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Abstract 

With the decline of already discovered and exploited shallow mineral deposits, the 

mining industry is intent on finding new techniques that could explore deeper but still be 

cost-effective. One method that has been considered is the seismic reflection technique 

which has been very successful in the petroleum industry. This thesis examines one 

approach, seismic beamforming, which can be used in conjunction with the seismic 

reflection technique for the direct location of massive sulfide bodies. Implementation of 

the technique could prove successful in reducing exploration costs. 

Beamforming can be used to extract a variety of information about a target (e.g. 

range, angle of emergence, temporal frequency content, power) from a propagating 

signal. This thesis studies the use of the angle of emergence of wavefronts propagating 

across a linear array of seismic receivers to assist in location of the wavefront source. The 

angles are back-projected to a common point which represents the point source or 

scatterer located at the far-field of the receiver array. 

A simple conventional beamformer is designed and tested on data generated from 

four different geometries of a linear array of receivers and a single source of seismic 

energy. The intersection of back-projected rays is not tight enough for all four cases but 

on using a distance-weighting scheme the location of the scatterers is satisfactorily 

estimated. A number of performance measures are carried out on the beamformer to 

determine its effectiveness. The beamformer is tested on data subjected to different noise 

fields, on data decimated in the spatial domain and on data obtained from a geometry that 

includes the presence of two scatterers which are more than a Fresnel zone apart. The 
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results indicate that the beamformer is able to localize a scatterer when the data has a 

signal-to-noise ratio of at least 5 dB. The results also show that spatial decimation of the 

data has no adverse effect on location estimates. However, to achieve desired beam 

steering resolution, the data need to be interpolated with more spatial points in the 

beamformer. The beamformer is not able to distinguish between two scatterers in its 

vicinity when the source is at a point directly between them. But it is able to detect the 

two scatterers when the source is moved to a point on the other side of either scatterer. 

One main issue that affects the reliability of location estimates is the way the 

angle of emergence is picked. The angles are handpicked and this has the potential of 

introducing bias in the estimates which could then affect the overall performance of the 

beamformer. A computer code can be written to automatically pick these angles. This 

would improve location estimates and may eliminate the need to use the distance­

weighting scheme used in the investigations. 

Overall, the results obtained show that if correctly implemented, seismic 

beamforming together with reflection seismic can serve as a cost-effective method for the 

location of mineral deposits. 
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Chapter 1 

Introduction 

1.1 Application of Seismology in Mineral Exploration. 

Seismic reflection techniques have been used extensively for oil and gas exploration in 

sedimentary basins. Through imaging, these techniques help pinpoint the location and 

size of oil and natural gas fields. The techniques rely on acoustic impedance contrasts 

across major lithologic boundaries. When seismic energy encounters such boundaries it is 

reflected and scattered back up to the surface where it is recorded and analyzed for 

information about the subsurface. 

The possibility of adapting reflection seismic techniques to mineral exploration 

has recently been explored (Dahle et al., 1985; Eaton et al., 1996; Milkereit et al., 1996; 

Salisbury et al., 1996; Eaton, 1999 and Laletsang, 2001 ). This was sparked by the 

inability of the conventional surface geophysical techniques for mineral exploration, e.g., 

EM and potential fields methods, to resolve ore body sized targets at depths >500 m even 

though minerals can be economically recovered from such depths. 

Results from the above references indicate that mineral deposits have 

characteristics that enable the use of seismic· reflection techniques in their exploration. 

Salisbury et al. (1996) demonstrated that massive sulfide bodies have high acoustic 

impedances (pv), where pis the density and vis the compressional velocity, compared to 

their host rocks. Their acoustic impedances provide good contrasts, a property that is 
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necessary for a body to produce a reflection, across rock boundaries. Milkereit et al. 

(1996) showed that indeed massive sulfides produce a characteristic seismic reflection 

response and the method could be used to image the deposits in a complex geologic 

setting. Long before their work, Dahle et al. (1985) had applied the technique to data 

collected in the ore fields of Sulitjelma and L0kken (Orkla), Norway in an attempt to 

detect known and unknown ore bodies. The ore bodies' ability to produce impedance 

contrasts across rock boundaries enabled their detection and location. Other research 

work that applied the seismic reflection method for ore prospecting includes the work of 

Wright et al. (1994) and Eaton (1999). Wright et al. (1994) focused on the use of small 

explosive sources to cut exploration costs and to better seismic resolution. Eaton's (1999) 

work demonstrated that massive sulfide ore bodies could potentially be recognized and 

mapped using seismic methods based on their scattering response. 

Several approaches can be used in conjunction with the seismic reflection 

technique to detect and locate mineral deposits. One that is the focus of this thesis, which 

is extensively used in Sonar and Radar applications, is called beamforming. A detailed 

description of the technique is presented in chapter 3. 

1.2 Thesis Objective 

The primary focus of this research is to investigate the application of seismic 

beamforming for exploring for mineral deposits in a cost-effective manner. Beamforming 

involves the introduction of relative time delays or phase shifts between receivers in an 

array so that wavefronts from a target appear to arrive simultaneously at the array. The 
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delays introduced depend on the medium velocity, the separation between the receivers 

and the orientation of the wavefront. Since the delays introduced are directly related to 

the direction of propagation of the wavefronts, it is possible to determine the angles of 

incidence between a line perpendicular to the axis of the array and the wavefront. These 

angles can then be used in the determination of the location of a target. 

Mineral deposits present a tough challenge to seismic exploration. They are 

generally small (~1-30m thick) and usually have complex geometries and they are often 

found in a steeply dipping setting. Because of these challenges, exploring for them is 

difficult and often the costs and risks are high. The cost of a full 3-D seismic survey, for 

instance, is described in White, (1999) as $50-1 OOk per sq. km and requires a large 

number of receivers and sources to conduct. Currently exploration for mineral deposits 

using the reflection seismic method involves directly detecting or imaging them. 

Detection describes a situation where a seismic response of a deposit is used to infer the 

presence of the deposit whereas imaging characterizes the deposit, i.e., produces a picture 

of the geometrical distribution of the reflecting surfaces of the deposit (Robinson and 

Treitel, 1980). To reduce costs and risks in locating a deposit, detection without imaging 

may be a desirable option. Given that source effort occupies much of the seismic 

acquisition budget (30-45%) (private correspondence with Dr. Jim Wright, December 

2002), and that production from shallower known deposits already exploited is gradually 

declining, most companies are seeking a cost-effective method to explore for deeper 

targets. The mining industry is often focused on drilling targets rather than imaging them, 

which places emphasis on the need to design methods that will tailor acquisition 
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techniques for detection of these deposits. This thesis proposes one method for an 

exploration tool to detect deep-seated massive sulfide zones. 

The objective of this research can be subdivided into two parts; 

1. To explore and assess the possibility of detecting a massive sulfide deposit by 

illuminating it with a limited number of shots and beamforming using a 

receiver array. It should be noted that this only involves detecting and not 

imaging the deposit. 

2. To identify procedures in the method that need refining so as to produce 

accurate and reliable estimates of the parameters of the target (e.g., location in 

three dimensions). 

In order to achieve the objective of this study, a systematic approach was adopted. 

The following steps were taken to carry out the study: 

(a) Software algorithms were developed, using MATLAB®, to carry out the 

beamforming procedure which was used to provide target parameters such as 

direction of arrival of the wavefronts and relative scattering power. 

(b) Synthetic seismic data were then generated using a finite-difference approach 

to solve the scalar wave equation. 

(c) The results were analyzed and discussed. 

(d) Suggestions for refinements and improvements in the approach as well as 

recommendations for future work are made. 
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1.3 Literature Review 

Most of the literature in exploration seismology focuses on oil and gas exploration 

(Sheriff and Geldart, 1995; Yilmaz, 2001) as mentioned in section 1.1. The research 

referenced in that section involved attempts to image the ore deposits. The main focus of 

this thesis is not in imaging of the deposits but in detecting their presence and their 

location. A lower cost survey technique that could detect and locate potential deposits 

could prove to be an attractive alternative. Since I am only concerned with detecting and 

locating the massive sulfide deposits, one method that could be used for that purpose is 

beamforming. Beamforming is widely used in SONAR and RADAR signal processing. 

Van Veen and Buckley ( 1988) give a very good introduction to this technique and 

explain that it is a form of spatial filtering that can be used to estimate the direction of 

arrival of a signal in the presence of noise and interfering signals. Advancement in 

technology has led to improved and more robust algorithms. Treatment of the 

conventional beamforming approach is covered in Johnson (1982), Dudgeon and 

Mersereau (1984), Mucci (1984), Maranda (1989), Nielsen (1991), Johnson and Dudgeon 

(1993). 

There are a limited number of publications in the geophysical literature that 

pertain to the application of beamforming to mineral exploration. One of a few papers 

found, Moran and Albert (1996), uses direct' transmitted surface seismic waves to locate a 

military target. Even though these waves have different propagation characteristics 

compared to reflected ones (body waves), they are subject to somewhat similar noise 
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fields. Thus, beamforming procedures for them are almost the same as for reflected 

waves. 

Most literature in beamforming covers the general aspects of the method. Less 

attention is paid to simulation and implementation. This is mainly due to the fact that 

company patents restrict the publication of new implementation and simulation of 

beamforming techniques (Hampson, 1997). Hampson (1997) is one of a few available 

sources that deal with simulation and implementation. His work is based on an 

introductory chapter that appears in Nielsen (1991 ). Hampson (1997) uses MA TLAB® 

for implementation of the algorithms. 

This thesis describes an implementation procedure that can be used for locating 

mineral deposits using a conventional beamforming technique. 

1.4 Overview of the thesis 

This thesis involves the application of one signal processing technique known as 

beamforming in the location of deposits whose size or width is comparable to or smaller 

than the diameter of the first Fresnel zone (see section 2.1 for definition of the Fresnel 

zone). The beamforming process attempts to find the direction of arrival of diffraction 

wavefronts deposits produce when illuminated with seismic energy. Finding the direction 

of these wavefronts localizes the scatterers. · 

Chapter 2 introduces the array model which is central to the background 

information developed in chapter 3. The array model developed assumes that the host 

medium and the deposit are both homogenous and isotropic. This is necessary in that a 
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simple waveform can be developed which only considers the changes in phase of the 

wavefronts as they propagate across the array. 

Chapter 3 presents the theoretical background to the conventional beamforming 

technique used in this thesis. This teclmique is known as the weighted delay-and-sum 

method. Rather than attempt to employ one of the more robust approaches in 

beamforming, I felt it was useful to test the idea using basic theory as no paper in the 

geophysics literature has attempted to apply this method to reflection seismic data. The 

weighted delay-and-sum beamformer output is formed by averaging the weighted and 

delayed versions of the receiver outputs. The delays are chosen in a way that will 

maximize the wavefronts coming from a particular direction. The directions obtained 

essentially localize the scatterer responsible for the creation of those wavefronts. 

In chapter 4, the theory presented in chapter 3 is used. The theory is applied to 

synthetic data obtained using a uniform linear array. The performance of the method is 

evaluated. The results obtained show that beamforming can be an effective method to use 

for the location of scatterers. 

Finally, chapter 5 contains conclusions and implications of what have been 

achieved in this thesis. 
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Chapter 2 

The Array Model 

This chapter establishes a model for the output signal of the receiving seismic array that 

will be used in this thesis. The receiving seismic array consists of geophones or receivers 

spaced at equal intervals along a seismic line. For a vertically traveling wave that 

propagates across the array, the outputs from the individual geophones combine 

constructively when added together. Destructive interference occurs for horizontal waves 

that propagate across the array since they arrive at each geophone at different times. 

Thus, the array can be used to discriminate against waves coming from different 

directions. We will exploit this characteristic in chapter 3. 

This chapter begins by presenting assumptions (section 2.1) that are helpful in 

developing a simplified model equation. A simplified equation enables us to consider 

only the propagation delays among the receivers and not account for amplitude 

variations. Section 2.2 gives a development of the wavefonn model. The waveform 

model is designed for a single scatterer; the general model for multiple scatterers can be 

obtained using the linear superposition principle (Stoica and Moses, 1997). 

Following the development of the waveform model, the chapter discusses certain 

requirements (section 2.3) that are necessary for proper sampling of the wavefield. To 

avoid temporal aliasing the sampling frequency should be at least twice the highest 

frequency in the data. Similarly, spatial aliasing can be avoided if the spacing between 

the receivers is set to less than or equal to half the wavelength of the signal. 
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2.1 Assumptions 

This section describes the assumptions that are made in the development of a model for 

the beamforming process discussed in chapter 3. 

(a) The array geometry is linear (i.e., 1-D array). 

(b) The array consists of identical omnidirectional transducers uniformly 

distributed and situated in the same plane as the scatterers (fig 2.1 ). The 

scatterers behave like point sources. 

(c) The host medium and the deposit are homogenous and isotropic. 

(d) The deposit or scatterer at a given depth is assumed to be situated in the far-

field. This will fully be explained later in this section. 

source geophones 

00000000 

scatterer 

Figure 2.1 
Energy radiated or scattered by a massive sulfide body in the subsurface is picked up by 
a uniform linear array on the earth's surface. 

Assumption (c) implies that the propagation medium is not dispersive, and since 

the deposit is in the far-field we can view the waves arriving at the array as planar. Under 
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the above assumptions the only parameter that characterizes the scatterer's location is the 

angle of arrival of the wavefronts emanating from it. It should be noted that the above 

assumptions could be relaxed but that would significantly complicate the array model. 

For instance, instead of using a linear array a rectangular array could be used. The 

rectangular array is a natural extension of the linear array and it has elements lying in the 

xy-plane. This means instead of just looking for a single incidence angle, both azimuthal 

and elevation angles are required to characterize the target. If the scatterer is in the near-

field, its position would be defined by azimuth, elevation and range. 

