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i 
ABSTRAC 1 

The electromagnetic response of magnetically and electrically inho-

mogeneous media whose geometries are not amenable to conventional partial 

differential equation analysis are most readily analysed in an integral 

equation framework. The equivalent source concept of Green's theory affords 

a generalized manner of formulating static and time-varying electromagnetic 

problems; · material property inhomogeneities are replaced by equivalent source 

distribution~ which satisfy a Fredholm integral equation of the second kind. 

For static field problems, the equivalent source method represents 

conductivity, permittivity and permeability variations in terms of current 
0 

source, charge and "magnetic pole" density distributions. In this form, 

the problems have analogous mathematical forms and the equivalent source 

satisfies a scalar Fredholm equation. The formalism is readily related to 

the static field methods used in applied geophysics. 

The time-varying equivalent source formulation represents material 

property variations in terms of electric and magnetic current densities 

which satisfy a pair of coupled vector Fredholm equations. Analysis of the 

integral operators shows that the scattering operator is bimodal for many 

geophysical problems. This result leads to the analysis of scattering 

problems in terms of generalized eigenfunctions. The bimodal nature of 

the scattering operator often leads to highly i~l-conditioned matrices 

when numerical methods are applied to geophysical problems. 

Approximate parametric solution methods of . solving the time-varying 

electric scattering problem are considered. Approximation of the solution 

by a general functional form and applying minimum criteria reduce the 

integral equations to matrix equations. The least squares method is applied 

analysing magnetotelluric responses of 2•dimensional structures and the 

Galerkin formalism is used to find the eigenfunctions for a thin plate in a 

whole space. The results are compared with other available numerical and 

experimental X'eaults o.nd assessments of the mcthoda are zi.y(:.n., 



ACKNOWLEDGEMENTS 

During the course of this thesis project, which has been conducted 

at three different institutions since its inception, I have received the 

advice and assistance of numerous people. First, I wish to thank 

ii 

Dr. J.A. Wright who has managed to supervise me during this project even 

over distances of thousands of miles and still remain a source of constant 

encouragement. I also wish to thank Dr. R.D. Murphy whose help in untangling 

computational difficulties at the start of this project was invaluable. 

The support and encouragement of Dr. D.W. Strangway during the later 

stages of this project while I have been employed on the Surface Electrical 

Properties experiment project is greatly appreciated. During the period 

at the University of Toronto, discussions of electromagnetic problems and 

computational analysis with Drs. G.F. West, J. LaJoie, Y. Lamontagne and 

R.D. Watts have been valuable in giving alternate viewpoints of some very 

complex problems. 

I particularly wish to thank my wife Judi for her support through 

various stages of this work such as the all night computing binges, the 

seven day work weeks, and all the other trials and tribulations of being 

married to a graduate student. Her understanding and encouragement were 

what made the work bearable. 

I wish to thank Mrs. J. Kean for her assistance in typing the early 

drafts of this manuscript and Miss V. Melnyk who typed the final version 

of the manuscript. I also wish to acknowledge the financial support 

received from the National Research Council of Canada during part of this 

work. 



TABLE OF CONTENTS 

List of Tables 

List of Figures 

Table of Basic Symbols 

Chapter 1. 

1-1 Introduction 

1-2 Thesis Objective and Outline 

1-3 Background 
(i} Applied Geophysics 

(ii) Solution of Electromagnetic Problems 

Chapter 2. The Equivalent Source Method for Electromagnetic 

Problems 

2-1 Greents Function Theory and the Equivalent Source 

Concept 

2-2 Basic Equations of Electromagnetic Theory 

2-3 Equivalent Source Formulation 

(i) 
(ii) 

Time Invariant Problems 
Time-varying Problems 

2-4 Summary 

Chapter 3. Static Field Applications 

3-1 Static Field Methods in Geophysics 

3-2 Response of a Sphere 

3-3 Magnetic Methods 

3-4 Resistivity Methods 

3-5 Stnnmary 

Chapter 4. Theory of Integral Equations in Electromagnetic 

Scattering Problems 

4-1 Basic Scattering Integral Equation 

4-2 Induction and Depolarization Operators: Mathematical 

Properties 

4-3 Dimensional Analysis 

4-4 Eigenfunction Analysis 

4-5 Complex Power Balance 

A-6 Summary 

vi 

vii 

X 

Page 

1 

3 

4 

7 

12 

15 

17 
22 

25 

26 

27 

29 

32 

37 

38 

41 

43 

44 

48 

49 

iii 



Chapter 5. Variational Methods for the Approximate 

Numerical Solution of Integral Equations 

5-1 

5-2 

5-3 

5-4 

Background 

Numerical Problem and Notation 

Least Squares Method 

Galerkin Method 

5-5 Summary 

Chapter 6. Scattering from Two-Dimensional Structures 

6-1 Introduction 

6-2 TE Response 
(i) Integral Equation 
(ii) Numerical Solution 
(iii) Numerical Results 
(iv) TE Summary 

6-3 TM Response 
(i) Integral Equation 
(ii) Numerical Solution 
(iii) Numerical Results 
(iv) TM Summary 

Chapter 7. Electromagnetic Scattering by a Thin Rectangular 

Sheet 

Page 

51 

52 

53 

55 

56 

57 

60 
63 
68 
92 

97 
102 
104 
118 

7-1 Introduction 123 

7-2 Integral Equation for a Parallelepiped in a Whole-space 123 

7-3 Thin Sheet Equations 126 

7-4 General Thin Sheet Response 129 
(i) Numerical Solution 129 
(ii) Numerical Results 133 

7-5 The Quasi-static Response 
(i) Numerical Formulation 142 
(ii) Numerical Results 147 

7-6 Summary 180 

Chapter 8. Summary, Conclusions and Recommendations 

8-1 Thesis Su~aary 

8-2 Conclusions 

8-3 Recommendations for Future Work 

Appendix A. Green's Dyadic in a Plane Stratified Medium 

Appendix B. Green's Dyadics: Special Cases 

Appendix c. Integral Evaluation 

Appendix D. Numerical Evaluation of Singular Integrals 

183 

184 

186 

189 

204 

213 

228 

iv 



Appendix E. Inductive Response of a Circular Loop 

Appendix F. Green's Functions for Static EM Problems 

Bibliography 

Page 

232 

235 

239 

v 



Table 2-1 

Table 2-2 

Table 6-1 

Table 6-2 

Table 6-3 

Table 6-4 

Table 6-5 

Table 6-6 

Table 6-7 

Table 6-8 

Table 7-1 

Table 7-2 

Table 7-3 

Table 7-4 

Table 7-5 

Table 7-6 

Table 7-7 

Table 7-8 

Table A-1 

Table A-2 

Table A-3 

Table A-4 

Table A-5 

Table A-6 

Table B-1 

Table B-2 

Table B-3 

Table B-4 

Table B-5 

Table C-1 

Table D-1 

LIST OF TABLES 

Equations for Static Field Problems 

Excitation Terms for Static Equiv'alent Source Problems 

Summary of TE Solution Parameters 

Data for TE Model 1 

Data for TE Model 2 

2-Dimensional TM Green's Dyadic 

TM Impedance Coefficients 

vi 

TM Least Squares Scattering Matrix and Matrix Element Definitions 

Table of TM Solution Parameters 

Table of Parameters for TM Models 1 and 2 

Parallelapiped to Thin Sheet Transformation 

General Thin Sheet Response: Elements of Galerkin Matrices 

General Thin Sheet: Table of Parameters 

Model Parameters for Computer Analysis 

Eigenvalues of [R] and (X'] Matrices 

Inductive Thin Sheet Response: Elements of Galerkin Matrices 

Inductive Thin Sheet: Table of Parameters 

Eigenvalues for Inductive Response of the Thin Sheet Model 

Spatial Form of Matrix Representations 

Wavenumber Domain Matrix Representations 

Particular Solution Matrix Representations 

Boundary Condition Matrix Representations 

Multiple Layer and Total System Transmission Matrices 

Whole-space Matrices Regrouped for Fourier Transformation 

Half-space Earth Transmission Matrices 

Half-space Homogeneous Green~s Dyadic in Wavenumber Domain 

Sub-dyadics of Half-space Green's Dyadic 

2 Dimensional Half-space Green's Dyadics in Wavenumber Domain 

Spatial Two Dimensional Green's Dyadics ( o(. = 0) 

Integrals L. Required for Whole-space and Half-space 
1 

Ele~tromagnetic Green's Dyadics 

Tabulation of Numerical Quadrature Test Results 



Fig. 1-1 

Fig. 1-2 

Fig. 3-1 

Fig. 6-1 

Fig. 6-2 

Fig. 6-3 

Fig. 6-4 

Fig. 6-5 

Fig. 6-6 

Fig. 6-7 

Fig. 6-8 

Fig. 6-9 

Fig. 6-10 

Fig. 6-11 

Fig. 6-12 

Fig. 6-13 

Fig. 6-14 

vii 

LIST OF FIGURES 

Schematic diagram of static and time-varying electromagnetic 

systems in applied geophysics 

Plan and cross-section views of 2 and 2~ dimensional models 

Sketch of the electrostatic response of a conducting sphere 

deeply buried in a conducting half-space • 

• 
Schematic illustration of TE and TM fields in 2 dimensional 

structures. 

Geometry of rectangular cross-section model. 

Flow chart of TE computationsa 

Equivalent current for TE model Ill ( cr, I CS"'o = 25.0) 

Equivalent current for TE model Ill ( <f't I ~. = 36. 5) 

Equivalent current for TE model Ill ( cr, I cro 50.0) 

Variation of field strength with depth for a plane-wave 

incident on a conductive half-space. 

Phasor diagram illustrating physical mechanisms for observed 

TE anomalies. 

Normalized electric field over TE model Ill. 

Normalized e
1 

component of m?gnetic field over TE model Ill . 

Normalized impedance, ZN' over TE model #1. 

Equivalent current for TE model /12 for various conductivities 

for ~lane~ave excitation. 

Normalized impedance, ZN' over TE model 112 for plane-wave 

excitation. 

Equivalent current for TE model #2 for various conductivities 

and line source excitation. 



Fig. 6-15 

Fig. 6-16 

Fig. 6-17 

Fig. 6-18 

Fig. 6-19 

Fig. 6-20 

Fig. 6-21 

Fig. 7-1 

Fig. 7-2 

Fig. 7-3 

Fig. 7-4 

Fig. 7-5 

Fig. 7-6 

Fig. 7-7 

Fig. 7-8 

Fig. 7-9 

Fig. 7-10 

Fig. 7-11 

viii 

A 
Normalized e

1 
component of the magnetic field over TE model 

#2 for line source excitation. 

A 
Normalized e

3 
component of the magnetic field over TE model 

#2 for line source excitation. 

Flow chart of TM computations. 

Equivalent current for TM model #1 for different conductivities, 
• 

Normalized electric field or normalized impedance over TM 

model Ill .. 

Equivalent current for TM model /12 for different conductivities~ 

Normalized electric field or normalized impedance over TM 

model #2. 

Sketch of the parallelepiped geometry. 

General thin sheet geometry. 

General thin sheet computation flow chart. 

Eigencurrents for the general thin sheet response. 

Flow chart of inductive response computations. 

Re-parameterized thin sheet geometry for induction analysis. 

Contour maps of induction eigenpotentials, 

TURAM loop and thin sheet geometrical configuration .. 

TURAM total potential contour maps for various response 

parameters. 

Total potential contour maps for a similar TURAM system 

computed by Lamontagne (1971). 

Anomalous "vertical" magnetic field generated by the thin 

sheet due to excitation by TURAM loop. 



Fig~ 7-12 

Fig. 7-13 

Fig. 7-14 

Fig. 7-15 

Fig. 7-16 

Fig. 7-17 

Fig. 7-18 

Fig. 7-19 

Fig. 7-20 

Fig. A-1 

Fig. B-1 

Fig. C-1 

Fig. D-1 

Fig. E-1 

ix 

Peak anomalous field versus response parameter compared with 

results ootained by Lamontagne (1971). 

· Q of the thin sheet response for turam source versus response 

parameter compared with results obtained by Lamontagne. 

Point magnetic dipole and thin sheet geometry configuration. 

Total potential maps for ·thin sheet excited by a point 

magnetic dipole for ~ = lOo 

Total potential maps for thin sheet excited by a point 

magnetic dipole for ~ = 50. 

Anomalous magnetic fields over the thin sheet for various 

positions of the exciting magnetic dipole. 

Q versus response parameter ~ for various exciting magnetic 

dipole positions$ 

Sketch of a horizontal loop electromagnetic survey system in 

the thin sheet geometry. 

Typical horizontal loop system profiles over the thin sheet 

for varying loop separations. 

Plane-layer earth geometry and coordinate systemso 

Half-space geometry. 

Ratio of displacement currents to conduction currents versus 

f/~ applicable in geophysical analysis. 

Sketch of numerical integration over a singular point. 

Sketch of circular loop inductive response transfer function 

and ,impulse response. 



TABLE OF BASIC SYMBOLS 

E - electric field intensity 

D - electric displacement field 

B magnetic flux density 

H magnetic field intensity 

J - electric current 

J6 - impressed or source electric current 

j - 1-1 

w - angular frequency 

n unit normal to a surface 

A unit vector 

~ complex conjugate 

T transpose 

t adjoint 

V volume of integration 

S surface of V 

A area of integration 

C contour of integration 

With the above exceptions all sym?ols are defined in the text~ 

Any ambiguities should easily be resolved from the context. The 

rationalized ~S system of units is used throughout the text. 



1 

CHAPTER 1 

1-1 IntrodQction 

The solution of electromagnetic scattering problems has become 

a subject of increasing interest in the fields of applied physics and 

engineering with the advent of sophisticated computers in the past two 

decades. · Previously, the solutions of electromagnetic scattering problems 

were limited to those which•could be solved analytically. In recent 

years, many numerical solutions of various electromagnetic problems have 

been published. These problems have been solved primarily from two view­

points; one is that of the electrical engineer concerned with radio-wave 

transmission and antenna design; · the other is that of the geophysicist 

concerned with studying the electromagnetic response of the Earth or the 

Moon or a portion thereof in order to determine its electrical properties$ 

While the basic equations to be solved are quite similar, the two view­

points and the derived results are very distinct. 

In the electrical engineering field, the primary concern is the 

response of highly conductive bodies in free-space. These bodies are 

assumed to be sufficiently conductive that they can be treated as perfect 

conductors. In some instances, the behaviour of insulating bodies is of 

interest. In both cases the scattering body has dimensions of the order 

of the free-space wavelength. If the scattering body is to be used as an 

antenna, the directionality of its radiation pattern is of prime interest. 

If a body is internally stimulated electrically, in what manner does it 

radiate electrom4gnetic waves? In reverse, if the body is excited by an 

externally generated field how effective is it in transmitting this 

stimulus to a sensor attached to the body? In this situation the body is 

an active element of a radio wave transmission system. If the scattering 

body is viewed as a disturbing object in a radio transmission system, then 



the absorption and re-radiation of energy by the body and minimization 

of its effect on the transmission system is the primary concern. In one 

instance the body is an active element of the system and in the other 

it is a passive disturbance to the system. 
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From the geophysical viewpoint the scattering body is a passive but 

unknown element in a system. In some ·instances, the body is stimulated 

with a known input and its r~sponse is measured. In other cases, the 

system input is unknown but the total of the input and the system response 

is measured. The objective is to establish the electric and magnetic 

properties of the body from observation of its electromagnetic response. 

If the electromagnetic response of a structure can be computed theoretically, 

its response can be used as a basis for interpretation of an experimental 

response; this step is known as the inverse problem. In general, the real 

system is far more complex than the system whose response can be computed 

theoretically. As a result, one can only make inferences about the gross 

structure of the real system. The inverse problem is by no means a trivial 

one and its complexity is really appreciated only after attempting to 

interpret real system responses. Additional features of the geophysical 

scattering problem are that measurements are made over spatial scales 

much smaller than the free~space wavelength and the scattering bodies are 

conductors with finite conductivity and are usually embedded in a conduc­

tive medium. These features make the geophysical problem quite different 

from the electric~! engineering problem. 



1-2 Thesis Objective and Outline 

This thesis project was primarily concerned with the geophysical 

aspect of electromagnetic scattering. Within this context, the thesis 

project had two basic objectives. The first was the development of a 

unified mathematical framework from which a wide variety of complex 

electric, magnetic and electromagnetic problems could be analyzed; the 

second objective was the development and testing of approximate numerical 

methods for solving these problems in an economical manner. 
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The thesis is split into two units; one associated with each of the 

two objectives. In chapter two, the equivalent source method is developed 

for static and time-varying electromagnetic problems and chapters three 

and four are devoted to discussion of particular results which can be 

derived from the formulation developed in chapter two. Chapters five, six, 

and seven are devoted to the approximate solution of some time-varying 

electromagnetic problems using variational methods. The numerical results 

are compared with experimental data and other numerical solutions which 

were available. The numerical results are also used to demonstrate some 

of the theoretical developments given in chapter four. The contents of 

chapter two through seven are summarized in chapter eight. 

Before delving into the detailed mathematical formalism of the 

equivalent source method, a brief review of the geophysical appliation 

of static electric and magnetic fields and time-varying electromagnetic 

fields will be given. In addition, a short summary of the development 

of solutions to geophysical scattering problems helps provide an insight 

into the type of time-varying electromagnetic problem encountered in 

geophysical analysis. 
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1-3 Background 

(i) Applied Geophysics 

The analysis of electric and magnetic fields generated by or associated 

with electric and magnetic properties of the Earth's crust is a subject 

of great interest to the applied geophysicist. The applications break into 

three basic categories; one based on the time-varying electromagnetic response 

of the Earth; one based on the Earth's response to static conduction 

currents; and one based on the Earth's static magnetic field and its 

disturbance by the presence of local magnetic inhomogeneities. The three 

types are schematically illustrated in Fig. 1-1. 

Geophysical survey techniques are, by and large, designed to detect 

lateral variations in the electric and magnetic properties of the up~er 

kilometer or so of the Earth's crust. These variations are associated 

with changes in geological material and structures, and in some instances, 

indicate the presence of mineral deposits which have economic importance. 

A survey system consistsof anelectromagnetic field source and field 

detection device, or, in some instances, a field detection unit only. 

This system is then transported across a region of geological interest 

with measurements being made at discrete spatial intervals or continuously. 

If the system properties are not varied during this traverse, the fluctua­

tion in the system response can be used to infer lateral variations in the 

Earth's properties which influence the system response. 

The time-varying electromagnetic systems are units which respond 

primarily to the electrical conductivity and dielectric properties and, 

to a lesser extent, to the magnetic properties (since magnetic property 

effects are quite small relative to electrical effects) of the Earth. 

In most environments, the Earth's conductive response swamps the dielectric 

behaviour since the time variations must be in the audio or subaudio 

frequency range in order to overcome skindepth effects. In almost all 
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applications, therefore, an electromagnetic system is used to detect 

variations in electrical conductivity~ 

The static conduction system uses a source of direct current which 

is connected to the Earth at two or more points, and measures the electric 

field generated at the Earth's surface as shown in Fig. 1-1 (b). The 

variation of electrical conductivity in the vicinity of the probes 

influences the surface electric field. These methods are known as resisti-
• 

vity surveys and are used to map lateral variations in the near surface 

conductivity. 

Magnetic surveys measure the magnetic field at or above the Earth's 

surface. The magnetic field is composed of the ambient Earth's magnetic 

field plus d"isturbances due to remnant or intrinsic magnetization carried 

by the near surface material or by changes in the material permeability. 

Permeability changes cause distortion of the primary field. Lateral 

variations in the static magnetic field reflect the magnetic properties 

of the underlying structure. 

In some instances, the material properties versus depth are of more 

interest than their lateral variation. This is particularly true for some 

electromagnetic and resistivity survey methods. In these applications, 

the properties of the survey system are varied, and the Earth's response 

as a function of a system parameter is measured. In a time-varying electro-

magnetic system, the excitation frequency might be varied while in a 

resistivity survey, the electrode separations might be changed. 

In order to interpret this data, the response of models of the 

geological structure are computed and compared with the real data either 

manually or automatically by computer. The ability to solve the forward 

problem for the theoretical response is therefore essential for solution 

of the inverse problem. 



(ii) Solution of Electromagnetic Problems 

The solution of time-varying electromagnetic problems in geophysics 

has been studied by numerous researchers. The inherent property of 

electromagnetic scattering problems is that they invariably require 

numerical analysis at some stage in order to obtain useful results. 

Scattering problems fall into two categories; those for which analytic 

solutions can be derived and those which must be solved numerically. 

Scattering problems which have analytic solutions are structures 
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which have very simple geometrical shapes such as those with spherical, 

cylindrical or planar symmetry or in some instances simple material proper­

ties such as perfect conductivity. While closed forms for the solutions 

can be derived, the solutions are invariably given in terms of a sum .or 

integral over the eigenfunctions of the system which is not usually expres­

sible in terms of elementary functions. As an example, the response of 

two adjoining halfspaces for excitation by a point dipole source of arbitrary 

type (electric or magnetic dipole) can be expressed in terms of a Fourier 

integral which cannot be evaluated analytically. 

All other scattering problems have the property that either the 

geometry or material property behaviour is not compatible with formulating 

and solving the problems using conventional methods of partial differential 

equation analysis. The major problem in geophysical studies is the geo­

metrical problem. For all but the simplest of geometries, the equations 

governing the response cannot be reduced by separation of the variables. 

The eigenfunctions of the system are functions of more than one geometrical 

variable and are unknown. The only practical way out is a numerical solution 

of the governing equation. 

Before the advent of advanced computers, solution of geophysical 

problems was primarily confined to obtaining the response of spherical 

layered or plane layered structures with each layer having homogeneous 
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electrical properties, or slight variations of the~e basic models. The 

spherical model was used to simulate the entire Earth while the plane 

layered model was used to simulate small scale features where curvature 

of the Earth is negligible$ Once a closed form solution was derived, the 

emphasis was on finding approximate forms of the solution for special 

cases of the general model which were useful for calculating the response. 

No attempt is made to summarfze all the results in these topics since 

excellent discussions of these subjects are giv~n by Wait (1962, 1970) 

and Ward (1967)o 

When computers became available for number crunching, the result was 

a two-fold change in emphasis. First the computer permitted numerical 

evaluation of integrals, sums and special functions required by the 

analytical solutions. Secondly, the analytic stage of analysis can be 

totally circumvented by numerically solving the governing equation from 

the beginning. This second result is particularly important since it meant 

solutions to problems intractable by analytic methods could be obtained. 

The geophysical problems solved in this manner can be summarized as 

2 and 2~-dimensional models. The basis of this classification is depicted 

in Fig. 1-2 where the cross section of inhomogeneity embedded in a whole 

space is shown in Fig. 1-2 (a). If this cross section is extended into 

the third dimension in a particular fashion, the electromagnetic response 

of the system is considerably simplified. A true 2-dimensional model is 

one where the structure does not vary in the third dimension as in Fig. 1-2 (b). 

The body extends to infinity in both directions and no property varies as 

a function of the third dimension. Other extensions into the third dimension 

are shown in Fig. 1-2 (c) and (d). In (c), the cross section (a) is 

revolved about an axis of symmetry producing a cylindrically symmetric structure. 

In (d), the structure does not extend into the third dimension and is an 

infinitesimally thin sheet or plate model. These latter two models are 
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(a) Possible structure cross-section 

(b) Plan view at "true" 2D model 

(c) Plan view of a round model ( 2tD ) 

(d) Plan view of a plate model ( 2t D ) 

Fig. 1-2 



termed 2~-dimensional problems in that the structures are 3-dimensional 

but the response can be formulated as a function of two dimensions by 

taking advantage of the special geometry of the bodies5 

The numerical computation of the response of such models has been 

carried out by several people over the past six years. The response of 
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two dimensional structures has been given by Swift (1967, 1971), Wright 

(1969) and Jones and Price (~969), using a finite difference (or equivalent 

type of discretization) method to solve the governing partial differential 

equation. All these analyses were primarily concerned with determination 

of the magnetotelluric response of lateral variations in conductivity in 

a half-space at very low frequencies with excitation by a plane wave 

vertically incident on the surface of the half-space from a free-space 

medium. Following initial solution of the governing differential equation 

numerically, the 2·dimensional problems were reformulated as integral 

equations (or d-ifferential-integral equations)e Solutions to the 2-dimen­

sional problem using integral equation formulation are given by Parry and 

Ward (1971) and Hohmann (1971). The response of circular and rectangular 

plates which require an integral equation formulation are given by Green­

field (1971) and Lamontagne (1971). The magnetotelluric response of round 

structures in a conductive half-space is given by Watts (1972) who worked 

the problem by discretization of the governing partial differential equation. 

In all instances the approach to solving the problems was that of 

reducing the governing equation to a finite set of linear equations by 

sampling the fields at a finite set of points. T~e field between the samples 

was implicitly assumed or explicitly stated and the discretized governing 

equation was forced to hold at the sample pointso In the preceding works, 

the number of linear equations, N, ranged from several tens to around one 

thousand and required direct or indirect inversion of matrices of dimension 

N x N. The solution of linear equations of large dimension is the most 
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difficult and expensive step in the analysis. Since geophysical applica­

tions require the response for many parameter combinations, it is desirable 

that the number of equations, N, be as small as possible. This problem 

is the main drawback in the analysis of full three dimensional problems, 

since the solution to a vector equation results in N = 3 M3 equations 

where M is the average number of points sampled in each of the three spatial 

dimensions. 
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CHAPTER 2 

The Equivalent Source Method for Electromagnetic Problems 

2-1 Green's Function Theory and the Equivalent Source Concept 

The theory of Green's functions and the equivalent source concept 

are the fundamental building blocks in the following analysis. This 

section is directed to a brief summary of Green's function theory and 

' the equivalent source method. For a more detailed discussion of the 

subject, the reader is referred to Morse and Feshbach (1953). 

A Green's function summarizes all the information about a given 

system into a single function which can then be used to describe the 

response of ·the system to an arbitrary input. In physical problems, the 

behaviour of a system is usually characterized most easily in the form of 

a differential equationo For a given input ~ , a system which is charac-

terized by the differential operator B , yields the differential equation 

cl}(U) =- 2-1 

where tL is the system output. Additional constraints are imposed on ~ 

when a region of existence V is defined such that tl satisfies 2-1 with-

in V and is subject to constraints (boundary conditions) at the surface S 

of V • 

The solution of 2-1 is expressed in terms of the system Green's 

function by 

'U. ( P) = s jj (P,Q) ty(Q) dQ 
· v 

2-2 

where 

<9-CQ) =- ~ (Q) +- ~(g) S c s, Q) + ..2-V(s) S'cs.G) 
In 2-2 , P and Q represe~t the coordinates of the observation point and 

source point, S denotes a point on the surface S of V , G(P,Q) is the 

homogeneous Green's function 
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and 'J (S) ~ ( S, Q) and 'V""(S) ~ 1
( S, Q) are equivalent surface sources 

which arise when the boundary conditions on S are inhomogeneous. S (S, Q} 

and S'(s, Q} are the Dirac delta function and its derivative. 

The appropriate dimensions and one or more derivatives w.r.t. one or more 

dimensions are implied in the notation. 

