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Abstract 

In cold ocean research the development of statistical techniques useful in 

the analysis of cold ocean data. such as ice strength is of important practi­

cal concern. A central interest 1s the identification of and fitting of suitable 

models to the data., for the analysis of such data .. In this practicum we study 

the theory of L-Momcnts as a method of distributional identification and 

parameter estimation. :n particular, the Generalized Logistk Distribution 

(GLD) is fitted to nine data sets consisting of breaking strength measure­

ments of different types of ice using the method of L-Moments. The results 

compare favorably to the original analysis of the data based on Ma.ximum 

Likelihood fitting of the \Vcibull distribuf ion. The asymptotic distribution 

of the L-Moment estimators is derived, d.nd a test for the symmetry of the 

GLD, based on these asymptotic results, is devei,;ped. A Monte Carlo simu­

lation study demonstrates the performance of the method of L-Moments for 

the estimation of the parameters of the GLD and compares it to the method 

Maximum Likelihood and the method of Moments. L-Moment estimators 

arc easy to compute and perform consistenUy well across a wide range of pa­

rameter values. The method was found to be a simple and reliable method 

for estimation and distributional identification and thus it ·provides an at­

tractive alternative method to the standard techniques. The application of 

this method to real data illustrates the implementation of the method and 

the contexts in which the method is useful. 
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Chapter 1 

Theory of L-Moments 

1.1 Introduction 

Parameter estimation and model selection for data analysis are two impor­

tant areas in statistics. There are many methods suggested in the literature 

for parameter estimation, including the method of Maximum Likelihood and 

the Method of Moments. The technique used for a given problem is selected 

based on case of impJementation and reliability. To choose a, probability 

distribution to best describe a set of data, researchers rely on experience, 

:tssumptions, and a variety of descriptive statistics and statistically based 

goodness-of-fit tests. The method of L-Moments, developed by J.R.M. 

Hosking in a technical report (8] as an alternative method {estimation and 

distribution identification, has become prevalent in hydrology and engineer­

ing journals (sec [5],[10],[13],[16],[25],[32] for examples), but has been over­

looked in the statistical literature. The development and advancement of the 
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theory by hydrologists and engineers is due to its simplicity and effectiveness 

in many hydrological appJications. Although the theory of L~Moments has 

been developed extensively for some selected statistical distributions, many 

aspects and distributions have yet to be studied in detail. 

The method of conventional moments is frequently used for summariz­

ing and describing a data set, as well as for parameter estimation. For 

the purpose of estimation, sample moments arc equated to population mo­

ments and the resulting equations are solved for estimates of the parameters 

of interest. The method of 1~Moments considered in this report follows a 

similar derivation, the L-Moments are derived and equated to their sample 

analogues. L-Moment.s are special linear combinations of order statistics, 

giving the sample L-Moments the immediate advantage of a level of robust­

ness not found with conventional sample moments, the calculation of which 

involves raising observations to powers of two or more. The performance 

of 1-Moments for estimating parameters of some selected distributions ha.s 

been examined in the literature, primarily in hydrological and engineering 

journals and most notably in Hosking's technical report [8]. Hosking states 

in this report that, in his experience, 1-Moments often yield more accurate 

parameter estimates than the method of Maximum Likelihood (MLE) and 

the Method of Moments (MOM), especially in smaH samples. 

L-estimators, estimators based on linear combinations of order statistics, 

are not new to statisticians [4]; however, the specific linear combinations 

that define L-Momcnts had not been considered as part of a unified theory 

of distribution description, parameter estimation and hypothesis testing until 

Hosking's technical report [8), and later in Hosking [9]. 

2 



1.2 Definitions and Results 

To understand the theory of L-Momcnts, we first consider quantities called 

Probability Weighted Moments (PWMs) proposed by Greenwood et. al. [5]. 

It was the results of this paper that Jed to the theory of L-Moments developed 

by Hosking [8). L-Moments are special linear combination of PWMs, which 

arc themselves linear combinations of expected values of order statistics. 

1.2.1 Probability Weighted Moments 

Definition: Let X be a real valued random variable with distribution function 

F(x). The probability weighted moments of X are: 

A1p,r,s = E[XP{F(X)Y {1-F(X)}"] = j xP{F(x}Y {1-F(x)}"dF(x) {1.1) 

where p, r and s are real numbers. If r and s are positive integers, then: 

I I 
!11 r.s. E(XP ) 

p,r,s = (r + 8 + 1)! r+I:r+s+I 

where Xk:n is defined as the k1h order statistic of a sample of size n. This 

definition holds for both discrete and continuous random variables. In the 

continuous case: 

Then, by the transformation F = F(x) 

where x( F) is the inve1·sc distribution function. 

. 3 



Note that when r = s = 0, the P\Vr..'ls reduce to ordinary conventional 

moments. In the paper of Greenwood ct. al. [5], two particular PWMs were 

defined as follows: 

Or= Aft,O,r = E[X {1- F(X)Y], r = 0, 1, 2... . (1.2) 

and 

f3r = A1t,r,O = E(X { F(X) Y], r = 0, 1, 2 ... (1.3) 

Note that ror-1 = E(Xt:r) and rf3r-l = E(Xr:r) arc the expected values 

of the smallest and largest order statistics respectively in a sample of size r. 

Hosking [8] states and proves in his report that these PWMs arc suffi­

cient to characterize a probability distribution. Further, characteriza.tions by 

either a or {3 PWMs are interchangeable due to the following relationship 

between the two: 

( 1 A) 

or equivalently 

{3, = t.< -1 )' (~) "'' (1.5) 

The first relationship is easy to derive by writing (1 - F(X)Y in powers of 

F(X), as follows: 

Or= E(X{l- F(X)Y) = t. (~)(-l)kE(X{F(X)}k) 
using the binomial theorem. The expectation in the expression abov<! i11 

simply the definition of f3k· Thus: 

a,= t. (~)(-1)'{3, 
4 



as required. Similarly, to show the second of the two relationships, expand 

{F(X)}r in powers of {1- F(X)} again using the binomial theorem. 

{J, = t. (~)(-1)1E(X{l- F(X))') 

The expectation in the expression above is the definition of ak. 

as required. The first few such equalities arc: 

ao =flo 

for the first of the two relationships and: 

f3o = ao 

fl1 = o·o - O't 

for the second of the two relationships. 
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1.2.2 Examples of TO:'r-1 and 7'/3,·-1 Calculation for Some 

Common Distributions 

Here, three examples of PW M calculation arc given for illustration. 7'Cl'r-l 

and rf3,_1 arc derived instead of simply a, and {3,, since the former have a 

more straightforward meaning; they arc the expectations of the snmllcst and 

largest order statistics respectively in a sample of size 7'. C\'r and {3, can be 

found easily from these quantities. 

i. UNIFORM (a,b) The p.d.f. is given by: 

1 
f(x) = -. - , a< x < b, - oo <a, b < oo 

o-a 

The C.D.F. is given uy: 

F( ) 
x- a 

X=--
b-a 

Then: 

7'0'r-t = E(Xt:r) = 1b rx(l- F(x)Y- 1/(x)dx 

b (b )r-1 1 • b = 1 rx -- X --dx = 
7 1 x( b- X r-l dx 

a b- a b- a (b- (t)' a 

Using integration by parts gives: 

- + - --r [a(b-aY (b-ay+tl ra+b 
- (b-a)r 7' r(r+l) - 1·+l 

Similarly, rfJr-1 is given hy: 

rfJr-1 = E{Xr:r) = 1b rx(F(x))'-1 f(x )flx 

6 



= rx- --dx=--1b (x-a)"-1 1 a+rb 
a b-a b-a r+1 

ii. EXPONENTIAL(O) The p.d.f. is given by: 

1 
f(x) = 0c-:r:/O 1 0 <X< 00 1 0 > 0 

The C.D.F. is given by: 

F(x) = 1- e-z/O 

Thus: 

rll',.-t = E(Xt:r) = fooo rx(l- F(x))"-1/(x)dx 

= 7'Xe-(r-t)z/O -e-rl0dx =- xe-rrf8dx = -lo
oo 1 r looo 0 

o 0 0 o r 

using integration by parts. For this example, calculation of 

r/3r-t is not straightforward. It requires a knowledge of some 

specialized functions (see [8]). The exponential distribution is 

an example of a distribution where the calculation of one type 

of PWM may be easier than the other. Since a distribution 

can be characterized by either type of P\VM, and because 

a and f3 P\VMs arc related by the relationship given previ­

ously in this section, knowledge of both is not necessary. The 

next example illustrates a case where the {3 P\VMs are easily 

derived while the a PWMs arc not. 

7 



iii. GENERALIZED EXTREME VALUE {GEV(e,a, ~:)} 

The p.d.f. of this distribution is given by: 

1 ( k ) 1/k-t [ ( k ) l/kl 
f(x) = ~ 1- ~ (x- c) exp - 1- ~ (x- c) 

e + cxf k :5 x < oo if k < 0 

-oo < x::; f.+ ofk if k > 0 

-oo < e < oo , 0 < n < oo 

The C.D.F. is given by: 

F(x) = exp [-{1- k(x- t:)/aJI!k] 

The inverse distribution function is given by: 

The inverse distribution function is cousidercd here because 

making the transformation F = F(x) often makes compu­

tation of expectations of the extreme order statistics easier, 

as will be seen in the following calculations. As mentioned 

above, in this example, rf3,_1 may be found with little diffi­

culty, while rar-1 may not. 

rf3r-t = E(Xr:r) = l rx{F(x)Y-1/(x)dx 

Make the transformation F = F(x). Then dF = f(x)dx. 

rf3r-I = r lot x(F)Fr-1dF = r fo1 

[c + ~ (1 - (-In F)k] pr-ldfi' 
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Let u = -In F. Then F = e-u and dF = -e-udu. Then 

/3 ( a) a [00 
k -rud 

r r-1 = e + k - r k lo u e u 

Note that the expression under the integral is a gamma dis­

tribution except for a multiplying constant. Thus one can 

easily evaluate this integral. 

k > -1 

The properties of the L-Moment estimators of the parame­

ters of the GEV have been extensively studied in Hosking et. 

al.[14]. 

These examples and many others are described in detail in [8]. 

1.3 L-Moments 

While PWMs charactcri?..c a dist.ribution, t.hey have no easily interpretable 

descriptive meaning. Hosking (8], therefore, proposed functions of PWMs 

that give a descriptive summary of the location, scale, skewness and kurtosis 

of a probability distribution. 

g 



Definition: Given a real valued random vnrinhle X, the [.-~foments of X 

are defined to be the quantities: 

,. = l ,2 ... ,n ( 1.6) 

These L-Moments can be written in terms of the previously defined a 

and {3 PWMs as follows: 

r ,. 

).,.+1 = (-1)" LPr,kO'k = L1'r.kf3k ,1· = 0, 1,2 ... ,n- 1 (1.7) 
k=O k=O 

where 

Using this relationship, we can easily write the first few L-Moments in 

terms of the a and the {3 P\VMs. 

At = ao =Po 

Hosking notes that >., exists for r = 1, 2, ... , n iff E lXI exists. Thus a 

distribution may be fully described by L-Morncnts even if some of its con­

ventional moments do not exist. Furthermore, Hosking asserts that such a 
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description is meaningful because a distribution whose mean exists is char­

acterized by its L-Momenls. As with conventional moments, it is convenient 

to standardize some of the higher order L-Moments. 

Hosking introduced the L-Momcnt ratios defined to be the quantities: 

r=3,4 ... ,n 

Hosking states and proves the following assertion that gives numerical 

bounds for these L-Moment ratios: 

• If X is a non-degenerate random variable whose mean exists, then the 

L-Momcnt ratios of X satisfy lrrl < 1. 

