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II 

Abstract. This thesis investigates several theoretical methods for solving the sub-seismic wave 

equation (SSWE) in an incompressible or slightly stratified liquid bounded by a rigid fixed 

spherical boundary as an approximation to the Earth's liquid core. The solution of the SSWE 

yields eigenvalues for the inertia/gravity wave spectrum. The first method considered uses a 

variational principle based on a more general functional than has been previously usaf to evaluate 

the SSWE. The resulting eigenvalues are compared with previous work done by Aldridge and 

Toomre (1969). The work is then extended to include a density profile and a shift is noted in the 

eigenspectrum. A perturbation approach was used to include stably stratified regions 

characterised by negative values of the stability parameter 6; unfortunately this method only 

works for such small values of 8 as to be uninteresting. Finally a Galerkin approach was adopted 

that allows for the evaluation of negative 6 values. This re.'iults in a funher change of the inertial 

eigenspectrum and the appearance of gravity modes. 
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CHAPTER I 

1.1 Introduction and Motivation 

Unlike the Eanh's surface, the core of the Eanh is not directly accessible for study. conse4uently 

much is still unknown ahout its behaviour. Attempts have been made to characterize this regilln 

using theoretical and observational studies of ray seismology, short-period free osdllations, tides 

and wobble/nutation. These studies have generated a great deal of information alx1ut the core. 

Specifically, studies of ray seismology, tides and wobble/nutation have established the fluidity of 

the core. Observation and analysis of seismic wave propagation have allowed dett!rmination of 

the velocity structure within the liquid core, and established the existence of the inner core. 

Studies of short-period free oscillations have helped to determine the solidity of the innl!r core. 

This work has been summarized in an historical sense by Brush (1980). Cumntly, seismic 

tomography is being used to map the topography of the core mantle boundary (Anderson & 

Dziewonslci 1984). 

These short-period free oscillations are what seismologists simply call free oscillations and have 

periods on the order of one hour. They are termed short-period here, as a way of distinguishing 

them from the much longer period free oscillations that will he discussed later in this work. 

Unfonunately, several key properties of the core can.not be firmly established from these studies. 

One of the most important is the value and sign of 0, a dimensionless parameter that represents 

the fractional departure of the density gradient from a strictly neutral, or adiabatic, value. This 



parameter is defined in section 1.3.2, equation (I. 15) and was originally developed by Pek:eris 

& Accad (1972). The parameter 8 gives an indication of the ability of a region of the core to 

convect and shall be referred to as the stability parameter. If the value is positive then that region 

will be unstable, if it is negative then it will be stably stratified and if the value is zero then the 

region will be neutrally stratified. A study by Masters (1979) using ray seismology estimates an 

upper limit of the absolute value of 6 to be less than 0.03 - 0.05. The value of 6 is related to 

another parameter, N, called the Brunt-Vaisalli frequency. This value is defined in ~~rms of 6 in 

equation (1.16) in section 1.3.2. This frequency refers to the oscillations of a particle about its 

equilibrium position in a stably stratified fluid. Thus the oscillations will only occur if 6 is 

negative. If the value of R is of the size estimated above and the sign is negative, then the period 

of this free oscillation in the Earth's core would be greater than several hours. This is called a 

long-period free oscillation as the period is significantly longer than that for shon-period free 

oscillations. 

There are actually two distinct types of long-period free oscillations that could occur in the 

Earth's core. The type mentioned above are called gravity waves or core undenones and depend 

on negative buoyancy for a restoring force. The presence of negative buoyancy impli~ stabie 

stratification at some location in the Earth's core. Thus, some pan of the Earth's core would 

have to be stably stratified, indicated by a negative 8 value, in order for gravity wavC$ to exist. 

Their periods are on the order of 2r/N..,. and longer, where N._ is the limiting Briint-Vliislilli 

frequency. As noted earlier, this can be several hours depending on the magnitude of 8. 

The other type of long-period free oscillation that could exist in the core is termed an inenial 

wave. This type of oscillation depends upon the Coriolis effect as the restoring force. Thus 
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inertial waves require rotation for their very existence. Their periods are on the order of half a 

day and longer. 

If the stratification present in the core is such that the periods of the gravity waves are 

comparable with the periods of the inenial waves, then the presence of negative buuyancy will 

modify the inertial waves, and the gravity waves will be altered hy rotation. This leads to the 

t.erminology of "inertia/gravity waves" when referring to both types of long-period free 

oscillations when their spectra overlap. This will occur in a rotating stahly stratified liquid for 

which the magnitu<le of the rotation period and h/N,... are comparable. This may well be the 

case in some regions in the Earth's core. 

The range of frequency response in the core covered by the short-period free oscillation diita is 

relatively small, having periods on the order of one hour. This means that only a very small 

portion of the Earth's free oscillation spectrum has actually been well studied. The dominant 

restoring force for short-period free oscillations is elasticity, as opposed to the Coriolis effect and 

negative buoyancy for the inertia/gravity wave spectrum. 

Theoretical studies of short-period free oscillations have generally used spherical harmonic 

expansions as a normal mode can be described by a single spherical harmonic. Unfortunately this 

is not the case for inertia/gravity wave studies. The cylindrical symmetry that is imposed by 

rotation on the problem means that a normal mode can no longer be described by a single 

spherical harmonic. A whole chain of spherical harmonics must be used instead. In order to 

solve the problem this chain must, at some stage, be truncated. Unfortunately, this truncation 

makes the solutions inaccurate and other methods of solution need to be investigated. 

, ... I \ 
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In an effort to simplify the mathematics of the inertia/gravity wave problem, Smylie & Rochester 

(1981) introduced the subseismic approximation (SSA). It was hoped that this simplification 

would suggest an alternative method of solution that avoided or simplified the spherical harmonic 

expressions. The equation resulting from this simplification, known as the subseismic wave 

equation (SSWE), can be solved using a novel separation of variables under very specific 

conditions (Smylie & Rochester 1986a). However, solving this equation using spherical 

harmonics still results in a truncation problem. Other methods of solution of this equation have 

also been summarized by Rochester (1989). 

Despite the progress made on the theoretical front, recognition of a signal from inertia/gravity 

waves will be difficult. The det~--tion of a long period gravity signal interpretable as evidence 

of core waves could provide additional constraints on core properties, in particular 6, as was first 

pointed out by Smylie (1974). However, such waves produce v~ry small changes in density at 

great distances from the instrument and consequently a very small gravity signal is produced. 

The extreme sensitivity of superconducting gravimeters suggests they are the instrument of choice 

for observing these signals, and close to a dozen are now deployed worldwide with this as one 

of the principal objectives. While Melchior & Ducanne ( 1986) reported observations suggesting 

the detection of gravity waves, and Aldridge & Lumb (1987) argued that these same observations 

could be interpreted as due to inertial waves, both of these explanations have been contested by 

Zum ~~ aJ. (1987). At present all that can be said with cenainty is that more data from globally 

distributed instruments are needed before unambiguous interpretations becom-~ possible. 

Setting aside these observational difficulties, the mathematical description of the inertia/gravity 

wave spectrum of a rotating liquid-filled spherical shell still presents challenges which must be 
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met before the observations can be reliably interpreted. This thesis is concerned with one aspect 

of this theory, namely the use of a variational principle to describe the axisymmetric modi!S uf 

a compressible neutral or stably stratified rotating liquid filling a rigid spherical container, as a 

first approximation to representing the Earth's liquid core. 

1.2 Review of Previous Work 

This section summarizes previous work on: (I) the state of the liquid core, (2) inertial wave 

theory, and (3) inenia/gravity wave theory applied to the Earth's core. 

1.2.1 St~te of the liquid (;>re 

The most readily available source of Earth-penetrating energy is that supplied by earthquakes. 

This energy was used by Jeffreys (1926), who established the fluidity of the Earth's core. He 

showed that the presence of a large zero-rigidity core surrounded by a mantle with a rigidity 

determined from ray seismolon led to an Earth with a mean rigidity corresponding to that 

inferred earlier from solid Earth tides and the Chandler wobble period. The idea that the fluid 

core is convecting has been argued on several different points, including considerations of heat, 

summarized by Stacey (1977). While the arguments for thermal convection given by Elsasser 

(1950) as an explanation of the geodynamo were convincing at the time, evidence now suggests 

that convection in the core may be compositional . This would be due to gravitational segregation 

of light and heavy fractions of the inhomogeneous core material. In fact it may be possible for 
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dynamo action to occur in stably stratified regions of the co .. e (Singer & Olson 1984). 

Other observations of Earth behaviour have provided information about the core. Benioff et al. 

(1954) devised a long period strain meter in an attempt to record natural periods of whole-Earth 

oscillations. These were predicted theoretically by Love (1911). While the Kamchatka 

earthquake of 1952 provided initial results that were considered to be short-period free 

oscillations, an unambiguous observation of this type of oscillation was made immediately 

following the 1960 Chilean earthquake. 

These early observations were used by Alterman et al. (1959) to test several theoretical models 

(Bullen 1950, Bullard 1957) which were based on data from higher frequency ray seismology. 

Their inference that free oscillations correlated better with the Bullen B model, with an inner 

core, was really only confirmed by the data from the Chilean earthquake just mentioned. 

An earthquake in Alaska in 1964 further confirmed the existence of whole Earth short-period free 

oscillations, and providtd a wealth of new data. Dziewonski & Gilbert (1972) used this data to 

refine the current model of the Earth's interior and to establish the solidity of the inner core. 

While the density distribution is fairly well known from short-period free oscillation data, the 

details of its departure from a strictly neutral gradient are not well constrained by these data. 

ConsequentJy, the sign and size of the stability parameter in the core remain unknown in spite 

of the information provided by short-period free oscillation data. 

A compilation of seismic, free oscillation and nutation data enabled Dziewonski & Anderson 

(1981) to establish the preliminary reference Earth model or PREM. This model provides a basic 
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reference state for many Earth parameters, including density. for consistent stud it!..~ of the Earth . 

In this widdy accepted model of the Earth, the liquid core is mostly neutrally stratified. An 

argumt'lt for stable regions in the core has also been given by Gubbins tt ell. ( 1982), wh~' 

inferred properties of the core's outer layers from the geomagnetic secular variation. Thus the 

state of the Earth's liquid core may allow the existence of long-period free oscillations. a.'i 

inertia/gravity o,.~·::ves. While initial results have been interpreted as both core undertont!..'i 

(Melchior & Ducarme 1986) and as inertial waves (Aldridge & Lumb 1987) more data needs to 

be collected before these results can be fully understood. 

1.2 .2 Theory of Inertial Waves 

The theory of inertial waves was established by Poincar4! (1885), who developed the equation for 

oscillations in an homogeneous, incompressible, rotating, and inviscid fluid. This equation, (later 

called the Poincar4! equation). describes pure inertial waves and can be solved analytically. A 

method of solution was developed by Bryan (1889), using a double transformation to obtain an 

"oblate spheroidal" coordinate system, which allowed separable solutions to the Poincar4! problem 

and were represented as products of Legendre functions. Thus, the theoretical foundation for 

inertial waves in a rigid, spherical container was established. 

Kudlick (1966) greatly expanded the theoretical work on this problem by investigating several 

effects. He was able to expand the linear theory to include the effects of viscosity by using a 

superposition of the natural oscillatory modes of the inviscid problem that had been corrected to 

first order for the effects of viscosity. He also extended the theory to include containers of 
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arbitrary shape and investigated the effects of an oscillatory body force applied to the container 

walls. Of particular interest to studies of the Eanh, he found a first order inviscid solution for 

a precessing, fluid filled. rotating spheroid. 

Greenspan (1968) provided an excellent summary of rotating fluid dynamic theory. This work 

considered rotating fluids exclusively, and included a comprehensive investigation of viscosity 

effects. 

A simplified form of Bryan's (1889) solution to the Poincart! problem was found by Aldridge & 

Toomre (1969). The simplified solutions, which can only be obtained for the case of an 

incompressible liquid inside a rigid ellipsoidal boundary, were presented as polynomials in 

cylindrical coordinates for the spherical and spheroidal modes. They also conducted experir.1ents 

on fluids contained in a rotating sphere for the case when viscosity is considered. The observed 

spectrum of oscillations obtained from these trials matched well with the values they predicted 

theoretically, where the analytical solution is possible only for the case of an incompressible 

liquid inside a rigid ellipsoidal boundary. This experimental set up can be considered as a crude 

model of the Earth, and the presence of these waves gave impetus to further investigation of more 

realistic Earth models. 

The actual configuration of the Earth's core, a thick shell, presents mathematical difficulties in 

the theory of inertial waves, as the presence of an iMer core renders the problem ill-posed 

(Stewartson & Rickard 1969). An attempt was made by Aldridie (1972) to circumvent the ill· 

posed nature of the inertial wave problem in a thick shell by using a variational formulation of 

the Poincar~ equation. Although no analytical solution was found, his experimental results 
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indicated that inenial waves do exist in the thick shell configuration. 

1.2.3 lnenia/Gravity Wave Theory for the Earth's Core: the Suhseismic Wave Equation (SSWE) 

A study of gravity waves by Pekeris & Accad (1972) in a nonrotating Earth modd was done 

using asymptotic theory to the solution of the shon-period fr~ oscillation formulation. However, 

as the model considered was r.-:mrotating, the Coriolis force was missing in the treatment of this 

problem; this was shown later to have a very large effect on the solut;on.o; (Smylie 1974, Johnson 

& Smylie 1977). By including the effects of rotation the mathematics of the problem were 

considerably complicated. When traditional vector spherical harmonics were used to solve this 

formulation of the problem, the rotational coupling of formerly independent displacement tields 

of different degree resulted in each normal mode displacement being represented hy an intinitt: 

chain of spheroidal and toroidal fields. Numerical calcul~tions of course require severe tn,ncatiun 

of such chains, which can make the results obtained inconclusive. 

Smylie &. Rochester (1981) sought to reformulate the problem of inenialgravity waves in the 

Earth's core by means of a scaling argument applied to the basic equations. They were ahle to 

make the 'subseismic' approximation (SSA) which neglects the effects of flow pressure on density 

at sub-acoustic frequencies . This in tum led to the suhseismic wave equation (SSWE), which 

governs large scale rotating core dynamics in the sub-acoustic frequency range. h should be 

noted that the SSWE reduces to the familiar Poincar~ equation when the cort is treated as 

homogeneous and incompressible. They also considered the possible regions of stability in the 

core that can suppon these oscillations. Further work by Crossley (1984) investigated the 
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possible frequency regimes, excitation and damping mechanism for these waves. See also the 

summary by Smylie et al. (1984). 

A qualitative investigation by Friedlander (1985) determined several regions in the Earth's core 

where inertia/gravity waves could exist. The stru,~re and location of these regions is very 

sensitive to the stability structure within the core, confirming the suitability of these waves for 

use in studying the stability parameter. This work was extended in Friedlander (1987) where 

asymptotic solutions were extended from limited known solutions. Further investigations in 

Friedlander (1988) also considered very long period oscillations affected by a magnetic field. 

A solution of the SSWE using the separation of variables technique was attempted by Smylie & 

Rochester (1986a). These solutions were restricted to the case where the Brilnt-Viiisili fr~quency 

N, and the local compressibility number were uniform throughout the core. This work does 

demonstrate the relationship between the solutions and physical conditions in the core. A 

variational principle developed by Smylie & Rochester (1986b) offered an alternative and more 

powerful method of solution. Unfortunate misWc:es in this formulation were discov~red and later 

corrected by Rochester ( 1989) in a summary of work done on the SSWE. In this summary, 

several different solution t~hniques for the SSWE were explored, including separable solutions, 

asymptotic solutions and the variational principle. A discussion of the formulation of a 

variational principle for the SSWE alone (i.e. decoupled from the Poisson equation) is eiven by 

Wu & Rochester (1990), where they note that it can be developed for a stratified core with 

deformable boundaries, but only if the stratification is neutral. Recent work by Crossley & 

Rochester (1991) has shown that for long-period oscillations the subseismic approximation is valid 

in the interior o the liquid core but becomes unusable at the boundaries. 

!V • 
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1.3 The Governing Equations of Core Dynamics 

In order to study motion within the Earth's core, an equilibrium reference state must first be 

chosen. The departures from this state will then ddine the motions of interest. The reference 

state chosen here, as an approximation to real core conditions, is of an inviscid fluid in 

hydrostatic equilibrium in a uniformly rotating coordinate system. The equilibrium gravity, f
0

, 

is g:ven by: 

( 1 . 1) 

where v. is the equilibrium gravitational potential. The lorentz force is negligible fo•· the time 

scale of the Earth's rotation and is ignored (Crossley & Smylie, 1975). Starting with these 

consid~rations the SSWE can be derived from the basic equations of fluid dynamics as found in 

Greenspan (1968, pp. 11-12). Notation has been changed here and the formulation includes the 

Poisson equation to account for tt.e effects of self-gravitation. 

The linearized equations of motion, that describe the Eulerian departure of the density (p1), 

pressure (P1), and gravitational potential (V1) from their equilibrium values (p
0

, P •• V .). are the 

oonservation of mass, momentum, entropy and gravitational flux for a self-gravitating system: 
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( 1 .2) 

( 1 .3) 

( 1 .4) 

( 1. 5) 

where " is velocity, t is time, a is the compressional wave speed in the core, G is the 

gravitational constant and 0 is the angular velocity of the steadily rotating reference frame. As 

the liquid is treated as inviscid, dissipative effects are missing from equations (1.3) and (1.4). 

The system of equations, ( 1. 2-1.5), must be solved to describe the motions in the core. 

In order to solve these equations the Lagrangian displacement from an equilibrium location of a 

liquid mass element is defined as u. As small departures from equilibrium are being considered, 

this displacement u can be expressed as: 

en. "= -. ( 1 .6) 
CJt 
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The frequency of these small oscillations will he given by w. These os~illations ~an then he 

represented by: 

(1 .7) 

where u(r) is generally a complex expression. This will repla~e equations involving rl!al 

quantities with equations that are real parts of complex equations. Similar expressions can also 

be written for p 1 , V~o and P1• Substituting (1 .6) and (1.7) into the governing equations (1 .:!- 1.5) 

results in: 

( 1.8) 

- w2 U + 2 i ~ Q X II V V1 - _!_ V p1 - !!_ V Vo 
P<o Po 

(1 .9) 

(1. 1 0) 

( 1 . 1 1) 

where the equations now relate complex field quantities but involve only spatial differentiation. 
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For the sake of future simplification, the scalar field variable x can be defined as: 

P, 
X =-- V,. ( 1.12) 

Po 

This can be substituted into equation (1 .9) to give: 

-w 2 11 + 2iw0xu = -Vx + P1 V(..!..)- .£.! VV0 

Po Po 
( 1.13) 

for the momentum equation. 

1.3.1 Density Gradient 

In order to consider departures of the equilibrium density gradient (V pJ from the adiabatic 

stratifkation assumed by the Adams-Williamson equation (Melchior 1986), Pekeris & Accad 

(1972) introduced 8, the stability parameter. This parameter changes the Adams-Williamson 

equation: 

V Polo 
Po • - 2-cz 

that describes an adiabatically or neutrally stratified fluid, to: 

(1.14) 
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( 1. 15) 

which can also describe a tluid that is stably or unstably stratified. If 6 :; 0, th!! tluid is neutrally 

stratified and the equation reduces to the Adams-Williamson equation. Oth!!rwisl! as R < 0 llr 

B > 0, the fluid is locally stably or unstably stratified, respectively. In gen!!ral 6 is !!xpe~tc!d to 

be radially dependent, but for simplicity core models with a constant 6 will bl! ~onsideroo. 

The stability parameter, 6, is related to the Brunt-VaisaHi frequency (Mt!lchior 1986), N. whkh 

describes the frequency of oscillation of a particle about its equilibrium point in a stably stratilil!d 

density profile. This parameter is more commonly used in oceanography and is related to the 

stability parameter by: 

( 1. 16) 

The equations which govern dynamics in the core can now be written with the indusion of the 

stability parameter as: 

( 1.17) 
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(1.18) 

where both the conservation of mass equation (1.8) and the entropy conservation equation (1.10) 

have been decoupled from the equations by substituting for p1 and P1 respe\:tively. Even this 

reduced system of equations in general cannot be solved exactly without encountering the 

truncation problem already mentioned. 

1.3.2 Sub-Seismic Approximation 

In previous studies of long-period free oscillations of the core (e.g. Greenspan 1968), the 

solenoidal flow approximation, 

V·u = 0 (1.19) 

has been made in tho entropy conservation equation. The incompressibility approximation is 

made in an attempt to simplify the mathematics of obtaining solutions in the presence of rotation. 

