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Abstract 

A velocity model is described in which we assume that velocity increases 

linearly with depth and varies elliptically with propagation direction. That 

is , we consider a linearly inhomogeneous elliptically anisotropic model. The 

variation of velocity with depth is given in terms of parameters a and b, 

and the elliptical anisotropy is given in terms of parameter X· An analytical 

traveltime expression is then derived to account for the direct traveltime 

between an offset source and a receiver in a well; such as in a vertical seismic 

profile (VSP) setting. A method of inverting traveltime observations to 

estimate parameters a, b and x is derived. The application of this method is 

exemplified using a data set from the Western Canada Basin. The parameter 

estimation also includes a statistical analysis. In the above case, we obtain 

a good agreement between the field data and the model. Furthermore, the 

inclusion of elliptical anisotropy is validated by showing that an isotropic 
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model is outside of the confidence interval for X· Once a , band X are known, 

a further application is considered ; namely, we use the model to calculate the 

possible reflection points , collectively referred to as the zone of illumination, 

for a VSP experiment with a given source- receiver geometry. Such modelling 

is useful for both data analysis and survey design. Two computer codes are 

given using l\t1aple ®. The first code is for the estimation of the parameters 

and the second one is for the calculation of the zone of illumination. 
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Chapter 1 

Introduction 

An important part of the study of the earth's interior, particularly in petroleum 

exploration, involves the acquisition and processing of seismic data. To ac­

quire the data a seismic crew will visit a site and set up receiving devices 

along the surface of the area to be studied. An energy source is then used to 

generate a signal to be received by the geophones. From the received data, 

an image of the subsurface can then be constructed. 

It is common in today· s seismic surveys to place the geophones below the 

surface within a well. This particular type of experimental setup is referred 

to as vertical seismic profiling or as a VSP. vVe note that VSP could also 

refer to the case of a source in the well and receivers at the surface as in the 

case of taking measurements while drilling (MvVD). However we shall not 
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deal with this case and will not mention it further. VSPs provide a means of 

extracting additional geophysical information as compared to surface seismic 

data. VSPs provide a well-constrained data set with high quality of data 

as signals spend less time traveling within the earth and are less affected by 

the near- surface material. Hence, they are less affected by attenuation due 

to both absorption and geometrical spreading. 

One purpose of acquiring VSP data is to use the field measurements 

to generate a tomographical image of the subsurface providing both physi­

cal and geometrical information about it. This information can then used 

by structural geologists and sedimentologists who interpret the results to 

identify potential sites of economically viable reserves. 

One of the early steps in the processing of seismic data is the construc­

tion of a velocity model. From the velocity model one can attempt to derive 

a traveltime expression which can be used to invert field observations to es­

timate the model parameters. There are two dominating factors to be con­

sidered when constructing models for the velocity field of a given medium; 

they are inhomogeneity and, often to a lesser extent, anisotropy. Inhomo­

geneity refers to the changes in the velocity of signal propagation from point 

to point within the medium. In the context of this thesis we will consider 

inhomogeneity to be a function of depth alone. Anisotropy refers to the vari-
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ation in propagation velocity with direction at a given point. For the sake 

of simplicity, discussions and texts often describe velocity by an average, 

be it true average, root-mean-square average or normal-moveout velocity. 

Simplifications in velocity modelling turn up in practice as well. Velocity 

modeling frequently ignores one of the two major influences described above 

or deals with each separately. Over the past few decades, advances in the 

quality of seismic data justify in today's physical models the inclusion of 

both inhomogeneity and anisotropy. 

In this thesis we will attempt to do that. In other words, we will ac­

count for both inhomogeneity and anisotropy in a single model. To do 

so, we first propose a velocity model which includes inhomogeneity and 

anisotropy. Then, the corresponding, closed-form traveltime expression is 

derived. Based on the traveltime expression a method is derived for the 

estimation of the model parameters by a regression analysis of the observed 

VSP traveltimes. The process of using traveltimes in this manner to esti­

mate model parameters is commonly referred to as "traveltime inversion". 

Traveltime inversion is then applied to a real seismic data set. Finally, an 

application of the closed form traveltime expression is given. Specifically, the 

traveltime expression is used to determine the zone of illumination possible 

for a given set of sources and receivers in the VSP experiment. 



Chapter 2 

Background 

The approach to the study of seismic phenomena taken in this thesis is based 

largely on concepts of continuum mechanics. Since the focus is not contin-

uum mechanics itself we will not go into details of it beyond some definitions 

which we require to develop the velocity and subsequent traveltime models. 

For a detailed discussion of continuum mechanics as it applies to seismic 

ray theory the reader is referred to the book ''Seismic waves and rays in 

elastic media" by Slawinski1 (2003), particularly part I of the book. For our 

present purposes, it is sufficient to say that when modelling the propagation 

of seismic energy, we do not think of the interaction of individual granules in 

the medium (as we would say when watching a billiards game) , but rather 

1 Slawinski , 1\I.A., (2003) Seismic waves and rays in elastic media: Pergamon, pp. 
1-12-1. 
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consider the medium to be a smooth continuous mass. To quote Slawinski, 

"The concept of continuum allows us to consider materials in such a way 

that their descriptive functions are continuous and differentiable'' .2 It is 

this continuity that allows us to use the power of calculus in subsequent 

formulations. 

For the remainder of this thesis, we will assume the medium to be a 

linearly elastic continuum. This means we will only consider solids in which 

stress is linearly proportional to strain. Such a solid is also referred to 

as a Hookian solid after Robert Hooke and his work with springs. Recall 

Hooke's Law which states that the spring constant k is such that if a spring 

is stretched a distance ..6.x , the restoring force is given by F = -k..6.x. In 

a three-dimensional linearly elastic solid the same rule applies only it is a 

little more complicated due to the extra dimensions that must be accounted 

for. Specifically we must replace the vectors and scalars with tensors. Thus 

we have 

3 3 

CJij = L L CijklCkl, i.j E {1, 2, 3}' 
k=l l=l 

(2.1) 

where CJ ij are components of the stress-tensor (Fin lD), Cijkl are components 

2 Ibid, p . 8 . 
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of the elasticity tensor (kin 1D), and where Ekl are components of the strain-

tensor ( .6.x in 1D). More specifically, if a material is deformed in such a way 

that point xis moved by vector u(x) then the strain tensor components are 

defined by 

(2.2) 

Since the strain- tensor is defined in terms of the partial derivatives of 

the displacement vector, expression (2.1) can also be written as 

3 3 
.. _ "'"' ~ .. ({)uk 8ul) . . { 9 3} a-tJ- ~ ~ 2ctJkl {)x + {)x , ~ , J E 1, ~, . . 

k=l l=l l k 

(2.3) 

Although we will not deal directly with the components of the elasticity 

tensor in this thesis, expression (2.3) will be used in the formulation of the 

Christoffel equations , and the eikonal equation. Suggestions for future work 

in Chapter 12 make direct use of expression (2.3) and so we include it here. 
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2 .1 Cauchy equations of motion 

In this section we consider the balance of linear momentum as it applies to 

a volume of the continuum. By considering the solvability condition of the 

resultant expression we formulate the Cauchy equations of motion. 

The balance of linear momentum requires that the total force acting 

upon a volume be the sum of its surface forces, due to elasticity, and its 

body forces, due to gravity. Consider a constant volume of the continuum 

which changes position with time. That is, assume u = u (x , t). For exam-

ple, we may think of a water balloon tumbling in a river; it's density and 

total volume will not change but it's shape, and hence surface normal, will. 

Recalling that force is equal to mass times acceleration, we can write the 

balance of linear momentum in component form as 

Ill. cPui (x, t) 11· ( 3 

) 111· . . . p ot2 dV =. . ?= a-iini dS +. . . fidV, 
V(t) S(t) J=l V(t) 

i E {1, 2, 3}. 

(2.4) 

In this case, the displacement, u (x, t), is a function of position and time, 

2:;=1 O"jinj is the surface force per unit area expressed in terms of the stress 

tensor and the surface normal. and fi represents the component of the body 
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force. It can be shown by considering the gravitational potential and Pois-

son's equation that for a wave propagating with frequency greater than 1Hz 

the effect of body force is negligible. 3 Since in exploration seismological stud-

ies, the frequencies of the signals which are studied are significantly greater 

than lH z we can simplify expression (2.4) by neglecting the body force. 

Applying the divergence theorem-! to the surface integral we can combine 

the integrals to get 

11/. ( 3 £:I £:12 ) UO"j i _ ~ _ . ') . . . 0 ax j p at2 d V - 0' ~ E { 1' ~ ' 3} . 
V(t) J-l 

(2.5) 

In order for expression (2.5) to be satisfied for any volume V then it must 

be true that the integrand vanishes , namely, 

~ aaji = a
2
ui (x, t) . {l 2 3} 

L ax . p at2 ' ~ E , ' . 
j=l J 

(2.6) 

Expression (2.6) is referred to as Cauchy's equations of motion. 

'
1see for example Uclias , A. , (1999) Principles of seismology: Cambridge, pp. 39-40. 
1The divergence theorem can be found in nearly any calculus book . For example, 

Lang, S ., (1987) Calculus of Several Variables: Springer-Verlag, pp . 345-350. 
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2.2 Christoffel equations 

In this section we will consider Cauchy's equations of motion for an inhomo-

geneous medium. Combining these with the stress-strain relation of expres-

sion (2 .3) we will express the Christoffel equations for which the solvability 

conditions lead to the eikonal equation. 

Since we wish to deal with inhomogeneous media we must express Cauchy's 

equations of motion (2 .6), such that both the density, p, and the components 

of elasticity, Cijkt, are functions of position. Thus we get 

L
3 

OCJji (x) = ( ) o2
ui (x. t) . {1 ') 3} 

.!l p X .!l ·) , 't E , ~, , 
ux· ut-

j=l J 

(2.7) 

where 

3 3 
1 (ott · ou ·) 

CJij (x) = L L 2Cijkl (x) OXI + ox~ ' i,j E {1 , 2, 3}. 
k=l l=l J 

(2.8) 

Before we can proceed further we need some idea as to the form of u (x, t). 

A common practice is to assume a trial solution of the form 

u (x, t) = A (x) f (ry) = A (x) f (vo ['ljl(x)- t]) (2.9) 

where A(x) is the amplitude of the disturbance, which varies with position, 
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vo is a constant velocity, and 'lj;(x) gives the moving wavefront at time t. 

The term "wavefront" is defined here as the locus of points for which the 

medium goes from being undisturbed to disturbed. The trial solution then 

is such that the "function f gives the waveform as a function of time with 

A being the spatially variable amplitude of this waveform" .5 Substituting 

expressions (2.8) and (2.9) into expression (2.7) results in an expression of 

the form 

8f 8 2 ! 
a (X) j + b (X) ~ + C (X) .Q ·) = 0. 

UTJ uTJ-
(2.10) 

Functions a (x) , b (x) and c (x) define solvability conditions since in order 

for expression (2.10) to be true for an arbitrary f (TJ) , each coefficient must 

be identically zero. The coefficients of the differentials are of particular in-

terest. The expression corresponding to b (x) is commonly referred to as 

the transport equation and is important when one wishes to study ampli-

tudes. For our purposes we will be focusing on the coefficient c (x) which in 

expanded form, for a given i E {1, 2, 3} , is 

3 ( 3 3 8'lj; 8'lj; ) 
{; ~ ~ Cijkl (x) OXj oxl - p (x) 8 i k Ak (x) = 0, (2.11) 

:; Slawinski, M.A. , (2003 ) Seismic waves and rays in elastic media: Pergamon, p. 165 . 
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where 8ik is the Kronecker delta. Since '1/J(x) describes the wavefront with 

level sets giving the wavefront at timet, the partial derivatives 8'lf;j8xj are in 

the direction of the wavefront normal and have units of slowness. Therefore, 

we define the "slowness vector" , p : = \77./J, and will use its components 

given by 

8'lj; 
Pi= -

0 
· 

Xi 
(2.12) 

By definition the slowness vector will be equal in magnitude to the inverse 

of the wavefront velocity, v. Since all points on the wavefront are of the 

same phase, p is sometimes referred to as the phase-slowness vector. Con-

sequently, the angle that this vector makes with the vertical is sometimes 

referred to as the phase angle. Since in this thesis we will not make direct 

reference to any other type of slowness , we will take all references to "slow-

ness" to mean phase-slowness , without confusion. Using the definition of 

slowness we can write expressions (2.11) as 

3 ( 3 3 ) t; ~ ~ Cijkl (x) P]Pl - p (x) 8ik Ak (x) = 0, i E {1, 2, 3} , (2.13) 

which are commonly referred to as the Christoffel equation for an inhomo-

geneous anisotropic medium. 
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2.3 Eikonal equation 

Now we consider the solvability condition for the Christoffel equations and 

use it to derive the eikonal equation. 

