values (+50 

to -50 o/oo) but are typically depleted (Ohmoto, 1972; Ohmoto and Rye, 1979; Hoefs, 

1980). 
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Isotope variations in hydrothermal systems are related to mass and are produced 

by two different reactions: 1) kinematic isotope fractionation (i.e., reduction of sulphate 

ions to hydrogen sulphides by anaerobic bacteria leading to 32S enrichment in the 

sulphide) (Taylor, 1974; Ohmoto and Rye, 1979), and 2) various chemical exchange 

reactions (ie: between sulfate and sulphides and between sulphides) where 34S is 

generally concentrated in those compounds with the highest oxidation strength or greatest 

bond s~ength (Faure, 1998). 

Three isotopically distinct sulphur reservoirs are defined: 1) mantle-derived 

sulphur with o34S values ranging from 0 ± 3 %o (Chaussidon and Lorand, 1990); 2) 

seawater sulphur with o34S present day ratio of about ± 20 %o (Claypool eta/. , 1980); and 

3) strongly reduced (sedimentary sulphur) with large negative o34S ratios (Rollinson, 

1993). Although the determination of the source reservoir for sulphur can be useful, 

when evaluating o34S values it must be observed that mixing of sources may occur. 

6.3 Sulphur Isotope Results 

A total of 40 sulphide separates from Botwood Basin mineral occurrences as well 

as several select localities were analyzed on a Finnigan MAT 252 IR-MS at Memorial 

University ofNewfoundland for their sulphur compositions including 31 pyrite samples, 

five arsenopyrite samples, two arsenopyrite + pyrite samples, one galena sample and one 

stibnite sample. The samples were derived from a variety of host lithologies including 

ultramafic (Gander River Complex, Great Bend Complex and Coy Pond Complex), mafic 

(dykes), intermediate and felsic (Mount Peyton Intrusive Suite) igneous rocks and deep 
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marine (Davidsville Group) sedimentary rocks. The results are presented in table A4.3 

and on figure 6.3, p. 226 (along with previously compiled data) and are subdivided in 

terms of those with isotopically light ( <0 %o), intermediate ( ~0 %o) and isotopically heavy 

(>0 %o) ratios. 

6. 3.1 Isotopically Light Sulphur Isotope Ratios 

The occurrences, which exhibit isotopically light ratios ( <O%o ), include the 

Jonathon's Pond, Hunan, and the Outflow Prospects. Negative o34S ratios typically 

indicate a reduced sedimentary source of sulphur. The Hunan and Outflow Prospects are 

both hosted by Davidsville Group rocks that have been postulated to have been thrust 

over Indian Islands Group sediments. These prospects have negative isotopic ratios from 

stibnite and pyrite separates of -6.43 o/oo and -4.10 %o respectively which suggests that 

the sulphur source may be from the deep marine turbiditic Davidsville Group. The 

exception in this instance is the Jonathon's Pond separates with a negative isotopic ratio 

range of -6.27 %o to -8.20 %o from pyrite separates. Such a negative ratio was not 

expected from a pyrite hosted in mafic to ultramafic lithologies of the Gander River 

Complex. A possible explanation for this ratio is the close proximity of the prospect to 

the Davidsville Group, hence, the sulphur in the sulphides may have derived from the 

turbidites. In fact, the Davidsville Group forms an imbricated cover sequence upon the 

complex immediately west of the occurrence. 
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6.3.2 Intermediate Sulphur Isotope Ratios 

Most of the sulphide separates analyzed fall within the intermediate ( ~0 %o to + 3 

o/oo) group which indicates a prevalent magmatic reservoir for sulphur within the Botwood 

Basin. Some of these prospects are hosted by mafic, intermediate and felsic intrusive 

lithologies such as the Greenwood Pond #2, LBNL, Hornet, Corsair, Hurricane, Slip and 

Duder Lake Prospects. The sedimentary-hosted prospects that fall into this category 

include the Linear, Knob, Jumper's Brook and A-Zone; intermediate values can be 

explained by the proximity of these prospects to intrusive units. 

The separates analyzed for this study from Duder Lake included pyrite from the 

Flirt, Goldstash and Corvette prospects and the values obtained range from -0.02 %o to 

+0.48 %o. The values are consistent with a magmatic sulphur source that is expected 

since the prospects are hosted in gabbroic dykes, which intrude sedimentary rocks that 

are currently mapped as the Duder Complex matrix. 

Separates were also analyzed from several prospects that are hosted by the Mount 

Peyton Intrusive Suite. The Hurricane and Corsair Prospects both occur in diorite along 

the Salmon River on the northern edge of the MPIS and pyrite separates from each 

returned values of3.80 o/oo and 1.21 %o to 2.18 %o respectively; these values suggest a 

magmatic input of sulphur. The Slip Prospect is hosted in a granitic phase of the MPIS, 

northwest of the Salmon River Prospects. Pyrite, arsenopyrite and galena separates were 

collected from two samples collected from this prospect and returned values of 1.02 %o, 

2.93 %o and 1.60 o/oo respectively; these values indicate a magmatic sulphur input of 

sulphur. 
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The Greenwood Pond #2, LBNL and Hornet Prospects occur in the Paul's Pond 

region and are hosted by small gabbroic and granitic bodies that intrude the Davidsville 

Group. Pyrite separates from Greenwood Pond #2 returned ratios of 0.98 %o, 

arsenopyrite separates from the LBNL returned values of2.90 %o and 3.13 %o and pyrite 

separates from the Hornet returned values of3.70 %o and 3.57 %o, all of which indicate a 

magmatic sulphur input. 

Pyrite separates were also analyzed from several intrusive bodies in the region to 

use as a comparison to the sulphides collected from the auriferous occurrences. Two 

samples, JOD04-09 and JOD04-13, were collected from gabbroic bodies intruding the 

Ten Mile Lake Formation as introduced in chapter 4 and two samples, JOD108 and 

JOD04-20, were collected from a diorite body intruding Indian Islands Group sediments 

in a gravel pit immediately west of Glenwood. The intrusions to the Ten Mile Lake 

Formation returned values of 1.26 %o and 0.26 %o and the intrusions in the Indian Islands 

Group returned values of 0.89 o/oo and 0.23 %o, all of which reiterate that magmatic 

sulphides have intermediate o34S values as suggested by Chaussidon and Lorand (1990). 

The remaining intermediate samples are from prospects hosted in sedimentary 

rocks that occur either in the Paul's Pond or Glenwood areas, both of which lie directly 

west of the large MPIS. The A-Zone Prospect occurs in the Paul's Pond Region just west 

of the MPIS and immediate to the areas of the intrusive hosted Greenwood Pond #2, 

Hornet and LBNL prospects. The A-Zone pyrite separates returned values of0.58 %o and 

1.28 %o suggesting a magmatic sulphur source. 

The Knob and Dome prospects occur in the Glenwood region and pyrite separates 

from each returned ratios of -0.07 o/oo to -0.95 %o and -0.35 %o to 0.81 %o respectively; 
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These values indicate a primarily magmatic sulphur source. The remaining sample in this 

group was collected from the Jumper's Prospect located within homfelsed sedimentary 

rocks immediately NW of the MPIS. Pyrite separates from this prospect returned values 

of2.81 %o and 3.93 %o indicating a magmatic source. 

6.3.3 Isotopically Heavy Sulphur Isotope Ratios 

The isotopically heavy group predominantly includes separates from prospects 

hosted in mafic to ultramafic rocks. Three samples that plot within this group were not 

collected from auriferous occurrences; sample JOD08 is a clast from the Bellman's Pond 

conglomerate, sample JOD39 is a sample from the contact between graphitic sediment 

(included in the Davidsville Group by Dickson eta/. (1993) and Squires (2005)) and 

Indian Islands Group at Careless Brook, and sample JOD30 was a mineralized ultramafic 

sample of float collected from Gull River, just east ofBreccia Pond in the Great Bend 

regiOn. 

Pyrite separates from the Bellman's Pond altered sedimentary clast returned a 

o34S value of+ 9.98 %o and the pyrite separate from Careless Brook returned a value of 

+ 18.67 %o; the sulphur source for both these samples is assumed to be seawater sulphate 

as they both formed in marine environments. 

Pyrite separates from the Gull River float returned a value of +7.47 %o, which is 

similar to the values of +6.96 %o to 7.11 %o and +6.46 %o obtained from the Breccia Pond 

and Lizard Pond Prospect samples respectively. The sulphides in both latter samples are 

hosted in ultramafic rocks of the Great Bend Complex (Colman-Sadd and Swinden, 

220 



1984; Dickson, 1992). Arsenopyrite separates from the Huxter Lane Prospect, to the 

south of the Great Bend area, returned a o34S value of +8.83 %o. The sulphides from this 

prospect are hosted in igneous rocks intrusive to rocks to the Coy Pond Complex. As all 

of these occurrences are associated with igneous rocks of ultramafic ophiolitic 

complexes, the sulphur source is probably seawater sulfate, which would have been 

incorporated into the ophiolitic rocks during hydrothermal alteration on the seafloor. 

Many of the ultramafic rocks in the area exhibit intense magnesite and serpentinite 

alteration, indicating that these rocks were indeed in contact with seafloor fluids. 

6.4 Discussion 

The results from this study were combined with previously collected stable 

isotope data from various sources (Figure 6.3, p. 226) to determine whether the 

mineralized systems from within the Bowtood Basin had a dominant crustal or organic 

influence. The previously compiled data are discussed in comparison to the data 

collected for the current study. 

Previous sulphur isotope data compiled for occurrences in the region suggest a 

very wide range in o34S ratios for pyrite, arsenopyrite and stibnite. At the most simplistic 

level, the compiled data can be subdivided into three different groupings in terms of 

isotopic ratios as: (1) a group with negative (or isotopically light) o34S ratios, (2) a group 

with ratios around 0 o/oo, and (3) a group with slightly to moderately positive (isotopically 

heavy) ratios. 
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The isotopically light groups are mainly auriferous showings hosted 

within the dominantly sedimentary Baie d' Espoir Group (i.e., Golden Grit, True Grit, 

Kim Lake and Little River), Botwood (i.e., Aztec) and Davidsville Group (i.e., Hunan 

and Outflow), thus these negative ratios probably reflect a reduced sedimentary source 

for the sulphur. The separates from the Aztec Showing have a wide range of ratios, up to 

and including slightly positive ratios. This particular showing is quite complex because it 

occurs at a faulted contact between the Indian Islands (shallow marine) and Davidsville 

(deep marine) groups and exhibits a wide range of sulphide paragenetic relationships 

(Wilton, 2003). The Jonathon's Pond occurrence, although located within ultramafic 

rocks of the Gander River Complex, is located immediately adjacent to the Davidsville 

Group zone and its noticeably isotopically light ratio ( -8.2 %o) presumably indicates that 

the sulphur was derived from a reduced sedimentary source (i.e., the deep marine 

Davidsville Group sedimentary rocks). 

The intermediate (around 0 %o) group mostly represents showings hosted within 

the Mount Peyton Intrusive Suite, or adjacent to it, and thus may reflect S with a 

magmatic input from the intrusive suite. Several other occurrences, such as those in the 

Paul's Pond and Duder Lake region are also associated with gabbroic dykes or sills 

indicating an analogous magmatic sulphur source for these systems. All data collected 

for this study fall within the range of the previously derived intermediate data with the 

exception of the Duder Lake data. The new data did not indicate such a wide range in 

&34S values, rather it clustered near 0 %o indicating that the sulphur was primary 

magmatic. 
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Sulphur in the mineral separates from the group with slightly to moderately 

positive (isotopically heavy) isotope ratios may at least in part be derived from the 

igneous host rocks (e.g., Lizard Pond, Breccia Pond and Huxter Lane), which may have 

incorporated seawater sulphate during alteration. The Huxter Lane Occurrence is hosted 

in felsic intrusive rocks, but it occurs in rocks of the Ultramafic Coy Pond Complex. The 

Le Pouvoir separates, however, are hosted by the Baie d' Espoir Group sedimentary 

rocks, and plot with the slightly to moderately positive group. 

Thus, the sulphur from the auriferous systems in the Botwood Basin is primarily 

magmatic, although some of the values reflect input from adjacent deep marine or 

ultramafic complexes. These data agree with previous S isotope studies within the basin 

by Churchill (1994) and Evans and Wilson (1994). 
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Figure 6.1: Sulphur isotope data from Carlin-type gold deposits relative to pertinent 
references from Ohmoto and Rye (1979) and Kerrich (1989). The isotopic composition 
ofH2S in ore fluids (shaded) was calculated using a temperature of200°C and isotopic 
fractionations in Ohmoto and Rye (1979) (from Hofstra and Cline, 2000). 
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7.1 Preamble 

CHAPTER 7 

TRACE-ELEMENT CONTENT OF PYRITE 

Trace element contents of pyrites from several auriferous occurrences were 

analyzed in an attempt to further define the styles of mineralization present in the 

Botwood Basin. One of the fundamental questions asked at the onset of this project was 

whether there are different types of auriferous systems present in the basin and environs 

such as orogenic (cf Bierlein and Crowe, 2000; Groves et al. 1998, 2003), low

sulphidation epithermal ( cf Cooke and Simmons, 2000; Hedenquist et al., 2000), 

intrusion-related (cf Lang et al., 2000; Thompson and Newberry, 2000) and/or Carlin

type ( cf Arehart, 1996, 2000, 2003; Hofstra and Cline, 2000), and, if present, how are 

these different types related to each other and the geological evolution of the region? 

Previous workers have presented evidence in an attempt to classify these 

numerous pyrite± arsenopyrite-bearing gold occurrences, both individually (i.e., Duder 

Lake Occurrences, Churchill, 1994) or regionally (i.e., epigenetic occurrences of the 

eastern Dunnage Zone, Evans, 1996). Some of these occurrences, in Ordovician rocks, 

such as the Duder Lake Prospects (Churchill, 1994), are ofmesothermal/ orogenic style 

with strong carbonate alteration and fluid inclusions (Flinc) containing C02, T HOMO's of 

250-400°C and low salinities, whereas, others on the western and southern margins of the 

basin, such as the Moosehead (Dalton, 1998) and Rolling Pond (Turmel, 2000) are of 

low-sulphidation epithermal style with high-level brecciation and Flinc with T HOMo's of 
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200-325°C and even lower salinities. A concept recently advanced by Altius Minerals 

Corp. (Butler, 2003) suggests that some of the occurrences on the eastern side of the 

basin are Carlin-style in that they are hosted by carbonaceous shales and limestones of 

the Indian Islands Group (ITG), which was overthrust by the Ordovician Davidsville 

Group. 

Trace element data for pyrite grains from these auriferous occurrences could 

provide evidence for the classification of the mineralizing environments based on the fact 

that pyrite can incorporate characteristic trace elements into the crystal lattice. For 

example, Hofstra and Cline (2000) defmed characteristic trace element suites in pyrite at 

Carlin-type deposits. 

Trace element analyses were conducted on pyrite from seven different auriferous 

occurrences within the Botwood Basin. The derived data were compared to each other 

and also with pyrite data from two known auriferous occurrence types from elsewhere in 

Newfoundland. 

The LAM-ICP-MS analytical technique used in this study is similar to that 

defined by Hinchey eta/. (2003), which was originally designed to determine the nature 

and distribution of invisible gold in sulphide phases. O'Driscoll eta/. (2005) presented 

preliminary results on the use of this technique for the classification of gold 

mineralization in the Botwood Basin. 
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7.2 Analytical Procedure and Sample Overview 

The analyses were completed using the Laser Ablation Microprobe- Inductively 

Coupled Plasma- Mass Spectrometer (LAM-ICP-MS) in the Department of Earth 

Sciences, Memorial University ofNewfoundland. Pyrite grains in single polished thin 

sections were analyzed. The technique has been described by Hinchey et al. (2003), 

except that in this case, an internal standard was used in some of the analyses, rather than 

an FeS standard. In several ofthe analysis (JOD23, JOD80A, JOD98A, JOD117 and 

JOD 119), an acquired FeS standard was measured on an electron microprobe. A BSE 

image of one of the ablation pits produced by the laser is shown on plate 7 .1. The 

internal standard used was MASSI, a United States Geological Survey pressed powder 

pellet. The analytical technique is described in detail in Appendix 3 and the resulting 

trace element data are presented in Appendix 4. 

Plate 7.1: BSE image of an ablation pit in a pyrite grain from sample JOD23 collected 
from the Hurricane Prospect (image ~ 175 J..lm wide). 
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From within the Botwood Basin, pyrite grains were analyzed from the Outflow 

(Mustang Zone), Bowater, Hurricane, Hornet, Goldstash and Jonathon's Pond properties 

in samples W90-49B, W90-48, JOD23, JOD80A, JOD98A and JOD117, respectively; 

Derek Wilton collected the Outflow (Mustang Zone) (W90-49B) and Bowater (W90-48) 

samples during fieldwork with D.T.W Evans in 1990. Each of the auriferous occurrences 

visited during this study and the petrography of each of the samples collected by the 

author have been described in chapter 3. 

The Mustang and Bowater samples were chosen to represent possible so-called 

Carlin-style occurrences (Plates 7.2 and 7.3, p. 244). The Jonathon' s Pond (as defmed by 

Evans, 1996), Goldstash (as defmed by Churchill, 1994) and Hurricane (as defined by 

Evans, 1996) samples (Plate 7.4, p. 244) were chosen to represent possible orogenic style 

occurrences, and the Hornet sample was selected to represent possible low-sulphidation 

epithermal style mineralization, as brecciation is present. 

The Botwood Basin samples were also compared with pyrite from two auriferous 

prospects of known affinity from elsewhere in the Dunnage Zone. Sample W89-82 from 

the Stog'er Tight Prospect (Plate 7.5, p. 245), Baie Verte Peninsula (Ramezani et al. , 

2000), was selected as a representative of orogenic (or mesothermal) lode gold 

occurrences. Sample KP-32-Hl is from the Gallery Resources Ltd. Bruce Pond 

epithermal system, ~ 15 km south of the Huxter Lane Showing. The bladed pyrite 

crystals in this sample were analyzed as examples of low-sulphidation epithermal 

systems (Plate 7 .6, p. 245). 

230 



7.3 Results 

The derived geochemical data indicate differences between the deposit-types. For 

instance, the Hurricane and Mustang Zone pyrites contain much higher Au and As 

contents, and in some grains higher Sb, than those from the other prospects (Figures 7.1, 

p. 237). In fact, the Hurricane Prospect pyrite grains are the most enriched in Au 

contents and the Mustang Zone pyrite contain the highest As contents. Several of the 

Mustang Zone pyrites are also more enriched in Hg and Pb. 

The Bruce Pond (epithermal) pyrites are unique in that many of the grains contain 

the most enriched concentrations ofSe (Figure 7.1h); the pyrite crystals in this sample 

also had very elevated local Ba concentrations that essentially tripped the LAM-ICP-MS 

detector. The Hornet Prospect pyrites, chosen to represent possible epithermal 

mineralization because of the brecciation observed at the prospect, had elevated 

concentrations of Au and As (Figure 7.1 a), but were not enriched in any of the other 

elements. A few ofthe pyrite grains were somewhat elevated in Pb (Figure 7.1f), which 

was not unexpected as galena mineralization was also observed at this prospect. 

The only elements in which the orogenic Stog'er Tight (orogenic) pyrite grains 

had elevated concentrations were Te, Se and W. Only one pyrite grain from the sample 

was enriched in both Te and W. Several grains were enriched in Se, although the 

concentrations of Se were not as high as that for the Bruce Pond samples. The pyrite 

grains from the other samples had lower concentrations for the Te and W elements with 

the exception of one grain from the Hurricane sample, which was enriched in W (Figures 

7.1 g and 7.1 i). In fact, several grains from the Hurricane Prospect pyrites were variably 
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enriched in many of the elements tested, specifically As, Au, Sb and W. With respect to 

the samples apart from the Stog'er Tight and Hurricane, the Jonathon's Pond pyrite 

appear slightly more elevated in theW and Te, possibly due to the proximity of the 

MPIS. Most of the elements tested for in the pyrite grains from the Goldstash samples 

were under detection limits; Hg was slightly more elevated in these pyrites than the other 

samples with the exception of the Mustang pyrite (Figure 7.1 b). 

The above observations were made based on plotting the detected elements 

against Au concentrations. Several additional bivariate plots were constructed in an 

attempt to detect if any identifiable relationships existed between the analyzed elements 

(Figure 7 .2, p. 242). A plot of Sb vs. W indicates that the some of the pyrite from 

Jonathan's Pond, Bruce Pond and the Mustang Zone have elevated Sb concentrations. A 

grain from the Jonathon's Pond also has elevated W. In general, the grains that contain 

elevated Sb do not contain elevated concentrations of W. 

On a plot of As vs. Hg several interesting trends are noted. First, pyrite grains 

from the same occurrences generally plot together and the occurrences that are elevated 

in As are generally not elevated in Hg and vice versa, with the slight exception of some 

of the Mustang grains. The Hurricane, Jonathon' s Pond, Mustang and Hornet pyrite are 

elevated in As and the Mustang and Goldstash are slightly elevated in Hg content. 

On a plot of As vs. Sb, two plots are presented because of the extremely high As 

and Sb content in two of the grains from the Hurricane. On a plot with a reduced axis, 

several trends are again noted. First, some of the Bruce Pond pyrites are elevated in Sb 

but not in As. The Mustang and Jonathon' s Pond pyrite are elevated in both elements 
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and in fact, the Mustang pyrite seems to define a trend of increasing Sb with increasing 

As content. 

7.4 Discussion 

These data suggest that there are subtle differences between pyrite compositions 

predicated on the type of auriferous occurrence sampled. As, Sb, Tl, Hg, W, and Te, the 

so-called "toxic element" suite (Arehart, 2000, 2003), are typically associated with 

Carlin-style gold deposits and many of these elements are concentrated in pyrite grains at 

Carlin deposits (Hofstra and Cline, 2000). As defmed by this preliminary study, pyrites 

from the Mustang Zone and to a lesser extent from the Bowater Prospect, have Carlin

like trace element signatures and are distinct from the orogenic and epithermal types 

sampled. More specifically, some of the Mustang pyrite was elevated in As, Au, Te, Sb, 

Hg and Ph whereas several of the Bowater pyrite was slightly elevated in As and Hg. In 

fact, many of the Mustang pyrite grains contained greater concentrations ofTe, Hg and 

Ph than any of the other samples analyzed for this study. 

Also of interest, is the fact that the pyrite grains with Hg did not contain elevated 

As, and vice versa. Several authors have conducted studies on auriferous prospects, 

usually with a specific emphasis on the relation of gold, pyrite and arsenopyrite (Wu and 

Delbove, 1989; Arehart eta/., 1993; Hinchey eta/., 2003). In general, the results show 

that Au increases with increasing As and decreases with increasing Fe. For the current 

study, the pyrite from the Hurricane Prospect and to a lesser extent the Mustang Zone, 

illustrates this trend. In previous studies, growth zoning was observed in most of the 
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crystals, but determinations of the specific trace element contents and possible zonation 

of these elements within the Fe sulphide crystals was not conducted. Although the results 

from this study are broad, and a larger dataset would be required to affirm postulations, 

Fe-sulphides from the Mustang Zone have elemental zonations as grains that are enriched 
t 

in Hg are not enriched in As. Another explanation may be that the crystals that 

incorporate Hg in their lattices cannot incorporate As. This could be possible if the pyrite 

grains were produced from different hydrothermal events, which would produce different 

lattices. 

Some workers in Phanerozoic fold belts have postulated that genetic models for 

Carlin-type Au deposits may also be applied to orogenic disseminated Au-type. For 

instance, Beirlein and Mahar (200 1) suggested that orogenic disseminated gold deposits 

in Phanerozoic fold belts and some Carlin-type deposits of the western US have similar 

characteristics, which the authors attributed to a possible common ore fluid (i.e., 

metamorphic). They concluded that caution must be applied, however, when relating 

sediment-hosted disseminated mineralization in orgenic systems to Carlin-type deposits. 

Evidence for relating these deposits types, however, was subsequently presented 

by Bierlein and Smith (2003). They suggested that the two deposit types might coexist in 

an area where an intermittingly active fault system would act as a feeder for both types. 

Further evidence for the relation is that both deposits have been associated with nearby 

granitiod plutonism and many authors favor a model of ore fluids derived by intrusion 

driven hydrothermal systems. Authors such as Berger and Bagby (1991) support a 

mixing model for Carlin type deposits whereby magmatic fluids mix with meteoric water 

to cause precipitation in favourable host rocks. Due to spatial proximity of the large 
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bimodal MPIS pluton, as well as the proximity of nearby occurrences of postulated 

orogenic (Hurricane), and Carlin or Sediment Hosted Disseminated Gold [SHDG] 

(Outflow) type occurrences to one another, a relation between the two deposit models 

may be suggested for the central Botwood Basin. 

Hedenquist et al. (2000) suggest that both Se and Ba are associated with low

sulphidation epithermal gold deposits, in particular Se with samples from shallow depths. 

The pyrite grains from the Bruce Pond Epithermal occurrence contain appreciable Se and 

Ba contents that essentially distinguish them from the other pyrite samples and which 

also suggest a correlation between this occurrence and low-sulphidation epithermal 

models. However, the pyrites from the assumed epithermal Hornet Prospect did not 

exhibit elevated levels of these elements. They did however exhibit some elevated Au, 

As and Pb contents. 

The Hurricane Prospect exhibited variable elevations of Au, As, Sb and W 

concentrations, whereas the Stog'er Tight sample had some elevated contents ofW and 

Te. A study of the widespread orogenic gold deposits in the Yilgran Craton, western 

Australia showed that orogenic types of deposits are enriched in S, Sb, Si, Te and W and 

depleted in Na andY with respect to the host rocks. The parameters that most 

consistently define dispersion haloes for these deposits are As, Au, Sb, Te and W, and 

carbonatization and seritization indices (Groves et al. , 2003). 

The presence of W does not specifically defme an orogenic type, as intrusion

related gold deposits are also associated with elevated W. Developing a clear 

determination about whether an occurrence is intrusion related or orogenic is often 

difficult as these deposit types typically exhibit many similarities (i.e. , metal associations, 
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wall rock alteration, ore fluids, etc.). In fact, different authors often place deposits with 

spatial associations to granitoid intrusions in both categories. One possibility for 

distinguishing the types is that the deposits that are distinctly classified as intrusion

related are located in cratonic settings, distal from subduction zones, when compared to 

orogenic. These provinces also typically contain Sn and/or W deposits (Grooves et al. , 

2003). In relating this information to the geochemical signature of the MPIS prospects, 

the lack of recognized W occurrences in the immediate area, and the tectonic 

environment, suggest orogenic style as opposed to intrusion related style. 
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Figure 7.1a: Plot of As vs. Au illustrating that the Mustang, Hurricane and 
Hornet Prospect pyrites are elevated in Au and As contents relative to the 
other samples. 
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Figure 7.1b: Plot ofHg vs. Au illustrating that the Outflow (Mustang Trend) 
and Goldstash Prospect pyrites are elevated Hg contents relative to the other 
samples. 
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Figure 7.1c: Plot of Sb vs. Au illustrating that the Hurricane and Mustang 
Prospect pyrites are much more elevated in Sb contents relative to the other 
samples. The Bruce Pond pyrites has slightly elevated contents (see next 
chart). 
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Figure 7.1d: Plot of Au vs. Sb (zoomed x-axis) illustrating that some of the 
Bruce Pond Prospect pyrites are more elevated in Sb contents than all samples 
except two Hurricane pyrite grains and one Mustang pyrite grain (refer also to 
figure 7.1c). 
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Figure 7.1e: Plot of Au vs. Pb illustrating that the Mustang Prospect pyrites 
are elevated in Pb contents relative to the other samples. 
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Figure 7.1f: Plot of Au vs. Pb (zoomed x-axis) illustrating that some pyrite 
from the Goldstash and Hornet Prospects are also slightly elevated in Pb 
contents relative to the other samples (refer also to figure 7.1e). 
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Figure 7.1g: Plot ofTe vs. Au illustrating that the Mustang Prospect pyrites 
are elevated in Te contents relative to the other samples. 
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Figure 7.1h: Plot of Se vs. Au illustrating that the Bruce Pond Prospect 
pyrites are elevated in Se contents relative to the other samples. 
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Figure 7 .li: Plot of W vs. Au illustrating that one Hurricane Pyrite and one 
Hornet Prospect pyrite are elevated in W contents relative to the other 
samples. One sample from Jonathon's Pond has a slightly elevated content. 
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Figure 7.2a: Plot ofSb vs. W illustrating that the Jonathon' s Pond and Bruce Pond 
Prospect pyrites are the most elevated in W contents relative to the other samples. 
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Figure 7.2b: Plot of As vs. Hg illustrating that the Mustang and Goldstash Prospect 
pyrites are the most elevated in Hg contents relative to the other samples. The Hurricane, 
Jonathon' s Pond, Mustang and Hornet Prospects all have elevated As contents. The 
Mustang and Goldstash pyrite have elevated Hg contents. It should be noted that the 
grains from the Mustang that have elevated As do no have elevated Hg and vice versa. 
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Figure 7.2c: Plot of As vs. Sb illustrating that the Mustang Prospect pyrites Sb content 
increase with As content. Also, Jonathon's Pond samples plot in two distinct groups 
indicating a possible element zonation in the pyrite grains. 
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Figure 7.2d: Plot of As vs. Sb illustrating the elevated content of As and Sb in two of the 
Hurricane Prospect pyrites. The differences in concentrations may indicate that trace 
elements contents exhibit element zonations. 
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Plate 7.2: Outcrop at the Bowater Prospect exhibiting multiple quartz veining in 
Davidsville Group shale and greywacke. 

Plate 7.3: Siliceous, quartz brecciated outcrop at the Mustang Zone, Outflow Prospect. 

Plate 7.4: Conjugate quartz veining in diorite, approximately 100m upriver from the 
Hurricane Prospect. 
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Plate 7.5: Outcrop at the Stog'er Tight prospect on the Baie Verte Peninsula, 
representative of orogenic (or mesothermal) lode gold occurrences. Quartz veins in 
gabbroic host. 

Plate 7.6: Photomicrographs of a sample from the Gallery Resources Ltd. Bruce Pond 
epithermal system. The bladed pyrite crystals in this sample were analyzed as examples 
of low-sulphidation epithermal systems. 
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CHAPTERS 

U-Pb GEOCHRONOLOGY 

8.1 Preamble 

Geochronology is one of the primary uses of radiogenic isotope research. This 

chapter presents the systematics of the U-Pb radioactive decay system, followed by the 

application of the system to age determinations in the Botwood Basin. U-Pb data are 

presented for primary igneous zircon from several intrusive lithologies throughout the 

region and detrital zircon data are described for sedimentary sequences. These new data 

are compared with previously presented data (i.e., Dunning eta/., 1990; Pollock eta/., in 

prep.) for some of these units. 

A total of nineteen gabbro, granite, volcanic and sedimentary rock samples from 

throughout the study area were selected and prepared for U-Pb zircon geochronological 

studies (see Figure 8.1 , p. 268 for locations); nine ofthese samples produced age 

determinations. These data will be used to determine if there is a correlation between the 

different intrusive lithologies within the basin and, in places, suggest maximum ages for 

the local epigenetic auriferous occurrences. The geochronological data may also define 

the actual ages of mineralization, for instance, according to Arehart (2003), Carlin-type 

auriferous systems are broadly synchronous with magmatism that provided heat and/or 

magmatic components. Furthermore, can different pulses of auriferous mineralizing 

fluids be differentiated and can the ages of different gabbros/granitoids and potential 

thermal engines, such as the Mount Peyton, be determined? 
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The analyses were completed at the Department of Earth Sciences, Memorial 

University ofNewfoundland, LAM-ICP-MS facility following procedures described by 

Kosier eta/. (2002). To ensure the accuracy and reproducibility of the results, data were 

also consistently collected on zircon standards of known ages. Concordia and weighted 

average values were calculated for magmatic samples, whereas Concordia, cumulative 

frequency and weighted average values were calculated for detrital samples. Cumulative 

frequency plots are calculated for detrital samples to compare the range of age data from 

the different sedimentary packages to one another, as well as to assess similarities 

between the sample and the possible source terrains (Cox, 2002). The 206PbP 38U age 

values were used to plot the cumulative frequency and weighted average plots. Refer to 

Appendix 4 for unknown sample data and known standard data tables. 

8.2 Uranium-Thorium-Lead Isotope Systematics 

There are four naturally occurring isotopes of lead. Of the four isotopes, three are 

the end products of complex decay schemes from parent isotopes. The parent isotopes 

238U (99.2745%), 235U (0.7200%) and 232Th (100%) pass through a succession of 

intermediate radioactive daughters to produce stable isotopes of 206Pb (24.10%), 207Pb 

(22.10%) and 208Pb (52.40%), respectively. The fourth isotope (common lead), 204Pb 

(1.40%) is non-radiogenic (i. e., abundance on earth not influenced by the decay ofU or 

Th) and is treated as a stable reference isotope (Dickin, 1995). 

The U-Th-Pb system is a valuable tool for age determination because the half

lives of these elements are extremely long and thus the isotopes can be applied over a 
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large expanse of geological time. The half-life of 238U is 4.47 Ga, similar to the age of 

the earth and the half-life for 235Th is 14.01 Ga, similar to the age of the universe. The 

half-life for 235U is much shorter than the other isotopes at 0.704 Ga, therefore almost all 

the primordial 235U in the Earth has decayed to 207Pb (Faure, 1986). The relationship 

between time, and initial and present day Pb isotopic compositions for the U-Th-Pb 

system can be expressed in three geochronometry equations as follows (Faure, 1986): 

206PbP04Pb = e06PbP04Pb]initial + e38UP04Pb] (e1..23st-l) 

where 1 238 = (1. 55125) * 1 o-10 a-1 
; half-life = 4.468 Ga 

207PbP04Pb = e07PbP04Pb]initial + e35UP04Pb] (e~,.2Jst-l) 

where 1 235 = (9.8485) * 10-10 a-1
; half-life = 0. 704 Ga 

208PbP04Pb = e08PbP04Pb]initial + e32UP04Pb] (e\32t-l) 

where 1 212 = (4.9475) * 10-11 a-1 ; half-life = 14.01 Ga 

If the U, Th and Pb isotope concentrations are measured and initial Pb is either 

small enough to be ignored, or can be effectively accounted for, the equations can be 

solved for t, in the form: 

The equations for 207Pb and 208Pb can be solved in a similar form resulting in 

three independent age determinations for minerals or rocks containing both U and Th. 
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These independent chronometers can then be used to ascertain if the system has remained 

isotopically closed with respect to U, Th and Ph (Faure, 1986). 

A Concordia diagram is a plot of 207PbP35U vs. 206PbP38U, which provides a 

visual assessment of concordancy (Figure 8.2, p. 269). The Concordia curve is defined 

by the locus of points where the 238UP06Pb age is equal to the 235UP07Pb age. All points 

(ages) that fall along this line are thus considered to be concordant (Dickin, 1995). The 

Concordia diagram is also useful in relaying information on systems that have not 

remained isotopically closed (i.e., discordant). Discordant samples do not plot on the 

Concordia curve and the discordance of the analyses may be attributed to several factors 

including Ph loss, U loss or gain and mixing between new and old sections of minerals 

(Heaman and Parrish, 1991; Dickin, 1995). These factors may reflect metamorphism, 

constant diffusion of Ph, or loss of microcapillary water and chemical weathering near 

the Earth's surface (Richards and Noble, 1998). Discordant samples may be used to 

obtain additional information about the material in question, as discordant data will often 

form linear to sublinear arrays that defme what is referred to as a 'discordia'. The upper 

and lower intercepts of the discordia with the Concordia curve are typically related to 

times of original crystallization and the subsequent isotopic system disturbance, 

respectively, that resulted in an open system (Dickin, 1995). 

When determining the suitability of a material for U-Pb geochronology several 

factors are considered: 1) the material should concentrate U and contain minimal amounts 

of common lead at the time of formation, 2) the material must be correlated with the 

geological process to be dated (i.e., crystallization, metamorphism, etc.), 3) the material 

must be resistant to isotopic diffusion after the time of formation, and 4) the material 
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should be relatively common in the crust and easily recoverable (Faure, 1986; Heaman 

and Parrish, 1991; Richards and Noble, 1998; Dickin, 1995). Thus, minerals are more 

suitable to these constraints than whole rock samples. 