While this approximation is applicable in laboratory conditions, it should not be used in the core 

where compression is a factor. Therefore, a different approximation from the solenoidal flow 

approximation needs to be made in the governing equations. This approximation needs to 

simplify the mathematics yet preserve the physics of a compressible core. 
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This approximation was formulated by Smylie & Rochester ( 1981) who usoo a sealing argum~nt 

to eliminate a term in the entropy conservation equation (1.10). This was done hy cakulating 

the magnitude of individual terms in the entropy conservation equation after choosing realisti.: 

values for particular Earth properties. Equation (1.10) can be rewritten as: 

V·u (1 .201 

These terms relate the local compression of the LHS, to the effect of compression due to tlow 

pressure, and compression due to transport through the equilibrium pressure gradient. the tirst 

and second terms of the RHS. By writing the governing equations in dimensionless form. using 

characteristic values tor Earth properties, and considering a longer time scale than that usetl in 

conventiona: ~:eismology, Smylie & Rochester (1981) demonstrated that the first term of the right 

hand side can b~ ~!iiTiinated from the system of equations. This is because it is at least 3 orders 

of magnitude smaller than other terms, and contrasts to the situation in the acoustic frequency 

range where this term is substantial. 1i1is neglects the effect of compression due to flow pressure 

in the governing equations and is termed the subseismic approximation. It leads to a simplilietl 

expression for the entropy conservation equation: 

V·• .. 
U'lo --- (1 .21) 

This expression can also be rewritten as: 
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V·(p~ u) "' 0 (1.221 

where 

-f.l. j ... 
I I 

Po "' Pot • 
(1.231 

and where w. is the gravitational potential that includes rotation effects. The simplified form of 

the entropy conservation equation (1 .22) will be used later. 

Making the substitution of (I . 21) into the governing equations ( 1.17 and I. 18) we arrive at: 

(1.24) 

(1.25) 

Equation ( 1.12) is used to obtain P, from x and V, after these potentials have been obtained from 

equations (1.24) and (1.25). 

At this point no further approximations are needed and the subseismic wave equation (SSWE) can 

be derived directly from equation (1.24). To do this, both the dot and cross products of (1.24) 
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with t,, the unit vector parallel to 0, must be form«!. These r~ults arc suhstitutaJ hade intl, 

(1.24). This expression is then solved for 11 by forming various othl!r produ~ts of the uriginal 

expression. When this is finished the result is a simple expression: 

,. = r ·vx (1.26) 

where: 

(1.27) 

(1 .28) 

(1.29) 

and a is defined as: 

Co) 
(J =- (1 .30) 

20 

where c· is the complex conjugate of C, and 1 is the unit dyadic. The SSWE can now be given, 

by combining (1.22) and (1.26) as: 



V· ( p~ r · Vx) = o. 

20 

( 1.31) 

The momentum equation (1.26) and the subseismic wave equation (1.31) were first given in this 

form by Rochester (1989). 

1.3.3 Boundary Conditions 

The final consideration is that of the boundary conditions. Three types of boundaries seem 

plausible for problems of the kind we are considering: rigid fix(ld, deformable, and free 

boundaries. The boundary condition explored here is a rigid fixed boundary, an approximation 

to real Earth conditions at the core mantle boundary (CMB). This means there is no mechanical 

energy exchange between the c.ore and the rest of the Earth. The free boundary condition would 

be used in the study of stars and the deformable condition could be used in a more detailed study 

of the core than that presented here. The rigid fixed boundary condition is formed by noting that 

the normal component of the displacement vector must be zero at the boundary, or: 

... ,. :::: 0 (1.32) 

where " is the unit normal vector. By noting that the normal vector can be wrinen as: 



lo -· '"'Bo 
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( 1.331 

because the equilibrium gravity, g. is everywhl!re normal to the ~:or~ mantle boundary. an 

alternative expression for the boundary condition can be given as: 

C·Vx = 0. ( 1.34) 

When this is expanded as: 

( 1.35) 

it is seen to be a very complicated boundary condition as it involves several different components 

of Vx and also contains o, the dimensionl~s frequency . Fortunately, in chapt~r 2, (1.34) will 

be shown to be a 'natural' boundary condition when solving ( 1.31) by means of a variational 

principle, and thus need not be invoked independently to constrain the solutions. The solution 

to the problem of long period free oscillations in the core is then found by solving (1.31 ) for x 

and subsequently solving for u, p1, V1 and P1 in equations (1.26), (1.8), (1.25) and (1.12) 

respective! y. 
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1.4 Solvini the Subseismic Wave Equation: Prospectus 

There are several methods that can be used to solve the subseismic wave equation. Many of these 

have been examined by Rochester (1989): separable solutions. asymptotic solutions, and the 

variational principle. In this work, the variational principle, asymptotic solutions and a Galerkin 

approach are explored. 

This thesis investigates several different methods of solution of the subseismic wave equation in 

an incompressible or slightly stably stratified liquid bounded by a rigid fixed spherical surface, 

as a preliminary to an attack Oli the inertial/gravity wave spectrum for mor·.: realistic Earth 

models. In the next chapter, the variational principle is applied to the Poincari! equation (as a 

limitins form of the SSWE) to reproduce the results obtained by Aldridge & Toomre (1969). 

This will demonstrate the utility of the variational principle for the SSWE, which retains the 

ability to examine more of the problem than the formulation provided by Aldridge & Toomre 

(1969). Such is done in chapter 3 where the effect of compressibility is studied using a radial 

density profile from the Preliminary Reference Earth Model (PRFM) of Dziewonski & Anderson 

(1981). In the fourth chapter the perturbation approach is employed to establish the response of 

the system when the stability parameter. 8, is nonzero. Finally, in chapter S, the Galerkin 

approach is used with both a neutrally and stably stratified density profile. Several variations of 

this approach are considered to delineate chang::s in inertial frequencies and detect new gravity 

modes. The results are then compared with the previous methods. The final chapter summarizes 

the work done and briefly explores some of the possibilities for further research. 
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CHAPTER 2 

2.1 Introduction 

The purpose of this chapter is first to review the demonstration that a vari;uional prindpl~ ~an 

be used as a method of solution for the SSWE. The resulting functionai, which is more general 

than that derived by Aldridge ( 1972) for axisymmetric solutions of the P.1incar~ eGuatiun, is then 

used to reprodu~:e the eigenvalue results of Aldridge and Toomre (1969). hereafter referrl!d to a.o; 

A&T. 

2.2 Variational Principle 

The variational principle will be applied to a functional where the SSA has been made throughout 

the fluid volume and the outer boundary is considered to be rigid an,t iixoo. The functional 

chosen for this work is: 

F • J x"Slxdv • J •···•dr (2 . 1) 

" • 

where x and 1/1 are arbitrary functions we are free to choose and 5£ is defined as the linear 

operator for the SSWE: 
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~X = V·(p~ r·Vx). (2.2) 

We need to ensure that this functional is suitable for the implementation of a variational principle 

with trial functions x which do not satisfy the rigid fixed boundary condition: 

"·u ,. 0. (2.3) 

Implementing a variation in the functional, 6x and 61/1, we obtain: 

&F = J<&x·~x + &x (~x)"ldv 
" 

+ J <&t• •·u + t• •·6u}ds (2 .4) 
• 

+ w 2 (o2 -1) f<p~x·•·&•- p~&x•·u·}dr 
' 

where 6x and 61/1 are arbitrary in the volume and on the boundary. Rearranging terms we can 

write: 

&F- /<&x•stx + &x(stx).ldv 
, 

- J6x·• ·udr + w2 (o2 -1)/p~&x•·u·dr (2.5) 
' . 
"/<t• + w2 (o2 -1)p~x·},.·&udr 

' =0 
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for a choice of: 

(2.6) 

at the boundary without restricting the choice of ox or ou. Therefore with 'J! ~hosen as ahove we 

have demonstrated that: 

Sfx • 0 in v 
fJF=O- and (2 .7) 

11 • u = 0 on tht boundary. 

since oF = 0 only if both of these statements are true in equation (2.4) ahove. Thus for thr: 

functional F so chosen, we have demonstrated that a variational principle can be implemented 

with trial functions x that do not need to independently satisfy the boundary condition. This 

boundary condition is then called a natural boundary condition. 

The functional Fin equation (2.1) can be rewritten, first by substituting for 'J!, and :I. to get: 

" • 

Next substituting for u and using a vector theorem yields: 
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F "'/IV·(x" P~ r·Vx) - vx· p~ r· VxJ dv - J p~ x·" ·r·Vx ds. (2.9l 
.. I 

Then using the divergence theorem this becomes: 

I " I 

And we are left with: 

F • - J p~ vx··r ·vx dv. (2. 11) 

" 

This is only true for the rigid fixed boundary condition; if free or deformable boundaries were 

being considered, then other terms would need to be added to the functional in equation (2.1) to 

account for these conditions. 

2..' Approximations to Produce the Poincarl! Equation 

Anention can now be given to the specific problem that A&T considered, which consisted of 

axisymmetric, inertial oscillations in a homogeneous, incompressible fluid-filled sphere. Several 

approximations can now be made to the governing subseismic wave equation. The homogeneous 

condition means that density is independent of location and consequently p.' is a constant. The 

incompressible condition implies that the acoustic wave speed is infinite, with a = oo . In reality 
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a is observed to be 8-10 km/s. This assumption makes the value of B = oo, thus l!lim in:.~ting 

the third term in (1.27), and reduces the expression for r tor,.: 

(2. 1 2) 

and since Po' is now a constant, the SSWE (1.31) reduces to: 

V·(r, · Vx) = o (2 . 1 3) 

which when expanded yields: 

(2. 14) 

the well known Poincar~ equation. The rigid fixed boundary condition (u·n=O) is still natural 

in the reduced expression and the functional can simply be written as: 

F(x) • fvx··r,·vx dv (2. 1 5) 
.. 

and the variational principle can be applied. 
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2.4 General Form of the Trial Function 

Up to now, no consideration has been given to the construction of the trial function x. The 

azimuthal dependence (/), can be separated out by writing: 

(2.16) 

with Y,.1 and 1/12 any independent curvilinear coordinates orthogonal to 4>: cylindrical coordinates 

(R, Z) have been adopted in this thesis. This form for x is now substituted in the simplified 

fum:tional, (2.15), and can be expanded as: 

(2.17) 

where R is the radial coordinate of cylindrical coordinates. This formulation explicitly 

demonstrates the azimuthal dependence of the third term which results from the application of the 

divergence theorem. It is also apparent that the separation of azimuthal dependence from x has 

left the integrands in (2.17) in a form which clearly indicates that x(R. Z, m, u) can be treated 

as entirely real as all terms are squared. However, in order to consider the axisymmetric case, 

as A&T did using a stream function, m, the azimuthal number must be set equal to zero. The 

option to explore nonaxisymmetric cases demonstrates one advantage of the use of x. over that 

of a stream function. The nonaxisymmetric case would involve the introduction of new 

oscillation modes and result in the modification of previously discovered modes due to the 
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presence of a in the final term of the functional . Considering the axisymmetrk case, m = 0. the 

functional (2 .17) reduces to: 

(2.18) 

The application of the variational principle can now be considered in more detail. 

2.5 General Solution Method 

In order to proceed with the variational principle, the trial function xis represented as a linear 

combination of basis functions as: 

X = L c,+, , (2.19) 

where the c;s are constants to be determined, and the q,;s are the basis functions that must be 

selected. By substituting this general form of x in the axisymmetric functional (2.18), the result 

is: 

F • EEc,c,J{a2 (V+,)·(V+,)- (e1 ·V+,)(e1 ·Vt9))dv. (2.20) 
, f " 
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This can be simplified by defining the matrix G,. in the functional as: 

(2.21) 

Now the variational principle can be applied by taking the variation of the functional with respect 

to constant, c, to give: 

aF .. o, tMn 
ac, I: c,G,. + I: ctG• "' 0 (2.22) 

, f 

where the variation has now been transferred to the c, constants. The matrix G is obviously 

symmetric, since all the terms involve squares of quantities. The problem thus reduces to: 

L c,G,. "'0 or Ge "'0 , 

an eigenvalue/eigenvector problem where: 

det G "0 

gives the eigenvalues, a, and the constants, c,, give the associated eigenvectors. 

(2.23) 

(2.24) 
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2.6 Specific Formulation of x and Results 

At first it would seem that any linearly independent set of functions could he used to c'mstruct 

the trial functions . For example, in spherical coordinat~. (r and e). x might he constructoo 

from: 

, N 

x = E E c,,. sin~ P: (cos e) where n~ lml 
,.o •• o a 

(2.251 

with a as the radius to the core-mantle boundary. The different values of p explore the radial 

dependence and the various values of n explore the angular dependence. However. the problem 

as a whole must be carefully considered to ensure that an appropriate trial function is chosen. 

When constructing a suitable trial function, it is helpful to compare the procedure used by A&T 

with our work. Since they considered the axisymmetric case for an incompressible fluid (a = 

co), they were able to formulate the problem in terms of a stream function . A comparison can 

be made between this stream function 1/1 of A&T and the current formulation for the trial function 

x by noting that displacement u is proportional to the velocity v used in A&T. The two are 

related since the displacement, u leads to a velocity of: v = i w u, which when equated with the 

velocity components from the stream function of A&T results in: 

(2 .261 
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when expressed in cylindrical coordinates (R,Z). Thus a possible construction for the trial 

function x is suggested by the formulation of 1/1 used by Aldridge (1972, p. 34). In order to 

compare results with those obtained by A&T, attention is confined to those axisymmetric modes 

compatible with the excitation method used in the experiments performed by A&T, namely: 

Ex = 0 on R = 0 and 
oR .£1 "' 0 011 z "' 0. az 

(2.27) 

These restrictions mean that there is no flow across the rotation axis and no flow across the 

equatorial plane respectively. Thus x should have the form (in cylindrical coordinates) of: 

N N -1 

x = E E c~; R2i z'~~ 
1•0 ,.,, 

(2 .28) 

where 6;o is the Kroatecker delta symbol and N is sufficiently large to ensure that all the 

eigenfrequencies of interest are found. That this should be a successful form for x to take is also 

apparent from the similarity to the trial function used by Aldridge (1967), which provides an 

exact solution to the problem in the homogeneous, incompressible case, the same as that being 

~onsidered here. 

It is important to note that cylindrical coordinates have been chosen here. While this may seem 

like an odd choice when working with a spherical boundary. a comparison of the expanded 

functional in the cylindrical: 
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(2.29) 

and spherical coordinate systems: 

(2.30) 

suggests that the equations are much more straightforward in cylindrical coordinates. This is du~ 

to the cylindrical symmetry imposed on the problem by rotation, which is more important than 

the spherical shape of the boundary. The actual integration of resulting expressions can he 

carried out in cylindrical or spherical coordinates, depending on which is simpler. 

Since in this formulation the boundary condition is nah!ral, no attempt is made to force the trial 

function to satisfy it. The trial function (2 .28) is then substituted into the functional (2 .29), 

resulting in: 

(2.31) 

where 

(2.32) 
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and 

(2.33) 

and a constant factor of 32r has been dropped, the integration limits result from normalizing the 

radius of the spherical boundary to unity. These terms can then be integrated in cylindrical 

coordinates to yield: 

N N-1 N N-Il • &. l•i (" L)f (-1)' 
c = L L L E CIJ c.,-.'-"' L 1 +~~; - -

1•1 J•O t•1 1•0 r+k ,.o rf(i+k-r)l [2(i+l+r)+1) 
(2.34) 

and 

~ ~ ~ ~ 2il ~ (i+A:)I (-1)' I = LJ t!.... LJ LJ c11 cld . LJ • 
i•O /•1 t•O l•1 r+k+1 r·O rf(i+k-r)l [4(i+l+r)2 -1] 

(2.35) 

The integration over the Z coordinate was performed using binomial coefficients since: 

(2.36) 

= E E E ql <-1>' 1 
, 9 ,.o rl (q-r)l 2(r+ p) + 1 
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This in~egration can be performed in other equivalent ways that are detailed in Appendix A. 

Taking the variation of (2.31) with respect to the c;/s results in the eigenvalue problem that neeJs 

to be solved for the dimensionless frequency o. By noting that c and fare symmetric with respe~t 

to the pairs of indices {iJ) and (k,f), the resulting eigenvall!e/eigenvector equations can he written 

as: 

N N-l . L i •l ( ) I ( ) 
oZLL f-.'" Li+k-1' }c 

t•11•0 J+k r•O rl(i+k-r)J (2(i+l+r)+1) 14 

(2.37) 
N-1 N-l . l•l 

-C1-o2>EEf~E (i•k)t <-1>' Jell"' o. 
l•O 1•1 J+k+1 r•O rl(i+k-r)l (4(i+l+r)2-1) 

The summation limits have been changed to reflect only those contributions that are non-uro. 

The non-zero contribut•ons given by i andj correspond exactly to these limits. The restru~turing 

of the limits allows for simplification of the calculations because values of UZ = 0 and I can he 

immediately eliminated, as the eigenfrequencies for this boundary value problem lie in the range 

0 < a < I. This is done by noting three distinct contributions to the eigenvalue/eigenvector 

equations where now the range of i andj do not exactly correspond to the range of k and 1: 

1. For i = 0~ j = 1 to N 

the contribution is: 

~ ~ {_!!_ ~ tl (-1)' .£J LJ .£J _::..:...._ ___ ....l.__:.L.__) ,., • 0. 
t•O 1·1 k+1 r•O rl(t-r)l (4(i+l+r)2-1) 

(2.381 
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For ; = 1 to N; j = 0 

the contribution is: 

N N-J: k l+t (i+k)f (-1)' C = 0 
L E f-. L )t [2(l•r)•1J 1 ., . J:•t 1•0 r+k r•O rJ(i+k-r 

(2 .391 

For ; = 1; j = 1 to N-i 

the contribution is: 

N N - J: k i+J: (i +k)J (-1)' } 
a2t E E t- E c., 

J:•t l•O l+k ,.o rl(l+k-r)J (2(i+l+r)+1) 
(2.40) 

11·1 N-t l•t . • 
- (1 - o2)j E E I_!!_ E (a+k)l (-1) }c.,= 0. 

J:•O l•t i+k+1 r•O rl(i+k-r)l [4(/+l+r)2 - 1] 

In order to e~press these in matrix form, as G c = 0, it is necessary to transform from the double 

index (iJ) to a single index (say p). This i!i accomplished with: 

. i(2N+3-i) 
p=J+- -

2 

q = 1.l(2N•3-l) 
2 

and the problem can be expressed as: 

(2.41) 
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(2 .42) 

The eigenvalues are found from: 

detG = 0. (2.43) 

This is now an algebraic problem that can be solved using a computer program. The details of 

the program spS.f are found in Appendix B. The frequency range searched was from zero to 

one. The program uses the IMSL subroutine DZREAL to sean.:h for the eigenvalues from the 

determinant. The value used for N was initially N = 3, then N = 4 and finally N "" 5. The 

value N = S reproduced the results of A & T. Larger values of N had no effect on these 

eigenfrequencies, but of course permitted new ones to be found. 

The results obtained from the program exactly match those given by A&T (Table 1). This 

demonstrates the validity of the application of the variational principle as a method of solution 

for the Poincar~ equation, when implemented with trial functions which talce advantage of the 

'natural' property of the rigid fixed boundary condition. 

The next chapter will introduce a density profile into the equations as a better ap?roximation of 

a realistic Earth model. 
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Comparison of Dimensionless Eigenfrequencies Obtained by Aldridge 
and Toomre ( 1969) and from the Application of the Variational 
Principle to the Poincar~ Equation. 

Aldridge and Program Program Program 
Toomre 0 9691 with N- 3 with N = 4 with N = 5 

0.6547 0.6547 0.6547 0.6547 

0.4688 0.4688 0 .4688 0.4688 
0.8302 0.8302 0.8302 0.8302 

0.3631 0.3631 0 .3631 
0.6772 0.6772 0.6772 
0.8998 0 .8998 0.8998 

0.2958 0.2958 
0.5652 0.5652 
0.7845 0.7845 
0.9340 0.9340 
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CHAPTER 3 

3.1 Introduction 

In this chapter a density profile is included in the model of a neutrally stratified, rotating, self 

gravitating liquid sphere enclosed by a rigid fixed boundary to determine its effect on the inertial 

wave eigenfrequencies. The eigenvectors for these eigenfrequencies are also obtained as they will 

be used in the next chapter. 