In order for equation (2.13) to have a solution it must be true that the 

3 x 3 matrix with ik entries given by 

3 3 

L L Cijkl (x ) PiPl - p (x) 8ik, i,k E {1, 2, 3}, 
j=l l=l 

have a determinant equal to zero. That is, 

det [t t Ci;kt(x ) P;P!- p (x ) 6ik] = 0, i, k E {1, 2, 3}. 

By defining p 2 := IPI2 , we can rewrite this expression as 

2 3 _ _ PiPl _ ~ _ _ . . ? 

[ 

3 3 ( ) ] 
(P ) det ~ ~ ctJkl (x) p2 p2 8tk - 0, 'l, k E {1, ~ , 3}. 

(2.14) 

(2.15) 

(2.16) 

From the factor leading the determinant we see that this expression is a 

polynomial of degree three in p 2 . As such, we know that this polynomial 
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can be factored as 

( 2 1 )(2 1 )(2 1 )-p - •) p - 2 p - •) - 0, 
V(l) (x, p) v(2 ) (x, p) v(3) (x, p) 

(2.17) 

where we have denoted the three roots (not the components) by 1/v[i) (x, p) 

which are functions of the position, x, and the direction of the slowness 

vector, p , and where we have denoted v 2 := lvl 2
. The fact that there are 

three roots (eigenvalues) indicates that there are three wave types possible in 

inhomogeneous anisotropic media each with a wavefront velocity, v(i). For 

each velocity, or eigenvalue, there is also an associated eigenvector. This 

eigenvector gives the direction of the displacement of the medium as the 

disturbance propagates in the direction of the wavefront normal indicated 

by the direction of p. 

Since herein we will be using field observations of first arrival traveltimes 

that correspond to the fastest waves, the longitudinal waves, we will not 

discuss further the other two roots corresponding to transverse waves, S 1 

and S2. For a given wavefront then, we have 

? 1 
p- = --::-.....,..---

v2 (x, p) ' 
(2.18) 

which is commonly referred to as the "eikonal equation' . Since it depends 
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both on position x and propagation direction, indicated by p, the eikonal 

equation applies to inhomogeneous anisotropic media. An important prop-

erty of this equation can be seen in expression (2.16) above. Although the 

eikonal equation depends on the direction of the slowness vector p , it does 

not depend on the magnitude of slowness. Since 

(2.19) 

we can write 

where nj is the jth- component of the unit normal in the direction of p. 

Thus we can rewrite equation (2.16) as 

Returning to equation (2.18) , we can write 

1 
(2.21) 

v2 (x, n) ' 

where n is the unit vector normal to the wavefront, which means that nand 
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p have the same direction. This equation indicates the dependence of v on 

the orientation of p but not its magnitude. 

Definition 2 .1 A function, v (x, p) is said to be homogeneous of degree r 

in p if 

v(x,cp) = crv(x,p) 

for every real c. 

Since we have stated that the magnitude of the wavefront velocity func­

tion v does not depend on the magnitude of the vector giving the orientation 

of the wavefront, the wavefront velocity function must be homogeneous of 

degree zero in p. That is , 

v (x, cp) = c0v (x, p). (2.22) 
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2.4 Hamilton ray equations 

2.4.1 Formulation 

Recalling expression (2.12) we see that the eikonal equation (2.18) , namely, 

1 
v 2 (x , p)' 

is a first-order nonlinear partial differential equation (PDE) with solution 

surface given by p (x ). In this section we will seek to construct the solution 

surface by means of a union of curves. The curves when projected into 

physical space are the rays which define the paths of energy propagation 

from source to receiver . The equations defining the rays are known as the 

Hamilton ray equations, which we aim to derive. 

To begin we define the function F (x, p ) for which the solution to the 

eikonal equation (2 .18) forms a level set. That is, we define 

F(x, p (x )) =p2v2 (x,p(x)) = 1. (2.23) 

Since F (x, p (x)) is constant , its differential must be zero. Hence we can 
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write 

3 
[ 8 F 

3 
8 F 8pi ] dF(x,p (x)) = L ax · + La. ax · dxi = 0. 

i=l t j=l PJ J 

For each i we seek a non-trivial solution and so we disregard dxi = 0 and it 

follows that 

3 
f) F L f) F Opi - . { ') } 
!::'I + !::'I !::'I - 0, 't E 1, ~ , 3 . 
ux · up · ux · 

t j=l J J 

For a given i we can write this expression as an inner product, namely, 

(2.24) 

which indicates that these two vectors are orthogonal to one another. 

Since the solution of the eikonal equation is a surface given by p (x) , for 

each i we seek to construct the solution surface by finding curves Pi (x) with 

normal vector components 

. _ ( 8pi OPi OPi _ ) . { 'J } n t - !::'I , !::'I , !::'I , 1 , t E 1, ~ , 3 . 
u X1 UX2 UX3 

(2.25) 
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For expression (2.24) above we stated that the vector 

(
oF oF oF oF) ------ --
8pl' OP2' 0P3' OXi 

(2.26) 

was orthogonal to the vector 

which by expression (2.25) we know is normal to the curve Pi (x) in the 

solution surface. Therefore we can conclude that the vector on the left 

in expression (2.24) is tangential to the solution surface. As such, if we 

parameterize the curve by s (i.e., [x1 (s) ,x2 (s) ,x3 (s) ,pi (s)]) then we solve 

for it by solving 

dpi oF 
-=-(-
ds oxi 

, i E {1, 2, 3}, (2.27) 

for some scaling factor (. vVe note that system (2.27) is a set of ordinary 

differential equations (ODE). Since we would want all of our formulations 

parameterized with respect to time we will need to find the appropriate 
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scaling factor. 

2.4.2 Parameterization in terms of time 

Recall expression (2.9), namely 

u (x, t) = A(x) f (vo ['1/J(x) - t]), (2.28) 

which indicates that the eikonal function, 'lj;(x) , has units of time. Therefore 

we require 

d7f](x) = dt. 

In terms of parameters we require 

d7f](x (s)) 
ds 

dt 
ds' 

which, if s is to be equivalent to time t, means that 

3 
d·ljl(x) = L 8'1/J(x) dxi = 1 

ds 8xi ds ' 
i=l 

(2.29) 
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or equivalently in view of definition (2.12) 

(2.30) 

Substituting expression (2.23) into the first ODE of system (2.27) and ex-

panding we get 

( 
2 2 8v) 

= 2( PiV + p v 0Pi . (2.31) 

Substituting expression (2.31) into expression (2.30) we get 

(2.32) 

Recall from section 2.3 where it was shown that the velocity function is 

homogeneous of degree zero in Pi· This means that we can now apply Euler's 
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homogeneous-function theorem0 which tells us that 

3 av 
LPi~ =0. 
i=l Pt 
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Thus solving for ( in expression (2.32) we find that in order for the param-

eterization of system (2.27) to be of time, we require 

1 1 
( = 2 (p2 v 2 ) 2 

Hence we have 

dxi 18F 

dt 2 opi 

, i E {1, 2, 3}. 

1 aF 

Defining the Hamiltonian, 

1 ') 2 1i := F/2 = -p-v (x, p), 
2 

(2.33) 

(2.34) 

1ifor a description of Euler 's Theorem see Taylor. A .E. , (1955) Advanced calculus: 
Blaisdell Publishing Company, pp .l84-1 5. 
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we have 

, i E {1, 2, 3} (2.35) 

which are referred to as Hamilton's ray equations. 

Given a velocity model v (x,p), we could now use one of many tools 

developed for solving ODEs and solve the equations of system (2.35). It 

turns out that if we were to solve the wave equation, 

by twice using the method of characteristics 7 , we would find that the curves 

x (t) are characteristics of the eikonal equation. Furthermore, it could be 

verified that it is along these curves that the energy of the signal propagates. 

As such, these are the rays in the physical space, hence the name, ray 

equations. 

'For an introduction to the use of characterist ics to solve PDE 's see i\lcOwen, R .C., 
(2003) Partial differential equations: Methods and applications, 2ed .: Pearson Education , 
pp. 11-2-l. 



Chapter 3 

Ray velocity in terms of 

wavefront properties 

In this chapter we take the first step in formulating a traveltime expression 

in terms of ray properties. \Ve will begin by expressing the ray velocity in 

terms of the wavefront velocity and angle. This is done by substituting the 

Hamiltonian (2.34) into the first of Hamilton's ray equations and using the 

result to express the ray velocity. In subsequent chapters we will replace 

wavefront properties with ray properties until we arrive at an expression for 

ray velocity in terms of ray quantities alone. 

The solution of the first of Hamilton 's ray equations results in the curve 

x ( t) parameterized by time. This curve is referred to as the ray. It is along 

23 
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this curve that the signal propagates. It follows then that the vector x (t) 

is tangent to the signal trajectory and gives its direction at time t. The 

magnitude of this vector is equal to the velocity of the energy propagation 

in the given direction. Hence this vector is called the ray velocity vector and 

is denoted by 

v = lx(t)l = ~~:1 = ~- (3.1) 

To derive the expression for x (t) we recall the first of Hamilton's ray 

equations along with the Hamiltonian 1t = p 2v 2 (x, p) to get 

. aH 
Xi=-

api 

2 2 av (x, p) 
= PiV + p v >l 

UPi 

2 1 2 2 av (x, p) 
= PiV + -p v ' 

v api 
(3.2) 

which can be simplified with the eikonal equation (2.18) to give 

. 2 1 au (x,p) 
Xi = PiV (x, p) + - a . 

v Pi 
(3.3) 

Therefore the square of the ray velocity vector, expression (3.1) , can be 
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written as 

V 2 _ • . • _ ~ [ 4 2 ? . av _.!_ ( av ) 
2

] 
- X X - L v pl + ""'vpl a . + v2 a . . 

i=l Pl Pl 
(3.4) 

Applying the linearity of the summation we can rewrite this as 

3 3 3 2 

2 - 4 "'""' 2 ') "'""' . av _.!_ "'""' ( av ) 
V - v ~Pi + ~v ~ Pl api + v2 ~ api (3 .5) 

Since we established earlier that v (x , p) was homogeneous of degree zero in 

p , we now apply Euler's homogeneous- function theorem to expression (3.5). 

Theorem 3.1 Euler's homogeneous- funct-ion theorem. If the function v ( x , p) 

is homogeneous of degree r in p then 

Proof. In v·iew of Definition 2.1 , we write 

v (x , cp ) = c'rv (x , p) 
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for some c E R. Differentiating with respect to c results in 

~ 8v r-1 ( ) L 8 ( ·)Pi= rc v x, p . 
i=l cpl 

Letting c = 1, we obtain 

n 8v 
LPi~ = rv (x,p). 
i=l Pl 

• 

Given that v (x, p) is homogeneous of degree zero in p , the second sum-

mation of expression (3.5) is zero and with the help of the eikonal equation, 

expression (3.5) is reduced to 

V(x,p)= 2 ( ) 1 ~ ( 8v ( x , p)) 2 

v x, P + 2 ( ) L 8 . 
v x, p i=l P1 

(3.6) 

Expression (3.6) gives the ray velocity in an inhomogeneous anisotropic 

medium as a function of the position, x , and the orientation of slowness 

vector p. 



Chapter 4 

Transversely isotropic media 

We now define a particular symmetry class of media which are often justified 

in the context of petroleum exploration and lead to some convenient simpli-

fications in the mathematical formulations which follow. In particular, we 

define the transversely isotropic media. 

vVe recall expression (2.1) in which we stated that in a three-dimensional 

linearly elastic solid, stress is proportional to strain, i.e. , 

3 3 

tJij = L L CijklCkl, i, j E {1, 2, 3} 0 

k=l l=l 

Initially it appears that to fully determine the elastic properties of a given 

medium we must find the values of 81 components. It turns out, however, 

27 



28 

that because of the symmetry of the stress tensor (a-ij = CJji) , due to the 

balance of angular momentum, and because of the symmetry of the strain 

tensor (E:ij = E:ji), by its very definition, the 81 components are reduced 

to 36 independent components. Furthermore, since we assume that all of 

the energy required to deform the medium is stored as potential energy, the 

strain-energy function, namely, 

3 

2-vv = L CijktE:klE:ij ( 4.1) 
i ,j,k ,l=l 

requires1 that Cijkl = cklij and so the number of independent components 

necessary to completely define the elasticity of any medium is further re-

duced to 21. 

