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ABSTRALT

The electromagnetic response of magnetically and electrically inho-
mogeneous media whose geometries are not amenable to conventional partial
differential equation analysis are most readily analysed in an integral
equation framework. The equivalent source concept of Green's theory affords
a generalized manner of formulating static and time-varying electromagnetic
problems; material property inhomogeneities are replaced by equivalent source
distributions which satisfy a Fredholm integral equation of the second kind,

For static field problems, the equivalent source method represents
conductivity, permittivity and permeability variations in terms of current
source, charge and ''magnetic pole" dénsity distributions. In this form,
the problems have analogous mathematical forms and the equivalent source
satisfies a scalar Fredholm equation. The formalism is readily related to
the static field methods used in applied geophysics.

The time-varying equivalent source formulation represents material
property variations in terms of electric and magnetic current densities
which satisfy a pair of coupled vector Fredholm equations. Analysis of the
integral operators shows that the scattering operator is bimodal for many
geophysical problems. This result leads to the analysis of scattering
problems in terms of generalized eigenfunctions. The bimodal nature of
the scattering operator often leads to highly ill-conditioned matrices
when numerical methods are applied to geophysical problems.

Approximate parametric solution methods of solving the time-varying
electric scattering problem are considered. Approximation of the solution
by a general functional form and applying minimum criteria reduce the
integral equations to matrix equations. The least squares method is applied
analysing magnetotelluric responses of 2~dimensional structures and the
Galerkin formalism is used to find the eigenfunctions for a thin plate in a
whole space. The results are compared with other available numerical and

experimental xesults and assessments of the mcthods arxe given,
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CHAPTER 1

1-1 Introdyction

The solution of electromagnetic scattering problems has become
a subject of increasing interest in the fields of applied physics and
engineering with the advent of sophisticated computers in the past two
decades. Previously, the solutions of electromagnetic scattering problems
were limited to those which'‘'could be solved analytically. In recent
years, many numerical solutions of various electromagnetic problems have
been published. These problems have been solved primarily from two view-
points; one is that of the electrical engineer concerned with radio-wave
transmission and antenna design; the other is that of the geophysicist
concerned with studying the electromagnetic response of the Earth or the
Moon or a portion thereof in order to determine its electrical properties.
While the basic equations to be solved are quite similar, the two view-
points and the derived results are very distinct.

In the electrical engineering field, the primary concern is the
response of highly conductive bodies in free-space. These bodies are
assumed to be sufficiently conductive that they can be treated as perfect
conductors. In some instances, the behaviour of insulating bodies is of
interest. In both cases the scattering body has dimensions of the order
of the free-space wavelength. If the scattering body is to be used as an
antenna, the directionality of its radiation pattern is of prime interest.
If a body is internally stimulated electrically, in what manner does it
radiate electromagnetic waves? In reverse, if the body is excited by an
externally generated field how effective is it in transmitting this
stimulus to a sensor attached to the body? 1In this situation the body is
an active element of a radio wave transmission system. If the scattering

body is viewed as a disturbing object in a radio transmission system, then



the absorption and re-radiation of energy by the body and minimization
of its effect on the transmission system is the primary concern. In one
instance thé body is an active element of the system and in the other

it is a passive disturbance to the system.

From the geophysical viewpoint the scattering body is a passive but
unknown element in a system. In some instances, the body is stimulated
with a known input and its response is measured. In other cases, the
system input is unknown but the total of the input and the system response
is measured. The objective is to establish the electric and magnetic
properties of the body from observation of its electromagnetic response.
If the electromagnetic response of a structure can be computed theoretically,
its response can be used as a basis for interpretation of an experimental
response; this step is known as the inverse problem. In general, the real
system is far more complex than the system whose response can be computed
theoretically. As a result, one can only make inferences about the gross
structure of the real system. The inverse problem is by no means a trivial
one and its complexity is really appreciated only after attempting to
interpret real system responses. Additional features of the geophysical
scattering problem are that measurements are made over spatial scales
much smaller than the free—-space wavelength and the scattering bodies are
conductors with finite conductivity and are usually embedded in a conduc-
tive medium. These features make the geophysical problem quite different

from the electricnl engineering problem.



1-2 Thesis Objective and Outline

This thesis project was primarily concerned with the geophysical
aspect of eiectromagnetic scattering. Within this context, the thesis
project had two basic objectives. The first was the development of a
unified mathematical framework from which a wide variety of complex
electric, magnetic and electromagnetic problems could be analyzed; the
second objective was the development and testing of approximate numerical
methods for solving these problems in an economical manner.

The thesis is split into two units; one associated with each of the
two objectives. In chapter two, the equivalent source method is developed
for static and time-varying electromagnetic problems and chapters three
and four are devoted to discussion of particular results which can be
derived from the formulation developed in chapter two. Chapters five, six,
and seven are devoted to the approximate solution of some time-varying
electromagnetic problems using variational methods. The numerical results
are compared with experimental data and other numerical solutions which
were available. The numerical results are also used to demonstrate some
of the theoretical developments given in chapter four. The contents of
chapter two through seven are summarized in chapter eight.

Before delving into the detailed mathematical formalism of the
equivalent source method, a brief review of the geophysical appliation
of static electric and magnetic fields and time-varying electromagnetic
fields will be given. In addition, a short summary of the development
of solutions to geophysical scattering problems helps provide an insight
into the type of\time—varying electromagnetic problem encountered in

geophysical analysis.



1-3 Background

(1) Applied Geophysics

The analysis of electric and magnetic fields generated by or associated
with electric and magnetic properties of the Earth's crust is a subject
of great interest to the applied geophysicist. The applications break into
three basic categories; one based on the time-varying electromagnetic response
of the Earth; one based on the Earth's response to static conduction
currents; and one based on the Earth's static magnetic field and its
disturbance by the presence of local magnetic iﬁhomogeneities. The three
types are schematically illustrated in Fig. 1-1.

Geophysical survey technigues are, by and large, designed to detect
lateral variations in the electric and magnetic properties of the upper
kilometer or so of the Earth's crust. These variations are associated
with changes in geological material and structures, and in some instances,
indicate the presence of mineral deposits which have economic importance.

A survey system consists of an electromagnetic field source and field
detection device, or, in some instances, a field detection unit only.

This system is then transported across a region of geological interest
with measurements being made at discrete spatial intervals or continuously.
If the system properties are not varied during this traverse, the fluctua-
tion in the system response can be used to infer lateral variations in the
Earth's properties which influence the system response.

The time-varying electromagnetic systems are units which respond
primarily to the electrical conductivity and dielectric properties and,
to a lesser extent, to the magnetic properties (since magnetic property
effects are quite small relative to electrical effects) of the Earth.

In most environments, the Earth's conductive response swamps the dielectric
behaviour since the time variations must be in the audio or subaudio

frequency range in order to overcome skindepth effects. In almost all
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applications, therefore, an electromagnetic system is used to detect
variations in electrical conductivity.

The static conduction system uses a source of direct current which
is connected to the Earth at two or more points, and measures the electric
field generated at the Earth's surface as shown in Fig. 1-1 (b). The
variation of electrical conductivity in the vicinity of the probes
influences the surface elecEric field. These methods are known as resisti-
vity surveys and are used to map lateral variations in the near surface
conductivity.

Magnetic sur@eys measure the magnetic field at or above the Earth's
surface. The magnetic field is composed of the ambient Earth's magnetic
field plus disturbances due to remnant or intrinsic magnetization carried
by the near surface material or by changes in the material permeability.
Permeability changes cause distortion of the primary field. Lateral
variations in the static magnetic field reflect the magnetic properties
of the underlying structure.

In some instances, the material properties versus depth are of more
interest than their lateral variation. This is particularly true for some
electromagnetic and resistivity survey methods. In these applications,
the properties of the survey system are varied, and the Earth's response
as a function of a system parameter is measured. In a time-varying electro-
magnetic system, the excitation frequency might be varied while in a
resistivity survey, the electrode separations might be changed.

In order to interpret this data, the response of models of the
geological structure are computed and compared with the real data either
manually or automatically by computer. The ability to solve the forward
Problem for the theoretical response is therefore essential for solution

of the inverse problem.



(i1) Solution of Electromagnetic Problems

The solution of time-varying electromagnetic problems in geophysics
has been studied by numerous researchers. The inherent property of
electromagnetic scattering problems is that they invariably require
numerical analysis at some stage in order to obtain useful results.
Scattering problems fall into two categories; those for which analytic
solutions can be derived an% those which must be solved numerically.

Scattering problems which have analytic so}utions are structures
which have very simple geometrical shapes such as those with spherical,
cylindrical or plénar symmetry or in some instances simple material proper-
ties such as perfect conductivity. While closed forms for the solutions
can be derived, the solutions are invariably given in terms of a sum.or
integral over the eigenfunctions of the system which is not usually expres-
sible in terms of elementary functions. As an example, the response of
two adjoining halfspaces for excitation by a point dipole source of arbitrary
type (electric or magnetic dipole) can be expressed in terms of a Fourier
integral which cannot be evaluated analytically.

All other scattering problems have the property that either the
geometry or material property behaviour is not compatible with formulating
and solving the problems using conventional methods of partial differential
equation analysis. The major problem in geophysical studies is the geo-
metrical problem. For all but the simplest of geometries, the equations
governing the response cannot be reduced by separation of the variables.
The eigenfunctions of the system are functions of more than one geometrical
variable and are unknown. The only practical way out is a numerical solution
of the governing equation.

Before the advent of advanced computers, solution of geophysical

Problems was primarily confined to obtaining the response of spherical

layered or plane layered structures with each layer having homogeneous



electrical properties, or slight variations of these basic models. The
spherical model was used to simulate the entire Earth while the plane
layered model was used to simulate small scale features where curvature
of the Earth is negligible. Once a closed form solution was derived, the
emphasis was on finding approximate forms of the solution for special
cases of the general model which were useful for calculating the response.
No attempt is made to summarize all the results in these topics since
excellent discussions of these subjects are given by Wait (1962, 1970)
and Ward (1967).

When computeés became available for number crunching, the result was
a two-fold change in emphasis. First the computer permitted numerical
evaluation of integrals, sums and special functions require& by the
analytical solutions. Secondly, the analytic stage of analysis can be
totally circumvented by numerically solving the governing equation from
the beginning. This second result is particularly important since it meant
solutions to problems intractable by analytic methods could be obtained.

The geophysical problems solved in this manner can be summarized as
2 and 2%-dimensional models. The basis of this classification is depicted
in Fig. 1-2 where the cross section of inhomogeneity embedded in a whole
space is shown in Fig. 1-2 (a). If this cross section is extended into
the third dimension in a particular fashion, the electromagnetic response
of the system is considerably simplified. A true 2-dimensional model is
one where the structure does not vary in the third dimension as in Fig. 1-2 (b).
The body extends to infinity in both directions and no property varies as
a function of the third dimension. Other extensions into the third dimension
are shown in Fig. 1-2 (c) and (d). In (c), the cross section (a) is
revolved about an axis of symmetry producing a cylindrically symmetric structure.
In (d), the structure does-not extend into the third dimension and is an

infinitesimally thin sheet or plate model. These latter two models are
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termed 2%-dimensional problems in that the structures are 3-dimensional
but the response can be formulated as a function of two dimensions by
taking advantage of the special geometry of the bodies.

The numerical computation of the response of such models has been
carried out by several people over the past six years. The response of
two dimensional structures has been given by Swift (1967, 1971), Wright
(1969) and Jones and Price (1969), using a finite difference (or equivalent
type of discretization) method to solve the govgrning partial differential
equation. All these analyses were primarily concerned with determination
of the magnetoteliuric response of lateral variations in conductivity in
a half-space at very low frequencies with excitation by a plane wave
vertically incident on the surface of the half-space from a free-space
medium. Following initial solution of the governing differential equation
numerically, the 2~dimensional problems were reformulated as integral
equations (or differential-integral equations). Solutions to the 2<dimen-
sional problem using integral equation formulation are given by Parry and
Ward (1971) and Hohmann (1971). The response of circular and rectangular
plates which require an integral equation formulation are given by Green-
field (1971) and Lamontagne (1971). The magnetotelluric response of round
structures in a conductive half-space is given by Watts (1972) who worked
the problem by discretization of the governing partial differential equation.

In all instances the approach to solving the problems was that of
reducing the governing equation to a finite set of linear equations by
sampling the fields at a finite set of points. The field between the samples
was implicitly assumed or explicitly stated and the discretized governing
equation was forced to hold at the sample points. In the preceding works,
the number of linear equations, N, ranged from several tens to around one
thousand and required direét or indirect inversion of matrices of dimension

N x N. The solution of linear equations of large dimension is the most
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difficult'and expensive step in the analysis. Since geophysical applica-
tions require the response for many parameter combinations, it is desirable
that the number of equations, N, be as small as possible. This problem

is the main drawback in the analysis of full three dimensional problems,
since the solution to a vector equation results in N = 3 M3 equations

where M is the average number of points sampled in each of the three spatial

dimensions.
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CHAPTER 2

The Equivalent Source Method for Electromagnetic Problems

2-1 Green's Function Theory and the Equivalent Source Concept

The theory of Green's functions and the equivalent source concept
are the fundamental building blocks in the following analysis. This
section is directed to a brief summary of Green's function theory and
the equivalent source method: For a more detailed discussion of the
subject, the reader is referred to Morse and Fe;hbach (1953).

A Creen's function summarizes all the information about a given
system into a single function which can then be used to describe the
response of the system to an arbitrary input. In physical problems, the
behaviour of a system is usually characterized most easily in the form of
a differential equation. For a given input G? s a system which is charac-

terized by the differential operator D , yields the differential equation

s = @ 2-1

where U 1is the system output. Additional constraints are imposed on 74
when a region of existence V 1s defined such that ¥ satisfies 2-1 with-
in V and is subject to constraints (boundary conditions) at the surface S
of V .

The solution of 2-1 is expressed in terms of the system Green's

function by

U (P) =5 Y(p@) (@ da 2-2
v

where

S ) = F@) + Y9)Ss,a) + 2 ()8 6,q)

In 2-2 | P and Q represent the coordinates of the observation point and
source point, S denotes a point on the surface § of Yy , G(P,Q) is the

homogeneous Green's function
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and Y (S) S (s,Q) and 3y (S) S'( S,Q) are equivalent surface sources
which arise when the boundary conditions on § are'inhomogeneous. S(S. Q)
and §'(S, Q) are the Dirac delta function and its derivative.

The appropriate dimemsions and one or more derivatives w.r.t. one or more

dimensions are implied in the notation.

The Green's function satisfies the equation

B(H(ea)),= §(PQ) 2-3
where BP implies differentiation w.r.t. the P coordinates and & (P, Q)
is subject to homogeneous boundary conditions on S.

In many physical problems, one is faced with the need to solve an

equation similar in form to 2-1 with the added constraint that

Bw) = B(p) Pe Vv P V' 2-4

8 (uE) + LuwE) = ¥ Pe v,v' 2-5

where V' is a subregion of V. It is possible (on the assumption of
linear operators) to re—express the effect of the operator & 1in terms of
an equivalent source distribution in the original system V. This reformat-
ting of the problem is called the equivalent source method.
First, the system response ¥ is split into two parts
u = U + U, 2-6
where U, 1is the solution of 2-4 and 2-5 when & is a null operator

(2 = 0). Thus

B(U.(P) = ¥(P) 2-7
If £ is not a null operator, 2-5 becomes

S, M) = - 2 (Ue +U) 2-8
The equivalent source € 1is defined as

€ = - 2(u. +u) 2-9
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and U, and U, can be expressed using 2-2 as

U (P = | ¥(ra) S(@dQ 2-10
v

U, = {FErelclda 2-11
v

Upon combining 2-9 and 2-11 , e satisfies the integral equation
g = - 2 (UslP)) - &S'J@(P,Q)g(Q)JQ 2-12
. v

in V' and £ (@) = 0 at all points where = 0 (i,e. P# v).

In summary, the equivalent source method yields the following results.

(1) The effect of a perturbation (large or small) on a system can be
expressed in the form of an equivalent source in the undisturbed
system if the undisturbed system Green's function 1is known.

(2) The effect of the disturbance at any point P in V is determined
solely by the convolution of the undisturbed system Green's function
with the equivalent source distribution which exists only in the
region V' where the anamalous disturbance occurs.

(3) The equivalent source satisfies a Fredholm integral equation of the
second kind within V' and is zero outside this region.

The equivalent source method and integral equation approach become important
techniques when the problem at hand has to be solved numerically. The

solution for £ in region V' has to be found rather than the solution for 4,
in region V which is usually much larger. In addition, boundary conditions

on @ and U, are already contained in the integral equation.
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2-2 Basic Equations of Electromagnetic Theory

The solution of an electromagnetic problem in a continuum requires
obtaining a solution to Maxwell's equations combined with the appropriate
set of constitutive equations which describe the electromagnetic proper-
ties of the medium. In this section the basic equations are summarized,
using the rationalized MKS system of units.

Maxwell's equations control the behaviour of the electromagnetic

.

fields. In differential form these equations are

UXE = -28 2-13 IxH = T+ 20 2-14
2t >t
v-0 = 9 2-15 V-8 = o 2-16

In conjunctibn with Maxwell's equations, the constitutive equations which
specify the relationships of the electromagnetic fields are required in
order to fully specify the problem. The constitutive equations fall into
3 classes; dielectric, magnetic and conductive. These three classes are
briefly summarized below. More detailed discussions can be found in
Jackson (1962), Reitz and Milford (1960) Landau and Lifshitz (1960).

The dielectric constitutive equations are

D=¢E+P 2-17 P=KLE + P 2-18
D = e € + Ft 2-19 € = eo(‘* _\_:_E)z Ke €o 2-20

where P is the electric dipole moment density and €&, is the free space
permittivity. P can be split into two parts; one induced by an applied
electric field denoted by ¥. E , where ¥ . is the electric susceptibility,
and the other is an intrinsic dipolar distribution '5i . Equations 2-17
and 2-18 can be combined into a single equation 2-19 using a general

permittivity given by 2-20 ., The ratio €/€, is known as the dielectric

constant Ke .



The magnetic constitutive equations are

= % H + Mg 2-22

Kq

B = mo (H + ™) 2-21

am H +uomMmyg  2-23 = (14 %) = Kempido 2-24

oI
]

and closely follow the dielectric equations. Here M is the magnetic
dipole moment density and «(, 1s the free space permeability. M can be
split into two parts; one induced by an applied field %, ﬁ , Where Xwm
is the magnetic susceptibility, and the other an impressed or source
magnetization EI' In static field geophysical applicatioms, EI is the
intrinsic or remanent magnetization of a material; in time-vagying
applications, _li[ is used to describe magnetic field sources which in
turn give rise to the concept of "magnetic" currents. Combining
equations 2-21 and 2-22 yields 2-23 where A 1is the generalized
permeabil;l.ty given in 2-24. The ratio ,u/,u., is the relative permeabi-
lity Km ®

The conductive constitutive relationship is simply Ohm's law

— —

J= ¢ E f:fs-.-;’j’c 2-25

where 6 1s the conductivity. Equations 2-17 through 2-25 suffice to

describe the electromagnetic properties of any linear, isotropic medium,

When the material properties Ko, K, , 6 and the source terms FI s, M =’

JS » and c’r are given, an electromagnetic problem is totally specified.
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2-3 Equivalent Source Formulation

(1) Time Invariant Problems

For an electromagnetic problem where the fields are stationary in
time, the electric and magnetic fields are no longer coupled in Maxwell's
equations. Since this particular type of problem is encountered often in
applied physics, the application of the equivalent source method to these
problems is discussed as a separate topic.

The time invariant problems fall into three groups; dielectric
electrostatic problems, magnetostatic problems, and static electric con-
duction problems.' Since these three types of problems are analogous
(the same mathematical equations describe the response), thg general
mathematical-problem will be set up. The reduction of the three types of
problems to identical form is shown in Table 2-1. The only point to be noted
is the separation of B in the magnetostatic problem into'ﬁ,_, the field
generated by static current flow and ﬁ;‘ the field due to magnetic property
effects. Splitting off ﬁ,‘ and examining the equation for ¥xH,, reduces
the magnetic problem to the same form as the electric problems; any field
due to current flow can be incorporated into the excitation or source term.

Using the equations listed at the bottom of Table 2-1, the equivalent
source method is formulated in the following manner, WK 1s an arbitrary
function of position. The problem is to find the fields when K is a

somewhat complicated function. The first step is to split K into two parts;

where K, is the "homogeneous' or background material property and K, is
an anomalous variation superimposed on the background K, . The choice
of Kpis explained later.

From the equation

T« =0 3-27



TABLE 2-1

Equations for Static Field Problems

Dielectric Electrostatic Equations

<]

x

mj
w
o]
ol

v-D= q
Magnetostatic Equations
Hy = Hp ¢80 5 TeHy=> T
v x :iﬂ B B = _u :Lr-ij.;at
V-8 =o0
Static Conduction Equations
VXE = O T=cE + 35
V-F=o

General Form of Static Field Equations

Tl
"
P
Xl
+
ol

Vx & = o

al
7|
R

18
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it is possible to express the response of the system in terms of a scalar
potential $ with
g=-72% 2-28

.§ and $ are now split into "homogeneous'" or background and anomalous

components
& = &, + ¥, 2-29 2=%, + ¢, a-30
g°= _‘—7§° 2-31 ga? -9 §a 2-32

where ﬁa and §a vanish when K 5 1is zero. Setting K5 to zero yields the

equation
2 2% .= IR + 9-C -
viE, o+ vénkvks = ’&_K_b__ 2-33
b

for é,. This is the point where the choice of K becomes important. Kp
must be chosen such that equation 2-33 can be solved to find $,in analytic
form. In general the form of Kp must be one where Kp has a different but
constant value within different spatial volumes (i.e. Ky being plane-
stratified is an example). In addition, the spatial volumes must be sepa-
rated by a set of surfaces which permit separation of Laplace's equation
and the boundary conditions onf . This choice of K|, reduces equation

2-33 to

ik &5 TREEE 2-34

Kb
in each region. Invoking the boundary conditions (i.e. tangential E and

H, normal -j-, 'l?, and D must be continuous) the Green's function for the

background medium can be found. As a result

§° (¢) = J‘ig —?.E; 3(‘,',..) d3v! 2-35
v Wb

where s(r.r‘) is the Green's function. For example, if the background is

a wholespace with a constant value for K, g(r,r') is just
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]
47w R

g(rv) = R=|r~-%1 2-36

The effect of the anomalous part of the material can be expressed in terms

of ? e where

v, = - s 2-37

Kb

- Ko 7Kg T ' ev') 431 e
$e_ ) = ?o (r.) + m .vi$‘:§) g¢ v) d 2-38

Q.(n) = (PE-¢)Ka + K, TKy VI, 2-39
: (Kb'PKa)

The equivalent soﬁrce distribution satisfies the Fredholm integral equation
2-38 where ?, is the excitation or source term for ?e . The appropriate
form for #e for each physical problem is given in Table 2-2. The particular
forms in Table 2-2 give $° in terms of the exciting fields E, and
HTl= WM + Hy . (Note the inclusion of Hy in the magnetic case).
In physical terms, ?" corresponds to a charge density distribution in
a dielectric problem, a magnetic pole density distribution in the magnetic
case and a current source density in the static conduction problem.

The preceding set of equations summarize the equivalent source formu-
lation for static problems. The derivation has been done in a very general
manner and has a wide range of application. The application to static

field problems in applied geophysics is briefly outlined in chapter three.



TABLE 2-2

Excitation Terms for the Static Equivalent

Source Problems

Dielectric Problem

q. = €a (VB —-q ) - €,Ve,y-Es

Eo

]
|
di
1o+
o

Magnetic Problem

(Mg Temea®Mr — 4, Tug- AT)

©"=
(L +Ara)
;i:. - Fi:‘ * :IJ- = =9 gio + ;IJ'
Conduction Problem
g. = (SVE. - oy TesE.)
(6‘b+ Ga)

i
I
|

dl

%o

21
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(ii) Time-varying Problems

The equivalent source technique for time-varying problems will be

analysed in the frequency domain. Defining the Fourier transform pair

o _'mt

Fir,t) = Elfrg F(r,w)c," dw 2-40
oo . .

Flr,w) = L E(v ) ch d+ 2-41

L]

the frequency domain form of Maxwell's equations is

VXE

Jj@B 2-42 VXH= T + 3. - jwD 2-43

v-0O q, 2-44 vV-B = o 2-45

where all fields are of the form F(r,w)
It is most convenient to introduce the complex permittivity notation
at this point. The dielectric and conductive constitutive equations

are combined by defining a general conduction current

Iy = T~ jwh 2-46
= € E
where €= ¢ +J% is the complex permittivity. Inserting the constitutive
equations into 2-42 and 2-43, yields

TxE = jwuH +joueMy 2747  TxH= F-jwEE-jwPy 2-48

An additional change in notation makes the following analysis simpler;

the generalized electric and magnetic currents are defined as

A = jwmeoMg 2-49 = Js-juby 2-50
As a result 2-47 and 2-48 become

VXE= jwuhR + H 251 TxH= -jweE+ I  2-52
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The equivalent source formulation begins at this point; the material

properties are split into background €, ALy and anomalous components fa,“a

M= b kMg 2-53 € =€y vtEq 2-54

Next the equivalent current distributions are defined as

WM. = ywms H 2-55 A=-jweE 2-56

Taking the curl of equations 2-51 and 2-52 and using the definitions 2-53

through 2-56 yields

UxIx E - kig +jw H X Tay =§X(ﬁ+ﬁe) +jwpb(§+3e) 2-57

IxTx H - BB ~jw ExTe, =Tx(T+3e) -jwe, idlg 2-58
where kb:w(E.uJ*is the background propagation constant.

