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Abstract. This thesis investigates several theoretical methods for solving the sub-seismic wave
equation (SSWE) in an incompressible or slightly stratified liquid bounded by a rigid fixed
spherical boundary as an approximation to the Earth’s liquid core. The solution of the SSWE
yields eigenvalues for the inertia/gravity wave spectrum. The first method considered uses a
variational principle based on a more general functional than has been previously used to evaluate
the SSWE. The resulting eigenvalues are compared with previous work done by Aldridge and
Toomre (1969). The work is then extended to include a density profile and a shift is noted in the
eigenspectrum. A perturbation approach was used to include stably stratified regions
characterised by negative values of the stability parameter B; unfortunately this method only
works for such small values of B as to be uninteresting. Finally a Galerkin approach was adopted
that allows for the evaluation of negative 8 values. This results in a further change of the inertial

eigenspectrum and the appearance of gravity modes.
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1.1 Introduction and Motivation

Unlike the Earth's surface, the core of the Earth is not directly accessible for study, consequently
much is still unknown about its behaviour. Attempts have been made to characterize this region
using theoretical and observational studies of ray seismology, short-period free oscillations, tides

and wobble/nutation. These studies have generated a great deal of information about the core,

Specifically, studies of ray seismology, tides and wobble/nutation have established the fluidity of
the core. Observation and analysis of seismic wave propagation have allowed determination of
the velocity structure within the liquid core, and established the existence of the inner core.
Studies of short-period free oscillations have helped to determine the solidity of the inner core.
This work has been summarized in an historical sense by Brush (1980). Currently, seismic
tomography is being used to map the topography of the core mantle boundary (Anderson &

Dziewonski 1984).

These short-period free oscillations are what seismologists simply call free oscillations and have
periods on the order of one hour. They are termed short-period here, as a way of distinguishing

them from the much longer period free oscillations that will be discussed later in this work.

Unfortunately, several key properties of the core cannot be firmly established from these studies.

One of the most important is the value and sign of 8, a dimensionless parameter that represents

the fractional departure of the density gradient from a strictly neutral, or adiabatic, value. This
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parameter is defined in section 1.3.2, equation (1.15) and was originally developed by Pekeris
& Accad (1972). The parameter 8 gives an indication of the ability of a region of the core to
convect and shall be referred to as the stability parameter. If the value is positive then that region
will be unstable, if it is negative then it will be stably stratified and if the value is zero then the
region will be neutrally stratified. A study by Masters (1979) using ray seismology estimates an

upper limit of the absolute value of B to be less than 0.03 - 0.05. The value of 8 is related to

another parameter, N, called the Briint-Viisild frequency. This value is defined in v2rms of 8 in

equation (1.16) in section 1.3.2. This frequency refers to the oscillations of a particle about its
equilibrium position in a stably stratified fluid. Thus the oscillations will only occur if 8 is
negative. If the value of B is of the size estimated above and the sign is negative, then the period
of this free oscillation in the Earth’s core would be greater than several hours. This is called a
long-period free oscillation as the period is significantly longer than that for short-period free

oscillations.

There are actually two distinct types of long-period free oscillations that could occur in the
Earth’s core. The type mentioned above are called gravity waves or core undertones and depend
on negative buoyancy for a restoring force. The presence of negative buoyancy implizs stabie
stratification at some location in the Earth’s core. Thus, some part of the Earth’s core would
have to be stably stratified, indicated by a negative 8 value, in order for gravity waves to exist.
Their periods are on the order of 2x/N_,, and longer, where N, is the limiting Briint-Viisili

frequency. As noted earlier, this can be several hours depending on the magnitude of 8.

The other type of long-period free oscillation that could exist in the core is termed an inertial

wave. This type of oscillation depends upon the Coriolis effect as the restoring force. Thus
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inertial waves require rotation for their very existence. Their periods are on the order of half a

day and longer.

If the stratification present in the core is such that the periods of the gravity waves are
comparable with the periods of the inertial waves, then the presence of negative buoyancy will
modify the inertial waves, and the gravity waves will be altered by rotation. This leads to the
terminology of “inertia/gravity waves” when referring to both types of long-period free
oscillations when their spectra overlap. This will occur in a rotating stably stratified liquid for
which the magnitude of the rotation period and 2x/N_,, are comparable. This may well be the

case in some regions in the Earth’s core.

The range of frequency response in the core covered by the short-period free oscillation data is
relatively small, having periods on the order of one hour. This means that only a very small
portion of the Earth’s free oscillation spectrum has actually been well studied. The dominant
restoring force for short-period free oscillations is elasticity, as opposed to the Coriolis effect and

negative buoyancy for the inertia/gravity wave spectrum.

Theoretical studies of short-period free oscillations have generally used spherical harmonic
expansions as a normal mode can be described by a single spherical harmonic. Unfortunately this
is not the case for inertia/gravity wave studies. The cylindrical symmetry that is imposed by
rotation on the problem means that a normal mode can no longer be described by a single
spherical harmonic. A whole chain of spherical harmonics must be used instead. In order to
solve the problem this chain must, at some stage, be truncated. Unfortunately, this truncation

makes the solutions inaccurate and other methods of solution need to be investigated.
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In an effort to simplify the mathematics of the inertia/gravity wave problem, Smylie & Rochester

(1981) introduced the subseismic approximation (SSA). It was hoped that this simplification

would suggest an alternative method of solution that avoided or simplified the spherical harmonic

expressions. The equation resulting from this simplification, known as the subseismic wave
equation (SSWE), can be solved using a novel separation of variables under very specific
conditions (Smylie & Rochester 1986a). However, solving this equation using spherical
harmonics still results in a truncation problem. Other methods of solution of this equation have

also been summarized by Rochester (1989).

Despite the progress made on the theoretical front, recognition of a signal from inertia/gravity
waves will be difficult. The detection of a long period gravity signal interpretable as evidence
of core waves could provide additional constraints on core properties, in particular 8, as was first
pointed out by Smylie (1974). However, such waves produce very small changes in density at
great distances from the instrument and consequently a very small gravity signal is produced.
The extreme sensitivity of superconducting gravimeters suggests they are the instrument of choice
for observing these signals, and close to a dozen are now deployed worldwide with this as one
of the principal objectives. While Melchior & Ducarme (1986) reported observations suggesting
the detection of gravity waves, and Aldridge & Lumb (1987) argued that these same observations
could be interpreted as due to inertial waves, both of these explanations have been contested by
Zurn et al. (1987). At present all that can be said with certainty is that more data from globally

distributed instruments are needed before unambiguous interpretations becoms possible.

Setting aside these vbservational difficulties, the mathematical description of the inertia/gravity

wave spectrum of a rotating liquid-filled spherical shell still presents challenges which must be
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met before the observations can be reliably interpreted. This thesis is concerned with one aspect

of this theory, namely the use of a variational principle to describe the axisymmetric modes of
a compressible neutral or stably stratified rotating liquid filling a rigid spherical container, as a

first approximation to representing the Earth’s liquid core.

1.2 Review of Previous Work

This section summarizes previous work on: (1) the state of the liquid core, (2) inertial wave

theory, and (3) inertia/gravity wave theory applied to the Earth's core.

1.2.1 State of the Liquid Core

The most readily available source of Earth-penetrating energy is that supplied by earthquakes.
This energy was used by Jeffreys (1926), who established the fluidity of the Earth’s core. He
showed that the presence of a large zero-rigidity core surrounded by a mantle with a rigidity
determined from ray seismology led to an Earth with a mean rigidity corresponding to that
inferred earlier from solid Earth tides and the Chandler wobble period. The idea that the fluid
core is convecting has been argued on several different points, including considerations of heat,
summarized by Stacey (1977). While the arguments for thermal convection given by Elsasser
(1950) as an explanation of the geodynamo were convincing at the time, evidence now suggests
that convection in the core may be compositional. This would be due to gravitational segregation

of light and heavy fractions of the inhomogeneous core material. In fact it may be possible for




dynamo action to occur in stably stratified regions of the core (Singer & Olson 1984).

Other observations of Earth behaviour have provided information about the core. Benioff ef al.
(1954) devised a long period strain meter in an attempt to record natural periods of whole-Earth
oscillations. These were predicted theoretically by Love (1911). While the Kamchatka
earthquake of 1952 provided initial results that were considered to be short-period free
oscillations, an unambiguous observation of this type of oscillation was made immediately

following the 1960 Chilean earthquake.

These early observations were used by Alterman e al. (1959) to test several theoretical models
(Bullen 1950, Bullard 1957) which were based on data from higher frequency ray seismology.
Their inference that free oscillations correlated better with the Bullen B model, with an inner

core, was really only confirmed by the data from the Chilean earthquake just mentioned.

An earthquake in Alaska in 1964 further confirmed the existence of whole Earth short-period free
oscillations, and provided a wealth of new data. Dziewonski & Gilbert (1972) used this data to
refine the current model of the Eartn’s interior and to establish the solidity of the inner core.
While the density distribution is fairly well known from short-period free oscillation data, the
details of its departure from a strictly neutral gradient are not well constrained by these data.
Consequently, the sign and size of the stability parameter in the core remain unknown in spite

of the information provided by short-period free oscillation data.

A compilation of seismic, free oscillation and nutation data enabled Dziewonski & Anderson

(1981) to establish the preliminary reference Earth model or PREM. This model provides a basic
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reference state for many Earth parameters, including density, for consistent studies of the Earth.
In this widely accepted model of the Earth, the liquid core is mostly neutrally stratified. An
argument for stable regions in the core has also been given by Gubbins e af. (1982), who
inferred properties of the core’s outer layers from the geomagnetic secular variation. Thus the
state of the Earth’s liquid core may allow the existence of long-period free oscillations, as
inertia/gravity waves. While initial results have been interpreted as both core undertones
(Melchior & Ducarme 1986) and as inertial waves (Aldridge & Lumb 1987) more data needs to

be collected before these results can be fully understood.

1.2.2 Theory of Inertial Waves

The theory of inertial waves was established by Poincaré (1885), who developed the equation for

oscillations in an homogeneous, incompressible, rotating, and inviscid fluid. This equation, (later

called the Poincaré equation), describes pure inertial waves and can be solved analytically. A

method of solution was developed by Bryan (1889), using a double transformation to obtain an
"oblate spheroidal” coordinate system, which allowed separable solutions to the Poincaré problem
and were represented as products of Legendre functions. Thus, the theoretical foundation for

inertial waves in a rigid, spherical container was established.

Kudlick (1966) greatly expanded the theoretical work on this problem by investigating several
effects. He was able to expand the linear theory to include the effects of viscosity by using a
superposition of the natural oscillatory modes of the inviscid problem that had been corrected to

first order for the effects of viscosity. He also extended the theory to include containers of
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arbitrary shape and investigated the effects of an oscillatory body force applied to the container

walls, Of particular interest to studies of the Earth, he found a first order inviscid solution for

a precessing, fluid filled, rotating spheroid.

Greenspan (1968) provided an excellent summary of rotating fluid dynamic theory. This work
considered rotating fluids exclusively, and included a comprehensive investigation of viscosity

effects.

A simplified form of Bryan's (1889) solution to the Poincaré problem was found by Aldridge &
Toomre (1969). The simplified solutions, which can only be obtained for the case of an
incompressible liquid inside a rigid ellipsoidal boundary, were presented as polynomials in
cylindrical coordinates for the spherical and spheroidal modes. They also conducted experiments
on fluids contained in a rotating sphere for the case when viscosity is considered. The observed
spectrum of oscillations obtained from these trials matched well with the values they predicted
theoretically, where the analytical solution is possible only for the case of an incompressible
liquid inside a rigid ellipsoidal boundary. This experimental set up can be considered as a crude
model of the Earth, and the presence of these waves gave impetus to further investigation of more

realistic Earth models.

The actual configuration of the Earth’s core, a thick shell, presents mathematical difficulties in
the theory of inertial waves, as the presence of an inner core renders the problem ill-posed
{(Stewartson & Rickard 1969). An attempt was made by Aldridge (1972) to circumvent the ill-

posed nature of the inertial wave problem in a thick shell by using a variational formulation of

the Poincaré equation. Although no analytical solution was found, his experimental results




indicated that inertial waves do exist in the thick shell configuration.

1.2.3 Inertia/Gravity Wave Theory for the Earth’s Core: the Subseismic Wave Equation (SSWE)

A study of gravity waves by Pekeris & Accad (1972) in a nonrotating Earth model was done
using asymptotic theory to the solution of the short-period free oscillation formulation. However,
as the model considered was ronrotating, the Coriolis force was missing in the treatment of this
probiem; this was shown later to have a very large effect on the solut’ons (Smylie 1974, Juhnson
& Smylie 1977). By including the effects of rotation the mathematics of the problem were
considerably complicated. When traditional vector spherical harmonics were used to solve this
formulation of the problem, the rotational coupling of formerly independent displacement fields
of different degree resulted in each normal mode displacement being represented by an infinite
chain of spheroidal and toroidal fields. Numerical calculaticns of course require severe truncation

of such chains, which can make the results obtained inconclusive.

Smylie & Rochester (1981) sought to reformulate the problem of inertia/gravity waves in the
Earth's core by means of a scaling argument applied to the basic equations. They were able to
make the "subseismic’ approxirmation (SSA) which neglects the effects of flow pressure on density
at sub-acoustic frequencies. This in turn led to the subseismic wave equation (SSWE), which
governs large scale rotating core dynamics in the sub-acoustic frequency range. It should be
noted that the SSWE reduces to the familiar Poincaré equation when the core is treated as

homogeneous and incompressible. They also considered the possible regions of stability in the

core that can support these oscillations. Further work by Crossley (1984) investigated the
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possible frequency regimes, excitation and damping mechanism for these waves. See also the

summary by Smylie et al. (1984).

A qualitative investigation by Friedlander (1985) determined several regions in the Earth’s core
where inertia/gravity waves could exist. The stru-ture and location of these regions is very
sensitive to the stability structure within the core, confirming the suitability of these waves for
use in studying the stability parameter. This work was extended in Friedlander (1987) where
asymptotic solutions were extended from limited known solutions. Further investigations in

Fricdlander (1988) also considered very long period oscillations affected by a magnetic field.

A solution of the SSWE using the separation of variables technique was attempted by Smylie &
Rochester (1986a). These solutions were restricted to the case where the Briint-Viisild frequency
N, and the local compressibility number were uniform throughout the core. This work does
demonstrate the relationship between the solutions and physical conditions in the core. A
variational principle developed by Smylie & Rochester (1986b) offered an alternative and more
powerful method of solution. Unfortunate mistakes in this formulation were discovered and later
corrected by Rochester (1989) in a summary of work done on the SSWE. In this summary,
several different solution techniques for the SSWE were explored, including separable solutions,
asymptotic solutions and the variational principle. A discussion of the formulation of a
variational principle for the SSWE alone (i.e. decoupled from the Poisson equation) is given by
Wu & Rochester (1990), where they note that it can be developed for a stratified core with
deformable boundaries, but only if the stratification is neutral. Recent work by Crossley &
Rochester (1991) has shown that for long-period oscillations the subseismic approximation is valid

in the interior o "the liquid core but becomes unusable at the boundaries.

/L‘r‘.‘ ‘: o / .
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1.3 The Governing Equations of Core Dynamics

In order to study motion within the Earth's core, an equilibrium reference state must first be
chosen. The departures from this state will then define the motions of interest. The reference
state chosen here, as an approximation to real core conditions, is of an inviscid fluid in
hydrostatic equilibrium in a uniformly rotating coordinate system. The equilibrium gravity, g..

is given by:

g, = -VV, (1.1)

where V, is the equilibrium gravitational potential. The Lorentz force is negligible for the time
scale of the Earth’s rotation and is ignored (Crossley & Smylie, 1975). Starting with these
considarations the SSWE can be derived from the basic equations of fluid dynamics as found in
Greenspan (1968, pp. 11-12). Notation has been changed here and the formulation includes the

Poisson equation to account for the effects of self-gravitation.

The linearized equations of motion, that describe the Eulerian departure of the density (p,),
pressure (P,), and gravitational potential (V,) from their equilibrium values (o, P,, V,), are the

conservation of mass, momentum, entropy and gravitational flux for a self-gravitating system:
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3
P _ ~(¥'Vp, + po V') (1.2)
&
3 L 20xy=VV, - Lvp, - By, (1.3)
o Po Po
P
A, -p, (a2V-v - v-VV,) (1.4)
E
V2V, = -4xGp, (1.5)

where v is velocity, ¢ is time, a is the compressional wave speed in the core, G is the
gravitational constant and @ is the angular velocity of the steadily rotating reference frame. As
the liquid is treated as inviscid, dissipative effects are missing from equations (1.3) and (1.4).

The system of equations, (1.2-1.5), must be solved o describe the motions in the core.
In order to solve these equations the Lagrangian displacement from an equilibrium location of a

liquid mass element is defined as u. As small departures from equilibrium are being considered,

this displacement u can be expressed as:

(1.6)

_ o
v=—.
o
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The frequency of these small oscillations will be given by w. These oscillations can then be

represented by:

u(r,t) = Relu(r) ¢'*)

where u(r) is generally a complex expression. This will replace equations involving real
quantities with equations that are real parts of complex equations. Similar expressions can also
be written for p,, V;, and P,. Substituting (1.6) and (1.7) into the governing equations (1.2 - 1.5)

results in:

1

-w?u + 2iwQxu = VY, - ~vp, - Dlyy

Pe Po

Py, = -p, (a2 V'u-uVV,)

V2V, = -45Gp,

where the equations now relate complex field quantities but involve only spatial differentiation.




For the sake of future simplification, the scalar field variable x can be defined as:

This can be substituted into equation (1.9) to give:

w2y +2iwlxu = -Vy + }"1 V(.l) - f_‘.vyo

for the momentum equation.

1.3.1 Density Gradient

In order to consider departures of the equilibrium density gradient (Vp,) from the adiabatic

stratification assumed by the Adams-Williamson equation (Melchior 1986), Pekeris & Accad

(1972) introduced 8, the stability parameter. This parameter changes the Adams-Williamson

equation;

that describes an adiabatically or neutrally stratified fluid, to:
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Pok

Vpoa(I-B)--"z—° {1.15)
a

which can also describe a tluid that is stably or unstably stratified. If § = 0, the fluid is neutrally

stratified and the equation reduces to the Adams-Williamson equation. Otherwise as 8 < 0 or

B > 0, the fluid is locally stably or unstably stratified, respectively. In general 8 is expected to

be radially dependent, but for simplicity core models with a constant 8 will be considered.

The stability parameter, B, is related to the Briint-Viisili frequency (Melchior 1986), N, which
describes the frequency of oscillation of a particle about its equilibrium point in a stably stratified
density profile. This parameter is more commonly used in oceanography and is related to the

stability parameter by:

N - _BES (1.16)

The equations which govern dynamics in the core can now be written with the inclusion of the

stability parameter as:

-w?u +2iwQxu = -Vy + pg,Vu (1.17)
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V2V, = 4G [p, V' + -(ljp—)p,u-g,) (1.18)

where both the conservation of mass equation (1.8) and the entropy conservation equation (1.10)

have been decoupled from the equations by substituting for p, and P, respectively. Even this

reduced system of equations in general cannot be solved exactly without encountering the

truncation problem already mentioned.

