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ABSTRACT 

In the East Nelson area, oph!olitic rocks of the Dun Mountain Ophiolite 

Belt (East Nelson ophiolites) have been described by past workers as 

... representing either a single disrupted ophiolite suite or a number of distinct 

ophiolite suites. 

Through geochemical evaluation of mafic rocks of the East Nelson 

ophiolites, it has been determined that potentially three separate ophiolite 

suites exist; the Dun Mountain Ophiolite, the Patuki melange and the 

Croisilles melange. 

The Dun Mountain Ophiolite represents a semi-complete ophiolite suite. 

Geochemical evidence indicates that mafic rocks of this ophiolite are of 

island-arc tholeiite composition and have been produced by partial melting of 

depleted mantle above a subduction zone. The disrupted and relatively 

incomplete nature of the ophiolite is considered to be the result of tectonic 

activity associated with obduction and later orogenesis. 

Unconformably overlying the Dun Mountain Ophiolite are local 

accumulations of conglomeratic material, known as the Upukerora Formation. 

Clasts within this formation closely resemble lithologies observed within the 

Dun Mountain Ophiolite and pyroxenes analyzed from clasts are found to be 

compositionally similar to those observed within the ophiolite. 

Roc.ks of the Patuki and Croisilles melanges lie in fault contact with, 

and underlie the Dun Mountain Ophiolite. Blocks within the melanges consist 
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of sedimentary, mafic to ultramafic volcanic and plutonic rocks suspended In 

matrices dominated by sheared serpentinite. Although these rocks are highly 

disrupted, they are considered to represent vestiges of true ophiolitic 

assemblages, as representative lithologies of an ophiolit~ are observed within 

the blocks. These rocks likely represent fragments of oceanic crust 

subducted beneath the Dun Mountain Ophiolite. 

Basaltic rocks of the Fatuki and Crcisilles melanges are divided into 

two petrographically and geochemically defined suites; a mid-ocean ridge suite 

and an alkaline within-plate suite. Geochem:cat evidence suggests mid-ocean 

ridge basalts of the melanges are indistinguishable and therefore it is 

suggested that the melanges may represent dislocated portions of thE! same 

oceanic basement. 

A fore-arc environment of formation is favoured for the origin of the 

Dun Mountain Ophiolite. By this model the Patuki and Croisilles melanges 

are considered fragments of normal ocean crusts sheared off the subducted 

slab during subduction. 
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CHAPTER 1 

INTRODUCTION 

1.1 Preface 

New Zealand, or Ateora (land of the long white cloud}, is situated in 

the Southwest Pacific more than 1,600 kilometres southeast of its nearest 

neighbour, Australia (Figure 1.1 }. The country has a total land area of 

approximatt~ly 260,000 square kilometres, of which a third is mountainous. It 

consists of two major islands (North Island and South Island} and a number 

of small islands, of which some lie hundreds of kilometres from the main 

group. 

Despite its size, New Zealand is as geologically complex as any 

continent, having been formed by processes characteristic of both continental 

and oceanic crusts. To a large degree, much of this complexity can be 

attributed to New Zealand's past and present plate tectonic mobility. 

The geology of New Zealand provides a dynamic example of 

ar.cretionary and consuming plate boundary processes as it represents a 

fragment of the continental margin of its parent super-continent, Gondwana 

and is today, situated within a tectonically active boundary zone between the 

Indian-Australian and Pacific plates (Figure 1.1 inset). 



36$ 

cos 
TASMAN SEA 

s 

E 

2 

2E 1 E 

NORTH ISLAND 

SOUTH ISLAND 

1 2 E 

PACIFIC 

OCEAN 

E 

36S 

cos 

Figure 1.1 Loc"'tion map of New Zealand with inset map showing plate 
boundaries between the Indian-Australian Plate (plate I), the Pacific 
Plate (plate P) and the Antarctic Plate (plate A). 
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Of particular interest to this study is a belt of Late Palaeozoic mafic 

and ultramafic rocks exposed in the mountain ranges to the east of Nelson 

(Richmond and Bryant Ranges) at the north end of South Island (Figure 1.2). 

This belt contains three distinct ophiolitic assemblages: the Dun Mountain 

Ophiolite (as defined by Johnston, 1981 ), a relatively undeformed and 

incomplete ophiolite sequence comprised of mafic volcanic and plutonic rocks 

of the Lee River group and the underlying ultramafic rocks of the Dun 

Mountain Ultramafics; and the Patukl and Croisilles ophiolitic melanges which 

consist of large blocks of sedimentary, mafic to ultramafic volcanic and 

plutonic rocks suspended in a matrix of sheared serpentinite (eg. Johnston, 

1981 ). 

These three ophiolite assemblages are collectively referred to as the 

Dun Mountain Ophiolite Belt (Figure 1.3). The belt stretches the :ength of the 

South Island and is divisible into two structural segments, dextrally offset by 

the Alpine Fault. These segments are known as the Nelson segment in the 

north and the Otago segment in the south (Figure 1.3). 

The ophiolites of the Dun Mountain Ophiolite Belt are components of 

the geological terranes which make up the Eas~er11 Geological Province of 

South Island. Within this province rocks of the Dun Mountain Ophiolite are 

considered part of the Dun Mountain-Maitai terrane while rocks of the 

Croisilles and Patukl melanges are considered discrete terranes which may 

represent components of the Caples-Pelorus terrane (Figure 1.3). 

Over th9 past thrse decades ophiolitic assemblages of the Dun 

Mountain Ophiolite Belt have received considerable attention from numerous 
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indented coastline in the area southeast of D'Urville Island is referred 
to as the Marlborough Sounds. 
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workers particular1y since the development of plate tectonic and ophiolite 

theory (e.g., Blake and Landis, 1973; Coombs et al., 1973; Coombs et al., 

1976: Davis et al., 1980; Sivell et al., 1982; Sivell, 1988). To date it has 

been suggested that these rocks represent ocean crust of probably mid-ocean 

ridge (MOAB) affinity (eg., Davis et at., 1980; Sinton, 1980; Sivell et al., 1982; 

Sivell et al., 1984; Dickins et al., 1986; Landis and Blake, 1987; Sivell, 1988), 

but that they may possess compositions which were influenced by a nearby 

subduction zone (Sinton, 1980; Davis et al., 1980; Sivell, 1988). 

The aim of this thesis is to describe and interpret the mafic volcanic 

and plutonic rocks of the northern segment of the Dun Mountain Ophiolite 

Belt (ie. the Dun Mountain Ophiolite and the Croisilles and Patuki ophiolitic 

m61anges) and to make Inferences about the ophiolites' environment(s) of 

formation. It is hoped that this work will provide constraints on the modelling 

of the ophiolites' generation and emplacement history. 

1.2 Location 

The Nelson province of New Zealand consists of the northwestern 

comer of South Island and centred around the city of Nelson and its 

neighbouring boroughs of Richmond and Hope situated at the head of 

Tasman Bay (Figure 1.2). To the east of Nelson lies the northern extension 

of the Southern Alps, a 500 kilometre long chain of fold mountains which runs 

the length of South Island. It is within these mountains that rocks of the Dun 

Mountain Ophiolite Belt of East Nelson are found. To avoid confusion in 

distinguishing the Dun Mountain Ophiolite from the Dun Mountain Ophiolite 
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Belt, the ophiolites of the Dun Mountain Ophiolite Belt of East Nelson are 

referred to here as the East Nelson ophiolites. In the East Nelson area the 

ophiolites outcrop as three semi-continuous, subvertical, northeast trl3nding 

belts stretching from the Red Hills in the southwest to D'Urville Island in the 

northeast. 

Study of the East Nelson ophiolites concentrated on six separate areas 

where representative sections through the ophiolites were both reasonably 

well exposed and accessible (Figure 1.2). These areas include: (i) the 

southwestern margin of the Red Hills, (ii) an area between the left branch of 

the Wairoa River and United Creek, (iii) the Dun Mountain railway, (iv) the 

Tinline River, (v) Crolsilles Harbour and (vi) Taipare Bay. Within these areas, 

representative rocks of the East Nelson ophiolites previously delineated by 

other workers (e.g., Waterhouse, 1959, 1964; Johnston, 1981, 1982), were 

reinterpreted. As part of this study some of the areas were mapped in detail 

(1 :1 0,000) and maps appear in the pocket at the back of this thesis (Figures 

3.2.1 to 3.2.6). 

1.3 Physiography 

New Zealand is bisected longitudinally by mountains on South Island 

and ranges of hills on North Island. The physiography of New Zealand is 

largely ths result of the latest mountain building episode, the Kaikoura · 

Orogeny (mid-Cretaceous to present), which continues to the present daj. 

This orogeny generated the mountains of the Southern Alps along with 

numerous faults which divide the landscape into large fault-bounded blocks. 
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The main structural lineament of this system is the strike-slip Alpine Fault of 

South Island (Figure 1.3). This feature represents the present day plate 

boundary betwe'Jn the Indian-Australian and Pacific plates. The erosion and 

continued movement of these blocks, together with the active volcanism of 

the North Island, define to a large extent, New Zealand's landscape. 

On the South Island, mountains of the Southern Alps are flanked by 

extensive alluvial plains to the east while to the west, a narrow coastal strip 

flanked by steep slopes dominates the landscape. The eastern plains are 

known as the Canterbury Plains (Figure 1.1) and are used to a great extent 

for the production of grain and livestock. Glaciers are fairty common In the 

central mountains of southern South Island, but are rare on North Island (eg. 

Mount Ruapehu). The Southern Alps of South Island form a continuous chain 

of mountains stretching from the island's southwest comer to the northeast 

coast. Northwest of Arthur's Pass the Alps fan out into a number of steep, 

subparallel ridges to terminate in a series of sounds to the northeast (the 

Martborough Sounds) and a coastline flanked by the Cook Strait to the east 

(between North and South Islands). Many northwesterty striking ridges have 

mineral deposits (chrome and copper) outcropping on their western slopes, 

particularly those directly south of Nelson. In southern areas of South Island 

the Alps break up into a rugged, disjunct landscape of difficult access and 

spectacular scenery. 

The North Island is much less rugged than South Island. Its central 

region consists of a volcanic plateau which rises abruptly from the southern 

shores of lake Taupo (Figure 1.1 ), New Zealand's largest natural lake (Taupo 
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itself, represents the ruins of an Quaternary volcanic crater). To the east of 

the central plateau, ranges are superseded by more rolling country, while to 

the southwest, the ranges end at the shores of the Cook Strait. West of the 

plateau, the mountains give way to the low undulating farmlands of Taranaki 

and extend to the slopes of Mount Egmont, a solitary volcano which has been 

active 0.018 Ma. to recent time (Stipp, 1968). North of Taupo the landscape 

is dominated by volcanic landforms consisting of low rolling hills, broad 

terraced valleys, and scattered dacite volcanoes and rhyolite domes. 

1.4 Climate 

New Zealand's climate is dictated by its latitude, isolation, and 

physiography. Temperatures are generally buffered by the vast surrounding 

oceans while the mountains induce climatic differences between eastern and 

western areas. Western areas tend to receive more rainfall from the 

prevailing westerly and northwester1y winds, while eastern areas lie in a rain 

shadow. Annual rainfalls range from 330 millimetres in central Otago to as 

much as 8,000 millimetres in the Southern Alps. Most areas receive between 

635 and 1 ,500 millimetre& per year. 

Mean temperatures at sea-level range from 15 oc in the far north to 

9 oc in the far south. New Zealand is a sunny country, with many areas 

receiving up to 2,000 hours of sunshine a year, much of it in winter. In 

g'.>neral, New Zealand's climate ranges from semi-temperate in the extreme 

south to sub-tropical in the extreme north. 
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The indigenous flora and fauna of New Zealand consists mainly of 

mixed evergreen foresu, two species of lizards, some primitive frogs, and two 

species of bat. Slnca settlement by Europeans in the early 1800's many 

foreign species of plants and animals have been introduced with varying 

degrees of success. Today, much of the country has been claimed for 

pastoral and agricultural use with sheep farming representing the cornerstone 

of the economy. 

1.5 Previous Work 

The East Nelson ophiolites (D~,.;n Mountain Ophiolite Belt), previously 

known as t~e Dun Mountain Mineral Belt and other names (see Challis, 

1969), has not always been recognized as highly disrupted ophiolitic material. 

Since the 1850's, the various components of the belt have inspired numerous 

interpretations. These components can be summarized into a general but 

somewhat inconsistent sequence, consisting, from we~t to aast of: 

(i) Late Permian Maitai Group sediments (sandstones, siltstones, 

mudstones, and limestones) which unconformably overlie; 

(ii) mafic plutonic and volcanic rocks of the Dun Mountain Ophiolite 

known as the Lee River Group (spilites, spilitic breccias, sheeted diabase 

dykes, and isotropic gabbros). Rocks of the Lee River Group are likely 

directly related to and are in fault contact with underlying; 

(iii) ultramafic rocks of the D•Jn Mountain Ultramafics Group of the Dun 

Mountain Ophiolite (mostly harzburgite and lesser proportions of dunite and 

pyroxenite). These rocks likely represent residual mantle material produced 
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during the evolution of Lee r tiver Group magmas and basalts. Beneath the 

Dun Mountain Ultramafics lies another fault separating the ultramafics from 

rocks of: 

(iv) the Patuki and Croisilles melanges: a mixture of sedimentary, mafic 

volcanic, and mafic to ultramafic plutonic rocks suspended as blocks in a 

matrix dominated by sheared serpentinite. These melanges generally 

separate rocks of the Dun Mountain Ultramafi~ from the Late Permian: 

(v) Pelorus Group sediments: these are generally well bedded, graded 

sandstones with minor units of limestone, siltstone, mudstone and lenses of 

pebble conglomerate. 

It should be pointed out here however, that neither the Maital nor the 

Pelorus Group sediments are formally considered part of either of the belt's 

ophiolite assemblages and are discussed above only because they share 

contacts with ophiolitic rocks of the East Nelson ophiolites. 

The earliest interpretations of the origin of the East Nelson ophiolites 

focuses on the Dun Mountain Ophiolite and its ultramafic rocks (Dun Mountain 

Ultramafics Group). In 1859, Hochstatter (Fleming, 1959) visited Dun 

Mountain and collected the rock he named "d:Jnite". Hochstatter noted an 

overall concordancy of the ultramafic and adjacent rocks and suggested a 

sill-like intrusive origin for the ultramatites. MacKay (1 879) observed 

concordancy of the overtying Maitai Group and postulated that the basaltic 

and ultramafic rocks formed on the sea floor. Later workers (eg., Park. 1887, 

1921, and Benson, 1926), envisaged the ultramafic rocks as intrusions, 

probably in a semisolid state, emplaced along major Mesozoic thrust faults 



12 

into Maitai Group sediments. Other workers (eg., Turner, 1930; Macpherson, 

1946; Kingma, 1959) favoured Mesozoic intrusion along a large scale thrust 

zone as a means of emplacement. 

In 1958, Grindley suggested a coetaneous relationship betw6en the 

ultramafic rocks, and the lower Permian spilites, dolerites, and associated 

sediments. Grindley proposed that the ultramafites (including serpentinites) 

were submarine lava flows. Waterhouse (1959) also favoured an Early 

Permian volcanic origin for the ultramafites. 

During the 1960's, with the development of the • Alpine-type• theory for 

ultramafic rocks in mountain belts (eg., Ross et al., 1954: Thayer, 1963), 

many detailed studies of ultramafic massifs of the Nelson segment of the Dun 

Mountain Ophiolite were undertaken. Lauder, (1965a,b) and Challis and 

Lauder (1966) suggested that the ultramafic rocks of the Dun Mountain massif 

were products of crystal accumulation in a Cretaceous magma chamber or 

volcanic pipe. 

Studies at Red Hills, another ultramafic massif 45 kilometres southwest 

of Dun Mountain (Figure 1.2), resulted in additional interpretations. Challis 

(1965a,b) and Walcott (1969) preferred its formation as a high-temperature 

Permian intrusion, citing the existence of an unfaulted contact between 

cumulate ultramafite and a metamorphic aureole of pyroxene hornfels-facies 

as the essential evidence. Challis (1965a,b) suggested that the peridotitic 

rocks of the Red Hills massif and other massifs of the Dun Mountain Ophiolite 

were subvolcanic differentiates produced beneath a belt of Permian 

volcanoes. Walcott (1969) also interpreted the Red Hills massif as a 
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high-temperature Permian intrusion. Challis and Lauder (1966) and Challis 

(1968, 1969) went further to suggest that the ultramafic rocks were formed by 

crystal accumulation beneath a Permian volcanic arc. 

In the mid-1960's, Coleman (1962, 1966) suggested a means of 

emplacement other than that of igneous intrusion for ultramafic rocks of the 

Dun Mountain massif. He observed low-temperature, high-pressure mineral 

assemblages at ultramafic rock contacts which lead him to suggest the massif 

was emplaced as a cold tectonic protrusion. 

Blake and Landis (1973) concluded that the East Nelson ophiolites 

represent oceanic crust and upper mantle upon which Upper Permian Maital 

Group sediments were deposited. They suggested the belt had been 

extensively disrupted to form ophiolitic m~langes after deposition of the 

overtying Maitai sediments. Coombs et al. (1976), Hunt (1978), and Davis et 

al. (1980) also concluded that the Dun Mountain Ophiolite represents a highly 

disrupted ophiolite in which ultramafic rocks of the Dun Mountain Ophiolite 

represent portions of uplifted oceanic 111antle. On a more regional scale, it is 

generally accepted that the Maital Group and other specific lithologic groups 

can be correlated across the Alpine Fault, to both the Nelson and Otago 

segments of the ophiolite belt (eg., Wellman, 1956; Landis, 1980). Landis 

(1980) further concluded that units within the Maitai Group were derived from 

an eartier Permian basaltic-andesitic volcanic arc that existed to the west of 

the Maitai basin. These source rocks were probably similar to the arc 

volcanic rocks of the Brook Street terrane to the northwest. This argument 

appears invalid in light of more recent data. 
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R&cent workers have concentrated on the geochemical signature of the 

ophiolites. Sivell and Rankin (1982) investigated metabasalts of the Patukl 

melange at D'Urville Island (Figure 1.2), the northernmost terrestrial extension 

of the Dun Mountain Ophiolite belt. They defined two distinct suites of lavas 

with one suite being large-ion lithophile element enriched, the other depleted. 

They suggested that the lavas were formed during early-stage spreading of a 

poorly evolved Middle Permian sea. Sivell and Waterhouse (1984a) went on 

to suggest that the Patukl intrusive suite formed by closed system 

fractionation beneath a slow spreading oceanic ridge. As evidence, they cited 

the anomalously small thickness of the intrusive sequence, the non-sheeted 

nature of the dyke suite and the chemical characteristics of the lavas which 

comprise the extrusive components of the ophiolite. It was at this time that 

the present study commenced but since that time Sivell (1988) has delineated 

three stages of sea-floor magmatism within the ophiolitic rocks of the Patuki 

and Croisilles melanges. These rocks include compositions characteristic of 

within-plate ocean islands and N-type mid-ocean ridge basalts, and a later 

stage of subduction-related magmas derived from a second stage melting of 

depleted upper mantle In a supra-subduction zone environment. Also, Korsch 

and Wellman ( .. . .; ·_:e) have suggested that the ophiolitic melanges (Patuki and 

Croisilles melangt.~~; are actually components of the Caples-Pelorus terrane 

(to the east). They propose that these ophiolitic rocks represent pieces of 

oceanic crust sheared off the subducted slab (ie. the basement material 

beneath the Caples and Pelorus sediments) during subduction. These 

fragments were then accreted against the inner trench wall of a westward 
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dipping subduction zone (represented by the base of the Dun Mountain 

Ultramafics). 

1.6 Method and Scope 

The aims of this present work are to investigate and describe the 

geology of the mafic plutonic and volcanic rocks of the East Nelson 

ophiolites. The study includes: 

(i) a geochemical investigation of the mafic volcanic rocks of the three 

ophiolitic assemblages, the Dun Mountain Ophiolite and the Patuki and 

Croisilles ophiolitic m~langes; 

(ii) an investigation of the field relationships dh:;played by the ophiol;tic 

rocks; presented here as geological maps of traverses across the East 

Nelson ophiolites; and 

(iii) a model for the evolution and emplacement of the East Nelson 

ophiolites. 

In this study six specific areas were studied where representativ'l rocks 

of the belt were both accessible and well exposed (Figure 1.2). This 

investigation includes detailed mapping within these areas with geochemical 

and petrological samples being taken in each area. Selected samples were 

analyzed for bulk rock major and trace element compositions as well ~ 

mineral chemistry while a lesser number were also analyzed for rare earth 

elemen+ abundances. 
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CHAPTER 2 

REGIONAL GEOLOGY 

2.1 Geological History 

2. 1. 1 Cqnozoic to Recent 

Regionally, New Zealand occupies only a small area compared to that 

of the plates immediately bordering it (the Indian, Pacific and Antarctic plates). 

It is the interaction and relative movements of these plates which have 

dictated the recent geological evolution of the New Zealand region (Figure 

1.1 ). Many of the major tectonic boundaries of New Zealand can be traced 

into the sea-floor well beyond the country's coastline (Figure 2.1 ). Tectonic 

movements along these boundaries produced the complex geology of New 

Zealand in the Cenozoic, particularly the Late Cenozoic (Korsch and Wellman, 

1988). According to the relative movements along these tectonic boundaries, 

most of the oceanic crust surrounding New Zealand was created in the 

Cenozoic. A pre-Cenozoic reconstruction produced by removing the Cenozoic 

crust and rejoining the older elements (Figure 2.2) shows that relative 

displacements along the Alpine Fault match relative movements inferred from 

the unbending and unfaulting of the New Zealand landmass for the Cenozoic 

(Korsch and Wellman, 1988). 
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Figure 2.1 Sketch map of the New Zealand Region showing oceanic and 
continental magnetic lineations (from Korsch and Wellmun, 1988). The 
map is on conical projection with standard parallels at 30°5 and 50°5. 
V.M.F, Venlng Melnesz Fault; AFZ, Alpine Fault Zone; IPA, Indian­
Pacific-Antarctic Triple Junction. Triangle of dotted lines (above Cook 
Fracture Zone) represents the three vectors for the South Rji Basin 
triple opening junction. The Stokes Magnetic Uneation (associated with 
the Dun Mountain Ophiolite) is shown by a heavy dashed line. 
Movement of the Endeavour and "3" Three Kings slides has been 
taken out (see Korsch and Wellman, 1988). 
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Figure 2.2 Sketch map of the pre-Carboniferous distribution of geological 
terranes of the Western Province (from Korsch and Wellman, 1988). 
The reconstruction was produced by removing Cenozoic crust and 
rejoining older elements of the Western Province. This suggests that 
relative displacements along tht:l Alpine Fault match relative movements 
inferred from the unbending and unfaulting of the New Zealand 
landmass for the Cenozoic (Korsch and Wellman, 1988). Terrane a'ld 
unit names are from Korsch and Wellman (1988). 
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2.1.2 The Pre-Cenozoic 

New Zealand's pre-Cenozoic geological history can be divided into 

three main phases of evolution after Suggate et al. (1978), related to the 

landmass's attachment and separation from its parent super-continent of 

Gondwana. These phases involved the creation and interaction of New 

Zealand's two geologic.:al provinces, the Western and Eastern Provinces 

(Figure 1.3). 

In mid-Cretaceous times, the New Zealand segment of Gondwana split 

away and drifted towards its present position; the Western Province 

represents a sliver of the Gondwana craton and the Eastern Province 

represents a variety of terranes derived from, or accreted to the Gondwana 

continental margin (Molnar et al., 1975). Since this time, movement along the 

Alpine Fault and probable oroclinal bending have imposed an arcuate shape 

to rocks of the Eastern Province (eg. MacKinnon, 1983). 

The first phase (the Early Geosynclinal Cycle), includes the 

Precambrian to Carboniferous evolution of New Zealand while it was still part 

of Gondwana. This phase involves older rocks of the Western Province (le. 

those rocks to the west of the Alpine Fault and the Median Tectonic Line of 

Landis and Coombs (1967) (Figure 1.3)). 

The Second phase (the Era of the New Zealand Geosyncline), 

Carboniferous to mid-Cretaceous, deals with subduction on Gondwana's 

Pacific coast and the source and accretion of the huge mass of graywacke 

and co'Jtaneous rocks of the Eastern Province. 
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The third and last phase (the Late Mobile Phase), mid-Cretaceous to 

present, deals with the pre-cenozoic separation of New Zealand from 

Gondwana as well as the more recent, complex tectonic activity of the 

Cenozoic. 

These phases are discussed below in more detail. The names of the 

phases as given by Suggate et al. (1978) are still used here as they have 

been commonly used by past workers (e.g., Coombs et al., 1976), although 

they imply theories which are now considered inadequate in terms of modem­

day plate tectonic theory. For a more complete and detailed review of New 

Zealand's evolution the reader Is referred to descriptions by Suggate et al. 

(1978) and Kersch and Wellman (1988). 

The first phast~ or the ·early Geosynclinal Cycle• includes rocks of 

three distinct terranes of the Western Province ranging from Precambrian to 

Devonian in age. These terranes consist mainly of sedimentary rocks and 

some crystalline rocks of both igneous and metamorphic affinity. Included in 

this group of rocks are the oldest known rocks of New Zealand, the Late 

Precambrian Constant Gneiss of northwest Nelson which have a Rb-Sr 

isochron age of 680 ± 21 Ma {Adams, 1975). Rocks of this phase are 

considered vestiges of the continental forelands of Australia and Antarctica 

(then the supercontinent Gondwana), (eg., Campbell, 1975; Grikurov and 

Lopatin, 1975; Mildenhall, 1976; Carteret al., 1978; Adams et al. , 1979; 

Crook and Feary, 1982; Kersch and Wellman, 1988). Sedimentation during 

this period appears to have ended during Devonian time due to uplift 

associated with the advancement of the Tuhua Orogeny which extended into 
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the Mesozoic and the second phase of New Zealand's evolution. 

The second phase, the •era of the New Zealand Geosyncline•. includes 

Carboniferous to mid-Cretaceous rocks of the Eastern Province. During this 

phase, active subduction and uplift during the Tuhua Orogeny induced 

deformation of Gondwana's continental margin (rocks of the •early 

Geosynclinal Cycle•) to form the new continental forelands of Gondwana (the 

·New Zealand Geanticline•). Along this active continental margin arc-related 

plutonism may have occurred with a string of andesitic volcanoes being 

created above the subduction zone. Erosion of these continental forelands 

and volcanic arcs may have supplied a western source of abundant 

sedimentary material to the new Pacific continental margin of Gondwana, the 

•New Zealand Geosyncline• and the adjacent trench (eg., Coombs et al., 

1976: MacKinnon, 1983; Korsch and Wellman, 1988). Local facies changes 

along this margin were common during this period as subduction-related 

tectonism and volcanism strongly affected the margin's topography and 

stability. During subduction, sedimentary material deposited within the trench 

was accreted against rocks of the western dipping subduction zone's inner 

trench wall (eg., Coombs et al., 1976 Carteret al., 1978; Sporli, 1978: Davis 

et al., 1980: MacKinnon, 1983). Sedimentation along the margin ceased as a 

result of uplift during the Mesozoic Rangitata Orogt ny, although in local areas 

not affected by early orogenic uplift events, sedimentation persisted well into 

the Cretaceous (Suggate et al., 1978). 

Of particular interest to this stL;dy are the volcanic and plutonic rocks of 

the second phase which include rocks of the East Nelson ophiolites. Until 
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recently, the rocks of this belt were considered by many workers (eg., 

Coombs et al., 1976; Davis et al .• 1980; MacKinnon, 1983) to represent crust 

from the fore-arc basin of the western volcanic arc (ie. a fore-arc basin to the 

east of the Brook Street volcanics) and postulated that the Patukl and 

Croisilles ophiolitic melanges represent material eroded off the fore-arc basin 

or outer-arc ridge (e.g. Davis et al., 1980), and deposited adjacent to the 

inner trench wall of the subduction zone. It has recently been suggested; 

however, that the ophiolitic melanges are composed of ophiolitic rocks of 

different composition than thllSe of the Dun Mountain Ophiolite (eg. Sivell and 

Rankin, 1984}. Kersch and Wellman (1988) have further suggested that the 

melanges were derived from oceanic basement material scraped off the 

subducted plate. In addition, Landis et al. (1987), Landis (1987) and Haston 

et al. ( 1989) have suggested that rocks of the Brook Street terrane are 

allochthonous to the continental margin of Gondwana and have no clearly 

demonstratable link with the East Nelson ophiolites. 

During mid-Cretaceous time a major environments: .:hange occurred 

with the climax of the Rangitata O;ogeny, causing a hiatus in sedimentation 

over much of New Zealand. This erosional period lasted over variable 

lengths of time in different areas, finally ending in the Oligocene. The 

beginning of the third period of sedimentation, the •Late Mobile Phase•, is 

represented by a major angular unco; tormity. The first sediments to be 

deposited above this unconformity were typically non-marine in character and 

coal seams are common. These rocks were in most places deposited on top 

of deeply waathered material and in many areas, typical basal sequences of 
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the Late Mobile Phase are underlain by large thicknesses of sediment 

suggesting differential tectonism or local changes in relief. The general 

sequence of sediments to be laid down during the Late Mobile Phase started 

with non-marine facies followed by marine sandstones, siltstones and 

limestones overlain by Quaternary conglomerate or gravel, suggesting marine 

transgression followed by regression. This was the result of either a eustatic 

change in sea-level or the isostatic rebound of the New Zealand landmass 

(Suggate et al., 1978). 

The latest activity of the Late Mobile Phase began early in the Miocene 

and continues to the present day, as the Kaikoura Orogeny. This orogenic 

activity has largely resulted from late Cenozoic movements and Interactions 

of New Zealand's bordering oceanic plates. It involves down-warping as well 

as uplift and is associated with abundant volcanic activity, particularly on the 

North Island. 

2.2 Regional Geology 

The depositional, Igneous and deformational events described above 

resulted in two geologically distinct provinces on South Island, the Eastern 

and Western Provinces (eg. Landis and Coombs, 1967). The older rocks of 

the Western Province are Late Precambrian to Ordovician in age, while rocks 

of the Eastern Province are Upper Carboniferous to Middle Cretaceous in age 

(eg. Korsch and Wellman, 1988). The provinces are separated by tectonically 

complex zones marked by faulting and intrusions referred to as the Median 

Tectonic Line (Landis and Coombs, 1967), and the younger, still active Alpine 
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Fault (Figure 1.3). The Median Tectonic Line is considered to mark the 

change from continental to oceanic basement (Landis and Coombs, 1967). 

The Western Province consists of Palaeozoic sediments and a wide 

variety of crystalline rocks of Late Precambrian to Cretaceous age covering a 

basement of unknown, possibly sialic, composition (Landis and Coombs, 

1967). Late Precambrian to Middle Devonian sediments of the Western 

Province are composed mainly of detritus derived from the ancient continental 

forelands of Gondwana. These rocks are considered to have undergone 

ext&nsive high-temperature-low-pressure metamorphism and are also 

considered to have formed part of the Gondwana continental foreland by the 

mid-Palaeozoic (Cooper, 1976). 

As this thesis is concerned with the East Nelson ophiolites of the 

Eastern Province, the geology of the Western Province is not considered 

further. 

The Eastern Province of South Island is composed mainly of quartzo­

feldspathic and volcanogenic sediments of the Rangitata Orogen; the 

basement of which has not been recognized (Landis and Coombs, 1967). 

These sediments are dominated by greywackes and siltstones and contain 

lesser amounts of highly aluminous and quartz-rich clastic sediments than 

those of the Western Province. The Eastern Province contains relatively 

abundant mafic and ultramafic volcanic and plutonic rocks of Permian age 

while lacking any significant volumes of granitic intrusive rocks, other than 

along its western margin. This suggests that rocks of the New Zealand 

Geosyncline may have formed on a thin, somewhat incompetent continental 
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margin or possibly on oceanic crust (landis and Coombs, 1967). 

The stratigraphic nomenclature for older rocks of the Eastern Province 

is somewhat complicated. Coombs et al. (1976) stated, "Lithostratigraphic 

and tectonic nomenclature for the older rocks of New Zealand is confusing" 

and suggested that in many cases the problem was compounded by the 

different names given to similar units outcropping on opposite sides of the 

Alpine Fault. Recent workers have attempted to unravel much of the 

confusion with some success (eg., Carter et al., 1974; Coombs et at., 1976; 

Carter et at., 1978; Landis, 1980; MacKinnon, 1983). 

In this thesis a limited number of units are recognized based on 

nomenclature similar to that of Coombs et at. (1976). By this scheme, the 

various rocks of South Island's Eastern P~ovince are informally grouped 

together into lithologic units referred to as "terranes", "ophiolite belts" and 

"melanges". Although more formal classifications have been proposed for the 

terranes of New Zealand's Eastern Province, Coomb's informal terrane 

classification is adopted here with modifications being made to bring the 

scheme in line with more recent classifications (eg., Bishop et at., 1985; 

Landis and Blake., 1987). From the Pacific (eastern) side inward, these 

terranes are the: 

(i) Torlesse terrane; 

(ii) Caples-Pelorus terrane; 

(iii) Greenstone and Croisilles ophiolitic melanges: 

(iv) Patuki ophiolitic melange; 

(v) Dun Mountain-IVIaitai terrane; 
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(vi) Murihiku terrane; and, 

(vii) Brook Street terrane (Figure 1.3). 

Each terrane is fault bounded and regional in its extent and is defined by 

differences in lithology, structure, and metamorphism. An outline of these 

terranes is presented in Table 2.1. 

The main deviation from the classification of Coombs et al. (1976) is 

the omission of the Haast Schist as a separate terrane. This omission is in 

line with that of Bishop et al. (1985) who pointed out that the Haast schists 

represented a zone of increased metamorphic grade which straddles the 

contact between the two terranes and therefore represents metamorphosed 

equivalents of the adjacent Torlesse and Caples-Pelorus terranes. Bishop et 

al. (1985) considered the boundary between these terranes to exist as a 

cryptic suture within the Haast schists. 

Another modification made here to the classification scheme of Coombs 

et al. (1976) is the grouping together of the Dun Mountain Ophiolite and the 

Maitai terranes. This reclassification was initially made by Bishop et al. 

(1985) to conform with modem terrane theory (eg. Jones et al., 1982) as the 

Maitai Group sediments are known to locally share stratigraphic contacts with 

rocks of the underlying Dun Mountain Ophiolite. 

Other, in depth descriptions of the Eastern Province has been given by 

Blake et al. (1974), Coombs et al. (1976), Carteret al. (1978), Korsch and 

Wellman (1988) and Bradshaw, (1989). 
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PROVISIONAL TERRANES OF THE EASTERN PROVINCE OF NEW ZEALAND 
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Table 2.1 Classification of provisional terranes used in this study. The table 
indicates the various terranes of the Eastern Province of South Island, 
New Zealand (from west to east). Lines ncted by "r indicate a faulted 
contact; "u" indicates an unconformity. Question marks indicate 
debated contact relationships (particular1y between the Haast Schist 
and the bordering terranes. Within this study (as indicated by the 
table) the Patuki melange, Rai terrane and Croisilles terrane have been 
classified as a sub-terranes of the Caples-Pelorus terrane. It should be 
noted; however, that this classificatiort scheme is strictly informal and 
not to be confused with formal tectonostratigraphic schemes such as 
that of Bishop et al. (1985). 
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2.3 Geological Outline of the Eastern Province 

2.3.1 Tortesse Terrane 

The Tortesse terrane (Figure 1.3) makes up the eastern side of the 

Eastern Province and is composed predominantly of quartzo-feldspathic 

sandstones, graywacke-argillite assemblages ~eg., Dickinson, 1971, 1982; 

Beggs, 1980; MacKinnon, 1983) with minor occurrences of metabasalt, chert, 

red and green argillite, conglomerate, and limestone. The sediments of this 

terrane are considered to have been derived from a complex source as they 

are composed of a mixture of plutonic, sedimentary, and volcanic detritus, 

probably representing convergent Andean-type margin deposits (Coombs et 

al., 1976). These rocks are structurally complex in character occurring within 

steeply plunging, overturned folds (UIIie and Gun, 1964), local tectonic slides 

(Bradshaw, 1972) and m61ange zonts (Bradshaw, 1973). 

Basaltic units of the Tortesse terrane are widespread and spilitic in 

character, occurring with subordinate hyaloclastites, and are commonly 

accompanied by rare occurrences of radiolarian cherts, red to pale-green 

argillites, and rarer shelly limestones (eg., Reed, 1957; Bradshaw, 1972, 

1973; Pringle, 1980; Grapes and Palmer, 1984). Flows are in places pillcwed 

and usually occur in packages less than 50 metres t~;ck extending over 

distances of a few hundred metres to several kilometres along strike. The 

largest occurrence is about 750 metres thick and can be traced approximately 

25 kilometres along strike (Bishop et al., 1976; Pringle, 1980). Some of the 

basaltic rocks occur within sedimentary melange zones devoid of gabbroic 

and ultramafic rocks (Bradshaw, 1973). These basalts are considered by 
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Grapes and Palmer (1984) to have been tectonically intruded among the 

sediments (Torlesse terrnne) and have tholeiitic compositions similar to those 

erupted at mid-ocean ridge and intra-plate (ocean island) settings. Coombs 

et al. (1976) and MacKinnon (1983), on the other hand, consider these 

basaltic rocks to be representative of interbedded submarine flows. 

The majority of sediments within the unmetamorphosed Torlesse 

terrane are thought to represent material deposited in major, deep marine 

fans occurring along a continental margin (Carter et al., 1978). 

Along the western margins of the Tor1esse terrane, sedimentary and 

metasedimentary rocks grade laterally into rocks of dominantly greenschist 

grade metamorphism, known ss the Haast schists. These schists are 

generally more volcanogenic in composition than unmetamorphosed Tortesse 

sediments and are associated with metacherts considered to have been 

derived from pelagic sediments similar to those associated with the Torlesse 

and Caples-Pelorus submarine volcanics (Coombs et al., 1976). Because of 

the high content of volcanogenic material and the schistose character of these 

rocks, it has been suggested by Norris and Henley (in Coombs et al., 1976), 

that this zone represents an imbricated suture between the largely 

volcanogenic Caples-Pelorus terrane (described below) and the more quartzo­

feldspathic sandstones of the Torlesse terrane. MacKinnon (1983) went 

further to suggest that the Haast schists represent Torlesse and Caples­

Pelorus terrane rocks metamorphosed during collision with a volcanic arc 

system along an oblique transform fa l.:t during Late Triassic to Early Jurassic 

time. 
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Included in the Haast schists are rare pods of serpentinite (Cooper, 

1976) which form the Pounamu ultramafics of central Westland (the western 

side of South Island) (Coombs et al., 1976). 

The source area for the Torlesse terrane is somewhat equivocal. 

Some models suggest an eastern source area where oceanic crust now 

prevails (eg., Bradshaw and Andrews, 1973; Blake et al., 1974, Coombs et 

al., 1976; Carter et al., 1978) while others agree with earlier models in which 

the sediments were derived from the western forelands of Gondwana (eg., 

MacKinnon, 1983; Kersch and Wellman, 1988). 

Continental drift models have suggested that during mid-Cretaceous 

time, the Campbell Plateau-New Zealand landmass separated from the Marie 

Byrd Land region of West Antarctica (Molnar et al., 1975). One point worth 

noting here however, is that it is generally accepted that rocks of the East 

Nelson ophiolites were juxtaposed against rocks of the older Caples-Pelorus 

terrane prior to the deposition of the younger sediments of the younger 

Torlesse terrane (eg., Coombs et al., 1976; Carter et al., 1978). This 

suggests that older terranes had already been juxtaposed (accreted) within a 

subduction zone prior to the deposition of younger Torlesse sediments. 

2.3.2 Caples-Pelorus Terrane 

Separating the Tor1esse terrane from rocks of the Dun Mountain 

Ophiolite to the west, Is the Caples-Pelorus terrane (Figure 1.3). Within the 

terrane classification used here, the Caples-Pelorus terrane is considered to 

include a number of smaller terranes which may represent disrupted slivers of 
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basement and sedimentary material of the Caples-Pelorus terrane or exotic 

material, particulary the Patuki melange, Rai terrane ard the Croisilles 

m~ange (Yable 2.1 ). As the nature of these smaller terranes is a topic of 

debate, they have been included within the Caples-Pelorus terrane as a 

matter of convenience. It should be emphasized however, that this 

classification does not represent a formal tectonostratigraphic classification of 

the terranes of the Eastern Province. 

Rocks of the Caples-Pelorus terrane are dominated by relatively 

unmetamorphosed, largely unfossiliferous greywackes and argillites which are 

associated with minor spilitic volcanic, limestone, and cherty horizons (eg. 

Coombs et al., 1976). These rocks grade towards the east into progressively 

more strongly metamorphosed rocks of the Haast Schists. 

Sedimentary rocks of the Caples-Pelorus terrane were initially given 

separate names in the Otago and Nelson areas; as a result these rocks 

include the Caples Group of Western Otago, the Pelorus Group of East 

Nelson. Also included within the terrane are rocks of the Waipapa Group of 

North Island (not discussed here). 

Excluding rocks of the Haast Schists, rocks of the Caples-Pelorus 

terrane are generally complexly deformed (e.g. Turnbull, 1980) and weakly 

metamorphosed, and locally are divided longitudinally by sheared ophiolitic 

rocks of the Croisilles m'lange (Nelson Segment) and Greenstone melange 

(Otago segment). 

In the Nelson area (Figure 1.2), Caples-Pelorus terrane rocks occur to 

the east of the Dun Mountain Ophiolite and Patuki m"ange and west of the 
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Marlborough schists of the Torlesse terrane. In this area the rocks are here 

known as Pelorus Group sediments {Coombs et al., 1976). Rocks of the 

Pelorus Group are dominated by semi-schistose to less deformed 

volcanogenic sandstones and argillites considered to have been derived from 

an andesitic source composition {Vitaliano, 1968). 

As previously mentioned, rocks of the Caples-Pelorus terrane can be 

further subdivided into a number of smaller tectonic terranes {eg. Landis and 

Blake, 1987). Included within these are the Rai terrane, Croisilles ophiolitic 

m'lange and the Patukl ophiolitic melange. The Aai terrane is composed of 

sandstone dominated sediments which occur west of, and possibly on top of 

(Oickins at al., 1986) rocks of the Croisilles melange (Figure 1.2). These 

sediments are somewhat similar to those of the Caples-Pelorus which outcrop 

east of the Croisilles melange. As this is the case, rocks of the Aal are 

informally grouped together here with those of the Caples-Pelorus terrane 

(eg., Davis at al., 1980; Johnston, 1981 ). 

Until recently, the sediments were considered to represent more distal 

relatives of sedimentary rocks of the Murihiku and Dun Mountain-Maitai 

terranes described below {eg., Blake at al., 1974; Coombs et al., 1976; Carter 

et al., 1978; Davis et al., 1980; and MacKinnon, 1983). Landis and Blake 

(1987) however, suggest on the basis of sedimentological and petrochemical 

data that these rocks may be distinct from the Maital and Brook Street rocks 

and therefore may not be regarded as shallow-, intermediate- and deep-water 

portions of one contemporaneous sedimentary system. They proposed that 

the sediments of the Caples-Pelorus terrane may have been derived from an 
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arc terrane since removed by tectonic processes, rather than the Brook Street 

terrane. The origin of these sediments therefore still remains a subject of 

debate. 

2.3.3 Croisilles and Greenstone Ophiolitic Melanges 

As previously mentioned, rocks of the Rai terrane are separated from 

other sediments of the Caples-Pelorus terrane by a narrow belt of sheared, 

discontinuous ophiolitic rocks known as the Croisilles melange (Waterhouse, 

1964). Rocks of this melange (Figure 1.2) are also similar to those of the 

nearby Patuki melange 3 to 5 km to the west. Locally, the Croisilles melange 

reaches a maximum width of 3 km; however, it generally pinches out along 

strike as discontinuous slivers between rocks of the Rai terrane to the west 

and other sedimentary rocks of the Caples-Pelorus terrane to the east. 

Rocks of the melange are exposed as a mixture of discrete tectonic blocks 

set in a matrix of sheared serpentinite and occasionally sheared argillite 

(Davis et al., 1980). Blocks are composed of a variety of lithologies including: 

spilitic basalt, gabbro, diabase, amphibolite, serpentinized peridotite, rare 

plagiogranite, argillite, volcanic sandstone, chert, volcanic breccia, and 

exogenous conglomerate (Coombs et al., 1976). Many of the blocks are 

strongly altered containing albite, tremolite, stilpnomelane and hydrogrossular 

(rodingitized), and are resistant to ere ~~on. As a result, the typical topography 

developed within the melange is relat ;vely low and hummocky with knockers 

of more resistant material jutting out above the more easily eroded sheared 

serpentinite-argillite matrix. 



Blocks of volcanic breccia from the melange have yielded a restricted 

assemblage of fossils, particularly the Early Permian gastropod, Mour1onia 

impressa (Waterhouse, 1966) and ths allegedly younger, Moyrlonia 

!§lrn!.,ckiana) (Dickins at al., 1986). Sandstones of the adjacent Rai terrane 

to the west; however, have yielded poorly preserved plant remains (McQueen, 

1954), worm borings and atomodesmatinid fragments (Dickins et al., 1986). 

Although little has been published on the nature of the Croisilles 

melange (eg., Waterhouse, 1966; Coombs et al., 1976), some workers (eg., 

Dickins et al., 1986; landis and Blake, 1987) have suggested that rocks of 

the Croisilles and Patukl melanges were developed from the same Lower 

Permian sea-floor sequence &~ the Dun Mountain Ophiolite. More recently 

Sivell (1988) has postulated on the basis of geochemical data, that basalts of 

the Croisilles and Patuki melanges are chemically different from those 

recognized within the Dun Mountain Ophiolite. 

Rocks of the Greenstone melange of west Otago are similar to those 

of the Patuki ano Croisilles melanges containing packages of ophiolitic rocks 

smeared out along discontinuous belts east of the Otago portion of the Dun 

Mountain Ophiolite (eg., Kawachi, 1974 and Coombs, 1976). Blocks in the 

melange are in places up to 1 km across and include: metagabbro, 

amphibolite, pillow lavas, mafic, psammitic and pelitic schists as well as other 

rodingitized and metasomatized rocks (Coombs et at., 1976). 

Some noticeable differences between the Dun Mountain Ophiolite and 

the Greenstone and Croisilles melanges are the lack of a strong aeromagnetic 

signature for the melanges, and the fact that the m'langes do not appear to 

. . " 
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represent zones of major dislocation as they are sometimes flanked on both 

sides by rocks of the Caples-Pelorus terrane without any obvious, significant 

dislocation (Bishop et al., 1976). As a consequence, the relationship between 

the ophiolitic m61anges and the Dun Mountain Ophiolite is not clear. 

2.3.4 Patuki Melange 

Directly to the east of the Dun Mountain Ophiolite lies a belt of sheared 

ophiolitic and sedimentary blocks in a matrix dominated by sheared 

serpentinite. This semi-continuous belt is known as the Patuki melange 

(Figure 1.2). The belt possesses a hummocky topography and is up to 4.5 

km wide with blocks of more resistant material standing up to 20 m high or 

more. Sizes of individual blocks range from a few metres to a few kilometres 

and include such features as Uttle Twin and Maungatapu mountains (Davis et 

al., 1980). For the most part, the lithologies are similar to t.,ose observed 

within the Croisilles melange but appear to be less deformed and faulted. 

The origin of the Patuki melange is equivocal and a number of theories 

have been proposed. In the past it was generally thought that the ultramafic 

and mafic rocks of Patuki melange represented portions of the Dun Mountain 

Ophiolite that had been highly disrupted to form a tectonic m61ange (eg. 

Blake and Landis, 1973) with similar origins being proposed by Coombs et al. 

(1973); Hunt (1974); and Coombs et al. (1976). Davis et al. (1980): however, 

proposed an olistostromal origin for these rocks suggesting they were 

composed of material eroded off the Brook Street volcanics and Dun 

Mountain Ophiolite to the west. They proposed that this eroded material had 
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been transported eastwards and deposited within an active trench. 

Sivell and Rankin (1982) and Sivell and Waterhouse (1984a,b), on the 

other hand, consider that volcanic and plutonic sequences of the Patuki 

melange from D'Urville Island formed by closed system fractionation during 

slow spreading of poorly evolved Mid-Permian sea-floor. Later, Sivell and 

Waterhouse (1986) suggested that these lavas as well as lavas of the 

Croisilles melange were not genetically related to the ultramafic rocks of the 

adjacent Dun Mountain Ophiolite. They concluded that the Patuki and 

Croisilles melanges were not derived from the Dun Mountain Ophiolite and 

suggested that the lavas of the melanges predate it as they are intruded by 

serpentinized ultramafic rocks of the Dun Mountain Ophiolite as sill-like bodies 

occupying slightly different levels along strike within the Patuki melange. 

More recently, Sivell (1988) has shown that the Patuki lavas were 

produced during three distinct magmatic episodes whereby initial generation of 

the Croisilles and Patuki magmas (stage 1 and 2 magmas) occurred within a 

small ocean basin (most likely in a "leaky" transform fault setting), followed by 

generation of lavas (stage 3) produced in r. fore-arc environment above a 

subduction zone. He also suggests that both the Patuki and Croisilles 

melanges comprise identical lava suites not recognized within volcanic rocks 

of the Lee River Group of the Dun Mountain Ophiolite. Therefore, he 

concludes that volcanic rocks of the Patuki and Croisilles m~langes do not 

represent melange material derived from the adjacent ophiolite. 
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2.3.5 Dun Mountain-Maitai Terrane 

In fault contact with the Patuki and Croisilles melanges to the east and 

rocks of the sedimentary Murihiku terrane to the west, lies the Dun Mountain­

Maitai terrane. This terrane is described here in two parts, the Dun Mountain 

Ophiolite to the east, and the overlying Upper Permian, Maitai Group 

sediments to the west (Figure 1.2). These units had previously been 

informally classified as two separate terranes (eg. Coombs et al., 1976) but 

may now be considered as one (Bishop et al., 1985). 

The fault contact between rocks of the Dun Mountain Ophiolite to the 

west and the Patuki melange to the east is generally considered to be a zone 

of major tectonic discontinuity and likely represents the contact between rocks 

of the overriding plate and the subducted slab in a westward dipping 

subduction zone (e.g., Coombs et al., 1973; Coombs et al., 1976; Davis et 

al., 1980). 

Johnston (1981) described the ophiolite as two distinct lithological 

components, (or groups); a distinctive suite of ultramafic rocks (the Dun 

Mountain Ultramafics Group), and a suite of mafic volcanic and plutonic rocks 

(the Lee River Group). Together, these rocks make up the basal and upper 

components of the Dun Mountain Ophiolite respectively. Rocks of the Dun 

Mountain Ultramafics Group vary in composition from basal, protoclastic 

harzburgites up through tectonized dunite and harzburgite, layered peridotites 

and pyroxenites, to serpentinite with gabbro dykes at the upper contact (Davis 

et al., 1980). Rodingite dykes are also widespread in the upper part of the 

sequence. In fault contact above these ultramafic rocks lie mafic plutonic and 
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volcanic rocks of the Lee River Group. This sequence ranges upwards 

~hrough gabbros and sheeted mafic dykes, to poorly developed sequences of 

mafic, spilitized volcanic rocks (including pillowed flows and breccias). 

Contacts between Individual lithologies of the Lee River Group are 

generally steeply dipping and stratigraphically higher units outcrop along the 

western margin of the belt. The upper contact is unconformable with Maitai 

Group sediments. Coomos et al. (1976) suggested that the Dun Mountain 

Ophiolite represented pieces of oceanic crust formed by sea-floor spreading 

east of a volcanic arc (the Brook Street terrane, described below) and west of 

a possibly westward dipping subduction zone. By this model, the adjacent 

Caples-Pelorus and Torlesse terranes were rafted into the subduction zone to 

flank the Dun Mountain-Maitai and Murihiku terranes described below. 

The Red Mountain Ophiolite Complex, an Otago segment exposure of 

the Dun Mountain Ophiolite, was described by Sinton (1980) as an almost 

complete ophiolite. He also proposed that the ophiolite was formed by s£.a­

floor spreading in a marginal basin environment. Davis et al. (1980) 

considered the Dun Mountain Ophiolite of the Nelson segment to have 

evolved in a similar environment, where the volcanic rocks were formed as 

either a mid-ocean ridge tholeiite or low-K tholeiite at an island-arc. A Lower 

Permian mid-ocean spreading ridge was favoured however, in which basaltic 

melts were produced by melting of a depleted mantle source. In their model, 

the Dun Mountain Ophiolite fonned a fore-arc basin to the east of the Brook 

Street volcanic arc, adjacent to the continental margin of Gondwana. This 

fore-arc basin was positioned on the leading edge of the obducting plate 
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while oceanic crust was subducted westward below the ophiolite. During this 

period Maitai Group sediments, mostly derived from the Brook Street volcanic 

arc were deposited in the fore-arc basin on top of the ophiolite. 

Thus the ophiolite has been interpreted to have formed in two possible 

environments, either at a mid-ocean ridge (eg., Davis et al., 1980; Sinton, 

1980\ or in close proximity of a subduction zone (eg., Sinton, 1980; Davis et 

al., 1980). 

Rocks of the Maitai Group are found associated with both the Nelson 

and Otago segments of the ophiolite, being known as the Bryneira Group in 

western 0t2go (Waterhouse, 1964). The contact between these sediments 

and the ophiolite is commonly tectonic in character although unfaulted, 

unconformable contacts are exhibited locally (eg. Waterhouse, 1964). The 

base of the Maitai Group is sometimes difficult to define as spilitic breccias 

commonly occur at the top of the ophiolite sequence. These breccias are 

close in character to the basal formation of the Maitai Group, the Upukerora 

Formation (described below) (Landis, 1974a; Coombs et al., 1976). 

The basal formation of the Maitai sequence is generally considered to 

be the Upukerora Formation and its correlatives (eg., Landis, 19748; Coombs 

et al., 1976). This formation is composed of red and green volcanic 

conglomerates and breccias. Althou£ ., its origin is somewhat speculative, 

most workers consider it to have been derived from the uppermost volcanics 

of the Dun Mountain Ophiol~e. This formation is succeeded by discontinuous 

units of fossiliferous limestones (eg. Davis et al., 1980) of the Wooded Peak 

Umestone (Waterhouse, 1964). Overlying these limestones are sequences of 
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deep water sandstones, the youngest of which indicate a return to shallower 

conditions (eg., Coombs et al., 1976; Davis et al., 1980). The Maitai Group 

is folded about the north-northeast to northeast and east-northeast striking 

axis of the broad, near isoclinal, Nelson Regional Syncline (eg., Coombs et 

al., 1976; Davis et al., 1980). 

Coombs et al. (1976) and others (eg., Carter et al., 1078; Landis, 

1980; MacKinnon, 1983; Cawood, 1984; landis and Blake, 1987) consider the 

Maitai Group to be composed of material derived from the erosion of a largely 

inactive volcanic arc to the west, while Davis et al. (1980) suggest the 

sequence also contains material eroded off an outer-arc ridge. Although the 

Brook Street terrane has previously been considered a likely source of Maitai 

Group sedimentary material, recent work suggests this to be unlikely (eg., 

landis et al., 1987; Haston et al., 1989, Frost and Coombs, 1987). 

2.3.6 Murihiku Terrane 

In fault contact with sediments of the Maitai Group to the northwest 

(Nelson segment) and southwest (Otago segment) lies the largely sedimentary 

Murihiku terrane (Figure 1.3) (landis et al., 1987, Landis, 1987). This terrane 

consists of a sequence of folded, highly volcanogenic, mostly marine, Triassic 

and Jurassic sediments. The sequence has a maximum preserved thickness 

of 10 km and was previously known as the Murihiku Supergroup (Campbell 

and Coombs, 1966). As the Murihiku sediments lack volcanic flow material 

and are richer in ash material than sediments of the Maitai terrane they are 

considered to have been derived from a more mature volcanic arc source 
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than that which supplied the underlying Maitai Group (Coombs et al., 1976). 

The source for the Murihiku sediments is considered to have changed 

a number of times during its evolution (Boles, 1974) and is considered to 

have an arc or continental origin (eg. Frost and Coombs, 1987). In the 

Middle Triassic the composition of the sediments changed from being 

dominantly andesitic to dominantly acidic in composition. Later, In Late 

Triassic times, the source was again of andesitic composition (Boles, 1974). 

These changes most likely reflect a compo3itional change in the volcanism 

and associated plutonism of the source to the west. 

In the past, many workers considered these sediments to have been 

derived from a western source, likely the Brook Street terrane (eg., Coombs 

et al., 1976; Stevens and Speden, 1978; MacKinnon, 1983); but recent work 

(eg., Landis et al., 1987; Haston et al., 1989, Frost and Coombs, 1987) has 

shown that these terranes are likely spatially and genetically unrelated. 

2.3.7 Brook Street Terrane 

Outcropping on the western margin of the Eastern Province are 

metabasaltic pillow lavas, porphyritic andesites, volcanic breccias, 

volcanogenic sediments, and associated intrusives of Early to Middle Permian 

age (eg., Wellman, 1952; Bruce, 1962; Waterhouse, 1964; Mossman and 

Force, 1969). These rocks are variously known as the Brook Street 

Volcanics (Figures 1.2 and 1.3), Eglinton Volcanics, Takitimu Group, 

Greenhills Group and the Brook Stre•·t terrane. Although it has been 

intBrpreted to unconformably underlie sediments of the Murihiku terrane recent 
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workers suggest the contact to be faulted (Landis et al., 1987; Landis, 1987). 

Rocks of the Brook Street terrane have been intruded by complexes of 

varying compositions from dunite-wehrlite-eucrite (Mossman, 1973) to gabbroic 

and granitic intrusions (Grindley, 1958). This terrane is generally considered 

to represent a volcanic arc (eg. Wellman, 1956) which was active during 

Permian to possibly Upper Jurassic time (Stephens and Speden, 1978; 

MacKinnon, 1983). 

The Brook Street terrane has generally been considered to have 

evolved to the east of the Gondwana continental margin as a volcanic arc 

(Wellman, 1956) and has previously been credited with having provided 

sedimentary material to the marginal basin and arc-trench system of the Dun 

Mountain Ophiolite (e.g., Coombs et al., 1976, Davis et al., 1980, MacKinnon, 

1983). Recent palaeomagnetic investigations; however, suggest that the 

Brook Street terrane is allochthonous to the margin of Gondwana (Haston et 

al., 1989) and therefore shares no clearly demonstratable links with other 

terranes of the Eastern Province prior to Cretaceous time (see Haston et al., 

1989). 
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CHAPTER 3 

GEOLOGY OF THE EAST NELSON OPHIOLITES 

3.1 Introduction 

The ophiolites of East Nelson occur as three separate, mappable 

occurrences: the Dun Mountain Ophiolite, the Patuki ophiolitic melange and 

the Croisilles ophiolitic melange. All three occur in close proximity to one 

another (generally within 8 kilometres) as three parallel belts (Figure 1.2). 

This close proximity in conjunction with the general similarity of the lithologies 

observed within the belts, had in the past, promc:)ted their grouping together 

into a single unit or belt (see Challis, 1969). It is now generally accepted that 

such a grouping is an oversimplification and many workers now describe the 

ophiolites of East Nelson as three separate entities; although, many suggest 

that they were derived from the same oceanic crust (eg., Coombs et al., 

1976; Johnston, 1981; Davis et al., 1980; Blake and Landis, 1987). In this 

section the three ophiolites are described individually in an attempt to 

determine if and how they are related. 

The Dun Mountain Ophiolite of the Dun Mountain-Maitai terrane is the 

best preserved and studied of the ophiolites of East Nelson (eg., Challis, 

1965a,b; Challis and Lauder, 1966; Walcott, 1969; Hunt, 1978; Davis et al., 

1980; Johnston, 1981; Sivell et al., 1986). This ophiolite outcrops as a semi· 
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continuous belt which stretches a distance of approximately 150 kilometres 

along strike and extends from the southwest margin of the Red Hills to the 

northeast coast of D'Urville Island (Figure 1.2). Locally the belt reaches an 

exposed width of 8 kilometres (Red Hills) but generally is no more than 2 

kilometres wide. 

The Dun Mountain Ophiolite is made up of at least two distinct 

lithologic groups, the lee River Group and the under1ying Dun Mountain 

Ultramafics Group (after Johnston, 1981 ). The loe River Group makes up 

the upper portion of the ophiolite and consists of basaltic flows, a poorly 

developed sheeted dyke complex, and a thin sequence of gabbroic rocks. 

