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ABSTRACT 

The Ferryland Head Formation of Ediacaran age IS exposed along the 

southeastern coast of the Avalon Peninsula, Newfoundland and Labrador. A detailed 

sedimentological study was undertaken at Ferryland, its type locality, 72 km south of St. 

John's, where approximately 500 m of the formation are exposed. The objectives of this 

study are to establish a stratigraphic and sedimentological framework in order to 

determine depositional environments and the stratigraphic evolution of the succession 

and to document the diversity of synsedimentary structures. Three detailed stratigraphic 

sections, covering approximately 600 m were constructed. 

The Ferryland Head Formation consists of interbedded tabular reddish-to­

purplish-brown siltstones and buff-to-greenish-grey arenites with minor occurrences of 

lithic arenites and lithofeldspathic arenites. Grain size varies from silt to medium sand; 

the mode being fine sand. Five lithofacies including 22 subfacies are defined at 

Ferryland. Facies 1 comprises siltstone and finer grained sandstones. Facies 2 

encompasses silty sandstone. Facies 3 is composed of clean sandstone. Facies 4 and 5 

comprise intraformational conglomerates and ash-rich beds respectively. Three facies 

associations are recognised in the Ferryland Head Formation. Facies association I is 

interpreted as mouth-bar deposits, facies association II is interpreted as channelised 

sediments and facies association III is interpreted as overbank deposits. Palaeoflow in the 

study area is unimodal and south-directed. The depositional environment for the 

Ferryland Head Formation is interpreted to be a humid fan delta. The abundance of 

synsedimentary structures in the study area is attributed to rapid deposition, a high water 

table and probable seismic activity in a tectonically active pull-apart basin. 
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Chapter 1 

INTRODUCTION 

1.1. GEOGRAPHY AND STRATIGRAPHY 

The Ediacaran (540- 600Ma) Ferryland Head Formation of the Signal Hill Gorup 

is exposed at three outcrop localities along the eastern shoreline of the A val on Peninsula, 

Newfoundland and Labrador (Figure 1.1). At its type locality, in Ferryland, 

approximately 500 m of the basal section of the formation are exposed. Cape Broyle and 

Cape Ballard to the north and south ofFerryland respectively are the other two principal 

localities where the formation is exposed (Figure 1.2). The only exposures of the upper 

parts of the Ferryland Head Formation are at Cape Ballard. This study will focus on the 

exposures at Ferryland Head, Ferryland, located 72 km south of St. John's (Figure 1.1). 

1.2. REGIONAL GEOLOGY 

1.2.1. Introduction to the A val on Zone Geology and Regional Palaeogeography 

The A val on Zone is a tectonostratigraphic subdivision of Appalachian orogen 

(Williams and King, 1979) which is one of many peri-Gondwanan terranes (O'Brien et 

al., 1983; O'Brien et al., 1996; Murphy et al., 2001 ). This terrane is interpreted to have 

formed as a volcanic arc along the margins ofNeoproterozoic Gondwana called Avalonia 

(Murphy et al., 2001). Rocks within the Avalon Zone ofNewfoundland can be correlated 

with rocks in Cape Breton, eastern New Brunswick, eastern Massachusetts, the Carolinas, 

the British Caledonides, the Hercynides of France and Iberia and the northern and 

western margins ofthe West African Shield (Murphy et al., 2001; McNamara, 2001; 
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Morris, 1989; Myrow 1995). The Avalon Zone as a whole can be subdivided into three 

smaller geographic zones (Myrow, 1995; Morris, 1989): the eastern, central and western 

zones. The Ferryland Head Formation is situated within the eastern Avalon Zone. 

Several authors place Avalonia along the margin ofNeoproterozoic Gondwana 

(Nance and Murphy, 1996; Keppie and Dostal, 1998; Nance et al., 2002). However, 

establishing a precise latitude and palaeogeographic location for Avalonia with respect to 

other Neoproterozoic cratons is problematic and uncertainties are primarily due to sparse 

paleomagnetic data (Morris, 1989; Myrow and Kaufman, 1999). In the basal part of the 

A val on stratigraphy, the Harbour Main Group palaeomagnetic data indicate a low 

palaeolatitude, circa 20-30 degrees north or south (Morris, 1989). In younger 

stratigraphy on the A val on Peninsula (the Marystown Group), equivalent data suggest 

depositional palaeolatitudes of34°+8°/-r (McNamarra, 2001). Dalziel (1997) places 

Avalonia at high latitudes (between 30° and 60°) in the late Neoproterozoic. Myrow and 

Landing (1992) suggest a high latitude location based on the lack of carbonate platforms 

in the stratigraphy. 

Terminal Neoproterozoic climates are similarly problematic to model. There is 

evidence of at least two glacial episodes, the oldest being the Rapitan-Sturtian glaciation 

(approximately 750-700 Ma) and the youngest being the Marinoan-Varanger-Ice Brook 

glaciation (approximately 600-590 Ma) (Young, 1995; Kaufman, et al.,1997). The latter 

is sometimes separated into two discrete glaciations. The second of which is sometimes 

referred to as the Gaskiers glaciation, after 

2 
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Figure 1.1. Location map showing the A val on Zone of the Island of Newfoundland and 
the outcrop locations for the F erryland Head Formation. 
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Figure 1.2. Inset of Figure 1.1. showing the local geology of the eastern A val on 
Peninsula (Modified from King et al. , 1988). 
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the Gaskiers Formation in Newfoundland and Labrador (Bowring et al., 2003). During 

the latest Ediacaran, global climate was non- glacial with warm, arid mid-lower latitudes 

and temperate, humid high latitudes with some evidence for warm humid climate in 

southern higher latitudes (Chumakov, 2003). So called "greenhouse" conditions, with 

little or no polar ice, were established by early Cambrian times (Veevers, 1990; Tucker, 

1992). 

1.2.2. Local Stratigraphy 

The entire Precambrian sedimentary succession of the A val on Peninsula is over 9 

km thick and comprises four stratigraphic units. From oldest to youngest, these units are 

the Harbour Main Group, Conception Group, St. John's Group and the Signal Hill Group 

(Table 1). The Ferryland Head Formation comprises part of the Signal Hill Group. 

The Harbour Main Group consists of over 1500 m of volcanic and volcaniclastic 

deposits that comprise the base of the exposed Precambrian sedimentary succession 

(Williams and King, 1979). The base of the Harbour Main Group is not exposed and it is 

unconformably overlain by the Conception Group. U-Pb zircon dates of 606 ~ ~:~Main 

an ash flow tuff and 622.6 ~ ~:5 Ma in a rhyolite (Krogh et al., 1988) provide an age 

control for the Harbour Main Group. Overall, this group consists of red, pink and grey 

silicic tuffs, aggregates, pink to red rhyolites, welded tuffs and massive dark green to 

purplish basalts. The Harbour Main Group is interpreted to be mainly terrestrial in origin 

but some subaqueous volcanism is suggested by local pillow lavas (O'Brien and King, 

1982; O'Brien et al., 1983; King, 1990). 
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The Conception Group is subdivided into five formations (Table 1) and is the 

thickest interval of Precambrian sediments exceeding 4000 m in thickness. It is exposed 

throughout the Avalon Peninsula and comprises mainly grey to green siliceous turbiditic 

sandstones of volcanic provenance. The sedimentary rocks are medium to very thick 

bedded. The succession is punctuated by ash beds and airfall tuffs and is interpreted as 

being deposited in deep basinal to slope environment in a volcanically active setting 

(Williams and King, 1979; Narbonne et al., 2001, 2002). 

The St. John's Group comprises three formations (Table 1) and conformably 

overlies the Conception Group. It consists mainly of grey to black fissile mudstones and 

grey to buff fine-grained sandstones with gradational contacts and has a thickness of 

approximately 2000 m (Williams and King, 1979). Large-scale slump structures are 

present throughout the St. John's Group and ash beds and tuffs are sparse (Narbonne et al. 

2001). An overall shallowing-upwards of palaeoenvironments in the St. John's Group has 

been interpreted as representing the deposition of a prograding slope (King et al., 1988a, 

1988b). 

The Signal Hill Group caps the exposed Precambrian stratigraphy of the A val on 

Peninsula and it approaches 1500 min thickness. Four mappable units of formational 

status comprise the Signal Hill group. These are, from oldest to youngest, the Gibbett 

Hill, Quidi Vidi, Cuckold and Blackhead formations in the St. John's area, and the 

Cappahayden, Gibbett Hill, Ferryland Head and Cape Ballard formations in the study 

area (Table 1 ). 
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The Ferryland Head Formation conformably overlies the Gibbett Hill Formation 

and is conformably overlain, where exposed, by the Cape Ballard Formation. The lower 

boundary of the Ferryland Head Formation is a lithostratigraphic surface marked by the 

first appearance of red sandstone in the Signal Hill Group stratigraphy (Williams and 

King, 1979). The overall sedimentary succession of the Ferryland Head Formation is 

characterised by upward coarsening in grain size and upward increase in bed thickness. 

There are generally finer and thinner beds in the lower and southernmost areas and 

coarser thicker beds in the stratigraphically higher areas and northern areas. 

1.2.3. Tectonism, Structure and Metamorphism 

The Harbour Main, Conception, St. John's and Signal Hill Groups define elongate 

NNE-SSW trending structural domes and basins. Provenance of the Signal Hill Group 

sediments, that partially comprise the Ferryland Head Formation, was from late Vendian 

uplift north of the present Bona vista and A val on peninsulas. This uplift was related to the 

ongoing late Precambrian Avalonian Orogeny. The rocks were later deformed and 

slightly metamorphosed during the mid Palaeozoic Acadian Orogeny (King, 1990). A 

two-phase tectonic evolution of Avalonia has been proposed by Murphy et al. (1999). 

The first tectonic phase (Phase I, circa 630-590 Ma) entailed arc-related volcanism and 

associated sedimentation due to northwest-directed, oblique subduction resulting in left 

lateral strike slip movement (Narbonne et al., 2001). The second tectonic phase (Phase II, 

circa 590-540 Ma), which began as subduction of a spreading centre, caused reversal of 

strike-slip motion with time and ultimately an inversion of some of the basins. A modem 
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analogue is considered to be the basins of southwestern U.S.A. and northwestern Mexico 

(Murphy, 1999). Narbonne et al. (2001) proposed that the boundary between the two 

phases can be drawn where sedimentation styles change within the St. Johns Group. The 

provenance of sediment in strata below the Trepassey Formation in the St. John's Group 

(Table 1) ranges from the south to the west. The upper part of the StJohn's Group and the 

Signal Hill Group, have a northerly source of sediment (Narbonne et al., 2001). 

1.3. SUMMARY OF PREVIOUS WORK IN THE FERRYLAND HEAD FORMATION 

The rocks ofthe Avalon Peninsula were first studied by J. B. Jukes in 1839 and 

1840. He used the name Signal Hill Sandstone to describe the red and grey Precambrian 

sandstones in the eastern A val on Peninsula. Buddington ( 1919) proposed the name Signal 

Hill Series for these rocks. Rose (1950) mapped the Ferryland Head Formation as red 

sandstone and conglomerates and considered them to correspond to the Signal Hill 

Formation. In 1952, Rose defmed these rocks as the lower and middle members of the 

Signal Hill Formation. Singh carried out a petrological study of the Signal Hill and 

Blackhead formations in 1969. 

Williams and King (1979) redefmed the stratigraphy of the eastern Avalon 

creating the Signal Hill Group encompassing the Ferryland Head Formation. The 

Ferryland Head Formation was later defined as a sandy facies of the Quidi Vidi and 

Cuckold formations that occur in the StJohn's Area (King, 1980; King et al. 1988a, 

1988b). The stratigraphy exposed at Ferryland Head was designated the type section of 

the Ferryland Head Formation. The lower boundary of the Ferryland Head Formation 
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Table I. Proterozoic stratigraphy of the A val on Peninsula (Modified from Williams and 
King, 1979 and Narbonne eta!. 2002). 

Era 
Group 

Formation Lithology 
thickness 

(Period) 
(m) 

thickness (m) 

Cape Ballard Upper part: thick bedded, buff weathering, grey sandstone and quartz 

>260 
granule conglomerate. Lower part: grey to purple shale and grey 
siltstone. 

Ferry land Thin to medium-bedded buff to greenish grey sandstone and red 

Head siltstone. Red, wavy bedded sandstone and siltstone (High Rocks 

Signal Hill 500 Member) at base 

> 1450 Gibbett Hill Thick bedded, light grey sandstone, thin bedded, dark grey sandstone 
760 and siltstone, calcareous sandstone ellipsoids locally present. 

Cappahayden 
Laminated, fissile, light grey siltstone 

175 

Local erosional disconformity 

Renews 
Head Thin, lenticular bedded, dark grey sandstone and minor shale. 

100 

St. John's Fermeuse Grey to dark grey and black shale, thin lenses of buff weathering 
(.) 1950 1400 sandstone and siltstone. 

·c; ......._ 
N s:: 
0 t':3 Trepassey ... ... 
Q) t':3 Medium-to-thin-bedded, graded grey sandstone and shale. - (.) 250 0 t':3 ... ·-0. "0 ow Mistaken Q) "-' Medium bedded grey to pink sandstone, green, purple and red shale, z Point and minor tuff. 

400 

Briscal Thick bedded grey sandstone, green to grey argillite, red sandstone 
100-1200 and arkose, locally grey thin bedded siliceous siltstone and shale. 

Conception Drook White weathering, green, grey, buff and locally red to purple 

>4000 1500 
argillaceous chert, siliceous siltstone, sandstone, silicified tuff, locally 
thick sandstone with shale, siltstone and minor purple argillite. 

Gaskiers Grey diamictite, intercalated rhythmites of mudstone siltstone and 
250-300 sandstone with dropstones and conglomerate 

Mall Bay Green siliceous siltstone and argillite, grey sandstone, black green 

>800 
and purple argillite and chert, tuffaceous sandstone, green siliceous 
tuff and agglomerate, white quartzose sandstone and minor limestone 

Fault contact with Harbour Main Group 

Harbour 
Main Red pink and grey silicic tuff agglomerate, pink to red rhyolite and 

>1500 
welded tuff; massive dark green to purplish basalt 
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was then defined as the first appearance of red-coloured beds (Williams and King, 1969). 