3.2 Density Profile (PREM) 

In order to make the working model approach conditions in the Earth's core, the density protile 

chosen is that given by Dziewonski and Anderson (1981) in their Preliminary Reference Earth 

Model (PREM), for the outer core. The density expression is a thirli degree polynomial that is 

extended to the centre of the working model since the inner core is currently not being 

considered. There are three problems with this that must be addressed. Th~ first is that the 

chosen density profile is not actually valid at the centre of a sphere because the second term in 

the polynomial does not ensure that gravity is zero there. However, this profile is valid 

everywhere else in the model core so its use is justified as a first approximation to actual core 

conditions. The second problem is that the stability parameter, 8, resulting from this density 

profile is nonzero near tbe inner core boundary and near the outer core boundary. However, it 

is neutral in a major portion of the liquid core, so using 8 = 0 in the formulation of the problem 
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is justified for this initial approximation. Figure l demonstrates the range of values of B(r) 

throughout the liquid core of the PREM model. The nonzero portions of B(r) are most likely 

due to the choice by Dziewonsld and Anderson (1981 ), of third degree polynomials for 

representing Earth parameters. Later, in Chapter 5, a density profile will be developed which 

is essentially neutral throughout the core. The third difficulty is the ill-posed nature of the 

problem when an inner core boundary is included (Stewartson & Rickard 1969). This is avoided 

in the present work by using a fluid sphere. 

3.3 Variational Formulation of the Eigenvalue Problem (PREM Core) 

The actual density profile used is: 

4 

Po(u) : L P • .,•-t (3.1, 
• •1 

where the coefficients of the polynomial expression from PREM have been renonnalized to an 

average outer core radius of 3480 km and are given by: 

Pa = 12.5815 

p~ = -0.6903191 

p) = -1.0868125 

P• = -0.900929 

where the units are gms/cm3
• The dimensionless radius u is defined as: u = rib where b is the 

radius of the sphere representing the outer core boundary and r is the radius in the outer core 

which has been exten<led to the centre. The symbol m has been used as a summation index here 
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and henceforth as it is no longer needed to stand for an azimuthal quantum number as our 

attention has been restricted to axisymmetric oscillations. 

The addition of a density profile does not significantly change the mathematics of the problem. 

The functional now becomes: 

F • a2J Po 1Vxl2 dv- J Po I•1 ·Vxl2 dv (3.2) 

" 

where Po is the polynomial density expression given above and renormalized from PREM. This 

is analogous to equation (2.18) in Chapter 2. The boundary condition is still natural and does 

not need to be considered further. This fonnulation will give a quick check on the effect, upon 

the inertial wave eigenfrequencies calculated for a homogeneous liquid, of introducing 

compressibility via a neutral density profile. 

The functional (3.2) above, can be expanded to: 

F • Jta2po(~)2 + (o2-1)Po(i)2)dv (3.3) 

• 

where the terms of Po are given in spherical coordinates and the derivatives are in cylindrical 

coordinates. By transforming the derivative expressions ~nto spherical coordinates just for the 

integration of the expression, the mathematics of the problem are significantly simplified. Care 

must be taken to ensure that the density coefficients are properly normalized. The integration 
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results in: 

N N-j N N-t 

F = a2 LEE L d(i,j; k,l) c11 cu 
1•1 j•O l•1 1•0 

(3.41 
N-1 N-1 N- 1 N-1: 

+ (o2 -1) E E E E f(i,j; k,l) c11 c .. , 
t•O j•1 l•O 1•1 

where 

4 i•t - 1 
d(i,j;k,l) =ikE P. E (i+k- 1 )1 (-1)' (3.5) 

•·1 m+2(i+j+k+l) ,.o rl(i+k-1-r)I2U+l+r)+1 

and 

4 P. i • t (i•k)l (-1)' 
tCi.j; t.t> = i~''L 'L -~---''----"---'---

•·1 m+2(i+j+k+l) ,.o rl(i+k-r)I2U+l+r)-1 
(3.6) 

and P. are the coefficients of the PREM polynomial for density in the outer core as given earlier. 

The summation limits indicate the nonzero contributions. Again applying the variational principle 

results in an eigenvalue system similar to equation (2 .37) in Chapter 2. The equations are now: 



(3.71 

where d and fare defined above and the summations have been dropped for clarity. At no point 

in the summation do the denominators of these terms go to zero, so all terms can be calculated. 

These expressions can now be easily programmed by the addition of a loop in the computer 

program sp5. f to account for the density summation. The revised program spden5.f is found in 

Appendix C. The eigenfrequencies obtained from this program are shown in Table 2 and are 

compared with those obtained for the homogeneous model considered in Chapter 2. The 

frequency range that was searched by the program was between 0 and 1. The program uses the 

IMSL subroutine DZREAL to search for the eigenvalues from the determinate. The value of N 

used was N = 5, as the results from the previous chapter showed that all eigenvalues of interest 

were found using this value and we are presently interested in the modification of these 

eigenvalues. 



Table 2. Comparison of Dimensionless 
EigenfreQuencies in an Homogeneous. Neutrally 
Stratified Sphere and in a Neutrally Stratified 
Sphere with a Density Profile of the Outer Core of 
PREM. 

ti2mogeneous 

.2958 

.3631 

.4688 

.5652 

.6547 

.6772 

.7845 

.8302 

.8998 

.9340 

.2976 

.3653 

.4714 

.5660 

.6572 

.6779 

.7847 

.8306 

.8998 

.9340 

45 
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These results indicate that the addition of a density profile actually increases the eigenfrequencies, 

more siinificantly at the lower end of the spectrum than at the higher end where there is little or 

no effect. This contradicts Friedlander (1987), who predicted a decrease in the values of the 

eigenspectrum with the addition of a density profile. This may be due to her choice of a 

reference state of an homogeneous, incompressible sphere which was perturbed to a non-neutral, 

compressible state. In fact one would expect that replacing a homogeneous incompressible liquid 

by a neutrally stratified compressible one would increase the eiienfrequencies, since the 

compressibility provides a small restoring force supplementing the dominant one due to the 

Coriolis effect. This thesis, in Chapter S, will show that the addition of a non-neutral density 

profile is not a small perturbation and thus treating both compressibility and non-neutral 

stratification as perturbations is not an acceptable approach. The development followed here has 

as an initial model an homogeneous, incompressible sphere, as used in Chapter 2. This is then 

altered to the reference state, a neutrally stratified, compressible model as is developed in the 

present chapter. In the succeeding chapter a perturbation method will be appli~ to this reference 

state to determine the effect of non-neutral stratification. 

3.4 Eigenvectors 

At this point it is worthwhile to consider the eigenvectors associated with each eigenvalue for the 

case of a neutrally stratified, compressible model as these will be used in the next chapter. The 

trial function used: 
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(3 .8) 

when N = 5, results in 20 coefficients eli for the eigenvector. These are ordered using the douhl!! 

to single index given previously as equation (2.41). Thus, 

(3 .91 

In a conventicnal eigensystem the eigenvalue\vector equations can be expressed as: 

(3 . 10) 

where A is a square matrix, xis the eigenvector, and X is the eigenvalue. While the formulation 

being considered here is not a conventional eigensystem it can be written in a form analogous to 

equation (3.10) by rewriting equation (3. 7) as: 

(3.11) 

or in component form: 
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(3.12) 

where A is formed from d(iJ;k,l) + f(iJ;k,l), B fromf(iJ;k,l) and cis the eigenvector with I' 

row c, . Again equation (2.41) has been used to obtain the transformation between double and 

single indices. Unfortunately, the eigenvectors cannot be found using this formulation because 

the matrix A is very nearly singular. However, the eigenvectors can be successfully found by 

reformulating the problem. 

The eigenequations can be written as: 

(3.13) 

where G,. is obtained from equation (3 .4) in analogy with equation (2.42). Note that because the 

eigenvalues have already been obtained there are only Q-1 parameters that can be still be obtained 

from the equations (3 .13). Thus one of the coefficients of the eigenvectors must be found some 

other way. This is done by noting that these are free oscillations, i.e. of arbitrary amplitude, so 

there is a degree of freedom that must be constrained by choosing one of the coefficients of the 

eigenvectors. By making the first coefficient I, the rest of the coef.icients can then be found and 

they will be scaled to this initial choice. The eigenequations can then be rewritten as: 
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(3.14) 

where q = 2, 3, ... Q and letting c, = I. This is now a linear system of equations that can he 

solved for the remaining eigenvector coefficients c •• 1 after the appropriate eigenvalue has hecn 

substituted into the matrix G,.,. The system of equations is now one degree smaller than it 

previously was; the first row and column have been removed from the matrix. By letting: 

p-p+1 and q-q•1 (3.15) 

where the arrows indicate that a value is replaced by another, then defining: 

(3.16) 

the equations can be written as: 

(3.17) 

and the eigenvectors d• solved for using a linear systems solution package. The program spden.S . f 

was modified to include the IMSL subroutine DLSASF to solve the system and is given in 

Appendix D as wspdlinsysS.f. The resulting eigenvectors with their associated eigenfrequency 
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are shown in Table 3, where the first coefficient has beer! assigned a value of 1. As before, the 

eigenvalue range searched was between 0 and 1. Also the value of N is again N = S . The 

program is similar to spdenS.f described earlier, except that now the eigenvalu~ are used in the 

subroutine DLSASF to determine the eigenvectors. These eigenvectors will be used in the next 

chapter in the formulation of a perturbation solution. 



Table 3. 

Eigenvalue 

.2976 

Eigenvectors Associated With Eigenfrequencies for a Neutrally 
Stratified Sphere With a Density Profile of the Outer Core From 
PREM. 

Coefficient 
Number 

1 
2 
3 
4 
s 
6 
7 
8 
9 
10 
ll 
12 
13 
14 
IS 
16 
17 
18 
19 
20 

Eigenvector 
Coefficients 

1.0000 
-2.6500 
8.9165 
-10.7797 
4.397 
0.3537 
13.8265 
-83.6591 
98.7765 
-42.1415 
-0.1354 
-28.2156 
156.6337 
-81.6015 
-2.4620 X 1(}2 

15.0030 
-86.7444 
-5.5746 X 1(}' 
-0.1975 
-2.6719 X 1(}2 

51 
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Table 3. Continued. 

Coefficient Eigenvector 
Eigenvalue Number Coefficients 

.3653 1 1.0000 
2 -2.6002 
3 8.8842 
4 -10.7879 
5 4.4066 
6 0 .3455 
7 18.0207 
8 -107.9571 
9 123.2600 
10 -49.5360 
11 ~. 1268 

12 -42.0971 
13 236.6772 
14 -124.5127 
15 -1.9056 X l()·l 

16 25. 1843 
17 -144.6092 
18 -3.5114 X l(t3 

19 ~.1846 

20 -~ .2102 X J0"2 

.4714 1 1.0000 
2 -2. 1625 
3 7.3522 
4 -8.9393 
s 3.6524 
6 0.3198 
7 6.0140 
8 -40.7797 
9 61.7661 
10 -33.8769 
II ~. 1416 

12 4.1845 
13 -31.1128 
14 13.8618 
IS -1.7779 X 10'2 

16 -13.0839 
17 72.6477 
18 6 . 1467 X l o-3 

19 ~.2506 
20 -7.5419 X J0"3 



53 

Table 3. Continued. 

Coefficient Eigenvector 
Eigenvalue Number Coefficients 

.5660 1 1.0000 
2 -1.7370 
3 6.5811 
4 -8.2377 
5 3.3769 
6 0.1793 
7 20.3612 
8 -127.5279 
9 159.0353 
10 -67.2105 
11 -0.1031 
12 -31.7695 
13 175.4742 
14 -107.0989 
15 2.2310 X JO·l 

16 5.5569 
17 -33. 1810 
18 3.3977 X 10 2 

19 -0.1821 
20 -4.7135 X JQ-4 

.6572 I 1.0000 
2 -2 .2776 
3 6.9005 
4 -8.0848 
5 3.3154 
6 0.7054 
7 -12.2665 
8 75.8173 
9 -85.8010 
10 22.2029 
11 -0.1848 
12 30.9130 
13 -185.3521 
14 129.8382 
15 -8.5156 X 10"2 

16 -10.3549 
17 56.0833 
18 -5.0501 X J0"2 

19 -0.4764 
20 ·8.4625 X J()•l 
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Table 3. Continued. 

Coefficient Eigenvector 
Eigenvalue Number Coefficients 

.6779 1 1.01.."00 
2 -2.0021 
3 6.3320 
4 -7.5182 
5 3.0836 
6 0.6069 
7 -5 .6797 
8 35.0166 
9 -37.5676 
10 4.7975 
11 -0.1634 
12 17.7919 
13 -110.4150 
14 82.3259 
15 -5.9867 X 1()·2 

16 -6.5822 
17 34.7164 
18 -3 . 1142 X 1()·2 

19 -0.4394 
20 -7.4840 X 10"2 

.7847 1 1.0000 
2 -0.9445 
3 3.2661 
4 -3.8223 
5 1.5024 
6 0.5064 
7 -0.8593 
8 10.5255 
9 -24.8698 
10 6 .0642 
11 -0.1009 
12 8.6148 
13 -69.2478 
14 78.5027 
15 -6.3849 X 1()·l 

16 -5.6108 
17 28.4398 
18 -7 .6611 X 1()·l 

19 -0.5220 
20 -0.1074 
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Table 3. Continued. 

Coefficient Eigenvector 
Eigenvalue Number Coefficients 

.8306 1 1.0000 
2 -{).4435 
3 2.1245 
4 -2.8513 
5 1.2077 
6 0.4549 
7 13.9078 
8 -102.6534 
9 167.3023 
10 -85.0624 
11 -5 .8474 X 101 

12 -25.8536 
13 165.1072 
14 -151.1843 
15 3.7774 X 10 ~ 

16 10.6117 
17 .()4.3893 
18 4.0071 x 10·2 

19 -{).5644 
20 0 . 1422 

.8998 l 1.0000 
2 2.4922 
3 -8.5904 
4 11.5842 
5 -5 .3751 
6 0 .3849 
7 7.8422 
8 -57.7494 
9 81.2868 
10 -39.1405 
II 0 .3668 
12 -18.2271 
13 101.1813 
14 -83 .3434 
15 0.2750 
16 3.0354 
17 -28.0091 
18 0.2005 
19 -1.6236 
20 -0.5825 



Table 3. Continued. 

Eigenvalue 

.9340 

Coefficient 
Number 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Eigenvector 
Coefficients 

1.0000 
-23.6395 
93.4954 
-130.7021 
61.2706 
2.1455 
24.2786 
-139.7413 
267.0663 
-183.7994 
-5.6188 
31.2635 
-161.8030 
230.8040 
-2.8322 
22. 1556 
-50.5829 
-1.9131 
13.0792 
5.2476 

56 
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CHAPTER4 

4 . 1 Introduction 

A perturbation of the reference state developed in Chapter 3 to indude n1m-neutral stratiti..:atiun 

is made here to determine the effect on the eigenfrequencies. A oorre~tlld version uf equation 

(82) from Rochester ( 1989) is developed and used. 

4 .2 Penurbation Theory for the Eigenvalue Problem (Slightly Stable Cure) 

In Chapter 3 a solution to the problem: 

(4. 1 I 

was found using the variational principle. This is the zeroth order problem given by Rochester 

(1989) where Po has been substituted for P.t. This problem can now be perturbed to dl!termine 

the effect of a small non-zero stability parameter 6 . The value for the perturbed eigenfrequency 

will be found from: 

(4.2) 
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where a. is the eigenvalue found in Chapter 3, a, and a2 are the eigenvalues from the first and 

second order penurbations, respectively. The value of A is defined by: 

Since 

Nmu. 
A=-

20 

- N N=--
N,. 

(4.3) 

(4.4) 

(4.5) 

where here N is the Brunt-Vlisali frequency. The solution of the first order problem results in 

a1 = 0 as noted by both Friedlander (1987) and Rochester (1989). The second order perturbation 

is found directly from Rochester (1989) equation (81), with p.t replaced by p.: 

J Po Vx0 " ·r2 ·Vto dv • 0 (4.6) 
.. 

where 
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r 2 1 N2 c·c · 1 2 = 0 2°0 + o o + I 0 2 1J x • 
o/(o0

2 -1) 
(4 .7) 

Substituting (4.7) into (4 .6) results in 3 terms. The first of these is given by : 

(4.8) 

and the second term gives 

(4 .9) 

The third term initially gives 

io2 J Po Vxo • . (e, x Vxo) dv (4. 10) 
.. 

which can be expanded as: 

i Gz J p0 V · ( Vx0 • x Xo•a) dv (4. 1 1) 
.. 
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sin~;e 

VxVx; = 0. (4. 1 2) 

This can be rewritten as: 

io2 J (V·(p0 V7.o" x Xo'a) - Vp0 • (Vto" x Xo'a)l dv (4 . 131 

" 

and !he divergence theorem is applied to yield: 

(4. 14) 

• " 

which, when rearranged is: 

(4., 5) 

The cross products in these two terms yield components of 4P only. The dot product is then taken 

with the • component of Vx. and results in: 
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(4., 6) 

In this instance however, m = 0, thus all the ~l~m~nts of the third term can be druppoo frum the 

formulation and the equation for the second order perturhation consisting solely of the tirst two 

terms is: 

which when rearranged gives this expression for a~: 

-.....!...1 - I _,,.. IC v 12 dv - •c 1 1) 4 Q1 1 Po o' Xo .. .. .. " . 
02 ; ----~---------

2oo J Po IVxo 12 dv 

(4.18) 

v 

where 8 is a constant. When expression (4. 16) is included in the denominator, (4.18) becomes 

the corrected equation (82) in Rochester ( 1989). 

In order to evaluate equation (4. 18) the denominator is considered first as it is a simpler 

expression than the numerator. The denominator integral can be expanded as: 



62 

2 o0 J p 0 (r) (( ~)2 
+ ( ¥z)2

) dv 

" 
(4., 9) 

where x is still given by equation (2.28) in Chapter 2 with N = 5. The appropriate expressions 

for derivatives of x are substituted into the integral above and then the coordinates are changed 

to spherical coordinates to be compatible with the density expression. The density profile is that 

given by Dziewonski and Anderson (1981) for the outer core, as used in Chapter 3 equation (3.1) 

and is already in spherical coordinates. The double to single index as givf:n in the first element 

of equation (2.41) is still used. 

With the whole denominator from equation (4.18) in spherical coordinates, the integral can be 

evaluated. Then equation (4.19) becomes: 

(4.20) 

where r(x) is the gamma function resulting from the evaluation of the 1: integrals. This 

expression for the denominator can now be easily programmed. 

The more complicated numerator will now be considered in several segments. The first 

expression to be considered is: 
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(4 .21) 

where 

(4.22) 

and x is defined as above. Expanded in a mix of cylindrh:al and sphl!ri~al ~oordinati!S, c. · Vx. 

gives: 

(4.231 

Substituting in for x. convening to only spherical coordinates, squaring the expression, and 

evaluating the z integral yields: 

N N-i N N - t 

f I C.· Vxo 12 ck = 4 L E L L c., cAl 
Y 1•0 J•l,0 t•O 1·6 .. 

·{o0•ik- o0
2 (1-o0

2 )(il +jk) + (1 - o0
2 ) 2 jl} 

ru•z•.!.)r(; •k•1) 
·{ .. 2(1•J•l•l -1)}. ( 2 ) 

2r(i•j•k•l•~> 
2 

(4.241 
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where the z integral has been evaluated as this is the only expression containing z terms. The 

remaining u integral tor the numerator can now be written as: 

(4.25) 

The expression for P. is that given earlier as equation (3.1) . In the spirit of performing analytic 

integrations as far as possible, I shall not evaluate equation (4.25) numerically but instead develop 

polynomial expressions for g. and 1/al, and will rely on MACSYMA to evaluate complicated 

expressions. First an expression for g.2 will be developed using the definition for g.: 

(4.26) 

where b is the core-mantle boundary radius making u dimensionless. Although (4.26) ignores 

the rotatkmal contribution to gravity, the error involved is of the order 0.4~. Substituting the 

polynomial expression for P. in equation (4.26) and integrating yields: 

• P. w• 
lo = 4~Gb L 

•• 1 m+2 
(4.27) 

which can then be squared. 
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To develop a simple polynomial expression for 1/cr, the expression from Dzieworu;ki anJ 

Anderson (1981) for cr in the outer core is used to tind values of II ci. where the lllwcr range 

of the radius has been extendoo to 0. These values are them used to devdllp the (Xllynomi:1l 

expression for 1/ci by using the IMSL subroutine DRCURV. This routine tits a JXllynomiaJ 

curve to supplied data using the least squares method. A seventh degree polynomial was 

developed, which can be expressed as: 

Cl .. ~ - 1 
• 

(4.28) 

and that matches the original values to four signiticant figures of precision. The coeftidents of 

this polynomial are given in Table 4. 



