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Abstract 

A hydrological study of the island of Newfoundland (Canada) was carried out to identify 

the key basin characteristics associated with a range of flow measures and to assess the 

potential for improving flow estimates at ungauged sites using various regionalization 

methods. The data set was the natural flow records of 40 stations on the island with 

record lengths of more than ten years. The research included a detailed assessment of thr, 

flow records, selection and computation or abstraction of appropriate flow and basin 

variables, analysis of the relationships of the flow measures to basin characteristics, 

grouping of the basins (for flood analysis only) into regions of geographic and basin 

characteristic dataspace, development of predictive equations for all groups, and 

assessment of the effectiveness of the regionalization methods. A procedure was 

developed in this work for estimating the effective precipitation in ungauged basins from 

geographic and topographic variables. 

The most important explanatory variables were found to be drainage area, area controlled 

by lakes and swamps, fraction of barren area in the basin, and distance of the basins 

north and/or southwest of defined lines. A detailed assessment of five methods of 

regional subdivision carried out using the mean annual maximum daily flow as the 

measure of interest found that dividing the island into regions generally improves the 

estimates at ungauged sites. Clustering based on basin characteristics is a promising 

method of regionalization. 
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1 Introduction 
-

In this work, the hydrology of the island of Newfoundland (Canada) was examined, with 

two purposes 

• to identify the key basin characteristics associated with a range of flow 

measures; 

• to assess whether flow estimates at ungauged sites can be improved 

through regionalization, ~nd if so, to identify the preferred method of 

defining regions. 

The island of Newfoundland is a large, roughly triangular island about 111,000 km2 in 

area lying off the east coast of North America, between latitudes 46° 30' and 51° 30' 

North. The island has a cool, moist, maritime climate characterized by unsettled weather 

conditions with few extremes of temperature and precipitation. It lies in the belt of the 

westerly trade winds, and weather systems from continental North America cross the 

island in a generally southwest-to-northeast direction. Runoff is consequently high in the 

southwest, at over 2000 mm a year, reducing to just over 700 mm on Ole northeast coast. 

Surface water is much more important than groundwater in Newfoundland. M.~st of the 

island consists of bedrock overlain by a thin veneer of glacial till, so subsurface aquifer 

storage is negligible. Most of the population obtains its water from surface supplies, and 

about two-thirds of the island's energy comes from hydroelectric generation from surface 
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sources. The abundance of good quality water in lakes, streams and ponds also sustains 

important recreational and fisheries uses. 

Despite the importance of surface water, the hydrometric data base is quite limited. 

There are only thirteen records of unregulated streams with lengths of over 30 years, for 

example. At present, there are about 40 stations with record lengths of 10 years or more 

(on average one station per 2800 km2). Installation of additional gauges in the mid-1980's 

means that within a few years the useable data base will be about 50 percent larger. 

The climate network is also sparse, and the stations are not well located for hydrological 

analysis. In general, the stations are in communities which are situated along the 

coastline. As a result, there are almost no precipitation records representative of the 

central or upstream parts of drainage basins, gauged or ungauged. 

Nevertheless, estimates of flows at ungauged basins are required throughout the range 

of flows from droughts to floods. Flood flows are obviously needed for design of 

structures, and low flows are required to estimate maintenance flows for fisheries and 

possible failures in water supplies. Daily flow sequences are required for design of new 

hydroelectric and water supply facilities, and for improved water n~anagement at existing 

facilities. 
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Previous studies have provided regression equations to enable hydrotechnical engineers 

to estimate some flows at ungauged sites. But with the limited data base, appropriate 

regression equations are frequently not available or ~re not suitable for application to the 

ungauged basin of interest. The purpose of the present study is therefore not simply to 

provide equations, but to enhance the understanding of basin response. Estimates 

resulting from equations can then be rationally assessed and adjusted if required. 

This thesis consists of six chapters. Chapter 2, which follows this Introduction, provides 

a review of the literature, much of which has been in the field of regional flood 

frequency analysis. Chapter 3 presents a review of the data, selection and computation 

of the flow measures, and selection and abstraction of the basin characteristics. Chapter 

4 presents the analysis of relationships of all the flow measures to the basin 

characteristics, paying particular attention to variables representing hydrologic input. 

Graphical techniques, principal components analysis, and multiple regression are the tools 

u~..d for the quantitative analysis. In Chapter 5 one of the high flow measures, Qavgfld 

(the mean of the annual maximum daily flow series) is used to assess whether 

regionalization can improve predictions. Qavgfld was selected because it is frequently 

used as an index flood in regional flood frequency analysis, and many investigators have 

noted that the estimates of the index flood are a large source of error in estimates of 

more remote events. Conclusions and recommendations are provided in Chapter 6. 
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2 Literature Review 

The defmition of homogenous regions for hydrological analyses and the relating of basin 

characteristics to inflows within those regions has long been {)f interest to engineers 

seeking to improve estimates of hydrological variables at both gauged and ungauged 

sites. It continues to be an active field of research, being revisited each time there are 

advances in either techniques of estimating the variables at gauged sites or in statistical 

multivariate techniques. 

This section reviews the relevant literature in three categories, depending on the focus 

of the particular study. These categories are briefl~ described below. 

1. Regional Flood Frequency Analysis 

Most of the interest in regional hydrology has been in the delineation of regions 

for the purpose of improving estimates of flood flows. Until recently, most 

regions have usually been defined geographically, with perhaps a simple statistical 

test to confirm groupings. The purpose of the regionalization is usually to 

improve flood flow estimates, especially at ungauged sites. Recent improvements 

in flood frequency analysis techniques have improved the definition of regions. 

The statistics obtained using the L-moments method in particular have been 

shown to be very useful in identifying t,;asins with similar flood responses. 
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2. Relating Hydroloalc Response to Basin Characteristics 

Estimates of hydrologic response variables, whether for floods or other flow or 

meteorological variables, are often required at ungauged sites. These estimates 

are usually obtained using regression equations relating to the hydrologic response 

to basin variables. Regionalization techniques are used to improve the estimates. 

3. Regional Analysis in Non-Geographic Dataspace 

Many investigators have noted that for Ute purpose of predicting hydrologic 

response it may be more helpful to group basins together in a data space which 

is not necessarily geographical. Such grouping can be done using multivariate 

techniques such as cluster analysis. A variation on this approach has been called 

the region of influence approach (ROI), in which each basin has its own unique 

region. The regions have flexible boundaries, and consist of basins particularly 

similar to the basin of interest. Multivariate analyses can be carried out without 

computers, but there is no doubt that access to powerful multivariate statistical 

programs has led to substantial development in regional hydrology. 

The remainder of this chapter reviews the relevant literature for each of these categories 

in tum, in roughly chronological order to show the development in each category. The 

studies specific to Newfoundland are described in a final section. 
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2.1 Regional Flood Frequency Analysis 

One of the most influential of early investigators into the use of regionalization in flood 

frequency analysis was Dalrymple (1960). Like many others, he was principally con­

cerned with improving estimates of flood quantiles. He proposed a method of using data 

from many gauges to compensate for the fact that individual records were too short to 

produce satisfactcry estimates of upper quantile flood flows (i.e., he substituted spatial 

information for temporal). 

His method, the index flood method, has become widely used, with relatively minor 

variations. It depends on the fundamental assumption that all the flood series within a 

region come from the same parent distribution. Dalrymple also published Langbein's test 

for homogeneity, based on the premise that the slope of an individual frequency curve 

shall be no more at variance with the regional curve than can be explained by errors in 

sampling. The test is applied by plotting the flow having an estimated return period of 

10 years on a plot which also shows the control curves representing a range of variation 

equal to two standard deviations of the reduced variate for the extremal distribution. If 

the flow for the basin falls within the control curves, the basin passes the test for 

homogeneity. Because of the funnel shape of the control curves, this test is sometimes 

referred to as the funnel test. Its publication by Dalrymple and shortly thereafter by 
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Chow (1964) led to its wide use and acceptance. Condie (1979) expanded the concept to 

include lognormal distributions. 

A growing recognition by hydrologists of the improvements in statistical techniques, 

aided by computers which allowed more sophisticated analysis and plots, led to increased 

use of three parameter distributions. It soon became clear to those working with three 

parameter distributions that skew cannot be reliably estimated from the short records 

typically found in most hydrometric networks. Matalas, et a1 (1975) and Wallis, et al 

(1974, 1977) were among the first and most influential to call attention to some of the 

problems related to this issue. Regional analysis becomes important because it has the 

potential to provide regional estimates of a shape parameter (skew), which can be 

combined with at·site estimates of the location and scale parameters (mean and standard 

de:viapon) to improve quantile estimates. 

Maclaren Atlantic (1980) used a regional approach to estimating skew in a regional flood 

frequency study of Nova Scotia streams. The invest:gators first identified mainland Nova 

Scotia as a homogeneous region different from Cape Breton Island, based on experience 

and judgment. They then estimated a regional skew coefficient based on the average of 

the skew coefficients of stations with record lengths longer than 20 years. Multiple 

regression was used to develop the relationships between the average flood flow, as well 

as flows with return periods of 20 and 100 years, and basin characteristics. 
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Gabriele and Amell (1981) took this type of approach a step further, using a hierarchical 

approach to regi .1nalization. They assumed that the shape parameter (skew) would be 

constant over a larger region than the scale coefficient (represented by coefficient of 

variation Cv). In other words, a basin would be classified into a large region for skew, 

and a smaller region for Cv. They did not have much success with this avproach on the 

Italian basins on which it was tested. 

Fiorentino, et al (1986) continued this approach, using simulation to consider three 

levels. The most general level was Cs constant in a region, the next level was Cv 

constant in the region, and the most specific level was multiple regression to obtain the 

location parameter (the index flood). The observed variance of Cs was similar to the 

sampling variance from the simulation; however, the observed variance of Cv was nearly 

twice the Cv in the simulations. They concluded that further subdivision would be 

required to obtain good stimulation results for Cv. 

Arnell and Beran (1987) used a concept similar to regional skew in testing the suitability 

of the two-component extreme value (TCEV) distribution proposed by Rossi (1984) for 

regional flood estimation. Two parameters of the 7CEV distribution contrcl skewness 

and kurtosis and the ratio of outliers. In their regiona\ analysis, they assumed that these 

two parameters were constant in a region. This 1pproach produces realistically variable 
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estimates of sample skewness, but it needs long records for successful calibration, and 

is not robust in non-TCEV worlds. 

Other investigators continued to explore other ways using regional information to 

improve flood estimates. Wood and Rodriguez-Iturbe (1975), and later Kuczef-R- <1982, 

1983) considered Bayesian approaches to infer probabilities of extreme hydrologic events. 

The Bayesian approach is one method to combine at-site and regional information. In a 

case study by Wu (1988), quantile estimates from the Bayesian approach were much 

lower than from the index flood method. Care is required with Bayesian approaches 

because at sites with short records the prior distribution will dominate, and must be 

correctly specified (which may be dif:aicult). 

Heo, et al (1990) developed some regional frequency models and estimation techniques 

for gauged sites with short records, assuming independence in space and time. They 

concluded that regional flood frequency analysis was preferable to single site analysis 

even when both intersite dependence and heterogeneity appeared. 

Guo, et al (1990) investigated a regional maximum likelihood estimation (MLE) method 

as an alternative to index flood, multiple regression or empirical Bayesian techniques for 

predicting floods and gauged and ungauged catchments. They found that the regional 

MLE method performed about the same for predicting flood quantiles at ungauged 
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basins. They noted (as have many others) that finding the proper basin characteristics to 

be included in a regional model is more important than finding the proper regional model 

to improve the performance of regional flood frequency analysis. 

Cavadid, et al (1991) examined the operation of the Box-Cox transformation for regional 

flood frequency analysis, especially its performance when the underlying distribution is 

lognormal, Gumbel or gamma. They concluded that its use is not very promising. 

Caissie and El-Jabi (1991) analyzed 237 stream records across Canada using the theory 

of stochastic processes applied to extreme values. They preselected the regions based on 

Government of Canada (1984). Using a partial duration series (peo1:s over threshold), 

they found that they needed to have four peaks per year above a truncation l~vel to obtain 

reasonable results. They noted again that the wea.kne.~5; of the method is in estimating the 

index flood. 

The most promising work of the last few years in regional flood frequency analysis is the 

L-moments approach, which provides powerful tests of regional homogeneity in flood 

response. L-moments are mathematically equivalent to probability weighted moments 

(PWMs), brought to the attention of flood frequency analysts by Greis and Wood (1981). 

The technique of PWM's offers an altemativ~ · :. the method of moments (MOM) or 

maximum likelihood (ML) for estimating paratai.;. •. :;rs of a distribution. As in the 
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conventional index flood method, regional quantiles are scaled using an index flood, e.g., 

the average flood flow. This approach is robust, especially for short, highly skewed or 

highly kurtotic records. 

The first important publication in this area was by Hosking, et al (1985). In their 

f.l~praisal of the U.K. Flood Studies Report, they demonstrated the superiority of the 

PWM method. Similarly, Wallis and Wood (1985) showed by Monte Carlo simulation 

that an index flood approach using PWMs was superior to the Log-Pearson lll approach 

recommended by the U.S. Water Resources Council. Hosking and Wallis (1988) later 

showed by a Monte Carlo experiment that regional flood frequency methods give better 

results than at-site analysis, even if both the assumptions of intersite independence and 

homogeneity are violated. They point out that the error in quantile estimate is often cJ•1e 

more in estimating the at-site indc · . .; flood than in estimating the regional growth factor. 

Both Potter (1987) and Cunnane (1988) discussed the contemporary situation in regional 

flood frequency analysis. Potter reviewed the research from 1983 to 1986, and noted that 

the index flood methods based on PWMs performed very well in a variety of situations. 

The main source of variability appeared to be the uncertainty in estimating the at-site 

index flood. Cunnane (1988) provides a good discussion on the methods and merits of 

regional flood frequency analysis. He notes that the dimensionless scale and shape 

parameters Cv and Cs are commonly used as measures to judge regional homogeneity, 
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as well as the funnel test. He prefers across-region averages using PWM's and L-

moments, although he cautions that there may still be unusual catchments for which at­

site analyses arf: preferable. 

The introduction of L-moments appears to have led in the last few years to the consensus 

Potter felt was lacking in the mid-1980's. Like PWl.i's, they allow use of a regional 

averaging to obtain growth curves. Hosking (1990) and Hosking and Wallis (1992) 

present convenie~t and efficient methods for using L-moment statistics in regional 

analysis. The L-moments approach also provides a method of selecting an approj)riate 

regional distribution, testing for homogeneity and identifying discordant gauges. 

The L-moments procedure has now become well-accepted. Vogel and Fennessey (1993) 

concluded from a case study that L-moment diagrams should replace product moment 

diagrams. Using large samples of daily streamflow in Massachusetts, they found that 

conventional moment diagrams based on estimated product moments (Cv, skew, kurtosis) 

revealed almost no information abQut the distributional properties of daily streamflow, 

whereas L-moments diagrams enabled them to discriminate among alternate distributional 

hypotheses. 

L-moments are now used in Environment Canada's Consolidated Frequency Analysis 

(CFA) package, and the use of L-moments to estimate flood quantiles within regions is 
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recommended in Maidment's Handbook of Hydrology \1993). In New Zealand, Pearson 

(1991) estimated L-moments for 275 annual maximum flood peak series to identify the 

most suitable parent distribution and compare it with previous assumptions. This work 

is continuing, as well as application of L-moments to low flows and extreme rainfalls. 

In Canada, Pilon and Adamowsld (1992) demonstrated the value of regional information 

to flood frequency analysis using the method of L-moments in Nova Scotia through 

simulation. Pilon (1991) also used L-moments iu a simulation study to show that all the 

gauges on the island of Newfoundland can be considered to be part of a homogeneous 

region. L-moments have been applied to other data besides flows; Cong, et al (1993), 

for example, used the L-moments approach to identify the underlying distribution form 

of precipitation using regional data. 

2.2 Relating Hydrologic Response to Basin Characteristics 

In order to make flow c.•.stimates at ungauged sites, flows at gauged sites must first be 

related to basin charactt;ristics. In the analysis described in Section 2.1, the concern was 

with flood flows. Other investigators have been interested in relating not only flood 

flows but other flow measures to basin characteristics. 

A landmark study was carried out by Thomas and Benson (1970), in a large &:.lie 

multiple regression analysis. They preselected four regions in continental United States, 
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with quite different climatic regimes and physiography (eastern, central, southern and 

western continental U.S.) and assessed the relationships among a wide variety of basin 

topographical and meteorological characteristics and 71 flow indices. Their flow indices 

did not include extremely rare eventlii; they ranged from the seven day low flow with a 

return period of 20 years at the low flow end to an instantaneous flood peak with a return 

period of 50 years at the high flow end. They found that 

1. streamflow characteristics can be defined more accurately in humid regions; 

2. low flows can be only weakly defined; 

3. medium flows can be more accurately defined than high; 

4. standard deviation of monthly and annual flows are significantly related to basin 

characteristics; and 

5. some indices of flow distribution in time can be better described by regional aver­

ages than by basin characteristics. 

These conclusions have generally been reproduced by others in one way or another. They 

also noted frrst, that some basin characteristics, such as basin geology, cannot yet be 

satisfactorily represented by simple numerical indices (which may partly explain why low 

flows are difficult to predict); and second, that the basin characteristic indices most 

highly related to streamflow are drainage basin size (a physiographic characteristic) and 
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mean annual precipitation (a meteorological characteristic). The usefulne~s of other 

variables (forest cover, snow, and surface storage) varied from region to region. 

Another influential regional study also carried out by the USGS a few years later was a 

regional analysis of streamflow characteristics (Riggs, 1973). It is intended as a manual 

Jescribing ways of generalizing streamflow characteristics and evaluating their 

applicability under various hydrologic conditions. It is mostly concerned with regional 

flood frequency analysis, and notes that four basin variables, three physiographic 

(drainage area, slope, and percent lake and swamps) plus one meteorologic (mean annual 

precipitation) will ordinarily reduce standard error to a minimum. Like Thomas and 

Benson, he observes that the application of regional analysis to low flows is less 

successful because of the greater dependence of low flows on basin characteristics that 

are imperfectly known and that cannot be described by simple indices. 

Schaefer (1983) took an interest in regionalization from a meteorological perspective, in 

considering storm analysis for spillway design. He argues that extreme storms can be 

analyzed more reliably on a regional rather than on a point basis. His regions are 

geographical, and homogeneity is assessed by judgment and experience. Regions can be 

considered homogeneous if events originate from the same storm type, or if the 

precipitation data at all stations with the region share homogeneous statistical 

characteristics. He concluded that large events are rare for any given station but are quite 
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commonplace for a region, a result important f<,t regulators responsible for all structures 

in a region. 

Schaefer continued his work in this field with a regional analysis of precipitation annual 

maxima in Washington State (Schaefer, 1990). He looked for site-to-site similarity of Cv 

as the mark of a homogeneous region. He defined his subregions using a continuously 

varying mean annual precipitation (in geographic space). 

Mimikou and Kaemaki (1985) sought relationships which could be used to predict the 

shape of flow-duration curves in western and northwestern Greece. They described the 

flow duration curve as a cubic polynomial with four parameters. Assuming the area to 

be one homogeneous region, they developed regression equations using precipitation, 

drainage area, hypsometric fall and channel length to predict the values of the parame­

ters. 

Fennessey and Vogel (1990) also developed a regional hydrologic model for estimating 

flow duration curves, but they approximated the lower half with a two parameter 

lognormal function. They developed regional regression equations using drainage area 

and a basin relief parameter, with good results. Vogel (1992) took a different approach 

a few years later in estimating low flow statistics. He approximated low flow behaviour 

with a simple stream-aqt,ifer model, and then estimated modified model parameters (area, 
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slope and base flow regression constant) using multivariate regression procedures. In the 

region considered, he found that the low flow statistics were highly correlated with these 

parameters. 

Acreman (1985) reviewed the U.K. Flood Studies Report (FSR) in the Scottish context. 

Taking Scotland as one region, he used the FSR data base expanded to include new data 

to develop a prediction equation for the mean annual flood Qavg, based on basin 

characteristics. He found that the standard average annual rainfall (SAAR) is a better 

predictor of the mean flood flow than the extreme rainfalls used in the FSR; that the 

fraction of lake storage (LOCH) is a better predictor than the fraction draining through 

lakes (LAKE), and that drainage area, stream frequency and a soil parameter are also 

important variables. Slope, whether average basin slope or main channel slope, was not 

statistically significant, although examination of residuals suggested that it is an important 

explanatory variable in some basins. It is either not well represented in the data set or 

is not adequately specified by the indices. Unlike other investigators, he found no 

correlation between average valley slope and basin slope, possibly because the region was 

glaciated. 

Pilon (1990) outlined the extension of the index flood method to low flow analysis when 

the regional distribution is assumed to be Weibull. He derives a homogeneity test similar 
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to the funnel test, and suggests using non-geographic regions. He also recommends 

extending L-moments techniques to investigate the distribution. 

2.3 Regional Analysis in Non-Geographic Dataspace 

The studies relating hydrologic response to basin characteristics showed the importance 

of defining regions. Another line of research dealt with methods of grouping other than 

geographical for establishing regions. In New Zealand, Blake, et a1 (1973) took a 

different and then-novel approach to regionalization. The hydrologic network in New 

Zealand had been established with the aim of ensuring that all regions would have 

representative basins, i.e., that a representative gauged basin could be assumed to be 

representative of the region in which it was located. The regional subdivision had been 

made on the basis of rock type, slope and precipitation, and the regions were 

geographically contiguous. Blake et at {1973) used a principal components analysis to test 

the regional subdivision. They found that they could reduce their original 39 

characteristics to seven. 

White (1975) took a related aporoach, using data for basins in Pennsylvania. She used 

factor analysis of basin geomorphological characteristics, including drainage density, 

slope, shape, and geometry. 
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Mosley (1981) continued the evaluation of New Zealand hydrological regions. He 

developed clusters based on specific mean annual flood and coefficient of variation, and 

concluded that where a number of factors are equally important in controlling hydrologic 

regime (e.g., climate, lithology and topography), a complex mosaic of hydrologically 

homogeneous areas results, and no broad scale regions can realistically be identified. 

Where one factor is dominant, a regional system may be identifiable, as in the South 

Island, where differences in climatic regime appear to dominate. He stressed that the 

groupings should be based on sound principles of classification, and in particular should 

be based on attributes of the basin, not on factors that supposedly influence the attributes. 

Tasker (1982a) published a useful paper comparing methods of regionalization. Using 

data splitting techniques on 221 basins in Arizona, he compared the effect of clustering 

on basin characteristics with clustering based on flow characteristics. Had he only based 

his results on the estimation data, he would have concluded that clustering on hydrologic 

characteristics was better. In fact he found that better prediction results were obtained 

using basin characteristics. Elsewhere (Tasker 1982b) he suggested using the Wilcoxon 

Signed Ranks Test to test whether the apparent clustering of plotting residuals from 

regression is real or the result of chance. Several years later (Tasker, 1986) he reviewed 

the issue of regional homogeneity in the context of regional floods, concluding that more 

work was required to define homogeneity, and pointing out that the estimates for some 

sites may be adversely affected by regionalization. 
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Although regionalization for the purposes of improving flood flow estimates has received 

the most attention in the literature, the interest in other flow characteristics has 

continued. In the mid-eighties, Hughes (1987) used cluster analysis to group 77 rivers 

in Tasmania into four groups based on 12 hydrological indices of monthly, annual, peak 

and low flows. She found that the groups were distinctive and spatially significant, and 

that drainage area, mean annual rainfall and Cv of annual flows could be used as 

indicator variables to extrapolate other indices. No basin characteristics were used except 

drainage area and mean annual rainfall. 

Acreman and Sinclair (1986) took the opposite approach to data from 168 basins in 

Scotland, classifying the basins independently of the discharge data. TI1ey th '.n teste.d 

homogeneity using flood flow data, using the likelihood ratio test based on Generalized 

Extreme Value (GEV) parameters. Where homogeneity was rejected, they found it was 

due to a small number of badly fitting basins. 

Hawley and McCuen (1982) used regions defined by cluster analysis for the purpose of 

estimating water yield in the western United States. The separation of the study area into 

five regions using cluster analysis of 18 characteristics (17 basin characteristics and one 

flow characteristic, yield). The clusters were geographically contiguous. They used 

principal component analysis to identify important factors and stepwise regression to 

develop the equations. 
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An important contributor to the research on regional analysis is Wiltshire. In the mid-

eig!lties, he carried out multivariate studies of drainage basins in Britain and developed 

homogeneity statistics to test their classification. In Wiltshire (1986a), he notes that 

although the funnel is much used, it is weak, and developed two statistical tests of 

regional homogeneity and examined properties of the test statistic. He also notes that the 

U.K. Flood Studies Report did not use any statistical test to define regions. 

The first test Wiltshire developed was based on Cv of the flood series, on the assumption 

that Cv is related to the slope of the flood frequency curve. (Similarity of Cv is often 

considered an indicator of a regional grouping.) Simulations, however, showed that this 

test is not very good; it accepted homogeneity too often. The second test, based on the 

distribution function of the regional parent, performed belter. Its power depends on 

region size, record length and choice of parent distribution. He found that a few long 

records will characterize the data better than many short ones. Also, if the series are ten 

years or less in length there will rarely be sufficient information present to detect 

heterogeneity even where there are gross differences. 

In Wiltshire (1986b), he tests clusters in a flow statistic dataspace of average flood 

specific runoff and Cv. The clusters were developed using a partitioning clustering 

scheme rather than an agglomerative hierarchical scheme. The clusters were interpreted 

in terms of basin characteristics through the use of a multivariate linear discriminant 
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analysis. He also considered fractional membership using weighting. Clusters in a flood 

statistic dataspace were not particularly well mapped onto a basin characteristic 

dataspace. 

In Wiltshire (1986c) he reports a procedure for grouping basins by an iterative search 

through the basin characteristic database to optimize statistics that describe the efficiency 

of the grouping. When he applied the procedure to U.K. data, five groups resulted, 

based on drainage area, mean annual precipitation, and fraction urban. He tested the ten 

geographical regions identified in the FSR with the same statistics, and found that only 

five were homogenous. Overall the regions were not significantly different in terms of 

their mean Cv's. 

Wiltshire and Beran (1987a) continued this investigation into multivariate techniques for 

the identification of homogeneous flood frequency regions. In their study the regions 

were identified using a plot of Cv as a function of the average flood specific runoff. 

Basins which plotted near each other were recombined until the total sum of squares of 

the distances from the centroid was minimized (a partitioning scheme). They then used 

discriminant analysis to determine which basin characteristics should be used to describe 

each cluster. They found that some basins did not fit into any of the flow clusters based 

on their basin characteristics. This was particularly a problem for basins/clusters with 

relatively small mean floods and high Cv's. They addressed this problem by using the 
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scores from the discriminant analysis to weight the growth curves, and suggested that 

other statistics could be used to define the clustering dataspace. They concluded that the 

effectiveness of the discriminant analysis, as well as the regression estimate of the stan­

dardizing parameter, are limited by the available basin characteristics. Wiltshire and 

Beran (1987b) also present a significance test for homogeneity of flood frequency 

regions. 

Bum (1988) addressed the delineation of groups for regional flood frequency analysis. 

He was concerned with both the technique for determining a homogeneous group, and 

with the robustness of the method for estimating regional parameters with respect to the 

distribution. He used a principal components analysis of the correlation structure of 

annual flows at 41 stations in Manitoba as the flow dataspace. The number of principal 

components was the number of groups for the analysis; three groups were finally 

selected. He then evaluated the technique using Monte Carlo simulation, considering 

four alternative estimators. He found that at-site estimates were improved using these 

regions. 

Bum continued his regional analyses in an appraisal of the region of influence (ROI) 

".pproach, similar to the fractional membership approach of Wiltshire and Beran (1987a). 

In this approach, each site has a unique set of stations which constitute its region. 

Considering the flow dataspace only, he found that the ROI approach performs better 
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than traditional methods of grouping, probably because the available information is used 

more efficiently. In 1989 Bum used cluster analysis (by partitioning) of flow variables 

as a method of grouping basins (Bum, 1989), and followed up on this work with a report 

on a large study using the U.K. FSR data set (Bum and Boorman, t993). 

In this report, Bum and Boorman present a procedure for estimating various hydrologic 

variables (high and low flows, mean flow, and rainfall-runoff model parameters) at 

ungauged catchments. They grouped the catchments using cluster analysis by partitioning 

of three principal components obtained from seven flow measures. They then identified 

three groups, those with flashy, big floods, those with slow, sustained, low runoff 

production, and those with slow, sustained, but high runoff production. They used 

stepwise discriminant analysis to select the key basin variables, and canonical analysis 

to identify canonical variables for discriminating between clusters. These canonical 

variables separated the clusters based on flows reasonably well. They applied the 

technique to two parameters of a rainfall-runoff model used in the U.K. for ungauged 

catchments. Bum's most recent published work uses Newfoundland data, and is 

described in Section 2.4. 

Haines, et al (1988) used cluster analysis for descriptive purposes, to prepare a 

preliminary global classification of seasonal flow regimes, based on a data set of mean 
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monthly flows. rlbeir results were presented as a map of regime types drawn for the first 

time on the basis of streamflow characteristics alone. 

Bhasker and O'Connr1r (1989) present a comparison of cluster analysis and the method 

of residuals for flood regionalization. The pattern of residuals has been used in 

conjunction with regression analysis to identify geographic regions in regional flood 

frequency analysis. Like Wiltshire they choose the mean specific flood and Cv as the 

clustering variables (although they use log Cv). They found that clusters were in no way 

similar and were not coincident with geogrctphical boundaries, but were better 

discriminating in terms of the hydrological characteristics than region based on patterns 

of residuals. They then used discriminant analysis of the basin characteristics to compare 

assignment of basins to clusters. They selected drainage area, slope, sinuosity and shape 

as the basin characteristics for the discriminant analysis. 

Nathan and McMahon (1990) present the results of a thorough investigation into the 

identification of homogeneous regions for the purposes of regionalization. They used low 

flow as the catchment response for grouping. They discuss previous approaches and note 

problems with them. They conclude that cluster analysis is a promising approach, but the 

classification should be based on catchment characteristics; variables must be selected and 

possibly weighted, and results will be highly dependent on scale. In addition, there are 

a plethora of linkage algorithms and distance measures, which will lead to different 
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results with the same data. Once regions have been selected, the final problem is how 

to allocate new catchments. Computerized procedures such as discriminant analysis, will 

always assign a variable to some region, even if it is quite dissimilar. 

The purpose of their study was to develop regression equations for predicting low flows 

and yield characteristics. They addressed the problems identified above by using multiple 

regression to select and weight the independent variables (basin characteristics) before 

carrying out the cluster analysis. Once the preliminary groups were selected using cluster 

analysis, they used multidimensional plotting (Andrews plots) to identify group signatures 

and minimize heterogeneity. The multidimensional plots were also an aid to assigning 

new catchments to the appropriate group. 

Gingras and Adamowski (1993) took an unusual approach to homogeneous region 

delineation, basing their analysis of New Brunswick basins on annual flood generation 

mechanism. Their approach combines geography and flood data characteristics through 

the use of the shape of the probability density function, which is dependent on the 

processes that generate floods in the watershed. Once they identified three regions, they 

used multiple regression to develop equations for flood quantiles. For all regions and all 

quantiles, drainage area and mean annual precipitation were the only significant 

indp,pendent variables, and they were significant in all equations. 
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2.4 Regional Analyses in Newfoundland 

Since the late 1960's a number of studies have been done in Newfoundland which include 

some form of regionalization, although the regional boundaries rarely agree. The earliest 

large study was undertaken for the Atlantic Development Board by Shawinigan-Maclaren 

(Gov't of canada, 1968). It reviewed the island hydrology and water uses. It was 

followed two years later by a study done by Ingledow to develop a hydrometric plan for 

the Atlantic Provinces (Gov't of Canada, 1970). An important component of the work 

was to delineate hydrologic zones for the purpose of ensuring that each zone W&' 

adequately sampled in the hydrometric network. Two types of zone delineation were 

identified 

• physiographic, having generally uniform topography, geology and 

vegetative cover, and subject to similar climate variations; 

• statistically similar, having similar runoff parameters, so that within each 

zone computation models (regression equations) can be developed to relate 

physiographic characteristics to hydrologic response. 

In Newfoundland they did not have sufficient data to undertake the second approach, so 

they defined the zones using geographic and climate features as well as the annual runoff 

distribution, They finally ended up with four zones on the island. In the process they 
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identified two flood zones, the first consisting of the west coast and the Great Northern 

Peninsula, plus the Avalon peninsula, and the second the remaining central area. They 

also identified two average runoff zones, eastern rutd western. These were similar to the 

flood zones, with the exception that the Avalon peninsula was included in the eastern 

zone. In the final regionalization they subdivided the large eastern region into three 

zones, one north and one south of the Water Survey of Canada (WSC) divide between 

subregions Y and Z (plus subsubregion YS), and the third consisting of the Avalon 

peninsula. Because of the lack of data in Newfoundland, they were able to undertake 

only very preliminary statistical analyses. They recommended the addition of about 17 

new gauges, many of which were installed. 

The first flood frequency analysis relating flood flows to basin characteristics in 

Newfoundland was undertaken by Poulin (Gov't of Canada, 1971). He treated the island 

as one region, using 17 stations with an average record length of 15.8 years. Poulin 

found that the average flood flow based on these records was a function of drainage area, 

area controlled by lakes and swamps, and slope. 

In the early 1980's the provincial Water Resources Branch, in association with the Inland 

Waters Directorate of Environment Canada, undertook a major regional flood frequency 

analysis (Gov't of Nfld, 1984). Regression analysis techniques were used to develop 

relationships between flood flows with return periods of 20 and 100 years and relevant 
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basin and climate characteristics. Equations were provided for two regions, as wen as 

for the island as one region. The regional division was north-south, based on the 

observation that in most years the maximum daily flows in the north region occurred in 

the spring in conjunction with snowmelt, whereas in the south region the maximum daily 

flows could occur in almost any season. Five rivers in the two regions failed the funnel 

test. Plots of the residuals showed no need to have two regions, but the regions were 

maintained because the standard errors of the estimates were smaller. 

Using logarithmically transformed variables, they found that for the island treated as one 

region, and in the south, the peak flows were a function of drainage area, mean annual 

runoff, area controlled by lakes and swamps, and shape. In the north region, treated 

separately, the best explanatory variables were drainage area, mean annual runoff, and 

latitude. The report noted the lack of snowcourse and inland precipitation data, and 

indicated that they had used location (latitude and longitude) as a pseudohydrologic index 

of exposure to major storms. 

Sharp and Moore (1988) used the data from the regional flood frequency study to explore 

the possibility of improving the regression results using principal components analysis. 

They found five components that explained 82 percent of the variance, and plots of the 

first two components suggested possible east-west clustering (not north-south as the 

regional flood frequency study had found). 
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Some problems with the 1984 regional frequency analysis were identified by Lye and 

Moore (1991). The particular items they identified were as follows. 

1) Fitting a multiplicative model using logarithmic transforms leads to biased 

partial regression coefficients and biased estimates of the flood quantiles, 

as well as goodness of fit statistics that do not reflect the accuracy of the 

predictions. 