Red-coloured sandstones and siltstones defme the High Rocks Member ofFerryland 

Head Formation. 

The rocks present at Ferryland are indistinguishable from stratigraphically 

younger grey rocks, except for their colouration (Williams and King, 1979). The 

environment of deposition of the Ferryland Head Formation has been interpreted as the 

distal facies of a braided river alluvial plain (Singh, 1969; Williams and King, 1979; 

King, 1988; King, 1990 and Narbonne et al., 2002) and as delta front to delta plain 

(Narbonne et al., 2001). No detailed sedimentological study of the Ferryland Head 

Formation has been undertaken or published prior to the new research presented in this 

study. 

1.4. RESEARCH OBJECTIVES AND METHODOLOGY 

This thesis has two main objectives. 

The first one is to establish a detailed sedimentological and stratigraphic 

framework of the Ferryland Head Formation in order to determine the depositional 

environments and stratigraphic evolution of the unit. This will aid in the understanding of 

the overall depositional history of the Avalonian sedimentary succession. 

The second objective is to describe and interpret the diversity of synsedimentary 

deformation structures present in the Ferryland Head Formation, within their 

sedimentological context and to produce an atlas of the more important synsedimentary 

structures that have been recognised. 
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The principal method of analysis was a field-based description of the Ferryland 

Head Formation. Sedimentological data, including bedding relationships, bedding 

thicknesses, sedimentary structures, textures, sediment colouration and palaeocurrent 

indicators were recorded. Field sketches were made and digital and 35mm photographs 

were collected of the important sedimentary and stratigraphic features of the formation. 

A Canadian Stratigraphic grain-size-comparison chart was used for grain size 

description. Microsoft Excel spread sheets were used to calculate mean, mode and 

median thicknesses of facies association occurrences. StereoNett version 2.02 was used 

to plot the rose diagrammes illustrating palaeoflow in chapter 4. Three stratigraphic 

columns, covering approximately 600 m of exposed section in the study area, were 

constructed. A facies analysis was then undertaken based on all the field measurements 

and descriptions and by analogy to published models of the origins of sedimentary 

structures (Reineck and Singh, 1980; Allen, 1982a,b; Collinson and Thompson, 1982). 

Chapters 3, 4 and 5 describe and interpret the sedimentology and stratigraphy of 

the Ferryland Head Formation. Chapter 5 also provides an "atlas" description of the syn­

sedimentary deformation structures in the Ferryland Head Formation. Chapter 6 proposes 

a variety of depositional models that might reasonably fit the sedimentary and 

stratigraphic observations and then selects a preferred depositional setting. Chapter 7 

delivers the major conclusions of the research, some implications and a description of 

potential future work that could be undertaken. The following Chapter 2 reviews the 

evidence for late Precambrian flora and fauna and provides an important context for the 

sedimentological analysis of the Ferryland Head Formation. 

11 



Chapter2 

BIOGENIC STRUCTURES AND THE LATE PRECAMBRIAN 

2.1. LATE PRECAMBRIAN FLORA AND FAUNA: A BRIEF REVIEW 

Late Neoproterozoic fossils are known from the all continents except Antarctica. 

Most notable localities are in the White Sea region in northeastern Europe, southern 

Ukraine, southwestern U.K., Finnmark, Norway, Ediacara, South Australia, central 

Australia, Namibia, southwestern Africa, Northern and Southern China, southwestern and 

eastern U.S.A., the Wernecke and Mackenzie Mountains in Northwestern Canada and the 

Avalon Zone ofNewfoundland and Labrador. Late Precambrian fossil assemblages occur 

as impressions and body fossils as well as trace fossils. 

Simple horizontal traces have been reported from rocks as early as the 

Mesoproterozoic (Seilacher et al., 1998). Palaeoproterozoic traces however, after been 

interpreted as such, are consistently reinterpreted as inorganic sedimentary structures 

(Bergstrom, 1990; Hofmann, 1971) or have been incorrectly dated (Fedonkin and 

Runnegar, 1992). Pre-Ediacaran age trace fossils are limited to simple, unbranched 

traces assigned to the ichnogenus Planolites, and are rare (Crimes, 1994; Droser et al., 

2002). Trace fossils diversified and became abundant worldwide in the mid Cryogenian, 

circa 700 Ma (Fedonkin, 1994; Crimes, 1994). 

Crimes (1994), lists Planolites isp. as the only known Riphean (1600 Ma-700 

Ma) trace fossil. Varengerian (60Q-610 Ma) traces amount to 4 ichnogenera and 35 

ichnogenera worldwide for his "Ediacarian biozone" and 66 ichnogenera for the "pre­

trilobite Cambrian". 
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Late Neoproterozoic trace fossils have been reported from various localities in 

Northwestern Canada (Narbonne and Hofmann, 1987; Hofmann et al., 1990; Narbonne 

and Aitken, 1990; Hofmann et al., 1991). Planolites montanus is known from the 

Sheepbed Formation and Aulichnites isp., Helminthoida isp., Neonerites isp., 

Palaeophycus tubularis, Planolites montanus, Torrowangea rosei and a knotted burrow 

structure are known from the Blueflower Formation in the Windemere Supergroup 

Northwest Territories of Canada (Narbonne and Aitken, 1990). 

The serial fossils Palaepascichnus, lntrites, Neonerites renarius and Yelovichnus 

have been reported from the Fermeuse Formation in the study area, in association with 

the body fossil Aspidella terranovica, but are interpreted to be body fossils rather than 

trace fossils (Gehling et al., 2000) of probable algal origin (Jensen, 2003). No trace 

fossils are known from the Neoproterozoic of the Avalon Peninsula, Newfoundland and 

Labrador. 

2.2. BIOGENIC STRUCTURES IN THE LATE PRECAMBRIAN STATIGRAPHY OF 

THE AVALON PENINSULA 

No Ediacaran-type fossils have been found to date in the Signal Hill Group, even 

though taphonomic conditions are comparable to fossiliferous strata of similar age 

(Narbonne et al., 2001, 2002). Ediacara-type fossils and trace fossils are well known from 

similar strata in the Northwest Territories, Canada (MacNaughton and Narbonne, 1999). 

The only known fossils in the Signal Hill Group come from the lower St. John's Group, 

specifically, sphaeromorph acritarchs from the Cappahayden Formation and lower Gibbet 
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Hill Formation (Hofmann and King, 1979). A few algal mat textures can be observed on 

bedding surfaces of the Ferryland Head Formation. 

Ediacaran body fossils (Figure 2.1) are common within the upper Conception 

Group and lower St. John's Group (Gehling et al., 2000; Misra, 1969, 1971 , 1981; 

Anderson and Morris, 1982; Landing et al., 1989). The latest occurrence of Ediacara-type 

fossils in the Avalon stratigraphy is in the Fermeuse Formation (Figure 2.2). Aspidella is 

the most common fossil, occurring in densities up to 4000/m2
. Hiemalora, Triforillonia, . . 

poorly preserved fronds, Palaeopascichnus , Intrites and Yelovichnus are also present, but 

rare (Gehling at al. , 2000). 

Trace fossils have never been described in all of the A val on Neoproterozoic 

stratigraphy. Reasons for their absence are most likely explained by environmental 

factors, such as terrestrial conditions and other depositional settings unfavourable to 

Neoproterozoic life. However, in the Ferryland Head Formation there are abundant soft 

sediment deformation structures that offer intriguing possibilities of potential biogenic 

origins (Figure 2.3). The absence of any evidence for Ediacaran communities in the 

Ferryland Head Formation, despite their presence in underlying formations, strongly 

limits the likelihood of flora or fauna being involved in the formation of any of the 

sedimentary structures observed. Therefore a hypothesis that all the Ferryland Head 

Formation sedimentary structures are the products of abiogenic, and possibly chemical, 

processes is a reasonable assumption. A thorough description of the soft sediment 

deformation structures in the Ferryland Head Formation could provide a very useful 
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context for improved understanding of other sedimentary successions that have a mixture 

of biogenic and physical sedimentary structures. 

An analysis of the sedimentary facies and depositional setting of the Ferry land 

Head Formation is presented in the following chapters. The array of sedimentary 

structures are interpreted in their context and ranked according to the mode and clarity of 

their genesis. A discussion of the physical origins of the Ferryland Head Formation soft 

sediment deformation structures is undertaken and analogue value to other investigations 

proposed. 
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Figure 2.1. Ediacara- type body Fossils from the upper Mistaken Point Formation, 
Mistaken Point. Canadian Twonie for scale (28 mm diameter). 
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Figure 2.2. Stratigraphic distribution ofEdiacaran fauna ofNewfoundland and Labrador 
(Text figure 2, Gehling et al., 2000). Note the lack of fossils in the Signal Hill Group. 

17 



Figure 2.3 . Abiogenic synsedimentary deformation structures of the Ferryland Head 
Formation resembling biogenic structures. A: Tension cracks in 
interlaminated sandstone and siltstone. The arrows point to burrow-like 
tension cracks (scale bar shows lcm segments). B: shows interlaminated 
sandstone and siltstone with convoluted bedding in the centre. The top arrow 
indicates a circular burrow-like sand-filled structure. The arrow toward the 
bottom of the photograph shows a burrow-like structure with apparent 
backfill texture. C: shows a close up of photograph B with burrow-like 
tension cracks. 
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Chapter 3 

STRATIGRAPHIC SECTIONS 

3.1. INTRODUCTION 

The purpose of this Chapter is to describe the principal outcrop localities 

examined and place the sedimentary facies analyses that follow in stratigraphic context. 

All the Ferryland Head Formation exposures are located along the eastern coast of the 

Avalon Peninsula (Figure 1.1). The type locality at Ferryland, approximately 72 km 
. . 

south of St. John's, was the focus of this study. Excellent exposures are readily accessed 

via an unpaved road from the town ofFerryland leading to the Ferryland lighthouse on 

Ferryland Head. Ferry land Head has a rocky coastline that comprises locally steep cliffs 

(Figure 3.1.) Beds average a strike of000° and a dip of75°-80° to the East throughout 

the study area. Regional and local palaeocurrents are dominantly southerly-directed and 

therefore the outcrops provide stratigraphic dip sectional view. 

Approximately 540 m of the basal High Rocks Member of the Ferryland Head 

Formation are exposed in the study area above the first appearance of red-coloured beds 

which occur near a small sinkhole halfway between Bums Head and Bums Head Point 

(Williams and King, 1979; Figure 3.2). Three detailed stratigraphic sections were drawn 

on a bed by bed basis totalling 677 m and covering all of the exposed succession; the Flat 

Point Section, Ferryland Head section and Lighthouse Section. 
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3.2. FLAT PIONT SECTION 

A basal stratigraphic section was described that commences near Burns Head 

Point and ends at Flat Point covering a total of 201.13 m (Figure 3 .2} Although the first 

appearance of red sandstones marks the lower boundary of the Ferryland Head Formation 

(Williams and King, 1979), this lower boundary is not a sharp contact. Intercalation of 

Ferryland Head Formation facies and facies characteristic of the underlying Gibbet Hill 

Formation occurs within the lower 40 m of the formation. The first few metres of red 

siltstones are overlain by greenish grey sandstones indistinguishable from the underlying 

Gibbet Hill formation. The Flat Point section comprises predominantly tabular, upward 

fming sandstone bodies interbedded with siltstone. There are a few examples of 

sandstone beds with lenticular geometries most notably at 86 m and 100 m. There are 

two upward coarsening predominantly sandy strata at about 50 m and 105 m, 2 and 5 m 

thick respectively. A composite of the Flat Point section is shown in Figure 3.4. A 

detailed version of this section can be viewed in Appendix 1. 

3.3. FERRYLAND HEAD SECTION 

The base of the Ferryland Head section is located at the northern side of the 

unnamed cove and extends continuously to the tip ofFerryland Head (Figure 3.1). This 

section covers approximately 157 m of unbroken succession. There are approximately 20 

m of overlap between the upper Flat Point section and the base of the Ferryland Head 

section. The section is predominantly sandy toward the top, although no upward 

coarsening trend is obvious. Bedding is mostly tabular with a few examples of lenticular 
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bed geometries most notably at 20, 40, 73, 84, 115 and 127m. Thick sandy units less 

than 1 0 m each punctuate the section but are most common in the upper parts of the 

section more than116 m above the base. The section ends by the cliff adjacent to Bread 

and Cheese Cove (Figure 3.2). 

3.4. LIGHTHOUSE SECTION 

The base of the Lighthouse Section begins approximately 100 m south of the 

Ferry land Head section on the southern side of the unnamed cove and continues 

unbroken towards the Hare's Ears in the east, for a total of just over 319m (Figure 3.2). 

There are about 20 m of stratigraphic overlap between the lower portions of the 

Lighthouse Section and the upper parts of the Flat Point Section . The section could not be 

continuously described in detail and approximately 45 m are missing due to the 

inaccessibility of cliff face outcrops. The missing succession however, has equivalents in 

the upper parts of the Ferryland Head section. The sand body geometry of the Lighthouse 

section is similar to that of the Ferryland Head with good examples oflarge scale 

sandstone lenses with up to two metres of basal erosive relief at 15m, 33m, 179m, 190 

m and205 m. 

Finer grained beds in the High Rocks Member of the Ferryland Head Formation 

are thickest in the upper part of the Lighthouse Section with an approximately 30 m thick 

example between 211 and 240 m. Thick and relatively coarse-grained units punctuate the 

section similarly to the Ferryland Head Section. 
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Figure 3.1. View looking north ,of the northeastern tip ofFerryland Head showing the 
unnamed cove in the foreground. The point in the background is Cape Broyle 
Head (Photograph courtesy of Andrew J. Pulliam) 
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Figure 3.2. Aerial photograph ofFerryland Head showing the locations of the drafted 
stratigraphic sections. The Ferryland Head section is marked by a red line, the 
Lighthouse section is shown by a yellow line and the Flat Point section location is 
shown by a blue line. The basal contact of the Ferryland Head Formation is indicated by 
the red arrow. 
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Figure 3 .3. Flat Point stratigraphic section. See Appendix 1 for the legend. Vertical scale 
shown in metres. The photograph indicated in the section can be seen in 
Appendix 2. 
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Figure 3.4. Ferryland Head section. Vertical scale shown in metres. The photograph 
indicated in the section can be seen in Appendix 2. 
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Figure 3.5. Lighthouse stratigraphic section. Vertical scale shown in metres. 
The photograph indicated in the section can be seen in Appendix 2. 
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Figure 3.6. Ferryland Head section. Vertical scale shown in metres. The photograph 
indicated in the section can be seen in Appendix 2. 
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Chapter 4 

SEDIMENTARY FACIES ANALYSIS AND DEPOSITIONAL 
SUBENVIRONMENTS 

4.1. INTRODUCTION 

The aims of this chapter are to describe and interpret the sedimentary facies and 

the key depositional subenvironments of the Ferryland Head Formation at its type 

locality. Before describing the sedimentary facies, a brief summary of the sandstone 
. . 

petrography is provided. 

