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Abstract

In cold ocean research the development of stalistical techniques useful in
ihe analysis of cold ocean data such as ice strength is of important practi-
cal concern. A central interest is the identification of and fitting of suitable
models to the dala, for the analysis of such data. In this practicum we study
the theory of .-Moments as a method of distributional identification and
paramcler estimation. [n particular, the Generalized Logistic Distribution
(GLD) is fitted Lo nine data sets consisting of breaking strenglh measure-
menis of dillerent types of ice using the method of L-Moments. The results
comparc favorably to the original analysis of the data based on Maximum
Likclihood fitting of the Weibull distribuiion. The asymptotic distribution
of the L-Momenl estimators is derived, and a test for the symmetry of the
GLD, based on Lhese asymptotic resulis, is deveiuped. A Monte Carlo simu-
lation study demonstrates the performance of the method of L-Moments [ox
the estimation of the parameters of the GLD and compares it to the method
Maximum Likelihood and the method of Moments. L-Moment estimators
are casy lo compute and perform consistently well across a wide range of pa-
rameter values. The method was found to be a simple and reliable method
for estimation and distributional identification and thus it -provides an at-
tractive alternative method to the standard techniques. The application of
this method to real data illustrates the implementation of the method and

the contexts in which the method is useful,
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Chapter 1

Theory of L-Moments

1.1 Introduction

Paramecter estimation and model selection for data analysis are two impor-
tant arcas in slatistics. There are many methods suggested in the literature
for parameter estimation, including the method of Maximum Likelihood and
the Mcthod of Moments. The technique used for 2 given problem is selected
based on case of implementation and reliability. To choose a probability
distribution to best describe a set of data, researchers rely on experience,
assumptions, and a varicety ol descriptive statistics and statistically based
goodncss-of-fit tests. The method of L-Moments, developed by J.R.M.
Hosking in a technical report [8] as an alternative method f estimation and
distribution identification, has become prevalent in hydrology and engineer-
ing journals (sce [5],(10},(13],]16],[25],(32] for examples), but has been over-

looked in the statistical literature. The development and advancement of the



theory by hydrologists and enginecrs is due to its simplicily and effectivencss
in many hydrological applications. Although the theory of L-Moments has
been developed extensively for some sclected statistical distribulions, many
aspects and distributions have yet to be studied in detail.

The method of conventional moments is frequently used for sumnmariz-
ing and describing a data sct, as well as for parameter estimation. [For
the purpose of estimation, sample moments arc cquated to population mo-
ments and the resulting equations are solved for cstimates of the parameters
of interest. The method of L-Momenis considered in this report follows a
similar derivation, the L-Moments are derived and equated Lo their sample
analogues. L-Moments are spccial linear combinations of order statistics,
giving the sample L-Moments the immediate advantage of a level of robust-
ness not found with conventional sample moments, the calculation of which
involves raising observations Lo powers of two or more. The performance
of L-Moments for estimating parameters of some seclected distrihutions has
been examined in the literature, primarily in hydrological and enginecring
journals and most notably in Hosking’s technical report [8]. Hosking statcs
in this report that, in his experience, L-Moments oflen yield more accurale
parameter estimates than the method of Maximum Likelihood (MLE) and
the Method of Moments {MOM), especially in small samples.

L-estimators, estimators based on linear combinations of order statistics,
are not new to statisticians [4]; however, the specific linear combinations
that define L-Moments had not been considered as part of a unified theory
of distribution description, parameter estimation and hypothesis tesling until

Hosking’s technical report [8], and later in Hosking [9).
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1.2 Definitions and Results

To understand the theory of L-Moments, we first consider quantities called
Probability Weighted Momcents (PWMs) proposed by Greenwood et. al. [5].
It was the results of this paper that led to the theory of L-Moments developed
by Hosking [8). L-Moments are special lincar combination of PWMs, which

are themselves linear combinations of expected values of order statistics.

1.2.1 Probability Weighted Moments

Definition: Let X be arcal valued random variable with distribution function
F(z). The probability weighted moments of X are:

Myrs = EXP{F(X)} {1-F(X)}] = /x’“{F(x)}'{l-F(-'c)}’dF(ﬂ:) (1.1)
where p,r and s are real numbers. If r and s are positive integers, then:

rls! ,
ﬂfp'r,; = )!E(/\f+l:r+s+l)

(r+s+1
where X, is defincd as the £** order statislic of a sample of size n. This
delinition holds for both discrete and continuous random variables. In the

continuous case:
Mysa= [ &P{F(2)} {1 - F(2)}f(z)ds
Then, by the transformation & = F(z)
1
Myra= [ {s(F)PF"(1 - F)dF
o
where z(F) is the inverse distribulion funciion.

3



Note that when r = s = 0, the PWNMs reduce to ordinary convenlional

moments. In the paper of Greenwood ct. al. [5], two particular PWMs were

defined as {ollows:
or = Mg, = E[X{1 ~F(X)}], r=0,1,2.... (1.2)

and

Br=Mi,0= E[A’{F(X)}r]s r=0,1,2.. (1.3)

Note that ra,.; = E(Xy,) and r8.-y = E(X,,,) arc the expected values
of the smallest and largest order statistics respectively in a sample of size 7.,
Hosking [8] states and proves in his report that these PWMs are suffi-
cient to characterize a probabilily distribution. Further, characterizalions by
either a or § PWMs are interchangeable due to the following relationship

between the two:

o = i(—l)*‘(z)ﬁk (1.4)

k=0
or equivalently

b= (1) (I) o (15)

k=0
The first relationship is casy to derive by writing (1 — F{X))" in powers of

F(X}, as follows:
L (T :
ar = B(X{1 = FOOY) = 32 (1) (-DF B
=0
using the binomial theorem. The expectation in the expression above is

simply the definition of 8;. Thus:

o= 3 (1)

k=0

4



as required. Similarly, to show the second of the two relationships, expand
{F(X)} in powers of {1 — F/{X)} again using the binomial theorem.

r

po= 3 (1) ot - Foom

k=0

The expectation in the expression abave is the definition of ay.

b = L(;)(-—l)"ak

k=0

as required. The first few such cqualitics arc:
ap = fo
ar= flo— fh
tz = o — 20 + B2
oy = fo~ 381+ 38:— B
for the first of the two relationships and:
fo=ag
bh=ap—-m
P2 =ag — 201 + o
£3=0‘u—30.']_+302#03

for the second of the two relationships.



1.2.2 Examples of ra;_; and r3,_; Calculation for Some

Common Distributions

Here, three examples of PWM calculation are given for illustration. ra,_,
and rf,_; are derived instcad of simply a, and §,, since the former have a
more straightforward meaning; they are the expectations of the smallest and
largest order statistics respectively in a sample of size ». a, and G, can be

found easily from these quantities.

i. UNIFORM (a,b) The p.d.f. is given by:

f(z) = b-l-a ya<zr<b, —co<a,b<oo
The C.D.F. is given by:
I —
Fx= b—a

Then:

ra,. = B(X,,) = fb rz(l ~ F(z))™' f(z)dz

b b—z\"" 1 r b .
—fa r:(E:) b_ad.t— (b—a)".[; z(b— )" d=x

Using intcgration by parts gives:

r afb—a)  (b—a)*'| ra+b
(b—a) F rir+1) | r4+1

Similarly, 8, is given hy:
tBos = E(Xp) = [ ra(P(@)) ™ f(e)da

6



___/” (::-—a)"" 1 d _a4rb
o P \T=a b—a t T L
ii. EXPONENTIAL(?) The p.d.f. is given by:
1 —-xfl
f(m)zb-c y0<s<00,0>0
The C.D.F. is given by:
Flz)=1- e/t
Thus:

racy = B(Xur) = [~ 121 = P())~f(2)dz

oo 1 r foo d
= =(r=0)z/0 _g=z/0 4. — _ —rzf0 . _ 2
/0 rre Oe dz 7 -/u re dz "

using integration by parts. For this example, calculation of
rB.-1 is not straightforward. It requires a knowledge of some
specialized functions (see [8]). The exponential distribution is
an example of a distribution where the calculation of one type
of PWM may be casier than the other. Since a distribution
can be characlerized by cither type of PWM, and because
a and 8 PWNMs are rclated by the relationship given previ-
ously in this section, knowledge of both is not necessary, The
next example illustrates a case where the 8 PWMs are easily

derived while the o PWNMs are not.



iii. GENERALIZED EXTREME VALUE {GEV(e, e, k)}

The p.d.I. of this distribution is given by:

=3 toes) en |- (oK)

et+alk<r<oo itk <0
o<z <etalk ifk>0
~oLe<on , I<a<oo

The C.D.F. is given by:
F(z) = exp [~ {1 — k(z ~ €)/a}'¥]
The inverse distribulion function is given by:

m(F)=s+%(1—(—lnF')"')

The inverse distribulion {unction is considered liere because
making the transformation £ = F(z} often makes compu-
tation of expectations of the extreme order statislics casier,
as will be scen in the following calculations. As mentioncd
above, in this example, rf._; may be found with little difli-
culty, while ra,_; may not,

th = B(Xer) = [ ra{F(z)}f(z)dz

Make the transformation F = F(z). Then dFF = f(z)dz.

