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ABSTRACT 

The west coast of Newfoundland is a region of considerable interest for 

petroleum exploration. Interest is focused in several specific areas, but especially 

in the vicinity of the Hunt et al. discovery at Port-au-Port. The primary target is 

the carbonate bank sequence deposited on the margin of the ancient North 

American continent (Laurentia) in Cambro-Ordovician time. The geological 

setting of this area is extremely complicated and dominated by extensive 

thrusting dictating that only a 3D technique could yield acceptable results. The 

integration of 20 land acquisition combined with a novel style of "3D" wide-angle 

transition zone seismic surveying allows for a different and efficient technique of 

seismic acquisition in shallow water. The survey was conducted in the vicinity of 

the PanCanadian et al. Shoal Point K-39 well. The processing challenges 

associated with this style of seismic acquisition fall predominantly in the realm of 

extremely long offset data combined with low fold coverage. The testing and 

application of less conventional processing techniques was essential for optimal 

results, and a better understanding of the geology of the area. 

The primary goal was to develop a better understanding of the complex geology 

of the area. The objective is to create a 3D surficial map of the Ordovician 

carbonate platform using the 3D seismic data. Detailed processing followed by 

careful consideration of surrounding pre-existing seismic surveys aided in the 

final interpretation of the stacked 3D dataset and creation of 3D surface maps. 
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Overall the final sections and 3D surfaces compare favorably with the drilling 

results and surrounding seismic therefore meeting the project objectives and 

desired goals. 
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1.0 Introduction 

The Port au Port Peninsula is located on the southwestern edge of the Province 

of Newfoundland. Geologically situated along the frontal edge of the Humber 

zone, this is the western-most of five regional tectono-stratigraphic Appalachian 

zones (Figure 1.1). The Humber zone represents a Cambro-Ordovician passive 

margin regionally deformed and displaced during various phases of deformation 

related to the formation of the Appalachian Mountains and the closing of the 

Proto-Atlantic Iapetus Ocean during Ordovician I Silurian time . 
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Figure 1.1. Geological map of the Western Newfoundland Humber zone. 
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Traditionally western Newfoundland has displayed excellent hydrocarbon 

potential with the discovery of oil seeps and exploration dating back to the late 

1800's. Documented shallow wells throughout the 1900's have indicated varied 

amounts of hydrocarbons and possible reservoirs helping contribute to industry 

interest and modern seismic exploration and drilling operations during the 1990's. 

To date the Port au Port peninsula and surrounding bays have been the site of 

thousands of line kilometers of 2D seismic and a handful of exploration wells 

(Figure 1.2). Interest is focused in several specific areas but especially in the 

vicinity of the 1996 Hunt et al. discovery well , Port-au-Port # 1. The primary 

Western Newfoundland exploration targets tend to be either Carboniferous or 

Cambro-Ordovician plays. On the Port au Port peninsula it is generally the 

carbonate bank sequence deposited on the margin of the ancient North American 

continent (Laurentia) in Cambro-Ordovician time that is of primary interest. This 

equivalent setting also exits in the proven Anadarko Basin of the Southern United 

States. 

Western Newfoundland (i.e: Humber zone) and the Eastern United States as far 

south as the Gulf of Mexico originally developed as a continental shelf in the Late 

Cambrian as the eastern coast of the Laurentian continent. An early Paleozoic 

passive margin the Humber zone is characterized by a Cambro-Ordovician 

carbonate platform that has undergone extensive folding and faulting controlled 

by multiple orogenies related to the opening and closing of the Iapetus ocean (To 

be discussed further in Chapter 2 Geology). The geology of the peninsula is 



extremely complex being extensively faulted and dominated by a regional 

structural feature known as the Round Head fault. 

3 

Various exploration programs have resulted in the unsuccessful drilling of 

numerous exploration wells yielding "non-commercial" quantities of oil and gas 

reserves. In 1999 PanCanadian (now EnCana) and partners drilled the K-39 well 

(Figure 1.2) at the tip of Shoal Point to test a possible footwall anticline structural 

high. Following abandonment of K-39 as a dry hole, exploration and participation 

by oil and gas majors has decreased leaving the area with an unfortunate stigma. 

This thesis extends the geophysical study and research of the area using modern 

marine and land seismic techniques. In the fall of 2000 the Center for Earth 

Resources Research (Memorial University of Newfoundland), along with local 

seismic companies Shearwater Geophysical Corp. and GeoScott Exploration 

received a contract from the Government of Newfoundland and Labrador to 

design and acquire a non-conventional 3D seismic transition zone survey. Figure 

1.2 shows the location of the survey area within Port au Port bay centered 

directly over a central peninsula known as Shoal Point. This location is of 

particular interest to both the Government of Newfoundland and Labrador and 

the petroleum industry as it is situated directly over the 1999 Shoal Point K-39 

well. 



• Well Location 

, Seismic Line 
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CURRENT 
~""STUDY AREA 

Figure 1.2. Map of the Port au Port peninsula overlain by well locations, marine 

seismic line locations and the current study area. 

Table 1.1: Well location legend 

WELL OPERATOR 
1 NHOC I PCP (Long Point M-16) 
2 PanCanadian et. al (Shoal Point K-39) 
3 Inglewood (Man of war) 
4 NHOC I PCP (Port au Port # 1) 
5 Talisman et al (Long Range A-09) 
6 NHOC I PCP (St. George's) 
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The goals of the research project are the following: 

To demonstrate a novel and cost-effective technique to acquire, 

process and interpret 3D data in a shallow water transition zone. 

To provide a seismic image at the Shoal Point K-39 well location. 

Create a 3D mapped surface to the top of the Ordovician 

carbonate platform. 

To develop a better understanding of the complex geology and 

tectonic history of the area. 

This thesis discusses and describes the techniques and processes undertaken to 

achieve the above goals. It considers all aspects from survey design and 

acquisition to complete 2D and 3D seismic data processing. The final result is an 

interpretation of structure and dominant geological characteristics of Port au Port 

Bay and specifically the Shoal Point area. Generation of 3D surficial maps to the 

top of the Ordovician carbonate platform will allow analysis of the PanCanadian 

well, analysis of the area for other possible hydrocarbon targets and an 

increased understanding of the local geology and structural expressions. 
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2.0 Geology 

2.1 Introduction 

The island of Newfoundland is located in the North Atlantic Ocean along the 

eastern coast of Canada. Geologically complex, Newfoundland is world 

renowned for its various expressions of rare geological settings and structures. 

Divided in to five tectono-stratigraphic zones by Williams (1979) the current study 

area is located on the Port au Port Peninsula and belongs to the western-most 

Humber zone (Figure 2.1). 

The Humber zone originally developed in the Late Cambrian as a continental 

shelf off the eastern coast of the Laurentian continent. This early Paleozoic 

passive margin (Waldron and Stockmal, 1994) is generally characterized by a 

Cambro-Ordovician carbonate platform overlain regionally by an Early to Middle 

Ordovician emplaced allochthon and underlain by a Grenvillian crystalline 

basement (Stockmal et aI., 1998). The regional geologic formations of the area 

have undergone extensive folding and faulting during numerous phases of 

orogenic deformation related to the opening and closing of the Iapetus ocean. 
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Due to the substantial increase in seismic data coverage over the area in the 

past 10 years there have been numerous revisions of the initial hypothesis and 

geologic models constructed during the 1970's, 1980's and even up to the early 

1990's. The following geologic overview is drawn predominantly from the more 

recent literature (Cooper et aI., 1998, Stockmal et aI., 1998, Waldron et aI. , 

1994). 

2.2 Regional Stratigraphy and Geologic Evolution 
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The geologic formations of the Humber zone and particularly the Port au Port 

Peninsula are composed of complex folded and faulted Lower Paleozoic 

sediments. It is generally accepted that the deformation and structural 

relationships of the Port au Port stratigraphy result directly from three primary 

phases of deformation: The Mid to Late Ordovician Taconic Orogeny, the Silurian 

Salinic Orogeny and the Devonian Acadian Orogeny. 

Cooper et aI., (1998) divide the Paleozoic stratigraphy into the following six 

distinct tectono-stratigraphic megasequences that directly effect sedimentation 

and basin development of the Humber Zone. 

1. Late Proterozoic-Early Cambrian siliclastic synrift sediments deposited 

during the formation of the Iapetus Ocean: This sequence is 

composed of the Bradore Formation of the Labrador Group and is 



believed to have its upper boundary at the base of the Forteau 

Formation (Figure 2.2). 

9 

2. Early Cambrian-Early Ordovician passive margin strata containing 

shallow water carbonates that pass eastward into deeper marine 

shales: This gradation to deeper water sediments is directly related to 

thermal subsidence of the shelf post active rifting of the margin. This 

sequence begins with the Forteau Formation of the Labrador Group 

and continues upwards into the carbonates of the Port au Port Group 

and the Early Ordovician St. George's Group (Figure 2.2). 

3. The Early Ordovician-Middle Ordovician sequence beginning at the St. 

Georges Unconformity: A depositional hiatus of 3-4 m.a., it is believed 

that the unconformity is a direct result of extensional faulting due to 

westward migration of the flexural forebulge of the Taconic foreland 

basin. This sequence is composed of the Table Head Group 

containing predominantly shallow to deep subtidal limestones, and the 

Goose Tickle Group that is dominantly a muddy Taconic flysch 

including the Mainland Sandstones (Stenzel et aI., 1990) (Figure 2.2). 

4. This Taconic Foreland Basin Megasequence spans approximately 

Middle Ordovician-Early Silurian and is defined at its lower boundary 

by the Taconic Unconformity. This sequence is characterized by the 
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emplacement of the Taconic allochthon via overthrusting of basinal 

sediments. The Taconic allochthon is then overlain and onlapped by 

shallow marine siliclastic sediments of the Long Point Group (Figure 

2.2). 

5. The Late Silurian Salinic Orogeny provided continued imbrication and 

additional westward displacement of the Taconic allochthon along with 

erosion of the hinterland Salinic foreland and deformation of the 

eastern Cambro-Ordovician platform. Bounded at its base by a 

substantial 20 m.a. unconformity, the sequence contains fluvial sands 

and shales of the Clam Bank and Red Island Road Formations (Figure 

2.2) . 

6. The youngest preserved sediments in the area, this sequence is 

represented by the Carboniferous strata of the Codroy, AngilJe and 

Barachois Groups. The sediments display transtensional dextral 

reactivation of preexisting extensional faults (Le.: Round Head Thrust) 

following the compressional deformation of the Late Devonian Acadian 

Orogeny. These groups vary between fluvial sandstones, silts, shales 

and local lacustrine source rocks with marine evaporites. 
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Figure 2.2. Chronostratigraphic summary of western Newfoundland Paleozoic 

strata. Lithostratigraphic units are colored and ornamentation indicates rock type 

(From Cooper et aI., 1998). 
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2.3 Seismic Expression of Key Structural Features 

2.3.1 Triangle Zone 

A regional expression created late in the Acadian Orogeny, the triangle zone was 

originally recognized as a thrust front by Cawood and Williams (1988) and later 

further constrained by Stockmal and Waldron (1990) as a triangle zone. The 

triangle zone geometry is defined by an upper detachment thrust (Waldron and 

Stockmal, 1991) (Figures 2.3a, 2.3b), bounded at its base by a lower detachment 

surface located at the base of the allochthonous sediment package. 

The triangle zone involves Taconic allochthon basinal sediment thrust slices 

being forced between the Goose Tickle shales and the Lourdes Limestone of the 

Long Point Group. The compressional force and westward motion of the 

allochthon has caused the peeling back and westward dip of the Carboniferous 

strata (Figures 2.3a, 2.3b) . This compression has created the roof thrust upper 

detachment edge of the triangle zone at the base of the Lourdes Limestone. The 

subsequent basal detachment surface for the frontal tip of the Humber Arm 

allochthon in my opinion corresponds to the top of the carbonate platform 

sequence. Figure 2.3b clearly demonstrates an allochthonous wedge of thrust 

slices riding over a continuous package of seismic reflectors corresponding to the 

autochthonous carbonate platform. Waldron and Stockmal (1994) have 

interpreted considerable displacement of the Taconian allochthon westward from 
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its original location during the Acadian Orogeny as an accommodation for the 

triangle zone wedging. 

2.3.2 Round Head Fault 

15 

Originally interpreted by many as the Round Head thrust, this feature is the 

dominant structural expression of the Port au Port peninsula. It is present on 

land at the western edge of Port au Port as a large thrust fault that offsets the 

carbonate platform in some locations in excess of 3 kilometers of vertical offset 

(Figure 2.4). Orientation of the fault is less clear as it tracks off of the coast into 

Shoal Bay where prior to the late 1990's little seismic coverage existed. 

Stockmal and Waldron (1991) surmised that the Round Head thrust was actually 

a reactivated and inverted extensional normal fault that was formed initially 

during the Taconian extension. It is generally accepted that compressional 

forces brought on during the Acadian Orogeny inverted motion on this pre­

existing fault plane, thereby accommodating the present day expression 

previously discussed for the Port au Port Peninsula. 

Analysis of recent seismic data has allowed for a modified version of previous 

interpretations of the Round Head thrust and its expression and orientation within 

Shoal Bay. Cooper et al. (1998) used proprietary Hunt I PanCanadian seismic 

data from within the Bay to achieve what I believe is the most accurate 
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interpretation to date. They re-interpret the Round Head thrust as the Round 

Head fault, which remains in net extension within the Bay increasing in lateral 

offset as the fault tracks northward. 
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Cooper et al. (1998) states that the thrust visible on land (Figure 2.4) tapers to a 

zero offset null point somewhere within the Shoal Bay west of the tip of Shoal 

Point. The fault continues east and curves northward to the top of the Bay 

constantly in net extension. 

Figure 2.5 is a sample of one of the now public Hunt I PanCanadian lines used 

by Cooper et al. (1998) for the re-interpretation. The southeastern portion of the 

seismic line images the carbonate platform reflectors offset in extension to the 

southeast in comparison to the northwest end of the line. In the area of the 

Round Head fault the platform is not as cleanly offset as the thrust motion 

exhibited on the peninsula in figure 2.4. Figure 2.5 (OBC line 300) is interpreted 

with hanging wall and footwall cutoffs whose faults sole out into the same 

detachment surface. This structure is consistent on all of the seismic lines within 

the bay and will be mapped in greater detail in Chapter 6 (Interpretation). 
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2.4 Seism ic Exploration Data 

The seismic exploration data volume for the West Coast of Newfoundland and 

Port au Port area has increased significantly over the past 15 years. Interest by 

majors such as Hunt, PanCanadian and Mobil during the mid to late 1990's has 

generated a seismic data volume that has allowed a more detailed and better 

controlled interpretation of the region. 

