








Abstract

The first part of this thesis deals with forward modelling. We
present a raytracing method based on the concept of simulated an-
nealing: a computational tool based on physical principles used for
obtaining optimal solutions of problems of in areas ranging from com-
binatorics to condensed matter physics. Our method solves for rays
that render signal traveltime stationary, in accordance with Fermat’s
principle of stationary traveltime. We test this method for two types of
media: layered inhomogeneous media and linearly inhomogeneous me-
dia. We show that rays and traveltimes generated from this algorithm
for these models quantitatively agree with predicted results.

The second part of the thesis deals with inverse modelling. In this
part, we introduce the generalized form of Radon’s transform and its
adjoint operator. We show that by treating traveltime as Radon’s
transform acting on the slowness function along a ray, we can use the
adjoint operator to recover qualitative information about a medium
from collected traveltimes. This method of backprojection is presented
as an application of our raytracing method. We calculate rays and
their associated traveltimes between sources and receivers on a square
lattice for layered- and linearly-inhomogeneous media and use the back-

projection method to construct slowness functions for each set of data.



11 ABSTRACT
We show that although the backprojection method does not retain the
quantitative properties of the original medium, results indicate that

qualitative properties of the medium can be resolved by this method.
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1.1. FORWARD VERSUS INVERSE PROBLEMS 3
Operator 2 and its actions on functions are typical of a forward problem
in seismology. We know the structure and properties of the medium
that we are studying, and we are using 2 to calculate a result, such as
traveltime of a signal through the medium.
In physical studies, we can readily measure traveltime without prior
knowledge of the properties of the medium in which these signals prop-
agate. It is those properties that we wish to find, and it is the focus of

inverse problems.

1.1.2. Inverse problems: Mathematical formulation. In an
inverse problem, we are faced with a particular challenge. Formally,
we wish to recover f from known values of T'. To accomplish this, we

need to act on T by another operator w, such that

w:C(D") — C(D),
w:T— f.

(1.3)

In other words,

w(T) = f

Since T = Q(f) , we can formally write

(1.4) w(T) =w(Q(f) = f









CHAPTER 2

Raytracing: Theory and application

In this chapter, we introduce the concept of a ray. Physically, we
define a ray as the path along which a signal propagates in a medium;
mathematically, we define a ray as the solution to the variational prob-
lem where traveltime is to be rendered stationary. In this sense, rays are
the solutions one obtains by invoking Fermat’s principle of stationary
traveltime.

For most types of media, closed-form solutions for rays do not exist.
To find rays, one generally employs numerical methods. These meth-
ods, referred to as raytracing methods, are the focus of the second half
of this chapter. At the end of this discussion, we will introduce the
method that we will use in our work: the method of bending rays via

the simulated annealing method.

2.1. Rays: Definition

Rays are important in forward modelling in seismology: they are
the mathematical representation of the path of a signal as it propagates
through a medium. In this work, a signal corresponds to a disturbance
caused by a point source; this disturbance propagates within a medium.

One can calculate the traveltime of a signal as it travels from point
to point by integration along the ray over the slowness function of the

medium. The shape of a ray depends on the properties of the medium
7
























2.3. RAY THEORY AND DIFFERENTIAL GEOMETRY 15
where the Einstein summation notation has been invoked.® Taking the

square root of both sides, we obtain

(2.9) d¢ = +/dz?+dy? + d=2,

which is just the Pythagorean theorem in Euclidean space. Hence, the
distance between two points in Euclidean space can be written in the

integral form as

xf
¢ = [Yd¢ = / Vda? + dy? + de2,

where we have made the change of coordinates from a single variable
£ to variables z, y, and z. Note that we have made no assumptions
about the path of integration; this will be discussed in the next section.
For a general metric, g;j(x), one can write this result in the following

form:

XI 3 .
(2.10) ¢ = / \/955(3)de®@dz .

Here we have assumed the general case of spatial dependence of the

metric .