Table 4. Coefficients of a Seventh Degree Polynomial 
that Approximates the Value of 1 /a2

• 

Coefficient Value 

a. 8. 1914 X 1()·3 

a2 3. 2968 X 1()·3 

a) -1.6245 X 1()·3 

a, 5.5783 X 1()·3 

a, -9.3306 X 1()·3 

a6 1.9870 X 10·2 

a, -1.8170 X IO·l 

a, 7.5631 X 1()·3 

66 
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The u integral, equation (4.25) is now a very extensive expression given hy: 

4 4 • • 

(4nGb)2 /(E p.u•-1HE p.u }( 1 2 E « u• - 1) 
•·1 ,.1 m +2 (11 (O)J •·1 ' (4.29) 

(u2li•J•hi-1J} ,z dr. 

In order to reduce the risk of algebraic error, this expression was expanded ar.d integratoo using 

MACSYMA, an algebraic manipulation program. The resulting coefficients of u from the 

integration were exported from MACSYMA in FORTRAN format to be incorporated into the 

perturbation program. 

The final expansion for the numerator is then: 

I'U•l•!)r(i•j•1) 11 
( 2 HE 

r(i•i•k•l•.!) •. z 
2 

cu. 
-------} 
2 ( i + j + k + I) + "' + 1 

(4 .30) 

where the cu.,'s are complicated expressions involving a. and p,. resulting from the u integration 

that was evaluated using MACSYMA. These expressions can be found in Appendix E in the 

program Perturbation. f. By combining expressions (4.20) for the denominator and (4.30) for the 

numerator, a final expression for the perturbation, a2, is obtained. These values are then added 

to the reference state eigenvalues to give the perturbed eigenfrequencies. This can now be easily 
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programmed using the eigenvalues, 110 , and associated eigenvector elements, cv• from the 

reference state developed in Chapter 3. The program used, Perturbation. f. is given in r\ppendix 

E. The results from this program for various values of 8 are given in Table 5 below. 

4.3 Discussion 

The perturbation method clearly fails for the larger values of 6 . In fact, it is questionable even 

at low frequencies where 8 = ...0.0005. For even smaller values of 8, the spectrum varies only 

marginally from that considered previously, unfortunately values of 8 this small are uninteresting. 

For the perturbation treatment to be valid A, as given in equation (4.2), must be < < I. The 

larger values of 8 do not ensure this (A is then - .15, when 6 = ~.0005), so the perturbation 

method is inappropriate for them. However, the eigenvalues obtained for 8 = -0.0001 are valid, 

as they ensure A < < I. In order to determine how good the first order perturbation calculations 

could be, a second order perturbation analysis would be necessary. However, a comparison of 

these perturbation results for 6 = ~.0001 and results from Chapter 5 using a Galerkin method 

of solution demonstrate that the perturbation results are valid for this small value of the stability 

parameter. 
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Table 5. Comparison of Reference State Eigenvalues. U0 , and Eigenvalues. a. 
Found From the Perturbation Method. 

-0.00001 

-0.0001 

0 .2976 

0.3653 

0.4714 

0.5660 

0.6572 

0.6779 

0.7847 

0.8306 

0.8998 

0.9304 

0.2976 

0.3653 

0.4714 

0 .5660 

0 .6572 

0.6779 

0.7847 

0.8306 

0.8998 

0.9340 

(] 

0.:!988 

0.3653 

0.4714 

0.5661 

0.6572 

0.6779 

0.7848 

0.8307 

0.9002 

0.9346 

0.3090 

0.3697 

0.4738 

0.5671 

0.6580 

0.6786 

0.7856 

0.8316 

0.9043 

0.9403 



70 

Table 5. Continued. 

B u,. u 

-0.0005 0 .2976 0.3546 

0.3653 0.3871 

0.4714 0.4833 

0 .5660 0.5716 

0.6572 0.6611 

0.6779 0.6817 

0.7847 0.7891 

0 .8306 0.8359 

0.8998 0.9225 

0.9340 0.9655 

-0.001 0.2976 0.4116 

0.3653 0.4088 

0.4714 0.4952 

0.5660 0.5772 

0 .6572 0.6650 

0 .6779 0.6855 

0.7847 0.7934 

0 .8306 0.8413 

0 .8998 0.9451 

0 .9340 0.9970 
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Table 5. Continued. 

B ao (J 

~.003 0.2976 0.6396 

0.3653 0.4958 

0.4714 0.5427 

0 .5660 0.5997 

0.6572 0.6806 

0.6779 0.7008 

0.7847 0.8109 

0.8306 0.8627 

0.8998 1.0358 

0.9340 1.1230 
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CIIAPTER S 

5. I lntrodu1.1ion 

In this chapter the Galerkin method is used to solve the SSWE. A density profile is de\'l!loped 

that ensures a neutral stability parameter throughout the range of the tluid core. This density 

profile is utilized in the Galerkin solution to the SSWE. The Galerkin method is used to 

reproduce the results of Chapters 3 and 4. The method is then used to produce results for long

period axisymmetric oscillations when 6 is nonzero, i.e. small and negative. 

5.2 Galerkin Method 

The Galerkin method of solution is an approximate method for solving differential equations. We 

seek a solution of the partial differential equation: 

stx = o (5 .1) 

where :£ is a linear operator. The trial function x can still be wrinen as equation (2.28) found 

in Chapter 2 as was used for the variational principle. The f/l,'s must be members of a linearly 

independent set and have the orthogonality properties described below. Recognizing that the trial 

solution does not satisfy equation (5 . 1) exactly, the Galerkin procedure is to achieve this as nearly 
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as possible by requiring that: 

(5 .21 

be onhogonal to each q,9 over the domain of validity of equation (5.1 ). If the trial fun~tions dn 

not directly satisfy the boundary conditions they ~an be indudoo using Lagrange multipliers; then 

the onhogonality requirement, in this case. can be written as: 

E c, f ~; ~ ~, dv • E c, f •:,. ·, ds • o 
, y , , 

where the t/l;s are the Lagrange multipliers . 

This leads to the following set of equations. for determining the corresponding c
9

: 

where 

L G.,c, = 0 , 

(5.31 

(5.41 

(5.5) 
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The eigenvalues, which are dispersed throughout the operator ;£, can be solved for if the 

dett:rminant of G~ equals zero. Unfortunately, this matrix will not in general be symmetric. This 

is the theory for the Galerkin method which will be applied to the SSWE. 

5 .3 Application to the SSWE 

When the fun~:tional for the SSWE is written in its full form with no approximations as 

F • J p~ vx··r·Vx dv (5 .6) 
y 

where r and its components are defined by equations ( 1. 27 - l. 30) in Chapter I, there is a 

potential problem with solving the integral. When B = 0, the integral becomes improper and the 

SSWE, 

V· (p~ r ·Vx) "'o (5.7) 

becomes singular. As we are only concerned with negative 8 values this restriction applies to the 

following frequency ranges: 

i) in a weakly stably stratified region ( 0 < N S 1 ) when 0 < a2 S (}f)_. 

ii) in a strongly stably stratified region ( N > 1 ) when 0 < rr < 1 (Wu & Rochester 1990). 

Previously this has not been a problem, as the term involving B has disappeared for one reason 
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or another. ln Chapter 2, the density is a CQnstant and the compressional wave spec:d is takt!n 

as infinite, thus eliminating the term containing B from consideration. This formulation produ..:es 

solutions for pure inertial waves . The indusion of a neutral radial density protile in Chaptt!r 3 

does not require the consideration of the B term. nor doe& the perturbation performed in Chapter 

4. The inclusion of the neutral density profile did not introdu..:e new frequencies, it only shith.'ll 

those found in Chapter 2. The penurbation method similarly only ..:aused a shifi of the results 

of Chapter 3. However. because both Band C contain a, the inclusion of this term will introdu..:e 

new frequencies in addition to altering those already found. 

ln order to alleviate the diffh:ulties caused by the possibility of the B krm t:qu4lling zero, the 

SSWE is rewritten and the Galerkin method is used to solve it. The following definitions are 

made to facilitate rewriting the SSWE: 

(5.8) 

(5 .91 

and 

(5.1 0) 

MKing these substitutions and multiplying through by Dl, the SSWE (5.7) can be written as: 
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D2 V·(p~ r,·Vx)- P~ V·(p~ c·c·Vx) 
Cl (5 . ,,) 

w2 (o2 -1) p~ C·Vx F·V( 11
1
)- ( ',)

2 p~ C·Vx F·VE 
• • 

where r, as defined in equation (2 . 12) has been used. As was done in Chapter 4, this 

formulation of the SSWE can be perturbed. However, in this case the value of B can equal zero 

and there is no constraint on the frequency range where the perturbation method is valid. The 

perturbation of order {Jicr on the rewritten SSWE, equation (5.11) above, results in: 

(5.12) 

which is the same result as found in Chapter 4. Thus the values found in Chapter 4 do not need 

to be altered to consider the case when B = 0. 

Attention can now be focused on the expression for the modified density profile, p:. This was 

introduced by Friedlander (1988) and expressed by Rochester (1989) as: 

' -I "t •· 
Po "' Po~ • (5.13) 

w = v -.!I Q )(, 12 
0 0 2 



where Wo is the gravity potential . This can be usoo to rewrite equation (5 .11) since: 

Then the SSWE becomes: 

_ eo '• · c• 
•• •• 

V 
I _ le I 

Po - 1 Po 
• 
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(5 . 14) 

(5 .15) 

The Galerkin method, using the orthogonality requirement expr~sed in equation (5.3) can now 

be applied to this formulation of the SSWE resulting in: 

'r' c fp (DV~ · · (Dr- .!.c•c) · V~ + 2.!.~·VE · (Dr - ..!.c·C)·V~ 
LJ , 0 • , •• , •' • , ·' , 

, y 

(5. 16) 

where u in the boundary condition, 

• . u = 0 Oil S (5 . 17) 
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has been rewritten using the definitions in equations (5.8 - 5.9) and 1/19 are Lagrange multipliers 

used to include the boundary condition. The other terms in the surface integral come from the 

rearrangement of the expression using the divergence theorem. This surface integral can be 

eliminated by choosing the 1/t, such that: 

(5., 8) 

Thus, in a sense C • Vx = 0 is a natural boundary condition for the Galerkin procedure, in the 

sense that the trial functions used to implement the latter need not themselves be made to satisfy 

the boundary condition a priori. 

When {J = 0, the Galerkin equations reduce to a slightly rearranged Poincar~ problem as was 

~onsidered earlier in Chapter 2: 

E c,J P0 [Dv~; · (or,-v~,)]dv • o (5., 9) , .. 

where, when 6 = 0, D = wl (cr - I) is just a constant. The additional terms in equation (5. 16) 

that occur when {J is slightly negative account for additional frequencies (gravity waves) and the 

modification of existing ones due to the presence of negative buoyancy (6 < 0). To sclve for 

the eigenvalues, equation (5.16) is written as: 

(5.20) 
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and the eigenvalues are found from: 

detG = 0. (5.21) 

Unfortunately, G is not a symmetric matrix. At this point the expressions in G., ~an he expamkd 

and programmed for solution by the computer. But first a closer look is nc:eded at the dl!nsity 

profile to be used. 

5.4 Density Profile 

As was discussed in Chapter 3, the density protile previously used from PREM does not lead to 

a core exactly neutrally stratified throughout. This di!'crepancy will now he greatly redu~ed hy 

the development of a density profile that ensures that the stability parameter. fJ. is less than I part 

in l(t' throughout the entire spherical model core range. Two ways of a~wmplishing this will 

be briefly discussed here: a least squares approach and an orthogonality relationship. 

5 .4.1 Least Squares 

The least squares approach requires that the difference between 6, as defined by the density 

gradient formula (1.15), and the prescribed value 6, is minimized over the core in a least squares 

. ' --------- . 
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sense, i.e. we minimize the expression: 

(5.22) 

where the normalized radius defined u = rib has been used. 

The expression for cr from the PREM model can be used if it is assumed valid when extended 

to the centre of the model as it is a smooth function in the inner core range. The density is 

considered to he a polynomial that can be expanded as: 

(5.23) 

ami the value of p1 will be constrained by the mass enclosed within the sphere being considered. 

The fact that gravity equals zero at the centre of the sphere requires that the value of p2 equal 

zero. In order for F to be a minimum, 

fori = 3, N. (5.24) 
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Th~se equations then form the basis for an iterative process. The! starting values ti.>r the! 

polynomial of Po are taken from PREM with p~ = 0. At each stage of the itl!ration the valui!S of 

the coefficients p,. are recakulated using values of Po g. obtained from the P .. of the previous 

stage. If fJ becomes small enough or values of the p,.'s no longer change, the iterative process 

is halted. The coefficient va!ues for a prescribed value fJ, = 0 using the least squari!S method 

are found in Table 6, and the values of fJ for various locations in the model sphere are in Table 

7. 



Table 6. Coefficients Prn of Neutral Density Profile Fitted by (a) least 
Squares and (b) Orthogonality Rel~tion. 

Coefficient 
index m 

2 

3 

4 

5 

6 

7 

8 

9 

10 

(a) 

12.365415 

0.0 

-2 .1355473 

~.5724153 

0.4755506 

~.2017774 

0.0276528 

~.2573055 

0.2394251 

~.0905760 

(b) 

12.365415 

0.0 

-2.1357751 

-0.5687766 

0.45 11777 

.{1.1185908 

~.1303701 

~.0871!988 

0.1435077 

~.068268~ 
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Table 7. 
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Comparison of Actual Values of B for Neutral Density Profile Fitted 
by (a) Least Squares and (b) Orthogonality Relation. 

Normalized 
Radius 

0.0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

0.8 

0.85 

0.9 

0.95 

1.0 

(a) (b) 

0.10418 X l()·l -0.17078 X 1 0"5 

0.14402 X 10"" -0.94609 X 1 0"5 

~.64605 X Ht' -{).72470 X 10"5 

~.41660 X Ht' -{).48525 X 10"5 

0.10167 X 10'5 -{).45842 X 10"5 

0.28317x 10"5 -0.55451 X tc·' 

0.15468 X 10"' -0.61821 X 10"5 

~.59195 X 1~ -0.55616 X 10"5 

~.17503 X 1()"5 -0.37353 X 10"5 

~. 13720 X 10"' -0.15112 X 10"5 

~.53384 X 10"7 0.85017 X 10"7 

0.11062 X J()"' 0.39176 X 10-6 

0.12656 X 1()"5 -{).49905 X 1()-11 

0.36728 X I~ -{).17233 X 10"5 

~.81458 X~~ -0.20767 X 1()"5 

~. 11879 X 10"5 -{).81707 X }()-11 

~.25509 X~~ 0.14805 X 1(t' 

0.10813 X 10"5 0.26582 X l(t' 

0.78620 X 1~ 0.37067 X 10-6 

~. 14095 X 1()"' -0.32568 X 10"5 

0.37869 X 10"' 0.85257 X l(t' 
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5.4.2 Orthogonality Relationship 

The development of an orthogonality relationship is sii>'ilar to the least squares method. Now, 

however. we require that the difference betwe•m 8, as defined by the density gradient formula 

(1 .15}, and the prescribed value 6, be orthogonal to the lowest M-2 powers of the normalized 

radius, i.e. that 

(5.25) 

form = l, ... M-2. Again p1 is known from the total mass constraint and p 2 = 0. The iterative 

process is again used and the results for this method are shown in Tables 6 and 7. The 

coefficient values for the orthogonality relationship give a density profile that is neutral to within 

1 part in 10"', which is essentially neutral throughout the entire core range. Thus this is the 

density profile to be used in the Galerkin method when equation (5.16) is invoked, in the case 

of a neutral Po· This density profile shall be referred to asP. = NEUT. 

5.5 Expansion of Equation (5.16) 

Equation (5. 16) can now be expanded and the elements of the matrix G
90 

determined. At this 

point only those terms without azimuthal (</I) dependence are considered, as has been done in the 

previous Chapters. After a substantial amount of algebra a. can be rewritten as: 



where 

H
91 

= o8 (A,,•vP/B.,) + o•[c,,•vP/D,,•P/E,,•vPf(2-P)G,,] 

+o2 (P., + y P/Q., ~ PIR., • y P~ (2- P) T., • P2.f U.,] 

+ [P/V., +yP~(2-P)X., + P2flY.,) 

and where 

and 

4x2G2 (p0 (0)]2 b2 

I= az (a:(O)Jz 
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(5.26) 

(5.27) 

(5.28) 

(5.29) 

G is the gravitational constant, l/a2 is defined by equation (4.28), cw(O) is the compressional p-

wave speed evaluated at u = 0, similarly p(o) is the density evaluated at u = 0. For brevity in 

defining the matrix elements A., ... Y., we introduce l(ij): 
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(5 .30) 

where p, q are related to i, j, k. and I by (2.41). Then the individual matri.:es comprising H., 

are as follows: 

Ill 

A = -E P. (ikl(i+k-1,j+l) +jl/(i+k,j+l-1)} (5.31) 
., • ., 2 ( i + j + k +l) + m 

B., = - E E E P. P. u. (i +j) I(i +k,j +l) (5.32) 
•• 1 •• 1 ,.1 (n+2)[2(i+j+k+l)+m•n+s) 

Ill 

c.,= L . 0 P. (ikl(i+k-1,j+l) + 2jll(i+k,j+l-1)} 
•• 1 2 (t +J +k+l) •m 

D., = E E t P. P. u, (i +2j) /(i +k,j +I) 
•• 1 •• 1 ,.1 (n+2)(2(i+j+l:+l)+m+n+.s] 

Ill Ill j( • 
~ ~ ~ ~ P. P. P, u, 

E., = LJ LJ LJ LJ •• , •·1 ,., ,., (n+2)(r+2)[2(i+j+l:+l)+m+n+r+s - 1) 

{-i(2i+3k-1) I(i+k-1,j+l+1) + i(2i+l:-1) I(i+k-1,j+l) 

+[3Z(i+j) +j(4i+2j+3l:-1) •2i+2j) /(i+lc,j•l) - 2jll(i+k,j+l-1)} 

(5.33) 

(5.34) 

(5 .35) 
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(5.36) 

2 (i +j +k+l) .,.. +II +r+s+t+w -1 

" p =- E P. Ull(i+A:,j+l-1)) (5.37) 
., • ·1 2 ( i + j + k + l) +"' 

II II I · 
Q ~ ~ ~ P. P,. «, J I(i +k,j +I) (5.38) 

" = -!:', !:', !:1 (II + 2 )[ 2 ( i + j + k + l} + m +II + .S) 

II II II I 
Rf, :: I: E E E P. P,. P, "• 

•·1 ,.., ,.1 •• 1 (n+2)(r+2)(2(i+j+k+l)+m+ll+r+.s-1] 

(i(2i+21-1) J(i+k-1,j+l+2)- i(2i-1) /(i+k - 1,}+1-1) (5.39) 

- U(2J•2k•21-1) •2i(2J•l) •4(i•J)J IC~•k,j•l•1) 

-[l(i+2j) +j(2i+2j+3k-1)) l(i+k,j+l) +2}1/(i+k,j+l-1)} 

II IIIII II I 
T L L L L L L P.P,.P,Cl•PrClw 
fl = •·1 •·1 ,., •·1 t•1 w•1 (n+2) (r+2) (t+2) (5.40) 

{~/(i+k,j+l+1) +j l{i+k,j+l)} 
2 (i +j +k+l) +m +II +r+s+t+w-1 

) 

"" . . . 