2.4.1 Seismic Program 8924-H028-004E (Shoal Bay) 

During the summer of 1996 Hunt and partners acquired a 7 -line exploration 

seismic program directly within Port au Port Bay (Figure 2.6). The seismic 

survey was acquired by Western Geophysical using ocean bottom cables (OBC) 

and was designed to further understand the expression of the Round Head thrust 

within the bay. It appears that Hunt was seeking similar footwall antidine traps 

within the top of the carbonate platform such as that drilled in 1994 as Port au 

Port #1 (Figure 2.7). 

This Hunt survey generated new direct evidence of the Round Head thrust 

expression and orientation within Shoal Bay, such evidence allowed for the 

above interpretation by Cooper et al. (1998) as net extension of the Round Head 

thrust and therefore renaming of the structure as the Round Head fault (Figure 

2.5). 
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Port au Port #1 Discovery Well 

Shot Point 

o 

Figure 2.7. Cartoon of HuntlPanCanadian Port au Port #1 discovery well. 

Interpretation is based on line CAH 93-5, figure 2.4 (Government of NL, 

Department on Mines and Energy, 2003). 

Public release of the Hunt data in 2002 was instrumental during the interpretation 

phase of this current study. Three of the Hunt lines are located directly on the 

north, west and east sides of the current 3D volume (Figure 2.6). The high 

quality of the Hunt seismic lines adds excellent control to the interpretation as 

interpolations are necessary across poor data quality areas between the current 
I 

20 I 3D seismic data and the 1996 20 Hunt data. Chapter 6 (Interpretation) will 

include a more detailed look at all of the Hunt seismic lines and the current data; 



how the datasets interrelate and how the Hunt data provides control on the 

interpretation in poor data quality areas. 

2.5 Exploration Drilling Data 

22 

The number of exploration wells that have been drilled in and around the Port au 

Port area is limited in comparison to a similar geographic area of Western 

Canada (i.e. Alberta) but has continued to grow throughout the 1990's. Currently 

the Newfoundland and Labrador Department of Mines and Energy registers the 

total number of wells d~illed in the Humber zone including sidetracks at 18 

(Figure 2.8). Directly on the Port au Port Peninsula and adjacent in near shore 

waters the Government lists the total number of exploration wells at 8 (Figure 

2.9). 

2.5.1 Shoal Point K-39 

The Shoal Point K-39 well drilled in 1999 is located at the center of the current 

study area (Figure 2.9). It appears that the K-39 well location was selected using 

the previously discussed seismic of the 1996 8924-H028-004E Hunt et al. 

seismic program. The desired target for drilling was expressed by the partners 

as a closed carbonate platform structural high on the footwall of the Round Head 

fault just NNW of the tip of Shoal Point. 
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Figure 2.8. Location of exploration oil and gas wells for Western Newfoundland 

as of February 2003 (Government of NL, Department of Mines and Energy). 



Figure 2.9. Location of exploration oil and gas wells on the Port au Port 

peninsula as of April 2002 (Government of NL, Department of Mines and 

Energy). 

2.5.1.1 Drill Results 
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As previously stated the K-39 well was plugged and abandoned as a water wet 

dry hole. The following table is a Hunt I PanCanadian geological summary of the 

well representing a condensed synopsis of the geological strip log. The Round 

Head fault intersection is annotated in yellow and corresponds to a TVD of 
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1899m, this fault is extremely important because to correctly test the top of the 

footwall carbonate platform the well should have exited the fault into a geological 

formation above the Table Head Group (Figure 2.2). 

Table 2.1. Complete list of geological tops for Shoal Point K-39 (From released 

drilling operations report). 

FORMATION LOG TOPS (m) TVD (m) THICKNESS (m) 
KB 10.56 0 
Humber Arm Surface Surface 1031.5 
Allochthon 
Shales 
Humber Arm 1031.5 943 1175.5 
Allochthon 
Carbonates 
Round Head 2207 1899 
Fault 
Catoche 2207 1899 134 
Fault 1 2251 1940 
Fault 2 2296 1980 
Boat 2341 2021 292.5 
Harbour 1 
Boat Harbour 2369 2047 
Discon.1 
Fault 3 2452 2122 
Boat 2461 2131 
Harbour 2 
Boat Harbour 2490 2158 
Discon 2 
Fault 4 2535 2200 
Fault 5 2570 2234 
Petit Jardin 
- Felix Mem. 2636.5 2298 45.5 
- Big Cove 2682 2343 39 
Member 
- Camp bells 2721 2381 190 
Member 
March Point 2911 2571 22 
Hawke Bay 2933 2933 102 
FTD 3035 



26 

The following figures are VSP and the sonic log displays from the K-39 well. 

Both figures are annotated for key faults and stratigraphy in TWT, TVD and 

measured depth. These results allow correlation between the actual cuttings of 

the strip log to a measured quantitative geophysical technique. Consideration of 

all three information volumes therefore enables the accurate selection of the 

Round Head fault location along with important geological tops. 

The overall importance of this well information is that during the final 

interpretation of the current seismic data volume there can be a comparison of 

interpreted fault locations and horizon tops with known results from the K-39 well. 

This comparability will allow a better understanding of the overall validity of the 

current studies seismic data. 
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Figure 2.10. K-39 VSP results showing corresponding values for one-way transit 

time, true vertical depth (TVD) and raw depth (modified from PanCanadian VSP). 

Round Head fault location is inferred from geological strip log information. 
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2.6 Geological Summary 

Dominated by complex structures and discontinuous heavily faulted stratigraphy, 

the Shoal Point area will require consideration of all available seismic and well 

data from the area. The interpretation section of the thesis will focus in from the 

six distinct tectono-stratigraphic megasequences of Paleozoic stratigraphy 

previously defined by Cooper et al. and discuss the basin stratigraphy by 

subdivision of the basin geology into four dominant geological and stratigraphic 

units, which are as follows: 

1. Taconic Allochthon sequence (Carbonates and basinal shales 

from the Ordovician platform sequence). 

2. Ordovician Carbonate platform sequence (Port au Port Group, 

St. George Group, Table Head Group, Goose Tickle Group). 

3. Pre-Ordovician Labrador Group (Primarily clastics of the Hawke 

Bay, Forteau and Bradore Formations). 

4. Grenvillian Basement. 
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3.0 Data Acquisition 

3.1 Acquisition Overview 

The completion of the Shoal Point survey with the achievement of the previously 

stated goals while adhering to a strict budget, timetable and environmental 

commitment proved demanding and included numerous logistical and technical 

obstacles. 

Logistically the survey was complex due to the liaison between marine and land 

seismic crew and equipment. The acquisition included aspects of land 

geophones, marsh geophones, land dynamite sources, marine air gun sources, a 

large crew, land vehicles and several vessels, including Memorial's research 

vessel the M.V. Lauzier. Technical obstacles included the use of a conventional 

streamer as an ocean bottom cable (OBC), obtaining adequate fold coverage 

and offset distribution, and sensitivity to the area's active shellfish and groundfish 

industry. 
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3.2 Seismic Survey Design 

Design of the Shoal Point seismic survey focused around obtaining the highest 

quality data given the logistical and technical challenges of the area. Three key 

initial issues constraining the design of the survey were: 

Shallow water depth of Port au Port bay. 

Maintaining high data fold coverage. 

Obtaining near offset seismic data. 

Due to the extremely shallow water depths in the bay around Shoal Point it is 

impossible to obtain conventional marine seismic within 1 DOOm of land and the 

primary area of interest just north of the tip of Shoal Point. Because of this it was 

decided that optimal fold coverage and offset distribution would be achieved 

using three different configurations of seismic data acquisition. 

1. A conventional 20 seismic landline running N-S on Shoal Point. 

2. A series of 11 marine source-only lines firing into the land receivers. 

3. Three conventional 20 marine seismic lines running along the 

perimeter of the survey area where water depth was sufficient. 
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3.2.1 Land Seismic 

The receiver spread for step 1 was designed to contain 111 land geophones and 

37 transitional marsh hydrophones at 25m intervals (Figure 3.1). MUN's high­

resolution solid marine streamer was also considered for use in the receiver 

spread as an DBC. The marsh hydrophones combined with the DBC were key 

to improving the distribution of near trace offsets and data coverage at the tip of 

the point in the primary zone of interest. The streamer would add an additional 

120 channels at 12.5m to the receiver spread. The seismic source for land 

acquisition was a single 2kg dynamite charge set at a 5m depth at 50m intervals. 

3.2.2 Marine shot lines 

A series of marine shot lines with 25m shot intervals was designed to be fired into 

the same receiver spread used for the land acquisition (Figure 3.1). Line layout 

was positioned such that the survey would achieve maximum fold and source­

receiver offset distribution. The seismic source for the marine shots involved an 

air gun array of 320 in3 (5.24 L) as 8 X 40 in3 (0.66 L) cubic inch air guns timed to 

fire simultaneously. 

In figure 3.2, the 3D survey is designed for the marine shots into the land receiver 

spread. Note the gap in fold coverage at the south central section of the fold 



display, this area corresponds to the location of Shoal Point and is a seismic 

dead zone. 

3.2.3 Conventional marine lines 
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Three 20 marine seismic lines were strategically placed on the north, east and 

west sides of the point. Acquisition of the 20 marine lines was planned to help 

constrain data and velocity information from within the 30 area and to provide 

near-offset data for the 30 bins that otherwise would have few or no COP traces. 

Consideration of all three aspects for maximum data coverage and best possible 

geological information led to the final pre-acquisition survey design (Figure 3.3). 

This shows a rough location of the seismic sources and receivers with respect to 

the bay and surface bathymetry / topography. 
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marine shot lines (red), the land receivers (center-line red), the transitional marsh 

receivers (white) and the aBC cable (blue). 
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Figure 3.2. Design fold model for marine shot lines into the land receiver spread. 

(Maximum fold of 50 = orange, light blue = 25, deep blue = 5). 
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3.3 Seismic Acquisition 

Geographically the Shoal Point acquisition was within Universal Transverse 

Mercator map projection (U.T.M) zone 21, with all source I receiver coordinates 

referenced to the North American Datum 83 (NAD 83). The 3D binning grid that 

was designed to cover the acquisition footprint is as follows: 

Northing 5395387.5 Northing 5395387.5 
Easting 360900 Easting 368350 

~---------------. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .. _------------_ .. 
Northing 5386400 Northing 5386400 
Easting 360900 Easting 368350 

Figure 3.4. UTM locations corresponding to corner locations of the 3D bin grid. 

Seismic acquisition was planned for early fall (weather and fisheries concerns) 

but began on November 30th 2000 with a budgetary timetable allowing for a 
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maximum of 2 weeks of acquisition. Upon arrival the acquisition plan was to 

adhere to the above design parameters and begin with collection of the 2D 

seismic landline. Due to extremely poor weather, it was not possible to deploy 

the marine streamer as an OBC. Therefore this part of the acquisition was 

deleted from the project plan. Emplacement of the marsh geophones also 

proved difficult as problems were encountered with anchoring them to the sea 

floor because of a strong rip tide at the tip of Shoal Point. High seas combined 

with strong currents led to all 37 of the marsh phones being extremely noisy 

when they were in place. 

3.3.1 Land Acquisition 

The Shoal Point 2D line PP-01 was acquired as a conventional crooked seismic 

landline (Figure 3.5). Data were recorded in SEG-Y format using an ARAM-24 

system. Acquisition source and receiver parameters in Table 1 are consistent 

with the desired parameters modeled during the design stage. The line geometry 

seen in figure 3.5 is a result of the geophones being positioned along the 

shoulder of an existing roadway. This configuration was deemed adequate and a 

straight N-S line was not used primarily due to timing , environmental and cost 

constraints. 
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Acquisition source and receiver parameters along with instrumentation 

specifications are listed in tables 1 and 2. The final land seismic line acquired 

was a 3km, 56 shotpoint, 148 channel record dataset recorded for 6sec TWT with 

a sample rate of 1 ms. Seismic acquisition began at the southern end of the line 

and stepped northward. A recording truck, located on Shoal Point between 

stations 1103 and 1104 controlled acquisition of the dynamite source data. 

Table 3.1: Survey Source / Receiver Parameters 

Marine Source Land Source 
Ener Source Sleeve Gun Arra Ener Source .. 

Charge Size Displacement 5.24 L 
I-

Avera e Depth 5.0 meters 
Avera e De th 3.0 meters Source Interval 50 meters .. 
Source Interval 25 meters Receiver interval 25 meters 

I-

Table 3.2: Instrumentation Specifications 

ARAM24 
Number Channels 148 

.... 

.... Auxiliary Channels 3 

.... Sam lin Interval 1.0 millisecond 
I- Record Length 6.0 seconds 

I-
Recordin Filter Low Cut: 3 Hz 

High Cut: 410Hz 
Ta e Format 

t-
SEG-Y 

t- Geophone Type Mark Products 
Frequency 10Hz (UM-2) 
Arra 6 over 25 m 

... Spread Description All live, no roll/gap 
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3.3.2 Marine Acquisition 

The 3D survey acquisition involving the marine shot lines was also affected by 

weather. Hurricane force winds caused excessive sea conditions and therefore 

numerous consecutive days of downtime. Even in the relative shelter of the bay, 

the sea-state was too rough for safe operating near land. The final 3D shot line 

distribution seen in figure 3.6 includes a total of 11 marine shot lines fired into the 

land receiver spread. The survey map is underlain by the resultant actual fold 

distribution of the marine shot portion. Due to the poor weather resulting in 

substantial downtime and the 2 week timetable, we were not able deploy the 

streamer to collect any of the designed conventional 2D marine seismic data. 

3.3.3 Acquisition Summary 

Labeled a transition zone seismic survey, it is important to understand that the 

project is not truly transition zone nor is it conventional. The combination of final 

techniques used was primarily focused around marine shots being fired at long 

offset into a spread of geophones that were all on land. In all, the field 

operations resulted in the acquisition of 60 gathers equaling 9060 traces of 2D 

land data and 1591 gathers equaling 192263 traces of 3D transition zone data. 