1.3.1 Describing a P:a:obability Distribution with L­

Moments 

The L-Momcnts and L-Moment ratios arc meaningful quantities for describ­

ing the features of a distribution. In fact , they arc in some ways analogous 

to conventional moments . ..\1 is simply the mean, a standard measure of lo­

cation. Further, Hosking proposes that ..\2 is a measure of scale or variation, 

and T3 and T4 a.rc measures of skewness and kurtosis respectively. These mea­

sures arc called L-location, L-scale, L-skewness and L-kurtosis. In his report, 

Hosking first presents an intuitive discussion to verify that these measures 

arc sensible and also uses some known definitions of "scale", "skewness" and 

"kurtosis" to provide a thcorcticill ba.sis. (Note that the quantity ,\2 has 

been seen in the literature before. Aside from a scalar multiple, it is the 

expectation of Gini's Mean Difference Statistic (9J.) 

11 



Distribution L-Skewness Skewness L-Kurtosis Kurtosis 

Normal{O,l) 0.0 0.0 .12 3.0 

Logistic( 0,1) 0.0 0.0 .17 tl.2 

Exponential(O,l) .33 2.0 .17 !).0 

Gumbel{O,l) .17 1.1 .15 5.4 

Rayleigh(O,l) .11 .63 .11 2.0 

Table 1.1: Comparison of 1-Skcwncss/Slwwness and L-Kurtosis/Kurtosis for 

some specific distributions 

L-skewness and L-kurtosis have some immediately obvious advantages 

over conventional sl<ewness and kurtosis. 

• 1-skewncss and L-kurtosis arc not as sensitive to the extreme tails of the 

distribution. Calculation of conventional sl<ewness and kurtosis from 

a sample involves raising data values to the third and fourth powers, 

making them extremely sensitive to oullicrs. In small samples, the 

conventional sample skewness and kurtosis may be quil.c different from 

the true underlying values due to this sensitivity. 

• 1-skcwness and 1-kurtosis exist on bounded intervals making compar­

isons between skewness and kurtosis of different data sets easier. Some 

examples for some simple distributions arc given in Table 1.1. Hosking 

has compared Moments and L-Moments for measuring distributional 

shape in (11]. 

Because of this boundedncss, il is possible to identify a distribution hy 

calculating the 1-skcwncss and 1-kurtosis of the data set and plotting the 
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point on an L-Momcnt diagram . Hosking has created such a diagram 

which includes L·skewncss/ L-kurtosis curves for many distributions common 

in hydrological applications {sec Appendix F). In the data analysis chapter 

of this practicum, the diagram is used to determine whether a given set of 

data appears to be best described by the distribution considered as a model 

in this report. 

1.4 Estimation of PWMs and L-Moments 

In order to formulate a method of parameter estimation based on L-Moments 

or PWMs, one must first consider how to estimate the population L-Moments 

and PWMs, which can then be used to derive parameter estimators. Hosking 

proposes the usc of U-Statistics, which were introduced by Hoeffding [7]. 

Since the PWMs arc linear combinations of expected values of order statis­

tics of a sample of size r + 1, it is natural to estimate them by U-Statistics. 

The appropriate U-Statistics arc the corresponding functions of the sample 

order statistics averaged over all subsarnples of size r + 1 that can be con­

structed from a sample of size n. U-Statistics have good properties such as 

high efficiency, asymptotic normalit.y and robustness, which make them good 

candidates for the estimation of P\Vl\fs. The unbiased U-St.atistic estimators 

of the PWI\fs (called sample PW~Js) arc: 

n 
..... -1~ a,. = a,. = n L...., 

i=t 

13 

r = 0, 1, ... n- 1 (1.8) 



(
i -1) 

- n r 
{3 - b - n-1 ~ x 
r- r- LJ ( ) i, i=t n- 1 

1' 

t·=O,l, ... n-1 (1.9) 

where Xi is the i 111 sample order statistic in a sample of size n. The ar 

and the br arc related in the same way as t.heir population analogues: 

and 

br = IJ -1 )k (~) llk 
k=O 

Greenwood et al. [5] have given a detailed proof of the unhiasednc!ss of 

ar and br. Decause the L-I\'Jomcnts a1·c lineat· comhinnt.ions of either the o 

or {3 PWMs, we can construct estimators of the lr~1onwut.s which arc the 

corresponding linear combinations of the a, or br. The sample L-Mornents 

are thus given by: 

r r 

lr+l =(-It }:J>r,kak = LPr,kh (l.JO) 
k=O k=O 

where lr is an unbiased estimator of Ar• The L-Morncnt ratios nrc estimated 

by the sample L-Moment ratios. Although these t·atio statistics arc not 

necessarily unbiased for the population ratios, Ilosl<ing [8) states that they 

are consistent estimators. 

Remark: Sample L-Moments can be used to sununarizc the features of a 

data set in the same way as conventional moments, often in a simpler manner. 

L-Moments are frequently preferable, because, being linear combinations of 

the data points, they tend to be less sensitive to variability and outliers in 

the data. They may, therefore, prove to be more accurate and robust. 



1.4.1 Asymptotic Results 

The derivation of the asymptotic distributions of vectors of sample PWMs 

and sample L-Momenls is given in Jlosking [8). The results are based on 

Stigler's form of a theorem giving the asymptotic distribution of order statis­

tics [35). 

Let X be a real valued random variable with C.D.F. F(x), with pop­

ulation PWMs and L-Momcnts as defined previously. ar, br and lr+l , 

r = 0, 1, ... n- 1 are the sample P\V.Ms and sample L-Moments respectively, 

calculated from a random sample of size n. !!r, nnhr,fir, lr+t,and ~r+l are 

defined as vectors of length r+ 1 of samplc/populat.ion P\Vl\'ls or L-Moments. 

For example, a2 = (ao, u1 , a~) and ~ = (.>11 ,>.2, >.3). (Thus, the following re­

sults may be used to find the asymptotic distribution of whatever subset of 

the sample quantities is desired). The basic results arc: 

1. Jii(!!r- n-r) -} N(O, A), where the (i,j) 1h clement of the matrix A is 

(i,j = 0, 1, ... r): 

where 

Iii = jj {1- F(x)}i{l- F(y)}iF(x){l- F' .. )}dxdy 
z<y 

2. vn(hr- §) --t N(O, B), where the (i,j)'h clement of the matrix B is 

{i,j = 0, 1, ... 1·): 

15 



where 

J;i = jj{F(x)}i{F(y)}iF(x){l- P(y)}d:rdy 
z<y 

3. y'n(l.,- A,) -+ N(O, A), where the (i,j) 11' clement of the matrix A is 

(i,j = 1, 2, ... s): 

Aii = jj {Pt~, (F(x ))J~·- 1 (F(y ))+ Pi"- 1 ( P(:r:) )Pt_1 (f'(y ))} F(x ){ 1-F(y)}&rdy 
.r<ll 

where Pt(x) is the i 1h shifted Legendre Polynomial as defined in Ap­

pendix B. 

1.5 Parameter Estimation By L-Moments 

Estimation of distribution parameters is very important in statistical data 

analysis. The goal is to accurately estimate the parameters of the underlying 

distribution using a random sample from that distribution. Mauy tcclmictues 

are available in the literature for parameter estimation as mentioned previ­

ously, and in this section we introduce a method based on the PWMs and 

L-Moments of the previous sections. 

The method is the same as that for couventiona I moments. If 7' parameters 

are to be estimated, equate the first p population J>\VMs (L-Moments) to 

the first p sample PWMs (L-Moments), then solve the resulting p equations 

to derive estimators of the parameters. The decision to use PWMs or L­

Moments depends on the distribution: for some distributions, the PWMs 

may provide neater solutions or more tedious ones than the L-Moments. 

The decision should be based on case of computation. 
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Hosking has also suggested two refinements to the technique which, if 

judged necessary, may improve the cslim~lors. The first concerns distribu­

tions with an end point that is a function of the parameters; it is sometimes 

efficient to estimate the end point by the appropriate extreme order statistic. 

Using the PWM approach, this would involve equating Xt:n = nan-1 = nan-t 

or Xn:n = nbn-1 = nf3n-J and using one or both of these equations in combina­

tion with equations obtained from lower order P\VIvfs. The second refinement 

involves making usc of more than p of the PWMs (L-Moments). This can be 

a means to achieving a smaller estimator variance. In the next chapter we 

shall sec an example of this technique. 

As an illustration, consider estimating the mean of a symmetric distribu­

tion. For this type of distribution, the L-skcwness .-\3 = 0 and consequently 

the expected value of the third sample L-Moment, 13 , is zero. Instead of 

estimating the mean by just /1 , we could estimate it using /1 + a/3, where a 

is chosen to mjnimize the variance of the estimator. 

Exact distributions of the estimators are usually difficult to find, but 

their asymptotic distributions follow from the results of Hosking [8]. For 

most standard distributions the multivariate 8-method {3] can be used to 

show L-Momcnt based estimators arc asymptotically normally distributed. 

To justify the usc of these types of estimators, they must perform compa­

rably to established methods of estimation. rvlaximum Likelihood estimators 

(MLEs) al'C consistent and asymptotically efficient, making them commonly 

used estimators among statisticians and researchers. However, MLEs are 

sometimes difficult to compute, requiring recourse to numerical methods to 

solve complex systems of non-linear equations. L-Momcnt estimators are of-

17 



ten more tractable. For many distributions they prvducc simple closed form 

expressions for the estimators, or estimators that arc solutions of simple 

equations. L-Moment estimators are likely to be preferable if a distribution 

function (C.D.F.) can be expressed in inverse form: that is, there is a closed 

form expression for F( x) that can be inverted. The reason for this is obvious 

from the form of the equations for t.he population L-'Momcnts: expectations 

of order statistics a rc required. However, the method of L-Moments is by 

no means restricted to this case, rather it is more likely to produce tractable 

estimates if t his is true. (Find ing PWMs when F(x) docs not have a. closed 

form is considered for some specific distributions in (lD]). It is clear why these 

estimators arc used by hydrologists and engineers. Mnny ol' the distributions 

used in their research are of the family of distributions called survival or relia­

bility type distributions. Examples of these types of distributions include the 

Weibull, Generalized Extreme Value, Lognormal, Exponential, Gumbel and 

Pareto. Many such survival distrihution!i have C.D. I~ .s which can be writ­

ten in inverse form, making the method of L-Moment estimation especially 

appealing in such applications .. Hoski ng states that through his experience 

with some common distributions, L-Momcnt estimators have been shown to 

give reasonably efficient estimates, and, with small samples, often providing 

more reliable estimates then the method of Maximum Likelihood. Although 

maximum likelihood estimation is considered to be asymptotically best, its 

good asymptotic properties may not be evident with small data sets. 

It is also of interest, besides comparing L-Moment based estimators to 

MLEs, to consider a comparison between the Method of L-Momcnts and the 

Method of Moments (MOM), since the two methods arc clearly very similar. 
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As mentioned previously, we might cxpccL the L-~fomcnt estimators to be 

rnore robust, especially in smt~ll samples, since they arc linear combinations 

of order statistics and require no calculation of powers of the data values as 

do conventional moments. 

1.6 Hypothesis Testing 

L-Moment based estimators, for most standard distributions, are asymp­

totically normally distributed. This allows for construction of simple test 

statistics for parametric hypotheses based on the asymptotic results. For 

example, a test of: 

110 : 0 = Oo VS Ila : 0 =/: Oo 

for a parameter 0 may be based on the test statistic: 

(0- Oo) 
(T(O) 

where 0 is the L-Momcnt estimator of 0 and the denominator of the test 

statistic is the square root of the asymptotic variance of 0. Under some general 

conditions, this statistic will have a limiting N(O,l) distribution under Ho. 

An example of such a test is given in Chapter 6. 