The array processing method discussed in the coming sections requires plane 

wave propagation. However, the scatterers described above behave more like point 

sources since their size is comparable to or smaller than the width of the Fresnel zone. 

The Fresnel zone is the area from which reflected energy arriving at a detector has phases 

differing by no more than a half-cycle (Sheriff and Geldart, 1995). Since the geophones 

are in the near-field of scatterers, they receive spherical wavefronts. The near-field region 

(figure 2.2) describes the region of space for whichz < 
2

L
2 

= 
2JL

2 

, where z is the depth 
A v 

of the scatterer from the receiver array, Lis the largest dimension of the array,fis the 

frequency, v is the propagation velocity and A, is the wavelength. This region is also 

called the Fresnel region (Arnold, 1997). In this region spherical wavefronts dominate. 

The other radiation region, known as the far-field (or Fraunhofer region), is the region of 

space where the depth of the scatterer from the receiver array is 2 
2

L
2 

• This region is 
A 

dominated by planar wavefronts. 
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,._ ___ L ----•~1 

T 
z 

1 
scattcrer 

(a) 

Figure 2.2 

00000000 

scatterer 

(b) 

plane 
wavefronts 

Schematic showing types of radiation of energy: (a) the near-field region and (b) the far­
field region. A distinction is made between L and l, L represents the aperture of the array 
whereas l represents a segment of the array. 

As an example, assume a wavefront propagates across a uniform linear array of 5 

receivers with 20 m spacing, a total length L of 80 m. If the medium velocity is 2000 m/s 

and the frequency of the wave is 25Hz, then far-field radiation would be satisfied by a 

target at a depth of at least 160 m. If the medium velocity is 4000 m/s instead of 2000 

m/s, then the far-field radiation would begin at an 80 m depth. If we now consider a 

different wave with 50 Hz frequency traveling through the same media as the one above 

we find that for a 2000 m/s propagation velocity the far-field radiation begins at 320m 

depth and at 160 m depth if the velocity of the medium is 4000 m/s. The whole scenario 

is illustrated in figure 2.3 for five different waves that propagate across two arrays of 

different lengths. As can be seen, the far-field boundary is dictated by the size of the 

array and the wavelength of the propagating wavefront. 

The illustration given in figure 2.3 indicates that normally seismic exploration is 

conducted in the near-field radiation region. Thus, to satisfy the plane wave condition in 
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Figure 2.3 

Depth-velocity bounds for an 80 mULA 
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Schematic showing depth-velocity bounds for near-field and far-field radiations for two 
uniform linear arrays (ULA 's) of length (a) 80 m and (b) 180m with 20m receiver 
spacing. The diagram in (c) marks the near-field and far-field regions for the uniform 
linear array in (a) when the dominant frequency is 50 Hz. 
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these circumstances, the data recorded by the array should be segmented in such a way 

that curvature within each segment is negligible, i.e., the condition z > 
212 

is satisfied, 
A 

where l, a fraction of L, is the length of each segment. For instance, if we want to detect a 

target at a depth of 500 m given a velocity of 4000 m/s and a frequency of 50 Hz, we 

need l to be less than 141 m which is about 7 receivers if the receiver spacing is kept at 

20 m. If the wave has a frequency of 1OOHz and other parameters are the same as used 

for a target at 500 m, then the maximum number of receivers that would define each 

segment is 5 (i.e., l should be less than 100m). For a 200Hz wave with the same 

parameters, 3 receivers would be required. 

2.2 The Waveform 

We begin by developing a model for a single plane wave signal that impinges on the 

array from the broadside. The general model which involves more than one source (or 

scatterer) can be obtained using the superposition principle (Stoica and Moses, 1997). As 

we have indicated earlier, the receivers are identical and have the same impulse response. 

Thus, the constant responses can be thought to be contained in the signal term s(t). The 

output from the mth receiver can then be represented as: 

(2) 

where 't"' is the time delay and nm the background noise field at each receiver. It should 

be noted that 't"' is also a function of apparent wavenumber k 0 = coa0 (where co is the 

temporal frequency and a0 is the apparent slowness vector (1/v)), which is directly related 
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to the angle of propagation qJ. The relationship between wavenumber vector k0 and qJ is 

illustrated in figure 2.4 below. Either one of these two quantities can be used to describe 

the direction of a plane wave as it reaches the geophone array. The notation describing 

Figure 2.4 

geophones 

scatterer at the far- field 
region 

atr 

subsurface 

Illustration of the relationship between ko and (jJ. The two quantities describe the 
direction of approach of a plane wave emitted by a scatterer in the far-field. Thus, either 
one provide a means of locating the scatterer. 

the time delays among the receivers can be made simpler by setting the delay at the first 

receiver to be zero, i.e. r 0 = 0 (figure 2.5), such that delays at the remaining receivers 

-r = 0 ~ 'T = 2d sin p (M-1) d sin q> '( = v "[,M-1 = 0 1 2 v v 

0 0 0 0 
Figure 2.5 
Explanation of how the delays among the receivers are set with respect to the first 
receiver. 
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would simply be propagation delays with respect to the first receiver. 

In the frequency domain, equation 2 can be expressed as 

Xm (f)= S(f)e- Jan:m + N m (f), (3) 

where S(f) is the ideal Fourier transform of the signal without noise. If the bandwidth of 

the signal S(f) is small compared to its dominant frequency, i.e. if the signal is 

narrowband, then the propagation delays between receiver elements can be approximated 

with a phase shift. This allows us to write equation 3 as 

X
111 
(f)= S(f)e- j 27ifn 'tm + N

111 
(f), (4) 

where fD is the dominant frequency of the signal. As stated above in section 2.1 the 

receivers in the array are the same and thus have an equal, omnidirectional response at 

the dominant frequency. Thus the constant receiver responses are deemed to be contained 

in the signal term S(f). 

If the signal does not satisfy the narrowband assumption (i.e., if it is broadband), 

the situation always encountered in seismic exploration, it can be decomposed into 

multiple narrowband signals and each frequency can then be processed separately. This 

allows the delays to be approximated with a phase shift for each frequency as in the 

narrowband case (van Trees, 2002). 

Since data from the receivers is digitized, .a discrete time version of equation 2 is 

employed. It is obtained by sampling the inverse Fourier transform of equation 4. 

( ) - ( ) - j21ifnrm ( ) 
XIII n - s n e + nm n . (5) 

Equation 5 is the array signal model that we will use throughout this thesis. 
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Now let us look at the exponent term in equation 5. We call this term am and write 

it again for illustrative purposes. 

(6) 

This term is referred to as the array response function (Manolakis et al., 2000). It shows 

us how the array will respond to incoming signals. As can be seen the array response 

function is dependent on the angle rp which is the direction of arrival of the signal 

impinging on the array. For the case of a uniform linear array (ULA) where the receivers 

are in a line with equal spacing, denoted by d, and where the first receiver is chosen as 

the reference point, the propagation path between the first receiver and any receiver in the 

array (see figure 2.6a) results in a time delay of 

( ) 
_ mdsin(rp) 

'l'm (/J - ' (7) 
v 

where v is the propagation velocity. rp is measured clockwise with respect to the normal 

of the linear array as shown in figure 2.4 above and figure 2.6 (b) below. rp is restricted to 

this interval because in the case of this type of array, and where the media of propagation 

on both sides of the array are the same, a wavefront coming from the south and another 

symmetrically opposite from the north, as depicte~ in figure 2.6 (b), yield identical sets of 

delays (i.e., 'tm(rp) = 'tm(n-rp)) and hence are indistinguishable. 
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2.3 Sampling the wavefield 

In order to avoid loss· of information from incoming wavefronts certain conditions should 

be met. To avoid temporal aliasing the temporal sampling frequency should be twice the 

highest frequency in the signal (Yilmaz, 2001). Since the uniform array samples the 

incoming wavefronts at discrete spatial locations, the spatial frequency ks (or precisely the 

inverse of receiver spacing) should be high enough to avoid spatial aliasing. The spatial 

frequency is normally set at ks ?..lid. To satisfy this spatial condition the sampling interval 

0 1 

Figure 2.6 

geophones 
2 (m-1) 

r;JI 

curved wavefronts 

(a) 

a1r 

subsurface 

b 

(b) 

(a) Plane wavefronts arriving from afar-field source into a uniform linear array. (b) 
North-south ambiguity of a uniform linear array. Signal a is indistinguishable from 
signal b. But c can be distinguished from b. 

dis chosen such that it is less than or equal to half the wavelength (d -:;)J2) of the 

waveform propagating past the array. As an example, assume the following set of design 

parameters: the sample rate b.t = 0.5 ms, the highest frequency of the propagating 

waveform is 1OOHz, the propagation velocity v = 4000rn/s and the dominant frequency of 
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the signal/D =50Hz. Given this scenario, no temporal or spatial aliasing would occur 

provided the receiver spacing is equal to or less than 20m. 

2.4 Summary 

In this chapter we discussed the development of an array model that we will be using in 

later chapters. We stated the assumptions that are necessary to develop a simplified signal 

model. The scatterers are assumed to be smaller than the Fresnel zone. As long as it is 

assumed that the receivers have equal omnidirectional response at the same frequencies 

and that both the scatterer and the host medium are homogeneous and isotropic, the 

simplified waveform model in §2.2 can be adopted. 

Section 2.2 of the chapter dealt with the development of the waveform model. It 

starts with the continuous time output waveform from each receiver and transforms it into 

the frequency domain. Since in practice we work with discrete data, a discrete version of 

the same waveform is derived. 

Finally, the last section of the chapter discusses requirements needed when 

sampling the wavefield. To avoid temporal aliasing, the temporal sampling frequency 

should be at least twice the highest frequency in the signal. Similarly, spatial aliasing is 

avoided when the spatial sampling is high enough (ks;;::: 1/d). 

Equipped with this information we now briefly introduce the signal processing 

method that will help us estimate the angles of arrival that appear in equation 7. 
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Chapter 3 

Conventional Beamforming 

In this chapter, we present the conventional beamforming technique (section 3.1) used in 

this study. The chapter examines the response of an array of receivers to signals coming 

from a particular direction. The beamforming process can be performed in both the time 

(section 3.1.1) and frequency domains (section 3.1.2). This chapter also discusses the use 

of the array to determine the angle of emergence of propagating wavefronts. This process 

is known as array steering; it is covered in section 3.1.3. There are some practical 

limitations on the choice of parameters used in the determination of angles of emergence 

of these propagating waves. These are discussed in sections 3.1.4 and 3.1.5. Section 3.2 

presents the computer code used in the implementation of the beamforming process 

discussed in this chapter. 

3.1 Theoretical background 

3.1.1 The time domain approach 

Propagating signals detected by the array may arrive at any angle with respect to the 

aperture of the array. The receiver outputs obtained from the signals that arrive at 0 a are 

in phase and will add up coherently when summed together. Wavefronts arriving from 

any other angle other than oo are out of phase and thus the receiver outputs will not add 

coherently when summed together. To determine the angle from which a wave arrives at 

the array, the receiver outputs are weighted and delayed before summing. The angle of 
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arrival is identified by a systematic search for the angle that results in the highest power 

across the array. In essence, this search focuses the array in the direction from which the 

wavefronts came. This operation, known as weighted delay-and-sum method, is one of 

the oldest conventional beamforming methods which is also easy to understand. This 

method is the one in which signal processing algorithms in this research are based upon. 

One way to ensure that receiver outputs add up coherently when summed is to 

apply appropriate time delays at each receiver output and then add. The output will be 

maximal and appear as though the signals arrived in phase perpendicular to the array's 

aperture (figure 3.1). 

-..: "'' :~ 
recetvers 

0 

1 0 ~ ~ output 

(m-1)0-~ K 
DELAY SUM 

Figure 3.1 
Delay-and-sum beamforming concept (modified from Johnson and Dudgeon, 
1993). . 

To illustrate this concept mathematically, we will refer back to equation 2 and 

assume that the receiver array receives a plane wave coming from a target in the far-field 
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as depicted in figure 2.6 (a). The waveform s(t) propagates across the array and each 

receiver samples it yielding 

xm (t) = s(t- r m) + nm (t), (8) 

where s(t - rm) is the delayed signal term at each receiver and nm(t) is the background 

noise field. The background noise field which may be due to scattering from near-surface 

irregularities or inhomogeneities is assumed to be temporally uncorrelated from one 

receiver to next. Since the beamformer is very sensitive to noise, it may be useful to 

prefilter the data as much as possible. Outputs from the receivers are weighted and 

delayed appropriately and then summed to produce the beam output represented by 

M-1 
y(t) = L wmxm (t- r,J, (9) 

m=O 

where Wm is the amplitude weight of the mth receiver. The weights are primarily applied 

to attenuate the sidelobes (smaller peaks appearing on either side of the large lobe) of the 

beam response function thereby reducing the power leakage. The sidelobe levels indicate 

the ability of the beamformer to reject other angles but the angle the wavefronts are 

coming from. The drawback in using weights to reduce sidelobe level is that there is 

always a tradeoff with the width of the mainlobe (the large lobe centered at the angle of 

incidence) of the beam response function. Reducing the level of sidelobes widens the 

mainlobe, thus, compromising resolution (see section 3 .1.4 for the description). As 

already pointed out earlier, the receivers are assumed to have the same impulse response, 

thus, we can consider their outputs to be of equal magnitude. In this sense, they can be 

uniformly weighted. In this thesis we have used unity weights (wm = 1). 
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Applying appropriate delays 'tm to the receiver outputs Xm before summing will 

reinforce plane wavefronts coming from a particular direction q; and tend to cancel those 

coming from other directions, as they will not be in phase. 

