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The importance of fracture roughness in the mechanical and hydraulic
behaviour of fractured rock has long been recognized but quantitative modelling of
its effects has proven to be difficult. This study addresses the characterization of
fracture roughness and assesses some of the existing stress-flow models that exist in
the literature. As part of the study, laboratory stress-flow tests were carried out on
a single, natural fracture in a 20 cm diameter granite core. These were followed by
injection of an epoxy resin into the fracture plane at a specified normal stress and
flow rate. The resin injection experiment enabled direct measurements and
characterization of the roughness of both sides of the fracture, contact area, aperture
and void space. Statistical analysis of these parameters indicated that the
distributions were skewed towards zero and could be approximated reasonably well
by a log-normal distribution. All of the stress-flow models examined, including the
parallel plate model, were found to have limited application or required simplifying
assumptions with respect to fracture roughness. From the results of this study it is
clear that fracture flow theory must take into account both sides of the fracture, the

variation and spatial distribution of fracture aperture, and the different scales of

roughness that exist.
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Chapter 1 INTRODUCTION

1.1 Statement of Problem

The word "fracture” is used as a collective term representing any of a series
of discontinuous features in rocks such as joints, faults, fissures and bedding planes.
Representing as they do a disruption in the continuum of intact rock, fractures have
a significant effect on both the mechanical and hydraulic (hydromechanical)
properties of rock masses. Changes in the stress conditions of a rock body cause a
deformation of the rock - a large part of which is manifest as fracture dilation or
fracture closure. In the case of rocks with low matrix permeabilities, fractures
constitute ihe primary flow paths for the flow of fluids through the rock mass.

Much of the work on fracture flow has been based on the parallel plate
analogy in which thc two sides of the fracture are idealized as smooth, non-
contacting, parallel plates. This simplification leads to an expression relating fracture
flow rate to an effective hydraulic aperture. Although modifications have been
suggested to account for fracture roughness, the parallel plate model has generally
been proven not to be applicable to natural fractures subjected to a range of normal
stresses (Gale, 1982; Raven and Gale, 1985; Pyrak-Nolte et al., 1987; Gentier,
1990b). As rough fractures close under applied stress, the relationships between
fracture roughness, contact area and void space become very significant as fluid
movemenl is restricted to a series of tortuous flow channels wiinin the fracture plane.

Clearly, a simple flat plate model for flow is unsuitable,
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Attempts to model the stress-flow behaviour of fractured rock, both those
based on experimentally observed behaviour and those based on fundamental rock

mechanics, have only found limited application or require simplifying assumptions

with respect to fracture roughness. The changes in contact area and void space

imposed by two rough surfaces being pressed together, and the corresponding effects
on fluid movement within the fracture plane, have proven to be difficult parameters
to mcasure, Another difficulty has been the observation of different scales of
roughness and trying to determine what scale is important for fluid flow
considerations.

Fracture surface roughness is without a doubt a key constitutive parameter in
the stress-flow behaviour of fractured rock since it controls the overall structure of
the fracture plane and hence the movement of fluids through the fracture.
Roughness parameters alone do not describe the effect that surface roughness has
on the shape and distribution of openings within the fracture plane under changing
stresses. If none of the existing models satisfactorily reflect the role of fracture
roughness, then it is apparent that direct measurements of roughness, contact arca
and void space of natural fractures under a range of stresses are necessary to define

the basic input data needed to develop a suitable stress-flow model.




1.2 Objectives and Scope

This thesis evaluates the relevance and general applicability of several existing
stress - flow models for fractured rock. Specifically, it examines the Gangi (1978)
"bed of nails" model, the Walsh (1981) normal closure - conductivity model, the
Tsang and Witherspoon (1981) void/asperity model, the Swan (1983) normal closure
- conductivity model, and the Barton-Bandis (Barton et al., 1985) empirical model.

Particular empbhasis is given to the treatment of fracture roughness having identified

it as a key element of stress - flow behaviour. Evaluation of these models requires

accurate measurements of surface roughness, contact area and void space for input.

As part of this study, normal stress - fracture flow tests were conducted on a
natural granite fracture under controlled laboratory conditions. These were followed
by injection of an epoxy resin into the fracture plane at a specified normal stress and
flow rate. The stress - flow test provided data on the hydromechanical behaviour of
the fracture while the resin injection experiment enabled measurement of roughness
and related features of the fracture plane through the use of digitized cross-sectional
profiles.

The work presented here follows and expands upon other similar experiments
on granite fractures using the resin injection technique developed at Memorial
University (Gale, 1987). It is hoped that these types of experiments will provide the
necessary database required to evaluate existing fracture flow models or provide the

basis for which to develop a new constitutive model.




1.3 Background and Previous Work

Initial studies on flow through fractures, such as the work by Lomize (1951),
Baker (1955), Huitt (1956), Romm (1966) and Louis (1969), were based upon the
assumption that a fracture could be represented by two smooth parallel plates
separated by some uniform opening, 2b. This parallel plate model allows the
derivation of an expression (Lomize, 1951) relating fracture hydraulic conductivity,

K, to fracture opening or aperture such that,

-_P8 (op)2 1-1
K, 12“(zb) (1-1)

where p is the fluid density, gis the gravitational acceleration and u is the dynamic
viscosity of the fluid.

Substituting equation (1-1) into Darcy’s law, Witherspoon et al. (1980) show
that flow rate is related to the cube of the fracture aperture by the expression

Q _ 3 1-2
2 -C2b) (1-2)

where Q/ AH is the fracture flow rate per unit head and Cisa constant incorporating
the geometry of the flow system and the properties of the fluid. Equation (1-2) is
also known as the cubic law. For radial flow through a cylindrical core sample,

Q__2n L8 (2py (1-3)
AH ln(rJr) 12p
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with r, and r_ being the outer sample radius and inner borehole radius respectively.

Through the use of the relative roughness concept, in which the roughness of
the fracture wall is compared to the size of the fracture opening, the work on smooth
surfaces was extended to rough surfaces resulting in a series of empirical flow laws
covering the range of laminar to turbulent flow. More detailed discussions of these
developments are given by Rissler (1978), Pearce and Murphy (1979) and Gale
(1985). Assuming laminar flow predominates in rough fractures, the cubic law
(equation 1-2) can then be modified to include roughness effects (Witherspoon et al.,

1980) such that,

_.Q_-E.(Zb)i (1-4)

AH f

where fis a factor that accounts for deviations from ideal, smooth conditions.
Witherspoon et al. (1980) cetermined fusing a least squares fit to their experimental
data points. From a hydraulic standpoint, fis a function of the relative roughness

and takes the following form:

Sf-1+A(/D )" (1-5)

Following the definition of Lomize (1951), relative roughness, k/D,, is the absolute

height of asperities divided by the fracture aperture, 2b,and A = 17. According to
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Louis (1969), k/D, is defined as the mean height of asperiiies divided by the

hydraulic diameter which is twice the fracture aperture and A4 = 8.8,

Most of these studies have dealt with two smooth or two uniformly rough
artificial surfaces not in contact with each other. When it comes to natural fractures
under stress, both sides of the fracture are in contact and the non-uniform roughness
imparts a tortuous nature to fluid flow. Under these conditions, the friction factor -
Reynolds number approach to describing flow behaviour breaks down.
Experimental results by Sharp (1970) using a natural granite fracture under self
weight conditions (k/D, = 0.5) did not show agreement with the parallel plate
model. This was attributed to the complex flow behaviour imposed by the irrcgular
geometry of the fracture surface. Maini (1971) was able to visually show the diffuse,
three-dimensional nature of flow between contacting rough surfaces using dye tests
in transparent replicas of natural fractures. Both came to the conclusion (Sharp and
Maini, 1972) that it would be impossible to derive general flow laws to account for
the influence of detailed geometrical effects of natural fractures. Pearce and Murphy
(1979) also suggested that because of the complexity of trying to specify a natural
fracture flow surface, general flow laws describing fracture flow would probably never
be developed.

The problems encountered with trying to develop general flow laws for rough
fractures in contact has necessitated the neeu for in-situ and laboratory studies using

natural and artificial fractures in an attempt to isolate the fundamental factors tha.
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control stress-flow behaviour. Given the sensitivity of fracture flow rates to fracture
aperture, many of these studies have examined the effects of stress and hence
aperture changes on fracture permeability. Gale (1975), Jones (1975), Iwai {1976),
Pratt et al. (1977), Nelson and Handin (1977), Kranz et al. (1979), Voegele et al.
(1981), Engelder and Scholz (1981), Gale (1982), Gale (1984), Raven and Gale
(198S), Elliott et al. (1985), Pyrak-Nolte et al. (1987), Gale (1987) and Gentier
(1990b) have all investigated experimentally the stress-flow behaviour of natural and
artificial fractures in many different rock types.

Empirical relationships between fracture permeability and effective stress are
given by Jones (1975), Nelson and Handin (1977), Kranz et al. (1979) and Gale
(1982). Several workers have addressed the applicability of the cubic law to
describing fluid flow in fractures but with the exception of Iwai (1976) and
Witherspoon et al. (1980) have generally found that it does not apply, especially at
high stresses. Neuzil and Tracy (1981), Engelder and Scholz (1981), Sato et al.
(1984) and Elliott et al. (1985) have proposed modified parallel plate models to try
and make the theory more generally applicable to rough fractures.

One of the more useful empirical models developed so far is the coupled
stress-deformation-conductivity model described by Barton and Bakhtar (1983) and
Barton et al. (1985). Developed from many years of research on fracture behaviour

and literally hundreds of tests on many different rock types, the model encompasses

most of the fundamental processes of fracture behaviour. All that is needed to




define the required input for the model are a few simple index tests and an estimate
of the initial fracture aperture. The differences between the real aperture and the
theoretical smooth plate aperture are attributed to asperity contact, tortuous flow
and surface roughness and are quantified in the model.

Theoretical treatment of the stress-closure-flow behaviour of fractures has
involved the use of various asperity and void models that incorporate elastic contact
behaviour of surface asperities and deformation behaviour of the void spaces around
them. One of the more commonly used asperity models assumes that a rough
surface consists of uniformly distributed, spherically-shaped asperities of equal radii
and varying heights given by some statistical distribution function. Using this model,
Greenwood and Williamson (1966) applied Hertzian theory for elastic contact of

spheres to define the deformation of a rough metal surface being pressed against a

flat plate as a function of the elastic properties of the material and the asperity

height distribution. The theory was extended by Greenwood and Tripp (1971) to
include the case of two rough surfaces in contact. Walsh and Grosenbaugh (1979)
combined compressibility theory for rock fractures with the Greenwood and
Williamson model. Assuming an exponential distribution of asperity heights, they
derived a linear relationship between fracture stiffness and applied stress for
mismatched fracture surfaces. The same experimentally-derived relationship was

proposed by Goodman (1976).
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Walsh (1981) showed that the Walsh and Grosenbaugh model could be used

for fluid flow cor:siderations since it included the effects of changes in both aperture
and contact area. Using a heat flow analogy, he showed that the cube-root of fiow
rate should vary linearly with the logarithm of effective stress. Experimental results
for artificial fractures tested by other workers showed good agreement with his
theoretical relationship. Swan (1981) found that while the Walsh and Grosenbaugh
theory modelled the fracture closure process it only provided a qualitative

approximation of the stiffness behaviour of real fractures. Rather than using an

assumed asperity height distribution, he showed that the use of actual asperity height

data measured from roughness profiles led to a much better prediction of the
experimental results. The concept was extended (Swan, 1983) to include changes in
contact area and hydraulic conductivity as simple functions of normal stress and
initial aperture. A more general contact theory for both mated and unmated
fractures was presented by Brown (1984) based upon an extension of the Greenwood
and Williamson asperity model. His measurements of surface roughness enabled him
to compare the theory with experimental test results and demonstrate that fracture
closure depends strongly on the roughness statistics of the contacting surfaces.
Recent theoretical analysis of the permeability of rough fractures by Zimmerman et
al. (1991) has shown how hydraulic aperture depends on the statistics of the aperture

distribution.
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Another asperity model was introduced by Gangi (1978) in which the

asperities of a fracture surface were assumed to be pencil-shaped rods of various
heights and diameters. The variation of the fracture aperture, and hence fracture
permeability, with applied pressure was controlled by the elastic deformation of an
assumed distribution of rod heights. Tsang and Witherspoon (1981) found that
Gangi’s model needed an unrealistically low contact area ratio or low Young's
modulus for the asperities to give quantitative agreement with experimental data.
These limitations led them to develop a physical model for fracture - flow behaviour
which utilizes a void model to describe the deformation behaviour of the fracture
and an asperity model to describe the hydraulic behaviour. Fracture closure was the
result of deformation of the series of voids making up the fracture. The asperity
model enabled the roughness of the fracture to be characterized which led to a
statistical average of the variable aperture for fluid flow considerations. Hopkins et
al. (1987) also describe a void - asperity model for the mechanical response of a
fracture to applied stress which takes into account the deformation of both the
asperities in contact and the surrounding void spaces. Their model predicts changes
in aperture geometry that are not included in other asperity models and highlights
the significant effects of the size, height distribution and spatial orientation of
asperities.

The inconsistencies in experimental results and the limitations of theoretical

models have proven that simplifying assumptions about fracture roughness are not
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adequate for describing the stress-flow behaviour of fractured rock. Despite the

recognition of the important role of surface roughness in controlling mechanical and
hydraulic behaviour, very few workers have actually measured the roughness of the
fractures they were testing. Of the studies mentioned thus far, only Sato et al.
(1984), Swan (1981, 1983) and Brown (1984) include roughness measurements in
their work.

