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ABSTRALT

The electromagnetic response of magnetically and electrically inho-
mogeneous media whose geometries are not amenable to conventional partial
differential equation analysis are most readily analysed in an integral
equation framework., The equivalent source concept of Green's theory affords
a generalized manner of formulating static and time-varying electromagnetic
problems; material property inhomogeneities are replaced by equivalent source
distributions which satisfy a Fredholm integral equation of the second kind,

For static field problems, the equivalent source method represents
conductivity, permittivity and permeability variations in terms of current
source, charge and ''magnetic pole" dénsity distributions. In this form,
the problems have analogous mathematical forms and the equivalent source
satisfies a scalar Fredholm equation. The formalism is readily related to
the static field methods used in applied geophysics.

The time-~varying equivalent source formulation represents material
property variations in terms of electric and magnetic current densities
which satisfy a pair of coupled vector Fredholm equations. Analysis of the
integral operators shows that the scattering operator is bimodal for many
geophysical problems., This result leads to the analysis of scattering
problems in terms of generalized eigenfunctions. The bimodal nature of
the scattering operator often leads to highly ill-conditioned matrices
when numerical methods are applied to geophysical problems.

Approximate parametric solution methods of solving the time-varying
electric scattering problem are considered. Approximation of the solution
by a general functional form and applying minimum criteria reduce the
integral equations to matrix equations. The least squares method is applied
analysing magnetotelluric responses of 2~dimensional structures and the
Galerkin formalism is used to find the eigenfunctions for a thin plate in a
whole space. The results are compared with other available numerical and

experimental xesults and assessments of the mcthods arxe given,
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CHAPTER 1

1-1 Introdyction

The solution of electromagnetic scattering problems has become
a subject of increasing interest in the fields of applied physics and
engineering with the advent of sophisticated computers in the past two
decades. Previously, the solutions of electromagnetic scattering problems
were limited to those which‘'could be solved analytically. In recent
years, many numerical solutions of various electromagnetic problems have
been published. These problems have been solved primarily from two view-
points; one is that of the electrical engineer concerned with radio-wave
transmission and antenna design; the other is that of the geophysicist
concerned with studying the electromagnetic response of the Earth or the
Moon or a portion thereof in order to determine its electrical properties.
While the basic equations to be solved are quite similar, the two view-
points and the derived results are very distinct.

In the electrical engineering field, the primary concern is the
response of highly conductive bodies in free-space. These bodies are
assumed to be sufficiently conductive that they can be treated as perfect
conductors. In some instances, the behaviour of insulating bodies is of
interest. In both cases the scattering body has dimensions of the order
of the free-space wavelength. If the scattering body is to be used as an
antenna, the directionality of its radiation pattern is of prime interest.
If a body is internally stimulated electrically, in what manner does it
radiate electromagnetic waves? In reverse, if the body is excited by an
externally generated field how effective is it in transmitting this
stimulus to a sensor attached to the body? 1In this situation the body is
an active element of a radio wave transmission system., If the scattering

body is viewed as a disturbing object in a radio transmission system, then



the absorption and re-radiation of energy by the body and minimization
of its effect on the transmission system is the primary concern. In one
instance thé body is an active element of the system and in the other

it is a passive disturbance to the system.

From the geophysical viewpoint the scattering body is a passive but
unknown element in a system. In some instances, the body is stimulated
with a known input and its response is measured. In other cases, the
system input is unknown but the total of the input and the system response
is measured. The objective 1is to establish the electric and magnetic
properties of the body from observation of its electromagnetic response.
If the electromagnetic response of a structure can be computed theoretically,
its response can be used as a basis for interpretation of an experimental
response; this step is known as the inverse problem. In general, the real
system is far more complex than the system whose response can be computed
theoretically. As a result, one can only make inferences about the gross
structure of the real system. The inverse problem is by no means a trivial
one and its complexity is really appreciated only after attempting to
interpret real system responses. Additional features of the geophysical
scattering problem are that measurements are made over spatial scales
much smaller than the free—-space wavelength and the scattering bodies are
conductors with finite conductivity and are usually embedded in a conduc-
tive medium. These features make the geophysical problem quite different

from the electrical engineering problem.



1-2 Thesis Objective and Outline

This thesis project was primarily concerned with the geophysical
aspect of eiectromagnetic scattering. Within this context, the thesis
project had two basic objectives. The first was the development of a
unified mathematical framework from which a wide variety of complex
electric, magnetic and electromagnetic problems could be analyzed; the
second objective was the development and testing of approximate numerical
methods for solving these problems in an economical manner.