Lying structurally beneath and in fault contact with rocks of the Lee River 

Group to the east are rocks of the Dun Mountain Ultramafics Group (Figurg 

1.2}. The rocks of this group are predominantly composed of harzburgite, 

pyroxene peridotites, and dunite; and possess foliations considered to have 

been produced during primary mantle deformation (Davis et at., 1980). 

Some sections through the ophiolite are incomplete and lack rocks of 

either the Lee River Group or the Dun Mountain Ultramafics Group. Many of 

these local absences have been attributed to faulting within the Dun Mountain 

Ophiolite as the East Nelson ophiolites are traversed by major faults striking 

between north-northeast and northeast (eg., Davis et al., 1980). These faults 

branch off the Alpine Fault to the southwest and in places display recent 

traces. Many are considered to have significant vertical and dextral 

transcurrent components (Davis et al.. 1980). Associated with this system is 

a second set of subordinate faults which strikes approximately perpendicular 
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to the major faults. These are commonly truncated by the major northeast 

striking system and movements along the subordinate faults are generally 

almost entirely vertical (Davis et al., 1980). 

In the East Nelson area the Patukl m~lange (Figure 1.2) forms a semi­

continuous belt which strikes parallel to the Dun Mountain Ophiolite and 

stretches from the western margin of the Red Hills to the northern tip of 

D'Urville Island. Locally the m61ange reaches an exposed width of 6 

kilometres (near Dun Mountain) but is typically no more than a kilometre 

wide. Although the m61ange is not subdivided into formations here, a crude 

basalt stratigraphy has been identified locally on north D'Urville Island (Sivell 

and Rankin, 1982). Rocks of the Patuki m~lange are also cut by the same 

network of faults that disrupt rocks of the Dun Mountain Ophiolite (Johnston, 

1981 ). 

The Croisilles m61ange :Figure 1.2) is similar in character to the Patuk.i 

melange in the East Nelson region but is often significantly more disrupted. It 

consists of a disconnected trail of isolated ophiolitic melange segme:":ts and 

extends from the eastern margin of the Red Hills to the Trio Islands (Beck, 

1964) of Admiralty Bay (ie. a small group of tiny islands approximately 1.5 

kilometres due east of D'Urville Island). Locally, the Croisilles m~lange 

reaches a width of approximately 2.25 kilometres (Dickins et al., 1986) but 

often is no more than 0.5 kilometres wide. This m~lange has not been 

subdivided into formations here and no internal stratigraphy has previously 

been identified (eg. Landis and Blake, 1987). Rocks of the Croisilles m61ange 

are also disrupted by the same system of faults that dissect the other East 
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Nelson ophiolites (Johnston, 1981). 

To date the most comprehensive maps of the East Nelson ophiolites 

are the 1 :50,000 scale maps of Johnston ( 1981, 1982). In addition to these, 

local areas have recently been mapped in greater detail particularly in the 

vicinity of Croisilles Harbour (e.g., Dickins et al., 1986; Blake and Landis, 

1987) and O'Urville Island (Sivell, 1986). 

3.2 Field Relationships 

3.2.1 Introduction 

In this section the geology of each of the East Nelson ophiolites is 

discussed with reference to seven areas studied as part of this thesis 

(Figures 3.2.1 to 3.2.6). The rocks are described using the classification 

scheme of Johnston (1981) with some minor modifications being made so 

that the ophiolites are described in terms of lithologies rather than formations. 

Thus, under the classification scheme used here the Lee River Group of the 

Dun Mountain Ophiolite is not subdivided into the Glennie and Tinline 

Formations (Johnston, 1981 }, but rather into basalt, sheeted dyke, and gabbro 

complexes according to the stratigraphy of an ophiolite as defined by 

participants of the Penrose Ophiolite Conference (1972). 

3.2.2 Red Hills Western Margin (Figure 3.2.1) 

In this area rocks of the Dun Mountain-Maitai terrane were mapped 

and interpreted. These rocks include from west to east: Maitai Group clastic 

sediments; limestones of the Wooded Peak Formation; r~p:"esentative 
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lithologies of the Upukerora Formation; isotropic gabbros and diabase dykes 

of the Lee River Group; a complex of sheared serpentinite and tectonic 

inclusions; and, deformed ultramafic rocks of the Dun Mountain Ultramafics 

Group. 

The Maitai Group clastic sediments consist of grey-blue, finely bedded 

siltstones and sandstones which generally strike northeast and dip steeply 

towards the southeast (unit mt, Figure 3.2.1 ). These rocks are interpreted to 

lie in fault contact to the east with a package of rocks consisting of lower 

formations of the Maitai Group and gabbro and diabase dykes of the lee 

River Group. This package of rocks appears to be an unfaultad sequence. 

Stratigraphically, the highest rocks of this unfaulted sequence are gray, 

finely bedded, fine-grained limestones of the Wooded Peak Formation (Plate 

3.1) (unit wp, Figura 3.2.1 ). These limestones generally strike in a 

northeasterly direction, are in places steeply tilted, and locally are overturned 

in the northern half of the map area. Rocks of the Wooded Peak Formation 

lie unconformably above conglomerates of the Upukerora Formation and 

locally, where the Upukerora Formation is absent, on top of gabbro of the Lee 

River Group (north side of the map area). 

Within this sequence the Upukerort~. Formation (unit up, Figure 3.2.1} 

consists of a conglomerate composed of angular to sut:-rounded clasts of 

basalt and gabbro supported in a red, hematite-stained, mud and sand matrix 

(Plates 3.2a and b). The clasts range in size from less than a centimetre to 

20 centimetres in diameter. 
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Plate 3.1 Fine-grained, grey-blue weathering Wooded Peak limestones of the 
Maitai Group (Red Hills, R-916). Hammer for scale. 
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Plate 3.2a Hematite-stained Upukerora conglomerates of the Maitai Group 
(Red Hills, R-931 ). 

Plate 3.2b Angular clasts suspended in a hematite-stained muddy matrix, 
Upukerora Formation (Red Hills, R-931 ). 
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Unconformably undertying the Upukerora conglomerates are Isotropic 

gabbros of the Lee River Group (Plate 3.3) (unit lr, Figure 3.2.1 ). These 

gabbros are almost entirely composed of clinopyroxene (altered to green 

amphibole) and altered plagioclase, and are in places cut by mrnerous fine­

grained diabase dykes. These dykes are generally steeply dipping and strike 

in a northeast-southwest direction. Although the Lee River Group gabbros 

are isotropic in character with little, if any, compositional or textural changes 

being observed from outcrop to outcrop, a weak foliation is locally observed. 

The grain size of the gabbros typically ranges between 1 and 3 millimetres. 

Locally (in the north half of the map area), limestones of the Wooded 

Peak Formation overty gabbro of the Lee River Group along, what is 

interpreted to be, an angular unconformity. Associated with limestone beds 

directly above this contact are intercalated beds (2 to 1 0 centimetres thick) of 

green, fine-grained sandstone (Plate 3.4). These fine-grained sandstone beds 

contain abundant crystal fragments (dominantly plagioclase) and altered rock 

fragments, in an altered, fine clay-like matrix (Plate 3.5a). Other clasts 

observed in the sandstones include sponge spicules of unknown origin (Plates 

3.5b and c). Similar sandstone units up to 30 m wide are also observed at 

other levels in the Wooded Peak limestone in the map area and are 

considered to be tuffaceous in origin (Figure 3.2). In this map area Lee River 

Group gabbros are therefore considered to represent basement material upon 

which Maitai Group sediments were deposited. 

The above sequence is bounded to the east by a wide fault zone 

consisting of metamorphosed inclusions of both the Lee River Group and the 
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Plate 3.3 Diabase dyke intruding medium-grained Lee River Group gabbro 
(Red Hills, R-907). 

Plate 3.4 Wooded Peak limestone intercalated with beds of green, fine­
grained sandstone (Red Hills, R-921 ). Sandstone beds are between 2 
and 10 centimetres thick and are partially overgrown by moss in the 
bottom left of the picture. 
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Plate 3.5a Microphotograph of fine-grained sandstone containing abundant 
crystal fragments {dominantly plagioclase) and altered clasts of what 
were likely rock fragments, in an altered, fine clay-like matrix {Red Hills, 
R-919). Crossed nicols, x1 00. 

Plate 3.5b Microphotograph of fine-grained sandstone containing abundant 
fragments of sponge spicules (cross sections) (Red Hills, R-919). 
Crossed nicols, x1 00. 
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Plate 3.5c Microphotograph of fine-grained sandstone containing abundant 
fragments of sponge spicules (longitudinal sections) (Red Hills, R-919). 
Crossed nicols, x1 00. 
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Dun Mountain Ultramafics Group suspended in a matrix of sheared 

serpentinite (unit lr/dm, Figure 3.2.1 ). These inclusions are cons!dered to 

represent material incorporated into serpentinite (Sheared Serpentinite 

Complex) by shearing along the contact between the lower Maitai-Lee River 

Group package of rocks to the west and ultramafic rocks of the Dun Mountain 

Ultramafics Group to the east. The complex strikes roughly north-south and 

is generally between 200 and 400 metres wide. Within the complex, shearing 

is defined by vertical to sub-vertical schistosity planes in serpentinite which 

strike parallel to the zone's margins (Plates 3.6a and b). Schistosities are 

often highly irregular in orientation, and are often observed wrapping around 

blocks (inclusions) of more competent material such as gabbro and rodingite 

(Plates 3.7 and 3.8). Inclusions are generally less than a metre in diameter 

but are observed up to tens of metres in diameter. Rodingitized mafic dykes 

are also common as boudinaged lenses in sheared serpentinite (Plates 

3.9a,b,c and 3.1 0). 

Inclusions within this zone (unit lr/dm, Figure 3.2.1) include blocks of: 

rodingitized and amphibolitized foliated gabbro; rodingitized banded gabbroic 

cumulates ("critical zone" rocks); ultramafic rocks; and rodingitized mafic 

dykes. Of particular interest here are the gabbroic cumulates, as they were 

likely derived from levels within the Dun Mountain Ophiolite not preserved in 

other areas investigated in this study. Similar "critical zone" or layered series 

rocks have been described from other ophiolites and are considered to 

represent the transition between the ultramafic and mafic plutonic rocks of an 

ophiolite (Smith, 1958; Malpas, 1977). These rocks are therefore considered 
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Plate 3.6a 40 metre wide sheared serpentinite shear zone in Sheared 

Serpentinite Complex Zone (Red Hills, R-900). Schistosity planes dip 
steeply towards the left of the picture (west). Knapsack for scale. 

-
Plate 3.6b Close up of sheared serpentinite shear zone in Sheared 

Serpentinite Complex Zone (Red Hills, R-900). Note blocks of sheared 
and serpentinized ultramafic rocks in left half of picture. 
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Plate 3.7 Competent blocks of gabbroic material suspended in sheared 
serpentinite (Red Hills, R-926). 
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Plate 3.8 Competent blocks of amphibolitized and foliated medium-grained 
gabbro suspended in sheared serpentinite {Red Hills, R-950b). 
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Plate 3.9a Rodingite dyke in sheared serpentinite truncated by a block of 
amphibolitized and strongly foliated medium-grained gabbro (Red Hills, 
R-902). Note: Rodingite dyke has been disrupted by shearing within 
the serpentinite matrix. Hammer for scale (in foreground). 

Plate 3.9b Close up of rodingite dyke in sheared serpentinite truncated by a 
block of amphibolitized and strongly foliated medium-grained gabbro 
(Red Hills, R-902). 
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Plate 3.9c Close up of amphibolitized and strongly foliated medium-grained 
gabbro block {Red Hills, R-902). Foliation is sub-horizontal and dip 
towards the left side of the photo. Note numerous veinlets of prehnite 
intruding along joints and foliation planes. 

Plate 3.10 Disrupted rodingite dykes in sheared serpentinite (Red Hills, R-
925). Hammer for scale. 
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to represent basal cumulate sequences of the Lee River Group gabbroic 

complex (unit t, Figure 3.2.1 ). 

Within the map area, rocks of this type are preservsd as distinctively 

banded, partially serpentinized and rodingitized gabbroic inclusions suspended 

in sheared serpentinite (Plates 3.11 a,b to 3.16a,b). 

To the east of the serpentinite fault zone (unit lr/dm, Figure 3.2.1) lie 

ultramafic rocks of the Red Hills ultramafic massif (unit dm, Figure 3.2.1 ). 

Within the map area this massif consists of harzburgite with minor pods and 

lenses of dunite, wehrtite, and orthopyroxenite. These rocks are generally 

"dun coloured" on weathered surfaces with dunite having a smooth weathered 

surface while harzburgites possess rough "hob nail" weathered surfaces due 

to the presence of erosion resistant orthopyroxene crystals (Plate 3.17). 

Within these ultramafic rocks occur numerous bands or dykes of 

pyroxenite and pyroxene peridotite. These appear to have been produced in 

man}' generations with most now being aligned parallel to foliations developed 

within the harzburgite, while later dykes cut the harzburgite at various angles 

to the foliation. This suggests that deformation took placo while the massif 

was still magmatically evolving beneath the ocean floor. In places, these 

dykes are observed as tightly closed folds in which the limbs are aligned 

parallel to the foliation (Plate 3.17). For the most part they are 1 0 to 30 

centimetres thick and are generally more abundant in harzburgites than 

dunites. 

Dunite pods and lenses within the ultramafic rocks are typically 0.5 to 

so metres wide and generally share sharp contacts with the more plentiful 
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Plate 3.11 a Knocker of foliated and amphibolitized melanocratic gabbro 
suspended in sheared serpentinite of the Sheared Serpentinite Complex 
Zone (Red Hills, R-904). Hammer for scale. 

Plate 3.11 b Close up of foliation within amphibolitized, medium-grained 
melanocratic gabbro knocker (Red Hills, R-904). 
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Plate 3.12 Boulder of transition series banded rock (Red Hills, R-911 ). Dark 
bands are predominantly composed of serpentinized dunite while lighter 
coloured bands are composed of hydrogrossular and diopside from the 
alteration of plagioclase and clinopyroxene (gabbro). 
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Plate 3.13 Outcrop of vertically banded transition series rocks (Red Hills, R-
926). 



64 

Plate 3.14 Boulder of transition series rock (Red Hill, R-926). Note black 
bands of serpentinized dunitic material. 

-
Plate 3.15 Boulder of transition series gabbro cut by a 5 centimetre wide 

dyke of amphibolitized gabbroic material (Red Hills, R-926). 
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Plate 3.16a Outcrop of foliated transition series rocks (Red Hills, R-926). 

Plate 3.16b Close up of transition series rock (Red Hills, R-926). White 
grains are composed of hydrogrossular replacing plagioclase. 
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Plate 3.17 Outcrop of banded Harzburgite within the Red Hills Ultramafic 
massif (Dun Mountain Ultramafics Group). The outcrop contains 
numerous pyroxenite bands aligned parallel to the foliation. The head 
of the hammer rests on the hinge area of a folded band (Red Hills, R-
956a). 
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harzburgites. 

3.2.3 Lee River (Figure 3.2.2) 

In the Lee River map area rocks of the Dun Mountain-Maitai terrane, 

Patuki mltlange, and Pelorus terrane were mapped and interpreted (Figure 

3.2.2). These rocks include from west to east: Maitai Group sediments; Lee 

River Group gabbros and diabase dykes: ultramafic rocks of the Dun 

Mountain Ultramafics Group; clastic sediments and mafic volcanic, plutonic, 

and ultramafic rocks of the Patuki melange: and clastic sedimentary rocks of 

the Pelorus Group. 

The Maitai Group rocks are predominantly CC"1mposed of clastic 

sediments (Plate 3.18) with only local minor am,'lunts of Wooded Peak 

limestone and Upukerora conglomerate outcropping along the Group's eastern 

(basal) contact. For the most part, the contact betweer: the Maitai Group 

sediments and the Dun Mountain Ophiolite to the east is faulted; however, 

Maitai Group sediments (Upukerora Formation conglomerates) are locally 

observed unconformably overlying gabbro and diabase dykes of the Lee River 

Group near Little Ben. 

East of the Maitai Group sediments, rocks of the Dun Mountain 

Ophiolite are observed as an incomplete ophiolite sequence in which mafic 

gabbroic rocks of the Lee River Group overlie and are in fault contact with 

ultramafic rocks of the Dun Mountain Ultramafics Group to the east. 

The Lee River Group gabbroic rocks are generally isotropic in character 

and are locally intruded by small numbers of sub-vertical, east-west striking 



diabase dykes. particular1y along the top (western contact) of the gabbro 

sequence. These dykes are typically between 0.5 and 1 metre wide and in 

places display well preserved chilled margins. The gabbroic rocks are mostly 

composed of fine to medium-grained (1 to 3 millimetres) gabbro made up of 

altered clinopyroxene (green pleochroic amphibole) and saussuritized 

plagioclase. Diabase dykes are typically more fine-grained (less than 1 

millimetre) than the gabbros but are of similar composition. 

For the most part, gabbroic rocks are undeformed although a few 

intensely foliated blocks are observed as inclusions within serpentinite shear 

zones between the Lee River Group gabbros and ultramafic rocks of the Dun 

Mountain Ultramafics Group. These inclusions commonly have a flazered 

appearance indicating that the rocks were deformed at high temperatures. It 

is suggested here that many of these highly foliated inclusions were likely 

brought in contact with the higher level, nondeformed, Lee River Group 

gabbros along deep-rooted fault zones. 

Ultramafic rocks of the Dun Mountain Ultramafics Group lie in fault 

contact to the southeast with gabbroic rocks of the Lee River Group and are 

considered to have formerty underlain them. These ultramafic rocks are for 

the most part, strongly serpentinized and are predominantly composed of 

harzburgite with minor bands and lenses of serpentinized dunite and pyroxene 

peridotite. 

In outcrop, rocks of the Dun Mountain Ultramafics occur as large fault 

bounded blocks which range from approximately 0.25 to 2 kilometres in 

diameter (as defined on Figure 3.2.3}. These larger blocks are internally cut 
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by innumerable serpentinite shear zones into numerous smaller blocks 1 to 10 

metres in diameter. 

Within some sections through the ophiolite sequence, rocks of the Lee 

River Group are absent where ultramafic rocks of the Dun Mountain 

Ultramafics Group lie in fault contact with Maitai group sediments to the west. 

In these areas it is assumed that the Lee River Group has been removed by 

faulting as there is no evidence of sedimentary contacts between the rocks of 

the Dun Mountain Ultramafics Group and Maitai Group sediments. In 

addition, tectonic inclusions of gabbro (lee River Group) are commonly 

observed suspended within serpentinite shear zones which run along contacts 

between rocks of the Dun Mountain Ultramafics Group and Rocks of the Lee 

River and Maitai Groups. 

In the map area the ophiolite has been disrupted by a series of faults 

(as previously described) which crosscut it in approximately north-south and 

east-west directions. These faults commonly contain inclusions of material 

derived from adjacent rocks; however, some inclusions are considered to 

have been tectonically transported considerable distances as they are 

composed of material different from that observed immediately adjacent to the 

shear zones (Plates 3.19 and 3.20). It appears that some of these faults 

follow previous zones of displacement produced prior to, or during the initial 

emplacement of the ophiolite (ie. on the sea floor) particulary along: (i) the 

contact between the Lee River Group gabbros and rocks of the Dun Mountain 

Ultramafics Group; and (ii) the western contact of the Patuki melange (Dun 

Mountain Ultramafi~-Patuki melange contact). 
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Plate 3.19 Large block of pillowed basalts (Patuki Basalts, Lee River area, T-
257). Outcrop is a large block suspended in a serpentinite shear zone. 

Plate 3.20 Close up of inclusion of rodingitized material within sheared 
serpentinite (Lee River area, T -560). Note the margins of the inclusion 
are partially replaced by serpentinite. 
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Lying to the ebSt of, and in faulted contact with rocks of the Dun 

Mountain Ophiolite are dastic sediments and mafic volcanic, plutonic, and 

ultramafic rocks of the Patuki m~lange. In the Lee River area, these rocks 

are exposed as a highly disrupted belt of weakly to highly deformed blocks 

separated by, and sometimes suspended in, serpentinite shear zones. The 

blocks range in size from less than a metre to hundreds of metres in 

diameter and display a high degree of internal defcrmation as individual 

blocks are commonly cut and disrupted by innumerable serpentinite fault 

zones. 

Within the melange three types of blocks are observed including: (i) 

blocks of associated clastic sedimentary and basaltic rocks; (ii) blocks 

composed of medium-grained gabbros and fine-grained diabase dykes; and 

(iii) rare blocks of serpentinized ultramafic rock. 

Most blocks are composed of pillowed to massive, mafic flows and 

volcanic breccias locally overtain by thin sequences of very fine-grained clastic 

sediments (Plates 3.21 and 3.22a,b). These sediments are predominantly 

grey to green argillites and fine sandstones; however, red hematized 

mudstone is also locally observed in contact with underlying basaltic flows 

and breccias. 

Basaltic rocks within the Patuki melange are generally observed in 

outcrop as red (hematite-stained) to green weathering pillows or massive 

flows. Pillowed outcrops commonly contain very little, if any, interstitial 

material and individual pillows are typically less than 0.5 metres in diameter 

(Plates 3.21 and 3.22a,b). 
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Plate 3.21 Patuki pillow basalts (Lee River area, B-131 ). 
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Plate 3.22a Nonconformable contact between Patuki pillow basalts (right) and 
green, fine-grained argillaceous sediments (left) (Lee River area, B-
132). 
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Plate 3.22b Close up of fine-grained argillaceous sediments above 
nonconformable contact (Lee River area, B-132). 
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In outcrop, gabbroic rocks of the Patuki melange appear to be similar 

in composition to those of the Lee River Group as both are commonly 

isotropic in character and of similar grain size. One visible difference 

between these rocks is however, their degree of deformation, as Patukl 

gabbros are commonly foliated while gabbros of the Lee River Group are 

typically less deformed. Diabase dykes also intrude gabbros of the Patuki 

melange but are less common. 

In the Lee River area ultramafic rocks of the Patuki m€1ange are 

generally strongly serpentinized and sheared, usually 'Jeirtg observed as 

slivers or blocks (generally 5 to 200 metres in diameter) in serpentinite fault 

zones between larger blocks (generally hundreds of metres in diameter) of 

the Patuki melange to the west and clastic sediments of the Pelorus terrane 

to the east. These packages or blocKs of ultramafic rock make up only a 

small fraction of the total volume of the Patuki melange in the Lee River area 

and may represent, in some instances. material squeezed up along deep­

rooted serpentinite shear zones. 

For the most part, Patuki ultramafic rocks are composed of strongly 

serpentinized harzburgite and lesser amounts of serpentinized dunite and 

pyroxene peridotite. In outcrop these rocks are commonly broken up along 

serpentinite shear zones which have obliterated original textures and 

structures. Less sheared ultramafic rocks generally weather an orange-brown 

colour in which olivine has been almost entirely altered to serpentine and less 

altered relict orthopyroxene and spinel crystals stand out on weathered 

surfaces. 

- - . . 
I • • 
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locally, Patuki ultramafic rocks are observed in fault contact with Patuki 

gabbros. In places along these contacts gabbroic rocks are strongly foliated 

and have a flazered or banded appearancs (Plate 3.23). The strongly foliated 

gabbroic rocks of these zones are considered similar to those previously 

mentioned within the Red Hills area (amphibolitized foliated gabbroic blocks 

suspended withir. the Sheared Serpentinite Complex) and likely represent 

foliated basal gabbros of the Lee River Group. 

East of, and in fault contact with rocks of the Patuki melange, lie 

clastic sedimentary rocks of the Pelorus terrane. These seoi~ents are 

generally dark grey to blue, fine-grained, well-bedded siltstones, sandstones, 

and mudstones. Within the lee River ar&a they were mapped along their 

western contact where they outcrop as su:wertical to horizontal beds, locally 

folded or buckled around northeast-southwest striking axes. Although 

s'3dimentary rocks of the Pelorus terrane were mapped during this study, a 

detailed investigation of these rocks was not conducted. 

3.2.4 Serpentine River (Figure 3.2.3) 

In the Serpentine River map area rocks of the Dun Mountain-Maitai 

Terrane and Patuki m"ange were mapped and interpreted along a section of 

the Serpentine River. These rocks include from north to south: Maitai Group 

sediments, diabase dykes and gabbros of the lee River Group, ult~·amafic 

rocks of the Dun Mountain Ultramafics Group, and clastic sediments and 

mafic volcanic rocks of the Patuki melange. 
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Plate 3.23 Close up of medium to coarse-grained, highly foliated gabbro 
(Patuki gabbro, Lee River area, B-181 ). 

f 
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Maitai Group sedimentary rocks outcrop over the northern portion of 

the map area and are dominated by thinly bedded, fine-grained siltstones and 

sandstones. These sediments are, for the most part, unfaulted and make up 

a sequence of vertical beds which strike roughly parallel to the group's 

eastern faulted contact. Along this eastern contact outcrops a fault bounded 

sequence (approximately 30 metres wide) of thinly bedded, grey to purplish­

grey limestones and siltstones of the Wooded Peak Formation. In fault 

contact with these limestones to the south are gabbro and diabase dykes of 

the Lee River Group (Dun Mountain Ophiolite). 

Here the Lee River Group is composed predominantly of isotropic, 

medium-g~ained (1 to 2 miliimetres), unfoliated gabbros. These gabbros are 

intruded by rare diabase dykes (0.5 to 1 metre wide) and closely resemble 

those gabbros of the Lee River map area (near Uttle Ben) which lie in 

unconformable contact with conglomerates of the Upukerora Formation (Figure 

3.2.2). 

In fault contact with the gabbros to the south are strongly serpentinized 

and sheared ultramafic rocks of the Dun Mountain Ultramafics Group. Along 

this contact dykes of rodingitized mafic material are common as blocks (less 

than 0.5 metres wide) in sheared serpentinite. 

The ultramafic rocks of the Dun Mountain Ultramafics Group are 

predominantly composed of sheared serpentinite and contain numerous blocks 

(less than 1 metre to tens of metres in diameter) of serpentinized harzburgite. 

These rocks are typically highly disrupted by innumerable serpentinite shear 

zones. 



In fault contact with rocks of the Dun Mountain Ultramafics to the south 

are fine-grained clastic sediments and pillowed to massive basaltic flows of 

the Patuki melange. 

In the Serpentine River area, rocks of the Patuki melange occur as two 

large semi-continuous blocks (500 metres or more wide) separated by a 

serpentinite shear zone (approximately 25 metre wide). This shear zone dips 

vertically and strikes roughly northeast-southwest. 

Both blocks of the Patuki melange are disrupted by numerous narrow 

(less than 0.5 metres wide) shear zones (of which some are lined with 

sheared serpentinite) that crosscut the blocks as vertical to subvertical, 

northeast-southwest striking faults. 

The northern b!ot::k of the melange is predominantly composed of red 

coloured, hematite-stained basalts which outcrop as pillowed to massive flows 

and breccias overlain by thin sequences of poorly bedded, grey to dark grey 

mudstones, siltstones and sandstones. 

The adjacent block to the south is predominantly composed of fine­

grained clastic sediments. Basaltic rocks were not observed in outcrop; 

however, a complete section through the southern block was not mapped. 

The clastic sediments of this block are dominated by poorly bedded, fine­

grained, dark grey-blue sandstones and siltstones. Bedding within these 

rocks is best defined by rare beds of light grey coarse sand (less than 1 

centimetre thick) which generally strike northeast-southwest and dip vertically. 
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3.2.5 Roding River (Figure 3.2.4) 

In the Roding River area three separate sections through rocks of the 

Lee River Group were mapped and reinterpreted. From west to east these 

sections include: (i) Champion Creek. (ii) United Creek, and (iii) the Dun 

Mountain track. Each of these sections are unconformably overlain by 

steeply dipping, northeast-southwest striking limestones of the Wooded Peak 

Formation (Maitai Group) $/Od lie in fault contact to the east with ultramafic 

rocks of the Dun Mountain Ultramafics Group. 

Within these sections the composition of Lee River Group rocks ranges 

from gabbros and diabase dykes along the Champion and United Creek 

sections to massive basaltic flows and possibly sills along the Dun Mountain 

track section. 

3.2.5. 1 Champion Creek 

The Champion Creek section consists of a 700 metre wide section 

through Lee River Group diabase dykes and gabbros which are 

unconformably overtain by Wooded Peak limestones to the northwest. 

Diabase dykes dominate the upper portion of this section and become 

less plentiful at lower levels (towards the eastern contact) where screens of 

medium-grained gabbro increase in number. The diabase dykes intrude the 

gabbros as subvertical, northeast striking, 0.5 to 1.5 metre wide dykes and in 

many places display well preserved chilled margins. 

Rocks of the top 200 metres of the section are almost entirely 

composed of fine-grained diabase dykes and a small number of medium-
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grained gabbro screens (5 to 15 percent). Throughout this part of the section 

gabbro screen3 range in width from 0 5 to 3 metres and are generally weakly 

to moderately foliated. Diabase dykes on the other hand, are both unfoliated 

and foliated suggesting that they were intruded in multiple events and that 

deformation took place while the rocks were forming on the sea floor. 

The remainder of the section (the lower 500 metres) is for the most 

part, composed of roughly equal proportions of foliated, medium-grained 

gabbro screens and fine-grained diabase dykes (Plates 3.24 to 3.26). The 

dykes of this part of the section are often foliated although a large number of 

undeformed diabase dykes are also observed. The lower 50 metres of the 

section is dominated by weakly to strongly foliated gabbros (Plate 3.27) and a 

small number of foliated diabase dykes. The foliation is particularly well 

developed over the bottom 1 0 to 15 metres where it is aligned roughly 

parallel to the section's basal sheared contact and imparts a flazered 

appearance to the gabbros. 

The basal sheared contact between rocks of the Lee River Group and 

ultramafic rocks of the Dun Mountain Ultramafics Group strikes in a northeast­

southwesterly direction and dips roughl~· vertical. Along the fault zone a small 

number of blocks composed of partially rodingitized, foliated gabbro and 

diabase dykes (up to 3 metres in diameter) outcrop in a matrix of sheared 

serpentinite. In the Reding River area this shear zone extends across all 

three sections and varies in width from approximately 3 to 1 0 metres. It is 

also associated with a small number of small massive sulphide deposits some 

of which were mined at the turn of the century for their copper content. One 
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Plate 3.24 Medium-grained Lee River Group gabbro intruded by a fine­
grained diabase dyke, (d) (Champion Creek, Roding River area, H-
758). 

Plate 3.25 Medium-grained Lee River Group (g) gabbro intruded by a fine­
grained diabase dyke (d), (Champion Creek, Roding River area, H-
758). 
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Plate 3.26 Outcrop of medium-grained Lee River Group gabbro (Champion 
Creek, Roding River area, H-755). 

Plate 3.27 Boulder of strongly foliated to flazered, medium- to coarse-grained 
Lee River Group gabbro (Champion Creek, Reding River area, H-754). 
Note foliated diabase dyke to right of hammer. 
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such deposit is located within the fault zone between rocks of the Lee River 

Group and the Dun Mountain Ultramafics Group near Champion Creek (Plates 

3.28 and 3.29) and another near United Creek (Figure 3.2.3). It is worth 

noting here that numerous boulders of varied lithologies were observed in 

Champion Creek including a small number of conglomerate boulders, 1.5 to 2 

metres in diameter (Plate 30). This conglomerate is similar in character to 

outcrops of Upukerora conglomerate in the Red Hills and Lee River areas 

and was likely eroded from a nearby contact between the Maitai Group and 

the Lee River Group. 

3.2.5.2 United Creek 

For the most part the United Creek section is similar to that of 

Champion Creek and consists of a 700 metre wide section through rocks of 

the Lee River Group. 

The top 300 metres are dominated by diabase dykes with 5 to 10 

percent screens of foliated medium-grained gabbro (Plate 3.31 ), while further 

down in the &iection the number of diabase dykes dwindles from 50 to 15 

percent as the proportion of gabbro screens increase (Plates 3.32 to 3.34). 

In terms of field relationships and the lithologies observed, the United Creek 

section appears to be an extension of rocks observed within the Champion 

Creek section. Within the United Creek section the faulted contact between 

rocks of the lee River Group and the Dun Mountain Ultramafics Group Is 

particularly well exposed and blocks of rodingitized material are commonly 

observed in a matrix of sheared serpentinite (Plates 3.35 and 3.36). 
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Plate 3.28 Looking southwest across Champion Creek to derelict shafts of 

the abandoned Champion Creek mine (H-753). Knapsack for scale (in 
foreground, left). 
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Plate 3.29 Abandoned shaft, east bank of Champion Creek, Champion Creek 
Mine (H-752). Wooden two-by-four beams mark shaft's entrance. 



87 

Plate 3.30 Boulder of Upukerora conglomerate in Champion Creek (Reding 
River area, H-754 ). 

Plate 3.31 Outcrop of vertically dipping, sheeted Lee River Group diabase 
dykes (United Creek, Reding River area, H-770). Hammer for scale. 
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Plate 3.32 Outcrop of medium-grained Lee River Group gabbro intruded by a 
diabase dyke (United Creek, Roding River area, H-765). 

Plate 3.33 Outcrop of medium-grained Lee River Group gabbro with xenoliths 
of lighter coloured gabbro (United Creek, Reding River area, H-763). 
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Plate 3.34 Outcrop of medium-grained Lee River Group gabbro intruded by 
fine-grained diabase dykes (United Creek, Reding River, H-761 ). 

Plate 3.35 Faulted contact between foliated, medium-grained, Lee River 
Group gabbro and sheared serpentinite of the Dun Mountain 
Ultramafics Group (United Creek, Reding River area, H-760). Hammer 
for scale. 
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Plate 3.36 Block of rodingitized material suspended in sheared serpentinite 
(United Creek. Roding River area, H-760). Hammer for scale . 

.. 
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Also observed in this area are boulders of various lithologies including 

a small number composed of plagioclase porphyritic gabbro. The latter are 

predominantly altered medium-grained intergranular gabbro and contain 

between 1 0 and 30 percent altered plagioclase phenocrysts (less than 0.5 

centimetres in diameter). Similar porphyritic rocks are also observed In 

outcrops of the nnline River map area (approximately 17 kilometres northeast 

of United Creek) and are described in detail later in this chapter. 

3.2.5.3 Dun Mountain Track 

In this section Lee River Group rocks were mapped and sampled along 

a 600 metre stretch of the Dun Mountain track southwest of Wooded Peak 

(Figure 3.2.4). Here, rocks of the Lee River Group are unconformably 

overlain by limestones of the Wooded Peak Formation (Maitai Group) to the 

northwest and lie in fault contact with ultramafic rocks of the Dun Mountain 

Ultramafics Group to the southeast. 

The Lee River Group rocks of tnis section are composed of red­

coloured (hematite-stained), massive basalt flows and minor thicknesses of 

basaltic breccia. The breccia units are ge:1erally less than 3 metres thick and 

are composed of basaltic clasts (less than 0.5 metres in diameter) in a 

hematite-stained mud matrix. These breccia units are not considered 

representative of Upukerora conglomerates as gabbroic clasts are absent and 

no sand component of the matrix is observed. 

In a few outcrops, the basaltic rocks appear to have an almost sheeted 

character in which chilled margins are rarely visible between individual sheets. 
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These outcrops may represent basaltic sills, or dykes; however, outcrops were 

too limited to make conclusive observations about their identity, orientations, 

or thicknesses. 

It is the outhor's opinion that this sequence of nonpillowed basaltic 

rocks may represent lower levels of an eroded basaltic pile in which massive 

basaltic flows, sms, and dykes dominate the stratigraphy. Similar sequences 

have been described from other ophiolites including the Troodos ophiolite of 

Cyprus. In Cyprus, pillow lavas dominate the basalt sequence but sills, 

dykes, massive flows, thin sheet-flows, flow breccias, and hyaloclastites are 

often observed, particularly within the Lower Pillow Lavas and Basal Group. 

3.2.6 Tinline River (Figure 3.2.5) 

In the Tinline River map area an incomptete section through rocks of 

the Lee River Group was mapped and interpreted along a tributary of the 

Tinline River. Within this section rocks of the Lee River Group include fine­

grained diabase dykes and screens of medium-grained gabbro. The 

northwestern contact of these rocks was not mapped in this study; however, 

the southeastern contact was mapped and is faulted against fine-grained 

clastic sediments of the Patuki melange. 

Diabase dykes dominate the northwestern (upper) part of the section 

and gradually become less plentiful at lower levels where screens of medium­

grained gabbro increase in abundance. In Figure 3.2.5 the Lee River Group 

rocks of this section have been separated into three segments according to 

the relative proportions of diabase dykes and gabbro. 
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The northwestern (upper) segment of the section consists of a sheeted 

dyke complex in which medium-grained, weakly to unfoliated gabbro screens 

make up approximately 10 percent of the outcrop. The diabase dykes of this 

segment are typically between 0.5 to 1.5 metres wide and outcrops and 

boulders of diabase dyke-breccia are common (Plate 3.37). Gabbro screens 

observed within this segment are generally less than 3 metres wide and tend 

to weather a paler green colour than adjacent diabase dykes (Plate 3.38). 

Also observed within the northwestern segment are two northeast 

striking gossan zones (Plate 3.39). These gossans appear to be associated 

with east-west striking, brittle fault zones which crosscut the section. The 

gossans are less than 4 metres wide and are predominantly composed of 

quartz with minor concentrations of pyrite and chalcopyrite and secondary 

occurrences of malachite and chrysocolla (see Johnston (1981) for a more 

detailed description). 

Within the section's middle segment gabbro screens gradually increase 

in abundance to represent approximately 50 percent of the outcrop. The 

diabase dykes of this segment are typically well preserved and chilled 

margins are easily recognised in outcrop (Plate 3.40), while the gabbros are 

generally weakly to moderately 1oliated and medium-grained. 

The section's southwestern (lower) segment is dominated by 

moderately to strongly foliated, medium-grained gabbro which has been 

intruded by approximately 1 0 percent diabase dykes (Plate 3.41 ). Within this 

segment the rocks range from medium- to coarse-grained gabbro and become 

progressively more deformed (foliated) and coarser grained towards the 
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Plate 3.37 Boulder of diabase breccia (Lee River Group, Tinline River area, 
Tl-781 ). Angular clasts of diabase suspended in a net-veined matrix of 
prehnite and carbonate. 

Plate 3.38 Highly fractured outcrop of light green coloured, medium-grained, 
Lee River Group gabbro screen in contact with dark coloured diabase 
dykes (Tinline River area, TL-781 ). Hammer on log for scale. 
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Plate 3.39 Outcrop of quartz vein gossan zone (Tinline River area, TL-781 ). 
Note concentration of pyrite immediately above head of hammer. 

Plate 3.40 Outcrop of Lee River Group sheeted dykes with well preserved 
chilled margins and flow foliation (Tinline River area, TL-532). 
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Plate 3.41 Outcrop of medium-grained, foliated, Lee River Group gabbro cut 
by two generations of diabase dykes (Tinline River area, TL-523). 
Note horizontal trending dark blue dyke (left of hammer) is cut by 
steeply dipping dykes to the right of the hammer. 

Plate 3.42 Outcrop of flazered medium to coarse-grained Lee River Group 
gabbro (Tinline River area, TL-789). 
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southeastern (lower) fault contact of the Lee River Group. Along this contact 

gabbroic rocks are intensely foliated to flazered in appearance (Plate 3.42) 

and contain several bands and boudinaged blocks of fine-grained diabasic 

rocks as well as a small number of bands composed of coarser grained 

amphibolitic material (Plate 3.43). The amphibolite bands are almost entirely 

composed of coarse-grained, weakly pleochroic green amphibole while the 

diabase blocks are composed of altered fine-grained material. Within lower 

levels of this segment foliated gabbros and diabase dykes have been intruded 

by a small number of undeformed diabase dykes and gabbro stocks 

suggesting that much of the deformation of the section took place while the 

rocks were forming on the sea floor. 

Three distinct suites of subvolcanic rocks were observed within rocks of 

the Tinline section. These include: a suite of weakly to strongly 

amphibolitized aphyric, intergranular, medium-grained gabbros; a suite of 

undeformed, fine-grained, nonamphibolitized aphyric diabase dykes; and a 

suite of plagioclase porphyritic gabbro screens and diabase dykes (Plate 

3.44). 

Rocks of the porphyritic suite are relatively rare but are easily 

recognised in outcrop as they contain between 10 and 30 percent, cloudy 

white plagioclase phenocrysts which range from 1 centimetre in diameter in 

the gabbros to less than 0.5 centimetres in diameter in the diabase dykes. 

Rocks of this suite are not considered to represent an isolated and unique 

occurrence present only in the Tinline River area as boulders of similar 

porphyritic rocks have also been observed in United Creek (Reding River map 
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Plate 3.43 Outcrop of foliated and amphibolitized gabbro with an inclusion of 
coarse-grained amphibolite (Lee River Group, Tinline River area, TL-
787). 
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Plate 3.44 Boulder of plagioclase porphyritic gabbro (Lee River Group, 
Tinline River area, TL-787). 

Plate 3.45 Microphotograph of plagioclase porphyritic diabase (Lee River 
Group) from United Creek (Reding River area, H-823). Note 
plagioclase is altered a brown colour suspended within intergranular 
green pleochroic amphibole. Plane-polarized light, x50. 
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area) approJCimately 17 kilometres southwest of the Tinline River section 

(Plate 3.45). 

As the Ttnline River section is exposed on a steep hillside (roughly 45 

degrees), relative ages and orientations of the rocks were difficult to Interpret 

as most outcrops are poor1y exposed and covered by scree material (Plate 

3.46). Despite the limited availability of comprehensive outcrop it is estimated 

that diabase typically intrudes the gabbros as steeply north dipping, northeast 

to east striking dykes. These dykes are generally 0.5 to 1.5 metres wide and 

in places display well preserved chilled margins. 

3.2.7 Croisilles Harbour (Croisilles Melange) (Figure 3.2.6) 

In the Croisilles Harbour area ophiolitic rocks of the Croisilles melange 

were examined and sampled along a segment of the melange stretching from 

Ronga Saddle to Elaine Bay. Due to time constraints these rocks were not 

mapped in detail; however, sample locations were plotted on a recent detailed 

map of the area after Landis and Blaks (1987). 

In the map area the Croisilles melange is composed of a wide variety 

of rock types including fine-grained clastic sediments, spilitic pillow basalts, 

altered gabbros, and serpentinized ultramafic rocks. These rocks are 

exposed as highly disrupted tectonic blocks or "knockers" suspended in 

matrices of sheared serpentinite and/or sheared clastic sediments. The 

blocks are often rimmed by rodingite, particularly those composed of 

sedimentary or mafic igneous material (Plate 3.47) and typically range in size 

from tens of metres to less than 1 0 centimetres in diameter; however, Landis 
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Plate 3.46 Looking southeast down Tinline River section from stop Tl-781. 

Knapsack for scale. 

Plate 3.47 Outcrop of partially roding itized, sheared ultramafic material in 
contact with sheared sediments (Croisilles Harbour area, C-703). 
Hammer for scale. 
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and Blake (1987) have observed blocks up to 2 kilometres in length in the 

map area. Within the m'lange no internal stratigraphic order is observed and 

the m"ange's highly disrupted nature is reflected in its characteristic 

hummocky topography (Plates 3.48a,b and c). 

Basaltic rock.c; in the m"ange generally occur as blocks of altered, 

pillowed flows and breccias In which individual pillows are typically less than 

0.5 metres in diameter (Plates 3.49a and b). In outcrop these basalts are 

often hematite-stained and massive in appearance; however, weathered 

outcrops typically display well developed pillows, particular1y in outcrops 

exposed to coastal weathering. 

Gabbroic blocks generally occur as medium-grained aphyric gabbros 

and range in composition from massive undeformed gabbro to strongly 

foliated amphibolitized gabbro. 

For the most part, ultramafic rocks of the m"ange occur as blocks of 

rusty weathering, highly serpentinized material in which original textures and 

compositions have been obliterated by serpentinization. In some outcrops 

however, relict pyroxenes are visible on weathered surfaces together with 

minor amounts of fine-grained disseminated chromite and magnetite. 

In general, the Croisilles m'lange bears a close resemblance to the 

Patukl m'lange although rocks of the Croisilles melange appear to be more 

intensely deformed and disrupted. It should be noted; however, that this 

observation may only apply locally. 
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Plate 3.48a Hummocky topography of Croisilles melange looking towards 
Mount McLaren from stop C-720 (Croisilles Harbour area). 

Plate 3.48b Croisilles m ge with blocks of serpentinized ultramafic and 
gabbroic rocks suspended in a sheared serpentinite matrix (Croisilles 
Harbour area, C-721 ). 
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Plate 3.48c Close up of Croisilles melange with blocks of serpentinized 
ultramafic and gabbroic rocks suspended in a sheared serpentinite 
matrix (Croisilles Harbour area, C-721 ). 
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Plate 3.49a Outcrop of Croisilles pillowed basalts on the beach of Samson 
Bay, Croisilles Harbour (C-718). Knapsack for scale (front, left). 

Plate 3.49b Close up of Croisilles pillowed basalts on the beach of Samson 
Bay, Croisilles Harbour (C-718). 
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3.2.8 Taipare Bay (Lee River Group) (Inset A, Figure 3.2.6) 

Within the Croisilles Harbour area a wedge of basaltic volcanic rocks of 

the Lee River Group outcrop as a small subvertical, northwest dipping 

sequence of pillowed mafic flows on the western shore of Taipare Bay (Plate 

3.50). These basalts lie to the east of limestones of the Wooded Peak 

Formation (possibly along an unconformable contact) and lie in fault contact 

to the east with ophiolitic rocks of the Patuki tectonic melange (Figure 3.2.6 

inset A). 

The rocks of this sequence are predominantly composed of fine-grained 

pillowed mafic flows and minor thicknesses of pillow breccia. The flows are 

typically 2 to 1 0 metres thick and are generally separated by lenses of pillow 

breccia 2 to 4 metres thick. Within these flows, individual pillows generally 

range from 20 centimetres to 0. 75 metres in diameter and are composed of 

aphyric, epidote and/or carbonate amygdaloidal basalt (Plates 3.51 and 3.52). 

Most of these flows weather green to grey in colour and contain minor 

amounts of chert (and or jasper), carbonate, epidote, and hematite-stained 

muddy interpillow material. 

Pillow breccias are generally composed of angular basalt clasts and 

contain matrices of fine, hematite-stained mud or grey to green volcaniclastic 

sand (Plates 3.53 to 3.55). These units commonly contain between 20 and 

30 percent matrix material. Contacts between pillowed flows and pillow 

breccia are typically gradational over thicknesses of 1 metre or less, although 

in places are defined well enough to a reveal reliable strike and dip (Plate 

3.54). 
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Plate 3.50 View looking northwest towards Taipare Bay. Grey-coloured cliffs 
at point of peninsula are composed of Wooded Peak limestones. 

L ~ 

Plate 3.51 Outcrop of weathered pillowed basalts (Lee River Group, Taipare 
Bay, SD-804). 
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Plate 3.52 Outcrop of pillowed mafic flows, Taipare Bay (Lee River Group, 

SD-806). 

Plate 3.53 Outcrop of basalt breccia with sandy matrix material, Taipare Bay 
(Lee River Group, SD-808). 



109 

Plate 3.54 Outcrop of basalt breccia, Taipare Bay (Lee River Group, SD-
808). Note breccia units dip steeply towards the right (northwest). 
Author for scale. 

Plate 3.55 Outcrop of basaltic breccia with abundant volcaniclastic sand 
matrix, Taipare Bay (SD-801 ). 



11.0 

The intensity of alteration within the sequence varies greatly from unit 

to unit although all basaltic rocks have been affected by greenschist facies 

metamorphism and some units (flows and breccias) have been intensely 

chloritized. 

3.3 Summary 

3.3.1 Field Relationships 

Within the East Nelson region field relationships displayed between 

rocks of the three ophiolites of the East Nelson ophiolites (Dun Mountain 

Ophiolite, Patuki m~lange, and Croisilles m~lange) do not provide conclusive 

evidence by which each of the ophiolites can be individually distinguished; 

however, some relationships do consistently infer their individuality. These 

relationships are as follows: 

(i) Although rocks of the Dun Mountain Ophiolite are often observed in 

fault contact with sediments of the Maitai Group, Lee River Group rocks are 

in places unconformably overlain by SP.diments of the Maitai Group; 

(ii) Deposition of Maitai Group sediments occurred after extensive 

erosion of Dun Mountain Ophiolite and locally directly over1ie gabbros of the 

Lee River Group. Associated with many of these unconformable contacts are 

basaltic conglomerates of the Upukerora Formation (Maitai Group). These 

conglomerates are predominantly composed of subangular clasts of basaltic 

and gabbroic material suspended in matrices of red (hematite-stained) mud 

and fine sand. Clasts closely resemble lithologies observed within high levels 

of the Dun Mountain Ophiolite and art' considered to represent material 
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eroded oH the ophiolite. It is suggested here that these conglomerates were 

deposited as submarine slumps or slurries as they are unsorted and individual 

clasts often display inje<..1ion textures whereby mud and sand material was 

injected along fractures under high hydraulic pressure. These injection 

textures are best observed in thin section and are described fully in the 

following chapter. 

(iii) Initiation of Wooded Peak limestone deposition likely took place 

sometime after deposition of conglomerates of the Upukerora Formation as 

clasts of Wooded Peak limestone are not observed within the Upukerora 

conglomerates. 

(iv) Although only poorly developed sheeted dyke complexes were 

observed within sections through the Dun Mountain Ophiolite, diabase dykes 

are generally orientated subparallel to the Maitai-Lee River Group contact. 

Since these dykes were initially formed with vertical orientationss this 

suggests that listric faulting and block rotation may have commonly occurred 

prior to deposition of Maitai Group sediments; 

(v) Rocks of the Patuki melange are always separated from rocks of 

the Lee River Group (Dun Mountain Ophiolite) to the west by rocks of the 

Dun Mountain Ultramafics Group (Dun Mountain Ophiolite). The contact 

between these ophiolites is always faulted and it appears that rocks of the 

Patukl melange structurally underlie those of the Dun Mountain Ultramafics 

Group. 

(vi) Both the Patuki and Croisilles ophiolites are, in fact, tectonic 

ophiolitic malar :.;t'' in which blocks of ophiolitic material are suspended in 



matrices of sheared serpentinite (and locally sheared sediments); while the 

Dun Mountain Ophiolite is less disrupted and generally outcrops as a less 

deformed, semi-complete ophiolite sequence. In most places within the 

ophiolitic melanges no internal order could be consistently established as 

blocks of various lithologies are randomly distributed throughout the melanges; 

however, at some localities (Lee River area) the Patuki melange appears to 

be semi-ordered as sedimentary and volcanic rocks outcrop along the 

melange's western contact while blocks of ultramafic material outcrop along 

the eastern contact. 

(vii) Ophiolitic rocks of the Croisilles melange consistently outcrop to 

the east of the Patuki melange separated by the sedimentary rocks of the 

Pelorus terrane, (Rai Sandstones, (Johnston, 1981, 1982). 

3.3.2 Structure and Metamorphism 

Within the East Nelson ophiolites two discrete, major episodes of 

deformation and metamorphism are identified. The first episode is credited 

with metamorphism and deformation of the ophiolites on the ocean floor while 

the second major episode is attributed to regional tectonism and 

metamorphism of the ophiolites produced during and after emplacement. 

Features produced while the ophiolites formed on the ocean floor 

include lower greenschist to amphibolite facies metamorphism of the rocks 

1The or1g1n of those sedimentary rock situated between rocks 
of t.he Patuki and Croisilles me l ange is unclear and therefore 
classification of these rocks with those of the Pelorus terrane 
remains a subject of debate (eg . , Dickins et al., 1986; Landis 
and Blake, 1987). 



li3 

whereby higher level rocks were altered to lower greenschist grade while 

lower level rocks such as the gabbros approached amphibolite facies 

metamorphism. Most of the more highly metamorphosed rocks (upper 

greenschist and amphibolite grade gabbros) are foliated and flazered in 

appearance and are locally intruded by undeformed and unmetamorphosed 

diabase dykes. This relationship provides evidence that upper greenschist 

and amphibolite grade rocks were metamorphosed and deformed while the 

rocks formed on the ocean floor (pre-Late Permian). 

Features attributed to regional tectonism and metamorphism of the 

ophiolites include the disruption of the ophiolites along brittle shear zones 

lined with sheared serpentinite and sub-greenschist facies metamorphism. 

Thes-=- faults are considered to be related to movements along the Alpine fault 

during the Rangitata Orogeny (Jurassic to Early Cretaceous; Johnston, 1981) 

and the on going Kaikoura Orogeny (after Johnston, 1981 ). Sub-greenschist 

facies metamorphism is considered to have taken place during the Rangitata 

Orogeny (eg. Landis and Blake, 1987) and is preserved as secondary veinlets 

and alteration phases composed of prehnite-pumpellyite facies assemblages 

which occur in all lithologies of each of the three ophiolites. 

Serpentinization within the ophiolites appears to occur in two ways: 

(1) along shear zones in the Dun Mountain Ophiolite and within sheared 

matrices of the ophiolitic melanges; and (2) within blocks of ultramafic massif 

(of the Dun Mountain Ophiolite and the Patuki and Cro!silles ophiolitic 

melanges). Most of the serpentinization within these rocks is likely 

attributable to the interaction of seawater with ultramafic material exposed 
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during the emplacement of the ophiolites (Rangitata Orogeny); however, 

sepentinization of some of these rocks may have taken place while the 

ophiolites were evolving on the ocean floor. 

Serpentinization on the ocean floor may have taken place when 

seawater was introduced to great depths along active faults that operated 

during sea-floor spreading (due to the tectonic readjustment at the spreading 

ridge). Although these processes may have taken place, there is no 

conclusive evidence to confirm that serpentinization took place in this way. 

On the other hand, deep submarine erosion of the Lee River Group (Dun 

Mountain ophiolite) and the relative orientations displayed between dykes of 

the Lee River Group and Maitai Group sediments (often subparallel) suggest 

tectonic movements of significant magnitude may have taken place (ie. major 

faults were active on the sea floor and may have acted as seawater passage 

ways). 
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CHAPTER 4 

PETROGRAPHY OF THE EAST NELSON OPHIOLITE 

4.1 Introduction 

In this chapter, the petrography of each of the East Nelson ophiolites is 

described with each of their respective components (ie. volcanics, 

subvolcanics, and ultramafics) being discussed individually. The petrography 

of the various lithologic components is described with reference to the seven 

study areas outlined in the previous chapter (Figures 3.2.1 to 3.2.6). In 

addition to the Dun Mountain, Patuki, and Croisilles ophiolites, the Upukerora 

Formation of the Maitai Group is also discussed as it contains abundant 

ophiolitic material as clasts in conglomeratic units unconformably overlying the 

Dun Mountain Ophiolite. 

As part of this study approximately 275 hand samples were taken of 

the respective lithologies, of which approximately 160 were studied in thin 

section. 

4 .2 Upukerora Formation 

Representative outcrops of the Upukerora Formation were encountered 

in two of the study areas of East Nelson: (i) along the Red Hills western 

margin (Figure 3.2.1, Plates 3.2a and b); and (ii) in the Lee River area near 

Uttle Ben (Figure 3.2.2, Plate 4.1 ). In addition to these outcrops, boulders of 
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Upukerora conglomerate were also observed in Champion Creek (Reding 

River area, Figure 3.2.4, Plate 3.30). Where observed, conglomerates of the 

Upukerora Formation are found to be largely composed of clasts of basalt 

and gabbro supported in a red-coloured (hematite-stained) mud and sand 

matrix; however, in the Lee River area gabbro clasts dominate. Clasts are 

generally angular to sub-angular in shape and vary in size from 1 to 25 

centimetres in diameter. Their compositions range from devitrified glass to 

fine-grained intergranular basalt and medium-grained intergranular gabbro 

(Plate 4.2). In thin section, large clasts appear broken into smaller clasts of 

identical composition separated by injections of mud (opaque) and sand 

material (Plate 4.3). These injection textures suggest that the conglomerates 

were deposited under high hydraulic pressure whereby clasts were fractured 

and injected with mud and sand during transport and deposition. 

In outcrop the conglomerates are unsorted and bedding is not observed 

(Plates 3.2a and b) and it is proposed that they represent material eroded off 

the underlying Lee River Group (Dun Mountain Ophiolite) and deposited as 

submarine slurries or slides. As no limestone blocks or clasts are observed 

within this Formation, overlying limestones of the Wooded Peak Formation 

must have been deposited after a depositional hiatus which followed 

deposition of the Upukerora Formation. 

Although basalt clasts occur with a wide range of textures and 

compositions, the majority are fine-grained, intersertal to intergranular basalts 

in which the primary phases are plagioclase, clinopyroxene and magnetite. 

Other clasts include: trachytic basalts composed of fluxioned plagioclase 
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Plate 4.1 Close up of Upukerora conglomerate with angular to subrounded 
clasts of gabbro, basalt (red, below hammer) and siltstone. 

Plate 4.2 Microphotograph of gabbro clasts within Upukerora conglomerate 
(red Hills, R-930). Note hematite-stained mud matrix separates clasts 
of identical composition. Crossed nicols, x25. 
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Plate 4.3 Microphotograph of gabbro clast within Upukerora conglomerate 
(Lee River area, T-291 a). Crossed nicols, x50. 

Plate 4.4 Microphotograph of trachytic textured basalt clast within Upukerora 
conglomerate (Red Hills). Crossed nicols, x1 00. 
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microlites and chloritized lntersertal glass (Plate 4.4); intersertal to 

intergranular basalts composed of numerous, equant, subhedral to euhedral 

clinopyroxene phenocrysts suspended within a matrix of plagioclase microlites 

and chloritized intersertal glass; glassy variolitic basalts composed of radiating 

growths of quenched plagioclase suspended within a weakly chloritized glass 

matrix (Plate 4.5); and flow-banded, devitrified basaltic glass (Plate 4.6). 

Clinopyroxene is generally unaltered in basalt clasts while plagioclase is 

typically weakly saussuritlzed with some larger crystals displaying relict albite 

and Car1sbad twinning. 

Gabbroic and microgabbroic clasts of the Upukerora conglomerate are 

typically undeformed, fine- to medium-grained intergranular gabbros 0.5 to 2 

millimetres in grain size (Plate 4.2). Primary phases observed in these rocks 

include plagioclase, clif'opyroxene, and iron-titanium oxides. Some dioritic 

gabbro clasts also contuin small percentages of intersertal glass and 

interstitial granophyric intergrowths of quartz and sodic feldspar. 

In the gabbro clasts plagioclase occurs as weakly to moderately 

saussuritized subhedral crystals that generally display poorly preserved 

Carlsbad and albite twinning while clinopyroxene generally occurs as 

intergranular crystals which have been partially amphibolitized to a pale-green 

pleochroic amphibole. Other minerals observed in r. .. .bbro clasts include trace 

amounts of sphene and seccndary carbonate. 

The matrix material of the Upukerora Formation is dominated by fine 

hematite-stained mud and local concentrations of poorly sorted sandy 

material. The sand component of the matrix is mainly crystal fragments of: 
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Plate 4.5 Microphotograph of quenched glassy basalt clast with radiating 
patterns of opaque and plagioclase microlites from the Upukerora 
conglomerate (Red Hills, R-912a). Note sandy matrix adjacent to the 
basalt clast. Plane-polarized light, x50. 

Plate 4.6 Microphotograph of a flow banded, glassy basalt clast within 
Upukerora conglomerate (Red Hills, R-912a). Plane-polarized light, 
x25. 
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clinopyroxene (sometimes partially altered to green pleochroic amphibole); 

green pleochroic amphibole; weakly to strongly saussuritized plagioclase; and 

minor amounts of detrital albite, quartz, epidote, sphene, and chloritized glass. 

Also observed within this sandy matrix are rare detrital grains of quartz and 

sodic feldspar in granophyric intergrowths. These granophyric grains are 

considered to have been derived from eroded dioritic gabbros or possibly 

plagiogranite. 

Secondary minerals observed within these rocks include calcite, quartz, 

chlorite, and pumpellyite in vugs as well as calcite in rare veins. 

4.3 Dun Mountain Ophiolite 

4.3.1 Lea River Group Volcanic Rocks 

Volcanic rocks of the Dun Mountain Ophiolite were encountered in two 

of the study areas of East Nelson: (i) along the Dun Mountain Track section 

of the Reding River map area (Figure 3.2.4); and (ii) north of Croisilles 

Harbour along the western shore of Taipare Bay (inset A, Figure 3.2.6). 