The Green's function satisfies the equation 

2-3 

where ~p implies differentiation w.r.t. the P coordinates and lJ (P, Q} 

is subject to homogeneous boundary conditions on So 

In many physical problems, one is faced with the need to solve an 

equation similar in form to 2-1 with the added constraint that 

JJ('ll(P)) = ~(p) Pe- V 

!} (U (P)) + &_ ( U(P)) :. S! ( P) P e- v v' ) 

2-4 

2-5 

where V 1 is a subregion of V. It is possible (on the assumption of 

linear operators) tore-express the effect of the operatorJt in terms of 

an equivalent source distribution in the original system V. This reformat-

ting of the problem is called the equivalent source method. 

First, the system response ~ is split into two parts 

2-6 

where t/0 is the solution of 2-4 and 2-5 when g'J_ is a null operator 

(2.. = 0). Thus 

2-7 

If :tl.. is not a null operator, 2-5 becomes 

2-8 

The equivalent source e; is defined as 

2-9 
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and CUo and tl., can be expressed using 2-2 as 

CUo (P) :: J ,V (P, Q) 9-(G.)d Q 2-10 

" 
U,(P)::. ~ ~ (P, Q) t;(Q) d Q. 2-11 

v 

Upon combining 2-9 and 2-11 ' ~ satisfies the integral equation 

SCP) ::. ~ ( Uo(P)) - ~ j ~(P~ Q) eCQ) J Q 
• v' 

2-12 

in V' and S (P) = 0 at all points where ~ = 0· (i,e. P tj: V1
). 

In summary, the equivalent source method yields the following results. 

(1) The e.ffect of a perturbation (large or small) on a system can be 

expressed in the form of an equivalent source in the undisturbed 

system if the undisturbed system Green's function is known. 

(2) The effect of the disturbance at any point P in V is determined 

solely by the convolution of the undisturbed system Green's function 

with the equivalent source distribution which exists only in the 

region V • where the anamalous disturbance occurs. 

(3) The equivalent source satisfies a Fredholm integral equation of the 

second kind within Y' and is zero outside this region. 

The equivalent source method and integral equation approach become important 

techniques when the problem at hand has to be solved numerically. The 

solution for S in region V 1 has to be found rather than the solution for ~. 

in region V which is usually much larger. In addition, boundary conditions 

on e and u, are already contained in the integral equation. 
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2-2 Basic Equations of Electromagnetic Theory 

The solution of an electromagnetic problem in a continuum requires 

obtaining a solution to Maxwell's equations combined with the appropriate 

set of constitutive equations which describe the electromagnetic proper-

ties of the medium. In this section the basic equations are summarized, 

using the rationalized MKS system of unitso 

Maxwell's equations control the behaviour of the electromagnetic 

fields. In differential form these equations a!e 

vx£ =- -oB 
ot 

v. 5 :. 

2-13 

2-15 

vx H 

V· B 

::. .::r + 'VD 2-14 
'l:>t 

: 0 2-16 

In conjunction with Maxwell's equations, the constitutive equations which 

specify the relationships of the electromagnetic fields are required in 

order to fully specify the problem. The constitutive equations fall into 

3 classes; dielectric, magnetic and conductive. These three classes are 

briefly summarized below. More detailed discussions can be found in 

Jackson (1962), Reitz and Milford (1960) Landau and Lifshitz (1960). 

The dielectric constitutive equations are 

0 - ~o E + P 2-17 2-18 

D = E E. + Pr 2-19 2-20 

where P is the electric dipole moment density and Eo is the free space 

permittivity. P can be split into two parts; one induced by an applied 

electric field denoted by Y,.e E , where 'f c:: is the electric susceptibility, 

and the other is an intrinsic dipolar distribution P~ Equations 2-17 

and 2-18 can be combined into a single equation 2-19 using a general 

permittivity given by 2-20 The ratio E/Eo is known as the dielectric 

constant Ke. .. 



The magnetic constitutive equations are 

~o (H + M) 2-21 M 2-22 

2-23 

and closely follow the dielectric equationsa Here M is the magnetic 

dipole moment density and ~D ls the free space permeabilityo M can be 

split into two parts; one induced by an applied field ~~ H , where ~"" 

is the magnetic susceptibility, and the other an impressed or source 

magnetization MT· In static field geophysical applications, M1 is the 

intrinsic or remanent magnetization of a material; in time-varying 

applications, MT is used to describe magnetic field sources which in 

turn give rise to the concept of "magnetic" currents. Combining 

equations 2-21 and 2-22 yields 2-23 where ~ is the generalized 

permeability given in 2-24. The ratio J.Aj;L-( 0 is the relative permeabi-

lity K'n\ • 

The conductive constitutive relationship is simply Ohm's law 

J c. <s-E I=- .3"s + .:Tc. 2-25 

where u is the conductivity. Equations 2-17 through 2-25 suffice to 

describe the electromagnetic properties of any linear, isotropic medium, 

When the material properties K e , K """', o and the source terms PI , M r, 

J 5 , and ~are given, an electromagnetic problem is totally specified. 

16 



2-3 Equivalent Source Formulation 

(i) Time Invariant Problems 

17 

For an electromagnetic problem where the fields are stationary in 

time, the electric and magnetic fields are no longer coupled in Maxwell's 

equa~ions. Since this particular type of problem is encountered often in 

applied physics, the application of the equivalent source method to these 

problems is discussed as a separate topic. 

The time invariant problems fall into thre~ groups; dielectric 

electrostatic problems, magnetostatic problems, and static electric con­

duction problems. Since these three types of problems are analogous 

(the same mathematical equations describe the response), the general 

mathematical problem will be set up. The reduction of the three types of 

problems to identical form is shown in Table 2-1. The only point to be noted 

is the separation of H in the magnetostatic problem into H
7

, the field 

generated by static current flow and H'"' the field due to magnetic property 

effects. Splitting off H"' and examining the equation for v JC 'H"" reduces 

the magnetic problem to the same form as the electric problems; any field 

due to current flow can be incorporated into the excitation or source term. 

Using the equations listed at the bottom of Table 2-1, the equivalent 

source method is formulated in the following mannero K is an arbitrary 

function of position. The problem is to find the fields when K is a 

somewhat complicated function~ The first step is to split K into two parts; 

2-26 

where K b is the "homogeneous" or background material property and K~ is 

an anomalous variation superimposed on the background K b • 

of K" is explained later. 

From the equation 

The choice 

2-27 
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TABLE 2-1 

Equations for Static Field Problems 

Dielectric Electrostatic Equations 

v X E : 0 0 = E £. + P:r 

Magnetostatic Equations 

Static Conduction Equations 

- -V)(E.:.. 0 

V·:J'"- o 

General Form of Static Field Equations 

V· F = 



-
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it is possible to express the response of the system in terms of a scalar 

potential i with 

2-28 

j1 and I are now split into nhomogeneous" or background and anomalous 

components 

2-29 2-30 

,flo :. - V i o 2-31 2-32 

where 1Jt3 and ¥a vanish when K a is zero. Setting Ka to zero yields the 

equation 

2-33 

for <} 0 • Thls is the point where the choice of K b becomes important. K b 

must oe chosen such that equation 2 .... 33 can be solved to find ~ 0 in analytic 

form. In general the form of Kb must oe one where ~P has a different but 

constant value within different spatial volumes (i.e~ K~ being plane-

stratified is an example). In addition, the spatial volumes must be sepa-

rated by a set of surfaces which permit separation of Laplace's equation 

and the boundary conditions on J;( • This choice of K 1o reduces equation 

2-33 to 

_ 1 + C'·C 
2-34 

Kb 

in each region. Invoking the boundary conditions (i.e. tangential E and 

H, normal J, B, and D must be continuous) the Green's function for the 

background medium can be found. As a result 

2-35 

where ~(r,"'"') is the Green's function. For example, if the backgr.ound is 

a wholespace with a constant value for Kb, cacr,r') is just 
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4n- R 
R - '- - ,. - r--r- I 2-36 

The effect of the anomalous part of the material can be expressed in terms 

of 1 e where 

~~- (r) :. 4 (v-) 
""(" . 

~ 
Ki> 

+ Kb ~ Ka - V i 1-c (y') 9(n·') d:ar- t 

(~b +~a) v Kh 

(v·c-.})K:.a + Kb'OKa·Vi.o 

( K\!J +- Ka) 

2-37 

2-38 

2-39 

The equivalent source distribution satisfies the Fredholm integral equation 

2-38 where ":fo is the excitation or source term for ?e o The appropriate 

form for ~0· for each physical problem is given in Table 2-2.. The p~rticular 

forms in Table 2-2 give ~0 in terms of the exciting fields Eo and 

-T -M -
H o = \4• + (..( S (Note the inclusion of i4~ in the magnetic case). 

In physical terms, ~e corresponds to a charge density distribution in 

a dielectric problem, a magnetic pole density distribution in the magnetic 

case and a current source density in the static conduction problem. 

The preceding set of equations summarize the equivalent source formu-

lation for static problems. The derivation has been done in a very general 

manner and has a wide range of application. The application to static 

field problems in applied geophysics is briefly outlined in chapter three. 



TABLE 2-2 

Excitation Terms for the Static Equivalent 

Dielectric Problem 

10 

Eo --

Magnetic Problem 

Conduction Problem 

--

Source Problems 

€a ( t'·fi - 'l- ) E b \1 Ea • Eo 

l tll +- e-. a) 

\l ~0 

(..U.a V•J.toM r- ..ub VAa· H"!") 
(Lib + ..ua) 

v ~0 
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(ii) Time-varying Problems 

The equivalent source technique for time-varying problems will be 

analysed in the frequency domain. Defining the Fourier transform pair 

F{.,,t) 
ff>O • t f - .l (-') 

.J... } F ( W"', w) e. zrr_
00 

cl(A) 

the frequency domain form of Maxwell's equations is 

VXE- J tuB 2-42 

V· 0-

where all fields are of the form F(r,lO) 

2-40 

2-41 

2-43 

2-45 
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It is most convenient to introduce the complex permittivity notation 

at this point. The dielectric and conductive constitutive equations 

are combined by defining a general conduction current 

J'" T - ._TC. 2-46 

where E = € + j! is the complex permittivity. Inserting the constitutive 

equations into 2-42 and 2-43, yields 

vx E ::. j WM \-\ + j C.V...u.o Hx 2-47 

An additional change in notation makes the following analysis simpler; 

the generalized electric and magnetic currents are defined as 

~ j W_..I..Ao M I: 2-49 :r = .::rs - j ~ P;r 2-50 

As a result 2-47 and 2-48 become 

\7~E. j W» ~ + I?[ 2-51 ~x.H = -jc.oEE.+ ~ 2-52 
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The equivalent source formulation begins at this point; the material 

properties are split into background fb, ..U.b and anomaious components ca ,..ua 

2-53 2-54 

Next the equivalent current distributions are defined as 

91Ze ::. j w M.a H 2-55 2-56 

Taking the curl of equations 2-51 and 2-52 and using the definitions 2-53 

through 2-56 yields 

2-58 

where R 'o =. w(EbMJtis the background propagation constante 

As in the static problem, the background material properties are 

chosen such that the Green's dyadic can be evaluated. The distribution 

of material properties in the background medium is limited to regions of 

constant property value which are separated by surfaces which permit 

separation of the governing differential equation and the boundary condi.~ 

tions on the electric and magnetic fields. The fields are now split into 

background and anomalous components. 

2-59 2-60 

Defining the operator 

2-61 

2-59 and 2-60 combine with 2-57 and 2-58 to give 

2-62 

2-64 
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where the anomalous fields Ea and ~~ are totally determined by the equivalent 

currents 3c. and 11fc • 

On the assumption that Eb and AA~~t have been chosen such that the 

Green's dyadic for 2-61 can be derived, a set of four dyadics (;.b,~.ba ~.b,~~) 

can be defined. The superscripts E and H indicate the dyadic is an 

electric or magnetic field dyadic and the subscripts ~and M denote the 

excitation to be electric or ma~etic currents. These dyadics are not all 

independent; the interrelat~on of·the dyadics i s given in part 1 of 

Appendix A. 

Combining the dyadics with 2-62 through 2-65 yields; 

2-66 

JV + 2-67 

v 

+ 2-68 

2-69 

Returning to the definitions of the equivalent currents ~ and ~~ , it 

becomes apparent that the• equivalent currents satisfy the coupled pair 

of vector integral equations 

~e. = -j wE:a. Eo+cJfaUt,~;J1.~e..dV - j~Ea~!Ji·JJ/eJV 
" 

IJJte =. 3 w ;t.(:l. 1-\ 0 +t.U7. Eb-4~ ~ ~ • 'hre J V + J. Cd..Lta J ~ J · je. cl V 

2-70 

2-71 

When either the anomalous permittivity or permeability is zero, the problem 

reduces to a single vector integral equation in either ~e or ~e o 
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2-4 Summary 

The general formulation of the equivalent source method for electro~ 

magnetic problems is now complete. The analysis of electromagnetic 

problems in a continuum with a complicated distribution of material p~operties 

is reduced to finding an equivalent source distribution in a medium 

with a simple distribution of electrical and magnetic propertiesQ The 

problem is solved once the infegral equation for the equivalent source has 

been solved; however, the solving of the integral equations involved is 

not a trivial matter. In any problem of interest the integral equation 

must be solved by a numerical method. The numerical solution of the 

integral equations by variational methods which yield approximate solutions 

is treated in detail in chapters five, six~ and seveno 
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CHAPTER 3 

STATIC FIELD APPLICATIONS 

3-1 Static Field Methods in Geophysics 

The resistivity and magnetic survey methods are both based on the 

measurement of static electric and magnetic fields. The interpretation 

of data collected by these methods is usually one of postulating and 

theoretically computing the response of a given model and comparing 

the response with the data. 

The equivalent source appraoch permits the formulation of the 

equations for a wide variety of models which are difficult to analyse 

otherwise. From ~hapter 2, the fundamental integral equation has the form 

t . v ~ ~(v-,v-•} ~ (l'"') Jl'"l 
v 

3-1 

where "'[ is a material property ratio, 4 and ~o are charge, current source 

or magnetic pole distributions depending on the particular problemo To 

formulate the response of an arbitrary body, only~ , the excitation field 

(which enters through 1• ) and the appropriate Green's function have. to be 

specified. The problem is reduced to solving equation 3-1. 

The magnetic and electrostatic response are formulated by the same 

equation. The analysis of the solution of 3-1 differs for the two types 

of problems. For magnetic problems /?(. is the permeabili~y contrast ratio and 

in most applications it is considerably less than unity. For electrical condu-

ction problems, ~ is a conductivity contrast ratio which, in most situations, 

is considerably greater than unity. 

The solution of 3-1 is given for a spherical model in a whole-space 

in order to demonstrate the equivalent source method. This model is use-

ful in demonstrating the features of magnetic and conduction response 

discussed later in the chapter. 
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3-2 Response of a Sphere 

A sphere of anomalous material property embedded in an otherwise 

homogeneous whole-space can be described by the material property equation 

where d is the radius of the sphere, htJ is the ratio of the difference 

in material property of the sphere from background to the background value 

and ""(v-) is the Heaviside step function. For example, a body with conduc-

tivity rr, in a whole-space of conductivity Ub would have 

3-3 

The center of the .sphere is taken as the origin of a spherical polar 

coordinate system u·, e, <9). 

Using equation 3-2 

-?tJ $(a-r) ~ 

\ ~nz.4 
3-4 

where~ is the (radial) unit vector. The exciting source~0 generally 

has the form 

3-5 

where~ is a vector· field. The equivalent source for the sphere must 

be a surface distribution since it must have a delta function behaviour 

at the surface of the sphere. The appropriate Green's function for the 

problem is that for the scalar Poisson equation in a whole-space which is 

given in Appendix F. 

Since$ is a surface distribution on a sphere it can be expanded in 

spherical harmonics 

~ ( v-, e • ~) ::: 

3-6 

3-7 



where 

,., ; ~ '.f 
P ~ (cote) e. 3-8 

and P;' is the associated Legendre polynomial of degree n and order "" 

Using the generating function for Legendre polynomials and addition 

theorem for spherical harmonics 

on the surface \r\ ::. \V"'I = a. 

From the orthogonality property of spherical harmonics 

Substituting into 3-1 reduces the integral equation to 

By expanding the source term in spherical harmonics 

the c.".:' are solved for and are 

- :. c."' 

where eX. ::. -?t.d f ( \ + hl.d) 

3-9 

f"l! a. 3-10 

3-11 
r::a 

3-12 

3-13 

The anomalous fields associated with~ are described in terms of the 

gradient of a scalar potential. The scalar potential 1s given by 

)}J 1 ('I" t) ~ ( V\ y- I ) d 3 r I 3-14 

The spherical harmonic expansion of ~ for the sphere is 
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~ ( er' i 
~::o ~::.-"' 

c. ~ y :' ( e, c.,') 

(an~') 

3-15 

The response of the sphere for a spatially invariant exciting field 

is commonly discussed. Appropriately orienting the coordinates 

where N ~ is the normalizing factor for the Y~ spherical harmonic. 

Then 

I j:t I 
N~ 

and all other c:i: are zero. 

The anomalous potential is 

c~ a1 
3 ~ 

c~ \'" 

T 
y ~ ( e, ~) 

3-16 

3-17 

3-18 
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which is the usual expression for a sphere in a constant field (Jackson 1962))~ 

The analytic solution of equation 3-1 for a sphere is possible due 

to the fact the prohlem can be solved by the conventional boundary value 

problem method of separation of variables. In general the geometry is 

more irregular and the eigenfunctions are not known. As a result, approxi-

mate numerical methods must be used to solve the integral equation. 

3-3 Magnetic Methods 

The magnetic survey method detects regions of high permeability and 

possible remanent magnetization. The basic model for interpretation is 

the response of a body of anomalous permeability and remanent magnetization 
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embedded in a whole-space with free-space magnetic propertieso The body 

is placed in a uniform magnetic field equivalent in ampiitude and direction 

to that of the Earth. For most purposes, the dimensions of the body are 

sufficiently small that the Earth's internally generated field can be 

assumed spatially invariant over the region of the bodyQ 

The magnetic survey measures the total magnetic field at a point or 

a component of it. The field is composed of two parts; that of the Earth 
• 

and that due to the presence of an ·anomalous body 

3-19 

For interpretation purposes, Ha is computed for a postulated model and 

compared with the observed H.a. 

Using the equivalent source approach, solving for Ha is reduced to 

solving for an equivalent magnetic pole distribution. From chapter 2, 

Ha = 3-20 

and 

3-21 

where ~ is an equivalent magnetic pole density distribution~ ~ is given 

by the integral equation 3-1 where~ is the susceptibility~~. The 

primary source term is 

( ~""' Q . . .Leo Mx) 
(\ ""~""\) 

where M~ is the remanent magnetization. 

.MoHo • V '¥-"""" 
(\ + '~'~) 

3-22 

One of the commonly used assumptions in computing magnetic anomalies 

is to neglect demagnetization effects. The integral equation 3-1 can be 

used to demonstrate why this is a good approximation. For a given model~ 

the integral equation for~ can be written 

3-23 
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where ot is a material property factor and r:J is a geometrical function 

containing the integral term of equation 3~lo « has the form 

~~ 3-24 

p 
where oy.... is the maximum value St in the problem~ The integral equa·tion 

3-23 can be solved by the successive approximation method.. Taking 

successive approximations to 

1 - .,0 

1. = 1_o t 1' 3-25 

. . . 
1 -: 1D -\ ?t +-?a 0 (J" • ~ 01- Qo~tp 

and substituting into 3-23 yields 

11 = ol r:) ( f.o) 

~~ = o/ rJ ( 11) = ol ~ J ( J Cfo)) 3-26 . 

where t)"' is the r. +1\ application of t1 to ?• o 

In general ~ is different for every point in the bodyo On physical 

grounds'!!/ must be finite and the series expansion must converge .. 

a{<1._,the geometrical factor tf must be unity or less at all points. 

spherical model is an excellent example of this result. The e( for a 

Since 

The 

given spherical harmonic is independent of positiono From equation 3-13 

the coefficient c': is proportional to 

3-27 

' 
The successive approximation solution is given by expanding 3-27 in a 

geometrical series 

t - a( (i'M: ) 
f."+ ' )s 
\.~n-+ I 



The geometrical factor is just 

n.._, 
~~+l 

3-29 

In general, the higher the irregularity of the geometry in a localized 

region the closer to one the geometrical factor will be. In a cube, for 

example, cf would be closer to unity in the corners than in the central 

part of one of the faces. 

The convergence rate of the s~ccessive approximation methods is 
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primarily controlled ·by the material property factor. For most geophysical 

problems, the susceptibility is seldom greater than 10z and often less 

than \ o-3 • Thus ot < \o2 and the first term of the series is more than 

adequate to speci£y the response of the body. 

For a model where demagnetization effects are negligible~ 

fV 3-30 

and there is no need to solve the integral equation. The specification 

of M 1 , 'rtoand ~""" automatically specifies ~ and therefore Ha 

For problems where demagnetization effects are not small, the integral 

equation 3-1 must be solved. With the exception of a few special geometries, 

the solution must be found approximately or by numerical methods. In 

either case, the response of an arbitrary body can be quickly formulated 

with the equivalent source method. The Green's functions which are required 

are the 2 and 3-dimensional Green's function for the scalaL Poisson 

equation. The two dimensional Green's function is useful for solving 

models with sufficiently long strike lengths that they may be considered 

infinite in one dimension. 

3-4 Resistivity Methods 

The resistivity method is used to detect and delineate electrical 
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conductivity variations in the outer kilometer of the Earth's crust~ 

As mentioned in chapter 1, the method is one of passing electrical 

current directly through the Earth and measuring the potential difference 

between different points at the Earth's surface. The voltage at the 

detector can be thought of being composed of two parts; one due to the 

current flow from the generator through the background Earth, tfo 9 and 

one due to the disturbing influence of different conductivity zones in 

the region, t.fa . 

3-31 

The interpretation of resistivity and induced polarization surveys is 

based on the postulation and computed response of a given modele The 

anomalous field is compared with the theoretical response to interpret 

the data. 

The equivalent source method has been successfully applied to resis-

tivity problems by _Dieter, Paterson and Grant (1969) who computed the 

response of ellipsoidal conductors in a conducting half-space o The integral 

equation used by Dieter et al can be derived from the general equations 

for static conduction problems given in chapter 2 .. 

For an ellipsoidal body of conductivity ~, embedded in a conducting 

half-space with conductivity c0 the conductivity as a function of position 

is 

3-32 

where G"" t!f :. ()"1 - '""o and 

3-33 

Setting fCr) to zero defines the surface of the ellipsoid.. The conduc­

tivity gradient factor is 

3-34 
tr'o+ CS"'.\ 
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where h = -V .f"Cr) is the outward normal at the surface of the body. The 

equivalent source is a surface distribution. The /J[ factor of equation 

3-1 is <l cl I cr-... 

By defining the equivalent surface current source distribution 

~(r) =. xJ(r) d(.f'(v-)) 3-35 

and substituting into equation 3-1, the integral equation . for on the 

surface of the ellipsoid bec6mes 

3-36 

where 

3-37 

Eo is the electric field associated with an external current in the 

background medium and has the form 

3-38 

where ~ 0 is the potential associated with the external source~ 

The appropriate Green's function for the problem, as given in 

Appendix F, is that for the scalar Poisson equation in a half-space with 

a Neumann boundary condition at the surface 

~(r,r') 

where 

R=-

( 
2. ' 1-

C C ·c - v.·) . ' ' ' .. , 
Regrouping equation 3-36, yields 

.Jc..-) " -r - h• v ~0 

3-39 

3-40 

3-41 



which is the same as that used by Dieter et alo 

Unlike the magnetic problems, the material property contrast is 

3 
usually large, with contrasts of the order'1t."l0 not uncommon. As a 

result the feedback from the integral term of 3-41 is not negligible ~nd 

the successive approximation solution would be slowly convergent. For 
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a conduction problem, the integral equation must be solved in most instances. 

The only approximation that can be applied in these problems is 

neglect of the second term in the Green's function$ The Earth's surface 

interacts with the anomalous body and is ·equivalent to placing an image 

source at an equal height above the boundary and considering the response 

of two interacting bodies in a wholespace. This effect is introduced 

by the 1/R, term in the Green's function. If the body is buried sufficiently 

deep in the Earth in comparison to its lateral dimensions, ~ /R.,, is much 

less than one and 

3-42 

For example, the response of a deeply buried sphere excited by a uniform 

electric field as shown in Fig. 3-1, can be obtained directly from the 

results of section 3-2. In the )(,-')( 1 plane through the center of the sphere 51 

the anomalous potential at the Earth's surface is 

aiE'o\ a"'xa 
(x~ + <:12. )3'R. 

which is the result given by Grant and West (1965i pg. 425) 

3-43 

The general response of a conductor in conducting half-space must 

be found by numerical methods. The integral equation 3-1 can be solved 

by a least squares method (see chapter five) as used by Dieter et al or 

the problem can be analysed by digitizing a& • 
In practice slow time varying currents are commonly used in place of 

direct currents. The interpreta~ion is still based on the static field 
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FIG 3-1 Electrostatic response of a deeply buried 

sphere in a uniform field 



equations since the time varying field effects are smallo The induced 

polarization method is a product of using time varying currents for 

resistivity surveys. Bulk earth materials exhibit frequency dependent 

electrical properties below a few Hertz. This anomalous behaviour is . 

known as the induced polarization or overvoltage effect. (~~R~ Wait~ 

1959). Since some bulk earth materials, such as disseminated sulphide 

ore bodies, show much higher induced polarization effects than the host 

material surrounding them, the induced polarization method can be used 

to detect and delineate localized concentrations of these materials. 

The computation of induced polarization responses are made directly from 

the theoretical resistivity response. As a result the equivalent 
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source method is applicable to computing the induced polarization response 

as well as the resistivity response of theoretical models. 

3-5 Summary 

The treatment of static field problems encountered in geophysical 

methods can be readily treated using the equivalent source method~ The 

generality and flexibility of the method make it a powerful method for 

analysing problems not as yet solved. Neglect of. demagnetization effects 

yields a very simple· and straightforward method of solving nk~gnetic 

problems. The resistivity analysis of section 3-4 can readily be generalized 

to the case of the body buried in a conductively layered half-space by 

changing the Green's function. A thin conducting surface layer representa~ 

tive of a conductive overburden can be incorporated in this manner. 
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CHAPTER 4 

THEORY OF INTEGRAL EQUATIONS IN ELECTROMAGNETIC SCATTERING PROBLEMS 

4-1 Basic Scattering Equation 

This chapter is devoted to a study of the mathematical nature of the 

integral equations encountered in electromagnetic scattering problems. 

The effect of a scattering body in an electromagnetic system, for which 

the electromagnetic Green's dyadic 'can be evaluated~ may be expressed in 

terms of equivalent electric and magnetic current systems as shown in 

chapter 2. The equivalent currents satisfy a pair of coupled vector Fredholm 

equations. In the majority of scattering problems, the scattering is due 

to the electrical properties of the scattering body; the magnetic properties 

are almost identical to those of the background media in most instances. 

In order to illustrate the properties of the integral equations encountered, 

the particular problem of scattering by an electric scatterer in a homo­

geneous whole-space is discussed in detail in this chapter G The analysis 

of a scatterer in a more complicated system does not differ markedly from 

the whole-space problem; the basic difference is the addition of a homo­

geneous term to the whole-space dyadic. This result can be seen from the 

form of the Green's dyadic for a plane stratified medium derived in Appendix A; 

similar derivations can be made for background media which have cylindrical 

or spherical stratification. 

The integral equation for the equivalent current describing an electric 

scatterer is developed from the general equation 2-70. The scatterer is 

located in a whole-space and occupies a volume V bounded by a surface S. 