Since in practice we deal with discrete data, a discrete version of equation 

9 is required. The discrete beam output is given by (Johnson and Dudgeon, 1993) 

M-1 
b(n) = :L WmYm (n- L1m), (10) 

m=O 

where L1m is the integer delay associated with the mth receiver. The integer delays are 

discrete multiples of the sample rate and their use means that we may not be able to form 

the beam exactly since ideal delays are not necessarily integer multiples of the sample 

rate L1t. This means that it is possible to form a beam only for discrete angles. To 

illustrate this, we note that permitted receiver delays are given byrm = L1mL1t = mqL1t, 

where q is an integer (i.e., q = 0, ±1, ±2, ... ) and L1t is the sample rate of the data. By 

examining equation 7, propagation directions have the form<p =sin -t ( vqL1t). If we 
d 

consider a seismic system with the following set of design parameters: v = 4000 m/s, L1t = 

0.5 ms and d =20m, we find that q cannot exceed 10. The discrete propagation angles 

for this system are: 0.00°, ± 5.74°, ± 11.54°, ± 17.46°, ± 23.58°, ± 30.00°, ± 36.87°, ± 

44.43°, ± 53.13°, ± 64.16° and± 90.00°. Thus, the response function gives only a fixed 

number of possible beams. This situation clearly limits the beamformer in practical 

usage. To form more beams using integer delays the separation distance d needs to be 
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increased or the sample rate 11t could be reduced within sampling requirements 

mentioned in section 2.3. 

There are other alternative methods such as temporal or spatial interpolation that 

can be used that place less restrictions on propagation directions. Although interpolation 

is not being used extensively in this thesis, some spatial interpolation, carried out in the 

frequency domain, is used where a limited number of receivers are used to find 

propagation directions. 

3.1.2 The frequency domain approach 

Frequency domain beamforming involves treating the time delays as phase shifts after 

application of the Fourier transform to the receiver outputs xm (t). As already pointed out 

earlier, in time domain beamforming the receiver outputs are time delayed with respect to 

the first receiver. In the frequency domain, the time-delayed sequences transform into the 

phase shifted sequences (i.e. see equation 4 above). The Fourier transform of the beam 

output (equation 9) is given by 

M-l 
Y(f,rp) = L wmXm (f)ej2nfDrm(rp)' (11) 

m=O 

where XmifJ is the frequency transformed output, Wm is the amplitude weight,/D is the 

dominant frequency and rm(rp) is the time delay of the mth receiver. If we assume qy0t is 

the angle of direction of the propagating wavefronts, using equations 5 and 11, we fmd 

t rp0 should not be confused with rp. rp0 is the actual direction of the incoming wavefronts and rp is the 
assumed propagation direction of the wavefronts. The mainlobe's peak occurs when rp = rp0. 
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that the beam output can be represented as 

Y(f,rp) = M£1 w,[s(f)e -j2ifD(r,(rp,)-r,(rp)) +N,(f)J 
rn = 0 

(12) 

The hat on top of Nm(/) indicates that the noise field has been modified by a phase shift of 

ei2ifDrm(rp). Assuming the signal is narrowband and all its energy is concentrated at the 

dominant frequency /D, the power of the beam as a function of the q; is evaluated simply 

by taking the square of the absolute magnitude of the beam output, i.e. IY (fD, rp )1 2 

(Johnson, 1982; Maranda, 1989). 

Equation 12 applies to the case where we are dealing with continuous time data, 

however it would not work in a situation where the output from the receivers is discrete. 

Thus, an appropriate method is used that takes care of the finite time intervals. This 

method is known as the discrete Fourier transform (DFT). AnN-point DFT of a sampled 

sequence Xm(n) with discrete values of frequency fk = kfs/N (wherefs is the sampling 

frequency) is given as (Nielsen, 1991) 

N 1 
.2nk 

- -J- n 
xm(k) = L xm(n)e N , where 0 ~ k ~ N-1. (13) 

n=O 

Equation 13 represents the discrete frequency transformed data. Using this equation and 

equation 11, the discrete frequency domain representation of the beam output becomes 

- M -1 }Qrnk 
Y(k,q;)- L W

111
X(k)e , (14) 

rn = 0 

where Q = 2m5s sin(q;)/ N and~= dfs/v. This can be written compactly as 
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Y=X.a (15) 

Xo(k) Wo(k)ejD.mk 

xl ( k) wl (k)ejD.mk 
where X = and a = . One advantage of this method is that the 

sampling frequency, Is, does not affect arrival angle resolution. It only has to satisfy the 

sampling requirements mentioned earlier. Another advantage is that equation 14 can be 

computed using the fast Fourier transform (FFT) algorithm (Mucci, 1984). The beam 

power output from the DFT approach can be computed by taking the square of the 

absolute magnitude of the beam output just like in the continuous time case. 

3.1.3 Array steering 

Array steering can be achieved by physically changing the orientation of the array or by 

electronically (analogue or digital) changing the position of the mainlobe of the array 

response output (Burdic, 1991 ). One example of mechanical steering is found in radar 

systems where parabolic dish antennas rotate to scan the wavefield for incoming energy. 

In sonar and seismic systems this is not usually done because of the wide aperture 

needed, the heavy equipment involved and also because the noise generated by the 

rotating array would mask the signal we are trying to detect. Instead, electronic steering is 

the preferred method for these types of systems. 

We shall focus on digital steering which is the method used in this thesis. Digital 

steering involves introducing a set of time delays to each receiver element before 

summing. Considering a uniform linear array, for a single-frequency signal, this is 
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equivalent to applying phase shifts to the frequency transformed receiver outputs. Note 

that this array steering corrects for the phase lag of the incoming wave, arriving from the 

direction cp0, due to the position of each individual receiver with respect to the first 

receiver. Thus, signals coming from cp0 will be in phase at each receiver and will add 

coherently. 

A schematic representation of this concept is shown below in figure 3 .2. Time 

delays, rm((/J ), shown are equivalent to a phase shift defined by <D m = 27ifn r m (qJ). Noting 

that the first receiver acts as a reference point, r1 - r4 are added to the outputs of the 

corresponding elements to align the wavefront with the main axis of the array. 

Digital array steering can be performed in two different situations. For systems designed 

for radiation of energy, the steering direction is known beforehand. Examples of 

m = 0: 

Figure 3.2 

0 
2 

Q..- d+() 
3 4 

Schematic of a plane wave passing across a uniform linear array of receivers. 
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such an application are tracking of fish using side or multiple scan SONAR, tracking of 

moving vehicles in RADAR and tracking of mobile phones in communications. 

In most seismic situations and other SONAR applications systems are designed 

for the reception of energy. The target, and hence the wavefield propagation parameters, 

are fixed. Thus, the direction of propagation is not known. By performing steering in 

these situations, we systematically vary delays to scan the wavefield which is fixed. The 

output response will produce a maximum when the trial angle corresponds to the angle of 

arrival of the wavefield. The above approach is used in this thesis where a shot is fired 

and the uniform linear array attempts to scan for the energy reflected by a point source 

(representing a massive sulfide body in the subsurface). 

The following discusses the effect of aperture length (array size) on the resolution 

of the array. As we will see, it is crucial in determining a scatterer's location or direction 

accurately. 

3.1.4 Array resolution 

Resolution describes the ability of a beamformer to determine a wave's direction of 

propagation and to distinguish between closely spaced sources or scatterers. The 

resolution is determined by the characteristics of the receiving array and the signal. The 

resolution properties of the conventional beamforning method are generally defmed in 

terms of the Rayleigh criterion (Stoica and Moses, 1997; Van Trees, 2002). According to 

this criterion, two waves are resolved when the peak of the array response of the first 

27 



wavefront falls on or outside the first zero of the array response due to the second 

wavefront. 

We will now look at the definition above in detail. Since the definition of 

resolution above describes the ability of the receiving array to localize a target or 

scatterer, it can be described in terms of wavenumber or angle of propagation relative to 

the array. The apparent wavenumber represents two kinds of information: direction of 

propagation and wavelength. Thus, propagation direction or wavelength, or both can 

localize a propagating wave. This localization can be interpreted as a form of 

wavenumber filtering by the delay-and-sum beamformer. The output response's mainlobe 

or mainbeam is equivalent to a wavenumber passband, the narrower this band the more 

selective the filter (Johnson and Dudgeon, 1993). Thus, the width of the mainlobe 

determines the resolution of the beamformer. 

Further insight into resolution is gained by describing it in terms of the angle of 

propagation. The apparent wavenumber is directly related to the angle of propagation, 

although nonlinearly. The angular span of the mainlobe is commonly measured at the 

half-power (-3dB) points or from null-to-null of the mainlobe (Manolakis et al., 2000). 

Figure 3.3 below shows a beampattem (spatial response of the beamformer) with these 

points marked. 

So far we have not discussed how the totaf number of receivers and aperture 

length affect the resolution of the array. In seismic exploration our natural desire is to 

have as many receivers or sources as possible or to cover as wide an area as possible. As 

we will see shortly the larger the size of the array the finer the resolution. 
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Figure 3.3 
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direction axis 

null po ints 

Example of a beampattern of a uniform linear array showing the -3dB and null-to-null 
points. 

As pointed out earlier, the resolution of a receiver array is determined by the size 

of the beamwidth which is measured at half-power or null-to-null points of the main 

beam. For a uniform linear array this is quoted in radians as (Manolakis et al., 2000) 

A. 
L1rp3dB ~ 0.89 L' (16) 

where, L = Md is the aperture length of the array. We note that if we increase L or 

equivalently if we increase the total number of receivers Min the array this angular span 

gets smaller thus resulting in a narrower beam. 

The null-to-null beamwidth denoted by (van Trees, 2002) 

~ =2.-i 
rp nn L ' (16) 
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Fif!ure 3.4 

Rayleigh Resolution 
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where L is as defined above provides us with a measure of the ability of the array to 

resolve two closely spaced scatterers. This quantity, known as the Rayleigh resolution 

limit (van Trees, 2002), shows that the directions of arrival of two wavefronts should 

differ by more than !lrp I 2 . Figure 3.4 above gives an example of this scenario. Figure 
nn 

3.4 (a) shows beam responses of two uncorrelated wavefronts at the same dominant 

frequency of 50 Hz and medium velocity of 4000 rn/s incident at angles 10 o and 15 o (or 

wavenumbers 0.0136 m- 1 and 0.0203 m- 1
) on a uniform linear array with 40 receivers and 

a spatial interval of 20 m. Figure 3.4 (b) shows beam responses of the same wavefronts 

but with incidents angles 10 ° and 14 o (or wavenumbers 0.0136 m- 1 and 0.0190 m-1
). In 

figure 3.4 (b) the limit of resolution is not satisfied since the wavefronts' directions of 

arrival differ by 4 °Which is less than the resolution limit of approximately 5.88 o of this 

system. The code, with theM-file name rayleigh_res.m, used to generate this example is 

found in Appendix A. 

One other important aspect to obtain a good approximation of the angles of arrival 

of incident energy is the grating lobes, which is the subject of the next topic. These are 

additional lobes surrounding the main beam. They can create spatial ambiguities as they 

look just like the main beam and make it difficult to pick the actual directions. 

3.1.5 Grating Lobes 

When an omni-directional seismic source radiates energy into the subsurface, a large 

amount of energy is lost into the grating lobe angle directions. The receiver array 

response is periodic with a period of 2n. Thus, the mainlobe is repeated at intervals of 
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Fbrure 3.5 
Arrav resoonse function for different element soacings. The receiver spacings are (a) )J 4. 
(b) A/2, (c) A. and (d) 2A.. Grating lobes occur ford> Y2. Aperture length is kept at L = 

JOO.A.. 

2n1t (where n = 0. ±1. ±2 .... ).These repeated lobes are known as grating lobes. They 

appear on the same side of the main lobe as the sidelobes discussed earlier. If the 

receivers sample the reflected energy inadequately (i.e .. spatially aliased). the 

beamformer will not be able to distinguish signals· appearing to arrive from these grating 

lobe directions from those arriving from the direction of interest. The appearance of these 

ambiguous lobes in the beamformer output simply indicates that spatial aliasing has taken 

place. In order to avoid this situation the receiver spacing should be chosen such that it is 
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less than or equal to half the operating wavelength (see section 2.3). If it is not possible to 

choose a separation that would guarantee no aliasing, angles at which these grating lobes 

occur can be calculated and avoided. Also, in some situations it is known that certain 

angles are improbable thus signals from those angles can be ignored. In the above 

example (figure 3.5) we illustrate how this phenomenon appears in the beamformer 

output. The direction of arrival of the signal is 20 o . But other lobes occur at -40 o , -10 o 

and 60 o if the spacing is greater than }.../2. In all the examples the array aperture is kept 

the same. The example is generated by using the MA TLAB® script grat_lbs.m shown in 

Appendix A. 

3.2 Description of the algorithm 

Using the above theoretical background, a MATLAB® code was written to carryout the 

objectives of this thesis. The program code center_css.m in appendix B, which is the 

main program for this thesis, initially defines parameters for the input data. Most of the 

command lines have a comment at the end giving more details about the command. The 

second part of the program gives parameters for windowing or segmenting the data. 

These parameters are dictated by the characteristics of the input data. The segmentation is 

made in such a way that it satisfies the planar wave criterion mentioned in section 2.1. 

The length of each segment should be less than the root of half the product of the depth 

and wavelength, i.e., I < ff . It should be emphasized here that in a real situation the 

depth is not known, which is one of the parameters we would be trying to determine from 
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the measurements. An alternative to making sure that the plane wave criterion is satisfied 

is to visually determine the flat portion of the diffraction hyperbola and then segment the 

hyperbola based on this approximation. 

The third part of the program opens the data file and arranges it into rows and 

columns representing time samples and receivers, respectively. It also counts the number 

of data points available. 

After opening and arranging the data the program calculates a theoretical 

diffraction moveout curve using either equation 18 or 19 depending on whether the 

source (note that the source in this thesis refers to the device that produces waves and not 

the target which reflects them) is coincident with the scatterer. The theoretical solution 

approximates the diffraction hyperbola appearing in the input data and it helps in 

segmenting the data. After calculating the theoretical solution, the segment aperture 

(which should be equal to l) is calculated and then applied to the data to effect 

segmentation. 