SNote here the superscripts 4 in the dz(¥)s do not correspond to exponential
factors; they refer to covariant indices used in Einstein summation convention —
also referred to as repeated index summation. For example, the product y;dz(*,
where 1 = 1, 2,3, can be written

yidz® = yidz™ + yoda™® + yadz®.

Herein, we will follow the convention that superscript numbers enclosed by paren-
theses will refer to indices; superscript numbers without parentheses will refer to
exponents. For a more complete description of the Einstein summation convention,
the reader is referred to [5, p.56].
































































































46 3. RAYTRACING: SIMULATED ANNEALING METHOD
Here, 2" indicates that z is rounded up to the next highest integer,
while 2~ indicates that it is rounded down to the next lowest integer.
Function p evaluates p exactly if z(z) is an integer; if z(z) is not an
integer, we take a weighted average of the velocities at (z, z*(z)) and
(z, 27 (z)). Thus, function p gives us an approximation to discrete slow-
ness function p that allows us to evaluate slowness at all z € [z, z]].
Again, we express p in terms of x only to reflect the parameteriza-
tion of the line segment for the purposes of this example. The same
formulation applies for parameterization with respect to z.
3.4.3.3. Traveltime expression. We simplify equation (3.19) by bring-
ing the radicand outside the summation — since it does not depend on
z — and replacing p with p. The following expression allows us to nu-
merically find the traveltime of a signal along a straight line segment:
T(TZ) = ’“—Vl;m'% x
(3.21) > (B(z, 2(z)) + Bz + 1, 2(z + 1))).

x€If

Note that expression (??7) can be expressed in terms of z by following
the exact same procedure, but with £ and z reversed. With this ex-
pression, we rewrite expression (3.16) for general coordinates: let £ be
the variable of parameterization of the kth segment, p(£) be defined by
expression (3.20), h, = h, = h, and Z; be the interval over which the
contribution of segment k is summed. The traveltime of a signal prop-

agating along a ray defined by expression (3.13) having M segments
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is
(3.22) T(3) =S T(I).

Expression (3.22) allows us to calculate traveltime along a ray by sum-

ming over discrete values of slowness.

3.5. Simulated annealing: Raytracing formulation

In Section 3.4, we presented details on how we represent physical
quantities in our method of raytracing by simulated annealing. In this
section, we will formulate the Metropolis algorithin in the context of

raytracing via bending rays.

3.5.1. Initialization. For source S = (z,,z;) and receiver R =
(zr, zr), we begin with the initial guess of a ray being a straight-line
connecting these two points. Let 4°(¢; S, R) be the initial configuration
of a path connecting S and R having M segments. This trial path is
a single segment connecting the source to the receiver; hence, M =
1. The parameterization is determined by expression (3.14) and its

traveltime is calculated by expression (3.22).

3.5.2. Perturbing the ray: Changes in traveltime 7. At each
iteration, we will randomly choose a segment ¥) € 7° on this path and
a point ¢ = (z4,2,) € D. With these, we will randomly choose one of
two possible perturbations: the change in traveltime with respect to the
removal of a segment and the change in traveltime with respect to the
addition of a segment. The role of ¢ depends on the perturbation: if we

choose to remove the chosen segment, we connect the segments adjacent












3.5. SIMULATED ANNEALING: RAYTRACING FORMULATION 51

FIGURE 3.2. Illustration of a perturbation that results
in the removal of the segment connected to the source.
Segment 1 is removed from the original (black) path; the
new (red) path is formed by connecting segment 2 of the
original path to the source. Point S denotes the source
and point R denotes the receiver.

—~1 R

\

7?. In this case, expression (3.26) becomes
AT™ = (T(W) - (T(7) + T(3)) -

That is, we connect segment 73 to the source to create segment 7. If we
choose the segment connected to the receiver, ¥3,, we alter expression

(3.26) to account for the non-existence of segment 73, ,; in this case,
AT = (T(¥y-1) = (TOhe-1) + T () -

Thus, we create segment ¥}, by connecting segment 43, , to the re-
ceiver. Figure 3.2 is a visual example of a typical perturbation resulting
in the removal of the segment connected to the source, while Figure 3.3
is a visual example of a typical perturbation resulting in the removal

of the segment connected to the receiver.


















































































































































































































APPENDIX B

Analytical Solutions

In this appendix, we present analytical solutions for rays and trav-
eltimes of signals in three types of media: homogeneous media, layered

media, and linearly inhomogeneous media.