These two datasets form the basis for the processing and interpretation in this 

thesis. 



Q.) 
+-' 

95000.000-: 

94500. 

94000. VV\)'- ,I 

93000.000 = 

92500.000-: 

92000. 000-= 

91500.000-= 

11:1 _ 

~ 91000.000-
~ -
l... o _ 
8 90500.000 _ 

:>-

89500. VVV'-il , 

89000. 

88500. 

88000.000 

86500. 

Figure 3.6. Shot point and receiver map showing positions of acquired marine 

42 

lines and land receivers along with data fold distribution (red = 50+ fold, green = 

25, light blue = 5, deep blue = 0). 
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3.4 Seism ic Data Quality 

The quality of collected seismic data varies significantly from shot line to shot line 

over the survey area. Overall the marine shot lines must be described as poor to 

extremely poor quality data. The records are extremely noisy with the marsh 

hydrophones being excessive to the point of not being usable. The following 

figures represent several typical raw shot records with no filters or scaling. Note 

that there is commonly abundant ringing of the first arrivals with few identifiable 

primary seismic events. 

Due to the exclusion of the marsh phones and the inability to use the streamer as 

an aBC, the overall source-receiver offset distribution of the dataset has become 

even more heavily weighted to long offset traces. The majority of the data falls 

into offset ranges of 2000m to 4000m, with the nearest offset data available 

being on the order of 900m. As a result of this data quality and the offset issues 

many processing challenges arise. Conventional processing techniques and 

"rules of thumb" cannot be applied to the dataset. This is discussed more 

extensively in chapters 4,5 (2D and 3D seismic data processing). 
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Figure 3.7a. Sample unfiltered/unsealed shot records for line 1 east of the marine 3D survey. 
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Figure 3.7c. Sample unfiltered/unsealed shot records for line 2 west of the marine 3D survey. 
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Figure 3.7d. Sample unfiltered/unsealed shot records for line 3 east of the marine 3D survey. 
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Figure 3.7j. Sample unfiltered/unsealed shot records for line 7 of the marine 3D survey. 
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4.0 20 Seismic Data Processing 

As discussed in Chapter 3,20 acquisition generated a conventional 60 record 20 

landline. All of the following processing was completed with accomplishment of 

the initial project goals in mind. The Shoal Point 20 landline will be extremely 

important to the processing and interpretation 30 phases of the project. 

4.1 Processing Overview 

The immediate goal of almost any seismic processing operation is the production 

of the best possible stacked or migrated section. Completion of this goal involves 

an extensive sequence of testing and application of various filters and algorithms 

that manipulate the data to achieve the best possible result. This chapter 

includes a detailed description of the testing and techniques used to achieve the 

best stack for the Shoal Point 20 dynamite landline. 

4.2 Hardware I Software 

4.2.1 Hardware 

All processing and interpretation of seismic data was completed on dual monitor 

UNIX based Silicon Graphics work stations at Memorial University of 



Newfoundland, in the Earth Sciences Department's seismic processing 

laboratory. 

4.2.2 Vista® 

56 

A Seismic Image Software (SIS) package, Vista® was used for the modeling 

portion of the survey design. This seismic processing package is capable of both 

20 and 3D processing and runs on an NT platform. 

4.2.3 ProMAX® I Seisworks® 

ProMAX® and Seisworks® are both software packages from the Landmark 

Graphics Corporation suite of geological and geophysical processing and 

interpretation tools donated to Memorial by Landmark. ProMAX® is considered 

industry standard and was used to complete all of the 20 and 3D seismic data 

processing . Seisworks® an industry standard interpretation package was used 

for both the 20 and 3D seismic interpretation. 

4.2.4 Gocad® 

Gocad® is an extremely powerful earth science software package developed by 

Earth Decision Sciences. For the current data Gocad® was used for 3D 

visualization and mapping of the interpreted seismic surfaces from Seisworks®. 
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4.3 20 Data Testing and Processing Parameters 

4.3.1 Data Loading 

Field file data was recorded in SEG-Y format to Bmm Exabyte digital audio tapes 

(dat). Files were extracted at Memorial using UNIX workstations at which point 

the data was read in to ProMAX® and converted to a Landmark Graphics 

proprietary format for data processing. 

4.3.2 Crooked Line Geometry Assignment 

Due to the use of the existing roadbed for the line, the receiver layout was a 

"crooked" seismic line needing crooked line binning strategies for geometry 

application. Crooked line processing is different from conventional straight line 

processing in that the processor can select the COP binning track to follow the 

bends of a crooked receiver line. This is contrasted to straight line geometry 

where the COP binning track has to be a straight line. Use of a straight line 

geometry with an extremely crooked receiver line will destroy the fold and COP 

offset distributions. Therefore to maintain a broad distribution of trace offsets and 

higher fold levels, crooked line binning strategies are necessary. 

Navigation data collected during acquisition using a portable OGPS Trimble 

system for both shot and receiver positions was converted to ASCII format and 
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merged with seismic data in the ProMAX® geometry spreadsheets. Figure 4.1 

contains a sample from the source and receiver spreadsheet displaying some of 

the key parameter fields such as field file identification (FFIO), station #, X 

coordinate, Y coordinate and the Z coordinate. Figure 4.2 is a plot of surfical 

elevation along the point; note there is very little relief with elevations varying 

from Sm to just below sea level for the marsh transition hydrophones. 

In figure 4.3 the COP locations are illustrated and are colored to indicate varying 

source-receiver offset ranges (note the position of the receiver locations and the 

coverage of the overall data distribution). The s-shape of the receiver-shot line 

(black) has produced an east-west range of traces such that most COP bin 

locations regularly have offsets longer then 3S00m. 
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Figure 4.1. (a) Source spreadsheet ( b ) receiver spreadsheet from the ProMAX geometry assignment process showing 

the primary parameters required for geometry application. Ul 
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Figure 4.2. Cross-plot of COP elevation in meters along the Shoal Point landline 

(including marsh geophones). 
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4.3.2.1 Binning 

The use of the crooked line geometry process allows definition of the exact size 

and location of the binning diagram. Using the above figure a binning track was 

designed to follow the general trend of the receiver line while allowing for the 

inclusion of maximum COP's and offsets in each bin. Various bin dimensions 

were tested with particular care given to the value in the X direction. Due to the 

large surficial range of COP locations it would be detrimental to the final output to 

design an oversized bin that would be large enough to contain each and every 

COP. In doing so the data would be smeared excessively across the bin, when 

in theory it should represent a single point location on the reflecting surface. 

Final bin parameters of 12.5m (inline) x 100m (xline) were selected for optimal 

fold and source-receiver offset distribution. Figure 4.4 represents the final 

binning diagram showing bin size, and source-receiver locations. The designed 

binning diagram generates an average fold coverage of approximately 25 traces 

per bin. 

4.3.3 Trace Kills I Editing 

In general the land data was fair in quality with moderate signal to noise ratios. 

The 37 marsh transition hydrophones were extremely noisy with very poor signal 

level (Figure 4.6). For this reason I chose not to include any of these channels in 

the data processing. 
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Misfires I dead shot gathers that were killed included files 1002,1005 and 1035. 

All FFIO's were digitally displayed and analyzed for frequency content, noise 

levels and dead traces. 

In the following figure a typical field file I amplitude spectrum is displayed. It is 

clear the dominant frequency range is low in the 10Hz - 30Hz range and that 

little signal is present above 50Hz. 
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Figure 4.5. A typical shot record adjacent to its corresponding amplitude 

spectrum. 



Each field file was edited to have all noisy traces, dead traces, misfires, signal 

bursts and noise trains such as ground roll and air blasts removed. 

The following shot record is representative of the dataset and is annotated 

demonstrating typical features of land seismic data: 

1. First arrival 

2. Primary arrival 

3. Air blast 

4. Ground roll 

5. Noisy channels 
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Figure 4.6. Representative land shot record annotated for its characteristic 

seismic attributes. 
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4.3.4 Refraction Statics 

In land seismic acquisition reflection times are affected by irregularities and 

variations in the near surface geology. Statics corrections are applied to 

compensate for the effects of variations in elevation, weathering thickness, 

weathering velocity, or reference to a datum. A simple near surface model 

(Figure 4.7) outlines the basic geometry of the source-receiver relationship, with 

the surface I receiver elevation, source elevation, thickness and velocity variation 

of the weathering layer. 

Processi 
Datum 

Bedrock 

Final 
Datum 

Simple Statics Source-Receiver Model 

Receiver 

t 
Depth 

Shot Receiver s atic 

Shot static 

Surface Elevation 

Shot static = final datum - surface elev + depth I replacement velocity 

Rec static = [ final datum - elev + depth I replacement vel] - uphole 

Final static = - [ proc datum - final datum I replacement vel] 

replacement velocity = bedrock velocity 

Figure 4.7. Diagram of statics attributes (ProMAX 2D Reference Guide, Volume 

2, 1998 and Yilmaz, 2001). 
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Positioning of travel times to a new datum requires correction for the near surface 

weathering layer and differences in elevations of the source and receiver stations 

(Yilmaz, 2001). Calculation of the field static time shift by replacement of the 

weathering layer velocity with that of an average bedrock replacement velocity 

allows for transformation of source and receivers to a common datum. 

The weathering velocity is usually calculated using uphole times recorded by the 

seismic operators during acquisition. 

v=d/t (4.1) 

v= velocity 

d = source depth 

t = uphole travel time 

Unfortunately during the acquisition of the Shoal Point landline no such times 

were recorded. Therefore discussion with the seismic operators and knowledge 

of the area allowed for estimation of the weathering layer as glacial till to boggy 

interval for which I've assigned an average velocity of 800m/s. 

First break picks are generally the refracted energy associated with the base of 

the weathering layer I top of bedrock layer (Yilmaz, 2001). Normally seen as the 

first seismic energy on a shot record the first break times can be picked manually 

or automatically (Figure 4.8). 
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Figure 4.8. Field file 1024 with interactively picked first breaks high lighted in red. 
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First break times associated with the refracted arrival times are then used in an 

inversion scheme to estimate the near-surface model and calculate the overall 

statics. 

Refraction statics analysis in ProMAX® enabled the automatic picking of first 

break arrival times, which when input into the Refraction Statics Analysis module 

allows for interactive adjustment and smoothing of pick times, layer thicknesses 

and velocities. ProMAX® refraction statics analysis contains several methods of 

refraction statics calculation, including: 

Diminishing residual matrices method (DRM). 

Generalized reciprocal method (GRM). 

Comparative visual analysis of stacked data with each of the tested algorithms 

applied indicated that the diminishing residual method yields better results for the 

current seismic data. The overall difference that correct refraction statics 

analysis can make on a final stacked section is huge. The correct static shift 

results in a better alignment of the trace data and therefore increases the overall 

coherency of the reflectors dramatically. The following figures demonstrate key 

interactive steps followed for calculation of the final refraction statics. Figure 4.10 

compares stacked data with and without refraction statics applied; the increased 

data quality and reflection resolution is clearly visible. 
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4.3.5 Frequency - Wavenumber (FK) Analysis 

The goal of FK analysis is to remove systematic noise signal from the seismic 

dataset. FK analysis allows the processor to simultaneously view both T-X 

domain data adjacent to F-K domain data for editing purposes. ProMAX® applies 

an FK filter which internally transforms the data to the F-K domain from the T-X 

domain using a two-dimensional Fourier Transform. FK filters are designed to 

either pass or reject the selected portion of the FK spectrum. Typical polygon 

filters can be interactively designed on a record to reject the specific area of 

noise in question. 

For the current data interactive polygons were designed. Each record was 

viewed separately as the polygons were modified as needed to remove the low 

frequency noise and any aliased signal. The following figure (Figure 4.11) 

displays both the T-X and F-K spectrums for a representative gather, the figure is 

annotated showing the reject polygon area, aliased data, low frequency noise 

and seismic signal. Figure 4.12 is a shot record post FK filter, it is clear from the 

FK spectrum that the area within the reject polygon has been removed. The T-X 

domain shot record is visibly cleaner with less noise and more continuous signal. 
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4.3.6 Pre-stack Top Mute I Surgical Muting 

Muting can consist of various forms such as top muting, bottom muting and 

surgical muting to name the most common. Top mute design is focused on 

removal of the direct arrivals and any refracted events in the upper section of the 

record (Figure 4.13). Trace muting can be considered the exclusion of specific 

zones of seismic data selected on the traces in the time domain. Pre-stack top 

mute zones were defined interactively and applied to the dataset on a shot by 

shot basis. The use of surgical muting was primarily for the removal of high 

amplitude air blast in the lower portions of the shot data (Figure 4.13). Again this 

was designed interactively and picked individually for each shot record as 

required. 

4.3.7 Scaling 

The introduction of amplitude scaling to the data is crucial for compensation and 

gain adjustment of the seismic signal. As the signal spreads and travels through 

the earth, the wavefront expands and energy is dissipated. The implementation 

of a correct time-variant scaling technique helps improve the signal content in the 

lower half of the shot records, enhancing the overall signal levels. 



81 

FFID 
1028 

CHAN 
1 16 31 ~~ 61 76 
I I I 

I III ! \J I 11lM-t 
-
-

..... :1 500 . ,.,., 

III - J 

~~ 
"~ ~ - OJ 

, ) , - ~ '1,) ~ ;. 
!~ ) ~ J. - ~ ... ~~) 

1000 
MIl ~ ~ ? 

) ) ... 
I ~~'l ~ 

~ ~ 
) ) ~C1 

- 1,( .. ;. ........ 
~n~ ) ~< 'fiiIIK'- .. ~ ~ ~ ~I 0 ~l) - ~~. • 1500 ~ 

~ ~~' 1 , ~ , - f(: ~ I"" ~. 
, 

: l '" ~ 

~~ ) " - <; ~ 1 2000 ( - ~ ~ ~ } ,. ,.. - • ~) .. -
- t , 'III' ~( ~ ) ~ ) ~ 

~ 2SOO-
r;, • III - ,. 

) )}j } ~ )) ~ - - ) ) 
~ .,. - ~.' ~ ~~)) )) 1\ t E - ) ' - 3000 ell )J W ) , ~< " E : :I ~~~. )) f I ~ ))~ ~ ) ~ ~ , 

) 
. ) ~ 

~ J,')j ~) ) r( ~ )\~ 
3SOO ;. \} -.' ~. 'i ')~ ~ ~\i~ I :.' 