The role of surface roughness in controlling the shearing behaviour of
fractures has been studied for many years including the work of Patton (1966),
Rengers (1970) and Barton (1971, 1973). Rengers (1970) was one of the first to
actually measure roughness profiles for natural fracture surfaces. Since then there
have been a number of different devices and techniques described in the literature
for obtaining fracture roughness profiles. These include contour gauges (Stimpson,
1982; Jackson et al., 1985), mechanical profilometers (Swan, 1981; Brown, 1984; Sun,
1985; Voss et al., 1986; Hutson and Dowding, 1987) and digitized sectional
photographs (Tse and Cruden, 1979; Dight and Chiu, 1981; Sato et al., 1984; Gale,
1987).

Once the roughness profile has been attained the problem becomes one of
determining what scale of roughness needs to be measured and how to describe or
characterize it. Most workers have recognized that there is more than one scale of

roughness that may exist for fracture surfaces. It has been variously described as

first-order irregularities vs. second-order irregularities (Patton, 1966), waviness vs.
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roughness (Piteau, 1971), unevenness vs. roughness (Fecker, 1978), waviness vs.
unevenness (ISRM, 1978) and large scale undulation vs.small scale roughness (Tsang
and Witherspoon, 1982). The use of descriptive terms however only gives a
qualitative characterization of roughness and for this reason many workers have
opted to use statistical analysis of roughness profiles to quantify surface roughness.
Profile statistics typically involve analysis of the heights of asperities, their spatial
distribution and the angles they make with the mean plane of the surface. Many of
these methods have: their origin in the field of tribology where they have received
detailed consideration (Thomas, 1982). Examples of where some of these methods
have been used for fracture surfaces in rock include Wu and Ali (1978), Krahn and
Morgenstern (1979), Tse and Cruden (1979), Dight and Chiu (1981), Westerman et
al. (1982), Herdocia (1985), Lam and Johnston (1985), Reeves (1985) and Gentier
(1990a).

Several workers have suggested that there may be a sample size effect on
surface roughness (Barton and Bandis, 1982; Brown, 1984; Raven anc Gale, 198S).
One of the drawbacks of using profile statistics to characterize roughness is that if
the sample length changes the statistical propeities also change. An alternative
approach to characterizing surface roughness (hat avoids this scaling problem
involves the use of fractal geometry (Mandelbrot, 1977). The fractal concept is

based on the idea that random, irregular surfaces display statistical self-similarity at

all scales of magnification. The roughness of such surfaces at different scales of
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measurement is specified by its fractal dimension which defines the rate at which
roughness changes with sample size. Examples of the use of the fractal model to
describe natural rock surfaces include Brown (1984), Carr and Warriner (1987),
Turk et al. (1987), Lee et al. (1990) and Sakellariou et al. (1991). The fractal nature
of fracture apertures and flow paths has also been demonstrated (Nolte et al., 1987;
Wang et al., 1988; Wong et al., 1989). Brown (1987) has used simulated fractal
surfaces to study the effects of surface roughness on fluid flow in rock fractures.

It has become apparent that mechanical and hydraulic experiments with rock
fractures must be accompanied by measurements of roughness, contact area and pore
space in order to understand and model stress-flow behaviour. This means that both
sides of the fracture must be considered and the measurements must be made under
various conditions of stress. This has proven to be a difficult task. Recent attempts
at solving this problem include the work of Gale (1987), Pyrak-Nolte et al. (1987)
and Gentier (1990a, 1990b). Gale (1987) describes a resin impregnation technique
for measuring surface roughness, contact area and pore structure of natural fractures
under known flow and stress conditions. An epoxy resin was injected into the
fracture, the resin-filled fracture was sectioned and the resulting cross-sectional
profiles were digitized to allow a direct measure of the surface roughness and related
features of the fracture plane. Pyrak-Nolte et al. (1987) and Gentier (1990a, 19¢™%)

describe a casting technique in which molten metal and resin, respectively, were

injected into the fracture under various stress conditions. Image analysis of the
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resulting casts was used to provide quantitative data on the void space geometry and
contact area. Using this data, they were able to qualitatively link measured
mechanical and hydraulic behaviour to the geometry of the fracture plane. Studies

of these types are needed to provide the quantitative measurements of surface

roughness effects on fracture-flow behaviour.




Chapter 2 EXPERIMENTAL DESIGN AND PROCEDURES

Stress-flow tests were carried out on a granite core sample measuring roughly
20 cm in diameter by 42 cm in length and containing a natural fracture perpendicular

to the core axis. The sample was incrementally loaded and flow tested at normal

compressive stresses up to a maximum of 30 MPa. It was similarly unioaded and

reloaded to a final normal stress of 1 MPa at which time the fracture was injected
with a room temperature curing epoxy resin. The stress-flow tests provided
measurements of fracture closure and fracture flow rates while the resin injection
enabled measurements of fracture roughness and aperture at known stress and fluid

flow conditions,

2.1 Sample Preparation

The sample used in this investigation was collected from a fresh, natural
fracture plane at the "Charcoal Grey" granite quarry near St. Cloud, Minnesota using
a rock bolt-overcoring technique to provide a relatively undisturbed sample of a
natural fracture. Details of the original collection and preparation procedures for
this sample are given in Gale and Raven (1980) and will only be summarized here.
A rock bolt was installed in a small borehole drilled acrcss the fracture plane and
then overcored with a 20 cm diameter core barrel. At the laboratory, anchor posts
were mounted on the outside of the sample to keep the fracture together so that the

rock bolt could be removed and the ends prepared for uniaxial testing. A water inlet
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plate was attached to the bottom of the sample to allow injection of water through
the central borehole and out the fracture plane, i.e radially-divergent flow. A small
diameter hole was drilled from the outside of the sample to the end of the central
borehole to act as a pressure port for bleeding air from the fracture plane and
measuring fluid pressures during flow testing.

To measure rock and fracture deformation, three Schaevitz linear variable
differential transducers (LVDT's) were mounted across the fracture at 120"spacings
around the outside of the sample. A fourth LVDT was mounted above the fracture
plane to measure the deformation of the rock only. The LLVDT's were capable of
measuring deformations of less than 1 um. To measure the variation in strain
between the top of the sample and the fracture plane, Bean strain gauges were
attached to the upper half of the sample in a vertical string and in vertical-horizontal
ydirs near the fracture at each LVDT (see Figure A.1). The sample was placed
between two aluminum loading plates and lowered into a Plexiglas tank filled with
water that maintained a constant water level above the fracture plane. A schematic

of the sample after final preparation and instrumentation is shown in Figurc 2.1.

2.2  Stress-Flow Tests
The equipment for flow testing the fracture consisted of four main components

as shown in Figure 2.2:(1) the loading frame (2) the flow system (3) the temperature

control system and (4) the data acquisition system. A 2.67 MN Matcrial Testing
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Services (MTS) closed-loop, servo-controlled testing machine was used to apply the
axial loads. Three 0.89 MN capacity BLH load cells built into the upper loading
platen measured the applied loads. The samples were tested under load control
feedback conditions. A steel plate was placed between the top of the sample and the
upper loading platen to ensure uniform load distribution over the sample. Before

testing the sample, the MTS hydraulic pump was cycled for several hours to remove

any air in the system and the load cells were calibrated. A hollow steel cylinder was

placed in the testing frame and loaded to properly seat the loading platens so that
no eccentric loading was taking place and to ensure that the system was working
properly.

The flow system consisted of a series of four positive displacement flow tanks
connected to the water inlet plaie. The cylindricai ilcw tanks were of four different
diameters and arranged so that flow could be switched to either tank. The flow rates
were determined by measuring the change in water level in a tank over a given time
period. By switching to a tank of different diameter, flow rates could be measured
over several orders of magnitude. Compressed nitrogen was used to pressurize the
tanks and provide a constant fluid pressure during the injection tests. The applied
pressures did not exceed 5 psi (0.035 MPa). A manometer tube connected to the
pressure port allowed measurements of hydraulic head to be made. Distilled water

was used throughout the test.
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To avoid thermal effects on the measuring devices and testing equipment due
to temperature fluctuations within the testing environment, a temperature control
system was devised using air as the controlling medium. This consisted of a 0.77m
x0.61 m x 0.4% m box frame covered with 2 inch (5 cm) thick styrofoam and attached
to the tsting frame so as to enclose the sample and Plexiglas water tank. An RFL
Industries Model 70A Air Temperature Controller (range 25-90°C) was used with two
heater bars built into the front panel to control the air temperature inside the box.
A small fan built into the front panel circulated the air inside the box. Two
thermocouples were installed inside the insulated box, one to monitor the air
temperature and one to measure the temperature of the water surrounding the
sample. A dial thermometer was also inserted into the insulated box to provide a
rapid visual check of the inside air temperature. The system was able to maintain
a constant temperature to within + 1 °C.

The basic data acquisition system was an HP - 3497A data acquisition/contro!
unit with 60 multiplexer channels for reading output signals from LVDT’s, strain
gauges, load cells, thermocouples, thermistors, etc. The system had a sensitivity of
1 microvolt and provided a digital output (VDC) signal for control purposes. The
data acquisition unit was interfaced with a Tandy 1200-HD personal computer with
10 Mbytes of disk storage. A software program written specifically for these tests

allowed manual or automatic scanning of all data channels with continuous display

and/or print out of the data.
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Having undergone three previous loading and unloading cycles, described by
Gale and Raven (1980) and Raven and Gale (198S), the sample was subjected to a
final complete loading-unloading cycle to remove as much hysteresis as possible and
obtain reproducible behaviour. First the sample was placed in the loading frame and
a small seating load of 0.02 MPa was applied. The anchor posts were removed from
the sample and the LVDT’s, strain gauge leads and flow lines were connected. The
water tank was filled to a level just above the fracture and the flow lines and fracture
were flushed with carbon dioxide and deaired water to remove any air pockets and
thoroughly saturate the sample. The temperature control system was put in place
and the temperalure adjusted to about five degrees above room temperature. In
order for the temperature of the rock, equipment mass, water and air inside the
insulated box to equilibrate, the temperature control unit was allowed to run
overnight prior to testing.

The normal load on the sample was increased in steps up to a maximum stress
of 30 MPa and then unloaded using the following nominal load path: 0.2, 0.6, 1.0,
3.0, 7.0, 10.0, 20.0, 30.0, 20.0, 10.0, 3.0, 1.0, 0.2 MPa. At each normal stress
level, steady-state radial flow tests were conducted from the central borehole.
Computerized data scans recorded measurements of applied load, fracture and rock
closure, fluid pressure, strain gauge readings and temperature at 10 to 15 minute

intervals or "runs”. Flow rates were calculated at the end of each run. The

occurrence of stable flow rates for three consecutive runs constituted a complete
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testing sequence for a given stress level. A similar procedure was followed for
unloading the sample. It took several hours for the flow rates to stabilize at each
stress level, thus flow testing for the full loading-unloading cycle took over 72 hours

to complete.

2.3 Resin Injection Technique

Prior to the resin injection experiment, the sample was loaded again in 0.2
MPa increments to an injection stress level of | MPa with radial flow tests conducted
at each step as before. After the final flow test and with the injection stress held
constant, the water was drained from the fracture and the sample allowed to dry
overnight inside the temperature control unit. As a further measure, carbon dioxide
was flushed through the system to remove any remaining moisture. The fracture
plane was isolated with an aluminum bracket collared around the circumference of
the sample. Strips of soft impression rubber were placed between the sample and
the aluminum bracket above and below the fracture to create a seal with the outside
edge of the fracture. The bracket contained three ports to allow the resin to cxit the
fracture plane. A pressurized holding cylinder for the resin and a vacuum pump
were connected to the system as shown in Figure 2.3.

To inject the resin, a negative pressure of 20 - 30 psi was created using the

vacuum pump connected to the borchole pressure port and the three ports in the

aluminum bracket. A blue-coloured epoxy resin was then added to the holding
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cylinder connected to the water inlet plate at the base of the sample. The resin was
drawn through the water inlet plate, up into the central borehole and into the
fracture rlane. The vacuum was held until the resin came out each of the three
ports in the aluminum bracket confirming that the fracture plane was completely
saturated with resin. The vacuum was then shut off and the resin allowed to cure
overnight. The | MPa injection stress was maintained on the sample the whole time
and load, fracture displacement, and air temperature were continuously monitored.
Once the resin had completely hardened, the load was carefully removed. The resin

injection cycle took about 3.5 days to complete.

2.4 Resin Analysis Method

After the resin in the fracture had fully cured, cross-sectional cuts were made
through the fracture plane to create a series of resin-filled profiles of the fracture.
The profiles were then photographed under a microscope so that they could be
digitized and analyzed by computer. The process consisted of four steps: (1) cutting
and grinding the fracture cross-sections (2) photographing the fracture profiles at an
enlz.ged scale (3) constructing continuous fracture profiles from the photographs and
(4) digitizing the photographic profiles using a computer and digitizing table.