1.3.2 Sub-Seismic Approximation

In previous studies of long-period free oscillations of the core (e.g. Greenspan 1968), the

solenoidal flow approximation,

has been made in th¢ entropy conservation equation. The incompressibility approximation is
made in an attempt to simplify the mathematics of obtaining solutions in the presence of rotation.
While this approximation is applicable in laboratory conditions, it should not be used in the core
where compression is a factor. Therefore, a different approximation from the solenoidal flow
approximation needs to be made in the governing equations. This approximation needs to

simplify the mathematics yet preserve the physics of a compressible core.
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This approximation was formulated by Smylie & Rochester (1981) who used a scaling argument

to eliminate a term in the entropy conservation equation (1.10). This was done by calculating
the magnitude of individual terms in the entropy conservation equation after choosing realistic

values for particular Earth properties. Equation (1.10) can be rewritten as:

These terms relate the local compression of the LHS, to the effect of compression due to flow
pressure, and compression due to transport through the equilibrium pressure gradient, the first
and second terms of the RHS. By writing the governing equations in dimensionless form, using
characteristic values for Earth properties, and considering a longer time scale than that used in
conventiona’ seismology, Staylie & Rochester (1981) demonstrated that the first term of the right
hand side can b2 climinated from the system of equations. This is because it is at least 3 orders
of magnitude smaller than other tzrms, and contrasts to the situation in the acoustic frequency
range where this term is substantial. This neglects the effect of compression due to flow pressure
in the governing equations and is termed the subseismic approximation. [t leads to a simplified

expression for the entropy conservation equation:

This expression can also be rewritten as:




-]-Pidw,
Po =Poe °

and where W, is the gravitational potential that includes rotation effects. The simplified form of

the entropy conservation equation (1.22) will be used later.

Making the substitution of (1.21) into the governing equations (1.17 and 1.18) we arrive at:

0%y + 2i0 Qxu = -Vy + ‘Ez S, U'8,
o

B
‘;" u'g,-

V2V, = -4xG
a

Equation (1.12) is used to obtain P, from x and V, after these potentials have been obtained from

equations (1.24) and (1.25).

At this point no further approximations are needed and the subseismic wave equation (SSWE) can

be derived directly from equation (1.24). To do this, both the dot and cross products of (1.24)
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with e,, the unit vector parallel to @, must be formed. These results are substituted back into

(1.24). This expression is then solved for u by forming various other products of the original

expression. When this is finished the result is a simple expression:

=T Vg

where:

. R
uz(o’—1)

{021 - ege, - +io egx1}

C=-0%g,+(65:8,)e5 +i0 egxg,

2,2 2__1 .
B = &é"_) + ozgoz - (‘l.‘olz

and o is defined as:

{1.26)

(1.27)

(1.28)

(1.29)

(1.30)

where C” is the complex conjugate of C, and 1 is the unit dyadic. The SSWE can now be given,

by combining (1.22) and (1.26) as:




V:(pg I'"Vx) = 0.

The momentum equation (1.26) and the subseismic wave equation (1.31) were first given in this

form by Rochester (1989).

1.3.3 Boundary Conditions

The final consideration is that of the boundary conditions. Three types of boundaries seem
plausible for problems of the kind we are considering: rigid fixed, deformable, and free
boundaries. The boundary condition explored here is a rigid fixed boundary, an approximation

to real Earth conditions at the core mantle boundary (CMB). This means there is no mechanical

energy exchange between the core and the rest of the Earth. The free boundary condition would

be used in the study of stars and the deformable condition could be used in a more detailed study
of the core than that presented here. The rigid fixed boundary condition is formed by noting that

the normal component of the displacement vector must be zero at the boundary, or:

where a is the unit normal vector. By noting that the normal vector can be written as:




because the equilibrium gravity, g, is everywhere normal to the core mantle boundary, an

alternative expression for the boundary condition can be given as:

When this is expanded as:

-azgon-Vx + (‘3'30)('8'VX) + io('lx‘o)'vl

it is seen 1o be a very complicated boundary condition as it involves several different components
of Vx and also contains o, the dimensionless frequency. Fortunately, in chapter 2, (1.34) will
be shown to be a ’natural’ boundary condition when solving (1.31) by means of a variational
principle, and thus need not be invoked independently to constrain the solutions. The solution
to the problem of long period free oscillations in the core is then found by solving (1.31) for x

and subsequently solving for u, p,, V, and P, in equations (1.26), (1.8), (1.25) and (1.12)

respectively.
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1.4 Solving the Subseismic Wave Equation: Prospectus

There are several methods that can be used to solve the subseismic wave equation. Many of these
have been examined by Rochester (1989): separable solutions, asymptotic solutions, and the

variational principle. In this work, the variational principle, asympiotic solutions and a Galerkin

approach are explored.

This thesis investigates several different methods of solution of the subseismic wave equation in

an incompressible or slightly stably stratified liquid bounded by a rigid fixed spherical surface,
as a preliminary to an attack oni the inertial/gravity wave spectrum for mor. realistic Earth
models. In the next chapter, the variational principle is applied to the Poincaré equation (as a
limiting form of the SSWE) to reproduce the results obtained by Aldridge & Toomre (1969).
This will demonstrate the utility of the variational principle for the SSWE, which retains the
ability to examine more of the problem than the formulation provided by Aldridge & Toomre
(1969). Such is done in chapter 3 where the effect of compressibility is studied using a radial
density profile from the Preliminary Reference Earth Model (PRFM) of Dziewonski & Anderson
(1981). In the fourth chapter the perturbation approach is employed to establish the response of
the system when the stability parameter, 8, is nonzero. Finally, in chapter 5, the Galerkin
approach is used with both a neutrally and stably stratified density profile. Several variations of
this approach are considered to delineate chang>s in inertial frequencies and detect new gravity

modes. The results are then compared with the previous methods. The final chapter summarizes

the work done and briefly explores some of the possibilities for further research.




2.1 Introduction

The purpose of this chapter is first to review the demonstration that a variational principle can
be used as a method of solution for the SSWE. The resulting functionai, which is more general
than that derived by Aldridge (1972) for axisymmetric solutions of the Pnincaré equation, is then
used to reproduce the eigenvalue results of Aldridge and Toomre (1969), hereafter referred to as

A&T.

2.2 Variational Principle

The variational principle will be applied to a functional where the SSA has been made throughout

the fluid volume and the outer boundary is considered to be rigid and fixed. The functional

chosen for this work is:

F-fx'ﬂxdv + [-y‘n'udr

where x and y are arbitrary functions we are free to choose and £ is defined as the linear

operator for the SSWE;




2y = V-(po I Vx).

We need to ensure that this functional is suitable for the implementation of a variational principle

with trial functions x which do not satisfy the rigid fixed boundary condition:

Implementing a variation in the functional, x and 8y, we obtain:

8F = [(8x° 2y + 8x (Lx)'}dv
+ f(&*'ru + ¢y'n-dulds

+ w2(o?2-1) f(pf,x‘u-bu - podxm-ulds

where 8x and &y are arbitrary in the volume and on the boundary. Rearranging terms we can

write:

8F - f(bx‘&!x + 8y (L)) dv

4
- f&x‘n'uds + 0¥ (o0? - 1)fp',bxu-u'ds

= fhr + w2(o? - 1)pl x*In-Bu ds

=0




|
¥
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for a choice of:

¥ = -w?(o? - 1)p x (2.6)

at the boundary without restricting the choice of 5x or du. Therefore with ¢ chosen as above we

have demonstrated that:

4y =0 inv
3F=0 = and (2.7)
n'u =0 on the boundary.

since 6F = 0 only if both of these statements are true in equation (2.4) above. Thus for the
functional F so chosen, we have demonstrated that a variational principie can be implemented
with trial functions x that do not need to independently satisfy the boundary condition. This

boundary condition is then called a natural boundary condition.

The functional F in equation (2.1) can be rewritten, first by substituting for ¥, and & to get:
Fo[xV(poTVa) dv - w(o? - 1) [p} x"m-uds. (2.8)
v 2

Next substituting for 4 and using a vector theorem yields:
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Fx[19-(x" 0o T"Va) - W po T'Valdv - [pux'm-T'Vads.  (2.9)
v s

Then using the divergence theorem this becomes:
F~- [x'pin'l"vxdv - ]:Vx‘p:l"vxdv - {pﬁx'rl"vx ds. (2.10)
And we are left with:
F = -{pZVx"I"Vx dv. (2.11)

This is only true for the rigid fixed boundary condition; if free or deformable boundaries were

being considered, then other terms would need to be added to the functional in equation (2.1) to

account for these conditions.

2.3 Approximations to Produce the Poincaré Eguation

Attention can now be given to the specific problem that A&T considered, which consisted of
axisymmetric, inertial oscillations in a homogeneous, incompressible fluid-filled sphere. Several
approximations can now be made to the governing subseismic wave equation. The homogeneous

condition means that density is independent of location and consequently p,' is a constant. The

incompressible condition implies that the acoustic wave speed is infinite, with @ = . In reality
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a is observed to be 8-10 km/s. This assumption makes the value of B = oo, thus ¢liminating

the third term in (1.27), and reduces the expression for I to T,:

T, = (0®1 - ese, + io &1}

and since p. is now a constant, the SSWE (1.31) reduces to:

VT, V) = 0

which when expanded yields:

02V2y - (e VP =0

the well known Poincaré equation. The rigid fixed boundary condition (u'n=0) is still natural

in the reduced expression and the functional can simply be written as:

Fx) = [V, Vy dv

and the variational principle can be applied.
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2.4 General Form of the Trial Function

Up to now, no consideration has been given to the construction of the trial function x. The

azimuthal dependence ¢, can be separated out by writing:

X(*p*z-moo)ei.. (2.16)

with §, and ¥, any independent curvilinear coordinates orthogonal to ¢: cylindrical coordinates
(R, Z) have been adopted in this thesis. This form for x is now substituted in the simplified

functional, (2.15), and can be expanded as:

mo(egxn) @

Jds  (2.17)
R

F=o[|Vifdv - [legVul*av + [Ix*]
v v 2

where R is the radial coordinate of cylindrical coordinates. This formulation explicitly
demonstrates the azimuthal dependence of the third term which results from the application of the
divergence theorem. It is also apparent that the separation of azimuthal dependence from x has
left the integrands in (2.17) in a form which clearly indicates that x(R, Z, m, o) can be treated
as entirely real as all terms are squared. However, in order to consider the axisymmetric case,
as A&T did using a stream function, m, the azimuthal number must be set equal to zero. The
option to explore nonaxisymmetric cases demonstrates one advantage of the use of x, over that

of a stream function. The nonaxisymmetric case would involve the introduction of new

oscillation modes and result in the modification of previously discovered modes due to the
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presence of ¢ in the final term of the functional. Considering the axisymmetric case, m = 0, the

functional (2.17) reduces to:

F = [Io* (% - leg Vu[?} dv.

The application of the variational principle can now be considered in more detail.

2.5 General Solution Method

In order to proceed with the variational principle, the trial function y is represented as a linear

combination of basis functions as:

x =3 ¢,

’

where the ¢,’s are constants to be determined, and the ¢,’s are the basis functions that must be
selected. By substituting this general form of x in the axisymmetric functional (2.18), the resuit

is:

F=Y Y c,c, [{02(%,)(V8,) - (e5:V0,) (5 %8,)} dv.
r e v
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This can be simplified by defining the matrix G, in the functional as:
F=Y Y ¢cG,. (2.21)
F]

Now the variational principle can be applied by taking the variation of the functional with respect

to constant, ¢, to give:

F
o =0 then 3,6, + ¥ ¢,Gyp =0 (2.22)
(4 14 q

where the variation has now been transferred to the ¢; constants. The matrix G is obviously

symmetric, since all the terms involve squares of quantities. The problem thus reduces to:
Y Gy=0 or Ge=0 (2.23)
an eigenvalue/eigenvector problem where;

det G =0 (2.24)

gives the eigenvalues, o, and the constants, c,, give the associated eigenvectors.




2.6 Specific Formulation of x and Results

At first it would seem that any linearly independent set of functions could be used to construct
the trial functions. For example, in spherical coordinates, (r and ©), x might be constructed

from:

»P N
x=Y Y on sin 257 P} (cos0) where n2|m|
p=0 =0 a

with @ as the radius to the core-mantle boundary. The different values of p explore the radial
dependence and the various values of n explore the angular dependence. However, the problem

as a whole must be carefully considered to ensure that an appropriate trial function is chosen.

When constructing a suitable trial function, it is helpful to compare the procedure used by A&T
with our work. Since they considered the axisymmetric case for an incompressible fluid (o =
), they were able to formulate the problem in terms of a stream function. A comparison can
be made between this stream function y of A&T and the current formulation for the trial function
x by noting that displacement u is proportional to the velocity v used in A&T. The two are
related since the displacement, u leads to a velocity of: ¥ = i w 4, which when equated with the

velocity components from the stream function of A&T results in:

a’RQl = Q\[ and R(az-1)% = -.‘2‘4!.

R dZ OoR
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when expressed in cylindrical coordinates (R,Z). Thus a possible construction for the trial
function x is suggested by the formulation of y used by Aldridge (1972, p. 34). In order to
compare results with those obtained by A&T, attention is confined to those axisymmetric modes

compatible with the excitation method used in the experiments performed by A&T, namely:

% -0 on R=0 and -0 o z-0. (2.27)
aR oz

These restrictions mean that there is no flow across the rotation axis and no flow across the

equatorial plane respectively. Thus x should have the form (in cylindrical coordinates) of:

N N-i .
=Y c, R¥Z¥%
l-O /-0.

where &, is the Kronecker delta symbol and N is sufficiently large to ensure that all the
eigenfrequencies of interest are found. That this should be a successful form for x to take is also
apparent from the similarity to the trial function used by Aldridge (1967), which provides an

exact solution to the problem in the homogeneous, incompressible case, the same as that being

considered here.

It is important to note that cylindrical coordinates have been chosen here. While this may seem
like an odd choice when working with a spherical boundary, a comparison of the expanded

functional in the cylindrical:
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o2 (i;ile)z + (o2 -1)(%’%)2 dv (2.29)

&

and spherical coordinate systems:
p.ozj{(él)2+.(1_‘_z_zl(§l)2_ &, -2« } dv (2.30)
. o P & or ro o

suggests that the equations are much more straightforward in cylindrical coordinates. This is due
to the cylindrical symmetry imposed on the problem by rotation, which is more important than
the spherical shape of the boundary. The actual integration of resulting expressions can be

carried out in cylindrical or spherical coordinates, depending on which is simpler.

Since in this formulation the boundary condition is natural, no attempt is made to force the trial
function to satisfy it. The trial function (2.28) is then substituted into the functional (2.29),

resulting in:

F = ozc - (1 —qz)f (2.31)

where

"1 -?
f R2U--Y) 220D p 47 4R (2.32)
°
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N- N-1 N- v E
f - f RZ(lol) zZUoI-ﬂRdZdR
is0 <0 1-1 °

and a constant factor of 32x has been dropped, the integration limits result from normalizing the
radius of the spherical boundary to unity. These terms can then be integrated in cylindrical

coordinates to yield:

ik = (i+h)] (-1y

i+k ;55 A(i+k-r) [2(+1+r)+1]

ik

(i + k) 1 (235
ivk+1 ;33 Ali+k-r)l [4(j+1+12-1]

The integration over the Z coordinate was performed using binomial coefficients since:

1 P , 1
2» 1- 2v¢ = 9"‘12 2r+2p
5;:2':{: (- 5’.32.320 rl(q-r)l;{z %

(2.36)

- S gl-y 1
?22 rl(g-r)! 2(r+p)+1’

q =0
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This integration can be performed in other equivalent ways that are detailed in Appendix A.
Taking the variation of (2.31) with respect to the c;’s results in the eigenvalue problem that needs
to be solved for the dimensionless frequency 0. By noting that ¢ and fare symmetric with respect
to the pairs of indices (i/) and (k,[), the resulting eigenvalue/eigenvector equations can be written

as:

Yok Gt 1y
{bk ,.z; ri(i+k-r)l [2(i+1+1)+1]

vk

}eu

2jt (i+B)1 -1y . o

i+k+1 3 rl(ivk-r)! l40_””)2_"}‘-'u

The summation limits have been changed to reflect only those contributions that are non-zero.
The non-zero contribut'ons given by i and j correspond exactly to these limits. The restructuring
of the limits allows for simplification of the calculations because values of ¢ = 0 and | can be
immediately eliminated, as the eigenfrequencies for this boundary value problem lie in the range
0 < ¢ < 1. This is done by noting three distinct contributions to the eigenvalue/eigenvector
equations where now the range of i and j do not exactly correspond to the range of k and !:

1. Fori=0,j=1toN

the contribution is:

N-1 &

2 21 kl (_1)r i
%% e L et mgeren 0
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2. Fori=1woN,j=0

the contribution is:

S T U (YT N ) 4 . (2.39)
,2,,2;, {Hk Z% rl(i+k-r)! [2(l+r)+1]] 0.

3. Fori=1;f=1to N-i

the contribution is:

N N-k i+k
2 (i k)1 (-1
° ‘.);: P (i m < k-l [2(]+I+r)+1]}

(2.40)

N-1N-k dok
(102 ). o
(-0 )}g 0 1=1 ‘l"’k+1 ,z.‘:) rl(l*k-f)l [40*1*’)’ 1] )C

In order to express these in matrix form, as G ¢ = 0, it is necessary to transform from the double

index (i /) to a single index (say p). This is accomplished with:

P =j#i‘2N+3-i[
2

hk(21‘1+3-k[
2

(2.41)

and the problem can be expressed as:




The eigenvalues are found from:

This is now an algebraic problem that can be solved using a computer program. The details of
the program spS.f are found in Appendix B. The frequency range searched was from zero to
one. The program uses the IMSL subroutine DZREAL to search for the eigenvalues from the
determinant. The value used for N was initially N = 3, then N = 4 and finally N = 5. The
value N = 5 reproduced the results of A & T. Larger values of N had no effect on these

eigenfrequencies, but of course permitted new ones to be found.

The results obtained from the program exactly match those given by A&T (Table 1). This

demonstrates the validity of the application of the variational principle as a method of solution

for the Poincaré equation, when implemented with trial functions which take advantage of the

"natural’ property of the rigid fixed boundary condition.

The next chapter will introduce a density profile into the equations as a better apnroximation of

a realistic Earth model.
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Table 1. Comparison of Dimensionless Eigenfrequencies Obtained by Aldridge
and Toomre (1969) and from the Application of the Variational
Principle to the Poincaré Equation.