The above outlines the procedure followed by the program to prepare the data for 

beamforming. Each segment is processed separately. The beamforming section begins by 

bringing the data to zero mean to remove any de shift in the input data. A discrete Fourier 

transform is then applied to the data in each segment for frequency domain processing. 

The beam response is then calculated by steering the array towards possible directions 

within the ( -90 o, +90 °) interval. The steering is done using the exponential phase shift 

vector or the ARF shown in equation 6. The power in a particular direction is estimated 

by taking the complex dot product of the ARF (aT) and the data matrix (X) and then 
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Figure 3.6 
Flow diagram of program center_css.m. 
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summing the total energy over all receivers, i.e., B(k,rp) =sum[ Y(k,rp) 2 J. The results 

can then be displayed using a desired scale. This program uses a decibel (dB) down scale 

to display the results of the beamforming process. The direction of arrival of the signal is 

indicated by the location of the maxima on the power vs. wavenumber or angle plot. 

The above description of the source code is shown in the flow chart in figure 3.6. 

The source code is for a coincident source and scatterer. For other geometries, the input 

parameters as well as windowing parameters would need to be changed. The changes will 

be indicated in the next chapter where the performance of the beamformer is assessed. 

The results for each segment are displayed one at a time. The angles obtained from each 

segment are different from each other since the beamforming is done on different 

portions of the hyperbola. This allows us to project the angles back to a reflecting or 

diffracting point, hence locating the target. 

3.3 Summary 

In this chapter, we have covered some important aspects for practical delay-and-sum 

beamforming. The delay-and-sum beamforming can be performed in the time domain and 

the frequency domain. The frequency domain approach has an advantage over time 

domain implementations particularly when dealing with large volumes of data. In the 

frequency domain, the beamforming process can be carried out faster using the FFT. 

We have also described array steering as the process of maximizing the power of 

the beamformer output in the direction from which the energy is coming. It involves 
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systematically applying phase shifts to each receiver output, provided the propagating 

signal is narrowband and then beamforming on the whole array. The direction of arrival 

of energy of the signal is determined at the location of the main beam on the power vs. 

wavenumber or angle plot. 

The resolution of the beamformer is measured at half-power ( -3dB) points or from 

null-to-null of the main beam. It is controlled by the size of the array or the total number 

of receiving elements in the array. The larger the size of the array the tighter the beam 

width which implies a better resolution. 

Finally, there are some limitations on the choice of receiver spacing d. To 

completely avoid spatial aliasing or equivalently grating lobes in the beam power 

response, the receiver spacing should be set equal to or less than half the wavelength. 

Grating lobe directions can be calculated, in some situations, and be avoided. 

The algorithm which was used to carryout the objective of this thesis is presented. 

The code involves data preparation prior to beamforming. The data has to be segmented 

to avoid violating the planar wavefront criterion. Beamforming is then done on each 

segment to look for possible sources of energy. Each angle or direction from each 

segment provides a means of finding the location of the scatterer. 
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Chapter 4 

Evaluation Of The Beamformer 

In this chapter, we apply the concepts discussed in the previous chapters to synthetic 

data. The chapter explains how the data was generated and prepared for beamforming 

(section 4.1). The capability of the beamformer is assessed by evaluating a number of 

performance measures (section 4.2). These measures focus on the directivity and the 

response of the array under different conditions. First, we look at how well the 

beamformer can resolve angle of emergence of impinging wavefronts. In addition, we 

back-project the wave trajectories to assess how well they can localize a scatterer. The 

data is then subjected to different noise fields and the same procedure for angle 

resolution and scatterer localization is repeated. Next the data is decimated in the spatial 

domain and the same procedure is repeated. Finally, the performance of the beamformer 

is assessed in the presence of multiple scatterers. This establishes the spatial resolving 

power of the beamformer. 

4.1 Data preparation 

4.1.1 Generation of data 

Synthetic seismic data were generated using a second order finite-difference modeling 

algorithm implemented in Seismic Unix®. The scatterers were modeled as square-shaped 

geological blocks placed at a depth of 300m (fig. 4.1). A shot was placed directly 
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above the scatterer or at some offset on one side of the scatterer as depicted in figure 4.2 

(a) and (b). The diffraction hyperbolas generated have moveouts determined by the 

background velocity. These diffraction hyperbolas were captured by the linear array 

directly above the scatterers. Figure 4.3 shows diffraction traveltime curve for a 

source ~-<~~1•~------ x ___ .,...,, geophone 
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Figure 4.2 
Geometry of a source (a) coincident with the scatterer, and (b) offset from the scatterer. 
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coincident source and scatterer. Since the direct wave~ which arrives first at the receiver 

array, had higher amplitude than the diffractions, it was muted out to enhance 

visualization of the low energy diffraction. 

The number of traces generated was equivalent to the number of geophones in the 

array. The trace interval was varied from lm to lOrn and then 20m. Trace intervals other 

than lm involved decimation of data in the spatial domain. The waveform was sampled 

at O.Sms, and the dominant and the maximum frequencies of the waveform were set at 

50Hz and 100Hz, respectively to simulate realistic exploration data. The x-axis in the 

records (e.g., figure 4.3) represents the spatial dimension and they-axis represents the 

two-way travel time. The frequency content of the data is shown in figure 4.4 below. 

Figure 4.4 

Data Frequency response 
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41 

160 



4.1.2 Data segmentation 

To satisfy the plane wave assumption of the beamformer the diffraction must be 

segmented. In order to segment the data, the position of the apex of the diffraction 

moveout was noted. A theoretical curve governed by the geometry of the array and the 

background velocity was fitted to the diffraction hyperbola. An exact fitting of the 

hyperbola is not necessary; the theoretical curve only guides the segmenting program to 

which part of the data set to work on. For a coincident source and scatterer (fig. 4.2 (a)) 

where the depth to the diffracting point is much greater than the offset, i.e., where z >> x, 

the theoretical solution is given by (Sheriff and Geldart, 1995) 

(18) 

h 
22 · h 1 · f h h · d x

2 

· h w ere t 0 =- IS t e trave time o a geop one at t e source pomt an /).tn =- IS t e 
v 4w 

normal moveout. For a non-coincident source and scatterer Sheriff and Geldart (1995) 

gives the theoretical solution as 

(19) 

where a is the horizontal distance between the source and the diffracting point (fig. 4.2 
(b)). 

The segments' lengths were chosen in accordance with the planar wave criterion 

mentioned in section 2.1. For convenience, this criterion is stated again as follows; 

2(maximum dimension of the array) 2 

z> ~0 
wavelength 

where z is the depth. Comparing this equation with equation 1, this simply tells us that the 

length of each segment in the spatial dimension should be less than the radius of the 
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Fresnel zone. An alternative way of selecting the segment length is to visually determine 

from the moveout how many receivers in the array define the flat portion of it. 

Figure 4.5, from one of the experiments, shows a plot of the segmented data in the 

case where the source is coincident with the scatterer and with the following set of design 

parameters; 

Sample rate, /j.t = fs- 1 = 0.0005 s 
Dominant frequency,fn= 50 Hz 
Background velocity, v = 4000 mls 
Velocity of the scatterer, Vs = 7000 m/s 
Reflection coefficient, R = 0.43 
Depth, z =300m 
Number of receivers, M = 1000 
Number of time samples, N = 700 
Receiver spacing, d = 1 m 

The reflection coefficient R is the ratio of the reflected wave amplitude to the incident 

wave amplitude. In terms of acoustic impedance (pv), where pis the rock density and vis 

the compressional wave velocity, for normal incidence R is given by 

R=AI =p2v2-P1V1 

Ao P 2 V 2 + P 1 V 1 ' 

(21) 

where A 0 and A 1 represent displacement amplitudes of incident and reflected 

compressional waves and subscripts 1 and 2 represent first and second media, 

respectively. In the above set of design parameters, the massive sulfide deposit is 

assumed to have a density of 4.15 g/cm3 and the crystalline host rock is assumed to have 

a density of 2.92 g/cm3
. Thus, using the above design parameters, the flat portion of the 

hyperbola would be satisfied by a length not exceeding 109.5 mora maximum of 109 
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receivers in the array. In figure 4.5 the length was chosen as 50 m or 50 receivers. Since 

the uniform linear array for this figure contained 1 000 elements, the total number of 

segments was twenty. Figure 4.6 shows individual plots of the first, middle and last 

segments as we go from left to right on figure 4.5. 

4.2 Beamformer performance 

4.2.1 Angle estimation 

We will continue to restrict our attention to the uniform linear array (ULA) where the 

receivers are uniformly distributed over a horizontal plane surface. We start by looking at 

the situation where the source is coincident with the scatterer and they are both at the 

center of the array. After segmentation or windowing of the data, anN-point DFT was 

applied to each window for frequency domain processing. N in this evaluation of the 

beamformer represents the total number of time samples in a window or segment. As 

pointed out earlier, casting the data into the frequency domain has advantages over time 

domain processing. Frequency domain processing is less cumbersome than time domain 

processing particularly if the data set is very large. The sampling frequency Is does not 

affect beam steering directions. The frequency transformed data represented by equation 

13 has a beamforming equation as shown in equation 14. It should be noted that the DFT 

was applied only to the time dimension and not the space dimension. One critical 

assumption to note is that the receivers have the same signal term S(j), thus the output 

from each receiver is the same but phase-shifted by an amount determined by the 

location, rm = md sin qJ, of each receiver. Since the signal term is the same throughout all 
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the elements in the array, and is independent of the angle of direction, we will focus only 

on the direction vector a(k) = ejD.mk which appears on the right side of equation 14. Let 

· h. d. . (k) jk md h k 2nk!, sinlp . h us rewnte t IS 1rect10n vector as a = e x , w ere x = s 1st e 
N v 

horizontal wavenumber component of the propagating wavefront. The angular direction 

of propagation is related to the wavenumber by 

. -I( Nvkx J lp = sm . 
2nkfs 

(22) 

The frequency index k should not be confused with the wavenumber component kx. 

Using MATLAB® a uniform linear array with the following design parameters was 

analyzed: 

Sample rate, L1t = j/ = 0.0005 s 
Dominant frequency,fn =50 Hz 
Propagation velocity, v = 4000 m/s 
Depth, z =300m 
Number of receivers, M = 1000 
Number of time samples, N = 700 
Receiver spacing, d = 1 m 

The shot position was in the centre of the array and directly above the scatterer. The 

program code center_css.m, which is also the main program, is given in Appendix B. The 

data was segmented into 20 windows of size 50 traces by 200 time samples. Each 

segment was processed individually to determine the direction of propagation of the 

incident wavefront. Figure 4. 7 gives an example of the array response of the first segment 

that was shown earlier in figure 4.6. The beam power pattern or spectrum is plotted with 

a dB scale. The range of kx values falls within the Nyquist values- 0.5 and 0.5 m-1
. Since 
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Figure 4.7 
Normalized array response of the beamforming operation on the first segment consisting 
of 50 receivers and 200 time samples. The peak of the main lobe is located at 0. 06 m-1 or 
at an angle of 49.8°. 

the main beam spans a limited range of wavenumber values, the response is shown within 

a range of -0.2 and 0.2 m- 1
• 

Table 4.1 below shows incidence angles obtained from all the segments. The 

array responses of all segments are shown together in figure 4.8. Since the angles 

represent a direction vector for each segment along the diffiaction hyperbola, it was 

possible to project them back to the original scattering point. The following discussion 

explains this procedure. 
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Table 4.1: Incidence angles obtained from the data with a coincident source and 
scatterer. 

Segment 
kx (m-1

) q; (degrees) Number 
1 0.06 49.8131 
2 0.057 46.5309 
3 0.053 42.4399 
4 0.05 39.5402 
5 0.047 36.7570 
6 0.043 33.1951 
7 0.04 30.6169 
8 0.033 24.8452 
9 0.022 16.2669 
10 0.008 5.8462 
11 -0.008 -5.8462 
12 -0.022 -16.2669 
13 -0.03 -22.4559 
14 -0.039 -29.7729 
15 -0.042 -32.3277 
16 -0.045 -34.9567 
17 -0.05 -39.5402 
18 -0.053 -42.4399 
19 -0.056 -45.4807 
20 -0.06 -49.8131 
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4.2.2 Projection of angles to a point 

The main emphasis of this processing step is in assessing the performance of the 

algorithm to see how best it can be helpful in determining the location of the target in the 

subsurface. 

Examples 

a. Source and scatterer at the centre of the array 

The model used in this investigation was shown above in figure 4.1. The target was 

placed at a depth of 3 00 m in the middle of the array. Angles of incidence of the 

propagating wavefronts obtained from the segments were used together to trace back the 

origin of the wavefronts. Since the background medium had a constant velocity the rays 

were straight and thus it was possible to make linear projections back to a common point 

of intersection. The angles in table 4.1, obtained from the program center_ css.m were 

used for the projection. 

Using the relation z = x/ tan rp, where z is the depth, x the horizontal distance and 

X----+ 

receiver line 
z 

j 
(a) 

Figure 4.9: (a) 
Schematic used to calculate the raypaths. Incidence angles clockwise from the axis 
normal to the array were treated as negative and those anticlockwise were treated as 
positive. 
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q; is the angle of incidence (refer to figure 4.9 (a)), raypaths were calculated and plotted 

on horizontal distance versus depth plot (figure 4.9 (b)). These raypaths are expected to 

originate from a common point which represents the target. The intersection of every ray 

with other rays was noted and plotted in figure 4.1 0. There is some scatter in the position 

of the intersection points but they are concentrated at some area in the plot. Because of 

the statistics we expect the target to be somewhere within this area of concentration. 