The cross-sectional cuts were made through the fracture plane using a rock

saw and the exposed surfaces were ground and polished using a K.O. [.ce Surface

Grinder. The sample was divided into four quadrants and successively cut back at
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roughly 10 mm intervals in both the x and y directions to produce a total of forty
eight fracture profiles. Each profile was clearly labelled indicating the top and
bottom of the fracture and a 1:1 drawing of the fracture trace was made using mylar
drafting film. The number and location of each profile is shown in Figure 2.4.
Examples of 1:1 drawings of the fracture trace for several of the profiles are shown
in Figure 2.5. The fracture profiles were each photographed at a 30:1 scale using a
Wild Photomakroskop M400 photomicroscope. At this scale, approximately 5 mm
of the fracture profile could be photographed at a time. Each fracture profile was
then reconstructed from the photographs by carefully mounting the overlapping prints
on a roll of paper to form a continuous photographic profile of the fracture.

The fracture profiles were digitized using a Mayline Futur-matic Digitizing
Table connected to a computer complete with mouse and digital coordinate display.
The mouse consisted of a small key pad and a window with a set of orthogonal
cross-hairs for tracing the outline of the profile being digitized. The system was
capable of measuring and recording x - y coordinates at intervals as small as 0.01 mm
(10 pm). The top and bottom fracture profiles were digitized separately. Points
where the two surfaces contacted, or where a rock fragment bridged the gap between
them, were flagged so that they could be analyzed individually. The digitized data

was manipulated and statistically analyzed on a main frame computer using a series

of FORTRAN, C and SPSSx programs.
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Chapter 3 EXPERIMENTAL RESULTS AND DATA ANALYSIS

3.1  Stress-Flow Results

Stress-flow tests were conducted on the fracture during a final loading-
unloading cycle at normal stresses up to 30 MPa and also during the resin injection
loading cycle. The purpese of these tests was to determine the mechanical and
hydraulic behaviour of the fracture as a function of normal stress. The stress-flow
tests during the resin injection cycle served to define the conditions under which the
measurements of fractvrs roughness, contact area and aperture were to be made.

The mechanical behaviour of the fracture is summarized in Table 3.1 and
Figure 3.1 which shows the normal stress - fractuic closure curves for the three
loading-unloading cycles described by Gale and Raven (1980) and for the final
loading-unloading cycle and resin injection cycle carried out in these experiments.
Fracture closure was determined by subtracting the rock deformation measured by
the LVDT on the upper half of the sample (Figure 2.1) from the average combined
deformation of the rock and the fracture measured by the three LVDT’s straddling
the fracture. The curves in Figure 3.1 exhibit the typical non-linear deformation
behaviour of fractures with hysteresis between loading and unloading cycles and
decreasing fracture cii with each successive loading-unloading cycle. The
maximum fracture closure was about 200 um for the first cycle decreasing to about

100 pm for the final cycle. The similarity of the resin injection loading curve to the

unloading curve for the final cycle (see inset, Figure 3.1) indicates that most of the
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Figure 3.1 Fracture closure as a function of normal stress for the first, second,
, third, final and resin loading cycles (cycle 1, 2 and 3 data from Gale
' and Raven, 1980).
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hysteresis in the sample had been removed and the fracture was approaching
repeatable elastic behaviour.

The hydraulic behaviour of the fracture is shown in Figure 3.2 which is a scmi-log
plot of normalized flow rate versus normal stress for the three loading-unloading
cycles of Gale and Raven (1980) and the final loading-unloading cycle and resin
injection cycle conducted in the current experiments. These curves also exhibit
strong non-linear behaviour with hysteresis between loading and unloading cycles and
decreasing flow rate with each successive loading-unloading cycle. The amount of
hysteresis and the reduction in flow rate decreased with each loading-unloading cycle,
such that the resin injection curve matched the final unloading curve. The flow rate
and fracture closure data are given in Table 3.1,

To determine the hydraulic conductivity of the fracture involves making the
assumption that the cubic law can be used to caiculate the hydraulic aperture. Using
the method of Witherspoon et al. (1980), hydraulic apertures were calculated from
the flow test results by assuming the cubic law to be valid at the maximum normal
stress used in the tests. The effective hydraulic aperture, 2b, therefore consists of an
unknown residual aperture, 2b,, at the maximum normal stress and a measured

aperture, 2b,, determined from the LVDT closure measurements, i.e.

2b=2b_+2b_ 31)
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Table 3.1 Stress-flow test results and computed hydraulic apertures for final
loading - unloading cycle and resin injection cycle.

‘as
tJ

NORMAL NORMALIZED FRACTURE SMOOTH ROUGH
STRESS HEAD FLOW RATE CLOSURE APERTURE APERTURE
g, AH Q/ AH & 2b, 2b,

(MPa)  (cm) (cm?/s) (um) (um) (um)
---------------------- final cycle - - - --- ---ceiiiiiiaa
0.00 0.00 105.85 108.27
0.26 217.5 9.77E-5 35.70 70.15 72.57

0.66 255.5 4.82E-6 49.14 56.71 59.13

1.14 318.9 3.22E-6 55.61 50.24 52.66

3.10 410.6 2.54E-6 67.05 38.79 41.22

7.03 398.9 2.17E-6 77.99 27.85 30.28

9.91 389.7 2.04E-6 82.63 23.22 25.64
20.32 381.9 1.79E-6 94.49 11.36 13.78
30.09 373.9 1.54E-6 101.82 4.03* 6.45*
20.34 368.1 1.62E-6 100.37 5.48 7.90

9.95 361.5 1.78E-6 95.06 10.79 13.21
311 354.0 2.15E-6 84.45 21.40 23.82

1.13 315.8 2.77E-6 71.52 34.33 36.75
0.28 340.2 9.06E-6 47.66 8.5 60.61
----------------------- resin cycle - -----vccecececcncnceenn.
0.00 0.00 59.56 62.54
0.21 313.1 6.51E-6 30.04 29.52 32.50
0.40 309.1 3.61E-6 40.23 19.33 22.32
0.60 327.4 3.29E-6 46.85 12.71 15.69
0.80 317.4 2.99E-6 51.21 8.35 11.33

1.01 304.7  2.87E-6 54.61 4.95* 7.93*
L.

* indicates residual apertures calculated at maximum stress using equations
1-2, 1-4 and 1-5; remaining apertures calculated using equation 3-1
(following method of Witherspoon et al., 1980).
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Rearranging equation (1-2) and solving for 2b enables the hydraulic aperture

to be calculated at the maximum normal stress. Once 2b., is calculated, the
hydraulic aperture at each normal stress level easily follows from equation (3-1).
The cubic law assumes the fracture walls to be smooth and parallel. For rough
fractures, a correction must be made to the cubic law to account for the roughness
of the fracture surfaces. Following the approach of Louis (1969) and using the
maximum relative roughness possible, i.e. of k/D,=0.5 (contacting surfaces), the
rough-walled aperture can be determined from equations (1-4) and (1-5). The
smooth-walled aperture is just the special case where k/D ,=0. Smooth hydraulic
apertures, 2b,, and rough hydraulic apertures, 2b,, calculated for the final loading-
unloading cycle and the resin cycle are given in Table 3.1. The two apertures only
differ by a factor of 1.6at the maximum normal stress. It should be noted that the
calculated apertures are sensitive to the stress level used to calculate the residual
aperture. In Table 3.1,the residual aperture was calculated at 30 MPa for the final
load cycle and at 1 MPa for the resin loading cycle. When comparing data from
different cycles it is better to use the same reference stress where possible.

In Figure 3.3, the calculated rough hydraulic apertures have been plotted
against normalized flow for all loadiag cycles If the cubic law relationship between
aperture and flow rate is valid, the data should plot on a straight line with a slope
of one-third. The results for each cycle are nonlinear and show a marked deviation

from the cubic law relation as indicated by the straight line in the diagram. The flow
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rate decreases at a much slower rate than does aperture as the normal stress is

increased and this behaviour is more pronounced with increasing number of loading

cycles. In other words, as the fracture continues to close under increasing stress, the

flow rate tends towards some constant value that does not depend on fracture
aperture alone. The results of these tests show that the parallel plate model does not

apply to natural fracture surfaces that have undergone several loading-unloading

cycles.

3.2 Characterization of a Rough Fracture

Impregnation of the fracture with epoxy resin enabled direct measurement of
fracture surface roughness and the structure of the fracture plane. This was achieved
through the analysis of fracture profiles generated from a series of cross-sections
through the resin-filled fracture. The resin injection technique and method of
analysis has been discussed in Chapter 2. Presented below are the results of the
measurement and characterization of large- and small-scale fracture roughness,

contact area, aperture and void space.

3.2.1 Large-scale roughness
One of the best ways to obtain quantitative measurements of surface
roughness is through the use of fracture profiles. As part of this study, a total of

forty eight profiles were produced from the resin-filled fracture to facilitate
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measurement of the roughness and the relative position of both sides of the fracture
under actual test conditions. The cross-sections were made in both the x- and y-
directions to verify any possible anisotropic effects and give maximum coverage of
the fracture plane. Examples of roughness profiles for two such cross-sections, one
in the each of the x-and y-directions, are shown in Figure 3.4. Each of these profiles
display a large-scale roughness with a superimposed small-scale roughness for both
the top and bottom surfaces.

Large-scale roughness is a function of the overall shape of the profile,
sometimes referred to as waviness, while small-scale roughness refers to the many
tiny peaks and valleys that make up the profile giving it a jagged appearance. The
waviness of these profiles is on the order of centimeters; the small-scale roughness
is on the order of micrometers. Note that in order to bring out the small-scale
roughness of the profile, the vertical scale in Figure 3.4 is double that of the
horizontal scale and a small vertical separation has been added to distinguish
between the top and bottom profiles, i.e the spacing between the top and bottom
profiles in Figure 3.4 is not the real fracture opening.

Fracture roughness is commonly characterized in terms of an asperity height
distribution. In this study, asperity heights were measured as the vertical distance
between points on the profile and a reference line through the base of the profile.
Referring to Figure 3.5, best-fit lines were determined for each of the top and

bottom profiles using standard linear regression techniques. Reference lines were
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then drawn parallel to the best-fit lines, one passing through the highest point on the

top profile and one passing through the lowest point on the bottom profile. The
bottom asperity heights were measured upwards from the reference line while the top
asperity heights were measured downward from the reference line. The resolution
of the system allowed sampling intervals as small as 10 um.

Frequency histograms of the asperity height distributions for the top and
bottom surfaces of the two profiles in Figure 3.4 are given in Figure 3.6. The
measuied asperity heights include both large and small-scale roughness ranging from
0 to about 3 mm. The asperity height distributions reveal a noticeable difference in
roughness characteristics between the top and bottom fracture surfaces. The
distribution for the top surface of profile 80-3CYO1 is skewed towards the left with
a mean asperity height of about 1 mm while the distribution for the bottom surface
is skewed towards the right with a mean asperity height of 2 mm. The two surfaces
for profile 80-3DX01 show normally-distributed type distributions with distinct peaks
in the 1 to 1.5 mm range. However, both sets of surfaces are not mirror images of
each other as one might expect for well-mated fractures with identical roughness on
both sides of the fracture.

The mean and standard deviation, also known as root mean square (RMS),

of the asperity height distributions are good indicators of the average roughness of

the fracture. Well-mated fractures should have similar average roughness parameters
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for both sides of the fracture. The standard deviations for the top and bottom
surfaces of the above two profiles only differ by 5 to 7 um yet there are very distinct
differences between the asperity distributions. These discrepancies impart a variable
aperture to the fracture which in turn controls the movement of fluids within the
fracture plane. These results emphasize the importance of defining the roughness
of both sides of the fracture and how the use of average roughness parameters can
be misleading.

In an attempt to model the measured asperity height distributions, the
histograms in Figure 3.6 have been fitted with a normal (or Gaussian) distribution
curve using the same mean and standard deviation. Profile 80-3DXO01 is closely
approximated by a normal distribution whereas profile 80-3CYO! is not. However,
as shown in the frequency histograms in Figure 3.7,if the natural logarithms of the
measured asperity heights are taken a better fit is obtained with a normal curve
indicating that a log-normal distribution may be a better approximation to the
asperity height data. The combined results from measured asperity heights for all
of the profiles are summarized in Table 3.2. Based on over 230,000 observations
each, the mean asperity heights for the top and bottom surfaces were found to differ
vy only 0.1 mm with similar standard deviations. Despite these similarities, the

differences in the individual histograms for both sides of the fracture indicate that

the fracture is not completely mated. This mismatch gives rise to a variable fracture
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Table 3.2 Summary statistics on large-scale roughness measurements from all
fracture profiles combined,
L]
TOP BOTTOM
ASPERITY HEIGHTS ASPERITY HEIGHTS

MEASURED _DISTRIBUTION

I'o. of Observations 234,415 233,492
Mean, u (mm) 1.203 1.311

Std. Dev., o (mm) 0.562 0.567

Maximum (mm) 5.926 5.524

- IB

HLN* -0.159 0.006

o 0.786 0.671

#, (mm)** 1.162 1.260

o, (mm)** 1.074 0.950

* pn and gy are the mean and standard deviation of the natural logarithm
of asperity heights.

** u, and o, are estimates of the mean and standard deviation of the original
measured distribution, from Bury (1975):

B ,mexplp y+ (0 ,’2)] (3-2)

0,=[exp(2p 0 D) *exp(o ,D)-1]12 (3-3)

aperture. Table 3.2shows that the log-normal model provides a good estimate of the
mean asperity height but overestimates the standard deviation.
To get a visual indication of the large-scale roughness of the fracture, the data

from all of the profiles was combined to create a 3-D perspective diagram of the

bottom surface as shown in Figure 3.8. While some of the detail is lost in the
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mathematical smoothing process used to produce such a diagram, it is effective in
giving an overall impression of the roughness of the fracture surface highligiting
areas of topographic highs and lows and the presence of channels in the fracture
plane. The borehole can be seen as a circular depression in the center of the

diagram.