The volcanic rocks of the Dun Mountain Ophiolite (Lee River Group) 

include glassy to fine-grained, pillowed to massive, basaltic flows and 

breccias. These rocks are dominated by clinopyroxene-phyric intergranular to 

intersertal basalts with minor occurrences of more glass-rich plagioclase 

porphyritic basalt. Within these rocks the proportions of clinopyroxene 

phenocrysts range from less than 1 percent in the glass-rich basalts to 25 

percent in the intergranular basal1s. 
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Within the inttngranular basalts clinopyroxene phenocrysts are generally 

equant in shape, commonly zoned, and are typically less than 0.25 

centimetres in diameter. Other primary mineral phases include abundant 

intergranular plagioclase and rare phenocrysts of olivine (pseudomorphed by 

pale-green pleochroic, cryptocrystalline chlorite). These rocks also contain 

variable amounts of iron-titanium oxides which are commonly altered to 

disseminated iron oxides (usually hematite). 

In the Roding River and Tinline River areas (Figures 3.2.4 & 3.2.5) 

clinopyroxene-phyric dykes of similar composition and te~ture intruded Lee 

River Group gabbros and likely served as conduits for Lee River Group 

basalts. 

4.3.1 .1 Dun Mountain Track (Figure 3.2.4) 

In the Dun Mountain Track section basaltic volcanic rocks of the Lee 

River Group are predominantly composed of massive, locally vesicular, 

hematite-stained basaltic flows and breccias. These rocks are relatively 

undeformed and range in composition from glassy plagioclase and 

clinopyroxene-phyric basalts, to fine-grained, intergranular, clinopyroxene­

phyric flows. 

Within the lower half of the Dun Mountain Track section (eastern half) 

basaltic rocks range in composition from glassy plagioclase- and 

clinopyroxene-phyric quenched basalts (Plate 4. 7) to intersertal and 

intergranular, clinopyroxene-phyric basalts which contain up to 5 percent 

intersertal glass (Plate 4.8). Higher up in the section; however, basalts 
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Plate 4. 7 Plagioclase and olivine porphyritic Lee River Group basalt (Dun 
Mountain track, Reding River area, D-1 003). Plagioclase is strongly 
saussuritized and olivine has been pseudomorphed by pale-green 
pleochroic chlorite. Plane-polarized light, x50. 
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;:)late 4.8 Microphotograph of weakly altered intergranular Lee River Group 
basalt with numerous equant intergranular crystals of fresh 
clinopyroxene (Dun Mountain Track, D-1 000). Note green pleochroic 
pumpellyite and chlorite replacing glass. Plane-polarized light, x25. 
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gradually become coarser grained and comprise intergranular, cllnopyroxene­

phyric flows and breccias (Plate 4.9). 

Within glassy flows, plagioclase, clinopyroxene and rare olivine 

phenocrysts (olivine phenocrysts are generally less than 1 millimetre in 

diameter) are observed within a matrix of quenched glassy to varlolitlc 

material (Plate 4.8), while fine- to medium-grained flows are composed of 

clinopyroxene-phyric basalts which contain numerous equant, subhedral 

clinopyroxene phenocrysts in an intergranular matrix of subhedral to euhedral 

plagioclase laths (Plate 4.9). 

For the most part, basalts of the Dun Mountain track section have 

undergone lower greenschist and sub-greenschist facies metamorphism. 

Evidence of lower greenschist metamorphism includes the pseudomorphic 

replacement of olivine micro-phenocrysts by pale-green pleochroic, 

cryptocrystalline chlorite (Plate 4. 7) and the saussuritization and albitization of 

plagioclase. Chlorite and albite are also observed in these rocks infilling 

vesicles and vuggy cavities. 

Secondary metamorphic minerals related to later sub-greenschist facies 

metamorphism include: pumpellyite, carbonate, and quartz (trace amounts) 

which commonly occur in v&inlets and infilling vesicles and vuggy cavities. 

4.3.1.2 Taipare Bay (Inset A, Figure 3.2.6) 

Lee River Group basalts of Taipare Bay are compositionally quite 

similar to those of the Dun Mountain Track sequence being predominantly 

composed of clinopyroxene-phyric intergranular basalts with minor occurrences 
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Plate 4.9 Microphotograph of porphyritic Lee River Group basalt (Dun 
Mountain Track, Reding River area, D-1 007). Crossed nicols, x50. 

Plate 4.1 0 Microphotograph of amygdaloidal, chloritized basalt with patches 
of preserved basaltic texture (Lee River Group, Taipare Bay, SD-810). 
Vesicles are filled with quartz. Crossed nicols, x25. 
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of finer grained to glassy basalt; however, basalts of Taipare Bay are pillowed 

and are generally more intensely vesiculated. Another notable difference 

between these two basalt sequences is the degree of alteration as Taipare 

Bay basalts are in places intensely chloritized (Plate 4.1 0). These rocks also 

contain a large variety of secondary minerals including amygdaloidal chlorite, 

epidote, carbonate, and quartz. Minor amounts of later pumpellyite are also 

observed infilling vuggy cavities suggesting that these rocks also underwent 

some degree of sub-greenschist facies metamorphism in addition to earlier 

greenschist metamorphism. 

The basalts of Taipare Bay range in compositio.~ from glassy and fine­

grained hyalopilitic basalts to fine- and medium-grained i~~~r~ranular, 

clinopyroxene·phyric basalts. Glassy basalts are general!~ ma.je up of 

subhedral laths of plagioclase set in a matrix ui mtersertal chlc.ritized glass 

(Plate 4.1 0). Fine-grained basalts; however, range from plagioclase rich, 

hyalopilitic basalts (Plates 4.11 a and b) to coarser grained, intergranular, 

clinopyroxene-phyric basalts which may contain up to 20 percent equant, 

clinopyroxene phenocrysts (Plate 4.12). Iron-titanium oxides are also present 

within the basalts as small grains along larger crystal grain boundaries or as 

fine disseminations within chloritized glass (Plate 4.11 a). 

Within Taipare Bay basalts, alteration has mainly affected plagioclase 

and iron-titanium oxides while clinopyroxene is relatively unaltered. 

Plagioclase is typically moderately to strongly saussuritized and occasionally is 

replaced by chlorite and quartz; particularly in zones of more intense 

chloritization. Iron-titanium oxides are commonly altered to fine wispy 
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Plate 4.11 a Microphotograph of intergranular basalt with epidote and quartz 
filled vesicles (Lee River Group, Taipare Bay, Sd-805). Crossed nicols, 
x25. 

Plate 4.11 b Microphotograph of intergranular basalt with epidote and quartz 
filled vesicles (Lee River Group , Taipare Bay, Sd-805). Crossed nicols, 
x25. 
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Plate 4.12 Microphotograph of weakly chloritized intergranular basalt (Lee 
River Group, Taipare Bay, SD-809). Note abundant clinopyroxene as 
intergranular equidimensional crystals suspended within a matrix of 
intersertal to intergranular basalt. Crossed nicols, x25. 

Plate 4.13 Microphotograph of fine-grained diabase (Lee River Group) with 
well preserved intergranular texture (Red Hills, R-907). Note prehnite 
veinlet (second order birefringence). Crossed nicols, x25. 
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disseminations of hematite while intersertal glass is typically altered to pale­

green pleochroic chlorite. 

4.3.2 Lee River Group Subvolcanic Rocks 

Subvolcanic rocks of the Lee River Group are dominated by medium­

grained isotropic gabbros cut by small numbArs of fine- to medium-grained 

diabase dykes. Throughout the East Nelson region the relative amounts of 

these components vary with location and stratigraphic level within the Lea 

River Group as do their compositions and metamorphic character. Within the 

areas investigated, three distinct suites of Lee River Group subvolcanic rocks 

(gabbros and diabase dykes) were observed: (i) an aphyric suite of fine- to 

medium-grained, amphibolitlzed gabbros and diabase dykes; (ii) a suite of 

medium-grained, amphibolitized, plagioclase porphyritic diabase dykes and 

gabbros; and (iii) a suite of fine- to medium-grained, nonamphibolitized, 

clinopyroxene-phyrtc, diabase dykes and gabbros similar in composition and 

mineralogy to the clinopyroxene-phyric Lee River Group volcanics. 

The most abundant and oldest of these suites is the aphyric suite 

which hosts rocks of the other two suites. In the areas studied, gabbros and 

dykes of this suite represent more than 90 percent of the Lee River Group's 

(Dun Mountain Ophiolite) subvolcanic sequence and vary from weakly 

amphibolitized and unfoliated to strongly amphibolitized and strongly foliated 

(flazered) dykes and gabbros. The majority of the rocks belonging to this 

suite were observed within the semicontinuous sequence of subvolcanic rocks 

of the Lee River Group; however, blocks and tectonic inclusions of these 
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subvolcanic rocks were alt;O observed in sheared ~erpentinite fault zones 

separating the lee River Group from the Dun Mountain Ultramafics. 

Rocks of the aphyric suite are predominantly composed of: 

intergranular, altered clinopyroxene (partially to completely amphibolitized to 

green or brown pleochroic amphibole); weakly to strongly saussuritized 

plagioclase; minor amounts of iron-titanium oxides; chloritized intersertal glass; 

sphene; and very rare olivine phenocrysts (pseudomorphed by chlorite) In 

some of the diabase dykes (Plates 4.13 and 4.18). 

Within these rocks, original crystal boundaries are generally obscured 

by the alteration of clinopyroxene to amphibole (eg., Plates 4.14a and b); 

however, in less metamorphosed samples primary intergranular textures 

survive. In the more strongly metamurphosed (amphibolitized) gabbros and 

dykes, primary intergranular textures are often still identifiable where relict, 

primary plagioclase crystal boundaries are preserved (eg., Plate 4.14a and b). 

Plagioclase is generally observed in rocks of the aphyric suite as 

weakly to strongly saussuritized, rectangular crystals in which relict albi!e and 

Carlsbad twinning is preserved in less altered crystals. At some localities, 

particular1y where rocks are strongly amphibolitized and in close proximity to 

the Lee River Group-Dun Mountain Ultramafics fault contact, plagioclase is 

partially replaced by prehnite and hydrogrossular. 

Clinopyroxene is rarely preserved within aphyric suite rocks and is 

typically altered to a pale-green pleochroic amphibole within high levels of the 

subvolcanic sequence. At these levels gabbros and dykes are generally 

undeformed; however, at lower levels (along the sequence's eastern contacts) 
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Plate 4.14a Microphotograph of medium-grained Lee River Group gabbro 
(Serpentine River area, S-7). Plane-polarized light, x25. 

Plate 4.14b Microphotograph of medium-grained Lee River Group gabbro 
(Serpentine River area, S-7). Crossed nicols, x25. 
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Plate 4.15 Microphotograph of intergranular Lee River Group diabase (United 
Creek, Reding River area, H-761 b). Plane-polarized light, x50. 

Plate 4.16 Microphotograph of fine-grained, intergranular Lee River Group 
diabase with chlorite replaced olivine microphenocryst (Tinline River 
area, TL-525b). Plane-polarized light, x50. 
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Plate 4.17 Microphotograph of intergranular, medium-grained Lee River 
Group gabbro (Tinline River area, TL-530a). Clinopyroxene is altered 
to green pleochroic amphibole. Plane-polarized light, x25. 

Plate 4.18 Microphotograph of amphibolitized (brown hornblende), medium­
grained, Lee River Group gabbro {Champion Creek, Reding River area 
H-756). Plane-polarized light, x50. 
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the rocks are commonly strongly amphibolitized and foliated, whereby 

clinopyroxene is completely metamorphosed to a pale-brown pleochroic 

amphibole (Plates 4.18 to 4.20). 

Olivine is also rarely observed in this suite as scarce microphenocrysts 

(less than 1 millimetre in diameter) in fine-grained diabase dykes (Plate 4.16) 

but olivine is always pseudomorphed by pale-green r>leochroic, 

cryptocrystalline chlorite containing fine disseminations of opaque oxides. 

Deformation of this suite of rocks appears to increase in intensity 

towards the southeastern fault contact with the Dun Mountain Ultramafics 

Group. Near this contact, gabbros and dykes of the aphyric suite are strongly 

amphibolitized and foliated (flazered) whereby original igneous intergranular 

textures have been obliterated through recrystallization and deformation 

(Plates 4. 18 to 4.20). Within these strongly amphibolitized rocks 

clinopyroxene is recrystallized to equant, inter1ocking crystals of pale-brown 

pleochroic, foliated, amphibole. 

Aphyric suite subvolcanic rocks of the Lee River Group are also 

observed in some places as tectonic inclusions in serpentinite shear zones 

separating ultramafic rocks of the Dun Mountain Ultramafics Group from 

subvolcanic and sedimentary rocks of the Lee River and Maitai groups. 

These inclusions are generally composed of amphibolitized, strongly foliated 

medium-grained gabbro and fine-grained diabase. Within these rocks (Plate 

4.21) clinopyroxene is altered to a brown pleochroic hornblende and 

plagioclase to later prehnite. The presence of brown amphibole suggests 

they were metamorphosed at greater depths and pressures than higher level 
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Plate 4.19a Microphotograph of amphibolitized (brown pleochroic hornblende) 
and foliated medium-grained, Lee River Group diabase cut by veinlets 
of prehnite and albite (Champion Creek, Roding River area, H-758a). 
Plane-polarized light, x50. 

Plate 4.19b Microphotograph of amphibolitized and foliated medium-grained, 
Lee River Group diabase cut by veinlets of prehnite (second order 
birefringence) and albite (Champion Creek, Roding River area, H-758a). 
Crossed nicols, x50. 
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Plate 4. Microphotograph of foliated and amphibolitized (brown hornblende) 
Lee River Group gabbro cut perpendicular to the foliation (Tinline River 
area, TL-524). Plane-polarized light, x25. 

Plate 4.21 Microphotograph of amphibolitized gabbro with brown pleochroic 
hornblende (an inclusion within a sheared serpentinite fault zone, Lee 
River area, T-288). Plane-polarized light, x50. 
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gabbros (containing pale-green pleochroic amphibole) as found in 

unconformable contact with Maitai Group sediments near Uttle Ben, and are 

therefore considered to represent deeper level rocks of the Lee River Group 

brought into contact with higher level rocks by faulting. 

These tectonic inclusions may be in part rodingitized (Plate 4.22) and 

tremolitic amphibole (non-pleochroicj is in places observed partially replacing 

actinolitic amphibole (pale-green pleochroic) while plagioclase is strongly 

saussuritized. Rodingitization of these rocks was likely the result of low­

temperature reactions between mafic subvolcanic rocks and fluids produced 

during serpentinization of the adjacent ultramafic rocks of the Dun Mountain 

Ultramafics Group. This suggests serpentinization of Dun Mountain 

Ultramafics Group rocks occurred after low-grade (greenschist) metamorphism 

of the Lee River Group gabbros in which clinopyroxene altered to actinolitic 

amphibole, and subsequently to tremolitic amphibole during rodingitization. 

The second suite of Lee River Group subvolcanic rocks is composed of 

weakly to non-foliated, weakly to moderately amphibolitized, plagioclase 

porphyritic diabase dykes and gabbros. These rocks comprise medium- to 

fine-grained intergranular diabase dykes and gabbros similar to those of the 

aphyrlc suite but contain between 1 o and 30 percent, rectangular-shaped 

plagioclase phenocrysts (0.25 to 1 centimetre in length; Plate 4.23). 

Plagioclase crystals (including phenocrysts) are typically strongly 

saussuritized and partially altered to prehnite, while clinopyroxene is generally 

completely altered to a pale-green pleochroic amphibole. For the most part 

plagioclase phenocrysts are fractured and possess sharply defined, euhedral 
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Plate 4. Microphotograph of foliated and amphibolitized (brown hornblende) 
Lee River Group gabbro cut perpendicular to the foliation (Tinline River 
area, TL-524). Plane-polarized light, x25. 

Plate 4.21 Microphotograph of amphibolitized gabbro with brown pleochroic 
hornblende (an inclusion within a sheared serpentinite fault zone, Lee 
River area, T-288). Plane-polarized light, x50. 
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crystal boundaries. 

Rocks of the plagioclase porphyritic suite are easily recognized in the 

field and are estimated to represent less than 5 percent of the Lee River 

Group subvolcanic sequence. Although these rocks are relatively rare and 

were only observed in outcrop along the Tinline River section {Figure 3.2.5); 

they are not considered to represent a suite of rocks unique to the Tinline 

River area as boulders of similar plagioclase porphyritic diabase were 

observed in Champion Creek {Figure 3.2.4) approximately 17 kilometres 

southwest of the Tinline River section. Rocks of this suite are considered to 

be generally younger in age than those of the aphyric suite as plagioclase 

porphyritic diabase dykes are observed intruding dykes and gal>bros of the 

aphyric suite. 

Rocks of the third suite of Lee River Group subvolcanics are compos9d 

of undeformed, nonamphibolitized, medium- to fine-grained, intergranular, 

clinopyroxene-phyric gabbro and diabase dykes (Plates 4.24a,b to 4.27) and 

closely resemble the clinopyroxene-phyric flows of the Lee River Group 

volcanics (ie. Dun Mountain Track and Taipare Bay sections). Although these 

rocks are easily identified in thin section they could not be distinguished from 

rocks of the aphyric suite in outcrop. Rocks of this suite are predominantly 

composed of non-amphibolitized clinopyroxene, weakly to moderat~ly 

saussuritized plagioclase, minor amounts of iron-titanium oxides, a.nd pyrite. 

Within these rocks clinopyroxene is typically partially altered to chlorite and 

occurs as zoned, subhedral, intergranular, phenocrysts {less than 1 millimetre 

in diameter) in which cores and/or rims are generally chloritized (Plate 4.26a). 
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Plate 4.24a Microphotograph of medium-grained Lee River Group gabbro 
(Lee River area, T-290). Note abundant intersertal chloritized glass 
material. Plane-polarized light, x1 00. 

Plates 4.24b Microphotograph of medium-grained Lee River Group gabbro 
(Lee River area, T-290). Note abundant intersertal chloritized glass 
material. Crossed nicols, x1 00. 
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Plate 4.25a Microphotograph of weakly altered Lee River diabase (United 
Creek, Reding river area, U-767}. Clinopyroxene is unaltered. Note 
minor amounts of chloritized interstitial glass. Plane-polarized light, 
x50. 

Plate 4.25b Microphotograph of weakly altered Lee River diabase (United 
Creek, Reding river area, U-767}. Clinopyroxene is unaltered. Note 
minor amounts of chloritized interstitial glass. Crossed nicols, x50. 
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Plate 4.26a Microphotograph of weakly altered, intergranular to subophitic 
Lee River Group gabbro (Tinline River area, TL-526). Note 
clinopyroxene is partially chlori:tized and zoned with some crystals 
having chloritized cores. Plane-polarized light, x25. 

Plate 4.26b Microphotograph of weakly altered, intergranular to subophitic 
Lee River Group gabbro (Tinline River area, TL-526). Crossed nicols, 
x25. 
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Plate 4.27 Microphotograph of weakly altered, intergranular Lee River Group 
diabase (Tinline River area, TL-530b). Note abundant chloritized 
intersertal glass. Plane-polarized light, x50. 

Plate 4.28 Microphotograph of a medium-grained gabbro inclusion (a block 
within the Sheared Serpentinite Complex Zone, Red Hills, R-926f). 
Clinopyroxene is altered to actinolitic amphibole while plagioclase is 
saussuritized. Note preserved gabbroic texture. Crossed nicols, x50. 
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Plagioclase typically occurs as abundant, weakly to moderately 

saussuritized interstitial laths surrounding subhedral phenocrysts or 

intergranular crystals of clinopyroxene and minor amounts of chloritized 

intersertal glass (eg. 4.27). 

It is worth noting here that rocks of the non-amphibolitized, 

intergranular, clinopyroxene-phyric suite are likely younger than those of the 

other two suites as they are not amphibolitized and are relatively undeformed. 

Rocks of the clinopyroxene-phyric and aphyric suites likely represent 

minor variations of the same suite, as, if amphibolitized, clinopyroxene-phyric 

suite rocks would resemble those of the aphyric suite. 

Secondary minerals ubiquitously observed in each of the three suites 

include albite, epidote, prehnite, pumpellyite, chlorite and quartz in veins. 

Pyrite is also locally observed within these rocks as fine disseminations and 

rare micro-veinlets (less than 0.5 millimetres wide). 

4.3.3 Sheared Serpentinite Complex (Red Hills) 

In the Red Hills area subvolcanic rocks of the Lee River Group are 

observed as tectonic inclusions in a large (generally less than 600 metres 

wide) serpentinite shear zone (Sheared Serpentinite Complex). The field 

relationships of this complex were discussed in the previous chapter (Figure 

3.2.1 ). In earlier studies this complex was not considered a major fault zone; 

but, had been interpreted as part of an intrusive contact metamorphic aureole 

(Challis, 1965a,b). 



Here the petrography of these rocks is described with some emphasis 

being placed on the metamorphism of the Lee River Group subvolcanic 

inclusions as well as the petrography of layered series plutonic rocks (tectonic 

inclusions) which represent vestiges of cumulate gabbroic sequences of the 

Lee River Group subvolcanics. 

Tectonic inclusions within the Red Hills Sheared Serpentinite Complex 

(unit lr/dm, Figure 3.2.1) range from Lee River Group fine-grained diabase 

and medium-grained gabbro to layered series gabbros and ultramafic rocks of 

the Dun Mountain Ultramafics Group. Although many of these rocks are 

strongly foliated and metamorphosed a significant number were observed in 

which primary igneous textures remain intact (Plates 4.28 and 4.29). 

4.3.3.1 Lee River Group Diabase and Gabbro Inclusions 

Within the Sheared Serpentinite Complex many gabbro and diabase 

blocks are rodingitized. Plagioclase is replaced by hydrogrossular while green 

pleochroic amphibole (produced by the earlier greenschist metamorphism of 

clinopyroxene) is replaced by weakly pleochroic tremolite. Primary grain sizes 

and textures are often well preserved in the cores of many of these 

inclusions, allowing original rock types to be identified (eg. Plate 4.29). 

Less altered blocks are only partially rodingitized on their margins. In 

such cases a white-coloured rim or metasomatic reaction zone of rodingitized 

material surrounds the block and the mineralogy of the core material is 

unaffected. These reaction zones are similar to those described by Coleman 

(1977) who suggests that rodingites are low-temperature metasomatic by-



1 46 

Plate 4.29 Rodingitized fine-grained diabase (block within Sheared 
Serpentinite Complex Zone, Red Hills, R-902b). Although primary 
intergranular texture is preserved, the rock is now entirely composed of 
hydrogrossular and tremolitic amphibole. Plane-polarized light, x25. 

Plate 4.30 Microphotograph of foliated, brown hornblende amphibolitized, 
medium-grained gabbro (a block within the Sheared Serpentinite 
Complex Zone, Red Hills, R-966). Note metamorphism has obliterated 
original gabbroic texture. Crossed nicols, x25. 
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products of serpentinization. 

Many gabbroic inclusions derived from the Lee River Group are 

strongly foliated and consist of brown pleochroic hornblende and saussuritized 

plagioclase. In these rocks hornblende crystals often share curved. sutured 

crystal boundaries while plagioclase crystal boundaries are jagged and w~re 

likely not recrystallized (Plate 4.30). Although no analytical data is available, 

this brown hornblende was likely produced by metamorphic recrystallization of 

clinopyroxene at higher temperatures than those under which clinopyroxene 

altered to green pleochroic amphibole within higher levels of the Lee River 

Group gabbros. Challis (1965a,b) considered these strongly amphibolitized 

gabbroic inclusions to represent amphibolite produced by high-temperature 

contact metamorphism of spilitic volcanics and tuffs along the contact of an 

alpine-type ultramafic intrusion (the Red Hills ultramafic massif}. As these 

blocks of amphibolitized gabbroic material are similar in grain size and 

composition to nearby Lee River Group gabbros (Red Hills} and other 

amphibolitized gabbros (containing brown pleochroic hornblende) observed 

within lower levels of the Lee River Group sequence (eg., Champion and 

United Creek sections of the Roding River area and the Tintina River area); 

they are interpreted as blocks of metamorphosed Lee River Group gabbro 

incorporated into the Sheared Serpentinite Complex during faulting aiong the 

contact between the Lee River Group and Dun Mountain Ultramafics Group. 

In support of this conclusion is the inclusion of blocks of "c:itical zone" 

(layered series) cumulate gabbros within the Sheared Serpentinite Complex. 

These rocks are similar to cumulate gabbro sequences observed in other 



ophiolites (eg. Bay of Islands. Smith, 1 958; Mal pas, 1977) and the 

deformation and metamorphism of these rocks is considered analogous to 

that produced during active spreading on the ocean floor (eg. Girardeau et 

al., 1982); therefore suggesting that it is not a late metamorphic event. 

4.3.3.2 Layered Series Gabbro Inclusions 

Cumulate gabbro inclusions are composed of gabbro1c to ultramafic 

bands or layers and bear a close resemblance to "critical zone" rocks or 

-layered series" rocks observed at the base of layer 3 gabbros in other 

ophiolites (eg., Bay of Islands, Newfoundland; Troodos, Cyprus; and Samail, 

Oman). In other ophiolites these rocks generally make up layered sequences 

consisting of variable amounts of plagioclase, clinopyroxene, orthopyroxene, 

olivine and spinel. 

As similar rocks were not recognised from other sections of the Dun 

Mountain Ophiolite, the inclusions of layered series material observed within 

the Sheared Serpentinite Complex of the Red Hills area were studied in 

detail. There, inclusions are highly serpentinized and rodingitized (Plates 4.31 

and 4.32). 

Within these rocks olivine is typically completely altered to serpentine, 

although kernels are rarely preserved. Plagioclase is replaced by 

hydrogrossular, orthopyroxene is generally altered to bastite, and primary 

clinopyroxene is replaced by metamorphic diopside. Although these rocks are 

altered and commonly strongly foliated, some blocks contain well preserved 

igneous layered sequences up to 10 metres thick (10 metres being the 
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Plate 4.31 Orthopyroxene and plagioclase rich band within a band of 
transition series rock (inclusion in the Sheared Serpentinite Complex 
Zone, Red Hills, R-904). Orthopyroxene is altered to bastite while 
plagioclase is replaced by isotropic hydrogrossular. Crossed nicols, 
x25. 

Plate 4.32 Olivine rich layer in transition series rock (inclusion in the Sheared 
Serpentinite Complex Zone, R-926d). Olivine is serpentinized; but, 
small kernels of unaltered olivine survive in the left half of the photo. 
Plagioclase is replaced by hydrogrossular. Crossed nicols, x25. 
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largest block of layered series rock observed). Individual layers within these 

rocks represent a large variety of compositions including: dunite, harzburgite, 

wehrtite, leuco-norite. gabbro, and anorthosite (eg., Plates 4.31 and 4.32). 

Layers are typically less than 20 centimetres thick and range from being 

strongly foliated to relatively undeformed. 

Alteration tends to be less penetrative within thicker bands of gabbroic 

material (greater than 0.5 metres) where rodingitization has not completely 

penetrated the rock. These less altered bands are composed of weakly to 

moderately saussuritized plagioclase, green pleochroic amphibole (alteration of 

clinopyroxene), and iron-titanium oxides. Pleochroic brown amphibole is also 

observed within some of these rocks partially replacing clinopyroxene and in 

some samples is partially replaced by green pleochroic amphibole. This 

suggests that these rocks have undergone retrograde metamorphism as they 

cooled beneath the ocean floor. 

Layered series rocks preserved here are considered to represent basal 

cumulate sequences of the Lee River Group gabbros. 

4.3.4 Dun Mountain Ultramafics Group 

Although a detailed petrographic study of ultramafic rocks from the Dun 

Mountain Ultramafics Group was not undertaken, a number of these rocks 

were examined in thin section from the Red Hills massif (Figure 3.2.1) and 

Lee River areas (Figure 3.2.2). 

At these localities, ultramafic rocks of the D:.m Mountain Ultramafics 

Group range in composition from foliated harzburgite and pyroxene peridotite, 
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to banded dunite with minor concentrations of chromite. 

Primary mineral phases include: olivine, orthopyroxene, clinopyroxene, 

and spinel (Plates 4.33 to 4.36). Olivine is generally fractured and is partially 

altered to serpentine and for the most part, both ortho- and clinopyroxenes 

are fresh and commonly contain exsolution lamellae. Spinels are typically 

observed as interstitial euhedral to anhedral crystals. 

In terms of deformation, rocks of the Dun Mountain Ultramafics Group 

are generally foliated and, in areas other than the Red Hills massif, commonly 

disrupted by numerous serpentinite shear zones. In areas directly adjacent to 

these shear zones, ultramafic rocks are strongly serpentinized and relict 

crystals of pyroxene and spinel are preserved in fine-grained, mesh-textured 

serpentine. The degree of serpentinization within these rocks appears to vary 

directly with the amount of faulting, and sheared rocks are more intensely 

serpentinized than undeformed and unsheared rocks. 

Within less serpentinized and deformed samples, grain boundaries 

between individual crystals are strained and irregular and larger orthopyroxene 

grains often display undulatory extinction (eg. Plate 4.33). Granulation of 

crystals is rarely cbserved in the samples studied here; however, Walcott 

(1969) has described porphyroclastic textures within similar rocks of the Red 

Hills massif. For the most part, this deformation is likely the result of mantle 

tectonism, and similar textures have been identified and interpreted within 

other ophiolites (eg., Nicolas et al., 1973; Mercier and Nicolas, 1975). 

For the most part, harzburgitic rocks of the Dun Mountain Ultramafics 

Group are composed of partially serpentinized and fractured olivine as well as 
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Plate 4.33 Microphotograph of strained and granulated texture within an 
orthopyroxenite band within the Red Hills massif (Dun Mountain 
Ultramafics Group, Red Hills, R-953). Crossed nicols, x25. 

Plate 4.34 Microphotograph of partially serpentinized harzburgite from the 
Red Hills ultramafic massif (Dun Mountain Ultramafics Group, Red Hills, 
R-958a). Crossed nicols, x25. 
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Plate 4.35 Microphotograph of brown-coloured spinel in orthopyroxenite band 
of the Red hills ultramafic massif (Dun Mountain Ultramafics Group, 
Red Hills, R-972). Note resorbed crystal boundaries. Plane-polarized 
light, x50. 

Plate 4.36 Partially serpentinized harzburgite of the Dun Mountain Ultramafics 
Group (Lee River area, T-336). Crossed nicols, x25. 
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abundant orthopyroxene which occurs a!; large strained crystals that display 

undulose extinction in thin section. Dunitic rocks; however, are more 

intensely serpentinized than harzburgitic rocks but trails of chromitiferous 

spinel crystals in places preserve the foliation. 

In the Red Hills area (Red Hills massif), ultramafic rocks of the Dun 

Mountain Ultramafics Group are relatively unserpentinized and unaffected by 

deformation associated with the Sheared Serpentinite Complex along the 

massifs western contact. The contact between these two units is quite sharp 

with relatively unsheared and unserpentinized ultramafic rocks of the massif 

outcropping within 5 metres of the Sheared Serpentinite Complex's eastern 

fault contact. 

4.4. Patuki melange 

Rocks of the Patuki melange were encountered in three of the study 

areas: (i) the Lee River area (Figure 3.2.2); (ii) the Serpentine River area 

(Figure 3.2.3); and (iii) the Tinline Rivt:r area (Figure 3 .2.5). Volcanic and 

subvolcanic rocks of the Patuki melange are discussed with reference to 

petrographic samples collected in each of these areas. 

4.4.1 Patuki Volcanics 

Basaltic rock.c; of the Patuki melange outcrop as locally vesicular, 

glassy to fine-grained, pillowed to massive flows. For the most part these 

basalts are hP.matite-stained; however, rare unoxidized outcrops weather a 

greyish-green colour. 
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Basalts of the Patuki melange can petrographically be divided into two 

fundamental suites. The first and most common of these consists of 

quenched intersertal to intergranular, olivine-poor basalts. Rocks of the 

secoud suite are generally glassier than those of the first and typically contain 

markedly more abundant olivine microphenocrysts. 

Basalts of the first suite, the "olivine-poor" suite, are predominantly 

composed of plagioclase and clinopyroxene with rare microphenocrysts of 

plagioclase, clinopyroxene, and olivine (less than 1 % olivine; Plates 4.37 to 

4.39). 

Basalts of the second suite, the "olivine-rich" suite, are generally 

glassier than those of the first and typically contain higher proportions of 

subhedral, crudely equant olivine microphenocrysts (less than 5% volume) set 

in a matrix of variolitic plagioclase anc clinopyroxene (Plates 4.40 to 4.45). 

Although these groups are generally distinguishable in thin section, 

definite discrimination is only possible on the basis of geochemical 

composition as petrographic variatior ~ within rocks of both suites make 

absolute identification in thin section ·J;fficult. Geochemical differences 

between these respective basaltic suites are presented in the following 

chapter. 

Locally, seemingly homogeneoL;s outcrops were later found to contain 

both basalt suites upon petrographic and geochemical analysis. 

At some localities (eg. Serpentine River area) minor thicknesses of 

basaltic breccia (generally less than 2 metres thick) are observed associated 

with pillowed flows. Within these breccia units basalt clasts are typically 
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Plate 4.37 Microphotograph of altered olivine microphenocryst in quenched 
textured variolitic Patuki basalt (Lee River area, T-515). Plane­
polarized light, x25. 

Plate 4.38 Microphotograph of fresh intergranular, fine-grained Patuki basalt 
(Lee River area, B-159). Crossed nicols, x50. 
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Plate 4.39 Microphotograph of plagioclase phenocrysts in Patuki basalt (Lee 
River area, B-132). Crossed nicols, x25. 

Plate 4.40 Quenched textured variolitic Patuki basalt (Lee River area, T-492). 
Plane-polarized light, x25. 
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Plate 4.41 Microphotograph of olivine microphenocrysts within quenched, 
vesicular Patuki Basalt (Lee River area, B-158). Olivine phenocrysts 
have been pseudomorphed by pale green pleochroic cryptocrystalline 
olivine. Plane-polarized light, x25. 

Plate 4.42 Microphotograph of quencned texture, olivine porphyritic Patuki 
basalt (Lee River area, B-157). Olivine phenocrysts are replaced by 
pale green pleochroic chlorite. Plane-polarized light, x25. 
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Plate 4.43 Microphotograph of fine-grained, quenched Patuki basalt cut by 
veinlets of pumpellyite and prehnite (Serpentine River area, S-16). 
Plane-polarized light, x50. 

Plate 4.44 Microphotograph of Patuki basaltic breccia (Serpentine River area, 
S-14). Rock is cut by small veinlets of green pleochroic pumpellyite. 
Plane-polarized light, x25. 
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Plate 4.45 Microphotograph of Patuki diabase with partially amphibolitized 
clinopyroxene phenocrysts (Lee River area, L-37). Crossed nicols, x25. 

Plate 4.46 Microphotograph of partially amphibolitized, medium-grained Patuki 
gabbro (Lee River area, 8-90). Clinopyroxene is partially altered to 
brown pleochroic hornblende. Plane-polarized light, x50. 
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broken into centimetre sized pieces surrounded by fine detrital sand 

composed of altered clinopyroxene and plagioclase (Plate 4.44). In addition, 

clasts of intergranular basalt are observed which contain weakly altered 

clinopyroxene (pale green pleochroic amphibole). Alteration of the suites 

varies in intensity from outcrop to outcrop, although plagioclase is generally 

strongly saussuritized while clinopyroxene is relatively unaltered. In both 

suites, olivine phenocrysts are pseudomorphed by cryptocrystalline, pale-green 

chlorite containing minor amounts of disseminated oxides; while glassy 

mesostasis material is generally replaced by chlorite. 

Secondary mineral phases observed in these rocks include calcite, 

pumpellyite, prehnite, quartz and epidote which commonly occur in veinlets 

and amygdules. 

Metamorphism of the Patuki volcanics appears to have taken place in 

at least two stages including both lower greenschist and sub-greenschist 

facies metamorphic events. Greenschist facies metamorphism is considered 

to have taken place on the sea floor, while prehnite and pumpellyite facies 

metamorphism has been attributed to later regional metamorphism associated 

with the Rangitata orogeny (eg., Coombs et al.,1976; Sivell and Rankin, 

1982). 

4.4.2 Patuki Subvolcanics 

Gabbroic rocks of the Patuki melange closely resemble those of the 

Lee River Group and are generally observed as medium-grained isotropic 

gabbros cut by rare diabase dykes. These rocks are comprised of strongly 
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saussuritized plagioclase, amphibolitized clinopyroxene, and minor amounts of 

magnetite and sphene (Plates 4.45 to 4.48). 

Plagioclase is strongly saussuritized within these rocks (remnant albite 

and Carlsbad twinning are rarely observed in thin section), while 

clinopyroxene is typically partially or completely altered to green pleochroic 

amphibole or pale-brown hornblende. 

Dykes within the Patuki melange are generally composed of aphyric 

intergranular diabase and have a similar mineralogy to that of the Patuki 

gabbros. Some of these dykes however, also contain rare olivine and 

clinopyroxene phenocrysts. The olivine phenocrysts are invariably 

pseudomorphed by pale-green, cryptocrystalline chlorite while cl inopyroxene is 

relatively unaltered. 

For the most part, subvolcanic rocks of the Patuki melange are weakly 

foliated; although, local outcrops of strongly foliated gabbros are observed as 

small wedges or blocks along the melange's eastern fault contact. At these 

localities Patuki gabbros are associated with ultramafic material and contain 

greater amounts of clinopyroxene and serpentine (after olivine). These 

strongly foliated gabbros are typically somewhat rodingitized and plagioclase 

is altered to prehnite while clinopyroxene is altered to a very faint pleochroic 

pale-brown to colourless tremclitic amphibole. 

4.5 Croisilles Melange 

During this study rocks of the Croisilles melange were examined and 

sampled along a segment of the melange which stretches from Ronga Saddle 



1 63 

Plate 4.47 Microphotograph of partially amphibolitized, medium-grained Patuki 
gabbro (Lee River area, L-36). Clinopyroxene crystals are rimmed by 
brown pleochroic hornblende. Plane-polarized light, x25. 

Plate 4.48 Microphotograph of rodingitized orthopyroxene-bearing, Patuki 
gabbro (Lee River area, B-167). Orthopyroxene is in the top right 
corner of the photo (at extinction). Plagioclase has been replaced by 
hydrogrossular and prehnite. Crossed nicols, x25. 
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to Elaine Bay south of Croisilles Harbour (Figure 3.2.6). In this section mafic 

volcanic and subvolcanic rocks as well as ultramafic plutonic rocks of the 

Croisilles melange are discussed with reference to petrographic samples 

collected in the Croisilles Harbour area. 

In the Croisilles Harbour area ophiolitic rocks of the Croisilles melange 

are composed of: glassy to fine-grained pillowed mafic flows and breccias; 

medium-grained gabbros; and pyroxene peridotite and dunite. 

4.5.1 Croisilles Volcanics 

Basaltic rocks of the Croisilles melange range in composition from 

quenched glassy, variolitic basalts to fine-grained, intergranular basalts (Plates 

4.49 and 4.50). For the most part, these rocks are similar to basalts of the 

"olivine poor" suite of the Patuki melange. Although these rocks occur in a 

variety of petrographic compositions they appear to represent variations within 

a single basaltic suite and in places are observed grading into each other 

within single pillows. 

A small number of the glass-rich basalts ~mpled contain rare euhedraJ 

phenocrysts of plagioclase and clinopyroxene; however most appear to be 

composed of strongly hematized, aphyric, quench-textured (variolitic) basalt. 

The less glassy fine-grained basalts are typically aphyric in character and are 

generally composed of subhedral plagioclase laths and equidimensional, 

intergranular to subophitic crystals of '"''!nopyroxene. 

Plagioclase is weakly to strongly saussuritized and is often replaced by 

green to yellow pleochroic pumpellyite; however clinopyroxene is relatively 
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Plate 4.49 Microphotograph of hyalopilitic, glassy Croisilles basalt (Croisilles 
Harbour, C-721 b). Note some plagioclase microlites are replaced by 
pumpellyite and vesicles are infilled by chlorite. Plane-polarized light, 
x50. 

Plate 4.50 Microphotograph of vario litic to subophitic Croisilles basalt 
(Croisilles Harbour, C-721 a). Plagioclase is altered while clinopyroxene 
is fresh (clear bladed, variolitic crystals). Plane-polarized light, x25. 
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unaltered and fresh crystals are occasionally rimmed by minor amounts of 

chlorite and or pumpellyite. Iron-titanium oxides occur as small grains 

separated along grain boundaries or as fine disseminations suspended within 

altered (hematized) glass. 

Vesiculated flows are common in the Croisilles volcanics and vesicles 

are generally infilled by secondary pumpellyite or albite. Other secondary 

minerals observed in these rocks include minor amounts of epidote (in vugs 

and cavities) as well as numerous veinlets of pumpellyite and albite, and later 

veinlets of carbonate and quartz. 

4.5.2 Croisilles Subvolcanics 

For the most part, gabbroic rocks of the Croisilles melange are 

composed of aphyric medium-grained, intergranular gabbro. These occur as 

variably deformed and metamorphosed rocks which range from weakly 

metamorphosed and undeformed intergranular gabbro (Plates 4.51 a and b) to 

strongly foliated amphibolitized gabbro (amphibolite) in which all primary 

igneous tex1ures have been destroyed (Plate 4.52). 

The less deformed and less metamorphosed gabbros are predominantly 

composed of weakly to moderately saussuritized plagioclase and 

amphibolitized clinopyroxene (pale-green to green pleochroic amphibole), while 

strongly foliated amphibolitized gabbros (amphibolites) are composed of green 

to blueish-green pleochroic amphibole (amphibolitized clinopyroxene) and 

strongly saussuritized plagioclase. Both contain minor amounts of iron­

titanium oxides and some of the more strongly foliated gabbros or 
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Plate 4.51 a Microphotograph of nonfoliated, medium-grained Croisilles gabbro 
(Croisilles Harbour, C-715). Clinopyroxene is altered to green-blue 
pleochroic amphibole. Note well preserved intergranular texture. 
Plane-polarized light, x25. 

Plate 4.51 b Microphotograph of non foliated, medium-grained Croisilles gabbro 
(Croisilles Harbour, C-715). Note well preserved intergranular texture. 
Crossed nicols, x25. 
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Plate 4.52 Microphotograph of intensely foliated and amphibolitized Croisilles 
gabbro (Croisilles Harbour, C-708). Plane-polarized light, x25. 

Plate 4.53 Microphotograph of partially resorbed spinel crystals in 
serpentinized dunite (Croisilles Harbour, C-721 c). Crossed nicols, x25. 
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amphibolites also contain significant amounts of quartz and epidote as thin 

bands aligned parallel to the foliation (eg. Plate 4.52). These strongly 

amphibolitized rocks also contain minor amounts of sphene (euhedral 

needles) and albite. 

4.5.3 Croisilles Ultramafics 

Ultramafic rocks of the Croisilles melange appear, for the most part, to 

be comprised of intensely serpentinized dunite and pyroxene peridotite. 

Within the Croisilles Harbour area these rocks are observed as serpentinized 

blocks within a matrix of sheared serpentinite (Plates 3.48b and 3.48c). Many 

of these rocks, particularly those of dunitic composition, are associated with 

minor concentrations of chromitiferous spinel preserved as small anhedral 

crystals suspended in a matrix of fine, mesh-textured serpentine (Plate 4.53). 

4.6 Summary 

From petrographic relationships observed in ophiolitic rocks of the East 

Nelson ophiolites, mafic volcanic and subvolcanic rocks of each of the East 

Nelson ophiolites (Dun Mountain Ophiolite, Patuki melange and Croisilles 

melange) can be subdivided into a number of distinctive petrologic suites. 

Ophiolitic rocks of the Upukerora Formation are preserved as clasts of 

basalt and gabbro suspended in a hematite-stained, mud and sand matrix. 

For the most part these clasts resemble basaltic and gabbroic compositions 

observed within volcanic and subvolcanic rocks of the und~;iyir.g Dun 

Mountain Ophiolite particularly the clinopyroxene-phyric as well as glassy 



basalt flows of the Lee River Group. Mafic clasts within the Upukerora 

conglomerates are generally relatively unaltered; however, evidence of weak, 

lower greenschist and sub-greenschist facies metamorphism is observed as 

chloritized glass and olivine micro-phenocrysts and as secondary veinleis of 

pumpellyite. 

Volcanic rocks of the Dun Mountain Ophiolite (Lee River Group) occu: 

in a variety of compositions; each of which appear to represent variations of 

one petrologic suite. These basalts are predominantly composed of glassy to 

fine-grained, clinopyroxene-phyric, pillowed and massive flows and have 

undergone moderate degrees of lower greenschist and sub-greenschist facies 

metamorphism. Lower greenschist facies metamorphism is exemplified by 

chloritized glass and olivine micro-phenocrysts, albitized and saussuritized 

plagioclase and vuggy chlorite, epidote, and albite. Evidence of sub­

greenschist facies metamorphism is observed as secondary veinlets of 

pumpellyite. 

Subvolcanic rocks of the Lee River Group (Dun Mountain Ophiolite) 

outcrop as three distinctive petrographic suites of diabase dykes and gabbros. 

These include: 

(i) an aphyric suite predominantly composed of weakly to strongly 

foliated. intergranular diabase and gabbro in which clinopyroxene is typically 

partly to completely altered to a pale· i~ reen pleochroic amphibole while 

plagioclase is saussuritized. Locally, along the lower contact of Lee River 

Group's subvolcanic sequence, rocks of the aphyric suite are intensely 

amphibolitized and foliated and likely represent subvolcanic material daformed 

- • , I , 
~ . 
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and metamorphosed at greater temperatures and pressures than the 

over1ying, pale-gre&n pleochroic amphibole bearing aphyric suite rocks. 

Gabbros and diabase dykes of the aphyric suite are estimated to make up 

approximately 90 percent of the Lee River Group's subvolcanic sequence and 

likely reprusent the oldest rocks of the sequence. 

(ii) a plagioclase porphyritic suite predominantly composed of weakly to 

strongly foliated, intergranular diabase and gabbro in which clinopyroxene is 

typically partly to completely altered to a pale-green pleochroic amphibole 

while plagioclase is strongly saussuritized and often partially replaced by 

prehnite. These rocks are estimated to represent less than 5 percent of the 

lee River Group's subvolcanic sequence and are considered to be generally 

younger than rocks of the aphyric suite which they typically intrude. 

(iii) a relatively unahered clinopyroxene-phyric suite corposed of fine­

to medium-grained, relatively undeformed, intergranular to clinopyroxene 

porphyritic, diabase dykes and gabbros. Within this suite of rocks, 

clinopyroxene is well-preserved and not altered to amphibole but rather, is 

occasionally partially replaced by chlorite. Rocks of this suite bear a close 

resemblance to basaltic rocks of the Upukerora Formation and Lee River 

Group and are considered to represent their subvolcanic equivalents. 

Subvolcanic rocks of the Dun Mountain Ophiolite (lee River Group) 

have undergone at least two phases of metamorphism; a primary, lower 

greenschist facies event which took place on the sea-floor and a later 

regional, sub-greenschist facies event in which rocks of the ophiolite were cut 

through by veinlets of prehnite, pumpellyite, quartz, and carbonate. 
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On the basis o~ · ·~ :rographic observations, rocks of the plagioclase 

porphyritic and clinopyroxene-phyric suites may represent minor variations of 

the mora plentiful aphyric suite, particularty those oi the later which, if 

amphibolitized, would closely resemble rocks of the aphyric suite. 

Geochemical data presented in the following chapter suggests; however, that 

plagioclase porphyritic suite rocks may represent a compositionally distinct 

suite. 

Also included within the Dun Mountain Ophiolite's subvolcanic rocks are 

layered series gabbros preserved as blocks of mafic to ult; ',mafic gabbro in 

the Sheared Serpentinite Complex separating rocks of the lea River Group 

and the Red Hills ultramafic massif. These gabbros are considered to be 

cumulate in origin and are composed of gabbroic to ultramafic bands or 

layers containing varying proportions of olivine, ortho- and clinopyroxene, 

plagioclase and spinel produced during crystallization of the lee River Group 

gabbros. These layered series rocks are similar to "critical zone• or "layered 

series" rocks observed at the t>ase of layer 3 gabbros in other ophiolites. 

Volcanic rocks of the Patuki melange are unlike those of the Dun 

Mountain Ophiolite and Upukerora Fcrmation and can be subdivided into two 

petrographically distinct suites. Subdivision of these basalts into two suites is 

based on the marked difference in olivine phenocryst abundance within the 

basalts such that there is an "olivine-poor" suite which generally contains less 

than 1 percent olivine phenocrysts, and a second "olivine-rich" suite 

composed of basalts containing generally up to 5 percent olivine phenocrysts. 

Basalts of these suites are generally glassy to fine-grained and typically have 
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a quenche1, variolitic to intersertal texture. In outcrop, basalts of both suites 

were in places encountered next to one another without faulted contacts. 

This suggests that th£Jse suites were extruded in close proximity to one 

another and have not been tectonically juxtaposed. 

Metamorphism of the Patuki volcanics appears to have taken place in 

at least two stages including both lower greenschist and sub-greenschist 

facies metamorphic events. Greenschist facies metaMorphism is considered 

to have taken place on the s~a floor, while prohnite and pumpellyite facies 

metamorphism has been attributed to later regional metamorphism associated 

with the Rangitata orogeny. 

Subvolcanic rocks of the Patuki melange closely resemble those of the 

Lee River Group's aphyric suite and are generally obs&rved as medium­

grained isotropic gabbros cut by rare diabase dykes. For the most part; 

however, these subvolcanic rocks are genenlly more strongly foliated than 

those of the Lee River Group. 

Volcanic rocks of the Croisilles melange are generally similar to "olivine 

poor" basalts of the Patuki melange and possibly represent material derived 

from the same oceanic crust as the Patuki melange. These rocks have also 

undergone at least two phases of metamurphism (lower greenschist and sub­

greenschist facies) similar to that experienced by volcanic rocks of the Patuki 

melange. 

Subvolcanic rocks of the Croisilles melange are similar in c~aracter to 

those of the Patuki melange but are generally more strongly deformed and 

less abundant in outcrop. 
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From petrographic examination it appears that mafic volcanic and 

subvolcanic rocks of the Dun Mountain Ophiolite are unlike those of the 

Patuki and Croisilles melanges but are somewhat similar to basaltic and 

gabbroic clasts observed within the Upukerora Formation. This suggests that 

conglomerates of the Upukerora Formation were derived from subrrrarine 

erosion of the Dun Mountain Ophiolite, and that ophiolitic rocks of the tectonic 

melanges were not derived from the same ocean crust as the Dun Mountain 

Ophiolite. In the following chapters geochemical evidence is presented to test 

these hypotheses. 
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CHAPTER 5 

GEOCHEMISTRY OF VOLCANIC AND SUBVOLCANIC ROCKS 

OF THE EAST NELSON OPHIOLITES 

5.1 Introduction 

114 whole rock samples of mafic volcanic and subvolcanic rocks from 

all three ophiolitic assemblaQes of the East Nelson ophiolites (Dun Mountain 

Ophiolite, Patuki m61ange, and Croisilles melange) were collected and 

analyzed for major and 14 trace elements (ie. Ga. Zn, Cu, Ni, Ti, Ba, Sc, Cr. 

V, Rb, Sr. Y, Zr, and Nb). 82 samples were selected on the basis of these 

initial results for further analyses for additional trace elements (ie, U, Mo, Cs, 

Hf, Ta, W, Tl, Pb, Th, and U) and rare earth elements (REE's). Microprobe 

analyses of relict primary clinopyroxenes were also obtained from 27 basaltic 

rocks of the various ophiolitic suites. 

Sampling and sample preparation methods are described In Appendix 

A. Samples were collected so as to obtain represent~ive suites of mafic 

ophiolitic rocks from each of the areas studied. Sample locations are shown 

on Figures 3.2.1 to 3.2.7 and whole rock chemical analyses are presented in 

Appendix C. 

As this thesis is primarily concerned with the geochemistry and 

petrogenesis of basaltic rocks of the East Nelson ophiolites, most of the rocks 

analyzed here are of basaltic and diabasic compositions. These rock types 

are generally considered representative of liquid compositions and can be 
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directly compared to other liquid compositions (basalts) of known tectonic 

setting assuming compositions were unaffected by metamorphism. In this 

way these rocks can be compositionally classified into their respective suites 

and the original eruptive setting(s) for each of the "basaltic" suites of the East 

Nelson ophiolites can be inferred. 

In cases where pillowed basalts were sampled, samples were taken 

from the crystalline interiors of pillows (unless otherwise stated) and selected 

where possible, to minimize effects of weathering, alteration, and vesiculation. 

Subvolcanic rocks sampled and analyzed other than the previously mentioned 

aphanitic to fine-grained diabase dykes include fine- to medium-grained 

gabbros of variable composition and varying degrees of metamorphism. 

All sample preparation and chemical analyses were carried out at 

Memorial University of Newfoundland. Major elements hava been determined 

by atomic absorbtion spectrophotometry while the trace elements: Rb, Sr, V, 

Zr, Y, Cr. Ni, Zn, Ga. Cu. and Sc were determined by X-ray fluorescence 

spectrometry on pressed powder pellets. Additional trace and rare earth 

elements were determined by inductively coupled plasma-mass spectrometry 

(ICP-MS) on whole rock samples dissolved by HF nitrate digestion using the 

procedures of Jenner et al. (1990). Details of analytical methoos and data 

handling procedures used here are presented in Appendix B. 

5.2 Presentation of Data 

Within this and other stl•1ies, basaltic (and diabasic) rocks of the East 

Nelson ophiolites have been mapped as portions of three different ophiolite 
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assemblages (eg., Coombs et al. 1976; Davis ~t el. 1980; Johnston, 1981; 

Dickins et al. 1986; Landis and Blake, 1987; and Sivell, 1988). These are: 

the Dun Moi.Jntain Ophiolite, the Patuki melange, and the Croisilles melange. 

Within thase assemblages basaltic rocks have been further classified here into 

five petrographic suites (previous chapter) whereby thr Dun Mountain 

Ophiolite (lee River Group) ccmsists of three distinct basaltic suites and the 

Patuki and Croisilles ophiolitic melanges comprise the other two. 

As basaltic rocks of the East Nelson ophiolites include these different 

ophiolitic assemblages as a number of petrographically distinct basaltic suites, 

it is possible that these rocks represent oceanic crust produced in more than 

one tectonic environment. In this chapter the compositional characteristics of 

ea::h suite are described and magmatic affinities and eruptive settings are 

proposed. 

Before describing the compositional characteristics of each suite it is 

first necessc::ry to assess the effects alteration may have had on the rocks 

sampled. Once this is complete, basaltic rocks of the East Nelson ophiolites 

can be defined on the basis of elemental concentrations which have not been 

affected by alteration and metamorphism. 

1, this and following chapters, all major and trace elements have been 

recalculated to 100 percent anhydrous on all diagrams. 

5.2.1 Effects of Alteration 

The use of geochemical data to interpret magmatic histories of igneous 

rocks is based on the assumption that some of the original geochemical 
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characteristics of the rocks are preserved. Field and petrographic evidence; 

however, clear1y indicate that all mafic volcanic rocks of the East Nelson 

ophiolites have been metamorphosed under greenschist and sub-greenschist 

facies conditions. In particular, major elements appear to have been 

somewhat mobilized and veins, vesicles and vuggy cavities are commonly 

infilled by secondary minerals such as chlorite, pumpellyite, albite, quartz, 

prehnite, and epidote. 

As part of this study 47 basalts, 22 diabases, 30 gabbros, and 1 

piagiogranite s?.mple were analyzed, as well as a small number of other 

variously altered samples of less consistent compositions including: fine­

grained clastic sediments, rodingitized mafic and ultramafic rocks, and 

serpentinized ultramafic rocks. 

5.2. 1 .1 Major Elements 

Mobility of the alkali elements (Na and K) in mafic igneous rocks can 

be appraised using the "igneous spectrum" of Hughes (1972), on which the 

fields of normal igneous rocks including: spilites, keratophyres (Hughes, 1972) 

and island-arc tholeiites (after Stauffer et al. 1975) are defined. On this 

diagram (Figures 5.1a) approximately 70 percent of the mafic volcanic rocks 

plot outside the "igneous spectrum" with approximately 55 percent plottint; in 

or near the spilite field. As 65 percent of these basaltic samples plot above 

the "igneous spectrum" it can be suggested that significant and pervasive 

alkali metasomatism has taken place within volcanic rocks of the East Nelson 

ophiolites. This alteration involved the addition of Na relative to K during 



Figure 5.1 a Modified Hughes (1972) igneous spectrum diagram after Stauffer 
et at. (1975). Samples plotted are basaltic rocks of the East Nelson 
ophiolites. Oxides are in weight percent. 

Figure 5.1b Modified Hughes (1972) igneous spectrum diagram after Stauffer 
et al. (1975). Samples plott&d are gabbroic rocks of the East Nelson 
ophiolites. Oxides are in weight percent. 
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metamorphism. Samples plotting below the "igneous spectrum• on the other 

hand, are considerably replaced by chlorite and pumpellyite; but, are devoid 

of secondary albite. Although approximately 30 percent of the samples plot 

within the "igneous spectrum", it is possible that many of these samples may 

have been altered such that changes in the relative proportions of K20 and 

N~O have moved the samples' bulk rock compositions parallel to the 

"igneous spectrum" boundaries. 

Intrusive mafic rocks of the ophiolites are also assessed using 

Hughes's diagram in Figure 5.1 b and appear to have been slightly less 

affected by alkali metasomatism as approximately 58 percent of the gabbroic 

samples plot within the "igneous spectrum". Despite this observation it is 

assumed here that changes in the relative abundances of Si01, CaO, and the 

alkali elements has taken place as mnny of these rocks are weakly to 

strongly amphibolitized and often weal\ly rodingitized. 

Like the alkali elements, CaO mobility can also be appraised In terms 

of an igneous spectrum or field. Stephens (1982) uses a binary plot CaO 

against N~O in which a rectangular field outlines the distribution of normal 

igneous mafic rock compositions. On this diagram, Figure 5.2a, samples 

which plotted within the "igneous spt~ctrum" of Hughes's diagram (Figure 5.1 a) 

are plotted as solid symbols. 

Of the mafic volcanic rocks plotted, only 35 percent plot within the 

igneous spectrum of Stephens (1982) while most of the remaining samples 

plot above and to the left. This suggests that these rocks have been 

depleted in CaO and enriched in N~O relative to unaltered mafic igneous 



Figure 5.2a Igneous spectrum diagram after Stephens (1982). The Igneous 
field is defined by the rectangular field in the centre of t~e diagram. 
Samples plotted are basaltic rocks of the East Nelson ophiolites. Solid 
symhols represent samples which plot in the igneous spectrum in 
Figure 5.1 a (Hughes Igneous spectrum diagram). Oxides are in weight 
percent. 

Figure 5.2b Igneous spectrum diagram after Stephens (1982). Samples 
plotted are gabbroic rocks of the East Nelson ophiolites. Solid symbols 
represent samples which plot in the igneous spectrum in Figure 5.1 b 
(Hughes igneous spectrum diagram). Oxides are in weight percent. 
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rocks. Samples plotting to the right of the igneous field were generally found 

to contain anomalous amounts of secondary calcite and/or prehnite. 

Intrusive rocks also display considerable scatter on Stephen's diagram 

(Figure 5.2b) whereby less than 40 percent of the gabbro samples plot within 

the igneous field. 

It can thus be implied that within the majority of the mafic, volcanic and 

subvolcanic rocks of the East Nelson ophiolites, N~O. K20, and CaO have 

been redistributed as only 20 percent of the rocks plot within normal igneous 

fields on both the Hughes and Stephens diagrams (Figures 5.1 a, 5.1 b, 5.2a, 

and 5.2b). As these elements appear to have been remobilized it can be 

inferred here that many of the low field strength elements (eg., Rb, Sr, and 

Ba) have been redistributed as well. The concentrations of these elements 

are therefore considered to be unreliable as discriminants between rocks of 

the various suites or as petrogenetic indicators, s .. 1d are not discussed further. 

Although the processes of primary low grade hydrothermal alteration 

(on the sea floor) and later burial metamorp"lism are known to have affected 

these rocks, further Investigation of the affects produced by these individual 

processes was not carried out within this study. 