Points that are far from this area of concentration would obviously introduce errors when 

computing a common intersection of all the points. Thus, some averaging methods were 

used that addressed this problem. The common intersection was found by taking the 

simple average of all points or employing the least-squares fit or using some weighted 

average that took account of the distance of a point from a presumed position within this 
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Figure 4.9: (b) 

Depth vs Horizontal distance 
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Raypaths from all segments projected back to a common point of origin. 

area of concentration of points. A simple average of all points gave a horizontal distance 

of 504 m and a depth of 415 m as a solution. This is shown in table 4.2. The least-squares 
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Figure 4.10 
Intersection points of raypaths with each other. 

Table 4.2: Location estimates for the scatterer with the source placed at the center of the 
array and directly above it. The scatterer position in the x- direction is 
measured relative to the position of the first receiver while that of the source 
is measured relative to the position of the scatterer. 

Actual Position Simple Least- Weighted average 
location of the average squares 

Starting Weighted of the source solution solution 
scatterer location solution 

Horizontal 
distancex 500 0 504 501 509 502 

(m) 
Depthz 

300 0 415 394 340 368 
(m) 

fit found the common intersection by measuring the square root of the mean of the 

squares of the individual errors. The least-squares method included in Microsoft's Excel® 

spreadsheet program was used to determine the solution. From the least-squares method 
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the horizontal distance and the depth of the common intersection were 501 m and 394m, 

respectively. The distance-weighting scheme calculated the common point of intersection 

by down weighting points according to how far they were from a starting point and then 

taking the average. Points that are far away from this presumed point receive lowest 

weighting; this effectively reduces the error that may be introduced by these points. A 

point, (509, 340)t in meters, within the area of concentration was chosen as a starting 

point. Values closest to this presumed point of intersection were allocated higher weights. 

To make the weighting simple, the closest point was weighted 1 and the farthest point 

received the least weight. A Gaussian function represented by 

f(r) = ae (23) 

1 
where a = ..J , b = 2o- 2

, a- is the standard deviation and the mean of the distribution 
2no- 2 

is zero, was used to calculate the weights. r represented the distance between the starting 

location and any intersection point. The weights used for the model are shown in 

graphical form in figure 4.11. The common point of intersection using this method was 

found to be (501.73, 367.89), i.e., a horizontal distance of 501.73 m and a depth of 

367.89 m. The results displayed in figure 4.10 are shown again in figure 4.12 but with the 

solutions from the simple average, the least-squares method and the distance-weighting 

scheme included. The real target location was at a horizontal distance of 500 m and a 

tThe choice of the initial point in the weighted averaging scheme does not assume apriori knowledge of the 
location of the scatterer. The point is chosen at random from a concentration of intersection points. 
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Figure 4.11 
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Intersection points of raypaths with the solutions from simple average (SAv ), weighted 
average (WAv) and least-squares (LSQ) methods estimating the position of the target. 
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depth of 3 00 m. Although they could not pinpoint the exact location of the target, both 

the least-squares and the weighted average methods improved on the result obtained by 

simply averaging the points. The least-squares solution overestimated the depth more 

than the weighted average solution. Thus the weighted average method was used in 

subsequent analysis of other data. One of the reasons that could explain the failure to 

exactly pinpoint the target location was the way peaks of the mainlobe in the array 

responses were picked. 

An automated program for picking incidence angles corresponding to the peak of 

the mainlobe was not developed or included in the algorithm. Such an algorithm might 

introduce bias in the estimate of position of the mainlobe. The program would pick the 

highest value regardless of where it lies on the beam. The highest point on the beam 

power pattern is expected to lie in the middle of the mainlobe. The following example 

(fig 4.13) indicates how difficult it would be to choose this point. Because of this 

problem, handpicking the position of the mainlobe which focused at the centre was used. 

? 

(a) (b) 

Figure 4.13 
Schematic showing bias in the estimation of the position of the mainlobe. The peak of the 
beam should be in the middle of the mainlobe. 
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b. Source offset from the scatterer which is at the center of the array 

The model used in this analysis is shown in figure 4.14 (a). The scatterer is located at a 

depth of 300 m as in the above investigation. The source is put at a location 200 m away 

from a point directly above the scatterer. All other design parameters are the same as in 

the model used in example a above. A few minor changes were introduced to the 

program center_css.m and it was renamed soffset_nc.m. This new program was used in 

this investigation. The changes made are shown in Appendix C. Figure 4.14 (b) shows 

diffraction traveltime curve for this model (i.e., model in fig. 4.14 (a)). Note again that 

part of the direct wave has been muted out to enhance visualization of the low energy 

diffraction hyperbola. The array responses are shown in figure 4.15. The incidence 

angles corresponding to the location of the mainlobes in each segment are displayed in 

table 4.3. As in the above model, the incidence angles were used together to generate 

raypaths (fig. 4.16) that were back-projected to their origin. A plot was then generated of 

T 
300m 

_l 

Figure 4.14: (a) 

lt-~~•r------- 1000 m -------i•I0-!1 
r- 200 m ..j 
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Geological model showing the source offset from the scatterer. 
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Table 4.3: Incidence angles obtained from the data with source offset from the 
scatterer. The scatterer is at the center of the array. 

Segment 
number kx rp (degrees) 

1 0.0573 46.85004 
2 0.0569 46.42505 
3 0.0531 42.53887 
4 0.0474 37.1221 
5 0.0449 34.86778 
6 0.04 30.61694 
7 0.0367 27.85781 
8 0.0326 24.52411 
9 0.0244 18.09964 
10 0.0163 11.97811 
11 0 0 
12 -0.0153 -11.2334 
13 -0.0244 -18.0996 
14 -0.034 -25.6518 
15 -0.0406 -31.1269 
16 -0.0486 -38.2281 
17 -0.0531 -42.5389 
18 -0.0579 -47.4939 
19 -0.0612 -51.1895 
20 -0.0653 -56.2454 
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Figure 4.14: (b) 
Diffraction traveltime curve for a source offset from a scatterer, i.e. , for the model in figure 4.14 (a). 
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I 

I 

-0 . 1 - - - - - - -:- - - - - - -
seg 7 : 

-0.2 
-a.2 0 0.2 

I 
I 
I 

-0.1 - - - - - - -1- - - - - - -

seg 11 I 
I 

I 

-0.2 
-a.2 0 0.2 

seg 15 
-0.1 ----

-0.2 
-a.2 0 0.2 

seg 19 
-0.1 --- -

-0.2 
-0.2 0 0.2 

I 

I 

-0 1 -- -- ---I-- ---- -
• I 

seg 8 : 
-0.2 

-a.2 0 0.2 

-0.1 ----
seg 12 

-0.2 
-a.2 0 0.2 

seg 16 

-0.1 - ---

-0.2 
-a.2 0 0.2 

seg 20 
-0.1 --- -

-0.2 
-0.2 0 0.2 



0 
100 

200 
300 

E' 
'--

400 

:S 500 
0.. 
~ 600 

700 
800 
900 

1000 

Figure 4.16 

Depth vs hozizontal distance 

horizontal distance (m) 

J-- seg 1 
1-- seg2 

seg 3 
-- seg4 
-- seg5 
--seg6 
--seg7 
--seg8 
-- seg9 

seg 10 
seg 11 
seg 12 
seg 13 
seg 14 

-- seg 15 
seg 16 

-- seg 17 
--seg 18 
-- seg 19 

seg 20 

Raypaths from data with source offiet from scatterer projected back to a common point 
of origin. 

0 
100 

200 

--... 300 

_§. 400 

:S 500 

at 600 
""0 700 

800 
900 

1000 

Figure 4.17 

Intersections 

horizontal distance (m) 
0 1 00 200 300 400 500 600 700 800 900 1000 

;,. •.. 
··~~ 

.,1 ·t"· .,. 
-:.. ,. . 

" . . . 

• intersections 

• WAv 

& SAv 

Intersection points of raypaths with the solutions from simple average (SAv) and 
weighted average (WAv) methods estimating the position of the target. 

61 



Table 4.4: Location estimates for the scatterer at the center of array with the source 
offset 200 m from a point directly above it. The scatterer 's horizontal distance 
is measured with respect to the source position. 

Actual Position Simple Weighted average 
location of the average 
of the source solution Starting Weighted 

scatterer location solution 

Horizontal 
distance x 200 300 245 177 220 

(m) 
Depthz 

300 0 410 370 382 
(m) 

all possible intersections among the raypaths displayed in figure 4.17. The position of the 

target was first estimated by simply taking the average of all intersections. This position 

was computed as a horizontal distance of 245 m from the source position toward the 

center of the array and a depth of 410 m. An improvement on this point was obtained by 

taking a weighted average of all the intersections using an initial location of 177 m from 

the source position toward the center of the array and a depth of370 m. Once again, the 

weighted average was performed by assigning least weights to points furthest from the 

starting point. The closest point was assigned a value of 1. The starting point was chosen 

from the area where points seemed to be concentrated. A location of 220 m and a depth 

3 82 m was obtained using the weighted average technique. Changing the starting value 

changes the output very slightly. For example, instead of using 177m and a depth of370 

m, one could use a distance of 232 m from the point directly above the scatterer and a 

depth of 298 m to get an output of 220 m and a depth of 3 78 m. Figure 4.17 also displays 
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the position of the scatterer estimated by simply taking the average of all intersections 

and by using a weighted average. The results of this investigation are summarized in 

table 4.4. 

An observation made is that the results in the above two examples demonstrate 

that the beamformer' s ability to pinpoint the location of the scatterer is degraded as the 

source moves away from the scatterer. With this simple beamformer, it is difficult to tell 

exactly where the source (generator of seismic energy) is located. Thus, one has to know 

the source position which is the case in most seismic explorations. The beamformer 

focuses only on the diffraction hyperbola not the entire wavefield. 

c. Source and scatterer coincident and at the end of the array 

Another model, displayed in figure 4.18, was investigated where the source and the 

scatterer were coincident and at the other end of the array. The scatterer was at a depth of 

300 m. Data were generated in Seismic Unix® using the following design parameters: 

I· 1000 m l- 1 

.......... source M. 

T I 300 1l1 

j_ rt>cci\'cr line 

• modd 

Figure 4.18 
A geometry showing coincident source and scatterer at the other end of the array. 
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Table 4.5: Incidence angles obtained from the data with source and scatter coincident 
and at one end of the array. 

Segment 
number kx cp (degrees) 

1 -0.003 -2.18907 
2 -0.008 -5.84624 

3 -0.016 -11.7545 
4 -0.02 -14.7527 

5 -0.029 -21.6687 

6 -0.033 -24.8453 
7 -0.044 -34.0714 
8 -0.045 -34.9567 
9 -0.05 -39.5402 
10 -0.055 -44.4496 
11 -0.053 -42.4399 
12 -0.065 -55.8536 
13 -0.065 -55.8536 
14 -0.065 -55.8536 
15 -0.065 -55.8536 
16 -0.069 -61.4662 
17 -0.069 -61.4662 
18 -0.065 -55.8536 
19 -0.061 -50.9572 
20 -0.069 -61.4662 
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Figure 4.22 
Intersection points of raypaths with the solutions from simple average (SAv) and 
weighted average (WAv) methods estimating the position of the target. 
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Sample rate, Lit = fs- 1 = 0.0005 s 
Dominant frequency,fn =50 Hz 
Propagation velocity, v = 4000 m/s 
Depth, z =300m 
Number of receivers, M = 1000 
Number of time samples, N = 11 00 
Receiver spacing, d = 1 m 

Figure 4.19 shows the data generated using the above design parameters; the figure also 

shows how the diffraction hyperbola was segmented. The goal of using the theoretical 

curve was not to match it exactly to the diffraction curve generated but it was only used 

as a guide for the segmentation process. Twenty segments of size 50 receivers by 150 

time samples were generated. The segments were then prepared for beamforming and 

then run through the beamforming procedure. The main program, center_scc.m, was 

slightly modified to create a new one, end_css.m, for this investigation. The minor 

changes made are shown in Appendix C. Figure 4.20 shows array responses obtained 

from the segments generated from the model. These segments were beamformed 

individually to get incidence angles of the incoming wavefront. The incidence angles 

corresponding to the mainlobe in each segment are shown in table 4.5. The negative sign 

in front of the incident angles indicate that the wavefront arrives at the array from the 

southwest quadrant as illustrated in figure 2.6 (signal b). A ray diagram was immediately 

generated using the incidence angles in table 4.5. The raypaths are displayed in figure 

4.21. A careful observation indicates that segments close to the source do intersect while 

those that are furthest away from the source, e.g., the last three segments do not. Looking 

at figure 4.19 above one could understand why this is the case. These segments occupy 

the widest aperture (close to sixty degrees) and they don't have a good resolution. The 
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intersections among the segments are shown in figure 4.22. A simple average of the 

intersection points estimated the location of the scatterer at a horizontal distance x = 93 m 

and a depth z = 405 m. This position is shown in figure 4.22 by a red triangle. A weighted 

average was also calculated to estimate the location of the scatterer using an initial point 

of 0 m from the source and a depth of 400 m. The estimated location was determined as 

60 m from the source and a depth of 421 m. The weighted average technique 

overestimated the depth of the scatterer more than the simple average method, but it 

brought the horizontal distance closer to the location of the scatterer. Table 4.6 

summarizes the main results obtained using the model in figure 4.18. 

Table 4.6: Location estimates for the scatterer coincident with the source and at one end 
of the array. 

Actual Position Simple Weighted average 
location of the average 

Starting Weighted of the source solution 
scatterer location solution 

Horizontal 
distance x 0 0 93 12 60 

(m) 
Depthz 

300 0 405 200 421 
(m) 

d. Source at the center and scatterer at one end of the array 

In this example the source was placed at the center of the array and the scatterer was 

placed directly below the first receiver in the array and at a depth of 300m. The geometry 

of this configuration is displayed in figure 4.23. The same design parameters as in 
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Figure 4.23 
The geometry of the source at the center and the scatterer at one end of the array. 