3.2.2 Smalil-scale roughness

Large-scale roughness features of the fracture are useful in classifying the type
and condition of the fracture and may be important in terms of shear strength
considerations. However, the movement of fluids within the fracture is also
dependent on the small-scale roughness. These protrusions into the fracture plane
not only increase resistance and drag by increasing the flow path length, but also
break the fracture plane into a series of small, tortuous flow channels when they
contact each other.

Because the small-scale roughness is masked by the waviness of the fracture,
some means of filtering out the large-scale roughness is needed. One way in which
this can be done is through graphical filtering (Thomas, 1982), a technique in which
the fracture profile is divided into smaller segments and a reference line is fitted to
each segment for measuring asperity heights. As the profile is broken down into
smaller and smaller equal length segments, the large-scale roughness is removed so

that only small-scale roughness is being measured (see Figure 3.9). Placing the tails
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it T

Figure 3.9 Schematic of the technique for graphical filtering in which reference

lines are fitted to small segments of the fracture profile to remove
lurge-scale roughness effects.
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of the reference lines together to form a straight line produces a new profile that is
independent of the shape (waviness) of the original profile.

The transition between large- and small-scale roughness is smooth and
continual with no set division between the two. As a rule however, when the length
of the straight line segment becomes smaller than the waviness of the profile, it can
be assumed that the large-scale roughness has been filtered out. Figure 3.10 shows
fikered roughness profiles for profile 80-3DX01 using segment lengths of
approximately 30, 20,10, 5 and 2 mm. The bottom asperity heights (lower profile)
are plotted opposite the top asperity heights so that the two surfaces may be easily
compared. The roughness profiles measured using segment lengths of 30 and 20 mm
include large-scale roughness and are influenced .y the shape of the profile. Those
measured using segment lengths of 10 and 5 mm may still include some effects of the
waviness of the profile. For the roughness profile measured with a 2 mm segment
length, the large-scale roughness has been filtered out and only small-scale roughness
is displayed.

Using an approach similar to the roughness angle envelope technique
described by Rengers (1970) for asperity angles, mean asperity heights for profile 80-
3DXO0! for various segment lengths have been plotted in Figure 3.11(a). The top
asperities are plotted as negative values and the bottom asperities as positive. The

curves for both the top and bottom fracture surfaces show that the mean asperity

height decreases towards some minimum value as the segment length is made smaller
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corresponding 1o the change from large-scale to small-scale roughness measurement.
Since fluid flow is very much dependent on small-scale roughness, it remains to be
determined what measuring length (segment length) best extracts the scale of
roughness that is important for flow considerations. From the original roughness
profiles one can qualitatively determine that the small-scale roughness for this
fracture must be measured using measuring lengths less than about 10 mm.

The roughness - flow relationship is commonly described in terms of the size
of the asperities on the fracture wall compared to the size of the fracture opening i.e.
relative roughness. As described earlier, relative roughness, k/D,, may be defined
(Louis, 1969) as the average or mean height of the asperities, e, ,divided by twice the
fracture aperture, 2b. In the case of rough fractures in contact, /D, should equal
0.5, the maximum relative roughness theoretically possible. As will be shown later,
the mean fracture aperture for profile 80-3DX01 was determined to be 0.125 mm.
To satisfy the condition of k/D, = 0.5 implies that the mean asperity height should
also be 0.125 mm. The point representing k/D, = 0.5 for both fracture surfaces has
been indicated in Figure 3.11(a) and corresponds to a segment length of about 3.5
mm. Thus roughness measurements made by breaking the profile down into 3.5 mm
segments should quantify the small-scale roughness characteristics of the fracture that

are important for fluid flow. Figure 3.11(b) shows the frequency histogram of

asperity height measurements made from the top surface of profile 80-3DX01 using
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a measuring length of about 3.5 mm. The distribution is skewed to the left with a
mean asperity height of 0.124 mm which is very close to the predicted value.
Figure 3.]2shows the mean asperity height versus segment length diagram for
scveral profiles in both the x- and y-directions. All profiles show the same general
trend of decreasing mean asperity height with decreasing segment length, a variable
large-ccale roughness as indicated by the "tails” of the curves and a rather constant
small-scale roughness. The points representing a relative roughness of 0.5 correspond
to measuring lengths of 2.5- 3.5 mm. The asperity heights for all forty eight profiles
were measured using segment lengths in the 2.5 - 3.5 mm range and have been
combined in the histograms shown in Figure 3.13. From over 116,000 observations,
the measured distributions for both the top and bottom surfaces were found to be
highly skewed and very similar in appearance with mean asperity heights of 0.103and
0.102 mm respectively. Complete overlap of the calculated confidence intervals for
the two distributions suggests that there is no difference between the top and bottom
small-scale asperity height distributions. It is anticipated that these asperity height
distributions will be similar to the aperture distributions given the direct relationship
between asperity height distribution and aperture for fracture surfaces in contact.
The distribution of natural logarithms of small-scale asperity heights for both surfaces
are shown in Figure 3.14. A normal curve has been superimposed to determine if

the data is better approximated by log-normal distribution. However, the log-normal

distribution does not appear to offer any better approximation to the data than the
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normal distribution in Figure 3.13. The statistics on the small-scale roughness

measurements are given in Table 3.3.

Table 3.3 Summary statistics on small-scale roughness measurements from aii
fracture profiles combined.
_—
TOP BOTTOM
ASPERITY HEIGHTS ASPERITY HEIGHTS

MEASURED DISTRIBUTION
No. of observations 116,637 116,466

Mean, g (mm) 0.103 0.102
Std. Dev., ¢ (mm) 0.074 0.081
Maximum (mm) 0.639 0.737

LOG-NORMAL DISTRIBUTION
“l.N‘ '2.609 '2-65 l

* 1.003 1.034

OiN

#o (Mmm)** 0.122 0.120

a, (mm)** 0.160 0.167

* u,nand o yare the mean and standard deviation of the natural logarithm
of asperity heights.

** ,.and o,are estimates of the mean and standard deviation of the original
measured distribution (see equations (3-2) and (3-3) in Table 3.2).

A

3.2.3 Contact area
Since the resin was injected into the fracture plane while both surfaces of the
fracture were in contact, the resin injection technique provides a means for

measuring the contact area under given normal stress conditions. For this study, the

<
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nonual stress on the sample during resin injection was 1.0MPa. Areas of contact are
recognized in cross section as (1) areas where the top and bottom profiles are in
mutual contact with each other and hence do not show any resin between them and
(2) rock fragments wedged in the fracture plane that block the passage of resin and
create a rock bridge between the top and bottom surfaces.

For all forty eight profiles from the sample, areas of contact were flagged during
the digitizing process so that individual contact lengths could be measured. The sum
of the individual contact lengths was calculated as a percentage of the total length
of the profile to provide an estimate of the contact area for each profile. To obtain
a reasonable estimate of the contact area for the entire sample, the sum of all the
contact lengths measured from each profile was compared to the sum of all the total
profile lengths. This yielded a value of 5.3% which is assumed to approximate the
total fracture contact area at a normal stress of 1.0 MPa.

Figure 3.15(a) isa frequency histogram of the distribution of individual contact
lengths measured from all of the profiles. Almost all of the contact lengths are less
than 3 mm with a mean of 0.99 mm and a standard deviation of 1.67 mm. The

skewness of the data suggests that the distribution may be better approximated by a

log-normal model. In Figure 3.15(b), natural logarithms of the contact lengths have

been taken and the resulting frequency histogram does indeed approximate a log-
normal distribution. The statistics of the distribution of individual contact lengths,

including the log-normal approximations, are summarized in Table 3.4.




57

140
120
2 NO.OF OBS. 168
MEAN 0.989 mm
100- ST. DEV. 1.666 mm
MINIMUM 0.04 mm
Py MAXMUM 1522 mm
2z 804
w
3
g 80
[V
40-
204
0 1234 5 6 7 8 910111213 14 15 16
CONTACT LENGTH (mm)
(A)
45
401 NO.OF 0BS. 168
MEAN 0619
354 ST. DEV. 1.038
MINIMUM 3219
MAXIMUM 2723
301
&
Z 259
3
wi 20'
[+ 4
w
15+
10-
5<

4353-25-2-15-105005 115 2 25 3
LN [CONTACT LENGTH (mm)]

(8)

Figure 3.15 (a) Frequency histogram of individual contact lengths from all
combined profiles (b) log-normal distribution of contact lengths.




58

Table 3.4 Summary statistics on individual contact length measurements from all
fracture profiles combined.

CONTACT LENGTHS
MEASURED DISTRIBUTION
No. of Observations 168
Mean, u (mm) 0.989
Std. Dev., 0 (mm) 1.666
Minimum (mm) 0.04
Maximum (mm) 15.22

LOG-NORMAL DISTRIBUTION

BLN® -0.619
onN" 1.038
p:N(mm)" 0.923
g, (mm)** 1.284

* pynand oy are the mean and standard deviation of the natural logarithm
of contact lengths.

** u.and g, are estimates of the mean and standard deviation of the original
measured distribution (see equations (3-2) and (3-3) in Table 3.2).

The spatial distribution of contact points across the sample is shown in Figure

3.16. The different lengths of contact have been represented by circles of

proportionate size to give an indication of the relative size and location of individual
contact areas measured from the profiles. Although the diagram was constructed
from a series of cross-sections through the sample, and hence does not show all the
areas of contact in the fracture plane, it does allow certain generalizations (o be

made. For example, it is observed that the contact areas are fewer in number and
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Figure 3.16 Spatial distribution of contact points across the fracture plane.
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size in the upper left portion of the diagram than in the lower right portion.

Therefore flow may be greater in that area since the flow channels are more open

and there is less obstruction to fluid movement.

3.2.4 Aperture and void space

The resin injection technique is well-suited for characterizing fracture aperture
and void space for given normal stress and flow rate conditions. In cross section, the
resin is effective in highlighting the relative position of the top and bottom surfaces
of the fracture for measuring local apertures while the distribution of resin in the
fracture plane gives an indication of the size and shape of the voids. Measurements
of fracture aperture and resin thickness were made from the digitized data for each
of the profiles at regular intervals of 0.05 mm. Apertures and resin thicknesses as
small as 1 um were capable of being measured at the magnification used in these
studies. Any apertures smaller than this were assumed to be hairline fractures and
to contribute very little to fluid flow. Figure 3.17 shows plots of aperture and resin
thickness against profile length for the two profiles shown in Figure 3.4. Aperture
and resin thickness are plotted opposite each other so that the aperture distribution
and the distribution of resin in the rracture can be compared. While the vertical
scale has been exaggerated in order to bring out the details of the measurements, the
diagrams do give a good indication of the aperture variasion along the profile. Note

that all apertures in both profiles are less than 0.5 mm. For the most part, the resin
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thickness plots are mirror images of the aperture distribution. This indicates
excellent impregnation of the fracture with resin and no dead end pore space that
could not be penetrated by the resin. Areas of the fracture that were not filled with
resin, due to obstruction by a rock fragment for example, are marked by more or less
horizontal straight line segments in the resin thickness profile. Several such lines are
easily recognizable in profile 80-3DXO01.

The aperture and resin thickness data from all forty eight profiles are
combined in the frequency histograms shown in Figure 3.18. The distributions of
measured apertures and resin thickness are bounded by zero on the left and highly
skewed with a mean aperture of 0.103 mm and a mean resin thickness of 0.099 mm.

The maximum aperture was 1.5 mm. The similarity between the two distributions

indicates that most of the open pore space in the fracture plane was impregnated

with resin. The skewness of these distributions suggests that a log-normal model may
provide a good approximation to the data. In Figure 3.19,the frequency histograms
of the natural logarithms of aperture and resin thickness do indeed show a good fit
with a superimposed normal distribution curve based on the measured mean and
standard deviation. As predicted, the aperture distribution is very similar to the
small-scale roughness distribution shown in Figure 3.13 emphasizing the
interrelationship between small-scale roughness and aperture.

Another way of representing the distribution of apertures is through the use

of box plots (modified after Chambers et al., 1983). as shown for several selected
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profiles in Figure 3.20. For each profile, the box plots show where the middle

portion of the apertures fall as indicated by the bottom (25% quartile) and top (75%
quartile) edges of the box, the median value (50% quartile), the mean value and the
maximum and minimum values. The relative lengths of the upper and lower “tails”
give an indication of the skewness of the data. The apertures for the profiles in
Figure 3.20 are clustered about the 0.1 mm aperture value with short lower tails, due
to the zero lower limit, and long upper tails of varying length depending on the
maximum measured aperture. The median values may represent a better estimate
of the fracture aperture since the mean values are strongly influenced by the
maximum values. The box plots are very helpful in comparing the aperture
distributions from profile to profile.

