












































































































































































































































































































































































































































































































Table 6.1. Facies characteristics for high and low net sandstone intervals. 

INTERVAL CHARACTERISTICS HffiERNIA BREATHIT 

FORMATION GROUP 

-upward fining, very 
coarse to very fine • • grained sandstone, 
centered on medium 
gram s1ze 
-planar and trough 
crossbedded sandstone • -braided river • 

High net sandstone sandstones defined by 
erosive bases, siderite 
pebbles, mud rip-up • • clasts and carbonaceous 
debris 
-current rippled very • • fine to fine grained 
sandstones 
-bioturbated medium to 
very fine grained • • 
channel sandstones 
-very fine grained 
sandstones exhibit • convolute lamination not present 

-interlaminated to 
interbedded shale, • • siltstone and very fine 

Low net sandstone grained sandstone 
-marine and marginal- • marine trace-fossil • 
assemblages 
-seat earths, rooted and 
bleached horizons • • underlie thick coals 
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order incised valley systems. Similar breaching of fifth-order strata and the development 

of laterally extensive fourth-order shale-dominated intervals separating potential reservoir 

intervals is observed in outcrop at Roadgap in eastern Kentucky. 

The transgressions and regressions responsible for the stratigraphic architecture in 

the two study areas can be explained by changes in (a) subsidence rate, (b) rate and 

direction (up or down) of eustatic sea-level change, and (c) rate of sediment supply. The 

high-frequency cycles that characterize many ancient successions are generally attributed 

to either high-frequency eustatic changes (e.g., as produced by glacial-interglacial cycles 

at a Milankovitch rhythm), or high-frequency changes in extensional/compressive 

stresses promoting equally rapid changes in regional subsidence/uplift (Cloetingh, 1986). 

The mix of controlling factors was likely substantially different for the Carboniferous 

Breathitt Group as compared to the Cretaceous Hibernia Formation, because the climate 

state of the globe was profoundly different at these two times. In the Carboniferous, the 

Earth was in an "icehouse" condition (Murphy and Nance, 1999, p.621); so high

frequency glacial-interglacial eustatic sea-level changes (like in the Quaternary) would 

have been the norm (Crowley and Baum, 1991; Maynard and Leeder, 1992; Heckel, 

1994; Olszewski and Patzkowsky, 2003). In contrast, the Early Cretaceous was a time of 

global "greenhouse" conditions (Barron, 1983; Murphy and Nance, 1999, p.621), so 

high-frequency relative sea-level changes were more likely the result of fluctuating 

tectonic stresses in the extensional Jeanne d'Arc Basin (e.g., Sinclair, 1993). 

The database for this thesis does not permit the unraveling of the eustatic and 

tectonic components of the relative sea-level curves for the two areas. However, the 
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combination of factors a-c, above, appears to have created very similar histories of 

transgression and regression in the depositional areas for the Breathitt Group and 

Hibernia Formation, so that close comparisons of stratigraphic architecture can be 

successfully undertaken. 

The abundance of coal throughout the Breathitt Group suggests a warm and 

humid climate. During the middle Carboniferous, the Appalachian Basin was at a latitude 

of 12-15 ° S (Morel and Irving, 1978). In the nearby mid-continent area, Olszewski and 

Patzkowsky (2003) infer that climatic conditions fluctuated between humid and arid in 

response to fluctuations in global ice volume. Coal accumulation would have likely been 

enhanced during the more humid intervals. In contrast, the Jeanne d'Arc Basin during the 

Early Cretaceous was at a latitude of 32-35 ° N (Irving, 1979), where atmospheric 

circulation resulted in a more dry average climate (deserts today cluster at± 30 ° either 

side of the equator). This may account for the paucity of coals in the Hibernia Formation. 

Somewhat different subsidence rates are the likely cause of the different 

preservation of fine-grained units in the Breathitt Group verses the Hibernia Formation. 

The presence in Kentucky of thick low net sandstone intervals such as the Elkins Fork, 

Kendrick and Magoffin Shale members, particularly towards the east, is due to an 

increase in the rates of local subsidence and creation of accommodation along the Pine 

Mountain Overthrust, resulting in a decrease in the depth of incision. In contrast, the thin 

nature of the low net sandstone intervals throughout the Hibernia Formation suggest that 

local subsidence rates were lower than those experienced throughout the Appalachian 

Basin at the time of Breathitt Group deposition. 
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In spite of the minor differences in stratigraphic architecture noted above, the 

otherwise strong similarities in stacking patterns and sequence-stratigraphic frameworks 

in the two field areas justifies incorporation of numerical data from the upper Breathitt 

Group into the next generation of geocellular models for the Hibernia field. Sequence 

boundaries and coal zones recognized throughout the Breathitt Group form potential 

flow-unit boundaries and likely hydrodynamic barriers, respectively, and should be 

modeled accordingly in the Hibernia Formation reservoirs. Further quantification of the 

Breathitt Group analogue, although beyond the scope of this thesis, will significantly 

improve the understanding of fluid movement and hydrocarbon recovery in the Hibernia 

field. Such reservoir modeling was not an objective of this thesis, and needs to be 

addressed in a subsequent phase of analogue studies. 
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APPENDIX I 

DESCRIPTIVE NOMENCLATURE 
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Descriptive nomenclature 

A bed is the smallest formal unit in the hierarchy of lithostratigraphic units. It is a 

lithologically homogenous sedimentary unit, which was initially deposited on a 

horizontal surface. Beds occur as tabular or lenticular layers of sedimentary rock with 

internal textural, lithological or structural unity. Bedding is defined as a sequence of 

parallel layers within a body of sedimentary rock and is classified according to thickness. 

Lamina is the thinnest recognizable unit layer of original deposition in a sediment 

or sedimentary rock, which differ from each other with respect to color, grain size or 

composition on a scale of less than one em. 

Table AI: Summary ofbed thickness values and terminology (Boggs, 1995). 

Thickness (em) Bed Thickness Terminology 

100 Very thick bed 

30-100 Thick bed 

10-30 Medium bed 

3-10 Thin bed 

1-3 Very thin bed 

3-10 (mm) Thick lamina 

0-10 (mm) 0-3 (mm) Lamina Thin lamina 

Massive bedding is defined as an apparent absence of any form of sedimentary 

structure in a sedimentary unit. Massive bedding is rare in sandstones, but may occur in 



well sorted sandstones where structures cannot be identified by textural variations. 

Massive bedding can result from the complete destruction of primary structures by 

intensive organic burrowing. 