Table 4. 7: Incidence angles obtained from the data with source at the center and the 
scatterer at one end of the array. 

Segment 
number kx qJ (degrees) 

1 0 0 
2 -0.008 -5.84624 
3 -0.02 -14.7527 
4 -0.029 -21.6687 
5 -0.037 -28.1056 
6 -0.041 -31.4684 
7 -0.045 -34.9567 
8 -0.05 -39.5402 
9 -0.05 -39.5402 
10 -0.045 -34.9567 
11 -0.05 -39.5402 
12 -0.05 -39.5402 
13 -0.052 -41.459 
14 -0.045 -34.9567 
15 -0.05 -39.5402 
16 -0.057 -46 .531 
17 -0.052 -41.459 
18 -0.053 -42.4399 
19 -0.055 -44.4496 
20 -0.057 -46.531 
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Figure 4.24 
Diffraction traveltime curve for a source at the center and scatterer at one end of the array. 
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Figure 4.25: Array responses from scenter _nc.m 
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example c above were used to generate the dat~ i.e., 

Sample rate, L1t = f/ = 0.0005 s 
Dominant frequency ,f0 = 50 Hz 
Propagation velocity, v = 4000 m/s 
Depth, z =300m 
Number of receivers, M= 1000 
Number oftime samples, N= 1100 
Receiver spacing, d = 1 m 

The data was generated using Seismic Unix® data processing software. Figure 4.24 shows 

the data record generated. The figure also shows how the segmentation was done. The 

hyperbola was segmented into twenty segments of size 50 receivers by 150 time samples. 

Each segment was prepared for beamforming and the beamforming process was carried 

out on each segment individually. Program scenter_nc.m, created after making a few 

changes to the main program center_ css.m, was used for this investigation. The changes 
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made are recorded in Appendix C. Figure 4.25 shows array responses of the segments 

plotted together. Incidence angles corresponding to the mainlobe in each segment were 

determined and recorded in table 4.7. These angles of approach of the diffraction 

wavefront were then used to construct a ray diagram which is shown in figure 4.26. As 

can be seen in the figure the first six segments do intersect. The later segments which 

contain part of the hyperbola at very wide angles do not intersect with the first segments 

or among themselves. Later segments are almost parallel to each other and it is difficult 

to use them to locate the scatterer. 

The intersections among the segments are plotted in figure 4.27. It can be seen 

clearly here that the later segments do not seem to intersect with the first six segments 

Figure 4.27 
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which means they cannot locate the scatterer very well. They have almost the same angle 

of incidence and hence are parallel. To be able to locate the scatterer all segments should 

have different directions of arrival. The simple average for this example was determined 



to be 129m away from a point directly above the scatterer and a depth of 542 m while 

the weighted average was found to be 50 m away and at a depth of 396 musing initial 

position of 12 m away from a point directly above the scatterer and a depth of 200 m 

(refer to table 4.8). The weighted average improved on the simple average but the depth 

was still overestimated. 

Table 4.8: Location estimates for the scatterer at one end of the array and the source at 
the center of the array. The source position in the x-direction is measured 
relative to that of the scatterer. 

Actual Position Simple Weighted average 
location of the average 
of the source solution Starting Weighted 

scatterer location solution 

Horizontal 
distance x 0 500 129 12 50 

(m) 
Depthz 

300 0 542 200 396 
(m) 

4.2.3 Noise analysis 

This section investigates the response of the beamformer to different noise environments. 

The same data which was used in example a (section 4.2.2) for the determination of 

incidence angles was subjected to signal-to-noise ratios (SNR's) of0.5, 1, 2, 3, 4, 5, 6, 

10, 15 and 20. The noise simulation was performed in Seismic Unix® processing software 

using a program called SUADDNOISE. This program computes the noise using the value 

of the absolute maximum for the dataset as a whole. There is currently no trace-by-trace 
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noise computation option in the software package. The output is computed by adding a 

scaled noise with a Gaussian probability distribution to the signal, i.e., 

. . abs max(sig) I J2 . 
output = szg + scale x nozse, where scale = . F1gure 4.28 

SNR.j energy_ per_ sample 

shows the diffraction travel time curve, for the data set shown previously in figure 4.3, 

with different noise simulations. At an SNR of 0.5, the diffraction hyperbola is not visible 

but is clearly seen from an SNR of 2 upwards. 

All the data sets were then processed the same way as the original output data in 

example a (section 4.2.2). Each output was segmented and then beamformed. The main 

program, center_css.m, was used in this investigation. No changes were made except for 

the input data. Different data with various signal-to-noise ratios were used. It should be 

stressed again here that narrowband beamforming was performed on each segment since 

the data was sufficiently narrowband. An angle of incidence was determined from the 

wavenumber value that corresponded to the maximum power of the array response of 

each segment. The angles were then used together to determine a common point of origin 

of the wavefronts in each data set. This was carried out by generating raypaths for each 

individual segment. Intersections among raypaths were determined as well as the 

common point of intersection which was determined using a distance-weighting scheme 

already discussed in section 4.2.2. Beam power patterns obtained from data sets that had 

an SNR of less than 5 (i.e., those with SNR of 4, 3, and 2) had many maxima in their 

beam power responses. Thus, it was difficult to identify the mainlobe' s position from 

these data sets. An example of this situation is displayed in figure 4.29 which are the 
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Figure 4.28 
Noise simulations for a coincident source and scatterer. (a) shows the output from the 
original data set and the remaining diagrams indicate outputs with signal-to-noise (SNR) 
(b) 0.5, (c) 2, (d) 6, (e) 10 and(/) 20. The diffraction hyperbola is not visible at SNR of 
0. 5 and starts being visible at SNR of 2. 



beam power responses of all segments from the data set with SNR of 4. It was relatively 

easy to determine the position of the mainlobe in the data sets which had an SNR equals 

to or greater than 5. Figure 4.30 shows the intersection points among raypaths and the 

common point of intersection obtained using the distance-weighting scheme for the data 

set with the SNR of 5. Although there was some scatter in the distribution of points, it 

was possible to estimate the depth and location of the target with respect to the horizontal 

axis of the array. By taking a simple average of the intersection points the depth of the 

target is estimated at about 3 71 m and at a horizontal distance of 511 m from the first 

receiver. Using a distance-weighting scheme with the starting point located at 488 m 

from the first receiver and at a depth of 33 8 m, the location of the scatterer is estimated at 

a 343 m depth and a distance of about 501 m away from the first receiver. Figure 4.31 

(a), (b), (c) and (d) show results from data sets with signal-to-noise ratios 6, 10, 15 and 

20, respectively. Table 4.9 shows the results from these data sets. The results show that 

with the noise added to the input data the beamformer still is able approximate the 

location of the scatterer to a few meters. The actual location as shown in the model for 

example a in section 4.2.2 is 500 m (middle of the array) and a 300m depth. To improve 

on the solution using the simple average a weighted solution has been used and it has 

shown to improve the depth estimates significantly. The results also show that as the 

SNR improved the intersections became a little tighter or close together. But the depth 

estimate became poorer as we progress to the highest SNR. The tails that appear in the 

distribution of the intersection points have added some error into the results. The 

Gaussian weighting with zero mean was used to reduce this error. Although, the 
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Table 4.9: Location estimates of the scatterer from data with signal-to-noise ratios 6, 10, 
15 and 20. x represents horizontal distance from the first receiver and z 
represents the depth. 

Simple Weighted Average 
Average 

starting weighted 

(m) 
location (m) solution (m) 

X z X z X z 

SNR6 505 383 524 305 506 329 

SNR 10 501 374 501 291 497 332 

SNR 15 502 379 504 303 498 347 

SNR20 504 391 502 308 502 352 

weighting has helped reduce the error significantly some error still remains. One error 

that might have contributed significantly to the results was the handpicking of the 

incident angles. As has already been explained in section 4.2.2, letting the program pick 

the peaks would have introduced bias in the estimates of the angles of arrival. The 

program could pick a peak regardless of where it lies with respect to the center of the 

mainlobe. 

4.2.4 Decimation in space 

The performance of the beamformer was also tested by using data decimated in space. 

The process of decimation involved killing every second trace, second and third trace, 

etc., in the data set. The muting was followed by casting the data into the frequency 

domain and then padding the data with a vector of(D-1) zeros, where Dis the decimation 

79 



Beam patterns of all segments from coinc_ssSN4_all 

0 o o o~--------~ 

-10 -10 -10 -
I 

-20 

-30 

-20 
seg 2 -30 L...-__ .........._ __ .....J 

-20 -------:---- - --
seg 3 1 -30 .___ __ .....__ __ __, 

-20 
seg 4 -30 L...-__ .........._ __ __, 

·8.2 0 0.2 ·8·,.....2 __ o __ __,o.2 -B·.---2 __ o __ __,o.2 B·,.....2 --o __ __,o.2 

-10 - -10 -10 -10 
I I I 

-20 -------:-------
seg 5 1 

-30 '-----'----.....J 

-20 -- ----:----- -
seg 6 1 -30 L...-__ .........._ __ .....J 

20 -- - ---_I_ - -----• I 

seg 7 1 -30 .___ __ .....__ __ __, 
-20 ------ -:-------

seg 8 1 -30 L...-__ .........._ __ __, 

B·2 o o.2 -~ . 2 0 0.2 -~ .,......2 __ o-_......,0.2 -~ . 2 0 0.2 

-10 -10 -10 -10 
I I I 

-20 
_______ I _______ 

-20 
_______ I _______ 

-20 - - - - - - _I_ - - - - - - -20 -------~-------I seg 10 I seg 11 I I 
OQ seg 9 seg 12 0 I I I I 

-30 -30 -30 -30 
·8.2 0 0.2 ·8.2 0 0.2 B·2 0 0.2 -8.2 0 0.2 

-10 -10 -10 -10 
I I I I 

-20 I -20 I -20 I -20 I ----- --~--- --- - -------~------- -------~----- - -------~-------

seg 13 I seg 14 I seg 15 I seg 16 I 

-30 -30 -30 -30 
·8.2 0 0.2 B·2 0 0.2 B·2 0 0.2 ·8.2 0 0.2 

-10 -10 - -10 
I I 

-20 - - - - - - _I_ - - - - - - -20 -20 -20 -------~-------
seg 17 

I 

seg 18 seg 19 seg 20 
I 

I I 

-30 -30 -30 -30 
-0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2 

Figure 4.29: Array responses from coinc_ssSN4_all.m 
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Intersection points of raypaths with the simple average (SAv) solution of (511 m, 3 71 m) 
and the weighted average solution (WAv) with coordinates (501 m, 343m) for the data 
set with SNR of 5. 
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Results from the data set with SNR of 6. The SAv solution is (505 m, 383 m) while that 
from WAv is (506 m, 329m). The WAv has significantly improved the depth estimate. 
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Results from the data set with SNR of 10. The SAv solution is (501 m, 374m) while that 
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Figure 4.31: (c) 
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• intersections 

• WAv 

• SAv 

Results from the data set with SNR of20. The SAv solution is (504 m, 391m) while that 
from WAv is (502 m, 352m). 

factor. Decimation reduces the aperture of the array and hence widens the beam output 

(see section 3.1.4). To counter this, interpolation by a factor ofD was then used. This 

interpolation process was performed in MA TLAB® using a function called interpft 

which performed 1-D FFT interpolation along the spatial dimension. The data was then 

transformed back to the time domain with the same number of samples as in the original 

data set. Maintaining the same number of samples as in the original data set ensured that 

a desired beam steering resolution was achieved. This, however, does not necessarily 

improve precise estimation of the angle of emergence of the wavefronts. 

A decimation factor of 1 0 (i.e., keeping every 1Oth trace and zeroing the other 

nine) was first tried on the original data set that was shown in figure 4.3. Figure 4.32 
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Figure 4.32 
The result of decimating the data. The bottom panel (b) was resampled by keeping every 
tenth trace and zeroing the other nine. Trace spacing in the top (a) panel is 1 m while in 
the bottom one it is 10 m. 
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Figure 4.33 
The procedure for determining the position of the target using decimated data. The 
decimated data is segmented, transformed to the Fourier domain and transformed back 
with more points. The resulting output is then beamformed to produce incidence angles 
which are then used to find the position of the target. 
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Intersection points of raypaths generated from data decimated with a factor of 10. The 
target has coordinates (502 m, 420 m) and (499 m, 348m) from SAv and WAv, 
respectively. 

shows the two data sets placed side by side. It is not immediately obvious to see that 

some of the traces have been omitted in figure 4.32 (b) because of the nature of the plot. 

But a closer look at it reveals some traces have been muted. The procedure followed 

before (i.e., segmentation, Fourier transformation and then beamforming) was used in 
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addition to interpolation. The program code, center_cssDecFJO.m, for the process is 

shown in Appendix C. The procedure for finding angles of incidence was the 

same as before. 

After finding the angles they were then projected back to a common point which 

would indicate the probable position of the target. Figure 4.33 shows in a flow diagram 

the procedure taken to find the probable position of the target. Figure 4.34 shows results 

obtained from the data decimated with a factor of 10. The results indicate the target has a 

horizontal distance of 499 m away from the first receiver and a depth of 348 m which are 

very close to that of the original data set of 501 m and 364m. This indicates that with 

decimated data which has the same number of points as the original data set, the 

beamformer' s performance is satisfactory. The original data set's results are used as a 

comparison even though they themselves were not accurate enough to pinpoint the actual 

position of the target. 

Another test was done on a data set with a decimation factor of 20. The original 

and decimated data sets are shown in figure 4.35 for comparison. One can see clearly 

now because of the jagged nature of the diffraction hyperbola that some traces have been 

killed in the panel on the right. The procedure in figure 4.35 was then followed to find the 

incidence angles which were later used to locate the target. The results from the data set 

decimated with a factor of 20 are shown in figure 4.36. The processing results indicate a 

probable horizontal distance of 504 m away from the first receiver and a depth of 359m. 