2) The use of mean annual runoff (MAR) as an explanatory variable is 

problematic, both because it is difficult to estimate at an ungauged site, 

and because the correlation is spurious. A correlation between drainage 

area and MAR is implied by the formulation of the equation, but such a 

correlation does not exist. 

3) The high correlation between latitude and MAR may lead to problems of 

multicollinearity. 

4) The use of the variable LAT (latitude) is suspect because of its small 

coefficient of variation (Cv) together with the very large coefficient 

associated with it in the regression equation. 
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Some of thtse problems were addressed in a thorough revision to the provincial regional 

flood frequency analysis carried out by the provincial Water Resources Division in the 

late 1980's (Gov't of Nfld, 1990a). Neither of the variables MAR or LAT was used. 

This study identified four regions, based on specific flood runoff (m,/s per km2
) and 

time of occurrence of maximum flows. These four regions gave better results in 

homogeneity testing than the previous regions or than one region alone. The report 

provided regression equations for estimating instantaneous peak flows having return 

periods ranging from 2 to 200 years. The significant variables were drainage area, a 

lakes and swamps factor (combining the area controlled by lakes and swamps with the 

fraction of the basin consisting of lakes and swamps), drainage density, and slope. Not 

all variables were important in all regions. As with the 1984 study, the limited range of 

the data was noted. 

The provincial Water Resources Division also carried out a low flow frequency analysis 

(Gov't of Nfld, 1991). Three regions were identified, based on annual precipitation, 

runoff potential, and the fractions of barren and forest areas. These boundaries were 

different from the flood regions. It was difficult to obtain significant regression 

parameters; the only significant explanatory variable was drainage area, with fraction of 

forest coming in as a second va1iable in one region. 
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In the early to mid-1980's, two other studies were carried out by Acres with a somewhat 

different focus. These were hydrologic design methodologies for small scale hydro 

projects at ungauged sites (Gov't of Canada, 1984, 1985). The first was a general study 

for Canada as a whole; the country was subdivided into 12 regions, of which the island 

of Newfoundland was or.e. In the second project, the methodology was developed for the 

Atlantic region (except PEl) in more detail. 

In the Atlantic study, the three provinces were divided into 14 regions based on 

physiographic and climate characteristics. Three methods of synthesizing flow records 

were developed, and an index flood approach was recommended for floods. In 

Newfoundland, four regions were identified, corresponding with minor modifications to 

Ingledow's. The regions turned out to be the same for both floods and streamflow; when 

the stations used in the 1984 regional flood frequency analysis were retested using the 

streamflow regions, no new nonhomoge:eous stations were introduced. 

All the above studies used a geographic approach to regionalization. The advent of 

relatively easy-to-use multivariate techniques along with a good data set provided by the 

provinciall984 regional flood frequency study has led to several interesting papers using 

alternative regionalization approaches. 
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Cavadias took a canonical correlation approach to regional flood estimation, presenting 

the results in two related papers (Cavadias, 1988, 1990). Like principal components 

analysis, canonical correlation reduces the dimensionality of the problem, in this 

application in the spaces of both the basin and the flood characteristics. Using the data 

set of flood quantiles and basin characteristics from the 1984 regional flood frequency 

analysis, he identified canonical flood variables and canonical basin variables. He found 

that the locations of the gauged basins in a plot of the first two canonical basin variables 

were similar to their locations in a plot of the first two canonical flood variables. An 

ungauged basin can be located on the plot of the canonical basin variables, anrl the 

neighbouring basins can be identified. The flood characteristics of the ungauged basin can 

then be assumed to be similar to the flood characteristics of those basins, as represented 

on the plot of the canonical flood variables. 

In a preliminary study, Sceviour and Lye (1993) also used graphical techniques to 

represent multivariate flow and basin data in two dimensional space. Rather than 

reducing the data to canonical variables, however, they presented it in Andrews Fourier 

plots (Andrews, 1972). Four key basin characteristics were taken from the 1990 regional 

flood frequency study; for the flood characteristics they took the L-moment ratios 

computed from the annual maximum discharge series. Well-defined clusters could be 

identified using Andrews Fourier plots in both flow and basin characteristic dataspace, 

but the same basins were not always clustered together in both dataspaces. The clusters 
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did not coincide with the geographical regions identified in the regional flood frequency 

study. 

Pilon et a1 (1990) used Newfoundland data to test an approach to regionalization similar 

to the funnel test but based on L-moments. They were particularly interested in 

addressing the problem of how much of the difference in hydrological response is due 

to heterogeneity (that is, where there are true regional differences) and how much is 

simply noise. 

Starting with the assumption that the island of Newfoundland is one region, they 

generated 1000 replications of the hydrometric network, computing the variance of the 

L-moments for each. The advantage of the L-moments approach is that no assumptions 

on the distribution are required. They computed the expected value of the variance based 

on the simulation results, then tested to see whether the differences were statistically 

significant. They found that the differences were not significant at the 95 percent level, 

and concluded that all the basins in the network could be grouped together in one region. 

Based on their work, they noted that the amount of information in the flood statistics that 

could be related to basin characteristics may be relatively small. 

Zrinji and Bum (1994) present a homogeneity test which allows them to define a region 

of influence for any basin. As noted previously by Bum (e.g., Bum, 1990), the ROI 
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approach allows flexible cluster boundaries, and for weighting of results, based on the 

proximity (in dataspace) of an ungauged basin to gauged basins. Gauged stations are 

added sequentially to the region of influence of an ungauged basin, in order of similarity 

of catchment characteristics. As the gauged basins are added to the region of influence, 

their suitability for inclusion in the region is tested using the extreme flow characteristics 

for gauged basins on the ROI only. The homogeneity test used is a chi-squared test to 

determine if the at-site L-moment ratios are similar to the L-moment ratios of the 

regional parent distribution. 

They applied the approach to Newfoundland data from the 1984 regional flood frequency 

analysis, and found a somewhat different result from Pilon et al. Whereas Pilon's test 

had identified all the stations as being in one region, based on the variance of the L­

moment ratios, Zrinji and Burn found that the numbers of stations in the regions of 

influence tended to be small, because additional stations did not pass the homogeneity 

test for inclusion in the region. Zrinji and Burn do note, however, that the set of gauging 

stations they used forms a nearly homogeneous region. Based on a comparison of the 

results of the region of influence approach with other methodolot, • .;S (e.g., regression 

approach, one region, and regression approach, north-south geographical regions), they 

conclude that the regionalization component in regional flood frequency analysis is an 

important factor for efficient extreme flow quantile estimation. 
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3 Data Preparation and Preliminary Analysis 

The data set used for the analysis consisted of flow and physiographic i:haracteristics for 

all basins 

• on the island of Newfoundland 

• gauged by Water Survey of Canada (WSC) 

• with 10 or more years of record. 

Regulated basins or basins with unknown drainage boundaries or diversions were 

excluded. Table 3.1 lists all the basins meeting the above conditions, together with the 

number of years of record and drainage areas. This list shows 45 stations, but a few 

stations were removed as discussed below, for a final list of 40 basins. The locations of 

the basins are shown in Figure 3.1. 

The record for Indian Brook at Indian Falls (02YM001) was not included because a 

culvert diverts water from the basin into Birchy Lake. The amount of water diverted, 

although probably small, is unknown. Similarly, a set of fisheries culverts at the 

upstream divide of the Grey River basin (02ZD001) allows the release of water from 

Meelpaeg Reservoir into the basin. Again, the volume of water is probably very small, 
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Fig. 3.1 - Locations of Gauged Basins Used in Study 
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Unregulated Basins on the Island of Newfoundland 
with 10 or more years of record 

a me 
Count 

YAI 02YA001 te. Genevie\e R near Forresters Point 24 306 
YCl 02YC001 orrent R at Bristol's Pool 33 624.0 
YD1 02YD001 Yer Brk near Roddicktcm 20 237.0 
YD2 02YD002 onheast Brt ncar Roddic:luon 12 200.0 
YF1 02YF001 t Arm R above Great Cat Arm 15 611.0 
YJ1 02YJ001 rrys R below ~wal Brid~e 24 640.0 
YK2 02YK002 waseec~b Br at ittle nnd Lake 36 470.0 
YK3 02YK003 beffleld at Sbeffldd Lake 12 362.0 
YK4 02YK004 inds Brk near Onnd Lake 24 529.0 
YKS 02YKOOS heffleld Brk near Traas Canada Highway 20 391.0 
YLl 02YL001 pper Humber R near Reidville 64 2110.0 
YM3 02YM003 ulb West Brk near Baie Vene 12 93.2 
YN2 02YN002 loyds R bebw King George IV Lake 11 469.0 
Y06 02Y()()(X; eters R near BotwOod 11 177J) 
YPl 02YP001 hoal Arm Brk near Badger Bay 10 63.8 
YOl 02Y0001 ander R at Big Chute 43 4444.0 
Y02 02Y0002 ander R at Outlet of Gander Lake 17 4160.0 
YRl 02YR001 iddle Brk near Gambo 33 275.0 
YR2 02YR002 agged Harbour R near Musgrave Harbour 15 399.0 
YR3 02YR003 ndian Bay Brk ncar Northwest Arm 11 554.0 
YSl 02YS001 erra Nova Rat Eight Mile Bridges 34 1365.0 
YS3 02YS003 uthwcst Brk at Terra Nova Na&Jonal Park 25 36.7 

ZA1 02ZA001 ittle Barachois Brk near St. George's 14 343.0 
ZA2 02ZA002 'ghlands Rat Trans Canada Highway 10 72.0 
ZA3 02ZAOOJ ittle Codroy R near DoJles 10 139J) 
ZBl 02ZB001 sle aux Morts R below ighway Bridge 30 205.0 
ZC2 02ZC002 ran':( Brk below Top Pond Brook 10 230.0 
ZD2 02ZD002 rey near Grey River 20 1340.0 
ZE1 02ZE001 lrilon R at Long Pond 22 2640.0 
ZFl 02ZF001 y du Nord R at Sig Falls 42 1170.0 
ZGl 02ZG001 amfih R near 0amish 34 205Jl 
ZG2 02ZGOOl es Brk below f 'resbwater Pond 15 166.0 
ZG3 02ZGOOJ lmonier R near Lamaline 12 115.0 
ZG4 02ZG004 ttJc Brk near Boat Harbour 11 42.7 
ZHI 02ZH001 iper's Hole R at Mothers Brook .co 764.0 
ZH2 02ZH002 me by ChanceR nearGoobics 24 43.3 
ZJl 02ZJ001 uthem Bay R near Southern Bay 16 67.4 
ZKI 02ZK001 oc:ky R near Colinet 44 300.0 
ZK2 02ZK002 onbeast R near Placentia 13 89.6 
ZL3 02ZL003 utCove Brk 13 10.8 

ZMlO 02ZM010 aterford Rat Mount Pearl 11 16.6 
ZM6 02ZM006 onbeast Pond R at Northeast Pond 39 3.63 
ZM8 02ZM008 aterford Rat Kilbride 18 52.1 
ZM9 02ZM009 alCove Brk near ca&paha~en 13 ~3.6 
ZNl 02ZN001 onhwest Brk at Non west ond 26 53.3 
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but is unknown. The record of the Gander River at the outlet of Gander Lake (02YQ002) 

for the period 1923 - 1939 was also not included in the data set. Although the record 

provides useful information from a historical perspective, it was a naanual gauge perhaps 

maintained to different standards, and the data therefore may not be directly comparable 

to that from the remaining gauges. In addition, the record from the gauge on the Gander 

River at Big Chute (02YQ001) provides ,,ery good coverage of the same basin. The 

records of the two Waterford River basins (02ZM008 and 02ZM010) were not included 

because the basin has been subject to increasing urbanization. 

In general the complete records were used as provided in WSC's computer database 

HYDAT. All basins on the island of Newfoundland are in WSC hydrologic region 02, 

and in subregion Y or Z. (The Y -Z boundary is shown in Figure 3.1) The station code 

is therefore simplified for the remainder of this report to two letters and one digit, 

consisting of the subregion identifier Y or Z, the subsubregion code letter A to R and the 

station number 1 to 9. Station 02ZH001, for example, is simplified to ZHl. 

Ten years of records for the calculation of the hydrologic response measures was 

considered sufficient because no extreme events are estimated in this study. It is a 

standard record length accepted by many agencies and authors. It also happens that the 

last ten years of record are reasonably representative of the longer term hydrology on the 

island of Newfoundland. 
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3.1 Flow Characteristics 

The flow characteristics were selected to represent average, high and low flow regimes, 

as well as flow availability, e.g., for hydroelectric generation (not just low flow or reli­

able yield). These are summarized below. The derivation of the characteristics and the 

preliminary analysis leading to the final selection is described in more detail in the 

remainder of this chapter. 

Hip now 

• average maximum daily flow (m3/s); 

• linear coefficient of variation (Lev); 

• lOth flow exceedance percentile, i.e., daily flow exceeded 10 percent of 

the time. 

Average now 

• average daily flow (m3/s). 

Low now 

• median low flow (m3/s); 

• 90th flow exceedance percentile, i.e. , daily flow exceeded 90 percent of 

the time. 

AvaUable Flow 

• median flow (50th percentile on daily flow duration curve). 
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All values were taken from the complete period of record, except as noted below. Values 

were also converted to specific runoff flow per unit area, and in the case of the flow 

duration characteristics, to fractions of average flows, for some analyses. 

3.1.1 High Flows 

The selected high flow measures were the mean maximum daily flow, the linear 

coefficient of variation (Lev) and the lOth flow exceedance percentile, i.e., daily 

flow exceeded 10 percent of the time. 

Since most of the literature on regional analysis relates to flood frequency 

analysis, at site frequency analyses were carried out before selecting the final high 

flow measures. Environment Canada's Consolidated Frequency Analysis software 

package CFA3 was used for this work. This package estimates parameters of the 

candidate distributions using the method of L-Moments developed by Hosking 

(1990). 

In addition, the series were tested for trend, randomness and independence. Two 

records showed significant trend at the one percent level, Lewaseechjeech Brook 

(YK2) and Piper:!. .Ho!·l;l {ZHl). The gauge at Lewaseechjeech Brook was removed 

in 1967 tY.;.eause the outlet of Little Grand Lake (jl•~t upstream of the gauge) was 

blasted out, and was reinstalled in 1973. There is a significant difference in the 
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annual maximum flow series before and after this change, no doubt due to the 

reduced hydraulic control at the lake outlet as a result of the blasting. The early 

years were therefore omitted from the final analysis. 

There is no satisfactory explanation for the apparent trend at Pipers Hole. A fire 

in the basin in the early 1960's burned about 65 km2 of wooded area, but since 

the total area of the basin is 764 krn2, largely lakes, swamps and barren~, it does 

not seem plausible that this fire would cause a marked permanent change. There 

are not many hydrometric records in the province extending back to the late 

1950's, nor are there any precipitation records in the basin, so it is difficult to 

make comparisons. In general the late 1950's and early 1960's were dry, but no 

other records show the statistical difference exhibited by this one series from 

Piper's Hole. The annual series and the low flow series do not show this trend. 

Since there is no satisfactory physical explanation, the apparent trend in maximum 

flows is assumed to have occurred by chance, and the record was maintained with 

no adjustment. 

Seventeen of the at-site frequency distributions were upper bounded. In all cases 

where the record length was 15 years or longer, the upper bounds were 

sufficiently high that they would not be likely to influence estimates of floods at 

high quantiles, and the records could be used in a regional flood frequency 
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analysis. Six of the stations with upper bounded distributions had only 10-15 

years of record and of these, 4 were upper bounded at flows that were 

unreasonably low (only slightly above the highest recorded flow). In only two 

cases this result could be attributed to negative skew (-0.365 for ZL3, and -0.057 

for YR3). 

The means of the daily maximum flows were calculated for the period of record 

for each gauge, [as well as the linear second, third and fourth order moments]. 

These linear moments are referred to as Lev, L-skewness (Ls), and L-k.urtosis 

(Lk), and are presented in Table 3.2. Similarity of CV is often taken to be 

indicative of a regional cluster (e.g., Morley, 1981, and Wiltshire, 1986). 

Figure 3.2 shows a plot of L-ev and specific annual mean maximum daily flow 

(Q.,.nJ. This plot suggests some geographical clustering of basins into Y and Z 

WSC regions. Plots of Ls and Lk can also be used to suggest clusters, and to 

identify preferred regional parent distributions (Hosking, 1990). Figure 3.3 is an 

L-moment diagram for the basins in this study. Like the CV plots, it suggests 

geographical clusters of Y's and Z's. Although this study is not concerned with 

selection of flood frequency distributions, it does appear that different parent 

distributions might be appropriate for different regions. Figure 3.3 suggests that 

a good candidate for a parent distribution for flood flows in WSC hydrologic 
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Mean, standard deviation and 
L-moment ratios for selected gauges 

SC.UoaNamc MeaD L-a&d~ev Lev La Ut 
mY. mY. 

YAl . Galevieve R acar Forratcn Poilu 31.19 5.581 0.179 0.344 0.192 
Yet orrcat Rat Briatol'a Pool 197.08 31.428 0.19S 0.242 0.173 
YD1 8rkae8' Roddicltloa 95.81 16.566 0.173 0.212 0.207 
YDl nbcat Brlu~e• Aoddiclaoo 3U6 6.573 0.167 0.236 0.188 
YF1 t Arm R abcM: Oral Cat N1D 255.00 36.7aJ 0.144 0.128 -0.068 
YJ1 R beloW HJab..y aiqe 197.61 15.043 0.1'77 0.183 0.057 
Y1U bjeecb Brkat Utllc Onod Uke 93.17 21.4l5 0.230 -0.009 0.238 
YX4 BrtDC# Gtud Ute 90.49 12.89l 0.142 0.061 0.022 
YX5 Ricld Brtaea""T..- C&Didl HiahWIY 75.69 12.152 0.161 -0.004 0.140 
YLl per Humber R a car Reid\'lllc 573.53 72.429 0.126 0.104 0.166 
YM3 ulh West Brkacar Baie Vcne 37.17 9.430 0.254 0.057 0."28 
YN2 a R below Kma Georac IV Lake 174.24 34.864 0.200 0.234 0.107 
Y06 tm R De8' Botwood 50.13 13.460 0.269 0.510 0.469 
YP1 I Ana &kae8' &.dJer &.y 2231 5.048 0.2.26 0.228 0.495 
Y01 andcr Rat Bl Clute 589.67 91.787 0.156 0.076 0.154 
YR1 iddle Brit Dell' Glmbo 29.19 4.821 0.165 0.126 0.107 
YRZ gcd liJI'bour R De8' MUSJI'IW: liJI'bour 70.59 12.255 0.174 0.291 0.175 
YR3 adiln Bly Brk ncar Northwest Arm .54.66 8.498 0.155 -0.045 -0.186 
YS1 erra Nova Rat Ei&ht Mile Bridles 177.56 28.311 0.159 0.177 0.149 
YS3 uthweat Brkat Terra Nova NatioDII Park 10.65 1.833 0.172 0.201 O.Ol4 

ZA1 ttle Bane bola Brit ncar St. Gtace 'a 99.19 21.822 0.220 0.188 -0.004 
ZA2 I&Jllanda R al Tnoa Canada HiJhWI)' 38.89 10.4Ui 0.268 0.229 0.123 
ZA3 ttle Codroy R ocar Doyles 100.86 31.658 0.314 0.283-· -· .; ·- 0.052 

ZB1 ale ar.o: Mona R below HiJhqy Bridae 172.15 45.186 0.262 0.278 0.121 
zc:z ndy Brit below Top Pond Brook 229.71 60.4Z3 0.263 0.087 -0.038 
ZEl lmon R 11 Loa& PoDd 281.05 45.314 0.162 -0.014 -0.044 
ZF1 du Nord Rat 81& Falla 178.01 39.741 0.223 0.358 0.3l4 
ZG1 niab R ncar Garuiab 56.71 11.967 0.211 0.269 0.154 
ZG2 ides Brit below Frabwatcr Pond 50.12 12."67 0.241 0.309 0.316 
ZG3 lmonia' R acar l..amaline 44.51 7.558 0.170 0.019 0.312 
ZG4 ale Brk acar Boat Harbour 26.06 4.918 0.189 -0.001 0.102 
ZH1 ipcr'a Hole Rat Molhm Brook 198.47 45.009 0.227 0.151 0.090 
ZH2 me by Cia nee R ncar Goobics 22.88 5.366 0.235 0.139 0.120 
ZJI thcm 8ly R DCif Soulhcm Sly 20.19 4.126 0.205 0.206 0.313 
ZK1 ty Rncar Collaet 106..53 23.364 0.219 0.333 0.238 
ZK2 nbcat R acar Pllcealil 44.51 10..26'3 0.231 0.302 0.246 
ZL3 pout Cove Brk 6.08 1.154 0.190 -0.091 0.080 
ZM6 nbcat Poad Rat Norlhcat Poad Z-16 0.457 0.212 0.169 0.3l4 
ZM9 OM: Brk a car Cappahaydea 21.10 2.492 0.118 0.035 0.025 
ZN1 rlhweat Brkat Norlhweat Pond 28.50 4.493 o.ua 0.155 0.152 

Mean 114.8 21.4 0.199 0.169 0.152 
S&andard Dev 1JJ.3 21.8 0.199 0.164 0.151 
Muimum 589.7 91.8 0.314 0.510 0.495 
Minimum 2.161 0.457 0.118 -0.091 -0.186 
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Fig. 3.2 - Lev and Specific Mean Maximum Doily Flow 
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region Y might be three parameter log normal (3PLN), whereas a generalized 

extreme value dis~;bution (GEV) might be more appropriate for the Z region. 

The results of the regional analysis using L-moments by Pilon et al (1991) 

referred to in Chapter 2 may be compared with the present results. Using 

Hosking's L-moments procedure, they selected a parent distribution with Lev = 

0.1839 and Ls = 0.1843, compared with (unweighted) means of0.199 and 0.189 

from Table 3.2. 

3.1.2 Average Flows 

The average flow in a basin is important because 

• it gives an upper limit on flow availability, e.g., for water supply or 

hydroelectric generation; 

• instream or other requirements may be set as fractions of the average 

flow, or flow duration percentiles may be expressed as a fraction of the 

annual average flow; 

• proration factors used to develop flow series for ungauged basins are 

developed as a ratio of the estimated average flow at the ungauged basin 

to the measured average flow at the gauged basin (not only drainage area); 
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• converted to an average runoff depth over the basin, it is the effective 

precipitation (Eff-P) on the basin. It may therefore serve as a r~oxy for 

hydrologic input (precipitation). 

This last use is of considerable interest, because in most regional studies relating 

flow characteristics to basin characteristics, precipitation is a significant 

explanatory variable. In Newfoundland, the network of climate stations collecting 

precipitation data is extremely limited, not only in number but also in space; the 

stations tend to be located near the coast, at low elevations. The maps of runoff 

and precipitation presented in the Water Resources Atlas for the province of 

Newfoundland illustrate this problem clearly - over parts of the island the runoff 

exce.::ds the precipitation, which is physically impossible (Gov't of Nfld, 1992). 

In the 1984 provincial regional flood frequency analysis (Gov't of Nfld, 1984), 

mean annual runoff (MAR) was used as an independent variable in the regression 

equations, and in all cases was the second most important explanatory variable 

after drainage area. The use of Mi--R was criticized (Lye and Moore, 1991) on 

several grounds, the most important of which was the difficulty of estimating 

MAR for ungauged basins. In fact MAR was not used in the subsequent regional 

flood frequency analysis (Gov't of Nfld, 1990). More regions were defined, 

which perhaps implicitly took account of MAR, in the sense that the MAR was 
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relatively homogeneous in the region. The homogeneity of MAR was not taken 

into account explicitly • the regions were defined on the basis of flood generating 

mechanisms, and the regression equations were developed using basin 

physiographic characteristics only. 

Since it is the interaction of the hydrologic input with the physiographic charac· 

teristics of a basin which define its hydrologic response, it is clearly desirable to 

include the hydrologic input. Otherwise the basin physiographic characteristics are 

expected to completely explain hydrologic response, with all other variation 

assumed to be random. Precipitation, however, is random, and yet it is not 

explained by basin·specific physiographic characteristics; rather, it results from 

atmospheric processes interacting with topography. Eff.p may be a suitable 

variable as a proxy for precipitation, since it is essentially total precipitation 

minus losses. In any event, it is the only variable related to hydrologic input for 

which there is any information. It should be possible to explain a large 

proportion of the variation in Eff.p using measurable independP..nt variables such 

as distance to the sea in the direction of the prevailing storms, and elevation and 

orientation of the basin. 

The approach in this study is to treat Eff-P as a variable dependent on location 

and topographical characteristics. Eff·P can then be used directly with drainage 
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area to estimate average flow volume for an ungauged basin. It may also be used 

to improve estimates of other flow variables in one of two ways 

• by estimating Eff-P first from regression equations, and then incorporating 

it as an independent variable representing basin hydrologic input in regres­

sion equations developed to estimate other flow variables (recognizing the 

associated error); or 

• by incorporating the independent variables used to estimate Eff-P directly 

into the regression equations for other flow variables. 

The average flow is thus represented in three ways, 

1) as the average flow for the period of record; 

2) as specific runoff (m3/s per km2
); and 

3) as Eff-P (m or mm) assumed to occur at the basin centroids. (Although 

it is actually integrated over the basin area, the difficulties of estimation 

are compounded, with insufficient data to justify this refinement.) 

In only one case, that of Cat Arm (YFl), was the average flow adjusted. An 

examination of the records for other rivers in the area shows that the period of 

record of the Cat Arm basin, 1969 to 1982, was wetter than the long term 

average. The aver-ctge flow was thus reduced by about 7 percent. 
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Figure 3.4 presents a plot of Eff-P for the study basins. Like the high flow plots, 

this figure also indicates that for the same drainage area, basins in WSC region 

Z are likely to have higher runoff than basins in region Y. This result is not 

surprising because region Z is closer to the sea in the direction of incoming 

weather systems. 

3.1.3 Low Flows 

Low flows are generally difficult to estimate and in many cases even difficult to 

measure, particularly if the low flows occur during ice conditions. The median 

daily low flow for the period of record at each basin was therefore selected as a 

robust variable to represent the low flow regime. 

In addition, the 90th exceedance percentile of daily flow~ (the flow which is 

exceeded 90 percent of the time) was extracted from the flow duration curve as 

an additional measure of low flow. 

In only one case was the record adjusted. At Hinds Brook (YK4), the minimum 

low flows in 1967 and 1968 are reported as zeros. These zero flows occurred 

because of some construction in the watershed which required damming of the 

brook. The lowest flow in any other year was 1.4 m3/s, so including zeros in two 
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Fig. 3.4 - Effective Precipitation and Station Identification 
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years could have a large effect. Those two years were consequently omitted in 

identifying the median. 

3.1.4 Available Flow 

Two related but slightly different types of measures were considered to represent 

flow availability. The first type was based on exce:dance values obtained from 

the daily flow duration curve, and included the lOth, 50th (median) and 90th 

percentile. These are the flows that are exceeded 10, 50 and 90 percent of the 

time. (The lOth and 90th percentiles were also used as measures of high and low 

flow, as described above.) The flow duration measures are abbreviated here as 

Qr.s-10, Q, ... 50, and Qr.s-90• As a fraction of average annual flow (Qavg), these 

measures are abbreviated as FD-10, FD-50 and FD-90. 

The alternative measures are based on the area under the flow duration curve at 

various flow levels. Since these areas represent the flows which are theoretically 

available to turbines having the appropriate flow capacities, they are referred to 

as turbinable flows. Three flow levels were selected, multiples of 4.0, 1.0 and 

0.2 times the average annual flow, to represent high, medium and low flows. As 

fractions of Qavg they are abbreviated as Qt4, Qtl and Qt2. The relationship 

between these turbinable flow measures at these flow capacities and the flow 



54 

duration curve measures is shown in Figure 3.5, for a very flashy river, Isle aux 

Morts (ZBl) and for a non-flashy river, Bay du Nord (ZFl). 

The turbinable flew measure is in some ways preferable, because it directly 

describes the amount of water available. The turbinable flow is the integral of the 

flow duration curve, and may in turn be plotted as a turbinable flow curve. The 

turbinable flow curve is more amenable to mathematical description (as a 

polynomial function) than the flow duration curve as a function. Acres (Gov't of 

Canada, 1986) has related basin characteristics to the coefficients of the 

polynomial function for basins in Newfoundland. Others (e.g., Mimikou and 

Kaemaki, 1985, Vogel, 1993) have attempted to relate basin characteristics to 

parameters describing the flow duration curve, and have generally been successful 

only when using a selected portion of the curve. 

The advantages of the flow duration curve measures are that they are easily 

obtained using available software, and are widely understood. For the purpose of 

this thesis, similar for more than one flow characteristic, the flow duration 

measures are quite suitable. In any event, since one measure is simply the integral 

of the other, there is a high correlation between the two at each of the flow levels 

(high, medium, and low). Such differences as these arise from the fact that the 

flow levels are not identical; for example, the medium level flow measures are 
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in one case the median flow (FD-50) and in the other, the area under the flow 

duration curve at the mean flow. In the context of this work, these differences do 

not matter. If useful groupings can be defined, it might then be reasonable to put 

more effort into estimating turbinable flows within the regions. 

The flow duration curve measures were therefore selected for this study. 

3.1.5 Summary of Flow Measures 

Tables 3.3 and 3.4 present the final selected flow measures to be used in the 

multivariate analysis for each of the basins used in the study. 

3.2 Basin Physiographic Characteristics 

The previous section described the selection of flow characteristics of the gauged basins. 

This section describes the physiographic characteristics used in the analysis for the same 

basins. 

The physiographic characteristics of the basins were selected from those which have been 

shown in other studies, or which could reasonably be expected, to have an important 

influence on hydrological response. The selected basin characteristics are presentOO 

below, with a brief description of each and how it was obtained. 
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Flow Measures for Study Basins 

AYCnJC AWI'IIC Eacctlve Median 
Code QDood Uv FDlO FD!O FD 90 Oow Prcclp. low now 

JD Name m•• .. l'rlctions of ·~rile now m1A (mm-l m'A 
YAl Sec a 31.2 0.179 2.041 0.749 0..3.59 8.87 915 2.62 
YCl for 197.1 0.195 2.240 0.602. 0.206 25.58 1284 3.74 
YD1 BwB 95.8 0.173 2.558 0.412 0.099 9.01 1197 0.57 
YD2 ~cRt 39.5 0.167 2.6$2 0.513 0.090 $.20 833 0.37 
YFl Cat 255.0 0.144 1.736 0.417 0.084 27.50 142.5 1.38 
YJI t:!'a 197.6 0.177 2.155 0.644 0,256 26.24 urz 4.02 
YX2 UD.O 0.140 2.190 0.632 0.226 17.39 1168 2.75 
YK4 =: 90.5 o ..... ~ 1.152 0.679 0.2.52 16.40 .. 3.26 
YX5 75.7 0.161 2.245 0.606 0.206 10.56 855 1.42 
YL1 UpHm S7J.S 0.126 1.482 0.624 0.163 82.29 1ZZ9 7.66 
YM3 ~wBV 37.2 0.254 1.478 0.364 0.070 2.52 843 0.06 
YN2 ~· 174.2 0.200 2.386 0.543 0.191 21.11 1413 2.34 
Y06 rus 50.1 0.269 2.575 0.469 0.133 4.25 768 0.33 
YPl ~hlA 22.3 0.226 2.363 0.461 0.156 1.79 785 0.16 
YOl PdBC 589.7 0.156 2.171 0.697 0.227 115..54 831 19.10 
YR1 ~diB 29.2 0.165 2.150 0.729 0.189 6.60 7S 0.91 
YR2 ~dH 70.6 0.174 2.386 O.S70 0.089 8.78 7t9 0.58 
YR3 ndB 54.7 0.155 2.238 O.G79 0.263 12.60 ·, Jl\ 2.73 
YSl lrcrN 111).8 0.159 2.308 0.733 0.250 36.86 84b 6.68 
YS3 ~wrn 10.6 0.172 2.404 O.S29 0.156 1.03 894 0.06 

ZAl l.tiB 99.2 0.220 2.273 0.561 G.188 10.98 1012 1.55 
ZA2 Hldl 38.9 0.268 2.358 0.454 0.169 2.59 1140 0.25 
ZA3 l.tCd 100,9 0.314 2.293 0.535 0.163 7.78 1782 0.73 
ZBl 1M 172.8 0.262 2.441 0.473 0.118 13.53 2093 0.80 
zc Ordy "129.7 0.263 2.411 0.406 0.108 14.49 2003 0.60 
ZEl smL.P 28).1 0.162 2.028 0.808 0.256 85.80 1026 16.65 
ZF1 lldN 178.0 0.223 l.S97 0.794 0.311 39.78 1076 9.23 
ZGl Om 56.1 0.211 2.005 0.158 0.237 8.82 1359 1.28 
ZG2 di S0.1 0.241 1.925 0.748 0.229 7.97 1521 1.16 
ZG3 Sml..m 44.5 0.170 2.372 0.583 0.129 4.95 1342 0.28 
ZG4 Rtl 26.1 0.189 2.175 0.583 0.171 1.09 1.159 0.15 
ZH1 ~H 198.5 0.227 1.153 0.6"/3 0.164 24.45 1024 1.55 
ZH2 :be 22.9 0.235 2.226 0.597 0.125 1.86 1356 0.10 
zn ~thB 20.1 0.205 2.346 0.531 0.099 2.09 988 0.07 
ZK1 ~ky 112.1 0.219 2.045 0.682 0.187 11.10 1178 1.05 
ZK2 NE-P 4ot.5 0.231 1.0}.7 o.m 0.218 4.48 1571 0.50 
ZL3 Sp~ 6.1 0.190 1.971 0.648 0.173 0.42 1230 0.03 
ZM6 ~EP 2.2 0.190 2.276 0.485 0.104 0.13 1165 0.01 
ZM9 51~ 21.1 0.118 2.140 0.676 0.228 3.00 1160 0.4Z 
ZNl Nw~P 28.5 0.1511 Z.03S 0.645 0.239 3.14 1853 0.48 

, 
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Descriptive Statistics of Flow Characteristics 

FlowCbar Units Minimum Mni.mum Range Mean Std Oev Median 

Qavgfld msls 2.22 589.67 581AS 115.70 131.98 63.65 
Spec flood mSJsJtm2 0.099 0.999 0.900 0.366 0.205 0.312 
Lev - 0.118 0.314 0.196 0.196 0.04S 0.1~ 
MedLowflow m3/S 0.(0; 19.10 19.()1J 2.47 4.17 0.86 
Spec low flow ms/sJtm2 0.001 O.OOIJ O.WI 0.004 0.002 0.004 
Qlvg ms/s 0.134 115.544 115.41 17.239 24.692 8.845 
EffP m 0.701J 2.093 1.384 1.195 0.362 1.167 
FD_1o - 1.897 2.736 0.339 2.258 0.199 2.243 
FD_SO - 0.364 0.0 0.444 0.600 0.116 0.604 
FDW - 0.070 0.3S9 0.289 0.182 0.066 0.18> 



59 

All variables are measurable on continuous scales (not rank order, categorical or ordinal). 

Two descriptive variables were also included in the data set, the basin name, reduced to 

a three or four letter diminutive, and the WSC subregion identifier. 