1 1
rhs =r [ =(F)FidF =r [e+ (= (=In FYf| Fr-tdF

8



- (5 + %) —r3 fn (=In F)*FT-1dF

Let u = —InF. Then F = e % and dF = —e~%du. Then

— 2 _E ook—-ru
rﬁ,._l—(e+k) rkfo uw e " dy

Note that the expression under the integral is a gamma dis-

tribution except for a multiplying constant. Thus one can

casily evaluate this integral.
By = (s + %) - r%r““‘*”r‘(k +1)

=e+ T (1=r*T(k+1)) ,  k>~1

bl

The properties of the L-Moment estimators of the parame-
ters of the GEV have been extensively studied in Flosking et.

al.[14].

These examples and many others are described in detail in {8].

1.3 L-Moments

While PWMs characterize a distribution, they have no easily interpretable
descriptive meaning. [losking [8], thercfore, proposed functions of PWMs

that give a deseriptive suminary of the location, scale, skewness and kurtosis

of a probability distribution.



Definition: Given a real valued random variable X, the L-Moments of X

are defined to be the quantitics:

r=1
— -1 —_ k r"'"l A 4 Y —
A=t ,;,( 1)( f )E(Ar_m) r=1,2.n (1.6)

These L-Moments can be written in terms of Lhe previously defined o

and § PWMs as follows:

’\l'+1 = (.....1)" Epl‘.k . = Zpl‘.k ﬂl‘ yr=0,1L2.,n~1 (1‘7)
k=0 k=0

Proc = (—1)’-1.-(;;) (r-l- k)

Using this relationship, we can casily write the first few L-Moments in

terms of the o and the § PWMs.

where

A=ap=flp
A =ag— 20y =20, - fo
Az = ap—G6ay + 6oy =6/, —66; + o

A =g~ 120y + 303 — 20a3 = 205; — 308, + 123 — o

Hosking notes that ), exists for r = 1,2,...,n ill £ |X| exists. Thus a
distribution may be fully described by L-Moments even if some of its con-

ventional moments do not exist. Furthermore, Hosking asserts that such a

10



description is meaninglul because a distribution whose mean exists is char-
acterized by its L-Moments. As with conventional moments, it is convenient
to standardize some of the higher order L-Moments.

Ilosking introduced the L-Moment ratios defined to be the quantities:
‘rrzAr/Az r=3,l’[...,ﬂ

Iosking states and proves Lhe [ollowing assertion that gives numerical

bounds for these L-Moment ratios:

e Il X is a non-degencrate random variable whose mean exists, then the

L-Moment ratios of X satisfy |r| < 1.

1.3.1 Describing a Probability Distribution with L-

Moments

The L-Moments and L-Moment ratios are meaninglul quantities for describ-
ing the lcatures of a distribution. In fact, they are in some ways analogous
to conventional moments. A; is simply the mean, a standard measure of lo-
cation. Further, Hosking proposes that A, is a measure of scale or variation,
and T3 and 74 arc measures ol skewness and kurtosis respectively, These mea-
sures arc called L-location, L-scale, L-skewness and L-kurtosis. In his report,
Hosking first presents an intuitive discussion to verily that these measures
are scnsible and also uses some known definitions of “scale”, “skewness” and
“kurtosis” to provide a theorctical basis. (Note that the quantity A; has

been seen in the literature before. Aside from a scalar multiple, it is the

expectation of Gini's Mcan Difference Statistic [9].)

11



Distribution L-Skewness Skewness | L-Kurtosis Kurtosis
Normal{0,1) 0.0 0.0 12 3.0
Logistic(0,1) 0.0 0.0 17 4.2
Exponential(0,1) 33 2.0 A7 9.0
Gumbel(0,1) 17 1.1 15 5.4
Rayleigh(0,1) 11 63 A1 2.0

Table 1.1: Comparison of L-Skewness /Skewness and L-Kurtosis/Kurlosis for

some specific distributions

L-skewness and L-kurtosis have some immediately obvious advantages

over conventional skewness and kurbosis,

e L-skewness and L-kuriosis arc not as sensitive to the extreme tails of Lhe
distribution. Calculation of conveniional skewticss and kurtosis from
a sample involves raising data values to the third and fourth powers,
making them extrecmely sensitive to outlicrs. In small samples, the
conventional sample skewness and kurtosis may be quite different from

the true underlying values due to this scnsilivily.

e L-skewness and L-kurtosis exist on bounded intervals making compar-
isons between skewness and kurtosis of different data sets casier. Some
examples for some simple distribulions are given in Table 1.1, [fosking
has comparcd Moments and L-Moments for mecasuring distributional

shape in [11).

Because of this boundedness, it is possible te identily a distribution by

calculating the L-skewness and L-kurtosis of thie data set and plotting the

12



point on an L-Moment diagram . [Ilosking has created such a diagram
which includes L-skewness/ L-kurtosis curves for many distributions common
in hydrological applications (sce Appendix ). In the data analysis chapter
of this practicum, the diagram is used to determine whether a given set of
data appears to be best described by the distribution considered as a2 model

in this report.

1.4 Estimation of PWMs and L-Moments

In order to formulate a method of parameler estimation based on L-Moments
or PWMs, oncmust first consider how to estimatethe population L-Mements
and PWMs, which can then be used to derive parameler esltimators. Hosking
proposes Lhe use of U-Statistics, which were introduced by Hoeffding [7].
Since the PWMs are lincar combinations of expected values of order statis-
tics of a sample of size r + 1, it is natural to estimate them by U-Statistics.
The appropriate U-Stalistics are the corresponding functions of the sainple
order statistics averaged over all subsamples of size » + 1 that can be con-
structed from a sample of size n. U-Statistics have good properties such as
high efliciency, asymptotic normality and robustness, which make them good
candidates for the estimation of PWAs. The unbiased U-Statistic estimatots

of the PWMs (called sample PWAIs) are:

n

(11-—-z')
a, = ay =n'lz-—r—x,-, r=0,1,.n-1 (1.8)

=1 n~1
r

13



Br=b= n“mef, r=0,1,.0—1 (1.9)

where z; is the i** sample order statistic in a sample of size n. The a,

and the b, are related in the same way as their population analogues:

a, = Z(—l)"' (r)bk
k=0 k
and

b, = zr:("l)k (E)“k

k=0
Greenwood et al. [5] have given a detailed proof of the unbiasedness of

a, and b,. Because the L-Moments are lincar combinations of cither the o
or § PWNMs, we can construct estimators of the L-Moments which are the
corresponding linear combinations of the a, or b,. The sample L-Moments

are thus given by:

1r+1 ={-1)rzpr.kak = Zpr.kbk (1'10)
k=0 k=0

where {; is an unbiased estimator of A;. The [-Moment ratios are estimated
by the sample L-Moment ratios. Although these ralio statistics are not
necessarily unbiased for the population ratios, losking [8] states that they
are consistent estimators.

Remark: Sample L-Moments can be used Lo summarize the featuresof a
data set in the same way as conventional moments, often in a simpler manner.
L-Moments are [requently preferable, hecause, being lincar combinations of
the data points, they tend to be less sensitive to variability and outliers in

the data. They may, therefore, prove lo be more accurate and robust.

14



1.4.1 Asymptotic Results

"The derivation of the asymplotic distributions of vectors of sample PWMs
and sample L-Moments is given in Ilosking [§]. The results are based on
Stigler’s form of a theoremn giving the asymptotic distribution of order statis-
tics [35).

Let X be a real valued random variable with C.D.F. F(z), with pop-
ulation PWMs and I.-Momenis as defined previously. a, & and L4 ,
r=0,1,..n — 1 are the sample P\VMs and sample L-Moments respectively,
calculated from a random sample of size n. g,,0.,8.,8 ,L41,and A, are
defined as vectors of length r+1 of sample/population PWMs or L-Moments.
For example, g, = (aq,u,a;) and Az = (A,A2, Aa). (Thus, the following re-
sults may be used to find the asymptolic distribution of whatever subset of

the sample quantities is desired). The basie results are:

1. va(a, — a,) — N(0, A), where the (i, 7)'® element of the matrix A is
(i,7 =0,1,..r:
Aij =L + i

where

li= [[{1~ F@)Y{1 - F)PF){1 - F~))dzdy

ey

2. Va(b, — f) = N(0, B), where the (7,5)* clement of the matrix B is
(4,7 =0,1,...r):
Bij = Jij + Ji

15



where

j {F(2)Y{FNYF(x){1 -~ Fly)}drdy

<y
3. Vn(l, — A,) = N(0,A), where the (7, 7)** clement of Lhe matrix A is
(i,j = 1,2,..s)%

Ay = [[PL (P@) PP+ Pry () Py (F) ()1~ F(y) ey

where P7(z) is the i** shifted Legendre Polynomial as defined in Ap-

pendix B.