The basic statistics on aperture and resin thickness distributions for all of the
profiles combined, profiles in the x-direction only, and profiles in the y-direction only,
are given in Table 3.5. The parameters of the log-normal distribution and estimates
of the mean and standard deviation are also given in Table 3.5. It is important to
note that the mean measured fracture aperture of 103 um at 1 MPa is greater than

the equivalent hydraulic aperture of 8 um computed from the flow test data using the

cubic law (see Table 3.1). The estimates of the original distribution from the log-

normal distribution parameters suggest that the log-normal model provides a good
approximation to the aperture data. The profiles have been separated into x- and

y-directions to determine if there is any anisotropy in the fracture plane as far as
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Figure 3.20 Modified box plots of aperture distributions for selected fracture profiles.
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Table 3.5 Summary slatistics on aperture and resin thickness measurements from

all fracture profiles combined.
. __________________________________________________________________}

TOTAL APERTURE RESIN THICKNESS

all x-dir y-dir all x-dir y-dir
MEASURED
DISTRIBUTION
No. of Obs. 61341 32938 28403 57315 31159 26156
Mean, u(mm) 0.103 0.097 0.109 0.099 0.097 0.101
Std. Dev., o (mm) 0.094 0.082 0.106 0.079 0.076  0.082
Maximum (mm) 1.537 1.209 1.537 1.494 1.221 1.494
[LOG-NORMAL
DISTRIBUTION
[TH -2.559 -2.596 -2.516 -2.531 -2.545 -2.513
oN* 0.790 0.779  0.801 0.684 0.682 0.687
Mo (Mm)** 0.106 0.101 0.111 0.101 0.099 0.103
g, (mm)** 0.098 0.092 0.106 0.078 0.076  0.080

* mnand o yare the mean and standard deviation of the natural logarithm
of aperture and resin thickness.

** u,and g,are estimates of the mean and standard deviation of the original
measured distribution (see equations (3-2) and (3-3) in Table 3.2).

apertures are concerned. Judging by the complete overlap of confidence intervals
for the two distributions, it is inferred that the x-direction and y-direction apertures
are not statistically different. Thus it would not appear that there is any preferred
direction for fluid flow in the fracture.

In addition to measuring aperture and resin thickness, the geometry of the

void space was characterized by measuring cross-sectional areas and aspect ratios of
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the individual voids making up the fracture plane. The size of an individual void may
be described by its cross-sectional area. The shape of the void in cross-section is best
described by its aspect ratio, x/z or y/z. The combined data on cross-sectional arcas
of voids and void aspect ratios are summarized in the frequency histograms presented
in Figure 3.21 and Figure 3.22 respectively. In Figure 3.21(a), the distribution of

cross-sectional areas of voids is highly skewed to the left ranging from 6.4 mm 'down

to 0.002 mm?2 The mean void size is about 1.2 mm?’with most of the voids being less

than 2 mm?in area. A normal curve has been drawn in representing  a normal
distribution. The log-normal distribution of void areas is shown in Figure 3.21(b) and
shows a little better approximation to the data. The normal and log-normal
distributions of void aspect ratios are shown in Figure 3.22(a) and (b). The mean
aspect ratio of about 7 indicates that the voids are flattened ellipses in the x- or y-
directions. An aspect ratio of 1 indicates a circle, while an aspect ratio of less than
1 indicates a flattened ellipse in the z-direction i.e. orthogonal to the plane of the
fracture.

The basic statistics on the size and shape of the individual voids are given in
Table 3.6 which also includes the log-normal distribution statistics. Judging from the
estimates of the measured distributions from the log-normal distribution parameters,
the log-normal model only gives a semi-quantitative characterization of the data.
However, the histograms seem to indicate a better fit than the estimates suggest.

The data has also been analyzed in terms of x-and y-directions to determine if there
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Figure 3.21 Frequency histograms of (a) void areas and (b) natural logarithm of
void areas from all profiles combined. Normal and log-normal
distribution curves are shown.
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S99

logarithms

of aspect ratios from all profiles combined. Normal and log-normal

distribution curves are shown.
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Table 3.6 Summary statistics on void area and aspect ratio measurements from

all fracture profiles combined.
”

VOID AREA (mm}? ASPECT RATIO

all x-dir y-dir all x-dir y-dir
MEASURED
DISTRIBUTION
No. of Obs. 249 141 108 249 141 108
Mean, u 1.228 1.146 1.335 7.385 7.489 7.250
Sud. Dev., o 1.370 1.417 1.304 5.675 5.512 5.905
Minimum 0.002  0.002 0.010 0.117 0.117 0.191
Maximum 6.426  6.426  5.637 29.974  28.922 29.974

ILOG-NORMAL
DISTRIBUTION
N 0.643  -0.832  -0.397 1.600  1.607  1.592
PN 1.624 1738 1.433 1.059 1.109  0.994
p 1965 1.971  1.877 8.678  9.225  8.053
ax 7.080  8.703  4.893 12.483  14.354  10.456

* u,nand oyare the mean and standard deviation of the natural logarithm
of void arca and aspect ratio.

** u and o,are estimates of the mean and standard deviation of the original
measured distributions (see equations (3-2) and (3-3) in Table 3.2).

e - - - -

are any directional tendencies. The data in Table 3.6 does not suggest that there
is any appreciable differences in void areas and aspect ratios between the x-and y-

directions, although more complete statistical testing could be carried out to confirm

this. Thus it cannot be concluded that there is a greater tendency for flow in one

direction than the other.
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In order to show the spatial distribution of aperturc and pore space
throughout the fracture plane, the data from each profile has been combined to
produce the contour diagrams shown in Figure 3.23 and Figure 3.24. The space
between the profiles has been interpolated trom the measured data points to
produce contoured plots of aperture and resin thickness. Both plots are very similar,

once again indicating excellent impregnation of the tracture with resin, with the

majority of the measured apertures and resin thicknesses in the 60 to 120 um range.

Tie upper and left portion of the diagrams are marked by several pockets of larger
apertures a: indicated by a high density of concentric contour lines; the apertures
in the lower and right portion of the diagrams tend to be smaller and more evenly
distributed. Note that the contour interval is 0.02 mm (20 gm). While using such
a smali contour interval may impart a bulls-eye pattern in the large aperture regions,
a small interval is warranted to highlight the many small individual flow paths and
constrictions that exist across the fracture planc. The hydraulic aperture calculated
in Table 3.1 for the resin cycle at 1 MPa was only 5 to 8 un.

The same data used to produce the contoured aperture plot in Figure 3.23
was used to create a 3-D mesh plot of apertures within the fracture plance as shown
in Figure 3.25. A vertical exaggeration has been added to the diagram to highlight
the aperture differcnces. The high points in the diagram are cquivalent to the areas
with concentric circles in Figure 3.23 and indicate arcas with larger apertures. The

flatter regions in Figure 3.25 indicate areas with small apertures.













Chapter4 EVALUATION AND COMPARISON OF STRESS-FLOW MODELS

One of the primary objectives in characterizing and flow-testing individual

fractures under controlled laboratory conditions isto develop a means for modelling

the hydraulic behaviour from a minimum knowledge of the fracture or fractures in
question. In this chapter, the data obtained from the flow tests and resin injection
experiment is used to evaluate several theoretical and empirical models relating

fracture permeability to normal stress.

4.1 The Gangi Bed of Nails Model

The theoretical approach presented by Gangi (1978, 1981) was one of the first
efforts at modelling the physical processes involved in the stress-flow relationship
observed for fractured rock. In his model, the asperities on the fracture surfaces
were represented by pencil-shaped rods or nails of different heights and diameters.
Fracture closure under increasing normal stress was considered to be the result of
elastic deformation of a few tall “asperities® which propped the fracture open. By
assuming a power law distribution of asperity heights, he derived an expression

relating fracture permeability, k, to effective pressure, P, as follows:

k-k [1-(P/P)"]
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where k,is the zero-pressure permeability of the fracture, P,is the effective modulus
of the asperitics (determined by multiplying the Young’s modulus, E, of the material
by the fraction of the fracture face covered with rods. A /A) and m is the reciprocal
of the power n in the power law distribution. Gangi states that the contact area
ratio, A /A, is gencrally small ranging between 1% and 10%.

Gangi suggested that the magnitude of n in the power law distribution function
gives an indication of the roughness characteristics of the fracture surface. For
cxample, a well-polished surface with asperity peaks that are all about the same
height would have a small n value close to 1 whereas a fresh, rough surface with a
few tall asperities that stick out into the fracture plane would be characterized by a
large n value. Gangi found that his theoretical curves produced a good fit to the
experimental data of Nelson and Handin (1977) and Jones (1975) for artificial
fractures in sandstone and carbonate rocks respectively. The n values for these
curves ranged from 4.51t0 9.

Results of replacing & in equation (4-1) with normalized flow rate are shown
in Figure 4.1 which compares theoretical curves generated from the Gangi model
with data from the first loading cycle for the fracture used in this study. Although
the curves show the same general shape, a good fit of the data could not be obtained.
With a Young's modulus for this particular granite of 75 GPa, the effective modulus,

P,, was made to vary between 750 MPa and 7500 MPa corresponding to contact area

ratios between 1and 10%. The exponent m was treated as an adjustable parameter
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Figure 4.1 Comparison of Gangi (1978) model curves with stress-flow data from
the first loading cycle (P,=750 MPa, m=.06,.07,.08).
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fitting curve possible. Since the fracture was always under a seating load, a zero
pressure flow rate was never measured and thus the flow rate measured at the lowest
normal stress was used instead. This had no effect on the shape of the model curves
but only on the magnitude of the value of m. For the first loading cycle, the closest
fit occurred with P, equal to 750 MPa (4 /A = 1%) and m in the .06to .08 range
(n = 12.5 0 16.7). The model curve fits the experimental data at the high stress
range reasonably well but underestimates the flow rate at low normal stresses. A
slightly better fit was obtained using a lower P, value but this would require using an
unreasonably low 4 /A ratio or a much lower Young's modulus.

Theoretical curves were also compared with data from the second, third and
fourth (final) loading cycles to determine if an improved fit could be obtained with
increasing number of loading cycles. A wide range of P, and m values were used in
equation (4-1), but a good agreement with the experimental data could not be
obtained. The comparison with data for the final loading cycle is shown in Figure
4.2. In this case, the best possible fit occurred with P, equal to 7500 MPa (4 /A =
10%) and m between .04and .06(n = 16.7 to 25). In this sense the model is correct
in requiring a higher contact area ratio with increased number of loading cycles as
some of the taller asperities would be broken off and more asperities would contact
each other as mating of the two surfaces is improved. Increasing the value of P, has
the effect of flattening out the model curves which is the same behaviour observed

for the measured flow rates with each successive load cycle (see Figure 3.2).
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Figure 4.2 Comparison of Gangi (1978) model curves with stress-flow data from
the final loading cycle (P,=7500 MPa, m=.04,.05,.06).
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To summarize, input for the Gangi model includes a measurement of the
fracture permeability at zero normal stress, the Young's modulus for the rock, an
estimate of the contact area and a power law distribution of asperity heights.
Forward application of the model is difficult and in fact the exponent m, and to a
certain extent P, are treated as adjustable parameters until a reasonable fit is found
for the experimental data. For the natural granite fracture tested in this study, a
good agreement could not be obtained. Other workers attempting to apply the
Gangi model (Brar and Stesky, 1980; Tsang and Witherspoon, 1981; Elliott et al.,
1985) have also had difficulty with its use.

A fundamental problem with the model appears to be that it fails to account
for increasing contact area with increasing stress. It assumes that only a few tall
asperities make contact and that these deform when the fracture is closed without
changing the contact area ratio. Thus if the contact area remains the same, the
effective modulus P, is constant and is only a small percentage of the Young's
modulus for the intact rock. However, if the contact area increases significantly with
increasing stress, P, should also increase and approach the Young's modulus at high
normal stresses. This and other studies (Gale, 1987; Pyrak-Noite et al., 1987) have
shown that contact areas for granite fractures increase from about 5% at 1 MPa to
17% at 10 MPa and as high as 42% at 33 MPa. An attempt was made to improve

the fit of the model by including a variable P, which assumes that the contact area
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changes in proportion to the change in fracture stiffness. The resulting curves did

not show any agreement with the experimental data however.

4.2 The Walsh Normal Closure - Conductivity Model
A theoretical model for the normal closure behaviour of rock fractures was

presented by Walsh and Grosenbaugh (1979) that combined compressibility theory

for fractured rock with elastic deformation theory used in mechanics for contacting

surfaces. Using the elastic contact model of Greenwood and Williamson (1966) for
the contact of rough surfaces, the relationship between normal closure and applied
stress was shown to be strongly dependent on the topography of the fracture surfaces.
The tips of the asperities were modz:lled as spheres with the same radius of curvature
and heights that varied according to a specified distribution function. They showed
that using an exponential distribution of asperity heights enabled the relationship
between applied stress, P, and the deformation, &, of each fracture surface to be

expressed simply as

dP P

ds h

where h is the standard deviation of the asperity heights. A similar empirical
relationship was found by Goodman (1976) from tests on mated and unmated

artificial fractures but no physical meaning of the two constants in his equation was
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given. Walsh and Grosenbaugh suggest that A not only gives an indication of

roughness of the fracture surface but is also related to the local separation between
the two surfaces. In this context, A is in fact one-half the standard deviation of the
aperture distribution.