Aldridge and Program Program Program
Toomre (1969) i = i =4 withN =5
0.6547 0.6547 0.6547 0.6547
0.4688 0.4688 0.4688 0.4688
0.8302 0.8302 0.8302 0.8302
0.3631 0.3631 0.3631
0.6772 0.6772 0.6772
0.8998 0.8998 0.8998
0.2958 0.2958
0.5652 0.5652
0.7845 0.7845
0.9340 0.9340




3.1 Introduction

In this chapter a density profile is included in the model of a neutrally stratified, rotating, self
gravitating liguid sphere enclosed by a rigid fixed boundary to determine its effect on the inertial
wave eigenfrequencies. The eigenvectors for these eigenfrequencies are also obtained as they will

be used in the next chapter.

3.2 Density Profile (PREM)

In order to make the working model approach conditions in the Earth’s core, the density profile
chosen is that given by Dziewonski and Anderson (1981) in their Preliminary Reference Earth
Modet (PREM), for the outer core. The density expression is a third degree polynomial that is
extended to the centre of the working model since the inner core is currently not being
considered. There are three problems with this that must be addressed. The first is that the
chosen density profile is not actually valid at the centre of a sphere because the second term in
the polynomial does not ensure that gravity is zero there. However, this profile is valid
everywhere else in the model core so its use is justified as a first approximation to actual core

conditions. The second problem is that the stability parameter, 8, resulting from this density

profile is nonzero near the inner core boundary and near the outer core boundary. However, it

is neutral in a major portion of the liquid core, so using 8 = 0 in the formulation of the problem




40
is justified for this initial approximation. Figure 1 demonstrates the range of values of B(r)
throughout the liquid core of the PREM model. The nonzero portions of f(r) are most likely
due to the choice by Dziewonski and Anderson (1981), of third degree polynomials for
representing Earth parameters. Later, in Chapter 5, a density profile will be developed which
is essentially neutral throughout the core. The third difficulty is the ill-posed nature of the

problem when an inner core boundary is included (Stewartson & Rickard 1969). This is avoided

in the present work by using a fluid sphere.

3.3 Variational Formulation of the Eigenvalue Problem (PREM Core)

The actual density profile used is:

4
po(u) = Y p,u"!

ms1

where the coefficients of the polynomial expression from PREM have been renormalized to an
average outer core radius of 3480 km and are given by:

o 12.5815

[ -0.6903191

95 -1.0868125

P -0.900929

where the units are gms/cm®. The dimensionless radius u is defined as: u = r/b where b is the
radius of the sphere representing the outer core boundary and r is the radius in the outer core

which has been extended to the centre, The symbol m has been used as a summation index here
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Figure 1. Variation of beta with radius in the liquid core. Values are from PREM.
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and henceforth as it is no longer needed to stand for an azimuthal quantum number as our

attention has been restricted to axisymmetric oscillations.

The addition of a density profile does not significantly change the mathematics of the problem.

The functional now becomes:
F=ofp,|VXI2dv - [ py &g Va|2 v (3.2
v v

where p, is the polynomial density expression given above and renormalized from PREM. This
is analogous to equation (2.18) in Chapter 2. The boundary condition is still natural and does
not need to be considered further. This formulation will give a quick check on the effect, upon
the inertial wave eigenfrequencies calculated for a homogeneous liquid, of introducing

compressibility via a neutral density profile.

The functional (3.2) above, can be expanded to:

F =[(ozp°(§§)z . (02-1)p°(g§)2)dv (3.3)

where the terms of p, are given in spherical coordinates and the derivatives are in cylindrical
coordinates. By transforming the derivative expressions into spherical coordinates just for the

integration of the expression, the mathematics of the problem are significantly simplified. Care

must be taken to ensure that the density coefficients are properly normalized. The integration




results in:

N-i N-k

F = 022 EE E dli,}, k1) €ylu

N IRE

N-1N-IN-1 N-k

s (-1 YT Y Y Y flii ki) ¢ ey

=0 ja1 k=0 =

4 isk-1
o p (i+k-1) (1)
d(iji k1) = ik .
(Liik1) = ik 3 T F(iok-1-r)12(+1or)+1

ik

. Pu (i+k)! (1)
fiiik) "’?—;, m+2(ivjokel) grl(nk-r)lzuun)q

and p,, are the coefficients of the PREM polynomial for density in the outer core as given earlier.
The summation limits indicate the nonzero contributions. Again applying the variational principle

results in an eigenvalue system similar to equation (2.37) in Chapter 2. The equations are now:




o?d(ijikl) ¢, - (1-0?) flijikd) ¢, = O (3.7)

where d and f are defined above and the summations have been dropped for clarity. At no point
in the summation do the denominators of these terms go to zero, so all terms can be calculated.
These expressions can now be easily programmed by the addition of a loop in the computer
program spS.f to account for the density summation. The revised program spdens.f is found in
Appendix C. The eigenfrequencies obtained from this program are shown in Table 2 and are
compared with those obtained for the homogeneous model considered in Chapter 2. The
frequency range that was searched by the program was between 0 and 1. The program uses the
IMSL subroutine DZREAL to search for the eigenvalues from the determinate. The value of ¥
used was N = §, as the results from the previous chapter showed that all eigenvalues of interest

were found using this value and we are presently interested in the modification of these

eigenvalues.




Table 2. Comparison of Dimensionless
Eigenfrequencies in an Homogeneous, Neutrally
Stratified Sphere and in a Neutrally Stratified
Sphere with a Density Profile of the Quter Core of
PREM.

. ]

Homogeneous

.2958
.3631
.4688
.5652
.6547
6772
.7845
.8302
.8998
.9340
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These results indicate that the addition of a density profile actually increases the eigenfrequencies,
more significantly at the lower end of the spectrum than at the higher end where there is little or
no effect. This contradicts Friedlander (1987), who predicted a decrease in the values of the
eigenspectrum with the addition of a density profile. This may be due to her choice of a
reference state of an homogeneous, incompressible sphere which was perturbed to a non-neutral,
compressible state. In fact one would expect that replacing a homogeneous incompressible liquid
by a neutrally stratified compressible one would increase the eigenfrequencies, since the
compressibility provides a small restoring force supplementing the dominant one due to the
Coriolis effect. This thesis, in Chapter 5, will show that the addition of a non-neutral density
profile is not a small perturbation and thus treating both compressibility and non-neutral
stratification as perturbations is not an acceptable approach. The development followed here has
as an initial model an homogeneous, incompressible sphere, as used in Chapter 2, This is then
altered to the reference state, a neutrally stratified, compressible model as is developed in the
present chapter. In the succeeding chapter a perturbation method will be applied to this reference

state to determine the effect of non-neutral stratification.

3.4 Eigenvectors

At this point it is worthwhile to consider the eigenvectors associated with each eigenvalue for the

case of a neutrally stratified, compressible model as these will be used in the next chapter. The

trial function used:
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N N-i
=Y Y ¢ R¥Z¥ (3.8)

1=1 je3,

when N = §, results in 20 coefficients ¢, for the eigenvector. These are ordered using the double

to single index given previously as equation (2.41). Thus,

€p = Cjutttnay (3.9)

In a conventicnal eigensystem the eigenvalue\vector equations can be expressed as:

Ax = Ax (3.10)

where A is a square matrix, x is the eigenvector, and \ is the eigenvalue. While the formulation
being considered here is not a conventional eigensystem it can be written in a form analogous to

equation (3.10) by rewriting equation (3.7) as:

Ac=—ch (3.11)

or in component form:




where A is formed from d(ij:k.l) + f(ijk1), B from f(ij;k,l) and c is the eigenvector with 2
row ¢, . Again equation (2.41) has been used to obtain the transformation between double and
single indices. Unfortunately, the eigenvectors cannot be found using this formulation because

the matrix A is very nearly singular. However, the eigenvectors can be successfully found by

reformulating the problem.

The eigenequations can be written as:

Q
Yy Gy¢, =0

e

where G, is obtained from equation (3.4) in analogy with equation (2.42). Note that because the
eigenvalues have already been obtained there are only Q-1 parameters that can be still be obtained
from the equations (3.13). Thus one of the coefficients of the eigenvectors must be found some
other way. This is done by noting that these are free oscillations, i.e. of arbitrary amplitude, so
there is a degree of freedom that must be constrained by choosing one of the coefficients of the
eigenvectors. By making the first coefficient 1, the rest of the coefiicients can then be found and

they will be scaled to this initial choice. The eigenequations can then be rewritten as:




where ¢ = 2, 3,...Q and letting ¢, = 1. This is now a linear system of equations that can be
solved for the remaining eigenvector coefficients c,., after the appropriate eigenvalue has been
substituted into the matrix G,,. The system of equations is now one degree smaller than it

previously was; the first row and column have been removed from the matrix. By letting:

p-p+1 and q-q+1

where the arrows indicate that a value is replaced by another, then defining:

D,.=G

- et got and d,=c.,,

the equations can be written as:

Q-1

D, d, = -G,y

and the eigenvectors d, solved for using a linear systems solution package. The program spdenS.f

was modified to include the IMSL subroutine DLSASF to solve the system and is given in

Appendix D as wspdlinsysS.f. The resulting eigenvectors with their associated eigenfrequency
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are shown in Table 3, where the first coefficient has beer. assigned a value of 1. As before, the
eigenvalue range searched was between 0 and 1. Also the value of N is again N = 5. The
program is similar to spden5.f described earlier, except that now the eigenvalu2s are used in the
subroutine DLSASF to determine the eigenvectors. These eigenvectors will be used in the next

chapter in the formulation of a perturbation solution.

j
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Table 3. Eigenvectors Associated With Eigenfrequencies for a Neutrally
Stratified Sphere With a Density Profile of the Quter Core From

PREM.
" R

Coefficient Eigenvector
Eigenvalue Number Coefficients
.- ]

.2976 1 1.0000
2 -2.6500
3 8.9165
4 -10.7797
5 4.397
6 0.3537
7 13.8265
8 -83.6591
9 98.7765
10 -42.1415
11 0.1354
12 -28.2156
13 156.6337
14 -81.6015
15 -2.4620x 107
16 15.0030
17 -86.7444
18 -5.5746 x 10°
19 0.1975

20 -2.6719 x 10?




Table 3. Continued.
. ]

Coefficient Eigenvector
Eigenvalue Number Coefficients

1.0000
-2.6002
8.8842
-10.7879
4.4066
0.3455
18.0207
-107.9571
123.2600
-49.5360
0.1268
42.0971
236.6772
-124.5127
-1.9056 x 10°
25.1843
-144.6092

.3653

Q0N E W

-3.5114 x 10?
-0.1846
-2.2102 x 107

1.0000
-2.1625
7.3522
-8.9393
3.6524
0.3198
6.0140
-40.7797
61.7661
-33.8769
-0.1416
4.1845
-31.1128
13.8618
-1.7779 x 10?
-13.0839
72.6477
6.1467 x 10°
-0.2506
-7.5419 x 10?

- - V.3 SR SR
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Table 3. Continued.
L .

Coefficient Eigenvector
Eigenvalue Numbaer Coefticients

L T

5660 1 1.0000

2 -1.7370

3 6.5811

4 -8.2377

5 3.3769

6 0.1793

7 20.3612

8 -127.5279

9 159.0353

10 67.2105

1 -0.1031

12 -31.7695

13 175.4742

14 -107.0989

15 2.2310x 10?

16 5.5569

17 -33.1810

18 3.3977 x 10*?

19 0.1821

20 -4.7135 x 10
6572 1 1.0000

p: -2.2776

k) 6.9005

4 -8.0848

5 3.3154

6 0.7054

7 -12.2665

8 75.8173

9 -85.8010

10 22.2029

11 -0.1848

12 30.9130

13 -185.3521

14 129.8382

15 -8.5156 x 10?

16 -10.3549

17 56.0833

18 -5.0501 x 10?

19 0.4764

20 -8.4625 x 10?




Table 3. Continued.

R

Eigenvalue

Coefficient
Number

Eigenvector

Coefficients

e

6779

.7847

OOV B W N

1.0000
-2.0021
6.3320
-7.5182
3.0836
0.6069
-5.6797
35.0166
-37.5676
4.7975
-0.1634
17.7919
-110.4150
82.3259
-5.9867 x 102
-6.5822
34.7164
-3.1142 x 10?
0.4394
-7.4840 x 10?

1.0000
-0.9445
3.2661
-3.8223
1.5024
0.5064
-0.8593
10.5255
-24.8698
6.0642
-0.1009
8.6148
-69.2478
78.5027
6.3849x 10°
-5.6108
28.4398
-7.6611 x 10°
0.5220
0.1074

54




Table 3. Continued.

O O S

Eigenvalue

.8306

.8998

Coaefficient
Number

OO RN —

Eigenvactor
Coefficients

1.0000
0.4435
2.1245
-2.8513
1.2077
0.4549
13.9078
-102.6534
167.3023
-85.0624
-5.8474 x 10°?
-25.8536
165.1072
-151.1843
3.7774 x 10?
10.6117
-64.3893
4.0071 x 107
-0.5644
0.1422

1.0000
2.4922
-8.5904
11.5842
-5.3751
0.3849
7.8422
-57.7494
81.2868
-39.1405
0.3668
-18.2271
101.1813
-83.3434
0.2750
3.0354
-28.0091
0.2005
-1.6236
0.5825




Table 3. Continued.
PR e s e e e s e o o ]

Coefficient Eigenvector
Eigenvalue Number Coefficients

9340 1.0000
-23.6395
93.4954
-130.7021
61.2706
2.1455
24.2786
-139.7413
267.0663
-183.7994
-5.6188
31.2635
-161.8030
230.8040
-2.8322
22.1556
-50.5829
-1.9131
13.0792
5.2476

1

2

3
4
5

6
17

8
9
10
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4.1 Introduction

A perturbation of the reference state developed in Chapter 3 to include non-neutral stratification

is made here to determine the effect on the eigenfrequencies. A corrected version of equation

(82) from Rochester (1989) is developed and used.

4.2 Perturbation Theory for the Eigenvalue Problem (Slightly Stable Core)

In Chapter 3 a solution to the problem:

V-(p,F-Vy) = 0

was found using the variational principle. This is the zeroth order problem given by Rochester
(1989) where p, has been substituted for p,”. This problem can now he perturbed to determine
the effect of a small non-zero stability parameter 8. The value for the perturbed eigenfrequency

will be found from:

= 2
0 =0,+A0, +A%c,
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where g, is the eigenvalue found in Chapter 3, o, and o, are the eigenvalues from the first and

second order perturbations, respectively. The value of 4 is defined by:

N,
A = e (4.3)
20
Since
N=-N (4.4)
Nmn
then
N2A2 - ~Bsy (4.5)
4 02q°

where here N is the Brunt-Viisalad frequency. The solution of the first order problem results in
a, = 0 as noted by both Friedlander (1987) and Rochester (1989). The second order perturbation

is found directly from Rochester (1989) equation (81), with p,' replaced by p,:

[ Po V2" Ty~ Viodv = 0 (4.6)

where
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Na

T, = 20,051 + ——" e
02(0,2-1)

Co"C, *ioyeyx1. (4.7

Substituting (4.7) into (4.6) results in 3 terms.  The first of these is given by:
20,0, [po |Vaoi? v (4.8)

and the second term gives

— N (. IC. Vx, |2 . (4.9)
002(002-1)[ °I -] ]

The third term initially gives

‘°szono"(¢s>‘VXo)dV (4,10)

which can be expanded as:

io, f PV (VX x xo€4) dv (4.11)
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since

VxVy,' = 0. (4.12)

This can be rewritten as:
ia, {(V-(povxo‘xx.,es) - Vpg (Vi" % X)) dv (4.13)
and the divergence theorem is applied to yield:
"02{ PoXo® (Vo xe5) ds - i°z[xono'(on'x¢;)dv (4.14)
which, when rearranged is:
ioz‘{ PoXo Vo * (egxm)ds - ioy [ XoVXo' * (€3 xVp,) dv. {(4.15)

The cross products in these two terms yield components of ¢ only. The dot product is then taken

with the ¢ component of Vx, and results in:
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0 [ poxel =14 (ey xm) &5
s o (4.16)
iy [ g [ 10-(e,x"—:§=)dv.

In this instance however, m = 0, thus all the elements of the third term can be dropped from the
formulation and the equation for the second order perturbation consisting solely of the tirst two

terms is:

L [ M0, 1C, Vi, I2dv =0 (a.17)

2°o°2fpo|vlolzd“ + m
v o ] v

which when rearranged gives this expression for o

-p 2
- ! fe Pe Ico.vlolzdv

o,'(o.‘ -1) v 401 ¢!

20, [ 05 |Vxo|2 dv

(4.18)

02'-‘

where 8 is a constant. When expression (4.16) is included in the denominator, (4.18) becomes

the corrected equation (82) in Rochester (1989).

In order to evaluate equation (4.18) the denominator is considered first as it is a simpler

expression than the numerator. The denominator integral can be expanded as:




3 d
20, [ Polr) [(gﬁ)’ . (sg)'ldv

where x is still given by equation (2.28) in Chapter 2 with N = 5. The appropriate expressions
for derivatives of x are substituted into the integral above and then the coordinates are changed
to spherical coordinates to be compatible with the density expression. The density profile is that
given by Dziewonski and Anderson (1981) for the outer core, as used in Chapter 3 equation (3.1)
and is already in spherical coordinates. The double to single index as given in the first element

of equation (2.41) is still used.

With the whole denominator from equation (4.18) in spherical coordinates, the integral can be

evaluated. Then equation (4.19) becomes:

N N-i N N-

40,3 3 3

¢, c [f: — Px
uH 2(i+j+k+l)+m

k
(0 I'.,. k=0 l"“ 2 )

[ ikT(+I+ ) T(ivk) + ji rG+i-1) r(nkn)l
T(ivj+k+l+7)

where I'(x) is the gamma function resulting from the evaluation of the z integrals. This

expression for the denominator can now be easily programmed.

The more complicated numerator will now be considered in several segments. The first

expression to be considered is:




63

|C,  VIx, |2 (4.21)

where

c, - [-0280 + (e3-80) ey + iogeyxg,] (4.22)
&

and x is defined as above. Expanded in a mix of cylindrical and spherical coordinates, C, * Vv,

gives:

0 d
C, W, = -0,2sind -5‘1? + (1-0,2) cosd _ag‘ (4.23)

Substituting in for x, converting to only spherical coordinates, squaring the expression, and

evaluating the z integral yields:

N N-i N N-k

flc Vi Pz =4) Y Y _ZD: Cyu

150 sob,q ko0 ¢

logtik - 0 2(1-0,2) (il +jk) + (1-0.2)%jl} (4.24)

ru¢t+lz)r(:+k+1))
2P(i+j*k*l+§)

o{ g R0riskel-N))




where the z integral has been evaluated as this is the only expression containing z terms. The

remaining u integral for the numerator can now be written as:

f Po8o  2(iesket-1) 2 gy
a?

