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ABSTRACT: 

The Mesoproterozoic Nain Plutonic Suite consists of anorthositic and granitic intrusions, 

which were emplaced along an older suture zone marked by the Torngat Orogen in northern 

Labrador. This study concerns the western margin of the Nain Plutonic Suite where the Pearly 

Gates Anorthosite pluton and spatially related Tessiarsuyungoakh intrusion, and the 

Makhavinekh Lake pluton, were intruded into the Paleoproterozoic Tasiuyak paragneiss of the 

Southeastern Churchill Province. Detailed geological mapping, petrography and U-Pb Thermal 

Ionization Mass Spectrometry dating of zircon and baddeleyite of the Pearly Gates Anorthosite 

pluton and Tessiarsuyungoakh intrusion were used to ascertain the mode of emplacement and 

crystallization ages of the major intrusive units. In addition, studies of the Paleoproterozoic 

regional metamorphism and Mesoproterozoic contact metamorphism of the Tasiuyak paragneiss 

were performed using the NaKFMASH petrogenetic grid to determine P-T conditions. The results 

of this thesis project indicate the following geological history of the study area. 

The Tasiuyak paragneiss contains evidence of the Paleoproterozoic regional 

metamorphic mineral sub-assemblage garnet + biotite + sillimanite. Detailed petrography of this 

sub-assemblage indicated that the prograde and retrograde history of this unit occurred within the 

sillimanite stability field and peak P-T conditions were constrained in the range of 7.2 to 10.2 kbar 

and 800° to 830°C. Prior to ca. 1363 Ma, reactivation of structures in the paragneiss provided 

fractures into which monzonitic and monzodioritic magmas intruded as sheets. The 1363 ± 3 Ma 

monzonite and .1360 ± 4 Ma monzodiorite formed the composite Tessiarsuyungoakh intrusion. 

This intrusion produced a small(< 20m) contact aureole in the Tasiuyak paragneiss. Incipient 

development of the contact metamorphic sub-assemblage cordierite + orthopyroxene + spinel 

replaced the regional sub-assemblage of garnet + biotite + sillimanite. This suggests that the 

Tessiarsuyungoakh intrusion was a small body with a short-lived emplacement and crystallization 

history. The P-T estimate of this contact aureole is between 3 and 4 kbar and 775° and 800°C. 

Prismatic zircons included in plagioclase crystals from the Pearly Gates Anorthosite 

pluton yielded a maximum concordant crystallization age of 1370 ± 5 Ma. These crystals are 
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interpreted as having formed at depth at ca. 1370 Ma, prior to emplacement at a mid-crustal level. 

The earliest evidence of anorthosite emplacement is a relatively undeformed anorthosite body, 

herein called the Fraser Canyon Anorthosite, which intruded into the Tessiarsuyungoakh intrusion 

at 1355 ± 1.3 Ma. It is unknown if the Fraser Canyon Anorthosite is a part of the Pearly Gates 

Anorthosite pluton, however, both have similar characteristics such as an inner zone of massive 

anorthosite and an outer zone of layers of anorthosite and norite. The outer zone is interpreted as 

having crystallized relatively fast and the inner zone as having cooled relatively slowly. During 

crystallization of the outer zone, syn-emplacement deformation occurred along the contact 

between the Tessiarsuyungoakh intrusion and Pearly Gates Anorthosite pluton. Anhedral zircon 

fragments from the Pearly Gates Anorthosite pluton yielded an age of 1335 +7/-3 Ma, of which 

the uppermost error limit of 1342 Ma is interpreted as approximating the final crystallization age of 

the pluton. Norite bodies that intruded the Pearly Gates Anorthosite pluton at ca. 1340 Ma are 

undeformed and indicate that the anorthosite had completely crystallized and deformation had 

ceased by this time. 

At ca . 1322 Ma, the Makhavinekh Lake pluton intruded into the Tasiuyak paragneiss and 

produced a contact aureole 4 km wide with cordierite + orthopyroxene + spinel replacing regional 

garnet + biotite + sillimanite. The temperature gradient along this aureole ranged from 675°C at 

the 4 km limit of the contact aureole, to at least 850°C at the contact with the pluton, and isobaric 

conditions were between 3 to 4 kbar. 
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CHAPTER 1 -INTRODUCTION TO THE THESIS STUDY 

1.1 INTRODUCTION 

1.1.1 Geological Importance of Anorthosites 

Anorthosite is an igneous, plutonic rock characterized by at least 90% plagioclase and 

minor components of mafic minerals, such as orthopyroxene, clinopyroxene, and/or olivine. The 

majority of large bodies of anorthosite are typically Archean or Proterozoic in age. The paucity of 

younger anorthosite bodies indicates that their production is related to ancient geological events 

and parameters that do not appear to exist after the late Proterozoic. Therefore, understanding 

the mechanism and environment that produced anorthosites could provide insight into geological 

processes related to the temporal evolution of the Earth. 

Archean anorthosites and Proterozoic anorthosites each have distinct characteristics. 

Archean anorthosites typically contain very calcic plagioclase, An80.100, and are usually stratiform 

units in basic layered intrusions. These intrusions are typically associated with greenstone belts 

and meager evidence suggests that these anorthosites formed as sills within these oceanic basic 

meta-volcanic complexes (Ashwal, 1993). In contrast, Proterozoic anorthosites typically consist of 

intermediate plagioclase compositions, An35.60 , and formed as large complexes, hundreds to 

thousands of square kilometres in area, within cratons, usually in or near orogenic belts. These 

anorthosite complexes are contemporaneous with acidic and intermediate rocks (Emslie, 1985) 

and are often referred to as anorthosite-mangerite-charnockite-granite (AMCG) suites. AMCG 

suites consist of anorthosite and related granitoid rocks, which contain anhydrous mafic minerals, 

usually orthopyroxene, as well as minor amounts of clinopyroxene, olivine and oxides. Minor 

amounts of intermediate rocks are also associated with this suite and comprise ferrodiorite , 

ferrogabbro, jotunite and monzodiorite. Most AMCG suites formed between 2200 and 900 Ma, 

and well-known bodies are found in Norway, Finland, Greenland, Canada and the United States. 

In the past, the genesis of Proterozoic anorthosite complexes was considered 

'problematic' because the mechanisms that produced and transported such large volumes of 
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plagioclase could not be compared with any relatively recent analogous geological processes. 

However, combining detailed geological mapping and well-constrained field relationships with 

improvements of geological techniques in petrology, geochemistry, geochronology, 

geothermobarometry and geophysics, can shed new insight into the petrogenesis of anorthosites. 

1.1.2 Anorthosites of the Nain Plutonic Suite 

The Nain Plutonic Suite (NPS) of northern Labrador is a renowned Mesoproterozoic 

AMCG suite. It is one of the largest, best-exposed suites in the world, covering an area of 

- 20,000 km2
. Exposure is spectacular due to the sub-arctic climate, and topographic relief of up 

to 1000 m from sea level. Therefore the plutons and their structures are well exposed in three 

dimensions. Considering the fame, size and exposure of the NPS, it is surprising that the 

emplacement and parental magma(s) of this relatively unusual, time constrained (ca. 1360-1290 

Ma) magmatism are still unresolved. Many regional studies have been undertaken to answer 

these questions but until recently, there has been little detailed work. However, such detailed 

studies are essential in order to recognize the similarities and differences between plutons and 

therefore give a better understanding of the regional geological history of the NPS. 

There have been more detailed studies of the eastern portion of the NPS than the 

western portion because it is more accessible. Previous work by Wheeler (1960, 1969), Ryan 

(1991, 1993, 1997, 2001), Xue and Morse (1993) and Emslie et al. (1994) shows that there are 

compositional, geochemical and temporal differences between the western and eastern parts of 

the NPS. Typically the western half is older {Table 1.1) and comprises orthopyroxene-bearing 

anorthosite and norite, whereas in the younger eastern half, gabbro and leucotroctolite are 

associated with olivine-bearing anorthosite. Emslie et al. (1994) also divided the NPS into eastern 

and western zones on the basis of Nd isotope geochemistry of intrusions, which they attributed to 

contamination by the underlying Archean Nain Province and Paleoproterozoic Churchill Province, 

respectively. The western NPS plutons typically have deformed and recrystallized margins 

especially where adjacent to rocks other than pure anorthosite, whereas the eastern NPS plutons 
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generally exhibit pristine igneous textures and contacts (Ryan, 1991, 1993; Berg et al., 1994; 

Royse and Ryan, 1995, Royse and Park, 2000). 

Previous work by Ryan (1991), Emslie and Stirling (1993), and Emslie et al. (1994) has 

described the relationships between the anorthositic, granitic, and ferrodioritic components of the 

NPS. Debate about the temporal relationships of spatially related anorthositic and granitoid 

intrusives is ongoing . 

Many intrusions (ca. 28) of the NPS have been dated by zircon and/or baddeleyite using 

the U-Pb thermal ionization mass spectrometry technique. However, only a few ages and U-Pb 

data sets are available in publications. The other ages are quoted in conference abstracts or 

papers. Hamilton et al. (1994, 1998) dated many of the NPS intrusions with other contributions by 

Krogh & Davis (1973); Simmons et al. (1986); Simmons & Simmons (1987); Ryan (1991); Ryan 

et al. (1991 ); Emslie & Loveridge (1992); Connelly (1993); Connelly & Ryan (1994 ); Hamilton 

(1997) and Amelin et al. (1999). A compilation of these U-Pb ages is found in Table 1.1 and the 

location of the intrusions is found in Figure 1.1. The plethora of emplacement ages determined by 

Hamilton et al. (1994) indicated that the magmatic interval for anorthositic, granitoid and 

ferrodiorite intrusions was the same (ca. 1333 to 1294 Ma). The interval of granitic intrusions was 

increased by dates acquired by Connelly, (1993) for the 1351 ± 3 Ma Hare Hill monzonite and 

Connelly & Ryan ( 1994) for the 1343 ± 3 Ma monzonite adjacent to the eastern margin of the Mt. 

Lister Anorthosite pluton. The youngest intrusion of the NPS is the 1292 ± 4 Ma granitic Voisey 

Bay- Notakwanon batholith (Ryan et al. , 1991 ). Therefore, prior to this thesis (Table 1.1 ), the 

known age range for emplacement of the NPS was ca. 1350 to 1290 Ma. Recent graduate thesis 

studies at Memorial University of Newfoundland have obtained new U-Pb emplacement ages 

such as the 1318 ± 6 Ma Hosenbein Lake complex (R. Voordouw, per comm., 2004), and the ca. 

1360 Ma Tessiarsuyungoakh intrusion and ca. 1340 Ma Pearly Gates Anorthosite pluton (herein , 

see Chapter 3). In addition , U-Pb dating of zircon and baddeleyite from two units within the Barth 

Island composite intrusion has provided an older age than was previously reported by Hamilton et 
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al. (1994 ). These new older ages are, 1332 ± 2 Ma from a leucotroctolite unit and 1333 ± 4 Ma 

from a leuconorite unit (0. Gaskill, per comm., 2004). 

Studies by Berg (1977b, 1979), Speer (1982), Berg and Docka (1983), Lee (1987) and 

Mcfarlane et al. (2003) concentrated on the contact metamorphic affects of NPS intrusions to 

determine peak metamorphic pressures and temperatures. However, account was not always 

taken of the other surrounding plutons, which do not appear to have caused contact 

metamorphism. In addition, none of these studies reported details of the regional metamorphic 

assemblage to provide a better understanding of the regional context in which contact 

metamorphism occurred . 

1.1.3 Study Area 

The thesis study area lies in the western margin of the NPS and consists of the 

southwestern portion of the Pearly Gates Anorthosite pluton (PGA) (Ryan, 1993), the adjacent 

Tessiarsuyungoakh intrusion {TI) {Wheeler, 1969), the host Tasiuyak paragneiss (Wardle, 1983) 

of the Southeastern Churchill Province, and the northeastern margin of the Makhavinekh Lake 

pluton . The PGA is an- 900 km2
, ovoid body consisting of an inner zone of massive anorthosite 

and outer zone of deformed layers of anorthosite and norite. Along the southwestern margin of 

the PGA lies the composite monzonite (mangerite) and monzodiorite Ootunite) Tl. Detailed field 

mapping was conducted on the rocks of the PGA and the Tl. The Tasiuyak paragneiss is 

exposed between the Tl to the east and Makhavinekh Lake pluton to the southwest. The 

paragneiss has undergone contact metamorphism during emplacement of the Makhavinekh Lake 

pluton but appears to have been unaffected by the intrusion of the Tl or the very large PGA. The 

northeastern margin of the Makhavinekh Lake pluton is composed of olivine- and orthopyroxene­

bearing granite with rapakivi texture. This pluton was not studied in detail and only locations along 

transects through the Tasiuyak paragneiss were examined. Geological details of the above 

mentioned units are briefly described in Chapter 2. More thorough descriptions of the PGA and Tl 
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are reported in Chapter 3 and descriptions of the Tasiuyak paragneiss and Makhavinekh Lake 

pluton are reported in Chapter 4. 

1.2 PETROGENESIS OF AMCG SUITES 

There has been much speculation about the geological processes that produced AMCG 

suites, the magmatic source(s), and the mechanisms that produced such large amounts of 

plagioclase and emplaced these rocks at mid-crustal levels. This section will summarize the most 

common theories regarding AMCG suite development, mainly focusing on anorthosite genesis. 

1.2.1 Magmatic Source(s) 

The main problem in determining the magmatic source(s) of AMCG suites is that they are 

cumulate rocks. Therefore whole rock geochemistry is not easily interpretable because during 

relatively long-term crystallization, processes like fractionation, filter-pressing, assimilation and 

contamination will change the original magmatic characteristics. However, studies of field 

relationships, mineral chemistry and whole-rock isotopic signatures have provided clues about 

potential magmatic source(s), assimilation/contamination and the depth at which the parental 

magmas were generated. 

1.2.1.1 Depth of source(s) 

Some anorthosite complexes contain minor amounts of highly aluminous orthopyroxene 

megacrysts (HAOM) with exsolved lamellae of plagioclase (Emslie, 1975; Morse, 1975; Dymek & 

Gromet, 1984; Duchesne, 1984). The HAOM are typically 20 em to 1 min diameter and much 

more magnesium- and aluminum-rich than orthopyroxene in the matrix (Emslie, 1975). Since 

aluminum content increases in orthopyroxene with increasing pressure, Emslie (1975), Wiebe 

(1986) and Longhi et al. (1993) proposed that the HAOM were formed deep in the lithosphere. 

Geobarometric studies of these megacrysts by Emslie (1975) and Wiebe (1986) suggested that 

they crystallized at- 11 kbar, equivalent to - 36 km. Although it is inconclusive whether the 
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HAOM formed from the same parental magma as anorthosite, the depth at which these 

orthopyroxene megacrysts formed could provide an indication of the depth of anorthosite 

formation. 

Proterozoic anorthosites contain intermediate plagioclase compositions ranging from 

andesine to labradorite (An35 to An60 ) . This indicates a relatively sodic magma, however with 

increasing pressure sodium, rather than calcium, is more readily incorporated into plagioclase. 

Therefore, the relatively albitic plagioclase could be interpreted to represent either a melting of 

lower crustal material already rich in sodic plagioclase or crystallization of plagioclase at a depth 

conducive to the preferred incorporation of sodium into the crystal, or a combination of both. 

1.2.1.2 Liquid versus crystal mush 

Anorthosite bodies contain various amounts of plagioclase phenocrysts indicating that the 

magma contained plagioclase crystals in suspension during emplacement. However, the question 

is: what was the relative proportion of crystals to liquid? If the intrusive magmas were mostly 

liquid , they would have to have been anorthositic in composition with relatively high amounts of 

sodium and aluminum to account for the crystallization of intermediate plagioclase after 

emplacement. If these bodies intruded with large amounts of plagioclase crystals (a crystal 

mush), how and where were these crystals formed? 

Wiebe (1979) reported chilled margins in undeformed anorthositic bodies and anorthosite 

dykes, and later proposed that they formed from hyperfeldspathic liquids (Wiebe, 1990). He 

proposed that these liquids could be produced by fractionation and segregation of mafic magma 

in the lower crust. Fractionation of olivine and pyroxene from this magma would leave a more 

aluminous residual liquid , which would begin to form plagioclase crystals. The plagioclase would 

float in the mafic magma near the top of the chamber while the olivine and pyroxene would settle 

to the chamber floor. Continued plagioclase production and occasional partial resorption of these 

crystals by replenishment of mafic magma would produce a liquid enriched in plagioclase 

components. Fram and Longhi (1992) experimented on one of Wiebe's dykes in which they fused 
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and crystallized the dyke sample under assumed environmental conditions of the NPS dyke and 

compared it to the original. The experimental sample had a different mineralogy and the 

plagioclase crystals were more calcic than the original sample suggesting that the dyke was not 

formed from a liquid. Rather, Fram and Longhi (1992) indicated that the dyke intruded as a crystal 

mush and that most of the plagioclase crystals were formed at - 11 kbar, equivalent to - 36 km, 

in the lower crust. 

It is widely accepted that anorthosite bodies formed from intrusion of a plagioclase crystal 

mush produced at depth, however, the proportion of plagioclase crystals to liquid in such a mush 

is debated and may be different from one pluton to the next. It is thought that the younger, 

undeformed anorthositic bodies of the NPS possibly contained more liquid since the margins of 

some of these plutons show troughs, scours, and compositional and graded layering (Wiebe, 

1990; D. Wright, per comm., 2002). However, the older deformed plutons also appear to have 

compositional layers at the margins and other layering structures may possibly be obscured by 

the deformation. 

1.2.1.3 AMCG suites- parental magma(s) and source region(s) 

There are currently two principal schools of thought on the parental source(s) and 

formation of AMCG suites. One is that mantle-derived basaltic magma is parental to the 

anorthositic rocks and granitic rocks are derived from partial melting of lower crust; and the other 

more recent theory is that AMCG suites originated from partial melting and fractionation of lower 

crustal granulites. Morse (1982), Wiebe (1990), Ashwal (1993) and Xue and Morse (1993) 

believed that an anorthositic crystal mush formed during fractional crystallization of a juvenile 

basaltic magma at the base of the crust. Emslie et al. ( 1994) suggested that heat from this 

ponding of basaltic magma caused partial melting of the lower crust, and formed the granitic 

intrusions. 

Regional studies of major- and trace-element geochemistry were conducted by Xue and 

Morse (1993) of anorthositic plutons, and by Emslie et al. (1994) of anorthositic, granitoid and 
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ferrodiorite intrusions. Both studies have shown that anorthositic rocks are characterized by high 

Ba, Pb, K, Sr, Ti, Eu and low Rb, Nb, Zr. Both authors suggested that these anomalies were 

consistent with a mantle-derived basaltic magma that had been contaminated with depleted lower 

crust. Emslie et al. (1994) also reported that ferrodioritic intrusions were geochemically similar to 

anorthositic intrusions. In addition, ferrodioritic rocks are characterized by evolved Fe/Mg, 

depleted concentrations of Cr and Ni and moderate Sr content. Emslie et al. (1994) attributed this 

to protracted fractionation of mafic minerals (enriched in Mg, Cr, Ni) and plagioclase (enriched in 

Sr) and suggested that ferrodioritic liquid was residual to anorthositic magmas. The Emslie et al. 

(1994) study of the granitoid rocks showed that they were geochemically distinct from the 

anorthositic and ferrodioritic rocks. The granitoid rocks were characterized by low Rb, Nb, Sr, P, 

Eu, Ti contents and high Zr. They proposed that the depleted elements reflected a lower crustal 

source, which underwent dehydration partial melting and that the restite contained residual 

plagioclase (Sr- and Eu-rich). Emslie et al. (1994) suggested that this restite, possibly a pyroxene 

+(plagioclase) granulite, was the contaminant that assimilated with the basaltic magma to 

produce anorthositic rocks (discussed further below). 

Isotopic studies by Emslie et al., (1994) showed that neodymium isotopic signatures (ENd. 

calculated at 1.3 Ga) in all the NPS rock types differed depending on whether they intruded into 

rocks of the Archean Nain Province (east) or rocks of the Archean and Paleoproterozoic Churchill 

Province (west). A rock with a longer crustal residence time will have a more negative ENd value 

and this appears to be reflected in the lower ENd value of -21.9 for the older Nain Province (east) 

compared to -14.6 for the younger Churchill Province (west). In general, the NPS rocks in the 

east have ENd values <-1 0 and in the west ENd values are >-1 0. This is interpreted to represent 

crustal assimilation and contamination of the NPS intrusive magmas depending on which 

structural province they intruded. It was also shown that the granitoid rocks typically had slightly 

more negative ENd values (west ENd= -5.8 to -9.7; east ENd= -12.5 to -14.1) than the ferrodiorite 
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units (west ENd= -3.6 to -8.7; east ENd= -9.8 to -14.8) while anorthositic rocks had the widest 

range of values (west ENd= -3.7 to -10.2; east ENd= -8.9 to -17.4). 

Strontium isotopic signatures (lsr) in the same studies did not show a geographical 

distribution related to the country rocks, instead the lsr values were consistent with specific rock 

types. Emslie et al. (1994) divided the rocks into 3 groups; 1) anorthosite and related mafic 

components, lsr =0.7038 to 0.7087; 2) ferrodiorite, lsr = 0.7054 to 0.7090; and 3) granitoid rocks, 

lsr = 0.7047 to 0.7104. They suggested that based on the isotopic evidence, the granitoid rocks 

were derived from significant partial melting of the lower crust with relatively short crustal 

residence time, possibly a fractionate from basic magma underplating. They indicated that this 

would account for the higher lsr values and lower ENd values in the granitoid rocks. A plagioclase 

+ pyroxene restite from the partial melting event was proposed to have been assimilated by a 

mantle-derived basaltic magma. This contamination of the basaltic magma would have increased 

the AI and Si content to levels that could have produced plagioclase crystals. These plagioclase 

phenocrysts would then have segregated by floatation leaving a residual liquid. Ferrodiorite, 

which has similar isotopic, chemical and mineral compositions to the anorthosite, was thought by 

Emslie et al. (1994) to represent this residual liquid. This interpretation was also based on their 

observation that the ferrodiorite appeared to have been intruded after the anorthosite. However 

more recent field evidence compiled by the MUN Nain Plutonic Suite Transect Project has shown 

that although some ferrodiorite bodies are isolated entities, others form composite bodies with 

mangerite (orthopyroxene-bearing monzonite). These composite units typically show gradational 

contacts and mingling textures suggesting that they were contemporaneous. Studies of other 

AMCG suites in the Rogaland anorthosite province, Norway, by Bolle et al. (2003) and the 

Laramie anorthosite complex, United States, by Scoates and Chamberlain (2003) suggested that 

the mangeritic rocks were derived by fractional crystallization of ferrodiorite Uotunite). All of these 

authors proposed that the ferrodiorite might have undergone various amounts of 

assimilation/contamination by lower crustal granulites prior to fractional crystallization. Scoates 
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and Chamberlain (2003) interpreted the ferrodiorite to represent residual liquid from the formation 

of anorthosite at depth. 

Petrological experimental work done by Longhi et al. (1999) has suggested that mantle­

derived basaltic magma alone could not generate anorthosite via fractionation and density driven 

segregation of mafic minerals and plagioclase. They presented evidence to suggest that in order 

for the basic magma to produce plagioclase on the liquidus in volume or for a protracted period of 

time, the magma would either have to contain sufficient amounts of water or assimilate ~ 20% of 

granitic rock at :s; 4 kbar. Since NPS rocks are anhydrous and evidence suggests that at least 

some plagioclase crystals formed at - 11 kbar the two aforementioned criteria are not met. 

Longhi et al. (1999) suggested that anorthosite was formed from melting of a gabbronoritic unit, 

which was either a lower crustal granulite or a "foundering mafic pluton", which possibly sank 

down through the crust. 

1.2.2 Emplacement Mechanisms - NPS 

Emplacement of NPS anorthosites from a lower crustal level of- 33 km to mid-crustal 

levels of between 10-15 km (Berg, 1977; Lee, 1987; Ryan, 1991) requires a plausible ascent 

mechanism. This mechanism must move a liquid or crystal mush relatively quickly through the 

crust in order to maintain its internal heat. The two most commonly proposed mechanisms are: 

the transport of magma by conduit systems and diapiric ascent. 

Diapirism was suggested as the most plausible mechanism to transport large volumes of 

crystal mush (Wiebe, 1990; Ashwal, 1993; Emslie et al., 1994). The ovoid shape and outward 

dipping contact of the larger anorthosite plutons appear to suggest a diapiric (balloon-like) 

structure. In order for this mechanism to work the semi-solid mass must rise due to buoyancy and 

vertically displace the country rock, without substantial heat loss during ascent. Royse and Park 

(2000) conducted theoretical calculations using known parameters from NPS intrusions. They 

suggested that diapiric ascent would be extremely slow,- 31 Ma to ascend 30 km. This sluggish 
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ascent would make it very difficult for the diapiric mass to retain enough heat to continue its 

ascent and also provide enough heat to ductilly deform the surrounding rock. Royse and Park 

(2000) showed that at this slow ascent rate the crystal mush would be unable to carry the dense 

HAOM to emplacement levels and this will be discussed later. 

Ascent via conduit systems was considered plausible if the rising magma was mostly 

liquid (Longhi et al., 1993). The argument against conduit ascent is that if anorthosite ascended 

as a crystal mush, transport through fractures in the crust would be difficult and that the 

plagioclase phenocrysts should show evidence of fracturing and deformation. Studies have 

shown little evidence of protoclastic plagioclase. However, evidence of plagioclase resorption, 

possibly occurring during ascent (Wiebe, 1990), may mask this feature. Longhi et al. (1993) have 

suggested that a crystal mush as much as 65% crystalline ascending under shear stress could 

act like a liquid and therefore show no evidence of protoclasis. Royse and Park (2000) proposed 

that the NPS anorthosite plutons were emplaced via conduit systems formed by dilation of pre­

existing shear zones. Their evidence for this is three-fold. Firstly, dykes in the eastern portion of 

the NPS cross-cut host gneisses but are not deformed by cross-cutting anorthosite plutons, which 

would be expected if anorthosites were diapirically emplaced. Secondly, these dykes are 

heterogeneously affected by shear zones and have similar emplacement ages (1316 to 1327 Ma) 

as the eastern NPS anorthosite bodies, indicating that deformation occurred during emplacement. 

Finally, as mentioned earlier, terminal velocity rates were calculated for the HAOM and compared 

against diapiric versus conduit system ascent rates. They determined that a 50 em HAOM in a 

crystal mush with a solid fraction ranging from 0 to 50% would settle out of the system at between 

8.2 and 5.0 cm/s, respectively. Calculated ascent rates were 7.5 x 10-8 cm/s for a diapir with a 

diameter of 5 km (smaller than is typical for the NPS) and 0.09 to 7.56 cm/s for dykes ranging 

from 2- 18 m, respectively. Therefore, according to these calculations conduit ascent is the only 

mechanism fast enough to transport the HAOM to emplacement levels. Royse and Park (2000) 

suggested that the elongate, ovoid structure of the large plutons is not a diapiric balloon but 

rather a reflection of sill-like emplacement and elongation during deformation. 
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1.3 OUTSTANDING PROBLEMS 

Reconnaissance mapping in the study area has been done by Wheeler (1969}, Taylor 

(1977a), Ryan (1991, 2001) and Ryan and James (2003), in which they provided an outline of the 

location, structure and description of the main geological units. Previous studies have 

investigated the temporal relationship between some NPS anorthosite and adjacent granitic 

intrusions but none have concentrated on the PGA and Tl. The contact between the PGA and Tl 

is deformed, both rock units share a common foliation parallel with the contact and the primary 

contact relations are obscured. The PGA is a large, -2275 km2
, generally homogeneous body of 

anorthosite. How was the space created for this large pluton and what was the nature of the 

magma? 

Previous studies of the Tasiuyak paragneiss have compared the regional and contact 

metamorphic mineral assemblages and used geothermobarometry to calculate P-T conditions of 

the contact metamorphism. In these studies the regional assemblage was described from rocks 

just outside the contact aureole. Although these rocks do not contain contact metamorphic 

assemblages they have still been subjected to thermal effects and therefore do not best represent 

regional metamorphism of the paragneiss. P-T constraints determined by geothermobarometry 

also have flaws since the contact mineral assemblages show disequilibrium textures and mineral 

chemistry indicates homogenization and resetting during cooling. Since geothermobarometric 

calculations are based on equilibrium reactions, the quantitative constraints produced from the 

previous studies most likely do not represent maximum P-T conditions. It has been recognized 

that the contact aureole in the Tasiuyak paragneiss was caused by thermal affects during the 

intrusion of the Makhavinekh Lake pluton (Ryan, 1991; McFarlane et al., 2003). However, to date 

there is no explanation why the adjacent Tl appears not to have had the same affect. 

1.4 THESIS GOALS 

This study was designed to provide a better understanding of the spatially and 

structurally related PGA and Tl, their mode of emplacement and deformation history, on the basis 
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of detailed 1 :20 000 mapping, petrography and geochronological studies. The documentation of 

field relationships and determination of crystallization ages are essential in unraveling any 

temporal and possibly cogenetic relationships of the units selected . Understanding the geological 

history of the PGA and Tl may also provide insight into why these intrusions, in contrast to the 

Makhavinekh Lake pluton, did not cause large-scale contact metamorphism of the adjacent 

Tasiuyak paragneiss. 

A comprehensive study of the Paleoproterozoic regional metamorphic assemblage of the 

Tasiuyak paragneiss was attempted in order to produce better constraints towards understanding 

the Mesoproterozoic contact metamorphic assemblages. A representative sample of the regional 

assemblage was collected from a location unaffected by the NPS. Information gathered from 

petrographic studies of the mineral assemblages and textures combined with mineral and bulk 

chemistry were used to plot P-T conditions on a petrogenetic grid. These results were then used 

to determine if the Tasiuyak paragneiss outside the Makhavinekh Lake pluton contact aureole but 

adjacent to the Tl did not reach sufficiently high temperatures to cause contact metamorphism or 

whether other factors, such as bulk composition, played a role. 

1.5 METHODOLOGY 

1.5.1 Field Mapping and Sampling 

Geological mapping was carried out in the field on 1 :20 000 airphotos. Information such 

as sample location, photograph location, rock types, contacts and structural measurements were 

recorded directly onto the airphotos. Detailed information was recorded in a fieldbook. Samples 

were labeled as TL01-# and TL02-# depending on the year they were collected (2001 and 2002, 

respectively). Measurements were recorded using the right-hand rule method. Oriented samples 

were collected by first measuring the strike and dip of the planar fabric, then marking the 

orientation on the sample before extraction from its location . 

The contact aureole in the Tasiuyak paragneiss was studied along three transects from 

the margin of the Makhavinekh Lake pluton to the margin of the Tl. Samples were collected along 
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these transects for petrographic studies to examine the changes in contact metamorphism 

assemblages and construct petrogenetic grids to determine P-T conditions. In addition, one 

sample was collected- 10 km from the NPS-Tasiuyak margin. This sample contains an 

undisturbed regional metamorphic assemblage and was used for comparison with samples 

adjacent to the Tl that appear to be unaffected by contact metamorphism. 

Sample locations of the major rock units were selected for geochronology after well­

constrained field relationships were established. The rock was broken up and the weathered 

surfaces trimmed away at the sampling site to reduce possible contamination. About 20 to 40 kg 

of rock was collected for each geochronological sample. A total of 11 geochronological samples 

were collected, of which 6 were actually dated. 

1.5.2 U-Pb Geochronology 

1.5.2.1 U-Pb systematics theory 

U-Pb geochronology is based on the radioactive decay of a parent atom of uranium (U) 

via a.-decay producing a series of meta-stable daughter isotopes and ending with a stable 

daughter isotope of lead (Pb). U has three natural isotopes, 238U, 235U and 234U. All three are 

unstable, however, 234U exists as a step in the decay series of 238U. The decay of 238U and 235U 

produces stable 206Pb and 207Pb, respectively. Pb has four natural isotopes, 208Pb, 207Pb, 206Pb, 

and 204Pb, of which only the last is non radiogenic. 

The law of radioactive decay states that the rate of decay of an unstable parent isotope to 

a stable daughter product is proportional to the number of atoms, n, present at time t: 

dn/dt = -An, (1.1) 

where A is the decay constant and dn/dt is the rate of change of the number of parent atoms. The 

equation contains a negative since the rate is decreasing with time. 

The equation is integrated from t=O to t, assuming that at time t=O, the number of atoms 

present is no: 

In n/ no = -At or n = n0e·'-~ 
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Since the number of daughter atoms produced, D*, is equal to the number of parent atoms 

consumed: 

D* = n0 - n (1 .3) 

Therefore combining equations 1.2 and 1.3 to replace no gives: 

D* = n(e-M-1) (1.4) 

Taking into account the number of daughter atoms at t=O, 0 0 , then the total number of daughter 

atoms after time t is: 

In the case of the U-Pb system the equation becomes: 

206Pb = ( e;.23B1 
- 1 ) and 

z3au 

207Pb = (e;.235t- 1 ), 
235u 

where Pb denotes strictly radiogenic lead. 

(1.5) 

(1.6) 

(1.7) 

Minerals such as zircon, monazite and baddeleyite, that acquire U, but not Pb, into the 

crystal structure during crystallization can be used to provide absolute ages for the event (i.e. 

igneous, metamorphic, deformation) in which the mineral was formed. If the mineral has 

remained a closed system for U and Pb, equations 1.6 and 1. 7 will yield concordant ages, which 

can be plotted on a concordia diagram. The concordia curve graphically represents the isotopic 

compositions in a closed system for the two U/Pb isotopic systems with relation to the decay 

constant and successive values oft (Wetherill, 1956a). 

Correction for common lead is made by measuring the initial 204Pb in the mineral, and 

subtracting common lead of a composition defined by the model of Stacey & Kramers (1975) for 

the age of the rock. The model calculated 204PbF06Pb and 204PbF07Pb are subtracted from the 

measured values. This yields values for total radiogenic 206Pb and 207Pb, which are used in the 

age calculation. 
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Lead loss is a common problem in mineral dating. Lead may be leached out of the 

system from metamict domains along fractures. In this case the U-Pb ages do not lie on the 

concordia curve (discordant) but they often form a linear array on the diagram. The discordia line 

intersects the concordia curve at two points, 1) at the time of original crystallization, and 2) at a 

younger age which may represent the time when the grain was disturbed (Wetherill, 1956b) or at 

a meaningless "young age" which is the result of lead loss integrated over time. Tilton (1960) 

suggested that, over time, Archean minerals undergo continuous lead loss by diffusion. The 

discordant data yield a straight line that intersects at or near the origin. However, without 

geological evidence of a specific lead loss event, no age-significance should be inferred from the 

lower intersection of the discordia line (Dickin, 1995). 

1.5.2.2 Analytical techniques 

Samples were fragmented in a jaw crusher and then reduced to powder in a disc mill. 

The powder was panned on a Wilfley table where the heaviest minerals were concentrated and 

collected; then further concentrated by passing these separates through methylene iodide. The 

heavy mineral separate contains the desired minerals for U-Pb geochronological studies. 

Lead loss effects in analyses can be reduced by passing the heavy mineral separates 

through a magnetic separator. This removes metamict minerals, which typically incorporate iron 

along fractures as well as inclusions containing impurities (Krogh, 1982a). In this study, the 

magnetic field of a Frantz isodynamic separator was strengthened, increasing the field current 

from 0.2 to 1.8 A, using an initial chute side-slope of 10°. Then, with the magnet at maximum 

strength, the side-slope of the separation tray was decreased from 10° to 0°. After each pass 

through the separator the magnetic concentrate was collected and saved and the non-magnetic 

material was passed through again. The final concentrated highest quality, non-magnetic grains 

were handpicked under a binocular microscope and then treated with air abrasion in a pneumatic 

mill. This technique removes any other minerals still attached to the zircon, baddeleyite, or 

monazite. Air abrasion also removes the outer layer of the crystal, which may be the highest in U 
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and therefore metamict (Krogh , 1982b) or may be more altered from fluids passing along grain 

boundaries. 

Close inspection under a microscope may not always ensure selection of the best quality 

grains. Problems such as detecting inherited inclusions of older radioactive minerals in the 

selected grains and microscopic internal structures must be resolved to fully understand the data 

after analysis. Therefore another important tool is imaging grains using back-scattered electron 

and/or cathodoluminescence imaging techniques, which can show internal structures that are not 

visible to the naked eye. Selection of grains for isotope dilution geochronology may be improved 

by determining if there are factors such as inheritance, overgrowths, or annealed fractures in 

representative grains of the selected populations. Back-scattered electron imaging of zircon was 

carried out using the Cameca SX50 ion microprobe at Memorial University. Operating conditions 

for imaging were: 15 kV acceleration potential , and a beam current of 10 nA. Later imaging was 

conducted at 25 nA, which better revealed internal structures in the zircon grains. 

Cathodoluminescence imaging was performed on the Leica Cambridge Instruments S-360 

scanning electron microscope at the Geological Survey of Canada. Operating conditions for 

cathodoluminescence imaging were 20 kV accelerating voltage, 25 mm working distance and a 

beam current of 2 nA. 

Minerals selected for analyses, either multiple- or single-grain fractions, were dissolved in 

HF and HN03 in teflon capsules at 210 C for 5 days. The aliquot was passed through ion 

exchange chemistry (Krogh, 1973) to extract purified U and Pb. Phosphoric acid was added to 

the extracted U and Pb and this mixture was then dried. Each sample was prepared for mass 

spectrometry by adding a drop of phosphoric acid and loading the mixture onto silica gel on 

rhenium filaments. 

Thermal ionization mass spectrometry was performed on a MAT 262 multi-collector at 

Memorial University. Multiple sets of data were measured in the temperature ranges of 1400°C to 

1550oC for Pb and 1550°C to 1650°C for U, and the sets that best agreed with each other and 

had the lowest errors were calculated to give a mean value for each ratio. The ratios were also 
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corrected for laboratory procedure blanks (typically 2-5 pg for Pb and 1 pg for U) and for common 

lead above the laboratory blank with lead of the composition predicted by the two-stage model of 

Stacey and Kramers (1975) according to the age of the sample. Uncertainties of ages are quoted 

at the 95% confidence level. 

1.5.3 Metamorphism 

Oriented samples collected for metamorphic petrology and microprobe studies were cut 

on a rock saw perpendicular to the foliation and parallel to strike or lineation. Polished sections 

were examined under the petrological microscope to determine metamorphic textures and 

mineral reactions/assemblages. 

1.5.3.1 Electron microprobe analytical conditions 

A set of polished sections from a transect through the contact aureole was analyzed on 

the Cameca SX50 electron microprobe at Memorial University. The polished sections were 

carbon coated to improve conductivity of electrons from the sample. Two types of analyses were 

performed: 1) bulk compositions of polished sections, and 2) quantitative spot analyses of 

minerals. Bulk composition analyses were conducted using the EDX method with an acceleration 

potential of 15 kV and a beam current of 250 nA. A task command was created to account for 

dead time and the overall area to be scanned and then calculate the real-time allotted to scan the 

polished section. Quantitative spot analyses of minerals were conducted by selecting transects 

across grains and in adjacent grains at grain boundaries to test for chemical zoning. Analyses 

were performed by spot collection, where the electron beam was concentrated on one spot over a 

period of time. Operating conditions for mineral compositional studies were: acceleration voltage: 

15 kV, beam current: 20 nA, beam size: 1 Jlm, and counting time: 50 seconds for garnet, 75 

seconds for all other minerals. In the case of plagioclase, a lower beam current of 1 OnA and a 

larger beam diameter of 3 llm were used due to feldspar's sensitivity to damage by the beam. 
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1.5.3.2 Petrogenetic grids 

The NaKFMASH petrogenetic grid from Spear et al. (1999) was used to determine the 

pressure and temperature fields in which the different regional and contact metamorphic 

assemblages were equilibrated . This grid is appropriate for pelitic rocks like the Tasiuyak 

paragneiss, which have undergone partial melting in the P-T range of amphibolite to granulite 

facies metamorphism. 

1.6 THESIS STRUCTURE 

The thesis contains five chapters of which Chapters 3 and 4 represent stand-alone 

papers intended for journal submission. Chapter 1 introduces the scope of the project and 

Chapter 2 contains an overview of the regional and local geology and information on relevant field 

components. Chapter 3 represents a paper, which contains a study of field relationships and 

geochronology used to propose a model of emplacement of the PGA and Tl. The manuscript 

represented in Chapter 4 consists of a regional and contact metamorphic study of the Tasiuyak 

paragneiss and its relationship to the surrounding intrusive rocks. Chapter 5 is a compilation of 

the conclusions drawn from the manuscripts and provides a synthesis of the research. This 

structure therefore contains details that are unavoidably repeated between some chapters. All 

references are located at the end of the thesis rather than after each manuscript. The thesis 

version of the papers contains additional figures and plates, which will not be included in the 

manuscripts submitted for publication. 
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Table 1.1: Compilation of U-Pb ages of intrusive rocks of the Nain Plutonic Suite. The location of intrusions is provided in Figure 1 1 .. 
Intrusion/Location Location in Rock type Mineral dated Age Reference 

the NPS 
Voisey Bay-Notakwanon batholith East Granite Zircon 1292 ± 4 Ma Ryan et al., 1991 * 
(VB-N) 
Sango Bay (SB) East Leucotroctolite Zircon 1294 ± 1 Ma Hamilton et al., 1994 
Dog Island (DI) East Granite Zircon ca . 1295 Ma Krogh & Davis, 1973 * 
Cabot Lake (CL) West F errod iorite Zircon & baddeleyite 1298 ± 2 Ma Hamilton et al., 1994 
Satorsoakulluk dyke (SO) East F errod iorite Baddeleyite 1301+2Ma Hamilton et al., 1994 
Koliktalik Island (Ko) East Anorthosite Zircon 1305 ± 2 Ma Hamilton et al., 1994 
Newark Island (NW) East Granodiorite Zircon 1305 ± 5 Ma Simmons et al., 1986 
Goodnews complex (GN) East Granite Zircon 1305 ± 10 Ma Simmons & Simmo'ns, 1987 
Tigalak intrusion (Tg) East F errod iorite Zircon 1306 ± 3 Ma Hamilton et al., 1994 
Kiglapait intrusion (KG) East Gabbroic pegmatite Baddeleyite 1307 ± 1 Ma Hamilton, 1997 
Kikkertavak Island (KI) East Anorthosite and leuconorite Zircon 1311±2Ma Hamilton et al., 1994 
Tabor Island (Tb) East Anorthosite and leuconorite Zircon 1311±2Ma Hamilton et al., 1994 
Johnathan Island intrusion (Jl) East Diorite & troctolite Zircon 1312 + 3 Ma Hamilton et al., 1994 
Satorsoakulluk dyke (SO) East Ferrodiorite Zircon (xenocrystic) 1315±2Ma Hamilton et al., 1994 
Umiakovik batholith (UK) West Granite Zircon 1316±3Ma Emslie & Loveridge, 1992 * 
Hosenbein Lake complex (HL) East Leucogabbronorite Zircon 1318 ± 6 Ma R. Voordouw, per comm., 2004 
Umiakovik batholith (UK) West Quartz monzodiorite Zircon 1319 ± 2 Ma Emslie & Loveridge, 1992 * 
Paul Island intrusion (PI) East Massive anorthosite Zircon 1319±1Ma Hamilton et al., 1994 
Makhavinekh Lake pluton MK) West Leuconorite Zircon 1322 + 1 Ma Hamilton et al., 1994 
Makhavinekh Lake pluton MK) West Granite Zircon 1322 ± 1 Ma Ryan, 1991 
Puttuaalu Brook intrusion PB) West Leuconorite Zircon 1322 ± 1 Ma Hamilton et al., 1998* 
Barth Island intrusion (BI) East Ferrodiorite Zircon 1322 ± 2 Ma Hamilton et al., 1994 
Anaktalik Brook dyke (AB) West Monzonite Zircon ca . 1326 Ma R.F. Emslie, quoted in Ryan and 

James, 2003 
lglusuataliksuak Lake (IL) East Quartz monzodiorite Zircon 1330 ± 1 Ma Hamilton et al., 1998* 
Ukpaume intrusion (Up) Central Leuconorite Zircon 1330 ± 2 Ma Hamilton, 1997 
Barth Island intrusion (BI) East Leucotroctolite Zircon & baddeleyite 1332 ± 2 Ma 0 . Gaskill, per comm., 2004 
Barth Island intrusion {BI) East Leuconorite Zircon 1333 + 4 Ma 0 . Gaskill, per comm., 2004 
Voisey's Bay intrusion (VB) (also Central Troctolite & gabbro Zircon & baddeleyite 1333 ± 1 Ma Amelin et al., 1999 * 
called Reid Brook intrusion) 
Ukpaume intrusion (Up) Central Diorite Zircon 1333 ± 2 Ma Hamilton et al., 1994 
Pearly Gates pluton (PG) West Anorthosite Zircon 1335 +7/-3 Ma This thesis (see Chapter 3) 
Pearly Gates pluton (PG) West Leuconorite Zircon 1342 ± 1 Ma This thesis (see Chapter 3) 
Mt. Lister region (ML) Central Monzonite (adjacent to Mt. Lister Zircon 1343 ± 3 Ma Connelly & Ryan, 1994 

pluton) 
Hare Hill Monzonite (HH) West Monzonite Zircon 1351 ± 3 Ma Connelly, 1993 
Fraser Canyon intrusion (FC) West Anorthosite Zircon 1355 ± 1 Ma This thesis see Chapter 3 
Tessiarsuyungoakh intrusion (TI) West Monzodiorite Zircon 1360 ± 4 Ma This thesis see Chapter 3 
Tessiarsuyungoakh intrusion (TI) West Monzonite Zircon 1363 ± 3 Ma This thesis see Chapter 3 

*The U-Pb ages and supporting data have been published. (All others refer to ages quoted in papers or conference abstracts.) 



Mesoprotereozoic Nain Plutonic Suite 

granitic plutons 
- gabbroic and ferrodioritic plutons 
- anorthositic plutons 

Paleoproterozoic Arnanunat Plutonic Suite 

- granitic plutons 
- anorthositic plutons 

Archean and/or Paleoproterozoic Southeastern 
Churchill Province 
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the Paleoproterozoic 
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UK - Umiakovik batholith 
PB - Puttuaalu Brook intrusion 
IL - lglusuataliksuak Lake 
FC- Fraser Canyon intrusion 
Tl - Tessiarsuyungoakh intrusion 
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AB- Anaktalik Brook dyke 
MK- Makhavinekh Lake pluton 
CL - Cabot Lake 
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VB-N - Voisey Bay -
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GN - Goodnews complex 

Kl - Kikkertavak Island 
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complex 
PI - Paul Island intrusion 
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Ko- Koliktalik Island 
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Figure 1.1: Simplified geological map of the Nain Plutonic Suite showing the location of dated intrusions from Table 1.1 (modified from 
Ryan & James, 2003). VB, SO, Up, AB, HH, ML monzonite, IL, Tg, Ko and FC units are too small to show on this map. Sango Bay is south 
of this map area. 



CHAPTER 2 - REGIONAL AND LOCAL GEOLOGY 

2.1 INTRODUCTION 

This chapter describes the regional geological setting in detail and gives a brief overview 

of the geology of the study area. Detailed geological descriptions and interpretation of the study 

area are found in the respective manuscripts represented as Chapters 3 and 4 to reduce 

repetition. This section also provides information about previous work and field components 

related to the research of the study area. 

2.2 REGIONAL GEOLOGY 

The host rocks of the Mesoproterozoic Nain Plutonic Suite (NPS) are part of two 

structural provinces ranging in age from Archean to Paleoproterozoic (Fig. 2.1 ). These are the 

Archean Nain Province and the Archean and Paleoproterozoic southeastern Churchill Province 

(SECP). The Nain Province is part of the North Atlantic Craton that extends eastwards through 

Greenland, Scotland and Baltica. The SECP is the southeastern extent of the Churchill Province 

proper, which can be traced through northwestern Canada, northward through the Arctic islands 

and into northwestern Greenland. The Churchill Province is part of the Rae Craton, in which the 

SECP portion was sandwiched between the North Atlantic Craton to the east and Superior Craton 

to the west during ca. 1.87- 1.80 successive, oblique collision. The collision along the western 

margin between the Superior and the Rae Cratons formed the New Quebec Orogen along the 

margin of the Superior Craton. The North Atlantic Craton and the eastern margin of the Rae 

Craton were accreted together during the Paleoproterozoic Torngat Orogen, a 1.87-1 .86 Ga 

oblique continent-continent collision zone. The suture zone divides Archean orthogneiss of the 

Nain Province to the east from the SECP to the west. 

The Archean Nain Province (3.8- 2.5 Ga) is subdivided into the Saglek Block in the 

north and the Hopedale Block in the south . The Saglek and the Hopedale blocks have different 

geological characteristics, which imply that they were originally separate Archean cratons. 
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Connelly and Ryan (1996) suggested that they were accreted in the Late Archean although the 

suture has been obscured by the intrusion of NPS. The older Saglek Block (ca. 3.8-2.5 Ga) 

comprises tonalitic orthogneisses and deformed diabase dykes as well as three supracrustal units 

that unconformably overlie the orthogneisses. The supracrustal units are: 1) the 

metasedimentary Snyder Group (>1800 Ma) (Barton & Barton , 1975), 2) the metavolcanic 

Mugford Group (ca. 1950 Ma) (M.A. Hamilton, per comm., 2004) and 3) the metasedimentary 

Ramah Group (<2135 Ma) (Ermanovics & Van Kranendonk, 1990). Recently, Ryan & Hamilton 

(1998) recognized a Paleoproterozoic anorogenic AMCG suite, which is locally deformed and 

metamorphosed, within the Saglak Block. This group of anorthositic, noritic and granitic bodies 

was previously mapped as part of the Mesoproterozoic Nain Plutonic Suite. However, U-Pb 

dating indicated that this group of rocks, called the Arnanunat Plutonic Suite (B . Ryan, per. 

comm. , 2002), intruded between ca. 2135 and 2110 Ma (Hamilton et al. , 1998). The Saglek Block 

rocks were subjected to regional metamorphism that produced amphibolite to granulite facies 

assemblages. The younger Hopedale Block consists of ca. 3.1 Ga orthogneiss and volcanic belts 

and a ca. 2.8 Ga tonalite-trondhjemite-granite suite. Regional metamorphism in this block has 

produced greenschist to amphibolite facies assemblages. 