4.2. PETROGRAPHY 

A petrographic study of the Signal Hill Group was carried out by Singh (1969). 

The study focused on the Signal Hill and Blackhead Formations which were later 

renamed by Williams and King (1979) (see section 1.2.2. in Chapter 1). The Ferryland 

Head Formation corresponds to the distal facies of most of Singh's Middle Member of the 

Signal Hill Formation. The sandstone in the High Rocks Member of the Ferryland Head 

Formation can generally be classified as lithofeldspathic arenite with minor occurrences 

of lithic arenite, feldspatholithic arenite and lithic arenite. The petrographic data are 

summarized in Figure 4.1. 
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Sublithic arenite 

Lithic fragments 

Figure 4.1. Ternary diagramme showing the different sandstone types in the Cuckold, 
Ferryland Head and Gibbet Hill formations. Shaded outlined areas show the 
field in which the data fall (modified from Singh, 1969). 
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Quartz forms 30.4% of the total rock, potassium feldspar grains account for 8.2 

%, plagioclase for 20.6%, rock fragments 18.1% and interstitial material22.7% (Singh, 

1969). The most abundant rock fragments are sedimentary and include sandstone, 

siltstone, argillite and siliceous rock fragments. Volcanic, igneous intrusive and 

metamorphic rock fragments are all present in lesser amounts. Pure ash or tuff beds are 

not known from the Ferryland Head Formation but are common in the older stratigraphy 

ofthe Avalon Peninsula (Williams and King, 1979; Narbonne et al., 2000). 

Mean grain size in the Ferryland Head area was found to be approximately 3<1> 

(Singh, 1969) or fine to very fine sand. There is a progressive increase in average 

sphericity towards the south from 0.59 in Flat Rock to 0.65 in Petty Harbour. Roundness 

also increases towards the south with average roundness of 0.59 in Flat Rock to 0.62 in 

Petty Harbour. The arenites were found to be well sorted in the Ferryland Head area 

(Singh, 1969). 

4.3. SEDIMENTARY FACIES ANALYSIS 

4.3.1. Facies Classification 

The lower F erryland Head Formation consists of interbedded tabular reddish to 

purplish brown siltstones, and buff to greenish grey sandstones. There is a strong 

correlation between colour and grain size in the High Rocks Member. The fine grained 

rocks tend to have a higher iron content and a red to purplish-red colour. Sandstones are 

tan to greenish grey and contain little or no haematite. Five lithofacies comprising 

collectively 22 sedimentary subfacies have been defined for the Ferryland Head 
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Formation at Ferryland (Table 4.1). Facies 1 comprises siltstone and the fmer grained 

sandstones. Facies 2 encompasses silty sandstone. Facies type 3 is matrix-poor sandstone. 

Facies 4 and 5 comprise intraformational conglomerates and ash-rich beds, respectively. 

Lithofacies are designated according to overall lithology, whereas subfacies are defmed 

by the presence or absence of particular sedimentary structures. Lithofacies and 

subfacies are described and interpreted in terms of primary depositional processes in the 

following sections. 

4.3.2. Facies 1: Heterolithic Facies 

4.3.2.1 Description 

Eleven subfacies are recognized in the fine-grained heterolithic rocks of the 

Ferryland Head Formation. These are all characterized by a high silt content and an 

overall reddish colouration. Ridges and furrows (Plate 1) are common on 

siltstone-draped, sandstone bedding surfaces of all the heterolithic subfacies except 1 A. 

These structures may cover extensive surfaces, sometimes greater than 5 m2
. The 

structures are long, straight to gently curved, subparallel and bifurcate upcurrent 

(converge in the direction ofpalaeoflow). The ridges and furrows have a separation of 

less than 2 mm. They occur in association with "bumpy" surfaces (Plate 1) characterized 

by mounds less than 5 em in height and 10 em in diameter, surrounded by hollows of 

similar dimensions. The ridges and furrows radiate outward within the hollows and curve 

around raised features. The ridges and furrows have a relief of up to 2 mm on sandstone 

surfaces. 
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Table 4.1. A summary of the facies identified in the High Rocks Member of the 
Ferryland Head Formation. 

Sub-
Facies facies Description Interpretation 

code 

Massive reddish to purplish brown 
Low energy 

Facies 1 1A pool/abandoned 
siltstone with minor sandstone 

channel 

Wavy, interlaminated, buff-coloured 
Episodic fluctuating 

1B sandstone and reddish-brown siltstone 
low energy flow/ 

laminae 
interdistributary 

deposition 
Episodic fluctuating 

Horizontally interlaminated buff- low energy flow/ 
1C coloured sandstone and reddish to interdistributary 

purplish brown siltstone laminae deposition/possible 
tidal influence 

Fluctuating low 

1D 
Buff-coloured lenticular sandstone in energy 

reddish to purplish brown siltstone flow/possible tidal 
influence 

Episodic fluctuating 
flow/ 

Interbedded to laminated sandstone 
interdistributary 

and siltstone with abundant collapse 
deposition 

1E 
structures, dewatering pipes 

Instability due to 

synaeresis and sandstone dykes 
proximity to 

channel or in delta 
front setting or 

earthquake-induced 
Siltstone laminae/beds with complete Subaerial 

lF polygonal shrinkage cracks defined by exposure/ shallow 
buff-coloured sandstone delta plain 

Episodic fluctuating 

IG Interbedded sandstone beds and flow/ 
siltstone laminae interdistributary 

deposition 

lH Ripple-laminated load casts 
High sedimentation 

rates 

11 Sandstone load casts in siltstone 
High sedimentation 

rate 
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lJ 
Wave-rippled silty sandstone draped Shallow delta 

in siltstone plain/front 

lK 
Convoluted sandstone and siltstone High sedimentation 

laminae (convolute bedding) rates 
Fluctuating waning 

2A 
Buff to reddish-buff-coloured, very flow I crevasse 
:fme upper to :fme upper, silty sand splay/distal flood 

stage sheet flow 

Facies 2 
Unidirectional 

Current-rippled to planar-laminated flow/crevasse splay/ 
2B 

silty sandstone distal flood stage 
sheet flow 

2C Silty sandstone with climbing-ripples 
2D Structureless silty sandstone 

3A Crossbedded matrix-poor sandstone 
Migrating dune 

/channel 

3B Rippled sandstone 
Unidirectional 

current/ channel 
Upper flow regime 

3C Planar-laminated sandstone unidirectional 
current/ channel 
Unidirectional 

3D Climbing rippled sandstone 
current/ channel/ 

flood stage 
Facies 3 

deposition 
3E Massive sandstone VariOUS 

Rapidly deposited 
sand/ flood stage 

3F Convoluted sandstone deposition/ possibly 
earthquake-induced 

deformation 
Wave reworking in 

3G Wave-rippled sandstone shallow marine 
environment 

Facies 4 Intraformational conglomerate 
High energy flow 

/channel lag 

Facies 5 Ashy sandstone 
Fallout 

ash/reworked ash 
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Subfacies lA consists of generally structureless, reddish to purplish-brown 

siltstone with minor sand (Plate 2A). Sand content never exceeds 5%. This subfacies 

occurs generally at the top ofupward-fming beds or as discrete beds less than 20 em thick 

and mostly just a few centimetres thick. Discrete lenses of this facies are common. The 

lenses have concave-upward bases and are flat-topped, They can be up to 3m in length 

but never exceed 20 em in thickness. 

Subfacies lB consists of wavy, interlaminated, buff-coloured sandstone and 

reddish-brown siltstone laminae (Plate 2, Band C). The silt content in this subfacies is 

approximately 75-85%. Individual wavy sandstone laminae vary in thickness along strike 

by a few millimetres. Where the sandstone laminae swell, current-ripple cross-lamination 

can often be seen. The sandstone laminae vary in overall thickness from 1 mm to 1 em 

and are draped by 1-3 mm-thick siltstone laminae. The siltstone laminae maintain a 

constant thickness laterally. The sand grain size ranges from very fine lower (4.0-3.5<!>) to 

fme upper (2.5-2.0<1> ). The thickness of the sandstone laminae tends to decrease upward 

in most examples of this subfacies. Palaeoflow does not vary greatly within single 

occurrences of this facies. 

Subfacies 1 C consists of horizontally interlaminated buff-coloured sandstone and 

reddish- to purplish-brown siltstone laminae (Plate 3, A and B). Subfacies 1B and 1C 

differ only in that 1B contains laminae that are of constant thickness and are straight and 

parallel. There is a repetitive occurrence of thick sandstone laminae, draped by thin 

siltstone laminae overlain by thin sandstone laminae, in turn, draped in thin siltstone 

laminae (Plate 3A). 
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Subfacies lD consists of buff-coloured lenses of sandstone in reddish to purplish 

brown siltstone (Plate 3, C and D). Siltstone comprises up to 75% of this facies, the rest 

being sandstone. The sand grain size varies from very fine upper (3.5<j>) to fine upper 

(2.0<j>). Lenses are 1-3 em thick and 5-10 em long. This subfacies occurs both as discrete 

horizons and in successions of up 70 em thick. Current-ripple cross-lamination is 

commonly observed within the sandstone lenses. 

Subfacies lE comprises interbedded to interlaminated sandstone and siltstone 

with abundant collapse structures (Plate 4A, B, C and D), dewatering pipes (Plate 4E), 

sandstone dykes and sills (Plate 4F), and synaeresis cracks. The siltstone content in this 

subfacies is approximately 75-85%. The collapse structures range in diameter from 5 em 

to 50 em and vary from 5 em to 60 em in depth. They are funnel-shaped with curved 

sides. The interbedded sandstone and siltstone laminae curve downward into the upper 

part of the structure in the upper portions. In the lower two-thirds of each structure, 

siltstone laminae terminate against structureless sandstone. Broken-up and disorganised 

siltstone laminae are present at the base of the structure. Dewatering pipes are less than 3 

em wide and less than 20 em high. They are vertical to subvertical to bedding, have sharp 

edges and are filled with structureless sandstone. Sandstone dykes vary greatly in length 

but never exceed 3 em in width. They are also perpendicular to subperpendicular to 

bedding. Branching is common. Dykes can be distinguished from dewatering pipes by 

their connection to thinned sandstone laminae and beds. Tensional cracks do not connect 

to sandstone beds or laminae. 
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Subfacies lF is composed of siltstone laminae and thin beds with complete 

polygonal shrinkage cracks filled with buff-coloured sandstone (Plate 5). The polygons, 

in plan view, generally have a longer axis oriented north-south and are shortened in the 

east-west direction. The long axis varies in length from 10-20 em and the short axis from 

5 to 8 em. The maximum width ofthe cracks does not vary greatly and is of0.5-1.5 em. 

All cracks taper downward stratigraphically and are most commonly perpendicular to 

bedding. When subperpendicular to bedding, the cracks share a common orientation with 

angles ranging from 90° to 60° to bedding. The depth of the cracks in cross-section varies 

from 1-3 em. 

Subfacies 1 G consists of alternating sandstone beds and siltstone laminae (Plate 

6A). This subfacies differs from subfacies 1 A and 1 C only in the proportions of 

sandstone and siltstone. The latter two contain more than 70% siltstone whereas facies 

1 G is predominantly sandy, with less than 70% siltstone. 

Subfacies lH consists of rippled sandstone forming load casts into siltstone (Plate 

6 B, C and D) similar to structures described by Dzulynski and Kotlarczyk (1962). The 

sandstone ranges in grain size from fine lower (3.0-2.5$) to medium lower (2.0-1.5$). 

Sandstone content in this facies is approximately 75%. Current-ripple cross-lamination is 

preserved within the load casts. The load casts average 4.5 em in width. Load casts which 

exceed 10 em in depth tend to be highly sinuous. 

Subfacies 11 consists of sandstone loaded into siltstone (Plate 7). Load casts vary 

m cross-section from 10-20 em long, 4-5.5 em wide sinuous loads to pillows that are 10-
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40 em wide and 10-30 em deep. Sandstone content is highly variable in this facies, 

ranging from 30% to50%. Pseudonodules are uncommon. 

Subfacies lJ comprises wave-rippled silty sandstone (Plate 8 and Plate 9A, 9B 

and 9C). Grain size in this facies varies from very fine upper to fine upper sand. Ripple 

wavelengths are from 4-6 em; amplitudes are from 0.5-1 em. The wave-rippled 

sandstone horizons are continuous and 2-10 em thick and are often draped in thin (1-2 

mm) siltstone laminae. The crests of the wave ripples are oriented predominantly 

northwest-southeast and north-south. 

Subfacies lK consists of convoluted sandstone and siltstone laminae (convolute 

bedding). The deformation is confined to individual beds. Bed thickness varies from 10-

40 em. The beds consist of interlaminated very fine to fine sandstone and siltstone. The 

convolutions are characterised by broad synclines up to 20 em wide and closed anticlines. 

The axial planes of the folds are normal to subnormal to bedding. Recumbent folds are 

not present. The deformation is mainly plastic with rare evidence of brittle deformation 

(Plate 9D). Sandstone content in this facies averages 20%, the remainder being siltstone. 