As in the static problem, the background material properties are
chosen such that tﬁe Green'; dyadic can be evaluated. The distribution
of material properties in the background medium is limited to regions of
constant property value which are separated by surfaces which permit
separation of the governing differential equation and the boundary condi-
tions on the electric and magnetic fields. The fields are now split into

-

background and anomdalous components.

E=8 +Ea 2-59 H = He + Ha 2-60
Defining the operator
Op = TxIx -3 2-61
2-59 and 2-60 combine with 2-57 and 2-58 to give
QEd = TxM 4+ jwu, T 2-62 Oy (E,) = TxMe +jwuede 2-63

o) = oxT - jwe it 2-64 Oulily) = TXJe ~jWEL Pl 2-65
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where the anomalous fields E, and fi; are totally determined by the equivalent
currents 3e and Me .

On-the assumption that €, and i\, have been chosen such that the
Green's dyadic for 2-61 can be derived, a set of four dyadics ($8,%4 % ‘:tﬁ
can be defined. The superscripts E and H indicate the dyadic is an
electric or magnetic field dyadic and.the subscripts 3 and M denote the
excitation to be electric or magnetic currents. These dyadics are not all
independent; the interrelation of the dyadics is given in part 1 of

Appendix A.

Combining the dyadics with 2-62 through 2-65 yields;

Ee = S:ff’ﬂ—t 1" g;g-jwu.;j 4v 2-66
He = 5253 dV + f:g-(—JwE_..)f—}(—dv 2-67
v 4
— = = 3 éy —
a = Jat Pedv ¢ [ jouTe dv 2-68
v v
My = S :—5 « Te dv - I we - (-jwe) ﬁ,dv 2-69
v v

Returning to the definitions of the equivalent currents Je and iﬁg y A

becomes apparent that the: equivalent currents satisfy the coupled pair

of vector integral equations

Jo = -jwea Eotdufid -TedV - joafid-Tedv ~ 550
v

-

ﬂc 5 w KRa ﬁ°+¢.;'-£b“\§(:§- f)'(cJV +J'wua”5’3.¢al "4 2-71

When either the anomalous permittivity or permeability is zero, the problem

reduces to a single vector integral equation in either 315 or éﬁ:
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2-4 Summary

The general formulation of the equivalent source method for electro-
magnetié problems is now complete. The analysis of electromagnetic
problems in a continuum with a complicated distribution of material properties
is reduced to finding an equivalent source distribution in a medium
with a simple distribution of electri;al and magnetic properties. The
problem is solved once the integral equation for the equivalent source has
been solved; however, the solving of the integral equations involved is
not a trivial matter. In any problem of interest the integral equation
must be solved by a numerical method. The numerical solution of the
integral equations by variational methods which yield approximate solutiomns

is treated in detail in chapters five, six, and seven.
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CHAPTER 3

STATIC FIELD APPLICATIONS

3-1 Static Field Methods in Geophysics

The resistivity and magnetic survey methods are both based on the
measurement of static electric and magnetic fields. The interpretation
of data collected by these methods is usually one of postulating and
theoretically computing the response of a given model and comparing
the response with the data. |

The equivalent source appraoch permits the formulation of the
equations for a wide variety of models which are difficult to analyse

otherwise. From chapter 2, the fundamental integral equati@n has the form

?("') = y.(f) 2 n ._V_Sj(r,r‘)j(r‘)cpr' 3-1

l‘.'q v

where < is a material property ratio, 4 and ?, are charge, current source
or magnetic pole distributions depending on the particular problem. To
formulate the response of an arbitrary body, only 2.t , the excitation field
(which enters through sb,) and the appropriate Green's function have to be
specified. The problem is reduced to solving equation 3-1.

The magnetic and electrostatic response are formulated by the same
equation. The analysis of the solution of 3-1 differs for the two types
of problems. For magnetic problems 7] is the permeabiligty contrast ratio and
in most applications it is considerably less than unity. For electrical condu-
ction problems, /7 is a conductivity contrast ratio which, in most situations,

is considerably greater than unity.

The solution of 3-1 is given for a spherical model in a whole-space
in order to demonstrate the equivalent source method. This model is use-
ful in demonstrating the features of magnetic and conduction response

discussed later in the chapter.
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3-2 Response of a Sphere

A sphere of anomalous material property embedded in an otherwise

homogeneous whole-space can be described by the material property equation

m = my h(a-v) 3-2
where 4 1s the radius of the sphere, 74 1is the ratio of the difference
in material property of the sphere from background to the background value
and A(rv) is the Heaviside step function. For example, a body with conduc-
tivity o, in a whole-space of conductivity G, would have

my = - Cou 3-3
o
The center of the sphere is taken as the origin of a spheridal polar

coordinate system (r,®, ),

Using equation 3-2

Vm_  _- . _ my $a-v) @ 3-4
' +m \ My

where * 1is the (radial) unit vector. The exciting source ?o generally
has the form

,?.m = o K 3-5
\+m

where .E is a vector field. The equivalent source for the sphere must
be a surface distribution since it must have a delta function behaviour
at the surface of the sphere. The appropriate Green's function for the
problem is that for the scalar Poisson equation in a whole-space which is

given in Appendix F.

P TR, | — o
I = TR -

Since $ is a surface distribution on a sphere it can be expanded in

spherical harmonics

Q(r.e. @) = 3&9-*)§mcu Y« (e.@) 3-7



where
) .
VA = 2n+| (n-\hl)!} 2 \m| iwm @
. Yn (e,"p) - { e (——_—hi-lml)! P“ ((“3) e 3-8

and Py is the associated Legendre polynomial of degree m and order m
Using the generating function for Legendre polynomials and addition

theorem for spherical harmonics

L %
s (L4y) < 0 K -
2 9eed =~ 2 LS Yi(e0) YE (6,0 3-9

on the surface \rlz=1\v'|= A,

From the orthogonality property of spherical harmonics

O il 5 2R Yo ke
2.5 r2 -5 (as) NG 10
r41|'v JI.I \ (;Il d P y\gz" (‘“+‘) [CX XY 5 " ’ £ a 3-

Substituting into 3-1 reduces the integral equation to

o n —
ZZC“(|—-."‘_‘_M Y:‘(QQ:—ﬂi—r.# 3-11
Ato m=-Nn H"_"" (7"“") : H'md r=a

By expanding the source term in spherical harmonics

g le K ¥t rza 3-12

nso wms-wn

the c ' are solved for and are

- - < ds
e 3-13
3 { |--((-"—‘-'4)}

t LY ]

where o= 2d /(\+m4)

28

The anomalous fields associated with# are described in terms of the

gradient of a scalar potential. The scalar potential is given by

§ - SH$(N) 3("’,"') 43! 3-14

The spherical harmonic expansion of § for the sphere is
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= o cn Y:(e ‘ﬂ)
= az _a.' " ] -
Q - v "%c (V) "Z._-“ (2"4’\) V‘>/a
3-15
. o< v \" -~ C:‘\ Y:‘ (et‘f)
Al -.é, (5) ..Z.. (2n+) N

The response of the sphere for a spatially invariant exciting field

is commonly discussed. Appropriately orienting the coordinates

— b =
c XN = -‘——7‘ Y. (e.@) 3-16
Ny
where N is the normalizing factor for the Y| spherical harmonic.
Then
do - ‘gl 3-17
1 NS
and all other dw are zero.
The anomalous potential is
g = S A Yi(oe r2a
= £t v Yi(eew) r ¢a 3-18
3

which is the usual expression for a sphere in a constant field (Jackson 1962)).
The analytic solution of equation 3-1 for a sphere is possible due

to the fact the problem can be solved by the conventional boundary value

problem method of separation of variables. In general the geometry is

more irregular and the e'igen-functions are not known. As a result, approxi-

mate numerical methods must be used to solve the integral equation.

3-3 Magnetic Methods

The magnetic survey method detects regions of high permeability and
possible remanent magnetization. The basic model for interpretation is

the response of a body of anomalous permeability and remanent magnetization



embedded in a whole-space with free-space magnetic properties. The body
is placed in a uniform magnetic field equivalent in amplitude and direction
to that'of the Earth. For most purposes, the dimensions of the body are
sufficiently small that the Earth's internally generated field can be.
assumed spatially invariant over the region of the body.

The magnetic survey measures the total magnetic field at a point or
a component of it. The field' is composed of two parts; that of the Earth
and that due to the presence of an ‘anomalous body
H = Re + Ha 3-19
For interpretation purposes, ﬁq is computed for a postulated model and
compared with the observed ﬁa »

Using the equ.ivalent source approach, solving for Ha ié reduced to
solving for an equivalent magnetic pole distribution. From chapter 2,

Ha = - T a4 3-20

and
§a = HS 3(1"\"\ ?Cv') d3e! 3-21
where 3, is an equivalent magnetic pole density distribution. ? is given

by the integral equation 3-1 where is the susceptibility ¥w . The
_ b |

primary source term is

( «\ﬂ V- sko nt) — ,(l'.i-i.-' < A wa 3_22

?0(") = (\ 4 *u\) (\ 4= ‘Ku\)

where ™y is the remanent magnetization.

One of the commonly used assumptions in computing magnetic anomalies
is to neglect demagnetization effects. The integral equation 3-1 can be
used to demonstrate why this is a good approximation. For a given model,

the integral equation for .? can be written

8 = g t+ b’(#) 3-23



where & 1s a material property factor and f is a geometrical functiom

containing the integral term of equation 3-1. o« has the form

a = ‘*:; 3-24
| + %Ko

where "l: is the maximum value ¢ in the problem. The integral equation

3-23 can be solved by the successive approximation method. Taking
successive approximations to

g
,'?: = ,3:, t 4:, _ 3-25
9 = 4t G+ e

and substituting into 3-23 yields
#ﬂ = o cl’(:go)
o« ol (g) = «ed (b((lfo))

43
»
N

3-26
9“ > " ofw (Qo)
wvhere t{fw is the wn+" application of tf to ?. .

In general J is different for every point in the body. On physical
groundsg must be finite and the series expansion must converge. Since
o<1,the geometrical factor ef must be unity or less at all points. The

spherical model is an excellent example of this result. The &/ for a
given spherical harmonic is independent of position. From equation 3-13
the coefficient Cw is proportional to

\

3-27
nel )
1 = % \Znt

The successive approximation solution is given by expanding 3-27 in a

geomgtrical series

' - = (.z.:.!_)s 3-28
|- (P = ca
(]

31
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The geometrical factor is just

ne ! 3-29
2n+1
In general, the higher the irregularity of the geometry in a localized

region the closer to one the geometrical factor will be. In a cube, for
example, of would be closer to unity in the corners than in the central
part of one of the faces.

The convergence rate of the successive approximation methods is
primarily controlled by the material property factor. For most geophysical
problems, the susceptibility is seldom greater than \64'and often less
than 103 . Thus o <162 and the first term of the series is more than

adequate to specify the response of the body.

For a model where demagnetization effects are negligible,

g Y2 AnTuMr - pHe -Txm =0
and there is no need to solve the integral equation. The specification
of M;, Hoand %w automatically specifies # and therefore Ha .

For problems where demagnetization effects are not small, the integral
equation 3-1 must be solved. With the exception of a few special geometries,
the solution must be found approximately or by numerical methods. In
either case, the response of an arbitrary body can be quickly formulated
with the equivalent source method. The Green's functions which are required
are the 2 and 3-dimensional Green's function for the scalar Poisson
equation. The two dimensional Green's function is useful for solving
models with sufficiently long strike lengths that they may be considered

infinite in one dimension.

3-4 Resistivity Methods

The resistivity method is used to detect and delineate electrical
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conductivity variations in the outer kilometer of the Earth's crust.

As mentioned in chapter 1, the method is one of passing electrical
current.directly through the Earth and measuring the potential difference
between different points at the Earth's surface. The voltage at the
detector can be thought of being composed of two parts; one due to the
current flow from the generator through the background Earth, ¢, , and
one due to the disturbing influence of different conductivity zomes in

L4

the region, Us -

Y = Yo + Ua 3-31
The interpretation of resistivity and induced polarization surveys is
based on the postulation and computed response of a given model. The
anomalous field is compared with the theoretical response td interpret
the data.

The equivalent source method has been successfully applied to resis-
tivity problems by Dieter, Paterson and Grant (1969) who computed the
response of ellipsoidal conductors in a conducting half-space. The integral
equation used by Dieter et al can be derived from the general equations
for static conduction problems given in chapter 2.

For an ellipsoidal body of conductivity 6, embedded in a conducting

half-space with conductivity 6, the conductivity as a function of position

is
€= 6o + 64 h(fn) 3-32
where G64= 6,-¢o and
—x®\2 —x*\® o\2) Va
. k. Xy =¥y X2 = Xa X3- X3
fir) = | (—'—"a. ) + ( a2 ) L™ )) 3-33

Setting F(r) to zero defines the surface of the ellipsoid. The conduc-

tivity gradient factor is

- _S4_ §(€£e))n 3-34
Co ¢+ Cd
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where a : -V f(r) is the outward normal at the surface of the body. The
equivalent source is a surface distribution. The,dz factor of equation
3-1 is .cﬁilcz.
By defining the equivalent surface current source distribution
3(1‘3 = ) WD) 3-35
and substituting into equation 3-1, the integral equation for kg on the

surface of the ellipsoid becdmes

Jir) = dutr) - S ’ﬁo?iSS glrr) dr)d2e’ 3-36

TotG d

where

- Je(¥) el Eo(v) 3-37

Eeo is the electric field associated with an external current in the
background medium and has the form
Eolvr)z -T &, 3-38
where § o 1s the potential associated with the external source.
The appropriate Green's function for the problem, as given in
Appendix F, is that for the scalar Poisson equation in a half-space with

a Neumann boundary condition at the surface

W =L - atha
g = SL R *Y Ru] -

where

v
R= ( % (x; ‘x,i)z) .
3-40

" lla
Ri= (Zw-x)" + (aea))

Regrouping equation 3-3g, yields

T H) = =RTE, - AT ) ded sn

6.-Co
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which is the same as that used by Dieter et al.
Unlike the magnetic problems, the material property contrast is
usually'large, with contrasts of the order qwo’ not uncommon., As a
result the feedback from the integral term of 3-41 is not negligible and
the successive approximation solution would be slowly convergent. For
a conduction problem, the integral equation must be solved in most instances.
The only approximation that can be applied in these problems is
neglect of the second term in the Green's function. The Earth's surface
interacts with the anomalous body and is equivalent to placing an image
source at an equal height above the boundary and considering the response
of two interacting bodies in a wholespace. This effect is introduced
by the !/R, term in the Green's function. If the body is buried sufficiently

deep in the Earth in comparison to its lateral dimensions, R /R,, is much

less than one and

= \ -
gloav') 2 —= 3-42

For example, the response of a deeply buried sphere excited by a uniform
electric field as shown in Fig. 3-1, can be obtained directly from the
results of section 3-2. In the X~X3plane through the center of the sphere,

the anomalous potential at the Earth's surface is

§a S € - C'o) 2 | Ee\ a’m 3-43
"H-as‘. T;f + Jt)’lg

which is the result given by Grant and West (1965, pg. 425)

The general response of a conductor in conducting half-space must
be found by numerical methods. The integral equation 3-1 can be solved
by a least squares method (see chapter five) as used by Dieter et al or
the p&oblem can be analysed by digitizing .5 y

In practice slow time varying currents are commonly used in place of

direct currents. The interpretation is still based on the static field
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FIG 3-1 Electrostatic response of a deeply buried

sphere in a uniform field
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equations since the time varying field effects are small. The induced
polarization method is a product of using time varying currents for
resistivity surveys. Bulk earth materials exhibit frequency dependent
electrical properties below a few Hertz. This anomalous behaviour is
known as the induced polarization or overvoltage effect. (J.R. Wait,
1959). Since some bulk earth materials, such as disseminated sulphide
ore bodies, show much higher %nduced polarization effects than the host
material surrounding them, the induced polarization method can be used
to detect and delineate localized concentrations of these materials.

The computation of induced polarization responses are made directly from
the theoretical resistivity response. As a result the equivalent

source method is éfplicable to computing the induced polarizition response

as well as the resistivity response of theoretical models.

3-5 Summary

The treatment of static field problems encountered in geophysical
methods can be readily treated using the equivalent source method. The
geﬁerality and flexibility of the method make it a powerful method for
analysing problems not as yet solved. Neglect of demagnetization effects
yields a very simple and straightforward method of solving magnetic
problems. The resistivity analysis of section 3-4 can readily be generalized
to the case of the body buried in a conductively layered half-space by
changing the Green's function. A thin conducting surface layer representa-

tive of a conductive overburden can be incorporated in this manner.
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CHAPTER 4

-

THEORY OF INTEGRAL EQUATIONS IN ELECTROMAGNETIC SCATTERING PROBLEMS

4-1 Basic Scattering Equation

This chapter is devoted to a study of the mathematical nature of the

integral equations encountered in electromagnetic scattering problems.

The effect of a scattering body in an electromagnetic system, for which

the electromagnetic Green's d;adic'can be evaluated, may be expressed in
terms of equivalent electric and magnetic current systems as shown in

chapter 2. The equivalent currents satisfy a pair of coupled vector Fredholm
equations. In the majority of scattering problems, the scattering is due

to the electrical §roperties of the scattering body; the magrhetic properties
are almost identical to those of the background media in most instances.

In order to illustrate the properties of the integral equations encountered,
the particular problem of scattering by an electric scatterer in a homo-
geneous whole-space is discussed in detail in this chapter. The analysis

of a scatterer in a more complicated system does not differ markedly from
the whole-space problem; the basic difference is the addition of a homo-
geneous term to the whole-space dyadic. This result can be seen from the
form of the Green's andic for a plane stratified medium derived in Appendix A;
similar derivations can be made for background media which have cylindrical
or spherical stratification.

The integral equation for the equivalent current describing an electric
scatterer is developed from the general equation 2-70. The scatterer is
located in a whole-space and occupies a volume V bounded by a surface S.

In geophysical analysis, conductivity is more commonly used than permittivity;

as a consequence, a complex conductivity notation is adopted here in place

of the complex permittivity used in chapter 2. The scatterer has a complex
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conductivity difference ¢, =-jwés where €a is the complex permittivity
difference. The background whole-space has complex conductivity Gy:-jwéy,
The pert;eability of the scatterer and the background medium are takenmn as
the free-space permeability. Since there are no variations in magnetic
properties, the scatterer is replaced by an equivalent electric current
density Sc » which satisfies the integral equation

z%-g_\:\ = Eo.lvr) + J W fo S;%'(,‘,.).ﬁ'e(’_,)dara 4-1

4 \'4

From Appendix A, ;nb is given by

A = =
;ﬂ(r,r') = [ I + YR_V_] q lnv') 4-2
where
Jk\.p\
3("“") = ‘—A,PTT‘—R—

2 .
Ry = w?€pme= jw gue

A format which is more compact and physically simpler to understand

is now introduced. The integral term of 4-1 may be re-expressed as

jwuofid.; (r\r')-ge,(r')d’r' = f(ﬁc) + C(ge) 4-3
3
where
R(Je) = jwme § gQriv?) TFe (s d3¢' -4
v
and
G (Je) = %:g \Sr q (r, v) Telr) d' 4-5

A more intuitive ly obvious form for @ 1is obtained with the aid of the
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divergence theorem, namely

S {;ﬁi ie_(f')} S(r,r')d’r’ 4—6

v

ﬁ(i) -

L |<

where v -3:, is the total divergence of -jc defined as
= = - A
V-Je = T Je = TJe-n S(S) 4-7

Equation 4-1 can now be written as

*

Be - 2050~ e = B -
Ga

In this form the equation is analogous to the simple RLC circuit equation

(].;-jwt.-ﬁ-;é)]'.'=‘v 4~9
The three terms on the left of 4-8 may be interpreted as follows. The
first term represents the ohmic electric field generated by S—se due to
variations in the conductivity from O, (i.e. 63 =6-6% ). The second
represents the eleétric field generated inductively by the time variationms
of 3., . The last term is analogous to the capacitive term of 4-9. When
the b.'ackground medium is an insulator, this term is the capacitive effect
of the body. When the background is not an insulator, this term represents
the conductive channelling effect of the scattering body. (In the case of
magnetic property variations which are not included in this example, this
term would represent the demagnetization effect.) In all instances, this
term represents the generalization of the static field response discussed
in chapter 3 to the time~varying case. For this electric scatterer, the
static equation of the last chapter is obtained by multiplying 4-1 by 673,
taking the divergence of the equation, setting /? = U-3e in a conductive
problem ( ? — 303-% in a dielectric problem) and taking the limit as w-—vo.
An analogous derivation can be made for magnetic problems.

In the following discussions, the first term of 4-8 will be referred
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to as the ohmic term while X(Je) and & (S3¢)will be called the inductive
and depolarization terms. The associlated integral operators defined by
4-4 and 4-5 will be termed the induction and depolarization operators.
In many cases, it is convenient to refer to the combination of the three

terms as the total impedance operator and denote it by

Z:;E--K()-C() 4-10

a

One other combination of £ ,and & which is useful to note is that the
anomalous or scattered field is giéen

Ea = K(R) + G(3T) 4-11
Before continuing further with the scattering problem, some of the mathe-
matical properties of the induction and depolarization opegators are examined.

These properties make the discussion of the nature of the equivalent current

3:. somewvhat easier to understand in a general context.

4-2 Induction and Depolarization Operators: Mathematical Properties

The induction and depolarization operators are in essence convolution
integrals. The equivalent current is convolved with the background Green's
function or dyadic. The elements of the Green's dyadic are built from
solutions to a Helmholtz equation of the form

(Va.{- kRE ) qlrye) = - SQF-?'\) 4-12
The solution g(r, r’ ) exhibits a pole or branch point singularity when
I¥-¥'1—» © and has an essential singularity as inv'leec. The exact form
depends on the number of spatial dimensions involved (i.e. 1, 2, or 3).

The operation of general interest takes the form

() = [ glee) £Ge) &3 4-13
v
where f is a function belonging to G, the complex Hilbert space of functions

in V. The operator cf 1is a "definite operator". The term "definite operator"

is used to imply that there exists no subset of functions in G for which ef
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is a null operator. In more specific terms the following definition is
adopted.

Definition: An operato;‘ga, which has the operational sl;ace V, is termed
definite (or complete) ifef(f) # O for all f # O where f is any functional
belonging to G, the complex Hilbert space of functions in V.

The operator «f has this property as can be demonstrated simply by
taking f = 8(") s the Dirac delta function, which has its support located
at a single point in V. (The defin'it:e property is actually implicit from
equation 4-10). An additional feature of t¢ is that the kernel g(r, r’ )
is a quadratically integrable kernel when V is a finite dimensioned volume
(Morse and Feshbach (1953)).

The inductive and depolarization operators are vector ollaerators comp-
osed of terms of the form 4-13. Denoting the components of Ee by(Jl, J2’

J3) where J, are scalar functions belonging to G , the induction operator

i
has the property that it is a definite operator for any vector function in
the vector Hilbert space of functions in region V.

The depolarization operator is almost identical to the induction

operator; it differs, however, in that it contains the total divergence

operator
€(Te) = + T (7-Te) 414

The additional operation of V- inside ¢/ has the property that it makes @
an indefinite or incomplete operator. For all sets (Jl, Jz, J3) such that
V. Jezo, @ is a null operator. A current flow for which V- Je=ois
termed a solenoidal current flow for the region V from this point on.

While more detailed analysis of the mathematical properties of &£ and
e could be given, the essential features of these operators are summarized
above and permit continuation of the analysis of the electromagnetic

scat'tering problem.
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4-3 Dimensional Analysis

The impedance operator ¥ 1is composed of three terms. In order to
weigh the importance of the individual terms, an estimate of their magnitudes
is a useful parameter to have available. Se is assumed to be bounded. with
a finite maximum of J in V. This assumption is valid provided 03 remains
finite and the source of Eo is external to V or is distributed with finite
amplitude within V. .

In order to obtain an estimate of the magnitude of £ and & the

magnitude of td (f) where £f = 1 in V is derived. If A is the characteristic

length of volume V, then

(W&l &y
f(£).= S Cj(wr')d’r' < f; S° S, L Csinedkdody =a® 4-15
v

Taking the divergence operator to have a magnitude of the order
gl ~ L -16
W e L 4-1

the terms in ¥ (Je) become

‘ '_:_’5 Lol _3—' veld/wm. 4-17
e \0'3 L'-n
l K(‘&)\ ~ W AT T veld/w. 4-18
ey ~ -3_—- voldlm. * 4-19
b

where | 6, |min 1is the minimum absolute value of ¢, attained in V. The
order of magnitude of B now depénds on the form of i-e" From the discussion
of the last section G is a null operator for all solenoidal current flows
in V. As a result two distinct impedance estimates can be given for Z.