Another element of some importance to petrogenetic evaluation of 

basaltic rocks is Si02• This element is commonly used to discriminate 

between basalts, basaltic andesites, and other volcanic rock types. It Is 

generally accepted that Si02 is mobile during greenschist facies and sub· 

greenschist facies metamorphism as well as during hydrothermal alteration on 

the seafloor. Within the ophiolites described here it is apparent that 
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mobilization of Si02 has occurred as quartz veins and quartz-filled vesicles 

and vuggy cavities are commonly observed. Despite this, the majority of the 

samples analyzed can be classified as basalts on the basis of their Si02 

content (Figure 5.3). Only 10 percent of the volcanic rocks sampled contain 

greater than 53 percent Si02 (the basalt-basaltic andesite boundary as 

accepted by the Basaltic Volcanism Study Project, 1981) with values ranging 

between 45 and 57 weight percent (Figure 5.3). Althougt"l these values 

suggest that some of the samples are basaltic andesite most of the higher 

Si02 samples are either slightly silicified and/or contain amygdaloidal quartz. 

It is therefore proposed that the high Si02 samples represent basaltic rocks 

which have been enriched in Si02 through the addition of secondary quartz. 

This proposal is supported by the observation that rocks of similar 

petrographic suites which do not contain secondary silica contain less than 53 

percent Si02• 

Magnesium and iron are also important in petrogenetic studies of mafic 

igneous rocks, particularly basalts, as the ratio of these elements is commonly 

used as a differentiation index. 

Many authors have previously shown that MgO is a major reactant 

during hydrothermal alteration of basaltic rocks, whereby MgO concentrations 

can be directly correlated with the water/rock ratio of an altered rock while 

iron concentrations are essentially preserved (eg., Seyfried et al., 1978; Mottl 

and Seyfried, 1980; Mottl, 1983). 

As water/rock ratios are the dominant factors in the mobility of MgO, it 

is apparent that the relative amounts of MgO redistribution are dependent on 
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Figure 5.3 Histogram of Si02 contents within basaltic rocks of the East 
Nelson ophiolites. Samples with greater than 59 percent Si02 were found to 
be strongly altered and contain abundant secondary Si02• 
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the permeability of the rock being altered. Spooner et al., (1977) proposed 

that pillowed flows and highly fractured basalts are significantly more 

permeable than massive unfractured flows and that mass transfer (water/rock 

interaction) primarily occurs along pillow margins, fractures, and joint surfaces. 

In agreement with Spooner et al. (19n), other workers (eg., Humphris 

and Thompson, 1 ~;·s and Coish, 1977) have shown mass transfer of MgO 

between ba:;altic rocks and seawater to be more extensive within pillow rims 

than crystalline cores. They observed altered rims to generally be 

significantly more enriched in MgO than crystalline pillow interiors. 

From these studies it is evident that pillow rims should be excluded 

from geochemical sampling of basaltic rocks which have undergone lower 

greenschist facies metamorphism. It should also be noted here however, thJt 

other studies (eg. Alt and Emmermann, 1985: Seyfried et al., 1978) suggest 

changes in MgO cc'lCentrations produced under low water/rock ratios during 

the alteration of fresh basalt to greenschist facies metabasalt may be only 

slight. 

As MgO and Feo• are particularly valuable as indicators of 

differentiation of basaltic rocks an attempt was made within this study to use 

these elements as a fractionation index. It was therefore necessary to limit 

sampling to the less altered cores of pillows and centres of flows in order to 

avoid, as much as possible, problems associated with the use of Mgt for 

basaltic rocks that have undergone greenschist facies metamorphism as 

indicated in the previous paragraphs. 



Figt.~res 5. 4a,b,c Variation diagrams of selected trace, rare earth and major 
elements plotted against Mg# (fractionation index). Samples pl;,tted 
are basalts. All elements have been recalculated anhydrous. Oxides 
are plotted as weight percent; other elements In parts per million 
(ppm). Field boundaries for various suites have been drawn on some 
of the diagrams. 

Symbols: 
o aphyric suite rocks 

• clinopyroxene-phyric suite rocks 

o plagioclase porphyritic suite rocks 

a "olivine-poor" suite basalts (Patuki melange) 

v "olivine-poor" suite basalts (Croisilles melange) 

• "olivine-rich" suite basalts (Patuki melange) 
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Within this study Mgt is defined as: 

Mgx1 OO/[Mg+Fe21\ 

where Mg and Fe are the molecular proportions of magnesium and ferrous 

iron respectively. 

Use of Mgt as a differentiation index appears permissible within this 

study as a correlation between high field strength elements and Mg#'s is 

generally observed (Figures 5.4a and 5.4b); while the more mobile elements 

(alkali, alkaline earth, and low field strength elements as well as 5102) show 

very limited correlation (Figure 5.4c). 

5.2.1.2 Trace Elements 

In this section susceptibilities of selected trace elements to mobilization 

during seafloor hydrothermal alteration and low-grade metamorphic conditions 

(greenschist facies) are reviewed for basaltic rocks. As a detailed and 

complete review of previous trace element mobility studies is beyond the 

scope of this thesis, reference is made only to some of the principle studies 

carried out over the past 25 years. 

To date many studies have shown that a select number of trace 

elements are only slightly mobile under greenschist facies conditions and can 

be used effectively in petrogenetic discrimination of altered basaltic rocks (eg., 

Frey et al., 1968; Cann, 1970; Kay et al., 1970; Thompson, 1973; Hart et al., 

1974; Pearce, 1975; Floyd and Winchester, 1975; Wood et al., 1976; Wood et 

Fe2+ has been calculated from Fe203* by using a ratio of 
Fe0/Fe203 of 0.85 after Brooks (1976). 
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al., 1979; Coish, 19n). These elements include: P, Nb, Y. Zn, Zr, Ti, Hf, Ta, 

Th, and the heavy rare earth elements. In addition: Ce, Ga, Sc, V, Cr. Co, 

Nl and the light rare earth elements are also generally considered to be 

sufficiently immobile under greenschist facies conditions that they can be used 

in making petrogenetic interpretations on basaltic rocks. It Is Important to 

note here; however, that this later group of elements are prone to minor to 

major remobilization with increasing metamorphism. particulary within altered 

basaltic glasses, and must be used with caution (eg., Frey et al., 1974; Coish, 

19n; Garcia, 1978; Shervais, 1982). 

Although some of the basalt samples contain large percentages of 

glass, care was taken during sampling and sample preparation to avoid (as 

much as possible) involvement of rillow rims and other altered glassy material 

unless otherwise stated. 

5.3 Basalt Geochemistry 

5.3.1 Introduction 

In this section data for trace and rare earth elements considered to be 

immobile under greenschist facies conditions as well as relict pyroxene 

compositions are presented. Using these, compositional characteristics of the 

various suites of the East Nelson ophiolites are defined and magmatic 

affinities and eruptive settings are inferred on the basis of rare earth elements 

and relict pyroxene compositions. 

As previously described in chapters 3 and 4, basaltic rocks (diabase 

dykes and lavas) of the East Nelson ophiolites (volcanics and dykes of the 
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Dun Mountain Ophiolite; PatukJ volcanics of the Patukl m61ange; and, 

Croisilles volcanics of t~e Croisilles melange) can be subdivided into 5 

petrographic groups or suites. Three of these groups occur within the Lee 

River Group of the Dun Mountain Ophiolite and include: 

(Group i); an aphyric suite of diabase dykes in which clinopyroxene is 

partly to corr.pletely altered to amphibole; 

(Group ii); a clinopyroxene-phyric suite of basaltic flows and diabase 

dykes within which clinopyroxene is relatively fresh and occasionally partially 

altered to chlorite; and 

(Group iii); a plagioclase porphyritic suite predominantly composed of 

diabase dykes and basalts containing up to 30 percent altered plagioclase 

phenocrysts. 

The other two basaltic suites of the East Nelson ophiolites occur within 

the Patuki and Croisilles ophiolitic melanges. These suites include: 

(Group iv); a suite of "olivine-poor" basalts which contain less than 1 

percent olivine phenocrysts, and 

(Group v); a suite of "olivine-rich" basalts which contain less than 5 

percent olivine phenocrysts. 

The basalts of groups iv and v are glassy to fine-grained and have 

quenchetl, variolitic to intersertal textures. 

5.3.2 Trace Elements 

Trace element abundances in volcanic rocks of the five petrographic 

suites can be assessed through the use of variation diagrams in which trace 
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element concentrations are plotted against a diffEtrentiation index (Mgt). In 

this way characteristic trace element abundances for the various suites are 

observed while rocks produced through varying degrees of fractionation within 

individual suites group together along fractionation trends. 

On these diagrams (Figures 5.4a and 5.4b) the elements P 20 6, Nb, Zr, 

Ce, Th, Ta, and to a lesser extent Hf, Ga. Ti, Y and V, exhibit higher 

concentrations with decreasing Mg# while Ni and Cr decrease mai'Xedly. 

This first group of elements (P20 5 to V; Figure 5.4a) are considered to 

be incompatible in basaltic rocks and therefore have greater affinities for the 

liquid phase than basaltic •rock-forming" minerals. Ni and Cr, on the other 

hand (Figure 5.4b), are considered to be somewhat compatible as they are 

typically enriched in olivine and spinel (respectively) during crystallization. As 

a result, Ni and Cr concentrations decrease within the basaltic rocks as the 

degree of fractionation increases. A plot of Cr versus Ni (Figure 5.5) shows 

an overall positive correlation between these elements; however, basalts of 

the •olivine-poor" and •olivine-rich• suites of the Patuki and Croisilles 

m~langes tend to contai, slightly higher Ni values than rocks of similar Cr 

content from other suites (Lee River Group). This may in part, be attributed 

to the greater abundance of olivine phenocrysts and lesser abundance of 

clinopyroxene phenocrysts within Patuki and Croisilles lavas, as Ni is typically 

strongly enriched in olivine while Cr tends to be taken up in other phases, 

particularly spinel and clinopyroxene. 

From data presen~ed in the above variation diagrams (Figures 5.4a and 

5.4b) it is apparent that many of the petrographically defined rock suitAs of 
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the East Nelson ophiolites can be discriminated on the basis of their trace 

element abundances. 

·olivine-rich• suite basalts (Patuki volcanics) tend to contain higher 

concentrations of P20 5, Nb, Zr, Cr, Ni, Ce, Th, and Ta than rocks of other 

suites of similar Mg#'s. Hf, Ga, and Ti concentrations, on the other hand, 

over1ap with those observed within "olivine-poor" suite basalts, while Y and V 

concentrations are generally lower than that observed in ·olivine-poor" suite 

basalts. 

"Olivine-poor" suite basalts oo not appear to be selectively enriched in 

any of the trace elements used here and consistently contain higher 

concentrations of P20 5, Nb, Zr, Cr, Ni, Ce, Th, Ta, Hf, Ti, V, and Y than In 

rocks of the Lee River Group suites (of similar Mg#). 

As for rocks of the Lee River Group suites (Dun Mountain Ophiolite), 

only two of the three petrographic suites of the Lee River Group can be 

discriminated using trace elements. Rocks of the aphyric and clinopyroxene­

phyr1c suites generelly contain similar trace element abundances and Mg#s 

and are therefore compositionally indistinguishable. Rocks of the plagioclase 

porphyritic suite; however, possess higher Mg#'s than rocks of other suites 

and contain the lowest concentrations of P~05, Nb, Zr, Ce, Th, Ta, Hf, Ti, V, 

and Y of all the suites studied, while containing higher concentrations of Cr 

and Ni. 

As all five suites fail to plot along a single fractionation trend produced 

by different degrees of fractionation of a liquid (Figures 5.4a and 5.4b), it is 

unlikely that these suites represent rocks derived from a common mantle 



Figures 5.6a,b and c Immobile trace element variation diagrams 
(concentrations in ppm) for basaltic rocks of the East Nelson ophiolites. 
Symbols as in Figure 5.4. 
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source. This suggestion is supported here through the comparison of trace 

element ratios as •olivine-rich• suite basalts contain markedly higher Nb/Y, 

Nb/Zr, and Y/Zr ratios than rocks of the other suites (Figures 5.6a,b, and c). 

In lieu of the evidence presented here it is considered likely that the 

various suites of the East Nelson ophiolites were derived from a number of 

different, chemically distinct mantle sources. It should be noted here; 

however, that the evidence presented thus far is somewhat inconclusive and 

a more in depth petrogenetic evaluation of the trace element chemistry of 

these rocks is presented in a later section using trace element discrimination 

diagrams (section 5.4). 

5.3.3 Rare Earth Elements 

Averaged rare earth element (REE) contents of representative samples 

of the various basaltic suites are presented in Table 5.1 while chondrite 

normalized REE plots of these values are presented in Figure 5. 7. 

Representative rare earth element patterns for rocks of the various 

suites range from being highly light rare earth element enriched to strongly 

light rare earth element depleted. 

Although these rocks have undergone greenschist and sub-greenschist 

facies metamorphism, variations in light rare earth element concentrations 

suggest that significant remobilization of the light rare earth elements has not 

taken place. This suggestion is supported by the observation within some 

outcrops of samples with different rare earth element compositions (light rare 

earth element enriched and depleted) collected within 3 metres of each other 
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Figure 5. 7a Chondrite normalized rare earth element patterns for average 
basaltic suite compositions of the East Nelson ophiolites. Data is 
normalized using average chondrite values of Wakita et al. (1971 ). 

Figure 5. 7b Chondrite normalized rare earth element patterns for altered 
basaltic samples of the •olivine-poor" suite (samples B-80 and B-80b) 
and the aphyric suite (S0-807a and SD-81 0). Average suite 
compositions are plotted for comparison. 
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with no visible difference in alteration intensity observed between sample 

sites. Further evidence of rare earth element immobility within these rocks is 

provided by the observation of highly consistent rare earth element 

concentrations within samples of each suite, especially as some suites contain 

samples collected from outcrops separated by distances of 75 kilometres or 

more. 

Although the majority of samples analyzed here appear to have been 

unaffected by rarg earth element remobilization during alteration, a small 

number of intensely altered samples were found to have been affected. 

These samples include S0-807a, SD-810, and B-80b, each of which contains 

anomalously low rare earth element concentrations (Figure 5. 7b). Samples 

SD-807a and SD-810 display well defined convex .. downward patterns and 

strong negative Eu anomalies. Within these samples light rare earth elements 

were likely lost during intense chloritization while the strong Eu anomalies 

indicate alteration and or depletion of plagioclas9. Sample B-80b is strongly 

silicified and contains abundant secondary quartz. The rare earth filament 

pattern of this sample mimics the pattern of an unaltered sample from the 

same outcrop (B-80a); however, rare earth element abundances within the 

altered sample (B-80b) are noticeably lower than that observed within B-80a. 

It is therefore suggested that rare earth element concentrations within B-80b 

have been diluted by the addition of secondary silica as selective depletion of 

the more susceptible light rare earth elements has not taken place. 

Each of the five basaltic suites of the East Nelson ophiolites display 

characteristic chondrite normalized rare earth element patterns; however, not 
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with no visible difference in alteration intensity observed between sample 

sites. F~rther evidence in support of rare earth element immobility within 

these rocks is provided through the observation of highly consistent rare earth 

element concentrations within samples of each suite, especially as some 

suites contain samples collected from outcrops separated by distances of 75 

kilometres or more. 

Although the majority of samples analyzed here appear to have been 

unaffected by rare earth element remobilization during alteration, a small 

number of intensely altered samples were found to have been affected. 

These sam pies include SD-807a, SD-81 0, and B-80b, each of which contains 

anomalously low rare earth element concentrations (Figure 5.7b). Samples 

SD-807a and SD-810 display well defined convex-downward patterns and 

strong negative Eu anomalies. Within these samples it is likely that some of 

the light rare earth elements were lost during intense, localized replacement 

of the rocks by chlorite. B-80b on the other hand, is strongly silicified and 

contains abundant secondary quartz. The rare earth element pattern of this 

sample mimics the pattern of an unaltered sample from the same outcrop (B-

80a); however, rare earth element abundances within the altered sample (B-

80b) are noticoably lower than that observed within B-80a. It is therefore 

suggested here that rare earth element concentrations within sample B-80b 

have been dilutttd by the addition of secondary silica as selective depletion of 

the more susceptible light rare earth elements has not taken place. 

Each of the five basaltic suites of the East Nelson ophiolites display 

characteristic chondrite normalized rare earth element patterns; however, not 
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all of the suites can be discriminated on this basis as patterns for two of the 

Lee River Group suites (clinopyroxene-phyric and aphyric suites) appear to be 

identical. 

Patterns for Lee River Group aphyric suite rocks are flat and slightly 

depleted in the light rare earth elements La and Ce except sample H-761 b 

which is slightly light rare earth element enriched. For the most part, rocks of 

this suite contain 1 0 times average chondritic rare earth element abundances 

(chondritic values of Wakita et al., 1971 ). 

Patterns for clinopyroxene-phyric suite basalts (Lee River Group) are 

also flat in appearance (excluding samples SD-807a and SD-81 0) and closely 

resemble patterns exhibited by aphyric suite rocks. 

Patterns displayed by plagioclase porphyritic suite basalts are generally 

similar to those displayed by rocks of the other Lee River Group suites but 

are more strongly light rare earth element depleted and contain lower rare 

earth element abundances. 

Basalts of the Patuki and Croisilles melanges consistently contain 

greater rare earth element abundances than rocks of the Lee River Group. 

Patterns for these basahs clearfy discriminate between the "olivine-poor" and 

"olivine-rich" basaltic suites of the melanges. 

"Olivine-poor" suite basalts display flat patterns slightly depleted in La 

and Ce and consistently contain greater rare earth element abundances than 

rocks of the Lee River Group suites (greater than 20 times chondritic 

concentrations). 
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"Olivine-rich" suite basalts, on the other hand, are strongly light rare 

earth element enriched and consistently contain lower heavy rare earth 

elements abundances (Ho to Lu) than "olivine-poor" suite rocks. 

Through observation of the above rare earth element patterns it is 

apparent that the various basaltic suites of the East Nelson ophiolites were 

not derived from a common source magma. 

For the most part, rocks of the Lee River Group suites (Dun Mountain 

Ophiolite) and "olivine-poor" suite (Patuki/Croisilles melanges) are relatively 

flat and display only slight light rare earth element depletion. Of these suites; 

however, rocks of the plagioclase porphyritic suite (Lee River Group) are 

significantly more light rare earth element depleted and contain the lowest 

concentrations of rare earth elements of all the suites analyzed. 

These patterns closely resemble rare earth element patterns displayed 

by mid-ocean ridge (MOAB) basalts and the rocks are considered to have 

been produced from a mantle source similar to that which is considered to 

produce mid-ocean ridge basalts. 

Despite close similarities of these patterns, field and petrographic 

evidence suggest that "olivine-poor" suite basalts of the Patuki and Croisilles 

melanges and basalts of the Lee River Group suites within the Dun Mountain 

Ophiolite are distinct and may not represent basalts derived from a common 

mantle source through varying degrees of partial melting or fractionation. 

"Olivine-rich" suite basalts, on the other hand, display markedly 

different rare earth element patterns than those exhibited by rocks of the 

other suites. Chondrite normalized patterns for these rocks closely resemble 
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those of "within-plate" and "enriched mid-ocean ridge" (E-type MOAB) basalts 

(Saunders and Tarney, 1984) as these basalts are strongly light rare earth 

element enriched and slightly heavy rare earth element depleted. 

5.3.4 Pyroxene Chemistry 

Results of electron microprobe analyses of relict clinopyroxene grains 

from representative thin sections of the various basaltic suites are presented 

in Table 5.1 . In total, twenty-seven samples were analyzed including two 

samples from the Upukerora Formation. Unfortunately, pyroxene analyses 

could not be obtained from the plagioclase porphyritic suito as all primary 

pyroxene is replaced by metamorphic amphibole. 

The majority of pyroxenes analyzed here can be classified within the 

pyroxene quadrilateral as Ca-rich augites (Figure 5.8); however, a small 

number of samples straddle the augite field boundary to plot as endiops:de 

(2) and salite \1 ). In terms of end-member compositions, wollastonite, 

clinoenstatite, and clinoferrosilite; clinopyroxenes of the various suites show 

very little compositional variation and all analyses plot within a narrowly 

defined field on the pyroxene quadrilateral. As a result, clinopyroxene 

crystallization trends ere not well defined for any of the suites analyzed. 

In the past, previous workers have determined that chemical 

compositions of clinopyroxene phenocrysts and groundmass crystals are 

typical of the magma type from which they crystallize (Kushiro, 1960; Le Bas, 

1962; Coombs, 1963). Therefore it has been suggested that relict 

clinopyroxene compositions can be used to determine magmatic affinities of 



210 

Table 5.2 Average clinopyroxene analyses from basaltic rocks of the East 
Nelson ophiolites. Numbers in parentheses represent the number of 
analyses used in each average. FeO* is total iron expressed as FeO*. 
Fe* is the sum of Fe2+ and Fe3+. Suite 11 • aphyrlc and 
clinopyroxene-phyric sui1es; suite 12 - "olivine-poor" suite (Patuki and 
Croisilles melanges); suite 13 .. "olivine-rich" suite; suite #4 -
Upukerora Formation. 

37 (6) 76 (6) 128 (1) 132C (5) 159(16) 160(14) 267 (1) 290 (1) 291(12) 467 (14) 

Si02 51.69 46.21 48.85 51.37 50.54 48.25 50.29 50.40 50.82 50 . 06 
Ti02 0. 62 2.86 1. 92 l. 09 1.12 1. 98 0.57 0.83 0.47 1.47 
Al203 3.21 6.84 3.69 3.93 3.18 4.77 2.94 3 . 52 3.73 3. 77 
Cr203 0 . 43 0.14 0 . 11 0 . 69 0.10 0.18 o.oo 0 . 06 0 . 10 0. 14 
FeO* 5.60 7.58 13.21 6.96 9.94 7 . 70 11.13 9.88 6 . 92 10.07 
MnO 0 . 14 0.13 0.25 0.21 0.26 0 . 18 0 . 25 0.24 0.19 0.23 
NiO 0 . 03 0 . 04 0 . 03 0.05 0.01 0 . 02 0.03 0.02 0.03 0.02 
MqO 15.46 12 . 44 14.19 16.13 15.45 13.59 13.57 15.02 14.83 14.43 

CaO 22.74 22.79 17 . 26 19.96 18.58 22.38 20.30 19.90 22.39 19. 83 
Na20 0.28 0.37 0 . 37 0.28 o. 37 0.35 0.37 0.27 0.29 0.34 
K20 0.01 0.05 0.04 0.03 0 . 01 0.02 0.01 0.01 0 ,01 

Total 100.21 99.40 99.93 100 . 71 99.58 99.41 99.47 100.15 99.78 100.37 

Number of ions on the basis of 6 oxygen. 

Si IV 1. 90 1. 75 1. 85 1. 88 1. 89 1. 82 1. 90 1.88 1.89 1,87 

Al IV 0.10 0.25 0.15 0.12 0.11 0.18 0.10 0.12 0.11 0 .13 
Ti IV 0.00 0.00 0 . 00 0.00 0.00 0.00 0 . 00 0.00 o.oo 0.00 
Fe IV 0.00 0 . 00 0.00 0.00 0.00 0.00 0.00 0.00 0 . 00 0.00 
T site 2.00 2.00 2.00 2.00 2.00 2.00 2 . 00 2.00 2 . 00 2 .00 
Al VI 0.04 0.05 0.01 0 .05 0.03 0 . 03 '1.03 0 . 04 0.05 0.03 
Ti 0.02 0.08 0.05 0.03 0.03 0.06 0 . 02 0.02 0 . 01 0.04 
Cr 0 . 01 0.00 0 . 00 0.02 0.00 0.01 0 . 00 0 . 00 0 . 00 0.00 
Fe +3 0.00 0 . 00 0.00 0.00 0.00 0.00 0.00 0.00 0 . 00 0.00 
Fe +2 0.17 0 . 24 0.42 0.21 0.31 0 . 24 0.35 0.31 0 . 22 0.31 
Mn +2 0.00 0.00 0.01 0. 01 0.01 0.01 0 . 01 0.01 0 .01 0.01 
Ni 0.00 0.00 0.00 0.00 0.00 0 . 00 0 . 00 0.00 0 . 00 0.00 
Mq 0.85 0.70 0.80 0.88 0.86 0.76 0 . 77 0.84 0.82 0.80 
Ca 0.90 0.92 0.70 0.78 0.74 0. 90 0 . 82 0.80 0 . 89 0. 79 
Na 0.02 0.03 0.03 0.02 0.03 0.03 C.03 0.02 0 . 02 0.02 
K 0 . 00 0.00 0 . 00 0 .00 0.00 0.00 0 .00 0.00 0 . 00 0.00 
M1,M2 2 . 01 2.03 2.03 2.01 2.02 2.03 2.03 2.03 2.03 2 .02 

Mq 44.14 37.53 41.56 46 .75 44 .75 39.86 39 . 28 42.91 42.48 41.87 
Fe*+Mn 9.20 13 . 05 22.12 11.66 16 . 58 12 . 97 18.49 16.22 11.43 16.77 
Ca 46.66 49.42 36.33 41.58 38.68 4 7 . 17 42 .23 40.86 46 . 09 41.36 

Suitet 1 3 2 2 2 3 1 1 4 2 

. • '\} , J . 0. 
w \,.. h • • . ~ • 
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Table 5.2 (continued) Average clinopyroxene analyses from basaltic rocks of 
the East Nelson ophiolites. Numbers in parentheses represent the 
number of analyses used in each average. FeO* is total iron 
expressed as FeO*. Fe* is the sum of Fe2+ and Fe3+. Suite #1 -
aphyric and clinopyroxene-phyric suites; suite #2 • "olivine-poor" suite 
(Patuki and Crolsilles melanges); suite #3 • "olivine-rich" suite; suite #4 
• Upukerora Formation. 

525b(9) S30b(l01 102(12) 1l2C(81 718A(l31 121A!l41 764001 161(111 770(11 802 ( 11 

Si02 52 . 87 53.13 50.05 50.84 50 .66 49.40 52.55 51.88 50.83 50.49 
Ti02 0.49 0.34 1. 44 0.96 l. 33 1. 61 0.41 0.59 0.79 l. 01 
Al203 2.43 2.54 3.62 3.35 3.36 4 . 81 2.76 3.56 2.90 4.35 
Cr203 0 . 35 0.34 0 . 13 0. 20 0.13 0.15 0.09 0.39 0.02 0.17 
FeO* 5.94 5. 49 11.34 8.38 10.67 10.29 6.96 5.00 11. OS 6.81 
MnO 0.21 0.14 0.29 0.19 0.26 0.22 0.18 0.13 0.27 0.11 
NiO 0 . 05 0.03 C.04 0.03 0. C3 0 .02 0.01 0.04 0.02 0.00 
MgO 15.67 17.71 15.62 16.18 15.20 13.64 16.80 17.11 15.18 16.08 
CaO 21.44 20.63 17 . 12 19.11 18.28 19.41 20.51 21.03 18.77 20.14 
Na20 0.39 0.15 0.30 0.32 0.38 0.45 0 . 21 0.26 0.28 0.27 
K20 0.02 0.01 0.01 0.01 0.01 0.05 0 .01 0.00 0.01 0.00 

Total 99 . 86 100.51 99.96 99.57 100.31 100.05100.49 99.99 100.12 99.43 

Number of ions on the basis of 6 oxygen. 

Si IV l. 94 1. 93 1.87 1. 89 1. 89 1. 85 l. 92 1. 90 1. ~·0 l. 87 
Al IV 0.06 0.07 0 . 13 0.11 0.11 0.15 0.08 0.10 0.10 0 . 13 
Ti IV 0.00 0.00 0.00 0. 00 0 . 00 0 . 00 0.00 0.00 0.00 0.00 
Fe IV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
T site 2.00 2 . 00 2 .00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 
Al VI 0.05 0.04 0.03 0.04 0.03 0.06 0.04 0.05 0.03 0.06 
Ti 0.01 0.01 0.04 0.03 0.04 0.05 0.01 0.02 0 .02 0.03 
Cr 0.01 0.01 0.00 0. 01 0.00 0.00 Q 1)0 0.01 0.00 0.00 
Fe +3 0 . 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Fe +2 0.18 0.17 0.35 0.26 0.33 0.32 0.21 0.15 0.35 0 .21 
Mn +2 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 
Ni 0.00 0.00 0.00 0.00 0.00 0.00 0 . 00 0.00 0.00 0. 00 
Mg 0.86 0.96 0.87 0.90 0.84 0.76 0. 92 0.93 0.85 0.89 
Ca 0.85 0.80 0.69 0.76 0. 73 0.78 0.80 0.82 0.75 0.80 
Na 0.03 0 . 01 0 . 02 0.02 0.03 0.03 0.01 0.02 0.02 0 . 02 
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
M1,H2 2.00 2.01 2.02 2.02 2.02 2.01 2.01 2.01 2.02 2.01 

Mg 45.38 49.61 45.34 46.60 44 . 09 40.73 47.26 48.74 43.34 46.69 
Fe*+Hn 10.00 8.85 18.94 13.85 17.79 17.61 11.27 8.20 18.14 11.27 
Ca 44 . 62 41.54 35.72 39.55 38.11 41.66 41.47 43.06 38.52 42.03 

Suitet 1 1 2 2 2 2 2 2 1 1 
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Table 5.2 (continued) Average clinopyroxene analyses from basaltic rocks of 
the East Nelson ophiolites. Numbers in parentheses represent the 
number of analyses used in each average. FeO* is total iron 
expressed as Feo•. Fe* is the sum of Fe2+ and Fe3+. Suite #1 • 
aphyric and dinopyroxene-phyric suites; suite #2 • •olivine-poor- suite 
(Patuki and Croisilles melanges); suite #3 • •olivine-rich• suite; suite #4 
- Upukerora Formation. 

803 Ill I 8091101 91211(71 96 l d (121 1002 ( 51 1005(121 100? (101 

Si02 52.38 51.47 51.21 52.31 50 . 88 51 . 66 51.12 
Ti02 0.64 0.63 0.69 0.24 0.81 0.69 0 . 82 
Al203 3.13 3 . 50 3 . 97 2.62 4.97 2.35 2.48 
Cr203 0.19 0.13 0.07 0.09 0.38 0 .04 0.04 
FeO* 6.86 7.52 7.47 8.78 6.10 9.30 11.01 
MnO 0.19 0 . 19 0 . 21 0.21 0.14 0 . 25 0.26 
NiO 0 . 03 0.02 0.04 0. 04 0.03 0.03 0.02 
MgO 17.09 16.93 15 . 28 16.67 16.03 15 . 43 14.93 
cao 19.59 19.61 20.55 19.20 20.75 20.12 19.01 
Na20 0.24 0.22 0.31 0.23 0.23 0.25 0.26 
K20 0.01 0.01 0.00 0.01 0.01 0.00 0.02 

Total 100.35 100.23 99.80 100 . 40 100.33 100 . 12 99.97 

Number of ions on the basis of 6 oxygen. 

Si IV l. 92 1.89 1. 90 1. 93 1.86 1. 92 1. 91 
.A1 IV 0.08 0.11 0.10 0.07 0.14 0 . 08 0.09 
Ti IV 0 . 00 0.00 0.00 0.00 0.00 0.00 0.00 
Fe IV 0.00 0.00 0 . 00 0.00 0 . 00 0 . 00 0.00 
T site 2.00 2 . 00 2.00 2 . 00 2.00 2.00 2.00 
.Al VI 0.05 0.04 0.07 0 . 04 0.08 0.02 0.02 
Ti 0.02 0.02 0.02 0.01 0.02 0 . 02 0.02 
Cr 0.01 0.00 0.00 0.00 0.01 0 .00 0.00 
Fe +3 0 . 00 0.00 0.00 0.00 0.00 0.00 0.00 
Fe +2 0.21 0 23 0.23 0.27 0.19 0.29 0.34 
Mn +2 0.01 0.01 0.01 0.01 0.00 0.01 0 . 01 
Ni 0.00 0.00 0.00 0.00 0.00 o.oo 0 . 00 
Mq 0.93 0.93 0.84 0.92 0.88 0.86 0.83 
Ca 0.77 0.77 0.81 0.76 0.81 0 . 80 0.76 
Na 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
K 0.00 0.00 0.00 0 . 00 0.00 0.00 0.00 
M1,H2 2.01 2.02 2.01 2.02 2 . 01 2.02 2 .02 

Mq 48.65 47.89 44.47 46.94 4 6. 54 43.77 42.76 
Fe*+Mn 11.26 12.24 12.54 14 . 20 10.17 15.20 18.11 
Ca 40.08 39.87 42.99 38.86 43.30 41.02 39.13 

Suitet 1 1 4 1 1 1 1 
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Figure 5.8 Pyroxene quadrilateral diagram of averaged clinopyroxene analysis 
from basaltic rocks of the East Nelsen ophiolites. Field boundaries are 
after Poldervaart and Hess (1951 ). Symbols are as follows: 

o aphyric and clinopyroxene-phyric suites 

"olivine-poor" suite 

• "olivine-rich" suite 

• Upukerora Formation 
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altered basaltic rocks in which whole rock analyses may be unreliable (eg., 

Vallance, 1969; Nisbet and Pearce, 1977). Nisbet and Pearce (19n) have 

also been able to classify basaltic rocks on the basis of relict clinopyroxene 

compositions into: ocean floor basalts, volcanic arc basalts, within-plate 

tholeiites, and within-plate alkali basalts. More recently, leterrier et al. (1982) 

and Beccaluva et al. (1989) have classified ophiolitic lavas in terms of magma 

types and original tectonic setting using discrimination diagrams based on 

relict augitic clinopyroxene compositions. In this section, basaltic rocks of the 

East Nelson ophiolites are discriminated using relict clinopyroxene 

compositions and an attempt is made to suggest magmatic affinities and 

original tectonic settings of formation for the various basaltic suites. 

Despite some overlap, clinopyroxenes from the various suites can be 

partially discriminated through the use of variation diagrams involving the 

elements Ti02, Si02, Al20 3, and the ratio FeO'/MgO. 

In Figure 5.9a it can be observed that clinopyroxenes of the "olivine­

rich" suite contain markedly lower Si02 concentrations than pyroxenes of other 

suites. On this diagram clinopyroxenes of the "olivine-poor" suite, Dun 

Mountain Ophiolite suites, and the Upukerora Formation contain similar 

concentrations of Si02 and FeO'/MgO whereby Si02 values tend to increase 

with decreasing FeO'IMgO. 

Figure 5.9b, however, shows pyroxenes of the "olivine-rich" suite to be 

characterized by anomalously high concentrations of Ti02 while pyroxenes of 

the "olivine-poor" suite contain slightly higher Ti02 concentrations than 

pyroxenes of the Upukerora Formation and the Lee River Group's suites. 



Figure 5.9a Si02 versus FeO*/MgO {weight percent) plot of pyroxenes from 
various basaltic suites of the East Nelson ophiolites. Symbols as in 
Figure 5.8. 

Figure 5.9b Ti02 versus FeO*/MgO {weight percent) plot of pyroxenes from 
various basaltic suites of the East Nelson ophiolites. Symbols as In 
Figure 5.8. 
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From this figure it can be seen that pyroxenes of the Lee River Group suites 

show very little variation in Ti02 concentrations wi~ll increasing FeO"/MgO 

whila pyroxenes of the "olivine-poor" suite ~!ut along a positive sloping trend 

in which Ti02 concentrations ir.crease with increasing FeO"/MgO. 

Figures 5.1 Oa and 5.1 Ob also discriminate between pyroxenes of the 

various basaltic suites. On Figure 5.1 oa "olivine-rich• suite pyroxenes are 

characterized by low MgO and high Al20 3 concentrations while pyroxenes of 

the •olivine-poor" suite generally contain slightly higher concentrations of Al20 3 

and Ti02 than those of the Upukerora Formation2 and Lee River Group suites 

(Figure 5.1 Ob). 

Through comparison of concentrations of the elements discussed 

above, pyroxenes from the different suites of the East Nelson ophiolites can 

be compared. Pyroxenes of the Lee River Group suites (aphyric and 

clinopyroxene-phyric suites) and the Upukerora Formation are 

indistinguishable from one another and therefore provide further evidence that 

the clinopyroxene·phyric anci aphyric suites of the Lee River Group are 

compositionally identical to each other while also suggesting that the 

Upukerora Formation is likely composed of material eroded off the undertying 

Dun Mountain Ophiolite. Pyroxenes of the "olivine-poor" suite are 

compositionally quite similar to those analyzed from the Lee River Group 

suites; however, these pyroxenes typically contain higher concentrations of 

Although pyroxene compositions from the Upukerora 
Formation contain similar aluminit.:m concentrations to thoee of 
the "olivine poor" suite, it is possible that Upukerora pyroxenes 
have been partially altered to chlorite. 



Figure 5.1 Oa MgO versus Al20 3 (weight percent) plot for pyroxenes of the 
various basaltic suites of the East Nelson ophiolites. Symbols as used 
in Figure 5.8. 

Figure 5.1 Ob Ti02 versus Al20 3 (weight percent) plot for pyroxenes of the 
various basaltic suites of the East Nelson ophiolites. Symbols as used 
in Figure 5.8. 
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Al20, and Ti02 than pyroxenes of similar FeO./MgO values from rocks of the 

Lee Rivm Group suites. Fractionation trends suggest that fractionation 

proceeded along different paths than experienced by Lee River Group rocks 

whereby Ti02 concentrations tend to increase with higher degrees of 

fractionation within the "olivine-poor" suite while Ti02 concentrations within Lee 

River Group pyroxenes show little variation. 

"Olivine-rich" suite pyroxenes are compositionally quite distinct from 

pyroxenes of other suites and are characterized by higher concentrations of 

Ti02 and A120 3 and lower Si02 concentrations. Although the number of 

analyses obtained for pyroxenes of this suite are too limited to produce well 

defined fractionation trends it is obvious that these pyroxene compositions lie 

off trends defined by pyroxenes of other suites. It is therefore considered 

here that this suite was derived from a fundamentally different source magma 

composition. 

Through comparison of the above pyroxene compositions to those of 

known magmatic affinity, Le Bas (1962) was able to discriminate between 

basalts of different alkalinity. To do this he defintld compositional fields on 

variation diagrams involving the elements Si02 , Al203, elemental AI, and Ti02• 

On these diagrams (Figures 5.11 a and 5.11 b) it is evident that pyroxenes of 

the "olivine-poor" suite, Upukerora Formation, and Lee River Group suites are 

similar to those which occur within sub-alkaline igneous rocks. Pyroxenes of 

the "olivine-rich" suite, on the other hand, contain low Si02 and high Ti02 

concentrations and are therefore compositionally similar to those observed 

within more alkaline rocks. 



Figure 5.11 a Si02 versus Al20, (weight percent) plot for pyroxenes of the 
various basaltic suites of the East Nelson ophiolites. Compositional 
boundaries as defined by Le Bas (1962). Symbols as used in Figure 
5.8. 

Figure 5.11 b Alz (total aluminum ions on the basis of 6 oxygen) versus Ti02 
(weight percent) plot for pyroxenes of the various basaltic suites of the 
East Nelson ophiolites. Compositional boundaries as defined by 
Le Bas (1962). Symbols as used in Figure 5.8. 
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Leterrier et al. (1982) uses discrimination diagrams involving Tl, Cr, Ca, 

AI, and Na contents to discriminate between basalts of three major basaltic 

types. These types are: "the alkali basalt group" (including alkali basalts, 

basanites and related rocks from oceanic or continental intra-plate and island­

a,J volcanism), "tholeiites from spreading zones" {including tholeiites and 

transitional basalts from ridges, ocean basins, oceanic islands, back-arc 

basir~s and passive continental margins), and "orogenic-type basalts" 

{including island-arc tholeiites, calc-alkali basalts from active continental 

margins and island-arcs, and shoshonitic lavas). On these diagrams, despite 

considerable over1ap, Leterrier et al. { 1982) were able to classify basalts of 

these types with a level of confidence of near or better than 80 percent. 

Using the diagrams of Leterrier et al. {Figures 5.12a,b and c), basaltic 

rocks of the East Nelson ophiolites were found to include alkali and tholeiitic 

(and/or calc-alkali) basalts, whereby basalts of the "olivine-rich" suite are 

alkalic and rocks of the other suites (including the Upukerora Formation) have 

tholeiitic or possibly calc-alkali affinities3
• From Figure 5.12b basalts of the 

various suites were also classified into orogenic and non-orogenic basalts 

whereby basalts of the ophiolitic melanges (Patuki and Croisilles melanges) 

plot as non-orogenic basalts while basalts of the Lee River Group suites and 

Upukerora formation plot as orogenic-type basalts. 

Although most pyroxenes o f the Lee River Group suites 
plot as calc-alkali basalts on fiJure 5.12c most of the analyses 
straddle the calc-alkali-tholeiitic basalt boundary and thus no 
definitive identification can be p ~oposed. 



Figure 5.12a,b and c Discriminant diagrams of Leterrier et al. (1982) for 
determining the tectonic character of host volcanic rocks based on 
cationic proportions within clinopyroxenes. Symbols as used in Figure 
5.8. ·#·= number of ions on the basis of 6 oxygen. 
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Figure 5.12 (continued) Ti versus AI discrimination diagram of Leterrier et al. 
(1982). 
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The discrimination diagrams of Leterrier et al. (1982) suggest that 

"olivine-rich" and "olivine-poor- suite basalts of the Patuki and Croisilles 

m'langes represent alkali and tholeiitic basalts produced within an non­

orogenic environment. This implies that these suites were produced at 

oceanic islands and MOAB-like spreading ridges analogous to that which 

produce within-plate alkali basalts and mid-ocean ridge tholeiitic basalts 

respectively. Analyses of pyroxenes from the Lee River Group and 

Upukerora Formation: however, plot within the orogenic basalt field (Figure 

5.12b) and were likely produced within an arc-related, or possibly supra­

subduction zone environment. 

Beccaluva et al. (1989) have mcently used relict clinopyroxene 

compositions to discriminate between different suites of metabasalt in 

Phanerozoic ophiolites. By their method, variation diagrams involving the 

elements Si, AI, Ti, Na, and Al(iv) are plotted and compositional fields are 

defined on the basis of augitic pyroxenes from present day oceanic settings. 

On these diagrams (Figures 5. 13 and 5.14a,b,c and d) pyroxenes of 

the Lee River Group suites and Upukerora Formation consistently plot as 

island-arc tholeiites while "olivine-poor" suite basalts typically plot as mid· 

ocean ridge basalts (MOAB). Although only two analyses of "olivine-rich" 

suite pyroxenes are available, these samples tend to plot as mid-ocean ridge 

and/or within-plate tesalts and are compositionally quite distinct from 

subduction related basalts (ie. island-arc tholeiites: boninites: and quartz 

tholeiites, basaltic andesites, and andesites from intra-oceanic fore-arc 

regions). As the previously mentioned diagrams of Leterrier et al. (Figure 
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b NMORB 

c EM ORB 

d IAT 

e BA-A 

Si02/100 Na20 

Figure 5.13 Tectonic discrimination diagram of Beccaluva et al. (1989). This 
diagram discriminates between calcic pyroxenes of basalts from 
different ophiolite types and present day oceanic settings. Symbols as 
in Figure 5.8. WPB· within-plate basalts; NMORB· normal mid-ocean 
ridge basalts; EMORB· enriched mid-ocean ridge basalts; IAT • Island· 
arc tholeiitic basalts; BA·A• quartz tholeiites, basaltic andesites and 
andesites from intra-oceanic fore-arc settings. Oxides are in weight 
percent. 



Figures 5.14a,b,c and d Tectonic discrimination diagrams of Beccaluva et al. 
(1989). These diagrams discriminate between calcic pyroxenes of 
basalts from different ophiolite types and present day oceanic settings. 
Symbols as in Figure 5.8. WPB- within-plate basalts; NMORB- normal 
mid-ocean ridge basalts; EMORB- enriched mid-ocean ridge basalts; 
IAT- island-arc tholeiitic basalts; BA-A= quartz tholeiites, basaltic 
andesites and andesites from intra-oceanic fore-arc settings; BON­
boninitic basalts. ·si(iv)• number of Si ions tetrahedrally coordinated. 
AI total• total number of aluminum ions on the basis of 6 oxygen. Ti 
total- total number of titanium ions on the basis of 6 oxygen. AJ(iv)• 
number of Si ions tetrahedrally coordinated. 
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5. 12a) and Le Bas (Figures 5.11 a and 5.11 b) classify these rocks as having 

an alkaline affinity, it is suggested here that "olivine-rich • suite basalts 

represent within-plate alkali basalts as opposed to mid-ocean ridge tholeiitic 

basalts. This suggestion is also supported by the discrimination diagram of 

Nisbet and Pearce (1977) (ternary plot of Mn0-Ti02-Na20 concentrations 

within augitic pyroxenes) whereby "olivine-rich" suite basalts plot within the 

within-plate alkali basalt field (Figure 5.15). 

Through examination of relict pyroxene compositions, basaltic rocks of 

the Dun Mountain Ophiolite can be classified as follows. Basalts of the 

"olivine-poor" suite are representative of typical mid-ocean ridge basalts 

(MOAB); "olivine-rich" suite rocks resemble alkaline basalts produced at 

within-plate ocean islands; and, basalts of the Lee River Group aphyric and 

clinopyroxene-phyric suites are representative of orogenic basalts of island-arc 

tholeiite affinity. Compositional similarities displayed between Lee River 

Group and Upukerora Formation pyroxenes also suggest that the mafic 

basaltic component of the Upukerora conglomerate is composed of eroded 

material derived from the underlying Dun Mountain Ophiolite (Lee River 

Group). 

5.3.5 Geochemical Discrimination Diagran~s 

In thic section, a number of commonly used trace element 

discrimination plots are used to discrir ! inate between different basaltic suites 

of the East Nelson ophiolites and define tectonic environments of formation. 
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Figure 5.15 Tectonic discrimination diagram of Pearce and Nisbet (1977). 
Tectonic settings are discriminated using weight percent oxide contents 
of pyroxenes. Symbols as in Figure 5.8. VAB"" volcanic arc basalts; 
OFB= ocean floor basalts: WPA= within-plate alkali basalts; WPT. 
within-plate tholeiitic basalts. 
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Through observation of the data presented thus far it is apparent that 

basaltic rocks of the various suites of the East Nelson ophiolites were likely 

produced within a range of tectonic environments including: mid-ocean ridges 

and oceanic islands rolivine-rich• and "olivine-poor- suites respectively), and 

above a subduction zone (Lee River Group suites). Within supra-subduction 

zone environments and island-arcs, both tholeiitic and calc-alkaline series 

basalts are commonly observed, whereby tholeiitic series lavas are typically 

associated with early stages of arc evolution and late stages of arc rifting (eg. 

Miyashiro, 1974). Basalts of these different series can be discriminated using 

a number of diagrams; however, all rely on the observation of differing 

fractionation trends exhibited by these rock series. Calc-alkaline series rocks 

are characterized by depletions in irCJn (FeO') and titanium (Ti02) while 

tholeiitic rocks typically display enrichment of these elements during the early 

and middle stages of fractional crystall ization. 

Through observation of Figures 5.16a and 5.16b (after Miyashiro, 1974) 

it can be observed that all sub-alkaline basaltic suites (as previously defined 

by pyroxene compositions) of the East Nelson ophiolites exhibit tholeiitic 

fractionation trends whereby Feo· and Ti02 concentrations increase with 

increased degrees of fractionation. Basalts of the alkaline "olivine-rich" suite; 

however, show little variation in the concentrations of these oxides with 

varying degrees of fractionation. 

Another diagram which relies on these less mobile elements (and 

Al20 3} and discriminates between calk-alkaline and tholeiitic series lavas is 

that of Jensen (1976). On this diagram, Figure 5.17, basalts of the various 



Figure 5.16a Plot of Ti02 versus FeO* /MgO for basaltic rocks of the East 
Nelson ophiolites. Fractionation trends have been drawn for 
comparison after Miyashiro (1973); Thol- estimated tholeiitic 
fractionation trend; Am- estimated calc-alkali fractionation trend from 
Amagi. 

Symbols: 

o aphyric/clinopyroxene-phyric suite basalts 

o plagioclase porphyritic basalts 

o. "olivine-poor" suite basalts 

• "olivine-richM suite basalts 

Figure 5.16b Plot of FeO* versus FeO*/MgO for basaltic rocks of the East 
Nelson ophiolites. Fractionation trends have been drawn for 
comparison after Miyashiro (1973); Thol- estimated tholeiitic 
fractionation trend (Skaergaard); Am= estimated calc-alkali fractionation 
trend from Amagi; Mac- Macauley. Th/Ca· tholeiitic/calc-alkali 
compositional boundary. Symbols as in Figure 5.16a. 
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Figure 5.17 Basaltic discrimination diagram after Jensen (1976). Fields: PK· 
.picritic komatiite; BK- basaltic komatiite. HFT. high iron tholeiite; TA· 
tholeiitic andesite; TO- tholeiitic dacite; TH= tholeiitic rhyolite; HMT­
high magnesium tholeiite; CB- calc-alkali basalt; CA- calc-alkali 
andesite; CD= calc-alkali dacite; CR=- calc-alkali rhyolite. Symbols as 
used in Figure 5.16. Oxides in weight percent. 

Figure 5.18 AFM plot of basaltic rocks of the East Nelson ophiolites. Feo• • 
total iron expressed as FeO. Tholeiitic/calc-alkali dividing line from 
Irvine and Baragar (1971 ). Symbols as used in Figure 5.16. Oxides in 
weight percent. 
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suites of the East Nelson ophiolites plot almost entirely in the •high Iron 

tholeiitic basalt" field while only a small number of plagioclase porphyritic suite 

rocks plot within the "calc-alkaline basalt" field. Although these anomalous 

samples indicate rocks of the plagioclase porphyritic suite may be of calc­

alkaline affinity, the well defined Ti02 enrichment trend displayed by these 

rocks in Figure 5.16a shows them to actually be tholeiitic in character. It 

should also be noted here that although K20 and Na20 are considered to 

have been mobilized during alteration. most samples from the various sub· 

alkaline suites still plot along a tholeiitic fractionation trend on a (NaaO+K20-

FeO··MgO) triangular diagram (Figure 5.18) as FeO./MgO ratios are virtually 

unaffected by alkali element concentrations. 

In the previous section, discrimination diagrams that rely on relict 

pyroxene compositions were presented. From these diagrams (eg., Figures 

5.11 a, 5.11 b, 5.12a, 5.15) it is suggested that basalts of the ·olivine-rich• 

suite are alkaline in character while rocks of the other suites are sub-alkaline. 

Discrimination between different rock series by this method is found to agree 

well with whole rock compositions plotted on the ZrfTi0 2-Nb/Y diagram of 

Winchester and Floyd (1977). This diagram (Figure 5.19) discriminates 

between various types of common volcanic rocks on the basis of immobile 

trace elements whereby the Zrm02 ratio acts as a differentiation index while 

the Nb/Y ratio acts as an alkalinity index. The "olivine-rich• suite basalts plot 

predominantly within the ·alkaline basalt" field while 95 percent of the basalts 

from the other suites plot in the sub-alkaline "andesite/basalt• field. 



Figure 5.19 Zrm02 versus Log NbN (ppm) discrimination diagram of 
Winchester and Floyd (1977). Symbols as used in Figure 5.16. 

Figure 5.20 Basalt tectonic discrimination diagram of Pearce and Cann 
(1973). Symbols as used in Figure 5.16. Concentrations are in (ppm). 
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The remaining discrimination diagrams are dedicated to discriminating 

between tectonic environments of formation for each of the basaltic suites of 

the East Nelson ophiolites. On these diagrams, rocks of the clinopyroxene­

phyric and aphyric suites are plotted as one suite as they have been found to 

be compositionally indistinguishable and therefore likely represent variably 

metamorphosed equivalents of a single petrographic suite. Strongly altered 

samples previously shown to have been compositionally affected by alteration 

processes as indicated by rare earth element compositions and petrography 

are not plotted (ie. SD-807a, SD-810, B-80b, and 0-1003). 

Two "immobile trace element" discrimination diagrams commonly used 

to determine tectonic environments of formation are the Zr-Ti-Y triangular 

diagram and log Zr/Y-Iog Zr diagram of Pearce and Cann (1973) and Pearce 

and Norry (1979) respectively. On these diagrams (Figures 5.20 and 5.21) 

compositional fields for basalts erupted at a number of different tectonic 

settings have been defined by plotting large numbers of samples from known 

tectonic environments. 

On the Zr-Ti-Y diagram (Figure 5.20) basaltic rocks of the East Nelson 

ophiolites plot predonlinantly within two fields, whereby "olivine-rich" suite 

rocks plot within the "within-plate basalt" field while samples from the 

remaining suites plot as "ocean floor basalts•". 

On the log Zr/Y-Iog Zr plot (Figure 5.21) "olivine-rich" suite rocks again 

plot within the field defined for within-plate basalts. Rocks of the remaining 

• The "ocean floor basalt" field defined on figure 5. 20 includes mid­
ocean rid;)e basalts, low-potassium tholeiites, and calc-alkali basalts (Pearce 
and Cann, 1 9 7 3) . 



Figure 5.21 Basalt tectonic discrimination diagram of Pearce and Norry 
(1979). Symbols as used in Figure 5.16. 

Figure 5.22 Th/Yb versus Ta/Yb (ppm) covariation diagram of Pearce et al. 
(1981) based on the work of Wood et al. (1979). Asterisk indicates 
estimated primordial mantle composition of Alabaster et al. (1982). 
MORBa mid-ocean ridge basalt; WPB= within-plate basalt; VAB· 
volcanic arc basalt; TH- tholeiitic; TR= transitional; ALK- alkalic; CA .. 
calc-alkalic; SHO- shoshonitic; IAT :z island-arc tholeiite. 
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suites; howevf>r, are further discriminated whereby "olivine-poor" suite basalts 

plot almost entirely within the mid-ocean ridge basalt field while rocks of the 

lee River Group suites plot predominantly within a field of overlap between 

mid-ocean ridge basalts and Island-arc basalts. 

From these plots (Figures 5.20 and 5.21) it can be suggested that 

basalts of the "olivine-rich" suite are likely representative of within-plate 

basalts while "olivine-poor" suite basalts are representative of mid-ocean ridge 

or MOAB basalts. These proposals agree well with both rare earth element 

data and relict pyroxene compositions and suggest that rocks sampled from 

the Pcttuki and Croisilles melanges are representative of oceanic crust 

produced in large ocean basins independent of orogenic or subduction zone 

influences Basaltic rocks of the Lee River Group suites; however, are not 

clearly discriminated using these diagrams as they plot almost entirely within 

the overlapping field of island-arc and mid-ocean ridge basalts. 

As this is the case, discrimination diagrams which discriminate between 

basalts erupted within island-arc and at mid-ocean ridge settings must now be 

employed. Such discrimination diagrams rely on a very limited group of 

immobile trace elements including Th, Ta, Nb, Zr, Ti, Y, V, Cr, and the rare 

earth elements. 

One such diagram is the Th/Yb-Ta/Yb covariation diagram of Pearce et 

al (1981 ). This diagram (Figure 5.22) distinguishes between arc-rGiated 

basalts and various ocean basin basalts by identifying basaltic compositions 

that contain a "subduction component" . This component is identified as a 

selective enrichment of Th over Ta whereby Th is believed to be preferentially 
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driven off the subducted slab during subductior causing enrichment within the 

mantle wedge above a subduction zone. Both Th and Ta are plotted as 

ratios to Yb on this diagram to eliminate compositional variations caused by 

differing degrees of partial melting and fractional crystallization. On Figure 

5.22, basalts of the Patuki and Croisilles melanges do not appear to contain a 

"subduction component" as basalts of the "olivine-poor" suite plot within the 

field of normal mid-ocean ridge basalts (MOAB) while "olivine-rich" suite 

basalts plot as "transitional5oo to alkaline within-plate basalts. Rocks of the Lee 

River Group suites; however, plot within the compositional field of island-arc 

tholeiites whereby 90 percent of the samples plot above the compositional 

boundaries of normal mid-ocean ridge basalts. Of these rocks, those of the 

plagioclase porphyritic suite appear to rave been derived from a strongly 

depleted mantle st'urce as they contain noticeably lower Th!Yb and Ta/Yb 

ratios than other Lee River Group rocks. 

Another valuable diagram in the discrimination of island-arc tholeiites 

from basalts of major ocean basins is the Cr-Y variation diagram of Pearce 

(198C). This diagram (Figure 5.23) relies upon the observation that at a 

given Cr content, elements of high ionic potential are depleted in island-arc 

lavas more so than in lavas produced at mid-ocean ridges (eg., Pearce, 1975; 

Garcia, 1978). Explanations for this phenomenon are varied and 

controversial; however, it is generally considered that addition of aqueous 

fluids driven off subducted oceanic crust is required (eg., Pearce and Norry, 

1979; Green, 1973; Dixon and Batiza, 1979). 

~ Transit ional between tholeiitic and alkaline within-plate basalts. 



Figure 5.23 Cr versus Y variation diagram of Pearce (1980), Pearce et al. 
(1981) and Pearce et al. {1984). MOAB= mid-ocean ridge basalt; 
VAB=- volcanic arc basalt; WPB .. within-plate basalt. Symbols as used 
in Figure 5.16. 

Figure 5.24 Th-Hf/3-Ta (ppm) basalt tectonic discrimination diagram of Wood 
(1980). Symbols as used in Figure 5.16. NMORB- normal mid-ocean 
ridge basalts; EMORB- enriched mid-ocean ridge basalts; WPB .. 
within-plate basalts. 



2000 

1000 
0 

-E 
a. 
a. -...... 
(.) 100 

·o . 0 

10 
5 10 

Th 

249 

' ' ... . ' \ ... 
' \ 

I 
6 I 

I 
6 . I 
6' 

6 . 

0. : 

6. 0. 
0. . 

·6 

Y (ppm) 

Hf/3 

MOAB 

6 

100 1000 

a NMORB 

b EMORB and tholei itic WPB 

c alkaline WPB 

d destructive plate margin basalts 

Ta 



250 

On the Cr-Y variation diagram of Pearce (1980), despite some overlap 

within the compositional fields defined for mid-ocean ridge and within-plate 

basalts, basaltic rocks of the Lee River Group suites tend to plot within the 

field of island-arc tholeiites as they are typically more depleted in Y than the 

Patuki and Croisilles lavas of similar Cr concentrations (Figure 5.23). This 

observation agrees well with the classification of Lee River Group rocks on 

Figure 5.22 as island-arc tholeiites and also further discriminates •olivine-poor" 

suite basalts from island-arc tholeiites as all "olivine-poor" suite samples plot 

outside the compositional field defined for island-arc tholeiites on the Cr-Y 

variation diagram (Figure 5.23). "Olivine-rich" suite basalts plot predominantly 

within the within-plate basalt field although a small number of samples contain 

slightly higher Y concentrations and plot to the right of the within-plate basalt 

field. On this diagram the rocks of each suite tend to plot within specific 

fields; however, many samples contain slightly higher Y concentrations than 

expected for the respective rock suites. This feature may be attributable to 

high degrees of fractional crystallization involving olivine, spinel, clinopyroxene, 

and plagioclase (Pearce, 1980). 

Another diagram which discriminates between basalts erupted at supra­

subduction zones and major ocean basins is that of Wood et al. (1979) and 

Wood (1980). This ternary diagram (Figure 5.24) relies on the relative 

proportions of Th, Ta, and Hf within basaltic rocks whereby subduction zone 

influenced basalts are typically enriched in Th and depleted in Ta compared 

to rocks erupted in major ocean basins. This diagram also discriminates 

between basalts erupted at mid-ocean ridges and within-plate settings as 
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within-plate basalts are relatively enriched in high field strength elements such 

as Hf compared to basalts erupted at mid-ocean ridges (Wood et at, 1979; 

Wood. 1980). A particularly useful feature of this diagram is that it 

discriminates between calk-alkaline and tholeiitic series basalts erupted above 

subduction zones. 

In Figure 5.24, basaltic rocks of the Lee River Group suites overlap the 

compositional fields defined for primitive arc tholeiites and mid-ocean ridge 

basalts and are characterized by relatively high Hf/Th ratios. This suggests 

that these rocks may be transitional in composition between island-arc 

tholeiites and mid-ocean ridge basalts, a feature commonly displayed by 

basalts erupted in large marginal basins of back-arc d9rivation (eg. Tamey et 

at., 1977; Wood et al, 1982; Tarney et at. 1981; Taylor and Kamer, 1983). 