1.5 Parameter Estimation By L-Moments

Estimation of distribution paramecters is very important in statistical data
analysis. The goal is to accuralcly estimate the parameters of the underlying
distribution using a random sample [rom that distribution. Many techniques
are available in the literature for paramcter cslimalion as mentioned previ-
ously, and in this section we inlroduce a method bascd on the PWMs and
L-Moments of the previous scctions.

The method is the samc as that [or conventional moments. If p parameters
are to be estimated, equate the first p population PIWMs (L-Moments) to
the first p sample PWMs (L-Moments), tlien solve the resulling p equations
to derive estimators of the parameters. The decision to use PWMs or L-
Moments depends on the distribution: for some distributions, the PWMs
may provide nealer solutions or more tedious oncs than ithe L-Moments.

The decision should be based on case ol computalion.

16



Hosking has also suggested two refinements to the technique which, if
judged necessary, may improve the cstimators. The first concerns distribu-
tions with an end point that is a funciion of the parameters; it is sometimes
c¢fficicnt to estimate the end point by the appropriate extreme order statistic.
Using the PWM approach, this would involve equating £1.n = nap—1 = nap—y
Or Tpin = Nba; = nfs_1 and using one or both of these equations in combina-
tion with cquations obtained from lower order PWMs. The sccond refinement
involves making use of more than p of the PAVMs (L.-Moments). This can be
a means fo achicving a smaller estimator variance. In the next chapter we
shal! scc an example of this technique,

As an illustration, consider estimating the mean of a symmetric distribu-
tion. For this type of distribution, the L-skewness A3 = 0 and consequently
the expected valuc of the third sample L-Moment, {3, is zero. Instead of
estimating the mean by just /; , we could cstimate it using {; + als, where a
is chosen to minimize the variance of the estimator.

Exact distributions of the cstimators are usually difficult to find, but
their asymptotic distributions follow from the results of Hosking [8]. For
most standard distributions the multivariate §-method [3] can be used to
show L-Monicnt based estimalors are asymptotically normally distributed.

To justily the use of these types of estimators, they must perform compa-
rably to established mcthods of estimation. Maximum Likeliliood estimators
(MLEs) arc consistent and asymptotically cfficicnt, making them commonly
used cstimnators among statisticians and rescarchers. However, MLEs are
sometimes difficult to compute, requiring recourse Lo numerical methods to

solve complex systems of non-lincar cquations. L-Moment estimators are of-
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ten more tractable. For many distributions they produce simple closed form
expressions for the cstimators, or estimalors thal are solutions of simple
equations. L-Moment estimators are likely to be preferable il a distribution
function (C.D.F.) can be expressed in inverse form: that is, Lhere is a closed
form expression for F'(x) that can be inverted. The reason for this is obvious
from the form of the equations for the populalion I-Moments: expectalions
of order statistics are required. llowever, the method of L-Moments is by
no means restricted to this case, rather it is more likely to produce Lraciable
estimates if this is true. (Finding PWNMs when F(2) doces not have a closed
form is considered for some specific distributions in [19]). 11 is clear why thesc
estimators are used by hydrologists and engincers. Many of thie distributions
used in their research are of the [amily of distribulions called survival or relia-
bility type distributions. Examples of these types of distributions include the
Weibull, Generalized Extreme Value, Lognormal, Exponential, Gumbel and
Pareto. Many such survival distributions have C.D.F.s wlich can he writ-
ten in inverse form, making the method of L-Moment estimation cspecially
appealing in such applications.. Hlosking stales Lthat through his cxperience
with some common distributions, I.-Moment ¢stimators have been shown to
give reasonably efficient estimates, and, wilth small samples, often providing
more reliable estimates then Lhe method of Maximum Likelihood. Although
maximum likelthood estimation is considered to be asympiolically best, its
good asymptotic propertics may not lie evident with small dala sets.

It is also of interest, besides comparing L-Momnent based estimators to
MLEs, to consider a comparison between the Mcthod of [L.-Moments and the

Metbod of Moments (MOM), since the two methods are clearly very similar.

18



As mentionced previously, we might expect the L-Moment estimators to be
more robust, especiaily in small samples, since they are lincar combinations
of order statistics and require no calculation of powers of the data values as

do conventional moments.

1.6 Hypothesis Testing

L-Moment based estimators, for most standard distribuiions, are asymp-
totically normally distribuied. This allows for construction of simple test
statistics lor parametric hypotheses based on the asymplotic results, For

example, a test of;
Iy :0=0vs il,: 0+# 0

for a paramcler ¢ may be bascd on the test statistic:

(0 — 0o)
(0)

where § is the L-Moment estimator of ¢ and the denominator of the test
atatisticis the square root of the asymptotic varianceof §, Under some general
conditions, this statistic will have a limiting N{0,1) distribution under H..

An example of such a test is given in Chapter 6.

1.7 Discussion

The theory of L-Moments sets the foundation for the study of a viable al-
ternative to conventional methods of estimation, especially with respect to

applications requiring the modeling of survival or reliability type data found
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in the hydrological and engincering scicnces. L-Moment estimators arc often
simple to calculate, while retaining a suflicient degree of accuracy and reli-
ability for some distributions. In the next chapter, a distribution called Lthe
Generalized Logistic Distribution will be introduced as an alternative model
for engineering applications. In Chapter 3, the L-Momentl, conventional Mo-
ment and Maximum Likelihood estimators will be derived for this specific
distribution. In Chapter 4, the three methods will be compared using a sim-
ulation study, and in Chapter & the three methods will be used to fil Lthe
distribution to some specific engincering data sets. Finally, in Chapler 6, a
test of symmetry for the Generalized Logistic Distribution wili be derived

based on the results given in this chapter.



Chapter 2

THE GENERALIZED
LOGISTIC DISTRIBUTION

2.1 Introduction

The Generalized Logistic Distribution (GLD) studied in this practicum was
introduced in losking’s technical report {8). Although there have been other
distributions discussed in the literature by this name, so far there has been
no other mention of this version of the GLD. The GLD is considered in this
practicum for two reasons. First, although Ilosking has given the L-Moments
and associated parameter estimators for this distribution, the properties of
these catimators have not been investigated, Sceondly, due to its similarity in
shape to the GEV (Generalized Fixtreme Value} distribution, currently one
of the most uscful distributions for describing extreme phenomena, it offers
an alternative choice for hydrological applications, as will be seen when it is
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used for the analysis of the data considercd in Chapler 5. The fact that it
has three paramcters is also of importance to researchers, as it provides a

wide variety of possible shapes {or a diverse number of data sets.

2.2 Probability Distribution Function

The probability distribution function (p.d.[.) of the GLD is ,.ven as
follows:
(1- ’~'(_=:_~?_))1,m_n

1
f(x)== @ , k#£0 (2.1)
a (1+(1 - L(:I'__El)lfk)?

(v —~¢)
eh o
(z—¢)

(l4c a )

fiz) = % . k=0 (2.2)

where
E+ - <z <00, ifket
—-00 < T < 00, ifk=0

—oo<s:<e+% ifk>0

€ = location parameter
a = scale parameter

k = ghape parameter

Note that when & = 0, the GLD reduces to the well known Logistic

distribution. In this report Lhe primary interest is the case where & # 0,
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but we consider the spccial case as well, for complcteness. The cumnulative

distribution function {C.ID.F.) is given by:

1
F(z) = : v k#0 (2.3)
(1 +(1- 22y
and
1 +
F(z) = DR k=0 (2.4)
(I4+e e )

Note that since we have an explicit form for the C.D.F., we can easily
write the inverse of the C.D.F. for this distribution. The inverse distribu-

tion function, denoted 2{F), is given by:

m(F)=s+%[]—(l—}—£)k] , k£0 (2.5)
and
:c(F)=s——a1n(l}F) L k=0 (2.6)

The mean and variance of Lhe distribution, when & # 0 are:

;:,=e+%[1-1‘(1—k)[‘(1+k)] LIk <1

03=:—:[I‘(l—2k)I‘(1+2k)-—l‘2(1-k)["'(1+k)] <12

When & = 0, the mean and variance are given by:



Because the inverse distribution function can be defined in closed forn,
the GLD is a good candidate for L-Mement parameter estimation. We shall
see in the next chapter that the estimates derived with this method are
considerably more manageable than either maximum likelihood estimates

(MLEs) or Method of Moments (MOM) estimates, and can be writlcn in

closed form.