For Je solenoidal

- 2
| z l T~ zl IE.;L\:‘%‘ . J wM'A ohw ~wm. 4-20
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and for Je not solenoidal,

. : - .
Iz‘ = Zz ~ \d?.\_ -Jl-u.u.A -é_—b 4-21

The appearance of two characteristic impedances is not surprising; it
just reflects the fact that a vector field can be expressed in two parts,
namely, its longitudinal and transverse components. The bimodal character-
istic of 2 accounts for the whole subject of magnetic induction. For spatial
dimensions small on a wavelength scale, the coupling between conductive
bodies and/or current systems embedded in an insulator are described as
inductive. The capacitive or conductive effects can be ignored in such a
system provided only the magnetic fields associated with currents are observed.
The reason for this is that the solenoidal currents see a very low impedance
when @p,/63 and wau A6, are small while the non-solenoidal currents see
a relatively high impedance. Since the magnetic fields are primarily
determined by the solenoidal currents which may be several orders of magni-
tude larger than the non-solenoidal currents, only solenoidal currents
need to be considered in determining the response. The impedances as a
functionof body dimension vary much like those of simple RL and RC series

circuits as a function of frequency.

4-4 Eigenfunction Analysis

The method of characterizing an operator and understanding its response
is to analyse the operator in terms of its eigenfunctions and eigenvalues.
The electromagnetic scattering problem is characterized by the equation

. Z(3e) = & 4-22
where % is a complex symmetric operator (non-Hermitian). The general

eigenfunction equation associated with 4-22 is

Z(IW) = Anw W(T) 4-23
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where W is a real positive-definite symmetric weighting operator, I,

is an eigenfunction of Z with weight Wand A, is the associated eigenvalue.
Since B.has a quadratically integrable kernel for V finite, £ is characterized
by a denumerable but infinite set of eigencurrents and eigenvalues. (Morse

and Feshbach, (1953)). In simplistic terms, this means the eigenfunctions

are analogous in application to those of a Fourier expansion (i.e. series)

on a finite interval as oppos?d to those of a Fourier expansion (i.e. integral)
on a infinite interval.

The unweighted eigenfunction problem is

(L]l = Aw Ia 4-24

Since Z is non—Het:mitian, % is not self-adjoint. The adjoinf operator to

2 denoted by 2*has the property that

2 = 2% 4-25

The adjoint eigenfunction problem is
ey = a8 TY 4-26

where T : are the eigenfunctions of the adjoint operator. From 4-23,

the adjoint eigenfunctions are just the complex conjugates of —I-,‘.
L = T 4-27

Defining the inner product of two vectors in V as

(A,8) = | &-8av 4-28
v

the properties of 3, Z*and the eigenfunctions are summarized by
(EaEul ® San 4-29
(I.,Z@0)= Aw Sum 4-30
(T2, TNES) = Aw B 4-31
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Adopting the Dirac bra-ket notation, the inverse of B is given by
£ = 4-32
Aw

A useful variation on this approach is the extension of a concept
discussed by Harrington and Mautz (1971) in their analysis of scattering
from perfectly conducting bodies. In their analysis, an appropriate
weighting operator was chosen,such that the In are real; the eigencurrents
are equiphase over the entire body: The impedance operator # is split into
its real and imaginary parts R and X.

Z=R+3x 4-33
The real part of Z corresponds to the sum of the ohmic resistance and
radiation resista;ce. The imaginary term, X corresponds to ﬁhe reactive
impedance associated with capacitive and inductive effects. X is a
positive definite, real symmetric operator and X is a real symmetric
operator. Both operators have an associated set of real eigenvalues and
real eigenfunctions.

The choice of W= R in 4-23 results in a weighted eigenfunction problem

which has a set of real eigenfunctions. In the Dirac bra-ket notation,

equation 4-23 becomes (vector bars have been dropped for compactness)

RITu> +j X1 Tu? = Ay R ITLD> 434
or
jx‘IV\7 =(An—1)RlIh>

Denoting the eigenfunctions of R by s and the eigenvalues by T s the

following results hold

< CalSm? = e 4-35

 SuiRISws v B 4-36
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Equation 4-32 is expanded in terms of the s i's as

Cd Vse2€sel XISiO<Sil Tw? = N1 )18pD> 1 85 (55l Ty  4-37

Next the operator P and its inverse Pm1 are defined as
P= 1siy vi®&in Csnl 4-38
P'= 1S;dv;"2 §in £ Swl 4-39

P and its inverse are real positive definite operators by virtue of the
fact that R is a positive definite operator which makeg ‘the r170. With

the following definitions
JEZLEY = P IS | 4-40
X' = Px P 4-41

equation 4-37 becomes
J K1Th> = (Aa=1)t T 4-42
which is a new unweighted eigenfunction problem. The new operator X' is

real and symmetric; therefore, it has real eigenvalues and eigenfunctions.
This implies that

An=1 =) Bn 4-43
where @,and In' are real. Equation 4-40 then reduces to

X'ITLY = BnlT&? 4-44

Thus the use of the weighting function M = R yields a set of real eigencur-

rents and
Z1Tn? = (1 +)8n) 1Tu? 4-45

where @,, is an eigenvalue of the modified reactance matrix X /. The eigen-

currents are given in terms of the eigenfunctions of X’/ by

Ty = PITLD> 4-46
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4-5 Complex Power Balance

When the equivalent source method is applied to formulate an

electromagnetic scattering problem, the re-distribution of energy or power
can be expressed in a simple manner which can be readily interpreted .
The analysis for the electric scatterer discussed in the previous sections
of this chapter is presented here to demonstrate the interpretation of the
energy-power redistribution. ,

The total power in the system is

£ = fif {3} & + 328, +3rE+3E] v
Veo 4-47
= A v Pr o+ B v Py

where 5; is the e;citation current driving'fg. The first term ¢, repre-
sents the power associated with the primary source field, Eo; the second,
represents power associated with the interaction of 5; with the backscattered
field of the scatterer, E;; the third term represents the power flow into
scattering body from the primary field, E;; the fourth term represents
the power contained in the scattered field of the body in the absence of
any external field. In general, the interaction of the scatterer with the
source current is negligible. In most treatises on scattering, the intér—
action of the scattgred field with the source is implicitly assumed to be
negligible. When interaction of the source-scatterer is negligible, 3;
and E; are independent of the scattered field E; and the first term of 4-45
#, 1is constant. The power redistribution due the presence of the scatterer

is given by
s FP= AR +F P 448

In the problems solved in chapter & and 7, the source fields 3; and E;

are assumed independent of the backscattered fields.

The power associated with the equivalent current > :jg » is described
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prinar:l.ly by the term Pa. From equations 4-10 , 4-11 and 4-22
A = (34350 - (32, % B)
Ta 4-49
= @:c_, %) -~ (92 &)

In this form P 4 is the dif‘ference between the power ohmically dissipated
and/or stored in the anomalous region and that extracted from the primary
field E,. .
The redistribution of power aésociated with P 4 is explored in more

detail with the aid of Poynting's theorem. /#Z 4 is split into its intrinsic

components by
p"- = -J) Ea)
=fff { ox"d - FEL} - Ea dv 4-50
Yoo

= ] = nY i L
e fﬁ Z’V‘(Ea‘“;) +jwme Hg-Aa - c-oEa-Ea} dv
veb
Rewriting the complex background conductivity in terms of the real conducti-

vity and permitivity o = &/ - jw€yp
Py =S {-F-(Baxtid) +joncia- U3 -joe, B B -oLELES v 4-51

Vo»

The terms of‘ﬂa have simple physical interpretations; the first term is
Just the divergence of the Poynting vector and represents the power re-
radiated by the scatterer; the second and third term represent the time-

varying generalization of the magneto-and electrostatic power storage; the

fourth term is the ohmic dissipation of power in the background medium,

4-6 Summary
The preceding analysis has been aimed at pointing out some of the general
features of the solutions of scattering problems. The results are concerned

Specifically with electric scatterers; analogous results can be readily derived



for magnetic scatterers. Many of the general features of "'J-e_ derived
here will appear specifically when numerical solutions to some scattering

problems are analysed in chapters six and seven.
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CHAPTER 5

Variational Methods for the Approximate Numerical Solution

of Integral Equations

5-1 Background

In many instances, the mathematical formulation of a physical problem
results in an integral equation either because it is the only way the
problem can be expressed or because it is most conveniently expressed in this
manner. The geometry of the problem is invariably one which is not amenable
to analytic solution by conventional methods. A closed form solution for
the eigenfunctions of the system is not attainable; as a result, some form
of numerical meth;d of solving the equations must be found. The following
analysis is devoted to the variational approach of numerically solving
integral equations; the emphasis is placed on the nature of the techniques
and discussion of the more esoteric theory of integral equations is kept
to a minimum,

The general integral equation of Interest has the form

auUwP + \SI Q) u@)dv = of(p 5-1

where ¢{ and qf can{be either scalar or vector, real or complex fields

in one or more dimensions. A 1s a scalar constant. When A 1is 0, the
integral equation is termed an equation of the first kind; when & ¥ O,

it is called an equation of the second kind. &/ is the kernel of the integral
equation which can be scalar or tensor and real or complex. The integra-

tion is over the region denoted by V which includes all the region of
existence of W . P and Q are point coordinates in one or more dimensions.
When v 1is independent of the coordinates ¢ , the equation is a Fredholm

integral equation; when V is a function of P , it is called a Volterra
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integral equation. General discussions on the theory of integral equatioms
are given in Morse and Feshbach (1953) and Green (1969). Some analyses

related to the numerical problems are given by Mikhlin (1964) and Kopal (1961).

5-2 Numerical Problem and Notation

The problem at hand is to find U given ¢ . From a numerical compu-—
tation standpoint, the 1ntegr;1 equation, which corresponds to an infinite
set of linear equations in an infinite set of unknowns, must be reduced to
a finite set of N equations in N unknowns where N can be ﬁade sufficiently
small to make solution tractable by computer. The numerical problem is to
find a satisfacto;:y approximation to % which is denoted by €, and is .
characterized by N unknown parameters. ¢, is subject to the constraint that
the deviation of ¥, from the true {{ , obtained by some error estimator,
be sufficiently small and at the same time make N as small as possible.

The method of solution most commonly uséd and most easily implemented

is to digitize & at N points in V; the integral is then converted to a

sum and the error criterion applied is that

| a Uu(e) + 2 Fo, a) Untar)  -dw) | =0 5-2

at the N discrete points. A more sophisticated version of this technique

is to assume some interpolating function between the points and evaluate

the integral numerically or analytically if possible and then apply 5-2.
While this approach is quite straighforward, it is’only feasible in one or
two dimensions since, if one assumes n samples per dimension,lv=n" discrete
values are needed in m dimensions and N soon becomes unmanageable for
econémical computation. It is therefore desirable to find an approximation
to t which carriegs the most information for a given N.

The major difficulty encountered in numerical problems is the estimation
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of error. While some problems can be analysed fully and error bounds
estimated with reasonable accuracy, most numerical solutions can qnly be
judged satisfactory after the fact, owing to the complexity of the problem.
Accuracy of the solution for a given N must be determined by application
of the numerical techmique to problems with known analytical solutions as
a check or by comparison wiqh experimental data.

In the next two sections, the variational or minimization methods
called the least squares method and the Galerk;n method are considered.
In order to formulate these techmiques in a compact form, the following
suppositions and Aefinitions are given. The kernel of the.;ptegral equation
is assumed to be quadratically integrable, and the integral operator is
assumed to be definite. (Morse and Feshbach, 1953).

First, the equation is rewritten as

JU) - f =0 5-3

where ¢/ denotes a linear éperator which corresponds to the constant
plus integral operator in this particular case. Next, the weighted inner

product of a pair of functions is defined as
(ABw = §, A(p) B(P) W(P)d P 5-4

where W 1s a positive definite weighting function. (A, B) indicates a
unit weighting function is used. Expression 5-4 then corresponds to the
inner product used in chapter 4. For vectors this operation implies the

vector dot product is taken as well.

5-3 Least Squares Method

The least squares method is based on minimization of the error generated
by approximating 2( by U in the governing equation. The approximate

solution is defined in terms of N parameters

e T o tag 5-5
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The choice of ¥ is completely arbitrary and is made using all pt:ior
knowledge of the behaviour of the true solution ¢ . The only require-
ments on ¥ 15 tha following analysis is that U, be a linear functiom of
the «; . In general the choice of the approximating function should be

one such that as N+ oo the resulting function will span V. For example,

U

- might be an expansion of the form -

U = :% «; & 5-6
where @;, 1=gN-1 are part of a complete set of functions which span the regiom
V. The ¥, could be N terms of a power series e;xpans:lon or’ a Fourier
series expansion. If U4 is known to have singular points in V, the
approximating function should contain a term which has the same type of
singularity but with an unknown magnitude.

Upon substitution of WU, into the governing equation, 5-3 becomes
du)-¥= © 5-7
wvhere © is the error generated at any point in V due to the inadequacy

of UN in approximating the true solution U. The total squared error over

the region V is defined as

X = (e,0)\ 5-8
(If © is complex X = (6*, O)w). The weighting function is used to
bias the error to achieve higher accuracy in regions known to be critical
to the true solution AA . The optimm solution in the least squares sense

for the set of N parameters is given by the N equatioms

?;__.}K £ ® I= 0, N-| 5-9
L &
or the 2 N equations,

X o 2X = o iz 0, N-1 5-10
-4 P ¥

if the functions are complex.
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For the approximate solution form given by equation 5-6, the equations become

ap Re ((n) =~ bP I\u(ﬁp.%) - RQ(J$) _
5-11

ap Tm (Ley) + bp Re(Kpq) = Lw(dy)

where
;=3 + 3 b

K” =' ( d¥((9r)’ b‘(w?))w 5-12
J1 - (bp*((p$), ‘J)w ‘

5-4 Galerkin Method

The Galerkin method or as it is sometimes called the Bobnov-Galerkin
method is a generalized form of the Ritz method. In physical problems
it corresponds to an energy or power minimization technique. The formu-
lation has many features in common with the least squares method.

An approximate solution is defined in terms of N test or trial functions

u, = g‘ oL @; 5-13
The (; are arbitrary and the choice should be weighted by any prior kmowledge
of the solution to the problem. The comments given in the least squares
section also apply here. In the Galerkin method, the unknown «; are, -

determined by the requirement that the reéidual or error,
© = o (Un) - | 5-14
generated by the approximation, be orthogonal to the trial functions ;
that is
(@i, ®) =0 5-15

The condition can be derived by minimization of the function

(UN, @) 5-16
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w.r.t. o; which may be interpreted as a minimization of the energy or
power associated with the error. In a physical problem such as an electro-
magnetic sc;ttering problem, YU may be a current demsity field and the
operator ¢f(U) the electric field associated with ¢{ . In this case 5-16
would have the dimensions of power demnsity.

Upon application of this condition to the governing equation, the
equation is reduced to N linear equations in the unknown o; , which have

the form

% <p (‘4’1, f(W,) = ((91, J) 5-17

5-5 Summary

In the two preceding sections two techniques of reducing an integral
equation to a set of linear equatioms by a variational approach have been
outlined. There is a close relationship between the Galerkin method and
the least squares method. Discussion of the relationship between the two
as well as convergence proofs for particular problems are given by Mikhlin
(1964). The application of these methods to some geophysical problems is

demonstrated in the next two chapters.
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CHAPTER 6

.SCATTERING FROM TWQO-DIMENSIONAL STRUCTURES

6-1 Introduction

The electromagnetic response of 2-dimensional bodies provides a
starting point to examine numerically ‘some of the results discussed from
the theoretical viewpoint in.the previous chapters. The nature of 2-dimen-
sional scattering problems of geophysical interest and the numerical methods
used to solve them were briefly reviewed in chapter 1. The problem analysed
in this chapter is the response of a 2-dimensional conductive cylinder of
rectangular cross-section embedded in a conductive half-spagce. This model
was chosen for two reasons:

(1) The geometry is the most simple and at the same time permits modelling
of a wide variety of structures.

(2) Data were available from other numerical solutions and from scale
model experiments to provide a check on the computed results.

The response of an infinitely long cylinder embedded in a half-space
parallel to the plane of the half-space surface splits into two distinct
response types. In the following, these two types are denoted as the TE
and TM response. The TE (transverse electric) response implies that the
electric field is parallel to all structural boundaries. The TM (transverse
magnetic) response implies that the magnetic field is parallel to all
structural boundaries. The two types of response are sketched in Fig. 6-1.

The detailed geometry of the model for numerical analysis is shown in

Fig. 6-2. The cartesian coordinate system is denoted by (xl, Xy x3) and

has the associated unit vectors &, €,, 33. The cylinder strike is in
the 3& direction. The geometry of the model is parameterized in terms of

the factors (al, aq, d), the body half-width, the half-thickness and the

depth of burial in the half-space. For numerical computation these geometrical
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parameters of the structure are normalized against a, as follows

= 43
# a 6-1

- 4

The body is assumed to have a constant conductivity ¢; and the back-
ground half-space has a conductivity ¢, . The angular frequency w 1is
assumed to be sufficiently small that.displacement currents are insignificant;
there is no need to specify ,the permittivity of the materials when this
assumption is valid. This point is outlined in Appendix C where the evaluation
of 2-dimensional Green's function integrals for the conductive earth problem
is discussed. The body is assumed to have magnetic properties identical to
those of the surrounding half-space. The permeability of the whole system
is taken as U, , the free-space permeabilify.

When displacement currents are negligible, the skindepth of the back-
ground medium provides a good base to normalize all lengths. The background

skindepth is

el 2 2
80 = (w». ‘-.) 6-2
and al is defined as
a, = A So 6-3

Next, the anomalous conductivity is given by 65 = o,-¢- and the body is
characterized by the four parameters (A, R, D, 6;). In the next two sections,
the integral equations governing the two response types are derived and the
approximate solutions to some typical models are computed using the least

squares method discussed in chapter S.

6-2 TE Response

(1) _Integral equation

The TE response of the cylinder is formulated in terms of an equivalent
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current 5; which has only an 82 component. For simplicity, J_ will be

used to denote this component. Je is invariant in the xz coordinate and

using the 2-dimensional TE Green's function derived in appendix B, Je

satisfies the scalar Fredholm equation

Je () ""ij‘S [ s(v‘v') Jele')d2e! = Eolv) 6-4
0a -3, -3y

where E;(r) is the exciting electric field which also has only an Eé

component and
ﬁ(r,r') = L,(r,r‘) + L‘(r,r') 6-5
The explicit forms of Lo and Ll are given in appendices B and C.

The approximating function for Je was chosen to be a two dimensional

expansion in Chebychev polynomials of the form

Jel(vr) = i g Cawn T‘(Y.-‘ff)n(&—ﬁ) 6-6

n=o Mm:e < a3

where (xi, xg) are the coordinates of the centre of the cylinder. Tn(z)
denotes the Chebychev polynomial of degree n and the first kind. The
approximate solution is characterized by a total of (M + 1) (N + 1) unknown
coefficients. At this point it is convenient to introduce a set of norma-

lized coordinates

f: - % 7 = (____.‘3',&) 6-7
a, Uy

With the above approximation for Je » the least squares solution can be

formulated, First, the integral coefficient dfnm is defined as

1.0
= J] Tuls) Tula) g (5, sl ) d5dn’ 6-8
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substitution of the approximation for Je into the integral equation yields

g3

Z - { M - jwau-. Soz AgR :hm(,ln)} = Eo(f.q)t e(f.q) 6-9
[ZRSN

where © 1is the error generated by the approximation of Je expression 6-6.
Since the evaluation of rnm cannot be carried out analytically, a discrete

estimate of the total squared error was used in place of 5-8 and is defined as

X, = % % @*(fr,'h) O(5e ,2y) 6-10

where ( fp, qq) are a discrete set of points in the range -1 £ §,9¢ £ 1.

For computational purposes, the set of error points ( fp’ qu) were chosen

as the roots of the Chebychev polynomials 'I‘P(S’) and TQ(,-() where P,Q > N,M_
This choice was made for two reasons; first, the set of Chebychev polynomials
Ti(x) i=1,...,(Q - 1) form a discrete set of orthogonal polynomials on

the set of points which are the roots of the Chebychev polynomial T.(x);

Q
second, the roots of T, are unevenly distributed in the interval (-1, 1)

Q
with the concentration of roots being most dense near the end points +1
and least dense near 0. This in effect biases or weighs the solution in
the outer region of the body more heavily than in the central part of the
body in the determination of the total squared error }KD. This is compatible
with the skindepth effect which results in most of the current flowing near
the surface of a good conductor.
The real and imag:lnal'ry parts of the ¢ m are ;lenoted by

Curmg = Hawm + J @n.‘ 6-11

The impedance operator for an individual element in the expansion is

defined as

Zonm(5m) = T"(—:);“‘(ﬁ‘—) — Jwmoe 3 AR Lo (T4) 6-12
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and the total squared error becomes

XO .= Z (g‘ Cm..z.....‘ EO)(éc:s Z:’ = E:) 6-13
%9

»
Next, ), is minimized w.r.t. ¢ __ and C_ which yields the set of

2(N+ 1) (M + 1) linear equations

Z Hrinm %nm = Tetnm Bum = Svs 6-14
= Cotmnitany Bl Bun= S5 6-15
vhere
HKrsam = Real 921 Z.: & m 6-16
Frsuw = Imeg P% g £ A 6-17
Sy = Real % ZY e | 6-18
Srs = Limay z; - i 6-19

At this point the first step towards the numerical solution of the integral
equation is complete; the integral equation has been reduced to solving
a finite set of linear equations in terms of a finite set of unknowns. The

steps in the numerical computation are outlined in the next subsection.

(1i) Numerical Solution

The numerical solution of 6-14 and 6-15 consists of three basic steps.
The first step in the analysis is the development‘of a numerical algorithm
to evaluate the integrals a:nm. The second stage in the analysis is the
evaluation of the scattering matrix elements je;snm and ’t;snn using the
results of the first step. The final step is the inversion of the scattering
matrix to find the coefficients for the polynomial expansion of the equivalent

current and computation of anomalous fields generated by the equivalent
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current.
The model and solution parameters are summarized in Table 6-1 and
a flow charé of the numerical analysis is shown in Fig. 6-3. The integrals
x;m are dependent only on the geometry of the anomalous structure and are
independent of the anomalous electrical properties. The a?nm were evalu-—
ated usigg the method outlined in appendix D. The coefficients were
evaluated at the set of error points ( j‘p, ¥ q) and were used as data for
the generation of the matrix elements. This step of the analysis required
specification of the parameters A, R, D, N, M, P, and Q. The Chebychev
polynomials were evaluated numerically by using the recursion relationship
Tald) = 2 Tagla) - Tou it} 6-20
and the definition of To and Tl
Tolx)= 1 T Tx) = X 6-21
The error points were determined from the property that éhe roots of the

Chebychev polynomial of degree Q are
Xi = COS((E‘_E_:__')“) 6-22
2Q

All these properties are given in Abramowitz and Stegun (1965).
Next the source field and the anomalous conductivity were specified.
The impedance for each element an was computed at each error point using

6-12 and the matrix elements jy

S

and % and the source coefficients
rsnm ~ rsnm

- and ‘S:; were computed by summation over the error points as indicated

by equations 6-16 through 6-19. The scattering matrix was inverted using
a standard Gaussian elimination method. The equivalent current expansion
coefficients weré then computed for each excitation field.

The polynomial coefficients were used to compute maps of the equivalent

current and to evaluate the anomalous fields associated with Je. The

anomalous electric and magnetic fields are given by



Table 6-1 Summary of TE Solution Parameters

Geometrical

A - cylinder half-width in skindepths

thickness to width ratio

D - burial depth to half-width ratio

Electrical

Oa/6o - anomalous conductivity ratio

Numerical Solution

- maximum polynomial degree
-~ maximum polynomial degree

number of error polints in

o v = =2
!

- number of error points in

in x4
in x
3
X4 dimension

x3 dimension
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Fig. 6-3 Flow chart of TE Computations
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3 3

E a = jw,u. S I 3(f|V') Jg("') d": JX; 6-23
-3, <8

s A 6‘>f (Ea€s) 6-24
J Waeeo

Defining an anomalous field associated with each element in the expansion

of Je’ 6-23 and 6-24 become

Ea = & Cum EY 6-25
5 -
ﬁa’éu - Z Cl\m |H3W\ 6-26
Nny™m
Hé& = Z cum "H3" 6-27
where the coefficients are
nwm . a: 4
Ejy (W)= jwae S g(r.v')T.,(S")Tm(m‘)dt(h; 6-28
-3, -dy
a0 =~ 2§ (P TulS) Teal) dut des 6-29
X3y -3, ~3, )
W = 2§ Catw Tl w630
(DN 'an "33 : 4 2

The integral coefficients E'Y" and 'H3" ,’H3™ are independent of the

source field and the electrical properties of the body; this information

is contained in the cnm' The field coefficients have only to be computed

once for a given model geometry.

