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Ahqract 

The Rambler is one of the five VMS deposits of the ConSCtlidated Rambkr ~tines 

properties which occur in thf' Pacqurt Harhour Group: a dc:fMmed and metamnrphosl:d 

sequence of volcanic and sedimentary rocks located on the east half of the Baic Vcrtc 

Pen·,nc;ula in Central Newfoundland. The deposit contains alteration and base metal 

sulphide assemblages typically associated with VMS minerali1ation, but is highly 

deformed and occurs as a northeast trending, shallow dipping, ellipsoidal body I above 

a prominent imbricate shear zone. The syn-kinematic quartz + muscovite ± chlorite 

assemblages in the shear zone are of uncertain origin, but similar to the alteration in 

several epigenetic I mesothermal gold prospects which occur throughout the Baic Vert 

region. The alteration and sulphide assemblages associated with the deposit and its shear 

zone are cut by quartz-carbonate veins which contain their own characteristic alteration 

assemblages. All alteration assemblages are overprinted by disseminated biotite related 

to a late metamorphic event. 

Oxygen isotope thermometry and calculated o110 and oD fluid values confirm a complex 

thermal and fluid history in the Rambler deposit. An early high temperature event is 

recorded by the isotopic composition of a dark green variety of chlorite in massive 

sulphide horizons, which equilibrated with a high 110 magmatic fluid; o110 and oD values 

of +9.0 to +9.4%o and -39%o at 430 to 480°C, A decrease in temperature (- 200 to 

300°C) and shift in o110 and oD fluid values to +4.4 and +4.6%o' and -26 to -37%o I 

respectively, are associated with the occurrence of a pervasive secondary lighl green 

chlorite which may have equilibrated with a mixture of seawater and metamorphic fluids 

during greenschist metamorphism and deformation of the Pacquet Harbour Group. The 

presence of an additional low 1110 ( < +5%o) low 0 ( <-60%o) fluid during deformation 

is suggested by o110 and oD mineral values of +6.4 to +8.2%o and -55 to -70o/oo for 

muscovite which are out of equilibrium with values of + 2. 9 to + 7.5 %o and -57 to -73 %o 

for coexisting chlorite. Low 51~0 chlorite fluid values of 0 to +4.1 %o at 180 to 200°C 

may be related to an influx of meteoric waters during the formation of qua.rtz-carbonatc 

11 



vt=ins. 

Metamorphic biotite in the stratigraphy of the deposit appears to have equilibrated \'.:ith 

a high'"() fluid. with r)''O values as high as +7.5 ~c and oD values of -~1 to -~9':Cc at 

tcm~ratures of 540 and 56WC. Similar biotite occurs in contact metamorphic 

assemblages along the margin of the Burlington Granodiorite to the west of the 

Consolidated Rambler Mines properties. 

Alteration mineralogy and isotopic composition of the low 180-low D fluid which affected 

the Rambler is distinct from the isotopic composition of the C02-rich, low D fluids in 

equilibrium with chlorite and muscovite during the formation of two epigenetic / 

mesothermal gold deposits in the Baie Verte and Springdale regions. The replacement of 

seafloor assemblages in massive sulphide horizons by syn-kinematic assemblag~s in the 

footwall shear zone suggests the distinct low 1 ~0-low D hydrothermal fluid may have 

evolved from the intlux and mixing of formational and meteoric fluids during the 

obduction and imbrication of the Pacquet Harbour Group and its emplacement over the 

Laurentian continental margin. 
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Introduction and Purpose or Study 

The Ramhler project was initiated in 1989 to contribute to the research initiatives of the 

Newfoundland Department of Mines and Energy focused on characterising the occurrence 

of base metal and gold minerali7.ation in the volcanic terrains in Central Newfoundland. 

The main objective of the study was to determine whether a late alteration event was 

superimposed on volcanogenic massive sulphide (VMS) mineralization in the Rambler 

deposit, and whether stable isotope geochemistry could be used to distinguish between 

VMS, and the possible epigenetic alteration silicate and sulphide assemblages in the 

deposit. A secondary objective was to attempt to correlate gold occurrences in the 

deposit with either the syngenetic or epigenetic event(s). 

VMS and epigenetic gold deposits and prospects occur in close proximity in several areas 

of Central Newfoundland. Hudson and Swinden (in prep) have described syn-volcanic 

base metal and syn-kinematic gold mineralization in the VMS deposits of the Gull bridge 

area. Weick et al. (1989) describe similar VMS and mesothermal gold occurrences on 

the Consolidated Rambler Mines properties in the Pacquet Harbour Group at the centre 

of the Baie Verte Peninsula. 

The Rambler VMS deposit is intensely deformed. Its massive and stockwork alteration 

and sulphide assemblages occur in a northeast trending, shallow-dipping linear orebody 

above a prominent imbricate shear zone which cuts through the footwall of the deposit. 

Imbricate shears overprint regional greenschist and seafloor hydrothermal alteration 

assemblages and massive sulphide horizons with local quartz + chlorite ± mus~·nvite. 
and quartz + muscovite ± cblorite schists and mylonites throughout the stratigrapn ~ nl 

the deposit. Syn- to post-kinematic quartz veins cut the syngenetic alteration assemblages 

and occur within the overprinting syn-kinematic alteration assemblages in the stratigraphy 

of the deposit. 

Alteration in the footwall shear 1one of the Rambler deposit is similar to the alteration 

xiii 



described in the stockworks of many other deformed VMS deposits (Franklin et al.. 

1981 ). It is also similar to local shear-related auriferous disseminated sulphides 

associated with several gold prospects to the south of the Rambler mine site, and the 

alteration commonly associated with epigenetic shear-hosred mesothermal gold 

mineralization (Mueller and Groves, 1992: Dube, 1990). During preliminary 

examinations of drill core from the deposit, it was not entirely cenain whether the 

disseminated sulphides in the footwall were intensely deformed VMS stockwork 

alteration, or subsequent aJteration and mineralization associated with a subsequent 

(epigenetic) alteration event related to the complex tectonic history of the Pacquel 

Harbour Group. 

To accomplish the objectives of the study, 300 metres of drill core were examined and 

relogged to constrain the occurrence and distribution of aJteration and mineralization in 

the Rambler deposit. 300 core samples were collected for petrographic and geochemi~ 

analyses. Samples with high assayed gold contents were examined using a Scanning 

Electron Microscope (SEM) to define the setting of gold in relation to its surrounding 

alteration and sulphide assemblages. Samples witl1 "end-member" aJteration and 

mineralization were analyzed fc .. , .;1aite of standard major and trace elements to constrain 

the chemistry of the different types of alteration. Selected core samples were crushed 

and separated into their pure mineral fractions for subsequent oxygen, hydrogen, and 

sulphur isotope analyses. 

XIV 



Chapter 1: Formation and Alteration of Volcano1enic 

Ma.~ive Sulphide (VMS) Deposits 

1.1 Introduction 

Volcanogenic massive sulphide (VMS) and epigenetic gold deposits are common varieties 

of minerali7.ation in orogenic belts. VMS deposits occur as syngenetic stratabound and/or 

stratiform accumulations of base metal sulphides which in response to the circulation of 

seawater through the oceanic crust. Epigenetic gold deposits, including the mesothennal 

and epithermal varieties are generated by the migration of crustal fluids during or after 

peak regional metamorphism along the shear zones and thrust faults within volcanic 

terrains in orogenic belts (Hutchinson, 1987; Kerrich, 1987; Colvine, 1988). Both types 

of minerali7.ation are the products of distinct hydrothermal systems which develop in 

seafloor mid-ocean ridge (MOR) and in continent.al margin orogenic belts. 

VMS and epigenetic deposits frequently occur together in the same volcanic terrains, and 

actually appear to be superimposed in some ore deposits (Addy and Ypma, 1977; 

Franklin et al., 1981). In some VMS deposits, syngenetic seafloor alteration and sulphide 

assemblages are overprinted by syn-kinematic sericitic gold-bearing assemblages 

commonly associated with the central alteration zones of epigenetic shear-hosted 

mesothermal deposits (Gjelsvik, 1968; Rui, 1973, Franklin et al., 1981). Some 

epigenetic deposits contain high concentrations of base metals, attributed by some 

workers to the presence of pre-existing VMS mineralization (Tourigny et al., 1989). 

Implicit in the descriptions of some of these deposits is a gradation between end-member 

syngenetic seafloor and epigenetic I mesothennal mineralizing events; generations of 

alteration and mineralization related to specific geologic settings and specific orogenic 

environments. 

VMS and epigenetic deposits are formed by the interaction of rocks and fluids in the 



crust. Isotopic analyses sugg~st that tluids associated with the formati(m of VMS 

deposits include seawater, '"0-shifted seawater. and magmatk andior metamorphic lluids 

(Ohmoto and Rye. 197~: Urabe and Sato, 1978: Pisutha-Arnond and Ohmoto. 14~J) . 

Meteoric tluids are introduced during the incorporation of Vl\tS d~:posits in orogcni~ h~lt~ 

(Hattori and Sakai. 1979). Similar high ••o magmatk and ml!tamorphic. and low 1'0 

meteoric tluids are also pres~nt during epigenetic mineralization. including mcsnthcrrnal 

gold deposits (Kerrich, 1987; Nesbitt et al.. 1989). The commonality of thes~ tluids. and 

the occurrence of distinct generations of alteration and mineralization in many V 1\·tS 

deposits is consistent with the complexities among the metamorphic. structural and 

metallogenic events related to the formation of orogenic belts (Kerrich, 1987). 

1.2 Volcanogenic Massive Sulphide (VMS) Deposits 

VMS deposits are defined as conformable stratiform and/or stratabound accumulations 

of massive sulphides ( ~ 60%) generated by the circulation of fluids through the oceanic 

crust (Franklin et al., 1981; Lydon, 1988; Kappel and Franklin, 1989). They belong to 

a larger class of deposits which include all exhalative stratiform sulphide deposits which 

form in subaqueous environments. VMS hydrothermal systems are common near centres 

of active volcanism in mid-ocean ridge (MOR). oceanic island, and arc-related tectonic 

environments. 

VMS deposits occupy specific stratigraphic intervals in volcanic, and pelitic to semi

pelitic strata in Archean and Phanerozoic greenstone, volcanic and/or ophiolite terrains 

(Spence and deRosen-Spence. 1975). ln some Phanerozoic volcanic belts they clust~r 

near felsic intrusions or near fault intersections in the crust (Lapierre et al., 1985). In 

ophiolites they can occur at specific stratigraphic intervals, such as sheeted dyke to pillow 

lava transitions, and between repeated rock sequences associated with volcanic cycles 

(Sangster, 1972; Lambert and Sato, 1974; Sawkins, 1976; Scott, 1978; Franklin et al.. 
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1981 ). 

Base metal ratios and tectonic settings were the dominant criteria used in early studies 

to distinguish between the Pb-rich mineralization associated with the Kuroko deposits of 

Japan. and Cu-Zn minerali1.ation as50Ciated with the ophiolite-hosted deposits of Cyprus 

(Hutchinson. 1973; Sangster and Scott. 1976). More recent classifications of the VMS 

deposits in the Appalachians of Newfoundland have focused 011 the tectonic settings of 
' the deposits as determined from the rare earth element (REE) geochemistry of host 

volcanic rocks {Swinden et at., 1988; Dunning et al., 1991; Swinden, 1991). 

VMS deposits typically consist of one or more massive sulphide lenses ( ~ 60 per cent 

sulphides) which overlie discordant "pipe-shaped" stockwork alteration zones (Figure 

1.1). In plan stockworks are concentrically zoned, consisting of altered rocks which 

contain disseminated sulphide mineralization (Franklin et at., 1981; Lydon, 1988). In 

vertical cross-section, contacts between the deposits and their overlying strata are sharply 

defined, and frequently marked by a layer of chert or exhalite. Contacts below the 

deposit are diffuse and gradational with respect to the underlying stockwork alteration 

zones (Constantinou and Govet, 1973). 

VMS deposits are morphologically diverse. Deposits can vary from steep, inverted 

cylindrical cones to conformable sheets (Sato, 1974; Kappel and Franklin, 1989; Large 

et al., 1988). Sedimentary fabrics and textures are rare, but complete Bouma sequences 

are described in the massive sulphide horizons of exceptionally well-preserved deposits 

(Roberts, 1975; Swanson et al., 1981 ). Talus blocks and brecciated rocks are common 

below massive sulphide horizons (Constantinou and Govet., 1973). Colloform fabrics 

and textures are common at macro and microscopic scales (Yui, 1983; Graham et al., 

1988). Breccia, folds, and shear bands are dominant fabrics and textures in deformed 

deposits (Knuckey et al., 1982). 

3 
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1.3 Epi&enetic Deposits 

Epigenetic is a term used to refer to a wide variety of ore deposits. which include 

epithermal, porphyry and mesothermal varieties of minerali1ation. Epithermal and 

porphyry deposits are fonned by the circulation of fluids near igneous intrusions at 

relatively shallow crustal depths ( s5km: MacMillan and Panteleyev, 1988; Panteleyev, 

1988). Of greatest relevance to this study are the mesothermal or lode varieties of 

epigenetic mineralization, recently recognized on the Baie Verte peninsula and throughout 

the volcanic terrains of Central Newfoundland (Swinden, 1991). These deposits are 

characterised by their structurally controlled setting, diagnostic alteration assemblages, 

low base metal concentrations and relatively high precious metal contents. Initially 

described in Archean terrains, they are currently recognized as common forms of 

sulphide and gold mineralization in all orogenic settings (Roberts, 1988). 

Mesothermal deposits are frequently associated with shear zones, generated as subsidiary 

structures to larger regional structural discontinuities between accreted gneissic, ophiolitic 

I volcanic, and sedimentary terrains. (Kerrich, 1987). Heterogeneous strain in these 

structures, results in complex anastomosing shears which surround less deformed 

structural blocks. As a result, deposits form near extensional dilational zones in overall 

compressional regimes (Kerrich, 1987). Mineralization is frequently concentrated as 

tabular or sheeted bodies or cylindrical chutes parallel to local shears, foliations, and/or 

extension lineations. Morphological variations typicatJy include the disseminated

stratabound. and vein and shear-hosted disseminated varieties of mineralization. The 

former occur in permeable strata which focus the migration of fluids. The latter occur 

in shear zones which cut through stratigraphy. Mineralization is generally associated with 

brittle-ductile transitions in deformed volcanic and sedimentary sequences (Poulsen and 

Robert, 1988). 

In contrast to VMS deposits, epigenetic deposits are characterised by low base metal 

concentrations and relatively high concentrations of Au, and Ag and other metals 
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including As. W, B, Mo and Sb (Kerrich and Fryer. 1981: Kerrich and Hodder, 1982). 

Rock fabrics and structures in S<lme deposits are consistent with multiple fluid events 

where Pnuoc~ ~ Plilhooutic (Kerrich. 1987). Sulphide assemblages typically include 

disseminated pyrite or pyrrhotite ( s )0% ), along with trace chalcopyrite, arsenopyrite, 

sphalerite, galena, molybdenite. and stibnite. Oxides include magnetite, rutile, sphene. 

scheelite and leucoxene. Telluride and selenides are common in many deposits (Dube 

et al., 1987: Mueller and Groves, 1992). Gold occurs in native form, and as clectrum 

and telluride (Mueller and Groves, 1992). 

Alteration associated with epigenetic epithermal and mesothermal deposits is variable, 

but dominated by a few common alteration minerals and assemblages. The alteration and 

sulphide mineralization associated with epithermal and porphyry style deposits occurs as 

concentric zones surrounding a central fluid conduit or intrusive body. Silicification I 

carbonatization are common froms of alteration associated with the other argillic, phyllic, 

propyllitic, potassic and aluminous silicate assemblages, and the sulphide, sulphate, and 

telluride assemblages in these deposits (Beane and Titley, 1981; Berger, 1982; Cox, 

1982). Common alteration products include quanz as adularia or opaline silica, albite, 

epidote, chlorite, muscovite, carbonate, and zeolite. 

Alteration in mesotherrnal deposits occurs at temperatures of approximately 350°C, is 

typically characterised by high concentrations of carbonate, and concentrated in zones 

parallel to structural conduits which focus the migration of hydrothermal fluids (Figure 

1.2, after Dube et al., 1987). Typical alteration assemblages include chlorite + calcite 

± magnetite, mixed kinematic ankerite + muscovite ± chlorite, ankerite + fuchsite ± 
chlorite, and ankerite + muscovite assemblages associated with disseminated sulphide 

mineralization. Mineral analyses in central alteration wnes show consistent enrichments 

in K, Na. AI, and Cr, and C02, and depletions in Fe and Mg with respect to the 

surrounding less altered rocks (Dube et al., 1987). 
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1.-' :\Iteration Processes related to S)'·ngenetic \':\IS and Epigenetic Mineralization 

Alteration associated with VMS base metal sulphide. and epigenetic mineralization is 

produced by similar t1uid-rock reactions in different geologic environments. The two 

varieties of mineralization are products of distinct hydrothermal systems which develop 

near seafloor mid-ocean ridge (MOR) settings and during the formation of continental 

margin orogenic belts. Although there are differences in the geologic setting of th~.:sc 

deposits. their associated hydrothermal systems are frequently composed of similar rocks 

and fluids, and as such, capable of producing similar alteration. As a result, VMS and 

epigenetic deposits frequently contain chemically similar syn-volcanic and syn-kinematic 

silicate assemblages. 

The hydrothermal systems associated with VMS deposits have been modelled in the 

laboratory by reacting basalt, seawater and evolved hydrothermal fluids over a variety 

of temperatures and pressures (Mottl, 1983). Data from these studies suggests that 

seawater changes from a slightly basic, Na+, Mg•2
, CI·, S04'2 rich solution, to a hot 

acidic, Na •, Ca •2, K •, CI· enriched brine capable of dissolving and transporting 

significant quantities of metals (ppm) during its reaction with basalt (Rona et al., 1983). 

The changes occur in three distinct sub-seafloor hydrothermal environments (Figure 1.2): 

1) upper sections ( S 3km) of the oceanic crust altered by low temperature 
( s 200°C) hydration reactions as seawater moves downward to recharge 
circulating hydrothermal fluid cells, 

2) deep sections (3-5km) of the oceanic crust characterised by high temperature 
(200-450°C) and pressure (400-500 bars) greenschist to amphibolite metamorphic 
transitions, and 

3) active mid-ocean ridge (MOR) volcanic centres where hot ( ;:::350°C), reduced, 
metalliferous brines generated at depth, vent directly to the seafloor (Rosenbauer 
and Bischoff, 1983). 
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Initial changes in seawater chemistry are dominated by the removal of sulphate. through 

the precipitation of anhydrite. and the almost complete removal of Mgl+ at temperatures 

~ 150°C and water- rock (W/R) ratios s 50. Mg1
• precipitation is compensated for 

by the transfer of Na •, K+ and Ca2 
• to sol uti on. Na + is dissolved from basalt at JOODC 

at W/R ratios - 10, but precipitates as secondary minerals at - 350°C and W/R ratios 

s 5 (Hajash, 1975). Ca2
• dissolves at temperatures ~ 150°C, but is incorporated in 

Ca-rich minerals such as epidote and amphibole. K .. dissolves at ~ :'!00°C, and 

precipitates as K-rich alteration minerals. such as illite or muscovite at tentperatures s 
200°C. 

Basalt-seawater reactions ultimately result in a highly acidic brine, depleted in Mg2• and 

enriched in Cal+ and K+ (Rosenbauer and Bischoff, 1983). The reaction of these fluids 

with unaltered basalt at low pressures, high W/R ratios ( s 1000) and temperatures ~ 

350°C, may actually decrease fluid pH further, causing a substantial increase in the 

solubility of the base metals during the formation of epidosites; altered volcanics 

consisting of ~ 80% epidote and lesser quartz and albite (Seyfried et al., 1988). 

Epidosites and "epidotized" rocks are common in the seafloor alteration zones in 

numerous ophiolites, and volcanic terrains. 

Brines in seafloor hydrothermal systems are silica saturated, and in simulated seafloor 

systems, silica precipitates at 150 to 500°C (Mottl, 1983). High silica concentrations 

are common in the high temnerature geothermal centres of the Red Sea (Pottorf and 

Barnes, 1983), and also in low temperature "off-axis" seafloor hydrothermal systems at 

the Galapagos Ridge, where IRQ thennometry suggests silica precipitation at temperatures 

as low as 30°C to 40DC (Herzig et at., 1988). 

The mixing of seafloor brine with seawater results in the precipitation of sulphides during 

the discharge of hydrothermal fluids through vents, or accumulating sulphide mounds 

(Goldfarb et al., 1983; Lydon, 1988; Kappel and Franklin, 1989). Mineralization occurs 

in response to d~reases in ~emperature and pressure, the reduction of seawater S042 
1 
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increases in pH. f01 and decn:ases in fS:- and to a lesser extent: reactions with 

organically generated H~S. The resulting sulphide mineralization typically consists of up 

to 30% pyrite or pyrrhotite. with lesser amounts of sphalerite. chalcopyrite and galena. 

VMS mineralization is frequently zoned. High temperature pyrrhotite. marcasite. pyrite 

and chalcopyrite assemblages typically occur near the centre of massive sulphide 

horizons. and stockwork alteration zones. Low temperature sphalerite ± galena 

assemblages occur toward the periphery of individual deposits. Other common sulphides 

include pyrrhotite. arsenopyrite. bornite. pentlandite, wurtzite and marcasite (Sangster 

and Scott, 1976). Common sulphates include barite, gypsum and anhydrite. Magnetite. 

hematite and geotilite are common oxides. 

Variations in temperature. tluid-rock chemistry and W/R ratios result in different 

alteration assemblages in individual deposits. Thermodynamic models at temperatures of 

300°C, pressures of 500 to 600 bars. and W/R ratios of 1, 3, 10, 50, 62 and 125 predict 

the following: 

W/R = 0 to 2: 

2 to 35: 

35 to 50: 

>50: 

chi + alb + ep + act, 

chi + alb + ep + act + qtz, 

chi + alb + qtz, and 

chi + qtz 

(Mottl and Holland, 1978). In natural VMS hydrothermal systems, talcose, chloritic, and 

Mg-enriched alteration assemblages near the periphery of individual deposits. are 

grJdational to sericitic alteration assemblages near the centre and top of stockwork 

alteration zones (Figure 1.4: Lydon, 1988). Alteration associated with massive sulphide 

horizons commonly includes siliceous, aluminous, carbonate, talcose, or oxide enriched 

asst!mblages (Constantinou and GO\'t!t.. 1973: Franklin et al., 1981: Lydon, 1988). The 

mineralogy and chemistry of the alteration is frequently modified by subsequent 

metamorphic and structural events. 
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In contrast to the extensively modelled VMS hydrothermal systems, fluid processes 

associated with the formation of epigenetic mesothermal varie.ties of mineralization are 

not well constrained. Epigenetic mineralization is frequently constrained in terms of the 

shallow circulation of magmatic, metamorphic and meteoric fluids through the crust 

(Fyfe and Kerrich, 1984). However, fluids associated with the formation of mesothermal 

deposits originate in deep crustal reservoirs, where they equilibrate with large volumes 

of rock at low W/R ratios at depths of up to 10 kilometres (Kerrich, 1987). Fluid 

inclusion studies suggest the fluids are enriched in C02 and slightly saline: s 4% NaClcq 

(Roedder, 1969, 1984). 

Studies relate the generation of epigenetic I mesotherma1 fluids to the deh~dration 

reactions associated with lateral secretion, magmatic degassing, structurally focused 

metamorphic outgassing, meteoric water circulation (Boyle, 1979; Nes~itt et al., 1986), 

mantle degassing-granutitization (Fyon et al., 1984; Col vine et al., 1988) or suggest a 

direct link with the ortho-magmatic processes in nearby felsic igneous rocks (Hattori, 

1987). Other studies relate the fluids to dehydr.stion reactions associated with the 

assimilation of subducted oceanic crust in supra-subduction zone tectonic settings (Fyfe 

and Kerrich, 1985; Goldfarb et al., 1988; Kyser and Kerrich, 1992). 