Compared with the original data's results, this is a slight improvement particularly in the 
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depth estimate. The original data set weighted average solution was a horizontal distance 

of501 m and a depth of364 m. Table 4.10 is a summary ofthese results. 

Table 4.10: Location estimates from data decimated with factors of 10 and 20. The 
source is located at the center of the array. Like in section 4. 2. 2, the 
scatterer position is measured relative to the first receiver in the array 
while that of the source is measured relative to that of the scatterer. 

Location Position Simple Weighted average 
of the of the average 

scatterer source solution Starting Weighted 

from the location solution 

original 
data set 

501 0 502 480 499 
Decimation 
factor of 10 

364 0 420 200 348 

501 0 504 505 504 
Decimation 
factor of20 

364 0 403 306 359 

4.2.5 Location of more than one scatterer 

The beamformer was also assessed on its ability to "see" two wavefronts impinging on 

the array from different directions. The wavefronts should satisfy the Rayleigh criterion 

for them to be resolved by the receiving array. Recalling section 3 .1.4, the wavefronts' 
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directions of arrival should differ by more than fj,rp I 2 . The targets or scatterers which 
nn 

are the sources of the wavefronts should at least be one Fresnel radius apart. 

Two similar blocks of 60 x 50m2 each were placed at a depth of 300m. The receiver 

array had the following design parameters; Ltt = j/ = 0.0005 s, /d =50 Hz, v = 4000 m/s, 

z =300m, number of receivers= 1000 and receiver spacing= 1m. Since the dominant 

frequency of the waveform was 50 Hz, the Fresnel zone radius was calculated as 116.19 

m. Thus, the models were placed 300 m apart along the axis of the array. The first 

scatterer was placed at 325.5 m along the x-axis from the first receiver and the source 

was placed between them directly above. ·Figure 4.37 shows the geometry of this 

situation. Using this model, synthetic data was generated using Seismic Unix™ and the 

diffraction hyperbolas can be seen in figure 4.38. 

A new program, twoscat_rm.m, was created after making a few modifications to 

the main program, center_css.m. The minor changes made are shown in Appendix C. 

Figure 4.39 gives three examples of segments obtained from the data set shown in figure 

4.38. The two wavefronts are clearly shown. Segments 1 and 20 are on the opposite ends 

of the diffraction hyperbola. We expect the incidence angles of the two wavefronts to be 

almost the same making them hard to be picked up by the beamformer. The beamformers 

response should indicate a single mainlobe. This is indeed shown in figure 4.40 (a) and 

(c). The eleventh segment which contains the two wavefronts at their maximum angular 

separation does not show two distinct peaks even though the geometry satisfied the 

Fresnel zone limitation. The angles may have been too close for the conventional 

beamformer to resolve them. 
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Figure 4.35 
Decimation of the original data. The right panel was resampled by keeping every 
twentieth trace and zeroing the other nineteen. The resulting trace space is 20 m. 
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Figure 4.37 
Geometry of two similar geological models representing adjacent massive sulfide 
deposits. 
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Diffraction travel time curves for adjacent scatterers or deposits. The scatterers are 300m apart which is more than a 
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Figure 4.39 
(a) The first segment showing two 

wavefronts approaching the receiver 
array. The two waves are arriving at 
almost the same angle. 

(b) The eleventh segment showing the 
the point where the two wavefronts 
intersect. This is where there is 
maximum separation between their 
angles of incidence. 

(c) The twentieth segment showing the 
two wavefronts almost parallel to 
each other arriving at the receiver 
array. 
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Figure 4.40 
Location of two scatterers. 
(a) Beam power response of the first 

segment. Since the two wavefronts 
are almost parallel, the beamformer 
is not able to resolve them. 

(b) Beam power response of the eleventh 
segment. Although, the two wavefronts 
have a maximum separation between 
their angles of arrival, the beamformer 
could not resolve them. 

(c) The wavefronts are almost parallel to 
each other as in (a) above, thus the 
beamformer "sees" them as one thing. 
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Figure 4.41 
(a) Segment 17 showing two distinct peaks 

marked 1 and 2. 

(b) The two wavefronts can still be picked 
by the beamformer in segment 18. 

(c) The two wavefronts are also 
resolved in segment 19 . 

(d) The wavefronts are still resolved in 
segment 20. 



The source was moved to a distance of 300m from the first receiver and the experiment 

was repeated with the same program as above, but for convenience it was given a new 

name, twoscatNC_rm, with some few changes as shown in Appendix C. Figure 4.41 

shows the beam power responses from all the segments. Two peaks appear at segments 

17, 18, 19 and 20. This shows the presence of two waves impinging on the array. The 

beamformer has been able to identify two wavefronts approaching the array from 

different angles. This result indicates that the beamformer can only resolve the two waves 

if the source is not directly above the scatterers. 

4.3 Summary 

This chapter has assessed the performance of the conventional beamformer on a uniform 

linear array (ULA) in view of the background theory presented in chapters 1, 2, and 3. 

A procedure for generating and preparing the data for the beamforming process was 

outlined in section 4.1. Synthetic seismic data were generated in Seismic Unix® by 

solving the scalar wave equation using a second order finite-difference method. The data 

were generated using a dominant frequency of 50 Hz which made it sufficiently 

narrowband for it to be processed using narrowband techniques discussed in chapters 2 

and 3. Segmentation of the whole hyperbolic diffraction from the data sets generated was 

done in accordance with the planar wave criterion mentioned in section 2.1. After 

segmentation the data was then ready for beamforming. 

Section 4.2 discusses the capability of the beamformer by evaluating a number of 

performance measures like angle estimation, how well it can locate one or more targets, 
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response of the array in the presence of noise and effect of decimating the data. Incidence 

angles corresponding to the mainlobe in each segment were obtained. These angles 

represented the direction vector for each segment and thus were back-projected to a 

common location which represented the probable location of the scatterer. The 

beamformers' ability to pinpoint the location of the target was shown in four model 

examples. In all the models, the intersection points of back-projected raypaths was a bit 

scattered and thus a distance-weighting scheme had to be used to reduce the errors 

introduced by points far away from the area of concentration. The results demonstrated 

that after using a distance-weighting scheme the beamformer could satisfactorily estimate 

the location of the scatterer to within a few meters of the actual location. It was also 

established from the results that as the source moves to the other end of the receiver array 

beamformer segments far away from the source lose resolution and cannot be relied on in 

determining the location of the scatterer. 

The chapter has also shown that in a noise environment the beamformer performs well 

within its limitations. One striking observation is that the beamformer could not produce 

any meaningful results when the signal-to-noise ratio was less than 5. The signal-to-noise 

ratios (SNR's) used were the ones as defined in Seismic Unix®. Seismic Unix® computes 

the noise using the value of the absolute maximum for the dataset as a whole. A different 

software package may compute SNR's trace-by-trace. 

The beamformer was also tested on decimated data, but the data had to be interpolated 

to have enough resolution for picking the angle of arrival of the wavefronts. The 

beamformer's performance was satisfactory within its limitations. 

96 



The beamformer's ability to locate two scatterers was assessed in 4.2.5. Two scatterers 

were placed more than a Fresnel zone apart with the source placed at two different 

locations, one at the middle of the receiver array and the other at 300m away from the 

first receiver. The results indicate that the beamformer is only able to detect the two 

scatterers when the source is not at a point directly between them. The presence of the 

two scatterers was shown by two peaks in the array responses of a few segments of the 

diffraction hyperbola. 
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Chapter 5 

Thesis Summary 

5.1 Conclusions 

An important issue in this thesis was the potential of using seismic beamforming to locate 

mineral deposits in a cost-effective manner. The decision to use this technique follows 

the idea that mineral deposits particularly massive sulfide bodies generate a characteristic 

scattering response that could be detected and thus help in locating and imaging them. 

Seismic beamforming works under the assumptions that arriving wavefronts are planar 

on the scale of the array aperture and are generated by point sources. These assumptions 

allow us to only use the arrival energy, which contains the wavenumber or angle of 

incidence and amplitude, to locate a scatterer. The angles are back-projected to a 

common point which represents the location of a point source or scatterer. The use of 

both seismic beamforming and a small number of sources to generate the energy would 

considerably reduce exploration costs for deeper targets. 

After writing a beamforming algorithm, synthetic data for four different 

geological models was generated using a finite-difference method of solving differential 

equations. The 1-D beamformer's capability was assessed by looking at a number of 

performance measures. These included the angle of arrival of impinging wavefronts on 

the receiver array, effect of adding noise to the data, effect of decimating the data and the 

presence of multiple targets. An investigation of the angles indicates the limitations of the 

beamformer. After back-projecting arrival angles a distance-weighting scheme is 
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necessary to use to reduce errors introduced by intersection points that are far from their 

concentration area. Using the distance-weighting scheme enabled the beamformer to 

satisfactorily estimate the location of a scatterer. It was established that beamformer 

segments further away from the source lose resolution and these segments cannot be used 

for the investigations. A comprehensive study on noise effects reveals that the 

beamformer performs well on a data set, generated in Seismic Unix®, with a signal-to­

noise ratio of at least 5. The noise generated had an uncorrelated Gaussian distribution 

and it was computed using the value of the absolute maximum of the data set. It was also 

shown that spatial decimation of the data has no adverse effect on location estimates. 

However, for the purpose of having enough beam steering resolution, the interpolated 

data had to have more spatial points in the beamformer. Performance of the beamformer 

in the presence of two scatterers separated by a distance more than a Fresnel zone apart 

was also demonstrated. The beamformer was not able to pick two scatterers in its vicinity 

when the source was at a point directly between them. But it was able to "see" the two 

scatterers when the source was moved to a point on the other side of one scatterer. 

Finally, I can state that the objectives of the thesis have been realized under the 

limitations of the beamforming algorithm I used. Even though the beamformer was not 

very robust it has demonstrated that with a robust system the idea can work. 
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5.2 Recommendations 

Future multi-dimensional beamformers can build on the results obtained using the 1-D 

array that was analyzed in this thesis. A few recommendations exist arising from the 

problems that were faced in the implementation of the beamformer. 

The main issue that needs to be addressed before going further with the topic 

addressed by the thesis is the picking of incidence angles or wavenumbers where the 

mainlobe has the highest power. This aspect of the method is very crucial to obtaining 

any meaningful results. Handpicking the peaks is very tedious and for a very large data 

set may not be desirable. A source code could be developed to pick these angles 

automatically. However, one should ensure that the noise level is not too high to 

compromise this process. Unwanted noise and interfering signals could be filtered prior 

to beamforming using standard seismic filtering techniques. 

A robust method other than conventional beamforming is possible to attain higher 

resolution and accuracy. These methods are extensively used in Sonar and Radar 

applications. Details of these other methods are discussed in Van Trees (2002). With 

these high-resolution methods 2-D and 3-D arrays can be explored. 

100 



References 

[1] Arnold, M. E., 1977, Beam forming with vibrator arrays: Geophysics, vol. 42, no. 7, 
pp 1321-1338. 

[2] Burdic, W. S., 1991, Underwater acoustic system analysis: Prentice-Hall, Inc. 

[3] Cohen, J. K. and Stockwell, Jr. J. W., 1999, CWP/SU: Seismic UNIX Release 33: a 
free package for seismic research and processing, Center for Wave Phenomena, 
Colorado School of Mines. 

[4] Dahle, A., Gjeystdal, H., Grammeltvedt, G., and Hansen, S. T., 1985, Application of 
seismic reflection methods for ore prospecting in crystalline rock: First Break, vol. 3, 
no. 2, pp 9-16. 

[5] Dudgeon, D. E., and Mersereau, R. M., 1984, Multidimensional digital signal 
processing: Prentice-Hall, Inc. 

[6] Eaton, D., Guest, S., Milkereit, B., Bleeker, W., Crick, D., Schmitt, D., and Salisbury, 
M., 1996, Seismic imaging of massive sulfide deposits, Part III: Borehole seismic 
imaging of near-vertical structures: Economic Geology, vol. 91, no. 5, pp 835-840. 

[7] Eaton, D. W., 1999, Weak elastic-wave scattering from massive sulfide orebodies: 
Geophysics, vol. 64, no. 1, pp 289-299. 

[8] Hampson, G., 1997, Implementing multi-dimensional digital hardware beamformers: 
Ph. D. thesis, Monash University. 

[9] Johnson, D. H., 1982, The application of spectral estimation methods to bearing 
estimation problems: Proceedings of the IEEE, vol. 70, no. 9, pp 1018-1028. 

[10] Johnson, D. H., and Dudgeon, D. E, 1993, Array Signal Processing: Concepts and 
techniques: PTR Prentice-Hall, Inc. 

[11] Laletsang, K., 2001, Seismic exploration for metallic mineral deposits: Ph. D. thesis, 
Memorial University ofNfld. 

[12] Manolakis, D. G., Ingle, V. K., and Kogon, S. M., 2000, Statistical and Adaptive 
Signal Processing: Spectral estimation, signal modeling, adaptive filtering and array 
processing: The McGraw-Hill Companies, Inc. 

[13] Maranda, B., 1989, Efficient digital beamforming in the frequency domain: J 
Acoust. Soc. Am., vol. 86, no. 5, pp1813-1819. 

[14] Milkereit, B., Eaton, D., Wu, J., Perron, G., Salisbury, M., Berrer, E. K., and 

101 



Morrison, G., 1996, Seismic imaging of massive sulfide deposits, Part II: Reflection 
seismic profiling: Economic Geology, vol. 91, no. 5, pp 829-834. 

[15] Moran, M. L., and Albert, D. G., 1996, Source location and tracking capability of a 
small seismic array: US Army CRREL Report CR 96-8. 