The minerals which best fit these requirements, and are thus commonly used for 

U-Pb geochronology, include zircon (ZrSi04), titanite (CaTi[Si03]), monazite (CeP04) 

and baddeleyite (Zr02). For the current study, zircon crystals are used. Zircon is 

actually the most widely used accessory mineral for age determinations via this method 

for several reasons: 1) it is a common accessory mineral in many rocks as it can 

crystallize in a variety of different magma compositions and can grow during 

metamorphism, 2) it is resistant to mechanical weathering (due to a hardness of7.5), 3) it 

is extremely resistant to chemical weathering and metamorphism, thus it is likely to 

remain a closed system, and 4) it concentrates U (and to a lesser extent Th) and excludes 

Pb typically resulting in high 238UP04Pb ratios at the time of formation (Dickin, 1995). 

Zircon grains stay in the earth' s crust almost indefinitely and thus, are easily recoverable 

(Mezger and Krogstad, 1997). 

8.3 Sample Overview 

In total, 20 samples were processed for U-Pb geochronology including JOD08, 

JOD21 , JOD25, JOD39, JOD57A, JOD66A, JOD81A, JOD90A, JOD97A, JOD98, 

JOD99, JODIOO, JOD108, JOD04-01 , JOD04-09, JOD04-13, JOD040-17, JOD04-20, 

W03-27 and W03-38 (refer to table A3.3 for sample description and ages and table A4.5 

for processing results). 
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Sample JOD81A is from a least altered gabbroic dyke or sill that hosts auriferous 

mineralization at the Greenwood Pond #2 showing and sample W03-38 was collected 

from a felsic intrusive unit at the Huxter Lane Prospect in the southern Botwood Basin. 

Samples JOD90A and JOD04-17 consist of unaltered granite from Red Rock 

Brook and a resource road northwest of Red Rock Brook, respectively. Samples JOD21 

and JOD25 were both collected from a diorite phase of the bimodal MPIS along Salmon 

River. Sample JOD21 is unaltered diorite from the Hurricane Prospect and JOD25 is 

slightly altered diorite from the Corsair Prospect. The Salmon River and Red Rock 

Brook samples should provide ages for two phases of the MPIS batholith. 

Samples JOD 108 and JOD04-20 were collected from a dioritic dyke intruding 

Indian Islands Group sediments in a pit west of Glenwood which Dickson ( 1996) 

postulated to be related to the MPIS. Sample W03-27 was collected from the Charles 

Cove Pluton at the Tim's Cove Prospect, which is intrusive along the contact between the 

Davidsville and Indian Islands groups. 

Sample JOD39 was collected along the contact between the Silurian Indian 

Islands Group and shale (presumably Caradocian); it consists of dark, dense material 

originally thought to be a mafic dyke, bur later classified as sedimentary from 

petrography and geochemistry (refer to chapters 4 and 5, respectively). Determining in 

situ ages of detrital zircon from this sample may help to delineate possible source terrains 

for the upper Davidsville or lower Indian Islands groups. 

Sample JOD08 is a volcanic fragment from the conglomerate near Bellman's 

Pond. This conglomerate has been variously mapped as either Davidsville Group or a 

later Devonian package (Currie, 1995), but has been reaffirmed as part of the Davidsville 
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Group in the current study (refer to chapter 4). This sample was analyzed to ascertain if 

definition of an age for a lithic fragment from within the conglomerate could help to 

resolve this debate. 

Eight samples were collected from gabbroic rocks cutting the Ten Mile Lake 

Formation and Duder Group, north of the Trans Canada Highway as mapped by Evans et 

a/. (1992) and Currie (1993 and 1995a). These include: (1) JODlOO from a gabbroic 

body north of Twin Ponds; some of the gabbro outcrops in this area contain disseminated 

sulfides, (2) JOD57A and JOD04-09, both from presumably the same gabbroic dyke 

intruding the Ten Mile Lake Formation to the west ofTen Mile Lake, and (3) JOD04-13 

from a previously unmapped gabbroic dyke immediately east of Ten Mile Lake. The 

samples collected in the Duder Lake vicinity had been previously mapped as either 

gabbroic dykes or sills in Davidsville Group rocks (Evans and Churchill, 1992), or 

tectonic blocks in the Duder Complex (Currie, 1995b ), and include: 1) JOD66A and 

JOD04-01 from a metamorphosed gabbro, similar to that which hosts the Duder Lake 

Prospects, collected from a knobby hill east ofBirchy Bay and north ofthe Duder Lake 

Prospects, and 2) JOD97 A, JOD98 and JOD99 from the gabbroic auriferous host rock at 

the Corvette, Goldstash and Flirt prospects, respectively. 

Of the twenty samples prepared, only eleven contained zircon grains. The 

samples that did not contain zircon, JOD57A, JOD66A, JOD81A, JOD97A, JOD98, 

JOD99, JOD108, JOD04-0l and JOD04-20, were also examined for other dateable 

minerals such as baddeleyite or titanite, but the samples did not contain any. Extra 

material from these samples was processed but did not yield any datable minerals. Of the 

eleven samples that did contain variable amounts of zircon grains, nine (JOD08, JOD21 , 
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JOD25, JOD39, JOD90A, JOD04-17, JOD100, W03-27 and W03-38) have been 

analyzed via LAM-ICP-MS. 

8.4 Results 

8. 4.1 Hurricane Diorite (Mount Peyton Intrusive Suite) 

Sample JOD21 is a slightly altered, unrnineralized diorite from the Hurricane 

Prospect at UTM coordinates 645161/5425138. Approximately 40 zircon grains, 

ranging in size from 20 x 40Jlm to 30 x 60J.1m, were picked from the sample. The 

crystals are mostly elongate and euhedral and exhibit a brownish core (Plate 8.1 , p. 254). 

The sample was analyzed in backscatter electron (BSE) mode on the electron microprobe 

(EMP) at the Earth Science Department labs, Memorial University, and the brown core 

was determined to be zircon and compositional zoning or evidence of inheritance was not 

observed in the grains. Laser ablation traverses were made across the brownish 'core' 

and surrounding clear 'rim', and the resulting data did not indicate any differences in age, 

which further disproves the existence of an inherited core in this sample. A Concordia 

age of 405 ± 11 Ma was calculated for this phase of the intrusion (Figure 8.3, p. 270). 
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Plate 8.1: a) Row of prismatic zircon grains from sample JOD21 mounted in an epoxy 
resin puck [Field of view 7mm PPL]. B) Close up of zircon grain from mount exhibiting 
brownish core [Field of view 2mm, PPL]. 

8.4.2 Corsair Diorite (Mount Peyton Intrusive Suite) 

Sample JOD25 is of unaltered diorite from the Corsair Prospect at UTM 

coordinates 644408/ 5425289 and approximately 50 zircon grains were picked from the 

sample. The crystals are generally elongate, clear, and some are broken, ranging in size 

from 30 x 30Jlm to 50 x 120Jlm. A few grains are small and rounded and some have a 

slight yellow tint. The sample was analyzed in backscatter electron (BSE) mode on the 

scanning electron microprobe (SEM) at the Biology Department labs, Memorial 

University. The images so obtained indicate that the grains are similar in that they are 

generally euhedral and somewhat elongate (Plate 8.2, p. 255). No evidence of 

compositional zoning is indicated by the images. A Concordia age of 427 ± 4.2 Ma was 

calculated for this phase of the intrusion (Figure 8.4, p. 271). 
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Plate 8.2: Backscatter Electron Microprobe images for sample JOD25 of the Corsair 
Prospect, MPIS diorite. The grains are generally elongate and homogenous with no 
apparent zoning. 

8.4.3 Twin Ponds Gabbro 

Sample JOD100 was collected from a gabbroic dyke (Evans eta/., 1992) that 

intrudes the Ten Mile Lake Formation (Currie, 1995a) north of Twin Ponds at UTM 

coordinates 652973/ 5438288. There are several gabbro outcrops in this area (previously 

mapped as one intrusion) that appear to be a related unit. Approximately 40 zircon grains 

were picked from the sample and the grains were generally euhedral (some were broken) 

and some appeared to have small inclusions and slight elemental zoning. The grains 

range in size from 40 x 40J..Lm to 80 x 120 J..LID and range in color from pale yellow to 

clear and a lesser amount of very pale pink. BSE electron microprobe images indicate 

that the grains have what appears to be oscillatory compositional zoning; but generally 

the grains are similar and no defmable inherited cores or the like were detected (Plate 8.3, 

p. 256). A Concordia age of 429.3 ± 4.4 Ma was obtained on the LAM-ICP-MS (Figure 

8.5, p. 272), indistinguishable from the age obtained from the Corsair Prospect diorite. 
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Plate 8.3: Backscattered electron microprobe images for Sample JOD 100. The grains are 
mostly homogeneous but a few of the grains exhibit oscillatory compositional zoning. 

8. 4. 4 MP IS granite 

Sample JOD04-17 was collected from the central portion of the exposed MPIS 

granite body along a newly constructed resource road. The sample is undeformed and 

fresh and approximately 35 grains were picked from the sample. The grains range in size 

from 20 x 30Jlm to 50 x 80Jlm in size but are generally small and subhedral. Most grains 

have impurities and appear dirty or fractured (Plate 8.4, p. 257). Two large round clear 

grains contained small prismatic pink zircon grains within their crystals. A Concordia 

age of 409 ± 4.5 Ma with one discordant point at ca. 1800 Ma was obtained for this 

sample (Figure 8.6, p. 273). 
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Plate 8.4: Backscattered electron microprobe images for Sample JOD04-17. The grains 
are very fractured and contain small inclusions. 

8.4.5 Red Rock Brook Granite (Mount Peyton Intrusive Suite) 

Sample JOD90A was collected from Red Rock River and is a fresh piece of the 

pink Mount Peyton granite. Approximately 40 clear to pale pink, subhedral, elongate and 

broken zircon grains were picked from the sample. The grains range in size from 

40 x 30 ~m to 60 x 120 ~min size. BSE analyses did not reveal any evidence of 

inherited cores but some degree of compositional zoning and inclusions may be present 

in several grains (Plate 8.5). The data define a discordia age of381 ± 18 Ma (Figure 8.7, 

p. 274). The range in data suggests that the zircon grains contain mixed Pb contents with 

magmatic zircon from the actual granite magmatism and inherited older zircon. As 

previously indicated by Dunning and Manser (1993), the granite phase of the MPIS 

exhibits complex geochronological systematics and more work needs to be completed on 

this material in an attempt to better defme the ages of the intrusion and inherited material. 
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Plate 8.5: Backscattered electron microprobe images for Sample JOD90A, MPIS granite. 
Images reveal broken grains with mottled appearance and possible inclusions (the 
inclusions were not zircon). 

4.8.6 Charles Cove Pluton 

The Charles Cove granodiorite (sample collected at the Tim's Cove Prospect) 

intruded both the Silurian Indian Islands Group and the Ordovician Davidsville Group 

along their mutual contact. There has been some debate as to the actual host unit to the 

granodiorite since Currie (1995) mapped the pluton as being surrounded by Davidsville 

Group rocks. Re-mapping of the area in 2003 indicated that the unit which Currie ( op 

cit.) mapped as Indian Islands Group on the shoreline is the same unit along the eastern 

margin ofthe granodiorite. Wilton and Taylor (1999) indicated that granodiorite slightly 

homfelsed the Indian Islands Group siltstones. 

Geochronological analysis of this pluton was conducted because of its auriferous 

nature and because it is the single largest felsic intrusion in the region of the Botwood 

Basin, aside from the Mount Peyton Intrusive Suite. Sample W03-27 was collected at 

UTM coordinates 681434/ 5475798. The LAM-ICP-MS analyses of zircon separates 

from the granodiorite defined a late Silurian concordia age of 429 ± 19 Ma (Figure 8.8, p. 
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275) with an upper intercept at 1850 Ma. The data defme a discordia line which is 

suggestive ofthe presence of a mixture ofyoung zircons from the ca. 429 Ma group to 

very old Proterozoic zircon. The low precision of this date is directly related to the 

discordance of the younger group indicating possible inheritance from the older grains 

(0' Driscoll and Wilton, 2005). This suggests that the granodiorite magma either 

inherited Proterozoic zircons enroute to intrusion or was derived as a partial melt of 

Proterozoic crust. More detailed work is required to refine the upper intercept and hence 

possible basement rocks to this part of the Dunnage Zone. Pollock eta!. (in prep.) report 

a zircon with an age of 1843 Ma from the Indian Islands Group that they suggest may 

have been derived from the Makkovik Province, Laurentia. 

8. 4. 7 Huxter Lane 

Sample W03-38 represents host rock from the so-called 'intrusion related', 

Huxter Lane auriferous showing in the Late Cambrian to Middle Ordovician Coy Pond 

Complex. The area, which hosts the prospect, was previously mapped as gabbro to 

diabase by Colman-Sadd (1985), however, trench mapping and petrographical analysis 

indicates that the host consists of a dacitic lithology. 

Approximately 40 zircon grains ranging in size from 40 x 40Jlm to 50 x 120Jlm 

were picked from this sample and in general the grains were clear to very pale yellow and 

ranged from euhedral, needlelike to equi-dimensional grains. A couple of the smaller 

grains exhibit minor compositional zoning (Plate 8.6, p. 260). An age of 497 ± 7 Ma was 
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obtained by the LAM-ICP-MS (Figure 8.9, p. 276), which is within the age range defined 

for the complex by Colman-Sadd (1985). 

Plate 8.6: Backscatter Electron Microprobe images for Sample W03-38, Huxter Lane 
Intrusive. 

8.4.8 Contact between Davidsville and Indian Islands Groups 

Sample JOD39 was collected at the contact between the Silurian Indian Islands 

Group and shales (either the Davidsville Group or the Caradocian shale). The sample 

was collected from a massive, dark, dense rock within the shale unit originally thought to 

be a mafic dyke. Petrographical analysis indicates that the rock is actually a sedimentary 

rock composed of unaltered clast-supported sand-sized grains of carbonate, feldspar and 

quartz; the source appears to be gabbroic. Approximately 30 zircon grains were picked 

from the sample and in general the grains appear to be small and euhedral with some 

elongate crystals present. One of the grains was somewhat rounded and appeared to be 

compositionally zoned. The grains range in size from 20 x 201J.m to 60x 100 IJ.m. Minor 

compositional zoning was noted on some of the wider grains and a few of the grains had 

small inclusions. Two different ages were obtained from the analysis (Figure 8.1 0, p. 
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277). One group of grains yield average Concordia ages of 4 72 ± 8.5 Ma and others were 

at ca. 900 Ma. Pollock eta/. (in prep.) report detrital zircon ages from the Davidsville 

Group of 507 to 449 Ma and 964 to 886 Ma; thus the detrital sample is probably from the 

Davidsville Group in agreement with the mapping observations of Boyce eta/. (1993). 

8. 4. 9 Bellman's Pond conglomerate clast 

Sample JOD08 is a clast from the conglomerate at Bellman's Pond at UTM 

670009/ 5447133. Originally the clast was thought to be a volcanic fragment. The clast 

has an intense green carbonate alteration and abundant sulfides. The sample was rather 

poor in zircon with only five very small, pink and rounded grains recovered. 

Petrographic examination indicates that the rock is actually an extremely altered felsic 

tuff (chapter 4 ). These grains yielded several very old ages from the mid Proterozoic ca. 

1550 Ma to 1775 Ma (Figure 8.11, p. 278). These detrital ages far exceed the Paleozoic 

age of the host conglomerate, but forcefully illustrate the ancient crustal material 

available for sampling in the region, probably from the Gondwanan margin ( cf Pollock et 

al., in prep.; Murphy eta/. (in press)). 

8.5 Discussion: Geochronology and the Mount Peyton Intrusive Suite in Relation to 
Previous Work 

Two of the intrusive rocks analysed in this study (JOD25 and JOD 1 00) define a 

ca. 430 Ma (mid-Silurian) age for magmatism in the central and northern Botwood Basin 

region. These dates suggest that at least some intrusive activity to the north coincided 
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with phases of MPIS magmatism. The MPIS magmatism was bimodal in nature as the 

rocks analysed range from gabbro through granodiorite and diorite to granite. 

It has proven difficult to definitively pinpoint exact magmatic ages for the various 

phases of the MPIS. As seen in attempts to date both the granitic phase (JOD90A and 

JOD04-17) and the intermediate phase (JOD21 and JOD25), the zircon grains are small 

and some of the grains from the felsic phase contain evidence of inheritance. Thus 

undisputable Concordia ages were difficult to produce. Starting with the granitic phase, 

two ages were obtained from two samples collected at different localities. A very 

discordant age of381 ± 18 Ma was obtained from JOD90A collected near a presumed 

faulted contact with Indian Islands Group sediments and a concordant age of 409 ± 4.5 

Ma was obtained for a sample of the granite collected towards the centre of the intrusion, 

away from any known fault zones. The JOD90A age is considered less reliable due to 

the discordancy of the plot and the large error ellipses. The JOD04-17 age is considered 

more accurate because the points are concordant with smaller error ellipses, and cluster 

around one age. Both samples indicate that the granite phase of the MPIS contains 

inherited older zircon. In sample JOD90A, inheritance was suggested by the discordancy 

of the plot, whereas in sample JOD04-17, one grain actually yielded an inherited age of 

ca. 1800 Ma. The presence of inherited zircon in these samples further indicates that the 

MPIS granite was formed from crustal anetexis as was first suggested by Strong (1979). 

The data for the Charles Cove Pluton also lend credence to the suggestion that Silurian 

granitoids were generated as partial melts of old crust that contributes zircons to the 

melts. The discordant plot of the Charles Cove Pluton suggests the presence of 

inheritance and one grain yielded an age of ca. 1850 Ma indicating a possible common 
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crustal source for inherited zircon in Silurian granitoids. 

The intermediate diorite phase also yields two conflicting ages. Sample JOD21 

collected at the Hurricane Prospect yielded a Concordia age of 405 ± 11 Ma and sample 

JOD25, collected 100m up the Salmon River at the Corsair prospect, yielded a 

Concordia age of 427.6 ± 4.2 Ma. The older age corresponds with the Concordia age of 

429.3 ± 4.4 Ma for the gabbro dyke to the north of the MPIS mapped by Evans et al. 

(1992). It was initially assumed that this proved a genetic relationship between the MPIS 

and intrusive dykes or sills to the north (i.e., 0' Driscoll and Wilton, 2005). However, 

this interpretation has become more difficult to sustain with the introduction of a younger 

age for the MPIS (it should be noted, however, that the 405 Ma age has considerably 

larger error). In fact, this data, as well as the data for the felsic portion of the MPIS 

suggest that central Botwood Basin magmatism was not simultaneous and that intrusion 

of the various felsic to intermediate phases was episodic over 30 Ma. 

This episodic nature of MPIS magmatism also has been suggested in the Botwood 

Basin by a recent U-Pb SHRIMP geochronological study by McNicoll eta/. (in press). 

This study produced an age of 430.6 ± 3.4 Ma for an intrusive mafic body north of the 

MPIS and McNicoll et a/. (in press) produced ages of 411 ± 5 and 3 81 ± 5 Ma for mafic 

dykes that both intrude the Indian Islands Group and host auriferous mineralization in the 

northern Botwood Basin. The disparities in these age results suggest that these units 

formed from different pulses of magma in the north from at least 430 to 381 Ma. Thus, 

magmatic pulses, at least in the central to northern Botwood Basin, continued over an 

extended period of time during the Middle Silurian to Middle Devonian. 

Past attempts to define the age of the Mount Peyton Intrusive Suite have been 
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particularly difficult. Bell eta/. (1977) defined a Rb-Sr age of390 ± 15 for the Mount 

Peyton Intrusive Suite (MPIS) granite. Reynolds eta/. (1981 ), on the other hand, defined 

a 420 ± 8 MaAr/ Ar age for biotite and hornblende from the gabbro phases. Dunning 

(1992) dated a pegmatitic gabbro originally interpreted to be from the MPIS gabbro near 

Rolling Pond and defined a U-Pb zircon age of 424 ± 2 Ma. Dunning (1994) dated a 

diorite phase of the northern MPIS from near Norris Arm with the same 424 ± 2 Ma U

Pb zircon age. Mitchinson (2001), however, showed that the Rolling Pond pegmatite is 

actually part of the geochernically distinct Caribou Hills Intrusive Suite that was intruded 

by the MPIS gabbro. 

In 1992 Lawson Dickson of the NLDNR (Geological Survey) collected a fine

grained, miarolitic granite at Red Rocks Brook, near the probable faulted contact with the 

Indian Islands Group (Dickson, 1993; Squires, 2005) siltstone and sandstone. Five zircon 

fractions were removed from the sample and analysed by Dunning and Manser (1993). 

The authors described the grains as numerous small crystals. Two possible age 

interpretations were obtained from the U-Pb isotope data (Dunning and Manser, op cit.) 

as: 1) fractions 1,2 and 3 defined a mixing line (37% probability to fit) that extended 

from 419 ± 2 Ma to 2680 Ma, which the authors (op. cit.) dismissed as it required old 

inherited zircons to be present in all fractions to be correct and 2) fractions 1,3, and 5, 

which yielded a discordia line (56% probability to fit) that intersected Concordia at 

31 ± 85 Ma and 439.5 +9/-6 Ma. Dunning and Manser (op. cit.) preferred this older age 

for the granite and noted that 207Pb-206Pb ages for the four fractions agreed within error. 

L. Dickson (written communication, 2005) prefers the 419 ± 2 Ma age for the 

granite based on geological observations as the MPIS gabbro phase is nowhere seen to 
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intrude the granite and Dunning (1992, 1994) had dated the gabbro phase at 424 Ma. 

Thus, a younger age for the granite would be more geologically accurate. The field 

observations, as well as geochronological results from this study support the theory that 

the gabbro phase is older than the granite phase. 

Based on the problems encountered in previous studies (i.e., Dunning and 

Manser, 1993; 0' Driscoll and Wilton, 2005) and the current LAM-ICP-MS work it is 

obvious that zircon inheritance is an intrinsic feature of the Silurian granitoids. In fact, 

the data from the Charles Cove pluton (CCP) infers that Silurian granitoids rocks may 

have been generated as partial melts of old crust, from which old zircons became 

incorporated. The presence of these inherited zircons in the granitic phases ofboth the 

MPIS and CCP supports the model of Strong (1979) and Strong and Dupuy (1980) that 

the MPIS gabbroic rocks represent mantle melts and that the granites represent partial 

melts of lower crust by these mantle melts. Based on the results of this study, traditional 

Thermal Ionization Mass Spectrometry (TIMS) zircon dating (which is usually not done 

on single zircon crystals) should be used with caution when dating these Silurian 

granitoids as the technique would simply define average ages for the zircon separates. 

This study has also shown that magmatic activity was prevalent from at least the 

Middle Silurian to Early Devonian in the central to northern Botwood Basin. Some of 

the northern magmatism does coincide with the MPIS magmatism but a definitive link 

that would define a common widespread magmatic event has not been identified. 
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8.6 Significance of Dates to Regional Metallogeny 

Gabbro to granite intrusions in the central to northern Botwood Basin suggest that 

periodic episodes of high heat flow were prevalent from Middle Silurian to Early to 

Middle Devonian. The magmatism was bimodal as rocks ranging from gabbro through to 

minor granodiorite and diorite to granite were observed. The MPIS diorite and the Twin 

Ponds gabbro define a common ca. 430 Ma age for one of these pulses of magmatism. 

Geochemistry was utilized in chapter five in an attempt to determine if the intrusive units 

share a common magma source. The Twin Ponds gabbro is geochemically similar to the 

MPIS, however, gabbroic hosts to the mineralization at Duder Lake appeared to be 

geochemically distinct; an age for these latter bodies could not be obtained because they 

did not contain any dateable minerals. Linkage of the Twin Ponds gabbro with the MPIS 

indicates that at least some of the intrusives to the north share a common magma source 

with the MPIS and therefore, the spatial extent of the deep-seated magmatism is greater 

than previously realized. It is likely that even though magmatism was widespread, the 

intrusives to the extreme north (i.e., Duder Lake) may have originated from a different 

magma source than the MPIS. 

In all models suggested for Carlin-style gold deposits (e.g., Arehart, 1996, 2000, 

2003; Hofstra and Cline, 2000), and indeed epithermal and orogenic types of deposits, a 

large-scale heat flow system is a fundamental requirement. Since episodes of periodic 

magmatism in the central to northern Botwood Basin were prevalent from Middle 

Silurian to Early Devonian, it may have had some influence on mineralization systems at 

local scales. Several authors have illustrated that some of the meso thermal style 
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occurrences in the northern Botwood Basin are Early Devonian or younger (McNicoll et 

a/., in press; Squires 2005). However, age determinations have not been defined for the 

auriferous occurrences along the eastern edge of the MPIS. It is feasible that the early 

Devonian intrusion of the MPIS granite may have influenced mineralization at these 

locations. In chapter 7, it was suggested that the mixing model for genesis of Carlin-type 

deposits ofBerger and Bagby (1991) may be applicable to some of the occurrences along 

the eastern margin of the MPIS. In that scenario, the MPIS granite acted as a driving 

force for mineralizing fluids. The Early Devonian age for the granite further enhances 

the applicability of such a model. 
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Figure 8.1: Generalized geology map of the Botwood Basin and environs, and specific 
locations of auriferous showings sampled for this study (yellow stars) and location of 
geochronological samples (red circles) from which U-Pb ages were obtained. Obtained ages 
for magmatic samples are indiacted on map. Refer to figure 2.4 for corresponding legend 
(Geology modified from Colman-Sadd and Crisby-Whittle, 2002). 
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Figure 8.2: Concordia diagram illustrating the Concordia Curve and a line of discordia. Any point along the 
Concordia curve would produce a concordant or accurate date for the material being tested, whereas discordant 
points will result from either Pb loss or U loss/gain. Discordant points can be useful if they produce a linear or 
sub linear discordia as the upper intercept should represent time of formation and the lower intercept should 
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Figure 8.3: Concordia diagram for sample JOD21, Hurricane Prospect; the size of the ellipse represents the error 
measurement (18) for that particular analysis [MSWD= Mean Square of Weighted Deviates indicating the goodness of 
fit]. 
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Figure 8.5: Concordia diagram for sample JOD 100, Twin Ponds gabbro; the size of the ellipse represents 
the error measurement (lo) for that particular analysis. 
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Figure 8.6: Concordia diagram for sample JOD04-17, MPIS granite; the size of the ellipse represents the error measurement 
(1 sigma) for that particular analysis. 
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9.1 Preamble 

CHAPTER9 

CONCLUSIONS 

This study was initiated to evaluate the auriferous occurrences throughout the 

region referred to as the 'Botwood Basin' in an attempt to better understand the different 

occurrences and their relationships to each other and regional lithologies. An attempt 

was also made to date various intrusive lithologies to determine whether there was a 

relation between these events and mineralization. The resulting compilation of field 

observations, major and trace element data, trace element data of pyrite, S-Isotope 

analyses, petrography and U-Pb geochronology has provided further insight into the 

nature of host and country rocks, as well as mineralization and intrusive events. 

This thesis presents the results of an integrated geological, geochemical and 

geochronological study ofthe Botwood Basin, central Newfoundland. Reconnaissance 

mapping and fossil collection of previously reported localities (i.e., Blackwood, 1982; 

Boyce eta!., 1993) along the eastern and southeastern margins of the MPIS have 

affirmed the presence of the Indian Islands Group rocks. Reconnaissance mapping in the 

northern Botwood Basin and the subsequent fossil identifications from previously 

unreported fossiliferous outcrop have provided evidence for a possible westward 

extension of the group into the area previously mapped as Ten Mile Lake Formation by 

Currie (1995). Geochemical and geochronological data have proven to be effective tools 

for linking the mafic phase of the MPIS to several smaller intrusive bodies in the northern 
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Botwood Basin. This suggests either the presence of a deep-rooted magmatic system 

with a greater extent than previously thought or several magmatic systems with similar 

geochemical characteristics and simultaneous activity. Geochronological data also 

provide evidence that suggests the intrusive events in the Botwood Basin were episodic 

from the Middle Silurian to Middle Devonian. 

Geochemical data have proved important in identifying possible sources and 

tectonic environments of sedimentary lithologies throughout the study area. In fact, the 

geochemical data suggest that the different lithological units may be defmed by 

abundances of immobile elements. 

Sulphur isotope and trace element data from sulphide phases, coupled with field 

investigations, have aided in classifying the various auriferous occurrences throughout 

the basin. These studies have confirmed the presence of several mineralization styles and 

further portrayed the effect that the geological complexity of the region has had on the 

individual characteristics of these systems. Thus, although similarities between systems 

are recognized, a generalized 'Botwood Basin' style of mineralization does not apply. 

9.2 Principal Results 

Several key observations were made during reconnaissance mapping. First, new 

fossil localities are reported in the Duder Lake area interbedded with cherty siltstone. 

The fossils have been identified to includeAnthozoa_Tabulata_Favosites (sp. undet.) and 

Bryozoa_ Stictopora_Scalpellum (Lonsdale) (branching stick forms); both are common 

species of Wenlock (Middle Silurian) limestone. Thus the rocks are Indian Islands 
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Group. This area is currently mapped as the Ordovician Duder Complex (Currie, 1995b) 

and although fissile black shale (defmed as complex matrix) was observed along the 

transect, green micaceous siltstone to red sandstone and pink volcanic lithologies were 

also observed in the area. The presence of fissile shale may be attributed to movement 

along a major regional fault. 

A large shear zone transects the region and is reflected by a valley that runs NE. 

Some of the fossiliferous outcrops are adjacent to it. In fact, pieces of badly deformed 

fossiliferous material were observed in what appeared to be semi consolidated fault 

gouge which would suggest that movement along the fault was post Mid-Silurian. The 

mineralization in the area has been linked to second and third order structures related to 

this fault ( cf Churchill, 1994) and thus, mineralization would have had to occurred after 

Mid-Silurian time. This partly refutes the case for a Mid-Silurian magmatic event 

(related to the MPIS) acting as a heat source to drive mineralizing systems in the Duder 

Lake area specifically. 

Also, if this fault is the Dog Bay Line and it cuts the Indian Islands Group rocks 

in the north, then it provides further evidence for extension of this fault system to the 

south and the possibility that it defmes the faulted (or fault modified intrusive) contact 

between the Indian Islands Group and the MPIS. The puz~ling point here is that if this 

fault does indeed cut the Indian Islands Group near Duder Lake, then sediments from this 

group should not occur to the west of it as observed in this study, for the Dog Bay Line 

has been defined as a major Silurian terrane boundary separating shallow marine 

sediments to the east from terrestrial sediments and volcanics to the west ( cf. Williams et 

a/. , 1993). Furthermore, even if the redefinition of sediments in the area as proposed by 
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Currie (cf Currie, 1994; Currie, 1995a) holds true, then the question arises as to where do 

the Duder Complex and Ten Mile Lake Formation fit into the Botwood and Indian 

Islands Tectonostratigraphic belts? Currie (1995b) placed these units in the Duder Belt, 

which he mapped as lying spatially between the two previously defined belts. A recent 

study by Dickson (2005) has also questioned the incorporation of Indian Islands Group 

sediments as tectonic blocks within the Duder Complex. In fact, Dickson (2005) also 

questions the definition of the Dog Bay Line as a major terrane boundary. 

New fossil localities and intrusive bodies were also mapped to the east ofTen 

Mile Lake in the region previously defmed as the Ten Mile Lake Formation. The fossils 

collected from this area are somewhat deformed as they occur immediately west of a 

major regional fault. Despite the deformation, several fossil specimens were recoverable 

and identified as Echinodermata-Crinozoa-Crinoidea (Gen. Et sp (p ). undet., 

Brachiopoda-Articluata (Genet sp. undet.-heavily ribbed form), Byrozoa (Genet sp. 

undet.), Cnidaria-Anthozoa-Zoantharia-Tabulata-Favosites (Genet sp (p). undet.) and 

Echinodermata-Crinoidea (Genet sp(p) undet.-columnals). Only broad identifications 

could be made for most of these specimens but again the presence of Stictopora 

Bryozoans of Wenlock age suggests a Middle Silurian age. Wenlock fossils have 

previously been reported from the Indian Islands Group (i.e. , Boyce et al., 1993). The 

Ten Mile Lake Formation has been described as a Late Silurian to Early Devonian unit 

that conformably oversteps the Indian Islands Group and thus, one would not expect to 

fmd Wenlock fossils in this unit. Thus, the presence of these fossils again indicates that 

the Indian Islands Group, or a correlative unit, may actually exist to the west of the 

currently defmed location of the Dog Bay Line. 
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Whole rock geochemical and sulphur isotopic data were presented for igneous 

and sedimentary lithologies throughout the Botwood Basin. Petrographical observations 

were combined with geochemical analysis of igneous lithologies to determine ifthe 

various intrusive units throughout the area were related to the large MPIS pluton. The 

geochemical data have shown that mafic, intermediate and felsic lithologies are present 

throughout the region. The small intrusive bodies to the north, excluding the Duder Lake 

gabbro, are mafic in nature and resemble the composition of the gabbroic phase of the 

MPIS petrographically, geochemically and geochronologically. Numerous attempts to 

date the mafic rocks in the Duder Lake and Paul's Pond area failed due to a lack of 

dateable minerals in those rocks. This is attributed to the generally small grain size of the 

intrusive lithologies throughout the region. 

The petrographically most distinct intrusive bodies are those from the Duder Lake 

area. The gabbros were deformed and contain metamorphic and hydrothermal alteration 

assemblages. Several gabbroic dykes that intrude the Ten Mile Lake Formation north of 

the TCH and south of Duder Lake vary slightly in grain size and model percentages, but 

do not exhibit any distinctive differences between them; they do, however, appear distinct 

from the Duder Lake gabbro. 

A dioritic dyke collected west of Glenwood was compared with the diorite phase 

ofthe MPIS and was petrographically similar. This unit was initially correlated with the 

MPIS by Dickson (1996) and may provide evidence for intrusive plugs ofthe MPIS in 

the Indian Islands Group sediments. Lake and Wilton (2006) report another apparent 

intrusive relationship between the MPIS granite and Indian Islands Group sediments in 

the southeast, which provides further evidence for an intrusive relationship. A locality at 
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Red Rock Brook, along the southeast margin of the MPIS, indicates that the contact 

between the aforementioned units may be faulted, but as the contact was not actually 

visible, this postulation is only inferred. Thus, the possibility of a fault-modified 

intrusive contact cannot be ruled out. 

Inherited zircon ages, both in the MPIS granite and the Charles Cove Pluton 

suggest inheritance of ca. 1800-1850 Ma. Pollock eta/. (in prep.) report a zircon with an 

1843 Ma age from the Indian Islands Group that they suggest may have been derived 

from the Makkovik Province, Laurentia. This could link the inherited zircon in Middle 

Silurian to Early Devonian Botwood Basin granitioids to the Indian Islands Group, 

implying an intrusive relationship. 

The task of locating exposed geological contacts proved to be very difficult as till 

and vegetation cover in the region is quite extensive. A contact relationship was 

observed, however, between mafic and felsic phases of the MPIS along Salmon River. 

At certain localities, granite can be observed to stope gabbro blocks along fractures, 

which suggests that the granite is younger than the gabbro. This discredits the 

hybridization theory for the formation of the intermediate dioritic phase of gabbro, as a 

granite melt would not be of sufficient temperature to partially melt the cooled gabbro 

(lack of chill margins in the gabbro suggest that it was in fact cooled when the granite 

intruded). Further evidence against hybridization was provided in the geochronological 

studies of the MPIS, as the mafic phase has been dated at ca. 430 Ma and the granite 

phase at ca. 410 Ma. 

The mafic rocks from this study are dominantly fine to medium-grained 

hornblende to pyroxene gabbro with varying amounts of chlorite. The presence of 
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chlorite indicates lower greenscist facies regional metamorphism. The intrusive 

lithologies have tholeiitic to transitional geochemical affinities and exhibit within plate 

magmatic signatures. The intrusive dykes or sills to the south and north of the MPIS 

appear to be more fractionated than the MPIS. Although the Duder Lake gabbros are 

assumed to be unrelated to the MPIS, apparent relations between the gabbroic bodies 

immediately north and south of the pluton may be attributed to fractionation of a similar 

magma source. 

Sedimentary geochemistry illustrated that the various lithological groups 

contained varying amounts of trace elements dependant on their location in the Botwood 

Basin. For example, the sediments from the northern Botwood Basin were more Ti-rich. 

Increased Ti content was also observed in the northern intrusive bodies and thus, this may 

be indicative that the northern rocks have a more Ti-rich source region than those to the 

south. 

Both geochemically and geochronologically, the MPIS granite displays 

characteristics of either a contaminated melt or a partial melt derived from lower crustal 

anatexis. Several bivariate trace element plots indicated this. For example, on the Zr vs. 

Ah03 diagram, Dickson's (1996) felsic dataset defined a different fractionation trend 

from that of the mafic dataset suggesting that they evolved independently. 