, t))) ~' - .~ , 
-~4.::' 'i. ). ) a..: ... , 

d q()()() , .... 
1<: 

} ~ ~~~ ~ , .~; ?' -
' .~ - ~ o:s.~ • ~.., :.< ~ In. ~ ~ -- ) 

4SOO • i!:P 
~ - i 

) ~~ . ~ - ~ 

- ,.,., 
I J! ~ !( ~ ~ 

~ .~ - ;~ " . 'O!~ sooo , 
~ ~ ~~ ~: --- ~ - .I ~ ,U' l -
~ ~ ~\ ~. 

~ - :a~ ~ -ssoo .... ~, ?1 
~ , ,~ ~~ 

R :.., ~m -
J ~ 'H 'IIt'ft:--

~ ~nF<~ ',. ~ ~ ~ ~ 
~ ...... .".. r i"\"'~ ,~I' 

Figure 4.13. A typical land shot record showing the location of the pre-stack top 

mute (red) and surgical mute (green and blue). 



82 

Two dominant effects on a propagating wave field that account for the visible 

decrease in seismic signal characteristically seen with the increase of TWT on all 

shot records are: 

1. In homogeneous media energy density decays 

proportionately to 1 I r2 (spherical divergence), where r is 

the radius of the wavefront (Yilmaz, 2001). i.e. deeper 

signal penetration equals an increase in r and a decrease 

in energy density. 

2. Frequency content of the original signal changes in a 

time-variant manner such that high frequencies are 

absorbed more rapidly by the media than low frequencies 

(Yilmaz, 2001). This directly results in lowered resolution 

capabilities with time I depth. 

The gain function for geometric spreading compensation is (Yilmaz, 2001): 

g (t) = v 2 (t) t / Vo 2 to (4.2) 

Vo = the velocity at a specified time to 
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A correction for spherical divergence was applied as an amplitude equalization 

method. Figure 4.14 is an example of shot data before and after application of 

the scaling. This clearly demonstrates the effects of correct scaling on the overall 

signal character. 

4.3.8 Trace Equalization 

The primary effect of trace equalization is the removal of any spurious bursts of 

signal missed during editing and the overall adjustment of traces to a similar rms 

amplitude level (Yilmaz, 2001). Different from the gain scaling functions 

described above, trace-balancing functions are time-invariant typically using rms 

or mean amplitude criterion for correction. 

4.3.9 Deconvolution 

Conventionally applied pre-stack, the goal of deconvolution is to improve 

temporal resolution by collapsing the seismic wavelet to a spike and the 

suppression of signal reverberation (multiples). Spiking deconvolution is used 

predominantly for spectral whitening while predictive deconvolution compresses 

the seismic wavelet attenuating reverberations and short period multiples 

(Yilmaz, 2001). The presence of multiples in this data is questionable and 

difficult to identify due to data quality and noise levels. Therefore testing of the 

current data involved consideration of both spiking and predictive deconvolutions. 



1811 1810 

11 ,. 121 ,. 
I 

2GO -

4110 .-

----
10lI0 • 

12GO -

14110 -

,--
1100 

1000 -'-

IS-

MID 

Il00 -

Il00 -

JDaO -

(a) (b) 
Figure 4.14. (a) A land shot record prior to correction for spherical divergence gain function. (b) Post gain the 

same shot is now more even in signal content and the carbonate platform reflections are enhanced. 

2GO 

4110 

--
,-
14110 

00 
+:>. 



85 

Generally an autocorrelation function (ACF) display representing a zero-phase 

time series will indicate the location of coherent multiple reverberation while 

limiting the influence of random noise. Selection of a prediction lag / gap from 

the first or second ACF zero crossing followed by selection of the operator length 

defining the area selected for whitening is the rule of thumb. The following tables 

list gap and length times that were tested for both deconvolutions. 

Table 4.1: Predictive deconvolution gap-testing parameters. 

Type of Deconvolution Operator Length (ms) Gap Test Lengths (ms) 
Predictive 128 8 

16 
32 
64 

Table 4.2: Predictive deconvolution operator length testing parameters. 

Type of Deconvolution Operator Length (ms) Gap Test Lengths (ms) 
Predictive 64 64 

96 
128 
256 

Table 4.3: Spiking deconvolution operator length testing parameters. 

T}'Pe of Deconvolution Operator Length (ms) 
Spiking 8 

16 
32 
64 
128 
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Figure 4.15 shows a series of deconvolved shot gathers used during processing 

for the testing of the above parameters. Attention was focused on the platform 

reflectors and the deconvolution operator's ability to enhance those reflectors 

while improving the appearance of the overall record. Careful comparison of 

both techniques indicated that the application of a predictive deconvolution with a 

gap of 32ms and an operator length of 128ms yielded the best results. 
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4.3.10 Velocity Analysis I NMO Correction 

In a true zero offset situation, the need for velocity analysis would be moot as 

there is no hyperbolic moveout (NMO) and traces will inherently stack 

constructively increasing the signal to noise (SIN) ratio. But, in most seismic 

exploration the increasing offset distances between the source and receivers 

generates a hyperbolic reflection pattern with increasing normal moveout at 

larger offsets. In this situation if stacking where attempted the traces would add 

in a deconstructive manner and reduce the SIN ratio. Testing to find the correct 

velocity is important as selecting too slow a velocity will generate an excessive 

amount of NMO correction pulling the event past horizontal into an upward curve 

(Figure 4.16c). Conversely too fast a velocity will leave the event hyperbolic 

(Figure 4.16d), either scenario will result in deconstructive stacking of the signal. 

0.5 Rmo.s 

1 1 

1.5 1.5 

Figure 4.16. ( a ) ( b ) ( c) ( d ) 
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Figure 4.16 shows different NMO results from slow, fast and correct velocity 

picks. (a) is an uncorrected hyperbolic reflection. (b) is the reflection NMO 

corrected using the proper velocity. (c) is the reflection NMO corrected using 

too slow a velocity. (d) is the reflection NMO corrected using too fast a velocity. 

Velocity analysis followed by NMO correction is possibly the single most 

important step in the sequence of seismic data processing prior to stacking. 

Normal moveout is defined by Yilmaz (2001) as the difference between the two­

way travel time for a specific reflector at a given offset and the two-way travel 

time at zero offset. 

NMO = t- to (4.3) 

Consider the travel time equation for a horizontal reflector as a function of offset. 

f = t0
2 + x2 Iv (4.4) 

x = source-receiver offset 

v = velocity (average velocity of the reflector) 

to = zero offset time 

t = travel time 
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Insertion of the correct velocity into equation 4.4 allows calculation of the normal 

moveout. This value can then be applied to the seismic data correcting the data 

to that for zero offset, thus allowing for constructive stacking and signal 

enhancement. 

A conventional velocity analysis using semblance displays, offset gathers and 

velocity function stacks was used to interactively pick the subsurface velocities. 

The function of the semblance analysis is to measure the coherency of the signal 

along the hyperbolic trajectory of the reflection (Yilmaz, 2001), denoting the 

location of maximum coherency and ideal velocity on the velocity spectrum as an 

anomalous high "bulls eye". 

Velocity analysis was performed along the Shoal Point line at 250m intervals 

using offset sorted super gathers created by summing 7 adjacent COP's around 

the selected analysis location. 

Figure 4.17 is a typical interactive velocity analysis display. The overall quality of 

the semblance spectrum is obviously not ideal, but using information from 

previous seismic exploration data (Hunt et aI., 1996) combined with geological 

knowledge of the area appropriate velocity functions were picked. 



Figure 4.17. Typical semblance velocity analysis display containing the semblance plot, the super gather and velocity 

function stack panels. The picked velocity function is visible on the spectrum in black. \0 ...... 
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4.3.11 Post NMO Stretch Mute 

Stretching of the seismic wavelet is unfortunately an unavoidable characteristic of 

correcting large-offset reflection signal for normal moveout. Particularly for 

shallow events with large-offsets the normal moveout correction may result in 

excessive wavelet stretching. This distortion of frequency characteristics then 

renders the signal inappropriate for addition in the stacking process. Yilmaz 

(2001) quantifies wavelet stretch as: 

L1 f / f = L1 t nmo / to 

f = dominant frequency 

Lt f = the change in frequency 

Lt t nmo = NMO correction 

to = zero offset time 

(4.5) 

Removal of this problem is accomplished by muting of the stretched zone in the 

COP gathers. Stretch mutes can be applied both automatically and manually. 

Automatic muting uses equation 4.5 to numerically quantify the amount of 

wavelet stretch, which can then be expressed as a percentage of the overall 

possible limit. This allows the processer to then specify for the desired amount of 

wavelet stretch. In this case I have allowed for 30% NMO stretch to the data 

(Figure 4.18). Conversely the mute may be selected interactively by the 
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processer allowing for a more reliable mute application in certain processing 

situations. 

4.3.12 Residual Statics 
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Application of residual statics correction is one final alignment of the seismic 

trace data. Using the ProMAX 20 Maximum Power Autostatics, the residual 

static shift was calculated by maximizing the COP stack power. Autostatics 

horizons were interactively picked on the stacked section (Figure 4.19). These 

picked locations are then used for the final calculation of residual statics. The 

effect of residual static trimming can be dramatic and generally is able to line up 

coherent reflections, making interpretation and correlation easy and more 

reliable. Figure 4.19 compares the 20 structural stack before and after 

application of the final residual statics. The carbonate platform reflectors show 

the most visible correction and shifting of the trace data after application of the 

residual static shift. 

4.3.13 COP Stacking 

Following correction for normal moveout the seismic reflections are ready for 

COP stacking. Stacking can be considered a summing of trace data at varying 

offsets to a single trace mimicking a zero-offset signal. 
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The effect of this process is primarily to increase the signal to noise ratio and 

render a true zero-offset section. 

For the current dataset a max I min CDP stacking process was selected. This 

function searches and removes the samples with the highest and lowest 

amplitude from the stack; one final step in removing any spurious amplitude 

spikes or non-representative lows. 

4.420 Processing Conclusion 
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Overall processing of the Shoal Point 2D landline went well considering the data 

quality and the structural complexity of the area, producing an acceptable seismic 

image of the subsurface geology. The final processing flow chart that was 

applied to the data is shown in figure 4.20. The Cambro-Ordovician carbonate 

platform (1000ms - 1200ms TWT) is properly imaged as a continuous north­

dipping horizon corresponding to regional seismic and geological data. The 

deeper strong events I have interpreted as internal reflectors of the Grenvillian 

basement (Figure 4.21). A more detailed interpretation of the 20 landline will 

follow in Chapter 6, Interpretation. 
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Figure 4.20. Flow diagram showing the processing steps used on the 20 data. 
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5.0 3D Seismic Data Processing 

As discussed in Chapter 3, 3D acquisition generated a non-conventional 1591 

record 3D seismic data volume. Again the following processing was completed 

with accomplishment of the initial project goals in mind. 

To demonstrate a novel and cost-effective technique to acquire, 

process and interpret 3D data in a shallow water transition zone. 

To develop a better understanding of the complex geology and 

tectonic history of the area. 

To provide a seismic image at the Shoal Point K-39 well location. 

Create a 3D mapped surface to the top of the Ordovician 

carbonate platform. 

Correct processing is necessary to achieve the best dataset for interpretation and 

completion of the 3D surface maps. 

5.1 Processing Overview 

Three-dimensional (3D) seismic data processing is in many situations handled 

similarly to 2D seismic data processing, but overall 3D processing can be much 

more time consuming and computationally intensive resulting from the larger data 

volume. 3D data processing involves the consideration of various additional 
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techniques specific to the 3D realm. Processing considerations in areas such as 

binning and construction of a 3D velocity model for NMO correction are the 

processes requiring more extensive analysis during 3D parameter testing. 

Intuitively the data quality is paramount; it is the overall determining factor of the 

relevance I reliability of the final seismic product. As one would expect, working 

with data affected by various quality issues and data limitations increases the 

difficulty and length of the testing period and may limit the overall applicability of 

the output. 

As discussed in the preceding chapters the Shoal Point 3D data quality is 

unfortunately very poor with no short offset information. Such information is key 

to shallow and near surface imaging of geological structures while maintaining a 

high level of data confidence. The following discussion will consider the handling 

of such limitations and how they were overcome to achieve the desired goals 

stated in the first chapter. 

In many situations discussion of some parameters and techniques will be 

identical to those applied in chapter 4.0, therefore I will limit the discussion of 

theory for these processes previously discussed and refer the reader to the 

previous chapter for any further insight. 



5.2 3D Data Testing and Processing Parameters 

5.2.1 Data Loading 

As in the 20 acquisition field file data was recorded in SEG-Y format to 8mm 

Exabyte tapes. Files were extracted at MUN facilities to UNIX workstations at 

which point the data was read into ProMAX® and converted to a Landmark 

proprietary format for data processing. 

5.2.2 3D Geometry Assignment 
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From the start the acquisition of this seismic survey was considered non­

conventional and "different". Completion of the acquisition phase resulted in a 

seismic data volume that cannot be classified as a truly land or marine seismic 

style and most easily resembles a transition zone survey. The resultant volume 

is oddly shaped and contains a large area with no data coverage corresponding 

to the location of Shoal Point. Consideration of the options directed the data 

geometry assignment to that of a 3D land data volume. 

Marine shot positions were recorded in UTMs using a OGPS system onboard the 

seismic vessel which was time-synced with the onboard firing system for 

consistent timing. Both the marine source positions and the receiver geophone 

positions were converted to ASCII files and loaded in to the ProMAX geometry 
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spreadsheets where they were then merged with the seismic data. The following 

figure shows the positions for shot lines (black) and receivers (white), note that 

the layout corresponds well with the desired acquisition designed in the 

preliminary stages. 