4.3.2.2. Interpretation of Facies 1 

The relationship between fme-grained facies and red colouration (haematite 

content) in the High Rocks Member of the Ferryland Head Formation is similar to that 

found by McBride (1974) in the Difunta Group of northeastern Mexico. This relationship 

is believed to be a result of the attachment of poorly crystalline or amorphous iron oxides 

to clays; the oxides are later altered to haematite (McPherson, 1980). Tomlinson (1916), 
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however, found that the Fe3+/Fe2+ (ferric/ferrous) ratio controls the development of 

colour, not the total iron percentage. The fact that diagenesis can affect the sediment at 

an early stage means that the environment of deposition cannot be correctly inferred from 

colour alone (Miall, 1999). The decrease of greenish to greyish beds in the increase of 

red-coloured sediment upwards through the Ferryland Head Formation suggests an 

increase in oxygen in the formation waters through time and not necessarily a change in 

surface-water oxygenation or exposure to the atmosphere. 

The fine-grained nature of the sediment in subfacies 1A requires deposition in a 

low energy environment. The occurrence ofthis facies at the top of fining-upward beds is 

interpreted to indicate the deposition of sediment from waning flows at the terminal 

stages of floods. Lenticular occurrences of this facies formed as pools were filled in with 

silts and clays. These pools could be troughs of large bed-forms or scours on bedding 

surfaces. 

The interbedded sandstone and siltstone of sub facies 1 B suggests energy 

fluctuations in the environment of deposition. The wavy-bedding style as well as current­

ripple cross-lamination indicate deposition in the lower flow regime, fluctuating with 

quieter periods. Ridges and furrows have been described by several authors as 

longitudinal scours (longitudinal ridges and furrows) resulting from unidirectional 

currents eroding a somewhat cohesive substrate (Collinson and Thompson, 1982; Allen, 

1982b). Dmlyilski and Walton (1965) describe similar structures from Oligocene flysch 

deposits in Poland as dendritic ridge moulds. Identical structures were described by 

Glaessner and Walter (1975) from Australia and interpreted to be of organic origin. They 
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recognized a new fossil, Arumberia banksi which they "interpreted as the remains of cup-

shaped animals, probably of coelenterate grade." Bland and Anderson (1982) described 

examples of Arumberia from Ferryland (Anderson, M. M., pers. comm., 2003). The 

biological origin of Arumberia was reconsidered by Mcilroy and Walter (1997). They 

proposed that the structures were formed by currents impinging in microbially-bound 

sediment. 

Subfacies 1 C is interpreted to have been deposited in lower flow regime 
. . 

conditions. Lower plane beds, rather than ripples, suggested by the flat and parallel 

laminae, are present in this facies. A tidal influence can be iferred from packages of 

alternating thick and coarse, thin and fme, thin and coarse, followed by thin and fine (Nio 

and Yang, 1991 ). The siltstone laminae are deposited during slack water and thin 

sandstone laminae are deposited during rising or falling tide. The differential thickness in 

the sandstone laminae is explained by thicker laminae deposited during the dominant tide 

and thin sandstone laminae during the subordinate tide. 

The contrasting lithologies in Subfacies 1D suggest significant fluctuations in the 

flow. Current-induced bedload transport and sandstone deposition alternates with slack-

water deposition of mud from suspension-forming flaser, wavy and lenticular bedding 

(Reineck and Singh, 1980). These bedding styles, although most common in tidal 

settings, are also known from fluvial, lacustrine and marine delta-front environments. 

Subfacies 1 E is lithologically identical to subfacies 1 B and 1 C and therefore is 

interpreted to have been deposited subaqueously by relatively slow, fluctuating currents. 

The abundance of soft-sediment deformation structures in this subfacies indicates a very 
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unstable substrate due to extremely rapid deposition, wave pounding, current shearing, or 

sudden shock from channel bank collapse or seismic tremors. 

The polygonal shrinkage cracks of subfacies 1 F are interpreted as desiccation 

cracks. Periods of subaerial exposure might be due to tidal influence or intermittent 

fluvial flooding. 

Subfacies 1 G is interpreted to have been deposited under similar conditions to 

subfacies 1 B and 1 C, but the sandier lithology suggests a higher flow velocity. The 

higher sandstone : siltstone ratio suggests a more proximal location to the sand source 

(channel axis) than subfacies 1B and 1 C. The presence of current-ripples suggests 

velocities of approximately 40 m/s (Allen, 1982a). 

The loaded ripples in sub facies 1 H suggest very high sedimentation rates. The 

sand-bed began to sink into the underlying sediment where it was thickest (i.e., at ripple 

crests). The sinking of the ripple created further accommodation space which was 

subsequently filled by more sand, and so on. The ripple laminae are often preserved in 

spite of the pervasive deformation. 

Subfacies 1 I load structures suggest rapid deposition and partial liquefaction of 

sand at the time of deposition. Wave ripples suggest that wave pounding might have 

triggered the loading. 

The wave ripples in subfacies lJ indicate oscillatory motion. Micro-wave-ripples 

suggest wind-generated waves in shallow pools on a delta plain. The northwest­

southeast and north-south orientation of the crests is interpreted as being perpendicular to 
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the coast due to offshore or onshore winds. The palaeoshoreline was therefore oriented 

southwest-northeast to east-west. 

The convoluted lamination of subfacies 1K indicates unstable sediment due to 

rapid deposition. Convolution might have been induced by shearing by currents, or shock 

due to seismic activity, or wave pounding, or collapse of nearby distributary channel 

banks. 

4.3.3. Facies 2: Silty Sandstone 

4.3 .3 .1. Description 

Subfacies 2A consists of buff to reddish-buff, very fine upper to fine upper, silty 

sandstone (Plate 10 A and B). Discontinuous siltstone laminae less than 2 mm thick and 

20 em long are common toward the top of most occurrences of this facies. The siltstone 

laminae are wavy, suggesting ripples; however, ripple cross-lamination is not visible. 

Subfacies 2B consists of current-rippled to planar-laminated silty sandstone. 

Ripple trains are laterally extensive and can be followed for metres (Plate 1 0 D and E). 

The height of the ripples varies from 1-3 em. The ripple cross-lamination is commonly 

defined by thin drapes of reddish-coloured silt. 

Subfacies 2C consists of silty sandstone with climbing-ripples (Plate 1 OF and G). 

The angle of climb ranges from 10-20° but is constant within individual occurrences of 

the subfacies. The angle of climb is commonly steeper than the stoss-side slope and stoss­

side laminae are therefore preserved (type B ripple-drift cross-lamination of Jopling and 

Walker, 1968). 
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Subfacies 2D consists of structureless, buff argillaceous sandstone with a reddish-

brown tinge (Plate 1 OC). This facies can occur as a part of a bed or as individual beds 

less than 50 em thick. 

4.3.3.2. Interpretation of Facies 2 

Current-ripples in very fine upper to fine upper sandstone suggest water velocities 

of 40-60 cm/s (Allen, 1982a). The upward fining of occurrences of subfacies 2A implies 

a waning unidirectional unchannelized flow. This subfacies therefore probably represents . . 

crevasse splay deposits, levee deposits or sheet flow-deposits. 

Subfacies 2B contains better defined ripples and planar lamination than subfacies 

2A. A slightly higher velocity of 50-100 cm/s (Allen, 1982a) is suggested for this 

subfacies. This subfacies most likely represents proximal crevasse splay deposits or 

flood-stage sheet-flows. 

The climbing-ripples of subfacies 2C indicate rapid sedimentation rates probably 

associated with floods. The abundance of sediment and rapid deposition imply a rapid 

decrease in water velocity placing this subfacies near a channel margin. 

Subfacies 2D is structureless or contains poorly defmed structures. This results 

from a uniformity of grain size or loss of structures due to dewatering. This subfacies is 

interpreted to be the result of rapid deposition from waning flows. 
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4.3.4. Facies 3: Matrix-poor Sandstone 

4.3.4.1. Description 

Pyrite crystals up to 0.5 cm3 are common in all the greenish-grey sandstones that 

comprise facies 3. The crystals are euhedral and range in size from 0.1-0.5 cm3
. 

Subfacies 3A is composed ofbuffto greenish grey, cross-bedded sandstone (Plate 

11). Grain size ranges from fine upper to coarse sand. Foreset dip angles range from 10°-

25°. Greater angles only occur in association with dewatering and convolution. Cosets . . 

are less than 1m thick and most commonly approximately 50 em thick. Foresets are 

sometimes defmed by tabular siltstone granules. Tabular cross-bedding is the most 

common type. Trough cross-bedding is rare. 

Subfacies 3B consists ofbuffto greenish grey, current-rippled sandstone (Plate 

12A). The grain size varies from fine upper sand to medium upper (1.5-l.O<f>) sand. 

Ripples occur in trains that are laterally continuous for tens of centimetres to a few 

metres. Cross-lamination is not always well defmed due to the well-sorted nature and 

uniform colour of the sandstone. Ripples are generally of uniform size with a height of2-

3 em. At any given locality, ripple forset dips are unimodal. 

Subfacies 3C consist of planar-laminated, buff to greenish-grey sandstone (Plate 

12 B). Laminations are either clearly defined or are locally obscured by the uniformity of 

grain size. Parting lineations are common on exposed surfaces. The grain size varies from 

fine upper to medium upper sand. 

Subfacies 3D is composed of climbing ripple-laminated buff to greenish grey 

sand. Grain size varies from upper fine to upper medium sand. The angle of climb ranges 
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from 5- 15°. The angle of climb is sometimes less than the angle of the stoss side slope in 

which case sets are separated by an erosional surface. 

Subfacies 3E consists of buff to greenish grey, structureless sandstone. Grain size 

varies from fine upper to medium upper sand. This facies occurs most often at dm-scale 

within beds but can sometimes consists of beds up to 4 m thick. 

Subfacies 3F consists of convoluted buff to greenish grey sandstone (Plate 12C). 

Grain size ranges from lower fine sand to upper medium sand. This subfacies occurs in . . 

units thicker than 30 em. Convolution is shown by oversteepened and folded laminae. 

Subfacies 3G comprises wave-rippled sandstone (Plate 12D). The wave-ripple 

amplitudes do not exceed 2 em. Wavelengths average 4 em. This subfacies is most 

common towards the tops of sandstone beds. Grain size ranges from very fine upper to 

fine upper. 

4.3.4.2. Interpretation of Facies 3 

The abundance of pyrite crystals in the greenish grey sandstones of the lower 

portion of the Flat Point section can be interpreted as an indication of anoxic conditions 

in the post depositional environment. The pyrite is not detrital and is interpreted as 

diagenetic. 

The cross-bedding in subfacies 3A formed as the result of the migrating oftwo 

(tabular cross-bedding) or three dimensional (trough cross-bedding) dune bedforms. 

Deposition is interpreted to have taken place in a unidirectional current during lower flow 
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regime probably during flood stage. Minimum water flow velocities are estimated to be 

40-100 cm/s (Allen, 1982a). 

Subfacies 3B is interpreted as having been deposited from a waning unidirectional 

flow as indicated by the current-ripple lamination. 

The parallel-laminated sandstone of subfacies 3C is interpreted to represent 

deposition in the upper flow regime from episodic flows. 

Subfacies 3D suggest high rates of deposition from suspension to explain the 

formation of climbing-ripples. 

Subfacies 3E is interpreted to represent rapid depositional rates inhibiting 

tractional processes (Arnott and Hand, 1989). Dewatering might have contributed to the 

structureless nature of these deposits (Bhattacharya and Walker, 1991). 

Rapidly deposited sand accounts for the soft sediment deformation and 

dewatering in subfacies 3F. The sand was not well compacted and unstable. The most 

likely trigger for the liquefaction and subsequent convolution is shearing beneath the flow 

which deposited the sediment. 

Subfacies 3G is interpreted to represent sediment reworking by waves in a very 

shallow marine setting. 

4.3.5. Facies 4: Intraformational Conglomerate 

4.3.5.1. Description 

Facies 4 comprises intraformational conglomerate (Plate 13). It is commonly 

found at the base of coarse beds overlying pronounced erosional surfaces. Clasts range in 
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size from granules to pebbles, are angular to subangular, and tabular to oblate. Granule­

sized clasts are subrounded and larger clasts tend to be more angular. All clasts are 

reddish-brown siltstone indistinguishable from the fine grained components of facies 1. 

4.3.5.2. Intemretation of Facies 4 

Facies 4 represents the highest flow velocities in the studied succession. The 

clasts are interpreted as lag material resulting from erosion during initiation of floods. 

4.3.6. Ash-rich sandstone 

4.3.6.1. Description 

Facies 5 is composed of greenish to light grey ash-rich sandstone. Grain size 

varies from very fine upper to fine lower sand. A well-defined subvertical tectonic 

cleavage similar to that of ash and tuff beds in the Conception Group, characterises this 

facies. No primary sedimentary structures were observed. 

4.3.6.2. Interpretation of Facies 5 

Facies 5 is rare in the stratigraphy and most likely represents reworked ash beds 

related to ongoing, albeit diminishing, distal volcanism. A low preservation potential 

might also be responsible for the scarcity of ash. The older Conception Group represents 

deep-marine environments with higher preservation potential. By the time of deposition 

of the Ferryland Head Formation, the basin had become shallow and reworking would 

have been common. 
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4.4. FACIES ASSOCIATIONS 

4.4.1. Facies Association Classification 

Facies associations are defined as sets of co-occurring facies and subfacies which 

may show particular stratigraphic order. Three facies associations are recognised in the 

Ferryland Head stratigraphy (Table 4.2). Facies associations II and III are further 

subdivided into lia, lib, Ilia and liib. 

4.4.2. Facies Association I 

4.4.2.1. Description 

Facies association I consists of an upward coarsening and/or thickening 

succession of 0.5-2 m thick beds of predominantly sandy facies (Figure 4.2). The 

thickness of occurrences of this facies association ranges from 1.37-10.43 m, averaging 

approximately 5 m. The median thickness is 5.13 m. This association is bounded at its 

base by a relatively horizontal, sharp erosional surface with relief varying from a few 

centimetres to 40 em. Erosional surfaces also occur within examples of this association. 

Facies 4 commonly lies directly above the basal erosional surface, overlain by a 

combination of subfacies 3A, 3B, 3C, 3D and 3E. Facies 4 occurs also occurs at the bases 

of individual beds within the facies association. Convoluted horizons (subfacies 3F) are 

especially common in the upper portions of this association. Subfacies 2A or 2D are 

sometimes present at the very top of this association. Facies association I makes up 

approximately 16% of the Ferryland Head Formation at Ferryland and occurs with more 
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Table 4.2. Summary of the facies association identified in the High Rocks Member of the 
Ferryland Head Formation. 