Geochronology of the Silurian granitoids in this region provides further evidence for 

magma contamination or partial melting as the data indicate that the zircon grains from 

these units may contain inherited cores from older crust. 

Geochemical data for sedimentary lithologies indicate that different groups can be 

defmed on immobile trace element diagrams. Intergroup differences can also be 
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identified on these plots. For example, the Davidsville Group rocks from the south 

(Paul's Pond area) consistently contained elevated trace element concentrations 

compared to those from the central region (Glenwood area) possibly reflecting imput 

from local sources. In general, and with the exception of southern and central 

Davidsville Group rocks, all units plotted together on each graph. It can be assumed that 

the elemental characteristics of these units accurately reflect source material as these 

elements are considered immobile and would in most cases be unaffected by later 

processes. The main observations from these plots were that the sedimentary units to the 

north (Duder Complex) are enriched in Ti and the samples from the southern Botwood 

Basin are most enriched in Zr, Nb and Y. The northern and southern samples are more 

enriched in these elements than the central samples in general. 

Tectonic environments for different sedimentary rocks were determined from 

petrographic descriptions. The rocks from the Davidsville Group and the sample from 

the Caradocian shale plot below the Recycled Orogen Provenances field, which 

represents zones of plate convergence. The samples that plot within this field can be 

related to subduction complexes, collisional orogens and foreland uplift. Several of the 

Indian Islands Group samples from 0' Reilly (2005) plot within the craton interior 

subdivision of the continental block provenance field which includes quartz rich 

sediments that contain very little feldspar (<10%) and plot near the quartz apex. The 

source rocks for the sedimentary samples from the Botwood Basin primarily have calc

alkaline volcanic to intrusive compositions. 

The sulphur isotope and trace element content of pyrite provided useful tools for 

further classifying some of the auriferous occurrences in the Botwood Basin. Three 
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distinct groups of sulphur isotope ratios were recognized, isotopically light (derived from 

a reduced sedimentary source), intermediate (derived from a primary magmatic source) 

and isotopically heavy (derived from a mafic to ultramafic magmatic source) indicating a 

wide variety of isotopic compositions throughout the area. Thus, the sulphur source for 

the systems studied is primarily crustal and the sulphur is oflocal derivation (i.e., ratios 

reflect the host rock). 

Trace element data for pyrite from several different auriferous occurrences define 

subtle differences between auriferous systems. Samples were selected from occurrences 

that had been classified as either orogenic, epithermal or postulated Carlin-style in order 

to determine if certain trace elements could be used to differentiate them. Previous 

studies (primarily with emphasis on Carlin-type deposits) indicated that pyrite 

incorporate distinctive trace element suites into their crystal lattices. Some of the pyrites 

did not contain elevated concentrations of the trace elements analysed and therefore could 

not be classified by this technique. 

Some of the pyrite grains from the Mustang Zone (postulated Carlin-type) 

contained characteristic elements of the so-called 'toxic suite' of elements that are 

associated with Carlin-type deposits. Also, several of the pyrite grains from the 

Hurricane Prospect matched that from an orogenic style occurrence (Stog'er Tight) with 

elevated Wand/or Te. Pyrite from a postulated epithermal occurrence (Bruce Pond) 

contained slightly elevated Se and Ba, typical of such deposits. Generally, the pyrite data 

within the individual occurrences were variable and more detailed studies are required to 

provide definitive links between the occurrences and deposit types. 

In terms of regional metallogeny, this study has shown that several distinct styles 
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of auriferous mineralization are present throughout the Botwood Basin such as 

epithermal and orogenic. Furthermore, the possibility of Carlin -type mineralization 

could not be discredited. These occurrences are hosted in a variety of lithologies ranging 

from deep to shallow marine sedimentary and felsic to ultramafic igneous rocks. The 

mineralization generally consists of fine-grained disseminations of pyrite and 

arsenopyrite; gold is mostly invisible to the naked eye. 

Past studies have suggested that the mineralization is Devonian as it straddles 

(Squires, 2005) or is younger than (Churchill, 1994) the currently defined Dog Bay Line. 

This study could not definitely link mineralization to the large bimodal MPIS due to 

difficulties in obtaining dateable minerals at auriferous occurrences, and in obtaining 

concordant ages due to the presence of inherited zircon. A Devonian age of ca. 405 Ma, 

however, may actually date the mineralizing event at the Salmon River Prospects rather 

than the diorite itself. If this age is reliable, it is within error of the ca. 410 Ma age 

defined for the MPIS granite. Orogenic styles of auriferous mineralization are often 

associated with granitoid plutonism, and as shown with the trace element concentrations 

of pyrite data, the Salmon River Prospects exhibit orogenic characteristics. Therefore, 

with the presently defined Early Devonian age, it is possible that the MPIS granite 

intrusion drove at least some of the spatially close auriferous mineralization. 

This study did indicate that some of the magmatism in the north coincided with 

MPIS magmatism, indicating that an extensive heat flow system existed during the 

Middle to Late Silurian. Although mapping observations question the current definition 

of the Dog Bay Line, the presence of an extensive NE fault system cannot be disputed. 

Therefore, it is possible that the mobilization of the mineralizing fluids in some areas is 
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related to the various fault systems thought the Botwood Basin. Although there is no 

major fault system present, granitic and gabbroic dykes are host rocks at some of the 

Paul's Pond Prospects and thus mineralization in that area is possibly related to the 

intrusive events. In the Great Bend area, the mineralization is concentrated in areas of 

complicated and extensive fault systems, and thus, it is reasonable to assume that the 

mineralization is related to the local faulting episodes. In the Glenwood-Appleton area, 

the mineralization may be related to either the NE trending fault system that runs through 

the area or to the MPIS. Sulphur isotope studies indicate that the sulphides from these 

occurrences have a magmatic influence; therefore, the large intrusive body must have had 

some effect on these systems. Churchill (1994) had already linked the orogenic style Au 

occurrences at Duder Lake to the shearing events that he recorded in that area. 

Thus, the 'Botwood Basin' auriferous occurrences, although exhibiting 

similarities locally, are generally distinct and cannot be grouped into a generalized 

mineralization model. Geochronology has shown that mineralization throughout the area 

has a very broad time range from at least 494 to 380 Ma. Through this time period, the 

region had undergone many phases of deformation and as seen in this study, episodic 

magmatic events at both local and regional scales. 
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9.3 Conclusions 

Lithologies in the basin and environs were mapped and then sampled for 

geochemical and geochronological purposes. A number of conclusions have been 

reached, including: 

(1) Whole rock geochemical data indicate that intrusive lithologies 

throughout the Botwood Basin range from felsic to intermediate to 

mafic and generally exhibit tholeiitic to transitional geochemical 

affinities. The Duder Lake gabbros are dissimilar and have calc

alkalic affinities. Although the gabbroic units in the region north of 

the Trans Canada Highway and at Paul's Pond display some 

geochemical similarities to the Mount Peyton Intrusive Suite, the data 

suggest that these units evolved from separate magma sources. 

Petrographical data indicate that these units are petrographically 

similar and are typically fine-grained. The similarities between the 

intrusive bodies may indicate that they evolved from fractionated 

equivalents of similar magma sources. The unmineralized gabbroic 

bodies from the Duder Lake Prospect appear unrelated to the intrusive 

lithologies to the south as they are both petrographically and 

geochemically distinct. 
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(2) Sulphur isotope ratio data for sulphide mineral separates indicate a 

very wide range in isotopic compositions throughout the region. The 

predominant distinction between samples from different occurrences 

seems to mainly indicate different sulphur sources related to the 

regional geology. 

(3) Pyrite crystals from different types of auriferous occurrences appear to 

exhibit distinctly different trace element compositions. Though the 

trace element database in the geological literature on pyrite 

compositions from gold deposits is limited (most information comes 

from Carlin studies, e.g., Hofstra and Cline, 2000), it appears that some 

pyrite from the Mustang and Bowater prospects have the same 

compositions as pyrite from Carlin-type occurrences; most especially 

in terms ofthe "toxic element" suite so distinctive ofthe Carlin 

deposits. Trace element compositions of pyrite from the Stog'er Tight 

Prospect, a typical orogenic style occurrence, show low concentrations 

of most metals, but slightly elevated contents of Te and W in several 

grains. Some of the pyrite from the Hurricane Prospect, also defined 

as an orogenic style occurrence also have elevated W. These deposits 

are also generally spatially related to granotoid plutonism and the 

Hurricane Prospect occurs in a diorite phase of the bimodal MPIS. 
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( 4) Geochronological analysis of intrusive lithologies throughout the 

region proved difficult, as these intrusions are typically fine to 

medium-grained. Age determinations were made for the diorite and 

granite phases of the MPIS, a gabbroic intrusive immediately north of 

the MPIS, the Charles Cove pluton along the north coast and the 

Huxter Lane intrusive in the Coy Pond Complex to the south. The 

results of this study indicate that the gabbroic phase of the MPIS is 

older than the granitic phase and that the MPIS magmatism occurred 

around ca. 430-405 Ma. The data also suggest that the magmatism in 

the central to northern region was episodic. Both a gabbroic body 

north of the MPIS and the Charles Cove pluton were also dated at ca. 

430 Ma, identifying at least one period of high heat flow beneath the 

central and northern Botwood Basin during Mid-Silurian time. In all 

models suggested for Carlin-style gold deposits (e.g., Arehart, 1996, 

2000, 2003; Hofstra and Cline, 2000), and indeed epithermal and 

orogenic types of deposits, a large-scale heat flow system is a 

fundamental requirement. The Early Devonian age defined for the 

granite phase of the MPIS makes this intrusion more feasible as the 

energy source for the auriferous mineralization hosted by at least the 

Silurian lithologies along its eastern margin. The ca. 494 Ma age 

obtained for the dacitic intrusion at the Huxter Lane Prospect 

forcefully illustrates that auriferous mineralization within the Botwood 

Basin and environs has a very extended time range of at least 100 Ma. 
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(5) This study emphasized the influence of inherited zircon in Silurian 

granitoids. Both the MPIS granite and Charles Cove Pluton presented 

evidence for the incorporation of older, inherited zircon. The presence 

of inheritance further adds to the model proposed by Strong (1979) for 

crustal anatexis for the formation of the MPIS granite. The ca. 1800 to 

1850 Ma age obtained from the inherited grains also suggests the 

incorporation of Indian Islands Group sediments into the magma. 

(6) Detrital age determinations were derived for a shale and conglomerate 

clast from the Davidsville Group. The conglomerate clast consisted of 

an extremely altered lithic tuff and yielded several very old ages from 

the Middle Proterozoic ca. 1550 Ma to 1775 Ma. As the host is 

Paleozoic, these data suggest that ancient crustal material was available 

for sampling in the region, probably from the Gondwanan margin ( cf 

Pollock et al., in press). The shale was collected near a contact with 

the Indian Islands Group and two different groups of average ages 

were obtained from the analysis, 472+/-8.5 Ma and ca. 900 Ma. 

Pollock et al. (in prep) report detrital zircon ages from the Davidsville 

Group from 507 to 449 Ma and 964 to 886 Ma. 

(7) Although the various auriferous occurrences display some similarities 

in terms of style of mineralization and in some cases host rock, this 

293 



study has shown that a specific model for mineralization cannot be 

broadly applied to the Botwood Basin. The 494 Ma age of 

mineralization at the Huxter Lane Prospect and the 381 Ma age 

(McNicoll et al., in press) for mineralization at the Titan Prospect 

illustrate that auriferous mineralization occurred over an extended 

period of time in the Botwood Basin. The local stratigraphic and 

tectonic environments also influenced mineralization and as these 

parameters vary throughout the region, so does the effect. The only 

broad generalization that can be commonly applied between 

occurrences is that the sulphur source is locally derived and dependent 

on local stratigraphy. 

9.4 Direction for Future Work 

The relationship between the MPIS and the sediments along its eastern and 

southern margin is still unclear, as no definite metamorphic aureoles have yet been 

identified. The Badger Group is intruded by the MPIS along the western margin and 

ranges from Late Ordovician to Early Silurian and is conformably overlain by the 

Silurian Botwood Group. If in fact the Stoney Lake volcanics are younger than the 

Botwood Group (cf Anderson and Williams, 1970) and the ca. 423 Ma age for the 

volcanics is correct (cf Dunning et al. , 1990), then deposition of the Botwood Group 

would have ranged from Early Silurian (ca. 440 Ma) to Late Silurian (ca. 424 Ma). The 

present study suggests that MPIS plutonism ranges from ca. 430-424 Ma (mafic to 
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intermediate phases) to ca. 410-380 Ma (felsic phase), suggesting that the intrusion 

coincided with some stages in the deposition of the Botwood Group. Along the eastern 

margin, several authors have postulated a possible faulted contact between the MPIS and 

the Indian Islands Group. This study suggests that the contact may actually be originally 

intrusive but fault modified. Thus, a detailed project with emphasis on defining this 

relationship should be conducted. 

U-Pb geochronology proved to be a strong tool in defining a widespread 

magmatic system ranging from the central to coastal region. Further samples at more 

localities throughout the study area should be collected to provide a broader picture of the 

intrusive history of the region. The sampling focus should be on locating medium to 

coarser grained lithologies to improve the chance of obtaining dateable minerals. 

Sulphur isotope studies and mapping projects should be conducted on a more 

localized scale. Sulphur isotopes for the region have been shown to be considerably 

variable and thus should be addressed at individual auriferous occurrences. New 

discoveries of significant auriferous occurrences have been made in the northern and 

north-central Botwood Basin since the onset of this study which reaffirm the potential of 

this area as a significant area for gold exploration and the need for a better understanding 

of the geological and structural history of this complex region. 

Aside from a detailed mapping project along the eastern margin of the MPIS, the 

geology of the northern Botwood Basin, specifically the 'Duder Belt' that was defined by 

Currie (1995b ), should be examined. The current study, along with recent observations 

presented by Dickson (2005), have produced questions concerning the current 

stratigraphy in this region. 
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APPENDIX! 

PREVIOUS WORK 



Table Al.l: Brief description of previous work conducted within or adjacent to the Botwood Basin, central Newfoundland 
(Previous histories of paleotonolgical and geochronological work are listed separately in tables Al.3 and Al.4, respectively). 

TECTONIC STUDIES 
Kay (1951) As an integral part of the geosynclinal theory that he applied to the Appalachian System, he postulated that an Ordovician 

chain of volcanic islands bordered the ancient North American continent. 

Williams (1962) Conducted reconnaissance mapping of the Botwood map area. Noted contrasts between subaerial volcanic rocks of 
Silurian age and marine rocks of Ordovician age. Assigned subaerial volcanics and inter layered redbeds near Botwood to 
the Botwood Group. 

Williams (1964a) Presented a summary of the sedimentary and tectonic features of northeastern Newfoundland, which demonstrated a two-
sided system with a symmetrical Palaeozoic central mobile belt about a central axis. Concluded that the geology of 
northeastern Newfoundland contradicts the then widely accepted view that that the Appalachian system formed as a 
Palaeozoic welt on the southeastern border of North America during Palaeozoic time. 

Kay and Colbert (1965) Made the first subdivision of the Canadian Appalachians based upon the northeastern Newfoundland cross section 
described by Williams (1964a). The subdivisions were the Western Platform, the Central Volcanic Belt and the Avalon 
Platform. 

Wilson (1966) Suggested that modem volcanic chains adjacent to continental margins are probably analogous to Ordovician volcanic-
volcaniclastic sequences within the Appalachian System and that the evolution of the Appalachian-Caledonian Orogen 
was related to the opening and closing of a proto Atlantic Ocean. 

Kay (1967) Correlated the stratigraphic and tectonic belts of Newfoundland and the British Isles. Provided evidence to support either 
an original proximal relationship between opposing sides of the North Atlantic or continuity between the belts beneath 
the present day Atlantic Ocean basin. 

Williams (1967b) Outlined Pre-Carboniferous development of the Newfoundland Appalachians. Discussed the tripartite subdivision of 
Newfoundland into distinct geological provinces, the geology of each zone and the subsequent deformational events that 
affected the central Paleozoic mobile belt. 

Al-l 



Table Al.l: cont ... 

Williams eta/. (1972) Subdivided the Appalachian structural province into nine zones (A·l) from West to East. Attributed deformation of 
central Newfoundland (zoneD (Notre Dame Bay), zone E (Exploits), and zone F (Botwood Basin) to two Paleozoic 
Orogenic events: the Ordovician Taconic Orogeny and the mid Devonian Acadian Orogeny, but suggested that a more 
complex history was yet to be defmed. 

Williams and Stevens (1974) Study of the western margin of the Appalachians or the ancient continental North American margin and its geological 
history in terms of the evolution of the Appalachian Orogeny. 

McKerrow and Cocks (1977) Proposed that the Long Reach Fault represents the suture point for the closure of the Iapetus Ocean at the end of the Early 
Devonian based on faunal evidence on opposing sides of the fault. Suggested that fauna from the west (i.e. middle 
Ordovician fauna on New World Island) have North American and Scottish atfmities whereas those to the east (i.e. 
Ordovician fauna from the Gander region) do not have any affinities to known fauna provinces but are connected to those 
on the Avalon Peninsula, which have clear European affinities. 

Strong (1977) Broad study of volcanic regimes within the Newfoundland Appalachians. Author took the common approach of 
classifying the regimes based on geochemistry, but in this case put greater emphasis on geological observations. 
Concluded that the fmdings can be applied to the Wilson Cycle and therefore relates the entire Appalachian-Caledonian 
system to the birth, evolution and subsequent destruction of the proto Atlantic Ocean. 

Pajari and Currie (1978) Re-evaluated the three-fold subdivision that spilt northeastern Newfoundland into the Gneiss Complex, Gander Lake 
Group and the Davidsville Group and ascertained that this subdivision as suggested by Jenness (1963) and Kennedy and 
McGonigal (1972) is valid based on field observations and tectonic interpretations. Indicated that there is no evidence 
presented for or against a late Precambrian-early Phanerozioc orogeny. Determined that the observed tectonic 
relationships are consistent with the obduction of oceanic material during Ordovician time. 

Williams (1978) Correlated the zonal divisions of the Northern Appalachians to zones in the Caledonides of the British lsles. 

Currie et a/. (1979) Suggested tectonic modeling indicates that the Carmenville map area rocks formed a continental slope and toe of slope to 
an eastern continent. Significant deformation occurred in Ordovician or Silurian time with a thermal climax in the 
Devonian. Postulated that transcurrent faulting occurred on a projection of the Avalonian continent subsequently placing 
it over a hot spot, which resulted in later magmatic and metamorphic activity. 

Williams (1979) Examined the history of the five broad zones in the Appalachian Orogen through an analysis of previous work. Provided 
a summary of work based on the evolution of plate tectonic theories with emphasis on the need for a broader look at the 
system as opposed to localized detailed work. 
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Colman-Sadd (I 980) 

Colman-Sadd (1982) 

Williams and Hatcher (1983) 

Colman-Sadd and Swinden 
(I 984) 

McKerrow and Cocks (1986) 

Na]arpour and Upadhyay 
(1987) 

Williams eta!. (1988) 

Dunning eta!. (1990) 

Studied the geology of south central Newfoundland and made correlations between the Bonavista Bay Gneiss Complex, 
the Gander and Davidsville Groups and granitoid intrusions. Observed relationships that suggest the Davidsville and 
Gander Groups are conformable. Concluded that the evidence suggests, in accordance with previous studies, that the 
Baie d'Espoir, Davidsville and Gander Groups were deposited in an Ordovician back arc basin. 

Discussion on plate tectonics, associated orogenies and plate driving forces in relation to the Newfoundland 
Appalachians. 

Applied the suspect terrane concept to the Newfoundland Appalachians. Concluded that deformation, plutonic and 
metamorphic events were all related. 

Stratigraphic, paleontological and structural examination of the Through Hill Area, which led to the conclusion that two 
layers of crust were superimposed in the area. The upper layer consists ofDunnage Zone rocks and the lower layer 
comprises the Mount Cormack Terrane (Gander Group). The authors suggested that this interpretation allows for the 
existence of two tectonically superimposed layers beneath the central mobile belt and therefore that the entire Dunnage 
Zone is allochtanous. The Gander Zone may be the upper overthrust sheet or part of the underlying crustal layer if the 
Dunnage Zone and Gander Zones are separated by an undefmed structural discontinuity. 

Used faunal evidence to designate the Reach Fault as the suture for the closing Iapetus Ocean. 

Determined that the Reach fault is the suture for the closing Iapteus Ocean based on contrasting major and trace element 
geochemical signatures on opposing sides of the fault. 

Revision of Newfoundland Appalachian Zonal divisions. Subdivided the Dunnage zone into the Notre Dame and 
Exploits subzones based on stratigraphic, structural, isotopic, geophysical and faunal evidence. The Red Indian Line, a 
faulted boundary separating geologically distinct Ordovician volcanic-sedimentary rocks, divides the wnes. 

Mapped and dated units in the Central Mobile Belt to better understand the tectonic evolution of the region. The majority 
of the units studied where in the extreme southern mobile belt and only one unit is relevant in this previous history 
evaluation, the Stoney Lake Volcanics. U-Pb date of the Stoney Lake rhyolitic tuff provided an estimated age of 423+/-2 
Ma. It was concluded that since previous workers (i.e. Colman-Sadd and Russell (1982) and Anderson and Williams 
(1970)) suggested that an angular unconformity exited between the volcanics and the Botwood Group that their rhyolite 
age could possibly represent the lower Silurian deformation and cleavage event within the Silurian Botwood Group. The 
authors noted that such a contact is only inferred, as it was not observed in field studies. 
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Currie ( 1995b) Mapped the northeastern Dunnage Zone and presented a tectonic model for the development of the zone based on new 
field observations in relation to previous work. 

Piasecki (1995) Review of studies on the structural boundaries between the Gander, Dunnage and Humber Zones. Postulated that these 
complex zones exhibit ductile shearing followed by brittle movements and were subsequently reworked during 
successive tectono-metamorphic events. 

Winchester and van Staal Reassessed the tectonic evolution of the Appalachian orogen by correlating meta-volcanic and associated sedimentary 
(1995) assemblages between Newfoundland, New Brunswick and Maine based on lithology, tectonic setting, faunal 

provinciality and paleomagnetic data. Mainly used geochemical data to review the tectonic setting of volcanic suites and 
new data combined with previous work to reassess and compare the Appalachian and Caledonides. 

Williams et a/. ( 1995) Definition of the Botwood Belt accompanied by an overview of previous work, nomenclature and stratigraphic 
relationships, lithology, correlation and age. 

Cawood et a/. (200 1) Presented a scenario for the opening of the Iapetus ocean based on geological, geochronological and paleomagnetic data 
from along the Iapetus margin of Laurentia. 

STRUCTURAL STUDIES 
Dean and Strong (1977) Correlated several of the large faults in the eastern area and provided an interpretation of the deformational history in 

relation to those faults (i.e. correlated the Lobster Cove fault in the western portion of the area to the Chanceport fault 
and suggested that they are thrust faults that were folded during Acadian deformation). 

Karlstrom eta/. (1982) Correlated the Dunnage melange to the Carmenville melange as well as other melanges in the area based on observed f2 
fabrics. Identified three fold generations that range in age from Ordovician to middle Silurian with the implication from 
this that the majority of the Dunnage Zone may be allochtanous. 

Currie eta/. (1983) Discussion on Karlstrom eta/. (1982). Suggested that the model that was presented would have to be reconsidered 
before it is applied on a regional scale. 

Karlstrom eta/. (1983) Reply to Currie eta/. (1983). Denoted that their model was not solely dependant on the points criticized by Currie et a/. 
(1983) and presented macroscopic and microscopic structural evidence to reatfmn their conclusions. 
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Blewett and Pickering (1988) Suggested that the pattern of major sinistral transcurrent motions between Laurentia and colliding terranes observed in 
the British Caledonides are also present in north central Newfoundland. 

Elliott et a/. ( 1991) Used U-Pb radiometric dating of felsic plutons in Notre Dame Bay to constrain the timing of deformation events within 
the Newfoundland Appalachians. Concluded that several tectonic elements were contemporaneously being generated, 
subducted or deformed and that deformation occurred continuously throughout the Late Cambrian to the end of the 
Palaeozoic. 

Goodwin and 0' Neil (1991) Suggested that the present structural state of the Exploits-Gander Lake Boundary resulted from two episodes of strike slip 
and oblique slip motion. 

Lafrance and Williams (1992) Determined that Silurian deformation resulted from the thrusting of the Dunnage Zone over the Gander Zone, which 
resulted in dextral ductile faulting. Also concluded that the closure of Iapetus was oblique with a dextral, horizontal 
component. 

Piasecki (1993) Conducted a study of the Dog Bay Line structure and associated elements along the Port Albert Peninsula. 

Williams (1993) Determined that a major structure discontinuity was present near Duder Lake termed the Dog Bay Line. The structure 
has a dextral sense of movement with a possible offset of tens of kilometres. 

Williams eta/. (1993) Examined the geology on either side of the Dog Bay Line, a Silurian terrane boundary, in an attempt to explore its 
significance. Recommended tectono-stratigraphic subdivision of a previously defmed Botwood Belt (H. Williams, 1993) 
into the Botwood Belt for those rocks to the west of the Dog Bay Line and the Indian Islands Belt for the thin grouping of 
rocks to the southeast. Proposed redefmition of the Botwood Group in that the Late Ordovician marine greywacke-
conglomerate sequence formerly included in the Botwood Grouping was redefmed as the Badger Group following 
recommendations of previous workers. Therefore, the recognition of the Dog Bay Line led to a revision of nomenclature 
in the Exploits subzone and a revision of the tectonstratigraphic belts. Proposed the Dog Bay Line as a possible suture 
point for the closing Iapetus Ocean. 

REGIONAL GEOLOGY/ STRATIGRAPHIC STUDIES 
Murray and Howley (1881) Noted sandstone and conglomerate at both Peterview and Norris Arm and fossiliferous conglomerates at Martin Eddy 

Point. Highly folded sandstone and slate were observed along the Exploits River to Bishop Falls. Correlated fossils at 
Eddy's Point to fossils at Goldson's Sound. These fossils were assigned a Llandovrian age by Billings of the GSC. 

Twenhofel and Shrock (1937) First detailed regional study of the Silurian strata ofNotre Dame Bay and the Exploits River Valley. The authors divided 
the geology into three lithological divisions, the Botwood Formation, the Goldson Formation and the Pike Arm 
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Formation and assigned them to the Notre Dame Series. They generally I) mapped the extent of the Silurian strata and 
the structural overprinting present within units, 2) noted that dykes and sills were contemporaneous with a Silurian 
deformation event 3) defmed stratigraphy, and 4) correlated fauna to eastern North American and European fauna. 

Twenhofel (1947) Proposed that the conglomerates at Martin Eddy Point are Devonian based on fossil evidence in clasts derived from 
Silurian strata. 

Baird eta/. (1951) Briefly mentioned and described extensive gabbroic and granitic rocks that intruded sedimentary rocks in the eastern 
Dunnage Zone for the Photographic Survey Corporation. 

Grady (1952, 1953) Mapped and described the Great Bend Area for the GSC. Documented ultramafic and gabbroic rocks and defmed their 
relationship to the surrounding sedimentary rocks. Contacts were interpreted to be faulted but originally intrusive. The 
sedimentary rocks were correlated with Ordovician rocks exposed in the Hamilton Sound of Notre Dame Bay and the 
intrusive rocks were linked to the Taconic orogeny. Identified magnesite within the ultramafic rocks as a possible 
exploration target and informally named many of the ponds in the area (i.e.: Breccia Pond and Lizard Pond). 

Patrick (1956) Mapped the Comfort Cove-Newstead area and assigned rocks near Duder Lake to the Silurian-Devonian Springdale 
Group. Excluded shaley and calcareous rocks that were subsequently assigned to the Indian Islands Group from the 
Botwood Group. 

Baird (1958) Conducted a geological study on the rocks of the Fogo Island map area and proposed the name Indian Islands Group for 
Silurian rocks exposed on the Indian Islands. 

Jenness (1958) Mapped a narrow band of ultrabasic rocks north-northeast of Gander. Described the geology of these rocks and 
determined that they were not related to the gabbros or lavas within the Gander Lake Group. Determined a last 
Pleistocene ice movement of north to northeast. 

Williams (1962) Produced the frrst I :250, 000 scale map of the NTS/2E map area, west half. Introduced the term Botwood Group and 
included the Goldson Formation conglomerate ofTwenhofel and Shrock (1937) within it. Defmed the group as 
consisting of a basaltic volcanic component overlain by sedimentary strata. Fossils from the Exploits River shale that 
were included in the group indicated a mid Silurian age. 

Williams (1964b) Published a map of reconnaissance geological work in the Botwood Basin, which included a study of the geology of the 
Botwood map area, investigation of mineral occurrences, and completion of mapping started by Patrick (1956). 
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Kay (1967) Described the stratigraphy and structure of northeastern Newfoundland in an attempt to link the geology to the British 
Isles and southern New England as evidence for or against the theory of continental drift. Determined that if the 
stratigraphy and structure were once continuous, they have been offset by 500 miles via transcurrent faults in the North 
Atlantic. Decided that the similarity supports a case for either an original proximal relationship, or continuity beneath the 
ocean basin. 

Williams (1967b) Presented summary of results from reconnaissance mapping and previous work in central Newfoundland. Indicated that 
the current and previous studies suggest that the Silurian rocks of Llandovery and early Wenlock age are widely 
distributed. Concluded that the Silurian rocks record a transition from deep-water marine to shallow water marine and 
then to a terrestrial environment and that Silurian deposition was restricted to troughs marked by one or more volcanic 
events. 

Horne and Helwig (1969) Examined an Ordovician chaotic melange in northeastern Notre Dame Bay and suggested that the melange records early 
Ordovician tectonic movement in the Appalachian belt that may have resulted from the onset of the Taconic Orogeny and 
correlated them to movements in western Ireland. 

Kay (1969) Renamed the Goldson Formation the Goldson Group and removed it from the Botwood Group. 

Anderson and Williams (1970) Produced a regional!: 250, 000 scale geology map of the NTS/2D west half map area, Gander Lake. 

Kennedy and McGonigal Re-evaluated the previously defmed Gander Lake Group (Jenness, 1958) and determined that the group should be 
(1972a) subdivided into three units based on structural evidence. Proposed the name Davidsville Group for the lowermost unit. 

Bruckner (1972) In response to Kennedy and McGonigal's (1972) redefmition of the Gander Group, suggested the name Gander Group 
for one of the newly defined units is in violation of the code of stratigraphic nomenclature because it was already in use 
by Jenness (1958) in reference to a previously defmed unit. 

Jenness (1972) Questioned the use of structural evidence by Kennedy and McGonigal (1972) to redefme the Gander Lake Group 
(Jenness, 1958). Suggested that the field investigations to divide the group into three new units were lacking. 

Kennedy and McGonigal In response to Jenness' discussion, provided further evidence to support their previous points that were questioned. 
(1972b) Stood by the redefmition that the Gander Lake Group was actually composed of three distinct units. 
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Williams, H. (1972) Proposed a revision of the Botwood Group stratigraphy by introducing the Lawrenceton and Wigwam Formations. The 
new stratigraphy still included the Goldson Formation as a basal unit, overlain by the Lawrenceton and Wigwam units, 
respectively. The fossiliferous conglomerate from Eddys Point was included in the Wigwam Formation. Informally 
named the gabbro intrusion south of Norris Ann, the Mount Peyton Batholith. 

Kean (1974) Studied the geology of the Great Bend and Pipestone Pond ultramafic bodies. Suggested that the ultramafic and gabbroic 
rocks were mantle diapers intruding the adjacent sedimentary rocks. 

Strong eta/. (1974) Informally named the large gabbro-granite intrusion in the central region the Mount Peyton Batholith during a 
lithogeochemical survey of the northern portion of the intrusion. Geochemistry indicated that the pluton was bimodal 
with few intermediate silica values reported. 

Kean (1977) Produced a geological compilation of the Newfoundland central volcanic belt. 

Blackwood (1978) Reported on mapping during the 1978 field season in the northeastern Gander Zone. Mainly focused on unit 
relationships within the Gander Zone but also included a brief synopsis on observed Gander Group/ Davidsville relations 
in the Weir's Pond area. 

Pickerill et a/. (1978) Conducted overview of units and tectonic relationships in the Carmen ville map area (2E/8), which straddles both sides of 
a major tectonic boundary. Described the geology of the units present in the area and concluded that there is no evidence 
of subduction, which reinforces the symmetry of central Newfoundland as proposed by Williams (1964a). They also did 
not fmd evidence of a Precambrian orogeny or Cambro-Ordovican metamorphism, which contradicted the Ganderian 
Orogeny of Kennedy (1975). Nor did they fmd evidence for a major granitoid pluton emplacement prior to the 
Devonian, supporting the previous interpretations of Williams (1964a) and Jenness (1963). 

Blackwood (1979) Mapped the Gander River sheet (2E/2) as part of a larger Gander Rivers project that consisted of mapping along the 
Gander-Botwood Zone boundary. Defined five geological units in the area and a presented a brief overview of 
mineralization (mainly in the Gander River Ultrabasic Belt). 

Strong (1979) Tried to explain the absence of an andesitic composition in the bimodal Mount Peyton Intrusive Suite using whole rock 
chemistry as it exhibited all other characteristics of a calc alkaline suite. Surface exposures of the bimodal suite exhibit 
very little per -alum in us intermediate composition, however geochemical classification of the suite produces calc alkaline 
variation patterns for both major and trace elements. Concluded that the results supported the view that the compositions 
appear unrelated by fractionation processes and that the gabbro was derived from the upper mantle, whereas the other 
compositions were derived by crustal anetexis 
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Bazinet (1980) 

Currie eta/. (1980) 

Blackwood (1980) 

Blackwood (1981) 

Blackwood (1982) 

Colman-Sadd (1982) 

Strong and Dupuy (1982) 

Colman-Sadd and Swinden 
(1982, 1984) 

MSc. thesis project involving the mapping of the Gander Group, GRUB and Davidsville Group and the assessment of the 
relationships therein in the Jonathon's Pond-Weir's Pond area. Concluded that both the Gander and Davidsville Groups 
display different structural and metamorphic histories and that they were not conformable. Related the deformation in 
the Gander Group to the emplacement of the GRUB. 

Suggested that some units of the Davidsville-Gander Groups are diachronous and that the Silurian Indian Islands Group 
is unconformable upon the Davidsville Group. Based on these conclusions and on observations that the Indian Islands 
Group is equivalent to the Botwood Group and that the Davidsville Group is correlated to the Exploits Group, the authors 
concluded that the northeastern portion of the Dunnage is broadly synclinal. 

Reported on the geology of the Gander (west) area (2D/15) and southeast Mount Peyton map area (2D/14) as part of the 
larger Gander Rivers project initiated in 1979. Mapped the area on a 1: 50,000 scale. 

Reported on the geology of the Great Bend-Paul's Pond area geology and produced a 1: 50, 000 scale map of the area as 
part of the NDME Gander Rivers project. 

Mapped the Gander Lake (2D/ 15) and Gander River (2E/2) areas at a 1: 50, 000 scale for the NDME. Interpreted the 
Lower Ordovician, or younger, Gander Group as a shelf facies and the Middle Ordovician Davidsville Group as a 
turbidite sequence deposited on ophiolite basement. Reported an unconformity between the GRUB and a conglomerate 
unit of the Davidsville Group. The author also noted regional deformation and mineralization and informally renamed 
the Mount Peyton Batholith (Williams, 1972), the Mount Peyton Intrusive Suite. Reported the Davidsville and Botwood 
Groups as conformable to faulted or conformable with fault modification based on observations made during regional 
mappmg. 

Reconnaissance mapping at a I :50, 000 scale of the Rolling Pond-Swan Lake areas. 

Rare earth and trace element geochemical analysis of samples from the contrasting mafic and silicic portions of the 
Mount Peyton Intrusive Suite. Concluded that the rock types are not genetically related by crystal liquid fractionation. 
This supported earlier theories that the granite was derived by partial melting during the intrusion of a mantle-derived 
magma and that both compositions evolved independently. Study of mineral phases suggested intermediate compositions 
may have been somewhat evolved from partial melting but not in the absence of non-magmatic contamination. 

Reconnaissance mapping in Great Bend Area. Determined that the Great Bend Complex was ophiolitic and part of the 
a\lochtanous Coy Pond Complex. 
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Zwicker and Strong (1986) Mapped the ultramafic and gabbroic rocks of the Great Bend Complex and adjacent rocks at a I: 50, 000 scale for the 
GSC. Reported several mineralized areas of economic interest including the Chiouk Brook Au occurrence. 