As for basaltic rocks of the Patuki and Croisilles melanges, all •olivine-poor" 

suite basalts plot within the compositional field defined for norma~ mid-ocean 

ridge basalts, while basaltic rocks of the "olivine-rich" suite plot as within-plate 

basalts whereby 75 percent of the samples plot as within-plate alkali basalts 

while the remainder plot as being transitional between within-plate tholeiites 

and within-plate alkali basalts. This observation agrees well with the 

classification of the various basaltic suites on the basis of pyroxene 

compositions and other trace element discrimination diagrams and is 

particulary useful here as it distinguishes between tholeiitic and alkaline 

within-plate basalts. 

Shervais (1982), has shown that TiN ratios can also be used as a 

diagnostic tool in determining tectonic settings of eruption for modem volcanic 
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rocks as well as for volcanic rocks from ancient ophiolites. Through the 

observation of TiN ratios from different tectonic environments Shervais has 

shown: 

(i) volcanic rocks from modern island-arcs typically have TIIV ratios of 

less than or equal to 20; however, calc-alkaline series rocks are effected by 

significant magnetite fractionation and therefore contain inconsistent TW ratios 

whereby TiN ratios increase with increased degrees of fractionation; 

(ii) mid-ocean ridge and continental flood basalts have TiN ratios of 

about 20 to 50; 

(iii) alkaline rocks have TiN ratios which are typically greater than 50; 

and, 

(iv) volcanic rocks of back-arc basins generally have either arc-like or 

mid-ocean ridge-like TiN ratios whereby rocks from individual back-arc basins 

may have TiN ratios ranging from 10 to 50. 

Through comparison of TiN ratios from rocks of various basaltic suites 

of the East Nelson ophiolites to those of known tectonic setting (Figure 5.25), 

eruptive settings can be inferred. Rocks of the East Nelson ophiolites plot 

within three distinct, slightly over1apping groups, whereby basaltic rocks of the 

Lee River Group suites have TiN ratios which range between 14 and 26, 

while basalts of the "olivine-poor" and "olivine-rich" suites contain values 

ranging between 23 and 37, and 32 and 88 respectively. These ratios 

suggest that rocks of the Lee River Group are transitional in composition 

between rocks erupted at island-arcs and mid-ocean ridges, while "olivine­

poor" and "olivine-rich" suite basalts have similar TiN ratios to those observed 
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Figure 5.25 V versus Ti/1 000 basalt tectonic discrimination diagram of 
Shervais (1982). ARC= arc related rocks; OFB= ocean floor basalts. 
Symbols as used in Figure 5.16. 



254 

within tholeiitic basalts erupted at mid-ocean ridges and alkaline basalts from 

oceanic islands and seamounts. 

5.3.6 MORB Normalized Trace Element Diagrams 

In this section, rocks of the various basaltic suites of the East Nelson 

ophiolites are described and compared to mid-ocean ridge basalts using 

MOAB (average mid-ocean ridge basnlt) normalized geochemical patterns. 

All samples plotted here are normalizGd to average mid-ocean ridge basalt 

(MOAB) concentrations as estimated by Pearce et al. (1981) and normalized 

geochemical patterns for rocks of the respective suites are presented in 

Figures 5.26a to 5.26f. As basaltic rocks of the East Nelson ophiolites have 

been affected by greenschist and sub-greenschist facies metamorphism, only 

trace eiements previously outlined as being immobile under greenschist facies 

conditions are plotted on these diagrams. 

From these figures (5.26a to 5.26f) it can be observed that a number 

of suites display geochemical pattern:.: which are virtually indistinguishable 

from those of other suites while some >J ... ites are compositionally quite distinct. 

Of the Lee River Group rocks, aphyric and clinopyroxene-phyric suite 

samples (Figures 5.26a and 5.26b) exhibit similar patterns whereby rocks of 

both suites are relatively flat; but, contain consistent Nb depletions, and 

normalized Th/Nb ratios greater than 1. As these geochemical patterns are 

indistinguishable, these rocks likely represent variably metamorphosed 

samples of a single compositional suite. Geochemical patterns for plagioclase 

porphyritic suite samples are also somewhat similar to those of aphyric and 



Figures 5.26a,b,c,d,e and f MOAB normalized geochemical patterns for 
basalts of the East Nelson ophiolites. Samples have been normalized 
to average mid-ocean ridge basalt values of Pearce et al. (1981 ). 
Symbols as used in Figure 5.4. 
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clinopyroxene-phyric suite rocks but generally contain lower elemental 

abundances and marked light rare earth element depletions (Figure 5.26c). 

Patterns produced for rocks of the Patuki and Croisilles •olivine-poor" 

suites are also quite flat (MOAB-like) but do not display Nb depletions 

(Figures 5.26d and 5.26e). From these patterns it can be seen that these 

rock suites are compositionally indistinguishable from one another and likely 

belong to a single suite. The rocks of these suites generally contain greater 

elemental abundances than average mid-ocean ridge basalt (ie. normalized 

values are greater than 1 ). 

Rocks cf the •olivine-rich· suite exhibit geochemical patterns markedly 

different from those of the forementioned suites (Figure 5.26e). Compared to 

average mid-ocean ridge basalt these rocks are enriched in Th, Nb, and the 

light rare earth elements and are slightly heavy rare earth element depleted. 

Through comparison of the geochemical patterns mentioned above and 

other previously discussed geochemical characteristics (eg., trace and rare 

earth element data and relict pyroxene compositions), petrographically defined 

basaltic suites of the East Nelson ophiolites can be compositionally redefined. 

Aphyric and clinopyroxene-phyric suite rocks are compositionally 

indistinguishable and are therefore considered to represent a single suite, the 

•aphyric/clinopyroxene-phync• suite. "Olivine-poor" suite rocks of the Patuki 

and Croisilles melanges are also compositionally indistinguishable and 

therefore might represent a single suite of rocks which has been tectonically 

severed and incorporated into two discrete units of melange material (the 

Patuki and Croisilles tectonic melanges). Average mid-ocean ridge basalt 
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normalized patterns for each of these compositionally defined basaltic suites 

of the East Nelson ophiolites are presented in Figure 5.27. 

By comparing these normalized patterns to those of basalts erupted at 

known tectonic settings, tectonic settings of eruption for each of the basaltic 

suites of the East Nelson ophiolites can be inferred. On Figure 5.28 a 

number of representative samples (basalts) from mid-ocean ridges, ocean 

islands and island-arcs have been pl0tted for comparison to those of the East 

Nelson ophiolites suites. These representative samples were selected from 

Sun (1980) and are baseci on least fractionated samples (see Sun, 1980 

p.301 ). Through comparison o~ these geochemical patterns it can be 

observed that: 

(i) the geochemical pattern for the "olivine-rich• suite is analogous to 

that of an ocean island a!~~li basalt ; 

(ii) "olivine-poor- .sdte basalts are similar to mid-ocean ridge basalts; 

but, display relatively flat patterns, therefore showing a closer resemblance to 

depleted or normal mid-ocean ridge basalts as there is no solective 

enrichment in Th, Ta, Nb, Ce, or P 20 5 as is typically observed within enriched 

mid-ocean ridge basalts; 

(iii) the aphyric/clinopyroxene-phyric suite pattern is somewhat 

transitional between that of depleted mid-ocean ridge basalts and island-arc 

tholeiites as it contains similar elemental abundances to that observed within 

depleted mid-ocean ridge basalts but also shows a pronounced depletion in 

Nb and Ta; a feature considered to be somewhat diagnostic of arc-related 

basalts (eg., Gill, 1981; Pearc9, 1982); and, 
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• "olivine-rich" 

t. "olivine-poor" 

o aphyric/clinopyroxene-phyric 

o plagiociase porphyritic 

Th Ta Nb Ce P205 Zr Hf Sm Ti02 Y Yb 

Figure 5.27 MOAB normalized average basaltic suite geochemical patterns 
for basaltic suites of the East Nelson ophiolites. Samples have been 
normalized to average mid-ocean ridge basalt values of Pearce et al. 
(1981). 
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Figures 5.28a MOAB normalized geochemical patterns for basalts of known, 
non-arc related tectonic settings. Samples have been normalized to 
average mid-ocean ridge basalt values of Pearce et al. (1981 ). Sample 
•=- estimated ocean island alkali basalt after Sun (1980); b= estimated 
enriched mid-ocean ridge basalt after Sun (1980); c- depleted mid­
ocean ridge basalt after Sun (1980). 

Figure 5.28b MOAB normalizad geochemical patterns for basalts of known, 
arc related tectonic settings. Samples have been normalized to 
average mid-ocean ridge basalt values of Pearce et al. (1981). Sample 
a- Mariana Trough back-arc basin basalt (DSDP hole 454A, Sample 5-
4) after Wood et al. (1982); b= estimated calc-alkali basalt after Sun 
(1980); C= Mariana Trough back-arc basin basalt (DSDP hole 456A, 
sample 13-1) after Wood et al. (1982); d= South Sandwich back-arc 
basin basalt (sample 020.438) after Saunders and Tarney, 1979; 8= 
estimated island-arc tholeiite after Sun (1980). 

• • I ~ ~ • • - . . ....:._ _ .. 
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(iv) rocks of the plagir~lase porphyritic suite resemble island-arc 

tholeiite but lack a pronounced positive Th anomaly commonly observed 

within island-arc tholeiitic basalts. 

From the above diagrams (Figures 5.27 and 5.26) it is clear that the 

relative elemental abundances observed within some suites, partlcular1y the 

"olivine-poor" and aphyric/clinopyroxene·phyric suites, are relatively high 

compared to those observed within mid-ocean ridga basalts and island-arc 

tholeiitic basalts. These features may be explained when the effects ot 

differentiation are considered, as most trace element coricentrations typically 

increase within basaltic melts with increased degroes of fractional 

crystallization. When this effect is taken into account, eltJmental abundances 

observed within basalts of the "olivine-poor" suite probably compare 

favourably with that of normal mid-ocean ridge basalts, while elemental · 

abundances observed within rocks of the aphyric/clinopyroxene-phyric suite 

better resemble those observed within island-arc tholeiites. 

Despite the absence of pronounced positive Th anorT'alies within 

basalts of the Lee River Group suites (aphyric/clinopyroxene-phyric and 

plagioclase porphyritic suites), it can be suggested on the basis of the 

negative Nb anomalies, that these suites have supra-subduction zone or arc 

related geochemical signatL!res. 

5.4 Summary 

As a result of ocean floor and regional metamorphic events of 

greenschist and sut).greenschist facies, mobilization of many trace and major 
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el9ments has taken place including the alkalis, alkaline earths, and to some 

extent, Si0
2
• As this is the case, basaltic rocks of the East Nelson ophiolites 

have been discriminated using immobile trace elements, ra!9 earth elements, 

and rellct pyroxene oompositions. 

Examination of these criteria within basaltic rocks of the various 

petrographic suites have shown that Lee River Group basaltic ncks are 

composed of t\· ·o chemically distinct suites whereby the petrographically 

defined aphyric and clinopyroxene-phyric suites represent variably 

metamorphosed equivalents of a single suite, the ".aphyric/clinopyroxene­

phyric'" suite, while rocks of the plagioclase porphyritic suite represent a more 

depleted/less fractionated suite of rocks of similar affinity. 

Basaltic rocks of the Patuki and Croisilles melanges also consist of two 

chemically distinct suites whereby "olivine-poor" suite basalts of both the 

Patuki and Crcisilles melanges are compositionally identical, therefore making 

up one suite, the "olivine-poor" suite; while "olivine-rich" suite basalts of the 

PatLJki m~lange represent t'1e other. 

Discrimination of these basaltic rocks through the use of chondrlte 

normalized rare earth element patterns, relict pyroxene compositions, trace 

element discrimination diagrams, and average mid-ocean ridge normalized 

geochemical patterns suggest; 

(i) basaltic rocks of the Lee River Group suites are tholeiitic in 

character and contain a compositional component similar to that observed 

within island-arc tholeHtes and therefore were likely erupted above a 

subduction zone; 

r 
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(ii) basalts of the •olivine-poor" suite (Patukl and Croisilles m~lange) 

are similar to tholeiitic basalts erupted at normal mid-ocean ridges; and 

(iii) ~oli'tine-rich· suite basalts resemble alkaline basalts erupted at 

within-plate oceanic islands. 

Although rocks of the Lee River Group suites contain an arc 

compositional component, a number of previously mentio.~~d trace element 

discrimination diagrams suggest that these rocks have compositional 

characteristics that arE somewhat transitional between normal mid-ocean ridge 

basalts and island-arc tholeiites (Figures 5.21, 5.24, 5.25). The subduction 

zone compositional component is obser1ed in these rocks as: 

(i) a selective enrichment of Th over Ta relative to mid-ocean ridge 

basalts (as observed from MOAB normalized geochemical patterns); 

(ii) a relative depletion in elements of high ionic potential compared to 

basalts erupted at mid-ocean ridges and withil"'·plate settings of similar Cr 

conten~ (eg. Figure 5.23); 

(iii) low TiN ratios (eg. Figure 5.25); and, 

(iv) relict pyroxene compositions whereby Lee River Group pyroxenes 

plot as o;ogenic basalts ancJ island-arc tholeiites on pyioxene composition 

based discrimination diagrams (eg., Figure 5.12b, and Figures 5.14a,d). 
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CHAPTER 6 

PETROGENESIS OF THE BASAL TIC ROCKS OF THE 

EAST NELSON OPHIOLITES 

6.1 Introduction 

It is evident from examination of petrographic and geochemical 

characteristics of basaltic rocks of the Dun Mountain Ophiolite Belt (East 

Nelson ophiolites) that at least two distinct ophiolite suites occur within the 

belt. These suites include the Dun Mountain Ophiolite (composed of mafic 

rocks of the Lee River Group and ultramafic rocks of the Dun Mountain 

Ultramafics Group) and the Patuki and Croisilles melanges (highly disrupted, 

ophiolitic, tectonic melanges). Through geochemical evaluation of these 

rocks, it has been proposed that the Dun Mountain Ophiolite was produced 

above a subduction zone while ophiolitic rocks of tha Patuki and Cro1silles 

melanges are considered to have formed as mid-ocean ridge basalts. 

ThiJ chapter attempts to evaiuate the petrogenetic processes involved 

in the formation of these ophiolitic rocks and reviews a number of models for 

their formation and emplacement. To provide constraints on the models 

presented here, field evidence as well as petrographic and geochemical 

evidence are used as much as possible; but, a number of additional 

assumptions are made on the basis of evidence collected from ophiolites of 

similar tectonic affinity which occur elsewhere in the wor1d. 

. . . . 
• • .. • "' ', '4 .. 10 I ' • • 
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Rocci et aJ. ( 1975) and Pearce et al. ( 1984) have previously reviewed 

some of the fundamental differences between ophiolites produced within 

supra-subduction zone and "normal" ocean basin environments. These 

differences can be outlined as follows. 

(i) Supra-subduction zone {SSZ) ophiolites and mid-ocean ridge 

(MOAB) ophiolites generally display dissimilar crystallization sequences. 

Within SSZ ophiolites, clinopyroxene (and sometimes orthopyroxene) typically 

crystallizes before plagioclase, while plagioclase usually crystallizes before 

clinopyroxene in MOAB ophiolites. This distinction can be observed through 

the examination of cumulate sequences from different ophiolites, whereby 

basal cumulate dunites in SSZ ophiolites are generally succeeded up 

sequence by lherzclites, wehrtites, norites and gabbros: while in MOAB 

ophiolites, basal dunites are followed up sequence by troctolites and gabbros. 

In present day oceanic settings; boninitic lavas are considered to have formed 

by fractionation of olivine -+ orthopyroxene --+ clinopyroxene; island-arc 

tholeiites by olivine -+ clinopyroxene -~ plagioclase: and, mid-ocean ridge 

basalts by olivine -+ plagioclase -+ clinopyroxene. 

(ii) SSZ ophiolites tend to contain larger volumes and more numerous 

occurrences of cumulate chromite-dunite bodies within their mantle sequences 

than do MOAB ophiolites. 

(iii) The mantle sequences of SSZ ophiolites tend to be dominated by 

harzburgite (typically between 80 and 90 percent) while mantle sequences of 

MOAB ophiolites are usually composed of both harzburgites and lherzolites 

where abundance of lherzolite may even surpass that of harzburgite, as in 
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many Western Mediterranean ophiolite complexes (Pearce et al., 1984). 

On the basis of these criteria, the Dun Mountain Ophiolite should be 

classified as a SSZ ophiolite, the evidence being: 

(i) The mantle sequence of the Dun Mountain Ultramafics Group is 

dominated by foliated harzburgite and contains only rare wehrlite (Davi& et al., 

1980). The bulk composition of these rocks has been approximated by 

Walcott (1968) to be: olivine Fo91, 70 percent; orthopyroxene, En88, 22 

percent; clinopyroxene, 5 percent; plagioclase, An96, less than 0.2 percent; 

and spinel, 2 percent. These rocks are therefore considered to be highly 

refractory and have likely undergone high degrees of partial melting. 

(ii) Numerous cumulus lenses of dunite containing significant amounts 

of chrome spinel are observed within upper portions of the mantle sequence. 

This suggests that crystallization of olivine and chrome spinel took place 

within the upper mantle prior to the ascent of partial melts into overlying 

magma chambers of the gabbroic complex. 

(iii) Although only upper portions of the gabbroic complex of the Dun 

Mountain Ophiolite are well preserved (except for rare occurrences of •critical 

zone• plutonic rocks found along faulted contacts between the gabbroic and 

ultramafic complexes), the cumulate mineralogy of these rocks suggests the 

following fractional crystallization sequence. Initial crystallization of olivine and 

chrome spinel, followed by olivine, clinopyroxene and chrome spinel (± 

orthopyroxene), and finally olivine, clinopyroxene, plagioclase (±chrome 

spinel). This sequence of crystallization agrees well with that determined by 

Challis (1965a) in which olivine and chrome spinel crystallization is overlapped 

,. - ,' '· ! ' , • 
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and followed by crystallization of clinopyroxene, and later, plagioclase. Other 

evidence which supports this sequence of crystallization is the phenocryst 

assemblage within the lavas {aphyric/clinopyroxene-phyric suite} of the Dun 

Mountain Ophiolite. Clinopyroxene is the dominant phenocryst phase while 

plagioclase is typically ol.Jserved as interstitial to intergranular crystals within 

the groundmass and only rarely as phenocrysts. 

The Patuki and Croisilles melanges (ophiolites) are somewhat more 

problematical because of their poor preservation. The only clear evidence of 

their tectonic affinity is their MOAB-like geochemical signatures. 

6.2 Petrogenetic Modelling 

6.2.1 Introduction 

In this section, processes involved in the magmatic evolution of basaltic 

rocks of the Dun Mountain Ophiolite and the Patuki and Croisilles melanges 

are evaluated on the basi"l of field relationships, petrographic and 

geochemical evidence. 

Although it can clear1y be argued that these rocks are somewhat 

altered it has clearly been shown that primary geochemical variations exist 

within each of the basaltic suites. On this basis an attempt is here made to 

evaluate possible genetic relationships between these suites; but it is 

necessary !o first explain the cause{s) of the "within-suite" variations. 

A number of petrogenetic variables commonly considered to be 

involved in the production of basaltic rocks are: 

(i) source heterogeneities; 
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(ii) the degree and nature of partial melting; 

(iii} the degree and nature of fractional crystallization (eg. Alabaster et 

at., 1982); and, 

(iv} mixing of magmas from partial melting of different mantle sources 

or mixing of mantle sources prior to melting (Langmuir et al., 1978}. 

A number of methods used to evaluate the affects of such processes 

on the composition of basalts are those of Treuil and Varet (1973), Pearce 

and Norry (1979}, Pearce ( 1982}; Alabaster et al. ( 1982) and Pearce et al. 

( 1984). In this approach, geochemical data is plotted on key covariation 

diagrams in which theoretical trends are illustrated for comparison with the 

trends defined by actual data. The present study uses an approach similar to 

this involving a number of trace element discrimination diagrams shown in the 

preceding chapter. To put constraints on the theoretical trends modelled 

here, field and petrographic evidence have been used as much as possible. 

6.2.2 Source Variations 

As the East Nelson ophiolites are considered to have formed in two 

tectonic environments, two types of source variations must be considered: 

(i) those which existed prior to subduction and involved mantle 

enrichment and depietion events unrelated to supra-subduction zone 

processes; and, 

(ii) those that have been directly caused by subduction and involve the 

transfer of a compositional component from subducted oceanic crust into an 

overlying mantle wedge. 
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These types of variations can be evaluated through the examination of 

particular trace element concentrations (eg. Pearce and Norry, ~ 97'9). 

Processes related to pre-subduction activity are considered to only affect 

elements that are mobile in C02-rich fluids or interstitial malts (ag., Frey and 

Green, 1974; Wood et al., 1979) and which are also considered to be 

incompatible with garnet lherzolite (Pearce, 1980). Of these elements, those 

that are the most incompatible and show the greatest variations include: Th, 

La, Ta. and Nb, while the less incompatible elements: K. Sr, Sm, Zr, and n 

show moderate variations. The compatible elements: Y, Yb, Cr, and Sc show 

very little variation (eg. Pearce, 1982). Elements considered to be involved in 

subduction-related processes, on the other hand, are considered mobile in 

H20-rich fluids (eg. Hawkesworth et al. 1979) and include a !~rge number of 

elements including: K, Rb, Ba, Sr a~ well as Th, P and the light rare earth 

elements (eg., Pearce, 1982; Alabaster et al., 1982). 

Througn careful selection and comparison of the elements mentioned 

above, a number of trace element covariation diagrams capable of 

discriminating source variations caused by pre-subduction and subduction 

related processes have been devised. Two such diagrams are the Th/Yb­

Ta/Yb covariation diagram of Pearce et al. (1981) and the Th-Hf-Ta diagram 

of Wood et al. (1979). These diagrams are particularly useful as they are 

somewhat independent of compositional variations caused by other processes 

including partial melting and fractional crystallization and use elements that 

are immobile under greenschist facies conditions. 
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The Th/Yb-Ta/Yb covariation diagram (Figures 6.1a and 6.1b) 

discriminates between basalts derived from mantle sources affected by within­

plate and supra-subduction processes by modelling trends or paths of 

evvlution from basaltic compositions back to a primordial mantle source 

composition (Pearce, 1981). On this diagram, mantle cumposit!onal variations 

produced by within-plate processes plot along a •within-plate• vector which 

passes through a primordial mantle composition and has a slope of unity 

(Figure 6.1 a). Mantle compositions are directed upwards for source 

enrichment and downwards for source depletion. By contrast, mantle 

enrichments caused by the addition of a supra-subduction zone component 

plot along a ·subduction vector- which is directed vertically upwards (Figure 

6.1a). 

From a Th/Yb-Ta/Yb plot (Figures 6.1 b) it appears that rocks of the 

Dun Mountain Ophiolite were derived from a depleted mantle sourc;e and that 

rocks of the plagioclase porphyritic suit& were likely produced from a more 

depleted mantle source than that which produced the aphyric/clinopyroxene­

phyric suite rocks. Basalts of the Patuki and Croisilles melanges, on the 

other hand, involve both depleted and enriched mantle sources. The •olivine­

poor- or MOAB suite basalts appear to have been derived from a less 

depleted mantle source than that which produced the Dun Mountain Ophiolite 

rocks, ' ... ,_ > basalts of the •olivine-rich" or within-plate suite were derived from 

an enriched mantle source. From this diagram it can also be noted that only 

rocks of the Dun Mountain Ophiolite exhibit a subduction zone component. 



Figure 6.1 a Th/Yb \·ersus Ta/Yb covariation diagram showing vectors of 
within-plate enrichment and depletion as well as supra-subduction zone 
enrichment. Primordial mantle composition is estimated after Alabaster 
et at. ! 1982). 

Figure 6.1 b Th/Yb versus Ta/Yb covariation diagram of Pearce et al. (1984). 
MOAB· mid-ocean ridge basalt; WPB· within-plate basalt; VAB· 
volcanic arc basalt; TH- tholeiitic; TR= transitional; ALK· alkalic; CA· 
calc-alkalic; SHO· shoshonitic; IAT= island-arc tholeiite. Symbols as 
used in Figure 5.16. 
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A similar diagram is the redefined (Wood, 1980) ternary diagram of 

Wood et al. (1979). Using this diagram, within-plate and subduction zone 

related mantle variations can again be modelled with reference to a 

theoretical mantle composition along "within-plate" and "subduction zone" 

vectors (Pearce et al., 1984). Within-plate mantle variations plot along a 

vertical vector which passes through an estimated bulk mantle composition 

and is directed downwards by within-plate enrichment and upwards by within­

plate depletion (Figure 6.2a). Thus a "petrogenetic pathway" for a normal 

MOAB basalt (path A) would involve within-plate depletion while the 

petrogenetic pathway for a within·plate basalt would involve within-plate 

enrichment (pathway 0). Subduction related mantle enrichment vectors, on 

the other hand, are inclined and directed towards the Th apex of the diagram. 

Thus, island-arc tholeiites would be produced along a pathway similar to that 

of "path 8" while the petrogenetic pathway for boninitic compositions would 

follow a path similar to that of "path C" as additional depletion is necessary to 

produce a more depleted composition prior to the addition of a subduction 

zone componen!. 

From t"le Wood (1980) ternary plot (Figure 6.2b) it can be seen that 

rocks of the Dun Mountain Ophiolite exhibit only a small subduction zone 

component and were likely derived from a depleted mantle source. !! is also 

worth noting here that rocks of the plagioclase porphyritic suite appear to 

have been derived from a source more depleted than that which produced the 

aphyric/clinopyroxene-phyric suite rocks; and, that they have likely evolved 

along a petrogenetic pathway similar to that suggested for boninitic lavas 



Figure 6.2a Petrogenetic pathways on a Th-Hf/3-Ta diagram for ophiolites of 
different tectonic affinities. Pathway "a" = ophiolites of mid-ocean ridge 
affinity; pathway "b" - ophiolites of island-arc tholeiitic affinities; 
pathway "c" • ophiolites of boninitic affinities; pathway "d" • within-plate 
mantle enrichment trend. 

Figure 6.2b Th-Hf/3-Ta basalt tectonic discrimination diagram of Wood 
( 1980). Symbols as used in Figure 5.16. NMORB- normal mid-ocean 
ridge basalts; EMORB- enriched mid-ocean ridge basalts; WPB­
within-plate basalts. 
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(path "C"). Basalts of the Patukl and Cro!silles melanges, on the other hand, 

again plot as two distinct suites along a within-plate vector. 

In addition to the diagrams mentioned above, further information on 

pre-subduction mantle variations can be gained from plotting basaltic 

comp~sitions on a Zr!Y-Zr diagram (Figure 6.3a) whereby basalts derived 

from an enriched mantle sou~ce contain greater Zr/Y ratios than those derived 

from depleted mantle. From this diagram, it was previously determined that 

rocks of the aphyric/clinO~JiCX·j~9-phyric suite of the Dun Mountain Ophiolite 

and the "olivine-poor" (MORB) ~uite of the Patuki and Croisilles melanges 

were derived from a depleted rnantle source similar to that which is 

considerad to proouce mid-ocean ridge basalts. Also on this diagram it was 

determined that rocks of the plagioclase porphyritic suite of the Dun Mountain 

Ophiolite appear t\> have been derived from a somewhat d&pleted source 

while ba&aits of the •olivine-rich" (within-plate) suite of the Patuki melange 

appear to have been derived from enriched mantle. 

Pre-subduction related mantle variations can be evaluated by 

comparing basalt compositions to a f.JIImordial mantle composition and 

modelling petrogenetic paths of evolution (Figure 6.3b). These petrogenetic 

pathways have been taken from Pearce and Norry (1979) and are based on 

the observation that Zr and not Y is affected by processes which cause 

mantle source heterogeneities (Pearce and Norry, 1979). On this diagram, 

the vector for within-plate source variations is defined by a line with a slope 

of unity that passes through an estimated primordial mantle composition. 

Along this vector, within-plate source enrichments are directed upwards while 



Figure 6.3a Basalt tectonic discrimination diagram of Pearce and Norry 
(1979). Symbols as used in Figure 5.16. 

Figure 6.3b Petrogenetic pathways for basaltic rocks from some typical 
volcanic suites plotted on a Zr/Y versus Zr diagram after Pearce and 
No~ry (1979). Full details of components of pathways and method of 
modelling are documented in Pearce and Norry (1979). C, - estimated 
primordial mantle composition after Pearce and Norry (1979). 
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Figure 6.3c Estimated petrogenetic p3thways for basaltic suites of the East 
Nelson ophiolites plotted on a 2r!Y versus Zr diagram. Lettered fields 
("a-d") have been drawn for the various suites; field "a" • "olivine-rich" 
within-plate basalt suite; field "b" = "olivine-poor" mid-ocean ridge basalt 
suite; field "c" • aphyric/clinopyroxene-phyric suite island-arc tholeiites 
of the Dun Mountain Ophiolite; and, field "d" • plagioclase porphyritic 
suite island-arc tholeiites of the Dun Mountain Ophiolite. Tectonic 
discrimination field boundaries from Pearce and Norry (1979) have also 
been drawn for comparison. C3 • estimated primordial mantle 
composition after Pearce and Norry ( 1979). 
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depletions are directed downwards. To model basalt compositions back to a 

source composition, lava compositions are projected back towards a point of 

intersection with the within-plate source variation line ~=!long trends of fractional 

crystallization and partial melting. 

The trends shown on Figure 6.3b have been modelled for an average 

crystallizing assemblage of olivine, 90 percent and chrome spinel, 10 percent 

followed by olivine, 20 percent, clinopyroxene, 30 percent, and plagioclase, 50 

percent, while partial melting trends are modelled assuming a source 

composition equivalent to olivine, 60 percent, orthopyroxene, 20 percent, 

clinopyroxene, 1 0 percent and plagioclase 1 0 percent in which the phases 

enter the melt in the ratio 3:1:4:4 respectively (after Pearce and Norry, 1979). 

These trends can be modelled for different degrees of open and closed 

system fractionation and partial melting. They do not however, produce 

compositions with marked differences in Zr!Y ratios when small changes are 

made to the petrogenetic variables involved (ie. degree of partial melting, 

open versus closed system fractionation, and the proportions of the phases 

involved) (Pearce and Norry, 1979). Hence, significant differences in Zr/V 

ratios observed between different rock suites can, for the most part, be well 

explained only by varying degreas of within-plate related mantle depletion or 

enrichment. 

From Figure 6.3c it can be therefore be suggested that: 

(i) Rocks of the plagioclase porphyritic suite were derived from a more 

depleted mantle source than that which produced aphyric/clinopyroxene-phyric 

suite rocks of the Dun Mountain Ophiolite or MOAB basalts of the Patuki and 
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Croisilles melanges. 

(ii) AphyriC'Jclinopyroxene-phyric suite basalts of the Dun Mountain 

Ophiolite and MOAB basalts of the Patuki and Croisilles melanges may have 

been derived from mantle sources which have undergone similar degrees of 

within-plate related depletion, but may have undergone different degrees of 

open system fractionation. 

(iii} Basalts of the within-plate ("olivine-rich") suite of the Patuki 

melange were derived from an enriched mantle source. The apparent range 

of mantle compositions associated with within-plate basalts may however, be 

explained in a number of ways including: systematic source heterogeneities; 

variations in the degree of partial melting of a garnet lherzolite source; 

progressive melting of a single source; fractional crystallization involving 

garnet as an important crystallizing phase (eg., Pearce and Flower, 1977; 

Pearce and Norry, 1979); and, partial melting of an upper mantle source 

which has been enriched in incompatible elements by C02-rich fluids or 

undersaturated melts derived from the asthenosphere or low-velocity zone 

(LVZ) (eg., Green, 1971; McCulloch et al., 1983; Hart, 1988; Nelson et al., 

1988). As assessment of such processes is beyond the scope of the 

present study they are not evaluated further. 

As for the difference in ZrN ratios observed between MOAB and 

within-plate basalts, Pearce and Norry' (1979) have concluded that these 

differences are likely the result of "long-lived" source heterogeneities rather 

than recent progressive melting variations. 
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6.2.3 Partial Melting and Fractional Crystallization 

One method of modelling the nature and degree of fractional 

crystallization, partial melting, and to some extent. magma mixing, is to use 

diagrams which plot a compatible element against an incompatible element. 

One such diagram that has been widely used and found to be effective in 

evaluation of these processes is the Cr-Y diagram of Pearce (1980). These 

elements are plotted (Figure 6.4a) as they are not significantly affected by 

processes which cause mantle heterogeneities. As a result, two assumptions 

can be made: 

(i) The mantle sources for basalts erupted from different tectonic 

settings probably contain Cr and Y abundances similar to primordial mantle 

concentrations (Pearce, 1980). 

(ii) Certain compositional variations observed between different basaltic 

suites can be attributed to differences in partial melting and fractional 

crystallization histories rather than mantle source heterogeneities (Pearce, 

1980). 

Another important feature of this diagram is that, unlike the previously 

described diagrams, trends defined for fractional crystallization and partial 

melting are quite distinct, and can therefore be discriminated from one 

another (Figure 6.4b). 

Figure 6.4b displays petroge,etic trends involved in the partial melting 

of a mantle source (after Pearce et al., 1984) composed of olivine, 60 

percent, orthopyroxene, 20 percent, clinopyroxene, 1 0 percent and 

plagioclase, 10 percent in which the phases melt in the ratio 3:1 :4:4 (as 



Figure 6.4a Cr versus Y variation diagram of Pearce (1980), Pearce et al. 
(1981) and Pearce et al. (1984). MORB· mid-ocean ridge basalt; 
VAB· volcanic arc basalt; WPB= within-plate basalt. Symbols as used 
in Figure 5.16. 

Figure 6.4b Petrogenetic pathways for ophiolites of different tectonic affinities 
plotted on a Cr versus Y diagram after Pearce et al. (1984). Pathway 
·c· - mid-ocean r1dge ophiolites; pathway ·b· - supra-subduction zone 
ophiolites of island-arc tholeiitic affinities; pathway •c• - supra­
su::x:tuction zone ophiolites of boninitic affinities. Full details of 
components of pathways and method of modelling are documented in 
Pearce et al. (1984). Estimated asthenosphere composition after 
?earce et al. (1984). 
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Figure 6.4c Estimated petrogenetic trends for basaltic rocks of the Dun 
Mountain Ophiolite plotted on a Cr versus Y diagram. Symbols as 
used in Figure 5.16. Field boundaries have been taken from Pearce et 
al. (1984). On this diagram basaltic rocks of Dun Mountain Ophiolite 
are suggested to have been produced by partial melting of an 
previously depleted mantle source. 

Figure 6.4d Estimated petrogenetic trends for "olivine-poor" suite basaltic 
rocks of the Patuki and Croisilles melanges plotted on a Cr versus Y 
diagram. Symbols as used in Figure 5.16. Field boundaries and 
partial melting trends taken from Pearce et al. (1984). 
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modelled in the ZrN-Zr diagram earlier in this chapter). From this diagram, it 

can be observed that during partial melting Y concentrations decrease within 

the melt with increased degrees of melting, while Cr concentrations are 

virtually unchanged. It can also be observed that melting trends run 

subparallel to the yttrium axis for smaller degrees of partial melting, as a 

result of residual phases such as chrome spinel, olivine, and pyroxene which 

act to buffer Cr concentrations (Pearce, 1980). 

In contrast to the partial melting trends, fractional crystallization trends 

are more linear, and tend to be steeper depending on the mineral phases 

involved. In Figure 6.4b, the steeper trends represent crystallization of olivine 

+ chrome spinel± clinopyroxene, while the shallower trends represent 

crystallization of olivine + chrome spinel + clinopyroxene + plagioclase. 

The petrogenetic paths used here are those of Peat·ce et al. (1984) 

and have been modelled for basalts of different tectonic affinity including 

boninite, island-arc tholeiite and MOAB compositions. The pathways have 

also been drawn in accordance with criteria obtained through observations of 

field and petrographic relationships from ophiolites produced in different 

tectonic settings. Pathway "c" repr&sents the pathway for typical basalts from 

MOAB ophiolites. Projection of MOAB basalt compositions back to the partial 

melting trend suggests that basalts of this type are typically derived from 15 

percent partial meHing followed by fractional crystallization of olivine + chrome 

spinel, followed by plagioclase and pyroxene. Pathway "b" represents the 

pathway for basalts from typical supra-subduction zone (SSZ) ophiolites. 

Projection of these compositions back to the partial melting trend ir:dicates 
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that one method of producing SSZ basalts is by higher degrees of partial 

melting of a similar source than that required for the production of MOAB 

ophiolites (approximately 30 percent), and that the involvement of plagioclase 

as an important crystallizing phase likely takes place later in the crystallization 

history. Pathway •a• represents the pathway of a typical boninitic composition 

from an ophiolite complex. Unlike the other pathways, projection of the 

boninitic composition back to the primordial mantle partial melting trend 

involves approximately 80 percent partial melting. As this situation is 

considered to be highly unlikely, a previously depleted mantle source is 

favoured by Pearce et al. (1984). The partial melting of a previously depleted 

mantle is indicated on Figure 6.4b. 

Through comparison of the pathways modelled by Pearce ·at al. (1984) 

for other ophiolites, the degree and nature of partial melting and fractional 

crystallization can now be evaluated for rocks of the East Nelson ophiolites. 

In Figures 6.4c and 6.4d data is plotted for rocks of the Dun Mountain 

Ophiolite and the •olivine-poor- (MOAB) suite of the Patuki and Croisilles 

melanges. On these figures, petrogenetic paths can be defined by the data 

for each of the suites plotted and suggest: 

(i) Tholeiitic rocks of the Dun Mountain Ophiolite (Figure 6.4c) were 

likely produced by processes similar to those thought to be involved In the 

production of island-arc tholeiitic basalts from typical SSZ ~phiolites. 

(ii) "Olivine-poor" suite basalts of the Patuki and Croisilles melanges 

(Figure 6.4d) were likely produced by processes similar to those thought to be 

involved in the production of MOAB. 
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In addition to these observations, other, more detailed observations can 

also be made from the data plotted. 

Rocks of the plagioclase porphyritic suite appear to have fractionated 

and possibly accumulated plagioclase relatively early in their petrogenetic 

history, while rocks of the aphyric/clinopyroxene-phyric suite appear to have 

crystallized plagioclase after various degrees of fractional crystalli.z:'ltion of 

olivine + chrome spinel ± clinopyroxene. This suggests that closed system 

fractionation operated during the production of these rocks as the initiation of 

plagioclas~ crystallization appears to have taken place at a variety of points 

along the olivine + chrome spinel ± ciinopyroxene crystallization path (Figura 

6.4c). As a result, a steady-state basalt composition was not maintained 

during the spreading history of the Dun Mountain Ophiolite, a feature 

commonly associated with slow spreading ridges (eg. Alabaster et al., 1982). 

In contrast to the rocks of the Dun Mountain Ophiolite, MOAB basalts 

of the Patuki and Croisilles melanges tend to plot along a fractional 

crystallization trend Involving crystallization of olivine + chrome spinel, and 

therefore suggest that open system fractional crystallization may have 

operated during production of these MOAB basalts, a feature often associated 

with fast spreading ridges (eg. Alabaster et al., 1982). 

Since the degree of partial melting approximated for production of the 

island-arc tholeiitic suites from Pearce et al.'s estimated asthenosphere source 

composition is quite high (approximately 35 percent); it is proposed that these 

suites were likely produced by smaller degrees of partial melting involving an 

already depleted mantle source (here estimated to have undergone 10 
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percent partial melting prior to production of the Dun Mountain Ophiolite as 

indicated in Figure 6.4c). This explanation foi the deplet~d character of these 

rocks follows those of previously proposed models that seek to explain the 

petrogenesis of supra-subduction zone basalts including island-arc tholeiites 

and boninitic lavas (eg. Green et al., 1987). 

The petrogenetic history of •olivine-rich• (within-plate) suite basalts of 

the Patuki melange is not assessed on the above Cr-Y diagrams. However it 

is proposed that basalts of this nature are produced by: 

(i) partial melting of a heterogeneous mantle source in which garnet 

may be involved as a major phase (eg. Pearce and Flower, 1977); or, 

(ii) partial melting of an upper mantle source which has been enriched 

in incompatible elements by C02-rich fluids or undersaturated melts derived 

from the asthenosphere or low-velocity zone (LVZ) (eg., Green, 1971; 

McCulloch et al., 1983; Hart, 1988; Nelson et at., 1988). 

Such partial melting and fractional crystallization trends are not 

modelled here as it is difficult to place realistic constraints on source 

compositions and paths of petrogenetic evolution. 

6.3 Summary 

It appears that as many as four compositionally distinct mantle sources 

may have been involved in tt1e production of basaltic rocks of the East 

Nelson ophiolites. Within the Dun Mountain Ophiolite, rocks of the 

plagioclase porphyritic suite appear to have been derived from a highly 

depleted mantle source, which in some ways, resembles that which is 
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considered to produce lavas of boninitic compositions. Rocks of the 

aphyric/clinopyroxene-phyric suite; however, appear to have been derived from 

a less depleted source which is slightly more depleted than mantle 

compositions which are believed to produce normal mid-ocean ridge basalts. 

As for basalts of the Patuki and Croisilles melanges, rocks of the "olivine­

poor" or MOAB suite appear to have been derived from a depleted mantle 

source similar to that which is considered to produce normal MOAB basalts 

while basalts of the "olivine-rich" or within-plate alkali basalt suite appear to 

have been derived from an enriched mantle source. This enriched source 

appears to have included a broad range of compositions as suggested by the 

spread of the geochemical data. 

In terms of partial melting and fractional crystallization processes, rocks 

of the Dun Mountain Ophiolite and "olivine-poor" (MOAB) suite appear to 

have followed petrogenetic paths similar to those defined for island-arc 

tholeiites and mid-ocean ridge basalts respectively. Rocks of the Dun 

Mountain Ophiolite appear to have formed by closed system fractionation, 

while "olivine-poor" (MOAB) suite basalts may have formed by open system 

fractionation. 
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CHAPTER 7 

TECTONIC MODELS 

7.1 Introduction 

Tectonic modelling of the formation and emplacement of the Dun 

Mountain Ophiolite Belt has in the past been hampered as tectonic 

reconstructions of Gondwana's late Palaeozoic "Pacific" margin were proposed 

in the absence of knowledge of the number, polarity and nature of arcs, 

subduction zones, and cruS1al types involved. In the absence of such 

constraints the tectonic evolution of the East Nelson ophiolites has b~come 

the topic of much debate. This study attempts to provide additional 

conS1raints for models of the evolu1ion of the rocks. These constraints are 

the result of examination of new geochemical and petrographic data as well 

as observation of field relationships from ophiolites of the Nelson segment of 

the Dun Mountain Ophiolite Belt (East Nelson ophiolites). In this section, the 

implications of this work are discussed in light of previously proposed models 

and a number of possible models are reviewed. 

7.2 Previous Tectonic Models 

Previously proposed tectonic models for the formation of the Dun 

Mountain Ophiolite Belt (induding the ophiolites of East Nelson) can be 
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divided into three distinct groups: 

(i) those that suggest the Dun Mountain Ophiolite represents spreading 

in a fore-arc basin east of the Brook Street volcanic arc above a westward· 

dipping subduction zone (eg., Coombs et al., 1976; Davis et aJ., 1980); 

(ii) those that suggest the Dun Mountain Ophiolite represents oceanic 

crust formed in a mid-ocean ridge type basin that has been juxtaposed 

against rocks of the Brook Street volcanic arc by subduction (eg. Coombs et 

al., 1976); and, 

(iii) those which propose the Dun Mountain Ophiolite was formed by 

back-arc spreading behind the Brook Street volcanic arc above an eastward­

dipping subduction zone (eg. Coombs et al., 1976). 

Until recently, the Brook Street and Murihiku terranes were considered 

to share a sedimentary contact, with a number of workers suggesting the 

Brook Street terrane may have been involved as a source of detritus for 

sedimentary rocks of the Murihiku and Maitai terranes (eg., Coombs et al., 

1976; Howell, 1980; MacKinnon, 1983; and Bishop et al., 1985). Landis et al. 

(1987) and Landis (1987) have however, shown that the Brook Street and 

Murihiku terranes share only faulted contacts. Frost and Coombs (1987) and 

Coombs (1988; see Haston et al., 1989) have also suggested on the basis of 

neodymium isotope data that tha Brook Street terrane has a mantle source, 

while the Murihiku terrane has a continental origin. These observations, 

coupled with palaeomagnetic evidence presented by Haston et al. (1989) 

suggests the Brook Street and Murihiku terranes are genetically distinct, and 

indicate that there are no clear1y demonstratable links between the Brook 
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Strelfl and other terranes of New Zealand's Eastern Province prfor to Late 

Cretaceous time (see Haston et al., 1989). In light of these observations, 

models which do not propose genetic links between the Dun Mountain 

Ophiolite and the Brook Street terrane are t:iiscussed here for the origin of the 

Dun Mountain Ophiolite and the other East Nelson ophiolites. 

Models proposed for formation of the Dun Mountain Ophiolite and its 

incorporation within the Dun Mountain Ophiolite Belt are constrained by a 

number of features observed within the ophiolite and the associated Patuki 

and Croisilles melanges. These constraints include: (i) the relative ages of 

the ophiolites and their associated sediments; (ii) field relationships exhibited 

by rocks of the belt; (iii) the distinct geochemical characteristics of rocks of 

the Dun Mountain Ophiolite and the Patuki and Croisilles melanges; and, (iv) 

the regional setting of the East Nelson ophiolites. 

7.2.1 Age Dates 

Age dates for rocks of the East Nelson ophiolites have been produced 

both radiometrically and by fossil dating. These ages suggest that: 

(i) the Dun Mountain Ophiolite is of Lower Permian age (268 Ma by U­

Pb; Kimbrough and Coombs, 1988); 

(ii) the oldest sedimentary rochs (dated) which overly the Dun Mountain 

Ophiolite, the Wooded Peak Limt'stones, are late Middle Permian (Punjabian) 

age (Waterhouse, 1979); 

(iii) ophiolitic rocks cf the Croisilles melange are of Lower Permian age 

(280-283 Ma,U-Pb: 265-272 Ma, K-Ar; Dickins et at., 1986); and, 
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(iv) sedimentary blocks within the Croisilles melange that likely 

represent sedimentary material deposited on the Croisilles ophiolite are 

considered to be Upper Permian in age {Oickins et al., 1986). 

Relative ages of these rocks suggest that ophiolitic rocks and 

associated sediments of the Dun Mountain Ophiolite and the Patukl and 

Croisilles melanges are of similar age,. 

Ages of what may be subductic.n related metamorphic events, formation 

of shear zone associated amphibolite within the Patuki/Croisilles melanges, 

indicate these events as having occurred 202-216 Ma ago (K-Ar; Sivell, 

1988). This suggests that tectonic emplacement of the melanges may have 

occurred by Middle Triassic time. 

Another point worth noting here is that it is generally accepted that 

rocks of the East Nelson ophiolites were juxtaposed against rocks of the 

Caples-Pelorus terrane prior to deposition of Late Jurassic Torlesse sediments 

(eg .• Coombs et al., 1976; Carteret al., 1978). 

The above chronological information suggests rocks of the Dun 

Mountain Ophiolite and the Patuki and Croisilles melanges are of similar age 

and that they were juxtaposed by Middle Triassic times, possibly earlier. 

7.2.2 Field Relationships 

Rocks of the Dun Mountain Ophiolite are unconformably overlain by the 

basal formation of the Maitai Group, the Upukerora Formation. 

It is proposed here that the CiOisilles and Patukl ophiolitic melanges 
represent vestiges of the same ocean crust and are of similar age. 
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Conglomerates of the Upukerora Formation appear to hdve been derived from 

material eroded from upper levels of the ophiolite and were likely deposited 

during a period of extensive uplift and erosion as they in places, directly 

overfy gabbros of the ophiolite. Upukerora conglomerates aru in turn overiain 

by limestones of the Wooded Peak Formation. These limestones are 

considered to be Punjabian age (late Middld Permian) and were likely 

deposited after a depositional hiatus, as clasts of Wooded Peak Limestones 

are not observed within the Upukerora Formation. Unfortunately, the author 

is unaware of any reliable age dates for the Upukerora Formation but it is 

likely Middle Permian age. It is also worth noting here that sheeted dyke 

sequences are in places orientated su:>-parallel to the Maitai Group-ophiolite 

contact, suggesting extensive listric faulting and block rotation may have 

occurred prior to deposition of Maitai Group sediments. 

Rocks of the Patuki melange are separated from those of the Dun 

Mountain Ophiolite by a faulted contact situated at the base of the Dun 

Mountain Ultramafics Group. As a result, rocks of the Patuki melange are 

considered to structurally under1ie the Dun Mountain Ophiolite. 

Both the Patuki and Croisilles melanges are considered to represent 

vestiges of oceanic crusts (ophiolites) preserved as tectonic melanges. Both 

consist of blocks of ophiolitic material suspended in matrices of sheared 

serpentinite (and locally sheared sediments). Unfortunately, no internal order 

could be consistently established within these units; although at some 

localities, blocks appear to be arranged in a semi-ordered sequence as 

sedimentary and volcanic rocks outcrop along the melange's western margin 
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while blocks of ultramafic material outcrop along the eastern contact. 

In terms of structural and metamorphic relationships, rocks of the Dun 

Mountain Ophiolite Belt appear to have undergone two major episodes of 

deformation and metamorphism. The first episode is credited with 

deformation and greenschist grade metamorphism of the ophiolites on the 

ocean floor while the second episode is attributed to regional tectonism and 

sub-greenschist grade metamorphism of the ophiolites during and after 

emplacement. 

While on the sea-floor, rocks of the Dun Mountain Ophiolite appear to 

have undergone extensive deformation which produced zones of ductile 

deformation at the base of the high level gabbros. Within these zones 

gabbroic rocks are amphibolitized and have a flazered appearance. Locally, 

these zones are intruded by rare, relatively undeformed diabase dykes 

suggesting deformation within the zones occurred on the sea-floor. These 

amphibolitized zones are typically observed along the fault contact between 

gabbros and ultramafics rocks of the Dun Mountain Ophiolite and may have 

acted as early planes of weakness which were utilized during initial obduction 

events. 

7.2.3 Petrological and Geochemical Data 

Petrographic and geochemical relationships observed within mafic rocks 

of the East Nelson ophiolites suggest the Dun Mountain Ophiolite and the 

Patuki and Croisilles melanges represent two distinct ophiolitic assemblages, 

the Dun Mountain Ophiolite being composed of oceanic crust produced in a 
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marginal basin above a subduction zone, while the melanges represent 

vestiges of ocean crust(s) produced within a normal ocean basin at a mid­

ocean ridge and within-plate volcanoes. Trace element concentrations 

observed within basaltic rocks of the Dun Mountain Ophiolite suggest 

spreading occurred above a subduction zone in which oceanic crust was 

subducted below oceanic crust as their is no evidence of contamination by 

continental crustal material (as suggested by the ophiolites low Zr/Y ratios). 

As basaltic rocks of the Patuki and Croisilles melanges are 

compositionally indistinguishable (aside from the absence of within-plate alkali 

basalts within the Croisilles m"ange), it is suggested here that the m"anges 

represent highly disrupted portions of the same ocaan basin. 

Since initiation of this study, Sivell {1988) has described the occurrence 

of an additional suite of mafic rocks within the Croisilles melange. These 

rocks consist of a younger suite of cross-cuting dykes and irregular intrusions 

which are compositionally similar to island-a!C tholeiites. Sivell (1988) 

suggests these rocks were produced as a result of partial melting of depleted 

mantle above a subduction zone after oceanward stepping-out of a westward­

dipping subduction zone. 

7.2.4 RegiC':·-:1 Setting 

It has ~. 'H n proposed by previous wot1(ers (eg., Coombs et al., 1976; 

Davis et al ., 1980) that rocks of the East Nelson ophiolites were involved in 

the evolution of a westward-dipping subduction zone, now represented by the 

faulted contact at the base of the Dun Mountain Ophiolite. Previously 
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presented evidence which supports the existence of a remnant subduction 

zone at this location is based upon: 

(i) the observation of the positive Junction Magnetic Anomaly 

(Hatherton, 1969) which has been traced by Hatherton (1969) and Hatherton 

and Sibson (1970) for a distance of 670 kilometres and possibly 11 00 

kilometres (see Coombs et al., 1976); 

(ii) observed differences in structural and metamorphic styles between 

rocks of the Dun Mountain-Maitai terrane and the adjacent Caples-Pelorus 

terrane (eg., Coombs et al., 1976); 

(iii) the tectonic position and facing direction of the Dun Mountain 

Ophiolite (e~ . Coombs et al., 1976). 

7.3 Tectonic Models 

In light of the geological evidence outlined above a number of 

assumptions can be made about the formation and emplacement of the East 

Nelson ophiolites. 

The ophiolites represent oceanic crusts produced in at least two 

different ocean basins during the Lower Permian and were likely juxtaposed 

against one another by Middle Triassic time, possibly earlier. 

The Dun Mountain Ophiolite appears to have undergone a period of 

extensive uplift and erosion prior to late Middle Permian Time. 

The base of the Dun Mountain Ophiolite represents a major structural 

discontinuity which is regional in extent and likely represents the hanging wall 

of a once active subduction zone. 
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Rocks of the Patuki melange are considered to structurally under11e 

those of the Dun Mountain Ophiolite and are likely representative of oceanic 

crust subducted prior to Middle Triassic time. 

In light of these considerations it is proposed here that the Dun 

Mountain Ophiolite was produced by igneous activity above a westward· 

dipping subduction zone in which normal ocean crust, represented by the 

Patuki and Croisilles m~langes, was subducted during Lower Permian times 

(Figure 7.1a). Although the crusts involved a:·e of similar age, it is suggested 

that subducted ocean crust was produced at a mid-ocean spreading ridge 

east of the trench and therefore older crust was initially subducted2
• 

Subduction of this older crust induced partial melting of depleted mantle 

material above the subduction zone after hydration of the mantle and variable 

enrichment in hygromagmatophile elements such as Th had taken place. 

This melting produced intrusion and volcanism at a spreading ridge or ridges 

similar to those associated with early stages of arc volcanism at an incipient 

island-arc {eg. Natland and Tarney, 1981 ). At this ridge (or ridges) tholeiitic 

basalts of the Dun Mountain Ophiolite were extruded (Figure 7.1b). 

At some time prior to late Middle Permian time (Punjabian), rocks of 

the Dun Mountain Ophiolite underwent a period of extensive uplift and erosion 

which produced conglomeratic deposits of the Upukerora Formation and later 

deposition of limestones of the Wooded Peak Formation (Figure 7.1c). This 

period of uplift and erosion may have resulted from jamming (possibly due to 

2 Radiometric age dates suggest that it is likely that ophiolitic rocks of the 
Patuki and Croisilles melanges are slightly older than those of the Dun Mountain 
Ophiolite. 



Figure 7.1 Schematic tec1onic model for evolution of the East Nelson 
ophiolites. During the Early Permian, subduction of oceanic basement 
material took place (diagram "A") beneath other oceanic crust of 
unknown composition (possibly similar to that being subducted). This 
activity induced partial melting of the overlying crusts due to hydration 
of mantle material above the subducted slab (diagram "8"). As a 
result active sea-floor spreading was initiated and oceanic crustal 
material of the Dun Mountain Ophiolite was formed. By the late Middle 
Permian the subduction zone is considered to have jammed; possitJiy 
due to failed subduction of seamounts associated with the Patuki 
m61ange (diagram ·c"). This resulted in oceanward stepping out of 
subduction, uplift and erosion of the Dun Mountain Ophiolite, and later 
deposition of Maitai Group Limestones. By Late Permian (possibly 
Early Triassic) this second episode of subduction may have produced 
partial melting gnd intrusive activity within -.rapped• oceanic crust 
(diagram "D•) above the subduction zone (as represented by stage Ill 
plutonic rocks of SivaJI, 1988; see text). By the Early Cretaceous the 
East Nelson ophiolites are considered to have been juxtaposed against 
rocks of the Caples·Pelorus terrane and largely destroyed by 
subsequent tectonic activity. See text for details. 
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subduction of oceanic seamounts on Patuki oceanic crust) and possible 

oceanward stepping-out of the subduction zone. Cessation of subduction 

likely marked the end of igneous activity within the marginal basin {the Dun 

Mountain Ophiolite) as basaltic rocks of the ophiolite are not observed 

intruding limestones of the Wooded Peak Formation. 

Stepping-out of the subduction zone likely induced arc related igneous 

activity to the east of the Dun Mountain Ophiolite within trapped normal ocean 

basin crusts of the Patuki and Croisilles melanges (Figure 7.1 d), as indicated 

by the presence of island-arc tholeiitic intrusive rocks within the Croisilles 

melange as observed by Sivell (1988). Sivell suggests this igneous activity 

likely took place prior to or during Triassic time. Such activity may also 

explain the separation of rocks of the Croisilles melange from those of the 

Patuki melange as tectonic activity related to the cessation of subduction may 

have caused deformation and uplift of blocks of the oceanic basement 

material of the subducting plate outboard (oceanward) of the subduction zone. 

It should be noted here however, that other explana~ions for emplacement of 

the Croisilles melange exist. It is possible that rocks of the Crolsilles 

melange represent portions of Patuki melange that have been displaced by 

strike-slip movements along faults during the Rangitata and Kaikoura 

orogenies. 

7.4 Discussion 

Although a fore-arc model for formation of the Dun Mountain Ophiolite 

is favoured here, a number of alternat:ve models can also be proposed to 
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explain formation of the Dun Mountain Ophiolite and its relationship to the 

other East Nelson ophiolites. 

Coombs et al. (1976) posed the possibility that the Dun Mountain 

Ophiolite may represent oceanic crust produced within a back-arc basin. If 

this was the case, it is likely that arc related calc-alkaline crusts would be 

preserved within or along side rocks of the Dun Mountain Ophiolite, 

particularly if island-arc tholeiites of the ophiolite were produced during initial 

stages of formation of a back-arc basin. Such rocks were not observed. If, 

on the other hand, the Dun Mountain Ophiolite represents oceanic crust 

produced within an evolved back-arc basin; it is likely basaltic rocks similar to 

mid-ocean ridge basalt would be observed similar to those observed within 

the Lau Basin (eg. Hawkins and Melchoir, 1985). Such compositions were 

not observed within the Dun Mountain Ophiolite. Other complications to such 

a model include the existence of an eastward-dipping subduction zone to the 

west of the Dun Mountain Ophiolite during the Lower Permian and a reversal 

of subduction zone polarity. Due to the complexity of such a model a fore­

arc model is favoured here; however, it is possible th~t rock types diagnostic 

of a back-arc basin were destroyed or displaced during subduction or later 

tectonic events. 

Aside from the model's simplicity, evidence which may support fore-arc 

formation of the Dun Mountain Ophiolite includes the existence of the highly 

depleted, plagioclase porphyritic suite diabase dykes and gabbro within the 

ophiolite. The highly depleted nature and supra-subduction zone chemistry of 

these rocks suggest they may have been produced by processes similar to 
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those believed to be responsible for the genesis of boninitic or "low· Ti• lavas. 

Basaltic rocks of this nature are commonly associated with initial stages of 

fore-arc spreading in supra-subduction environments (eg. Mariana fore-arc; 

Natland and Tarney, 1981) or ophiolite complexes (eg. western Tasmania, 

Brown and Jenner, 1989). 

Although the existence and location of adjacent island-arcs are not 

indicated within the model proposed here, it has been suggested that oceanic 

crusts of the Dun Mountain Ophiolite and Patuki and Croisilles m61anges are 

over1ain by sediments which may have an arc signature (eg., Davis et at., 

1980; Dickins et at., 1986; Landis and Blake, 1987). As a result, it has 

previously been proposed that an island-arc or island-arcs had existed in the 

vicinity of East Nelson ophiolites. If such was the case, it is likely that ocean 

crusts of the East Nelson ophiolites were formed along an oceanic-oceanic 

plate boundary in the vicinity of evolved island-arcs. A modern analogy of 

such an environment may include ocean crusts of the Philippine Sea or Lau 

Basin where marginal basin crusts occur along destructive plate boundaries 

involving crusts of the Pacific Plate. These boundary areas are characterized 

by fore-arc crusts of the Mariana fore-arc and fore-arc regions of the Tonga 

Ridge. 