Jl JIJIIIIIII 

u.,,..EEEEEEE 
•·1 •·1 r•1 •·1 1•1 ,.1 w•1 (~t+2)(r•2)(t+2)(v•2) 

{ - ik I( i + k -1 ,j +I+ 1) + (j k + il +j 1) I( i + k.j +I) - j I I( i + k,j + 1-1 ) } 
2 (i +j +k+l) +IJI +II+ r +s+t + v +w-2 

II IIIII 
y = L E E E P.P,.O,CI, 
til ••1 ••1 r•1 •·1 (n+2)(r+2)[2(i+j+b· l)+m+~t+r+s-1] 

<U(2i•2J•2k•21-1) •4JJ I(i•k,J•l•1) - Ul•2i) I(i•k,J•l)> 

Jl Jl II I Jl I - E E E E E E P. P. P, Cl, P, Cl • 

•• , ,.., ,., ,., ,., ,.., (n +2) (r+2)(t+2) 

{ ji(i+k.j+l+1) 
2 ( i + j + k + 1) + IJI + ll +, + s + t + w -1 

IIIIJII 1111 I 
yf/1 = E E E E L E E ~P~P,«,P,P,« • 

•• , ,.., ,., ,., ,., ,., •·1 (11 +2) (r+2) (t+2) (v +2) 
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(5 .41) 

(5.42) 

(5 .43) 

( ik I(i+k-1,j+l+2) -UJ+il+jk+2(i+j)) I(i+k.j+l+1) +(jl•2j) I(i+k,j+l}} 
2 ( i • j + k • I) + m +,. + r + s + t • v + w-2 

(5.44) 

The summation values deserve some attention. The sums over m, n, r, t, vall go from I toM, 

where M is either 4 or 10, depending on which density profile is selected, either P. = PREM 

with values on page 40, or P. = NEUT with values from Table 6. The sums over s and w all 

go from 1-8, as this is the polynomial approximation for 1/or, and is given by equation (4.28). 

The function /(p,q) results from integration over the z terms, such as are detailed in Appendix 
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A. A value of N=5 has been ~.;sed in the trial function (2.28) to produce the results presented 

here. 

The expression for H. can now be programmed. To facilitate changing parameters, two 

programs were actually used. The first, biggerbetas.f, calculates the various elements of the 

matrices inside H •• and is found in Appendix F. The second, called readbb.f also in Appendix 

F, evaluates H. at an interval spacing of approximately .008 and determines where det H changes 

sign. These sign changes are then used to zero in on the eigenfrequencies. These particular 

parameters were chosen as the results of the previous chapters are accurately reproduced without 

taking exorbitant amounts ( > 150 hours) of computer time. The program does take a substantial 

amount of time (> 6 hours) to run even with the use of a computer supponing the vector 

capabilities of FORTRAN, which is recommended (e.g. CONVEX C-1). 

5.6 Results 

Several different values of fJ were used, and the density polynomials, p. = PREM and Po = 

NEUT were used in programming the Galerkin solution. The various configurations are 

considered individually with their results. 

5.6.1 {J = 0, P. = PREM, and P. = NEUT 

This comparison was made to see if the results using the Galerkin method would match the results 
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found in Chapter 3 for the different density profiles. The results are listed in Table 8. A 

comparison of values shows only one minor difference with previous results when P. = NEUT. 

The values obtained when P. = NEUT are preferable because P. = PREM is not valid in a 

sphere, as it does not ensure that gravity is zero at the sphere's centre. However. sin~e the 

values match so closely it is apparent that the approximation of using P. = PREM was acceptable 

to use. Thus as a first approximation, the variational principle can be used with P. = PREM to 

obtain the inertial eigenfrequencies in a fluid filled sphere. These results also demonstrate that 

the P. = NEUT density profile does not significantly alter the response of the model oore. 



Table 8. Comparison of Dimensionless Eigenfrequencies Calculated Using 
the Variational Principle (VP~ and the Galerkin Method . .................................................. : .... 

o from Variational 
Principle 

/J=O,po = PREM 

0 .2976 

0.3653 

0.4714 

0 .5660 

0.6572 

0.6779 

0.7847 

0.8306 

0.8998 

0 .9340 

o frl•'n Galerkin 
Method 

/1=0, Po = PREM 

0.2976 

0.3653 

0.4714 

0.5660 

0.6572 

0.6779 

0.7847 

0 .8306 

0 .8998 

0 .9340 

o from Galerkin 
Method 

/1=0, Po. NEUT 

0.2976 

0.3653 

0.4714 

0.5660 

0.6572 

0.6778 

0.7847 

0.8306 

0 .8998 

0.9340 
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5.6.2 6 < 0, I fJ I s 0 .0001. P. = PREM 

This selection of parameters was made to compare the results of the Galerkin method with those 

of the penurbation method. Si:tce the G.-l~rkin method used here will give a direct calculation 

of the result, an exact match of the eigenvalues from the penurbation method is not expected. 

The results are shown in Table 9. It should be noted that due to the presence of gravity modes. 

new eigenfrequencies could appear in the Galerk.in calculation since fJ is non-lero. Presumably 

the gravity modes associattd with these values of 6 have periods so long as to lie outside the 

frequency range examined for zeros of det H. However, as seen in Table 9, for P. = t>REM this 

is not the case. The comparison has been made only between the smallest values of fj as the 

perturbation method is known to fail for the larger values. It should be noted that for the 

extremely small values of I -fJ I = -.00001 the resulting eigenvalues are all very close to the 

results for fJ = 0. Thus an extremely small stability parameter will be indistinguishable from fJ 

= 0 for this model of the core. It must be noted here that the density profile P. = PREM is not 

actually valid for nonzero fJ. as it implies that 8 = 0 throughout most of the core. This density 

profile was used as a to provide a comparison with the previously calculated perturbation results. 



Table 9 . Comparison of Dimensionless Eigenfrequencies Calculated using the 
Perturbation and Galerkin Methods, with Po = PRE~. 

B = -0.00001 B = -0.0001 
Perturbation Galerkin Perturbation Galerkin 

0.2988 0.2978 0.3090 0.2992 

0.3658 0.3655 0.3697 0.3667 

0.4717 0.4715 0.4738 0.4725 

0.5661 0.5661 0.5671 0.5670 

0.6573 0.6573 0.6580 0.6581 

0.6779 0.6779 0 .6786 0.6787 

0.7848 0.7848 0.7856 0.7855 

0.8307 0.8306 0.8316 0 .8313 

0.9002 0.8999 0.9043 0.9005 

0.9340 0.9340 0.9403 0.9346 
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5.6 .'3 fJ < O. I 8 I ~ 0.0001 . Po = NEtJT 

The tirst thing to notice about the results in Table 10 is the appearance of n~w frequencii!S. 

Previous results have all yielded only tO eigenfrequency values within the frequency rang~ 

searched for zeroes of det H. The fir~t new frequency to apper occurs wt> !n 8 o: .{). 000 I, 

however. the period of this extra mode is close to 12 hours indicating that it is not a newly 

appearing gravity mode. Most likely this is another inertial mode that was missed in the 

calculation of det H. This is possible due to the high density of inertial modes in the frequency 

domain as the dimensionless frequency approaches the value I from below. Thus it is possible 

d.S the modes close to the dimensionless frequency I are shifted dae to different 8 vatu~ they will 

start to appear as distinct frequencies . \nother possibility is that Po = NEUT is a b~tt~r 

representation of density by virtue of its larger number of coefficients. 

The periods of the expected newly appearing gravity waves ;.an be quickly estimated by ignoring 

rotation and noting that the period will be given by: 

where for uniform values of 8 

2x 
N,. 

(5.45) 

(5.46) 
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thus for a 6 = -0.()001 the minimum period would be near 130 hours and would yield a a value 

of .09231. But the actual minimum value should be lower than this due to the presence of 

rotation adding the Coriolis effect as an additional restoring force to negative buoyancy. 

Another point to notice is that the negative buoyancy will add a restoring force to the inertial 

nvxles, their eigenfrequencies sh':>uld increase as 8 becom~ more negative. TI1us, in Table 10 

an attempt has been made to correlate these frequencies as they increase with increasing 8. At 

the larger values of the eigenfrequencies this becomes difficult due to different eigenfrequencies 

appearing that may have been missed by previous calculation due to the density of the frequencies 

as we approach I . 

At some point as -8 increases the negative buoyancy and the Coriolis effect become comparable 

restoring forces and it becomes difficult to distinguish between the inertial and gravity modes. 

It must be noted that this calculation is only a first approximation to stable core conditions as 

ideally a separate density profile should be developed for each fJ value being considered. While 

the density profile of the core is expected to be nearly neutcal, as in PREM, the results in Table 

10 indicate that small changes in the stratification lead to large changes in the eigenspectrum. 

This indicates how useful these calculations will be in detennining the stability structure of the 

Earth's core. 



Table 10. Tentative Comparison of Dimensionless Eigenfrequencies 
Calculated Using the Galerkin Method, with P. = NEUT. 

B = -0.0001 B = -o.001 B = -0.002 B = -0.003 B = -0.004 

0.06376 0.07623 0.08578 

0.1734 0.1669 0.2026 0.2315 

0.2760 0.2496 0.3131 0.4480 

0.2993 0.3020 0.3090 0.3470 

0.3668 0.3786 0.4227 

0.4453 

0.4726 0.4824 0.4930 0.5019 

0.5670 0.5758 0.5843 0.5909 0.5952 

0 .6581 0.6654 0.6736 0.6816 0.6894 

0.6787 0.6867 0.6952 0.7032 

0.7918 0.7445 

0.7855 0.7926 0.8117 0.8165 

0.8313 0.8377 0.8449 0.8520 0.8583 

0.8782 0.8869 

0.8872 0.9126 0.9152 

0.9004 0.9061 0.9226 0.9292 

0.9346 0.9443 

0.9611 0.9650 0.9756 0.9968 

0.9698 

0.9876 0.9832 0.9864 0.9982 0.9999 

0.9937 
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CHAPTER 6 

6. I Introduction 

In this thesis a variety of theoretical methods have been used to investigate the axisymmetric 

inenial wave spectrum, and its modification by small negative buoyancy, for a model 

approximately representing conditions in the Earth's liquid core. These methods, the variational 

principle, the penurbation, and the Galerkin methods have all proven useful in calculating results 

of an approximate Earth model progressing to a more complex and realistic one. However, 

several important aspects have been neglected; these will be detailed below, and could be the 

subject of funher research. 

6.2.1 Inner Core 

The most obvious difference between the model presented here and the actual Earth is the lack 

of a solid inner core. This could be accounted for by using a trial function similar to that alru.dy 

used but including extra terms, such as: 

(6.1) 
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The second term in this expression can only be used when an inner core is present, as it will 

degenerate in a sphere, as Rand Z both approach zero. This serond term substantially increa.~I!S 

the amount of work to be done, as the d;/s must be found independently of the cv's. It is hest to 

use c~vlindrical coordinates, as the effect of rotation appears to impose its confi&Uration on the 

problem more so than the physical spherical shape of the boundaries. The functionals for the 

variational principle and the Galerkin method will remain the same when an inner core is 

included, except for the integration limits. The inner core boundary condition can also be shown 

to be a natural boundary condition. The presence of the inner core will significantly affed the 

eigenfrequencies as has been shown in experimental work by Aldridge ( 1967) and Aldridge 

(1972). Unfortunately, the inclusion of the inner core makes the problem an ill-posed one, unii!Ss 

viscosity is introduced as in section 6.2.6 . 

6.2.2 Normal Modes Carrying Linear or Angular Momentum 

Both linear (translational) and angular momentum were ignored in this model. Lin,..v 

momentum, expressed as: 

(6.2) 

needs to be considered in order to filter out those frequencies due to simple translation, however 

it should not be a problem with the simple rmdel presented here as the rigid fixod boundary 

condition prevents any transfer of linear momentum to the fluid outside, or vice versa. 
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Consideration of linear momentum is especially important when the inner core is included due 

to the possibility of Slichter modes where the solid inner core "sloshes" within the fluid outer 

core. These modes can be filtered out using Lagrange multipliers associated with the various 

components of 11, i.e. by adding to the functional 

E A., f Po 111 dv. 
I .. 

This filtering only needs to be done for the cases when m = 0, ± l, where the tP dependence has 

been expressed in the trial function as ~. 

The angular momentum, which was also disregarded, is somewhat more complicated. The 

angular momentum can be changed in several ways: altering the flow, changing the relative 

angular momentum and changing the moment of inertia. This is of most concern when the 

boundaries are deformable and not spherical. These effects must be filtered out with Lagrange 

multipliers. The total angular momentum can be expressed as: 

Jl • J ( r + u) x : ( r + 11) dna - J r x : dna. 
• • 

(6.4) 

This can be expressed as a complex expression with no time dependence as: 

Jl • J [• x (Q x r) + r x (Q x •) + iw r x u] dna, (6.S) 
• 
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where the first two terms account for changes in the moment of inertia and the last term for 

changes in the flow. Alternatively, this can be written as: 

Jl "'' + o . • r. (6.6) 

where the change in the inertia tensor I is given by: 

J = /£2 r·11 1 - (rll+llr)) dm. (6.7) 
• 

The changes in the inertia tensor can be expanded as: 

J Po,. • ., [rll - rr] d.s - Jru·Vp0 + p0V·u] [,-lt - rr] dv, (6.8) 

" 

where the first terms express displacement in the boundaries, the second term describes departures 

from homogeneity, and the final term depicts flow that departs from incompressible flow. The 

surface integral is over the iMer core boundary and the core-mantle boundary. When the 

boundaries are rigid, and the fluid is homogeneous ar.d incompressible, then no changes to the 

inertia tensor can occur and only the changes in the flow Ia need to be considered: 

Ia '"' iw J r x • dm. (6.9) 
• 

As with the linear momentum, only those cases where m = 0, ± I need to be filtered out using 

La&range multipliers. 
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6.2.3 More Realistic Boundary Conditions 

The boundary condition used here was a rigid spherical core-mantle boundary. For a more 

realistic model both the inner core and the core-mantle boundary must be deformable and 

nonspherical. A nonspherical boundary would allow a transfer of torque between the core and 

the mantle. 

6.2.4 Azimuthal Modes 

In this work the azimuthal modes were ignored by considering only the case when m = 0. If 

these modes are to be considered. both the trial function and the functionals used must be 

changed. For example. form ~ O.the functional for implementing the variational principle with 

rigid fix~."d boundaries but non-neutral stratification becomes: 

t 

F • o1 /P~IVxl2 dv- /P~I•3 · Vxl2 dv- J ~ IC·Vxl1 dv . . " (6.10) 

which is essentially equation (86) from Rochester (1989). 

Similarly. the Galerkin method will also include additional terms. The trial function will now 

be: 



X • E c
11 

+, (R, Z) e-.. 
fl•l 

102 

(6. 11) 

Another point is to remove the restriction placed on the trial function forcing it to satisfy: 

Ex= 0 oR 011 R = 0 -~ = 0 011 z .. 0, az 
(6.12) 

as was done in Chapter 2. Modes involving motion across the equatorial axis and plane are 

possible. 

6.2.5 Improved Representations of Density Profile 

The stability parameter used here was 6 = 0 or a small negative number. Positive values of B 

cannot be considered as gra .. ·ity waves will not exist when the fluid is nowhere stably stratitied. 

In any case, 6 is most likely a complicated function of radius. This aspect needs to be considered 

so that regi<'ns of stability can be dealt with separately from those that may be unstable. 

As was noted in Chapter 5, the two density profiles used, p. = PREM and P. = NEUT, lead to 

a n~"•ttrally stratified region. As 8 is made negative, the density profile must be changed to ensure 

that the model is consistent. 
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6 .2.6 Viscosity 

In this thesis the problem of viscosity has been ignored. This has been considered by Rieutord 

( J 987, J 990). The presence of viscosity will selectively damp the smaller wavelength mod~ and 

reduce the severity of the truncation to small values of N necessary for computational purposes. 

Viscosity will also help in removing the degeneracy of the iJJ-posedness which seems to introduce 

discontinuous eigenfunctions in the spherical shell geometry. 

6.2. 7 Density of the Eigenspectrum 

According to Valette (1989) the inertia/gravity eigenspectrum for an elastic, uniformly rotating, 

self-gravitating body with a fluid inclusion is a continuous one. However an unpublished proof 

by Rochester demonstrates that the eigenspectrum should be discrete (but dense) if the density 

profile of the liquid core is neutral or stable everywhere. This issue needs further investigation. 

6 .3 Summary of Research Results 

Whereas the scope of this thesis is limited, it has yielded many useful results. First of all, the 

variational principle used is based on a more general functional than that used by Aldridge 

(1972). H~ used a stream function formulation, which while more desirable mathematically, is 

limitina in the amount of physics that it elucidates, as it cannot be used when the fluid is 

compressible. The variational principle presented here can be used in an inhomoaeneous 
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compressible fluid. Aldridge (1972) also only considered those modes where m = 0. The 

variational principle used in this thesis for axisymmetric modes can also be used when m is 

nonzero. So far as I am aware, no published work has yet reported numerical re.o;ults fur 

axisymmetric oscillations based on this variational principle. 

The second original contribution of this thesis is a numerical test of the perturbation treatment 

of the effect, on the eigenspectrum of a neutrally stratified fluid, of very small negative B. It 

appears that tirst-{)rder perturbation theory is useful only for values of -8 which are so small as 

to be comparatively uninteresting. 

Finally this thesis makes one further original contribution in the numerical application of a 

Galerkin procedure for studying the effects of incrusingly negative 8 on the eigenspectrum, 

n.unely increase in the inertial mode frequencies and the appearance of gravity modes. 
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APPENDIX A: Three methods for computing an integral. 

The integral under consideration is: 

1 

E E f ~2'<1 -z:2>' tk (A.11 
, f 0 

This integr;J can be evaluated in three different ways. The first uses the half integer gamma 

function, the second employs binomial coefficients and the third utilises factorials for a solution. 

1) Half Integer Gamma 

This solution car be expressed as: 

r(p • .!. ) r(q + 1) 
2 (A.21 

This solution can be programmed in FORTRAN using the IMSL subroutine DGAMMA. 

2) Binomial Coefficients 

This solution involves the inclusion of another summation: 
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(A.3) 
, Q f ( ) 1 

= E E E ql-1 ' 
,.o,.o,.o rl(q-r)l 2(r+p)+1 

This can then be programmed using the IMSL routine DBINOM. 

3) Factorial Solution 

This solution is given by: 

This can also be programmed using the IMSL subroutine DFAC, however numbers may get very 

large. To alleviate this problem, logarithms can be used to make the numbers more tractable. 
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APPENDIX B: Program to calculate the eigenfrequende.s of the axisymmetric normal modes 

of the Poincar~ problem in a liquid sphere with rigid fixed boundarit:S. 

C spS.f 

C Program to calculate eigenfrequencies of axisymmetric normal mod~ of the Poin~are 

C problem in a liquid sphere. Program calls on the subroutint:S for cakulating the 

C determinant of a matrix which has no zeroes on the main diagonal. 

C The IMSL subroutine DZREAL, is used to locate the zeroes of the determinant, 

C with subroutine DET and DETM to evaluate the determinant. 

C Many write statements are included, but have been commented out. The were used to 

C ensure that values were correct. 

C Reminder: Change dimension and data specifications in the function DETM when 

C changing NN, so that C, F, H, are MM by MM. NOTE: MM = NN*(NN +3)/2 

C Both NN, MMM and steps may need to be changed for different runs. 

implicit reai*B(a-h, o-z) 

parameter (NN = S, MMM = NN*(NN + 3)/2) 

parameter (nroot = NN*(NN-1)/2) 

integer info(nroot) 

real*8 detm, x(nroot), xguess(nroot) 

external wrrm, dzreal 

external detm 

common/a/ C(MMM,MMM), F(MMM,MMM), MM 

MM = MMM 

C NN is the size of the summation in the trial function, 



C MM the number of terms in the trial function. 

F ACTNN is a factor pulled ou! vf the calculation. 

FLOG is a factor multiplied in to make the numbers more manaaable. 

FLOG= 0 .00 

DO 5, LL • I, NN 

Dl = 2*LL + 1 

FLOG =FLOG + DLOGIO(DI) 

CONTINUE 

FACTNN = IO.OO**FLOG 

Matrix elements 

C The matrix elements have two indicies, JJ and LL, for row and column 

C respectively. (JJ depends on I and J, and LL depends on K and L.) 

C Since the row increases slowest, this loop starts first. 

C Startin& the outer loop, to determine the row number. 

do 10 I= 0, NN 

kk=O 

if (l.eq.O) kk= 1 

do 20 1 = kk, NN-1 

C Startin& the inner loop, to determine the column number. 

do 30 K = 0, NN 

kk=O 

if (K.eq.O) kk= 1 

do 40 L = k.k, NN-k: 

C Start the calculation. 
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csumm = 0 

fsumm = 0 

do SO M = 0, I + K 

BINO = BJNOM(I + K, M) 

IM = (-l)**M 

CBOTM == 2*(1 + L + M) + I 

FBOTM = CBOTM*(2*(J + L + M)- 1) 

CSUMM = CSUMM + BINO * IM/CBOTM 

FSUMM = FSUMM + BINO • IM/FBOTM 

so CONTINUE 

IF (I+ K .EQ. 0) THEN 

cc = 0 

ELSE 

CC = I*K* CSUMM/((1 + K)*2) 

ENDIF 

FF = J • L * FSUMM/(1 + K + 1) 

c Set up the indexin& 

JJ = J + I • (2 * NN + 3 - 1)/2 

LL :: L + K * (2 * NN + 3 - K)/2 

C(JJ,LL) = FACTNN • CC 

F(JJ,LL) = FACTNN • FF 

40 continue 

30 continue 

20 continue 

--

-.If' . . 