Coyle and Strong (1987) Demonstrated three overlapping centers or calderas in west central Newfoundland and attributed their elongate 
distribution to northeast trending faults in basement rocks. Suggested a large caldera collapse model for the Springdale 
Group is consistent with the trapped heat and magma rising from the upper mantle at a weakened suture zone for a 
closing Iapetus ocean. 

Colman-Sadd (1989) Described the updated geology of the Miquel's Lake Area and included more precise dates for the Stoney Lake Volcanics 
and Spruce Brook Formation. Also documented new exposures of contact between the Botwood Group and Mount 
Peyton Group and Spruce Brook Formation, respectively. 

0' Neill and Blackwood (1989) Re-evaluation of the geology within the Weir's Pond map area, which contains rocks from the Gander and Davidsville 
Groups. Proposed a revised stratigraphic nomenclature for the Gander and Davidsville groups and the GRUB. Proposed 
a three-fold subdivision of the Davidsville Group and a two-fold subdivision of the Gander Group. 

Dickson (1991) Completed mapping as part of a project initiated by NDME to produce a more detailed mapping in the Great Bend-Paul's 
Pond area (NTS 2Dill west halO at a I :50, 000 scale to complement the work of Blackwood (1981) who mapped the 
NTS 20/11 (east halO. 

0' Neill (1991) Formally proposed a nomenclature change of the GRUB to the Gander River Complex. The change was suggested 
because although the GRUB is composed mostly of mafic and ultramafic rocks, felsic rocks form a significant portion. 

Williams (1991) Redefmed the Point Lemington Formation of the Exploits Subzone. Correlated graptolite assemblages and stratigraphical 
succession of the unit to coeval rocks in southern Scotland, suggesting a relation between the areas in the late Ordovician. 

Currie ( 1992) Examination of the Gander-Dunnage Zones and relationships in the Carmenville map area. 

Dickson (1992b) Geological overview of ophiolites, sedimentary rocks, post-tectonic intrusions and mineralization in the Eastern Pond 
(NTS 2D/11, west halO map area. Determined that the composite Mount Peyton Intrusive Suite has intruded the 
Botwood Group and the Spruce Brook Formation based on metamorphic aureoles and that these units were deformed 
prior to the intrusion. 

Boyce eta/. (1993) Identified fauna at Careless Brook and assigned a Late Silurian-Earliest Devonian age and suggested that this indicated 
Palaeozoic marine sedimentation continued later than previously suspected. 
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Currie (1993) A description of the Ordovician-Silurian stratigraphy between Gander Bay and Birchy Bay. Described stratigraphy to the 
east and west of the Dog Bay Line and stated that there was no known stratigraphic link across the Dog Bay Fault. 
Described movement along the Dog Bay Fault and the Reach Fault to the west and separated major units such as the 
Botwood Group into several formations based on lithological contrasts. 

Eckstrand and Cogulu ( 1993) Assessed a number of mafic intrusions in several terranes within Newfoundland for nickel and platinum potential. 
Assayed the Caribou Hill Intrusion for Pt potential and reported discoveries of several more ultramafic pipe-like bodies 
to the north and south and concluded that this increased the exploration viability of the area. 

Dickson ( 1993) Description of geology for the Mount Peyton Map area (NTS 2D/14). Noted mineralization and potential for dimension 
zone. 

Dickson (1993) Second of three projects aimed at mapping and obtaining geochemical samples from the three NTS map sheets, 2D/Il, 
2D 14, and 2E/3 as well as areas containing segments of the Mount Peyton Intrusive Suite. 

0' Brien (1993) Described major thrusts in the Botwood map area NTS 2E/3. Indicated that the early Silurian Botwood Group is thrust 
against late Ordovician to early Silurian strata. Described major polyphase folding in the Botwood Group and older 
units. Informally renamed the Goldson Group, the Lewisporte Conglomerate. Also removed the grey sandstones from 
the Botwood Group and reassigned them to their own unit and informally called it the Campbellton Greywacke. This 
reassignment of units left the Botwood Group with no known fossil localities. 

Williams (1993) Reassigned fossiliferous strata from the Botwood Group near Glenwood to the Indian Islands Group. 

Boyce and Ash (1994) Assessment of additional fossils from Careless Brook and reexamination of previously recorded fossil localities. Fauna 
from Careless Brook indicate a Late Silurian upper age limit for the group at that locality and a possible correlation is 
made to the Wigwam Formation near Lewisporte where fauna indicate a late Silurian to Early Devonian age for the 
Botwood Group. 

Currie (1994) Discussed geology of the Comfort Cove and Gander map sheets and subdivided the map area into five regions. 
Concluded that a simplified stratigraphic column cannot be applied to this area and suggested that the model proposed by 
Colman-Sadd eta/. (1992) of early Ordovician southeast directed thrusts and ophiolite obduction might accommodate the 
geology. 

Dickson ( 1994) Description of the geology ofthe southern part of the Botwood map area (NTS 2E/3). Observed significant 
mineralization along Jumpers Brook. 
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Currie (1995a) Re-examination of the Gander River Complex, Hamilton Sound Group, Davidsville Group, Indian Islands Group, Duder 
Complex and Ten Mile Lake Formation of the Gander River map sheet (2E/2) based on new exposures from forest access 
roads. Concluded that the GRC is extensively imbricated with sedimentary cover from the Davidsville Group and Weir's 
Pond Formation. Also postulated that the Duder Complex may form basement to the region between the Reach Fault and 
the Dog Bay Line and may be an accretionary prism of early Silurian atfmity. 

Currie (1995b) Provided an overview of his geological and tectonic interpretation for the development of the northeastern end of the 
Dunnage Zone. Introduced the Duder Belt between the Botwood and Indian Islands Belts. 

Dickson (1996) Geochemical compilation for Mount Peyton Complex and associated surrounding intrusives. 

Dickson (2000) Compilation of a 1, 50,000 scale geology map of the Botwood map area (NTS 2E/3) central Newfoundland. 

Hynes (200 1) Described the aureole of the Mount Peyton Intrusive Suite as part of a BSc. thesis project. Proposed that the intrusion is 
a sheet like body or laccolith based on field relationships and that the body has a maximum thickness of 1-2 km with 
multiple sheet-like sub horizontal intrusions dipping gently to theSE. 

Hynes and Rivers (2002) Studied the metamorphic aureole of the Mount Peyton Intrusive Suite in order to determine the conditions for its 
development. Based on field relationships along Rattling Brook, authors conclude that the suite was emplaced as a 
laccolith or sheet like body, 1-2 km thick rather than a batholith as was previously reported. Report a granulite facies in 
a thermal aureole and indicate that this may the first reported for Paleozoic rocks of the Newfoundland Appalachians. 

Hoffe (2003) Described the relationship between intrusive phases in the Mount Peyton Complex at Neyles Brook Quarry, location of 
the Slip Au occurrence, as part of a BSc. thesis project. 

METALLOGENY STUDIES 
Snelgrove (1934) Assessed seven known chromite occurrences in serpentinized belts of Newfoundland, including the region he termed the 

eastern belt, which occurs in the Botwood Basin. The project was initiated to provide a basic geological framework as 
well as to promote prospecting in an attempt to exploit the economic potential of Cr within the province. 

Snelgrove and Howse (1934) Conducted a study on known Au occurrences on the island of Newfoundland and reported assays. The project was 
initiated due to increasing market prices for the metal. 

Snelgrove (1935) Conducted additional work on the study of Au-only occurrences in Newfoundland. This project was aimed at delineating 
possible exploration targets, assessing known occurrences as well as the viability of producing known resources. 
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Patrick (1953, 1956) Discovered a large quartz vein near Charles Cove while working for the GSC and conducted a reconnaissance survey of 
the vein and surrounding area. Reported one showing of visible scheelite and two showings of fluorescent mineralization. 

Copper (1953) Examined the tungsten occurrence discovered by Patrick (1953). Observed one large vein and several smaller veins as 
well as tungsten mineralization at three localities. 

Dean (1977, 1978) Studied the stratigraphy and mineralization of Notre Dame Bay and produced a l: 63, 360 scale map of the NTS 2E/3 
map area and slightly modified William's (1972) interpretations. He removed the Goldson Formation from the Botwood 
Group. The report was complied for the NOME on the geology and metallogeny of Notre Dame Bay as part of a MSc. 
thesis project. 

Swinden and Thorpe (1984) Determined that pre· Caradocian island arc sequences of the Newfoundland central mineral belt display progressive 
changes in styles of volcanism and in the nature of the associated VMS deposits. The variations reflect an increasing 
continental crust influence towards southern sequences. Island arc sequences in the northern and central belt were built 
upon oceanic crust, whereas those to the south have more of a continental crustal influence. Temporal and spacial details 
of middle Ordovician island arcs were not clear and the authors couldn't determine if the volcanic sequences were coeval 
or diachronous. Lead isotope isotopes suggest that the two sequences (northern and southern are distinct in terms of age 
and tectonic setting. 

Tallman (1991 b) Summarized work to date on the geology, structure and antimony mineralization at the Hunan Property. Drilling 
indicated potential for economic mineralization at dept and potential for open pit reserves. Stream sediment and soil 
surveys were useful in delineating new targets, however, geophysical surveys were unsuccessful. 

Evans (1991) First systematic classification of Au mineralization in rocks of the eastern Dunnage zone. Identified the Botwood and 
Davidsville Groups as significant exploration targets for Au mineralization and presented preliminary results which 
indicated that two broad styles of mineralization are present; a mesothermal shear zone and epithermal style. Related the 
occurrences to a complex network of northeast, north-northeast and northwest trending structures and indicated these 
'linears' as possible fluid conduits. 

Wilton and Evans (1991) Compared geology and geochemistry of two gabbro-hosted mesothermal Au showing from opposite margins of the 
Dunnage zone, the Stog'er Tight (west) and Clutha (east). Determined the mineralization style is similar and formed 
during late kinematic events but as expected from different tectonic and geological environments, the chemistries of the 
gabbros are distinct. 

Churchill and Evans (1992) Overview of the geology and Au mineralization at Duder Lake. Concluded that the mineralization is correlative to other 
gabbro hosted gold showings in the eastern Dunnage zone and that the alteration and mineralization is controlled by 
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structural parameters. Produced preliminary geology maps of the area. 

Evans (1992) Determined that the epigenetic gold mineralization in the eastern Dunnage Zone is structurally controlled and spatially 
associated with large-scale regional structures. Identified two broad mineralized belts and indicated that both may have 
had differing fluid source areas. The occurrences are related to a Late Silurian-Early Devonian mineralizing event during 
the Silurian Orogenesis. Identified the Gander Zone metamorphosed rocks as source rocks for mineralizing fluids. 
Further work presented on the Au metallogeny of the Dunnage zone. 

Churchill eta/. (1993) Proposed a model for Au mineralization at the Duder Lake property based on geochemical, geological and structural 
relationships. Suggested that the mineralizing fluids were derived from metamorphic de-volitization of a deep crustal 
source and inferred the source to be the Gander Zone Basement rocks. Assessed alteration and geochemistry associated 
with mineralized zones. 

Evans (1993) Continued gold metallogeny project (cf Evans 1991, 1992), which examined central Newfoundland au prospects. 
Presented an overview of the Au occurrences studied in the 1992 field season. Discussed the structurally controlled 
quartz veins of which he delineated four distinct types: I) arsenopyrite rich, 2) pyrite rich, 3) antimony rich, and 4) base 
metal rich. Identified a zone of pervasive silicification, brecciation and quartz stockwork along the TCH near Gander, 
which provided evidence for an epithermal system in the area. 

Tallman and Evans (1994) Studied the stibnite mineralization at the Hunan Line Prospects. Concluded that structural evidence indicates that 
northeast-trending fault breccias (sub-parallel to bedding) are related to the loci of mineralization. Later faults disrupted 
the geology and geochemistry of the mineralized system. Indicated that a leuxocene-altered gabbro at depth may indicate 
exploration potential for Au although it was not observed with the stibnite at the surface. 

Churchill ( 1994) Conducted a study of epigenetic gold mineralization in Duder Lake area for an MSc. thesis project. Concluded that the 
fluids responsible for auriferous mineralization were derived from metamorphic de-volatization reactions during a 
Silurian orogenic event and were subsequentially concentrated in late structures transecting the crust. Au precipitated 
simultaneously with As and Sand was incorporated into arsenopyrite (invisible Au). Concluded that the processes 
related to Au mineralization were possibly related to a regional event. 

Evans and Wilson (1994) Presented preliminary stable isotope results on epigenetic gold occurrences in the eastern Dunnage zone. Results indicate 
that there is variability in oxygen, carbon and sulfur isotopic compositions of quartz, carbonate and sulfur minerals form 
the gold occurrences and that such variability is atypical of Archean, Proterozoic or Mesozoic gold deposits. 
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Williams and Tallman (1995) Identified Late Arenig graptolites near the NW Gander River. Determined that fossiliferous units are associated with the 
antimony mineralization, which may be significant in delineating age of mineralization. The host greywacke was 
correlated to a fossiliferous greywacke that overlies the ophiolites of the Coy Pond Complex to the south, which indicate 
that turbiditic deposition was widespread during the Early Ordovician, possibly related to a major tectonic event. 

Evans (1996) Overall report on a series of papers presented on the Au mineralization in central Newfoundland as part of the NOME 
initiative to document the nature and setting of gold mineralization, initiated in 1989. Included documentation of 
epigenetic Au occurrences, a gold classification scheme, the geological setting of Au mineralization and selected S· 
isotopic analysis at some localities. Also included detailed deposit level studies of the Duder Lake Occurrences, 
(Churchill, 1994) and the Hunan Line antimony deposits (Tallman, 1995) and reconnaissance mapping of the NTS 2E/2 
west half, map area (Evans eta/., 1992). 

Wilton (1997) Preliminary evaluation of the Tim's Harbor (Charles Cove) prospect for Copper Hill Resources Inc. Upon review of 
previous work, concluded that the vein at Tim's Harbor showing is an auriferous polymetallic vein system with an 
unknown aerial extent that should be further explored, not only in terms of its polymetallic nature but also in terms of 
high grade silica. 

Dalton (1998) Conducted a study on the mineralization and alteration at the Moosehead Property as part of a BSc. (honors) thesis 
project. Concluded that the mineralization was ofLS epithermal type and that Sand Pb isotopic determinations indicate 
that the mineralization shares genetic relationships with other gold occurrence in the eastern Dunnage zone. 

Turmel (2000) Studied the Rolling Pond epithermal gold prospect for a BSc. honors thesis project. Studied the petrography and 
alteration associated with mineralization even though rock microprobe analysis indicated a complicated alteration system. 
Concluded that the low precious and pathfinder elements are indicative that the system is at shallow depth and that the 
argillic alteration and open space textures all agree with this. Concluded that the property has excellent potential to 
contain ore grades at depth. 

Barrett (200 I) Studied the structure of the Moose head property for a BSc. Honors thesis project. Determined that macroscopic regional 
scale folds dominate the structure and contain smaller scale parasitic folds. Concluded that the property appears to lie 
within the southeast dipping limb of a south-southwest plunging regional scale anticline. 

Mitchell (200 I) Compared two mesothermal Au prospects, the Romeo and Juliet Prospect, Baie Verte Peninsula and the Appleton Linear 
prospect, Appleton for a BSc. thesis project. Concluded that despite being hosted in differing lithologies in different 
tectnostratigraphic zones, the prospects display similar hydrothermal alteration zones. X-ray fluorescence, gold assays 
S-Isotope and fluid inclusion studies also delineated similarities. Noted that a significant difference was that arsenic was 
absent from the Romeo and Juliet prospect whereas the Linear prospect gold was associated with arsenopyrite. 
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Greenslade (2002) Geochemical and petrographical examination fthe Tim's Cove Vein System for a BSc. (honors) thesis project. 
Concluded that the vein system exhibits some characteristic of both meso thermal and granophile systems. 

Lake (2004) Documented and characterized barite veins at the Barite Showing near Glenwood via fieldwork, petrography, fluid 
inclusion work, geochemistry and isotope data. Identified three possible stages of deposition. Pb isotope work indicated 
that the showing shares a common Pb source with the surrounding Au prospects and 0 and S isotope data indicated that 
the barite from the showing is distinct from barite at Carlin type deposits from Nevada. Concluded that the data are more 
applicable to a Creede deposit model than a Carlin model. 

GEOPHYSICAL STUDIES 
Miller (1970) Conducted a gravity survey of eastern Notre Dame Bay as part of a MSc. Thesis project. 

Currie eta! (1979) Presented geophysical evidence for an east dipping Appalachian subduction. 

Lapointe (1979) First paleomagnetic study in the Paleozoic central belt. The author collected samples from the Botwood Group and the 
granite and diorite phases of the Mount Peyton batholith. Recognized two directions in the Mount Peyton in association 
with the two phases; one pole direction at 68° east, 15° south indicates an age of 420 Ma for the diorite and a second 
direction at 125° east, 63° south indicates an age of380Ma for the granite. Two poles observed within the Botwood 
Group indicated that the Lawrenceton formation was probably of lower Silurian age whereas the overlying Wigwam 
Group was magnetized dur~g a reversal event. 

Reynolds eta/. (1981) Used biotite and hornblende from the latest gabbroic intrusive phase of the Mount Peyton batholith to obtain a 40Ar/39Ar 
age of 420 +/-8 Ma for the gabbro. Compared this to a previously obtained Rb/Sr age of390 +/-15 Ma for the granite 
and concluded that the 400 Ma paleopole for Newfoundland may be different than other North American poles based on 
these new geochronological data on previously published paleomagnetic data. 

Haworth and Miller (1982) Compiled gravity and magnetic geophysical data on Notre Dame Bay to determine the structure of basement rocks. 

Karl strom (1983) Re-examined gravity data for central Newfoundland and suggested that most of the Dunnage Zone is allochthonous and 
is representative of oceanic crust. 

Keen et a/. (1986) Offshore deep seismic profiling across the Newfoundland Appalachians. Yielded information on terrane boundaries and 
the crustal basement to the different tectonostratigraphic zones. 
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Hallet a/. (1988) Presented results of 6000 km of seismic profiling with gravity and aeromagnetic maps across the Appalachian Oregon in 
eastern Canada. Indicated that the central mobile belt has thinner crust than the adjacent zones. Traced a lower crustal 
fabric across the orogen and attributed it to a Silurian orogenis. Suggested that the fabric is indicative of crustal 
thickening, erosion and subsequent isostatic readjustment. 

Quinlan (1988) Reported on geophysical work for the Lithoprobe East Program. Divided lower crust into three blocks across the island, 
the Grenville block in the west, a central block and the Avalon block to the east. Ascertained that the Dunnage zone is 
indeed allochtanous on the Grenville and central blocks 

Williams eta/. (1988) Discussed the reasons for the proposed lithoprobe transect of central Newfoundland, Meelpaeg transect. 

Todd and Ready (1989) Conducted aeromagnetic total field, gradiometer and VLF-EM survey over part of the Dunnage Zone and produced maps 
of results. Aeromagnetics clearly outlined intrusive features, a series of folded sills and a thrust sheet. 

Thakwalakwa (1990) Conducted a geophysical, geological and geochemical study of the Mount Peyton Complex for a BSc. thesis project to try 
and redefme the lithological boundaries of the surface and subsurface. Two phases of deformation were identified. 
Remnant magnetism indicated that deformation and block faulting are associated with granite emplacement. Suggested 
that redefined boundaries indicated that granite comprised only 5% of the complex as opposed to 30% as mapped and 
that the batholith collapsed in the centre and the faulting is indicative of a tensional regime. 

Miller and Thakwalakwa Determined that the Mount Peyton batholith consists of a thin granitic phase and a thick gabbro phase based on 
(1992) geochemical, geochemical and geological analysis. Conducted the study to better understand the configuration of the 

intrusion at depth and to better defme the extent of the phases and boundary relationships. Determined from 
aeromagnetic data that the batholith has undergone at least one phase of faulting. Proposed a model comprised of a 
number of inward dipping blocks that extend downward for 5 km. 

Quinlan eta/. (1992) Reported onshore refraction seismic data collected from the onshore vibrosesis profiles across the island as part of the 
Canadian Lithoprobe program. Used the data to discuss the Appalachian evolution and crustal scale deformations 
relative to the onshore Lithoprobe reflection transect results for Newfoundland. Results indicated that reflectors cut the 
Moho below surface and the upper crust exhibits ramp-flat style of deformation. The mid-lower crust is free of regional 
flats indicating a small homogeneous strain. Traced two crustal blocks, interpreted to represent the Laurentian and 
Gondwanon plates, that were juxtaposed during the closure oflapetus. Proposed that the Gondwanon plate is underthrust 
westward beneath the Laurentian plate by as much as 200 km. 

Al-17 



Table Al.l: cont ... 

Hallet al. (1998) Presented a summary of results on 6000 km of crustal seismic profiling for the Appalachian Orogen of eastern Canada 
conducted between 1984 and 1992 as part of the Lihoprobe East program. Results indicated that the central mobile belt 
has thinner crust than the adjacent zones and underplating was found beneath the Laurentian continental margin. 

MISCELLANEOUS STUDIES 
MacNeil and Cooper (1953) Reported on the occurrence of tungsten minerals near Gander Bay for Newfoundland and Labrador Corporation Limited. 

Confirmed the presence of one or more long narrow quartz veins containing tungsten mineralization. Mineralization 
appeared to have limited horizontal extent and it was therefore concluded that this was unfavorable evidence for the 
presence of ore bodies. 

0' Toole (1967) Reported on the Gander Bay Tungsten Prospect for Newfoundland and Labrador Corp. Ltd .. Concluded that the 
granodiorite appears to be younger than adjacent intrusives and that insufficient exploration was conducted thus far. 
Recommended that economic potential is favorable and suggested further work be conducted on the area. 

O'Toole (1970) Preliminary report on detailed night mapping, drilling, grab sample assaying and fteld mapping of tungsten 
mineralization, Charles Cove. Seven areas of fluorescence were discovered, but only two were of interest. Drilling and 
assays concluded that the scheelite mineralization is confmed to the vein footwall and the zone is less than I foot wide. 
Therefore, the scheelite is restricted to a narrow and discontinuous zone at the contact between the granodiorite and the 
footwall of the large quartz vein. Based on these results drilling was terminated. 

Strong et al. (1974) Obtained rock samples from 33 granitoid plutons across Newfoundland ranging in age from Precambrian to Devonian 
and assessed their geochemistry. Concluded that the Mount Peyton Intrusive Suite ranges in composition form syenite to 
granite and diorite. Observed that the pluton intruded the Botwood Group, and thus, was probably Devonian. 

Malpas and Strong (1975) Examined chromite occurrences in intrusive mantle diapars of the Gander River Belt and in ophiolites of the Bay of 
Islands Complex of western Newfoundland. The intrusive mantle diapers of the Gander Belt contain disseminated to 
podiform to banded chrome spinels occurring in a dunite fraction. In relation to the Bay of Islands chromite spinels they 
are relatively high in Cr:AI ratios. 

Strong (1979); Strong and Regional geochemical survey of the Mount Peyton Intrusive Suite. Chemistry indicated a clear separation in Si02 values, 
Dupuy (1982) which indicated a bimodal composition. Postulated that the gabbro from the MPIS is mantle derived whereas the granite 

composition is a result of partial melting of the continental crust from the heat generated by the intruding gabbro. 
Concluded that both phases derived independently in processes involving crystal fractionation and contamination with 
country rocks during ascent. 

Gagnon (1981) Assessment report on geological, geochemical and geophysical reconnaissance exploration in the Jonathan's Pond area. 
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Butler and Davenport (1981) Regional lake sediment geochemical survey in northeastern Newfoundland, map area 2D. 

MacKenzie (1985) Assessment report on the Jonathon's Pond claim area compiled for Noranda. Exploration initiated after a soil survey 
over the GRUB produced anomalous values resulting in 461 claims. The mafic rocks were found to have high level 
background gold and the NOME found 1 gold showing in the SW grid. Several conductors and magnetic anomalies, as 
well as copper and arsenic geochemical anomalies, form linear trends in the southern grid. Concluded that the Au 
mineralization appeared related to the zones of silicification associated with quartz veining. Recommended follow up 
work such as trenching and placing conductors near fault or shear zones that could have been conduits for quartz veins. 

Burton (1987) First year assessment report on geological, geophysical and diamond drilling at the Chiouk Brook Au showing compiled 
for U.S. Borax. Major regional faults were interpreted, through the drill program, to run parallel to Chiouk Brook. Two 
other general fault directions were determined. The discovery outcrop was described as altered sediment with up to 5 % 
disseminated (0.5·1mm) arsenopyrite crystals in a massive, very fme-grained matrix. Mineralized boulders were 
discovered along the brook consisted of a similar silicified rock and contained 5-20% arsenopyrite. Bedrock was not 
untrenched due to a boulder till, however, several mineralized boulders were uncovered. Drilling wasn't successful due 
to broken sediments and over pressured faults. 

Snow (1987) Assessment report on grassroots exploration in the Jonathon's Pond area. Determined that there are two distinct groups 
of pyroxenites in the area. The sharp contact with surrounding gabbros and distinct chill margins indicate that the gabbro 
intruded the pyroxenite. The pyroxenites are thus thought to represent the oldest rocks in the GRUB Line. The 
serpentinites occur as a narrow outcrop in the NE and the gabbros appear to have two distinct modes of emplacement. 
The most significant structure is a NE trending, W dipping thrust contact between the Gander Group and the GRUB 
rocks, the Jonathon's Pond Fault, which was observed in drill hole as 20m wide, weakly pyritic, serpentinitic gouge zone. 

Davenport and Nolan (1988) Conducted a regional lake sediment survey for the NOME, which defmed anomalous Au, Sb, and As concentrations in 
several regions in the eastern Dunnage zone. 

Gower and Tallman (1988) Second year assessment report on geological mapping, prospecting, trenching, soil geochemistry and diamond drilling at 
the Gander Outflow. Trenching of soil and VLF anomalies resulted in the discoveries of three zones of Au-Sb 
mineralization in silicified sedimentary rocks. Several mineralized zones were identified with the most important being 
the Mustang and Piper Zones. 
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Gower and Tallman (1988) Second and third year assessment reports on the Glenwood-White Bay Project for Noranda involving evaluation of the 
Bullet Showing. Channel samples returned Au values of 11.9 glt over 0.5 m, 43.2 glt over 0.8 m and 91.6 glt over 1.1 m. 
The mineralized zone consisted of two or more quartz veins (2-1 0 em wide) in friable sheared shale that is altered to 
hematite and siderite. Observed visible Au along vein margins and haloes of disseminated pyrite-arsenopyrite veinlets 
and disseminations extending up to I m from the veins. 

Mercer (1988b) Assessment report on diamond drilling at Chiouk Brook and Lizard Pond compiled for Atlantic Goldfields Ltd. and Jacan 
Resources through the consulting firm A. C.A. Howe International Ltd. There were no ore grade intersections on either 
property and further work was not recommended at Chiouk Brook. Further work was recommended at the Lizard Pond 
showing because of a reported favourable geological environment for auriferous mineralization. 

Mercer (1988a) Second year assessment report on geological, geophysical and geochemical exploration surveys in the Great Bend Area 
(west side of the Gander River) compiled for Atlantic Goldfields Inc. and Jacan Resources through the consulting firm of 
A.C.A International Ltd. Concluded that several areas have potential to host precious metal mineralization. Noted 
widespread Au occurrences and spatial association with carbonate alteration zones. 

Snow (1988) Assessment report on mapping, trenching and drilling and overview of previous work history in the Jonathon's Pond area 
during 1987. Concluded that the lack of surface exposure and thick overburden was problematic to exploration. Could 
not correlate main gold showing with Au in till to the east. Delineated the Jonathon's Pond fault as a viable exploration 
target in relation to the known applicable deposit model and recommended follow-up work. 

Tallman (1988) First year assessment report on grass roots exploration in the Noront-Paul's Pond area. Significant discoveries included 
epithermal style Au mineralization at the Aztec Showing and sericitic lode-Au type at Goose Showing as well as 
numerous other showings. 

Bradley (1989) Assessment report on a geophysical survey conducted over the Miquel Lake and Murphy Option along Great Rattling 
Brook and along the south side of the Northwest Gander River. The survey was conducted by Aerodat Ltd. for BP 
Resources Canada Ltd. 

Butler (1989) Assessment report on geochemical surveys at the Third Pond property for Falconbridge Ltd. Reported several 
significant Au anomalies in till and recommended further work on the property to determine the extent of mineralization. 

Gower and Tallman ( 1989) Second year assessment report on trenching at the Outflow Prospect for Noranda. Trenching of the Piper and Mustang 
zones traced the strike length of mineralization for over 5 km. 

Al-20 



TableAU: cont ... 

Graham (1989) Assessment report on geological mapping, deep overburden sampling, trenching, geophysics and diamond drilling of the 
Great Bend-Murphy option for BP Canada Ltd. The point of the exploration was to determine source of anomalous gold 
mineralization in soil and rock and to explore new areas for Au occurrences. Discovered mineralization at Lizard Pond, 
Swan Lake and Breccia Pond. Test pits and trenches were excavated at the showings and exposed silicified and 
mineralized ultramafic rocks. Diamond drilling at Lizard Pond and Breccia Pond were unsuccessful in determining the 
strike and dip of the anomalous Au values. 

Green (1989) First year assessment report on diamond drilling, prospecting and geochemical and geophysical surveys at the Duder 
Lake gold showings. Anomalous Au values were returned in soil samples, and the magnetic and VLF geophysical 
surveys outlined a number of geological structures and possible target areas for follow up trenching. Proposed till and 
soil sampling and prospecting along N-NE tending linears. Soil, magnetic and VLF surveys outlined trenching targets as 
possible extensions of the Goldstash and Corvette showings. Diamond drilling was proposed to test the Goldstash, 
Stinger and Corvette Showings 

Simpson (1989) Assessment report on fieldwork, geological mapping, prospecting, trenching and diamond drilling in the Jonathon's Pond 
area for Noranda. Three glaciation periods were identified via a 23-hole overburden drill program. Discovered two 
distinct tills through mapping of the overburden and gold grain analysis. This allowed for the delineation of four target 
areas as possible source areas for gold in till which coincided with MAGNLF conductors. The magnetic survey may also 
outlined a large shear running through grid. Soil and geophysical surveys were also carried out and revealed additional 
target areas for follow up work in 1989. Concluded that the property held good potential for Au mineralization. 

Tallman (1989a) First year assessment report on licences owned by Noranda Exploration Limited in the Paul's Pond-Greenwood Pond 
area. Concluded that mineralization occurs over a broad area and that several styles appear to be present ranging from 
low grade, high tonnage to high grade, low tonnage lode styles. Recommended further work on properties. 

Tallman (1989b) First year assessment report on the Noront-Paul's Pond Property for Noranda. Concluded that the Au mineralization is 
hosted within Davidsville Group sediments at a Botwood-Davidsville Group fault contact in a large epithermal style 
alteration zone. Recommended further exploration at several areas including the Goose showing. Suggested winter 
geophysics over the Paul's Pond grid to identify the length of the Goose Showing mineralized structure. 

Williams eta/. (1989) Examined Newfoundland granitic rocks (which were separated into 9 categories; one being the Mount Peyton). 
Determined that each distinct category occurred within discrete stratigraphic zones or coincided with lower crustal 
blocks. Suggested that the mid Paleozoic Mount Peyton granite is a post-accretionary pluton that transgresses a zonal 
boundary and shows preferences for a certain zone or block. Concluded that the Mount Peyton plutons are confmed to the 
Exploits Subzone and central lower crustal block and post date Appalachian accretion because they cut zonal boundaries. 
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Gower and Tallman (1990) Second and third year assessment report on soil geochemistry, geophysical surveys, trenching and diamond drilling in the 
Glenwood· White Bay project for Noranda. Identified two narrow, high-grade Au zones. Suggested that the economic 
potential of the property was high and recommended further work. 

Graham (1990) Assessment report on prospecting, geochemical surveys, trenching and diamond drilling at the Great Bend Area-Murphy 
Option. 22 trenches and 22 test pits were excavated and Lizard Pond type mineralization was traced along strike 500 m 
east and 3 50 m southeast of the Lizard Pond Showing. Concluded that auriferous veins are narrow and too low grade to 
be economic. Au mineralization was postulated to be late, controlled by faults and fractures. The mineralized veins are 
associated with silicified zones associated with major thrust faults. The potential for mineralization at depth could not be 
determined due to faulted rock. Cambrian-Ordovician ophiolite rocks were found to be in non-conformable contact with 
overlying Silurian sediments. 

Pickett (1990) Assessment report on grassroots exploration work conducted on the Jumpers Brook Property in 1989. 

Tallman (1990a, b) First year assessment report on licenses owned by Noranda on the Noront-Mount Peyton property. Soil, geochemical 
surveys and magnetometer and VLF-EM surveys were conducted to test the extent of five showings (Hurricane, Corsair, 
Apache, Conache and Sabre) consisting of fracture controlled sericitic alteration with anomalous gold mineralization that 
were discovered during reconnaissance prospecting. Recommended extended IP survey to prioritize targets for diamond 
drilling and further prospecting on an extension of the grid. 

Tallman (1990c) Second year assessment report on the Beaver Brook antimony prospect. 

Tallman (1990d) Second year assessment report on diamond drilling, prospecting and mapping surveys on soil anomalies on the Duder 
Lake Grid in search of shear zone hosted lode gold deposits. Au mineralization was traced for 4 km along strike within a 
continuous shear zone. Mineralization was also recorded in secondary shear structures. Recommended drilling to 
evaluate the depth and extent of Goldstash showing and trenching along the mineralized zone to further delineate target 
areas. 

Collins (1991) Assessment report on trenching, geological mapping and geochemical surveys conducted in the Glenwood area in 1990. 
Trenching unveiled the Knob Prospect, a shear zone in greywacke with quartz veins hosting Au. Mineralization occurs 
in shale and greywacke, but is more abundant in greywacke and the highest values were returned form the quartz veins 
associated with shear zones. 

Graves (1991) First year assessment report on geochemistry, geophysics, geology and diamond drilling at Jumpers Brook for Noranda. 
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St. Croix and Taylor (1991) 

Tallman (199la) 

Fryer eta/. (1992) 

Klassen ( 1994) 

Scott (1994) 

Wilton ( 1997) 

Churchill eta/. (1998a) 

Churchill eta/. (1998b) 

Mapped glacial striae and defmed an early eastward flow that was successively followed by a northward flow, a north
eastward flow and finally an eastward flow. 

Second year assessment report on Noront-Mount Peyton property for Noranda. 

Conducted a temporal, isotopic study of Paleozoic plutonic suites across the Appalachians in Newfoundland, which 
subsequently helped to delineate and characterize major components of the Appalachians. 

Interpreted the glaciation history in central Newfoundland based on glacial striations. Concluded that striations and 
indicator erratics defme four separate ice flow events. 

A study of the surficial geology and drift exploration in the Comfort Cove-Newstead and Gander River map areas. 
Identified four ice flow events and concluded that the sediment dispersal is controlled by east-southeastward flow in the 
central region and by northeastward flow in the north. The source of Au in till was not identified. 

Preliminary evaluation on Tim's Cove Property for Copper Hill Resources. Upon a review of work history and an 
assessment of the property, determined that the vein system required further work and exhibited some features of a 
mesothermallode gold system. Concluded that the property was worthy of more detailed examination and that the quartz 
vein should be considered as a potential source for high-grade silica. 

First year assessment report on geological and geochemical exploration in the Greenwood Pond area for Forex Resources 
(a syndicate of Newfoundland geologists and prospectors who evaluated a large concession of claims in the Beaver 
Brook area for Au mineralization). The report provides a compilation of all information on the Beaver Brook area in an 
attempt to better characterize the mineral potential of the area. The authors visited the site and re-evaluated past work and 
surveys. A grab sample collected in 1997 returned an encouraging assay value of I 0.12 glt Au. Recommended soil 
surveys in areas of in situ mineralization and mineralized float and lP surveys and additional mapping in the areas of 
contact between Silurian-Ordovician lithologies, especially near the Ricce, Shippin and Hornet showings. 

First year assessment report on compilation, prospecting and geochemical exploration in the Greenwood Pond area for 
Forex Resources. Concluded that several numerous gabbro dykes and sills and several granitoid plugs intrude 
Davidsville Group and Botwood Groups and that the spatial and temporal relationships suggest that they are genetically 
related to the MPIS. This implies that the MPIS could have acted as a heat source for epithermal systems in the Paul's 
Pond area. Suggested that the quality ofNoranda stream and sediment survey was poor and recommended that it be 
redone properly. 

Al-23 



Table Al.l: cont ... 