Facies Description 
Thickness 

Facies present Interpretation 
Association (m) 

Coarsening-

I 
and/or-

~I-IO 4,3A,3B,3C,3D,3E,3F 
Prograding 

thickening- mouth-bar 
upward 

Thinning-
and/or-
fining- Coarse-grained 
upward 

II a sandstone 
~0.5-2 4, 3A, 3B, 3C, 3D,3E, 3F, 2A,2B distributary 

channel 
over 

erosional 
surface 

Thinning- I.6-2.5 4,3A,3B,3C,3D,3E,3F, Fine-grained 
and/or- 2A,2B,±IA,I B, I C, IE, I G distributary 
fining- channel 
upward 
silty 

lib sandstone 
and 
siltstone 
over 
erosional 
surface 
thin tabular 0.2-3 2A,2B,2C,2D,± I B, I C, IE, I G Crevasse 

Ilia sandstone splay/sheet 
beds flow 
Fine O.I-5 IA,IB, I C, ID, IE, IF, I G, IH, 11, lJ, Interdistributary 

IIIb grained 2A, 2B, 2C, 2D deposits 
Heterolithic 
sediments 
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frequency towards the top of the succession (Figure 4.3). Palaeoflow within this facies 

association is unimodal and predominantly towards the south-southwest (Figure 4.4A), 

with minor north, southwest and southeast-directed palaeoflow. 

4.4.2.2. Interpretation of Facies Association I 

The upward-coarsening character of facies association I is interpreted to result 

from progradation of a distributary mouth-bar complex (Bhattacharya and Walker, 1992; 

Boggs 1995; Elliot, 1974). The abundance of relatively thin examples of this association 

suggests short-lived, broad, shallow distributary channels characteristic of braided river 

systems. Another possibility is that the body of water that the delta was prograding into 

was shallow (R.0e, 1995). Thicker examples ofthis facies association most likely were 

fed by the main channel system which remained active for several consecutive seasons. 

4.4.3. Facies association II 

4.4.3.1. Description 

Facies association II is characterized by an upward fining and thinning succession 

of normally-graded beds bounded at the base by a concave erosional surface. This facies 

association consists of a continuum from which the two end members are described. 

Facies association II constitutes approximately 23% of the High Rocks Member of the 

Ferryland Head Formation. The two end members are facies associations Ila and lib and 

are described below. 

Facies association Ila encompasses a thinning and/or fining upward succession of 

beds belonging to facies 2 and 3 (Plate 14A, 14B and Figure 4.5). This association is 
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Figure 4.3. Complete stratigraphic sections of the Ferryland Head Formation showing the 
facies associations. Section A, B, and Care the Ferryland Head, Lighthouse and 
Flat Point sections respectively. Note the scarcity of facies association I in the 
lower part of the Ferryland Head Formation (Flat Point section) and its abundance 
in the upper two-thirds of the formation and the abundance of facies III in the 
lower part of the formation. Dashed red lines are shown to correlate between the 
sections. 
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Figure 4.4. Palaeoflow data plotted as rose diagrammes. Rose diagramme showing 
palaeoflow data collected in facies association I from the Ferryland Head 
formation at Ferry land. Sample number is 53 with 10° classes (A). Rose 
diagramme showing palaeoflow collected from facies association lia. Sample 
number is 115 with 10° classes (B). Rose diagramme indicating palaeo flow 
directions for facies association lib. Palaeoflow direction is polymodal with flow 
predominantly south and southwest. Sample number is 6 with a 10° classes 
(C).Rose diagramme illustrating palaeoflow from facies association Ilia. Sample 
number is 280 with a 10° class (D). Rose diagramme showing palaeoflow from 74 
measurements in facies association Ilib. 10° classes (E). Total palaeoflow data 
collected in the Ferryland Head Formation at Ferryland. Sample number is 528 
with 10° classes. Note the strong unimodality of southerly palaeo flow (F). 
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bound at its base by a sharp, gently concave erosional surface. Overall relief on the basal 

erosional surface ranges from 0.5-2 m whereas small-scale relief within the concave 

surface generally varies form 5-30 em. Intraformational conglomerate (facies 4) 

commonly overlies the erosional surface, and is in tum overlain by crossbedded 

sandstone (subfacies 3A), followed by current-rippled sandstone (subfacies 3B) and/or 

planar-laminated sandstone (subfacies 3C). Climbing-ripples (subfacies 3D) are 

sometimes present. Massive sandstone (subfacies 3E) is locally present. Convoluted 
. . 

sandstone (subfacies 3F) is commonly present, especially towards the top of the 

succession. 

The upper third to upper half of each occurrence of facies association Ila 

comprises fine-grained, silty sedimentary rocks of facies 2. Very fine upper to fine 

upper, silty sandstone (subfacies 2A), and current-rippled to planar-laminated silty 

sandstone (subfacies 2B), are common in the upper part of this succession. Massive 

reddish to purplish-brown siltstone with minor sandstone (subfacies 1A), wavy (subfacies 

lB) and horizontally interlaminated (subfacies 1 C), buff-coloured sandstone and reddish-

brown siltstone laminae are locally present. Other subfacies which are common in this 

facies association are interbedded to interlaminated sandstone and siltstone with abundant 

collapse structures, dewatering pipes, synaeresis cracks and sandstone dykes (subfacies 

IE), and interbedded sandstone beds and siltstone laminae (subfacies 1G). The thickness 

of this association varies from a 0.34-9 m. The average thickness for this association is 

2.76 m; the mode thickness is 1.88 metre and the median thickness is 2.22 m. Facies 

association IIa comprises a total cumulative thickness of 143.64 m or 21% of the entire 
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exposed Ferryland Head Formation in the study area. The occurrence of this facies 

association is sporadic throughout the stratigraphy, first appearing approximately 5 m 

from the basal contact of the Ferryland Head Formation (Figure 4.3). The dominant 

palaeoflow within this association is south to south-south-west (Figure 4.4B). At least six 

examples of gently dipping, poorly defined surfaces, dipping 1 oo -20° from bedding 

plane. All of the examples occur within facies association IIa in current-rippled 

(subfacies 3B) to parallel-laminated sandst?ne (subfacies 3C), convoluted sandstone (3F), 

and silty current-rippled sandstone (subfacies 2B). 

Facies association lib comprises a thinning and/or fining upward succession of 

normally-graded beds of facies 1 and 2 (Plate 12C and Figure 4.6). This association 

makes up only approximately 2% of the stratigraphy with a total cumulative thickness of 

approximately 12m (Figure 4.3). The thickness of the occurrences ofthis facies 

association ranges from 1.6 m to 2.5 m with an average thickness of approximately 2 m. 

The distribution of this facies association is limited to the lower two thirds of the 

succession in the study area. This facies association is bounded by a concave erosional 

base with pronounced relief of, in some cases, more than 2 m. Cross-bedding, although 

present in some cases, is otherwise rare. Current-rippled silty sandstone (subfacies 2B) 

commonly overlies the erosional surface. Climbing-ripples (subfacies 2C) are very 

common. Sandy siltstone (subfacies 1A) is ubiquitous in this association. Wavy 

(subfacies 1B) and horizontally (subfacies 1C) interlaminated and interbedded, buff­

coloured sandstone and reddish-brown siltstone are always present towards the top of this 

facies association. Lenticular sandstone (subfacies 1D) is rarely present in this 
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Figure 4.6. Examples of facies association Ilb from the Ferry land Head section (column 
A) and Flat Point section (column B). 
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association. Wave ripples (facies 11) can be seen toward the top of the succession in more 

than one occurrence. Limited palaeoflow measurements indicate predominant flow to the 

southwest with a minor northeasterly component (Figure 4.4C). 

4.4.3.2. Interpretation of Facies Association II 

Facies association II is composed of upward-fining sedimentary rocks 

bound at their base by generally concave erosional surfaces. These deposits are 
. . 

interpreted as channel or channel complex fill (Bhattacharya and Walker 1995). The two 

end members represent differences in the flow velocities within each channel type. Facies 

association IIa is interpreted as the fill of a high energy distributary channel or channel 

complex. The abundance of erosional surfaces within facies association IIa indicates 

frequent flood conditions. Cross-bedding is suggestive of dune migration during such 

floods. The rare examples of gently-dipping surfaces are interpreted as lateral accretion 

surfaces due to point-bar migration. The scarcity of lateral accretion surfaces in this 

facies association suggests that the channels had low sinuosities and high width-to-depth 

ratios characteristic of braided river systems (Miall, 1992; Collinson, 1986; Reineck and 

Singh, 1980; Boggs, 1995). It should be noted that the concavity of the master surfaces of 

the channels/ channel complexes are not commonly observed due to the dip-sectional 

nature of the outcrop. This might also be the cause of an apparent lack of lateral accretion 

surfaces. 

Facies association lib is interpreted to have been deposited under slower flows 

than facies association IIa. The fine-grained fill suggests that deposition occurred either 
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during the latest stages of floods, that these channels where somehow disconnected from 

the main channel. This facies association is not interpreted as deposition in an abandoned 

channel (channel plug). The structures above the erosional base, although indicative of 

lower flow velocities than association Ila, are still indicative of lower to upper flow 

regimes (subfacies 2B and 2C as well as most of facies 1). 

4.4.4. Facies association III 

4.4.4.1. Description 

The remaining 61 %of the Ferryland Head stratigraphy (Figure 4.3) consists of a 

combination of tabular beds (Plate 14D), generally silty and less than a metre thick, 

belonging to facies 1 and 2. Facies association III represents a continuum for which two 

end members (facies associations Ilia and IIIb) are described below. In reality, there is a 

wide spectrum of deposits as mixtures of both end members, and the end members 

themselves are uncommon. 

Facies association Ilia comprises stacked, tabular, normally-graded beds less than 

a metre thick (Figure 4.7), consisting mainly of facies 2 intercalated with rare beds of 

facies 1. This association varies in thickness from 0.2 m to approximately 5 m. Facies 

association Ilia is bounded by a basal sharp and horizontal erosional surface. Parallel 

erosional grooves, 10-20 em deep and 10-30 em wide, evenly spaced at approximately 

60 em, are common on the erosional surface. The beds within this facies association, are 

mostly 10-70 em thick and are composed mainly of silty sandstone (subfacies 2A), 

ripple to planar-laminated sandstone with minor siltstone (subfacies 2B), climbing-ripples 
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(subfacies C), convoluted sandstone (subfacies 3F) and structureless sandstone (subfacies 

2D). The most common sediment however is parallel laminated sandstone (subfacies 2B). 

Wavy (subfacies IB) to horizontally (subfacies I C) inter laminated to interbedded 

(subfacies I G) sandstone and siltstone, synsedimentary deformed heterolithic rocks 

(subfacies IE) generally make up the finer heterolithic portions of this facies association. 

Palaeoflow directions (Figure 4.4D) within this association are unimodal towards the 

south. 

Facies association Illb is characterized by tabular, laterally continuous, fine­

grained heterolithic beds of sedimentary rocks belonging to facies I, punctuated by a few 

thin sandstone intervals belonging to facies 2 (Figure 4.8). The thickness of this 

association ranges from O.I m to approximately 4 m. Individual beds in this facies 

association typically fine upwards because of a decrease in sand to silt ratio. Sandy 

siltstone (subfacies IA), wavy interlaminated sandstone and siltstone (subfaciesiB), 

horizontally-laminated sandstone and siltstone (subfacies I C), lenticular sandstone 

(subfacies ID), heterolithic facies with synsedimentary deformation structures (subfacies 

IE), desiccation cracks (sub facies I F), sandy heterolithic facies (subfacies I G), loaded 

ripples (subfacies IH), loaded sandstone (subfacies II) and wave-rippled sandstone and 

silt (facies IJ) are all present within this association. Facies IF is commonly found in 

association with facies 1J towards the tops of beds within this association. 
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4.4.4.2. Interpretation of facies Association III 

Facies association III is interpreted as interdistributary deposits of a marine delta. 

The tabular and laterally extensive character of deposition implies that these deposits 

were not emplaced within channels. The more coarse-grained facies association Ilia 

represents more proximal, higher energy deposition during flood stage and facies 

association IIIb represents lower energy environments more distal to channels with 

possible tidal influen~e of minor significance with respect to sediment transpo~ and 

reworking. 

The stacked, thin tabular sandstone beds of association Ila are interpreted to have 

been deposited as overbank sheet flows or crevasse splays (Elliot, 1974, 1986) and the 

fine grained heterolithic sediments (facies 1) are characteristic ofinterdistributary bay 

deposits (Elliot, 1974). The presence of subaerial exposure indicators (subfacies IF) and 

microwave ripples (subfacies IJ) are indicative of interdistributary delta plain deposits. 

The formation of small shallow pools (subfacies IA) is also characteristic of humid delta 

plain sedimentation (Elliot, 1986). 
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PLATE 1: RIDGES AND FURROWS 

A: Example of "bumpy" surface from the upper Lighthouse section. Note how the striae 
on top of bed curve around the raised areas. Palaeoflow is from top to bottom. 

B: Close up of ridges and furrows, showing the relief in the sandstone. Note the criss-
crossing of striae. Flow is from upper right to lower left. 

C: Close up of ridges and furrow from the lower Flat Point section. 
D: Ridges and furrows from the upper Lighthouse section. Flow is from left to right. 
E: Siltstone draped current-ripples with striae on ripple crests from the Ferryland Head 

Formation, Cape Broyle. Palaeoflow is from right to left. Note the occasional 
millimetre long prod marks. 

F: Prod marks in siltstone-draped sandstone. Prod marks were probably made by mud 
chips from highly cohesive siltstone laminae. 

G: "Dimple surface" of possible biogenic origin associated with ridges and furrows from 
the lower Flat Point section. 

H: Ridges and furrows from the lower Flat Point section with dimple-like texture. 

N.B. all the examples on the following page are plan view photographs of bedding 
surfaces. 
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PLATE 2: SUBFACIES IA /IB 

A: Example of facies IA. Note the non-erosive contact at base and clear erosional contact 
at top right. This example is from the lower Lighthouse section on the southern 
side of the unnamed cove. 