10 continue 

C This will use the IMSL subroutine OZREAL to find the roots from OETM 

data xguess/0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99/ 

EPS - 1.00-8 

ERRABS - 1.00-11 

ERRREL = 1.00-11 

ETA = 1.00-7 

ITMAX = 300 

Call dzreal (detm, errabs, emel, eps, eta, nroot, itmax, xguess, 

& x, info) 

Call dwrrm ('the zeroes are', 1, nroot, x, 1, 0) 

STOP 

END 

C CALCULATES DETERMINANT OF N BY N MATRIX WITH NO ZERO 
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C ELEMENTS ON THE MAIN DIAGONAL. THE MATRIX IS AN N BY N ARRAY 

C VALUE OF DETERMINANT IS DETT TIMES (10 TO THE IE'TH POWER) 

C (THIS IS DONE BY TRIANGULARIZING THE MATRIX) 

SUBROUTINE DET(A,N,IE,DETT) 

IMPLICIT REAL*8(A-H,Q-Z) 

DIMENSION A(N ,N) 

NMI = N -1 

DETLOG = 0.00 

SIGN = 1.00 

DO 1 K = 1, NM1 



KPI = K +I 

R = 1.00/A(K,K) 

IF (A(K,K).GT.O.DO) GO TO 3 

SIGN= -SIGN 

3 DETLOG = DETLOG + DLOG IO(DABS(A(K,K))) 

DO 2 J = KPI, N 

2 A(K,J) = R*A(K,J) 

DO 1 I= KPI, N 

S = A(I,K) 

DO I L = KPI, N 

A(I,L) = A(I,L) - S*A{K,L) 

IF (A(N,N).GT.O.DO) GO TO 4 

SIGN= -SIGN 

4 DETLOG = DETLOG + DLOG lO(DABS(A(N,N))) 

IE = IDINT(DETLOG) 

DETLOG = DETLOG - DFLOA T(IE) 

DETI = SIGN*(IO.DO**DETLOG} 

RETURN 

END 

REAL *8 FUNCTION DETM(X) 

IMPLICIT REAL *8(A-H, 0-Z) 

parameter (NN = S, MMM = NN*(NN + 3)/2) 

COMMON/A/ C(MMM,MMM), F(MMM,MMM), MM 

DIMENSION H(MMM,MMM) 
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DO 1 J = l, MM 

DO 2 L = 1, MM 

IF (l .LE.S) GO TO 3 

IF (l.EQ.6) GO TO 4 

IF (J.EQ.ll) GO TO 4 

IF (J .fQ.lS) GO TO 4 

IF (J.EQ.l8) GO TO 4 

IF (J.EQ.20) GO TO 4 

GOTOS 

3 H(J,L) = f(J,L) 

GOT06 

4 H(J,L) = C(J,L) 

GOT06 

s H(J,L) = X*X*(C(J,L) + F(J,L))- F(J,L) 

6 CONTINUE 

2 CONTINUE 

CONTINUE 

CALL DET(H,MM,IE,DETI) 

DETM = DElT • (lO.DO**IE) 

RETURN 

END 
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APPENDIX C: Program to calculate the eigenfrequencies of the axisymmetric normal mod~ 

of the Poincar~ problem in a liquid sphere including a neutral density profile from PREM. 

C spden5.f 

C Program to calculate eigenfrequencies of axisymmetric normal modes of the Poin~are 

C problem in a liquid sphere INCLUDING DENSITY from PREM. Program calls on a 

C subroutine for calculating the determinant of a matrix which has no zeroes on the main 

C diaaonal. The IMSL subroutine DZREAL, is used to locate the zeroes of the determinant, 

C using the external function DETM(X). NN is the size of the summation in the trial 

C function, MM the number of terms in the trial function. NOTE: MM = NN*(NN + 3)12 

C NN will need to be changed for different runs. 

C NN must be changed in the parameter statements both on top 

C and in the external function 

C in DETM(X) must also change the goto statements for different 

C numbers of zeros. 

implicit rea1*8{a-h, o-z) 

parameter {NN = S, MMM = NN*{NN + 3)/2) 

parameter (nroot = NN*(NN-1)/2) 

integer info{nroot) 

real*8 detm, x(nroot), xguess(nroot), densty(4) 

external dwrrrn, dzreal 

external detm 

common/a/ C{MMM,MMM), F{MMM,MMM), MM 

open(IO, file = 'spdSzeroes' ,status = 'unknown') 

MM = MMM 



C This calciJiates the values of the matrix needed in the proerarn. 

C This is a factor to make the values of the matrix tracuble. 

FLOG= 0.00 

DOS, LL =I, NN 

Dl = 2*LL + I 

FLOG =FLOG+ DLOG10(Dl) 

S CONTINUE 

FACTNN = IO.DO**FLOG 

C These are the coefficients for the density polynomial given by D&A (renonnal~ted) 

densty(1) = 12.581.5 

densty(2) = ·1.2638 • .546225 

densty(J) = -3.6426 • .546225 • .54622.5 

densty(4) = -5.5281 • .546225 • .54622.5 • .546225 

C Matrix elements 

C The matrix elements have two indicies, JJ and LL, for row and column 

C respectively. (JJ depends on I and J, and LL depends on K and L.) 

C Since the row increases slowest, this loop starts first. 

C Starting the outer loop, to determine the row number. 

do 10 I= 0, NN 

kk=O 

if (J.eq.O) kk= 1 

do 20 1 = kk, NN-1 

C Starting the inner loop, to determine the column number. 

do 30 K = 0, NN 
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k.k=O 

if (K.eq.O) k..k= l 

do 40 L = U:, NN-k 

csumm = 0 

fsumm = 0 

do SO M = 0, I + K 

FBINO = DBINOM(I + K, M) 

IM = (-l)**M 

FBOTM = 2 *(J + L + M) - 1 

FSUMM = FSUMM + FBINO • IM/FBOTM 

SO Continue 

do 55 M = 0, I + K - 1 

CBINO = DBINOM((I + K -1), M) 

IM = (·l)**M 

CBOTM = 2 *(J + L + M) + l 

CSUMM = CSUMM + CBINO • IM/CBOTM 

SS Continue 

C This loop accounts for the ·density effect• 

SUMN = 0 

DO 60 N = 1,4 

DSUMN = N + 2*(1 + J + K + L) 

SUMN = SUMN + DENSTY(N)/DSUMN 

60 CONTINUE 

C Calculate the elements. 
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CC = I • K • CSUMM • SUMN 

FF = 1 • L • FSUMM • SUMN 

C Set up indexing .... 

JJ :z 1 + I • (2 • NN + 3 • 0/2 

LL = L + K • (2 • NN + 3 • K)/2 

C(11,LL) = cc•soo.o 

F(JJ ,LL) = FF*SOO.O 

40 continue 

30 continue 

20 continue 

10 continue 

C This will use the IMSL subroutine dzreal to find the roots from the 
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C function detrn. Guesses must be the correct number, but need not be close to the actual 

C value. First set up the guesses. 

do 4999 lli = l,nroot 

xguess(kkk) = dble(kkk)/11.0 

4999 continue 

C EPS and ETA spread criteria for multiple zeroes. 

C ERRABS absolute error (a stopping criterion) 

C ERRREL relative error (second stopping criterion) 

C ITMAX maximum number of iterations per zero 

C INFO number of interations actually used 

EPS = l.OD-11 

ERRABS = l.OD-12 



ERRREL = l.OD-12 

ETA = l.OD-10 

ITMAX = 400 

Call dzreal (detm, errabs, emel, eps, eta, nroot, itmax, xguess, 

& x, info) 

Call dwrrrn ('the zeroes are', 1, nroot, x, 1, 0) 

STOP 

END 
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C CALCULATES DETERMINANT OF N BY N MATRIX WITH NO ZERO ELEMENTS 

C ON THE MAIN DIAGONAL. THE MATRIX IS STORED IN N BY N ARRAY. 

C THE VALUE OF TilE DETERMINANT IS DETI TIMES (10 TO THE IE'TH 

C POWER). THIS IS DONE BY TRIANGULARIZING THE MATRIX. 

SUBROUTINE DET(A,N ,IE,DETI) 

IMPLICIT REAL *8(A-H,O-Z) 

DIMENSION A(N ,N) 

NMI = N- 1 

DETLOG = 0.00 

SIGN= 1.00 

DO I K = 1, NMI 

KP.l = K + 1 

R = 1.00/ A(K,K) 

IF (A(K,K).GT.O.OO) GO TO 3 

SIGN= -SIGN 

3 DETLOG = DETLOG + DLOG10(DABS(A(K,K))) 
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DO 2 J • KP1, N 

2 A(K,J) = R * A(K,J) 

DO 1 I= KP1, N 

S = A(I,K) 

DO I L • KPI, N 

A(I,L) = A(I,L)- S*A(K,L) 

IF (A(N,N).GT.O.DO) GO TO 4 

SIGN= -SIGN 

4 DETLOO = DETLOO + DLOOlO(DABS(A(N,N))) 

IE = IDINT(DETLOO) 

DETLOG = DETLOO - DFLOAT(IE) 

DETT = SIGN*(lO.DO**DETLOG) 

RETIJRN 

END 

REAL *8 FUNCI10N DETM(X) 

IMPLICIT REAL *8(A-H, 0-Z) 

parameter (NN • S, MMM = NN*(NN + 3)/2) 

COMMON/A/ C(MMM,MMM), F(MMM,MMM), MM 

DIMENSION H(MMM,MMM) 

c DATA H/81*0.00/ 

DO I 1 = 1, MM 

002 L =I, MM 

IF (J.LE.S) GO TO 3 

IF (J .EQ.6) GO TO 4 



122 

IF (J.EQ.Il) GO TO 4 

IF (J. EQ .IS) GO TO 4 

IF (J.EQ.l8) GO TO 4 

IF (J.EQ.20) GO TO 4 

GO TO .S 

3 H(J,L) = F(J,L) 

GOT06 

4 H(J ,L) = C(J ,L) 

GOT06 

.s H(J,L) = X*X*(C(J,L) + F(J,L))- F(J,L) 

6 CONTINUE 

2 CONTINUE 

CONTINUE 

CALL DET(H,MM,IE,DElT) 

DETM = DEIT * (lO.DO**IE) 

RETURN 

END 
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APPENDIX D: This program finds the eiienvector coefficients for the eigenfrequencies 

previously calculated. 

C wspdlinsysS. f 

C THIS PROGRAM USES A LINEAR SYSTEM ROUTINE TO FIND THE 

C EIGENVECTOR COEFFICIENTS FOR THE PREVIOUSLY DETERMINED 

C EIGENFREQUENCIES. FIRST PART OF THE PROGRAM IS EXACTLY AS IN 

C SPDENS.F, NN is the size of the summation in the trial function, 

C MM the number of terms in the trial function. NOTE: MM = NN*(NN + 3)/2 

C NN will need to be changed for different runs. 

C NN must be changed in the parameter statements both on top 

C and in the external function 

C in DETM(X) must also change the goto statements for different runs. 

implicit real*8(a-h, o-z) 

parameter (NN = S, MMM = NN*(NN + 3)/2) 

parameter (nroot = NN*(NN-1)/2) 

integer info(nroot) 

real *8 deun, x(nroot). xguess(nroot), densty(4) 

real*8 D(MMM-1, MMM-1), E(MMM-1), EIG(MMM-1). HH(MMM,MMM) 

external dwrrrn, dzreal 

external detm 

common/a/ C(MMM,MMM), F(MMM,MMM). MM 

open( I, file= 'eigenvalues.out' ,status= 'unknown') 

open(2, file= 'eigenvector.out' ,status= 'unknown') 

MM = MMM 



C This calculates the values of the matrix needed in the program. 

C This is a factor to make the values of the matrix tractable. 

FLOG= 0.00 

DOS, LL =I, NN 

DI = 2*LL + I 

FLOG = FLOG + DLOG I 0(01) 

S CONTINUE 

FACTNN = IO.DO**FLOG 

C These are the coefficients for the density polynomial given by D&A (renormalized) 

densty(l) = 12.5815 

densty(2) = -1.2638 • .546225 

densty(3) = -3.6426 • .546225 * .546225 

densty(4) = -5.5281 • .546225 • .546225 * .546225 

C The matrix elements have two indicies, JJ and LL, for row and column 

C respectively. (JJ depends on I and J, and LL depends on K and L.) 

C Since the row increases slowest, this loop starts first. 

C Starting the outer loop, to determine the row number. 

do 10 I= 0, NN 

k.k=O 

if (l.eq.O) kk= I 

do 20 J = k.k, NN-1 

do 30 K = 0, NN 

k.k=O 

if (K.eq.O) kk= I 
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do 40 L = kk, NN-k 

csumm = 0 

fsumm = 0 

do SO M = 0, I + K 

FBINO = DBINOM(I + K, M) 

IM = (-1)**M 

FBOTM = 2 *(J + L + M) - 1 

FSUMM = FSUMM + FBINO • IM/FBOTM 

SO CONTINUE 

do SS M = 0, I + K - 1 

CBINO = DBINOM((I + K -1), M) 

IM = (-1)**M 

CBOTM = 2*(J + L + M) + 1 

CSUMM = CSUMM + CBINO • IM/CBOTM 

SS Continue 

SUMN = 0 

DO 60 N = 1,4 

DSUMN = N + 2*(1 + J + K + L) 

SUMN = SUMN + DENSTY(N)/DSUMN 

60 CONTINUE 

C Calculate the elements. 

CC = I • K • CSUMM • SUMN 

FF = J • L • FSUMM • SUMN 

C Sec up index inc. 
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JJ = I + I * (2 * NN + 3 - 1)/2 

LL = L + K * (2 * NN + 3 - K)/2 

C(JJ,LL) = CC*1000.0 

F(IJ,LL) = FF*IOOO.O 

40 continue 

30 continue 

20 continue 

10 continue 

C This will use the IMSL subroutine dzreal to find the roots from the function detm. 

C Guesses must be the correct number, but need not be close to the actual value. 

EPS = 1.00-9 

ERRABS 

ERRREL 

= l.OD-12 

= l.OD-12 

ETA 

IT MAX 

= l.OD-8 

=300 

C first establish the initial guesses 

do 4999 ill= 1 ,nroot 

xguess(kkk) = dble(k:kk)/11.0 

4999 continue 

Call dzreal (detm, errabs, errrel, eps, eta, nroot, itrnax, xguess, 

x, info) 

Call dwrrrn ('THE EIGENVALUES ARE:', 1, nroot, x, 1, 0) 
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C THIS SECTION WILL FIND THE EIGENVECTORS USING A LINEAR SYSTEM 

C SUBROUTINE FROM IMSL. NOTE THAT THE SYSTEM SOLVED IS OF ONE 
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C ORDER LESS THAN THE ORIGINAL SYSTEM. THIS IS BECAUSE THE FIRST 

C CONSTANT HAS BEEN CHOSEN AS ONE. FIRST THE EIGENVALUES JUST 

C FOUND ARE SUBBED INTO THE MATRIX HH. 

Do 100 i = 1, nroot 

Do 110 1 = I, MM 

Do 120 L = 1, MM 

IF (J.LE.S) GO TO 130 

IF (1 .EQ.6) GO TO 140 

IF (J.EQ. ll) GO TO 140 

IF (1.EQ.1S) GO TO 140 

IF (1.EQ.l8) GO TO 140 

IF (1 .EQ.20) GO TO 140 

GO TO ISO 

130 HH(J,L) = F(J,L) 

GO TO 160 

140 HH(J,L) = C(J,L) 

GO TO 160 

ISO HH(J,L) = X(i)*X(i)*(C(J,L) + F(J,L))- F(J,L) 

160 CONTINUE 

120 CONTINUE 

110 CONTINUE 

Do 170 I = I, MM - 1 

Do 180 L = 1, MM - 1 

D(J,L) =- HH(J + 1, L+ I) 



E(J) = -HH(J +I, I) 

180 Continue 

170 Continue 

Call DLSASF(MM-1, !>, MM-1, E, EIG) 

Call DWRRRNCTHE EIGENVECfOR IS:', I, MM-1, EIG, I, 0) 

Do 200 k.kk = I, MM-1 

write(2, *) eig(kkk) 

200 Continue 

write(2, *) 

100 Continue 

STOP 

END 

C CALCULATES DETERMINANT OF N BY N MATRIX WITH NO ZERO 
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C ELEMENTS ON THE MAIN DIAGONAL. THE MATRIX IS STORED IN ANN BY 

C N ARRAY. THE VALUE OF THE DETERMINANT IS DETT TIMES (10 TO THE 

C IE'TH POWER). THIS IS DONE BY TRIANGULARIZING THE MATRIX. 

SUBROUTINE DET(A,N,IE,DEIT) 

IMPLICIT REAL *8(A-H,O-Z) 

DIMENSION A(N,N) 

NMI = N - 1 

DETLOG = 0.00 

SIGN= ~ .. DO 

DO 1 K = 1, NM1 

KP1 = K + 1 



R = 1.00/A(K,K) 

IF (A(K,K).GT.O.DO) GO TO 3 

SIGN= -SIGN 

3 DETLOG = DETLOG + DLOOIO(DABS(A(K,K))) 

D021=KPl,N 

2 A(K,I) = R * A(K,I) 

DO I I= KPI, N 

S = A(I,K) 

DO I L = KPI, N 

A(I,L) = A(I,L)- S*A(K,L) 

IF (A(N,N).GT.O.DO) GO TO 4 

SIGN= -SIGN 

4 DETLOG = DETLOG + DLOGIO(DABS(A(N,N))) 

IE = IDINT(DETLOG) 

DETLOG = DETLOG- DFLOAT(IE) 

DETT = SIGN*(IO.DO**DETLOG) 

RETURN 

END 

REAL *8 FUNCTION DETM(X) 

IMPLICIT REAL *8(A-H, 0-Z) 

parameter (NN = S, MMM = NN*(NN+3)/2) 

COMMON/A/ C(MMM,MMM), F(MMM,MMM), MM 

DIMENSION H(MMM,MMM) 

C DATA H/81*0.00/ 
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DO 1 1 = 1, MM 

DO 2 L = 1, MM 

IF (J.LE.S) GO TO 3 

IF (J.EQ.6) GO TO 4 

IF (J.EQ.ll) GOT04 

IF (J .EQ.lS) GO TO 4 

IF (J .EQ.l8) GO TO 4 

IF (J.EQ.20) GO TO 4 

GOTOS 

3 H(J,L) = F(J,L) 

GOT06 

4 H(J,L) = C(J,L) 

GOT06 

5 H(J,L) = X*X*(C(J,L) + F(J,L))- F(J,L) 

6 CONTINUE 

2 CONTINUE 

CONTINUE 

CALL DET(H,MM,IE,DETT) 

DETM = DETT * {IO.DO**IE) 

RETURN 

END 
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APPENDIX E: This program evaluates equation (82) from Rochester (1989). 

C penurbation. f 

C This is a program for eqn(82) in R's '89 paper. The eigenvalues and eigenvector 

C coefficients are read in from a file. The first eiaenvector value is always one 

parameter (ivalue = 10, ivectr = 20) 

implicit real*8(a-h, o-z) 

real*8 eigval(ivalue), eigvec(ivalue,ivectr) 

reaJ•s cr(20), rho(4), rinten 

integer p, q, qq 

open( I ,file= 'eigenvalues.out' ,status= 'old') 

open(2,file= 'eigenvector.out' ,status= 'old') 

open(3,tile= 'zeros.out'. status= 'unknown') 

beta = -o.oooo 1 Odo 

C Set up loops to read in eigenvalues/ve~.."tOr coefficients, the outer loop is for the 

131 

C eigenvalues, each eigenvalue is associated with an eigenvector comprising ivectr entries. 

do 10 i = I, ivalue 

read( 1, •) eigval(i) 

eigvec(i,l) = l.OdO 

read(2. *) (eigvec(i,j),j =2,ivectr) 

•. 0 continue 

C The constants needed: alf* are coefficients of the polynomial representing l/alpha ... 2, rho* 

C are renormalized values of PREM density for CMB = r = 1, cr* are coefficients of the 

C powers of r that have been integrated using MACSYMA and exported in FORT AN 

C format . These are the coefficients for the 7th degree polynomial for 1/alpha ... 2 obtained 
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C usina the IMSL routine called drcurv. (r has been renormalized). Units are (seclkm) ... 2. 

c 

alfl = .0081914306880072d0 

alf2 = .0032968419226614d0 

aiO = -.001624538636279ld0 

alf4 = .OOSS783009628760d0 

alf5 = -.0093306230249849d0 

alf6 = .019869926098212d0 

alt7 = -.OJ8169982295218d0 

alf8 = .0075630663016279d0 

rhol = 12.5815d0 

rho2 = -.6903192d0 

rho3 = -l.086811Sd0 

rho4 = -. 900929Sd0 

rho(l) = rho 1 

rho(2) = rho2 

rho(3) = rho3 

rho(4) = rho4 

Info. for the coefficient of go·2. 