Churchill et al. (1998c) First year assessment report on compilation, prospecting and geochemical exploration for the Aztec property. Evaluated 
re-processed regional aeromagnetic data that suggested that the reverse fault mapped in the Aztec zone might be part of a 
larger, regional structure that was controlled, or caused by, the placement of the MPIS. Assay values of 1.05 and 1.65 glt 
Au were retuned for the Aztec and A-zone extension, respectively. The authors recommended additional mapping, 
especially along the inferred faulted contact between Ordovician-Silurian rocks. They also suggested another IP survey 
be carried out over the NE trending anomalies, re-logging of drill core accompanied with petrographical and geochemical 
analysis and if further anomalies were identified, diamond drilling. 

Wilton and Taylor (1999) Second year mineral assessment report for Copper Hill Resources Ltd. on the Tim's Cove Property. A 1.5 km long 
quartz vein system ranging from 0.6 m to 2.5 m in width was studied and anomalous base metal or gold values in 
localized areas were determined. Authors suggested that the quartz vein was not thick at depth based on surface analysis 
and hence is not a good silica resource. Discovered two new styles of gold mineralization in bedrock and a broad 
alteration zone in the granodiorite host. Authors recommended localized trenching, a drill program to assess 
mineralization at depth and a follow-up to anomalous soil surveys. 

Barbour and Churchill (1999) First year assessment report on prospecting, sampling, IP surveying and diamond drilling at the Mustang Property for 
Altius Resources Inc. The old Noranda trenches were examined andre-sampled and an IP survey was conducted over 5 
lines in the vicinity of the showings. Ten diamond drill holes were drilled to test mineralization and geophysical 
anomalies. Thin hydrobreccia units amongst quartz veined and locally silicified host rock were found at surface at the 
Piper and Mustang Zones. The best Au values were found in the breccia unit, which pinch out immediately along strike 
and downdip. Due to this lack of continuity it was determined that these zones have low potential to host economic Au 
concentrations. The best returned assay values were I to 2 glt Au over 0.3 m in drill section. 

Barbour and Churchill (2000) First year assessment report of geology, prospecting, IP surveying and diamond drilling at the Rolling Pond Property for 
Altius Resources Inc. Prospecting and geological mapping delineated a major zone of epithermal mineralization with 
quartz flooded and vein breccias that exhibit LS epithermal features. The textural features present suggest a high level or 
bonanza zone. Five diamond drill holes were drilled into the quartz zone and the values returned from these near surface 
holes were up to 25 ppb Au. Au values were more elevated at depth (356 ppb) Au and the authors suggested that more 
work should be targeted at penetrating the zone at depth. The IP survey delineated quartz mineralization (zone of high 
resistivity). Concluded that potential for economic gold concentrations existed due to the large extent of the epithermal 
system and the consistency of Au values throughout. Recommended that further exploration be concentrated along the 
regional mineralized structures. 

Churchill et al. (200 I) First year assessment report covering preliminary geological investigations at the Chiouk Brook Property in the Great 
Bend-Northwest River area. The authors visited the prospect, collected several samples and conducted a literature review 
to outline future exploration programs. 
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Smith eta/. (2003) First, second and fifth year assessment reports on prospecting trenching and geochemical sampling at the Mustang Trend 
for Altius Resources Inc. 

Barbour and Churchill (2004) Second, third and sixth year assessment report on prospecting, trenching and geochemical sampling at the Mustang Trend 
properties for Altius Resources Inc. 
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Table A1.2: Brief descriptions of Botwood Basin auriferous prospects visited for the current study (descriptions modified from 
Evans (1996), unless otherwise noted). 

Northern Botwood Basin Prospects 
Flirt 670596/5465115 Pyrite and arsenopyrite in 1-30 em wide quartz-carbonate veins developed within brittly deformed, weakly 

carbonate and chlorite altered, gabbro. Veins have assayed values of9.29 ~t (Green, 1989). Classified as 
mesothermal-style mineralization with shear controlled quartz-carbonate veins containing sulfides and minor 
gold (Churchill, 1994). 

Goldstash 670488/5464542 Shear controlled disseminated sulfide restricted to gabbroic dykes and sills. Alteration ranges from moderate to 
strong silicification and red-brown carbonization with sericite and chlorite alteration surrounding the zone in 
weakly deformed gabbro. The gabbro has undergone lower greenschist metamorphism and mineralization 
consists of fine-grained pyrite and acicular arsenopyrite occurring as lens shaped boudinaged blocks ranging 
from 1-2 em up to 2.5-3 m. Surface assays from trenching provided values of 13.5 ~t over 2.6 m (Green, 1989). 
Classified as mesothermal-style mineralization with shear-controlled sulphide disseminations in gabbro 
(Churchill, 1994). 

Corvette 670326/5463622 Similar mineralization and alteration as Goldstash. Assays from trench grab samples returned values from 2.65 
~tAu over 3.6 m. Classified as mesothermal-style mineralization with shear-controlled sulphide disseminations 
in gabbro (Churchill, 1994). 

Clutha 674900/5475350 Auriferous pyrite and arsenopyrite-bearing quartz carbonate veins that cut intensely Fe-carbonate altered and 
silicified, fine to medium-grained gabbros (Evans, 1991). The gabbros intrude a shale, siltstone and greywacke 
sequence supposedly of the Indian Islands Group. Channel sample assayed 0.146 o'lit Au over 4 m (Noront 
Resources Limited, Press Release, 1990). Classified as an altered wall rock-quartz-vein style of Au 
mineralization. 

Charles Cove 681300/5475920 Pyrite-arsenopyrite rich quartz style of gold mineralization developed within the Charles Cove Pluton. Three 
(Tim's generations of veining have been recognized: I) white milky quartz, 2) dark grey dirty quartz, and 3) white 
Harbour) glassy quartz (0' Toole, 1967, 1970). Mineralization consists of arsenopyrite-pyrite zones with minor 

molybenite, chalcopyrite and galena and rare scheelite crystals; Au and Ag have been defmed by assay. The 
mineralization primarily occurs within the quartz vein with minor occurrences noted in the adjacent granodiorite 
and underlying sedimentary unit. Assays of 1.2 and 5.76 ~t Au and 130 and 440 ~t Ag have been obtained 
from grab samples (Evans, 1991 ). Hydrothermal fluids have affected all host rocks and sericite alteration exists 
along quartz vein in both intrusive and sedimentary lithologies. Chlorite and epidote are present in the 
granodiorite, which classifies it as lower greenschist facies. 
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Big Pond 657750/5441300 Fine to medium-grained gabbro, intruding red and green siltstone and sandstone. Au is hosted in shallow 

dipping extensional quartz veins and Fe-carbonate, sericitic and silicic alteration is present. Mineralization 
consists of fme-grained wispy bands of arsenopyrite and lesser pyrite and visible gold. The visible gold occurs 
as clusters in one of three exposed quartz veins. Assays up to 441.0 yt Au (Evans, 1992) and 4.02 yt Au 
(Tallman 1990) were returned from grab samples from the main quartz vein. Classified as arsenopyrite -rich 
quartz vein style Au mineralization. 

Knob Hill 674259/5445813 Narrow quartz-pyrite veins in chloritic greywacke ofDavidsville Group. An assay from trench grab sample 
returned a result of2.7 yt Au. 

Third Pond 671020/5442038 Au in carbonate concentration and extensional quartz and quartz feldspar sulfide ~yrite, molybenite and galena) 
veins in a narrow zone of silicified and graphitic shale of the Davidsville Group. A grab sample from trenching 
assayed 4.6 yt Au in 1987 and subsequent trenching revealed more concretions with the best value returned 
being 0.8 yt Au (Butler, 1989). 

Jonathon's 677703/5440698 Pyrite and arsenopyrite bearing quartz veins in intensely sheared gabbro. Local concentrations of massive pyrite-
Pond arsenopyrite and cubic pyrite and rhombic arsenopyrite crystals. Au occurs in shear controlled and extensional 

fracture veins which contain pyrite and arsenopyrite bearing milky white locally vuggy quartz Host is fme to 
medium grained gabbro and chloritized mafic volcanic rocks of the Gander River Complex. A grab sample 
assayed 6 yt Au (Blackwood, 1982). 

Central Botwood Basin-Glenwood/ Appleton Prospects 
The Dome 658632/5428534 Quartz veining containing visible gold in primarily grey green to black argillites (shale) with minor 

greywacke close to the Appleton Linear. Pyrite, arsenopyrite, and minor chalcopyrite, boulangerite, malachite, 
galena and stibnite are associated with the Au mineralization. Alteration is characterized by Fe carbonate, 
green and brown sericite, clay alteration ~ossibly kaolinite) and chlorite. Green micas (fuchite) are also 
noted in the mineralized, carbonate-altered greywacke (Mitchell, 200 I). Samples from the Dome showing 
produced drill assay values up to 18.46 yt over 8.6m (Candente Press Release, 1999). 

The Knob 657181/5425631 Auriferous quartz veins hosted in Davidsville Group greywacke. Two quartz vein types are present: I) pyrite/ 
arsenopyrite with low Au values, and 2) milky white massive and smaller sheet quartz veins containing coarse 
free Au, minor pyrite, chalcopyrite (Collins 1991). Fe-carbonate alteration is prevalent in the sheared 
greywacke and the immediate wall rock around the milky white veins is silicified and contain disseminated 
pyrite and arsenopyrite and deformed rusty zones occur locally. Au values of 6.26 yt over 13 m were 
returned from channel samples and values up to 106 yt over 2.3 m were obtained in drill core (Collins, 1991). 
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The Bullet 657424/5425881 Milky white quartz veins (<15 em wide) with disseminated pyrite, arsenopyrite, and boulangerite hosted by 

slightly graphitic shale and grey green siltstones of the Davidsville Group. Au occurs as specks and clusters 
of free Au in narrow quartz carbonate vein set. Channel and grab sample assays returned values of II .9 gjt 
over 0.5m to 43.2 gjt Au over 0.8 m (Gower and Tallman, 1989). Trenches returned Au values from channel 
samples of 11.9gjt Au over 0.5 m, 43.2 gjt Au over 0.8 m and 91.6 gjt over 1.1 m. 

The Outflow 653807/5422244 Au mineralization in greywacke lenses ofDavidsville Group. Au associated with pyrite, arsenopyrite, stibnite 
Prospect and intense silicification: Three types: I) hydrothermal stockwork 2) pervasive silicification 3) massive 

crystalline quartz+ quartz carbonate veins (Gower and Tallman, 1988). Types I and 2 are mineralized with 
1-3% disseminated stibnite, arsenopyrite, and pyrite with assays of up to I 0 gjt Au, whereas Type 3 style 
alteration is typically barren. Quartz veining overprints styles I and 2 (Tallman, 1989). Stockwork type 
alteration is developed in slates and pervasive silicification is present in the sandstone units. 

Bowater 656026/5426826 Pyrite-bearing quartz veins and quartz breccia developed within graphitic, and locally sericitic, black 
greywacke (Woldeabzghi, 1988). The extensional veins are composed of milky white, locally rusty, and 
vuggy quartz and are up to I 0 em wide with localized brecciation (Tallman, 1991 ). Mineralization consists of 
pyrite and lesser arsenopyrite in weakly seritized and carbonate altered, black, quartz-feldspar rich greywacke 
(Woldeabzghi, 1988). Au assays from the greywacke produced values less than 3 gjt (Evans 1991). 

Central Botwood Basin· Mount Peyton 
Hurricane 645161/5425138 Sericitic, pyrite-bearing diorite cut by quartz-pyrite-arsenopyrite stockwork. Assays from drill core were up 
Prospect to 7.9 gjt over 1.0 m and a grab sample assayed 1.3 gjt Au (Tallman, 1990). Evans (1992) reports pyrite, 

arsenopyrite, silver, sphalerite, galena, chalcopyrite, and pyrrhotite in diorite. 

Corsair 644408/5425289 Strongly seritized diorite with disseminated pyrite and arsenopyrite associated with quartz veins. Pyrite and 
Prospect arsenopyrite occur as disseminated euhedral crystals and also as coarse patches locally concentrated along 

quartz carbonate veins (Tallman, 1990, 1991). IP and VLF-EM geophysical surveys identified a strong NE-
SW trend (Tallman, 1991). 

Slip 643541/5438244 Au associated with miarolitic granitic dykes. Galena, pyrite and aresenopyrite in granitic dykes. 

Jumper's 617185/5428579 Pyrite and arsenopyrite in quartz vein bearing sandstone hornfels along Jumper's Brook; exhibits slightly 
Brook elevated Au values (Pickett, 1990). 
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Southern Botwood Basin-Paul's Pond Area 
Hunan 629855/5395490 Fracture controlled stibnite veins hosted in lower greenscist-grade pebble greywacke of the Davidsville 

Group. Classified as Acadian, epithermal-style mineralization in which mineralization is controlled by an 
array of fractures in greywacke and brecciation was noted locally (Tallman, 1991 ). 

LBNL 636504/5391062 Silicified granitic intrusion into Davidsville Group with quartz-arsenopyrite veins. The best results obtained 
from assay were 1.80 g/t Au over 1.0 m (Tallman, 1989a). 

Goose 635743/5390002 Numerous quartz veins and veinlets in seritized and weakly silicified greywacke ofDavidsville Group. 
Arsenopyrite and pyrrhotite occur as disseminations in wall rock and as coarse patches in the veins. 
Arsenopyrite also occurs as randomly oriented needles and pyrite as aligned elongate grains. Classified as an 
arsenopyrite-rich, quartz vein style mineralization (Tallman, 1989a). asays of7540 ppb/1.0 m from drill core. 

Road Gabbro 635216/5391238 Pyrite-arsenopyrite in quartz veins within silicified and carbonized gabbro that intruded the Davidsville 
Group. The best assay obtained by Noranda from a grab sample at the prospect was 2.24 glt and 7.9 glt over 
l.Om (Tallman 1989a). 

Aztec 630604115388967 Alteration at, or near, presumed contact between Davidsville and Indian Islands Groups. Locally silicified, 
pyrite conglomerate or breccia with breccia above silica scinter. Classified as epithermal, low grade Au 
mineralization. Au mineralization is associated with the conglomerate (typically less lg/t Au) and the silica 
sinter is comprised of multi phase hydrothermal breccia and pervasive silicification. A 70 km thick zone of 
argillic alteration underlies the sinter, and is variably developed in fme-grained siltstone and sandstone 
(Tallman, 1989a). 

Hornet 628844/5388101 Small quartz-pyrite stringers and 1-2m wide quartz veins in locally silicified, fractured and brecciated felsite 
or k-feldspar granite intrusive to Davidsville Group. The best assays from channel samples were 9.9 glt over 
1.0 m and 2.86 glt Au over 1.0 m (Tallman, 1989a). 

Greenwood 630400/5387150 Disseminated pyrite and arsenopyrite hosted by weakly chlorite-altered, small gabbroic intrusion in 
Pond #2 Davidsville Group. Assay of23.2 and 5.27 g/t in grab sample. 

A-Zone 631150/5388800 Small discontinuous pyrite and arsenopyrite extensional quartz-carbonate veins and veinlets in chloritized, 
potassically altered Davidsville Group greywacke. The greywacke unit is a 15-20 m wide bed within grey-
green siltstone. A value of2.60 glt Au over 1.0 m was obtained from assay from channel sample (Tallman, 
1989a). 
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Southern Botwood Basin-Great Bend Region 
Rolling Pond 611423/5391239 Classified as epithermal style Au mineralization exhibiting extensive silicification, hydrobrecciation and 

quartz veining within sedimentary and volcanic host rocks. Arrays of distinctive epithermal textures are 
present including cockade textures, quartz rosettes (silica scinter) and silica-replaced carbonate lattice blades 
(Barbour et al, 1999). 

Chiouk 616099/5383976 Disseminated arsenopyrite needles, pyrite and chalcopyrite in grey-black brecciated slate. Assays ran as high 
Brook as 18 ppm and the mineralization appears to be associated with an east-northeast trending fault (Mercer, 

1988a). 

Breccia Pond 616675/5380345 Silica and magnesite-altered ultramafic rocks of the Great Bend Complex cut by narrow fracture controlled 
quartz-carbonate veins and stockwork. Hematite and silicification are associated with veining and 
mineralization consists of pyrite, arsenopyrite, and millerite. Assays from the core were not as good as at 
surface (Graham, 1990); a channel sample assayed 3.24 gjt Au over 1.0 m (Evans, 1992). 

SwanLake 613387/5378508 Silicified shear zone with disseminated arsenopyrite and quartz breccia veins in Indian Island Group 
sedimentary rocks. Grab sample assayed 1.38 gjt Au. The prospect consists of a silicified shear zone in 
sedimentary rocks containing arsenopyrite and a 2m wide quartz vein breccia (Graham, 1990). 

Lizard Pond 614200/5379550 Sporadic, fault controlled, quartz breccia veins in grey-brown, siliceous, locally brecciated magnesite altered 
South serpentinite of the Great Bend Complex. Veins contain fme-grained disseminated arsenopyrite and pyrite. 

The veins, up to 1.5 m wide and 9 m long, contain fme-grained disseminated arsenopyrite and pyrite and 
yielded assays of up to 12.58 gjt Au over 0.4 m (Graham, 1989). 

Lizard Pond 613612/5380831 Fault brecciated magnesite-altered peridotite with disseminated pyrite and arsenopyrite of the Great Bend 
North Complex. Assays from channel sample returned 960 ppb Au over I m. 

Huxter Lane 603859/5367584 Disseminated pyrite and arsenopyrite in dacite and massive arsenopyrite rimming quartz brecciated dacite and 
quartz veins. 
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Table A1.3: Brief description of previous paleontological studies from within the Botwood Basin and environs. 

Author(s) Description 
Bergstrom et al. (1974) Assessed known Ordovician fossil collections in an attempt to provide a better biostratigraphic framework for north· 

central Newfoundland and assigned graptolite fauna to European affinities. 

Assigned conodonts from limestone in basal Davidsville Group (east of the Reach Fault) at Weirs Pond to Late 
Stouge (1980) Llandovery to Early Llandeilo and correlated the fauna to conodonts from Cobb's Ann limestone at New World Island 

(west of the Reach Fault). Based on this correlation the author suggests that McKerrow and Cocks ( 1977) interpretation of 
the suture for the Iapetus Ocean is insignificant. 

McKerrow and Cocks In response to Stouge (1980) the authors argue that similar conodont fauna on either side of the Reach Fault does not 
(1980) dismiss the fault as a suture point because middle Ordovician conodont distributions could occur on both sides of the 

Iapetus Ocean. 

Stouge (1980) In response to McKerrow and Cocks (1980) the authors argue that since the faunal provinces are not restricted to plates, 
benthic fauna cannot be used solely as arguments for delineating plate boundaries. 

Stouge (1980) Processed further samples collected from Weir's Pond in 1977 (Blackwood, 1978) for conodonts and assign the fauna an 
Upper Llanvirn-Lower Llandeilo age, which confirms the age provided for the group by Blackwood (1978). 

Boyce et al. (1988) Presented new trilobite discoveries from within Davidsville Group rocks ranging in age from late Arenig to early Llandeilo 
in argument against McKerrow and Cocks ( 1977) interpretation that suggests the Reach Fault represents a suture point for 
the Iapetus Ocean closure. 

Williams (1988) Conducted systematic fossil collection and taxonomic identification (graptolite fauna) of Middle Ordovician black shale of 
the Shoal Ann Formation and Lawrence Harbor shale. 

Williams (1989) Reported fmdings on a study of graptolite assemblages in central Newfoundland primarily to provide a biostratigraphic 
and taxonomic revision on the widespread middle Ordovician black shale unit as described by Williams (1988) and found 
much earlier shale units. Thus, based on a review of faunal assemblages in the Dunnage zone, he ascertained that there is 
no geographically widespread lower Ordovician black shale unit as opposed to the known widespread mid Ordovician 
unit. 
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Boyce eta/. (1991) Discussed the discovery of shelly, trilobite fauna from limestone lenses in the Botwood Group on Upper Black Island. 
The fauna indicate a probable late Ordovician Ashgil age. 

Williams and 0' Brien Discussion on the graptolite discovery at Upper Black Island. It is the first positively identified specimen of Silurian taxa 
(1991) from Newfoundland and provides evidence that there was Silurian oceanic sedimentation in the Dunnage Zone. This 

suggests that at least part of the Iapetus ocean was still open in central Newfoundland during the early Silurian because the 
graptolite assemblage with European affinities suggests open ocean conditions or deep marginal basins during the 
Llandovery. 

Williams ( 1991) Redefmed the Point Lemington Formation (overlying the Lawrence Harbor Formation) to comprise a thick sequence of 
siliciclastic turbidites containing occasional Upper Ordovician graptolites. Correlated the unit to rocks in southern 
Scotland suggesting a relation between these areas during the Late Ordovician. 

Williams eta/. (1992) Discussed new fossil discoveries from the Coy Pond Complex, south central Newfoundland and Lawrence Harbor 
Formation Graptolites from north central Newfoundland. The trilobite from the Coy Pond Complex yields an upper age 
constraint of Late Arenig to the complex. Correlated the fauna to fossils from England and South Wales suggesting that 
this section of central Newfoundland Jay on the northern oceanic margin of eastern Avalonia during the Lower Ordovician. 
The graptolites are Silurian indicating that at least part ofthe Iapetus ocean was open in central Newfoundland during 
early Silurian time. 

Boyce eta/. (1993) Discovered a new bivalve fauna at Careless Brook from latest Silurian-early Devonian implying a later termination to the 
Paleozoic marine sedimentation than was previously thought. 

Williams (1993) Identified biostratigraphically diagnostic graptolite sequences from the Exploits subzone of a middle Ordovician age. 
These represent outcrops of the Lawrence Harbor Formation and its correlatives. First reported graptolites of Cardoc age 
from shale along Careless Brook. Suggested that the unit itself is unlike the typical Lawrence Harbor Formation and that 
the shale may represent the top of a black shale unit passing into sandstone gradually or an argillite lens in a coarser 
sandstone sequences. Another sequence along stream may contain fauna from the D. clingani zone. He also identified 
faunal assemblage along Great Gull River Forest access road indicating presence of a D. clingani zone. 

Boyce and Ash (1994) Suggested a possible correlation between the Wigwam Formation (Botwood Group) and the Indian Islands Group at 
Careless Brook based on additional fossil collection and identification. A late Silurian to early Silurian age for the 
Wigwam Formation was proposed based on species of Goniophora from a fossil local near Lewisporte. 
Reinvestigated Careless Brook bivalve locality of Boyce eta/. (1993) and the fossils from Indian Islands Group of 
Williams (1993). These were obtained upstream (west of the logging road) from buff to yellow weathered fme-grained 
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sandstone. Additional collections of the bivalves confirmed an upper age limit of Late Silurian to early Devonian for the 
Indian Islands Group at that locality. 

Williams and Tallman Re-examined the Beaver Brook mine area because of disparities in previous geology reports on the age of the strata. 
(1995) Authors collected a graptolite assemblage from along Beaver Brook (from locality reported by Dickson, 1992) and 

confirmed the Middle Ordovician (Carodoc) age originally assigned to the unit here and correlated it to the Lawrence 
Harbour Formation. The authors assigned a graptolite assemblage in nearby Cooper Brook an early Ordovician (late 
Arenig) age in a unit that was initially considered to be Middle to Late Ordovician and concluded that the previously 
proposed stratigraphy would have to be revised. 

Donovan et a/. ( 1997) Determined a unit previously assigned to Middle Ordovician Baie d'Espoir Group is actually Late Silurian based on a new 
fossil locality. The fauna were correlated with bivalve bearing strata to the northeast, which led the authors to suggest that 
a major unconformity exits above the Early-Middle Ordovician fossiliferous strata and Early Ordovician ophiolite 
complexes. 

Al-33 



Table A1.4: Brief summary of previous geochronological studies from within the Botwood Basin. 

Author(s) Description 
Wan less et a!. (1965 and Provided the ftrst age dates for Mount Peyton. Dated a diorite from Burnt Lake, NTS 2D/14 using the K·Ar biotite method and 
1967) obtained an age of 418 +/-21 Ma. They also dated granodiorite at this time collected SW of Glenwood using the K-Ar 

hornblende method and obtained a date of270+/· 52 Ma. Dated granodiorite from Rattling Lake, NTS 2E/3, using the K·Ar 
biotite method and obtained an age of369+/-21 Ma. 

Anderson and Williams Reported a K-Ar mica age of265 +/-52 Ma for granite phase ofMPIS and a K·Ar biotite age of 410 +/-21 Ma for the gabbro 
(1970) phase of the MPIS. 

Bell and Blenkinsop Dated various granitiferous intrusions in eastern Newfoundland using whole rock Rb/ Sr isochron method and assigned the 
(1975) Mount Peyton batholith a 375 +/-15 Ma age. 

Bell et a/. ( 1977) Obtained whole rock Rb-Sr isochron ages for granitic plutons across Newfoundland, including foliated granites from the GRUB, 
central Newfoundland. Obtained three dates for foliated granites within the Gander Zone and concluded that granites from the 
Gander Zone are younger than 420 +I· 20 Ma. Indicated that as of yet no geochronological evidence existed for a Precambrian 
basement in the central mobile belt. Obtained two Rb-Sr whole rock ages for the granite of the Mount Peyton Intrusive Suite at 
the north end of the pluton of380 +/-30 Ma and 390 +/-15 Ma. Bell and Blenkinsop later revise these dates as published by 
Reynolds eta!. (1981). 

Reynolds, P.H., Taylor, Used biotite and hornblende from the latest gabbroic intrusive phase of the MPIS to obtain a 40Ar/39Ar age of 420 +I· 8 Ma. 
K.A., and Morgan, W.R. Compared this to a previously obtained Rb/Sr age of390 +/-15 Ma (Bell and Blenkinsop revision of previously reported age via 
(1981) personal communication) for the granite phase and concluded that the 400 Ma paleopole for Newfoundland may be different than 

other North American poles based on these new geochronological data on previously published paleomagnetic data. 

Dunning and Krogh Dated four ophiolite complexes within the Newfoundland Appalachians. The complexes of interest to this study were the 
(1985) Pipestone Pond Complex and the Coy Pond Complex. The authors obtained an age from a coarse grained trondhjemite from a 

pod within the gabbro of 493.9 + 2.5/-1.9 Ma. They dated the Coy Pond Complex via trondhjemite from a small pod in the 
gabbro, which was similar in composition to that from the previous complex. A minimum slightly discordant age of207/206 Pb 
age of 489 Ma was recorded. Suggested that the Coy Pond and Pipestone Pond Complexes are equivalent in age based both on 
this study and on field relationships observed by Colman-Sadd and Swinden (1984). 

Dunning eta/. (1990) Mapped and dated units in the Central Mobile Belt to better understand the tectonic evolution of the region. The majority of the 
units studied where in the extreme southern mobile belt and only one unit is relevant in this previous history evaluation, the 
Stoney Lake Volcanics. U-Pb date of the Stoney Lake rhyolitic tuff provided an estimated age of 423+/-2 Ma. It was concluded 
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that since previous workers (i.e. Colman-Sadd and Russell (1982) and Anderson and Williams (1970)) suggested that an angular 
unconformity exited between the volcanics and the Botwood Group that the rhyolite age could possibly represent the lower 
Silurian deformation and cleavage event within the Silurian Botwood Group. The authors noted that such a contact is only 
inferred, as it was not observed in field studies. 

Elliot eta/. (1991) Used U-Pb radiometric dating (TIMS) of felsic plutons in Notre Dame Bay to constrain the timing of deformation events within 
the Newfoundland Appalachians. Concluded that several tectonic elements were contemporaneously being generated, subducted 
or deformed and that deformation occurred continuously throughout the Late Cambrian to the end of the Palaeozoic. They 
obtained an age of 422 +I· 2 Ma for a composite felsic/ mafic dyke on the Port Albert Peninsula. 

Colman-Sadd eta/. Established a Dunnage Zone (specifically the Exploits Subzone)-Gander Zone Silurian-Devon ian interaction history through U· 
(1992) Pb radiometric dating of important units and provenance studies of sediments in key fossil locals. 

Dunning (1992) Dated a pegmatite south of the MPIS about I km south of Rolling Pond at 424 +/-2 Ma using the U-Pb (TIMS) method. 

Dunning, and Manser U-Pb geochronological report on analysis done on granite for the MPIS for the NDME. Reported numerous small prismatic 
(1993) zircon grains and separated five zircon fractions. Two possible age dates of2680 Ma to 419 +/-2 Ma and 439.5 +9/-6 Ma were 

obtained. The authors preferred the older age of 439 Ma because four fractions are within error for that age, they did however 
note the lack of a concordant point provides questionability to the results. 

Mitchinson (200 I) Defines the Caribou Hill Intrusive to be a geochemically and petrologically distinct unit from the MPIS, thus the 424 Ma age of 
Dunning ( 1992) could not be applied to the MPIS. 

Al-35 



APPENDIX2 

GOLD DEPOSIT MODELS 



APPENDIX2 

GOLD DEPOSIT MODELS 

A2.1 Gold Exploration within the Dunnage Zone 

Gold production in Newfoundland has historically been as a by-product from 

mining VMS deposits. The first recorded gold production is reported from the Cross 

Cove and Stewarts Mine at Moretons Harbour, eastern Notre Dame Bay during the late 

1890's (Snelgrove, 1935). The Newfoundland Department ofNatural Resources 

commissioned an appraisal of known gold occurrences within the island in the early 

1930' s, which was undertaken, by Snelgrove and Howse in 1934. Snelgrove published 

the results ofthis study in the "Geology of Gold Deposits ofNewfoundland, Bulletin 

no.2" in 1935. The author reported 29 named occurrences as well as several minor 

occurrences on the island. Gold exploration waned following this report as only 29 gold 

only occurrences were reported for the island in 1976 as part of a mineral occurrences list 

(Douglas, 1976). 

Gold exploration on the island surged after the discovery of the Hope Brook 

Deposit on the south coast in 1984. The Hope Brook Mine was in production for the 

most part from 1986 to 1997 and produced 752, 162 ounces of gold (Evans, 1999). The 

new surge in exploration was focused on the Baie Verte and GRUB lines due to the 

structural complexities of the areas and the comparison of each to the Californian Mother 

Lode Belt (Evans, 1999). The model for exploration concentrated on mesothermal or 

metamorphogenic styles of mineralization although epithermal style mineralization and 

associated alteration were discovered as well (e.g., the Aztec and the Outflow prospects) 
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(Evans, 1996). After more than 200 Au occurrences were discovered, this new surge in 

exploration activity declined during the late 1980's. The interest slowly rebounded in the 

late 1990's and Richmont Mines opened the Nugget Pond gold mine in 1997. New 

discoveries by prospectors and junior exploration companies continued to attract attention 

and in 2000 a new exploration surge erupted in central Newfoundland when Altius 

Minerals attracted Barrick Gold to the scene. 

Around 60 additional gold occurrences were documented in the eastern Dunnage 

Zone (east ofthe Red Indian line and west ofthe Gander Zone) since 1980. During the 

early to mid 1990s a study of the nature and setting of the gold mineralization in the 

eastern Dunnage Zone was conducted by D.W. Evans under the NDME. The study 

produced a complete documentation of the existing occurrences and included trench 

mapping and diamond drill core logging as well as sample collection for assay. A 

preliminary gold classification scheme was produced for the eastern Dunnage zone 

similar to the one devised by Dube (1990) for western Newfoundland occurrences 

(Figure A2.1 ). 

The ages for the known gold mineralization in the Newfoundland Appalachians 

ranges from Late Neo-Proterozoic to the Silurian-Devonian (Evans, 1999). As discussed, 

both syngenetic and epigenetic styles of gold mineralization have been documented in 

Newfoundland. Syngenetic gold is present as an accessory to VMS deposits in the 

Dunnage Zone whereas epigenetic occurrences consist of structurally controlled 

mesothermal and epithermal style gold mineralization (refer to figure A2.1 for the 

classification of prospects included in this study). 
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A2.2 Overview of Applicable Gold Deposit Models 

A2.2.1 Syngenetic 

Syngenetic deposits are formed during country rock formation and occur as 

accessory gold associated with VMS in the Dunnage Zone ofNewfoundland. The 

mineralization is associated with VMS deposits with the oldest being dated at 513 ± 2 Ma 

(Evans et al., 1990) for the Tally Pond volcanics and the youngest deposits predating the 

deposition of the Llandeilo-Caradoc shales. For the area and occurrences discussed and 

studied within this project, this model is not applicable. 

A2.2.2 Epigenetic 

A2. 2. 2.1 Orogenic Lode 

This deposit type has been referred to in literature as 'Archean gold', 

'mesothermal gold', 'gold only', or 'lode gold' but today they are commonly referred to 

as orogenic gold deposits. Orogenic type deposits are generally associated with regional 

structures and include all Au ( -Ag) vein deposits in metamorphic rocks regardless of age 

and metamorphic grade (Misra, 2000). This model indicates that deposits form along 

localized major regional fault and fracture systems in secondary and tertiary structures. 

The vein deposits generally form from hydrothermal fluids originating from a deep 

crustal origin at temperatures ranging from 250-300° C. Mineralization precipitates with 

quartz vein material when fluid traveling along a conduit reacts due to changing 

conditions. The host rocks are normally affected by faults or fracture systems and can 

range from mylonites to fault gouge depending on the depth of vein formation. Typical 
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host types include basalts, greenstones, gabbros and turbiditic shale. The mineralization 

generally consists of Au, pyrite and arsenopyrite in quartz veins with the Au occurring as 

solitary grains or intergrown with arsenopyrite or electrum. The alteration is typically 

dominated by Fe carbonate assemblages, which form alteration haloes in the host rock 

adjacent to the veins. Sulphide haloes and K-metasomatism alteration is also associated 

with the Au mineralization (Wilton, 1998). 

The Dunnage Zone presents a possible exploration target for this deposit type as it 

exhibits the required large-scale regional structures (i.e. , Baie Verte and Dog Bay Lines) 

in lower greenscist facies units. The prospects tend to be concentrated in regions where 

the structure has been disrupted, such as flexures (i.e., Hermitage Flexure). In the 

Dunnage Zone the orogenic lode type occurrences have been subdivided into different 

classes: 1) vein hosted with gold occurring within the quartz veins and 2) altered wall 

rock or replacement style mineralization in which gold is disseminated through the 

altered wall rock (Evans, 1996). The vein-hosted class has been further subdivided by 

Evans (1999) into 1) quartz-gold veins, 2) quartz-pyrite/ arsenopyrite veins, 3) base 

metal-rich quartz veins, and 4) barite rich veins. The altered wall rock, replacement class 

has also been subdivided into 1) carbonate-quartz pyrite, 2) silica-sulphide, 3) talc

magnesite-magnetite, and 4) red albite-ankerite-pyrite. For a complete description of 

each ifthe aforementioned subtypes refer to Evans (1999). 

The age of structurally controlled or mesothermal gold mineralization in the 

Eastern Dunnage Zone has not yet been well defined by radiometric dating methods, 

though field observations suggest that the age is constrained at Early Silurian to 

Devonian. It is not yet known if the mineralization is constrained to one specific event or 
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several localized events. The oldest constrained age for this type of mineralization 

within the zone is 437 Ma and comes from the Hammerdown deposit whereas the 

youngest constrained age is 374 Ma and comes from the Nugget Pond Deposit. These 

dates are coincidental with the Salinian and Acadian Orogenies, which were periods of 

deformation, metamorphism and plutonism. During the Salinic Orogeny (ca. 430 to 415 

Ma; Dunnng et al., 1990) extensive reactivation of fault systems occurred (Karlstrom et 

al. , 1982; Tauch, 1987; Szybinski, 1988). The Salinic orogeny appears to be the most 

significant post Taconic event to have affected the Dunnage Zone (Evans, 1999) and 

Swinden (1990) suggest that the Salinic orogeny may have been a climatic metallogenic 

event. The Acadian Orogeny also affected the Dunnage Zone, but the reactivation of 

structures to produce mesothermal style mineralization occurred on a more regional scale. 

The Acadian and subsequent carboniferous deformation events may have remobilized 

pre-existing mineralization (Evans, 1999). 

A2. 2. 2. 2 Epithermal 

The term epithermal was first introduced by Lindgren (1933) and was used to 

define deposits that formed near surface in an extensional tectonic environment 

exhibiting a well developed fracture system and normal faulting. The deposits are 

thought to be generated from relatively dilute, near neutral to weakly alkaline chloride 

waters that underwent boiling, mixing and oxidation at temperatures between 200 and 

300° C. The maximum ore depth is about 1000 m. However, the ore strike length can be 

considerable. Veins are the most common ore host and tend to form an upward 

branching cone or wedge-like structure complete with breccia zones, stockworks and fine 
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grained bedding replacement zones (Figure A2.2). The associated mineralization is 

common in volcanic related hydrothermal and geothermal systems generally exhibiting 

well-differentiated subaerial pyroclastic rocks and small subvolcanic intrusions (Misra, 

2000). 