The symmetries discussed above are intrinsic and apply to all media. If 

the medium under study possesses additional "material symmetries·' then 

we are able to further reduce the number of independent components. By 

a material symmetry we mean that for a given property under investiga-

tion, the results of physical measurements made with respect to a number 

of specific coordinate systems (orientations of the experimental setup) are 

1 This is verified by rewriting the strain-energy function as 

and applying the equality of mixed partial derivatives. For further details see Love, A.E .H. , 
(19-t-l) A treatise on the mathematical theory of elasticity, .Jed: Dover, p. 99. 
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indistinguishable. In such a case, the elasticity tensor would be invariant to 

specific orthogonal transformations of the coordinate system thus reducing 

the number of independent components while defining a specific symmetry 

class. 2 

One type of invariance, or symmetry class, that is of particular interest 

to geoscientists is that of rotational invariance or transverse isotopy with 

a vertical symmetry a..'<:is, commonly referred to as VTI. For VTI media, 

experimental measurements are unaffected by the azimuthal orientation of 

the setup. For example, the observed traveltimes of a signal from a source 

at the surface to a receiver with a fixed offset and depth would be the same 

regardless of the orientation of the vertical plane containing the source and 

the receiver; be it N, vV, or NNE. 

vVhen we consider that hydrocarbons most commonly form and collect in 

areas of sedimentary deposition, we immediately see the interest of VTI me-

dia in the field of petroleum exploration. As sediments settle they typically 

do so in a layered fashion. Since the lower sediments will be more compacted 

due to the pressure exerted by the overburden, vertical planes will be have an 

inhomogeneity that varies with depth while the horizontal planes contained 

~Readers interested in how this reduction of components of elasticity is done for the 
different symmetry classes are referred to Bos, L. , et al , (200--1) Classes of anisotropic 
media: A tutorial: Studia geophysica et geodaetica, 48 , pp. 265-281. 
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in the layers will be homogeneous. Furthermore, since within the horizon-

tal planes the grains will not have any preferred alignment, such a layered 

medium will be transversely isotropic because as Helbig3 states "a random 

assembly of crystallites is equivalent to an isotropic medium". Across layers 

however, the orientation of the granules \-vith respect to the vertical plane will 

generate an anisotropic effect. For these reasons we see why the assumption 

of VTI is sometimes justified in the modelling of a section of the subsurface 

and why "The vast majority of existing studies of seismic anisotropy are 

performed for a transversely isotropic (TI) medium ... " .4 

As a result of the rotational invariance of VTI media, the number of 

independent components is reduced from 21 to just five5 . Also, another 

convenient consequence of VTI is the fact that because of the inherent lateral 

homogeneity, as the signal propagates it will not move out of the vertical 

plane containing the source and receiver. As a result, the rays found by 

solving the first of Hamilton's ray equations (2.35) can be expressed in two 

dimensions which simplifies subsequent manipulation of equations. 

:
1 Helbig, K ., (199-1) Foundations of anisotropy for exploration seismics: Pergamon, p . 

8. 
1 Tsvankin, I. , (2001 ) Seismic signatures and analysis of reflection data in anisotropic 

media: Pergamon, p . 11. 
:; Bos , L. , et al , (200-l) Classes of anisotropic media: A tutorial: Stuclia geophysica et 

geoclaetica , 48 , pp. 281-28-L 



Chapter 5 

Relation between ray angle 

and wavefront angle 

In this chapter we continue to replace wavefront properties in the ray veloc-

ity expression (3.6) with ray properties. Specifically, we derive the relation 

between the ray angle and the wavefront angle, and use this relation to 

express the ray velocity in terms of the wavefront velocity and ray angle. 

Considering an infinitesimal time increment along the ray, x (t), in a VTI 

medium described above, and illustrated in Figure 5.1, we see that the ray 

angle. e, is given by 

(5.1) 

31 
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(o.o) 

.:-------
- tan&= ill; 

d~ 

Figure 5.1: Plot of infinitesimal section of the ray. Ray angle indicated in figure. 

Recalling expression (3.3) this can be rewritten as 

2 1 av 
PlV + -­

v ap1 
tan()= -----

1 av 
P3V2 + --­

vap3 

(5.2) 

vVe see that to express the ray angle in terms of the wavefront angle we must 

first express the differential operator in terms of the wavefront angle. Since 

the wavefront angle is related to the slowness by 

Pl tanrJ = -, 
P3 

(5.3) 



we apply the identity 

dtan-1 (f(x)) 1 df 

dx 1 + f 2 dx 

and recall that p 2 = IPI 2 to get 

[){) 8 

and 

8 8'13 8 

Expression (5.2) then becomes 

P1 18v -+-­
P3 v 8'13 

1 
_Pl.!_ 8v 

P3 v 80 
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(5.4) 

(5.5) 

(5.6) 

(5.7) 



Using expression (5.3) above we can simplify to get 

1 8v 
tan '19 + --

tanB = v 819 
tan '19 8v 

1----
v 8'19 

34 

(5.8) 

which is the expression for the corresponding ray angle in a two dimensional 

medium given in terms of the wavefront angle and velocity. 

At this point we can also apply expressions (5.5) and (5.6) to expression 

(3.6) to express the ray velocity in terms of the wavefront angle. Doing so 

gives 

2 2( ) (8v) 2 

V (x, '19) = v x , '19 + 
819 

, (5.9) 

where by using expression (5.8) we can replace the wavefront angle with the 

ray angle, e ( '19). 

To further illustrate the relationship between the ray and wavefront an-

gles consider Figure 5.2. 

From the figure we see that 

tane =tan ('19 +e)' 
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() 

Figure 5.2: Graphical illustration of the relationship between the ray and wavefront 
angles. The ray angle is denoted by () and the wavefront angle is denoted by {) . 

The difference between the two is denoted by ~- The ray velocity is denoted by 
vector V and the wavefront velocity by vector v. 

which by identity can be written as 

Since 

() 
tan{) + tan~ 

tan = ------~--~ 
1 - tan{) tan~ 

1 dv 
tan~ = ;;; d{) , 



we get 

as expected. 

tan'!9 + ~ dv 
tan e = v d'!9 

1- tan '!9 dv 
v d'!9 
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Chapter 6 

Elliptical anisotropy 

Up to this point we have not made any assumptions about the dependence of 

velocity on propagation direction. In this chapter we introduce the concept 

of elliptical anisotropy. In the second section, we introduce the ellipticity 

parameter which we use to formulate the ray velocity expression in terms of 

ray angle and depth with no explicit dependence on wavefront properties. 

6. 1 Definition 

In order to continue our analytic work we are required to explicitly solve 

expression (5.8) for the vvavefront angle in terms of the ray angle. It has 

been asserted that such a solution is only possible if the wavefront velocity 

37 
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v in expression· (3.3) is quadratic1 in the Pi· That is, only when the slowness 

curve is elliptical (parabolic and hyperbolic curves are not possible since 

slowness must be a closed curve and both parabolic and hyperbolic would 

imply directions of infinite velocity!). Therefore, from this point on we 

restrict ourselves to elliptical anisotropy. 

The assumption of elliptical anisotropy means that at a fixed point, if 

we represent2 the horizontal velocity by vH and the vertical velocity by vy, 

then the wavefront velocity at intermediate directions is given by 

Expression (6.1) is not an expression for an ellipse. However, when we 

consider that the magnitude of slowness is the inverse of the magnitude of 

wavefront velocity, we can write 

1 
p ('!9) = ----,======== J v~ sin 2 ('!9) + vt cos2 ( 19)' 

(6.2) 

for which a polar plot results in an ellipse. Polar plots of expressions (6.1) 

1 Slawinski, M.A., (2003) Seismic waves and rays in elastic media: Pergamon, p. 205. 
See also discussion in section 12.2. 

2 Note that we take ·uH and uy to be the magnitudes of the wavefront velocity along 

the x1- and X3-axes, respectively. In other words, vH = v(1rj2) and vy = v(O). 
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and (6.2) are shown in Figure 6.1. \Ve can see that the v ('19)- curve is not 

• \ 
I I • 

I • 
I I 
I I 

I 

-1 • I ~ 

• I 

' 
I 

'\ ¥-
~ 

t 0 .... I \ - .8 I 

Figure 6.1: Polar plots of expressions (6.1) and (6.2) (i.e. , wavefront velocity (solid 
curve) and slowness (dashed curve), respectively). For graphical emphasis, elliptic­
ity assumed to be more pronounced than expected in most geophysical experiments. 

an ellipse while the p ( '19)- curve is. Additionally, under the assumption of 

elliptical anisotropy given a point source in a homogeneous medium the 

expression for the resultant wavefront will be 

') 2 
x -1 x .3 ') -+-· =t- , 
VH VV 

(6.3) 

which is again an ellipse (if we assume the medium to be inhomogeneous 
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than the above expression will hold only for infinitesimal time increments). 

As will be shown in the next section, when we consider the ray velocity as 

a function of the ray angle, it too will form an ellipse in a polar plot. 

'We note that when dealing with a medium consisting of isotropic layers , 

it has been shown that longitudinal waves cannot have elliptical wavefronts.3 

However , the assumption of elliptical anisotropy is justified by the resultant 

simplifications in the model and also, a posteriori, by the accurate modelling 

of field observations. For SH-waves however the wavefronts in such a case 

are elliptical and thus SH-wave data in layered media would be exactly 

described by a model based on an assumption of elliptical anisotropy using 

the expressions which follow. 

In Chapter 4 material symmetries were mentioned. The definition of 

elliptical anisotropy however is not directly related to any symmetry of the 

medium. The use of the term "elliptical anisotropy" refers to a specific 

wave and its slowness curve. As was shown in section 2.3, for an anisotropic 

medium, there are three different waves possible, each with a different veloc-

ity expression. Although one particular wave may generate elliptical wave-

fronts, at least for infinitesimal time increments , the others may not. Thus 

the labelling of a medium as being elliptically anisotropic depends on the 

:I Helbig, K. , (1983) Elliptical anisotropy - Its significance and meaning: Geophysics, 
48 pp. 825-832. 
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type of wave being studied. 

6.2 Ray velocity for elliptical anisotropy and in­

homogeneity 

vVe now derive the ray velocity expression for an inhomogeneous medium 

under the assumption of elliptical anisotropy in terms of depth and ray angle. 

Recall expression (5.9) which gives the ray velocity V in terms of the 

wavefront velocity v and angle {), namely, 

(6.4) 

which is valid for an inhomogeneous, anisotropic medium. In seismological 

surveys , we often measure the first arrival times of the seismic disturbance. 

In view of Fermat's principle we take the measured traveltime of the dis­

turbance to be along the ray that makes the traveltime stationary. For our 

purposes we can assume that the traveltime is always minimized. Since 

our field measurements are better related to the ray than to the wavefront , 

whenever we attempt to solve an inverse problem based on field data we 

would like to have expressions involving only ray quantities. Hence we need 

to replace the wavefront angle in expression (6.4) with the ray angle. 
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First, let us assume that the wavefront velocity varies spatially as a func-

tion of depth. Such an assumption would be consistent with a VTI medium 

in which compaction, and hence density, increases with depth resulting in an 

increase of velocity. Such a medium is said to be vertically inhomogeneous. 

Next, we assume an elliptical velocity dependence on direction. Defining the 

ellipticity parameter 

which we assume to be constant, we can express the wavefront velocity 

expression (6.1) as 

(6.5) 

Substituting the above expression into expression (6.4) we get 

•) 2 
2 ? 2 ? sin- {) cos {) 

= vy (x3) (1 + 2x sin-{)) + 4x vy- (x3) . ·) 
1 + 2x sm- '!9 

_ , 2 ( ·) (1+4x(1+x)sin
2

{)) 
- Vy X3 ') . 

1 + 2x sin-{) 
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Dividing both the numerator and denominator by cos2 {) we get 

2 ( ) 2 V2 ( _a) _ 2 ( ) sec iJ + 4x: 1 +X tan {) 
X3, 'U - Vy X3 2 _a 2 ') _a sec v + x tan- v 

(6.6) 

_ 2 ( ) 1 + (1 + 2x)
2 

tan2 
{) 

- vv x 3 1 + (1 + 2x) tan2 iJ · (6.7) 

To proceed further, we must now solve expression (5.8) for iJ. Substituting 

expression (6.5) into expression (5 .8) and simplifying we get 

_a 1 ( 2 ( ) sin {) cos {) ) tan v + . XVV X3 
uv (x3) J1 + 2x sin2 iJ J1 + 2x sin2 '!9 

tanB= ------------------------------------------------

1 tan {) ( ') ( ) sin {) cos {) ) - . ~x:vv x3 . 
vv (x3) J1 + 2x sin2 {) J1 + 2x sin2 iJ 

= (1 + 2x) tan iJ. (6.8) 
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Returning to expression (6. 7) we now write 

v2 (x () (iJ)) = v2 (x· ) ( 1 + (1 + 2x)2 ta~2 {)) 
3

' V 3 1 + (1 + 2x) tan2 {) 

and so we obtain 

( 

2 
tan

2

B l 1 + (1 + 2x) ~ 
') (1 + 2x) 

= vy (x3) 
tan2 () 

1 + (1 + 2x) ·) 
(1 + 2x)~ 

2 (1 + 2x) sec2 () 

= VV (x3) (1 + 2x) + tan2 () , 

V (x3, B) = vy (x3) 
1 + 2x 

44 

(6.9) 

Expression (6.9) gives the ray velocity in terms of the ray angle and depth for 

an elliptical velocity dependence and vertical inhomogeneity. The ellipticity 

is characterized by x which remains constant and the inhomogeneity is such 

that velocity increases with depth. 