2.3 PWMs and L-Moments

The PWMs and the L-Moments for the GLD are stated below and are fol-
lowed by a derivation of each. As in Chapter 1, we consider Lhe form of ra,_;

and rf,..; as opposed to a, and G, :

_ L af  T{L-KI{+k)
ra,-;-—e+k[1 T(r) , k<1

., a I'(14 k)C(r — k)
r‘ﬁr-—l—5+'E[1— P(T‘) :|a |k|<1

When & = 0 {simple Logistic), the PWMs are given by:

re1
rap.) =€— aZa"
=l

-1
B =ct+a) s
a=}

The first four L-Moments of the GLD are:

M=+ 2[l~TI{l—-E)T( + k)]

R

24



A = al(1 — K)I(1 + &)
da = —kaT(1 — K)T(1 + £)
A = %(1 +5k)al(1 = H)T(1 + k)

and the L-skewness and L-kurtosis are (as defined in Chapter 1):

Ty = —k

_ (14542
T 6

When k = 0, the first four L-Moments are:

T4

A1=£
/\:=0
A3=0

[+ 4
Ay=—
176

and the L-skewness and L-kurtosis are given by:

0

T3

oy —

T4

2.3.1 Derivation of Results

In this section, the derivations of the results of the previous section are given.

rar_y = E(Xye) = / rz{l - F(2)} ™ f(z)dz
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Make the transformation F' = F{z).
1
= f — fy-lgr
=r jo z(F)(1 - Fy~1dF
where z{F) is the inverse {unction as defined in Chapter 1.

_rf [s+—(1 - ) )] (1~ F)-dF
=(e+3)-r% j F-5(1 - Pyr+-1qF

Note that the integrand is a Beta distribution, apart [rom a mulliplying

constant. Hence, it can be casily evaluatced.

s
gy

as required. The derivation of the # PWMs is similar.
tBrr = B(Xew) = [ re{F(2)}™ f(z)da

=7 ju (YR
Lo (5

= (e+3) 13 j (1~ P)*F=t='dF

3[1_ T(k+1)T r-!.)]
k [(r)

=&+
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as requircd. The first four L-Moments of the GLD are found using the

rclationship beiween them and either the a or § PWMs, In this case, the 8

PWMs will be used.

M=fo=e+y (1=~ kI(1+E)

A =20 - Bo
=c+ %(1-[‘(1+k)l‘(2—k))—s--%(1—1‘(1-—k)l‘(l+k))

£ (T +R)T(1 - &) = T(1 + K)T(2 - &)

= %m +E)(T(L— k)= (1 - K)T(1 = k)
= al'(1 + K)T(1 - &)
A3 =607 — 68+ 5

=2l£+%(1— P“”‘);(a“‘))] - 3]+ F1=T(+RHP - b))

+ g+%(1 - T(1 - k)1 +k))]

==

%r(1+ K)D(L = k) (3(1 — k) — (2= k)1 — k) - 1)

~akT(1 — £)T(1 4 &)
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Ay = 2085 — 308, + 126, — fo

=5 [£+%(1_ P(1+k)ﬁ[‘(d—k))] _ 10[e+% (1 _rp +:.-)21~(3_k))]

+6 [+ 2 (1= T+ BT - k)] = [e+ S (1~ 101 = Br(1+ 1)]

= S0(1 - W)(L+ K)Z(5K + )
= %tl +5E)0(1 - £)T(1 + k)
3= -:-\\-3:- =~k
Mo (1458
T N 6

For & = 0, the simple Logistic Distribution, the o and § PWMs arc
found by taking the limit of the PWMs far the GLT) as & — 0. Hence for

this special case;

rar_1=li_[.]?l(e+%[1 (1“;)(:‘?"{';»)])
e . (T()=T{ — k)(r+k)
=+ i im ( K )

Using L Hopital's Rule gives:

=+ mnm( ~I'(1 = B)1(r 4+ k)(r + k) + I'(r + £)D(1 - k)p(1 = k)

=€ + mr (D(r)¥(1) = P(r}¥(r))

I(r)
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=e—a(P(r)-V(1))=¢c— a»ri:s""

a=1

Similarly,

rB_; = &+ ——lim

L (F(r) —~T(1+ £)T{r — k))

k

=e+ %m(r(l + BD(r — £)U(r — k) = D(r — k)DL + k) T(1 + &)

=e+a(P(r)—¥(1))=c+ ai.s"l

as required, where ¥ is the Digamma function {Appendix B). The first

four [.-Momentis then follow from cither the o or § PWMs.

M=fo=ce+a(l(l)-¥(1) =¢
M=28—fBo=e+a(¥(2)— V(1) —e=a

Ay =68 — 66 + fo
= 2a(¥(3) — (1)) - 3a((2) — (1)) =0

Ay = 2083 — 302+ 1206 - By

fl

1 1 1
=5a[1+§+5]—100[1+§]+60

g
6

It then casily follows that T3 = 0 and 74, = 1/6.
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In Appendix C, some graphs of the p.d.f. are given for various values of
k. For negative values of k, the distribution is skewed right, and for positive

values of %, it is skewed lefl. \WWhen & = 0, the distribulion is symmetric.,

2.4 Discussion

The Generalized Logistic Distribution appears to be a good possibility for
modeling the types of data that will be discussed in this praclicum. As we
have seen in the previous scctions, it has tractable cxpressions for the L-
Moments. By inspection of these cxpressions, we can sce there are simple
relationships between them and the three parameters. Further, its shape is
similar to that of the GEV, a widely used model for hydrological data sets.
In the following chapters, there will be further justification lor the use of this
particular distribution. Although the GLD has not yet been exploited by
statisticians, its versatility for rcliability and engincering data sets makes

it an ideal distribution for the analysis of such dala.
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Chapter 3

LMOM, MLE AND MOM
ESTIMATORS

3.1 Introduction

In this chapter, the three types of estimators being considered in this report
are derived for the GLD. They will be compared on the basis of mathemat-
ical tractability, and in Chapler 4 they will be compared for accuracy and
precision with a simulation study. It will be seen that the L-Moment esti-
mators have the simplest [orm for the purposes of computation, while the
maximum likelihood estimators are solutions of a complicated set of nonlin-
car equations. Although one cannot choose a set of estimators based solely
on simplicity of form, it is at lcast a consideration in combination with other
required properties. Each method will be conéidered in turn and the re-

sulting estimators will be presented. The special case of the simple Logistic
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distribution {k = 0) is considered scparatcly.

3.2 L-Moments (LMOM)

Estimates are chosen to be based on L-Moments as opposed to PWMs due
to the simple relationships between the population L-Moments and the three
parameters. However, for some distributions, using PWMs will yield simpler
estimators (see [24), [14]). Since L-Moments are simple lincar combinations of
PWMas, the two approaches are essentially the same. The simple relationships
suggest that the GLD is a natural choice for the method of L-Moments. They
are given by:
k=—my

— Az
T T{L=E)T(1+ k)

c =,\l_%(1—[‘(1—-k)[‘(1 + k)

14

To find estimators, substitule sample L-Moments for the population L-
Moments. Hosking 8] has stated these results, bul he notes that the proper-
ties of the estimatlors have not been investigated. Ile suggesis sorne possible
modifications of these estimators because the distribution has an end point
that is a function of the parainetars, a situalion that sometimes causes esti-
mation difficulties. However, after experimenting wilh these modifications,
it appears that {he estimalors as they are given are the best. Note that
the sample L-Moments are easy to calculate from the data, mzking these

estimators appealing in terms of simplicity and traclability.
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3.3 MLE

Maximum Likelihood estimales arc those values of the parameters that max-
imize the log likelihood lunction. No investigation of the MLEs [or the GLD
is given in the literature; below we give a derivalion of the MLEs in a form
suitable for use in this reporl. Consider a random sample of size n [rom a

GLD; zy, 23, ...2q. The log likelihood for the GLD is given as [ollows:

1/k"
nL=—nnatd=E ") 3 In(1 "("" —£)) 9% In ( (1 —5("’—0'-52) )
(3.1)
where X represents summation from i = 1 to n.

To maximize this function lor the three parameters, we neced to find the
partial derivatives of the funclion with respect to each parameter, then set
the resulting three equations cqual Lo 0 and solve the equations for the tiree
parameters. The partial derivatives are:

(1~ Mo )™

a

(z; —¢€) (1 _ M)l/t-x

an

~ (1= !»)Z( k_(j,::_e_,)—f,-z

o

a

(6=

nf n (1-F) T —€)
da + a Z(Q—L(:r —¢)) a’z

o




k(zi =)\
(zi — &) (l - —T)

(@ — k(zi—€)) (1 + (1 B ﬂ%ﬁ)”k)

+%Eln (1 = E@ff_}) (1 - EL%__Q)W

(1 + (1 _ Mei- s))m‘)

The MLEs are the values of the parameters that satisfy:
dml

2
+"-:'Z

Oe =1
dinl
da =il
dinl
2 =D

Inspecting the three equations we note that we must solve three nonlinear
equations for which no closed form solution exists. Consequently, the solu-
tions will have to be determined by numerical methods, In a later chapter
of this report, we show that achieving convergence to a solution is difficult

and very sensitive to choice of starting valucs.