The expression for p, is that given earlier as equation (3.1). In the spirit of performing analytic
integrations as far as possible, I shall not evaluate equation (4.25) numerically but instead develop
polynomial expressions for g, and l/a?, and will rely on MACSYMA to evaluate complicated

expressions. First an expression for g.? will be developed using the definition for g,:

4 .
g0 = 2222 [ o (u) u?
u 0

where & is the core-mantle boundary radius making u dimensionless. Although (4.26) ignores
the rotational contribution to gravity, the error involved is of the order 0.4%. Substituting the

polynomial expression for p, in equation (4.26) and integrating yields:

4 -
P M
<4xGb Y B2
80 ¥ me M*z

which can then be squared.
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To develop a simple polynomial expression for 1/o?, the expression from Dziewonski and
Anderson (1981) for o in the outer core is used to tind values of 1/of, where the lower range
of the radius has been extended to 0. These values are then used to develop the polynomial
expression for /o by using the IMSL subroutine DRCURV. This routine fits a polynomial

curve to supplied data using the least squares method. A seventh degree polynomial was

developed, which can be expressed as:

RE
a?

and that matches the original values to four significant figures of precision. The coefticients of

this polynomial are given in Table 4.




Table 4. Coefficients of a Seventh Degree Polynomial
that Approximates the Value of 1/g2.

Coefficient Value

a, 8.1914 x 10?

a, 3.2968 x 10°

a, -1.6245 x 10°
a, 5.5783 x 10°
as 9.3306 x 10?
o 1.9870 x 10°
o -1.8170 x 10°

a 7.5631 x 10°




The u integral, equation (4.25) is now a very extensive expression given by:

(41:Gb)’f(2 P, ¥ "}(E S ) au’

=t red m+2 [u(O)] -1

(w2Uetoset-31) 42 gy

In order to reduce the risk of algebraic error, this expression was expanded and integrated using
MACSYMA, an algebraic manipulation program. The resulting coefficients of u from the
integration were exported from MACSYMA in FORTRAN format to be incorporated into the

perturbation program.

The final expansion for the numerator is then:

2,212 N-i N N-
8B n*G*b 3D

00.2(0? - 1) 25 2 2015 cucu(oo‘ik-ofﬂ—ooz)(il*fjk) + (1-02)?1)
[ o "0 XV =0y

(I‘(j+l+%)l‘(i+j+1)} 18 cu
I‘(i+j+k+l+%) a2 2(ivjvk+l)+m+1

where the cu,’s are complicated expressions involving «a, and p, resulting from the u integration
that was evaluated using MACSYMA. These expressions can be found in Appendix E in the
program Perturbation.f. By combining expressions (4.20) for the denominator and (4.30) for the
numerator, a final expression for the perturbation, ¢,, is obtained. These values are then added

to the reference state eigenvalues to give the perturbed eigenfrequencies. This can now be easily
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programmed using the eigenvalues, o,, and associated eigenvector elements, ¢, from the

reference state developed in Chapter 3. The program used, Perturbation.f, is given in Appendix

E. The results from this program for various values of § are given in Table 5 below.

4.3 Discussion

The perturbation method clearly fails for the larger values of B. In fact, it is questionable even
at low frequencies where 8 = -0.0005. For even smaller values of 8, the spectrum varies only
marginally from that considered previously, unfortunately values of B this small are uninteresting.
For the perturbation treatment to be valid A4, as given in equation (4.2), must be << 1. The
larger values of 8 do not ensure this (A is then ~ .15, when B = -0.0005), so the perturbation
method is inappropriate for them. However, the eigenvalues obtained for 8 = -0.0001 are valid,
as they ensure A < < 1. In order to determine how good the first order perturbation calculations
could be, a second order perturbation analysis would be necessary. However, a comparison of
these perturbation results for 8 = -0.0001 and results from Chapter 5 using a Galerkin method
of solution demonstrate that the perturbation results are valid for this small value of the stability

parameter.
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Table 5. Comparison of Reference State Eigenvalues, 0,, and Eigenvaluss, g,
Found From the Perturbation Method.

L
B8 o, a
e




Table 5. Continued.
6 e

g o, g
e




n

Table 5. Continued.

L~ - O —
a o, o
L




CHAPTER §

5.1 Introduction

In this chapter the Galerkin method is used to solve the SSWE. A density profile is developed
that ensures a neutral stability parameter throughout the range of the fluid core. This density
profile is utilized in the Galerkin solution to the SSWE. The Galerkin method is used to
reproduce the results of Chapters 3 and 4. The method is then used to produce results for long-

period axisymmetric oscillations when B is nonzero, i.e. small and negative.

5.2 Galerkin Method

The Galerkin method of solution is an approximate method for solving differential equations. We

seek a solution of the partial differential equation:

dx = 0 (5.1)

where & is a linear operator. The trial function x can still be written as equation (2.28) found
in Chapter 2 as was used for the variational principle. The ¢,’s must be members of a linearly
independent set and have the orthogonality properties described below. Recognizing that the trial

solution does not satisfy equation (5.1) exactly, the Galerkin procedure is to achieve this as nearly




as possible by requiring that:

(3 c,90,)
’

be orthogonal to each ¢ over the domain of validity of equation (5.1). If the trial functions do
not directly satisfy the boundary conditions they can be included using Lagrange multipliers; then

the orthogonality requirement, in this case, can be written as:

Ec,ftb"&f@dv Y crf"q."'"ds =0
14 v ’ [

where the ¥ s are the Lagrange multipliers.

This leads to the following set of equations, for determining the corresponding c,:
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The cigenvalues, which are dispersed throughout the operator £, can be solved for if the
determinant of G, equals zero. Unfortunately, this matrix will not in general be symmetric. This

is the theory for the Galerkin method which will be applied to the SSWE.

5.3 Application to the SSWE

When the functional for the SSWE is written in its full form with no approximations as

F=[pg Vg TVadv (5.6)

where T and its components are defined by equations (1.27 - 1.30) in Chapter 1, there is a
potential problem with solving the integral. When B = 0, the integral becomes improper and the

SSWE,

V'(p:,F'Vx) =0 (5.7)

becomes singular. As we are only concerned with negative B values this restriction applies to the
following frequency ranges:

i) in a weakly stably stratified region (0 < N < 1 )when 0 < & < (M),

ii) in a strongly stably stratified region (N > 1) when 0 < ¢* < 1 (Wu & Rochester 1990).

Previously this has not been a problem, as the term involving B has disappeared for one reason




75

or another. In Chapter 2, the density is a constant and the compressional wave speed is taken
as infinite, thus eliminating the term containing B from consideration. This formulation produces
solutions for pure inertial waves. The inclusion of a neutral radial density profile in Chapter 3
does not require the consideration of the B term, nor does the perturbation performed in Chapter
4. The inclusion of the neutral density profile did not introduce new frequencies, it only shifted
those found in Chapter 2. The perturbation method similarly only caused a shift of the results
of Chapter 3. However, because both B and C contain ¢, the inclusion of this term will introduce

new frequencies in addition to altering those already found.

In order to alleviate the difficulties caused by the possibility of the B term equalling zero, the
SSWE is rewritten and the Galerkin method is used to solve it. The following definitions are

made to facilitate rewriting the SSWE:

D = p—g = 0¥ (0%2-1) « %E
« a

F = -ozg° + (e3-8,) ey

E - 02802 - (‘3"0)2

Making these substitutions and multiplying through by D?, the SSWE (5.7) can be written as:
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2 v-(p} T, ¥y) - £2 v-(p; c*C-vy)
a (5.11)

= w?(a?-1) p, C-Vx F-V(L) - (L) p, C-Vx F-VE

where T, as defined in equation (2.12) has been used. As was done in Chapter 4, this
formulation of the SSWE can be perturbed. However, in this case the value of B can equal zero
and there is no constraint on the freguency range where the perturbation method is valid. The

perturbation of order 8/o” on the rewritten SSWE, equation (5.11) above, results in:

1 t 2 . 2
PP [pasltLic-Vx, P av

9, = - ; (5.12)
2°olpo|vh|zd" + if Po V1o~ '('3°v10)dv

which is the same result as found in Chapter 4. Thus the values found in Chapter 4 do not need

t0 be altered to consider the case when B = 0.

Attention can now be focused on the expression for the modified density profile, p,!. This was

introduced by Friedlander (1988) and expressed by Rochester (1989) as:

1 'ffi‘"
Po ™ Po€ (5.13)

Wo =Vo-1|Qxr|?
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where W, is the gravity potential. This can be used to rewrite equation (5.11) since:
Vho = 2 p, (5.14)
Then the SSWE becomes:

D?V-(I,-Vy) + D*2.T,-Vy - E2Vv-(C*C-Vy)
[ 3 [ ]
(5.15)
-2 85 c.9y-DC-Vx F-Y(L) - L C vy F-v(EE)
. [ 3 -

The Galerkin method, using the orthogonality requirement expressed in equation (5.3) can now

be applied to this formulation of the SSWE resulting in:

}’_': ¢, [po[DVO, (DT, - £C°C)- Ve, + 2L ¢, VE- (DT, - Lcc)-ve,
+2»’(02-1):';v-(¢,';.—,c-V¢,,,) +wi(a?-1) (D201 - p}L)0, C- VO, v
- m2(02—1)f(v' + [w¥(o?-1) - ££]¢,) C9% 4.0

s . 8o

(5.16)

where u in the boundary condition,

s-u=0 on S (5.17)
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has been rewritten using the definitions in equations (5.8 - 5.9) and y,, are Lagrange multipliers
used to include the boundary condition. The other terms in the surface integral come from the
rearrangement of the expression using the divergence theorem. This surface integral can be

eliminated by choosing the y, such that:

¥, + [w?(a?-1) - B—fld», =0 {5.18)
a

Thus, in a sense C + Vx = 0 is a natural boundary condition for the Galerkin procedure, in the

sense that the trial functions used to implement the latter need not themselves be made to satisfy

the boundary condition a priori.

When 8 = 0, the Galerkin equations reduce to a slightly rearranged Poincaré problem as was

considered earlier in Chapter 2:

Y ¢, [ 0olDV, (DT, V8,)] v = 0 (5.19)

14 v

where, when B = 0, D = o (0® - 1) is just a constant. The additional terms in equation (5.16)
that occur when £ is slightly negative account for additional frequencies (gravity waves) and the
modification of existing ones due to the presence of negative buoyancy (8 < 0). To sclve for

the eigenvalues, equation (5.16) is written as:

Y G,c, =0 (5.20)
14
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and the eigenvalues are found from:

detG = 0. (5.21)

Unfortunately, G is not a symmetric matrix. At this point the expressions in G, p can be expanded
and programmed for solution by the computer. But first a closer look is needed at the density

profile to be used.

5.4 Density Profile

As was discussed in Chapter 3, the density profile previously used from PREM does not lead to
a core exactly neutrally stratified throughout. This discrepancy will now he greatly reduced by
the development of a density profile that ensures that the stability parameter, 8, is less than 1 pant
in 10 throughout the entire spherical model core range. Two ways of accomplishing this will

be briefly discussed here: a least squares approach and an orthogonality relationship.

5.4.1 Least Squares

The least squares approach requires that the difference between 8, as defined by the density

gradient formula (1.15), and the prescribed value B, is minimized over the core in a least squares
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sense, i.e. we minimize the expression:

dp,
> du

2u?du (5.22)

.l
P le

1
F=[[1-8,+(
]
where the normalized radius defined u = 7/b has been used.
The expression for o from the PREM model can be used if it is assumed valid when extended

to the centre of the model as it is a smooth function in the inner core range. The density is

considered to be a polynomial that can be expanded as:

=-1 (5.23)

and the value of p, will be constrained by the mass enclosed within the sphere being considered.
The fact that gravity equals zero at the centre of the sphere requires that the value of p, equal

zero. In order for F 10 be 2 minimum,

9F _, fori=3,N. (5.24)
a9,
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These equations then form the basis for an iterative process. The starting values for the
polynomial of p,are taken from PREM with p, = 0. At each stage of the iteration the values of
the coefficients p,, are recalculated using values of p, g, obtained from the p_ of the previous
stage. If 8 becomes small enough or values of the p,’s no longer change, the iterative process
is halted. The coefficient values for a prescribed value 8, = 0 using the least squares method

are found in Table 6, and the values of 8 for various locations in the model sphere are in Table

7.




Table 6. Coefficients p, of Neutral Density Profile Fitted by (a) Least
Squares and (b) Orthogonality Relation.
L

Coefficient {a) (b}
index m

L T ..

1 12.365415 12.36541S
2 0.0 0.0

3 -2.1355473 -2.1357751
4 0.5724153 0.5687766
5 0.4755506 0.4511777
6 {.2017774 <0.1185908
7 0.0276528 0.1303701
8 0.2573055 -0.0874988
9 0.2394251 0.1435077

10 <0.0905760 0.0682683
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Table 7. Comparison of Actual Values of B for Neutral Density Profile Fitted

by (a) Least Squares and (b) Orthogonality Relation.

Normalized
Radius

(a)

(b)

0.0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1.0

0.10418x 10°
0.14402x 10*
-0.64605 x 10°
-0.41660 x 10
0.10167x 10°
0.28317x 10°
0.15468 x 10°
0.59195x 10¢
0.17503 x 10°
-0.13720x 10°
-0.53384 x 107
6.11062 x 10°
0.12656x 10°
0.36728x 10®
0.81458x 10°
0.11879x 10°
0.25509 x 10°¢
0.10813x 10°*
0.78620x 10¢
-0.14095x 10°
0.37869 x 10°

-0.17078 x 10°
<0.94609 x 103
0.712470 x 10°*
-0.48525 x 10°
0.45842 x 10
-0.55451 x 10
0.61821 x 103
0.55616 x 10
-0.37353 x 103
-0.15112 x 10°*
0.85017 x 107
0.39176 x 10°¢
-0.49905 x 10
-0.17233 x 10
-0.20767 x 10°
0.81707 x 10
0.14805 x 10°
0.26582 x 10°
0.37067 x 10
40.32568 x 10°
0.85257 x 10°%




5.4.2 Orthogonality Relationship

The development of an orthogonality relationship is sinvilar to the least squares method. Now,
however, we require that the difference between 8, as defined by the density gradient formula
(1.15), and the prescribed value B, be orthogonal to the lowest M-2 powers of the normalized

radius, i.e. that

d
) 2ol wmtau = 0

Pole?’ du

1
f1r -8, + (
0

form = 1,...M-2. Again p, is known from the total mass constraint and p, = 0. The iterative
process is again used and the results for this method are shown in Tables 6 and 7. The
coefficient values for the orthogonality relationship give a density profile that is neutral to within
1 part in 107, which is essentially neutral throughout the entire core range. Thus this is the
density profile to be used in the Galerkin method when equation (5.16) is invoked, in the case

of a neutral p,. This density profile shall be referred to as p, = NEUT.

5.5 Expansion of Equation (5.16)

Equation (5.16) can now be expanded and the elements of the matrix G, determined. At this
point only those terms without azimuthal (¢) dependence are considered, as has been done in the

previous Chapters. After a substantial amount of algebra G, can be rewritten as:
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G, -40%(c*-1) F, (5.26)

where

H

L[4

- o%(A,, +YBSB,) + o‘[C, + YBfD,, + BfE, +YB/*(2-B)G,,]
+a?[P,, + YBfQ,, ~ BfR, + YBfA(2-B)T,, + B2V, ]
« [BfV,, +1B2(2-) X,, + B2V, ]
(5.27)

and where

y = Q? (5.28)
2nGp,(0)

and

_ 422G [p,(0) &° (5.29)
0% [«(0)]

G is the gravitational constant, 1/a? is defined by equation (4.28), «(0) is the compressional p-

wave speed evaluated at ¥ = 0, similarly p(0) is the density evaluated at u = 0. For brevity in

defining the matrix elements A ... Y, we introduce I(i,j):




\
| g
|

! D+ )G+
16.) = [2(1 -y e = -2 ‘03 ) (5.30)
0 2r(i "j*;)

where p, q are related t0 i, j, k, and / by (2.41). Then the individual matrices comprising H,

are as follows:

M
E (:+,+k+1)+ lik 1Gi+k=-1,j+1) « jll(i+k,j+i-1)] (5.31)

M M 8 e
PuPa, (i+)) L.
_ =Pa 8, Hiskjo1)  (5.32)
P e T T L Ty TY TR,

M
- P K I(ivk-1,j+1) + 2j +1-1)] (5.33)
Cor .2‘ 2T ko Pk o) « 201G sk je1-1)]

N M & N .
330> PaPa, (1+2)) I(i+kjsl)  (5.34)
mct a=1 ao1 (B+2)[2(isj+k+l)smen+s]

M M M 8 PnP.0,q,
Fo .2.31 § ,Z; ,.E‘ (n+2)(r+2)[2(i+j+k+1)+m+m+r+s-1]

{-i(2i+3k=-1) I(i+k-1,j+1+1) + i(i+k-1) I(i +k-1,j+1)
[31(i+j) +j(8i+2j+3k-1) +2i+ 2j] [(i+kj+1) - 2jl I(i+kj+I-1)}

(5.35)




M M M M PuPuf, &P, 8,
AR VI 3D M M M M A I

mel asy rel gel =1 wel

-

(/)1 ke +d) ,

2(i+jrk+l)+men+resstow-1

P, = 3 Pm

- il I(i+k,j+1-1
(/4 .;' Z(i*l‘k*l)"'mb (* J )]

M M 8

T PaPuts J i+k,j+
Q. -2_1 .z_; ,21 (n+2)[2(i+j+k+])+m+n+5) I(i+k,j+1)

M M 8

R, -3 f: > Pu Pa P, &,
g (n+2)(r+2)[2(i+j+k+l)+m+n+r+s-1]

mea] Asl el gei

li(2i+2k-1) I(i+k-1,j+1+2) - i(2i-1) I(i+k-1,j+1-1)
~U(2j+2k+21-1) + 2i(2j +1) +4(i+j)] I(: +k,j+1+1)
-[1(i+2)) +j(2i+2j+3k-1)) I(i+k,j+1) + 21 I(i+k,j+1-1)}

- - & - e el & p-pnprclp'a"
L-LYIYYYY onenes

m=1 a=1 el g=% si

(U I(rkje141) +j I(ivkij+1) |

2(i+j+k+l)+emesn+resetew-1

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)




Up = f: i f: i 2“: {: z‘: PuPuP % PP, &,

mel ael el g1 a1 vel wat (B+2)(r+2)(£+2)(v+2)

(iR LG k= 1,je ) « GRrilojl) Iikjol) <L I ekjo1-1)
2(i+j¢k¢[)+m tRIreSHtevIw-2

(5.41)

== o1t g1 (42)(r+2) [2(i+j+kel)emenvrss-1]  (5.42)

U(2i+2j+2k+21-1) + 4j) I(i+k,j+1+1) - (jl1+2/) I(i+k,j+1)}

ot T e T s P.p.p,E,pa,
Yo L L LYY Y ane0n

met g=1 rel 3e1 g=t wet

JI(i+kj+1+1)
2(ivj+k+l)emen+resstew-1

Pu PP, %, PPy &,y
(n+2)(r+2)(1+2) (v+2)

(JkI(ivk-1,7+1+2) - [jl+il+jk+2(i+j)] IQi+hj+1+1) + (jl+2/) I(iskj+l),
2(ivj+k+l)ysmensresstevew-2

5.44)

The summation values deserve some attention. The sums over m, n, r, ¢, v all go from | to M,
where M is either 4 or 10, depending on which density profile is selected, either p, = PREM
with values on page 40, or p, = NEUT with values from Table 6. The sums over 5 and w all
go from 1-8, as this is the polynomial approximation for 1/o?, and is given by equation (4.28).