B: An example of facies IB from the lower Ferryland Head section 
on the north side of the unnamed cove. Note the upward increase in abundance of 
siltstone laminae. Ruler for scale is 15.5 em long. 

C: Wavy interlaminated sandstone and siltstone laminae (subfacies IB). The arrow in the 
lower right of the photograph shows a contact between underlying facies and 
facies lB. Lens for scale is 5.5 em in diameter. 

N.B. all examples on the following page show cross-sectional views. Stratigraphic up is 
shown by the black arrow on the upper right of the plate. 
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PLATE 3: SUBFACIES lC/lD 

A: Sketch ofhorizontal, parallel interlaminated sandstone and siltstone (subfacies lC) 
showing the repetitive pattern of thick and coarse, thin and fme, thin and coarse, thin 
and fine. 

B: Example of facies lC from the lower Flat Point section. Note the thinning upward of 
the sandstone laminae in the section shown by the vertical white bar. 

C: Alternating wavy sandstone and siltstone laminae and beds, and lenticular 
sandstone (facies 1 D). Sand lenses show both depositional and erosional 
examples. Note the convolute lamina in the centre. 

D: Sandstone lenses encased in siltstone (subfacies lD). The lenses are shown by white 
arrows. Faint ripple lamination can be seen in the lens to the right (palaeocurrent 
to the right). 

N.B. All examples shown are cross-sectional views. Stratigraphic up is shown by the 
black arrow on the upper right comer of the plate. 

74 



A 

Siltstone lamina 
Thin sandstone lamina ::=:;::==========/~ 

Siltstone lamina 
Thick sandstone lamina 

Repeated package {========== 

lcm 



PLATE 4: SUBFACIES lE 

A: Interbedded and interlaminated sandstone and siltstone beds and laminae respectively, 
with collapse structure(subfacies IE). Note the column of discontinuous, 
chaotically oriented siltstone laminae. (each division on the scale bar is I 
centimetre). 

B: Subvertical collapse structure involving two interlaminate/interbedded sandstone and 
siltstone beds/laminae(subfacies IE) separated by a sandstone bed. Note the 
upward turned laminae in the lower part and downward directed laminae in the 
top bed. 

C: Tear-shaped, sandstone filled dewatering structure in interlaminated/interbedded 
sandstone and siltstone(subfacies IE), with fragmented siltstone laminae. Note 
the well-defmed boundary truncating siltstone laminae (reddish-brown). The 
structure might be associated with dewatering pipes. · 

D: Collapse structure with downward dipping siltstone laminae associated with the 
dewatering of underlying sandstone bed. Note the fragments of siltstone laminae 
corresponding to the interlaminated strata above the hand lens. 

E: Sandstone dewatering pipe in interlaminated sandstone and siltstone. Note the well­
defined edge of the feature. 

F: Sandstone dyke and sills in interlaminated sandstone and siltstone. Note that the dyke 
cross cuts depositional laminae. 

76 



77 



PLATE 5: SUBFACIES lF 

A: Close-up of polygonal mudcracks from the lower Lighthouse section (southern part of 
unnamed cove). 

B: Top ofmudcracked bed surface from the southern part of the unnamed cove. 
C: Mudcracks form the upper Lighthouse section. Note the upward turned edges. 
D: Mudcracked surface from the middle part of the Lighthouse section on cliff face. 

Scale bar is approximately Sm. 
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PLATE 6: SUBFACIES lG/lH 

A: Predominantly sandy interbedded sandstone beds and siltstone laminae. Note the wavy 
nature of bedding. Sandstone beds are locally thickened due both to erosion and 
deposition. 

B, C and D: Loaded ripples subfacies lH) from the north side of the unnamed cove, 
lower part of the Ferryland Head section. Note the relatively undeformed ripple­
lamination in upper part and the ripple-lamination within the sinuous load casts 
below. 

N.B. All examples show cross-sectional views. Stratigraphic up is indicated by the white 
arrow on the upper right of the plate. 
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PLATE 7: SUBFACIES 11 

A: Example of sandstone loaded into siltstone, from the middle of the Lighthouse section 
just north of the lighthouse. Note the symmetrical wave ripples towards the top of 
the sandstone. 

B: Sandstone pillow in silty sandstone from the middle lighthouse section. Note siltstone 
laminae outlining the pillow structure. 

N.B. All examples show cross-sectional views. Stratigraphic up is indicated by the black 
arrow on the upper right of the plate. 
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PLATE 8: SUBF ACIES lJ 

A: Wave ripples from the upper Flat Point section. Note the characteristic straight and 
parallel crests. Lens cap for scale is 5.5 em in diameter. 

B: Examples of wave ripples (black arrows) and climbing wave ripples (white arrow) 
from the lower Ferryland Head section, northern side of unnamed cove. Note the 
climbing wave ripples in the upper part of the figure 

C: Example of small-scale wave ripples from the lower Ferryland Head section (lens cap 
for scale is 5.5 em diameter). 

D: Very small wave ripples from the upper Lighthouse section. 
E: Small-scale wave ripples showing wave diffraction probably in a shallow pool. 
F: Very small wave ripples from the upper Flat Point section (lens cap for scale is 5.5 em 

in diameter. 
G: Very small wave ripples from the lower Flat Point section (scale bar is 5 em long). 

84 



85 



PLATE 9: SUBFACIES lJ/lK 

A: Example of micro-wave-rippled bedding-surface draped by siltstone (subfacies lJ) 
from the upper Lighthouse section. The wavelength of the ripples is less than a 
centimetre and the amplitude less than half a centimetre implying extremely 
shallow water of at least a few centimetres and no more than a few tens of 
centimetres. 

B: A cross-sectional view of siltstone-draped wave-rippled sandstone laminae (subfacies 
lJ) from the lower Ferryland Head section. 

C: Close up of a micro-wave-rippled bedding-surface (subfacies IJ) from the upper 
Lighthouse section. 

D: Cross-sectional view of convoluted bedding (subfacies lK) from the upper Lighthouse 
section. Note the brittle deformation (shown by white arrow) of the siltstone 
associated with ·the otherwise plastic deformation. Deformation in this case is 
probably due to shearing by wave orbital motion indicated by the overlying wave­
rippled horizon (subfacies IJ) (black arrow). 
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PLATE 10: SUBFACIES 2A/2B/2C 

A: An example of silty sandstone (subfacies 2A) from the Flat Point section underlying 
interlaminated wavy sandstone and siltstone (subfacies IA). 

B: Flat Point section example of silty sandstone (subfacies 2A). 
C: Structureless sandstone (subfacies 2D) is shown in the lower half of the sandstone 

bed. Silty current-rippled sandstone (subfacies 2B) can be seen in the upper half 
of the bed. This example is from the lower part of the Flat point section 

D: Horizontally laminated silty sandstone (subfacies) 2B from the lower Ferryland Head 
section. 

E: Current-rippled sandstone with minor siltstone (subfacies 2B) from the upper 
Lighthouse section. 

F and G: Climbing-ripples in silty sandstone (subfacies 2B) from the Flat Point section. 
. . 

N.B. All examples show cross-sectional views. Stratigraphic up is indicated by the black 
arrow on the upper right of the plate. 
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PLATE 11: SUBFACIES 3A 

A: Example of tabular cross-bedded sandstone (subfacies 3A) over an erosional surface 
from the lower Ferryland Head section. 

Band C: Two examples of trough cross-bedded sandstone (subfacies 3A) over erosional 
surfaces from the Ferryland Head section. Note the intraformational conglomerate 
in places (facies 4). 

D: Cross-bedded sandstone (subfacies 3A) from the upper Ferryland Head section. 
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PLATE 12: SUBFACIES 3B/3C/3F/3G 

A: Current-rippled sandstone (subfacies 3B) from the lower Ferryland Head Formation, 
Cape Broyle. 

B: Horizontally-laminated sandstone (subfacies 3C) from the lower Ferryland Head 
section. 

C: Convoluted sandstone (subfacies 3F) from the upper Ferryland Head section. 
D: Climbing wave-rippled sandstone (facies 3G) from the lower Ferryland Head section. 

Note the symmetrical crests. 
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PLATE 13: FACIES 4 

A: Intraformational conglomerate from the lower Ferryland Head section. Note the 
angularity of the clasts. The clasts consist of interlaminated sandstone and 
siltstone(subfacies lB and lC) and horizontally-laminated siltstone(subfacies lA). 

B: Intraformational conglomerate (facies 4) in association with cross-bedded sandstone 
(facies 3A) above erosional surface. Note the angularity and oblate shape of clasts. 
Example from the lower Ferryland Head section. 
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PLATE 14: FACIES ASSOCIATION EXAMPLES 

A: Example of facies association Ila (coarse-grained channel) from the lower Lighthouse 
section, southern side of unnamed cove (1.7m person for scale). Note that scale 
varies with perspective. 

B: Example of facies association Ila (coarse-grained channel) from the lowermost 
Lighthouse section on the south side of the unnamed cove Note that scale varies 
with perspective (person 1. 7m high for scale). 

C: Example of channel filled with silty sandstone and siltstone (facies association lib) 
from the lower Flat Point section (Ruler 30 em long, for scale). 

D: Example of thin, tabular sandstone bed overlain and underlain by interbedded 
sandstone and siltstone laminae (facies association III) from the lower Ferryland 
Head section, north side of unnamed cove. Note that scale changes with · 
perspective (person I. 7m for scale). 
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Chapter 5 

SOFT SEDIMENT DEFORMATION 

5.1. INTRODUCTION 

Soft-sediment deformation occurs syndepositionally or shortly after burial, 

predominantly in coarse silt to fme sand (Allen, 1982b; Mills, 1983). Liquefaction and 

fluidization, density inversion, slope failure, and shear stress are the primary causes of 

soft-sediment deformation (Mills, 1983). During liquefaction (Casagrande, 1936) a sand 

body is temporarily supported by pore fluid pressures and not by grain-to-grain contacts. 

The volume of sediment or pore fluid need not change for this process to take place 

(Allen, 1982b ). The fluid source is therefore considered to be within the sand body during 

liquefaction. The result is a net downward movement of grains and an upward movement 

of water (Mills, 1983). 

Liquefaction can occur when shock is applied to sediment that is saturated with 

water and loosely packed. The shocks can be provided by earthquakes, sudden 

deposition, slumping, collapse of channel banks, shearing by currents, or wave pounding 

(Collinson and Thompson, 1982; Middleton and Hampton, 1973). Liquefaction can be 

either partial or total. In total liquefaction all grain contact is broken, resulting in a free 

flow of the sediment. In partial liquefaction, not all grain contact is broken; therefore, 

there is some remaining strength in the sediment and lamination might be preserved but is 

distorted. The dewatering of liquefied sands results in different types of structures created 

by the movement of water and fluidized sand through the bed. 

Fluidization occurs when rapid dewatering produces fluid drag greater or equal to 
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the gravitational force (Mills, I983), sometimes resulting in upward movement of sand 

particles. In systems with reverse density stratification there is gravitational instability 

and depending on additional factors such as cohesion and viscosity of the sediment, load 

structures may form (Mills, I983; Anketell et al., I970). 

An array of synsedimentary deformation structures is present in the Ferry land 

Head Formation. The great majority of these occur in the fine grained heterolithic 

subfacies IE. Deformation in the sandstone (subfacies 3F) is pervasive but limited to . . 

large metre-scale convolutions and sand volcanoes. There are very few examples 

throughout the succession where facies I and facies associations I and Ila do not exhibit 

soft sediment deformation. The stratigraphic distribution of deformation structures is 

therefore related to the facies distribution. 

5.2 DEFORMATION STRUCTURES 

Sandstone dykes and sills are relatively common structures in subfacies IE. These 

range in width from I-5 em and a few centimetres to tens of centimetres. Dykes and sills 

are tabular structures and are sometimes exposed in three dimensions. Most sandstone 

injection structures are normal to subnormal to bedding (dykes) with a few bedding-

parallel examples (sills) (Plate I5). Many injections can be traced to their source beds. 

The source beds for sandstone injection structures are typically medium to thick(< Im) 

tabular beds (facies I and 2). There are no obvious examples of very thick sandstone beds 

to which dykes can be traced. Oblique sandstone pipes are known, and these might be 

connected to thick sandstone beds. Dykes tend to be small in the Ferryland Head 
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Formation. The rare large examples of sandstone dykes in the Ferry land Head Formation 

occur within specific horizons and do not exceed 1 m in length. Sills, when laterally 

continuous, have the appearance of tabular structureless sandstone beds and are difficult 

to distinguish from depositional beds. 

Sandstone dykes are believed to result from the liquefaction and fluidisation of 

overpressured sand (Mills, 1983; Allen, 1982). The interlaminated sandstone and 

siltstone facies has a very low vertical permeability due to the siltstone laminae. Pore 
. . 

fluid pressure could have easily increased within buried sandstone beds due to the 

vertical permeability barriers presented by the siltstone laminae. Dykes most likely were 

able to break through weakened sediment where pre-existing synaeresis or desiccation 

cracks existed. The rare horizons in which sandstone dykes wider than 2 em and longer 

than 20 em are present in abundance are interpreted to have been shocked either 

seismically or due to riverbank collapse. 

The conical to cylindrical structures defined by downward and sometimes upward 

dipping siltstone laminae that terminate against a central sandstone core, with chaotically 

arranged siltstone fragments (Plate 4 and Plate 16), are termed dewatering collapse 

structures. These structures are very common in the heterolithic subfacies 1 F and 

sometimes involve underlying sandstone beds. Dewatering collapse structures vary in 

diameter form 2m to a few centimetres; they are also 2m to a few centimetres deep. 

Examples larger than lm are rare and only one 2m example is known from the northern 

side of the peninsula. These structures occur in abundance along specific horizons which 

typically lie above convoluted sandstone beds (subfacies 3F). Some sandstone beds 
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thicken over dewatering collapse structures (Plate 16C). Several circular depressions can 

be seen on a bedding surface corresponding to underlying dewatering collapse structures 

(Plate 17). 

Collapse structures are interpreted to have formed at the surface due to the 

dewatering of underlying sandstone beds. The thickened sandstone beds over dewatering 

collapse structures (Plate 16C) suggest that the circular depressions existed prior to, or 

contemporaneously, with deposition of the sandstone. 