The eastern portion of the SECP related to the Torngat orogenic event is often referred to 

as the Rae Province (Hoffman , 1988; Hoffman 1990; Mengel and Rivers , 1991 ; Van Kranendonk, 

1996, Van Kranendonk and Wardle, 1997). However, for simplicity this region will be referred to 

herein as the SECP. The SECP consists of Paleoproterozoic paragneiss and minor amounts of 

orthogneiss as well as Archean orthogneiss reworked in the Paleoproterozoic. The Tasiuyak 

paragneiss is interpreted to represent an accretionary wedge of detritus (Van Kranendonk et al. , 

1994; Wardle and Van Kranendonk, 1996; Rivers et al. , 1996) shed from an unidentified 

Paleoproterozoic source (Scott and Machado, 1994) prior to subduction-related volcanic arc 

magmatism. The detritus underwent amphibolite to granulite facies metamorphism at ca. 1860 

Ma (Bertrand et al. , 1993) during the Torngat orogen collision and crustal thickening. Bertrand et 

al. (1993) reported maximum peak metamorphic conditions of 9-10 kbar and 950°C. 
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The evolution of the Torngat orogen involved transpressional collision and crustal 

thickening beginning at ca. 1860 Ma. Crustal thickening produced a doubly vergent structural fan 

with the axis centred in ttie Tasiuyak paragneiss (Rivers et al., 1996). Peak metamorphism 

reached granulite and amphibolite facies shortly after collision. There is some debate about which 

continent underwent subduction. Van Kranendonk (1996) suggested that the Nain Province was 

subducted under the SECP. Scott (1998) argued that the SECP (Rae Province) was subducted 

under the Nain Province. Scott (1998) also presented a model suggesting that the Tasiuyak 

paragneiss was accreted to the Nain Province (North Atlantic Craton) after its sedimentary source 

underwent complete subduction. Wardle and Van Kranendonk (1996) proposed the possibility 

that neither craton had undergone subduction but rather that a separate crustal sliver subducted 

under both cratons. All parties, however, agree on the relative timing and oblique nature of 

collision. 

Sinistral shear zones related to continued orogenic deformation were formed between ca. 

1845 and 1820 Ma. The Abloviak shear zone (ASZ) (Fig. 2.1) is one of these sinistral 

transpressional zones that formed along the suture within the Tasiuyak paragneiss producing a 

strong foliation trending 160-180°. A U-Pb geochronological study of zircons from syntectonic 

granitic intrusions in the Tasiuyak paragneiss by Bertrand et al. (1993) suggested ASZ 

deformation at ca. 1844 Ma. Post-collisional uplift (and erosion) occurred ca.1.79 to 1.71 Ga with 

the development of the sinistral Komaktorvik shear zone, folding of the ASZ and a series of east­

verging thrust-fold and thrust belts in the Nain Province (North Atlantic Craton). 

The anorogenic ca. 1360 to 1290 Ma NPS (Fig. 2.1) intruded along part of the Torngat 

Orogen suture zone. The NPS consists of numerous intrusive bodies that were emplaced at mid­

crustal level, at depths of -10-15 km (Berg, 1979; Lee, 1987; Ryan, 1991; Emslie and Stirling, 

1993). It comprises two major rock groups: 1) anorthosite, norite, gabbro and troctolite; and 2) 

charnockite, mangerite, granite and ferrodiorite. These igneous bodies are generally well 

preserved, however some older intrusions have been partially recrystallized and deformed at their 

margins (Ryan, 1993). Some of the regionally metamorphosed host gneisses of both the Nain 
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Province and the SECP have been subjected to contact metamorphism by NPS intrusions (Berg, 

1977b). The region has been subjected to faulting and minor hydrothermal alteration. The NPS is 

also known for hosting the Voisey's Bay Ni-Cu deposit, southwest of Nain. 

2.3 STUDY AREA 

2.3.1 Introduction 

The study area spans the deformed contact between the PGA and Tl of the NPS and the 

intrusive contacts into the Tasiuyak paragneiss (SECP) by the Tl to the east and the 

Makhavinekh Lake pluton to the southwest. This section discusses previous work and field 

components, and introduces the geology of the study area. 

2.3.2 Previous Work 

The first geological and geographical mapping of the thesis area was pioneered by E.P. 

Wheeler (1942, 1960, 1969). Wheeler (1969) also published a study of the Tl describing 

petrography and mineral chemistry as well as suggesting the geometry and emplacement of the 

intrusion relative to the PGA. Further regional mapping has been done at 1 :250 000 scale by 

Taylor (1977a) and by Ryan and James (2003) at 1:50 000 and 1:100 000 scale. 

Reconnaissance mapping by Bruce Ryan of the Newfoundland and Labrador Department of 

Mines and Energy over the last 13 years has added more detail to Wheeler's work. Ryan (1991) 

investigated the Makhavinekh Lake pluton and the surrounding contact metamorphosed Tasiuyak 

paragneiss, and described the rock units and field relationships. Ryan (1993) and Ryan and 

James (2003) also described the geological units of the PGA, Tl and Tasiuyak paragneiss and 

field relationships. A preliminary investigation of labradorite occurrences was conducted in the 

area by Watson (1980) with particular attention to the Pearly Gates "quarry" for which the pluton 

is named by Ryan (1993). The "quarry" is actually a talus slope in a narrow east-west valley along 

a fault zone. The valley walls and talus contain large centimetre- to metre-scale blue-green and 

rarely seen yellow, iridescent labradorite. 
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Berg (1977a,b) did a regional study of contact metamorphic assemblages in the host 

rocks and incorporated two samples (2-1716, 2-1572) from this thesis area in his metamorphic 

study. These samples produced P-T results of 5.6 kbar and 91 ooc to 915°C. McFarlane et al. 

(2003) carried out a study with samples from the contact aureole to model geothermometry 

techniques using Al-solubility of orthopyroxene. The authors collected samples along two 

transects; the first was oriented northward from the northern margin of the Makhavinekh Lake 

pluton (within this thesis area), and the second was oriented eastward from the southeastern 

margin of this pluton (outside this thesis area). Only samples from the second transect were used 

to determine the contact metamorphic P-T paths. However, McFarlane et al. (2003) reported that 

due to the similarity in assemblages with increasing distance from the contact, the P-T conditions 

should be the same for both transects. Reported temperatures were 700°C to 900°C at distances 

ranging from 5750 to 20 m, respectively, from the contact. 

2.3.3 Location and Access 

The study area is located approximately 60 km west of Nain, northern Labrador (Fig. 2.1) 

and encompasses approximately 100 km2 on NTS map sheets 140/9 and 10. The area (Fig. 2.2) 

incorporates the western margin of the Nain Plutonic Suite and its Paleoproterozoic host, the 

Tasiuyak paragneiss of the SECP. The area was investigated on foot from camps established by 

helicopter. A zodiac was used in 2002 for more rapid access along Tessiarsuyungoakh Lake and 

to cover the shoreline and islands. 

2.3.4 Field Component of the Project 

The aim of the field component was to provide a detailed 1 :20 000 map of the study area 

(Map 1 and Map 2), with particular attention to defining: 1) intrusive mechanisms and 

relationships of the Pearly Gates Anorthosite pluton and Tessiarsuyungoakh intrusion, and 2) 

determining the distribution and conditions of contact metamorphism of the Tasiuyak paragneiss. 
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A total of twelve weeks of fieldwork was carried out in the summers of 2001 and 2002 with 

logistical support from Voisey's Bay Nickel Company. Samples were collected for petrographic 

studies, mineral chemistry, U-Pb geochronology, and metamorphic studies. 

2.3.5 Local Geology 

The research area (Figs. 2.1 and 2.2) encompasses the western margin of the PGA, the 

adjacent Tl, the Tasiuyak paragneiss host rocks and the northern margin of the Makhavinekh 

Lake pluton . (To avoid repetition, detailed geological descriptions and interpretations are found in 

Chapters 3 and 4, which represent manuscripts.) A brief description of the geology follows from 

east to west. 

2.3.5.1 Pearly Gates Anorthosite pluton 

The PGA consists of an inner zone of massive anorthosite and a deformed outer zone 

with foliated and recrystallized layers of anorthosite and norite. The inner zone contains various 

sizes of grey plagioclase megacrysts, averaging about 30 to 70 em. These megacrysts are 

fractured and typically have thin rims of recrystallized, white plagioclase between grain 

boundaries and along fractures. The outer zone rocks are increasingly deformed and 

recrystallized towards the contact with the Tl and the foliation is parallel to this contact. 

The PGA was intruded by norite. A relatively large body of leuconorite and norite located 

along the southeastern shore of Tessiarsuyungoakh Lake is relatively undeformed and contains 

xenoliths of anorthosite. Norite dykes are found throughout the PGA study area and are weakly 

foliated or undeformed. A weakly foliated norite dyke crosscuts the gneissic PGA rocks at the 

contact with the Tl. Minor intrusions of monzodiorite were also observed cutting anorthosite in the 

southwestern part of the outer zone (Map 1 & 2). 

2-6 



2.3.5.2 Tessiarsuyungoakh intrusion 

The Tl is a composite body of monzonite and monzodiorite which both contain various 

amounts of orthopyroxene, olivine and/or clinopyroxene. The Tl is also strongly foliated along the 

contact with the PGA. The fabric weakens away from this contact and the Tl rocks are relatively 

undeformed along the contact with the Tasiuyak paragneiss. Two contact relationships were 

observed between the monzonite and monzodiorite: the first is a compositional gradation, and 

the second is a sharp contact with irregular, lobate or cuspate boundaries. In some cases, 

cuspate contacts show monzodiorite pinching into the monzonite and no change in grain-size 

toward the contact. Along the western margin of the Tl, monzonite was intruded as sheets into 

the Tasiuyak paragneiss. 

Two bodies of megacrystic anorthosite are exposed in the Tl . The first body is located on 

the north shore of the Tessiarsuyungoakh Lake and the second body is located along the 

southern cliffs of the Fraser Canyon (Fig. 2.2). Like the PGA, both anorthosite bodies have an 

inner zone of anorthosite and outer zone of layers of anorthosite and norite. However, only the 

Tessiarsuyungoakh Lake anorthosite body is deformed in its outer zone like the PGA. 

2.3.5.3 Tasiuyak paragneiss 

The Tasiuyak paragneiss is a relatively homogeneous metapelitic diatexite. The regional 

metamorphic assemblage comprises leucosome layers of quartz ribbons, K-feldspar, plagioclase 

and garnet and mesosome layers of plagioclase, K-feldspar, biotite, quartz, garnet and sillimanite. 

Minor amounts of pyrite, pyrrhotite, ilmenite, graphite, zircon, monazite and rutile are also 

present. Garnet porphyroblasts are round or elongate parallel to the foliation. Sillimanite grains 

form trains in the foliation plane and wrap around some garnet grains. Screens of unfoliated, 

granulite facies orthopyroxene-bearing meta-tonalite (enderbite) are distributed throughout the 

paragneiss but make up only a minor portion of the mapped area. The regional foliation broadly 

trends 160°SSE and is sub-vertical, however, locally the foliation can diverge from 11 oo to 165° 
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and dips range from 26° to 65° southwestwards. In the southern part of the map area changes in 

foliation orientation have been interpreted as a fold structure (Fig. 2.2). 

In the study area the Tasiuyak paragneiss has been subjected to contact metamorphism 

during intrusion of the Makhavinekh Lake pluton. The contact aureole extends 4 km radially from 

the margin of the Makhavinekh Lake pluton. This intrusion has produced cordierite + 

orthopyroxene pseudomorphs replacing garnet + biotite and cordierite + spinel pseudomorphs 

replacing garnet + sillimanite along most of the study area with the exception of the northern most 

region along the Tasisuak Lake (Fig. 2.2). In this area the regional metamorphic assemblage 

appears to be intact and therefore unaffected by the emplacement of either the Makhavinekh 

Lake pluton or the Tl. 

2.3.5.4 Makhavinekh Lake pluton 

Only small areas of the northern margin of the Makhavinekh Lake pluton were 

investigated during this study, as part of transects from this pluton through the Tasiuyak 

paragneiss. In these areas the pluton consists of undeformed rapakivi granite. The rock contains 

medium- to coarse-grained K-feldspar rimmed by plagioclase, with interstitial, pale blue quartz, 

olivine, orthopyroxene, clinopyroxene and minor amounts of hornblende. The attitude of the 

contact was not observed in this study, but was reported by Ryan (1991) and McFarlane et al. 

(2003) as sub-vertical. The margin of the pluton contains abundant xenoliths of Tasiuyak 

paragneiss which have undergone contact metamorphism producing a metamorphic assemblage 

of cordierite + orthopyroxene + spinel from garnet+ biotite + sillimanite. Along the northeastern 

margin of the pluton, dykes of coarse-grained, white weathered granite with pale blue quartz were 

observed. However, these dykes were not observed along the northern margin of the 

Makhavinekh Lake pluton or in the Tasiuyak paragneiss. 
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2.3.5.5 Local minor dykes and faulting 

Dykes of pegmatitic to aplitic syenite and granite as well as gabbro cut through all of the 

above-mentioned units. These dykes generally trend east-west, north-south or northwest­

southeast parallel to major faults that also cut all the units. Five localities of fault breccia were 

found. One location was along the north shore of Tessiarsuyungoakh Lake, three locations were 

along the river system following the NW-SE contact between the Tl and the Tasiuyak paragneiss 

and one was along an east-west river system, which cuts through the Tl and PGA. In every case 

the fault gouge was located in the Tl units and contained sub-rounded to rounded monzonitic 

fragments. 
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Figure 2.1: Simplified geological map of the major structural and intrusive units in northern 
Labrador (modified after Hall et al. , 1995). 
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CHAPTER 3- EMPLACEMENT HISTORY OF THE PEARLY GATES ANORTHOSITE PLUTON 

AND TESSIARSUYUNGOAKH INTRUSION: 

PETROLOGICAL AND GEOCHRONOLOGICAL EVIDENCE 

Abstract: 

The Pearly Gates Anorthosite pluton and the spatially related monzonite and 

monzodiorite Tessiarsuyungoakh intrusion are located along the western margin of the 

Mesoproterozoic Nain Plutonic Suite. Syn-emplacement deformation along the contact of these 

two bodies has masked the intrusive relationships. Norite bodies were intruded into the Pearly 

Gates Anorthosite pluton during and after deformation. U-Pb thermal ionization mass 

spectrometry dating of zircon and baddeleyite from units within these intrusions has yielded the 

oldest crystallization ages to date for magmatic components of the Nain Plutonic Suite. The 

Tessiarsuyungoakh intrusion has the oldest intrusive ages with concordant zircon data of 1363 ± 

3 Ma for the monzonite and 1360 ± 4 Ma for the monzodiorite. The Pearly Gates Anorthosite 

pluton contained prismatic zircons and anhedral zircon fragments. The prismatic zircons, which 

were included in plagioclase phenocrysts gave an age of 1370 ± 5 Ma, and are interpreted to 

represent the time of growth of plagioclase crystals at depth, prior to emplacement. The zircon 

fragments, which formed between plagioclase grain boundaries yielded an age of 1335 +7/-3 Ma, 

and are interpreted to represent the time of final crystallization of the Pearly Gates Anorthosite 

pluton. The Fraser Canyon Anorthosite that is exposed in the Tessiarsuyungoakh intrusion 

contained anhedral zircon fragments and baddeleyite grains, which gave the oldest intrusive age 

of 1355 ± 1.3 Ma for an anorthosite body in the NPS. An undeformed intrusive norite body in the 

Pearly Gates Anorthosite contained anhedral zircon fragments, which yielded a crystallization age 

of 1342 ± 1.2 Ma. Anhedral zircon fragments from a norite dyke that cuts the gneissosity of the 

Pearly Gates Anorthosite rocks at the contact gave a crystallization age of 1341 ± 1.8 Ma. The 

norite intrusive ages indicate that deformation in this area had terminated by ca. 1341 Ma. 
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Intermittent reactivation of older structures in the host Tasiuyak paragneiss formed 

conduit systems along which magmas were transported. These magmas were intruded as 

sheets, and stoping possibly occurred during emplacement. The Pearly Gates Anorthosite pluton 

and Tessiarsuyungoakh intrusion are not contemporaneous. Deformation along the contact 

between these intrusions most likely occurred during intrusion of the Pearly Gates Anorthosite 

pluton and after crystallization along its margins. 

3.1 INTRODUCTION 

The Mesoproterozoic Nain Plutonic Suite (NPS) is a 20,000 km2 Anorthosite-Mangerite­

Charnockite-Granite (AMCG) suite located in northern Labrador (Fig. 3.1 ). The area studied is 

located 60 km west of Nain on NTS map sheets 140/9 and 10, and incorporates the western 

margin of the NPS and the Paleoproterozoic Tasiuyak paragneiss of the Southeastern Churchill 

Province that locally forms the host rocks of the NPS. 

The Pearly Gates Anorthosite pluton (PGA) (Ryan, 1993) (Fig. 3.1) is part of the ca. 

1360-1290 Ma NPS. This pluton is ovoid and extends at least 65 km in a north-south direction 

and 35 km east-west (Ryan and James, 2003). The PGA consists of an inner zone of massive, 

very coarse-grained anorthosite bounded by a kilometre-wide outer zone of foliated anorthosite 

and norite layers. The foliation is defined by heterogeneously strained, medium- to coarse­

grained, partially recrystallized layers of leuconorite and norite. The PGA is intruded by bodies of 

deformed and undeformed leuconorite and norite (Fig. 3.2). To the west, the pluton is bounded by 

a concentric composite body of olivine- and/or pyroxene-bearing monzonite and monzodiorite, 

called the Tessiarsuyungoakh intrusion (TI), named by Wheeler (1969) (Fig . 3.2). The contact 

between the PGA and the Tl is strongly deformed, obscuring intrusive relationships. 

The Tl comprises a wide variety of anhydrous rock types. These rocks contain various 

amounts of primary quartz + plagioclase + K-feldspar + orthopyroxene ± clinopyroxene ± olivine 

and some rocks contain relatively high quantities of ilmenite and magnetite. These relatively 

unusual rocks are found throughout the NPS and have often been referred to as monzonite, 
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mangerite and ferrodiorite. The term ferrodiorite was used to describe anhydrous dioritic rocks 

with Si-content of -47%, high Fe, Ti and P, and inverted pigeonite. In this study the name 

ferrodiorite has been repiaced with more descriptive rock names using the lUGS 

recommendations for granitic rocks. Using this terminology the rock types are monzonite and 

minor quartz monzonite (mangerite equivalent if orthopyroxene-bearing) and monzodiorite 

(ferrodiorite equivalent). 

There have been many suggestions about possible magma sources and modes of 

emplacement associated with these AMCG suites. Suggestions of the possible parental magma 

vary from underplated or mantle-plume derived basaltic magmas (Berg, 1977b; Ashwal, 1993; 

Emslie, 1985; Emslie et al., 1994), to jotunitic or gabbronoritic material melted in the lower crust 

(Taylor et al., 1984; Longhi et al., 1999; Bolle et al., 2003). Determining whether the anorthosite 

and granitic counterparts are comagmatic, inferring fractionation from the same parental magma, 

or whether components of the AMCG suite are derived from different source regions further 

complicates an interpretation of the magmatic history. It has been widely accepted that 

anorthosite massifs were emplaced as a plagioclase crystal and liquid "mush" (Emslie, 1985, 

Emslie et al., 1994, Wiebe, 1990, Longhi et al., 1999); however, there is still much debate about 

the proportion of crystals to liquid. 

Assuming that anorthosite intruded as a crystal mush, the next problem is to determine a 

viable transport mechanism. There are two schools of thought regarding ascent mechanisms. 

Berg (1979), Wiebe (1990), Ashwal, (1993) and Emslie et al. (1994) suggested that diapiric 

transport is needed to move such large volumes of crystal mush through the crust. However there 

appears to be no evidence of vertical displacement of the country rocks adjacent to anorthosite 

plutons in the NPS. Xue and Morse (1993), Scoates and Chamberlain (1997, 2003) and Royse 

and Park (2000) favoured ascent via conduit systems and the latter group suggested evidence 

that shear zones were active during anorthosite emplacement in the eastern NPS. 

There are two proposed tectonic settings for the emplacement of AMCG suites. The first 

is failed rifting along an older structural weakness, i.e. the Paleoproterozoic Torngat orogen 
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suture zone, (Berg, 1977b; Morse, 1982; Emslie, 1985; Dushesne, 1984) although no field 

evidence has corroborated this hypothesis. The second and perhaps more viable scenario is 

reactivation of transpressional shear zones, which provided conduit systems to transport and 

emplace AMCG suites (Scoates and Chamberlain, 1997; Royse and Park, 2000). 

Two main questions addressed by this research are: 1) how were the Tl and PGA 

emplaced and the inner and outer zones of the PGA formed, and 2) are the structurally related 

anorthosite-monzonite-monzodiorite intrusions temporally related? U-Pb geochronology studies 

were conducted to determine absolute igneous ages of six major rock units where field 

relationships were well constrained . The geochronological results were combined with field 

evidence to develop a model for the emplacement and formation of these intrusions. 

3.2 REGIONAL GEOLOGY 

The anorogenic Mesoproterozoic NPS intruded along part of the Paleoproterozoic 

Torngat Orogen, a 1.87-1.86 Ga continent-continent collision zone (Fig. 3.1 ). This suture zone 

joins Archean orthogneiss of the Nain Province to the east with the Southeastern Churchill 

Province to the west. Recently, a Paleoproterozoic (ca. 2135-2110 Ma) AMCG suite, called the 

Arnanunat Plutonic Suite, was recognized as part of the Nain Province (Hamilton et al., 1998). 

This suite lies adjacent to the northeastern margin of the NPS and, like the NPS, consists of 

anorthositic and granitic rocks. However, the Arnanunat Plutonic Suite was affected by regional 

amphibolite facies metamorphism and deformation during the Torngat orogenic event (Ryan & 

Hamilton, 1998). The Southeastern Churchill Province consists of Paleoproterozoic Tasiuyak 

paragneiss (Wardle, 1983) and Archean orthogneiss reworked in the Paleoproterozoic (Wardle 

and Van Kranendonk, 1996). The quartz-K-feldspar-plagioclase-rich Tasiuyak paragneiss with a 

regional metamorphic sub-assemblage of garnet-biotite-sillimanite has been subjected to contact 

metamorphism by NPS intrusions producing cordierite-opx-spinel sub-assemblages (Berg, 

1977a,b; Ryan, 1991, Ryan and James, 2003, McFarlane et al., 2003). 
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The NPS consists of numerous intrusive bodies that were emplaced at a mid-crustal level 

at depths of -10-15 km (Berg, 1979; Lee, 1987; Ryan, 1991 ). It comprises two major rock groups: 

1) basic rocks, such as anorthosite, norite, gabbro and troctolite, and 2) acidic rocks, such as 

granite, monzonite, and monzodiorite. Most NPS granitic rocks are anhydrous consisting of 

olivine + quartz, and/or pyroxene except for a few hornblende-bearing granitic intrusions (Ryan, 

1991 ). The NPS has not been subjected to regional metamorphism and deformation and 

therefore is generally well preserved. However some of the older intrusions are partially 

recrystallized and deformed at their margins (Ryan, 1993). The NPS has been subjected to 

faulting and minor hydrothermal alteration. The NPS is best known as one of the world's best 

exposed AMCG suites and for hosting the Voisey's Bay Ni-Cu-Co deposit, southwest of Nain 

(Fig. 3.1 ). 

3.3 GEOLOGY OF THE STUDY AREA 

The research area (Fig . 3.2) encompasses the western margin of the PGA and adjacent 

Tl. A description of the geology follows from east to west. 

3.3.1 Pearly Gates Anorthosite Pluton 

The PGA consists of an inner zone of massive anorthosite and an outer zone of foliated, 

partially recrystallized layers of anorthosite and norite. The inner zone typically contains very 

coarse-grained, grey plagioclase (An30 to An55) (Pl. 3.1) with <1 0% similar sized interstitial 

orthopyroxene, generally a half a metre to a metre in length, and minor medium-grained ilmenite. 

Internal contacts were not observed, however, large metre-scale zones where plagioclase grains 

either increase or decrease in size, may suggest multiple intrusions. Orthopyroxene is ophitic and 

kink-banded . Plagioclase exhibits pervasive fracturing and minor white fine-grained 

recrystallization at grain boundaries (Pl. 3.2). North of Tessiarsuyungoakh Lake, many 

plagioclase crystals display labradorite schiller. This labradorite is typically iridescent with green, 

blue and yellow colours however some grains also show purple, red and bronze colours. The 
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crystals are typically fractured and altered and therefore are poor quality for use as gemstones or 

facing stone. 

The kilometre-wide outer zone of the PGA is increasingly deformed and recrystallized 

towards the contact with the Tl (Fig. 3.2). The anorthosite and norite layers range between 

centimetre- to metre-scale and have diffuse to sharp contacts in the less deformed areas. These 

layers are interpreted as igneous layering . This interpretation is most likely since relatively 

undeformed margins of anorthosite plutons in the eastern NPS show slump folding, gradational 

layering, troughs and scours (Wiebe, 1979; Royse and Ryan, 1995; D. Wright, per. com. 2002). 

The foliation is not obvious in the anorthosite layers, except for augen of relict igneous 

plagioclase in a matrix of sugary, recrystallized plagioclase. The fabric is best defined by norite 

layers, which contain attenuated coarse-grained, partially recrystallized, orthopyroxene and 

ilmenite surrounding lenticular coarse-grained plagioclase (Pl. 3.3). At the contact, the medium- to 

fine-grained anorthosite and norite rocks are gneissose with a foliation parallel to the boundary, 

striking 120° to150°, dipping 30° to 50° SW. Where the dip surface of the foliation is exposed , 

textures and compositions are heterogeneous (Pl. 3.4 ). Highly strained, recrystallized 

orthopyroxene appears to form a weakly oriented lineation, plunging - 20° WNW, within the 

foliation. The PGA appears to have a domal shape, with the western, southern and eastern 

contacts dipping outwards from the intrusion (Ryan, 1993; Ryan and James, 2003). 

The PGA was intruded by a medium- to coarse-grained, brown-weathering body of 

leuconorite and norite at the southeast end of Tessiarsuyungoakh Lake (Fig. 3.2). Xenoliths of 

anorthosite were observed in the leuconorite at the margin . The neritic body displays igneous 

textures and only minor evidence of deformation with kink-banded orthopyroxene and minor 

recrystallization of plagioclase. This unit can be traced continuously north and northwest of the 

lake as well as on some of the islands (too small to be shown on Fig. 3.2). The contact of the 

neritic body north of Tessiarsuyungoakh Lake does not contain anorthosite xenoliths and the 

contact can be diffuse or sharp with no chilled margin . 
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Coarse-grained, weak to moderately foliated, discontinuous norite dykes intruded into the 

PGA, of which most of the dykes are found in the outer zone. Some dykes display reaction rims 

of coarse-grained opx extending along the dyke margins. Most dykes are sub-concordant with the 

PGA foliation/boundary. However one dyke, located within a few metres of the TI-PGA contact, 

crosscuts the anorthosite/norite gneissosity (Pl. 3.5). Both the noritic dykes and intrusive norite 

body contain high concentrations of interstitial ilmenite ( -5 - 15% ). 

Minor bodies and dyklets of monzodiorite intruded the PGA, south of Tessiarsuyungoakh 

Lake. One 25 m2 monzodiorite body contains xenoliths of anorthosite. The xenoliths range from 

metre-sized blocks to centimetre-sized, rounded fragments, which are often fractured and in-filled 

with the surrounding monzodiorite. A 15 em plagioclase xenocryst shows evidence of having 

been fractured and rotated during resorption (Pl. 3.6). This xenocryst is round, with a grey core 

and white rim and the monzodiorite matrix filled the fractures. No intrusive monzonite was 

observed in the PGA. 

East-west and north-south trending hornblende- and biotite-bearing granitic to syenitic 

pegmatite and aplite dykes intrude the PGA and are associated with pink alteration along 

fractures. The alteration minerals consist of hematized epidote, white mica and calcite formed 

from the breakdown of plagioclase, and amphibole and chlorite formed from the breakdown of 

orthopyroxene. In many cases the alteration minerals are medium-grained which suggests 

pervasive fluid transport along these fractures. East-west, north-south and northwest-southeast 

trending gabbro dykes also intrude the PGA. Only a few gabbro dykes were seen and were 

mostly observed in valleys and riverbeds suggesting that they intruded along faults. Most of the 

gabbro dykes have undergone serpentinization of olivine. Both acidic and basic dykes have 

chilled margins indicating intrusion after cooling of the PGA. Alteration fractures in the PGA and 

serpentinization of the gabbro dykes indicate that hydrous fluids interacted with these rocks, 

possibly derived from the crystallization of the hydrous granitic dykes. 
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3.3.2 Tessiarsuyungoakh Intrusion 

The Tl is a composite body consisting of fine-to medium-grained, orthopyroxene-olivine­

clinopyroxene-bearing, oxide-rich monzodiorite and a medium- to coarse-grained orthopyroxene­

olivine-clinopyroxene-bearing monzonite. The weathered surface of the monzonite is white and 

the fresh surface has a colour index of 15 to 25. The monzonite typically has medium- to coarse­

grained, ovoid, K-feldspar phenocrysts and rarely seen coarse-grained , elongate K-feldspar 

phenocrysts, which are oriented parallel to the foliation. The monzodiorite has a rusty weathered 

surface and a colour index of 25 to 50. Although monzodiorite units are generally homogeneous 

in outcrop-scale, minor, millimetre-scale layering, defined by more mafic and more felsic 

compositions, was observed in fine-grained units. These layers are interpreted as igneous 

compositional layering. 

Like the anorthosite, these units are gneissic at the contact with the PGA with alternating 

centimetre- to metre-scale bands of monzonite and monzodiorite (Pl. 3. 7). However, although the 

fabric weakens away from the contact with the PGA, it can be traced throughout most of the 

intrusion. This weak foliation represents igneous layering and the elongate oriented K-feldspar 

phenocrysts in this region are interpreted to represent a magmatic flow foliation . Both the igneous 

and gneissic foliations are generally parallel to this contact except in the centre of the intrusion 

where the igneous foliation swings to east-west. This deflection appears to mimic the gneissosity 

in the Tasiuyak paragneiss to the south (Fig. 3.2) suggesting reactivation of older structures 

during deformation of these younger intrusive bodies. 

Where the fabric is weakest, two different contact relationships between the monzonite 

and monzodiorite were observed: 1) the contact is diffuse and the two rock units appear to have 

a gradational contact; and 2) intrusion of monzodiorite into the monzonite was observed and the 

irregular to cuspate contact (Pl. 3.8) indicates that the monzonite had not completely crystallized 

when the monzodiorite intruded. In both cases the evidence suggests that the monzonite and 

monzodiorite are temporally related. The different contact relationships could be interpreted as 

two or possibly three magma pulses. In this scenario, the earliest intrusion of monzonitic and 
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monzodioritic magma formed gradational contacts during crystallization. A second pulse of 

monzodioritic magma may have intruded the partially crystallized earlier intrusives. There is no 

evidence of monzodiorite intruding monzodiorite but this relationship would be difficult to observe. 

A few decimetre- to metre-scale anorthosite dykes intruded the Tl and have no chilled margins 

but have straight contacts. Although these anorthosite dykes could not be traced back to the 

PGA, they do suggest that the anorthosite intruded after the Tl crystallized but while the Tl was 

still hot (Pl. 3.9). 

The western margin of the Tl is typically coarse-grained monzonite, which intruded as 

sheets into the Tasiuyak paragneiss. The monzonite is generally undeformed but minor metre­

scale shear zones trend parallel to the contact with the paragneiss. In addition, the TI-Tasiuyak 

paragneiss contact is generally parallel to the gneissosity in the Tasiuyak paragneiss. 

Screens of Tasiuyak paragneiss are found throughout the Tl. The gneissosity in the 

screens is almost parallel (< 20°) to the contact and the foliation of this intrusive unit, suggesting 

that the Tl intruded as sheets parallel to the older structures in the paragneiss. Most of the 

Tasiuyak screens appear to have retained the regional metamorphic assemblage except for 

those within the 4 km range of the contact aureole produced by the Makhavinekh Lake pluton 

(see Chapter 4, section 4.1 0). 

3.3.3 Exposed Anorthosite Bodies 

Two bodies of anorthosite are exposed within the Tl (Fig. 3.2). Like the PGA, these 

bodies generally have an inner zone of anorthosite and an outer zone of neritic and anorthositic 

layers. The anorthosite on the north shore of Tessiarsuyungoakh Lake (Fig. 3.2) has structures, 

textures and fabrics similar to the PGA. A foliation in the outer zone is defined by leuconorite and 

nori te layers associated with anorthosite layers. The contact and foliation dips east at the eastern 

margin and dips west at the western margin suggesting this anorthosite body has a domal shape. 

The eastern margin of this anorthosite body was intruded by coarse- to very coarse-grained, 
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undeformed norite, with similar compositional and textural characteristics as the norite body 

within the PGA. This anorthosite body is interpreted as a portion of the PGA. 

The other anorthosite, south of Tasisuak Lake, is exposed along the vertical face of the 

Fraser Canyon, herein called the Fraser Canyon Anorthosite. The view from the other side of the 

canyon shows that it also has a domal structure. The roof of the Fraser Canyon Anorthosite was 

easy to access since it is near the top of the canyon, however access to the walls was difficult to 

impossible to reach on foot. This anorthosite, although partially recrystallized, is relatively 

undeformed. It consists of an inner zone of massive, very coarse-grained anorthosite, and an 

outer zone of medium- to coarse-grained norite. The norite exposed at the roof of the Fraser 

Canyon Anorthosite contains tabular plagioclase with interstitial orthopyroxene and ilmenite (Pl. 

3.1 0). 

A kilometre north of the Fraser Canyon Anorthosite, in a marshy valley, small 

outcroppings of undeformed anorthosite and norite are exposed in monzodiorite. These small 

units of anorthosite and norite are interpreted as exposed portions of the Fraser Canyon 

Anorthosite roof. The overlying monzodiorite is fine- to medium-grained and contains plagioclase 

inclusions (Fig. 3.2) ranging from a few millimetres to 20 em in size (Pl. 3.11 ). The plagioclase 

inclusions are sub-angular to sub-round, and the smaller inclusions are white whereas the larger 

inclusions are grey with white, recrystallized rims. The plagioclase inclusions could indicate that 

the monzodiorite intruded after the anorthosite. However, if the monzodiorite is part of the 

anorthosite intrusive package then the plagioclase crystals could be from the anorthositic magma 

and therefore were not plucked from the anorthosite by later intrusion. 

Field evidence suggests that the anorthosite body on the north shore of 

Tessiarsuyungoakh Lake is an exposed part of the PGA. However, on the basis of field 

relationships , the Fraser Canyon Anorthosite cannot be conclusively included or excluded as part 

of the PGA. 
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3.3.4 Faults and Dykes 

Faulting in the study area is best exposed along, and trending northwest-southeast, 

parallel to the Tl-Tasiuyak paragneiss contact. The fault lies within the monzonite of the Tl, and 

was seen as fault breccia and fault gouge (Pl. 3.12). A garnet-bearing syenite dyke intruded along 

this fault zone. A 2 m wide gabbro dyke intruded along the margin of the fault and the monzonite. 

The dyke appears unaffected by faulting and therefore was intruded after this event. Syenite, 

granite, aplite and gabbro dykes in the PGA and Tl generally trend east-west, north-south or 

northwest-southeast as do other major faults that cut these two intrusions. At least some of the 

granitic and gabbro dykes are younger than the faulting but it is unknown how many generations 

of these dykes exist. 

3.4 PETROGRAPHY 

3.4.1 Pearly Gates Anorthosite Pluton 

Due to the very coarse grain size of the inner zone of the PGA only the outer zone layers 

of anorthosite were selected for petrography. In the outer zone the anorthosite comprises 

adcumulate plagioclase containing minor inclusions of needle-like oxide and prismatic zircon. 

Plagioclase grains are recrystallized along grain boundaries showing development of subgrains 

and serrated boundaries (Pl. 3.13). Deformation twinning and undulose extinction is typical in 

both cumulate and recrystallized plagioclase. At the contact of the PGA, the anorthosite is 

completely recrystallized and granoblastic with sharp grain boundaries and triple junctions. Some 

cumulate plagioclase is antiperthitic with lamellae forming along cleavage planes. In a few places 

these lamellae were bent (Pl. 3.14 ). The interstitial minerals show a crystallization order of 

apatite, followed by ilmenite or magnetite, then orthopyroxene and clusters of anhedral zircon 

crystallizing last. Ilmenite is typically the dominant Fe-oxide and magnetite was rarely seen. 

The PGA noritic layers in the outer zone also show increasing recrystallization and 

deformation textures and fabrics towards the contact. Although the norite is heterogeneously 

deformed, ophitic and sub-ophitic orthopyroxene indicate that plagioclase crystallized first. At the 
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contact with the Tl, orthopyroxene and plagioclase are completely recrystallized with only minor 

relict igneous cores in the largest original grains. In the schistose region of the outer zone away 

from the contact, relict igneous plagioclase is anti- to meso-perthitic and the lamellae appear to 

be elongated due to strain. In rare cases the albitic lamellae were bent. In this region, coarse­

grained orthopyroxene appears to be single crystals in hand sample but petrographic 

observations indicate that they are typically recrystallized (Pl. 3.15). 

The norite intrusive body and dykes generally have the same mineralogy and similar 

characteristics. These rocks are composed of cumulate plagioclase and ophitic orthopyroxene. 

The orthopyroxene also contains inclusions of apatite and ilmenite. Strong deformation textures 

and fabrics were absent in the norite intrusive body indicating that the rock is relatively 

undeformed (Pl. 3.16). This intrusion also contained minor clinopyroxene lamellae in 

orthopyroxene indicating the presence of a minor amount of inverted pigeonite. The norite dykes 

have been heterogeneously deformed. Some dykes were highly strained containing attenuated, 

recrystallized orthopyroxene and bent antiperthitic lamellae, while others contained no 

deformation fabric and only minor fine-grained, recrystallized grains mantling primary 

orthopyroxene and plagioclase. 

Samples from the two exposed bodies of anorthosite show the same petrographic 

characteristics as the anorthosite and norite from the PGA with one exception. The anorthosite 

and norite sampled at the roof of the Fraser Canyon Anorthosite show undulose extinction in both 

orthopyroxene and plagioclase, and deformation twinning in plagioclase (Pl. 3.17). However, the 

lack of foliation, major recrystallization and bent crystals and crystal structures indicate that the 

Fraser Canyon Anorthosite was not subject to major deformation. This anorthosite comprises 

adcumulate plagioclase defined by triple-junctions and very little recrystallization (Pl. 3.18). Minor 

amounts of primary biotite mantling orthopyroxene also indicate hydrous fluids accumulated at 

the roof of this anorthosite. 

H20 alteration throughout the units in the PGA is indicated by heterogeneous 

saussuritization of plagioclase, secondary calcite and epidote, and fibrous amphibole and chlorite 
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replacing orthopyroxene. Alteration fractures are most prominent in the anorthosite and contain 

calcite, scapolite, muscovite and epidote and the adjacent plagioclase walls have undergone over 

50% saussuritization. 

3.4.2 Tessiarsuyungoakh Intrusion 

The monzodiorite and monzonite units of this intrusion generally consist of K-feldspar, 

plagioclase, quartz(< 5%) and orthopyroxene with lesser clinopyroxene and/or olivine. Accessory 

minerals include ilmenite, magnetite, apatite, rutile and relatively abundant prismatic zircon. 

The monzonite is medium- to coarse-grained and typically contains ovoid K-feldspar 

phenocrysts. The alkali feldspars are typically microcline and mesoperthitic orthoclase and albite. 

The felsic minerals make up between 60 to 80%. The fine- to medium-grained monzodiorite has a 

felsic to mafic mineral ratio of 50/50, and rarely contain K-feldspar phenocrysts. Interstitial 

orthopyroxene, fayalitic olivine, pigeonite and augite are typical in both the monzonite and 

monzodiorite. Where orthopyroxene is present it is generally the dominant mafic mineral and is 

usually the product of pigeonite exsolving lamellae of augite. Fayalite, inverted pigeonite and 

augite are typically present together in various amounts. In some cases fine-grained augite and 

plagioclase were observed mantling inverted pigeonite and the textures indicate that the 

augite/plagioclase aggregate crystallized late. Both rock types show slow cooling textures, such 

as mesoperthitic feldspars and inverted pigeonite. 

Deformation and recrystallization textures are dominant in samples collected within about 

200 m from the contact with the PGA. These textures include serrated grain boundaries, subgrain 

development, bent exsolution lamellae, deformation twinning and bent albite twinning and 

undulose extinction (Pl. 3.19). Evidence of deformed antiperthite and inverted pigeonite lamellae 

indicates that exsolution occurred before deformation. Further away from the PGA contact, 

minerals show little evidence of deformation. Only minor recrystallization, undulose extinction and 

deformation twinning were observed (Pl. 3.20). Exsolution lamellae such as mesoperthite and 

inverted pigeonite are typical in all the rocks of the Tl. 
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In the Fraser Canyon Anorthosite the margin is noritic and has a sharp contact against 

monzodiorite of the Tl. Petrographic studies of this monzodiorite indicated that the monzodiorite 

composition grades outward from the contact with the norite. This gradation ranges from an 

orthopyroxene-monzodiorite adjacent to the norite, to an orthopyroxene-clinopyroxene-olivine­

bearing monzodiorite to a clinopyroxene-olivine-bearing monzonite. This compositional gradation 

was also observed at the margin of the anorthosite exposed in the marshy valley, north of the 

Fraser Canyon Anorthosite. The compositional gradation seen in thin sections suggests that the 

monzonite and monzodiorite could have been immiscible liquids and that perhaps minor mixing 

occurred at the liquid boundaries to form this compositional gradation. 

3.5 U-Pb GEOCHRONOLOGY 

3.5.1 Sample Selection 

Samples for geochronology were selected from the major rock units where relationships 

were well established by field evidence. The samples were broken up and the weathered 

surfaces trimmed away, then double-bagged and sealed at the sampling site to prevent 

contamination. About 20 kg of rock was collected for each sample. A total of 11 geochronological 

samples were collected. The PGA and the monzonite were sampled twice at two different 

locations in case one sample did not contain the desired U-Pb-bearing minerals, such as zircon 

and baddeleyite. A sample of the Makhavinekh Lake pluton was discarded after discovering that 

McFarlane (per comm., 2002) had previously dated the pluton and produced a well-constrained 

crystallization age of 1322 ± 2 Ma. Two samples of Tasiuyak paragneiss were also discarded due 

to the complexity of the paragneiss and time constraints . Therefore only 6 of the 11 

geochronological samples were actually dated. Sample locations are shown in Figure 3.2.The six 

samples selected for U-Pb geochronological study are numbered as follows: 1 - outer zone of the 

PGA, 2- the Fraser Canyon Anorthosite, 3- norite dyke cross-cutting gneissic outer zone of the 

PGA, 4 - norite body intruding inner zone of the PGA, 5 - olivine-bearing monzodiorite, and 6 -

orthopyroxene-bearing monzonite. 
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3.5.2 Sample Preparation and Analytical Methods 

The rock samples were crushed with a jaw crusher and then reduced to powder in a disc 

mill. The powder was panned using a Wilfley table and passed through methylene iodide to 

extract the heaviest minerals. A Frantz magnetic separator was used to extract the least 

magnetic, and therefore highest quality, zircon and baddeleyite. All zircon and baddeleyite grains 

were removed from non-magnetic separates at 0° side-slope (horizontal), except for sample 4 

which had very little non-magnetic material left after processing at a 2° side-slope. Zircon and 

baddeleyite grains were hand picked under a binocular microscope and the clearest grains with 

minimal fracturing were selected. If more than one crystal morphology was observed in a sample, 

each morphology was picked and separated for analysis. This was done to determine if the 

different morphologies would produce the same crystallization age. If different crystallization ages 

were obtained from different morphologies this would suggest a complex crystallization history of 

the unit sampled. 

Selected zircons were mounted in epoxy resin, polished, and imaged using back­

scattered electron (BSE) first and later cathodoluminescence (CL) techniques to determine 

internal structures. Baddeleyite grains were too small and too few were recovered to sacrifice 

using any to mount and image. Some of the BSE imaged zircons were removed from the mount 

and used for TIMS analyses. It was later discovered that BSE imaging revealed less information 

regarding zoning or other structures than CL imaging. However, CL imaging indicated that the 

zircons selected for U-Pb geochronology were of igneous origin and did not contain inherited 

grains to warrant concern about previous zircon analyses. Zircons in most samples were either 

large 3:1 prisms or large fragments, with the exception of samples 1 and 2, which contained both. 

Sample 1 also contained highly resorbed cuspate zircons. Baddeleyite grains were small stubby 

and euhedral. Zircons were abraded for periods ranging from 8 to 40 hours depending on their 

size and hardness to enhance concordance according to procedures found in Krogh (1982a). 

Softer baddeleyite grains were abraded for 2 to 3.5 hours. 
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After abrasion of morphologically similar zircon or baddeleyite, grains were separated into 

fractions for analyses. Fractions either contained multiple grains if the grains were small and/or 

extremely low in radiogenic lead or contained one large single grain with enough radiogenic lead 

to provide data on the mass spectrometer. The fractions were dissolved in HF and HN03 over 5 

days at 21 ooc and each aliquot was passed through ion exchange chemistry (Krogh, 1973) to 

extract purified U and Pb. 

Thermal ionization mass spectrometry was performed on a MAT 262 multi-collector 

instrument. Data were acquired on either the faraday multi-collector or single ion counter 

depending on the intensity of ion beams for U and Pb. Multiple sets of data were measured in the 

temperature ranges of 1400°C to 1550°C for Pb and 1550°C to 1650°C for U, and the best sets 

were calculated to give a mean value for each ratio. The ratios were also corrected for laboratory 

procedure blanks (2-5 pg for Pb and 1 pg for U) and for common lead above the laboratory blank 

with lead of the composition predicted by the two-stage model of Stacey and Kramers (1975) for 

the age of the sample. Uncertainties for ages are quoted with a 95% confidence level, but, do not 

include uncertainties in the U decay constants. 

Where possible, the petrographic observations of zircon populations used in dating are 

described. However, the anorthosite and norite samples contained relatively small amounts of 

zircon and smaller amounts of baddeleyite and therefore these minerals were not always 

observed in thin section. 

3.5.3 Results 

The six samples selected yielded prismatic and/or angular fragmented zircon, and 

samples 1 and 2 also contained baddeleyite. Angular fragments typically had planar zones of 

dusty inclusions and these were avoided during the selection process. Grains typically exhibited 

less detail in SSE therefore descriptions of internal structures are based on CL images. Zircon 

was only observed in thin sections from samples 1, 5, and 6. No baddeleyite grains were 
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identified in thin section. The U-Pb geochronology analytical data set is listed in Table 3.1 and 

concordia diagrams are shown in Figure 3.4. 

3.5.3.1 Pearly Gates Anorthosite pluton 

Sample 1. PGA outer zone: The sample was taken from the foliated margin of the PGA 

and incorporates both anorthosite and norite layers. The sample has a complicated zircon 

population including pale brown, angular fragments with no crystal faces (Pl. 3.21, 3.22); pale 

brown, slightly resorbed prisms (Pl. 3.23, 3.24 ); and highly resorbed, pale brown cuspate grains 

(Pl. 3.25, 3.26). Baddeleyite grains were chocolate brown, euhedral, and stubby (Pl. 3.29). Three 

zircon populations were observed in thin section. They are: slightly resorbed prisms as inclusions 

in plagioclase grains (Pl. 3.24 ), interstitial cuspate zircons located at plagioclase-plagioclase 

boundaries (Pl. 3.26), and clusters of interstitial anhedral zircon (fragments) located at 

plagioclase-plagioclase and plagioclase-ilmenite grain boundaries (Pl. 3.22). Typically the cluster 

of anhedral zircons is in optical continuity indicating that they are parts of one large grain 

extending in the third dimension. 

CL imaging of prismatic zircons showed that no inherited cores were present. These 

zircon prisms typically display igneous zoning as well as irregular and patchy zoning (Fig. 3.3a-c). 

The two latter zoning patterns seem to suggest redistribution of heavy elements by either 

diffusion or recrystallization . These diffusion or recrystallization zones in the grains and evidence 

of minor resorption of crystal faces may indicate a thermal event, which has affected these 

prisms. The U concentration is extremely low in these grains ranging from 2.5 - 5.4 ppm. Two 

multi-grain fractions (P1 and P4) are concordant and gave overlapping 207PbP06Pb ages of 1373 

and 1368, respectively. Multi-grain fractions P2 and P3 are also concordant but yield younger 

ages, which suggests that there has been minor lead loss. Therefore, using P1 and P4, the oldest 

minimum crystallization age of the prismatic zircons from the weighted average of the 207PbP06Pb 

age is 1370 ± 5 Ma. 
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The cuspate zircons are interpreted to be highly resorbed prismatic grains. Evidence for 

this is the relict, elongate shape of the cuspate zircons and CL imaging where the sharp boundary 

of a terminating prismatic tip was observed (Fig. 3.3e). If the edge of the relict crystal shape is 

extended to include the remnant cuspate shape, this indicates that at least 50% of the original 

grain has been resorbed possibly due to changing magma composition. Typically, CL imaging 

shows very complex zoning patterns attributed to internal diffusion during resorption (Fig. 3.3d-f). 