The function /(p,¢) results from integration over the z terms, such as are detailed in Appendix




89

A. A value of N=5 has been used in the trial function (2.28) to produce the results presented

here.

The expression for H_ can now be programmed. To facilitate changing parameters, two
programs were actually used. The first, biggerbetas.f, calculates the various elements of the
matrices inside H_, and is found in Appendix F. The second, called readbb.f also in Appendix
F, evaluates H_ at an interval spacing of approximately .008 and determines where det H changes
sign. These sign changes are then used to zero in on the eigenfrequencies. These particular
parameters were chosen as the results of the previous chapters are accurately reproduced without
taking exorbitant amounts (> 150 hours) of computer time. The program does take a substantial
amount of time (> 6 hours) to run even with the use of a computer supporting the vector

capabilities of FORTRAN, which is recommended (e.g. CONVEX C-1),

5.6 Results
Several different values of 8 were used, and the density polynomials, p, = PREM and p, =

NEUT were used in programming the Galerkin solution. The various configurations are

considered individually with their results.

5.6.1 §=0,p, =PREM, and p, = NEUT

This comparison was made to see if the results using the Galerkin method would match the results
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found in Chapter 3 for the different density profiles. The results are listed in Table 8. A

comparison of values shows only one minor difference with previous results when p, = NEUT.
The values obtained when p, = NEUT are preferable because p, = PREM is not valid in a
sphere, as it does not ensure that gravity is zero at the sphere’s centre. However, since the
values match so closely it is apparent that the approximation of using p, = PREM was acceptable
to use. Thus as a first approximation, the variational principle can be used with p, = PREM to

obtain the inertial eigenfrequencies in a fluid filled sphere. These results also demonstrate that

the p, = NEUT density profile does not significantly alter the response of the model core.




Table 8. Comparison of Dimensionless Eigenfrequencies Calculated Using
the Variational Principle (VP! and the Galerkin Method.
. ... 53 ]

o from Variational
Principle
£=0, p, = PREM

0.2976
0.3653
0.4714
0.5660
0.6572
0.6779
0.7847
0.8306

0.8998

0.9340

o fren Galerkin
Method
=0, p, = PREM

0.2976
0.3653
0.4714
0.5660
0.6572
0.6779
0.7847
0.8306
0.8998
0.9340

o from Galerkin
Method
£=0, p, . NEUT

0.2976
0.3653
04714
0.5660
0.6572
0.6778
0.7847
0.8306
0.8998
0.9340




562 8<0, |#] =< 0.0001, p, = PREM

This selection of parameters was made to compare the results of the Galerkin method with those
of the perturbation method. Since the Galsrkin method used here will give a direct calculation
of the result, an exact match of the eigenvalues from the perturbation method is not expected.
The results are shown in Table 9. It should be noted that due to the presence of gravity modes.
new eigenfrequencies could appear in the Galerkin calculation since § is non-zero. Presumably
the gravity modes associated with these values of B8 have periods so long as to lie outside the
frequency range examined for zercs of det H. However, as seen in Table 9, for p, = PREM this
is not the case. The comparison has been made only between the smallest values of 8 as the
perturbation method is known to fail for the larger values. It should be noted that for the
extremely small values of | -8 | = -.00001 the resulting eigenvalues are all very close to the
results for 8 = Q. Thus an extremely small stability parameter will be indistinguishable from 8
= 0 for this model of the core. It must be noted here that the density profile p, = PREM is not
actually valid for nonzero §, as it implies that 8 = 0 throughout most of the core. This density

profile was used as a to provide a comparison with the previously calculated perturbation results.




Table 9. Comparison of Dimensionless Eigenfrequencies Calculated using the
Perturbation and Galerkin Methods, with p, = PREM.
. . - ]

@ = -0.00001 3 = -0.0001
Perturbation Galerkin Perturbation Galerkin

0.2988 0.2978 0.3090 0.2992
0.3658 0.3655 0.3697 0.3667
0.4717 0.4715 0.4738 0.4725
0.5661 0.5661 0.5671 0.5670
0.6573 0.6573 0.6580 0.6581
0.6779 0.6779 0.6786 0.6787 \
0.7848 0.7848 0.7856 0.7855 i
0.8307 0.8306 0.8316 0.8313 ‘
0.9002 0.8999 0.9043 0.9005

0.9346 0.9340 0.9403 0.9346
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563 8<0, |8] = 0.0001,p, = NEUT

The first thing to notice about the results in Table 10 is the appearance of new frequencies.
Previous results have all yielded only 10 eigenfrequency values within the frequency range
searched for zeroes of det H. The first new frequency to appear occurs wh:n 8 == -0.0001,
however, the period of this extra mode is close to 12 hours indicating that it is not a newly
appearing gravity mode. Most likely this is another inertial mode that was missed in the
calculation of det H. This is possible due to the high density of inertial modes in the frequency
domain as the dimensionless frequency approaches the value 1 from below. Thus it is possible
as the modes close to the dimensionless frequency 1 are shifted due to different B values they will
start to appear as distinct frequencies. Another possibility is that p, = NEUT is a better

representation of density by virtue of its larger number of coefficients.

The periods of the expected newly appearing gravity waves .an be quickly estimated by ignoring

rotation and noting that the period will be given by:

2x (5.45)
Nﬂ-
where for uniform values of B
1
1
Npa = (-B)? (_ug)w (5.46)
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thus for a 8 = -0.0001 the minimum period would be near 130 hours and would yield a ¢ value
of .09231. But the actual minimum value should be lower than this due to the presence of

rotation adding the Coriolis effect as an additional restoring force to negative buoyancy.

Another point to notice is that the negative buoyancy will add a restoring force to the inertial
mndes, their eigenfrequencies should increase as B becomes more negative. Thus, in Table 10
an attempt has been made to correlate these frequencies as they increase with increasing 8. At

the larger values of the eigenfrequencies this becomes difficult due to different eigenfrequencies

appearing that may have been missed by previous calculation due to the density of the frequencies

as we approach 1.

At some point as -B increases the negative buoyancy and the Coriolis effect become comparable

restoring forces and it becomes difficult to distinguish between the inertial and gravity modes.

It must be noted that this calculation is only a first approximation to stable core conditions as
ideally a separate density profile should be developed for each 8 value being considered. While
the density profile of the core is expected to be nearly neutral, as in PREM, the results in Table
10 indicate that smail changes in the stratification lead to large changes in the eigenspectrum.
This indicates how useful these calculations will be in determining the stability structure of the

Earth's core.
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Tabls 10. Tentative Comparison of Dimensionless Eigenfrequencies
Calculated Using the Galerkin Method, with p, = NEUT.

e
8 =-0.0001 8 =-0.001 B=-0002 B =-0.003 8 =-0.004

L ' .

0.06376 0.07623 0.08578
0.1734 0.1669 0.2026 0.2315
0.2760 0.2496 0.3131 0.4480
0.2993 0.3020 0.3090 0.3470
0.3668 0.3786 0.4227
0.4453
0.4726 0.4824 0.4930 0.5019
0.5670 0.5758 0.5843 0.5909 0.5952
0.6581 0.6654 0.6736 0.6816 0.6894
0.6787 0.6867 0.6952 0.7032
0.7918 0.7445
0.7855 0.7926 0.8117 0.8165
0.8313 0.8377 0.8449 0.8520 0.8583
0.8782 0.8869
0.8872 0.9126 0.9152
0.9004 0.9061 0.9226 0.9292
0.9346 0.9443
0.9611 0.9650 0.9756 0.9968
0.9698
0.9876 0.9832 0.9864 0.9982 0.9999

0.9937
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CHAPTER 6

6.1 Introduction

In this thesis a variety of theoretical methods have been used to investigate the axisymmetric
inertial wave spectrum, and its modification by small negative buoyancy, for a model
approximately representing conditions in the Earth's liquid core. These methods, the variational
principle, the perturbation, and the Galerkin methods have all proven useful in calculating results
of an approximate Earth model progressing to a more complex and realistic one. However,
several important aspects have been neglected; these will be detailed below, and could be the

subject of further research.

6.2.1 Inner Core

The most obvious difference between the model presented here and the actual Earth is the lack
of a solid inner core. This could be accounted for by using a trial function similar to that already

used but including extra terms, such as:

N N+

Y Y ¢, R Z¥ 35 2y ©.1)
= 29 « d, ———eee .
T & ity ‘v lzl:lz-; w2y
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The second term in this expression can only be used when an inner core is present, as it will

degenerate in a sphere, as R and Z both approach zero. This second term substantially increases
the amount of work to be done, as the d;’s must be found independently of the c,'s. It is best to
use cylindrical coordinates, as the effect of rotation appears to impose its configuration on the
problem more so than the physical spherical shape of the boundaries. The functionals for the
variational principle and the Galerkin method will remain the same when an inner core is
included, except for the integration limits. The inner core boundary condition can also be shown
to be a natural boundary condition. The presence of the inner core will significantly affect the
eigenfrequencies as has been shown in experimental work by Aldridge (1967) and Aldridge
(1972). Unfortunately, the inclusion of the inner core makes the problem an ill-posed one, unless

viscosity is introduced as in section 6.2.6.

6.2.2 Normal Modes Carrving Linear or Angular Momentum

Both linear (translational) and angular momentum were ignored in this model. Linear

momentum, expressed as:

Paiufpoudv
1 4

needs to be considered in order to filter out those frequencies due to simple translation, however
it should not be a problem with the simple mndel presented here as the rigid fixed boundary

condition prevents any transfer of linear momentum to the fluid outside, or vice versa.
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Consideration of linear momentum is especially important when the inner core is included due
to the possibility of Slichter modes where the solid inner core "sloshes™ within the fluid outer
core. These modes can be filtered out using Lagrange multipliers associated with the various

components of «, i.e. by adding to the functional

Y l.,fp,u,dv.

This filtering only needs to be done for the cases when m = 0, + 1, where the ¢ dependence has

been expressed in the trial function as ™.

The angular momentum, which was also disregarded, is somewhat more complicated. The
angular momentum can be changed in several ways: altering the flow, changing the relative
angular momentum and changing the moment of inertia. This is of most concern when the
boundaries are deformable and not spherical. These effects must be filtered out with Lagrange

multipliers. The total angular momentum can be expressed as:

AH=[(r+u)x‘%(r+u)dm-£rx%dm.

This can be expressed as a complex expression with no time dependence as:

AH-f[ux(Oxr)+rx(0xu)+mrxu]dm,
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where the first two terms account for changes in the moment of inertia and the last term for

changes in the flow. Alternatively, this can be written as:

oH =k + Q - al, (6.6)

where the change in the inertia tensor / is given by:

of = f[z rul - (ru+ur)] dm. (6.7)

The changes in the inertia tensor can be expanded as:

fPo nu[rPl-rrlds - f(u-Vpo + pVul [P L - rr)dy, (6.8)

where the first terms express displacement in the boundaries, the second term describes departures
from homogeneity, and the final term depicts flow that departs from incompressible flow. The
surface integral is over the inner core boundary and the core-mantle boundary. When the
boundaries are rigid, and the fluid is homogeneous and incompressible, then no changes to the

inertia tensor can occur and only the changes in the flow k need to be considered:

h=iwfrxudm. 6.9)

As with the linear momentum, only those cases where m = 0, 1 1 need to be filtered out using

Lagrange multipliers.
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6.2.3 More Realistic Boundary Conditions

The boundary condition used here was a rigid spherical core-mantle boundary. For a more
realistic model both the inner core and the core-mantle boundary must be deformable and
nonspherical. A nonspherical boundary would allow a transfer of torque between the core and

the mantle.

6.2.4 Azimuthal Modes

In this work the azimuthal modes were ignored by considering only the case when m = 0. If
these modes are to be considered, both the trial function and the functionals used must be
changed. For example, for m # 0,the functional for implementing the variational principle with

rigid fixed boundaries but non-neutral stratification becomes:

t
Po
F = o’[p: |Vx[2dv - [pzle,-Vx Pav - [7 |C-Vx Pdv
(6.10)

‘mo]- | AL VL) (l.xc,) ¢ &+ P:(s-)flxlz mo(c,Rxn)-st

which is essentially equation (86) from Rochester (1989).

Similarly, the Galerkin method will also include additional terms. The trial function will now

be:




X=X ¢, 4, (R 2)e™

p=1

Another point is to remove the restriction placed on the trial function forcing it to satisfy:

-%=0 onZ =0,

as was done in Chapter 2. Modes involving motion across the equatorial axis and plane are

possible.

6.2.5 Improved Representations of Density Profile

The stability parameter used here was 8 = 0 or a small negative number. Positive values of
cannot be considered as gravity waves will not exist when the fluid is nowhere stably stratified.
In any case, 8 is most likely a complicated function of radius. This aspect needs to be considered

so that regicns of stability can be dealt with separately from those that may be unstable.

As was noted in Chapter 5, the two density profiles used, p, = PREM and p, = NEUT, lead to

an~utrally stratified region. As B is made negative, the density profile must be changed to ensure

that the model is consistent.
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6.2.6 Viscosity

In this thesis the problem of viscosity has been ignored. This has been considered by Rieutord
(1987, 1990). The presence of viscosity will selectively damp the smaller wavelength modes and
reduce the severity of the truncation to small values of N necessary for computational purposes.
Viscosity will also help in removing the degeneracy of the ill-posedness which seems to introduce

discontinuous eigenfunctions in the spherical shell geometry.

6.2.7 Density of the Eigenspectrum

According to Valette (1989) the inertia/gravity eigenspectrum for an elastic, uniformly rotating,
self-gravitating body with a fluid inclusion is a continuous one. However an unpublished proof
by Rochester demonstrates that the eigenspectrum should be discrete (but dense) if the density

profile of the liquid core is neutral or stable everywhere. This issue needs further investigation.

6.3 Summary of Research Results

Whereas the scope of this thesis is limited, it has yielded many useful results. First of all, the
variational principle used is based on a more general functional than that used by Aldridge
(1972). He used a stream function formulation, which while more desirable mathematically, is
limiting in the amount of physics that it elucidates, as it cannot be used when the fluid is

compressible. The variational principle presented here can be used in an inhomogeneous
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compressible fluid. Aldridge (1972) also only considered those modes where m = 0. The

variational principle used in this thesis for axisymmetric modes can also be used when m is
nonzero. So far as I am aware, no published work has yet reported numerical results for

axisymmetric oscillations based on this variational principle.

The second original contribution of this thesis is a numerical test of the perturbation treatment
of the effect, on the eigenspectrum of a neutrally stratified fluid, of very small negative 8. It
appears that first-order perturbation theory is useful only for values of -B which are so small as

to be comparatively uninteresting.

Finally this thesis makes one further original contribution in the numerical application of a
Galerkin procedure for studying the effects of increasingly negative 8 on the eigenspectrum,

namely increase in the inertial mode frequencies and the appearance of gravity modes.
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APPENDIX A: Three methods for computing an integral.

The integral under consideration is:

27(1-22)1d; (A.1)

o"-‘

b

This integral can be evaluated in three different ways. The first uses the half integer gamma

function, the second employs binomial coefficients and the third utilises factorials for a solution.

1) Half Integer Gamma

This solution car be expressed as:

F'(p+i)r(q+1
z”(1-z’)'dz=2’:zo: (pr3)fle-1) (A.2)

»=0 ¢-0 2P(p+q*%)

25>

»=0 ¢-0

°\d

This solution can be programmed in FORTRAN using the IMSL subroutine DGAMMA.

2) Binomial CoefTicients

This solution involves the inclusion of another summation:




1
£ Im-dra- b £ S LY T

20 ¢-0 270 ¢=0 r=0 ’l(q ")' 0

Sy vy oy 1

p=0 ¢-0 r-0 'l(q")l 2(r‘p) +1

This can then be programmed using the IMSL routine DBINOM.

3) Factorial Solution

This solution is given by:

- . 7 & 2¢ 41
P(1-22)04; = (2p)1 gl (p +q+1)122%
’22':" c e rz-;uzo pi(2{p+q+1)l

This can also be programmed using the IMSL subroutine DFAC, however numbers may get very

large. To alleviate this problem, logarithms can be used to make the numbers more tractable.




110

APPENDIX B: Program to calculate the eigenfrequencies of the axisymmetric normal modes

of the Poincaré problem in a liquid sphere with rigid fixed boundaries.

c
C

C
c
C
C
c
C
C
c

sps.f
Program to calculate eigenfrequencies of axisymmetric normal modes of the Poincare

problem in a liquid sphere. Program calls on the subroutines for calculating the

determinant of a matrix which has no zeroes on the main diagonal.
The IMSL subroutine DZREAL, is used to locate the zeroes of the determinant,
with subroutine DET and DETM to evaluate the determinant.
Many write statements are included, but have been commented out. The were used to
ensure that values were correct.
Reminder: Change dimension and data specifications in the function DETM when
changing NN, so that C, F, H, are MM by MM. NOTE: MM = NN*(NN+3)12
Both NN, MMM and steps may need to be changed for different runs.
implicit real*8(a-h, 0-z)

parameter (NN = §, MMM = NN*(NN+3)/2)

parameter (nroot = NN*(NN-1)/2)

integer  info(nroot)

real*8 detm, x(nroot), xguess(nroot)

external  wrrm, dzreal
external detm

common/a/ CMMM,MMM), F(MMM,MMM), MM
MM = MMM

NN is the size of the summation in the trial function,




o 0o 60 0 60
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MM the number of terms in the trial function.
FACTNN is a factor pulled ovt of the caiculation.
FLOG is a factor multiplied in to make the numbers more managable.
FLOG = 0.D0
DO S5, LL = I, NN
DI = 2*LL + 1
FLOG = FLOG + DLOGI10(DI)
CONTINUE
FACTNN = 10.DO**FLOG
Matrix elements
The matrix elements have two indicies, JJ and LL, for row and column
respectively. (JJ depends onland ], and LL depends on Kand L.)
Since the row increases slowest, this loop starts first.
Starting the outer loop, to determine the row number.
do10 I =0,NN
kk=0
if (I.eq.0) kk=1
do 20 J = kk, NN-1
Starting the inner loop, to determine the column number.
do 30 K=0,NN
kk=0
if (K.eq.0) kk=1
do 40 L = kk, NN-k

Start the calculation.