The thesis is split into two units; one associated with each of the
two objectives. 1In chapter two, the equivalent source method is developed
for static and time-varying electromagnetic problems and chapters three
and four are devoted to discussion of particular results which can be
derived from the formulation developed in chapter two. Chapters five, six,
and seven are devoted to the approximate solution of some time-varying
electromagnetic problems using variational methods. The numerical results
are compared with experimental data and other numerical solutions which
were available. The numerical results are also used to demonstrate some
of the theoretical developments given in chapter four. The contents of
chapter two through seven are summarized in chapter eight.

Before delving into the detailed mathematical formalism of the
equivalent source method, a brief review of the geophysical appliation
of static electric and magnetic fields and time-varying electromagnetic
fields will be given. In addition, a short summary of the development
of solutions to geophysical scattering problems helps provide an insight
into the type of\time—varying electromagnetic problem encountered in

geophysical analysis.
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Now

A _xlxyexal 4y AT cos (9-8)
\
bst L H = AdAdw
4t S’ 2% .
L] ~“OIX'!‘¥-;.
S - A Te(AS) d A
4T I Bo

where the integral form of the Bessel function of zero order is given by

Jo()\?) = L

N X MY cos ((p-e) .
K]
3
- S e dgp ( _l_f/

[ .

(Morse and Feshbach, 1953, Pg. 620). The solution of L3 is simply the

spherical wave

jReR

L = e C
> 4T R

17

where R = (¢'+ (qu(;)-.)"l . (Sommerfeld, (1949)).

C—4 Quasistatic Approximations

In geophysical problems, the electromagnetic response of inhomogeneities
buried in a conductive half-space is required. The response is observed
in the air above the Earth and this is essentially free space. The size
of the inhomogeneity and the spatial extent to which observations are made
are much less than the free-space wavelength. As a result, the fields in
the air, which propagate at the speed of light, may be assumed to reach all
points of the observation area instantaneously. In other words the speed
of light may be assumed infinite and the propagation constant in the air
region is zero. The fields in the air are termed quasistatic. The quasi-
static approach is discussed in texts on the subject of electromagnetic
methods in geophysics (Grant and West, 1965, Ward, 1967) and has been the
key to analysing geophysical E.M. problems,

The electromagnetic fields scattered by an inhomogeneity in the Earth

are partially reflected from the earth-air interface back into the Earth
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and C-40 becomes
- = ‘ c-35
T‘k: (X\— Y'\)l.
Thus for (xy+v3) = o, L, is
. . )
Lom =3 W Gratyex) 48 Mo Gmtnoxd) ! 6
* 2 ko) X~} TR (*\‘Y’l)l

The electric field about a line source of I amps on the surface of a

conducting half-space is given by
& = JQ.\MOI ( Lo +‘L|) , c-37
Ky+xX3 2w
At the surface X;+¥x330,
{ ( \
He (k,\X\““\I . ! ] c-38
T‘_kz (X\‘\:)l

=

=y Il 2
kc‘X\-X"\

This expression agrees with that given by Wait (1962) when the propagation

constant of the air approaches zero.

|
+
(b) X3 X3 # 0
When (X1+XQ is not zero, it is more convenient to work with C-30 in

a modified form. The reflection coefficient is regrouped to
-1 - zk‘:“ (¥o = tAl) c-39
and C-30 becomes
i Yo lxarxg) + 2 (x-x})
- _A A B a\Ka¥ky) Ty TR
LeEiw S { 2. kI G n)ge dA €-40
~ e
The first term is just
3o (x34x3) +a A (x,~x/) . ‘
dN = —% Ha (k f\) C-41

O
- A g A e
zvw_J 2%e

This is an image of the original line source

N2
S’\l SECT TR (e s) s

where
The second term in C-40 is denoted

reflected at the boundary.
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, e 5o (x *l')-\-‘}\(xpx:)
u(Y\‘Y‘ y X3 ‘FY;):Z;\;R‘ S(U\\-\’o)e YT dA C-=-42

This integral is evaluated numerically.
In addition, the derivatives of L, w.r.t. ¥ and ¥; are required in

the thesis. Thus, a total of three integrals must be numerically evaluated;

namely

-

. - U . - 20U

U u,os 5%, Uy s Cc-43
The evaluation of ‘U, U, and t(; was carried out in a similar manner

to that used by Frischknecht (1967). First the integrals were transformed

to Fourier sine and cosine integrals

, oo o (F‘;*X;)
W= = 5 (A=) e cos (Alx-x)) dX C-44
¥olX +X;
U! = - “.:{é S-' /\(7\‘30)3 ’ )S'\V\(:\(X\'Y\'))df\ C-45
‘ olxz+x3)
u.s = — Y’o Yo ( A-%s) € cos (/\(.X\‘X: ))A)\ C-46