Six single-grain analyses lie on or almost on concordia and 207PbF06Pb ages range from 1355 to 

1335 Ma. The cuspate grains have a much higher U concentration (39-188 ppm) than the slightly 

resorbed prisms (2.5-5.4 ppm) and prisms from samples 5 (4.8-14.8 ppm) and sample 6 (0.5-

27.1 )(Table 3.1 ). Therefore it is suggested that the prisms that were later highly resorbed to form 

the cuspate population are not xenocrystic from the other prismatic zircon-bearing rocks but may 

have originally crystallized from a younger than 1370 Ma plagioclase crystallization event. The 

range of concordant 207PbF06Pb ages and the evidence of strongly resorbed grains with major 

internal diffusion, indicates that minor lead loss occurred, reconfirming the evidence for at least a 

single, if not multiple, thermal event(s). 

CL imaging of zircon fragments shows some grains have igneous zoning and others have 

been highly fractured and annealed with a diffusion pattern relative to the annealed fractures (Fig. 

3.3g-h). Four multi-grain fractions yielded F3 and F4 overlapping on concordia with 207PbF06Pb 

ages of 1333 and 1337 Ma, and concordant F1 overlapping F4 with a 207PbF06Pb age of 1343 

Ma. F2 is discordant with a 207PbF06Pb age of 1331 Ma. Fractions F2, F3 and F4 define a recent 

lead-loss regression line with an upper intercept of 1335 + 7/-3 Ma ( 44% probability of fit, lower 

intercept = 340 Ma). Based on petrographic observations, the interstitial fragmental zircon was 

one of the last minerals to crystallize. Therefore, the final igneous crystallization age of this rock 

based on the upper intercept of the F2, F3 and F4 discordia line is 1335 + 7/-3 Ma. 

Two single grain fractions of small, brown, euhedral baddeleyite gave concordant and 

overlapping 207PbF06Pb ages of 1358 and 1362 Ma. However both analyses were relatively 

imprecise and therefore do not provide a good age constraint on their crystallization age. 
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Sample 2. Fraser Canvon Anorthosite: Sample 2 represents a massive, heterogeneously 

recrystallized anorthosite from the exposed body adjacent to the Tasisuak Lake (Fraser Canyon). 

The sample contained four zircon populations, which include very large (400-800 IJm), clear, 

colourless, fractured and fluid inclusion-filled, euhedral prisms; large (200-400 IJm), clear, 

colourless, euhedral prisms (Pl. 3.27); and brown and colourless angular fragments with no 

crystal faces (Pl. 3.28). The very large prisms lacked either one terminating end or both. Both 

populations of prismatic zircon have pristine crystal faces with no evidence of resorption. The 

fractures and clear fluid inclusions are parallel to the c-axis and give the crystals a columnar 

appearance. The large prisms show no evidence of resorption and no internal structures when 

viewed under the microscope. There were relatively few prismatic zircons and only 34 grains 

were recovered from the non-magnetic separate. CL imaging of both types of prismatic zircons 

show igneous zoning and no evidence of inheritance or diffusion/ recrystallization (Fig. 3.3i-j). 

One single grain fraction, P3, is concordant giving a 207PbF06Pb age of 1345 ± 2 Ma. Fractions 

P2, P3 and P4 fall on a recent lead-loss trajectory for the same age. The weighted average for 

the 207PbF06Pb age of fractions, P2, P3 and P4, gives a crystallization age of 1344 ± 3.5 Ma, 

consistent with the concordant point P3. 

The fragmental zircons were either homogeneous or showed internal structures such as 

annealed fractures and recrystallized patches, as well as fine-scale igneous zoning at high angles 

(Fig. 3.3k-n). The most concordant data with the smallest error is fraction F2 with a 207PbF06Pb 

age of 1356 Ma. A regression line for recent lead-loss using fractions F2- F5 gives an age of 

1355.1 Ma, with 49% probability of fit and lower intercept= 0 Ma. F1 was the most discordant 

point and did not fit on the recent lead loss line suggesting that one or both of the two grains in 

this fraction may have been affected by more complicated lead loss. The weighted average of the 

207PbF06Pb age for fractions F2- F5, inclusive, gives a crystallization age of the 1355 ± 1.3 Ma. 

Baddeleyite grains are chocolate brown, and either subhedral and stubby (Pl. 3.30) or 

angular with sugary zircon overgrowths. The latter morphology was not used for dating. 

Baddeleyite was not observed in thin section. The multi-grain fractions 82 and 83 are concordant 
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and slightly overlap each other. 81 is above concordia and this is interpreted as incomplete 

dissolution in HF and HN03 during preparation. The 82 (1358 Ma) and 83 (1362 Ma) analyses 

were relatively imprecise; providing only minor constraints on the crystallization age. 

Although zircon grains were not observed in thin section, the zircon fragments show 

similar characteristics to the fragments found in sample 1, such as colour, general size and 

internal structures and therefore are considered to be an interstitial phase. The baddeleyite ages, 

1358 and 1362 Ma, are also generally consistent with the zircon fragments 207PbF06Pb age. 

Therefore the 207PbF06Pb age of the zircon fragments is interpreted to represent the crystallization 

age of the rock at 1355 ± 1 Ma. The 1344 ± 4 Ma prismatic zircons are unlike from those of the 

PGA. The Fraser Canyon Anorthosite prisms are pristine, colourless, and some contain fluid 

inclusions. The fluid inclusions in the largest prismatic zircons suggest that they could have 

formed within a pegmatitic (anorthositic?) vein. However, such veins were not observed in this 

sample either during collection or the crushing process. These prismatic zircons are interpreted 

as a later phase of igneous crystallization, most likely unrelated to the crystallization of the Fraser 

Canyon Anorthosite. 

Sample 3, cross-cutting norite dyke: This sample was taken from the centre of the 

weakly foliated, cross-cutting norite dyke, away from the intruded gneissic norite outer zone of the 

PGA. Pale yellow, clear, angular zircon fragments were recovered (Pl. 3.31 ). CL images of the 

fragmental zircon show that some grains appear homogeneous, while others show igneous 

zoning, fracturing and annealing textures and partial diffusion or recrystallization (Fig. 3.3o-p). No 

evidence of inheritance was observed under the microscope or in 8SE and CL imaging. All three 

multi-grain fractions (F1 , F2 and F4) are either sub-concordant or just below concordia. The 

weighted average of the 207PbF06Pb ages gives a crystallization age of 1341 ± 1.8 Ma. 

Sample 4. intrusive norite bodv: The medium-grained, undeformed norite intrusive was 

sampled near the interior of the body away from the anorthosite xenolith-bearing margin. Yellow-
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brown, clear, angular zircon fragments were recovered (Pl. 3.32). CL images show no evidence 

of inheritance and have the same complex internal characteristics as described in sample 3 (Fig. 

3.3q-r). Multi-grain fraction F3 is concordant at 1346 ± 11 Ma, and multi-grain fractions F1, F2 

and F4 are sub-concordant to discordant. All fractions lie on a recent lead-loss regression line 

with an upper intercept of 1341.3 Ma (58% probability of fit, lower intercept= -20 Ma). The 

weighted average of fractions F1, F2 and F4 207PbF06Pb ages provides a crystallization age of 

1342 ± 1.2 Ma. Due to the larger 2-sigma error of F3 compared to the other fractions, it was not 

used in the weighted average of the 207PbF06Pb ages. 

3.5.3.2 Tessiarsuyungoakh intrusion 

Sample 5. olivine monzodiorite: The fine-grained olivine monzodiorite was taken 20 m 

from the contact with the PGA. The sample contained abundant, large (200- 400 !Jm), pale 

yellow, slightly resorbed, prismatic zircon (Pl. 3.33). In thin section, zircons were observed at 

grain boundaries (Pl. 3.34). Many zircon grains contain oxide and sulphide inclusions and these 

were avoided during selection for analyses. Zircons appear fracture-free when viewed under the 

microscope but both BSE and CL imaging revealed internal fractures parallel to the c-axis. 17 

zircons were imaged using BSE and CL techniques. Two zircons contained inherited zircon and 

were not used for analyses. CL imaging was more successful than BSE imaging in revealing 

internal structures, however some grains appeared homogeneous while the other zircons only 

show minor igneous zonation with an enriched heavy element (darker) core (Fig. 3.3s). 

All four multi-grain fractions lie on concordia and overlap each other. The weighted 

average of the 207PbF06Pb ages provide a well-constrained crystallization age of 1360 ± 4 Ma. 

Sample 6. orthopyroxene-bearing monzonite: The coarse-grained orthopyroxene-bearing 

monzonite was taken about 40 m from the contact with the PGA and about 30 m from sample 5. 

The sample yielded large (200- 300 !Jm) pale yellow-brown, slightly resorbed prismatic zircon 

{Pl. 3.35). Large zircon tips were also recovered and used for dating. In thin section, zircons were 
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observed at grain boundaries (Pl. 3.36). As with sample 5, many zircon grains have oxide and 

sulphide inclusions and were avoided during selection. Zircons appear fracture-free when viewed 

under the microscope but both SSE and CL imaging revealed internal fractures parallel to the c­

axis. CL imaging also shows an enriched heavy element (darker) core and igneous zoning with 

minor diffusion at grain rims (Fig. 3.3t). 

Three multi-grain fractions, P1, P2 and P3, and one single grain fraction, T2, overlap 

concordia and each other. The weighted average of the 207PbP06Pb age for the four fractions is 

1363 ± 3 Ma. The multi-grain fraction T1 has a 207PbP06Pb age of 1447 Ma and is assumed to 

contain inherited zircon. Therefore, the minimum age of crystallization of the orthopyroxene­

bearing monzonite is well constrained at 1363 ± 3 Ma. 

3.5.4 Overview of U-Pb Geochronology Ages 

Based on the ages obtained from the six samples (Table 3.2), there appear to be 4 

temporally distinct events. 1) The earliest event is the growth of prismatic zircons in the PGA 

sample 1 at 1370 ± 5 Ma. In thin section prismatic zircons were observed as inclusions in 

plagioclase crystals indicating that plagioclase phenocrysts, growing in a liquid, included the 

already present slightly resorbed prismatic zircons. The fact that the prismatic zircon fractions are 

reproducibly concordant and that the zircons all exhibit the same morphological and internal 

characteristics with only minimal resorption further suggests that these zircons formed in the 

anorthosite producing magma. There is also no known rock in this area with an age of ca. 1370 

Ma to provide the zircon. Therefore, this is interpreted to represent the first zircon crystallization 

from the PGA magmatic system, possibly during the production of a crystal mush at depth before 

emplacement of the anorthosite. 2) At ca. 1360 Ma, the intrusion and crystallization of the Tl 

composite body occurred. The 207PbP06Pb crystallization age of the monzonite and monzodiorite 

at 1363 ± 3 and 1360 ± 4 Ma, respectively, overlap within error and the irregular to cuspate 

contacts mentioned earlier indicates that at least some monzodiorite intruded the monzonite 

before it had completely solidified. 3) At ca. 1355 Ma anorthosite began to intrude into the area 
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represented by the Fraser Canyon Anorthosite. Although it is impossible to say conclusively that 

this anorthosite intrusion is part of the PGA it does suggest that multiple intrusions were occurring 

locally considering the Fraser Canyon Anorthosite is older than the final crystallization age of the 

PGA. 4) At ca. 1340, the PGA had completely crystallized , norite intruded the PGA and 

deformation had terminated in the area. The interstitial, fragmental zircon recovered from the 

PGA sample provides a final crystallization age of 1335 + 7/-3 Ma, which places it within error of 

the crystallization age of the norite. The fact that the fragmental zircons appear slightly resorbed 

in thin section and some grains are fractured and annealed suggests that there was minor lead 

loss. Therefore it is probable, considering the intrusive nature of the norite into the PGA that the 

final crystallization of the PGA occurred at the age defined by the concordant analysis F1 at 1343 

±3 Ma. 

As mentioned, zircon grains from the anorthosite and norite units showed resorption, 

internal recrystallization and/or annealed fractures. These grains were: prisms, fragments and 

cuspate grains from the PGA; fragments from both the norite dyke and norite intrusive body; and 

fragments from the Fraser Canyon Anorthosite. There is no evidence of contemporaneous or 

younger intrusions in close proximity to these units. The closest intrusion is the ca. 1322 Ma 

Makhavinekh Lake pluton , which is more than 5 km away. Therefore, it is unlikely that 

disturbance of these grains was due to local metamorphic processes. Rather, it is suggested that 

disturbance of these zircons may have been caused by changing magma composition 

(resorption), syn-emplacement deformation (fracturing , annealing and recrystallization) and re­

heating caused by intermittent magmatic pulses (recrystallization). 
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Table 3.2: Summary of zircon crystallization ages 

Sample Unit Zircon Age in Ma Interpretation 
Morphology (2cr error) 

1: PGA Angular fragments 1335 +7/-3 - Final crystallization of PGA 
3: Norite dyke Angular fragments 1341 ± 2 - Crystallization of unit 

- Minimum age of deformation 
4: Intrusive Norite Angular fragments 1342 ± 1 - Crystallization of unit 

body - PGA must have been solid 
2: Fraser Canyon Prismatic 1344 ± 4 - Pegmatitic patch (?) 

Anorthosite 
2: Fraser Canyon Angular fragments 1355 ± 1 - Crystallization of unit 

Anorthosite 
5: Tl (Monzodiorite) Prismatic 1360 ± 4 - Crystallization of unit 
6: Tl (Monzonite) Prismatic 1363 ± 3 - Crystallization of unit 
1: PGA Prismatic 1370 ± 5 - Formation of plagioclase 

crystal mush at depth 

3.6 DISCUSSION 

The field relationships and geochronology in this study confirm that the monzonite and 

monzodiorite components of the Tl are contemporaneous and were emplaced before the 

anorthosite bodies. At least some of the monzodiorite intruded the monzonite before the 

monzonite had completely crystallized forming cuspate contacts. Geochemical and isotopic 

studies on other AMCG suites by Bolle et al. (2003) (Rogaland, Norway) and Scoates and 

Chamberlain (2003) (Laramie, USA) have suggested that monzonitic rocks could have been 

derived by fractional crystallization from jotunite or ferrodiorite (both referred to here as 

monzodiorite). The fact that the Tl units are temporally related would support the notion that they 

are also genetically linked. K-feldspar phenocrysts typically found in the monzonite imply partial 

crystallization prior to emplacement and therefore at least some fractional crystallization from 

monzodiorite could have occurred prior to emplacement. There are gradational contacts between 

the monzonite and monzodiorite that could reflect in situ fractionation. Likewise, the monzodiorite 

dykes that intruded the monzonite could also reflect fractionation within a deeper magma 

chamber. However, there could be other interpretations of these observations of field 

relationships. These hypotheses need to be tested by further research, especially geochemical 

and isotopic studies. 

3-24 



The timing of emplacement of the PGA is not as straightforward as the Tl. The Hare Hill 

monzonite, which is located at the eastern margin of the PGA, has been studied by Wheeler 

(1960), Ryan (1993), T.A. Tettelaar and J.S. Myers (unpublished mapping, 2000) and Ryan and 

James (2003). The mineralogy, textures and foliation parallel to the contact with the PGA are 

similar to the Tl except for the presence of garnet in the Hare Hill monzonite (Ryan, 1993). Ryan 

and James (2003) questioned the possibility that the eastern and western monzonites rimming 

the PGA were part of one continuous intrusion. However, they have continued to refer to each 

intrusion by their individual names pending further evidence to suggest that they are not separate 

bodies. The Hare Hill monzonite was dated using U-Pb TIMS method on zircon, which gave a 

crystallization age of 1351 ± 3 Ma (Connelly, 1993). This age is younger than the Tl ages of 1363 

± 3 and 1360 ± 4 Ma determined in this study. The PGA obscured any contact that may have 

existed between these two composite monzonite/monzodiorite bodies. However, based on the 

different ages of the Tl and Hare Hill monzonite these bodies are interpreted to represent 

separate sheets rather than one large body. An anorthosite dyke with sharp contacts was 

observed cutting the Hare Hill monzonite in close proximity to the contact with the PGA (Tettelaar 

and Myers, field observations, 2000). This may indicate that the PGA intruded the Hare Hill 

monzonite after 1351 ± 3 Ma. The oldest anorthosite is the Fraser Canyon Anorthosite at 1355 ± 

1 Ma and this age overlaps within error of the Hare Hill monzonite age of 1351 ± 3 Ma. Although it 

is uncertain whether this anorthosite body is part of the PGA, it does indicate that anorthosite 

began intruding into this region ca. 1355 Ma and that intermittent magma pulses continued to 

intrude until final crystallization of the PGA at ca. 1343 Ma. 

The domal shape of the PGA and exposed anorthosite bodies as well as the deformed 

outer zone could be used to advocate a diapiric emplacement mechanism. However, closer 

examination of field evidence argues against diapirism. If the PGA were intruded in this manner 

the surrounding host rock would be vertically displaced and deformed. In the study area the Tl is 

deformed parallel to the contact with the PGA. However, the east and west contacts of the Tl are 

broadly parallel and the Tl intruded as sheets parallel to the local gneissosity of the Tasiuyak 

3-25 



paragneiss. The contact between the Tl and the Tasiuyak paragneiss is relatively undeformed 

and there is no distortion or overprinting of the paragneiss fabric. The same relationship exists at 

the eastern margin of the PGA. Here the contact between the PGA and the Hare Hill monzonite is 

parallel to the foliation of the country rock. The foliation in screens of Tasiuyak paragneiss is 

parallel to the foliation in the surrounding Tl and there is no evidence that these screens have 

been rotated . 

The combined evidence seems to indicate that emplacement of both the monzonitic and 

anorthositic intrusions was controlled by older structures. Northwest-southeast trends are 

common to all contacts, igneous and gneissic foliations in all rock units, as well as faults and 

dykes. This is further corroborated by the deflection of the fabric from the typical northwest­

southeast direction to east-west direction in the central region of the Tl, which appears to mimic 

the east-west deflection of the gneissosity in the Tasiuyak paragneiss. Weakly oriented 

orthopyroxene in the foliation of the outer zone of the PGA also suggests shearing. Therefore, the 

evidence seems to indicate emplacement along weakness in the structures in the Tasiuyak 

paragneiss, possibly in a transpressional regime, which were intermittently reactivated and 

provided conduits for magmatic ascent. The anorthosite dykes that cut the Tl and Hare Hill 

monzonite indicate small-scale fracturing and intrusion further implying conduit emplacement. If 

the plagioclase-rich magma intruded as sheets like the Tl, these conduits would have formed 

parallel to the foliation in the country rock. Fracturing of the country rock would likely have been 

accompanied by stoping, providing space for intrusion of the plagioclase-rich magma. It is 

therefore suggested that the domal shape of the exposed anorthosite bodies and PGA could be 

attributed to a sill-like body rather than a balloon-shaped diapir. 

The intermittent reactivation of structures affected the Tl and the PGA differently. The Tl 

magmas, transported by conduits, intruded as sheets along weak structures in the Tasiuyak 

paragneiss, which was most likely triggered by a deformation event. However, the central and 

western portion of the Tl is relatively undeformed suggesting that during crystallization, 

deformation had ceased. It is possible that a second reactivation opened up the earlier formed 
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conduits to transport the crystal mush that formed the PGA. Igneous layers of anorthosite and 

norite formed along the chamber walls and were then subject to deformation. The question then 

is whether this deformation was related to reactivation of structures or emplacement 

mechanisms? Considering that the inner zone of the PGA is relatively undeformed, the latter 

choice, possibly related to stoping, is more likely the cause of deformation along the margins. It is 

also uncertain whether the deformation occurred during sub-liquidus and/or sub-solidus state. 

However, considering the final crystallization age of the PGA is temporally consistent with the age 

of the norite dyke that cross-cuts the gneissic PGA outer zone and igneous layering is present 

along the margins, syn-emplacement deformation most likely occurred while the margins were 

sub-solidus. Later reactivation caused faulting and emplacement of granitic and gabbroic dykes. 

The 1370 Ma prismatic zircons included in plagioclase phenocrysts probably date 

crystallization stages at depth prior to the PGA emplacement. Although geochemical studies were 

not performed in this study, field evidence suggests that the PGA magma incorporated 

plagioclase crystals suspended in a noritic liquid. This could explain the origin of the noritic and 

anorthositic layers in the outer zone as products of relatively rapid cooling at the plagioclase­

orthopyroxene cotectic. The insulated inner zone remained hot, and continued to crystallize only 

plagioclase, and possibly filter pressing most of the residual liquid towards the chamber margins. 

This is speculative since the roof of the PGA is not observed and is interpreted to have been 

above the current level of exposure. However, the roof and walls of the Fraser Canyon 

Anorthosite are noritic and undeformed, whereas the inner zone is massive anorthosite. The 

relatively undeformed norite bodies that intruded the PGA could represent the final pulse of the 

PGA. 

3.7 MODEL FOR EMPLACEMENT OF THE Tl AND PGA 

The proposed model for emplacement of the Tl and PGA is shown in Figure 3.5. Prior to 

1363 Ma, reactivation of older structures in the country rock provided conduit systems into which 

monzonitic and monzodioritic magma ascended . These magmas intruded as sheets parallel to 
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the gneissosity of the Tasiuyak paragneiss, possibly forming separate, large sills at different times 

(Fig. 3.5A). During crystallization of the monzonite and monzodiorite there may have been a 

second intrusion of monzodioritic magma. All the components of the Tl had completely 

crystallized by 1360 Ma, prior to emplacement of anorthosite. 

At ca. 1355 Ma, neritic magma with plagioclase phenocrysts ascended through the re­

activated conduit system (Fig. 3.58). This magma intermittently intruded as sheets into and 

between the margins of the surrounding Tl and Hare Hill monzonite. The culmination of these 

anorthositic intrusive sheets and stoping of country rock formed elongate, sill-like bodies. 

Compositional layering and rapid crystallization formed a 'chilled margin' represented by the outer 

zone of the anorthosite bodies. The crystallized outer zone of the PGA and the adjacent Tl rocks 

were subjected to strain during syn-emplacement deformation. It appears that deformation was 

localized along the margins of the PGA and did not affect the Fraser Canyon Anorthosite. The 

inner zone of the anorthosite bodies cooled relatively slowly, which allowed for continued 

plagioclase crystal growth and possibly removal of residual liquid from the inner chamber. 

At ca. 1340 Ma, the PGA had completely crystallized (Fig. 3.5C), neritic magma intruded 

along cooling fractures in the PGA forming the norite body and dykes and deformation had 

terminated in the area. 

3.8 SUMMARY OF CONCLUSIONS 

This study has produced the oldest known emplacement ages for rocks of the NPS, 

which are the monzonite, at 1363 ± 3 Ma, and monzodiorite, at 1360 ± 4 Ma of the Tl. It has also 

produced the oldest known zircon crystallization ages of the NPS of 1370 ± 5 Ma from prismatic 

zircons included in plagioclase phenocrysts in the PGA. These ages suggest that the magmas of 

the Tl and the spatially related anorthosite bodies are broadly contemporaneous. The 

geochronological evidence suggests that anorthosite genesis of the PGA has had a long-lived 

magmatic history of about 30 million years. The 1370 ± 5 Ma prismatic zircons included in 

plagioclase phenocrysts from the PGA were most likely formed at depth, prior to emplacement at 
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mid-crustal levels. The oldest intrusive age of anorthosite in the NPS is the Fraser Canyon 

Anorthosite at 1355 ± 1.3 Ma. It is unknown whether this anorthosite is a part of the PGA. 

However, it indicates that anorthosite intrusion in the study area began around this time and 

ended with the crystallization of the PGA at ca. 1340 Ma. 

Prior to 1363 Ma reactivation of older structures in the country rock provided conduit 

systems, along which monzonitic and monzodioritic magma ascended and were emplaced as 

sheets into the Tasiuyak paragneiss. At ca. 1360 Ma, the Tl had completely crystallized. At ca. 

1355 Ma, intermittent intrusion of noritic magma with plagioclase phenocrysts was emplaced by 

reactivating conduits and stoping and formed the sill-like bodies of the Fraser Canyon Anorthosite 

and PGA. The outer zone of the anorthosite bodies is interpreted to represent a chilled margin, 

where compositional layers of anorthosite and norite cooled quickly. The inner zone of massive 

anorthosite is interpreted to represent relatively slow cooling where plagioclase crystals continued 

to grow and possibly filtered out the noritic magma towards the margins of the chamber. Shearing 

of the crystallized margins of the PGA and the adjacent Tl was caused by syn-emplacement 

deformation but had little effect on the hot, partially crystallized inner zone. By ca. 1340 Ma the 

PGA had completely crystallized , noritic magma intruded the PGA and deformation in the area 

had terminated. 
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Figure 3.1: Geological map of the Nain region, Labrador (modified from Ryan & James, 2003). The 
eastern margin of the Pearly Gates Anorthosite pluton is based on 1:50 000-scale reconnaissance 
mapping by Ryan & James (2003). 
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Figure 3.2: Geological map of the study area. 
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Figure 3.3: Cathodoluminescence images of zircons. Sample 1 zircons from a) to h). a)-c) are prisms with relict igneous growth zones but are partially 
recrystallized and/or internal diffusion has occurred. d)-f) are cuspate, showing zones that cross-cut and are not parallel to or reflect grain boundaries. 
Fragment g) indicates diffusion and annealing while h) shows primary igneous zoning. Sample 2 zircons from i) ton) . Both i) and j) show relatively undisturbed 
growth zoning and j) contains a plagioclase inclusion. Fragments range from k) appearing homogenous; I) diffusion and annealing textures; m) igneous growth 
zoning; ton) recrystallization textures. Samples 3(o, p) , 4(q, r) , 5(s) and 6(t) consist of igneous zoning and partial recrystallization . 
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Figure 3.5: Schematic drawing showing the proposed model of emplacement for the Pearly Gates 
Anorthosite pluton and the Tessiarsuyungoakh intrusion. A) At ca. 1360 Ma, monzonitic and 
monzodioritic magmas ascended through conduits and were emplaced along pre-existing structural 
weaknesses in the Tasiuyak para gneiss. B) At ca.1355 Ma, plagioclase crystals and noritic mag rna 
were intruded by reactivation of the conduit system and stoping of country rock to form a magma 
chamber. Rapid crystallization of the outer zone formed a 'chilled margin' that was subsequently 
deformed. The inner zone cooled slowly and plagioclase crystals continued to grow, possibly 
squeezing out the noritic magma. C) At ca. 1340 Ma, deformation ended, the Pearly Gates 
Anorthosite pluton completely crystallized and was intruded by norite along fractures. 
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Table 3.1: U-Pb geochronology analytical data. 
Concentration Measured 

Total 
Weight u Pb rad common 206Pb 

Fraction [mg] [ppm] [ppm] Pb [pg] 204Pb 

Sample 1: Pearly Gates Anorthosite (N 56° 32.990', W 062°29.000' 
F1 6 lrg clr ang 0.090 23.5 6.2 5.5 5605 
F2 5 clr ang 0.094 62.8 17.0 4.6 18321 
F3 6 clr ang 0.295 9.2 2.4 2.4 16149 
F4 7 clr ang 0.090 14.5 3.8 3.0 6262 
C1 1 str rsb 0.020 38.8 9.9 2.7 4177 
C2 1 str rsb 0.020 188.0 50.0 4.6 11997 
C3 1 str rsb 0.020 52.3 13.4 2.7 5580 
C4 1 str rsb 0.020 57.9 14.6 2.2 7585 
C5 1 str rsb 0.020 87.2 24.8 4.0 6238 
C6 1 str rsb 0.020 41.4 10.7 2.0 6163 
P1 5 lrg clr 0.055 2.5 0.7 7.1 303 
P2 14 fract clr 0.343 4.0 1.1 2.3 8656 
P3 9 clr 0.100 5.4 1.4 3.4 2355 
P4 8 clr 0.100 5.0 1.3 22.8 338 
B1 1 sm euh brn 0.003 41.3 8.9 4.1 467 
B2 1 sm euh brn 0.002 54.3 12.2 30.0 70 

Sample 2: Fraser Canyon Anorthosite (N 56° 37.402' W 062°38 434') 
' 

P1 1 lrg clr fract 1.233 7.3 2.1 3.0 40697 
P2 9 lrg clr cis 1.120 25.5 7.4 3.5 115013 
P3 1 lrg clr fract 0.080 304.2 87.0 6.4 54747 
P4 1 lrg clr fract 0.080 165.0 49.2 6.9 26466 
F1 2 lrg clr ang brn 0.404 25.4 7.4 5.6 23119 
F2 8 lrg clr ang brn 0.301 31 .2 8.6 4.4 31083 
F3 9 lrg clr ang 0.288 199.0 51.2 2.9 266294 
F4 6 clr brn ang 0.175 42.4 11.7 5.7 18693 
F5 7 clr brn ang 0.205 37.9 10.5 5.6 20124 
B1 1 sm euh stub brn 0.017 19.5 4.3 1.8 2737 
B2 3 sm euh stub brn 0.009 74.6 16.4 2.8 3679 
B3 2 sm euh stub brn 0.004 117.3 26.3 44.7 172 

Corrected Atomic Ratios * Age [Ma] 

208Pb 206Pb 207Pb 207Pb 206Pb 207Pb 207Pb 
206Pb 238U +I- 235U +/- 206Pb +/- 238U 235U 206Pb 

0.2445 0.23054 82 2.741 10 0.08622 12 1337 1340 1343 
0.3077 0.22563 104 2.665 12 0.08566 14 1312 1319 1331 
0.2087 0.22979 126 2.717 13 0.08575 28 1333 1333 1333 
0.2136 0.23111 138 2.739 15 0.08597 28 1340 1339 1337 
0.1865 0.23220 320 2.776 35 0.08671 48 1346 1349 1354 
0.2230 0.23572 110 2.819 11 0.08675 28 1364 1361 1355 
0.2003 0.23062 260 2.742 30 0.08623 24 1338 1340 1343 
0.1699 0.23373 120 2.778 14 0.08622 20 1354 1350 1343 
0.3484 0.23032 380 2.727 44 0.08586 30 1336 1336 1335 
0.2152 0.23100 148 2.748 17 0.08628 24 1340 1342 1345 
0.2013 0.23726 196 2.865 28 0.08759 66 1372 1373 1373 
0.2641 0.23145 100 2.758 12 0.08641 18 1342 1344 1347 
0.2192 0.23373 116 2.795 15 0.08672 14 1354 1354 1354 
0.2047 0.23647 152 2.848 22 0.08735 58 1368 1368 1368 
0.0141 0.22764 368 2.733 103 0.08708 296 1322 1338 1362 
0.0338 0.23253 222 2.786 76 0.08689 204 1348 1352 1358 

0.4474 0.21852 108 2.602 13 0.08636 12 1274 1301 1346 
0.4275 0.22359 92 2.658 11 0.08620 8 1301 1317 1343 
0.3544 0.23051 228 2.743 27 0.08630 8 1337 1340 1345 
0.4853 0.22010 170 2.616 20 0.08618 10 1282 1305 1342 
0.6133 0.19953 80 2.394 10 0.08703 8 1173 1241 1361 
0.2863 0.23421 96 2.802 12 0.08678 10 1357 1356 1356 
0.3055 0.21451 122 2.566 15 0.08676 8 1253 1291 1355 
0.3056 0.23023 254 2.751 27 0.08667 44 1336 1342 1353 
0.2951 0.23281 318 2.779 37 0.08657 34 1349 1350 1351 
0.0050 0.23371 220 2.769 26 0.08593 22 1354 1347 1337 
0.0104 0.23261 294 2.787 31 0.08689 60 1348 1352 1358 
0.0150 0.23622 150 2.837 20 0.08709 38 1367 1365 1362 
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Table 3.1: U-Pb geochronology analytical data (continued). 
Concentration Measured Corrected Atomic Ratios * Age [Ma] 

Total 
Weight u Pb rad common ~ 208Pb 206Pb 207Pb 207Pb 206Pb 207Pb 207Pb 

Fraction [mg] [ppm] [ppm] Pb [pg] 204Pb 206Pb 238U +/- 235U +{- 206Pb +1- 238U 235U 206Pb 

Sample 3: Norite cross-cutting dyke (N 56°34.050', W 062°31.500' ~; 
F1 61rg ang 0.160 39.3 10.3 14.9 6033 0.2428 0.22848 100 2.711 12 0.08607 14 1327 1332 1340 
F2 61rg ang 0.169 40.6 10.4 7.1 13841 0.2193 0.22831 112 2.712 13 0.08616 12 1326 1332 1342 
F4 7 clr ang 0.185 43.2 11.4 5.3 21624 0.2516 0.22872 242 2.718 28 0.08619 24 1328 1333 1342 

s I 4 N .. b d ample : onte mtrus1ve o 
F1 5 clr ang 0.179 53.3 16.1 7.0 18321 0.5419 0.21530 86 2.558 11 0.08618 10 1257 1289 1342 
F2 5 clr ang 0.197 48.4 14.6 3.1 43507 0.4495 0.22858 84 2.716 10 0.08616 10 1327 1333 1342 
F3 4 clr ang 0.081 9.6 3.0 1.4 8095 0.4827 0.23168 198 2.758 18 0.08634 48 1343 1344 1346 
F4 11 clr ang 0.320 33.0 10.3 5.1 30057 0.4850 0.22962 102 2.726 12 0.08612 10 1332 1336 1341 

Sample 5: Olivine-bearing monzodiorite (N 56°34.060', W 062°31.500')' 
P1 5 clr euh 4:1 0.113 12.3 3.2 3.6 5775 0.1942 0.23393 124 2.804 14 0.08693 22 1355 1357 1359 
P2 6 clr euh 4:1 0.057 10.4 2.8 2.1 4220 0.2279 0.23366 224 2.803 21 0.08699 54 1354 1356 1360 
P3 5 clr euh 4:1 0.096 14.6 3.9 4.6 4496 0.2225 0.23391 228 2.820 25 0.08744 38 1355 1361 1370 
P4 7 clr euh 4:1 0.134 4.8 1.3 8.8 1097 0.2411 0.23535 150 2.823 18 0.08701 36 1362 1362 1361 

Sample 6: Orthopyroxene-bearing monzonite (N 56°34.065', W 062°31.505')' 
P1 11 clr 0.068 27.1 7.3 5.5 4953 0.2365 0.23443 110 2.817 13 0.08716 20 1358 1360 1364 
T1 9 clr tip 0.069 34.1 9.3 22.2 1632 0.2102 0.24371 128 3.059 16 0.09103 20 1406 1422 1447 
P2 30 fract clr 0.860 0.5 0.1 2.2 3010 0.2151 0.23491 180 2.820 19 0.08706 38 1360 1361 1362 
T2 1 lrg clr tip 0.154 3.5 0.9 2.5 3241 0.2419 0.23532 168 2.828 16 0.08717 40 1362 1363 1364 
P3 15 clr 0.160 11.4 3.1 2.9 9371 0.2507 0.23447 182 2.814 19 0.08703 34 1358 1359 1361 

Notes: C, cuspate zircon; F, zircon fragment; P, prismatic zircon ; B, baddeleyite; T, prism tips; str, strongly; rsb, resorbed; clr, clear; ang, angular; tip, prismatic 
tip; fract, fractured; brn, brown; cis, colourless; euh, euhedral; stub, stubby; lrg, large; sm, small. All zircon and baddeleyite grains were abraded. 

*Corrected for fractionation, spike, laboratory procedure blank of 1-5 pg of common lead and initial common lead at the age of the sample calculated from the 
model of Stacey and Kramers (1975) and 1 pg U blank. Two sigma uncertainties calculated with an unpublished error propagation program are reported after 
the ratios and refer to the final digits. 

~; co-ordinates for sample locations are approximate, referenced from NTS 140/10 map. Only Sample 2 was recorded using a GPS. 



Plate 3.1: Photo of metre-long, dark grey, elongate plagioclase crystals (one 
outlined) in the inner zone of the PGA. Crystals are fractured perpendicular to 
length. Pencil is 15 em long. 

Plate 3.2: Pale grey plagioclase crystals of various sizes with white , recrystallized 
margins in the inner zone of the PGA. 
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Plate 3.3: Outer zone of the PGA with foliated igneous layers of anorthosite and 
leuconorite. Boundaries between compositional layers are undulose. Location of 
geochronological sample 1. 

Plate 3.4: View onto the foliation plane in the outer zone of the PGA, about 50 
m from the contact with the Tl. Note the heterogeneity in composition and 
strain. Geological hammer is 30 em long. 
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Plate 3.5: Norite dyke cross-cutting gneissic norite in the outer zone of the PGA, a 
few metres from the contact with the Tl. Location of geochronological sample 3. 

Plate 3.6: Rounded, fractured and resorbed plagioclase crystal in monzodiorite 
which intruded into the southwest margin of the PGA. The plagioclase crystal has a 
grey core and a white, recrystallized rim. 
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Plate 3.7: Compositional layers of quartz monzonite (light) and monzodiorite (dark) 
with parallel foliation in the eastern margin of the Tessiarsuyungoakh intrusion. 
Arrow is pointing to geological hammer. 

Plate 3.8: Photo of fine-grained monzodiorite (dark) with an undulose intrusive 
contact into medium-grained quartz monzonite (light). Pencil is oriented roughly 
perpendicular to this contact. 
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Plate 3.9: Medium-grained, half-metre wide, anorthosite dyke cutting medium­
grained clinopyroxene- and olivine-bearing quartz monzonite. Contact is relatively 
sharp with no chilled margins. 

Plate 3.10: Undeformed norite at the margin of the Fraser Canyon Anorthosite, 
south of Tasisuak Lake. Arrows point to tabular, cumulate plagioclase crystals, 
surrounded by interstitial orthopyroxene and ilmenite. 
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Plate 3.11: Monzodiorite with plagioclase xenocrysts of various shape and size. 
Plagioclase crystals have grey cores and white recrystallized rims. 

Plate 3.12: Brecciated quartz monzonite in pseudotachylite fault gouge. The fault is 
located in the Tessiarsuyungoakh intrusion near the contact with the Tasuiyak 
paragneiss, south ofTessiarsuyungoakh Lake. 
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Plate 3.13: Sample TL02-11 of anorthosite showing partial recrystallization along 
the boundary of a plagioclase grain. Photomicrograph shows deformation twin 
development in primary, large plagioclase grain with sub-grains formed at the 
boundary. 

Plate 3.14: Photomicrograph of sample 1 anorthosite in the outer zone of the Pearly 
Gates Anorthosite. This sample shows partially recrystallized plagioclase, bent 
deformation twins, and minor alteration. 
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Plate 3.15: Photomicrograph of sample TL01-45 norite in the foliated outer zone of 
the Pearly Gates Anorthosite. Trains of apatite are partially overgrown by 
recrystallized orthopyroxene and partially recrystallized plagioclase has 
deformation twins and exsolution lamellae, which are bent. 

Plate 3.16: Photomicrograph of geochronological sample 4 from the intrusive, 
undeformed norite body in the Pearly Gates Anorthosite. Orthopyroxene is ophitic 
and plagioclase shows deformation twinning. 
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Plate 3.17: Photomicrograph of sample TL02-60a undeformed norite at the roof 
of the Fraser Canyon Anorthosite. Minor recrystallization occurred along 
plagioclase grain boundaries and interstitial orthopyroxene is ophitic. 

Plate 3.18: Photomicrograph of sample TL02-60c from the roof of the Fraser 
Canyon Anorthosite. Plagioclase is adcumulus and undeformed. There is only minor 
recrystallization at grain boundaries shown by arrows. 

3-48 



Plate 3.19: Photomicrograph of orthopyroxene-bearing monzonite sample TL02-
32b. Sample location is-200m from the Tessiarsuyungoakh intrusion/Pearly Gates 
Anorthosite pluton contact. Feldspars are mesoperthitic and the lamellae are 
deformed. Grains are recrystallized along their boundaries. 

Plate 3.20: Photomicrograph of olivine-bearing quartz monzonite sample TL02-30. 
Sample location is -2000 m from the Tessiarsuyungoakh intrusion/Pearly 
Gates Anorthosite pluton contact. The minerals have undergone minor recrystal­
lization but are undeformed. 
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- 1 mm 

Plate 3.21: Photomicrograph of zircon fragments from sample 1. Zircon is pale 
brown, clear and angu larto subangularsuggesting slight resorption. 

Plate 3.22: Photomicrograph showing clusters of interstitial, anhedral zircon from 
sample 1. Zircon shows high birefringence and crystallized together with or after 
ilmenite. 

3-50 



500 urn 

Plate 3.23: Photomicrograph of slightly resorbed prismatic zircons from sample 1. 
Zircon is pale brown, clear and inclusion-free. 

Plate 3.24: Photomicrograph of slightly resorbed , prismatic zircon included in 
plagioclase from sample 1. 
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- 500 urn 

Plate 3.25: Photomicrograph of highly resorbed, cuspate zircon from sample 1. 
Zircon is pale brown, clear and inclusion-free. 

Plate 3.26: Photomicrograph of highly resorbed, zircon from sample 1, partially 
included in plagioclase at grain boundary. 
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Plate 3.27: Photomicrograph of large, euhedral, prismatic zircon from sample 2. 
Zircons selected for analyses were colourless, clear, fractured and inclusion-free, 
however, many ofthe largest grains contained fluid inclusions. 

Plate 3.28: Photomicrograph of angular zircon fragments from sample 2. Zircons 
selected for analyses were colourless or brown, clear, angular and inclusion-free. 
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Plate 3.29: Photomicrograph of stubby, euhedral baddeleyite grains and fragments 
from sample 1. Baddeleyite is chocolate brown and clear. 

. /) 

0 
0 0 
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Plate 3.30: Photomicrograph of stubby, euhedral baddeleyite from sample 2. 
Baddeleyite is chocolate brown and clear. 
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- 1 mm 

Plate 3.31: Photomicrograph of angular zircon fragments from sample 3. Zircons 
selected for analyses were pale yellow, clear, angular and inclusion-free. 

- 1 mm 

Plate 3.32: Photomicrograph of angular zircon fragments from sample 4. Zircons 
selected for analyses were pale yellow-brown, clear, angular and inclusion-free. 
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Plate 3.33: Photomicrograph of slightly resorbed, prismatic zircon from sample 5. 
Zircons selected for analyses were pale yellow, clear and inclusion-free. 

Plate 3.34: Photomicrograph of interstitial prismatic zircon in sample 5. 
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Plate 3.35: Photomicrograph of slightly resorbed, prismatic zircon from sample 6. 
Zircons selected for analyses were pale yellow-brown, clear and inclusion-free, 
although minor inclusions are typical in this sample. 

Plate 3.36: Photomicrograph of interstitial, slightly resorbed, large, prismatic zircon 
from sample 6. 
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CHAPTER 4- STUDY OF REGIONAL AND CONTACT METAMORPHISM OF THE 

TASIUYAK PARAGNEISS BETWEEN THE MAKHAVINEKH LAKE PLUTON AND THE 

TESSIARSUYUNGOAKH INTRUSION, NAIN PLUTONIC SUITE, NORTHERN LABRADOR 

Abstract: 

The Tasiuyak paragneiss adjacent to the western margin of the Nain Plutonic Suite has 

been subjected to high-temperature regional metamorphism associated with the Paleoproterozoic 

Torngat orogen, and contact metamorphism associated with emplacement of the 

Mesoproterozoic Nain Plutonic Suite. This metamorphic study of the paragneiss used 

petrogenetic grids to determine the nature and conditions of each metamorphic event. The 

regional metamorphic mineral sub-assemblage of garnet-biotite-sillimanite indicates a prograde 

evolution within the sillimanite stability field and peak P-T conditions ranging from 7.2 to 10.2 kbar 

and 800° to 830°C. The ca. 1360 Ma Tessiarsuyungoakh composite body of monzonite and 

monzodiorite intruded as sheets into the paragneiss. A small contact aureole(< 20m wide) was 

formed along this contact and was marked by incipient development of the metamorphic sub­

assemblage cordierite + orthopyroxene + spinel after garnet-biotite-sillimanite. This suggests that 

the Tessiarsuyungoakh intrusion is a relatively small body that intruded and crystallized quickly. 

The P-T estimate of the contact metamorphism in this aureole is between 3 to 4 kbar and 775° to 

800°C. The large Makhavinekh Lake pluton consisting of olivine-pyroxene-hornblende-bearing 

rapakivi granite formed a substantial (- 4 km) contact aureole in the Tasiuyak paragneiss. The 

progressive development of the contact metamorphic assemblage cordierite + orthopyroxene + 

spinel after garnet-biotite-sillimanite with decreasing distance toward the intrusion, is interpreted 

to represent a temperature gradient along the contact aureole. Temperatures ranged from 675°C 

at the 4 km limit of the contact aureole, to at least 850°C at the Makhavinekh Lake pluton contact, 

and isobaric conditions are estimated to have between 3 to 4 kbar. 
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4.11NTRODUCTION 

Most of the anorthositic and granitic intrusions along the margins of the Mesoproterozoic 

Nain Plutonic Suite (NPS) (Fig. 4.1) have caused contact metamorphism of the surrounding 

country rocks. However, other than a reconnaissance contact metamorphic study done by Berg 

(1977a, 1977b) of the whole NPS region , there are very few detailed studies. These comprise the 

metamorphic studies by Speer (1982) and Berg and Docka (1983) of the contact aureole 

surrounding the Kiglapait intrusion in the east (Fig. 4.1 ), and studies by Lee (1987) and 

McFarlane et al. (2003) of the contact aureole surrounding the Makhavinekh Lake pluton (MLP), 

in the west (Fig. 4.1 ). 

Along the western margin of the NPS, several intrusions were emplaced into the 

Tasiuyak paragneiss that had previously been regionally metamorphosed to garnet-biotite­

sillimanite during the Paleoproterozoic Torngat Orogeny. Adjacent to the MLP (Fig. 4.2) 

composed of rapakivi granite, a contact metamorphic assemblage of cordierite + orthopyroxene + 

spinel has replaced this regional metamorphic assemblage. To the northeast of the MLP, there is 

a large body of anorthosite (Pearly Gates Anorthosite pluton), bordered by the composite 

Tessiarsuyungoakh intrusion (TI) of monzonite and monzodiorite (Fig . 4.2). It was previously 

unknown whether the Tl had also contributed to contact metamorphism of the paragneiss. 

The metamorphic study of the Tasiuyak paragneiss described below combines field 

evidence, textural interpretations and petrogenetic grids to determine three main points: 1) the 

regional metamorphic P-T evolution, 2) if the Tl has caused contact metamorphism, and 3) the 

thermal gradient and isobaric conditions of the contact aureole surrounding the MLP. The latter 

part of the present study also compliments and compares P-T conditions with previous studies by 

Lee (1987) and McFarlane et al. (2003), southeast of the present study area. 

4.2 GEOLOGICAL SETTING 

Northern Labrador comprises remnants of two Archean cratons (North Atlantic Craton to 

the east and the Rae Craton to the west) that were amalgamated during the ca. 1.8 Ma Torngat 
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Orogeny. The remnant of the North Atlantic Craton in Labrador is known as the Nain Province 

and is composed of orthogneiss with minor amounts of paragneiss and metavolcanic rocks. To 

the west of the Torngat Orogen, the Rae Craton was extensively intruded by Paleoproterozoic 

tonalite, granite and gabbro and was intensely deformed and interleaved with Paleoproterozoic 

metasedimentary rocks during the Paleoproterozoic. This region was metamorphosed to upper 

amphibolite to granulite facies and is commonly referred to as the Southeastern Churchill 

Province. Along the western margin of the Torngat Orogen there is a belt of metasedimentary 

rocks called the Tasiuyak paragneiss (Wardle, 1983). The Tasiuyak paragneiss was 

metamorphosed to granulite facies grade during the late stages (ca. 1860 to 1840 Ma) of the 

Torngat Orogeny (Bertrand et al., 1993). Between ca. 1845-1820 Ma (Rivers et al., 1996), the 

NNW trending Abloviak Shear Zone developed along the eastern margin of the Tasiuyak 

paragneiss and defines the eastern edge of the Torngat Orogen. 

The Mesoproterozoic (ca. 1360-1290 Ma) NPS was intruded along the collisional suture 

marked by the Torngat Orogen. The western boundary lies adjacent to the Tasiuyak paragneiss 

of the Southeastern Churchill Province and the eastern boundary lies adjacent to the rocks of the 

Nain Province. The NPS comprises composite bodies of anhydrous, anorthositic and granitic 

rocks. Some of these intrusions have produced contact aureoles in the country rocks. Along the 

western margin of the NPS, some plutons have produced granulite facies contact metamorphic 

assemblages that overprint the regional granulite facies assemblage of the Tasiuyak paragneiss. 

The Tasiuyak paragneiss is dominated by highly deformed, layers of semi-pelitic rocks 

with minor pelitic components and is locally interlayered with sheets of orthopyroxene-bearing 

tonalitic orthogneiss and garnet-bearing quartzofeldspathic orthogneiss. The paragneiss is 

migmatitic and the regional metamorphic assemblage mainly consists of quartz + K-feldspar + 

plagioclase + garnet+ biotite ± sillimanite (Pl. 4.1 ). Contact metamorphism of the Tasiuyak 

paragneiss by intrusions of the NPS has produced cordierite, orthopyroxene and spinel at the 

expense of garnet, biotite and sillimanite. 
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4.3 GEOLOGY OF THE STUDY AREA 

In the study area, the Tasiuyak paragneiss (Fig. 4.2) was intruded by the Tl in the east 

and by the MLP in the southwest. The ca. 1360 Ma Tl {this study, Chapter 3) intruded into the 

paragneiss as sheets and formed pyroxene- and/or olivine-bearing monzonite and monzodiorite. 