1. Drainaae Area 

In general the drainage areas (DA) were taken from HYDAT. For several basins, the 

drainage area was adjusted to account for discrepancies. About 44 km2 was added to the 

Gander River bas;n as a result of a changed drainage boundary in the area of Lake 

Miguel. (fhe exact area is presently being determined by the Water Resources Division 

(WRD) of the provincial Department of Environment and Lands and WSC.) An 

additional 16 km2 was added to the Rocky River basin, based on a recent change made 

by the WRD and WSC. An adjustment of 75 km2 for Terra Nova River was made based 

on a review by Acres of 1 :50 000 scale mapping and flyovers of the area. This 

adjustment has been called to the attention of the WRD and WSC and is under review. 

2. Fractions of Drainage Area covered by LakE:S and Swamps, Forests, and 
Barrens; Fraction of Area Controlled by Lakes and Swamps 

These were obtained from WRD's database of physiographic characteristics. Definitions 

are provided in Gov't of Nfld, 1986 and Gov't of Nfld, 1990. They are abbreviated in 

this study as Fr-LSw, Fr-Forst, Fr-Barm, and FACLS. 
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3. Length and Slope of the Main Channel 

These were also obtained from the WRD database. The elevations are taken at the 10 

percent and 8S percent points on the hypsometric curve, and the length is the difference 

between the two points along the main channel. The elevation difference used to calculate 

slope excluded waterfalls. This measure of slope is different from that used in the 1986 

regional flood frequency analysis (Gov't of Nfld, 1986) which was an overall basin 

slope. It is abbreviated here as SLP108S. The measure used here for length is length 

of the main channel per unit of drainage area (LMC-Sp). 

4. Drainage Density, Shape Factor 

The drainage density (DrDens) and shape factor (Shape) were taken directly from the 

WRD database, with no adjustments. 

5. Elevations of the Divide, Gauge and Basin Centroid 

The elevations of the divide (El-Divde), gauge (El-Gauge) and centroid (El-Cntrd) were 

taken from 1 :SO 000 scale mapping specifically for this study. The elevation of the divide 

was taken as the lowest elevation along the drainage boundary in the vicinity of the 

origin of the main channel. The elevation of the gauge was taken from 1 :SO 000 scale 

mapping at the location of the gauge as identified by the WRD. 
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For a few basins, the locations and elevations of basins were obtained from various 

provincial Water Resources Studies (Gov'tofNfld, 1987, 1988, 1989, 1991, 1992,1993). 

For the remaining basins, the centroid had to be located before its elevation could be 

obtained. The drainage boundaries were outlined on 1:250 000 scale mapping (or 1:500 

000 for very large basins), traced onto heavy card, and cut out. The location of the 

centroid was taken as the intersection of verticals marked when the card was suspended 

from three suspension points. The location was then transferred to 1 :50 000 scale maps 

and the elevation was estimated from contours. The contour interval on the National 

Topographic Service (NTS) 1 :50 000 scale mapping used for this and all similar projects 

is SO ft (10 m on a few newer maps). 

6. Distance Southwest 

Weather systems approach the island from the southwest, so the amount or type of 

precipitation over the basin nay be related to the distance of the basin from the sea. The 

selected measure was the distance in kilometers of the centroid to the south or west coast 

(Dist-SW) in a southwesterly direction {a compass direction of 225 degrees), taken from 

an appropriate scale map (1:250 000 or 1:500 000). If this measure proves promising, 

other similar measures {e.g., shortest distance) could be tried and the results compared. 

A smoothed coastline was assumed, ignoring indentations for small bays. Figure 3.6 

gives an example of how the distance is defined. 



- -{;CTyplcol 
s-w Distonee-_} 
To Coastline I 

/cenerol Direction of 
/ Incoming Weather Systems 
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Fig. 3.6 - Example of Definition of Distance to the Sea 
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7. Distance North 

The distance north (Dist-N) is the distance in kilometers from the centroid of the 

basin to latitude 46 o 30'. It may be taken from appropriate scale mapping or by 

converting the difference in latitude to kilometers. 

The complete list of basin characteristics is presented in Table 3.5, with the associated 

descriptive statistics in Table 3.6. 
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Basin Physiographic Characteristics 

Drainage Length Elr.v Elev Elev Slope Drainage 
Code Area main chnl Gauge Divide Centroid 10/SS Demity 

JD Name km2 km m m m 
YA1 SteG 306 39.8 12.2 107 81 0.23 0.540 
YCl rror 624 49.9 7.6 488 309 1.01 0.155 
YOI ~vrB 237 40.3 7.6 335 351 0.67 0.339 
YD2 NeRk 200 38.0 22.9 290 110 0.47 0.930 
YF1 ~~ 611 30.6 350.5 594 549 0.73 0.582 
YJl Hf)1 640 51.6 15.2 541 274 0.35 1.120 
YK2 ~wB 470 56.4 137.2 655 351 0.59 0.627 
YK4 Hnds 529 47.6 198.1 518 290 0.32 0.637 
YKS Shfd 391 39.1 109.7 488 290 1.07 0.191 
YL1 UpHm 2110 126.6 22.9 701 183 0.40 0.786 
YM3 SwBV 93.2 18.6 68.6 168 152 0.27 0.6m 
YN2 wdS 469 56.3 327.7 488 442 0.22 1.370 
Y06 Ptrs 177 42.5 22.9 213 137 0.45 0.800 
YP1 ~blA 63.8 15.2 83.8 198 152 0.53 0.8&> 
YQ1 pdBC 4444 133.3 22.9 305 168 0.14 0.452 
YR1 ~dlB 215 49.5 22.9 198 122 0.32 0.255 
YR2 ~gdH 399 43.9 27.4 122 76 0.21 0.740 
YR3 ndB 554 52.4 7.6 137 107 0.22 0.680 
YS1 trerN 1365 109.2 83.8 290 244 0.12 0.72.6 
YS3 ~wTN 36.7 11.0 22.9 168 107 1.11 0.641 

ZA1 ~tlB 343 65.2 7.6 472 137 0.68 1.040 
ZA2 ~Ids 72 20.2 68.6 533 244 2.19 1.150 
ZA3 ""tCd 139 25.0 7.6 457 274 1.46 1.400 
ZB1 aM 205 32.8 7.6 457 335 0.84 0.720 
ZC2 (3rdy 230 29.9 83.8 442 335 1.06 0.9ro 
ZE1 SmLP 26C 100A 1829 305 274 0.08 0.360 
ZF1 BdN 1170 70.2 7.6 274 152 0.29 0.612 
ZGl Gm 205 45.1 10.7 381 152 0.60 0.547 
ZG2 Tds 166 26.6 7.6 229 213 1.35 1.350 
Z03 SmLm 115 24.2 1.5 137 91 0.34 1.550 
ZG4 Rtl 42.7 9.8 45.7 152 122 1.10 1.620 
ZH1 PH 764 53.5 38.1 244 213 0.35 0.709 
ZH2 CbC 43.3 16.9 53.3 152 168 0.59 1.110 
ZJ1 SthB 67.4 16.2 7.6 137 91 0.50 1.240 
ZK1 ~ 300 45.0 14.6 168 60 o.so 1.005 
ZK2 -P 89.6 26.9 15.2 213 120 o.ss 1.110 
ZL3 ~pCv 10.8 7.0 76.2 168 170 1.25 1.0SU 
ZM6 ~p 3.63 2.6 1219 191 168 2.42 1.038 
ZM9 ~ICv 53.6 15.0 35.1 168 168 0.62 1.130 
ZN1 NwNP 533 14.4 114.3 213 183 0.61 1.089 
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Table 3.5 Continued 

Code Sbape Lakes&. auroUd Fraction Fraction from sea 
JD Name factor Swamps byL&S Barren Forest sw 

YA1 ~leO 1.48 0.354 1.000 0.002 0.644 17 
YCl tror 1.45 0.167 o.~ 0.498 0.335 74 
YDl JtvrB 2.23 0.082 0.730 0.112 0.~ liZ 
YD2 NeRk 1.65 0.170 o.~ 0.001 0.829 184 
YFI ~~ 1.86 0.131 0.000 o.uo 0.689 123 
YJl Hrys 1.81 0.142 0.150 0.069 0.789 34 
YK2 J.ewB 2.32 0.161 1.000 0.2~ 0.549 150 
YK4 Jfnds 1.78 0.355 0.950 0.292 0.353 218 
YKS ~bfd 1.98 0.172 0.940 0.152 0.676 266 
YLI ~pHm 1.56 0.115 0.750 0.145 ').740 145 
YM3 ~wBV 1.67 0.100 0.5&» 0.001 0.900 225 
YN2 lAs 2.15 0.1&» 1.000 0.620 0.220 89 
Y06 ~»tn 1.93 0.1&» 0.970 0,018 0.822 222 
YP1 ShlA 1.62 0.130 0.75() 0.001 0.812 255 
Y01 GdBC 2.08 0.172 0.910 0.068 0.760 160 
YR1 MdlB 1.93 0.245 0.9~ O.<m 0.747 180 
YR2 RgdH 1.68 0.320 0.960 0.001 0.681 260 
YR3 ~ndB 1.72 0.310 n.970 0.001 0.690 22S 
YSl trerN 2.35 0.327 0.920 0.136 0.537 115 
YS3 ~wTN 1.43 0.159 1.000 0.005 0.836 175 

ZA1 ,..us 2.45 0.100 0.830 0.299 0.601 128 
ZA2 ~Jds 1.72 0.050 0.430 0.129 0.820 65 
ZA3 ,..tCd 1.67 0.130 0.730 0.15() 0.681 26 
ZB1 .aM 2.09 0.134 0.600 0.782 0.084 27 
ZC2 brdy 1.84 0.040 0.340 0.790 0.170 40 
ZE1 ~mLP 1.75 0.160 1.000 0.490 0.350 105 
Zfl ~dN 2.15 0.236 0.960 0.442 0.322 76 
ZOl bm 2.45 0.101 0.960 0.634 0.265 66 
ZG2 tfds 1.84 0.130 0.920 0.488 0.382 33 
ZG3 ~mLm 1.62 0.120 0.920 0.722 0.158 13 
ZG4 ~ll 1.53 0.1&1 0.920 0.470 0.350 97 
ZHl ,H 1.67 0.659 0.910 0.234 0.107 68 
ZH2 PC 1.66 0.099 0.920 0.496 0.405 20 
ZJ1 ~lhB 1.43 0.150 0.860 0.033 0.817 125 
ZK1 ~-P 2.00 0.113 0.550 0.377 0.510 70 
ZK2 1.91 0.300 0.810 0.230 0.470 40 
ZL3 ~pCv 1.36 o.ow 1.000 0.490 0.420 76 
ZM6 N'EP 1.24 0.226 1.000 0.039 0.738 100 
ZM9 ~ICY 1.37 0.130 1.000 0.500 0.370 28 
ZN1 NwNP 2.06 0.126 1.000 0.788 0.086 38 
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Descriptive Statistics of Basin Characteristics 

Variable Units Mini- Maxi- Range Mean Std Dev c.v. Median 
mum mum 

Drainage Area km2 3.63 4444 4440.4 517.7 840.0 1.6 233.S 
ImtSW km 13 266 253 111.75 75.829 0.679 98.5 
DatN km 35 445 410 194.75 U3D4 0.58 180 
DrDemity 0.19 1.62 1.43 0.87 0.3S 0.40 0.79 
ElCentroid m 60 S49 489 204 107 1 168 
EIDivide m 107 701 594 312 167 1 259 
EJGauge m 1.5 3SO.S 349.0 62.0 81.2 1.3 22.9 
FACLS 0.34 1 0.66 0.871 0.168 0.194 0.93 
FR Barren 0.00 0.79 0.79 0.28 0.26 0.92 0.21 
FrForest 0.08 0.90 0.82 0.54 0.25 0.46 0.58 
Fr Lakes&Swmps 0.04 0.66 0.62 0.18 0.11 0.62 0.16 
Length Mn Chnl km 0.03 0.72 0.69 0.19 0.14 0.75 0.17 
Effec:tive Precipitation m 0.709 2.093 1.384 1.195 0.362 0.303 1.167 
Shape 1.24 2.4!" 1.21 1.81 0.31 0.17 1.77 
Stooe 10/85 % 0.08 2.421 2.34 0.67 0.52 0.78 0.54 



4 Assessment of Relative Importance of 
Basin Characteristics to Flow Variables 
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Havina selected the basins, flow measures, and physiographic/geographic variables to 

include in the data set, the next step was to investigate the relationships among the flow 

variables and the basin variables. 

Multivariate techniques such as cluster analysis, discriminant analysis and Andrews 

Fourier plots are sensitive to the variables selected, the transformations used (if any), and 

the weightings assigned to the variables. These techniques can only be used with a clear 

understanding of the key variables and of their relative importance. In this chapter, 

therefore, each of the flow variables is examined qualitatively and quantitatively to 

identify the important basin variables. The relationships can then be used directly in a 

one-region analysis, or to identify the key variables and weightings for further analysis 

of regions in geographical or basin characteristic dataspace. 

The Island was first assumed to be one region. A brief comparison was also done for 

most of the flow variables assuming geographic subdivision along the boundary of the 

WSC hydrologic regions Y and z. 

The analysis proceeded as follows. 
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1. Plot the data and review the correlation matrix of all variables. 

2. Identify principal components, to see whether there are any natural groupings of 

flow and basin variables, and to consider the possibility of reducing 

dimensionality using surrogate variables. 

3. Explore the relationship between Eff-P and topographic or geographic charac­

teristics, based on a close examination of the data set followed by multiple 

regression analysis. 

4. Explore the relationships between flow variables in the three flow categories, 

high, low, and available flow, and basin characteristics. For each of the flow 

measures examine the data set carefully to identify the most likely explanatory 

variables for use in the follow-up multiple regression analysis. Consider these 

relationships both with and without Eff-P as a basin characteristic. 

Depending on the results, mathematical and graphical cluster techniques can be used to 

assess whether these characteristics have the potential to identify similar clusters for all 

flow categories, and if so, what weightings of basin characteristics are likely to give good 

results. 
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4.1 Initial Review of Relationships 

4.1.1 Scatter Plots and Correlation Matrices 

The first step in examining the relationships among the variables was to plot the 

data. The scatter plots for all pairs of variables were examined. Figures 4.1 to 

4.8 show the scatter plots for the vnriables which have the potential to be 

important. A smoothed line is provided on the scatter plots, produced using 

locally weighted scatter plot smoothing (LOWESS). In addition, the correlation 

matrices for both untransfonned and logarithmically transformed variables were 

examined, and are presented in Tables 4.1 and 4.2. In general the variables 

shown on the plots correspond to the variables with shaded correlation 

coefficients in the matrices (r greater than 0.5). A brief discussion follows of the 

relationships observed in the figures and tables. 

4.1.2 Qavgnd, Qdaily, Qlow 

The three flow variables Qavgfld, Qdaily, and Qlow (all with natural dimensions 

of m'/s) are plotted in Figure 4.1, along with the basin variables DA and LMC-

Sp. The flow variables are all related to each other, as expected since they are all 

strongly related to DA. Although the LOWESS smoothed lines appear nearly 

·:. ~ 
~ ~~~~. :~~ .. 
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Note: Scatter plots and 
histograms ore provided to give 
a visual representation of the 
relationships among variables. 
The plots are smoothed using 
the LOWESS Procedure. 
See text for discussion and 
dimensions of variables. 
For values of the data points 
see Table 3 .3 to 3.6. 

QLOW 

Fig. 4.1 - Scatter Plots of Flow Variables and Drainage Area 
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Note: Scatter plots and 
histograms ore provided to give 
o visual representation of the 
relationships among variables. 
The plots ore smoothed using 
the LOWESS Procedure. 
See text for discussion and 
dimensions of variables. 
For values of the data points 
see Tobie 3.3 to 3.6 . 
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Fig. 4.2 - Scatter Plots of Sp-Fid and Basin Characteristics 
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Note: Scatter plots ond 
histograms ore provided to give 
a visual representation of the 
relationships among variables. 
The plots ore smoothed using 
the LOWESS Procedure. 
See text for discussion and 
dimensions of variables. 
For values of the data points 
see Table 3.3 to 3.6. 
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Fig. 4.3 - Scatter Plots of Sp···Fid, Lr;v and Basin Variables 
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Note: Scatter plots end 
histogroms ore provided to give 
a visual representation of the 
relationships among variables. 
The plots ore smoothed using 
the LOWESS Procedure. 
See text for discussion and 
dimensions of variables. 
For values of the data points 
see Tobie 3.3 to 3.6. 

DA 

EFF.P 

Fig. 4.4 - Scatter Plots of Low Flow, Flow Duration Measures, 
Drainage Area and Effective Precipitation 
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Note: Scatter plots and 
histograms ore provided to give 
o visual representation of t""3 
relationships among variables. 
The plots ore smoothed using 
the LOWESS Procedure. 
See tP.xt for discussion and 
dimensions of voriobles. 
F'or values of the data points 
see Table 3.3 to 3.6. 
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Fig. 4.5 - Scatter Plots of Effective Precipitation, Distance, ond 
Basin Variables 
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Note: ScottP.r plots and 
histograms ore provided to give 
a visual representation of the 
relationships among variables. 
The plots ore smoothed using 
the LOWESS Procedure. 
See text for discussion and 
dimensions of variables. 
For values of the dote points 
see Tobie 3.3 to 3.6. 
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Fig. 4.6 - Scatter Plots of Flow Duration and Basin Variables 
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Note: Scatter plots and 
histograms ore provided to give 
a visual representation of the 
relationships among variables. 
The plots ore smoothed using 
the LOWESS Procedure. 
See text for discussion and 
dimensions of variables. 
ror values of the doto points 
see Table 3.3 to 3.6. 

SHAPE 

SLP1085 

Fig 4. 7 - Scatter Plots of Basin Variables Related to Drainage 
Area 
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Note: Scatter plots and 
histograms ore provided to give 
o visual representation of the 
relationships among variables. 
The plots ore smoothed using 
the LOWESS Procedure. 
See text for discussion and 
dimensions of variables. 
For values of the data points 
see Tobie 3.3 to 3.6. 
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Fig. 4.8 - .Scatter Plots of Distance and Elevation Variables 



Table4.1 

Pearson Correlation Matrix: UntransformedVariables 

QA'VIAS QDaily Ql..ow SpAS ISp.l.ow I Sp_ Rnoff Eff-P Lev FDIO FDSO FD90 DA Dill N ~-sw Pr_ Deal la.eaar 
OA'V1Fid 1.00 

QDally ··0.91 1.00 . . 
Ql.ow o.n . 0.95 1.00 

SpAS -0.16 -0.37 -0.46 1.00 

Sp_l.ow 0.10 0.20 0..32 -0.26 1.00 

I Sp Rnoff 0.01 -0.16 -0.23 0.15 0.32 1.00 

Eff-P 0.02 -o.u -0.23 0.75 0.31 1.00 1.00 

Lev -0.23 -0.32 -030 0.!1 -0.20 028 028 1.00 

FDIO 0.11 -0.08 -0.25 0.26 -0.67 -0.13 -0.13 0.03 UlO 

FDSO 0.14 0.3' 0.49 -0.38 0.69 -0.11 -0.10 -0.34 -o.m 1.00 

FD90 0.11 0.29 0.44 -o.52 0.87 -0.06 -0.06 -0.26 -0.74 0.8Z 1.00 

DA 0.86 ui 0.96 -0.42 0.17 -O.lS -O.lS -0.33 -0.11 0.37 0.30 1.00 

Dlll_N 0.14 0.09 0.03 -029 -0.26 ; •o.s2 -0.52 -0.24 0.!4 -0.33 -0.16 0.10 1.00 

Dilt_SW 0.00 0.06 0.05 -0.44 -0.43 -G.74 -.J.14 -0.26 037 -0.2l -0.21 0.13 0.51 1.00 
Dr_Deaa -0.28 -t.36 -0.39 o.n -o.oz . 0.50 0.49 0..34 -0.05 -o.16 -us -0.39 -O.S3 -o.49 1.00 

EI_Caltr 0.33 0.19 0.10 0.21 0.10 0.3' 0.3' -0.04 0.31 -0.29 -0.09 0.10 0.18 -o.12 -o.u uo 
EI_Dnde 0.51 0.34 0.19 0.10 0.17 0.2l 0.2l -0.07 0.26 -o.t6 0.03 0.2l 0.21 -o.01 -0.16 o.n 
El o-.e 0.13 0.12 O.U9 0.01 0.00 0.05 0.05 -0.26 0.21 -0.11 -0.07 0.07 0.08 0.14 -0.08 0.69 

FAO.S -0.13 0.06 0.16 -O.S3 0.26 -0.32 -0.32 -0.57 -0.2l 0.46 0.32 0.11 0.07 0.17 -0.15 -o.09 

Fr_Birft 0.03 -0.03 -0.03 0.4S 037 0.76 0.76 0.13 -0..3Z o.u 0.11 -G.IO -o-'9 -O.Q 0..34 0.26 

Ft_FOnt -1.03 -O.ot -0.03 -027 -0.44 -0.63 -0.63 -0.06 0.43 -0..34 -0.24 0.05 0.57 -0...51 -0.24 -o.20 

Ft_U. 0.01 0.07 0.12 -0.44 0.14 -o~ -0.3S -0.17 -0.22 0.41 0.29 0.12 0.09 0.14 -G.24 -0.16 

lai:_Sp -o.ss -t.S1 -0.4'7 0.43 -0.29 0.14 0.14 0.!7 -0.10 -·~'.22 -0.29 -0.48 -0.31 -o.l7 0.36 -o.29 

9t•e 0.21 ... , 0.21 -0.17 027 0.03 0.03 0.05 -0.07 0.17 023 0.20 -0.10 o.ez -0.30 0.29 

Slp1085 -o.29 -037 -0.39 0.!6 -0.17 0.33 0.33 0.36 0.03 -037 -027i -G.39 -0.21 -023 0.33 O.ll 



Table 4 .1 Continued 

EJ Canr ~.owe ~.Gillie FAC.S Fr Barm Fr ronl FrU. L.mc_Sp Shipe Sip lOllS 
OA'Jfll 

Oo.J)f 

Olow 

Spfll 

Sp_Low 

I Sp, Rnoll 

Eff-P 
J..c:y 

FOlD 

FD.50 

FD90 

DA 

Diii_H 

Diii_SW 

nr_Dma 

EJ_Calr 1.00 
EI_Dilde :.'.t:''O. '73 1.00 

El_o.,ae .... 0.69 0.38 J.OO 
-FAO.S -0.09 -0.23 021 J.OO 

Fr_Birn 026 O.IZ 0.14 -0.09 1.00 
Fr_nn1 -020 -0.02 -0.13 -0.87 -0.90 1.00 
Fr_l .. • -0.16 -0.23 -o.cr~ 0.36 -029 -O.IS 1.00 
l..alc_Sp -0.19 -0.39 -0.07 0.08 0.03 0.07 -023 1.00 
Sb1pe 0.19 0.31 0.10 -0.09 021 -0.18 -0.08 -0.43 1.00 
Slpi08S 0.13 0.13 -0.01 -024 0.06 0.08 -0.32 : ·0.61 -0.32 1.00 



Table4.2 

Pearson Correlation Matrix: Logari thmicallyTransformed Variables 

Qafll Ut ()l_!r_La Ql.Dw La ~Fll l.n Spl.ow l.n SpRnr 1n Eff-P I.Jt Lev l.n FDIO l.n 
Qafll_ln 1.00 

OIIJ_la :· :··.,-.: ;· 0.96 uo 
·::.'< 0.87 

.. . .. 
QUJw_U. ·: .. : O.H ~-dO 

Spfli_I.Jl -0.2S -0.48 
.. 

.;.0.59 1.00 

~Low_la 0.34 0.46 
.. ·:· o.65 -0.28 1.00 . . 

SpRnr u 0.06 -o.~ -0.09 : : 0.71 0.3S 1.00 

Eft-P_LD 0.08 -0.05 -0.08 0.70 0.35 1.00 1.00 
LA:Y_u -o.09 -0..14 -030 0.45 -0..22 0..22 0.21 1.00 

. .. 
FDIO_la O.ll -o.o. -o.n 0.30 

.. 
-0.64 -0.:6 -0.16 -0.00 1.00 .. .. 

: 
. ... 

FDSO_la 0.14 0.3S ·) : ·:· O.S3 · . ::,:~o.tiO .. : 0.70 -0.08 -o.~ -~.34 . • .. .:.0.111 ... 
.. 

FD90 la 0.19 0.37 . . . . ft.S9 .· ~.53 0.88 0.02 0.02 -0.24 -0.76 
DA_IJI 

. • · 

0.91 . :··o.98 
.. 

.·.' :: 0.95 .·.·-0.61 .. 0.37 -0.26 -0.2S -0.27 -0.00 
· = :·~o.n 

: . . 
DIISW_u 0.04 0.06 o.cr~ -0.39 -0.40 -0.73 -0.26 0.33 

DII_N_u 0.21 O.ll 1.14 -0.30 -o.lS . ."-0.59 ·-OJ9 -0.12 . ·oJ5 

Drd_u -G.l6 -o.36 -0.38 uo -0.03 0.49 0.48 0.34 -0.01 
EJc_u 0.44 0.3S 0..29 0.22 0.24 0.40 0.39 -0.03 021 

EJDv_La 
.. · o.Q . 0.53 0.48 0.14 0.31 0.27 0.27 -0.05 0.22 

EIJ.IJI -0.03 -o.os -o.~ o.os -0.06 -0.03 -o.Ot -0.24 0.11 

FAO.S_U. -G.ll -0.03 0.10 -0.47 0.22 -0.30 -0.30 -0.52 -0..23 

FrBD_la 0.29 0.22 0.22 0.34 0.48 0.73 0.75 1».06 -0.35 

Frf'•_la -o.as -e.ts -0.14 - 0.23 -0.36 -0.61 -G.il -0.12 0.29 

Frl..lll_la o..u 1.18 1.19 -0.59 0.19 - 0.44 - 0.43 -0.28 - 0.24 

La:_t. .. -OJI8 :......,. --- 057 - 0.32 0.22 021 0.32 - 0.01 

Slp_I.JI ·, ~ 0.53 0.54 -D.ll 0.33 0.02 0.02 0.08 -0.06 

Slp_u -0.46 -o.60 _,_,, 0.'71 -0.12 «!.47 0.47 0.35 0.08 

FD~O La FD90u 

UIO 
.·: .;· 

·.: : : 0.12 UIO 

0.3S 0.35 

-o.19 -t.lO 

-0.35 -o.27 

-0.14 -0.1] 

-O.lS -o.oo 
-0.14 f.09 

-o.n -G.o6 

0.50 0.31 

0.24 1.27 

-0.19 - 0.16 

cue 0.3] 

- 028 -G.l9 

0.14 0.24 

-0.41 -D27 

DA lJ'l 

1.00 

0.21 

O.JZ 

-8.45 

0.26 

0-4.5 

-o.~ 

0.03 

0 .06 

-0.02 

0.27 

-o.tS 
0.51 

-G.67 

DttSW la 

1-

0.57 

-0.47 

-0.03 

0.10 

0.35 

0.17 

-o .. n 
0.52 

0.20 

- 0.22 

0.10 

-0.20 CD 
0 



Table 4.2 Continued 

o.tNu Dnl La EJc La 

Qaf\t_la 

()tly_lJI 

QLow_lJI 

~AI_lJI 

~Low_l.Jl 

5pRnf I..JI 

Efr-P _LA 

l...c:Y_ln 

FDIO_la 

FD~_l.n 

FD90_l.n 

DA_l.a 

DltSW_La 

Dst_N_lJl 1.00 

Dnl_lJI -0.49 1.00 

Etc_La 0.17 -0.17 1.00 
···. 

EIOv_l.n 0.23 -0.11 ... 0.78 

EIJ_lll 0.17 -0.15 0.47 

FAO.S_UI 0.01 -0.17 -0.13 

FrBm_lJI . :·. -O,j9 0.22 0.47 

FrFII_lJI O.li l -0.21 -0.22 

Fri...M_ln 0.13 -0.22 -0.23 

Lm::_ln -0.32 0.4~ 0.32 

S!p_ln -0.04 -0.30 0.29 

Sip ln -0.19 0.32 0.16 

EtDv l.n EIJln FAO.S_1J1 FrBm ln 

. 

1.00 

0.26 1.00 

-0.24 o.os 1.00 

0.42 0.06 -0.09 1.00 

-0.06 0.01 o.os -0.63 

-0.27 -0.00 0.60 -0.29 

-0.43 -0.06 -0.06 -0.06 

0.4~ -0.01 -0.10 0.28 

0.16 -0.04 -0.27 0.24 

FrFII l.n Frl..ws ln 

1.00 

-0.02 1.00 

0.04 -0.30 

-0.18 -0.07 

-0.00 -0.46 

1.111: La 

1.00 

-0.36 

0.61 

Sip_ LA 

1.00 

-028 

Slp_I.Jl 

1.00 00 ...... 
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linear for all the relationships, the correlation coefficients for the logarithmic 

relationships are higher. The exception is Qlow and DA, where the untransformed 

relationship with DAis stronger. Although the plots are not shown here, the three 

flow variables are also all related to the unit length of the main channel 

(LMC-Sp, in m3/s per km2), and to shape factor. This results is expected because 

of the relationships among the bi'sin variables. There are also some wea.k 

relationships between these flow variables and El-Dvide. Relationships with other 

variables are probably masked by the dominant effect of drainage area. 

4.1.3 Unit Flow Measures: SpFld, Sp-Low, Sp-Runoff 

An examination of the specific flow measures (flows per unit area expressed as 

m1/s per km2) can be helpfu! in understanding possible relationships with basin 

variables, because the overwhelming influence of drainage area has been 

removed. The correlation observed between the natural flow measures and the 

specific flow measures (e.g., r = 0.65 between Qlow-Ln and Spl..ow-Ln) reflects 

the fact that there remain some other factors besides drainage area which may 

explain hydrologic response. 

The scatter plots in Figure 4.2 show that the strongest relationship is between Sp­

Fld and Eff-P; unit runoff during floods is higher in areas with hi~her annual 

average effective precipitation. Smaller basins also appear to have higher unit 
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runoff during floods, as do those with steeper slopes. The relationships appear 

to be nonlinear rather than linear, although this is not entirely clear due to the 

considerable scattt:r in the plots. 

The C.'lrrelation coefficients of the log-transformed variables are slightly higher, 

also suggesting a nonlinear relationship. 

Figure 4.3 shows some additional plots, including l.cv and other basin variables. 

These plots suggest that basins with higher unit runoff during floods also have 

greater flood variability (as represented by Lev). Variation in annual floods could 

arise for different sets of reasons, and possibly Lev is one variable which can be 

better explained with regionalization. Unit runoff during floods also tends to 

decrease with in~reasing fractions of lakes and swamps, particularly if the 

location and size of lakes and swamps means that they control a large fraction of 

the drainage area. 

Thel ~ are no basin physiographic characteristics associated with Sp-Low; tliis 

result is not unexpected because the search for explanatory variables for low 

flows among basin physiographic characteristics is frequently unsuccessful. 

Figure 4.4 shows the large scatter and flat slope in the plot of Sp-Low and DA. 
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Sp-Low is quite closely related to the other low flow measure FD-90, as well as 

to the availability measure FD-50. 

Figure 4.5 shows the scatter plots of Eff-P and some of the distance and basin 

variables. The strongest relationships are with Dist-SW and Fr-Barm, with 

weaker relationships with Fr-Frost and El-Cntrd. Dist-SW is negatively correlated 

with Fr-Barm and positively correlated with Fr-Forst. Fr-Barrn and Fr-Forst are 

naturally related, since by definition the fJ?..~tions of barren, forest and lakes and 

swamps must sum to 1.0. 

These relationships with Eff-P make physical sense. The weather systems arrive 

from the southwest, and it is quite evident from a map showing land cover that 

the areas near the south coast, exposed to these oncoming weather system~, are 

barren. The more sheltered areas in the lee of the Long Range Mountains and 

interior uplands are by contrast more forested. 

These results are encouraging, because Eff-P appears to be an important 

ex~lanatory variable throughout the range of flows. An understanding of the 

relationships between Eff-P and topograyhic and geographic variables can provide 

a basis for estimating Eff-P. 



4.1.4 Flow Duration Curve Varic,bles:FD-10, 
FD-50, FD-90 
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FD-10, FD-50, and FD-90 are the flows which are exceeded 10, SO and 90 

percent of the time. FD-10 is a relatively high flow (about twice the average 

flow), FD-50 is the median daily flow, and FD-90 is a low flow (about 20 

percent of the average flow). They provide a measure of the flashiness of a basin. 

They are nondimensionalized by dividing by the mean annual flow. 

As Figure 4.6 shows, that the strongest relationships the FD variables show are 

with each other (as well as with Sp-Low, as was shown in Figure 4.4). FD-90, 

like the other low flow measures, shows no correlation with any basin 

physiographic characteristics. The plots suggest that FD-50 may be weakly related 

to FACLS and Fr-Lsw, and this observation is corroborated by the correlation 

coefficients of the Jog-transformed variables. FD-1 0 and FD-50 also show a weak 

relationship with the distance Dist-N; this observation may suggest a geographic 

regionalization. 

4.1.5 Basin Characteristics 

The basin characteristics are generally not correlated with each other, except for 

those associated with DA or those which are different representations of essen-

tially the same characteristic. Figure 4. 7, for example, shows the scatter plots of 
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the variables related to DA. The LOWESS smoothed lines suggest that the 

relationships are nonlinear, corroborated by the higher correlation coefficients 

after logarithmic transformation. 

The specific length of the main channel LMC-Sp is strongly correlated with DA, 

i.e., the larger the drainage basin the shorter the relative length of main channel. 

DA has a negative but weaker relationship with Slp1085; the larger the basin the 

milder the slope. The related relationship is a moderate positive association 

between LMC-Sp and Slpl085. Large drainage areas are also weakly associated 

with a higher shape factor (essentially a more rounded shape). 

The relationships among the distance and elevation variables are shown in 

Figure 4.8; there are no surprises. The two distance variables are obviously 

somewhat related. The change from positive to negative slope occurs because of 

the basins on the wesi coast and Great Northern Peninsula. They are a long 

distance north, but only a short distance to the sea in a southwesterly direction. 

There tends to be a decreasing fraction of barren area (and increasing fraction of 

forest) with both Dist-N and Dist-SW. There is also a weak trend to increased 

drainage density with Dist-N, perhaps explicable by geology. 
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The elevation variables are correlated only among each other. The elevation of 

the centroid has about the same degree of association with the elevation of the 

divide as with the elevation of the gauge (0. 73 and 0.69). The elevation of the 

divide and the elevation of the gauge are not related. 

4.2 Principal Components Analysis 

The objectives of a Principal Components Analysis (PCA) are 

1) to identify groupings of variables; 

2) to identify new meaningful underlying variables: 

3) to reduce the dimensionality of the original problem, by allowing the 

substitution of Principal Components (PC's) or surrogate variables; 

4) to identify variables that contribute little to the explanation of the problem. 

1f variables are combined into components representing the dependent and independent 

variables for regression, the analysis then becomes a kind of canonical correlation, with 

the principal components as the canonical variables. PCA clusters variables, and can 

bring to light previously unnoticed groupings, or generate hypot.~eses. It transforms the 

original set of correlated variables to a new set of uncorrelated variables, which are the 

principal components. These are linear combinations derived in decreasing order of 

.~ 
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importance. If the first few components account for most of the variance then the true 

dimensionality of the problem is less than the number of the original variables. 