-f 
Units: x coord = Easting N 

y coord = Northing t -
000-: 

000-: 

iii iii iii, iii iii' iii' iii iii i j i i 

Figure 5.1. Shotpoint and receiver map for the Shoal Point 3D acquisition. 
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5.2.2.1 Binning 

Unlike the 2D crooked line case, we are not working with one line of bins 

designed to follow the receiver spread. For 3D processing a parallelogram is 

generally designed to cover the entire area of data distribution such that all data 

points are included. This rectangular shape is then divided into CMP bins of 

specified dimensions that best fit the parameters and limitations of the data. In 

general the rule of thumb is that bin spacing is equal to half the receiver spacing 

in the inline direction and half the receiver line spacings in the crossline (xline) 

direction. Considering the non-conventionality of the survey these rules will not 

hold and a variety of binning strategies were tested: 

E-W N-S 

1. 50m x 50m 

2. 25mx25m 

3. 50mx25m 

4. 50m x 12.5m 

The binning selection is a direct trade off between seismic resolution and seismic 

smearing of the data. The determining factor when deciding on the size of CMP 

bins is the bin fold. Specifically what is the minimum fold and how is this fold 

pattern distributed across the dataset. Small bin sizes generate a more accurate 

representation of the seismic response at that specific location, but will generally 
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have low fold and therefore may display poor signal content degrading the 

resolution of the data. On the other hand large bin sizes will contain more COP 

points and therefore more signal and possible higher resolution, but smearing of 

the data when the points are summed can result as they truly represent a wider 

range of different sub-surface locations and not one specific point. 

Final binning parameters selected were 50m in the inline direction and 12.5m in 

the cross-line (xline) direction (Figure 5.2). These dimensions generated fold 

levels that varied dramatically across the dataset from low fold bins of 3 or 4 

traces to high fold areas with 60 plus COP traces per bin. On the average the 

survey bin fold level was on the order of 10. In figure 5.3 a plan view of the 

survey area shows data fold distribution colored to denote areas of minimum and 

maximum coverage, this shape was produced solely by the acquisition foot-print. 

5.2.3 Trace Kills I Editing 

The Shoal Point 3D seismic data was generally of poor quality, with very little 

signal and excessive amounts of extraneous noise in the gathers. Gathers 

typically consisted of the 111 land geophones, as use of the transition marsh 

hydrophones was limited during acquisition to seismic lines 4 west, 6 and 8. The 

fact that the extra receivers were not used for all lines does not matter because 

the marsh hydrophones display no signal with continuous noise at each location, 

consequently they were all killed. 
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Figure 5.2. Survey shotpoint-receiver map overlain by the 3D binning diagram of 

12.5m x 50m bin size. 
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The following unfiltered I unscaled shot is representative of a typical marine 

record with the marsh phones still active. Annotated features include the 

reverberated first arrivals and various noise trains that are characteristic of the 

entire dataset. 
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Figure 5.5 is an example of what would be considered the best quality of shot 

record in the dataset; reflections corresponding to the carbonate platform can be 

clearly identified in the data. 
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Figure 5.5. Example of the highest quality data recorded for the 3D acquisition. 
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Frequency content of the 3D marine data was consistent from line to line and 

was predominantly in the low frequency range. The following amplitude 

spectrum indicates that the high amplitude frequencies of the data are all lower 

then 50Hz. 

. _-1--= AREA OF HIGH_-'--__ 
,AMPLITUDE 

FREQUENCIES 
1---1------

Figure 5.6. Conventional frequency-amplitude spectrum for the marine data. 

Considering all of the above information each field file was individually edited to 

have all noisy traces, dead traces, misfires, signal bursts and noise trains edited. 

For each shot record channels 45, 101, 102 and 112 - 148 (marsh phones) were 
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killed along with various interactively picked channels that varied from clean to 

noisy on a shot by shot basis. 

5.2.4 3D Statics Corrections 

5.2.4.1 Bulk Shift 

A bulk shift correction of -SOOms was applied to the entire 3D seismic dataset. 

This large generic static shift was a correction due to a time delay entered into 

the ARAM 24 seismic acquisition system affecting all data during acquisition. 

5.2.4.2 Hand Statics 

The hand statics correction refers to a user defined static shift applied to 

individual channels correcting for some incorrect time offset. In this case there 

appears to be a random field time break problem resulting from some 

miscommunication between the marine firing system and the acquisition 

recording system. In follow up analysis, this time shift appears to have originated 

in the firing system. Using a series of random individual common receiver 

gathers the necessary shift needed for correction of the traces was calculated. 

found that in situations where the channel was affected the time shift was always 

-10ms with respect to the surrounding data. In the following common receiver 

gather affected traces are annotated and the time shift is clearly discernable. 
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5.2.4.3 3D Refraction Statics 

3D refraction statics analysis is based on the same principles and theory 

previously discussed in chapter 4 for 20 refraction statics analysis. The desired 

outcome is to remove the statics effects of low velocity weathering layers and 

variations in source and receiver offset in the data correcting it to a new level 

reference datum. Figures 5.8 and 5.9 are simple cartoon diagrams detailing 

source and receiver relationships for the current statics scenario. 

Unfortunately ProMAX's® automatic first break picking module was inconsistent 

and incapable of selecting the correct location for the first break pick with the 

noisy 3D data (Figure 5.10). Therefore FB picking was accomplished 

interactively by scrolling through each shot record of the 3D dataset (Figure 

5.11). Refraction statics analysis was accomplished using the ProMAX® module 

similar to the one used for 20 refraction statics analysis. Again the FB picks, 

layer velocities and layer models were interactively adjusted and smoothed 

iteratively as to obtain the most realistic result and field static time shifts. 

3D refraction statics analysis in ProMAX® uses the FB picks from interactively 

selected shotpoint locations for calculation of the refractor layer velocity (Figure 

5.12). Using the ORM method ProMAX® created a single layer depth model and 

calculated necessary static time shifts to be applied to source and receiver for 

correction to the new datum. 



MARINE TRANSITION RECEIVER DIAGRAM 

SEA LEVEL = Om t SOURCE DEPTH = -3m ,..... -'. . t ~-
WATER OEPTH. ~ .. """ 

SURFACE 
TOPOGRAPHY 

NEW DATUM = -25m 

• RECEIVER LOCATION 

SURFACE 
TOPOGRAPHY 

SEA LEVEL = Om 

NEW DATUM = -25m 

----f . - . - . • OATUM DEPTH = -25m , 

LAND RECEIVER DIAGRAM 

---a . '. - . "'i£--~ 

t 
TOPOGRAPHY 

f 

DATUM DEPTH = -25m 

Figure 5.B. Simple geometric diagrams of marine and land receiver relationships for static shift calculations. 
...­
...­
w 



MARINE SOURCE DIAGRAM 

SEA LEVEL = Om 
t + SOURCE DEPTH = -3m ::;;> 

WATER DEPTH 
SURFACE 
TOPOGRAPHY 

NEW DATUM = -25m 

+ SOURCE POINT 

SURFACE 
TOPOGRAPHY 

SEA LEVEL = Om 

NEW DATUM = -25m 

• DATUM DEPTH = -25m 

LAND SOURCE DIAGRAM 

~ __ I 

-- SOuRcE DEPTH + 
t TOPOGRAPHY 

DATUM DEPTH = -25m 

SOURCE DIAGRAM 

DRILL HOLE FOR 
DYNAMITE SHOT 

I 
1'1 t 

-2.5m BOG 

TOTAL SHOT 
DEPTH = -6m 11-3.5m BEDROCK 

• 

Figure 5.9. Simple geometric diagrams of marine and land source relationships for static shift calculations. --~ 



600 -

1000 

1200 

1400 -

..... 1600 -., 
e ...... 
III 1800-e 
~ 

2000 -

2200 -

2400 -

2600 -

2800-

3000-

3200 -

3400 -

,. 
I 

31 
I 

48 
I 

7001 

8' 
I 

7. 
J 

81 
I 

Figure 5.10. Shot record with ProMAX® automatic FB picks in red. 
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Figure 5.11 . Shot record with interactively selected FB picks (red). 
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5.2.5 Frequency - Wavenumber (FK) analysis 

FK analysis is an ideal tool for the precise removal of any identified noise seen in 

the shot gather domain. Conversion of the T-X domain data to the F-K domain 

spectrum creates a frequency versus wavenumber display that will clearly high­

light all features such as aliasing, high I low frequency noise and electronic noise 

such as constant 60Hz signal. The FK spectrum display is also very useful for 

general analysis of primary and multiple seismic reflections. Coherent seismic 

signal will be mapped clearly in the FK spectrum as parabolic surfaces (Figure 

5.13). Figure 5.13 is an example of a high quality shot gather and its FK 

spectrum, primary events are easily identified and have been annotated for 

clarity. 

Comparison of the above FK spectrum from typical good seismic data to the 

following figure showing a good FK spectrum of a Shoal Point 3D shot gather 

clearly demonstrates the overall poor data quality. In the Shoal Point FK 

spectrum the frequency content is smeared throughout the entire low frequency 

range indicating wide spread noise distribution, with very slight hints of 

competent reflections being present. Note this is the best Shoal point data, an 

example of a more typical FK spectrum (Figure 5.15) shows no competent 

reflection signal and complete smearing of frequencies as noise. 



roo 
11 ZII 

1. 
tlll-: 

: 

ALiASED 
SIGNAL 

f 
COHERENT 
REFLECTION 
SIGNAL 

119 

Figure 5.13. An FK spectrum taken from a conventional high-resolution marine 

seismic survey. (Courtesy of Shearwater Geophysical Corporation). 
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Figure 5.14. Typical "good" shot record and FK spectrum taken from the Shoal 

Point 3D survey. (Courtesy of Shearwater Geophysical Corporation). 
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Figure 5.15. A typical shot record and FK spectrum from the current dataset. 

The FK spectrum is smeared with no discernable signal. 
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Interactively I designed a general low frequency fan filter that was applied to each 

of the dataset records. It is designed specifically for the removal of low frequency 

noise and particularly the low frequency reverberation of the first arrivals. The 

rejection zone is easily identifiable as a black outlined polygon at the base of the 

FK spectrums. Comparison of the before and after T-X domain data 

demonstrates the success and ability of the FK filter to remove specific noise 

features. The post FK record is much cleaner in appearance with the dominant 

low frequency reverberation of the first arrival reflection being completely 

removed (Figure 5.16b). 

5.2.6 Pre-stack Top Muting 

Conventionally pre-stack top muting would be applied in the processing 

sequence at this stage of testing. Due to data offset limitations though, there 

must be more consideration given before applying this process. Conventional 

data will normally contain a distribution of both short and long offsets (Figure 

5.17). The short offset data is used for the imaging of shallow and near surface 

reflections. The long offset data contains near surface information but is 

generally contaminated with the direct arrivals and accompanying reverberations. 

Conventionally, the long offset data is therefore muted out at early times. In the 

Shoal Point 3D dataset, unfortunately I do not have short offset near trace data 

as the unconventional survey design has generated all long offset data. Because 

of this, I need to limit the removal of the amount of long offset 
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Figure 5.16. (a) Shot and FK data prior to application of the filter reject zone. 

( b) The same data post FK filter application. 
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Figure 5.17. A typical high-resolution marine seismic shot record. The channels 

have been annotated for offset. (Courtesy of Shearwater Geophysical 

Corporation). 



data that is typically clipped as it contains the only near surface seismic 

information available. 

125 

Testing for the application of a top mute involved the comparison of two mute 

designs with analysis of the results being performed on stacked seismic sections. 

The two designs compared were a conventional style top mute (Figure 5.17) and 

no mute at all. Figure 5.18 is of xline 70; first with no mute applied and secondly 

with the typical style of top mute applied. The effect of top muting is clearly 

visible on the stacked sections; the upper portion of data in the first 1 ODOms TWT 

is largely removed when the mute is applied. The implication of applying a 

conventional top mute would be removal of shallow seismic data that would be 

useful during the interpretation stage of the project. Because of this I have found 

it not to be in the best interest of the final product to apply any pre-stack top 

mute. 

5.2.7 Scaling 

As previously noted in Chapter 4, the introduction of amplitude scaling to the data 

is crucial for compensation and adjustment of the seismic signal. The 

implementation of a correct time-variant scaling technique will help improve the 

signal content in the lower half of the shot records and even the overall signal 

content. 
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Figure 5.18. (a) Xline 70 stacked with no pre-stack top mute applied. (b) Xline 70 with a conventional pre-stack top 

-mute, note that the mute has a detrimental effect removing platform reflectors in the 600ms - 1000ms range. N 
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Testing of scaling parameters for the Shoal Point 3D dataset included the 

following techniques: 

1. Automatic gain control (AGC) 

2. Offset amplitude recovery (correction for spherical 

divergence) 

5.2.7.1 Automatic Gain Control (AGC) 
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Conventionally this would not be considered as a typical pre-stack scaling option. 

This procedure can have extremely detrimental effects to the true amplitude 

relationships of the data if used incorrectly. The key when applying AGC is to 

maintain an adequate time gate window. Application of AGC with a very small 

window will render the strong reflections indistinguishable from the weak 

reflections (Yilmaz, 2001). Yilmaz defines the scaling function for an 

instantaneous AGC as: 

g (t) = desired RMS I 11N Ii
N = 1 I Xi I (5.1) 

Xi= trace amplitude 

N = number of samples 

The goal of AGC as tested here is to enhance weak reflection signals to a more 

appropriate level corresponding to the surrounding data. The following figure 
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(5.19) compares a typical shot point before and after application of an AGC with 

a 1000ms time gate. The results indicate that modest signal enhancement is 

achieved, but I decided that the use of a more realistic and non-intrusive scaling 

would be best. 

( a ) ( b ) 

Figure 5.19. (a) Shot 7003 prior to AGe. (b) Shot 7003 post application of the 

AGC scalar (1000ms time gate). 
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5.2.7.2 Offset Amplitude Recovery 

Application of offset amplitude recovery helps correct both for geometric 

spreading and for frequency attenuation of the signal (section 4.3.7 provides a 

more in-depth look at offset amplitude recovery, the same process was used for 

the 3D data). Application of offset amplitude recovery using an RMS velocity 

function generated the most favorable results without the signal degradation 

found in AGe application. Figure 5.20 is an example of shot data before and 

after application of offset amplitude recovery. The reflection signal is enhanced 

and clarified as the first arrival amplitude is reduced to a less dominant level. 

5.2.8 Deconvolution 

Application of pre-stack deconvolution to any seismic data is generally attempting 

to improve the overall temporal resolution by manipulation of the seismic wavelet. 

As previously discussed in chapter 4 deconvolution will compress the seismic 

wavelet (spiking), and lor attenuate reverberations and short period multiples 

(predictive). Detail on pre-stack deconvolution using both spiking and predictive 

techniques is reviewed in section 4.2.9. The application of deconvolution to this 

dataset is focused primarily around attenuation of first arrival reverberations. The 

deconvolution parameters were chosen to best collapse the first arrival sequence 

to a single identifiable wavelet. 
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( a ) ( b ) 

Figure 5.20. (a) Shot 7003 prior to correction for spherical divergence. (b) 

Shot 7003 post application of correction for spherical divergence. 