1. 7 Discussion 

The theory of L-Moments sets the foundation for the study of a viable al­

ternative to conventional methods of estimation, especially with respect to 

applications requiring the modeling of smvival or reliability type data found 
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in the hydrological and engineering sciences. L-1\.Yomcnt estimators nrc often 

simple to calculate, while retnini ng a sufficient degt·ce of accuracy and reli­

ability for some distributions. In the next chapter, a. distribution called the 

Generalized Logistic Distribution will be introduced ns nn alternative model 

for engineering applications. In Chapter 3, the L-1\'Iomcnt, conventional Mo­

ment and Maximum Likelihood estimators will be derived for this specific 

distribution. In Chapter 4, the three methods will be compared using a sim­

ulation study, and in Chapter 5 the three methods will be used to fit the 

distribution to some specific engineering da.ta. set!->. Finally, in Chn.ptcr G, a 

test of symmetry for the Gencl'alizcd Logistic Distribution w\li be derived 

based on the results given in this chapter. 
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Chapter 2 

THE GENERALIZED 

LOGISTIC DISTRIBUTION 

2.1 lntr()duction 

The Generalized Logistic Distributiora (OLD) studied in this pra.dicurn was 

introduced in Hosking's technical report !Sj. Although there have been other 

distributions discussed in the literature by this name, so far there has been 

no other mention of this version of the GLD. The GLD is considered in this 

practicum for two reasons. First, although Hosking has given the L-Moments 

and associated parameter estimators for this distribution, the properties of 

these estimators have not been investigated. Secondly, due to its similarity in 

shape to the GEV (Generalized Extreme Value) distribution, currently one 

of the most useful distributions fot· dc~scribing extreme phenomena, it offers 

an alternative choice for hydrological applications, as will be seen when it is 
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used for the analysis of the data considered in Chapter 5. The fact that it 

has three parameters is also of importance to researchers, ns it provid<'.s a 

wide variety of possible shapes for a diverse number of data sets. 

2.2 Probability Distribution Function 

The probability distribution function (p.d.f.) of the GLD is bav'en as 

follows: 
1 (1 - k(x - c) )' /k-1 

f (x) = - 0' , k :/: 0 
a {1 + (1- k(:r. - c))1/k)2 

a 

where 

(:r- c) 

f ( x) = 1 __ e __,,__a-..,.....--
a (x- c) ' 

(1 + c a )2 

a 
e + k ~ x ~ oo, 

-oo < x < oo, 

(\' 

-oo < x < e +-- k 

e = location parameter 

a = scale parameter 

k = shape parameter 

if k < 0 

if k = l) 

if k > 0 

(2.1 ) 

(2.2) 

Note that when k = 0, the GLD reduces to the: well known Logistic 

distribution. In this report the primary interest is the case where k :/: 0, 
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but we consider the special case as well, for completeness. The cumulative 

distribution function (C.D.F.) is given by: 

l 
F(x) = , k i: 0 

( 1 + ( 1 - I•( x - e) )1 I k) 
(\' 

(2.3) 

and 
1 

F( x) = --..,...-( x---c.,..-) ' k=O (2.4) 

{1 + e Ct ) 

Note that since we have an explicit form for the C.D.F., we can easily 

write the inverse of the C.D.F. for this distribution. The inverse distribu­

tion function, denoted x(F), is given by: 

a [ (1- p)k] x(F) = e + k 1 - --y;;- ,kf:O (2.5) 

and 

(
1- F) x{F)=c-aln -p , (2.6) 

The mean a.nd variance of the distribution, when k f: 0 arc: 

ikl < 1/2 

When k = 0, the mean and variance arc gi\'cn by: 
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Because the inverse distribution function can be defined in closed form, 

the GLD is a good candidate for L-Moment parameter estimation. We shall 

see in the next chapter that the estimates derived with this method arc 

considerably more manageable than either maximum likelihood estimates 

(MLEs) or Method of Moments (MOM) estimates, and can be written in 

closed form. 

2.3 PWMs and L-Moments 

The PWMs and the L-Moments for the GLD are stated below and are fol­

lowed by a derivation of each. As in Chapter 1, we consider the form of ra,._1 

and rf3r-l as opposed to a,. and {3,. : 

_ a [1 _ r(l- k)f(r + k)l 
Tar-1 - e + k f(r) , I k I< 1 

a _ a [l _ f(1 + k)f(r- k)l r,.,,._. - e + k r(r) ' I k I< 1 

When k = 0 (simple Logistic), the PWMs are given by: 

r-1 

rf3r-l = e +a E s-1 

•=1 

The first four L-Moments of the GLD are: 

a 
At = e + k [1 - f(l- k)f(l + k)J 
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,X2 = ar(l - k)f(l + k) 

-X3 = -kar(l- k)r(l + k) 

1 
-X4 = 6(1 + 5k2)ar(I - k)r(l + k) 

ancl the L-skewncss and L-kurtosis arc (as defined in Chapter 1 ): 

T3 = -k 

(1 + 5k2
) 

T4 = 
6 

When k = 0, the first four L-Moments are: 

a 
,X4 = 6 

and the L-skewness and L-kurtosis are given by: 

1 
T4 =-

6 

2.3.1 Derivation of Results 

In this section, the derivations of the results of the previous section are given. 

rar-1 = E(Xt:r) = 1 rx{l- F(x)}r-lf(x)dx 
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Make the transformation F = F(x). 

where x(F) is the inverse function as defined in Chapter 1. 

r [ a (1- F)k l =r lo e+ k(l- p- ) (1- Fy-1dF 

Note that the integrand is a Beta distribution, apart from a multiplying 

constant. Hence, it can be easily evaluated. 

= (e+~) -rar(t-k)r{r+k) 
k k f(r+l) 

= a [1 _ f(l - k)f(r + k)l 
t:+ k f(r} 

as required. The derivation of the {3 PWMs is similar. 

rf3r-1 = E(Xr:r} = 1 rx{F(x)}r-lJ(x)dx 

= ,. fo1 
x(F)F"-1dF 

= r l [e + ~(1-c ~Fn r'dF 

= (c + ~)- r~ {
1 
{1- F)"Fr-k-1dF 

k k Jo 
= e +a [t _ f(k + 1 )r(r- k)l 

k f(r) 
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as required. The first four L-Momcnts of the GLD arc found using the 

rdationship between them and either the a or {3 PWMs. In this case, the {3 

J>WMs will he used. 

a 
AJ =Po= e + k (1- r(l- k)r(I + k)) 

a a 
= e + k (1- r(l + k)r(2- k))- e ·- k (1- r(I - k)r(l + k)) 

= ~ (r(l + k)r(I- k)- r(l + k)r(2- k)) 

= ~r(t + k) (r(I - k)- (1- k)r(t- k)) 
k 

= ar(l + k)r(l - k) 

>.a = 6{32 - 6{31 + f3o 

= 2 [• + ~ (t- r(t + k){(
3

- k)) ]- 3 [• + f (t- r(t + k)r(2- k))] 

+ (e+ ~ (1- r(I- k)P(I +k))] 

Q = k r(l + k)r(t- k)(3(J - k) - (2- k)(l- k)- t) 

= -akr(I - k)r(I + k) 
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..\4 = 20/33 - 30/32 + 12{3, - f3o 

= + + ~ (I _ f( I +k ~( 4 - k)) ]- I O [ e + ~ (I _ I'( I +k );'( 3 - k)) l 
+6 [e + ~ (1- r(l + k)r(2- k))]- [e + ~ (1- I'(l- k)r(t + k))] 

a 1 
= k r(I- k)r(I + k)6(sk3 + k) 

= ~tl + 5k2)r(1- k)r(1 + k) 
6 

For k = 0, the simple Logistic Distribution, the a ancl f3 PWM~ are 

found by taking the limit of the P\VMs for the GLD as k -t 0. lienee for 

this special case; 

_ 1. ( ~ [1 _ r(I - k)r(1· + k)]) 
rar-1 - tm e + k r( ) 

k~o · r 

=e:+- tm 
a )' (r(7')- r(l - k)r{r + k)) 

r(r) k-o k 

Using L'Hopital's Rule gives: 

= e: +~lim ( -r(I- k)r(r + k)'ll(r + k) + l'(r· + k)l''( l- k)'J.I(l - k)) 
r(r) k-o 

= e: + ~ (r(7')'Jt(l)- r(r)\11(7·)) 
r(r) 
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r - 1 

= e- a (\fl(r)- '11(1)) = e- a 2: s-1 

.!=1 

Similarly, 

a _ ~ 1. (r(r)- r(l + k)f(r- k)) 
rf.lr-1 - e + r( ) lm k r k-o • 

= e +~lim (f(l + k)r(1·- k)'l!(r- k)- r(r- k)r(I + k)ll!(l + k)) 
k k-+0 

r-1 

= e + a(w(r)- w(l)) = e +a 2: s-1 

.!=I 

as required, where llJ is the Digamma function (Appendix B). The first 

four L-.Moments then follow from either the a or {3 P\VMs . 

.X 1 = f3o = c: + a( \II ( 1) - W ( 1)) = c: 

Az = 2{31 - f3o = c: + a-('11(2)- \11(1))- e =a 

= 2a(w(3)- \11(1))- 3a(\ll(2)- w(1)) = 0 

.-\1 = 20{33 - 30z + 12Pt - f3o 

[ 1 1] [ 1. = 5a 1 + - + - - 1 Oa 1 + -J + 6a = ~ 2 3 2 6 

It then easily follows that -r3 = 0 and r4 = 1/6. 
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In Appendix C, some graphs of the p.d.f. arc given for vnl'ious values of 

k. For negative values of k, the distribution is skewed right, and for positive 

values of k, it is skewed left. When k = 0, th'· distribution is symmetric. 

2.4 Discussion 

The Generalized Logistic Distribution appears to be a good possibility for 

modeling the types of data that will be discussed in this practicum. As we 

have seen in the previous sections, it has tract.nblc expressions for the L­

Mornents. By inspection of these expressions, we cnn sec there are simple 

relationships between them and the three parameters. Further, its shape is 

similar to that of the GEV, a widely used model for hydrological data sets. 

In the following chapters, there will be further justification for the use of this 

particular distribution. Although the GLD has not yet been exploited by 

statisticians, its versatility for reliability and engineering data sets makes 

it an ideal distribution for the <~na lysis of such <In ta. 
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Chapter 3 

LMOM, MLE AND MOM 

ESTIMATORS 

3.1 Introduction 

In this chapter, the three types of estimators being considered in this report 

are derived for the GLD. They will be compared on the basis of mathemat­

ical tractability, and in Chapter 4 they will be compared for accuracy and 

precision with a simulation study. It will be seen that the L-Moment esti­

mators have the simplest form for the purposes of computation, while the 

maximum likelihood estimators arc solutions of a complicated set of nonlin­

ear equations. Although one cannot choose a set of estimators based solely 

on simplicity of form, it is at least a consideration in combination with other 

required p roperties. Each method will be considered in turn and the te­

sulting estimators wilt be presented. The special case of the simple Logistic 
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distribution (k = 0) is considered scparet.tcly. 