If the original variables are nearly uncorrelated then there is not much point in carrJing 

out a PCA, since the PCA will simply find components close to the original variables in 

decreasing order of importance. Since principal components analysis is another way of 

looking at correlations, it is more likely to confirm the results of a careful examination 

of the scatter plots and the correlation matrix than to produce any new insights. 

If the prin~- ~~'.al components become an important part of the analysis, some attention 

should be given to the fact that the factors are linear combinations. If some or all of the 

variables are logarithmically transformed before the components are obtained, there 

might be problems when the final results are transformed back. 

Since the primary purpose of the PCA analysis for this study is exploratory, to identify 

key variables, the untransformed but standardized data set was used. The analysis was 

carried out separately on the set of flow variables and on the set of basin characteristics. 
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4.2.1 Principal Components or Basin Characteristics 

Several analyses were done to compare the resulting components for different sets 

of variables. The set of basin characteristics was analyzed with and without 

Eff-P. In addition, the results were examined when only one elevation variable 

was used. The results are described below in more detail, but in general the 

number of principal components, the "meaning" for each, and tb', total variance 

explained did not change much for the different cases. 

The plot in Figure 4.9 shows the eigenvalues for the components of basin 

characteristics. When all variables are included, or when only Eff-P is removed, 

there is a noticeable break in slope at PC5; when two of the elevations (El-Gauge 

and El-Divde) are excluded as well as Eff-P, the break occurs at PC4 or 5. The 

reduction in the first eigenvalue only when Eff-P is removed shows that nearly 

all the influence of Eff-P is included in the first component. 

Tables 4.3, 4.4 and 4.5 show the loadings for the first four and five principal 

components for the three cases plotted in Figure 4.9. The highest loading for each 

variable is shaded. For the first two cases (all basin variables, with and without 

Eff-P), the components are very similar, as expected from the plots of the 

eigenvalues. 
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Table 4.3 

Rotated Loadings: All Basin Characteristics 

a) S Principal Components 

1 2 3 
Fr Forst .. -0.91 -0.10 -0.17 
Fr:Barm .. .. :.0.90 0.16 -0.01 ...... 
Eff-P .O.S1 0.25 -0.24 
Dist_SW . : .· -0.8) O.ot 0.15 
Dist_N : .... : ... ~.0.7~ 0.28 0.20 
Dr_Dens 0.50 -0.17 ... :~0.53 .... 
El_Centrd 0.13 

.. 0.95 0.09 : 

El_Gauge 0.01 ·o.79 -0.06 
El_DM!e -0.01 : 0.78 0.21 
LMC_Sp 0.05 -0.23 -0.86 
Slp1085 0.05 010 ~0.78 

DA -0.11 0.09 0.65 
Shape 0.14 0.17 0.55 
FACLS -0.07 -0.02 0.05 
Fr Lsw -0.05 -0.15 0.39 
Percent of 
Variance 
Explained 28.4 20.3 13.8 

b) 4 Principal Components 

1 2 3 
Fr Barm 0.91 0.19 0.06 
F..:Forst -0.~ -0.13 -0.16 
Eff-P 0.81 0.22 -0.17 
Dist SW -0.79 0.04 0.13 
Dist:N .~o:n 0.23 0.17 
Dr_Dens 0.51 -0.16 ~0.52 

EI_Centrd 0.11 . . 0.92 0.16 
EI_Gauge 0.00 0.85 -o.os 
El_Divde -0.03 . : .... 0.72 0.31 
LMC_Sp 0.09 -o.ts -0.86 
Slp108S 0.07 0.19 ~0.74 
Shape 0.16 0.18 · ·o.66 
DA -0.13 0.05 ·. · .... ' 0~ 
FACLS -0.07 0.09 -0.05 
Fr Lsw -0.10 -0.15 0.22 
Percent of 
Variance 

IExDiained 25.7 16.0 17.7 

4 
0.21 

-0.03 
0.33 

-o:n 
0.09 
0.17 
0.07 

-0.44 
0.35 

-0.19 
0.27 

-0.00 
0.02 

-0.85 
-0.42 

9.6 

4 
0.06 
0.25 
0.36 

-0.19 
0.01 
0.17 
0.16 

-0.28 
0.42 

-o.m 
0.38 
0.19 

-0.09 
....... :"-0.83 

.·.·-0.69 

12.7 

5 
0.05 
0.24 
0.03 
0.17 

-0.24 
-0.10 

0.04 
0.08 
0.14 
0.09 

-0.02 
0.00 
0.66 

-0.13 
-0.65 

5.6 

Total 
72.1% 

Total 
77.6% 
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Table4.4 

Rotated Loadings: All Basin Characteristicsezcept Eff-P 

a) S Principal Components 

l ·2 ·3 .. 

Fr Font 0.92 -0.13 -0.15 
Fr:Barm , .. -0.90 0.19 -o.oc 
Dist_sw 0.78 -o.m 0.15 
Dist_N • ,•, o:n 0.24 0.23 

'••; . 

E1 Cenud -0.(9 . '··0.9S 0.00 
EJ:oauge -0.01 ... ·'.:::o.so -O.Ctl 
El_DMlc 0.04 .· '·.·. :.018 0.21 . •' . ' . . ... . . ... 

::·'·'.'.:=:;:?.o.Bt LMC_Sp -0.05 -0.23 
Slp108S -o.m 0.20 ,: , ..... ..;.;Q :18 

DA 0.09 0.09 : .. ·:: ·.' ;·, ,. o/x, 
Dr_Dcns -o.so -0.14 .,. ~0.53 
Shape -0.15 0.17 0.51 
FACLS 0.04 -O.Cll 0.04 
Fr Lsw 0.02 -0.15 0.41 
Percent of 
Variance 
ExPlained 22.4 17.3 18.9 

b) 4 Principal Components 

1 2 3 
Fr_Barm -0.91 0.21 0.04 
Fr_Forst 0.90 -o.ts -0.15 
Dlst_N ·o.79 0.20 0.18 
Dist_sw O.Tl 0.03 O.lS 
Dr_Dens -0.51 ... -o.ts. ....... ·:.0.53 
EJ_Cenud -0.<8 .. · 0.92 O.lS 
EJ_Oauge -0.00 '::::.·:·::::'::..::.·~~ -0.05 
EJ_ DiYde 0.05 0.30 
LMC_Sp -0.<9 -0.15 : .. · .. . ..;:.0.86 
Slp108S -0.05 0.19 . : :':-'·::.~14 

,"" · ... . 
Shape -0.18 0.20 

·.:;,, ..... ·.,o.6s 
· . .':'/. :::·:~):::: OM· DA 0.12 0.05 

FACLS 0.05 0.09 -0.05 
Fr Lsw 0.08 -0.16 0.23 
Percent of 
Variance 
Emlaincd 22.8 16.9 18.9 

4 
0.18 
0.01 

-0.30 
0.04 
0.07 

-0.42 
0.36 

-0.17 
0.30 
0.01 
0.21 
0.02 .. 

. ·-0.86 ... 
-0.42 

10.9 

4 
-0.10 
-0.22 

0.03 
0.20 

-0.19 
-0.15 

0.28 
-0.42 

0.03 
-0.38 
-0.22 

0.09 

.::=:::,'/t:::··. ·g~ 

12.8 

s 
0.04 
0.24 
0.18 

-0.19 
0.06 
0.06 
0.14 
0.04 

-0.(8 
-0.(12 
-0.15 

0.69 
-0.13 
-0.63 

7.6 

Total 
71.4% 

Total 
77.1% 
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Table 4.5 

Rotated Loadings: All Basin Characteristicse:s:cept Eff-P 
El-Gauge, El-Dvide 

a) S Principal Components 

·· t •' '2 ·3 .. 

Fr_Forst ......... :092 -0.12 0.22 
Fr_Barrn .·.:·' ~.89 -0.06 0.()4 
Dist SW . ::· .. : .. , ... i0.79 0.13 -0.23 
DisCN 

. : . ' . 

:'.: :'·076 0.19 -0.05 
Dr_Dcns .. ::.:.i:·:: ,~o~ -0.41 0.31 
LMC_Sp -0.05 

't:::=:: 
-0.10 

Slp108S -0.05 0.26 
DA 0.09 0.00 . .. ..... 
FACLS 0.04 -0.04 ........ 0.91 
Fr_Lsw 0.02 0.41 .'>: .. ~os 
El Centrd -0.12 0.04 0.08 
shaoe -0.13 0.39 0.03 
Percent of 
Variance 

1 Exolained 26.2 20.0 12.1 

b) 4 Principal Components 

1 '2 3 
Fr_Barrn -0.91 0.04 0.11 
Fr_Forst 0.91 -0.13 0.24 
Dist N 0.79 0.12 -0.10 
Dist:sw , 0.77 0.18 -0.14 
Dr_Dens · ~O.Sl -0.48 0.24 
LMC_Sp -0.09 .. ·:·· ... ~0.84 0.02 
Sip lOSS -0.05 

,.• . ' 

_;,0.78 0.31 
DA 0.11 :·.~ : .. 0.66 -O.(J'f 
Shape -0.17 . : .. :··:. 0.65 0.23 
FACLS 0.03 -0.05 .. "·:·.-0.83 
Fr_l .• sw 0.07 0.20 :: .. · .... ';: ~.0.71 
El Centrd -0.10 0.11 0.12 
Percent of 
Variance 
Emlained 26.6 20.9 13.4 

4 
-0.16 

0.18 
-0.(8 

0.39 
-0.30 
-0.28 

0.20 
0.03 

-o.as 
-0.(11 

·::·;::· ... . 0.93 
O.lS 

11.0 

4 
0.24 

-0.18 
0.33 

-0.05 
-0.33 
-0.21 

0.21 
-0.02 

0.26 
0.03 

-0.15 
·::::: .. :::0.93 

11.2 

s 
-0.04 

0.26 
0.20 

-0.16 
-0.28 
-0.05 
-0.15 

0.07 
0.01 

-0.49 
0.14 
0.78 

9.3 

Total 
72.1% 

Total 
78.6% 

93 



94 

About 75 percent of the total variance is explained by the fust four or five 

components for all cases, slightly less for four components, slightly more for five 

components. The components can be interpreted as follows. 

PC1 Geography: Geographic variables related to Eff-P (and Eff-P itself for 

case 1) load highly. This component can be interpreted as representing 

Eff-P, or exposure to incoming weather systems. PC1 explains 22 to 28 

percent of the variance, depending on whether there are four or five 

components, and whether or not Eff-P is included. 

PC2 Topography: Elevation variables load highly, with El-Cntrd loading 

highest. It explains 16 to 17 percent of the variance. In Table 4.5, where 

the other two elevation variables are excluded, the "elevation" component 

becomes PC4, explaining 11 percent of the variance. 

PC3 Relative Size: Variables relating to size loa.d most highly on this 

component; LMC-Sp loads highest. Drainage density splits almost 50-50 

between this component and the first geographic component, usually 

slightly favouring this "size" component. In case 3 (Table 4.5), when El­

Gauge and El-Divde are r.xcluded, Dr-Dens always loads most highly 

(although still just over 0.5) on PC1. 
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Because the elevation component is shifted to PC4 in case 3 (Table 4.5), 

this component essentially becomes PC2 for that case. 

PC4 Lakes and Swamps: FACI..S loads most highly on the fourth component 

(and fifth component in Table 4.5). When there are S components, it is 

zlmost alon~ on the fourth component, with Fr-Lsw loading much lower; 

Fr-Lsw and Shape load on PCS. When the fifth component is eliminated, 

Fr-Lsw loads with FACLS on the fourth component, and Shape joins the 

"Size" variables on PC2. 

For Case 3 (Table 4.5), the loadings are similar, but the component numbers are 

different, and Fr-Lsw loads slightly differently. Even when there are five 

components, Fr-Lsw loads most highly on PC2 with FACLS, and Shape is the 

only variable to have its highest loading on PC5. When the fifth component is 

eliminated, Fr-Lsw loads more highly on PC2, and Shape loads most highly on 

the "Size" component, PC2. 

This preliminary analysis shows that about 72 percent of the varianu can be 

explained by four principal COfia;<>nents, and an additional 6 percent can be 

explained if a fifth is included. The first four are reasonably meaningful, and each 

has one highly loaded variable which could possibly be used as a surrogate. 



96 

These results indicate that the principal components approach may be useful if 

subsequent analyses reveal a problem of multicollinearity, or if the dimensionality 

of the problem must be reduced to obtain significant predictive equations. 

These results are not directly comparable with those of Sharp and Moore (1988), 

because Sharp and Moore used the dimensional data set from the provincial 

regional flood frequency analysis (Government of Newfoundland, 1984). 

Variables such as barren area and forest area were highly correlated with drainage 

area and their first component was thus interpretable as size. 

4.2.2 Principal Components of Flow Variables 

A brief additional PCA was carried out on the specific flow variables (m3/s per 

km2
) together with the dimensionless flow duration variables and Lev. When the 

fully dimensional flow values are used, drainage area dominates. Since this result 

does not contribute much to an understanding of basin response, the flow analysis 

was done using the variables without the effect of DA. 

As with the basin variables, the analysis was carried out on the standardized 

untransformed data set. 
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The eigenvalue plot is s~own in Figure 4.10. A break in slope occurs around 3 

or 4 components, and so the PCA was repeated for both th1 ~ numbers. The 

rotated loadings are shown in Table 4.6 for the two cases. The tables show that 

four components explain almost all the variance (96.6 percent). They can be 

interpreted as follows. 

PCI Availability, especially at the high flow end: FD-10 and FD-50 load most 

highly, and FD-90 makes a substantial contribution (0.52); 

PC2 General Wetness: Both Sp-Rnoff and Sp·Fiood load highly; 

PC3 Annual peak flow variability: Lev alone loads highly; 

PC4 LQW Flows: Both FD-90 and Sp-Low load highly. 

When there are three components, Sp-Low and FD-90 join PC 1, making it even 

more strongly interpretable as an availability component, and increasing its share 

of tlle variance explained to 49 p.'.:cent. The total variance explained by the three 

components is just over 92 percent. Loadings on the second and thLd components 

are almost identical to the four-component case. As with the PCA of basin 

variables, the components show some potential for use in reducing dimensionality 

or multicollinearity, should problems with these arise. 
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Table4.6 

Rotated Loadings: Flow Variables 

a) 4 Principal Components 

FD-10 
FD-SO 
FD-~ 
Sp-Rnoff 
Sp_F')d 
Lev 
So-Low 
Percent of 

1· ... .. · 2 . ; .. . ·3 .. 4 
0.()6 -0.35 
0.23 0.43 
0.10 ~:;;;:;::.:·:::::·:.·::~;io 

-O.CB 0.18 

Variance Total 
L:l Exp=:la;;;;;ined=.;;;...-"--...;;28;;;.;';.;;...1 "-----=26=.0..______,;1=5·;;;...9 "--___,;26=·-....6 96.6 % 

b) 3 Principal Components 

·t ... .. 2 
FD-~ ..... :· : 0.92 -0.15 
FD-10 : · .. :.: . ...;.Q.91 0.02 
FD-50 ..... ·.<·, : ·' 0~ -0.25 
Sp-Low ... .. : ... 0.89 0.23 .... .·.·.···· . 
Sp-Rnoff 0.14 ··:o.97 

: 

Sp_fid -0.37 .. '•',• 0.83 .. ... .... 

Lev -0.11 0.22 
Percent of 
Variance 
IExotained 49.0 26.0 

'3 
0.17 
0.15 
0.17 
0.22 

-0.~ 
-0.33 
-0.95 

16.4 
Total 

91.4% 
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The remaining sections of this chapter describe the investigations to determine 

which of the basin variables are most important in explaining Eff-P, high and low 

flows, and availability. Since Eff-P may act as an input in the equations for the 

other flow variables, it is examined first. The examination for each of the flow 

variables begins with a discussion and qualitative assessment, followed by 

quantitative estimates of relative importance of variables. The principal tool in 

these detailed investigations was multiple regression. 

4.3 Effective Precipitation (Eff-P) 

4.3.1 Qualitative Assessment 

Regional hydrological studies, especially flood studies, have frequently identified 

some precipitation measure as an important explanatory variable in hydrologic 

response. In Newfoundland, however, precipitation is seldom measured at any 

point which can be considered representative of basin precipitation input, in either 

gauged or ungauged catchments. Consequently, investigators are left with no 

variable to represent hydrologic input.. 

Eff-P can be calculated for every gauged basin. If it can be related to 

topographic and geographic variables, Eff-P coulu be estimated for any ungauged 

basin. lt could then be used directly to estimate the average flow at ungauged 
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sites and to dimensionalize nondimensional flow duration quantiles, or indin:r-tly 

to estimate other flow characteristics. 

Eff-P varies from over 2000 mm per year on the southwest coast east of Port aux 

Basques, to about 700mm per year on the northeast coast. Eff-P is plotted at the 

centroids of the basins in this study in Figure 4.11, and the general trend of 

decreasing runoff with distance from the incoming weather systems from the 

southwest is evident. 

Eff-P in any basin is clearly not constant over time. This study assumes that the 

Eff-P for the period of record (minimum 10 years) is representative of the tong 

term MAR. The only exception is Cat Ann, as discussed in Chapter 3. 

To get a sense of the extent to which MAR might vary over a typical record 

length of, say, 10 or 15 years, the 10 and 15 year moving averages were 

calculated for the basins with the four longest records. The results are presented 

in Table 4.7. This table shows that the 15 year Eff-P could vary by plus-or­

minus about ten percent. These results, while not formal statistical descriptions, 

provide some background against which to assess estimates and standard errors 

from multiple regression equations. 
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kilomellrt 

Fig. 4. 11 - Effective Precipitation Plotted at Basin Centroids 
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Table4.7 

Variability of Moving Averages 

Basin Name Upper Humber Gander River Rocky River BayduNord 
River at Big Chute near Colinet River 

#of Years 51 43 43 39 
of Record 
Elf-P for Total 1216 843 1245 1074 
#of Years 

10Ycar 
Moving Avera_ge 1214 853 1243 1079 
Minimum 10 Year 1100 774 1080 966 
Moving Average 
%ofECC-P for 90.46 91.81 86.75 89.94 
Total # of Y cars 
MaximumlOYear 1367 927 1330 1163 
Moving Averaje 
%ofTotal 112 110 107 108 
Eff-P for last 
10Years 1100 824 1228 1061 

15 Year 
Moving Average 1213 860 1247 1086 
Minimum 15 Year 1132 813 1170 1016 
Moving Average 
% ofEff-P for 93.09 96.44 93.98 94.60 
Total# of Years 
Maximum 15 Year 
Moving Average 1287 909 1341 1153 

1----
%ofTotal 106 108 108 107 
Eff-P for last 
15Ycars 1167 839 1276 toso• 

• Elf-P for lhe last12 years 
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4.3.2 Eff-P Multiple Regression 

The relationships between Eff-P and the basin variables were quantified using 

multiple regression (MR) techniques. Because MR is an important tool in this 

research, a brief description and discussion is presented here. The same approach 

is used throughout this study in all applications of MR. 

The steps were as follows. 

1. Develop candidate equations using ordinary least squares (OLS) 

techniques. If nonlinear relationships are expected, use 

logarithmically transformed variables. Accept variables only if 

significant at 5 percent level, i.e., p value less than 0.05, and if 

they do not introduce problems of multicollinearity, i.e., variance 

inflation factor less than 10, equivalent to tolerance greater than 

0.1. 

2. Assess results, select fmal candidate models. 

3. Identify outliers using robust regression techniques. 

4. Check residual plots. 

5. If log-linear equations have been selected, develop the final forms 

of the equations using nonlinear techniques. 
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The OLS techniques are very good for preliminary model development and 

screening because they are well behaved, and provide the best linear unbiased 

estimators if all assumption are met. Useful results such as standardized 

coefficients and leverage are relatively easily obtained from most stA~stical 

software packages. Alternative models can be easily developed and compared. 

There are two potential problems with OLS analysis, however. One is that the 

analysis may be spoiled by the pre5ence of outliers. Outliers are often hidden in 

multiple regression, because they do not show up in residual plots or calculations 

based on residuals, such as studentized or standardized residuals. Alternative 

statistical techniques have been developed to provide equations which are robust 

or resistant to a certain amount of contamination in the data. When an equation 

is fitted using a robust technique, outliers will lie far from the fitted line and can 

be detected by their large residuals. 

The least median of squares (LMS) technique has been found to be very powerful 

for the detection of outliers, and the robust regression program PROGRESS •Jsing 

LMS was applied in this study for outlier detection (Rousseeuw, 1987). Each 

candidate equation was tested fr.r outliers; if there was more than one outlier, 

equations using other indt endent variables were checked to see whether they 

might give similarly good results without as many outliers. Equations without 
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outliers were preferred because with the data set used in this study, outliers are 

likely to be true values, not simply typographical or measurement errors. In 

practice there may well be ungauged basins similar to an apparent outlier. 

The 11ee0nd potential problem with OLS lies not with tbti «hnique itself but with 

the fact that it is often applied to inherently nonlinear models. In order to use 

OLS techniques in such cases, the variables are logarithmically transformed, as 

they are in most cases in this study. A fundamental assumption of OLS, however, 

is that the error te:nns are additive. This assumption remains true only as long as 

the analysis remains in the transformed domain. When the estimates are 

transformed back, the error term becomes multiplicative. Since additive error is 

assumed, the standard error will be smaller and the coefficients will be biased. 

Various corrections for bias have been proposed, but these correct only for the 

bias in the intercept (the constant), not in the slope (the coefficients). This 

problem is discussed by McCuen et al (1990). 

So throughout this study, once candidate models were develop.d using OLS and 

robust regression techniques, the final form was defined using nonlinear least 

squares (NLLS), as provided in SYSTAT. NLLS is based on minimizing the 

squared deviations of the dependent variable data values from values estimated 

by the function at the same independent variable data points. Both Quasi-N~wton 
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and Simplex estimation methods are available in SYSTAT to seek the minimum 

of the loss function. Both methods were tried on a number of the candidate 

models, and they always gave the same results. The coefficients from the NLLS 

analysis were usually similar in magnitude to those developed using the log-linear 

methods. It should be noted that although NLLS does not require the additive 

error assumption, it still assumes constant variable of residual (homoscedasticity). 

4.3.3 Eff-P Multiple Regression Analysis 

It is not clear from the scatter plots and correlation matrices presented earlier in 

this chapter whether the relationships between Eff-P an{ the distance and 

topographic variables are inherently linear or nonlinear. Both log-transformed and 

untransformed data sets were therefore used in a multiple regression analysis to 

determine whether a suitable predictive equation for Eff-P could be obtained. The 

results are presented in Table 4.8. The linear equation is very straightforward 

and physically meaningful- the Eff-P is about llOO mm, reduced by about twice 

the SW distance to the sea (in km), increased by about 6 times the percent of 

barren in the basin, and increased further by about 6G percent of the elevation 

of the centroid (in m). At first glance the importance of Fr-Barm is somewhat 

counterintuitive; why should a larger amount of barren area lead to higher 

average effective pro.. . 1 :. : • 1? One plausible explanation is that 

evapotranspiration losses are lower in barren basins, although the magnituue of 
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Eff-P: Multiple Regression Results 

N ..a 33 1 ..a 38 40 37 

Constant 
D~c_sw 
Fr-Birm(u% 
El-Cnttd 

r:z 
r2adj (OLS) 
r2 oorr (NLLS) 

Outliers 

Notes: 

1133 
-2.!60 

6.0'70 
0.644 

0.74 
0.71 

laM 
Ordy 
LtCd 
SJCv 
NePl 

Rll 

1054 1435 1.949 
-1.620 -2JOO -0.159 

3.510 3.5~ 0.()81 
0.658 1.210 

0.80 0.99 0.97 
0.78 0.98 

0.67 

SteG 
SmLm 

J..og linear oonstant h· ~"e been transformed back to natural domain. 
Linear results are for Elf-P in mm. nonlinear for Elf-P in m. 

OLS Ordinary Least Squares 
RLS Rcweighted Least Squares 

NLLS Nonlinear Least Squares 
RNLLS Rcweightcd Nonlinear Least Squares 

3.000 
-0.242 

0.058 

0.98 

0.75 

1.072 
-0.194 

0.06( 
0.153 

0.98 

0.72 

SteG 
SmLm 

Rll 

1.735 
-0.265 

0.038 
0.132 

0.98 

0.80 
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the coefficient is then a bit surprising. A more likely reason is that the extent of 

barren area reflects the degree of exposure to incoming weather systems in 

Newfoundland. An example may explain this reasoning further. 

The Highlands River basin on the w~st coast, has a relatively short SW distance 

to the sea (65 krn) and a high elevation of its centroid (244m). Based on those 

two variables, it would be expected to have a higher Eff-P than Garnish River 

basin on the Burin Peninsula, with a similar distance to the sea and a lower 

elevation (152m). But in fact the Eff-P for the Highlands basin is 1140 mm 

compared with 1359 mm for Garnish. This difference may be accounted for by 

the fact that Garnish is in a more ~xposed location. This exposure is reflected in 

its greater proportion of barren area (63 percent, compared with 13 percent for 

Highlands). 

The problem with the equation is tlte large number of outliers (seven), forming 

a cluster of all basins with Eff-P greater than 1550 mm. A separate MR analysis 

with and without those basins shows that the same variables are important, but 

the constant and the coefficients of the equations are different. These results arc 

also included in Table 4.8. The difficulty arises when the equations are used for 

prediction; how can a potential outlier be assigned to the correct group, so that 

the correct equation can be used? 
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As Figures 4.12 and 4.13 show, there are no clearly distinguishing topographic 

or physiographic characteristics to identify these high runoff basins. Five of these 

basins are located in very exposed regions, Isle aux Morts, Grandy and Little 

Codroy on the southwest tip of the island, and Northwest River and Seal Cove 

on the southeastern tip of the Avalon Peninsula. An ungauged river in these areas 

might be classed with the high runoff group by judgment. Northeast River at 

Placentia and Rattle Brook on the Burin Peninsula are slightly less wet, and are 

somewhat anomalous. They may be affected by the local topography of Placentia 

Bay in the case of Northeast River, and both Fortune and Placentia Bays in the 

case of Rattle Brook. Figure 4.14 shows the observed and estimated Eff.p for 

the basins using the linear equations after reweighting. 

The nonlinear equations with either two or three variables are also quite good, 

and have the advantage of having fewer outliers. Figure 4.15 shows the observed 

an,i estimated Eff-P from the nonlinear equations. Both Ste. Genevieve and 

Salmonier River near Lamaline have lower Eff-P than predicted. In the case of 

Sr.e. Genevieve, this result is not unexpected, because the basin is located in a low 

flat area near the tip of the Great Northern Peninsula, and it is quite conceivable 

that there is not as much available precipitation in the weather systems north of 
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EffP as a function of Fraction 6Jrren 
2.2 

2.1 ~ 
ZB1 • 

2 1-
ZC2 • 

1.9 ZN1 
ZA3 • 1.8 Zl.49 • • 1.7 

....... 
ZK2 --Ill 1.6 1- Zib e-o • E a 1.5 0 

...... Ill 
::> YN2 a. 0 1.4 ZH2 ~G1 ZG3 -~ YF1 - ,_ YJ1 ve1 c ........... 

0 0 
1.3 0 

VD1Y~1 ze 
1.2 - Zl.46 YK2 ZK1 0 

0 ~A2 c 0 
0 ZF'l 1.1 

Z~1 ~~ o ZE1 
1 

_ ZJ1 0 

~ 50 
0·9 ~ ~ ~ Y01 vg~s 

0.8 ~ ~ ~6 ° 
I I 0.7 

0 0.2 0.4 0 .6 0.8 

Fraction of Barren Area 

EffP as o function of Elevation of Centroid 
2.2 

2.1 f-
Z81 • 

2 1-
ZC2 • 

1.9 1- ZN1 • ZA3 1.8 f- Z~9 • • 
1. 7 1-

...... 
~a ....... Ill 1.6 1-e-o ZG2 E 5 1.5 f- 0 

........ Ill 
:;J YN2 a. 0 1.4 ZG3 Z<ZI-l2 0 

=~ oc YJ1 YC1 YF'1 w ....... c 0 1.3 1-
Z~t 0 c 

1.2 1- ZK1 zij~ ZA2 ~2 c c 
ZF'1 0 

1. 1 1-
ZJ1 z~P ZH1 Z&-1 

0 K4 
YA~S3 0 

0.9 1- 0

~2~1 YS1 YKS 
c 0 

0.8 - qF( lJ 
YR2YR.Jl 0 

0.7 'H' ·.n I 

0 200 400 600 

Elev Centroid (m) 

• - EffP > 1 550 mm/yr 

Fig 4.13 - Effective Precipitation and Fraction of Barren and 
Elevation of Centroid 



113 

2.5~----------------------------------------------~ 
2.4 
2.3 2.2 
2.1 

2 
1.9 
1.8 
1.7 
1.6 
1.5 
1.4 
1.3 
1.2 
'., 

1 
0.9 

Kl:Y 

C Usin9 •q'n for n•ll 

+ Usin9 •q'n for n•7 

Gr~M 
NwNP 0 

0 

D ~d 
Nt-PI 

Un• of JNrfKI 
09•eement 

0.5 o. 7 0.9 1. 1 1 .3 1 .5 1 . 7 u 2.1 2.3 2.5 

(Thouaonds) 
Obaerved EffP (mm) 

Fig. 4.14 - Observed and Estimated EffP 



114 

23 

22 

21 SmLm 
0 

2 

IJ 
,..... II a 
E 

l'l 
D ....., 

Q. I! D ffi 
~ 

'0 SteC 
" t• '0 0 

.§ 13 
-;; 12 

D 
w 

II D 

I 

~ 

Q8 

07 

oa 
Q5 

Q5 117 ~ II 1.3 ·~ l'l lg 21 

Observed EffP (m) 

(o) From 2 Variables 

23 

22 
21 

2 

Ul SmLm 
0 

D 
I! D 

........ L7 E D ...... 
IS 

~ D D 
w 15 

SteG 
'0 L4 0 D 
" 1.3 ~· D 

.s 12 DD 
R+1 -;; 

u D 0 w 

I 
Q9 

Q8 

(17 

Q8 

Q5 
~ 07 ~ u 13 ~ l'l Ul 21 

Observed EffP (m) 

(b) From .3 Variables 

Fig. 4.15 - Estimated and Observed EffP: Nonlinear Equation 



llS 

the Long Range Mountains. Salmonier River is a puzzle; it would be expet;:ted to 

be very wet given its exposed location on the tip of the Burin Peninsula, and the 

climate station on the coast nearby at St. Lawrence records high rainfall. 

In the three variable equation, Rattle Brook (discussed above) is identified as an 

additional outlier, with higher runoff than predicted. 

Additional preliminary attempts were made to develop relationships within 

geographic regions. These included dividing the island into regions as follows 

• along the hydrologic boundary between WSC Y and Z regions; 

• according to whether a basin is to windward or to leeward of 

approaching storms; 

• north-south, along the 48th parallel of latitude. 

None of these attempts met with any particular success, although the results might 

be useful in conjunction with clusters based on other flow or basin characteristics. 

The windward/leeward division is not recommended because it is sometimes 

difficult to make a clear assignment of an ungauged basin. 
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In summary, the MR analysis of Eff-P shows that Dist-SW, Fr-Barm and El-

Cntrd are consistently the most important explanatory variables. If an estimate is 

required of Eff-P at an ungauged basin, all three equations may be tried. In 

addition, it is important to plot the location of the centroid of the ungauged basin 

on a map such as Figure 4.11, and to interpolate between known points of Eff-P. 

The interpolation should take into account the relative Dist-SW, Fr-Barm, and El­

Cntrd of the gauged and ungauged basins. Additional information from climate 

stations and topographic maps can contribute to the estimate. 

4.4 High Flows: Lev, FD-10, Sp-Fid and Qavgnd 

The next set of analyses focused on flood flows, within the range of flows reported in 

the record, not estimates of flood quantiles. The flow exceeded only 10 percent of the 

time, FD-10, was also included in this group, although it does not represent a very high 

flow. For the rivers in the data set, it ranges from 1.9 to 2.7 times the average annual 

flow. The average annual maximum daily flow, by comparison, might be 5 to 10 times 

the average annual flow. 

The scatter plots in Figure 4.1 to 4.3 suggest that the relationships with the basin 

variables are nonlinear, so the log transformed data set was used for the initial MR 

analysis. 
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4.4.1 ~v 

The analysis began with Lev, the linear coefficient of variation obtained from L­

moments. It represents the variability of annual floods from year to yen. Lev is 

of particular interest because it has a large influence on the shape of the growth 

curves used to estimate extreme flood quantiles. 

For basins exposed to the same flood-producing hydrologic input, a dift, ~ff.~ ~ 

Lev would be expected to occur due to differences in basin characteristics. There 

might also be some geographic or topographic variation, representing the 

difference in the types of events producing floods, e.g., less intense storms, or 

snowmelt only compared with mixed rain-on-snow or rain only. 

Qualitative Assessment 

A brief PCA analysis was undertaken to see whether Lev might load on a 

common factor with some basin characteristics. (The PCA analysis described 

above had separated flow and basin characteristics.) The result, not surprisingly 

given the low correlation of Lev with any basin variables, was that Lev tends to 

load highly on only one factor, and that no basin characteristics loaded highly on 

that factor. 
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The data set was then sorted in order of ascending Lev to assess qualitatively the 

difference between basins with high and low Lev's. The sorted file is presented 

in Table 4.9. This table shows that the range of Lev is from 0.11 to 0.314. Some 

aeographic division is immediately suggested, because eight of the ten least 

variable basins are in WSC hydrologic region Y, and of the 10 most variable 

basins the reverse is true - 8 are in region Z. Of the ten least variable basins, the 

two exceptions not in region Yare Seal Cove and Northwest River. They are on 

the southeastern tip of the Avalon Peninsula, in a very wet and relatively warm 

area; in addition the areas above their gauges are 100 percent controlled by lakes 

and swamps. 

The remaining ten basins with the lowest Lev's are generally large (the smallest 

drainage area of the Y's is 391 km~, and include the three of the four largesl 

basins in the data set. (The third largest basin ranks # 11 in Lev.) They also tend 

to have a large fraction of their areas controlled by lakes and swamps - the lowest 

is 0.75 (Upper Humber), and the second lowest is 0.91. A review of the records 

of the dates of occurrences of the annual peak daily flows shows that about 90 

percent are spring snowmelt events, as expected from their locations and high 

elevations. Of the ten most variable basins, the two basins not in hydrologic 

region Z are YM3, Southwest River (Baie Vert.e), and Y06, Peters River. 