The composite Tl separates the ca. 1340 Ma Pearly Gates Anorthosite pluton (this study, Chapter 

3), to the east, from the Tasiuyak paragneiss, to the west. The ca. 1322 Ma MLP (McFarlane et 

al., 2003) is a pyroxene-olivine-hornblende-bearing granite with rapakivi texture. This pluton 

intruded as a sheet-like cylindrical body into the paragneiss (Ryan, 1991 ). 

Metre-thick sheets of foliated, granulite facies orthopyroxene-bearing tonalite and sub­

concordant garnet-bearing quartzofeldspathic dykes are distributed throughout the paragneiss but 

make up only a minor portion of the mapped area. The regional gneissosity of the paragneiss 

broadly trends 160°SSE and is sub-vertical. Close to the Tl contact, this gneissosity is parallel to 

the Tl contact ranging from 110° to 165° and dipping 26° to 65° southwestwards. In the southern 

part of the study area near the Tl contact, the north-south trending foliation in the paragneiss is 

deflected by east-west trending shear zones. 

The intrusion of the MLP produced a contact aureole in the Tasiuyak paragneiss. Contact 

metamorphism is marked by cordierite + orthopyroxene ± plagioclase pseudomorphs after garnet 

and biotite, and cordierite + spinel ± orthopyroxene ± plagioclase pseudomorphs after garnet and 

sillimanite (Pl. 4.3 and 4.4). In the field, this aureole appears to extend- 4 km radially from the 

MLP contact (Fig. 4.2). The intensity of these transformations increases towards the contact of 

the MLP. Recrystallization associated with the contact metamorphism has obscured the foliation 

in the paragneiss near the MLP contact. Beyond the contact aureole, the regional metamorphic 

assemblage of the paragneiss appears to be well preserved (Pl. 4.2). However, new petrographic 

evidence (see section 4.9.4.1) indicates that the regional metamorphic assemblage has been 

perturbed. 
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Minor screens of paragneiss, generally 1 O's of metres in length and width, were observed 

in the Tl. The gneissosity of the paragneiss is concordant to the layering and magmatic flow 

foliation of the Tl (see Chapter 3, section 3.3.2). In the field, these screens appear to contain only 

the regional metamorphic assemblage but new petrographic evidence (see section 4.1 0.1) 

indicates the presence of a contact metamorphic assemblage of cordierite +spinel ± 

orthopyroxene. 

4.4 PREVIOUS WORK 

North of the NPS, the regional metamorphism of the Tasiuyak paragneiss has been 

studied by Ermanovics and Van Kranendonk (1998) and Rivers et al. (1996) (Fig. 4.1 ). The 

regional metamorphic assemblages of the paragneiss described in these studies are generally 

the same as those in this study area. Ermanovics and Van Kranendonk (1998) reported P-T 

conditions of 7 kbar and 510 to 700°C. Rivers et al. (1996) reported P-T conditions of 6 to 7 kbar 

and 650 to 750°C from the paragneiss and 10 to 12 kbar and 800°C from interlayered mafic 

rocks. Rivers et al. (1996) suggested that the lower P-T conditions of the paragneiss were due to 

"more pervasive post-peak re-equilibration". 

Ryan (1991) described the structure, petrography and geochemistry of the MLP and 

discussed the contact metamorphic assemblage in the Tasiuyak paragneiss. Berg (1977a, 

1977b) conducted a study of the contact metamorphism in paragneisses, ironstone formations 

and ultramafic rocks in both the Nain Province and Southeastern Churchill Province adjacent to 

NPS intrusions and provided the first data set on contact mineral assemblages and P-T 

conditions in the NPS region. This study included a sample of the Tasiuyak paragneiss (sample 

2-1572), which was collected in the present study area (Fig . 4 .2). The mineral assemblage of this 

sample was garnet+ cordierite +orthopyroxene(+ quartz) and P-T conditions were determined 

as 5.3 kbar, 780° to 785°C (from garnet rim analyses) and 5.6 kbar, 910° to 915°C (from garnet 

core analyses) (Berg, 1977b). Berg (1977a, 1977b) suggested that minor zoning in garnet rims 
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formed during retrograde re-equilibration and therefore, interpreted the garnet core analyses to 

represent peak P-T conditions. 

A B.Sc. honours thesis by Lee (1987) focused on the contact aureole southeast of the 

present study area. This thesis reported P-T estimates of 6 to 9 kbar, 850 to 900°C for the 

regional metamorphism and of 3.5 to 4.5 kbar, 600 to 760°C for the (isobaric) thermal gradient of 

the contact metamorphism. Lee (1987) also suggested that the temperature estimate close to the 

MLP contact was a minimum because of retrograde Fe-Mg exchange. 

McFarlane et al. (2003) studied the contact aureole related to the MLP along two 

transects. The contact metamorphic assemblage was used to test whether AI solubility in 

orthopyroxene, which replaced garnet, could be used as a reliable geothermometer for high­

temperature metamorphic rocks. One of the transects was done in the same region as Transect 3 

of the present study. However, the data and results presented by McFarlane et al. (2003) are 

from a second transect, south of the present study area at the eastern boundary of the MLP. 

They stated that their results from both transects were the same and that the sample used to 

describe the regional metamorphic assemblage was located along their first transect. The results 

of McFarlane et al. (2003) indicated a temperature gradient from 900°C at the MLP contact to 

700°C at a distance of 5750 m from the contact. 

4.5 GENERAL APPROACH 

A petrographic study was carried out to determine the mineral compositions and textures 

of the regional and contact metamorphic assemblages. This information was used in conjunction 

with a petrogenetic grid, bulk composition, mineral composition, and AFM diagrams to interpret 

the metamorphic reaction textures and estimate P-T conditions. The NaKFMASH petrogenetic 

grid of Spear et al. (1999) (Fig. 4.3), which illustrates high temperature phase relationships in 

pelitic systems, was used to constrain the reaction history and P-T evolution of the analyzed 

samples. The role of bulk composition in the textural evolution was addressed using AFM 

diagrams. The main metamorphic phases, garnet, biotite, plagioclase, cordierite and 
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orthopyroxene were analyzed for chemical zoning in order to provide additional constraints on the 

metamorphic evolution. 

For the regional metamorphism, P-T conditions were further constrained by using garnet 

XFe (XFe = Fe/Fe+Mg) isopleths and GASP (Garnet+ Aluminosilicate +Silica+ Plagioclase) 

geobarometry. Spear et al. (1999) calculated garnet XFe isopleths in the NaKFMASH system for a 

number of mineral assemblages (Fig. 4.11 ). Therefore, the range of calculated garnet XFe values 

from the studied samples helps to confine the thermal peak to within a specific range of isopleths. 

The chemical compositions of garnet and plagioclase were used to constrain pressure 

limits in the NaKFMASH petrogenetic grid. The peak pressure estimates were determined using 

the GASP reaction: 

3 anorthite = grossular + 2 sillimanite + quartz 

The GASP reaction is a robust geobarometer since it is relatively unaffected by late exchange 

during cooling along the P-T path. Geobarometric calculations were performed using the 

TWEEQU 2.02 program (Berman, 1991 ). The intersection of the garnet XFe and GASP isopleths 

ideally provides quantitative P-T conditions. 

TWEEQU is a computational database which contains thermodynamic data and activities 

(Berman, 1988; Berman and Aranovich, 1996; unpublished data from Berman and Aranovich, 

1997) for many common minerals. This application calculates all equilibrium reactions for a given 

mineral assemblage and produces a graphical output of pressure and temperature. The above­

mentioned GASP equilibrium reaction was used with mineral compositions to calculate a 

univariant reaction line and plotted on the NaKFMASH petrogenetic grid to further constrain the 

pressure conditions during regional metamorphism. 

Geothermobarometric studies were not done on the contact metamorphic assemblages 

for two reasons: 1) previous studies (see section 4.4) have already provided extensive analytical 

data and geothermobarometric P-T conditions of the contact metamorphic assemblage in the 
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paragneiss adjacent to the MLP; and 2) these same studies have suggested that resetting of Fe­

Mg phases occurred. Therefore, the petrogenetic study described here is designed to 

complement and compare P-T conditions with those estimated in the previous work. 

The use of petrogenetic grids in conjunction with XFe isopleths is a powerful and relatively 

new approach. This technique helps to constrain the metamorphic peak P-T conditions in high 

temperature metapelites because it avoids the limitations of the traditional geothermobarometry in 

high-grade rocks, i.e. Fe-Mg resetting by garnet-biotite or garnet-cordierite Fe-Mg exchange 

during cooling (Spear, 1991 ). 

4.6 ANALYTICAL TECHNIQUES 

Bulk composition of polished sections and mineral chemical analyses were conducted on 

the Cameca SXSO electron microprobe at Memorial University. Bulk composition analyses were 

conducted using the EDX method with an acceleration potential of 15 kV, a beam current of 250 

nA and a scanning beam size of .8 mm x 1 mm while the stage was moving between specified 

limits. Spot analyses, also conducted using EDX, were performed along transects across grains 

of garnet, biotite, plagioclase, cordierite and orthopyroxene to detect chemical zoning . Operating 

conditions for mineral analyses were: acceleration voltage: 15 kV, beam current: 20 nA, beam 

size: 1 f..lm , and counting time: 50 seconds for garnet, 75 seconds for all other minerals. In the 

case of plagioclase, a lower beam current of 1 OnA and a larger beam diameter of 3 f..lm were 

used due to feldspar's sensitivity to damage by the beam. Ferric iron cannot be distinguished 

from ferrous iron by the microprobe but is considered to be negligible in the analyzed minerals. 

4.7 SAMPLE SELECTION 

46 samples of Tasiuyak paragneiss were selected for a study of the regional and contact 

metamorphism. All samples were oriented and thin sections were cut perpendicular to the 

foliation and along strike. Samples were collected along three transects at high angles to the 
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boundaries of the paragneiss (Fig. 4.2). In addition, sample TL01-146 was collected- 10 km west 

of the Tl and 5 km north of the MLP, in order to represent the pristine Paleoproterozoic regional 

metamorphic assemblage of the Tasiuyak paragneiss. This sample was used in a detailed 

petrographic study to constrain the regional peak P-T conditions in the study area. 

Samples collected along Transect 3 (Fig. 4.2) display a gradational change between the 

Tl and MLP from regional to contact metamorphic assemblages, respectively. Therefore samples 

from this transect (samples TL02-73 to -80 and TL02-66a, -66b) were used to best describe the 

entire variation of metamorphic assemblages across the aureole. 

This study of the contact metamorphism mainly focuses on textural interpretations using 

the petrogenetic grid and AFM diagrams. Therefore it complements the studies of Lee (1987) and 

McFarlane et al. (2003), which included detailed determination of mineral chemistry and 

geothermobarometry but did not place the results in a petrogenetic P- Tframework. In the context 

of this thesis, only sample TLO 1-14 7 (Transect 2) was analyzed for mineral chemistry to constrain 

the location of phases on AFM diagrams. The mineralogy of key samples is shown in Table 4.1 . 

In addition, three samples, TL02-29, -44 and -48 (Fig . 4.2), were collected from Tasiuyak 

paragneiss screens within the Tl. These samples were studied in order to determine whether 

spinel is a result of a contact metamorphic overprint on the regional assemblage. 

4.8 REGIONAL METAMORPHISM 

4.8.1 Petrography 

Thirteen polished sections taken from different compositional layers in sample TL01-146 

were examined to document the regional metamorphic mineral assemblage (Table 4.1 ). The 

sample is highly strained and heterogeneously recrystallized. Two textural domains were 

distinguished: domain I is mostly composed of large quartz ribbons and domain II consists of 

fine-grained biotite-bearing quartzofeldspathic matrix with feldspar porphyroblasts, large 

sillimanite prisms, and garnet porphyroblasts. Garnet is generally several mm to 7 em in diameter 
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and locally abuts and deflects quartz ribbons of domain I (Pl. 4.5). The foliation is defined by 

biotite, quartz ribbons and sillimanite prisms. Minor amounts of rutile, ilmenite, pyrite, 

chalcopyrite, zircon and monazite are found in both domains, whereas titanite is only found in 

domain II. 

Domain I is dominated by coarse-grained, partially recrystallized, highly attenuated 

quartz ribbons that are locally separated by thin lenses of attenuated quartzofeldspathic matrix 

(Pl. 4.5). The quartz ribbons show minor recrystallization as serrated grain boundaries 

perpendicular to the length of the ribbons. 

Domain II is characterized by fine-grained, granoblastic K-feldspar + plagioclase + quartz 

+ biotite (Pl. 4.6). In addition, fine-grained patches of vermicular quartz and feldspars were found 

at or close to (within 200 )lm) garnet grain boundaries (Pl. 4.7 and 4.8). Relatively large feldspar 

porphyroblasts (0.7 mm to 2 mm) consist of augen-shaped, partially recrystallized, mesoperthite 

(Pl. 4.6). Throughout the rock, feldspars are moderately saussauritized and have a dirty-brown 

appearance in plane-polarized light (Pl. 4.5). 

Within domain II, complex textural relationships were observed between garnet and 

sillimanite. There are three textural types of sillimanite, fine-grained needles (Sil1 ), coarse­

grained sillimanite prisms (Sil2) and fibrolite (Si13). Sil1 was found as inclusions in the core of 

some garnet porphyroblasts (Grt1) and is either randomly oriented (Pl. 4.9), or forms trains 

parallel to the existing fabric (Pl. 4.1 0). Sil2 (0.5 to 1 mm) consists of euhedral prisms that are 

locally bent (Pl. 4.11 ). Sil2 occurs as: a) clustered trains parallel to the foliation in the matrix from 

which they are separated by a garnet rim (Pl. 4.9), and b) as inclusions in the outer part of large 

xenomorphic garnet porphyroblasts, some of which developed around Grt1 (Pl. 4.9 and 4.1 0). 

Therefore, the garnet associated with Sil2 postdates Grt1 and will be referred to as Grt2. The 

matrix surrounding the sillimanite-garnet assemblage (Domain II) is generally plagioclase-rich. 

In addition to Sil2, Grt2 contains inclusions of quartz, plagioclase, K-feldspar, biotite and 

polymineralic quartz ± biotite ± plagioclase ± K-feldspar (Pl. 4 .12). Grt2 is locally resorbed and 
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rimmed by fine-grained intergrowths of Sil3, quartz and biotite. This intergrowth was also found 

along garnet fractures and grain boundaries between Grt2 and Si12 (Pl. 4.13). Locally, biotite (50 

to 500 ~m) was observed embayed into Grt2 (Pl. 4.11 ). The largest garnet porphyroblasts (up to 

?em) are those completely enclosed in domain II. In contrast, garnet porphyroblasts associated 

with thin lenses of quartzofeldspathic matrix in domain I either abut quartz ribbons or do not 

exceed 1 em in diameter. Lesser amounts of fine-grained (1 00 ~m to 200 ~m), euhedral garnet 

usually rims Grt2 (Pl. 4.14 ). This euhedral garnet, referred to as Grt3 (reason discussed in 

interpretation section), contains quartz inclusions (Pl. 4.14) and in a few cases, euhedral Grt3 

was observed as inclusions in biotite. 

4.8.1.1 Bulk composition 

The bulk compositions of sections TL01-146c, d, j and k are shown in Table 4.2 and 

plotted on an AFM diagram in Figure 4.4. Sections c and d are characterized by larger 

proportions of domain II relative to sections j and k, in which domain I is dominant. XFe ranges 

from .58 to .62 and the AI index ranges between .40 and .49. The AI index is highest in sections c 

and d (.48 - .49 versus .40 - .44 in sections j and k), which also have the highest modal amount of 

sillimanite. The bulk compositions of all the sections cluster within the Grt-Sii-Bt triangle of the 

AFM diagram, close to the Grt-Sil tie line (Fig. 4.5, AFM diagram labelled Field 1). 

4.8.2 Mineral Chemistry 

Analytical data for garnet, biotite and plagioclase is located in Table A.1 of Appendix A. 

4.8.2.1 Garnet 

Garnet porphyroblasts were analyzed in sections TL01-146c, d, j and k (Fig. 4.6a-f). 

These porphyroblasts include Grt1 rimmed by Grt2, xenomorphic Grt2 and euhedral Grt3. All 

these garnet grains are relatively homogeneous and are characterized by high almandine and low 
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grossular contents (XA1m.57 - .64, XPrp .33 - .38, XGrs .023 - .031, Xsps .002 - .005). Minor XFe 

zoning exists at the rims of some xenomorphic Grt2 and adjacent to biotite inclusions. Both Xca 

and XMn generally show no change across garnet. XMn is very low and was not plotted. 

4.8.2.2 Biotite 

Biotite adjacent to garnet, and biotite inclusions in garnet were analyzed in section TL01-

146j (Fig. 4.7a-c). XFe of biotite ranges from- .22 to .25 with maximum values typically at rims 

adjacent to garnet. XTi depends on the textural setting: it is highest in biotite inclusions, .54 to .65 

per formula unit (p.f.u.), whereas it ranges from .48 to .55 p.f.u. in biotite adjacent to garnet. XA1v1 

ranges from .23 to .45 p.f.u. and decreases towards the rim of biotite adjacent to garnet. 

4.8.2.3 Plagioclase 

Small, matrix plagioclase adjacent to garnet was analyzed in sections TL01-146j and k 

(Fig. 4.8a-f). Plagioclase is homogeneous with a composition of XAn .28 - .30 and a K-feldspar 

component (Xor) between .01 and .02. 

4.8.3 Interpretation 

The metamorphic assemblage and textures observed in sample TL01-146 can be best 

interpreted by using the NaKFMASH petrogenetic grid of Spear et al. (1999) that illustrates phase 

relationships in high-temperature muscovite-free pelitic rocks. 

The absence of muscovite and the co-existence of K-feldspar and Sil2 in sample TL01-

146 indicates that the metamorphic temperatures exceeded those required for muscovite 

dehydration melting and reached the biotite dehydration field (Fig. 4.5). In this context, the fine­

grained quartzofeldspathic matrix of domain II, that mainly has a granitic composition, is 

interpreted as leucosome. The associated porphyroblasts of garnet, sillimanite and feldspars 
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likely represent peritectic phases and/or unmolten residue. Finally, the large quartz ribbons of 

domain I are interpreted as excess quartz that escaped melting. 

The observed mineral assemblages and textures suggest the following evolution. The 

garnet cores with Sil1 inclusions (Grt1) represent the earliest preserved assemblage. The 

evidence of both random and foliation-parallel orientation of Sil1 suggests that Grt1 formed during 

the early stage of fabric development. The bulk composition ofTL01-146c and 146d, the only 

sections that contained Grt1, were plotted on AFM diagrams projected from muscovite 

representing the staurolite-out reaction (Fig. 4.9). Both sections lie within the Grt-St-Bt and Grt­

Sii-Bt triangles, and have relatively high XFe and aluminum index close to that of garnet. Their 

location suggests that Grt1 and Sil1 may have been produced, at least in part, by the NaKFMASH 

discontinuous reaction (Fig. 4.5): 

staurolite+ muscovite= garnet (Grt1) + biotite +sillimanite (Sil1) + L (4.1) 

The formation of coarse-grained sillimanite prisms (Sil2) took place during a later stage of 

deformation of the paragneiss. Evidence for this deformation is the presence of bent crystals and 

that Sil2 is oriented within the foliation, and exhibits strained extinction. Sil2 is likely the product of 

dehydration melting of muscovite (Fig. 4.5): 

muscovite ± plagioclase + quartz = sillimanite (Sil2) + K-feldspar + L (4.2) 

A second generation of xenomorphic garnet growth (Grt2) formed rims around Sil2 and 

Grt1. The inclusions of K-feldspar, plagioclase, quartz and Si12 are consistent with growth of Grt2 

by the biotite dehydration melting reaction: 

biotite + sillimanite (Sil2) + quartz ± plagioclase = 

garnet (Grt2) + K-feldspar + L 
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Reaction 4.3 is continuous in the NaKFMASH system and occurs within the field denoted by "I" in 

Fig. 4.5. The xenomorphic Grt2 most likely reflects pseudomorphic overprinting of Sil2 trains and 

clusters. The lack of sillimanite in the quartzofeldspathic lenses of the quartz-rich domain is likely 

due to the lower AI content of these lenses. This is reflected in the bulk composition of sections 

TL01-146j and k, which had the lowest AI index. 

Patches of vermicular leucosome that locally corrode garnet (Pl. 4. 7) indicate that at 

some stage of partial melting garnet became a reactant. This can happen if biotite was entirely 

consumed in Field I. This reaction is: 

K-feldspar + albite + quartz + AI2Si05 + garnet = L (4.4) 

The bulk composition of this sample lies within the Grt-Sii-Bt triangle and near the Grt-Sil tie line. 

If during cooling new biotite was produced by melt crystallization, this biotite would have higher 

XFe than that of the biotite at the P-T peak. Then the calculated XFe (that is plotted in the AFM 

diagram) would be higher than the peak XFe· If this were the case, then during the thermal peak 

the Grt-Sii-Bt triangle may have shifted to the right of the bulk compositions, leaving them in the 

Grt-Sil tie line region and marking the end of reaction 4.3 (Fig. 4.1 0). This poses a problem in 

constraining temperature conditions since without biotite the higher temperature discontinuous 

reaction: 

biotite + sillimanite + quartz± plagioclase = garnet + cordierite + L (4.5) 

could not occur. However, in the divariant Field II the bulk composition of the analyzed samples 

lies in the Grt-Sii-Crd triangle, suggesting that the continuous reaction: 

sillimanite + garnet + quartz ± plagioclase = cordierite + L (4.6) 
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would occur. Because cordierite is absent, the P-T conditions for the thermal peak are interpreted 

to have been restricted to Field I (Fig. 4.5). 

The small, euhedral Grt3 that locally rim xenomorphic Grt2 and are found as inclusions in 

biotite are suggested to have formed during melt crystallization. If, as proposed earlier, garnet 

was partially consumed by reaction 4.4 following elimination of biotite in Field I, then during the 

early stages of melt crystallization garnet would be the first ferromagnesian phase to crystallize 

by reaction 4.4 in the reverse sense. Biotite crystallized later and occasionally grew around Grt3 

grains. 

Grt2 rims resorbed by sillimanite, quartz and biotite intergrowths are consistent with 

reaction 4.3 occurring in the opposite direction during cooling: 

garnet (Grt2) + K-feldspar + L = biotite +sillimanite (Sil3)+ quartz± plagioclase 

The absence of muscovite indicates that the reverse of reaction 4.2 did not take place, 

suggesting that melt crystallization occurred during cooling in Field I. The preservation of delicate 

vemicular textures of granitic composition in Domain II indicates that at least the last stage of 

melt crystallization occurred after deformation. 

The homogeneous composition of garnet is attributed to intracrystalline cation diffusional 

homogenization at high temperatures. Therefore, any potential compositional differences 

between the three generations of garnet, Grt1, Grt2 and Grt3, have been obliterated by diffusion. 

The minor increase of XFe at the rims of garnet and decrease at the rims of adjacent biotite are 

attributed to retrograde intercrystalline Fe-Mg exchange across grain boundaries prior to reaching 

Fe-Mg diffusional closure temperatures. 

The small plagioclase grains adjacent to garnet are interpreted to represent crystallized 

melt. This plagioclase is also homogeneous, which is attributed to rapid crystallization during 

cooling shortly after peak metamorphic conditions were reached. 
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4.8.4 P-T Conditions 

The small range of XFe in garnet cores was plotted along the XFe isopleths calculated for 

the Grt + Bt + Sil + Kfs + Qtz + L divariant assemblage (Field I, Fig. 4.5) on the NaKFMASH 

petrogenetic grid (Fig. 4.11 ). The parameters used to calculate slopes of contours are described 

in Spear et al., Figure 5 (1999). The slope of the isopleths indicates that during garnet growth in 

Field I Fe/Fe+Mg decreases with increasing temperature, whereas during garnet consumption the 

reverse is true. Therefore these isopleths can be used as a thermometer. The area shaded in 

dark grey in Figure 4.11 further constrains the P-T conditions that produced the regional 

assemblage, giving a P-T range of 6. 7 to 10.2 kbar and 780° to 830° C. 

Grt2 was formed during prograde metamorphism by reaction 4.3, within Field I and 

therefore was present during the metamorphic peak. Textural evidence and the relatively high 

sodic content of plagioclase (XAb- .69) suggest that the felsic material adjacent to the garnet 

represents crystallized melt that formed during cooling. Therefore, assuming that cooling was 

accompanied by decompression, garnet and plagioclase compositions would give a minimum 

pressure limit on the metamorphic peak conditions. Based on this assumption, minimum pressure 

estimates can be calculated using the GASP reaction (see section 4.5). 

GASP isopleths were calculated by the TWEEQU v. 2.02 program (Berman, 1991) using 

two sets of representative garnet and plagioclase compositions (#7Grt-Pig and #9Grt-Pig). See 

Figure A.1 in Appendix A for TWEEQU generated pressure plots. 

The location of the calculated GASP isopleths is shown in Field I of Figure 4.12. The 

intersection of these isopleths with the Fe/Fe+Mg garnet isopleths defines a range of 

metamorphic P-T conditions of 7.2 to 10.2 kbar and 800°C to 830°C (striped region in Figure 

4.12). 

4.8.5 Discussion 

Textural evidence helps to constrain part of the prograde reaction history of the Tasiuyak 

paragneiss. The earliest preserved textures of Grt1 with random or foliation-parallel Sil1 
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inclusions suggest that they were formed during the onset of deformation. The absence of 

muscovite and the presence of textural domain II (fine-grained matrix) of granitic composition 

with coarse-grained sillimanite prisms (Sil2) indicate: a) that temperatures surpassed the 

muscovite-out dehydration melt reaction, and b) the rocks reached the P-T field of biotite 

dehydration melting (Fig. 4.12). 

Sil2 is bent and oriented in the foliation and therefore grew during deformation. Grt2 

partially or completely replaced Sil2 during the biotite dehydration melting reaction 4.3. The lack 

of cordierite in these rocks suggests that temperature conditions did not exceed those required 

for the univariant reaction 4.5 and divariant reaction 4.6 in Field II (Fig. 4.5). In addition, there is 

evidence that biotite may have been entirely consumed in Field I. In this context, local corrosion 

of garnet in contact with leucosome suggests partial dissolution of garnet in the melt by reaction 

4.4 after the elimination of biotite, whereas small euhedral Grt3 formed during melt crystallization 

by the same reaction in the opposite direction. Minor local resorption of Grt2 by intergrowths of 

Sil3, biotite and quartz indicates that relatively short-lived back-reaction of 4.3 occurred during 

cooling within Field I (Fig. 4.12). In addition, the local preservation of delicate vermicular 

leucosome patches and euhedral Grt3 grains imply that melt crystallization occurred after 

deformation. 

Garnet, biotite and plagioclase are all relatively homogeneous suggesting that 

intragranular diffusional homogenization took place at high temperatures. This homogenization 

could also be the reason why Grt1, Grt2, which typically rims Grt1, and Grt3 have the same 

composition. The minor Fe/Fe+Mg increase at Grt2 rims and Fe/Fe+Mg decrease at adjacent 

biotite rims most likely reflect limited retrograde intercrystalline Fe-Mg exchange. 

In conclusion, this study has combined mineral assemblages and textures, petrogenetic 

grids, and bulk and mineral compositions, to determine the range of regional metamorphic P-T 

conditions as 7.2 to 10.2 kbar and 800°C to 830°C (Fig. 4.12). 
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4.8.5.1 Comparison with previous work 

Most of the published metamorphic studies of the Tasiuyak paragneiss were located 

north of the NPS (Fig. 4.1 ). The regional metamorphic assemblages of the paragneiss described 

in these studies is generally the same as the study area. Ermanovics and Van Kranendonk 

(1998) reported P-T conditions of 510° to 700°C and a pressure of 7 kbar for the Tasiuyak gneiss 

outside of the Abloviak shear zone. At 7 kbar, these temperature estimates are generally below 

those required for reaction 4.2 (Fig. 4.12). Therefore, the P-T estimates of Ermanovics and Van 

Kranendonk (1998) most likely reflect retrograde re-equilibration. P-T conditions reported by 

Rivers et al. ( 1996) from the paragneiss within the Abloviak Shear Zone along the Saglek transect 

(labelled S in Fig. 4.1) are 6 to 7 kbar and 650° to 750°C. These conditions are intermediate 

between those of Ermanovics and Van Kranendonk (1998) and those estimated in this study. 

However, interlayered mafic rocks yielded P-T conditions of 10 to 12 kbar and 800°C that indicate 

equilibration mostly within the kyanite stability field (Fig. 4.12). Rivers et al. ( 1996) suggested that 

the lower P-T conditions of the Tasiuyak paragneiss were due to pervasive retrograde re­

equilibration since previous work by Mengel and Rivers (1991) had recognized textures related to 

decompression reactions in the surrounding rocks. 

This study has shown that garnet was produced during prograde metamorphism, 

whereas biotite and plagioclase were products of retrograde metamorphism (crystallization of 

melt during cooling). In addition, garnet and biotite have re-equilibrated during cooling. Both 

Ermanovics and Van Kranendonk (1998) and Rivers et al. (1996) used garnet-biotite 

thermometry. It is proposed that the lower metamorphic temperatures obtained in both studies 

reflect Fe-Mg exchange closure temperatures rather than peak temperature conditions, as 

suggested by Rivers et al. (1996) in their study. 

Since plagioclase formed by melt crystallization, it is also probable that the pressure 

estimates in both studies (calculated using the GASP reaction) represent minimum pressures, if 

cooling was accompanied by decompression. The high-P estimates from the mafic rocks (10-12 

kbar) in the study of Rivers et al. (1996) place the paragneiss in the kyanite stability field. 
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However, they also state that the paragneiss contains sillimanite. In the present study, the 

paragneiss contains multiple generations of sillimanite indicating that these rocks have 

undergone both prograde and retrograde metamorphism in the sillimanite stability field . 

The present study provides a method of overcoming the limitations of 

geothermobarometry in high-temperature metapelites by establishing P-T ranges of equilibration 

based on the interpretation of textures and a relevant petrogenetic grid . Although this approach 

provides a range of P-T conditions rather than P-T points, it is more rigorous and reliable than 

geothermobarometry for the study of high temperature rocks. 

4.9 CONTACT METAMORPHIC GRADIENT BETWEEN THE Tl AND MLP 

The Tasiuyak paragneiss between the Tl and MLP is characterized by progressive 

development of cordierite-orthopyroxene-spinel after garnet-biotite-sillimanite. The intensity of 

overprinting increases towards the MLP suggesting that this intrusion was responsible for 

producing the contact aureole. Table 4.1 lists the mineral assemblages for samples collected 

across this contact aureole and their distance from the MLP contact. 

4.9.1 Petrography 

4.9.1.1 Regional metamorphic assemblage in the study area 

The regional metamorphic assemblage is best preserved in samples TL02-66a, b and 

TL02-80 that were collected adjacent to the Tl contact in the northern part of the study area (Fig. 

4.2). However, the texture of this assemblage shows a number of differences compared to the 

"reference" regional assemblage of sample TL01-146, which was discussed in the previous 

section. 

The main differences are: 1) Large, recrystallized quartz grains pseudomorph the 

original quartz ribbons of Domain I. 2) The quartzofeldspathic minerals of Domain II are coarser 

grained. 3) In addition, the rims of quartz and feldspars have serrated grain boundaries and show 

subgrain development; the rims of large feldspars are recrystallized into smaller grains with triple-
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junction grain boundaries; and large plagioclase is recrystallized to augen-shaped aggregates. 4) 

Garnet is highly fractured and partially replaced by biotite and/or plagioclase along grain 

boundaries and fractures (Pl. 4.15). 5) Sillimanite was not observed. 6) Biotite is more abundant 

and larger. It occurs in the matrix, generally oriented parallel to the foliation, but is randomly 

oriented adjacent to garnet rims and fractures (Pl. 4.15). 

Sample TL02-80 does not show any development of contact metamorphic phases, 

whereas samples TL02-66a and -66b show development of symplectic orthopyroxene + 

cordierite and spinel + cordierite (Pl. 4.16) (see next section). 

4.9.1.2 Progressive development of the contact metamorphic assemblage 

Contact metamorphism of the regional assemblage has produced new phases of 

cordierite, orthopyroxene and spinel at the expense of biotite, garnet and sillimanite. At outcrop­

scale, cordierite is granular and blue-grey in colour and forms a symplectic overgrowth with 

orthopyroxene. The cordierite and orthopyroxene symplectite is typically rimmed by 

orthopyroxene, which may or may not be rimmed by cordierite + spinel symplectic ribbons. These 

symplectites typically rim garnet, which is progressively replaced towards the MLP contact. 

In thin sections, cordierite displays radial sector twinning and contains minuscule 

inclusions giving it a dusty appearance. Spinel is typically dark green and orthopyroxene exhibits 

pleochroic colours of green and pink. Progressive breakdown of the regional metamorphic 

phases to the point of complete replacement can be best seen in the samples taken along 

Transect 3, where only contact metamorphic phases are present in samples adjacent to the MLP 

contact. 

In samples furthest from this contact, large Grt2 porphyroblasts are typically adjacent to 

either plagioclase and/or biotite. Samples TL02-79 to -77 show blebs and/or needles of 

orthopyroxene forming an outer rim at garnet boundaries adjacent to biotite and between biotite, 

plagioclase and quartz ribbons (Pl. 4.17, 4.19 & 4.20). The orthopyroxene needles are formed at 

the outermost rim and are perpendicular to grain boundaries, whereas the orthopyroxene blebs 
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formed between the needles and the reactant (either garnet or biotite). With decreasing distance 

towards the MLP contact (TL02-76 to- 73) the grain size of orthopyroxene increases, averaging 

50 to 100 J.!m, at the outer rim of reactant garnet, and biotite disappears from the reactants (Pl. 

4.21, Fig. 4.13). However, locally minor amounts of secondary biotite have replaced 

orthopyroxene. In samples TL02-74 and 73, large orthopyroxene grains have recrystallized 

forming clusters of polygonal grains (Pl. 4.21 ). 

Inside the orthopyroxene outer rim, Grt2 show progressive consumption forming 

symplectic cordierite and orthopyroxene. In samples TL02-79 to -77, symplectic cordierite and 

orthopyroxene developed along garnet grain boundaries and fractures (PI 4.19, 4.20). 

Orthopyroxene grains form as very small, wormy projections perpendicular to grain boundaries. 

Cordierite is anhedral, relatively large and typically contains inclusions of the orthopyroxene 

worms. Samples TL02-75 to 73 show almost complete to complete consumption of garnet. The 

symplectite shows progressive formation from rim to core of polygonal cordierite and small 

isolated orthopyroxene blocks or chains of orthopyroxene blocks (PI4.21 ). In sample TL02-73, 

minor amounts of garnet were observed rimming coarse-grained orthopyroxene and pyrite 

adjacent to cordierite. Quartz and biotite inclusions in Grt2 were progressively replaced by 

coarse-grained, orthopyroxene. In samples closest to the MLP contact, large clusters of 

orthopyroxene grains were found within the symplectic cordierite and orthopyroxene and are 

assumed to represent complete replacement of quartz and biotite inclusions. Samples TL02-77 

and -78 contain still recognizable Grt1 surrounded by Grt2 (see section 4.8.1 ). Grt1 (with Sil1 

inclusions) is partially replaced by symplectic cordierite and spinel, which in turn is enclosed by 

symplectic cordierite and orthopyroxene (Pl. 4.20). The texture of the symplectic cordierite and 

spinel is described below. 

Grt2 associated with coarse-grained Sil2 is progressively replaced by symplectic 

cordierite + spinel. In general, Sil2 and associated Grt2 have typically undergone complete 

replacement even in samples furthest from the contact. However, sample TL02-77 does contain 

relict Grt2 and associated Si12. Grt2 is preserved adjacent to the quartzofeldspathic matrix and a 
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cluster of cordierite grains replaces the other side (Pl. 4.19). Adjacent to the cordierite mass is 

symplectic cordierite + spinel. Regions of Sil2 are partially replaced by symplectic cordierite + 

spinel (Pl. 4.19). Samples TL02-78 through -73 contain elongate pods of symplectic cordierite + 

spinel with or without a rim of massive cordierite. These pods are generally surrounded by 

polygonal plagioclase (Pl. 4.18). In the cordierite + spinel symplectite, spinel formed as small 

spheres or vermicular worms and cordierite is interstitial. The spinel worms delineate interlocking 

networks and/or radiate from the core as well as forming a thin continuous outer rim. A minor 

amount of tiny, colourless, spheroids with high relief were observed in the cordierite +spinel 

symplectite and are assumed to be corundum. In the rims of massive cordierite, grains are 

typically polygonal. In samples TL02-74 and -73 small blocks and chains of spherical spinel 

replace spinel worms. 

The matrix minerals also show changes toward the contact of the MLP. Furthest from this 

contact, quartz ribbons are observed. Domain II generally consists of anhedral feldspars and 

quartz with serrated grain boundaries and all minerals show subgrain development (Pl. 4.20b ). K­

feldspar porphyroblasts are very coarse-grained (2 to 4 mm, one grain was- 1 em), meso­

perthitic and exhibits subgrain development along serrated grain boundaries. 

Within a kilometre of the MLP contact, quartz ribbons are replaced by clusters of large, 

anhedral quartz. Domain II is coarser grained and is generally granoblastic (Pl. 4.18, 4.21b). The 

size of K-feldspar porphyroblasts decreases (.5- 1 mm), and exsolution lamellae are scarcely 

seen. In addition, pervasive vermicular plagioclase and quartz are found between plagioclase - K­

feldspar and K-feldspar- K-feldspar grain boundaries in all samples throughout Transect 3 (Pl. 

4.18). 

In addition, samples TL02-66a and -66b (see previous section), collected within a few 

metres from the Tl, exhibit incipient development of symplectic orthopyroxene and cordierite (-

10 J..Lm wide) between garnet and biotite. Sample TL02-66b also contains fully developed pods of 

symplectic cordierite and spinel (Pl. 4.16). 
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4.9.2 Bulk Composition 

Bulk compositions are represented on the AFM diagram in Figure 4.4 with analytical data 

reported in Table 4.2. This includes samples TL02-80, -66A and -668 from the regional 

metamorphic assemblage in the study area and the contact metamorphic assemblage samples 

TL02-73 to -79 (except for TL02-76, which showed substantial alteration). 

All samples had similar XFe values ranging from .53 to .65. Sample TL02-80 had the 

highest XFe. which ranged from .63 to .65. AI index of all the samples had a large range from .26 

to .60. Samples TL02-73 to -79 ranged from .44 to .60 and generally showed that the AI index 

increased towards the contact. Petrographic evidence revealed that sample sections TL02-73 to 

-77 generally contained more symplectic spinel+ cordierite (replacing sillimanite) than -78 and-

79. Therefore the amount of original sillimanite in the samples was interpreted as the controlling 

factor for the increase in AI. Sample TL02-80 had the lowest AI index ranging from .26 to .33. The 

sections from sample TL02-80 were of poor quality because of exposed epoxy due to plucking 

out of garnet. However, since garnet has more [Fe+Mg] than AI, the AI index calculated for these 

sections is interpreted as a maximum value. 

On the AFM diagram in Figure 4.4, bulk composition of samples TL02-66A and TL02-66B 

overlap with those of samples TL01-146, TL02-78 and -79, whereas the bulk composition of 

TL02-80 has the lowest AI index and the highest F values. The bulk composition of samples 

TL02-73 to -79 form a linear array with a range of AI index and have the lowest F values when 

compared to samples TL01-146, TL02-66 and -80. 

4.9.3 Mineral Chemistry of Sample TL01-147 

Sample TL01-147 was collected adjacent to the Tl contact along Transect 2 (Fig. 4.2) 

and contains contact metamorphic phases and reactant garnet. Analytical data for cordierite, 

orthopyroxene, plagioclase and garnet are located in Table A.2 of Appendix A. Results of this 

sample are reported below and were used to constrain mineral compositions for AFM diagrams in 

Figure 4.14. 
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4.9.3.1 Cordierite 

Analytical transects were conducted across two regions of symplectic cordierite and 

orthopyroxene (Fig. 4.13). Cordierite is Fe-rich with XFe ranging from .43 to .48 (transect 1) and 

from .46 to .49 (transect 2) (Fig. 4.15a, b). XFe increases at rims adjacent to symplectic 

orthopyroxene worms and towards coarse-grained orthopyroxene in the outer rim (point B in Fig. 

4.15a). At the outer margin of the corona, cordierite locally shows a slight decrease of XFe 

towards the quartzofeldspathic matrix (point D in Fig. 4.15a, b). 

In the core of the symplectic cordierite-orthopyroxene pod of Transect 1 there is relict 

garnet, 250 and 350 J..lm wide. The composition of this garnet is: XAJm .81, XPrp .13, XGrs .02, Xsps 

.03 and XFe of .86. The cordierite analyses from Transect 1 show a decrease of XFe. from .4 7 

down to 0.42, toward the garnet rim (Fig. 4.15a). In addition, spot analyses of cordierite rims 

adjacent to the relict garnet are also characterized by relatively low XFe (0.43 and 0.44 ). 

4.9.3.2 Orthopyroxene 

Three large orthopyroxene grains, Opx1, Opx2 and Opx3, which rim the symplectic 

cordierite + orthopyroxene pod and six symplectic orthopyroxene grains were analyzed (Fig. 

4.13). The Opx1 grain displays a decrease of XFe from core (.68) to rim adjacent to cordierite 

(.63), whereas Opx2 and Opx3 are relatively homogenous, XFe =.66 to .67 (Fig. 4.16a-c). Al20 3 

ranges between 4.0 and 5.1 with most values clustering between 4.5 and 4.9 (Fig. 4.16d). Opx1 

and Opx3 decrease in Al20 3 towards the rim, whereas Opx2 is homogenous in terms of Al20 3. 

Most analyses of symplectic orthopyroxene grains were of poor quality due to the small 

size of the grains. The high-quality analyses of these grains show that XFe (.66 to .68) falls within 

the same range as XFe of the large orthopyroxene, whereas Al20 3 of the symplectic 

orthopyroxene ranges from 3.6 to 5.6. 
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4.9.3.3 Plagioclase 

Three large plagioclase grains, Plg1, Plg2 and Plg3, adjacent to the corona were 

analyzed along transects perpendicular to corona boundaries (Fig. 4.13). The composition of 

these grains falls in the range of XAb .68- .72, XAn .27- .30 and Xor .003- .018, with the exception 

of a core analysis of Plg1 that exhibits higher XAb of .77 (XAn .22) (Fig. 4.17a-c). In general, all 

grains show a slight XAn increase towards the rims. 

4.9.4 Interpretation 

4.9.4.1 Regional and contact metamorphic assemblage of the Tasiuyak paragneiss in the 

northern part of the study area 

Coarsening and recrystallization of matrix minerals indicates that these rocks have been 

subjected to static recrystallization. The augen-shaped plagioclase mats are interpreted as 

recrystallized plagioclase porphyroblasts like those observed in the regional assemblage of 

sample TL01-146. 

The randomly oriented biotite aggregates that replaced garnet indicate that these rocks 

were subjected to rehydration, either by the introduction of water or melt(+ H20). There is no 

clear evidence to discern how rehydration occurred. However the pervasive fractures in garnet 

may have been formed during fluid influx. The production of biotite and plagioclase from garnet 

are consistent with the multivariant reaction: 

garnet+ K-feldspar + H20 (or L) = biotite+ plagioclase+ quartz, (4.7) 

which is pressure sensitive and requires decompression (Vielzeuf and Schmidt, 2001 ). 

Samples TL02-66a and -66b, collected less than a metre from the Tl contact, show 

incipient development of symplectic cordierite + orthopyroxene and TL02-66b also contains pods 

of symplectic cordierite + spinel. These symplectic assemblages are interpreted to be the result of 

the discontinuous NaKFMASH reactions (Fig. 4.14 ): 

4-25 



garnet + biotite + quartz± plagioclase = cordierite + orthopyroxene + L, (4.8) 

and, 

garnet+ sillimanite + quartz± plagioclase = cordierite + spinel, (4.9) 

and the bulk composition of these samples fall within the appropriate fields of mineral 

assemblages (Fig. 4.14 ). 

Sample TL02-80, collected - 20 m from the contact of the Tl, does not contain contact 

metamorphic assemblages even though the bulk composition falls within the appropriate fields of 

contact mineral assemblages (Fig. 4.14 ). This suggests that samples TL02-66a and -66b 

underwent contact metamorphism during intrusion of the Tl but that the thermal effects were 

minimal. These rocks were probably also affected by the contact metamorphism produced by the 

intrusion of the MLP. However, it is suggested that during intrusion of the MLP, temperature 

gradients in this location were not high enough to produce contact metamorphic assemblages but 

may have caused static recrystallization. The possible reasons why the Tl did not produce a 

major contact metamorphic affect on these rocks like the MLP are discussed later. 

4.9.4.2 Contact metamorphic assemblage 

Samples furthest from the MLP contact show local replacement of Grt2 rim and adjacent 

biotite by coarse-grained orthopyroxene. This is interpreted to represent the continuous 

NaKFMASH reaction in Field II (Fig. 4.14 ), where: 

garnet + biotite + quartz ± plagioclase = orthopyroxene + L (4.1 0) 

The AFM diagram for Field II shows that the bulk composition of the contact metamorphic 

samples (Fig. 4.14, black dots) does not lie within the triangle for the assemblage Grt-Opx-Bt. 

However, garnet and biotite rims that are replaced by orthopyroxene likely represent a bulk 
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composition that is close to the Grt-Bt tie line, which makes this reaction possible in this restricted 

microtextural domain. 

It is also proposed that the rocks closer to the MLP contact (TL02-73 to -78) underwent 

the higher temperature (than Field II, reaction 4.10 in Fig. 4.14) discontinuous reaction 4.8: 

garnet + biotite + quartz ± plagioclase = orthopyroxene + cordierite + L 

Once biotite is eliminated or isolated from garnet by a continuous orthopyroxene corona 

(the product of reaction 4.1 0), further development of cordierite + orthopyroxene symplectite 

within the garnet domain may occur in Field Ill and IV (Fig. 4.14) by the continuous reaction: 

garnet + quartz ± plagioclase = cordierite + orthopyroxene (4.11) 

The replacement of Grt1 (+ Sil1 inclusions) and Grt2 associated with coarse-grained Sil2 

typically forms pods of symplectic cordierite + spinel that may or may not be rimmed by cordierite. 

This outer cordierite rim is probably the product of the continuous reaction in Fields II and Ill, 

where: 

garnet + sillimanite + quartz ± plagioclase = cordierite (4.12) 

The symplectic cordierite + spinel is the product of the discontinuous reaction 4.9 (Fig. 

4.14): 

garnet+ sillimanite + quartz= cordierite + spinel. 

Grt1, and Grt2 associated with trains of Sil2 are smaller than the Grt2 porphyroblasts. 

Therefore, it is proposed that garnet and associated sillimanite were quickly consumed during 
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reaction 4.9, before Grt2 porphyroblasts were completely replaced by symplectic cordierite + 

orthopyroxene of reaction 4.11. Pods of cordierite + spinel were rarely seen to contain 

orthopyroxene near the rims of the pods. This suggests that in a few cases sillimanite was 

exhausted and residue garnet produced cordierite + orthopyroxene during reaction 4.11. 

The vermicular quartz and plagioclase patches observed along both plagioclase - K­

feldspar and K-feldspar- K-feldspar grain boundaries are interpreted as crystallized melt. This 

melt was most likely the result of dehydration melting of biotite related to reactions 4.8, 4.10 and 

4.11. The relatively minor amount of biotite in the rock suggests that only small amounts of melt 

were produced and therefore remained in situ. Further evidence of in situ melt is that biotite is 

observed replacing orthopyroxene in samples closest to the contact indicating retrogression 

(rehydration), possibly by reaction 4.8 in the opposite direction. This back-reaction may also be 

responsible for producing garnet, which replaced orthopyroxene+ cordierite in sample TL02-73. 

Mineral chemistry indicates that cordierite XFe decreases toward rims adjacent to garnet 

and increases at rims adjacent to orthopyroxene. The large orthopyroxene grain labelled Opx1 

shows a decrease of XFe in rims adjacent to cordierite, whereas Opx2 and Opx3 are 

homogeneous. Garnet XFe is higher (by- .15) than the regional metamorphic garnet in sample 

TL01-146, which is consistent with XFe increasing by Fe-Mg partitioning during garnet 

consumption (Spear et al., 1999). Therefore, these results indicate preferential partitioning of Mg 

into cordierite during consumption of garnet and possible late intercrystalline Fe-Mg exchange 

between cordierite and orthopyroxene during cooling. 

The contact metamorphic assemblages and their textures suggest that a range of 

metamorphic reactions occurred along a temperature gradient. In the contact aureole surrounding 

the MLP the range of reactions beginning in Field II (reaction 4.1 0) and extending into Field IV 

(reactions 4.8 and 4.11 ). The contact aureole associated with the Tl shows the same range of 

reactions but only minor development of the contact metamorphic assemblage. Since the contact 

metamorphic mineral assemblages produced from these reactions appear to occur together, it is 

proposed that this can be used to further constrain the isobaric P-estimate. At- 3 kbar reactions 
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4.8 and 4.9 intersect and it is likely that the contact metamorphic assemblages were formed at a 

pressure near the intersection of these two reactions. 