Chapter 7 

Ray paran1eter 

In this chapter we introduce the concept of a conserved quantity along the 

ray. Specifically we derive the expression for the ray parameter in terms of 

the ray velocity and ray angle. Then we will simplify further to write the 

expression of the ray parameter in terms of a point on the ray. 

In Figure 7.1 we see that the total traveltime along the ray can be written 

in integral form as 

(7.1) 

If we now define 
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(0.0} 

-- dS (d:~j •(<~xS 
l =- = _;_· _;_;_~__,.;;..;_ 

V V(x3.t.l) 

Figure 7.1: Plot of infinitesimal section of the ray. Traveltime along dS is indicated 
in figure. 

we can rewrite to get 

' dx3 x 3 := -- =cot(), 

./

x.l 
t= 

x 1 =0 

dx1 
(7.2) 

(7.3) 

where X 1 is the total horizontal offset of the receiver from the source. As 

stated earlier, the traveltime of seismic wave propagation is stationary. Such 

a condition is fundamental in the branch of mathematics known as the cal-

culus of variations. vVithin the context of the calculus of variations it can 

be concluded that in order for an integral equation to be stationary the 
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integrand, denoted F, must satisfy the Beltrami identity1
, namely 

(7.4) 

In our particular case we note that the integrand of expression (7.3) does 

not explicitly depend on x 1 . Hence when we substitute this integrand into 

expression (7.4) the first partial derivative will be zero. Furthermore, this 

implies that the expression in parenthesis must be constant with respect to 

x1. Therefore we can write, 

(7.5) 

where F denotes the integrand of expression (7.3). The parameter p repre-

sents a conserved quantity along the ray and is commonly referred to as the 

ray parameter. In our particular case (VTI media) what is conserved is the 

horizontal component of wavefront slowness, hence the use of p to denote 

the constant. Substituting the integrand of expression (1.3) into (7.5) above 

1 for details see J\Iarion, J .B ., (1910) Classical dynamics of particles and systems, 2ed. : 
Academic Press, p. 184- 189 . 
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we get 

and so we get 

(7.6) 

To express the ray parameter in terms of the ray angle, () , we note that 

8 8() 8 
8x3 8x3 8() · 

Recalling expression (7.2) , namely, 

, dx 3 ( , ) x 3 := -d =cot()==?()= arccot x 3 , 
X l 
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we can make the change of variables in the differential operator by 

aB 
x' 3 

aarccot (x~) -1 

x3 - 1 + (x3)2 

-1 -1 0 2 
?(B)=-sm (B) esc-1+cot2 (B) 

to get 

a aB a . 2 a 
8x3 = ax3 aB = - sm (B) aB. (7.7) 

Therefore we can express the ray parameter as a function of the depth and 

the ray angle in a VTI medi urn as 

sinB a ( 1 ) 
p= V(x3 , B) +cosBaB V(x3,B) · (7.8) 

vVe note here that in the case of an isotropic medium, there would be no 

dependence of ray velocity on the ray angle. Hence the partial derivative 

in expression (7.8) would be zero and we would be left with the commonly 

known form of Snell"s law, 

sin '19 sin B 
p = -- = -..,..----

- v (x3) V (x3) ' 
(7.9) 

where m an isotropic medium, there is no distinction between wavefront 
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and ray quantities. It is clear then that Snell's law gives the horizontal 

component of the wavefront slowness in an isotropic medium. 

Substituting the ray velocity expression for an elliptically anisotropic, 

vertically inhomogeneous medium, namely expression (6.9), into ray param-

eter expression (7.8) we get 

sin(} a ( 
p = ----;::::::=;:::==;;;=== +cos(} o:l(j vy (x3) 

1 + 2x u 
VV (x3 ) 1 + 2x cos2 (} 

-1 
1 +2x ) 

1 + 2xcos2 (} 

(7.10) 

which simplifies to 

sin(} 1 1 
p= 

vy (x3) yf1 + 2x J1 + 2x cos2 (}' 
(7.11) 

and gives the ray parameter for an elliptically anisotropic vertically inho-

mogeneous medium as a function of depth and ray angle. 

vVe have stated that the ray parameter is a conserved quantity along 

the ray and in the case of VTI it is the horizontal component of slowness. 

To have a value of the ray parameter, it will be necessary to express p in 

terms of a known point on the ray. In our case the point that we will know 

for certain is the receiver position. To express p in terms of a point on the 
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ray2 we first divide both the numerator and denominator of the right side 

of expression (7.11) by cosO and then by recalling that tanB = dxl/dx3, we 

get 

pvy (x3 ) (l + 2x) dx3 = dx1. 

J 1 - p2vy(xa)2 (1 + 2x) 
(7.12) 

Now by integrating each side from the source at (0, 0) to the receiver at 

(7.13) 

To carry out the integration we need to specify vy (x3). As was stated in 

Chapter 4, VTI media are most commonly the result of sedimentary depo-

sition. As the layer of sediment builds, the lower layers become increasingly 

compacted and hence, more dense. Therefore, we expect the velocity of sig-

nal propagation through such a medium to increase with depth. As stated 

by Slotnick3 "Experience has shown that the velocity of seismic wave prop-

agation in Tertiary basins can be closely approximated by expressing it as 

a linear function of depth" . In other words, we assume inhomogeneity is in 

"For complete details see Appendix A. 
:
1Slotnick, .M.M., (1959) Lessons in seismic computing: Society of exploration geo­

physicists, p. 205. 
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the form of a constant velocity gradient where 

(7.14) 

where a gives the vertical velocity at zero depth and where b is the gradient 

which defines the rate of increase in vertical velocity with depth. Therefore 

we simplify expression (7.13) to get 

X3 x1 
/ P (a+ bx3) (1 + 2x) dx3 = l dxl 

0 yf1-p2 (a+bx3) 2 (1+2x) 0 

:b [ v1- p2a 2 c1 + 2x)- J1- p2 ca + bx3)
2 

c1 + 2x)] = xl· (7.15) 

Solving expression (7.15) for p we obtain 

2Xl 
p=-r=================================== 

·Jcx? + (1 + 2x)Xj)[(2a + bX3? (1 + 2x) + b2Xfl' 
(7.16) 

which gives the value of the ray parameter in terms of the model parameters, 

a , band x and the receiver position, (X1 , X3). vVe note that the value of the 

ray parameter is the same for all points along the ray so in general, (X1 , X3) 

can be replaced by (x1 , x3) for any point on the ray. The problem however 

is that initially, the only point on the ray that we will know for certain is 
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the receiver position and so we would not in general make the substitution. 



Chapter 8 

Traveltime expression for 

elliptically anisotropic 

vertically inhomogeneous 

media 

In chapter 7 we derived the expression for the ray parameter in terms of 

ray quantities. In doing so we specified the ray velocity expression for a 

vertically inhomogeneous, elliptically anisotropic medium. In this chapter 

we will use the ray parameter expression to give the ray angle as a function of 
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position. H aving such an expression for the ray angle we will then derive the 

traveltime expression for signal propagation between a source and a receiver 

Recall Figure 7.1 in which we consider an infinitesimal section of a ray. 

Let us assume as above that the medium is VTI with an elliptical velocity 

dependence and is vertically inhomogeneous. We see that the total travel-

time along the ray from a source at the origin to a receiver at a depth of 

x3 , can be expressed as 

xa=Xa 

t = ; · ~ = ; · ~3 = ; · . . v . 
(8.1) 

xa=O 

where V (x3, ()) is the ray velocity as a function of depth, x3, and ray angle, 

(). Inserting ray velocity expression (6.9) we write 

t = ./x!l ____ "'""';::=d=x;:::3==:;;:::::==:---
1 + 2x e o (a + bx3) ? cos 

1 + 2x cos-() 

(8.2) 

To evaluate this integral we must find an expression for cos() in terms of 

depth. vVe do so by solving expression (7.11) to get 

cos()= 
1 - p 2 (a+ bx3) 2 (1 + 2"'() 

1 + 2xp2 (a+ bx3) 2 (1 + 2x) · 
(8.3) 
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Substitution of expression (8.3) into the traveltime expression (8.2) gives 

(8.4) 

Carrying out this integration1 we obtain 

(8.5) 

which is the direct-arrival traveltime expression between a source at the 

origin, (0, 0), and a receiver located at (X1, X3) in an elliptically anisotropic 

medium with inhomogeneity given by a constant velocity gradient. The 

value of pis given by expression (7.16). 

1 For the details of this integration, see Appendix A.2. 



Chapter 9 

Parameter estimation 

In this chapter we will examine a procedure that can be used to deter­

mine the values of the model parameters, a , b and X from a given data set. 

The procedure will involve a regression analysis for which we will begin by 

defining the objective of the regression and then specify the procedure for 

carrying it through. 

9 .1 Objective 

Now that we have an analytic traveltime expression we would like to de­

termine the values of a, b and X which best account for VSP traveltime in 

a set of field observations. Due to measurement errors in the experimental 

57 



9.1. Objective 58 

observations we must write the observed traveltime as 

(9.1) 

where Ti indicates the observed traveltime, ti indicates the modeled trav-

eltime for receiver located at X i = [X 1 , X3]i and where P = [a, b, x] is the 

vector composed of the model parameters to be estimated. Solving for the 

residual we get the expression 

(9.2) 

Our objective in estimating vector P will be to minimize the sum of squared 

residuals given by 

n 

~ (P) = L [Ti - ti (P)f ' (9.3) 
i=l 

for n observations. Numerous techniques are available to find this value of 

P , also known as the least-squares estimator P. In our case we choose to 

proceed by means of Gauss-Newton minimization. 
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9.2 Gauss-Newton method 

By examining expression (8.5) we see that the traveltime expression is a 

nonlinear function with respect to the parameters a, band x given by 

(9.4) 

for a given receiver, X i = [XI. X 3]i. Since Gauss-Newton optimization re-

quires a linear model with respect to the parameters to be estimated, we 

must first linearize expression (8.5) about some initial guess for those values. 

We denote the initial parameter estimates by P 0 . Linearization is done by 

taking the first-order Taylor series expansion of the model centered on P 0 . 

That is 

3 

E:i = [Ti- ti(P 0
)] - L ( Jijl po) (Pj- P?) 

j=l 

3 

= E:i (P0
) - L ( Jijl po) (Pj- P?) 

j=l 

(9 .5) 

where the partial derivatives are collected as elements of the Jacobian rna-

trix, Jij. Here, j E { 1, 2, 3} since there are three parameters and i E { 1 ... n} 
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to account for n observations. Considering all n observations we write the 

objective, which we have chosen to be minimizing the sum of the squared 

residuals , in matrix form as 

To proceed further , we must orthogonalize the Jacobian matri..'{. One way 

to this is by means of a Householder QR-decomposition. 1 That is , we solve 

for matrices Q and R such that 

J = QR 

where 

• Q is an orthogonal n x n matrix (i.e ., QQT = I and II Q xll = llxll). 

• Q can be written as 

where for us j = 3 as stated above. 

1 For details on QR-decompostion see for example Golub. G.H., and Van Loan, C.F., 
(1983) Matrix Computations: The Johns Hopkins University Press, pp. 1-!6- 160. 
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• R is an uppertriangular n x j matrix. 

• R can be written as 

where R 1 is invertible. 

H aving a QR-decomposition of the Jacobian matrL"X we can write the 

expression we wi h to minimize as 

II QQT e: (Po) - QR (P- Po) 112 

= II Q [QTe: (Po)- R (P - pO)J 112 

= IIQTe: (Po)- R (P- pO)II2 

= II [Q,, OJT e (P o) + [0, Q2]T e (P o) - [~'] (P - P o) 112 

= II QTe: (Po)- Rl (P - p O)II2 + II Q;fe: (Po)ll2' 

which can be simplified to 

II QQT e: (Po) - QR (P - Po) 112 

= II QT e: (P0
) - R1 (P - P0

) 11 2 
+ II QI e: (P0

) 11
2

. (9.6) 
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Now, since the term 

on the right-hand side of expression (9.6) does not depend on P , minimizing 

the squared residuals amounts to setting the left term to zero. That is 

II Qi e: (P0
)- R1 (P- P 0)ll 2 

= 0 

QJ e: (P0
) - R1 (P- P 0

) = 0 

R1 (P- P 0
) = QJe: (P0

). 

Hence, for a given estimate of the parameter vector P 0 we find that the 

squared residuals for P 0 are minimized by setting 

(9.7) 

If we now use this value of P as the starting point of a new minimization 

we define an iterative technique to solve for the parameter values that lead 

to a global minimum of the sum of the squared residuals. In other words, 

solving for P , setting P 0 = P and repeating in this manner until a prescribed 

tolerance level for the difference between two estimates is met gives the final 
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estimate of P , denoted P. 