In geophysical analysis, conductivity is more commonly used than permittivity; 

as a consequence, a complex conductivity notation is adopted here in place 

of the complex permittivity used in chapter 2. The scatterer has a complex 
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conductivity difference era= -jw£., where £a is the complex permittivity 

difference. The background whole-space has complex conductivity ~b~~~£b. 

The permeability of the scatterer and the background medium are taken. as 

the free-space permeability. Since there are no variations in magnet~c 

properties, the scatterer is replaced by an equivalent electric current 

density 5e , which satisfies the integral equation 

5e (r) 
tr~ 

From Appendix A, ; sb 

where 

4-1 

is given by 

4-2 

j k._R 
e 

A format which is more compact and physically simpler to understand 

is now introduced. The integral term of 4-1 may be re-expressed as 

where 

and 

J W )A 0 ) 3 ( V" I y I) ~e,_ ( f" ') d J f' ~ 
v 

s 9 (r, v-') :Se_('r') dJri 
v 

4-3 

4-4 

4-5 

A more intuitively obvious form for ~ is obtained with the aid of the 
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divergence theorem, namely 

~ tw~ je(r•)J S('f.r')cl\~~' 4-6 
v 

where W · ~e is the total divergence of :Je defined as 

Equation 4-1 can now be written as 

4-8 

In this form the equation is analogous to the simple RLC circuit equation 

j w L - j!,c.) I =- V 4-9 

The three terms on the left of 4-8 may be interpreted as followsa The 

first term represents the ohmic electric field generated by 3e. due to 

variations in the conductivity from <r~o (i.e. G'~ ~ <:r-<S'""), The second 

represents the electric field generated inductively by the time variations 

The last term is analogous to the capacitive term of 4~9~ When 

the background medium is an insulator, this term is the capacitive effect 

of the body. When the background is not an insulator, th:ts ·term represents 

the conductive channelling effect of the scattering body3 (In the case of 

magnetic property variations which are not included in this example? this 

term would represent the demagnetization effect9 ) In all instances , this 

term represents the generalization of the static field response discussed 

in chapter 3 to the time-varying case. For this electric scatterer, the 

static equation of the last chapter is obtained by multiplying 4~1 by ~a j 

taking the divergence of the equation, setting 1-:. '6· 3c:. in a conductive 

problem ( f =. - ~w 'Q. ~ in a dielectric problem) and taking the limit as w~o. 

An analogous derivation can be made for magnetic problems~ 

In the following discussions, the first term of 4-8 will be referred 
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to as the ohmic term while £(=Je.) and '"(~e) will be called the inductive 

and depolarization terms. The associated integral operators defined by 

4-4 and 4-5 will be termed the induction and depolarization operatorsa 

In many cases, it is convenient to refer to the combination of the three 

terms as the total impedance operator and denote it by 

_,_ 
era, 

) c ( ) 4-10 

One other combination of ~ • and ~ which is useful to note is that the 

anomalous or scattered field is given 

Ea = 4-11 

Before continuing further with the scattering problem, some of the mathe-

matical properties of the induction and depolari~ation operators are examined. 

These properties make the discussion of the nature of the equivalent current 

Oe somewhat easier to understand in a general context~ 

4-2 Induction and Depolarization Operators: Mathematical Properties 

The induction and depolarization operators are in essence convolution 

integrals. The equivalent current is convolved with the background Greenis 

function or dyadic. The elements of the Green's dyadic are built from 

solutions to a Helmholtz equation of the form 

4-12 

The solution g(r, r 1 
) exhibits a pole or branch point singularity when 

lW:-";:.•J-i" o and has an essential singularity as tr-~·t -..co. The exact form 

depends on the number of spatial dimensions involved (i.e ~ 1) 2, or 3)~ 

The operation of general interest takes the form 

4-13 

v 
where f is a function belonging to G, the complex Hilbert space of functions 

in V. The operator r:1 is a "definite operator". The term "definite operator" 

is used to imply that there exists no subset of functions in G for which ti 



42 

is a null operator. In more specific terms the following definition is 

adopted •. 

Definition: An operatortl7., which has the operational space V, is termed 

definite {or complete) iftP(f) ~ 0 for all f I 0 where f is any functional 

belonging to G, the complex Hilbert space of functions in V. 

The operator ~ has this property as can be demonstrated simply by 

taking f = SC~), the Dirac delta function, which has its support located 

at a single point in V. (The definite property is actually implicit from 

equation 4-10). An additional feature of tR is that the kernel g{r~ r' ) 

is a quadratically integrable kernel when V is a finite dimensioned volume 

(Morse and Feshbac? (1953)). 

The inductive and depolarization operators are vector operators comp~ 

osed of terms of the form 4-13. Denoting the components of ~e by(J
1

, J
2

, 

J
3

) where Ji are scalar functions belonging to G , the induction operator 

has the property that it is a definite operator for any vector function in 

the vector Hilbert space of functions in region V. 

The depolarization operator is almost identical to the induction 

operator; it differs, however, in that it contains the total divergence 

operator 

4-14 

The additional operation of W• inside t1 has the property that it makes ~ 

an indefinite or incomplete operator. For all sets {J1 ~ J
2

, J
3

) such that 

w. :le.:. o, ~ is a null operator. A current flow for which V·'!Je:. o is 

termed a solenoidal current flow for the region V from this point on. 

While more detailed analysis of the mathematical properties of ~ and 

~ could be given, the essential features of these operators are summarized 

above and permit continuation of the analysis of the electromagnetic 

scattering problem. 
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4-3 Dimensional Analysis 

The impedance operator Z is composed of three terms. In order to 

weigh the importance of the individual terms, an estimate of their magnitudes 

is a useful parameter to have available. ~e is assumed to be bounded. with 

a finite maximum of ~ in V. This assumption is valid provided 6a remains 

finite and the source of E is external to V or is distributed with finite 
0 

amplitude within V. 

In order to obtain an estimate of the magnitude of ~ and ~ the 

magnitude of ~ (f) where f = 1 in V is derived. If A is the characteristic 

length of volume V, then 

c.e ( ~) . :: ~ <j (If y-') ci "JV" I < 
v 

Taking the divergence operator to have a magnitude of the order 

\~ \ 1'-J _l 
A 

the terms in :!l { ':le) become 

\ ;: I ~ 

l ~l~c) \ IU 

IC('3e)) row 

~ 
vo\+ f,... 

l 0"- '""'"" 
C.U;UoA

2 ~ voH/"""'· 

'J 
uo\-\-/ Mt. 

crt, 

4-15 

4-16 

4-17 

4-18 

4-19 

where l a'"a l _,... is the minimum absolute value of I:Ja attained in V ~ The 

order of magnitude of ~ now depends on the form of ~ o From the discussion 
e 

of the last section ~ is a null operator for all solenoidal current flows 

in Vo As a result two distinct impedance estimates can be given for z. 

For J solenoidal 
e 

I~ l I • 2 
rv -- -J"->M.A 

l<r.1 \-.;011 
4-20 



and for J not solenoidal, 
e 

I !G \ 
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4-21 

The appearance of two characteristic impedances is not surprising; it 

just reflects the fact that a vector field can be expressed in two parts, 

namely, its longitudinal and transverse components. The bimodal character-

istic of ! accounts for the whole subject of magnetic induction. For spatial 

dimensions small on a wavelength ' scale, the coupling between conductive 

bodies and/or current systems embedded in an insulator are described as 

inductive. The capacitive or conductive effects can be ignored in such a 

system provided only the magnetic fields associated with currents are observed. 

The reason for this is that the solenoidal currents see a very low impedance 

when <fb I <>a and 
2. 

w..u..A: trb are small while the non-solenoidal currents see 

a relatively high impedance. Since the magnetic fields are primarily 

determined by the solenoidal currents which may be several orders of magni~ 

tude larger than the non-solenoidal currents, only solenoidal currents 

need to be considered in determining the response. The impedances as a 

functionof body dimension vary much like those of simple RL and RC series 

circuits as a function of frequency. 

4-4 Eigenfunction Analysis 

The method of characterizing an operator and understanding its response 

is to analyse the operator in terms of its eigenfunctions and eigenvalues. 

The electromagnetic scattering problem is characterized by the equation 

4-22 

where Z is a complex symmetric operator (non-Hermitian). The general 

eigenfunction equation associated with 4-22 is 

4-23 
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where~is a real positive-definite symmetric weighting operator, I~ 

is an eigenfunction of ~ with weight Wand }\~~"~is the as~ociated eigenvalue. 

Since Z has a quadratically integrable kernel for V finite, E is characterized 

by a denumerable but infinite set of eigencurrents and eigenvalues. (Morse 

and Feshbach, (1953)). In simplistic terms, this means the eigenfunctions 

are analogous in application to those of a Fourier expansion (i.e. series) 

on a finite interval as opposed to those of a Fourier expansion (i.eo integral) 
• 

on a infinite interval. 

The unweighted eigenfunction problem is 

4-24 

Since Z is non-Hermitian, ! is not self-adjointo The adjoint operator to 

z denoted by z•has the property that 

4-25 

The adjoint eigenfunction problem is 

4-26 

where are the eigenfunctions of the adjoint operatoro From 4-23, 

the adjoint eigenfunctions are just the complex conjugates of if~. 

Defining the inner product of two vectors in V as 

(A,B): s A·GdV 
v 

the properties of z, z•and the eigenfunctions are summarized by 

c r"",':Z(f._))=- 'A.,.~"'""" 

( r~, -tcr:)) = ,\V\ ~ """" 

4-27 

4-28 

4-29 

4-30 

4-31 
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Adopting the Dirac bra-ket notation, the inverse of ~ is given by 

A · useful variation on this approach is the extension of a concept 

discussed by Harrington and Mautz (1971) in their analysis of scattering 

from perfectly conducting bodies. In their analysis, an appropriate 

weighting operator was chosen.such that the I are real; the eigencurrents 
n 

are equiphase over the entire body. The impedance operator ~ is split into 

its real and imaginary parts ~and X .. 

R. + j X 4-33 

The real part of 2 corresponds to the sum of the ohmic resistance and 

radiation resistance. The imaginary term, X corresponds to the reactive 

impedance associated with capacitive and inductive effects. lt is a 

positive definite, real symmetric operator and X is a real symmetric 

operator. Both opeTators have an associated set of real eigenvalues and 

real eigenfunctions. 

The choice of~= R in 4-23 results in a weighted eigenfunction problem 

which has a set of real eigenfunctions. In the Dirac bra-ket notation, 

equation 4-23 becomes (vector bars have been dropped for compactness) 

4-34 

or 

Denoting the eigenfunctions of llby s and the eigenvalues by r , the 
n n 

following results hold 

4-35 

4-36 
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Equation 4-32 is expanded in terms of the ~i's as 

Next the operator P and its inverse P-l are defined as 

P - \ s i ) v-i ''z. Si k < s" l 4-38 

p-' ~ s, > v- /'a. 3' i"' .z s~ 1 4-39 
• 

P and its inverse are real positive definite operators by virtue of the 

fact that .R.. is a positive definite operator which makes ·the r 1 /'0~ With 

the following definitions 

\I~'7- 4-40 

x' p )( p 4-41 

equation 4-37 becomes 

4-42 

which is a new unweighted eigenfunction problemo The new operator X 1 is 

real and symmetric; therefore, it has real eigenvalues and eigenfunctions. 

This implies that 

where Gnand I' are reaL Equation 4-40 then reduces to 
n 

4-43 

4-44 

Thus the use of the weighting function M = R yields a set of real eigencur-

rents and 

where ~~ is an eigenvalue of the modified reactance matrix X i v The eigen-

currents are given in terms of the eigenfunctions of X' by 
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4-5 Complex Power Balance 

When the equivalent source method is applied to formulate an 

electromagnetic scattering problem, the re-distribution of energy or power 

can be · expressed in a simple manner which can be readily interpreted 

The analysis for the electric scatterer discussed in the previous sections 

of this chapter is ~resented here to demonstrate the interpretation of the 

energy-power redistributiono • 

The total power in the system'is 

-4 -+- :S. ~ E.a 
4-47 

where ::1'0 is the excitation current driving E • The first t:erm tP8 repre~ 
0 

sents the power associated with the primary source field, E ; the second~ 
0 

represents power associated with the interaction of ~ with the backscattered 
0 

field of the scatterer, E ; · the third term represents the power flow into 
a 

scattering body from the primary field, E ; the fourth term represents 
0 

the power contained in the scattered field of the body in the absence of 

any external field. In general, the interaction of the scatterer with the 

source current is negligible. In most treatises on scattering, the inter~ 

action of the scattered field with the source is implicitly assumed to be 

negli'gible. When interaction of the source-scatterer is negligible~ J 
0 

and E are independent of the scattered field E and th.e first term of 4-45 o a 

~' is constant. The power redistribution due the presence of the scatterer 

is given by 

D p = Pa + P-+ 4-48 

In the problems solved in chapter 6 and 7 51 the source fields :J . and E 
.:t 0 

are assumed independent of the backscattered fields~ 

The power associated with the equivalent current'~ U ~ ~ is described 
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primarily by the term P 4 • From equations 4-10 " 4-11 and 4-22 

4-49 

<ra 

In this form P
4 

is the difference between the power ohmically dissipated 

and/or stored in the anomalous region and that extracted from the primary 

field E 0 • 

The redistribution of power associated with/' 
4 

is explored in more 

detail with the aid of Poynting's theorem. J?
4 

is split into its intrinsic 

components by 

P+ · - ( 'J.i 1 E a) 

= fJJ t ~x \4:- \\: ir; J ~ Ea ~v 4-50 

Vt:JO 

~ fn ~- ti'· (E.,'(":> + j WMo i='a· A: cro Ea-E~ 1 dv 
v.o 

Rewriting the complex background conductivity in terms of the real conducti~ 

vity and permitivity cs-8 ~ a-~- j w€b 

P.,. = SJf {-v.(~a~\i:)-+jc.,_,,t.Ha·\:i:-jwE:b'E~·E=-Il.:eaE.:}dv 4-51 

"-
The terms of;?

4 
have simple physical interpretations; the first term is 

just the divergence of the Poynting vector and represents the power re-

radiated by the scatterer; the second and third ·term represent the time-

varying generalization o~ the magneto-and electrostatic power storage; the 

fourth term is the ohmic dissipation of power in the background medium. 

4-6 Summary 

The preceding analysis has been aimed at pointing out some of the general 

features of the solutions of scattering problemso The results are concerned 

specifically with electric scatterers; analogous results can be readily derived 
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for magnetic scatterers~ Many of the general features of ~e derived 

here will appear specifically when numerical solutions to some scattering 

problems are analysed in chapters six and seven. 
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CHAPTER 5 

Variational Methods · for the Approximate Numerical Solution 

of Integral Equations 

5-l Background 

In many instances, the mathematical formulation of a physical problem 

results in an integral equation either because it is the only way the 

problem can be expressed or because it is most conveniently expressed in this 

manner. The geometry of the problem is invariably one which is not amenable 

to analytic solution by conventional methods. A closed form solution for 

the eigenfunctions of the system is not attainable; as a result, some form · 

of numerical method of solving the equations must be foundo The following 

analysis is devoted to the variational approach of numerically solving 

integral equations; the emphasis is placed on the nature of the techniques 

and discussion of the more esoteric theory of integral equations is kept 

to a minimum~ 

The general integral equation of interest has the form 

a ~CP) + 5-l 

where {{ and ~ can be either scalar or vector, r eal or complex fields 

in one or more dimensions. a is a scalar constant ~ When ti is 0, the 

integral equation is termed an equation of the first kind; when a I 0, 

it is called an equation of the second kind. ~ is the kernel of the integral 

equation which can be scalar or tensor and real or complex. The integra-

tion is over the region denoted by V which includes all the region of 

existence of U • P and Q. are point coordinates in one or more dimensions. 

When V is independent of the coordinates P , the equation is a Fredholm 

integral equation; when V is a function of p , it is called a Volterra 
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integral equation. General discussions on the theory of integral equations 

are given in Morse and Feshbach (1953) and Green (1969). Some analys.es 

related to the numerical problems are given by Mikhlin (1964) and Kopal (1961)~ 

5- 2 Numerical Problem and Notation 

The problem at hand is to find U given ~ • From a numerical compu-

tation standpoint, the integral equation, which corresponds to an infinite 

set of linear equations in an infinite set of unknowns, must be reduced to 

a finite set of N equations in N unknowns where N can be made sufficiently 

small to make solution tractable by computer. The numerical problem is to 

find a satisfactory approximation to ~ which is denoted by ~" and is . 

characterized by N unknown parameters. ~"is subject to the constraint that 

the deviation of t<llf from the true U , obtained by some error estimator, 

be sufficiently small and at the same time make N as small as possible. 

The method of solution most commonly used and most easily implemented 

is to digitize U at N points in V; the integral is then converted to a 

sum and the error criterion applied is that 

5-2 

a t the N discrete points. A more sophisticated version of this technique 

i s to assume some interpolating function between the points and evaluate 

the. integral numerically or analytically if possible and then apply 5-2. 

While this approach is quite straighforward, it is only feasible in one or 

two dimensions since, if one assumes n samples per dimension, N = t'\""" discrete 

values are needed in m dimensions and N soon becomes unmanageable for 

economical computation. It is therefore desirable to find an approximation 

to U which carries the most information for a given N. 

The major difficulty encountered in numerical problems is the estimation 
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of error. While some problems can be analysed fully and error bounds 

estimated with reasonable accuracy, most numerical solutions can only be 

judged satisfactory after the fact, owing to the complexity of the problem. 

Accuracy of the solution for a given N must be determined by application 

of the numerical technique to problems with known analytical solutions as 

a Check or by comparison with experimental datao 
• 

In the next two sections, the variational or minimization methods 

called the least squares method and the Galerkin method are considered. 

In order to formulate these techniques in a compact form, the following 

suppositions and definitions are given. The kernel of the integral equation 

is assumed to be quadratically integrable, and the integral operator is 

assumed to be definiteo (Morse and Feshbach, 1953). 

First, the equation is rewritten as 

~<U) - J -::. o 5-3 

where tP. denotes a linear operator which corresponds to the constant 

plus integral operator in this particular case. Next, the weighted inner 

product of a pair of functions is defined as 

(A, 8)w -:.. S ~(P) StP) V/(P)d E> 5-4 
v 

where "A/ is a positive definite weighting function. (A 
7 

B) indicates a 

unit weighting function is used~ Expression 5-4 then corresponds to the 

inner product used in chapter 4~ For vectors this operation implies the 

vector dot product is taken as well. 

i-3 Least Squares Method 

The least squares method is based on minimization of the error generated 

by approximating t( by 'L(,.._ in the governing equation. The approximate 

solution is defined in terms of N parameters 

5-5 



54 

The choice of ~ is completely arbitrary and is made using all prior 

knowledge of the behaviour of the true solution ~ • The only require-

ments on f in the following analysis is that .:U.,. be a linear function of 

the ~i • In general the choice of the approximating function should be 

one such that as N-. o0 the resulting function will span V. For example , 

UN might . be an expansion of the form 

5-6 

where ~i, \~~N-1 are part of a complete set of functions which span the region 

V. The '¥ i could be N terms of a power series expansion or a Fourier 

series expansion. If CU. is known to have singular points in V, the 

approximating function should contain a term which has the same type of 

singularity but with an unknown magnitude. 

Upon substitution of t..t,. into the governing equation, 5-3 becomes 

5-7 

where e is the error generated at any point in v due to the inadequacy 

of UN in approximating the true solution U. The total squared error over 

the region V is defined as 

}t{ - (e} e)w 5-8 

(If 9 is complex )I{ ::: (EJ*, 0)w).. The weighting function is used to 

bias the error to achieve higher accuracy in regions known to be critical 

to the true solution ~ • The opt~um solution in the least squares sense 

for the set of N parameters is given by the N equations 

0 ~ 0 1 N-1 5-9 

or the 2 N equations, 

:.o 0 5-10 

if the functions are complex. 
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For the approximate solution form given by equation 5-6, the equations become 

5-11 

where 

co(· 
I ::. a, 

"'" 
.i b; 

t:.pq.. - ( tJ1F ( ({1 p) I t1 ( (pl) )....., 5-12 

~, -::::. ( tR., ((p't ), IJ)w 

5-4 Galerkin Method 

The Galerkin method or as it is sometimes called the Bobnov-Galerkin 

method is a generalized form of the Ritz method. In physical problems 

it corresponds to an energy or power minimization techniqueo The formu-

lation has many features in common with the least squares methodo 

An approximate solution is defined in terms of N test or trial functions 

5-13 

The ~i are arbitrary and the choice should be weighted by any prior knowledge 

of the solution to the problem. The comments given in the least squares 

section also apply here. In the Galerkin method, the unknown o<j are~ 

determined by the requirement that the residual or error, 

5-14 

generated by the ,approximation, be orthogonal to the trial functions ~i 

that is 

( Wi , e) :. o 5-15 

The condition can be derived by minimization ·of the function 

5-16 
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w.r. t. <Xi which may be interpreted as a minimization of the energy or 

power associated with the error. In a physical problem such as an electro­

magnetic scattering problem, 'U may be a current density field and the 

operator ~(0) the electric field associated with ~ • In this case 5-16 

would have the dimensions of power density. 

Upon application of this condition to the governing equation, the 

equation is reduced to N lin~ar equations in the unknown 0( i , which have 

the form 

L. 
p 

5-5 Summary 

In the two preceding sections two techniques of reducing an integral 

equation to a set of linear equatio~by a variational approach have been 

outlined. There is a close relationship between the Galerkin method and 

the least squares method. Discussion of the relationship between the two 

as well as convergence proofs for particular problems are given by ~khlin 

(1964). The application of these methods to some geophysical problems is 

demonstrated in the next two chapters. 
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CHAPTER 6 

.SCATTERING FROM TWO•DIMENSIONAL STRUCTURES 

6-1 Introduction 

The electromagnetic response of 2-dimensional bodies provides a 

starting point to examine numerically -some of the results discussed from 

the theoretical viewpoint in the previous chapters. The nature of 2-dimen-
• 

sional scattering problems of geophysical interest and the numerical methods 

used to solve them were briefly reviewed in · c~apter 1. The problem analysed 

in this chapter is the response of a 2-dimensional conductive cylinder of 

rectangular cross-section embedded in a conductive half-space. This model 

was chosen for two reasons: 

(1) The geometry is the most simple and at the same time permits modelling 

of a wide variety of structures. 

(2) Data were available from other numerical solutions and from scale 

model experiments to provide a check on the computed results. 

The response of an infinitely long cylinder embedded in a half-space 

parallel to the plane of the half-space surface splits into two distinct 

response types. In the following, these two types are denoted as the TE 

and TM response. The TE (transverse electric) response implies that the 

electric field is parallel to all structural boundaries. The TM (transverse 

magnetic) response implies that the magnetic field is parallel to all 

structural bounda~ies. The two types of response are sketched in Fig. 6-1. 

The detailed geometry of the model for numerical analysis is shown in 

Fig. 6-2. The cartesian coordinate system is denoted by ~<x1 , x
2

, x3) and 

has the associated unit vectors "' A ...... The cylinder strike is in el' e2, e3. 

the ....... 
The geometry of the model is parameterized in e

2 
direction. terms of 

the factors (a
1

, a
3

, d), the body half-width, the half-thickness and the 

depth of burial in the half-space. For numerical computation these geometrical 
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parameters of the structure are normalized against a
1 

as follows 

6-1 

The body is assumed to have a constant conductivity 0. and the back~ 

ground half-space has a conductivity ~0 • The angular frequency w is 

assumed to be sufficiently small that displacement currents are insignificant~ 

there is no need to specify ,the permittivity of the materials when this 

assumption is valid. This point is outlined in Appendix C where the evaluation 

of 2-dimensional Green's function integrals for the conductive earth problem 

is discussed. The body is assumed to have magnetic properties identical to 

those of the surrounding half-space. The permeability of the whole system 

is taken as )40 , the free-space permeability. 

When displacement currents are negligible, the skindepth of the back~ 

ground medium provides a good base to normalize all lengths. The background 

skindepth is 

6-2 

and a
1 

is defined as 

6-3 

Next, the anomalous conductivity is given by G"-. = <r,- cro and the body is 

characterized by the four parameters (A, R, D, ~ ). In the next two sections~ 
a 

the integral equations governing the two response types are derived and the 

approximate solutions to some typical models are computed using the least 

squares method d~scussed in chapter 5. 

6-2 TE Response 

(i} Integral equation 

The TE response of the cylinder is formulated in terms of an equivalent 



current :re which has only an e2 component .. For simplicity, J will be 
e 

used to denote this component.. Je is invariant in the x 2 coordinate and 

using the 2-dimensional TE Green's function derived in appendix B, J 
e 

satisfies the scalar Fredholm equation 

. .. ~ 
- j W..Mo 5 f 3(or,v') J"'e(~·)d2r' - 1=.0 (r) 

-•, -a, 

where E
0

(r) is the exciting electric field which also has only an e2 

component and 

The explicit forms of L
0 

and L1 are given in appendices B and C. 

6-4 

6-5 
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The approximating function for J was chosen to be a two dimensional 
e 

expansion in Chebychev polynomials of the form 

:fe (v-) 

where (xi, xJ) are the coordinates of the centre of the cylinder .. 

denotes the Chebychev polynomial of d·egree n and the first kind .. 

6-6 

T (z) 
n 

The 

approximate solution is characterized by a total of (M + 1) (N + 1) unknown 

coefficients. At this point it is convenient to introduce a set of norma-

lized coordinates 

)(,- Y.~ 
a, 

6-7 

With the above approximation for J , the least squares solution can be 
e 

formulated. First, the integral coefficient of is defined as 
nm 

6-8 
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substitution of the approximation for J into the integral equation yields 
e 

6-9 

where ~ is the error generated by the approximation of J expression 6-6~ 
e 

Since the evaluation of ~ · cannot be carried out analytically~ a discrete 
nm 

estimate ·of the total squared error was used in place of 5-8 and is defined as 

6-10 

where ( j , ;?( ) are a discrete set of points in the range -1 ~ 1,~ ~ 1. 
p q 

For computational purposes, the set of error points ( ~ , ~ ) were chosen p .,l. q 

as the roots of the Chebychev polynomials Tp ( ~ ) and TQ ("( ) where P, G\ > N, M ~ 

This choice was made for two reasons; first, the set of Chebychev polynomials 

Ti(x) i = l, ••• ,(Q- 1) form a discrete set of orthogonal polynomials on 

the set of points which are the roots of the Chebychev polynomial TQ(x); 

second, the roots of TQ are unevenly distributed in the interval (-1, 1) 

with the concentration of roots being most dense near the end points +1 

and least dense near 0. This in effect biases · or weighs the solution in 

the outer region of the body more heavily than in the central part of the 

body in the determination of the total squared error }K 0 • This is compatible 

with the skindepth effect which results in most of the current flowing near 

the surface of a good conductor. 

The real and imaginary parts of the c are denoted by 
run 

The impedance operator for an individual element in the expansion is 

defined as 

6-11 

6-12 



and the total squared error becomes 

Next, ~Dis minimized w.r.t. c and 
nm 

2(N + 1) (M + 1) linear equations 

c.~ which yields the set of 
nm 

~ c!2( r' .,.. ""' o("""' - t'""~""""' . ~ "'..,. - s:s 
"'"" 

~ 't',.~ W\""' Q(~., + "<r$YI ~ ~I'\ WI - s:; 
"""' 

where 

~ V'SM'-'\ ~ l""·~ ~ Z!s Zn...., p,. 
\ - .;f srs = ReaJ ~ z"$ Eo ,.. 