The computer programs were written to compute the response for any
number of source fields and anomalous conductivities for one given model
geometry. This maximizes the number of model configurations for a given

amount of computer expense, since the numerical quadratures consumed con-

siderately more computer time than any other part of the computations.



68

As pointed out previously the numerical quadratures have only to be carried

out once for a given geometry.

(iii) Numerical Results

The results of computation for a pair of simple models is given in
this section. The following results are intended to demonstrate the general
nature of the solution methoq and the computations rather than to give an
exhaustive study of the particular models in question. The numerical
response is presented in the following format; first, a table of the solution
and model parametérs accompanied by a sketch of the geometry is given; this
is followed by a set of contour maps for the equivalent current; finally
some selected anomalous fields are computed and compared with other available

results.

TE Model 1

The first TE model was chosen in order that the numerically computed
response could be compared with data obtained from a scale model experiment
by Farstad (1970). The scale model consisted of a large tank of salt water
and a current system which simulated plane-wave excitation (see Farstad 1970).
One model studied was the response of a long, thin slab. In terms of the
skindepth of the salt solution, the slab had dimensions 8,:0.02853.,3;:0.8%8,
and a strike length of 3.58&, While the model had a finite strike length,
it was sufficiently long that measurements made in the central region of
the body should be a reasonable simulation of a 2 dimensional response.

The numerical model chosen to compare with the data is summarized by
the list of parameters given in Table 6-2. The conductivity contrast for
the scale model was G,/6, = 36.5. In the numerical study, a set of three

conductivity contrasts of.25, 36.5, 50 were computed in order to show the
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Table 6-2 Data for TE Model 1
Geometrjical
A = 0.0285
R = 15,0
= 6,0
Electrical

gf. = 24.0, 35.5, 49.0
& = 1 mho/meter

Numerical Solution

o v =2 2
l
@ O F N

Source Types

Plane wave

Sketch of Geometry

Air
T Earth
0.172 §,
i e
0.856 4,
1 — —
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variation of the response with body conductivity. In order to avoid
confusion, it should be noted that conductivity contrast and anomalous

conductivity contrast are related by

B e v 2 6-31
e S

The excitation field is that of a plane wave incident normally on
the half-space. The electric field at the surface of the half-space is
taken to be 1 volt/m. with a phase of 0 degrees. The electric and magnetic

fields as a function of depth in the half-space are then given by

- i R X
S0 g volt/wm. 6-32

- j ReX ve 3 W4
= (- (2 )e )é. awp /. 6-33

Since ko= (1 + j)/ §o , the fields vary as e("*") ¥3/3e

with
phase rotating through 27t radians and the amplitude decreasing by a factor
e_n.’ fot" X3/8. = 2N . (See Fig. 6-7).

In Fig. 6-4, -5, and -6, contour maps are used to illustrate the
equivalent current for the various conductivity contrasts. To keep the
maps of Je uncluttered, the contours were labelled without the 10" factor.
For example, the contour labelled 1.0 in Fig. 6-4 for real Je implies 1.0 x 101.
The power of ten is to be taken from the contour interval (i.e. 0.1 x lg}).
The phase reference for the currents was taken as the electric field ;:—;he
surface of the half-space. The exciting electric field has a real component
which decreases monotonically with depth over the extent of the cylinder; the
imaginary component rises and then falls. The primary fields versus depth
are shown in Fig. 6-7. The equivalent current depicted in Fig. 6-4 where
0i/Go = 25, reflects the basic behaviour of the exciting field; however, the

field lines are pulled closer to the surface. As the conductivity contrast

increases, the constant current lines become more strongly warped upwards



71

L — (=
| — /“\
e /\
-0~
0.8
e
0.0
i
/O-Q\ |
e
e
PN
N
R FL o IMAGINARY J
CONTOUR INTERVAL IS CONTOUR INTERVAL IS
0.1E1 AMP/METER? 0.8E0 AMP/METER?

CURRENMT MBPS FUR MUORBEL 1
SOURCE NUMBER 1
CONDUCTIVITY CONTRAST IS 2.S50E1
Fig. 6-4



72

— & " r‘,,_\
R ey
1.6~ T
o /o-‘l\
e
08
/’f\
/.4\ \ov‘l/
>
— 10—
/™ o
e
MENL  J IMHLE I NERT - J
CONTOUR INTERVAL IS CONTOUR INTERVAL IS
0.2E1 AMP/METER? 0.1E1 AMP/METER?

CURBENT MBFS Fag MoDEL _ 1
SOURCE NUMBER 1
CONDUCTIVITY CONTRAST IS 3.66E1

Fig. 6-5



73

ey L
L ' =
270~ / "\
L /“'\
k6 ~J
L
ey |
LN
oy * o8
L
. N oa~
o
e
/QC\
BEAL J IMAGINARY J
CONTOUR INTERVAL IS CONTOUR INTERVAL IS
0.2£1 AMP/METER? 0.1E1 AMP/METER?

CURRENT MAPS FBR MOBDEL. 1
SOURCE NUMBER 1
CONDUCTIVITY CONTRAST IS 5.00E1

Fig. 6-6



1.0

0.5

74

REAL e(-l +j /8o

=
=
—

x/So
2D
0.5 |
IMAG. e(-l"”j)X/So
2 4 6
X/So

-0.25

Variation of field strength for a plane wave
incident on a conductive half-gpace



75

and current flow is being forced towards the outer parts of the body.
Since the body is still well below the inductive limit when /6= 50,
a good percentage of the current still flows in the central region of the
body.

Some of the anomalous fields associated with Je are shown in Fig. 6-9
to 6-10. Fig. 6-9 shows tétal electric field at the surface of the half-

space with

L]

N
Efg = 1 + Z cum Ea (hx)/E. . 6-34

The electric field exhibits a broad minimum which bottoms out directly
over the cylinder. The phase of the total electric field exhibits a
different behaviour. On the flanks of the body the phase shows a lead of
about 3 or 4 degrees; directly over the body the phase lead decreases and
for the lower conductivity becomes a lag. The explanation of this behaviour
lies in the fact that directly over the body the current near the top of
the cylinder, which is also the largest, dominates the secondary field.

On the flanks, the anomalous field is generated by the total current flow
in the cylinder; the distance to the cylinder is larger and the integral
over the cylinder weighs the current contributions more evenly.

The behaviour of E is most easily explained by the phasor diagrams
in Fig. 6-8. The analysis gives a gross estimation of the equivalent current
and field behaviour (a) for the whole body as an average and (b) for the
near surface portion of the body only. While this is somewhat over-simplified
synthesis of the response, it does explain the gréss features of the anomaly.
To some extent, the phase lags due to propagation through the background
medium have the effect of making the body look more conductive than it really
is since these lags cannot be differentiated from the self-inductive effects

which cause a similar lag.
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(b) Top of body behaviour

- Fig., 6-8 Phasor diagram illustrating physical mechanisms
for observed TE anomalies
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In Fig. 6—10,'ths total H, component of the magnetic field at the

1

surface of the half-space is shown. In this diagram, Hl has been
normalized ;gainst the primary magnetic field at the surface. The plotted

normalized field is
] wnvm
e = {1+ Z e 'HTY/ 0 6-35

The totai horizontal magnetic field drops below that of the half-space
on the flanks of the body and rises to a maximum about 20Z above the half-
space field directly over the body. The total field lags the primary
field except at large lateral distances where it leads slightly. Directly
over the body, the field exhibits a dimple in the phase angle and the lag
shows a minimum directly over the body. The explanation of this dimple
follows that for the electric field behaviour. The current flow at the
top of the body strongly influences the anomaly directly over the body.
Since the phase of the equivalent current at the top of the body differs
from the mean phase of the equivalent current, the phase curve of the
anomalous fields shows a fluctuation directly over the body. This fluctu-
ation should be very depth dependent and vanish completely for bodies where
the depth of burial makes the distances from any point in the cylinder to
the surface more equal. This has been observed experimentally by Farstad
(1970).

In Fig. 6-11, the normalized impedan;e at the surface of the half-

space is shown. The normalized impedance is defined as

Bar Cotn /i)e (S22))(2) o

' ' = "
when Htotal and HO represent the &, component of H only. Aside from

normalizing factor ZN is just the ratio of the curves shown in Fig. 6-9

and 6-10. ZN shows a smooth variation over the structure dropping to a

minimum directly over the body similar in many ways to the electric field
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variation. The phase 'shows a lead over most of the spatial range with
the dimple directly over the body being even more pronounced. The apparent

resistivity fi commonly used in magnetotelluric sounding is given by
2
| fal = fo |24l x 6-37
where §, = {/6%.

The results of the nume;ical computation compare favourably with the
scale model data collected by Farstad (1970). The experimental data are
denoted by e's on the diagrams in Fig. 6-9, =10, and 11. The amplitudes
of the experimental E and H fields do not agree perfectly with the computed
data; however, the general shape of the responses is the same. The phase
measurements show good agreement in general behaviour but considerable
deviations from computed responses occur. The normalized impedance shows
much better agreement than the E and H responses.

In general the comparison is encouraging. The deviations between the
experimental results and the theoretically computed responses can be
rationalized in several ways. The first area in question is the numerical
solution. Could some of the approximations be affecting the result? Compu-
tational errors were checked by testing the susceptibility of the responses
to changes in the numerical computation parameters such as N, M and the
accuracy of the numerical integrals. These parameters were found to make
little difference to the response. In addition, the programs were checked
against other knovn results (next section of this éhapter) and no major
discrepancies were found. Another significant factor is the effect of the
finite strike lenéth of the body; this effect is difficult to assess quanti-
tatively. Current channelling effects, which saturate very quickly with
increasing conductivity contrast, would limit the current in the cylinder
to being less than that for an infinitely long body; an under estimation

of the electric field anomalies could, therefore, be expected. Another



82

factor which must be appreciated is the difficulty in designing and
constructing a scale model which simulates an idealized structure. The
constructioa of measurement probes which do not significantly alter the
system is a difficult task. Whatever the exact cause of the discrepancies
in E and H, the effects in the two components oppose each other in com-
puting ZN since excellent agreement is found for the impedance amplitude

and phase.

TE Model 2

This model was chosen in order to compare the least squares method
of solution with results obtainned by straight digitization of the integral
equation as done by Hohmann (1971) and solutions obtained by finite dif-
ference as described by Wright (1969). The model and its parameters are
described in Table 6-3. The exciting fields are those of a vertically
incident plane wave and of a line source placed on the surface of the half-
space one skindepth to the left of center of the body. The equivalent
current was computed for various values of ©6,/¢6s and some of the anomalous
fields computed at the surface of the half-space are compared with results
obtained by Hohmann and Wright.

The equivalent current for the plane wave source is shown in Fig. 6-12
for a number of ©Ci/¢6 ratios. The equivalent current behaves in a
similar manner to that given for model 1. For small conductivity contrasts,

Jé“ 64E, and the uaps reflect the structure of the exciting field. As

0
the conductivity contrast increases, the self-inductance effects start to

take over and the current is forced towards the edges of the cylinder where
the inductive impedance is a minimum. The points for maximum concentration

of current are the top and bottom of the body:. In addition, the relative

phase of the current changes from being predominantly in-phase with the



Table 6-3 Data for TE Model 2
Geometrical

A = 0.015

R = 10.0

o= 3,33
Electrical

%/o, = 4.0, 9.0, 49.0, 99.0, 499.0, 999.0

Ce

1.0 mho/meter

Numerical Solution

£ v =B =
il
los

Source Types

1. Plane wave

2. Line source

Sketch of Geometry

Line source Air

@Y____ 1 —
T
0.380 i 6.=1
I _4_
0.0

. 035,
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exciting field to a lag between 45° and 120° at various points in the
body.

The normalized impedance over the body at the surface of the half-
space is shown in Fig. 6-13 for the various conductivity contrasts. The
impedance amplitude shows a deeper and deeper minimum directly over the
body as the conductivity contrast increases. For small contrasts, ZN
exhibits a phase lag over the body; this reflects the phase retardation
associated with propagation fhrough the background medi;m. As the
conductivity increases, the self-induction effe?ts of the body set in and
the mean phase of the equivalent current is significantly altered. This
generates a phase lead in ZN. The proximity of the top of the conductor
to the Earth's surface and the fact that the phase of the eqpivalent.current
near the top of the conductor is considerably different from the mean phase
of Je results in a dimple in the phase curve similar to that seen for model 1.
The x's on the 1000:1 curves denote the response obtained by Wright for
the same model. There is very good agreement between the two sets of
data. The only discrepancies occur far out on the flanks of the anomaly.
These are probably due to edge effects in Wright's finite difference solution.

The Je response for the line source excitation is shown in Fig. 6-14.
The excitation electric field is given by

Ee = jw.u. (L, (".f‘s) + Ly (V‘.V‘s)) velt/ . 6-38
where ;; is the location of the line source. The current in the wire is
taken to be 1 amp. The basic behaviour of the equivalent current is much
the same as that for the plane wave excitation with the difference being
the non-uniform nature of the source field. The current exhibits the same
skindepthing effect and attempts to concentrate itself in the upper and
lower ends of the cylinder cross-section where the self-inductance is a

minimum.
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The magnetic fields at the surface of the half-space were computed on
a profile over the body and were normalized by a factor

H = =
2w | #-¥| 6-39

where |¥-¢¥gl 1s the radial distance from the line source. This is the
amplitude of the magnetic field about a stati; 1line current of 1 amp.

Fig. 6-15 shows the horizontal magnetic field as a function of position

for various conductivity co;trasts. The vertical magnetic fields for the
same profile are shown in Fig. 6-16. The curve 0,/6e = 1 gives the
normalized half-s;;ace response for both components. The superimposed X,48,@,
are data obtained numerically by Hohmann (1970). There is extremely
good agreement between the two sets of data. The only disérepancies

occur in Hx directly over the model; the peak values of Hx obtained by

Hohmann are about 27 smaller than those obtained in this study. These

variations are most likely due to differences in the numerical solution methods.

(iv) TE Summary

The preceding results indicate the usefulness of the least squares
approach to obtaining solutions to the TE integral equation. The data
presented is not an exhaustive analysis of these models or of TE models
in general and a number of numerical details should be summarized before
leaving TE solutions. Onefeature which was found was that changing the
polynomial degree of the approximation to Je did not significantly alter
the response of the preceding models. In fact for TE model 2, the response
was computed for (N, M) = (2, 2), (2, 4) and (4, 4). Only for the (2, 2)
case and large 6,/6, ratios was there any detectable difference in the
response and this was only-about 1 or 2%Z. For larger bodies the polynomial

degree becomes more important but is still not a major factor since the
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solution is an approximation in the least squares sense and therefore

gives a smoothed version of the true response even.when a much higher
degree polynomial is required to be representative of every detail of the
true solution. Another factor in the solutions which was considered was
the accuracy of the numerical integrals; the error tolerance was varied
from 17 to 0.1%Z and again very little variation was noticed in the response.
The number of error points in the squared error estimator is also a
parameter of - the solution which should be mentiored. In general, the number
of error points was chosen such that the averaée number of points gave a
mean average spatial separation of less than 0.58‘. S =( z/wuoo‘.)vz is
the skindepth in the anomalous region. For very small bodies and small G./c,
the number of error points was taken to be greater than the humber of
unknown parameters. The response is not overly dependent on this parameter
since the points are spaced in such a manner as to emphasize the dominant
part of the solution, namely the current near the surface of the anomalous
body. The combination of the facts that the solution is an approximation
in the least squares sense and the current is solenoidal results in a
highly stable scattering matrix. This accounts for the insensitivity of
the response to minor variations of the solution parameters. In the TM
response the mixture of the non-solenoidal and solenoidal currents makes
the solution considerably more sensitive to these parameters.

The computation time for a model was difficult to judge for general
usage since every job run was for a specialized purpose. Opening up the
Programs and using multiple sources for varying conductivity contrasts in
a straight-through production mode would drop the average time per model
considerably. The computations of the numerical quadratures were the most
expensive part of the analysis; for a given geometrical model, polynomial
degree and accuracy of the numerical integrals, all the integrals for a

response would require from about 10 seconds to about 60 seconds of CPU
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time on an IBM 370-165. The remaining computations consumed less than

5 seconds per 10 source configurations and one conductivity; this factor
was controlled mainly by the maximum polynomial degree of the solution.
(The maximum core requirements in any stage of the processing were less
than 120K bytes or 30K words of memory).

These figures for a single run compare with those required by Wright
and Hohmann for the computation of the response for similar models. Hohmann
used a grid subdivided into s;atial increments pf 0.6 §, in most instances.

The anomalous electric field was solved for at the discrete set of grid
points. In the médel 2 discussed here 40 grid-points were used to evaluate
the response. The computation time for the solution in this manner was
approximately 30 sec. on a CDC 6400 computer per geometry, s@urce and
conductivity contrast. The finite difference solution used by Wright
required digitization of the host medium and the air or insulating region
above the half-space as well as the body itself. The division interval
was in general on the order of about 0.25 skindepths in each medium except
in local regions near the body where geometrical spreading effects might
be significant. Computation time by the finite difference method required
about 60 seconds of CPU time on an IBM 370-165.

One point which should be stressed before continuing on to the TM
analysis is that the TE response is a pure "inductive" response. The electric
fields and currents are parallel to all conductivity variations; as a
result, the conductive channelling or depolarization operator is not activated.
The TE impedance operator does not exhibit the bimodal feature of the general
electric scattering problem discussed in chapter 4. In fact the response
is analogous to that of a simple RL series circuit as a function of frequency;
at small (w L/R) the resistive term dominates the response while at large

(wL/R) values the inductive term is the dominant factor in determining the

response.
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6-3 TM Response

(i) Integral Equation

The TM.response of the cylinder is formulated in terms of an equivalent
current 3; which is a 2«.component vector which lies in the plane perpen-
dicular to the strike of the cylinder. The components of 3; are denoted
by(Jl, o, J3) and are assumed independent of the x, coordinate. The
integral equation for 3; is obtained using the 2 dimensional TM Green's

dyadic derived in appendix B. The result is the vector Fredholm equation

= \ 3 3 ., = 6-40
Te?) _jwu,f [ M) Telr) didry = Eale)
0'6 . a| -a3

where Eb is the excitation electric field and is also a 2 cemponent vector
with components (El, o, E3). The Green's dyadic is listed in Table 6-4.
Upon regrouping 6-40 and applying Gauss' theorem, the integral

equations for the components of 3; are

a & =@
Ji(v) - ‘jwugj j (L, -+ Lz) 3.("‘)&}(".]"; sl T - 6-41
g Te @ K, '
-3,
e By
‘?_;_‘_") - jw Mo j S (L.~ L:.) 3:(*')4;\&% 3_‘11—.1 - E, 6-42
%a -a, -3 0, 2¥3

where

!

3= 3 K=za
:E (x.m) = - { J (L. +L;)33(r‘)l Jx, + j(L +L,) 3, (v')l d;,} 6-43
"'3! =9 x'=-3,

The 42 term is the conductive channelling term and it involves only surface
integrals (line integrals for 2-dimensional structures) when 0, is constant
inside the structure.

The approximate solution for 3; was chosen to be a power series

expansion. The expansions for J1 and J3 have the form
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I, = = G T m™ 6-44
) nso mro
I, = %0 2. Cla T 6-45
where (S‘n() are the normalized coordinates
¢ - (x.;'tf) =3 (tg::‘) il
and the (xi, x;) are the coor.dinates of the centre of the cylinder. Invoking

the fact that V- Te = 0 inside the cylinder when T, is constant, the
coefficientsof J. and J

1 5 are not all independent and the condition
' — _ Cmay) 3 4
__.n‘:| cm,m e T‘T Cv\,mH 1 -4z

must be respected. This condition affects all the coefficients except the

c!

and ¢ 3
o, m

o terms for which the divergence operator is a null operator.
>
The divergence free condition reduces the number of unknowns required to

specify Fe and 6-44 and 6-45 can be rewritten as

J, = %, 2, 4(_"' + zo A ¢ " 6-48
L R
¥y = i g ™ g e e (—R@,S))g“q”‘ 6-49

™Mz

The error vector O = (®,,0,0,)is defined as the residual when the

approximate solution for -:I—e is inserted into the coupled integral equations

6-41 and 6-42. The components of & are given by

Py Y Gl . W S TT Cl . BS~E, 650

- : 2 ==
© 3 - Comn u;“\ “ C:\m u\\n\ ¥ Cao u:o i b‘J 6-51

where Ui and gt are given in Table 6-5(a) and (b).

The subscript summation
over the appropriate range is implied.
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Table 6-5 (a) TV Impedance Coefficients
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Table 6-5 (b) T Impedence Coefficients
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In an analogous manner to the TE formulation, 5 is evaluated at
a discrete set of points (f,,/r(q') in the cylinder and a discrete total

squared error estimator computed by

K, = :Z._‘ 3* B 6-52

The set of error points were chosen as the roots of Chebychev polynomials

of degree P and Q.

TufiSplan Talng)=o 6-53
This set of points was chosen since it weighted the error in the corners
and at the edges of the cylinder moré heavily than that in the central
portions of the cylinder; this is in accord with the physical nature of
the response. I

The coefficients c;m are split into real and imaginary parts

Sim = L + § B dac

Minimization of the discrete squared error, X _ w.r.t. c(is and ﬁ:s

EX = O ’D}Kp = O 6-55

Rl > @rs

ylields a set of linear equations in the set of unknowns ( a(é_" (3;,‘).
The resulting coefficient matrix for the set of equations is tabulated in
Table 6-6 and is referred to here as the scattering matrix in subsequent

discussions. The individual matrix elements are also shown in the table.

(11) Numerical Solution

-

The TM response requires considerably more detailed analysis than does
the equivalent TE response; the vector nature of the electric fields and
currents and the excitation of conductive chanelling effects add to the
complexity of the problem. The details of the numerical analysis of the

TM response more or less follow those of the TE analysis. The parameters
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characterizing the numerical solution are listed in Table 6-7. The sequence
of computations followed that of the flow chart given in Fig. 6-17.

Thé numerical computations were centered around the numerical integra-
tion of the coefficients required to generate the scattering matrix.
Following the integration stage, the scattering matrix was generated for a
specified conductivity contrast and the inverse of the matrix was computed
and used to find 3; for excit?tion by a plane wave vertically incident from
the air on the half-space. Plane wave excitation was chosen since the 2
dimensional TM model has little practical use except for the analysis of
magnetotelluric responses and obtaining an insight into conductive channelling
effects. The final stage of the computations was that of deriving plots of
the equivalent cufrent and the anomalous fields at the surféée of the half-
space. The numerical algorithms were implemented directly from the formu-
lation given in the previous section and little more can be said about the
details of the computations. The most important part of the programs, namely

the numerical integrations, were carried out following the technique given

in Appendix D.

(1i1i) Numerical Results

The numerical response of a pair of very similar models 1s discussed
in this section and the responses are compared with those computed by
Wright's finite difference method. The model parameters are listed in
Table 6-8. The two models have identical cross-sections and differ in the
fact that one is located at the surface of the half-space while the other is
located at a depth of 0.1 §, below the surface of the half-space. The com-
puted responses for these models are presented in the following format.
First, the equivalent current maps for the given model for different

conductivity contrasts are given. These are followed by plots of the
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Table 6-7 Table of TM Solution Parameters

Geometrical

A - cylinder half-width in skindepths
R -~ thickness to width ratio
D - depth of burial to half-width ratio

Electrical

03/6, - anomalous conductivity ratio

6o - conductivity of background half-space

Numerical Solution

N -~ maximum polynomial degree in solution
P - number of error points in X4 dimension

Q ~ number of error points in X4 dimension
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Table 6-8 Solution Parameters for TM Model 1 and 2
Geometrical
R =1,0

D =0,0 and 0.1

Electrical

‘.‘/6-. -r0¢5. 14'.0, 9.0. 4900. 9900

¢ = 1.0 mho/meter

Numerical Solution

N =14
P =28
Q =28

Sketch of Geometry
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normalized electric field or normalized impedance (the two are equivalent
as shown below) at the surface of the half-space.

The anomalous field Ea at the surface of the half-space is given by

a 33

= . \» —

Ea = jwan | | Flrw) Teer) dydy 558
-3, -33

Denoting the field associated with each individual element of the power

series expansion as =

= & 33 A, M ise ,
gl L §§ Hlu)es n'adrldr 6-57
E -\ ~dy
the electric field is given by
Ea % B By 6-58

At the surface of the half-space the only component of E is the 2, com-
ponent. Both the vertical component of E and tangential H field (there

is no vertical magnetic field by definition of the problem) vanish at the
surface of the half-space. This result is discussed in detail in section 4
of Appendix C. This condition is valid for low frequencies and sufficiently
high conductivities that displacement currents are negligible. As a result,

the normalized impedance ratio defined as

Zn = ( Sua/ Hiw) /(&L /102) 6-59
becomes simply
' ' E:
Zn = E.Td‘al/Eo ~ Y T—:‘i 6-60
[~

and is identical to the normalized electric field at the surface of the
half-space. The superscripts on E and H denote the components at the fields

under consideration.
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TM Model 1 d

The first model considered is a cylinder with a square cross-section
of dimensioﬁ 0.4 8¢ x 0.4 §o which is located at the surface of the half-
space. The response is computed for a sequence of conductivity contrasts
varying from 0.5 to 100. The equivalent current for the various conducti-
vities is shown in Fig. 6-18.