3.2 L-Moments (LMOM) 

Estimates are chosen to be based on L-Momcnts as opposed to PWMs due 

to the simple relationships between the population L-Moments and the three 

parameters. However, for some distributions, using P\VMs will yield simpler 

estimators (see [24], (14]). Since L-Moments arc simple linear combinations of 

PWMs, the two approaches are essentially the same. The si mplc relationships 

suggest that the GLD is a natural choice for the method of L-Moments. They 

are given by: 

k= -T3 

>.2 a = ___ ...;;,_ __ 
r(t- k)r(l + k) 

Q 
c =~~--(I - r(l-k)r(I +k)) 

k 

To find estimators, substitute sample L-Momcmts for the population L­

Moments. Hosking (8] has stated t.hcsc results, hut he 11otes that the proper~ 

ties of the estimators have not been investigated. lie suggests some possible 

modifications of these estimators because the distribution has an end point 

that is a function of the parameters, a situation that s0metimes causes esti­

mation difficulties. However, after experimenting with these modifications, 

it appears that the estimators as they arc given arc the best. Note that 

the sample L-Momcnts are easy lo calculate from the data, m<~king these 

estimators appealing in terms of simplicity and t.raclability. 
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3.3 MLE 

Maximum Likelihood estimates arc those values of the parameters that max­

imize the log likelihood function . No invcst:gation of the MLEs for the GLD 

is given in the literature; below we give a derivation of the MLEs in a form 

suitable for usc in this report. Consider a random sample of size :'1. from a 

GLD; x., x2, ... xn. The log likelihood for the GLD is given as follows: 

where E represents summation from i = 1 ton. 

To maximize this function for the three pa.t·amcters, we need to find the 

partial derivatives of the function wi th respect to each parameter, then set 

the resulting three cqu:~.tions equal to 0 and solve the equations for the three 

parameters. The partial derivatives are: 

( 
k(x,- e)) 1/k-1 

(x · - e) 1- _.:.._~~ 
8ln/ n (I - k) (xi -e) 2 ' a 

--a;;- = - ;;+ a L; (a - k(x;- e)) a' L; (I+ (I - k(x;"- e) r•) 
8lnL = (k -1) L: (xi -e) .!_ L:ln (l- k(xi- t:)) 
ak k (0' - k(xi- e:)) ~~2 Q 
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The MLEs arc the values of the parameters that satisfy: 

a In L = 0 
8c 

Din L = 0 0('( 
fJlnL =O 

8k 

Inspecting the three equations we note that we must solve three nonlinear 

equations for which no closed form solution exists. Consequently, the solu­

tions will have to be determined oy numerical methods. In a later chapter 

of this report, we show that achieving convergence t.o a solution is difficult 

and very sensitive to choice of starting values. 

3.4 MOM 

Method of Moments estimators arc derived by finding p (number of parame­

ters) population conventional moments and equating them to corresponding 

sample moments. The resulting 7> equations arc then solved for the param­

eters. For the GLD we have three f>eu·arnctcrs, so we~ require the first three 



sample moments: sample mean, variance and skewness. These sample mo­

ments arc equated to their population analogues, and the resulting equations 

arc: 

where 

9r = f(l - rk)f(l + rk) 

and [i; and fi;2 are the sample mean and sample variance respectively. 

The MOM estimates arc the solutions to these three equations. In order 

to find estimates, we solve the third equation for /~, which is a function of 

k alone. Given an estimate of k, the other two parameters may be solved 

for explicitly. However, numerical methods ar\! necessary to solve the third 

equation. 

Defore doing a comparison by use of a simulation study, it is clear from 

inspection of the equations that the L-Moment based estimators are the 

easiest to compute, requiring only the evaluation of the Gamma (f) function. 

This is an obvious advantage of the L-Momcnt estimators over both MLEs 

and MOM estimates. Furthermore, the MLEs appear to be the most difficult 

to work with, requiring an iterative computer algorithm for solving three 

simultaneous nonlinear equations · a difficult task especially if the function 

is not well behaved or has multiple maxima and/or minima in close proximity 

to one another. 
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In Chapter 4 a simulation study is done to sec if the L-Momcnt based 

estimators have comparable accmacy and precision with the two other es­

tablished methods. 

3.5 Special Case: k=O.O, the Simple Logistic 

Distribution 

For completeness, we also consider the properties of the three types of esti­

mation for the simple Logistic Distribution, which is the special case of the 

GLD when the shape parameter, k, is zero. 

3.5.1 LMOM 

The L-Momcnt estimators arc given by Hosking [8] using the relationships: 

>-t ->.a = e 

where the estimates are found by substituting sample L-Momcnts for pop· 

ulation L-Moments. e is estimated hy It - Ia instead of It alone to reduce 

variance. This is an example of a modification suggested in Chapter 1. Since 

the simple Logistic Distribution is symmetric, E(/3 ) = >.3 = 0 ([8]). 
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3.5.2 MLE 

The Jog likelihood function is given by: 

x · -e -
( 

(x; -e)) 
In L = -n In " - E ( '" ) - 2 E In 1 + c " 

1 

(3.2) 

To find the maximum likelihood estimates of c and a we need to solve: 

where 

and 

3.5.3 MOM 

To find the MOM estimators, we equate the first two conventional population 

moments to the sample mean and sample variance respectively, 
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Jaa-2 
(\' = --

1!" 

3.6 Asymptotic Distribution of the L-Moment 

Estimators 

It is suggested by Hosking (8] that the va rianccs of the L-1\lomcnt-based es­

timators in finite samples arc quite close to the asymptotic variances. 'J'hus, 

it is of interest to find the asymptotic variance-covariance matrix for the es­

timators for different parameter values. A two-step procedure is required to 

determine the form of this matri x. Fin;t., recall t.hn t. f. he p;u·n.mel.er estimates 

are functions of sample L-l\1oment.s, Irs, which thclllselvcs arc liucar combi­

nations of the sample f3 P\VMs, the brs. ( \Ve consider t.he {3 as opposed lo the 

a PWMs since the covariance mat.rix ror the sample {3 P\VMs of the GLD is 

readily available in (8]). The sample P\Vl\1s arc linear combinations of order 

statistics. Therefore the vector of 7' +I sample f3 PWMs has an asymptotic 

multivariate normal distribution with mean f!.= (flo, fitt fj2 ···flr ), where 7' can 

take any value from 0 to n- 1, and covariaw.:c matrix u.-1 V, where, for the 

GLD, the (i,j)th clement of V is givcu in (S] by (i, j = 0, 1. .. 1·): 

where 

J .. _ ~ r(I + 2k)r(i + i + 1 - 2k) F t,j + 1,1 + 2k , 1 k I< 112 
''- 1 + k r(i + i + 2) 3 2 

i + 1 + :l, 2 + k 
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Since we arc intert!sted in dcri\'illg the asymptotic distribution for our 

three parameter estimators, we consider the specific case of r = 2, ( i,j = 0, 

1, 2) since the {J PWMs involved arc f3o, fJ1 and {32. 3P2 is the Generalized 

llypergcomctric Function of unit argument (Sec Appendix B for definition). 

Let 0 = (e,o, k), the vector of parameters. Then the distribution of the 

vector of L-Moments estimators can be found using the previous result and 

the multivariate 8-method. The vector of estimators is: 

Although we have written our pa.rametet·s in terms of L-Moments, it is 

easy to write them in terms of the /3 P\V~Is by simply substituting the 

appropriate linear combination of {J P\Vi\ls for each of the L-Moments in the 

expression ror each parameter. 

k = _ (6fJ2- 6{31 + /3o) 
(2(3, - f3o) 

(2p, - f3o) 
l\' = ~--'-~~""'"':'--:..-,-:'" 

f(l-k)l'(l + k) 

(\' 

e=f3o-;;(I-r(l-k)r(l+k)) 

Define the 3x3 matrix G = (9ii) by 9ii = DfdfJbi. Asymptotically the 

vector of estimators will then have a multivariate normal distribution with 

mean vector f({J) = (e:, a, k) and variance-covariance matrix n-1GVGT. The 
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........... 

matrix has the form: 

(3.3) 

The Wij are functions of k alouc, and have complicated algebraic forms. 

However they ca'n be evaluated numerically and arc given in Table 3.1, for a. 

range of typical values of k (Since c is a location pammctcr, without loss of 

generality, let c = 0}. The clcmcnls of the matrix G can be derived explicitly 

and are as follows: 

- !. [ (k-1)(\l1(1tk)-\ll(l-k)) (2h:-l) ( 1 - )] 
911 -

1+ k f(l t k)f(l- k) + k 1'(1 + k)f(l- k) I 

_ 2{3- k) [\11(1 + k)- \ll(l- /.:)] (6- 'tk) [ l _ l 
912 

- k I'( I+ k)f(l -A·) + 1.:2 I'( I + k)r(l - k) l 

6 [W{l t k) - W(l - k) 1 ( I )] 
913 = -k r(I + k)I'(l- k) + "k r(l + k)l'(l- k) -t 

1 
921 = [(1- 1.:)('~{1 + k)- 1{1(1 -/~) ) -I] 

f{l + k)r(l- k; 

2 
922 = r(l + k)r(l- k) [t - (3- ~:)('11(1 + 1.:)- '~(I- k)J 

6 (Ill ( I + k) - IIJ ( 1 - k)) 
923 = I'( I + k)r(l - k) 
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k Wu Wt'l Wt3 lV22 lV23 w33 

-.1 4.1221 1.0525 J.3r)38 1.2220 -0.4 761 1.7862 

-.3 3.4202 0.8026 0.5376 J.OO,tO -0.3384 0.7743 

-.2 3.2174 O.M16 0.300!) 0.8435 -0.2170 0.4553 

-.1 3.1427 0.2741 0.2125 0.7457 -0.1051 0.3259 

0.0 3.2836 0.0016 -0.2867 0.7122 0.0002 0.2894 

.1 3.l44!J ·0.2706 0.2145 0.7443 0.1054 0.3260 

.2 3.2226 -0.5396 0.0305 0.8410 0.2153 0.4.556 

.3 3A25!J ·0.8018 0.5122 0.9995 0.3313 0.7718 

A 4.1208 -l.OMS 1.3512 1.2156 0.4667 1.7710 

Table 3.1: Values of tu;i for typical values of k 

(1 - k) 
931 =- al~(l- k)r(l + k) 

2(3- k) 
Ya'l = aT ( I + k) r ( l - k) 

6 
933 = - al'(l + k)r(l- k) 

where \II is the Digamrna. function. The w ;jS arc comr •.cd using a computer 

program, however it can easily be seen that a factors out in each term in the 

form given in the ma.t.rix. 
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3.6.1 Special Case: k = 0 

Asymptotic results for this special CilSC hi\\'C been dc•ri\'cd in [8) in dct.ail. 

The asymptotic variance covariance matrix for the L-l\lonwnt estimators is 

given by: 

nvar [ e ] "' n2 [ 
3 0 

] 
a o .1101 

Further, Hosking states the asymptotic vmiancc-rovarinncc matrix for the 

MLEs, given by Johnson and 1\otz, [20]. For comparison, the matrix iH: 

[ 
frnt ] 2 [ 3 0 ] . 2 [ a 0 ] nvar "'a = n 
&mt o !l/(:J + rr1

) o .mma 
Thus, from these two results, a. comparison of tile two sct.s of estimators mny 

be made by calculating the rclath·c erricicncy of the L-l\1omcnt cstimal<!H to 

the MLE estimates. 

err(£) = 1 

eff (&) = .!>8·18 

err [ : ] = .ns,ts 

(Note: The relative efficiency of the vector of c!stimators is defined as the 

ratio of the determinants of the two Vcll'iance-coval'iance matrices.) 

Unfortunately, the asymptotic val'iance-covariance matrix for the M LEs 

in the general case could not be found so that a similar comparison could 

be done for k :f 0. However, given the high efficiency demoustratcd in the 

special case of k = 0, the possibility exists lhat such a property holds in the 

general case. 