Chapter 10 

Exan1ple: Western Canada 

Basin 

In this chapter we apply the model of Chapter 8 along with the method 

of parameter estimation of Chapter 9 to a real data set. In addition to 

calculating the parameter estimates we also introduce the concept of con­

fidence intervals which we also calculate. To illustrate the improvement in 

traveltime modelling of the model developed herein, the model residuals are 

compared to those of an isotropic, homogeneous model and also to those of 

an anisotropic, homogeneous model. 
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10.1 Parameter estimation 

vVe now give an example of the application of an abx. model to a real data 

set. Listed in Table 10.1 are the observed first arrival times for a VSP 

seismic survey in the vVestern Canada Basin taken with a 1ms sampling 

rate.Since in this area, layering is strongly horizontal, an assumption of 

Table 10.1: Traveltime data from VSP survey in the vVestern Canada Basin 
Depth, Z Receiver Offset X =39m Receiver Offset X= 635 m 

Observed traveltime Observed traveltime 

950 m 0.358 s 0.422 s 
1025 m 0.381 s 0.441 s 
1100 m 0.404 s 0.460 s 
1175 m 0.426 s 0.479 s 
1250 m 0.449 s 0.500 s 
1325 m 0.471 s 0.520 s 
1400 m 0.492 s 0.538 s 
1445 m 0.504 s 0.548 s 

lateral homogeneity appears to be reasonable. Further, due to increasing 

compaction of the sediments with depth it also seems reasonable to expect 

the signal velocity to increase with depth. Therefore the applicability of an 

abx model appears justified and so we proceed. 

To begin the approximation technique described above, we set the initial 
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parameter estimates to 

a0 2000 m/s 

0.30 s-1 

0.25 

66 

Carrying out the Gauss-Newton method we get the following estimates of 

the parameter values, 

10.2 

a 2271 m/s 

0.879 s-1 

0.039 

(10 .1) 

Confidence intervals of parameter estimates 

Now that we have estimated the parameter values we wish to form an idea of 

the "reliability" of these estimates. vVe do so by calculating the associated 

confidence intervals. 

In statistical analysis, confidence intervals are assigned a percentile value 

with the usual being 95o/c. vVhat is meant by a 95% confidence interval is 

that if one were to repeat an experiment 100 times. the resultant parameter 

estimates would fall somewhere in the confidence interval 95 times out of 
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the 100. 

Confidence intervals also serve as an indicator of how well the chosen 

model applies to the data set. If the confidence interval is large, then we 

would conclude that the assumption of the abx model for the given data set 

was not a good choice. 

It should not be surprising that if we were to remove a parameter from 

our modeling, say by removing X, and perform a parameter estimation the 

results would be different from the ones in expression (10.1). Therefore, 

when estimating confidence intervals we must bear in mind the interaction 

between parameters. The way to do so is to calculate simultaneous confi­

dence intervals. A common means of doing so for multiparameter models 

is to assume a Fisher distribution of parameter estimates and apply the 

formula1 

b 

x 

± s J 3F~l6-3JT ( P) J ( P) · (10.2) 

1 Seber, G.A .F ., and Wild , C .J ., (1989) Nonlinear Regression: John ·wiley & Sons, p . 
194. 
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In expression (10.2) , s represents the variance estimate and is given by 

liT- t ( x; p) 112 

16-3 
(10.3) 

The factor F3k 16_ 3 is the Fisher distribution value which assumes a k = 0.05 
' 

quantile (i.e. , a 95% confidence interval) with (3,13) degrees of freedom and 

J ( P) is the Jacobian matri.'< evaluated at the final estimate of the parameter 

values. Thus we get the 95% confidence intervals for a, b and X calculated 

simultaneously. 

Looking up the appropriate value of the Fisher distribution and sub-

stituting in the Jacobian matrbc evaluated for the parameter estimates in 

expression (10.1) , we find the simultaneous confidence intervals to be 

2262 :S a ::; 2279 

0.864 ::; b ::; 0.894 (10.4) 

0.035 :S X :S 0.042. 

Since the confidence intervals do not vary significantly from the estimated 

values , we can conclude that the observed data do not vary significantly 

from the proposed model. From the confidence interval for x we see that, 



10.2. Confidence intervals of parameter estimates 69 

although its value are is small, x is statistically significant since x = 0 is 

not contained in the interval. Furthermore, x = 0 is a full five interval 

widths from lower bound of the interval, so the likelihood of getting that 

value is vanishing small. The same is true of b. This then would imply 

that assuming a homogeneous, isotropic model would be doubly erroneous. 

To further illustrate how well the traveltimes are modelled we calculate the 

traveltime residuals to get the results in Table 10.2. 

Table 10.2: Model residuals for Western Canada Basin VSP data. Model 
parameters are a= 2271m/ s , b = 0.879s-1 , and X= 0.039. 

Depth, Z Receiver Offset X= 39m Receiver Offset X = 635 m 
Observed Model Observed Model 
traveltime residual traveltime residual 

950 m 0.358 s 1.42 ms 0.422 s -0.63 ms 
1025 m 0.381 s 0.74 ms 0.441 s -0.64 ms 
llOO m 0.404 s 0.03 ms 0.460 s -0.94 ms 
ll75 m 0.426 s 0 .34 ms 0.479 s -0.98 ms 
1250 m 0.449 s 0.14 ms 0.500 s 0.96 ms 
1325 m 0.471 s 0.12 ms 0.520 s 1.60 ms 
1400 m 0.492 s 0.54 ms 0.538 s 1.42 ms 
1445 m 0.504 s -1.91 ms 0.548 s -0.04 ms 

In Table 10.2 we see that the conclusions above regarding the suitability 

of an abx model are reaffirmed, since the residuals of the modelled times 

versus the observed times are, with only two exceptions , less than 1ms. By 

using the abx model we are able to account for traveltimes to within the 

sampling rate of 1ms which we assume is representative of the observation 
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error. Therefore, further complications of the model are not justified for this 

data set. 

In order to compare the present model with both a homogeneous isotropic 

model (i.e., a i= 0, b = 0 and x = 0) and an inhomogeneous isotropic model 

(i.e., a i= 0, b i= 0 and x = 0) we refer to Table 10.3. 

Table 10.3: Average absolute residuals between observed traveltime and 
modelled traveltime 

Homogeneous, isotropic model (b = 0, X= 0) 8.70 ms 
Inhomogeneous. isotropic model (b i= 0, X = 0) 1.81 ms 
Inhomogeneous, anisotropic model (b i=- 0, xi= 0) 0.78 ms 

In both cases the parameters values (a then a and b, respectively) were 

calculated independently and the model residuals were calculated based on 

those independent values. 

As was mentioned above, it is now obvious that to assume an isotropic 

model is doubly erroneous since the average absolute residual for such a 

model is nearly 9ms. vVe see that the introduction of a constant velocity 

gradient reduces the absolute residual to slightly less than 2ms. A notable 

improvement yet since we expect the sampling rate to be representative of 

the measurement error we are motivated to extend the model further. Once 

we introduce anisotropy into the model in the form of x we see that the 

average residual is within our measurement error and we accept the model 

as satisfactory. 
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A word of caution when attempting to incorporate anisotropy in the 

modelling. The definition of anisotropy requires the dependence of signal 

velocity on propagation direction. Therefore, when attempting to apply a 

model based on any assumption of anisotropy to a given data set , the range 

of source and receiver positions of the data set must be such that observed 

traveltimes are recorded for a range of propagation directions. Otherwise, 

one would be attempting to estimate the variation of velocity with direc­

tion based on observations for essentially a single direction! As an example 

consider a survey performed in a marine setting. It is common practice in a 

marine survey for a survey ship (the source) to run concentric circles about 

the borehole while data is recorded in the borehole. Of course all "shots" 

at a given radius will give results with no variation in the ray. Furthermore, 

given the large depths of many marine drilling operations, sources at several 

radii may still not have the required varied directions necessary to draw any 

conclusions about anisotropy. \Vhat is important is the relative range of 

source and receiver positions to their respective offsets. 

In the case of the vVestern Canada Basin data examined in this chapter, 

let us for the moment make the rough approximation of rays by assuming 

them to be straight. Doing so we see that the source at 35m offset with 

the receiver at 1445m depth would have a ray angle of approximately 1° 
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and the source at 635m offset with receiver at 950m depth would have a 

ray with angle of approximately 53°. The sources and receivers between 

these extremes would then give observations for the intermediate directions. 

Because of the wide range of observations we understand why we were able 

to get a good estimate of X· vVithout this range, problems can arise. 



Chapter 11 

Application: Estimation of 

zone of illumination 

Now that we have a model with the estimated parameters, which have been 

statistically validated, we will now use the model to determine the zone of 

possible reflection points of an offset VSP for a given range of source and 

receiver positions. \Ve refer to the collection of possible reflection points as 

the "zone of illumination". Knowledge of the zone of illumination for given 

source-receiver geometry is useful in the planning of a seismic survey. Given 

an area of interest in the subsurface, one can determine the positioning of 

sources and receivers necessary to image that particular area. 

In addition to showing how to determine the zone of illumination we will 
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also derive an expression to trace the trajectory of the signal as it propagates 

from the source to the receiver. That is, we will find the ray. 

Assume we have a receiver located in the borehole at (X1,X3) , with the 

source being located at (0, 0) . For the given receiver position we must de­

termine the location of the reflection points , (xr, zr), over a range of depths. 

Doing so, we will get a curve. The envelope of such curves - calculated for 

the range of source and receiver positions for a relevant interval of depth -

determines the zone of illumination. Since we have an analytical traveltime 

expression, we achieve this by invoking the principle of stationary traveltime. 

In view of lateral homogeneity, the ray is symmetric about the vertical 

line passing through the reflection point. Examining Figure 11.1 we see that 

for a receiver located at (X1 , X 3 ) , we can write the traveltime of the reflected 

signal as 

(11.1) 

The first term on the right-hand side of expression (11.1) is twice the 

traveltime from the source to the reflection point and the second term on 

the right-hand side is the traveltime along the ray from the source to the 

receiver depth. In the case of our abx model t is given by expression (8.5) , 
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• 

Figure 11.1: VSP reflection geometry. Reflection point at ( x ,r , Zr) and receiver lo­
cated at (X1, X3). Both positions relative to source at (0, 0) . Medium parameters 
assumed to be a = 2271m/ s, b = 0.879s-1 and X = 0.039. Raypath plotted 
using expression ( 11.11). 

namely, 

t = ~ ln [a+ bx3 1 + J1 - a
2
p

2
(1 + 2x) J , 

b a 1 + }1- (a+ bx3) 2 p 2 (1 + 2x) 
(11.2) 

where the value of the ray parameter is given by 

2Xl 
p=-r==================================== 

j[X12 + (1 + 2x)Xj] [(2a + bX3) 2 (1 + 2x) + b2 Xf] 
(11.3) 

To find the value of Xr corresponding to the stationarity of traveltime, 

we take the derivative of expression (11.1) vvith respect to Xr and set this 
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derivative to zero. Then we use numerical methods to solve for Xr. The 

computer code to do this is given in Appendi.'C D. By varying depth we get 

the curve of possible reflection points for each source-receiver pair. Taking 

the envelope of these curves we generate the zone of illumination, as shown 

in Figure 11.2. 

Illumination zone 

Figure 11.2: Plot of reflection points for three sources and three receivers. Illumi­
nation zone indicated by shaded area bounded by the curves of reflection points. 

In general , to obtain the illumination zone, we must resort to numerical 

methods to find Xr. To illustrate the case where we can obtain a closed-form 

expression for the reflection point in terms of receiver location and reflector 

depth. consider the case of homogeneity (i.e. , b = 0). In principle, solving 

for the reflection point in a homogeneous medium involves finding the limit 
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of expression (11.2) as b tends to zero, then finding the stationary point of 

the corresponding reflected traveltime expression. The details of doing so 

are shown in Appendix A.3. However, here we can use the fact that rays in 

homogeneous media are straight1 . This allows us to express the ray angle in 

terms of offset and depth and thus develop a reflected traveltime expression. 

Alternatively, we could apply Snell's law and simply say that the reflection 

point must be such that the angle of incidence must be equal to the angle of 

reflection. However to emphasize the general approach we follow the method 

used above. 

Using the Pythagorean theorem, we get the reflected traveltime as 

(11.4) 

where v:-1 and v;1 are the ray velocities of the downgoing and upgoing signals, 

respectively. To find explicit expressions for Vc1 and v;1 , we use expression 

(6.9) for the homogeneous case, namely, 

v (e)= vv 
1 + 2x 

(11.5) 

1 Slawinski, M.A., (2003) Seismic rays and waves in elatic media: Perga mon, p. 19c!. 
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For the downgoing ray. the angle is related to the reflection point by 

(11.6) 

and for the reflected ray, 

(11.7) 

Thus, for the downgoing and reflected rays the respective velocities are given 

by 

and 

V.~ =a 

-v;, =a 
(x; + z;) (1 + 2x) 
x;. + z; ( 1 + 2x) 

[(xl- xrf + (X3- zr)2] (1 + 2x) 
~ 2 . 