Assuming that the reactions occurred during isobaric conditions, Figure 4.18 constrains 

the possible P-T conditions from the petrographic evidence and use of petrogenetic grids. These 

P-T estimates suggest that the contact aureoles of the MLP and Tl developed under isobaric P­

conditions ranging between 3.0 to 4.0 kbar (Fig. 4.18). The - 4 km wide contact aureole 

surrounding the MLP had a temperature gradient ranging from 675°C to at least 850°C, whereas 

the narrow Tl contact aureole probably only raised temperatures from 750° to 825°C, defined by 

the close proximity of reactions 4.8 and 4.9 (Fig. 4.18). 

4.9.5 Discussion 

The samples along Transect 3 show progressive development of cordierite + 

orthopyroxene and cordierite +spinel towards the contact with the MLP, with the exception of 

sample TL02-80. The bulk composition of this sample falls within the triangle Grt + Bt + Opx in 

the AFM diagram for Field II (Fig. 4.14). This suggests that, locally, the temperature was 

insufficient to produce contact metamorphic assemblages for that bulk composition. Therefore the 

proposed limit of the contact aureole related to the MLP is placed between TL02-79 and -80 (Fig. 

4.2). Samples TL02-66a and b, located further north and adjacent to the Tl contact, show 

incipient development of symplectic orthopyroxene + cordierite and spinel + cordierite. This 

implies that the paragneiss along the Tl contact was subjected to thermal overprinting during 

emplacement. Perturbation of the thermal gradient locally produced a small contact aureole (1 to 

20 m) adjacent to the Tl contact (too small to show on Fig. 4.2). Outside this aureole the 

paragneiss underwent partial recrystallization and coarsening of the quartzofeldspathic matrix. At 

this stage, fracturing and partial replacement of Grt2 by biotite and plagioclase may have 

occurred. 

The Tl did not produce a substantial prograde contact aureole like the MLP. It is assumed 

that the intrusion temperatures of the Tl and MLP would have been similar since both have 
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comparable (anhydrous) mineralogy, consisting of olivine+ pyroxenes+ feldspars+ quartz. 

However, the MLP also contains minor amounts of hornblende and biotite. Since the Tl did not 

appear to contain much water in the magma, conduction was most likely the main mechanism by 

which heat was transferred to the country rocks. This is a sluggish method of heat transfer and 

may be one of the reasons why this intrusion did not create an extensive contact aureole. 

Subsequent intrusion of the Pearly Gates anorthosite pluton has obscured the original shape and 

size of the Tl. The contact of the Tl dips under the paragneiss and strikes parallel to the 

paragneiss foliation . This implies that heat from the intrusion could have affected the overlying 

rocks, however, this does not appear to have been the case. This could suggest that the Tl was a 

small body and cooled relatively quickly. 

Another possibility is that the ambient temperature of the host rock was higher at ca. 

1360 Ma (age of Tl) than the ambient temperatures of between 350° to 450°C (McFarlane et al., 

2003) estimated just prior to intrusion of the MLP. If the temperature gradient was insufficient then 

a major contact aureole would not be expected. Any one factor or a combination of the factors 

listed above could explain the relatively poor contact metamorphic affects of the Tl. 

4.9.5.1 Comparison with previous work 

In addition to determining the nature and conditions of contact metamorphism of the 

Tasiuyak paragneiss by the Tl and MLP, this study also focused on determining the regional 

metamorphic assemblage away from temperature disturbances of the NPS intrusions. This 

provided a better understanding of the 'original' mineral assemblages and the reactions that 

produced the contact metamorphic assemblages. Berg (1977a, 1977b) did not discuss the 

regional assemblage of the paragneiss and it appears as though he interpreted garnet as part of 

an earlier contact metamorphic assemblage (Berg , 1977a). Lee (1987) suggested that a sample 

north of his study area reflected the regional assemblage of the Tasiuyak paragneiss, but this 

sample contained orthopyroxene. Orthopyroxene does not appear to be part of the regional 

assemblage of the pelitic Tasiuyak paragneiss. It is possible that this sample was either another 
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unit interleaved with the paragneiss, such as the orthopyroxene-bearing meta-tonalite, or the 

paragneiss was most likely affected by lower temperature contact metamorphism within Field I 

(Fig. 4.14 ), where garnet + biotite + quartz formed orthopyroxene. 

Lee (1987) and Berg (1977b) calculated isobaric P-estimates of the contact aureole 

surrounding the MLP and reported 3.5 to 4.5 kbar and 5.3 to 5.6 kbar, respectively. The P­

estimates of Lee (1987) are consistent with those determined in this study (3 to 4 kbar), whereas 

the P-estimate by Berg (1977b) is higher. Berg (1977b) used garnet + cordierite geobarometers 

and it is possible that the garnet analyzed in this sample (XFe = .76, lower than this study) was in 

disequilibrium. This would produce a pressure isopleth that is relatively higher than the true 

pressure. The P-estimates determined by Lee (1987) and in this study suggest that the isobaric 

P-conditions for the MLP contact aureole fall somewhere in the range of 3.0 to 4.5 kbar. 

Estimates of the temperature gradient by Lee (1987) are 600° to 760°C, which are lower 

than the temperatures determined in this study by using the NaKFMASH petrogenetic grid (675° 

to at least 850°C). T-estimates in this study are similar to those determined by Mcfarlane et al. 

(2003). Their test of AI solubility of orthopyroxene as a viable geothermometer in high-grade 

rocks provided a thermal gradient across the contact aureole from 700° to 900°C. These 

temperatures are only slightly higher than the results in this study and may be due to 

disequilibrium of AI in the phases orthopyroxene and cordierite. Berg (1977b) reported a T­

estimate of 780° to 785°C from the one sample collected in this study area and this estimate is 

consistent with those of this study. 

This comparative study of the MLP related contact aureole shows that well-constrained 

textural evidence, coupled with petrogenetic grids and bulk and mineral compositions can yield 

reliable P-T estimates. This can be especially useful in assemblages that have not reached 

equilibrium or have been affected by late Fe-Mg exchange, which limits the effectiveness of 

thermobarometric studies. This study of the contact metamorphism suggests isobaric conditions 

between 3 to 4 kbar and a temperature gradient ranging from 675° to at least 850°C to produce 

the contact metamorphic assemblage cordierite + orthopyroxene + spinel (Fig. 4.18). This study 
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also recognizes the limited contact metamorphic affects of the Tl. Incipient development of 

cordierite + orthopyroxene + spinel represents similar isobaric P-conditions as the MLP (3 to 4 

kbar) and a temperature gradient ranging from 675° to 830°C (Fig. 4.18). 

4.10 CONTACT METAMORPHISM OF TASIUYAK PARAGNEISS SCREENS IN THE Tl 

A reconnaissance study was done on samples collected from screens of paragneiss 

exposed in the Tl. These samples, TL02-29, -44 and -48, were used to determine whether the Tl 

had caused contact metamorphism of these screens. At outcrop-scale these rocks appear to 

contain the regional metamorphic assemblage of garnet + biotite, but also show 'black specks' 

along garnet rims and fractures. 

4.10.1 Petrography 

In thin section, garnet and biotite are partially replaced by spinel + cordierite ± 

orthopyroxene, which is interpreted as a contact metamorphic assemblage. This assemblage 

shows a range of development from symplectic textures adjacent to reactants to coarse-grained 

intergrowths. 

Domains I and II (see section 4.8.1) are still recognizable. The quartz ribbons of Domain 

I have undergone heterogeneous recrystallization between samples. The quartzofeldspathic 

matrix of Domain II is relatively coarse-grained and K-feldspar grains are perthitic. This domain is 

almost granoblastic in texture, with both triple-junctions and serrated grain boundaries between 

relatively equigranular minerals. 

Sillimanite is absent from all three samples. Randomly oriented, coarse-grained biotite is 

located in the matrix and surrounding garnet (Pl. 4.22). The contact metamorphic assemblage of 

cordierite + spinel ± orthopyroxene replacing garnet + biotite shows some textural differences 

between samples. In sample TL02-29, garnet and biotite are separated by three successive rims. 

The first is an inner rim of symplectic spinel + cordierite replacing isolated garnet; the second is a 
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rim of symplectic spinel+ orthopyroxene replacing garnet+ biotite (Pl. 4.23); and the third is an 

outer rim of coarse-grained intergrowths of cordierite + spinel and this spinel may or may not be 

rimmed by orthopyroxene (Pl. 4.24 ). Sample TL02-48, however, only contains the coarse-grained 

intergrowths of cordierite + spinel with spinel rimmed by orthopyroxene (Pl. 4.24 ). 

In sample TL02-44, orthopyroxene is absent, and instead, the intergrowths of cordierite + 

spinel are associated with spinel rimmed by cordierite (Pl. 4.25). In addition, symplectic cordierite 

+ K-feldspar have replaced isolated garnet (Pl. 4.25). 

4. 10. 1. 1 Interpretation 

The replacement of garnet + biotite by spinel and orthopyroxene and the replacement of 

garnet by either cordierite + spinel or cordierite + K-feldspar is not clearly understood. Semi­

quantitative analyses of spinel show high XFe (.83) (and low ZnO = .11 - .14%), which is indicative 

of high temperature spinel (Yardley et al., 1990). It is possible that the contact metamorphic 

phases cordierite + orthopyroxene in samples TL02-29 and -48 may have been produced by the 

discontinuous reaction 4.8: 

garnet + biotite + quartz ± plagioclase = cordierite + orthopyroxene + L. 

If sillimanite had been present, it is possible that it was completely consumed during the 

discontinuous reaction 4.9: 

garnet+ sillimanite + quartz± plagioclase = cordierite + spinel, 

and would explain the presence of cordierite + spinel, found in all samples. 

Reactions 4.8 and 4.9 would have occurred simultaneously, which may have been 

possible at around 3 kbar where these univariant reaction lines meet, and could have been 

controlled by microdomains of specific compositions. Even with these uncertainties, the textural 
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evidence and the presence of hercynitic spinel (Fe-rich) suggests that these screens of 

paragneiss have undergone high temperature contact metamorphism during intrusion of the Tl. 

The partial preservation of regional metamorphic garnet and biotite implies that high 

temperatures were not sustained for a long period of time, which would indicate quick 

crystallization of the Tl magma. The preservation of quartz ribbons of Domain I and the almost 

granoblastic texture of Domain II most likely represent static recrystallization during cooling of the 

Tl. 

Although the screens of Tasiuyak paragneiss were not studied in detail, petrographic 

evidence seems to corroborate the interpretation made in the previous section (4.9.5.1 ). The 

contact metamorphic assemblages and textures of these screens and sample TL02-66 seem to 

indicate that the duration of magmatism, crystallization and cooling of the Tl was short. Therefore 

it is likely that this intrusive body was relatively small and unable to produce a substantial contact 

aureole. 

4.11 SUMMARY OF CONCLUSIONS 

This study shows that the use of an appropriate petrogenetic grid along with bulk 

composition constraints is a useful tool for determining P-T conditions of high temperature 

metamorphic rocks. The range of P-T conditions determined here are either consistent or slightly 

higher than P-T estimates from other metamorphic studies in which geothermobarometry was 

applied. In cases where other studies had lower T-estimates than determined in this study, the 

author(s) suggested that these were closure temperatures and not peak P-T conditions. The 

following points summarize the conclusions of this study: 

• The regional metamorphic assemblage preserves evidence of the prograde reaction history. 

This includes: a) the formation of Grt1 with Sil1 inclusions before the onset of partial melting; 

b) growth of Sil2 during muscovite dehydration melting; c) growth of Grt2 at the expense of 
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Sil2 during biotite dehydration melting; and d) limited development of retrograde biotite and 

Sil3 after garnet during melt crystallization. Peak P-T conditions are constrained in the range 

of 7.2 to 10.2 kbar arid 800° to 830°C. 

• The intrusion of the Tl at ca. 1360 Ma caused incipient development of the contact 

metamorphic assemblage (cordierite +orthopyroxene+ spinel) only in the Tasiuyak 

paragneiss directly adjacent(< 20 m) to this intrusion. The P-T estimate of the contact 

metamorphism at the Tl contact is between 3 and 4 kbar and 775° and 800°C. 

• Textural evidence from the paragneiss adjacent to the Tl and screen of paragneiss exposed 

in the Tl imply that this intrusive body had a short-lived history of emplacement and 

crystallization. Since the eastern margin of the Tl was intruded by the Pearly Gates 

Anorthosite pluton, the above-mentioned evidence may indicate that the Tl is relatively small. 

• Intrusion of the large(- 1900 km2
) MLP at ca. 1322 Ma produced a substantial high-grade 

metamorphic contact aureole in the Tasiuyak paragneiss, which radiates - 4 km from the 

MLP contact. The temperature gradient along the contact aureole probably ranged from 

675°C at the limit of the contact aureole, to at least 850°C at the MLP contact. Contact 

metamorphism took place under isobaric conditions and the pressure is estimated at between 

3 and 4 kbar. 
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Table 4.1: Mineralogy of samples from the regional and contact metamorphosed Tasiuyak 
paragneiss. 

Distance from Contact Metamorphic 
MLP contact Regional Metamorphic Assemblage Assemblage 

Sample# (m) Qtz Kfs PI Sil Bt Grt Crd Opx Spl 

TL02-29 screen in Tl X X X X X tr X 

TL02-44 screen in Tl X X X X X X X 

TL02-48 screen in Tl X X X X X X X 

TL01-147* 2670 X X X tr X X 

TL02-73 71 X X X a tr X X X 

TL02-74 555 X X X a tr tr X X X 

TL02-75 1107 X X X a tr tr X X X 

TL02-76 1607 X X X a X tr X X X 

TL02-77 2571 X X X X tr X X X X 

TL02-78 3268 X X X X tr X X X X 

TL02-79 3893 X X X a X X X X 

TL02-80 4696 X X X X X 

TL02-66a 4768 X X X X X tr tr 
TL02-66b 4875 X X X X X tr tr tr 
TL01-146 5000 X X X X X X tr 
TL01-146 was collected- 10 km from the Tessiarsuyungoakh intrusion (N 56°35.991', W 062°50.308') 

tr- indicates trace amounts (1% or less) present. 

tr- indicates trace amounts (1% or less) present but not related to MLP contact metamorphism. 

lim 

tr 
tr 
tr 
tr 

tr 

tr 

tr 

tr 

tr 

tr 

tr 

tr 
tr 
tr 
tr 

a - indicates assumed in original regional assemblage but completely consumed by contact assemblage. 

*-sample from Transect 2, data collected on microprobe. 

Table 4.2: Bulk composition analytical data of Tasiuyak paragneiss sample sections. Both regional and 
contact assemblages are included,"*" denotes regional assemblages. 
OXIDE TLD2·73 TLD2-74a TLD2-74b TLD2-75 TLD2-77 TLD2-78 TLD2-79 TLD2-8Da TLD2-8Db TLD2-8Dc TLD2-86A TLD2-86Bb TLD2-66Bc TLD1-146c TLD1-146d TLD1-146j TLD1-146k 

Na20 1.54 2.49 2.12 2.62 1.88 1.09 3.53 3.78 3.93 4.15 2.44 2.46 2.51 2.41 2.43 2.55 2.09 
M90 4.26 4.62 5 .62 4.57 5.66 4.79 1.84 1.84 3.03 2.76 2.19 3.38 2.72 3.08 3 .26 1.68 2.18 
AI,0 3 25.38 26.82 25.01 22.04 27.70 17.94 14.92 12.54 13.86 13.69 12.02 18.33 15.50 18.72 17.85 11 .79 12.67 

S iO, 51 .98 50.06 47.50 71 .06 53.71 56.13 68.97 69.64 57.61 62.37 74.41 57.19 61 .69 59.14 62.03 71 .18 70.07 

P,o. o.o5 o .o2 0 .11 o.04 o .o9 0.10 o.04 o .04 0.12 o.oo o .o8 o .1o o.oo o.oo o.oo o.o8 o.o1 
s 0 .51 0 .14 0 .23 0.20 0.59 0.45 0.34 0 .17 0.23 0.21 0.22 0.17 0 .14 
K,o 3.79 1.92 1.18 2.12 2.74 4.28 1.62 2.03 2.67 2.69 2.11 3.49 2.84 3.30 2.51 2.51 3.44 
CaO 0.69 2.34 1.95 1.63 1.69 1.10 2.85 1.21 1.01 0.80 1.37 1.44 1.18 1.48 1.59 1.22 1.33 
TiO, 0.59 0.55 0 .54 0.64 0 .66 0.29 0.34 0.57 0.96 0.74 0.57 0.81 0.42 0.47 0.49 0.52 0.43 

c r, 0 3 0.04 0.03 0 .06 o.o3 0.04 0 .05 0.02 0.03 0.06 0.05 0 .06 0.04 0.01 
MnO 0.11 0.09 0 .14 0 .08 0.15 0.11 0.04 0.08 0.13 0 .00 0.07 0.11 0.00 0.00 0.01 0.07 0.06 
FeO 9.80 9.49 11.68 9 .26 11 .81 10.46 4.08 5.98 9.11 8.84 4.90 8.75 7.33 9 .20 9 .60 4.19 5.75 
TOTAL 98.74 98.58 96.19 114.88 106.71 96.78 98.59 97.91 92.72 96.04 100.43 96.34 94.19 97.80 99.77 96.01 98.17 
CAT. # 

Na 21 .13 
M9 45.08 
AI 212.23 
Si 368.73 
p 0.32 
s 6.76 
K 34.29 
Ca 5.23 
Ti 3 .13 
Cr 0 .22 
Mn 0.64 
Fe 58.13 
TOTAL 755.89 

34.19 
48.73 

223.84 
354.42 

0.12 
1.90 

17.35 
17.74 

2.93 
0 .16 
0.55 

56.21 
758.14 

A 
F 
M 

0.6023 0 .6024 
0.5632 0 .5356 
0.4368 0.4644 

30.12 30.05 
61.40 40.31 

216.17 153.73 
348.43 420.44 

1.04 0 .18 
3 .15 2.18 

11 .03 20.55 
15.32 10.33 
2.97 2.85 
0.35 0.15 
0 .86 0.38 

71 .66 45.81 
762.50 726.96 

24 .08 15.27 45.93 
55.78 51.75 18.40 

215.93 153.20 118.15 
355.22 406.67 463.32 

0 .51 0.64 0.21 
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Figure 4.13: Photomicrograph of analyzed cordierite- orthopyroxene symplectites in sample TL01-147 from the contact aureole in the 
Tasiuyak paragneiss. An "x" represents spot analysis locations of orthopyroxene worms. Dotted lines represent transect locations. Analytical 
data of labelled minerals and transects are located in TableA.2 of Appendix A 
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Figure 4.14: P-T gradient range for the Tasiuyak paragneiss contact assemblage in the NaKFMASH system from Spear et al. (1999). Divariant 
melt and dehydration reaction fields are represented by roman numerals I to IV and correlate toAFM diagrams and assemblages with the same 
notation. These AFM diagrams show bulk compositions for samples TL02-66 (red stars), TL02-80 (grey triangles), and TL02-73 to -79 (black 
circles) from Figure 4.3. Numbers listed as 4.x on univariant lines and listed Field assemblages correspond to reactions referred to in the text. 
The arrow represents the possible T-gradient estimates (and isobaric P-estimates) across the contact aureole surrounding the MLP based on 
petrographic evidence, bulk composition and mineral chemistry. 
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in Figure 4.13. 
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Plate 4.1: Migmatitic Tasiuyak paragneiss with regional metamorphic assemblage. 
Note arrow pointing to leucosome rimming garnet(+ biotite+ sillimanite) in a restitic 
layer. Location of sample TL01-146, outside of study area. Pen is 15 em long. 

Plate 4.2: Location of sample TL02-66b, adjacent to Tl in the northern part of study 
area. Here, the Tasiuyak paragneiss contains the regional metamorphic assemblage 
of garnet + biotite. Incipient development of contact metamorphic assemblage 
cordierite + orthopyroxene + spinel is not visible at outcrop-scale. Pencil is 15 em 
long. 
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Plate 4.3: Photograph of the paragneiss in the contact aureole surrounding the 
Makhavinekh Lake Pluton (-2000 m from this contact) . The contact metamorphic 
assemblage of cordierite + orthopyroxene + spinel has partially replaced the 
regional metamorphic assemblage of garnet+ biotite+ sillimanite. 

Plate 4.4: Photograph of the paragneiss -700 m from the contact of the 
Makhavinekh Lake Pluton. Here, the contact metamorphic assemblage of cordierite 
+orthopyroxene+ spinel has almost completely replaced the regional metamorphic 
assemblage of garnet+ biotite+ sillimanite. Arrows point to patches of relict garnet. 
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Plate 4.5: Quartz ribbon textural Domain I with minor amounts of attenuated 
quartzofeldspathic material. Anhedral, millimetre-sized Grt2 formed within 
quartzofeldspathic zones. 

Plate 4.6: Porphyroblastic, perthitic feldspars in quartzofeldspathic Domain II. 
Remnant feldspars are augen-shaped and recrystallized along grain boundaries. 
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Plate 4.7: Vermicular quartz and feldspars adjacent to Grt2 rim (arrow). Note 
embayment of the vermicular material into Grt2. 

Plate 4.8: Arrows point to vermicular quartz and feldspars in biotite-rich layer of 
Domain II. 

4-63 



Plate 4.9: Randomly oriented sillimanite inclusions (Sil1) in Grt1 surrounded by 
Grt2 and coarse-grained, relict sillimanite (Sil2), which is parallel to the foliation. 

Plate 4.10: Foliation-parallel sillimanite inclusions (Sil1) in rotated Grt1 surrounded 
by Grt2 and coarse-grained, relict sillimanite (Sil2), which is parallel to the foliation . 
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Plate 4.11: Bent Sil2 overgrown by Grt2 abutting Grt1 . Coarse-grained Sil2 without 
overgrowth seen at right lower corner of this photomicrograph. Retrograde biotite 
formed along Grt2 rim. 

Plate 4.12: Inclusion of crystallized melt within Grt2 containing biotite, quartz, and K­
feldspar. 
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Plate 4.13: Photomicrograph showing corroded margins of Sil2 and Grt2, and 
retrograde biotite, Si13 and quartz along grain boundaries and fractures. Irregular 
Grt2 rims adjacent to felsic matrix show resorption. 

Plate 4.14: Small , euhedral Grt3 adjacent to xenomorphic Grt2 rims and Sil2 rims. 
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Plate 4.15: Sample TL02-80 showing preservation of the regional metamorphic 
assemblage. Grt2 is highly fractured and biotite adjacent to garnet is randomly 
oriented . 

Plate 4.16: Sample TL02-66b showing minor contact metamorphic minerals 
superimposed on the regional assemblage. Sillimanite has been completely 
replaced by symplectic spinel and cordierite. There is only minor replacement of 
garnet rims by orthopyroxene and cordierite. 
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Plate 4.17: Sample TL02-79 showing minor contact metamorphic effects. 
Orthopyroxene rims developed along quartz ribbon in contact with biotite and garnet. 

Plate 4.18: Cathodoluminescence photomicrograph of sample TL02-74 showing 
crystallized melt (plagioclase in yellow and quartz in black) along feldspar grain 
boundaries. Recrystallized plagioclase with triple-junctions at grain boundaries 
rimming cordierite and spinel symplectite. 
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Plate 4.19: Photomicrograph of sample TL02-77. Porphyroblastic Grt2 partially replaced by orthopyroxene+ 
cordierite. Relict Sil2 surrounded by symplectic spinel + cordierite. Massive cordierite separating spinel + 
cordierite symplectite from relict Grt2. 
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Plate 4.20: Photomicrograph of sample TL02-78. a) Porphyroblastic Grt2 partially replaced by orthopyroxene + cordierite. Grt1 with 
Sil1 inclusions is partially replaced by spinel+ cordierite. Orthopyroxene needles formed at outer rim of corona. b) Large, anhedral cordierite 
with inclusions of wormy orthopyroxene. The cordierite + orthopyroxene symplectite shows disequilibrium textures. The quartzofeldspathic 
matrix shows partial recrystallization textures such as irregular, em bayed boundaries and subgrain development. 
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Plate 4.21: Photomicrograph of sample TL02-74. a) garnet is almost completely consumed, surrounded by orthopyroxene+ cordierite 
symplectite and an outer rim of polygonal orthopyroxene. b) symplectic cordierite and orthopyroxene are polygonal at the rim of the corona, 
whereas both phases still exhibit disequilibrium textures in the core (near relict garnet) . The quartzofeldspathic matrix shows polygonal 
plagioclase and large, anhedral K-feldspar and quartz suggesting static recrystallization. 



Plate 4.22: Sample TL02-48, garnet and biotite are partially replaced by coarse­
grained intergrowths of spinel+ cordierite and spinel rimmed by orthopyroxene. 

Plate 4.23: Photomicrograph of sample TL02-29 showing symplectic ortho­
pyroxene+ spinel after biotite and cordierite +spinel after garnet. 
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Plate 4.24: Sample TL02-29, garnet and biotite are partially replaced by cordierite +spinel, in which 
the latter is typically rimmed by orthopyroxene (orange-yellow rimming black spinel , inset box). 

Plate 4.25: Sample TL02-44, garnet and biotite are partially replaced by cordierite + K-feldspar + 
spinel, in which the latter is typically rimmed by cordierite (grey-blue rimming black spinel , inset box). 
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CHAPTER 5 - COMPILATION OF CONCLUSIONS FROM THE THESIS RESEARCH 

5.1 SUMMARY OF THESIS GOALS 

The thesis study area includes a portion of the western margin of the Nain Plutonic Suite 

and the adjacent country rocks. The main goals of this research, as defined in Chapter 1, were to: 

1) establish the emplacement history of the Pearly Gates Anorthosite pluton and the spatially 

related Tessiarsuyungoakh intrusion; and 2) define the contact metamorphism of the Tasiuyak 

paragneiss. These goals were met by detailed field investigations which were used to compile a 

1 :20 000 geological map (Map 1 and Map 2). The first goal was also met by using field structures, 

petrography and U-Pb geochronology to determine the timing and mode of emplacement. The 

second goal was achieved by determining the regional metamorphic evolution to provide a better 

understanding of the development of the contact metamorphic mineral assemblages. Both the 

regional and contact metamorphic mineral assemblages were subjected to a detailed 

petrographic study to establish textural relationships and some analytical microprobe work to 

determine bulk composition and mineral chemistry. This information was then used in conjunction 

with petrogenetic grids to provide P-T conditions for each of the two metamorphic events. 

5.2 SUMMARY OF CONCLUSIONS 

U-Pb TIMS dating that formed part of this study has produced the oldest zircon 

crystallization ages for the Nain Plutonic Suite. They are: 1) the 1370 ± 5 Ma prismatic zircons 

included in plagioclase phenocrysts from the Pearly Gates Anorthosite pluton that most likely 

formed at depth; 2) the oldest intrusive age at 1363 ± 3 Ma for the monzonite and 1360 ± 4 Ma for 

the monzodiorite of the Tessiarsuyungoakh intrusion; and 3) the oldest intrusive age of 

anorthosite at 1355 ± 1.3 Ma from the Fraser Canyon Anorthosite. A norite body and norite dyke, 

both of which are undeformed, intruded the Pearly Gates Anorthosite pluton at 1342 ± 1.2 and 

1341 ± 1.8, respectively. The geological history of the study area determined by this thesis 

research is summarized below. 
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The regional metamorphic assemblage of the ca. 1850 Ma (Bertrand et al., 1993) 

Tasiuyak paragneiss preserves evidence of the prograde reaction history. This includes: a) the 

formation of Grt1 with Sil1 inclusions before the onset of partial melting; b) growth of Sil2 during 

muscovite dehydration melting; c) growth of Grt2 at the expense of Si12 during biotite dehydration 

melting; and d) limited development of retrograde biotite and Sil3 after garnet during melt 

crystallization. Peak P-T conditions are constrained in the range of 7.2 to 10.2 kbar and 800° to 

830°C. 

At ca. 1370 Ma, plagioclase phenocrysts with inclusions of prismatic zircon formed. This 

is suggested to have occurred at depth, prior to emplacement of the Pearly Gates Anorthosite 

pluton at a mid-crustal level. 

At ca. 1360 Ma, reactivation of older structures in the Tasiuyak paragneiss provided 

conduit systems into which monzonitic and monzodioritic magma ascended. These magmas 

intruded as sheets into the paragneiss and formed the composite Tessiarsuyungoakh intrusion. 

Screens of paragneiss exposed in the Tessiarsuyungoakh intrusion contain the high-temperature 

contact metamorphic assemblage cordierite + spinel ± orthopyroxene, which replaced garnet + 

biotite(± sillimanite). In addition, the Tasiuyak paragneiss directly adjacent(< 20m) to this 

intrusion exhibits incipient development of the contact metamorphic assemblage cordierite + 

orthopyroxene + spinel after garnet + biotite + sillimanite. This mineralogical and textural 

evidence, and the narrow width of the contact aureole imply that the Tessiarsuyungoakh intrusion 

had a short-lived history of emplacement and crystallization and was probably a small body. The 

P-T estimate of the contact metamorphism at the Tessiarsuyungoakh intrusion contact is between 

3 and 4 kbar and 775° and 800°C. 

At ca. 1355 Ma, neritic magma with plagioclase phenocrysts was emplaced into the Tl 

and formed the Fraser Canyon Anorthosite. The Pearly Gates Anorthosite pluton was either 

emplaced at this time or shortly thereafter. The outer zone of the anorthosite bodies with 

compositional layers of anorthosite and norite is interpreted as a relatively fast cooled margin. 

The inner zone of massive anorthosite is interpreted to have cooled relatively slowly, and as 
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plagioclase phenocrysts continued to grow they possibly filtered out the neritic magma towards 

the partially crystallized margins of the chamber. Syn-emplacement deformation, possibly 

associated with stoping , sheared the crystallized margins of the Pearly Gates Anorthosite pluton 

and the adjacent Tessiarsuyungoakh intrusion. However this deformation had little effect on the 

partially crystallized inner zone of the Pearly Gates Anorthosite. By ca. 1340 Ma, the Pearly 

Gates Anorthosite pluton had completely crystallized, was intruded by neritic magma and 

deformation in the area had ceased. 

At ca . 1322 Ma (McFarlane et al. , 2003), intrusion of the large Makhavinekh Lake pluton 

produced a substantial high-temperature metamorphic contact aureole in the Tasiuyak 

paragneiss. The development of the contact metamorphic assemblage of cordierite + 

orthopyroxene + spinel after garnet + biotite + sillimanite can be seen up to 4 km from the 

Makhavinekh Lake pluton contact. The temperature gradient along the contact aureole probably 

ranged from 675°C at the limit of the contact aureole, to at least 850°C at the Makhavinekh Lake 

pluton contact and isobaric conditions are estimated to have been between 3 to 4 kbar. 
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APPENDIX A 



Table A.1: Analytical data for garnet, plagioclase and biotite from sample TL01-146. 

TL01-146c GARNET 

Distance 
(urn) 

0 
53 
106 
159 
212 
265 
318 
371 
424 
477 
530 
583 
636 
689 
742 
795 
848 
901 
954 
1007 
1060 
1113 
1166 
1219 
1272 
1325 
1378 
1431 
1484 
1537 
1590 
1643 

FeO MgO 

28.9181 9.4647 
30.1822 9.2577 
28.9084 9.7488 
28.7063 9.8895 
28.7157 9.1053 
28.3572 9.9901 
28.9410 9.8437 

0.2609 0. 7989 
0.2058 0.8323 
0.1475 0.9033 
0.1670 0.8459 

29.0675 10.2223 
25.7382 7.2795 
28.8506 10.0582 
28.7493 10.0811 
27.8856 10.0858 
28.2348 10.4764 
28.4621 10.0779 
28.4700 10.1988 
28.4888 10.2072 
28.7343 10.1853 
28.8039 10.1619 
28.4922 10.2601 
28.3151 10.3005 
28.8066 10.2865 
28.1043 9.9903 
28.8936 10.2157 
28.5746 10.0152 

0.2819 0.9349 
0.2773 0.8349 

28.2454 9.9949 
28.3678 10.1388 

OXIDES 

1.0702 22.0580 39.1944 
0.9122 22.4696 39.6119 
0.9349 21 .9276 39.2665 
1.0118 22.2031 39.3999 
0.9259 21.4280 38.4010 
0. 9606 22.1666 39.4083 
1.0170 21 .8992 39.2461 
0.0292 61 .3365 36.8568 
0.0001 61.5422 36.9398 
0.0001 61 .5281 36.9379 
0.0001 61.3954 36.5771 
1.0432 22.0768 39.6530 
0.9535 21.6137 38.1636 
1.0157 21 .8277 39.4978 
1.0438 22.2753 39.4083 
0.9678 22.2048 39.4101 
0.8992 22.0627 39.5659 
0.9430 21 .9466 39.2562 
0.9308 22.0407 39.2855 
1.0074 21 .8916 39.2834 
1.0461 22.2527 39.1568 
0.9578 22.1434 39.6046 
1.0686 22.2441 39.7986 
0.9730 22.1071 39.5330 
1.0048 22.0675 39.1098 
1.1108 22.0642 39.1420 
0.9777 22.0727 39.3342 
0.9955 22.1445 39.2344 
0.0001 60.1572 36.8553 
0.0001 61.4993 36.5900 
1.0491 22.2262 39.4570 
0.9739 22.1013 39.6469 

Total 

100.71 
102.43 
100.79 
101 .21 
98.58 

100.88 
100.95 
99.28 
99.52 
99.52 
98.99 

102.06 
93.75 

101.25 
101 .56 
100.55 
101 .24 
100.69 
100.93 
100.88 
101.38 
101 .67 
101 .86 
101 .23 
101 .28 
100.41 
101.49 
100.96 
98.23 
99.20 

100.97 
101 .23 

CATION NUMBER 

Fe Mg Ca AI Si 

1.8505 1.0795 0.0877 1.9893 2.9992 
1.9054 1.0416 0.0738 1.9991 2.9903 
1.8478 1.1106 0.0766 1.9752 3.0011 
1.8247 1.1204 0.0824 1.9889 2.9946 
1.8803 1.0626 0.0777 1.977 4 3.0067 
1.8053 1.1335 0.0783 1.9887 2.9999 
1.8479 1.1202 0.0832 1.9706 2.9964 
0.0143 0.0778 0.0020 4.7251 2.4091 
0.0112 0.0809 0.0000 4.7280 2.4079 
0.0080 0.0878 0.0000 4.7262 2.4074 
0.0092 0.0826 0.0000 4.7424 2.3973 
1.8347 1.1499 0.0844 1.9637 2.9927 
1.7460 0.8801 0.0829 2.0663 3.0957 
1.8349 1.1401 0.0828 1.9564 3.0038 
1.8216 1.1385 0.0847 1.9891 2.9858 
1.7772 1.1456 0.0790 1.9943 3.0033 
1.7897 1.1835 0.0730 1.9708 2.9988 
1.8176 1.1471 0.0772 1.9752 2.9977 
1.8135 1.1579 0.0760 1.9786 2.9924 
1.8165 1.1600 0.0823 1.9672 2.9952 
1.8252 1.1531 0.0851 1.9921 2.9742 
1.8224 1.1459 0.0776 1.9744 2.9963 
1.7962 1.1528 0.0863 1.9763 3.0001 
1.7959 1.1644 0.0791 1.9760 2.9983 
1.8328 1.1665 0.0819 1.9787 2.9754 
1.7979 1.1390 0.0910 1.9892 2.9941 
1.8337 1.1555 0.0795 1.9742 2.9850 
1.8206 1.1373 0.0813 1.9884 2.9891 
0.0156 0.0920 0.0000 4.6827 2.4342 
0.0152 0.0814 0.0000 4.7431 2.3944 
1.7957 1.1325 0.0854 1.9914 2.9996 
1.7990 1.1460 0.0791 1.9753 3.0065 

CHEMICAL COMPOSITION OAT A 

Fe/ Mg/ 
Fe+Mg Fe+Mg XAim XPyp XGrs 

0.6316 0.3684 0.6132 0.3577 0.0291 
0.6466 0.3534 0.6308 0.3448 0.0244 
0.6246 0.3754 0.6088 0.3659 0.0252 
0.6196 o.3804 0.6027 0.3701 o:o272 
0.6389 0.3611 0.6225 0.3518 0.0257 
0.6143 0.3857 0.5984 0.3757 0.0260 
0.6226 0.3774 0.6056 0.3671 0.0273 
0.1553 0.8447 0.6056 0.3671 0.0273 
0.1216 0.8784 0.6056 0.3671 0.0273 
0.0835 0.9165 0.6056 0.3671 0.0273 
0.1002 0.8998 0.6056 0.3671 0.0273 
0.6147 0.3853 0.5978 0.3747 0.0275 
0.6649 0.3351 0.6056 0.3671 0.0273 
0.6168 0.3832 0.6001 0.3728 0.0271 
0.6154 0.3846 0.5983 0.3739 0.0278 
0.6080 0.3920 0.5920 0.3816 0.0263 
0.6019 0.3981 0.5875 0.3885 0.0240 
0.6131 0.3869 0.5975 0.3771 0.0254 
0.6103 0.3897 0.5951 0.3800 0.0249 
0.6103 0.3897 0.5939 0.3792 0.0269 
0.6128 0.3872 0.5958 0.3764 0.0278 
0.6140 0.3860 0.5983 0.3762 0.0255 
0.6091 0.3909 0.5918 0.3798 0.0284 
0.6067 0.3933 0.5909 0.3831 0.0260 
0.6111 0.3889 0.5948 0.3786 0.0266 
0.6122 0.3878 0.5938 0.3762 0.0301 
0.6134 0.3866 0.5975 0.3765 0.0259 
0.6155 0.3845 0.5990 0.3742 0.0268 
0.1450 0.8550 0.5990 0.37 42 0.0268 
0.1573 0.8427 0.5990 0.37 42 0.0268 
0.6132 0.3868 0.5959 0.3758 0.0283 
0.6109 0.3891 0.5949 0.3790 0.0262 



1696 0.8109 0.9350 0.0001 60.2998 37.1916 99.24 0.0445 0.0914 0.0000 4.6587 2.4380 0.3274 0.6726 0.5990 0.3742 0.0268 
1749 4.1343 2.5572 0.5674 20.1674 29.2347 56.66 0.4068 0.4484 0.0715 2.7963 3.4394 0.4757 0.5243 0.5990 0.3742 0.0268 
1802 28.5683 9.8835 0.9018 22.1914 39.5161 101 .06 1.8162 1.1199 0.0735 1.9882 3.0040 0.6186 0.3814 0.6035 0.3721 0.0244 
1855 29.0618 9.9516 1.0646 22.3058 39.4554 101 .84 1.8386 1.1221 0.0863 1.9888 2.9849 0.6210 0.3790 0.6034 0.3683 0.0283 
1908 0.3269 0.9659 0.0001 61 .2980 36.9072 99.50 0.0178 0.0940 0.0000 4.7143 2.4084 0.1592 0.8408 0.5990 0.3742 0.0268 
1961 28.5902 9.7947 0.9742 22.1350 39.1864 100.68 1.8268 1.1155 0.0797 1.9932 2.9941 0.6209 0.3791 0.6045 0.3691 0.0264 
2014 28.4016 9.9919 1.0149 21 .9708 39.2836 100.66 1.8138 1.1373 0.0830 1.9774 2.9999 0.6146 0.3854 0.5978 0.3748 0.0274 
2067 29.0305 9.8731 1.1138 22.0854 39.2674 101 .37 1.8466 1.1193 0.0908 1.9798 2.9868 0.6226 0.3774 0.6041 0.3662 0.0297 
2120 28.9149 10.0091 1.0319 22.2507 39.3621 101 .57 1.8335 1.1312 0.0838 1.9883 2.9845 0.6184 0.3816 0.6014 0.3711 0.0275 
2173 29.0313 10.1573 0.9932 21 .7940 39.3494 101 .33 1.8473 1.1520 0.0810 1.9544 2.9941 0.6159 0.3841 0.5997 0.3740 0.0263 
2226 28.5685 10.4861 0.9749 21 .9953 39.2453 101 .27 1.8152 1.1875 0.0794 1.9696 2.9818 0.6045 0.3955 0.5889 0.3853 0.0258 
2279 26.3486 4.8717 0.1786 13.8166 22.6751 67.89 2.6638 0.8778 0.0231 1.9685 2.7412 0.7521 0.2479 0.5990 0.3742 0.0268 
2332 27.8205 10.6420 1.0488 22.1515 39.6818 101 .34 1.7584 1.1988 0.0849 1.9731 2.9991 0.5946 0.4054 0.5780 0.3941 0.0279 
2385 27.6143 10.1065 1.0074 22.0109 39.4013 100.14 1.7657 1.1517 0.0825 1.9834 3.0125 0.6052 0.3948 0.5886 0.3839 0.0275 
2438 19.8829 2.4437 0.0335 17.2421 22.5529 62.16 2.0808 0.4558 0.0045 2.5430 2.8222 0.8203 0.1797 0.5990 0.3742 0.0268 
2491 30.0363 9.3311 1.0958 21 .9792 38.9219 101 .36 1.9211 1.0637 0.0898 1.9812 2.9768 0.6436 0.3564 0.6248 0.3460 0.0292 
2544 28.9640 9.8244 1.0305 22.3218 39.3738 101 .51 1.8376 1.1109 0.0838 1.9958 2.9870 0.6232 0.3768 0.6060 0.3664 0.0276 
2597 28.9740 9.6186 1.0074 22.1459 39.4543 101 .20 1.8437 1.0909 0.0821 1.9860 3.0021 0.6283 0.3717 0.6112 0.3616 0.0272 
2650 28.7122 9.6424 0.9551 21.9516 39.0890 100.35 1.8424 1.1028 0.0785 1.9851 2.9993 0.6256 0.3744 0.6093 0.3647 0.0260 

)> 2703 29.4322 9.8903 1.0221 21 .9517 39.3550 101 .65 1.8698 1.1198 0.0832 1.9653 2.9896 0.6254 0.3746 0.6085 0.3644 0.0271 I 
N 2756 28.3216 9.6670 1.0500 21.7869 38.8839 99.71 1.8278 1.1119 0.0868 1.9815 3.0006 0.6218 0.3782 0.6039 0.3674 0.0287 

2809 29.1946 9.8147 0.9726 21.8723 39.1533 101 .01 1.8654 1.1177 0.0796 1.9695 2.9915 0.6253 0.3747 0.6091 0.3649 0.0260 
2862 0.3100 0.8004 0.0001 61 .0832 36.9407 99.13 0.0170 0.0781 0.0000 4.7125 2.4181 0.1788 0.8212 0.5990 0.3742 0.0268 
2915 0.1229 0.9273 0.0001 61.6003 37.0233 99.67 0.0067 0.0899 0.0000 4.7237 2.4089 0.0694 0.9306 0.5990 0.3742 0.0268 
2968 0.1501 0.7382 0.0001 61 .3755 36.5510 98.81 0.0082 0.0722 0.0000 4.7477 2.3990 0.1020 0.8980 0.5990 0.3742 0.0268 
3021 0.4240 1.0424 0.0430 58.2194 36.3925 96.12 0.0239 0.1049 0.0031 4.6345 2.4581 0.1856 0.8144 0.5990 0.3742 0.0268 
3074 28.7917 9.9134 1.0374 22.0227 39.3371 101 .10 1.8337 1.1253 0.0846 1.9766 2.9957 0.6197 0.3803 0.6025 0.3697 0.0278 
3127 28.4506 10.2008 1.0263 22.2200 39.6305 101 .53 1.7998 1.1501 0.0832 1.9809 2.9978 0.6101 0.3899 0.5934 0.3792 0.0274 
3180 27.7753 9.5904 1.0316 22.3885 39.7334 100.52 1.7678 1.0879 0.0841 2.0082 3.0240 0.6190 0.3810 0.6013 0.3701 0.0286 
3233 29.0984 10.0609 1.0567 22.1001 39.6117 101 .93 1.8394 1.1335 0.0856 1.9688 2.9942 0.6187 0.3813 0.6014 0.3706 0.0280 
3286 28.1369 10.0870 1.0739 22.1215 39.4128 100.83 1.7911 1.1444 0.0876 1.9845 3.0000 0.6102 0.3898 0.5925 0.3786 0.0290 
3339 28.8594 9.7909 1.0073 21 .9205 39.2553 100.83 1.8439 1.1149 0.0825 1.9738 2.9991 0.6232 0.3768 0.6063 0.3666 0.0271 
3392 28.9883 9.9730 1.0707 22.0547 39.4606 101 .55 1.8393 1.1278 0.0870 1.9721 2.9939 0.6199 0.3801 0.6022 0.3693 0.0285 
3445 28.7950 10.1615 0.9373 22.4172 39.3851 101 .70 1.8217 1.1457 0.0760 1.9986 2.9794 0.6139 0.3861 0.5986 0.3765 0.0250 
3498 28.9515 10.0944 0.9927 22.4687 39.7317 102.24 1.8215 1.1319 0.0800 1.9922 2.9891 0.6167 0.3833 0.6005 0.3731 0.0264 
3551 28.7203 9.9866 1.0416 22.0533 39.3219 101 .1 2 1.8282 1.1330 0.0849 1.9784 2.9931 0.6174 0.3826 0.6002 0.3720 0.0279 
3604 0.7010 0.8690 0.0001 61 .0265 36.6435 99.24 0.0384 0.0849 0.0000 4.7149 2.4021 0.3114 0.6886 0.5990 0.37 42 0.0268 
3657 28.8329 10.0556 1.0621 22.2364 39.3602 101 .55 1.8282 1.1364 0.0863 1.9870 2.9843 0.6167 0.3833 0.5992 0.3725 0.0283 
3710 28.7529 9.9514 0.9965 21 .9681 39.4634 101 .13 1.8296 1.1286 0.0812 1.9700 3.0027 0.6185 0.3815 0.6020 0.3713 0.0267 



3763 
3816 
3869 
3922 

28.7933 9.6819 0.9644 21 .9040 39.4572 100.80 
28.7228 9.8772 1.0495 22.2216 39.2350 101 .11 
28.8780 9.9193 0.9926 21 .8414 39.3573 100.99 
29.0884 9.8920 0.9904 21.8869 39.4201 101 .28 

TL01-146d GARNET 

Distance 
(um) 

0 
50 
100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 
850 
900 
950 
1000 
1050 
1100 
1150 
1200 
1250 
1300 
1350 
1400 
1450 

FeO MgO 
29.3158 9.7906 
28.9644 9.8059 
28.6219 9.9000 
28.9639 9.7108 
28.3215 9.9913 
29.3910 9.7321 
28.4428 9.6188 
28.5668 9.7776 
27.9462 10.3988 
28.7534 9.8830 
28.7524 9.6465 
29.1208 9.9461 
28.9915 9.9174 
29.0247 9.7758 
28.7500 9.8573 
29.1619 9.7211 
28.7014 10.0661 
29.3119 10.0319 
28.6697 9.5522 
28.5471 9.7816 
28.8035 9.5759 
28.7919 9.9699 
28.9075 9.7881 
29.2361 9.8552 

0.8476 0.9099 
28.9611 9.6744 
28.6252 9.8737 
29.0365 9.7631 

9.0049 17.0738 
8.9267 17.5899 

OXIDES 

1.0824 21 .7882 39.1101 
1.0322 22.1802 39.1504 
1.0658 21 .8228 39.3028 
1.0578 21 .9406 39.3355 
1.1080 21.9571 39.5655 
1.0950 22.1621 39.3432 
1.0667 21 .7302 39.4587 
1.0213 22.0623 39.4370 
1.2004 23.8750 41 .3677 
1.1368 21 .9512 39.2908 
1.0162 22.1624 39.4624 
1.0487 22.2563 39.5290 
0.9811 22.2209 39.4015 
1.0646 22.0061 39.1449 
1.0585 21 .7779 39.4465 
1.0155 22.2416 39.1692 
1.0480 22.2233 39.5350 
1.0672 21 .8956 39.3090 
1.0839 21 .9055 39.0977 
0.9960 22.1787 39.2371 
1.1117 21 .9289 39.2619 
1.0155 21 .9609 39.2814 
1.0166 21 .9211 39.3133 
1.0774 22.0865 39.4016 
0.0001 61 .9709 37.9954 
1.0648 21 .9682 39.3477 
1.0617 22.0972 39.3052 
1.0630 22.1111 39.3144 
0.2889 14.3523 38.4191 
0.3387 14.8851 39.5459 

Total 
101 .09 
101 .13 
100.71 
101 .01 
100.94 
101 .72 
100.32 
100.87 
104.79 
101 .02 
101.04 
101.90 
101 .51 
101 .02 
100.89 
101 .31 
101.57 
101.62 
100.31 
100.74 
100.68 
101 .02 
100.95 
101 .66 
101.72 
101 .02 
100.96 
101 .29 
79.14 
81 .29 

1.8383 1.1017 0.0789 1.9709 3.0124 
1.8287 1.1208 0.0856 1.9939 2.9870 
1.8421 1.1277 0.0811 1.9634 3.0020 
1.8515 1.1222 0.0808 1.9633 3.0003 