Southwest River has the second smallest fraction of its area controlled by lakes 
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Data Set Sorted by Lev 

Y2S BASINS lL'V ·. DA . LMC SP 

~l ~·· c;:a: it~: g:,: 
Ylt2 Le.B 0.140 470 0 .12 
YK4 HDd• 0.142 529 0.09 
YF1 Cat 0.144 611 o.os 
YRl ladB o."s SS4 0.09 
YQt OdBC 0.1" 4t4t 0.03 

... ZN1 lhtfP ::: 0.158 53.3 021 
YSt TerN· 0.159 1365 0 .08 
YKS Sbfd 0.161 391 0.10 

~i =· v.~~ m ·u.Oil 
0.165 0.18 

YD2 Ncllk 0.167 :zoo 0.19 
. ZO) !IDI.a·'· 0.170 115 021 .. 
yg· 9III'N 0.172 36.7 0.30 
YD1 hrB 0.173 237 0.17 
YR2 ':rn" 0.174 39t o.n 
Yn 0.171 640 0 .09 
YAt St:; 0.179 J06 0.13 
Z04 · Rll '· ·· 0.189 42.7 023 

.~; ·;e·=: :::: = ::~ 
Yet 0.195 6'24 0.08 
YN2 Ldt 0.200 469 0.12 .. zn. =.·~.i; 0.205 67.4 024 
ZGt 0.211 205 0.22 
Z&t ~ '· 0.219 300 0.15 
ZAt ' L .=:- 0.220 343 0.19 
ZP1 .. N .· 0.223 1170 0.06 
YPJ SbiA 0.226 6l.8 0.24 
u; ..... :1li , .. U.Ul 

89.6 0.30 
ZH2 QC ··. t.23S 43.3 0.39 
Z02 y· : · O.l41 166 0 .16 no s.ev 8..254 9l.l 8.20 
ZBl ..... . 0.262 205 0 .16 
ZC2 Otdf 1.263 Dl 0.13 
ZAl . tnll . 1.261 72 0.28 
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137 6SS lSI O.S9 
198 SIB 290 0.32 
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v.w 

23 0.32 
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2 137 91 0.34 
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8 33S lSI 0.67 
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·~ i~ j;g r~ 
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0.627 2.32 
0.637 1.78 
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0.680 1.72 
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~,~_,., 
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0.9lD 1.65 
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0.172 
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o.1n 
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0.170 
0.120 
0.159 
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0.320 
0.142 
0.3.54 
0.110 

g~ 
0.167 
0.160 
0.1.50 
0.101 
0.113 
0.100 
0.236 
0.130 
~·~! 
0.300 
0.099 
0.130 
0.100 
0.134 
0.040 
o.oso 
0.1" 
1.130 

FAQ.S 

1:;;; 
1.000 
0.950 
1.000 
0.970 
0.910 
1.000 
0.920 
0.940 •:• 0.990 
0.910 
1.000 
0.730 
O.MO 
0.750 
1.000 
0.920 

::: 
0.9!10 
1.800 
0.860 
O.MO 
0.550 
0.830 
O.MO 
0.790 

::;:: 
0.920 
0.920 
0.560 
o.ao 
0..340 
0.431 
0.910 
0.730 

.... .... 
\0 
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.· Z&t =;:·r:rr 7'0 0.377 
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1.571 
13S6 
JSll 
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and swamps (0.56) of any basin in the data set, and this, together with its 

relatively small size and low elevation, may lead to the variability. 

Peters River is somewhat larger (177 km21t but is still relatively small and 

relatively low, compared to the other basins in region Y. It does have a large 

fraction of area controlled by lakes and swamps, and its apparent variability may 

be at least partly due to the fact that during its relatively short period of record 

it experienced an unusually large flood. 

Multiple Regression Analysis 

With these preliminary observations, a multiple regression analysis was then 

carried out 

• to identify the most important explanatory variables, assuming one 

region; 

• to identify oumers; 

• to assess whether simple geographic subdivisions based on Y -Z 

regions would identify additional important independent variables. 

The results were not especially go00, although the division into Y and Z regions 

led to improved equations as expected. Table 4.10 shows the regression 
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Lev Multiple Regression Results 

Regression Coefficients 

l\;~~l~!~~~. ;j~;i~lft, :~;~~~ ~~\~~ ·· 
N ·:· .. ·., ·:·:: .: .. ·.- .. · ... ,. : · :,::-:-;'.40 ·:\::> ... ~: ·,.: .. _.,.: '.:·,«» .: .;::,:_:;,;,,·,:-.,,.,20_.,,,·· .. ·::=.:::':::::u>r:;20 :.::?:':::·:.,20 :::::.,:,::,:.::,.:Ja ·. ::··.? ·20 .. ·. 19 

Coascant 0.328 -1.434 no 0.136 0.278 -1.324 -1.523 -1.376 -1.673 
DN1000 -0.015 outliers 
Dist-N 
Dist-SW 
El-DiYde 
El-Oauge -O.m7 
El-Centrd 
FACLS -0.143 -0.459 
Fr-Barrn 
LMC-sp -0.001 sign? 
Slope 

r2 
r2adj 

Std.Er. 

Outliers 

0.39 0.40 
· · ·. ·o.36 os.s . •,. " . ..... . 

0.04 0.18 
Ins 

None 

-0.00011 Note different 
lgn from Y to Z 

0.107 -0.303 -0.053 
-0.120 

0.306 0.234 0.198 0.121 0.189 0.062 

0.36 0.59 0.3S 0.2.5 0.41 0.41 
0.32 :'::::,::···.:~,·::: .. <:9 ... 49 

0.03 0.03 0.16 0.13 0.16 0.16 
Ins Ins Ins 

Note: r2 
SwBV lower 
Peters wo Peters 

outliers 

OLS- Ordinary Leut Squares 
RLS - Rewe ... ted Least Squares 
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Constant 0.259 -2.663 -2.450 -2.569 -2.224 -2.<Jl2 
DA 0.095 0.111 0.078 0.073 0.127 
Dist-N 0.194 0.138 0.185 0.110 0.270 
Dist-SW -0.144 
El-DMie 0.00014 
EI-Gauge -O.Im26 -0.047 -0.048 -0.050 -O.a39 
EI-Centrd -0.126 
FACLS -0.€84 -0.108 -0.110 
Fr-Barm 
LMC-sp 
Slope 

rz 
r2 adj 

0.60 
0.52 

0.235 0.261 

0.73 :·:·.:··.:: ·'"().89 
........ .. ..... ... 

0.199 

0.74 

0.192 -0.274 

0.76 0.79 
0.72 

123 

RLS 

. 17 
-1.474 

0.094 
0.233 

-0.3)9 

-0.130 

0.226 

0.94 

Std.Er. 0.03 0.13 0.07 0.13 0.11 0.12 0.06 

Outliers 

IDs Ins Ins Ins Ins 

a..tl Bar 
CbyOUl 
Seal (;me 

OLS- OrdiDary Least Squares 
RLS - Rewef&hted Least Squares 

BdN 
SmLm 
SICv 
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coefficients, coefficients of determination and standard errors for the best results. 

Because distance and topographic variables had the potential to be important, 

which may be linearly related, both the untran~fonned and logarithmically 

transformed data sets were used. 

For the island as a whole, no equation could be obtained that explained even half 

of the variance. This result suggests that Lev could be better explained within 

groupings according to flood cause. The equations were slightly better with the 

untransformed data set, only two variables being required to gi\·e approximately 

the same r as three variables for the log-transformed set. The most ~mportant 

variables were DA and FACI.S for the untransformed data set, and EIG-Ln, 

FACLS-Ln and LMC-Ln for the log-transformed set. LMC-Ln, the main channel 

length per unit area, is highly negatively correlated to DA-Ln (0.95) as Table 4.2 

showed, so the additional explanatory variable in the log case relates to the 

elevation of the gauge. 

The untransformed data set is slightly better for the case of the Y region as well. 

The single most important variable is LMC-sp, but only about a third of the 

variance is explained. Adding three more variables (FACLS, Fr-Barm, and El­

Divide) still only explains about half the variance. Further clustering within the 

Y region, probably separating regions that are known to be dominated by 
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snowmelt floods from those which experience mixed events (or a different cluste-

ring other than Y /Z) might help. 

Much better results were obtained for the Z region, possibly because the region 

tends to be subjected to the same type of storm input, so the variability can then 

be explained primarily on the basis of basin characteristics. 

The log-transformed data set led to more significant equations. but the direction 

of the some of the coefficients are counterintuitive. The most important of these 

is drainage area. The best equations indicate that variability increases with 

drainage area, whereas it would usually be expected to decreclSe with drainage 

area. The correlation between DA-Ln and Lcv-Ln is low; the partial correlation 

when there are no variables in the equation is only 0.17. (The scatter plot in 

Figure 4.3 shows the poor relationship). The partial correlation remains low 

when Dst-N-Ln, ElC-Ln and FACLS-Ln are the independent variables. As soon 

as Slp-Ln is added, the partial correlation coefficient rises to 0.49, and when 

DA-Ln is then included, the overall r rises from 0.66 without DA-Ln to 0. 74 

with DA-Ln. It is not clear how these variables are interacting hydrologically. 

Robust regression does not identify the largest drainage basin as an outlier. 



126 

Similarly the best regression equations for the Z region shows that variability 

increases with distance north, whereas we would expect a decrease due to the fact 

that snowmelt events (which produce less year to year variability) would be more 

likely to predominate in more northerly basins. The coefficients of Slope, El­

Gauge and FACLS (or Dist-Sw where Dist-Sw replaces FACLS) are in the 

expected directions, however. 

It is unlikely that predictive equations would be used for Lev; the benefit of the 

MR analysis is to assist in using growth curves for ungauged basins, and in 

developing regional boundaries for flood frequency analysis. 

4.4.2 FD-10 

Most high flow analyses focus on extreme events, but for design of hydroelectric 

projects and water supply systems it can be useful to know what basin 

characteristics lead to generally high but not extreme flows, e.g., of the order of 

two to three times the average flow. For this study FD-10 was selected, the flow 

which is exceeded 10 percent of the time. Like Lev, it was nondimensionalized, 

in this case by dividing by the mean annual flow. (Dimensional values lead to 

clusters of basins based on size and wetness, and it is more difficult to explore 

the relationships to basin characteristics.) 
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Qualitative Assessment 

The scatter plots in Figure 4.6 and the correlation matrix showed that FD-10 is 

not highly correlated with any basin characteristics. The highest correlation 

coefficient was 0.55, between FD10-Ln and Dst-N-Ln. There is no correlation 

between FD-1 0 and Lev or other flood variables; in fact the highest correlatiu11s 

were with other flow duration variables, and Sv-Low (median low flow per unit 

area). (The correlations must be treated cautiously because of the possible effects 

of common variables for nondimensionalizing.) 

An examination of the data set· sorted by FD-10 (Table 4.11) shows that of the 

basins which have- the lowest flows at the lOth percentile (the least flashy, in this 

definition), 9 are in WSC hydrologic region Z. Of the basins with relatively high 

FD-1 0' s, only 2 are in region Z. This observation suggests the possibility of some 

geographic clustering, perhaps based on the mechanism for generating high flows, 

similar to that for Lev. If the annual cycle of a basin tended to be dominated by 

snowmelt runoff, it might have many days with relatively high flows, leading to 

a high FD-10. The peaks within those long events might be fairly modest, 

however, and there might be less year-to-year variability. Since the Z region is 

somewhat warmer with more mixed events than the Y region, this division is 

quite plausible, especially since the two Z basins which cluster with the Y's have 

the highest elevations, and therefore could be expected to have more precipitation 
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Data Set Sorted By FD-10 
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2.441 
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DA 
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-~ 
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60 
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168 
122 
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0.55 
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0.61 
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0.62 
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0.14 
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0.59 
0.59 
0.22 
1.01 
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1.46 
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0.73 

DR DENS 

i~ 
1.090 
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0.126 
0.354 
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0.130 
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0.160 
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1.000 
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0.810 
1.000 
1.000 
1.000 
o.sso 
1.000 
u ... 
0.9SO 
0.910 
0.7.50 
0.910 
0.920 
1.000 
0.920 
0.970 
0.990 

X::: 
1.000 
0.730 
O.flO 
0.860 
0.430 
0.790 
0.920 
1.000 
V.l'QV 
1.000 
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0.600 
0.560 
0.7.50 
0.7l0 
0.970 
0.990 
1.000 
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in the form of snow than the other basins in the Z region. The exception at the 

low end is Ste. Genevieve basin; it may have an unusually low FD-10 for a Y 

basin because of its low elevation, large degree of control by lalccs and swamps 

(100 percent) and the moderating effect on temperature of its proximity to the 

sea. 

Multiple Re&ression 

A multiple regression analysis was carried out to explore these possibilities. The 

results, presented in Table 4.12, were not especially encouraging, so no further 

clustering or analyses was attempted. Generally the observations above were 

confirmed, but it is a bit surprising that none of the elevation variables were 

significant. 

4.4.3 Sp-Fid and Qavgfld 

The most important high flow measure for design of structures, and the one to 

which most attention has been given in regional hydrological studies, is the peak 

flow. Peak flow is virtually always dominated by drainage area - the larger the 

area contributing to the flood, the larger the flood flow. 

In order to gain an understanding of the other, less obvious, factors which might 

suggest clustering of basins based on characteristics other than simply size, the 



Table 4.12 

FD -10: Selected Multiple Regression Results 

Constant 
Drd_Ln 
Dist-N 
FrLSw_LD 
Dist-SW 
FACLS 
S~p 

rl 
r1 adj 

Std.Er. 

Outliers 

0.268 
0.051 
0.093 

-0.044 

0.45 
0.41 

0.07 

St.G 
lsleauxM 
SmLm 

OLS­
RLS-

0.096 -0.078 
o.oss 0.067 
0.132 0.099 

-0.028 -0.785 
o.oss 

0.68 0.62 
0.6S 0.51 

o.os 0.06 

Ordinary Least Squares 
Reweighted Least Squares 
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0.816 

0.150 
-0.137 

0.37 
0.29 

0.07 
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relationships among the specific flood (average maximum annual daily flow per 

unit area) and the various basin characteristics were examined. 

QuaUtatlve Assessment 

The scatter plots in Figures 4.1 to 4.3 and the correlation matrix show that Sp-Fld 

has the strongest relationships with slope and effective precipitation. Other 

weaker, but possibly important relationships, are with drainage area, drainage 

density, specific length of main channel, and fraction of lakes and swamps. All 

relationships tend to be nonlinear. The relationship with drainage area is nega.tive, 

because smaller basins tend to have higher peak flows per unit area than larger 

basins, although in absolute terms of course the larger basins will have higher 

peaks. The correlation coefficients must be treated with caution where drainage 

area is a common term because of the possibility of spurious correlation, but the 

relationships are in general as expected. The principal components analysis does 

not provide much further information. 

The data set was also sorted by specific flOO<l as shown in Table 4.13 in order to 

assess in a qualitative way the differences between the basins with the highest unit 

peaks and the ones with the lowest. Not surprisingly, since the Y region tends to 

have lower runoff in general than the Z region, the ten basins with the lowest unit 

flood are all Y's, with the exception of the two largest Z basins, which have 



Table4.13 

Data Set Sorted By Specific Flood 

YPI 
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205 0.16 

213 183 
290 110 
533 244 
168 170 
152 122 
191 168 
457 274 
4S7 335 
442 335 

0.61 U89 2..06 O.JZ6 1.000 
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1.10 U20 1.53 0.1110 0.920 
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DA's of 1170 and 2640 km2• Conversely, the ten basins with the hi&hest unit 

flood flows are all in region Z, with the exception of one Y basin on the Great 

Northern Peninsula, Northeast Brook near Roddickton (NeRk). It is not clear 

what makes it respond differently; it is similar in size, mean annual runoff, 

elevation, slope, fraction of lakes and !''J on to some other Y basins (e.g., Peters 

River) yet has a much higher unit flood runoff. 

The other Great Northern Peninsula gauges do tend to have relatively high unit 

flood flows, although not as high as NeRk, so the differ~nce may relate at least 

in part to a greater amount of snow. As always, there is an exception, in this case 

Ste. Genevieve (SteG). Although it too is on the Great Northern Peninsula, not 

far from NeRk, the basin is fairly low, possibly reducing snow accumulation. It 

is also dominated by a very large lake which could be expected to attenuate flood 

flows. 

Multiple Rearesslon Analysis: Sp-Fld 

A brief multiple regression analysis was carried out considering the island as one 

region using SpFld-Ln as the dependent variable, in order to explore some 

possible relationships not dominated by drainage area, before moving to a 

consideration of QavgFld. 
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Table 4.14 summarizes the coefficients resulting from some of the better 

equations. DA and Eff-P alone exph'\in about two-thirds to three-quarters of the 

variance in unit flood flows. Although slope has the highest correlation of any 

variable with Sp-Fld, there is no other variable which can be combined with it to 

&ive a stronacr correlation than DA and Eff-P. It is possible that the relationship 

is spurious, aiven that Sp-Fld is equal to Qavafld/DA. At the same time the 

signs as1JOCiated with the coefficients are all hydrologically reasonable, and it is 

certainly accepted that, all other factors being equal, small basins will have higher 

peaks than large basins. SteG and NeRk, not surprisingly given the discussion 

above, are identified as outliers. 

Adding FACLS-Ln improves the equation, with an adjusted r of 0.86 after 

r~moval of outliers. Adding slope and drainage density gives the best S variable 

equation (with Eff-P), but slope is replaced by Dist-SW and Dist-N to give the 

best 6 variable equation. As noted in Section 4.3.1, all coefficients are 

significant, with p less than 0.05. No variables were accepted in this study if the 

associated coefficients were not significant. 

Without Eff-P, El-Cntrd and Fr-Forst are required. F'r-Forst is closely related 00' 

Fr-Barm, which was an important explanatory variable along with El-Cntrd in the 



Table 4.14 

Sp-Fld: Selected Multiple Regression Results 

Constant 
DA 
DrDem 
Dist-SW 
Dist-N 
El-Ccntrd 
FACLS 
Fr-Forst 
Eff-P 
Slooe 

rz 
r2 adj 

Std.Er. 

Outliers 

Re_tressbn Coeff"l:ients 

-o.29s -0.339 -0.361 -o.ns -oso 
-0.191 -0.185 -0.197 -0.194 -0.111 

0.233 

-0.746 -0.(93 -0.631 

1.190 1.230 0.9% 1.112 0.72S 
0.183 

0.69 0.77 0.77 0.87 0.81 
0.67 0.15 0.76 0.86 0.78 

0.34 0.29 0.30 0.22 
lns Ins 

SteO 
SteG NeRk 
NeRJc SlCv 

OLS - OrdiDary Least Squares 
RLS Rewelgbted Least Squares 
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-2.330 -1.885 
-0.182 -0.144 

0.30; 0.402 
0.178 
0.224 

0.2~ 
-0.577 -0.721 

-0.132 
1.489 

0.198 

0.87 0.82 
0.84 0.78 

0.28 



138 

analysis of Eff-P. The resulting 6 variable equation without Eff-P is otherwise 

very similar to the S variable equation with Eff-P. 

The results show tha~ both the expected basin characteristics (especially DA and 

DrDens) and topographic variables are important in explaining flood runoff. The 

topographic characteristics can be important even when Eff-P is explicitly 

included in the equation. They may be important for their physiographic effe(. ~ 

e.g. faster/slower runoff, or they may still be representing a hydrologic input 

specific to storms, in addition to the average annual effective precipitation. 

With this information from the specific flood analysis, a multiple regression 

analysis was carried out using the dimensional average maximum daily flow as 

the dependent variable. 

Multiple Re&ression: Qav&Fld 

The multiple regression analysis using QavgFld generally confirmed the 

importance of the explanatory variables obtained in the nondimensional case of 

Lev, and in the unit runoff case of Sp-Fld. The analysis started with the one­

region case, and because there was some suggestion of geographical differences, 

a p:eliminary subdivision was made at the Y-Z boundary. Logarithmically 
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transformed variables were used throughout the analysis because the scatter plots 

(and previous experience) suggested that the relationships are nonlinear. 

Table 4.15 presents selected results of the multiple regression, starting with the 

island·wide results. As expected from hydrological principles as well as from the 

correlation matrix, drainage area alone explains over 80 percent of the variance 

in flood flows from one basin to another. Four outliers w~re identified. TheDA 

coefficient ranging from 0. 75 to 0. 82 is not surprising given the results in Table 

4.14; since 

Qavgfld = DA1
·
0 (Sp-fld), and 

Sp-fld = f(DA).()·2 , then 

Qavgfld = f(DA)0
·1• 

The next most important variable, again as expected from the analysis of Lev and 

Sp-Fld, was the area controlled by lakes and swamps. The r increased to over 

90 percent in this case (slightly better if the two outliers were excluded). In both 

these one and two variable cases, SteG is again an outlier, probably because of 

the apparently large degree of control provided by a large Jake not far upstream 

of the gauge. Grandy has a very low FACLS. There is no immediately apparent 

physical explanation for the other outliers. 
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Table 4.1S 

OavgFid: Selected Multiple Regression Results 

a) All Island 
R . Coeffi. CifCSSIOR ICients 

OLS RLS OLS RLS OLS RLS OLS RLS 

Lns Lns Lns Lns Lns Lns Lns Lns 
Iva. 1 var 2var 2var 2var 2var ~vars 3vars 

N 40 36 40 38 40 39 40 37 
Constant 0.168 0.119 -O.Cl59 0.002 -0.362 -0.340 -0.432 -0.432 
DA 0.747 0.764 0.753 0.731 0.813 0.814 0.807 0.820 
FACLS -1.161 -1.481 -0.783 -0.705 
Eff-P 1.297 1.247 1.095 1.002 

rz 0.837 0.913 0.90 0.91 0.94 0.95 0.96 0.97 
r1 adj 

Std.Er. 0.48> O.Jro 0.39 0.38 0.31 0.28 0.24 0.20 

Outliers ~teO ~wBV ~leG SteG 
~diB ~Ids ndB 
ndB SmLP 

(i_rdy 

b) Additional Variables 

N=40 

Additional Variables 
with without witb without with 

II ofVars 4 4 s s 7 
.(aU Ins_) 
Constant -1.266 -1.024 -1.427 -1.625 -0.198 
DA o.sas 0.1111 0.825 0.765 0.797 
Eff-P 1.476 1.413 1.259 
FACLS -0.750 -1.014 -0.730 -0.913 0.695 
Dist-SW 0.181 0.205 0.158 
DrDem 0.177 0.333 0.247 
Dist-N 0.210 
Fr-Barm 0.0&5 0.061 0.047 
El-Cntrd 0.264 0.341 
Slp1085 

r2 o.rn 0.95 o.rn 0.96 0.98 
,a adj 0.96 0.95 O.fJ'l 0.96 O.fJ'l 

Std.Er. 0.22 0.27 0.21 0.24 0.19 



Table 4.15 Continued 

#ofVars 

Constant 
DA 
Fr-LSw 
FACLS 
Eff-P 
Dist-N 
Fr-Forst 
Dr Dens 
El-Cntrd 

r2 
r2 adj 

Std Er 

c) Region Y and Z Regression Coeffacienas 
N-= 20 

Region Y RegionZ 
~ithout Err-P :s With Eff-P with witb 

Eff-P Eff-P 
2 3 4 2 3 4 

-2.600 -2.i10 -3.435 0.127 -0.320 -1.362 
0.97:1 0.8~ 0.858 0.739 0.778 0.784 

-0.897 -UXl3 -0.664 
-1.064 -0.814 -0.637 

1.(0 1.261 
0.214 

-0.499 
0.316 
0.341 

0.94 0.96 0.98 0.95 0.98 0.99 
0.93 0.96 0.90 0.94 0.98 0.98 

0.28 0.22 0.16 0.30 0.19 0.16 

OLS- Ordinary Least Squares 
RLS - Reweigh ted Least Squares 

with without 
Eff-P Eff-P 

6 s 

-1.858 -1.713 
0.803 0.742 

-0.6>7 -0.781 
UX17 
0.285 

-0.15.> -0.283 
0.285 0.459 

0.286 

0.99 0.98 
0.99 0.97 

0.12 0.21 
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If Eff-P is allowed as a basin characteristic, it becomes the third explanatory 

variable, bringing the r up to 0.96, again slightly better if the one outlier, Ste. 

Genevieve, is included. Additional variables (up to 7 meet the statistical criteria) 

in approximate order of importance are Dist-SW, Dr-Dens, Dist-N and Fr-Barrn 

(all Ins). As the variables related to Eff-P enter, the tolerance (reflecting 

multicollinearity) on Eff-P decreases, although it is still acceptable. With three 

variables, for example, the tolerance is 0.85; when Dist-SW is included as a 

fourth independent variable, the tolerance decreases to 0.43 (still greater than 0.1, 

the cutoff point for acceptability). 

The distance variables, and possibly Fr-Barm, are probably representing 

hydrologic input in some way, in addition to the effect of Eff-P. Dist-SW might 

represent position along the storm track, for example, and Dist-N might indicate 

the importance of the snowmelt contribution. If the snowmelt contribution is 

important, however, one would expect one of the elevation variables to come into 

play. The distance variable would not otherwise be expected to relate to flood 

runoff, since they are not true physiographic characteristics. 

If Eff-P is not allowed as a basin characteristic, a five variable equation gives 

results similar to til~ three variable equation with Eff-P. Fr-Barrn and EI-Cntrd 
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appear to be the proxy variables for Eff-P; Dist-SW is not required. Dist-N is not 

used. 

The plots of the residuals did not suggest any particular clustering, except 

possibly a Y -Z division. The residuals do not group according to the hydrological 

regions presented in the provincial regional flood frequency analysis (Gov't of 

Nfld, 1990). 

Equations developed for the y and z subregions improved the r' s and reduced 

the standard error. For a four variable case, for example, the best equations for 

the Y and Z regions have adjusted r2s of 0.98 respectively, and standard errors 

(in the log domain) of 0.16. The best four variable equation for the island has an 

adjusted r of 0.96 and a standard error of 0.22. The results, presented in Table 

4.15(c), also suggest some differences in the two regions, the most important 

being the relative importance of Eff-P. 

For both regions, DA is of course the most important explanatory variable; in the 

Y region the second most important is Fr-l.Sw, in the Z region it is the area 

controlled by lakes and swamps, both similarly suggesting attenuation due to the 

effects of lakes and swamps. An important point to note with the Y region, 
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however, is that Eff-P is not one of the better explanatory variables, whereas it 

is the third most important variable in the Z region. 

If only one more variable (for a total of three) is allowed in the equation for the 

Y region, it is Fr-Forst, but if two more are allowed in they are El-Cntrd and Or­

Dens. These results are similar to the four variable case for the island as a whole 

when Eff-P is excluded. Fr-Barm is more significant for the island than Fr-Forst, 

but the two are essentially representing the same phenomenon of exposure (or 

protectedness) from the storm track, as well as possibly some faster runoff (or 

attenuation in the forested case). 

For the Z region, Eff-P and Dist-N are most important, with Dr-Dens and Fr­

Forst following, as they do in theY region. When Eff.p is excluded, Dist-N no 

longer contributes significantly, and EI-Cntrd appears to work with Fr-Forst to 

represent geographical location. 

The idea that Fr-Forst/Fr-Bann are geographical surrogates rather than 

physiographic parameters could be important when hypotheses are being tested 

about the effects of forestry. Generalizations cannot be made from one basin to 

another unless they are similarly situated with respect to incoming weather 

systems. 
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The only surprises in this analysis were the importance of the geographic 

variables even when Eff-P is included as an independent variable, and the lack 

of importance of slope (which had been important in the Lev analysis). 

4.5 ww Flows: FD-90, Sp-Low, Qlow 

In general, attempts to relate basin characteristics to low flows have been less successful 

than similar attempts for high flows. The explanation usually given is that the factors 

controlling low flows are difficult to mea'Sure or to index. In the provincial low flow 

frequency analysis for the island of Newfoundland (Gov't of Nfld, 1991), the only 

physiographic characteristic which could be consistently related to low flows was 

drainage area, with the fraction of forest being important in one region. 

It is possible that fraction of forest is acting as a surrogate for some soil or geological 

characteristic. This is plausible, since presumably forests grow in areas with more, or 

at least different, soil than regions without forests. The results of the present study for 

other flow variables sugg:~st that the fraction of forest may also be acting as a surrogate 

for hydrologic input - forests seem to be more likely to develop in areas which are 

sheltered from major weather systems. The two underlying characteristics, one 

physiographic, the other hydrologic, are not necessarily unrelated; the interactions of 

weather and soils are complex, and it is plausible that soil is more likely to accumulate 

to a depth to support forests in a sheltered area. 
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Compared to other parts of the world where low flow studies have been carried out, the 

island of Newfoundland should be more amenable to analysis, because there is so little 

groundwater storage. In other areas with deep soils and aquifers, the difference in 

subsurface characteristics from one basin to another may cause problems in low flow 

analysis. The average depth of soil in Newfoundland is less than half a metre, so superfi-

cial characteristics, such as area of lakes and swamps, should be relatively more 

important. In addition, since there is a close and direct link between surface and 

groundwater, measures of hydrologic input controlling the timing of flows should also 

be important. If a measure such as depth of snow on the ground in late winter were 

available, for example, it might tum out to be helpful. Since it is not, one must provide 

surrogates such as distance north or el~vation. 

As with the analyses of the other flow variables, the investigation started with an 

examination of the relationships among the low flow vari:!bles themselves, and a 

qualitative assessment of the sorted data file. It then proceeded to a multiple regression 

analysis to further investigate the interactions among the variables. 

4.5.1 Qualitative Assessment: Relationships among FD-90, 
SP-Low and Qlow and Basin Characteristics 

Sp-Low and Qlow are the same flow measure; Sp-Low is simply the median 

daily minimum flow per unit area, obtained from the annual series. FD-90 is the 
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flow which is exceeded 90 percent of the time, nondimensionalized by dividing 

by the average flow. Since the relationships of low flows to Qavg/DA are not 

strong, it can be compared more or less directly with Sp-Low. Fiaure 4.14 shows 

a plot of FD-90 and Sp-Low. On the average the flow will be lower than FD-90 

about 36 days per year, whereas it will be lower than Sp-Low only about once 

every other year. 

In the case of the low flows, it appears that the same factors leading to frequent 

low flows, as represented by low FD-90, are the same as those causing it to have 

the lowest minimum flows as well. 

The scatter plots and the correlation matrix showed that none of the three are 

correlated with any basin characteristics except Qlow, which is highly correlated 

with dr-.Jnage area. Because of the relationship of other variables to DA, it is also 

correlated to LMC-Sp, Shape, and Slp-1085. The scatter plots and correlation 

matrix also suggests that the relationships, even if weak, tend to be nonlinear, so 

the transformed data set was used throughout the low flow analysis. 

Table 4.16 shows the data set sorted by FD-90; because of the relationship 

between the two it is similar when sorted by Sp-Low. The Y -z split suggested in 

some of the other sorted tables does not show up here directly. The basins with 
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Data Set Sorted by Specific Low Flow 
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the lowest low flows in general seem to be small, without much control by lakes 

and swamps, but there are several anomalies, especially at the low end. 

cat Arm, for example, is a large basin with 100 percent of its area controlled by 

lakes and swamps, but it has very low flows. WSC staff report that gauging at 

low flows was difficult at that location, so there may be a problem with the data. 

Also the high elevation of the basin may mean that spring runoff is later than in 

other basins, resulting in very low flows in the late winter. Salmonier River, on 

the boot of the Burin Peninsula, is of similar size to other basins on the Avalon 

and Burin peninsulas, and also has a high degree of control by lakes and swamps, 

but it too has surprisingly low flows (although the Eff-P is unusually low, as 

discussed in Section 4.3.1). Two basins in the YR region, Ragged Harbour 

(RgdH) and Indian Bay Brook (lndB), show marked differences. They are very 

similar on most of the measures which would be expected to control low flows. 

They both have very low Eff-P, a large degree of control by lakes and swamps 

(96 and 97 percent), similar drainage areas, and similar elevations. Yet RgdH has 

the third lowest specific low flow, and IndB has the third highest (of 40). 

In order to examine the interactions of geography, topography and basin 

characteristics, a multiple regression analysis was carried out using the three low 

flow measures as the dependent variables. 
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4.5.2 Low Flow Multiple Regression Analysis 

A summary of selected results from the multiple regression analysis is presented 

in T~le 4.17. Although the analysis was by no means exhaustive, it does show 

that the same variables, or variables apparently representing the same phenometla, 

tend to recur for all three flow measures, and for the all-island and Y-Z 

subregions. 

Of the basin characteristics, DA and FACLS are always important, DA 

particularly so as expected when the dependent variable is Qlow. The single 

exception is the equation for FD-90 for Subregion Y. DAis not significant; Dr­

Dens may be substituting to some extent. Similarly, Fr-Lsw is more important 

than FACLS in that equation. (A similar result was found for high flows.) 

The other major result is the importance of the distance (geographic) variables. 

Dist-N or Dist-SW, and often both of them, are always important explanatory 

variables, even when the Y-Z split, which is basically N-S, has been made. Dist­

N may indicate the likelihood of winter precipitation being held as snow, l~'.H"g 

to lower low flows at the end of the winter. Dist-SW may indicate a general wet­

dry trend; in drought periods, it is reasonabl.e to assume that basins closer to the 

direction of incoming weather systems are likely to have higher low flows than 

basins that are more remote. 



Table4.17 

Low Flows: Selected Multiple Regression Results 
a)FD-90 
Reareulon eoerrc~eats 

O.Cf1llon RepoaY RcplnZ 

Allwn ua ua ua 
•Ia 

N 40 20 20 
3wn ..... 3'VIrl 

CbDIUIDl -1.156 .. .290 -t.IM 
DA 0.130 0.106 
Dilt-N -0.24-4 -0.664 -0.449 
FAC.S 0.468 
Dlat-SW -0.363 0.219 Noteswn 
Fr-l.Sw 0.<404 
Dr-Dc:nl -0.2.54 

r2 0.37 0.64 0.60 
r21dj 0.32 0.54 0.53 

Sld.Er. 0.33 0.31 0.23 

b)Spl..ow 

OeeReaion 
ReJioD Y 

(Ill Ina) OLS ~ without 
wltbout Elt-P with Elf-P El'f-P 

#ofVJn .. 4 .. .. 5 3 

CbDillnt -s.cm -3.918 -0.599 -4.127 -4.418 -4.816 
DA 0.179 0.165 0.234 0.228 0.331 0.230 
Dllt-SW -0.284 -0.486 -0.273 -0.256 -o.cs 
FAQ..S 0.734 0.947 0.811 0.658 0.869 1.57.5 
Fr-Birm 0.076 0.113 
Dtlt-N -0.252 -0.278 -0.!)1 
Fr-Font 
Fr-LSw 
Shipe 
Slp108.5 0.290 
EI-Dvkle 
Llllc-Sp 
Eft'- P 0.870 

r2 0..51 0.77 0.53 0.52 0.58 0.6.5 
r21dj 0.46 0,47 0.46 0..52 0.59 

SCd.Et. ~.45 0.32 0.44 0.44 0.42 U2 
Out lim ~lA 

DdB 
SmLm 
CbC 

152 

Repon Z 

4 

-7.069 
0.107 

0.690 

-o:m 

0.816 

0.78 
0.72 

0.30 
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Table 4.17 Continued 

c)Qlow-LD 

.. 'Onerelioo RelioaY RelionZ 
All vars 
asL• 

Svan 3ws 4vus 

CoDSIIDl -5.716 -4.816 -7.~9 
DA 1.168 l.al 1.107 
Dist-SW -om -0.428 
Dist-N -0317 -0.732 
El-Dvile 0.373 0.816 
FACLS 0.865 1.576 0.6~ 

r2 0.95 0.94 0.98 
rladj 0.95 0.93 0.97 

Std.Er. 0.41 0.42 0.30 

OLS- Ordinary Least Squares 
RLS- Rewefghted Least Squares 
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Unlike the case for the high flows, Eff-P is not required to obtain good low flow 

relationships. For the one-region four-variable case with Sp-Low as the dependent 

variable, if Eff-P is used instead of Dist-SW, the results are only marginally 

better than if Dist-SW is used. The coefficients for the other three variables are 

very similar in magnitude, suggesting that Dist-SW and Eff-P are acting similarly. 