[16] Mucci, R. A., 1984, A comparison of efficient beamforming algorithms: IEEE 
Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-32, no. 3, 
pp 548-558. 

[17] Nielsen, R. 0., 1991, Sonar Signal Processing: Artech House, Inc. 

[18] Robinson, E. A., and Treitel, S., 1980, Geophysical Signal Analysis: Printice-Hall. 

[19] Salisbury, M. H., Milkereit, B., and Bleeker, W., 1996, Seismic imaging of massive 
sulfide deposits, Part I: Rock properties: Economic Geology, vol. 91, no. 5, pp 821-
828. 

[20] Sheriff, R. E., and Geldart, L. P., 1995, Exploration Seismology: Cambridge 
University Press. 

[21] Stoica, P., and Moses, R. L., 1997, Introduction to spectral analysis: Printice-Hall. 

[22] Telford, W. M., Geldard, L. P., and Sheriff, R. E., 1990, Applied Geophysics: 
Cambridge University Press. 

[23] The Math Works Inc., MATLAB Version 5.3.1.29215a (Rll.J), September 1999. 

[24] Van Trees, H. L., 2002, Optimum Array Processing: Part IV of Detection, 
estimation, and modulation theory: John Wiley & Sons. 

[25] VanVeen, B. D., and Buckley, K. M., 1988, Beamforming: A versatile approach to 
spatial filtering: IEEE Acoustic, Speech, and Signal Processing Magazine, pp. 4-24, 
April. 

[26] White, D., 1999, The basic principles of seismic reflection methods for mineral 
exploration, in Lowe, C., Thomas, M.D. and Morris, W.A., eds., Geophysics in 
Mineral Exploration: Fundamentals and Case Histories: Geological Association of 
Canada, Short Course Notes, v. 14, pp 163-176. 

[27] Wright, C., Wright, J. A., and Hall, J., 1994, Seismic reflection techniques for base 
metal exploration in eastern Canada: examples from Buchans, Newfoundland: 
Journal of Applied Geophysics, vol. 32, pp 105-116. 

[28] Yilmaz, 0., 2001, Seismic Data Analysis: processing, inversion, and interpretation 
of seismic data: Society of Exploration Geophysicists. 

102 



Appendices 

The appendices' section contains the source code for all the figures generated in the text 

using MATLAB® (Matrix Laboratory). The codes for illustrating Rayleigh resolution and 

grating lobes are given, as well as the main source code for the thesis. M inor changes to 

the main code that help us achieve the objectives of the thesis are also shown in the last 

appendix. 

Appendix A 

Illustration of Rayleigh Resolution and Grating Lobes 

Al. The following code was used to generate the diagrams in figure 3.4. 

rayleigh_res.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Uniform Linear Array (ULA) - RAYLEIGH RESOLUTION % 
% © Lucky Moffat, 07/01/ 2 004 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear a l l 
home 

f 50 ; 
D 20; 
M 40; 
m O: M-1; 
c = 4000; 

%wave f orm dominant frequency in Hz 
%receiver separation in meters should be < 40m 
%number of receivers 
%vector of index es 
%propagation velocity 

k (2*pi * f)/c ; %wavenumber of the plane wave from the s o urce 
d i r1 = input( ' Enter the first angle in the range - 90 : 90. ' ) ; %angle of arrival of 1st 
wave 
sth e ta_o1 = sin(dirl *pi/180); %sine of angle of the 1st wave 

di r 2 = input('Enter the second angle in the range - 90 : 90 . ') ; %angle of arrival of 2nd 
wav e 
stheta o2 = s in(dir2*pi/180) ; 

%a_m = ones(M , 1); 
a _m = 0 . 5 - 0.5 *cos(2 *pi *m/M); 

stheta = sin(( - 90 : 90)*pi/180); 

fo r v l:length(stheta) 

%sine of angle of the 2nd wave 

%rectangul ar window 
%hanning window 

%search space 

y l e xp(i * k*m*D* (stheta(v)-stheta_ o1)) ; %normalized array response of 1st wave 
y2 e x p(i*k*m*D* (stheta (v } - stheta_ o2)) ; %normali z ed array respo nse o f 2nd wave 
Y = y 1+y2 ; %application of the linear superposition principle 

bp(v ) = abs( Y*a_m') ; %absolute value of weighted array response 
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end 

bpower = real(20*log10(bp/rnax(bp)) ) ; %beam power 

plot(asin(stheta)*180/pi,bp . /rnax(rnax(bp))), xlabel( ' \it incidence angle (degrees)'), 
ylabel ( ' \it arnpli tude ' -) , title ( ' Rayleigh Resolution', ' Fontsize ' , 14) %plot of Magnitude 

versus angle 
%subplot(2,1,1) , plot(asin(stheta)*180/pi,bp . /rnax(rnax(bp))) , xlabel('\it incidence angle 
(degrees)'), 
% ylabel( ' \it normalized amplitude ' ), title('Rayleigh Resolution' , ' Fontsize', 14) %plot 
o f Magnitude versus angl e 
grid ; 
%subplot(2,1 , 2),plot(asin(stheta)*180/pi,bpower), xlabel( ' \it incidence angle 
(degrees) ') , 
% ylabel('\it amplitude in dB') %plot of Power versus angle 
%grid ; 

A2. The following code was used to generate figure 3.5 which gives an illustration of 

Grating Lobes. 

grat_lbs.m 

%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Uniform Linear Array (ULA) - Illustration of GRATING LOBES % 
% © Lucky Moffat, 07/01/2004 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 
h orne 

f 
d 

50; 
[20, 40, 80, 160); 

%waveform frequency in Hz 
%receiver separation in meters 

%--------to avoid aliasing completely d should be <= 40rn (i . e . the condition 
%f <= (0.5 * c)/d should be satisfied) 

M [40,20,10,5); %number of receivers in the array 
%acoustic speed c = 4000; 

k (2*pi*f)/c; %wavenumber of the plane wave from the source 
dir = input('Enter theta in the range -90:90 . '); %direction of incident wavefront 
stheta o = sin(dir*pi/180); %sine of direction of incident wavefront 

for i = 1:length(d) 

end; 

a rn = ones(M(i),1); 
rn = O:M(i)-1; 

%rectangular window 
%vector of indexes 

stheta =sin( (-90 : 90)*pi/180); %sine of rotational direction 

for v = 1:length(stheta) %for each input direction calculate filter response 

Y = exp(j*k*rn*d(i)*(stheta(v) - stheta_o) ) ; %output of the bearnforrner 
bp(v) abs(Y*a_rn); %beam pattern 

end; 

bpower = real(20*log10(bp/rnax(bp)) ) ; %calculate bearnpower 
subplot(4,1,i) ,plot(asin(stheta)*180/pi,bp), title('Bearn Pattern') 
grid; 
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Note - The above script assumes the direction of propagation is known. Thus, it gives the 

user the option of selecting a preferred direction. 

Appendix B 

The Main Program 

This appendix gives the main source code of the thesis which implements equation 14. 

The source code is explained in section 3 .2. 

center css. m 

%%%%%%%%%%%%% %%%%%%% %%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Conventional beamforming for a Uniform Linear Array (ULA) of Seismic data % 
% ©Lucky Moffat, 07/01/2004 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %%%%%%%%%%%%%%%% %%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Note - The program beamforms the whole diffraction curve 

clear all 
home 

% ----------------------------INPUT DATA INFO --------------------------

r ows = 700; 
c ols = 1000; 
sr = .0005; 

% Number of time samples 
% Number of traces 
% Sample rate in seconds 

% ---------------------- PARAMETERS FOR WINDOWING -----------------------

tO = 338; 
a loe = 1; 
s eglen = 50; 
s tartwin = 100; 
wsamps 200; 
t hev el = 4000; 

t r a c espac e = 1; 

% time (in samples) of diffraction apex 
% trace # that locates the diffraction apex 
% segment length in meters 
% start of window in samples before theoretical 
% length of window in samples 
% aver. Vel. for calculation of theoretical 

% diffraction hyperbola (m/s) 
% trace spacing (m) 

% --------------------- Some Calculations -------------------------------
t Ot = tO*sr; % time of diffraction apex in seconds 
seglens = seglen/tracespace; % segment length in samples 
n umsegs = round(cols/seglens) % number of segments 
% -----------------------------------------------------------------------

% --------------------------- GET THE DATA ------------------------------

f i d = fopen( 1 singscat_Oct11rm.bin 1
); 

[A, count 1 = fread ( fid, [rows, cols 1 , 1 float32 1 
) ; 

count 

% ------------- CALCULATE THE THEORETICAL DIFFRACTION MOVEOUT -----------

x b 
x o 

0; 
500; 

% x-value where the hyperbola begins 
% x-value at normal incidence 
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x = xb-xo; % pre-allocate x 

% ---- Compute diffraction moveout in samples 
for i = 1:cols 

Dt(i) = tO+(tOt + (x*x)/(2*thevel*( (thevel*tOt)/2))/sr); % coincident source 
% and scatterer 

x = x+tracespace; 
end 

% --------------------------- CALCULATE THE WINDOW ----------------------

% Top of window 
segkount = 1; 
kount = 1; 

% ~-- for each segment 
while segkount < cols 

Ws(kount) = round(Dt(segkount)-startwin); % Start of window for each segment 
segkount = segkount+seglens; 

kount = kount+1; 
end 

trace = 1; 

% ---- For each trace in a segment 
for n = 1:numsegs 

for c = 1:seglens 
wtop(trace) = Ws(n); 
trace = trace+1; 

% Start of the window for each trace in each segment 

end 
end 

% Bottom of the window for each trace 
for t = 1:trace-1 

wbot(t) = wtop(t)+wsamps; 
end 

% ---------------------------- APPLY THE WINDOW -------------------------

kountsamp 1; 
kountrace 1; 

for n = 1:numsegs 
for c = 1:seglens % col 

end 

b = wtop(kountrace); 
for k = 1:wsamps % row 

W(k,c) = A(b,kountrace); 
kountsamp = kountsamp+1; 
b = b+l; 

end 
kountsamp 
kountrace 

1; 
kountrace+1; 

%--------------------------- BEAMFORM EACH SEGMENT -----------------------
M mean(mean(W)); % mean of each segment 
W = W - M; % bring signal to zero mean 

X = fft (W) I; 

%X= X(:,1:wsamps/2); 

K = zeros(seglens,1); 

for p = 1:seglens 

% spectrum of each segment 
% single sided spectrum 

% initialize wavenumber vector 

% for every receiver 

kx = (-0.2+0.4*(p-1)/(seglens-1) ); % trial wavenumbers 

a= exp( (j*kx *tracespace*[O:seglens-1]. '*[O:wsamps-1] )/wsamps); 
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end 

Y_k = X.*a; 
%Y_n = abs(ifft(Y_k)); 

B(p, :) = sum(Y_k. A2); 

K (p) kx; 

end 

% beam response, Y(k), in fourier domain 
% beam response, Y(n), in the time domain 

% average power value of the beam 

bpower = real(10*log(bp/max(bp))); % beam power in dB 

subplot(5,4,n), plot(K,bpower) 
%title('Beam Power Spectrum'), ylabel('magnitude (dB)'), xlabel('wavenumber (kx) ') 
axis([-0.2 0.2 -0.2 0]) 
grid; 

if n <= (numsegs-1) 
disp ( 'PRESS ANY KEY to go to the nex t segment') 
pause 

else 
disp('All segments exhausted, thank you!') 

end 

%-------------------------------- END OF PROGRAM --------------------------

Appendix C 

Changes to the Main Program 

Cl. The following are changes made to center_css.m to create a new program 

soffset_nc.m that implements the investigation in example b of section 4.2.2. 

-- rows = 696; % number of time samples 

tO = 390; % time in samples of diffraction apex 

seglen 50; % segment length in meters 

wsamps 100; % length of window in samples 
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C2. The following are changes made to center_css.m to create a new program end_css.m 

that implements the investigation in example c of section 4.2.2. 

--rows = 1100; % number of time samples 

tO = 342; % time in samples of diffraction apex 

wsamps = 150; % length of window in samples 

C3. The following are changes made to center_css.m to create a new program 

scenter_nc.m that implements the investigation in exampled of section 4.2.2. 

--rows = 1100; % number of time samples 

tO = 480; % time in samples of diffraction apex 

wsamps = 150; % length of window in samples 

C4. The following excerpt is from the program, center_cssDecFJO.m that implements 

the decimation process explained in section 4.2.4 of chapter 4. The program is similar to 

the main one except for the addition of the interpolation process and the use of decimated 

data input. 

% --------------------------- GET THE DATA ------------------------------

fid=fopen ( 'singscat_Octllrm_windlO.bin'); 
[A,count] = fread(fid, [rows,cols], 'float32'); 
count; 

Al = interpft(A,l000,2); 
A = Al; 

% interpolation 

% ------------- CALCULATE THE THEORETICAL DIFFRACTION MOVEOUT ---- - - - ----
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CS. Changes made to the main program to investigate the response of the beamformer to 

two scatterers. The following changes were made to create a new program called 

twoscat rm.m: 

tO = 370 ; % time in samples of diffraction apex 

wsamps = 260; % length of window in samples 

startwin = 130; % start of window in samples before theoretical 

ps 0; % x-position of source from scatterers (coordinates: 500.5,0) 

XO 480; % x-value at the apex of the hyperbola 

Dt(i)= tO+( (x*x)/(2*thevel*(t0t*thevel/2) )+ps*(ps-
x)/(thevel*(tOt*thevel/2)) )/sr; % source not coincident (refer to eqn. 19) 

Changes made to twoscat_rm.m to create a new program called twoscatNC_rm.m: 

tO = 350; % time in samples of diffraction apex 

wsamps = 350; % length of window in samples 

startwin = 175; % start of window in samples before theoretical 

ps 50; % x -position of source from scatterers (coordinates: 350,0) 

XO 420; % x-value at the apex of the hyperbola 
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