According to the theory, fracture stiffness, dP/d &, should be a linear function
of normal stress with a slope equal to 1/h. Walsh and Grosenbaugh showed that
fracture stiffness measurements for an in-situ experiment by Pratt et al. (1977) did
follow a linear relationship with applied stress. The slope of the curve suggested that
h for that fracture was approximately 80 um. Normal stiffnesses for this study were
obtained from the slope of the fracture closure curves in Figure 3.1 and have been
plotted against normal stress in Figure 4.3. The resulting curves are approximately
linear over the lower stress range but tend to level off at stresses greater than 1S5 -
20 MPa. Stiffness is also observed to increase with each subsequent loading cycle as
more and more asperities come into contact and permanent deformation takes place.
The decline in the rate at which stiffness increases with stress after 15 - 20 MPa
suggests that fracture stiffness is not linear over a higher stress range. Other studies
of natural fractures (Bandis et al., 1983; Pyrak-Nolte et al., 1987) have also
determined that the normal stiffness to normal stress relationship is nonlinear.

The solid line in Figure 4.3 represents the predicted stiffness of the fracture

using the measured standard deviation of 74 um for small-scale roughness asperity

heights in Table 3.3 (top surface). The theory predicts stiffnesses that are lower than
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the actual values. If the stiffness curves in Figure 4.3 are assumed to be roughly

linear over the entire 0 - 30 MPa stress range, the slopes of best-fit lines to the the

measured data using linear regression analysis indicate h values in the range of 14

um to 43 um as given in Table 4.1. The correlation coefficient, R2, provides a

relative comparison of how well the straight lines fit the data with a value of 1.0

indicating a perfect fit. If we consider stiffness to be linear only over the O - |5 MPa

Table 4.1 Predicted standard deviation of asperity heights, 4, from
normal stiffness vs. normal stress curve (after Walsh and

Grosenbaugh, 1979).

0-30 MPa

Cycle R?  h(um)
Ist 942 43
2nd .927 31
3rd .936 27
Final 934 19
Resin 998 14

0-15 MPa
R?  h(um)
.955 33
972 23
.987 20
.965 13

stress range we obtain a better fit to the data but lower values of & ranging from

13 um to 33 um. The h values in Table 4.1 are lower than the measured standard

deviation of asperity heights (small-scale roughness) by a factor of 2 to 6. If the

standard deviation of large-scale roughness (Table 3.2) is considered, the estimation
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is more than an order of magnitude lower. Standard deviations of asperity heights
for granitic fractures reported elsewher: in the literature (Swan, 1981; Brown, 1984;
Thorpe, 1986; Gale, 1987; Gentier, 1990a) are in the 200 - 3000 um range.

Judging from these results we see that the theory underestimates the roughness
and apertures of natural fractures. Obviously, there are bound to be some problems
with using a theoretical asperity height distribution for real surfaces that each have
a unique distribution of their own. Walsh and Grosenbaugh have suggested that the
exponential model is a good approximaticn for most fracture surfaces but our results
and those of others (Swan, 1983; Brown, 1984; Wong et al., 1989) indicate that this
is probably a poor assumption to make.

Walsh (1981) found that the Walsh and Grosenbaugh normal closure model
was suited for studying fluid flow in fractures since it modelled the changes in both
aperture and contact area. He used an analogy between heat flow in a sheet
containing cylindrical inclusions of zero conductivity and fluid flow in a planar
fracture with points of contact to show how contact area affects the conductivity of
a fracture with an otherwise unhindered flow path. He then combined aperture and
contact area relations deduced from the Walsh and Grosenbaugh model to derive an

expression relating fracture conductivity, K, to applied stress, P, of the form

K/K,~[1-/2(ha )In(P|P )}
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where K, and q, are the fracture conductivity and half-aperture at some reference
stress P, and h is the standard deviation of the asperity height distribution.

Equation (4-3) implies that the cube-root of fracture conductivity should be
linearly related to the logarithm of applied stress. The slope of the line, h/a , can
be used to infer the roughness of the fracture surface or be used to predict fracture
conductivity if roughness measurements have been made. Walsh compared the
results from experiments on artificial fractures by other workers (Jones, 1975; Kranz
et al., 1979; Brar and Stesky, 1980) and found good agreement with his theoretical
relationship for normal stresses up to 200 MPa.

The hydraulic conductivities for each of the loading cycles in this study have
been calculated using equation (l1-1) and their cube-roots plotted against the
logarithm of normal stress in Figure 4.4. This involved making the assumption that
the cubic law could be used to determine the hydraulic apertures. The resulting
curves show a linear decrease at lower stresses but then they decrease at a faster rate
after about 10 MPa. This indicates that Walsh’s theoretical relationship does not
seem to hold at higher normal stresses which was the same observation made for the
stiffness behaviour in Figure 4.3. This finding is consistent with the shortcomings of
the cubic law which has also been proven not to be applicable at high normal
stresses. The slope, h/a ,, of the resin loading curve in Figure 4.4 is equal to 0.80.
Using a calculated hydraulic aperture of about 10 um at a reference stress of 1 MPa

infers a r.m.s.asperity height, A, equal to 8 um. This is similar to the & value of
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13 um obtained from the normal stiffness curve for the resin cycle but is much lower
than the measured standard deviation of asperity heights and clearly unrealistic for
a natural fracture in granite.

A more general evaluation of usefulness of the Walsh model for predicting
fracture flow as a function of normal stress was made by comparing model generated
curves with measured flow rates expressed in terms of flow per unit head. Hydraulic
conductivity in equation (4-3) was replaced by normalized flow rate, Q/ 4H,and h/a,
was treated as an adjustable parameter to give the best possible fit to the measured
data. The model was compared with flow rate data for the first, second, third, final
and resin loading cycles using reference stresses of | MPa, 10 MPa and 30 MPa. In
general, the model had difficulty in predicting flow rates at the lowest normal stresses
but a reasonably good fit was obtained for the rest of the data for each load cycle.

Examples of model comparisons for the second and final loading cycles are
given in Figure 4.5(a) and (b) for reference stresses of 30 MPa and 10 MPa
respectively. For these two cases we see that the Walsh model provides a good (it
to the measured data except at very low stress. A summary of the h/a , values used
in fitting the Walsh model to measured flow rates is provided in Table 4.2. The h/a
parameter was found to decrease with each loading cycle and approach a constant
value for the final and resin cycles. For the first two cycles h/a, increased with

increasing reference stress but thereafter remained constant for each stress level.

Physically, to obtain the low h/a, values observed for the final and resin loading
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Table 4.2 Values of h/a , used in fitting the Walsh (1981) model to
measured stress-flow data.

h/a
Cycle 1 MPa 10 MPa 30 MPa
Ist 15 .18 .30
2nd 14 .28 .35
3rd 12 A2 A2
Final .05 .05 .05

Resin .05 -- --

cycles would require apertures that are more than an order of magnitude greater
than the r.m.s. asperity height. This is not likely for tight fractures that have
undergone repeated loading where the r.m.s.asperity height is -oughly the same or
greater than the aperture. When h/a , measured from the resin work (.75) was used

in the model, no agreement whatsoever could be found with the measured flow rates.

4.3 The Swan Normal Closure - Conductivity Model

Swan (1980, 1981) made one of the first attempts to evaluate normal
deformation theory for rock fractures using actual surface roughness measurements.
He took the elastic contact theory developed by Greenwood and Williamson (1966),

Greenwood and Tripp (1971) and Walsh and Grosenbaugh (1979) and compared it

with normal stiffness data from tests on induced fractures (mated and unmated* for
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which he also made quantitative measurements of surface topography. He found that
the analytical models showed qualitative agreement with the experimental data but
consistently predicted stiffness behaviour that was up to an order of magnitude too
low. This observation was attributed to the use of theoretical asperity height
distributions and failure of the theory to model aperture effects.

For this reason he favoured the use of a discrete approach in which he used
digitized roughness profiles obtained from the fractures he was testing to numerically
simulate fracture closure. He also showed how stiffness behaviour depends on the
initial aperture and thus the "matedness” of the fracture. The predictions from the
discrete approach gave good approximations to his expenimental results and led him
to the conclusion that a simple linear relationship between fracture stiffness and
applied stress was appropriate. He does caution however that for Hertzian contact
theory to apply to fracture deformation studies in rock requires low nominal
pressures. The normal stresses in his tests did not exceed 15 MPa.

From roughness measurements of numerous fractures in several different rock
types, Swan (1983) showed how surface roughness characteristics could be used to
predict fracture stiffness behaviour. He also extended this application to include
changes in contact area and hydraulic conductivity with stress. For a series of ten

slate fractures that were tested, he found that normal stiffness, true contact area and

hydraulic conductivity were all simple functions of normal stress and initial aperture.
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The proporticnality suggested by Walsh and Grosenbaugh (1979) between

normal stiffness and normal stress (equation 4-2), in which the slope of the stress-
stiffness curve, o, 1s the estimated standard deviation of asperity heights, was verified.
Furthermore, he found that there was an empirical relationship between o, and the

initial aperture, e, such that

eo=8.620¢ (4_4)

Swan also showed that the theory predicts a linear relationship between normal stress
and true contact area. He did not measure contact area in his experiments but found
that it agreed qualitatively with the results reported by lwai (1976). He suggested
that the proportionality is valid provided that contact only occurs at a few of the
higher asperities. This turns out to be a rather limiting assumption, as was the case
with Gang: {1978), and is expected to hold only if the fracture is unmated and the
normal stresses are low. Results from some recent studies (Pyrak-Noltc ct al., 1987,
Gentier, 1990a) have shown that contact area changes are nonlinear.

As far as hydraulic behaviour is concerned, Swan recognized that the normal
deformation theory could be used tc calculate apertures at different stress levels
provided the initial aperture is known. Given the relationship between hydrauiic
conductivity and aperture, according to the parallel plate model, he predicted the

dependency of hydraulic conductivity, K, on normal stress, P, to take the following

log-linear form:
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VA K, =c-m(InP) (4-5)

where K, is the initial hydraulic conductivity and ¢ and m are constants, Swan
presented some normalized hydraulic conductivity curves predicted from fracture
surface roughness measurements that were approximately linear functions of normal
stress. He did not make any flow measurements during his experiments and thus was
not able to confirm these predictions with measured results.

In terms of the normal deformation theory presented by Walsh and

Grosenbaugh (1979), equation (4-5) can be written as

JKIK,~(1-ale )-(0 JeInP *-6)

where a and o, are obtained from the load-deformation curve and e, is the initial
aperture. The fracture closure measurements for all five loading cycles from the
stress-flow experiments are shown in the semi-log plot in Figure 4.6. As predicted
by the theory, the results are highly linear over the complete stress range from 0 to
30 MPa. The data from the first loading cycle exhibits some anomalous behaviour
as closure increases with increasing stress at a greater rate than the other loading
cycles. This can probably be attributed to initial seating or mating of the two
surfaces with applied load which would not occur with subsequent loading since the
load was never completely removed. The slope and intercept data obtained by

straight line fits to each curve is given in Table 4.3. The correlation coefficients are
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Figure 4.6 Fracture closure vs. logarithm of normal stress following the Swan
(1983) model (cycle 1,2 and 3 data from Gale and Raven, 1980).
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all greater than 0.990 thus indicating strong linearity. According to the theory, the
slope values, o,, should also give an estimate of the standard deviation of asperity
heights. As discussed in the previous soction, the estimated values are consistently
lower than the measured values by at least half in the case of small-scale roughness
and considerably more than that for large-scale roughness. Note that the o, values

in Table 4.3 are very similar to the A values in Table 4.1.

Table 4.3 Parameters for tihe Swan (1983) model derived froin linear regression

analysis of stress-closure and stress-hydraulic conductivity curves.
. ___ ]

svs.InP vK/K, vs.In P
Cycle o, a R? c m R?
Ist 38.95 63.20 .992 .73 .16 .992
2nd 19.36 67.29 .994 .56 13 994
3rd 17.93 65.67 .996 53 13 996
Final 13.46 53.46 .995 ) 12 995
Resin 15.72 54.65 .999 12 .25 .99

Following the approach of Swan (1983), measured flow rates from our tests
were converted to hydraulic conductivities using the parallel plate model and plotted
in Figure 4.7 as normalized hydraulic conductivity versus the logarithm of normal
stress. The results are linear as predicted by Swan with conductivity exhibiting a

relatively constant decrease with increasing stress. Again, the first loading cycle

displays slightly different behaviour than the others for the reasons described above.
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The resin curve also shows anomalous behaviour but this is due to the methcd used
to calculate the residual apertures for use in the parallel plate model (see Chapter
3). The residual apertures were calculated at 30 MPa for the first four load cycles
but only at 1 MPa for the resin cycle thus causing the observed discrepancy.

Straight lines were fitted to each curve using linear regression and the slopes
and intercepts, which are the m and c constants in equation (4-5), were computed.
These values along with the correlation coefficients are given in Table 4.3. Also
shown in Figure 4.7 is the predicted curve using equations (4-4) and (4-6) and the
average a and o, values from the second, third and final loading cycles in Table 4.3.
The predicted curve gives a good approximation of the calculated hydraulic
conductivities and was derived from fracture closure measurements and an estimate
of the initial aperture. The initial aperture estimated from equation (4-4) is 143 um
while the average calculated initial aperture from the parallel plate model was
159 um.

To avoid using the parallel plate model, hydraulic conductivity in equation (4-
6) was replaced by normalized flow rate, O/ AH. The resulting comparisons of
predicted flow rates with measured flow rates showed some qualitative agreement but
in general equation (4-6) did not prove to be a good modelling tool. Some
improvements to the fit with experimental data could be made by treating o, and e,

as adjustable parameters. For example, Figure 4.8 shows the predicted and measured

flow rates for the second loading cycle. The predicted curve modelled the actual
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data quite well over the lower stress range but then tailed off at higher stresses. By

changing o, by 2 um from 19 to 17 wm, a much better fit was obtained. If o, is

supposed to represent the r.m.s.asperity height, we see that flow rates are quite
sensitive to small changes in surface roughness. This is contrary to Swan’s conclusion
that surface roughness differences had little or no effect on the properties of the
fractures he tested. The type of fracture he was using (cleavage planes in slate) and
their unmated condition would explain the reduced role of surface roughness in this
case. This apparent contradiction raises the question of the differences between the

behaviour of mated and unmated fractures.