3. 7 Discussion 

In this chapter, the three sets of estimators we wish to compare have been 

derived. From their thcorclical fot·ms, one can sec that the 1-Moment es­

timators arc the ~asiest to calculate; each of the parameter estimators have 

an explicit form, and only evaluatiou of the required Gamma function may 

pose some difficulty. The maximum likelihood estimates are solutions of a 

complex set of nonlinear equations that will require a sophisticated numerical 

algorithm to determine the solution. The Method of .Moments estimators re­

quire numerical techniques for the solution of one nonlinear equation, to find 

the shape parameter estimate, an<l ha,·c explicit expressions for the location 

and scale parameters. At this point, the L-1\Iomcnt estimators certainly ap­

pear to be good estimators. Ilo\\'e\·cr, the quality of all three methods must 

be determined in terms of precision and accuracy, before a choice among the 

three can be made. Su..;h a comparison is the subject of the next chapter, 

in which a detailed simulation study is carried out to compare the methods 

for a range of small sample sizes, and for a range of reasonable parameter 

values. 

In section 3.6 of this chapter, t.he asymptotic \'ariance-covariance matrix 

was derived for the set of L-~loment estimators for the GLD parameters. 

These results will be used in Chapter 6 to derive a test of symmetry of the 

GLD based on the shape parameter estimator and its asymptotic normal 

distribution. 



Chapter 4 

SIMULATION STUDY 

4.1 Introduction 

In this chapter, the quality and viability of each of the three scls of estimators 

for the GLD are compared based on two criteria: bias and root mea11 square 

error [2}. The bias of an estimate 0 of a pat·ameler 0 is defined as 

llias(O) = 0- 0 ( 4. 1) 

and the Root :Mean Square Error is defined as 

R~ISE(O) = Jvar(O) + (13ias(0))2 (4.2) 

These two quantities effectively measmc the precision and accuracy of the 

estimators. Attention is restricted here to small sample sizes, since, for many 

practi. J applications in engineering, the data sets being analyzed arc small 

due to the nature of the experiments. Purther, it is well-known that the 

method of maximum likelihood provides asymptotically efficient estimators. 
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Thus, for very large sample si:ws, tile maximum likelihood estimators will 

provide the best parameter estimates. However, the good asymptotic prop­

erties of MLEs frequently do not hold in the small sample case. Therefore, in 

this section, we attempt to ascertain which of t he three estimation methods 

performs best for small samples. 

The properties of the three sets of estimators arc examined using a sim­

ulation study based on 10,000 simulations, with sample s i~cs 15, 25, 50 and 

100 and for values of 1.:, the shape pa.rame'.er, from -.4 to .4 in increments of 

.1. All methods of estimation a1·c invariant under linear transformations of 

the data, so, without loss of generality, the location and scale parameters are 

held constant at e = 0 and a = 1.0 throughout. 

4.2 Computation of Estimates 

The MLEs posed some computational difficulties as they required the use of 

numerical methods to find the estimates, which conrcrncd solving a system 

of three simultaneous nonlinear equations. Newton's Method [21] for three 

variables was the logica l choice for an algorithm, but it. failed to yield con­

vergent estimates, regardless of the quality of initial values. Hence, 

the algorithm devised for this simulation study uses a somewhat inefficient, 

yet successful technique composed of the Disection l'vlethod and Newton's 

Method for single variables. Each of the three equations is solved for one 

parameter (while the other two arc held constant) in turn. At each succes­

sive step, the updated estimates arc used to solve the appropriate equation. 

The algorithm cycles through the three equations in t his fash ion until the 
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k 

n -.4 -.3 -.2 -.1 0.0 .1 .2 .3 .4 

15 35.1 22.4 22.4 8.2 6.3 11.5 5.7 8.0 11.8 

25 23.5 10.1 9.0 2.3 6.1 1.'1 1.1 2.0 4.1 

50 22.4 8.7 2.1 1.1 5.1 O. l o.:J 0.5 0.6 
·-

100 17.2 14.2 1.1 0.6 1.1 0.1 0.1 0.2 0.3 

Table 4.1: Failure Rate in Percent of MLE Algorithm 

differences betwe£n successive estimates of ea.ch of the three parameters arc 

less then a specified tolerance. At that point, the solution to the three equa­

tions is found (a more detailed algoritltm is given in Appendix D). Naturally, 

auy algorithm that depends on such an iterative num:!rica.l scheme is prone 

to failure during a run of simulations; that is, convergent estimates cannot 

be found. Such failures are more likely for smaH sample sil'.es and highly 

skewed data, when outliers can have a significant dfccl on the course of the 

iterations. In the case of a failmc, the sample is discarded. For each set of 

simulations, the failure rate in percent is given in Table 4 .1. The likelihood 

of failure is a significant drawback of the ~1LEs for t.his distribution. 

The L-l\1oment estimates require no numc!ricnl methods as they arc given 

in closed form, and only evaluat.ion of the Gamma function (r) is required. 

For the MOM e&timates, the shape parameter k must be found using an iter­

ative scheme, and use of the Bisection tvtethod proves a 3ucccssful approach 

with no incidence of failure. The primary drawback or the MOM estimates 

is that they do not exist for II.: I > 1/3, since population skewness docs not 
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exist for such values of k. 

4.3 Results of the Simulation Study 

4.3.1 Simple Logistic Distribution 

Defore we examine the general case we will consider a simulation study of 

the three methods for the simple Logistic Distribution (the special case of 

the GLD when the shape parameter k = 0). The MLEs of e and a were 

found using Newton's Method for two variables to solve the two simultaneous 

equations given in Chapter 2, with negligible incidence of failure. Both the 

L~Moment estimates and the MOM estimates were found explicitly with no 

need for recourse to numerical methods. 

From the simulation study results of Table 4.2, the following observation 

is made: 

• The three methods perform similarly, except that the MLEs, in com­

parison to the other two methods, perform poorly in terms of bias and 

RMSE of the estimate of a for n = 15 and 25. 

4.3.2 Generalized Logistic Distribution 

We now consider the general case of estimating the three parameters of the 

GLD. The simulation study results are pr~sented for three separate cate­

gories: k < 0, k = 0, k > 0. The results are given in Tables 4.3 to 4.7, where 

the column headings are the values of k. (In Table 4.5, k = 0). 
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n Method BIAS(€) BIAS(a) RMSE(e) RMSE(o) 

15 MLE -.01 -.05 .ifit .36 

LMOM -.01 .00 .46 .23 

MOM -.01 -.02 .47 .23 

25 MLE .00 -.04 .34 .26 

LMOM .00 .00 .35 .17 

MOM .00 -.02 .:J6 .18 

50 MLE .00 -.01 .25 .14 

LMOM .00 .00 .25 .12 

MOM .00 -.01 .26 .13 

100 ivfLE .00 -.01 .17 .08 

LMOM .00 .00 .17 .08 

MOM .00 .00 .18 .09 

Table 4.2: Estimation of the 2 parameters of the Simple Logistic Distribution 
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BIAS(£') BIAS(o) BIAS(k) 

n Method -.4 -.3 -.2 -.1 - .4 -.3 -.2 -.1 -.4 -.3 -.2 -.1 

15 MLE .12 -.03 -.02 .05 .14 -.07 -.03 .03 -.04 .08 -.03 -.06 

LMOM .04 .02 .02 .00 -.05 -.04 -.04 -.04 .07 .04 .03 .01 

MOM - .07 .14 .08 - -.23 .03 -.02 - -.03 .09 .05 

25 MLE .13 -.05 -.01 .00 .14 -.05 -.03 -.03 .07 -.02 -.03 -.01 

LMOM .03 -.01 .02 -.01 -.03 -.03 -.03 -.02 .05 .03 .02 .01 

MOM - .04 .13 .06 - -.20 .04 -.01 - -.03 .08 .04 

50 MLE .12 .01 .00 .00 .14 -.02 -.02 -.02 .09 -.01 -.01 -.01 

LMOM .02 .01 .00 .00 -.02 -.02 -.02 .01 .03 .02 .01 .00 

MOM - .03 .10 .06 - -.18 .04 .00 - -.03 .07 .03 

100 MLE .13 .01 .00 .00 .14 -.01 -.01 -.01 .14 .00 -.01 .00 

LMOM .01 .01 .00 .00 -.02 -.01 -.01 .00 .02 .01 .01 .00 

MOM - .02 .08 .04 - -.15 .04 .00 - -.03 .06 .03 

Ta.ble 4.3: Bia.s of Estimates for GLD, k = -0.4 to -0.1 
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BIAS( e) BIAS( a) DIAS(k) 

n Method .1 .2 .3 .4 .1 .2 .3 A .l .2 .3 A 

15 MLE .36 .35 A4 .74 .16 -.02 -.12 -.29 .27 .21 .20 .2tl 

LMOM -.01 -.01 -.03 -.05 -.04 -.04 -.04 -.05 -.01 -.03 -.05 -.Oi 

MOM -.05 .00 -.08 - -.03 -.15 -.20 - -.03 .05 .03 -

25 MLE .22 .20 .36 .55 .09 -.01 -.10 -.23 .17 .11 .12 .I !) 

LMOM -.01 -.01 -.02 -.03 -.02 -.02 -.03 -.03 -.01 -.02 -.03 -.0!) 

MOM -.05 -.01 -.07 - -.02 -.11 -.15 - -.03 .04 .02 -

50 MLE .10 .09 .36 .54 .05 -.02 -.10 -.20 .08 .0~ .07 . I 0 

LMOM .00 .00 -.01 -.02 -.01 -.02 -.02 -.02 .00 -.01 -.02 -.O:J 

MOM -.04 -.01 -.06 - -.OJ -.07 -.10 - -.03 .02 .01 -
100 MLE .04 .04 .49 .85 .02 -.01 -.12 -.26 .04 .01 .06 .I:.:! 

LMOM .00 .00 -.01 -.01 .01 -.01 -.01 -.01 .00 -.01 -.01 -.02 

MOM -.03 -.03 -.05 - .01 -.02 -.05 - .00 -.01 .00 -

Table 4.4: Bias of Estimates for GLD, k = 0.1 to 0.4 
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Case 1: k < 0 (Tables 4.3, 4.6) 

• Fork = -.4, MLEs suffer large positive bias for estimates of c and a . 

• Fork= -.3 to -.1, the MLEs and LMOM estimates for all three param­

eters perform comparably in terms of bias, with the LMOM estimators 

performing slightly better for the smaller sample sizes. 

• Fork = -.3 to -.1, the MOM estimate of c has the largest bias of the 

three methods. For k = -.3, the MOM estimate of a has large bias. 

For the estimate of k, the bias of the MOM estimate is larger than the 

other two methods in almost all cases. 

• Fork= -.4, th~ RMSE of all three MLE estimators is at least as large 

as that of the LMOM estimators. For the estimate of e , fork = -.3 to 

-.1, the three methods perform comparably for all sample sizes. 

• Fork= -.3 to- .1, the MLE and LMOM estimators of a have compa­

rable RMSE, but MOM estimates of a have larger RMSE is all cases. 

• Fork= -.3 to -.1, the MLE and LMOM estimates of k have comparable 

RMSE for all sample sizes, whereas the MOM estimates of k seem to 

be the best. 

Case 2: k - 0 (Table 4.5) 

• Ln terms of bias, the LMOM estimates appear to perform the best for 

all sample sizes and for all three parameters, while the MOM estimates 

are the worst. 
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~ 
..... e 0 k 

n Method BIAS RMSE DIAS RMSE DIAS RMSE 
. 