1 
I~~ 2.. Z~s S.,.s Eo 

~ 

6-13 

6-14 

6-15 

6-16 

6-17 

6-18 

6-19 

At this point the first step towards the numerical solution of the integral 

equation is complete; the integral equation has been reduced to solving 

a finite set of linear equations in terms of a finite set of unknowns. The 

steps in the numerical computation are outlined in the next subsection. 

(ii) Numerical Solution 

The numerical solution of 6-14 and 6-15 consists of three basic steps ~ 

The first step in the analysis is the development of a numerical algorithm 

to evaluate the tntegrals ~ • The second stage in the analysis is the 
nm 

evaluation of the scattering matrix elements Jt and 't' using the 
rsnm rsnm 

results of the first step. The final step is the inversion of the scattering 

matrix to find the coefficients for the polyriomial expansion of the equivalent 

current and computation of anomalous fields generated by the equivalent 



current. 

The model and solution parameters are summarized in Table 6-1 and 

a flow chart of the numerical analysis is shown in Fig. 6-3. The integrals 

~ are dependent only on the geometry of the anomalous structure and are 
nm 

independent of the anomalous electrical properties. The £ were evalu­
nm 

ated using the method outlined in appendix D. The coefficients were 

evaluated at the set of error points ( f , "( ) and were used as data for • p q 

the generation of the matrix elements. This step of the analysis required 

specification of the parameters A, R, D, N, M, P, and Q. The Chebychev 

polynomials were evaluated numerically by using the recursion relationship 

and the definition of T 
0 

and T 1 

lo ( "¥-) :. 1 

6-20 

6-21 

The error points were determined from the property that the roots of the 

Chebychev polynomial of degree Q are 

6-22 

All these properties are given in Abramowitz and Stegun (1965). 

Next the source field and the anomalous conductivity were specified$ 

The ~pedance for each element Z was computed at each error point using 
nm 

6-12 and the matrix elements v and ~ and the source coefficients 
-" rsnm . rsnm 

S~s and s:s were computed by summation over the error points as indicated 

by equations 6-16 through 6-19. The scattering matrix was inverted using 

a standard Gaussian elimination method. The equivalent current expansion 

coefficients were then computed for each excitation field. 

The polynomial coefficients were used to compute maps of the equivalent 

current and to evaluate the anomalous fields associated with J • The 
e 

anomalous electric and magnetic fields are given by 



Table 6-1 Summary of TE Solution Parameters 

Geometrical 

Electrical 

A - cylinder half-width in skindepths 

~ - thickness to width ratio 

D burial depth to half-width ratio 

~~~o - anomalous conductivity ratio 

Numerical Solution 

N - maximum polynomial degree in x1 

M- maximum polynomial degree in x3 

p - number of error points in x1 dimension 

Q - number of error points in x3 dimension 

65 
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Specify 

. A, ~ • D 

N, M, P, Q 

'~ 

Compute 

.e .. *(~p."ll) 
• 

T"'(. f .. ) T~ l"'t-.) 

' 
Specify «ra 

and excitation 

field 

'if 

Generate Program to 

Z ~"'1. ( r~ JJC.~) generate source 

fields 

\1 

Set up scattering Compute 
matrix and source _,_ 

coefficients ta H;''"" 

[-"~-~] [~:] at observation 
tt', ~ points 

' ,It 

c;ompu-ce Compute anomalous 
c oe ffic ients 

[;J = [~: :r[::] .... .fields and plot , 
equivalent currents 

Fig. 6-3 Flow chart of TE Computations 



a. a, 

E a = j w ..u.o J J <j (or, v-') .:r e. tv-') d '!(,' d'K~ 
-a,-~ 
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6-23 

6-24 

Defining an anomalous field associated with each element in the expansion 

of J , 6-23 and 6-24 become 
e 

Ea :E 
""'""' 

- A 
H~·e, 2. 

~."' 

Ha·e) - ~ 
"'-

where the coefficients are 

c.~""' 
E..,_ 

a 

c 'H "'""' "'""" a. 

3 '-'-
c"'"" Ha 

t= ~"'(~r) =- j w.u..o f ~a, gc.-,.,..•) T.,( ~') f,.( .. •)Jt: d•~ 
-a, -•J 

6-25 

6-26 

6-27 

6-28 

6-29 

6-30 

The integral coefficients E'a"" and 1 H~""' 
7 
"JH~- are independent of the 

source field and the electrical properties of the body; this information 

is contained in the C ~ The field coefficients have only to be computed 
run 

once for a given model geometry. 

The computer programs were written to compute the response for any 

number of source fields and anomalous conductivities for one given model 

geometry. This maximizes the number of model configurations for a given 

amount of computer expense, since the numerical quadratures consumed con-

siderately more computer time than any other part of the computations. 
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As pointed out previously the numerical quadratures have only to be carried 

out once for a given geometry. 

(iii) Numerical Results 

The results of computation for a pair of simple models is given in 

this section. The following results are intended -to demonstrate the general 

nature of the solution method and the computations rather than to give an 

exhaustive study of the particular models in question. The numerical 

response is- presented in the following format; first, a table of the solution 

and model parameters accompanied by a sketch of the geometry is given; this 

is followed by a set of contour maps for the equivalent current; finally 

some selected anomalous fields are computed and compared with other ~vailable 

results. 

TE Model. 1 

The first TE model was chosen in order that the numerically computed 

response could be compared with data obtained from a scale model experiment 

by Farstad (1970). The scale model consisted of a large tank of salt water 

and a current system which simulated plane-wave excitation (see Farstad 1970). 

One model studied was the response of a long, thin slab. In terms of the 

skindepth of the salt solution, the slab had dimensions a,~ o. Ol8S"do J a, :o.~So 

and a strike length of 3.58~. While the model had a finite strike length, 

it was sufficiently long that measurements made in the central region of 

the body should be a reasonable simulation of a 2 dimensional response. 

The numerical model chosen to compare with the data is summarized by 

the list of parameters given in Table 6-2. The conductivity contrast for 

the scale model was ~~~. = 36.5. In the numerical study, a set of three 

conductivity contrasts of 25, 36.5, 50 were computed in order to show the 



Table 6-2 Data for TE Model 1 

Geometrical 

A = 0 .. 0285 

R = 15.0 

D = 6. 0 

Electrical 

v~ = 24 .. o, 3 5. 5, 49. o 

<r. = 1 mho/meter 

Numerical Solution 

N = 2 

M = 4 

p = 6 

Q = 8 

Source T;y:Ees 

Plane wave 

Sketch of Geometry 

0. 172 &. 

i 
O. 856 So 

! 
-+ ..... 

· 0 • 057 {0 
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Air 

Earth 
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variation of the response with body conductivitya In order to avoid 

confusion, it should be noted that conductivity contrast and anomalous 

conductivity contrast are related by 

+ 6-31 

The excitation field is that of a plane wave incident normally on 

the half-spaceo The electric field at the surface of the half-space is 

taken to be 1 volt/m. with a phase of 0 degreeso The electric and magnetic 

fields as a function of depth in the hal.f-space· are then given by 

E. 6-32 

6-33 

Since ko = (1 + j) / S' 0 , the fields vary as with 

phase rotating through 2~ radians and the amplitude decreasing by a factor 

-z.'l't' 
e for '1.~/ 3 o =:. 2!.. ')'( • (See Fig.. 6-7). 

In Fig. 6-4, -5, and -6, contour maps are used to illustrate the 

equivalent current for the various conductivity contrastso To keep the 

maps of J uncluttered, the contours were labelled without the 10" factor. 
e 

For example, the contour labelled 1.0 in Fig. 6-4 for real J implies 1.0 x 101 • 
e 

The power of ten is to be taken from the contour interval (Leo 0.·1 x 101). 

The phase reference for the currents was taken as the electric field at the 

surface of the half-spaceo The exciting electric field has a real component 

which decreases monotonically with depth over the extent of the cylinder; the 

imaginary component rises and then falls. The primary fields versus depth 

are shown in Fig. 6-70 The equivalent current depicted in Fig. 6-4 where 

~/~o = 25, reflects the basic behaviour of the exciting field; however, the 

field lines are pulled closer to the surface. As the conductivity contrast 

increases, the constant current lines become more strongly warped upwards 
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RERL J 
C~NT~UR INTERVAL IS 
D~1E1 RMP/METER2 

IMRGINRRY J 
C~NT~UR INTERVAL IS 

OsSEO RMP/METER 2 

CURRENT MRPS FGR MGDEL 1 
SCJURCE NUMBER 1 

C~NOUCTIVITI C~NTRRST IS 2.50E1 

Fig. 6-4 
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RERL J 
C~NT~UR INTERVAL IS 

0.2E1 AMP/METER 2 

IMRGINRRI J 
C~NT~UR INTERVAL IS 

0 .. 1El RMP/METER 2 

CURRENT MRPS FOR MODEL 1 
SCJURCE NUMBER 1 

C~NOUCTIV1TY C~NTRRST IS 3&66El 
Fig. 6-5 
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RERL J 
C~NT~UR INTERVAL IS 

0 .. 2E1 RMP/METER2 

IMRGINRRI J 
C~NT~UR INTERVAL IS 

0 .. 1E1 RMP/METER2 

CURRENT MRPS FOR MODEL 1 
SCIURCE NUMBER 1 

CCINOUCTIVIT\ CCINTRRST IS S~OOEl 
Fig. 6-6 
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REAL e(-1 + j )x/8o 

6 

IMAG. e (-I + j ) x 18 o 

2 6 

Variation of field strength for a plane wave 

incident on a conductive half-space 
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and current flow is being forced towards the outer parts of the body. 

Since the body is still well below the inductive limit when ~./~.=50, 

. 
a good percentage of the current still flows in the central region of the 

body. 

Some of the anomalous fields associated with Jre are shown in Fig ~ 6=9 

to 6-10. Fig. 6-9 shows total electr~c field at the surface of the half-

space with 

E"' -To+•l - 1. + 6-34 

The electric field exhibits a broad minimum which bottoms out directly 

over the cylinder. The phase of the total electric field exhibits a 

different behaviour. On the flanks of the body the phase shows a lead of 

about 3 or 4 degrees; directly· over the body the phase lead decreases and 

for the lower conductivity becomes a lag. The explanation of this behaviour 

lies in the fact that directly over the body the current near the top of 

the cylinder, which is also the largest, dominates the secondary fieldo 

On the flanks, the anomalous field is generated by the total current flow 

in the cylinder; the distance to the cylinder is larger and the integral 

over the cylinder weighs the current contributions more evenly. 

The behaviour of E is most easily explained by the phasor diagrams 

in Fig. 6-8. The analysis gives a gross estimation of the equivalent current 

and field behaviour (a) for the whole body as an average and (b) for the 

near surface portion of the body only. While this is somewhat over-simplified 

synthesis of the response, it does explain the gross features of the anomaly. 

To some extent, ~he phase lags due to propagation through the background 

medium have the effect of making the body look more conductive than it really 

is since these lags cannot be differentiated from the self-inductive effects 

which cause a similar lag. 
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E0 mean in body 

E
0 

surface 
-----------------------i~==~~~~~--------------~------- In-phase 

Ea at 
surface 

-

(a) Mean body behaviour 

E at top 
aof body 

E at su a 

Quad ature 

-

-
Je at top of body 

_ ~ E'T'otal at surface 

E0 at top of body 

E surface I h 
--------------------------~~=--*---J~--------~~----- n-p ase 

cp,- lag due to propagation 
through Earth 

~&-self-induction lag 

f/>_ .. - E a j w J yields 90° • a e 
lag 

cl> .. -lae; due to propac;ation 
through Earth 

(b) Top of body behaviour 

Fig. 6-8 Phasor diagram illustrating physical mechanisms 
for observed TE anomalies 
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In Figo 6-10, the total H
1 

component of the magnetic field at the 

surface of the half-space is showno In this diagram, H
1 

has been 

normalized against the primary magnetic field at the surface~ The plotted 

normalized field is 

6-35 

The total horizontal magnetic field drops below that of the half-space 

on the flanks of the body and rises to a maximum about 20% above the half-

space field directly over the body. The total field lags the primary 

field except at large lateral distances where it leads slightly. Directly 

over the body, the field exhibits a dimple in the phase angle and the lag 

shows a minimum directly over the body. The explanation of this dimple 

follows that for the electric field behaviour. The current flow at the 

top of the body strongly influences the anomaly directly over the body~ 

Since the phase of the equivalent current at the top of the body differs 

from the mean phase of the equivalent current, the phase curve of the 

anomalous fields shows a fluctuation directly over the body. This fluctu-

ation should be very depth dependent and vanish completely for bodies where 

the depth of burial makes the distances from any point in the cylinder to 

the surface more equal. This has been observed experimentally by Farstad 

(1970). 

In Fig. 6-11, the normalized impedance at the surface of the half-

space is shown. The normalized impedance is defined as 

Z..., -= ( E;'o+-a\ / 1 H.,.~.._ ••) = ( ,E·h.~a\)/(~' H T""-a\ I H of 
6-36 

when'H l and'Ho represent the e, component of H only. Aside from 
tot a 

normalizing factor ZN is just the ratio of the curves shown in Fig. 6-9 

and 6-10. ZN shows a smooth variation over the structure dropping to a 

minimum directly over the body similar in many ways to the electric field 
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variation. The phase ~hows a lead over most of the spatial range with 

the dimple directly over the body being even more pronounced. The apparent 

resistivity fa commonly used in magnetotelluric sounding is given by 

\ r a I = fo l z •. .1 ~ 

where ) 0 -:::. 1/\S"o. 

The results of the numerical computation compare favourably with the 
' 

scale model data collected by Farstad (1970). The experimental data are 

denoted by e's on the diagrams in Fig. 6-9, -10, and 11. The amplitudes 

of the experimental E and H fields do not agree perfectly with the compute4 

data; however, the general shape of the responses is the same. The phase 

measurements show good agreement in general behaviour but considerable 

deviations from computed responses occur. The normalized impedance shows 

much better agreement than the E and H responses. 

In general the comparison is encouraging. The deviations between the 

experimental results and the theoretically computed responses can be 

rationalized in several ways. The first area in question is the numerical 

solution. Could some of the approximations be affecting the result? Compu-

tational errors were checked by testing the susceptibility of the responses 

to changes in the numerical computation parameters such as N, M and the 

accuracy of the numerical integrals. Thes.e parameters were found to make 

little difference to the response. In addition, the programs were checked 

against other knov~ results (next section of this ~hapter) and no major 

discrepancies were found. Another significant factor is the effect of the 

finite strike length of the body; this effect is difficult to assess quanti-

tatively. Current channelling effects, which saturate very quickly with 

increasing conductivity contrast, would limit the current in the cylinder 

to being less than that for an infinitely long body; an under estimation 

of the electric field anomalies could, therefore, be expected. Another 
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factor which must be appreciated is the difficulty in designing and 

constructing a scale model which simulates an idealized structure. The 

construction of measurement probes which do not significantly alter the 

system is a difficult tasko Whatever the exact cause of the discrepancies 

in E and H~ the effects in .the two components oppose each other in com­

puting ZN since excellent agreement is found for the impedance amplitude 

and phaseo 

TE Model 2 

This model was chosen in order to compare the least squares method 

of solution with results obtainned by straight digitization of the integral 

equation as done by Hohmann (1971) and solutions obtained by finite dif­

ference as described by Wright (1969). The model and its parameters are 

described in Table 6-3. The exciting fields are those of a vertically 

incident plane wave and of a line source placed on the surface of the half­

space one skindepth to the left of center of the body. The equivalent 

current was computed for various values of 6 1 /~o and some of the anomalous 

fields computed at the surface of the half-space are compared with results 

obtained by Hohmann and Wright. 

The equivalent current for the plane wave source is shown in Fig. 6-12 

for a number of ~/~o ratios. The equivalent current behaves in a 

similar manner to that given for model 1. For small conductivity contrasts, 

JeN ~~EO and the ~ps reflect the structure of the exciting field. As 

the conductivity contrast increases, the self-inductance effects start to 

take over and the current is forced towards the edges of the cylinder where 

the inductive impedance is a minimum. The points for maximum concentration 

of current are the top and bottom of the body. In addition, the relative 

phase of the current changes from being predominantly in-phase with the 



Table 6-3 Data for TE Model 2 

Geometrical 

Ele.ctrical 

A = 0.015 

I<= 10.0 

D = 3.33 

aa_j tTo = 4. 0 , 9 • 0 , 4 9 • 0 , 9 9 • 0 , 4 9 9 • 0 ,- 9 9 9 • 0 

rr. = 1.0 mho/meter 

Numerical Solution 

N = 4 

M = 4 

p = 8 

Q = 10 

Source Types 

1. Plane wave 

2. Line source 

Sketch of Geometry 

Line source Air 
1 bo -~) 

0 • 05 &o Earth 
t 

0 • )Oo ¢.=1 

! 
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' 

Fig.6-12 Equivalent current for TE model #2 for various conductivittcs 
for plane wave excitaion. 
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Fi~Q 6-12 cont'd. Equivalent current for TE model #2 for variou~ 
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Fig. 6-12 cont'd. Equivalent current for TE model ¥2 for various 

conductivities for plane wave excitation. 



exciting field to a lag between 45° and 120° at various points in the 

body. 

The normalized impedance over the body at the surface of the half-

space is shown in Fig. 6-13 for the various conductivity contrasts. The 

impedance amplitude shows a deeper and deeper minimum directly over the 

body as the conductivity contrast increases. For small contrasts, ~ 

exhibits a phase lag over the body; this reflects the phase retardation 

associated with propagation through the background medium. As the 

conductivity increases, the self-induction effects of the body set in and 

the mean phase of the equivalent current is significantly altered. This 

generates a phase lead in ZN. The proximity of the top of the conductor 
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to the Earth's surface and the fact that the phase of the equivalent current 

near the top of the conductor is considerably different from the mean phase 

of J results in a dimple in the phase curve similar to that seen for model 1. 
e 

The x's on the 1000:1 curves denote the response obtained by Wright for 

the same model. There is very good agreement between the two sets of 

data. The only discrepancies occur far out on the flanks of the anomaly. 

These are probably due to edge effects in Wright's finite difference solution. 

The J response for the line source excitation is shown in Fig. 6-14. 
e 

The excitation electric field is given by 

6-38 

where r5 is the location of the line source. The current in the wire is 

taken to be 1 amp. The basic behaviour of the equivalent current is much 

the same as that for the plane wave excitation with the difference being 

the non-uniform nature of the source field. The current exhibits the same 

skindepthing effect and attempts to concentrate itself in the upper and 

lower ends of the cylinder cross-section where the self-inductance is a 

minimum. 
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Fir;. 6-14 Equivalent current for TE 'model #2 for various conductivities 
and line source excitation. 
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The magnetic fields at the surface of the half-space were computed on 

a profile over the body and were normalized by a factor 

H 6-39 

where \r-rs\ is the radial distance from the line source. This is the 

amplitude of the magnetic field about a static line current of 1 amp. 

Fig. 6-15 shows the horizontal magnetic field as a function of position 

for various conductivity contrastse The vertical magnetic fields for the 

same profile are shown in Fig. 6-16. The curve 6,/~o = 1 gives the 

normalized half-space response for both components. The superimposedx,A)•~ 

are data obtained numerically by Hohmann (1970). There is extremely 

good agreement between the two sets of data. The only discrepancies . 

occur in H directly over the model; the peak values of H obtained by 
X X 

Hohmann are about 2% smaller than those obtained in this study. These 

variations are most likely due to differences in the numerical solution methods. 

(iv) TE Sunnnary 

The preceding results indicate the usefulness of the least squares 

approach to obtaining solutions to the TE integral equation. The data 

presented is not an exhaustive analysis of these models or of TE models 

in general and a number of numerical details should be summarized before 

leaving TE solutions. Onefeature which was found was that changing the 

polynomial degree of the approximation to J did not significantly alter 
e 

the response of the preceding models. In fact for TE model 2, the response 

was computed for (N, M) = (2, 2), (2, 4) and (4, 4). Only for the (2, 2) 

case and large ~/60 ratios was there any detectable difference in the 

response and this was only about 1 or 2%. For larger bodies the polynomial 

degree becomes more important but is still not a major factor since the 
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solution is an approximation in the least squares sense and therefore 

gives a smoothed version of the true response even when a much higher 

degree polynomial is required to be representative of every detail of the 

true solution. Another factor in the solutions which was considered was 

the accuracy of the numerical integrals; the error tolerance was varied 

from 1% to 0.1% and again very lit"tle variation was noticed in the response. 

The number of error points in the squared error estimator is also a 

' parameter of · the solution which should be mentioned. In general, the number 

of error points was chosen such that the average number of points gave a 

(' )''2. mean average spatial separation of less than 0.5d 1 • 6,=( '2../WJJ.oe5'1 is 

the skindepth in the anomalous region. For very small bodies and small CS./tf"0 

the number of error points was taken to be greater than the number of 

unknown parameters. The response is not overly dependent on this parameter 

since the points are spaced in such a manner as to emphasize the dominant 

part of _the solution, namely the current near the surface of the anomalous 

body. The combination of the facts that the solution is an approximation 

in the least squares sense and the current is solenoidal results in a 

highly stable scattering matrix. This accounts for the insensitivity of 

the response to minor variations of the solution parameters. In the TM 

response the mixture of the non-solenoidal and solenoidal currents makes 

the solution considerably more sensitive to these parameters. 

The computation time for a model was difficult to judge for general 

usage since every job run was for a specialized purpose. Opening up the 

programs and using multiple sources for varying conductivity contrasts in 

a straight-through production mode would drop the average time per model 

considerably. The computations of the numerical quadratures were the most 

expensive part of the analysis; for a given geometrical model, polynomial 

degree and accuracy of the numerical integrals, all the integrals for a 

response would require from about 10 seconds to about 60 seconds of CPU 



time on an IBM 370-165. The remaining computations consumed less than 

5 seconds per 10 source configurations and one conductivity; this factor 

was controlled mainly by the maximum polynomial degree of the solution. 

(The maximum core requirements in any stage of the processing were less 

than 120K bytes or 30K words of memory). 
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These figures for a single run compare with those required by Wright 

and Hohmann for the computation of the response for similar models. Hohmann 

used a grid subdivided into spatial increments of 0.6 S1 in most instances. 

The anomalous electric field was solved for at the discrete set of grid 

points. In the model 2 discussed here 40 grid-points were used to evaluate 

the response. The computation time for the solution in this manner was 

approximately 30 sec. on a CDC 6400 computer per geometry, source and 

conductivity contrast. The finite difference solution used by Wright 

required digitization of the host medium and the air or insulating region 

above the half-space as well as the body itself. The division interval 

was in general on the order of about 0.25 skindepths in each medium except 

in local regions near the body where geometrical spreading effects might 

be significant. Computation time by the finite difference method required 

about 60 seconds of CPU time on an· IBM 370-165. 

One point which should be stressed before continuing on to the TM 

analysis is that the TE response is a pure "inductive" response. The electric 

fields and currents are parallel to all conductivity variations; as a 

result, the conductive channelling or depolarization operator is not activated. 

The TE impedance operator does not exhibit the bimodal feature of the general 

electric scattering problem discussed in chapter 4. In fact the response 

is analogous to that of a simple RL series circuit as a function of frequency; 

at small (WL/R) the resistive term dominates the response while at large 

(U>L/R) values the inductive term is the dominant factor in determining the 

response. 
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6-3 TM Response 

(i) Integral Equation 

The TM response of the cylinder is formulated in terms of an equivalent 

current J which is a 2-component vector which lies in the plane perpen­
e 

dicular to the strike of the cylinder. The components of J are denoted 
e 

by(J
1

, 0, J
3

) and are assumed independent of the x
2 

coordinateo The 

integral equation for J is obtained using the 2 dimensional TM Green's 
e • 

dyadic derived in appendix B. The result is the vector Fredholm equation 

6-40 

where E
0 

is the excitation electric field and is also a 2 component vector 

with components (E
1

, 0, E
3
). The Green's dyadic is listed in Table 6-4. 

Upon regrouping 6-40 and applying Gauss' theorem, the integral 

equations for the components of J are 
e 

where 

~. ):;: a, . 

[ J ( L1 +Lz.);jJ('<"') 1 d)(~ 
-.;), '1(;:-~, 

6-41 

6-42 

6-43 

The ~ term is the conductive channelling term and it involves only surface 

integrals (line integrals for 2-dimensional structures) when 

inside the structure. 

() is constant 
a 

The approximate solution for J was chosen to be a power series 
e 

expansion. The expansions for J
1 

and J
3 

have the form 
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Table 6-4 ?. Dimensional TM Green's Dyadic 
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.... N 
J", z. ~ I 

f"'~"" c .. ""' 
n:.o ""'~0 

6-44 

:r3 ~ ~ 3 r II\ "t""" c"""" h=o "":o 
6-45 

where ( S', "t ) are the normalized coordinates 

6-46 

and the (xl, x3) are the coordinates of the centre of the cylinder. Invoking 

the fact that V· J = 0 inside the cylinder when <r is constant, the 
e a 

coefficientsof J
1 

and J 3 are not all independent and the condition 

(-.+t) 

IRA 
3 

C. V\ J ""+I 
6-47 

must be respected. This condition affects all the coefficients ~xcept the 

c ' and c 3 terms for which the divergence operator is a null operator. 
o, m n, o 

The divergence free condition reduces the number of unknowns required to 

specify J and 6-44 and 6-45 can be rewritten as 
e 

t I 
.., 1'1 

~., /1'L lo1 J, ~ I ::. Co....,. "'t + c.,h\ 
..,~0 '""so .. ,, 
"' "' 

N 

J3 2:.. 3 
~ I ( I(~')) ~ ~ :. 

c.\'\0 ~ + c.\0\4, ..... , - ~ ~ I>'{_ 
V\:0 ""-:o 

""" :. ' 

6-48 

6-49 

The error vector G -= (e>,, o, 0.3) is defined as the residual when the 

approximate solution for J is inserted into the coupled integral equations 
e 

6-41 and 6-42. ~he components of ~ are given by 

e 
' \ + 6-50 

0 3 + + 3 411. J -
C"'o L-("'O - E;, 6-51 

i i 
where U and c are given in Table 6-5(a) and (b}. The subscript summation 

over the appropriate range is implied. 
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Table 6-5 (b) TM Impedence Coefficients 
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In an analogous manner to the TE formulation, 0 is evaluated at 

a discrete set of points ( ~ P 
1 

!?11- ) in the cylinder and a discrete total 

squared error estimator computed by 

6-52 

The set of error points were chosen as the roots of Chebychev polynomials 

of degree P and Q. 

6-53 

This set of points was chosen since it weighted the error in the corners 

and at the edges of the cylinder more heavily than that in the central 

portions of the cylinder; this is in accord with the physical nature of 

the response. 

i The coefficients c are split into real and imaginary parts 
nm 

c,;'ft\ = ol. ~""' + j (3 ,}.,. 

Minimization of the discrete squared error, ][ 0 w.r.t. 

0 0 

6-54 

and t2 ' 
l"""v-s 

6-55 

yields a set of linear equations in the set of unknowns ( o<:: ~""" , ~~"") • 

The resulting coefficient matrix for the set of equations is tabulated in 

Table 6-6 and is referred to here as the scattering matrix in subsequent 

discussions. The individual matrix elements are also shown in the table$ 

(ii) Numerical Solution 

The TM response requires considerably more detailed analysis than does 

the equivalent TE response; the vector nature of the electric fields and 

currents and the excitation of conductive chanelling effects add to the 

complexity of the problem. The details o.f the numerical analysis of the 

TM response more or less follow those of the TE analysis. The parameters 
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characterizing the numerical solution are listed in Table 6-7. The sequence 

of computations followed that of the flow chart given in Fig. 6-17. 

The numerical computations were centered around the numerical integra-

tion of the coefficients required to generate the scattering matrix. 

Following the integration stage, the scattering matrix was generated for a 

specified conductivity contrast and the inverse of the matrix was computed 

and used to find J for excitation by a plane wave vertically incident from 
e • 

the air on the half-space. Plane wave excitation was chosen since the 2 

dimensional TM model has little practical use except for the analysis of 

magnetotelluric responses and obtaining an insight into conductive channelling 

effects. The final stage of the computations was that of deriving plots of 

the equivalent current and the anomalous fields at the surface of the half-

space. The numerical algorithms were implemented directly from the formu-

lation. given in the previous section and little more can be said about the 

details of the computations. The most important part of the programs, namely 

the numerical integrations, were carried out following the technique given 

in Appendix D. 

(iii) Numerical Results 

The numerical r~sponse of a pair of very similar models is discussed 

in this section and the responses are compared with those computed by 

Wright's finite difference method. The model parameters are listed in 

Table 6-8. The two models have identical cross-sections and differ in the 

fact that one is located at the surface of the half-space while the other is 

located at a depth of 0.1 go below the surface of the half-space. The com-

puted responses for these models are presented in the following format. 

First, the equivalent current maps for the given model for different 

conductivity contrasts are given. These are followed by plots of the 



Table 6-7 Table of TM Solution Parameters 

Geometrical 

Electrical 

A - cylinder half-width in skindepths 

R- thickness to width ratio 

D - depth of burial to half-width ratio 

~~~~- anomalous conductivity ratio 

~0 - conductivity of background half-space 

Numerical Solution 

N - maximum polynomial degree in solution 

P - number of error points in x 1 dimension 

Q ~ number of error points in x 3 dimension 
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Table 6-R Solution Parameters for TM Model 1 and 2 

Geome·trical 

Electrical 

A ~ 0.4 

1l. = 1.0 

D = 0.0 and 0.1 

cr~; 5"o = ..... 0. 5' 4. 0, 9. 0, 49'. 0, 99. 0 

G"'o = 1. 0 mho/meter 

Numerical Solution 

N = 4 

p = 8 

Q = 8 

Sketch of Geometry 

o.o & 0.1 

t 
o.4So 

~ 

Air 

Earth 

. G'o = 1 
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normalized electric field or normalized impedance (the two are equivalent 

as shown below) at the surface of the half-space. 