A statistically significant equation for the one-region case with Sp-Low as 

dependent variable can 11ave as many as 7 independent variables (not shown in the 

table). The fifth variable is slope; it is difficult to rationalize the importance of 

slope hydrologically, particularly because the positive sign indicates an increase 

in low flow with an increase in slope. The other two variables are LMC-sp and 

EI-Gauge (to reach the total of seven, not shown in the table). A long main 

channel length per unit area is usually associated with small basins, and could 

suggest flashiness; one would expect it to be related to floods rather than low 

flows. 

EI-Gauge has a positive sign, as does El-Divide in the cases in which it enters 

(Qlow, Table 4-17c). It is not clear how the elevation of the gauge or the divide 

would affect low flows. Intuitively one would expect that a higher elevation 

would result in more precipitation stored as snowmelt, and consequently lower, 

rather than higher low flows. In any event, if that were true, then one would 
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expect the elevation of the centroid to be more important than the &auge or the 

divide, since it should be most representative of the basin elevation. El-Cnt:-1, 

however, is not significant in any equation. 

The equation for Sp-Low in the Z region is statistically significant with up to 

eight variables, with an improvement in adjusted r from 0.79 to 0.86, but it 

makes no sense to use so many independent variables. 

4.6 Availability: FD Variables 

Hydrotechnical engineers are frequently interested in the availability of water on a day­

to-day basis for such uses as water supply and hydroelectric generation. In these types 

of applications, it is frequently economic to provide some storage, and so the very lowest 

flows are not of particular concern. Of more interest is the general so-called "flashiness" 

of the basin. Flashiness is a concept that presumably arose primarily in connection with 

flood flows; basins which run off faster than others are considered to be more flashy. 

More generally a flashy basin can be thought of as one with higher high flows and lower 

low flows. A flashy river, by this definition, would not have the required flow to satisfy 

a particular demand rate on as many days as a less flashy river. The less flashy river will 

thus have greater availability. 

The definition itself is not of particular concern here; of interest are 



156 

1) whether higher high flows and lower low flows go together; 

2) whether there is a suitable d~pendent variable or "flashiness index" to use 

to represent availability; 

3) what physiographic, topographic or geographic characteristics are 

associated with flashiness. 

This section discusses these three questions. 

4.6.1 Qualitative Assessment 

The flow duration variables give a good representation of the expected frequency 

of various flows, and thus are suitable for use in exploring the question of 

whether higher high flows and lower low flows tend to occur in the same basins. 

The scatter plots in Figure 4.6 show the relationship among the FD variables and 

some of the tasin variables to which they are related. FD-90 is related positively 

to the minimum flow variables, bnt FD-10 did not show a corresponding 

relationship with the flood flows. These differences are discussed in the relevant 

high and low flow sections above. For the purposes of analyzing availability, the 

three flow duration curve variables would seem to offer good prospects. 

The PCA with four components showed that FD-10 and FD-50 loaded most 

highly on the first component. Although FD-90 had a loading of over 0.5 on the 
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first component (rotated), its highest loading was on the fourth componentt with 

Sp-Low. With three components, all the flow duration variables as well as Sp­

Low loaded most highly on the first component. (As mentioned in Section 4.1, 

the PCA analysis was done using the untransformed data set.) 

These results suggests that the annual maximum flows may not be part of the 

same respon!ie as the more common range of high flows, the ones that occur 10 

percent of the time. These more common ones, however, do seem to associate 

with the general range of daily flows. Because the three quantiles of flow duration 

variables are related, the answer to the first question above is positive; higher 

high flows do tend to occur in the same basins that have lower low flows. 

The next question is what is the most suitable index to use for availability. 

Flashiness Index 

Several possibilities were considered in order to choose a suitable dependent 

variable representing flashiness. These included 

1) a canonical variable composed of a linear combination of the three FD 

variables; 

2) PCI from the three component analysis; 
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3) a •flashiness index• similar to a quartile skew measure obtained from the 

three FD variables as follows 

11 = FDlO - 2FD50 - FD90 

FDIO- FD90 

12 = FDlO- 2- FD90 

FD10- FD90 

Note that in 12, the middle term in the numerator is actually 2(Qavg/Qavg). In the 

first equation the equivalent middle terms 2(Qmedian/Qavg). 

4) Other measures such as FD10*FD50. Figure 4.16 shows how a low value 

(e.g., < 0.2) identifies a flashy basin, whereas a higher value (e.g., > 

0.4) identifies a non-flashy basin with greater availability. 

5) One of the FD variables selected to represent the others. 

The first two were rejected at this level of analysis, primarily because they are 

not especially meaningful and it is consequently more difficult to interpret results. 

The third and fourth are quite reasonable, but after a detailed comparison of the 

various flashiness measures for different basins, they did not offer any particular 

advanttge over #5. The FD-50 value was chosen because it correlates well with 

both the other two, and is very straightforward to calculate and apply. The alter­

native indices listed above may be useful at a later stage of the analysis, but as 

a representative measure of availability for the purpose of identifying important 
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basin characteristics, the FDSO value should be as suitable as any of the others, 

and it is the simplest. 

4.6.2 FD-50 

QuaUtatlve Assessment 

The data set sorted by FD-SO is presented in Table 4.18. A comparison of the 

characteristics of the basins with high availability and with low availability offers 

some indicatiuns of the variables which might be significant in a multiple 

regression analysis. The two basins with highest availability are two large basins 

on the south coast. Four others in the top ten are on the Burin or A val on 

peninsulas. Terra Nova and Gander Rivers (in the eastern part of the Y region) 

are also in this group; they are both large basins, and have a high degree of 

control by lakes and swamps. 

Ste. Genevieve is anomalous as usual; presumably the extremely high degree of 

control offered by the large lake just upstream of the gauge has a strong influence 

on its runoff pattern. 

The ten flashiest gauges tend to group geographically into the high basins on the 

southwest coast, Grandy, Isle aux Morts, and Highlands, and the basins on the 
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Data Set Sorted by FD-50 

vzs BASINS FD50 DA LMC SP EL GAUGE EL D1VDE EL CENrR SLP1085 DR DENS SHAPE FR LSW FAO.S 1m ~=· : 
0.364 

~ ~-"" : ~, ~3s ~~ ::: · ·~ ::=: ::= 0.406 0.13 1.84 
YD1 · a 0 .412 237 0.17 8 335 351 0.67 0.339 2.23 0.082 0.730 
YFt Cat 0.417 611 0.05 351 594 .549 0.73 0-'BZ 1.86 0.131 1.000 z.u · · H~a·· . 0.4.54 72 0.28 69 .533 24-4 2.19 1.150 1.72 0.050 0.430 
YPt ShlA 0.461 63.8 024 84 198 IS2 0.53 0.880 1.62 0.130 0.190 
YOf P1r1 0.469 177 024 23 213 137 8.45 0.800 1.93 0.160 0.970 
Zit laM:·. 0.413 205 0.16 8 457 335 0.84 o.no 2.09 0.134 0.600 
ZMI NEP· 0.485 3.63 0.72 122 191 168 2.42 1.038 1.24 0.225 1.000 
YD2 NeRk 0-'13 200 0.19 23 290 110 0.47 0.930 1.6.5 0.170 0.990 
I:l-' ::.'1.!" :~f. 

J6.7 ::. ~ 

~n ·~: 
I:ll -u.ti« &.43 --u.nv T.UUU zn SlltB ·.: 67.4 8 0.50 1.240 1.43 0.150 0..860 

ZA3 Led·· 0.535 139 0.18 8 457 274 1.46 1.460 1.67 0.130 0.730 
YN2 Lde 0-'43 469 0.12 328 488 4-42 022 1.370 2.1S 0.160 1.000 

. ZAt Ldl 0..561 343 0.19 8 472 137 0.68 1.040 2.4.5 0.100 0.830 
YR2 RJdH OS70 399 0.11 27 122 76 0.21 0.740 1.68 0.320 0.960 
ZGl smt.m 0-'83 11.5 021 2 137 91 0.34 1.550 1.62 0.120 0.920 

. ZG4 Rd 0..583 42.7 023 46 IS2 122 1.10 1.620 Ul 0.180 0.920 
ZHZ . CbC . 0-'97 43.3 0.39 53 152 168 059 1.110 1.66 0.099 0.920 
YCt Tor 0.602 624 0.08 8 488 309 1.01 0.75.5 1.4.5 0.167 0.990 m .:::.. ~.oue 

2r.~ ::~ ·~ ~ t~ 
-J.OT 

::~ :~ :::r~ ::;: 0.624 0.40 
YIU Lft8 0.63Z 410 0.12 137 655 351 0.59 0.621 2.32 0.161 1.000 vn .=, .. 0.644 640 0.09 1.5 541 274 0.35 1.120 1.11 1.142 0.7.50 

.ZNt 0.64.5 .53.3 027 114 213 183 0.61 1.089 2.06 0.126 1.000 zu ~ · 0.6otl 10.8 0.65 76 168 170 1.25 1.090 1.36 0.090 1.000 
ZHt 0.673 764 0.07 38 244 213 0.35 0.109 1.67 0.659 0.910 
ZN' . SIOr 0 .676 .53.6 0.28 35 168 168 0.62 1.130 1.37 0.130 1.000 n• Had• 0.679 529 0.09 198 .518 290 032 0.631 1.11 0.3.5.5 0.950 
YRl IDdB 0.619 .5.54 0.09 8 137 107 022 0.680 1.72 0.310 0.970 

~ ~!ci 
u.~ .NV U.a:> J:) 

~o; CIU 0~ &.00} -zuiJ V.JJ:J 0~ 
0.697 4444 0.03 23 168 0.14 0.452 1.CI8 0.172 0.910 

Z&2 0.722 89.6 0.30 IS 213 120 055 1.110 1.91 0.300 0.810 
YRI Md8 0.729 21.5 0.18 23 198 122 032 0.255 1.93 0.245 0.910 
YS1 TerN o.m 136.5 0.08 84 290 24-4 0.12 0.726 2.35 0.321 1.920 
ZG2 Tell · 0.748 166 0.16 8 229 213 1.35 1.350 1.84 0.130 0.920 
YAI SlcG t.749 306 0.13 12 107 81 023 0..540 1.48 0.354 1.000 
ZOl Gta 0.758 205 022 11 381 152 0 .60 0-'47 2.45 0.101 0.960 
ZFt BdN 0.1'94 ll'JO 0.06 8 274 IS2 029 0.61Z 2.15 1236 0.960 
ZBl Sml.P 0..808 2640 0.04 183 JOS 274 0.08 0~ 1.15 0.160 1.000 
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~ s.iiBV 
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. . 

Yet Tor '74 0.498 0.335 395 1284 

n: .;:.. m g:u~ ::;~ ~ .~~ 
YK2 LCwB ISO 0290 0.549 200 1168 Yll .:r, ... 34 0 .069 0.789 21S 1302 ·· ZNl 38 0.788 0.086 40 J8S3 .: zu ~ .... · '76 0.490 0.420 120 1230 ZHl 68 0.234 0.107 ISO 1024 ZMt . Slew . 28 o.soo 0.370 35 1760 
Ylt• fWI 218 0.292 0.353 23S 984 YRJ ladB 22S 0.001 0.689 245 718 