The equivalent current is displayed as a complex vector function of
position in the cylinder cross-section. The diagrams are reasonably straight
forward and most of the features are self-explanatory. The current compo-
nents were computed on a grid of points in the cylinder and were transformed
to a set of arrows of scaled length and direction. The two maps for each
conductivity contrast give the real and imaginary components' of 3;. The
relative phase of the currents is given in terms of the electric field
of the plane wave at the surface of the half-space in a similar manner to
that discussed for the TE resposne. The scale for each map is given
by the arrow at the bottom of each map; the current amplitude, in amp/m?,
equivalent to the length of this arrow is marked beneath the arrow.

The equivalent current shows a marked variation as ¢,/¢6¢, 1s varied.
For ¢,/6s = 0.5, the the cylinder is more resistive than the background
medium; as a result the equivalent current is the opposite direction to
the incident electric field. 3; is more or less an image of the exciting
electric field (see Fig. 6-7) as a functisn of depth; near the corners,
however, the current channelling effects distort the current from the
horizontal. As 0,/ 6o becomes greater than unity, the equivalent current
reverses directién. For ¢;/6e = 5.0, the basic variation of 3; again
reflects the variation of the incident electric field; however, there are
significant departures from the planar behavipur of the exciting field.

Conductive channelling effects cause the current to be channelled into an
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out of the cylinder at the lower corners. The self-inductance of the body
also exhibits itself by a slight skindepthing effect; for ¢/ G.= 5.0, the
body has.; an internal skindepth §, -.(%.‘-:)"23.:1.1 §.. The skindepthing effect
causes the real current to be pulled towards the top of the cylinder in
a curling current flow; this curling of the real current results in a
weak but closed eddy current flow being established at the top of the
conductor in the imaginary component of 3;. Increasing ¢ /oe. to 10.0,
enhances the inductive effects and the eddy pattern in the imaginary com-
ponent of 3; is stronger. One other feature that is beginning to occur
is the saturation of the conductive channelling effect; the currents flowing
normal to the edges of the cylinder are growing smaller relative to the
closed solenoidalocurrent flow which is dominantly parallel to the sides.
As the 6,/ 0o ratio is increased further, these effects are enhanced;
at ¢,/ 6. equal to 50.0, both the real and imaginary components of 3; flows
around the cylinder as close to the outer surface as possible and with 3;-%
at the surface small in comparison to the peak current. The imaginary com-
ponent of 3; 1s much more convoluted showing a small eddy at the top of
the cylinder and a larger closed eddy in the lower two thirds of the body
which has the opposite sense of flow.

At a 50:1 conductivity contrast the numerical solution is being
stretched to its limit; the body is about 2.8 internal skindepths across
for this ratio. To emphasise the approximate, but flexible nature, of the
least squares solution, the Qolution for a conductivity contrast of 100:1
is shown for discussion purposes. For Gi/6s = 100.0, the body is internally
four skindepths across. The equivalent current shows an extension of the
self-induction effects and saturation of the conductive channelling effects.
The closed eddies are much stronger and the real component of 3; has been
squeezed closer to the cylinder surface. While the numerical solution has

limited validity at this conductivity contrast, the solution does exhibit
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the type of response to be expected in a gross sense. The least squared
error is attained by matching of gross features at the expense of local
detail.' The consequence of this is more readily seen in the computation
of the anomalous fields at the surface of the half-space.

The normalized anomalous electric field at the surface of the half-
space for each ¢,/ 6o ratio is shown in Fig. 6-19 along with results
obtained by Wright's finite djfference solution method. As pointed out
previously the normalized impedance ZN is equivalent to E#/E;. For low
contrasts, the least squares integral equation solution and the finite difference
solution agree within one or two percent; the discrepancies reflect the
differences in the numerical solution methods. At @,/6Go= 50.0, a slight
but consistent difference between the two solutions is visible while at
a contrast of 100:1, the anomalies directly over the body show only similar
trends and the solutions only begin to match at large distances from this
cylinder. Here the averaging nature of the least squares method yields
the solution at large distances but the local details of the response are
incorrect. At large distances from the cylinder the anomalous field is
roughly an average of 3; over the cylinder and local variations in 3; become
less important. This smoothing is shown even more clearly by the next

TM model discussed.

TM Model 2

As pointed out previously, the second TM model differs from the
first only in that the top of the body is located 0.1 §. below the surface
of the half-space. (see Table 6- 8) The sequence of equivalent current
arroﬁ maps is shown in Fig. 6-20. These diagrams show basically the same
behaviour as those for model 1; the main difference is that the current is

channelled into the body at all four corners. As the conductivity contrast
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runs from small to large values, the cylinder response runs from the
conductive channelling response to the inductive response.

Thé anomalous fields associated with 3; result in the total electric
field or normalized impedance profiles given in Fig. 6-21. The discon-
tinuity in the field strength of the last model has now vanished since the
model is buried at a finite depth. The burial of the body helps smooth
out the localized discrepancies which are a product of the least squares
type of solution. As a result, the surface fields are much smoother and
much better agreement with Wright's finite difference solution is obtained
in this case. With the exception of the points directly over the centre
of the body for &/6s = 100.0, the two sets of solutions show differences

of only 1 or 2Z%.

(iv) TM Summary

The preceding models B&-no means exhaust the possible combinations of
parameters which should be examined in order to investigate the least squares
solution method and the TM response to their fullest extent. Such a
detailed presentation of data is beyond the scope of this thesis project.

A number of other models were investigated during this study in order to
evaluate in a rough.sense the variability and reliability of the least squares
method of solution in TM problems. A summary of the general results found
during this analysis is given here in order to clarify points not discussed

in regard to the two models analysed in detail.

The square cylinder model was run for several other cross—-section
dimensions which were 0.1, 0.2, and 1.0 §s to a side. The response, aside
from minor variations due to geometrical factors, was the same. A surprising
result in the initial stages of analysis was the failure of the least

squares method to yield good results for small bodies with high conductivity
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contrasts. In general, ¢,/ 6o = 50. was the cut off point for reliable
results for small bodies. One would anticipate at first glance that
skindepthiné effects would not become a dominant factor in the response
until much higher conductivity contrasts. The reason for the failure at
high conductivity contrasts was due to ill-conditioning of the scattering
matrix which resulted in gross errors .in the numerical inversion of the
matrix. | "

As discussed in a general context in chapter four, the integral
operator governing the scattering equivalent current is bimodal and the
inductive or solenoidal currents can see a much different impedance than
the non-solenoidal currents. For small bodies, the two impedances become
highly mismatched when the anomalous complex conductivity of-the body is
large. In terms of the numerical solution of such a problem, the discrete
matrix equation has a coefficient matrix with large differences between
various eigenvalues. Since the least squares matrix is proportional to
the square of the integral impedance operator, the least squares scattering
matrix will have eigenvalues with ratios proportional to the square of the
intrinsic impedances of the operator. As a consequence, the matrix becomes
very highly ill-conditioned for small bodies with large conductivities.
Detailed investigation of the TM scattering matrix and its numerical inverse
showed this to be the case for small bodies. While various ways of inverting
the matrix were tried, the only way to 1m$rove numerical inversion of the
matrix was double precision arithmetic on the computer and since it could
only afford partial resolution of the problem it was not implemented. Higher
accuracy of the arithmetic automatically required higher accuracy in
numerical evaluation of the integral coefficients which became impractical
from a computer time standpoint. Thus the least squares solution of the
TM scattering problem is limited to conductivity contrasts of less than 50:1

for small bodies with a A%¢0.3 5, being a general rule.
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The TM response of larger bodies was more in line with the expected
behaviour. The conductivity contrasts which could be modelled accurately
depended on the size of the body. The larger the body, the more quickly
the internal dimensions in internal skindepths become larger than
that which the polynomial degree of the approximate solution could handle
accurately. Above a size dependent conductivity contrast, the solution
follows the gross behaviour of the true response but departs considerably
on the local scale. At 1arg; distances from the body where the scattered
fields are approximately an average of the anomalous current the least
squares response is good to much higher conductivity contrasts. Computa-
tions of scattered fields inside or in the proximity of the body will
exhibit large deviations from the true solution. While the ‘polynomial
degree can be increased and the solution for larger bodies at higher con-
ductivities computed, computational practicalities put a 1limit to the maxi-
mum degree attainable. In the initial part of the study of this problem,
polynomial degrees greater than 5 were out of the question because of com—
puter hardware available and the number of computer dollars which could be
invested in a particular problem,

Other factors in the numerical solution are the number of error points
used in computation of the total squared error and the accuracy of the
numerical evaluation of the integral coefficients. The number of error points
was not a major factor in the solution. fhe number of points was taken to
be greater than twice the number of unknown polynomial coefficients or such
that the average spatial subdivision of the body was about 0.5 internal
skindepths. Witﬁ the exception of small bodies with high conductivities
the accuracy of the numerical quadratures was not a significant factor in
determining the response, These two factors together with the maximum

Polynomial degree are the basic factors governing the computer time required

for determination of the responses.
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The computer time required for the various stages of computation
were highly variable, and generally applicable numbers are difficult to
give. For the models given here, with a maximum polynomial degree of 4,
sixty four error points and numerical integral accuracies better than 0.1%
required between 40 to 60 seconds of CPU time on an IBM 370-165. Cutting
back on the numerical quadrature accuracy to about a 12 tolerance, dropped
this time to about 10 seconds of CPU time. Computation of the scattering
matrix and its inverse plus cdﬁputation of the surface fields required
between 10 and 20 seconds of CPU time for the initial run of a given geo-
metrical model and about 5 seconds for each subsequent conductivity contrast.
This computation time is compatible with the finite difference method which
required about a minute of CPU time per model. For numerous fesponses at
differing conductivity contrasts the least squares method 1s considerably
less expensive. All stages of the computer programs were designed to run
in less than 120K pytes or 30K words of memory.

In summary, the least squares solution method as applied to the TM
response is a moderately useful technique. There are .a number of drawbacks
in using this method in general for small highly conductive scatterers
where both solenoidal and non-solenoidal currents form the total current flow.
These particular bodies result in ill-conditioned matrices. The least squares
technique aggravate; this ill-conditioning by generating a scattering matrix
which 1is proportional to the square of the general impedance. On the other
hand, the least squares solution provides reliable and inexpensive compu-
tations of the response in ranges where ill-conditioning 1is not a problem.
For large bodies, it can also provide economical estimates of the response
if the body is buried sufficiently deep in the half-space to ensure local
discrepancies in the solution are smoothed out by the averaging effect of

the integral required to compute the anomalous fields at the surface.
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CHAPTER 7

ELECTROMAGNETIC SCATTERING BY A THIN RECTANGULAR SHEET

7-1 Introduction

The electromagnetic response of a thin rectangular sheet is of
considerable interest in applied geophysics. Analysis of the thin sheet
model provides a quasi—three.dimensional structure which can be used to
investigate the roles of the inductive and conductive and/or capacitive
effects in an electromagnetic scattering problem. The inductive response
of a thin conducting sheet in free space has been analysed by Lamontagne
and West (1971) for parameters which permit use of the quasji-static assump-
tions. In this céapter the total response is analysed fromlthe eigencurrent
or characteristic mode point of view. The inductive response obtained by
Lamontagne and West can be shown to separate out of the solution.

The first step of the analysis will be to derive the equivalent current
equations for the thin sheet. These equations are derived from the equations
for the response of a rectangular parallelepiped. The thin sheet equatioms
are obtained by letting one dimension of the parallelepiped become infini-

tesimally small.

7-2 Integral Equations for a Parallelepiped in a Whole-Space

The parallelepiped is illustrated in Fig. 7-1. The parallelepiped
resides in a whole-space of complex conductivity ¢, and magnetic permea-
bility Ato ; the anomalous body has a complex conductivity 6, and is taken
to have the same magnetic permeability as the background whole-space. The
parallel egpiped of dimensions (231, 2@2, 2&3) is at the center of the cartesian

A

coordinate system (xl, X, x3) with the associated unit vectors (31, éz, e3)
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The anomalous conductivity is given by

3
ity W Wy T BGuoa) 7-1
=t
where
B(x,d) = 1 x| € a
= © ixt > a
and

O_D = 6‘\ = 6‘.

The equivalent source current ?e exists only in the volume, V, where

63 1s non-zero. The integral equation for ‘_I-e is

- € 2 —_ s
Te(r)-jouss; § D v) Talr) W= & Eulr) 7-2
\'4

where Eo is the external exciting electric field. For a homggeneous whole-
space the Green's dyadic §£

is

‘E(rrc) = [ i‘ + 66 C .) 5 7-3

P - L
where .

lkg‘F-F'l
PN s =
3( L g 4w (v~

and k

Y
i ( J'oo,u.“.) 2:i.s the propagation constant in the background medium.

Substituting for §. & in 7-2 and dividing through by &, yields
Telw) Sw,u_.s s(r'f') ?e.("')dx'.’ i —%:_ S(:T.e(‘.').c\)% Cre’) Az'.l — Ee 7-4
So v ‘s
where the identities
T+§ e T 2 - [ T8 qoeedd™ ¢ [qGr)TFewrd’! 75
v -
s

v
and %-Je =0 inside the volume have been used. The terms in 7-4 have a
straight forward interpretation as discussed in chapter 4. The sum of these
three fields must balance Eo’ the exciting external field.

Equation 7-4 is a set of three coupled integral equations in the
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three components of 3;. While the analysis has been carried out for a
rectangular parallelapiped, the equations hold for any: shaped body with a

constant anomalous conductivity.

7-3 Thin Sheet Equations

The . thin sheet equations are derived from 7-4 by letting a, — 0 while
the product G,a, remains finite. The end product is a surface current on
a sheet of zero thickness and infinite conductivity, but which has a finite
surface conductivity. This model provides a simulation for real structures
which are both geometrically and inductively thin. The geometrically thin
constraint requires

a, « 4,3, | 7-6
The inductively thin requirement is

: i
| (jowmes,) ~ a,] << ¢ ]

In the 1limit as a; — 0, the equivalent current must take the form

— e -
Jcc“g,lg,lj) a: = Ke_ (Y| ,‘1) S(X’) 7 8

The surface current 'ﬁe will be defined in terms of -J-p_ by integrating Te

over the thickness of the sheet; namely
33

i(e(*c“t) = S :re(%\lz,‘(j) AY} 7-8

i W T Ay
ah-—vo
Performing this integration on each term of 7-4 and dividing by 2a

3
yields the thin sheet equations. The form of each term in equation 7-4
is shown in Table 7-1. The ohmic and inductive terms can be handled in
a straight forward manner.

The capacitive or conductive term is the more difficult term to handle

in the 1limit as a3-—>0 since some of the integrals become singular unless

J. has particular properties. The reason for this is apparent when the

physical nature of the integrals is examined. The surface current
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Table 7-1 Parallelapiped to Thin Sheet Transformation

J.(v)

S

Ss

jou. S“ Je (') 3(-;r')4’r‘ — jwuMe K Kel£)ql5,5)d%’

v A

¥i=3;
g A

JI fe(r')-;\\ 3(r.r') e® o ch%- J f :l"(w)ﬁ(rr’)l dx,th
W=t R-3p-3g Xi-3

Sv

ol

s -—c "4t '
- < AI -Ke@)glf,£')d"f

G's = 283 6-9
F = % xe;
= t
f‘ =- .é‘ x‘é‘
18
2
g, = X 2 &
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component K3 corresponds to a surface distribution of electric dipoles.

For a sheet of zero thickness E% must be identically zero; the current

component J3 must remain finite as a3——>0. The amount of current flowing
through the sheet is determined by the electric field normal to the sheet
times the background conductivity; since this current amplitude remains

finite as Gy~—> 22 and a,—>0, K, = 0. The terms involving K, behave much

3 3 3

like those for a parallel plate capacitor as the plate separation becomes
infinitesimally small. At the point of zero spacing the theoretically
capacitance‘becomes infinite, however, the capécitor actually becomes a
short circuit. Thus the thin sheet of zero thickness and finite surface

conductivity is invisible to electromagnetic fields which have an electric

field which is totally polarized in the &_ direction.

3
Additional constraints on the surface current are that KIEO at
xy = 4 a,; and K.2 = 0 at x, = i_az. The current flowing perpendicular to

the edge of the sheet results in a line charge or line current source/sink
around éhe edge of the sheet. The self-energy of a line charge is infinite.
The integrals associated with these line charges which grow in an unbounded
manner can be viewed as infinite impedance paths; as a result, the currents
in these paths have to vanish.

The overall result for the thin sheet is that it can be characterized

by a surface current K = (Kl, K,, 0) which satisfies the integral equation

2’

— jw e ﬂ Kelr!)glne)d?r! — 2 5[ T-kelr)g o) d¥'= Eo,, 7-10
A -

with the additional constraint that Ei‘.n = 0 where n is the normal at

the edge of the sheet in the plane of the sheet and E}nz = (El’ E 0).

2’
passes through the sheet as if it did not exist.

The third component of Eo
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7-4 General Thin Sheet Response

(1) Numerical Analysis Formulation

As shown in the last section, the thin sheet problem reduces to one
of solving a two dimensional vector Fredholm integral equation. The
numerical solution of 7-10 is carried out using the eigencurrent technique
discussed in chapter 4. The firsg step in the analysis follows the Galerkin
procedure in which a discrete set of approximating currents is used to reduce

7-10 to a finite dimension matrix equation. The following set of functions

were used as the trial functions

Cam = (1= §7) Tn(g) Tlm) 7-11
2. = (1= 22) Tu(S) Twiln) 7-12

The arguments § and st are dimensionless coordinates defined by

g = %,/ 3, 7-13 M= Kzl 7-14

thus -1 < S, & 1. Tn(x) is the Chebychev polynomial of the first kind and

degree n.

Equation 7-10 reduces to a finite set of linear equations by approxi-
mating‘E; by a finite set of 7-11 and 7-12. The approximating set was chosen

as
K ; = Z < V:‘"\ (ov\..vn 7-15
n,m

where n + m £ N. The maximum degree of the Chebychev polynomials is N.
This leads to a set of M = (N + 1) (N + 2)/2 approximating functions for
each K, or a total of 2M coefficients ci .

b L n,m

From this point on, a matrix formulation of the problem is used.

First, the row vector of approximating functions is defined as
[é.] = {(e:,o, (?u:" (er;|' (P;'o. (Pal\' (p;z’ DO oS ('PO.N] 7-16

The functions are grouped in ascending degree m + m = constant. Within

-
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General Thin Sheet Response:
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with
(21=TR]+;Ix] 7-21

where [R] = Real [z} is the total resistance matrix and [ X| = Imag

[Z] is the reactance matrix. The resistance matrix contains both the
internal ohmic dissipation and the radiation impedance. If the background
has a finite conductivity, the radiation impedance, which is the real part
of -juuotﬁ'l -'G-E. [e] corresponds to the ohmic dissipation in the background
medium. The reactance matri;: describes the energy storage in the internal
electric polarization and external "electrostat.ic" and "magnetostatic"
fields.

The weighted eigencurrent problem becomes

{[R] "‘jYX]}fT—n] = AiRILTD | 7-22

The resistance matrix is diagonalized by the unitary transformation [ U]

which is a matrix comprising the eigenvectors of [R7] such that
[ul"I[R]ITuUT = [oen] 7-23

where [D(ri)] is a diagonal matrix containing the eigenvalues of [R7] .

As pointed out in chapter 4, A\, must be of the form A,, =1+3B8. . Defining
v £
Cx] =Co"en]lu TExXILullo™n] 7-24

and
U re] =0 0"e)]lul 1.1 7-25
7-22 reduces to the conventional eigenvector problem
Exllesd =g T2l =k
Diagonalizing [X'-l with the unitary matrix [S] made up of the eigenvectors

of [x'] .
[s1"Tx'Ils] =1 owwl 7-27
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where aa are the eigenvalues of [Xr]. The matrix of eigencurrents

for 7-21 is then given by

[Tu] =T ull p™c<epd1ls] 7-28
which have the associated eigenvalues

An = 1+ }%n

The formal inverse to the scattering matrix is given by

(1= wilpl —)F ul” 7-29

+)
The solution of the original scattering problem is then given by

[el=Tullo' Gejud JLuITE] 7-30

At this point the formality of reducing the integral equation to a finite

set of linear equations is complete and this permits the approximate
representation of the eigenfunctions of the scattering integral operator.
In the next section, the eigenfunctions of a particular model are computed

numerically in order to demonstrate the type of result to be expected.

(11) Numerical Results

The approximate eigenfuntions for the model shown in Fig. 7-2 were
computed to illustrate some of the ideas developed in chapter 4, with particular
emphasis on the bimodal character of[Z], The response 1is characterized by
the parameters listed in Table 7-3 and the particular parameters for the
model shown in Fig. 7-2 are listed in Table 7-4. The maximum polynomial
degree is 1 and was chosen as small as was reasonable to minimize the amount
of data to be presented.
The computations followed the sequence outlined in the flow diagram
shown in Fig. 7-3. The first step in the analysis was the computation of

the integral coefficient matrices of Table 7-2 which can be expressed in



134

Fig. 7-2 General thin sheet geometry



Table 7-3 General Thin Sheet Governing Parameters

Geometrical
Byl Half-length of sheet in meters
a, /ay = AR = Width to length ratio
Electrical
@ = Angular frequency of excitation rad/sec.
0, = Background conductivity
€, = Background permittivity
6s = Sheet anomalous surface conductivity

Numerical Solution Parameters

N = Maximum polynomial degree of
approximate solution

135



Table 7-4 General Thin Sheet: Model Parameters

for Computer Analysis

w = 29 =x 103 rad. / sec.
o = 1073 mho / m.

€ = 1077 fd. / m.

g = O mhos

AR = 0.667

& = 300 m.

N

Il
r—
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terms of the integrals
\

Lowmm = fl Tn () Tmton) T (3) Tq(m) d Sdm 7-31

nmepq =

; H H Tu(3) Tla) 9(8, %, ma') To(5°) Tg () dSdm dfihy' 7-32

5
These integrals of the form 7-32 were computed numerically using a Gaussian
scheme as outlined in Appendix Dj 'the integrals of the form 7-31 were computed
analytically. The integrals'were tabulated and used as data for the programs
which generated the [R] and [X] matrices. The resistance matrix was
generated and diagnonalized; its eigenvectors and eigenvalues were then

used to generate .[X'] from [X] . [x‘] was diagonalized to yield the
eigenvalues 4; and the eigenvectors of [Z]. The diagonalization of the matrices
was carried out using a Jacobl iterative scheme.

The resulting eigenvalues of LR1 are 1listed in Table 7-5(a) and the
eigenvalues for O >>7 1 for [X'] are listed in Table 7-5(b). The eigen-
currents are shown in Fig., 7-4. The point to be noted here is that the
eigenvalue spectrum is split into two distinct sets. Some eigenvalues
of [IIJ are of the order 105 larger than the members of the set
of eigenvalues. The associated eigencurrents show distinct behaviour depending
on which set they belong to. The large eigenvalues are associated with the
channelling current flow pattern while the small eigenvalues all belong to
the current flow patterns which are predominantly inductive in nature and
are characterized by closed current loops or eddies.

This brief set of computations was carried out to show the bimodal
nature of [Z:] . The electrical and geometrical parameters of the sheet
were chosen to be typical of those that might be encountered in real geophysical
problems. The solution demonstrates that geophysical electromagnetic problems
are prone to generation of highly ill-conditioned scattering matrices. The

lower the background complex conductivity, and the smaller the body on the



Table 7-5 (a)

Eigenvalues
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of [R] Matrix

Eigencurrent

1

N F W

Table 7-5 (b)

Eigenvalues

Eigenvalue

1,74 x 107

1,08 x 107

7.54 x 102

6.96 x 10°

3.91 x 10°

2.39 x 10~2

of [x']Matrix

Eigencurrent

1

O & W

Eigenvalues

9.76 x 10
7.02 x 10
4,00 x 10
3«53 x 10
2,25 x 10
-1.33 x 10
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scale of a wavelength 4dn the host medium, the more ill-conditioned the
matrix becomes. In the next section, the inductive response of the thin

sheet which comes about in this limiting case is discussed.

7-5 The Quasi-static Response

(i) Numerical Formulation

In analysing the response of bodies which are small on the scale of
the wavelength in the surrounding ﬁedium, the scattering matrix becomes
highly ill-conditioned. The surface current for the thin sheet is totally
determined by a subset of the eigencurrents. This subset is comprised of
the set of currents for which the conductance or capacitance operator is
a null operator. Physically this corresponds to the set of currents which
are solenoidal for the body, namely

V- J.=zo0 Je-R =0 7-33

These currents are associated with the small eigenvalues of the general
impedance operator. In essence, the non-divergence free currents are current
limited; these currents complete part of their flow in the external medium.
These currents are approximately the same order of magnitude as those in the
external medium. The relative magnitude of these currents compared to those
in the background médium is determined by the conductive channelling or
dielectric polarization effects which are totally geometry dependent and

can only enhance the complex current flow by an order of magnitude or so

when the sheet conductivity becomes very large. On the other hand the solenoidal
currents are limited only by the general self-inductance of the body. As

the sheet conductivity becomes very large, these currents increase continually
until they reach the inductive limit of the body.