The anomalous field E . at the surface of the half-space is given by a 
a, a~ 

Ea :: J w...u..) J ifc.r,v-')·Je.C.-')Jx,'d'l~ 
-a, -a3 

6-56 

Denoting the field associated with each individual element of the power 

series expansion as 

a, a:> ~ II\ ...,. 

j w .U.o ) S );j ('l',v') • l 1 
-?1.

1 €kd-,:,' d)£~ 

the electric field is given by 

Ea 

-a, -.13 

-I( 
E.,_ 

6-57 

6-58 

At the surface of the half-space the only component of E is the~. com-

ponent. Both the vertical component of E and tangential H field (there 

is no vertical magnetic field by definition of the problem) vanish at the 

surface of the half-space. This result is discussed in detail in section 4 

of Appendix C. This condition is valid for low frequencies and sufficiently 

high conductivities that displacement currents are negligible. As a result, 

the normalized impedance ratio defined as 

6-59 

becomes simply 

~ N - .+ 6-60 

and is identical to the normalized electric field at the surface of the 

half-space. The superscripts on E and H denote the components at the fields 

under consideration. 
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TM Model 1 

The first model considered is a cylinder with a square cross-section 

of dimensio~ 0.4 8o x 0.4 So which is located at the surface of the half-

space. The response is computed for a sequence of conductivity contrasts 

varying from 0.5 to 100. The equivalent current for the various conducti-

vities is shown in Fig. 6-18. 

The equivalent current is displayed as a complex , vector function of 

position in the cylinder cross-section. The diagrams are reasonably straight 

forward and most of the features are self-explanatory. The current compo-

nents were computed on a grid of points in the cylinder and were transformed 

to a set of arrows of scaled length and direction. The two maps for each 

conductivity contrast give the real and imaginary components of J • The 
e 

relative phase of the currents is given in terms of the electric field 

of the plane wave at the surface of the half-space in a similar manner to 

that discussed for the TE resposne. The scale for each map is given 

by the arrow at the bottom of each map; the current amplitude, in amp/m:, 

equivalent to the length of this arrow is marked beneath the arrow. 

The equivalent current shows a marked variation as <f\ I <r"o is varied. 

For Q 1 /~o = 0.5, the the cylinder is more resistive than the background 

medium; as a result the equivalent current is the opposite direction to 

the incident electric field. J is more or less an image of the exciting 
e 

electric field (see Fig. 6-7) as a function of depth; near the corners, 

however, the current channelling effects distort the current from the 

horizontal. As Oj / 6"'o becomes greater than unity, the equivalent current 

reverses direction. = 5.0, the basic variation of J again 
e 

reflects the variation of the incident electric field; however, there are 

significant departures from the planar behaviour of the exciting field. 

Conductive channelling effects cause the current to be channelled into an 
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Fig. 6-18 cont'd. Equivalent current for T!V' model 

#1 for different conductivities. 
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out of the cylinder at the lower corners. The self-inductance of the body 

also exhibits itself by a slight skindepthing effect; for ~,1 G"o = 5.0, the 

body has an internal skindepth ~ 1 -:.( ~j 112J\~~l-l S'0 • The skindepthing effect 

causes the real current to be pulled towards the top of the cylinder in 

a curling current flow; this curling of the real current results in a 

weak but closed eddy current flow being established at the top of the 

conductor in the imaginary component of J. Increasing ~/~o to 10.0, 
• e 

enhances the inductive effects and ' the eddy pattern in the imaginary com-

ponent of J is stronger. One other feature that is beginning to occur 
e 

is the saturation of the conductive channelling effect; the currents flowing 

normal to the edges of the cylinder are growing smaller relative to the 

closed solenoidal current flow which is dominantly parallel to the sides. 

As the cr; I cro ratio is increased further, these effects are enhanced; 

at <),I G"o equal to 50.0, both the real and imaginary components of J flows 
- e 

"' around the cylinder as close to the outer surface as possible and with J -~ 
e 

at the surface small in comparison to the peak currenta The imaginary com-

ponent of J is much more convoluted showing a small eddy at the top of 
e 

the cylinder and a larger closed eddy in the lower two thirds of the body 

which has the opposite sense of flow. 

At a 50:1 conductivity contrast the numerical solution is being 

stretched to its limit; the body is about 2.8 internal skindepths across 

for this ratio. To emphasise _the approximate, but flexible nature, of the 

least squares solution, the solution for a conductivity contrast of 100:1 

is shown for discussion purposes. For tS./ 6'o = 100. 0, the body is internally 

four skindepths across. The equivalent current shows an extension of the 

self-induction effects and saturation of the conductive channelling effects. 

The closed eddies are much stronger and the real component of J has been 
e 

squeezed closer to the cylinder surface. While the numerical solution has 

limited validity at this conductivity contrast, the solution does exhibit 
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the type of response to be expected in a gross senseo The least squared 

error is attained by matching of gross features at the expense of local 

detail. The consequence of this is more readily seen in the computation 

of the anomalous fields at the surface of the half-space , 

The normalized anomalous electric field at the surface of the half-

space for each <r, I CS'"o ratio is shown in Fig. 6-19 along with results 

obtained by Wright's finite d~fference solution method . As pointed out 

previously the normalized impedance ZN is equivalent to E~IE~~ For low 

contrasts, the least squares integral equation solution and the finite difference 

solution agree within one or two percent; the discrepancies reflect the 

differences in the numerical solution methods. At <l, I <>o = 50.0, a slight 

but consistent difference between the two solutions is visible while at 

a contrast of 100:1, the anomalies directly over the body show only similar 

trends and the solutions only begin to match at large distances from this 

cylinder. Here th~ averaging nature of the least squares method yields 

the solution at large distances but the local details of the response are 

incorrect. At large distances from the cylinder the anomalous field is 

roughly an average of J over the cylinder and local variations in J become 
e e 

less important. This smoothing is shown even more clearly by the next 

TM model discussed. 

TM Model 2 

As pointed out previously, the second TM model differs from the 

first only in that the top of the body is located 0.1 6~ below the surface 

of the half-space. (see Table 6- 8} The sequence of equivalent current 

arrow maps is shown in Fig. 6-20. These diagrams show basically the same 

behaviour as those for model 1; the main difference is that the current is 

channelled into the body at all four corners. As the conductivity contrast 
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runs from small to large values, the cylinder response runs from the 

conductive channelling response to the inductive response. 

The anomalous fields associated with J result in the total electric 
e 

field or normalized impedance profiles given in Fig. 6-21. The discon-

tinuity in the field strength of the last model has now vanished since the 

model is buried at a finite depth. The burial of the body helps smooth 

out the localized discrepancies which are a product of the least squares 

type of solution. As a result, the surface fields are much smoother and 

much better agreement with Wright's finite difference solution is obtained 

in this case. With the exception of the points directly over the centre 

of the body for ~,/ ~0 = 100. O, the two sets of solutions show differences 

of only 1 or 2%. 

(iv) TM Summary 

The preceding -models by no means exhaust the possible combinations of 

parameters which should be examined in order to investigate the least squares 

solution method and the TM response to their fullest extent. Such a 

detailed presentation of data is beyond the scope of this thesis project. 

A number of other models were investigated during this study in order to 

evaluate in a rough -sense the variability and reliability of the least squares 

method of solution in TM problems. A summary of the general results found 

during this analysis is given here in order to clarify points not discussed 

in regard to the two models analysed in detail. 

The square cylinder model was run for several other cross-section 

dimensions which were 0.1, 0.2, and 1.0 ~o to a side. The response, aside 

from minor variations due to geometrical factors, was the same. A surprising 

result in the initial stages of analysis was the failure of the least 

squares method to yield good results for small bodies with high conductivity 
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contrasts. In general, ~, / u-D = 50. was the cut off point for reliable 

results for small bodies. One would anticipate at first glance that 

skindepthing effects would not become a dominant factor .in the response 

until much higher conductivity contrasts. The reason for the failure at 

high conductivity contrasts was due to ill-conditioning of the scattering 

matrix which resulted in gross errors .in the numerical inversion of the 

matrix. 

As discussed in a general context in chapter four, the integral 

operator governing the scattering equivalent current is bimodal and the 

inductive or solenoidal currents can see a much different impedance than 

the non-solenoidal currents. For small bodies, the two impedances become 

highly mismatched when the anomalous complex conductivity of the body is 

large. In terms of the numerical solution of such a problem, the discrete 

matrix equation has a coefficient matrix with large differences between 

various eigenvalues. Since the least squares matrix is proportional to 

the square of the integral impedance operator, the least squares scattering 

matrix will have eigenvalues with ratios proportional to the square of the 

intrinsic impedances of the operator. As a consequence, the matrix becomes 

very highly ill-conditioned for small bodies with large conductivities. 

Detailed investigation of the TM scattering matrix and its numerical inverse 

showed this to be the case for small bodies. While various ways of inverting 

the matrix were tried, the only way to improve numerical inversion of the 

matrix was double precision arithmetic on the computer and since it could 

only afford partial resolution of the problem it was not implemented. Higher 

accuracy of the arithmetic automatically required higher accuracy in 

numerical evaluation of the integral coefficients which became impractical 

from a computer time standpoint. Thus the least squares solution of the 

TM scattering problem is limited to conductivity contrasts of less than 50:1 

for small bodies with a A'<:: 0. 3 S 0 being a general rule. 
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The TM response of larger bodies was more in line with the expected 

behaviour. The conductivity contrasts which could be modelled accurately 

depended on the size of the body. The larger the body, the more quickly 

the internal dimensions in internal skindepths become larger than 

that which the polynomial degree of the approximate solution could handle 

accurately. Above a size dependent conductivity contrast, the solution 

follows the gross behaviour of the true response but departs considerably 

on the local scale. At large distances from the body where the scattered 

fields are approximately an average of the anomalous current the least 

squares response is good to much higher conductivity contrasts. Computa­

tions of scattered fields inside or in the proximity of the body will 

exhibit large deviations from the true solution. While the polynomial 

degree can be increased and the solution for larger bodies at higher con­

ductivities computed, computational practicalities put a limit to the maxi­

mum degree attainable. In the initial part of the study of this problem~ 

polynomial degrees greater than 5 were out of the question because of com­

puter hardware available and the number of computer dollars which could be 

invested in a particular problem. 

Other factors in the numerical solution are the number of error points 

used in computation of the total squared error and the accuracy of the 

numerical evaluation of the integral coefficients. The number of error points 

was not a major factor in the solution. The number of points was taken to 

be greater than twice the number of unknown polynomial coefficients or such 

that the average spatial subdivision of the body was about 0.5 internal 

skindepths. With the exception of small bodies with high conductivities 

the accuracy of the numerical quadratures was not a significant factor in 

determining the response. These two factors together with the maximum 

polynomial degree are the basic factors governing the computer time required 

for determination of the responses. 
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The computer time required for the various stages of computation 

were highly variable, and generally applicable numbers are difficult to 

give. For the models given here, with a maximum polynomial degree of 4, 

sixty four error points and numerical integral accuracies better than 0.1% 

required between 40 to 60 seconds of CPU time on an IBM 370-165 ~ Cutting 

back on the numerical quadrature accuracy to about a 1% tolerance, dropped 

this time to about 10 seconds of CPU time. Computation of the scattering 

t 

matrix and its inverse plus computation of the surface fields required 

between 10 and 20 seconds of CPU time for the initial run of a given geo-

metrical model and about 5 seconds for each subsequent conductivity contrast. 

This computation time is compatible with the finite difference method which 

required about a minute of CPU time per model. For numerous responses at 

differing conductivity contrasts the least squares method is considerably 

less expensive. All stages of the computer programs were designed to run 

in less than 120K bytes or 30K words of memory. 

In summary, the least squares solution method as applied to the TM 

response is a moderately useful technique. There are .a number of drawbacks 

in using this method in general for small highly conductive scatterers 

where both solenoidal and non-solenoidal currents form the total current flow. 

These particular bodies result in ill-conditioned matrices. The least squares 

technique ·aggravates this ill-conditioning by generating a scattering matrix 

which is proportional to the square of the general impedance . On the other 

hand, the least squares solution provides reliable and inexpensive compu-

tations of the response in ranges where ill-conditioning is not a problem. 

For large bodies, it can also provide economical estimates of the response 

if the body is buried sufficiently deep in the half-space to ensure local 

discrepancies in the solution are smoothed out by the averaging effect of 

the integral required to compute the anomalous fields at the surface~ 
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CHAPTER 7 

ELECTROMAGNETIC SCATTERING BY A THIN RECTANGULAR SHEET 

7-1 Introduction 

The electromagnetic response of a thin rectangular sheet is of 

considerable interest in applied geophysicso Analysis of the thin sheet 

model provides a quasi-three dimensional structure which can be used to 
• 

investigate the roles of the inductive and conductive and/or capacitive 

effects in an electromagnetic scattering problem. The inductive response 

of a thin conducting sheet in free space has been analysed by Lamontagne 

and West (1971) for parameters which permit use of the quasi-static assump-

tions. In this chapter the total response is analysed from the eigencurrent 

or characteristic mode point of view. The inductive response obtained by 

Lamontagne and West can be shown to separate out of the solution. 

The first step of the analysis will be to derive the equivalent current 

equations for the thin sheet. These equations are derived from the equations 

for the response of a rectangular parallelepiped. The thin sheet equations 

are obtained by letting one dimension of the parallelepiped become infini-

tesimally small. 

7-2 Integral Equations for a Parallelepiped in a Whole-Space 

The parallelePiped is illustrated in Fig. 7-1. The parallel~iped 

resides in a whole-space of complex conductivity 6 0 and magnetic permea-

bility ,.Uo the anomalous body has a complex conductivity 6, and is taken 

to have the same magnetic permeability as the background whole-space. The 

parallelePiped of dimensions (2a
1

, 2a.
2

, 2a.
3

) is at the center of the cartesian 

coordinate system (xl, x2, x3) with the associated unit vectors (~1' ~2' e3) 
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The anomalous conductivity is given by 

; :. ' 
Bl ... · 4·) ,., I I 7-1 

where 

1 \x l ~ a. 

0 1 'IC\ > a 
and 

. -The equivalent source current J exists only in the volume, V, where 
e 

6""a is non-zero. The integral equation for J is 
e 

E"-' . 
.Te(r)-jc.>_..L.(oOD) ~~'(v-,v-·). ~(v-'~ cPv-•: 6'0 E 0 (r) 

v 
7-2 

where E is the external exciting electric field. For a homogeneous whole­
o 

~ ?11 space the Green's dyadic ~ ~ is 

7-3 

where 

,.,2 
and k 

0 
= (jw..u."'oJ is the propagation constant in the background medium. 

Substituting for in 7-2 and dividing through by up yields 

- j W..l.l. ) 3 (v- • ~·) ~e. (:r~~ "l.,.. I - ~o ~(.:re('<"'). ~}~ (rr') J~v-' - EC) 
v s 

7-4 

where the identities 

- ( ) -r ) .J ') I f - ") '\ ) J l. I J ) -r - ) d i I 7 5 v•} q,(n· 1 
-.J (_.rt Cot 'I" :;: - ) :r(lt' •'(\ ~(YY 1 q lr t 1(r,r' Q·S"c:.(Y' V'" -

v s v 

and '1· .:re.:;. o inside the volume have been used. The terms in 7-4 have a 

straight forward interpretation as discussed in chapter 4. The sum of these 

three fields must balance E , the exciting external field. 
0 

Equation 7-4 is a set of three coupled integral equations in the 
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three components of Je. While the analysis has been carried out for a 

rectangular parallelapiped, the equations hold for any: shaped body with a 

constant anomalous conductivity. 

7-3 Thin Sheet Equations 

The . thin sheet equations are derived from 7-4 by letting a
3 

--> 0 while 

the product GDa 3 remains fi~ite. The end product is a surface current on 

a sheet of zero thickness and infinite conductivity, but which has a finite 

surface conductivity. This model provides a simulation for real structures 

which are both geometrically and inductively thin. The geometrically thin 

constraint requires 

7-6 

The inductively thin requirement is 

7-7 

In the limit as a 3 --)0, the equivalent current must take the form 

7-8 

The surface current Ke will be defined in terms of Je by integrating Je 

over the thickness of the sheet; namely 

a'l 

j( e.(.~, ~-r.) ~ :::re (..,.,'h .. '{l) d)( 1 7-9 
"- -a) a,-o 

Performing this integration on each term of 7-4 and dividing by 2a
3 

yields the thin sheet equations. The form of each term in equation 7-4 

is shown in Table 7-1. The ohmic and inductive terms can be handled in 

a straight forwa~d manner. 

The capacitive or conductive term is the more difficult term to handle 

in the limit as a3 --~o since some of the integrals become singular unless 

Je has particular properties. The reason for this is apparent when the 

physical nature of the integrals is examined. The surface current 
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Table 7-1 Par~llP.lapiped to ~~in ~heet Tr8nsformation 
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component K
3 

corresponds to a surface distribution of electric dipoles. 

For a sheet of zero thickness K
3 

must be identically zero; the current 

component J 3 must remain finite as a
3 

-.+0. The amount of current flowing 

through the sheet is determined by the electric field normal to the sheet 

times the background conductivity; since this current amplitude remains 

finite as 6"0~ co and a
3 
-~ 0, K

3 
= .0. The terms involving K

3 
behave much 

like those for a parallel plate capacitor as the plate separation becomes 

infinitesimally small. At th~ point of zero spacing the theoretically 

capacitance becomes infinite, however, the capacitor actually becomes a 

short circuit. Thus the thin sheet of zero thickness and finite surface 

conductivity is invisible to electromagnetic fields which have an electric 

field which is totally polarized in the e3 direction. 

Additional constraints on the surface current are that K
1
=o at 

x
1 

= + a
1 

and K
2

: 0 at x
2 

= + a
2

• The current flowing perpendicular to 

the edge of the sheet results in a line charge or line current source/sink 

around the edge of the sheet. The self-energy of a line charge is infinite. 

The integrals associated with these line charges which grow in an unbounded 

manner can be viewed as infinite impedance paths; as a result, the currents 

in these paths have to vanish. 

The overall result for the thin sheet is that it can be characterized 

by a surface current K = (K
1

, K
2

, 0) which satisfies the integral equation 

7-10 

with the additional constraint that ~. n = 0 where n is the normal at 

the edge of the sheet in the plane of the sheet and E 01 ~ = (E
1

, E
2

, 0). 

The third component of E
0 

passes through the sheet as if it did not exist. 
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7-4 General Thin Sheet Response 

(i) Numerical Analysis Formulation 

As shown in the last section, the thin sheet problem reduces to one 

of solving a two dimensional vector Fredholm integral equation. The 

numerical solution of 7-10 is carried out using the eigencurrent technique 

discussed in chapter 4. The first step in the analysis follows the Galerkin 

procedure in which a discrete set of approximating currents is used to reduce 

7-10 to a finite dimension matrix equation. T~e following set of functions 

were used a·s the trial functions 

7-11 

7-12 

The arguments $' and 1?1. are dimensionless coordinates defined by 

7-13 7-14 

thus -1 _~ f,nt ~ 1. T (x) is the Chebychev polynomial of the first kind and 
n 

degree n. 

Equation 7-10 reduces to a finite set of linear equations by approxi-

mating K by a finite set of 7-11 and 7-12. The approximating set was chosen 
e 

as 

7-15 

where n + m ~ N. The maximum degree of the Chebychev polynomials is N. 

This leads to a set of M = (N + 1) (N + 2)/2 approximating functions for 

each Ki or a total of 2M coefficients 
i 

c 0 n,m 

From this point on, a matrix formulation of the problem is used. 

First, the row vector of approximating functions is defined as 

.. . .. . - 7-16 

The functions are grouped in ascending degree n + m = constant. Within 
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Table 7-2 General Thin Sheet Response: Rlements of 

Galerkin Matrices 
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with 

Lz1:: [R1-rj[xJ 7-21 

where [ R] = Real L Z] is the total resistance matrix and [ x1 = Imag 

[ Z] is the reactance matrix. The resistance matrix contains both the 

internal ohmic dissipation and the radiat~on impedance. If the background 

has a finite conductivity, the rad'iation impedance, which is the real part 

of -j~o..~.uol~1- ~Je>l corresponds to the ohmic dissipation in the background 

medium. The reactance matrix describes the energy storage in the internal 

electric polarization and external "electrostatic" and "magnetostatic" 

fields. 

The weighted eigencurrent problem becomes 

7-22 

The resistance matrix is diagonalized by the unitary transformation [ U] 

which is a matrix comprising the eigenvectors of [R 1 such that 

[ u 1 T [ R l L u 1 :: [ 0 l-.i) 1 7-23 

where [D (r.) 1 is a diagonal matrix containing the eigenvalues of l R 1 
1 

As pointed out in chapter 4, A,"' must be of the form /\..., -= \ ~ ~ \3"' Defining 

7-24 

and 

7-25 

7-22 reduces to the conventional eigenvector problem 

7-26 

Diagonalizing [X' 1 with the unitary matrix [ S l made up of the eigenvec.tors 

of [ K'] 

7-27 



where l)::.i are the eigenvalues of [X']. 

for 7-21 is then given by 

which have the associated eigenvalues 

The matrix of eigencurrents 

The formal inverse to the scattering matrix is given by 

The solution of the original scattering problem is then given by 
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7-28 

7-29 

7-30 

At this point the formality of reducing the integral equation to a finite 

set of linear equations is complete and this permits the approximate 

representation of the eigenfunctions of the scattering integral operator. 

In the next section, the eigenfunctions of a particular model are computed 

numerically in order to demonstrate the type of result to be expected. 

(ii) Numerical Results 

The approximate eigenfuntions for the model shown in Fig. 7-2 were 

computed to illustrate some of the ideas developed in chapter 4, with particular 

emphasis on the bimodal character of(B]. The response is characterized by 

the parameters listed in Table 7-3 and the particular parameters for the 

model shown in Fig. 7-2 are listed in Table 7-4. The maximum polynomial 

degree is 1 and was chosen as small as was reasonable to minimize the amount 

of data to be presented, 

The computations followed the sequence outlined in the flow diagram 

shown in Fig. 7-3. The first step in the analysis was the computation of 

the integral coefficient matrices of Table 7-2 which can be expressed in 
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Table 7-J GenerRl Thin Sheet Governin~ Parameters 

Geometrical 

a 1 = Half-leneth of sheet in meters 

a 2 /a1 = IR. = Width to length ratio 

Electrical 

::::: Angular frequency of excitation rad/sec. 

= Background conductivity 

::::: Background permittivity 

Sheet anomalous surface conductivity 

Numerical Solution Parameters 

N = ~aximum polynomial degree of 
approximate solution 
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Table 7-h General Thin Sheet: Model Parameters 

for Computer Analysis 

rad. I sec. 

mho I m. 

= fd. I m. 

mhos 

cR.. = 0.667 

a, = JOO m. 

N = 1 
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terms of the integrals 

I 

I ~ ' ..... P <t. -=- 11 T"' ( )') T""' ( ~) T p ( ~) T <t ( ~) d \" J .?t 7-31 

-· 
I ... :P9- = Jj If TM(~)T-(11l) ~(),~', "t,"t') TpC!')T~(,_•)dfJ,ttc:[f:bt' 7-32 

-· -' .... 

These integrals of the form 7-32 were computed numerically using a Gaussian 

scheme as outlined in Appendix D; the integrals of the form 7-31 were computed 

analytically. The integrals were tabulated and used as data for the programs 

which generated the [R] and [X 1 matrices. The resistance matrix was 

generated and diagnonalized; its eigenvectors and eigenvalues were then 

used to generate [x'] from [x] [x'] was diagonalized to yield the 

eigenvalues ~\ and the eigenvectors of[~]. The diagonalization of the matrices 

was carried out using a Jacobi iterative scheme. 

The resulting eigenvalues of t. R] are listed in Table 7-5 (a) and the 

eigenvalues for 6"!. >>? 1 for [ X1
] are listed in Table 7-5 (b). The eigen-

currents are shown in Fig. 7-4. The point to be noted here is that the 

eigenvalue spectrum is split into two distinct sets. Some eigenvalues 

of 5 
are of the order 10 larger than the members of the set 

of eigenvalues. The associated eigencurrents show distinct behaviour depending 

on which set they belong to. The large eigenvalues are associated with the 

channelling current flow pattern while the small eigenvalues all belong to 

the current flow patterns which are predominantly inductive in nature and 

are characterized by closed current loops or eddies. 