Testing for the current 3D data involved consideration of both spiking and 

predictive deconvolutions, gap and length times tested are as follows: 

Table 5.1: Predictive deconvolution gap-testing parameters. 

Type of Deconvolution Operator Length (ms) Gap Test Lengths (ms) 
Predictive 120 10 

15 
20 
30 
40 
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Table 5.2: Predictive deconvolution operator length testing parameters. 

Type of Deconvolution Operator Length (ms) Gap Test Lengths (ms) 
Predictive 80 20 

100 
120 
160 
240 

Table 5.3: Spiking deconvolution operator length testing parameters. 

Type of Deconvolution Operator Length (ms) 
Spiking 8 

16 
32 
64 
128 

Figure 5.21 compares a typical marine shot with no deconvolution, the final 

predictive deconvolution and a tested spiking deconvolution. The figure clearly 

demonstrates the effect of deconvolution on the pre-stack data and the difference 

in results depending on the technique selected. Analysis of displays similar to 

figure 5.21 and panels of stacked data indicated that a predictive deconvolution 

was much more successful then the spiking deconvolution at collapsing the first 

arrival reverberation to a single wavelet and thereby enhancing the key platform 

reflectors. Application of the spiking deconvolution resulted in excessive signal 

attenuation and was therefore deemed inappropriate. Careful consideration of 

the predictive deconvolution test panels indicated that application of a 

deconvolution with a 20ms gap and a 120ms operator generated the most 

desirable results. 



13 13 13 

• &2 • 
" I 1 __ I 

i 
PRIMARY AI 
n~"''''''''I'''''''' I ------

---
1.-

1.--.... 

1.-

-
a.-

u. 

(a) (b) (c) 
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5.2.9 Velocity Analysis I NMO Correction 

Correct velocity selection is crucial for achievement of the proper normal 

moveout correction and subsequent stacking of the data. Poor data quality 

issues and lack of coherent signal from primary events made velocity analysis 

complex and lengthy. To complete this task an assessment of previous work and 

the application of numerous conventional velocity analysis techniques were 

required. 

Initial consideration of a 3D velocity field involved study of the regional geology 

and the previous Hunt and EnCana (formerly Pan Canadian) seismic lines around 

the survey area. Regionally the Port au Port peninsula is an area known to be 

seismically dominated by shallow high velocity Cambro-Ordovician carbonates 

(4000m/s - 5000m/s) of both allochthonous and autochthonous settings. 

Analysis of the released Port au Port bay seismic data clearly identifies the 

signature doublet expression of the top and internal reflectors of the carbonate 

platform characteristic of the area (Figure 5.22). This characteristic sequence 

was believed to be continuous within the bay and therefore the survey area for 

this study. This feature can generally be found in the aOOms to 1200ms TWT 

region. Therefore, using the released RMS seismic stacking velocities, I was 

able to gain a relatively precise definition of what stacking velocities should be 

applied at specific locations and TWT's within the study area. 
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Figure 5.22. A transect taken from released PanCanadian 2D seismic acquired 

in Port au Port Bay. 
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The following figure (S.23a) is a typical Shoal Point semblance analysis display 

containing the semblance plot, the offset gather and the velocity function stacks. 

Compared to a semblance analysis example from a higher quality marine seismic 

dataset, the problem of poor data quality is clearly seen, notably the presence of 

clear reflections and the presence of high coherency velocity locations are not 

discernable on the Shoal Point velocity spectrum. Clearly velocity analysis would 

be difficult and unreliable if the semblance analysis technique alone was used for 

stacking velocity selection. Additional testing and consideration of possible 

options, led to the use of constant velocity stacks in conjunction with the 

semblance analysis for velocity field generation. 

5.2.9.1 Constant Velocity Stacks 

The use of constant velocity stacks typically involves the generation of panel 

displays showing either NMO corrected COP gathers or paneled areas of the 

stacked data. Generation of constant velocity stacks over a range of 

incrementing velocities is typical for comparison relative to one another. A 

velocity function can be then composed by identification of the corresponding 

velocity-time pairs that facilitate the proper adjustment of normal moveout to 

flatten the horizons of the COP gather or provide the best stacks. Oue to the 

poor data quality and the limited offset ranges, constant velocity analysis on 

NMO'd COP gathers is not viable. Instead constant velocity panels for a stacked 

xline were compared to one another. 
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( a ) 

Figure 5.23a. A typical semblance analysis display from the Shoal Point 3D 

super gathers. 
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( b ) 

Figure S.23b. A typical semblance analysis display from a high-resolution marine 

seismic survey. (Courtesy of Shearwater Geophysical Corporation). 
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Constant velocity stacks for each xline testing location were generated for the 

following range of velocities (mls): 3000, 3500,4000,4500, 5000, 5500, 

and 6000. The following table lists each xline for which constant velocity stacks 

were generated and corresponding inline position at which the velocity function 

was picked, note a function was picked every 312.5m along each xline that was 

tested. 

Table 5.4: Xline and Inline velocity analysis locations. 

XLiNE INLINE 
36 Every 25 inlines 
48 Every 25 inlines 
60 Every 25 inlines 
67 Every 25 inlines 
71 Every 25 inlines 
81 Every 25 inlines 
90 Every 25 inlines 
96 Every 25 inlines 

Therefore, the final technique for velocity analysis follows this scheme: 

1. Generation of the CVS for the xline being tested. 

2. Generation of the semblance display for the same xline, 

incrementing analysis locations at 312.5m intervals. 

3. Keeping in mind the velocity information gained from the 

previous work, CVS were compared at the proper inline 

location in search of the velocity-time pair that generated 

the best coherency I stacking of the data. This velocity-
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time pair was then picked on the semblance display and 

recorded to the velocity function. 

The following figure displays the constant velocity stacks for xline 81 that were 

used for velocity testing. Figure 5.23(a) corresponds to the semblance display 

for inline position 109 along xline 81. The corresponding velocity function picked 

at that location is displayed on the velocity spectrum in red. Note that the inline 

analysis location is annotated on the constant velocity stacks where relevant. 

Careful comparison of the constant velocity stacks allows for accurate selection 

of stacking velocities for optimal results. Considering 5.24(a) stacked with 

3000mls, the annotated platform area has not been imaged correctly. But when 

compared to the CVS for 4500mls, one can easily see that a more accurate 

stacking velocity in this situation would be the higher 4500mls. Key horizons 

were studied iteratively at each inline location using this technique to determine 

the best corresponding velocity values. 

5.2.10 NMO Stretch Muting 

Application of the correct NMO mute was a critical process that had to be treated 

more carefully in this current situation than would be needed in the processing of 

a conventional 3D dataset. As has been previously discussed stretching of the 

seismic wavelet is an unavoidable characteristic of correcting large-offset 



( a ) 

( b ) 

Figure 5.24. Constant velocity stacks used for velocity analysis of the 3D 

volume. (a) xline 81 CVS for 3000mls. (b) xline 81 CVS for 3500mls. 
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( c) 

( d ) 

Figure 5.24. (c) xline 81 CVS for 4000m/s. (d) xline 81 CVS for 4500m/s. 
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( e ) 

( f ) 

Figure 5.24. (e) xline 81 CVS for 5000mls. (f) xline 81 CVS for 5500mls. 
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( g ) 

Figure 5.24. (g) xline 81 CVS for 6000mls. 

reflection signals for normal moveout. NMO stretch muting is normally applied 

either interactively or by setting a maximum stretch percentage of the wavelet to 

the data, thus removing the affected signal. 

Unfortunately as the data is dominantly long-offset, the upper section of the 

gather will be the region affected by excessive wavelet stretching. It is this area 

that is removed during application of a conventional stretch mute. This problem 

has been previously discussed in pre-stack top muting. In short, the dataset 

contains no near offset trace data to image the shallow seismic reflectors. 

Therefore, signal in the long offset data corresponding to the shallow seismic 



events needs to be retained to possibly image these events. But it is exactly 

these long offset shallow signals that are subjected to large NMO stretch that 

would normally constitute an area to be stretch muted. 
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Clearly the situation involves weighing how much wavelet stretching will be 

accepted relative to how much near surface data will be lost at specific 

percentages of NMO stretch muting. Testing involved comparison of the stacked 

data with no stretch mute (100%), a 75% stretch mute, a 50 % stretch mute and 

a 25% stretch mute. Remember the percentage corresponds to the allowed 

amount of wavelet stretch prior to application of the mute, so the larger the 

percentage the more stretching will be accepted. 

The following sequence of figures shows xline 81 with the specified stretch 

parameters. The effect of the stretch mute is substantial and data is clipped far 

below the key area of interpretation representing the carbonate platform. 

Analysis of the data indicates that for this situation, the most relevant information 

will be obtained if no NMO stretch mute is applied to the dataset. One important 

thing to remember from this stage onward is that since the seismic wavelets have 

been allowed to stretch indiscriminately there is a point in the near surface of the 

data when wavelet stretch is so excessive that the resultant seismic record is 

incorrect and not a true representation of the subsurface geology. Events at less 

then 300ms - 500ms TWT in my opinion are not usable for interpretation, 

because of the NMO stretch issue. 
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Figure 5.25(b). Xline 81 stacked with a post normal moveout correction stretch mute allowing 75% wavelet stretch . 
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Figure 5.25(d). Xline 81 stacked with a post normal moveout correction stretch mute allowing 25% wavelet stretch. 
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5.2.11 Bandpass Filter 

A conventional zero phase butterworth filter with the following frequency ramps 

and cutoffs was applied: 1SHz - 20Hz - 60Hz - 120Hz. In this situation it was 

clear that high frequency coherent signal would not be affected and any 

additional low frequency noise that passed through previous processes would be 

removed. 

5.2.12 Trace Equalization 

The primary objective of applying the trace equalization was the removal of any 

spurious bursts of signal missed during the editing sequence or previous scaling 

attempts. A time-invariant trace-balancing function using RMS amplitude 

criterion was applied to the dataset pre-stack. 

5.2.13 Flex Binning 

Flex binning is the manipulation and particularly the expansion of the pre-defined 

bin dimensions of a seismic survey, which in this case are SOm x 12.Sm. 

Application of this technique is ideal for irregular datasets with irregular fold 

coverage and offset distributions as is seen in the Shoal Point 3D data. The 

desired effect of applying flex binning is to allow for more uniform fold coverage 

and offset distribution. It will also increase the actual fold in all individual bins, 



important in situations like the current dataset where the fold coverage is 

considerably low and scarce in areas. 
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The application of flex binning involved testing of several expanded dimensions 

in the xline direction. Final expanded binning parameters decided on were SOm x 

SOm, such that the 12.Sm xline dimension was increased by a factor of 4. The 

outcome of flex binning was an increase in average fold per bin from 8 traces to 

20, therefore expanding the COP footprint and broadening the COP offset 

distribution. 

5.2.14 COP Stacking 

A ProMAX® process called Stack 3D was used for COP stacking of the 3D Shoal 

Point dataset. The function of the stack 3D process is vertically summing input 

ensembles of traces using a straight mean stack algorithm. The straight mean 

stack algorithm sums the sample values contributing to each COP and divides by 

the number of samples summed raised to a supplied power. It is at this stage of 

the processing flow that a structural stack of the data is obtained (Figure S.26), all 

future processes will be applied in the post-stack domain. 
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5.2.15 Post Stack Migration 

The final step in the processing sequence is migration. Migration transforms the 

stacked seismic data so that it appears similar to a true geologic cross-section 

along the seismic traverse. There are two types of migration with slightly 

different goals. Time migration relocates dipping reflections to their true 

subsurface positions and collapses diffractions, thus increasing spatial resolution 

and yielding a better seismic image of the subsurface geology (Yilmaz, 2001). 

Depth migration accomplishes the same goal as time migration and in addition 

uses a user-provided velocity field to convert the sections to depth (from TWT). 

The application of either form of migration is acceptable in a variety of different 

situations although the determining characteristic of the dataset that must be 

considered when selecting the migration format is lateral velocity variation. A 

time migration is appropriate as long as the lateral velocity variations within the 

subsurface geology are not too severe. In cases where the lateral velocity 

gradients are significant, a time migration will not correctly image the data 

producing a false subsurface picture. It is in this situation that the processer 

should consider the alternative of depth migration. It should further be noted that 

increasingly a full pre-stack depth migration is replacing post-stack migration 

processing. However in this instance the data are too noisy for an effective pre­

stack migration to be applied. 



Choice of the proper migration strategy is a key step during processing that 

should take into consideration the following points prior to selection (Yilmaz, 

2001): 

A migration algorithm compatible with the strategy. 

Appropriate parameters for the algorithm. 

Migration velocities. 

Possible migrations strategies include (Yilmaz, 2001): 

20 vs. 3D 

post-stack vs. pre-stack 

time vs. depth 
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The choice between the options above ultimately comes down to what data 

quality will allow you to accomplish and how accurate a cross-section is 

necessary. When stepping into the realm of 3D pre-stack or depth migrations, 

the increased cost and time must be considered. Each of these processes 

generally adds extensive testing and computation time to the processing and 

therefore incurs an increased cost. In general 20 I 3D post-stack time migrations 

are most often used as they are the least sensitive to velocity errors while being 

able to generate acceptable results for reliable interpretations (Yilmaz, 2001). 
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Migration considerations and testing for the Shoal Point dataset involved 

migration the following techniques: 

A 3D post-stack Stolt time migration. 

A 3D post-stack explicit finite difference time migration. 

5.2.15.1 Stolt Time Migration (FK) 

The Stolt time migration is an F-K migration. Typically considered as one of the 

simpler migration methods the Stolt method is fast but limited in cases with 

vertically varying velocities. Originally designed for computation using a constant 

velocity situation, ProMAX® has been able to include vertical velocity variation by 

implementation of a Stolt stretch factor. This is a modification of the velocity field 

by the ratio of the local RMS velocity to the lowest RMS velocity on the data 

section. 

The following seismic sections represent xline 81 with Stolt migration applied for 

the following percentages of the total RMS velocity field: 

Table 5.5: Sample migration velocities. 