Although stepping-out of a westward-dipping subduction zone is 

suggested in the model presented here, other hypotheses have been 

proposed to explain the existence of arc related intrusive rocks within the 

Patuki melange of north D'Urville Island. As the Patuki melange consists of 

highly disrupted ophiolitic blocks suspended in a matrix of sheared 
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serpentinite, and rocks of the East Nelson ophiolites have been disrupted by 

faults related to movements along the Alpine Fault during the Rangitata and 

Kaikoura orogenies (eg. Johnston, 1981 ); it is possible that tectonic blocks of 

gabbroic material of the Dun Mountain Ophiolite may havs been tectonically 

incorporated within the Patukl melange. Such occurrences are likely rare but 

may explain the existence of arc related rocks within the Patukl melange as 

well as the noted resemblance (Sivell, 1988) of these rocks to those of the 

Dun Mountain Ophiolite. 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

In the East Nelson area, the East Nelson ophiolites comprise potentially 

three separate ophiolite suites; the Dun Mountain Ophiolite, the Patuki 

melange and the Croisilles melange. 

The Dun Mountain Ophiolite represents an ophiolite suite comprised of 

mafic volcanic and plutonic rocks of the Lee River Group and underlying 

ultramafic rocks of the Dun Mountain Ultramafics Group. The contact 

between these units is marked by faulting along which basal gabbros of the 

Lee River Group are commonly highly deformed and amphibolitized taking on 

a flazered appearance. Diabase intrusive relationships suggest that initiation 

of this deformation took place while the ophiolite was evolving on the sea 

floor. 

Rocks of the Dun Mountain Ophiolite, for the most part, lack cumulate 

gabbroic sequences commonly observed in other ophiolites such as Troodos 

in Cyprus or the Bay of Islands in Newfoundland. It is probable that these 

rocks were tectonically removed during obduction and later tectonism of the 

ophiolite; however, local occurrences of critical zone gabbros are observed in 

places as fault bounded blocks along the faulted contact between mafic rocks 

of the Lee River Group and Dun Mountain Ultramafics Group (eg. Red Hills 



western margin). These rocks are considered to represent crystal fractionates 

of the overlying Lee River Group high level gabbros. 

Overlying mafic volcanic and plutonic rocks of the Lee River Group are 

local accumulations of conglomeratic material composed of clasts of mafic 

volcanic and plutonic rocks suspended in a sand and mud matrix. This 

sedimentary unit is known as the Upukerora Formation. Clasts within this 

formation closely resemble lithologies observed within higher levels of the Dun 

Mountain Ophiolite (Lee River Groupj and a number of pyroxenes analyzed 

from clasts were found to be compositionally similar to those observed within 

volcanic and subvolcanic rocks of the Lee River Group. 

The Patuki and Croisilles ophiolitic melanges lie in fault contact with, 

and structurally underlie rocks of the Dun Mountain Ophiolite, but are 

separated from one another by sedimentary rocks of the Rai terrane. The 

melanges consist of blocks of sedimentary, mafic to ultramafic volcanic and 

plutonic rocks suspended in matrices of sheared serpentinite and locally 

sheared sediments. Although these rocks are highly disrupted they are 

considered to represent vestiges of true ophiolitic assamblar.~s as the various 

lithologies of an ophiolite are observed within blocks of the melanges. As the 

melanges are highly tectonized and disrupted it is suggested that these rocks 

represent fragments of oceanic crust which have been subducted beneath the 

Dun Mountain Ophiolite. 

Petrographic and geochemical evidence suggests the Dun Mountain 

Ophiolite consists of two distinct mafic suites of i.;land-arc tholeiite 

composition; a plagioclase porphyritic suite and an aphyric/clinopyroxene· 
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phyric suite. Rocks of the aphyric/clinopyroxene-phyric suite represent more 

than 95 percent of the diabasic and volcanic rocks of the ophiolite while rocks 

of the plagioclase porphyritic suite are estimated to make up less than 5 

percent. Field relationships suggest rocks of the plagioclase porphyritic suite 

were intruded intermittently during the ophiolite's evolution. 

Both suites of the Dun Mountain Ophiolite appear to have been derived 

from a depleted mantle source above a subduction zone, and contain a 

supra-subduction zone compositional component. Rocks of the plagioclase 

porphyritic suite; however, appear to have been derived from a slightly more 

depleted source than rocks of the aphyric/clinopyroxene-phyric suite. The 

chemical compositions of these suites suggest the Dun Mountain Ophiolite 

was formed by sea-floor spreading above a subduction zone in a marginal 

basin. 

Basaltic rocks of the Patuki and Croisilles melanges can also be 

divided into two petrographically and geochemically defined suites, an "olivine­

poor" suite and an "olivine-rich" suite. Both suites are petrographically similar 

but can be roughly distinguished by the relative abundances of olivine 

phenocrysts. Basalts of the "olivine-poor" suite generally contai11s less than 1 

percent olivine phenocrysts while basalts of the "olivine-rich" suite generally 

contain more than 5 percent olivine phenocrysts. Both suites are observed 

within ophiolitic blocks of the Patuki melange however, only basalts of the 

"olivine-poor" suite are recognized within the Croisilles melange. Due to the 

identical petrographic and compositional nature of "olivine-poor" suite rocks 

!rem the Patuki and Croisilles melanges, it is proposed that these rocks 



3i.5 

represent vestiges of oceanic crusts from the same ocean basin and may 

represent disrupt€.d portions of a single ophiolite sequene;e. 

Chem;cal evitjence suggests the "olivine-poor" and "olivine-rich" suites 

were produced in two distinct tectonic environments; basalts of the "olivine­

rich" suite bsi ng compositionally similar to alkaline basalts erupted at within­

plate ocean islands, while "olivine-poor" suite basalts resemble basalts 

erupted at mid-ocean ridge type settings. This suggests rocks of the Patuki 

and Croisilles melanges were produced within a normal ocea.n basin similar to 

that of the Pacific Plate as oceanic basement and superimposed seamounts. 

Petrogenetic evaluation of basaltic rocks of the East Nelson ophiolites 

suggest rocks of the Dun Mountain Ophiolite were produced by closed system 

fractionation at what was likely a slow spreading ridge, while "olivine-poor" 

suite basalts were more likely produced by open system fractionation at a 

faster spreading ridge. 

A fore-arc environment of formation is favoured hei a for the origin of 

the Dun Mountain Ophiolite in which oceanic crust was subducted beneath 

oceanic crust and incipient arc related volcanism was induced above a 

westward-dipping subduction zone to produce the Dun Mountain Ophiolite. 

By this model the Patuki and Croisilles melanges are considered to represent 

fragments of normal ocean crusts sheared off the subducted slab during 

subduction and separated either by tectonic mover11ents related to cessation 

of subduction or later faulting associated with the Rangitata and Kaikoura 

orogenies. This model does not suggest any direct genetic links between the 

East Nelson ophiolites and island-arc rocks of the Brook Street terrane. It 
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should be noted however, that until palaeomagnetic studies are conducted on 

rocks of the East Nelson ophiolites, the possibility remains that the these 

terranes are related and that they may have been brour;ht into contact with 

rocks of the Murihiku terrane during tectonic movements associated with the 

Rangitata or Kaikoura orogenies. 

Confirmation of thl3 model presented here requires further detailed 

work, particulary in the areas of palaeomagnetic reconstructions and dating of 

petrogenetic and sedimentary events within terranes of New Zealand's 

Eastem Province. Such information may enhance knowledge of the number, 

polarity and nature of arcs, subduction zones, and ocean basins involved in 

the evolution of Gondwana's late Palaeozoic "Pacific" margin. In the absence 

of such tectonic constraints, relationships between various terranes of New 

Zealand's Eastern Province remain a mystery. 
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APPENDIX A 

ANALYTICAL METHODS 

Specimens chosen for analyses were selected with the a:m of obtaining 

a representative sampling of the various rock types studied. In order to 

overcome, as much as possible. problems associated with alteration; efforts 

were made to avoid sampling rocks which showed any obvious macroscopic 

evidence of alteration (eg., veining. oxidation, amygdules, altered pillow 

margins). Further screening of specimens was done during petrographic 

study of the rocks prior to analysis. 

A.2 Sample Preparation 

After removing weathered surfaces, samples were broken into 3 to 4 

centimetre pieces using hammer. These were then crushed to chips (less 

than 0.5 centimetres) using a Braun "chipmunk• jaw-crusher. The contact 

plates of this machine were brushed and scrubbed between processing of 

each samples so as to minimize contamination. A portion of these smaller 

chips were then pulverised in one of two ways, (i) in an agate bowl or (ii) a 

tungsten-carbide bowl. To clean these bowls between samples, silica sand 

was pulverised and discarded and then the bowls were cleaned with using 

water and methanol. 
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APPENDIX B 

ANALYTICAL METHODS 

Major and minor oxides were determined by atomic absorbtion. By this 

process 0.1000 grams of 100 mesh rock powder from each sample was 

weighed into a flask. 5 millilitres of a concentrated hydrofluoric acid and 50 

millilitres saturated boric acid solution was added to each flask to dissolve the 

sample. This mixture was then diluted by adding 145 millilitres of distilled 

water and further diluted with lanthanum oxide and distilled water. Samples 

were then compared to standards of known amounts of major oxides. Initial 

readings for percent absorbtion were obtained frJr the standards , then for the 

sample and for the standards just lower and just higher than the samples. 

The fCJrmula presented below was then applied to the readings to calculate 

the amount of a particular oxide: 

percent oxide - percent low standard + (percent sample -

percent absorbtion low standard}/(percent absorbtion high 

standard - percent absorbtion low standard) * (percent high 

standard - percent low standard} * 2 

Loss on ignition (LOI) was determined by weighing a known amount of 

rock powder in a crucible before and after ignition at 1000 degrees Celsius. 
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8.2 Trace Elements (XRF) 

A number of trace elements were determined by X-ray fluorescence 

using a Phillips 1450 fully automated sequential X-ray fluorescence 

spectrometer using a rhodium target X-ray tube. 

Pellets used for these analyses were prepared by combining 10 grams 

of rock powder with 1.5 grams of binder (Bakelite brand phenyl resin) using a 

mechanical shaker. The mixtures were then pressed into pellets and baked 

for approximately 20 minutes at 200 degrees Celsius. 

The elements Ni, Sc, V, Cu. Zn, and Ga were analyzed using a 

standard package designated TRACEF and the elements Rb, Sr, Zr and Y 

were determined using a separate program known as REPEAT. The 

standards BCR-1 and W-1 were analyzed with the samples to give estimates 

of precision and accuracy (Table 8 .1 ). 

8.3 Trace and Rare Earth Elements (ICP-MS) 

Rare earth elements and selected trace elements were analyzed by 

ICP using tha following procedure. Approximately 0.1 grams of a sample 

were weighed into a 100 millilitre teflon beaker. 10 to 15 millilitres of HF and 

1 0 to 15 millilitres of concentrated HN03 were added to the beaker and 

evaporated. 1 0 millilitres of 8N HN03 were then added and evaporated. If 

residue was observed, equal volumes of 8N HN03 and 6N HCL were added 

and evaporated. An additional evaporation with 8N HN03 was then carried 

out. The samples were then taken into solution by adding about 10 millilitres 

of 0.2N HN03 and hated for a few minutes if necessary. The samples were 
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TRACE ELEMENTS (PPM) XRF 

mean 
BCR-1 S.D Pub. 

Rb 47.9 0.6 47 
Sr J39.3 2.1 330 
y 36.8 0.7 40 
Zr 198.6 2.2 185 mean 

n-19 W-1 S.D. Pub. 

Ga 24 1.1 22 19 1.3 16 
Zn 130 3.1 125 96 2.6 86 
Cu 31 2.5 16 111 1.5 110 
Ni 23 4.0 10 83 3.6 76 
v 422 3.4 420 257 2.9 240 
Cr 24 8.2 15 108 5.5 120 
Sc 30 1.9 33 34 1.8 

n::o:9 na7 

Table 8.1 Precision and accuracy estimates for trace element analyses by 
XF,F. "n" referes to the number of times the standard was analysed. 
"S.D." is the standard deviation; "Pub." refers to the published value for 
the analysis from Abbey (1983) for BCR-1 and Flanagan (1973) for W-
1. 
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then taken to a final volume of 90 millilitres in 0.2N HNO,. If the sample did 

not contain silicate minerals, an initial dissolution with 6N HCL and 8N HNO, 

was used instead of the HF/HNO, dissolution. 

Two tubes were used in the final analysis. Tube No. 1 contained 9 

grams of sample solution and 1 gram of 0.2N HNO,. Tube No. 2 contained 9 

grams of the sample solution and 1 gram of a mixed spike solution. 

Precision and accuracy estimates for the runs are based on the 

standard SY-2 and are listed in Table E3.2. 

8.4 Mineral Analysis 

Representative thin sections containing relict clinopyroxene grains were 

polished and then coated with carbon. Analysis of relict pyroxenes was then 

carried out using an automated JEOL JXA-SOA electron probe mlcroanalyser, 

equipped with Krisel Control through a PDP-11 computer. Operating 

conditions consisted of an acceleration potential of 15 kV and a beam current 

of 20 microamperes. The width of the electron beam was approximately 1 

micron. Compositions of the analyzed pyroxenes were computer calculated 

by reference to calibration curves based on analysis of established standard 

materials. 



Li 
Be 
Nb 
Mo 
Cs 
Ba 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 
Hf 
Ta 
w 
Tl 
Pb 
Th 
u 

TRACE ELEMENTS (PPM} ICP 

SY-2 

92 
23 
31 
0.8 
2.60 
437 
67 
154 
19.2 
69 
15.1 
2.25 
14.4 
2.82 
19.3 
4.4 
14.8 
2.36 
17.0 
2.79 
8.1 
2.2 
12 
1.56 
81 
380 
300 

mean 
S.D 

3.5 
0.4 
1.8 
0.1 
0.2 
11.7 
1.5 
3.2 
0.3 
1.5 
0.3 
0.1 
0.3 
0.1 
0.5 
0.1 
0.4 
0.1 
0.6 
0.1 
0.3 
0.5 
12.8 
0.1 
1.1 
18.4 
10.7 

Pub. 

96 
24 
30 
0.8 
2.68 
447 
69 
157 
19.6 
72 
15.5 
2.27 
14.9 
2.86 
19.5 
4.5 
15.0 
2.40 
17.3 
2.89 
8.5 
1.8 
6 
1.54 
80 
390 
295 

Table 8.2 Precision and accuracy estimates for trace element analyses by 
ICP. Estimates based on analyses of the standard SY -2. Published 
values are those of Abbey (1983.} 
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APPENDIX C 

GEOCHEMICAL ANALYSES 
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C.1 Major and Trace Element Analyses 

Note: Ta has been calculated using the accepted Nb/Ta - 16 ratio for 

basaltic rocks of Wood et al. (1979). Hf has been calculated using a 

ratio of Zr/Hf • 39 after Wood et al. (1979). Where shown FeO and 

Fe20, have been calculated from total iron expressed as Fe20,• using 

a ratio of Fe0/Fe20, • 0.85 after Brooks (1976). 
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C.1 a Basaltic Rocks 
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Semple Name L·37 T·267 T·290 TL·525b* TL·525b TL·527 TL·528 
Figure I 3.2.2 3.2.2 3.2.2 3.2.5 3.2.5 3.2.5 3.2.5 
Rock Suite aphyric/CPX aphyric/CPX aphyric/CPX aphyric/CPX aphyrie/CPX aphyrie/CPX aphyric/CPX 
Rock Type diabase •icrogabbro diabase diabase diabase di~base diabase 

Mgf 65.03 48.30 54.87 55.96 55.96 49.64 50.80 
Si02 (~t.X) 50.80 52.30 50.08 50. 50 50.50 51.20 49.30 

Ti02 
Al203 
Fe203 

feO 

MnO 
MgO 

CaO 
Na20 

K20 
P205 

LOI 
Cr (ppm) 

Ni 

St: 

v 
Cu 
Pb 
Zn 
w 

Mo 
Rb 

Cs 
Be 
Sr 
Tl 

Ga 
l i 

Ta 
Nb 
Hf 
Zr 

y 

Til 

u 
La 
Ce 
Pr 
Nd 
Sm 

Eu 
Gd 
Tb 

Oy 
Ho 
Er 
Tm 
Yb 

Lu 

0.96 
15.10 

1.30 
6.65 
0.13 
8.16 
8.38 
3.95 
0.10 
0.05 
3.10 

284 

116 
40 

269 
48 

n.a. 
42 

n.a. 
n.a. 

0 

n.a. 
n.a. 

76 
n.a. 

14 
n.a. 
n.a. 
n.a. 
1.3.5 

52 
17 

n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

1.20 
14.50 
1.74 
8.87 
0.16 
5.47 
5.08 
4.83 
0.09 
0.09 
3.47 

0 

0 

33 
387 

11 

1 

75 

34.36 
0.21 

1 

o. 74 
22 
80 

0.02 
16 

6.12 
0.07 

1. 1 

1.85 
72 
25 

0.18 
0.10 
2.78 
8.35 
1.46 
7.24 
2.57 
0.93 
3.12 

0.63 
4.23 
0.89 
2.68 
0.38 
2.42 
0.35 

1.04 

14.90 
1.62 
8.26 
0.17 
6.63 
5.96 
5.14 
0.31 
u. 10 
2.99 

16 
10 
32 

325 
12 

1 

75 

58.02 
0.47 

3 
0.34 

17 

96 
0.00 

17 

5.n 
0.07 
1. 1 

2.03 
79 

26 
0.15 
0.08 
2.70 
8.47 
1.53 
7.82 
2.81 
1.00 
3.40 
0.67 
4.40 
0. 94 
2, 79 

0.39 
2.52 
0.36 

1.20 
14.80 
1.59 
8.09 
0.17 
6.79 

9.10 
3.47 
0.30 
0.07 
1.99 

145 
41 
48 

330 
40 

3 
60 

4.95 
0.38 

2 
0.38 

26 
136 

0.01 
17 

2.18 
0.05 
0.8 

2.07 
81 
30 

0.23 
0.08 
2.19 

7.84 
1.47 
7.29 
2.93 
1.11 

3. 71 
0 . 78 

5.19 
1.11 
3.46 
0 .47 
3.00 
0.48 

1.20 
14.80 
~.59 

8.09 
0.17 
6.79 

9.10 
3 . 47 
0.30 
0 .07 
1.99 

145 
41 
48 

330 
40 
2 

60 

39.28 
0.34 

2 
0.38 

23 
136 

0.06 
17 

2.42 
0.05 
0.8 

2.07 
81 
30 

0.11 
0.05 
2.24 
7.65 
1.40 
7.42 
2.88 
1.11 

3 .66 
0. 76 
5.03 
1.10 

3.16 
0.45 
2.91 
0 .44 

1.00 
14.90 
1.53 
7.79 

0.15 
5.07 
9.56 
3.86 
0.08 
0.08 
4.08 

0 
14 
41 

325 
24 

n.a. 
100 

n.a. 
n.a. 

0 

n.a. 
n.a. 

85 
n.a. 

19 
n.a. 
n.a. 
n.a. 
1.82 

71 
24 

n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

1.04 
15.40 
1.69 
8.61 
0.18 
5.87 
8.30 
4.08 
o. 16 
0.08 
3.30 

0 

14 
45 

364 

24 
n.a. 

65 

n.a. 
n.a. 

n.a. 
n. a . 
117 

n.a. 
18 

n.a. 
n.a. 
n.a. 
1.91 

74 
25 

n. a. 
n.a. 
n.a. 
n. a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 



Sample Name Tl·530b 
Figure I 3.2.5 

TL·531 
3.2.5 

Tl·S32 
3.2.5 

343 

H·756b 

3.2. 4 
H· '75811 

3.2.4 
H· 761b 
3.2.4 

Rock Suite aphyric/CPK aphyric/CPX aphyric/CPX aphyric/CPX aphyric/CPX aphyric/CPX aphyric/CPX 
Rock Type di ebase diabase 

60.00 Mgt 

Si02 Cwt.l> 
TI02 

Al203 
Fe203 

FeO 

NnQ 

MgO 

CaO 
Na20 

K20 
P205 

LOI 

Cr Cppm> 
Ni 
Sc 
v 

Cu 
Pb 
Zn 
II 

Mo 

Rb 
cs 
Ba 
Sr 
Tl 
Ga 
Li 
Ta 
Nb 
Hf 
Zr 

y 

Ttl 

u 
La 

Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Oy 
Ho 

Er 
Tm 
Yb 

lu 

49.80 
0.92 

14.30 
1.60 
8.17 
0.16 
8.09 
8.74 
3.95 
0.08 
0.04 
3.25 

89 
37 
36 

307 

45 
0 

54 
53.52 
0.28 

0 

0.36 

12 
83 

0.00 

16 
4.63 
0.06 
0.9 

1.36 
53 
18 

0.13 
0.07 

1. 71 

5.36 
0.96 
4.76 
1.79 

0.80 
2.57 
0.52 

3.50 
o.n 
2.10 

0.31 

1.91 
0. 28 

diabase 

48.23 
50.20 

1.08 
15.10 

1.62 

8.26 

0.18 
5.08 
9.30 
4.01 

0.07 
0.09 

2.n 
0 

11 
36 

339 
34 

n.a. 
102 

n.a. 
n.a. 

0 
n.a. 
n.a. 

56 
n.a. 

18 
n.a. 
n.a. 
n.a. 
1.82 

71 

?.5 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n. a. 
n.a. 
n.a. 

53.64 

50.20 
1.40 

14.50 
1. 73 

8.81 

0.20 

6.73 

8.96 

3 .51 
0.23 
0.10 
1.99 

101 
39 

41 
357 

40 

74 
47.00 

0.33 

0.14 
18 

142 

0.00 
16 

2.01 
0.07 
1. 1 

2.27 
89 

31 
0.08 
0.13 
2. 54 
8.43 
1.63 

8. 22 
3.06 
1.23 
3.95 
0.81 
5.31 

1.09 

3.29 
0 .47 

2. 79 
0 . 43 

diabase 

58.04 
49. 20 

1.00 
14.80 

1.53 
7.81 
0.16 
7. 1} 

10.74 
3 . 17 

0.31 
0.09 
2. 14 

82 
33 

53 
313 

64 

n.a . 
49 

n.a. 
n.a. 

2 

n.a. 
n.a. 

160 

n.a. 
16 

n.a. 
n.a. 
n.a. 
1.53 

60 

23 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

diabase 

44. '75 

53.30 
1.24 

15.00 
1.55 
7.91 
0.16 
4.23 
8.12 
4.80 
0.06 

0. 11 
2.79 

1 

0 
37 

361 
15 

47 

88. 46 

0.55 

0 

0.28 
9 

46 
0.01 

22 
3.64 
0. 10 
1.6 

2.09 
81 
27 

0.15 

0.07 
3.04 
9.41 
1.58 
8.45 

2.87 
1.18 
3.53 
0.68 
4 .57 

0.97 
2.84 
0.42 
2.58 
0.38 

diabase diabase 

61.99 
50.60 

o.n 
15 .40 
1.35 
6.86 
0.14 
7.39 

10.04 
3.37 
0.47 
0.05 
2.13 

166 

53 

49 

292 
46 

n.a. 
41 

n.a. 
n.a. 

4 

n.a. 
n.a. 

137 

n.a . 
15 

n.a. 
n.a. 
n.a. 
1.38 

54 

20 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 
n.a. 
n.a. 
n.a. 
n.e. 
n.a. 
n.a . 

58.52 
51.00 

0.88 
16.50 
1.25 
6.39 
0.13 

5.~ 

10.08 
3.78 
0. 23 

0.11 
2.74 

56 
26 
40 

299 
3 
1 

2Z 
58.46 

0. 29 
1 

0.64 

41 

135 

0.00 
16 

3.59 
0.11 

1.7 
2.01 

78 
23 

0.71 

0.24 

5.35 
13.71 

2.13 
9. 75 

3.04 
1.05 
3 . 18 

0.60 

3.80 
0 . 79 

2.30 
0.32 
2.09 

0.31 



s.....,te ~~- H· 762 
Figure II 3.2.4 
Rock Suite epllyr i c/CPX 

Rock Type diabase 
M;f 45.74 

Si02 (wt . Xl 50 .07 
Ti02 1.52 

A 1203 13.50 

Fe203 1.96 
FeO 9.99 
MnO 0 . 20 
MgO 5 . 56 

cao 8 .S6 
lla20 3 .96 

K20 0.09 
P205 0.12 

LOI 2.02 
Cr (ppm) 28 

Hi 13 

sc 53 
v 462 

Cu 32 
Pb n.a. 
Zn 80 
II n.a. 

Mo 

~b 

Cs 
Ba 
Sr 

T l 

Ca 
l i 

Ta 
Nb 

Hf 
Zr 

y 

Th 

u 
La 
Ce 

Pr 

Nd 

Sm 
Eu 
Cd 
Tb 
Oy 

Ho 

Er 
Tm 
Yb 

LU 

n.a. 

n. a. 
n.a. 

84 

n.a. 
18 

n . a. 
n.a. 
n.a. 

2.72 
106 

38 
n. a. 
n.a. 
n .a. 
n.a. 
n.a. 
n.a. 
n.a . 
n. a. 
n. a. 
n . a. 
n .a. 
n.a. 
n. a. 
n.a . 
n . a . 
n . a. 

H· 764 

3. 2 . 4 
H·766 
3.2.4 

344 

H· 767 
3.2.4 

aphyr i C/CPX aphyr ic/CPX aphyr i c/CPX 

diabase 
54.90 
48.90 

1. 52 
14.40 
1. 75 
8.95 

0 .28 
7.19 

10 .56 

3 .30 
0 .09 
0.12 
1.41 
2n 
60 

so 
328 
29 

n.a. 
98 

n.a . 
n.a. 

0 
n .a. 
n.a . 

113 

n.a. 
16 

n.a. 
n.a. 
n.a. 

2 .62 

102 
33 

n. a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a . 
n.a. 
n.a. 
n .a. 

n.a . 
n.a. 
n.a. 
n .a. 
n. a . 
n.a . 
n. a . 

d i abase 
56.47 
52.00 

1.00 
14.60 

1.58 

8.07 
0. 18 
6.91 

8.80 

3.70 
0. 13 
0.08 
2. 51 

40 
48 
53 

334 
36 

n. a. 
54 

n.a. 
n.a. 

n.a. 
n.a. 

92 
n.a. 

17 
n.a. 
n.a. 
n.a. 

1. 79 

70 
26 

n. a. 
n.a. 
n. a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a . 

~ - ·· 
n.a. 
n.a . 
n. a. 
n.a. 

diabase 
64.33 
49.70 
1.12 

14.30 
1.41 

7.17 
0.17 
8.54 

10. 38 
3.49 
0.11 

0.09 
2.66 

256 
53 
42 

265 
43 

0 
42 

26.16 
0.37 

1 

1.30 

20 
163 

0.00 
15 

7.59 
0.09 
1.4 

2.03 
79 
24 

0.09 
0. 05 
2. 58 
8.57 

1. 50 
7.60 
2. 73 
1.04 

3 . 23 
0. 65 
4.14 

0.87 
2.69 
0.34 
2.25 
0.32 

H-no 
3.2.4 
aphyr i C/CPX 

diabase 
45 . 18 

53.40 
1.44 

14.90 
1.73 

8 .82 
0 . 19 
4 . 80 
5. 38 
4 . 92 

0.07 
0 . 16 
z.n 

0 
0 

34 
381 

14 

2 
64 

34.20 
0.42 

1 

0.81 

17 
106 

0. 00 

17 

9.10 
0 . 09 

1. 4 

2.26 

88 
29 

0.14 
0.08 
2 . 87 

9 . 26 
1.65 

8 .47 

3 . 05 
1. 18 

3. 78 
0 . 72 
4 . 85 
1.02 

2.97 
0 .43 

2 .60 
0 . 38 

S0·802 •so-803 
3.2.6 inset 3.2 . 6 inset 
aphyri c/CPX aphyr i c/CPX 

basal t basalt 
56. 90 
50 .30 
1.24 

15.20 
1.72 
8.78 
0 . 14 

7.65 
5.72 
4.97 

0.49 
0. 09 
3.34 

63 
23 
33 

323 
0 
1 

55 
13 . 26 

0.59 

3 

0 .16 
21 
83 

0.02 
13 

11.55 

0. 08 
1. 2 

2. 00 
78 

31 
0. 14 
0. 09 
2.56 
8 .1 2 
1.45 
7.44 
2.93 

1.09 
3.59 
0 . 74 
4.76 
1.07 
3. 05 
0 . 43 

2. 75 
0.35 

59.28 

50.00 
1.40 

15.20 
1.67 
8.~0 

0.15 
8 . 17 
2 . 98 
4.80 
1 . 17 

0.10 

3.49 
32 
18 

35 
320 

0 
0 

67 
8.38 
0.46 

9 

o.n 
31 
19 

0 . 05 
12 

12.07 
0.09 

1.5 
1.97 

n 
29 

0 . 21 

0.10 
2 . 13 
7.35 
1.26 

6 . 97 
2. 45 
0 .94 
3.40 

0.68 

4 .82 
1.05 
2.78 
0.40 
2 . 64 
0.36 



S~l~ Name S0·804a 

F i gur~ II 3. 2. 6 inset 

Rock Suit~ aphyr i C/CPX 

Rock Type basalt 

S0-805 

3.2.6 inset 

apllyr i c/CPlC 

altrd. bslt . 
Mgll 

Si02 <wt.l) 

TiOZ 

Al203 
Fe203 

FeO 

MnO 
MgO 

CaO 

61 .08 54.26 

Na20 

K20 

P205 

LOI 

Cr (ppn) 

Ni 

Sc 
v 

Cu 
Pb 

Zn 
lol 

Mo 

Rb 

Cs 
Ba 
Sr 

T l 

Ga 
l i 

Ta 
Nb 

Hf 
Zr 

Th 
u 

La 

c~ 

Pr 

Nd 

Sm 
Eu 
Gd 
Tb 
Oy 
Ho 

Er 
Tm 
Yb 

Lu 

47.00 

1.36 

16.70 

1. 78 

9 .06 

0.13 

9.39 

1.90 

4.48 

1.75 
0.14 

5.83 

40 

15 

43 

374 

0 
2 

80 
12 . 76 

0.29 

12 

0 . 79 

42 

14 

0.00 

17 
15 .64 

0.09 

1.4 
2. 33 

91 

27 

0 .20 

0. 18 

3.22 
10.10 

1.76 

8.85 

3. 11 

0.94 

3.64 

0. 76 

4.99 

1. 06 

3.04 

0.42 

2. 51 

0.30 

46.80 

1.28 
17.30 

1.87 

9. 51 

0 . 21 
7.45 
3.76 
4 .80 
0.06 

0.11 

5 . 43 

30 
14 

39 

383 

139 
0 

95 
23 . 58 
0.29 

0 

0 .1 2 

8 
27 

0.02 

18 

7. 1)5 
0 . 43 

6.8 
2 . 37 

92 
33 

0.21 

0 . 22 

3.00 

9.96 

1.81 
9 . 27 
3.57 

1 . 27 

4.26 
0.86 
5.89 

1.23 
3.64 
0 . 50 
3.25 

0.43 

345 

S0·807a 

3.2.6 inset 

S0·809 S0-810 

3.2.6 inset 3.2.6 inset 3 . 2 . 1 
R·961d 

3.2. 1 
apl'tyr i c/CPX ap!lyric/CPlC apl'tyric/CPlC apl'tyric/CPX aphyric/CPlC 

altrd. bslt. basa l t altrd. bslt. diabase microgabbro 

37.50 62.82 26.56 60.03 56 .36 
49.20 
0.60 

12.90 
3.57 

18.20 

0.25 
7.21 

0.64 
0.2t 

0.10 

0.06 

5.35 
54 
14 
37 

302 
0 
0 

58 

19 . 75 

0.24 , 
o. 15 

5 
2 

0.0~ 

11 

16. 55 

0.04 

0 . 6 
0.97 

38 
15 

0.09 
0. 07 
0. 92 
3.87 
0.76 
4. 09 
1.46 
0.11 

1.86 

0. 37 
2. 46 
0.52 
1.43 

0.19 

1.10 
0.14 

50.80 

0.96 

15 . 10 

1.56 

7.94 
0.16 

8.86 

5.50 
2.97 

2.01 
0.07 
3.90 

43 

22 

28 
306 

57 

54 

23.24 
0.25 

14 

0.30 

56 
45 

0.00 

18 

2.67 

o.o; 
0.8 

1.45 

57 

22 

0. 08 

0.07 
1.85 

5.96 
1.07 

5.62 
2.12 

0.87 
2.39 

0.53 

3.53 
0.76 
2.21 

0.31 
1.97 

0.29 

46.50 
0.80 

14.00 
3.99 

20.36 
0.23 
4.86 

0 . 36 

O.C2 
0.24 
0.17 
5.12 

0 

0 

42 

390 

0 

1 

59 
23.00 
0.24 

3 

0.19 
10 

1 

0 . 00 
13 

15.97 
0.16 

2.5 

2.86 

112 

30 
0.17 
0.06 
0 . 54 

1. 78 

0.35 

2.09 
1 . 16 

0.12 

1.66 

0.36 

2.38 
0.50 
1.38 
0.19 

1.07 
0.14 

50.60 

0.84 
15.10 

1 .41 

7 . 18 

0 . 16 

7 . 12 

9 .88 

3.56 

0 . 11 

0.05 
2 .84 

63 

29 

54 
319 

31 
0 

56 
3 . 10 

0.69 

0 
0.49 

12 
216 

0.00 

13 

4.89 

0 . 10 

1.5 

1.62 

63 

22 
0.17 

0.05 

2.13 

6.37 
1.08 

5 .47 

1 .96 

0 .84 

2 .64 

0.54 

3 .65 
0 .78 
2.16 

0 .31 

2.01 
0 .29 

49 .80 
0 . ~2 

14.60 

1.30 
6.64 

0.1 4 
5.66 

9. 04 
6 .49 
0.61 

0.08 
3.99 

119 

39 

30 
349 

68 

52 
23 .58 

1.04 
21 

5.60 

101 

636 

0.04 
17 

38.87 

0.04 
0.7 

1.44 

56 

13 

0 .24 
0.14 

1.75 
4.56 

0.70 
3.46 

1.22 

0 .42 
1.61 
0.32 

2.24 

0.49 

1.54 

0.22 

1.50 

0 .24 



Sample Name 0·1001 

Figure • 3.2.4 
Rock Suite aphyric/CPX 

Rock Type basalt 

Mg. 65.04 

Si02 (wt.X) 49.70 

Ti02 
Al203 
Fe203 

FeO 

MnO 
MgO 

CaO 
Na20 

K20 
P205 

LOI 

Cr (ppn) 

Ni 

Sc 

v 
Cu 
Pb 

Zn 
w 

Mo 

Rb 
Cs 

Ba 
Sr 

Tl 

Ga 

Li 

Ta 

Nb 

Hf 
Zr 

y 

Th 
u 

La 

Ce 

Pr 

Nd 

Sm 

Eu 
Gd 
ID 

Oy 
Ho 
Er 
Tm 

Yb 

lu 

0.80 
14.90 

1.46 
7.45 

0 . 18 

9.15 

7.90 

2.60 

1.64 

0.05 
3.95 

102 

35 

29 
247 

74 

n.a. 
44 

n.a. 
n.a. 

23 

n.a. 
n.a. 

102 

n.a. 
17 

n.a. 
n.a. 
n.a. 
1.29 

50 
20 

n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 
n.a. 
n.a. 

0. 1002 

3.2.4 

0·1003 

3.2.4 

346 

0·1004 

3.2.4 

0·1005 

3.2.4 

0·1006 

3.2.4 

0·1007 

3.2.4 

aphyric/CPX aphyric/CPX aphyric/CPIC aphyric/CPX aphyric/CPX aphyric/CPX 

bas,l t al trd. bsl t. basalt basalt 

60.57 42.00 50.80 

49.00 63.10 48.50 

1.00 

15.50 

1.40 

i'.14 

0. 16 

7.24 

8.86 

3.54 

1.01 

0.11 

3.07 

275 
36 

H 
292 

23 

2 
69 

53.49 

0.35 

16 

1.05 

120 

94 
0.08 

15 

29 .00 

0.12 

2.0 
1.48 

58 

29 

0.26 

0.14 

2.18 

6.27 

1.26 

6.54 

2.62 

0.62 

3.45 
0.69 

4.62 

1.02 

3.06 

0.40 

2.60 
0.39 

0.32 
12.60 

0.88 
4.50 
0.09 
2.15 

8.10 

2.62 

0.06 

0.07 
3. 08 

59 

3 

25 
137 

6 

n.a. 
30 

n.a. 
n.a. 

0 

n.a. 
n.a. 

71 

n.a. 
15 

n.a. 
n. a. 
n.a. 
1.22 

47 

18 

n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n. a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

1.40 

15.30 
1.57 

8.01 
0.16 

5.46 
1o.n 

1.90 

0.03 

0.11 

5.29 
33 
14 

44 
360 

0 

1 

36 

42.58 

0.54 

0.07 
16 

15 

0.00 

17 

32.30 
0 . 09 

1 .5 
2.12 

83 
30 

0.16 

0.12 

z. 75 

8 . 74 

1. 52 
8.17 

2.98 

1.17 

3 . 59 
0. 71 
4.48 

0 .94 

2 .67 

0.38 
2 . 46 
0.37 

basalt 

51.18 

50.70 

1.20 

14.60 

1.66 

8.45 

0.19 

5 . 85 

7.52 
4.25 
0.35 

0 . 12 

3.15 

15 
7 

47 

333 

0 

n.a. 
42 

n.a. 
n.a. 

25 
n.a. 
n.a. 

137 

n.a. 
16 

n.a. 
n.a. 
n.a. 
2.08 

81 

29 
n. a. 
n.a. 
n.a . 
n.a . 
n.a . 
n. a. 
n.a. 
n.a. 
n. a. 
n.a . 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 
n.a. 

35.54 

52.10 
1. 76 

13.60 
1.98 

10.11 

0.21 

3.68 
6.48 
4.28 

0.16 

0 . 16 

3.26 

0 

0 
42 

404 

32 

45 

68.15 

0.36 

8 
0.21 

29 

70 

0.00 
21 

20 .44 
0.15 

2.4 

2.95 

115 

36 

0.10 

0.06 
3.10 

10.69 
2.04 

basalt 

10.98 

3 . 93 
1.44 

4.52 

0.92 
5.84 
1.18 

3 .42 
0.47 

2.98 

0.48 

38.04 

52.10 

1.68 

14.20 

1.96 

9.99 

0. 17 

4.05 

5.90 
4.59 

0.47 

c. 15 

2.85 
0 

0 

43 

395 
10 

1 

90 
54.57 

,1.79 

33 
0.73 

37 

150 

0.03 

19 

17.32 

0. 18 

2.8 

2.60 

109 

36 
0.17 

o. 17 

3.13 

10.38 

1.67 

9.65 

3.60 

1.34 

4.69 

0.90 

5.87 

1.24 

3.60 
0.50 
3. 25 

0.47 



Saq,le N- •s-16 

Figure I 3.2.3 

B-74• 

3.2 . 2 

8·74 

3.2.2 

347 

•a-76 

3.2 . 2 
1·157 

3.2.2 
•a- l"HI 

3.2.2 
•B-160 

3 . 2.2 
Rock Suite olivine-rich olivine-rich olivine- rich olivine-rich olivine-rich olivine-rich olivine-rich 
11.-d Type basalt 

Mgl 37.31 

Si02 (wt.l) 

Ti02 

Al203 

Fe203 

FeO 

MnO 
MgO 

cao 
Na20 

K20 

P205 

LOI 

Cr (ppn) 

Ni 

Sc 
v 

Cu 
Pb 
Zn 
w 

Mo 

Rb 

cs 
Ba 
sr 
T l 

Ga 
l i 

Ta 

Nb 

Hf 
Zr 

y 

Th 

u 
La 

Ce 
Pr 

Nd 
Sm 
Eu 
Gd 
Tb 
Oy 
Ho 
Er 
Tm 
Yb 

Lu 

46.70 

2.40 

17. 20 

1.69 

8.60 

0.16 

3.38 

7.42 

3.68 

2.40 

0.63 

3.86 
177 

94 

32 

2'>6 

27 

2 
112 

1. 76 

2.31 

74 

1.67 

177 

248 

o.so 
21 

8.16 

2.34 

37 . 5 

5 . 36 

209 

35 

2.69 

0.59 

24.16 

S0.17 

6 .67 
26.02 

6 . 14 

2 . 13 

5 .97 
1.01 

6 .50 
1.27 
3.52 
0 . 49 

3.20 
0.46 

basalt basa l t basalt 

45.96 45.96 

43.10 

1. 76 

15.30 

1.40 

7.12 

0.15 

4.00 

14.38 

3.96 

0.26 

0.37 

7.14 

211 

92 
32 

257 

13 

3 
79 

15.63 

1. 31 

7 

0.60 
84 

413 

0.05 

21 

13.04 

2.28 
36.4 

4. 35 

170 

25 

2.28 
0.51 

21.41 

44.41 

5.29 
20.16 

4 . 61 

1.49 
4.52 

0 . 77 

4 . 68 

0.97 
2. 76 
0.40 

2.60 

0 .38 

43.10 

1. 76 

15.30 

1.40 

7 . 12 

0.15 

4 . 00 

14 . 38 

3 . 96 

0 . 26 

0.37 

7. 14 

211 

92 

32 

257 

13 

3 
79 

42.65 

1. 38 

7 

0.53 
72 

413 

0 .03 
21 

14.79 

2.08 
33 . 3 
4.35 

170 

25 

2.25 
0.49 

21.45 
43 . 19 

5.40 
19.97 
4 . 67 

1.53 

4.32 

0.76 

4. 70 

0.96 

2.82 
0.41 

2.48 

0.38 

basalt 

51 . 52 

44.10 

1.92 

15.30 

1.36 

6 . 91 

0.14 

4 . 85 

13.08 

3 . 32 

0 .63 
0.37 

6.24 

171 

87 

31 

267 

26 

54 

1.29 

1.45 

14 

1 . 47 

94 

255 

0 . 11 

17 

16 . 19 

1.96 

31.3 

4.13 

161 
29 

2 . 05 

0 . 42 

20 . 30 

41.64 
5 . 17 

20.61 
4.97 

1.63 
4 . 66 
0 . 83 

5 . 22 

1.05 
2 . 92 

0 . 41 
2.54 

0 . 38 

basalt 
41.55 

45.70 

2.08 
16 .80 

1.69 

8.63 

0 .1' 

4.05 

10.62 

3 .80 

0.54 

0.45 

4.27 

319 

102 

41 

384 

26 

2 

94 

47.46 

1.75 
9 

0.49 

89 
234 

0 .08 

19 

20.50 

1.75 
28.0 

4.50 

175 
43 

1.60 

0.38 

20.69 

38.12 

5 .89 

23.65 

6.03 

1.97 

5.84 

1.06 
6.64 

1.32 

3.94 

0.54 

3.36 
0.51 

38 .63 
48.90 

2.16 

16. 00 

1 . 59 

8 . 11 

0.14 

3 . 37 

8.68 
4 .63 

0.05 

0.56 

3.95 
100 

76 

30 

365 

25 

3 
78 

2 . 48 

1.48 

0 

0. 13 
51 

135 

0 . 02 

22 
31.34 

3. 12 
49 . 9 
5 . 67 

221 

32 

3.28 
1.04 

32.96 
65.14 

7.87 

29.88 

6.64 
2 . 04 

5.63 
0.97 
5.72 

1.09 

3. 20 
0.41 

2.72 

0.40 

basalt 

51.71 

47. 6ll 

1.84 

15.30 

1.48 

7.57 

0.15 

5.35 

10.58 

3.41 

0 . 45 

O.H 
3. 95 

189 

64 
38 

338 

20 

2 
71 

5.10 

1.21 

12 

0.81 

78 

170 

0.10 
17 

25 .92 

1.86 
29.8 

4.05 

158 

30 

1.66 
0. 63 

19. 56 

40.67 

5 . 11 

20.30 
5 . 00 

1.63 

4.79 
0.86 
5 .14 

1.03 

2.88 

O.t.2 

2.63 

0.39 
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S~le Name T·257 •T · 467 •T·482 •T·492 •T·514b •T·5n 

Figure I 3.2.2 3.2.2 3.2.2 3.2.2 3.2.2 3.2.2 

Rock Suite olivine·rich olivire·poor olivine·poor olivine·rich olivine-rich olivine-rich 
Rock Type basalt basalt basalt basalt basalt basalt 

Hgl 51.95 47.89 34.46 34.86 45.96 38.78 

Si02 (wt.X) 

Ti02 
Al203 

Fe203 
FeO 

HnO 
HgO 

CaO 
Na20 

K20 

P205 
LOI 

Cr (ppm) 

Ni 
Sc 
v 

Cu 
Pb 

Zn 
II 

Ho 

Rb 

Cs 

8a 

Sr 
Tl 

Ca 
Li 

Ta 
Nb 
Hf 

2r 
y 

Th 
u 

La 

Ce 
Pr 
Nd 
Sm 

Eu 
Cd 
Tb 

Dy 

Ho 
Er 
Tm 
Yb 

Lu 

47.10 

2.28 

16.70 

1.14 

5.83 

0. 13 
4.16 

9 . 56 

4 . 76 

0.47 

O.b4 

5.45 

56 

94 

23 

158 

8 

3 
44 

24.58 

o. 79 

18 

5 .95 

235 
346 

0 . 19 
15 

53.07 

4.32 

69. 1 

5.86 

229 

30 

4.47 

1.17 

40.29 

n . 76 

8 . 46 

29 . 75 

6 . 03 

2.02 

5.05 
0.84 

4.96 
0.97 

2.67 

0.38 

2.31 

0.35 

48.20 

1.84 
14.00 

1.94 

9.89 

0 . 21 

6.00 

9.46 

3.13 
1.24 

0.13 
2.43 

1l1 
45 

45 
407 

40 

2 

120 

2.26 

9.32 

37 

1.37 

59 

107 

0 . 59 

18 

16.22 

0.25 
4.1 

3.08 
120 
47 

0.24 

0 . 07 
4 . 17 

12.52 

2.29 

11.49 

4.15 

1.52 
5.28 

1.07 

7.22 
1. 50 
4.b4 

0.65 
4.25 

0.59 

50.50 

2.32 

13.60 
2.08 

10.60 
0 . 18 

3.68 
5.54 

5.28 

1.11 

0.22 

2.55 

24 

39 

40 

421 

25 
1 

139 
1.62 

0.67 

27 

1 . 11 

269 

12' 

0. 22 
13 

5. 59 
0.20 

3.1 

3.87 

151 
56 

0 . 34 

0.18 

7.b4 

18.43 

3.61 

17.70 

5. 91 
1 .97 

7.34 

1.48 

9.62 

1.97 

5.89 

0.81 

4.94 
0 .72 

50.50 

2.24 

17.80 

1.47 

7.50 

0.1~ 

2.65 
4.74 

6.48 

0.68 
0.87 

2. 73 
58 
27 

14 

220 
0 
3 

109 
1. 74 

0.76 

17 

0.81 

123 

238 

0.15 

16 

24.20 

4.28 

68.5 
8.56 

334 

28 

6.24 

0 . 95 

69.46 
115 . 41 

13.38 
43.89 

7.28 

2 . 35 

5.40 
0.79 
4.69 
0 . 75 
1.84 

0.25 
1.50 

0.19 

45.80 

1.80 

17.10 

1.85 

9.44 

0.23 
5 . ~0 

5.76 

3.82 

0.33 
0.36 
6.06 

383 
1l1 
39 

391 

6 

158 

0 . 94 

1.07 

8 

0.95 

96 

86 
0 . 08 

19 
51.25 

1.22 

19.4 

3 . 82 

149 
37 

1.09 

0.20 
13.03 

28 .62 

4 . 20 

17.57 

4.80 

1. 74 

5.41 
0.97 
6 . 13 
1.21 

3.22 
0.43 

2.70 

0 . 41 

48.40 

2.12 

18.80 

1.44 

7 .34 

0.19 

3.07 

5.18 

4 . 19 

2.54 

0.34 

4.67 

204 
70 

36 

271 

19 

172 

2.22 

0.98 

65 

2.52 
180 
125 

0.59 

18 

33.73 
1.58 

25.3 
4. 31 

168 

35 
1.40 

0.39 

15.79 
33.56 

5.04 
21. 18 

5.70 
1.92 

5.86 

1.00 
5.70 

1.12 
2.91 

0. 39 

2.47 

0.34 



Sample Name *8-80 
Fi~ure I 3.2. 2 

*B-80b 
3.2.2 

•a- 121 
3.2.2 

349 

B-128 
3.2.2 

B-132cr 
3.2.2 

Aock Suite olivine-poor olivine-poor olivine-poor olivine-poor olivine-poor 
Aock Type altrd. bslt. altrd. bslt . basalt basalt basalt 

Mgf 33.98 33.55 49.48 36.27 
Si02 Cwt.X) 57.30 n .90 49.30 45.40 

Ti02 2 . 00 0.72 1.76 2. 72 
Al203 11.00 6. 15 14.10 12.90 
Fe203 1.74 0.66 1.78 2.55 

FeO 8.89 3.36 9.08 13.02 
MnO 
MgO 

cao 
Na20 
1(20 

P205 
LOI 

Cr (ppm) 

Ni 
Sc 
v 

Cu 
Pb 
Zn 
w 

"0 
Rb 

Cs 
Ba 
sr 
Tl 

Ca 
L i 

Ta 
Nb 
Hf 
Zr 

y 

Tl'l 

u 
La 

Ce 
Pr 
Nd 
Sm 

Eu 
Cd 
Tb 
Dy 
Ho 

Er 
Tm 
Yb 
Lu 

0.18 
3.02 
8.66 
1.88 

0.08 
0.20 
2.85 

23 
24 
31 

340 
20 
3 

90 
0.79 

0.62 
3 

0.10 

28 
733 

0.04 
15 

5 . 71 
0.16 

2.6 
4 . 18 

163 
51 

0. 29 
0.17 

5 . 69 
16.20 

2.92 

14 . 40 
5.08 
1.75 
6.29 
1.28 
8.45 
1. 78 
5.14 
0 . 71 
4 . 65 

0.68 

0.07 
1.12 
6.64 
0.02 
0.01 
0.07 
2.32 

20 
5 

16 
198 

15 
1 

29 
1. 04 
0 . 76 

0 

0.03 

7 

170 
0.00 

10 
2.57 
0.10 

1.6 
1.44 

56 
18 

0.13 
0.05 
2. 28 
5.76 
1.10 
5.16 

1. 78 
0.62 

2.25 
0.49 
3. 12 
0.66 
1.92 

0.27 

1.69 
0.24 

0 . 19 
5 . 87 
8 . 38 
4 . 20 

0 . 66 
0.18 
2.38 

128 
46 
43 

338 
55 

91 
1 . 38 
0 . 75 

18 
0.94 

45 
137 

0.21 
12 

9 . 47 

0 . 29 

4.6 
3.05 

119 
39 

0 . 33 
0.18 
4. 72 

13 . 04 

2 . 24 
11.29 

!.96 
1.39 
4.92 

1.00 
6 . 47 
1 .43 
4 . 14 
0 . 59 
l.n 
0 .56 

0.20 
4 .89 

8.84 
3.n 
0.42 
0.25 
2.47 

86 

44 

45 
530 

17 
3 

137 
72.31 
0.85 

11 
0.36 

38 
131 

0.08 
22 

6.49 
0.39 

6.2 
5.18 

202 
66 

0.38 
0.27 
7.34 

21.58 
3.n 

18.93 
6. 73 
2.21 
e. 17 
1.63 

10.59 
2.25 
6. 73 
0.95 

6.04 

0.91 

49.12 
46.20 

1.80 
14.70 
1.69 
8 .63 
0.20 
5.50 

11 . 70 
3.32 
0 .37 
0.13 
3.01 

165 
52 
44 

361 
41 

3 

79 

72 . 75 
0.60 

11 

0.31 
53 

122 
0.08 

20 
4 .58 
0.21 
3.3 

3.14 
122 
42 

0.28 
0.12 
4.50 

13.10 
2.31 

11.63 
4.22 
1.53 
5.24 
1.08 
7.11 
1.50 
4 .52 
0.67 
4 . 15 
0 .64 

8·1321'111 
3.2.2 

*8·159 
3.2 .2 

olivine-poor oliv •~· poor 

basalt basalt 
49.96 
50.50 

1.80 
13.70 
1.80 
9.18 
0.20 
6.05 
7.98 
4.53 
0.87 
0.14 
1.54 

170 

44 

48 
367 

35 
2 

71 

75.60 
0.61 

27 
0. 44 

81 
152 

0. 13 
13 

4.30 
0.20 
3 . 2 

3 . 14 
123 

41 
0.22 
0.09 
3.50 

11.64 
2.09 

11.02 
4.13 
1.34 
5.02 
1.02 
6.78 
1.44 

4.41 
0 . 63 

3.95 
0.60 

43.03 
48.90 

1.84 
13.10 
2.02 

10.31 
0.19 
5.14 
8. 52 
3.67 
0. 24 
0.19 
3.40 

46 
29 
46 

389 
45 

100 
0.92 
0 . 74 

5 
0.24 

46 
139 

0. 10 
16 

~ 8.S1 

0 . 35 

5 .6 
3.15 

123 
43 

0.38 
0. 19 
6.72 

16.29 
2. 75 

13 . 16 
4.30 

1. 51 
5. 16 
1. 02 

6.46 
1. 36 
• . 06 

0.57 
3 .59 

0 . 53 
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Saftllle Name B-199 *T·514 T· 515 

Figure II 3.2 .2 3 . 2.2 3.2.2 
Rock Suite ol i vine-poor olivine-poor ol ivine-poor 
Rock Type basalt altrd. bslt. basalt 

Mgtl 45.46 32. 35 33.62 
Si02 (wt.X) 49.50 49. 50 50.50 

Ti02 1.96 1.92 2.28 
Al203 14.10 14. 10 14.60 

Fe203 2.03 2.03 2.15 
Fe<> 10 .36 10. 36 10.98 
Ill nO 0 .24 0. 23 0 . 20 
MgO 5 . 70 3.27 3.67 
cao 7.52 8 . 78 6 . 18 

Na2o 3 .87 3.02 4.57 
1(20 0 . 32 0. 20 0 . 03 

P205 0.14 0 .22 0 . 27 
LOI 3.49 3. 76 2.99 

Cr (ppnl 112 63 188 
Ni 60 34 81 
Sc 53 41 46 
v 420 427 511 

Cu 10 11 27 
Pb 3 2 
Zn 128 128 119 

II 94.61 3 . 43 79.36 
Mo 1.04 8. 76 0.73 
Rb 7 5 0 
Cs 0 . 47 0 .59 0.27 
Sa 101 40 26 
Sr 161 57 80 
T l 0.1, 0.09 0. 00 
Ga 19 19 19 
li 23.58 30.73 29.44 
Ta 0 . 32 0. 27 0.37 
Nb 5.1 4. 3 5 .9 
Hf 3 . 32 3. 62 4. 75 
Zr 130 141 185 

y 42 51 59 
Th 0.52 0. 37 0.38 
u 0.18 0.40 0. 16 

La 4.72 6 . 06 6.86 
Ce 13 .29 17.19 20. 12 
Pr 2.35 2.90 3 . 42 
Nd , , .78 14 . 31 17. 00 
Sm 4 . 25 4.97 6.14 
Eu 1. 51 1.68 1. 94 
Gd 5.31 5. 95 7. 35 
Tb 1.08 1.22 1.45 
Oy 7 . 16 7.99 9.30 
Ho 1.48 1.65 1. 94 
Er 4.62 4. 78 5.51 
Tm 0 .68 0. 66 0 . 77 
Yb 4 .26 4. 36 4. 93 
lu 0.64 0. 63 o.n 



S~le N- C-702 
Figure I 3.2.6 
Rock Suite Croisilles 
Rock Type basalt 

I'Cgill 42.14 
Si02 Cwt .X) 48.60 

T i02 3.20 
Al203 12.40 
Fe203 2.05 

FeO 

MnO 
I'CgO 

CaO 
Na20 

K20 
P205 

LOI 

Cr Cppn> 

Ni 
Sc 
v 

Cu 
Pb 

Zn 
II 

Mo 
Rb 
Cs 
Ba 
Sr 
Tl 

Ga 
L i 

Ta 
Nb 

Hf 
Zr 

y 

Th 
u 

la 
Ce 
Pr 

Nd 

Sm 

Eu 
Gd 
Tb 

Oy 
Ho 
Er 
Tm 
Yb 
lu 

10.44 
0.18 
5.02 
7.66 

3.53 
2.35 
0.37 
2.58 

31 
44 
36 

514 

n.a. 
93 

n.a. 
n.a. 

n . a. 
n .a. 

321 
n . a. 

20 
n.a . 
n.a. 

n.a. 
6.35 

248 
85 

n.a . 
n . a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n . a. 
n.a. 
n.a. 
n.a. 
n.a. 
n . a. 
n.a. 
n . a. 