(m ... 3/(kg*sec•2))'"'2)*km ... 2) 

G = 6.6732d-ll 

b = 3.480d3 

pi = 3.1415926d0 

comega = 7 .29211Sd..()S 

(16*pi ... 2*G ... 2)*b ... 2, (units are 

C Coefficients of powers of r integrated by MACSYMA and imported in FORTRAN format. 



cr(l8) = alf8*rho4**3/36.0d0 

cr(l7) = rho4**2*(5*alt7*rho4+ 17*alf8*rho3)/180.0d0 

cr(l6) = rho4*(25*alf6*rho4**2 + 85*alt7*rho3*rho4+ 100*alf8*rho2*rho 

4+96*alf8*rho3**2)1900.0d0 

cr(IS) = (25*alt5*rho4**3 + 85*alffi*rho3*rho4**2 + 100*alt7*rho2*rho4* 

*2 + 125*alf8*rhol*rho4**2 +96*alt7*rho3**2*rho4+ 225*alf8*rho2*rho 

2 3*rbo4+36*alf8*rho3**3)/900.0d0 

cr(l4) = (10U*ouf4*rho4**3+340*alf5*rho3*rho4**2+400*alf6*rho2*rbo 

4**2 + SOO*alt7*rho l*rho4**2 + 384*alf6*rho3**2*rho4 +900*alt7*rho2* 

2 rho3*rho4+ 1120*alf8*rhol*rho3*rho4+52S*alf8*rho2**2*rho4+ 144*al 

3 t7*rbo3**3 + 504*alf8*rho2*rho3**2)/3600.0d0 

cr(l3) = (100*alf3*rho4**3+ 340*alf4*rho3*rho4**2+400*alf5*rbo2*rho 

4**2 + 500*alf6*rhol*rho4**2 + 384*alf5*rho3**2*rho4+ 900*alffi*r!lo2* 

2 rho3*rho4+ 1120*alt7*rbol*rho3*rbo4+S2S*alt7*rho2**2*rho4+ 1300*a 

3 lf8*rbol*rho2*rbo4+ 144*alf6*rbo3**3+504*alt7*rho2*rbo3**2+624*a 

4 lfll*rbo l*rho3**2 + S8S*alf8*rho2**2*rho3)/3600.0d0 

cr(l2) = (100*alt2*rho4**3+340*alf3*rho3*rho4**2+400*alf4*rbo2*rbo 

4**2 + SOO*alt5*rhol *rho4**2 + 384*alf4*rho3**2*rho4+900*alf5*rho2* 

2 rho3*rho4+ ll20*alffi*rhol*rho3*rbo4+S25*alffi*rho2**2*rbo4+ 1300*a 

3 lt7*rhol*rho2*rho4+800*alf8*rhol**2*rho4+ 144*alt5*rho3**3+504*a 

4 lf6*rbo2*rho3**2+624*alt7*rbol*rho3**2+S85*alt7*rho2**2*rho3+ 14 

S 40*alf8*rbol*rho2*rho3+225*alf8*rbo2**3)/3600.0d0 

cr(ll) = (100*alfl*rho4**3 +340*alf2*rho3*rho4**2+400*alf3*rbo2*rbo 

4**2+500*alf4*rhol*rho4**2+384*alf3*rbo3**2*rho4+900*alf4*rho2* 
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2 rho3 *rho4 + 1120*al f5 *rho 1 *rho3 *rho4 + 525 *al f5 *rho2 • *2 *rho4 + 1300*a 

3 lf6*rhol*rho2*rho4+800*alt7*rho1**2*rbo4+ 144*alf4*rho3**3+ 504*a 

4 lf5*rho2*rho3**2 +624*alf6*r~•ol*rho3**2 +585*alf6*rho2**2*rho3 + 14 

5 40*alti*rhol*rho2*rho3 + 880*alf8*rhol**2*rho3+ 225*alf7*rho2 .. 3 + 8 

6 25*alf8*rhol*rho2**2)/3600.0d0 

cr(lO) = (340*alfl*rbo3*rho4**2+400*alf2*rho2*rho4 .. 2 +500*alf3*rho 

l*rho4**2 +384*alf2*rho3**2*rho4+900*alf3*rho2*rho3*rho4+ 1120*al 

2 f4*rhol *rho3*rho4+525*alf4*rho2**2*rho4+ 1300*alf5*rhol*rho2*rho 

3 4+ 800*alf6*rho1**2*rho4+ 144*alf3*rho3**3 +504*alf4*rho2*rho3**2 + 

4 624*alf5*rbol *rho3**2 + 58S*alf5*rho2**2*rho3 + 1440*alf6*rhol*rho2 

5 *rho3 +880*alti*rho1**2*rho3 + 225*alf6*rho2**3 + 825*alt7*rhol*rho2 

6 **2+ IOOO*alf8*rho1**2*rho2)/3600.0d0 

cr(9) = (400*alfl*rho2*rho4**2+500*alf2*rhol *rho4**2 +384*alfl*rho3 

**2*rho4+900*alt2*rho2*rho3*rho4+ 1120*alf3*rhol *rho3*rho4 + 525*a 

2 lf3*rho2**2*rho4+ 1300*alf4*rhol*rho2*rho4+ 800*alf5*rho1**2*rho4 
;· 
i 

3 + 144*alf2*rho3**3 + 504*alf3*rho2*rho3 .. 2+624*alf4*rho 1*rho3**2 + 5 
. 
r 4 85*alf4*rho2**2*rho3 + 1440*alf5*rho l*rho2*rho3 + 880*alf6*rho 1**2* ~ 
t 
~ 5 rho3 + 225*alf5*rho2**3 + 825*alf6*rho l*rho2 **2 + I OOO*alt7*rho 1**2 •r f 

6 ho2+400*alf8*rhol**3)/3600.0d0 

cr(8) = (SOO*alfl*rhol*rho4 .. 2+900*alfl*rho2*rho3*rho4+ 1120*alf2*r 

1 ho 1 *rho3 *rho4 + 52S*alf2 *rho2 ••2 •mo4 + lJOO•aJfJ •rho t•rho2 *rho4 + 80 

2 O*alf4*rhol**2•rbo4+ t44•aJfl*rho3**3 +504*alf2*rho2*rho3**2+624* 

3 alf3*rhol*rho3**2+585*alf3*rho2**2*rho3+ 1440*alf4*rhol*rho2*rho 

4 3 +880*alf5*rho1 .. 2*rho3 + 22S*alf4*rho2**3+825*alf5*rhol*rho2**2+ 



S IOOO*alf6*rhol**2*rho2+400*alti*rho1**3)/3600.0d0 

cr(7) = (1120*alfl*rhol*rho3*rho4+S2S*alfl*rho2**2*rho4+ 1300*alf2* 

rho 1 *rho2 *rho4 + 800*alf3 *rho I • *2 *rho4 + S04 *al fl*rho2 *rho3 **2 + 624 • 

2 alf2*rhol*rbo3**2 +S8S*alf2*rbo2**2*rbo3+ 144J*alf3*rbol*rbo2*rbo 

3 3 + 880*alf4*rhol**2*rho3 + 22S*alf3*rbo2**3 + 82S*alf4*rbol*rho2**2 + 

4 1000*alf5*rbol**2*rho2+400*alf6*rbo1 .. 3)/3600.0d0 

cr(6) = (1300*alfl*rhol*rho2*rho4+800*alf2*rho1**2*rbo4+624*alfl*r 

ho l*rho3 **2 + S8S*alfl*rho2 **2 *rho3 + 1440*alt2 *rho 1 *rbo2*rho3 + 880* 

2 alf3*rho1**2*rho3 +22S*alf2*rho2**3+82S*alf3*rhol*rbo2**2+ lOOO*a 

3 lf4*rho1**2*rho2 +400*alf5*rhol**3)/3600.0d0 

cr(S) = (160*alfl*rhol**2*rho4+288*alfl*rhol*rho2*rho3+ 176*alt2*rh 

ol**2*rho3 +4S*alfl*rho2**3+ 16S*alt2*rhol*rho2**2+200*alf3*rhol* 

2 *2*rho2+80*alf4*rhol**3)n20.0d0 

cr(4) = rhol*(l76*alfl*rhol*rho3+ 16S*alfl*rbo2**2+200*alf2*rbol*rh 

o2+80*alf3*rho1**2)n20.0d0 

cr(3) = rbol**2*(S*alfl*rho2+2*alf2*rho1)/18.0d0 

cr(2) = alfl*rhol**3/9.0d0 

C Start the loop for the eigenvalue usage. 

do 80 isig = l,ivalue 

rinten = O.OdO 

rioted = O.OdO 

zinten = O.OdO 

zinted = C.OdO 

siJ11um = O.OdO 

135 



sigdem = OOOdO 

signew = OoOdO 

sigtwo = OoOdO 

do 100 1 = O,.S 

nn=O 

if ( I oeqo 0 ) nn = I 
do 110 n = nn,5-l 

do 120 p = 0,5 

qq=O 

if ( p Oeqo 0 ) qq = 1 

do 130 q = qq,S-p 

C Set up conversion from double index to single index 

jj = n + 1*5 - (1-3)*1/2 

kk = q + p*S - (p-3)*p/2 

rinten = OoOdO 

do 140 ii = 2,18 

rinten=rinten+cr(ii)/(2o0d0*dble(l +p + n +q)+dble(ii)+ 100d0) 

140 continue 

C Calculate the z integral of the numberator (zinten) 

zntop=DGAMMA(dble(n+q)+OoSdO)*DGAMMA(dble(l +p)+ 100d0) 

znbot = DGAMMA(dble(n + q + I + p) + 105d0) 

zinten = zntop/znbot 

C Calculate the coeffici~nt from c•gradX for the numberator 

ccgrad = ( eigval (isig)**4 0 0*1 ~-( eigvaJ(isig) **2 0 0)* 
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& (I.Od0-eigval(isig)**2.0)*(l*q +n*p) 

& + (l .Od0-eigval(isig)**2.0)*•2.0•n•q) 

C Choosing the correct eigenvector value to multiply in to the numberator. 

c.ij = eigvec(isig,.ij) 

ell = eigvec(isig,ll) 

signum = signum + (cjj*ckk•ccgrad*zinten*rinten) 

C Calculating the denomonator. 

rinted = O.OdO 

do ISO ir = 1,4 

rinted = rinted + rho(ir)/(2.0d0*dble(l +n+p+q)+dble(ir)) 

I SO continue 

if ((l+p).EQ.O)then 

zdtop 1 = O.OdO 

else 

zdtopl=DGAMMA(dble(n+q)+O.SdO)•DGAMMA(dble(l+p)) 

end if 

zdbotl = DGAMMA(dble(n+q+l+p)+O.SdO) 

if ((n+q).EQ.O) then 

zdtop2 = O.OdO 

else 

zdtop2 = DGAMMA(dble(n + q)-O.SdO)•DGAMMA(dble(l + p) + l .OdO) 

end if 

zdbot2 = DGAMMA(dble(n+q+l+p)+O.SdO) 
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zinted = l*p*(zdtopl/zdbotl) r n*q*(zdtop2/zdbot2) 

sigdem = sigdem + cjj*ckk*rinted*zinted 

130 continue 

120 continue 

110 continue 

100 continue 

coetop = 8.0dO*beta*((pi*G*b) .. 2.0dO)*I .Od6/ 

& ((comega**2.0d0)*eigval(isig)**2.0d0*(eigval(isig)**2.0d0-I .Od0)) 

coebot = 4.0d0*eigval(isig) 

sigtwo = coetop*signum/(coebot*sigdem) 

signew = sigtwo + eigval(isig) 

write(*,900) sigtwo, signew, eigvaJ(isig) 

write(3,920) signew 

80 continue 

900 forrnat(f10.8, Sx, fl0.8, Sx, fl0.8) 

920 format(d10.4) 

stop 

end 
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APPENDIX F: These programs evaluate negative betas using the Galerkin method. 

C Biggerbetas.f 

C THIS SETS UP THE MA TRICIES TO BE READ BY readbb.f, MAKE SURE THAT 

C THE VALUE FOR BETA IS THE SAME IN BOTH PROGRAMS. This program is used 

C to find eigenvalues for the problem with nonzero negative betas. The equations are from 

C solving the SSWE when B can vanish :r: • sphere and allows for larger negative betas to 

C be used than the perturbation approach does. All integers are prefaced by ~i'sW. except in 

C Functions, where they are prefaced by "n's•, all arrays are prefaced by "A's" outside loops 

C range from SO to 90 write loops range from 10 to 40 (for checking) outer index loops 

C range from 100 to 190, iMer summation loops range f,·om 200 up 

implicit real*8(a-b, o-z) 

parameter (NN = S, LL = NN•(NN+J)/2, KK = LL) 

real•S AA(LL,KK), AB(LL,KK), AC(LL,KK), AD(LL,KK), AE(LL,KK) 

real•S AG(LL,KK), AP(LL,KK), AQ(LL,KK), AR(LL,KK). AT(LL,KK) 

real•& AU(LL,KK), AV(LL,KK), AX(LL,KK), A Y(LL,KK) 

reai•s ArhoP(4), ArhoR(lO), Arbo(IO) 

real•8 Aalpha(8) 

open( II, tile = 'AA.dat' ,status = 'unknown') 

open(ll, file = 'AB.dat',status ='unknown') 

open(l3, file = 'AC.dat',status ='unknown') 

open(l4, tile= 'AD.dat',status = 'unknown') 

open(lS, file = 'AE.dat',status = 'unknown') 

open(16, ftle • 'AG.dat' ,status • 'unknown') 

open(17, file =- 'AP.dat',status ='unknown') 



open(18, file = 'AQ.dat' ,status = 'unknown') 

open(19, file = 'AR.dat' ,status = 'unknown') 

open(20, file = 'AT.dat' ,status = 'unknown') 

open(21, ftle = 'AU.dat',status = 'unknown') 

open(22, file = 'AV.dat',status = 'unknown') 

open(23, file = 'AX.dat' ,status = 'unknown') 

open(24, file= 'AY.dat',status = 'unknown') 

LLL = LL 

C Choose value for Beta 

beta = O.OOOdO 

C Choose values for irho (either 4 (PREM) or 10 (NEUn) 

irbo = 4 

C irho = 10 

crhoPO = 12.5815d3 

calphO = .0081914306d0 

Aalpha(l) = .0081914306880072d0/calph0 

Aalpha(2) = .0032968419226614d0/calph0 

Aalpha(3) = -.0016245386362791d0/calph0 

Aalpha(4) = .0055783009628760d0/calpb0 

Aalpha(S) = -.0093306230249849d0/calph0 

Aalpha(6)"" .019869926098212d0/calpb0 

Aalpha(7) = -.018169982295218d0/calpb0 

Aalpha(8) z .007S630663016279d0/calpb0 

C Density from PREM 
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ArboP(l) = 12.581Sd3/crboPO 

ArboP(2) = -.6903192d3/crhoPO 

ArhoP(3) = -1.0868115d3/crhoPO 

ArhoP(4) = -.900929Sd3/crhoPO 

c Density = NEUT 

ArhoR(l) :a .1134369d1 

ArhoR(2) = O.OdO 

ArhoR(3) = -.19S9092d0 

ArboR(4) = -.52SI182d-1 

ArhoR(S) = .4362S77d-1 

ArhoR(6) = -.185105Sd-1 

ArhoR(7) = .2536884<1-2 

ArboR(8) = -.23604S4d·l 

ArhoR(9) = .2196424d-l 

ArhoR(lO) = -.8309286d-2 

c Decide which density profile is to be used. 

doSOi = 1, irbo 

if (irbo.eq. lO) then 

Arbo(i) = ArhoR(i) 

else 

Arbo(i) • ArboP(i) 

eDdif 

so continue 

c Startiq the loops for tbe calculations of the 14 matricies 



do 100 ii = O,NN 

ijj = 0 

if(ii.eq.O) i.ij = 1 

do 110 ij = i.ij,NN-ii 

do 120 ip = O,NN 

iqq = 0 

if(ip.eq.O) iqq = 1 

do 130 iq = iqq,NN-ip 

il = ii*(2*NN + 3-ii)/2 + ij 

ik = ip*(2*NN+3-ip)/2 + iq 

C Start fillina in the 14 arrays needed 

C Array ·AA· 

arhosum = O.OdO 

azint = O.OdO 

do 200 im = 1, irbo 

arhosum = achosum + Arbo(im)/(2.0d0*(ii+ij+ip+iq)+im) 

200 continue 

if ((ii + ip).eq.O) then 

aFIZ1 = O.OdO 

else 

aFIZ1 .., FIZ(ii + ip- 1, ij + iq) 

end if 

if((ij + iq).eq.O)tben 

aFIZ2 = 0. OdO 

142 



else 

aFIZ2 = FIZ(ii + ip, ij + iq - 1) 

end if 

azint = ii*ip*afiZI + ij*iq*afiZ2 

AA(il,ik) = -arbosum*azint 

write(ll,900) il, it, AA(il,ik) 

C Array "AB" 

brbosum = O.OdO 

bzint = O.OdO 

do 210 im = 1, irho 

do 220 in = 1, irbo 

do230 is= 1,8 

bdeoom = (in+2.0d0)*(2.0d0*(ii+ij+ip+ iq)+im+in+is) 

brhosum = brhosum + Arho(im)*Arho(in)*Aalpha(is)lbdeoom 

230 continue 

220 continue 

2 10 continue 

bfiZ 1 = FIZ(ii + ip, ij + iq) 

bzint = (ip + iq)*bfiZl 

AB(il,ik) = -brhosum*bzint 

write(12,900) il, ik, AB(il,ik) 

C Array "AC" 

crbosl•m • O.OdO 

czint a O.OdO 
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do 240 im = 1, irho 

crbosum = crhosum + Arho(im)/(2 .OdO*(ii + ij + ip + iq) + im) 

240 continue 

if ((ii + ip).eq.O) theli 

cFIZl = O.OdO 

else 

cFIZl = FIZ(ii + ip- 1, ij + iq) 

end if 

if((ij + iq).eq.O)then 

cFIZ2 = O.OdO 

else 

cFIZ2 = FIZ(ii + ip, ij + iq - 1) 

end if 

czint = ii*ip*cFIZl + 2.0dO*ij*iq*cFIZ2 

AC(il,ik) = crhosum*czint 

write(13,900) il, ik, AC(il,ik) 

C Array "AD" 

drbosum = O.OdO 

dzint = O.OdO 

do 250 im = 1, irho 

do 260 in = 1, irho 

do 270 is = 1,8 

ddenom = (in+ 2.0d0)*(2.0d0*(ii + ij + ip + iq) + im + in+ is) 

drbosum = drhosum + Arbo(im)*Arho(in)*Aalpha(is)/ddenom 
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270 

260 

250 

c 

continue 

continue 

continue 

dFIZI = FIZ(ii + ip, ij + iq) 

dzint = (ip + 2.0dO*iq)*dFIZI 

AD(il,ik) = drhosum•dzint 

write(l4,900) il. ik. AD(il,ik) 

Array •AE• 

erhosum = O.OdO 

ezint = O.OdO 

do 280 im = 1, irho 

do 290 in :a 1 , irho 

do 300 ir = 1. irho 

do 310 is = 1.8 

edenom=(in+2.0d0)*(ir+2.0d0) 

& *(2.0d0*(ii + ij + ip + iq) + im +in+ ir+ is-1.0d0) 

erbosum = erhosum + Arho(im)* Arbo(in)• Arho(ir)* Aalpba(is)/edenom 

310 continue 

300 continue 

290 continue 

280 continue 

if ((ii + ip).eq.O) tben 

eFIZI = O.OdO 

else 
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efiZl = FIZ(ii + ip - 1, ij + iq + 1) 

end if 

if ((ii + ip).eq.O) then 

eFIZ2 = O.OdO 

else 

eFIZ2 = FIZ(ii + ip - I, ij + iq) 

end if 

eFIZJ = FIZ(ii + ip, ij + iq) 

if((ij + iq).eq.O)then 

eFIZ4 = O.OdO 

else 

eFIZ4 = FIZ(ii + ip, ij + iq - 1) 

end if 

ezintl = -ip•(3.0dO•ii+2.0dO•ip-l.OdO)•eFIZ1 

ezint2 = ip•(ii + 2.0dO•ip-l .OdO)•eFIZ2 

ezint3=(3.0d0*ij•(ip+ iq)+ iq*(3 .0dO•ii +4.0dO•ip+ 2.0dO•iq-l.Od0) 