3.4 MOM

Method of Moments estimators are derived by finding p (number of parame-
ters) population conventional moments and equating them to corresponding
sample moments. The resulting p cquations arc then solved for the param-

eters. For the GLD we have three paramelers, so we require the first three
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sample moments: sample mean, variance and skewness. These sample mo-
ments are equated to their population analogues, and the resulting equations

arc:

a(l — ) -7
e+ == s
‘12(92 at) _ ~2
k2 U=
(g3~ 3g201 +298) _ Tlzi — fis)®
(—sign(k)) (52 — g1y = (52)3/2
where

gr =Tl —r)P(1 + k)

and fi; and &;? are the sample mean and sample variance respectively.

The MOM estimates are the solutions to these three equations. In order
to find estimates, we solve Lhe Lhird equation for /, which is a {function of
k alone. Given an estimate of k, the olher two parameters may be solved
for explicitly. However, numecrical methods are necessary to solve the third
equation.

Before doing a comparison by use of a simulation study, it is clear from
inspection of the equations that the L-Moment based estimators are the
easicst to compute, requiring only the evaluation of the Gamma (') function,
This is an obvious advantage of the L-Moment estimators over both MLEs
and MOM estimates. Furthermore, the MLEs appear to be the most difficult
to work with, requiring an iterative computer algorithm for solving three
simultancous nonlincar equations - a difficult task especially if the function
is not well behaved or has multiple maxima and/or minima in close proximity

to one another.
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In Chapter 4 a simulation study is done to see il the L-Moment based

estimators have comparable accuracy and precision with the two other cs-

tablished methods.

3.5 Special Case: £=0.0, the Simple Logistic

Distribution

For completeness, we also consider the propertics of the three types of esti-
mation for the simple Logistic Distribution, which is the special case of the

GLD when the shape parameter, £, is zcro.

3.5.1 LMOM

The L-Moment estimators are given by Hosking [8] using the relationships:
/\| - /\3 =£

/\2=0

where the cstimates are found by substituling sample L-Moments for pop-
ulation L-Moments. ¢ is estimated by {; — Iy instead of {; alone to reduce
variance. This is an example of a modification suggested in Chapter 1. Since

the simple Logistic Distribution is symmctric, £{lx) = Ay = 0 ([8]).
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3.5.2 MLE

The log likelihood function is given by:
(zi —¢)
InL=—nlna—-Z(m'—;E—)-—221n l+e « (3.2)

/

To find the maximum likelihood cstimaies of € and o we need to solve:

dinL
de =0
dInlL
dex =0
where
{(zi—¢)
dnL n 2 e a
9 =E_"E (zi—o)
I+e o
and
(z; —¢)
dInL _ =n (zi—€) e a (z:—£)
da a+z o2 22, (zi—€) a?
l+e o«
3.5.3 MOM

To find the MOM estimaltors, we equale the first two conventional population

moments lo the sample mean and sample variance respectively,
€= jiz
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3.6 Asymptotic Distribution of the L-Moment

Estimators

It is suggested by Hosking (8] that the variances of the L-Moment-based es-
timators in finite samples are quite close to the asymplotic variances. Thus,
it is of interest to find the asymplotic variance-covariance matrix for the es-
timators for different parameler values. A two-step procedure is required to
determine the form of this matrix. First, recall that. the parameter estimates
are [unctions of sample L-Moments, 5, which themselves are linear combi-
nations of the sample 8 PWMs, the &,s. (We consider the 4 as opposed Lo the
a PWMs since the covariance matrix lor the sample g PWMs of the GLD is
readily available in [8]). The sample PWMs are lincar combinations of order
statistics. Therefore the vector of » 4+ 1 sample # PWMs has an asymptlotic
multivariate normal distribution with mean f= (fu, fi, f2...8;), where r can
take any value from 0 to n — 1, and covariante matrix n='V, where, for the

GLD, the (i, j)** clement of V is givenin [8] by (z,7 =0, 1...r)

Vis = Jij + Jji
where
a? T(L4+2)DGE+5+1 —2%) [L,j+1,142k
= ¥ k
W= Tk TG +j+2) r’i+j+z,2+k‘| I<1/2
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Since we are interested in deriving the asymplotic distribution for our
three parameter estimators, we consider the specific cascof » =2, ( 7,7 = 0,
1, 2) since the # PWMs involved are Bo, 1 and 32, 3/ is the Generalized
Hypergcometric Function of unit argument (Sec Appendix B for definition).
Let 0 = (e, a, k), the vector of parameters. Then the distribution of the
vector of L-Moments estimalors can be found using the previous result and

the multivariate §-method. The veelor of estimators is:
0 = (E: a’a L‘) = f(bogbhbz)

Although we have written our parameters in terins of L-Moments, it is
casy to wrile them in terms of the § P\VMs by simply subslituting the
appropriatc lincar combination of 8 P\VMIs for cach of the L-Moments in the

expression for cach parameter.

_ (682~ 6By + fo)

k= (281 — B)
e (281 — Bo)
F'(1 - k(1 +k)
e=fo— = (1 =D(1 — KT(1 +4))

bl

Define the 3x3 malrix G = (g;;) by gi; = 0/;/0b;. Asymptotically the
vector of estimators will then have a multivariate normal distribution with

mean veetor f(3) = (g, @, k) and variance-covariance matrix =!GV G7. The

39



matrix has the form:

o 0wy ains
-1 T -1 :
n GVG =07 | a?wy afwy oy (3.3)

[a g {L] vivyy by

The w;; are functions of & alonc, and have complicated algebraic forms,
However they can be cvaluated numerically and are given in Table 3.1, for a
range of typical values of & (Since ¢ is a location parameter, without loss of
generality, let € = 0). The clements of Lhe matrix (f can be derived explicitly

and are as follows:

o =1+L [( ~ 1) (W1 + k) ~ (1 — &) ; (2k-1) ( 1 - 1)]

T(+ KT - ) A+~

3—1.) w(1+1. (1 -&) (f~—'”~)[ 1]
Sz = T(1+ 51 -5 ] l(l+L)P(1"’~)

B W(l+ k)~ (1~ k) I( ‘ 1]
9 =g I TAr AT -®) T E\TITOI0-F)

=TT+ B = k) (

1— B)OB(L + &)~ (1L - k) — 1

2
m= - n

k) (W14 k) — W1 = k)]

_6(U(1 + k) W(1 k)
I8 = T U+ T = §)
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w1 Wiz w3 a2 Was Wwas

41221 1.0525 13538 1.2220 -0.4761 1.7862

34202 0.8026 0.56376 1.0040 -0.3384 0.7743

32174 05416 03009 0.8435 -0.2170 0.4553

3427 02741 02125 0.7457 -0.1054 0.3259

32836 0.0016 -0.2867 0.7122 0.0002 0.2894

3.1449 .0.2706 02145 0.7443 0.1054 0.3260

J.2226 -0.5396 0.0305 08410 0.2153 0.4556

34259 -0.8018 05122 09995 0.3343 0.7718

41208 -1.0548 13512 1.2156 0.4667 1.7710

Table 3.1: Values of w;; for typical values of k

) 1~k
= A = R+ )

= %3 — k)
= QT+ BT = k)

6
= = ST+ B —H)

where V is Lthe Digamma function. The w;;s are comp  *ed using a computer
program, however it can casily be scen that « factors out in cach termin the

form given in the matrix,
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3.6.1 Special Case: £ =0

Asymptotic results for this special case have been derived in [§] in detail.
The asymptotic variance covariance matrix for the L-Moment estimators is
given by:

£ J 0

nvar ~ alt

o 0 .7101
Further, Hosking states the asymplotic variance-covariance matrix for the

MLEs, given by Johnson and Kotz, [20]. For comparison, the matrix is:

Erm' 9 3 0 s & 3 0

nvar ~ (¥ [ =1
Bl 0 9/(3+ ) 0 .6993

Thus, from these two results, a comparison of the two sets of estimators may
be made by calculating the relative elliciency of the L-Moment estimates Lo
the MLE estimates,

eff (£) =1

off (&) = 0818

el |~ | =.9818

&
(Note: The relative efliciency of the veclor of estimators is defined as the
ratio of the determinants of the two variance-covariance matrices.)
Unfortunately, the asymptotic variance-covariance matrix for the ML Es
in the general case could not be found so that a similar comparison could
be done for & # 0. However, given the high efficiency demonstrated in the
special case of k = 0, the possibility exists that such a property holds in Lthe

general case.
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3.7 Discussion

In this chapler, the three sets of estimators we wish to compare have been
derived. From their theorelical forms, one can see that the L-Moment es-
timators arc the casicst Lo calculale; cach of Lthe parameter estimators have
an explicit form, and only evaluation of the required Gamma function may
pose some difficulty. The maximum likelihood estimates are solutions of a
complex set of nonlinear equations that will require a sophisticated numerical
algorithm to determine the solution. The Method of Moments estimators re-
quire numerical techniques for Lhe solution of one nonlinear equation, to find
the shape parameter estimate, and have explicit expressions for the location
and scale parameters. At this point, the L-Moment cstimators certainly ap-
pear to be good cstimators. However, the quality of all three methods must
be determined in terms of precision and accuracy, before a choice among the
three can be made. Su.h a comparison is the subject of the next chapter,
in which a detailed simulation study is carried out to compare the methods
for a range of small sample sizes, and for a range of reasonable parameter
values.