50

30

20
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csumm = 0
fsumm = 0
doS0 M=0,1+K
BINO = BINOM( + K, M)
IM = (-1)**M
CBOTM =2*(J + L + M) + |
FBOTM = CBOTM*(2*(J + L+ M) - 1)
CSUMM = CSUMM + BINO *IM/CBOTM
FSUMM = FSUMM + BINO * IM/FBOTM
CONTINUE
IF ( + K .EQ. 0) THEN
cCC=0
ELSE
CC = I*K* CSUMM/(1+K)*®)
ENDIF
FF=J]*L * FSUMM/( + K +1)
Set up the indexing
N=J+I*@Q*NN+3-D2
LL=L+K*(2*NN+3-KnR
CJI,LL) = FACTNN *CC
F(UJ,LL) = FACTNN * FF
continue
continue

continue
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continue
This will use the IMSL subroutine DZREAL to find the roots from DETM
data xguess/0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99/
EPS = 1.0D-8
ERRABS = 1.0D-11
ERRREL = 1.0D-11
ETA = 1.0D-7
ITMAX = 300
Call dzreal (detm, errabs, errrel, eps, eta, nroot, itmax, xguess,
x, info)
Call dwrrm (‘the zeroes are’, 1, nroot, x, 1, 0)
STOP
END
CALCULATES DETERMINANT OF N BY N MATRIX WITH NO ZERO
ELEMENTS ON THE MAIN DIAGONAL. THE MATRIX IS AN N BY N ARRAY
VALUE OF DETERMINANT IS DETT TIMES (10 TO THE IE’'TH POWER)
(THIS IS DONE BY TRIANGULARIZING THE MATRIX)
SUBROUTINE DET(A,N,IE,DETT)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(N,N)
NMl = N-1
DETLOG = 0.D0
SIGN = L.D0

DO1 K

1, NM1




KPl =K + 1
R = 1.DO/AKK,K)
IF (AK,K).GT.0.D0) GOTO 3
SIGN = -SIGN
DETLOG = DETLOG + DLOG!10(DABS(A(K,K)))
DOz j=KPLLN
A(K,J) = R*AK)))
DO1 I =KPIN
S = A(LK)
DO1 L =KPILN
A(L) = AQL)-S*AK,L)
IF (A(N,N).GT.0.D0) GO TO 4
SIGN = -SIGN
DETLOG = DETLOG + DLOGI0(DABS(A(N,N))
IE = IDINT(DETLOG)
DETLOG = DETLOG - DFLOAT(IE)
DETT = SIGN*(10.DO**DETLOG)
RETURN
END
REAL*8 FUNCTION DETM(X)

IMPLICIT REAL*8(A-H, O-Z)

parameter (NN = 5, MMM = NN*(NN+3)/2)

COMMON/A/ CMMM,MMM), FIMMM,MMM), MM
DIMENSION HMMM,MMM)




DO1J=1 MM
DO2 L=1 MM
IF(J.LE.5) GOTO 3
IF J.EQ.6) GOTO 4
IF J.EQ.11) GO TO 4
IF J.£Q.15) GO TO 4
IF J.EQ.18) GO TO 4
IF J.LEQ.20) GO TO 4
GOTOS
3 H(O.L) = FQ,L)
GOTO6
4 H{,L) = CJ,L)
GOTO6
5 H(J,L) = X*X*(C(J,L) + FJ,L)) - FJ,L)
6 CONTINUE
2 CONTINUE
l CONTINUE
CALL DETH ,MM.IE,DETT)
DETM = DETT * (10.D0**[E)
RETURN

END
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APPENDIX C: Program to calculate the eigenfrequencies of the axisymmetric normal modes

of the Poincaré problem in a liquid sphere including a neutral density profile from PREM.
spdenS.f

Program to calculate eigenfrequencies of axisymmetric normal modes of the Poincare
problem in a liquid sphere INCLUDING DENSITY from PREM. Program calls on a
subroutine for calculating the determinant of a matrix which has no zeroes on the main
diagonal. The IMSL subroutine DZREAL, is used to locate the zeroes of the determinant,
using the external function DETM(X). NN is the size of the summation in the trial
function, MM the number of terms in the trial function. NOTE: MM = NN*(NN+13)2

NN will need to be changed for different runs.

NN must be changed in the parameter statements both on top

and in the external function

in DETM(X) must also change the goto statements for different

a O o o0 a6 60 60 60 a0 o0 060

numbers of zeros.
implicit real*8(a-h, 0-z)
parameter (NN = 5, MMM = NN*(NN+3)/2)
parameter (nroot = NN*(NN-1)/2)
integer  info(nroot)
real*$ detm, x(nroot), xguess(nroot), densty(4)
external dwrrrn, dzreal
external detm
common/a/ CMMM,MMM), F(MMM,MMM), MM

open(10, file = ’spdSzeroes’,status = 'unknown’)

MM = MMM




C
Cc
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This calculates the values of the matrix needed in the program.
This is a factor to make the values of the matrix tractable.
FLOG = 0.D0
DOS, LL = I, NN
DI = 2*LL + 1
FLOG = FLOG + DLOG!0(DI)
CONTINUE
FACTNN = 10.D0**FLOG
These are the coefficients for the density polynomial given by D&A (renormalized)
densty(l) = 12.5815
densty(2) = -1.2638 * .546225
densty(3) = -3.6426 * .546225 * .546225
densty(4) = -5.528]1 * .546225 * .546225 * .546225
Matrix elements
The matrix elements have two indicies, JJ and LL, for row and column
respectively. (JJ depends on I and J, and LL depends on K and L.)
Since the row increases slowest, this loop starts first.
Starting the outer loop, to determine the row number.
do10 I =0,NN
kk=0
if (l.eq.0) kk=1
do 20 J = kk, NN-I

Starting the inner loop, to determine the column number.

do 30 K=0,NN




kk=0
if (K.eq.0) kk=t
do 40 L = kk, NNk
csumm = 0
fsumm = 0
doS0 M=0,1+K
FBINO = DBINOM( + K, M)
IM = (-1)**M
FBOTM =2*(J + L + M) - 1
FSUMM = FSUMM + FBINO * IM/FBOTM
50  Continue
doSS M =0, +K-1
CBINO = DBINOM(( + K -1), M)
IM = (-1)**M
CBOTM =2*J+ L+ M) +1
CSUMM = CSUMM + CBINO * IM/CBOTM

55 Continue

C This loop accounts for the "density effect”

SUMN =0
DO 60 N=14
DSUMN=N+2*1+J+K+1L)
SUMN = SUMN + DENSTY(N)/DSUMN
CONTINUE

Calculate the elements.
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CC =1*K*CSUMM * SUMN
FF =] *L * FSUMM * SUMN

C Set up indexing....

JJ=J+I1*2*NN+3-Dn2

LL=L+K*@2*NN+3-K)2

C{I,LL) = CC*500.0

FQJJ,LL) = FF*500.0
40 continue
30 continue
20 continue
10 continue
C This will use the IMSL subroutine dzreal to find the roots from the
C function detm. Guesses must be the correct number, but need not be close to the actual
C value. First set up the guesses.

do 4999 kkk=1,nroot

xguess(kkk) = dble(kkk)/11.0

4999 continue
C EPS and ETA spread criteria for multiple zeroes.
ERRABS absolute error (a stopping criterion)
ERRREL relative error (second stopping criterion)

ITMAX maximum number of iterations per zero

O O O 60

INFO number of interations actually used

EPS = 1.0D-11

ERRABS = 1.0D-12




ERRREL = |.0D-12
ETA = 1.0D-10
ITMAX = 400
Call dzreal (detm, errabs, errrel, eps, eta, nroot, itmax, xguess,
x, info)
Call dwrrrn (‘the zeroes are’, 1, nroot, x, 1, 0)
STOP
END
CALCULATES DETERMINANT OF N BY N MATRIX WITH NO ZERO ELEMENTS
ON THE MAIN DIAGONAL. THE MATRIX IS STORED IN N BY N ARRAY.

THE VALUE OF THE DETERMINANT IS DETT TIMES (10 TO THE IE'TH

POWER). THIS IS DONE BY TRIANGULARIZING THE MATRIX.

SUBROUTINE DET(A,N,IE,DETT)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(N,N)
NMl =N-1
DETLOG = 0.D0
SIGN = 1.D0
DO1 K =1, NM]
KP: =K +1
R = L.DO/AK,K)
IF (AKK,K).GT.0.D0) GOTO3
SIGN = -SIGN
DETLOG = DETLOG + DLOG!XDABS(A(K,K)))




DO2 J =KPI,N
AK,J) = R*A(K.))
DO1 I=KPI,N
S = A(LK)
DO1 L =KPLN
A(L) = AQ,L) - S*AKK,L)
IF (A(N,N).GT.0.D0) GO TO 4
SIGN = -SIGN
DETLOG = DETLOG + DLOGI0(DABS(A(N,N)))
IE = IDINT(DETLOG)
DETLOG = DETLOG - DFLOAT(IE)
DETT = SIGN*(10.D0**DETLOG)
RETURN
END
REAL*8 FUNCTION DETM(X)
IMPLICIT REAL*8(A-H, O-Z)

parameter (NN = 5, MMM = NN*(NN+3)/2)

COMMON/A/ CMMM,MMM), FMMM MMM), MM
DIMENSION HMMM,MMM)
DATA H/81*0.D0/
DO1 J=1, MM
DO2 L =1, MM
IF J.LE.S) GOTO3

IF J.EQ.6) GO TO 4




IF J.EQ.11) GOTO 4
IF J.EQ.15) GOTO 4
IF J.EQ.18) GOTO 4
IF J.EQ.20) GOTO 4
GOTOS
HQ,L) = FQ,L)
GOTO6
H(J,L) = C(J,L)
GO TO6
H{J,L) = X*X*(C({J,L) + F(,L)) - FJ,L)
CONTINUE
CONTINUE

CONTINUE

CALL TET(H,MM,IE,DETT)

DETM = DETT * (10.D0**IE)
RETURN

END
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APPENDIX D: This program finds the eigenvector coefficients for the eigenfrequencies
previously calculated.
wspdlinsys5.f

THIS PROGRAM USES A LINEAR SYSTEM ROUTINE TO FIND THE
EIGENVECTOR COEFFICIENTS FOR THE PREVIOUSLY DETERMINED
EIGENFREQUENCIES. FIRST PART OF THE PROGRAM IS EXACTLY AS IN
SPDENS.F, NN is the size of the summation in the trial function,
MM the number of terms in the trial function. NOTE: MM = NN*(NN+3)/2

NN will need to be changed for different runs.

NN must be changed in the parameter statements both on top

and in the external function

00O a0 000 a0a

in DETM(X) must also change the goto statements for different runs.

implicit real*8(a-h, 0-z)

parameter (NN = 5, MMM = NN*(NN+3)/2)

parameter (nroot = NN*(NN-1)/2)

integer  info(nroot)

real*8  detm, x(nroot), xguess(nroot), densty(4)

real*8 D(MMM-1, MMM-1), E(MMM:-1), EIG(MMM-1), HH(MMM,MMM)

external dwrrm, dzreal
external detm

common/a/ C(MMM,MMM), FMMM ,MMM), MM
open(1, file="eigenvalues.out’,status ="unknown")

open(2, file="eigenvector.out’,status = "unknown’)

MM = MMM
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C This calculates the values of the matrix needed in the program.
C This is a factor to make the values of the matrix tractable.
FLOG = 0.D0
DOS, LL = I,NN

DI = 2*LL + 1

FLOG = FLOG + DLOG10(DI)
5 CONTINUE
FACTNN = 10.D0**FLOG

C These are the coefficients for the density polynomial given by D&A (renormalized)
densty(l) = 12.5815

densty(2) = -1.2638 * .546225

densty(3) = -3.6426 * .546225 * .546225

densty(4) = -5.5281 * .546225 * .546225 * .546225
The matrix elements have two indicies, JJ and LL, for row and column
respectively. (JJ depends on I and J, and LL depends on K and L.)

Since the row increases slowest, this loop starts first.

aoO 0o 0 o0

Starting the outer loop, to determine the row number,
do 10 I=0, NN
kk=0
if 1.eq.0) kk=1
do 20 J = kk, NN-I
do 30 K= 0, NN

kk=0

if (K.eq.0) kk=1




do 40 L = kk, NN-k
csumm = 0
fsumm = 0

do50 M=0,1+K

FBINO = DBINOM(I + K, M)
IM = (-1)**M
FBOTM =2*J + L+ M) -1
FSUMM = FSUMM + FBINO * IM/FBOTM
50 CONTINUE

do5S5S M=0,1+K-1
CBINO = DBINOM(( + K -1), M)
IM = (-1)**M
CBOTM =2*0J +L+M) + 1
CSUMM = CSUMM + CBINO * IM/CBOTM

55 Continue
SUMN =0
DO 60 N=14

DSUMN=N+2*1+J+K+1L)
SUMN = SUMN + DENSTY(N)DSUMN
60 CONTINUE
C  Calculate the elements.
CC =1*K *CSUMM *SUMN

FF =J * L * FSUMM * SUMN

C Set up indexing.
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J=J+I*2*NN+3-D2
LL=L+K*Q2*NN +3-K)2
C@JJ,LL) = CC*1000.0
F(I,.LL) = FF*1000.0
continue
continue
continue
continue
This will use the IMSL subroutine dzreal to find the roots from the function detm.
Guesses must be the correct number, but need not be close to the actual value.
EPS = 1.0D-9
ERRABS = 1.0D-12
ERRREL = 1.0D-12
ETA = 1.0D-8
ITMAX = 300
first establish the initial guesses
do 4999 kkk=1,nroot
xguess(kkk) = dble(kkk)/11.0
4999 continue
Call dzreal (detm, errabs, errrel, eps, eta, nroot, itmax, xguess,

x, info)

Call dwrrrn (THE EIGENVALUES ARE:', 1, nroot, x, 1, 0)

THIS SECTION WILL FIND THE EIGENVECTORS USING A LINEAR SYSTEM

SUBROUTINE FROM IMSL. NOTE THAT THE SYSTEM SOLVED IS OF ONE
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C ORDER LESS THAN THE ORIGINAL SYSTEM. THIS IS BECAUSE THE FIRST
C CONSTANT HAS BEEN CHOSEN AS ONE. FIRST THE EIGENVALUES JUST
C FOUND ARE SUBBED INTO THE MATRIX HH. x
Do 100 i = |, nroot
Do 110 J = |, MM
Do 120 L = 1, MM
IF J.LE.S) GO TO 130
IF (J.EQ.6) GO TO 140
IF J.EQ.11) GO TO 140
IF (J.EQ.15) GO TO 140
IF (J.EQ.18) GO TO 140
IF J.EQ.20) GO TO 140
GO TO 150
130 HH@,L) = F(,L)
GO TO 160
140 HH({,L) = C(,L)
GO TO 160
150 HH({,L) = X(@)*X(@)*(CJ,L) + FJ,L)) - FJ,L)
160 CONTINUE
120 CONTINUE
110 CONTINUE
Do 170 J =1, MM -1

Do 180 L=1,MM-1

D({,L) = HH(J+1,L+1)
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E(J) = -HHJ+1,1)

180  Continue
170 Continue
Call DLSASF(MM-1, D, MM-1, E, EIG)
Call DWRRRN('THE EIGENVECTOR IS:", 1, MM-1, EIG, 1, 0)
Do 200 kkk = 1, MM-1
write(2,*) eig(kkk)
200  Continue
write(2,*)
100  Continue
STOP
END
C CALCULATES DETERMINANT OF N BY N MATRIX WITH NO ZERO
C ELEMENTS ON THE MAIN DIAGONAL. THE MATRIX IS STORED IN AN N BY
c N ARRAY. THE VALUE OF THE DETERMINANT IS DETT TIMES (10 TO THE
C IE'TH POWER). THIS IS DONE BY TRIANGULARIZING THE MATRIX.
SUBROUTINE DET(A,N,IE,DETT)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(N,N)
NMl=N-1
DETLOG = 0.D0
SIGN = 1.D0
DO1 K =1, NMI

KPl =K +1

A
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= 1.DO/AKK.K)
IF (AK,K).GT.0.D0) GOTO3
SIGN = SIGN
3 DETLOG = DETLOG + DLOGIO(DABS(A(K,K)))

DO2 J = KPI,N

2 AK,J) = R*A(K,J)
DO1 I=KPI,N
§ = AQLK)

DO1 L =KPI,N
1 A(L) = AQL) - S*AK,L)
IF (A(N,N).GT.0.D0) GO TO 4
SIGN = -SIGN
4 DETLOG = DETLOG + DLOGI}DABS(A(N,N)))

IE = IDINT(DETLOG)

DETLOG = DETLOG - DFLOAT(E)
DETT = SIGN*(10.D0**DETLOG)

RETURN

END

REAL*8 FUNCTION DETM(X)

IMPLICIT REAL*8(A-H, 0-2)

parameter (NN = 5, MMM = NN*(NN+3)/2)
COMMON/A/ C(MMM,MMM), F(MMM,MMM), MM

DIMENSION HMMM,MMM)

C DATA H/81%0.D0/




DO1 J =1 MM
DO2 L=1, MM
IF J.LE5) GOTO3
IF J.EQ.6) GOTO 4
IF J.EQ.11) GOTO 4
IF (J.EQ.15) GO TO 4
IF J.EQ.18) GOTO 4
IF J.EQ.20) GO TO 4
GO TOS
H(Q,L) = FQ,L)
GO TO6
H(J,L) = CQ,L)
GO TO6
H(,L) = X*X*C{,L) + F(,L)) -F(J,L)
CONTINUE
CONTINUE

CONTINUE

CALL DETH,MM,IE,DETT)

DETM = DETT * (10.D0**IE)
RETURN

END
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APPENDIX E: This program evaluates equation (82) from Rochester (1989).