These deposits can contain gold, silver ± base metal sulphides and gangue 

minerals such as quartz, calcite, adularia, barite and fluorite. Alteration is characteristic 

and minerals in the zones of alteration include quartz, adularia, illite, chlorite and 

kaolinite. The mineralization and the location of these deposits is dependant on the 

permeability of host lithologies. The ore and mineralization are typically deposited as 

open spaces resulting in banded, crustiform, vuggy, drusy, colloform and cockscomb 

textures. The zone may also show evidence of replacement textures such as 

pseudomorphs after calcite. The main economic minerals are typically Au and Ag (with 

widely varying ratios), which are associated with Hg, As, Sb, and less often Ti, Se and 

Te. The main ore minerals include native Au and Ag, electrum, acanthite and silver 

bearing arsenic-antimony sulphosalts. Cinnabar, stibnite, tetrahedrite and selenides can 

be important in some deposits. The main gangue minerals include quartz and calcite 

with minor bearing on fluorite, barite and pyrite and lesser chlorite, hematite, dolomite, 

rhodonite and rhodochrosite. An epithermal deposit is characterized by dominant 

hydrothermal alteration of wallrock and precious metal mineralization closely associated 

with silicification. The silicification zones may be flanked by zones of illite, sericite and 

clay alteration, all which occur in a larger zone of propylitic alteration. Some zones may 

exhibit adularia associated with quartz veins at surface and argillic alteration near surface 

(Panteleyev, 1988). 
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Mineralization may occur in repeated cycles and is typically fine grained with 

coarse-grained well-crystallized gangue mineral overgrowths (Misra, 2000). The fluid 

origin is mostly meteoric waters derived from a deep magmatic source and the metals are 

from either a deep magmatic source or leached from host lithologies that range form 

volcanics to sediments. These deposits are generally formed as veins, breccia and 

disseminations (Misra, 2000). This type of mineralization has been discovered at several 

localities in the eastern Dunnage Zone including the Aztec, Outflow and Moosehead 

Prospects (Evans, 1996; Dalton, 1998). The amount and type of mineralization is 

dependent on the characteristics of the carrying solution, which have been divided into 

two classes: low and high sulfidation. 

Low Sul.fidation 

Low sulfidation fluids are reduced and have a near neutral pH resulting from the 

mixing of subsurface water (ie: rainwater) and magmatic water (from a deep molton 

source) that has migrated to the surface. The economic minerals are deposited when the 

carrying solution reaches the surface and boils. Au mineralization is generally hosted in 

cavity filling veins and stockwork and is associated with Ag, and minor Pb, Zn and Cu. 

Common minerals include quartz (chalcedony), carbonate, pyrite, sphalerite and galena. 

Deposits formed from this fluid type are characterized by high Zn and Pb, low Cu values 

and a high Ag/ Au ratio (Wilton, 1998). 

The deposits are generally found in caldera or complex volcanic environments 

consisting of a rhyolite to andesite volcanic host with associated intrusions and 

sediments. The ore has high gold and silver values with variable copper and is situated 
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outside of the heat source. Mineralization also tends to postdate that of the host rock by 

> 1 Ma and alteration is argillic to adularia. The meteoric fluid develops a varied 

elemental composition from the surrounding lithologies, as it is heated by the intrusion it 

joins a convective cell and rises to the surface, moving within the plane of major fracture 

system it cools, causing precipitation of its metals and the formation of a deposit (Misra, 

2000). 

High Suljidation 

High sulfidation fluids are more oxidized and acidic and are mainly derived from 

a magmatic source. The gold mineralization is deposited near surface, as the solution is 

cooled or diluted by mixing with rainwater. In this type of deposit the mineralization 

occurs in veins but is more concentrated in surrounding host rock containing economic 

amounts of Cu and some Ag. Depsoits formed from this fluid type have a low Ag/ Au 

ratio, contain greater amounts of As and Cu and are typically lower grade (Wilton, 1998). 

These deposits are usually located in calderas or silicic domes and are hosted 

mainly by rhyodacite forming domes and ash flows. The ore has variable gold and silver 

values with high levels of copper and is situated within the heat source. Mineralization 

and host rock are generally of similar age and alteration near and around the ore body is 

argillic with alunite and kaolinite without adularia alteration. With the convective 

circulation of meteoric and magmatic waters, elements are leached from the surrounding 

host rocks and upon cooling are deposited near the surface forming a deposit within the 

heat source (Misra. 2000). 
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Evans (1999) outlines central Newfoundland to exhibit high potential to develop 

into a major epithermal gold district based on several factors. First, the occurrence of 

fossil epithermal systems appear to be widely developed and preserved throughout with 

most known occurrences located in Ordovician and Silurian sequences surrounding the 

Mount Peyton Intrusive Suite. He suggests that the Mount Peyton may have acted either 

as a heat source for these systems or as a homogeneous mass that intruded into the 

Silurian-Ordovician sequences causing widespread focused deformation and extension 

(Evans, 1999). The age of epithermal systems, as like mesothermal systems, is not well 

constrained. The mineralized zones are associated with brittle fault systems rather than 

ductile systems which primarily affect Silurian sequences and are thus considered to be 

Late Devonian (corresponding to the Acadian Orogeny) or maybe as young as 

Carboniferous (Evans, 1999). 

A2.2.2.3 Sediment Hosted Disseminated (Carlin Type) 

Altius Minerals first applied the Carlin type deposit model to central 

Newfoundland at their outflow property along the Mustang Trend in 2002, attracting gold 

mogul Barrick to the scene and effectively creating a staking rush within the 'Botwood 

basin'. 

Sediment Hosted Disseminated Gold (SHDG) or Carlin Type Au deposits form in 

complex terranes at depths of 2-4 km and have a spatial association with high angle 

normal faults and permeable horizons, generally with a spatial relationship to igneous 

granitic rocks. These disseminated auriferous pyrite deposits are characterized by 

carbonate dissolution, argillic alteration, sulfidation and silicification of typically calcitic 
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sedimentary rocks (Hoftra and Cline, 2000). Micron Au mineralization occurs within 

arsenic bearing pyrite and quartz and has associated elevated concentrations of antimony, 

mercury, barium and thallium. Host rocks are typically thickly bedded silty 

carbonaceous rocks such as limestones, dolomites, shales, and silica rich intrusive 

igneous rocks and breccias. Ore bearing host rocks are extremely altered and exhibit 

decarbonization, silicification, and argillization alteration assemblages which may not 

always be fully developed and all of which can contain Au. Zones ofjasporoid are 

characteristic and can extend up to 30m from the fault (Figure A2.3). Depths range 

anywhere from 1.5 to 4 km and temperature is generally> 225°C (Wilton, 1998). 

Theories exist for both magmatic and meteoric fluid, which circulates through rocks and 

remobilizes minerals along linear trends, with fault lines acting as fluid pathways. Some 

deposit models suggest that magmatic fluids mix with those of meteoric origin. The 

deposits are either tabular or irregular in form, however some develop within breccias 

formed as a result of the faulting. 

These deposits commonly have a low Ag content and are of low grade and large 

tonnage (Wilton, 1998). Mineralization consists of S and Au with associated As, Sb, Ti, 

Ag ± W and± Te. The deposits typically exemplify the following sequence of events: 1) 

a main ore stage distinguished by acid attack and replacement of host rocks 2) a late ore 

stage distinguished by quartz, calcite, orpiment, realgar or stibnite, 3) a peripheral stage 

ofbotroidal pyrite± marcasite, 4) a post ore stage of mainly calcite and 5) a supergene 

stage of dissolution and minerals formed as result of weathering and oxidation of the 

ores" (table A2.1) (Hoftra and Cline, 2000). 
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SlYLES OF GOLD MINERALIZATION 
EASTERN DUNNAGE ZONE, CENTRAL NEWFOUNDLAND 

Duck Pond 
Tulks Hill 
Great Burnt Lake 
Point Lemlngton 

\ / 
Epithermal 

Aztec 
Rolling Pond 
Outflow? 
Bobby's Pond Veins 

,....----G__,a/ 

Pyrite 
Arsenopyrite Pyrite +/-

~ Tourmaline 

. I Midas Pond 
Sedimentary Long Lake 

/ 
I Plutonic I 
Lizard Pond Knob Valentine Lake 
GreensPond #2 Bullet Golden Grit #4 
Clu,na 
Big Pond 
Charles Cove 
Jonathon's Pond 
Hurricane 
Corsair 
Slip 
Powderhouse 
Weirs Pond 

Bowater 
Dome 
Goose 
Knob Hill 
Third Pond 
Moosehead 

True Gnt ~ Fe-Carbonate 

Alteration 

EPIGENETIC MINERALIZATION 

Base Metal I 
Road Show1ng 
WestTulks 
Change Islands 
Kim Lake #1 

Disseminated Gold 

West Tulks 
Chiouk Brook 
Burseys Hill 

'-------'--J 

Hunan 
Moretons Hr. 
Kim Lake #3 
Golden Grit #5 

Gliffer Pond 

Figure A2.1: Classification scheme for gold mineralization within the eastern Dunnage Zone. Prospects in red were visited and 
assessed during the current project and those in blue were visited but have been backfilled since last 
documentation (modifed from Evans, 1993). 
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Figure A2.2: Idealized section of a bonanza epithermal deposit (after Buchanan, 1981 ). 
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Argillizatiqn . 
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, Decarbonotizatlon · · · .... 
· · · · Silty Limestone 

Limestone 

Barite Ore zone boundary 
: ..._ stibnite 

quartz 
calcite 
(pyrite) 

Figure A2.3a: Schematic cross section through a SHDG deposit showing major alteration 
and mineralization features adjacent to a fluid feeder (after Arehart, 1996). 

M-P Overlap Sequence 

Figure A1.3b: Schematic cross section of northern Nevada and northwest Utah, showing 
attenuated Archean crust, oceanic crust, overlying stratigraphic sequences and allochthons, 
fault zones and locations of Carlin-type gold deposits (black) (after Hofstra and cline, 2000). 
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Main Ore Stage 

Decarbonatlon 
decalcificaffon, 
dedolomiTization 

Silicification 
quartz, chalcedony 

Argllllzation of silicates 
kaolinite, illite, 
illite-smectHe, smectite 
chlorrre-smectlte 

Sulfldat/on of Fe minerals 
As pyrite, ~ marcasrre 
arsenopyr~e 

submicron gold 

Carbonation 
calcffe, dolomffe, 
ankerite, siderite 

K metasomatism 

I cx!Jiarkl. Illite 

late Ore Stage 

Open Space minerals 
quartz, clacite, dolom~e 
barite, flourlte, adulalria 
orpiment, realgar, arsenic 
stibnite, ~ pyr~e, 
fos marcasrre, cinnabar, 
galkhaffe, Tl Sulfides, 
teller/des, nattve gold 

Silicification 
quartz, chalcedony 

I 

Perithermal Stage Pastore Stage Supergene Stage 

Open-space minerals 
As pyrite-marcasHe 
alunrre, kaolln~e. 
barite, sphalerite, 
realgar, stlbnffe, 
nattvegold 

Arg/11/zat/on 
kaollnffe, alunffe 

Open-space minerals Decarbonation 
calcite, barrre karst cavrries, 

decalcification 
Decarbonation 

vugs, decalcification, Argillization of silicates 
DedolomiTization alunrre, kaolinrre, 

halloysrre, smectiTe 

Epithermal overprints 
Opaline silica +I· Hg 
Au-Agvelns 

Oxidation of sulfides 
goethrre, hematite, 
jarosrre, alunrre, 
stibiconlte, scorodite, 
kermeslte, 
nattve gold 

Open-space minerals 
geothrre, jarosrre, 
alunrre, kaolinrre, 
halloysrre, smectiTe, 
calcrre, aragonite 
gypsum, celeslite 
melanterite 
phosphates 

Table A2.1: Generalized Mineral Paragenesis in Carlin Type Gold Deposits. Common alteration types and minerals are in bold 
and rare minerals are in italics (after Hofstra and Cline, 2000) 

A2-14 



APPENDIX3 

ANALYTICAL TECHNIQUES 



A3.1 Sample Collection 

APPENDIX3 

ANALYTICAL TECHNIQUES 

Bulk sampling of grab samples from the prospects, as well as regional host and 

intrusive units, was implemented in the 2003 and 2004 field seasons. Where possible, a 

minimum of three samples were collected from each prospect with the aim towards 

having an unaltered host, altered host and mineralized host rock. Samples collection was 

restricted to surface outcrops because the number of prospects assessed during the study 

was too large to consider bulk sampling of drill core. 

Sedimentary, intrusive and host rock samples ranged in size from 5 to 40 em wide 

depending on the availability of outcrop to provide sufficient material. Samples were 

selected for processing for lithogeochemical, isotopic, geochronological and 

pe_trographical studies. All samples were prepared for analysis at the Memorial University 

ofNewfoundland, Earth Sciences laboratories. First, weathered and/or altered pieces, 

which could alter the chemistry data, were removed, were possible, with a diamond 

tipped saw. Large pieces (size was dependant on the analytical method) were cut for 

whole rock geochemical, geochronological and isotopic analyses and small pieces were 

kept for hand specimens and thin sections. 
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A3.2 Whole Rock Geochemical Analysis via X-Ray Fluorescence (XRF) 

A3. 2.1 Introduction 

The XRF is a multi element instrumental technique for the high precision 

determination of major elements and trace elements and involves simple sample 

preparation. Major elements are determined on powders that are fused with a suitable 

flux and cast as glass discs and trace elements are determined on pressed powder pellets 

(Riddle, 1993). A complete list of the samples prepared for this analysis, along with 

sample location and description is presented in table A3 .1. 

A3.2.2 Sample Preparation and Data Collection for XRF Analysis 

Slabs cut for whole rock geochemistry ( ~4 em x 4 em x 2 em) were crushed in a 

steel jaw crusher to rock chips about 1-2 cm2
• Approximately 'li cup of this material was 

put into a tungsten-carbide bowl-puck assembly to grind them into a very fme powder 

(~200 mesh). Rocks of similar lithologies were crushed as groups to reduce inter-group 

contamination between samples. Between each sample, the jaw crusher was extensively 

cleaned with a pressurized air gun, paper towels and alcohol, and a steel brush. The mill 

assembly was also extensively cleaned between each sample and silica sand was 

intermittently powdered in the bowl-puck-mill to further reduce the possibility of cross 

contamination between samples. The powders were placed in vials, labeled and 

submitted to the XRF laboratory where they were pressed into disc-like pellets. 
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The use of the pressed powder pellet technique allows for limits of detection 

below 1 ppm for trace elements. The pressed pellets were prepared by a method as 

described by Longerich ( 1995). 5.00 g (± 0.05 g) of sample powder is combined with 

0.70 g ofBRP-5933 bakelite phenolic powder binding resin and placed in a glass jar with 

two stainless steel ball bearings which is subsequently rotated for ten minutes on a roller 

mixer. The resulting mixture is placed within a pellet press where it is pressed for 5 

seconds at 20 tonnes to make it compact. Finally, the samples are placed in an oven and 

baked at 500° C for 15 minutes. 

Qualitative and quantitative determinations of elements were determined from the 

pressed pellets using a Fisons/Applies Research Laboratories model 8420+ sequential 

wavelength-dispersive x-ray spectrometer. The data was collected by an automated 

computer system attached to the XRF. Four quality control reference standards and five 

internal standards were also analyzed intermittently with the samples from this study. The 

values for the reference materials are published by Potts et al. (1992), Jenner et al. (1990) 

and Longerich et al. (1990). 

The elements determined are K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, 

Rb, Sr, Y, Zr, Nb, Ba, Ce, Pb, Th, U. The light major elements and Sand Cl were also 

determined on a semi-quantitative basis. 

A3.2.3 Precision and Accuracy 

Precision and accuracy are determined by using a standard reference material and 

analyzing this material intermittingly with study samples. The reference used was 

standard DNC-1 and five replicate analysis were conducted between September 2000 and 
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November 2002. Precision is typically excellent (0-3% RSD) for all major oxides. 

Precision of trace element data was excellent (0-3% RSD) with the exceptions of S, Sc, 

Ba, Rb and Nb. Long term precision is variably between 2 (Rb, Sr) to 5% (Ba, Nb, Zr, 

Y) RSD. These elements typically have low concentrations in the standard, thereby 

explaining the lower precision values. The limits of detection for tehse elements varies 

form 0.6ppm Nb andY, 0.7 ppm for Rb, 1.1 ppm for Sr and Zr, and 21 ppm for Ba 

(Longerich, 1995). 

Accuracy is usually excellent (RD's from 0-3%) with the exception ofP205, 

Al203, Sr and Zr. This once again attributed to lower concentrations of these elements 

in the standard material (Longerich, 1995). 

A3.3: Sulphide Isotope Geochemical Analysis via Inductively Coupled Plasma-Mass 
Spectrometry (ICP-MS) 

A3.3.1 Introduction 

The majority of naturally occurring elements are combinations of at least two 

isotopes. The variation in the profusion of these isotopes is caused by radioactive decay 

in unstable isotopes and by fractionation in stable isotopes. In the case of S the variation 

is a result of fractionation, as isotopes of this stable element partition into different phases 

in response to minute differences in chemical and physical properties related to mass. 

This difference is most evident in the light elements H, C, 0 and N because the 

disparities in mass between isotopes of these elements are large. Measuring isotopic 

compositions of these stable elements is useful for recognizing sources and/or 

determining chemical reactions. In this case, S02 gas extractions from single crystals of 

A3-4 



sulphide material are used to measure the abundance ratios to delineate possible sources 

of mineralizing fluids. A table listing the location and description of samples prepared for 

sulphur isotope analyses is presented in table A3.2. 

A2.3.2 Sample Preparation and Data Collection for S-Isotope Analysis 

Mineralized samples were selected for analysis and small pieces ( ~3 x 3 em) of 

the samples were pulverized using hand tools. Single crystals of pyrite, arsenopyrite, 

stibnite or galena were hand picked from the crushed material using tweezers and a hand 

lens and placed in small, labeled glass vials. In some instances, the material was too fine 

grained to separate and was analyzed as a pyrite+ arsenopyrite mixture. The workspace 

and tools were thoroughly cleaned with alcohol between each sample to avoid cross 

contamination. The sulphide separates were crushed in a ceramic mortar and pestle 

assembly into a sulphide powder ( 4-9 mg), and were once again stored in labeled glass 

vials. Approximately 0.95 mg of pyrite, .250 mg of arsenopyrite, 0.4 mg of galena or 

0.175 mg stibnite (amount is dependant on the specific sulphide being analyzed) was 

measured out on a calibrated electronic scale and placed in high quality, 7 x 7 mm tin 

vessels with 0.200 mg of vanadium pentoxide (V 20 5). 

The tins containing the dry mixture were closed and loaded into a Carlo Erba 

Automatic Gas Chromatographic Elemental Analyzer carousel and the sample details 

were entered into an auto run file in the machine. The auto run program is then started 

and drops each sample into a combustion region of the elemental analyzer. S02 gas is 

extracted from single sulphide crystals from which isotopic abundances are measured on 

a Finnigan MAT 252 and compared with those of international standards. 
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A3.4 U-Pb Geochronological Analysis via Laser Ablation Microprobe-Inductively 
Coupled Plasma-Mass Spectrometer (LAM-ICP-MS) 

A3. 4.1 Introduction 

Laser Ablation ICP-MS is an efficient and suitable method for sediment 

provenance studies where many analyses are required to define the age of a population 

(Kosier eta/., 2002). The LAM-ICP-MS technique consists of a laser-ablation sampling 

device, LAM (Laser Ablation Microprobe) and an inductively coupled torch-mass 

spectrometer (ICP-MS). The combination of these two devices provides a relatively 

simple, efficient, and inexpensive technique for the determination of the direct elemental 

and isotope ratio analysis of solid samples. Sample preparation is also relatively simple. 

The method for geochronology involves the in situ analysis of single zircon grains, thus 

allowing for the determination of growth zonation and overgrowth ages. Such 

considerations are significant concerns in material with inherited cores, and the problem 

is not overcome using standard TIMS geochronological determinations (Cox, 2002). 

The benefit of using this technique as a geochronometer is the efficiency to 

produce high quality data for a large number of samples relatively quickly compared to 

other techniques such as TIMS (Thermal Ionization Mass Spectrometer). The technique 

has been shown to be an efficient geochronometer using detrital zircon U-Pb 

geochronology (Kosier eta/., 2002). A table listing the location and description of 

samples prepared for U-Pb geochronology is presented in table A3.3. 
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A3. 4. 2 Sample Preparation and Data Collection 

The collected samples were individually crushed by a jaw crusher into 

rock chips up to 2 em in diameter, and then ground into medium-coarse sand using a disk 

mill. The laboratory and machinery were thoroughly cleaned between each sample to 

avoid sample contamination. 

The medium-coarse sand was put through several heavy mineral separation 

processes. First, heavy minerals were separated from light minerals using a Wilfley 

table. The remaining 'heavy' and ' light' minerals were rinsed thoroughly with ethanol 

and dried out using a hot plate and heat lamp. The ' heavies' were taken to the mineral 

separation laboratories where they were sieved through a 40-J..I.m mesh. Magnetic 

minerals and metal filings were removed from the sieved grains using a hand held 

magnet. The next step in the separation process was Heavy Liquid Separation using MI 

(Methylene Iodide). Minerals with a density greater than the MI fell through the solution 

and were collected, rinsed with acetone, and dried under a heat lamp. This material was 

then put through the Frantz Magnetic Separator, which separates minerals based on 

magnetic susceptibility. The strength of the magnet was gradually increased, and 

minerals with high magnetic susceptibility such as zircon and corundum were collected 

as the end result. 

The final step in the preparation was hand picking zircon grains in nanopure 

ethanol with a binocular microscope. The zircon grains were mounted in epoxy resin in a 

round ring assembly, polished, and analyzed using an electron microprobe and LAM

ICP-MS. 
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The U-Pb dating technique used here is described in detail by Kosier et al. (2002). 

A VG Plasma Quad II+ "S" ICP-MS, coupled with an in-house-custom-built Q-switched 

ND: YAG, 266nm ultraviolet laser is used for LAM-ICP-MS analysis in the Department 

of Earth Sciences laboratories at Memorial University ofNewfoundland. An ultraviolet 

laser beam is directed into the focusing objective lens, enters a transparent sample cell 

and ablates the polished sample surface. The ablated material is then transported in a 

helium gas stream to the ICP-MS for chemical analysis. Zircons were ablated using a 

laser repetition rate of 10Hz and a laser energy of0.8 mJ/pulse. The beam was focused 

100 !lm above the sample surface. A sample cell is mounted on a motorized stage on the 

microscope and is controlled by a computer. The stage was moved beneath the stationary 

laser beam to produce a 20-40 !lm raster pit (depending on the size of the grain) in the 

sample. The depth of the pit ranges from ca 10 to 50 !lm depending on the width of the 

pit and ablation time. The ancillary equipment allows one to safely view the sampling 

site while the laser beam is rastering on the sample surface. 

A He carrier gas transports the ablated material to the plasma by acid washed 

plastic tubing via the mixing chamber at the rear of the plasma torch. The mass 

spectrometer measures the U/Pb and Pb isotopic ratios of the zircon samples as well as 

the Tl/Bi/Np tracer solution that is neubulized along with the laser ablated sample 

material. The tracer solution should contain natural Tl, 209Bi and 237Np at 

concentrations of 10.6 ppb for each isotope. 

The data are acquired using Fisons time-resolved software; this software allows 

for the acquisition of multiple elements using multiple channels. Data are acquired for 

approximately 60 s prior to ablation to obtain a background of the He gas blank and 
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tracer solution signals. Once ablation is started, U and Pd signals for the sample, along 

with the continuing tracer solution are acquired for 180-200 s. Data are periodically 

collected from a zircon standard of known age to ensure reproducibility and accuracy of 

the analysis. The standards used in this study include the 295 ± 1 Ma (Ketchum et al. , 

2001) pegmatitic zircon standard (02123). Data was acquired in time resolved- peak 

jumping-pulse counting mode with 1 point measured per peak using commercial 

PQVision v.4.30 software. In total masses 201 (flyback), 203 (Tl), 204 (Ph), 205 (Tl), 

206 (Ph), 207 (Ph), 209 (Bi), 237 (Np) and 238 (U) were measured in total masses. Np 

and U oxides were also measured to monitor minor changes in the solution over time of 

the analysis. Quadruple settling time was 1 ms for all masses and the dwell time was 8.3 

ms for all masses except for mass 207 where it was 24.9 ms. Over the 240 seconds of 

measurement approximately 1600 data acquisition cycles (sweeps) were collected. A 

typical analysis takes approximately 3 minutes to complete. 

A3. 4. 3 Data Reduction 

The raw data was collected for electron multiplier dead time (20ns) and 

downloaded to a PC for processing using an in house spreadsheet utility program to 

integrate signals from each sequential set of ten sweeps. 207PbP06Pb, 208PbP 06Pb, 

206PbP38U and 207PbP35U were calculated for each analysis using a natural 238UP35U ratio 

of 137.88. Signal intervals for the background and ablation were selected for each 

sample and harmonized with similar intervals for the standards. The calculated isotope 

ratios were then corrected for gas blank and the small contribution of Pd and U from the 
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tracer solution. Using 233U in the tracer solution allowed for a real-time instrument mass 

bias correction with the 205Tl/233U value measured while the sample was being ablated. 

A3.5 Electron Microprobe 

A3. 5.1 Introduction 

The electron microprobe microanalyzer is the "definitive" technique for the 

nondestructive, accurate determination major and trace elements from small volumes (3-4 

Jlm diameter) of in situ solid materials down to detection limits of typically 50-200 Jlg/g 

(Riddle, 1993). The instrument is used for several applications including the 

determination of mineral identification and composition, mineral zoning, chemical 

reactions, etc. For this study, the instrument was employed for determining the 

composition of pyrite grains to establish an internal FeS standard for the trace element 

analysis of pyrite and also, to determine if any zoning was present in zircon grains that 

were mounted for U-Pb geochronology analysis. The instrument was also utilized for 

micrograph imaging of the zircon grains and of an ablation pit on a pyrite grain. 

The machine identifies and measures x-rays that are characteristic of the samples 

composition. A high-energy electron beam is focused on the surface of the sample and as 

the beam penetrates into the sample, inner shell orbital electrons are removed and the 

replacement of the resulting vacancies by outer orbital electrons produces x-rays. The 

source of electrons in the electron gun is typically a tungsten filament bent into a hairpin 

shape. A High voltage potential is applied across the gun to accelerate the electrons thru 

the potential of typically 15-25 kV. The beam then passes down an electron column, 
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which focuses the beam to a pinpoint of minimum diameter 0.1-1 J.tm. Two 

electromagnetic lenses are used for focusing, the condenser lens control the total probe 

reaching the sample and the objective lens allows the operator to focus the electron beam 

on the surface of the sample. An element can be identified and its abundance measured 

as mass fractionation via measuring the x-rays energy (determined relative to either 

energy or wavelength) and intensity (Riddle, 1993). A ray of electrons exits the sample 

and secondary X-rays are analyzed according to the wavelength. It has excellent spatial 

resolution and emits an electron beam 1 and 2 J.tm in diameter meaning that very small 

samples areas can be used (Rollinson, 1993). 

Image data can be achieved by scanning the electron beam across the surface of 

the sample in a raster pattern. As the beam scans t surface, the intensity of the 

backscattered electrons is measured a detector that is mounted above the sample in the 

specimen chamber. The spot on the electron ray tube (CRT) is scanned at the same time 

as the probe beam and its strength is adjusted in proportion to that of the measured 

backscattered electron signal. The resulting display on the CRT is the resultant electron 

micrograph mage of the sample (Riddle, 1993). 

A3. 5. 2 Sample Preparation and Microanalysis 

Specimens that are analyzed using this instrument must be prepared as thin 

sections or blocks that have highly polished flat surfaces. The petrographic thin sections 

that were prepared for the pyrite trace element analyses and the puck mounts that were 

prepared for the U-Pb analyses were both highly polished and ready for carbon coating. 

The surfaces of the specimens must be coated with a thin film (20nm) of carbon to enable 
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the electron beam to conduct to earth (Riddle, 1993). The thin sections and pucks were 

analyzed on separate occasions. 

The specimens were loaded into a Cameca SX-50 microprobe that is configured 

with three wavelength discriminating (WD) spectrometers and an Oxford Instruments 

energy dispersive (ED) detector. The laboratory at MUN utilizes Samx software to 

control the instrument. The specimen surface has to be adjusted to lie on the plane of 

focus of the X-ray spectrometers. This is achieved by examining the specimen through 

an integral binocular microscope and adjusting the height until it comes into sharp focus. 

The thin sections for the trace element of pyrite analysis were analyzed using the 

WD x-ray spectrometer, which allows the precise and accurate measurement of minor 

and major elements at concentrations typically as low as 0.01 wt %. The stage was 

moved around to locate the pyrite grains. Once a grain was located, the electron beam 

was focused above the sample and the analysis was implemented to produce the precise 

Fe and S concentrations ofteh grains. The resulting data was used as an internal FeS 

standard. The pucks for the U-Pb analysis were imaged in backscattered electron mode 

to determine if any chemical or compositional zoning was evident in the zircon grains. 

A3.6 Trace Element Geochemical Analysis of Pyrite via LAM-ICP-MS 

A3. 6.1 Introduction 

Quantitative analysis of mineral chemistry via LAM-ICP-MS is useful because it 

enables the measure of a wide range of trace elements using only a small sample with 

very low detection limits and good accuracy and precision (Jenner et al., 1990). 
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AJ. 6. 2 Sample preparation and data collection for pyrite chemistry 

Samples with visible sulphides from different areas within the Central Mobile 

Belt were selected for analysis. Polished thin sections were cut from the samples, which 

were subsequently studied to ascertain the mineralogy. Samples W90-48, W90-49A, KP-

32-H1 and W89-82 were not collected by the author and an internal standard was used 

for those cases. The internal standard was MASS 1, a United States Geological Survey 

pressed powder pellet. Samples JOD23, JOD80A, JOD98A, JOD 117 and JOD 119 were 

collected by the author for this study and the pyrite grains from each sample were 

analyzed using an electron microprobe to obtain acquired independent FeS standards. 

The method for quantitative analysis of pyrite by LAM-ICP-MS as described below was 

obtained from Hinchey et al. (2003). 

The naturally occurring internal standard, usually a major element that is present 

in the calibration standard and the unknown mineral, is calibrated using an external 

calibration. Using an internal standard corrects for the multiplicative effects of matrix, 

drift and, specifically for laser ablation, the amount of sample ablated (e.g. Longerich, 

2001). It also allows for calibration of different mineral matrixes in regards to one 

another and for the use of changing energies of the laser to optimize signals from matrix 

to matrix. The internal standard for the samples collected by the author was sulphur 

(Sylvester, 2001) and the concentration ofthis element was determined by electron

microprobe analyses (EMP A) of pyrite in each sample. Refer to Longerich et al. ( 1996) 

for a detailed discussion on the equations for calibration and sample concentration 

calculations that were used in this study. 
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Table A3.1: List of igneous and sedimentary samples with location and description for XRF analysis. 

Sample Location (UTM) Description Nomenclature 
JODl5 674259/5445813 Fine-grained, white to grey, greywacke host to auriferous Davidsville Group (Blackwood, 1982) 

mineralization at the Knob Hill Prospect. 

JOD20 671020/5442038 Fine-grained, quartz rich greywacke host to auriferous Davidsville Group (Blackwood, 1982) 
mineralization at the Third Pond Prospect. 

JOD21 645161/5425138 Slightly sericitized, fine-grained diorite host rock to auriferous MPIS (Tallman, 1990b, 1991a; 
mineralization at the Hurricane Prospect along Salmon River. Dickson, 1992) 

JOD22 645161/5425138 Sericitized, mineralized diorite host to the Hurricane Prospect MPIS (Tallman, 1990b, 1991a; 
along Salmon River. Dickson, 1992) 

JOD25 644408/5425289 Slightly sericitized diorite host rock with <5% disseminated MPIS (Tallman, 1990b, 1991a; 
sulphide at the Corsair Prospect along Salmon River. Dickson, 1992) 

JOD39 647570/5418043 Dense, dark grey to black, fine-grained sedimentary rock at a Caradocian Shale (Boyce et al., 1994) 
sheared contact zone at Careless Brook. 

JOD44A 636504/5391062 Silicified, dark grey siltstone with minute quartz filled tension Davidsville Group (Blackwood, 1981; 
gashes adjacent to the LBNL Prospect. Tallman, 1989a) 

JOD45A 636504/5391062 Fine-grained, white to grey leucogranitic host to the LBNL Davidsville Group 
auriferous Prospect in Paul's Pond region Unnamed granitic intrusion 

(Blackwood, 1981; Tallman, 1989a) 

JOD45B 636504/5391062 Fine-grained, white to grey leucogranitic host to the LBNL Davidsville Group 
auriferous Prospect in Paul's Pond region Unnamed granitic intrusion (Tallman, 

1989a) 

JOD46A 635216/5391238 Angular sedimentary float collected from trench float at the Davidsville Group 
Roadside Gabbro Showing in the Paul's Pond region. Greywacke (Tallman, 1989a) 
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Table A3.1 cont... 
JOD46B 635216/5391238 Angular, unmineralized, fine-grained gabbroic float from a dirt Davidsville Group 

mound at the Roadside Gabbro Showing in the Paul's Pond Unnamed gabbroic intrusion (Tallman, 
regiOn. 1989a) 

JOD57B 662766/5450790 Green siltstone adjacent to gabbroic intrusion. Ten Mile Lake Formation (Currie, 
1995a) 

JOD81A 630400/5387150 Fine-grained gabbro with disseminated sulphides, host to the Davidsville Group 
Greenwood Pond #2 auriferous prospect. Small gabbroic intrusion (Tallman, 

1989a) 

JOD82A 631150/5388800 Fine-grained greywacke host with disseminated sulphides, host Davidsville Group (Blackwood, 1981; 
to the A-Zone Extension auriferous prospect. Tallman, 1989a) 

JOD83A 657181/5425631 Medium grained greywacke host to the auriferous Knob Prospect Davidsville Group (Blackwood, 1982; 
in Appleton. Collins, 1991) 

JOD86B 656026/5426826 Fine grained greywacke host with <3% sulphide disseminations Davidsville Group (Blackwood, 1982; 
and small quartz veins Woldeabzghi, 1988) 
Collected near the Bowater Prospect. 

JOD90A 641210/5408962 Red, unaltered granite from Red Rock River. MPIS (Dickson, 1992) 

JOD90B 641195/5408973 Red, unaltered granite from Red Rock River: MPIS (Dickson, 1992) 

JOD96D 669906/5462509 Medium grained, red volcanic from south of the Duder Lake Duder Complex (Currie and Williams, 
Prospects. 1995) 

JOD96G 669996/5462812 Metasedimentary rock with no apparent Fe carbonate alteration Duder Complex (Currie, 1995b); 
or mineralization collected near a faulted contact immediately 
south of the Duder Lake Prospects. 

JOD96J 670004/5462834 Metasedimentary rock collected from the faulted contact (shear Duder Group (Currie, 1995b) 
zone) immediately south of the Duder Lake Prospects. 
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Table All cont ... 
JOD97 670326/5463622 Medium grained gabbro collected from the auriferous Corvette Gabbro dyke or sill (Churchill and 

Prospect. Evans, 1992); Tectonic block, Duder 
Complex (Currie and Williams, 1995) 

JOD98 670488/5464542 Mineralized medium-grained gabbro from Goldstash. Prospect Gabbro dyke or sill (Churchill and 
Evans, 1992); Tectonic block, Duder 
Complex (Currie and Williams, 1995) 

JOD98A 670476/5464573 Medium grained gabbro from the Goldstash Prospect. Gabbro dyke or sill (Churchill and 
Evans, 1992); Tectonic block, Duder 
Complex (Currie and Williams, 1995) 

JOD100 652973/5438288 Fine-grained, dark grey to black gabbro with <5 % disseminated Gabbro dyke or sill (Evans eta/., 
pyrite. 1992), intrusive to Ten Mile Lake 

Formation (Currie, 1995a) 

JOD101 652926/5438456 Fine-grained, dark grey, silicified gabbro. Gabbro dyke or sill (Evans eta/., 
1992), intrusive to Ten Mile Lake 
Formation (Currie, 1995a) 

JOD\02 654346/5439266 Fine-grained, dark grey, silicified gabbro. Gabbro dyke or sill (Evans et a/., 
1992), intrusive to Ten Mile Lake 
Formation (Currie, 1995a) 

JOD118 617183/5428664 Fine-grained, medium to dark grey, mica rich boulder with small Botwood Group (Pickett, 1990; 
sulfide veinlets and 5 mm round blebs of pyrite collected from Dickson, 1994) 
Jumpers Brook. Pyrite and arsenopyrite-bearing sandstone 
hornfels. 