Figure Migration velocity % of actual RMS 
5.26 stacking velocity 
(a) 1000 -20% 
(b) 2000 -30% 
i.cl 3000 -50% 
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5.2.15.2 Finite Difference (FD) Migration 

For 3D finite difference migration, ProMAX® applies an algorithm that uses F-X-Y 

spatially-variant convolution filters to provide explicit solutions to the scalar wave 

equation. A vertically and horizontally varying interval velocity function is 

necessary for operation of the finite difference migration. Testing involved a 

range of velocity functions. The following percentages of the RMS velocity 

function were tested, along with the following constant velocity functions: 

Table 5.6: Sample FD migration velocities (% of RMS velocity function). 

% ofRMS 
stack velocity 
45% 
60% 
75% 

Table 5.7: Sample FD migration velocities (constant velocity function). 

Figure Migration velocity % ofRMS 
5.27 stack velocity 
(a) 1000 -20% 
(b) 2000 -30% 
(c) 3000 -50% 

The following seismic sections represent xline 81 with constant velocity FD 

migrations applied. 
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5.2.15.3 Migration Conclusion 

Consideration of the above migration displays clearly indicates that the 

application of a correct post-stack migration will be difficult. The dominant 

characteristic of the migrated sections is over migration represented in the form 

of excessive migration smiles. Typically this feature would indicate the 

application of too high a velocity function, but it is clear in figures 5.26b, 5.27b 

where only 30% of the interval velocity function is used there are still over 

migration smiles. Realistically the migration values should be more in the range 

of 80% - 90% of the interval velocities. From existing seismic in the bay, it is 

clear that for a higher quality dataset migration can be correctly applied using 

realistic interval velocities. 

In my opinion this artifact problem and inability to migrate is not due to incorrect 

velocities but is more a combination of issues including the following: 

Low signal I noise ratio 

Poor distribution of offsets 

NMO stretch issues 

Complex geological setting 

Necessary steps such as no NMO stretch muting, combined with the poor signal I 

high noise, and a complex geology from an extremely fragmented allochthon 
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caused the migration to focus on these features and therefore generate the 

inaccurate seismic response. Because of this difficulty, a migration was not 

retained in the final processing sequence and all interpretation was completed 

using structurally stacked, unmigrated sections. 

5.3 Processing Conclusion 

Overall the 3D data processing was lengthy and iterative due to the poor quality 

and data limitation problems. The stacked data is generally only fair with 

sporadic xlines displaying quite good imaging of the Cambro-Ordovician 

carbonate platform. This is exacerbated by the faulted nature of the top of the 

platform. Appendix A contains the complete volume of stacked xlines for the 3D 

dataset. Examples of the higher quality lines with imaging comparable to 

industry seismic data include xlines 60, 81, 82, 83, 84 and 95. The final 3D 

seismic product was not migrated and therefore the geological interpretation was 

completed using structurally stacked sections. In the following Chapter I 

successfully use the stacked sections to interpret the top of the carbonate 

platform and major fault surfaces. 
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6.0 Interpretation 

The ultimate goal of the Shoal Point project is the successful mapping of the top 

of the Ordovician carbonate platform and the Round Head fault system in the 

Shoal Bay area. The 3D seismic interpretation will be used to produce 3D maps 

in TWT of the top of the platform, allochthonous thrust sheets and internal 

carbonate platform horizon. The successful completion of this task will be the 

measure of the overall project goal achievement. 

As has been previously discussed in Chapter 5, the interpretation was completed 

using structurally stacked seismic data. The following analysis will show that 

areas of the stacked 3D volume clearly display an image of the carbonate 

platform that corresponds to the seismic interpretations I have picked for the 20 

Shoal Point landline and the surrounding Hunt I PanCanadian 20 marine seismic 

lines. Established correlation between these two seismic surveys allows the 

interpolation of the platform reflector into areas of the 3D survey volume where 

the data quality is poor. It is important to note that picking of the carbonate 

platform along the northern end on many lines is difficult. In areas of the 3D data 

where the picks are ghosted through there is a higher level of uncertainty relative 

to that pick location. To lower pick uncertainty iterative interpretation using all 

three datasets was employed, this process therefore enabled the production of a 

final 3D map that is self-consistent, accurate and geologically realistic. 
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Interpretation and mapping of the Shoal Point 20 and 3D seismic was completed 

at Memorial University on Unix based Silicon Graphics work stations. The 

Landmark Graphics Corporation interpretation package Seisworks® 20 I 3D, was 

used for selection of a" relevant horizons and fault surfaces. Conversion of 

geological horizons from Seisworks® into 3D maps was accomplished using 

Gocad®, a geoscience-modeling program by Earth Decision Sciences. My 

interpretation of the 1997 Hunt seismic data was completed on un-interpreted 

paper seismic sections obtained as public record at the Canada Newfoundland 

Offshore Petroleum Board library. 

As previously discussed in Chapter 2 (Geology) I wi" describe the seismic 

stratigraphy by subdivision of the basin geology into four dominant geological and 

stratigraphic units, which are as follows: 

1. Taconic A"ochthon sequence (Carbonates and basinal shales 

from the Ordovician platform sequence) 

2. Ordovician Carbonate platform sequence (Port au Port Group, 

St. George Group, Table Head Group, Goose Tickle Group) 

3. Pre-Ordovician Labrador Group (Primarily clastics of the Hawke 

Bay, Forteau and Bradore Formations) 

4. Grenvi"ian Basement 
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6.1 Interpretation of the 2D Hunt I PanCanadian Seismic Data 

The 1997 Hunt seismic exploration program acquired within Shoal Bay was 

instrumental in aiding the overall interpretation of the 3D seismic volume. The 

seven-line aBC seismic survey contained three lines in particular that provided 

extensive aid in correlation of the platform throughout the study area. Line PAP-

1 is located due west of the current area trending almost N-S. Line PAP-2 runs 

on the diagonal NW-SE through the NE corner of the 3D area and line PAP-7, 

which trends N-S, is located on the eastern edge of the new 3D seismic volume 

(Figure 6.1). 

All seven of the Hunt PAP series seismic lines were interpreted during this stage, 

with special attention paid to the location of the Round Head fault and the 

hanging-wall I footwall relationship. For the purpose of this study, only the 

specific common midpoint ranges directly comparable to the current data are 

discussed. Line PAP-1 is approximately 20km long running from the south of 

West Bay to Long Point. The common midpoint (CMP) range of specific interest 

corresponding to seismic data situated less then 1 km west of the 3D data volume 

is CMP 300 - 550. Line PAP-7 was acquired at the eastern edge of the current 

3D survey and is also in excess of 20km length. In this case, the relevant CMP 

range is 150-250. Finally line PAP-2 trends NW-SE through the northeastern 

corner of the current area with CMP's 300-500 of direct interest in this study. 
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6.1.1 Taconic Allochthon Sequence 

The shallow-most sediments within the bay, the allochthon covers the entire area 

with dramatic variations in thickness throughout. Thickest in the north, the 

allochthonous sequence thins consistently towards the south as the carbonate 

platform, upon which it was emplaced, steps to the surface (Figures 6.2a, b, c). 

At the southern tip of all three lines the seafloor surface of the allochthon meets 

the basal detachment surface, such that the allochthon sediment package is not 

present in the area south of this point. 

The internal geology of the allochthon consists of fragmented thrust slices of 

carbonate and clastic sediments from the lower shelf sequence (Cooper et aI., 

1998). Generally a poorly imaged sequence, the allochthon within the bay does 

not exhibit continuous competent seismic reflectors that can be mapped on a 

regional scale. However, in some areas thrust slices similar to those imaged in 

the Triangle zone (Figure 2.3b) are present. (Figure 6.2c has been annotated for 

an allochthonous slice in the area of the Round Head thrust) . Carbonate thrust 

surfaces range in size as we can see in this example where the sheet is in 

excess of 1500m long within the plane of the seismic line. The thrust faults 

themselves are difficult to interpret and are not clearly imaged on any of the 

seismic lines within Shoal Bay. 
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6.1.2 Ordovician Carbonate Platform Sequence 

The top of the Ordovician carbonate platform seismic expression is the 

characteristic seismic marker of the Port au Port peninsula. The continuous 

platformal reflectors are characterized by a top platform doublet seismic 

expression followed by a package of extremely reflective horizons. Platform 

thickness does not vary dramatically within the bay and the sequence is imaged 

as a parallel package ranging from 500ms - 700ms TWT in overall thickness 

(approximate average of 1250m thickness). 

Deepest in the north, the top of the carbonate platform consistently shallows 

towards the south and outcrops on land at the southern edge of Shoal Bay. The 

carbonate platform is most discontinuous and difficult to image in the area 

corresponding to the 3D seismic survey. Again, this situation is a result of the 

Round Head fault expression, which is believed to be an inverted fault system 

from an earlier Taconic extensional fairway. Mapped on land as a large thrust 

fault, it appears that the compressional forces within the bay were insufficient to 

completely invert it to a thrust association and therefore it remains in net 

extension. 

The expression of the Round Head fault varies dramatically between the three 

Hunt lines surrounding the current study area. On each line the same structural 

association is being imaged to show different degrees of extension. Figure 6.2a 
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(PAP-1) images the null point of the Round Head fault geometry: here it can be 

seen that a fault plane is present, but the net extension is small. Moving east to 

the N-S trending line PAP-7, the Round Head fault seismic expression is now 

clearly in net extension (Figures 6.2a, b, c). The obvious effect of this on the 

carbonate platform is that geology is truncated and offset across the fault zone. 

The change in fault geometry as one steps east from line PAP-1 is that instead of 

a single major fault plane, the system now is comprised of multiple large faults I 

fault splays. These splays define separate hanging-wall and footwall cutoff points 

(Figures 6.2a, b, c) with a fault zone between them. 

Fault offset between the carbonate platform hanging-wall and footwall surfaces 

increases consistently from west to east across the 3D survey area. Figure 6.2a 

from the western edge exhibits a small net extension in the platform of about 

50ms TWT, approximately 100m of extensional offset. Traveling east to line 

PAP-7 (Figure 6.2c) on the eastern edge, the Round Head fault net extension 

has increased and the hanging-wall and footwall cutoff points are now offset 

400ms TWT or 900m in overall extension. This overall trend is consistent and 

will be discussed further and clearly displayed in the following 3D maps of the 

platform surfaces. 
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6.1.3 Pre-Ordovician Labrador Group 

The oldest sediments of the basin, the Labrador Group, consist of varying reefal 

limestones, marine shales and shallow marine sands (Cooper et aI., 1998). 

Seismically there is no dominant top Labrador Group reflector comparable to the 

doublet expression of the Ordovician carbonate platform. It is difficult to pick the 

exact top of the Labrador Group; but, from consideration of previous drill 

information and seismic land data from the Port au Port peninsula, it is possible 

to infer an accurate base platform and therefore top Labrador Group sequence. 

Overall sediment thickness variation of the Group within the survey area appears 

to be minimal. The Labrador Group exhibits the same geographic dips and 

trends seen in the overlying stratigraphy of the carbonate platform. Exact 

thickness is difficult to quantify, as the top, and especially the basal contact with 

the Grenvillian basement are not easily distinguishable. 

The effect of the Round Head fault on the Labrador Group is substantial and fault 

movement has generated extensional offset of Labrador Group geology that is 

comparable to the previous values discussed for the platform in figures 6.2a-c. 

The major fault planes of the Round Head system appear to merge together at 

the base of the Group near the basement contact, continuing to travel deeper to 

a basal detachment surface within the Grenvillian basement. 
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6.1.4 Grenvillian Basement 

The basement sequence consists of Grenvillian age crystalline igneous rock. 

Seismically imaged on all of the current Shoal Point project seismic data and the 

adjacent Hunt I PanCanadian seismic lines, the basement is consistent 

throughout the entire study area and the Port au Port peninsula. The inferred top 

of basement horizon (Figures 6.2a-c, 6.3, 6.5a-d) corresponds to the overall 

trends of the carbonate platform shallowing to the south. In the area of the 

Round Head fault the basement is uplifted to its shallowest levels, equivalent to 

an average maximum of 1500ms TWT and a depth of approximately 3000m-

3500m. 

Internally the igneous basement contains a package of strong seismic reflectors 

dipping to the south. Continuous within the plane of the seismic lines, I interpret 

the highly reflective horizons as layering of the igneous fabric corresponding to 

previous deformation. These results correspond to previous independent 

Lithoprobe studies conducted during the early1990's. Quinlan et aI., (1992) 

concluded that the strong basement reflectors dipping toward the southeast 

correspond to internal reflection fabrics that are indicators of Mid-Ordovician to 

Mid-Silurian strain. 
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6.2 20 Shoal Point Landline 

An extremely important piece of the final 30 interpretation, the 20 land seismic 

data provides a conventional seismic image of the subsurface geology below the 

Shoal Point peninsula. This dataset provides an excellent check on the validity of 

the 30 seismic data and an additional source for interpretation of the carbonate 

platform within the study area. 

The Shoal Point 20 landline is approximately 2km in length and covers the 

northern tip of the point. The data (6s TWT) will penetrate as deep as basement 

if any coherent seismic energy is returned from that depth. From previous work 

and the Hunt I PanCanadian seismic, it is known that the Round Head fault 

traverses across the bay somewhere in the area of the tip of Shoal Point. The 

key questions to be answered regarding the interpretation of the 20 line are: 

1. Where is the platform under Shoal Point? 

2. Is the Round Head fault imaged on land? 

6.2.1 Taconic Allochthon Sequence 

The Taconic Allochthon in the area of the Shoal Point landline is identical to that 

previously discussed for the Hunt seismic data. The seismic expression of this 

sequence is discontinuous with no interpretable horizons present at this location. 
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The overall thickness of the allochthon changes little along this short line with 

some slight thinning of the sequence to the south. At the north end of the line, 

the base of the allochthon is imaged at 11 OOms TWT stepping up to 900ms TWT 

at its southern edge (Figure 6.3). 

6.2.2 Ordovician Carbonate Platform Sequence 

The landline displays the typical carbonate platform doublet and strong internal 

seismic reflectors discussed above (Figure 6.3). Again we see a gentle dipping 

in the platform horizons toward the north corresponding exactly to the seismic 

expressions interpreted on the Hunt seismic data. On the following interpreted 

seismic section, the top of the platform is easily identifiable at the southern end 

but becomes choppy in the middle of the line (SP 1052) and non-existent in the 

north (SP 1070-1112) (Figure 6.3). 