4.4 The Tsang and Witherspoon Void/Asperity Model

To properly model the stress - flow behaviour of fractures under increasing
normal stress, Tsang and Witherspoon (1981) recognized that the traditional parallel
plate approach of representing a fracture as two, smooth parallel surfaces had to be
modified to account for fracture surface roughness. This was done previously
(Witherspoon et al., 1980) by including an empirically determined correction factor
in the cubic law model relating fracture flow rate to fracture aperture. However, that
approach gave no insight into the actual physical processes involved for flow in a
rough-walled fracture. Since roughness imparts a variable fracture aperture, they

suggested that instead of using a single value for fracture aperture that it would be
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more appropriate (0 use a statistical average aperture derived from the actual
roughness of the fracture surfaces.

In their proposed model, a rough fracture was conceptualized as a series of
voids between contacting asperities. The fracture can be treated as cither a
collection of voids or a distribution of asperitics. Fracture closure under increasing
normal stress was attributed to the deformation of the voids, not elastic compression

of asperities as has been the approach used in the other theoretical models discussed

thus far. As the size of the voids decreases under stress, more asperities on opposite

sides of the fracture come into contact with each other, changing the aperture
distribution and controlling the movement of fluids through the fracture plane. Thus
the mechanical behaviour was described by a void model and the hydraulic behaviour
by an asperity model, both being linked through a geomctrical characterization of
fracture roughness. The key to the model is that it leads to a mathematical aperture
distribution function for different values of normal stress. This enables the
computation of a statistical average aperture which can be used in a modified cubic
law for determining fracture flow rates. The required input for the model includes
stress-deformation measurements of both the fractured and intact rock and an
estimate of the contact area at a specified normal stress.

Tsang and Witherspoon (198i) showed that analytical functions fitted to
normal stress - deformation measurements for intact and fractured rock could be

used to determine the Young's modulus and effective Young's modulus respectively
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for different normal stresses. The ratio of the two moduli was shown to be related
to the average length of the voids making up the fracture. As the fracture closes
under applied stress, the average void length decreases and the number of areas of
contact increases. The asperities-in-contact function was then plotted against fracture
deformation and another analytical function was fitted to the data. This was used
to obtain the asperity distribution function which also gives the aperture distribution
function since they are related. Knowing the aperture distribution function enabled
them to compute the statistical average aperture, <b’>,as a function of fracture

deformation, 4V, and normal stress, o, as follows:

b,-aV

[ ®,-aV-hyn(iydn

<b¥(AV,0)>=-—2

)

f n(h)dh
]

where b, is the maximum aperture of the fracture at zero stress and n(h)dh is the
asperity height distribution function. The value for b, can be obtained from an
estimate of the fractional contact area for the fracture walls at a specified stress.
Once <b*> is calculated, fracture flow as a function of normal stress can be
determined from equation (1-3). The theory showed good agreement with the
experimental data of Iwai (1976) for tension fractures in granite and basalt with

contact area ratios between 10% and 20%.
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An attempt was made to compare the Tsang and Witherspoon theory with the

stress - flow data obtained from the final loading cycle in these experiments. First,
analytic functions were fitted to the deformation measurements for the fracture and
intact rock as shown in Figure 4.9. Note the nonlinear behaviour of the fracture
deformation in the low stress range and how it becomes more linear and parallel to
the rock deformation at higher stresses. The analytic functions were obtained from
the use of a FORTRAN program called LEASQR (Gerald and Wheatley, 1984,
p.561) for fitting polynomial equations to nonlinear data using the least squares
method. The derivatives of these functions were used to calculate the Young's
modulus for the rock and effective Young's modulus for the fracture which could
then be used to determine the relative average void length at each stress. This
facilitated the determination of the relative number of asperities in contact for
various stresses and fracture deformations.

Next, the number of asperities in contact were plotted against fracture
deformation as shown in Figure 4.10 and another best-fit analytic function was
obtained using the LEASQR program. The waviness in the analytic function is
caused by an observed fluctuation in rock deformation measurements during the
initial stages of closure which permeated through all the calculations leading up to
the asperities-in-contact function. The derivative of this function was used to
determine the asperity height distribution function, nfh) dh. Having obtained nfh)

dh enables the statistical average aperture to be computed using equation (4-7). The
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measured contact area ratio of 5% at 1 MPa (Chapter 3) was used to estimate the
maximum fracture aperture, b, in equation (4-7). This yielded a b, value of 114 ym
which compares favourably with the measured maximum fracture deformation of 102
pm. Using standard numerical integration techniques, the integrals in equation (4-7)
were evaluated and the values of <b®> were substituted into the cubic law
expression (equation 1-3) to obtair. fracture flow as a function of normal stress. The
results however, shown in Figure 4.11,do not agree with the measured flow rates as
the predicted flow rates are generally two orders of magnitude higher except at the
highest stresses. Assuming the contact area to be between 10% and 20% at 20 MPa,
as was found by Iwai (1976) for granite fractures, did not improve the fit. The
theoretical curve for a contact area of 15% at 20 MPa is shown in Figure 4.11.
These results indicate that the Tsang and Witherspoon model is not valid for
natural fractures that have undergone several loading cycles. The poor agreement
between experiment and theory in this case is not surprising since the governing
equation in their model is only a modified version of the cubic law. While a
statistical averaging of the variation in aperture is more appropriate for real
fractures, the model still assumes that fracture flow is simply related to the cube of
the aperture. The statistically averaged apertures were not much different than the
calculated hydraulic apertures in Table 3.1 which were shown not to give good

predictions of measured flow rates using the cubic relationship. The lack of

agreement tends to worsen with increasing stress and increasing number of loading
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Figure 4.11 Comparison of the Tsang and Witherspoon (1981) model predicted
curves with measured stress-flow data for the final loading cycle.
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cycles. It was expected that the model would give a better comparison with the first
or second loading cycles, however, difficulty was encountered in applying the model
due to problems with the measurement of the intact rock deformations as reported
by Raven and Gale (1985). As has already been shown, the modelling technique is
very sensitive to the measured rock deformations and thus the results obtained were
not realistic and could not be compared with the final loading cycle.

The discrepancy between the measured data and the theoretical predictions
in Figure 4.11 can probably be attributed to tortuosity effects which are not included
in the Tsang and Witherspoon model. Tsang and Witherspoon (1985) have shown
that when the aperture distribution is dominated by small apertures and the contact
area of the fracture surfaces is above 30% that the effects of tortuosity may lower
flow rates by two or three orders of magnitude from that predicted by the cubic law
representation.  The measured aperture distribution for the fracture in this study,
Figure 3.18,is indeed highly skewed towards small apertures. The aperture contour
plot in Figurc 3.23 shows the effect that tortuosity has in producing irregular flow
channels across the fracture plane. Despite some of these shortcomings, the model
still has some usefulness in showing the qualitative relationships between fracture
roughness and observed mechanical and hydraulic behaviour. Tsang and

Witherspoon (1983) have shown the versatility of the model in that it can be used to

estimate the stress-deformation and fluid flow behaviour when the roughness
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characteristics of the fracture are known or conversely to estimate the fracture

roughness from an examination of the stress-closure and stress-flow data.

4.5 The Barton-Bandis Empirical Model

Barton and Bakhtar (1983) and Barton et al. (1985) describe a fully coupled

stress-deformation-conductivity model derived from the results of literally hundreds

of tests on natural fractures in a variety of rock types. The observed mechanical and
hydraulic properties of fractures under both shear and normal stresses were found
to be dependent on surface characteristics such as roughness and wall strength. Two
parameters, namely the joint roughness coefficient (JRC) and the joint wall
compression strength (JCS), form the basic input data for predicting shear stress-
displacement behaviour and normal stress-closure behaviour. If an estimate of the
initial fracture aperture is known, aperture changes can also be predicted which can
then be related to conductivity changes as a function of applied stress. The key to
the model is that the necessary input data can be obtained from a few simple index
tests on pieces of intact and fractured core specimens from the rock in question.
Normal stress-closure modelling is based on the following hyperbolic model
for loading and unloading found by Bandis et al. (1983) to give an excellent fit to an

extensive set of experimental fracture closure data:
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o -2Y_ 4-8)
" a-bAv,

where 4V, is fracture closure and a and b are constants. Equation (4-8) is similar to
the empirical expressions presented by Goodman (1976) for nonlinear normal closure
behaviour but offers a better fit to the full range of data. It is shown that the
asymptote to the hyperbola (a/b) equals the maximum fracture closure, V,_, while the
constant a is equal to the reciprocal of the initial normal stiffness, K;. Bandis et al.
(1983) present empirical relationships for V, and K that are functions of JRC, JCS
and initial aperture, g, thus enabling the determination of the constants in equation
(4-8) and fracture closure as a function of normal stress. One important findins from
their work is that for the case of mated fractures, normal stiffness is not a linear
function of normal stress as was suggested by Walsh and Grosenbaugh (1979) and
Swan (1981, 1983).

In coupling normal closure behaviour with fracture permeability, Barton and
Bandis make the distinction between the real mechanical aperture and the theoretical
conducting aperture. They argue that the actual measured aperture, E, is not the
same as the equivalent conducting aperture, e, used in the cubic law, except for
extremely smooth fracture surfaces or very wide apertures. The mismatch between

the two apertures, which is most pronounced at high stresses, was attributed to flow

losses caused by tortuosity and surface roughness. From experimental data on E/e
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ratios, they were able to derive a series of curves that showed the dependence of
E/e on roughness and aperture. This leads to an equation relating mechanical

aperture, E, and conducting aperture, e, of the form

e-E*/JRC*S (4-9)

which is only valid for E 2 e. Since E at each stress level can be computed by
subtracting the normal closure from the initial aperture, equation (4-9) provides the
means for converting mechanical apertures (E) to conducting apertures (e) used in
calculating fracture permeability (k=e%/12). In the following discussion, the method
for characterizing the Charcoal Grey granite fracture tested in this study is described
and model predicted curves are compared with measured normal stress~closure-flow
data.

The complete normal stress-closure-permeability behaviour of fractures can
be predicted from three basic input parameters; the joint roughness coefficient
(JRC), the joint wall compression stength (JCS) and the unconfined compression
strength (o). These parameters ar: de'ermined from Schmidt hammer tests on the
unweathered, intact rock and the weathered fracture surface, and, from tilt tests of
both intact and fractured rock cores. Firstly, the JCS is determined by the following

equation:

log,,/CS-.00088yr+1.01
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where vy is the rock density and ris the Schmidt hammer rebound number for the
fracture surface. For the Charcoal Grey granite, a measured density of 26.83KN/m 3
and an average Schmidt hammer rebound number of 45.2yielded a value of 119.45

MPa for the JCS using equation (4-10). Secondly, the JRC is obtained from the

relationship:

a-¢,

JRC-————
log,,(JCS/aL)

@11)

where ais the tilt angle at which the top half of a fractured core specimen begins to
slide, ¢, is the residual friction angle determined from a tilt test using two intact rock
cores and Schmidt hammer rebound tests on both the fracture surface and on intact
rock, and a'_, is the effective normal stress acting across the fracture when sliding
occurs (under self-weight conditions). From tilt tests using a fractured core sample
from the Charcoal Grey granite, sliding of the top half took place at an average angle
of 62.5°. The basic friction angle, determined from tilt tests using two smooth pieces
of core, was found to be 28.6° which leads to a residual friction angle of 21.7°. The
cffective normal stress on the fracture at sliding was determined to be 0.001 MPa.
Using equation (4-11), the JRC was found to be 8.03 which is about medium
roughness on a scale of 1 to 20.