The basic equation for the solenoidal sheet currents is

%: - jeme ff RsGe) gter) di! = o, 7-34
A
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with the constraints that

\_(—s'ﬁ =

7-35
Since E; lies in the plane of the sheet and

g may be expressed
in terms of a scalar potential where

-— — A —
Ks = 7 x Uey = -2, xOU

7-36
The condition T(-s'?\ =

O constrains U to be identically zero on the edge of
the sheet.

L]

In the following analysis it is most convenient to take the half-length

of the sheet as the unit length. In other words a

1= A and all dimensions
are given in terms of A.

The sheet width to length ratio is defined as
R = a2/a1 = a2/A.. These are the two geometrical parameters which character-

ize the sheet and are used extensively in the following analysis.

The eigenfunction response for the solenoidal current potentials is

formulated following the Galerkin approach.

The current potential U is
expanded in terms of the trial functiomns.

Cam = (1= 520 2") To (%) Tialan) 7-37
where

u = é CV\"-\ u“w\ N4+xwy $ N 7"38
Following the matrix formalism adopted in the treatment of the total response

analysis,[ 3] is defined as

C 3] = [, Go, @, @, @, @

and the coefficients cn

oo Coon | 7-39

form a column vector [ C | of the same ordering.

The total potential can be expressed as the matrix product

w = Lé]llel

7-40
Since the test currents are given by

Ihm =

U % (@ &3) 7-41
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the integral equation 7-33 reduces to

L21le] = [ 41f) - junrA Tel} el = jona ]  7-42

where the [F]’ [f] , and I‘H -_l matrices are given in Table 7-6. I.n the
general case [L ] is a complex symmetric matrix and ¢ is also complex.
For the particular case of a conductive sheet in free-space for sufficiently
low frequencies that the sheet dimensions are only a small fraction of the
free—-space wavelength, the eqixation 7-42 simplifies further. With these

conditions, the scalar function in the Green's dyadic reduces to

~ o . o
qer) = I s

Thus [.ﬂ} and [F] become real, symmetric matrices. The equivalent partition-

ing of [Z21]1 as used in the last section is now applied to 7-42 and

Lgl= [RT +5IX] 7-44

where

LR] = ccomfal L] 7-45
LR = }Fs [F] 7-46

Solution of the weighted eigenvector problem
[Z210c]l= ATRTlc.] 7-47

results in a particqlarly useful and elegant solution to the induction
equation.

First, the matrix [F] is diagonalized with the resulting eigenvectors
defining a finite set of orthogonal functions in two dimensions. The unitary
matrix composed of the normalized eigenvectors is defined as [2] with the

property

(217 LcI1C2] = (oG] -

where [D(f i)} is the diagonal matrix containing the eigenvalues of [F] >

Both D}] and f1 are real and the £, are positive since [F] is a real,

i
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Table 7-6 Inductive Thin Sheet Response: Elements of

Galerkin Matrices

3 3

[F1 = [] {03872k o[ sSeafjofentiig,
Q3 B 9
Pl “lizj;‘Lr _[ g Ok %X ){ [’a‘-(“““)] ['afc:;*‘)} +

['a 3 (x K-;Z} [ 2 B(x{) J}Ax dy. dxidx!

-2 . > x{

5 X [ & (x, ‘('-)] Hs (MX;) dx,dxz

-3, “ 31

| alis =tas
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positive definite symmetric matrix., The reactance is transformed to
[x] = Do) ]I UxIL2 00 ()] 7-49
and 7-47 becomes
-jeme RALx el = (an - 1) Lend 7-50
s
where

AR T 0‘:‘(&)][ 21 1 el 7-51

Since [X'] is real and symmetric, [Cn'] and its associated eigenvalues x

are real and

An = é—s-jwu..ﬂAxv. 7-52
where
[erllel] = wyfel] 7-53
Therefore,
[cdf.[‘Z][c.’\] = (g ~jem.RA x.) 7-54
where

feal= Tulis™w)llzd] 7-55

The solution of the original equation becomes

Pedi= Ll 6}

—jet ) [C.‘]T L] 7-56
L=j§ xR an A
where o= w @ = waussA is defined as the response parameter or induction
number of the sheet. In the form 7-56, a very simple decomposition of the
response has been obtained. For a given geometry, the effects of source,
sheet geometry and electrical properties are completely decoupled.

Each individual eigenpotential responds in the same manner as a simple

wire loop. The solution can be viewed as the sum over a set of loop responses

with the loops having differing inductance to resistance ratios. The current
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flowing in a loop in a upiform field H, normal to the loop, has the form

(see Appendix E)

Y RP T H e« (Area)

I(w) = 7-57
Ry —Jwarly

where RL and LL are the self-resistance and inductance of the loop. The
analogous form of each term in 7-56 to 7-57 is readily apparent. The
eigenvalues x are just the L/R ratios of the individual eigenpotentials.
The solution for the eigenpoteroltials for a given geometry, therefore, ylelds
the total frequency and/or time (transient) response in one operation. The

impulse response function for the loop is, from Appendix E,

-l

g c oy
ey = 't‘- = u.\-\’(Avea) \ 7-58

The impulse response of the sheet is obtained very simply by replacing the

diagonal response parameter matrix with

= §ook */t‘n
[D(l)o&ku)‘] - [ ( Rx“ ’t‘,‘ ) 7-59

where Y,z /3 Rxn

In future references the duality of the response forms is stressed aﬁd the
diagonal matrix will be written as Dn(o() or Dn(t) denoting either

the frequency response (response versus induction number) or the impulse

response.

(1i) Numerical Results

The inductive response of the plate is characterized by the parameters
listed in Table 7-7. The intrinsic parameters of the body are R, the width
to length ratio, and & , the response parameter or induction number,
which characterizes the general sheet self-induction to self-resistance ratio.

The numerical solution 1s characterized by N, the maximum polynomial degree

in the solution; this gives a numerical solution parameterized in terms of
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Table 7-=7 Inductive Plate Response Parameters

GCGeometrical Parameters

R = a, / a4

Electrical Parameters

A = WuoGs KA

Sheet Response Parameter or
Induction Number

Numerical Solution Parameters

N = Maximum Polynomial Degree in
Expansion
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(N + 1) (N +2)/2 unknowns. The only other parameters in the computations
are those which describe the excitation field. These parameters are usually
ones which describe the geometry of the source. Any dimensions associated
with a source in the following discussion have been implicitly normalized
in terms of a,.

The numerical computations were carried out in the sequence shown in

Fig. 7-5. First, the integral coefficients required in Table 7-6 can all

be expressed in terms of the integrals

(] ]
i [ @nm(8im) qU8, 3" m, ) @y (Sim) dsdom o Ty 7-60
{
Sj @pm (3 2) (Pp-p (f,m.) dfdm 7-61

The first set of integrals were evaluated using the Gaussian Yuadrature scheme
for integrals with singular kernels outlined in Appendix D; the second set

of integrals were evaluated amalytically. In order to complete this first
step of the analysis, R and N had to be specified. The integral coefficients
were stored and used as data for subsequent computations. In the next step,
the [ F ] matrix was generated from the integral coefficients and then
diagonalized. Diagonalization of I:F ] gives a finite set of 2 dimensional
polynomials which are orthogonal with unity weighting on the surface of the
sheet. Next, the [K] matrix was generated and then transformed in accordance
with 7-49 to generate the [X'] matrix. [ X'] was then diagonalized to yield
the basic eigenvectors and eigenvalues of the [Z] matrix subject to weighting [RI.
The generation of [F] and ‘_X'] from 7-60 and 7-61 was facilitated by the

relationship for the derivative of Chebychev polynomial, namely
d F
p G-x3)T () = =nx Tulx) + w T (x) 7-62

The elements of the scattering matrix were diagonalized using the Jacobi
iterative method. The computer program written to diagonalize the matrices

was based on a modified version of the algorithm given by Greenstadt (1960).
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Fig. 7-5 Flow chart of inductive response computations.
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At this stage the formal solution of the problem is complete within
the limitation that (N + 1) (N + 2)/2 eigenfunctio&s of maximum polynomial
degree N can characterize a system with an infinite sequence of eigenfunctions.
The induction eigenpotentials can then be used to express the response of
the sheet to arbitrary excitation. The integral coefficients for a given
source field, [50’] , were evaluated using Gaussian quadrature algorithms
similar to those used to evaluate 7-60. Equation 7-56 yields the solution
for the equivalent surface cu;rent as a function of o (or frequency w )

and/or time. The final step in the analysis is the computation of the

anomalous magnetié fields associated with'E; which are given by

Ha) = { 18] Scaé; - = [HilE P el 7-63
where ’
[H;-l > [ H;(')| H\l"). H;('), uio(") . HjN]
and
d 2t TR e )
H“"‘ (v-) = DX ¥y _;S‘, AT F.z ches J‘(t

The computer programs were designed to maximize the number of source
configurations and response parameter combinations which could be computed
for one geometrical model. The reason for this is the same as for the two
dimensional computations; the most expensive part of the computation is the
numerical quadrature to find the integral coefficients from which the
scattering matrices are generated. As a result, a large number of responses
can be computed and the amount of information can quickly get out of hand.
Since the emphasis here is on the solution method and not on the tabulation
of reams of results and type curves, only a limited number of computed
results are presented.

The particular model chosen for illustration purposes in the following
discussions is shown in Fig. 7-6. This model was chosen since experimental

and computed responses for a similar model are given by Lamonta8n€ and
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induction analysis.
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£ X3
Fig. 7-6 Re-parameterized thin sheet geometry for

X,
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West (1971). The sheet has a width to length ratio,g&, of 0.5 and the
maximum polynomial degree, N, in the approximate solution is 4. The com-
puted résults are presented in the same sequence as they appear in the flow
chart in Fig. 7-5,

The eigenpotentials generated for this model are shown in Fig, 7-7
With N = 4, there are a total of 15 eigenpotentials, The eigenpotentials
are shown in sequence of decreasing X - The eigenvalues x are listed in
Table 7-8. As n the order of.the eigenpotential increases the potentials
become more and more convoluted; the eigenvalues reflect this behaviour
since the self-inductance to self-resistance ratios, which is characterized
by X decrease in value., The current flow associated with the individual
eigenpotentials cah be readily visualized from the contour fhaps of the
potentials since current flow is parallel to the equipotential lines of Un
and is proportional to the gradient of Un' Examination of the potentials
shows that the associated current flow is in the form of rings or eddies
and that the surface current is always strongest near the edges of the sheet.

The next step is the expansion of some excitation field responses in terms

of the eigenpotentials.

TURAM Loop Response '

The total response potential U is expressed as a function of o« 1in
the frequency domain. The choice of representation in terms of o makes
comparison with other results simpler than if the transient response sheet
were determined. The transient response can be obtained simply by replacing
YD(o()] by [b(tf] in the summation over the eigenpotentials. The first
excitation field considered is that of a turam loop shown in Fig. 7-8. This
source is equivalent to that used by Lamontagpe (1970). The current in the

wire loop is taken to be 1 amp. The magnetic field associated with the loop
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Table

7-8 Eigenvalues for Inductive Response

of Thin Sheet

EIGENFUNCTION
EIGENFUNCTION
EIGENFUNCTION
LEIGENFUNCTION
EIGENFUNCTION
EIGENFUNCTION
EIGENFUNCTION
EIGENFUNCTION
EIGENFUNCTION
EIGENFUNCTION
EIGENFUNCTION
EIGENFUNCTIOUN
EIGENFUNCTION
EIGENFUNCTION

EIGENFUNCTION

& W v

)]

10
11
12
13
14

15

EIGENVALUE=
EIGENVALUE=
EIGENVALUE=
EIGENVALUE=
EIGENVALUE=
EIGENVALUE=
EJGENVALUE=
EJGENVALUE=
EIGENVALUE=
EIGENVALUE=
EIGENVALUE=
EIGENVALUE=
EIGENVALUE=
EIGENVALUE=

EIGENVALUE=

2.328E~01
1.970E=01
] «552E=01
1.331E=01
1.242E~01
1.129E-01
1.036E=01
8.975E=02
BeT7T2E-02
Be600E=02
7.488E-02
7e262E-02
5.526E=02
5.4T9E=02

4.141E~02
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Loop

Fig. 7-8 TURAM 1loop and thin sheet configuration
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is given by

- 3 Iy A w7
He) = 2 § (xi~¥)e; xdl 7-64
o ATR

The total potential for various o ranging from 0.5 to 150 are shown in
Fig. 7-9. The potentials display the classic inductive response as a
function of o . For small o , the potential is totally quadrature or 90°
out of pﬂase with the primary magnetic field, As & increases, the imaginary
part of U increases to a maxiium and then decreases while the real part of
U increases and approaches a limiting value. The response follows that of the
simple loop as discussed earlier. For small &« , the sheet is of the resistive
1imit of the response and at large o it has reached the inductive limit.
The shape of the in-phase potential remains almost independept of the response
parameter, while the imaginary part of U becomes more and more convoluted
as o Increases, At large o , the imaginary part of the equivalent current
is forced out against the edge of the sheet.

The response of U versus o« has an interesting interpretation in terms
of the various eigenpotentials excited. The dominant mode is the first mode.
From the value of X this mode passes through the mid-zone between the
resistive and inductive limits for « & 5. As « 1increases beyond this value,
more and more of the modes approach their inductive limit; thus at high « ,
the quadrature component of U is determined by the high order modes which
have not been forced to the inductive limit. As a result imaginary U
exhibits more complex spatial variations.,

The potentials computed by Lamontagpne for this model are shown in Fig. 7-10.
The two sets of éomputed potentials compare extremely well. The amplitudes
differe by a factor of 4 W 1in normalization. Lamontagnz's solution was
obtained by discretization of U on a 15 x 15 and 16 x 25 grid and then solving

the governing differential-integral equation which he used to describe the

response. The good comparison is quite amazing in view of the fact that an
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order of magnitude fewer unknowns were required to specify the response in
the present study.

In.Fig. 7-11, the Gz component of ﬁ'along the profile line shown in
Fig. 7-8 is plotted for a pailr of response parameter values. The anomalous
field is given as a percentage of the primary excitation field directly over
the sheet. (At the point (0., 0.7, 0.) in this case), The solid lines
represent data computed using the eigenfunction approach; the dashed lines
are from responses computed b; Lamontagne (1970) and the x's are experi-
mental data points collected on a scale model. The agreement among the
three independent sets of data is remarkably good.

The response of the sheet is summarized in Fig. 7-12 and 7-13. 1In
Fig. 7-12, the peék value of the in-phase and quadrature components of the
field on the profile shown in Fig. 7-11 are plotted for various values of « .
In Fig. 7-13, the Q of the response, defined as the ratio of peak in-phase
to peak quadrature field, is plotted against « . In both diagrams, the
solid lines are results tabulated by Lamontagne while the x's indicate results
computed for the sequence of response paramters for the total potentials
shown in Fig. 7-9. The overall agreement between the two sets of results is
again very good. The response obtained with the eigenfunction method departs
from Lamontagne's response at large (o > 100)) values of « . The in-phase
part of the anomaly agrees over the entire range of response parameter where-
as the quadrature component falls off more rapidly than that observed experi-
mentally. This behaviour is just a manifestation of the fact that higher
order eigenfunctions are required to express the imaginary component of U
accurately for large o . Since the exact solution for U would contain an
infinite sequence of the true Un's with eigenvalues ranging from x; to
x :::° 0, and since the higher order modes are not present in the approximate
solution, once « increases beyond 1/x15, the smallest eigenvalue in the

solution, the quadrature component of U should be expected to decrease more
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rapidly with o than that of the true solution. Since the failure of the
solution occurs only for large oo when the response is almost at the inductive
limit, Lhe percentage error is quite small since the quadrature component

of U is only a small part of the total U. Similar discrepancies at large
values of « were found by Lamontagne in his numerical study of the response.
The problem was similar to that of the eigenpotential solution; the quadrature
component of U varies rapidly at the edge of the sheet and unless U was sampled

sufficiently often, the quadrature part of U tended to be underestimated.

This resulted in an overestimation of the Q.

Point Magnetic Dipole Excitation

As a further.example of the eigenpotential method, the wesponse of the
sheet to excitation by a point magnetic dipole is shown in the following
section. The magnetic dipole response is useful in simulating various dipole
source methods used in applied geophysics. The magnetic field of a point

magnetic dipole in the quasi-static zone is given by

— A o a-s'
i ("“ Py 7-65

f- 66-84;'—-:—{ dv =

m = 3(*) - amp-m‘./m’

The particular source sheet configuration studied in this example is shown
in Fig. 7-14. The position of the source relative to the sheet was varied
through a sequence of values of c¢/d in order to demonstrate the source depen-
dance of the response.

Contour maps of the total potential for o( = 10 and 50 and the
sequence of c¢/d = 0,25, 1,0, 2.5, 5.0 are shown in Fig. 7-15 and Fig. 7-16.
The potential plots show several interesting features. First, the potentials
as a function c/d show the dipole couples most strongly with the sheet when
X./dc1l. For c/d «<1, very little of the dipole field cuts the sheet. For
large c/d, the 1/r3 fall off of the source field quickly decreases the

coupling. Secondly, as the source moves farther from the sheet, the potential
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Point magnetic dipole and thin sheet geometry.
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becomes more evenly distributed over the sheet reflecting the less abrupt
variation of the source field. Associated with this i1s a change of the
relative amplitudes of the real and imaginary part of U. As c/d increases
the response moves more towards being in-phase with the exciting field.
This 1s shown more clearly in the next set of figures in which some of the
anomalous fields associated with U are plotted. One final comment on the
total potential maps concerns the nature of the approximate solution. When
the source field is quite locélized and the response parameter is large, the
potential U shows low amplitude undulations away from the main peak in the
potential, This behaviour is a product of the approximate nature of the
solution. All the eigenfunctions are of finite polynomial degree and there
only a finite number of the possible eigenfunctions. In orddr to represent
a sharp local peak in U, the approximate solution tends to overshoot and
exhibit oscillations away from the peak. In the particular examples, the
amplitude of these variations is quite small and does not have a major
effect on the accuracy of the solution. In cases where the source field is
locally very intense, accurate results can only be obtained by using a higher
degree polynomial in computing the eigenfunctions. It must be remembered
that the technique is an approximate method and tﬁat its purpose is to obtain
a reasonable approximation to the real solution.

The anomalous magnetic field parallel to the axis of the exciting
dipole moment along a profile over the sheet is shown in Fig. 7-17(a)
and 7-17(b), for the four values of c/d used in the total potential maps.
For each c¢/d ratio, the field for four response parameters is shown. These
demonstrate the response through the swing from resistive to inductive 1limit.
The effect of increasing ¢/d for fixed « has the effect of moving the res-
ponse towards the inductive limit. This effect is best illustrated in Fig. 7-18
where the Q ratios versus the various & for varying c/d are plotted. The

effect of increasing the s/d translates the Q versus o curve upwards with
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no noticeable change in shape.

As a final example, the preceding results are used to generate the
response of a horizontal loop survey system over a finite sheet structure.
The system is shown in Fig. 7-19, The horizontal loop system consists of
two coplanar coils fixed with respect to each other with one coil acting
as a source (transmitter, Tx) and fhe other as a field detection unit
(receiver, Rx). Loop-loop el?ctromagnetic systems and their geophysical
applications are discussed in more detail by Grant and West (1965) and Ward
(1967).

The system résponse over the sheet is demonstrated in Fig. 7-20 for
various coil separations. For s/d small, the system response is similar
to that obtained by an airborne system. The body is much faéther from the
system than the system dimension (i.e. coil separation). For increasing
s/d, the response moves towards that of a ground system where the coil
separation can be greater than the depth to the body. The responses shown
here are typical of those given by Grant and West (1965) for a gemi—-infinite
sheet.

In applied geophysics, it is common to analyse the response for a wide
range of solution parameters (in this case s/d, s/A and x). Characteristics
of the system response are tabulated and used to make interpretation tables
and diagrams. For example, phasor diagrams of peak in-phase and quadrature
anomaly for varying response parameter and other system characteristics
are commonly used for the interpretation of electromagnetic system data.

The horizontal loop system analysed here typifies the results which can be
obtained from the formulation of the thin sheet response in terms of the
sheet eigenfunctions, Other electromagnetic systems in usage can be analysed
in the same manner in both the time and frequency (response parameter) domain.

No attempt is made here to analyse all the possibilities since the emphasis

is on the development of alternate, economic techniques for analysing
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Sheet

Fig. 7-19 Sketch of a horizontal loop electromagnetic

survey system in the thin cheet geometry.
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Fig. 7-20 Typical horizontal loop system profiles
over the thin sheet for varying coil separations.
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geophysical problems and not on tabulating vast amounts of data.

7-6 Summary

The thin sheet response analysed in this chapter typifies the electro-
magnetic scattering problems encountered in geophysical applications. Once
again, the computation techniques have not been considered in detail and
the discussions have been kept to the general features of the responses.

One of the more important results of the analysis is the usefulness of
the Galerkin form of numerical solution. It is more reliable and has a
more physical basis then the least squares method used in chapter 6., It
1s less susceptible to the ill-conditioning of the scattering problem and
is more amenable to the analysis of the system eigenfunctions.

The idea of analysing an approximate set of eigenfunctions for the
system response also gave very productive results, Although the set of
eigenfunctions obtained is not the true set, they do provide a good approxi-
mation to the true system. A detailed analysis of this approach to complex
mathematical problems is important and should be applied more frequently
to geophysical problems. The weighted form of the eigenfunction problem
applied here is a natural one for electromagnetic problems. The very simple
form of the inductive response eigenfunctions attests to this, Use of the
resistance matrix as the weighting operator is very appropriate. It decouples
the various factors of the response to a very high degree. The spatial -
form of the eigenfunctions is independent of the frequency response and
electrical properties of the sheet. This result is quite different from
the classical solution of boundary value problems in electromagnetics where
the spatial form of the eigenfunction is directly linked with the electrical
properties of the body. For the inductive sheet response, the evaluation

of the eigenfunctions yields the response for all response parameters (and
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all times in transient analysis).

One numerical technique which was considered in some detail but not
discussed in this chapter was an iterative procedure for pre-whitening the
impedance operator for highly ill-conditioned scattering operators. The
technique was conceived when the exact manner in which the ill-conditioning
arises was discovered. Basically,'in matrix terms, the operator is the sum
of the resistance (ohmic) matrix, the inductance matrix and the capacitance
or channelling matrix. The first two matrices are definite with little
variation in their eigenvalues. The channelliﬁg operator mgtrix is added
to these other matrices after multiplication by a coefficient which can be
very large. Since this matrix is not definite, some of its eigenvalues are
zero. From practical computational considerations, these nuld eigenvalues
will not be exactly zero and the large weighting factor multiplying the
channelling matrix makes the round off errors the same size as the contri-
butions from the resistive and inductive matrices. The resulting matrix
is ill-conditiioned and the small eigenvalues will be those associated with
the null eigenvalues of the channelling matrix. (The null eigenvalues are
associated with the eigencurrents which are solenoidal). The pre-whitening
scheme used the initially determined eigenvalues and eigenfunctions to expand
the original matrices and pre-whiten each matrix before it was added to form
the total impedance matrix. This procedure can be repeated until the
resulting eigenvalues and eigenvectors stabilize. A more complete mathema-
tical analysis of the technique needs to be done before it can be applied
extensively but the idea appeared to work quite well in the preliminary
tests that were made.

One factor which is important is a brief summary of the computation
time and the amount of core required for analysis of the thin sheet problem.
As in the 2-dimensional aﬁalysis of chapter 6, the most expensive part of

the analysis is the numerical quadratures to find the integral coefficients.
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The programs for both the total response and the inductive response were
similar in structure. The time to generate the toéal response coefficients
was the order of 60 seconds of CPU time on an IBM 370-165. This was for

high accuracy integrations and for a polynomial degree of 4. TFor less accurate
integrations this time is reduced by a factor of 3 to 5. A revision of the
programs to implement timeareducing alogorithms could save another factor of
2 here. The inductive coefficfents took considerably less time since fewer
parameters were required and complex arithmetic on the computer which is
inefficient could be avoided completely. The time requiredvfor the model
represented here was about 30 seconds of CPU time and the integrations were
conducted at high accuracy. The remaining parts of the compufations were
very inexpensive with no one step taking more than a few seconds of CPU time.
These numbers are for one shot runs. Additional time required for mass .
productions runs for numerous sources and parameters is of little signifi-
gance compared to the basic run cost, All programs ran in less than 120K
bytes of core and the inductive response programs (except plotting) ran in

less than 70K bytes of core.
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CHAPTER 8

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8-1 Summary

In the course of this thesis project, numerous aspects of electro-
magnetic scattering theory were analysed in varying degrees of detail and
some of the results of these studies were presented in the preceding
chapters. The initial objectfves of the study were sufficiently broad that
at times it was difficult to confine the work to a particular path of
endeavour. In preparing the thesis, however, an attempt was‘made to
develop a comprehensive coherent statement of the most pertinent results
obtained throughout the study. This was somewhat difficult 8o do since
the various stages of analysis did not follow this sequence in their'
development. As in most research projects, difficulties invariably force
one to retrace one's footsteps and pursue an alternate approach or reassess
those already taken.