B.1. Rays and traveltimes: Homogeneous media

A homogeneous medium is a medium whose properties are constant
at every point within it. The properties of of a signal travelling within
a homogeneous medium is independent of its position or direction of
propagation. Mathematically, we can describe a homogeneous medium

by a function
v(z,z) = vy,

where vg is a positive constant.

B.1.1. Traveltime. Let z = z(z) be the path of a signal propagat-
ing in a homogeneous medium with velocity vg. The traveltime T'(S, R)
of the signal travelling between points S = (zg, 2z5) and R = (zg, 2g)

is given by

R
d
T(S,R) = /S =

123


















B.2. RAYS AND TRAVELTIMES: LAYERED INHOMOGENEOUS MEDIA 129

of signals in layered media is a function of z; only; we write

(B.12)

T(z) = Vs = xl)zl_ (25 — 21)° i V(1 - fR);— (21 — ZR)2.

We have an expression that gives traveltime of a signal propagating
through an interface in a horizontally-layered medium as a function of
a single parameter, z;. However, to obtain the exact traveltime of the
signal, we need to find z;.

We wish to solve expression (B.12) for z; that minimizes traveltime
T'(z;). Taking the derivative of expression (B.12) with respect to z;

and setting it equal to zero results in the following equation:

dT(z;) —2(zs — zp) 2(z; — zR)

= +
dz; v (s —z1)? — (25 — z1)2  v2¥/(zr — zr)? — (21 — 2R)?

= 0.

Bringing the (zs — z7) term to the right hand side and squaring both

sides, we obtain

(z1 — zr)? (zs — z1)?

vi((z1 —zr)? — (21 — 20)%)  vi((zs —=1)? = (25 — 21)%)

We manipulate this expression to obtain a polynomial equation of de-

gree 4 in zj:

0 = (@~ ({1 — 2R) ~ (21— 2R)?) +
(B.13) % (2 — 2)?(@s - 1) — (35— 21))

2

We solve this polynomial numerically for its four roots {m‘}}?zl and take

the root =} € [zs,zg) as the z-coordinate of the point on the interface
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through which the signal passes. We solve for the traveltime of the
signal by substituting z; into expression (B.12), and we construct the
ray by joining line segments extending from the source and receiver to

Iy.

B.2.2. Reflected signals: Reflection at an interface. Con-
sider a signal arriving at an interface at angle 6; and reflecting at an

angle 6,; the law of reflection says that
(B.14) sinf; = —sind,,

that is, the angle of incidence and the angle of reflection as measured
from the normal to the interface are equal.
Let (zy,z;) be the point on the interface at which the signal is

reflected. The length of the segment connecting the source to this

point, vsy, is |vysr| = \/(:vl —25)?+ (21 — z5)?, and the length of the

segment connecting the point on the interface to the receiver, g, is

lvirl = /(zr — z1)? + (2r — 21)%. In this calculation, the source and
receiver are contained within the same layer, which we assume to be
homogeneous; without loss of generality, we denote the signal velocity
within this layer by v(x) = vp.

Since zy i1s known, we need only calculate z; to determine the shape

of the ray and the traveltime of the signal along the ray, which is

T(z;) = \/(CEI —z5)2 + (21 — zg)? :_ V(@R — 22+ (25 — 21)2.

0

Equation (B.14) states that the angle of incidence and the angle of

reflection are equal to each other up to a minus sign. In view of this,
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we say

cos @; = cosb,,

from which it follows that
tanf; = — tané,.

The definition of the tangent function allows us to write

Z28 — 2J 2] —ZR
B.15 —_—
( ) s — Iy Ty — TR

We obtain the following expression by solving equation (B.15) for z;:

zZ]—z
rs —an (22)

_ 2125
ZR—71

Expression (B.16) allows us to directly calculate the path of a reflected

signal and its traveltime.