In section 3.6 of this chapter, the asymplotic variance-covariance matrix
was derived for the set of L-Moment estimators for the GLD parameters.
These results will be used in Chapter 6 to derive a test of symmetry of the
GLD based on the shape parameler estimator and ils asymptotic normal

distribution.
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Chapter 4

SIMULATION STUDY

4,1 Introduction

In this chapter, the quality and viability of cach of the three sets of estimators
for the GLD are comparcd based on two criteria; bias and root meaa square

error [2]. The bias of an estimate § of a parameter 8 is defined as
Bias(0) = §— 0 (4.1)

and the Root Mean Square Error is delined as

RMSE(F) = /Var() + (Bias(f))? (4.2)

These two quantities effectively measure the precision and accuracy of the
estimators. Attention is restricted here to small sample sizes, since, for many
practi. .1 applications in engincering, the data sets being analyzed are small
due to the nature of the experiments. Further, il is well-known that the

method of maximum likclihood provides asymptotically eflicient eslimators.
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Thus, for very large sample sizes, the maximum likelihood estimators will
provide the best parameier estimates. llowever, the good asymptolic prop-
ertics of MLEs frequently do not hold in the small sample case. Therefore, in
this section, we attempt Lo ascerlain which of the three estimation methods
performs best for small samples.

'The propertics of the Lhree scts of estimators are examined using a sim-
ulation study based on 10,000 simulalions, with sainple sizes 15, 25, 50 and
100 and for values of %, the shapc paramc'er, {rom -.4 to .4 in increments of
.1. All methods of estimation arc invarianl under linear transformations of
the data, so, without Joss of generality, the location and scale parameters are

held constant at € = 0 and a = 1.0 throughoul.

4.2 Computation of Estimates

The MLEs posed some computational difficulties as they required the use of
numcrical methods to find the estimales, which concerned solving a system
of three simultancous nonlincar equations. Newton’s Mcthod [21] for three
variables was the logical choice for an algorithm, but it [ailed to yield con-
vergent cstimates, regardless of the quality of initial values. Hence,
the algorithim devised for this simulation study uses a soinewhat inefficient,
yet successful technique composed of the Bisection Method and Newton’s
Mcthod for single variables. Each of the three equations is solved for one
paramcter (while the other two arc held constant) in turn. At each succes-
sive step, the updated estimates ave used to solve the appropriate equation.

The algorithm cycles through the Lthree equations in this fashion until the
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k

n -4 -3 -2 -1 00 . 9F AR A
15 351 224 224 82 6.3 1i.5 5.7 8.0 11.8
25 (235 101 9.0 23 61 14 1.1 2.0 4.1
a0 {224 87 2.1 1.1 51 01 03 05 0.6
1o | 172 142 1.1 06 1.1 0.1 01 0.2 0.2:!—

Table 4.1: Failure Rate in Percent of MLIE Algorithm

dilferences between successive estimales of cach of the three paramelers are
less then a specified tolerance. Al that point, the solution to the three equa-
tions is found (a more detailed algorithm is given in Appendix D). Naturally,
any algorithm that depends on such an iterative numoarical scheme is prone
to failure during a run of simulations; that is, convergent estimates cannot
be found. Such failures are more likely for small sample sizes and highly
skewed data, when outliers can have a significant cflect on the course of the
iterations. In the case of a failure, Lthe sample is discarded. For cach set of
simulations, the failure rate in percent is given in Table 4.1. The likelihood
of failure is a significant drawback of the MLEs for this distribution.

The L-Moment estimales require no numerical methods as Lthey are given
in closed form, and only cvaluation ol the Gamma function (I') is required.
For the MOM estimates, the shape parameler & must be found using an iter-
ative scheme, and use of the Bisection Mecthod proves a successful approach
with no incidence of failure. The primary drawback of the MOM estimates

is that they do not exist for |k| > 1/3, since population skewness does not
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exist for such values of k.

4.3 Results of the Simulation Study

4.3.1 Simple Logistic Distribution

Before we examine the general case we will consider a2 simulation study of
the three methods for the simple Logistic Distribution (the special case of
ithe GLD when the shape parameter & = 0). The MLEs of ¢ and a were
found using Newton’s Method for two variables to solve the two simultaneous
equalions given in Chapter 2, with negligible incidence of failure. Both the
L-Moment estimates and the MOM estimates were found explicitly with no

need for recourse to numerical methods.

From the simulation study results of Table 4.2, the following observation

is made:

e The three methods perform similarly, except that the MLEs, in com-
parison to the other two methods, perform poorly in {erms of bias and

RMSE of the estimate of o for » = 15 and 25.

4.3.2 Generalized Logistic Distribution

We now consider the general case of estimating the three parameters of the
GLD. The simulation study results are presented for three separate cate-
gories: k < 0, k=0, k > 0. The results are given in Tables 4.3 to 4.7, where

the column headings are the values of k. (In Table 4.5, k£ = 0).
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a Method | BIAS(?) BIAS(&) | RMSE(Z) RMSE(&)
15  MLE -.01 .05 A4 36
LMOM -.01 .00 46 23
MOM ~01 -.02 AT 23
25  MLE 00 -.04 34 26
LMOM .00 .00 35 17
MOM .00 .02 36 18
50 MLE .00 .01 25 14
LMOM .00 .00 25 12
MOM .00 -01 26 13
100 MLE .00 -.01 17 .08
LMOM .00 .00 17 08
MOM .00 .00 18 .09

Table 4.2; Estimation of the 2 parameters of the Simple Logistic Distribution
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BIAS(8) BIAS(a) BIAS()
n Method | -4 -3 -2 -1 -4 -3 -2 -1| -4 -3 -2 -1
15 MLE|.12 -.03 -.02 05| .14 -07 -.03 .03|-04 .08 -.03 -.06
LMOM | .04 .02 .02 .00|-.05 -04 -04 -.04 | .07 .04 .03 .01
MOM | — .07 .14 08| — -23 .03 -02| — -.03 .09 .05
25 MLE|.13 -.05 -.01 .00] .14 -05 -.03 -.03 | .07 -.02 -.03 -.01
LMOM | .03 -.01 .02 -.01|-.03 -03 -.03 -.02| .05 .03 .02 .01
MOM| — .04 .13 .06] — -20 .04 -.01| — -03 .08 .04
5  MLE|.12 .01 .00 .00 .14 .02 -.02 -.02! .09 -.01 -.01 -.01
LMOM | .02 .01 .00 .00f-02 -02 -.02 .01] .03 .02 .01 .00
MOM| — .03 .10 06| — -18 .04 .00 — -03 .07 .03
100 MLE|.13 .01 .00 .00 .14 -01 -01 -.01] .14 .00 -.01 .00
LMOM|.01 .01 .00 .00/|-02 -01 -01 .00} .02 .01 .01 .00
MOM| — .02 .08 04| — -15 .04 .00 — -03 .06 .03

Table 4.3: Bias of Estimates for GLD, k =-0.4 to -0.1
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BIAS(2) BIAS(&) BIAS(K)

n  Method d 2 3 4 J o2 3 A Jd 2 3 4
15 MLE| 36 .35 .44 .74| .16 -.02 -12 -29 .27 .21 .20 .24
EMOM | -.01 -.01 -.03 -05]|-.04 -.04 -04 -.05(-01 -03 -.05 -.07
MOM |-05 .00 -08 —|-03 -15 -20 —[-03 .05 .03 —

25 MLE| 22 .20 .36 .,55| .09 -.01 -10 -23| .i7 .11 .12 .ih
LMOM | -.001 -.01 -.02 -03|-.02 -.02 -.03 -.03|-.01 -02 -.03 -.05
MOM |-05 -.01 -07 —|-02 -11 -15 —|-03 .04 .02 —

50 MLE| .10 .09 .36 .54} .05 -.02 -.10 -.20| .08 .04 .07 .10
EMOM | .00 .00 -.01 -02(-01 -02 -.02 -.02| .00 -.01 -.02 -.03
MOM|-04 -01 -06 —]-0} -07 -.10 —{-03 .02 .01 —

100 MLE| .04 .04 49 85| .02 -.01 -.12 -.26 | .04 .01 .06 .
EMOM | .00 .00 -01 -01{ .01 -.01 -.01 -.01}| .00 -.01 -.01 -.02
MOM |-03 -.03 -05 —| .0t -02 -05 —| .00 -.01 .00 —

Table 4.4: Bias of Estimates for GLD, £ = 0.1 toc 0.4
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Case 1: k < 0 (Tables 4.3, 4.6)

o For k = -.4, MLEs suffer large positive bias for estimates of £ and a.

e Fork =-3to-.1, the MLEs and LMOM estimates for all three param-
cters perform comparably in terms of bias, with the LMOM estimators

performing slightly better {or the smaller sample sizes.