Fluids generated by metamorphic or magmatic dehydration reactions in deep crustal 

reservoirs ascend through the crust along structural conduits into overlying rocks (Figure 

1.4). Studies suggest metals are extracted at the source or derived from surrounding 

rocks during the upward migration of fluids at low W /R ratios (Kerrich and Fryer, 

1981 ). Mineralization can occur either in response to fluid mixing and/or fluid-rock 

disequilibria, which influence temperature, pressure, W/R ratio, pH, f~, and fS2, 

resulting in the precipitation of sulphides, oxides, gold and other metals. The correlation 

of high metal concentrations with specific lithologies is common in some epigenetic 

deposits. In other deposits, high metal concentrations may occur in several different rock 

types (Kerrich, 1987). 
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1.5 Metamorphism and Alteration of VMS Deposits in Orogenic Belts 

The different generations of alteration and sulphide mineraJization in VMS deposits are 

composed of rlistinct alteration assemblages which form in response to reactions between 

pre-existing syngenetic mineral assemblages and crustal tluids. Assemblages vary in 

response to local physical and chemical conditions influenced by regional metamorphism, 

deformation and local tluid alteration during orogeny. The result is a complete spectrum 

of deposits which range from relatively intact recrystallized orebodies, to intensely 

deformed deposits which contain overprinting "kinematic" alteration. Examples of the 

former, though rare, include the Millenbach, and Kuroko VMS deposits (Franklin et al., 

1981 ). Examples of the latter include the Caledonide deposits of Norway, some of the 

Cretaceous deposits in western AustraJia and Tasmania, and VMS deposits in the 

Appalachian orogen including those associated with the Consolidated Rambler Mines 

properties (Franklin et al., 1981; Large et al., 1988: this study). 

Alteration and sulphide assemblages in most "fossil" VMS deposits; the deposits 

incorporated in orogenic settings, are affected to some extent by local and regional 

metamorphic evt;nts during their incorporation in orogenic belts (Addy and Ypma, 1977; 

Franklin et al., 1981). In the absence of deformation, regional metamorphism is 

essentially isochemical, so while alteration assemblages are recrystallized, there is very 

little change in the chemistry of the original alteration assemblages (Spence and de 

Rosen-Spence, 1975). The isochemkal nature of metamorphism is well illustrated by the 

alteration and metamorphic assemblages associated with the stockworks of the Millenbach 

VMS deposit near Noranda, Quebec (Knuckey et al., 1982). The Millenbach greenschist 

chlorite and sericitic stockwork assemblages are overprinted by amphibolite contact 

m~tamorphic assemblages associated with the intrusion of the Lac Dufault Granodiorite 

(Spence and de Rosen-Spence. 1975; Riverin and Hodgson, 1980; Franklin et al., 1981). 

The amphibolite assemblages retrograde back to chlorite+ muscovite+ albite+ epidote 

± carbonate assemblages which are similar to the original seafloor assemblages during 

post-intrusive regional metamorphism. Locally preserved pre-contact and contact 

15 



metamorphic domains in post-intrusive regional greenschist assemblages offer compc!lling 

evidence of the isochemical nature of metamorphism in the stratigraphy of the Milh:nha~h 

deposit (Riverin and Hodgson. 1980). 

Other V~tS deposits are affected by deformation in addition to regional metamorphism 

cturing their incorporation in orogenic belts. Many are incorporated into the shear zones 

which develop in less competent stratigraphic transitions in ophiolites and volcani~ 

terrains (Lydon, 1988). Deformation and alteration in these structures results in the 

development of syn-kinematic alteration assemblages which envelope and overprint 

regional greenschist metamorphic, and seafloor hydrothermal alteration assemblages 

associated with VMS mineralization (Franklin et al.. 1981 ). As an example, the 

Killingdal VMS deposit in west Norway occurs in a syn-kinematic alteration (shear) zone 

consisting of quartz + muscovite schist (Gjelsvik, 1968). Similar assemblages in the 

nearby Skorovass VMS deposit are also attributed to the kinematic destruction of 

greenschist albite + amphibole ± epidote seafloor greenschist assemblages during late 

Caledonide deformation (Rui, 1973). 

In highly deformed deposits, it becomes difficult to distinguish between deformed 

syngenetic seafloor, and later epigenetic syn-kinematic alteration and sulphide 

assemblages. Many of these are overprinted by the same K and C02 rich, Na, Ca and 

Fe depleted assembiages characteristic of the alteration assemblages in the central 

alteration zones of epigenetic shear-hosted mesothermal gold deposits (Dube et al .. 

1989). In addition to the intensely deformed VMS deposits which appear to develop 

mesothermal characteristics, some mesothermal dep<>sits appear to contain abnormally 

high concentrations of base metal sulphides, linked in some studies to pre-existing 

seafloor volcanogenic hydrothermal processes (Tourigny et al., 1989). In such deposits, 

it would be difficult to determine whether quartz + muscovite ± chlorite ± disseminated 

sulphide assemblages are the products of syngenetic seafloor and/or later overprinting 

epigenetic syn-deformational fluid alteration. 
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Combined syngenetic and epigenetic alteration asseblages are described in several VMS 

deposits. The Que River deposit, in Tasmania contains syngenetic VMS remnants 

overprinted by epigenetic syn-kinematic alteration assemblages (Large et al .• 1988). 

Sulphide banding in the deposit is attributed to primary depositional layering (Young. 

1980). Quartz + sericite ± fuchsite + disseminated pyrite alteration zones on either 

side of the orebody are interpreted as folded stockworks to the original massive sulphide 

lens. However, galena occurs in an axial planar foliation contemporaneous with 

recrystallization and mylonitization related to subsequent deformation. 

While visible gold in the Que River deposit is attributed to the "remobilization" of 

syngenetic alteration and sulphide assemblages (Large et al., 1988), the mineralogy and 

chemistry of some of the gold-rich zones is similar to that associated with adularia

sericite style epithermal mineralization (Heald et al., 1987; White and Hedenquist, 1990). 

McGoldrick and Ross (1992) suggest the deposit is part of a "spectrum" of "hybrid" 

VMS and epithermal deposits; a model consistent with the overprinting of syngenetic 

VMS alteration assemblages by epigenetic and syn-kinematic alteration assemblages in 

a deformed deposit. 

In other studies, epigenetic alteration in VMS deposits has been linked to specific 

orogenic events. For example, the Ducktown deposit in Tennessee is similar to the 

Rambler VMS deposit in terms of its tectonic and geologic setting (Figure 1.4; Rankin, 

1975; Addy and Ypma, 1977). The Ducktown was affected by regional metamorphism 

and structural events associated with the formation of the Blue Ridge mountains. Its 

alteration is described in terms of a prograde syn-tectonic phase, a post-tectonic prograde 

phase which occured during peak regional metamorphism, and a retrograde cooling phase 

accompanied by brittle deformation. As a result, its silicate and sulphide assemblages are 

recrystallized to the extent that it is difficult to distinguish between uniquely syngenetic 

and epigenetic alteration assemblages (Kallioski, 1965). 

Local alteration in the Ducktown VMS deposit is characterised by the replacement of 
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Figure 1.6 Regional geological setting of the Ducktown area, and detailed structural map 
of the Ducktown Mining District showing the occurrence and structural disposition of 
eight orebodies with the Burra anticlinorium and Coletown synclinorium as major 
structures (after Addy and Ypma, 1977). 
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biotite and garnet by chlorite. and of staurolite and kyanite by muscovite: alteration 

which is accompanied by high carbonate concentrations. and 1"0 enrichments in quanz 

of +0.6%o <Taylor. 1967). As such. an epigenetic overprint in the Ducktown deposit 

is related to the presence of high 1 ~0 and C01~rich mesothermal tluids. which occured 

sometime after the original formation of the deposit, and during or after the regional 

metamorphism and deformation related to the formation of the Blue Ridge mountains. 

1.6 Implications for the Source of Gold in VMS Deposits 

The potential coincidence of syngenetic seafloor and epigenetic alteration in VMS 

deposits raises important questions concerning the origin of gold. Gold is common in its 

native state and as electrum and telluride in numerous fossil VMS and mesothermal gold 

deposits, but visible gold, white expected to be present, has never actually been observed 

in the deposits actively forming on the seafloor (Hannington et al., 1990). 

A favoured mechanism for the formation of visible gold is its remobilization and 

reconcentration during low temperature annealing and sulphide recrystallization (Boyle. 

1979). Other studies, however, suggest that the gold is enriched; an interpretation 

consistent with an external (epigenetic) source for the gold in some deposits (Guha et al .. 

1988). Implicit in both interpretations is the presence of different crustal fluids which 

remobilize gold during later metamorphic and structural events (Guha et al. 1988, Huston 

and Large, 1989). The interpretations are also consistent with petrographic and 

mineralogical criteria, and isotopic data which demonstrate the presence and interaction 

of different crustal fluids during the formation of VMS deposits on the seafloor and 

during their incorporation in orogenic belts. 
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Chapter 2: Regional Geology 

2.1 Introduction 

The island of Newfoundland comprises the northeastern portion of the :\ppaladtian 

Orogen. a late Precambrian to middle Palaeozoic mountain belt extending irom Alabama 

to Newfoundland. Rocks in the Orogen record a "Wilson cycle"moddl~d as a "two

sided" symmetrical system (Williams, 1964) related to the OP'!ning and closing of the 

proto-Atlantic or Iapetus Ocean (Wilson, 1966; Harland and Gayer. 197:!). The 

Appalachians in Newfoundland have been affected by four orogenic events; referred to 

as the early Cambrian to Palaeozoic Taconian. the mid to late Silurian Salinic, the mid 

Palaeozoic Acadian, and the late Palaeozoic Alleghanian orogenies (Harland and Gayer, 

1972; Dunning et al., 1991). 

The Appalachians in Newfoundland include the Avalon, Gander, Dunnage and Humber 

tectono-stratigraphic zones (Figure 2. 1). The Humber and A val on zones are remnants of 

the North American I Laurentian and Pan African continental margins, respectively 

(Williams and Hatcher, 1983). The Humber Zone, consists of Precambrian continental 

basement overlain by Palaeozoic shelf-facies clastic sediments and platform carbonates. 

The continental basement exposed in the Long Range Mountains and as a series of 

related in tiers to the south along the south west coast of Newfoundland is correlated with 

the eastern edge of the Grenville Orogenic Province in the C.madian Shield (Rivers and 

Chown. 1986). 

The Humber Zone contains mafic dykes and alkalic basalts related to Early Cambrian 

rifting as a precursor to the opening of the Iapetus Oceanic tract(s) (Williams and 

Hiscott, 1987). The initial collision of inboard terrains with the Laurentian continental 

margin was recorded in the Humber Zone by structures associated with the Taconian 

Orogeny. Subsidence of the continental margin during collision, was accompanied by 
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the emplacement of allochthonous oceanic sediments and ophiolites of the Humhcr Arm 

and Hare Bay allochthons (Church and Stevens. 1971. Dewey and Bird. 1971. William~ . 

1979). 

The A val on Zone on the east side of the Appalachian orogen consists of late Pn:~.:amhrian 

vo1canic and sedimentary rocks overlain by early Palaeozoic strata of shallow marine 

origin. Its western contact with the Gander Zone is the Dover ~ Hermitage Bay Fault; a 

trans-crustal fault with a major strike-slip component of displacement (Brown and 

Colman-Sadd. 1976). 

The Humber and Avalon zones are separated by Palaeozoic rocks of the Gander and 

Dunnage zones which comprise the Central Mobile Belt. The Gander zone consists of 

substantial thicknesses of highly deformed and metamorphosed pre-Silurian clastic 

sedimentary rocks deposited near a continental margin (Colman-Sadd, 1980). The 

Gander sediments are overthrust and exposed as "structural windows" through the 

oceanic rocks of the Dunnage Zone (Col man-S add and Swinden, 1984; Williams et al.. 

1988). 

The Dunnage Zone consists dominantly of ophiolites and marine volcanic-st!dimentary 

sequences related to a series of Cambrian to mid-Ordovician island arc and back arc 

tectonic settings. It is allochthonous to the Precambrian crustal blocks which comprise 

the structural basement of most of central Newfoundland (Colman-Sadd and Swinden. 

1984). The present distribution of volcanic terrains in the Dunnage Zone, partly reflects 

trans-current structural movements during the late evolution of the orogen. 

Accretion of lapetan oceanic terrains to the Laurentian continental margin began near the 

end of the early Ordovician, with the emplacement of imbricate thrust stacks over the 

continental shelf. Lower crustal slices were composed of continental margin sediments. 

Higher crustal slices consisted of ophiolitic fragments of the Dunnage Zone oceanic crust 

and mantle (Church and Stevens, 1971; Williams, 1979). Ophiolitic detritus w:;.s shed 
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westward across the miogeocline during the emplacement of the allochthon (Steven. 

1970: Stevens and Williams. 1973). Accretion was accompanied by deformation. 

metamorphism and widespread tonalitic plutonism <Dunning and Charlton. 1985). 

The accretion of the outboard Dunnage and Gander terrains to the Humber Zone was 

almost complete by the early Silurian (Williams and Hatcher, 1983). Widespread 

volcanism. sedimentation, plutonism and metamorphism occurred across the newly 

accreted continental margin during the mid-Silurian (Coyle, 1990). Similar orogenic 

pulses recorded in the rocks of Cape Breton, Nova Scotia, and in the west European 

Caledonides are attributed to a thermal and kinematic maximum currently associated with 

the mid-Silurian Salinic orogeny (pers. comm., Dunning et al., 1991). 

The Early Devonian Acadian orogeny is characterised by widespread deformation, 

metamorphism and by granitoid plutonism associated with the final collision of the 

Avalon Zone, or Avalon composite terrane (~"'inden, 1991). Strike-slip faulting during 

the late Devonian and Carboniferous eras resulted in the formation of pull-apart basins 

which filled with late Devonian and Carboniferous sediments. 

2.2 Geology and Metallogeny of the Newfoundland Dunnage Zone 

The Dunnage Zone consists dominantly of ophiolites and thick marine volcanic I 

epidastic terrains which are unconformably overlain by post-accretionary terrestrial 

volcanic and fluviatile sediments. Volcanism is recorded in these terrains from as early 

as Late Cambrian, and continued sporadically up to the mid Ordovician. Most fluviatile 

sequences are unconformable with respect to the pre-accretionary basement and appear 

to be related to a series of epicontinental volcanoes and/or successor basins (Williams, 

1979). 

Rifting and calc-alkalic magmati.;m as early as 620 Ma is consistent with the geological 

evidence which suggests a rift-drit'! transition at approximately 500 Ma (Williams et al.. 
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1985; Kamo er al.. 1989). The evidenc~ is consistl!nt with a maximum tim..: ~'1 JO--W Ma 

or less between the de\'elop!llenr 0f oceanic crust and the initiation "'" suhductllltl. 

Temporal constraints and geochemical signatures. and a lack of "major basin" oc~.\uti~o.· 

crust. suggest vokanism was associated with a complex succ..:ssion of island ar~..· and b.h:l. 

arc basins at or near the margin of the Iapetus ocean basin (Dunning ct al .. llNil. 

U/Pb zircon dating indicates at least two distinct ages of ophiolites in thc ~.:cntral and 

western portions of Newfoundland (Dunning et al., 1991 ). Ophiolites in the cas tern 

portion of the Dunnage Zone were formed in the Tremadoc (ca. 494 Ma); while those 

to the west, were formed in the Arenig (ca. 488-474 Ma) (Dunning and Krogh. 19X51. 

Most have geochemical signatures consistent with supra-subduction zone magmatism and 

are therefore not related to a major oceanic basin or its spreading centre (Sun and 

Nesbitt, 1978, Dunning et al., 1991). Many are interpreted as the products of an.: and 

back arc rifting in a supra-subduction zone (SSZ) tectonic environment (Co ish et al.. 

1982; Jenner et al., 1988; Swinden et al., 1989). 

The Dunnage Zone is divided into the western Notre Dame and eastern Exploits subwnes 

by the Red Indian Line. Although the two Subzones were previousiy rclat~d to island 

arc environments (Wilson. 1966, Bird and Dewey, 1970), REE signatures are consistent 

with their formation in back-arc tectonic settings (Jenner et al., 1988; Swindcn ct al.. 

1990). Thick marine volcanic and epiclastic sequences in these subzones include rocks 

of late-Cambrian to mid-Ordovician age, which extend the relative age of Dunnage 

volcanic terrains (Bell and Blenkinsop, 1981; Bostock et al., 1979; Dunning ct al.. 

1991 ). 

The diverse history of the Appalachian orogen is reflected in a complex multi-stage 

metallogeny during which different varieties of deposits formed at different times, in 

different tectonic settings (Swinden, 1991 ). As 1s the case with othe .~ volcanic hello.;, 

VMS and mesothermaJ gold mineralizing events were important components of this 

history, which formed in the pre-accretionary Iapetus basins and in syn to post-
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accretionary structures during the development of the orogen. 

In earlv classifications. the VMS deposits of Central Newfoundland were compared 

dirl!~.:tly to the Kuroko. and Cyprus VMS deposits (Mitchell and Bell , 1973; Franklin et 

al. . 1981 ). Recent detailed geochemical and geochronclogical studies. however. 

recognize a diversity in the tectonic setting of these deposits. The REE signatures of the 

basalts which contain these deposits suggest the presence of back-arc, primitive arc, 

mature arc, and continental rift tectonic settings (Swinden et al., 1988; Swinden et al .. 

1989). The presence of both tholeiitic and boninitic basalts near the centre of the 

Pacquet Harbour suggests that the Rambler formed during the Ordovician in a primitive 

arc tectonic setting (Swinden, 1991 ). 

Primitive arc volcanic settings are among the most prolific hosts to VMS deposi·-; in 

Central Nl.w'foundland. Structures within the volcanic terrains in these settings are 

frequently associated with the occurrence of epigenetic gold mineralization. REE 

signatures of volcanic rocks in these settings indicate the presence of a subduction zone 

(Sun et al., 1978: Coish et al., 1982), and volcanic lithologies are dominated by island 

arc tholeiites with minor calc-alkalic rocks and bonin:~es. Ophiolite-hosted Cu ± Zn ± 

Au deposits in Central Newfoundland include the Tilt Cove, Betts Cove, Whalesback and 

Rendell-lackman deposits in addition to the Ming, Ming West, East Mine, Rambler and 

Big Rambler Pond deposits which occur on the Consolidated Rambler Mines properties. 

Cu ± Zn ± Au deposits in mafic volcanic rocks in mixed volcanic I epiclastic sequences 

in primitive arc tectonic settings include the Point Leamington and Indian Cove deposits. 

Cu ± Zn ± Pb ± Ag ± Au VMS deposits in mixed mafic/felsic volcanic I epiclastic 

rocks include the Burnt Pond, Duck Pond and Tally Pond deposits (Figure 2.2; Swinden 

et al., 1989; 1991). 

In contrast to the detailed tectonic framework developed for VMS deposits. the 

classitication of epigenetic mineralization in Central Newfoundland is still 1argely 
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Figure 2.2 Vokanog~:nic massiv~: sulphid~: d~:posits in c~:ntr.ll and w~:stt:m Nc:wfoundland with great~:r than 
200.000 tonn~:s production and/or rc:s~:r.·c:s. Stippll!d arc:as ar~: ophiolitic and volcanic t~:rrains a.\sociatcd 
with the: remnants of Iapetus ocl:allic ba.~ins (after Swind~:n. 1991 ). 
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descriptive. These deposits. many of which are of uncertain origin. occur in structures 

in the same ophiolite and volcanic sequences. as the VMS deposits (Figure 2.3; Tuach, 

1990) . Dube (1990) proposed a descriptive classification system to distinguish among 

different types of "gold-only" deposits in western Newfoundland. The system identities 

different varieties of disseminated stratabound, and structurally controlled mesothermal 

Au deposits. Stratabound deposits are separated into silicitied wallrock and sedimentary 

host-rock sub-types. The structurally controlled deposits are separated into vein and 

altered wall rock subtypes. 

Recent geological and geochronological studies link some of the epigenetic deposits in 

Central Newfoundland to specific orogenic events. The existence of a Late Precambrian 

event is suggested by the stratigraphic ages of several Au prospects in the n01thern region 

of the Burin peninsula (Huard, 1989). U/Pb dating has recently provided Silurian ages 

for the Stog'er Tight and Hammer Down Au deposits in the Baie Verte and Springdale 

regions (Ramezani, 1992: Ritcey, 1992). Both gold deJXls;ts appear to have formed 

during the mid to late Silurian Salinic orogeny, a tectonic event associated with the final 

"cratonization" of the Iapetus oceanic tract. The age of the Stog'er Tight deposit is 

discussed in detail in section 2.5. Relative ages of the volcanogenic and disseminated 

mineralization on the Consolidated Rambler Mines properties have not been accurately 

determined. 
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Figure 2.3 Epigenetic gold deposits and prospects in relation to major structural linears in Newfoundland 
(Tuach, 1990). VMS (Figure 2.2) and epigenetic gold deposits (this Figure) in Central Newfoundland are 
frequently associated with the same volcanic terrains, groups, formations and structures. 
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2.3 Geology of the Baie Verte Peninsula 

The Consolidated Rambler Mines properties occur near the centre of the Baie Venc 

Peninsula located along the north coast of Newfoundland. between ~9o 15' and 50'' w· 
north latitude, and 55° 20' and 57° 00' east longitude. The most recent geological 

compilation of the peninsula separates regional stratigraphy into the Flc!ur de Lys and 

Baie Verte Belts as portions of the Humber and Dunnage Zones, respectively (Figure 

2.4; Hibbard, 1983). 

The Fleur de Lys and Baie Verte Belts are separated by the Baie Verte Line, a major 

structural linear which separates the accreted oceanic crust, and the continental platform 

sediments and gneiss associated with the ancient Laurentian continental margin. Recent 

studies suggest the Baie Verte Line was active from the Ordovician through to the 

Carboniferous, with west directed thrusting followed by several episodes of strike-slip 

movement (Goodwin and Williams, 1990). 

2.3.1 Fleur de Lys Belt 

The Fleur de Lys Belt comprises the west half of the Baie Verte Peninsula. Its 

stratigraphy consists of the East Pond Metamorphic Suite, the Fleur de Lys Supergroup, 

and several large plutons (Hibbard, 1983). The East Pond Metamorphic Suite along the 

,. .. ~st coast of the peninsula comprises a basal sequence of migmatites, overlain by banded 

gneiss and psammitic to semi-pelitic schists which contain small bodies of eclogite and 

metaconglomerate. 

The Fleur de Lys Supergrc.up is exposed to the north and east of the East Pond 

Metamorphic Suite. Units defined in previous studies include the White Bay, Old House 

Cove, Rattling Brook and Ming's Bight groups. These typically consist of psammitic, 

semi-pelitic and graphitic schist, marble, greenschist and amphibolite (Betz, 1948; 

Watson, 1947; Fuller, 1941; Br~rd, 1951; .iibbard and Bursnall, 1979). Units at the top 
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Figure 2.4 Geology of the Baie Verte Peninsula. 

Intrusive Rocks 

CB - Cape Brule Porphyry, KP - King's Point Complex, WC -
Wild Cove Igneous Suite: granite porphyry. 

Bg - Burlington Granodiorite: granite and granodiorite. 

Baie Verte Belt 

ML - Mimac Lake Group, CJ - Cape St. John Group: subaerial 
mafic to felsic volcanic rocks. 

PH - Pacquet Harbour Group, FP- Flatwater Pond Group, SA -
Snook's Arm Group: volcanic flows, pillowed basalts, felsic 
volcanic and volcaniclastic sediments. 

AC- Advocate Complex, PR- Point Rousse Complex, BC- Betts 
Cove Complex: ophiolite sequences and gabbro. 

Fleur de Lys Belt 

FdL - Fleur de Lys Supergroup: psammitic to pelitic schist and 
gneiss, and amphibolite: 

EP - East Pond Metamorphic Suite: gneiss and schist. 
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of the -;upt:rgroup include the Birchy Complex.. metasediments and greenschists of the 

Horse Islands Group. and schists correlated with rocks to the south of the Baie Verte 

peninsula CHibbard. 1983). 