B.2.3. Reflected signals: Total internal reflection. Let g
be a segment extending from the source to the interface and v be a
segment extending from the interface to the receiver; the resulting ray
is 7 = vs|Jyr. Furthermore, let §; be the angle of s with respect to
the z-axis and 67 be the angle of yg with respect to the z-axis. Angle
6, is referred to as the angle of incidence and 67 is referred to as the

angle of transmission; these angles are related by Snell’s law:

(B.17) sinfr _ v

sin 9] V1 ’
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where k1 = —(zr — 21)/(21 — zs) and k2 = Tg — K1Ts. Expression
(B.19) allows us to rewrite expression (B.18) as
V(@1 = 25)? + (21 — 25)°

U1

\/(.’L‘R — (Kil.'L'1 + Kz)z ~+ (ZR — 21)2
U1

+|.’171(K:1 — 1) ~+ Kzl

(%) ’

T(z) =

-+

(B.20)

Expression (B.20) expresses traveltime as a function of variable z;.
Following the method of Section B.2.1, we solve equation dT'(z,)/dz; =
0 numerically for z;, and substitute this value into 7' to obtain the
minimum value of traveltime. We then use z; to obtain x5, which is

then used to construct -y.

B.3. Rays and traveltimes: Linearly inhomogeneous media

To discuss the accuracy of the shapes of generated rays with analyt-
ical results, we will follow the method presented in the paper of Epstein
and Slawinski in [15].To test the accuracy of the traveltimes of signals
along these rays, we use analytical results presented by Slawinski and
Slawinski in [14].

In linearly inhomogeneous media, rays are circular arcs [16]. Noting
that the centre of the circle from which these arcs are produced lies at
a height a/b above the surface [15, p.1]; it’s coordinate is z, = —a/b.
We need only to solve for the z-coordinate of the centre of the circle,

z¢. To do so, we invoke the geometric properties of a circle.
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Consider source S at (zs, 25) and receiver R at (zg, zgr), and let
p denote the radius of circle ¥ on which S and R lie. The midpoint
between S and R is ((zs + zr)/2,(2s + zr)/2) = (Tm,2m); let SR
denote the line connecting S and K. By properties of circles, radial
arm OA extending from the centre of ¥ through SR at its midpoint
intersects SR at a right angle. Let m = (zg — 25)/(zr — zs) be the
slope of SR; the slope of line OA is the negative reciprocal of m. It

follows that the equation of line OA is

T
(B.21) 204(8) = ——+ 204
where

T

Setting zpa(z) = z¢ in equation (B.21), we solve for z¢:
e = -m(zc —25,)

We can parameterize the circular arcs joining S and R by parameter

9. Consider the following change of coordinates:

(B.22) z(¥9) = psin(?) + zc

2(9) = pcos(¥) + z¢ .

Equations (B.22) allow us to express coordinates (z,z) in terms of

angular coordinate . We can trace out the ray from initial angle Jg
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to final angle Jg, where

Tr— T
¥9; = arctan (g),

Z] — 2C

and I = S or R.
To calculate the predicted traveltime along this ray we invoke the

following expression for traveltime, derived in [14, p.25]:1

T(S Ryv(z)) =

X

In [(()) (1 -~ V- v(zﬂ)v)]
o(zr) ) \ 1= /1= (0 o(s)

Parameter p is the standard ray parameter, which can be expressed in

| =

terms of the locations of the source and receiver and the velocity at
these points by

26X

S,R) = ’
p( ) \/[(bX)Z +v(zs)? + v(zgr)?)? — [2v(zs)v(2R)]?

where X = zr — xs is the horizontal offset between source and receiver.
The physical significance of ray parameter p and its role in raytracing

is discussed in [3, Ch. 14].

1These results were derived by invoking Fermat’s principle of least traveltime
and by requiring the satisfaction of Snell’s Law within the medium. This derivation
is done out in detail in the paper cited.




APPENDIX C

Code

In this appendix, the code used to implement the methods of simu-
lated annealing raytracing and backprojection are presented. This code

is found on the supplied compact disc.
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