Interpenetrative cusps (Owen, 1995), cusps (Owen, 1996) and sand volcanoes can 

be seen in cross section throughout the Ferryland Head Formation. Both structures are 

rare in the lower section (Flat Point section) but common in the Ferryland Head section 

and lower Lighthouse section. They occur in the tops of beds within facies 3 deposits and 

almost exclusively occur above convoluted sandstone horizons (subfacies 3F). In a few 

examples (Plate 18), the laminations in the volcanic edifice can be seen. All cusps and 

sand volcanoes are less than 1.5 m across and less than 0.6 m thick. These structures are 

interpreted to have formed by a combination of liquefaction and fluidization. When 

fluidized sediment ruptures the surface sediment, it is deposited as a volcano-like 

structure at the surface. This can happen both subaqueously and subaerially (Allen, 

1982b ). The sand volcanoes, cusps and penetrative cusps, form as a result of dewatering 

of rapidly deposited sand. Clearly the thick sandstone beds comprising facies associations 

I and lla accumulated rapidly, perhaps during the flood stage in a river. 

There is an abundance of bed-normal to near bed-normal, lenses to circular 

shaped and sand-filled structures in the interlaminated sandstone and siltstone subfacies 
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IE (Plate 19). These structures vary from millimetre to decimetre scale. The structures 

typically have well defined, sharp boundaries that cut across depositional laminations. 

The fill within these features is structureless. These cross cutting features are interpreted 

as dewatering pipes. Dewatering pipes are believed to form due fluidized sand escape 

from overpressured, water-saturated sand beds. Once a weak zone fails and ruptures, the 

void is filled with locally derived fluidized sediment. The trigger for fluidization in this 

case is believed to be the creation of volume due to the tensional forces . These structures 

might therefore be genetically different from sandstone dykes because forceful injection 

might not have occurred. 

Complete, polygonal, sand-filled shrinkage crack are abundant throughout the 

Ferry land Head Formation. The polygons are typically hexagonal and 10-15 em across. 

The sand-filled cracks are v-shaped in cross section, less than 1 em wide and less than 2 

em deep (Plate 6). These are interpreted as desiccation cracks (Plummer and Gostin, 

1981). They increase in abundance toward the top of the Ferryland Head Formation but 

also occur in the lower parts of the section. Incomplete shrinkage cracks are similar to the 

desiccation cracks but have a spindle shape and have been interpreted as synaeresis 

cracks (Plate 20). Synaeresis cracks are common in the Ferryland Head Formation and 

there is no obvious trend associated with their stratigraphic distribution. Synaeresis 

cracks are believed to form subaqueously in an environment of salinity fluctuations 

(Kuenen, 1965; Burst, 1965; Plummer and Gostin, 1981). 

Convolute bedding involves partial liquefaction of rapidly deposited sediment. It 

is characterized by folded or contorted bedding overlying undeformed strata, typically 
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with erosional truncations of the top. The contorted laminations commonly have rounded 

synforms and cuspate antiforms. There are two types of convoluted bedding that occur in 

the Ferryland Head Formation. The first type is large-scale convolute bedding in the 

sand-rich facies 3. These convoluted horizons are always underlain by undeformed 

master surfaces or beds. The second type of convolute bedding is much smaller in scale. 

Convolute beds within the heterolithic facies are commonly less than 15 em thick and 

extend laterally for several metres (Figure 2.3 B). The cause for convolution can be 

inferred in some cases where there is a direct association between convolution and an 

overlying wave-rippled horizon (Plate 8A and 1 OD). Shearing from oscillatory motion or 

differential pressure due to passing waves, might trigger loading. 

Loaded ripple structures (Plate 7), loaded siltstone laminae, pillows (Plate 8B), 

flame structures and pseudonodules are common small-scale structures in the Ferryland 

Head Formation. Loaded interlaminated siltstone and sandstone is relatively common 

(Plate 21 ). These are interpreted to be incipient load structures (Anketell et al., 1970). 

Rolled up siltstone laminae or roll-up structures are common in the heterolithic 

facies (Plate 22A). The structures are composed of flattened spirals of coiled siltstone 

laminae. When extended, the length of rolled up siltstone can be as much as 20 em. 

These structures are interpreted to have formed by disruption of interlaminated non­

cohesive sand and cohesive silt. The silt laminae when broken by shrinkage cracks, 

dewatering pipes, cracks due to loading, or dykes, were easily plucked up by currents and 

rolled up as they moved downstream. These structures can therefore be used as paleoflow 

indicators in the Ferryland Head Formation. 
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There is only one known example of synsedimentary faulting in the Ferry land 

Head Formation (Lighthouse section, 175m, figure 3.5, Appendix 1). Several authors 

(Elliot, 1986; Galloway, 1998) believe that synsedimentary faulting can be indicative of 

slope deposition. Its absence in the Ferryland Head might suggest that the depositional 

gradient was relatively flat, although the presence of ruptured and separated siltstone 

laminae (Plate 22), suggest that some gradient was present at least locally. 

The abundance of soft sediment deformation in the Ferry land Head Formation 
. . 

suggests that the sediment was unstable shortly after deposition. This in tum suggests 

rapid depositional rates, periodic shocking, and/or slope instability. The absence of 

faulting suggests a relatively flat environment. Deposition must have therefore been fast 

and episodic such as in seasonal flash floods. The presence of ash-rich sandstone (facies 

5), although uncommon and most likely reworked, is suggestive of a distant volcanic 

source. Although there was a decrease though time in A val on Zone volcanism, volcanic 

activity associated with the Avalonian Orogeny is interpreted to have been ongoing at the 

time of deposition. 

Soft sediment deformation in the Ferryland Head Formation is so common that a 

sedimentological predisposition to liquefaction is inferred, probably a result of rapid 

deposition. The seismicity in the area, associated with the late Precambrian Avalonian 

Orogeny, is probably responsible for the abundance of synsedimentary deformation when 

it occurs concentrated along certain horizons. Examples of surfaces similar to the pock-

marked cliff-face surface shown in Plate 17 have been recorded in the Recent on mud 

flats after earthquakes (Singh et al., 2001 ). 
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5.3. SUMMARY 

Liquefaction and fluidization, density inversion, slope failure, and shear 

stress are all causes of synsedimentary deformation in thee Ferry land Head Formation. 

Sandstone dykes and sills, dewatering collapse structures, interpenetrative cusps, cusps, 

sand volcanoes and dewatering pipes are all the result of liquefaction and fluidization. 

Shrinkage cracks are a result of shear stresses caused by the removal of pore fluid 

pressure in cohesive sediment and rolled up siltstone laminae are the result of current 
. . 

shearing. Convolute bedding, loaded ripple structures, load casts, pillows, flame 

structures and Pseudonodules are all the result of density inversion and partial or total 

liquefaction. Synsedimentary faulting results from slope instability. 

None of the structures present in the Ferryland Head Formation is attributable to 

an organic origin. The burrow-like appearance of some of the structures (especially the 

dewatering pipes) results from the cohesive nature of the interlaminated sand and silt. 

The only organic factor in these structures is the possible organic binding of the sediment 

making it more cohesive allowing sharp-edged dewatering pipes to have formed. 
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PLATE 15: SANDSTONE DYKES 

A: Examples of sandstone dykes and sills from the lower Flat Point section. Note how 
the dykes connect sills of different stratigraphic elevation. The sandstone dykes and 
sills have been highlighted and their edges outlined by a dashed line. 

B: Example of sandstone dykes and sills which have caused the sediment to almost 
become brecciated (lower Flat Point section). 

C: Examples of discrete dykes connecting sandstone laminae (Flat Point section). The 
sandstone dykes and sills have been outlined by a dashed line and highlighted for 
clarity. 

D: Sandstone dykes and sills from the lower Flat Point section. The structures are 
highlighted and outlined for clarity. 

N.B. All examples show a cross-sectional view. Stratigraphic up is shown by the black 
arrow on the upper right comer of the plate. 
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PLATE16:COLLAPSESTRUCTURES 

A: A very small dewatering collapse structure from the lower Lighthouse section. The 
dewatering structure shown here only involves one bed. The lower edge of the 
structure is outlined by the dashed line. 

B: A large dewatering collapse structure from the lower Ferryland Head section. In this 
example the sand which fills the structure is silty. A few siltstone laminae are 
chaotically arranged at its base. The structure is outlined by a dashed line. 

C: Dewatering collapse structure from the upper Lighthouse section showing that the 
collapse occurred contemporaneously with sedimentation of the overlying bed or soon 
after. The dashed white line outlines the structure. 

D: An example of a large dewatering collapse structure involving several sandstone beds. 
This structure is similar to Owen's (1995) penetrative cusps but the laminae instead of 
curving upward curve downward. Dashed black lines show the curvature of 
deformed laminae. 

E: A large example of a dewatering collapse structure from the upper Lighthouse 
section. The structure is outlined by a white dashed line. 

N.B. All examples show a cross-sectional view. Stratigraphic up is shown by the white 
arrow on the upper right comer of the plate. 
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PLATE 17: DEWATERING COLLAPSE STRUCTURES ON BEDDING-SURF ACE 

A cliff face north of the lighthouse (lower Lighthouse section) shows the surface 
expression of dewatering collapse structures (white arrows). The width of the cliff is 
approximately 9 metres. Desiccation mudcracks can be seen on the left centre of the 
photograph (black arrows). 
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PLATE 18: SAND VOLCANOES 

A: Example of large sand volcano from the upper Lighthouse section. Note the 
laminated volcano structure pinching out laterally from the central cone. Laminae are 
indicated by the arrow. 

B: Cuspate laminated sandstone from the lower Ferryland Head Formation. Dashed lines 
show the curvature of the laminae. 

C: An example of a diapiric structure in sandstone from the lower Ferry land Head 
section. The structure is outlined by a dashed line. 

N.B. All examples show a cross-sectional view. Stratigraphic up is shown by the black 
arrow on the upper right comer of the plate. 
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PLATE 19: DEWATERING PIPES 

A: Example of dewatering pipes in sandstone and siltstone from the lower Flat Point 
section. Note the sharp edges of the structure and structureless sand within it. 

B: An example of an oval-shaped dewatering pipe. The edges of this structure are 
rounded possibly due to fluidisation of, and erosion by sand. 

C: An example of a dewatering pipe from the lower flat Point section. 
D: An example of a rounded dewatering pipe from the lower Flat Point section. As in 

shown in B, the edges have been possibly eroded by fluidized sand. 

N .B. All structures have been outlined by dashed lines and highlighted. All examples 
show a cross-sectional view. Stratigraphic up is shown by the black arrow on the upper 
right comer of the plate. 
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PLATE 20: SYNAERESIS SHRINKAGE CRACKS 

A: Wave-crest-parallel synaeresis cracks seen on a bedding-surface from the Lower Flat 
Point section. Note that 

cracks taper laterally and connectivity between them is poor. 
B: Possible synaeresis or desiccation cracks from the middle Flat point section. The 

cracks were filled with sand and later covered in a layer of silt. Cracks are indicated 
by black arrows (cross-sectional view; stratigraphic way up is towards top of page). 
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PLATE 21: LOADED SILTSTONE LAMINAE 

A: Cuspate interlaminated siltstone and sandstone laminae from the lower Lighthouse 
section formed as a response to loading. 

B: An example of loaded interlaminated siltstone and sandstone from the lower 
Lighthouse section. These are incipient load structures. 

N.B. All examples show a cross-sectional view. Stratigraphic up is shown by the black 
arrow on the upper right comer of the plate. 
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PLATE 22: ROLL UP STRUCTURES AND LOADED SILTSTONE CRACKS 

A: Roll-up structure from the lower Lighthouse section. Direction of palaeo flow is from 
right to left. 

B: Broken siltstone laminae from the lower Flat Point section that have been pulled apart 
either as a response to shearing from currents or movement down a palaeo slope. 

C: Polygonal cracks in silt, filled with sand from the underlying bed. These structures 
form as a response to loading and might be mistaken for desiccation or synaeresis 
cracks. 

N.B. All examples show a cross-sectional view. Stratigraphic up is shown by the black 
arrow on the upper right comer of the plate. 
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Chapter 6 

DEPOSITIONAL MODEL FOR THE FERRYLAND HEAD FORMATION: 
DISCUSSION 

6.1. PREVIOUS INTERPRETATION 

The Ferryland Head Formation has been previously interpreted as the distal 

equivalent of the Quidi Vidi and Cuckold formations. The Quidi Vidi and Cuckold 

formations are in turn believed to be the deposits of a braided alluvial-plain to alluvial-
. . 

fan complex (Williams and King, 1979; O'Brien and King, 1982; King et al., 1988a, 

1988b;). During the early stages of the development of the alluvial-fan-alluvial-plain 

complex, the sediment source is thought to have been uplifted equivalents of the 

Conception Group. Due to continuing uplift to the north of the present-day Avalon 

Peninsula, related to the Avalonian Orogeny, even older igneous intrusions and volcanic 

rocks become an additional sediment source during the later stages of sedimentation. This 

represents progressive unroofing of the source. 

The more proximal alluvial-fan facies in the northern part of the basin comprise 

debris-flow and sheet-flow deposits characteristic of alluvial-fans (O'Brien and King, 

1982; King et al., 1988a, 1988b ). However, the details of the morphology and evolution 

of the basin are not well known. An arc-related or strike-slip setting was suggested by 

Myrow (1995), Murphy et al. (1999) and Narbonne et al. (2001) based on characteristics 

of the basal volcanic succession (Harbour Main Group), with the chemistry of rift 

volcanics in pull-apart basins. Oblique subduction is believed to be responsible for 

strike-slip motion in contemporaneous rocks of the Avalon superterrane in New 
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Brunswick, Nova Scotia and Great Britain (Narbonne et al. , 2001; Myrow, 1995; Murphy 

et al. , 1999, 2001). Narbonne et al. (2001 , p.2) suggested that deposition took place "in a 

tectonically active, transtensional and/or transpressive basin". 

6.2. FACIES ARCHITECTURE AS EVIDENCE FOR DEPOSITIONAL 

ENVIRONMENT 

The grain size in the Ferryland Head Formation ranges from silt to coarse sand. . . 