Intrusive bodies in the Fleur de Lys Belt include the Wild Cove Pond Igneous Suite and 

the Partridge Point Granite. These are described as a "granitic" batholith. and 

gamctifcrous, muscovite-bearing leucogranite, respectively (Kidd . 1974; Fuller. 1941; 

Hibbard. 1983). 

2.3.2 Baie Verte Belt 

The Baie Verte Belt is exposed to the south and ea.)~ of the Baie Verte Line. Its 

stratigraphy is divided into an ophiolitic basement, and overlying volcanic and 

sedimentary cover sequences (Hibbard, 1983). The ophiolitic basement consists of three 

disrupted ophiolitic sequences which include the Betts Cove, Point Rousse and Advocate 

Complexes, and the Pacquet Harbour Group. 

The Betts Cove Complex is an intact sequence of ultramafic units, mafic dykes and 

volcanic tlows (Upadhyay, 1973; Coish. 1977). It provides the type section for most of 

the basement stratigraphy west of the Baie Vert Belt. A U/Pb zircon age determination 

from gahbro in the ophiolite provides a minimum age of 488.6 + 3.1 -1.2 Ma for the 

oceanic crust in the Baie Verte Belt (Dunning and Krogh, 1985). 

In contrast to the Betts Cove, other ophiolites on the Baie Verte Peninsula are variably 

disrupted and incomplete. The Point Rousse Complex along the north coast of the 

peninsula is a south directed, imbricate thrust stack of mixed ultramafic, volcanic and 

volcaniclastic rocks (Norman, 1973; Norman and Strong, 1975; Kidd et al., 1978). The 

Advocate Complex along the Baie Verte Line is a dismembered sequence of deformed 

and altered ultramatic and volcanic units (Kidd, 1974; Bursnall, 1975). The Pacquet 

Harbour Group. not considered a complete ophiolite, consists of deformed volcanic and 
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sedimentary rocks correlated with the upper pc..mion of the Iktts Cove Ophiolite C'lllllpk' 

(Gale. 1971. 1973: Hibbard. IQ83). 

Conformablv on:rlving the ophiolites are Ordo\'i~ian marine volcanic and st:dimcntan . . . 
rocks which are associated with upper sections of the ophiolite complexes (Kidd ct at. . 

1978). These include the Snook's Arm Group which overlies the Betts Cove C'nmpl.:x. 

The Betts Cove may be equivalent to rocks exposed as the upper part of the Pa~.:quct 

Harbour and the F\atwater Pond groups (Swinden. 1991). The marine volcanic and 

sedimentary rocks are overlain unconformably by the Cape St. John and Mic Mac Lake 

groups, which are Silurian in age, and terrestrial in origin (pers. comm., H.S. Swindcn. 

1991 ). Ordovician and Silurian strata are unconformably overlain by Carboniferous 

sediments in the southeast comer of the Peninsula, correlated with similar rocks in the 

Deer Lake Basin to the south (Dean and Strong, 1975; Hibbard, 1983). 

Intrusive rocks comprise greater than half the outcrop in the Baie Verte Belt. These 

include the Burlington Granodiorite, Dunamagon Granite, and Cape Brule Porphyry an'' 

smaller intrusive bodies such as the Reddit's Cove Gabbro, the La Scie Intrusive Suite. 

and the granite and syenite of the Middle Arm Ridge area (Baird, 1951; Neal ct al., 

1960, 1963). Recent U/Pb zircon age determinations provide Silurian ages for the 

formation of these intrusive bodies (pers com., Dunning, 1993). 

The regional metamorphic grades in the Baie Vert Belt are typically greenschist. The 

grades decrease to lower greenschist facies with increasing proximity to the Baie Vertc 

Line (Kennedy. 1973, 1975b; De Wit, 1974; Kidd, 1974; Bursnall, 1975). The gr~des 

frequently increase to mid to upper amphibolite facies near large plutonic bodies such as 

the Burlington Granodiorite and some structures including the Scrape Thrust which may 

represent a metamorphic sole to the Point Rousse Ophiolite Complex (Hibbard, 1983). 

Metamorphic grades are dominantly greenschist on the Consolidated Rambler Mines 

Properties and in the :;outh portion of the Pacquet Harbour Group (Hibbard, 1983). 
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2.4 Geology or the Pacquet Harbour Group 

The Pacquet Harbour Group is e~posed as an imbricate sequence of volcanic. intrusi\'e 

and sedimentary rocks near the centre of the Baie Verte Peninsula (Figure 2A: after 

Hibbard. 1983). 

External contacts between the Pacquet Harbour Group and other litho-stratigraphic units 

in the Baie Verte Belt are poorly constrained. The Group is correlated with similar 

volcanic units in the upper portion of the Betts Cove Complex (Gale, 1971; Hibbard, 

1983; Swinden et al., 1989). It is bound to the west by the Burlington Granodiorite. to 

the east by the Cape Brule Porphyry, and to the north by the Dunamagon Granite. It is 

overthrust from the north by imbricate ultramafic, volcanic, and sedimentary units of the 

Point Rousse Complex along the Scrape Thrust (Hibbard, 1983). Its contacts with 

volcanic units of the Cape St. John and ultramafic units to the east and northeast are 

probably thrusts as well (per. comm. Norman, 1990). 

The extent to which internal stratigraphy can be identified in the Pacquet Harbour Group 

is a matter for continuing debate. Many workers document several generations of 

structure on the Consolidated Rambler Mines properties and in the south portion of the 

Group (Gale, 1971; Tuach and Kennedy, 1973; Tuach, 1976; Hibbard, 1983). Recent 

mapping on the Consolidated Rambler Mines properties provide structural orientations 

consistent with those to the north along the Scrape Thrust (pers. comm., T .J . Cal on. 

1989). 

A study by Coates ( 1990) divided mixed volcanic and sedimentary sequences on the 

Consolidated Rambler Mines properties into the Rambler Sequence and Uncles' 

Sequence; two structural blocks separated by the west to northwest trending, shallow 

northeast dipping Ram•·ter Brook Fault. Internal stratigraphic relationships within , and 

between the sequences are uncertain, but stratigraphic continuity is noted in the vicinity 
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of some VMS deposits on the Consolidatt!d Rambler Mines propc!rtics. Th~ rocks in both 

sequences are dominated by greenschist and upper greenschist grades of met<Hll'Jrphism. 

\\'hole-rock analysis of volcanic rocks in the Pacquet Harbour Group distinguish tholciiti~ 

basalts from high magnesian, incompatible element depleted basalts identiticd as bnninih!s 

(Gale. 1971; Cameron et al.. 1979; Hibbard. 1983). In subsequem Sllidies. exh.:ndcd 

REE plots and Nb I Th ratios plotted against Y were used to relate the chemistry of 

these units to primitive or transitional arc palaeotectonic settings (Swinden et al.. 1988). 

The REE chemistry suggests complex multi-stage melting from a refractory source 

related to the presence of an immature subduction zone in a primitive arc tectonic setting 

(Swinden et al., 1988). 

2.5 VMS and Epigenetic Deposits of the Baie Verte Peninsula 

Mining and exploration on the Baie Verte Peninsula have made significant contributions 

to the economy of Newfoundland since 1864. Eight of nine orebodies on the peninsula 

are past-producing VMS deposits including the Terra Nova, Tilt Cove, and Betts Cove 

deposits, and the VMS deposits on the Consolidated Rambler Mines properties (Figure 

2.2). The Tilt Cove deposit is the second largest ophiolite-hosted VMS deposit in the 

Caledonide- Appalachian orogen. Approximately 8 million tonnes of Cu ore was mined 

intermittently from it between 1864 and 1957. The Betts Cove deposit, which occurs to 

the south of Tilt Cove deposit is smaller, with reserves estimated at :S 1 million tonnl!s. 

Melange fabrics, and a lack of alteration in the Terra Nova deposit have been attributed 

to its structural emplacement along with the Advoct\te Ophiolite Complex in the Baic 

Verte Line (Hibbard, 1983). The Tilt Cove and Betts Cove deposits are structurally 

intact in comparison and occur in the Betts Cove Ophiolite Complex on the east coast of 

the peninsula. The base metal sulphide mineralization in all th, ,; deposits consists of 

pyrite, pyrrhotite, chalcopyrite, sphalerite and arsenopyrite with trace amounts of galena 

and magnetite with significant gold and silver (Strong and Saunders, 1988). Altered 
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rocks below intact rleposits including the Betts Cove consist of well detined stockwork 

zones which contain core assemblages of quartz and chlorite. gradational to peripheral 

assemblages of quartz + albite + chlorite + calcite (Saunders. 1985). The extensive 

alteration associated with the Tilt Cove deposit has been attributed to the prest:nce of a 

large seafloor tluid convection system associated with the high thermal gradients present 

during the rifting of an island arc (Strong and Saunders. 1988). 

Exploration during the 1980's in central Newfoundland resulted in the discovery of 

additional VMS and numerous epigenetic Au prospects (Tuach et al., 1988; Tuach. 

1990). Exploration from 1986 to 1991 resulted in the discovery of the Ming West VMS 

deposit on the Consolidated Rambler Mines properties, and several gold deposits in the 

ophiolites of the Baie Verte peninsula, including the Deer Cove, Pine Cove and Stog'er 

Tight deposits in the Point Rousse Complex and the Dorset prospect in the Flatwater 

Pond Group, Other recent epigenetic gold discoveries include the Nugget Pond deposit 

in the Betts Cove Complex, the Brass Buckle and Uncles' prospects in the Pacquet 

Harbour Group. ·r·he Uncles' prospects include several small occurrences to the south 

of the Rambler deposit, including the Uncle Theodore prospect which is exposed along 

the northwest shoreline of Big Rambler Pond. 

The mesothermal deposits in the Point Rousse Complex occur in thrusts and are hosted 

by a variety of altered ultramafic rocks, gabbros, mixed mafic and felsic volcanics, and 

sediments. Related disseminated mineralization generally occurs in dilational veins. 

stockwork breccia, or sheared quartz veins along brittle-ductile transitions. It consists 

of disseminated pyrite, pyrrhotite and magnetite with trace amounts of chalcopyrite, 

sphalerite, and galena (Gower et al., 1988; Ramezani, 1992). Local thrust faults and 

shear zones associated with these deposits mimic structural trends and orientations 

associated with the Scrape Thrust which separates the Point Rousse Complex from the 

underlying Pacquet Harbour Group (pers. comm., T.J. Calon, 1991). 
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Th~ Stog'er Tight gold prospect in the Point Rousse Complc!x consists of minenlization 

which is typical of the "altered wall-rocks type" of mesothermal shear-hosted Au 

mineralization (Dube. 1990). The deposit occurs along a shallow thrust, which is similar 

in orientation to the Deer Cove thrust to the north (Ramezani. i99J). Four alteratinn 

zones han: been de tined. These include a chlorite + calcite zone. calcite + muswv itc: 

zone. a red albite + pyrite + gold zone and a chlorite + magnetite zone. Gold 

mineralization occurs with pyrite. red albite. and muscovite in altered gabbro in the 

margins of syn-deformational quartz + albite + ankerite veins. U/Pb ages for igneous 

zircon yields an Early Ordovician crystallization age of 483 + 3/-2 Ma (edit) for the host 

Stog'er Tight gabbro. Hydrothermal zircons provide a minimum age of 420 ± 5 Ma for 

the gold mineralization in the deposit (Ramezani, 1992). 
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3.1 Introduction 

Chapter 3: Geologic Setting and Distribution or 

Alteration in the Rambler VMS De~it 

The Consolidated Rambler Mines properties are located 18 kilometres east of the town 

of Baie Verte (near the intersection of Highways 414 and 418) at the centre of the Baie 

Verte Peninsula (Figure 3.1). VMS depo5its including the Rambler, a concentrating mill 

and camp facilities at the centre of th·~ ~ro:.: ~·"ties {Plate 3.1) are readily a~··ssible by 

well maintained mine roads (Figure 3.2). 

Mines on the properties are currently idle with total production from 1962 to 1982 

estimated at over 4 mihk;n tonnes of Cu-Au ore (fuach, 1988). Recent exploration by 

MPH Exploration Limited has confirmed the presence of gold in the deposits. The 

dh:covery of the Ming West VMS deposit and numerous other prospects and mineralized 

alteration zones highlights the potential for future discoveries in the immediate area. 

Two distinct types of mineralization occur on the ConsoJidated Rambler Mines 

properties. VMS deposits occur as parallel northeast trending, shallow dipping, 

structurally attenuated orebodies along specific stratigraphic transitions within, and above 

the Rambler Sequence (Coates, 1990). Auriferous disseminated sulphide mineralization 

typified hy some of the Uncles' prospects and the Discovery Outcrop occur south of the 

Rambler mine site in shear zones which appear to be related to the Rambler Brook Fault. 

The two types of mineralization coincide in the Rambler deposit, offering a unique 

opportunity to examine their effects on the distribution and concentration of base metals, 

gold and trace metals in an intensely deformed VMS deposit. 



Aate 3.1 Rambler (Main) Mine, mill and concentrator. 
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3.2 Previous Geolo&ical Work 

The Rambler VMS deposit occurs at the centre of the Con~tidated Rambkr Mines 

properties. Originally referred to as the Rambler during its discovery by Enos England. 

a local trapper and prospector. It was subsequently listed as one of the "main" deposits 

of Rambler Mines Limited and Rambridge Mines Limited from 1944 to 1960. The 

deposit has more recently been referred to as the Main Mine on the Consolidated 

Rambler Mines properties (Coates, 1990). The deposit is herein referred to as the 

Rambler Mine to be consistent with the name provided by Enos England. 

Early interpretations of the geology of the Consolidated Rambler Mines properties are 

presented in studies by Baragar (1954), Gale (1971, 1973), Heenan (1973), Tuach 

(1976), Tuach and Kennedy (1978), Hibbard (1983), and Tuach et al. (1988}. Gale 

(1971) utilized an existing geochemical grid, to create a geological map at 1" to 800' 

scale Gale (1971) identified three phases of deformation and two different styles of 

folding. 

The Consolidated Rambler Mines properties were re-mapped by Tuach (1976), who 

subdivided the Pacquet Harbour Group into five gradational litho-facies units in a 

conformable, lithologic succession. Stratigraphy was interpreted in terms of a north

facing, arcuate, mixed sequence of volcanic and sedimentary lithologies, surrounding a 

central felsic volcanic "dome". Generations of structure were interpreted in terms of two 

deformational events. Hibbard (1983) questioned the validity of these interpretations 

citing additional structural complexities. 

Recent interpretations of the stratigraphy are quite different. Mixed intrusive, volcanic, 

and sedimentary lithologies are separated into the Rambler and Uncles' "Sequences", 

which are juxtaposed along the arcuate northwest to east trending, shallow northeast 

dipping Rambler Brook Fault (Coates, 1990). The Uncles' Sequence to the southwest, 

occurs as a series of mafic volcaniclastic units, massive flows, and pillow basalts which 
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host the U nclcs · prospects to the south of the Rambler mine site. The Rambler Sequence 

nonh~ast of the fault. is described as a basal volcaniclastic pile. which is overlain bv 

matic to intermediate tlows. pillows and volcaniclastic rocks. succeeded in turn by 

cpi(lastic and pyrodastic lithologies (Coates, 1990). 

3.3 Geologic Setting of the Rambler VMS Deposit 

Rocks assigned to the Cncles' and Rambler sequences were examined c·1ring field work 

in the summer of 1989. Mafic volcanic and volcaniclastic rocks of the Uncles' Sequence 

were e1tamined along a road cut to the south of the Rambler camp, and in the immediate 

vicinity of the Uncle Theodore prospect along the western shore of Big Rambler Pond. 

Mafic and felsic volcanic, intrusive, and pyroclastic units assigned to the Rambler 

Sequence were examined in several outcrops along the Rambler Brook Fault, and in the 

vicinity of the Rambler mine site. 

Mafic volcanic units associated with the Uncles' Sequence south of the Rambler camp 

site consist of dark green, medium to fine grained, massive, pillowed, variably foliated 

and altered volcanic rocks. Outcrops with pillows (up to 3m) contain well defined 

selvages ( s Scm) and tlow breccia. Silicification and carbonatization are commor1 forms 

of local alteration. 

Volcanic rocks in the vicinity of the Uncles' prospects are intensely altered and silicified. 

Cleared e1tposures of the Uncle Theodore prospect occur as structur. 1 t~~ ! .. · ~rcalated, 

northeast trending, light green to grey silicified quartz, chlorite, and light green quartz 

± muscovite schists which contain variably deformed quartz veins (Plate 3.2). 

Disseminated pyrite occurs in shear bands throughout the cleared exposures. 

The base of the Rambler Sequence is dominated by structurally intercalated felsic and 

mafic volcanic units succeeded by a series of volcaniclastic, pyroclastic and epictastic 

sediments (Coates. 1990). Felsic and mafic volcanic units occur as a series of low 
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Aate 3.2 Uncle Theodore Prospect; exposures of silicified quartz + chlorite, and quartz 
+ muscovite schist with disseminated pyrite. 

Aate 3.3 Exposures of schists and mylonite associated with the Rambler Brook Thrust 
in Rambler Brook along the south margin of tailings dump. Ch1oritized volcanic units 
near the structural footwall of the Rambler Sequence. 
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exposures approximately 200 metres northwest of the Rambler mine site along the north 

margin of the tailings dump. Outcrops in this location consist of light grey to buff. fine 

to medium grained rocks with fragmental textures. Deformed volcanic rocks exposed 

along Rambler Brook in the thrust south of the ~ilings dump occur as dark green. tine 

grained chlorite schist with a well developed northwest 1rending. shallow northeast 

dipping planar schistosity (Plate 3 . .3). Sulphide mineralization occurs as disseminated 

pyrite and chalcopyrite ( ~ 30% ). 

Outcrops near the Rambler mine site consist of mixed volcanic and sedimentary units. 

Schists and mylonites of the Discovery outcrop are exposed approximately 50 metres 

southwest of the mine, adjacent to an abandoned shaft (Plate 3.4). The mixed volcanic 

and sedimentary units are intruded by a gabbro sill and small mafic dykes. The sill, 

intersected over a thickness of 100 metres during drilling on the Rambler deposit, occurs 

in a series of small exposures on the north side of the mill, and outcrops in an island 

near the centre of England's Steady; a small pond at the centre of the property. 

Exposures typically consist of a variety of undeformed pegmatitic, cummulate, massive 

and porphyritic textured gabbro. The dark green fine to medium grained randomly 

oriented mafic dykes typically range from several metres to a metre in thickness. 

Volcanic, volcaniclastic, pyroclastic and epiclastic sequences associated with the upper 

portion of the Rambler Sequence were examined in a series of exposures immediately 

south and southwest of the mine buildings. Exposures typically consist of mixed 

polymictic conglomerate, fine to medium grained wacke, a light grey to green 

agglomerate (Plate 3.5) with prominent deformed felsic fragments ( s 10cm), and light 

grey to green, fine grained tuffaceous sediment. These units are succeeded by pillow 

lavas along a road cut approximately 150 metres east of the mine site (Plate 3.6). 

Transposed bedding and cleavage orientations on the Consolidated Rambler Mines 

properties are consistent with the disposition of lithologies along an openly folded, 

shallow northeast plunging thrust fault system (pers. comm., D. Duncan, 1989). 
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Plate 3.4 Schist and mylonite exposed as the "Discovery 
Outcrop"; the exposed footwall of the Rambler VMS deposit. 
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Structural orientations are consistent with those detined along the Scrape Thrust to the 

north of the Consolidated Rambler Mines properties lpers. comm. T. 1. Calon and N. 

Ryburn. 1990). Deformed units exposed near the centre of the properties are disposed 

along a series of folded bedding-parallel imbricate shears which (reate zones of low 

~train surrounded t-y "anastomosing" high strain shear zones typified by the Rambler 

Brook Thrust Fault (pers. comm. T. J. Calon. 1990). 

Metamorphic grades in local outcrops on the Consolidated Rambler Mines properties are 

typically greenschist. Exposures of volcanic rock are dominated by spilitic assemblages 

of quartz + albite + chlorite + calcite ± epidote. Upper greenschist grades are 

indicated by the presence of biotite porphyroblasts in the less deformed and altered 

intrusive and volcanic lithologies. 
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Ptate 3.5 Felsic agglomerate (•min rock•) with stretched felsic and mafic volcanic 
fragments (~ lOcm) exposed in outcrop approximately 100 metres southeast of the 
Ramhler mine site. 

Ptate 3.6 Pillow lavas exposed in a road cut approximately 150 metres east of the 
Rambler mine site. 
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3.4 ~IS and Gold Mineralization on the Consolidated Rambler Mines Properties 

VMS deposits including the Rambler, Ming Mine and ~ling West deposits occur in 

stratigraphic intervals which are characterised by the presence of chen and tuffaceous 

exhalite (Coates, 1990). The Rambler (Main), Ming, and Ming West VMS dcposils 

occur as attenuated. parallel. northeast-trending shallow-dipping (30°) ore chuh!s in the 

Rambler Sequence (Figure 3.2). The East Mine of less certain origin is exposed as 

quartz + muscovite schist in the mafic volcanic rocks exposed to the east of the Rambler 

mine site. 

Sulphide assemblages in the VMS deposits are completely recrystallized. Fabrics 

observed in massive sulphide horizons of the Rambler deposit vary from breccia-textured 

to shear-banded ore. Massive sulphide assemblages generally consist of high percentages 

( s 80%) of pyrite and sphalerite, with trace chalcopyrite. Galena occurs along the 

margins of quartz veins which cut through some of the massive sulphide horizons. 

Disseminated auriferous sulphide associated with the Uncles' prospects occurs near the 

top of the Uncles' Sequence to the south of the Rambler Brook Fault. Similar 

mineralization also occurs in the Discovery Outcrop; the exposed footwall of the Rambler 

deposit (Plate 3.4). Outcrops in these locations typically consist of light green to grey, 

fine grained, quartz + chlorite, and quartz + muscovite schist to mylonite. Bright green 

shear bands ( s2cm) suggest the presence of a Cr-rich mica. Sulphides in the Uncle 

Theodore prospect typically consist of disseminated cubes and fine pyrite ( s 30%), with 

trace pyrrhotite, chalcopyrite, and sphalerite. 

3.5 Stratigraphy of the Rambler VMS Deposit 

The Rambler deposit occurs as a deformed , northeast trending, shallow plunging 

ellipsoidal orebody consisting of recrystallized massive and disseminated sulphide. The 

deposit occurs above and is parallel to a sheared transition from felsic to mafic volcanic 
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Figure 3.2 Lithological and structUl'll.l trends on the Co:tSOiidated Ramhlc:r Min&:s 

prnpertie.~ showing the location ofiWr.lol;:r and Uncles' Sequences, VMS ~sits, 

and the Uncles' prospects. 
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and volcaniclastic lithologies in the Rambler Sequence (Figure 3.3). Drilling in 1989 

intersected sulphide mineralization along strike for approximately 90 metres. tracing the 

deposit approximately 640 metres down plunge from the original mine workings (pers 

com., D. Duncan, 1989). Mineralization has been intersected in widths of up to 30 

metres. 

Correlation of lithologies between drill holes was not possible due to the intense 

deformation and alteration in the stratigraphy of the deposit. Core logging and sampling 

was restricted to two drill fences: MZ88-20 to MZ88-28 (Figure 3.3). Core data is 

consistent whh a structurally intercalated, but upright stratigraphic succession, which was 

separated into the footwall, deposit and hangingwall stratigraphic sections for the 

purposes of this study (Figure 3.4). 