This brief set of computations was carried out to show the bimodal 

nature of [a] The electrical and geometrical parameters of the sheet 

were chosen to be typical of those that might be encountered in real geophysical 

problems. The solution demonstrates that geophysical electromagnetic problems 

are prone to generation of highly ill-conditioned scattering matrices. The 

lower the background complex conductivity, and the smaller the body on the 
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Table 7-S (a) Eigenvalues of [R] Matrix 

EiB;encurrent Ei~envalue 

1 1.74 X 103 

2 1.08 X 103 

3 7.54 X 102 

4 6.96 X 102 

5 _3.91 X 102 

6 2.39 X 10- 2 

Table 7-5 (b) Eigenvalues of [x'J Matrix 

Eigencurrent Eigenvalues 

1 9.76 X 10- 2 

2 7.02 X 10- 2 

3 4.00 X 10- 2 

4 3.53 X 10- 2 

5 2o25 X io- 2 

6 -1.33 X 10 1 
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scale of a wavelength d.n the host medium, the more ill-conditioned the 

matrix becomes. In the next section, the inductive response of the thin 

sheet which comes about in this limiting case is discussed. 

7-5 The Quasi-static Response 

(i) Numerical Formulation 

In analysing the respons~ of bodies which are small on the scale of 

the wavelength in the surrounding medium, the scattering matrix becomes 

highly ill-conditioned. The surface current for the thin sheet is totally 

determined by a subset of the eigencurrents. This subset is comprised of 

the set of currents for which the conductance or capacitance operator is 

a null operator. Physically this corresponds to the set of currents which 

are solenoidal for the body, namely 

7-33 

These currents are associated with the small eigenvalues of the general 

impedance operator. In essence, the non-divergence free currents are current 

limited; these currents complete part of their flow in the external medium. 

These currents are approximately the same order of magnitude as those in the 

external medium. The relative magnitude of these currents compared to those 

in the background medium is determined by the conductive channelling or 

dielectric polarization effects which are totally geometry dependent and 

can only enhance the complex current flow by an order of magnitude or so 

when the sheet conductivity becomes very large. On the other hand the solenoidal 

currents are limited only by the general self-inductance of the body. As 

the sheet conductivity becomes very large, these currents increase continually 

until they reach the inductive limit of the body. 

The basic equation for the solenoidal sheet currents is 

7-34 
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with the constraints that 

7-35 

Since K lies in the plane of the sheet and 
s K = 0, K may be expressed 

s s 

in terms of a scalar potential where 

Ks = 7- 36 

The condition ~s·n = 0 constrains U to be identically zero on the edge of 

the sheet. 

In the following analysis it is most convenient to take the half-length 

of the sheet as the unit length. In other words a 1 = A and all dimensions 

are given in terms of A. The sheet width to length ratio is defined as 

R = a
2
/a

1 
= a

2
/A • . These are the two geometrical parameters which character­

ize the sheet and are used extensively in the following analysis . 

The eigenfunction response for the solenoidal current potentials is 

formulated following the Galerkin approach. The current potential U is 

expanded in terms of the trial functions. 

7-37 

where 

7-38 

Following the matrix formalism adopted in the treatment of the total response 

analysis,[~] is defined as 

7-39 

and the coefficients c form a column vector [ C 1 of the same orderingo 
nm 

The total potential can be expressed as the matrix product 

7-40 

Since the test currents are given by 

7-41 
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the integral equation 7-33 reduces to 

7-42 

where the L F 1 [.f.] , and t 'H 1 matrices are given in Table 7-6 e In the 
I 

general case [ L ] is a comple.x symmetric matrix and ~~ is also complex. 

For the particular case of a conductive sheet in free-space for sufficiently 

low frequencies that the sheet dimensions are only a small fraction of the 

I 

free-space wavelength, the equation 7-42 simplifies further. With these 

conditions, the scalar function in the Green's dyadic reduces to 

4rr \v=-r 'I 
7-43 

Thus [.;() and }_FJ become real, symmetric matrices. The equivalent partition­

ing of [ .Z 1 as used in the last section is now applied to 7-42 and 

l £ 1 = [ R 1 + j [ x] 7-44 

where 

[ ."'/.. ] -=. ~ w M .. l( A [ /:..1 7-45 

[RJ .L [ F] 
<T's 

7-46 

Solution of the weighted eigenvector problem 

7-47 

results in a particularly useful and elegant solution to the induction 

equation. 

First, the matrix [ F] is diagonalized with the resulting eigenvectors 

defining a finite set of orthogonal functions in two dimensions. The unitary 

matrix composed of the normalized eigenvectors is defined as [V] with the 

property 

7-48 

where LD(f
1
)] is the diagonal matrix containing the eigenvalues of [ F J . 

Both [v] and fi are real and the fi are positive since [F] is a real, 
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Table ·7-6 Inductive Thin Sheet Response: Elements of 

Galerkin Matrices 

[F] 

[V] -
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positive definite symmetric matrix. The reactance is transformed to 

7-49 

and 7-47 becomes 

7-50 

where 

7-51 

Since [x'] is real and symmetric, L C '] and its associated eigenvalues x 
n n 

are real and 

7-52 

where 

[ x '1 [c~ 1 x"' [ c~ J 7-53 

Therefore, 

7-54 

where 

7-55 

The solution of the original equation becomes 

[ c 1 = [ c r\ J [ D ( - .j ot~ ) [ c"' 1 T 

l - J o( "'"' 

[W] 
A 

7-56 

where o(:: w (3 -::: w.ucssA is defined as the response parameter or induction 

number of the sheet. In the form 7-56, a very simple decomposition of the 

response has been obtained. For a given geometry, the effects of source, 

sheet geometry and electrical properties are completely decoupled. 

Each individual eigenpotential responds in the same manner as a simple 

wire loop. The solution can be viewed as the sum over a set of loop responses 

with the loops having differing·. inductance to resistance ratios. The current 



flowing in a loop in a uniform field H, normal to the loop, has the form 

(see Appendix E) 

I c c..J) 
_ j c., ...cA H • (A .-c~) 

R._ - J- c.u ...u... L L-
7-57 

where ~ and LL are the self-resistance and i nductance of the loop. The 

analogous form of each term in 7-56 to 7-57 is readily apparent. The 
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eigenvalues x are just the L/R ratios of the individual eigenpotentials. 
n 

t 

The solution for the eigenpotentials for a given geometry, therefore, yields 

the total frequency and/or time (transient) response in one operation. The 

impulse response function for the loop is, from Appendix E • 

. "I. ( t) - 7-58 

The impulse response of the sheet is obtained very simply by replacing the 

diagonal response parameter matrix with 

7-59 

where "t'~~ \f~R..x"'" 

In future references the duality of the response forms is stressed and the 

diagonal matrix will be written as D (d) 
n 

or D (t) 
n 

denoting ei.ther 

the frequency response (response versus induction number) or the impulse 

response. 

(ii) Numerical Results 

The inductive response of the plate is characterized by the parameters 

listed in Table 7-7. The intrinsic parameters of the body areR, the width 

to length ratio, and ~ , the response parameter or induction number, 

which characterizes the general sheet self-induction to self-resistance ratio. 

The numerical solution is characterized by N, the maximum polynomial degree 

in the solution; this gives a numerical solution parameterized in terms of 



Table 7-7 Inductive Plate Response Parameters 

Geometrical Parameters 

= 

Electrical Parameters 

= 

= Sheet Response Parameter or 
Induction Number 

Numerical Solution Parameters 

N = Maximum Polynomial Degree in 
Expansion 
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{N + 1) (N +2)/2 unknowns. The only other parameters in the computations 

are those which describe the excitation field. These parameters are usually 

ones which describe the geometry of the source. Any dimensions associated 

with a source in the following discussion have been implicitly normalized 

in terms of a
1

• 

The numerical computations were Garried out in the sequence shown in 

Fig. 7-5. First, the integral coefficients required in Table 7-6 can all 
t 

be expressed in terms of the integrals 

I I 

H ff (Q""'""'c~./)l) ~t~. ~·, "t.,IK·)~p'J.Cr',n-t.') JrJ~olr'J"f.' 
_, -· 

7-60 

I n 4'~'"' (1,~) Cfp~ Cr,IX.) ~ r c.t~ 7-61 
-, 

The first set of integrals were evaluated using the Gaussian quadrature scheme 

for integrals with singular kernels outlined in Appendix D; the second set 

of integrals were evaluated analytically. In order to complete this first 

step of the analysis, R and N had to be specified. The integral coefficients 

were stored and used as data for subsequent computations. In the next step, 

the [ F ) matrix was generated from the integral coefficients and then 

diagonalized. Diagonalization of [ F ] gives a finite set of 2 dimensional 

polynomials which are orthogonal with unity weighting on the surface of the 

sheet. Next, the [,e] matrix was generated and then transformed in accordance 

with 7-49 to generate the [x'J matrix. [ x'] was then diagonalized to yield 

the basic eigenvectors and eigenvalues of the [ ~] matrix subject to weighting [ R]. 

The generation of t.F 1 and [X'] from 7-60 and 7-61 ·lvas facilitated by the 

relationship for the derivative of Chebychev polynomial, namely 

dd'/.. (t-x.z)T""(...:) = -V\)(TV(Cx) +"''"'-,(,c) 7-62 

The elements of the scattering matrix were diagonalized using the Jacobi 

iterative method. The computer program written to diagonalize the matrices 

was based on a modified version of the algorithm given by Greenstadt {1960). 
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Fig. 7-5 Flow chart of inductive response computations. 
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At this stage the formal solution of the problem is complete within 

the limitation that (N + 1) (N + 2)/2 eigenfunctions of maximum polynomial 

degree N can characterize a system with an infinite sequence of eigenfunctions. 

The induction eigenpotentials can then be used to express the response of 

the sheet to arbitrary excitation. The integral coefficients for a given 

source field, [9V] , were evaluated using Gaussian quadrature algorithms 

similar to those used to evaluate 7-60. Equation 7-56 yields the solution 

for the equivalent surface current as a function of ~(or frequencyU>) 

and/or time. The final step in the analysis is the computation of the 

anomalous magnetic fields associated with Ke which are given by 

7-63 

where 

[ \4 ' (v) 
oo I 

and 

\-l~, '- ( V") 

The computer programs were designed to maximize the number of source 

configurations and response parameter combinations which could be computed 

for one geometrical model. The reason for this is the same as for the two 

dimensional computations; the most expensive part of the computation is the 

numerical quadrature to find the integral coefficients from which the 

scattering matrices are generated. As a result, a large number of responses 

can be computed and the amount of information can quickly get out of hand. 

Since the emphasis here is on the solution method and not on the tabulation 

of reams of results and type curves, only a limited number of computed 

results are presented. 

The particular model chosen for illustration purposes in the following 

discussions is shown in Fig. 7-6. This model was chosen since experimental 

and computed responses for a similar model are given by Lamontagne and 
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Fig. 7-6 Re-parameterized thin sheet geometry for 

induction analysis. 
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West (1971). The sheet has a width to length ratio,A(, of 0.5 and the 

maximum polynomial degree, N, in the approximate solution is 4. The com-

puted results are presented in the same sequence as they appear in the flow 

chart in Fig. 7-5. 

The eigenpotentials generated for this model are shown in Fig. 7-7 

With N = 4, there are a total of 15 eigenpotentials. The eigenpotentials 

are shown in sequence of decreasing X • n 
The eigenvalues x are listed in 

n 

Table 7-8. As n the order of the eigenpotential increases the potentials 

become more and more convoluted; the eigenvalues reflect this behaviour 

since the self-inductance to self-resistance ratios, which is characterized 

by x , decrease in value. The current flow associated with the individual 
n 

eigenpotentials can be readily visualized from the contour maps of the 

potentials since current flow is parallel to the equipotential lines of U 
n 

and is proportional to the gradient of U • Examination of the potentials 
n 

shows that the associated current flow is in the form of rings or eddies 

and that the surface current is always strongest near the edges of the sheet. 

The next step is the expansion of some excitation field , responses in terms 

of the eigenpotentials. 

TURAM Loop Response 

The total response potential U is expressed as a function of ~ in 

the frequency domain. The choice of representation in terms of ~ makes 

comparison with other results simpler than if the transient response sheet 

were determined. The transient response can be obtained simply by replacing 

~D(~)] by LD(t)] in the summation over the eigenpotentials. The first 

excitation field considered is that of a turam loop shown in Fig. 7-8. This 

source is equivalent to that used by Lamontagne (1970). The current in the 

wire loop is taken to be 1 amp. The magnetic field associated with the loop 
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Table 7-8 Eieenvalues for Inductive Response 

of Thin Sheet 

EIGENFUNCTION 1 EIGENVALUE= 2.328E-Ol 

t.IGENFUNCTION 2 EIGENVALUE= 1.970E-Ol 

EIGENFUNCTION 3 EIGENVALUE= l.552E-Ol 

I:.IGENFUNCTION 4 EIGENVALUE= l.331E-Ol 

E: I G E N F UN C T I 0 l\1 s t:IGENVALUE= l.242E-Ol 

t.IGENFUNCTION 6 EIGENVALUE= l.l29E-Ol 

EIGENFUNCTION 7 EIGENVALUE= l.036E-Ol 

t:.IGfNFUNCTION 8 EIGENVALUE= 8.975E-02 

EIGENFUNCTION q EIGENVALUE= B. 7-f?.E-02 

EIGENFUNCTION 10 I:.IGENVALUE= R.600E-02 

t . IGENFlJNCTJON 1 1 EIGENVALUE= 7.488f-(J2 

t.IGENFUNCTTON lr? EIGENVALUE= 7.C!62E-02 

t!GENFUNCTION 13 EIGENVALUE= 5.526E-02 

I:.IGENFUNCTION 14 EIGENVALUE= 5.479E-02 

t.IGE~FUNCTION 15 EIGE~VALUE= 4.141E-02 
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is given by 

-H (....-) ::. c.~ .. ->,:;')~; xJl 
4tiR. 

7-64 

The total potential for various ~ ranging from 0.5 to 150 are shown in 

160 

Fig. 7-9. The potentials display the classic inductive response as a 

function of ~ • For small ~ , the potential is totally quadrature or 90° 

out of phase with the primary magnetic field. As ~ increases, the imaginary 

+ 
part of U increases to a maximum and then decreases while the real part of 

U increases and approaches a limiting value. The response follows that of the 

simple loop as discussed earlier. For small ~ , the sheet is of the resistive 

limit of the response and at large ~ it has reached the inductive limite 

The shape of the in-phase potential remains almost independent of the response 

parameter, while the imaginary part of U becomes more and more convoluted 

as ~ increases. At large ~ , the imaginary part of the equivalent current 

is forced out against the edge of the sheet. 

The response of U versus ~ has an interesting interpretation in terms 

of the various eigenpotentials excited. The dominant mode is the first mode. 

From the value of x
1

, this mode passes through the mid-zone between the 

resistive and inductive limits for c::><.!:::! 5. As o<. increases beyond this value, 

more and more of the modes approach their inductive limit; thus at high ~ 

the quadrature component of U is determined by the high order modes which 

have not been forced to the inductive limit. As a result imaginary U 

exhibits more compleK spatial variations. 

The potentials computed by Lamontagne for this model are shown in Fig. 7-10. 

The two sets of computed potentials compare extremely well. The amplitudes 

differe by a factor of 4 ~ in normalization. Lamontagn~'s solution was 

obtained by discretization of U on a 15 x 15 and 16 x 25 grid and then solving 

the governing differential-integral equation which he used to describe the 

response. The good comparison is quite amazing in view of the fact that an 
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order of magnitude fewer unknowns were required to specify the response in 

the present study. 

In Fig. 7-11, the ~ component of H along the profile line shown in 
z 

Fig. 7~8 is plotted for a pair of response parameter values . The anomalous 

field is given as a percentage of the primary excitation field directly over 

the sheet. (At the point (0., 0.7, 0.) in this case). Th e solid lines 

represent data computed using the eigenfunction approach; t he dashed lines 

are from responses computed by Lamontagne (1970) and the x's are experi-

mental data points collected on a scale model. The agreement among the 

three independent sets of data is remarkably good. 

The response of the sheet is summarized in Fig. 7-12 and 7-13. In 

Fig. 7-12, the peak value of the in-phase and quadrature components of the 

field on the profile shown in Fig. 7-11 are plotted for various values of ~ • 

In Fig. 7-13, the Q of the response, defined as the ratio of peak in-phase 

to peak quadrature _field, is plotted against ct • In both diagrams, the 

solid lines are results tabulated by Lamontagne while the x's indicate results 

computed for the sequence of response paramters for the total potentials 

shown in Fig. 7-9. The overall agreement between the two sets of results is 

again very good. The response obtained with the eigenfunction method departs 

from Lamontagne's response at large(~ 7100)) values of «. The in-phase 

part of the anomaly agrees over the entire range of response parameter where-

as the quadrature component falls off more rapidly than that observ ed experi-

mentally. This behaviour is just a manifestation of the fact that higher 

order eigenfunctions are required to express the imaginary component of U 

accurately for large o( • Since the exact solution for U would contain an 

infinite sequence of the true Un's with eigenvalues ranging from x
1 

to 

X 
n 

0, and since the higher order modes are not present in the approximate 

solution, once ~ increases beyond l/x
15

, the smallest eigenvalue in the 

sol~tion, the quadrature component of U should be expected to decrease more 
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Fig. 7-13 Q of the thin sheet response for TURAM 

source versus resnonse parameter compared 

with Lamontagne (1970) 
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rapidly with o(, than that of the true solution. Since the failure of the 

solution occurs only for large cx. when the response is almost at the inductive 

limit, the percentage error is quite small since the quadrature component 

of U is only a small part of the total U. Similar discrepancies at large 

values of o< were found by Lamontagne in his numerical study of the response. 

The problem was similar to that of the eigenpotential solution; the quadrature 

component of U varies rapidly at the edge of the sheet and unless U was sampled 

sufficiently often, the quadrature ·part of U tended to be underestimated. 

This resulted in an overestimation of the Q. 

Point Ma&?etic pipole Excitation_ 

As a further example of the eigenpotential method, the response of the 

sheet to excitation by a point magnetic dipole is shown in the following 

section. The magnetic dipole response is useful in simulating various dipole 

source methods used. in applied geophysics. The magnetic field of a point 

magnetic dipole in the quasi-static zone is given by 

7-65 

m-: $(\'") ~ 8Mp-""'~/m3 

The particular source sheet configuration studied in this example is shown 

in Fig. 7-14. The position of the source relative to the sheet was varied 

through a sequence of values of c/d iri order to demonstrate the source depen-

dance of the response. 

Contour maps of the total potential for ~ = 10 and 50 and the 

sequence of c/d = 0.25, 1.0, 2.5, 5.0 are shown in Fig. 7-15 and Fig. 7-16. 

The potential plots show several interesting features. First, the potentials 

as a function c/d show the dipole couples most strongly with the sheet when 

x
3
;d t: 1. For c/ d .t..<. 1, very little of the dipole field cuts the sheet. For 

3 
large c/d, the 1/r fall off of the source field quickly decreases the 

coupling. Secondly, as the source moves farther from the sheet, the potential 
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Fig. 7-14 Point magnetic dipole and thin sheet ~eometry . 
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becomes more evenly distributed over the sheet reflecting the less abrupt 

variation of the source field. Associated with this is a change of the 

relative amplitudes of the real and imaginary part of U. As c/d increases 

the response moves more towards being in-phase with the exciting field. 

This is shown more clearly in the next set of figures in which some of the 

anomalous fields associated with u· are plotted. One final comment on the 

total potential maps concerns the nature of the approximate solution. When 

the source field is quite localized and the response parameter is large, the 

potential U shows low amplitude undulations away from the main peak in the 

potential. This behaviour is a product of the approximate nature of the 

solution. All the eigenfunctions are of finite polynomial degree and there 

only a finit·e number of the possible eigenfunctions. In order to represent 

a sharp local peak in U, the approximate solution tends to overshoot and 

exhibit oscillations away from the peak. In the particular examples, the 

amplitude of these variations is quite small and does not have a major 

effect on the accuracy of the solution. In cases where the source field is 

locally very intense, accurate results can only be obtained by using a higher 

degree polynomial in computing the eigenfunctions. It must be remembered 

that the technique is an approximate method and that its purpose is to obtain 

a reasonable approximation to the real solution. 

The anomalous magnetic field parallel to the axis of the exciting 

dipole moment along a profile over the sheet is shown in Fig. 7-17(a) 

and 7-17(b), for the four values of c/d used in the total potential maps. 

For each c/d ratio, the field for four response parameters is shown. These 

demonstrate the response through the swing from resistive to inductive limit. 

The effect of increasing c/d for fixed q has the effect of moving the res­

ponse towards the inductive limit. This effect is best illustrated in Fig. 7-18 

where the Q ratios versus the various ~ for varying c/d are plotted. The 

effect of increasing the s/d translates the Q versus o( curve upwards with 
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no noticeable change in shape. 

As a final example, the preceding results are used to generate the 

response of a horizontal loop survey system over a finite sheet structure. 

The system is shown in Fig. 7-19. The horizontal loop system consists of 

two coplanar coils fixed with respect to each other with one coil acting 

as a source (transmitter, Tx) and the other as a field detection unit 

(receiver, Rx). Loop-loop electromagnetic systems and their geophysical 
I 

applications are discussed in more detail by Grant and West (1965) and Ward 

(1967). 

The system response over the sheet is demonstrated in Fig. 7-20 for 

various coil separations. For s/d small, the system response is similar 

to that obtained by an airborne system. The body is much farther from the 

system than the system dimension (i.e. coil separation). For increasing 

s/d, the response moves towards that of a ground system where the coil 

separation can be greater than the depth to the body. The responses shown 

here are typical of those given by Grant and West (1965) for a semi-infinite 

sheet. 

In applied geophysics, it is common to analyse the response for a wide 

range of solution parameters (in this case s/d, s/A and~). Characteristics 

of the system response are tabulated and used to make interpretation tables 

and diagrams. For example, phasor diagrams of peak in-phase and quadrature 

anomaly for varying response parameter and other system characteristics 

are commonly used for the interpretation of electromagnetic system data. 

The horizontal loop system analysed here typifies the results which can be 

obtained from the formulation of the thin sheet response in terms of the 

sheet eigenfunctions. Other electromagnetic systems in usage can be analysed 

in the same manner in both the time and frequency (response parameter) domain. 

No attempt is made here to analyse all the possibilities since the emphasis 

is on the development of alternate, economic techniques for analysing 
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geophysical problems and not on tabulating vast amounts of data. 

7-6 Summary 

The thin sheet response analysed in this chapter typifies the electro­

magnetic scattering problems encountered in geophysical applications. Once 

again, the computation techniques have not been considered in detail and 

the discussions have been kept to the general features of the responses. 

One of the more important results of the analysis is the usefulness of 

the Galerkin form . of numerical solution. It is more reliabie and has a 

more physical basis then the least squares method used in chapter 6. It 

is less susceptible to the ill-conditioning of the scattering problem and 

is more amenable to the analysis of the system eigenfunctions. 

The idea of analysing an approximate set of eigenfunctions for the 

system response also gave very productive results. Although the set of 

eigenfunctions obtained is not the true set, they do provide a good approxi­

mation to the true system. A detailed analysis of this approach to complex 

mathematical problems is important and should be applied more frequently 

to geophysical problems. The weighted form of the eigenfunction problem 

applied here is a natural one for electromagnetic problems. The very simple 

form of the inductive response eigenfunctions attests to this. Use of the 

resistance matrix as the weighting operator is very appropriate. It decouples 

the various factors of the response to a very high degree. The spatial r 

form of the eigenfunctions is independent of the frequency response and 

electrical properties of the sheet. This result is quite different from 

the classical solution of boundary value problems in electromagnetics where 

the spatial form of the eigenfunction is directly linked with the electrical 

properties of the body. Fpr the inductive sheet response, the evaluation 

of the eigenfunctions yields the response for all response parameters (and 
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all times in transient analysis). 

One numerical technique whlch was considered in some detail but not 

discussed in this chapter was an iterative procedure for pre-whitening the 

impedance operator for highly ill-conditioned scattering operators. The 

technique was conceived when the exact manner in which the ill-conditioning 

arises was discovered. Basically; in matrix terms, the operator is the sum 

of the resistance (ohmic) matrix, the inductance matrix and the capacitance 

or channelling matrix. The first two matrices are definite with little 

variation in their eigenvalues. The channelling operator matrix is added 

to these other matrices after multiplication by a coefficient which can be 

very large. Since this matrix is not definite, some of its eigenvalues are 

zero. From ·practical computational considerations, these null eigenyalues 

will not be exactly zero and the large weighting factor multiplying the 

channelling matrix makes the round off errors the same size as the contri­

butions from the resistive and inductive matrices. The resulting matrix 

is ill-conditiioned and the small eigenvalues will be those associated with 

the null eigenvalues of the channelling matrix. (The null eigenvalues are 

associated with the eigencurrents which are solenoidal). The pre-whitening 

scheme used the initially determined eigenvalues and eigenfunctions to expand 

the original matrices and pre-whiten each matrix before it was added to form 

the total impedance matrix. This procedure can be repeated until the 

resulting eigenvalues and eigenvectors stabilize. A more complete mathema­

tical analysis of the technique needs to be done before it can be applied 

extensively but the idea appeared to work quite well in the preliminary 

tests that were made. 

One factor which is important is a brief summary of the computation 

time and the amount of core required for analysis of the thin sheet problem. 

As in the 2-dimensional analysis of chapter 6, the most expensive part of 

the analysis is the numerical quadratures to find the integral coefficients. 
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The programs for both the total response and the inductive response were 

similar in structure. The time to generate the total response coefficients 

was the order of 60 seconds of CPU time on an IBM 370-165. This was for 

high accuracy integrations and for a polynomial degree of 4. For less accurate 

integrations this time is reduced by a factor of 3 to 5. A revision of the 

programs to implement time,reducing alogorithms could save another fac~or of 

2 here. The inductive coefficients took considerably less time since fewer 

parameters were required and complex arithmetic on the computer which is 

inefficient could be avoided completely. The time required for the model 

represented here was about 30 seconds of CPU time and the integrations were 

conducted at high accuracy. The remaining parts of the computations were 

very inexpensive with no one step taking more than a few seconds of CPU time. 

These numbers are for one shot runs. Additional time required for mass 

productions runs for numerous sources and parameters is of little signifi­

gance c~mpared to the basic run cost. All programs ran in less than 120K 

bytes of core and the inductive response programs (except plotting) ran in 

less than 70K bytes of core. 
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CHAPTER 8 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

8-1 Summary 

In the course of this thesis project, numerous aspects of electro-

magnetic scattering theory were analysed in varying degrees of detail and 

some of the results of these studies were presented in the preceding 

chapters. The initial objectives of the study were sufficiently broad that 

at times it was difficult to confine the work to a particular path of 

endeavour. In preparing the thesis, however, an attempt was made to 

develop a comprehensive. coherent statement of the most pertinent ·results 
' 

obtained throughout the study. This was somewhat difficult to do since 

the various stages of analysis did not follow this sequence in their 

development. As in most research projects, difficulties invariably force 

one to retrace one's footsteps and pursue an alternate approach or reassess 

those already taken. 

The emphasis throughout the thesis was on the development of a unified 

formalism to describe the response of electromagnetic scattering problems 

and the merging of this formalism with variational methods for computing 

approximate solutions to complicated systems of equations. The first half 

of the thesis was, therefore, devoted to the theoretical aspects of the 

formulation of the response while the latter half of the thesis was concerned 

with the computerized implementation of the approximate varational methods 

outlined in chapter 5. In the last two chapters where the numerical results 

were presented, detailed discussions of the computer programs were avoided 

as much as possible since it was felt that these details would only obscure 

the points to be made by the computed results. 