C

perturbation. f

C This is a program for eqn(82) in R's "89 paper. The eigenvalues and eigenvector

C coefficients are read in from a file. The first eigenvector value is always one

Cc
C
Cc
Cc

parameter (ivalue = 10, ivectr = 20)
implicit real*8(a-h, o-z)
real*8 eigval(ivalue), eigvec(ivalue,ivectr)
real*8 ¢r(20), rho(4), rinten
integer p, q, qq
open(1,file="eigenvalues.out’ status ="old")
open(2,file="eigenvector.out’ status ="old")
open(3,file="zeros.ont’, status="unknown’)
beta = -0.000010d0
Set up loops to read in eigenvalues/vector coefficients, the outer loop is for the
eigenvalues, each eigenvalue is associated with an eigenvector comprising ivectr entries.
do 10 i=1, ivalue
read(1,*) eigval(i)
eigvec(i,1) = 1.0d0
read(2,*) (eigvec(i,j),j=2,ivectr)
continue
The constants needed: alf* are coefficients of the polynomial representing 1/alpha*2, rho*
are renormalized values of PREM density for CMB = r = 1, cr* are coefficients of the
powers of r that have been integrated using MACSYMA and exported in FORTAN

format. These are the coefficients for the 7th degree polynomial for 1/alpha®2 obtained
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using the IMSL routine called drcurv. (r has been renormalized). Units are (sec/km)*2.

alfl = .0081914306388007240
alf2 = .00329684 1922661440

alf3 = -.0016245386362791d0
alf4 = .0055783009628760d0

alfs = -.0093306230249849d0
alf6 = .019869926098212d0
alf7 = -.01816998229521840
alf8 = .0075630663016279d0

rhol = 12.5815d0

tho2 = -.6903192d0

rho3 = -1.0868115d0

tho4 = -.9009295d0

rho(1) = rhol

rho(2) = rho2

tho(3) = rho3

rho(4) = rho4

C Info. for the coefficient of go*2. (16*pi“2*G*2)*b"2, (units are
(m*3/(kg*sec”2))*2)*km*2)
G = 6.6732d-11
= 3.480d3
pi = 3.1415926d0
comega = 7.292115d-05

Coefficients of powers of r integrated by MACSYMA and imported in FORTRAN format.




cr(18) = alf8*rho4**3/36.0d0

cr(17) = rho4**2*(5%alf7*rho4 + 17*alf8*rho3)/180.0d0

cr(16) = rhod*(25*alf6*rho4**2 + 85*alf7*rho3*rho4 + 100*alf8*rho2*rho
4+ 96*alf8*rh03**2)/900.040

cr(15) = (25%alf5*rhod4**3 + 85%alf6*rho3*rho4**2 + 100*alf7*rho2 *rho4*
*2 + 125*alf8*rho1*rho4**2 + 96*alf7*rho3**2*rho4 + 225*alf8*rho2 *rho

3*rho4 + 36*alf8*rho3**3)/900.0d0

cr(14) = (100*aifd4*rho4**3 + 340*alfS*rho3*rho4**2 +400*alf6*rho2*rho

4**2+500*alf7*rho 1 *rho4**2 + 384 *alf6*rho3 **2*rhod + 900*alf7*rho2*
rho3*rho4 +1120*alf8*rho1*rho3*rhod + 525*alf8*rho2**2 *rho4 + 144*al
f7*rho3**3 + 504 *alf8*rho2*rho3**2)/3600.040

cr(13) = (100%alf3*rhod**3 +340*alf4*rho3*rhod **2 + 400*alf5S*rho2*rho
4°*2+500*alf6*rho1*rho4**2 + 384 *alf5*rho3**2*rho4 + 900*alf6*rho2*
rho3*rho4 + 1120*alf7*rho1 *rho3 *rhod + 525*alf7*rho2**2*rhod + 1300*a
18*rho1*rho2*rho4 + 144*alf6*tho3**3 + 504*alf7*rho2 *rho3**2 + 624*a
1£8*rhol*rho3**2 + 585*alf8*rho2**2*rh03)/3600.0d0

cr(12) = (100*alf2*rho4**3 + 340*alf3*rho3 *rhod4**2 +400*alf4*rho2*rho
4**2 +500*alf5*rhol *rho4 **2 + 384 *alf4 *rho3**2*rhod + 900*alfS*rho2*
rho3*rho4 + 1120*alf6*rho1*rho3*rho4 + 525*alf6*rho2 **2*rho4 + 1300*a
If7*cho! *rho2*rho4 + 800*alf8*rho1**2*rhod + 144*alfS*rho3**3 + 504*a
166*rho2*rho3**2 +624*alf7*rho1 *rho3**2 + 585%alf7*rho2**2*rho3 + 14
40*alf8*rho1*rho2*rho3 + 225*alf8 *rho2**3)/3600.0d0

cr(11) = (100%alf] *rhod**3 + 340*alf2*rho3 *rho4**2 +400*alf3*rho2*rho
4**2 +500*alf4*rhol *rho4**2 + 384 *alf3*rho3 **2*rho4 + 900*alf4 *rho2*




rho3*rho4 + 1120*alf5*rho1*rho3*rhod + 525%alf5*rho2**2*rhod + 1300*a
1f6*rhol *rho2*rho4 + 800*alf7*rho1**2*rho4 + 144*alf4*rho3**3 + 504
1£5*rho2*rho3 **2 +624*alf6*r..01 *rh03**2 + 585%alf6*rho2**2*rho3 + 14
40*alf7*rhol*rho2*rho3 + 880*alf8*rho1**2*rho3 +225*alf7*rho2**3 + 8
25*alf8*rho*rho2**2)/3600.0d0
cr(10) = (340*alf1*rho3*rho4**2 + 400*alf2*rho2*rhod**2 + 500*alf3*rho
1*rho4**2 +384*alf2 *cho3**2*rho4 +900*aif3*rho2*rho3*rhod + 1 120%al
f4*thol *rho3*rho4 + 525*alf4*rho2**2*rho4 + 1300%alf5*rho1 *rho2*rho
4+ 800*alf6*rho1**2*rhod + 144*alf3*rho3**3 + S04 *alf4 *rho2 *rho3 **2 +
624*alf5*rhoi*rho3**2 + 585*alf5*rho2**2*rho3 + 1440*alf6*rho 1 *rho2
*rho3 +880*alf7*rho1**2*rho3 +225%alf6*rho2**3 + 825*alf7*rho | *rho2
**2 + 1000*alf8*rho1**2*rh02)/3600.0d40
cr(9) = (400*alf1*rho2*rhod4**2 +500*alf2*rho 1 *rho4**2 + 384*alf1 *rho3
**2*rho4 +900*alf2*rho2 *rho3*rho4 + 1120*alf3*tho 1 *rho3 *rhod + 525%a
13*rho2**2*tho4 + 1300*alf4 *rhol *rho2*rhod + 800*alf5S*rho 1 **2*rho4
+144*alf2*rho3**3+ 504 *alf3*rho2*rho3**2 + 624 *alf4 *rho | *rho3**2+ 5
85*alfd*rho2**2*rho3 + 1440*alf5*rho1*rho2*rho3 + 880*alf6*rho1 **2*
rho3 +225%alf5*rho2**3 + 825*alf6*rhol *rho2**2 + 1000*aif7*rho 1 **2*r

ho2 +400*alf8*rho!**3)/3600.0d0

cr(8) = (500*alfl*rhol*rho4**2 +900*alfl *rho2*rho3*rho4 + 1120*alf2*r

ho1*rho3*rhod + 525%alf2*rho2**2*rho4 + 1300*alf3 *rhol *rho2 *rhod + B0
0*alf4*rho1**2*rho4 + 144 *alf1 *rho3**3 + 504 *aif2*rho2*rho3**2 + 624*
alf3*rho1*rho3**2 + 585*alf3*rho2**2*rho3 + 1440*alf4*rho1 *rho2*rho

3 +880*alf5*rho1**2*rho3 +225*alf4 *rho2**3 + 825*alf5*rho1*rho2**2 +
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1000*alf6*rhol **2*rho2 +400*alf7*rho1**3)/3600.0d0

cr(7) = (1120%alf1*rho1*rhio3*rhod +525*alfl *rho2**2*rho4 + 1300%alf2*

tho1*rho2*rho4 + 800*alf3*rhol**2 *cho4 + 504 *alfl *rho2*rho3 **2 + 624*
alf2*rho1*rho3**2 + 585*alf2*rho2**2*rho3 + 1440%alf3 *rhol *rho2*rho
3+ 880*alf4*rho]1 **2*rho3 +225*%alf3*rho2**3 + 825*alf4*rho1*rho2**2 +
1000*alfS*rho1**2*rho2 + 400*alf6*rho1**3)/3600.0d0
cr(6) = (1300*alf1*rhol*rho2*rho4 +800*alf2*rho1**2*rhod +524*alfl *r
ho1*rho3**2 +585*alf1 *rho2**2*rho3 + 1440*alf2 *rho1 *rho2*rho3 + 880*
alf3*rhol1**2*rho3 +225*alf2*rho2**3 + 825*alf3 *rhol *rho2**2 + 1000*a
1f4*rho1**2*rho2 + 400*alf5*rho1**3)/3600.0d0
cr(5) = (160*alf1*rhol1**2*rho4 +288*alf1*rho1*rho2*rho3 + 176*alf2*rh
o1**2°rho3 +45%aif1*rho2**3 + 165*alf2*rho1*rho2**2 +200*alf3*rho1*
*2*rho2 + 80*alf4*rho1**3)/720.0d0
cr(4) = rhol*(176*alf1*rho1*rho3 + 165%alf1 *rho2**2 + 200*alf2*rhol *rh
02+ 80*alf3*rhol**2)/720.0d0
cr(3) = rhol**2*(5*%alf1 *rho2 +2*alf2*rho1)/18.0d0
cr(2) = alf1*rho1**3/9.0d0
Start the loop for the eigenvalue usage.
do 80 isig = 1,ivalue
rinten = 0.0d0
rinted = 0.0d0
zinten = 0.0d0
zinted = G.0d0

signum = 0.0d0




sigdem = 0.0d0
signew = 0.0d0
sigtwo = 0.040
do100 I = 0,5
nn=0
if(l.eq 0)an=1
do 110 n = nn,5-
do 120 p = 0,5
9q=0
if(p.eq.0)qq=1
do 130 q = qq,5p
Set up conversion from double index to single index
=n+1*5-(0-3)"112
kk = q + p*5 - (p-3)*p/2
rinten = 0.0d0
do 140 ii = 2,18
rinten=rinten+ cr(ii)/(2.0d0*dbleQ +p+n+q)+dble(ii)+1.0d0)
continue

Calculate the z integral of the numberator (zinten)

zntop=DGAMMA(dble(n +q) +0.5d0)*DGAMMA (dble(1 + p) + 1.0d0)

znbot = DGAMMA(dble(a + q + 1 + p) + 1.5d0)
zinten = zntop/znbot
Calculate the coefficient from C*gradX for the numberator

ccgrad = (eigval(isig)**4.0*1*p-(eigval(isig)**2.0)*




& (1.0d0-eigval(isig)**2.0)*(1*q+n*p)

& + (1.0d0-eigval(isig)**2.0)**2.0*n*q)

Choosing the correct eigenvector value to multiply in to the numberator.
cij = eigvec(isig.j)
ckk = eigvec(isig,kk)
signum = signum + (cjj*ckk®ccgrad*zinten*rinten)
Calculating the denomonator.
rinted = 0.0d0
do 150 ir =14
rinted = rinted + rho(ir)/(2.0d0*dble(l + n+p+q) +dble(ir))
continue
if ((1+p).EQ.O)then
zdtop 1 = 0.0d0
else
zdtopl = DGAMMA(dble(n + q) +0.5d0)*DGAMMA (dble(l + p))
endif
zdbotl = DGAMMA(dble(n+ q+1+p)+0.5d0)
if ((n+q).EQ.0) then
zdtop2 = 0.0d0

else

zdtop2 = DGAMMA(dble(n + q)-0.5d0) *DGAMMA (dble(l +p) + 1.0d0)

endif

zdbot2 = DGAMMA(dble(n+q+1+p)+0.5d0)
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zinted = 1*p*(zdtopl/zdbotl) r n*q*(zdtop2/zdbot2)

sigdem = sigdem + cjj*ckk*rinted*zinted
130  continue
120  continue
110 continue
100  continue
coetop = 8.0d0*beta*((pi*G*b)**2.0d0)*1.0d6/
& ((comega**2.0d0)*eigval(isig)**2.0d0*(eigval(isig)**2.0d0-1.0d0))
coebot = 4.0d0*eigval(isig)
sigtwo = coetop *signum/(coebot*sigdem)
signew = sigtwo + eigval(isig)
write(*,900) sigtwo, signew, eigval(isig)
write(3,920) signew
80  continue
900 format(f10.8, 5x, f10.8, 5x, £10.8)
920 format(d10.4)

stop

end




APPENDIX F: These programs evaluate negative betas using the Galerkin method.
Biggerbetas.f

THIS SETS UP THE MATRICIES TO BE READ BY readbb.f, MAKE SURE THAT

THE VALUE FOR BETA IS THE SAME IN BOTH PROGRAMS. This program is used

to find eigenvalues for the problem with nonzero negative betas. The equations are from

solving the SSWE when B can vanish .. « sphere and allows for larger negative betas to

be used than the perturbation approach does. All integers are prefaced by "i's”, except in

Functions, where they are prefaced by "n’s", all arrays are prefaced by "A’s" outside loops

range from 50 to 90 write loops range from 10 to 40 (for checking) outer index loops

O 060 o o 0 a o a o

range from 100 to 190, inner summation loops range from 200 up

implicit real*8(a-h, 0-z)

parameter (NN = §, LL = NN*(NN+3)/2, KK = LL)

real*8 AA(LL,KK), AB(LL,KK), AC(LL,KK), AD(LL,KK), AE(LL,KK)
real*8 AG(LL,KK), AP(LL,KK), AQ(LL,KK), AR(LL,KK), AT(LL,KK)
real*8 AU(LL,KK), AV(LL,KK), AX(LL,KK), AY(LL,KK)

reai*8 ArhoP(4), ArhoR(10), Arho(10)

real*8 Aalpha(8)

open(l1, file = 'AA dat’,status = 'unknown’)

open(i2, file = "AB.dat’ status = 'unknown’)

open(13, file = 'AC.dat’,status = 'unknown’)

open(14, file = 'AD.dat’,status = 'unknown’)

open(1S, file = "AE.dat’,status = "unknown’)

open(16, file = 'AG.dat’ status = 'unknown’)

open(17, file = "AP.dat’ status = 'unknown’)
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open(18, file = "AQ.dat’,status = 'unknown’)

open(19, file = "AR.dat’ status = 'unknown’)

open(20, file = "AT.dat’,status = "unknown')

open(21, file = AU .dat’,status = *unknown’)

open(22, file = "AV.dat’,status = ‘unknown’)

open(23, file = "AX.dat’,status = 'unknown’)

open(24, file = 'AY . dat’ status = 'unknown’)
LLL = LL

C Choose value for Beta
beta = 0.00040

C Choose values for irho (either 4 (PREM) or 10 (NEUT))
irho = 4

C irho = 10
crho?0 = 12.581543
calph0 = .0081914306d0
Aalpha(l) = .0081914306880072d0/calph0
Aalpha(2) = .0032968419226614d0/calph0
Aalpha(3) = -.0016245386362791d0/calph0
Aalpha(4) = .0055783009628760d0/calph0
Aalpha(5) = -.0093306230249849d0/calph0
Aalpha(6) = .019869926098212d0/calph0
Aalpha(7) = -.018169982295218d0/calph0

Aalpha(8) = .0075630663016279d0/calph0

C Density from PREM
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ArhoP(1) = 12.5815d3/crhoP0
ArhoP(2) = -.6903192d3/crhoPO
ArhoP(3) = -1.0868115d3/crhoP0
ArhoP(4) = -.9009295d3/crhoP0

C  Density = NEUT

ArhoR(1) = .1134369d1

ArhoR(2) = 0.0d0

ArhoR(3) = -.1959092d0

ArhoR(4) = -.5251182d-1

AthoR(S) = .4362577d-1

ArhoR(6) = -.1851055d-1

ArhoR(7) = .2536884d-2

ArhoR(8) = -.2360454d-1 j
ArhoR(9) = .2196424d-1 g
ArhoR(10) = -.8309286d-2 2
C  Decide which density profile is to be used.
do50i = 1, irho
if (irho.eq.10) then
Arho(i) = ArhoR(i)
else
Arho(i) = ArhoP(i)
endif

50 continue

C  Starting the loops for the calculations of the 14 matricies




C
C

do 100 ii = O,NN
ijj=0
if(ii.eq.0) ijj = 1
do 110 ij = ijj,NN-ii
do 120 ip = O,NN
igqg=0
if(ip.eq.0) iqq = 1
do 130 iq = iqq,NN-ip
il = ii*R*NN+3-ii)2 + ij
ik = ip*Q*NN+3-ip)/2 + ig
Start filling in the 14 arrays needed
Array "AA"
arhosum = 0.0d0
azint = 0.0d0
do 200 im = |, irho

arhosum = arhosum + Arho(im)/(2.0d0*(ii + ij + ip + iq) +im)

200 continue

if ((ii + ip).eq.0) then
aFIZ1 = 0.0d0
else
aFIZ] = FIZ(ii + ip - 1, ij + iQ)

endif

if((ij + iq).eq.O)then

aFIZ2 = 0.0d0




else
aFIZ2 = FIZ(ii + ip, ij + iq- 1)
endif
azint = ii*ip*aFIZ1 + ij*iq*aFIZ2
AA(il,ik) = -arhosum®*azint
write(11,900) il, ik, AA(il,ik)
Array "AB*
brhosum = 0.0d0
bzint = 0.0d0
do 210 im = 1, irho
do 220 in = 1, irho

do230 is=1,8

bdenom = (in+2.0d0)*(2.0d0*(ii + ij +ip--ig) + im + in+is)

brhosum = brhosum + Arho(im)®*Arho(in)*Aalpha(is)/bdenom
continue
continue
continue
bFIZ1 = FIZ(ii + ip, ij + iq)
bzint = (ip + iQ)*bFIZ1
AB(il,ik) = -brhosum®bzint
write{12,900) il, ik, AB(il,ik)
Array "AC"
crhosvm = 0.0d0
czint = 0.040




240

do 240 im = 1, irho
crhosum = crhosum + Arho(im)/(2.0d0*(ii+ij+ip +iq) +im)
continue
if ((ii + ip).eq.0) then
¢FIZ1 = 0.0d0
else
¢FIZ1 = FIZ@Gi + ip - 1, ij + iq)
endif
if((ij + ig).eq.0)then
¢F1Z2 = 0.0d0
else
¢FIZ2 = FIZ(ii + ip, ij + ig- 1)
endif
czint = ii*ip*cFIZ1 + 2.0d0*ij*iq*cFIZ2
AC(il,ik) = crhosum®czint

write(13,900) i, ik, AC(il,ik)

Array "AD"
drhosum = 0.0d0
dzint = 0.0d0

do 250 im = 1, irho
do 260 in = 1, irho
do 270 is = 1,8

ddenom = (in+2.0d0)*(2.0d0*(ii+ij+ip+ iq)+im+in+is)

drhosum = drhosum + Arho(im)*Arho(in)*Aalpha(is)/ddenom
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270  continue
260 continue
250  continue
dFIZ1 = FIZGi + ip, ij + iq)
dzint = (ip + 2.0d0*iq)*dFIZ!
AD(il,ik) = drhosum®*dzint
write(14,900) il, ik, AD(il,ik)
Array "AE®
erhosum = 0.0d0
ezint = 0.0d0
do 280 im = 1, irho
do 290 in = !, irtho
do 300 ir = 1, irho
do 310 is= 1.8
edenom = (in +2.0d0)*(ir + 2.0d0)