The footwall section of the stratigraphy occurs as the first 50 metres at the base of the 

of most longitudinal drill sections and consists of mixed intervals of mylonite, schist, and 

their less deformed and altered volcanic, sedimentary and intrusive protoliths. Mylonites 

and schists occur as light to dark grey to green, fine grained, foliated to massive 

recrystallized units with bands C'' ~isseminated sulphides ( S2m). Intervals of volcanic 

and intrusive rock occur as dark green, fine to mt!dium grained, massi··:•! to cummulate 

textured rocks. The altered intrusive rocks at the bottom of drillhole MZ89-28 are cut 

by a large ( s 15m) quartz vein in the base of the footwall. Rocks immediately adjacent 

to the vein ( s 1m) are intensely silicified. 

The deposit is the most consistent stratigraphic marker in the drilled stratigraphy. It 

averages 15 metres in thich·ess and consists of mixed intervals of quartz + chlorite ± 
epidote breccia, disseminated (S5m) and massive sulphides (~2m), and chert. ft:tervals 

of quartz + chlorite ± epidote breccia define the base of the deposit. These 0.1:cur a:; 

dark green to grey, fine to medium grained, brecciated siliceous units cut by irregular 

fractures with massive to disseminated sulphides with irregular light to dark green 

chloritic fractures ( S3mm). The breccia is mixed with, and gradationally succeeded by 
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Figure 3.3 Lithological and stlUI:t\nl tn:nds in the vicinity of the R&nblcr {MJUo) 

deposit. showing approximate e~t of VMS mineralization. prospect and 

drillbole locations, and location of section Line for Figure 3.4. 
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intervals 1 ~ ~m) of massive and disseminatc:d sulphidc:s. whidl arc: Sth.:~:c:c:dc:d in turn hy 

intact to ddorm~d and brc:cciatc:d intt:J"\ ;.1ls 1 :5 lm) of dark red Ill hla~:k. amnrphous. 

magneti~: ch~rt. Br~ccia. massiv~ sulphides and chert in th~: dcplhit arc stnKturally 

intc:n:alatc:d with intervals of s~:hist and my '''nitc:. which arc: the: dominant litholngic:s in 

the: footv.all section of the stratigraphy (Plate .~ . 7). 

r\ chert unit ( ~ lm) intersected in se\'eral drill hoks above massiv~: sulphide: 

mineralization marks the transition from the deposit to the hangingwall section of thl' 

stratigraphy. Rocks near the base of the hanging wall consist of altered gabbros { ~ I OOm) 

which are correlated with similar units exposed on the island at the centre of England's 

Steady. In core the gabbro consists of mixed coarse cummulate. tine massive, and 

porphyritic rocks which contain disseminated leucoxene. Intrusive contacts ncar the top 

and bottom of the sill are variably altered and tectonized. 

The upper section of the hangingwall contains a variety of volcanic and intrusive rocks. 

and volcaniclastic and pyroclastic sediments. The gabbro sill at the base of the 

hangingwall is overlain by basalt mixed with volcaniclastic and pyroclastic sediment. 

Intervals of basalt typically occur as dark to light green, fine massive, to variably foliated 

altered units which contain pillow selvages ( ~ 3cm) and amygdualcs ( ~ 2mm). The 

basalts are gradational to mixed volcaniclastic and pyroclastic units at the top of the drill 

section. 

The mixed vole; ~jcJastic and pyroclastic units at the top of the hangingwall contain 

intervals (~3m) of felsic agglomera:'!, volcanic sediment and tuff. Agglomerates contain 

distinctive rounded tu subangular, intact, stretched, or brecciated, pebble to cobble-sized 

fragments of mafic and felsic volcanic rock and chert. The fragments and clasts arc 

generally suspended in a matrix of light grey to green, fine to medium grained ( ~2mm). 

recrystallized sediment. Other intervals (~2m) contain similar dark green, tine to 

medium grained, bedded, granular textured wacke. Tuff intervals ( ~0.5m) occur as 

light grey to green, finely banded fragmental units, near the top of the hangingwall. 
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Small ! ~ 2mJ mafic dykes intrude the altered lithologies throughout the drilled section. 

with th~ t!XC~ption of the footwall mylonite and schists. ln core. these occurred as dark 

grl.!en. tine grained massivt: intervals of intrusive rock. The dykes were distinguished 

from 'limilar I.!Xtrusivc rocks by the presence of detinitive intrusive contacts and the 

ahsc.:nce of visible lcucoxene. 
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Plate 3. 7 Drill core from the Ramhler deposit. Contrasting hrecciated volcanogenic massive 
sulphide mineralization (top) from the deposit and shear-related syn-kinematic disseminated 
sulphide mineralization (bottom) in the footwall. 
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Chapter..&: Petrography of Alteration and :\lineralization 

in the Rambler \':\IS Deposit 

.&.I Introduction 

Intact V~tS deposits typically consist of one or more concordant masstve sulphide 

horizons above discordant stockwork alteration zones (Franklin et al.. 1981: Lydon. 

1988). Upper contacts between the massive sulphide and overlying strata are generally 

sharp, and frequently marked by thin layers of chert. Lower contacts are gradational to 

the stockwork alteration in underlying lithologies. The primary fabrics and textures in 

intact VMS deposits are consistent with the static alteration related to the fluid circulation 

and sedimentary processes associated with seafloor hydrothermal systems. These 

detinitive stratigraphic and petrographic relationships are rarely preserved in deformed 

VMS deposits. 

In order to look for evidence of possible mesothermal alteration in the Rambler deposit. 

JOO metres of core was (re)logged and sampled, with emphasis on the nature and 

occurrence of the different varieties of alteration, and spatial distribution of VMS and the 

mesothermal-looking varieties of disseminated sulphide mineralization. Three hundred 

core samples were selected from the different varieties of alteration and mineralization 

for petrographic analys~s. Of these, 100 were selected for standard thin sections, and 

another 50 for polished thin sections. Twenty polished thin sections from samples with 

high assayed gold contents were carh.,n coated and examined with a Scanning Electron 

Microscope (SEM) to locate an,. .ine the setting of gold, and \v determine its 

occurrence in relation to other silicate and sulphide assemblages. 

-l.2 Alteration 

Three common alteration assemblages occur in the drill core of the Rambler deposit. To 

com~nsate for their gradational nature, the main varieties were detined as "stages" in 



on the basis of th~ir o\·erprinting rd;lti(.lOShips. and by the dominan~~ of sp~:citi~ ~nd

m~mber fabrics. textures and silkate as-;emblag~:s in the diflc:rcnt \l:~til'll" pf thl.' 

stratigraphy. 

Stage l alteration was detincd as pcrvasi\·c regional grccnsd1ist fa~i~:s mctalllllrphl ... lll. 

It is common throughout the Pa~quct Harbour Group and in the stratigraphy pf tlw 

Rambl~r VMS deposit. where it was detined as r~gional gr~~nschist mc:tamorplll( . and 

deformed seafloor hydroth~rmal silicat~ assemblages in the hangingwall and deposit 

sections of the stratigraphy. Stage 2 alteration was detined by overprinting syn-kincmatk 

assemblages which comprise the schists and mylonites in the footwall shear wnc-; and 

in the shear zones in other areas of the stratigraphy. It is similar to the Jomin;lllt 

alteration exposed in the Discovery Outcrop and alteration exposed in the Undes· 

prospects. Stage 3 alteration was detined as the quartz veins throughout the stratigraphy 

of the deposit and in several outcrops on the Consolidated Rambler Mines properties. 

The main stages of alteration. stage I and stage 2. were intimately associated with the 

"seafloor" massive and "epigenetic-looking" disseminated sulphide mineralization in the 

deposit and footwall sections of the stratigraphy. All three stages of alteration were 

overprinted by biotite porphyroblasts. 

4.2.1 Stage l: Seafloor I C:reenschist Metamorphism 

Stage I alteration assemblages in the deposit occur as quartz + chlorite ± epidote ± 

muscovite assemblages in intervals of massive sulphide. Variable amounts of quartz + 

epidote + chlorite ± muscovite occur in intervals of cpidotizt!d volcanic rock, quartz

chlorite breccia and chert. 

Stage 1 alteration assemblages in samples of coarse cumulate textured hangingwall 

gabbro occur as equigranular ( !5 0.8mm) intergrowths of albite and subhedral to anhedral 
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Plate 4.1 Typical stage I groundmass silicate assemblages in gahbro: altered albite, 
amphibole (light green}, and radiating prismatic epidote (yellow, birefringent}, with 
interstitial chlorite, 28-2709, crossed larized li ification = 100 

--~ 

Plate 4.2 Stage I silicate assemblages in basalt. Random albite microJites (white) in a 
fine groundmass of chlorite. epidote and sphene [26-1948. crossed polarized light, 
magnification = 100 X]. 
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blue-green amphibole ( s0.5mm: Plate 4.1). The albite contains fine inclusions of 

epidote ( sO.lmm). Amphibole is overorinted by radiating prismatic acicular epidote 

(0.2mm). It is surrounded by fine recrystallized quanz ( s 0. 1 mm) intergrown with 

isolated suhhcdral sphene ( s 0.04mm) associated with drusy to skeletal masses ,1( 

leucoxene { S0.4mm). and laths { s0.4mm) of subhedral chlorite and biotite. 

Stage 1 silicate assemblages in basalts are mineralogically similar, but texturally distinct 

from those observed in gabbro (Plate 4.2). In thin section, subhedral to euhedral albite 

grains ( SO.I mm) are surrounded by a matrix of fine recrystallized quanz ( s0.03mm). 

subhedral epidote ( s0.05mm), and pleochroic light to pale green chlorite laths 

( SO.Olmm) with isolated clustered subhedral grains of sphene ( s0.05mm). Chlorite 

is frequently overprinted and replaced by dark brown subhedral biotite ( sO.O I mm). 

Stage 1 assemblages in epidotized volcanic and sedimentary rocks contain high modal 

percentages of quartz, epidote and chlorite in comparison to less altered volcanic and 

sedimentary rocks. Assemblages in intervals of e._,idotized basalt consist of recrystallized 

quartz (S0.3mm) with disseminated (S40%) to massive (~60%) epidote (SO.Imm). 

Relict amygdules ( S3mm) occur as concentric aggregates of polygonal quartz ( s I mm) 

which surround recrystallized "cores" of calcite (Plate 4.3). 

Stage 1 assemblages are common as both the clast and matrix constituents in volcanic 

sediments. Stage 1 assemblages in the mafic volcanic clasts ( s4cm) arc: similar to the 

stage I alteration assemblages in intervals of gabbro. Assemblages in felsic agglomcratic 

clasts ( s 2cm) are similar to the assemblages in epidotized volcanic rocks, which consist 

dominantly of granoblastic quartz ( s0.2mm) with interstitial epidote ( s0.05mm) and 

chlorite (sO. I mm> .)etrital grains in the matrix consist of poorly to moderately-sorted, 

subangular albite ( sO.Smm) and recrystallized magnetite ( s0.2mm). 
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Plate 4.3 Stage 1 alteration: recrystallized amygdules ( ~ 3rnm) in epidotized basalt with 
•cores• of calcite [26-1962, crossed polarized light, magnification = 25 X]. 

Plate 4.4 Quartz-chlorite breccia: siliceous breccia fragments ( ~ lcm) surrounded by 
fractures ( ~2mm) with masses of light green chlorite overprinted hy biotite [26-1945, 
crossed polarized light, magnification = I 00 Xl. 
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Stage I assemblages in breccia and massi\'e sulphide horizons typically consist nf high 

modal percentages or quartz. chloritt! . and musco\·itt! . lnt\!r.als of cht!rt ~U\! dnmin.ltcd 

by recrystallized quartz and disseminated magnetitl! . Siliceous angular frag.mt!tHs l ~ )cml 

in inter\als of breccia consist of granoblastic quartz t s; lmm) an~ ~ int! t stLOimml 

disseminated subhedral to anhedral grains of t!pidntt!. The fragments arc surn.mndcJ hv 

irregular dark green fractures. ( s; ~mm in wictth) which contain masses of tht! light gn:cn 

chlorite ( ~O.lmm) (Plate ~.4). Other tracture minerals include isolated to clustered 

masses of subhedral epidote ( ~ lmm). sphene ( s;O.OSmm), and magnetite ( s;O. I mm). 

Stage I alteration in samples of massive sulphides ( ~ 60%) consist of several textural 

varieties of quartz ( ~ lmm). epidotized and sericitized albite ( ~0.5mm) . and a dark 

green, tine ( ~ 51-'m) variety of chlorite locally overgrown and replaced by the pak to 

light green variety of chlorite which is pervasive throughout the remainder of the 

stratigraphy. Both varieties of chlorite are imergrown with pale green to white muscovite 

( ~0 . 1 mm) (Plate 4.5) which occurs in fractures and shears with euhedral prismatic 

epidote ( ~ 0. :!mm) (Plate 4.6). Rare tourmaline occurs as radiating acicular inclusions 

(~O.Olmm) in quartz and recrystallized chalcopyrite (Plate 4.7) . Cherts contain 

polygonal to granoblastic aggregates of quartz ( ~0.5mm) intergrown with dissem:natcd 

ro massive recrystallized magnetite (~O. Olmm: Plate 4.8). 
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Plate 4.5 Alteration silicates in mas .. "ive sulphides.: Fine ( S 5~m) chlorite (dark green) 
intergrown and overprinted by liaht areen chlorite (SO.lmrn. coarse, pale green). and 
muscovite ( SO.lmm, high birefringence). Quartz occurs as large ( S4mm) polygonal 
grains (dark to light grey) Sulphides include chalcopyrite (irregular. dark yellow) and 
pyrite (light yellow, upper right comer [21-2760, crossed polarized transmitted and 
reflected light, magnification = 200 X]. 

Plate 4.6 Silicates in sheared massive sulphides: chlorite (sO. 1 mm: dark green) 
intergrown with subhedral to euhedral epidote (acicular). Sulphides along the margin of 
the shear consist of pyrite (light yellow polygonal grains) and chalcopyrite (dark yellow 
intentitial masses between pyrite) (21-2760, crossed polarized transmitted and reflected 
light, magnification = 25 Xl. 
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Ftate 4. 7 Alteration silicates in massive sulphide: inclusions ( ~0. 01 mm) of tourmaline 
(acicular, high birefringence) in recrystallized quartz (light grey). and recrystallized 
chalcopyrite (dark: yellow) and sphalerite (dark greenish brown) [21-2760, crossed 
polarized transmitted and reflected light. magnification = 100 Xl. 

Plate 4.8 Recrystallized chert: granoblastic quartz ( ~0.5mm. light grey) with irregularly 
disseminated to massive recrystallized magnetite (S0.01mm. dark hrown) [28-2719, 
crossed polarized transmitted and reflected light, magnification = 100 X]. 
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~.2.2 Stage .!: Syn-kinematic Alteration 

Stage I asscmhlag~:s Pt quartz + albite + chlorite + epidote ± magnetite : sphene , 

lcul'oxcne ar!: r~plal'l!d by stage 2 syn-kinematic quartz + .chlorite ± epidote. quartz + 

1.:hlorit!: ± muscovite. and quartz + muscovite ± chlorite assemblages with increasing 

deformation in the Rambler deposit. These alteration assemblages occur in shear zones 

throughout the stratigraphy, but are most abundant in the footwall. where they dominate 

intervals of schist and mylonite. 

Stage I assemblages are replaced by stage 2 assemblages in a shear zone (~1m) which 

cuts through the gabbro sill near the base of the hangingwall. In a thin section of quartz 

+ chlorite ± muscovite schist, stage 2 assemblages consist of in~ervals of recrystallized 

quartz ( ~0.05mm) with anastomosing shear bands ( ~ lmm) of light green chlorite 

( ~0.4mm' which contain rare subhedral to anhedral grains~ ~O.Olmm) of sphene. The 

chloritic shear bands are consistently overprinted by foliation parallel to oblique laths 

( ~ 0.2mm) of muscovite (Plate 4.9). 

The stage 2 assemblages in the shear zone in the hangingwall gabbro are similar to stage 

: assemblages throughout the deposit and footwall sections of the stratigraphy. Thin 

sections of schist samples from the base of the deposit, reveal fractured to brecciated 

euhedral megacrystic epidote ( ~0.4mm) in a groundmass of recrystallized quartz 

( ~ 0. I nun) intergrown with parallel to anastomosing laths ( ~ 0.1 mm) of light green 

chlorite (Plate 4.10). Footwall schists contain shear bands ( ~ 3mm) consisting of 

polygonal quartz and pyrite ( ~0.3mm) alternating with contorted shear bands ( ~O.Scm) 

of tine (~O.Olmm) light to pale green chlorite (Plate 4.11). 
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Plate 4.9 Staae 2 alteration; quartz+ chlorite ± muscovite schist in aabbro: quartz with 
anastomosing chlorite overprinted by oblique muscovite ( :S0.2m.m, high birefringence) 
[28-2702, crossed larized fication = 200 X] . 

. 
Ptate 4.10 Stage 2 alteration: footwall schist; intact to fractured subhedral epidote 
( :S0.4mm, high birefringence) in a groundma.ss of recrystallized quartz (light grey to 
white) and anastomosing chlorite ( :S 0. 1 mm, light green) [28-2724, cross polarized light, 
magnification = 100 X]. 
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Stage 2 alteration assemblages in intervals of footwall mylonite consist of tinelv 

comminuted and recrystallized grains of quanz with tine anastomosing laths of muscovite 

(::; 0.1 mm) (Plate 4. 12). Tht!se quartz + muscovite ± disseminated pyrite assemblages 

cornpri~t: the 'itage 2 cnd-membt!r alteration as it occurs in the footwall section of the 

stratigraphy. 
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Plate 4.11 Stage 2 alteration: recrystallized quartz, chlorite and muscovite in a small 
( :.S 1cm) crenulation fold [24-1925, cross polarized transmitted and reflected light , 
magnification = 100 X]. 

Plate 4.12 Stage 2 alteration: footwall mylonite; quartz with fine anastomosing lathes 
of muscovite (birefringent laths) and recrystallized polygonal disseminated pyrite 
(yellowish brown) [24-1925; cross polarized transmitted and reflected light, magnification 
= 200 X]. 
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..a.2.3 Stage 3: Vein Alteration 

Stage .'\ alteration assemblages occur in quartz veins which cut stage I and stage 2 

a~~cmhlagl.!s throughout the stratigraphy of the deposiL The veins ( ~ 5m) are dominat~d 

hy assemblages which include albite + quartz ± calcite ± chlorite. or quartz + calcite 

± ~.:hloritc. Adjacent silicitied rocks contain alteration consisting of quartz + chlorite 

with lesser epidote and sphene. Smaller veins contain assemblages consisting dominantly 

of calcite ± quartz ± chlorite. Their adjacent rocks are often weakly carbonatized. 

A large (15m) quartz vein intersected in an interval of brecciated intrusive rock in the 

footwall of hole MZ89-28, contains coarse polygonal to euhedral grains ( ~ 6mm) of 

quartz and unaltered albite. Polygonal syntaxial overgrowths of quartz and albite (0.4mm) 

are common along the interior margin of the vein. Fractures ( ~4mm) contain coarse 

( ~ l mm) aggregates of light green chlorite and calcite ( ~ 2mm) (Plate 4. 13). Altered 

rocks along the vein margms contain polygonal intergrowths of quartz and albite (0.2mm) 

with interstitial pleochroic light to pale green chlorite ( ~ 0.3mm) and euhedral epidote 

( ~O.:!mm) . Sphene occurs as clustered subhedral to euhedral grains ( ~0.02mm) and 

aggregates ( ~ 0.3mm). Chlorite ( ~0.1 mm) is frequently overprinted and replaced by 

laths of muscovite (Plate 4. 14). 

Assemblages in smaller silicate-dominated veins occur as polygonal aggregates of quartz 

( ~ Jmm) and masses of dark brown biotite ( ~0.2mm) which replaces the pervasive 

secondary light green chlorite (~0.5mm). The vein assemblages are cut by fractures 

( $;0.2mm) which contain fine to amorphous ( $;0.01mm) calcite. Carbonate veins are 

dominated by recrystallized polygonal to granoblastic calcite ( $;0.5mm), with scattered 

polygonal ( ~0.2mm) grains of quartz and aggregate clumps ( ~O.lmm) of light green 

chlorite. 
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Plate 4.13 Stage 3 alteration: typical assemblages in large footwall quartz - carbonate 
vein; quartz and albite cut by chloritic fracture (28-2733, crossed polarized light, 
magnification = 25 X]. 

Plate 4.14 Stage 3 alteration: wallrock alteration along marain of large footwall vein; 
quartz + chlorite + epidote ±biotite ± sphene assemblages [28-2731, crossed polarized 
light. magnification = 100 X]. 
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-'.3 \lassi~e and Disseminated Sulphide Mineralization 

Intervals of massive sulphide mineralization ( ~ 80% sulphides) were intersected over 

widths of up to 15 metres in holes MZ89-:; l to MZ89-28. Sulphide assemblages 

invariably consist of recrystallized pyrite ( ~ 60% ), with variable amounts of chalcopyrite 

and sphalerite (:535%). and trace amounts of galena (up to 5%). The disseminated 

sulphides in the footwall consist dominantly of pyrite ( ~ 80% ), with lesser amounts of 

chalcopyrite and sphalerite ( ~ 20% ). 

The massive sulphides in the deposit section of the stratigraphy are texturally and 

mineralogically diverse. Euhedral cubic, polygonal/ granoblastic, and colloform pyrite 

were noted in thin section. In most specimens, massive sulphides are dominated by 

rccrystall:zed polygonal pyrite ( ~0.4mm) and sphalerite intergrown with irregular 

interstitial chalcopyrite ( :50.2mm), which frequently contain inclusions ( ~0.05mm) of 

galena (Plate 4.15). Polyphase inclusions ( ~O.Olmm) in recrystallized pyrite grains 

contain chalcopyrite, galena and pyrrhotite. 

Two varieties of sphalerite are common in thin sections of massive and disseminated 

sulphide (sample 21-2750). A light yellow variety occurs as rounded inclusions and 

recrystallized grains in samples dominated by stage 2 quartz + muscovite ± chlorite 

alteration assemblages. A dark red variety occurs as irregular grains and interstitial 

masses with fine inclusions ( :::5:0.0 I mm) of chalcopyrite in massive sulphide samples 

which contain both stage 1 and stage 2 alteration assemblages. Examples of both are 

shown in plate 4.16. 

Texturally diverse massive sulphide assemblages near the top of the deposit are replaced 

with increased deformation by auriferous disseminated sulphide ( :5 30%) in the lower 

portion of the deposit and footwall sections of the 
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Plate 4. 1S Sulphide assemblages in a massive sulphide sample: pyrite ( ~ 0.4mm, light 
yellow, polygonal) with sphalerite (~0.3mm, lightgrey, angular polygonal) and irregular 
recrystallized chalcopyrite (~O.Jmrn, dark yellow) [21-2753, transmitted and reflected 
light, magnification = 25 Xl. 

Plate 4.16 Assemblages in massive sulphide sample: light yellow (inclusion) and dark 
red (interstitial) sphalerite [21-2750; transmitted and reflected light, magnification = 100 
X). 
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stratigraphy. Mixed intervals of brecciated and sheared ore with variably iolded to 

contorted shear bands of massive and semi-massive sulphides ( s 80%) occur within the 

gradational transition from the deposit to the footwall section of the stratigraphy. 

Hand specimens of footwall schist and mylonite contajn disseminated sulphides, which 

are dominated in thin section by recrystallized pyrite ( S 30% ). Individual sections reveal 

polygonal euhedral grains of pyrite ( s0.2mm) with traces of light coloured sphalerite 

(SO.lmm) and irregular masses of recrystallized chalcopyrite (S0.2mm) (Plates 4.11 

and 4.12). 

4.3.1 Secondary Sulphides 

Secondary sulphide assemblages were discovered in samples 21-2721 and 26-1974, which 

were selected for their anomalously high gold contents. These sulphide assemblages 

overprint stage 1 and 2 silicate alteration and associated recrystallized sulphide 

assemblages. Secondary sulphides include chalcopyrite + pyrrhotite ± galena ± Pb 

telluride, and chalcopyrite + arsenopyrite ± sphalerite assemblages, respectively. 