(X1- xr)- + (X3- zr) (1 + 2x) 

(11.8) 

(11.9) 

Inserting expressions (11. ) and (11.9) into expression (11.4) , we can 

explicitly write the traveltime expression for a reflected signal between the 

source and a given receiver in a homogeneous medium. Now, we can invoke 

the principle of stationary traveltime. Taking the derivative of the resulting 
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expression with respect to Xr and setting it to zero, we solve for Xr to obtain 

(11.10) 

The computer code that implements expression (11.10) is shown in Appendix 

D . 

vVe note that in deriving expression (11.10) we assumed the medium to 

be homogenous and elliptically anisotropic. However , since x disappears in 

the process of differentiation. expression (11.10) holds for both isotropic-

and anisotropic-, homogeneous media. As stated above, this is a result of 

the fact that in homogeneous media all rays are straight. In other words, in 

homogenous media, anisotropy does not affect the rays. It does, however , 

affect the traveltime of the signal along the rays. 

Given the parameter values for an abx model, we can determine the 

illumination zone for a given source and a set of receivers. In particular, 

our results allow us to obtain - for a given source-receiver pair - the 

location of the reflection point at a given depth. To see the importance of 

this relation, consider the following example. 

Dividing both the numerator and the denominator of the right-hand side 

of equation (11.10) by Zr and letting Zr tend to infinity, we see that for very 
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large depths, the reflection point is approximated by the midpoint between 

the source and receiver. In the context of seismic exploration, however, 

expression Xr ~ X /2 applies to depths that are beyond those of exploration 

interest. For most cases of interest, reflection points tend to be significantly 

closer to the receiver than to the source. To illustrate this point, consider an 

abx model with a = 2271m/s, b = 0.879s-1 and x = 0.039. Let us assume 

a receiver located at (1000m, 1000m) and calculate the reflection point for 

an interface at a depth of 2000m. The reflection point is found to be 634m 

from the source, which is a significant distance from the midpoint at 500m. 

In finding the reflection points above, we have indirectly used expression 

(11.3) to trace the ray from the source, to reflection point, to the receiver. 

To obtain the closed- form expression that traces the ray we replace the 

receiver coordinates, (X1 , X3), in expression (11.3) with any point on the 

ray, (x1, x3), and solve for x1 to obtain 

As above, the value of p is given by substituting the coordinates of a 

known point along the ray (e.g. , the reflection point or the receiver position) 
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into expression (11.3). The rays shown in Figures 11.1 and 12.1 were traced 

using expression (11.11). 

vVe note that our formulation does not require the receivers to be in 

a vertical well. In other words, this formulation can be used in deviated 

wells since, having the location of the source, all equations require only the 

location of a given receiver. In other words , these equations are associated 

with point-to-point problems. In all cases, the illumination zone is bounded 

by the enveloping curves of the reflection points and by the well . 



Chapter 12 

Suggested future work 

vVe conclude this thesis by describing several extensions of the present work 

that may form the basis of future study. In particular, we will begin by con­

sidering the problem of extending the present work to a multi-layer model. 

vVe vvill then take a closer look at the conditions necessary for the explicit 

expression of ray angle in terms of wavefront angle. In the final section, we 

will discuss how one might apply both traveltime inversion and the inversion 

of three-component data sets in the direct estimation of the components of 

elasticity. 

82 



12.1. P arameter estimation for multilayer model 83 

12.1 Parameter estimation for multilayer model 

The first and mo t obvious problem is the extension of traveltime inversion to 

a multilayer problem. Considering the two layer problem in Figure 12.1,we 

Figure 12 .1: Plot of possible ray for two layer problem. Upper medium has pa­

rameters a1, b1 and 'Xl· The lower medium has parameters a2, b2 and -x2 . The 

refraction point is at ( x r , Zr). 

apply the methods described previously to determine estimates for a1, b1 

and x1 in the upper layer. When we consider the lower layer we add three 

new model parameters (a 2 • b2 and -x2) together with a refraction point that 

must be solved for each observation. If we assume the interface depth to be 

known then the horizontal offset, Xr , remains to be found. In such a case 
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the total traveltime is given by 

(12.1) 

where t is given by expressions (7.16) and (8.5) with the appropriate sub-

stitutions. As stated above, a complication in this case is that we must also 

find Xr for each field observation. A potential way to deal with this is to 

find an expression for Xr in terms of the receiver location and the model 

and x 1 being known. Having such an expression for Xr we could then apply 

Gauss-Newton optimization to estimate a2, b2 and x2 . 

To find such an expression for Xr recall that in a laterally homogeneous 

medium, the ray parameter is equal to the horizontal component of slow-

ness, which remains constant along the entire ray. Therefore the horizon-

tal component of slovvness in the upper medium, denoted by p 1 and given 

by p(xr, Zr; a1, b1 , x1) in expression (7.16), must be equal to the horizontal 

component of slowness in the lower medium, denoted by p 2 and given by 

2 2 
P1 = P2, 
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which leads to condition 

This is a sixth-degree polynomial in Xr and so the expression for Xr is 

not unique. However, several conditions may make the problem more con-

strained. 

We know that the refraction point must be a real value that lies between 

the source and receiver. Secondly, we know that the refraction point must 

make the total traveltime stationary. Therefore, we can apply the stationar-

ity of traveltime and set the derivative of expression (12.1) with respect to 

Xr equal to zero, after substituting in the expressions for the ray parameters. 

Thus, we get a system of two equations that can be used to determine 
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an expression for Xr, namely 

8T(X1 , X3: a2, b2 , X2) = O 
OXr 

P2- p2 1 - 2 
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with the added condition that Xr must be real and lie between 0 and X 1 . 

Having an expression for Xr we could then write the total traveltime 

expression as. 

(12.2) 

for which Gauss-Newton optimization could be applied directly to estimate 

the values of a2, b2 and x2 assuming Zr, a1, b1 and x1 are known. Some 

questions which might be addressed are as follows. 

• vVhat is the effect of adding layers on the confidence intervals of pa-

rameter estimates? 

• vVhat is the ma.-ximum number of layers that can be considered for a 

given set of data points? 
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• For a particular layer of interest , is it better to consider the overburden 

as a single layer or would a model consisting of a number of layers 

better model traveltimes? 

• How could dipping interfaces be considered in the modelling? 

• Could the model parameters , a, b and x, be estimated for each layer 

simultaneously? 

12.2 Explicit expression of ray velocity in terms 

of ray angle 

As discussed in Chapter 6, it has been asserted by Slawinski (2003) that 

expression (5.8), namely, 

18v 
tan '!9 + --

tan e = v 819 
tan '!9 8v ' 

1----
v 8'!9 

"can be explicitly solved for '!9 if and only if function v is quadratic in the 

Pi.,. This statement is not proven nor is a reference for such a proof given. 

As another suggestion for future work, one could attempt to prove this 

statement. 

To shed some light on this problem, let us consider the following. vVe 
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can explicitly write Hamilton 's ray equations (2.35) for a medium in which 

rays propagate in two dimensions as 

. [)1-{ 
X!=--

Op! 

. [)1-{ 
X3 = --

Op3 

. [)1-{ 
PI=--­

oxl 

. [)1-{ 
P3=--

8x3 

where the Hamiltonian is given by expression (2.34), namely, 

(12.3) 

Since we wish to state the wavefront angle, {), explicitly in terms of the ray 

angle, e' recall 

and 

PI tan{)=-
P3 

±1 
tane = -.. 

X3 

(12.4) 

(12.5) 
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To express {) in terms of (), we must be able to solve 

for the Pi in terms of the Xi. Inserting expression (12.3) into this equation 

we get 

Setting i = 1 we obtain 

(12.6) 

and fori= 3 we obtain 

(12.7) 

If v2 , not v, is a polynomial of degree r in Pi then we see that the left-

hand side of equations (12.6) and (12.7) are polynomials of degree at least 

2 + r/2 + (r/2- 1) = 1 + r in p1and p3 , respectively. 

Since v2 will always be of even degree in pi (i.e .. r E {2,4, 6, ... }), ex-
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pressions (12.6)" and (12.7) will be of odd degree in Pi (i.e., {3 , 5 , 7, ... } ). 

According to Abel 's impossibility theorem, in general, an algebraic solution 

of a polynomial is only possible for those of degree four or less. Therefore, 

we require r = 2. However , there is the added complication to solving for 

each Pi in the fact that both must be solved simultaneously. Expressions 

(12.6) and (12.7) each depend on Pl and P3· Therefore, when we solve for 

Pl in expression (12.6) it will depend on x1 and P3· We must then sub-

stitute the expression for p 1 into expression (12.7). This substitution may 

then complicate the solving for P3· It remains to rigorously establish that v2 

quadratic in Pi is the only case for which p1and P3 can be solved explicitly 

in terms of x 1 and x2, respectively. 

To exemplify the case where one can solve for Pi as a function of xi , let 

us use equation (6.1), namely 

Following expression (12.4), we get 
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which is quadratic in p1and P3· Differentiating with respect to p 1 we get 

and equation (12.6) becomes 

? . 0 Vi{Pl- Xl = . 

Solving for Pl, we obtain 

(12.8) 

Following the analogous approach, we obtain 

(12.9) 

Using expressions (12.8) and (12.9) , we get 

2 . 
Pl - Vy Xl 

P3 - v~ i:3. 
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Invoking expressions (12.4) and (12.5), we get 

'V2 
tan '!9 = ~ tan e. 

v-H 

Solving for the wavefront angle, we obtain 

'!9 = arctan ( ~r tan g) ' 

which is explicitly in terms of the ray angle, as required. 

12.3 Determination of elasticity parameters 

92 

A third area of study that might be considered involves more extensive 

work with the stress, strain and elasticity tensors. In particular, it involves 

using the measurement of the angle of particle displacement at the receiver 

as the signal impacts upon it and using this measurement to estimate the 

components of the elasticity tensor. The angle is commonly referred to 

as the polarization angle and can be determined from data collected with 

three-component geophones. 

Often the polarization angle is mistakenly considered to be equal to the 

ray angle. Although it often closer to the ray angle than to the wavefront 
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angle, it is fact .distinct from both. 1 In a paper by de Parscau2 (1991) the 

relationship between the three angles is discussed, and an example is given 

where even for a weakly anisotropic medium the polarization angle differs by 

eight degrees from the ray angle. This means that assuming the measured 

angle in a field observation is the ray angle can lead to errors in the model 

results. 

To obtain the expression for the polarization angle, consider a homage-

neous VTI medium, for which the elements of the elasticity tensor are 

Cu c12 C13 0 0 0 

c12 Cn cl3 0 0 0 

C13 C13 C33 0 0 0 
Crnn = 

0 0 0 c44 0 0 

0 0 0 0 c44 0 

0 0 0 0 0 Cn - CJ? 
2 

where, for convenience and because of symmetries of the stress and strain 

1 ~IusgTave, M.J.P., (1910) Crystal acoustics: Holden-Day. 
~de Parscau , J., (1991) Relationship between phase velocitites and polarization in 

transversely isotropic media: Geophysics, 56, pp. 1518-1583. 
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tensors , we have defined Cijkl = Cmn where 

m = i8ij + (1- Dij )(9- i - j), 

and 

n = k8kl + (1- 8kt)(9- k- l). 

Thus, for example in a VTI medium, Cl321 = Cs6 = 0 and C3322 = c32 

Recalling the Christoffel equations (2.13) along with the eikonal equa-

tion, the solvability condition implies for a homogeneous medium 

By defining matri..-x r with entries given by 

3 3 

r ik := L L Cijk(njnl, 

j=l l=l 

(12.10) 
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expression (12.10) can be written in matrix form as 

det [r - pv2IJ = o. (12.11) 

Next , solving for v and substituting in the values of Cmn corresponding to 

a VTI medium, we get three expressions for v ('0), the eigenvalues. One of 

which is 

v ('0) = (C33- Cn) cos2 1J + Cn + C44 + V'K 
2p 

where ni + n~ = 1- n§ = sin2 {}and where 

(12.12) 

(12.13) 

By calculating the associated eigenvector, we get the expression for the 

polarization angle, namely 

(12.14) 
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Expressions (12.12) and (12.14) represent longitudinal wave propagation, 

which can be verified by considering the special case of a wavefront moving 

horizontally along the symmetry a'<.is. That is , the case where{) = 1r /2 and 

hence, cos{) = 0. This then means that ¢> = 1r /2 indicating that the particle 

displacements are in the direction of propagation as we would expect for a 

longitudinal wave. A direction in which the polarization angle is equal to 

the wavefront angle is a special direction commonly referred to as a pure-

mode direction. In general, the polarization angle of particle displacement 

is distinct from both the wavefront propagation angle and the ray angle. 