¢ For k£ = -.3 to -.1, the MOM estimate of £ has the largest bias of the
three methods., For & = -.3, the MOM estimate of a has large bias.
For the estimate of &, the bias of the MOM estimate is larger than the

other two methods in almost all cases.

e For k = -.4, the RMSE of all three MLE estimators is at least as large
as that of the LMOM estimators. For the estimateof ¢ , for k =-.3 to

-.1, the three methods perform comparably for all sample sizes.

e Fork = -3 to- .1, the MLE and LMOM estimators of o have compa-
rable RMSE, but MOM estimates of o have larger RMSE is all cases.

¢ Fork=-3to-.1,the MLE and LMOM estimates of k¥ have comparable
RMSE for all sample sizes, whereas the MOM estimates of & seem to

be the best,

Case 2: k=( (Table 4.5)

¢ [n terms of bias, the LMOM estimates appear to perform the best for
all sample sizes and for all three parameters, while the MOM estimates

are the worst.
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k

o
n  Method | BIAS RMSE | BIAS RMSE | BIAS RMSE
15 MLE 09 Sl -.03 28 02 .25
LMOM 01 AT -.04 22 .00 A5
MOM | -.04 46 | -04 2241 -03 05
23 MLE 02 38| -.03 14 .01 18
LMOM | -.01 36 | -.02 A7 00 11
MOM | -.05 36 | -.02 A7 -03 .06
30 MLE .00 26 -.02 12 .00 09
LMOM .00 25 -.01 12 .00 .08
MOM | -.04 26| -.01 A3 -.02 .04
100 MLE .00 J81 -0t .05 .00 .06
LMOM .00 .18 .00 .08 00 05
MOM | -.03 A8 -01 09 -02 .03

Table 4.5: Bias and RMSE of Estimates for GLD when & =0
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Methoa

~4

RMSE(&)
.3 -2

-1

-4

RMSE(&)
-3 -2

-1

~4

RMSE(k)
~3 -2

-1

MLE
LMOM
MOM

49
49

42 A4
A8 47
50 .51

47
AT
A7

49
.29

23 .23
26 .24
50 .36

23
.23
25

25
.20

AT .17
.18 .16
.03 .09

.24
.18
07

25

MLE
LMOM
MOM

AT
37

33 .35
36 .37
37 40

37
.36
37

12
22

19 .18
20 .18
49 .29

A7
A8
21

21
16

A3 .13
14 .13
03 .09

.16
12
07

50

MLE
LMOM
MOM

34
27

24 .25
26 .26
27 .28

+25
.25
.26

51
16

4 .13
4 .13
21 .21

12
A2
15

A2
12

10 .09
10 .09
03 .08

.08
.08
.06

100

MLE
LMOM
MOM

30
19

A8 .18
18 .18
A9 .21

18
18
19

3T
11

10 .09
10 .09
A2 .15

.09
09
.10

25
09

07 .06
08 .07
03 .07

.06
.06
.05

Table 4.6: Root Mean Square of Estimates for GLD, k& = -0.4 to -0.1

e In terms of RMSE, for the estimates of ¢ and &, the three methods

Case 3: k> 0 (Tables 4.4, 4.7)

best, and the MLEs perform the worst, especially for n = 15.

perform comparably. For the estimates of &, the MOM performs the

o [or the smaller samples, the MLEs are very biased in all cases for

53

all parameter estimates. They are much more biased than either the

LMOM or MOM estimators.




RMSE(&)

RMSE(8) RMSE(k)
n Method}| 1 2 3 4| .1 2 3 4| 1 2 3 A
15 MLE|.62 .64 .70 .82|.41 .29 .28 .35(.35 .31 .30 .32
LMOM | .46 47 48 .49].23 .24 .26 29(.15 .16 .18 .19
MOM|.48 49 51 —|.26 44 .64 —|[.07 .09 .04 —
25 MLE{.49 50 .61 .74|.28 .21 .22 .29|.24 .20 .22 .2
LMOM | .36 .36 .37 .38|.17 .18 .20 .22|.12 .13 .14 .16
MOM |.37 .38 .39 —|.20 .37 60 --[.07 .09 .01 —
50 MLE|.32 .35 .55 .72|.17 .13 .17 25|13 .11 .14 .7
LMOM | .25 .25 .26 .27|.12 .13 .14 .16|.08 .09 .11 .12
MOM|.26 .28 .28 —|.14 29 .53 — .06 .08 .05 -—
100 MLE|.20 .2¢ .59 .70|.10 .09 .15 .23|.07 .07 .10 .l
LMOM |.18 .18 .18 .19|.09 .09 .10 .11|.06 .07 .08 .09
MOM|[.9 21 .21 — (.10 .22 44 —|.05 .07 05 —

Table 4,7: Root Mecan Square of Estimates for GLD, k = 0.1 to 0.4
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MOM estimates have large bias for the estimate of a for smaller sample

sizcs.

For positive k, the LMOM estimates of all three parameters seem to be

uniformly better in terms of bias than cither of the other two methods.

For small samples, k = .3 and .4, the RMSE of the MLEs for all param-
eter cstimales is much larger than that of either the LMOM or MOM

estimators.

For the estimates of ¢, £ = .1 to .3, the LMOM and MOM estimators

perform comparably in terms of RMSE for all sample sizes.

For the catimatcs of a, the MOM estimator has high RMSE, especially
for £ = .2 and .3. The MOM estimators of k perform slightly better
than either LMOM estimators or MLEs.

Overall for k£ > 0, in terms of RMSE, LMOM estimators seem to per-

form the most consistently fcr all parameters.

4.4 Discussion

In conclusion, it would appear from this study that the LMOM estimators

often perform better than the MLEs; in the cases where this is not true, the

improvement achicved by MLEs is negligible. In terms of practical research,

it is desirable to have a method of estimation that performs consistently

for a variety of situations, as do the LMOM estimates in this study. The

same cannot be said for the MLE or MOM estimates as performance varies
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greatly depending of the amount of skewness of the data and the sample size,
Further, the MLE method is prone to failure, making it an cven less reliable
method to use for real data. The results of this study and the simplicity of

the computation makes the LMOM estimators a good choice.
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Chapter 5

MODELING ICE
BREAKAGE STRENGTH

5.1 Introduction

In this scection, we consider nine data sets, five of which have been analyzed
previously by Lal and Parsons [29], and all of which have been anaiyzed by
Lal [22]. These dala sets contain {lexural strength and fracture toughness
measurements of various samples of ice, which are important engineering pa-
rameters. The strength or toughness of ice is measured by the amount of
pressure or compressive stress required to hreak or fracture a specimen of a
specific type of ice. Each data set represents a different type of ice having
varying micro-structure, temperature, salinity, volume, ete. These data sets
have been accumulated over several years by a variety of workers. For details

on liow the data were collected, sce Parsc s et al. [30]. It is of considerable
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interest to analyze the collected data using a straightforward method of sta-
tistical analysis. Due to the diversity in varieties of ice, a different model
from a family of models is required for each set of data. Two distributions
commonly used to model this type of data are the three-parameter Weibull
distribution and the two-parameter Gumbel distribution (Extreme Value Dis-
tribution Type I). In the analysis of Lal and Parsons [29], a three-parameter
Weibull distribution (a reparametrization of the Generalized Extreme Value
distribution) was fitted using maximum likelihood estimation to thirteen dif-
ferent data sets measuring flexural strength, five of which are considered in
this practicum. The Kolmogorov-Smirnov goodness-of-fit test was performed
to see how well the fitted model described the data, and in all cases the con-
clusion was that the model was adequate. Although the Weibull inodel was
proven useful, in [29] the authors mention that maximum likelihood param-
eter estimation for the Weibull distribution can be difficult. For engineering
and hydrological purposes, it is desirable to scek simpler distributions, and
for this reason they considered the Gumbel distribution as an alternative. In
Lal [22], the analysis was ex.cnded further to include twelve more data sets
measuring {racture toughness, four of which are considered in this practicum.
In his report, the author stresses the use of the Gumbel distribution for all
of the data sets to simplily analysis.