The secondary sulphide assemblages in 21-2721, a recrystallized massive sulphide 

sample, occur in an irregular vein ( s 5mm) as masses of chalcopyrite and pyrrhotite 

( s 1 mm). The pyrrhotite contains incl1.1sions ( s0.2mm) of galena and equant polygonal 

grains ( s 0.5mm) of pyrite. The galena inclusions enclose, and are frequently associated 

with round to irregular inclusions ( s 0.1 mm) of Ph-telluride (Plate 4. 17). 

Secondary sulphides in 26-1974; a sample of semi-massive sulphide mineralization, occur 

in a shear band ( s0.5cm) which contains irregular fractures ( S0.4mm) associated with 

numerous grain interstices which contain quartz and chalcopyrite. Many of the interstices 

contain small ( s 81-'m) sulphide and silicate inclusions. Some contain arsc!nopyrite. 

pyrrhotite and electrum (Plate 4.18). 
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Plate 4.17 Secondary sulphide assemblages; pyrrhotite with inclusions ( ~0.2mm) of 
galena and equant polygonal grains ( ~0.5mm) of pyrite. Galena (light grey) inclusions 
with irregular inclusions ( :S 0. 1 nun) of Ph-telluride [21-2721, reflected light, 
magnification = 100 X]. 

Plate 4.18 Secondary sulphide in interstitial chalcopyrite; inclusions of arsenopyrite 
(:S0.04mm, small light yellow, angular euhedral prisms) and electrum (:S0.02mm, 
small, bright yellow grains) [26-1974, reflected light, magnification = 200 X]. 
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-'.3.2 Gold 

s~mi-quantitativ~ probl.! analyses using SEM revealed the presence of electrum. a gold -

'llh~r alloy. in two of tt!n samples with high assayed gold contents. lt occurs in sampk 

~11-1974 as irregular t(t rounded grains (0.008-0.02mm) near rounded inclusions nf 

sphalerite and euhedral blad~d inclusions ( s 0.04mm) of arsenopyrite in interstitial 

t:halcopyrite ( s0.2mm. J-:!=1 'e 4.18). lt occurs in sample 21-2824 as a tlattened grain 

(0.02mm) between two polygonal grains of pyrite along a short grain boundary 

( - 0. 15 mm) enclosed by chalcopyrite (Plate 4.19). Gold occurs as telluride in 26-1925. 

a sample of quartz + muscovite ± chlorite schist from the footwall of the deposit. 

4.3.3 Telluride 

SFM backscatter electron imaging of a thin section of auriferous quartz + muscovite ± 

chloritl! schist (sample 24-1925) revealed numerous irregular polygonal grains 

( sO.OJmm) of Fe, Ni. Bi and Au-telluride in the interstices of silicate and sulphide 

assemblages (Weick et al.. 1990). The different telluride and sulphide phases were 

identitie<1 using SEM semi-quantitative probe analyses. 

Au-telluride in one area of the thin section was observed in a rounded grain (- llJ-Lm) 

with Fe-telluride adjacent to an irregular inclusion (- 4J-Lm) of chalcopyrite between three 

larger grains ( ~0. 7mm) of polygonal quartz (plate 4.20). In another area of the section. 

Au-telluride (0.003mm) occurs in the comer of an irregular grain (- 351-'m) of Ni

tdluridc between two larger grains (~O.lmm) of recrystallized pyrite (plate 4.21). 
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Plate 4.19 Grain (0.02mrn) of electrum between two larger grains of recrystallized 
pyrite [21-2824, reflected light, magnification = 200 Xl. 
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Plate 4..10 SEM photoJftph; rounded composite Jftin (- 11 ~) of 
chalcopyrite, Fe and Au-telluride (-4~) between three polygonal gnina 
(S0.7mm) of quartz in footwall mylonit~ (24-1925, SEM backacatter electron 
image, magnification = 1,300 Xl . 

Plate 4..11 SEM photognph of footwall mylonite; Au-telluride as an 
inclusion (- 3#41Jl) in polygonal an in (- 35~) of Ni-tclluridc between two 
laraer polyaonal grains ( :SO.l mm) of pyrite (24-1925. SEM bacbcatter 
image, magnification= 800 X). 
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~A Biotite 

Stage I and stage J alteration assemblages are overprinted by biotite. ln the hangingwall. 

biotite occurs as well developed porphyroblasts ( s 1.5mm) which overprint stage I 

quartz and epidote assemblages ( ~0.2mm) in epidotized basalt (Plate 4.22). Subhedral 

lathes ( ~ O.Jrnrn) of dark brown biotite also replace lighr s,rcen chlorite in the matrix L)f 

agglomcratic rocks. 

Biotite occurs as large porphyroblasts ( s 2.0mm) in the chloritic fractures of quartz

chlorite breccia in the deposit section of the stratigraphy. It also overprints altered wall

rock assemblages associated with stage 3 quartz-carbonate veins, which occur within 

stage 2 footwall schists and mylonites. It was absent in massive sulphide samples and 

was not observed in any of the high strain footwall schists and mylonites. 
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Plate 4.22 Biotite porphyroblast ( ~ 1.5mm) in quartz-chlorite hreccia r sample 23-2817 , 
crossed polarized light, magnification = 100 X]. 
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Chapter 5: Major and Trace Element Geochemistry 

S. 1 1 nt roduct ion 

Major and trace element geochemistry have been used to constrain the chemistry and 

sourct: of fluids associated with alteration and mineralization. Early studies focused on 

establishing the identity and distribution of the •pathfinder elements" (Levinson, 1974; 

Boyle, 1979; Fyon et al., 1983). Other studies have examined the chemistry, volume 

and mass changes related to fluid-rock reactions in ore-forming hydrothermal systems 

(Gresens, 1976; Mottl, 1983). The studies suggest that base metal sulphides, gold and 

other metaJs are transported by chemically similar fluids and processes in different 

geologic environments (Barnes, 1969). The different generations of alteration and 

minerali1..ation in VMS and mesothermal gold deposits are products of multiple fluid 

"events", indicated by variations in the chemistry of alteration minerals, and the 

contrasting mineral, fluid and gaseous phases in different generations of fluid inclusions 

(Roedder, 1969, 1984; Kashida and Kerrich, \987). 

Major and trace element geochemistry was used in this study only to describe alteration 

trends, not to provided a quantitative account of the petrogenesis of the volcanic rocks 

in the stratigraphy of the Rambler deposit. Fifteen whole-rock samples of the stage 1 

and stage 2 alteration were selected from the hangingwall, deposit and footwall sections 

of the stratigraphy in addition to the samples previously submitted for commercial assay. 

Two of the whole-rock samples were split and submitted as blind duplicates. Samples 

included whole-rock powders from the hangingwall and footwall, and assay pulps from 

mineralized horizons in the deposit section of the stratigraphy. 



5.2 Anal}1ical \fethods 

Commercial assays wt!re ~riormed by Eastern Analyti..:al Limited at their lahC'Iratory in 

Springdale. Ne\\.·toundland. \Vhok-rock sampks w~r~ analyzt:d tor a standard suite ~,f 

major element oxides using the Atomic Absorption faciliti~s in the Department llf E~1rth 

Science at Memorial University. Splits of the whole-rock powdt!rs were sent to Chcmcx 

Laboratories Limited of Pasedena. Newfoundland for trace t!lernent analyses. Two blind 

duplicates were submitted to assess analytical precision. 

5.2.1 Assays 

Gold, silver, copper and zinc assays were performed by Eastern Analytical Laboratories 

as part of the 1988-1989 drilling e:ttploration program supervised by MPH Exploration 

Limited. Gold and silver were analyzed by standard fire assay techniques with a 

gravimetric finish. C.'Jpper and zinc were analyzed using aqua-regia dissolution followed 

by absorption spectroscopy. Details of the techniques are summarized in Appendix I . 

5.2.2 Major Element Analyses 

Major element oxides were determined using standard procedures. A 0. 1 g aliquot of 

100 mesh rock powder was dissolved in a concentrated HF + 50 mL saturated boric acid 

solution. MgO and CaO analyses required further dilution with a lanthanum oxide and 

distilled water. Sample absorptions were compared to known standards during absorption 

spectroscopy {AAS). Loss on ignition (LOI) was determined by weighing a portion of 

the sample in a crucible before and after ignition at I000°C. Details of the analyses and 

related uncertainties are presented in Appendix 1. Major element and trace element data 

from these analyses are reported in Table A3.1 (Appendix 3). 
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5.2.3 Trace Element Analyses 

Te, Ag, As, Bi, Cu, Cd, Hg, Mo. Sb, and Se concentrations of the whole-rock samples 

were also determined by AAS. Details of the analyses are presented in Appendix 1. The 

concentration of these elements in the hangingwall, deposit and footwall sections of the 

stratigraphy are reported in Table A3.1 (Appendix 3). 

5.3 Results and Interpretations 

Data from whole-rock analyses include major element oxide totals from 91 to 98% 

(Appendix 3, Table A3.1). These variations were particularly high among samples from 

the deposit and footwall sections of the stratigraphy, where they are attributed to 

intensely altered nature, and high concentrations of sulphides in in,lividual samples. As 

a result, the whole-rock data can only be used to demonstrate trends in a qualitative 

fashion, in an attempt to illustrate some of the previously described trends among the 

different alteration stages. 

Major and trace element data from the analyses of whole-rock samples from the Rambler 

deposit were compared with similar geochemical data from previous studies of similarly 

altered volcanic rocks in the Pacquet Harbour Group and in similar geologic 

environments (Appendix 3). Major element data from the analyses of altered basalts 

(Table A3.2) from studies by Gale (1971), Sun and Nesbitt (1978}, and Hibbard (1983) 

are compiled in Table A3.2. Major and trace element analyses of Pacquet Harbour 

samples collected to the south of the Consolidated Rambler Mines properties are 

presented in Table A3.3. Mineral analyses from Deer et al., (1967), Saunders (1985), 

Swinden (1988), and Swinden et al. (1988) are compiled in Table A3.4. Trace element 

data compiled by Hannington ( 1989) from seafloor sulphide deposits is presented in Table 

A3.5. 
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5.3.1 Assay Data 

Assays were plotted in longitudinal section to establish the base and predous metal 

concentrations associated with intervals of massive and disseminated sulphide 

mineralization in the stratigraphy of the deposit. A representative section showing the 

distribution of lithologies. alteration and sulphide assemblages. and reported assay values 

is presented in Figure 5. l (back pocket). 

Cherts and massive sulphide horizons in the deposit section of the stratigraphy coincide: 

with reponed assays of ~0.075 ounces/ton Au, 0.500 wt% Cu. 0.500 wt% Zn and 

0.075 ounces/ton Ag (3. 5000, 5000 and 3 ppm, respectively). Concentrations of these 

metals in intervals of footwall schist and mylonite which contain disseminated sulphide 

are generally lower at ~0.075 oz/ton Au, 0.500 wt% Cu, 0.500 wt% Zn and 0.075 

ounces/ton Ag (3, 5000, 5000 and 3 ppm) with enrichments of up to 0.075 ounces/ton 

Au. 0.050 wt% Cu, 0.050 wt% Zn and 0.250 ounces/ton Ag (3, 500, 500 and I ppm) 

along the large quartz vein near the base of hole MZ89-28 (Figure 5.1 ). Au, Cu. Zn and 

Ag concentrations in less altered volcanic and sedimentary rocks of the hanging wall arc 

generally ~ 0.010 ounces/ton Au, 0.05 wt% Cu, 0.10 wt% Zn and 0.01 ounces/ton Ag 

(0.3, 500, 100 and 0.3 ppm, respectively). 

5.3.2 Major Element Chemistry 

The major element chemistry of less altered volcanic rocks in the hangingwall of the 

Rambler deposit is consistent with the presence of both tholeiitic and boninitic basalts in 

the stratigraphy of the Rambler deposit (Gale, 1971: Hibbard, 1983: Swinden ct al.. 

1988). In Figure 5.2.a low AI20 3/Ti02 ratios of the high Ti basalts cluster in the 

tholeiitic (MORB) field. Low Ti ( < 0.6% ), high Mg lavas with high Al20/Ti02 ratios 

plot in the boninitic lava field (modified after Sun and Nesbitt, 1978). 
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An increase in the modal percentage of muscovite during stage 1 and stage 2 alteration 

in Rambler stratigraphy is consistent with K enrichments of up to 2.88 wt% in highly 

altered. sericitized rocks in the deposit and footwall sections of the stratigraphy. These 

K enrichments are accompanied by Na and Ca depletions, with individual values as low 

as 0.29 and 0.06 wt%, respectively. K, Na and Ca concentrations of 0.05-1.36, 2.14-

4.92, and 5.02-9.70 wt% from less altered volcanic rocks in the hangingwal\ of the 

deposit are more consistent with the 0.01-0.82, 0.55-5.65 znd 6.61-12.52 wt% range of 

values reported from the analyses of unaltered basalts in the Pacquet Harbour Group to 

the south of the Consolidated Rambler Mines properties (unpub. data, H.S. Swinden, 

1992). 

The mobility of K, Na and Ca is common among un:lHered and altered volcanic rock 

compositions reported in geochemical studies by Swinden ( 1988), Saunders ( 1 985), and 

Maclean and Hoy (1991). In Figure 5.3 unaltered and spilitic rock compositions (Gale, 

1971; Sun and Nesbitt, 1978; Hibbard, 1983; Swinden, 1988) plot within, or to the left 

of the •igneous spectrum• defined by the composition of unaltered tholeiitic to calc

alkaline volcanic rocks (after Hughes, 1972). 

The composition of less altered volcanic rocks in the hangingwaJI of the deposit is 

consistent with those of unaltered and spilitic volcanic rock compositions reported in 

other studies (Sun and Nesbitt, 1978; Gale, 1971; Hibbard, 1983 and unpub. data, H.S. 

Swinden, 1992). However, a linear trend among the Rambler hangingwall and footwall 

samples above and to the right of the igneous spectrum is consistent with K enrichments 

and Na depletions during stage 1 and stage 2 alteration in the stratigraphy of the deposit 

(Figure 5.2.b). 

The mobility of Na and Ca during hydrothermal alteration of volcanic rocks has been 

assessed by comparing Na20 and CaO contents of altered and unaltered volcanic rocks 

from the Wild Bight Group and the Pipestone Pond areas in Central Newfoundland by 

Swinden (1988) and in similar volcanic rocks of the Cape St. John Group near the Tilt 
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Cove VMS deposit by Saunders (1985). In Figure 5.3.a only a few (- 20<1\ llf the 

reported analyses from studies by Gale (1971). Hibbard (1983) and Swindcn (unpuh. 

data. 199:!) piot within, or close to a diagonal tleld which de tined the Na and Ca ..:nlllt:nts 

of unaltered volcanic rocks to within approximately I to 4 and 7 to 12 wt•;o. respc..:tin.·ly 

(Miyashiro, 1975). Most of the Rambler data (tilled symbols) with the exception of twn 

of the hangingwall samples. plot along the left side of the diagram and towards its Llrigin 

consistent with the depletions in Na and Ca during alteration (Gale, 1971: Hibbard. 198J; 

Swinden. 1988). 

A molar plot of K and Mg in Figure 5.3.b compares whole-rock analyses of volcanic 

rocks from the Rambler deposit to the major element oxide composition of common 

alteration minerals observed in thin section. The K and Mg contents are normalized to 

Al20 3 to reduce the affects of volume changes related to alteration (Gresens, 196 7, 

1974). In Figure 5.5. K/Al and Mg/Al ratios of altered volcanic rocks in Rambler deposit 

fall between end-member muscovite and chlorite fields suggesting whole-rock 

compositions are influenced by the presence of chlorite and muscovite. 

5.3.l Trace Element Chemistry 

Scatter plots of tra~e element concentrations from whole-rock samples collected from the 

Rambler deposit suggest high concentrations of Te, As, Bi, Cd, and Hg coincide with 

the high sulphide concentrations in the massive sulphide horizons in the deposit section 

of the stratigraphy. Concentrations in massive sulphide samples collected from the 

deposit are 9.0 to 34.5ppm forTe, 170 to 270ppm for As, 0.1 to 2.7ppm for Bi, 8.3 to 

54.0ppm for Cd, and 0. 13 to 0.64ppm for Hg. Lower concentrations 1.4 to 7.6ppm, 12 

to 69ppm, 0.1 to 1.2ppm, 0.1 to 2.3ppm, and 0.01 to 0.02ppm, respectively, are 

associated with the disseminated mineralization in footwall schists and mylonites. Thl! 

concentrations of Te, As, Bi, and Cd are close to, or below reported detection limits; ~ 

0.05ppm, s 2ppm, < O.lppm, and < O.lppm, respectively in the hangingwaJI, with 

the exception of Hg which varies from 0.01 to 0.04 ppm. 
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Fi~ure 5.4 Comparison of the: Tc:, Ag, As. Bi. Cd, Hg. Mo, Sb and Sc: 
~ontcnts of massive and dissc:minatcd sulphide: in the: Ramblc:r Jc:posit with the: 
..:om:c:ntrdtion rangc:s of the: same: dc:mc:nts in s~tloor VMS dc:posits. Data from 
hla..:k smokc:r vc:nts (h.s. ), Axial Sc:amount (A.S.), Explorer Ridge: (E. R. ), TAG 
Hydrothermal Fic:ld (TAG). Snakc:pit Vc:nt Fidd (S.V.F.) (Hannington, 1989, 
1990). Ramblc:r hangingwall •, dc:posit •. footwall ,. (this study). 
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In contra~t to Te. As. Bi, Cd. and Hg. concentrations of Mo and Se are similar in 

massive and disseminated sulphide in the deposit and footwall. respectivdv. 

Concentrations of Ag and Sb in the footwall are similar to those in the deposit in only 

two of tht: schist and mylonite samples. Other Ag and Sb analyses from the footwall 

were below detection limits. Concentrations of these elements in both types of 

mineralization vary from I A to 9Appm for Mo. 4 to 135ppm for Se, 0.4 to -tOppm for 

Ag. and 0.4 to 7.0ppm for Sb (Figure 5.6). The same elements are below reponed 

detection limits; < !ppm, < 0.2 ppm and < 0.2 ppm, respectively, in the hangingwall. 

Te, Ag, As. Bi, Cd, Hg, Mo, Sb, and Se contents of sulphide in the Rambler deposit are 

generally within two to three orders of magnitude of the concentration of these elements 

in sulphides associated with seafloor hydrothermal settings (Figure 5.6; Hannington. 

1989; Hannington et al.. 1991). As, Cd, Mo and Se concentrations of 12 to 270ppm. 

=:;;; 54ppm, 4 to 135ppm. and 0.4 to 0.7ppm, respectively, in the Rambler deposit are 

similar to the analyses of sulphides associated with seafloor hydrothermal (black smoker) 

vents, and seafloor VMS deposits (Figure 5 .6; Hannington, 1989, Hannington et al.. 

1991). In contrast Ag, Hg. and Sb concentratio:1s of s 9.4ppm, 0.01 to 6.4ppm. and 

=:;;; 4.0ppm, respectively. are depleted in relation to the seafloor sulphide concentrations 

(Hannington, 1989, 1990). Concentrations of Te and Bi in seafloor sulphides are not 

available in the data compiled by Hannington (1989, Hannington et al., 1991). 

Petrographic relationships and textural evidence suggest Te was remobilized and 

reconcentrated during the syn-k.inematic alteration and the metamorphic recrystallization 

of the Rambler deposit. 
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Chapter 6: Stable Isotope Geochemistry 

6.1 Introduction 

Stable isorope geochemistry has been used extensivdy to determine fnrmatil'll 

temperatures and \V/R ratios. and to characterize the source of lluids related :n 

hydrothermal processes (Taylor. 1974). Oxygen and hydrogen isotorcs arc partkularly 

useful for distinguishing among tluids and tracing the intluence of crustal tluid reservoirs 

deposits during the formation of hydrothermal ore deposits (Taylor, 1974: Valley ct al.. 

1987; Kyser. 1987). 

To determine the o1so. oD and o34S values of silicate and sulphide assemblages in the 

Rambler deposit, thirty-six core samples were crushed, and separated into pure mineral 

separates for isotopic analyses. The mineral separates were prepared using a ~.:ombination 

of heavy liquid and magnetic separation techniques. Sample purities were determined 

using X-ray diffraction (XRD). Silicate and sulphide mineral separates were converted 

into C02, H2, and S02 using vacuum line extraction facilities at Memorial University. 

Techniques and sample descriptions are presented in Appendix 1 and 4. o1MO, bD and 

o34S data are presented in Table 6.1 and 6.2. Oxygen isotope temperatures from quartz

mineral pairs, and the o1M0 and oD values of fluids in equilibrium with silicates at the 

indicated alteration temperatures are presented in Tables 6.3 and 6.4. Background 

information on fractionation theory, notation conventions and calculations is summarized 

in Appendix 2. 

6.2 Analytical Methods 

0 2 was extracted from silicates by reaction with BrF5 at 600°C for 6 to 8 hours. The 

oxygen was converted to C02 by combustion with a carbon rod at 800°C (Clayton and 



Mayeda. 1963). Structural H~O was liberated from chlorite. muscovite and biotite 

through inductive heating to - 1.300 ~ C using a Leppd radio frequency (RF) generator 

(Godfrey. 196:!) and subsequently converted to H! gas by reaction with metallic Zn at 

.l60 C for approximately 30 minutes 1Tanweer et al. . 1988). SO! gas was evolved 

through the combustion of sulphides and CuO in a vacuum line at IOOO~c (Rafter. 1957). 

Oxygen and deuterium analyses were performed on a Finnigan Mat :!52 gas source mass 

spectrometer. Deuterium analyses were corrected for the formation of H3 ... in the ion 

source and machine (Craig, 1957, 1961). Sulphur analyses were performed on a VG 

903E mass spectrometer. Internal standards AGS. MUN,u;~e . and NBS-123,ph were 

analyzed periodically to insure the accuracy of o1KO , oD and ol-IS analyses. Analyses 

of AGS yeilded consistent values of 9.6 ± 2u %o. MUN;n;~.c • an internal standard, 

provided values of -90 o/oo . NBS-123 was analysed at 16.9 %o. Duplicate samples were 

continually submitted to confirm analytical precision. o values of mineral separates 

contaminated slightly by the presence of other minerals were corrected using standard 

mass balance calculations (Ohmoto and Rye. 1974; Taylor, 1974). 

6.3 Data Summary 

61110, oD and ol-IS analyses are reported usmg standard o notation in relation to 

appropriait! SMOW and CDT reference standards (Craig, 1957, 1961 ). Uncertainties for 

oxygen. hydrogen and sulphur analyses are estimated at± 0.2 %o, ± 2 %o , and ± 0.2 

%o. respectively. 61"0, oD and ol-IS data are presented in Tables 6.1 and 6. 2, 

respectively. 

6.3.1 o'"O and oD Data: Alteration 

.s•~o values of quartz were consistent throughout the stratigraphy of the deposit. The o• ~o 

values of quartz separated from stage 1 assemblages in the hangingwall and deposit 
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varied from + 10.6 to + 11.8 %o. The o1'0 value of stage 1 quartz in chen was + 10.9 

%o. Stage 1 quanz separated from massive sulphide samples yielded o1'0 values 

of+ 10.6 to + 11.6 %c CTable 6.1 ). The o'•o values of stage 2 quartz from the footwall 

were similar to those of .. 1e stage I quartz, with individual values in schist and mylonite 

samples from + 10. I to + 11.0 %o. o''O values of stage 3 quartz were more variable 

than stage I and stage 2 quartz with values of+ 10.1 to + 12.0 %o. A o'~o quartz value 

of +8. 7 %o was rejected. 

The o1MO values of albite separated from hangingwall and footwall samples were the 

same. Groundmass albite from the gabbro sill in the hangingwall and from a stage 3 

vein in the footwall yielded o1MQ values of +8.0 o/oo. 

o11'0 values of stage I and stage 2 chlorites were variable in the deposit and footwall 

sections of the stratigraphy. Stage l chlorite separated from some of the sulphide 

samples in the deposit had o180 values of +7.4 and +7.5%o. o180 values of stage 1 

chlorites separated from other massive sulphide samples in the deposit were lower at 

approximately +5.2 %o. The oD values of stage 1 chlorite in samples of massive sulphide 

mineralization varied from -63 to -73 %o. 