CATION NUMBER 

Fe Mg Ca AI Sl 
1.8738 1.1153 0.0886 1.9626 2.9892 
1.8460 1.1139 0.0843 1.9922 2.9837 
1.8293 1.1277 0.0873 1.9656 3.0037 
1.8480 1.1043 0.0865 1.9728 3.0010 
1.8021 1.1331 0.0903 1.9690 3.0105 
1.8653 1.1008 0.0890 1.9822 2.9857 
1.8227 1.0986 0.0876 1.9625 3.0237 
1.8210 1.1108 0.0834 1.9819 3.0060 
1.6987 1.1266 0.0935 2.0452 3.0067 
1.8334 1.1232 0.0929 1.9726 2.9958 
1.8307 1.0947 0.0829 1.9886 3.0044 
1.8414 1.1209 0.0850 1.9833 2.9889 
1.8395 1.1215 0.0798 1.9870 2.9894 
1.8532 1.1124 0.0871 1.9801 2.9886 
1.8346 1.1211 0.0865 1.9585 3.0100 
1.8567 1.1031 0.0828 1.9956 2.9820 
1.8174 1.1360 0.0850 1.9831 2.9934 
1.8625 1.1361 0.0869 1.9607 2.9867 
1.8408 1.0931 0.0892 1.9822 3.0018 
1.8224 1.1129 0.0815 1.9953 2.9951 
1.8430 1.0920 0.0911 1.9774 3.0039 
1.8356 1.1328 0.0829 1.9731 2.9945 
1.8450 1.1135 0.0831 1.9718 3.0004 
1.8553 1.1146 0.0876 1.9752 2.9898 
0.0453 0.0867 0.0000 4.6716 2.4303 
1.8475 1.1000 0.0870 1.9750 3.0015 
1.8243 1.1215 0.0867 1.9846 2.9953 
1.8479 1.1074 0.0867 1.9831 2.9917 
0.6669 2.2538 0.0274 1.4980 3.4024 
0.6424 2.2561 0.0312 1.5096 3.4030 

0.6253 0.3747 0.6089 0.3649 0.0261 
0.6200 0.3800 0.6025 0.3693 0.0282 
0.6203 0.3797 0.6038 0.3696 0.0266 
0.6226 0.3774 0.6062 0.3674 0.0265 

CHEMICAL COMPOSITION DATA 
Fe/ Mg/ 

Fe+Mg Fe+Mg XAim XPyp XGrs 
0.6269 0.3731 0.6088 0.3624 0.0288 
0.6237 0.3763 0.6064 0.3659 0.0277 
0.6186 0.3814 0.6009 0.3704 0.0287 
0.6260 0.3740 0.6081 0.3634 0.0285 
0.6140 0.3860 0.5956 0.3745 0.0298 
0.6289 0.3711 0.6106 0.3603 0.0291 
0.6239 0.3761 0.6058 0.3651 0.0291 
0.6211 0.3789 0.6039 0.3684 0.0277 
0.6012 0.3988 0.5820 0.3860 0.0320 
0.6201 0.3799 0.6012 0.3683 0.0305 
0.6258 0.3742 0.6085 0.3639 0.0276 
0.6216 0.3784 0.6043 0.3678 0.0279 
0.6212 0.3788 0.6049 0.3688 0.0262 
0.6249 0.3751 0.6071 0.3644 0.0285 
0.6207 0.3793 0.6031 0.3685 0.0284 
0.6273 0.3727 0.6102 0.3626 0.0272 
0.6154 0.3846 0.5981 0.3739 0.0280 
0.6211 0.3789 0.6036 0.3682 0.0282 
0.6274 0.3726 0.6089 0.3616 0.0295 
0.6209 0.3791 0.6041 0.3689 0.0270 
0.6279 0.3721 0.6090 0.3609 0.0301 
0.6184 0.3816 0.6016 0.3713 0.0272 
0.6236 0.3764 0.6066 0.3661 0.0273 
0.6247 0.3753 0.6068 0.3645 0.0287 
0.3432 0.6568 0.6068 0.3645 0.0287 
0.6268 0.3732 0.6088 0.3625 0.0287 
0.6193 0.3807 0.6016 0.3698 0.0286 
0.6253 0.3747 0.6075 0.3640 0.0285 
0.2283 0.7717 0.6068 0.3645 0.0287 
0.2216 0.7784 0.6068 0.3645 0.0287 



1500 8.9483 17.2437 0.2914 14.3982 38.4552 79.34 0.661 0 2.2701 0.0276 1.4988 3.3966 0.2255 0.7745 0.6068 0.3645 0.0287 
1550 42.2592 2.3468 0.0001 0.6394 0.8194 46.06 10.1924 1.0088 0.0000 0.2173 0.2363 0.9099 0.0901 0.6068 0.3645 0.0287 
1600 8. 7098 18.7253 0.3048 15.3671 40.0790 83.19 0.6119 2.3447 0.0274 1.5215 3.3669 0.2070 0.7930 0.6068 0.3645 0.0287 
1650 7.8042 18.8264 0.3122 14.4112 39.4065 80.76 0.5626 2.4188 0.0288 1.4641 3.3968 0.1887 0.8113 0.6068 0.3645 0.0287 
1700 28.7341 9.5856 1.0397 21 .8471 38.8647 100.07 1.8510 1.1006 0.0858 1.9834 2.9938 0.6271 0.3729 0.6094 0.3623 0.0282 
1750 28.7572 9.5006 1.0601 21 .8602 39.0769 100.26 1.8482 1.0883 0.0873 1.9800 3.0031 0.6294 0.3706 0.6112 0.3599 0.0289 
1800 27.9868 8.5120 1.0403 23.5321 37.0646 98.14 1.8364 0.9955 0.0875 2.1761 2.9082 0.6485 0.3515 0.6290 0.3410 0.0300 
1850 29.4858 9.6220 1.0395 21.8249 39.0573 101 .03 1.8870 1.0975 0.0852 1.9684 2.9889 0.6323 0.3677 0.6147 0.3575 0.0278 
1900 29.4202 9.7143 1.0408 22.2341 38.9302 101 .34 1.8762 1.1041 0.0850 1.9982 2.9687 0.6295 0.3705 0.6121 0.3602 0.0277 
1950 28.9278 9.6904 1.0653 22.0308 39.5137 101 .23 1.8403 1.0987 0.0868 1.9751 3.0058 0.6262 0.3738 0.6082 0.3631 0.0287 
2000 29.0783 9.6848 1.1398 22.1066 39.3336 101.34 1.8502 1.0983 0.0929 1.9823 2.9926 0.6275 0.3725 0.6083 0.3611 0.0305 
2050 29.4709 9.3080 1.0774 21 .7601 39.1278 100.74 1.8910 1.0645 0.0886 1.9677 3.0022 0.6398 0.3602 0.6212 0.3497 0.0291 
2100 30.4588 9.0365 1.0671 22.2763 39.3408 102.18 1.9328 1.0220 0.0868 1.9921 2.9851 0.6541 0.3459 0.6355 0.3360 0.0285 
2150 29.4252 9.3252 1.0529 21 .7998 38.8232 100.43 1.8951 1.0704 0.0869 1.9786 2.9898 0.6390 0.3610 0.6209 0.3507 0.0285 
2200 29.1704 9.5776 1.0230 22.0553 39.2298 101 .06 1.8620 1.0896 0.0837 1.9840 2.9943 0.6308 0.3692 0.6134 0.3590 0.0276 
2250 29.5767 9.4753 1.0344 22.0410 39.2415 101 .37 1.8856 1.0766 0.0845 1.9803 2.9915 0.6366 0.3634 0.6189 0.3534 0.0277 
2300 29.1108 9.5881 1.0558 21 .9634 39.3681 101.09 1.8568 1.0900 0.0863 1.9743 3.0027 0.6301 0.3699 0.6122 0.3594 0.0285 
2350 28.6661 9.4450 0.9388 22.0353 39.3135 100.40 1.8366 1.0785 0.0771 1.9895 3.0118 0.6300 0.3700 0.6138 0.3604 0.0258 
2400 29.4901 9.5348 1.1071 22.0603 39.1574 101 .35 1.8805 1.0837 0.0904 1.9825 2.9858 0.6344 0.3656 0.6156 0.3548 0.0296 

)> 2450 29.4095 9.2356 1.0549 21 .8389 39.1085 100.65 1.8881 1.0568 0.0868 1.9759 3.0023 0.6411 0.3589 0.6228 0.3486 0.0286 .b.. 
2500 30.3651 8.9638 1.1312 22.0237 39.0657 101 .55 1.9405 1.0210 0.0926 1.9835 2.9853 0.6552 0.3448 0.6354 0.3343 0.0303 
2550 31 .0926 8.1858 1.1529 21 .7677 39.0978 101 .30 1.9987 0.9378 0.0949 1.9720 3.0053 0.6806 0.3194 0.6593 0.3094 0.0313 
2600 7.1142 23.2715 0.4092 11 .9676 45.0186 87.78 0.4689 2.7336 0.0346 1.1116 3.5478 0.1464 0.8536 0.6068 0.3645 0.0287 
2650 82.7274 0.2124 0.0001 0.2836 0.6421 83.87 11 .6461 0.0533 0.0000 0.0563 0.1081 0.9954 0.0046 0.6068 0.3645 0.0287 
2700 26.2529 10.1567 1.1598 26.2332 43.7022 107.50 1.5307 1.0555 0.0866 2.1556 3.0469 0.5919 0.4081 0.6068 0.3645 0.0287 
2750 30.3082 8.8078 1.0722 21 .9119 38.7347 100.83 1.9519 1.0110 0.0885 1.9887 2.9828 0.6588 0.3412 0.6397 0.3313 0.0290 
2800 29.8250 9.1131 1.0202 22.0137 38.8892 100.86 1.9148 1.0428 0.0839 1.9917 2.9855 0.6474 0.3526 0.6296 0.3429 0.0276 
2850 29.5648 9.2110 1.0965 21 .9594 38.9259 100.76 1.8982 1.0541 0.0902 1.9870 2.9885 0.6430 0.3570 0.6239 0.3465 0.0296 
2900 29.7636 8.8654 1.0884 21 .9780 38.8714 100.57 1.9163 1.0173 0.0898 1.9942 2.9926 0.6532 0.3468 0.6338 0.3365 0.0297 
2950 30.7857 8.9605 1.1143 22.0721 39.0676 102.00 1.9622 1.0179 0.0910 1.9826 2.9775 0.6584 0.3416 0.6389 0.3314 0.0296 

I -indicates poor results 
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Distance 
(um) 

0 
58 
116 
174 
232 
290 
348 
406 
464 
522 
580 
638 
696 
754 
812 
870 
928 
986 
1044 
1102 
1160 
1218 
1276 
1334 
1392 
1450 
1508 
1566 
1624 
1682 
1740 
1798 
1856 
1914 
1972 
2030 
2088 
2146 
2204 

Distance 
(um) 

0 
60 
120 
180 
240 
300 

FeO 
30.3640 
29.9814 
29.3701 
29.7898 
29.6547 
30.0131 
29.9346 
29.9190 
29.5722 
29.6171 
29.7920 
29.8491 
29.5270 
29.5622 
29.7443 
30.2548 
29.8109 
30.4555 
30.2670 
29.6995 
30.1708 
30.3322 
30.2121 
30.4427 
30.1225 
29.5257 
30.2237 
30.0943 
29.9947 
29.8935 
29.7040 
29.8937 
29.9674 
30.0577 
30.0600 
29.9821 
29.7630 
29.9257 
30.0336 

FeO 
31 .2469 
30.2881 
30.0463 
30.2265 
30.0915 
28.1950 

MgO 
8.7555 
8.9185 
8.6879 
8.8347 
8.7765 
8.8411 
9.0124 
8.8854 
8.8065 
8.7796 
8.9066 
8.7194 
8.9029 
8.7391 
8.7597 
8.8818 
8.7447 
8.3072 
8.7201 
8.7971 
8.7898 
8.6358 
8.6921 
8.5821 
8.6363 
8.8534 
8.7828 
8.7827 
8.8825 
3.1137 
8.6575 
8.5555 
8.5776 
8.5352 
8.6391 
8.6570 
8.7664 
8.7614 
8.7949 

MgO 
7.9240 
8.6501 
8.8684 
8.7556 
8.5679 
8 9760 

cao 
1.0084 
1.0010 
1.0446 
1.0136 
1.0416 
1.0563 
1.0298 
1.1045 
1.0249 
1.0658 
1.1024 
1.0660 
1.0484 
1.1321 
1.0508 
1.0368 
1.1195 
1.0845 
1.0828 
1.0518 
1.0688 
1.0193 
1.1078 
1.1204 
1.0858 
1.0786 
1.0724 
1.1550 
1.1101 
1.2382 
1.1236 
1.0605 
1.1031 
0.9976 
1.1203 
1.1143 
1.0841 
1.0982 
0.9995 

cao 
0.9226 
0.8387 
0.9664 
1.0160 
0.9827 
0.9593 

OXIDES 

MnO 
0.2229 
0.1750 
0.1807 
0.1703 
0.1739 
0.1632 
0.2217 
0.2259 
0.1834 
0.1553 
0.2012 
0.2186 
0.1135 
0.1979 
0.2213 
0.1285 
0.2225 
0.1629 
0.2418 
0.1727 
0.1856 
0.2742 
0.2047 
0.1490 
0.1692 
0.1688 
0.2239 
0.2387 
0.1857 
0.4383 
0.2059 
0.1922 
0.1927 
0.1793 
0.1902 
0.2223 
0.2181 
0.1696 
0.2181 

MnO 
0.2513 
0.1699 
0.2072 
0.2178 
0.1766 
0.1830 

0.0002 21.6947 38.5139 
0.0002 21.8177 38.3325 
0.0002 21 .9069 38.3351 
0.0002 21.5847 38.5518 
0.0002 21 .7409 38.4450 
0.0002 21 .7359 38.1801 
0.0002 22.1141 38.7216 
0.0002 21 .8714 38.5509 
0.0002 21 .9081 38.2944 
0.0002 21 .8100 38.2126 
0.0002 21 .6474 38.4103 
0.0002 21 .6562 38.5309 
0.0002 21 .6183 38.1727 
0.0002 21 .7870 38.3528 
0.0002 21.5758 38.3765 
0.0002 21 .8382 38.3038 
0.0002 21.9370 38.5538 
0.0002 21 .5793 38.1259 
0.0002 21 .7857 38.3742 
0.0002 21 .7831 38.1930 
0.0002 21 .7368 38.2987 
0.0002 21 .7017 38.4373 
0.0002 21 .9147 38.3211 
0.0002 21 .6200 38.0477 
0.0002 21.7064 38.3974 
0.0002 21 .6923 38.0958 
0.0002 21 .7813 38.2046 
0.0002 21 .7869 38.3331 
0.0002 21 .8665 38.2652 
0.1899 9.9657 18.1394 
0.0002 21 .7541 38.0834 
0.0002 21 .6638 38.1367 
0.0002 21 .9394 38.3463 
0.0002 21 .6431 38.2352 
0.0002 21 .8028 38.3272 
0.0002 21 .8183 38.3187 
0.0002 21 .6463 38.2823 
0.0002 21 .7580 38.3048 
0.0002 21 .8889 38.0910 

0.0294 21 .6419 38.2589 
0.0002 21 .7094 38.3691 
0.0002 21 .8121 38.2853 
0.0002 21 .8933 38.5204 
0.0002 21 .8809 38.4284 
0 0002 19.7510 34 9974 

Total 
100.56 
100.23 
99.53 
99.95 
99.83 
99.99 

101 .03 
100.56 
99.79 
99.64 

100.06 
100.04 
99.38 
99.77 
99.73 

100.44 
100.39 
99.72 

100.47 
99.70 

100.25 
100.40 
100.45 
99.96 

100.12 
99.41 

100.29 
100.39 
100.30 
82.98 
99.53 
99.50 

100.13 
99.65 

100.14 
100.11 
99.76 

100.02 
100.03 

Total 
100.28 
100.03 
100.19 
100.63 
100.13 
93.06 

CATION NUMBERS 

Fe Mg Ca Mn AI Sl 
1.9647 1.0097 0.0836 0.0146 1.9783 2.9799 
1.9434 1.0303 0.0831 0.0115 1.9930 2.9711 
1.9117 1.0079 0.0871 0.0119 2.0095 2.9836 
1.9341 1.0223 0.0843 0.0112 1.9749 2.9929 
1.9266 1.0162 0.0867 0.0114 1.9905 2.9866 
1.9516 1.0246 0.0880 0.0108 1.9918 2.9686 
1.9220 1.0314 0.0847 0.0144 2.0010 2.9729 
1.9320 1.0226 0.0914 0.0148 1.9904 2.9768 
1.9217 1.0200 0.0853 0.0121 2.0064 2.9757 
1.9286 1.0190 0.0889 0.0102 2.0015 2.9755 
1.9335 1.0302 0.0917 0.0132 1.9799 2.9808 
1.9372 1.0086 0.0886 0.0144 1.9807 2.9901 
1.9273 1.0357 0.0877 0.0075 1.9886 2.9794 
1.9221 1.0127 0.0943 0.0130 1.9963 2.9817 
1.9365 1.0165 0.0876 0.0146 1.9796 2.9877 
1.9592 1.0251 0.0860 0.0084 1.9929 2.9659 
1.9271 1.0075 0.0927 0.0146 1.9985 2.9802 
1.9904 0.9676 0.0908 0.0108 1.9875 2.9795 
1.9604 1.0067 0.0899 0.0159 1.9886 2.9721 
1.9339 1.0209 0.0877 0.0114 1.9989 2.9738 
1.9577 1.0165 0.0889 0.0122 1.9877 2.9716 
1.9664 0.9978 0.0847 0.0180 1.9827 2.9796 
1.9565 1.0032 0.0919 0.0134 2.0000 2.9674 
1.9852 0.9974 0.0936 0.0098 1.9869 2.9668 
1.9561 0.9996 0.0903 0.0111 1.9865 2.9816 
1.9275 1.0301 0.0902 0.0112 1.9957 2.9738 
1.9616 1.0160 0.0892 0.0147 1.9923 2.9650 
1.9500 1.0143 0.0959 0.0157 1.9895 2.9700 
1.9438 1.0259 0.0922 0.0122 1.9970 2.9652 
3.5079 0.6512 0.1861 0.0519 1.6481 2.5453 
1.9388 1.0072 0.0940 0.0136 2.0011 2.9724 
1.9528 0.9961 0.0888 0.0127 1.9944 2.9790 
1.9444 0.9919 0.0917 0.0127 2.0061 2.9751 
1.9611 0.9925 0.0834 0.0118 1.9901 2.9830 
1.9516 0.9996 0.0932 0.0125 1.9948 2.9754 
1.9466 1.0018 0.0927 0.0146 1.9963 2.9749 
1.9378 1.0173 0.0904 0.0144 1.9862 2.9804 
1.9441 1.0144 0.0914 0.0112 1.9920 2.9755 
1.9526 1.0191 0.0832 0.0144 2.0055 2.9612 

Fe Mg Ca Mn AI Sl 
2.0367 0.9205 0.0770 0.0166 1.9880 2.9819 
1.9688 1.0022 0.0698 0.0112 1.9888 2.9824 
1.9493 1.0254 0.0803 0.0136 1.9942 2.9700 
1.9526 1.0081 0.0841 0.0143 1.9932 2.9756 
1.9523 0.9907 0.0817 0.0116 2.0007 2.9813 
19779 1.1223 0.0862 0.0130 1.9527 2.9358 

CHEMICAL COMPOSITION DATA 
Fe/ Mg/ 

Fe+Mg Fe+Mg 
(A·A') (A·A') XAim XPyp XGrs XSps 
0.6605 0.3395 0.6394 0.3286 0.0272 0.0048 
0.6535 0.3465 0.6334 0.3358 0.0271 0.0037 
0.6548 0.3452 0.6333 0.3339 0.0289 0.0039 
0.6542 0.3458 0.6337 0.3350 0.0276 0.0037 
0.6547 0.3453 0.6336 0.3342 0.0285 0.0037 
0.6557 0.3443 0.6347 0.3332 0.0286 0.0035 
0.6508 0.3492 0.6296 0.3379 0.0277 0.0047 
0.6539 0.3461 0.6312 0.3341 0.0299 0.0048 
0.6533 0.3467 0.6323 0.3356 0.0281 0.0040 . 
0.6543 0.3457 0.6330 0.3345 0.0292 0.0033 
0.6524 0.3476 0.6301 0.3357 0.0299 0.0043 
0.6576 0.3424 0.6354 0.3308 0.0291 0.0047 
0.6505 0.3495 0.6302 0.3387 0.0287 0.0025 
0.6549 0.3451 0.6318 0.3329 0.0310 0.0043 
0.6558 0.3442 0.6338 0.3327 0.0287 0.0048 
0.6565 0.3435 0.6364 0.3330 0.0279 0.0027 
0.6567 0.3433 0.6335 0.3312 0.0305 0.0048 
0.6729 0.3271 0.6505 0.3163 0.0297 0.0035 
0.6607 0.3393 0.6380 0.3276 0.0293 0.0052 
0.6545 0.3455 0.6333 0.3343 0.0287 0.0037 
0.6582 0.3418 0.6366 0.3305 0.0289 0.0040 
0.6634 0.3366 0.6412 0.3253 0.0276 0.0059 
0.6610 0.3390 0.6383 0.3273 0.0300 0.0044 
0.6656 0.3344 0.6433 0.3232 0.0303 0.0032 
0.6618 0.3382 0.6399 0.3270 0.0295 0.0036 
0.6517 0.3483 0.6301 0.3367 0.0295 0.0037 
0.6588 0.3412 0.6366 0.3297 0.0289 0.0048 
0.6578 0.3422 0.6340 0.3298 0.0312 0.0051 
0.6545 0.3455 0.6323 0.3337 0.0300 0.0040 
0.8434 0.1566 0.7978 0.1481 0.0423 0.0118 
0.6581 0.3419 0.6349 0.3298 0.0308 0.0045 
0.6622 0.3378 0.6402 0.3265 0.0291 0.0042 
0.6622 0.3378 0.6395 0.3262 0.0302 0.0042 
0.6640 0.3360 0.6432 0.3255 0.0274 0.0039 
0.6613 0.3387 0.6384 0.3270 0.0305 0.0041 
0.6602 0.3398 0.6370 0.3278 0.0303 0.0048 
0.6557 0.3443 0.6333 0.3325 0.0295 0.0047 
0.6571 0.3429 0.6351 0.3314 0.0299 0.0037 
0.6571 0.3429 0.6362 0.3320 0.0271 0.0047 

Fe/ Mg/ 
Fe+Mg 
(B·B') 
0.6887 
0.6627 
0.6553 
0.6595 
0.6634 
0.8380 

Fe+Mg 
(B·B') XAim XPyp XGrs XSps 
0.3113 0.6676 0.3017 0.0252 0.0054 
0.3373 0.6451 0.3284 0.0229 0.0037 
0.3447 0.6352 0.3342 0.0262 0.0044 
0.3405 0.6383 0.3295 0.0275 0.0047 
0.3366 0.6430 0.3263 0.0269 0.0038 
0.3820 0.6182 0.3508 0.0269 0.0041 



360 
420 
-480 
540 
600 
660 
720 
780 
840 
900 
960 
1020 
1080 
1140 
1200 
1260 
1320 
1380 
1440 

22.5526 10.-4828 0.8590 0 197-t 0.0281 17.3225 34.0978 
30.4587 8.1200 1.0240 0.2565 0.0002 21 .6166 38.2070 

8.1864 8.5507 1 9280 0.0001 0.0002 26.1221 49.4900 
30.7636 8.3611 1.0573 0.2638 0.0002 21 .6976 38.1338 
30.4367 8.6393 1.0875 0.1955 0.0002 21 .5715 38.1030 
30.2118 8.6218 1.1025 0.2533 0.0002 21 .8565 38.6551 
30.2135 8.8782 1.0664 0.2489 0.0002 21 .6278 38.3402 
30.2290 8.7333 1.0551 0.2065 0.0002 21 .8089 38.1893 
30.0528 8.8057 1.0601 0.1975 0.0002 21 .6308 38.2465 
29.8505 8.8839 1.1340 0.1932 0.0002 21 .8031 38.0996 
29.8496 8.9264 1.0982 0.1545 0.0002 21 .6582 38.1982 
30.1084 8.7283 1.1507 0.1717 0.0002 21 .6909 38.3603 
29.9748 8.7917 1.0841 0.1649 0.0002 21.6504 38.4828 
29.7187 8.9159 1.1095 0.1965 0.0002 21 .7299 38.3555 
29.8350 8.8134 1.0828 0.1641 0.0002 21 .6663 38.5980 
29.6119 8.9365 1.0702 0.1857 0.0002 21.7363 38.3647 
29.1771 9.6970 1.0474 0.1433 0.0002 23.2495 40.4853 
29.7114 8.8655 1.1012 0.1706 0.0002 21 .6009 38.3401 
29.8854 8.8459 0.9898 0.1832 0.0002 21 .6716 38.2987 
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Dlatance 
(urn) 

0 
60 
120 
180 
240 
300 
360 
420 
480 
540 
600 
660 
720 
780 
840 
900 
960 
1020 
1080 
1140 
1200 
1260 
1320 
1380 
1440 
1500 
1560 
1620 

FeO 
29.8296 
29.1069 
29.0361 
28.4980 
28.9308 
29.6566 
29.5193 
29.5862 
29.5342 
29.2613 
29.6749 
29.5215 
29.2853 
29.9909 
29.3481 
29.2891 
29.6358 
28.8439 
29.6626 
29.7932 
29.3059 
29.5145 
30.01 10 
29.5352 
29.4829 
29.4086 
29.3063 
29.0919 

MgO 
8.8826 
9.5095 
9.4799 
9.4678 
9.2454 
9.3721 
9.3239 
9.0639 
9.2527 
9.2363 
9.2097 
9.2520 
8.9781 
9.0678 
8.9409 
8.9615 
9.4297 
9.3848 
9.0298 
9.1366 
9.0503 
9.3521 
8.8318 
9.2024 
9.0210 
9.1121 
9.1792 
9.3647 

CaO 
0.9174 
0.8981 
1.0829 
1.0013 
1.0344 
1.0580 
1.0280 
1.0186 
1.0427 
0.9906 
1.0379 
1.0077 
1.0233 
0.9919 
0.9265 
1.0129 
1.1428 
1.0050 
1.0709 
1.0000 
1.0656 
1.0047 
1.0807 
0.9705 
1.0541 
1.1406 
1.0385 
1.0791 

OXIDES 

MnO 
0.1882 
0.1981 
0.2153 
0.2061 
0.1649 
0.1623 
0.1740 
0.1583 
0.1669 
0.1375 
0.1867 
0.1875 
0.2111 
0.1675 
0.1627 
0.1415 
0.2291 
0.1423 
0.2482 
0.2024 
0.1976 
0.1659 
0.2075 
0.1274 
0.1966 
0.1754 
0.1905 
0.1928 

0.0002 21 .8772 38.7054 
0.0002 21 .6965 38.6715 
0.0002 21 .8586 38.7514 
0.0002 21 .7495 38.0512 
0.0002 21 .7801 38.4937 
0.0002 21 .9238 38.6688 
0.0002 22.0046 38.6702 
0.0002 21 .8550 38.4189 
0.0002 22.0348 38.6511 
0.0002 21 .8699 39.0179 
0.0002 21 .9458 38.5029 
0.0002 21 .9016 38.6582 
0.0002 21 .7939 38.5776 
0.0002 21 .9111 38.5086 
0.0002 21 .6976 38.1992 
0.0002 21 .6697 38.2872 
0.0002 21 .8279 38.7963 
0.0002 22.0083 38.5542 
0.0002 21 .6271 38.4578 
0.0002 21 .8525 38.5806 
0.0002 21 .8602 38.4723 
0.0002 22.5880 39.4029 
0.0002 22.0483 38.5887 
0.0002 21 .6956 38.5036 
0.0002 21 .6621 38.3939 
0.0002 21 .7084 38.5466 
0.0002 21 .9840 38.5707 
0.0002 22.0719 38.7125 

85.54 
99.68 
9428 

100.28 
100.03 
100.70 
100.38 
100.22 
99.99 
99.96 
99.89 

100.21 
100.15 
100.03 
100.16 
99.91 

103.80 
99.79 
99.87 

Total 
100.40 
100.08 
100.42 
98.97 
99.65 

100.84 
100.72 
100.10 
100.68 
100.51 
100.56 
100.53 
99.87 

100.64 
99.28 
99.36 

101 .06 
99.94 

100.10 
100.57 
99.95 

102.03 
100.77 
100.03 
99.81 

100.09 
100.27 
100.51 

1.6835 1.3947 0.0821 0.0149 1.8224 3.0437 
1.9911 0.9460 0.0858 0.0170 1.9914 2.9865 
0.4925 0.9168 0.1-486 0.0000 2.21-48 3.5601 
2.0025 0.9700 0.0882 0.0174 1.9904 2.9682 
1.9834 1.0034 0.0908 0.0129 1.9810 2.9690 
1.9502 0.9919 0.0912 0.0166 1.9883 2.9838 
1.9591 1.0260 0.0886 0.0163 1.9764 2.9727 
1.9630 1.0108 0.0878 0.0136 1.9959 2.9655 
1.9547 1.0208 0.0883 0.0130 1.9827 2.9746 
1.9411 1.0296 0.0945 0.0127 1.9981 2.9625 
1.9419 1.0350 0.0915 0.0102 1.9857 2.9715 
1.9540 1.0096 0.0957 0.0113 1.9838 2.9769 
1.9443 1.0164 0.0901 0.0108 1.9791 2.9848 
1.9288 1.0313 0.0923 0.0129 1.9875 2.9767 
1.9331 1.0178 0.0899 0.0108 1.9784 2.9904 
1.9229 1.0343 0.0890 0.0122 1.9892 2.9789 
1.8055 1.0695 0.0830 0.0090 2.0276 2.9958 
1.9330 1.0280 0.0918 0.0112 1.9805 2.9826 
1.9437 1.0254 0.0825 0.0121 1.9863 2.9785 

CATION NUMBERS 

Fe Mg Ca Mn AI Sl 
1.9262 1.0223 0.0759 0.0123 1.9908 2.9886 
1.8803 1.0949 0.0743 0.0130 1.9753 2.9873 
1.8691 1.0876 0.0893 0.0140 1.9829 2.9828 
1.8602 1.1 015 0.0837 0.0136 2.0007 2.9700 
1.8766 1.0688 0.0860 0.0108 1.9910 2.9857 
1.9061 1.0736 0.0871 0.0106 1.9858 2.9719 
1.8981 1.0685 0.0847 0.0113 1.9940 2.9732 
1.9161 1.0462 0.0845 0.0104 1.9947 2.9753 
1.8999 1.0608 0.0859 0.0109 1.9976 2.9731 
1.8810 1.0582 0.0816 0.0089 1.9813 2.9992 
1.9137 1.0585 0.0858 0.0122 1.9945 2.9691 
1.9021 1.0625 0.0832 0.0122 1.9887 2.9784 
1.8981 1.0371 0.0850 0.0139 1.9907 2.9899 
1.9348 1.0426 0.0820 0.0109 1.9921 2.9707 
1.9155 1.0401 0.0775 0.0108 1.9958 2.9813 
1.9094 1.0412 0.0846 0.0093 1.9908 2.9846 
1.9011 1.0781 0.0939 0.0149 1.9733 2.9760 
1.8636 1.0807 0.0832 0.0093 2.0039 2.9786 
1.9233 1.0435 0.0890 0.0163 1.9762 2.9818 
1.9219 1.0505 0.0826 0.0132 1.9866 2.9759 
1.8987 1.0450 0.0884 0.0130 1.9959 2.9805 
1.8678 1.0548 0.0815 0.0106 2.0145 2.9817 
1.9337 1.0142 0.0892 0.0135 2.0021 2.9731 
1.9132 1.0624 0.0805 0.0084 1.9805 2.9823 
1.9153 1.0445 0.0877 0.0129 1.9832 2.9824 
1.9038 1.0514 0.0946 0.0115 1.9805 2.9839 
1.8917 1.0560 0.0859 0.0125 1.9998 2.9771 
1.8709 1.0733 0.0889 0.0126 2.0003 2.9769 

0.5489 0.4531 0.5302 0.4392 0.0259 0.0047 
0.6779 0.3221 0.6550 0.3112 0.0282 0.0056 
0.3495 0 .6505 0.3161 0.5885 0.0954 0.0000 
0.6737 0.3263 0.6506 0.3151 0.0287 0.0057 
0.6641 0.3359 0.6418 0.3247 0.0294 0.0042 
0.6629 0.3371 0.6394 0.3252 0.0299 0.0054 
0.6563 0.3437 0.6340 0.3320 0.0287 0.0053 
0.6601 0.3399 0.6383 0.3287 0.0286 0.0044 
0.6569 0.3431 0.6353 0.3318 0.0287 0.0042 
0.6534 0.3466 0.6307 0.3345 0.0307 0.0041 
0.6523 0.3477 0.6308 0.3362 0.0297 0.0033 
0.6593 0.3407 0.6364 0.3288 0.0312 0.0037 
0.6567 0.3433 0.6351 0.3320 0.0294 0.0035 
0.6516 0.3484 0.6292 0.3364 0.0301 0.0042 
0.6551 0.3449 0.6335 0.3335 0.0295 0.0035 
0.6502 0.3498 0.6287 0.3382 0.0291 0.0040 
0.6280 0.3720 0.6085 0.3605 0.0280 0.0030 
0.6528 0.3472 0.6309 0.3355 0.0300 0.0037 
0.6546 0.3454 0.6344 0.3347 0.0269 0.0039 

CHEMICAL COMPOSITION DATA 
Fe/ Mg/ 

Fe+Mg Fe+Mg 
(A·A') (A·A') XAim XPyp XGrs XSps 
0.6533 0.3467 0.6343 0.3366 0.0250 0.0041 
0.6320 0.3680 0.6140 0.3575 0.0243 0.0042 
0.6322 0.3678 0.6108 0.3554 0.0292 0.0046 
0.6281 0.3719 0.6081 0.3601 0.0274 0.0044 
0.6371 0.3629 0.6169 0.3513 0.0283 0.0036 
0.6397 0.3603 0.6194 0.3489 0.0283 0.0034 
0.6398 0.3602 0.6198 0.3489 0.0277 0.0037 
0.6468 0.3532 0.6267 0.3422 0.0276 0.0034 
0.6417 0.3583 0.6214 0.3470 0.0281 0.0036 
0.6400 0.3600 0.6209 0.3493 0.0269 0.0029 
0.6439 0.3561 0.6233 0.3448 0.0279 0.0040 
0.6416 0.3584 0.6216 0.3472 0.0272 0.0040 
0.6467 0.3533 0.6256 0.3418 0.0280 0.0046 
0.6498 0.3502 0.6302 0.3396 0.0267 0.0036 
0.6481 0.3519 0.6293 0.3417 0.0255 0.0035 
0.6471 0.3529 0.6272 0.3420 0.0278 0.0031 
0.6381 0.3619 0.6156 0.3491 0.0304 0.0048 
0.6330 0.3670 0.6137 0.3559 0.0274 0.0031 
0.6483 0.3517 0.6261 0.3397 0.0290 0.0053 
0.6466 0.3534 0.6264 0.3424 0.0269 0.0043 
0.6450 0.3550 0.6235 0.3432 0.0290 0.0043 
0.6391 0.3609 0.6196 0.3499 0.0270 0.0035 
0.6560 0.3440 0.6339 0.3325 0.0292 0.0044 
0.6430 0.3570 0.6243 0.3467 0.0263 0.0027 
0.6471 0.3529 0.6258 0.3413 0.0287 0.0042 
0.6442 0.3558 0.6219 0.3434 0.0309 0.0038 
0.6418 0.3582 0.6210 0.3467 0.0282 0.0041 
0.6355 0.3645 0.6143 0.3524 0.0292 0.0041 



1680 
1740 
1800 
1860 
1920 
1980 
2040 
2100 
2160 
2220 
2280 
2340 
2400 
2460 
2520 
2580 
2640 
2700 
2760 
2820 
2880 
2940 
3000 
3060 
3120 
3180 
3240 
3300 
3360 
3420 
3480 
3540 
3600 
3660 
3720 
3780 
3840 
3900 
3960 
4020 
4080 
4140 
4200 
4260 
4320 
4380 

Distance 
(um) 

0 
60 
120 
160 

29.0252 
29.1708 
29.5038 
28.7728 
29.0577 
29.1035 
29.7811 
29.2738 
29.4356 
28.4951 

0.1823 
28.8320 
29.2031 
29.4879 
22.6776 
29.3081 
28.7803 
29.2027 
28.8968 
28.7740 
29.4758 
29.8199 
29.6309 
29.8834 
28.6071 
29.5256 
02688 
0.2164 
0.8793 

27.3968 
10.5809 
29.4869 
29.8255 
30.2400 
29.4802 
29.2415 
179630 
28.7592 
29.0581 
29.4602 
29.0792 
29.1682 
29.0821 
29.0545 
29.3050 
31 .5015 

FeO 
30.3537 
29.9567 
29.3427 
29.6196 

9.3816 
9.2481 
9.2934 
9.3568 
9.2258 
9.2657 
9.0350 
8.8293 
9.0757 
9.0548 
0.0002 
9.4285 
9.8480 
9.3445 
7.4480 
9.1806 
9.4312 
9.4285 
9.3612 
9.2367 
8.9381 
9.1046 
9.1454 
9.1476 
9.0660 
8.8704 
0.1658 
0.1459 
0.3811 
7.4585 
2.4448 
8.8114 
8.9312 
9.1378 
9.2361 
9.3660 
0.1364 
9.2363 
9.0647 
9.3081 
9.1504 
9.2902 
9.2061 
9.2553 
9.1363 
7.4901 

MgO 
6.4704 
6.6505 
9.0961 
8.9610 

1.0616 
1.1275 
1.0812 
1.1013 
1.0880 
1.1204 
1.1118 
1.0746 
1.0555 
1.1294 
0.1091 
1.0783 
1.0788 
1.0841 
1.3156 
1.0995 
1.0911 
1.0939 
1.0342 
1.0799 
1.0391 
1.0413 
1.1196 
1.0987 
1.0317 
1.0553 
0.1123 
0.0002 
0.1569 
1.2172 
0.6509 
1.0819 
1.0453 
1.1099 
1.1372 
1.0862 
0.1327 
1.0096 
1.1288 
1.0995 
1.0662 
1.1031 
1.0563 
1.0399 
1.0379 
0.8889 

CaO 
0.9427 
1.0354 
1.0561 
1.0392 

0.1215 
0.1937 
0.1308 
0.1817 
0.1951 
0.1352 
0.1663 
0.1859 
0.1753 
0.2194 
0.0001 
0.1300 
0.2023 
0.2601 
0.1351 
0.1995 
0.1533 
0.1502 
0.2353 
0.1455 
0.1983 
0.2127 
0.2218 
0.1877 
0.1290 
0.2075 
0.0001 
0.0001 
0.0001 
0.1310 
0.1412 
0.1460 
0.1648 
0.2014 
0.1534 
0.1630 
0.5686 
0.1755 
0.1819 
0.1497 
0.1390 
0.2077 
0.1845 
0.1986 
0.2177 
0.1983 

MnO 
0.2054 
0.1747 
0.1653 
0.1856 

0.0002 21 .7877 38.4347 
0.0002 21 .8742 38.5019 
0.0002 21.7080 38.5482 
0.0002 21 .7853 38.6272 
0.0002 21 .7760 38.4763 
0.0002 22.0356 38.6820 
0.0002 21 .6591 38.2660 
0.0002 22.0083 38.6996 
0.0002 21 .7327 38.3962 
0.0278 21.7382 38.0647 
0.0002 0.0002 9.8211 
0.0002 21.8721 38.4443 
0.0002 22.3236 39.1827 
0.0002 21.9749 38.5608 
0.0002 21 .1612 37.5300 
0.0002 21 .9760 38.6775 
0.0002 21 .7872 38.4099 
0.0002 22.0178 38.6736 
0.0002 21 .8219 38.5168 
0.0002 21 .8416 38.4090 
0.0002 21.9236 38.5899 
0.0002 21 .8632 38.5293 
0.0002 21 .7054 38.4618 
0.0002 21 .9814 38.8075 
0.0002 21 .7481 38.2938 
0.0002 21 .7001 38.6080 
0.0002 0.5830 97 6986 
0.0002 0.5318 96 9069 
0.0312 6.3002 85.9459 
0.0002 19.8589 34.3474 
0.2042 13.3221 19.6753 
0.0002 21.7679 36.6214 
0.0002 21 .7366 36.3710 
0.0002 21.7492 38.7752 
0.0002 21.7644 36.5699 
0.0002 21.6273 36.5656 
0.1600 0.4661 1.1962 
0.0002 21.7234 36.7099 
0.0002 21 .7666 36.4634 
0.0002 21 .7244 36.4706 
0.0002 21 .6910 36.3603 
0.0002 21 .9415 36.4605 
0.0002 21 .6076 36.4669 
0.0002 21 .7446 36.6791 
0.0002 21 .6055 36.4162 
0.0002 21.2011 37.6310 

0.0002 21.6007 36.4164 
0.0002 21.4637 36.3673 
0.0002 21.6035 36.7065 
0.0002 21 .6229 36.3957 

99.61 
100.12 
100.27 
99.63 
99.62 

100.34 
100.02 
100.07 
99.67 
96.73 
10 11 
99.79 

101 .64 
100.71 
9027 

100.44 
99.65 

100.57 
99.67 
99.49 

100.17 
100.57 
100.29 
101.11 
96.66 
99.97 
98.81 
97.80 
93.69 
90.41 
47.02 
99.94 

100.07 
101 .21 
100.34 
100.25 
20.62 
99.61 
99.69 

100.21 
99.51 

100.17 
99.61 
99.97 
99.92 
96.91 

Total 

99.99 
99.67 

100.19 
100.24 

1.6606 1.0634 0.0881 0.0060 1.9695 2.9776 
1.6659 1.0656 0.0934 0.0127 1.9930 2.9765 
1.9069 1.0706 0.0695 0.0086 1.9773 2.9792 
1.8616 1.0790 0.0913 0.0119 1.9664 2.9664 
1.6834 1.0656 0.0903 0.0126 1.9691 2.9620 
1.8748 1.0636 0.0925 0.0088 2.0005 2.9797 
1.9341 1.0458 0.0925 O.D109 1.9623 2.9716 
1.6922 1.0172 0.0690 0.0122 2.0046 2.9911 
1.9103 1.0497 0.0676 0.0115 1.9676 2.9796 
1.8651 1.0563 0.0947 0.0145 2.0052 2.9792 
0.0918 0.0002 00705 0.0001 0.0002 5.9185 
1.6669 1.0661 0.0695 0.0085 1.9959 2.9766 
1.6516 1.1130 0.0676 0.0130 1.9950 2.9710 
1.6977 1.0718 0.0694 0.0169 1.9930 2.9673 
1.5798 0.9247 0.1174 0.0095 2.0775 3.1262 
1.6665 1.0543 0.0906 0.0130 1.9956 2.9800 
1.6663 1.0900 0.0906 0.0101 1.9910 2.9783 
1.6781 1.0607 0.0901 0.0096 1.9955 2.9740 
1.6705 1.0600 0.0656 0.0154 1.9906 2.9612 
1.6665 1.0690 0.0696 0.0096 1.9968 2.9624 
1.9060 1.0301 0.0661 0.0130 1.9979 2.9639 
1.9243 1.0471 0.0661 0.0139 1.9663 2.9731 
1.9173 1.0547 0.0926 0.0145 1.9793 2.9759 
1.9170 1.0459 0.0903 0.0122 1.9872 2.9769 
1.6660 1.0551 0.0663 0.0065 2.0013 2.9900 
1.9141 1.0249 0.0677 0.0136 1.9626 2.9929 
0.0137 0.0151 0.0073 0.0000 0.0404 5.9516 
O.D112 0.0134 0.0000 0.0000 0.0385 5.9588 
0.0478 0.0369 0.0109 0.0000 0 .4828 5.5885 
1.9745 0.9560 0.1124 0.0096 2.0170 2.9600 
1.3877 0.5714 0.1094 0.0188 2.4623 3.0856 
1.9111 1.0179 0.0696 0.0096 1.9901 2.9932 
1.9350 1.0327 0.0669 0.0106 1.9874 2.9767 
1.9420 1.0459 0.0913 0.0131 1.9664 2.9776 
1.9040 1.0632 0.0941 0.0100 1.9809 2.9787 
1.6679 1.0778 0.0896 0.0107 1.9860 2.9774 
9.3372 0.1264 0.0864 0.2993 0.3415 0.7435 
1.6636 1.0667 0.0836 0.0115 1.9638 2.9994 
1.8660 1.0486 0.0939 0.0120 1.9930 2.9651 
1.9054 1.0730 0.0911 0.0096 1.9601 2.9752 
1.8910 1.0605 0.0666 0.0092 1.9676 2.9644 
1.6647 1.0699 0.0913 0.0136 1.9961 2.9717 
1.8694 1.0660 0.0679 0.0121 1.9764 2.9665 
1.8790 1.0668 0.0662 0.0130 1.9816 2.9911 
1.8996 1.0556 0.0662 0.0143 1.9922 2.9779 
2.0865 0.6650 0.0755 0.0133 1.9806 2.9632 

Fe Mg Ca Mn AI Sl 
1.9753 0.9624 0.0766 0.0135 1.9610 2.9693 
1.9494 1.0265 0.0863 0.0115 1.9702 2.9855 
1.6955 1.0475 0.0674 0.0121 1.9649 2.9900 
1.9311 1.0366 0.0662 0.0122 1.9916 2.9732 

0.6345 0.3655 0.6146 0.3540 0.0266 0.0026 
0.6390 0.3610 0.6166 0.3465 0.0305 0.0042 
0.6404 0.3596 0.6200 0.3461 0.0291 0.0026 
0.6331 0.3669 0.6116 0.3545 0.0300 0.0039 
0.6366 0.3614 0.6170 0.3492 0.0296 0.0042 
0.6360 0.3620 0.6167 0.3499 0.0304 0.0029 
0.6490 0.3510 0.6273 0.3392 0.0300 0.0035 
0.6504 0.3496 0.6265 0.3379 0.0296 0.0041 
0.6454 0.3546 0.6244 0.3431 0.0267 0.0036 
0.6364 0.3616 0.6154 0.3465 0.0312 0.0046 
0.9978 0.0022 0.5646 0.0012 0.4336 0.0006 
0.6316 0.3662 0.6115 0.3564 0.0293 0.0026 
0.6246 0.3754 0.6041 0.3631 0.0266 0.0042 
0.6391 0.3609 0.6170 0.3465 0.0291 0.0055 
0.6308 0.3692 0.6004 0.3514 0.0448 0.0038 
0.6417 0.3563 0.6199 0.3461 0.0296 0.0043 
0.6313 0.3667 0.6105 0.3566 0.0296 0.0033 
0.6348 0.3652 0.6140 0.3533 0.0295 0.0032 
0.6340 0.3660 0.6129 0.3539 0.0261 0.0050 
0.6361 0.3639 0.6153 0.3520 0.0296 0.0032 
0.6492 0.3506 0.6260 0.3394 0.0264 0.0043 
0.6476 0.3524 0.6265 0.3409 0.0260 0.0045 
0.6451 0.3549 0.6226 0.3425 0.0301 0.0047 
0.6470 0.3530 0.6254 0.3412 0.0295 0.0040 
0.6390 0.3610 0.6190 0.3496 0.0266 0.0026 
0.6513 0.3467 0.6296 0.3371 0.0266 0.0045 
0 4757 0.5243 0.3795 0.4183 0 2022 0.0000 
0.4553 0.5447 0.4553 0.5447 0.0000 0.0000 
0.5643 0.4357 0.5000 0.3860 0.1140 0.0000 
0.6733 0.3267 0.6464 0.3136 0.0366 0.0031 
0.7083 0.2917 0.6648 0.2738 0.0524 0.0090 
0.6525 0.3475 0.6311 0.3361 0.0297 0.0032 
0.6520 0.3460 0.6312 0.3369 0.0283 0.0035 
0.6500 0.3500 0.6260 0.3362 0.0295 0.0042 
0.6417 0.3563 0.6199 0.3462 0.0306 0.0033 
0.6366 0.3634 0.6157 0.3515 0.0293 0.0035 
0.9866 0.0134 0.9478 0 .0128 0.0090 0.0304 
0.6360 0.3640 0.6159 0.3526 0.0277 0.0036 
0.6427 0.3573 0.6203 0.3449 0.0309 0.0039 
0.6397 0.3603 0.6168 0.3465 0.0296 0.0032 
0.6407 0.3593 0.6201 0.3476 0.0291 0.0030 
0.6379 0.3621 0.6160 0.3497 0.0296 0.0044 
0.6393 0.3607 0.6164 0.3469 0.0266 0.0040 
0.6379 0.3621 0.6171 0.3503 0.0263 0.0043 
0.6426 0.3572 0.6217 0.3454 0.0262 0.0047 
0.7024 0.2976 0.6620 0.2890 0.0247 0.0043 

Fe/ Mg/ 
Fe+Mg Fe+Mg 
(B·B') (B·B') XAim XPyp XGrs XSps 
0.6679 0.3321 0.6477 0.3221 0.0256 0.0044 
0.6551 0.3449 0.6342 0.3340 0.0261 0.0037 
0.6441 0.3559 0.6230 0.3443 0.0267 0.0040 
0.6507 0.3493 0.6296 0.3361 0.0261 0.0040 



240 
300 
360 
420 
480 
540 
600 
660 
720 
780 
840 
900 
960 
1020 
1080 
1140 
1200 
1260 
1320 
1380 
1440 
1500 
1560 
1620 
1680 
1740 
1800 
1860 
1920 