A general program was developed for computing integrals of the form

oo ¥o (x34x3)
Vo= S f(A) = 7l oces { A(X|"KI,)§ dA C-47

o Sin

The integration interval was divided into two sections such that

o0
Vo= Vo + 2 V, C-48
where
)\C. Yoij-\-X;) coS ,
Vo, = go Lfn = . {A(X‘—x.)gcﬂ C-49
At ¥o (x5 +X),)
\/“ = S F(?\\ e cgo‘i\g ?\(x.-y,’)%&}\
Awm

The integration limits are based on the relative values of x;+xi and x-yx,

When the Xy +x3 1is the dominant factor, A .was chosen as the value that makes
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¥o (x4 +%3}) -1
| = & C-50
If this condition held for all wvalues of A , A, was set to zero, The a,,
were taken as
Avi = A + Cwn=) A C-51
For very small (xy +xy) , the Grﬁmﬁ controls the behaviour of the integrand.

In this case

i - cosine integrand
2 (x~x))
Ae = C-52
T sine integrand
Ly, —‘K:)
The A,, were taken as
2(n-') Ac  cosine integrand
>\v\ = )\c_ + C-53
(n=y) A¢ sine integrand
For (x,+(§) dominance, the series for V is rapidly convergent. For

(- ) dominance the series is slowly convergent with the signs of the terms

alternating. In this case a self-adjusting Euler transform routine was
used to force the series to converge. (Hildebrand (1956)). The series
was truncated at n = 20 for all cases. The individual terme were evaluated

using a Gaussian quadrature routine with an adjustable number of points
such that any desired accuracy could be achieved. The functions were then

tabulated and used as data in subsequent analysis.

C-6 Integral L,

In the region where the quasistatic assumption holds

oo ¢ Solxaexy) vy ALy -x!)
- A - 2.8 ¥o)e C-54
L2 2 S C £, 31)2;: <A

~o0
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The first part of L, is just

oo Yo (x"_‘_‘l‘) .‘_.;A(K\“Y’\)
s g e dn = 5 U (ke8) C-55
2 oo 2%o <
iz ne\Yz
where ¢ = ( (ei=x{)® % (x3+x5) )
As mentioned in section C-4, the second term {s aegligible. The term .

was retained in order to demonstrate that it is small. The second term is

€ s, woCxgaxy) + 5 MOxomxi)
L-=x¢l. = AN C-56
™ ot Ja zs,
By definition Re(¥s) 2> © and
oo .)\(ln“"&‘>
Ts + & S e’ an
™ €s A 2 %,

= 5 & il lx-xl)
2

L d

Since k, is very small, & iy-x'| <<1 in the quasistatic range. For small

arguments
l I’
Ho (Robx-xil) 2 (w Cky by 1) c-58
Finally
£y
PRI DAY TR I CAN NN -~ R R c-59
and in the quasistatic limit of ¢, -wo , I —@
The appropriate form for L z is
Lz = RN HLCK’Q ?,) C-60
At.
C-7 Integral L4
The integral L, becomes
oo 2 ¥olX3+xy) +j()~.(x.‘v.')4xl(x,-,;))
- ' A 28X
La = 50 (- 25« )f‘—- A C-61
“n -cgo Re RS 2%o )

using the quasistatic approximation for Re, Lga is written as a Hankel

transform using the type of analysis of section C-3,
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koR| 2 . b
Lo = e L 25 (2, - e ) 2k %))
“ 4aTR, kS R.‘( RE R, ) +24 R‘> Ry

i IENCEAN (\.,P)(ho(v:ﬂ,) (2~ & ))

Ry
C-69
. " 1 Pt 2 hz fIP
+ oF ! oP- _k_o < ""’Z’——) .S__."-____——° +
3‘(k +> Ho(k )R.‘,_(z R, Z( R +zR.P¢. <
2
~ To(wepy) Hy (ko P k('— =P m??)+ e 'rosz-)
e(\e P4> \ P) RE 2 Q. 2(1 TN =
‘(keP—- Ro (x;i—x,’)f’“ ‘\
+ Jl(ko?.‘.) l_“l ) ————ZR““ .
where
Pr = Ri + (xi4+xy) c-70

P. = R, -~ (x4x))

C-8 Integral L«

The integral Lg is modified to a Hankel transform using the same

steps as used for L .