The o1
HQ values of all stage 2 chlorites were similar to those of the low 180 stage l 

chlorites. The o180 values of stage 2 chlorites in schist and mylonite varied from +4.0 

to 4.7, with oD values of -57 to -78 %o. Stage 3 chlorites had o180 values of 6.3, 3.5, 

and 2.9 %o with oD values of -63, -63 and -61 %o. 

Muscovite could only be extracted in quantities sufficient for analysis from three samples 

of massive sulphide mineralization. The o180 values of these samples varied from 7.9 

to 8.3 %o. The oD values of the muscovite in two of the massive sulphide samples 

varied from -55 to -63 %o. lnsufficient material prevent the third sample from being 

analyzed for D. 
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Two samples of stage 2 muscovite were collected from schists and mylonites in the 

footwall. The o110 values of these muscovites were similar to those obtained in stage l 

alteration assemblages. The o1•o values were +6.4 and 7.1 ~with oD values -72 and-

70 %c, respectively. 

Amphibole was separated from the gabbro sill in the hangingwall section of the 

stratigraphy. Analyses provided a o1AO value +5.8 %o, and a oD value of -63 o/oo. 

Biotite was recovered from two samples of altered volcanic rock in the footwall. 

Analyses of the biotite separates, yielded o110 values of +5.0 and +3.2 %o, and oD 

values of -84 and -76 %o. 

6.3.2 o~ Data: Mineralization 

Pyrite, the dark red variety of sphalerite and chalcopyrite were obtained from massive 

sulphide s:amples. The c514S values of the pyrite vary from +5.8 to 7.5 %o. o).IS values 

of the dark red sphalerite were +6.1 and S. 6 %c. A single sample of chalcopyrite yielded 

a c514S value of +6.6 %o. 

Pyrite and a light yellow variety of sphalerite were separated from samples of 

disseminated sulphide mineralization from the footwall. o14S values of pyrite in the 

footwall vary from +5.5 to 7.6 %o. A single sample of light yellow sphalerite yielded 

a o14S value of 6.8 %o. 

6.4 Calculatlom 

Isotopic analyses were used to calculate a range of alteration and metamorphic 

temperatures using the 4 110 quartz-mineral, and ~34S sulphide pair fractionation curves 

(Kyser, 1987: Valley et al., 1987). 4~«0 quartz-albite temperatures were estimated from 

combined equilibrium exchange data (Matthews et al., 1983) and quartz-fluid data 
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( Matsuhisa ~t aJ.. 1979). Quartz-chlorite and quanz-muscovite tempc!raturcs wen! 

determined by combining .l'~o.hL•c'l'·HW curve of Wenner and Taylor (1971) and the 

.l1'0,11,,c .H:o curve of Yeh and Savin ( 1976) with the .l1~0"v.-H:o curve of Clayton et al. 

( 197~). Quanz-biotite temperatures were determined directly from the .l 1 ~0.1u""' curve 

of Bottinga and Javoy ( 1975). 

o1~0 values of the tluids in equilibrium with stage 1. 2 and 3 silicate assemblages were 

calculated from the appropriate mineral-H20 fractionation curves (Table 6.5: v,tlley ct 

al., 1987: Kyser, 1987). The oD values of fluids in equilibrium with chlorite and biotite 

were determined in the same manner using the oDchll~rp-H2o curve of Graham et al. ( 1984) 

and the oDbi<>-H2o curve of Suzuoki and Epstein (1976). The oD values of the tluids in 

~uilibrium with muscovite were estimated using the oD,mt(li~.e-H2o curve of Yeh ( 1980). 

o180 and oD fluid values were calculated as a range using the maximum and minimum 

formation temperatures of each mineral in the different alteration stages approximated 

t.i the nearest lQoC. o1MO fluid values in equilibrium with quartz were calculated at the 

maximum and minimum quartz-mineral temperatures from each alteration stage using the 

fractionation curve of Clayton et al. (1972). The 6130 fluid values in equilibrium with 

albite were calculated at maximum and minimum quartz-albitt temperatures using the 

curve of Matsuhia et al. (1979). The 51~0 and oD compositions of fluids in equilibrium 

with biotite were calculated using the fractionation curves of Bottinga and Javoy ( 1973. 

1975) and Suzuoki and Epstein (1970), respectively. The o1MO and oD fluid values in 

equilibrium with the amphibole from the gabbro sill were calculated at temperatures 

consistent with the occurrence of the mineral in seafloor I greenschist metamorphic 

assemblages using combined fractionation curves of Clayton et al. (1972) and Bottinga 

and Javoy ( 1973, 1975) for oxygen, and the curve of Suzuoki and Epstein ( 1976) for D. 

Fluid data are discussed in Chapter 7. 
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6.4.1 Thennometry 

Local alteration temperatures associated with specific quartz-mineral pairs in the different 

alteration asst!mblages of the Rambler deposit vary from 176 to 559°C. The single 

quartz-albite pair separated from stage 1 groundmass assemblages in the gabbro sill in 

the hangingwall provides an alteration temperature of 230°C. A quartz-albite pair in a 

quartz vein in the footwall yields a temperature of 29rC . 

.1.1KO analyses of stage I quartz-chlorite pairs in the deposit suggest a range of alteration 

temperatures. Quartz-chlorite pairs with high o180 chlorite values from massive sulphide 

samples in the deposit yield high alteration temperatures of 436 and 483°C. Quartz

chlorite pairs with low o180 chlorite values ( +5.2) provide lower alteration temperatures 

of 260 and 264 °C. 

Temperatures from the low temperature quartz-chlorite pairs in the deposit, quartz

chlorite pairs in stage 2 footwall schist I mylonites, and stage 3 veins are consistent. 

Quartz-chlorite pairs in footwall schist and mylonite samples yield concordant alteration 

temperatures of 269 to 277°C. Temperatures from quartz-chlorite pairs in stage 3 veins 

vary from 176 to 203°C. 

Quartz-muscovite pairs from stage 1 and stage 2 alteration assemblages in the deposit and 

footwall provide equilibration temperatures which vary from 222 to 309°C. Stage 1 

quartz-muscovite pairs provide temperatures of 243 to 309°C. Stage 2 quartz-muscovite 

pairs provided temperatures of 209 to 222°C. 

Quartz-biotite temperatures were high in comparison to other quartz-mineral 

determinations. Quartz-biotite pairs from altered volcanic rocks in the footwall yield 

temperatures of 529 and 549°C. 
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6.4.2 o••o and bD Fluid Compositions 

Calculated 5 1 ~0 and t5D values of tluids in equilibrium wiln the low temperature stage l 

chlorite at 260 to :!?O'·C in the deposit section of the stratigraphy vary from +4.4 to 

+4.6 %o, and from -26 to -37 %o, respectively. The isotopic compositior. uf n:!!d!; ir. 

equilibrium with high temperature stage I chlorites at 430 to 480°C are higher at +9.0 

to +9.4 %o, and have similar c5D values of -39 %o. 5180 values of stage 2 chlorites at 

270 to 280°C in the footwall vary from +3,4 to +4.3 %o with oD values of -20 to -42 

%o. Fluids in equilibrium with stage 3 vein chlorites at 180 to 200oC have 5180 values 

of 0 to +4.1 %o and oD values of -19 to -28 %o. 

The o1KO values of fluids in equilibrium with muscovite are consistent with those 

associated with chlorite, but calculated oD muscovite fluid values are lower by about -10 

to -20 %o over a similar range of temperatures. The 5180 values of fluids in equilibrium 

with stage I muscovites at temperatures of 240° to 310 JC vary from + 3.5 to +6.0 %o, 

with oD values of -42 to -54 %o. o1MO and 50 values of fluids in equilibrium with stage 

2 muscovites at temperatures of 210 to 220°C are similar, but slightly lower at +0.8 to 

+ l . 9 %o and -55 to -57 %o, respectively. 

Fluids in equilibrium with the amphibole and biotite are 180-rich in comparison to the 

fluids which equilibrated with low temperature silicate assemblages. o180 values of fluids 

in equilibrium with amphibole varied from +8.2 to +8.6 %o with oD values of -74 to-

78 %o at estimated temperatures of 300 to 550°C. The 5180 and oD values of fluids in 

equilibrium with biotite vary from +5.7 to +7.5 %o, and from -41 to -49 %o, 

respectively. The tluid compositions are similar to those calculated for the high 

temperature stage I alteration assemblages. 

o•~o values of fluids in equilibrium with quartz vary from -3.0 to +5.3 %o . The o1~0 

values of fluids in equilibrium with stage 1 quartz at 200 to 310°C in the deposit and 

hangingwall vary from + 0. 7 to 5. 3 %o' with 5180 values of + 1.0 to +4.4 %o in samples 
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of cht!rt to values of +0. 7 to 5. 1 %o for the quartz extracted from samples of massive 

sulphide mineralization. o1'0 tluid values in equilibrium with stage 2 quartz at 210 to 

280 1 C are lower at -1.0 to +3.3 %o . Fluids in equilibrium with stage 3 vein quartz 

yield ~ 1 '0 values near 0 %o at 180 to :!OO ' C. Two samples of albite yield ~1 '0 tluid 

values of +5 .6 and +6.3 at 200 and 300"C. respectively. 

6.4.3 o3"S: Mineralization 

Most sulphide isotopic analyses from massive and disseminated sulphide mineralization 

in the deposit and footwall were nor :n isotopic equilibrium. oJ.IS pyrite values of +5 . 7 

and +5.8 %o are lower. and therefore not in equilibrium with the oJ.IS sphalerite values 

of 6.1 and 5.6 %o of dark red sphalerite in sulphide samples 21-2754 and 21-2752 

(Sakai. 1968: Kyser, 1987). A single c53-IS chalcopyrite value of +6.6 is not in 

equilibrium with the lower sphalerite values in other sulphide samples. Pyrite and 

sphalerite, in equilibrium in footwall sample 20-2761 provide a temperature estimate of 

425oC using the combined pyrite-galena and sphalerite-galena sulphide fractionation 

curves of Kajiwara and Krouse (1971). 
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Chapter 7: Discussions 

7.1 Introduction 

61'0 and aD analyses of seatloor hvdrothermal tluids and tluid indusions ~onsist~nth . . . 
suggest the presence of different tluids in the hydrothermal systems which generate V 1\lS 

deposits. Chemical analyses and thermodynamic modelling of vent lluids from ~I ..:'N 

East Pacific Rise (EPR) suggest that the o•~o and oD values of seawater (S~lO\V) 

increase to + 2.0 and + 2.5 %a. respectively in isolated MOR hydrothermal systems 

(Craig et al., 1980; Bowers and Taylor, 1985). However, vent fluids at rift and SSZ 

tectonic settings seldom achieve these isotopic values, due in part to the variations among 

MOR hydrothermal systems. and the possible presence of other fluids of di ffcrcnt 

isotopic compositions in addition to seawater and 1"0-shifted seawater in the 

hydrothermal systems (Schoell and Faber, 1978). 

Fluid source variations are also recorded by the isotopic diversity of fluid inclu:;ions in 

VMS deposits. o1KO fluid values of -6 to +4 %o, and oD values of -30 to + 15 %a, wen! 

originally modelled in terms of the mixing between seawater and high 1KO magmatic 

fluids, and/or by the mixing of diagenetic and hydrothermal pore fluids in the 

hydrothermal systems of the Kuroko deposits (Ohmoto and Rye, 1974; Hattori and 

Meuhlenbachs. 1980; Pisutha-Arnond and Ohmoto, 1983; Urabe and Sato, 1978: 

Marumo. 1989). In another st~dy, Hattori and Sakai (1979) establish the role of 

meteoric fluids during the formation of tpigenetic Neogene Au-Ag and Cu-Pb-Zn vein 

deposits which occur in the same volcanic terrains as the Kuroko deposits. 

The isotopic compositions of common alteration minerals reflect the influence of several 

isotopically distinct fluids in VMS hydrothermal systems. o 1 ~0 and oD values associated 

with the analyses of seafloor alteration assemblages in ophiolites and VMS deposits vary 

from 0 to +8 %o, and from -30 to -65 %a, respectively. However, the o1KO values of 

amphiboles in the Raul deposit are unusually high at +8 to + 14 o/oo (Ripley and 



Ohmoto. 1979), respectively. The oD values of chlorite and biotite in the Ducktown 

VMS deposit are low at -60 %o to -80 %o (Addy and Ypma, 1977). Unusually low oD 
values of -60 to -75 %o are also seen in amphibole and chlorite from seatloor alteration 

assemblages in the East Liguria ophiolite (Barrett and Friedrichsen, 1989). Calculated 

i) 1 ~0 and hD values of the fluids in equilibrium with these minerals in some of these 

deposits are consistent with the mixing of seawater and 180-shifted seawater with high 

o 1 ~0. low D fluids (Ohmoto and Rye, 1974; Addy and Ypma, 1977; Ripley and Ohmoto, 

1979; Hattori and Sakai., 1979; Urabe and Sato, 1978). Different syngenetic 

fractionation models have been used to explain the presence of these fluids in the seafloor 

hydrothermal systems which produce VMS deposits (Ohmoto and Rye, 1974; Addy and 

Ypma, 1977; Urabe and Sato, 1978). 

7.2 Setting, and Geologic and Petrographic Relationships 

Geologic relationships in local outcrops on the Consolidated Rambler Mines properties 

are consistent with a complex multi-stage alteration, structural and metamorphic history 

in the Pacquet Harbour Group (Gale 1971, 1973; Tuach, 1976; Tuach and Kennedy, 

1978; Hibbard, 1983; Tuach et al., 1988). Major element analyses of the volcanic rocks 

in the hangingwall of the Rambler are consistent with regional REE data which suggest 

the presence of boninitic basalts, and therefore the possible origin of the deposit in a 

primitive arc volcanic setting (Swinden, 1991). 

Regional greenschist I seafloor metamorphism occurs on the Consolidated Rambler Mines 

properties as the pervasive quartz + albite + epidote + chlorite ± magnetite I sphene 

I leucoxene assemblages in local outcrops of volcanic, intrusive and sedimentary rock. 

These assemblages are mineralogically and texturally identical to those recognized in 

hydrothermally altered seafloor basalts and in the volcanic rocks effected by regional 

greenschist facies metamorphism in all other volcanic belts (Miyashiro, 1975; Mottl. 
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1983). Intense hydrothc!rmal alteration is a:;sociated with the presence of the.! v MS 

deposits and altered rocks which occur along a transition from felsic to matic vokani~. 

intrusive and sedimentary rocks in the upper ponion of the Rambler Sequence. If the 

Pacquet Harbour Group is indeed equivalent to the upper sc!ction of the Betts Con~ 

Ophiolite (Hibbard, 1983). then the minimum age of the seatloor hydrothermal alteration 

and sulphide mineralization in the Rambler is approximately 490 Ma (Dunning and 

Krogh. 1985). 

Seafloor hydrothermal alteration associated with the formation of the Rambler deposit and 

possibly, the alteration in the Discovery Outcrop (Coates, 1990), was followed by 

regional deformation associated with the formation of shear zones and thrust faults, such 

as the Scrape Thrust throughout the Pacquet harbour Group. Regional deformation 

resulted in shallow northeast plunging open folds with northeast trending fold axes and 

extension lineations, the deformation and extension of the VMS deposits in the Rambler 

Sequence, and the formation of local thrusts such as the Rambler Brook thrust. 

Subsequent fluid alteration along these structures may have generated additional 

disseminated sulphide mineralization in the Uncles' prospects. 

Biotite prophyroblasts in the altered volcanic rocks of the Rambler stratigraphy arc 

cor.sistent with the influence of a late post-kinematic thermal event. Similar 

prophyroblasts have been noted in contact metamorphic assemblages near the margins of 

the Burlington Granodiorite (Hibbard, 1983; pers. comm. M. R. Wilson, 1993). 

7 .2.1 Paragenesis 

Descriptions of modem VMS hydrothermal processes on the seafloor suggest massive 

sulphide mineralization form at the same time as seafloor I greenschist quartz + albite 

+ epidote + chlorite ± muscovite assemblages (FrankJin et al., 1981; Lydon, 1988). 
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Texture and fabric variations preserved in the recrystallized sulphide assemblages of 

seafloor VMS deposits are consistent with several generations of sulphide mineralization 

during seatloor hydrothermal alteration CAit et al., 1985). 

rn the Rambler deposit, stage I alteration assemblages are replaced with increasing strain 

by the stage 2 kinematic quartz + chlorite ± muscovite assemblages in samples of schist 

and mylonite in the deposit and footwall sections of the stratigraphy. A tentative 

paragenetic sequence for the alteration and sulphide mineralization in the Rambler deposit 

is provided in Figure 7 .1. 

ln comparison to main stage alteration and mineralization in the Rambler deposit, the 

timing of secondary sulphide and telluride assemblages in relation to other assemblages 

is problematic. The secondary sulphides in sample 24-1925 include comparatively high 

temperature interstitial chalcopyrite ± arsenopyrite ± pyrrhotite assemblages. The 

interstitial setting and euhedral habit of the telluride grains in sample 24-1925 is 

consistent with their formation after peak deformation. While bo!h ty?fs of mineralization 

occur as post-kinematic phases with respect to stage 1 altetation and massive sulphide 

assemblages, implied correlations with other silicate alteration and sulphide assemblagse 

are even less certain. 

7.2.2 Alteration Chemistry 

Alteration in the Rambler deposit is similar to the alteration associated with numerous 

other VMS deposits (Gjelsvik, 1968; Rui, 1973; Addy and Ypma, 1977; Franklin et al. , 

1981: Large et al., 1988). There are numerous reactions and reaction pathways to 

describe the alteration in the deposit, but these should explain chemical trends which 

include enrichments in muscovite during the destruction of albite and replacement of 

chlorite consistent with K enrichments and Na and Ca depletions in the stratigraphy of 
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the deposit. Of gr~tclit relevance are common greenschist facies reactions which 

describe basalt hydration and metamorphism in the oceanic crust and seatloor 

hydrothermal systems. and/or the alteration associated with the formation of mesothermal 

gold deposits. 

Several reactions have been used to describe the production of the greenschist "spilitic" 

assemblages during seafloor alteration or metan~orphism. Lydon ( 1988) describes the 

hydration of basalt at W /R ratios of 1:30: 

1. 000 Na,. .90(Ca11 .7 1 Mg~,73FeH 0.83Fel + 1.55)Al17.18Si,.9330 160 + 0.009 Mg2+ 

basalt 

+ 10.379 H20 + 0.179 02 === 
fluid 

l. 604(Mg.s1Fe.49) 5Al2Si30 10(0H)8 

chlorite 

+ 4.90 NaA1Si30s + 2.075 Ca2.o(Mg.oofe.40)Si8.00 22(0H)2 
albite amphibole 

+ 3. 776Ca2.o(Fe.wA12.40)Si30 12(0H) + 1.893 Si02 + 0.009 Ca2+· 
epidote quartz 

(1) 

The alteration assemblages produced by this and similar reactions are similar to the stage 

1 alteration assemblages which dominate the hangingwall and deposit sections of Rambler 

stratigraphy. This particular reaction has amphibole as a product of seafloor 

hydrothermal alteration, suggesting that the hangingwall amphibole is also of seafloor 

origin. However, a later metamorphic origin is also a distinct possibility, especially in 

light of the sporadic occurrence of the porphyroblastic biotite throughout the stratigraphy 

of the deposit. Stage 1 assemblages of different modal compositions in epidotized 

volcanic rocks, quartz-chlorite breccia, and in samples of massive sulphide mineralization 

may have resulted from local variations in temperature, pH, f02 and W/R ratios in 

different areas of the deposit (Mottl, 1983; Seyfried et al., 1988). For example, the 

following are used to describe the production of the plagioclase-epidote assemblages 
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during the Ca and Na metasomatic reactions which buffer seawater chemistry in seatloor 

hydrothermal systems: 

3 CaAI2Si20~ + Ca1 
.. + 2 H!O == 2 Ca!Al1Si _101 ~(0H) + 2H .. 

anorthite tluid epidote 

4 CaAI2Si20~ + 1 Na • + 4 Si02,.q, + 2 H~O === 2 Ca2Al_1Sii0,!(0H) 
anorthite quartz epidote 

+ 2 NaAISi30~ + 2 H • 
albite 

(Seyfried et al., 1988). Alteration products in these reactions are similar to the stage I 

assemblages in the epidotized volcanic rocks and breccia which occur in the lower 

portion of the deposit section of the Rambler stratigraphy. Local and temporal variations 

in W /R ratios during these reactions are linked to the production of chlorite in epidotized 

volcanic rocks associated with seafloor hydrothermal alteration (Seyfried et al., 1988). 

Models which describe the alteration associated with mesothermal gold deposits use 

reactions which describe the production of quartz + muscovite ± chlorite + sulphide 

assemblages during the alteration of greenschist metamorphic assemblages in mafic 

volcanic rocks. The main reaction products are similar to the stage 2 quartz + 
muscovite ± chlorite assemblages in schists and mylonites which host disseminated 

sulphides in the footwall of the Rambler deposit. The following has been used, for 

example, to describe the alteration of gabbro during the formation of the Norbeau 

mesothermal gold deposit: 

3 Ca2(Mg,Fe)sSi80 22(0H)2 + 2 Ca2Al3Si30 12(0H) + C02 + H20 
actinolite epidote fluid 

==== 3 (MgFe)sAI2Si30w(OH)R + 10 CaC03 + 21 Si02• (4) 
chlorite calcite quartz 

(Dube et al., 1987). The reaction produces secondary chlorite from greenschist 

amphibole and epidote assemblages, which may be analogous to the pervasive light green 
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chlorite in the altered rocks throughout the stratigraphy of the Rambler (section 4.x). 

Roberts ( 1988) uses a similar reaction to describe the production of muscovite + 
dolomite + quartz assemblages during the reaction of assemblages of chlorite, and calcite 

with a K-rich fluid: 

3 (Mg.Fe)sA12Si030 10(0H)1 + CaC03 + 2 K+ + 15 C02 

chlorite calcite fluid 

2 KA13Si30 1o(OH)2 + 15Ca(Mg,Fe)(C03) 2 + 3 SiO, 
muscovite dolomite quanz 

(5) 

An alternative describes the production of muscovite during the destruction of albite and 

its reaction with a K-enriched hydrothennal fluid: 

3 NaAlSi~Oa + K• + 3H+ + 30H· 
albite fluid 

+ 6 Si02 + 3 Na + + 4 0 2 + 6 H+ . 
quartz fluid 

KAI,ShO,,JOH)l + 
muscovite 

(6) 

(after Roberts, 1988). Other reactions could be used to model the production of specific 

mineralogical features associated with the alteration in the Rambler deposit. For example 

Spence and deRosen Spence (1975) react Fel+ and Mgl+ with muscovite to form chlorite 

through the reaction: 

3 KA13Si30 1o(OH):z + 10 (Fe,Mg)2+ + 32 H20 
muscovite fluid 

2 (Mg,Fe)5AhSi030 10(0H)8 + 3 Si(OH)• + S Al(OH)-4 + 3 K•. (7) 
chlorite fluid 

The reaction is consistent with the presence of secondary chlorite observed in the 

pressure shadows surrounding recrystallized pyrite in some of the footwall schists and 

mylonites. 
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Fe and 1\lg carbonates are common in the central alteration zones of mesothermal gold 

deposits (Dube et al. 1987). and similar carbonate-rich assemblages result whcn 

mesothermal tluids react with the alteration and sulphide assemblages of VMS deposits 

(Addy and Ypma. 1977). However. Fe and Mg carbonates art! not present in either the 

stage 1 or the stage 2 alteration assemblages of the Ramblc!r deposit. Calcite. the 

dominant carbonate. occurs only in late quartz + ~arbonate and e;arbonate asscmblagcs 

of stage 3 veins. The lack of carbonate in stage 2 alteration assemblages is inconsistent 

with the presence of high co! metamorphic or mesothermal tluids during the deformation 

of the Rambler deposit. 