& +2.0dO•(ip+iq))•eFIZ3 

ezint4 = -2.0dO•ij*iq•eFIZ4 

ezint = ezint 1 + ezint2 + ezint3 + ezint4 

AE(il,ik) =- erbosum•ezint 

write(lS,900) il, ik, AE(il,ik) 

c Array ·Ao· 

grbosum • O.OdO 

pint ,. O.OdO 
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do 320 im = I, irho 

do 330 in = 1, irho 

do 340 ir = l' irh(\ 

do 350 iJ ,. 1,8 

do 360 it • 1, irho 

do 370 iw = 1,8 

pwner=Arho(im)*Arho(in)*Arho(ir)*Aalpha(is)*Arho(it)*Aalpha(iw) 

sdenom = (in+2.0d0)*(ir+2.0d0)*(it+2.0d0)* 

&t (2.0d0*(ii+ ij+ip+ iq)+ im +in+ ir+ is+it+ iw-1 .0d0) 

ifhosum = ifhosum + iJlumer/gdenom 

370 continue 

360 continue 

3SO continue 

340 continue 

330 continue 

320 continue 

sFIZ 1 ,.. FIZ(ii + ip, ij + iq) 

azint = (ip + iq)*gFIZl 

AG(il,ik) = -ifbosum*pint 

write(16,900) il, ik, AG(il,ik) 

c Array •AP• 

prhosum :11: O.OdO 

pzint • O.OdO 

do 380 im ,. 1, irho 
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prhosum = prhosum + Arho(im)/(2 .OdO*(ii + ij + ip + iq) + im) 

380 continue 

if((ij + iq).eq.O)tben 

pFIZl = O.OdO 

else 

pFIZ1 = FIZ(ii + ip, ij + iq- 1) 

end if 

pzint = ij*iq*pflZl 

AP(il,ik) = -prhosum*pzint 

write(l7,900) il, ik, AP(il,ik) 

C Array •AQ• 

qrhosum • O.OdO 

qzint = O.OdO 

do 390 im = 1, irho 

do 400 in = 1, irbo 

do 410 is = 1,8 

qdenom = (in+ 2.0d0)*(2.0d0*(ii + ij + ip + iq) + im +in+ is) 

qrbosum = qrbosum + Arbo(im)*Arho(in)*Aalpha(is)/qdenom 

410 continue 

400 continue 

390 continue 

qFIZ1 = FIZ(ii + ip, ij + iq) 

qzint = iq•qFIZ 1 

AQ(il,it) • ~rbosum*qzirtt 
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write(18,900) U, ik, AQ(il,ik) 

C Array •AR• 

rrhosum = O.OdO 

rzint = O.OdO 

do 420 im = 1, irho 

do 430 in = 1, irho 

do 440 ir = 1 , irho 

do 450 is = 1,8 

rdenom =(in+ 2.0d0)*(ir+ 2.0d0) 

& *(2.0d0*(ii + ij + ip + iq)+ im+ in+ ir+ is-1 .0d0) 

rrhosum = rrhosum + Arho(im)* Arho(in)* Arho(ir)* Aalpha(is)/rdenom 

4SO continue 

440 continue 

430 continue 

420 continue 

if ((ii + ip).eq.O) then 

rFIZ1 = O.OdO 

else 

rFIZ1 = FIZ(ii + ip- 1, ij + iq + 2) 

end if 

if ((ii + ip).eq.O) then 

rFIZ2 = O.OdO 

else 

rFIZ2 ,. FIZ(ii + ip- 1, ij + iq + 1) 
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end if 

rFIZ3 = FIZ(ii + ip, ij + iq + I) 

rFIZ4 = FIZ(ii + ip, ij + iq) 

if((ij + iq).eq.O)then 

rFIZS = O.OdO 

else 

rFIZS = FIZ(ii + ip, ij + iq - l) 

end if 

rzintl = ip*(2.0d0*ii + 2.0dO*ip-I.Od0)*rFIZl 

rzint2 = -ip*(2.0dO*ip-I.Od0)*rFIZ2 

rzint3 =-(iq*(2.0d0*ii + 2.0d0*ij + 2.0d0*iq-l.Od0) 

& +2.0dO*ip*(ij+2.0dO*iq)+4.0d0*(ip+iq))*rFIZ3 

rzint4 = -(ij *(ip + 2. OdO*iq) 

& + iq *(3 .OdO*ii + 2 .OdO*ip + 2 .OdO*iq-1. Od0))*rFIZ4 

rzintS = 2.0dO*ij*iq*rFIZS 

rzint = rzint1 + rzint2 + rzintJ + rzint4 + rzintS 

AR(il,ik) = rrhosumerzint 

write(19,900) il, ik, AR(il,ik) 

c Array ·Ar 

trhosum = O.OdO 

tzint = O.OdO 

do 460 im = 1, irho 

do 470 in = 1, irho 

do 480 it = 1, irho 
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do 490 is = 1,8 

do SOO it = 1, irbo 

do SIO iw = 1,8 

tnumer=Arho(im)*Arho(in)*Arho(ir)*Aalpba(i<~)*Arho(it)*Aalpha(iw) 

tdenom = (in+2.0dO)*(ir+2.0dO)*(it+2.0d0)* 

&. (2.0d0*(ii+ ij + ip+iq)+im+in+ ir +is+ it+ iw-1 .0d0) 

trbosum = trhosum + tnumer/tdeoom 

S I 0 continue 

SOC continue 

490 continue 

480 continue 

470 continue 

460 continue 

tFIZl = FlZ(ii + ip, ij + iq + 1) 

tFIZ2 = FIZ(ii + ip, ij + iq) 

tzint = (ip + iq)*tFIZl + iq*tFIZ2 

A T(il,ik) = trhosum*tzint 

write(20,900) il, ik, AT(il,ik) 

C A1ray ·Au· 

urhos~ = O.OdO 

uzint = O.OdO 

do S20 im = 1, irho 

do 530 in = 1, irho 

do 540 ir = 1, irho 
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do SSO is = 1,8 

do S60 it = 1, irbo 

do S70 iv = 1, irbo 

do S80 iw = 1,8 

unumer = Arbo(im)* Arho(in)• Arho(ir)* Aalpba(is) 

& • Arbo(it)* Arho(iv)• Aalpha(iw) 

udenom = (in+2.0d0)8 (ir+2.0d0)8 (it + 2 .0d0)8 (iv + 2.0dQ)• 

& (2.0d0*~ii+ij+ip+ iq)+im+in+ ir+ is+ it +iv+iw-2.Qd0) 

urhosum = urhosum + unumer/udenom 

580 continue 

570 continue 

560 continue 

550 continue 

540 continue 

530 continue 

520 continue 

if((ii + ip). eq.O)then 

uFIZl = O.OdO 

else 

uFIZl = FIZ(ii + ip- 1, ij + iq + 1) 

end if 

uFIZ2 = FIZ(ii + ip, ij + iq) 

if((ij + iq) .eq.O)then 

uFIZ3 = O.OdO 
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else 

ufiZ3 = FIZ(ii + ip, ij + iq - I) 

end if 

uzint=·ii*ip-uf'IZI + (ii*iq + ij*ip + ij*iq)*uFIZ2-ij*iq*uFIZ3 

AU(il,ik) = urhosum*uzint 

write(21,900) il, ik, AU(il,ik) 

C Array "AV" 

vrhosum = 0. OdO 

vzint = O.OdO 

do .590 im = I, irho 

do 600 in = I, irbo 

do 610 ir = I, irbo 

do 620 is = 1,8 

vnumer = Arho(im)* Arbo(in)* Arho(ir)* Aalpha(is) 

vdenom = (in+2.0d0)*(ir+2.0d0)* 

& C.l.OdO*(ii+ ij + ip+ iq)+ im+ in+ ir+is-l.OdO) 

vrhosum = vrbosum + vnumer/vdenom 

620 continue 

610 CC!1tinue 

600 cont.~ue 

590 continue 

vFIZI = FIZ(ii + ip, ij + iq + 1) 

vFIZ2 = FIZ(ii + ip, ij + iq) 

vzintl = (iq*(2.0d0*(ii + ij + ip + iq)-I .Od0)+4.0d0*iq)*t.FIZ1 
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vzint2 = -(ij*iq + 2 .0d0*iq)~IZ2 

vzint = vzint1 + vzint2 

A V(il,ik) = vrhosum*vzint 

write(22,900) il, ik:, AV(il,ik) 

C Array • AX" 

xrbosum = O.OdO 

:uint = O.OdO 

do 630 im = 1, irho 

do 640 in = 1, irho 

do 650 ir = 1, irbo 

do 660 is= 1,8 

do 670 it= I, irho 

do 680 iw = 1,8 

xnumer = Arho(im)• Arho(in)• Arho(ir)* Aalpha(is)• Arho(it)• Aalpha(iw) 

xdencm = (in+2.0d0)*(ir+2 .0dO)*{it+2 .0dO)• 

& (2.0dO•(ii+ij+ip+ iq)+im+ in+ir+ is+ it+iw-1 .0d0) 

xrhosum = xrhosum + xnumer/xdenom 

680 continue 

670 continue 

660 continue 

650 continue 

640 continue 

630 continue 

xFIZl = FIZ(ii + ip, ij + iq + 1) 
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xzint = iq*xFIZl 

AX(il,ik) = -xrhosum*xzint 

write(23,900) il, it, AX(il,ik) 

c Array ·Av· 

yrhosum = O.OdO 

yzint = O.OdO 

do 690 im = 1, irbo 

do 700 in = 1, irho 

do 710 ir = 1, irho 

do 720 is = 1,8 

do 730 it = 1, irbo 

do 740 iv = I, irho 

do 7SO iw = 1,8 

ynumer = Arho(im)* Arho(in)* Arbo(ir)• Aalpha(is) 

& • Arho(it)• Arho(iv)* Aalpha(iw) 

ydeoom = (in+ 2.0d0)*(ir+2.0d0)*(it+ 2.0d0)*(iv+ 2 .0dO)• 

& (2.0d0*(ii + ij + ip+ iq)+ im+ in+ ir+ is+ it+ iv + iw-2.0d0) 

yrbosum = yrbosum + ynumer/ydenom 

750 continue 

740 continue 

730 continue 

720 continue 

710 continue 

700 continue 
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690 continue 

if((ii + ip).eq.O)then 

yFIZl = O.OdO 

else 

yFIZ1 = FIZ(ii + ip- l, ij + iq + 2) 

end if 

yFIZ2 = FIZ(ii + ip, ij + iq + l) 

yFIZ3 = FIZ(ii + ip, ij + iq) 

yzint1 = ii*ip*yFIZl 

yzint2 = -(ij*iq+ ij*ip + ii*iq+ 2.0d0*(ip+ iq))*yFIZ2 

yzint3 = (ij*iq +2 .0dO*iq)*yFIZ3 

yzint = yzint 1 + yzint2 + yzint3 

A Y(il,ik) = yrhosum•yzint 

write(24,900) il, ik, A Y(il,ik) 

130 continue 

120 continue 

110 continue 

I 00 continue 

900 format(il, 3x, i3, 3x, dlS.8) 

stop 

r.nd 

C Function to calculate the z integrals using the gamma function. 

real*8 function FIZ(ni,nj) 

Implicit real*8 (a-h, o-z) 
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rni = dble(ni) 

mj = dble(nj) 

call factlog(2*nj, cone) 

call factlog(ni, ctWo) 

call factlog(ni + nj + 1, cthree) 

call factlog(nj, cfour) 

call factlog(2*(ni + nj + 1), ctive) 

csix = dlog10(2.0**(2 .0*rni + 1)) 

clogs 2 cone + ctWo + cthree - cfour - cfive + csi.x 

FIZ = lO.dO**clogs 

rerum 

end 

C Calculates the base-10 logarithm of the factorial of an integer 

subroutine factlog(int, fctlg) 

implicit real*8(a-b, o-z) 

w = O.dO 

do 100 i = 1, int 

di = dble(i) 

w = w + dloglO(di) 

1 00 continue 

fctlg = w 

rerum 
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C readbb.f 

C Similar to above program, but reads mauicies in and does evaluation. 

implicit real•8(a-h, o-z) 

parameter (NN = S, ll = NN*(NN+3)/2, KK = ll) 

character zer*IS, iter•to, bet•IO, den*3S 

C Values for IMSL routine DZBREN 

reai•S ERRABS, ERRREL, A, B 

integer maxfn 

parameter (nroot = 120) 

rea1*8 detm, xguess(nroot) 

external detm, DZBREN 

common/a/ LLL, AA(Ll,KK), AB(LL,KK), AC(LL,KK), AD(LL,KK) 

common/a/ AE(LL,KK), AG(LL,K.K), AP(LL,KK), AQ(LL,KK) 

common/a/ AR(LL,KK), AT(LL,KK), AU(LL,KK), A V(LL,KK) 

common/a/ AX(LL,KK), A Y(LL,KK) 

common/a/ beta, gamma, f 

open(ll, file= 'AA.dat',status = 'old') 

open(l2, file= 'AB.dat',status = 'old') 

open(l3, file = 'AC.dcu ·,status = 'old') 

open(l4, flle = 'AD.dat',status = 'old') 

open(IS, file= 'AE.dat',status = 'old') 

open(16, tile = 'AG.dat' ,status = 'old') 

open(l7, tile= 'AP.dat',status = 'old') 

open(l8, tile= 'AQ.dat',status = 'old') 
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open(l9, tile • 'AR.dat',swus = 'old') 

open(20, flle = 'AT.dat',swus = 'old') 

open(21, file =- 'AU.dat',status ,. 'old') 

open(22, file= 'AV.dat',swus ='old') 

open(23, file • 'AX.dat' ,status • 'old') 

open(24, file z 'AY.dal',swus = 'old') 

open(26, file • 'Zeros.out' ,status • 'unknown') 

open(27, file = 'Hbefor.out',status = 'unknown') 

LLL = LL 

~ • O.OOOdO 

C Select value for irbo 

irbo • 4 

C irbo = 10 

zer • 'Zeroes· 

iter :::a 'Iteratioos' 

write(26, 1071) zer, iter 
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C Values from PREM or NEUT, comqa sec"'-1 , cG m"'3/(ka sec"2). crboPO kg/m"'3, 

C cb km, calpbO seclkm, caam km/sec-2) 

comeaa =- 7.29211Sd·S 

cG = 6.6732d-ll 

cpi = 3.141S927d0 

crboPO =- 12.S81Sd3 

cb ""' 3480.0d0 

calpbO == .0081914306d0 



cgatb = 1.06823d-2 

if (irho.EQ.4) then 

gammat = comega**2.0d0 

else 

ganunab = 2.0dO*cpi*cG*crhoPO 

gamma= gamnwlgammab 

gamnw = 2.0d0*cb*comega••2.0d0 

ganunab = 3.0d0*gatb 

gamma = gamnw/gammab 

end if 

if (irbo .EQ. 4) then 

ftop = 4.0dO*calpb0*(cpi*cG*crhoPO*cd)**2.0dO 

tbot = comega**2.0d0 

else 

f = ftop/tbot 

ftop = 9.0dO*calphO*gatb**2.0dO 

tbot = 4.0d0*comega 

f = ftop/tbot 

end if 

C Staning the loops for the reading of the 14 matricies 

do 100 ii = O,NN 

ijj = 0 

if(ii.eq.O) iii = 1 

do 110 ij = ijj,NN-ii 
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do 120 ip = O,NN 

iqq = 0 

if(ip.eq.O) iqq = 1 

do 130 iq = iqq,NN-ip 

i1 • ii*(2•NN+3-ii)/2 + ij 

ik = ip*(2*NN+3-ip)/2 + iq 

C Start readin1 in the 14 arrays needed 

read(ll, *) ia, ib, AA(il, ik) 

read(12, *) ia, ib, AB(il, ik) 

read(l3, *) ia, ib, AC(il, ik) 

read(l4, *) ia, ib, AD(il, ik) 

read(1S, *) ia, ib, AE(il, ik) 

read(l6, •) ia, ib, AG(il, ik) 

read(l7, *) ia, ib, AP(il, ik) 

read(18, *) ia, ib, AQ(il, ik) 

read(l9, •) ia, ib, AR(il, ik) 

read(20, •) ia, ib, AT(il, ik) 

read(21, •) ia, ib, AU(il, ik) 

read(22, *) ia, ib, AV(U, ik) 

read(23, •) ia, ib, AX(U, ik) 

read(24, •) ia, ib, A Y(il, i.k) 

130 continue 

120 continue 

110 continue 

161 



162 

100 continue 

C The value of the determinant of H is found from the subroutine detm. Where this value 

C changes from pos to neg is where the zeroes are searched for . To start with, nroot 

C guesses, are evaluated to see where the determinant changes sign. Set up the euesses. 

do 4999 ill= 1,nroot 

xpess(kkk) = dble(kkk)/(nroot+ 1) 

4999 ,~ntinue 

C Fina t!le zeroes using the IMSL subroutine DZ8REN 

ERRABS = O.OdO 

ERRREL = l .Od-6 

maxfn = l.Od4 

A= O.OdO 

8 = O.OdO 

do 5000 ill = 1, nroot 

write(27, I 060) ill, xguess(kkk), detm(xguess(ill)) 

A = xeuess(kkk) 

if (kkk.EQ.nroot) then 

B = xguess(kkk) 

else 

8 = 'lguess(kkk + 1) 

eDdif 

A val = detm(A) 

Bval = detm(B) 

if (Aval*8val.LT.O.Od0) then 



eJse 

mufn =- 1000 

call DZBREN(detm, ERRABS, ERRREL, A, B, maxfn) 

write(26, 1070} 8, maxfn 

soto sooo 
eodif 

5000 cootinue 

1060 fomw(i.S, 3x, dl5.8, 3x, d15.9) 

1070 fomw(d15.4, 3x, ilO) 

1071 fomw(5x,a15. 3x. alOI) 

stop 

eod 

C Real function Detm(ll) used to find the determinant of H(l.k) using 

C the IMSL subroutines DLFTRG and DLFDRG. This uses the LU factorization 

C of the matrix. This seems to be ok, even though there are zeroes on 

C the main diasonal. 

REAL •s FUNCTION DETM(X) 

IMPUCIT REAL •S(A-H, 0-Z) 

parameter (NN • 5, LL = NN•(NN + 3)/2, KK = LL) 

parameter (LOA • 20, LDF AC = 20, N • 20) 

inte&a- IPVT(N) 

real•& H(LDA, LDA), DETl, DEn, FAC(LDFAC,LDFAC) 

commDnlaJ LLL, AA(LL,KK), AB(LL,KK), AC(LL,KK), AD(LL,KK} 

commDnla/ AE(LL,KK), AG(LL,KK), AP(LL,KK), AQ(LL,KK) 
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common/a/ AR(LL,KK), AT(LL,KK), AU(LL,KK), AV(LL,KK) 

common/a/ AX(LL,KK), A Y(LL,KK) 

common/a/ beta, gamma, f 

DO 1 L = l,LLL 

002 K a l,LLL 

H(L,K)= l.OdS*(X**6.0dO*(AA(L,K)+ gamma*beta*f*AB(L,K)) 

& +X**4.0d0*(AC(L,K)+gamma*beta*f*AD(L,K)+beta*f*AE(L,K) 

& + gamma*beta*f*f*(2.0d0-beta)* AG(L,K)) 

& +X**2.0d0*(AP(L,K)+gamma*beu*f*AQ(L,K)+beta*f*AR(L,K) 

& +gamma*beta*f-f*(2.0d0-beta)*AT(L,K)+beta*beta*f*t"-AU(L,K)) 

& +beta*f*AV(L,K) + gamma*beta*f*f*(2.0d0-beta)*AX(L,K) 

& + beta*beta*f*f* A Y(L,K)) 

2 CONTINUE 

CONTINUE 

call DLfTRG (N, H, LOA, FAC, LDFAC, IPVl} 

call DLFDRG (N, FAC, LDFAC,IPVT, DETl, DET2) 

detm a det1*10.0**det2 

RETURN 

END 
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