Recalling expression (5.8) and the fact that rays are straight in homoge-

neous media, we can use the ray angle to get the following expression 

X 
z 

1 8v 
tan{)+-­

v 8{) _____ ....:.....:.... 
1 

_ tan{) 8v 
v 8{) 

(12.15) 

where v ({)) is given by expressions (12.12) and (12.13) above. From this 

expression we can express the wavefront angle in terms of the components 

of elasticity (i.e., O(C11 ,C13 ,C33,C44 )). Substituting this expression into 

(12.14) above we get an expression for the polarization angle in terms of 
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the components of elasticity, namely 

(12.16) 

Recalling expression (5.9) for a homogeneous medium, namely 

(12.17) 

where {) = iJ(Cn, C13, C33, C44), we can also express the ray velocity in 

terms of the components of elasticity. This leads to an expression for the 

traveltime, specifically 

Jx2 +Z2 
T= V(iJ) ' (12.18) 

Combining expressions (12.16) and (12.18) then we have two expres-

sions for four unknowns; Cn , C13, C33 and C44· For the case of horizontal 
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propagation (i.e:, 1J = 7r/2), .6. is given by 

and so the wavefront velocity (and also the ray velocity, 1J = 1r /2 being a 

pure mode direction) is given by 

Cn + C44 + Jccn- C44) 2 

2p 

Cn + C44 + Cn - C44 
2p 

ff-· (12.19) 

Similarly, if we consider vertical propagation (i.e. , 1J = 0) , we get the ex-

pression 

Co) ff-33 
vy=v = --. 

p 
(12.20) 

Therefore, assuming we can get estimates of the vertical and horizontal 
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velocities along with the material density, say from well logs , we can get 

estimates of both C 11 and C33. 

Having values for C 11 and C33 , we can then use expressions (12.16) and 

(12.18) to solve for the remaining elasticity components· C13 and C44· Due 

to errors in measurements, again some sort of optimization would have to 

be used to estimate parameter values from field data. 

Several key issues that must be considered when attempting to deter­

mine, in situ, elasticity parameters Cmn are as follows. 

• Sensitivity of optimization to initial parameter estimates. Initial at­

tempts to use the polarization measurements in determining compo­

nents of the elasticity tensor suggest that conditioning (e.g., normal­

ization of parameters) of the model may be necessary to improve its 

response to initial parameter estimates. 

• While traveltime represents a global measurement over the entire ray, 

the polarization angle is a local measurement made at the receiver. 

Therefore, unaccounted inhomogeneities near the receiver can severely 

affect the resultant measurements. One might explore how the chosen 

optimization technique responds to inhomogeneities and whether or 

not a particular optimization algorithm is better at ':seeing through" 

local inhomogeneities to arrive at true parameter estimates. 
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Appendix A 

Mathematical details of 

derivations 

For the purposes of clarity and to avoid unnecessary digressions in the main 

text of the thesis many details of mathematical derivations were omitted. In 

this appendix we return to some of the key derivations , and for completeness, 

give the steps involved in detail. 

A.l Ray parameter in terms of ray quantities 

This first section outlines the details of solving for the ray parameter in 

terms in the receiver position (X1 , X 3 ), and parameterized with a , band X· 

104 
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Recall the expression for the ray parameter, namely, 

sine 1 1 

p = a + bx3 J1 + 2x J1 + 2x cos2 e' 

for which we want to replace the ray angle, B, with the coordinates of the 

receiver position. vVe start by squaring both sides of the equation and 

isolating the ray angle, 

sin2 e 
p 2 (a+ bz) 2 (1 + 2x) = ----=---

1 + 2xcos2 e. 

Next we divide both the numerator and the denominator of the right hand 

side by cos2 e and recall the trigonometric identity sec2 e = 1 + tan2 e to get 

Solving for tan2 B and taking the square root , we obtain 

p(a+bx3)(1+2x) =tanB. 

V1- p 2 (a+ bx3) 2 (1 + 2x) 
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Now, we recall that tanfJ = dxddx3. Using this expression on the right-

hand side of the above equation, we can write 

p (a+ bx3) (1 + 2x) dx
3 

= dx
1

. 

~1- p 2 (a+ bx3) 2 (1 + 2x) 

Integrating both sides, we get 

where (X1,X3) is the receiver position relative to the source at (0 , 0). Per-

forming the integration, we get 

which gives 
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Now we need to solve for p in terms of X 1 and X 3 . To make the algebra 

easier to follow, let us define 

and 

c := (1 + 2x). 

vVe start by squaring both sides, 

[ v1- p2 a2c- v1- p 2Bcr = [pbxlf 

1- p 2a 2C + 1- p 2BC- 2yi1- p 2a 2Cyi1- p 2BC = p 2 b2 X'f 

2 _:_ p 2C ( a 2 +B) - 2V1- p2a2C V1- p2 BC = p 2b2 x'f_. 

Next, we isolate the square roots to get 
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Again, we square both sides to get rid of the root signs , 

Thus we can write 

and 

Subtracting, we get 

LHS- RHS = p4 [2a2BC2 - C 2a 4 - C 2B 2
- 2Ca2 b2Xl- 2CBb2Xf- b4 X{] 

+ p 2 [4b2X?J 

0 = p4 [-C2 (a4
- 2a2B + B 2

)- 2C (a2 +B) b2Xf- b4 X{] 

+ p 2 [4b2X?J 

0 = p4 
[ -C2 (a 2 

- B) 2 
- 2C (a 2 + B) b2 xf - b4 X[] + p 2 

[ 4b2 XfJ . 
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Since we are o~ly interested in p 2 =/= 0, we can divide by p2 and isolate the 

remaining p 2 to get 

Converting the symbols B and C back to the original values and simplifying 

we get 

Taking the square root we get the ray parameter expression for an elliptically 

anisotropic linearly inhomogeneous medium given in terms of the model 

parameters, a, band x, and the receiver position, (X1 , X3) , namely 

2Xl 
p = ---;.================== 

V(X? + (1 + 2x)Xj)[(2a + bX3 )
2 (1 + 2x) + b2X?J 

(A.1) 
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A.2 Integration of traveltime expression 

In this section we give the details of the integration of traveltime expression 

(8.2), namely 

.IX~ dx3 
t = ---~;==~==== 

x3=0 (a+ bx3) ( 1+2x . ) cos2 () 1+2x cos.l 8 

From expression (8.3) we have 

cos2 () = 1- p
2 

(a+ bx3)
2 .~1 + 2x) . 

1 + 2XP2 (a+ bx3)- (1 + 2x) 

(A.2) 

(A.3) 
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Simplifying the expression under the square root of the traveltime expression 

(A.2), we get 

Thus, the traveltime integral becomes 

Here we note that the ray parameter, p, is a conserved quantity along the 

ray and as such it is a constant for every point on the ray. vVe must not 
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consider express1on (A.l) for p a function of X 1 and X 3 . It is a constant 

along the ray and substitution of any point (X1 , X3) of the ray gives that 

constant value. Therefore we can rewrite the traveltime integral as 

x3 

t = pJll+ 2x j 
X3=Q 

Defining 

u :=a+ bx3 

we write 

w 
t =-

b 
a 

1 
w : =P --Jri-1=+==;;<=2=x 

vVe now recognize the traveltime integral written in this manner as a trigona-

metric form. Letting 

u := wsin{J 

du = w cos ([3) d{3, 

cos{J = ~ Jw 2 - u2 
w 
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we write 

which, by identity 

can be written as 

arcsin((a+bX3)/w) 
w 

t =-
b 

1 
b 

./ 
a rcsin(a / w) 

arcsin((a+bX3)/w) 

./ 
a rcsin(a / w) 

w cos (!3) d /3 

(w sin /3 ) (w cos /3 ) 

d/3 
sin /3 

1 [ /3 ] arcsin((a+bX3)/w) 
= -ln tan-

b ? ' ~ arcsin(a / w) 

tan ( ~) sin j3 

1 +cos {3' 

t = ~ ln [ sin j3 l arcsin((a+bX3)/w) 

b 1 +COS j3 arcsin(a / w) 

1 
= -ln 

b l 
. ] a rcsin((a + bX3)/w) 

sm /3 
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Inserting the limits of integration, we get 

t = ~ ln [ sin (arcsin((a + bX3) jw)) J 
b 1 + V1- (sin (arcsin((a + bX3) /w))) 2 

_ ~ ln [ sin (arcsin(a/w)) J 
b 1 + V1- (sin (arcsin(a/w)))2 

= ~ ln [ (a+ bX3) jw ]- ~ ln [ ajw ] 
b 1 + J1- (a+ bX3 ) jw)2 b 1 + J1- (ajw) 2 

= ~ ln [ (a+ bX3) jw 1 + J1- (ajw)2] 
b 1 + J1- (a+ bX3 ) jw) 2 ajw 

= ~ ln [a+ bX3 1 + J1- (ajw)
2 

]· 
b a 1+J1-(a+bX3)/w)2 

Recalling from above that 

? 1 
w- = p2 (1 + 2x), (A.4) 

we obtain the desired traveltime expression, 

t = ~ ln [a + bX:J 1 + J1 - p
2a2 

(1 + 2x) J , 
b a 1 + V1- p2 (a+ bX3) 2 (1 + 2x) 
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where 

2Xl 
p = ---;.================= 

J(x[ + (1 + 2x)Xj) [(2a + bX3) 2 (1 + 2x) + b2Xfl 

A.3 Illumination zone for homogeneous anisotropic 

media 

In this appendix, we study traveltime expression (11 .2) in the context of 

a homogeneous medium. That is , we find the limit as b ~ 0. Consider 

expression (11.2) , namely, 

(A.5) 

where 

2xl 
p=---;:.================= 

yf[xi + (1 + 2x)x~] [(2a + bx3) 2 (1 + 2x) + b2xi]. 
(A.6) 

vVe wish to derive the traveltime expression for a homogeneous medium, 

which corresponds to b = 0. Thus, we take the limit of expression (A.5) as 

b ~ 0. \Ve note that as b ~ 0 both the numerator and denominator of 

expression (A.5) tend to zero. Hence, we can use de l"Hopital 's rule to find 
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the limit. Following this rule, we obtain 

. x3(1+2x)+J(1+2x)[xi+x~(1+2x)] 
hm t= . 

b-.o '> [ x~ (1 + 2x) ] 
a (1 + ~x) 1 + 2 · 2 ( ) 

x 1 + x 3 1 + 2x 

(A.7) 

Substituting expression (A.7) into traveltime expression (11.1), namely, 

(A.8) 

and then finding the value of Xr for the stationary point ofT, we find the 

reflection point to be located at 

(A.9) 

which is expression (11.10), as expected. 



Appendix B 

Alternative derivation of 

traveltime expression 

In this Appendix we derive the traveltime expression for a constant velocity 

gradient medium in a manner similar to that of Slotnick (1959). \Ve will 

then extend the expression to account for elliptical anisotropy by means of 

a coordinate transformation to obtain expression (8.5). 

We begin by assuming that the interval medium between a source lo­

cated at the surface and a receiver located at some depth, z, in a well, is 

homogeneous and isotropic (Here to avoid notation confusion, we use x := x 1 

and z := x3). In such a medium we know the rays will be straight and the 

wavefront and ray velocities will be equal. If V and () are the ray velocity 
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and take off angle, respectively, than the receiver location and traveltime 

are given by 

and 

x = z tan (fJ) 

z 
t---~..,.-- v cos (fJ) ' 

respectively. From Snell's law we know that 

sin ( fJ) 
-p v - . 

(B.l) 

(B.2) 

(B.3) 

Therefore, we can rewrite expressions (B.l) and (B.2) above in terms of the 

ray parameter , p , as 

(B.4) 

and 

(B.5) 
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Thus equations (B.4) and (B.5) give the ray and traveltime for a single in a 

constant velocity medium. 

Next , if we extend this model to the case of n constant velocity, homo-

geneous layers, the velocity of each being given by Vi, we simply recall that 

pis conserved and include summation signs in the equations. Doing so we 

get 

(B.6) 

and 

(B.7) 

where z,i is the base of the ,ith_layer. 

B.l Single layer, velocity dependent on depth 

vVe have formulated the model for a medium that is a series of discreet layers 

with a constant velocity in each. Now we wish to extend this model to a 

single continuous layer in which the velocity is some continuous function of 

depth. vVe begin by dividing up the medium, as above, into layers in which 



B.l. Single layer, velocity dependent on depth 120 

the thickness of-each is denoted ~zi = Zi- Zi-l· Although within each layer 

velocity is dependant upon the depth, let us approximate the velocity within 

each layer by some velocity between the minimum and maximum velocities 

of that layer and denote this approximation by Vi*. That is, 

VzE [zi-l,zi], infV(z) <Vi* <supV(z). (B.8) 

Note as well as ~zi---+ 0, Vi*---+ V (z). Doing so, equations (B.6) and (B.7) 

become 

(B.9) 

and 

Taking the limit as the thickness of each layer goes to zero we get 

l . ~ PV'i*~zi 
X= lm L 

~Zi -->0 . Jl 2 V*2 l=l - p i 

z 

./

. pV (w) dw 

Jl- p 2V 2 (w) 
0 

(B.lO) 
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and 

z 

/

. 1 
- dw 

. V ( w) J 1 - p2 V2 ( w) ' 
0 

(B.ll) 

where w is the dummy variable of integration and where JpV (z)l < 1. 