Further speculation concerning the exact chemical origin of the different alteration 

minerals and assemblages in the Rambler deposit is beyond the scope of the study . 

Alteration assemblages in the deposit are the products of common greenschist mineral 

reactions which occur during seafloor hydration and hydrothermal alteration, and regional 

metamorphism. Similar assemblages are also produced during the deformation of matic 

volcanic rocks and the formation of epigenetic deposits. The reactions are non-unique 

in that they provide no evidence of the source of fluids related to the different 

generations of silicate alteration and sulphide mineralization observed in the Rambler and 

in other VMS deposits. 

7.3 Isotope Geochemistry of Silicate and Sulphide Assemblages 

The o 1~0 values of quartz and albite from the Rambler deposit are consistent with those 

associated with seafloor I greenschist alteration and metamorphism in oceanic basalt. 

ophiolites and VMS deposits. Average o180 quartz and albite values of+ 10.8 and +8.0 

%o are consistent with the range of reported quartz and albite o180 values which vary 

from +5 to +20 o/oo, and from +6 to +9 %o (Figure 7.2; Heaton and Sheppard, 1977; 

Kowalik, 1979; Urabe and Sa to, 1978; Pisutha-Arnond and Ohmoto, 1983; Munha et at .. 

1986; Beatty and Taylor, 1988). However, a total range of o1110 and oD values of +2 .9 

to +8.3 %o and -55 to -84 %o from the analyses of the hydrous silicates in the Rambler 
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deposit is similar and slightly lower. than the isotopic values obtained from scatloor 

alteration assemblages (Addy and Ypma. 1977: Hc!aton and Sheppard. 1977: KO\\·alik. 

1979: Stakes and O'Neil. 1982: Munha et al .. 1986: Barrett and Friedrkhson. 1984: 

Maclean and Hoy. 1991: Urabe and Sato. 1978: Beatty and Taylor. 1988). 

Chlorite o 1 ~0 and oD values which vary from +2.9 to +7.5 %o and from -57 to -78 r:;,. 

in the Rambler deposit are consistent with o1~0 and oD chlorite values of approximatdy 

0 to +8 %o and -30 to -65 o/oo reported in other VMS deposits (Addy and Ypma, 1977: 

Heaton and Sheppard, 1977; Kowalik, 1979; Munha et al., 1986; Barrett and 

Friedrichsen, 1989). ouo values of muscovite which vary from +6.4 to +8.3 %o in the 

Rambler are consistent with reported muscovite values of + 5 to + 10 o/oo. However, bD 

muscovite values of -55 to -72 o/oo from the deposit and footwall are lower than available 

oD muscovite analyses which vary from -30 to -54 o/oo (Addy and Ypma, 1977; Munha 

et al.. 1986). 

A c5 1~0 and oD values of +5.8 o/oo and -36 o/oo, respectively for the amphibole in the 

hangingwall sill are within the range of the o180 values of +2.2 to 7.0 %o, and oD 
values of -36 to -56 %o associated with groundmass amphibole in samples of altered 

oceanic basalt (Stakes and O'Neil, 1982; Heaton and Sheppard, 1977; Barrett and 

Friedrichsen, 1989), suggesting a seafloor origin for the amphibole in the Rambler 

deposit. The isotopic values are noticeably distinct from the high o1KO values of + 7.5 

to + 12 o/oo for the metamorphic amphibole in the Raul VMS deposit (Ripley and 

Ohmoto, 1977). Biotite o180 and oD values of +5.0 and -84 %o, and +3.2 and -76 %o 

are similar to reported o180 values +3.4 to +5.0 o/oo and c5D values of -60 to -77 %o 

from the Ducktown VMS deposit (Addy and Ypma, 1977). 

A total range of o34S values of +5.8 to +7.6 %o from sulphide analyses in the Rambler 

is consistent with oJ.as values of -6 to + 20 %o, and -7 to + 17 o/oo from sulphide anal yscs 

in Phanerozoic and Archean VMS deposits, and similar to c534S values of 0 to + 15 %o 

obtained from sulphide analyses in the epigenetic I mesothermal gold deposits (Figure 
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o·~s values from the Rambler deposit are also similar to data reponed from sulphide 

isotopic analyses in several other V~tS deposits in Central Newfoundland. An ;weragc 

of +6.3 ± 0.6 %o is similar to average o~s values of +5.3 ± 1. 7 %o. +4.2 ± 1.8 rc., 
and +5.5 to +8.7 ~c from the analyses of similar sulphide assemblages in the 

Whalesback. Gull Pond and Buchans VMS deposits (Bachinski. 1977, 1978: Kowal ik~~ 

al.. 1981). The similarity in o·~o~s values may indicate that sulphide analyses arc not 

useful for distinguishing between different events of alteration and mineralization in 

recrystallized ore deposits. 

7.3.1 180 Thennometry 

Oxygen isotope thermometry from quartz-mineral pairs confirms a complex thermal 

history during the alteration and metamorphism of the Rambler deposit. All thermal 

events are consistent with temperatures indicated by greenschist metamorphic 

assemblages in local outcrops of the Pacquet Harbour Group on the Consolidated 

Rambler Mines properties. 

Quartz-chlorite pairs suggest a high and low temperature event for the alteration in the 

deposit and footwall sections of the stratigraphy. Petrographic evidence suggests a link 

between the dark green chlorite and high temperatures of 438 and 483°C obtained from 

quartz-chlorite pairs in samples of massive sulphide mineralization. Stage 2 and stage 

3 samples dominated by the light green chlorite yield temperatures which show a total 

variation of 176 to 277°C. Replacement of the dark green chlorite by the light green 

chlorite (Plates 4.5 and 4.9) suggests the high tt' -,erature fluid event preceded low 

temperature syn-kinematic alteration in the Rambler deposit. 

Quartz-muscovite pairs from stage 1 and stage 2 assemblages yield consistently low 

temperatures of 209 to 309.,C roughly concordant with the low temperature quartz· 

chlorite determinations. However, these low temperatures may represent an artifact of 

sampling bias. Pure muscovite could only be obtained in quantities sufficient for 
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analyses by scraping sericitic shears and panings m massive sulphide. schist. and 

mylonite samples. [t was not clear. therefore, if a pre-kinematic, but unsampled 

muscovite. was present in the recrystallized groundmass assemblages of the massive 

sulphide samples. Higher temperature determinations of 243 to 309~c from stage 1 

quanz-muscovite pairs in massive sulphide samples support the presence of a higher 

temperature muscovite in the deposit section of the stratigraphy. 

Quartz-biotite pairs from breccia vein assemblages in the footwall of the deposit provide 

unusually high temperatures of 539 and 559°C consistent with the influence of a late 

thermal event. Quartz-albite pairs yield temperatures of 230 and 297°C for stage 1 

assemblages and stage 3 vein assemblages, which are in general agreement with the 

quartz-chlorite and quartz-muscovite temperatures obtained from stage 1 assemblages in 

the hangingwall and deposit sections of the stratigraphy. 

7.3.2 o1110 and oD Fluid Values and Source Variations 

The 01110 and oD values of fluids in equilibrium with different alteration minerals in the 

Rambler deposit are not entirely consistent with those associated with seafloor 

hydrothermal processes (Figure 7.4.a). o 1~0 and oD fluid values of 0 to +9.4 %o and 

from -19 to -57 %o, at temperatures of 176 to 559°C, are similar in 180 and lower in D 

than a total range of fluid values of 0 to + 3 o/oo and + 32 to -5 %o from analyses of 

seafloor vent tluids (Craig et al., 1980; Schoell and Faber, 1984; Bowers and Taylor. 

1985). Rambler tluid values are higher in 180 and lower in D than values which vary 

from -9 to -1 %o and + 5 to -12 %o associated with the isotopic analyses of pore fluids 

(Gieske, 1981)' and higher in IMQ and lower in D than a range of o180 and oD fluid 

values of -9 to +4 %o and + 20 to -30 %o from the analyses of fluid inclusions in the 

Kuroko VMS deposits (Ohmoto and Rye. 1974, Hattori and Sakai, 1979; Pisutha-Amond 

and Ohmoto, 1983). The Rambler fluid values are similar to o180 and oD fluid values 

of -1.5 to +6.5 o/oo and -8 to -40 %o in equilibrium with similar alteration minerals in 

the Kuroko, Adjustrel. 
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Buchans and Home VMS deposits (Figure 7.4.b: Urabe and Sato. 1978: Kowalik, 1979: 

Barriga and Kerrich. 1981; Maclean and Hoy, 1991). Isotopic variations among the 

calculated fluids in equilibrium with different alteration minerals are consistent with the 

influence of different fluids during the formation, alteration and metamorphism of the 

Rambler deposit. Mineral analyses and quartz-mineral temperatures suggest two 

isotopically distinct fluids equilibrated with chlorite. The o180 values of +9.0 to +9A 

%o and oD values of -39 %o of fluids in equilibrium with the high tt:mperature (dark 

green) chlorite at 483 and 438°C are similar to the isotopic composition of high no 
magmatic or metamorphic fluids (Taylor, 1974). o180 values of 0 to +4.6 %o and oD 
values of -19 to -37 %o for fluids in equilibrium with the tower temperature (light 

green) chlorite at 180 to 270°C are tower in 180 and similar in D to the fluids associated 

with the high temperature chlorite, and similar in o180 and oD to calculated fluids values 

in equilibrium with chlorite analyses from VMS deposits and ophiolites at 200 to 300°C 

(solid outline in Figure 7.5 .a). 

The restricted occurrence of dark green chlorite in massive sulphide mineralization 

suggests its high tKo fluid was either a magmatic fluid, or isotopically-evolved seawater 

introduced during seafloor hydrothermal alteration and sulphide mineralization (Gregory 

and Taylor, 1981). The replacement of dark green chlorite by syn-kinematic light green 

chlorite (Plate 4.5) is consistent with decreasing alteration temperatures, and a shift in 

fluid isotopic compositions from the high •~o fluid to some mixture of seawater, and 

metamorphic and possibly meteoric fluids during the latter part of stage l and during 

stage 2 alteration. 

Mineral analyses and quartz-mineral isotopic equilibration temperatures also confirm 

variations in the source o•· fluids in equilibrium with muscovite. Calculated o180 fluid 

values of +3 .5 to +6.0 %o with oD values of -42 to -54 %oat 240 to 3l0°C, and o180 

tluid valu~s of +0.8 to + 1.9 %o with oD values o!· -55 to -57 %o at 210 to 220°C, are 

similar in •~o. but lower in D than the corresponding fluids in equilibrium with chlorite 

in the same alteration stages. The contrasting fluid isotopic compositions suggest the 
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presence of an alternate low D fluid during the formation of muscovite. The replacement 

of light green chlorite by muscovite (Plate 4.5 and Plate 4. 9) suggests that this low D 

fluid effected the deposit sometime after the fluid which equilibrated with the more 

pcr.·asive. syn-kinematic light green chlorite. 

Calculated 51"0 fluid values of +8.2 to +8.6 %o, and oD fluid values of -74 to -78 %o 

at temperatures of 300 to 550°C are within range of calculated 5180 fluid values of +4.5 

to +9.8 %o, and oD fluid values of -45 to -88 %o at temperatures of 300 to 550°C from 

compiled amphibole analyses in similar geologic settings (Figure 7.6.a). The range of 

calculated fluid values is therefore consistent with a seafloor and/or magmatic fluid origin 

for the amphibole in the hangingwall sill of the Rambler deposit. The values are distinct 

from o1KQ fluid values of +10.6 to +13.1 %o, and oD fluid values of -32 to -66 %o 

calculated from amphibole analyses associated with the Raul VMS deposit (Ripley and 

Ohmoto. 1977). 

o1
MQ values of +7.5 and +5.7 %o and oD values of -49 and -41 %o for the isotopic 

composition of fluids in equilibrium with biotite at 540 to 560°C are both consistent with 

high IMQ magmatic and/or metamorphic fluid compositions, and similar to calculated 

01110 tiuid values of +5.0 to + 7.5 %o I and oD fluid values of -15 to -37 %o from 

compiled analyses at temperatures of 450 to 550°C. Fluids in equilibrium with biotite 

from the Rambler deposit are slightly higher in 180 than the fluids in equilibrium with 

muscovite at temperatures of 240 to 310°C (Figure 7.5.b). The overgrowth and 

replacement of stage l and stage 3 assemblages by biotite suggests the introduction of 

high temperature, high 180 metamorphic fluids sometime after the formation of stage 3 

veins ( Figure 7.6.a). 

The o•~o fluid values of -1.1 to -1.4 %o in equilibrium with quartz, and quartz-chlorite 

temperatures which range from 180 to 310 °C in stage 3 vein samples are consistent with 

o1g0 qu :1z-fluid compositions of -5 to + 10 o/oo in the seafloor hydrothermal systems 
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associated with VMS mineralization (Heaton and Sheppard, 1977; Urabe and Sato, 1978 

and others). 

A negative shift in calculated ~··o fluid values in equilibrium with quartz in stage 1 and 

stage 3 assemblages is consistent with a similar decreases in the o180 values of fluids in 

equilibrium with chlorite and muscovite (Figure 7.6.b). The trends are consistent with 

cooling and a possible influx of meteoric fluids during stage 2 syn-k.inematic alteration 

and stage 3 syn to post-kinematic vein formation. 

7.4 Chlorite-Muscovite Isotopic Equilibria 

Chlorite-muscovite disequilibria occurs when the o110 and oD values of fluids in 

equilibrium with chlorite are .,_ the o110 and oD values of fluids in equilibrium with 

coexisting muscovite over a common range of temperatures (Kyser, 1987). In Figure 

7.7.a a fluid of similar initial composition (in this case seawater) equilibrates with 

chlorite and muscovite at 200 to 350°C. Jn all cases the oD fluid values in equilibrium 

with chlorite are less than the oD fluid values in equilibrium with muscovite. Isotopic 

data presented in Table 7.1 suggest that chlorite - muscovite equilibrium is the norm in 

the alteration assemblages associated with other VMS deposits (Addy and Ypma, 1977; 

Munha et al., 1988). The presence of an additional fluid is indicated when 6110 and oD 

chlorite fluid values ::!: the 6110 and c5D muscovite fluid values, as suggested by the 

Rambler data. 

The calculation of precise oD values for the low D fluid in equilibrium with muscovite 

is difficult using the available hydrogen fractionation curves. Extrapolation of the high 

temperature (400-850°C) muscovite-H20 fractionation curve of Suzuoki and Epstein 

(1976) down to 400°C yields a~ value of approximately -30 %o. Extrapolation of the 

smectite-H20 curve (Yeh, 1980) up to 400°C yields a~ of -4 %o. A difference in the 

two curves is consistent with non-linear behaviour between a and liT for many hydrous 

minerals at temperatures of approximately 200 to 300°C (Valley et at., 1987; Kyser, 
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1987). Isotopic fractionation during the formation of smectite (which is chemically and 

structurally similar to muscovite) in seatloor volcanic and sedimentary rocks occurs at 

similar temperatures occurs at ~D values of 15 - 20 %c (Friedman and Hardcastle. 

1988). Available fractionation data suggests the oD values of muscovite at 200 to 300:C 

are approximately 10 to 20 %o higher than o D chlorite values under equilibrium 

conditions (Taylor. 1974; Valley et al., 1987; Kyser, 1987). Analyses of chlorite

muscovite pairs from the Blue Hill, Rio Tinto and Ducktown VMS deposits in similar 

tectonic settings, all have oD muscovite values ~ oD chlorite values consistent with the 

equilibration of the minerals with the same fluid. However, the muscovite in the 

Rambler has slightly lower oD fluid values than those associated with coexisting chlorite 

(Figure 7.7.b) suggesting its equilibration with an isotopically distinct fluid of uncertain 

origin. 

7.5 Evidence for a Low D Fluid in the Rambler Deposit 

Several syngenetic processes are associated with the production of high 180 ( > 5 %c), 

low D fluids ( < -40 o/oo) which effect VMS deposits. Proposed fluid origins have 

included the mixing of seawater with magmatic and metamorphic fluid components, the 

expulsion of seafloor connate fluids, low W/R ratio high temperature conditions, isotopic 

exchange with unusual high 180 volcanic or sedimentary rocks, multi-pass convection, 

shale ultratiltration, the evaporation of seawater in a restricted basins, and/or boiling 

(Ripley and Ohmoto, 1979; Barriga and Kerrich, 1981; Beatty and Taylor, 1982; Munha 

et at., !986; ). 

Mixing of seawater and magmatic or metamorphic fluids has been proposed to explain 

the high 1!10 and low oD fluid values of the Kuroko fluid inclusions (Ohmoto and Rye, 

1974). The expulsion of connate fluids, low W/R ratio high temperature regime .. 

exchange with unusually high •~o rocks, and/or multipass convection are all isoto·. '~ ·.: 

fractionation processes which increase 5180 values, but leave oD fluid values unaffect\!u. 
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Shale ultratiltration. evaporation and/or boiling cause net positive increases in D of up 

to dght timt!s greater than related increases in 1 ~0 (Taylor. 1974: Ripley and Ohmoto. 

1979 Munha ct al., 1986). None of these processes produce fluids with D compositions 

similar to the! tluids which equilibrated with muscovite in the Rambler deposit. 

Gregory and Taylor ( 1981) developed a model for the generation of high 1 ~0. low D 

fluids during the formation of the Samail ophiolite. Stratigraphic relationships and b1'0 

systematics in the ophiolite attribute high uo fluids to the development of decoupled 

lower and upper hydrothermal systems at a fast spreading oceanic ridge (Gregory and 

Taylor, 1981). Fluid convection in the upper system occurred at high W/R ratios. so 

that seawater was only slightly shifted from its o180 and oD fluid composition of 0 %o 

(SMOW) (Craig et al., 1980; Bowers and Taylor, 1985). Fluid co~·. ~tion in the lower 

hydrothermal system occurred at low W/R ratios (0.3-1.0 mass units) causing 180 

enrichments and D shifts of -20 o/oo at temperatures ;a: 400°C. 180 depletions associated 

with normal seafloor alteration and hydration in the Samail are overprinted by 1 ~0 

enrichments related to the discharge of high 180 fluids from the lower convection system 

(Gregory and Taylor, 1981 ). The isotopic data is consistent with the presence of similar 

high IMQ fluids during the formation of the high temperature chlorite in the Rambler VMS 

deposit. However, the fluids in equilibrium with the pervasive light green chlorite and 

muscovite in the Rambler deposit are not enriched in 180 ( < +5 %o ). 

There are also several possible sources for high 180, low D fluids associated with 

mesothermal gold deposits during the formation of continental margin orogenic belts 

(Fyfe and Kerrich. 1985). Fluids from subducting oceanic crust ( s 100km) cause 

melting in the lower crust and upper mantle during the generation of arc plutonic 

complexes (Anderson, 1981; Fryer et al., 1992). Dehydration and anatectic reactions 

during the formation of these plutonic melts are associated with the generation of high 
1~0 and low D metamorphic and/or magmatic fluids near greenschist-amphibolite 

transitions at depths of 10 to 15 kilometres (Taylor, 1974; Taylor and Sheppard, 1986). 
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In general. the isotopic composition of these high ''0 low D tluids are not the same: as 

those in equilibrium with muscovite in the Rambler VMS deposit. 

Fluids are also expelled from abducted oceanic crust and continental strat<\ during 

compressive orogenesis and obduction (Kyser and Kerrich. 199~). These may original~ 

from a variety of sources. For example. Timball ( 1992) distinguishes between fluids 

related to serpentinization, and later C02- rich tluids associated with the obduction of the 

Coy Pond Ophiolite in Central Newfoundland by demonstrating o11C values of 0 to -20 

%o for the C02 - rich fluids in equilibrium with magnesite were caused by the mixing 

of marine (organic) and igneous carbon from the abducting ophiolite, and subcrc:tcd 

continental margin sediments. respectively. 

The complex fluid history in the Coy Pond Complex was likely repeated during the 

obduction of the Paquet Harbour Group. Isotopic data from the Rambler deposit suggests 

a mixture of seawater, 180-shifted seawater and related fluids equilibrated with the light 

green chlorite during regional deformation. The low 0 orogenic fluids in equilibrium 

with stage 2 muscovite may t.ave originated from similar sources, such as repeated 

greenschist to amphibolite transitions associated with the stacking of ophiolite and 

underlying sedimentary successions. However, fluids associated with syn-kinematic 

alteration in the Rambler deposit were not enriched in C02, in contrast to the fluids 

associated with the emplacement and obduction of the Coy Pond Ophiolite Complex and 

mesothermal gold deposits in general. 

Later in the orogenic cycle during transpressive and/or extensional deformation, and at 

shallow crustal depths where Pnuid ~ P111110 , there may have been an influx of meteoric 

fluids into regional structures in the Pacquet Harbour Group, resulting in the production 

of a low 1 ~0. low D fluid during or after peak regional compressive deformation (Kyser 

and Kerrich, 1992), and prior to peak regional metamorphism associated with the 

intrusion of large plutonic bodies such as the nearby Burlington Granodiorite. These 

events are consistent with the formation of the shear zones in the footwall of the Rambler 
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deposit and the overprinting of stage 1 and stage ~ chlorites. by muscovite. Overprinting 

relationships suggest the late introduction of high ' '·O tluids in equilibrium with biotite! 

coincidc.:d with the Silurian intrusion of the Burlington Granodiorite providing a minimum 

age.: for dc.:formation and accompanying tluid alteration in the Rambler dl!posit of -U2 ± 

2 Ma (pt:r. comm. Dunning. 1993). 

The timing and uniqueness of the low D fluid in the Rambler is supported not only by 

petrographic and isotopic relationships, but also by the o1M0 and oD values of chlorite and 

muscovite from the alteration assemblages of two epigenetic deposits located in the Baie 

Vert and Springdale areas (Ramezani, 1993; Ritcey, 1993). oD chlorite values near -70 

o/oo and muscovite values near -60 o/oo from the Stog'er Tight, and 50 chlorite values near 

-75 o/oo and muscovite values near -65 %o in the Hammer Down gold deposits suggest 

that chlorite and muscovite in the alteration assemblages of these deposits were in 

equilibrium with the same tluid. A U/Pb minimum age of 420 ± 5 Ma for hydrothermal 

zircon (Ramezani, 1992) in the Stog'er Tight, is consistent with the formc.tion of the 

deposit sometime after the high 1MO fluid event associated with the intrusion of the 

Burlington Granodiorite (432 ± 2 Ma) during peak regional metamorphism at 427 to 436 

Ma (pers. comm., G.R. Dunning, 1993), well after the stage 2 kinematic alteration in 

the Rambler. 

The lack of carbonate alteration in the stage 2 alteration assemblages, and the isotopic 

data from this study are both factors not consistent with the presence of mesothermal 

tluids during the deformation and alteration of the Rambler deposit. Instead, isotopic 

data suggests the tluids were different from the col -rich fluids present during the 

formation of the Stog'er Tight and Hammer Down epigenetic I mesothermal deposits. Ao; 

such. mesothermal fluids were probably not associated with gold mineralization. It is 

more likely thai gold in the Rambler deposit is syngenetic, and was subsequently 

remobilized and rt·concentrated du.ing alteration and metamorphism. Evidence presented 

in this study, however, does not rule out the possibility of an alternate source for the 
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gold during later thermal alteration related to the presence: of diss~minatcd met~lllll'rphk 

biotite in the stratigraphy of the deposit. 

Cone lusion!' 

The Rambler VMS deposit is similar to other deformed VMS deposits which o~~ur in 

Archean and Phanerozoic volcanic terrains. It uccurs in a mixed sequence of matic and 

felsic intrusive, volcanic and sedimentary rocks which typify the central portion of the 

Pacquet Harbour Group. It is deformed to the extent that its alteration and recrystallized 

sulphide mineralization are the only consistent stratigraphic markers in a stmcturall y 

intercalated, upright stratigraphic sequence. Mineral assemblages in the deposit arc 

consistent with greenschist to upper greenschist grades of metamorphism which arc 

commonly associated with the alteration in both VMS and epigenetic I mesothcrmal 

deposits. 