‘olxy *‘Kla\)

) 1
L - L - & o (A Cc-71
< 41T go ( { = = -—; ANJTs(A ?)d/\

As mentioned in section C-4, the second term is negligible in the quasistatic

approximation. Ls is then given by
3 e Ry
Lee = S c-72
= 4T R,
where R, =

. t
(¢ +(z;+xg)‘)ll The second term is readily shown to be
&

. %‘ and is negligible in comparison to C-72

C-9 1Integral L.

The Hankel transform of L¢g is

; oo ¥o (x3+x3)
Le = 47‘_ g 96\7\';{& e\’c, ;‘3‘0(7\?)6"\ =73

The reflection coefficient combination becomes

R.\ - Yo\

2 2%
AT L34

c-7
kI XN 4




in the quasistatic approximation range. L, is then

o(k;?‘!;)
- A _ 2 2 %o A 3.(A8) dA _
Le ‘wr( = ML) n c-75
The first term is given by oo R
oo fo(x-n-x;‘,) 2 s
- A 2 S e A z- -
47 RE o Yo A To LAT)dA ke HTR,
where g = (¢ + ((}hpvl)ul . The second term i. given in terms of the

Foster integral discussed in section C-7 and is

2 2

2mhs 2 %, c-76
The solution for L. ¢ is
\;\‘.R. e
- 2 e +
be = - k: awg, 4k.[ T (iesfy) W (o) - th‘ To(ket) Hy (hﬁ)] c=77

where P4 are given by C-70.
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APPENDIX D

NUMERICAL EVALUATION OF SINGULAR INTEGRALS

In the numerical analysis of the scattering problems in the body of
the thesis, it was necessary to evaluate numerically integrals with
singular integrands. The most singular integrals to be evaluated had the

general form

T(x, %) = ﬂ @ Cxd X)) g x.)y,',v,,'\cll ) dxidxs D-1
A
where
‘3(X\ﬂ:,11}() = ‘/e D-2
or
g (v, xa x4) = Ho (AF) D-3

N ity
S = ((lrd:)1+(xt‘\{))
where w(ﬁ¥{) is analytic in A and (XHXz\éAa For the Hankel function

form of g, the behaviour of the integrand is that of a logarithmic
singularity near (xgxi) = (xwxz) . Since this is less singular than Vf)
evaluation of the '/§f integrand automatically assures evaluation of the
integral with the logarithmically singular kernel.

The point of this Appendix is to illustrate that these integrals can
be evaluated numerically by integrating directly over the singular point
by subdividing the integration region around the singularity. Near the
singular point (x/,xi)= (xwxl\ » A was subdivided into four rectangular

regions Ai’ i =1, 4 plus the remaining region A This is illustrated

5°
in Fig. D-1 (a). D-1 then becomes

2 Cy! ‘. 7 S D"l{
T = 2 [eoa)buimed)add = = T,
oAl r=

The numerical integration was carried out using a Gaussian quadrature

algorithm. The extrapolatory nature of the Gaussian quadrature was used
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D-1(a) Sketch of subdivigion of area A about

singlar point (Xi’XZ)
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APPENDIX E

INDUCTIVE RESPONSE OF A CIRCULAR LOOP

The electromagnetic response of a small loop in a slowly time varying
field is derived quite easily. If the loop has an internal resistance, R,
and self-inductance L, then the current flow as a function of time in the

loop satisfies the differential equation

Ri(e) + L du® = v E-1
dt
where
_ = - T 47 = o -
vV = §>h—_-JL = -2 ggB.dA © T E-2

Next, the Fourier transform pair

i Jwt
Floy: | Few) e ae E-3
- oo
- Sjuwk
Feey A fl e dw E-4
)

are used to transform equation E-1 to the frequency domain. The transformation
yields

(R“ij> T(w) = —Jo 3 E=5
or

I () = 22 3w

R-J(.)L

The transfer function for the loop is simply

F(C-))‘_ '-‘-)C.J . —'S_‘:')————————' SO
R -3l R (1-3 Yoo

The transfer function as a function of frequency is sketched in Fig. E-1 (a).