B.2 Velocity linear function of depth 

Let us now assume a specific velocity function and evaluate the integrals 

in equations (B.10) and (B.ll) to get explicit expressions. To quote Slot-

nick "experience has shown that the velocity of seismic wave propagation 

in Tertiary basins can be closely approximated by expressing it as a linear 

function of depth", and hence we will make the assumption here. D enoting 

the surface velocity as a and the velocity gradient with depth as b, the linear 

velocity model for a vertically inhomogeneous medium is then 

V (z) =a+ bz. (B.12) 
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Substituting this expression into expression (B.10) we get 

(B.13) 

To get an explicit traveltime expression in terms of the receiver position 

and the velocity parameters , we will need to solve the above expression for 

the ray parameter. In anticipation of this we solve expression (B.13) for p. 

Doing so, we obtain 

(B.14) 

Returning to expression (B.ll) we perform the integration to get 

z 

t= ~ I
. 1 

0 (a + bw) J 1 - p 2 (a + bw) 2 

=!ln p(a+bw) 
[ ] 

z 

b 1 + V 1 - p2 (a + bw) 2 w=O 
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and hence the traveltime expression for an vertically inhomogeneous, isotropic 

medium is given by 

t = ! ln [ ( (a + bz)) 1 + J1 - p2a2 J ' 
b a 1 + V 1 - p2 (a + bz) 2 

(B.15) 

where pis given by expression (B.14) . 

B.3 Traveltime in inhomogeneous anisotropic medium 

Let us now include anisotropy in the model. To obtain an explicit trav-

eltime expression, we will first assume that the dependance of velocity on 

propagation direction is elliptical. Then, by an appropriate transformation 

of coordinates, we will define a coordinate system in which the wavefront 

propagation will be the same as in the isotropic case. This will allow us to 

use expression (B.15) given above in the transformed coordinate system. 

Assume an elliptical velocity dependance and let the magnitudes of the 

horizontal and vertical wavefront velocities be given by 

(B .16) 
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and 

vy =a, (B.l7) 

respectively. Here we define the parameter of velocity anisotropy, namely, 

(B.l8) 

which we assume to be a constant. vVe note that - in the context of ray 

theory - since VH and vy are the magnitudes of wavefront velocities along 

the symmetry a.xes of the ellipse, expressions (B.16) and (B.17) are the same 

for both the wavefront and ray velocities. 

Infinitesimal wavefronts resulting from a point source within the medium 

are ellipses with a.xes (dt) vH and (dt) vy, where dt is the traveltime incre-

ment. We can write such a wavefront as 

(B.l9) 

which, using expressions (B.l6) and (B.l7) , we can rewrite as 

(B.20) 
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Now, we will obtain the desired traveltime expression by a linear transfor­

mation of coordinates which allows us to treat elliptical velocity dependance 

as an isotropic case in the transformed coordinates. Since VH and vy are 

the magnitudes of velocities along the x-axis and the z-axis , respectively, we 

can scale the z-a.."'<:is by a factor of Jl + 2x to obtain circular wavefronts. In 

other words , we transform the xz-plane into the x(-plane, where 

( = zJl + 2x. (B.21) 

Thus, in view of expression (B.21), we let z = (/ Jl + 2x to write expression 

(B.20) as 

(B.22) 

where 

a= aJl + 2x (B.23) 

is the velocity in the x(-plane. Expression (B.22) describes a circular wave­

front in the x(-plane, which is equivalent to wave propagation in an isotropic 

medium in xz-space. 
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To include inhomogeneity of the velocity model, we simply assume that 

the magnitude of velocity in x(-space increases linearly along the (-a.xis, 

namely, v (()=a+ b(. 

Since - in the x(-plane - we have a wavefront which propagates in 

the same manner as an isotropic and linearly inhomogeneous wavefront in 

the xz-plane, we can simply apply traveltime expression (B.l5) between the 

source at (0, 0) and the receiver at (X,::::), namely, 

(B.24) 

where 

2X 
(B.25) 

However , since our experimental measurements are made in the xz-plane we 

wish to state expression (B.24) in the coordinates of this plane. vVe achieve 

this by substituting expression (B.23) into expressions (B.24) and (B.25), as 

well as - in view of expression (B.21) - letting :::: = Z Jl + 2x, to obtain 
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t = ~ ln [a+ bZ 1 + J1- a'2p2(1 + 2x) J 
b a 1+J1-(a+bZfp2(1+2x) ' 

(B.26) 

where 

2X 
(B.27) p=---;:.================= J (X2 + (1 + 2x)Z2) [(2a + bZ) 2 (1 + 2x) + b2 X2] 

Expressions (B.26) and (B.27) are the traveltime and ray parameter expres-

sions that correspond to a linearly inhomogeneous and elliptically anisotropic 

velocity model and are the same as expressions (8.5) and (7.16), as expected. 



Appendix C 

Computer Code: Parameter 

estimation 

This appendix gives the Maple®code which invokes the Gauss-Newton 

method of optimization, outlined in Chapter 9 to invert the field data to 

estimate the values of a, band X· The aim of the optimization is to find the 

parameter values which minimize the sum of the squared residuals between 

the modelled and observed traveltimes. 

[>restart: 

[>################################# 

[>### 

[>### 

USER INPUT: 

Initial parameter estimates. 
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[>################################# 

[>ao:= in-itial estimate of parameter a 

[>bo:= in-itial estimate of parameter b 

[>chio:= init·ial est·imate of parameter X 

[>sigfigs:= 0. 0001 set the number of s-ign·ificant figures 

·in final result to 4 

[>ma..xiter :=sets the maximum number of iterat·ions to perform 

[>################################# 

[>with(linalg): # Must load the linear algebra package 

[>################################# 

[>### Ray parameter and traveltime expressions 

[>################################# 

[>p:= 2*X/((X~2+(1+2*chi)*Z~2)*(a~2*(4+8*chi)+4*a*b* 

(1+2*chi)*Z +b~2*(X ~2+(1+2*chi)*Z ~2))) ~ (1/2): 

[>t:= 1/b*ln((a+b*Z)/a*(1+sqrt(1-p~2*a ~ 2-2*p ~2*a ~2*chi) )/ 

(1 +sqrt(1-p~2*a ~2-2*p ~2*a ~2*chi-2*p ~ 2*a*b*Z-4* 

p~2*a*b*Z*chi-p~2*b~2*Z ~ 2-2*p ~2*b ~ 2*Z ~ 2*chi))): 

[>################################# 

[>### Read in and assign the data file 

[>################################# 
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[>data:= readdata("C:/data.txt" ,3): 

[>n:=nops( data): # Count the number of data points 

[>for i from 1 to n do 

X[i] := data[i,1]: 

Z[i] := data[i,2]: 

T[i] := data[i,3]: 

end do: 
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[>P:=Vector(3,[ao,bo,chio]): #Initialize the parameter vector 

[>Po:= Vector(3): #Define the vector to hold parameter estimates 

[>err[i] := Vector(n): # Define the vecotr to hold model residuals 

[>################################# 

[>### Open data file to write results of iteration ... 

[>fd:=fopen( "Results" ,vVRITE,TEXT): 

[>gzz := 1 # Initialize counter to prevent infinite looping 

[>while ( abs(Po[1]-P[1])>sigfigs and abs(Po[2]-P[2])>sigfigs 

and abs(Po[3]-P[3])>sigfigs and gzz<ma.'<:iter ) do 

############################### 

### Initialize estimates of parameters in iteration ... 

Po[1]:=P[1]: Po[2]:=P[2]: Po [3]:=P[3]: 

############################### 



### . 

### 

Based on parameter estimates, 

define the observation/model errors 

############################### 

for i from 1 to n do 

#mt[i] is the model time_i 
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mt[i]:=subs({X=X[i], Z=Z[i], a=Po[1], b=Po[2], chi=Po[3]}, t): 

err[i]:=T[i]-mt[i]:#Residual between observed and modelled times 

end do: 

############################### 

### Build the Jacobian martix 

############################### 

J := matrix(n,3): 

for i from 1 to n do 

#The Jacobian matrix will be nx3 

J[i,1]:=subs( {X=X[i], Z=Z[i], a=Po[1], b=Po[2], chi=Po[3]}, diff(t,a)): 

J[i,2]:=subs({X=X[i], Z=Z[i], a=Po[1], b=Po[2], chi=Po[3]}, diff(t,b)): 

J[i,3] :=subs( {X=X[i], Z=Z[i], a=Po[1], b=Po[2], chi=Po[3]}, diff(t ,chi)): 

end do: 

############################### 

### Perform a QR-decomposition 

############################### 
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Rl := QRdecom(J,Q='q', fullspan=false): 

Ql := evalm(q): 

############################### 

### New estimate of P from Gauss-Newton 

############################### 

H := Vector(3,matadd(multiply(inverse(Rl) ,transpose(Ql) ,err) ,Po)): 

P[l] := H[l]: P [2] := H[2]: P [3] := H [3]: 

############################### 

### Print results to file 

fprintf(fd, "%g %g %g %g \n", gzz, P [l], P[2], P [3]): 

gtt:=gzz+l: gzz:=gtt: #Increment the iteration counter 

end do: 

[>fclose(fd): # Must close the data file. 



Appendix D 

Computer Code: 

Illumination zone 

This appendix gives the Maple®code used to generate the curves bounding 

the zone of illumination which accounts for inhomogeneity (i.e. , b =/=- 0) and 

anisotropy (i.e. , X=/=- 0) as stated in equation (6.9) with (7.14). 

[>restart: 

[>###### Required User Input ##### 

[ Model parameters ... 

[>a:= vert'ical velocity at z = 0 

[> b:= vertical veloc,ity gradient 

[>x:= ellipticity parameter 
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[Relative source-receiver position 

[>X:= source-rece·iver offset 

[> zo:=depth of receiver 

[:M~-ximum reflector depth ... 

[>mrd:=maximum reflector depth 

[ Data file to write the results ... 

[>fd: =fop en(" C:j Datafiel. txt", WRITE, TEXT): 

[>############################## 

DATA FILE GENERATION 

[>############################## 

[>dbr:=Depth of ·init·ial reflection below receiver (m) 

[> incr:=Incremental depth of reflect·ion calculations (m) 

[>############################## 

[># For a homogeneous medium (b=O) we use ... 

> if (b=O) then 

#----------

for zr from zo+dbr by incr to mrd do 

xr:=(zr*X)/(2*zr-zo ): 

fprintf(fd , "%.2f %.2f \n", xr,zr): 

end do: 
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#----------

else 

#----------

# For a non-homogeneous medium (b<>O) we use ... 

##### Traveltime of downgoing signal ##### 

pl:=(xr ,zr )-> 2*xr lsqrt( (xr ~ 2+(1 + 2*chi) *zr ~ 2) * 

((2*a+b*zr) ~ 2*(1+2*chi)+b ~ 2*xr ~ 2) ): 

tl:=(xr,zr )-> 1lb*ln(( a+b*zr) I a*(1 +sqrt(1-p(xr,zr) ~2* 

a~ 2*(1 +2*chi))) I (1 +sqrt(1-p(xr,zr) ~ 2* 

( a+b*zr) ~ 2*(1 +2*chi)))): 

##### Traveltime of upgoing signal ##### 

a2:=a+b*zo 

p2:= (xr ,zr )-> 2*xr lsqrt( (xr~ 2+ (1 +2*chi)*zr~2) * 

( (2*a2+b*zr) ~ 2*(1 +2*chi)+b~2*xr~2) ): 

t2:=(xr,zr )-> 1lb*ln( ( a2+b*zr) I a2*(1 +sqrt(1-p(xr,zr) ~2* 

a2 ~ 2*( 1 +2*chi))) I (1 +sqrt(1-p(xr,zr) ~ 2* 

( a2+b*zr) ~ 2*(1 +2*chi))) ): 
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##### Total Reflected Traveltime ##### 

T:=(xr,zr)->2*t(xr,zr)-t(2*xr-X,Z): 

##### Minimize traveltime for a given zr by solving ... ##### 

eqn:=diff(T(xr,zr),xr)=O: #Stationarity of Traveltime. 

#----------

for zr from zo+dbr by incr to md do 

fsolve( eqn,xr): 

xpos:=%: 

fprintf(fd, "%6.2f %6.2f \n", xpos,zr): 

end do: 

#----------

end if: 

[Must Close Data File. 

[>fclose(fd) : 
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