15 MLE .09 .51 -.03 .28 .02 .25 

LMOM .01 .47 -.04 .22 .00 .15 

MOM -.04 .46 -.04 .22 -.03 .05 

25 MLE .02 .38 -.03 .14 .01 .18 

LMOM -.01 .36 -.02 .17 .00 .11 

MOM -.05 .36 -.02 .17 -.03 .05 

50 MLE .00 .26 -.02 .12 .00 .09 

LMOM .00 .25 -.01 .12 .00 .08 

MOM -.04 .26 -.01 .13 -.02 .04 

100 MLE .00 .18 -.01 .05 .00 .06 

LMOM .00 .18 .00 .08 .00 .05 

MOM - .03 .18 -.01 .09 -.02 .03 

Table 4.5: Bias and RMSE of Estimates for GLD when k = 0 
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RMSE(e) RMSE(ii) RMSE(k) 

n Metho<i -.4 -.3 -.2 -.1 -.4 -.3 -.2 -.1 -.4 -.3 -.2 -.1 

15 MLE .49 .42 .44 .47 .49 .23 .23 .23 .25 .17 .17 .24 

LMOM .49 .48 .47 .47 .29 .26 .24 .23 .20 .18 .16 .15 

MOM - .50 .51 .47 - .50 .36 .25 - .03 .09 .07 

25 MLE .47 .33 .35 .37 .72 .19 .18 .17 .21 .13 .13 .16 

LMOM .37 .36 .37 .36 .22 .20 .18 .18 .16 .14 .13 .12 

MOM - .37 .40 .37 - .49 .29 .21 - .03 .09 .07 

50 MLE .34 .24 .25 .25 .51 .14 .13 .12 .12 .10 .09 .08 

LMOM .27 .26 .26 .25 .16 .14 .13 .12 .12 .10 .09 .08 

MOM - .27 .28 .26 - .21 .21 .15 - .03 .08 .06 

100 MLE .30 .18 .18 .18 .37 .10 .09 .09 .25 .07 .06 .06 

LMOM .19 .18 .18 .18 .11 .10 .09 .09 .09 .08 .07 .06 

MOM - .19 .21 .19 - .12 .15 .10 - .03 .07 .05 

Table 4.6: Root Mean Square of Estimates for GLD, k = -0.4 to -0.1 

• In terms of RMSE, for the estimates of e and a, the three methods 

perform comparably. For the estimates of k, the MOM performs the 

best, and the MLEs perform the worst, especially for n = 15. 

Case 3: k > 0 (Tables 4.4, 4. 7) 

• For the smaller samples, the MLEs are very biased in all cases for 

all parameter estimates. They are much more biased than either the 

LMOM or MOM estimators. 
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RMSE(€) RMSE(a) RMSE(k) 

n Method .1 .2 .3 .4 .1 .2 .3 .4 .I .2 .3 A 

15 MLE .62 .64 .70 .82 .41 .29 .28 .35 .35 .31 .30 .32 

LMOM .46 .47 .48 .49 .23 .24 .26 .29 .15 .16 .w .1 g 

MOM .48 .49 .51 - .26 .44 .64 - .07 .09 .01 -

25 MLE .49 .50 .61 .74 .28 .21 .22 .29 .21 .20 .22 .24 

LMOM .36 .36 .37 .38 .17 .18 .20 .22 .12 .13 .1 4 .16 

MOM .37 .38 .39 - .20 .37 .60 -- .07 .09 .01 -

50 MLE .32 .35 .55 .72 .17 .13 .17 .25 .1 3 .11 .14 .17 

LMOM .25 .25 .26 .27 .12 .13 .14 .16 .08 .09 .11 .12 

MOM .26 .28 .28 - .14 .29 .53 - .06 .08 .05 --

100 MLE .20 .24 .59 .70 .10 .09 .15 .23 .07 .07 .10 . 1 I 

LMOM .18 .1R .18 .19 .09 .09 .10 .11 .06 .07 .08 .0!) 

MOM .19 .21 .21 - .10 .22 .44 - .05 .07 .05 -

Table 4.7: Root Mean Square of Estimates for GLD, k = 0.1 to OA 
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• MOM estimates have large bias for the estimate of o for smaller sample 

SIZeS. 

• For positive k, the LMOM estimates of all three parameters seem to be 

uniformly better in terms of bias than either of the other two methods. 

• For small samples, k = .3 and .4, the RMSE of the MLEs for all param­

eter estimates is much larger than that of either the LMOM or MOM 

estimators. 

• For the estimates of e, k = .1 to .3, the LMOM and MOM estimators 

perform comparably in terms of RMSE for all sample sizes. 

• For the estimates of o, the MOM estimator has high RMSE, especially 

for k = .2 and .3. The MOM estimators of k perform slightly better 

than either LMOM estimators or MLEs. 

• Overall for k > 0, in terms of RMSE, LMOM estimators seem to per­

form the most consistently fc. r all parameters. 

4.4 Discussion 

In conclusion, it would appear from this study that the LMOM estimators 

often perform better than the MLEs: in the cases where this is not true, the 

improvement achieH!d by MLEs is negligible. In terms of practical research, 

it is desirable to have a. method of estimation that performs consistently 

for a variety of situations, as do the LMOM estimates in this study. The 

same cannot be said for the MLE or MOM estimat.es as performance varies 
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greatly depending of the amount of skewness of the data and the sample size. 

Further, the MLE method is prone to failure, making it an even less reliable 

method to use for real data. The results of this study and the simplicity o~ 

the computation makes the LMOM estimators a good choice. 
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Chapter 5 

MODELING ICE 

BREAKAGE STRENGTH 

5.1 Introduction 

In this section, we consider nine data sets, five of which have been analyzed 

previously by Lal and Parsons [29), and all of which have been anaiyzed by 

Lal [22). These data sets contain flexural strength and fracture toughness 

measurements of various samples of ice, which are important engineering pa­

rameters. The strength or toughness of ice is measured by the amount of 

pressure or comprcssh·e stress required to break or fracture a specimen of a 

specific type of ice. Each data set represents a different type of ice having 

varying micro-structure, temperature, salinity, volume, etc. These data sets 

have been accumulated over several years by a variety of workers. For details 

on how the data were collected, sec Parse.. s et al. [30). It is of considerable 
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interest to analyze the collected data using a straightforward method of sta­

tistical analysis. Due to the diversity in varieties of icc, a different model 

from a family of models is required for each set of data. Two distributions 

commonly used to model this type of data arc the three-parameter \Vcibull 

distribution and the two-parameter Gumbel distribution (Extreme Value Dis· 

tribution Type I). In the analysis of Lal and Parsons [29], a three-parameter 

\Veibull distribution (a reparametrization of the Generalized Extreme Value 

distribution) was fitted using maximum likelihood estimation to thirteen dif­

ferent data sets measuring flexural strength, fi\'c of which arc considered in 

this practicum. The I\olmogorov-Smirnov goodness-of-fit test was performed 

to see how well the fitted model described the data, and in all cases the con­

clusion was that the model was adequate. Although the \\'cibull model was 

proven useful, in [29] the authors mention that maximum likelihood param· 

eter estimation for the Weibull distribution can be difficult. For engineering 

and hydrological purposes, it is desirable to seck simpler distributions, and 

for this reason they considered the Gumbel distribution as an alternative. In 

Lal (22), the analysis was ex.cndcd furtlicr to include twch·c more data sets 

measuring fracture toughness, four of which ?..:·e considered in this practicum. 

In his report, the author stresses the use of the Gumbel distribution for all 

of the data sets to simplify analysis. 

This desire for simplicity and ease of computation strengthens the case for 

L-Moment estimation. As \\·e have seen, the l\lLEs for the GLD arc extremely 

difficult to calculate, while the L-l\lomcnt estimates arc easy to compute. The 

GLD was considered as a good candidate model for tl1csc types of data sets 

because of the GLD's similarity to the Generalized Extreme Value dist.ribu-
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tion in shape. Since a reparamctrization of the GEV distribution (Weibull) 

was previously successful for modeling the data, it is reasonable to hypoth­

esize that the using the GLD may provide a good alternative model and 

possibly an improved analysis. Further, we can use L-Moment estimation to 

fit the model, providing a great simplification over fitting the three-parameter 

Wei bull distribution by maximum likelihood. (There is also the possibility of 

fitting the Wcibull distribution to the data using L-Moment estimation, but 

the L-Moment estimates for this distribution are not as tractable as those 

for the GLD). 

The purpose oi this chapter is first to introduce a new distribution as a 

candidate model for this type of data, and second, to demonstrate the per­

formance of L-Moment estimation for fitting the GLD model in comparison 

with MLE and MOM. 

5.2 s,~Ieetion of Data Sets 

Out of t.wenty-five available data sets, nine were chosen to be modeled by the 

GLD on the basis of their sample L-skewness and L-kurtosis. {The data sets 

~rc given in Appendix A). In previous analysis of the twenty-five data sets, 

all were fitted by the same two distributions, either three-parameter Weibull 

or Gumbel. Although all of the twenty-five data sets could probably be fitted 

reasonably by the GLD, we have selected only those data sets which seem 

more suited to be fitted by the GLD than any other distribution. For the 

remaining data sets, the researcher may have to make a subjective decision 

between the GLD and the Weihull distribution. The L-Moment diagram 
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Data Set San1ple Size L-Skewness L-Kurtosis 

CDAT2-Frcshwater Ice -4C 44 -0.0780 0.178() 

(kN m - 312) 

CDAT4-Freshwater Ice -24C 44 -0.0294 0.2185 

(kN m-312) 

CDAT8 -Small Size Specimen 55 0. 1625 0.20110 

Fresh Water -2C (MPa) 

CDAT9-Sea Ice (Horizontal) 50 0.1212 0. U)'l't 

(MPa) 

CDAT12-Sea Ice -20C (MPa) 20 0.1401 0.246tl 

CDAT13-Sea Ice (Old) (MPa) 19 0.0972 0.1591 

CDAT14-Sea Ice -5C (MPa) 19 0.1274 0.2807 

CDAT19-Resolute 87 (kN m-312
) dO -0.0795 0.288() 

CD AT23-Finegraincd 59 0.232!) 0.1812 

Columnar Freshwater Ice 

-20C (kN m- 312) 

Table 5.1 : L-Skewncss and L-Kurtosis for the 9 Data Sets 

(see Appendix F) would be helpful in making such a choice. 'rhc L-Morncnt 

diagram provides an easy way to judge which models may he appropriate 

for the data. The sample L-skewncss and L-kurtosis for each of the data 

sets are given in Table 5.1. Note tha~ the observations in each data set arc 

either measurements of Critical Stress Intensity Factor {kN m-312
) - fra.ctu r<~ 

toughness, or Compressive Stress (MPa) - flexural strength. 
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Plotting the L-skcwness and L-kurtosis for each data set on the diagram 

(Appendix P) suggests that the GLD model is appropriate for these data 

sets. 

5.3 Fitting the Model 

For each data set, the GLD was fitted by Maximum Likelihood (MLE), L­

Moments (LMOM) and conventional Moments (MOM). The Kolmogorov­

Smirnov goodness-of-fit test statistic was then calculated to see which of the 

estimation procedures yielded a reasonable model. The results are given in 

Tables 5.2 and 5.3. Purther, in Appendix E, three graphs are given for each 

of the nine data sets displaying the empirical C.D.F. and the fitted C.D.F. 

plotted on the same graph, for each method of estimation. This allows a 

visual inspection of the goodness-of-fit for each fitted model. In order to 

calculate the M LEs, the LMOM estimates were used as initial values for the 

iterative program. In all cases, these initial values failed to converge to a so­

lution. Starting with the MOM estimates also failed to provide convergence. 

[L was necessary to grid search over intervals around the L-Moment estimates 

to find suitable initial values. 