The impulse response function is given by
oo _jut
- gw

- A e
Feey: EO — (‘_5‘&) d w E-7
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This integral can be evaluated readily by contour integration using the

contours sketched below for t ¢ O and t > 0. The result is simply

f(¢) = o t<o
= -JLTI'J SQes'\du\es E-8
[ =
-t/ 't>o T: P -
- - 2 & © g “e R
L T

The impulse response of the loop is a simple exponential decay with decay
constant ¥=L/R. The impulse response is sketched in Fig. E-1 (b). These
results are presented in order to facilitate demonstration of some of

the results derived in chapter 7.
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APPENDIX F

GREEN'S FUNCTIONS FOR STATIC EM PROBLEMS

F-1 Background

This appendix gives a brief summary ind derivation of the Green's
functions used in many geophysical problems when the electromagnetic fields
are static in time. The Green's functiorc of interest in the thesis are
those for the vector and scalar Polsson equation in an infinite region
and for the scalar Poisson equation in a semi-infinite region with homo--

geneous Neumann boundary conditions at the surface.

F-2 Scalar Poisson Equation: Infinite Medium

The basic equation for all static electromagnetic problems in an

infinite region is the scalar Poisson equation

vid = - 9 F-1
The Green's function in three dimensions satisfies

07 glev) = -85 (F-F1) F-2

where

v = Z xie, F-3
and (&,, é,, é,) and (x,, x,, Xy are the unit vectors and the coordinates
of a cartesian coordinate system. In three dimensions J;QF-FW is given by

S*iv-#)

4 \F-FN\t

F-4

Sy(ve-F) =

For simplicit T' is set to be the origin. Then
P Y

+
| ) '_2—3 ( - —_ _5 (V‘2 F-5
B oS Tay 93(we) = <
4w ¥

Integrating twice w.r.t. r yields

!

qev.e’)

AatwlE-#1|
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the familiar Green's function for the Poisson equation.

In some geophysical problems, it is convenient to think of the source
being extended infinitely far into one direction with no spatial variation
in its properties in this dimension. The source is then a line source.

In this case, equation F-1 becomes independent of one coordinate. In the
following analysis, the source is assumed infinitely long in the 32 direc-
tion and independent of x, . F-2 becomes

vig. (5.8 = -8, (L F-F) 7

where

. ~

? = X\e\ ‘\'X)C]

Incorporating the two dimensional delta function definition, F-7 becomes

v 2 S.F(\?-f"|l F-8
PN 52 S C (?I?‘): -
FAT Tas 58]
Integrating twice w.r.t. § yields
4,(f8) = - 2 if-s F-9
F-3 Vector Poisson Equation: Infinite Region

The vector Poisson equation occurs in magnetostatic problems when the
magnetic fields are generated by static current flow.
9t W = - ©x3s F-10
The corresponding Green's dyadic in three dimensions satisfies
2 o =1 e
Vs gg(rﬂ"') = ‘g'l de -7 ‘) r F-11

n s

where I is the unitary dyadic. F-11 can be solved by expressing {b]in

its gartesian components and solving for each component independently

with the result

ad \ no
Vo= T -
SRERY) PR F-12
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Combining F-10 and F-12 yields the integral form of Ampere's law

A - gy ) PRI e

F-4 Scalar Poisson Equation:

Semi~-Infinite Region

.

The solution of the scalar Poisson equation in a half-space with

homogeneous Neumann boundary condition on the surface is the basic eguation
for considering geophysical conduction problems.
to simulate the Earth.

The half-space is used
The basic egquations are

02§ = -9 X4 >0 F-14
with
'9_@ = O X4 = O F-15
IR-2 S
where % exists in the half-space -o< x,, X,<4° and x; 22 . The Green's
function satisfies
Olaa(v‘v') = - SJ(lF-F'l)

2 (V‘fl = O
DX3 33 )

Xj—

The solution is found by combining F-3 and F-4 with the method of images
to yield

¢ = _L L W _
33(VV) 47 R 4R, F-18
where
L~ \?—F'\
"
Rz ((xmv) + Crax)® +Cxaexh)?) F-19

A similar analysis for two dimensional source fields yields
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Galpi§) = - F b © - L P F-20

"l

Pz ((y=x)? + (x3=x3))

2 e
P ((r—x) + (aedd))

F-5 Summary .

This short discussion of the Green's functions summarizes the more
important static Green's functions required in most static electric and
magnetic problems in geophysical analysis. The derivations of these
results can be found in any standard text on electromagnetic theory or
applied mathematics. More complex problems such as static conduction
in an N-layered medium can be solved in a similar manner to the time-varying

case of Appendix A.
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