C-709 

3.2.6 
C-710 
3.2.6 

35 1 

•c-712A 
3. 2.6 

C-71~c 

3.2.6 
oliYine·poor olivine·poor olivine-poor oliv ine-poor 
basalt basalt basalt basalt 

40.46 41.81 46.08 38.00 
49 . 10 47.60 48.40 46.70 

1.64 1.84 2.08 1.84 
13.60 

2 . 01 
10.23 
0.20 
4.59 
9.84 
2.81 
0.29 

0.23 
4.13 

72 
47 
38 

323 
61 

2 

117 

69.07 
0.66 

10 
1.82 

97 
132 

0.07 
18 

17.27 
0.23 
3.7 

3.18 
124 
42 

0.29 
0 . 38 
5.44 

14 . 15 
2.54 

12.35 
4.38 
1.48 
5 . 17 
1.07 
6.99 
1.47 
4.47 

0 . 61 
4.02 
0.60 

14.00 
2.13 

10.88 
0.22 
5.16 
9.26 
3.28 
1.18 
0.21 
3.68 

65 
54 
48 

349 
47 

3 
117 

38.89 

0.36 
40 

2.15 

85 
109 

0.26 
21 

16.72 
0.30 
4. 7 

3.52 
137 

" 0.32 
0.31 
4. 75 

14.44 
2.54 

12.86 
4.54 

1.63 
6. 13 
1.21 
8.02 
1.72 
4.96 
0.71 

4.68 
0.69 

12.70 
2.06 

10.49 
0.20 
5.92 

10.04 
3.61 
0.30 
0.20 
2.38 

36 

28 
45 

435 
9 

0 

71 
1. 57 
0.87 

8 
0. 58 

26 
134 

0.04 
14 

11.23 
0.20 
3.3 

3.69 
144 

50 
0.14 
0.24 
4 .67 
14.~ 

2.63 
13.23 
4.57 
1.73 

5.66 

1.18 
7.68 
1.55 
4.54 
0.62 
4.21 
0. 64 

13.10 
2.09 

10.65 
0.19 
4.31 

13.60 
2.25 
0.07 
0.22 
3.44 

32 
41 
41 

411 
15 
1 

50 
105.35 

0.65 

2 
0.26 

36 
69 

0.00 

26 
7.91 
0.18 
2.9 

3.43 
134 
46 

0.18 
0. 21 
4.95 

15.15 
2.70 

13.52 
4.59 
1.63 
5.69 
1.14 
7.87 

1.60 
4. 74 
0.70 
4.53 
(' .68 

•c -718a 
3 . 2.6 

r·718b 
3.2.6 

olivine-poor olivine-poor 
basalt basalt 

41.16 
45.50 
2.4.0 

12.60 
2.02 

10.31 
0 . 20 
4.76 

10.1!1 
3.80 
0.46 
0 . 27 
4.99 

36 
28 
39 

401 
0 
1 

124 
2.35 
0.70 

15 
1.31 
421 
203 

0.04 
19 

15.74 
0 .39 
6.3 

3.59 

140 

59 
0.36 
0.81 
7.45 

21.05 
3.50 

16. 99 
5 . 67 
2.18 

7.70 

1.47 
10.2o 
2 . 05 
5 . 47 

0 .76 
4 . 91 
0.71 

38.65 
45.90 

2.32 
11.90 
2.50 

12.74 
0.28 
5.30 
8. 16 
3.06 
1.09 
0.31 
4.01 

24 
36 

39 
480 

8 
4 

132 
32.81 
0 .68 

37 
8.02 
639 
84 

0.08 
21 

12. 74 
0.40 

6.4 
4.53 

177 

54 
0.37 

0.75 

8.83 
23 .68 
3.81 

18.1 3 
6.23 
1.94 
7.38 
1.43 
8.97 
1.83 
5.31 
0.75 
4.65 
0 .68 
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Sample N~ •c-721a C· 721b c-726 
Figure I 3.2.6 3. 2.6 3.2 .6 
Rock Suite ol ivine·poor ol ivine·poor ol ivine·poor 
Rock Type basalt basalt basalt 

Ngl 42.22 44 .63 51.72 
Si02 (wt.Xl 42.60 45.50 48.00 

Ti02 2.04 1.24 1.64 
Al203 14.60 15.70 13.50 
Fe203 2.08 1. 76 1.99 

FeO 10.59 8 .96 10.11 
NnO 0. 20 0 . 19 0.20 
NgO 5.11 4. n 7.19 
CaO 13.96 11.62 8.38 

Na20 1.73 3. 04 3.37 
IC20 0.30 0.34 0.36 

P205 0.19 0.12 0. 17 
LOI 4.22 4.19 2.54 

Cr (ppm) 102 209 87 
Ni 36 43 39 
Sc 42 48 51 
v 434 280 429 

Cu 41 94 46 
Pb 1 1 
Zn 121 87 116 
w 3.03 55.29 20.29 

No 0. 64 0.63 0 .66 
Rb 9 13 9 
Cs 4.03 2. 94 0.21 
Ba 266 215 51 
Sr 1 1 1 204 141 
T l 0.03 0.13 0. 04 
Cia 20 22 19 
L i 13.65 10.15 13 .41 
Ta 0 . 21 0.10 0.36 
Nb 3.4 1.6 5.7 
Hf 4.23 1.89 2.61 
Zr 165 74 104 

y 56 28 41 
Th 0.25 0.11 0.33 
u 0.16 1.24 0.14 

La 5.54 3 .21 4.73 
Ce \5 .47 7.32 12.86 
Pr 3.14 1.47 2.11 
Nd 15 . 01 7.62 10.36 
Sm 5.53 2.82 3 .81 
Eu 2.20 1.10 1.30 
Cid 7.72 3. 71 4.75 
Tb 1.53 0.71 0.95 
Oy 19 . 90 4.70 6.44 
Ho 2. 16 1.01 1.40 
Er 5.95 3.01 4.13 
Tm 0.83 0.42 0 .58 
Yb 5.52 2. 75 3.63 
lu 0. 79 0.40 0.52 
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S8111)1e Name Tl·782 TL -783 TL·784 Tl -785 Tl-786 U·823a 

Figure I 3.2.5 3.2 . 5 3 . 2.5 3.2.5 3.2.5 3 .2.5 

Rock Suite plag. porph. plag. porph. plag. porph. plag. porph. p lag . porph . plag. porph . 

l!ock Type diabase diabase diabase diabase diabase diabase 

Mg# 62.90 65.51 n.so 63.99 67.52 65.44 
Si02 (wt.lO 47.20 46.80 45 .60 47.40 47.90 47.30 

rio2 o.96 o.80 o.64 o.84 o.68 o.n 
Al203 16.60 16.30 18.40 16.90 15 .80 18.90 

Fe203 1.43 1.45 1.12 1.45 1.37 1.05 

FeO 7 . 29 7.42 5 . 71 7. 40 6.97 5 .36 

MnO 0 . 18 0.15 0 . 13 0. 16 0.15 0. 14 

MgO 8.16 9 .30 10.09 8.68 9.57 6.70 

CaO 10.82 11.22 11.80 9 . 46 11 . 06 12 . 74 

Na20 2 . 28 2.24 1.96 2.83 2.34 2 .36 

K20 0. 76 0.85 0.67 0.68 0.34 0 . 17 

P205 0.06 0.04 0 . 02 0.05 0.03 0 .04 

lOI 2.48 2.48 3 . 51 3.26 3.52 3 . 22 

Cr (ppm) 309 399 678 316 471 329 

Ni 105 136 278 100 145 68 
sc 

\1 

Cu 

Pb 

Zn 
IJ 

Mo 

Rb 

Cs 
Ba 
Sr 

Tl 

Ga 
li 
Ta 

Nb 

Hf 
Zr 

y 

Th 

u 
La 

Ce 

Pr 

Nd 
Sm 

Eu 
Gd 
Tb 
Oy 
Ho 
Er 
Tm 
Yb 
lu 

45 

271 

43 

1 

54 

35 . 79 

0.16 

9 

0 . 89 

29 

164 
0.00 

14 

8.21 

0 . 03 
0.5 

1.42 

55 

26 

0.05 

0 . 03 

1.07 

4.26 

0.86 
4 . 98 

2.12 

0.81 

2.77 
0 . 57 

3 . 80 
0 . 84 

2 . 45 

0 . 35 

2 . 32 

0.34 

48 

255 

53 

n.a. 
56 

n.a. 
n.a . 

9 

n.a. 
n.a . 

129 

n.a . 
14 

n.a. 
n.a . 
n.a. 
1. 14 

44 

23 
n.a. 
n.a. 
n.a . 
n.a. 
n.a . 
n.a. 
n.a. 
n.a . 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 
n.a. 

34 

200 

29 
n.a. 

26 

n.a. 
n. a. 

8 
n. a . 
n.a. 

190 

n.a. 
14 

n.a . 
n.a. 
n.a . 
0 . 82 

32 
14 

n.a. 
n.a. 
n.a . 
n.a . 
n . a . 
n.a. 
n.a. 
n. a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 
n. a. 
n. a. 
n.a. 

44 

273 
41 

59 

61.65 

0. 13 
7 

0.97 

32 
170 

0.00 

16 

6.83 

0 .03 

0.5 

1.46 
57 

26 

0 . 03 

0.02 

1.10 
4.31 
0.93 

5. 18 

2. 27 

0.77 

2.94 

0.60 

4.07 

0.88 
2. 57 

0. 37 

2. 26 

0. 34 

41 
226 

69 

1 

45 
17.60 

0.22 

3 
0.33 

16 

107 

0.01 

13 

5.83 

0.02 

0 . 3 

0.93 

36 

20 

0 . 06 

0 . 02 

0.65 

2.70 

0.59 

3.52 

1.63 
0.66 
2. 16 

0.47 

3.26 
0.70 

2.13 
0.30 

1.95 

0 .27 

44 

221 

31 

1 

36 

89.80 

0 .24 

1.40 

11 

179 

0.01 
14 

2.25 
0.03 

0.5 

0 .96 

37 

15 

0 .03 

0.01 
0 .91 

3. 17 
0 .60 

3.27 
1 . 42 

0.61 
1.90 

0 .41 

2.67 
0 .58 

1. 76 

0 .24 

1.52 

0 .22 
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C.1 b Gabbroic Rocks 



s~.e N- s-7 
Figure • 3.2.3 

T-267 
3.2. 2 

T-288 
3.2.2 

355 

T-393 
3.2.2 

TL ·523 
3 . 2.5 

Rock Suite aphyric/CPX aphyric/CPX aphyr ic/CPX aphyric/CPX aphyric/CPK 
Rock Type gabbro microgabbro gabbro gabbro metagabbro 

Mg NIA!tler 61.93 48.29 67.09 57.50 76.90 
Si02 (Wt.X) 49.70 52.30 44,50 44 .50 47 . 00 

Ti02 1.04 1. 20 1.08 0.88 0.36 
Al203 14 .20 14.50 15.20 14.70 17.60 

Fe2o3• 9.35 11.60 8.91 9.75 5. 55 
MnO 0.17 0.16 0.13 0. 15 0.09 
Mga ;- .os 5.47 9.17 6.66 9.:n 
CaO 

Na2G 
K20 

P205 
lOI 

Cr (ppm) 

Ni 

Sc 
v 

Cu 

Pb 
Zn 
w 

Ho 
Rb 
Cs 
Ba 
Sr 
Tl 
Ga 
L i 

Ta 
Nb 

Hf 
Zr 

Th 
u 

La 

Ce 
Pr 
Nd 

Sm 

Eu 
Gd 

Tb 

Oy 

Ho 
Er 
Tm 
Yb 
lu 

11.86 
3.20 
0.17 

0.08 
2.73 

165 
53 
52 

269 
15 

n.a. 
28 

n.a. 
n.a. 

n. a. 
n. a. 

201 
n. a. 

14 
n. a. 
n.a. 
n.a. 
n.a. 

60 
22 

n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n. a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a . 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 

5.08 
4.83 
0.0? 
0.09 
3.47 

0 

0 

33 
387 

11 

1 
75 

34.36 
0.21 

0. 74 
22 
80 

0 .02 
16 

6.12 
0.07 

1.1 
1.85 

n 
25 

0.18 
0.10 
2. 78 
8.35 
1.46 
7.24 
2 .57 
0.93 
3.12 

0.63 
4.23 
0.89 
2.68 
0.38 
2.42 
0.35 

16.00 
1.05 
0.33 
0.00 
3 .62 

179 

47 
86 

448 
107 

0 

30 
73.20 
0.43 

5 
0 . 58 

31 
368 

0.00 
12 

3.52 
0.91 
14.6 
0.82 

32 
27 

0 . 07 
0 . 01 
0.25 
1.42 
0.39 
2.91 
1.64 

0 .69 
2.91 
0.64 

4.68 
1.07 
2.86 
0.39 
2. 42 
0.36 

18.62 
0.17 
0.04 
0.06 
3.63 

22 
15 
36 

237 
9 

0 

26 
60 . 47 

0.33 
0 

0.14 
4 

55 
0.00 

14 
1. 31 
0.12 
1.9 

1.46 
57 
20 

0.14 
0.04 
1. 75 
5. 78 
1.00 

5.03 
1.89 
0.69 
2 51 
0. 48 
3. 41 
0. 74 
1.97 
0. 28 
1.92 
0.28 

12.84 
2.16 
0. 12 
0.00 

3.72 
684 
690 

51 
154 
149 

1 

46 
39. 76 
0 .37 

0.18 
5 

163 
0.00 

38 
0.90 
0.01 

0 . 2 
0.41 

16 
7 

0.05 
0.12 
0.37 
1. 28 
0.25 
1.35 
0.60 
0.41 
0.93 
0.19 
1.33 
0.29 
0.75 
0.10 

0.64 

0.10 

Tl·524 
3.2 . 5 

TL ·525 
3.2 .5 

aphyric/CPX aphyric/CPX 
metagabbro gabbro 

59.38 
49.50 

1.40 
14.60 
10. 23 
0.16 
7.55 

10.74 
3.39 
0.17 
0. 12 
1.58 
238 

56 
53 
3~ 

51 
n.a . 

71 

n.a. 

n.a. 

n.a. 
n.a. 

193 
n.a. 

16 
n.a. 
n.a. 
n.a. 
n.a. 

111 

34 

n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.ll. 

n.a. 
n.a. 

58.46 
51.90 

1.04 

15.60 
9.19 
0.14 
6.53 
9.08 
3 .60 
0.45 
0.10 
2 .25 

150 
61 
46 

297 

35 
n.a. 

30 
n.a . 
n.a. 

4 

n.a. 
n.a. 

147 
n.a. 

18 
n.a. 
n.a. 
n.a. 
n.a. 

76 
25 

n.a . 
n.a. 
n.a. 
n.a. 
n. s . 
n.a. 
n.a. 
n.a. 
n.a . 

n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
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Sample Name TL-526 TL·530a H·754a 
figure • 3.2.5 3.2.5 3.2.5 

H·754b 
3.2.5 

H-756 
3.2.5 

H· 758c 
3.2.5 

Rock S· te aphyric/CPX apllyric/CPX apllyric/CPX aphyric/CPX ephyric/CPX ephyric/CPX 
Rock • pe 

Mg NU!t>er 
Si02 (wt.X) 

Ti02 
Al203 
Fe203 

MnO 
MgO 

cao 
Na20 

K20 
P205 

LOI 

Cr 
Ni 
Sc 
v 

Cu 
Pb 

Zn 
w 

Mo 

Rb 

Cs 
Ba 

Sr 

T l 

Ca 
l i 

Ta 
Nb 

Hf 

Zr 
y 

Th 

u 
La 
Ce 
Pr 

Nd 
Sm 

Eu 
Cd 
Tb 
Dy 

Ho 

Er 
Tm 
Yb 

Lu 

gabbro 
64 . 76 
49.10 
0.96 

15.50 
9.30 
0.15 
8.63 
9.08 
3.39 
0.32 
0.05 
3.66 

120 
59 
36 

281 
136 

n.a . 
42 

n.a. 
n.a . 

2 

n. a. 
n.a . 

137 
n.a . 

12 
n.a . 
n . a. 
n.a. 
n.a. 

50 
17 

n.a. 
n.a. 
n.e. 
n.a. 
n.a. 
n . a. 
n.a. 
n . a. 
n.a. 
n.a . 
n.a . 
n.a . 
n. a. 
n.a. 
n.a. 
n.a. 

gabbro 
54.85 
52.00 
0.84 

13.70 
12.52 
0.20 
7.68 
5. 88 
2.41 
0.44 
0.05 
3. 74 

43 
32 
47 

342 
630 

n.a. 
61 

n.a . 
n.a. 

3 
n.a. 

n. a. 
89 

n.a. 
14 

n.a . 
n. a. 

n.a. 
48 
17 

n.a. 
n.a. 
n. a. 
n.a . 
n.a. 
n.a. 

n.a . 
n.a. 
n.a. 
n.a. 
n.e. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

Rodingitized gabbro 
83 .60 
43 .50 
0. 12 

25.40 
2.47 
0.05 
6.36 

12.10 
2.93 
0. 21 
0.02 
5.43 
302 
158 
15 
36 

0 
n.a. 

13 
n.a. 
n. a. 

2 

n.a. 
n.a. 
340 

n.a. 
12 

n. a. 
n.a. 
n.a. 
n.a. 

15 
1 

n.a. 
n.a. 
n. a. 
n.a. 
n. a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

gabbro gabbro 
74.83 56.06 
49.40 
0.44 

14.40 
5.89 
0.12 
8.84 

14.26 
2.52 
0.22 
0.00 
2.57 
506 
86 

66 
231 
87 

n.e. 
20 

n.a . 
n.a. 

n.a. 
n.o. 

153 
n.a. 

12 
n.a. 
n.a. 
n.e. 
n.a. 

20 
11 

n.e. 
n.a. 
n.a. 
n.a. 
n.a. 
n.e. 
n.a. 
n.a. 
n.a. 
n. a. 
n. a. 
n.a. 
n.a. 
n.a. 
n. a. 
n. e. 

50.00 
1.28 

14.50 
10.29 
0.17 
6.63 
9.76 
3.63 
0.36 
0.12 
2.30 

161 
40 
46 

379 

49 
n.a . 

60 
n.a. 
n.a. 

3 
n.a. 
n.a. 

164 
n.a. 

16 
n.a. 
n.a. 
n.a. 
n .. a. 

72 
25 

n.a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

70.23 
49.40 

0.56 
15.20 
7.27 
0. 13 
8.66 

12.::~ 

2.53 
0.47 
0.00 
2.49 
446 
90 
61 

241 
85 

n.a. 
33 

n.a. 
n.a. 

3 
n.a. 
n.a. 
no 

n.a. 
12 

n.a. 
n. a . 
n.a. 
n.a. 

18 
13 

n.a. 
n.a . 
n.a . 
n.a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a . 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

H·763 
3.2.5 
apllyric/CPX 
gabbro 

75 .62 
46 .90 

0.60 
13.50 
8.94 
0.15 

14.00 
9.98 
1.99 

0.29 
0. 04 
2. 74 
975 
420 

35 
229 

27 
n.a. 

49 
n.a. 
n.a. 

3 
n.a. 
n.a. 

104 
n. a. 

13 
n.a. 
n.a. 
n.a. 
n.a. 

36 
20 

n.a. 
n.a. 
n.a. 
n. a . 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a . 
n.a. 
n.a. 
n.a. 



Sample Name H·769 
Figure I 3.2.5 
Rock Suite 
Rock Type 

aphyric/CPK 
gabbr·o 

Mg NI.I!Ce r 

Si02 (wt .X) 

Ti02 
Al203 
Fe203 

MnO 

MgO 

CaO 
Na20 

K20 
P205 

LOI 

Cr 
Ni 
Sc 
v 

Cu 
Pb 
Zn 
II 

Mo 

Rb 
Cs 
Ba 

Tl 

Ga 

Li 
Ta 

Nb 
Hf 

Zr 
y 

Ttl 

u 
La 

Ce 
Pr 
Nd 

Sm 
Eu 
Gd 
Tb 
Oy 
Ho 

Er 
Tm 
Yb 

Lu 

56.40 
50 .50 
0.84 

15.70 
10.15 
0.19 
6.63 
8.84 
3.72 
0.01 
0.05 
3.20 

50 
23 
34 

305 
29 

n.a. 
73 

"·'· 
n.a. 

0 

n.a . 
n.a. 

141 

n.a. 
14 

n.a . 
n.a. 
n.a. 
n.a. 

47 

15 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.3. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

R·902c 
3 .2.1 

357 

R·961b 

red hills 
R·961d 
red hills 

R·966 
red hills 

R-967 
3.2.1 

aptlyric/CPK aphyric/CPK aphyric/CPX aphyric/CPK aphyric/CPK 
metagabbro 

61.35 
50 .80 
0.44 

13.80 
9.83 
0. 16 
7.88 

10. 70 
3.68 
0. 92 
0. 04 
2. 01 
232 
56 
50 

335 

116 
n.a. 

43 
n.a. 
n.a. 

21 
n. a . 
n.a. 
2200 
n.a. 

14 
n. a. 
n.a. 
n. ,_ 

n.a. 
113 

5 

n.a. 
n. a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a . 
n. a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

rod ingitized microga~o metagabbro metagabbro 
82.89 56.36 59.96 59. 18 
42.70 
0.28 

14.10 
6.03 
0 . 10 

14. 7'j 

16.40 
0.89 
0.05 
0.01 
3.61 
890 
570 

42 
157 
94 

0 

16 
30.42 
0.20 

2 
0.13 

21 

428 
0.02 

10 
21.61 
0 . 00 

0.1 

0 . 49 
19 

6 

0.04 
0.01 

0.07 
0.27 
0.09 
0 . 64 
0.44 

0 . 22 
0.65 
0. 15 
1.05 
0.24 
0.71 

0 .10 

0.62 
0 . 09 

49.80 
0.52 

14.60 
8.68 
0.14 
5.66 
9.04 
6 .49 
0.61 
0 .08 
3 .99 

119 
39 
30 

349 
68 

1 

52 

23 .58 
1.04 

21 
5.60 

101 
636 

0.04 
17 

38.87 
0 .04 
0.7 

1.44 

56 
13 

0.24 
0.14 
1.7'5 
4.56 
0.70 
3 .46 
1.22 
0.42 
1.61 
0.32 

2. 24 
0.49 
1.54 
0.22 
1.50 

0. 24 

47.10 
1.28 

15 .40 
10.46 
0 . 17 

7.91 

12 .44 
2.84 
0.24 
0.10 
1. 71 

285 
63 
53 

335 
45 

n.a. 
48 

n.a. 
n.a. 

2 
n.a. 
n.a. 

664 

n.a. 
20 

n. a. 
n.a. 
n.a. 
n.a. 

82 

28 
n.a. 
n.a. 
n.a. 
n.a. 
n.3. 
n .a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
r~ . a. 

n.a . 
n.a. 
n.a. 

44.30 
1.32 

15.60 
10.49 
0.16 
7. 68 

17. 00 
1.20 
0.07 
0.08 
2. 48 

254 
58 
42 

307 
245 

3 
44 

88.52 

0.37 
0 

0.36 

15 
420 

0 . 00 
19 

1 .99 

0.28 
4.4 

1.85 
72 
28 

0.23 
0 . 09 
1 . 81 

6.95 

1.35 

7.41 
2.96 
1. 17 
3. 7'j 

o.n 
4.68 
0.99 

2.92 
0.40 
2. 64 
0. 40 
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S~le Name L-36 B-81 B-90 T-516 
Figure # 3 . 2.2 J . 2.2 3.2.2 3 . 2.2 
Rock Suite Patuif.i Patuki Fatuki Patuki 
Rock Type gabbro gabbro gabbro roUingitized gabbro 

Mg Nl.lltler 68 .48 44.81 42.96 7l.n 
Si02 (Wt. X> 47.60 43.90 40 .80 42.10 

Ti02 0.96 1.00 2.32 0.04 
Al203 15 .90 14.60 13.JO 22.50 
Fe203 7.95 13.71 18.88 4.54 

HnO 0. 13 0.19 0.17 0.05 
HgO 8. 72 5.62 7.18 6.43 
cao 11 .72 17.72 12 . 32 15.14 

Na20 2.80 0.46 1.82 2. 25 
IC20 0.30 0 . 13 0. 23 0.16 

P205 0.04 0.04 0 .00 0. 00 
LOI 2.93 2.53 ~ . 99 6.07 
Cr 413 0 25 516 
Ni 114 3 65 205 
Sc 48 54 69 12 
v 271 534 1050 27 

Cu 59 87 79 25 
Pb n.a. n.a . 0 
Zn 35 60 42 0 

IJ n. a. n.a. 40.58 52.61 
Ho n.a. n.a. 0.50 0.35 
Rb 3 0 3 3 
Cs n. a. n.a. 0.50 0.06 
Ba n. a. n.a. 22 34 
Sr 182 50 429 106 
Tl n.a. n.a. 0.00 0.00 
Ga 15 15 20 13 
l i n.a . n.a. 5.10 15.21 
Ta n.a . n.a. 0. 05 0.04 
Nb n.a. n.a . 0.9 0.6 
Hf n.a. n.a. o.n 0.14 
Zr 81 35 30 5 

y 27 15 11 
Th n.a. n.a. 0.07 0.25 
u n.a. n.a. 0.03 0.03 

La n.a. n.a. 0.30 0.13 
Ce n.a. n.a . 1. 14 0.37 
Pr n. a. n.a. 0. 26 0.06 
Nd n.a. n.a . 1.69 0.34 
Sm n.a. n.a . 0.94 0.15 
Eu n.a. n.a . 0. 51 0.23 
Gd n.a. n.a. 1.53 0.22 
Tb n.a. n.a. 0. 33 0.05 
Oy n.a. n.a. 2.24 0.43 
Ho n. a. n.a. 0.50 0.10 

Er n.a. n.a. 1.34 0.27 
Tm n.a. n.a. 0.18 0.04 
Yb n.a. n.a. 1.09 0.31 
lu n.a. n. a . 0. 15 0.04 
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s~le ~~- c:-704 C:·714 C:-715 C-717 c-n1 
Figure I 3.2. 6 3.2.6 3.2.6 3.2.6 3 . 2.6 

Rock Suite Croisi t les C:roisilles C:roisilles Croisilles Croisilles 

Rock Type 'lll!tagabbro gabbro gabbro plag iogrenite gabbro 

Mg N~r 51 . 12 46.01 52.03 46.60 40.20 

Si02 Cwt.Xl 49.40 48.30 B.10 65.00 50.00 

Ti02 , .36 1.00 0.88 0.76 1.56 

Al203 12.80 16.60 14.80 14.10 14.10 

Fe203 13.84 12.92 10.37 4.88 13.73 

MnO 0.22 0.43 0.15 0.05 0.19 

MgO 7.31 5.56 5.68 2.15 4.66 

CaO 9.30 5.38 6.04 2.36 9.12 

Na20 2 .92 3.88 5.47 6 .87 3.65 

1(20 0.67 2.24 0.30 0.79 0.79 

P205 0.16 0.20 0.08 0.26 0.12 

LOI , .43 2.82 2.07 1. 22 1.82 

Cr 48 51 0 0 

Ni 41 71 8 0 0 

Sc 46 34 38 16 48 

v 398 332 393 17 500 

Cu 48 130 0 0 29 

Pb n.a. 7 0 0 n.a. 

Zn 130 161 16 0 71 

w n.a. 17.40 44.13 106.86 n.a . 

Mo n . a . 58.19 0. 35 1.53 n. a. 

Rb 14 59 5 12 17 

Cs n . a. 2.62 0. 26 1.17 n.a. 

Ba n.a . 309 317 496 n.a. 

Sr 150 245 161 138 273 

Tl n.a. 0.38 0.00 0.06 n.a. 

Ca 19 23 14 17 18 

L i n.a. 18.72 14.60 3.14 n.a. 

Ta n.a. 0.29 0. 30 0.21 n.a. 

Nb n.a. 4.7 4.8 3.4 n.a. 

Hf n.a. 3.54 1.23 4.46 n.a. 

Zr 100 138 48 174 68 

y 38 38 19 43 26 

Th n.a. 3.83 0.17 0.17 n.a. 

u n.a. 0.45 0.05 0.11 n.a. 

La n.a. 15.03 2.12 6.23 n.a. 

Ce n . a . 38.58 6.24 15.55 n.a. 

Pr n.a . 4.n 1.08 2.94 n.a. 

Nd n.a . 19.08 5.35 13 .86 n.a. 

Sm n.a. 5.63 1.93 4.57 n.a. 

Eu n.a. 1.57 0.90 1.37 n.a. 

Cd n.a. 6. 13 2.55 5.53 n.a . 

Tb n.a . , .13 0.48 1.01 n.a. 
Dy n.a. 7.21 3.13 6.67 n.a. 
Ho n.a. 1.48 0 . 69 1.41 n.a . 

Er n. a . 4.48 , .98 4.02 n.a. 

Tm n.a. 0.63 0.29 0.55 n.a. 

Yb n.a. 4.16 1.88 3.37 n.a. 

lu n. a . 0.63 0 .29 0.49 n.a. 
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C.2 Mineral Analyses 

Note: Number of cations have been calculated using MINFILE (version 

3-88), a program package by A. M. Afifi and E. J. Essene. Cations 

have been calculated on the basis of 6 oxygens, ferric and ferrous iron 

have been calculated using a charge balance procedur9 (see Afifl and 

Essene (1 988) for details. Suite numbers are indicated: suite #1 -

aphyric/clinopyroxene-phyric suite; suite #2 = "olivine-poor- suite (Patuki 

and Croisilles melanges); suite #3 = "olivine-rich" suite (Patuki and 

Croisilles melanges); suite #4 = Upukerora Formation (pyroxenes in 

mafic clasts). 



3a 3b 4a 4b Sa Sb 1a 1b 4!a 2b 
37 37 37 37 37 37 76 76 76 76 

Si02 53.33 50.30 51.95 52.23 Sl. 31 51.00 45.88 45.84 46.26 46.08 
Ti02 0.47 o. 75 0.46 0.60 0.55 0 . 89 3.10 3.24 2.96 2.66 
A1203 l. 85 4.17 2.24 2.60 4 .16 4 .25 6.35 6.85 6.80 6.95 
Cr203 0.32 0.51 0.10 0.12 0.72 0.79 0.16 0.11 0.18 0.10 
FeO 5.34 5.89 5.56 6.24 5.<:1 4.94 9.05 8 . 34 6.82 7.30 
MnO 0.10 0 . 14 0.23 0.16 0.09 0.11 0.14 0 . 14 0.10 0.19 
NiO 0.06 0.03 0.04 0.02 0.02 o. cs 0.03 0.04 
MqO 16.88 15.54 14.75 14.32 15.53 15.75 11.62 11.93 12.96 12.45 
CaO 21.78 22.11 23.62 24.13 22.14 22.64 22.13 22.55 22.63 23.60 
Na20 0.18 o. 23 0.46 0 . 42 0.19 0.18 0.47 0.27 0 . 38 0 . 39 
K20 0.01 0 . 01 0.03 

Total 100.32 99.67 99.37 100.87 100.31 100.60 98 95 99.30 99.13 99.72 

tSi IV 1. 95 1. 86 1.93 l. 92 1 . 88 1. 87 1. 75 l. 74 1. 75 l. 74 
tAl IV 0.05 0.14 0.07 0.08 0 . 12 0.13 0.25 0.26 0.25 0.26 
tTi IV 
tFe IV 
'1' site 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2. 00 2.00 2.00 
tAl VI 0.03 0.05 0.03 0.03 0.06 0 . 05 0.04 0 . 05 0.05 0.05 
tTi 0.01 0 . 02 0.01 0.02 0.02 0.02 0 . 09 0.09 0.08 0.08 
tcr 0.01 0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.00 
tFe +3 0.00 0.00 0.00 0.00 0. 00 
tFe +2 0.16 0.18 0.17 0.19 0.17 0.15 0.29 0 . 26 0.22 0 . 23 
tMn +2 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0 . 00 0.00 0.01 
tNi 0.00 0.00 0. 00 0.00 0.00 0.00 0. 00 0 . 00 
tMq 0.92 0.86 0.82 0.79 0.85 0. 86 0 . 66 0. 67 0 .73 0.70 
tea 0.85 0.88 0.94 0.95 0.87 0. 89 0.91 0 . 92 0.92 0.95 
tNa 0.01 0.02 0.03 0.03 0.01 0.01 0.03 0.02 0.03 0.03 
tK 0.00 0.00 0.00 
M1,M2 2 . 00 2.02 2.02 2.02 2 .01 2.01 2.03 2 . 02 2.03 2 . 04 

\Mq 47.43 44.64 42.17 40.62 44.83 45.19 35.56 36.27 39.15 37.04 
\Fe•+Mn 8.58 9.72 9.29 10.19 9 . 23 8 . 13 15.78 14.46 :1.73 12 . 50 
\Ca 43 . 99 45.64 48.54 49.19 45.94 46.68 48.67 49.27 49.13 50 . 46 

Suite t 1 1 1 1 1 1 3 3 3 3 
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3a 3b 1a 1b 2a 2b 3a 4a 4b la 
76 76 128 128 128 128 128 128 128 132cr ------ ------ ------ ------ -------

Si02 46.71 46.49 47.60 48.17 49.30 49.97 49.73 48.67 48.50 51.20 
Ti02 2.44 2.74 2.49 2.10 2.:;1 1. 83 1. 20 1. 84 1. 95 1. 23 
Al203 7.22 6.89 3.57 3.73 4 . J5 3. 75 3.11 3.61 3. 98 4.17 
Cr203 0.12 0.20 0.02 0.04 0 . !0 0.05 0.41 0.07 o.os 0.88 
FeO 7.13 6.82 14.12 15.05 12.65 11.99 10.21 l4. 58 13.89 6.45 
MnO 0.11 0.10 0.31 0.18 0 . 24 0.19 0.17 0.37 0. 30 0.20 
NiO 0.05 0.05 0.03 0.04 0.03 0.05 0.01 0.02 0. 05 
MgO 12.81 12.87 12.84 13.67 13.70 15.34 16.47 14.18 13.14 15.74 
cao 23.34 22.49 18.07 16.46 16 . 85 17.32 18.40 15.73 18.02 20.70 
Na20 0.32 0.38 0.44 0.40 0 . 34 0.37 0. 31 0.34 0.36 0.20 
Jt20 0.01 0.01 0.16 0.02 0.03 0.12 0.02 

Total 100.25 99.04 99.49 99.85 99.43 100.83 100.06 99.43 100.33 100.84 

tSi IV 1.75 l. 75 1. 83 1. 84 l. 86 1. 86 1. 86 l. 85 1. 84 l. 87 
tAl IV 0.25 0.25 0.16 0.16 0.14 0.14 0.14 0.15 0.16 0 . 13 
tTi IV 0.01 0.00 
tFe IV 
T site 2.00 2.00 2.00 2.00 2.00 2 . 00 2.00 2.00 2.00 2.00 
tAl VI 0.06 0.06 0.00 0.05 0.02 0.02 0. 02 0.05 
tTi 0.07 0.09 0.06 0.06 0.06 0.05 0.03 0.05 0.06 0.03 
fCr 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 
tFe +3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
tFe +2 0.22 0.22 0.45 0.48 0.40 0.37 0.32 0.46 0.44 0.20 
tMn +2 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0. 01 
tNi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
fMg 0. 71 0. 72 0.73 0.78 0.77 0.85 0.92 0.81 0.74 0.86 
tea 0.93 0.91 0. 74 0.67 0.68 0.69 0.74 0.64 0.73 0.81 
tNa 0.02 0.03 0.03 0.03 0. 02 0 . 03 0 . 02 0.03 0.03 0.01 
fK 0. 00 0.00 0.01 0.00 0.00 0.01 0.00 
M1,M2 2.04 2.03 2.04 2.03 2.00 2.02 2.04 2. 02 2.03 2.00 

\Mg 38.07 39.10 37.85 40.15 4:!..46 44.31 46 . 37 41.86 38.59 45.82 
\Fe*+Mn 12.07 11.80 23.87 25.10 21.89 19.74 16.40 24.77 23.38 10.86 
\Ca 49.85 49.11 38.28 34.75 36.65 35.95 37.23 33.37 38.03 43.31 

Suite f 3 3 2 2 2 2 2 2 2 2 



363 

2a 1a 1b 1c 2a 2b 4a 4b Sa Sb 
132cr 159 159 159 159 159 159 159 159 159' 

Si02 51.54 50.09 51.51 50.03 51.75 50.21 48.86 50.78 51.65 50.14 
Ti02 0.95 l. 07 0.69 1.17 0.62 1.31 1.27 1.20 0.60 1. 45 
Al203 3.68 4. 68 2.55 4.42 2.56 4.08 3 .86 3 . 42 1 . 8:2 2.36 
Cr203 0.50 0.18 0.19 0.21 0 . 27 0. 19 0.04 0.04 0.05 
FeO 7.47 8.99 8.02 7.87 7. 85 8.16 10.89 9.16 10.21 14.25 
MnO 0.22 0. 31 0.30 0.23 0.17 0.21 0 .25 0.23 0.31 0.38 
NiO 0.05 0.03 0 . 09 0.02 0.01 
HqO 16.52 14.66 16.63 16.49 17.77 15.89 14 . 83 15.89 17.38 12.38 
CaO 19.22 18 . 57 18 . 48 19.43 19 . 02 19.70 18 . 10 18.17 16.38 17.97 
Na20 0.36 0.44 0.49 0.36 0.50 0.30 0.33 0.34 0.25 0.31 
K20 0.06 0.24 0.01 0.03 0.02 

Total 100.57 99.26 98 . 96 100.23 100 . 52 100 . 05 98 . 46 99 . 25 98.65 99.24 

tSi IV l. 89 1. 87 l. 92 1.85 l. 90 l. 86 l. 86 l. 89 l. 94 l. 92 
tAl IV 0 . 11 0.13 0.08 0.15 0.10 0.14 0.14 0 .ll 0.06 0.08 
fTi IV 
tre IV 
T site 2.00 2.00 2.00 2.00 2.00 2 . 00 2 . 00 2.00 2.00 2.00 
tAl VI 0.05 0.08 0.03 0.04 0. 01 0 . 04 0.03 0.05 0.02 0.02 
fTi 0.03 0.03 0.02 0 . 03 0.02 0.04 0. 04 0.03 0.02 0.04 
tCr 0 . 01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 
tre +3 0.00 0.00 0 . 00 0.00 0 . 00 
tre +2 0. 23 0.28 0 . 25 0 . 24 0. 24 0.25 0.35 0.29 0.32 0. 46 
fHn +2 0.01 0 . 01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 . 01 
tNi 0.00 0.00 0.00 0.00 0.00 
tHq 0.90 0 . 82 0. 92 0.91 0.97 0 . 88 0.84 0.88 0 . 97 0 . 71 
tea 0 . 75 0.74 o. 74 0.77 0. 7 5 0.78 0. 74 0.73 0.66 0 , 74 
tNa 0.03 0.03 0.04 0.03 0.04 0.02 0.02 0.02 0.02 0.02 
tK 0.00 0.01 0 . 00 0.00 0 . 00 
Hl,H2 2.01 2.01 2.02 2.03 2.04 2.02 2.03 2.01 2.01 2.00 

'Hq 47.68 44.12 48.09 47.11 49.44 45 . 73 43 . 50 46.44 49.58 36.95 
'Fe*+Hn 12.45 15.71 13. ~0 12.99 12.52 13.52 18 . 34 15.40 16.84 24.50 
\Ca 39.87 40.17 38.41 39.90 38.03 40.75 38.16 38.16 33.58 38.55 

Suite t 2 2 2 2 2 2 2 2 2 2 



364 

6a 6l:J 7a 7b Sa 9a 9b 1a 1b 2a 159 159 159 159 159 159 159 160 160 160 ------ ------ ------ ------Si02 51.40 52.18 50 . 01 49.61 50 . 04 49.91 50.47 48.44 47.05 47.32 '!'i02 0.89 0.76 1.48 l. 38 1.19 1. 57 l. 28 2.09 l. 99 2.41 Al203 3.17 3.16 3.13 2.79 2.83 3.04 2.97 4.69 4.60 5.54 Cr203 0.20 0.14 0.04 0.02 0.01 0.28 0.18 0.16 FeO 7.21 7 . 54 11.57 14.37 9.48 12.18 11. 31 7.94 8.67 7.90 MnO 0.17 0 . 16 0.31 0.40 0.24 0.25 0.23 0.16 0.23 0.16 NiO 0.04 0.01 0.03 0.02 0 . 01 0.05 MgO 16.27 16 . 15 14 . 77 14 . 54 15.00 13.79 H . 83 13.46 13.87 13 . 43 CaO 20.23 18 . 94 17 . 75 16.45 20.19 18.99 18.87 22.43 22.20 22.38 Na20 0.36 0.36 0. 45 0 . 38 0.26 0.40 0 . 31 0.35 0.45 0.37 K20 0.03 0.07 0.01 

Total 99.93 99.46 99.51 99.96 99.24 100.16 100.31 99.a6 99.25 99.72 

tSi IV 1. 90 1. 93 1. 88 l. 88 1. 89 1. 88 l. 89 l. 82 1. 79 1. 78 tAl IV 0.10 0.07 0 . 12 0.12 0.11 0 . 12 0.11 0.18 0.21 0.22 tTi IV 0.00 fFe IV 
T site 2 . 00 2.00 2.00 2 . 00 2 . 00 2.00 2.00 2. 00 2.00 2.00 tAl VI 0.04 0 . 06 0.02 0 . 01 0.01 0.02 0.02 !). 03 0.03 tTi 0 . 02 0 . 02 0.04 0.04 0 . 03 0 . 04 0.04 0.06 0.05 0.07 fCr 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 tFe +3 0.00 0.00 0.00 0. 00 0 . 00 0.00 tFe +2 0.22 0.23 0.36 0. 46 0.30 0.38 0.35 0.25 0.28 0 . 25 tMn +2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 tNi 0.00 0.00 0.00 0.00 0.00 0.00 tMg 0.90 0.89 0.83 0.82 0 . 84 0.77 0.83 0.75 0.79 0. 75 
tea 0.80 0.75 o. 72 0.67 0 . 81 0. 77 0.76 0.90 0.90 0.90 
INa 0.03 0 . 03 0.03 0.03 0 . 02 0.03 0 .02 0.03 0.03 0.03 
tK 0.00 0.00 0.00 
M1,M2 2.02 2 . 00 2.02 2.03 2.03 2.02 2.02 2.03 2.06 2.04 

\Mg 46 . 55 47.38 43.20 41.96 42.90 40.07 42.53 39.44 39 . 83 39 . 46 u·e•+Mn 11.85 12.68 19.50 23.92 15 . 60 20.27 18.57 13.32 14 .34 13.29 
tea 41.60 39.94 37.31 34.12 41.50 39.66 38.90 47.24 45.82 47.26 

suite f 2 2 2 2 2 2 2 3 3 3 



365 

2b 3a 3b 4a 4b Sa Sb 6a 6b 7a 
160 160 160 160 160 160 160 160 160 160 

Si02 49 . 15 48 . 57 47.86 48.75 48. 4l 47.65 49.09 46 . 99 49.21 48.02 
Ti02 l. 75 l. 63 l. 96 l. 75 l. 99 2.36 2 . 23 2.19 1. 86 1.80 
A1203 4.18 4.82 5.36 3 . 90 4.91 5.44 5 . 11 5 . 70 4.48 4.26 
Cr203 0.27 0.19 0.15 0.09 0.16 0.27 0 . 25 0 . 21 0.18 0. 13 
FeO 7. 27 6 . 75 6.28 8 . 72 7.77 7.64 7 . 48 7 . 13 7.70 7 . 84 
HnO 0 . 22 0.16 0 . 13 0 . 23 0. 26 0.13 0 . 14 0.11 0 . 20 0 . 17 
NiO 0.01 0.03 0 . 01 0.02 0 . 03 0.03 0 . 03 0 . 01 
HgO 13 . 73 13.76 13 . 55 13.49 13 . 90 12.84 13 . 45 13 . 29 13 . 66 14.06 
rao 22 . 22 22 . 79 22.86 22.07 22 . 28 22.35 22 . 67 22 . 74 22 . 49 22.39 
Na20 0. 39 0.42 0 . 35 0.37 0 . 30 0 . 39 0.39 0.34 0 . 28 0 . 23 
K20 0.01 0.01 0.06 

Total 99 . 19 99 . 09 98.50 99 . 41 99.99 99 . 10 100 . 90 98.73 100 . 09 98.91 

lSi IV l. 8S l. 83 1 . 81 1 . 84 l. 81 1 . 80 l. 82 l. 78 1. 84 l. 82 
tAl IV 0.1S 0.17 0.19 0.16 0.19 0 . 20 0.18 0 . 22 0 . 16 0 . 18 
tTi IV 
IFe IV 
T site 2.00 2.00 2.00 2.00 2. 00 2 . 00 2 . 00 2 . 00 2.00 2 . 00 
tAl VI 0.03 0.04 0 . OS 0.02 0 . 03 0 . 04 0 . 04 0 . 04 0.03 0.01 
tTi 0 . OS 0 . 05 0.06 0 . 05 0 . 06 0 . 07 0 . 06 0 . 06 0 . 05 0.05 
tcr 0 . 01 0.01 0 . 00 0 . 00 0.00 0 . 01 0 . 01 0 . 01 0 . 01 0.00 
tre +3 0 . 00 0 . 00 0.00 0 . 00 
tFe +2 0.23 0.21 0.20 0.28 0 . 24 0 . 24 0 . 23 0 . 23 0 . 24 0.25 
tHn +2 0.01 0.01 0.00 0.01 0 . 01 0 . 00 0 . 00 0 . 00 0 .01 0.01 
tNi 0 . 00 0 . 00 0 . 00 0.00 0.00 0 . 00 0.00 0.00 
IHg 0 . 77 0.77 0.76 0 . 76 0. 78 0. 72 0. 74 0 . 75 0.76 0 . 79 
tea 0 . 90 0 . 92 0 . 93 0 . 89 0.89 0 . 90 0 . 90 0 . 92 0.90 0.91 
INa 0.03 0 . 03 0.03 0.03 0 . 02 0 . 03 0. 03 0.03 0.02 0.02 
tiC 0 . 00 0 . 00 0 . 00 
H1,H2 2 . 02 2.03 2 . 03 2 . 03 2 . 03 2 . 02 2 . 02 2 . 04 2 . 02 2.04 

'Hg 40.50 40.45 40.36 39.24 40.38 38.60 39.S4 39.44 39 . 88 40 . 58 
•re•+Hn 12.40 11.40 10.71 14.61 13 . 09 13.11 12.57 12.06 12 . 94 12.97 
,c. 47. 10 48.15 48.93 46.14 46 . 52 48. 29 47 . 89 48 . 50 47 . 18 46.45 

Suite t 3 3 3 3 3 3 3 3 3 3 



' • • .. ' 0 • - • 

366 

7b 1a 1a 1b 2a 2b 3a 4a 4b 1b 
160 257 267 267 267 267 267 267 267 290 ------ ------ ------ -· ----

Si02 49.02 51.28 51. 25 49.66 49.31 50 . 61 50.09 51.30 4:L 79 51.66 
Ti02 l. 70 0.59 0.63 0.54 0.77 0.05 0.59 0.68 0.70 0.64 
Al203 3 . 79 3 . 55 3.29 3. 74 3.48 2 . 32 2.03 2 . 64 3.11 2 . 44 
Cr203 0 . 04 0.23 0.03 0. 02 
reo 8 . 70 7.60 8.88 9 . 03 11.07 13 . 63 14 . 82 10 . 67 9 . 79 10.68 
HnO 0.22 0.20 o.:to 0.10 0.34 0.39 0 . 44 0 . 01 0.26 0 . 21 
NiO 0.01 0.01 0.02 0.04 0 . 05 0.05 0 . 01 0 . 01 0.03 0 . 01 
MgO 13.74 16.63 15.34 15.60 14.24 10.08 10 . 48 l4 . 79 14 . 49 15.60 
cao 21.49 20.16 20.28 20 . 05 19.98 22.45 19 . 69 19 . 65 19.99 19.17 
Na2o 0 . 31 0 . 25 0.28 0.31 0 . 29 0.42 0.47 0.52 0.31 0.30 
K20 0.01 0.02 0 . 01 0.02 0 . 04 0 . 03 0.01 0 . 01 

Total 99.03 100 . 50 100 . 22 99.08 99.53 100.02 98.66 100.30 98.48 100.74 

tSi IV l. 85 l. 89 1 . 90 1. 87 l. 87 l. 94 l. 94 l. 91 1. 89 l. 92 
tAl IV 0 . 15 0.11 0.10 0 . 13 0 . 13 0.06 0.06 0 . 09 0.11 0.08 
tTi IV 
Ire IV 
T site 2.00 2.00 2.00 2 . 00 2 . 00 2 . 00 2.00 2 . 00 2.00 2.00 
tAl VI 0.02 0.04 0.04 0.03 0 . 02 0 . 04 0.04 0.03 0 . 03 0 . 02 
tTi 0.05 0.02 0.02 0.02 0 . 02 0 . 00 0.02 0.02 0.02 0 . 02 
tcr 0.00 0.01 0.00 0.00 
tFe +3 0 . 00 0.00 0.00 0 . 00 0 . 00 0 . 00 
tFe +2 0 . 28 0.23 0.28 0.28 0.35 0.44 0.48 0 . 33 0.31 0 . 33 
tMn +2 0 . 01 0.01 0.01 0.00 0.01 0.01 0 . 01 0.00 0.01 0 . 01 
tNi 0 . 00 0.00 0.00 0.00 0.00 0.00 0 . 00 0.00 0 . 00 0.00 
fM9 0. 77 0.91 0.85 0.88 0 . 80 0.58 0.61 0.82 0.82 0 . 86 
tea 0.87 0.79 0.81 0.81 0.81 0. 92 0.82 0. 79 0.81 0 . 76 
tNa 0.02 O.C2 0.02 0.02 0 . 02 0.03 0.04 0 . 04 0.02 0 . 02 
tK 0 . 00 0.00 0.00 0.00 0.00 0.00 0.00 0 . 00 
M1,M2 2.02 2.03 2.02 2.04 2 .04 2. 02 2.01 2 . 03 2.03 2 . 02 

\Mg 40.19 46.85 43.82 44 . .;0 40 . 68 29.58 31.57 42 . 37 42 . 00 43.96 
\Fe*+Mn 14.64 12.33 14 . 55 14.58 18. 29 23 . 08 25.80 17.17 16 . 35 17.22 
\Ca 45.17 40.82 41.63 41.02 41. u2 47.34 42.63 40.46 41 . 65 38 . 82 

Suite I 3 3 1 1 1 1 1 1 1 1 



367 

2a 2b 3a 3b 43 4b 1a 1b 2a 2b 
290 290 290 290 290 290 291 291 291 291 

Si02 49.28 51 . 18 50 . 27 49.44 50.73 50 . 24 51 . 39 5l. 88 49.21 50 . 12 
'U02 0.87 0.51 l. 01 1. 02 0.81 0.96 0.22 0 . 20 0.42 0.43 
Al203 3 . 87 3 . 74 3 . 30 3.14 3.79 4 . 37 3 . 08 2 . 74 4 . 02 3.85 
Cr203 0.04 0.27 0.03 0 . 02 0 . 05 0 . 13 0 . 09 0 . 03 
FeO 9 . 41 7 . 20 11.38 ll. 88 9.40 9 . 18 5 . 77 5.79 7 . 63 7 .38 
MnO 0 . 18 0.14 0 . 27 0 . 37 0.24 0.25 0. 06 0. 15 0. 14 0.16 
NiO 0.03 0 . 02 0.01 0.03 0.04 0.04 0 . 05 0.05 0 . 03 
MqO :.5.25 16 . 63 14 . 36 13.98 l4. 9(1 14.39 15.71 15.90 14.30 14.60 
CaO 20 . 00 20.63 19 . 91 19 . 34 20 .ll 20.14 23 . 25 22.61 22.87 22.07 
Na20 0. 25 0. 23 0.32 0 . 20 0.29 0.33 0.18 0 .1 4 0.32 0.32 
K20 0 . 02 0 . 01 0.02 0 . 01 0.01 

Total 99.18 100.57 10().86 99 . 41 100 . 35 99.91 99 . 83 99.56 99 . 00 98.96 

lSi IV l. 86 l. 88 l. 88 l. 88 1. 88 1. 87 1. 90 l. 92 1. 86 1. 88 
IAl IV 0.14 0 . 12 0.12 0.12 0 . 12 0 . 13 0 . 10 0 . 08 0. 14 0.12 
ITi IV 
fFe IV 
T site 2.00 2.00 2.01) 2.00 2.00 2.00 2.00 2.00 2.00 2. 00 
IAl VI 0 . 03 0.04 0 . 02 0.02 0 . 05 0 . 06 0. 04 0.04 0 . 04 0.05 
ITi 0 . 02 0.01 0.03 0.03 0 . 02 0.03 0 . 01 0 . 01 0 . 01 0 . 01 
ICr 0.00 0 . 01 0 . 00 0.00 0.00 0.00 0 . 00 o.oo 
tre +3 0.00 0.00 0.00 0 . 00 
Ire +2 0.30 0.22 0.36 0.38 0. 2 9 0 . 29 0 . 18 0 .1 8 0.24 0 . 23 
IMn +2 0.01 0.00 0.01 0.01 0.01 0.01 0. 00 0 . 00 0 . 00 0 .01 
tNi 0.00 0.00 c.oo 0.00 0.00 0 . 00 0 . 00 0.00 0. 00 
IMq 0 . 86 0 . 91 0.80 0. 79 0.82 0.80 0 . 87 0 . 88 0 . 81 0. 82 
tea 0.81 0 . 81 0.80 0.79 0 . 80 0 . 80 0 . 92 0 . 90 0.93 0. 89 
INa 0.02 0.02 0.02 0.01 0 .02 0.02 0 . 01 0.01 0.02 0. 02 
tK 0. 00 0.00 0.00 0.00 0.00 
M1,M2 2 . 04 2.03 2.03 2.03 2.02 2 . 02 2.03 2.02 2.05 2. 03 

\Mq 43.57 46 . 75 40.79 40 . 23 42.86 42.13 44 . 02 44 . 81 40 .74 42. 08 
\ra•+Mn 15.37 1l. 58 18.57 19 . 78 15. 56 15.49 9. 16 9.39 12.42 12 .20 
\Ca 41.06 4l. 68 40.64 39 . 99 41.58 42.38 46.82 45.80 46.83 45.72 

Suite I 1 1 1 1 1 1 4 4 4 4 
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368 

3a Jb 4a 4b Sa 5b 6a 6b 1a 1b 291 291 291 291 291 291 291 291 467 467 ------ ------ ------Si02 51 . 93 52.63 51.07 47.82 52.19 51.41 50 . 24 49 . 96 50.34 50.91 Ti02 0.45 0.36 0.46 0.85 0.44 0.46 0. 64 0.66 1. 64 1. 39 A1203 3.47 3.02 4.08 7.52 1. 84 1. 90 4 . 62 4 . 66 3.90 3.68 Cr203 0.13 0.24 0.18 0.21 0.01 0.13 0.09 0.08 0.05 FeO 5.08 4.77 5 . 26 6.06 11. OS 10.20 7.08 6.93 8.87 8.75 HnO 0.06 0.07 0.10 0.09 0.62 0.48 0 .17 0.18 0 . 26 0.24 NiO 0 . 05 0 . 05 0.03 0 . 01 0.06 MgO 15.80 15.81 15.61 13.65 14.39 14.39 13.87 D.S6 14.69 14.72 cao 23.74 22.87 22.93 22.66 19.18 20.30 23.18 22.98 20.25 20.82 Na20 0 . 22 0.22 0.29 0.32 0 . 37 0.41 0.29 0 . 3S 0.36 0.31 K20 0.01 0.02 0 . 01 0.02 0.01 0 . 01 0 . 01 0.01 
Total 100.94 100 . 01 100 . 04 99 .20 100.09 59.56 100.22 99 . 81 100.41 100 . 94 
lSi IV 1. 90 1. 93 1. 98 1.79 1. 95 1. 93 l. 87 1. 86 l.!J? l. 88 tAl IV 0.10 0.07 0.12 0.21 0.05 0.07 0.13 0 . 14 0 . 13 0.12 IT! IV 
tFe IV 
T site 2.00 2.00 2.00 2.00 2 . 00 2 . 00 2.00 2.00 2.00 2.00 tAl VI 0.04 0.06 0.06 0.12 0.03 0.02 0.07 0 . 07 0.04 0.04 ITi 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.05 0.04 ICr 0 .00 0.01 0.01 0 . 01 0 . 00 0.00 0.00 0 . 00 0.00 tre +3 0.00 0.00 0.00 0.00 0.00 0.00 I Fe +2 0.16 0.15 0.16 0.19 0 . 35 0.32 0.22 0.22 0.28 0.27 IHn +2 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0 . 01 0 . 01 0.01 IN! 0 . 00 0.00 0.00 0.00 0 . 00 IHg 0.86 0.86 0.86 0.76 0 . 80 0.81 0.77 0 .78 0.81 0.81 tea 0.93 0 . 90 0.90 0 . 91 0.77 0.82 0.92 0 . 92 0.80 0.82 INa 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.02 IK 0 . 00 0.00 0.00 0.00 0.00 0.00 0.00 0 . 00 H1,H2 2.02 2.00 2.03 2.03 2.01 2.02 2.0:.! 2 . 03 2.01 2.01 

'"9 44.20 45.22 44.48 40.88 41.44 41.14 40.09 40 . 50 42.74 42.39 'Fe*+Hn 8.07 7.77 8.57 10.34 18.87 17.14 11.76 11.58 14.91 14.53 ,c. 47.73 47.01 46.95 48.78 39.70 41.72 48.15 47.92 42.35 43.09 
Suite t 4 4 4 4 4 4 4 4 2 2 



369 

2a 2b 3a 3b 4b Sa Sb 6a 6b 7a 
467 467 467 467 467 467 467 467 467 467 

Si02 50.36 50 . 39 50.98 50.34 50.02 49.01 48 . 85 49.74 48.87 50 .. 37 
Ti02 l. 52 l. 34 1.23 l. 34 l. 51 l. 74 1. 77 l. 64 1. 64 1. 32 
Al203 3 . 58 3 . 35 3.07 3.23 4 . 60 4 . 09 4 . 37 4 . 43 5 . 26 3 . 06 
Cr203 0.16 0 . 13 0 . 01 0.15 0 . 16 0.35 0 . 31 0.22 0 . 20 0.05 
Ff•O 10.61 1!.04 9.28 10.30 9 .05 9 . 75 9 . 50 8 . 59 9.27 12.73 
M·.,o 0.14 0.21 0.18 0.25 0. : 6 0 . 17 0 . 21 0.23 0.23 0.36 
NiO 0 . 02 0.01 0.05 0.01 0 . 02 0 . 03 0 . 04 0 . 03 0.03 
MqO 14.32 14.33 14 . 28 14.57 14 .22 14.88 14.91 14 . 18 14 . 36 14 . 73 
cao 19 . 84 19 . 48 20.09 20.25 20.90 19.48 19 . 69 20 . 20 20.33 11. 62 
Na20 0.37 0.32 0 . 30 0 . 34 o.n 0 . 44 0.45 0 . 37 0.23 0.26 
K20 0 . 01 0.01 0.01 0.02 0 . 03 0.02 

Total 100.92 100 . 61 99.U 100.78 100.95 99.95 100.12 99.64 100.42 100.55 

tSi IV l. 87 l. 88 1.91 1. B7 1. 85 1. 84 1. 83 l. 86 1.82 1 . 89 
tAl IV 0 . 13 0 . 12 0 . 09 0 . 13 0.1') 0.16 0.17 0 . 14 0.18 0.11 
tTi IV 
tre IV 
T site 2 . 00 2.00 2.00 2 . 00 2.00 2.00 2.00 2 . 00 2.00 2 . 00 
tAl VI 0 . 03 0.03 0 . 04 0 . 02 0 . 05 0 . 02 0 . 02 0 . 05 0.05 0. 02 
tTi 0 . 04 0 . 04 0.03 0 . 04 0.04 0 . 05 0 . 05 0 . 05 0 . 05 0.04 
tcr 0 . 00 0.00 0.00 0 . 00 0.00 0.01 0.01 0 . 01 0.01 o.oo 
tFe +3 0.00 0 . 00 0.00 O. vO 0 . 00 0.00 0. 00 
tFe +2 0 . 33 0.34 0 . 29 0 . 32 0 . 28 0 . 31 0 . 30 0 . 27 0.29 0.40 
tMn +2 0 . 00 0 . 01 0 . 01 0 . 01 o. : l 0.01 0 . 01 0 . 01 0. 01 0 . 01 
tNi 0 . 00 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 0.00 
tHg '). 79 0 . 90 0 . 80 0.81 (1 , 78 O.d3 0.83 0 . 79 0.80 0 . 82 
tea 0. 79 0 . 78 0 . 81 0 . 81 o. a3 0 .78 0.79 0.81 0.81 0 . 71 
tNa 0.03 0 . 02 0 . 02 0 . 02 o. 02 0 . 03 0 .03 0 . 03 0.02 0. 02 
tK 0.00 0 . 00 o.co 0. 00 0 . 00 O. OJ 
H1,H2 2 . 02 2 . 02 2 . 00 2 . 03 2. 02 2.04 2 . 04 2. 01 2 . 02 2.02 

'HC) 41.37 41.36 41.97 41.58 41 . 33 43 . 20 43.21 42.14 41.86 42.40 
'Fe*+Hn 17 43 18 . 22 15 . 60 16 . 89 15 .02 16 . 16 15 . 79 14.71 15 . 54 21. 15 ,c. 41 . 20 40 . 41 42.43 41.53 43. C5 40 . 64 41.01 43 . 15 42.60 36.45 

Suite t 2 2 2 2 2 2 2 2 2 2 
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;. 
[ 
I 

7b 7c 1a 2a Sa 5c lia 6b 7• 7b 

i 
467 467 525b 525b 525b 52Sb 525b '>25b 52Sb 525b ------ ------ ------ ------ ------t Si02 50 . 33 50.27 52.40 52.64 53.65 51.56 53 . 42 53.67 5?..21 53 . 43 

Ti02 l. 23 1. 30 0.49 0.49 0 . 43 0.77 0.38 0.33 0. 52 0.54 
Al203 3 . 02 3 . 11 2.73 2.80 l. 49 4.41 2 . 10 2.30 2.13 2.32 
Cr203 0.08 0.07 0.57 0.49 0.20 0 . 13 0.32 0.19 0.45 0 . iS 
FeO 10.84 12.39 4. 74 4 . 96 5.32 8.43 4.77 4 . 58 8. 66 6.99 
MnO 0.27 0 . 28 0.09 0 . 09 0.33 0.22 0.14 0 . 16 0.36 0 . 32 
NiO 0.03 0.02 0 . 04 0.14 0 . OS 0.07 0.02 0 . 12 
MqO 14 . 14 13.71 15 . 20 14.87 15.:o 15.48 17.34 17.12 14 . 94 15.72 
CaO 19.23 19.38 24.26 23.76 23.39 l6.93 21.25 21.66 19.04 19.29 
Na20 0.39 0. 33 0.29 0.29 0.29 1. 23 0.15 0.18 0.38 0.43 
K20 0.01 '.).OS 0.02 0.01 0.09 0.01 0.01 0 . 02 

Total 99 . 57 100. 89 100.81 100.44 100.44 99 . 30 99 . 95 100.22 98.71 99.61 

fSi IV 1. 90 1. 88 1. 92 1. 93 1. 97 1 . 91 1. 95 1. 95 1. 96 1. 97 
tAl IV 0 . 10 0.12 0 . 08 0.07 0 . 03 0.09 0 . 05 0.05 0.04 0 . 03 
tTi IV 
I Fe IV 
T site 2.00 2.00 2.00 ~.00 2 . 00 2 . 00 2.00 2 . 00 2.00 2.00 
tAl VI 0. 03 0.02 0.03 0.05 0.03 0 . 10 0 . 04 0.05 0 . 05 0.07 
ITi 0 . 03 0.04 0.01 0 . 01 0.01 0.02 0.01 0 . 01 0.01 0.01 
ICr 0.00 0. 00 0.02 0.01 0. 01 0.00 0.01 0 . 01 0.01 0.01 
I Fe +3 0.00 0 . 00 0 . 00 0.00 

T I Fe +2 0 . 34 0.39 0.14 0 . 15 0 . 16 0 . 26 0 . 15 0 . 14 0.27 0.22 
. j IMn +2 0.01 (' 01 0.00 0 . 00 0 . 01 0 . 01 0.00 0 . 00 0.01 0 . 01 

INi 0 . 00 0.00 0.00 0 .00 0.00 0 . 00 0 . 00 0.00 
fMq o. 79 0. 77 0.83 0.81 0 . 63 0.85 0 . 94 0 . 93 0.83 0 . 86 
tea o. 78 0.78 0.95 0.93 0 . 92 0.67 0.83 0 . 84 0.76 0 . 76 
INa 0 . 03 0 . 02 0.02 0 . 02 0 . 02 0.09 0.01 0.01 0.03 0. 03 
tK 0.00 0.00 0.00 0.00 0 . 00 O.OG 0. 00 0.00 
M1,M2 2.02 2.02 2.01 2. 00 2.00 2. 02 2.00 1. 99 1. 99 1. 98 

., 
'M9 41.35 39.46 43.00 42.75 43.20 47.63 49.03 48.43 44.35 46.67 

j.~ 

" 'Fe*+Mn 18.23 20.46 7.67 8.15 9.02 14 . 93 7.79 7 . 53 15.03 12.18 
;f \Ca 40.42 40.08 49.33 49.10 47.78 37.44 43.18 44 . 04 40.62 41.15. 
' · : ~ ,. 