This desire for simplicity and ease of computation strengthens the case for
L-Moment estimation. As we have scen, the MLEs for the GLD areextremely
difficult to calculate, while the L-Moment estimates are ecasy to compute. The
GLD was considered as a good candidate model for these types of data scts

because of the GLD’s similarity to the Generalized Extreme Value distribu-
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tion in shape. Since a reparametrization of the GEV distribution (Weibull)
was previously successful for modeling the data, it is reasonable to hypoth-
csize that the using the GLD may provide a good alternative model and
possibly an improved analysis. Further, we can use L-Moment estimation to
fit the model, providing a great simplification over fitting the three-parameter
Weibull distribution by maximum likelihood. {There is also the possibility of
fitting the Weibull distribution to the data using L-Moment estimation, but
the L-Moment estimates for this distribution are not as tractable as those
for the GLD).

The purpose of this chapter is first to introduce a new distribution as a
candidate model for this type of data, and second, to demonstrate the per-
forrnance of L-Moment estimation for fitting the GLD model in comparison

with MLE and MOM.

5.2 Selection of Data Sets

Qut of twenty-five available data sets, nine were chosen to be modeled by the
GLD on the basis of their sample L-skewness and L-kurtosis. (The data sets
arc given in Appendix A). In previous analysis of the twenty-five data sets,
all were fitted by the same two distributions, either three-parameter Weibull
or Gumbel. Although all of the twenty-five data sets could probably be fitted
reasonably by the GLD, we have selected only those data sets which seem
more suited to be fitted by the GLD than any other distribution. For the
remaining data sets, the researcher may have to make a subjective decision

between the GLD and the Weibull distribution. The L-Moment diagram
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Data Set Sample Size | L-Skewness | L-Kurtosis
CDAT?2-Freshwater Ice -4C 14 -0.0780 0.1786
(N m=2)

CDAT4-Freshwater lce -24C 44 -0.02%4 0.2185
(kN m~—3/2)

CDATS -Small Size Specimen 55 0.1625 0.2040
Fresh Water -2C (MPa)

CDATY-Sea Ice (Horizontal) 50 0.1212 0.1944
(MPa)

CDAT12-Sea Ice -20C (MPa) 20 0.1401 0.2464
CDAT13-Sea Ice (0ld) (MPa) 19 0.0972 0.1591
CDAT14-Sea Ice -5C (MPa) 19 0.1274 0.2807
CDAT19-Resolute 87 (kN m~3/2) 380 -0.0795 0.28806
CDAT23-Finegrained 59 0.2320 0.1812
Columnar Freshwater Ice

-20C (kN m=3/2)

Table 5.1; L-Skewness and L-Kurtosis for the 9 Data Sets

(see Appendix F') would be helpful in making such a choice. The L-Moment
diagram provides an easy way to judge which models may be appropriale
for the data. The sample L-skewness and L-kurtosis for cach of the data
sets are given in Table 5.1. Note that the ohscrvations in cach data scl are
either measurernents of Critical Stress Intensity Factor (kN m~%2) — [racture

toughness, or Compressive Stress (MPa) — flexural strength.
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Plotting the L-skewness and L-kurtosis for cach data set on the diagram
(Appendix F) suggests that the GLD model is appropriate for these data

sets,

5.3 Fitting the Model

For cach data set, the GLD was fitted by Maximum Likelihood (MLE), L-
Moments (.LMOM) and conventional Moments (MOM). The Kolmogorov-
Smirnov goodness-ol-fit test statistic was then calculated to see which of the
cstimation procedures yiclded a reasonable model. The results are given in
‘Tables 5.2 and 5.3. Further, in Appendix E, three graphs are given for each
of the nine datla seis displaying the empirical C.D.F. and the fitted C.D.F.
plotted on the same graph, for each method of estimation. This allows a
visual inspection of the goodness-of-fit for cach fitted model. In order to
calculate the MLEs, the LMOM estimates were used as initial values for the
iterative prograin. In all cases, these initial values failed to converge to a so-
lution. Starting with the MOM estimates also failed to provide convergence.
i was necessary Lo grid search over intervals around the L-Moment estimates
lo lind suitable initial values.

As we can sce from the results, the LMOM and MOM procedures give
fairly similar estimates, while the MLE procedure yields estimates that are
quite different from both of the other methods. The most obvious difference
in the estimators is that the sign of k, the estimate of the shape parameter,
is usually reversed in the MLE case. The fact that the MLE of & is almost

always positive for these data sets is a concern, since a positive value means

61



Data Set Method £ & £ |K-S Stat
CDAT?2 MLE 116.556 | 18.285 | -0.053 0.072
(44) LMOM 116.789 ] 18.275 | -0.042 0.073
MOM 118.287 | 17.650 | 0.008 |  0.084
CDAT4 MLE 109.770| 16.803 | 0.275 |  0.149
(44) LMOM | 106.023 | 11.804 | -0.116 | 0.073
MOM 107.323 | 11.616 | -0.052 |  0.071
CDAT8  MLE 2.510 | 0.638 | 0.128 | 0.121
(55) LMOM || 2.410 | 0.480 |-0.162| 0.061
MOM 2.432 | 0.489 |-0.014 | 0.051
CDATS  MLE 0.408 | 0.129 | 0.095 | 0.464*
(50) LMOM 0.548 | 0.070 | -0.121 0.067
MOM 0.553 | 0.071 |-0.080| 0.033
CDAT12 MLE 0.928 | 0.138 | 0.285 | 0.218
(20) LMOM | 0.5900 | 0.080 |-0.140| 0.128
MOM 0.908 | 0.082 |-0.081| 0.120
CDATI3 MLE 0.498 | 0.191 | 0.164 | 0.464*
(19) LMOM | 0.689 | 0.103 | 0.097 | 0.092
MOM 0.698 | 0.101 |-0.037] 0.075
CDAT14 MLE 0.874 | 0.216 | 0.269 | 0.202
(19) LMOM || 0.852 | 0.122 |-0.127| 0.118
MOM 0.857 | 0.123 |-0.099| 0.111

Table 5.2: Fitting the Model by 3 Mcthods: * Significant at & %
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Data Set Method | £ & F |K-S Stat
CDAT!9 MLE 110.792| 23.447| 0.100 | 0.102
(80) LMOM || 107.582}19.566 | -0.124 |  0.049

MOM 108.123 ] 19.692 [ -0.107 |  0.042
CDAT23 MLE 122.082 [ 26.981 | 0.153 |  0.149
(59) LMOM |[[116.112|18.379(-0.233 |  0.048

MOM  |/119.273|19.474|0.133 |  0.042

Tablc 5.3; Fitting the Model by 3 Methods: * Significant at 5 % (cont.)

that the distribution is skewed left with an upper bound (See Chapter 2).
However, if onc considers a quantity such as breaking strength or fracture
toughness of ice, it is clear that there should be a lower bound. Although
the MLE model is rejected only twice for lack of fit out of the nine data sets,
this tendency lowards positive estimates of & when they should clearly be
ncgalive is a definite disadvantage.

The three methods produce similar values for the estimate of the location
paramcler €. [or the scale parameter a, the LMOM estimates and the MOM
estimales are quite similar, with the MLEs providing quite different values
for almost all of the nine data sets. The rejection of the MLE model for
CDAT9 and CDAT'13 is most likely a result of poor estimation jointly for
all paramecters. Both the MOM and LMOM estimates perform well for all
data scts, providing adequate models according to the Kolmogorov-Smirnov
goodness-of-fit test. The slightly lower value of the test statistic for the MOM

model may be attributed to the superior performance, in some cases, of the



MOM estimator of k£ in terms of RMSE, as seen in Chapter 4,

5.4 Discussion

The poor performance of the MLEs in comparison with the LMOM and
MOM estimators should not be surprising. The diﬂiculfy in choosing initial
values for the maximum likelihood algorithm suggests that the algorithm
is not a reliable one. The presence of other maxima or minimna of the log
likelihood function, or simply ouiliers in the data, are likely to causc the
resulting estimates Lo be of questionable accuracy. The dala sels considered
in this chapter were relatively small, and in some cascs were quite skewed.
Neither of these conditions provide an ideal environment for the numerical
methods required to find the maximum likelihood estimates.

There are two important conclusions to be made based on the analysis of

this chapter:

e The GLD should be considered as a model by hydrologists and engi-
neers working with data of the type analyzed in this chapter. The GLD
provides an alternative to the commonly used GEV distribution (or the
equivalent Weibull distribution), while maintaining a similar range of

shapes to accommodate dillerent data sets.

e L-Momeni estimation provides a quick, casy and reliable way to fit the
GLD model.
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Chapter 6

ATESTOF k=0

6.1 Introduction

The simple Logistic distribution is a special case of the GLI) when & = 0.
A test of £ = 0 could be viewed as a test of whether a set of data, fitted
by the GLD, came from a symmetric simple Logistic distribition or from
a skewed GLD (i.e. a tcst of symmetry of the underlying distribution). A
test of this hypothesis can be based on the L-Moment estimator of k. In
this chapter, such a test will be developed and illustrated with examples. To
determine the reliability of the test, two simulation studies, based on 10,000
simulations, are performed. The first is used to determine 