As we can sec from the results, the LMOM and MOM procedures give 

fairly similar estimates, while the MLE procedure yields estimates that are 

quite different from both of the other methods. The most obvious difference 

in the estimators is that the sign of k, the estimate of the shape parameter, 

is usually reversed in the MLE case. The fact that the MLE of k is almost 

always positive for these data sets is a concern, since a positive value means 
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Data Set Method € 0 k K-S Stat 

CDAT2 MLE 116.556 18.285 -0.053 0 .072 

(44) LMOM 116.789 18.275 -0.042 0 .073 

MOM 118.287 17.650 0.008 0.084 

CDAT4 MLE 109.770 16.803 0.275 0 .149 

(44) LMOM 106.023 11.804 -0.116 0 .073 

MOM 107.323 11.616 -0.052 0.071 

CDAT8 MLE 2.510 0.638 0.128 0. 12:1 

(55) LMOM 2.410 0.480 -0.162 0.061 

MOM 2.432 0.489 -0.014 0 .051 

CDAT9 MLE 0.408 0.129 0.095 0.464 * 
(50) LMOM 0.548 0.070 -0.121 0 .067 

MOM 0.553 0.071 -0.080 0.033 

CDAT12 MLE 0.928 0.138 0.285 0.218 

(20) LMOM 0.900 0.080 -0.140 0.128 

MOM 0.908 0.082 -0.081 0.120 

CDAT13 MLE 0.498 0.191 0.164 0.464. * 
(19) LMOM 0.689 0.103 0.097 O.OH2 

MOM 0.698 0.101 -0.037 0.075 

CDAT14 MLE 0.874 0.216 0.269 0.202 

(19) LMOM 0.852 0. 122 -0.127 0. 118 

MOM 0.857 0.123 -0.099 0.111 

Table 5.2: Fitting the Model by 3 Methods: * Significant at 5 % 
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Data Set Method £ - k K-S Stat a 

CDAT19 MLE 110.792 23.447 0.109 0.102 

(80) LMOM 107.582 19.566 -0.124 0.049 

MOM 108.123 19.692 -0.107 0.042 

CDAT23 MLE 122.082 26.981 0.153 0.149 

(59) LMOM 116.112 18.379 -0.233 0.048 

MOM 119.273 19.474 -0.133 0.042 

Table 5.3: Fitting the Model by 3 Methods: *Significant at 5 %(cont.) 

that the distribution is skewed left with an upper bound (See Chapter 2). 

However, if one considers a. quantity such as breaking strength or fracture 

toughness of ice, it is clear that there should be a lower bound. Although 

the MLE model is rejected only twice for lack of fit out of the nine data sets, 

this tendency towards positive estimates of k when they should clearly be 

negative is a definite disadvantage. 

The three methods produce similar values for the estimate of the location 

parameter e. For the scale parameter a, the LMOM estimates and the MOM 

estimates arc quite similar, with the MLEs providing quite different values 

for almost all of the nine data sets. The rejection of the MLE model for 

CDAT9 and CDATI 3 is most likely a result of poor estimation jointly for 

all parameters. lloth lhc l\10M and LMOM estimates perform well for all 

data sets, providing adequate models according to the I<olmogorov-Smirnov 

goodness-of-fit test. The slightly lower value of the test statistic for the MOM 

model may be attributed to the superior performance, in some cases, of the 
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MOM estimator of kin terms of RMSE, as seen in Chapter 4. 

5.4 Discussion 

The poor performance of the MLEs in comparison with the LMOM and 

MOM estimators should not be surprising. The difficulty in choosing initial 

values for the maximum likelihood algorithm suggests that the algorithm 

is not a reliable one. The presence of other maxima or minima of the log 

likelihood function, or simply outliers in the data, arc likely to ca.u11c the 

resulting estimates to be of questionable accuracy. The data sets considered 

in this chapter were relatively small, and in some cases were quite skewed. 

Neither of these conditions provide an ideal environment for the numerical 

methods required to find the maximum likelihood estimates. 

There are two important conclusions to be made based on the analy::~is of 

this chapter: 

• The GLD should be considered as a model hy hydrologists and engi­

neers working with data of the type analyzed in this chapter. The GLD 

provides an alternative to the commonly used GEV distribution (or the 

equivalent Weibull distribution), while maintaining a similar range of 

shapes to accommodate different data sets. 

• 1-Moment estimation provides a quick, easy and reliahlc way to fit the 

GLD model. 
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Chapter 6 

A TEST OF k 0 

6.1 Introduction 

The simple Logistic distribution is a special case of the GLD when k = 0. 

A test of k = 0 could be viewed as a test of whether a set of data, fitted 

by the GLD, came from a symmetric simple Logistic distrioution or from 

a skewed GLD (i.e. a test of symmetry of the underlying distribution). A 

test of this hypothesis can be based on the L-Moment estimator of k. In 

this chapter, such a test will be developed and illustrated with examples. To 

determine the reliability of the test, two simulation studies, based on 10,000 

simulations, are performed. The first is used to determine how well the new 

test statistic controls the nominal size of the test. The second simulation 

study compares the power of the new test to the Likelihood Ratio Test (31] 

for some specific alternative hypotheses. 
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6.2 Symmetry Test 

6.2.1 The L-Moment Test Statistic 

In Chapter 3, the asymptotic distribution of the L-Momcnt parameter es­

timators was derived for some specific values of k. Ut1dcr ll0 : k = 0, the 

L-Moment estimator of k, k, was found to be asymptotically N(O, .289~/n) 

(See Table 3.1). A simple Z test statistic can be constructed hy dividing the 

estimator by the square root of its asymptotic variance as follows: 

Z= Jnk 
v'.2804 

(6.1) 

One must then compare the value of the statistic to the critical values of 

the standard normal distribution. A significant positive Z implicR rejection 

of 110 in favor of the alternative k > O, and similn.rly tsignifi cn.nL negative 

values of Z imply a rejection of J/0 in favor of the alternative k < 0. 

6.2.2 Likelihood Ratio Test (LR) 

The Likelihood Ratio (LR) Test is a well-known test based on maximum 

likelihood estimation of the parameters under both the null and alternative 

hypotheses. The Likelihood Ratio test statistic for testing the hypothcsi11 

H 0 : 0 = 00 , where 0 is the vector of parameters of interest, and 00 the 

restricted vector of parameter values under the null hypothesis, is given by: 

A= L(~/Ho) 
L(O/ Ila) 

(6.2) 

The numerator is the Likelihood fun ction evaluated at the value of the pa­

rameter estimates under the null hypothesis 1/0 • The denominator is the 
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Likelihood function evaluated under the alternative hypothesis Ha.. Exact 

tests based on this statistic require knowledge of the distribution of A, which 

is usually not known. However, an asymptotic test can be constructed based 

on the following result: [31}: 

-2ln!l-+ x; 
under H 0 , where p is the number of restrictions under Ho and X~ is a chi­

square random variable with p degrees of freedom. 

For the test we want to consider in this section, we wish to test the 

hypothesis //0 : k = 0, against both one and two·sidcd alternatives. Thus, for 

this test, 0 = (e, a, k) and 00 = (c:, a). The numerator of A is the Likelihood 

function of the simple Logistic distribution (recall that when k = 0, the GLD 

reduces to this distribution) evaluated at the maximum likelihood estimates 

of e and a. 'fhe denominator is the likelihood function of the GLD evaluated 

at the maximum likelihood estimates of e, a and k (see Chapter 3 for the 

maximum likelihood equations). For the two·tailed alternative, the statistic 

-2ln A is calcula.ted and compared to the appropriate x2 critical value with 

one degree of freedom (there is one restriction made under 110 ). For the one­

tailed alternative, we refer to (12], where a similar test is given for testing 

symmetry of a. Generalized Extreme Value distribution. The square root 

of the test statistic is taken, and given the sign of the estimate of k under 

lla. Since it is known that the square root of a x~ variable with 1 degree 

of freedom is a. N(O,l) variable, the square root quantity is compared to the 

appropriate N(O,l) critical value. 
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L ALTERNATIVES 

k<O k > 0 k-:fO 

Sample Size 5% 10% 5% 10% 5% 10% 

15 6.2 12.2 6.3 11.5 6.5 12.1 

25 5.7 11.0 5.9 11.4 5.8 11.1 

50 5.4 9.5 5.3 10.5 5.4 10.1 

100 5.2 10.1 5.2 10.4 5.3 10.0 

200 5.2 10.1 5.3 10.2 4.9 10.6 

500 5.1 10.8 5.0 10.3 5.2 10.4 

Table 6.1: Empirical Size for Nominal5%, 10% Significanc<l Level 

6.2.3 Comparison of the Two Tests 

It can be seen from the results in Table 6.1 that for sample si~cs of 25 

and greater, the size of the Z test is adequately controlled. (1'hn rcsu Its in 

this table were found by simulating 10,000 samples from the simple Logistic 

Distribution, calculating the Z test statistic for each and calculating the 

proportion of samples rejected). In Table 6.2 we sec that the power of the Z 

test is almost as high as that of the Likelihood Ratio test, and in some caseH 

it has improved power. Note that in Table 6.2, n = 50, and the Hignificanc:e 

level is 5%. (The values in the table were found by simulating 10,000 sampleH 

from each of the specified alternatives, calculating the two test statistics for 

each sample and calculating the proportion of samples rejected). 

The LR test requires numerical evaluation of the MLEs of the pararnctcrH, 

and it can be quite difficult to compute. If convergence cannot he achicw:d 
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POWER UNDER SPECIFIED ALTERNATIVES 

k ZTest LR Test 

k < 0 k > 0 k:fO k <O k>O k:fO 

-.4 .99 * .98 .99 * .96 

-.3 .95 * .92 .96 * .93 

-.2 .n * .67 .79 * .69 

-.1 .35 * .25 .36 * .26 

0.0 .05 .05 .05 .06 .06 .06 

.1 * .35 .26 * .47 .26 

.2 * .76 .68 * .83 .69 

.3 * .95 .92 * .96 .72 

.4 * .99 .99 * .90 .68 

Table 6.2: Power Comparison Between Two Tests 
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for the estimates, then the statistic cannot be used. For real data s~·ts, this 

is a serious concern. Further, due to the tendency toward large MSE of the 

MLEs when k is close to .4, it can be seen from Table 6.2 that, for prart.kal 

purposes, the power of the LR test decreases at this point. Strong bias for 

positive values of k also affects the power of the LR test. 

6.3 Examples 

To demonstrate the Z Test based on L-l'vlorncn~s, we slmll select two of the 

data sets considered in the previous chapter. From the results of 'l'ahle 5.2 

and 5.3 it is clear that some of the data sets may be fitted hy a simpi<Jr 

model, namely the simple Logistic distribution. The estimates of k for :mch 

data sets tend to be quite small. For example, consid<Jr the data :>ct CDJ\'1'2. 

The L-Momcnt estimate of k is k = -0.012. Since this value is very close to 

0, it is reasonable to test whether the reduced model adcqua.tcly dcscrihc11 

the data. Our hypotheses of interest arc ll0 : k = 0 vs. //" : k :f. 0. The Z 

test statistic is: 

~( -0.042) = -0.529 
y.28~4 

This value is not significant at any reasonable significance level, so we rnn.y 

conclude that, for this data ~ct, the simpler model is adequate. 

Next, conside,· a smaller data set, CDAT13. Hosking (8J a.sscrts that 

the asymptotic variances of L-Moment estimators arc good approximations 

even for small sample sizes. I•'urther, this Z test controls the size of the tc11t 

reasonably well for a sample size as small as 15. lienee, we ca.n feel confident 
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using this Z statistic for CDAT13, with a sample size of 19. The L-Moment 

estimate of k is k = -.097. The same hypotheses as above are considered 

and the test statistic is: 

Ji9(- .097) = -. 786 
J.2894 

Again, this value is not significant for any reasonable significance level. 

For both of the above data sets, we can conclude that the simple Logistic 

model may be used to fit these data sets (i.e. ~· = 0). 