The Ferryland Head Formation lacks conglomerates other than intraformational 

conglomerates. The most common sand grain size is fine sand. There is an abundance of 

channellised sandstone bodies (facies association II; Plate 16). The sandstone bodies are 

tabular, composed of fme to coarse sandstone encased within fine-grained sediment. 

Tabular and trough cross-bedding (subfacies 3A) are common in the Ferryland Head 

Formation, particularly in the distributary channels (facies association Ila), and less so in 

the mouthbar deposits (facies association I). The average thickness of the channels (i.e. 

channel depth) is two metres. Widths of the channels are unknown due to the 

combination of a stratigraphic dip-sectional view and low sinuosity of channels. The 

channels are interpreted as relatively straight distributary channels of low mobility. This 

interpretation is inferred from the unimodal palaeoflow directions (Plate 15) and the 

abundance of fine grained, cohesive interdistributary deposits. The paucity of lateral 

accretion conforms to the fluvial style interpreted. The abundance of interdistributary silt 

allowed the formation of deeper more stable channels (possibly anastomosed) than those 

typical of braided systems (Eriksson et al. , 1998). The more proximal braided feeder 
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channels became more fixed within in the silty fringe of the delta. This coastal silt-fringe 

in deltas associated with alluvial-fan-braidplain systems is common in Precambrian 

successions (Smith, 1983). 

The scarcity of wave-generated structures and abundance of unidirectional 

structures (cross-bedding and current-ripples) in the Ferryland Head succession suggests 

that deposition was dominated by fluvial processes (Figure 6.1 ). The fine-sand grain-size 

range and abundance of silt places the Ferry land Head Formation somewhere between the 
. . 

mixed mud/silt and sand-dominated fields in Orton's (1988) delta classification (Figure 

6.1). 

There is abundant evidence for shallow water and emergence (micro-wave ripples 

and desiccation cracks in the interdistributary deposits of facies association IIIb. The 

profusion of synsedimentary deformation structures suggests that deposition was rapid 

and that sediments remained waterlogged after burial. Paleosols are common in non-

marine Precambrian sedimentary deposits (Eriksson et al., 1998). Their absence in the 

Ferryland Head Formation, in spite of the evidence for emergence and extremely shallow 

water, indicates that water tables must have been relatively high. High water tables were 

common for humid-climate, perennial-ephemeral fluvial systems of the Precambrian 

(Eriksson et al., 1998). The inferred high water-table accounts for the profusion of 

synsedimentary deformation structures and the absence of palaeosols (Eriksson et al., 

1998; Tisgaar and 0xnevad, 1998). 
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Figure 6.1. Expanded ternary diagramme showing modem and ancient deltas. The 
Ferryland Head Formation fan delta is shown in relation to other known deltas (modified 
from Orton, 1988). 
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6.3. A DEPOSITIONAL MODEL 

The main criterion for the recognition of deltaic depositional systems is the 

transition from non-marine depositional environments such as alluvial deposits, to open­

marine depositional environments such as shelfal or deep basinal deposits (Eriksson et 

al., 1998). In the Avalon stratigraphy, the Ferryland Head Formation is underlain by the 

Gibbet Hill Formation, interpreted to be shallow marine deltaic sediments (King et al., 

1988a), and the Cappahayden Formation, interpreted to be delta front to prodeltaic 

deposits (Narbonne et al., 2001). The Ferryland Head Formation is overlain by the Cape 

Ballard and Cuckold formations, both of which have been interpreted as terrestrial 

alluvial-plain and distal alluvial-fan deposits (King et al., 1988b).The Ferryland Head 

Formation is therefore transitional between overlying terrestrial (Cuckold Formation) and 

underlying marine (Cappahayden Formation) deposits. The depositional environment for 

the Ferryland Head Formation is consequently inferred to be deltaic. 

6.3.1. DISTINCTION BETWEEN BRAID DELTAS, BRAIDPLAIN DELTAS, FAN 

DELTAS AND ALLUVIAL-FANS 

As a consequence of rapid physical and chemical weathering, severe erosion, and 

the absence of vegetation to bind loose material, braidplain systems characterised by high 

sediment discharge rates were common in the Precambrian (Eriksson et al., 1998). There 

are abundant Precambrian examples of coarse grained deltaic systems. A few examples 

include the Witwatersrand Supergroup (Minter, 1978), the Archaean Moodies Group 

(Eriksson, 1979; Eriksson et al., 1998), Hedmark Group, southern Norway (Dryer, 1988), 
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Godkeila Member, northern Norway (R0e, 1995) and the Ingta, Backbone Ranges, and 

Vampire formations in the Mackenzie Mountains (MacNaughton et al., 1997). 

McPherson et al. (1988) also note an abundance of braid delta deposits in Pleistocene 

sediments and pre-Devonian rocks. 

There has been much debate about the recognition and classification of coarse­

grained deltaic successions (McPherson et al., 1988; Nemec and Steel, 1988; Orton, 

1988; Nemec, 1990). Braid deltas (Figure 6.2A) are defined as coarse-grained deltas with 

braided distributaries that are fed by a solitary river flowing into a standing body of water 

(Orton, 1988). Without a standing water body the distributary network would revert to a 

solitary braided river (Nemec and Steel, 1988). Braidplain deltas (Figure 6.2B) are 

defined as the delta of a braidplain with no upstream transition into proximal alluvial-fan 

deposits (i.e. those characterized by debris flows) (Orton, 1988). Fan deltas (Figure 6.2C) 

were originally defmed by Holmes (1965) to be the deposits of an alluvial-fan which has 

prograded into a standing body of water. In this study, a fan delta is defined as the deltaic 

sediments formed as a result of an alluvial-fan being in contact with a body of standing 

water (Nemec and Steel, 1988). In other words these are the deposits of deltas, for which 

the sediment supply is an alluvial-fan. Alluvial-fans are characterised by interbedded 

gravity-flow and water-lain deposits (debris-flow and sheet-flow deposits, respectively) 

(McPherson et al., 1988). Braided river deposits can be distinguished from alluvial-fan 

deposits by their deeper channels suggestive of a more sustained flow of the fluvial 

system as well as by the abundance of cross stratification and lack of debris-flow deposits 

(McPherson et al., 1988). 
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6.2.2. THE FERRYLAND HEAD FORMATION: A HUMID FAN DELTA 

Gravity-flow deposits are considered important and integral elements of alluvial-

fans (McPherson et al., 1988). Debris-flow deposits are absent in the Ferryland Head 

Formation. Sediments interpreted as an alluvial-fan are known, however, from more 

proximal areas toward the north (King et al., 1988a). In the absence of alluvial-fan 

deposits, and only braidplain deposits to the north, the Ferryland Head Formation, could 

be interpreted as a braidplain delta (Orton, 1988). Given the presence of an alluvial-fan . . 

to the north of the study area and the interpretation of the Ferryland Head formation as 

the distal equivalents of the Quidi Vidi and Cuckold formations (Williams and King, 

1979; King et al., 1982; King et al., 1988 a, 1988b; King 1990), the Ferryland Head 

Formation is interpreted as a fan delta sensu strico (Nemec and Steel, 1988). Because of 

the abundance of soft-sediment deformation, the presence of small-scale wave-generated 

structures, and the lack of paleosols, it is concluded that much of the Ferryland Head 

Formation was deposited subaqueously in very shallow water (Figure 6.3). The paucity of 

wave generated structures, the absence of large-scale wave-generated structures (i.e. 

swaly or hummocky cross stratification), and the average thickness of the mouth-bar 

deposits (5 metres for facies association I) indicate that the delta was prograding into a 

low energy, shallow body of water. The gradient of the braidplain and delta plain is 

believed to have been low, resulting in a "mouth bar type delta" (Wood and Ethridge, 

1988). The low gradient of the depositional system, making it a dissipative shoreline, also 

accounts for the paucity of wave generated structures (Orton, 1988). The low gradient for 

the alluvial-fan-braidplain-fan delta complex suggests that deposition might have taken 
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place in a humid, temperate climate (Orton, 1988; Ramli, 1988) 
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Figure 6.3. Palaeogeographic reconstruction for the depositional environment of the 
Ferryland Head Formation. The whole alluvial-fan-braidplain-fan delta 
complex is shown in the upper part of the figure. The width of the diagramme 
is approximately the distance from the town ofF erryland to the area just north 
of St. John's (approximately 80 kilometres). The lower diagramme is a close 
up of that part of the reconstruction indicating the environment of deposition 
of the Ferryland Head Formation. Note that a large portion of the delta plain is 
submerged. The five facies associations described in chapter four are shown 
and the arrows point to where they would have occurred on the fan-delta 
plain. A cross-sectional view of the subsurface architecture of the facies 
association is shown in relation to the stratigraphic down-dip view seen in 
outcrop. Note that the crevasse splays shown on the surface can have 
palaeoflow indicators opposite to the overall palaeoflow direction. 
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7.1. KEY CONCLUSIONS 

Chapter 7 

CONCLUSIONS 

The Ferry land Head Formation belongs to the upper Neoproterozoic Signal Hill 

Group and crops out along the southeastern shore of the A val on Peninsula, 

Newfoundland and Labrador. The top of the Formation is not exposed in the study area. 

It is conformably underlain by the marine Gibbett Hill Formation. The Ferryland Head 

Formation is considered a distal equivalent of the terrestrial Cuckold and Quidi Vidi 

formations. 

The High Rocks Member of the F erryland Head Formation consists of 

interbedded tabular reddish-to-purplish-brown siltstones, and buff to greenish grey 

sandstones. Five lithofacies incorporating 22 subfacies are defined at Ferryland Head 

(Table 4.1 ). Lithofacies are designated according to overall lithology, whereas subfacies 

are defined by the presence or absence of particular sedimentary structures. Facies 1 

comprises 11 subfacies composed of siltstone and the finer grained sandstones 

representing deposition in generally low but fluctuating energy environments. Facies 2 

includes 4 subfacies composed of silty sandstone. Facies 3 comprises 7 subfacies and is 

composed of clean sandstone. Facies 4 and 5 comprise intraformational conglomerates 

and ash-rich beds respectively. 

Three facies associations are recognised in the Ferryland Head Formation (Table 

4.2). Facies associations are defined by the co-occurrence of a number of facies and 

subfacies, and the stratigraphic order in which they occur. Facies association I comprises 
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upward coarsening or thickening packages of sandstone (facies 3) and is interpreted as 

mouth-bar deposits. Facies association II is subdivided into two end members 

representing a continuum of channel environments. Facies association Ila is interpreted as 

high energy, (possibly anastomosed) distributary channel deposits. Facies association Ilb 

is interpreted as low energy, possibly meandering distributary channel deposits. Facies 

association III is also subdivided into two end members of a spectrum. It comprises 

tabular unchannelised deposits. Facies association Ilia comprises stacked, tabular, 

normally-graded beds less than a metre thick (Figure 4.5) consisting mainly of facies 2, 

sparsely intercalated with beds of facies 1. 

Facies association Ilia is interpreted as crevasse-splay and sheet-flow deposits. 

Facies association Illb, characterized by tabular, laterally continuous, fine grained 

heterolithic beds of facies 1, punctuated by a few thin sandstones of facies 2, is 

interpreted as overbank deposits more distal from the channel axis than those of facies 

association lila. 

Due to its stratigraphic position below terrestrial deposits (Cuckold and Quidi 

Vidi formations) and above marine deposits (Gibbet Hill and Cappahayden formations), 

the overall depositional setting of the Ferryland Head Formation is inferred to be deltaic. 

The presence of a braidplain fed by an alluvial fan to the north of the study area leads to 

the interpretation of the Ferryland Head Formation as a fan delta with a silty coastal 

fringe (Figure 6.1 ). The low gradient for the alluvial fan-braidplain-fan delta complex 

and the estimated high paleolatitude, suggests that deposition took place in a humid, 

temperate climate. Deposition is believed to have taken place in a tectonically active pull-
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apart basin where seismic activity would have promoted synsedimentary deformation of 

the already weak, waterlogged sediments. 

7.2. RECOMMENDATIONS 

The age of the Ferryland Head Formation is not well constrained. The age is 

constrained by U-Pb dating of ash (565±3 Ma) at Mistaken Point (G. Dunning, pers. 

Comm .. to A. Benus, in Benus, 1988). There are no true ash beds or tuffs in the Ferryland . . 

Head Formation which can be dated. There is a tuff bed, however, in the lower part of the 

Gibbett Hill Formation at Ferryland which might yield zircons for more accurate dating 

of the Formation. 

This study focused on the type locality at Ferryland. The Ferryland Head 

Formation is also exposed at Cape Ballard to the south and Cape Broyle to the north. 

Further study is needed to correlate these three outcrop localities of the Ferryland Head 

Formation in detail and to document the facies variations up-dip and down-dip from the 

type locality. Special consideration should be given to the upper part of the Ferryland 

Head Formation which is not exposed at Ferryland. 

The channel morphology, as interpreted from the exposures at Ferryland is not 

well understood. Further study incorporating the other two localities might determine if 

the channels are anastomosed, braided or meandering. A follow-up study should be done 

to include the uppermost rocks of the F erryland Head Formation at cape Ballard to 

determine if there are facies differences between the High Rocks Member and the rest of 

the Ferryland Head Formation. 
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FP 13 

FP 14 

FP 10 FP 15 

FP 11 FP 16 

FP 12 FP 17 
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FP 31 
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FHS04 

FHS 01 

FHS OS 

FHS06 
FHS02 

FHS07 

FHS 03 
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FHS10 

FHS 11 
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LH 01-see plate 16A 

LH 02-see Plate 6A 

LH 03-see Plate 68 

LH 04-see Plate168 

LH 05-see Plate 19 

LH 04-see Plate 6D 

LH 07-see Plate 8A 

LH 08-see Plate 88 

LH 09-see Plate 18A 

LH 10 

LH 11 
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LH 12-see Plate 180 

LH13 

LH 14-see Plate 24A 

LH 15 

LH 16-see Plate 23A 

LH 17 -see Plate 23 8 

LH 18-see Plate 20A 



LH 19 ' · 

I 

LH 20-see Plate 11 F 

LH 21-seePiate 2A 

LH 22 

LH 23- see Plate 20 

LH 24-see Plate 18E 

LH 25-see Plate 6C 

LH 26-see Plate 1 OA 

LH 27-see Plate 1 OD 

LH 28-see Plate 18C 
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