The deposit contains three common types of alteration. Stage 1 alteration is 

indistinguishable from metamorphic and alteration assemblages normally associated with 

basalt hydration, greenschist metamorphism and seafloor hydrothermal alteration (Ait ct 

al., 1985}. Stage 2 alteration is similar to the alteration associated with epigenetic 

mineralization in the Baie Verte region and in Central Newfoundland (Huard 1989; 

Dube, ! 990; Evans .. 1992), and the syn-kinematic alteration normally associated with 

mesothermal gold deposits, except for its complete lack of syn-kinematic carbonate 

alteration. Stage 1 and stage 2 are dominant alteration assemblages in massive and 

disseminated sulphide horizons in the deposit and footwall sections of the stratigraphy. 

Stage 3 albite + quartz ± calcite ± chlorite, and/or quartz + calcite ± chlorite veins 

are common in the alteration associated with both syngenetic and epigenetic varieties of 

mineralization. 

The Rambler also contains two common varieties of sulphide mineralization. The massive 

sulphide mineralization ( ~ 80% sulphides) is identical to descriptions of similar massive 
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sulphide assemblages in numerous deformed and recrystalli1ed VMS deposits, and thus 

probably related to an early seafloor hydrothermal alteration I mineralization. 

Disseminated sulphides in highly deformed footwall schists and mylonites may be related 

either to original seafloor or later fluid alteration in the stratigraphy of the deposit during 

regional metamorphism and local alteration. Both varieties of mineralization are 

overprinted by secondary sulphide and telluride assemblages with textural and 

petrographic relationships consistent with a late thermal overprint in the stratigraphy of 

the deposit. Gold occurs as electrum and telluride phases concentrated in the massive 

sulphide horizons of the deposit, and as such, is probably syngenetic in origin . 

.6110 temperatures and calculated c5110 and oD fluid values confirm the complex multi· 

stage thermal and fluid history suggested by J)'!trographic relationships among the 

different silicate alteration assemblages in the Rambler deposit. Early high temperature 

hydrothermal activity is asscdated with the presence of a fine grained, dark green 

chlorite, which occurs only in recrystallized massive sulphides, and which equilibrated 

with a high 110 fluid; o1liQ and oD fluid values of +9.0 to +9.4 %o and -39 %o, 

respectively, at 430 to 480°C. A subsequent decrease in temperatures (- 200 to 300°C) 

and shift in o110 fluid values to +4.4 and +4.6 %o, and oD fluid values -26 to -37 o/'oo 

is associated with the fonnation of the pervasive syn-kinematic light green chlorite, which 

overprints the dark green chlorite. The light gref:n chlorite appears to have equilibrated 

with a mixture of seawater, 110-shifted seawater and metamorphic fluids present during 

regional greenschist metamorphism and deformation in the Pacquet Harbour Group. 

Lower o110 fluid values of 0 to +4.1 %o at 180 to 200°C are related to cooling and an 

influx of meteoric waters during waning fluid activity and the syn to post-kinematic 

formation of stage 3 veins. 

In contrast to o110 and oD silicate and fluid data, o34S analyses provide little evidence to 

suggest a complex thermal and fluid history in the Rambler VMS deposit. Homogeneous 

o)4S values suggest disequilibrium among recrystallized sulphide assemblages. o)4S data 

from the Rambler are similar to those from the analyses of sulphides in Archean and 
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Phanerowic VMS dc!posits. mesothermal gold dc!JX'lSits. and ~onsistc:nt with ~;'.ts sulphide 

v:tlues from other Nc:wloundland VMS deposits in similar settings (Valley c:t al. . ~~~': 

Bachinski. 1977. 1478 ). 

A late thermal C:\'C:IH is sugg.c:stc:d by the sporadk occurren~.:e of biotite pllrphyrohla~s . 

v.·hich yield relatively high ~~-o~u~, .. temperatures of approximately 540 to :\hO ( · . 

These are in sharp contrast to the lower temperatures which range from I HO to .\I 0· · < • 

for stage I, stage 2 and stage .3 alteration assemblages, which contain low 1'0 light green 

chlorite. Fluids in equilibrium with the biotite have comparatively high o'~o and t>D 

values of +7.5 and +5.7 %o and -41 to -49 o/oo, respectively. Similar biotite in the: 

contact assemblages along the margin of the Burlington Granodiorite (pers. comm .. M. R. 

Wilson, 1993) suggest its intrusion may correlate with a high 'MO thermal event. 

indicating a possible minimum age of 427 ± 2 Ma for deformation and syn-kincmatic 

alteration in the Rambler deposit (pers. comm., G.R. Dunning, 1993). 

The possible presence of a distinct low 'MO ( < + 5 %o ), low D ( < -60 %o) tluid during 

deformation in the Rambler deposit is suggested by 61)10 and oD mineral values of + t>A 

to +8.2 %o and -55 to -70 %o for muscovite which are not in equilibrium with values 

of +2.9 to +7.5 %o and -57 to -73 %o for the coexisting light green chlorite in stage I 

and stage 2 alteration assemblages. The isotopic composition of this ruid is distinct from 

those associated with seafloor volcanogenic and metamorphic processes (Ripley and 

Ohmoto, 1979; Barriga and Kerrich, 1981: Beatty and Taylor, 1982: Munha t!l al. . 

l986), and the C02- rich, high 1~0. low D fluids which equilibrated with chlorite and 

muscovite during the formation of the Stog'er Tight and Hammer Down mcsothcrm<tl 

gold deposits on the Baie Verte peninsula, and in the Springdale area, respectively 

(Ramezani, 1993; Ritcey, 1993). 

The absence of carbonate alteration, petrographic relationships, and isotopic data suggc'lt 

that overprinting stage 2 alteration in the footwall shear zone of the Rambler was not 
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associated with a mesothermal tluid event. An interpretation . ..,.hich would seem to 

negate the p"ssibility of a mcsothermal source for the gold in the RAmbler VMS deposit. 

The prt!fcrrtd interpretation is that gold is syngenetic. and that it was locally remobilized 

and n.:..:onl.'cntrated during the deformation and kinematic alteration associated with stage 

~ alteration. and during the subsequent metamorphic recrystallization associated with a 

late thermal event in the stratigraphy of the deposit (Eoyle, 1979: Huston and Large. 

1989). However. evidence presented in this ;,tud~ cannot rule out an external source for 

gold during or after a late thermal event associated with the sporadic formation of biotite 

porphyroblasts throughout the stratigraphy c f tr ~~ dep0c;it. 
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Appendix 1: 

Analytical l\·tethods 



:\ 1.1 Assay :\nal)·ses 

~tandard commercial assays of the core samples collected during drilling in 1989 on the 

Rambh.:r VMS deposit were performed by Chemex Laboratories Limi ted at their 

laboratory facilities in Pasedena, Newfoundland. Gold and silver were analvzed usin£ . . -
standard fire assay techniques. with a gravimetric finish. Copper and zinc were analyzed 

using a reverse aqua-regia dissolution procedure, followed by atomic absorption (AA). 

For gold and silver, a prepared sample ( l assay ton = 29 . 166 grams) is fused in a 

litharge, carbonate and siliceous flux. A lead button containing the precious metals is 

cupelled in a muffled furnace. The resulting bead is weighed, parted in dilute nitric acid. 

annealed and weighed as gold. The difference in the weights is the weight of silver in 

the sample. Detection limits are reported at 0.002 oz/ton (0.07g/tonne) for gold. and 

0.05 oz/ton (0.3 g/tonne) for silver, with upper detection limits of 20 oz/ton 

(500g/tonne). 

For copper and zmc, a prepared sample (0.5-2.00g) is digested in a hot nitric

hydrochloric acid mixture which is taken to dryness, cooled, and then transferred into 

a 250m! flask, with a solution matrix of 25% hydrochloric acid. The resulting solutions 

are analyzed using AA. Detection limits are reported at 0.01% for both copper and zinc. 

with upper limits of 100%. 

A 1.2 :'\lajor Element Analyses 

The tifteen whole-rock sample~; five each from the hangingwall, deposit and footwall of 

the Rambler deposit were analyzed for major element oxides by atomic absorption (AA) 

spectroscopy in the Department of Earth Sciences at Memorial University. 
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mixture was diluted with l~5mL of distilled water. Analysis of MgO and C'aO rc4uircd 

further dilution with a lanthanum oxide ar.d distille<' water. 

During analyses. sample absorptions were compared to standards with prcdctcrmin~d 

major element concentrations. Initial absorption measurements were taken of th~ 

standards. then the sample. and then from standards with absorptions marginally lower 

and higher than the absorption of the sample. Percent oxide concentrations wc:rc 

calculated using the following equation: 

%0XIdC = ( I ) 

where %A is absorption, LS is the low standard, and HS is the high standard. Loss on 

ignition (LOI) was estimated by weighing a portion of the sample in a crucible before 

and after ignition at l000°C. The accuracy of individual oxide analyses is illustrated by 

reference to analyses of the USGS reference sample BE-N (basalt; Table A.l.l). 

Al.3 Trace Element Analyses 

Splits of the whole-rock samples selected for major element analys:!s, were sent to 

Chemex Laboratories in Pasedena, Newfoundland. Trace elements including tellurium. 

silver, arsenic, bis.nuth, copper, cadmium, mercury, molybdenum, antimony, and 

selenium were analyzed using a combination of wet chl!mistry and atomic absorption 

spectroscopy (AAS). 

For tellurium a prepared samp •. ; (5.0g) is digested in concentrated hydrobromic acid and 

bromine. The iron is then reduced with ascorbic acid and the resulting tellurium bromide 

complex is extracted into methylisobutylketone (MIBK). The extract is analyzed by AA 

with a background correction. Detection limits are reported at 0.05 ppm. 
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T~Ne Al.l Aa:urxy of maJor element analyses~ Atomic ,\hlotprion Spectmphotomelr)' (BE-N b:wll) 

Put-li~ed Me:~n Standard Ran1eor 
O'lidc:s VRIUe (wt'l:) (11o1':f,) Dirrcrence Deviation Values 

SiOZ :\R2 38.5 0.3 0.18 38.21 - 38.67 

1i02 :!.fit :!.59 -0.1)2 0.04 2.S6- 2.~ 

Al203 1007 10.~ -O.OS 0.09 9.85 - 10 1 

Fe~o:rr 1:!. .~ 1:!..!W 0 0.11 12.69- 12.96 

uo IJ.Si 13.91 O.n.l o.os 13.84- 13.% 

M10 13.1S 13.14 0,03 0.07 13.04 - 13.27 

N11:!.0 3.18 3.::5 0.07 0,02 3.22- 3.21l 

!CO 1.39 1.46 0.07 0.007 1.4S - 1.47 

MnO fl.:! 0.19 -not 0 0.19- 0.19 
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complex is extra~ted into methylisobutylketone (MIBK). The extract is analyt~d hy :\:\ 

with a background correction. Detection limits ar\! r\!ported at 0.05 ppm. 

For arsenic. l.OOg of prepared sample is digested with nitric-aqua r~gia Tllf l\H' lwurs. 

The digested solution is diluted to volume and then homogenized. An aliquot of th•: 

solution is diluted and reduced with sodium borohydridc to libt:rate arsin\! gas. Th~ 

concentration of As is measured through tlameless aosorption spectroscopy. D~t~ction 

limits are reported at I ppm. with an upper limit of 10,000 ppm. 

For the analyses of mercury a prepared sample ( l.OOg) is digested with nitric add with 

a small amount of hydrochloric acid. The resulting solution is transferred to a llask 

connected to a closed system absorption cell. Stannous chloride is rapidly ad<.lcd to 

redUl:e the mercury. which is measured by cold vapour atomic absorption spectroscopy. 

Detection limits are estimated at 10 ppb, with an upper limit of 0.01 %. 

For the analyses of selenium. antimony and bismuth, 2.00g of sample are digested with 

concentrated hydrochloric acid and pota~sium chlorate. The solution is cooled and 

potassium iodide is added to reduce iron. The antimony. bismuth or selenium arc then 

extracted using trioctylphosphine oxide and methylisobutylketone. Concentrations arc 

analyzed with AA with u correction for background absorption. Detection limits arc 

reported as 0.2 ppm for selenium and antimony, and 0.1 ppm for bismuth. The upper 

limit for the detection of selenium is 0.01%. The upper limit for the dctcction of 

antimony and bismuth is 0.1 %. 

For copper, molybdenum, lead, zinc, silver and cadmium analyses l.OOg of prepared 

sample is digested with nitric aqua-regia for two hours. The digested sample is cooled 

and diluted to 25 ml with distilled water. lhe resulting solution is mixed and its 

precipitates allowed to seale. Concentrations are determined using atomic absorption 

spectroscopy. Lead, silver and cadmium concentrations are corrected for background 

absorption. Detection limits are reported as I ppm for copper, molybdenum. and lead, 
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and r). 2 lor '>ilver. and 0.1 for cadmium. Upper detection limits for these elements are 

1 ,.i for cop~r and lead. 0.1% for molybdenum. and 0.02 q for silver and cadmium. 

A 1.-a \tincral Separation Techniques 

Pun.: mint:ral separates for isotopic analyses were collected ustng a combination of 

density and magnetic separation techniques (Kowalik. 1978). Sample purity was 

confirmed at ~ 80% using X-ray diffraction (XRD) and is summarized in Table A 1.1. 

Silicates in coarse grained rocks, including gabbros and some quanz veins were easily 

separated through a combination of density, magnetic separation techniques and hand 

picking. +60 mesh fractions of amphibole in gabbro were separated from quanz, and 

albite using bromoform. Quartz was separated from carbonat~ in coarse grained vein 

samples by picking and through preferential dissolution using concentrated HCI. 

Quartz. chlorite. and muscovite separates were obtained from fine grained samples were 

obtained by crushing and sieving to +80 to + 100 mesh and then separating the sample 

into pure magnetic fractions using a Franz. Pure quartz separat~s were obtained by 

adopting a current setting of 1.4 Amps and retaining non-magnetic fractions at successive 

axial settings of l0°, 7.5° and so. Pure chlorite separates were obtained by setting the 

current at 0.4 amps and retaining magnetic fractior.:,, at successive axial settings of 10°. 

12.5 ° and 15°. The magnetically separated fractions were picked using a binocular 

microscope to remove composite grains and other impurities. 

The separation of quarrz and muscovite from tine grained samples was problematic. 

Mixtures of quanz and muscovite could be obtained at Franz settings of 1.2 amps, by 

discarding magnetic fractions over successive axial angles of 10°, 7.5 o and 5o. These 

were placed in about SO ml of concentrated soap solution in a beakei. The beaker and 

contents were immersed in an ultrasound to complete sa!"lp1e disaggregation. After l-2 

hours. the :,~,.1lution was decanted and centrifuged at 10,000 rpm for 20 to 30 minutes to 
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recover the suspended mineral fraction. whi~.:h XRD analyses ~ontirmed as musclwitc. 

Sample purity was estimated at ~ 80%. 

Sulphides v.·ere separated from .;ili~ates using bromoflHill. 1\t ixed sulphide sampks \\Wt: 

separated into pure sulphide fractions. using the Franz. Sphalerite was rc~m·crcll from 

pyrite at a setting of 0.9 amps. and an axial angle of approximately 15". XRD analysl.!s 

confirmed the purity of the sulphide separates to ~ 90%. 
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A 1.5 Gas Extraction 

Mineral separates were convened into CO,. H:. and SO: gas using va~uum lilll' 

extraction facilities in the Geochemistry Department at ~kmorial University. o. \\a-. 

extracted from pure silicates in a vacuum line by rc.:act ion with Brr:, at 600 ·c for n Ill 

8 hours. The liberated oxygen was converted to CO, by (ombustion with a ~arhllll n1d 

at approximately 800 ' C (Clayton eta\.. ll)63) . 

Structural H20 was generated by the inductive heating of hydrous silicates in a vacuum 

line to temperatures in excess of IOOOoc using a Leppel radio frequency (RF) generatnr 

(Godfrey, 1962). The H!O was convened to H2 gas by reaction with metallic /.n at 

460°C for approximately :!0 minutes (Hut eta!.. 1988). S02 gas was evolved through the 

combustion of sulphides and CuO in a vacuum line at lOOOoc (Rafter. 19fi5). 

A 1.6 Isotopic Analyses 

The isotopic compositions of mineral separates were determined by gas source mass 

spectrometry. Analyses of oxygen and deuterium fractionations were performed on a 

Finnigan Mat 252 gas source mass spectrometer. D/H analyses were corrected for the 

formation of H +l in the ion source and all machine. abundance, and standard corrections 

were :Jpplied to the raw data (Craig, 1957, 1961). Individual .1-as/ns ratios in sulphide 

separates were determined over a series of runs using a VG 903E mass spectrometer. 

All o1•o. oD and o1.~S values for analyzed silicates, carbonates and sulphides arc reported 

using standard o notation relative to SMOW, PDB and COT standards. Uncertainties 

among the measured 5 1~0. oD, and 51~5 determinations are estimated at ± 0. 2 %o . ± 2 

%o. and ± 0.2 %a. respectively. 
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Appendix 2: 

Stable Isotope Theory 



.-\ n i sntopi\.· fractionation factor b~tWI!t!ll subst.anc~s :\ and B can h\! written : 

t II 

whl!re R. is the ratio of the high mass (rare) isotope to thc: low mass (common) istlhlpl.' 

in phase A. In the geothermal I hydrothermal systems. R rcprt!scnts DIH. 1 '0/ 1 ~0. 

' 'C11 ~C or ·~s/•:s. If isotopic species are distributed equally among all bonding sitl.'s in 

A and B. a is proportional to an equilibrium constant K, such that for isotopic exchangl.' 

reactions, a = K'·n. where n is the number of a.toms exchanged. Since it is more 

convenient to measure differences in the absolute ratio of isotopes between two 

substances. isotopic abundances are reported as delta (o) values in units of per mil ( ~"i!v l. 

relative to a standard; 

0" = [(R., . R,tn~ )/ R,tn~l X 1000. 

where R., and R,tn<~ represent absolute isotopic ratios in a sample and pre-determined 

standard, respectively. Isotopic standards used in geological applications typically include 

SMOW (Standard Mean Ocean Water) for oxygen and hydrogen, PDB (PccDee 

Belmnite) for carbon and CDT (Canyon Diablo Triolite) for sulphur (Craig, 1961 ). 

The relationship between the isotopic composition of samples (o values in %o deviations) 

and fractionation factors is defined as: 

( J) 

(1 +o11) I 1000 1000 + 011 

Since a is close to unity in most geological systems. Values of IOOOina approximate per 

mil deviations, and the difference between the o values of two co-existing phases cquah 

the fractionation factor. From equation (3), and by defining 6A.11 as oA - o,. : 
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if the fractionation (u, 11 ) is within::! % of un ity. 

Isotopic fractionations in geological systems are a function of temperature. Lna varies 

as liT! at high temperature. and as 1/T at low temperature. Fractionation varies as a 

function of 1/T, or liT + IIT1 in the hydrous silicate minerals. At high temperatures. 

lna,.,.11 approaches 0, as bond energies become equal. Equations which equate the 

fractionation factor (a) between two chemical phases A and B at different temperatures 

arc generally written: 

lnaA·II - {JA - oB - c + DIT2 forT's ~ 400°C, and 

lna ..... 11 - oA - oB - C + D/T forT's $ 400°C, (5) 

where T is temperature and C and D are consunts determined through empirical 

observation . These equations de tine a series of curves at a specific range of 

temperatures. Solving th\! equations for temperature using measured 5180 data from 

rocks, minerals and fluids, is the basis for oxygen isotope geothermometry. 

Measuring the 1 ~0/ 160 and D/H ratios of fluids extracted from inclusions is a direct 

method of determining the source of fluids in geological settings (Rye et al.. 1974 ). 

However, tluid isotopic compositions can also be calculated using the 5180 and oD values 

of minerals, and the appropriate mineral-water fractionation curves over a given range 

of temperatures (Taylor. 1974). Variations in the 51s0 of fluids are a function of the 

source and chemistry of the fluid and of the isotopic exchange reactions which occur in 

hydrothermal systems. fJD variations are attributed mainly to isotopic fractionations in 

different cmstal tluid rest!rvoirs. 
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Studies suggest that tlve isotopically distinct fluids participah! in alt~rati,,n ' 

mineralization processes in the Earth's crust. These include st:awat~r. llll!k'tlric fluids. 

formational tluids and magmatic I metamorphic tluids (Figure A2.1 ). /) 1'0 and,)}) ,alw:s 

of seawater arc: 0 per mil (SMOW) by Jetlnition. High o1~0 and similar ,)!) 'alues 

related to seawater c:vaporation are shown as a curve originating from Sf\10\V . t\ktL'ori~: 

tluids plot close to the meteoric water line (MWL). dl!tined by tht: t?4U<Hitlll : 

where oP = 7.95 ± 0.22 for North America (Kyser, 1987). The isotopic compositions 

of formational fluids in continental basins rellect mixing between modem meteoric waters 

and 180 enriched brines. Formational lluids in Precambrian shields define linear trends 

to the left of the MWL. o 1 ~0 and oD values of +5.5 to +8 %o and -40 to -80 %, . and 

+4 to + 12 %o and -20 to -60 %o are associated with the presence of magmatic and 

metamorphic fluids, respectively (Taylor, 1974; Kyser, 1987). 
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Appendix 3: 

Major and Trace Element Data 
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AGURE 6.1: REPRESENTATIVE DRILL SECTION: 
RAMBLER DEPOSIT (DOH MZ89-28) 

(after MPH Exploration Ltd., 1989) 

Lithology I Alteration Summary 

quartz-carbonate veins with chloritic fractures (stage 3 alteration). 

- dark green, flna massive, mafic dykes with sharp intrusive contacts. 

Hanglngwall (Stage 1 Alteration) 

j, 

-

mixed sediment including polymict conglomerate, felsic agglomerate, 
wacke, volcanic I epiclastic sediment and tuff. 

dark to light green, fine massive to foliated basalt, pillow selvages, relict 
amygduales, lnterflow breccia. 

dark green coarse cumulate to fine massive, and porphyritic textured 
gabbro. 

Deposit (Stage 1 and 2 Alteration) 

- dark red to black, amorphous, recrystallized magnetic chert. 

breccia textured and sheared ore with intervals of massive ( ~ 80 %) to 
semi-massive ( ~ 60, :S 80 %) and disseminated sulphide ( s 30 %). 

mixed quartz + chlorite ± epidote breccia I schist. 

Footwall (Stage 2 Alteration) 

D . 
. 

quartz + chlorite ± sericite schist; disseminated sulphide; pyrite, with 
trace chalcopyr!te and sph~!erite ( s 20 %) • 

quartz + sericite ± chlorite schist I mylonite with disseminated pyrite 
( :S 30%). 
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Deposit (Stage 1 and 2 Alteration} 

dark red to black, amorphous, recrystallized magnetic chert. 

breccia textured c,nd sheared ore with intervals of massive ( ~ 80 %) to 
semi-massive ( i!:: 60, s 80 %) and disseminated sulphide ( s 30 %1. 

mixed quartz + chlorite ± epidote breccia I schist. 

Footwall (Stage 2 Alteratfont 

-
AssJ'.' Data 

--I ... < . I 
( 

quartz + chlorite ± sericite schist; disseminated sulphide; pyrite, with 
trace chalcopyrite and sphalerite ( s 20 %) . 

quartz + sericite ± chlorite schist I mylonite with disseminated pyrite 
( :S 30%). 

Au Cu Zn Ag 
(oz/ton) (wt%) (wt%) (oz/ton) 

~ 1.000 ~ 2.000 ~ 1.500 ~ 1.000 

~ 0 .250 ~ 1.000 ~ 1.000 ~ 0 .250 

~ 0.075 ~ 0.500 ~ 0.500 ~ 0 .075 

~ 0.025 ~ 0.250 ~ 0 .050 ~ 0 .025 

2: 0.010 :2: 0.050 ~ 0.010 ~ 0 .010 
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