~~ ~ -- .6: U-311 

~~~ 
11(.1 1

Sl~ 0.068 20S 
ZKl 40 0.230 0..70 15 IS71 
YR1 MdiB 180 0.008 0.7·"7 220 763 
YSl TerN liS 0.136 0-!> ... 1 180 848 
ZG2 Tct. 33 O.<l8 0.382 60 1521 
YAt StcG 17 0.002 0.644 445 915 
ZGt ora·: 66 0.634 0.265 75 13S9 
ZFl BdN · 76 0.442 0.322 5S 1076 zet SmLP lOS 0.490 0.350 165 1026 
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leeward side of the Great Northern Peninsula, Northeast Brook and Beaver Brook 

(both near Roddickton), and Cat Arm. Little Codroy, also on the southwest coast, 

is just outside the group of ten flashiest, probably because it is a little lower. 

The annual hydrographs in the three leeward Great Northern Peninsula basins are 

very peaky. Winter precipitation is usually stored as snow, leading to dry periods 

in the late winter, long periods of high flows in the spring, occasionally followed 

by a second dry period in the summer. At Cat Arm the large degree of control 

by lakes and swamps and the large drainage area are not sufficient to compensate 

for this effect, especially given Cat Arm's high elevation (it is the highest of all 

study basins). Very large storage was provided in the hydroelectric project 

developed in this basin in order to improve the availability. 

Shoal Ann and Peters River are the last two rivers in this group. They are 

moderately small, in a generally dry, cold area. Neither has a large fraction of 

lakes and swamps. Although Peters River has a large degree of control by lakes 

and swamps, according to the measure of FACLS, the actual volume of storage 

available is relatively low. 

These observations suggest that regional differences due to climate will be 

important, probably represented by the elevation and distance variables. As well, 
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one or both of the variables relating to lakes and swamps (F ACLS or Fr-Lsw) 

will likely explain part of the variance among basins. 

Multiple Rep-esslon Analysis 

A multiple regression analysis was carried out, which basically confirmed most 

of the above observations. Because the scatter plots and correlation matrix had 

suggested that the relationships were nonlinear, all variables were logarithmically 

transformed. As with the other flow variables, because geography/climate does 

play a part in explaining the differences in basin response, a brief analysis of the 

two major WSC hydrologic regions, Y and Z, was also carried out. Th~ results 

are presented in Table 4.19 (a) to (c). 

For the all-island case, the four most important variables are DA, Dist-N, 

FACLS and El-Cntrd. The importance of Dist-N, which can be assumed to be a 

surrogate climate variable, can be clearly seen in the improvement of the r from 

0.44 to 0.66 (0.46 to 0. 73 in RLS equations). The relative importance of El­

Cntrd decreases substantially when Cat Arm is removed. 

The results are also presented for the dimensional case, Qm.50, as a check on the 

appropriateness of using the non-dimensional variables. The nonciimensional 

nther than the dimensional, flow duntion variables are of most interest for 
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Table4.19 

FD-SO: Summary of Selected Multiple Regression Results 

a) One RegioD 
R ' Coeffi:i ents eii'CSSI>D 

.. ··. · : 

.-_-__ -: <: '' :;._~ •.. ;)/':~~~-.-:. :;_' :·:::i.~ . ':':_.:·:::';;·'"/·.:·_,:·:: ::.:::::..:: ;· ·. Qfd-SO 

OLS RLS OLS RLS (m,/S) 
VarsaU 
Ins Lns LDS Lns Lns with Err-P 

3vars 3vars 4vars 4 'Y8J"S 5vars 
N 40 38 40 37 40 40 

Constant -0.172 -0.074 0.373 -0.009 -4.237 -3.002 
DA 0.058 o.oss 0.019 0.073 1.047 1.065 
FACLS 0.39} 0.323 0.312 0.442 0.347 
EI-Cntrd -0.117 -0.132 -0.099 -0.005 
Dist-N -0.148 0.148 -0.165 
Dist-SW -0.007 
Eff-P 1.~ 0.732 

r2 0.44 0.46 0.66 0.73 0.98 0.99 
r2 adj 0.98 0.99 

Std.Er. 0.16 0.14 0.13 0.11 0.19 0.13 
tlimnsl 

Outliers Ptrs SteG 
SwBV cat 

Rkv 
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Van an 
Ills 

N 

Constant 
DA 
FACLS 
El-Cntrd 
Dist-N 
Fr-Forst 
EJ-Oaugc 
Fr-LSw 
LMC-sp 
EI-Dvide 
Fr-Barrn 
Or-Dens 
Dist-SW 
Sho 

r2 
r2adj 

Std.Er. 

b) Hydrologic Region Y 

Repcssbn Coeffkients 
. . ·· :.:: .. . ·::: ·:·· ."·::.:.:' :,.:.-:: . .' ·::·.: ·:. 

OLS 
Samewrs 

as (a) 
.. vars 

20 

0.468 
0.110 
0.474 

-0.140 
-0.150 

0.640 
0.640 

0.110 

OLS 

Best 
2ws 

20 

-0.482 
0.078 

0.317 

0.699 
0.664 

0.120 

OLS 

Alt 
4\'111 

20 

0.492 

-0.189 
-0.(84 

0.423 

0.182 

0.83 
0.78 

0.10 

. . , . 

OLS 

AU sfa! 
9vars 

20 

0.826 
0.200 • 

-0.334 

0.274 
0.272 ~ 
0.173 if 

-0.002 if 
-0~7 
-0.107 
-!1.538 

0.95 
0.91 

0.06 
• -tol<.2 
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Table 4.19 Continued 

c) HydroloJic Region Z 

.. · : :. . : ·... · .-. RegressbD Coeffiaellll 
:· ·.: ·. · .. ···.· .. ··: :·=:···· . .·.: ·: ;,:.=.:·.,;:·:··.=.: .. · · . .... :·,.': .. •' .·. 

Van aU 
Ins 

N 

CoDSiaDt 
DA 
FACLS 
EJ-Cntrd 
Dist-N 
Fr-Forst 
El-Gauge 
Fr-LSw 
LMC-sp 

Std.Er. 

OLS 
Same van 

u(a) 
4vars 

20 

-0.022 
0.038 
0393 

-0.053 
-0.016 

0.750 
0.681 

0.110 

OLS 

Alt 
4vars 

20 

-0.100 
0.075 
0398 

-0.132 
0.064 

o:no 
0.710 

0.100 

OLS 

Svars 
20 

-0.106 
0.084 
0397 

-0.158 
0.075 
0.030 

0.81 
0.74 

0.10 

OLS 

6vars 
20 

-0.258 
0.18> 
0.414 

-0.163 
0.068 
0.044 

0.207 

0.85 
0.78 

0.09 

].67 
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prediction, however, because the results are most likely to be use in selecting a 

gauge to use as a pattern for daily flows at an ungauged site. MR equations are 

not likely to be used directly becau~'! point FD values are not often required. 

Hydrotechnical engineers (or fisheries biologists or others), when presented with 

a design problem related to the normal range of flows, at an ungauged site, will 

probably follow a procedure similar to the following. 

• Planimeter drainage area. 

o Estimate Eff-P, using equations and data from adjacent gauged 

sites. 

• Obtain basin characteristics for ungauged site shown in this present 

study to be important in explaining availability. 

• Examine the flow duration curve and daily flow records for gauged 

sites with similar characteristics. 

• Select a gauged basin for patterning the daily flows. 

• Construct a synthetic dimensional flow duration curve or daily 

flow series by prorating the flow duration curve or daily flow 

values from the gauged sites by DA and Eff-P. 
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Table 4-19a suggests that this approach is suitable. DA and Eff-P are the two 

most important variables in estimating Qro.50, explaining 98 percent of the 

variance. The two variable equation is of the form 

QPD-so is almost directly proportional to the average annual flow. When ~ther 

variables are added, the coefficients change, especiaiJ:, for Eff-P. Since Eff-P has 

been shown to be related to Dist-SW and El-Centrd, it is not surprising that the 

rr.wlts are different for these two variables in the dimensional and nondimensional 

cases. The coefficient for FACLS is very similar in magnitude in the two cases 

since it is unrelated to either DA or Eff-P. The additional MR analysis was 

therefore done using nondimensional FD variables. 

Some results assuming a regional division along the Y-Z boundary are pr· .sented 

in Table 4-19(b) and (c). The first column in each table shows the results using 

the same four variables as in the all-island case. The regional subdivision 

improves the unadjusted r in both regions, from 0.44 to 0.64 in they region, 

and to 0. 75 in the Z region. 
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More improvement can be obtained using other variables, especially in the Y 

region. There, Fr-Lsw is more important than FACLS (which matches the 

observations made using the sorted data set). One of the best four-variable 

equations does not use DA; rather it uses two elevation variables (El-Gauge and 

El-Dvide), Fr-Forst, and Fr-Lsw. The use of El-Dvide with a positive sign needs 

further examination before it can be accepted; as discussed in the low flow 

section above, one would ordinarily expect a high E!-Dvide to indicate a greater 

proportion of snow, and thus less availability, rather than more. 

As frequently happens in a MR analysis, apparently very good and statistically 

significant results can be obtained using many variables. (All coefficients have 

acceptable p values and tolerances.) An example here is the nine variable 

equation for theY region. With the exception of EI-Dvide, all the variables are 

hydrologically reasonable and the coefficients make sense. The low tolerances, 

while still accc:ptable, suggest that a more sensible equation could be developed 

selecting fewer variables. 

In the Z region, DA, Dist-N, and FACLS are always important, as they are in 

the alJ-jsland case. Slight improvements can be made with minor changes and by 

incorpvrating other variables. If El-Cntrd is dropped and Fr-Forst and El-Gauge 

are used instead, the adjusted r increases about eight percent. The problem with 
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using El-Gauge is similar to that of using El-Dvide in theY region- the sign is 

opposite to that expected. 

4. 7 Summary or Important Basin Characteristics 

Table 4-20 presents the important basin characteristics related to each flow variables, 

selected from the analysis of each individual flow variable. The associated coefficients 

(rounded for ease of comparison) are also given, as an illustration for possible weighings 

in cluster or discriminant analysis. This table shows that DA is always important. For 

high flows El-Cntrd and FACI.S are also very important, as well as other 

distance/topographic variables (Dist-N, Dist-SW, and/or Fr-Barrn). DrDens seems to 

be more important in the separate Y -Z equations. For low flows and availability, 

FACLS and the distance variables are impowllt. 

The basic Y-Z geographic division did lead to improved relationships for most flow 

variables. In ChapterS, the possibility of further improvements using other method:; of 

regionalization is addressed. The high flow variable Qavgfld is used for this detailed 

analysis. A similar procedure could be followed for the other flow measures. 



Table4.20 

Coefficientsof Most Important Variables (without Eff-P) 

OneRqion RegionY 

High Low Availa- High Low 
bility 

Var 
(_All Ins) Qa"Jtfld Qlow Qfd-50 Qa'lfld Qlow 

DA 0.7 1.2 1.0 0.9 1.2 
Dr Dens X 03 X 

Dist-N X -03 -0.2 X X 

Dist-SW -03 -0.2 X -0.4 
El-Dvide 0.4 
El-Gauge X 
EI-Cntrd 0.3 0.3 
FACLS -1.0 0.9 0.2 X 1.6 
Fr-t"arm 0.1 0.1 
Fr-Fmst X X 

Fr-LSw X X X 

LMC-sp X X 

Shape 
Slope X 

Based on ordinary least squares analysis with logarithmeti:aDy transformed variables 
x = variable sig. in other eqn's e.g., for spociriC runorr or non dim. values 

Availa-
bility 

Qfd-50 

1.1 

X 

-0.2 
X 

X 

0.1 

X 

RegionZ 

High Low 

Qa\!fld Qlow 

0.7 1.1 
o.s 

X -0.7 

0.8 
X 

0.3 
-0.8 0.7 

X 

X 

Avaia-
bility 

Qfd-50 

1.0 

-0.2 

X 

l 
0.1 

X 

I 

1-' 
...... 
N 
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S Analysis of Regional Subdivisions 

The key basin characteristics associated with each of the flow variables (high, low, and 

available flow) were identified in Chapter 4. The present chapter addresses 

• the use of these basin characteristics to identify clusters in basin data­

space; 

• the advantages, if any, of using these clusters over clusters in geographic 

space to develop predictive equations for ungauged basins. 

This detailed analysis is carried out for the variable Qavgfld, the average of the annual 

maximum daily flow series. A similar analysis could be carried out using the low flow 

or available flow data. Qavgfld was chosen because it is frequently used as the index 

flood in the index flood method of regional i.lood frequency analysis . . M\swil of the error 

in this method arises from the uncertainty in estimating the index flood. Clustering has 

the potential to improve the estimates of the average flood at ungauged basins. 

Section 5.1 describes the application of cluster analysis techniques to the basin 

characteristic data to develup potential clusters in basin dataspace. Section 5.2 then 

briefly describes the development of equations for each of the candidate regions, and 

Sections 5.3 and 5.4 provide an assessment of the regionalization methcxts. An alternative 
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approach is suggested and evaluated in Sections 5.5 and 5.6. Section S.7 provides 

comments and a suggested procedure. 

5.1 Cluster Analysis 

One of the purposes of this study was to compare the grouping of basins by geography 

with clustering in a dataspace of basin physiographic characteristics. Grouping basins in 

dataspace assumes that basins separated in geographic space respond similarly to 

hydrologic events if they have similar physiographic characteristics. In this study, the 

grouping of basins in dataspace was carried out using the techniques of cluster analysis, 

as provided in the statistical analysis package SYSTAT (Wilkinson, 1990). 

The results of a cluster analysis are very sensitive to the variables selected and their 

weighting (and indeed, in the case of some cluster techniques, such as Andrews' Fourier 

plots, to their order), so some thought must be put into their selection. For this study, 

weighted standardized logarithmically transformed variables were used. The variables 

selected and their associated weights were taken from the best all-island equation 

presented in Table 4-20 for Qavgfld. These are 

Variable Coefficient 

DA 0.7 

FACLS 

Et-Cntrd 

Fr-Barrn 

-1.0 

0.3 

0.1 
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Cluster analysis results can also be sensitive to the method of clustering, and to the 

distance criterion and linkage method if hierarchical clustering is used, so several 

alternatives were tried. The recovery of inherent clusters, if titey exist, can be a 

complex problem, and the present analysis is not intended to provide a detailed 

comparison of cluster :nethods. Rather, it attempts to select the methods most likely to 

be useful and to apply them in a reasonable way, to assess whether cluster analysis 

shows any promise for improving flow estimates. 

The two basic methods of clustering are hierarchical and nonhierarchical. Hierarchical 

clustering assumes an inherent tree-like structure in the data. Nonhier:irchical clustering 

assumes that the data are spread out in dataspace and can be partitioned. There is no 

physical reason why basins should group according to a hierarchical or tree-like struc­

ture, so clusters obtained by nonhierarchical partitioning might be expected to be more 

appropriate in this application. Hierarchical clustering has been used successfully in other 

similar applications, however y and in this study the hierarchical clusters provided a good 

mat~h to the flow clusters, so both clustering methods were considered. 

5.1.1 Nonhierarchical Clustering 

The nonhierarchical partitioning proceeded by picking seed cases for the number 

of clusters specified, spread apart from the centre as much as possible. Case~ 

were reassigned until within-groups sums of squares were minimized. There is 
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no standard objective procedure for selecting the optimum number of clusters, 

although various stopping rules have been proposed; the recommended procedure 

is to try several numbers of clusters, an~ use judgment and knowledge of the 

problem at hand to select an appropriate number. For this study, reasonable 

results were obtained when four clusters were specified. 

Of the four clusters, two were very small, one with only one member and one 

with four. These small clusters are distinguished by the small ftaetions of the 

basins controlled by lakes and swamps. Similar very small clusters resulted 

regardless of the number of clusters specified. 

Table 5.1 shows the statistical profile of basin characteristics for each 

nonhierarchical cluster, in terms of the original untransformed variables. Cluster 

1, with 24 members, contains most of the large basins; the smallest is 139 km2• 

Three other basins larger than 139 km2 (Isle aux Morts, Grandy and Rocky) are 

excluded from this group, and are assigned to Clusters 2 or 4, because of their 

low FACLS. Cluster 2 contains all the basins with FAC1...S less than 0. 73, except 

Grandy~ which is placed alone in Cluster 4. Grandy is unusual because it has the 

lowest FACLS (0.34) of all the study basins, combined with a relatively high 

elevation (335 m) and a high Fr-Barm (0. 79). Cluster 3, with 11 members, has 



177 

Table S.t 

Statistical Profiles of NonhierarchicaiCiusters 

Cluster N DA FACLS EI-Cntrd Fr-Barm 
Number km2 fraction m fnction 

1 24 Min 139 0.73 76 0.00 
Max 4444 1.00 549 0.63 
Mean 801 0.92 229 0.22 
Med 470 0.96 213 0.17 

2 4 Min 72 0.43 60 0.00 
Max 300 0.60 335 0.78 
Mean 168 0.54 198 0.32 
Med 149 0.56 198 0.25 

3 11 Min 3.63 0.79 91 0.00 
Max 115 1.00 183 0.79 
Mean 52.1 0.93 140 0.34 
Med 53.3 0.92 152 0.47 

4 1 Min 230 0.34 335 0.79 
Max 230 0.34 335 0.79 
Mean 230 0.34 335 0.79 
Med 230 0.34 335 0.79 
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all the basins with drainage areas less than 115 kJn2, except Highlands and 

Southwest River near Baie Verte, which are in Cluster 2 due to their low 

FACLS. 

5.1.2 Hierarchical Clustering 

The hierarchical clustering started by combining basins into small clusters, and 

then progressively agglomerated the smaller clusters into larger ones. (This 

procedure means that once a basin is assigned to a cluster it can never be 

reassigned. Undesirable early combinations may persist.) 

Four linkage methods were trieoil, single, complete, average and centroid. As 

expected, single linkage, in which each member is closer to one other member 

of its cluster than to any other, produced long stringy clusters. Complete and 

average linkage methods resulted in similar compact clusters, in which each 

member is more like every other member. A Euclidean distance measure was 
• 

used for all linkage methods, consistent with the type of data. 

Of the four methods, complete linkage with four clusters produced reasonable 

groupings, and these were selected for comparison with the nonhierarchical 

clusters and geographic groups. 
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Table S.2 shows the statistical profiles for the resulting clusters in terms of the 

original untransformed variables. Cluster 1, like Cluster 1 from the 

nonhierarchical procedure, contains the larger, naturally well regulated basins. It 

does not include two higher basins in the midsize range (Garnish and Tides 

Broo~<), as well as six of the less barren basins in the same midsize range. These 

eight basins had been included in the otherwise equivalent nonhierarchical Cluster 

1, so the total number of basins in Cluster 1 is reduced from 24 to 16. The eight 

basins are all assigned to hierarchical Cluster 3, resulting in a larger size range 

in Cluster 3 than was the case for the nonhierarchical Cluster 3. The five basins 

with the low FACLS which were divided between Clusters 2 and 4 using the 

nonhierarchical methods are all in Cluster 2. Cluster 4 consists of only the two 

smallest basins. 

Table S.3 lists all the basins and their cluster assignments by the two methods. 

The cluster assignment based on the flow characteristic Qavgfld (again 

standardized log transforms) is also shown for comparison, clustered by 

partitioning. Just over half (21) of the 40 basins have identical cluster assignments 

in all three cluster sets. An additional 16 have similar assignments in two of the 

three cluster sets. Two of the remaining three basins are very small (Northeast 

Pond and Spout Cove), and the last one, Grandy, has the lowest FACLS. These 

unusual basins are treated differently in each clustering method. 
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Table 5.2 

Statistical Profiles of Hierarchical Ousters 

Cluster N DA FACLS El-Cntrd Fr-Barm 
Number km2 fraction m fraction 

1 16 Min 139 0.73 137 0.07 
Max 4444 1.00 549 0.61 
Mean 1059 0.90 281 0.26 
Med 618 0.93 274 0.21 

2 5 Min 72 0.34 60 0.00 
Max 300 0.60 335 0.79 
Mean 180 0.50 225 0.42 
Mcd 205 o.ss 244 0.55 

3 17 Min 36.7 0.79 76 0.00 
Max 554 1.00 213 0.79 
Mean 167 0.94 129 0.26 
Med us 0.96 122 0.03 

4 2 Min 3.63 1.00 168 0.04 
Max 10.8 1.00 170 0.49 
Mean 7.22 1.00 169 0.26 
Med 7.22 1.00 169 0.26 
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Table 5.3 

Cluster Assignments of Study Basins 

Y-Z Basil Nonhier- Hicr- Flow 
Repon ID ardlical ·· arc:hical Custer 

·Cluster ·ouster 
YA1 ~leG 1 3 3 
YC1 If or 1 1 1 
YD1 ~vrB 1 1 1 
YD2 NeRk 1 3 3 
YFI Cat I I t 
YJ1 ~rys 1 1 .. 1 
YK2 ~wB . 1 1 1 
YK4 ~nds 1 1 1 
YKS ~hfd 1 1 3 
YLl k.JoHm l 1 4 
YM3 ~wBV 2 2 3 
YN2 ~s 1 1 1 
Y06 Ptrs 1 3 3 
YP1 ~blA 3 3 3 
YOI OdBC 1 1 4 
YR1 ~diB 1 3 3 
YR2 ~gdH 1 3 3 
YR3 ndB 1 3 3 
YS1 trerN 1 1 1 
YS3 SwTN 3 3 2 
ZA1 ~tiB 1 1 1 
ZA2 ~Ids 2 2 3 
ZA3 ~lCd 1 1 1 
ZBl aM 2 2 1 
ZC2 Jrdv 4 2 1 
ZE1 ~mLP 1 1 1 
ZFl ~N 1 1 1 
ZG1 Pm I 3 3 
ZG2 tfds 1 3 3 
ZG3 SmLm 3 3 3 
ZG4 Rtl 3 3 3 
ZH1 PH 1 1 1 
ZH2 CbC 3 3 3 
ZJl SthB 3 3 3 
ZK1 Rky 2 2 1 
ZK2 NE-P 3 3 3 
ZL3 ~pCv 3 4 2 
ZM6 ~p J. 4 2 
ZM9 ~ICV 3 3 3 
ZN1 NwNP 3 3 3 

Note: Shading indicates same cluster assignment. 
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5.1.3 Andrews Fourier Plots 

An alternative method of clustering is to use Andrews Fourier plots, which 

provide a technique for grar!,ical representation of multivariate data (AndreY:~, 

1972). In these plots, each basin characteristic (e.g., DA, FACLS) is represented 

as a term in a JHlimensional sine-cosine function. When the expression is 

plotted, the resulting curve becomes a visual representation of the combined basin 

characteristics. Basins havir g similar Andrews Fourier plots can be considered 

as a group. The group can be identified by its typical signature, and ungauged 

basins can be assigned to the group whose signature matches the plot for the new 

basin most closely. 

Andrews Fourier plots are probably most useful after cluster analysis is 

completed, perhaps to refine the clusters slightly, and to prepare characteristic 

cluster signatures in preparation for assigning new basins, so their use in this 

study is perhaps somewhat premature. Nevertheless, the results of the analysis 

can be helpful for comparison with other results, and for suggesting future direc­

tions. 

Andrews Fourier plots are sensitive not only to the variables selected but to their 

order. For this study, the plots were prepared using a standardized data set, and 

the variables were specified in the order corresponding to the magnitude of the 
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coefficients in the equation in Table 4.20, i.e., FACLS, DA, El-Cntrd, and Fr-

Barm. This approach corresponds approximately to the approach taken in 

developing the clusters using cluster analysis techniques. Since four variables lead 

to somewhat complex curves, a simpler set of plots using only FACLS and DA 

was also prepared. Figure 5.1 shows the plots for the combined set of study 

basins for the two approaches. 

In Figure 5.1(a), for the four variable case, groups of basins can be distinguished. 

The most obvious visual distinction is between the basins with opposite peaks and 

valleys. The majority have their peaks at approximately -135 degrees and +45 

degrees; about eight basins have the reverse pattern. Six of these eight basins are 

ones that were assigned to Cluster 1 in the nonhierarchical clustering, and to 

Cluster 3 in the hierarchical clusters. In neither method were they given a cluster 

of their own. The chief visual distinguishing characteristic between Clusters 1 and 

3 in the Andrews Fouri1!r plots is that the Cluster 1 basins have a low first peak 

and a high second peale. The reverse is true for the Cluster 3 basins. The basins 

in Clusters 2 and 4 are the odd ones. 

Figure 5.l(b) is somewhat simpler, since only two characteristics are represented, 

FACI.S and DA. The Cluster 1 basins in general have their minima at 

approximately -90 degrees and their maxima at +90 degrees, while the Cluster 



3 

-3 

-4 ~--__.__ __ --.L ___ ......__ __ __. 

-180 -90 0 

DEGREES 

90 180 

(a) Variables FACLS, OA, EI-Cntrd, Fr-Barrn 

2 

-1 

-2 ~--~-------L-----._ ____ ~ 
-180 -90 0 

DEGREES 

go 

(b) Variables FACLS, DA 

180 

184 

Fig. S. 1 - Andrews Fourier Plots 
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2 and 3 basins have the reverse pattern. The Cluster 2 basins are distinguished 

from the Cluster 3 basins by being much lower (more negative). As a comparison 

with the cluster analysis methods, the Andrews Fourier plots based on two 

variables were grouped visually. The groups corresponded exactly to the 

nonhierarchical clusters, with the exceptions of the two very small basins, and the 

two very large basins, which stood out because of the great difference in 

amplitude of the sine waves. There was also the possibility of further subdivision 

of Cluster 1. 

5.2 Development of Regional Equations 

The next step was to develop regression equations for each of the potential regions. The 

analysis proceeded as follows. 

1. Select regions. 

2. Develop candidate equations using ordinary least squares multiple 

regression techniques. 

3. Assess results, select final candidate models. 

4. Develop final candidate models (regression equations) by 

• identifying outliers using robust regression techniques; 

• refining equations using non-linear least squares; 

• estimating uncertainty and error. 
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This analysis is described below. The assessment of the regionalization methods foliows 

in Section S.3. 

5.2.1 Candidate Regional Subdivisions 

Regions in both geographic and basin characteristic data were considered, as 

follows. 

A. Geographic 

no subdivision (one region); 

WSC hydroJogic subregions Y and Z; 

four subregions A to D, as used in the provincial regional flood 

frequency analysis (boundaries shown in Appendix A). 

B. Basin characteristic dataspace 

size (greater than and less than 130 km2); 

three hierarchical clusters; 

three nonhierarchical clusters (2 and 4 combined equals the second 

hierarchical cluster); 

four nonhierarchical clusters (2 and 4 separated). 

Hierarchical cluster 2 had the identical membership (five members) as 

nonhierarchical clusters 2 and 4 combined. The hierarchical cluster with the two 
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very small basins was excluded. Because two of the clusters were identical, six 

clusters were analyzed in total. 

5.2.2 Development of Equations for Candidate 
Regionalization Methods 

In Chapter 4, preliminary regression equations were developed for two of the 

geographical subdivisions, the one-region case and the Y-Z division. Equations 

with and without the independent variable effective precipitation (Eff-P) were also 

presented in that chapter. The regression analysis procedures and criteria 

described in that chapter (Section 4.3) were also applied here. 

A similar analysis was also carried out for the other regions obtained using the 

candidate regionalization methods based on geography and basin characteristics. 

The most promising resultc; are presented in Table 5.4, a-c. The coefficients 

associated with all explanatory variables presented in this table are significant (p 

< 0.05) and none introduce problems of multicollinearity (all tolerances are well 

above the minimum value of 0.1). 



Table 5.4 

Results of Regional Multiple Analysis 

OLS 
.. 

Ull 
2Yan 

lrith Eff-P 
N 40 

Q)llllant -0.362 
DA 0.813 
Drllall 
Dlat-SW 
Ole-N 
EI-Centrd 
EI-DiYde 
FAC..S 
Fr-Birm 
Fr-LSW 
LMC 
Sbp 
Fr-Font 
Eff-P 1..297 

r2 0.94 
r21djA:orr 

Std.Er. 0.31 

Outlien 

(a) One Region 

RLS OLS RLS OLS OLS 

Ull LD• I.Jia ua ua 
. 2Yan 3VIll "3\WI 3VIll 4VIll 

with Efr-P · 110 F.rr-P 
39 

-0.340 
0.814 

1..247 

0.95 

0.28 

SteO 

40 37 

-0.432 -0.432 
0.807 0.820 

-0.783 -0.105 

1.095 

0.96 
0.96 

0..24 

1.00'2 

0.97 

0..20 

SteO 
SmLP 
IndB 

40 40 

0.288 -l.CIZ4 
0.742 0.720 

0..264 

-1.065 -1.014 
0.113 o.oss 

0.94 0.95 
0.9.~ 

0.30 

None 

RLS 

u1 .... 
38 

-1.064 
0.738 

0.260 

0.949 
0.083 

MdiB 
SmLP 

,..,DIID 
LS 

'lritb 
Err-P 

40 

0.489 
0..862 

1.756 

0.95 
0.91 

188 

Noulln Nolllln 
LS LS 

39 40 

0.519 1.0112 
0.855 0.748 

-l.D9 
0.038 

1.726 

0.95 0.94 
0.91 0.89 

SteO None 
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Table 5.4 Continued 

(b) Geographic Regions 

WSC ReP,a froviDcial RqioD 
y z A 8 c c D D D 

OLS OLS OLS RLS OLS OLS OLS OLS OLS OLS RLS 

Ull Ual l.na Ull Ull Ual ua Ln• . Ull Ull l.Jla 

wllh En-P with FJI'-P with Efr-P 
N 20 20 20 19 12 12 10 10 6 6 5 

OI..UDI -2.770 -0.320 1.067 1.363 -0.0'17 -0..531 0.673 -3.028 0.491 2.031 0.625 
DA 0.890 0.778 0.7-49 0.752 0.823 0.849 0.640 1.025 0.694 
Dr Dena 0.608 
Diat-SW -0.247 -0.319 
011-N 
EI-Ccntrd 
EI-DMfe 
FAO.S -0.814 -1.009 -0.962 
Fr-a.m 
Fr-LSW -1.003 -0.8Z1 
LMC -1.515 -2.387 
Shp 
Fr-Fcnl -0.499 
Eff-P 1.008 2.295 1.-409 

··-
rz 0.96 0.98 0.96 0.97 0.98 0.96 0.89 0.94 0.97 0.78 0.98 
r 2 actjlcorr 0.96 0.98 0.96 0.98 0.95 0.86 0.93 0.95 

Std.Er. 0.22 0.19 0.26 0.25 0.18 0.28 0.35 0.25 0.14 0.34 0.11 

Out lien Sml..r.. None None fl!nnc None Harty'& 



Table 5.4 Continued 

(c) Basin Characteritic Regions/Clusters 

SUe 
>13) km1 1»<DA< <130 11m2 

1«JJ!Jr:m2 
OLS RLS . OLS RLS OLS 
tAl LDa Lila Laa laa 

N 27 26 24 23 13 

Coutant -2.664 -2.$26 -2.270 -2.888 -0.224 
DA 0.758 0.673 0.660 0.757 0.884 
Or Dena 0.343 0.317 0.332 0.322 
Dllt-SW 
Dst-N 
EI-Ccntrd 0.510 0.569 0.545 0.523 
EI-Divde 
FAC.S -1.261 -1.609 -1.152 -1.760 
Fr-BaTn 0.563 
Fr-LSW 
LMC 
Shp 
Fr-Fonl 
Err-P 

r2 0.91 0.886 0.87~ 0.924 0.953 
r2adjlcorr 0.89 0.847 0.944 

Std.Er. 

J 
0.26 0.241 0.240 0.20.5 

Outhc:ra Omdy Gmdy None: 

Notes: 
1. Hlc:ran:hlcal cluater H2 • Nonhicrarc:h leal NH2 + NH4 
2. Hierarchical cluster H4 consilll of the two smallest lulns, 

and Is not included. 

Ollllen , ___ 
H1 H3 
OLS OLS 
laa Lila 

16 17 

-1.02.3 0.653 
0.696 0.651 

0.406 
!-0.344 

0.532 

0.063 

0.85 0.848 
0.81 0.812 

0.27 0.211 

3. Rewei&bted 1eut squares not done for NH3 because too i:w c:ucs. 

190 

~a-blcnn:bk:al 
NHI NH3 NH2+4 N'Hl+4 
OLS OLS OLS OLS 
La• ua ..... Lila 

24 11 l 5 

r-2.905 -o ... u -1.4.51 -5.539 
0.760 0.736 1.180 1.362 
0.327 

0.544 0.604 

H.QS 

1.309 

0.924 0.956 0.745 D-995 
0.908 0.945 0.660 0.990 

0.2.5Z 0.208 0.491 0.086 

None None Hldl 
Rlr.y 
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The number of candida·.e models which could be used to estimate Qavgfld at an 

ungauged site is potentially quite large. There are at least 6 possible regions into 

which a basin can be assigned, and within each region, there are several 

alternative multiple regression equations to be evaluated. A preliminary screening 

was therefore carried out to reduce the number of candidate models. The 

scret!l.'ling had two principal objectives 

• to determine whether some of the regions could be eliminated; 

• to select only one preferred equation for each region. 

After review of the regression results, the only type of regional grouping which 

was excluded from further analysis at this point was that based on the hierarchical 

clustering. The regression results were better when based on the nonhierarchical 

clustering, and for the general purpose of comparin& regions in dataspace rather 

than regions in geographic space, it seemed overrefined at this point to have 

clusters based on tv.·o separate cluster techniques. 

The equations were reduced to include only one in each region. The final 

equations were selected based on 

• the fit of the equation (as measured by adjusted r and standard 

error); 

• the overall hydrologic sense of the independent variables, and 
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• the ratio of the number of cases used to &Jevelop the eqt,ation to the 

number of independent variables in the equation. This ratio was 

kept in the range of S-10, so that all equations could be compared 

on roughly the same footing. In the case of provincial region A, 

drainage area is so important that no additional variable has an 

acceptable p vatu~. The ratio of the number of cases to the number 

of variables is therefore slightly higher. 

The number of outliers as identified in robust regression was also considered. An 

equation with no outliers was preferred over one with several outliers, other 

considerations being approximately equal. 

The selection of the final equations was complicated in this study by the fact that 

one of the most important explanatory variables in some regions is Eff-P. This 

variable is estimated, not measured like the basin physiographic characteristics. 

Two approaches were considered for handling Eff-P 

1) replacing Eff-P with topographic and distance variables, either 

directly or using one of the equations developed in Chapter 4 for 

Eff-P; 

2) including Eff-P as an independent variable, &~1d using a first order 

uncertainty analysis to assess whether the improvement in the 
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multiple regression results using Eff-P is sufficient to overcome the 

greater uncertainty in the estimate of Eff-P at ungauged basins. 

TI&e one-region case was used for this analysis. Similar results would be expected 

in other regions since the orders of magnitude of the coefficients and their relative 

importance tend to be similar. 

Substitution for Eff-P 

Since effect•.ve precipitation can be related to topographic and geographic 

variables, as described in Section 4.3, the possibility of incorporating these 

relationships directly into an expression for Qavgfld was explored. The simplest 

approach is to include thr. relevant variables directly in the nonlinear equation for 

Qavgfld, as was done with the log-linear results beJow, taken for the one region 

case from Table 4.1S, OLS with n =40. 

Variable With Eff-P Without Eff-P 

Constant -0.432 -1.024 

DA 0.807 0.720 

El-Cntrd 0.264 

FACI.S -0.783 -1.014 

Fr-Barm 0.085 

Eff-P 1.095 

radj 0.956 0.945 

Std. Error 0.24 0.27 
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Here, Fr-Barm and El-Centrd are act~ng as surrogates for Eff-P; in addition, Fr-

Barm may also be representing the characteristic of a basin with a large fraction 

of barren area to respond with higher flood flows (although Fr-Barm was never 

a significant explanatol} -;ariable when Eff-P was includ~J). Even with these two 

variables acting as surrogates for Eff-P, the results are not quite as good. 

Various alternative models were developed and tested, incorporating the variables 

as linear and nonlinear combinations within an overall nonlinear expression for 

Qavgfld. None of the results were as good as the simple approach presented 

above, so these results, and similar results for the regions, were used for the 

remainder of the analysis. 

Uncertainty Analysis 

Although the results presented above and in Table 5.4 indiCCJ.ie that equations with 

Eff-P are better, the improvement as indicated by the r and standard error is 

slight. Unlike basin physiographic characteristics, Eff-P cannot be measured at 

ungauged basins but mur~ be estimated. In order to assess whether the slight 

improvement in the regression results using Eff-P is suffir·' . .!nt to overcome the 

greater uncertainty in its estimate at ungauged basins, an un<'.ertainty analysis was 

carried out. 
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The equations presented in Table S.4(a) for the one region case were used for the 

analysis. Nonlinear equations were developed for the two variable equation with 

DA and Eff-P, and the three variable equation with DA, FACLS and Fr-Barm. 

El-Cntrd was dropped because in the nonlinear analysis the sign of the coefficient 

was wrong. ('The equation without El-Cntrd was also slightly ·preferable because 

no outliers were identified in the robust regression.) 

The analysis followed the procedures outlined in Chow et al (19a9) for first order 

uncertainty analysis. Briefly, if Y is the dependent variable, and x., x2, ••• ,Xu are 

the independent variables, with ah a2, ... ,a.. their associated coefficients, then 

CV/ = CV11
2 + CV12

2 + ... + CVm2 

CV Y is then a measure of the uncertainty of the estimated dependent variable due 

to the uncertainty of measuring or estimating the independent variables. 

The CV's for each independent variable were estimated from experience in 

measuring the physiographic characteristics from mapping and in estimat.ing the 

Eff-P considering basin specific topography, location, and available data from 

adjacent gauged basins. The values used and the results are presented in 

TabJe 5.5. 

This estimate is reasonable compared with the standard errors of prediction based 

on the log-linear equations. These average just under 10 percent (about 125 to 
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140 mm) for both the two and three variable equations, estimated for the 40 

basin!!i in the data set plus 17 short record basins. (lbese may be slightly 

underestimated due to t~.! fact that the regression was carried out in the log 

domain). They are also consistent with the standard errors of the estimate for the 

nonlinear regression equations, which ar~ slightly higher (about 180 mm). With 

an average Eff-P for the study basins of 1200 mm, an average CV of ten percent 

is equivalent to an average range of 240 mm. 

Table 5.5 
Uncertainty Analysis 

With Eff-P Est.CV Coef 
Variable 

DA 0.03 0.862 

Eff-P 0.10 1.756 

CVr 0.177 

Without 
Eff-P 
Variable 

DA 

FACLS 

Fr-Barrn 

Est. cv Coef 

0.03 0.748 

0.05 -1.339 

0.10 0.038 

0.071 

This table indicates that although the regression results are better for the equation 

with Eff-P, overall the uncertainty is less using the three variable equation 

without Eff-P. This 1\.: ·Jits occurs not only because of the uncertainty in 

estimating Eff-P, but also because the coefficient associated with it is so high. 

Because the magnitude of the coefficients is similar in the equations for all 
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regions where Eff-P is significant, the results would be similar, and the 

uncertainty analysis was not repeated. 

The equations without Eff-P were therefore chosen in preference to those with 

Eff-P in other regions. As Table S.4 showed, however, in several regions, 

equally good or better equations could be developed without Eff-P, so those 

results are unaffected. 

5.2.3 Development of Equations for Subregions 

Based on the results of the preliminary screening, the best equation from the 

ordinary least squares (OLS) regression analysis without Eff-P was selected for 

final development. The same regression analysis procedures and criteria 

described previously in Section 4.3 were followed. 

The only exception to the general guideline regarding outliers was the cluster 

consisting of the four basins assigned to nonhierarchical Cluster 4 plus the single 

basin assigned to Cluster 2. (These are the same five basins that make up 

hierarchical Cluster 2.) With only five cases, an equation with only one 

independent variable was preferred, but nc; 1natter which independent variable was 

tried, there were always two (usually different) outliers, leaving only three cases 

for a reweighted i ... ~t squares or nonlinear analysis. For this region, therefore, 

the nonlinear least squares equation was developed using drainage area alone with 
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all five .;",ases; an alternate equation was also developed with two independent 

variables (with a much better fit), again using all five cases. 

Table 5.6 presents the constants and exponents of the regression equations 

resulting from the nonlinear least squares analysis, by geographic or basin 

characteristic region. These are the equations used to evaluate and select the 

preferred grouping for regionalization. The results of a first order uncertainty 

analysis for these equations is also presented in the table. 

5.3 Assessment of Regionalization Methods 

A group of 17 gauged basins with shorter record lengths was used to assess whether it 

is advantageous to subdivide the island into regions, and if so, to select the preferred 

method for regionalization. These 17 basins have record lengths of seven to nine years, 

a period sufficiently long to obtain a reasonable estimate of Qavgfld. They were treated 

as ungauged basins, and the estimates made from the regression equations were compared 

with the average of the observed annual maximum daily flow series. Their locations are 

shown in Figure 5.2. 

Table S.7lists these basins and their relevant physiographic characteristics. The t-oxplots 

in Appendix B compare their characteristics with those of the study basins. In general 

they are smaller (15 of the 17 are less than 130 km2), with smaller fr.~tions of the basins 

controlled by Jakes and swamps, and smaller fractions of barren area (conversely more 
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Table 5.6 

Nonlinear Least Squares Regression Results 

(a) Geographic Regions 

All wsc Prov 
Island y z A B c D 

N 40 20 19 12 12 10 5 

Constant 1.08Z 0.140 12.160 1.1Q3 0.117 0.241 2.529 
DA 0.748 0.761 0.7.56 0.783 1.092 0.841 
Dr De as 0.826 
Dist-SW -o.roo 
El-Centrd 
FACLS -1.339 -0.970 
Fr-Barm 0.038 
Fr-LSW -1.079 -0.627 
LMC-Sp -2.224 
Shp 
Fr-Forst -0.373 

r2 0.94 0.99 0.98 0.989 0.99 0.98 0.99 
r2 corr 0.89 0.79 0.96 0.979 0.98 0.97 0.96 

Sum of Resids 75297 13568 5144 692 9542 8353 823 
Error est 45.7 29.1 18.5 8.3 32.6 34.5 16.6 
N-p 36 16 15 10 9 7 3 

Uncenainty 7.1% 11.6% 6.1% 2.3% 5.3% 6.8% 15.6% 

Outliers None None SmLm None None None Hrys 
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Table 5.6 Continued 

(b) Basin Characteristic Regions/Clusters 

Size (km2) Clusters 
<130 >130 1 3 2+4 2+4 

Alt 
N 13 26 24 11 s s 
Constant 0.568 0 0.067 0.526 2.227 O.tm15 
DA 0.793 0.834 0.828 0.810 0.773 1.463 
Dr Dens 0.290 0.303 
Dist-SW 
EI-Centrd 0.474 0.415 0.614 
FACLS -2.058 -1.998 
Fr-Barm 
Fr-LSW 
LMC 
Shp 1.208 1.177 
Fr-Forst 

r2 0.98 0.967 0.966 0.981 0.850 0.997 
r2 adj/corr 0.92 0.926 0.927 0.924 0.481 0.9ll9 

Sum of Resids 185 38023 37403 139 14700 302 
Error est 4.3 42.6 44.4 4.2 70.0 12.3 
N-p 10 21 19 8 3 2 

Uncertainty 8.8% 12.8% 12.1% 8.6% 2.3% 10.2% 

Outliers None Grndy None None 2 incld 
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Fig. 5.2 - Locations of Shorter Record Gauges 
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Table5.7 

Test Basin Data 