Overall, a number of ·important results were found and a good deal of 

groundwork was laid for the continuation of these ideas into more complex 
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problems. Some of the major conclusions are summarized in the next section~ 

8-2 Conclusions 

The equivalent source method is a very flexible and efficient technique 

for formulating the response of scattering structures with quite general 

electric and magnetic properties. The formulation makes the physical inter­

pretation of the resulting integral equations for the equivalent source 

distribution very clear. As pointed out in chapter 2, the equivalent source 

exists only in the region where the anomalous material properties are non­

zero. This is particularly important when the system is subjected to a 

localized disturbance since the equivalent source field has only to be 

evaluated in that localized region. When contrasted with the finite 

difference or other numerical methods which operate directly on the governing 

partial differential equation and force the boundary conditions, there is 

a considerable sav~ng of work. The major drawback with the application of 

the equivalent source method is that the Green's function for the background 

system must be known. In most geophysical problems of interest, however, 

this is not a major difficulty since it is possible to evaluate the most 

interesting Green's function analytically or numerically. 

A by-product of the equivalent source method is its role in providing 

a unified approach to the static problems discussed in chapter 3. In 

addition, the general integral equation formulation makes it possible to 

study the general properties of the solution without having to solve a 

number of numerical problems before hand. This is particularly true of the 

analysis in chapter 4. It is possible to make explicit remarks about the 

solution of the integral equation and show how these are contained in the 

integral operators. The bimodal nature of the scattering operator is 

extremely important when the numerical computation of responses is to be 

carried out. Since geophysical problems are often strongly bimodal, direct 
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implementation of a numerical method on the bas ic i n t egral equation will 

be exceedingly susceptible to failure. This particular point was emphasised 

by the TM response discussed in chapter 6 and the thin sheet response in 

the general case discussed in chapter 7. 

The use of approximate solutions based on variational or minimization 

techniques provide a viable alternative to the commonly used method of 

digitizing the solution. These techniques are new tools in the analysis 

of geophysical electromagnetic problems. Both the least squares and 

the Galerkin techniques yield inexpensive and quite accurate approximate 

solutions to complex problems when the problems are properly conditioned. 

From an after-the-fact analysis, the Galerkin method seems to be the better 

approach; this is particularly true for electromagnetic problems when the 

scattering matrix is susceptible to ill-conditioning. The reason for 

this is that the least squares scattering matrix has eigenvalues which are 

the order of the square of those of the Galerkin formulation. If the 

eigenvalue spectrum tends to split,resulting in ill-conditioning, the least 

squares method enhances the ill-conditioning and this is certainly not 

desirable when the inverse of the matrix is sought by numerical means. 

One feature of the variational solution methods is that they attain 

much higher accuracy than numeric·al methods which rely on point-by-point 

solution of the integral equation, when the same number of unknown para-

meters are used in the solution. This was particularly noticeable in the 

thin sheet response analysis where the variational method required over an 

order of magnitude fewer unknowns to solve the same problem as a discrete 

sample solution method. This vast reduction in the number of unknowns 

greatly reduces the dimension of the scattering matrix and makes numerical 

inversion of the scattering matrix more accurate and much less expensive. 

The extension of concepts used in solving problems analytically can be 
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successfully carried over to the domain of numerical analysis . The results 

of chapter 7 show that determination of multidimensional eigenfunctions is 

practical and provides much more information about the system response 

than can be obtained by just solving the system o f equations numerous times . 

This is also an important practical consideration when t he cost of computing 

is a significant factor in determining the number o f responses which can be 

computed. This is invariably the major factor i n problems of numerical analysis. 

In such cases, maximization of knowledge about the system should be striven 

for. This is exemplified by the use of the shifted eigenValue approach 

applied in chapter 7. Formulation in this manner provided the total frequency 

and/or time response of the thin sheet in one computation. This approach 

to numerical problems where type curves for a wide variety of input or 

system parameters are required should be exploited more fully in applied 

geophysics. 

Recommendations for Future Work 

While a great deal of time and energy was spent in the development of 

the results presented in this thesis, there are many areas where more analysis 

is required. Although this is a common problem in research work, at times 

it can become discouraging. The subject of electromagnetic theory and 

scattering in particular is so diverse that there is an inexhaustible (and 

at times an insurmountable) set of problems to be tackled. The present work 

has shown that there are some areas ·whicn show promise for further research . 

A major stumbli~g .block in the initial stages of the thesis work was 

the problem of solving the integral equations encountered in the equivalent 

source formulation. While all standard texts on applied mathematics deal 

with the basic theory of integral equations, the t ypes of equations considered 

are always those which have particular properties (usually solvable analy­

tica.lly), namely, real, positive definite kernels. While this is fine from 



a theoretical point of view, a much more in depth study of integral 

equation problems, particularly of vector integral equations in multiple 

dimensions and the numerical solution of integral equations, would be a 

valuable piece of research. 
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Another promising research problem is the extension of the Galerkin 

method and the discrete eigenfunction approach to three dimensional bodies. 

The acheivement of highly accurate solutions with very few unknowns make 

the solution of three dimensional problems practical from a computer cost 

point of view. Combination of this approach with the finite element 

technique for describing complicated geometrical systems appears to be an 

area which would yield rewarding results. 

The computation of static electric and magnetic responses was not 

discussed in terms of numerical solutions in the thesis. Application of 

the equivalent source method to resistivity problems by Dieter et al (1969) 

showed the feasibi~ity of the method. With the generalized formulation 

given here, the response of more complex structures with gradational material 

properties can be formulated. Very simple solutions can be derived in 

cases where depolarization effects are negligible. Use of the Galerkin 

method in these problems is another area which bears investigation. 

One other topic which seemed quite exciting but which could not be 

followed up during this project was the application of the equivalent source 

method in materials with non-linear electric and magnetic properties. By 

iterating ·the integral equations obtained from the equivalent source formu­

lation, the behaviour and response of non-linear materials can be investigated. 

In the static field problems, the equivalent source integral equation can be 

used to show, by intuition, runaway effects and self-focussing of electric 

fields or magnetic flux through localized regions. 

As pointed out at the beginning of this section, a wide variety of 

problems in the theory of electromagnetism are wide open for further 



investigation. In retrospect, there appear to be many problems which 

are more interesting than those tack~ed here; however , this is probably 

a manifestation of the old adage that the grass is always greener on the 

other side of the fence. 

188 



189 

APPENDIX A 

ELECTROMAGNETIC GREEN'S DYADIC IN A PLANE STRATIFIED MEDIUM 

A-1 Geometry and Basic Equations 

The geometry of the plane layered medium is s hown in Fig . 1 . The 

structure is termed an N-layer medium and is compose d 0 f N+l regions which 

have differing electromagnetic properties separated b y N plane p a rallel 

• boundaries. The cartesian coordinate system is denoted (X,, X2., X3 ) and 

has the associated unit vectors (e
1

, e~, e
3
). The medium is stratified 

in the x coordinate with theN boundaries located at x
3 

= d. ( i = '1 , N) • 
I 

The permeability and the complex permittivity of each region are denoted 

by ...c.ti and £; • 

The electric and magnetic fields satisfy the differential equations 

g)_ ·E =. jw.u.~ + ~X 9J(_ A-1 

I"»J 

(+.. H -::. -·s (..) f_ ?Jt + 0 x"j A-2 

where 9:' -::.. u x<i ')(. ~,t' ....... - :r. 

and ~"t-=- t..)?.(.,u.. and I is the unit dyadic. It is most convenient, although 

somewhat redundant, to define a set of four Green's dyadics i n deriving 

the general Green's function for the system. These dyadics are denoted 

. where the superscripts E and H indicate electric or 

magnetic Green's dyadics and the subscripts J and M denote the excitation 

to be electric or magnetic currents. The relations 

A-3 

A-4 

f'..J (\...) 

are readily derived from Maxwell's equations. Z and Y are denoted 

the impedance and admittance operators. 
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To define all four dyadics only 
'"' ,.._, 

and .,.Jj have to be found. 
tV 

:r
£ M From the symmetry of the equations, only ~ need t o be derived in 

detail since the solution for ~JJ can be derived by interchanging the 
N £~ 

roles -of M and ( in the } -M expression. In the next section .J 3 s!J 
will be derived in detail. 

A-2 Plane Wave Spectrum Analysis 
IV 

~ lA The detailed derivation of ~~ is carried out using the plane 
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wave spectrum concept and a generalized matr ix notation . From this point 

on the subscript J and superscript E on the dyadic will be dropped for 

compactness of the solution. In matrix notation the dyadic in the i'th 

region satisfies the equation 

A-5 

The source is taken to be in the m +"' layer located at r'. The [ ] 

matrices are listed in Table A-1. 
,.. 

r = x,e, denotes the observation point 

and r I = X~~ i the source point. g (r) is the Dirac delta function and c\\"" 

the Kronecker delta function. 
t'V 

With the aid of Fourier transform theory, ~can be expressed as a 

superposition of plane waves 

A-6 

where 
A. ~ 

+ ~LeL. ~ is the plane wave spectrum amplitude for plane 

waves having horizontal wave number l~,,~~) . In order to express the 

plane wave form clearly, a coordinate transformation of the wave. number 

domain is combined with the Fourier transformation. The coordinate 

transformation is 

[e.J ~ [D)[s] A-7 



Table A-1 

[b' J --

[I] 

Definition 

Spatial Form of r.natrix Representations 

h;, , 

rb;, 

b;, , 

1 
' 

' 
0 

' 

- ?l- ·~l - k~ , ! l ,, 

' 

~· :. 

' 

J:J;a. 

J:Jl.'l. 

cb;2 

0 

1 

0 

,z 2. i. 
-o -~s -~ · 

' l ~ ~t 

' 

, ~,'3 

' 
JJ2.'1J 
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, Jj3''! 
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0 

' 
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where 

[ o] ~\ Az. 0 
7\ T A-8 
)\l. )q 0 

A. " 0 0 0 

and is just an expression of the cylindrical symmetry of the structure. 

[ s] are the new unit vectors. The total transformation is then 

"1 rr· j ~-tr-r') 
[ .s!J' 

4
1rrt. Jl l D]{ G-;] [ D] T e d~,dht. A-9 

-coo 

[ G-i 1 ~ l D ]T rr [ ~ ·, J ej ~.(V:-~')ct.-,c,\_,c:;z.. l t) J A-10 
-oc.. 

where A-9 is the inverse transformation and A-10 is the forward transformation. 

Transformation of the differential equation A-5, yields 

A-ll 

where J1::. j w )-{- and [ e·, 1 is the transformed differential operator listed in 

Table A-2. The solution of· A-ll can be written down directly since the 

differential equations involve x~ only. The homogeneous solution for A-ll is 

+ c i 1 [ r.> ~ c x 1)] [- a.~ J 
+a· 

A-12 

where [i c""] and [tai] are 3 x 3 matrices with [Z.i•J being diagonal. [ (3 i J is 

a 6 x 6 diagonal matrix. All the matrices are given in detail in Table A- 2. 

C- c.~], the upper half of L~··J and l-ai] combine to describe plane waves 

propagating in the negativex1 direction while the other set describe waves 

propagating in the positive X3 direction. To demonstrate this, the 

explicit forms of some of the components of [&i] are given here in detail • 
• 

"' ·, A • (" +Y;'lC3 . ~ " "+'ti'Cjt .)~·(V'-i'~l" 
.... s ,... s = ± a' s, e... + .\- s.. e. e s , 
"> J '-.Y"l\ I - 1f; ~ 

A-13 

A-14 
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Table A-2 Wavenumber Domain Matrix Representations 

[ c;i J - G .. 0 G,3 

0 G.ca 0 

G,, 0 G-33 

[~] -al + t,a_~a. 0 j )\ ()3 

0 a a () 

.I ~ 
-o3 -t-Y& 

J~ l 0 ?I&'" 

[+ci J 1. 0 1 

0 1 0 

- . ..b.. 
+J ... , 0 +j~ 

[+a'] - +a~ 0 0 

· '; a .. 'a. 0 () 

C) 0 ;a~ 

[ f3 'cx3)] = -r. xl e 0 0 0 0 0 

0 e~'X1 0 0 0 0 

0 0 e1'X3 0 0 0 

0 0 0 
-"C;Xl e . 0 0 

0 0 -1''"1 0 0 e. 0 

0 0 0 0 0 
-l'tiCJ e 

Definition . . 

~i -: (J\1 - Rf) \ta 

0~: .L 
d)(3 
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The curly bracketed term is inserted from the Fourier transform to 

explicitly demonstrate the plane wave form of [~i1. Expression A-13 is 

readily identified with the form of a TM (transverse magnetic) plane wave 

while A-14 has the form of a TE (transverse electric) plane wave. 

To complete the solution, the particular solution of the inhomogeneous 

equations 

A-15 

is required. (PG~] is given by 

A-16 

where [P c."""] ["(3""' , and ["'d~1 are 3 x 3 matrices given in Table A- 3. 

Above and below the source plane at ~1 = 'K; , l."~ -} may be written in a 
J 

similar form to t c,.·,], the homogeneous solution, with 

A-17 

['- G-~] =- ~::- c"" ' .. c M 1L<l- (x, -~;) J r·: "'] A-18 

where L"!d m] are given in Table A-3. 

At this point, the mathematical form of the L &; ] have been derived 

with the result that each layer is characterized by 6 unknowns; namely, 

3 amplitudes for the upward propagating waves and 3 for the downward 

travelling waves. In addition, the excitation factors for the various waves 

are contained in [ f' a'"'] . The next step is to solve for the [~a i ] in terms 

of [fa-] . This relation is obtained by invoking the boundary conditions 

that tangential E and H be continuous at the boundaries. The interrelation 

of the [ t a i] is compactly expressed using a generalized transmission 

matrix notation. 
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TabJe A-3 Particular Solution Matrix Representations 

IPc"' J - 1 1 0 

0 1 0 

j ..0. S3n(X3 -x3) 
l'flo\ . 

0 {j ~-- ~ SCxr«O}S'3l"\("Ks-lc';) 

[r f <~.-(o] - '~""\Xs-X~I 
e 0 0 

-~- \"')-Xl \ 
0 e 0 

-••\x,-x~l 
0 0 e 

[ Pa"" J - jWA.~ - -~"' 0 
2. R~ 

0 

0 ~; 0 
'IS""' 

0 0 -~.\ St;l'l\t'K1-x)) 

0 0 

0 0 

0 0 

Definition 

1 

- -1 X <. o 
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A-3 Transmission Matrices 

The boundary conditions of continuity are 

A-19 

A-20 

The Fourier transformed [ '<;] and [ e:J x ] are given in 

Table A-4. Equations A-19 and 20 yield six equations relating the six[~ai] 

to the six [~a i ~.] which may be written 

A-21 

The 6 x 6 matrix tw~J is given in Table A-4. Given the coefficients in 

any region, the coefficients can be propagated upward and downward to 

find all the other coefficients by 

[ "Tii1,J =(wit.•][wi] is denoted the transmission matrix for the d i•• 
i 

A-22 

boundary. 

The elements of [rr1 are combinations of the TE and TM Fresnel reflection 

and transmission coefficients. 

A multiple lay~r transmission matrix, [Ur~1 , can be defined relating 

the coefficients in regions p and q. 

Here p is assumed greater than q. The analogous form can be derived for p 

less than q. The sequence of matrices corresponds physically to the reflec-

tion and transmission at a boundary, phase shift and attenuation as the 

wave passes through a layer, reflection and transmission at the next boundary,etc 

With this definition of [ U.pq..], the solution for [~ai] can be expressed 
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Table A-1~ Boundarv Condition Matrix Representations 

[ e,x J - 0 -1 

1 0 

0 0 

[Y . J 
l - 1 - o• 

j~..U.i 

03 

0 

[vv] ~ 

0 

0 

y; 
0 

0 

[~~.J 1 - 0 
s·~ . I ~I) 1 

0 __j._ 

"Tit•,' 
0 0 

X.i.t,, ' 0 

Sitt,; 
R·• . 

0 ~ 
T;t 1,; 

0 0 

Definition : 
Yi. :. -jc.>€;/~i 

~; == Ji/ jt.)..U..\ 

R;!,,i::: ('J;1, - ~i),.{~;!, ~";SJ 

){~~~.;:: l }'it\ - y i)/( Yit• T y,) 

Tit•,i • 1 + R it,, & 

Sit~&= 1. +X'~!,,, 

0 

1. 

0 

-'da 0 

0 -j~ 

jA 0 

0 0 'l. 0 0 

~ 0 0 1 0 

0 1. 0 0 'l.. 

0 0 -'!; 0 0 

"d~ 0 0 - 1\j& 0 

0 '/' 0 0 -y; 

0 X'+ . '-•z ' 0 

Si~•, & 

0 0 Ra.,, ~ 

~ 
Ta,, & 

S;~,, i 0 0 

0 __1:_ 0 

s~ t1,; 
0 0 1. 

T;t,, 
~a~.~ 0 0 

sa., i 

T~ mode admittance 

TE mode admittance 

0 

X a~~ 
sa,,i 

0 

0 

.1. 

S~t,,l 

TE Fresnel reflection coefficient 

TM Fresnel reflection coefficient 

TE transmission coefficient 

TM transmission coefficient 
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in terms of [ p a""] • First' the radiation condi t i on requ i res r-aN]: 0 

A-24 

A- 25 

Six equations relating c~a~] to c~dMJ can be extracted from A- 24 and 

A-25 and these equations are given by 

A-26 

where l UT 1 [ 1 [:S.mJ and U J are l~sted ~n Table A-5 . ~ 
. p 

are explicitly given b y 

[ 
- a ....... J ~ [ v J [ C?> ~ L- 'i ~) J \ p-d ~J 
+a~ LP~~ 

A-27 

The solution matrix [v] ~s g~ven in Table A-5. The components of 'Cv1 are the 

generalized reflect~on and transmission coeffici ents for the s tructure . 

Equation A-27 combined with the generalized transmission matr i x given in 

equation A-23 constitute the complete solution f or the Green's dyadic. The 

final stage of analysis is the inverse transfor m (equation A-10) to obtain 

the spatical representation, 

A-4 Inverse Fourier Transformation 

The inverse Fourier transformation to the s p ace doma in i s t he most 

difficult step of the whole analysis. With the exception of the whole-

space problem, the inverse transform cannot be obtained analytically. 

For special combinations of parameters, approxima te analytical solutions 

can be derived. The integrals encountered for a one layer model with one 

medium an insulator and the other a good conductor have been studied 

extensively and summaries of these results are g i ven by Wait (1970), Ward 

(1967), Banos (1966). The one and two layer models where both media are 

dielectrics of low loss are discussed by Annan (1970, 1973) , Brekhovskikh 



Table A-5 Multiple Layer and Total System Transmission Matrices 

[uP\} u~~ 
,., 

[ UT ]= """" u~~ 0 0 u ... 0 0 Uu 0 0 

'"" 0 0 

P\ ~ l..l .. ~ u,_"'"' 0 Llza 0 0 Urs 0 0 ... 0 0 Z.(' 0 p,. Lt,_ uH""' u""" 0 0 u~ 0 0 lt;. 0 0 13 0 0 " uP,. pq. 
UN'"" UN"' .,., 0 0 u .. 1 0 0 .. , 0 ' 0 4+ 0 0 

u~ l./1- a u"'"' ...... 0 0 ·o sr 0 

'"" 
0 0 u,.lt 0 

P\. UP\- "'"' L.J''
4
"' 0 0 u~, 0 0 "" 0 0 u,, 0 cs 

'" 

[Up J M"" [v ]= u""' u:· "'"' ."' 11- I -u."t u4 ... 0 0 0 -u ,41. 0 0 
A 0 0 0 0 

""' '"" 
A 

"l""' Uti Uu ~../;."' .... 0 0 0 0 -Uz, 0 0 
G 0 0 - I' ~iS: fa 

~ Oh\ & 
!("" U"- Uu t("' .... 0 0 0 0 0 -u"' 0 0 0 0 ... u,\ u,, c c 

0"-' 
"'"" 011\ ut("' y;'"' -u~, 0 0 0 0 Uu u ... , 0 0 0 A t'r I 0 
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Definition: A= 
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Lh\ u.~~,~ 
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u~2 Uss- Us2 U2.s-

t("" 014>\, Olo\ ~W\ N c :. L(·u !..{~, \.,\~3 L()~ 0 
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(1960), Ott (1941). For radiation problems, good approximations can be 

obtained for the integrals (using asymptotic expans ions) when all the 

spatial dimensions of the problem are large compared to the wavelengths 

in the media. To evaluate the transforms in problems where none of the 

common approximations can be made, one must resor t t o n umerica l integrat ion 

by computer. 

In this section, the whole-space solution, which is just [ f' G--], will 

be transformed. The spatial dyadic is given by 

[ 
p ~ ""] fr ]T j~ · (V:-v.') 
1CV :: -4

1
trz.. J) to]["&...,][D c:. dA,,J~~ A-28 

- OC) 

The matrix [o][~&~][o]Tis given in Table A-6 . Noting the role of differentiation 

on a Fourier transform, the matrix can be rewritten in terms of spatial 

derivatives. The transform becomes 

A-29 

where the double Fourier transform 
0.00 

~ (v-,r'l = _.. ~ ,_ fJ --
j"X-<.V:--;:.') 

e d .\,JAz. A-30 

is the well known Sommerfeld integral first evaluated by Sommerfeld in 1909 

(see Sommerfeld (1949), Brekhovskikh(l960)). The evaluation of A-30 is 

given in Appendix C as integral 

j lr- R 
e 

Inserting g<.v-, v-') into A-29 and noting that 

the particular solution or Green's dyadic for a whole-space becomes 

This solution is well known and be be found in any standard text on 

electromagnetic theory. 

A-31 

A-32 

A-33 



Table A-6 Whole-space Matrices Regrouped for 

Fourier Transformation 

-
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Definitions: 
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~ 
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- j ,\, ~""' s~~ (xl-x~) 
4 ~· h1. '{..,. s~ ~ (x1-~~ 

A 1.- ~ ~ (X> - ltl} 

~id3 

~~ a3. 
-7l-'"J2.. 

l l. 

0 

0 

0 ~ 

'd,"~h 

~~3 

1. '¢1. 
- '0\ - 4 
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The additional, homogeneous dyadic which appears when the medium is 

not a whole-space represents the reflection and refraction of the spherical 

wave (equation A-32) as it encounters the planar interfaces . Since there 

is no general method to evaluate the homogeneous dyadic, the analysis of 

this problem is not considered further here. The evaluation o f the integrals 

required for particular structures considered in the body o f the thesis is 

discussed in Appendix C. 

Summary 
.... 

The preceding development derived the Green's dyadic .i tJ :J and from 

is also defined for an N layered, plane stratified medium. The 

development of has not been derived in detail. From the symmetry 

of equations A-1 through A-4, can be developed directly from }.ij • 

Interchanging H for E, -jwE for jc.u.,v.. , and ttfs for :15 in all steps of the 

derivation yields In the plane wave spectrum, the roles of the 

TE and TM waves are interchanged; wherever a TE Fresnel reflecti6n or trans-

mission coefficient appears in 
f AJ 

::r J:J , the 
A-I 

~~ will have a TM Fresnel 
'V 

coefficient and vice-versa. 14 ~ 0.. " ~~ , the whole-space or inhomogeneous dyadic 

can be evaluated in the same manner as j lJ P and is also obtained by 
c;_'V 

analogy with s~ P · • Appendix B develops some particular forms of the 

Green's dyadic which are useful for applied geophysics analysis. 
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APPENDIX B 

GREENS DYADICS: SPECIAL CASES 

The development of the general Green's dyadic in Appendix A is s~me-

what too general to express the response of simple structures easily. In 

this appendix, some particular forms of the general dyadic are expressed 

in a more specific and compact form. This serves two purposes; first, it 

shows the generality and application of the formulation of Appendix A and 

secondly, it yields dyadics whLch can, in some geophysical cases, be evalu-

ated analytically. 

The particular cases examined in this section are the general dyadic 

for a half-space and th~ particular forms of the half-space dyadic for 

two-dimensional excitation currents. These two dimensional forms of the 

dyadics are denoted the TE and TM dyadics. The reason for this becomes 

apparent after the_derivation of the responses. The half-space geometry 

is shown in Fig. B-1. The dyadic for the lower half-space for a current 

in the lower half-space is derived. 

The inhomogeneous or singular part of the Green's dyadic is the same 

as that derived in A-33. The homogeneous dyadic accounting for waves 

reflected from the half-space interface is given by 

B-1 

in the spatial wave number domain. From A-27 

B-2 

where [V] is given in Table A-5 in terms of [ u.f'l,.] • In this case, the 

only [ U.e~] is [ U 10 ] which is in turn defined in terms of [ T,o] which is 

tabulated in Table A-4. The particular forms of [T,o1 and [V] are given 
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in Table B-1 for the half-space case . The resulting [~aoJ coefficient~ 

and [ c,o] are listed in Tabl e B-2. 

The spatial form of the dyadic in the lower half-space (region 0) 

is obtained by taking the i nverse transformation of B-1 and adding the 

inhomogeneous part of the Green's dyadic . 

oo j "A> Cli="-r') 
4~~ SJ L D] [ G-o] [ 0 l' e.. di\\d>."l B-3 

- OoO 

;>....> 

The resulting form of ~o is 

B-4 

IV 

where the dyadics C i l i ::\ 1 3 are listed in Table B-3 and are defined in 

terms of the integrals L'\ , L"S" , and L c-. also listed in Table B-3. The 

approximate evaluation of these integrals in particular geophysical applica-

tions is discussed in Appendix C. 

The elements of the Green's dyadic are the electric fields associated 

with the point current 

B-5 

Two other particular dyadics which are useful in many applications are those 

for which ~~ varies sinusoidally in one spatial dimension. The result 

is that ~s splits into two parts which are denoted TE and TM currents. 

.=TM 
....)~ 

I h b d · -:- ,Tf!!. and =t="J'lt'\ become n t e wave num er oma1n, ~J v 

B-6 

B-7 

B-8 

B-9 

In the wavenumber domain, "the two homogeneous dyadics · denoted [ G-;"'] and 

( G~~ are given in Table B-4 along with the expressions for [~&;"]and 
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Table R- 1 'falf- space Earth Tr ansmj ssion l'fatrices 

[ rr..] - 1. 0 0 x:,o .s .• s.;- 0 0 

1 
0 l'io 0 0 k 0 

0 1 T,o 
0 

Sao 0 0 'IC,o 
s:;-x\. 0 0 ...1... 0 :r; Q 

R •• 
s .. 

c 0 1. 
~ • '.e. 

0 

0 0 X,o 1 
Soo 

0 0 
S,o 

[v J -- 0 C> x., 0 () 0 

0 0 0 0 Q.., 0 

0 e 0 0 • x., 
C) 0 0 0 0 C) 

0 0 0 • 0 0 

0 0 0 0 0 0 
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Table B-2 1-fal:f- sJ2aCc Lfomo.creneous Green ' s D;yadic 

in Wavenumber Domc:tin 

fa~J I - 'teXs - x.,e 0 -¥o 0 0 0 , 
YeJC3 

~~ 0 R.1 e 0 ~ 

"'oX; 
Yo 

0 e. x.,e 0 0 -j ~ 

[~OJ j lV..UO 
i 

'l. X, [-a~ a~!. 0 e 0 0 

0 
'¥•lC'S 

1. 0 0 e. 0 

-j~ -j~ 
Yo~ 

1?; 0 co 0 e 

• 'to('t)+'t-1~ 
J Ca.)J.to e -'to Xo& 0 ~J· "x~. 