30.0117 8.9533 0.9980 0.1584 0.0002 21 .6324 38.2520 
29.5918 9.0147 1.0807 0.2279 0.0002 21 .8737 38.5018 
29.3806 8.9927 1.0682 0.2354 0.0002 21 .8919 38.5626 
29.5229 9.2225 0.9763 0.1576 0.0002 20.7146 36.7407 
29.5724 8.9584 1.0699 0.1633 0.0002 21 .8402 38.5899 
29.3448 9.1002 1.1320 0.2255 0.0002 21 .8546 38.3979 
29.5606 9.0973 1.0994 0.2063 0.0002 22.0053 38.6144 
29.2004 9.1716 1.1 017 0.1930 0.0002 21 .8415 38.3066 
29.2231 9.2963 1.1884 0.2696 0.0002 21 .8473 38.5237 
29.0876 9.3100 1.0864 0.1666 0.0002 21 .9927 38.7013 
28.8521 9.3828 1.0998 0.1391 0.0002 21.8473 38.5424 
28.9216 9.3276 1.0638 0.1440 0.0002 21.9101 38.5921 
29.1119 9.4246 1.1265 0.1919 0.0002 21.8442 38.5613 
28.9729 9.1712 1.1304 0.1674 0.0002 21 .8742 38.4781 
29.1610 9.4888 1.0893 0.1680 0.0002 21 .9180 38.5840 
28.8590 9.2488 1.0753 0.1947 0.0002 21 .7196 38.4576 
28.9126 9.1686 1.0728 0.1845 0.0002 21 .7716 38.5044 
28.9883 9.4254 1.1034 0.1515 0.0002 21 .9636 38.5859 
29.0284 9.3278 1.1667 0.1981 0.0002 21 .8717 38.5399 
29.4784 9.0967 1.0685 0.2258 0.0002 21 .8957 38.4794 
11 9240 20.8123 0.9919 0.0001 0.7527 18.8962 40 1568 
29.8389 9.2691 1.0651 0.1361 0.0002 22.0602 38.4520 
29.2499 9.1015 1.0604 0.1843 0.0002 21.8236 38.6336 
29.1797 9.2888 1.1233 0.1482 0.0002 22.0002 38.4840 
29.2325 9.2080 1.0512 0.1697 0.0002 21.7689 38.7442 
29.0672 9.1102 1.0831 0.2057 0.0002 22.0153 38.5780 
28.7273 9.1157 1.0094 0.1562 0.0002 21.5182 38.1444 
29.4813 9.3252 1.0789 0.2434 0.0002 21 .8561 38.5082 
29.8262 8.7977 1.0151 0.2079 0.0002 21 .8072 38.5677 
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Distance 
(urn) 

0 
60 
120 
180 
240 
300 
360 
420 
480 
540 
600 
660 
720 
780 
840 
900 
960 
1020 

FeO MgO 
28.6375 9.3530 
28.2592 9.4994 
27.5181 9.4655 
27.5369 9.8265 
27.7733 10.0550 
27.8638 10.0551 
27.6335 10.2067 
27.8514 10.3816 
26.8347 10.2499 
27.2941 10.1296 
27.6257 10.1650 
27.7613 10.3158 
27.5437 10.2159 
27.0051 10.1004 
27.4612 10.1714 
23.5033 7.2133 
27.8084 1 0.4888 
26.9438 10.1067 

CaO 
0.8116 
0.8314 
0.8550 
0.8901 
0.8629 
0.9509 
0.8817 
0.9066 
0.8449 
0.8991 
0.9138 
0.9278 
0.8553 
0.8803 
0.9615 
0.7688 
0.9712 
0.8503 

OXIDES 

MnO 
0.1565 
0.1455 
0.1967 
0.2046 
0.1482 
0.1369 
0.2044 
0.1311 
0.1285 
0.1195 
0.1665 
0.1676 
0.1261 
0.0921 
0.1294 
0.1695 
0.1246 
0.1410 

0.0002 21 .6180 38.3375 
0.0002 21.8254 38.1389 
0.0002 21.6143 38.2859 
0.0002 21 .6579 38.5039 
0.0002 21 .8648 38.5904 
0.0002 21 .8206 38.4580 
0.0002 21 .9873 38.7367 
0.0002 22.0992 38.7801 
0.0002 22.0625 38.5532 
0.0002 21 .8578 38.5315 
0.0002 21 .8768 38.8011 
0.0002 21 .9191 38.8620 
0.0002 22.0551 38.8708 
0.0002 21.4501 38.1395 
0.0002 21 .9830 38.6545 
0.0002 16.-4269 30.1150 
0.0002 21 .9977 38.7522 
0.0002 21 .4273 38.2950 

100.01 
100.29 
100.13 
97.33 

100.19 
100.06 
100.58 
99.82 

100.35 
100.34 
99.86 
99.96 

100.26 
99.79 

100.41 
99.56 
99.61 

100.22 
100.13 
100.24 
9353 

100.82 
100.05 
100.22 
100.17 
100.06 
98.67 

100.49 
100.22 

Total 
98.91 
98.70 
97.94 
98.62 
99.29 
99.29 
99.65 

100.15 
98.67 
98.83 
99.55 
99.95 
99.67 
97.67 
99.36 
78.20 

100.14 
97.76 

1.9507 1.0372 0.0831 0.0104 1.9816 2.9731 
1.9134 1.0389 0.0895 0.0149 1.9932 2.9768 
1.9005 1.0367 0.0885 0.0154 1.9956 2.9827 
1.9789 1.1018 0.0838 0.0107 1.9568 2.9448 
1.9127 1.0327 0.0887 0.0107 1.9908 2.9846 
1.9007 1.0505 0.0939 0.0148 1.9949 2.9739 
1.9045 1.0446 0.0907 0.0135 1.9980 2.9748 
1.8947 1.0607 0.0916 0.0127 1.9973 2.9722 
1.8864 1.0695 0.0983 0.0176 1.9874 2.9735 
1.8737 1.0689 0.0897 0.0109 1.9965 2.9810 
1.8666 1.0819 0.0912 0.0091 1.9919 2.9817 
1.8693 1.0745 0.0881 0.0094 1.9957 2.9826 
1.8788 1.0840 0.0931 0.0125 1.9867 2.9757 
1.8773 1.0591 0.0938 0.0110 1.9974 2.9813 
1.8789 1.0896 0.0899 0.0110 1.9902 2.9727 
1.8739 1.0704 0.0895 0.0128 1.9876 2.9860 
1.8762 1.0604 0.0892 0.0121 1.9910 2.9878 
1.8696 1.0834 0.0912 0.0099 1.9963 2.9757 
1.8753 1.0740 0.0966 0.0130 1.9913 2.9771 
1.9059 1.0483 0.0885 0.0148 1.9951 2.9749 
0.7626 2.372-4 0.0813 0.0000 1.7032 3.0711 
1.9204 1.0632 0.0878 0.0089 2.0009 2.9592 
1.8917 1.0491 0.0879 0.0121 1.9891 2.9878 
1.8839 1.0689 0.0929 0.0097 2.0017 2.9710 
1.8876 1.0597 0.0870 0.011 1 1.9810 2.9916 
1.8783 1.0492 0.0897 0.0135 2.0049 2.9810 
1.8824 1.0646 0.0847 0.0104 1.9871 2.9887 
1.9018 1.0721 0.0892 0.0159 1.9869 2.9703 
1.9310 1.0152 0.0842 0.0136 1.9897 2.9857 

CATION NUMBERS 

Fe Mg Ca Mn AI Sl 
1.8688 1.0878 0.0678 0.0103 1.9881 2.9915 
1.8455 1.1057 0.0696 0.0096 2.0087 2.9783 
1.8051 1.1066 0.0719 0.0131 1.9981 3.0031 
1.7933 1.1406 0.0743 0.0135 1.9877 2.9984 
1.7970 1.1596 0.0715 0.0097 1.9938 2.9857 
1.8050 1.1609 0.0789 0.0090 1.9921 2.9790 
1.7801 1.1719 0.0728 0.0133 1.9961 2.9839 
1.7862 1.1867 0.0745 0.0085 1.9974 2.9740 
1.7392 1.1840 0.0702 0.0084 2.0151 2.9878 
1.7707 1.1712 0.0747 0.0078 1.9984 2.9890 
1.7811 1.1681 0.0755 0.0109 1.9878 2.9914 
1.7836 1.1812 0.0764 O.Q109 1.9846 2.9855 
1.7717 1.1712 O.o705 0.0082 1.9993 2.9897 
1.7729 1.1818 0.0740 0.0061 1.9846 2.9941 
1.7730 1.1704 0.0795 0.0085 2.0002 2.9842 
1 9550 1.0694 0.0819 0.01-43 1 9257 2.9954 
1.7840 1.1993 0.0798 0.0081 1.9888 2.9728 
1.7661 1.1808 0.0714 0.0094 1.9794 3.0016 

0.6529 
0.6481 
0.6470 
0.6424 
0.6494 
0.6440 
0.6458 
0.641 1 
0.6382 
0.6367 
0.6331 
0.6350 
0.6341 
0.6393 
0.6329 
0.6365 
0.6389 
0.6331 
0.6358 
0.6451 
0.2-433 
0.6437 
0.6433 
0.6380 
0.6405 
0.6416 
0.6388 
0.6395 
0.6554 

0.3471 0.6331 0.3366 0.0270 0.0034 
0.3519 0.6260 0.3399 0.0293 0.0049 
0.3530 0.6249 0.3409 0.0291 0.0051 
0.3576 0.6232 0.3470 0.0264 0.0034 
0.3506 0.6282 0.3392 0.0291 0.0035 
0.3560 0.6212 0.3433 0.0307 0.0048 
0.3542 0.6238 0.3421 0.0297 0.0044 
0.3589 0.6192 0.3467 0.0299 0.0042 
0.3618 0.6141 0.3482 0.0320 0.0057 
0.3633 0.6157 0.3512 0.0295 0.0036 
0.3669 0.6122 0.3549 0.0299 0.0030 
0.3650 0.6146 0.3533 0.0290 0.0031 
0.3659 0.6123 0.3533 0.0303 0.0041 
0.3607 0.6173 0.3483 0.0308 0.0036 
0.3671 0.6121 0.3550 0.0293 0.0036 
0.3635 0.6151 0.3513 0.0294 0.0042 
0.3611 0.6176 0.3491 0.0294 0.0040 
0.3669 0.6122 0.3547 0.0299 0.0032 
0.3642 0.6131 0.3511 0.0316 0.0042 
0.3549 0.6234 0.3429 0.0289 0.0048 
0.7567 0.2371 0.7376 0.0253 0.0000 
0.3563 0.6234 0.3452 0.0285 0.0029 
0.3567 0.6221 0.3450 0.0289 0.0040 
0.3620 0.6166 0.3498 0.0304 0.0032 
0.3595 0.6198 0.3480 0.0286 0.0036 
0.3584 0.6198 0.3462 0.0296 0.0045 
0.3612 0.6188 0.3500 0.0278 0.0034 
0.3605 0.6177 0.3482 0.0290 0.0052 
0.3446 0.6344 0.3335 0.0277 0.0045 

CHEMICAL COMPOSITION DATA 
Fe/ Mgl 
Fe+Mg Fe+Mg 
(A·A') (A·A') XAim XPyp XGrs XSps 

0.6321 0.3679 0.6158 0.3585 0.0223 0.0034 
0.6253 0.3747 0.6090 0.3649 0.0230 0.0032 
0.6199 0.3801 0.6024 0.3693 0.0240 0.0044 
0.61 12 0.3888 0.5935 0.3775 0.0246 0.0045 
0.6078 0.3922 0.5915 0.3817 0.0235 0.0032 
0.6086 0.3914 0.5911 0.3801 0.0258 0.0029 
0.6030 0.3970 0.5859 0.3857 0.0240 0.0044 
0.6008 0.3992 0.5845 0.3883 0.0244 0.0028 
0.5950 0.4050 0.5794 0.3944 0.0234 0.0028 
0.6019 0.3981 0.5855 0.3873 0.0247 0.0026 
0.6039 0.3961 0.5867 0.3848 0.0249 0.0036 
0.6016 0.3984 0.5844 0.3870 0.0250 0.0036 
0.6020 0.3980 0.5863 0.3876 0.0233 0.0027 
0.6000 0.4000 0.5842 0.3894 0.0244 0.0020 
0.6024 0.3976 0.5849 0.3861 0.0262 0.0028 
0.8404 0.3536 0.6265 0.3.427 0.0262 0.0046 
0.5980 0.4020 0.5809 0.3905 0.0260 0.0026 
0.5993 0.4007 0.5833 0.3900 0.0236 0.0031 



1080 27.8747 10.2022 
1140 28.1916 10.2799 
1200 27.9949 9.9393 
1260 27.5361 10.1453 
1320 28.2166 10.2988 
1380 27.4898 10.2020 
1440 27.3876 10.1336 
1500 28.0187 10.1729 
1560 27.7931 10.1295 
1620 27.8451 9.8694 
1680 28.1213 9.7360 

Distance 
(um) FeO MgO 

0 28.4068 9.5600 
60 27.8311 9.9377 
120 27.7169 10.0812 
180 0.1 083 0.0004 
240 28.0234 10.2585 
300 27.6457 10.2281 
380 0.448 1 0.1 ~9 
420 27.5612 10.2185 
480 27.4290 10.5535 
540 27.0995 10.1567 
600 27.7882 10.3771 
660 27.0926 10.8189 
720 27.4724 10.3557 
780 27.2590 10.3792 
840 27.1007 10.1346 
900 27.4267 10.1161 
960 27.7540 10.2193 
1020 27.1933 10.0948 
1080 27.1959 10.1285 
1140 27.7597 10.0549 
1200 27.7092 9.9831 
1260 27.8541 9.9009 
1320 28.3942 9.7732 
1380 29.0304 10.0632 
1440 28.1774 9.7735 
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Distance 
(um) 

0 
60 
120 
180 
240 
300 
360 
420 

FeO MgO 
28.0574 10.3328 
28.0583 10.3932 
27.8099 10.6418 
26.0323 10.2652 
26.6896 10.5179 
27.2323 10.8190 
27.2614 10.7405 
27.1 928 10.7724 

0.9860 
0.8865 
0.8862 
0.9131 
0.9474 
0.8857 
0.8621 
0.8562 
0.9227 
0.8499 
0.8376 

CaO 
0.8513 
0.8805 
0.9294 
0.0001 
0.9242 
0.9522 
0.0720 
0.8654 
0.9022 
0.8566 
0.9482 
0.8666 
0.9246 
0.9626 
0.8527 
0.8682 
0.9257 
0.8863 
0.8776 
0.9128 
0.9070 
0.8971 
0.9520 
0.9379 
0.8251 

CaO 
0.8467 
0.8684 
0.8686 
0.8441 
0.8439 
0.8715 
0.9252 
0.8940 

0.1673 
0.1449 
0.1578 
0.1669 
0.1521 
0.1193 
0.1027 
0.1484 
0.1746 
0.1388 
0.1169 

MnO 
0.1489 
0.1157 
0.1746 
0.0001 
0.1083 
0.1866 
0.0001 
0.1521 
0.1392 
0.1340 
0.1376 
0.1215 
0.1298 
0.1086 
0.1456 
0.1003 
0.1123 
0.1558 
0.1380 
0.1592 
0.1466 
0.0787 
0.2197 
0.1449 
0.1505 

OXIDES 

MnO 
0.1496 
0.1800 
0.1369 
0.0960 
0.1777 
0.1565 
0.1683 
0.1685 

0.0002 22.1 319 38.7032 
0.0002 21 .8685 38.7442 
0.0328 21 .9371 38.7819 
0.0002 21.8077 38.4446 
0.0002 21 .9851 38.7861 
0.0002 21 .9560 38.7146 
0.0002 21 .8892 38.5742 
0.0002 21 .9993 38.6155 
0.0002 21 .8795 38.4294 
0.0002 21 .8390 38.3001 
0.0002 22.0314 38.6131 

0.0002 21 .6523 38.2490 
0.0002 21.8892 38.6886 
0.0002 21 .7774 38.4833 
0.0002 0.0004 0.0003 
0.0002 21 .9287 38.6014 
0.0002 21 .7730 38.4534 
0.0002 0.5420 96.8045 
0.0002 21.7832 38.4983 
0.0002 22.0703 38.9722 
0.0002 21 .7040 38.4582 
0.0002 21 .9823 38.7188 
0.0002 22.6009 39.8665 
0.0318 21 .8798 38.6760 
0.0002 21 .9723 38.6550 
0.0002 21 .6798 37.9733 
0.0002 21.6525 38.1400 
0.0002 22.0803 38.6910 
0.0002 21.6509 38.1732 
0.0002 21 .7782 38.0053 
0.0002 21 .8424 38.6067 
0.0002 21 .9216 38.5000 
0.0002 21 .8925 38.4509 
0.0002 22.0603 38.8605 
0.0002 22.4584 39.4441 
0.0002 22.0394 38.9762 

Tl02 AI203 SI02 
0.0002 21 .9659 39.0067 
0.0002 22.0712 38.9627 
0.0002 22.1302 38.6275 
0.0002 21.4139 38.0477 
0.0002 21 .9482 38.6008 
0.0002 22.1147 38.9512 
0.0002 22.2990 39.2037 
0.0002 22.0579 38.8120 

100.07 
100.12 
99.73 
99.01 

100.39 
99.37 
98.95 
99.81 
99.33 
98.84 
99.46 

Total 
98.87 
99.34 
99.16 
0.11 

99.84 
99.24 
98.00 
99.08 

100.Q7 
98.41 
99.95 

101.37 
99.47 
99.34 
97.89 
98.30 
99.78 
98.15 
98.12 
99.34 
99.17 
99.07 

100.26 
102.08 
99.94 

Total 
100.36 
100.53 
100.22 
96.70 
98.78 

100.15 
100.60 
99.90 

1.7903 1.1679 0.0811 O.Q109 2.0033 2.9724 
1.8122 1.1777 0.0730 0.0094 1.9810 2.9780 
1.8043 1.1418 0.0732 0.0103 1.9926 2.9889 
1.7861 1.1729 0.0759 0.0110 1.9935 2.9819 
1.8090 1.1768 0.0778 0.0099 1.9864 2.9734 
1.7742 1.1735 0.0732 0.0078 1.9970 2.9878 
1.7748 1.1704 0.0716 0.0067 1.9990 2.9890 
1.8052 1.1682 0.0707 0.0097 1.9975 2.9750 
1.7993 1.1688 0.0765 0.0115 1.9962 2.9749 
1.8118 1.1445 O.Q709 0.0091 2.0026 2.9799 
1.8184 1.1220 0.0694 0.0077 2.0076 2.9855 

Fe Mg Ca Mn AI Sl 
1.8533 1.1116 0.0712 0.0098 1.9908 2.9839 
1.7996 1.1453 0.0729 0.0076 1.9946 2.9913 
1. 7967 1.1647 0.0772 0.0115 1.9894 2.9829 

11 .6973 0.0752 0.0186 0.01<42 0.0540 0.0<413 
1.8053 1.1779 0.0763 0.0071 1.9909 2.9736 
1.7906 1.1807 0.0790 0.0122 1.9874 2.9782 
0.0230 0.012<4 0.00<47 0.0000 0.0393 5.9505 
1.7863 1.1804 0.0719 0.0100 1.9896 2.9835 
1.7565 1.2045 0.0740 0.0090 1.9917 2.9842 
1.7646 1.1787 0.0715 0.0088 1.9917 2.9944 
1.7860 1.1887 0.0781 0.0090 1.9911 2.9757 
1.7046 1.2132 0.0699 0.0077 2.00<40 2.9993 
1.7719 1.1904 0.0764 0.0085 1.9888 2.9829 
1.7587 1.1935 0.0796 0.0071 1.9978 2.9822 
1.7766 1.1841 0.0716 0.0097 2.0030 2.9767 
1.7921 1.1781 0.0727 0.0066 1.9938 2.9799 
1.7860 1.1721 0.0763 0.0073 2.0025 2.9773 
1.7779 1.1763 0.0742 0.0103 1.9949 2.9844 
1.7791 1.1809 0.0735 0.0090 2.0078 2.9729 
1.7956 1.1592 0.0756 0.0104 1.9912 2.9862 
1. 7952 1.1527 0.0753 0.0096 2.0015 2.9825 
1.8071 1.1448 0.0746 0.0052 2.0016 2.9829 
1.8238 1.1188 0.0783 0.0143 1.9969 2.9847 
1.8323 1.1320 0.0758 0.0093 1.9977 2.9770 
1.8120 1.1202 0.0680 0.0098 1.9973 2.9970 

CATION NUMBERS 

Fe Mg Ca Mn AI Sl 
1.7963 1.1791 0.0694 0.0097 1.9819 2.9862 
1.7937 1.1842 0.0711 0.0117 1.9884 2.9784 
1.7828 1.2159 0.0713 0.0089 1.9993 2.9610 
1.7186 1.2079 0.0714 0.0064 1.9923 3.0036 
1.7274 1.2133 0.0700 0.0117 2.0019 2.9874 
1.7411 1.2328 0.0714 0.0101 1.9926 2.9778 
1.7340 1.2176 0.0754 0.0108 1.9989 2.9818 
1.7435 1.2310 0.0734 0.0109 1.9931 2.9757 

0.6052 0.3948 0.5869 0.3829 0.0266 0.0036 
0.6061 0.3939 0.5899 0.3833 0.0238 0.0031 
0.6124 0.3876 0.5956 0.3769 0.0242 0.0034 
0.6036 0.3964 0.5864 0.3851 0.0249 0.0036 
0.6059 0.3941 0.5886 0.3829 0.0253 0.0032 
0.6019 0.3981 0.5858 0.3875 0.0242 0.0026 
0.6026 0.3974 0.5870 0.3871 0.0237 0.0022 
0.6071 0.3929 0.5911 0.3825 0.0232 0.0032 
0.6062 0.3938 0.5888 0.3824 0.0250 0.0038 
0.6129 0.3871 0.5967 0.3769 0.0234 0.0030 
0.6184 0.3816 0.6026 0.3718 0.0230 0.0026 

Fe/ Mg/ 
Fe+Mg Fe+Mg 
(B·B') (B·B') XAim XPyp XGrs XSps 

0.6251 0.3749 0.6085 0.3649 0.0234 0.0032 
0.6111 0.3889 0.5948 0.3786 0.0241 0.0025 
0.6067 0.3933 0.5891 0.3819 0.0253 0.0038 
0.9938 0.006<4 0.9909 0.006<4 0.0016 0.0012 
0.6052 0.3948 0.5887 0.3841 0.0249 0.0023 
0.6026 0.3974 0.5847 0.3855 0.0258 0.0040 
0.6<497 0.3503 0.5738 0.3092 0 1172 0.0000 
0.6021 0.3979 0.5859 0.3872 0.0236 0.0033 
0.5932 0.4068 0.5770 0.3957 0.0243 0.0030 
0.5995 0.4005 0.5836 0.3898 0.0236 0.0029 
0.6004 0.3996 0.5833 0.3882 0.0255 0.0029 
0.5842 0.4158 0.5691 0.4050 0.0233 0.0026 
0.5982 0.4018 0.5815 0.3907 0.0251 0.0028 
0.5957 0.4043 0.5787 0.3927 0.0262 0.0023 
0.6001 0.3999 0.5840 0.3893 0.0235 0.0032 
0.6034 0.3966 0.5877 0.3863 0.0238 0.0022 
0.6038 0.3962 0.5872 0.3853 0.0251 0.0024 
0.6018 0.3982 0.5851 0.3871 0.0244 0.0034 
0.6010 0.3990 0.5847 0.3881 0.0242 0.0030 
0.6077 0.3923 0.5905 0.3812 0.0249 0.0034 
0.6090 0.3910 0.5919 0.3801 0.0248 0.0032 
0.6122 0.3878 0.5961 0.3776 0.0246 0.0017 
0.6198 0.3802 0.6009 0.3686 0.0258 0.0047 
0.6181 0.3819 0.6009 0.3712 0.0249 0.0030 
0.6180 0.3820 0.6020 0.3722 0.0226 0.0033 

CHEMICAL COMPOSITION DATA 
Fe/ Mgi 

Fe+Mg Fe+Mg 
(A·A') (A·A') XAim XPyp XGrs XSps 
0.6037 0.3963 0.5881 0.3860 0.0227 0.0032 
0.6023 0.3977 0.5860 0.3869 0.0232 0.0038 
0.5945 0.4055 0.5790 0.3949 0.0232 0.0029 
0.5873 0.4127 0.5720 0.4021 0.0238 0.0021 
0.5874 0.4126 0.5715 0.4014 0.0232 0.0039 
0.5855 0.4145 0.5698 0.4035 0.0234 0.0033 
0.5875 0.4125 0.5708 0.4008 0.0248 0.0036 
0.5861 0.4139 0.5700 0.4024 0.0240 0.0036 



1> ...... 
0 

480 
540 
600 
660 
720 
780 
840 
900 
960 
1020 
1080 
1140 
1200 
1260 
1320 
1380 
1440 
1500 
1560 
1620 
1680 
1740 
1800 
1860 
1920 
1980 

Dlatance 
(um) 

0 
61 
122 
183 
244 
305 
366 
427 
488 
549 
610 
671 
732 
793 
854 
915 
976 
1037 
1098 
1159 
1220 
1281 

27.1725 10.8220 
27.4196 10.6054 
27.4732 10.6172 
28.2360 10.5211 
27.5563 10.4868 
27.7134 10.6017 
27.4285 10.5771 
27.2923 10.8118 
27.1496 10.8871 
27.0072 10.8619 
26.9942 10.9102 
27.5904 10.9301 
26.8143 10.6762 
26.8968 10.9257 
27.1159 10.9298 
27.2198 10.6769 
26.7700 10.5701 
27.2439 10.6970 
27.7081 10.6040 
27.7416 10.8114 
27.0645 10.6799 
27.2458 10.8171 
27.5866 10.5836 
27.7027 1 0.2529 
27.3446 10.6416 
27.3603 10.2907 

FaO MgO 
27.7507 10.4479 
27.8612 10.5166 
28.1019 10.0360 
28.4608 9.9638 
27.2968 10.8948 
27.1277 10.6857 
27.0947 10.9099 
27.0836 10.7504 
27.3166 10.9917 
27.3951 10.8628 
27.3376 10.8825 
27.1428 10.7838 
27.0870 10.9273 
27.0661 10.9878 
27.2128 10.7519 
27.1580 10.7691 
27.1096 10.7729 
27.1734 10.9999 
27.2172 10.6888 
27.5350 10.6316 
28.0544 10.5977 
27.6466 10.3115 

0.8778 
0.8777 
0.8827 
0.9395 
0.8799 
0.9298 
0.8964 
0.9433 
0.9721 
0.8725 
0.9498 
0.9522 
0.9484 
0.8785 
0.9135 
0.9075 
0.8733 
0.8439 
0.9096 
0.8831 
0.8378 
0.8908 
0.8830 
0.8820 
0.8783 
0.8806 

CaO 
0.8796 
0.8974 
0.8034 
0.8662 
0.8704 
0.8948 
0.9066 
0.9004 
0.8855 
0.9932 
0.9079 
0.8595 
0.8953 
0.9541 
0.8942 
0.8541 
0.9060 
0.8975 
0.8291 
0.8967 
0.9424 
0.8490 

0.1811 
0.1806 
0.1178 
0.2357 
0.1866 
0.1585 
0.2154 
0.1060 
0.1512 
0.1341 
0.0920 
0.1399 
0.1514 
0.1482 
0.1650 
0.1653 
0.0798 
0.1058 
0.1576 
0.1779 
0.1612 
0.1367 
0.1487 
0.1949 
0.1866 
0.1621 

MnO 
0.1273 
0.1519 
0.1886 
0.2112 
0.1066 
0.1295 
0.1695 
0.1460 
0.1287 
0.1464 
0.1662 
0.1017 
0.1307 
0.1526 
0.1725 
0.1346 
0.1153 
0.1494 
0.1209 
0.1520 
0.1362 
0.1189 

c::=J -indicates poor results 

0.0002 22.1333 38.8505 
0.0002 22.1298 38.7829 
0.0002 22.1756 38.8619 
0.0002 22.2902 39.2780 
0.0002 22.2817 39.0059 
0.0002 22.2782 38.9622 
0.0002 21.5400 38.1005 
0.0002 22.0903 38.8422 
0.0002 22.2512 38.8836 
0.0002 22.0026 38.8365 
0.0351 22.0568 38.8551 
0.0002 22.1957 39.0735 
0.0002 22.0449 38.6289 
0.0002 22.1730 38.9316 
0.0002 22.1734 38.8937 
0.0002 22.2157 39.1483 
0.0002 21 .5938 38.4096 
0.0002 21 .8553 38.3733 
0.0278 22.0134 38.9623 
0.0002 22.2404 39.1763 
0.0002 22.0313 38.8406 
0.0002 22.1081 38.8255 
0.0002 22.0705 38.8564 
0.0002 22.0752 38.9213 
0.0002 21 .8022 38.5140 
0.0002 22.0544 39.1465 

0.0002 22.0626 38.9157 
0.0002 22.1232 38.8769 
0.0002 21 .9436 38.4558 
0.0002 21.8584 38.5510 
0.0002 22.1831 39.0023 
0.0002 21 .9372 38.7739 
0.0002 22.0530 39.0505 
0.0002 22.0146 38.9985 
0.0002 22.1310 38.7255 
0.0002 22.2548 39.0356 
0.0002 22.0706 38.6996 
0.0002 21 .9263 38.8343 
0.0002 22.0025 38.9412 
0.0002 22.2155 38.9348 
0.0002 21.8523 38.6323 
0.0002 21 .8941 38.8663 
0.0002 21 .9753 39.0614 
0.0002 22.0397 39.0400 
0.0002 21 .7945 38.7228 
0.0002 21 .9226 38.8821 
0.0002 21 .8872 38.9883 
0.0002 21 .7028 38.4701 

100.04 
100.00 
100.13 
101 .50 
100.40 
100.64 
98.76 

100.09 
100.30 
99.72 
99.89 

100.88 
99.26 
99.95 

100.19 
100.33 
98.30 
99.12 

100.38 
101 .03 
99.62 

100.02 
100.13 
100.03 
99.37 
99.89 

Total 
100.18 
100.43 
99.53 
99.91 

100.35 
99.55 

100.18 
99.89 

100.18 
100.69 
100.06 
99.65 
99.98 

100.31 
99.52 
99.68 
99.94 

100.30 
99.37 

100.02 
100.61 
99.10 

1.7393 1.2346 0.0720 0.0117 1.9966 2.9737 
1. 7580 1.2119 0.0721 0.0117 1.9996 2.9734 
1.7586 1.2113 0.0724 0.0076 2.0005 2.9746 
1.7882 1.1875 0.0762 0.0151 1.9894 2.9744 
1.7594 1.1933 0.0720 0.0121 2.0049 2.9779 
1.7667 1.2046 0.0759 0.0102 2.0015 2.9701 
1.7859 1.2275 0.0748 0.0142 1.9765 2.9664 
1.7470 1.2335 0.0774 0.0069 1.9928 2.9731 
1.7331 1.2387 0.0795 0.0098 2.0018 2.9681 
1. 7330 1.2422 0.0717 0.0087 1.9897 2.9799 
1.7289 1.2454 0.0779 0.0060 1.9909 2.9757 
1. 7536 1.2382 0.0775 0.0090 1.9882 2.9697 
1.7282 1.2263 0.0783 0.0099 2.0023 2.9769 
1.7203 1.2454 0.0720 0.0096 1.9986 2.9774 
1.7324 1.2446 0.0748 0.0107 1.9965 2.9714 
1.7359 1.2136 0.0741 0.0107 1.9966 2.9854 
1.7429 1.2265 0.0728 0.0053 1.9813 2.9902 
1.7627 1.2335 0.0700 0.0069 1.9928 2.9688 
1.7715 1.2083 0.0745 0.0102 1.9834 2.9786 
1.7611 1.2233 0.0718 0.0114 1.9897 2.9739 
1.7387 1.2228 0.0689 0.0105 1.9946 2.9836 
1.7447 1.2346 0.0731 0.0089 1.9952 2.9730 
1.7673 1.2084 0.0725 0.0096 1.9926 2.9766 
1.7772 1.1723 0.0725 0.0127 1.9958 2.9858 
1.7659 1.2248 0.0727 0.0122 1.9842 2.9741 
1.7535 1.1755 0.0723 O.D105 1.9920 3.0001 

Fe Mg Ca Mn AI 51 
1.7776 1.1928 0.0722 0.0083 1.9917 2.9808 
1.7817 1.1986 0.0735 0.0098 1.9938 2.9728 
1.8173 1.1567 0.0666 0.0124 1.9998 2.9737 
1.8367 1.1460 0.0716 0.0138 1.9880 2.9749 
1.7414 1.2387 0.0711 0.0069 1.9943 2.9752 
1.7450 1.2251 0.0737 0.0084 1.9887 2.9824 
1.7305 1.2419 0.0742 0.0110 1.9850 2.9824 
1.7348 1.2273 0.0739 0.0095 1.9872 2.9869 
1.7476 1.2533 0.0726 0.0083 1.9954 2.9625 
1.7433 1.2320 0.0810 0.0094 1.9958 2.9703 
1.7517 1.2428 0.0745 O.D108 1.9931 2.9652 
1.7437 1.2347 0.0707 0.0066 1.9851 2.9832 
1.7337 1.2466 0.0734 0.0085 1.9847 2.9804 
1.7267 1.2493 0.0780 0.0099 1.9973 2.9701 
1.7530 1.2345 0.0738 0.0113 1.9839 2.9758 
1.7445 1.2329 0.0703 0.0088 1.9820 2.9853 
1.7354 1.2291 0.0743 0.0075 1.9825 2.9900 
1.7341 1.2512 0.0734 0.0097 1.9822 2.9792 
1.7547 1.2282 0.0685 0.0079 1.9802 2.9852 
1.7659 1.2152 0.0737 0.0099 1.9813 2.9817 
1. 7926 1.2069 0.0771 0.0088 1.9710 2.9790 
1.7922 1.1914 0.0705 0.0078 1.9827 2.9820 

0.5849 
0.5919 
0.5921 
0.6009 
0.5959 
0.5946 
0.5927 
0.5861 
0.5832 
0.5825 
0.5813 
0.5861 
0.5849 
0.5801 
0.5819 
0.5885 
0.5870 
0.5883 
0.5945 
0.5901 
0.5871 
0.5856 
0.5939 
0.6025 
0.5905 
0.5987 

Fe/ 
Fe+Mg 
(B·B') 
0.5984 
0.5978 
0.6111 
0.6158 
0.5843 
0.5875 
0.5822 
0.5857 
0.5824 
0.5859 
0.5850 
0.5854 
0.5817 
0.5802 
0.5868 
0.5859 
0.5854 
0.5809 
0.5883 
0.5924 
0.5976 
0.6007 

0.4151 0.5688 0.4038 0.0235 0.0038 
0.4081 0.5757 0.3969 0.0236 0.0038 
0.4079 0.5766 0.3972 0.0237 0.0025 
0.3991 0.5830 0.3872 0.0248 0.0049 
0.4041 0.5794 0.3929 0.0237 0.0040 
0.4054 0.5778 0.3940 0.0248 0.0033 
0.4073 0.5757 0.3957 0.0241 0.0046 
0.4139 0.5700 0.4025 0.0253 0.0023 
0.4168 0.5662 0.4047 0.0260 0.0032 
0.4175 0.5672 0.4065 0.0235 0.0028 
0.4187 0.5653 0.4072 0.0255 0.0020 
0.4139 0.5697 0.4022 0.0252 0.0029 
0.4151 0.5680 0.4030 0.0257 0.0033 
0.4199 0.5645 0.4087 0.0236 0.0032 
0.4181 0.5657 0.4064 0.0244 0.0035 
0.4115 0.5721 0.4000 0.0244 0.0035 
0.4130 0.5719 0.4025 0.0239 0.0017 
0.4117 0.5736 0.4014 0.0228 0.0022 
0.4055 0.5781 0.3943 0.0243 0.0033 
0.4099 0.5741 0.3988 0.0234 0.0037 
0.4129 0.5718 0.4021 0.0227 0.0035 
0.4144 0.5699 0.4033 0.0239 0.0029 
0.4061 0.5780 0.3952 0.0237 0.0031 
0.3975 0.5856 0.3863 0.0239 0.0042 
0.4095 0.5742 0.3982 0.0236 0.0040 
0.4013 0.5822 0.3903 0.0240 0.0035 
Mg/ 

Fe+Mg 
(B·B') XAim XPyp XGrs XSps 
0.4016 0.5826 0.3910 0.0237 0.0027 
0.4022 0.5816 0.3912 0.0240 0.0032 
0.3889 0.5953 0.3789 0.0218 0.0041 
0.3842 0.5986 0.3735 0.0233 0.0045 
0.4157 0.5694 0.4051 0.0232 0.0023 
0.4125 0.5717 0.4014 0.0241 0.0028 
0.4178 0.5660 0.4062 0.0243 0.0036 
0.4143 0.5696 0.4030 0.0243 0.0031 
0.4176 0.5671 0.4067 0.0236 0.0027 
0.4141 0.5686 0.4019 0.0264 0.0031 
0.4150 0.5688 0.4035 0.0242 0.0035 
0.4146 0.5706 0.4041 0.0231 0.0022 
0.4183 0.5662 0.4071 0.0240 0.0028 
0.4198 0.5636 0.4077 0.0255 0.0032 
0.4132 0.5705 0.4018 0.0240 0.0037 
0.4141 0.5708 0.4034 0.0230 0.0029 
0.4146 0.5697 0.4035 0.0244 0.0025 
0.4191 0.5651 0.4078 0.0239 0.0032 
0.4117 0.5736 0.4015 0.0224 0.0026 
0.4076 0.5762 0.3965 0.0240 0.0032 
0.4024 0.5810 0.3912 0.0250 0.0029 
0.3993 0.5853 0.3891 0.0230 0.0025 



BIOTITE ADJACENT TO GARNET 

Label 
146111 -2 

146111-3 

146if1-4-1 
146111-4-2 
146/11-4-3 
146111-4-4 
1461#1-4-5 

146/#7-3bl1 
1461~-3bt2 
146il7-3bl3 

146/#7-4bt1 
146if7-4bt2 
146117-4bt:l 
146i#7-4bl4 

146i#9·3bl 

146i#9-5bl1 
146/f9-5bt2 
1461'9-5bl3 
146/#9-5bl4 
146/#9-5bl5 

146kf21-1bt1 
1461<*21-1bt2 
146kf21-1bt:l 

OXIDE 

KaO Na10 CaO MgO FeO MnO TIOa AJzO, SIOz F- Cl- Total 
9.4093 0.7375 0.1567 17.1028 10.4696 0.1124 4.4767 14.8160 38.8128 1.7457 0.0906 97.73 

5.2861 0.2233 0.0604 16.3319 13.9935 0.0578 2.6208 16.5292 33 6893 1.3144 0.0625 90.17 

90696 0.3863 0.124515.9298 8,9689 00658 4.3314 14.8425 366037 18486 0.1045 92.06 
9.5774 0.8721 0.3079 17.2296 9.8696 0.2386 4.9213 14.4535 36.2295 1.8275 0.1022 97.43 
9.6446 0.5733 01172 17.4722 9.5931 0.0590 4.7826 14.3357 38.3895 2.1648 0.0934 97.23 
9.3657 0.4428 0 0524 17.7414 9.5954 0.0669 4.5465 14.5579 39.2248 2.2647 0 0921 97.97 
9.5798 0.4252 0.0415 16.7304 9.W3 0.0569 4.6912 13.8979 37.3629 2.1587 0.0975 94.48 

9.7421 0.9452 0.0935 19.0827 9.2720 0.0874 4.4729 15.6376 40.0676 2.0662 0.0756 101 .54 
97612 0.7430 0.138618.0173 9.4610 0.0775 4.4954 14.9215 387680 2.1317 0.0679 98.58 
9.6726 0.9338 0.2089 17.9989 10.0837 0.1836 4.6106 14.7458 38.5403 2.5601 0.0997 9962 

9.9814 0.9267 0.2189 19.0537 9 5825 0.1210 4.6396 15.5258 40.4138 2.2882 0.0906 102.82 
9.6151 0.5134 0.1676 16.6972 9.3360 0.1040 4.3251 14.5592 37.7140 2.5520 0.0780 95.66 
9 3902 0.2380 0.1156 17.5735 9.4147 0.0001 3.8783 14.9436 39.1455 2.3530 0.0651 97.12 
9.8883 0.6259 0.0969 18.5967 9.3701 0.0537 4.3108 15.1564 39.7740 2.3226 0.0615 100.26 

9.7951 0.7637 0.0948 21 .4349 8.1149 0.0520 2.2532 15.5365 41 .9150 2.7588 0.0662 102.79 

96365 1.1904 02457 18.0990 9.9953 0.1578 4.9963 16.4675 40.4310 2.3375 0.0956 103.67 
9.9528 1.0386 0.3269 18.0302 10.2690 0.1166 5.5813 15.3450 39.5196 2.5011 0.0947 102.78 
9.4656 0.4356 0.1901 16.7623 9.5669 0.0710 4.7184 14.1947 37.3678 2.5748 0.1042 95.47 
9.4623 0.6718 0.1443 18.3567 10.2168 0.0820 5.0170 15.4149 39.9754 2.4055 0.0842 101 .99 
9.6373 0.8639 0.2090 17.9615 9.7031 0.1568 4.8246 15.9223 39.9155 2.2981 0.0884 10160 

9.4872 0.8046 0.2977 16.8237 10.5454 0.1846 4.7545 14.5143 37.2878 1.9701 0.0663 96.74 
8.6407 0.0003 0.0723 15.8822 10.6703 0.0001 4.2293 14.0207 36.4336 1.9862 0.0934 92.03 
9.5953 0.7414 0.3948 17.8792 10.0584 01060 4.5378 15.3057 36.8797 1.9113 0.0699 99.48 

CATION NUMBER 

1.7771 0.2117 0.0249 3.7744 1.2964 0.0141 0.4964 0.2972 2.2533 2.5505 5.7467 0.8175 0.0227 

1.0736 0 0689 0.0103 3.8783 1.8635 0.0078 0.3138 0.4868 2.6353 3.1021 5.3647 0.6620 0.0189 

1.8159 0.1115 0.0209 3.7266 1.1773 0.0087 0.5112 0.4537 2.2549 2.7086 5.7451 0.9177 0.0278 
1.8199 0.2519 0.0491 3.8254 1.2046 0.0301 0.5513 0.2322 2.3053 2.5375 5.6947 0.8609 0.0258 
1.8443 0.1866 0.0168 3.9039 1.2026 0.0075 0.5391 0.2874 2.2453 2.5327 5.7547 1.0262 0.0237 
1.7754 0.1273 0.0083 3.9213 1.1899 0 0084 0.5070 0.3607 2.1835 2.5442 5 8165 1.0621 0.0231 
1.8893 0.1275 0.0069 3.8552 1.2207 00075 0.5454 0.3086 2.2237 2.5323 5.7763 1.0555 0.0255 

1.7676 0.2606 0.0142 4.0455 1.1029 0.0105 0.4784 0.3202 2.3011 2.6213 5.6989 0.9295 0.0182 
1.8364 0.2125 0.0216 3.9606 1.1669 0.0097 0.4966 0.3111 2.2825 2.5936 5.7175 09943 0.0170 
1.8261 0.2680 0.0331 3.9705 1.2481 0.0205 0.5131 0.2761 2 2960 2.5721 5.7040 1.1983 0.0250 

1.8002 0.2540 0.0332 4.0153 1.1330 0.0145 0.4933 0.3010 2.2861 2.5871 5 7139 1.0142 0.0217 
1.8848 0.1530 0.0276 3.8245 1.1998 0.0135 0.4996 0.4324 2.2044 2.6388 5.7956 1.2403 0.0203 
1.7905 0.0690 0.0185 3.9154 1.1769 0.0000 0.4360 0.4841 2.1485 2.6326 5.8515 1.1124 0.0165 
1.8290 0.1760 0.0154 4.0193 1.1363 0.0066 0.4701 0,3576 2.2326 2.5902 5.7674 1.0652 0.0151 

1.7606 0.2067 0.0143 4.5018 0.9562 0.0062 0.2388 0.4661 2.0940 2.5801 5.9060 1.2294 0.0163 

1.7249 0.3239 0.0389 3.7655 1.1730 0.0187 0.5272 0.4002 2.3265 2.7267 5 6735 1.0374 0.0227 
1.8162 0.2881 0.0501 3.8444 1.2285 0.0141 0.6004 0.2404 2.3467 2.5871 5.6533 1.1316 0.0230 
1.8640 0.1304 0.0314 3 8568 1.2351 0.0093 0.5477 0.3541 2.2264 2.5825 5.7716 1.2571 0.0273 
1.7257 0.2417 0.0221 3.9117 1.2215 0.0075 0.5394 0.3125 2.2646 2.5973 5.7152 1.0877 0.0156 
1.7568 0.2452 0.0320 38302 1.1609 0.0190 0.5191 0.3953 2.2694 2.6847 5.7106 1.0398 0.0214 

1.8314 0.2361 0.0483 3.7947 1.3345 0.0211 0.5411 0.2312 2.3574 2.5886 5.6426 0.9429 0.0221 
1.7448 0.0001 0.0123 3.7473 1.4126 0.0000 0.5035 0.3830 2.2327 2.6157 5.7873 0.9944 0.0251 
1.7836 0.2095 0.0816 3.8833 1.2258 0.0131 0.4973 0.2942 2.3344 2.6286 5.6656 0 6608 0.0173 

CHEMICAL 
COMPOSITION 
iMal ifil 

Mg+Fe Fe+Mg 
0.7443 0.2557 

0.6753 0.3247 

0.7599 0.2401 
0. 7605 0.2395 
0.7645 0.2355 
0. 7672 0.2328 
0.7595 0.2405 

0.7858 0.2142 
0. 7724 0.2276 
0. 7608 0.2392 

0. 7799 0.2201 
0.7612 0.2388 
0.7689 0.2311 
0.7796 0.2204 

0.8248 0.1752 

0.7634 0.2368 
0 7578 0.2422 
0.7574 0.2426 
0.7620 0.2380 
0.7674 0.2326 

0.7398 0.2602 
0.7262 0.2738 
0.7601 0.2399 

146kf21-2bt1 57036 0.4540 0.4837 88787 7.0214 01812 1.409219.9027 37.6952 0.9967 0.0491 82.78 1.1863 0.1435 0.0645 2.1577 0.9574 0.0250 0.1726 1.9705 1.8540 3.8245 6.1460 0.5139 0.0136 0.6927 0.3073 

146kf21-3bt1 9.9451 1.0421 0.1388 19.3095 9.7836 0.1055 4.9166 16.1083 41 .0311 1.9551 0.0644 104.40 
146kf21-3bt2 9.6886 0.8250 0 2378 17.9488 9.8102 0.1121 4.7823 14.9869 38 8677 2.1149 0 0920 99.27 
146k#21-3bl3 8.8670 1.0259 0.3159 18.2952 9.5215 0.0979 4.7810 18.9032 40.4096 1.9104 0.0846 102.21 

BIOTITE INCLUSIONS 

OXIDE 

label K,O Na,O CaO MgO feO MnO TIO, Al10 1 ~02 F- Cl· Total 
146jl7-21ncl1 10.0159 1.0534 0.3737 17.7257 10.4874 0.1275 5.7969 15.3665 36.7789 2.1574 0.0754 101 .98 
146/#7-21ncl2 9.8675 1.0007 0.2239 17.5206 10.0866 0.1624 5.7761 15.3627 36.7561 2.2740 00642 101 .10 

1461'9-11ncl1 
146/#9-11ncl2 
146/#9-1 incl3 

146itl9-2incl1 
146j#9-2incl2 
146/#9-2incl3 

9.6423 0.9940 0.2446 19.0691 8.9735 0.1563 5.2256 16.2559 40.8428 2.0627 0.1249 103 59 
9.5564 0.8469 0.1322 16.4595 9.1487 0.0324 5.2047 15.7179 39.5654 2.3792 0.1143 100.96 
9.5940 0.6149 0.1399 17.5175 9.1397 0.0675 4.6736 15.9545 39.4992 2.3304 0.0922 99.82 

9.5625 0.7093 0.2258 17.0323 9.9693 0.1535 5.7977 14.7712 38.2141 2.4958 0.0623 99.03 
95974 0.6997 0.174917.6947 9.1371 0.1300 5.1314 14.5725 38.0239 2.1525 0.1552 97.47 
9.8730 1.0032 0.2140 18.7051 9.1541 0.1170 5.1281 15.3122 39.4134 2.3334 0.1012 101 .35 

148kf21-11ncl1 9.7555 1.0942 0.2383 18.9862 9.5499 0.1852 5.6572 15.9270 39.6505 1.8422 01591 103.05 
146k#21-11ncl2 9.3960 0.5523 0.0633 17.3906 9.2605 0.0620 5.4601 15.3075 37.8631 1.6473 0.1726 97.40 
146kf21-11ncl3 9 4126 0.9359 0.2267 16.8223 9.5235 0.1579 5.6560 14.6775 37.3553 1.9586 0.1449 96.87 

BIOTITE IN MATRIX 

Label 
146/#1 -1 
146/#1 -1-2 
146111-1-3 

1461101-5 

1461#5-1-1 
1461#5-1 -2 

1461#9-4bt1 
146j#9-4bt2 
146/#9-4bl3 

146kf21-4bt1 

OXIDE 

KzO NaaO CaO MgO FeO MnO TIO, Al10 1 SIO, f . Cl- Total 
10.0277 0.9128 0.0902 17.9870 10.2907 0.0927 5.3254 15.6506 39.9775 1.9892 0.0844 102.43 
7.6838 0.7455 0.1746 16.6062 10.2135 0.1109 4.3192 15.8313 37.8760 2.3336 0.0664 98.16 
91914 1.0685 0.3153 16.8672 9.9121 0.1686 4 6994 14.4278 37.5260 1.8324 0.0927 96.30 

9.7488 09907 01259 17.9832 10.1965 0.1526 5.2221 15.8951 39.8626 1.5557 0.1266 101 .46 

6.4033 0.5797 0.1531 17.7980 12.0666 0.1020 3.3740 16.7160 37.9783 1.2629 0.0554 96.49 
100902 1.0314 0.2289 17.697010.2642 0.1866 5.2251 15.4604 39.1701 1.9600 00910 101.40 