The emphasis throughout the thesis was on the development of a unified
formalism to describe the response of electromagnetic scattering problems
and the merging of this formalism with variational methods for computing
approximate solutions to complicated systems of equations. The first half
of the thesis was, therefore, devoted to the theoretical aspects of the
formulation of the response while the latter half of the thesis was concerned
with the computerized implementation of the approximate varational methods
outlined in chapter 5. In the last two chapters where the numerical results
were presented, detailed discussions of the computer programs were avoided
as much as possible since it was felt that these details would only obscure
the points to be made by the computed results,

Overall, a number of ‘important results were found and a good deal of

groundwork was laid for the continuation of these ideas into more complex
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problems. Some of the major conclusions are summarized in the next section.

8-2 Conclusions

The equivalent source method is a very flexible and efficient technique
for formulating the response of scattering structures with quite general
electric and magnetic properties. The formulation makes the physical inter-
pretation of the resulting integral equations for the equivalent source
distribution very clear. As pointed out in chapter 2, the equivalent source
exists only in the region where the anomalous material properties are non-
zero. This is particularly important when the system is subjected to a
localized disturbance since the equivalent source field has only to be
evaluated in that.localized region. When contrasted with thé finite
difference or other numerical methods which operate directly on the governing
partial differential equation and force the boundary conditions, there is
a considerable saving of work. The major drawback with the application of
the equivalent source method is that the Green's function for the background
system must be known. In most geophysical problems of interest, however,
this is not a major difficulty since it is possible to evaluate the most
interesting Green's function analytically or numerically.

A by-product of the equivalent source method is its role in providing
a unified approach t; the static problems discussed in chapter 3. 1In
addition, the general integral equation formulation makes it possible to
study the general properties of the solution without having to solve a
number of numerical problems before hand. This is particularly true of the
analysis in chapter 4. It is possible to make explicit remarks about the
solution of the integral equation and show how these are contained in the
integral operators. The bimodal nature of the scattering operator is

extremely important when the numerical computation of responses is to be

carried out. Since geophysical problems are often strongly bimodal, direct
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implementation of a numerical method on the basic integral equation will

be exceedingly susceptible to failure. This particular point was emphasised
by the fM response discussed in chapter 6 and the thin sheet response in

the general case discussed in chapter 7.

The use of approximate solutions based on variational or minimization
techniques provide a viable alternative to the commonly used method of
digitizing the solution. These techniques are new tools in the analysis
of geophysical electromagnetié problems. Both the least squares and
the Galerkin techniques yield inexpensive and quite accurate approximate
solutions to complex problems when the problems are properly conditioned.
From an after-the~fact analysis, the Galerkin method seems to be the better
approach; this is'particularly true for electromagnetic problems when the
scattering matrix is susceptible to ill-conditioning. The reason for
this is that the least squares scattering matrix has eigenvalues which are
the order of the square of those of the Galerkin formulation. If the
eigenvalue spectrum tends to split,resulting in ill-conditioning, the least
squares method enhances the ill-conditioning and this is certainly not
desirable when the inverse of the matrix is sought by numerical means.

One feature of the variational solution methods is that they attain
much higher accuracy than numeric.al methods which rely on point-by-point
solution of the integral equationm, when the same number of unknown para-
meters are used in the solution. This was particularly noticeable in the
thin sheet response analysis where the variational method required over an
order of magnitude fewer unknowns to solve the same problem as a discrete
sample solution method. This vast reduction in the number of unknowns
greatly reduces the dimension of the scattering matrix and makes numerical

inversion of the scattering matrix more accurate and much less expensive.

The extension of concepts used in solving problems analytically can be
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successfully carried over to the domain of numerical analysis. The results

of chapter 7 show that determination of multidimensional eigenfunctions is
practicél and provides much more information about thg system response

than can be obtained by just solving the system of equations numerous times.
This is also an important practical consideration when the cost of computing
is a significant factor in determining the number of responses which can be
computed. This is invariably the major factor in problems of numerical analysis.
In such cases, maximization of knowledge about the system should be striven
for. This is exemplified by the use of the shifted eigenvalue approach
applied in chapter 7. Formulation in this manner provided the total frequency
and/or time response of the thin sheet in one computation. This approach

to numerical probiems where type curves for a wide variety of input or

system parameters are required should be exploited more fully in applied

geophysics.

Recommendations for Future Work

While a great deal of time and energy was spent in the development of
the results presented in this thesis, there are many areas where more analysis
is required. Although this is a common problem in research work, at times
it can become discoupaging. The subject of electromagnetic theory and
scattering in particular is so diverse that there is an inexhaustible (and
at times an insurmountable) set of problems to be tackled. The present work
has shown that there are some areas which show promise for further research.

A major stumbling block in the initial stages of the thesis work was
the problem of solving the integral equations encountered in the equivalent
source formulation. While all standard texts on applied mathematics deal
with the basic theory of integral equations, the types of equations considered
are always those which have particular properties (usually solvable analy-

tically), namely, real, positive definite kernels. While this is fine from
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a theoretical point of view, a much more in depth study of integral
equation problems, particularly of vector integral equations in multiple
dimensiéns and the numerical solution of integral equations, would be a
valuable piece of research.

Another promising research problem is the extension of the Galerkin
method and the discrete eigenfunction approach to three dimensional bodies.
The acheivement of highly accurate solutions with very few unknowns make
the solution of three dimensio;al problems practical from a computer cost
point of view. Combination of this approach with the finite element
technique for describing complicated geometrical systems appears to be an
area which would yield rewarding results.

The computation of static electric and magnetic responseb was not
discussed in terms of numerical solutions in the thesis. Application of
the equivalent source method to resistivity problems by Dieter et al (1969)
showed the feasibility of the method. With the generalized formulation
given here, the response of more complex structures with gradational material
properties can be formulated. Very simple solutions can be derived in
cases where depolarization effects are negligible. Use of the Galerkin
method in these problems is another area which bears investigation.

One other topic which seemed quite exciting but which could not be
followed up during éhis project was the application of the equivalent source
method in materials with non-linear electric and magnetic properties. By
iterating ‘the integral equations obtained from the equivalent source formu-
lation, the behaviour and response of non-linear materials can be investigated.
In the static field problems, the equivalent source integral equation can be
used to show, by intuition, runaway effects and self-focussing of electric
fields or magnetic flux through localized regions.

As pointed out at the beginning of this section, a wide variety of

problems in the theory of electromagnetism are wide open for further
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investigation. In retrospect, there appear to be many problems which
are more interesting than those tackled here; however, this is probably

a manifestation of the old adage that the grass is always greener on the

other side of the fence.
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APPENDIX A

ELECTROMAGNETIC GREEN'S DYADIC IN A PLANE STRATIFIED MEDIUM

A-1 Geometry and Basic Equations

The geometry of the plane layered medium is shown in Fig. 1. The
structure is termed an N-layer medium and is composed of N+1 regions which
have differing electromagnetic properties sepgrated by N plane parallel

boundaries. The Cartesian coordinate system is denoted (X', X,, X;) and

2’
has the associated unit vectors (3. » €,, ;). The medium is stratified
in the x coordinate with the N boundaries located at x, = d;(1i =12, N).

The permeability and the complex permittivity of each region are denoted
by u; and E€; .

The electric and magnetic fields satisfy the differential equations

d.E - joud + Tx A-1
5:- H :_-J'uﬁ,ii + ©x3 A-2
vieps © = Wi -w3

and R?*: w6 and ¥ 1is the unit dyadic. It is most convenient, although
somewhat redundant, to define a set of four Green's dyadics in deriving
the general Green's function for the system. These dyadics are denoted
EE w 3 “ "’) ind 1

(s ,J..&' pr , mn<J) .where the superscripts E and H indicate electric or
magnetic Green's dyadics and the subscripts J and M denote the excitation

to be electric or magnetic currents. The relations

€ g - -
o . = = A-3

A-4

4

N
are readily derived from Maxwell's equations. Z and Y are denoted

the impedance and admittance operators.
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ez "
To define all four dyadics only = and qu have to be found.

From the symmetry of the equations, only ;:U need to be derived in
detail since the solution for : 5 can be derived by interchanging the
~N

“~
]
roles of s and € in the § ¥ expression. In the next section, J{’b

will be derived in detail.

A-2 Plane Wave Spectrum Analysis

The detailed derivation of ;‘E is carried out using the plane
wave spectrum concept and a generalized matrix notation. From this point
on the subscript J and superscript E on the dyadic will be dropped for
compactness of the solution. In matrix notation the dyadic in the i'th

region satisfies the equation

[eﬁ][,g'-]: gy UL T Siwm A-5

The source is taken to be in the m ** layer located at r’/. The { ]

matrices are listed in Table A-1l. T = x;'éi denotes the observation point

and T' = x'igl- the source point. $(r) is the Dirac delta function and Sim
the Kronecker delta function.
With the aid of Fourier transform theory, & can be expressed as a

superposition of plane waves

- “Re (FaF)

~ U, T N
JH("\"‘) = 4"?‘.,_ H GC l\, Y-,,x-,') e.d C')ucl\z A-6

“ow
where Az A& + )\;’é,_. G is the plane wave spectrum amplitude for plane
waves having horizontal wave number ()\.,}\,) . In order to express the
pPlane wave form clearly, a coordinate transformation of the wave number

domain is combined with the Fourier transformation. The coordinate

transformation 1is

[&)=T0)(%] i
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Table A-1 Spatial Form of Matrix Representations

[&"]= -3 -3 -k, 202 , 29

bla. ’.—bf”a§~kau’ aaaa

R R

[ﬁ] . '- ‘bfu ‘b:z » \;3

P \
gl‘( 9 @ll » 2>
A \ :
L b3| > 2832 ’ 3. ]

L
=
kcccsad
1)
1
-
L
[+ ]
A ]
(o]

Definition : ?; >X:
o 1 ¥
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where

- M Az o
[D] = x A A-8
A M o
A N
o o =

and is just an expression of the cylindrical symmetry of the structure.

[ §] are the new unit vectors. The total transformation is then

[#']= e “ [oll6 10017 & “'(?'—3,\..;“ A-9
W I D S{ L&) o Uf‘)dx.dx,_ (o] A-10

-k
where A-9 is the inverse transformation and A-10 is the forward transformation.

Transformation of the differential equation A-5, yields

[eillei] = Zxr-)lT1]din a-11
where ff = jwmm and (O] is the transformed differential operator listed in

Table A-2. The solution of A-11l can be written down directly since the

differential equations involve X5 only. The homogeneous solution for A-1l1l is
[eil=[c ,*cill @il [‘a'] A-12
+ a?

where [ic“‘] and fta:] are 3 x 3 matrices with [1@] being diagonal. {(S'] is

a 6 x 6 diagonal matrix. All the matrices are given in detail in Table A- 2.
[-<‘], the upper half of [6'] and["a'] combine to describe plane waves
propagating in the negative Xydirection while the other set describe waves
propagating in the positive Xx3 direction. To demonstrate this, the

explicit forms of some of the components of [G‘] are given here in detail.

; . FYixy TYix)§ INF-#)) A
2‘ eyt * g,G—;‘ §, = % a ( + % 'S\-, e )ie g S, A-13

. aff e (v.¢)
= . A Ed ‘.| !‘) J "N .
;,_ &8, = Ig 0 i {c } *a A-14
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Wavenumber Domain Matrix Representations
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The curly bracketed term is inserted from the Fourier transform to
explicitly demonstrate the plane wave form of ( c,il’] . Expression A-13 is
readily identified with the form of a TM (transverse magnetic) plane wave
while A-14 has the form of a TE (transverse electric) plane wave.

To complete the solution, the particular solution of the inhomogeneous

equations
LomllPe™] = Husty-x3) [T 1] A-15
is required. [?6¢™] is given by _
Fem] = Pl ta-w)]Tram] A-16

where [Pc™] , [f@™ , and [P3™] are 3 x 3 matrices given in Table A- 3.

Above and below the source plane at %5=x%; , L'G™] may be wkitten in a
: : J

similar form to EG-‘], the homogeneous solution, with

[*c=]1 = [ *c10e™0ua-w)]] o] A-17
Pt_wm
a -

[P‘G“\] - Y“c"\ ' +CM]{(3m(x‘ _!;) '] [P‘ah\— A-18

where [Pza'“] are given in Table A-3.

At this point, the mathematical form of the {6'] have been derived
with the result that each layer is characterized by 6 unknowns; namely,
3 amplitudes for the upward propagating waves and 3 for the downward
travelling waves. In addition, the excitation factors for the various waves
are contained in [? 3™]. The next step is to solve for the £L*a'] in terms
of [?2™] . This relation is obtained by invoking the boundary conditions
that tangential E and H be continuous at the boundaries. The interrelation
of the L* a'] 1is compactly expressed using a generalized transmission

matrix notation.
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Table A-3 Particular Solution Matrix Representations
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Transmission Matrices

The boundary conditions of continuity are
[&x]1L &) = L& «1L »'"] A-19

Lex TIYV IL &=t dlvivI[ '] A-20

at ¥3:=d;w« . The Fourier transformed Y] and [ &,x] are given in
[}

Table A-4. Equations A-19 and 20 yield six equations relating the six[*3']

to the six [*3'*'] which may be written

[wille'(dis)] [;3:] = [wit] [B.‘h(diin)] [‘a‘*‘] A-21

l-ait.

The 6 x 6 matrix Ivﬁ] is given in Table A-4. Given the coelficients in

any region, the coefficients can be propagated upward and downward to

find

all the other coefficients by

{' ] = [ ai)]l Thai J L8 a5)] [Zj:} g

3
* a:‘.l

[Tu.,;-] = W;’“][Wi] is denoted the transmission matrix for the cl:#\ boundary.

The elements of ['T'] are combinations of the TE and TM Fresnel reflection

and transmission coefficients.

A multiple layer transmission matrix, [LA,$] , can be defined relating

the coefficients in regions p and q.

Here

less

tion

wave

L ey 1= LeraIU T, 6™ Gande )] - - [T, (1B %dud] a-23

p is assumed greater than q. The analogous form can be derived for p

than q. The sequence of matrices corresponds physically to the reflec-

and transmission at a boundary, phase shift and attenuation as the

passes through a layer, reflection and transmission at the next boundary,etc

With this definition of [‘*PG]' the solution for [taV] can be expressed
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in terms of [?a™]. First, the radiation condition requires [-3M]zo

and [*3°]=o . Then

= 1 s oedd [Fa™] « Ta%-w])®

]

L*aﬂ.! *a"‘_j -""g“' A-24
B L UWow 1 T3] + Le=(-w)] \ECh A-25
(3 +aMJ )

Six equations relating [*a“] to [Y3™] can be extracted from A-24 and

A-25 and these equations are given by

[U\T][:g:q =[u, 1l e"w)] [:’;:] A-26

where [U;] and [U ] are listed in Table A-5. [222] ave Ropiaetiails atvis s

[-a“ = [v]lemtxh] [:9:] A-27

+am 9

-t

The solution matrixf{y]is given in Table A-5, The components of Ty] are the
generalized reflection and transmission coefficients for the structure.
Equation A-27 combined with the generalized transmission matrix given in
equation A-23 constitute the complete solution for the Green's dyadic. The
final stage of analysis is the inverse transform (equation A-10) to obtain
the spatical representation,

A-4 Inverse Fourier Transformation

The inverse Fourier transformation to the space domain is the most
difficult step of the whole analysis. With the exception of the whole-
space problem, the inverse transform cannot be obtained analytically.

For special combinations of parameters, approximate analytical solutions
can be derived. The integrals encountered for a one layer model with one
medium an insulator and the other a good conductor have been studied
extensively and summaries of these results are given by Wait (1970), Ward
(1967), Banos (1966). The one and two layer models where both media are

dielectrics of low loss are discussed by Annan (1970, 1973), Brekhovskikh
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(1960), ott (1941). For radiation problems, good approximations can be
obtained for the integrals (using asymptotic expansions) when all the
spatialldimensions of the problem are large compared to the wavelengths
in the media. To evaluate the transforms in problems where none of the
common approximations can be made, one must resort to numerical integration
by computer.

In this section, the whole-space solution, which is just ['Pt?“], will

be transformed. The spatial dyadic is given by

cr JRE-e)

[*d™] = f{ to1trem1l o] divdre A-28

t
4«*_
The matrix [p][f¢~J[0]7is given in Table A-6. Noting the role of differentiation

on a Fourier tranéform, the matrix can be rewritten in terms of spatial

derivatives. The transform becomes

(*w"] = Jﬁ”\f_“- [6xox] aeee)[ T] - .i‘“:;- -9 1] A-29

where the double Fourier transform
or  ~Bmlx3=x3l X.(F-F

[} s ) e
quarl = = ﬂ S = dAdk A-30

is the well known Sommerfeld integral first evaluated by Sommerfeld in 1909

(see Sommerfeld (1949), Brekhovskikh(1960)). The evaluation of A-30 is

given in Appendix C as integral o
' e R
S(Tr') - e R A-'31
&S

Inserting 9(fLV? into A-29 and noting that
v¥qCyr) + ke 9Cnv) = - wrim SF-7) A-32
the particular solution or Green's dyadic for a whole-space becomes

a~ e s .
¢l jwum{ L + %?:“}3(\'-,-") y A-33

This solution is well known and be be found in any standard text on

electromagnetic theory.
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The additional, homogeneous dyadic which appears when the medium is
not a whole-space represents the reflection and refraction of the spherical
wave (eéuation A-32) as it encounters the planar interfaces. Since there
is no general method to evaluate the homogeneous dyadic, the analysis‘of
this problem is not considered further here. The evaluation of the integrals
required for particular structures considered in the body of the thesis is

discussed in Appendix C.

Summary

The preceding development derived the Green's dyadic & > and from

A-4’;5 is also defined for an N layered, plane stratified.fnedium. The

,~
development of m#¥) has not been derived in detail. From the symmetry

L] iy e ~

of equations A-1 through A-4, ~¢  can be developed directly from v&/ ,
Interchanging H for E, -j«¢t for juu# , and #, for I in all steps of the

3 n .
derivation yields n2d . In the plane wave spectrum, the roles of the
TE and TM waves are interchanged; wherever a TE Fresnel reflectidén or trans-

£ i >
mission coefficient appears in J—QV , the w47 will have a TM Fresnel
w ~
coefficient and vice-versa. der » the whole-space or inhomogeneous dyadic
can be evaluated in the same manner as ;;KVP and is also obtained by
& ~

analogy with s ® . Appendix B develops some particular forms of the

Green's dyadic which are useful for applied geophysics analysis.
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APPENDIX B

GREENS DYADICS: SPECIAL CASES

The development of the general Green's dyadic in Appendix A is some-
what too general to express the response of simple structures easily. 1In
this appendix, some particular forms of the general dyadic are expressed
in a more specific and compact form. This serves two purposes; first, it
shows the generality and application of the formulation of Appendix A and
secondly, it yields dyadics which can, in some geophysical cases, be evalu-
ated analytically.

The particular cases examined in this section are the general dyadic
for a half-space and the particular forms of the half-space dyadic for
two-dimensional excitation currents. These two dimensional forms of the
dyadics are denoted the TE and TM dyadics. The reason for this becomes
apparent after the derivation of the responses. The half-space geometry
is shown in Fig. B-1l. The dyadic for the lower half-space for a current
in the lower half-space 1is derived.

The inhomogeneous or singular part of the Green's dyadic is the same
as that derived in A-33. The homogeneous dyadic accounting for waves
reflected from the half-space interface is given by

(6*] = [c¢* i ][ 6°txy)] [‘3" B-1
tge
in the spatial wave number domain. From A-27
[‘a ] = [viLet-xd)] ["a ] B-2
ptg °
where [v] is given in Table A=5 in terms of [um] . In this case, the
only [\qu] is [Lh,] which is in turn defined in terms of ['Il,] which is

tabulated in Table A-4. The particular forms of [T,,] and [V] are given
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in Table B-1 for the half-space case. The resulting ["a‘] coefficients
and [6°lare 1listed in Table B-2.

The spatial form of the dyadic in the lower half-space (region 0)
is obtained by taking the inverse transformation of B-1 and adding the

inhomogeneous part of the Green's dyadic.

o0 .

i - . - JRF-R)

& = T8 s = [ Coll c°llo]l = dAdi, B-3
The resulting form of Y° is }

- R o oo A & 4 -4

dJ = J‘wuo{(c|+cz) + —k—t- -(C. 4+ Cq +C3)} ’ B-4
where the dyadics E; 12,3 are listed in Table B-3 and are defined in

terms of the integrals Ly, Ls, and L¢ also listed in Table B-3. The<
approximate evaluation of these integrals in particular geophysical applica-
tions is discussed in Appendix C.
The elements of the Green's dyadic are the electric fields associated

with the point current

Ts = SCx-x7) SCxe-xt) Sra-x3)(E, + &, +&3) B-5
Two other particular dyadics which are useful in many applications are those
for which 3Js varies sinusoidally in one spatial dimension. The result

is that 3’; splits into two parts which are denoted TE and TM currents.

" § LK
JCx -w) §xy-x%3) <’ téz B-6

i

3¢

S“X';

:':" 8Cx-x) S(xy-x3) e

3
)

In the wave number domain, 33 and 3J;'" become

Tt = Seae-a) Sxy-xf) ée B-8
T = §he-) SQ,_‘;)@I_ + &) =

In the wavenumber domain, the two homogeneous dyadics denoted [ G:"] and

L G:J are given in Table B-4 along with the expressions for L['G . ]and
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Table B-2

Half-space HYomogeneous Green's Dyadic
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Sub-dyadics of Half-space Green's Dyadic

Table B-3
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Two-dimensional Halfspace Green's Dyadics
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{ﬁ}:;] the inhomogeneous dyadics which are derived straight from the
full three dimensional case discussed in Table A-6.

A éarticularly simple form of these dyadics occurs for 0 and is
responsible for the TE and TM notation. For A& = o , the currents do not
vary in the third spatial dimension. These dyadics in this case are the
"true" 2 dimensional Green's dyadics; the TE and TM notation is ascribed
because the one current system generates only TE waves while the other

.

generates only TM waves. Although:'this result has been derived for the
particular case of a half-space, it is also true for the general N-layer
problem. This non-mixing of the two types of waves is just a manifestation
of the usual analysis of 2-dimensional structures applied by Swift (1967),
Wright (1969) and others analysing two dimensional structureé. For the
particular case of o = © , the spatial dyadics listed in Table B-5 are
expressible in terms of the three integrals Le , L1 , and Lz . The evalu-
ation of these integrals is outlined in Appendix C for application in the
body of the thesis. The integral L. 1is just the Hankel function of zero

order and the first kind, Ho (R.§), which is the usual 2-dimensional Green's

function describing cylindrical waves.
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Table B-5 Spatial Two-dimensional Green's Dyadics (or=©)

~° &
bn = JWMe (Lo + La)_cgaa

Cg = Lo (glé\ ‘\'esea)
Ec = L: (8.%‘ = %zez)

o -Yolxs-x3| J A (X -X)
e

Lo(x‘xs)z —‘- S E_ d’\
ray = 2%
Qe -Xa(h*x;) A - :
L, () s - j Rer & i ) 4 A
' AW S 2%
oo -~ ¥o ("31‘*3') 3 Axi=x{)
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APPENDIX C

INTEGRAL EVALUATION

C-1 General Format

In the process of inverse Fourier transforming the special electro-
magnetic field dyadics derived in Appendices A and B, a number of integral
expressiéns appeared which required evaluation. These integrals are
denoted L;,1=0, 6, and are listed in Table C-1.

The integrals L, and L3 are standard integrals in the study of
radiowave propagation and can be evaluated exactly. The remaining integrals
cannot be evaluated analytically except in special cases. By definition
of the geometry in Appendix B, both x, and X3 are negative fh these
integrals.

The physical interpretation of the various integrals is of importance
in the subsequent analysis of their evaluation. In all cases, the integrands
represent the spectrum of plane waves associated with a point or line source.

Lo and L3 are the response in a homogeneous whole-space medium. The
remaining integrals have the whole-space spectrum weighted by the appropriate
Fresnel reflection coefficient and correspond to the plane wave spectrum
of the fields reflected from a plane boundary. 1In other words, each plane
wave in the original spectrum is partially reflected from the boundary in
accordance with Snell's law and the Fresnél reflection coefficient for the

incident plane wave.