Suite • 2 2 1 1 1 1 1 1 1 1 

It 
T 
:1' 
I 



371 

Sa 1a 1b 2a 2b 3b 4a 4b 4c Sa 
5251:1 530b 530b 530b 530b 530b 530b 530b 530b 530b 

Si02 52.84 53 . 96 53.41 49.91 55.16 53 . 32 51 . 27 54.81 51.25 53.85 
.'102 0.45 0.07 0.18 1.18 0.22 0 . 27 0. 54 0 .20 0.54 0. 18 
Al203 l. 63 l. 90 2 . 08 s . 60 1 . 16 2.16 4.11 1. 30 3. 72 2.08 
Cr203 0.34 0.29 0 . 78 0 . 04 0 . 3"/ 0 . 69 0.04 0.13 0.05 0.77 
FeO 5.02 3.79 4.15 8.63 4 . 84 5.46 7 . 65 5. 48 6. 80 4.39 
MnO 0.14 0.07 0.11 0.18 0 . 16 0.13 0 . 20 0.22 0.12 0.12 
NiO 0.04 0.01 0.03 0 .03 0 . 05 0.05 
MgO 15.13 18.34 17.75 14.33 19.24 18.07 16 . 81 18.89 16 .89 17.89 
CaO 23.39 22.33 22.14 20.39 19. 4l 20.16 19 .20 19.58 20.66 20.67 
Na20 0.30 0.10 0.18 0.22 0 . 09 0.17 0 . 14 0 .04 0.20 0.17 
K20 0.01 0.01 0.01 0.01 0.03 0 . 01 0.01 

Total 99.25 100.90 100.80 100.48 100.66 100.49 100.00 100 .70 100.24 100.17 

tSi IV l. 96 l. 95 1.93 l. 84 l. 98 1. 94 1. 89 1. 98 l. 88 l. 95 
tAl IV 0. 04 0 .05 0 . 07 0.16 0.02 0.06 0 . 11 0 . 02 0.12 o.os 
ITi IV 
tre IV 
T site 2. 00 2.00 2.00 2.00 2 . 00 2 . 00 2 . 00 2. 00 2.00 2.00 
tAl VI 0 . 03 0.03 0.02 0.09 0.03 0.03 0 . 07 0. 03 0.04 0.04 
tTi 0.01 0 . 00 0.00 0.03 0.01 0.01 0.01 0 . 01 0.01 0.00 
tCr 0.01 0.01 0.02 0.00 0.01 0.02 0 .00 0.00 0.00 0.02 
tre +3 0.00 0 . 00 0 .00 
tre +2 0.16 0.11 0 . 13 0.27 0.15 0.17 0.24 0.17 0.21 0.13 
tMn +2 0.00 0.00 0 . 00 0.01 0 . 00 0.00 0.01 0 . 01 0.00 0.00 
tNi o.oo 0.00 0.00 o.oo 0 .00 o.oo 
IMg 0. 84 0.99 0.96 0 .79 l. 03 0.98 0 . 92 l. 02 0.93 0 . 97 
tea 0. 93 0.86 0.86 0.81 0. 7 5 0.78 0.76 0. 76 0.81 0.80 
INa 0.02 0.01 0.01 0.02 0.01 0 . 01 0.01 0 .0 0 0 .01 0.01 
tK 0. 00 0.00 0.00 0.00 0 . 00 0.00 0.00 
M1 , M2 2 . 00 2.01 2.01 2.01 l. 98 2.01 2 .01 1 . 99 2.03 1. 99 

\Mg 43 . 43 50.17 49 .23 42 . 24 53.4 5 50 . 62 48 . 01 52.24 47.42 so. 7l 
\Fe•+Mn 8.31 5.93 6.63 14.57 7 . 80 8 . 79 12.58 8 . 85 10.90 7.17 
\Ca 48.26 43.90 44.14 43.19 38 . 75 40 . 59 39.41 38.92 41.68 42. 11 

Sui te • 1 1 1 1 1 1 1 1 1 



372 

5b 1a 1b 2a 2b 3a 3b 4a 4b Sa S::lilb 702 702 702 7)2 702 702 702 702 702 

Si02 54 . 37 50.55 51.14 49. i7 49 . 59 49.51 49 .58 49 . 55 49 . 79 so. 77 Ti02 0. 07 l. 38 1 . 43 l. 33 l. 55 l. 56 1 . 58 l. 31 l. 39 1. 34 Al203 l. 32 3 . 27 3.27 3 . 64 3. 97 4 . 24 4. 16 3. 29 3. 89 3.34 er203 0.24 0 . 14 0 . 17 0 . 17 0 . 10 0 .1 4 0.09 0. 21 0.14 0. 17 FeO 3.68 10 . 44 9 . 98 10 . 86 12 . 64 11. 78 ll. 70 11.05 10 .87 10.15 MnO 0.12 0 . 38 0.27 0 . 20 0 . 31 0 .29 0.29 0 . 30 0.32 0. 25 NiO 0.09 0. 05 0 . 09 0 . 04 0 . 04 0. 02 0.08 MqO 18.88 15.56 15.63 15.98 15 . 06 14 . 93 15.24 16.46 15.70 15 . 54 eao 21.80 18 . 19 18.58 17.40 16.66 17 . 78 16.46 17 .04 17.13 17 . 7 5 Na20 0 . 15 0 . 34 0.29 o. 34 0 . 29 0 . 31 0.29 0. 26 0. 31 0 . 23 1(20 0.01 0.01 0 .01 0 . 01 0.0 1 

Total 100 . 72 100.26 100 . 77 99.74 100 . 27 100 . 55 99 . 44 99.51 99 . 56 99.62 

fSi IV l. 96 1. 88 l. 89 1. 86 l. 86 1. 85 l. 86 l. 86 1.87 1.89 tAl IV 0.04 0 . 12 0.11 0.14 0 . 14 0.15 0. 14 0. 14 0.13 0.11 fTi IV 
fFe IV 
T site 2 . 00 2 . 00 2 . 00 2.00 2.00 2.00 2.00 2.00 2. 00 2.00 tAl VI 0.02 0.03 0.03 0.02 0. 03 0 . 03 0.05 0.01 0. 04 0.04 fTi 0 . 00 0.04 0 . 04 0.04 0 . 04 0.04 0.04 0. 04 0. 04 0.04 fCr 0.01 0 . 00 0.00 0. 01 0 . 00 0.00 0.00 0.01 0. 00 0.01 fFe +3 0.00 0 . 00 0 . 00 o. 00 0 .00 0 . 00 0. 00 0.00 I Fe +2 0.11 0.32 0.31 0 . 34 0 . 40 0 . 37 0.37 0 . 35 0. 34 0 . 32 fMn +2 0 . 00 0 . 01 0.01 0 . 01 0 .01 0.01 0 . 01 0.01 0. 01 0 . 01 fNi 0.00 0. 00 0 . 00 0.00 0. 00 0.00 0 . 00 fMq 1. 02 0 . 86 0.86 0 . 89 0. 84 0.83 0 . 85 0. 92 0. 88 0.86 
tea 0.84 0.73 0 . 74 o. 70 0 . 67 0 . 71 O. ti6 0. 69 0. 69 0. 71 INa 0. 01 0 . 02 0 . 02 0 . 02 0 .02 0.02 0.02 0.02 0. 02 0. 02 fK 0 . 00 0 . 00 0.00 0.00 0.00 
M1,M2 2. 01 2.02 2.01 2.03 2. 02 2 . 02 2 . 01 2 . 04 2. 02 2 . 00 

tMq 51.47 44 . 83 45.00 46.06 43.91 43.30 45.09 46 . 93 45.78 45 . 53 
tFe*+Mn s. 81 17.50 16.56 17 . 89 21.19 19.64 19.91 18. 16 18.31 17 . 10 
tea 42.71 37.67 38.44 36.05 34 . 91 37.06 35.00 34 . 91 35.90 37 .37 

Suite f 1 2 2 2 2 2 2 2 2 2 



373 

Sb 6a 6b la 1b 2a 2b 3a 3b Sa 
702 702 702 712c 712c 712c 712c 712c 712c 712c 

Si02 50.36 50 . 41 49 . 64 51 . 63 52 . 75 52.42 52 . 02 48.95 49.71 49 . 86' 
Ti02 1. 49 1. 47 1. 50 0.66 0 . 58 0. 62 0 . 69 1.10 1.27 1. 38 
Al203 3.63 3 . 36 3.41 2.56 2.39 2. 54 2 . 38 4.30 3.88 4 . 48 
Cr203 0.06 0 . 05 0.08 0.32 0.31 0.29 0 . 29 0.11 0.08 c . 11 

reo 12 . 00 ll. 93 12 . 62 7 . 52 6 .77 7.08 6. 89 9.50 10.00 9. 72 
HnO 0.30 0.31 0.29 0 . 14 0.2 0 0 . 17 0. 1 6 0.39 0 .27 
NiO 0.10 0.03 0 . 05 0.04 0.04 0 . 02 0.03 0. 01 
MqO 16 . 24 15.08 16.06 16 . 26 16.67 17.02 17.20 15 . 96 14.67 15.91 
CaO 15.71 16.98 15.71 19.87 19 . 85 19.98 19.87 18.64 18.23 1 i. 94 
Na20 0.29 0.19 0.45 0.27 0.25 0.3 0 0 . 28 0.35 0 . 57 0. 22 
K20 0 . 01 0.02 0.05 

Total 100.09 99.90 99.79 99.09 99.76 100.49 99 . 83 99.09 98.88 99.90 

tSi IV 1. 88 l. 89 1. 87 1. 92 l. 9~ 1. 92 l. 92 l. 84 l. 88 1. 85 
tAl IV 0 . 12 0 . 11 0.13 0.08 0 . 06 0.08 0.08 0.16 0.12 0.15 
tTi IV 
tre IV 
T site 2.00 2.00 2. 00 2.00 2 . ~o 2.00 2.00 2.00 2 . 00 2.00 
tAl VI 0.04 0 . 04 0.02 0 . 03 0 .0 4 0.03 0 . 02 0.03 0.05 0.05 
tTi 0 . 04 0.04 0. 04 0 . 02 0.02 0.02 0.02 0.03 0.04 0. 04 
tCr 0.00 0.00 0. 00 0 . 01 0.01 0 .Ol 0 . 01 0 . 00 0 . 00 0 . 00 
tre +3 0 . 00 0.00 0.00 0. 00 0 . 00 0.00 0 . 00 
tre +2 0 . 37 0 . 37 0.40 0.23 0 .21 0. 22 0 . 21 0 . 30 0.32 0 ' 30 
tHn +2 0.01 0.01 0.01 0 .0 0 0. Ol 0 . 01 0 . 01 0.01 0. Ol 

tNi 0 . 00 0. 00 0 . 00 0.00 0 . 00 0.00 0.00 0 . 00 
tMq 0.90 0.84 0. 90 0 . 90 0 .91 0 . 93 0.95 0 . 90 0.83 0 . 88 
tea 0.63 0.68 0. 63 0 . 79 0 . 78 0 . 78 0 . 78 0.75 0.74 0. 7l 
tNa 0.02 0 . 01 0.03 0.02 0 . : 2 0.02 0 .02 0.03 0.04 0 . 02 
tK o.oo 0.00 0.00 
M1,M2 2.01 2 . 00 2.03 2.01 2.00 2 .01 2. 02 2 . 04 2 . 02 2.02 

\Mq 47.16 44.16 46.42 46 . 78 47 .88 47 . 99 48 . 53 45 . 89 43 . 66 46.24 
\re•+Hn 20.05 20.11 20 . 94 12.14 11.14 11.52 11.18 15. 59 17.35 1 6 . 29 
\Ca 32.79 35.73 32 . 64 41. 08 40.98 40 . 49 40. 29 38 . 52 38.99 37 . 47 

Suite t 2 2 2 2 2 2 2 2 2 2 



5b 6a 6b 1a 1a 1b 2a 2b 3a 4a 
712c 718a 718a 718a 718a 718a 7181 718a 718a 718a 

Si02 49.41 50.80 51.68 51.07 50 . 99 50.05 50.00 50 . 57 50.86 50 . 83 
Ti02 1. 36 l. 21 1.01 1. 34 1.48 l. 59 l. 39 l. so 1. 01 1.29 
Al203 4.27 3.23 3.11 3.63 3 . 34 2.85 3.25 3 . 54 3.02 3.20 
Cr203 0.08 0.10 0.29 o.os C.C5 0.02 0 . 09 0 . 24 0.15 reo 9 . 57 10.27 9.19 9 . 96 11. 1) 9 14.50 10 . 90 10 . 70 10 . 30 10.42 
HnO 0.18 0.27 0.20 0 . 23 0 . 30 0 . 39 0. 29 0 . 28 0.20 0 . 25 
NiO 0.01 0. 05 0.03 0 .04 0 . 03 0.07 0 . 04 0.09 0. o: 
HqO 15.71 15.14 16 . 07 14.99 14 . 85 13 . 56 14.51 14 . 89 15.86 16 . 25 
CaO 18 . 48 18.65 18.23 19 . 27 18 . 30 17 . 29 18 . 36 18 . 68 18.50 17 . 31 
Na20 0.31 0.41 0. 32 0 . 32 0.40 0.59 O.H 0 . 55 0.28 0.28 
K20 0 . 01 0 .01 0.06 0 . 02 0.01 

Total 99.38 100.08 100 . 15 100 . 90 100.85 100 . 91 99 .18 100.86 100 . 36 100.02 

tSi IV 1. 85 l. 89 1. 91 1. 89 1. 89 1. 88 l. 89 1. 88 1. 89 1. 89 
tAl IV 0 . 15 0 . 11 0. 09 0 . 11 0 . 11 0.12 0.11 0.12 0 . 11 0.11 
tTi IV 
fFe IV 
T site 2.00 2.00 2 . 00 2 . 00 2 . 00 2.00 2. 00 2 . 00 2 . 00 2 . 00 
tAl VI 0.04 0.03 0. 04 0 . 04 0.04 0.01 0.03 0.03 0.02 0 .0 3 
fTi 0.04 0.03 0 . 03 0.04 0 . 04 0.05 0 . 04 0 . 04 0.03 0 . 04 
fCr 0.00 0.00 0. 01 0 . 00 0. 00 0 . 00 0.00 0.01 0 . 00 
tFe +3 0 . 00 o.oc 0 . 00 
tFe +2 0.30 0.32 0.28 0 . 31 0 . 34 0. 46 0.34 0.33 0.32 0 . 32. 
tHn ·~2 0.01 0.01 0. 01 0.01 0 . :1 0 . 01 0.01 0 . 01 0.01 0.01 
fNi 0 . 00 0 . 00 0.00 0 . · I) 0.00 0 . 00 0.00 0.1)0 0 . 00 
fH9 0.88 0. 84 0. 89 0 . 83 0. : 2 0. 76 0.82 0 . 82 0.88 0 . 90 
tea 0.74 0.74 0. 72 0 . 76 0 . 7 3 0. 70 0. 74 0.74 o. 74 0 . 69 
fNa 0.02 0.03 0 . 02 0 . 02 O.G 3 0.04 0.03 0 . 04 0 . 02 0.02 
tiC 0 . 00 0 .00 0.00 0 . 00 0.00 
M1,M2 2.03 2. 02 2. 00 2 . 01 2 .01 2.03 2.01 2.02 2.02 2 . 01 

'"9 45.59 43.94 46.66 43.38 43 . 18 39.49 42.70 43.19 45 . 25 46 . 86 
Ue*+Hn 15.87 17 . 16 1 5.30 16 . 55 18 . 58 24.33 18. 48 17. 87 16.81 17 . 27 ,c. 38.54 38.90 38.04 40.08 38 . 24 36 . 18 38.83 38.94 37.94 35 . 87 

Suite I 2 2 2 2 2 2 2 2 2 2 



375 

4b Sa Sb 7b 1b la 2a 2b 3a 3a 
718a 718a 718a 718a 7214 72la 721a 721a 72la 721a 

Si02 49.11 51 . 12 51.83 49 . 61 53.17 49.49 48.00 49.95 48.59 48.59 
Ti02 l. 73 1 . 39 1. 20 1.19 0 . 51 1.71 1. 75 1. 60 l. 48 1.48 
Al203 4.18 3 . 33 3 . 26 3 . 76 7.70 4.70 4.77 4 . 19 5.38 5.38 
Cr203 0.11 0 . 19 0.25 0.16 0.05 0.16 0 . 13 0.14 0.1 4 
P'eO 10.87 10.37 10 . 04 10.12 14.45 13.84 9.66 9.83 10.20 10.20 
MnO 0.23 0.26 0 . 27 0.21 0.33 0.03 0.25 0. 31 0 . 22 0.22 
NiO 0.03 0 . 03 0.05 0.01 0.01 0.05 
HqO 14.68 15.88 16.11 14.85 9 . 02 12.75 13.81 13.69 13 . 62 13.62 
CaO 18.81 18 . 18 17.50 18.54 14.09 17.54 20.56 20.27 19.71 19.71 
Na20 0. 46 0 . 27 0.37 0.34 1.11 0.41 0.46 0.48 0 . 44 0.44 
K20 0.01 0 . 01 0.50 0.05 0.02 

Total 100 . 21 100.99 100.87 98.79 100.93 100 . 58 99.43 100 . 52 99.78 99.78 

tSi IV l. 84 l. 88 1. 90 1. 87 1.96 1.86 1. 82 1. 86 1 . 83 1. 83 
tAl IV 0.16 0 . 12 0 . 10 0 .lJ 0.0 4 0.14 0 . 18 0 . 14 0 . 17 0 . 17 
tTi IV 
tre IV 
T site 2.00 2.00 2 . 00 2 . 00 2 . 00 2.00 2.00 2 . 00 2.00 2 . 00 
fA1 VI 0. 02 0.03 0 . 05 0 . 04 0 .29 0 . 07 0.03 0 . OS 0 . 06 0 . 06 
tTi 0 . 05 0.04 0 . 03 0.03 0 . 01 0 .05 0 . 05 0 . 04 0 . 04 0 . 04 
tcr 0 . 00 0.01 0 . 01 0.00 0.00 0.00 0 . 00 0.00 0.00 .... +3 0 . 00 0.00 0 . 00 0.00 
tre +2 0 . 34 0.32 0 . 31 0. 32 0 . 44 o. 43 0.31 0. 31 0 . 32 0.32 
IHn +2 0 . 01 0 . 01 0.01 0.01 0. 01 0 . 00 0.01 0.01 0 . 01 0 . 01 
tNi 0 . 00 0.00 0 . 00 0 . 00 0.00 0 . 00 
IHq 0 . 82 0.87 0 . 88 0 . 84 0 . 4 9 0 . 7l. 0 . 78 0 . 76 0. 76 0. 7 6 
tea 0. 76 0 . 72 0 . 69 0 . 75 0 . 56 0. 71 0.83 0 . 81 0. 79 0 .79 
INa 0. 03 0.02 0 . 03 0 . 02 0.08 0 . 03 0.03 0.03 0 . 03 0.03 
fl( 0.00 0 . 00 0.02 0. 00 0 . 00 
H1,H2 2 . 03 2 . 01 2 . 00 2 . 02 1 . 91 2. 0 0 2. 04 2 . 02 2 . 03 2 . 03 

'"q 42.64 45 . 49 46.73 43 . 71 32.87 38.4 8 40.44 40.33 40.50 40.50 
'"•*+Hn 18.09 17 . 09 16.78 17 . 06 30 . ;2 23.48 16.29 16 . 76 17 . 38 17. 38 ,c. 39 . 27 37.43 36.48 39 . 22 36. ::.0 38 . 04 43.27 42 . 91 42 . 12 42 . 12 

Suite t 2 2 2 2 2 2 2 2 2 2 



376 

3b 3b 4a 4b Sa Sb 6a 6b 1b 2a 72la 7214 72la 721a 72la 7214 721a 72!a 764 764 

Si02 48.17 48.17 48.29 50.16 49.38 50.81 48.23 50.63 52.36 53.65 Ti02 2. 02 2.02 1. 95 1.69 1. 84 1. 63 l. 57 1.27 0.44 0 . 28 Al203 4.95 4.95 4.76 4.17 5.00 3.52 4.35 3.51 2.67 1. 60 Cr203 0.13 0.13 0.22 0.13 0.25 0.14 0. 27 0 . 21 0.04 0.05 FeO 9.42 9.42 11.14 10.12 8 . 80 10.50 8.01 8.53 7.54 6.20 MnO 0.17 0.17 0.27 0.12 0 . 34 0.26 0.23 0.23 0.13 0.18 NiO 0. OJ 0.03 0.03 0. 01 0.04 0.02 0.05 HqO 13.81 13.81 13.35 13.46 15.02 14.59 15.13 15.34 16.28 18 . 28 cao 20.29 20.29 19.78 20.61 19.89 18.63 20.84 19.50 20.41 20.02 Na20 0.39 0.39 0.48 0.33 0.32 0. 43 0 . 30 0 . 39 0.18 0 . 17 K20 0. 01 0.01 0.01 0.02 0.01 0.03 0.06 0.03 0.01 

Total 99.39 99.39 100.25 100.81 100.88 100.52 99 . 00 99 . 67 100.10 100.49 

tSi IV 1. 82 l. 82 1.82 1. 86 1. 82 1. 89 l. 82 l. 89 l. 93 1.95 tAl IV 0.18 0.18 0.18 0.14 0.18 0.11 0.18 0.11 0.07 0.05 tTi IV 
tFe IV 
T site 2.00 2.00 2.00 2.00 2.00 2 . 00 2.00 2.00 2.00 2.00 tAl VI 0.04 0.04 0.03 0 . 05 0.04 0 . 04 0.01 0.04 0.04 0.02 
tTi 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.01 0.01 tCr 0.00 0.00 0.01 0.00 0.01 0 . 00 0.01 0.01 0.00 0.00 
tre +3 0.00 0.00 o.co 0. 00 
tFe +2 0.30 0.30 0.35 0 . 31 0 . 27 0.33 0.25 0.27 0.23 0.19 IMn +2 0.01 0.01 0.01 0.00 O. ll l 0.01 0.01 0.01 0. 00 0.01 
tNi 0.00 0.00 0 . 00 0.00 0.00 0. 00 0.00 IHq 0.78 0 . 78 0.75 0.75 0.83 0 . 81 0.85 0. 85 0. 89 0.99 tea 0.82 0.82 0.80 0 . 82 0 . 79 0.74 0.84 0.78 0. 81 0.78 INa 0.03 0.03 0.04 o. 02 0 . 02 0 . 03 0 . 02 0.03 0.01 0.01 tK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
H1,H2 2.03 2.03 2.03 2.01 2.02 2.00 2 . 05 2.01 2.01 2.01 

'Hq 40.89 40.89 39.30 39.57 43 . 61 42.89 43.56 44.76 46 . 18 50 . 43 
'Fe*+Mn 15.93 15.93 18.85 16.89 14.89 17.75 13.31 l4. 34 12.21 9.88 
,c. 43.18 43.18 41.85 43 . 54 41. 50 39 . 36 4 3.12 40 . 89 41.61 39.69 

Suite t 2 2 2 2 2 2 2 2 2 2 



377 

2b 3a 3b 4a 4b Sa St ea la lb 
764 764 764 764 764 764 754 764 767 767 

5102 53.70 53 . 96 52 . 70 52.91 50.99 51.64 52 . 17 5l . U 51.32 50.30 
1'102 0. 29 0.23 0.34 0.39 0 . 41 0 . 51 0. 62 0.55 0 . 70 0.70 
Al203 1. 64 1. 67 1. 80 3.60 3 . 91 3 . 81 4.00 2. 91 3.84 4.05 
Cr203 0 . 05 0.07 0.16 0 . 15 0 . 20 0. 17 0.10 0.38 
FeO 6.01 5 . 64 !l.17 6.13 6 . 10 6.13 6.89 9.83 5.19 4.98 
MnO 0 . 13 0.14 0.26 0 . 21 0 . 14 0 . 17 0. 14 0.34 0 . 07 0 . 11 
NiO 0.01 0.04 0 . 04 0 . 05 
MgO 17.77 17 . 89 15 . 88 16.59 16.97 16.62 16. 33 15.36 16 . 73 16.48 
CaO 20 . 57 20 . 72 20.35 20.69 21.18 20.67 20.38 20.11 20 . 85 21.75 
Na20 0.16 0.16 0.21 0.23 0 . 25 0. 23 0 . 21 0.29 0.23 0. 27 
K20 0.02 0.01 0 . 01 0.02 0. 01 0.01 

Total 100 . 32 100.49 100 . 77 100.92 100.11 100.00 100.92 100 . 83 99.08 99.07 

fSi IV 1. 96 1. 96 1. 94 1. 92 1. 88 1. 90 1. 90 1. 90 1. 89 1. 87 
tAl IV 0.04 0.04 0.06 0 . 08 0 . 12 0 . 10 0. 10 0.10 0.11 0 . 13 
fT1 IV 
fFe IV 
T site 2.00 2.00 2. 00 2.00 2 . 00 2 . 00 2.00 2. 00 2.00 2 . 00 
tAl VI 0 . 03 0 . 03 0. 02 0.07 0 . 04 0 . 06 0. 07 0.03 0.06 0. 04 
fT1 0.01 0.01 0.01 0.01 0 . 01 0 . 01 0. 02 0.02 0.02 0 . 02 
fCr 0 . 00 0.0'} 0.00 0 . 00 0.01 0. 00 0.00 0.01 
tre +3 0.00 0.00 0.00 0.00 0.00 0 . 00 
fFe +2 0.18 0 . 17 0. 28 0.19 0.19 0.19 0.21 0.30 0.16 0.15 
tMn +2 0.00 0.00 0.01 0.01 0. 00 0.01 0. 00 0 . 01 0.00 0.00 
tNi 0 . 00 0. 00 0.00 0.00 
fMg 0.97 0.97 0.87 0.90 0 . 93 0 . 91 0. 89 0.85 0.92 0 . 91 
tea 0 . 80 0.81 0.80 0.80 0 . 83 0.81 0.79 0 . 80 0 . 82 0 . 86 
tNa 0.01 0.01 0.02 0.02 0. 02 0.02 0.01 0. 02 0.02 0.02 
f!C C'.OO 0.00 0 . 00 0.00 0.00 0.00 
Ml,M2 2 . 00 2 . 00 2. 02 2.00 2 . · ... 4 2.01 2.00 2.03 2.01 2 . 03 

'M9 49 . 36 49.66 44 . 36 47 . 38 47 . 54 47 . 47 46.76 43.24 48.26 47.13 
're•+Mn 9.57 9 . 00 14.78 10.16 9 . 81 10 . 10 11. 30 16.07 8.51 8.1 7 ,c. 41.07 41 . 34 40.86 42 . 46 42 . 65 42 . 43 41.94 40.69 43 . 23 44. 70 

Suite f 2 2 2 2 2 2 2 2 2 2 



378 

2a 2b 3a 4a 4b Sa Sb 6 1 1a 767 767 767 767 767 767 767 767 767 770 

Si02 52.12 52.36 52.50 so. 82 51.81 52.68 51 . 17 54 . 07 51.50 50.01 Ti02 0 . 57 0.47 0. 34 0 . 80 0 . 65 0 . 54 0.68 0.32 0. 71 0 . 94 Al203 3 . 43 3.22 2 . 72 4.67 3 . 14 3 .28 4.05 l. 62 4 . SO 3. 49 Cr203 0. 93 0 . 32 . l. 04 0 . 16 0 . 13 0 . 60 0 . 09 0. 46 0.07 0 . 02 reo 4. 76 4 . 96 4 . 08 S.06 5 . 36 4.50 S.72 4. 61 5 . 74 12.09 MnO 0.17 0 . 11 0.11 0.07 0.10 0 . 14 0.20 0 . 16 0 . 17 0 . 23 NiO 0.03 0.07 0.05 0 . 04 0 . 04 0 . 04 0 . 05 0 . 05 MqO 16.89 17.23 17.26 16.51 16.17 17 .44 17 . 31 19 . 05 16 . 51 14 . 63 
cao 21 . OS 21 . 31 21 . 43 21. 45 21.52 21 .42 20 . 03 19.79 20 . 73 17 . 9S Na20 0. 29 0.27 0.27 0 . 29 0 . 24 0 . 31 0. 25 0. 20 0.19 0. 29 
K20 0.01 0.01 0 . 01 0 . 01 0 . 01 

Total 100.25 100 . 26 99.82 99.88 100.36 100.95 99. :il 100 . 33 100.17 99. 71 

fSi IV 1. 90 1 . 91 1 . 92 1. 87 1. 89 l. 91 1. 88 1. 96 1. 88 1. 88 
tAl IV 0.10 0 . C9 0 . 08 0 . 13 0 . 11 0.09 0.12 0.04 0.12 0 . 12 tTi IV 
tre IV 
T Site 2 . 00 2 . 00 2. 00 2.00 2 . 00 2.0 0 2 . 00 2 .00 2.00 2.00 
tAl VI o.os 0.05 0.04 0 . 07 0 . 05 0 . 05 0 . 06 0 . 03 0 . 08 0 . 04 
fTi 0 . 02 0.01 0.01 0 . 02 0.02 0.01 0.02 0 . 01 0.02 0 . 03 
tCr 0 . 03 0 . 01 0.03 0 . 00 0 . 00 0.02 0.0 0 0 . 01 0.00 0.00 
tre +3 0.00 0.00 c. co 0 . 00 0.00 
tre +2 0.15 0 . 15 0.12 0 . 16 0. 16 0 . 14 0.18 0.14 0.18 0 . 38 
fMn +2 0 . 01 0 . 00 0 . 00 0 . 00 0.00 0 . 00 0 . 01 0.00 0.01 0.01 
fNi 0 . 00 0.00 0 . 00 0 . 00 0 . 00 0 .00 o.oo 0.00 
fMq 0.92 0.94 0 . 94 0 . 90 0 . 9l 0 . 94 0.95 1. 03 0.90 0.82 
tea 0 . 82 0 . 83 0.84 0 . 84 0 . 84 0.83 0.79 0. 77 0.81 0. 72 
fNa 0.02 0 .02 0. 02 0 . 02 0 . 02 0 . 02 0.02 0. 01 0.01 0.02 
fK 0 . 00 0 . 00 0.00 0. 00 0.00 
M1,M2 2 . 01 2 . 01 2 . 01 2 . 02 2 . 02 2.01 2.02 2.00 2 . 01 2.02 

'Mq 48.55 48.69 49.30 47 . 44 47 . 51 49. 21 4 9 . 42 52.99 47 .54 42.48 
tre•+Mn 7 . 95 8 . 04 6.72 8.2 7 e. e;a 7 . 35 9. 49 7 . 45 9 . 5S 20 . 07 
,c. 43 . 49 43 .28 43.99 4 4. 29 43. El 43 .4 4 41.10 39 . 56 42 . 90 37.45 

Suite f 2 2 2 2 2 2 2 2 2 



379 

2a 2b 3a 3b 4a 4b 2b la lb 2a 
770 770 770 770 770 770 802 803 803 803 

Si02 48 . 87 51. 16 50.71 50 . 76 52.04 52 . 28 50 . 49 52 . 02 52 . 32 51.61 
Ti02 0 . 95 0 . 83 0.86 0.89 0.51 0.55 1. 01 0.79 0 . 68 0. 77 
Al203 3. 67 3 . 20 3 . 45 3 . 28 1. 59 1. 60 4.35 3.28 3.05 4.27 
Cr203 0.06 0.03 0. 02 0 . 17 0 . 05 0.05 0 . 30 
FeO 11.06 10.45 11.13 10 . 84 10 . 82 10.93 6 . 81 9 . 33 8.69 6 . 80 
MnO 0.23 0.25 0.24 0.30 0 . 30 0.36 0 . 11 0.33 0 . 20 0.14 
NiO 0.03 0. 04 0 .02 0.01 0.08 
HgO 14.41 15.50 14.75 14.69 16.28 15.98 16 . 08 17.07 16.47 16 . 84 
CaO 19 . 93 18 . 90 19.12 19.49 18.16 17 .87 20.14 17.55 18.48 19.89 
Na20 0 . 34 0 . 26 0.31 0.28 0. 22 0.23 0.27 0.23 0 . 29 0 . 19 
K20 0 . 01 0 . 02 0 . 02 0.03 

Total 99 . 49 100 . 62 100 . 59 100.60 99.96 9!1.83 99.43 100 . 76 100 . 23 100 . 81 

fSi IV l. 85 1 . 90 1. 89 1. 89 1 . 94 1.95 1 . 87 1. 91 l. 92 l. 88 
tAl IV 0 . 15 0 . 10 0.11 0 . 11 0 .06 0.05 0 . 13 0 . 09 0 . 08 0 .12· 
fTi IV 
tre IV 
T site 2.00 2 . 00 2 . 00 2.00 2 . 00 2 . 00 2 . 00 2 . 00 2.00 2.00 
tAl VI 0 . 02 0. 04 0 . 04 0.03 0. 01 0.02 0 . 06 0 . 05 0.06 0.06 
tTi 0.03 0 . 02 0.02 0.02 0.01 0 . 02 0.03 0.02 0.02 0.02 
tCr 0.00 0 . 00 0. 00 0 . 00 0 . 00 0.00 0.01 ,. +3 0.00 0.00 0.00 0.00 0.00 .,. +2 0.35 0. 32 0.35 0. 34 0 . 34 o. 34 0 . 21 0 . 29 0.27 0.21 
tMn +2 0.01 0. 01 0.01 0.01 0 . 01 0.01 0 . 00 0.01 0.01 0.00 
tNi 0.00 0.00 0.00 0.00 0 . 00 
tHg 0.81 0.86 0.82 0.82 0. 90 0 . 89 0 . 89 0 . 93 0.90 0. 91 
tea 0.81 0.75 0.76 0 . 78 0 .7 3 0. 71 o.ao 0 . 69 0. 73 0 .78 
INa 0 . 02 0.02 0.02 0.02 0. 02 0.02 0.02 0 .02 0.02 0.01 
tK 0 . 00 0.00 0 . 00 0 . 00 
H1,M2 2.05 2.02 2 . 02 2.02 2. 02 2.01 2.01 2. 01 2.00 2 . 01 

'Hg 41.09 44.17 42.30 42.03 4 5. 77 45.45 46.69 48 . 63 4 7. 41 48 . 07 
'Fe*+Mn 18.06 17.11 18.30 17 . 89 17. 54 18 . 02 11 . 27 15 . 44 14.36 11.12 ,c. 40.84 38 . 71 39.41 40.08 36 . 69 36 . 53 42.03 35.93 38 . 23 40 .81 

Suite t 1 1 1 1 1 1 1 1 1 1 



380 

2b 3a Jb 4a 4b 5b 6a 6b 1a 1b 803 803 803 803 803 803 803 803 809 809 

Si02 54.33 51. 8i 51.38 52.33 54 . 29 51.74 52.60 51.66 49.68 50.39 Ti02 0 . 23 0. 65 ~.91 0.60 0.31 0 . 78 0.58 0.77 1. 05 0.80 Al203 1.79 3. 81 4 . 23 3 . 58 1. 8 4 2.77 1. 96 3 . 82 4.19 3.58 Cr203 0.24 0 . 22 0.30 0.37 0 .2 5 0.10 0.04 0.20 
FeO 5 . 36 7.02 5.95 6.18 6 . 32 6 . 74 7 . 57 5 . 53 9 . 91 !1.94 MnO 0.14 0.14 0.17 0.16 0. 23 0 . 18 0.22 0 . 17 0.30 0. 18 NiO 0.05 0 . 01 0.04 0.08 0 . 05 0.04 0 . 01 0 . 01 MqO 18.05 17.29 16.42 17.20 18 . 93 16 . 80 16 . 24 16 . 64 15 . 54 16.08 cao 20 . 29 18.96 21. OS 19 . 82 18 . 48 20 . 00 19 . 88 21.11 19.34 19.63 Na20 0 . 19 0. 36 0. 27 0 . 26 0.18 0.21 0 . 27 0 . 22 0 . 21 0.36 K20 0 . 02 0.01 0.01 0 . 01 0 . 02 0 . 01 0.01 

Total 100.69 100.35 100.72 100 . 59 100 . 89 99.33 99 . 40 100.14 100.24 99 . 98 

tSi IV 1.96 1. 90 1. 88 1. 90 1 . 96 1 . 91 1. 95 1. 89 1. 85 1. 87 tAl IV 0 . 04 0.10 0.12 0.10 0 . 04 0 . 09 0 . 05 0 .ll 0 . 15 0.13 tTi IV 
tre IV 
T site 2 . 00 2.00 2.00 2 . 00 2.00 2 . 00 2.00 2 . 00 2 . 00 2 . 00 tAl VI 0 . 04 0J l6 0.06 0 . 06 0 . 04 0.04 0.03 0. 06 0 . 04 0.03 tTi 0.01 o.n 0.02 0.02 0.01 0.02 0.02 0 . 02 0 . 03 0.02 tcr 0.01 0. 01 0.01 0 . 01 0 . 01 0 . 00 0.00 0.01 
tFe +3 0.00 0. 00 0.00 0 . 00 0 . 00 0.00 
tre +2 0 . 16 0. 21 0.18 0.19 0.19 0.21 0 . 23 0. 17 0.31 0 . 28 tMn +2 0 . 00 0. co 0.01 0 . 00 0.01 0.01 1) . 01 0 . 01 0.01 0.01 fNi 0.00 0. 00 0.00 0.00 0 . 00 0 . 00 o.oo 0. 00 
fHq 0 . 97 0. 94 0.89 0.93 1. 02 0.93 0 . 90 0.91 0.86 0. 89. tea o. 79 0.74 0.82 0. 77 0 .7 1 0 . 79 0 .7 9 0 . 83 0 . 77 0 .78 
tNa 0 . 01 0. 03 0.02 0 . 02 0 . 01 0 . 02 0 . 02 0.02 0.02 0.03 tK 0 . 00 0 . 00 0 . 00 0.00 0.00 0 . 00 0 . 00 
Hl,H2 1. 99 2.01 2.01 2.01 2.00 2.01 2 . 00 2. 01 2.03 2.04 

\Hq 50.53 4 9. 4 9 46.94 49 . 14 52 . 75 47 . 92 46 . 53 47.53 44 . 19 45 . 55 
'Fe*+Mn 8.64 11.50 9.82 10 .: 6 10.24 11.08 12.53 9 . 14 16 . 29 14 . 49 
,c. 40 . 83 39.01 43.25 40.70 37.01 41 . 00 40.94 43.33 39.52 39.96 

Suite t 1 1 1 1 1 1 1 1 1 1 



381 

2a 2b Ja Jc 4b 6a 7a 8a Jc 1a 
809 809 809 809 809 809 809 809 912a 912a 

Si02 50.97 51.47 52.09 51.93 52.24 51.03 Sl. 24 53.64 53.79 50.47 
Ti02 0.66 0.51 0.51 0.63 0.42 0.68 0.75 0.27 0.47 0.71 
Al203 3.63 4.19 3.40 3.50 2 . 99 3. 96 3.40 2.21 1.51 5.02 
Cr203 0.11 0.14 0.17 0.14 0.26 0.06 0.13 0.26 0.13 0.07 
FeO 7.29 6.95 5. 91 7.99 6.56 7.39 7.97 6.28 6.73 6.62 
MnO 0.20 0.17 0.15 0.20 0 . 15 0.23 0.23 0.12 0 . 23 0 . 16 
NiO 0.04 0.01 0.01 0.01 0.02 0.02 0 . 03 0.03 0.06 
MgO 17.54 17 . 51 16.96 16.58 17.36 16.85 16.49 18.39 19.08 14 . 23 
cao 19.37 18.53 20.77 19.35 20.46 19.63 20.43 18.59 17.51 22.14 
Na20 0.24 0 . 28 0.13 0.18 0.18 0.18 0.25 0.20 0.27 0.27 
X20 0.01 0.01 0.01 0.01 0.01 

Total 100.05 99.76 100 . 10 100 . 52 100 . 65 100.04 100.92 100.00 99.78 99.70 

fSi IV 1. 88 1.89 1.91 1. 90 l. 91 1. 88 l. 88 1.95 l. 96 1.87 
tAl IV 0.12 0.11 0.09 0.10 0.09 0.12 0.12 0.05 0.04 0.13 
tTi IV 
tFe IV 
T lite 2.00 2 . 00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 
tAl VI 0.03 0 . 07 0. 05 0.06 0 . 04 0 . 05 0.03 0 . 05 0.03 0.09 
tTi 0.02 0.01 0.01 0.02 0.01 0.02 0 . 02 0 . 01 0 . 01 0.02 
tcr 0.00 0.00 0.00 0 . 00 0.01 0. 00 0.00 0.01 0.00 0.00 
tre +3 0.00 0.00 0.00 0.00 o.oo 
tFe +2 0 . 22 0 . 21 0.18 0.24 0 . 20 0 . 23 0 . 24 0 . 19 0.21 0.21 
fMn +2 0.01 0 . 01 0.00 0.01 0.00 0.01 0.01 0 . 00 0.01 0.01 
IN! 0.00 0 . 00 0 . 00 0 . 00 0.00 0. 00 0.00 0.00 0.00 
tMg 0 . 96 0 . 96 0.93 0 . 91 0 . 94 0.93 0.90 1. 00 l. 04 0.79 
tea 0 . 76 0. 73 0. 81 0.76 0.80 0. 77 0.80 0 . 73 0.68 0.88 
tNa 0.02 0.02 0.01 0.01 0 . 01 0.01 0.02 0 . 01 0.02 0.02 
fK 0.00 0.00 0. 00 0 . 00 0.00 
Ml,M2 2.03 2 . 01 2.01 2.01 2.v2 2 . 02 2.03 2.00 2.00 2.01 

\Mg U . l8 so. 28 48.06 47.26 48.45 47.82 46.09 52.03 53.64 41 . 92 
\Fe*+Mn 11.79 11 . 47 9. 64 13 . 10 10.51 12 . 14 12.86 10.16 10.98 11.21 
\Ca 39 . 03 38.24 42.30 39 . 64 41.04 40.04 41.04 37 . 80 35.38 46.87 

Suite f 1 1 1 1 1 1 1 1 4 4 



382 

1b 2a 2b 3a 4a 1a 1b 2a 3a 3b 
912a 912a 912& !H2a 912a 961d 961d 961d 961d 9611 

5102 50 . 63 51.07 51.47 52.17 48.86 51.49 51. 8 4 52.27 53 . 40 53 . 73 
Ti02 0.80 0 . 56 0.57 0.69 1. 04 0 . 13 0.25 0.26 0.20 0 . 17 
Al203 4.60 3.03 3.02 3.84 6.77 3.20 3 . 38 2 . 98 2.43 1. 91 Cr203 0.05 0 . 01 0.19 0.05 0 . 16 0.13 0 . 40 0.09 0.05 
FeO 7.17 9.38 9.25 5.91 7 . 25 7.97 6 . 98 6 . 76 7 . 40 7 . 81 
MnO 0.20 0.34 0.28 0.14 0.14 0.19 0.14 0 .1 6 0 . 20 0 . 27 
NiO 0.03 0 . 11 0.04 0 . 02 0.05 0.08 0 . 04 0.04 0 . 04 HqO 14.35 14.46 14 . 78 16.69 13.35 17 . 88 17.10 17.32 17.93 17.96 
CaO 22.14 19.98 20.01 19 . 88 22.20 18.68 20.29 20.53 18.53 18 . 35 
Na20 0. 30 0 . 33 0.37 0.25 0.40 0 . 21 0.30 0.17 0 . 23 0.16 
K2:l 0 . 01 0.01 0.07 0 . 01 

Total 100.27 99.28 99 . 76 99.ao 100 . 08 100.03 100.49 100.90 100.45 100.45 

tSi IV 1.87 l. 92 1.92 1. 91 1. 81 1. 90 1. 90 1.91 1. 95 l. 96 
tAl IV 0.13 0.08 0.08 0.09 0.19 0.10 0 . 10 0.09 0.05 0.04 
fTi IV 
tFe IV 
T site 2.00 2.00 2.00 2 . 00 2.00 2 . 00 2.00 2 . 00 2 . 00 2.00 
tAl VI 0.07 0. OS 0. 05 0.08 0 . 11 0 . 04 0 . 05 0 . 03 0 . 05 0.04 
fTi 0.02 0.02 0.02 0.02 0.03 0.00 0 . 01 0 . 01 0 . 01 0 . 00 
tCr 0.00 0.00 0 . 01 0. 00 0 . 00 0.00 0 . 01 0.00 0 . 00 
tFe +3 0 . 00 0.00 0.00 0.00 0.00 
fFe +2 0.22 0 . 29 0.29 0.18 0 . 23 0.25 0 . 21 0 . 21 0 . 23 0. 24 
fMn +2 0 . 01 0.01 0.01 0.00 o.,o 0.01 0.00 0 . 00 0.01 0. 01 
tNi 0.00 0.00 0 . 00 0. ~j 0 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 
tMq 0 . 79 0 . 81 0.82 0.91 0 . ~ ~ 0 . 98 0 . 93 0.94 0.97 0.98 
tea 0.88 0.80 0 . 80 0 . 78 0 .88 0 . 74 0 . 80 0 . 80 0 . 72 0 .72 
tNa 0.02 0.02 0 . 03 0 . 02 0 .0 3 0.02 0 . 02 0 . 01 0. 02 0. 01 
tK 0 . 00 0.00 0.00 0 . 00 
M1,M2 2.02 2.01 2.01 1. 99 2.02 2 . 04 2 . 03 2.02 2 . 00 2 . 00 

'"9 41.72 42.19 42.83 48.56 39.91 49.83 47. 93 48.17 50 . 49 50.33 
'Fe*+Mn 12 . 02 15.92 15 . 50 9 . 88 12. 40 12 . 76 ll. 20 10. eo 12.01 12. 71 ,c. 46 . 26 41.90 41.67 41.57 47.70 37 . 4l 40 . 87 41.03 37 .50 36.96 

Suiu t 4 4 4 4 4 1 1 1 1 1 



383 

4a 4b Sa Sb 6a 6b 7a 2a 4a 4b 
96ld 961d 961d 961d 961d 961d 961d 1002 1002 1002 

Si02 51.61 52 . 63 52.08 50.63 52.40 52 . 43 53.21 48 . 72 50 . 27 50.09 
Ti02 0.39 0.24 0.21 0.29 0 . 25 0 . 26 0 . 17 0.49 1.22 1.12 
Al203 2.72 2 . 05 2.55 2 . 29 2 . 68 2 . 74 2.54 6 . 25 6.06 6. 02 
Cr203 0. 05 0.02 0. OS 0 . 02 0.06 0.45 0.11 0. 15 
FeO 12.28 10 . 52 8.08 12.08 8 . 96 9 . 03 7 . 48 7.26 6.45 6.64 
HnO 0 . 36 0 . 25 0.20 0.25 0 . 23 0 . 21 0 . 12 0.16 0.12 0.09 
NiO 0.03 0 . 07 0 . 02 0.07 0.04 0 . 02 0.04 0.02 
M90 14 . 54 17.31 15 . 71 15 . 64 15 . 35 16.38 16 . 91 16.61 15.44 14.73 
CaO 18.54 17.30 20 . 67 18 . 48 20 . 81 18 . 67 19 . 51 19. 1 6 20.89 20 . 96 Na20 0.27 0.26 0.23 0.27 0.21 0 . 21 0.18 0.17 0.27 0. 25 
K20 0.02 0.02 0. 01 0.03 0.02 0.01 

Total 100.76 100.63 99.82 99.99 100.93 100.03 100.22 99.31 100 . 87 100.08 

tsi IV 1. 92 l. 94 l. 93 1.90 1. 9 3 1. 94 l. 95 1. 81 1. 83 1.84 
tAl IV 0.08 0 . 06 0.07 0. 10 o. -:1 0 . 06 0 . 05 0 . 19 0.17 0. 16 
tTi IV 
tFe IV 
T site 2.00 2 . 00 2 . 00 2.00 2 . 00 2 . 00 2.00 2 . 00 2.00 2.00 
tAl VI 0. 04 0.03 0.04 0 . 01 0 . 04 0 . 05 0.06 0.08 0.10 0. 11 
t'I'i 0. 01 0.01 0 . 01 0 . 01 0.01 0.01 0 . 00 0 . 01 0.03 0.03 
tcr 0.00 0 . 00 0.00 0 . 00 0.00 0.01 0.00 0.00 
tre +3 0. 00 0.00 0.00 0 . 00 0.00 
tre +2 0.38 0 . 32 0 . 25 0.38 0 . 28 0.28 0 . 23 0 . 23 0.20 0.20 tHn +2 0.01 0.01 0.01 0.01 0 . 01 0 . 01 'J.OO 0.01 0.00 0.00 
tNi 0.00 0.00 0 . 00 0 . 00 0 . 00 o. 00 o.oo 0.00 
tM9 0. 81 0.95 0.87 0 . 88 0 . 84 0.90 0.92 0 . 92 0.84 0 . 81 
tea 0.74 0 . 68 0.82 o. 74 0 . 82 0.74 o. 77 0. 76 0 . 82 0.83 
tNa 0. 02 0.02 0.02 0.02 0 . 01 0 . 02 0.01 0.01 0.02 0.02 
fJ( 0. 00 0.00 0 . 00 0 . 00 0 . 00 0. 00 
M1,M2 2.02 2. : 2 2 . 01 2 . 05 2 . 01 2.01 2.00 2 . 04 2. 01 2. 00 

\Mq 41.59 48.37 44.62 43.64 43.28 46 . 82 48.04 48 . 08 45.23 43.88 
\Fe•+Hn 20.29 16. 89 13.20 19 . 30 14.54 14 . 82 12.12 12.05 10.80 11.25 
\Ca 38 . 12 34.74 42.19 37.06 42.17 38.36 39 . 84 39.86 43.98 44.87 

Suite t 1 1 1 1 1 1 1 1 1 1 



384 

Sa Sb la lb 2a 2b 3a 3b 4a 4b 1002 1002 1005 1005 1005 1005 1005 1005 1005 1005 

Si02 53.88 51.44 52.63 51.37 51.03 52.09 52.43 52.15 52.34 50.48 Ti02 0.37 0. 86 0.59 0.61 0 . 73 0. 66 0.53 0.63 0.63 1. 02 
Al203 1. 91 4.62 1. 80 2.37 2. 51 2.38 1. 96 2 . 01 2.36 3.16 
Cr203 0.62 0.59 0.02 0.04 0.02 0 . 08 0.05 0.06 0.05 0.05 reo 4 . 42 5. 73 8.79 9.00 10 . 78 7. 79 8.20 8.54 8.39 12.43 HnO 0.15 0. 18 0.20 0 . 21 0.25 0.21 0.23 0.28 0.22 0.33 NiO 0.03 0. 06 0.01 0.09 0.03 0.07 0.01 0 . 07 H;O 17.80 15.55 16.03 15.67 15 . 30 16.20 15.55 15.98 15.11 13.31 cao 21.37 21.36 19.85 20.64 19 . 01 20 . 16 20.41 20.88 21.27 19 . 51. Na2o 0.23 0.23 0.25 0.28 0.32 0.23 0.19 0.14 0.21 0.31 K20 0.02 0.02 0.01 0 . 01 

Total 100.80 100.64 100.17 100.28 99.98 99.87 99.57 100 . 68 100.58 100.67 

tSi IV 1. !15 1. 88 1.95 1. 91 1. 91 1. 93 1.95 1.92 1.93 1. 89 fAl IV 0.05 0.12 0.05 0.09 0 . 09 0 . 07 0.05 0.08 0.07 0.11 fTi IV 
tre IV 
T site 2.00 2. 00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 tAl VI 0.03 0.08 0.02 0.01 0 . 02 0 . 03 0 . 03 0.01 0.03 0.03 tTi 0.01 0.02 0.02 0.02 0 . 02 0 . 02 0 . 01 0.02 0.02 0.03 
tcr 0.02 0.02 o.oo 0.00 0.00 0.00 0 . 00 0.00 0.00 0.00 
tFe +3 0.00 0. 00 0.00 0. 00 0.00 0.00 tFe +2 0.13 0.17 0.27 0.28 0.34 0. 24 0 . 25 0.26 0.26 0.39 
tHn +2 0.00 0. 01 0.01 0 . 01 0.01 0.01 0.01 0.01 0.01 0. 01 
tNi 0.00 0.00 0.00 0.00 0 . 00 0. 00 0 . 00 o.oo 
fH9 0.96 0.85 0.88 0.87 0. 85 0. 89 0.86 0.88 0.83 0 . 74 
tea 0 . 83 0.84 0.79 0.82 0. 76 0. 80 0.81 0.83 0.84 0.78 
INa 0.02 0. 02 0.02 0.02 0 . 02 0. 02 0 . 01 0.01 0.02 0.02 
tK 0.00 (1, 00 0 . 00 0.00 
Hl,M2 2.00 2. 00 2.01 2. 03 2 . 03 2. 01 2.00 2.02 2.01 2.02 

'"9 49.83 45 . 44 45.36 43.93 43.53 46.05 44.49 14.47 42.89 38.59 
'Fe*+Hn 7.18 9. 69 14.27 14.49 17.61 12.76 13 . 54 13.77 13.72 20.76 
•ca 42.99 44.86 40.37 41.58 38.87 41.19 41.97 41.76 43.39 40.65 

Suite t 1 1 1 1 1 1 1 l 1 



385 

Sa Sb 6a 6b la lb 2a 2b 3a 3b 
1005 1005 1005 1005 1007 1007 1007 1007 1007 1007 

5102 49 . 79 52 . 25 50.77 52.57 51.84 51.85 50 . 68 50.70 49.79 51.68 
Ti02 0.77 o.ss 0.98 0.55 0.68 0. 73 0.65 0.69 1.21 0.89 
Al203 2.39 2 . 13 3.13 2.02 2 . 20 2.03 2 . 70 2.13 3 . 36 2.1 6 
Cr203 0.04 0.07 0.01 0 . 05 0 . 05 0. 04 0.06 
reo ll . 48 8 . 33 10 . 44 7.44 9.95 10.29 12 .27 ll . 33 ll. ~5 11 . 37 
HnO 0.35 0 . 23 0. 28 0 . 18 0 . 27 0.31 0.30 0 . 30 0 . 23 0. 32 
NiO 0.0~ 0. 02 0.03 0.05 0. 01 0 . 01 0.04 0.0~ 
HgO 15.56 16 . 09 14.86 15.47 15. 25 14.72 15 . 08 14.91 14 .ll 14.52 
cao 18 . 63 20 . 41 19 . 79 20.87 19.99 19.16 17.55 19.13 19.16 19.20 
Na20 0 . 34 0.25 0.29 0.25 0.27 0. 28 0. 29 0.29 0.27 0. 29 
K20 0.01 0.03 0. ~ 2 0.02 

Total 99 . 41 100 . 33 100.58 99.40 100.58 99.38 99 . 68 99.55 99.74 100.48 

tSi IV l. 89 1 . 93 1. 89 l. 95 l. 92 1. 94 1. 91 l. 91 1.88 1. 93 
tAl IV 0.11 0 . 07 0. 11 0 . 05 0.08 0.06 0.09 0.09 0. 12 0. 07 
tTi IV 0.01 
tre IV 
T site 2.00 2. 00 2.00 2.00 2 .00 2.00 2 . 00 2.00 2.00 2.00 
tAl VI 0 . 02 0. 03 0.04 0 . 02 0. 03 0 . 03 0 . 01 0.03 0. 02· 
tTi 0 . 01 0 . 02 0. 03 0.02 0 . 02 0.02 0 . 02 0.02 0.03 0. 02 
tCr 0 . 00 0 . 00 0. 00 0.00 0.00 0 . 00 0.00 
tre +3 0. 00 0.00 0 . 00 0.00 0.00 0.00 
tre +2 0.36 0.26 0.32 0.23 0 . 31 0.32 0.39 0.36 0.36 0.35 
tHn +2 0.01 0.01 0.01 0.01 0. Ol 0 . 01 0 . 01 0 . 01 0.01 0.01 
tNi 0.00 0.00 0.00 0.00 0.00 0 . 00 0.00 0.00 
tHq 0.88 0. 89 0.82 0.86 0.8 4 0 .82 0.85 0 . 84 0. 79 0.81 
tea 0.76 0. 81 0. 79 0.83 0. 79 0. 77 0.71 0.77 0 . 77 o. 77 
tNa 0.02 0 . 02 0. 02 0 . 02 0.02 0 .02 0 . 02 0.02 0 . 02 C. 02 
tK 0.00 0. 00 0.01 0 . 00 
H1,H2 2 . 05 2 . 02 2 . 02 2.00 2.02 2.00 2.03 2.03 2.02 2 .01 

'Hq 43.72 45.24 42 . 34 44.52 43.14 42.74 43.40 42.38 40.91 41.63 
'Fe*+Hn 18.65 13 . 51 17.14 12.31 16.22 17 .27 20 . 30 18 . 55 19.16 18.81 
,c. 37.62 41.25 40.52 43.17 40.64 39.98 36 . 30 39 . 08 39.93 39.56 

Suite t 1 1 1 1 1 1 1 1 1 1 
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... 4b Sa Sb 
1007 1007 1007 1007 

------ ------
Si02 50.81 49.57 52.41 51.83 
Ti02 1. 07 1.01 0. 63 0.64 
Al203 3 . 18 3. 31 2.13 1. 57 
Cr203 0.04 0.05 0.04 0.07 
reo 11.07 11.40 9.96 10.95 
MnO 0.21 0 . 23 0.15 0 . 25 
NiO 0.04 0.03 
MgO 14.81 14.14 15.85 15.93 
cao 18.54 19.86 18.78 18.71 
Na~o 0.30 0.16 0.21 0.25 
K20 0. 02 0 . 03 

Total 100 . 07 99.75 100.19 100.23 

tSi IV 1.9C 1. 87 l. 94 1. 93 
tAl IV 0 . 10 0. 13 0.06 0 . 07 
tTi IV 
tre IV 
T site 2 . 00 2.00 2. 00 2.00 
tAl VI 0 . 04 0. 02 0.03 0 . 00 
ITi 0 . 03 0.03 0. 02 0.02 
tcr 0 . 00 0 . 00 0.00 0.00 
tre +3 0.00 0.00 0.00 
tre +2 0 . 35 0.36 0. 31 0.34 
tMn +2 0 . 01 0 . 01 0. 00 0 . 01 
tNi 0.00 0 . 00 
fMg 0.82 0.80 0 . 88 0.89 
tea 0. 74 0 . 80 0.75 0.75 
tNa 0.02 0. 01 0.02 0.02 
fK 0.00 0.00 
M1,M2 2.01 2. 03 2.00 2 . 02 

tMg 42.97 40.47 45.26 44.67 
tre•+Mn 18.37 18.68 16.20 17.62 
tea 38.66 40.85 38.54 37.71 

Suite t 1 1 1 1 
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Figure 3.2.1 Geology of the Red Hill 
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