9.7048 0.6353 0.0001 17.3301 10.1689 0.0693 4.4267 14.6214 39.3157 2.3598 0.0923 98.74 
9.8209 0.5821 0.1179 17.3849 10.0945 0.0809 4.5826 14.2965 38.6752 2.4888 0.1242 98.23 
9 6447 0.4748 0.1162 16.4497 9.9105 0.0616 4.2952 13.6300 37.3162 2.9854 0.1174 95.00 

9.9563 08358 0.1324181972 93856 0.1080 5.417717.9129 39.8866 1.0463 00755 102.95 

1.7516 0.2790 0.0205 3.9737 1.1297 0.0123 0.5105 0.2663 2.3349 2.6212 5.6651 0.8537 0.0151 
1.8112 0.2344 0.0373 3.9207 1.1776 0.0139 0.5270 0.2848 2.3039 2 5885 5.6961 0.9803 0.0228 
1.5839 0.2785 0.0474 3.8187 1.1151 0.0116 0.5035 0.4485 2.3412 2.7897 5.6586 0.6461 0.0201 

CATION NUMBER 

1.8358 0.2935 0.0575 3.7962 1.2602 0.0155 0.8266 0.1775 2.4261 2.6056 5.5719 0.9604 0.0163 
1.6230 0.2610 0.0347 3 7622 1.2217 0.0199 0.6293 0.2353 2.3670 2.6223 5.6130 1.0416 0.0156 

1.7086 0.2676 0.0364 3 9466 1.0426 0.0166 0.5460 0.3360 2.3257 2.6617 5.6743 0.9063 0.0294 
1.7535 0.1804 0.0204 3.9578 1.1005 0.0039 0.5630 0.3560 2.3087 2.6647 5.6913 1.0824 0.0279 
1.7778 0.1732 0.0218 3.7929 1.1103 0.0083 0.5324 0.4694 2.2621 2.7315 5.7379 1.0707 00227 

1.8115 0.2042 0.0359 3.7700 1.2406 0 0193 0.6475 0.2602 2.3251 2.5853 5.6749 1.1722 0.0207 
1.8309 0.2029 0.0280 3.9443 1.1428 0.0165 0.5771 0.2551 2.3134 2.5685 5.6866 1.0181 0.0393 
1.8113 0.2797 0.0330 4 0098 1.1010 0.0142 0.5546 0.2640 2.3315 2.5955 5.8685 1.0614 0.0247 

1.7449 0.2975 0.0358 3.9684 1.1196 0.0220 0.5965 0.1916 2.4404 2.6320 5.5596 0 6169 0.0378 
1.7785 0 1589 0.0101 3 8463 1.1516 0.0078 0.6093 0.2953 2.3817 2.6770 5.6163 0.8669 0.0435 
1.8060 0.2729 0.0365 3.7713 1.1979 0.0201 0.6397 0.2203 2.3815 2.6018 5.6185 0.9317 0.0369 

CATION NUMBER 

1.8122 0.2507 0.0137 3.7982 1.2192 0.0111 0.5674 0.2789 2.3363 2.8132 5.8637 0.8913 0.0203 
1.4476 0.2135 0.0276 4.1397 1.2614 0.0139 0.4797 0.3492 2.4063 2.7555 5.5937 1.0900 0.0166 
1.7696 0.3127 0.0510 3.7945 1.2511 0.0216 0.5581 0.2305 2.3359 2.5664 5.6641 0.8747 0.0237 

1.7636 0.2724 0.0191 3.8012 1 2093 0.0163 0.5589 0.2479 2.3753 2.6232 5.6247 0.6977 O.Q305 

1.1976 0.1848 0.0240 3.8894 1.4795 0.0127 0.3720 0.4565 2.4319 2.8884 5.5681 0.5856 00138 
1.8469 0.2673 0.0352 3.7690 1.2330 0.0227 0.5844 0.2440 2.3734 2.6174 5.6266 0.6904 0.0222 

1.8335 0.1824 0.0000 3.8256 1.2620 0.0087 0.4930 0.3750 2.1772 2 5522 5.8228 1.1053 0.0232 
1.8770 0.1633 0.0189 3.8824 1.2649 0.0103 0.5163 0.3192 2.2053 2.5245 5.7947 1.1793 0,0315 
1.9339 0.1447 0.0196 3 8539 1.3027 0.0082 0.5077 0.3905 2.1345 2 5250 5.8655 1.4841 0.0313 

1.7437 02224 0.0195 3.7239 1.0777 0.0126 0.5594 0.3749 2.5237 2 8986 5.4763 0.4543 0.0176 

0.7786 0.2214 
0.7690 0.2310 
0. 77 40 0.2260 

CHEMICAL 
COMPOSIT10N 
iMg/ Xfil 

Mg+Fe Fe+Mg 
0.7508 0.2492 
0.7559 0.2441 

0.7911 0.2089 
0.7824 0.2176 
0.7736 0.2264 

0.7524 0.2476 
0.7754 0.2246 
0.7846 0.2164 

0 7799 0.2201 
0. 7696 0.2304 
0.7589 0.2411 

CHEMICAL 
COMPOSITION 
XMiil Xfil 

Mg+Fe Fe+Mg 
0.7570 0.2430 
0.7665 0.2335 
0. 7520 0.2480 

0.7586 0.2414 

0. 7244 0 2756 
0.7545 0 2455 

0 7519 0.2481 
0.7543 0.2457 
0 7474 0.2526 

0 7756 0.2244 



PLAGIOCLASE ADJACENT TO GARNET 

OXIDE CATION NUMBER MINERAL COMPOSITION 
Label CaO Na20 K20 FeO AI203 Si02 Total Ca Na K Fe AI Si XAn XAb X Or 

#7-1 pl1 6.1880 7.9330 0.2148 0.0447 24.7410 59.7241 98.85 0.2985 0.6925 0.0123 0.0015 1.3128 2.6888 0.2975 0.6902 0.0123 
#7-1pl2 6.3941 8.0168 0.2449 0.0657 25.6820 59.9788 100.38 0.3041 0.6900 0.0139 0.0022 1.3437 2.6626 0.3017 0.6845 0.0138 
#7-1pl3 6.1722 7.8188 0.2923 0.0208 25 .5108 60.3043 100.12 0.2937 0.6733 0.0166 0.0007 1.3355 2.6785 0.2986 0.6845 0.0169 
#7-1pl4 6.2949 7.9700 0.2345 0.0824 25.0738 60.0218 99.68 0.3013 0.6903 0.0134 0.0028 1.3201 2.6813 0.2998 0.6869 0.0133 

#7-2pl1 6.2711 7.9781 0.1948 0.1337 25.2824 60.2675 100.13 0.2987 0.6876 0.0110 0.0045 1.3246 2.6792 0.2995 0.6895 0.0110 
#7-2pl2 6.2047 7.8309 0.2195 0.0002 25.4268 60.3021 99.98 0.2956 0.6750 0.0125 0.0000 1.3324 2.6811 0.3007 0.6866 0.0127 
#7-2pl3 6.2251 7.8433 0.2351 0.0480 25.4622 60.1708 99.98 0.2967 0.6765 0.0133 0.0016 1.3350 2.6768 0.3008 0.6858 0.0135 
#7-2pl4 6.3881 7.7741 0.1910 0.0034 25.2896 60.1242 99.77 0.3051 0.6719 0.0109 0.0001 1.3287 2.6802 0.3088 0.6801 0.0110 
#7-2pl5 6.2545 7.8777 0.2401 0.0483 24.8711 60.5414 99.83 0.2985 0.6804 0.0136 0.0016 1.3057 2.6968 0.3008 0.6855 0.0137 

#9-1 pl1 6.0315 7.9493 0.1611 0.0002 25.1492 59.7906 99.08 0.2899 0.6915 0.0092 0.0000 1.3298 2.6825 0.2927 0.6981 0.0093 
#9-1 pl2 6.2258 8.0723 0.1771 0.0002 25.5033 60.5469 100.53 0.2952 0.6926 0.0100 0.0000 1.3301 2.6792 0.2959 0.6941 0.0100 
#9-1pl3 6.3247 8.0894 0.2384 0.0002 25.0644 60.8376 100.55 0.2999 0.6942 0.0135 0.0000 1.3074 2.6926 0.2976 0.6890 0.0134 
#9-1pl4 6.2299 7.9182 0.1880 0.0002 25.4987 60.0554 99.89 0.2972 0.6836 0.0107 0.0000 1.3382 2.6742 0.2997 0.6895 0.0108 
#9-1pl5 6.0969 7.9167 0.1577 0.0069 25.6269 60.4531 100.26 0.2895 0.6802 0.0089 0.0002 1.3384 2.6790 0.2958 0.6951 0.0091 
#9-1pl6 6.3135 8.1454 0.1511 0.0726 25.2024 60.7316 100.62 0.2992 0.6986 0.0085 0.0024 1.3139 2.6864 0.2973 0.6942 0.0084 
#9-1pl7 6.1267 7.6781 0.2072 0.1034 25.1009 60.1700 99.39 0.2934 0.6654 0.0118 0.0035 1.3224 2.6896 0.3023 0.6856 0.0122 
#9-1pl8 6.3042 7.9034 0.1902 0.0002 25.1510 60.3787 99.93 0.3006 0.6820 0.0108 0.0000 1.3192 2.6871 0.3026 0.6865 0.0109 

)> #9-1 pl9 6 2586 7.9073 0.2381 0.0002 24.8164 60.8454 100.07 0.2979 0.6811 0.0135 0.0000 1.2993 2.7030 0.3002 0.6862 0.0136 
I #9-1pl10 6.1778 8.0749 0.1465 0.0002 25.3071 60.9382 100.64 0.2923 0.6914 0.0083 0.0000 1.3171 2.6911 0.2947 0.6970 0.0084 ....... 

1\.) 

#21-1pl1 6.1784 7.7516 0.1903 0.1246 24.3011 59.1185 97.66 0.3016 0.6847 0.0111 0.0043 1.3049 2.6934 0.3024 0.6865 0.0111 
#21 -1pl2 5.9961 8.0883 0.1724 0.0700 24 .8934 59.5331 98.75 0.2895 0.7067 0.0099 0.0024 1.3221 2.6828 0.2877 0.7024 0.0098 
#21 -1pl3 5.8418 8.0170 0.1772 0.0173 24.3422 58.5402 96.94 0.2873 0.7135 0.0104 0.0006 1.3169 2.6872 0.2841 0.7056 0.0103 

PLAGIOCLASE IN MATRIX 

OXIDE CATION NUMBER MINERAL COMPOSITION 

Label CaO Na20 K20 FeO AI203 Si02 Total Ca Na K Fe AI Si XAn XAb X Or 
146j_1 mtrx1 6.2888 7.9729 0.1996 0.0002 25.2722 60.3641 100.10 0.2995 0.6870 0.0113 0.0000 1.3238 2.6828 0.3002 0.6885 0.0113 
146j_1 mtrx2 6.2965 8.2175 0.2180 0.0002 25.3686 60.8199 100.92 0.2976 0.7029 0.0123 0.0000 1.3190 2.6831 0.2938 0.6940 0.0121 
146j_ 1 mtrx3 6.1668 7.7973 0.2003 0.0587 25.6466 60.6944 100.56 0.2919 0.6679 0.0113 0.0020 1.3353 2.6813 0.3006 0.6878 0.0116 
146j_1 mtrx4 6.3347 8.0717 0.1982 0.0002 25.2134 60.4136 100.23 0.3014 0.6950 0.0112 0.0000 1.3197 2.6830 0.2991 0.6898 0.0111 
146j_1 mtrx5 6.1337 8.2124 0.2141 0.0416 25.5088 60.6416 100.75 0.2903 0.7034 0.0121 0.0014 1.3281 2.6789 0.2886 0.6993 0.0120 
146j_1 mtrx6 6.2877 7.8719 0.1737 0.0002 25.5173 61 .0724 100.92 0.2966 0.6719 0.0098 0.0000 1.3239 2.6884 0.3032 0.6868 0.0100 

146j_2mtrx1 6.3892 8.1853 0.1911 0.0002 25.9808 61.0101 101 .76 0.2995 0.6943 0.0107 0.0000 1.3397 2.6693 0.2982 0.6912 0.0107 
146j_2mtrx2 6.3764 7.8925 0.2160 0.0002 25.8498 60.9321 101 .27 0.3000 0.6720 0.0121 0.0000 1.3378 2.6756 0.3048 0.6829 0.0123 
146j_2mtrx3 6.3627 8.1313 0.1683 0.0569 25.3782 59.9974 100.09 0.3034 0.7017 0.0096 0.0019 1.3313 2.6705 0.2990 0.6915 0.0095 

146k_1 mtrx1 5.8346 8.1806 0.3091 0.0208 24.6025 59.1813 98.13 0.2837 0.7199 0.0179 0.0007 1.3161 2.6861 0.2777 0.7047 0.0175 
146k_1 mtrx2 5.8737 8.0492 0.2417 0.0795 25.2862 60.9513 100.48 0.2782 0.6900 0.0136 0.0026 1.3176 2.6948 0.2834 0.7028 0.0139 
146k_1 mtrx3 5.6886 8.1385 0.3811 0.0206 24.7711 61 .1768 100.18 0.2703 0.6998 0.0216 0.0007 1.2947 2.7130 0.2726 0.7057 0.0218 
146k_1 mtrx4 5.6770 8.1065 0.3723 0.0726 25.4183 61 .1349 100.78 0.2681 0.6929 0.0209 0.0024 1.3207 2.6952 0.2730 0.7057 0.0213 



Table A.2: Analytical data for cordierite , orthopyroxene, plagioclase and garnet for sample TL01-147. 
CORDIERITE TRANSECT 1 

OXIDE CATION NUMBER 
Distance XMg/ XFe/ 

(um) FeO MgO MnO Al20 3 Si02 Total Fe Mg Mn AI Si Fe+Mg Fe+Mg 

0 11.1954 6.9005 0.3399 32.7052 48.8725 100.01 0.9603 1.0550 0.0296 3.9537 5.0124 0.5235 0.4765 
50 11 .0461 6.8335 0.0913 32.7699 49.2627 100.00 0.9455 1.0425 0.0080 3.9528 5.0414 0.5244 0.4756 
100 10.7221 6.8603 0.2702 32.7320 49.3992 99.98 0.9167 1.0454 0.0234 3.9437 5.0496 0.5328 0.4672 
150 10.9770 7.0668 0.1952 32.8574 49.2998 100.40 0.9368 1.0749 0.0170 3.9518 5.0304 0.5343 0.4657 
200 11 .1542 7.1425 0.3072 33.3156 49.5778 101 .50 0.9419 1.0749 0.0263 3.9645 5.0052 0.5330 0.4670 
250 10.8387 6.7583 0.1227 32.9772 49.2918 99.99 0.9269 1.0302 0.0107 3.9747 5.0405 0.5264 0.4736 
300 11 .2888 7.1478 0.2735 33.2141 49.6798 101 .60 0.9510 1.0733 0.0234 3.9435 5.0043 0.5302 0.4698 
350 11 .0772 6.7938 0.1484 32.7835 49.3217 100.12 0.9476 1.0358 0.0129 3.9521 5.0444 0.5222 0.4778 
400 10.9614 6.9570 0.1529 33.1118 49.4819 100.67 0.9306 1.0529 0.0132 3.9623 5.0234 0.5308 0.4692 
450 11 .2262 7.0499 0.3178 33.0868 48.9817 100.66 0.9569 1.0710 0.0275 3.9744 4.9917 0.5281 0.4719 
500 23.0773 5.9014 0.1243 14.0541 24.4982 67.66 3.2787 1.4945 0.0179 2.81 42 4.1619 0.3131 0.6869 

1> 
550 10.9767 6.8030 0.2839 32.4095 48.0420 98.52 0.9555 1.0554 0.0251 3.9759 5.0001 0.5248 0.4752 

~ 600 10.5471 6.8693 0.2342 33.1579 49.5292 100.34 0.8973 1.0418 0.0203 3.9759 5.0385 0.5372 0.4628 
w 650 10.7219 6.8945 0.2795 32.6360 48.5961 99.13 0.9228 1.0577 0.0243 3.9587 5.0009 0.5340 0.4660 

700 10.9002 7.2117 0.1846 33.4176 49.9619 101 .68 0.9161 1.0803 0.0158 3.9582 5.0207 0.5411 0.4589 
750 10.8326 6.9486 0.2550 33.3928 49.7900 101 .22 0.9149 1.0460 0.0218 3.9746 5.0279 0.5334 0.4666 
800 9.2238 1.4950 0.2327 10.21 41 13.8707 35.04 2.4785 0.7161 0.0633 3.8681 4.4564 0.2242 0.7758 
850 11 .2476 7.0440 0.1165 33.4251 49.6574 101.49 0.9495 1.0599 0.0099 3.9770 5.0126 0.5275 0.4725 
900 10.9091 6.9695 0.1405 32.9597 49.4027 100.38 0.9300 1.0590 0.0122 3.9599 5.0357 0.5324 0.4676 
950 11 .5273 6.9869 0.2470 33.5580 50.9777 103.30 0.9558 1.0326 0.0207 3.9216 5.0543 0.5193 0.4807 
1000 3.4752 1.5550 0.1391 11.3301 11 .5831 28.08 1.0805 0.8618 0.0438 4.9643 4.3058 0.4437 0.5563 
1050 10.9559 6.8873 0.1747 32.8572 49 .0575 99.93 0.9390 1.0523 0.0152 3.9690 5.0276 0.5284 0.4716 
1100 18.6513 7.51 41 0.1131 15.4596 37.621 4 79.36 2.1060 1.5123 0.0129 2.4603 5.0795 0.4180 0.5820 
1150 11 .1091 6.9407 0.1159 33.6686 49.9186 101.75 0.9335 1.0397 0.0099 3.9875 5.0157 0.5269 0.4731 
1200 11 .0350 6.6964 0.1774 32.7611 48.9444 99.61 0.9471 1.0244 0.0155 3.9627 5.0228 0.5196 0.4804 
1250 10.7074 6.7679 0.0731 32.3893 48.4500 98.39 0.9306 1.0485 0.0065 3.9674 5.0349 0.5298 0.4702 
1300 9.8722 3.9062 0.0607 9.1241 75.1829 98.15 0.81 02 0.571 4 0.0051 1.0553 7.3770 0.4136 0.5864 
1350 10.1136 7.0319 0.1907 33.5957 49.1523 100.08 0.8619 1.0682 0.0165 4.0352 5.0087 0.5534 0.4466 
1400 0.3971 -0.0450 0.1384 25.9350 63.5723 90 .00 0.0318 -0.0065 0.0113 2.9222 6.0768 -0.2544 1.2544 
1450 0.2473 -0.0588 -0.0032 25.1161 60.2384 85.54 0.0207 -0.0089 -0.0003 2.9688 6.0408 -0.7468 1.7468 
1500 0.3729 0.0428 -0.0255 26.6786 64.4274 91.50 0.0294 0.0060 -0.0021 2.9583 6.0609 0.1695 0.8305 



1550 10.0803 7.6735 0.5194 34.7948 51.9561 105.02 0.8141 1.1045 0.0425 3.9600 5.0168 0.5757 0.4243 
1600 28.1010 2.7942 6.8154 18.0293 25.4938 81.23 3.5892 0.6362 0.8817 3.2456 3.8934 0.1506 0.8494 
1650 36.6139 3.5731 1.5079 21.1193 37.7561 100.57 3.6474 0.6345 0.1521 2.9652 4.4973 0.1482 0.8518 
1700 36.4624 3.6062 1.6929 20.8626 37.9454 100.57 3.6341 0.6407 0.1709 2.9306 4.5221 0.1499 0.8501 
1750 0.6927 0.2267 -0.0227 28.0839 67.4048 96.39 0.0516 0.0302 -0.0017 2.9463 5.9994 0.3688 0.6312 
1800 37.6714 3.4187 1.6674 21.3689 38.1982 102.32 3.6996 0.5985 0.1659 2.9577 4.4855 0.1392 0.8608 
1850 10.2699 7.6334 0.2687 33.7357 50.2935 102.20 0.8556 1.1337 0.0227 3.9615 5.0105 0.5699 0.4301 
1900 10.1909 7.2051 0.1008 32.7937 49.3041 99.59 0.8724 1.0994 0.0087 3.9566 5.0468 0.5576 0.4424 
1950 10.8196 7. 1262 0.0831 32.8610 49.0539 99.94 0.9261 1.0872 0.0072 3.9641 5.0204 0.5400 0.46.00 
2000 10.4507 7.3382 0.1239 33.2427 49.57 46 100.73 0.8858 1.1087 0.0107 3.9713 5.0244 0.5559 0.4441 
2050 11.0925 7.3394 0.1 616 33.0239 49.0657 100.68 0.9437 1.1129 0.0140 3.9596 4.991 1 0.5411 0.4589 
2100 11.0863 7.2256 0.1895 33.4468 48.9934 100.94 0.9405 1.0926 0.0164 3.9989 4.9697 0.5374 0.4626 
2150 10.7945 7.2625 0.1 871 33.6358 50.3386 102.22 0.9027 1.0826 0.0159 3.9647 5.0339 0.5453 0.4547 
2200 16.3618 8.7917 0.2050 30.0992 47.3164 102.77 1.3875 1.3289 0.0176 3.5975 4.7979 0.4892 0.5108 
2250 10.5989 6.7927 0.0335 32.3898 48.9340 98.75 0.9164 1.0467 0.0030 3.9467 5.0585 0.5332 0.4668 
2300 11.0281 7.0916 0.1129 33.6352 50.607 4 102.48 0.9153 1.0491 0.0095 3.9344 5.0222 0.5341 0.4659 
2350 10.6289 7.0874 0.1393 33.1668 50.1020 101 .12 0.8975 1.0667 0.0119 3.9467 5.0580 0.5431 0.4569 

:r> 2400 11.1957 7.111 3 0.1 156 32.9558 49.0087 100.39 0.9545 1.0806 0.0101 3.9597 4.9956 0.5310 0.4690 ..... 
2450 10.6681 6.8844 0.0978 33.6863 49.0343 100.37 0.9068 ~ 1.0430 0.0084 4.0352 4.9832 0.5349 0.4651 
2500 22.5311 8.3011 0.1283 19.3237 33.9754 84.26 2.4390 1.6017 0.0141 2.9481 4.3977 0.3964 0.6036 
2550 37.1964 10.3471 0.5597 5.0535 47.1333 100.29 3.7176 1.8434 0.0567 0.7119 5.6327 0.3315 0.6685 
2600 36.1934 10.5153 0.5814 6.4788 46.2843 100.05 3.5952 1.8618 0.0585 0.9071 5.4972 0.3412 0.6588 
2650 15.2240 0.2652 0.0822 0.8869 1.2259 17.68 12.9144 0.4010 0.0707 1.0604 1.2435 0.0301 0.9699 
2700 10.9659 6.5717 0.3400 31 .6191 47.5120 97.01 0.9681 1.0341 0.0305 3.9341 5.0151 0.5165 0.4835 
2750 10.8263 6.8061 0.2379 32.3003 48.6894 98.86 0.9359 1.0487 0.0209 3.9351 5.0325 0.5284 0.4716 
2800 11.4272 6.8585 0.0209 32.7994 49.0687 100.17 0.9762 1.0443 0.0018 3.9491 5.0121 0.5169 0.4831 
2850 10.7735 5.0293 0.1482 13.1854 72.1180 101.25 0.8699 0.7238 0.0122 1.5005 6.9624 0.4542 0.5458 
2900 11 .0889 7.1104 0.0994 32.8508 49.5440 100.69 0.9414 1.0760 0.0086 3.9306 5.0292 0.5333 0.4667 
2950 37.5730 9.8600 0.7083 3.9824 47.5334 99.66 3.7764 1.7664 0.0722 0.5642 5.7125 0.3187 0.6813 
3000 10.9203 6.9312 0.1209 32.4571 49.11 15 99.54 0.9375 1.0607 0.0105 3.9272 5.0414 0.5308 0.4692 
3050 12.0338 5.7594 0.1695 32.9554 37.0329 87.95 1.1861 1.0118 0.0170 4.5777 4.3643 0.4603 0.5397 
3100 10.9913 6.8282 0.1750 32.7913 49.3408 100.13 0.9399 1.0409 0.0152 3.9524 5.0454 0.5255 0.4745 
3150 11 .3475 6.8842 0.0447 32.9862 49.7041 100.97 0.9626 1.0409 0.0039 3.9432 5.0409 0.5195 0.4805 



CORDIERITE TRANSECT 2 
OXIDE CATION NUMBER 

Distance XMg/ X Fe/ 
(um) FeO MgO MnO Al20 3 Si02 Total Fe Mg Mn AI Si Fe+Mg Fe+Mg 

0 10.9665 6.6619 0.2318 32.8724 49.1609 99 .89 0.9405 1.0184 0.0201 3.9731 5.0409 0.5199 0.4801 
50 11 .1741 6.9688 0.1608 32.5380 49.2170 100.06 0.9575 1.0643 0.0140 3.9293 5.0423 0.5264 0.4736 
100 11 .0162 6.5298 0.2120 32.1455 48.2910 98.19 0.9621 1.0166 0.0188 3.9569 5.0430 0.5138 0.4862 
150 2.2604 0.4209 0.0651 35.6573 39.4883 77.89 0.2346 0.0779 0.0069 5.2164 4.9010 0.2492 0.7508 
200 10.7641 6.4820 -0.0101 32.5507 48.8270 98.61 0.9320 1.0004 -0.0009 3.9720 5.0549 0.5177 0.4823 
250 11 .2179 7.3650 0.0751 36.2873 53.8537 108.80 0.8786 1.0281 0.0060 4.0052 5.0429 0.5392 0.4608 
300 10.7133 6.9134 0.2927 33.1511 49.7973 100.87 0.9075 1.0439 0.0251 3.9576 5.0436 0.5349 0.4651 
350 10.7813 6.7654 0.1605 32.1866 48.4642 98.36 0.9375 1.0487 0.0141 3.9449 5.0394 0.5280 0.4720 
400 10.8876 6.7621 0.1567 32.4092 49.1066 99.32 0.9383 1.0386 0.0137 3.9360 5.0597 0.5254 0.4746 
450 21.2728 0.1850 0.4388 0.7258 1.4540 24.08 13.9095 0.2157 0.2906 0.6689 1.1369 0.0153 0.9847 
500 11 .9942 7.7673 0.2799 34.2479 52.6284 106.92 0.9581 1.1058 0.0227 3.8552 5.0261 0.5358 0.4642 
550 11.2683 6.4227 0.2149 32.5133 49.0015 99.42 0.9722 0.9878 0.0188 3.9534 5.0550 0.5040 0.4960 
600 11 .2138 6.7826 0.1077 32.9931 49.2845 100.38 0.9570 1.0317 0.0093 3.9684 5.0292 0.5188 0.4812 

)> 650 37.1525 10.2609 0.4761 4.1005 47.6133 99.60 3.7323 1.8374 0.0485 0.5805 5.7192 0.3299 0.6701 I _.. 
700 10.7809 6.9065 0.2983 32.5967 49.3907 99.97 01 0.9222 1.0530 0.0258 3.9300 5.0520 0.5331 0.4669 
750 10.3753 6.8414 0.1341 32.3514 49.1956 98.90 0.8928 1.0493 0.0117 3.9234 5.0616 0.5403 0.4597 
800 11 .3296 6.8314 0.2185 32.2443 48.4856 99.11 0.9788 1.0520 0.0191 3.9258 5.0084 0.5180 0.4820 
850 29.0422 8.1632 0.4972 9.0769 43.5202 90.30 3.0978 1.5521 0.0537 1.3646 5.5506 0.3338 0.6662 
900 36.9044 10.0896 0.5570 4.8538 47.7284 100.13 3.6780 1.7924 0.0563 0.6818 5.6877 0.3276 0.6724 
950 10.9390 6.8430 0.2346 32.9073 48.8703 99.79 0.9372 1.0451 0.0204 3.9737 5.0067 0.5272 0.4728 
1000 11 .0949 6.7340 0.2153 32.3144 48.2051 98.56 0.9662 1.0454 0.0191 3.9662 5.0196 0.5197 0.4803 
1050 10.8786 6.6701 0.0829 32.6939 49.1334 99.46 0.9353 1.0221 0.0072 3.9612 5.0505 0.5222 0.4778 
1100 36.8921 10.3641 0.6241 4.8626 46.9831 99.73 3.6926 1.8491 0.0633 0.6860 5.6229 0.3337 0.6663 
1150 10.7634 6.5981 0.2676 32.1374 48.7224 98.49 0.9360 1.0227 0.0236 3.9390 5.0664 0.5221 0.4779 
1200 11.1682 6.6547 0.0377 32.5609 48.3801 98.80 0.9686 1.0287 0.0033 3.9797 5.0166 0.5151 0.4849 
1250 10.9383 6.7556 0.0965 32.6676 48.8294 99.29 0.9429 1.0380 0.0084 3.9689 5.0330 0.5240 0.4760 
1300 32.8980 7.6806 0.6436 4.8813 40.331 4 86.43 3.8244 1.5915 0.0758 0.7998 5.6061 0.2939 0.7061 
1350 10.5640 6.5203 0.1997 32.2862 47.3409 96.91 0.9338 1.0272 0.0179 4.0218 5.0031 0.5238 0.4762 
1400 10.6215 6.3865 0.3644 32.3060 48.8051 98.48 0.9219 0.9881 0.0321 3.9519 5.0651 0.5173 0.4827 
1450 10.8050 6.7773 0.1446 31 .7571 48.5536 98.04 0.9435 1.0548 0.0128 3.9084 5.0696 0.5278 0.4722 
1500 10.9059 5.2638 0.1698 26.5166 39.9778 82.83 1.1417 0.9822 0.0180 3.9122 5.0040 0.4625 0.5375 
1550 11 .3047 6.7004 0.3403 32.8981 48.8666 100.11 0.9671 1.0217 0.0296 3.9663 4.9985 0.5137 0.4863 



1600 10.6314 7.0826 0.4950 32.5450 48.7833 99.54 0.9147 1.0862 0.0432 3.9462 5.0184 0.5428 0.4572 
1650 10.7192 6.4034 0.2322 32.0422 48 .7577 98.15 0.9345 0.9951 0.0206 3.9369 5.0825 0.5157 0.4843 
1700 11.0169 6.8067 0.2434 32.7797 49.0073 99.85 0.9459 1.0418 0.0212 3.9666 5.0313 0.5241 0.4759 
1750 10.8513 6.6495 0.0329 32.4951 48.7709 98 .80 0.9389 1.0256 0.0029 3.9627 5.0459 0.5221 0.4779 
1800 10.5819 6.6451 0.3036 32.3479 48.2148 98.09 0.9228 1.0329 0.0269 3.9755 5.0271 0.5281 0.4719 
1850 37.6047 10.5876 0.5878 3.7793 49.5068 102.07 3.6779 1.8458 0.0582 0.5210 5.7894 0.3342 0.6658 
1900 20.7000 6.4898 0.2495 18.9316 40.2679 86.64 2.1906 1.2242 0.0267 2.8238 5.0955 0.3585 0.6415 
1950 10.7509 7.1345 0.0928 32.9038 49.2165 100.10 0.9183 1.0863 0.0081 3.9612 5.0268 0.5419 0.4581 
2000 10.8998 6.6357 0.1630 32.7394 49.8694 100.31 0.9290 1.0080 0.0141 3.9326 5.0820 0.5204 0.4796 
2050 10.8463 6. 7668 0.0732 32.4500 48.8313 98.97 0.9374 1.0424 0.0065 3.9524 5.0459 0.5265 0.4735 
2100 10.8388 6.5711 0.0187 33.0176 48.9684 99.41 0.9315 1.0065 0.0017 3.9990 5.0318 0.5193 0.4807 
2150 10.9370 6.4943 0.0848 32.4275 48.7213 98.66 0.9485 1.0038 0.0075 3.9630 5.0517 0.5142 0.4858 
2200 11 .2255 6.7750 0.0297 32.3480 48.8580 99.24 0.9690 1.0424 0.0026 3.9354 5.0429 0.5182 0.4818 
2250 10.6022 6.6148 0.2120 32.0773 48.7328 98.24 0.9231 1.0265 0.0188 3.9360 5.0732 0.5265 0.4735 
2300 15.1489 5.0607 0.1303 21.1551 31.6010 73.10 1.8644 1.1102 0.0162 3.6692 4.6500 0.3732 0.6268 
2350 37.7283 10.2247 0.4732 3.8567 4 7.1275 99.41 3.8165 1.8435 0.0485 0.5499 5.7003 0.3257 0.6743 
2400 22.6046 8.6581 0.3039 21.8221 36.4937 89.88 2.2986 1.5693 0.0314 3.1275 4.4373 0.4057 0.5943 

)> 2450 10.5839 6.4112 0.2975 31 .9103 48.6192 97.82 0.9246 0.9984 0.0263 3.9290 5.0787 0.5192 0.4808 
I 

2500 11.1180 6.4510 0.0039 32.3691 48.8640 98.81 0.9626 0.9956 0.0003 3.9498 5.0586 0.5084 0.4916 ...... 
0> 

2550 10.6479 5.1339 0.3748 26.5082 39.3650 82.03 1.1243 0.9662 0.0401 3.9446 4.9697 0.4622 0.5378 
2600 11.4712 7.6153 0.2031 33.5727 52.0311 104.89 0.9344 1.1057 0.0168 3.8541 5.0676 0.5420 0.4580 
2650 23.4570 7.7273 0.0537 19.1577 33.2401 83.64 2.5929 1.5225 0.0060 2.9846 4.3932 0.3700 0.6300 
2700 36.6419 10.2215 0.4990 4.0772 47.3361 98.78 3.7121 1.8458 0.0512 0.5822 5.7341 0.3321 0.6679 
2750 10.8188 6.4818 0.1238 32.2359 48.9478 98.61 0.9381 1.0019 0.0108 3.9398 5.0753 0.5164 0.4836 
2800 10.4598 6.5459 0.1648 33.1350 49.3109 99.62 0.8961 0.9996 0.0143 4.0010 5.0514 0.5273 0.4727 
2850 18.5623 2.9057 0.0782 10.8803 16.0150 48.44 3.7431 1.0445 0.0159 3.0921 3.8615 0.2182 0.7818 
2900 10.9058 6.6784 0.3281 32.4706 48.9529 99.34 0.9399 1.0259 0.0287 3.9441 5.0447 0.5219 0.4781 
2950 11 .1448 6.7879 -0.0609 32.6781 48.4244 98.97 0.9639 1.0464 -0.0054 3.9831 5.0076 0.5205 0.4795 
3000 22.6584 7.3416 0.1163 22.6073 32.7281 85.45 2.4120 1.3931 0.0126 3.3918 4.1658 0.3661 0.6339 
3050 10.9456 7.0457 0.1405 32.9781 49.3104 100.42 0.9332 1.0706 0.0122 3.9623 5.0264 0.5343 0.4657 
3100 10.3634 6.6093 0.1727 32.8196 49.0880 99.05 0.8930 1.0151 0.0150 3.9854 5.0571 0.5320 0.4680 
3150 0.4940 0.0417 -0.0424 24.6384 62.5343 87.67 0.0407 0.0062 -0.0036 2.8584 6.1548 0.1314 0.8686 
3200 0.2587 -0.0459 0.0042 24.6085 62.3034 87.13 0.0215 -0.0068 0.0003 2.8706 6.1656 -0.4592 1.4592 
3250 -0.0113 0.1321 0.0174 24.5102 62.0774 86.73 -0.0009 0.0195 0.0015 2.8695 6.1659 1.0484 -0.0484 
3300 0.0557 0.0504 0.0867 24.2546 61.2497 85.70 0.0047 0.0075 0.0074 2.8773 6.1644 0.6173 0.3827 
3350 0.0628 0.1475 -0.0854 24.7661 62.5293 87.42 0.0051 0.0216 -0.0071 2.8712 6.1500 0.8090 0.1910 



3400 0.2281 0.0209 -0.0540 24.5294 61.9218 86.65 0.0191 0.0032 -0.0045 2.8820 6.1722 0.1419 0.8581 
3450 0.1353 -0.0354 0.0710 24.3407 61.4828 85.99 0.0113 -0.0053 0.0060 2.8700 6.1502 -0.8750 1.8750 

.____ _ __.I : indicates poor results 



ORTHOPYROXENE LARGE GRAINS 
OXIDE CATION NUMBER 

X Fe/ XMg/ 
Label FeO MgO MnO CaO Ti02 AI203 Si02 Total Fe Mg Mn Ca AI Si Fe+Mg Fe+Mg 

LR1 1r 36.5677 10.1526 0.6053 0.1939 0.4885 4.7504 46.8707 99.63 2.4579 1.2163 0.0412 0.0167 0.4500 3.7669 0.6690 0.3310 
LR1 2r 35.9501 10.4110 0.9525 0.1961 0.1057 4.5052 47.7740 99.89 2.4017 1.2397 0.0644 0.0168 0.4242 3.8163 0.6596 0.3404 
LR1 3c 37.4124 10.5437 0.4931 0.0437 0.3944 4.9320 47.2769 101 .10 2.4818 1.2467 0.0331 0.0037 0.4611 3.7499 0.6656 0.3344 
LR1 4c 37.3772 9.8208 0.7254 0.1748 0.2809 4.8988 45.9212 99.20 2.5410 1.1900 0.0499 0.0152 0.4694 3.7327 0.6811 0.3189 
LR1 5c 36.9026 10.6535 0.7103 0.0818 0.2376 4.7138 46.8736 100.17 2.4785 1.2754 0.0483 0.0070 0.4462 3.7643 0.6602 0.3398 
LR1 6r 32.9699 10.6517 0.7321 0.0501 0.3298 4.6522 47 .6160 97 .00 2.2195 1.2781 0.0499 0.0043 0.4414 3.8329 0.6346 0.3654 
LR1 7r 37.0572 10.5430 0.5914 0.0681 0.3862 4.6358 46 .9542 100.24 2.4811 1.2582 0.0401 0.0058 0.4374 3.7590 0.6635 0.3365 

LR2 r1 36.5464 10.1247 0.4706 0.2827 0.2665 4.8582 47.4539 100.00 2.4410 1.2054 0.0318 0.0242 0.4573 3.7898 0.6694 0.3306 
LR2 r2 36.7798 10.2756 0.6195 0.1873 0.4262 4.8158 47.9336 101.04 2.4312 1.2107 0.0415 0.0159 0.4486 3.7886 0.6676 0.3324 
LR2c3 36.2489 10.2390 0.6228 0.1708 0.2051 4.8414 47.3159 99.64 2.4337 1.2253 0.0423 0.0147 0.4581 3.7984 0.6651 0.3349 
LR2 c4 36.3627 10.1212 0.5784 0.1851 0.3475 4.8818 46.8060 99.28 2.4500 1.2155 0.0395 0.0160 0.4636 3.7708 0.6684 0.3316 
LR2 c5 36.1961 10.1861 0.5133 0.1962 0.3721 4.7892 46.4025 98.66 2.4556 1.2317 0.0353 0.0170 0.4579 3.7641 0.6660 0.3340 
LR2 r6 36.4177 10.3013 0.6620 0.2289 0.2620 3.9079 47 .6839 99.46 2.4481 1.2343 0.0451 0.0197 0.3703 3.8328 0.6648 0.3352 
LR2 r7 37.2960 10.2482 0.7373 0.1431 0.1575 4.7609 47.2238 100.57 2.4960 1.2225 0.0500 0.0123 0.4491 3.7790 0.6712 0.3288 

LR3 r1 36.0004 10.2861 0.6245 0.2837 0.3153 4.0909 46.8199 98.42 2.4475 1.2464 0.0430 0.0247 0.3920 3.8059 0.6626 0.3374 
LR3 r2 36.6098 10.2160 0.4711 0.1035 0.2607 4.6727 47.2246 99.56 2.4601 1.2236 0.0321 0.0089 0.4425 3.7944 0.6678 0.3322 
LR3 c3 36.9363 10.1296 0.4719 0.0556 0.2729 4.8800 47.1204 99.87 2.4767 1.2107 0.0320 0.0048 0.4612 3.7779 0.6717 0.3283 

)> LR3 c4 36.7032 10.4210 0.4549 0.0809 0.4582 5.1494 47.2340 100.50 2.4414 1.2355 0.0306 0.0069 0.4827 3.7567 0.6640 0.3360 I ...... LR3 c5 36.9106 9.9832 0.6809 0.0269 0.3702 4.9433 46.6715 99.59 2.4867 1.1988 0.0465 0.0023 0.4694 3.7596 0.6747 0.3253 (X) 
LR3 r6 36.8376 10.1436 0.6308 0.1365 0.3600 4.8542 47.1235 100.09 2.4674 1.2110 0.0428 0.0117 0.4582 3.7740 0.6708 0.3292 
LR3 r7 37.1668 10.5499 0.4783 0.2194 0.1603 4.7784 47.3554 100.71 2.4766 1.2530 0.0323 0.0187 0.4488 3.7731 0.6640 0.3360 

ORTHOPYROXENE SMALL GRAINS 
OXIDE CATION NUMBER 

XFe/ XMg/ 
Label FeO MgO MnO CaO Ti02 AI ~03 SiO~ Total Fe Mg Mn Ca AI Si Fe+Mg Fe+Mg 
SR11 17.5309 8.7641 0.2509 0.2850 0.0576 26.7390 43.7691 102.67 1.0564 0.9414 0.0153 0.0220 2.2710 3.1538 0.5288 0.4712 
SR12 14.6724 2.8865 0.2140 0.1580 0.0725 22.4594 12.9838 56.92 1.7360 0.6088 0.0256 0.0240 3.7453 1.8369 0.7404 0.2596 
SR21 37.9090 9.9567 0.4614 0.0859 0.4221 4.4755 47.0499 100.27 2.5434 1.1907 0.0314 0.0074 0.4232 3.7744 0.6811 0.3189 
SR22 36.6900 10.0482 0.6615 0.1841 0.1953 4.2970 47.3076 99.19 2.4774 1.2093 0.0452 0.0159 0.4089 3.8194 0.6720 0.3280 
SR31 10.8972 6.7017 0.0981 0.1129 0.1527 31.8207 48.5170 97.94 0.6344 0.6954 0.0058 0.0084 2.6107 3.3771 0.4771 0.5229 
SR32 32.7177 3.9319 0.3421 0.1105 0.2279 3.8982 24.7582 65.79 3.6478 0.7814 0.0386 0.0158 0.6125 3.3006 0.8236 0.1764 
SC11 15.4011 8.1740 0.4149 0.0941 -0.0104 26.5872 47.6289 100.55 0.9136 0.8643 0.0249 0.0072 2.2229 3.3784 0.5139 0.4861 
SC12 36.8897 10.0223 0.9906 0.1059 0.4500 3.6306 47.7516 99.73 2.4809 1.2014 0.0675 0.0091 0.3441 3.8398 0.6737 0.3263 
SC21 22.0341 6.0772 0.0681 0.2072 0.2130 13.8222 25.5103 74.16 2.0606 1.0130 0.0063 0.0248 1.8218 2.8525 0.6704 0.3296 
SC2 2 33.4760 9.5437 0.7577 0.0453 -0.0124 5.6066 44.9621 95.25 2.3420 1.1901 0.0537 0.0041 0.5528 3.761 2 0.6631 0.3369 
SC3 1 36.8615 10.0636 0.6133 0.1239 0.4061 4.8854 46.7117 99.54 2.4825 1.2080 0.0418 0.0107 0.4637 3.7615 0.6727 0.3273 
SC32 21.8289 9.3392 0.1373 0.1209 0.1492 21.6595 38.1624 98.23 1.4468 1.1033 0.0092 0.0103 2.0233 3.0245 0.5674 0.4326 

Note: L- large grains, S - small grains, R - rim of symplectite, r - rim of grain, C- core of symplectite, c - core of grain. 

I : indicates poor results 



PLAG LARGE GRAINS 
OXIDE CATION NUMBERS COMPOSITION DATA 

Label Na20 K20 CaO Al20 3 Si02 Total Na K Ca AI Si X An XAb X Or 
LR1 r1 7.3515 0.2161 5.6647 23.6005 60.0364 96.87 0.6498 0.0126 0.2767 1.2681 2.7368 0.2946 0.6919 0.0134 
LR1 r2 7.3717 0.2967 5.9841 23.4817 59.4756 96.61 0.6564 0.0174 0.2944 1.2710 2.7311 0.3041 0.6780 0.0180 
LR1 c3 8.4037 0.0763 4.5679 22.8004 61 .7002 97.55 0.7349 0.0044 0.2207 1.2120 2.7826 0.2299 0.7655 0.0046 
LR1 c4 7.4156 0.0686 6.4236 24.5282 61 .8432 100.28 0.6351 0.0039 0.3040 1.2770 2.7315 0.3224 0.6735 0.0041 
LR1 c5 8.1729 0.1822 5.9924 23.7867 61 .5231 99.66 0.7060 0.0104 0.2861 1.2491 2.7410 0.2854 0.7042 0.0104 
LR1 r6 8.0835 0.2045 6.2389 23.8723 61 .7872 100.19 0.6936 0.0115 0.2958 1.2452 2.7342 0.2955 0.6930 0.0115 
LR1 r7 8.5022 0.2224 5.8328 24.7328 62.4171 101.71 0.7199 0.0124 0.2729 1.2731 2.7257 0.2715 0.7162 0.0123 

LR2 r1 7.9509 0.1763 5.7766 24.2404 62.0761 100.22 0.6813 0.0099 0.2735 1.2627 2.7434 0.2835 0.7062 0.0103 
LR2 r2 7.9547 -0.0416 5.9218 23.5935 60.3032 97.73 0.6996 -0.0024 0.2878 1.2614 2.7352 0.2922 0. 7103 -0.0024 
LR2 c3 8.7642 0.0613 6.0386 24.5526 63.4924 102.91 0.7334 0.0034 0.2793 1.2490 2.7403 0.2749 0.7218 0.0033 
LR2 c4 7.9656 0.1647 5.7217 25.0607 64.1650 103.08 0.6622 0.0090 0.2628 1.2664 2.7510 0.2814 0.7090 0.0096 
LR2 r5 8.5118 0.0612 6.2082 24.1554 61.8420 100.78 0.7283 0.0034 0.2935 1.2564 2.7289 0.2863 0.7104 0.0033 

)> LR2 r6 7.9532 0.0933 6.3709 24.6169 62.7048 101 .74 0.6713 0.0052 0.2972 1.2631 2.7296 0.3052 0.6894 0.0053 
I ...... 

co 
LR3 r1 7.8053 0.2272 5.8364 23.9345 62.1623 99.97 0.6692 0.0128 0.2765 1.2475 2.7488 0.2885 0.6982 0.0134 
LR3 r2 7.6822 0.1102 6.1387 24.1959 61 .9646 100.09 0.6593 0.0062 0.2912 1.2624 2.7428 0.3044 0.6891 0.0065 
LR3 c3 7.7575 0.1987 5.9627 23.5598 63.6174 101.10 0.6578 0.0111 0.2794 1.2145 2.7822 0.2946 0.6937 0.0117 
LR3 c4 8.0812 0.2418 5.6463 24.1806 62.3610 100.51 0.6906 0.0136 0.2666 1.2562 2.7485 0.2746 0.7114 0.0140 
LR3 r5 7.5368 0.2024 5.6604 23.8635 61 .4809 98.74 0.6544 0.0116 0.2716 1.2595 2.7531 0.2897 0.6980 0.0124 
LR3 r6 7.3626 0.1849 5.6958 24.1400 61 .7549 99.14 0.6361 0.0105 0.2719 1.2678 2.7515 0.2960 0.6925 0.0114 

Note: L- large grains, R- rim of symplectite, r- rim of grain, c- core of grain. 

GARNET 
OXIDE CATION NUMBER CHEMICAL COMPOSITION DATA 

Fe/ Mg/ 
Label FeO MgO MnO CaO AI20a Si02 Ti02 Cr20a Total Fe Mg Mn Ca AI Sl Fe+Mg Mg+Fe XAim XPrp XGrs XSps 
Grt_1 37.6191 3.4884 1.4701 0.8700 21 .1 606 38 .1070 0.3377 0.3000 103.35 2.4680 0.4079 0.0977 0.0731 1.9566 2.9893 0.8582 0.1418 0.8101 0.1339 0.0240 0.0321 
Grt_2 36.7463 3.0735 1.9174 0.8381 21.2721 38.7119 0.0943 0.0433 102.70 2.4124 0.3597 0.1275 O.D705 1.9682 3.0388 0.8702 0.1298 0.8122 0.1211 0.0237 0.0429 
Grt_3 37.0150 3.5044 1.5713 0.9629 21.3067 38 .2375 0.1719 -0.0215 102.75 2.4329 0.41 06 0.1046 0.0811 1.9737 3.0051 0.8556 0.1444 0.8031 0.1355 0.0268 0.0345 
Grt_4 36.9613 3.3900 1.4872 0.8686 21.1277 37.9159 0.0602 0.0872 101 .90 2.4510 0.4007 0.0999 0.0738 1.9746 3.0064 0.8595 0.1405 0.8101 0.1324 0.0244 0.0330 
Grt_5 36.9642 3.4834 1.4648 0.8127 21 .2007 38.4301 -0.0558 0.0993 102 .40 2.4316 0.4084 0.0976 0.0685 1.9656 3.0228 0.8562 0.1438 0.8089 0.1359 0.0228 0.0325 
Grt_6 37.0444 3.2077 1.6576 1.1342 21 .7017 38.1276 0.3763 0.2549 103.50 2.4208 0.3736 0.1097 0.0950 1.9988 2.9792 0.8663 0.1337 0.8072 0.1246 0.0317 0.0366 
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Figure A.1: TWO (v. 2.02) plot of the pressure dependant GASP reaction . The generated reaction 
lines represent two separate analyses of plagioclase and adjacent garnet from the regional meta­
morphic sample TL01-146. 
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