C-2 Integral e

The integral Lo is just an integral form of the Hankel function of zero

order and the first kind. This 1s most easily seen by defining

9":(1\-1.')" +(x,-—x',)" c-1
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$

Table C-1 Integrals L3 Required for Whole and Half-space
) Electromagnetic Green's Dyadics

Le = =

T

dA

o -’(.\Xg-xi\ +$}\(x|-g:>

S e
25

- oo

- Yelx3+x3) *5’\(7“‘%:)
by & R Re = d)\
\ z-n'_L ' —
acd Xo (xa+x1) +3 M= x)
L = ._‘_. xb i Ax
: *aw ) Yo =
o ~l’a\“)~x;\ +3 (k\ e x0) & )\z(h-‘;))
= 4w dadA
L3 42 J] -Ze_’;': b
~co
[, \’.(x3+x3)+- 'S (A (!;—1.') +L’-C!8"¥£))
L4 = 4JTF¢ H Re| g—__ 4A\J xz
- o> 2*0
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X, ~% = Pcxo Cc-2
%3"%3} = § sin® c-3
A = ko COS" 0_4

"o = ":’ ko' sinl

C-5

Then
—¥olks - 23l +3A ) = RS cos(0-0) c-6

and
i
: 1 a § cos(e-0)
Lo = “!‘ ‘S eJ de Cc-7
4T

~Wptjeo

This integral is a standard form of the Hankel function (Morse and Feshbach,

1953, Pg. 623) and is

Le = 4 Hi(R.E) c-8
4-

C-3 Integral L 5

The integral L3 is known as the Sommerfeld integral. Since L3 is
commonly given in the form of a Fourier-Bessel transform, L; is modified

by transforming the integration variables as follows.

£ =)+ Camxd)t c-9
(x-¥)= f cos® : Cc-10
(x2°%) = § sme c-11

e Y c-12

LT L c-13

Az = A sing

Cc-14
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Now

A xlxyexal 4y AT cos (9-8)
\
bst e H = AdAdw
4t 2 2% i
L= ~“OIX'!‘¥-;.
- £ ) = A Te(AS) d A
4T I Bo

where the integral form of the Bessel function of zero order is given by

Jo()\?) = L

N | MY cos ((p-e) .
J
3
- S e dgp ( _l_f/

[ .

(Morse and Feshbach, 1953, Pg. 620). The solution of L3 is simply the

spherical wave

jReR

L = e ©
= 4T R

17

where R = (¢'+ (qu(;)-.)"l . (Sommerfeld, (1949)).

C—4 Quasistatic Approximations

In geophysical problems, the electromagnetic response of inhomogeneities
buried in a conductive half-space is required. The response is observed
in the air above the Earth and this is essentially free space. The size
of the inhomogeneity and the spatial extent to which observations are made
are much less than the free-space wavelength. As a result, the fields in
the air, which propagate at the speed of light, may be assumed to reach all
points of the observation area instantaneously. In other words the speed
of light may be assumed infinite and the propagation constant in the air
region is zero. The fields in the air are termed quasistatic. The quasi-
static approach is discussed in texts on the subject of electromagnetic
methods in geophysics (Grant and West, 1965, Ward, 1967) and has been the
key to analysing geophysical E.M. problems,

The electromagnetic fields scattered by an inhomogeneity in the Earth

are partially reflected from the earth-air interface back into the Earth
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and partially transmitted through the boundary. The reflection coefficients
of the boundary appear in the integrands of L, , L, , L4, Ly and L¢
Combining the quasistatic assumption with the fact that the permeability

of bulk earth materials is essentially the free space permeability, the
resulting form of the reflection coefficients permit analytic evaluation

of most of these integrals. From Appendix A, the TE and TM reflection

coefficients are

R, = 3=2-% c-18
Qe + 4,
R i X c-19
Xey = ¥ * T
< - =< w E
where y, = :“M and = TR

with #;* = A*— R}

The subscript e denotes the earth region and subscript 4 the air regiom in

this case. Letting u; =umo the free space permeability

o —
Ry = L %) c-20
(Yoi-"n)
Xol L. C.U.) c-21
(E¥i +E,%0)
Writing out the detailed form of Rbl and X., gives
R, = -2k (i+k/el) — 25, c-22
RZ (1 - \h‘lu:)
2
e (1 4 £/el) - erel(®e t €/e2) - 22,35, c-23

Xoy =
.

ESN (1~ €8el) - €2 iR/l - £1/¢2)
These expressions are considerably simplifed when the order of magnitude

of the terms k.'/hl' and ¢, /€s (which are the same) are examined.

.b.‘l = Wle M. = S Cc-24

k: w‘f. Al o e.
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For a conductive earth ( € are complex permittivities)

e=ze(\ ¢+ jOG/we) c-25

where € 1is the real permittivity and « the conductivity. In a real
earth environment, € 4“;"4/-- and € )6’mhe/m. are realistic upper and lower
limits for the material properties. For frequencies less than 1KHz, the
ratio ¢/we > 1o . In most instances the ratio is > ¥ . This result
indicates that displacement curyents in the earth are negligible in
comparison to conduction currents and

£ 2y = c-26
A graph of the ratio of displacement currents to conduction is.given in
Fig. C-1. The ratio &,/¢, becomes w¢gE,/6,. By the same arguments

4 gsince the free space permittivity €,is 16'° ¥d./m, .,

@€ /5o ~ O
Neglecting terms of the order & /¢, is the same as assuming an infinite
propagation velocity in the air.

The approximate forms for R.,and ¥X., , are

= R 7%
Ry 2 L = 3“—’,‘ y = c-21
Xog & 1 - 2 & T & 4 c-28

s W

Since W<«1 a furt:h_er approximation is to set
¥, =ial Cc-29

For practical purposes the second term of X, may be neglected. If
this is done, the boundary conditions at the air-earth interface for a TM
wave propagating upwards in the earth correspond to a perfectly reflecting
boundary. The tangential electric field is doubled, the normal electric
field is zero (no current flow across the boundary) and the tangential H
field is zero. In other words, the tangential magnetic field at the

boundary does not change in the case of pure TM scattering from an inhomo-
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geneity in the earth. This is the boundary condition used by d'Ercevilile
and Kunetz (1962) in the analysis of TM polarization incident on 2 dimen-
sional Qagnetotelluric structures and adopted by subsequent authors (i.e.
Swift (1967), Wright (1970)) in their analysis of the response of 2

dimensional structures to TM waves.

C-5 Integral

In the range where the quasistatic approximations hold,

oo " e ¥ol¥y +X5) +5 Mxrl()
by 2 B lA e
L= & [{e« &F o SO & T o

can be evaluated analytically when (x3 +%3) 1is zero. For alliother values

of (x1+xg , part of L, must be evaluated numerically.

4
(a) X3 + X3 = 0

For 0n+ﬁ) identically zero, the integral is evaluated in three parts.

The first term yields

r J a(xg ‘!‘) d S : (
¥ g—. = J— k ‘ Y ' C"31
2w ! 2% . 4 S K)

The second term is

b :)K(!\‘N') -
e in = &2
2wl 2%}

e ) 2% ;"; Ha (vt x-x1) c-32
This term is just the second derivative w.r.t. x, of the first term aside
from a constant factor.

The last term of L, 1is the one which causes all the difficulty in

evaluating L, . It has the form

e s ala-vd
B T Y ik c-33

—ere RJ'

for (x3»¥{Yso . From Duff and Naylor (1966), the Fourier transform of IAlis
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Iy
j‘ Al e d A - - £ Cc-34
- e CLZ
and C-40 becomes
- = ‘ c-35
T‘k: (X\— Y'\)l.
Thus for (xy+v3) = o, L, is
. . )
Lom =3 W Gratyex) 48 Mo Gmtnoxd) ! 6
* 2 ko) X~} TR (*\‘Y’l)l

The electric field about a line source of I amps on the surface of a

conducting half-space is given by
& = JQ.\MOI ( Lo +‘L|) , c-37
Ky+xX3 2w
At the surface X;+¥x330,
{ ( \
He (k,\X\““\I . ! ] c-38
T‘_kz (X\‘\:)l

=

=y Il 2
kc‘X\-X"\

This expression agrees with that given by Wait (1962) when the propagation

constant of the air approaches zero.

|
+
(b) X3 X3 # 0
When (X1+XQ is not zero, it is more convenient to work with C-30 in

a modified form. The reflection coefficient is regrouped to
-1 - zk‘:“ (¥o = tAl) c-39
and C-30 becomes
i Yo lxarxg) + 2 (x-x})
- _A A B a\Ka¥ky) Ty TR
LeEiw S { 2. kI G n)ge dA €-40
~ e
The first term is just
3o (x34x3) +a A (x,~x/) . ‘
dN = —% Ha (k f\) C-41

O
- A g A e
zvw_J 2%e

This is an image of the original line source

N2
S’\l SECT TR (e s) s

where
The second term in C-40 is denoted

reflected at the boundary.
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, e 5o (x *l')-\-‘}\(xpx:)
u(Y\‘Y‘ y X3 4—\(,’):1—:;‘2‘ S(U\\-\’o)e YT dA C-42

This integral is evaluated numerically.
In addition, the derivatives of L, w.r.t. ¥ and ¥; are required in

the thesis. Thus, a total of three integrals must be numerically evaluated;

namely

-

. - U . - 22U

U u,os5x, S, Uy s C-43
The evaluation of ‘U, U, and t(; was carried out in a similar manner

to that used by Frischknecht (1967). First the integrals were transformed

to Fourier sine and cosine integrals

] oo o O“s“‘X;)
W = ey 5 (A-%s)e cos (Alxe-x)) dX C-44
_ To(Xy+x3)
U, = - Tr:<§ r AN-%)e 7 sin(A(-x)) dA C-45
‘ olxy+x3)
u.s = — Y’o Yo ( A-%,) € cos (/\(.X\‘X: ))A >\ C-46
o o

A general program was developed for computing integrals of the form

oo ¥o (x34x3)
Vo= S f(A) = v ges { A(X|"KI,)§ dA C-47

o Sin

The integration interval was divided into two sections such that

o0
Vo= Vo + 2 V, C-48
where
)\C. Yoij-\-X;) coS ,
Vo, = go LN = . {A(X‘—x.)gak C-49
Ane ¥o (x5 +X),)
\/“ = S F(?\\ e cgo‘i\g ?\(x.-y,’)%&}\
Aw

The integration limits are based on the relative values of x;+xi and x-x,

When the Xy +x3 1is the dominant factor, A .was chosen as the value that makes
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¥o (x4 +%3}) -1
| = & C-50
If this condition held for all wvalues of A , A, was set to zero, The a,,
were taken as
Avi = A + Cwni=) A C-51
For very small (xy +xy) , the Grﬁmﬁ controls the behaviour of the integrand.

In this case

B - cosine integrand
2 (x,~x))
Ae = C-52
T sine integrand
Ly, —‘K:)
The A,, were taken as
2(n-1) Ac  cosine integrand
>\v\ = )\c_ A C-53
(n-y) A¢ sine integrand
For (x,+(§) dominance, the series for V is rapidly convergent. For

(- ) dominance the series is slowly convergent with the signs of the terms

alternating. In this case a self-adjusting Euler transform routine was
used to force the series to converge. (Hildebrand (1956)). The series
was truncated at n = 20 for all cases. The individual terme were evaluated

using a Gaussian quadrature routine with an adjustable number of points
such that any desired accuracy could be achieved. The functions were then

tabulated and used as data in subsequent analysis.

C-6 Integral L,

In the region where the quasistatic assumption holds

oo . Solxrexy) #5 ALy -x!)
SR | - 2.8 ¥o)e C-54
L2 B9 S C Co 31)2;: i

~o0
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The first part of L, is just

oo Yo (x"_‘_‘l‘) .‘_.;A(K\“Y’\)
s g e dn = 5 U (ke8) C-55
2 oo 2%o <
iz ne\Yz
where ¢ = ( (ei=x{)® % (x3+x5) )
As mentioned in section C-4, the second term {s aegligible. The term .

was retained in order to demonstrate that it is small. The second term is

€ s, woCxgaxy) + 5 MOxomxi)
L-=x¢l. = AN C-56
™ ot Ja zs,
By definition Re(¥s) 2> © and
oo .)\(ln“"&‘>
Ts + & S e’ an
™ €s A 2 %,

= 5 & il lx-xl)
2

L d

Since k, is very small, & iy-x'| <<1 in the quasistatic range. For small

arguments
l I’
Ho (Robx-xil) 2 (w Cky by 1) c-58
Finally
£y
PRI DAY TR I CAN NN -~ R R c-59
and in the quasistatic limit of ¢, -wo , I —@
The appropriate form for L z is
Lz = RN HLCK’Q ?,) C-60
At.
C-7 Integral L4
The integral L, becomes
oo 2 ¥olX3+xy) +j()~.(x.‘v.')4xl(x,-,;))
- ' A 28X
La = 50 (- 25« )f‘—- A C-61
“n -cgo Re RS 2%o )

using the quasistatic approximation for Re, Lga is written as a Hankel

transform using the type of analysis of section C-3,
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¥olxa ﬂ;)

oo
bs = 2 L (1= &% & === AToAT) dA

where $2%: (y-¥)' + (xa-xt)® . L4 1is composed of three parts which are

evaluated separately. The first term is

00 yolky+x}) 9 ReRy
e I e ATUANAN = & C-63
47T0 - Yo AWR‘

[}
where R, = (S"#—(k;’r\(',)") i

From Bessel's equation

At To(rg) = ~(§1 + % %) J% (AS) C-64

The second term of Lg4 is given by

e jho R\ p
x
2 ( _3_ & o e C-65
kil 2y  § 7/ arg,

The last term of L, may be written as

L 2 )
od d
AT kg 'ar‘ S’ 3 ¥ xs

where

= > %o (x3+%7)

-—rT- Jo (lf) dN Cc-67

since ¥, ~ \A|l in the quasistatic ranée.

7 is known as the Foster integral (Foster (1931)) and has the solution

RRLENC IO LAy g

where (X3+&x3}) € o

Combining the three terms
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koR| 2 . b
Lo = e L 25 (2, - e ) 2k %))
“ 4aTR, kS R.‘( RE R, ) +24 R‘> Ry

i IENCEAN (\.,P)(ho(v:ﬂ,) (2~ & ))

Ry
C-69
. " 1 Pt 2 hz fIP
+ oF ! oP- _k_o < ""’Z’——) .S__."-____——° +
3‘(k +> Ho(k )R.‘,_(z R, Z( R +zR.P¢. <
2
~ To(wepy) Hy (ko P k('— =P m??)+ e 'rosz-)
e(\e P4> \ P) RE 2 Q. 2(1 TN =
‘(keP—- Ro (x;i—x,’)f’“ ‘\
+ Jl(ko?.‘.) l_“l ) ————ZR““ .
where
Pr = Ri + (xi4+xy) c-70

P. = R, -~ (x4x))

C-8 Integral L«

The integral Lg is modified to a Hankel transform using the same

steps as used for L .

‘olxy *‘Kla\)

) 1
L - L - & o (A Cc-71
< 41T go ( { = = -—; ANJTs(A ?)d/\

As mentioned in section C-4, the second term is negligible in the quasistatic

approximation. Ls is then given by
3 e Ry
Lee = S c-72
= 4T R,
where R, =

. t
(¢ +(z;+xg)‘)ll The second term is readily shown to be
&

. %‘ and is negligible in comparison to C-72

C-9 1Integral L.

The Hankel transform of L¢g is

; oo ¥o (x3+x3)
Le = 47‘_ g 96\7\';{& e\’c, ;‘3‘0(7\?)6"\ =73

The reflection coefficient combination becomes

R.\ - Yo\

2 2%
AT L34

c-7
kI XN 4




in the quasistatic approximation range. L, is then

o(k;?‘!;)
- A _ 2 2 %o A 3.(A8) dA _
Le ‘wr( = ML) n c-75
The first term is given by oo R
oo fo(x-n-x;‘,) 2 s
- A 2 S e A z- -
47 RE o Yo A To LAT)dA ke HTR,
where g = (¢ + ((}hpvl)ul . The second term i. given in terms of the

Foster integral discussed in section C-7 and is

2 2

2mhs 2 %, c-76
The solution for L. ¢ is
\;\‘.R. e
- 2 e +
be = - k: awg, 4k.[ T (iesfy) W (o) - th‘ To(ket) Hy (hﬁ)] c=77

where P4 are given by C-70.
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APPENDIX D

NUMERICAL EVALUATION OF SINGULAR INTEGRALS

In the numerical analysis of the scattering problems in the body of
the thesis, it was necessary to evaluate numerically integrals with
singular integrands. The most singular integrals to be evaluated had the

general form

T(x, %) = ﬂ @ Cxd X)) g x.)y,',v,,'\cll ) dxidxs D-1
A
where
‘3(X\ﬂ:,11}() = ‘e D-2
or
g (v, , x4 x4) = Ho (AF) D-3

N ity
S = ((lrd:)1+(xt‘\{))
where w(ﬁ¥{) is analytic in A and (XHXz\éAa For the Hankel function

form of g, the behaviour of the integrand is that of a logarithmic
singularity near (xgxi) = (xwxz) . Since this is less singular than Vf)
evaluation of the '/§f integrand automatically assures evaluation of the
integral with the logarithmically singular kernel.

The point of this Appendix is to illustrate that these integrals can
be evaluated numerically by integrating directly over the singular point
by subdividing the integration region around the singularity. Near the
singular point (x/,xi)= (xwxl\ » A was subdivided into four rectangular

regions Ai’ i =1, 4 plus the remaining region A This is illustrated

5
in Fig. D-1 (a). D-1 then becomes

2 Cy! ‘. 7 S D"l{
T = 2 [eoa)ybuimed)agdd = = T,
oAl r=

The numerical integration was carried out using a Gaussian quadrature

algorithm. The extrapolatory nature of the Gaussian quadrature was used
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to evaluate the integrals Ai? L = 1,4 as accurately as desired by increasing

the degree of the quadrature.

Each integral in the singular region is given by a weighted sum of the form
\ g Q P Q
Lilaps) = 5 5 We We @r, xes)alo, xfe | e, ) <

where W? and Xg are the weights and nodes for Gaussian quadrature of degree

N as given by Abramowitz and Stegun (1965) or Davis and Rabinowitz (1967).

A sketch of the distribution of ?oints in a rectangular region is shown in

Fig. D-1(b). Since no node point lies at the singular point, (i.e. at a
corner) the numerical integral tends to undereséimate the true value of the
integral. In order to test the accuracy and reliability of this quadrature
technique, simple integrals which could be evaluated analytically were computed
numerically using this scheme. One of these integrals is given'here.to

demonstrate the results.

The trial integral was

¢ €

- ' ’
Bl = Lk o TS v o

which is just the original integral over Ai with @ = constant where Ai
is a square with sides of length € . The numerical values obtained for
this integral with € = 1 for N varying from 2 to 20 are listed in Table D-1.
They agree very closely with the theoretical value of D-6. For N = 2 the
error (surprisingly) is only an underestimation of about 7%. As N increases,
the error drops below 1Z when N > 6. For the higher order quadratures,
where N = 20, the error drops below 1:1000.

This integration technique was always used to integrate directly over
the singular points in the integrand. 1In all cases where the integral could
not be checked analytically, convergence of the integrals similar to that

observed in Table D-1 was found. The same agreement was found for integrals

with the logarithmic singularity.
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Table D-1 Tabulation of Numerical Quadrature Test Results

QUADRATURE NUMBER

INTEGRAL

2

© & N & 0 & W

10
11
12
13
14
15
16
17
18
19

20

le673E
le722E
l.739E
le«747E
le752E
1l.755E
l.757E
1.758E
l.759E
l«759EL
1.760E
le760E
le760E
le761E
le761E
le76lE
le761E
le762E

le762E

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
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APPENDIX E

INDUCTIVE RESPONSE OF A CIRCULAR LOOP

The electromagnetic response of a small loop in a slowly time varying
field is derived quite easily. If the loop has an internal resistance, R,
and self-inductance L, then the current flow as a function of time in the

loop satisfies the differential equation

Ri(y) + L du® = v E-1
d ¢
where
_ = - T 47 = o -
vV = §>h—_-JL = -2 ggB.dA = S E-2

Next, the Fourier transform pair

i jwt
Floy: | Feny e ae E-3
- oo
- Sjuk
Feey A fl e dw E-4
)

are used to transform equation E-1 to the frequency domain. The transformation
yields

(R“ij> T(w) = —Jo () E-5
or

I () = 22 3w

R-J(.)L

The transfer function for the loop is simply

F(C—-))‘_ __3(-’ . —'S_(:')—————' SO
R -3l R (1=3 Vo)

The transfer function as a function of frequency is sketched in Fig. E-1 (a).

The impulse response function is given by
oo _jut
- gw

- A e
feey: Eo = (52) d w E-7
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This integral can be evaluated readily by contour integration using the

contours sketched below for t ¢ O and t > 0. The result is simply

f(¢) = o t<o
= -JLTI'J SQes'\du\es E-8
[ =
-t/ 't>o T: P -
- - 2 & © g “e R
L T

The impulse response of the loop is a simple exponential decay with decay
constant ¥=L/R. The impulse response is sketched in Fig. E-1 (b). These
results are presented in order to facilitate demonstration of some of

the results derived in chapter 7.
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Fig. E-1 Sketch of circular loop inductive response
transfer function and impulse response.
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APPENDIX F

GREEN'S FUNCTIONS FOR STATIC EM PROBLEMS

F-1 Background

This appendix gives a brief summary ind derivation of the Green's
functions used in many geophysical problems when the electromagnetic fields
are static in time. The Green's functiorc of interest in the thesis are
those for the vector and scalar Polsson equation in an infinite region
and for the scalar Poisson equation in a semi-infinite region with homo--

geneous Neumann boundary conditions at the surface.

F-2 Scalar Poisson Equation: Infinite Medium

The basic equation for all static electromagnetic problems in an

infinite region is the scalar Poisson equation

vid = - 9 F-1
The Green's function in three dimensions satisfies

07 glev) = -85 (F-F1) F-2

where

v = Z xie, F-3
and (&,, é,, é,) and (x,, x,, Xy are the unit vectors and the coordinates
of a cartesian coordinate system. In three dimensions J;QF-FW is given by

S*iv-#)

4 \F-FN\t

F-4

Sy(ve-F) =

For simplicit T' is set to be the origin. Then
P Y

+
| ) '_2—3 ( - —_ _5 (V‘2 F-5
B oS Tay 93(we) = <
4w ¥

Integrating twice w.r.t. r yields

!

qev.e’)

AatwlE-#1|
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the familiar Green's function for the Poisson equation.

In some geophysical problems, it is convenient to think of the source
being extended infinitely far into one direction with no spatial variation
in its properties in this dimension. The source is then a line source.

In this case, equation F-1 becomes independent of one coordinate. In the
following analysis, the source is assumed infinitely long in the 32 direc-
tion and independent of x, . F-2 becomes

vig. (5.8 = -8, (L F-F) 7

where

. ~

? = X\e\ ‘\'X)C]

Incorporating the two dimensional delta function definition, F-7 becomes

v 2 S.F(\?-f"|l F-8
PN 52 S C (?I?‘): -
FAT Tas 58]
Integrating twice w.r.t. § yields
4,(f8) = - 2 if-s F-9
F-3 Vector Poisson Equation: Infinite Region

The vector Poisson equation occurs in magnetostatic problems when the
magnetic fields are generated by static current flow.
9t W = - ©x3s F-10
The corresponding Green's dyadic in three dimensions satisfies
2 o =1 e
Vs gg(rﬂ"') = ‘g'l de -7 ‘) r F-11

n s

where I is the unitary dyadic. F-11 can be solved by expressing {b]in

its gartesian components and solving for each component independently

with the result

ad \ no
Vo= T -
SRERY) PR F-12
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Combining F-10 and F-12 yields the integral form of Ampere's law

A - gy ) PRI e

F-4 Scalar Poisson Equation:

Semi~-Infinite Region

.

The solution of the scalar Poisson equation in a half-space with

homogeneous Neumann boundary condition on the surface is the basic eguation
for considering geophysical conduction problems.
to simulate the Earth.

The half-space is used
The basic egquations are

02§ = -9 X4 >0 F-14
with
'9_@ = O X4 = O F-15
IR-2 S
where % exists in the half-space -o< x,, X,<4° and x; 22 . The Green's
function satisfies
Olaa(v‘v') = - SJ(lF-F'l)

2 (V‘fl = O
DX3 33 )

Xj—

The solution is found by combining F-3 and F-4 with the method of images
to yield

¢ = _L L W _
33(VV) 47 R 4R, F-18
where
L~ \?—F'\
"
Rz ((xmv) + Crax)® +Cxaexh)?) F-19

A similar analysis for two dimensional source fields yields
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Galpi§) = - F b © - L P F-20

"l

Pz ((y=x)? + (x3=x3))

2 e
P ((r—x) + (aedd))

F-5 Summary .

This short discussion of the Green's functions summarizes the more
important static Green's functions required in most static electric and
magnetic problems in geophysical analysis. The derivations of these
results can be found in any standard text on electromagnetic theory or
applied mathematics. More complex problems such as static conduction
in an N-layered medium can be solved in a similar manner to the time-varying

case of Appendix A.
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