As mentioned earlier, the coupling of normal closure and permeability using

cquation (4-9) requires an estimate of the initial fracture aperture, 4. If these
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measurements are lacking, an empirical equation has been derived for estimating g,

as follows:

a-2BC 02" 0.1 (4-12)
5 " JCs

The unconfined compression strength, o, can be determined by substituting the
Schmidt hammer rebound number, R, for the unweathered, intact rock into equation
(4-10). Using an R value of 68.8 from Schmidt hammer tests on pieces of intact core
gave a value for o, equal to 430.52MPa. This was deemed to be unrealistically high
for granite and a measured o of 218.0 Mpa from compression strength tests on the
Charcoal Grey granite was used instead. Using the measured o, has little effect on
the JCS and JRC calculations but does have a big effect on the initial aperture
calculation (equation 4-12). The normal stress-closure-conductivity behaviour was
modelled from the following input parameters:
JRC =8.03
JCS = 119.45 MPa
o, = 218.0 MPa
In Figure 4.12, model-predicted normal closure curves for four loading-
unloading cycles are compared with measured normal closure data from the
laboratory tests. The experimental data shown is for the first, second, third and final

loading cycles only. The model curve for the first cycle shows a very good
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Figure 4.12 Comparison of the Barton-Bandis model curves for four loading
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115

approximation to the measured data and predicts a maximum fracture deformation
of about 200 um. A large hysteresis is predicted between the first and second cycle
and the model curves for the second, third and fourth cycles predict less deformation
than was actually measured. The predicted maximum closure on the fourth cycle was
65 um compared to the measured maximum closure on the final cycle of 102 um.
The model curves do however correctly depict decreasing hysteresis between
successive loading cycles and between the loading-unloading paths within each cycle.
Predicted flow rates using the Barton-Bandis model are compared with
measured flow rates in Figure 4.13. In this figure, flow is expressed in terms of flow
per unit head, Q/ 4H, since fracture permeability or conductivity was not measured
directly. The predicted flow rates were obtained by substituting the theoretical
conducting apertures, e,calculated from equation (4-9) into the cubic law expression
for flow, equation (1-3). Figure 4.13 shows that predicted flow rates are several
orders of magnitude higher than the measured flow rates. One reason for this is due
to the fact that the Barton-Bandis model predicted apertures that were larger than
the actual apertures obtained from the resin studies. For example, the model
aperture, e, at a normal stress of 1 MPa on the fourth unloading cycle was found to
be 173 um. It should be closer to the mean aperture of 103 um determined from the
resin injection experiment at 1 MPa. The other reason is that the Barton-Bandis

model uses the parallel plate model for relating aperturc to flow rates and we have

already seen that this approach does not appear to be valid for natural fractures
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Figure 4.13 Comparison of the Barton-Bandis model curves for four loading
cycles with measured fracture flow rate data (cycle 1,2 and 3
data from Gale and Raven, 1980).
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subjected to high normal stresses. The model-predicted curves are also sensitive to
the value used for the initial aperture on the first loading cycle. The model predicts
an initial aperture of 425 um using equation (4-12). This is a reasonable estimate
considering the measured apesture at | MPa for .he resin (fifth) loading cycle was
103 um. However, decreasing the initial aperture by one half lowers the predicted
flow rates by one to two orders of magnitude. Unfortunately, the true initial
apertures of natural fractures are difficult to determine precisely.

Finally, the effects of changing the JRC and JCS parameters were studied to
determine the relative sensitivity of the model curves to these two parameters and
also to determine if a better fit to the experimental data could be obtained.
Decreasing the JRC shifts the normal closure curves in Figure 4.12 to the left and
reduces the hysteresis between the first and second cycles. This also has the effect
of lowering the flow rate curves in Figure 4.13. For example, a JRC of 2.5 gives a
better approximation of the measured flow rate data, especially for the first cycle, but
would imply a very smooth fracture surface. Increasing the JRC, i.e making the
surface rougher, basically has the opposite effect on the model curves but to a lesser
degree.

Decreasing the JCS shifts the normal closure curves to the right; increasing the
JCS moves them to the left. For example, a small decrease in the JCS from 119
MPa to 110 MPa increased the maximum closure on the first loading cycle by about

50 um. The predicted flow rates were not very sensitive to increasing or decreasing
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the JCS with changes less than an order of magnitude either way when the JCS was
cut in half or made to equal g,. Overall, a good fit to both the normal closure data

and the measured flow rates could not be obtained using any combination of JRC

and JCS values.




Chapter § SUMMARY AND CONCLUSIONS

The results of laboratory stress-flow tests on the medium-sized granite core
used in this study are typical of the mechanical and hydraulic behaviour of single,
natural fractures under applied normal stresses. In these tests, a relatively
undisturbed natural fracture was subjected to four complete uniaxial compressive
loading and unloading cycles at normal stresses up to 30 MPa. The most significant
observation was the highly nonlinear relationship between normal stress, fracture
closure and fracture flowrate. Rapid closure of the fracture and corresponding rapid
reductions in flow rates were observed at low normal stresses followed by more
gradual fracture closure and relatively constant flow rates at higher stresses.
Permanent reductions in both closure and flow rates occurred between each
successive cycle. Even after four loading cycles, and an apparent high degree of
mating of the two fracture surfaces, the fracture could not be closed and small but
significant flow rates could be measured.

The primary reason for the observed behaviour is due to surface roughness
effects. Roughness controls the deformation of the fraciure by creating points of
contact between asperities on the adjoining surfaces while at the same time
controlling the movement of fluids in the fracture by channelling flow through the
parts of the fracture that remain open. As the normal stress changes, so does the

distribution and shape of contacting asperities and fracture void space. While the

effects of roughness are easily observed, the actual measurement of the geometrical
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aspects of a fracture under stress is difficult. To accomplish this task, the fracture
was loaded o a reference stress of 1 MPa after the final loading cycle and injected
with an epoxy resin to bond the fracture together. The resin injection experiment
cnabled direct measurements of the roughness of both sides of the fracture, contact
area and void space under known stress-flow conditions.

Two scales of roughness were measured from fracture profiles generated from
the resin work; a large-scale roughness or waviness and a superimposed small-scale
roughness or jaggedness. Large-scale asperity heights were of the order of 1 mm
while small-scale asperity heights were of the order of 0.1 mm. In both cases, the
asperity height distributions were well approximated by either a normal or log-normal
distribution. The large-scale asperity height distributions for top and bottom surfaces
were not mirror images of each other indicating some degree of mismatch between
the two surfaces. Small-scale roughness was more uniform as evidenced by similar
asperity height distributions for both surfaces. For mated or nearly-mated surfaces
in contact, small-scale roughness has the most important effect on fracture flow by
forming protrusions into the fracture plane that increase the resistance to fluid
movement and by creating a series of tortuous flow channels around areas of contact.
The measured contact area for the fracture used in this study was 5.3% at 1 MPa on
the fifth loading cycle. The individual contact points were spread unevenly

throughout the fracture plane with a mean contact length (in cross-section) of 1 mm.
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Even at this low stress, the effects of contacting asperities in separating the fracture
into smaller connected and unconnected flow channels were clearly observed.

The resin impregnation technique also enabled measurement of the variable
aperture and irregular void spaces imparted by fracture roughness. The real fracture
aperture was found to be highly irregular along the length of the fracture profile.
The distribution of local apertures was skewed towards zero with a mean value of
about 0.1 mm. The average measured aperture was more than an order of
magnitude higher than the theoretical hydraulic aperture calculated using the parallel
plate model yet the measured flow rates were lower than those predicted from the
parallel plate relationship. This observation would suggest that the total volume of
fluid contained in the fracture is greater than that implied by the parallel plate
model, and that flow rate is not simply related to an average aperture.

If the fracture is thought of as a series of voids between areas of contact rather
than two surfaces with some mean separaticn, a better understanding of how fluids
move through the fracture is obtained. These voids are elongated, irregularly-shaped
blebs that pinch out and are discontinuous in the plane of the profile, but may be
continuous in the orthogonal direction. Fluids move through the fracture by
following series of voids that are joined together to create flow channels or large
aperture regions within the fracture plane. The size and shape cf the fracture voids
measured in this study were characterized in terms of cross-sectional area and aspect

ratio respectively. The mean void size was determined to be about 1 mm? with most

.\\
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of the voids being less than 2 mm? in cross-sectional area. The mean aspect ratio

was about 7 indicating that the voids are flattened ellipses in the plane of the
fracture. Both distributions were skewed and could be somewhat approximated by
a log-normal distribution. The data measured from the resin work can be combined
to show the spatial distribution of fracture aperture and void space as given by the
two-dimensional contour plot in Figure 3.23and the three-dimensional mesh diagram
in Figure 3.25.

By far the most common approach to describing fluid flow in fractures has
utilized the parallel plate analogy in which the two sides of the fracture are idealized
as smooth, parallel surfaces. The fracture flow rate can be shown to be a function
of the cube of the parallel plate aperture, also known as the cubic law. Even with
modifications to account for roughness effects, the cubic law has only found limited
success when applied to rough fractures in contact yet it has become firmly
entrenched in the literature as the govemning equation for fracture flow. The results
of this study have shown that the cubic law is not valid for natural fractures. Figure
3.3shows that the aperture-flow relationship deviates significantly from the cubic law,
especially at high stresses and with increasing number of loading cycles. This same
conclusion has been reached from other tests of natural fractures (Gale, 1982; Raven
and Gale, 1985; Pyrak-Nolte et al., 1987; Gentier, 1990b). These findings suggest
that the stress-flow relationship must be more complex than the cubic law implies

with surface roughness, contact area, tortuosity and void space geometry all playing
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an important role. The data obtained from these experiments have quantified some
of these parameters and provide the basis for evaluating theoretical and experimental
stress-flow models that exist in the literature. Examined in this study were the
theoretical models proposed by Gangi (1978), Tsang and Witherspoon (1981), Walsh
(1981) and Swan (1983) and the empirical model of Barton et al. (1985). All of the
models were found to have serious limitations and only provided a semi-quantitative
prediction of measured flow rates at best. The Gangi bed of nails model is
essentially an asperity contact model that does not take into account the deformation
of the fracture voids and tortuosity effects created by increased normal stress. The
assumption of a constant contact area ratio proved to be a major limitation and
attempts at modelling fracture flow rates were essentially curve-fitting exercises using
adjustable parameters. Tsans and Witherspoon introduced a void-asperity model in
which fracture closure was described in terms of deformation of the voids and
aperture distribution as a function of asperities in contact. Both processes are
related through a geometrical characterization of fracture roughness which leads to
the calculation of a statistical average aperture to be used in the cubic law for flow
rate as a function of normal stress. This modified cubic law was found to predict
flow rates that were up to iwo orders of magnitude larger than measured flow rates.
The model does not account for tortuosity effects.

Walsh and Swan both present coupled normal closure - conductivity models

that incorporate surface roughness effects. Hertzian contact theory is used to relate




124
linear normal stiffness behaviour to the standard deviation of asperity heights - Walsh
assuming an exponential asperity height distribution, Swan using actual roughness
measurements.  The models were extended to include contact area and aperture
changes and hence hydraulic conductivity as a function of normal stress.
Unfortunately, the assumption of linear normal stiffness has been shown not to be
valid for natural fractures with mated or near-mated surfaces. If normal stiffness was
assumed to be linear, at least over the lower stress range, some quantitative
agreement was found between predicted and measured flow rates.

The Barton-Bandis empirical model characterizes the complete normal stress-
closure-conductivity behaviour of fractures using a few basic input parameters
determined from simple index tests on the rock in question. The model predicted
behaviour showed some agreement with the measured normal closure behaviour in
this study but overestimated the measured flow rates. This probably has to do with
the fact the cubic law is used as the governing equation for fracture flow in the
model. As far as ease of application is concerned and overall results, the Barton-
Bandis model was found to be as useful as any of the theoretical models. The
theoretical models require elaborate input data such as fracture closure tests,
material property tests, surface roughness measurements or permeability tests at a
given reference stress to test the models. The input for the Barton-Bandis model can
be derived from comparatively simple index tests on pieces of fractured and intact

rock cores.
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The results from this study, incluging the model comparisons, have highlighted

several conclusions that are fundamental to developing a complete fracture-flow
theory. The first involves the concept of fracture aperture. Several definitions of

fracture aperture are found in the literature, cg. effective fracture aperture, hydraulic

aperture, real mechanical aperture, theoretical conducting aperture, mean aperture

and equivalent uniform aperture. This has led to some confusion and has resulted
in a variety of interpretations of the role of fracture aperture in stress-flow behaviour.
One thing that is clear is that the fracture aperture cannot be represenied by some
single value and that it is the spatial distribution of apertures that is more important.
The parallel plate model does not take the spatial distribution of apertures into
account and hence does not model tortuosity effects. Unfortunately, all of the stress-
flow models discussed above have used the parallel plate model for relating fracture
aperture to fracture flow rates.

Secondly, any attempt at modelling stress-flow behaviour must consider both
sides of the fracture. True measurements of surface roughness, contact area and
aperture variations and their spatial distributions must include both sides of the
fracture under different normal strers ¢ ditions. These measurements can then be
combined with mechanical and hydrauiic test results to understand fracture flow
behaviour. Most of the work on stress-flow behaviour reported in the literature,

including the models discussed above, have only considered one side of the fracture.
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Thirdly, there are different scales of roughness and it is necessary to determine
what scale is important for fluid flow considerations. This has important implications
for the measurement and characterization of fracture roughness. It would appear
that large-scale roughness has a much lesser impact on fluid flow than does the
small-scale roughness features which tend to be of the same order as the fracture
aperture itself. The fractal approach, which has recently gained a lot of attention in
the literature, may be useful if the link between fractal roughness and fracture flow
rates can be made.

The resin injectitn technique described in this study offers a method for
addressing these issues. It has enabled quantitative measurements of surface
roughness, contact area and void space for a fracture under stress. Measurements
of this kind are necessary for understanding the processes involved in fracture-flow
behaviour. It appears that this information has been lacking in the development of
existing models and as a result no satisfactory quantitative modelling of the stress-
flow behaviour of fractured rock from an analysis of surface roughness characteristics
currently exists. It is recognized that there are some limitations to the resin injection
technique. The method is a one-time only procedure that provides a “snapshot” of
the fracture at a given stress. This negates the possibility of comparing other
"snapshots” from the same sample. The method is also time consuming and does not

lend itself easily to the testing of a great number of samples. However, if enough

tests are done on different fractures over a range of different stresses and the
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number of profiles needed to characterize the fracture can be reduced 10 a minimum,
the method has the potential of providing the experimental data base necessary for

developing a suitable stress-flow model. Fracture flow theory is lagging behind

practice. It is hoped that studies like this will help close this gap.
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