JODI20A 656077/5426977 Fine-grained, dark grey, very dense, Mn rich shale interbed with Davidsville Group 
disseminated sulphide from Appleton pit. 

JOD120B 656077/5426977 Fine-grained, dark grey, very dense Mn rich shale or siltstone Davidsville Group 
with disseminated sulphide from Appleton pit. 

JOD04-09 662775/5450772 Fine-grained, black gabbro intrusive to interbedded green and red Gabbro dyke or sill (Evans eta/., 
siltstone. 1992), intruding Ten Mile Lake 

Formation (Currie, 1995a) 

A3-16 



Table All cont ... 
JOD04-13 667551/5456465 Fine-grained, black gabbro intrusive to green siltstone with Indian Islands Group (currently 

fossiliferous interbeds. mapped as Ten Mile Lake Formation, 
Currie, 1995a) 
Gabbro dyke or sill 

JOD04-20 649599/5425395 Medium-grained, buff diorite from pit just west of Glen wood. Gabbro dyke or sill (Dickson, 1992) 

W03-35 603859/5367584 Fine-grained, light grey to green, extrusive volcanic with Rhyolite 
disseminated pyrite and arsenopyrite. 
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Table A3.2: Description and location of samples processed for sulphur isotope chemistry. 

Sample Prospect or Outcrop/ UTM Sample Description Mineral(# analyses) 
JOD08 Bellman's Pond: Pyrite rich, altered, felsic tuff clast (I Ocm wide) in Pyrite 

670009/5447133 Bellman's Pond conglomerate. Pyrite grains were 
separated out by the Frantz magnetic separator at 1.7 
AI I oo during processing for U-Pb geochronology. 

JOD23 Hurricane: Fine-grained diorite host with semi-massive sulphide Pyrite 
645161/5425138 veins up to I em in width and small patches of pyrite. 

Pyrite separates were picked from the veins and 
patches. 

JOD25 Corsair: Fine-grained diorite host with fme pyrite Pyrite (2) 
644408/5425289 disseminations. Two separate vials of pyrite separates 

were picked from crushed material. 

JOD26A Slip: Rusty, granite host with abundant sulphide Pyrite + Arsenopyrite 
643541/5438244 mineralization. Arsenopyrite and pyrite occur as 

disseminations and could not be separated because of 
fme grain size so were analyzed together. 

JOD26B Slip: Rusty, granite host with abundant sulphide Pyrite 
643541/5438244 mineralization. Disseminated pyrite and rare cubic 

grains and patches were picked from crushed material. 

JOD26B Slip: Rusty, granite host with abundant sulphide Galena 
643541/5438244 mineralization. Galena occurred as abundant large 

black cubic grains that were easily separated from grab 
sample. 
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Table A3.2: cont ... 

JOD26B Slip: Rusty, granite host with abundant sulphide Arsenopyrite 
643541/5438244 mineralization. Arsenopyrite occurred as needles and 

disseminations and exhibited twinning on some faces. 

JOD30 Gull River Sub-rounded float with semi-massive sulphides in a Pyrite 
616723/5380287 hematite altered ultramafic rock downriver from 

Breccia Pond. Pyrite is cubic and easily picked from 
sample. 

JOD36 Breccia Pond Semi massive pyrite in hematized ultramafic. Two Pyrite (2) 
616723/5380287 vials of pyrite separates were picked from the sample. 

JOD39 Careless Brook Very fme-grained, dark , dense unit at contact between Pyrite 
647570/5418043 Caradocian shale and Indian Islands Group. Pyrite 

grains were separated out by the Frantz magnetic 
separator at 1.7 AJ W during processing for U-Pb 
geochronology. 

JOD41A Hunan Quartz breccia of grey silicifed greywacke containing Stibnite 
629855/5395490 massive stibnite. Stibnite separates were picked from 

hand sample. 

JOD45A LBNL: Mineralized granite with abundant needle-like Arsenopyrite 
636504/5391062 arsenopyrite grains up to 1 em x 2 mm in size. Grains 

were picked from hand sample. 

JOD45B LBNL: Mineralized granite with abundant needle-like Arsenopyrite 
636504/5391062 arsenopyrite grains up to 1 em x 2 mm in size. Grains 

were picked from hand sample. 

JOD51B Lizard Pond: Hydrothermally altered and sheared ultramfic unit with Pyrite 
613387/5378508 some original chromite up to 5 mm. Variable amounts 

of magnesite and serpentinite alteration. Pyrite is 
disseminated and picked from crushed material. 
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JOD80A Hornet: Felsite (Evans, 1996) host rock with pyrite occurring Pyrite (2) 
629810/5388130 along quartz vein margins. Two vials of pyrite 

separates were picked from hand sample. 

JOD81A Greenwood Pond #2: Fine-grained gabbro with minor rusting from Pyrite 
630400/5387150 disseminated sulfide. Pyrite grains were separated out 

by the Frantz magnetic separator at 1.7 AI W during 
processing for U-Pb geochronology. 

JOD82A A-Zone: Mineralized greywacke host with semi massive pyrite Pyrite (2) 
631180/5388800 vein Hem wide). Some grains are cubic with surface 

striations. Pyrite picked from hand sample. 

JOD83B Knob: Vuggy quartz in greywacke with VG. Disseminated Arsenopyrite 
657156/5425610 arsenopyrite in greywacke picked from crushed 

material. 

JOD83B Knob: Vuggy quartz in greywacke with VG. Disseminated Pyrite 
657156/5425610 pyrite in quartz picked from vein hand sample. 

JOD84B Knob: Shale next to large vuggy quartz vein with large ocubic Pyrite 
657156/5425610 pyrite mineralization. Pyrite picked from hand sample. 

JOD97B Corvette: Altered, coarse-grained gabbro with disseminated Pyrite 
670488/5464542 pyrite throughout. Pyrite grains were picked from 

crushed material. 

JOD98 Goldstash: Altered, coarse-grained gabbro with disseminated Pyrite 
670488/5464515 pyrite. Pyrite grains were separated out by the Frantz 

magnetic separator at 1.7 A/5° during processing for 
U-Pb geochronology. 
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Table A3.2: cont ... 

JOD99 Flirt: Metamorphosed, seritized gabbro with cubic pyrite Pyrite 
670596/5465115 grains (lnun wide). Pyrite and arsenopyrite occur but 

mostly pyrite. Pyrite grains were separated out by the 
Frantz magnetic separator at 1.7 All o during 
processing for U-Pb geochronology. 

JOD108 Diorite intrusion west of Fine-grained diorite intrusion in Indian Islands group Pyrite 
Glenwood: sediments. Sulphide mineralization not visible in hand 
649599/5425295 sample. Pyrite grains were separated out by the Frantz 

magnetic separator at 1.7 A/5° during processing for 
U-Pb geochronology. 

JODllO Dome: Quartz breccia with pyrite grains (up to 1 nun) in Pyrite (2) 
658632/5428534 pieces of brecciated Davidsville siltstone. Grains are 

mostly cubic and striated at surface. Some 
arsenopyrite but fmer grained and less abundant. Two 
vials of pyrite separates picked from hand sample. 

JOD1JOA Dome: Quartz breccia with pyrite grains (up to 1 nun) in Pyrite 
658632/5428534 pieces of brecciated Davidsville siltstone. Pyrite picked 

from hand sample. 

JOD110A Dome: Quartz breccia with pyrite grains (up to 1 nun) in Pyrite + Arsenopyrite 
658632/5428534 pieces of brecciated Davidsville siltstone. Fine grained 

pyrite and arsenopyrite picked from crushed material. 

JOD117 Jonathon's Pond: Serpentinized ultramafic with quartz veining. Pyrite (2) 
676938/5441002 Disseminated and needle like sulfide at vein margins 

and small veinlets. Pyrite picked from hand sample. 

JOD118 Jumper's Brook: Small sulfide veinlets and patches ( 5 nun wide) in Pyrite (2) 
617183/5428664 medium-grained, mica rich, light grey to green sub 

angular boulders. Pyrite picked from hand sample. 
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Table A3.2: cont ... 

JOD119A Outflow: Pyrite occurs in quartz-brecciated siltstone and veins. Pyrite 
653807/5433344 Mineralization is very fmely disseminated in 

sedimentary unit. Some very small arsenopyrite 
needles occur in siltstone. Pyrite separates were picked 
from quartz veins. 

JOD04-13 Gabbro intrusion in Fine-grained, dark grey to black gabbro. Pyrite 
Ten Mile Lake Formation: Mineralization not obvious in hand sample. Pyrite 
667551/5456465 grains were separated out by the Frantz magnetic 

separator at 1.7 A/3 o during processing for U-Pb 
geochronology. 

JOD04-20 Diorite intrusion west Fine-grained diorite intrusion in Indian Islands group Pyrite 
of Glenwood: sediments. Sulphide mineralization not visible in hand 
649599/5425295 sample. Pyrite grains were separated out by the Frantz 

magnetic separator at 1.7 A/5o during processing for 
U-Pb geochronology. 

W03-35 Huxter's Lane: Semi-massive arsenopyrite in quartz brecciated dacite. Arsenopyrite 
603859/5367584 Arsenopyrite separates picked from hand sample. 

A3-22 



Table A3.3: Sample location and description for U-Pb Geochronology. 

Sample# Location Description # Zircon Grains Age 
JOD08 670009 5447133/ Bellman's Pond/ Pyrite rich, chlorite altered felsic tuff clast, I 0 5 1600-1800 Ma 

Davidsville Group? em wide. 

JOD21 6451615425138/ Salmon River/ Fine grained, unaltered, unmineralized, diorite 40 405 ± 11 Ma 
Hurricane ProspecU host rock. 
MPIS 

JOD25 644408 5425289/ Salmon River/ Fine grained, slightly mineralized, diorite host 50 430.6 ± 3.4 Ma 
Corsair ProspecU MPIS rock. 

JOD39 647570 5418043/ Careless Brook/ Dense, dark grey to black very fme-grained 20 472 ± 8.5 Ma and ca. 520 
Davidsville Group? shale. and 900 Ma 

JOD90A Red Rock Brook/ MPIS Fine to medium grained pink granite. 25 389-423 Ma 

JOD04-17 641210 5408962/ MPIS Fine to medium grained pink granite. 35 409 ± 4.5 Ma and ca. 1800 
Ma 

JOD100 652973 5438288/ Twin Ponds Fine grained, dark grey gabbro with fme 40 429.3 ± 4.4 Ma 
disseminated pyrite. 

W03-27 681434 5475798/ Charles Cove Granodiorite 40 429 ± 19 Ma with an upper 
Pluton/ Tim's Cove Prospect intercept at 1850 Ma 

W03-38 603859 5367584/ Mineralized dacite 40 494 ±7 Ma 
Coy Pond Complex/ 
Huxter Lane Prospect 
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APPENDIX4 

COMPILED DATA TABLES 



Table A4.1: Paleontological sample location, description and fossil assemblages for samples collected from the Botwood Basin 
and environs. 

Sample NLDNR UTM Description Fossil Assemblage Age 
Number Number (NAD27) Range 
JOD-37A 2004F002 647491E Careless Brook fossiliferous Cnidaria-Tabulata-? F avosites ( sp. undet.) Silurian 

5418269N limestone from a debris flow. Echinodermata-Crinoid (gen. et sp. undet.) 
Rusty weathering, micaceous 
fine-grained, dark grey 
calcareous sandstone. 

JOD-86D 2004F003 656026E Appleton Pit graptolites in Hemichordata-Graptolithina- Ordovician 
5426826N graptolitic black slate. Climacograptus bicornis (Hall) (Caradoc) 

Climacograptus (sp (p).) 

JOD96E 2004F004 670020E Fossil bearing limestone from Cnidariaa-Tabulata-? F avosites ( sp. undet.) Wenlock 
5462754N fossiliferous beds from south Bryozoa-Ptilodictya scalpellum (Lonsdale) 

ofDuder Lake Au Prospects. [branching stick forms] 

JOD96I 2004F005 670004E Fossiliferous beds from Brachiopoda-Articulata (gen. et sp. undet.) Middle 
5462834N Duder Lake. Small, badly Cambrian-

deformed (in big cobble) Upper 
Permian 

JOD113 2004F006 654920E North Salmon Pond Access Bryozoa-Ptilodictya scalpel! urn (Lonsdale) Silurian 
5430998N Road fossiliferous limestone [branching stick forms (abundant)] (Wenlock) 

from wood ship pit. Echinodermata-Crinoid (gen. et sp. undet.) 
[abundant] 
Mollusca-Cephalopoda? (gen. et sp. undet.) 
[straight form] 
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JOD114 2004F007 654515E North Salmon Pond Road Anthozoa-Tabulata-? F avosites ( sp. undet.) Silurian 
430031N fossiliferous limestone. Bryozoa-Ptilodictya scalpellum (Lonsdale) 

[branching stick forms] 
Echinodermata-Crinoid (gen. et sp. undet.) 

JOD04-12 2004F045 664908E Re-crystallized fossiliferous Echinodermata-Crinoidea (gen. et sp(p ). Middle 
5449784N outcrop from Ten Mile Lake undet.) Cambrian-

Resource Road [columnals (recrystallized)] Upper 
Permian 

JOD04-14 2004F046 666223E Medium to coarse-grained Brachiopoda-Articulata (Gen. et sp. undet.) Middle 
5452666N pebbly sandstone (or [heavily ribbed form] Cambrian-

conglomerate). lxlm purple ?Bryozoa (Gen. et sp. undet.) Upper 
fossiliferous outcrop or Cnidaria-Anthozoa-Zoantharia-Tabulata- Permian 
boulder. Favosites (sp. undet.) 

Echinodermata-Crinoidea (gen. et sp(p ). 
undet.) [columnals] 

Note: Fossils are poorly preserved 

JOD04-15 2004F047 665602E Large piece of very hard, Bryozoa-Ptilodictya scalpellum (Lonsdale) Wenlock 
5451534N fossil rich, red, sandy 

siltstone or mudstone. 
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Table A4.2: Pressed pellet X-Ray Fluoresence (XRF) data for intrusive and sedimentary rocks from the Botwood Basin. 

Sample JOD15 JOD20 JOD21 JOD22 JOD25 JOD39 JOD44A JOD44B JOD45A JOD45B 

Si02 wt% 71.12 46.14 58.52 60.89 57.77 67.97 70.52 63.33 64.69 69.62 

Al203 wt% 13.24 16.37 13.26 23.15 13.4 11.23 17.78 21.58 13.75 18.96 

Fe203 wt% 4.13 8.37 9.9 4.18 9.98 3.13 5.08 4.65 5.58 2.74 

Ti02 wt% 0.41 0.44 1.08 1.09 1.18 0.25 0.41 0.48 0.42 0.44 

MnO wt% 0.17 0.16 0.15 0.01 0.15 0.06 0.1 0.12 0.13 0.02 

MgO wt% 0.3 6.82 2.96 0.63 2.21 1.82 0.44 0.64 0.35 0.49 

CaO wt% 3 3 3.81 0.3 3.79 1.82 0.29 1.1 1.57 0.26 

Na20 wt% 1.23 3.74 2.79 0.09 3.01 5.08 <LD 0.57 2.64 2.85 

K20 wt% 1.99 1.99 2.26 4 2.38 0.49 4.25 5.1 3.55 3.17 

P205 wt% 0.06 0.08 0.24 0.22 0.24 0.08 0.17 0.15 0.21 0.14 

Total wt% 95.9 90.81 95.19 I 00.32 94.33 91.93 99.76 100.94 93.18 102.17 

All elements were recalculated to I 00% anhydrous 
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Table A4.2: Pressed pellet X-Ray Fluoresence (XRF) data for intrusive and sedimentary rocks from the Botwood Basin. 

Sample JOD15 JOD20 JOD21 JOD22 JOD25 JOD39 JOD44A JOD44B JOD45A JOD45B 

s ppm 51 375 134 22389 165 399 1134 5551 145 5916 
Rb ppm 50.4 37.5 105.5 148 124.6 12.5 134.5 152.3 92 82.9 
Sr ppm 68.2 402.2 193.9 11.2 139.2 157.9 30.8 66 148.8 69.3 
y ppm 5.9 7.1 46.3 59.8 44.7 13.3 76.7 111.2 68.4 84.1 
Zr ppm 113.5 95.2 281.9 319.5 283.1 70.1 563.8 690.6 564 608.2 
Nb ppm 4 5.5 13.7 15.2 14 6.5 28.5 37.8 28 30.1 
Ba ppm 302 221 434 77 402 169 495 890 786 609 
Cr ppm 686 424 16 ll 31 36 <LD <LD 11 <LD 
Ni ppm 27 38 17 13 14 12 6 8 6 <LD 
Cu ppm 10 58 13 8 6 0 14 10 32 8 
Zn ppm <LD 21 39 24 24 4 24 41 31 <LD 
Ga ppm 8 18 22 28 22 10 22 33 21 34 
As ppm 64 18 <LD 233 <LD 0 <LD 10159 2l<LD 11871 
Ce ppm <LD <LD 80 165 106 0 159 176 2005 
Cl ppm 51 62 175 49 211 0 52 87 3.55 <LD 
Sc ppm <LD 30 31 29 24 10 31 39 28 34 
v ppm 77 222 78 73 80 19 <LD <LD <LD <LD 
Pb ppm <LD 14 14 11 11 20 16 13 36 12 
Th ppm <LD 7 11 6 10 5 17 20 15 15 
u ppm <LD <LD <LD <LD <LD 0 7 8 <LD 6 

All elements were recalculated to 100% anhydrous 
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Table A4.2: Pressed pellet X-Ray Fluoresence (XRF) data for intrusive and sedimentary rocks from the Botwood Basin. 

Sample JOD46A JOD46B JOD57A JOD80A JOD81A JOD82A JOD83A JOD86B JOD90A JOD90B 

Si02 wt% 10.75 47.97 71.23 72.19 47.99 48.76 58.94 57.08 69.76 70.7 

Al203 wt% 1.63 11.91 9.15 14.81 12.53 9.98 14.6 23.81 13.64 13.29 

Fe203 wt% 1.19 17.03 3.46 2.97 14.67 23.3 7.31 2.49 3 2.82 

Ti02 wt% 0.15 1.75 0.41 0.38 2.23 0.33 0.96 0.51 0.35 0.34 

MnO wt% 0.14 0.29 0.06 0.12 0.26 0.18 0.14 0.06 0.04 0.05 

MgO wt% 0.98 4.81 2.92 0.19 4.81 0.26 6.57 2 0.61 0.62 

CaO wt% 60.39 4.98 5.6 0.75 6.87 0.26 0.52 0.66 0.3 0.36 

Na20 wt% 0.34 2.26 2.14 4.3 3.27 0.68 3.04 0.74 3.25 3.56 

K20 wt% 0.28 0.57 1.91 1.86 1.03 1.52 1.28 5.19 4.22 4.3 

P205 wt% 0.04 0.44 0.1 0.23 0.37 0.15 0.14 0.06 0.05 0.05 

Total wfl/o 76.08 92.39 97.21 99.22 94.03 98.9 93.79 93.11 95.22 96.09 

All elements were recalculated to 100% anhydrous 
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Table A4.2: Pressed pellet X-Ray Fluoresence (XRF) data for intrusive and sedimentary rocks from the Botwood Basin. 

Sample JOD46A JOD46B JOD57A JOD80A JOD81A JOD82A JOD83A JOD86B JOD90A JOD90B 

s ppm 352 661 78 4624 319 48596 261 869 59 39 
Rb ppm 8.1 19.4 52 50 35.1 44.6 42.1 165.4 202.2 200.4 
Sr ppm 392 162 197.7 106 232.5 36.6 170.1 53.4 39.9 42.3 
y ppm 2.9 47.7 14.2 70.7 49.9 47.8 18.3 25.2 56 57.8 
Zr ppm 64.2 294.5 236.5 571.7 296.5 460.8 159.4 166.2 323.2 326.4 
Nb ppm 2 10 9.5 29.9 10.4 22.5 11 15.7 14.9 14.7 
Ba ppm 92 !52 629 427 220 445 446 1923 491 512 
Cr ppm 41 <LD 157 <LD 25 <LD 316 53 14 0 
Ni ppm <LD 22 24 5 21 <LD 82 22 4 5 
Cu ppm 5 32 <LD 5 31 23 22 <LD 0 0 
Zn ppm <LD 78 <LD 16 76 <LD 21 <LD 14 25 
Ga ppm <LD 26 8 19 24 33 14 23 20 20 
As ppm <LD 39 <LD 464 22 9807 21 32 0 0 
Ce ppm <LD <LD 65 262 62 981 100 73 !55 126 
Cl ppm 337 <LD 85 <LD 0 <LD 54 56 141 179 
Sc ppm 35 11 27 53 20 28 <LD 10 0 
v ppm 22 505 60 11 430 13 161 41 8 11 
Pb ppm 5 6 9 15 7 700 16 7 12 14 
Th ppm <LD <LD 6 14 0 12 8 12 20 22 
u ppm <LD <LD <LD 6 0 <LD <LD 9 8 9 

All elements were recalculated to I 00% anhydrous 

A4-6 



Table A4.2: Pressed pellet X-Ray Fluoresence (XRF) data for intrusive and sedimentary rocks from the Botwood Basin. 

Sample JOD96D JOD96G JOD96J JOD97B JOD98 JOD98A JOD100 JOD101 JOD102 

Si02 wt% 53.53 37.23 28.17 33 40.93 33.2 45.27 45.82 46.94 

Al203 wt% 11.2 11.34 6.94 5 10.36 13.81 11.41 10.16 11.89 

Fe203 wfl/o 4.67 13.67 11.79 23.57 17.4 18.35 [ 1.79 17.06 15.35 

Ti02 wfl/o 0.6 1.42 0.87 2.02 3.39 1.16 0.87 3.63 3.23 

MnO wfl/o 0.13 0.18 0.41 0.35 0.23 0.33 0.41 0.31 0.25 

MgO wfl/o 3.18 15.8 13.11 5.66 4.26 8.39 4.94 6.92 4.67 

CaO wfl/o 10.54 4.24 20.42 6.93 6.52 5.35 7.13 7.42 6.59 

Na20 wfl/o 1.82 1.34 1.26 1.17 2.04 2.38 2.39 2.17 2.38 

K20 wt% 2.12 0.37 O.o7 0.16 0.68 0.55 1.11 0.75 1.55 

P205 wfl/o 0.17 0.26 0.24 0.14 0.38 0.11 0.88 0.42 0.51 

Total wfl/o 87.96 86.18 83.28 83.24 86.19 85.6 86.2 95.2 93.36 

All elements were recalculated to 100% anhydrous 
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Table A4.2: Pressed pellet X-Ray Fluoresence (XRF) data for intrusive and sedimentary rocks from the Botwood Basin. 

Sample JOD96D JOD96G JOD96J JOD97B JOD98 JOD98A JODIOO JODIOI JODI02 

s ppm 4262 123 1427 4441 2464 6916 1045 1281 812 
Rb ppm 43.9 12 3.3 3.2 28.5 23 49.4 28.9 59.2 
Sr ppm 142.7 105.6 223.5 144.7 191.2 262 201.5 213.2 225.7 
y ppm 20.3 13.8 10.7 33.8 42.4 23.1 56.3 45.2 54.6 
Zr ppm 224.4 184.3 113.8 123.4 264.3 97.3 240.8 240,6 325.3 
Nb ppm 6.2 23 15.4 4.4 7.8 2.7 12.7 9.8 11.2 
Ba ppm 199 154 155 61 134 257 192 275 205 
Cr ppm 234 580 669 30 27 332 50 82 31 
Ni ppm 25 235 191 26 19 103 26 36 23 
Cu ppm 4 20 31 86 27 72 33 43 17 
Zn ppm 15 103 42 62 68 34 86 97 50 
Ga ppm 9 21 14 18 21 19 25 22 27 
As ppm 141 121 47 23 0 59 0 0 0 
Ce ppm 97 207 154 <LD 0 <LD 0 0 62 
Cl ppm 0 65 80 <LD 104 46 556 980 495 
Sc ppm 20 24 37 46 37 55 45 44 48 
v ppm 112 276 244 289 664 259 303 632 451 
Pb ppm 13 <LD 32 <LD 10 <LD 12 8 6 
Th ppm 4 16 10 <LD 0 <LD 6 0 4 
u ppm 0 <LD 0 <LD 0 <LD 5 0 0 

All elements were recalculated to 100% anhydrous 
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Table A4.2: Pressed pellet X-Ray Fluoresence (XRF) data for intrusive and sedimentary rocks from the Botwood Basin. 

Sample JOD120A JOD1208 JOD04·09 JOD04-13 JOD04·20 

Si02 ~lo 12.61 18.41 45.49 44.97 44.61 

Al203 ~lo 3.68 3.84 11.93 11.25 10.93 

Fe203 ~/o 8.21 9.04 16.64 17.4 15.07 

Ti02 ~lo 0.18 0.14 3.31 2.56 2.51 

MnO ~lo 12.03 9.74 0.27 0.31 0.23 

MgO ~/o 10.24 10.48 4.99 4.24 8.86 

CaO ~lo 29.45 28.07 6.19 5.87 5.04 

Na20 ~lo 0.2 0.2 2.55 2.35 1.82 

K20 ~lo 0.96 0.98 0.62 1.35 0.67 

P205 ~/o 0.98 0.73 0.5 1.13 0.61 

Total wt% 78.54 81.63 92.97 91.9! 90.92 

All elements were recalculated to 100% anhydrous 
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Table A4.2: Pressed pellet X-Ray Fluoresence (XRF) data for intrusive and sedimentary rocks from the Botwood Basin. 

Sample JOD120A JOD120B JOD04-09 JOD04-13 JOD04-20 

s ppm 20391 24978 730 1114 921 
Rb ppm 27.8 27.2 23.8 51.2 27.4 
Sr ppm 851.4 1019.5 250.5 276.1 283.5 
y ppm 28.7 39.2 55.8 65.3 51.2 
Zr ppm 31 38.3 301.5 281.9 696.4 
Nb ppm 4.5 3.3 9.6 14.6 10.7 
Ba ppm 801 614 522 298 850 
Cr ppm 28 56 27 16 23 
Ni ppm 438 206 23 20 37 
Cu ppm 74 62 25 29 32 
Zn ppm 41 21 78 88 58 
Ga ppm 7 4 20 24 23 
As ppm 216 66 20 0 0 
Ce ppm 120 159 77 97 95 
Cl ppm 0 105 140 139 113 
Sc ppm 13 0 39 50 49 
v ppm 55 70 475 291 293 
Pb ppm 31 24 7 13 6 
Th ppm 0 0 0 6 4 
u ppm 7 0 0 0 0 

All elements were recalculated to 100% anhydrous 
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Table A4.3: Sulphur isotope values for Botwood Basin sulphide seperates. 

Sample Number Location ProspecU Name Host Rock Mineral VCDT 
JOD08 670009/5447133 Bellman's Pond Tuff? pyrite 9.98 
JOD23 645150/5425150 Hurricane Diorite pyrite 3.8 
JOD25 644408/5425289 Corsair Diorite pyrite 1.21 
JOD25 644408/5425289 Corsair Diorite I pyrite 2.18 
JOD26A 643541/5438244 Slip Granite pyrite + arsenopyrite 1.69 
JOD26B 643541/5438244 Slip Granite arsenopyrite 2.93 
JOD26B 64354115438244 Slip Granite pyrite 1.02 
JOD26B 643541/5438244 Slip Granite I galena 1.6 
JOD30 620899/5379987 Gull River Float peridotite pyrite 7.47 
JOD36 616723/5380287 Breccia Pond serpentinite pyrite 6.96 
JOD36 616723/5380287 Breccia Pond serpentinite I pyrite 7.11 
JOD39 647570/5418043 Careless Brook shale I pyrite 18.67 
JOD41A 629855/5395490 Hunan lgreywacke stibnite -6.43 
JOD45A 636504/5391062 LBNL I granite? arsenopyrite 2.9 
JOD45B 635748/5390002 LBNL !granite arsenopyrite 3.13 
JOD51B 613387/5378508 Lizard Pond magnesite !pyrite 6.46 
JOD80A 629810/5388130 Hornet ftesite? pyrite 3.17 
JOD80A 629810/5388130 Hornet ftesite? !pyrite 3.57 
JOD81A 630400/5387150 Greenwood Pond #2 !gabbro !pyrite 0.98 
JOD82A 631150/5388800 A-Zone greywacke pyrite 0.58 
JOD82A 631150/5388800 A-Zone lgreywacke I PYrite II 1.28 
JOD83B 657156/5425610 Knob greywacke pyrite -0.56 
JOD83B 657156/5425610 Knob greywacke arsenopyrite -0.95 
JOD84B 6573341/5425531 Knob shale !pyrite -0.07 
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Table A4.3: Sulphur isotope values for Botwood Basin sulphide seperates (cont ... ). 

Sample Number Location Prospect Host Rock Mineral VCDT 
JOD97B 670346/5463748 Corvette gabbro pyrite -0.02 
JOD98 670488/5464542 Gold stash gabbro pyrite 0.48 
JOD99 670596/5465115 Flirt gabbro I pyrite -0.1 
JOD108 649599/5425395 Diorite Intrusion diorite pyrite 0.89 
JOD04-20 649599/5425395 Diorite Intrusion diorite I pyrite 0.23 
JOD110 658632/5428534 Dome siltstone pyrite 0.57 
JOD110 658632/5428534 Dome siltstone pyrite 0.41 
JOD110A 658632/5428534 Dome siltstone pyrite 0.81 
JOD110A 658632/5428534 Dome siltstone pyrite + arsenopyrite -0.35 
JOD117 676938/5441002 Jonathon's Pond serpentinite pyrite -8.2 
JOD117 676938/5441002 Jonathon's Pond serpentinite pyrite -6.27 
JOD118 617183/5428664 Jumpers Brook metapelite pyrite 2.81 
JOD118 617183/5428664 Jumper's Brook metapelite Qyrite 3.93 
JOD119A 653807/5433344 Outflow siltstone pyrite -4.1 
W03-35 603859/5367584 Huxter's Lane rhyolite arsenopyrite 8.83 
JOD04-09 662775/5450772 Gabbro intrusion gabbro pyrite 1.26 
JOD04-13 66755 115456465 Gabbro intrusion gabbro I pyrite 0.26 
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Table A4.4a: Trace element content of pyrite grains from the Hornet Prospect. 

Sample JOD80A 
Au As Se Sb Te w Hg Pb 

ppm ppm ppm ppm ppm ppm ppm ppm 

0.162 672.999 0.000 0.956 0.000 0.000 0.514 556.515 
2.834 6865.006 0.000 0.101 0.000 0.000 0.423 0.053 
0.000 370.549 0.000 0.000 0.000 0.000 0.629 0.626 
0.824 7142.952 28.924 0.171 0.000 0.261 0.305 0.063 
8.040 10180.659 0.000 0.016 0.000 0.530 0.517 0.591 
0.249 5968.817 0.000 12.752 3.884 0.046 0.346 9.681 
1.360 7837.038 20.121 2.953 0.000 0.000 0.249 2.536 
1.946 9077.856 13.213 9.257 0.048 1.765 0.354 11.936 
0.471 7099.622 0.655 2.858 4.354 0.735 0.615 3.365 
0.119 4824.075 20.678 0.441 0.000 0.000 0.379 0.291 
1.046 1156.146 20.458 5.234 2.328 1.198 0.147 34.369 
0.184 1538.110 0.000 1.320 0.000 0.342 0.331 2.030 
0.326 2978.815 0.000 2.102 0.000 0.627 0.423 2.345 
0.443 3997.460 0.000 0.667 2.565 0.000 0.448 0.945 

Table A4.4b: Trace element content of pyrite grains from the Goldstash Prospect. 

Sample JOD98A 
Au As Se Sb Te w Hg Pb 

ppm ppm ppm ppm ppm ppm ppm ppm 

0.000 0.287 10.238 0.584 1.607 0.000 5.343 6.773 
0.046 6.562 1.871 16.298 0.000 0.000 5.227 196.905 
0.000 2.281 0.000 25.193 0.000 0.000 10.486 386.763 
0.000 0.351 0.283 0.041 0.000 0.000 5.044 1.074 
0.034 1.758 0.000 1.572 0.000 0.309 10.583 14.797 
0.033 0.000 10.327 0.059 0.000 0.147 9.798 2.109 
0.000 0.000 1.064 0.171 0.909 0.070 1.153 1.920 
0.000 0.202 10.759 0.000 0.000 0.239 0.670 0.527 
0.000 0.254 0.000 2.156 1.276 0.000 1.205 1.336 
0.013 0.000 0.000 0.413 1.055 0.000 0.894 3.135 
0.073 20.706 14.829 5.799 0.928 0.000 1.258 5.357 
0.019 0.851 0.317 2.167 1.956 0.256 5.470 2.180 
0.114 0.000 13.440 0.325 0.000 0.093 0.873 1.766 
0.034 10.436 14.039 5.682 1.532 0.520 2.721 15.793 
0.000 0.000 4.757 0.067 0.000 0.196 7.204 1.266 
0.000 12.747 1.556 7.145 0.000 0.000 1.751 129.251 
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Table A4.4c: Trace element content of pyrite grains from the Outflow Prospect (Piper Zone). 

Sample JOD 119 
Au As Se Sb Te w Hg Pb 

ppm ppm ppm ppm ppm ppm ppm ppm 

0.036 17.049 0.000 111.003 0.000 0.337 0.154 0.215 
0.069 58.129 7.913 51.038 0.000 18.517 0.176 1.161 
0.066 270.757 5.768 19.915 0.777 0.039 0.582 0.263 
0.000 229.929 13.504 137.265 1.412 0.597 1.093 0.417 
0.051 21218.702 19.848 506.553 1.329 0.000 0.361 0.077 
0.000 19522.099 26.732 507.965 0.000 0.000 0.367 0.424 
0.000 60.397 22.846 26.405 2.420 0.000 0.464 0.533 
0.090 91.454 32.132 53.159 0.000 0.214 0.761 0.360 
0.157 1689.018 0.000 352.484 1.311 0.031 0.634 0.042 
0.107 86.294 5.315 107.815 0.000 0.276 1.247 0.943 
0.189 88.404 0.000 14.713 1.892 0.295 1.429 0.325 
0.000 121.912 22.360 82.275 4.257 0.000 0.285 0.148 
0.156 268.142 38.343 7.704 0.000 0.000 0.474 0.217 
0.066 322.358 6.199 47.250 0.000 0.489 0.725 0.133 
0.132 288.280 0.000 18.044 0.000 0.000 0.152 0.067 
0.055 248.946 0.000 12.675 0.000 0.121 0.579 0.076 

Table A4.4d: Trace element content of pyrite grains from the Jonathon's Pond Prospect. 

Sample JOD117 
ppm ppm ppm ppm ppm ppm ppm ppm 

0.160 18911.462 14.869 571.321 1.242 0.225 0.342 0.057 
0.000 325.467 0.000 170.941 0.000 0.000 0.843 0.089 
0.099 386.019 0.000 14.773 0.000 0.175 0.572 0.190 
0.000 337.855 5.862 30.034 0.000 0.000 0.262 0.324 
0.050 1588.137 8.336 145.589 0.000 0.000 1.545 0.109 
0.000 299.150 16.520 18.739 0.552 0.147 0.378 0.189 
0.000 433.023 21.998 41.753 0.401 0.000 0.531 0.484 
0.027 141.265 0.000 46.442 0.000 0.011 0.663 0.219 
0.000 144.341 1.466 11.994 2.785 0.000 0.341 0.238 
0.000 515.490 25.177 21.552 3.402 0.317 0.872 0.245 
0.034 226.203 16.508 38.345 0.000 0.000 0.492 0.103 
0.171 347.492 0.000 23.637 0.603 0.023 0.534 0.173 
0.153 428.135 0.000 138.614 2.058 3.190 0.709 0.764 
0.090 81.518 0.000 192.827 0.505 0.619 0.826 1.084 
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Table A4.4e: Trace element content of pyrite grains from the Hurricane Prospect. 

sample JOD23 
Au As Se Sb Te w Hg Ph 

ppm ppm ppm ppm ppm ppm ppm ppm 

6.355 8434.274 9.670 9.601 2.585 0.162 0.578 4.512 
6.380 9009.750 11.819 4.064 0.043 1.225 0.000 0.775 

13.234 9141.273 6.113 0.705 1.665 0.000 0.165 0.705 
7.131 9671.945 0.000 16.579 0.543 0.208 0.355 8.081 
7.856 10161.063 0.000 10.249 0.000 0.119 0.261 3.854 

16.864 10147.837 1.017 15.364 0.000 0.000 0.255 6.298 
30.424 16763.947 0.000 24.014 0.000 0.143 0.374 11.168 
11.929 9359.155 0.000 0.396 0.000 0.000 0.176 0.306 
25.049 15309.997 0.000 5.667 0.088 0.187 0.394 1.723 
13.208 16722.562 0.000 42.132 0.000 0.000 0.706 5.719 
18.522 22990.093 1.412 127.145 0.000 0.406 1.264 20.484 
72.977 531244.400 15.634 5477.800 0.000 64.326 1.368 2.579 
64.419 484849.400 0.000 3976.791 1.095 6.879 1.026 28.452 
50.121 25811.456 7.844 4.418 1.855 0.000 0.164 1.741 

108.099 27188.653 17.262 64.090 2.104 1.047 0.576 28.017 
20.751 16159.601 16.052 4.762 1.330 0.376 0.000 1.313 

Table A4.4f: Trace element content of pyrite grains from the Bowater Prospect. 