6.4 Discussion 

Th<' purpose of this chapter has been to provide a simple alternative to the 

well known Likelihood Ratio test for testing symmetry of the GLD. Although 

the LR test possesses good propcrt.ies, this is not always evident when deal­

ing with highly skew<'d and/or small data sets. The test statistic requires 

the calculation of the maximum likelihood estimates of the model parameters 

under both the null and alternative hypotheses. As mentioned in previous 

chapters, estimation requires complicated numerical methods that, for small 

sample sizes, are prone to convergence failure. Furthermore, as seen in Chap­

ter 5, when using real data sets, this estimation procedure becomes even more 

difficult due to the problem of finding successful initial starting values for 

t.hc maximum likelihood algorithm. For highly skewed or small data sets, the 

.MLEs tend to be severely biased which may cause a misleading test statist.ic 

value. On the other hand, the Z Test statistic is both simple and powerful 

and its computation is straightforward. It appears that although this is an 
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asymptotic test, it may be used for even small gamplc sizes. In condusion. 

this test provides a good test of symmetry, and is powerful enough to r<'placC' 

the LR statistic as a test statistic for this distribution. 
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Chapter 7 

Conclusion 

In this practicum, a relatively new and under-utilized method of estimation 

ha.scd on quantities called L-Moments has been reviewed. A distribution 

called the Generalized Logistic Distribution (GLD), first given by Hosking 

[8) in his technical report, has been suggested as a good alternative to the 

commonly used Generalized Extreme Value distribution for some engineering 

data. A model for a given set of data may be chosen by using the L-Moment 

Ratio diagram (see Appendix F). As an estimation technique for the fitUng 

of the GLD, L-Moments work extremely well, performing consistently and 

with good accuracy and precision even in small samples, as illustrated by 

the simulation study of Chapter 4. They are frequently superior to the 

maximum likelihood estimates {MLEs), which for the GLD are difficult to 

calculate due to convergence problems in the maximum likelihood algorithm. 

The application to some real engineering data shows that although all three 

methods may be used with reasonable security (gooc!ness-of-fit hypothesis is 
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not rejected), the MLEs often give an estimate of the shape parameter of the 

GLD inconsistent with the nature of the data.. The L-l\·1omcnt estimators 

have a simple explicit form, making them the preferred dtoice of the three 

for fitting the GLD model. 

Finally, a test was proposed for testing if the shape parameter of the CLD 

is equal to zero based on the L-Momcnt estimator of the shape parameter 

and its asymptotic normal distribution discussed in Chapter 3. 'l'he proposed 

test was simple and easy to compute, and performed well with respect to 

controlling the size of the test. Further, it had power comparable to tlmt of 

the Likelihood Ratio Test. 

In conclusion, it is the opinion of the author that for the GLD, and likely 

for many other models, L-Momcnts provide simple and reliable estimates. 

The method of L-Moments could be used by engineers and hydrologists in­

stead of maximum likelihood estimation, often without need for recourse to 

complicated numerical methods. 
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Appendix A 

Data Sets 

CDAT2 : (kNm-312) 43.6 65.2 66.4 79.8 83.9 84.5 85.4 85.8 88.8 95.a 95.6 

96.9 98.5 99.4 100.8102.5105.7107.1109.9111 113.9115.5118.7 120.6 122.2 

122.2 122.6 123.8 124.1 127.1 132.7 135.7 139.2 139.4 H4 H8.2 157. 1 159.3 

163.3 164.5 166.3 168.3 174.9 184.9 

CDAT4: (kNm-312) 72.3 73.4 78.7 80.4 82.7 83.7 85.3 85.3 90.5 93.:J 93.5 

95.8 98.3 98.6 98.9 100.2101.2 101.3 101.9 102.3 102.3102.7 103.5 103.6 105.2 

107.4 107.5107.7115 116.1116.9118.1 123.8 124 125.4 128.1 132.8 13() 139.2 

140.3 140.8 142.4 148 161.4 

CDAT8 : (MPa) 1.05 1.21 1.22 1.23 1.45 1.47 1.60 1.63 1.67 1.71 1.77 1.8H 

1.89 1.89 1.94 1.94 2.01 2.05 2.06 2.11 2.18 2.26 2.32 2.37 2.:J8 2.39 2.40 2.47 

2.5o 2.50 2.55 2.56 2.65 2.65 2.67 2.12 2. 79 2.89 2.9o 2.96 2.99 :~oo 1 3.05 a.o5 

3.08 3.21 3.29 3.32 3.37 3.46 3.50 3.82 4.29 5.48 6.09 

CDAT9 : (MPa.) .27 .35 .37 .42 .43 .43 .'14 .'15 .45 .46 .46 .46 A1 .48 .48 AU 

.49 .50 .51 .52 .l.J2 .53 .5~ .55 .55 .56 .56 .57 .57 .57 .58 .59 .60 .61 .61 .61 .61 
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.62 .63 .63 .63 .67 .70 .71 .72 .73 .74 .79 .90 .97 

CDAT12 : (MPa) .63 . 73 .81 .82 .83 .83 .84 .84 .86 .90 .92 .92 .95 .96 .97 

1.03 1.04 1.05 1.11 1.34 

CDAT13 : (MPa) .36 .51 .52 .55 .57 .57 .58 .67 .68 .69 .74 .74 .75 .76 .78 

.87 .94 1.02 1.08 

CDAT14: (MPa) .49 .55 .65 .74 .76 .79 .79 .80 .80 .842 .88 .91 .95 .97 1.00 

1.00 1.10 1.10 1.55 

CDAT19 : (kNm-312) 41 42 50 54 55 69 70 71 73 74 78 79 79 80 80 80 84. 

85 8() 88 88 88 89 89 89 91 93 96 96 98 98 98 98 103 103 103 104 105 108 109 

110 112 112 112 112 113 114 115 116 118 119 120 122 123 125 127 127 128 

129 130 131 134 135 136 138 139 143 144 144 148 149 151 155 156 156 158 

H)5 199 215 258 

CDAT23 : (kNm-312) 68 69 75 77 80.5 84 90 91 92.4 93 96.5 96.5 97 97.5 

98 98.5 98.5 99 102 103 103 I 06 106 106 106 107 107 107 112 116 116 120 

120 124 126 126 128 .129 132 133 134 136 136 137 139 141 146 149 151153 

166 167 170173 180181 221 222 255 
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Appendix B 

Special Functions 

1. The Generalized Hypcrgcomctric Function with Unit Argument (28): 

where 

(x)k=x(x+l)· .. (x+k-1) 

2. The Digamma Function 

w(x) =din r{x) = ~I'(x) 
dx r(x) 

3. The nth shifted Legendre Polynomial 

n 

P:(x) = L p;,,,, {x)xk 
k=O 

where 
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Appendix C 

GLD for Different Values of 

the Shape Parameter 

In this appendix, the probability distribution function of the GLD is graphed 

f~>rnincdiffcrcntvalucs ofthcshapcparamcter: k = -.4,- .3,-.2,-.l,O.O, .1, .2, .3, 

and .4. c = 0.0 a.nd a = 1.0 for all graphs. 
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Appendix D 

MLE Program Algorithm 

This appendix contains the algorithm of the program used in the Monte 

Carlo simulation study of Chapter 4. 

PROGRAM ALGORITHM 

( 10,000 simulations.) 

1. A random sample from the Generalized Logistic Distribution is gener­

ated. This is done by using the Inverse Cumulative Distribution giV<m 

in Chapter 2. The values of e and a arc 0 and 1 respectively for rcmsous 

specified in Chapter 4, and the value of k is supplied by the user. 

2. Subroutine is called to calculate L-Momcnt estimates. 

3. Subroutine using numerical methods is called to calculate MLEs. Initial 

values for the iterative procedure are the true values used to g<mcmte 

the sample. In order to solve the three nonlinear equations, 

8JnL _ 
0 8e - ' 

OlnL = O, 
a a 
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the following steps are followed: 

Step 1: Hf)ld a and k fixed at initial values and solve first equation for 

e using Bisection Method. 

Step 2: Hold e and k fixed; e at the value found in Step 1, solve sec­

ond equCtttion for a using Newton's Method. If Newton's Method fails, 

Bisection Method is used. 

~tcp 3: Hold e and a fixed at values from Steps 1 and 2 and solve the 

thirc! equation for k using the Bisection Method. 

Step 4: RP.peat Steps 1-3 using updated estimates for initial values. 

Continue until change in the three estimates in successive iterations 

<.001. If solution not found after 40 iterations, a failure of the algo· 

rithrn is recorded. 

Care is taken in the above procedure to insure that none of the esti­

mates violate parameter restrictions imposed by the distribution at any 

point d•tring the calculations. 

4. Subroutine is called to calculate MOM estimates. Bisection Method is 

used to find estimate of k. 

5. nias and Root Mean Squal'e of the estimates for each method are found 

by calculating these two quantities for the 10 000 estimates e>'i each 

parameter. 
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Appendix E 

Goodness of Fit Graphs for 

the Data 

In this appendix, plots of the empirical distribution fuudiou (denoted hy 

+ ), compared to the fitted distribution function, arc given for ca.ch of t.hc 

three methods used to fit the GLD model for the nine data sets. These plots 

allow a visual comparison of the goodness of fit of each of t.hc the three (it.t<!cl 

models. The plots are in the following order: 

CDAT2, CDAT4, COATS, CDAT9, CDAT12, COAT13, CDATI~, CDA'I'HJ, 

CDAT23. 

For each data set, the three fitted distribution functions arc given in t.lw 

order: 

Fitted MLE 

Fitted LMOM 

Fitted MOM 
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Appendix F 

L-Moment Diagram 

This appendix contains the L-Moment diagram (reprinted with permission 

of the author) as given in Hosking [8]. This diagram is used for choosing iL 

suitable distribution to model the data. For a given set of data, the liamplc 

L-skewness and L-kurtosis are calculated and plotted on the diagram. The 

lines on the diagram represent L-kurtosis as a function of L-skcwncss for a 

number of common hydrological and engineering distributions. The distribu­

tion which best describes the data is determined by the line which is closest 

to the plotted point. 

Two copies of the diagram arc given - the first is a reproduction from 

Hosking [8], and the second one contains the plotted L-skcwn<!ss vs. L­

kurtosis points for each of the nine data sets analyzed in Chapter 5. From 

the position of the points on the graph, we sec that these <lata Bets arc suited 

for modeling by the GLD. 
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Appendix G 

Box-Plots of the Data 

This appendix contains some summary statistics and box-plots of the data 

analyzed in this practicum. For each o( the nine data sets, the mean, standard 

deviation (St. Dcv.) and skewness is given, then a box-plot is given to 

illustrate the distribution of the observations. 

A box-plot consists of a box, whiskers, and outliers. A line is drawn across 

the box at the median. The bottom of the box is at the first quartile (Ql) 

and the top is at the third quartile (Q3). Thus the box contains roughly 50% 

of the observations. The whiskers are the lines that extend from the top and 

bottom of the box to the adjacent values, the lowest and highest observations 

stilJ inside the region defined by the lower limit Ql - 1.5 (Q3 - Ql) and the 

upper limit Ql + 1.5 (Q3- Ql). Outliers are points outside the lower a.nd 

upper limits, plotted with asterisks (*). 
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CDAT2: (n = 44) 

Mean: 118.06 

St. Dev. : 32.02 
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CDAT4: (n = 44) 

~lean : 108.31 

St. Dev. : 21.27 

Skewness : 0.49 
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COATS: (n = 55) 

Mean : 2.54 

St. Dev. : 0.95 

Skewness : 1.43 

Box-Plot 
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CDAT9: (n = 50) 

Mean: 0.56 

St. Dev. : 0.13 
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CDAT12: (n = 20) 

Mean: 0.92 

St. Dev. : 0.15 

Skewness: 0.86 
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CDAT13: (n = 19) 

Mean : 0.70 

St. Dev. : 0.18 
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CDAT14; (n = 19) 

Mean: 0.88 

St. Dev. : 0.23 

Skewness: 1.10 

Box-Plot 
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CDA'),,19: (n = 80) 

Mean : 111.65 

St. Dev. : 37.26 
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CDAT23: (n =59) 

Mean : 123.62 

St. Dev. : 37.71 

Skewness: 1.31 
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