2. ~: fr(: 0 R., 0 T. 
jl\ x., 0 - "1.. x., 

~ 

0 

o Ro, o 

c o - }(ol 

~' -x., ~ 

-v\~1. ,K + "'Xl 0 +Xol --.\A.l .. j~r. 
l\.,Z. 

z. -~"l.. - (\'l. ~i\J\,_ 
l 

-~ ~~'ro 0 -A'l. 

0 0 0 j~"t. j ~l,'to 1 -¥o 
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Table B-3 Sub-dyadics of Half-space Green's Dyadic 

-- + 

00 
'lSo (x3 + x~) j "X· l ~- r'l 

\ 5) L-1- - Ro, e d.\, d >..a - ~iT~ e 
e.~. 

-..-:::;) 

00 

Ls 4
1

Tr 2 JJ X o( 
'o (~+ x~) jX·Ir-r'( - e e QA, clA~ -

z "· -oo 

CIIC 

( ) go(X3iX)) - 1- -'I L, 41~2 ff j l\. v--v-- R., - X 0\ e e. cl >t, dhz -
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-oo 
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Table B-4 Two-dimensional Halfspace Green 's Dyadics 

in Wavenumber Domain 

0 0 

0 

0 

0 + 
0 

( R.,- x.l) 0 -~~a. 0 + Xot 0 -A,'Az.. 0 
I 

~1 2 )\2. 0 - ~t 0 0 - & 0 

<' 0 0 0 -j ~a. ~0 0 

0 + 
0 0 0 

c 0 -Xo, 

{ ~o,- 'too,) 1 
-i ~' "'~• 0 0 + Xot 

,;..)\\ 0 

"a. ~,ha. e 0 -~~~\. 0 - j ~~ 1. 

• () jA,~o 
I 0 C) -'to 

0 0 0 0 

0 c 0 

0 0 0 

[o Jr~~[ o~] :: ' -~'<,~-=~\ 
~ 

a ;: jX,'t. Jw~e g(~'l. .. -<) 
0 0 

l -~, 0 

2 Y. +~ 
0 C> 0 • -"'Xz.. 0 +i~~Q 

0 0 1.. "t-l '1\,.'io 0 )(2. 
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[r~;E] the inhomogeneous dyadics which are deri ved straight from the 

full three dimensional case discussed in Table A-6 u 

A particularly simple form of these dyadics occurs for 0 and is 
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responsible for the TE and TM notation . For ct :.. o , the currents do not 

vary in the third spatial dimension. These dyadics i n t h i s case are the 

"true" 2 dimensional Green's dyadics; the TE and TM notation is ascribed 

because the one current system generates only TE waves while the other 

generates only TM waves. Although · this result has been derived for the 

particular case of a half-space, it is also true for the general N-layer 

problem. This non-mixing of the two types of waves is just a manifestation 

of the usual analysis of 2-dimensional structures applied by Swift (1967), 

Wright (1969) and others analysing two dimensional structures . For the 

particular case of ~ ~ o , the spatial dyadics listed in Table B-5 are 

expressible in terms of the three integrals L o , L, , and L z. • The evalu­

ation of these int~grals is outlined in Appendix C for application in the 

body of the thesis. The integral L o is just the Hankel function of zero 

order and the first kind, ~~(Ro~, which is the usual 2-dimensional Green's 

function describing cylindrical waves e 
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Table B-5 Spatial Two-dimensional Green • s Dyadic s (O<~e) 
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APPENDIX C 

INTEGRAL EVALUATION 

C-1 General Format 

In the process of inverse Fourier transforming the special elect ro-

magnetic field dyadics derived in App~ndices A and B, a number of integral 

expressions appeared which required evaluation. These integrals are 

denoted L; , i =. 0 , 6, and are listed in Table C-1. 

The integrals ~o and L3 are standard integrals in the study of 

radiowave propagation and can be evaluated exactly. The remaining integrals 

cannot be evaluated analytically except in special cases. By definition 

of the geometry in Appendix B, both x. 3 and ' ~~ are negative ih these 

integrals. 

The physical interpretation of the various integrals is of importance 

in the subsequent analysis of their evaluation. In all cases, the integrands 

represent the spectrum of plane waves associated with a point or line source . 

L o and L '3 are the response in a homogeneous whole-space medium. The 

remaining integrals have the whole-space spectrum weighted by the appropriate 

Fresnel reflection coefficient and correspond to the plane wave spectrum 

of the fields reflected from a plane boundary. In other words, each plane 

wave in the original spectrum is partially reflected from the boundary in 

accordance with Snell's law and the Fresnel reflection coefficient for the 

incident plane wave. 

C-2 Integral L o 

The integral L o is just an integral form of the Hankel function of zero 

order and the first kind. This is most easily seen by defining 

C-1 
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Table C-1 Integral s Li Re qu ire d for Wh ole a nd Ha l f-spac e 
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I • ( ?\\ (. "'- x:) + ~1. ('C?.- "'~)) 'l$o ('t)+ ~~) +~ 
Ko, e. d ~\ cl ~~ 

Z'to 

IS'o(~l~x))-\o~ (~,('(,-)(,') ~~1 (Ita-"~)) 
(~, - x.,) e. . d~~ J.>tZ, 

}\2. 
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I - r coc; ~ 'I( I - 'f-t - C-2 

I)(~- 'll.; \ -:. r si~E> C-3 

)\ - ~0 cos c.p C-4 

'{. ::. -J ko· Si'II\({J C-5 

Then 

C-6 

and 

C-7 

This integral is a standard form of the Hankel function (Morse and Feshbach, 

1953, Pg. 623) and is 

C-8 

C-3 Integral L 3 

The integral L 3 is known as the Sommerfeld integral. Since L 3 is 

commonly given in the form of a Fourier-Bessel transform, L1 is modified 

by transforming the integration variables as follows. 

C-9 

( -..,- ---.:) -:.. f cos e C-10 

C-11 

1\t. 
' C-12 

,\, C-13 

C-14 



Now 

L.J : 
C-15 

where the integral form of the Bessel function of zero order is given by 

J.. r" 
1\ J. 

~ ~ r C.os (Cf-e) 
e. d<.P C-16 

(Morse and Feshbach, 1953, Pg. 620). The solution of L 3 is simply the 

spherical wave 

C-17 

l. ) ,,..,_ 
where R ~ tf + Cx"'~x~),_ • '(Sommerfeld, (1949)). 

C-4 Quasistatic Approximations 
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In geophysical problems, the electromagnetic response of inhomogeneities 

buried in a conductive half-space is required. The response is observed 

in the air above the Earth and this is essentially free space. The size 

of the inhomogeneity and the spatial extent to which observations are made 

are much less than the free-space wavelength. As a result, the fields in 

the air, which propagate at the speed of light, may be assumed to reach all 

points of the observation area instantaneously. In other words the speed 

of light may be assumed infinite and the propagation constant in the air 

region is zero. The fields in the air are termed quasistatic. The quasi-

static approach is discussed in texts on the subject of electromagnetic 

methods in geophysics (Grant and Hest, 1965, Ward, 1967) and has been the 

key to analysing geophysical E.M. problems. 

The electromagnetic fields scattered by an inhomogeneity in the Earth 

are partially reflected from the earth-air interface back into the Earth 
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and partially transmitted through the boundary. The reflection coefficients 

of the boundary appear in the integrands of L, , L 2 , L 4 , Ls- and L<-

Combining the quasistatic assumption with the fact that the permeability 

of bulk earth materials is essentially the free space permeability, the 

resulting form of the reflection coefficients permit analytic evaluation 

of most of these integrals. From App~ndix A, the TE and TM reflection 

coefficients are 

where ::. 

with 

~ .. - ';j, 

~. +- 'j, 

Yo - 'h 
]o + 'f t 

and 

C-18 

C-19 

The subscript o denotes the earth region and subscript 1. the air region in 

this case. Letting _.u.; :: p. 0 the free space permeability 

( lS"o- '2S,) 

( ¥o +--c,) 

( ~o lS', - £, lS'o) 
(Eo 't1 + £, '(o) 

Writing out the detailed form of R~1 and Xo 1 gives 

f'! -'1.(, + £,~/E:)- c~~~(k•/~ct! + E;'lc.:)-zt:.,~Y>, 
Eol:..'At. (1- f:.l·/( .. r.) - f! k!(R.,t./lt!- t:.ffr.!) 

C-20 

C-21 

C-22 

C-23 

These expressions are considerably simplifed when the order of magnitude 

of the terms \It,"'/ ~q! and ( 1 If~ (which are the same) are examined. 

C-24 
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For a conductive earth ( ( are complex permittivities) 

E-:: E:(l T j <J/wE.) C-25 

where E is the real permittivity and <S"" the conductivity . In a real 

_q 1 
earth environment, E .t..1o ~Jf.,.. . and a-),; ,..\..o/W~ • are realistic upper and lower 

limits for the material properties. For frequencies less than 1KHz, the 

ratio cr /4)€ "l 1o~ In most instances the ratio is 4 
) 10 • This result 

indicates that displacement cur~ents in the earth are negligible in 

comparison to conduction currents and 

j C-26 

A graph of the ratio of displacement currents to conduction is given in 

Fig. C-1. The ratio £, I f:o becomes (....) ~. I tr"0 • By the same arguments 

c.u £, /<ro tv \o- 4 since the free space permittivity E, is 10- •o ~~./~ . • 

Neglecting terms of the order £, lr..,. is the same as assuming an infinite 

propagation velocity in the air. 

The approximate forms for Ro 1 and ~o 1 , are 

2~ + 
Z 'lro ~I 

\<! k! 
C-21 

z. f:, l$o IV 1. 
t: .. ~. 

C-28 

Since \rt 1 ~< 1. a further approximation is to set 

C-29 

For practical purposes the second term of )( 01 may be neglected. If 

this is done, the boundary conditions at the air-earth interface for a TM 

wave propagating upwards in the earth correspond to a perfectly reflecting 

boundary. The tangential electric field is doubled, the normal electric 

field is zero (no current flow across the boundary) and the tangential H 

field is zero. In other words, the tangential magnetic field at the 

boundary does not change in the case of pure TM scattering from an inhomo-
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geneity in the earth. This is the boundary condition used by d'Erceville 

and Kunetz (1962) in the analysis of TM polarization incident on 2 dimen-

sional magnetotelluric structures and adopted by subsequent authors (i.e . 

Swift (1967), Wright (1970)) in their analysis of t he response of 2 

dimensional structures to TM waves. 

C-5 Integral 

In the range where the quasistatic approximations hold, 

C-30 

can be evaluated analytically when (~1~~j) is zero. For all other values 

of ()(>+-)(~) , part of L 1 must be evaluated numerically. 

For ('¥1 +-x~) ident:ically zero, the integral is evaluated in three parts. 

The first term yields 

C-31 

The second term is 

C-32 

This term is just the second derivative w.r.t. x, of the first term aside 

from a constant factor. 

The last term of L, is the one which causes all the difficulty in 

evaluating L, • It has the form 

C-33 

From Duff and Naylor (1966), the Fourier transform of IAiis 



and C-40 becomes 

Thus for ( -x1 +'IC~) _ o ) L 1 is 

+J e 

::. z. 
'tl. 

W: ( ~-z. I )(,-x; 1) 
~o» \~~-"~I 

The electric field about a line source of I amps on the surface of a 

conducting half-space is given by 

At the surface )C1 -4-'IC1 ~o, 
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C-34 

C-35 

C-36 

C-37 

C-38 

This expression agrees with that given by Wait (1962) when the propagation 

constant of the air approaches zero. 

When (~~+~~) is not zero, it is more convenient to work with C-30 in 

a modified form. The reflection coefficient is regrouped to 

-1. 

and C-30 becomes 

The first term is just 

a.:> 

- ...L ( 
z-rr ) 

-00 

I 

2.~ .. 

( 'r 0 - \ "') 

'IS.,. ( lC'l+~ti) t-; )\ ()C.,-'#(:) 
e. d)\ ~ 

C-39 

C-40 

C-41 

where 'f1t. ~ (~.-":)~ -4- (vl+X.;)~. This is an image of the original line source 

reflected at the boundary. The second term in C-40 is denoted 
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c-42 

This integral is evaluated numerically. 

In addition, the derivatives of L1 w.r.t. ~. and X3 are required in 

the thesis. Thus, a total of three integrals must be numerically evaluated; 

namely 

u. - ) 
q_)) - C-43 

The evaluati<;m of {.(, 'U 1 and ti.3 was carried out in a similar manner 

to that used by Frischknecht (1967). First the integrals were transformed 

to Fourier sine and cosine integrals 
0.0 1:(0 (l'") +It~) 

I J Ce>S (,>..()(.1-lC:)) J>-. u ":. (A,-"CC))e. C-44 
11R~ • 

t\, I -=. 
- lr \t.~ r "to(x3 +x~) 

-\ ( >\- 'lS'o) e. S 'n, lA. ( ¥\-¥:)) dJ\ C-45 

u3 _,_ r Yo ( 1\- -c.) e 
"l(o(,C)H~) 

cos ( AC~c~;))J A C-46 :.. 
Tid () 

A general program was developed for computing integrals of the form 

v ::: 
roo ...... 0 (lC'l +"-D 
.) f CA) e c-47 

0 

The integration interval was divided into two sections such that 
00 

v -::. Yo +- ~ vvt C-48 
'k: I 

where 

>--c. 'Ira l¥1+Xj) t >-- ( ~.- 'IC:) ~ d A Vo = ~ ~ ( "'-) 
coS 

e.. 
0 s ., \1. 

C-49 

The integration limits are based on the relative values of )(1 .,...x{ and x,->t,' 

When the )("> ~ '~':s is the dominant factor, A.c was chosen as the value that makes 
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=. e. C-50 
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If this . condition held for all values of ~ , ~G was set to zero. The~~ 

were taken as 

For very small C'X-s ~-x)) the ('lC,-~,') controls the behavi our of the integrand . 

In this case 

cosine integrand 

C-52 

sine integrand 

The AV\ were taken as 

cosine integrand 

C-53 

sine integrand 

For (~l~~>) dominance, the series for V is rapidly convergent. For 

C~r~) dominance the series is slowly convergent with the signs of the terms 

alternating. In this case a self-adjusting Euler transform routine was 

used to force the series to converge. (Hildebrand (1956)) . The series 

was truncated at n = 20 for all cases. The individual terms were evaluated 

using a Gaussian quadrature routine with an adjustable number of points 

such that any desired accuracy could be achieved . The functions were then 

tabulated and used as data in subsequent analysis. 

C-6 . Integral L 1. 

In the region where the quasistatic assumption holds 

!o(lflH)) +J. }.('t,-~:) 
~ d)... C-54 
Z.To 



The first part of L~ is just 

'(o) (x,+x~) +-.) ~ (~,- ¥;) 
g__ d?.. C-55 
Z.Yo 

As mentioned in section C-4, the second t erm is neglig ible. Th e term 

was retained in order to demonstrate that it is small . The second term is 

t "C"o(xl+~)) + .) )1.(~,-x:) 
I e cl )'.. C-56 

Z.lf, 

By definition Re (lro) :V o and 

~ )'.... ( y.,- "K,) 
e.. d.X 

2 '6, C-57 

=- j £, I~! ( ~. he,- )(:1) 
z c .. 

Since ~. is very small, '.(., \1(,-1(:\ ~<'l in the quasistatic r ange . For small 

arguments 

C-58 

Finally 

C-59 

and in the quasistatic limit of ~, - ;:> o ) I --7> o 

The appropriate form for L ~ is 

Lz.. C-60 

C-7 Integral L~ 

The integral 1- 4 becomes 

using the quasistatic approximation for ~., ~ L~ is written as a Hankel 

transform using the type of analysis of section C-3 o 
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c-62 

L4 is composed of three parts which are 

evaluated separately. The first term is 

_,_ 
-41T 

00 

L 
<ro(X-,+-xi) 
~ A 3'~(.\~)clA -:: 
~0 

From Bessel's equation 

The second term of L.tt is given by 

2>'1. i-t~r) 
j \coR, 

z. ( e - '11. ~<! ~R, 

The last term of L~ may be written as 

where 

since "6 1 tu \A..\ in the quasistatic range. 

C-63 

C-64 

C-65 

C-66 

C-67 

~is known as the Foster integral (Foster (1931)) and has the solution 

C-68 

where 

Combining the three terms 



+ 

where 

-:Io ( ~ .. P~) \4: (~ .. p_) ;; ( i - =~ 

J 
1 

( ~ .. ~ +) H ; ( koP-) ~! (-.c"~ -\-"X.~)f1. 
%. R. \" 

C-8 Integral L., 

C-69 

C-70 

The integral L~ is modified to a Hankel transform using the same 

steps as used for L 3 • 

Ls-
_,_ 

4-Tr 

1S'o('ICJ-\-"ll';) 

e. A.So(As>)~;\. 
~ ""0 

C-71 
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As mentioned in section C-4, the second term is negligible in the quasistatic 

approximation. L s- is then given by 
~ \(6 R, 

e.. C-72 

The second term is readily shown to be 

and is negligible in comparison to C-72 . 

C-9 Integral L<"-

The Hankel transform of L <;,. is 

l<.. C-73 

The reflection coefficient combination becomes 

= + 
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in the quasistatic approximation range. L" is then 

Yo('l1 +>c~) 

Lc. = e 'A 3" .L~f) d A 
-to 

C-75 

The first term is given by . 
ao "fo( h+xj) Z. e. .l \r., R, 

- .L _;_ { ~ " J"" o C'-· r) all\ ::- k "t. 4-rr~ 
4Tr ~! Jo ¥o o \ 

The second term i s given in terms of the 

Foster integral discussed in ~ection C-7 and is 

C-76 

The solution for L c.. is 

Lc. : 
~ \l.~, . 

e J r 
4+-n-:~, - 4 k! L C-77 

where Pt are given by C-70. 



228 

APPENDIX D 

NUMERICAL EVALUATION OF SINGULAR INTEGRALS 

In the numerical analysis of the scattering problems in the body of 

the thesis, it was necessary to evaluate numerically integrals with 

singular integrands . The most singular integrals to be evaluated had the 

general form 

I<~. "1'-a.) = H f(~~ ¥i) 
A 

I I ) <J< 't-r>'l•,'~,_,-t.-.. d~~d-t~ D-1 

where 

~ ( 't I ly;: I •r--a.,-t.~) -::. '/f D-2 

or 

( I t I ) <j '~-1, )(I I ~"t I)'., -::. \..\~ ( X f) D-3 

> -::. u y.,-~n ~ -\-(x"t. --,.~f) 
lit_ 

where ~ (~:~~) is analytic in A and (~, ~"~) EA. For the Hankel function 
I 

form of g, the behaviour of the integrand ·.is that of a logarithmic 

singularity near ('IC.',,"' ~ ) = ( 'IC ,, "Kt.) Since this is less singular than Vf, 

evaluation of the 1/f integrand automatically assures evaluation of the 

integral with the logarithmically singular kernel. 

The point of this Appendix is to illustrate that these integrals can 

be evaluated numerically by integrating directly over the singular point 

by subdividing the integration region around the singularity. Near the 

singular point ('f..,' 1 )C.~)-:. ( )(.,
1

'1Cl.) , A was subdivided into four rectangular 

regions Ai, i = 1, 4 plus the remaining region A
5

• This is illustrated 

in Fig. D-1 (a). D-1 then becomes 

, 
I - z. 

j ::.. I 
H ~ (>t',¥~)~():,,x/,¥.l.,'t~)d¥:Jv:i 
Ai 

D-4 

The numerical integration ~as carried out using a Gaussian quadrature 

algorithm. The extrapolatory nature of the Gaussian quadrature was used 
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Fig . D- 1 ( a ) Sketch of subdivision of area A about 

• • • • • • • • • • • • • • • • • • 
• • • • • • • • • 
• • • • • • • • • 
• • • • • • • • • 
• • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • 

' 
F i g . D- 1 (b) Two di~ensional Gaussian quadrature 

mesh on rectang le. 
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to evaluate the integrals Ai~ i ~ 1,4 as accurately as desired by increasing 

the degree of the quadrature. 

Each integral in tfie singular region is given by a weighted sum of the form 

where ~ and ~ are the weights and nodes for Gaussian quadrature of degree 
l. l. 

N as given by Abramowitz and Steguh (1965) or Davis and Rabinowitz (1967). 

A sketch of the distribution of points in a rectangular region is shown in 

Fig. D-l(b). Since no node point lies at the singular point, (i.e. at a 

corner) the . numerical integral tends to underestimate the true value of the 

integral. In order to test the accuracy and reliability of this quadrature 

technique, simple integrals which could be evaluated analytically were computed 

numerically using this scheme. One of these integrals is given here to 

demonstrate the results. 

The trial integral was 

I. (o, o) D-6 

which is just the original integral over A. with 4> ~ constant where A. 
1 1 

is a square with sides of length E • The numerical values obtained for 

this integral with E = 1 for N varying from 2 to 20 are listed in Table D-1. 

They agree very closely with the theoretical value of D-6. For N = 2 the 

error (surprisingly) is only an underestimation of about 7% ~ As N increases, 

the error drops below 1% when N ~ 6. For the higher order quadratures, 

where N ~ 20, the error drops below 1:1000. 

This integration technique was always used to integrate directly over 

the singular points in the integrand. In all cases where the integral could 

not be checked analytically, convergence of the integrals similar to that 

observed in Table D-1 was found. The same agreement was found for integrals 

with the logarithmic singularity. 
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Table D-1 Tabulation of Numerical Quadrature Test Results 

QUAURATU~E NUMBER INTEGkAL 

2 1.673E 00 

3 1•722E 00 

4 1.739E 00 

5 l.747E 00 

6 1.752E 00 

7 1.755E 00 

8 1.757E 00 

9 1.758E 00 

10 1.759E 00 

11 le759E 00 

12 l.760E 00 

13 le760E 00 

t4 1.760E 00 

lS 1. ·r61E 00 

16 l • ·r 61 E 00 

17 1.761E 00 

18 le761E 00 

19 1.762E 00 

20 1.762£ 00 
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APPENDIX E 

INDUCTIVE RESPONSE OF A CIRCULAR LOOP 

The electromagnetic response of a small loop in a slowly time varying 

field is derived quite easily. If the loop has an internal resistance, R, 

and self-inductance L, then the current flow as a function of time in the 

loop satisfies the differential equation 

R i. (t) 

where 

v ::.. 

• 

+ L d L(t) 
c:t t 

Next, the Fburier transform pair 

F (w) ~ ~o.o f <.~) e. jwt- d t 
- 00 

v E-1 

E-2 

E-3 

are used to transform equation E-1 to the frequency domain. The transformation 

yields 

or 

l_R - j w L) I (w) -::. - j (..) { Cw) 

I. ( w") -::.. 
-.) <....> 

R-jWL 

The transfer function for the loop is simply 

, F (w) -:. .)w 
R (-,-_-j_l.v_}'c..,-o) 

E-5 

E-6 

The transfer function as a function of frequency is sketched in Fig. E-1 (a). 

The impulse response function is given by 

00 -j c.)~ 

t(t):: ~ ~ -.JW e... 
~co - E-7 21T R 0-j ::'.o) -uo 
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This integral can be evaluated readily by contour integration using the 

contours sketched below for t < 0 and t > 0. The result is simply 

; ( t) - 0 t< 0 

:: - :nr:j ~ ~e~\ clu.e~ 

l 
E-8 

- t/'t' t~o 't'::. ...!.._ ::. ..!:. 
c...>o R. 

=. -.!. e. 
L 'L 

The impulse response of the loop is a simple exponential decay with decay 

constant 't'-: L/R. The impulse response is sketched in Fig. E-1 (b). These 

results are presented in order to facilitate demonstration of some of 

the results derived in chapter 7. 
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APPENDIX F 

GREEN'S FUNCTIONS FOR STATIC EM PROBLEMS 

F-1 Background 

This appendix gives a brief summary and derivation of the Green's 

functions used in many geophysical problems when the electromagnetic fields 

are static in time. The Green's functio~s o f interest in the thesis are 

those for the vector and scalar Poisson equation in an infinite region 

and for the scalar Poisson equation in a semi-infinite region with homo-

geneous Neumann boundary conditions at the surface. 

F-2 Scalar Poisson Equation: Infinite Medium 

The basic equation for all static elec tromagnetic problems in an 

infinite region is the scalar Poisson equation 

F-1 

The Green's function in three dimensions satisfies 

F-2 

where 

F-3 

and (e 
1 

, e"t., e 3) and· (X 1 , X"t., X~ are the Unit VeCtOrS a nd the COOrdinateS 

of a cartesian coordinate system. In three dimensions dl(,~-~' 1 is given by 

S+c 'Y. -r'l) 
4rr I 7 - V'"'\ ~ 

F-4 

_, 
For simplicity, r is set to be the origin . Then 

F-5 

Integrating twice w.r.t. r yields 

F-6 
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the familiar Green's function for the Poisson equation. 

In some geophysical problems, it is convenient to think of the source 

being extended infinitely far into one direction with no spatial variation 

in its properties in this dimension. The source is then a line source. 

In this case, equation F-1 becomes independent of one coordinate. In the 

following analysis, the source is assumed infinitely long in the e~ direc-

tion and independent of x 2. • F-2 becomes 

s2. c, r-r 'I) F-7 

where 

f -

Incorporating the two dimensional delta function definition, F-7 becomes 

In:tegrating twice w. r. t. ) yields 

~t-(\f-f'l) 
.4rr If-f'\ 

.1. t"' \ f-r'l 
-rr 

F-3 Vector Poisson Equation: Infinite Region 

F-8 

F-9 

The vector Poisson equation occurs in magnetostatic problems when the 

magnetic fields are generated by static current flow. 

F-10 

The corresponding Green's dyadic in three dimensions satisfies 

(V 

where I is the unitary dyadic. 

F-11 

"-' 
F-11 can be solved by expressing <1Jin 

its c~rtesian components and solving for each component independently 

with the result 

F-12 
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Combining F-10 and F-12 yields the integral form of Ampere's law 

0' )( ~tv-•) cfl r I 

R. 
F-13 

F-4 Scalar Poisson Equation: Semi-Infinite Region 

The solution of the scalar Poisson equation in a half-space with. a 

homogeneous Neumann boundary condition on the surface is the basic equation 

for considering geophysical conduction problems. The half-space is used 

to simulate the Earth. The basic equations are 

F-14 

with 

= 0 F-15 

where ~ exists in the half-space -~ < x 1 , x~ < oo and x 3 ~ o • The Green ' s 

function satisfies 

F-16 

0 F-17 

The solution is found by combining F-3 and F-4 with the method of images 

to yield 

where 

<j'l(vv') :::. 
_,_ 

""itT R 

A similar analysis for two dimensional source fields yields 

F-18 

F-19 
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9:~. ( f I f I) =- .!.... ~? - ...!.. l""- P, F-20 1\ 1r 

( ( ).,-y.:) "(. ) ''1. p = t- l¥1-x~)"~ 
F-21 

( ( ): I - '(:) t ( '/<) ~-.:1 )l.) 
Itt.. 

P, -=- +-

F-5 Summary 

This short discussion of the Green's functions summarizes the more 

important static Green's functions · required -in most static electric and 

magnetic problems in geophysical analysis. The derivations of these 

results can be found in any standard text on electromagnetic theory or 

applied mathematics. More complex problems such as static conduction 

in an N-layered medium can be solved in a similar manner to the time-varying 

case of Appendix A. 
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