BaiD OIUJCName OIVJOd 
ID m•• DA J...mc_Sp ~-emu Pr_DeD& Shipe 

YOlO Jac unclioa Brt- Bldaer 11.6 61.6 18.2 213 0.77 1..55 
Y£1 Gn1 Pravett Brooklbcwe PanlaDd Qk PoDd 35.7 101.0 24..5 1!2 0.75 1.64 
'Yb.l B1.111C . ~IOal Occt- Rocky Hbr 4.9 33.4 14..5 69 1.13 1.69 
YK7 Olde plide Brook below Olide I...U.e 21.8 112.0 26.8 30 1.28 1.61 
YK8 Boac ~ Brooklt Tl'IDI-CIIIIda Hwy 7.4 20.4 10.1 1&1 1J6 1.47 
YlA SdaP ~tb Brook II PllldeDI 27.7 !S..5 13.2 46 1.34 1..54 
YU Rtlr ltaaJer BrookDc• Mclwn 11.9 17.0 8.2 ... 4 1.0.5 1.10 
Y07 Lcll t,.eecb Brook Dnr OraDd Fa1JI 23.6 18.3 23.1 lSI 0.74 1..52 
YOB OtRt Pre- RallUD& &tabcweTotc R.c::oaflueoce '19.0 '7'79.0 69.0 640 0.69 1.80 
Y04 NWO ~nlnat GIDder R liCit GIDder Lake 617.6 2150.0 104.2 13'7 us 1.63 
ZJ2 SalOl jsumoa Co¥C RMr ncar Cllmpacya 11.9 '79.4 18.0 213 1.11 1.33 
ZK3 LABP ~ttle Bancboil R ncar Plical til 29.8 37.2 14.6 236 1.16 1.48 
ZK4 LSNH ~ttle Sllmoaier R aear Nonh J-Wbour 73.0 104.0 28.5 l!l 1..50 1.85 
ZlA Sbra r--- •u Brook II ShelniOMl 11.7 28.9 13.4 122 1.14 1.73 
ZL5 BIJB ~I& Brook II Lead 0JYC 3.8 11.2 6.7 1&1 1.00 1..52 

ZM16 StbH ~ulb RiYU DC. Holyrood 9.8 17.3 9.7 I flO 1.01 1.40 
ZN2 SISh St. Shotll R ne.Trepusey 7.7 15.5 19.3 1ll0 1.03 1..53 

O.la GIUJCNamc lfr-LSw FAQ.S Pilt-SW F"r_Birm Fr_Frat Eff-P 
ID km 

YOlO JDC unction Brk ne. Bldaer 0.19 0.81 179 0.00 0.81 0.85 
Y£1 Grvt Ore.Yeu BrooklboYe Ponland Qk l'ond 0.12 0.86 36 0.38 0.49 0.95 
YH1 BtmC Bottom Qeek DC. Rocky Hbr 0.13 0.93 41 0.08 0.79 1.10 
YK7 Glde CiUde Brook below Glide Like 0.13 0.96 21 0.00 0.87 1.05 
YK8 Boot Boot Brook 11 Tnma-C.oada Hwy 0.24 0.65 200 0.01 0.75 1.05 
YlA StbP S:>uth Brooklt P .. de111 0.02 0.08 97 0.05 0.94 0.95 
YL5 Rtlr R.lalet B-ook Dear Mclwn 0.09 0.46 77 0.00 0.91 1.40 
YO? l.c:b Leech Brook DC. GnDd F1lll 0.28 0.73 191 0.02 0.70 0.8.5 
Y08 GIRt GreJI RIUlln& Brk 1boYe Tote R. coanuence • 0.24 0..5.5 142 0.03 0.73 0.8.5 
Y04 NWO lllonhweat GIDder R aear Glllder Lake 0.31 0.44 1:.1 0.03 0.66 0.8.5 
ZJ2 SalOl !illlmD Cove RiYCr aear Cbampneya 0.19 0.82 209 0.07 0.74 1.00 
ZK3 L&BP lJtllc Blracboia R near Placentil 0.13 0.34 21 0.01 0.86 1.30 
ZK4 LSNH ~ttle Sllmonier R ncar Nonb IUI'bour 0.46 0.91 46 0.31 0.23 1.60 
ZlA Sbra ~eatOWD Brook1t Sbeantov.n 0.04 0.39 7~ 0.27 0.70 1.00 
ZL5 BIJB ~I& Brook 1tl.ad OJYC 0.10 1.00 84 OJl 0.39 1.0~ 

ZM16 SlbH jsoulb RiYCI' ne. Holyrood 0.11 0.90 ~I 0.68 0.22 1.30 
ZN2 StSh kt. Shotll R ne. Treoauev 0.12 0.82 5 0.00 0.88 1.30 
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forest). The test basins also tend to be better drained, i.e., they have higher drainage 

density. The range and distribution of the data for the distance and elevation variables 

for the two data sets is similar. 

Each of the test basins was assigned to the appropriate subregion, for each of the regions 

in geographic or basin characteristic dataspace. In .the ~: ~f the geographic regions, the 

assignment was straightforward, as it was for the case of the basin dataspace region 

based on drainage area only. For the dataspace region requiring cluster assignment, 

multiple discriminant analysis (MDA) and visual techniques were considered. With the 

MDA approach, discriminant scores are calculated from the basin characteristics, and are 

user.l to assign each test basin to a cluster. 

Considering the relative simplicity of the problem, a visual technique was chosen. The 

relevant basin characteristics (FACLS, EI-Cntrd and Fr-Barrn) for each test basi.n were 

plotted on separate plots with drainage area. Particular attention was given to the plot of 

FACLS and DA, since these were identified as the two most important basin 

characteristics. The test br.sins were assigned to the nearest cluster on the plots. The plots 

used for the assignments are provided in Appendix C. The Andrews Fourier plots for 

the test basins were also compared with the plots for the cluster to which they had been 

assigned, and these did not suggest any better assignment (Appendix B). 
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Qavgfld was then estimated for each test basin for each of the candidate regionalization 

schemes by selecting the appropriate equation from Table S. 7. Three approaches were 

used in order to assess the success of each regionalization scheme 

• the residuals and the sums of squares of residuals were calculated, 

• a pseudo-T value was calculated, and 

• a nonpa.rametric rank sum was calculated. 

The pseudo-T test was developed as an indicator of the estimated value was within the 

expected range, given the variance of the model and the variance of the annual maximum 

daily flow in the basin in question. The test took the form 

Xca~c- x. 

where Xca~c is the estimated flow, x. is the average of the annual series of maximum 

daily flows, Varca~c is the error ~stimate of the model, and Varo~~~ is the variance of the 

annual series of maximum daily flows. A t value greater than 2 was somewhat 

arbitrarily taken to identify an unusually high value; for a standard t test, ~0.025,37) is 2.33. 

The nonparametric rank sum test was used to identify the model which tend~ to give the 

best estimates in the largest number of cases. In this test, the residuals were ranked from 

smallest to largest; the regionalization method which resulted in the smallest difference 

between the observed a· · ~ .. :•imated flow in a test basin was assigned rank 1 for that 

basin, and so on. The p~ Nas repeated for each basin, and the ranks were summed. 
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5.4 Results 

In general the results were poor. Figure 5.3 shows the scatter around the line of perfect 

agreement between observed and estimated flows. Figure S.3(a) shows all the basins, and 

Figure 5.3(b) enlarges the plot to show the results for the smaller basin more clearly. 

Table 5.8 lists the observed and estimated Qavgfld for each of the candidate 

regionalization methods, as well as the residuals, and Table 5.9 provides the results of 

pseudo-T and rank sum tests. The schemes based on the provincial gt Jgraphic divisions 

and on the nonhierarchical clusters appear to give the best results. The one-region 

assumption gives the worst, suggesting that any regionalization, whether in geographic 

or basin characteristic dataspace, l.elps. 

From a strictly statistical point of view, the models should be tested using a control 

group of basins similarly matched to the study basins. There are no test basins in 

provincial Region D, for example; this fact probably contributes to the success of this 

method of regionalization, because Region D is the most problematic. In the regionaliza­

tion based on size, there are only two large basins. These ooth have low FACI.S, and 

since FACI.S is very important in this eq .. ation (exiYJnent of -2), the estimates are very 

poor. 

From a prctetical point of view, however, the test basins are probably a good set to use, 

because they are quite typical of the basins for which flood estimates may be required. 

If the equations were ~ted using a matched group, the results would likely be 
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Table 5.8 

QavgDd Estimates and Residuals for Test Basins 

Y_ZS BASINS 
YOlO Joe: 
Y£1 OM 
YH1 BtmC 
YK7 Olde 
YKB Boot 
Yl.A StbP 
YLS Rtlr 
Y07 Lcb 
Y08 OtRt• 
YQ4 NWO• 
ZJ2 SmCh 
ZK3 LtBP 
ZK4 LSNH 
ZI.A Shrs 
ZLS BigB 

ZM16 SthH 
ZN2 StSh 

Jnc 
Orvt 
BtmC 
Olde 
Boot 
SthP 
Rtlr 
Lcb 
OtRt• 
NWO' 
SmCb 
LtBP 
LSNH 
Sbrs 
BigB 
StbH 
StSh 

Sum of 
SquarcdRs 
wo 21argest 

Estimated 
One 

Re2ion 

24.1 
.C0.4 
15.0 
30.0 
15.4 

596.1 
19.6 
40.6 

307.5 
886.3 
33.7 
57.7 
38.0 
45.0 
6.4 

10.4 
8.4 

One 
Re2ion 

12.5 
4.7 

10.1 
8.2 
8.0 

569.0 
7.7 

17.0 
88.5 

268.7 
21.8 
27.9 

-35.0 
33.3 
2.6 
0.6 
0.7 

408114 

328069 

pavgfld (m3/s) 
wsc Prov Size Clstr 
Y-Z ABCD 1.2.3 

20.9 8.4 25.3 24.8 
60.3 44.2 40.1 39.6 
19.9 16.6 17.3 16.7 
48.3 45.8 42.6 42.1 
7.2 7.5 9.9 9.5 

215.7 8S.9 24.1 51.7 
16.8 11.8 6.0 19.9 
19.1 12.1 32.9 32.4 

116.6 123.1 778.7 382.2 
1989 2619 1223.7 837.6 
16.3 15.1 25.1 25.4 
86.9 18.7 16.0 36.4 
44.7 41.9 47.5 46.7 
28.8 15.4 15.9 30.0 
5.3 7.3 6.4 6.1 

10.9 10.3 8.2 7.9 
43.9 9.4 8.3 8.0 

Residuals 

wsc Prov Siz.e Clstr 
Y-Z ABCD 1.2.3 

9.3 -3.2 13.7 13.2 
24.6 8.5 4.4 3.9 
15.0 11.7 12.4 11.8 
26.5 24.0 20.8 20.3 
-0.2 0.1 2.5 2.1 
188.0 58.2 -3.6 24.0 

4.9 -0.1 -5.9 8.0 
-4.5 -u.s 9.3 8.8 
-102 -959 559.1 1632 
-419 -356 606.1 220.0 

4.4 3.2 13.8 13.5 
57.1 -11.1 -13.8 6.6 

-28.3 ··31.1 -25.5 -263 
17.1 3.7 4.2 18.3 
1.5 3.5 2.6 2.3 
1.1 0.5 -1.6 -1.9 

36.2 1.7 0.6 0.3 

141172 68263' 77756 

42706 5446 1991 2725 
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Qavg Std 
Obs Dev 

11.6 4.3 
35.1 10.7 
4.9 1.2 

21.8 7.0 
7.4 4.2 

27.7 15.3 
11.9 7.2 
23.6 7.1 

219.0 81.2 
617.6 252.1 

11.9 1.8 
29.8 12.5 
73.0 15.1 
11.7 4.9 
3.8 0.8 
9.8 3.4 
7.7 2.4 



Table S.9 

Test Results for RegionalizationMetbods 
Pseudo-T 

Sum of 
Ranks 

One 
Region 

-1.6 
-0.4 
-1.5 
-0.8 
-1.0 

.,34.() 
-0.8 
-1.7 
-1.1 
-1.\ 
-3.1 
-2.0 

2.1 
-4.0 
-0.4 
-0.1 
-0.1 

One 
Regton 

3 
3 
1 
1 
5 
5 
4 
s 
1 
2 
s 
4 
s 
s 
4 
2 
3 

58 

WSC 
y..;.z 

-1.3 
-2.1 
-2.7 
-3.0 

0.0 
-l1.6 
-O.S 

o.s 
1.3 
1.7 

-0.9 
-4.3 

1.8 
-2.6 
-0.3 
-0.2 
-7.3 

Rsnk 

wsc 
Y-Z 

2 
s 
s 
5 
2 
4 
2 
1 
3 
4 
2 
s 
3 
3 
1 
3 
s 

55 

Prov Size Cbtr 
ABCD 1.2.3 

0.4 -2.9 -2.9 
-0.7 -0.4 -0.4 
-1.9 -5.2 -5.2 
-2.6 -2.8 -2.8 
-o.o -o.s -o.s 
-3.6 0.2 0.2 

0.0 0.8 o.s 
1.3 -1.3 -1.3 
1.2 -6.9 -6.9 
1.4 -2.4 -2.4 

-o.s -5.0 -5.1 
0.9 1.1 0.9 
2.0 1.7 1.7 

-0.6 -0.8 -0.4 
-1.2 -1.2 -1.2 
-0.1 0.4 0.4 
-0.5 -0.2 -0.2 

Prov Size Clstr 
ABCD 1.2.3 

1 5 4 
4 2 1 
2 4 3 
4 3 2 
1 4 3 
3 1 2 
1 3 5 
4 3 2 
2 5 4 
3 s 1 
1 4 3 
2 3 1 
4 1 2 
1 2 4 
s 3 2 
1 4 s 
4 2 1 

43 54 45 
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reasonable, instilling a false sense of confidence in users. \ 'ith no alternative, the 

equation would likely be applied in practice with data outside the allowable range. As 

it is, the poor results serve as a caution. The boxplots in Appendix B compare individual 

variables in the test data set with the study data set, and these can be used in a 

preliminary assessment of whether the characteristics of a particular ungauged basin lie 

within the acceptable range. Because the explanatory variables in multiple regression are 

multidimensional, however, it may be difficult to recognize whether an extrapolation is 

being made beyond the range of the original data set. The leverage statistic 1\= X0 '(X'X)" 

1x0 expresses the distance of a given point X0 from the centre of the sample observations. 

It may be calculated for an ungauged basin and used as a numerical diagnostic to detect 

such extrapolation (Helsel and Hirsch, 1992). 

The leverage statistics were checked for the one region equation (using the results of the 

OI..S analysis since these statistics are not available for NLLS). Two basins, South Brook 

at Pasadena (SthP) and Little Barachois near Placentia (LtBP) had leverage statistics 

beyond the value of 0.4, the highest in the data set used to generate the equation. The 

leverage statistic for SthP was 2.4, which explains the outlandish estimated flow of 597 

m3/s compared with an observed value of 27.7 m3/s. The leverage for LtBP was 0.45. 

The leverage values for three other basins, Rattler at Mclvers (Rtlr), Northwest Gander 

(NWG) and Shearstown Brook (Shrs) were high (>0.3) but within the range of the data 

of the study set. 
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So the fact that characteristics of the test data set are somewhat different from those of 

the study data set partly explains the poor results. An additional explanation is that the 

hydrologic input is only taken into account indirectly. Most of the equations for the 

subregions include some variable such as Fr-Barm, Fr-Forst or Dist-SW which at least 

in part represents hydrologic input. Because some of these variables are perhaps doing 

double duty, reflecting both input and basin response, it is not surprising that when the 

equations are tested they are not very robust. 

Hydrologic input can be accounted for by geographical regionalization. Traditional 

geographic regionalization assigns boundaries based on hydrological homogeneity. At 

least one part of the meaning of hydrologic homogeneity is homogeneity of input, i.e., 

similarity of hydrological events. Other types of similarity (such as terrain, geology or 

vegetation), are usually included in the definition as well, however, thereby clouding the 

issue. Logically, the two poles of regionalization approaches are 

1. to group basins according to similar hydrologic input, and develop 

equations using basin characteristics; 

2. to cluster basins according to basin characteristics, and develop equations 

using hydrologic input. 

All present methods faH somewhere in between. The results of the provincial g1:ographic 

regionalization for flood frequency analysis are interesting in this respect, because for 

two or three of the regions, the effect of the regionalization is to reduce the range of 
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Eff-P within each region, as shown in the boxplots in Appendix A. In those regions, the 

method accounts for hydrologic input by grouping the basins into areas of similar input. 

ConsequenUy the equations for those regions do not include the Eff-P variable. The 

provincial groupings for low flow analysis might show even less variation, since they 

were specifically grouped by similarity of ave~e annual precipitation and fraction of 

barren/forest. 

5.5 Alternative Approach 

How can the results be improved? One alternative is simply to wait for more data. In a 

few years data from the 17 test basins can be used, and the resulting models should give 

better results, covering a wider range of basins. The problem of the limited range of data 

will be reduced, but the question of hydrologic input will still remain. 

The alternative approach considered here is to include Eff-P as an independent variable 

representing hydrologic input. It was initially rejected because of the increased 

unctrtainty of the estimates, but this uncertainty may be compensated for by greater 

robustness when used with ungauged basins. As a first trial, therefore, a simple 'equation 

for the one-region case with DA and Eff-P was developed, and the estimate~ were 

compared with those obtained without using Eff-P. The regression equation was 

Q = 0.489DA0
·162Eff-P1·

756 

Tables 5.10 and 5.11 present the results together with those previously given in Tables 

5.8 and 5.9. They show a marked improvement. 
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Table 5.10 

QavgDd Estimates and Residuals for Test Basins: 
Alternate Method for One Region Case 

ODe Ran 
BlliD ODe WSC ProY Size Cllr DA+ Oava Sid 
10 RqiiD Y-Z ABCD 1.2.3 Ea-P Obi Dcv 

YOlO DC 24.1 20.9 8.4 25.3 24.8 11.8 11.6 4.3 
YEI PM 40.4 60.3 44.2 40.1 '"' 23.9 35.7 10.7 
YHI .IIDC u.o 19.9 16.6 17.3 16.7 12.0 4.9 1l 
YK7 plde 30.0 48.3 45.8 42.6 42.1 31.3 21.8 7.0 
YK8 ~ 15.4 7.2 7.5 9.9 9.5 1.2 7.4 4.2 
YlA ~thP 5!11;.7 215.7 15.9 24.1 51.7 14.9 27.7 15.3 

Yl.5 ~tlr 19.6 16.8 11.8 6.0 19.9 10.2 ! 11.9 7.2 
Y07 ~b 40.6 19.1 11.1 32.9 32.4 17.5 23.6 7.1 

Y08 PtRt• 'J(J1.5 116.6 1Zl1 778.7 3&.2 114.5 219.0 81.2 
YQ4 ~o· 886.3 1!18.9 261.9 1223.7 837.6 2iU 617.6 152.1 

lJ2 ~IIIGJ 33.7 16.3 15.1 25.7 25.4 21.3 11.9 1.8 

ZK.3 ~BP 57.7 86.9 18.7 16.0 36.4 17.6 29.8 12.5 

ZK4 ~NH 38.0 44.7 41.9 47.5 46.7 61.9 73.0 15.1 

zu ~ 4S.O 28.8 15.4 15.9 30.0 8.9 11.7 4.9 

ZLS ~i&B 6.4 5.3 7.3 6.4 6.1 4.3 3.8 0.8 

ZMI6 :ithH 10.4 10.9 10.3 8.2 7.9 9.1 9.8 3.4 

ZN2 StSh 8.4 43.9 9.4 8.3 8.0 8.3 7.7 2.4 

~aiduals Onelqn 

ODe WSC Prov Siz.c Catr DA+ 
ReP:,n Y-Z ABCD 1.2.3 Ea-P 

JDC 12.5 9.3 -3.2 13.7 13.2 1.2 
Cii'VI 4.7 24.C. 8.S 4.4 3.9 -llB 
BtmC 10.1 15.0 11.7 12.4 11.8 7.1 

Olde 8.2 26.5 24.0 20.8 20.3 9.5 

Boot 8.046 -0.189 0.056 1.483 1.122 -112)9 

SthP 569.0 188.0 58.2 -3.6 24.0 -12.8 
Rllr 7.7 4.9 -0.1 -5.9 1.0 -1.7 
ub 17.0 -4.5 -u.s 9.3 u -6.1 
OIRt• 18.5 -lCIZ -95.9 559.7 IW -ICM.S 

NWO• 268.7 -419 -356 606.1 2».0 -342.8 
SalOl 21.8 4.4 12 13.8 13.5 9.4 

UBP 27.9 57.1 -11.1 -13B 6.6 -w 
LSNH -35.0 -283 -31.1 -25.5 -263 -11.1 

Shn 33.3 17.1 17 4.2 18.3 -2.8 

Bl&B 1.632 1.491 3.516 2.597 2.294 0.486 
SthH 0.567 1.U9 0.484 -uu -1.933 -O.E86 

StSb 0.743 36.159 1.736 0.643 0.290 0.590 

4(8114 228482 141172 6BZ631 

wo21qal 328069 42706 5446 1991 



Table 5.11 

Test Results with Alternate Method 
Pseudo-T 

OneRgn 
One WSC Prov 

ABCD 
Cbtr DA+ 

Sum of 
Ranks 

Region Y-Z 1.2.3 Eff-P 

-1.6 -1.3 G. t _ -:. ,.: ,-·.-::-_2.9 .. :, ______ ._,":"'2.9 
-0.4 _·_···:·_;..2.1 -0.7 -0.4 -0.4 
-1.5 .·: ;• -'1.7 -1.9 ·: .. :'·:. -5.2 .... -,~5.2 
-0.8 . ; · .. : .. :.:::.::.:~3.0 . ·:_· .. .. · .,.-~2.6 · . .-::_:-.: :. ~2.8 :. :_:_:. :.· .. ~2.8 
-1.0 o.o -o.o -o.s -o.s 

-34.0 :'·.: -~ 11.6 .. :--: ·--. ·;.:;;3.6 0.2 0.2 
~.8 -~ M ~ ~ 
-1.7 0.5 1.3 -1.3 -1.! .. 
-1.1 1.3 1.2 -6.9 
-1.1 1.7 1.4 -2.4 
-3.1 -0.9 -0.5 .-5.0 
-2.0 .. -4.3 0.9 1.1 

2.1 1.8 2.0 1.7 
-4.0 ..;2.6 -0.6 -0.8 
-0.4 -0.3 -1.2 -1.2 
-0.1 -0.2 -0.1 0.4 
-0.1 -7.3 -05 -0.2 

One 
Region 

4 
3 
2 
1 
6 
6 
5 
6 
1 
2 
6 
5 
6 
6 
5 
2 
4 

70 

Rank Sum Test 

wsc Prov 
Y-Z ABCD 

3 2 
6 4 
6 3 
6 s 
2 1 
s 4 
3 1 
1 5 
3 2 
s 4 
2 1 
6 2 
4 5 
4 2 
2 6 
4 1 
6 s 

68 53 

Size 

6 
2 
s 
4 
s 
1 
4 
4 
6 
6 
s 
4 
2 
3 
4 
s 
3 

-6.9 
~2.4 

... ~5.1 
0.9 
1.7 

-0.4 
-1.2 

0.4 
-0.2 

Clstr 
1.2.3 

-1.7 
-0.3 
-1.8 

::.· .. : .. ::·:_ ;_2..1 
-0.3 
-1.4 
-0.8 
-0.9 
-2.0 
-0.9 
-2.0 
-0.5 

1.6 
-2.3 
-0.4 

0.3 
-0.0 

OncRgn 
DA+ 
Eff-P 

213 
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On all measures the simple model with DA and Eff-P is superior to any of the others 

(although the very large squared residual for NWG, the largest basin, gives the cluster 

method an overall lower total sum of squared residuals). In addition, all the test basins 

are within the range of the data as indicated by their leverages. 

The plots in Figures S.4 to S.6 compare the estimated and observed floods u~in~ this one 

region equation with some of the alternatives derived from the varie:.u reg~ot~~ization 

methods. Figure 5.4 compares the DA-Eff-P equation with the previous one region 

model. It shows that while the DA-Eff-P equation underestimates the flow for the two 

largest basins, due to the fact that it does not take into account the faster response of the 

large basins with less control by lakes and swamps, the previous one-region eqW.1tlo.' 

(with DA, Fr-Barrn, and FACLS) overestimates a similar amount. The previous equation 

also cannot take into account the extreme wetness of the Little SaJmonier North Harbour 

(LSNH) basin. 

Figure 5.4(b) expands the scale to show the results for the smaller basins more clearly. 

The estimate for SthP by the previous method does not appear on this plot, because it is 

nearly 600 m3/s, compared with an observed value of 27.7 m3/s. The other estimates are 

generally better with the DA-Eff-P model. 

Figure 5.5 shows a similar comparison between the DA-Eff-P (one-region) results and 

the previous results assuming the provincial regional subdivisions. The DA-Eff-P results 
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are as good or better than the results using the provincial regions. Similarly, Figure 5.6 

compares the one-region DA-Eff-P results with the results using the cluster method of 

regionalization. Again, the results are as good or better. 

There are no test basins in the areas of the island where flows are generally considered 

difficult to estimate, e.g., the south coast or the eastern side of the Great Northern 

Peninsula, so the performance of the model cannot be checked in those areas. 

S.S.l Estimating Effective Precipitation 

One argument against using effective precipitation as an explanatory variable is 

that it is difficult to estimate. In fact it was because of the additional uncertainty 

in estimating Eff-P that it was at first rejected. In its favour is that it can be 

estimated everywhere, and the estimates will virtually always be bounded. The 

results presented in Chapter 4 of this study identified the imp·Drtant topographic 

and geographic variables which should be taken into account when estimating Eff­

P, even if no equation for Eff-P can be recommended. 

For a quick estimate of Eff-P, the isohne maps presented in various water 

resources studies for different areas of the province may be used (Gov't of Nfld, 

1987, 1988, 1989, 1990b, 1992, 1993). This method was used for the test basin 

estimates. A better estimate can be obtained by using the equations presented in 
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Chapter 4, together with data from surrounding gauged basins and a consideration 

of basin elevation and orientation relative to the gauged basins. 

5.6 Extension of DA-Eff-P Approach to Regions 

The alternative approath using only the two !.imple variables DA and Eff-P in a one 

region equation was shown to offer marked improvement over approaches using basin 

characteristics only. The next question was whether developing new equations within the 

regions, including Eff-P as an independent variable, might improve the results further. 

Equations using DA and Eff-P were therefore developed for all subregions in which Eff­

P was significant. The coefficients and statistics of these equations are presented in Table 

5.12. As \:.:pected, the uncertainty is higher in the regions where Eff-P is included as an 

explanatory variable, and highest where the coefficient associated with Eff-P is highest 

(e.g., provincial geographic Region C). 

As this table shows, Eff-P was not a significant explanatory variable (i.e., p > 0.05) in 

provincial regions A and B. This finding confirms the earlier comment that one effect 

of geographic regionalization can be to take account of hydrologic input. On the other 

hand, Eff-P is very important in the other geographic regions, especially region C. 

The equations for Region D and for Cluster 2+4 include both DA and Eff·P, although 

strictly speaking there are too many parameters for the number of cases. The results 

were very poor with only one independent variable, however, and the coefficients of the 



TableS.12 

Alternative Regional Models 

(a) Oeoppbic Repaas 

',)(}\:d~~~)f;: :.:·\ ... :~:. :·: .• ,:·.::vjf}; f :J~~ : ;: .)~ -. :~ B 
:.:·:. :.::.;.: .. ::·=:··: · .. . 

·: : 

N 40 20 20 12 12 

Constant 0.489 0.334 1.171 1.1m 0.117 
DA 0.862 o.m 0.700 0.7&l 1.092 
FACLS 
Dr-Dals 0.826 
Fr-Barm 
Fr-LSW 
Eff-P 1.756 1.753 1.788 

rz 0.949 0.993 0.949 0.989 0.900 
r2 corr o.u o.m O.BW 0.979 0.9llJ 

ssres 62395 6720 14216 692 9542 
n-p 37 17 17 10 9 
error est 41.1 19.9 28.9 83 32.6 

CV(0)"'2 0.031 0.032 0.032 0.001 0.001 
Uncenainty 0.177 0.118 0.1~ 0.023 0.033 

(b) Basin Characterisic Regions/Ciusten 

N 

Constant 
DA 
FACLS 
Or-Dens 
Fr-LSW 
Eff-P 

llff3 

n-p 
error est 

CV(0)"'2 
Uncenaintv 

13 

0.673 
0.878 

0..3al 

0.976 
0.889 

250 
10 

5.0 

0.004 
0.061 

27 

0.497 
0.861 

1.768 

0.949 
0.882 

60950 
24 

50.4 

0.033 
0.183 

24 

0.457 
0.871 

1.642 

0.948 
0.888 

57292 
21 

52.2 

0.()2.9 
0.110 

11 

0.629 
0.865 

0.620 

0.983 
0.933 

123 
8 

3.9 

0.006 
0.078 

c 
10 

0.435 
0.871 

2.~ .. -

0.993 
0.91rl 

3102 
7 

21.1 

0.063 
0.251 

5 

0.972 
o.sm 

1.«8 

0.986 
0.!00 

1416 
2 

26.6 

o.ozz 
0.149 

220 

D 

6 

1.472 
0.700 

1.569 

0.987 
0.926 

1923 
3 

253 

0.02S 
0.158 
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equations with two vatiables were quite reasonable. The improvement was such that even 

with relatively few cases the adjusted r's are high. Since there are no test basins in 

Region D, the equation for that region is never used. 

The observed and estimated flows and the residuals are presented in Table 5.13. The 

plots in Figure 5. 7 show the estimated and observed values. The large basins continue 

to be underestimated, presumably because of their low FACLS. The cluster method 

takes account of this best. The pseudo-T values and the rankings are given in Table 

5.14. The sums of squared residuals are down for all regionalization methods, from 

about 10 percent to over 200 percent. The number of pseudo-T values with absolute 

values greater than 2 is reduced from 26 to 8. 

The one-region equation continues to perform reasonably well. The Y -Z regions are also 

quite promising, especially as measured by the sums of squared residuals. If the two 

largest basins are excluded, the Y -Z regionalization method has the lowest sum of 

squared residuals, and even with these two it is has the second lowest. Only one pseudo­

T value is significant. The Y -z regionalization is geographic, and may represent some 

additional information about hydrologic _.,~ut which is not represented by Eff-P. 

The nonparametric rank sums test suggests that clustering basins by their physiographic 

characteristics is slightly better than assuming only one region, which in tum is slightly 



Table 5.13 

QavgfldEstimatesand Residualswith DA and Eff-P 

B 
c 
c 
c 
c 
c 
c 
B 
B 
B 
B 
A 
A 
A 
A 
A 
A 

Basin 
10 

Basin 
ID 

YOlO ~nc 
YEl PM 
YHl ~tmC 
YK7 Plde 
YK8 ~l 
YU ~thP 
YLS ~tlr 
Y07 ~h 
Y08 OtRt• 
YQ4 ~o· 
ZJ2 ~mCh 
ZKJ L.otBP 
ZK4 LSNH 
ZL4 Shrs 
ZLS BigB 
ZM16 SthH 
ZN2 StSh 

Sum of 
Sgrd resds 
wo 21argest 

One wsc Prov Siz CJstr Qavg 
Rgn Y-Z ABCD 1-2-3 Obs 

12.8 11.5 8.4 23.6 20.1 11.6 
23.9 22.0 21.3 38.0 33.0 35.7 
11.9 10.2 11.7 15.2 13.9 4.9 
31.1 28.9 29.9 43..2 38.3 21.8 

1:1. 6.0 6.8 9.7 8.8 7.4 
14.9 13.3 13.2 23.5 23.8 27.7 
10.2 8.3 11.9 9:1. 15:1. 11.9 
17.5 16.0 12.1 32.4 27.4 23.6 

1145 120.4 123.1 115.0 162.7 219.0 
274.7 308.6 2619 275.7 367.7 617.6 
21.3 25.0 15.1 31.4 27.6 11.9 
17.5 23.5 18.7 17.8 25.7 29.8 
61.2 70.0 41.9 47.5 46.7 73.0 
8.9 12.3 15.4 12.S 14.5 11.7 
4.3 6.9 7.3 5.1 52 3.8 
9.1 13.8 10.3 9.1 8.7 9.8 
8.2 12.7 9.4 8.3 7.9 7.7 

Residuals 

One wsc Prov s~ Clstr 
Rgn Y-Z ABCD Large 1:1..3 

1.2 -0.1 -3.2 12.0 8.5 
-11.8 -13.7 -l4A 2.3 -2.7 

7.0 5.3 6.8 10.3 9.0 
9.3 7.1 8.1 21.4 16.5 

-0.2 -1.4 -0.6 2.3 1.4 
-12.8 -14.4 -145 -4.2 -3.9 
-1.7 -3.6 -0.0 -2.7 3.3 
-6.1 -7.6 -u.s 8.8 3.8 

-104.5 -99 -95.9 -104.0 -56.3 
-342.9 -309 -356 -341.9 -249.9 

9.4 13.1 3:1. 19.5 15.7 
-12.3 -6.3 -11.1 -12.0 -4.1 
-11.8 -3.0 -31.1 -25.5 -26.3 
-2.8 0.6 3.7 1..2 2.8 

0.5 3.1 3.5 1.9 1.4 
- 0.7 4.0 o.s -0.7 -1.1 

0.5 5.0 1.7 0.6 0:1. 

129407 105996 137526 129681 67065 
867 818 1800 1999 1443 
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Std 
Dev 

4.3 
10.7 

1.2 
7.0 
4.2 

15.3 
7.2 
7.1 

81.2 
252.1 

1.8 
12.5 
15.1 
4.9 
0.8 
3.4 
~t4 
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Table 5.14 

Test Results with DA and Eff-P 

Basin One wsc Prov Size Clstr 
ID Ran Y-Z ABCD Large 1-2-3 

B -0.2 0.0 0.4 -2.5 -1.8 
c 0.9 1.2 1.2 -0.2 0.3 
c -1.1 -1.1 -1.4 ..:4.1 -3.9 
c -1.0 -0.9 -1.0 .. ·-2.9 -2.3 
c 0.0 0.2 0.1 -o.s -0.3 
c 0.8 0.9 0.9 0.3 0.2 
c 0.2 0.4 0.0 0.4 -0.4 
8 0.6 0.9 1.3 -1.2 -o.s 
e 1.3 1.2 1.2 1.3 0.7 
B 1.4 1.2 1.4 1.4 1.0 
B -1.4 -2.3 -o.s -6.8 -59 
A 0.9 o.s 0.9 0.9 0.3 
A 0.7 0.2 2.0 1.7 1.7 
A 0.3 -0.1 -0.6 -0.2 -0.4 
A -0.1 -0.6 -1.2 -0.8 -0.7 
A 0.1 -0.6 -0.1 0.2 0.3 
A -0.1 -0.9 -0.5 -0.2 -0.1 

Rank Sum Test 

Basin One wsc Prov Size Clstr 
ID Rgn Y-Z ABCD Large 1-2-3 

YOlO ~nc 2 1 3 s 4 
YE1 tirvt 3 4 s 1 2 
YHl ~tmC 3 1 2 s 4 
YK7 Olde 3 1 2 s 4 
YKB Boot 1 4 2 s 3 
YU ~thP 3 4 s 2 1 
YLS ~tlr 2 s 1 3 4 
Y07 _,11 2 3 s 4 1 
Y08 ptRt* s 3 2 4 1 
YQ4 ~G• 4 2 s 3 1 
ZJ2 ~mCh 2 3 1 s 4 
ZK3 ~tBP s 2 3 4 1 
ZK4 ~NH 2 1 s 3 4 
2lA ~hn 4 1 s 2 3 
ZLS BigB 1 4 s 3 2 
ZM16 SthH 3 s 1 2 4 
ZN2 StSh 2 s 4 3 1 

Sum of Ranks 47 49 56 59 44 
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better than the Y-Z regionalization. (Reali that the clusters were based on similarity of 

FACLS, El-Cntrd and Fr-Barm.) Became the model variance for the cluster equations 

is small, however, there are more high pseudo-T values. The large model variance of the 

one region equation means that none of the pseudo-T values are greater than 2. The 

clusters based on size alone perform the worst in the rank sums comparison. The 

provincial regions also do not perform especially well. 

The results are not conclusive, but in general they confirm that using DA and Eff-P gives 

better results for all regionalization methods than using basin characteristics alone. The 

Y-Z results also suggest that there is room for some further refinement of hydrologic 

input. 

5.6.1 Additional Explanatory Variables 

A final comparison was made with models including a third variable in addition 

to DA and Eff-P, where such a model could reasonably be developed. The 

coefficients and relevant statistics of the final models are presented in Table S-15. 

Additional variables could be included in the equations for one region (all-island), 

for the Y and Z regions, and for the basins greater than 130 km2• The third 

variable was always FACLS except for Region Y where it was Fr-I.Sw. The 

estimates and test results are shown in Tables S-16 and S-17. 
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Table S.lS 

AlteroativcRegionaiModelswith a Third Variable 

(a) Geographic Regions 

All wsc Prov 
Island y z A B c D 

• • • 
N 40 20 20 12 12 10 6 

Consaant 0.524 0333 1.510 1.1(0 0.117 0.435 1.472 
DA 0.843 0.839 0.667 0.783 1.092 0.871 0.700 
FACLS -0.745 -0.710 
Dr-Dens 0.826 
Fr-Bann 
Fr-LSW -0.366 
Eff-P 1.194 1.211S 0.942 2.495 1.569 

r2 0.964 0.9% 0.971 0.989 0.900 0.993 0.987 
r2corr 0.936 0.992 0.951 0.979 0.9al 0.98i 0.926 

ssres 43338 3956 6347 692 9542 3102 1923 
n-p 36 16 16 10 9 7 3 
error est 34.7 15.7 19.9 8.3 32.6 21.1 25.3 

• -a third variable was used in additl>n to DA and Eff-P 

(b) Basin Characterisic Regions/Clusters 

Sire (k!12) Clusters 
~130 >130 1 3 2+4 

• 
N 13 27 24 11 s 
Constant 0.673 0.53> 0.457 0.629 0.972 
DA 0.878 0.844 0.871 0.865 0.803 
FACLS -0.738 
Dr-D:ns 
Fr-LSW 
Eff-P O.Jm 1~ 1.642 0.620 1.403 

r2 0.976 0.964 0.948 0.983 0.986 
r2 c:orr 0.889 0.917 0.888 0.933 0.950 

sues 250 43115 57292 123 1416 
n-p 10 23 21 8 2 
error est 5.0 43.3 52.2 3.9 26.6 



TableS.16 

QavgOd Estimates and Residuals- Models from Table 5.15 

1 :~:;.:,.;, :::·;:;. 
: &.;in 

j::: .. JP.·;':::\_'_: 
.. · ... :: . • . . 

YOlO ~nc 
YEl Prvt 
YHl ~tmC 
YK7 plde 
YK8 ~· YL4 ~thP 
YLS ~tlr 
Y07 ~b 
Y08 ptRt• 
YQ4 ~o· 
ZJ2 ~mCh 
ZK3 ~tBP 
ZK4 ~NH 
ZlA Sbn 
ZLS ~igB 
ZM16 ~thH 
ZN2 StSb 

Sum of 
Sqrd resds 
wo21argest 

One · ·.wsc .. Prov ... : ·. Sfm :-:, . Clstr 
. : i{gii :: .. :·:· ;:y~z· :·· :A8co ·. :::,::.:~:::::;,:::: !,: ; /:·_::· . i~2-3 
. =":·. ·:.:· : ::·:-:. ~,: ·: .. ::· · .. ' ·. ·'. ·_. :, :.' . ;·· '::·.~:::. :· ~ : .. : : . :< . 

4.7 4.4 -3.2 12.0 8.5 
-8.7 -2.9 -14.4 2.3 -2.7 

7.0 10.1 6.8 10.3 9.0 
8.8 17.4 8.1 21.4 16.5 
2.3 0.1 -0.6 2.3 1.4 

12.3 12.2 -14.S -4.2 -3.9 
3.3 1.1 -0.0 -2.7 3.3 
0.3 -4.8 -u.s 8.8 3.8 

-34D -95A -95.9 -352 -563 
-103.3 -353.8 -356 -1()6.8 -249.9 

12.4 20.2 3.2 19.5 15.7 
4.0 16.6 -11.1 -l2D -4.1 

-23.S -11A ··31.1 -2S.S -263 
6.3 16.1 3.7 1.2 2.8 
o.s 4.1 3.5 1.9 1.4 

-1.2 4.1 0.5 -0.7 -1.1 
0.7 6.1 1.7 0.6 0.2 

18066 136204 137526 14647 67065 
6131 1921 1800 1999 1443 

,, 

228 



229 

Table 5.17 

Test Results with Models from Table 5.15 

Pseudo-T 

Basin One wsc Prov Size Clstr 
ID Rgn Y-Z ABCD 1-2-3 

8 -0.6 -0.8 o.s . -2.5 -1.8 
c 0.7 0.3 1.2 -0.2 0.3 
c -1.2 . -2.4 -1.3 . ·.: ..;.4,1 ·· .. ·.-:.·'-3.9 

c -1.0 .. -2.2 -0.9 ·-2.9 -:.-:·· .:..2.3 
c -0.3 -o.o 0.1 -0.5 -0.3 
c ·: ... · :·-4.4 -0.8 0.9 0.3 0.2 
c -0.4 -0.1 0.0 0.4 -0.4 
B -o.o 0.6 1.4 -1.2 -0.5 
B 0.4 1.2 1.2 0.4 0.7 
B 0.4 1.4 1.4 0.4 1.0 
B -2.0 ~4.2 -0.6 -6.8 -5.9 
A -0.3 -1.2 0.8 0.9 0.3 
A 1.4 1.1 1.9 1.7 1.7 
A -0.8 -2.4 -0.5 -0.2 -0.4 
A -0.1 -0.9 -0.6 -0.8 -0.7 
A 0.2 -0.7 -0.1 0.2 0.3 
A -0.1 -1.2 -0.3 -0.2 -0.1 

Rank Sum Test 

Basin One wsc Prov Size Clstr 
10 Rgn Y-Z ABCD Large 1-2-3 

YOlO Inc 3 2 1 5 4 
YEl tlrvt 4 3 5 1 2 
YHl BtmC 2 4 1 s 3 
YK7 Plde 2 4 1 5 3 
YK8 ~· 2 4 1 s 3 
YL4 ~thP 5 1 2 4 3 
YLS ~llr 5 2 1 3 4 
Y07 ~h 1 3 s 4 2 
YOS PtRt• 1 s 2 3 
YQ4 ~wo• 1 4 s 2 3 
ZJ2 ~mCh 2 5 1 4 3 
ZK3 ~tBP 1 5 3 4 2 
ZK4 ~NH 2 1 s 3 4 
ZL4 ~hrs 4 s 3 1 2 
ZLS ~1gB 1 s 4 3 2 
ZM16 ~lhH 4 s 1 2 3 
ZN2 SaSh 3 5 4 2 1 

.. 
Sum of Ranks . 43 -"·."48" ss 47 
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The estimates for the large basins are improved, but otherwise the results are the 

same or not as good as without the additional variable. The sums of squared 

residuals are improved for the one-region method and for the method based on 

size. This result occurs because including FACLS markedly improves the estimate 

for the two largest test basins. For most of th~ test basins, the estimates are no 

better or even worse, as shown by comparing the sums of squared residuals 

without the two test basins. There are 13 pseudo-T values greater than 2, 

compared with 8 in Table 5.14. 

Neither the sum of squared residuals nor the rank sum test suggest a clear 

preference for one rcgionalization method over another • the one region method 

has the lowest sum of ranks, but the highest sum of squared residuals when the 

two largest test basins are excluded. Four of the basins in the one region equation 

have high leverage (SthP, NWG, LtBP and Shrs) compared with none in the 

equation with DA and Eff-P only. 

S. 7 Comments and Suggested Procedure 

From the comparisons of the various equations and regionaliza.tion methods, we can 

conclude that dividing the island into regions can improve estimates of average flood 

flow at ungauged basins, particularly if Eff-P is included to represent hydrologic input. 

The region/clusters provided here may not be optimal, but they do offer the opportunity 

to make several estimates before making a choice for design. 
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If an estimate of an avera,e flood is required at an ungauged basin, the following 

approach is suggested. 

1. Measure the basin characteristics of importance. These include drainage area, 

area controlled by lakes and swamps, drainage density, fraction of barren and 

fraction of lakes and swamps; the number of characteristics depends on the region 

or cluster of the ungauged basin. 

2. Estimate Eff~P (as described in Section 5.5.1). 

3. Locate the basin in a geographic region using the map in Appendix A and in a 

cluster using the plots in Appendix A. Calculate standardized values using the 

basin characteristic data presented in Chapter 3. 

4. Use the equations provided in Tables 5.6, 5.12, and 5.15 to obtain estimates of 

Qavgfld for the appropriate region or cluster. All of the geographic (one-region, 

Y-Z, ABCD) and cluster options should be considered. 

5. Select the most reasonable estimate, taking into account the characteristics of the 

ungauged basin compared with the basins used in the data set. Use the boxplots 

in Appendix B as a guide, as well as the tables of characteristics presented in 

Chapter 3. 
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6 Conclusions and Recommendations 

The principal conclusion of this research is that with careful selection of basin 

characteristics, good relationships can be: obtained between flow measures and basin 

characteristics on the island of Newfoundland. Stronger relationships may be obtained 

with su1x:tvision of the island in either geographic or basin characteristic dataspace. 

A particular problem in hydrologic analysis in Newfoundland is the lack of data to 

represent hydrologic input, due to the Jack of inland precipitation measurement stations. 

Because of the nature of the weather patterns affecting the island, topographic and 

geographic variables can be used to represent hydrologic input, and therefore should be 

included in the data set. They may be used either as independent variables in a regression 

equation to estimate a hydrologic input variable, or as surrogates in equations for other 

flow variables. 

The basin characteristics consistently found to be important for a range of flow measures 

from low to high flows are 

• drainage area; 

• fraction of area controlled by lakes and swamps, or scm~times 

alternatively the fraction of the basin area occupied by lakes and swamps; 
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• fraction of barren area in the basin, or sometimes alternatively the fraction 

of forest area (inversely related to fraction of barren); 

• distance from the sea in a southwesterly direction, and distance north.; 

• elevation of the basin. 

The last three variables are associated with the location of the basin relative to incoming 

weather systems and represent hydrologic input. 

Other conclusions are as follows. 

• Hi&h nows: For high flows, a more direct representation of hydrological input 

improves regression relationships. Effective precipitation (total precipitation minus 

losses) is a suitable variable, which can be estimated using topographic and 

geographic variables. A procedure was developed to improve the estimate using 

mapping and data from adjacent gauged basins as well as climate stations where 

available. Alternatively, the topographic and geographic variables associated with 

effective precipitation can be incorporated directly in the equations for other flow 

variables. 

For the average annual maximum daily flow, the important explanatory variables 

are drainage area, effective precipitation, and the fraction of the drainage area 

controlled by lakes and swamps. Slope also has some importance. If effective 

precipitation is not included as a basin characteristic, the elevation of the centroid 
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and some measure of exposure to incoming weather systems (fraction of barren 

or fraction of forest) are required as surrogates. 

• Flood variabWty: The linear coefficient of variation (Lev) was used as the 

measure of flood variability. The relationship between Lev and basin 

characteristics is not clear; there are obviously several factors interacting which 

would require a much larger data base to elucidate. In general higher Lev is 

associated with higher flood flows, and basins in the southern part of the island 

(WSC Z region) tend to have higher Lev's. In this region, lev tends to be related 

to drainage area, distance from the sea, elevation and slope. In the central and 

northern part of the island (WSC Y region), or when the island is treated as a 

whole, the important basin characteristic is the area controlled by lakes and 

swamps. 

• FD-10: The flow having an exceedance of 10 percent on the flow duration curve 

was selected as a measure of high (but not flood) flows, in the range of about 

twice the mean annual flow. As with Lev, the division into Y and Z geographic 

subregions resulted in somewhat stronger relationships. In the Y region, about 60 

percent of the variance can be explained by drainage density, distance north, and 

fraction of lakes and swamps. In the Z region, much less of the variance can be 
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explained; the two most important factors appear to be the fraction of the basin 

controlled by Jakes and swamps and the slope. 

• Low Flows 

The low flow measures selected were the median minimum daily flow from the 

annual series (both dimensional and as specific low flow), and the 90th 

exceedance percentile from the flow duration curve (FD-90). The findings for all 

measures were that the important explanatory variables are drainage area, distance 

north (and sometimes southwesterly distance from the sea as :~:·ell), area 

controlled by lakes and swamps, and fraction of barren. For the low flows, 

effective precipitation was not especially important. 

• A vallablUty 

Flow duration measures were used as measures of availability or flashiness. FD-

50, the median daily flow, was selected as the most suitable index of availability 

after consideration of some alternative indices. The findings were that the most 

important explanatory variables are drainage area, fraction of area controlled by 

lakes and swamps, and one or more of the distance and elevation variables. As 

with low flows, effective precipitation is not required to explain availability. 
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• Realonal Subdivisions - Example with Qavand: The study provides an 

assessment of regional &ubdivisions for the purpose of developing regression 

equations to estimate the mean maximum daily flow (Qavgfld). The conclusions 

of this part of the study were as follows. 

1. Clustering based on basin characteristics is a promising method of 

regionalization. Characteristics must be carefully selected and weighted, 

however. 

2. Some of the geographic regionalization methods are also reasonable. 

Geographic regions based on similari~ of hydrologic input eliminate the 

need to include a hydrologic input variable in predictive equations. None 

of the geographic regionalization methods assessed in this study eliminated 

the need to include a hydrologic input variable at least in some regions. 

3. Effective precipitation is a suitable variable to represent hydrologic input 

where required. Although there is more uncertainty in estimating effective 

precipitation than other basin characteristics, which may be obtained by 

measurement from topographic maps, the improved prediction at ungauged 

sites compensates for a higher uncertainty. 

Recommendations 

The recommendations arising from this study are as follows. 
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1. Estimates of flows at ungauged sites should not be made from regression 

equations only, unless the ungauged site is very similar in its characteristics to the 

gauged basins used to develop the regression equations. Nonetheless, the 

regression equations developed in this work may be used to provide preliminary 

estimates of flows of interest at ungauged sites, in particular for Qavgfld. These 

estimates should be modified if the location and characteristics of the ungauged 

site are not similar to gauged basins in the data set. The results of the regression 

analysis together with the discussion provided in the present work on the relevant 

basin characteristics can provide guidance for judgment. 

2. Further investigation should be carried out into the possible improvement of 

regression equations using different geographic regions or clusters in basin 

dataspace. 

3. Similar investigations should be undertaken for other flow measures besides 

Qavgfld, particularly in about three to five years, when about 20 additional basins 

will have record lengths of ten years or more and can be added to the data base. 

4. The climate network should be expanded to incl\ide more climate stations inland 

at higher elevations. 
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