Sample W90-48 
Au As Se Sb Te w Hg Pb 

ppm ppm ppm ppm ppm ppm ppm ppm 
0.04 1085 19 74 0 0.63 3.7 25 
0.01 760 29 39 0 0.17 2.8 2.4 
0.08 1257 56 116 0 0.12 2.6 21 

0.1 1359 45 103 0 0.11 1.5 58 
0.18 1189 48 226 0 0.15 2.4 25 
0.03 956 37 92 0 0.18 3.3 32 
0.87 1941 39 175 0 0.57 2.6 142 
0.72 1680 38 294 0.65 0.14 2.7 126 
0.73 1698 38 300 0.61 0.14 2.7 128 
0.23 1278 85 156 0 0.12 1.8 83 
0.22 1333 43 117 0 0.06 2.2 29 
0.53 662 67 102 0 0 0.85 100 

1.4 3817 57 182 0 0.51 1.7 164 
0.13 1420 59 109 0 0.25 3 47 
0.09 1405 91 85 0 0.07 1.3 40 

1.3 2984 110 246 0 0.48 1.9 308 
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Table A4.4g: Trace element content of pyrite grains from the Outflow Prospect (Mustang Zone). 

Sample W90-49A 
Au As Se Sb Te w Hg Pb 

EEm EEID EEm EEID EEm EEID EEm EEID 
0.66 16779 0 173 0 0 0 108.5 
0.66 16801 0 174 0 0 0 109.5 

0.6 17564 0 981 0 0 2.6 247 
15.2 12942 65 2699 0 0 0.85 6412 
4.4 12473 78 774 5.5 0.44 0.69 255 

0.57 7301 86 220 0 0.43 1.8 63 
0.09 187 0 16 14 0 2.6 80 
0.28 1730 45 24 0 0 13.3 85 

0 281 68 42 0 3.4 7.5 66 
0 194 43 5.5 11 0 12.6 65 

1.8 13960 0 517 II 2.5 0.66 121 
1.7 11547 26 502 0 0.41 1.7 156 

0 540 70 1 6.3 1.4 0 13 
0 7.8 0 2.6 7.5 0 0 4.9 

0.18 15575 0 907 0 0 0.88 745 
4.9 31028 38 1084 0 0 1.2 1086 

Table A4.4b: Trace element content of pyrite grains from the Stog'er Tight Prospect. 

Sample W89-82 
Au As Se Sb Te w Hg Pb 

EEm EEID EEm EEID EEm EEID EEm EEID 
0.02 1479 5.8 0.05 4.3 0.14 0 2.1 

0.1 2686 8.4 0.07 22 0 0 0.47 
0 16 Ill 0 1.6 0 0.33 1.2 

0.19 21 60 0.39 3 0.2 0.21 9.2 
0.07 97 119 0.55 5.2 0.12 0.23 2.8 

1.2 45 32 0.32 6.6 0 0.92 17 
0.7 15 62 0.48 2.8 0 0.31 5.5 

0.04 2384 23 0.04 3.2 0 0.34 0.88 
0.04 33 94 0.1 2.7 0 1 4.6 

0 24 47 0.08 1.8 0.09 0.59 0.59 
0.02 20 55 0 0 0 1.1 0.46 
0.06 26 150 0 2.3 0 0.7 2.3 
0.02 18 39 0 3.3 0 1.3 0.33 
0.11 32 53 1.19 3 48 0.44 10 
0.02 5.6 16 0 0 0 1.9 0.12 
0.42 0 13 0.54 0 0.96 0.85 1.4 
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Table A4.4i: Trace element content of pyrite grains from the Bruce Pond Prospect. 

Sample KP-32-Hl 
Au As Se Sb Te w Hg Pb 

EEm EEm EEm EEm EEm EEm EEm EEm 
0 882 90 25 0 0 1.8 93 
0 306 192 12 5.4 0 0.75 51 

0.46 1663 147 13 0 0 0.45 41 
0 171 135 8.9 2.9 0 1.2 53 

0.17 402 173 11 3.6 0 1.3 7.9 
0.09 289 250 6.7 1.9 0.51 1.3 37 
0.2 313 104 12 0 0.33 1.1 45 

0 3.2 161 4.5 0 0 0.4 20 
0 557 32 1345 0 1 1.6 0.86 

0.06 509 30 270 0 5.5 1.2 3.3 
0.06 84 0 32 0 6.9 0.79 0.18 
0.14 1945 16 506 3.2 0.89 2.2 0 

0 535 0 1407 0 l.3 2.2 0.12 
0 658 0 790 0 0.85 1.2 0.09 

0.32 320 327 27 0 0 1.3 187 
0.15 545 224 5 2.5 0.27 0.26 23 
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Table A4.5a: LAM-ICP-MS U-Pb data for magmatic zircons from the MPIS diorite (sample JOD21) collected 
on December 19, 2005. 

JOD21 CONCORDIA COLUMNS 2s% 2s% AGES Ma 
I 'utpbr~ou "IQPbtou 

spot# ~u7Pb/~J5U err ll.ltiPb/~Jllu err Rho ~u7Pb/~J5U ll.ltiPb/~Jllu ~7Pb/~35U age 1 sigma ~UtiPb/~3~U age 1sigma 

I N T E R c E p T v A L u E s 
~e19a06 0.5288 0.0255 0.0654 0.0027 0.42 9.66 8.20 431 .0 17.0 408.4 16.2 

~e19a07 0.5165 0.0436 0.0617 0.0027 0.26 16.88 8.91 422.8 29.2 385.8 16.7 

~e19a08 0.5200 0.0541 0.0674 0.0034 0.24 20.79 10.15 425.2 36.1 420.5 20.7 

~e19a09 0.5386 0.0825 0.0659 0.0017 0.09 30.62 5.31 437.5 54.4 411.4 10.6 

~e19a10 0.5228 0.1836 0.0710 0.0047 0.09 70.25 13.32 427.0 122.4 442.2 28.5 

~e19a11 0.4903 0.1582 0.0672 0.0047 0.11 64.54 13.94 405.1 107.8 419.2 28.3 

~e19a14 0.4906 0.0239 0.0633 0.0018 0.30 9.73 5.79 405.3 16.3 395.6 11.1 

~e19a15 0.4374 0.0341 0.0597 0.0021 0.22 15.59 6.91 368.4 24.1 373.9 12.5 

~e19a16 0.5051 0.0491 0.0679 0.0039 0.29 19.44 11 .38 415.1 33.1 423.3 23.3 

~e19a18 0.6101 0.0323 0.0644 0.0020 0.29 10.58 6.19 483.6 20.4 402.3 12.1 

~e19a19 0.4888 0.0203 0.0618 0.0019 0.36 8.31 6.02 404.1 13.9 386.3 11.3 

~e19a20 0.4712 0.0782 0.0629 0.0043 0.21 33.20 13.79 392.0 54.0 393.4 26.3 

~e19a21 0.5633 0.0306 0.0720 0.0035 0.44 10.88 9.67 453.7 19.9 448.3 20.9 
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Table A4.5b: LAM-ICP-MS U-Pb data for magmatic zircons from the MPIS diorite (sample JOD25) 
collected on March 2, 2004. 

JOD25 CONCORDIA COLUMNS 2s% 2s% AGES Ma 
spot# 207/235 7/5 err\206/238\ 6/8 err \ Rho 207/235 206/238 7/5 age \1 sigma ]6/8 age \1sigma 

I N T E R c E p T v A L u E s 
mr02c03 0.4977 0.0297 0.0659 0.0035 0.7779 11.94 10.61 410.2 20.1 411.7 21 '1 
mr02c04 0.5169 0.0226 0.0698 0.0022 0.6794 8.73 6.24 423.1 15.1 435.2 13.1 
mr02c05 0.5272 0.0233 0.0694 0.0031 0.8487 8.83 8.81 430.0 15.5 432.2 18.4 
mr02c06 0.4987 0.0238 0.0689 0.0026 0.7444 9.54 7.55 410.8 16.1 429.5 15.7 
mr02c07 0.4966 0.0205 0.0685 0.0023 0.7532 8.27 6.67 409.4 13.9 427.3 13.8 
mr02c08 0.6139 0.0466 0.0672 0.0032 0.5848 15.17 9.56 486.0 29.3 419.5 19.4 
mr02c09 0.5418 0.0249 0.0667 0.0043 0.8083 9.20 13.02 439.6 16.4 416.2 26.2 
mr02c13 0.5004 0.0270 0.0709 0.0019 0.6258 10.80 5.23 412.0 18.3 441 .4 11.2 
mr02c14 0.5196 0.0257 0.0715 0.0019 0.5445 9.89 5.38 424.9 17.2 445.3 11.6 
f11r02c16 0.5052 0.0332 0.0688 0.0026 0.5551 13.14 7.49 415.2 22.4 428.8 15.5 

mr02c17 0.5354 0.0264 0.0686 0.0022 0.5788 9.87 6.35 435.4 17.5 427.9 13.1 

mr02c20 0.5105 0.0242 0.0691 0.0019 0.5851 9.50 5.48 418.8 16.3 430.9 11.4 

mr02c21 0.4835 0.1089 0.0687 0.0074 0.6357 45.05 21.55 400.4 74.5 428.4 44.7 

mr02c22 0.5110 0.0285 0.0712 0.0019 0.5671 11 '16 5.43 419.1 19.2 443.1 11.6 

mr02c23 0.4290 0.0493 0.0676 0.0023 0.3848 23.00 6.77 362.5 35.1 421.5 13.8 

mr02c24 0.5109 0.0187 0.0690 0.0019 0.6689 7.34 5.61 419.1 12.6 430.0 11.7 
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Table A4.5c: LAM-ICP-MS U-Pb data for magmatic zircons from the Twin Ponds gabbro (sample JODl 00) 
collected on March 1, 2 and 24, 2004. 

JOD100 CONCORDIA COLUMNS 2s% 2s% AGES Ma 
spot# 207/235 7/5 err 206/238 6/8 err Rho 207/235 206/238 7/5 age 1 sigma 6/8 age 1sigma 

I N T E R c E p T v A L u E s 
mr01b04 0.5496 0.0338 0.0674 0.0035 0.8883 12.29 10.51 444.7 22.1 420.3 21.4 
mr01 b05 0.5522 0.0312 0.0673 0.0031 0.7728 11.31 9.12 446.5 20.4 419.8 18.5 
mr01b06 0.5554 0.0331 0.0697 0.0031 0.7809 11.92 8.92 448.6 21.6 434.3 18.7 
mr01b07 0.5394 0.0266 0.0676 0.0029 0.7977 9.88 8.59 438.0 17.6 421.7 17.5 
mr01b10 0.5539 0.0271 0.0698 0.0022 0.6799 9.78 6.32 447.5 17.7 434.7 13.3 
mr01 b11 0.5310 0.0239 0.0682 0.0025 0.8165 9.02 7.21 432.5 15.9 425.2 14.8 
mr01b12 0.5753 0.0228 0.0719 0.0026 0.8356 7.93 7.24 461.5 14.7 447.3 15.6 
mr01 b13 0.5548 0.0221 0.0685 0.0026 0.8481 7.95 7.64 448.1 14.4 427.3 15.8 
mr01b14 0.5128 0.0284 0.0683 0.0028 0.7959 11.08 8.07 420.4 19.1 425.7 16.6 
mr02a10 0.4760 0.0254 0.0661 0.0025 0.7597 10.68 7.47 395.3 17.5 412.8 14.9 
mr02a11 0.5261 0.0232 0.0658 0.0027 0.7666 8.83 8.33 429.2 15.4 410.7 16.6 
mr02a12 0.5373 0.0360 0.0694 0.0037 0.8186 13.40 10.70 436.6 23.8 432.8 22.4 
mr02a14 0.5186 0.0295 0.0663 0.0021 0.5733 11.39 6.45 424.2 19.7 413.6 12.9 
mr24a06 0.5978 0.0354 0.0736 0.0025 0.5916 11.86 6.72 475.9 22.5 457.9 14.9 
mr24a09 0.5273 0.0226 0.0652 0.0022 0.6638 8.56 6.62 430.0 15.0 407.4 13.1 
mr24a14 0.5482 0.0307 0.0670 0.0036 0.7462 11.19 10.79 443.8 20.1 417.8 21.8 
mr24a22 0.5257 0.0280 0.0654 0.0036 0.8065 10.65 11.09 428.9 18.6 408.2 21.9 
mr24a24 0.5449 0.0458 0.0665 0.0058 0.6527 16.83 17.35 441.6 30.1 415.0 34.9 
mr24a27 0.5669 0.0303 0.0642 0.0030 0.6911 10.70 9.33 456.0 19.7 401 .0 18.1 
mr24a28 0.5180 0.0272 0.0682 0.0028 0.7178 0.0023 8.31 8.06 18.2 425.2 17.1 
mr24a29 0.5621 0.0280 0.0677 0.0026 0.6288 0.0029 7.70 9.52 18.2 422.1 15.7 
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Table A4.5d: LAM-ICP-MS U-Pb data for magmatic zircons from the MPIS granite (sample JOD204-17) 
collected on December 19, 2005. 

JOD04-17 CONCORDIA COLUMNS 2s% 2s% 
~ot# 207/235 7/5 err 206/238 6/8 err Rho 207/235 206/238 7/5 age 1 sigma 6/8 age 1 sigma 

I N T E R c E p T v A L u E s 
de19a25 0.4607 0.0380 0.0602 0.0029 0.29 16.49 9.49 384.8 26.4 376.8 17.4 

de19a26 0.4799 0.0362 0.0636 0.0029 0.30 15.09 9.06 398.0 24.8 397.7 17.5 

de19a27 0.4841 0.1148 0.0625 0.0080 0.27 47.42 25.61 400.9 78.5 391.0 48.6 

de19a28 0.5158 0.0659 0.0653 0.0073 0.44 25.56 22.53 422.3 44.2 407.5 44.5 

de19a29 0.4873 0.0253 0.0635 0.0025 0.37 10.37 7.74 403.1 17.3 396.7 14.9 

de19a30 0.5411 0.0811 0.0699 0.0031 0.15 29.96 9.00 439.2 53.4 435.7 19.0 

de19a31 0.4982 0.0292 0.0631 0.0027 0.37 11.72 8.68 410.5 19.8 394.5 16.6 

de19a34 0.5497 0.0143 0.0676 0.0019 0.55 5.22 5.75 444.8 9.4 421.9 11.7 

de19a35 0.4228 0.0552 0.0634 0.0028 0.17 26.10 8.86 358.1 39.4 396.4 17.0 

de19a36 0.6185 0.1403 0.0690 0.0031 0.10 45.35 8.99 488.9 88.0 430.2 18.7 

de19a37 5.1303 0.1571 0.3020 0.0115 0.62 6.12 7.59 1841 .1 26.0 1701 .4 56.8 

de19a38 0.4774 0.0260 0.0634 0.0025 0.35 10.90 7.74 396.3 17.9 396.0 14.9 

de19a39 0.6077 0.0480 0.0763 0.0040 0.33 15.78 10.47 482.1 30.3 474.0 23.9 

de19a40 0.6680 0.0339 0.0653 0.0032 0.49 10.14 9.91 519.5 20.6 407.7 19.6 

de19a41 0.5152 0.0235 0.0633 0.0023 0.40 9.10 7.25 422.0 15.7 395.6 13.9 

A4-21 



Table A4.5e: LAM-ICP-MS U-Pb data for magmatic zircons from the MPIS granite (sample JOD90A) 
collected on March 2, 2004. 

~OD90A CONCORDIA COLUMNS 2s% 2s% AGES Ma 
spot# 207/235 7/5 err 206/238 6/8 err I Rho 207/235 206/238 7/5 age 1 sigma \618 age \1sigma 

I N T E R c E p T v A L u E s 
mr02d07 0.5992 0.0877 0.0616 0.0039 0.7181 29.26 12.78 476.7 55.7 385.6 23.9 
mr02d08 0.5464 0.0941 0.0625 0.0036 0.3664 34.45 11.64 442.6 61 .8 390.9 22.1 
mr02d11 0.5354 0.0815 0.0615 0.0038 0.6136 30.44 12.47 435.4 53.9 384.8 23.3 
mr02d19 0.5697 0.1239 0.0637 0.0060 0.7836 43.48 18.77 457.9 80.1 398.2 36.2 
mr02d20 0.6291 0.0821 0.0656 0.0021 0.2807 26.10 6.42 495.5 51.2 409.8 12.7 
mr02d21 0.6278 0.1221 0.0607 0.0056 0.3032 38.89 18.62 494.7 76.1 379.7 34.3 
mr02d25 0.5371 0.0469 0.0605 0.0022 0.4339 17.46 7.31 436.5 31.0 378.9 13.5 
mr02d26 0.4683 0.0572 0.0572 0.0025 0.5855 24.44 8.65 390.0 39.6 358.3 15.1 
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Table A4.5f: : LAM-ICP-MS U-Pb data for magmatic zircons from the Charles Cove granodiorite (sample W03-27) 
collected on March 24, 2004. 

W03·27 CONCORDIA COLUMNS 2s% 2s% AGES Ma 
1 

spot# 207/235 7/5 err 206/238 6/8 err Rho 207/235 206/238 7/5 age sigma 6/8 age 1sigma 
I N T E R c E p T v A L u E s 

mr24a06 0.5978 0.0354 0.0736 0.0025 0.5916 11.86 6.72 475.9 22.5 457.9 14.9 
mr24a09 0.5273 0.0226 0.0652 0.0022 0.6638 8.56 6.62 430.0 15.0 407.4 13.1 
mr24a14 0.5482 0.0307 0.0670 0.0036 0.7462 11.19 10.79 443.8 20.1 417.8 21.8 
mr24a22 0.5257 0.0280 0.0654 0.0036 0.8065 10.65 11.09 428.9 18.6 408.2 21 .9 
mr24a24 0.5449 0.0458 0.0665 0.0058 0.6527 16.83 17.35 441.6 30.1 415.0 34.9 
mr24a27 0.5669 0.0303 0.0642 0.0030 0.6911 10.70 9.33 456.0 19.7 401 .0 18.1 
mr24a28 0.5180 0.0272 0.0682 0.0028 0.7178 10.52 8.31 423.8 18.2 425.2 17.1 
mr24a29 0.5621 0.0280 0.0677 0.0026 0.6288 9.96 7.70 452.9 18.2 422.1 15.7 
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Table A4.5g: LAM-ICP-MS U-Pb data for magmatic zircons from the Huxter Lane dacite (sample W03-38) 
collected on February 20, 2004. 

~03-38 CONCORDIA COLUMNS 2s% 2s% AGES Ma 
1 

spot# 207/235 7/5 err 206/238 6/8 err Rho 207/235 206/238 7/5 age •igma 6/8 age 1sigma 
I N T E R c E p T v A L u E s 

e20a12 1 0.6387 0.0780 0.0753 0.0087 0.8549 24.42 23.21 14.08 501 .5 48.3 467.7 
e20a051 0.6658 0.0710 0.0827 0.0068 0.7701 21 .33 16.54 13.70 518.1 43.3 512.0 
e20a061 0.5632 0.0848 0.0792 0.0054 0.6206 30.12 13.58 17.16 453.6 55.1 491 .5 
e20a091 0.5835 0.0576 0.0802 0.0024 0.3553 19.74 5.89 15.49 466.7 36.9 497.3 
e20a131 0.5209 0.2165 0.0795 0.0095 0.4328 83.10 23.96 49.90 425.8 144.5 493.3 
e20a161 0.5666 0.0746 0.0815 0.0034 0.4578 26.32 8.38 16.28 455.8 48.3 505.2 
~e20a171 0.5492 0.1205 0.0793 0.0083 0.6751 43.88 20.87 22.81 444.4 79.0 492.2 
e20a241 0.5898 0.0340 0.0740 0.0023 0.5143 11.53 6.24 10.40 470.8 21.7 460.5 
e20a251 0.7521 0.1350 0.0834 0.0115 0.9534 35.91 27.46 8.69 569.4 78.3 516.5 
e20a271 0.6315 0.0475 0.0852 0.0025 0.3112 15.04 5.89 18.00 497.0 29.6 527.2 
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Table A4.5h: LAM-ICP-MS U-Pb data for magmatic zircons from the Bellman's Pond Conglomerate clast (sample JOD08) 
collected on February 25, 2004. 

JOD08 CONCORDIA COLUMNS 2s% 2s% AGES Ma 
spot# 207/235 7/5 err 206/238 6/8 err Rho ~07/235 206/238 7/5 age 1 sigma 6/8 age 1sigma 

I N T E R c E p T v A L u E s 
fe25a06 3.7351 0.2340 0.2919 0.0198 0.8995 12.53 13.54 1578.9 50.2 1650.8 98.6 
fe25a07 4.1437 0.2597 0.2621 0.0130 0.6475 12.53 9.89 1663.0 51 .3 1500.5 66.2 
fe25a08 4.0866 0.1721 0.3007 0.0102 0.9424 8.42 6.77 1651.6 34.4 1695.0 50.5 
fe25a09 4.7549 0.2047 0.3241 0.0132 0.7909 8.61 8.12 1777.0 36.1 1809.8 64.1 
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Table A4.5i: LAM-ICP-MS U-Pb data for detrital zircons from the Davidsville Group (sample JOD39) 
collected on February 20, 23 and March 23, 2004. 

~0039 CONCORDIA COLUMNS 2s% 2s% AGES Ma 
1 

spot# 207/235 7/5 err 206/238 6/8 err Rho 207/235 206/238 7/5 age sigma 6/8 age 1sigma 
I N T E R c E p T v A L u E s 

mr23a09 0.5932 0.0394 0.0711 0.0067 0.8239 13.29 18.93 472.9 25.1 442.6 40.5 
mr23a12 0.5924 0.0933 0.0667 0.0063 0.6553 31.50 18.76 472.4 59.5 416.0 37.8 
mr23a13 0.5727 0.0360 0.0731 0.0039 0.6702 12.57 10.81 459.8 23.2 454.6 23.7 
e23a07 0.4744 0.2602 0.0658 0.0182 0.9287 109.69 55.33 394.2 179.2 410.9 110.1 
e23a09 0.6569 0.0773 0.0844 0.0072 0.5394 23.53 17.01 512.7 47.4 522.3 42.7 
e23a10 0.5808 0.0378 0.0747 0.0033 0.6249 13.03 8.95 465.0 24.3 464.3 20.0 
e23a11 0.5745 0.0318 0.0711 0.0047 0.9004 11.08 13.11 460.9 20.5 442.8 28.1 
e20b04 0.7828 0.0926 0.0778 0.0097 0.9020 23.65 24.83 587.1 52.7 483.2 57.8 

e20b05 0.6711 0.0511 0.0687 0.0052 0.8753 15.23 15.14 521.4 31 .1 428.3 31.4 

e20b07 0.5511 0.0418 0.0761 0.0027 0.5598 15.17 7.06 445.7 27.4 472.8 16.1 

e20b11 0.6203 0.0221 0.0697 0.0034 0.8133 7.12 9.86 490.0 13.8 434.2 20.7 

~e20b12 0.7434 0.0459 0.0778 0.0055 0.6391 12.35 14.12 564.4 26.7 483.3 32.9 

e20b13 0.7302 0.0648 0.0770 0.0028 0.3843 17.76 7.31 556.6 38.1 478.3 16.8 

e20b15 1.3652 0.3223 0.1541 0.0230 0.9501 47.22 29.90 874.1 138.4 923.8 128.7 

e20b19 0.6195 0.0334 0.0648 0.0048 0.8716 10.80 14.76 489.6 21.0 404.5 28.9 

e20b20 0.7883 0.2522 0.0764 0.0145 0.9491 63.98 37.91 590.2 143.2 474.5 86.7 
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Table A4.6a: LAM-ICP-MS U-Pb data for zircon standard samples 91500 and Kosler obtained on December 19, 2005*. 

SAMPLE CONCORDIA COLUMNS 2s% 2s% AGES Ma 

spot# Standard file 207/235 7/5 err 206/238 6/8 err Rho 207/235 206/238 7/5 age sigma 6/8 age sigma 

I N T E R c E p T v A L u E s 
1 Kosier de19a03 0.4026 0.0181 0.0550 0.0015 0.31 9.01 5.50 343.5 13.1 344.9 9.2 
2 Kosier e19a04 0.3882 0.0156 0.0546 0.0016 0.36 8.06 5.78 333.1 11.4 342.7 9.6 
3 Kosier e19a13 0.3968 0.0178 0.0536 0.0018 0.37 8.97 6.65 339.3 12.9 336.5 10.9 
4 Kosier e19a33 0.3706 0.0214 0.0528 0.0017 0.28 11.56 6.44 320.1 15.9 331.7 10.4 
5 Kosier e19a45 0.3937 0.0146 0.0533 0.0019 0.47 7.43 7.02 337.1 10.7 334.5 11.4 
6 Kosier e20a01 0.3945 0.0180 0.0548 0.0021 0.41 9.11 7.54 337.6 13.1 343.8 12.6 
7 Kosier e20a02 0.4087 0.0188 0.0466 0.0022 0.50 9.22 9.28 347.9 13.6 293.8 13.3 
8 Kosier de20a11 0.4204 0.0430 0.0530 0.0039 0.36 20.46 14.60 356.3 30.7 332.6 23.7 
9 Kosier de20a22 0.4058 0.0138 0.0543 0.0019 0.51 6.80 6.93 345.9 10.0 341.0 11 .5 
10 Kosier de20a29 0.4231 0.0146 0.0552 0.0015 0.38 6.88 5.29 358.3 10.4 346.2 8.9 

1 91500 ~e19a01 1.8603 0.0972 0.1796 0.0057 0.31 10.45 6.40 1067.1 34.5 1064.9 31.4 
2 91500 ~e19a12 1.7930 0.1702 0.1792 0.0081 0.24 18.99 9.09 1042.9 61 .9 1062.4 44.5 
3 91500 ~e19a23 1.8233 0.0985 0.1802 0.0053 0.27 10.80 5.84 1053.9 35.4 1067.9 28.8 
4 91500 de19a32 1.8726 0.0889 0.1784 0.0060 0.35 9.49 ,6.70 1071.4 31.4 1058.1 32.7 
5 91500 de19a42 1.8705 0.2268 0.1810 0.0092 0.21 24.25 10.14 1070.7 80.2 1072.5 50.1 
6 91500 de20a03 1.9506 0.1234 0.1850 0.0053 0.23 12.65 5.73 1098.6 42.5 1094.5 28.8 
7 91500 de20a04 1.9464 0.2567 0.1796 0.0128 0.27 26.38 14.23 1097.2 88.5 1064.9 69.8 
8 91500 ~e20a12 1.8200 0.1013 0.1786 0.0071 0.36 11 '13 8.01 1052.7 36.5 1059.2 39.1 
9 91500 ~e20a21 1.8131 0.1321 0.1837 0.0061 0.23 14.57 6.62 1050.2 47.7 1087.0 33.1 
10 91500 de20a23 1.8818 0.1077 0.1777 0.0047 0.23 11.45 5.26 1074.7 37.9 1054.5 25.6 
11 91500 de20a30 1.7747 0.1173 0.1759 0.0069 0.30 13.22 7.85 1036.2 42.9 1044.5 37.9 
12 91500 de20a30 1.8161 0.1330 0.1770 0.0075 0.29 14.65 8.45 1051.3 48.0 1050.5 40.9 
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Table A4.6b: LAM-ICP-MS U-Pb data for zircon standard samples 02123, Kosier and 91500 obtained on February 20, 2004**. 

SAMPLE CONCORDIA COLUMNS 2s% 2s% AGES Ma 

spot# Standard file 207/235 7/5 err 206/238 6/8 err Rho 207/235 206/238 7/5 age 1 sigma 6/8 age 1 sigma 

I N T E R c E p T v A L u E s 
1 02123 fe20a04 0.3370 0.0160 0.0481 0.0022 0.6977 7.84 9.09 294.9 11.5 303.1 13.5 
2 02123 fe20a11 0.3295 0.0169 0.0461 0.0017 0.6282 9.14 7.28 289.2 12.5 290.4 10.3 
3 02123 fe20a20 0.3335 0.0212 0.0476 0.0014 0.4740 11.34 5.81 292.2 15.7 299.9 8.5 
4 02123 fe20a21 0.3471 0.0397 0.0426 0.0020 0.4676 17.78 9.47 302.5 27.9 269.2 12.5 
5 02123 fe20a22 0.3322 0.0129 0.0437 0.0012 0.4850 9.15 5.61 291 .2 10.2 275.8 7.6 
6 02123 fe20b10 0.3548 0.0174 0.0479 0.0019 0.6794 9.79 7.85 308.3 13.0 301.4 11.6 
7 02123 fe20b18 0.3581 0.0166 0.0469 0.0016 0.6294 9.27 6.74 310.8 12.4 295.3 9.7 

1 Kosier fe20b03 0.3952 0.0238 0.0496 0.0051 0.7226 12.04 20.75 338.1 17.3 312.0 31.6 

1 91500 fe20a01 1.9615 0.4101 0.1800 0.0102 0.3110 41.82 11.34 1102.4 140.6 1066.7 55.7 
2 91500 fe20a02 1.7473 0.0910 0.1755 0.0064 0.7061 10.42 7.31 1026.2 33.6 1042.2 35.2 
3 91500 fe20a03 1.8789 0.0756 0.1742 0.0052 0.5869 8.05 5.93 1073.7 26.7 1035.3 28.4 
4 91500 fe20a10 1.8460 0.0619 0.1725 0.0046 0.6263 6.71 5.36 1062.0 22.1 1025.8 25.4 
5 91500 fe20a19 1.8773 0.0957 0.1735 0.0101 0.6918 10.20 11.63 1073.1 33.8 1031.6 55.4 
6 91500 fe20a23 2.0052 0.1841 0.1794 0.0066 0.4355 18.36 7.33 1117.3 62.2 1063.8 36.0 
7 91500 fe20a29 2.0054 0.0965 0.1849 0.0080 0.8557 9.62 8.65 1117.3 32.6 1093.9 43.5 
8 91500 fe20b01 1.7816 0.0839 0.1785 0.0076 0.7665 9.98 8.50 1038.8 31.8 1058.8 41 .5 
9 91500 fe20b02 1.8339 0.1260 0.1857 0.0060 0.4884 13.74 6.51 1057.7 45.2 1097.9 32.9 
10 91500 fe20b09 1.8490 0.1200 0.1902 0.0140 0.8520 12.98 14.73 1063.1 42.8 1122.5 75.9 
11 91500 fe20b17 1.8906 0.0837 0.1693 0.0065 0.6235 8.86 7.69 1077.8 29.4 1008.2 35.9 
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Table A4.6c: LAM-ICP-MS U-Pb data for zircon standard samples 02123, Kosier and 91500 obtained on February 25, 2004**. 

SAMPLE CONCORDIA COLUMNS 2s% 2s% AGES Ma 

spot I Standard file 207/235 7/5 err 206/238 6/Berr Rho 207/235 2061238 7/5 age sigma 6/8 age sigma 

I N T E R c E p T v A L u E s 
1 02123 fe25a04 0.3522 0.0166 0.0483 0.0018 0.6147 9.41 7.62 306.4 12.4 303.8 11.3 
2 02123 fe25a05 0.3690 0.0203 0.0477 0.0022 0.6782 10.98 9.06 318.9 15.0 300.3 13.3 
3 02123 fe25a14 0.3210 0.0208 0.0443 0.0022 0.47 12.94 10.14 282.7 16.0 279.5 13.9 
4 02123 fe25a15 0.3549 0.0227 0.0448 0.0028 0.38 12.82 12.58 308.4 17.0 282.4 17.4 

1 Kosier fe25a06 0.3781 0.0181 0.0485 0.0018 0.5662 9.55 7.33 325.6 13.3 305.3 10.9 

1 91500 fe25a01 1.8477 0.0844 0.1 820 0.0082 0.7008 9.14 9.05 1062.6 30.1 1077.8 44.9 
2 91500 fe25a02 1.8464 0.0817 0.1760 0.0050 0.5536 10.60 5.68 1062.1 32.6 1045.0 27.4 
3 91500 fe25a03 1.8793 0.0662 0.1753 0.0050 0.6600 7.45 5.75 1037.9 24.2 1041.3 27.6 
4 91500 fe25a11 1.9499 0.1810 0.1788 0.0161 0.53 18.57 18.03 1098.4 62.3 1060.5 88.2 
5 91500 fe25a13 1.8432 0.1408 0.1782 0.0096 0.64 16.16 10.78 1024.6 52.1 1056.9 52.6 
6 91500 fe25a21 1.8228 0.0784 0.1646 0.0066 0.44 8.60 7.98 1053.7 28.2 982.5 36.4 
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Table A4.6d: LAM-ICP-MS U-Pb data for zircon standard samples 02123,91500 and Kosier obtained on March 24, 2004**. 

SAMPLE CONCORDIA COLUMNS 

spot# Standard file 207/235 7/5 err 

I N T E 
1 02123 mr24b11 0.3521 0.0370 

1 Kosier mr24b03 0.4065 0.0179 
2 Kosier mr24b18 0.4039 0.0172 
3 Kosier mr24b25 0.3704 0.0219 
4 Kosier mr24b32 0.4260 0.0179 
5 Kosier mr24b39 0.3947 0.0189 

1 91500 mr24b02 1.8548 0.1021 
2 91500 mr24b17 1.8146 0.1397 
3 91500 mr24b24 1.8724 0.0961 
4 91500 mr24b31 1.9338 0.1209 
5 91500 mr24b38 1.8628 0.1375 

Calculated TIMS ages for the zircon standards are as follows: 
02123: 295 Ma 
91500: 1065 Ma 
Kosier: 337 Ma 

206/238 6/Serr 

R c E 
0.0512 0.0027 

0.0535 0.0021 
0.0528 0.0018 
0.0519 0.0017 
0.0531 0.0019 
0.0530 0.0017 

0.1740 0.0109 
0.1836 0.0082 
0.1796 0.0082 
0.1851 0.0075 
0.1722 0.0082 

*Weighted averages for standards for December 2005 analyses are as follows: 
91500:1065 ± 8.8 Ma 
Kosier: 339 ± 3.1 Ma 

Rho 
p T 
0.6697 

0.7098 
0.6374 
0.6134 
0.6702 
0.6477 

0.7671 
0.5141 
0.6099 
0.5801 
0.6391 

** Weighted averages for standards for February and March 2004 analyses are as follows: 
02123: 293.4 ± 3.1 Ma 
91500: 1061 ± 6.7 Ma 
Koster: 331.8 ± 4.3 Ma 
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2s% 2s% AGES Ma 

207/235 206/238 7/5 age 1 sigma 6/8 age 

v A L u E s 
20.99 10.53 306.3 27.8 321.7 

8.82 7.77 346.3 12.9 336.2 
8.54 6.99 344.4 12.5 331 .8 
11.84 6.39 319.9 16.2 326.4 
8.40 7.28 360.3 12.7 333.7 
9.58 6.47 337.8 13.8 333.2 

11.00 12.53 1065.2 36.3 1034.1 
16.94 8.89 1050.7 53.5 1086.8 
11.50 9.09 1071.4 36.5 1064.9 
12.51 8.08 1092.9 41 .9 1095.0 
14.76 9.50 1068.0 48.8 1024.0 

1slgma 

16.5 

12.7 
11.3 
10.2 
11 .8 
10.5 

59.8 
44.5 
44.6 
40.7 
45.0 