*(2.0d0*(ii +ij +ip+iq)+im+in+ir+is-1.0d0)

erhosum=erhosum + Acho(im)*Arho(in)*Arho(ir)*Aalpha(is)/edenom
continue
continue
continue
continue
if ((ii + ip).eq.0) then
eFIZ1 = 0.0d0




eFIZ1 = FIZ(ii + ip- 1, ij + ig + 1)
endif
if ((ii + ip).eq.0) then
eFIZ2 = 0.0d0
else
eFIZ2 = FIZ(ii + ip - 1, ij + iQ)
endif
eFIZ3 = FIZ(ii + ip, ij + iq)
if((ij + iq).eq.0)then
eFIZ4 = 0.0d0
else
eFIZ4 = FIZ(ii + ip, ij + iq- 1)
endif
ezintl = -ip*(3.0d0%ii +2.0d0*ip-1.0d0)*eFIZ 1

ezint2 = ip*(ii+2.0d0%ip-1.0d0)*eFI1Z2

ezint3 =(3.0d0*ij*(ip + iq) +iq*(3.0d0%ii + 4.0d0%ip +2.0d0*iq-1.0d0)

& +2.0d0*(ip+iq))*eFI1Z3
ezintd = -2.0d0*ij*iq*eFI1Z4
ezint = ezintl + ezint2 + ezintd + ezintd
AE(il,ik) = erhosum®ezint
write(15,900) il, ik, AE(il,ik)
C Amay "AG"
grhosum = (0.0d0

gzint = 0.0d0




do 320 im = 1, irho
do 330 in = 1, irho
do 340 ir = 1, irho
do 350 is = 1,8
do 360 it = 1, irho
do 370 iw =18
gnumer = Arho(im)*Arho(in)*Arho(ir)* Aalpha(is)* Arho(it) *Aalpha(iw)

gdenom = (in+2.0d0)*(ir +2.0d0)*(it+2.0d0)*

& (2.0d0%Gi+ij+ip+ig)+im+in+ir+is+it+iw-1.0d0)

370
360
350
340
330
320

grhosum = grhosum + gnumer/gdenom
continue
continue
continue
continue
continue
continue
gFIZ1 = FIZ(ii + ip, ij + iq)
gzint = (ip + iQ)*gFI1Z1
AG(il,ik) = -grhosum®gzint
write(16,900) il, ik, AG(il,ik)
Array "AP"
prhosum = 0.0d0
pzint = 0.0d0

do 380 im = |1, irho
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380

410

390

prhosum = prhosum + Arho(im)/(2.0d0*(ii +ij +ip +iq) +im)
continue
if((ij + iq).eq.O)then
pFIZ1 = 0.0d0
else
pFIZ1 = FIZ(ii + ip, ij + iq- 1)
endif
pzint = ij*iq*pFIZ1
AP(il,ik) = -prhosum*pzint
write(17,900) il, ik, AP(il,ik)
Array "AQ"
grhosum = 0.040
qzint = 0.0d0
do 390 im = 1, irho
do 400 in = 1, irho
do 410 is = 1,8
qdenom = (in+2.0d0)*(2.0d0*(ii +ij+ip +iq) +im+in+is)
grhosum = qrhosum + Arho(im)*Arho(in)*Aalpha(is)/qdenom
continue
continue
continue
qFIZ1 = FIZ(ii + ip, ij + ig)

qzint = iq*qFIZ1

AQ(il,ik) = -grhosum®qzint
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C

&

write(18,900) il, ik, AQ(il,ik)
Array "AR"
rthosum = 0.0d0

rzint = 0.0d0

do 420 im = |1, irho

do 430 in = 1, irho

do 440 ir = 1, irho

do 450 is = 1,8
rdenom=(in +2.0d0)*(ir + 2.0d0)

*(2.0d0*(ii +ij + ip +iq) +im +in +ir +is-1.0d0)

rrthosum=rrhosum + Arho(im)*Arho(in)*Arho(ir)*Aalpha(is)/rdenom
continue
continue
continue
continue
if ((ii + ip).eq.0) then
rFIZ1 = 0.0d0
else
tFIZ1 = FIZ(ii + ip- 1, ij + iqg + 2)
endif
if ((ii + ip).eq.0) then
fFI1Z2 = 0.0d0
else

tFIZ2 = FIZGii + ip- 1, ij + ig + 1)
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endif
tFIZ3 = FIZ(ii + ip, ij + iq + 1)
(FIZ4 = FIZ(ii + ip, ij + ig)
if((ij + iq).eq.O)then
tFIZS = 0.0d0
else
tFIZS = FIZ(ii + ip, ij + iq- 1)
endif
rzint] = ip*(2.0d0*ii +2.0d0*ip-1.0d0)*rFIZ1
rzint2 = -ip*(2.0d0*ip-1.0d0)*rFI1Z2
rzint3 =-(iq*(2.0d0*ii +2.0d0*ij + 2.0d0*iq-1.0d0)
+2.0d0*ip*(ij +2.0d0%iq) +4.0d0*(ip + iq))*rFI1Z3
rzint4 =-(ij*(ip + 2.0d0%iq)
+iq*(3.0d0%*ii +2.0d0*ip +2.0d0*iq-1.0d0))*rFIZ4
rzintS = 2.0d0*ij*iq*rFIZS
rzint = rzintl + rzint2 + rzint3 + rzint4 + rzint§
AR(il,ik) = rrhosum®rzint
write(19,900) il, ik, AR(il,ik)
Array "AT"
trhosum = 0.0d0
tzint = 0.0d0
do 460 im = 1, irho

do 470 in = 1, itho

do 480 ir = 1, irho




do 490 is = 1,8
do 500 it = |, irho

do 510 iw = 1,8

tnumer = Arho(im)*Arho(in)*Arho(ir) *Aalpha(is)*Arho(it)*Aalpha(iw)

tdenom = (in+2.0d0)*(ir +2.0d0)*(it+2.040)*
& (2.0d0*(ii+ij+ip+iq)+im+in+ir +is+it+iw-1.0d0)
trhosum = trhosum + tnumer/tdenom
continue
continue
continue
continue
continue
continue
tFIZ1 = FIZ@i + ip, ij + ig + 1)
tFIZ2 = FIZ(i + ip, ij + iQ)
uzint = (ip + iQ*FIZ1 + iq*FIZ2
AT(il,ik) = trhosum®tzint
write(20,900) il, ik, AT(il,ik)
Airay "AU"
urhosum = 0.0d0
uzint = 0.0d0
do 520 im = |, irho
do 530 in = |, itho

do 540 ir = 1, irho




580
510
560
550
540
530

520

&

&

do 550 is = 1,8
do 560 it = 1, irho
do 570 iv = 1, irho
do 580 iw=1,8
unumer = Arho(im)*Arho(in)*Arho(ir)* Aalpha(is)
*Arho(it)* Arho(iv)*Aalpha(iw)
udenom = (in+2.0d0)*(ir+2.0d0)*(it+ 2.0d0)*(iv + 2.0d0)*
(2.0d0*¢Gi+ij+ip+iQ)+im+in+ir+is +it+iv+iw-2.0d0)
urhosum = urhosum + unumer/udenom

continue

continue

continue

continue

continue

continue

continue
if((ii+ ip).eq.0)then

uwFIZ1 = 0.0d0

else

WFIZ1 = FIZ(Gi + ip-1,ij + ig + 1)
endif
uwFIZ2 = FIZ(ii + ip, ij + ig)
if((ij +iq).eq.O)then

uFIZ3 = 0.0d0




620

610

590
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else
uFIZ3 = FIZ(ii + ip, ij + ig- 1)
endif
uzint=-ii*ip*uFIZ1 + (ii*iq +ij*ip +ij*iq)*uFI1Z2-ij*iq*uFIZ3
AU(il,ik) = urhosum®uzint
write(21,900) il, ik, AU, ik)
Array "AV"
vrhosum = 0.0d0
vzint = 0.0d0
do 590 im = 1, irho
do 600 in = 1, irho
do 610 ir = 1, irho
do620 is = 1.8
vnumer=Arho(im)*Arho(in)*Arho(ir)*Aalpha(is)
vdenom = (in+2.0d0)*(ir+2.0d0)*
(2.0d0*Gi+ij+ip +iq) +im+in+ ir+is-1.0d0)
vrhosum = vrhosum + vnumer/vdenom
continue
continue
cont:nue
contitue
vFIZ1 = FIZ(ii + ip, ij + iq + 1)
vFIZ2 = FIZ(ii + ip, ij + iQ)

vzintl = (ig*(2.0d0*(ii + ij + ip + iQ)-1.0d0) + 4.0d0*iq) *tFIZ 1
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vzint2 = <(ij*iq + 2.0d0%iq)*tFI1Z2

vzint = vzint! + vzint2
AV(il,ik) = vrhosum*vzint
write(22,900) il, ik, AV(il,ik)
C Array "AX’
xrhosum = 0.0d0
xzint = 0.0d0
do 630 im = 1, irho
do 640 in = |, irho
do 650 ir = 1, irho
do 660 is = 1,8
do 670 it = |1, irho
do 680 iw = 1,8
xnumer = Arho(im)* Arho(in)*Arho(ir)* Aalpha(is)*Arho(it)* Aal pha(iw)
xdencm = (in+2.0d0)*(ir +2.0d0)*(it+ 2.0d0)*
& (2.0d0*(ii+ij+ip+iQ)+im+in+ir+is +it+iw-1.0d0)
xrhosum = xrhosum + xnumer/xdenom
680  continue
670  continue
660  continue
650 continue
640  continue
630  continue

xFI1Z1 = FIZ(i + ip, ij + iq + 1)




xzint = iq*xFIZ1

AX(il,ik) = -xrhosum®xzint
write(23,900) il, ik, AX(il,ik)
Array "AY"
ychosum = 0.0d0

yzint = 0.0d0

do 690 im = 1, irho

do 700 in = 1, irho

do 710 ir = 1, irho

do 720 is = 1,8

do 730 it = 1, irho

do 740 iv = 1, irho

do 750 iw = 1.8
ynumer = Arho(im)*Arho(in)*Arho(ir)*Aalpha(is)

&  *Arho(it)*Arho(iv)* Aalpha(iw)

ydenom = (in+2.0d0)*(ir+2.0d0)*(it +2.0d0)*(iv +2.0d0)*

& (2.0d0*(ii+ij+ip+iqQ)+im+in+ir+is+it+iv+iw-2.0d0)
yrhosum = yrhosum + ynumer/ydenom
750  continue
740  continue
continue
continue
continue

continue




690

130
120
110

100

continue
if((ii + ip).eq.O)then
yFIZ1 = 0.0d0
else
yFIZ1 = FIZ(Gii + ip- 1,ij + iq + 2)
endif
yFIZ2 = FIZ(ii + ip, ij + iq+ 1)
yFIZ3 = FIZ@i + ip, ij + ig)
yzimtl = ii*ip*yFIZ1
yzint2 = -(ij*ig+ij*ip +ii®iq+2.0d0*(ip+ iq)) *yFIZ2
yzint3 = (ij*iq+2.0d0*iq)*yF123
yzint = yzintl + yzint2 + yzin3
AY(il,ik) = yrhosum*yzint
write(24,900) il, ik, AY(il,ik)
continue
continue
continue
continue
format(i3d, 3x, i3, 3x, d15.8)
stop

end

Function to calculate the z integrals using the gamma function.

real*8 function FLZ(ni,nj)

Implicit real*8 (a-h, 0-z)




mi = dble(ni)

rnj = dble(nj)
call factlog(2*nj, cone)
call factog(ni, ctwo)

call factlog(ni + nj + 1, cthree)

call factlog(nj, cfour)

call factiog(2*(ni + nj + 1), cfive)
csix = dlog10(2.0**(2.0*mi + 1))
clogs = cone + ctwo + cthree - cfour - cfive + csix
FIZ = 10.d0**clogs
return
end
Calculates the base-10 logarithm of the factorial of an integer
subroutine factiog(int, fctlg)
implicit real*8(a-h, o-z)
w = 0.d0
do 100 i =1, int
di = dble()
w = w + diogl0(di)
continue
fctlg = w
return

wod




readbb.f

Similar to above program, but reads matricies in and does evaluation.

implicit real*8(a-h, 0-z)
parameter (NN = 5, LL = NN*(NN+3)/2, KK = LL)
character zer*1S, iter®10, bet*10, den*3s
Values for IMSL routine DZBREN
real*8 ERRABS, ERRREL, A, B
integer maxfn
parameter (nroot = 120)
real*8 detm, xguess(nroot)
external detm, DZBREN
common/a/ LLL, AA(LL,KK), AB(LL,KK), AC(LL,KK), AD(LL KK)
common/a/ AE(LL,KK), AG(LL KK), AP(LL,KK), AQ(LL,KK)
common/a/ AR(LL,KK), AT(LL,KK), AU(LL,KK), AV(LL,KK)
common/a/ AX(LL,KK), AY(LL KK)
common/a/ beta, gamma, f
open(l1, file = "AA dat’ status = 'old")
open(12, file = "AB.dat’ status = ‘old")
open(13, file = "AC.da:’ status = ‘old’)
open(14, file = 'AD.dat’,status = ’old")
open(15, file = 'AE.dat’ status = ‘old")
open(16, file = 'AG.dat’ status = °0ld")
open(17, file = "AP.dat’ status = ’old")

open(18, file = 'AQ.dat’ status = ‘old’)
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open(19, file = "AR.dat’,status = ‘old’)

open(20, file = "AT.dat’,status = 'old’)
open(21, file = "AU.dat’ status = ‘old")
open(22, file = 'AV.dat’ status = ‘old")
open(23, file = *AX dat’,status = "old")
open(24, file = "AY.dat’,status = ‘old’)
open(26, file = 'Zeros.out’,status = ‘unknown’)
open(27, file = 'Hbefor.out’,status = ‘unknown’)
LLL = LL
beta = 0.00040
Select value for irho
irho = 4
irho = 10
zer = 'Zeroes’
iter = ‘Iterations’
write(26, 1071) zer, iter
Values from PREM or NEUT, comega sec*-1, ¢cG m*3/(kg sec*2), crhoP0 kg/m*3,
cb km, calph0 sec/km, cgatb km/sec-2)
comega = 7.2921154-5
¢G = 6.6732d-11
cpi = 3.14159274d0
crhoPO = 12.5815d3
¢b = 3480.0d0

calphO = 008191430640




cgatb = 1.06823d-2
if (irho.EQ.4) then
gammat = comega**2.0d0
gammab = 2.0d0*cpi*cG*crhoP0
gamma = gammat/gammab
else
gammat = 2.0d0*cb*comega**2.0d0
gammab = 3.0d0*gatb
gamma = gammat/gammab
endif
if (irho .EQ. 4) then
flop = 4.0d0*calph0*(cpi*cG*crhoP0*cd)**2.0d0
fbot = comega**2.0d0
f = ftop/fbot
else
flop = 9.0d0*calphO*gatb**2.0d0
foot = 4.0d0*comega
f = fop/fbot
endif
Starting the loops for the reading of the 14 matricies
do 100 ii = O,NN
ij=0
if(ii.eq.0) ijj = 1

do 110 ij = ijj,NN-ii




do 120 ip = ONN
igg=0

if(ip.eq.0) igg = 1

do 130 iq = iqq,NN-ip

il = ii*2*NN+3-i)2 + ij
ik = ip*2*NN+3-ip)2 + iq
Start reading in the 14 arrays needed
read(11,*) ia, ib, AA(il, ik)
read(12,*) ia, ib, AB(l, ik)
read(13,®) ia, ib, AC(il, ik)
read(14,*) ia, ib, AD(il, ik)
read(15,*) ia, ib, AE(, ik)
read(16,*) ia, ib, AG(il, ik)
read(17,*) ia, ib, AP(il, ik)
read(18,°) ia, ib, AQ(il, ik)
read(19,*) ia, ib, AR(il, ik)

read(20,*) ia, ib, AT(l, ik)

read(21,*) ia, ib, AU(i, ik)
read(22,*) ia, ib, AV(il, ik)
read(23,*) ia, ib, AX(il, ik)
read(24,*) ia, ib, AY(il, ik)
130  continue
120 continue

110  continue
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100  coetinue
C The value of the determinant of H is found from the subroutine detm. Where this value
C changes from pos to neg is where the zeroes are searched for. To start with, aroot
C guesses, are evaluated to see where the determinant changes sign. Set up the guesses.
do 4999 kkk= 1,nroot
xguess(kkk) = dble(kkk)/(nroot+ 1)
4999 .ontinue
C Fing ihe zeroes using the IMSL subroutine DZBREN
ERRABS = 0.0d0
ERRREL = 1.0d-6
maxfn = 1.0d4
A = 0.0d0
B = 0.0d0
do 5000 kkk = 1, nroot
write(27, 1060) kkk, xguess(kkk), detm(xguess(kkk))
A = xguess(kkk)
if (kkk.EQ.nroot) then
B = xguess(kkk)
else

B = xguess(kkk+1)

endif
Aval = detm(A)
Bval = detm(B)

if (Aval*Bval.LT.0.0d0) then




maxfa = 1000
call DZBREN(detm, ERRABS, ERRREL, A, B, maxfn)
write(26, 1070) B, maxfa
else
goto 5000
endif
continue
format(iS, 3x, d15.8, 3x, d15.9)
format(d15.4, 3x, i10)
format(5x,als, 3x, al0/)
stop
end
Real function Detm(x) used to find the determinant of H(l,k) using
the IMSL subroutines DLFTRG and DLFDRG. This uses the LU factorization
of the matrix. This seems to be ok, even though there are zeroes on
the main diagonal.
REAL*8 FUNCTION DETM(X)
IMPLICIT REAL*8(A-H, O-Z)
parameter (NN = 5, LL = NN*(NN+3)/2, KK = LL)
parameter (LDA = 20, LDFAC = 20, N = 20)
integer IPVT(N)
real*8 H(LDA, LDA), DET1, DET2, FAC(LDFAC,LDFAC)

common/a/ LLL, AA(LL,KK), AB(LL,KK), AC(LL,KK), AD(LL,KK)
common/a/ AE(LL,KK), AG(LL,KK), AP(LL,KK), AQ(LL.KK)




2

1

common/a/ AR(LL,KK), AT(LL,KK), AU(LL,KK), AV(LL KK)
common/a/ AX(LL,KK), AY(LL KK)
common/a/ beta, gamma,
DO1 L =1 LLL
DO2 K= 1 LLL
H(L,K)=1.0d5*(X**6.0d0*(AA(L,K) + gamma*beta*f*AB(L ,K))
+X**4.0d0*(AC(L ,K)+ gamma*beta*f*AD(L,K) + beta*f*AE(L,K)
+ gamma*beta*f*f*(2.0d0-beta)*AG(L K))

&
&
& +X**2.0d0%(AP(L,K) +gamma*beta®f*AQ(L,K) +beta*f*AR(L ,K)
& +gamma*beta*f*f*(2.0d0-beta)*AT(L,K) +beta*beta*f*f*AU(L K))
& +beta*f"AV(L,K) + gamma*beta*f*f*(2.0d0-beta)*AX(L ,K)
& +beta*beta**f*AY(L,K))
CONTINUE
CONTINUE
call DLFTRG (N, H, LDA, FAC, LDFAC, IPVT)
call DLFDRG (N, FAC, LDFAC, IPVT, DETI, DET2)
detm = det1*10.0**det2
RETURN

END
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