The lack of seismic reflectors in the north could possibly be attributed to either 

poor data quality or absence of competent carbonate platform due to proximity to 

the Round Head fault. In this situation the resultant poor seismic image in the 

north is, in my opinion related to an increase in geological complexity on 

approach to the Round Head fault zone. 
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Unfortunately, the data quality is not ideal and when combined with the above 

situation the data does not image the hanging-wall cutoff point or fault surfaces. 

At this stage it is difficult to conclude if the fault system is present directly on the 

peninsula or located just slightly offshore. The following interpretation of the 3D 

seismic will address this question and define the interpreted location of the 

hanging-wall and footwall cutoffs. 

6.2.3 Pre-Ordovician labrador Group 

The Labrador Group seismic expression displayed on the Shoal Point landline is 

comparable to the horizons interpreted on the Hunt data. Again the package 

trends parallel to the carbonate platform with little variation in overall thickness, in 

the northern section of the line the Labrador Group exhibits increased 

discontinuity similar to that seen in the platform package. The Labrador Group of 

the Shoal Point land line is limited in the information that it adds to the study but it 

is consistent with the expressions identified on surrounding seismic data. 

6.2.4 Grenvillian Basement 

Figure 6.3, the Shoal Point landline is displayed to 3.5s TWT imaging a thick 

section of basement geology. The seismic expression of the sequence is similar 

to the Hunt data and most importantly images the north dipping internal package 

of reflectors. Imaged at 2600ms TWT at SP 1001, the reflector is seismically 
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continuous up to SP 1066 at which point it becomes intermittent and best imaged 

in the north end at SP11 00. I interpret this horizon as a single continuous event 

that, due to quality issues, was not properly imaged at the northern end of the 

line. This horizon corresponds to the similarly dipping reflective sequence of 

events that were previously identified as basement igneous fabric (Figure 6.3), 

again correlating to the Lithoprobe data of Quinlan et aI., (1992). 

In summary, the interpretation of the Shoal Point landline does enable completion 

of the two goals defined at the outset of this section. Most importantly, the 

hanging wall section of the carbonate platform was imaged properly and can be 

correlated to the carbonate platform structure on all of the Hunt lines. It appears 

that the platform remains a continuous structure in the south with an apparent 

encroachment towards a rubble zone in the north related to the Round Head 

fault. From the data I have inferred that the fault system is at the tip or just north 

of the tip of Shoal Point although the locations of the cutoff point have not been 

imaged on this line. 

6.3 3D Shoal Point Seismic Dataset 

The interpretation of the 3D seismic volume is the culmination of the Shoal Point 

seismic project. Interpretation will enable the generation of contoured maps 

detailing the surface topography of the Ordovician carbonate platform. Covering 

an unconventionally shaped surface distribution due to acquisition geometry 
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(fold), the final interpreted horizons are interpolated through the data gaps 

allowing for consistent map coverage over a rectangular surface of 4km X 6km. 

The interactive picking of the 3D volume involved careful consideration of the 

previous interpretations of both the Hunt and Shoal Point land data. 

The following discussion will include stacked 3D x-lines interpreted for the 

characteristic horizons of the local geology such as allochthonous structures, the 

Ordovician carbonate sequence, the Labrador Group, Grenvillian basement and 

the Round Head fault. Due to the variation in the quality of seismic imaging 

throughout the 3D volume, horizon picking in areas of poor data quality was 

interactively accomplished via interpolation between good 3D x-lines and the 

Hunt and Shoal Point land data. 

The Round Head fault expression imaged in the current study area defines a 

southern net extension throughout and therefore places the hanging-wall side of 

the fault geometry deeper than its counterpart footwall side. The interpretation 

covers a rectangular area oriented north-south that is roughly cut in half in the 

east-west direction by the Round Head fault. Due to the net southern extension, 

the hanging-wall defines the southern half of the area while the footwall defines 

the northern half. 
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Interpretation of the 3D seismic volume is also completed as above by separation 

of the four main geological sequences: 

1. Taconic Allochthon sequence (Carbonates and basinal shales 

from the Ordovician platform sequence) 

2. Ordovician Carbonate platform sequence (Port au Port Group, 

St. George Group, Table Head Group, Goose Tickle Group) 

3. Pre-Ordovician Labrador Group (Primarily clastics of the Hawke 

Bay, Forteau and Bradore Formations) 

4. Grenvillian Basement 



183 

The following figure is a basemap of the area taken from the interpretation stage 

of the study. The annotated 3D xlines correspond to the line locations for the 

following series of seismic figures related to the 3D volume (Figure 6.4). 
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Figure 6.4. Line location map for the 3D interpreted seismic volume. 
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6.3.1 Taconic Allochthon Sequence 

Imaging of the Taconic allochthon by the 3D seismic yields results very similar to 

those discussed previously for the Hunt and Shoal Point data. The discontinuous 

seismic image of the allochthon is easily identifiable in the following series of 

figures showing various interpreted 3D xlines from Seisworks®. The top of the 

allochthonous sequence corresponds to the seafloor surface, while the basal 

detachment surface and base of the sequence is easily picked at the top of the 

carbonate platform. The allochthonous package within the study area thins 

substantially towards the south and is thickest (1200ms) on the hanging-wall at 

the Round Head fault platform hanging-wall cutoff point (Figures 6.Sa, b, c, d). 

Moving north and passing over the fault, the allochthon steps up to remain on top 

of the footwall carbonate platform. The variation of thickness in the allochthon 

clearly corresponds to the offset in the Round Head fault and the dip and depth of 

the carbonate platform (hanging-wall and footwall); both of these expressions will 

be discussed and displayed in more detail in upcoming sections. 

Seismic velocities of the allochthon are extremely high for shallow sediments 

(-3S00m/s - 4000m/s), corresponding to the interpreted geological framework of 

over thrust carbonate sheets. The imaging of these thrust structures is 

intermittent on all of the seismic programs, but adequate enough in some 

locations to confirm the interpretation. 



0.5 

1.0 

-III .s 
Q) 1.5 
E 
~ 

2.0 

2.5 

N 

3.0 -

S 
LEGEND 

Allochthon 

Carbonate 
Platform 

Labrador 
Group 

Basement 

Allochthonous 
Thrust slice 

Top of Carbonate 
Platform 
Inferred Top of 
Labrador Group 

• Inferred Top of 
Basement 

•• Round Head 
• Fault Surfaces 

1 Footwall 
Cutoff 

2 Hanging-wall 
Cutoff 

3 Fault Zone 

Figure 6.5a. 3D xline 81 interpreted and annotated for characteristic structure and geological sequences (See 

figure 6.4 for location). 

....... 
00 
VI 



Ul 
E -

0.0 

0.5 

1.0 

~ 1.5 

t= 

2.0 

2.5 

3.0 

N S 

~ ... ~-- ... -~"~,-~ 

-~ ........... -=--= 
~.>~ 

~~ -~~-~,-~.~:, .. ~~~ - .---:,~,,-:,-~~ 
=!f~3P'" 

LEGEND 

Allochthon 

Carbonate 
Platform 

Labrador 
Group 

Basement 

Allochthonous 
rust sl 

Top of Carbonate 
Platform 

Inferred Top of 
Labrador Group 

• Inferred Top of 
Basement 

•• Round Head 
• Fault Surfaces 

1 Footwall 
Cutoff 

2 Hanging-wall 
Cutoff 

3 Fault Zone 

Figure 6.5b. 3D xline 82 interpreted and annotated for characteristic structure and geological sequences (See 

figure 6.4 for location). 

-00 
0'1 



N 

0.0 ~ 
~. 
~ 
~-it~~ ... 

." __ ~ ;:..,_, -__ ~-:~,':~.......:.r.-"'? 
...;. ...::,...::;;;:- -,!,. -..: ... ,' -t..;,..r.""i ,~~ ,---

. __ ~ __ ~.;:..~ __ "::-c~2':_-:;:~~_,~~· .. r~~?~":" 
.• ";""'r,~""""~~",,,-- - «. ~'r- .~.~ -.- ...---~. 

L~" . ..., 
,.' _ .. _.;.~ -........... _ ~"~.caua ;S.'JI~_"';;'-"';;;' ~ - ~,~, 

~ ~.,,: --:-'::"-:::',;'" 

-I/) 
E 

05 ::..~~~~ . - .... ~ ........ ., ~ .:: 

-"""" ~~ 
~.~ 
~ 

--; 1.5 '-~'~ "-~_ L'" 

~--':Q 

~ -
1 

:0:-

.--- ~ 

~ 

~. 

2 
~::;. ..... 

2..~" 

:iii:: 
~ 

~ 
~ 

~--:: 

;..-,,:: 
~ :-

--~ ... 

-c; 

?: 

"'!"""'"-.... --
-

s 

;'~;;",~.;;:-~ 

'-

-
"'''';:-' 

.... -
-~ , 

~ 

LEGEND 

Allochthon 

Carbonate 
Platform 

Labrador 
Group 

Basement 

Allochthonous 
Thrust slice 

Top of Carbonate 
Platform 

E ---- • . ... ---~. J!f' -;:: 
~. 

.. : ~..:: __ • _ .... ~~-=-iC'i.r:j;.."" 
~ e(~;-;-_C ~;. 

;w~ ~ -. 

Inferred Top of 
Labrador Group 

-----::-

~~ 
~ ... .-.....;; 

,~ 

2.5 j:S:;_ 
I-~ 

~-~ 
~.-~ r::::..- .. __ ,-' 
i;--rr~~.""""" 

3.0 

~ ...... ~ 

.~-~~-= 

~~'~!?-:: 

-
~ 

:"'--­
~-~ 

;t..-: 

~ 

~ ... ~ 
-,-,. 

~~.~:=-~~ 

~.~ . Inferred Top of 
Basement 

~-

=--~-==a ~..;. -.: - ~--:-~~::: •• Round Head 

~ -~ • Fault Surfaces =~";~1 --;,..~ --~~ ........ -':.~ ~ ":''''""::'~~-- 1 Footwall 
--. ---- .. ~-:'!!"'"',&' ff 

~.-..---. ~---::- ' Cuto > .... ~~~::...;,."!-

~ "~~~~~~'~ 2 Hanging-wall 
~ .~.=-- ff 

-.-~~ Cuto - .---... -~.;!..-.....c-a.,,::::::::::;;:-~ ~-:-~ -. . ~~-
~.-~--::-.-- - ._~_== 3 Fault Zone 

~~--=----

Figure 6.Sc. 3D xline 83 interpreted and annotated for characteristic structure and geological sequences {See 

figure 6.4 for location). 

....... 
00 
-.....l 



1ii 
E -

N 

0.5 ~"","-~" .. ~ 

Q) 1.5 
E 
i= 

2.0 

2.5 

3.0 

S 

~::Ii.o.~~ 
~ --==~~:! 

LEGEND 

Allochthon 

Carbonate 
Platform 

Labrador 
Group 

Basement 

Allochthonous 
Thrust slice 

Top of Carbonate 
Platform 

Inferred Top of 
Labrador Group 

+ Inferred Top of 
Basement 

+. Round Head 
• Fault Surfaces 

1 Footwall 
Cutoff 

2 Hanging·wall 
Cutoff 

3 Fault Zone 

Figure 6.5d. 3D xline 84 interpreted and annotated for characteristic structure and geological sequences (See 

figure 6.4 for location). 

....... 
00 
00 



189 

The previous xlines from the eastern edge of the survey area are annotated for 

shallow highly reflective events that I have interpreted as a slice of the carbonate 

shelf corresponding to a Taconic thrust sheet (Figures 6.5a, b). 

6.3.2 Ordovician Carbonate Platform Sequence 

Due to the Round Head fault, the carbonate platform hanging-wall and footwall 

surfaces are offset and vary substantially with respect to structure and surface 

topography. For ease of interpretation I will therefore discuss the platform 

hanging-wall and footwall separately, combining the mapped surfaces together in 

the summary to give a complete picture of the top of the platform as seismically 

imaged in the current study area. 

6.3.2.1 Carbonate Platform Hanging Wall 

In areas where the 3D data images the carbonate platform, the seismic 

expression is identical to that seen on the Hunt and Shoal Point seismic lines. 

Seismic velocities of the carbonate platforms dolomites and limestones are high 

ranging from 4500m/s to 5500mls on average, while thickness variation of the 

platform is minimal, consistent with the previous studies (Hunt / PanCanadian, 

1996). The platform is consistently imaged as a package of parallel horizons 

containing internal reflectors with high seismic reflectivity (Figures 6.5c, d). 
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Xline 83 is a typical seismic line from the eastern edge of the data volume that 

properly images the platform package of reflectors (Figures 6.5c). In figure 6.5c 

the interpreted platform horizon displays the characteristic shallowing of the 

boundary towards the south. The northern hanging-wall cutoff for the platform is 

at 1200ms TWT, shallowing in time towards the south to a TWT of 850ms at the 

edge of the line. When we compare this to xline 60 from the western edge of the 

survey, the hanging-wall cutoff is now at 1050ms TWT decreasing towards the 

south to a minimum of 800ms at the southern edge (Figure 6.6). The resultant 

interpretation when comparing seismic from the western and eastern edges of 

the area is that overall the platform surface is dipping northward with an increase 

in dip to the east. Studying this eastward dip further it is clear from the mapped 

3D surface that the platform hanging-wall is plunging with a northeastern trend 

that increases in dip consistently to the northeast. This orientation results in a 

substantially deeper platform at the northeast corner of the hanging-wall surface. 

The northern edge of the platform hanging-wall is cutoff and controlled by the 

Round Head fault. In figure 6.7, the Round Head fault zone corresponds to the 

cross hatched area. I have interpreted this region as the geology between the 

hanging-wall and footwall cutoff faults. In general this zone is heavily faulted and 

fragmented and therefore is not well imaged seismically. On the northwest side 

of the hanging-wall a visible step up in the surface corresponds to an 

interpretable surface of the fault zone (Figure 6.7). As the western edge of the 

platform begins to approach the null point, the offset and 
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complexity of the fault zone decreases, resulting in more continuous, 

interpretable reflectors. 

The following figures (Figures 6.8a, b, c) are the smoothed and contoured 

hanging-wall platform surfaces modeled from the interpreted seismic. Note the 

contours indicating the increase in TWT to the surface from south to north. The 

synclinal surface structure along with the mapped area of the fault zone has also 

been annotated and is clearly distinguishable (Figures 6.8a, b, c). 
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Figure 6.8a. 3D surface to top of the carbonate platform hanging-wall, view is 

looking into the page. 
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6.3.2.2 Carbonate Platform Footwall 

The carbonate platform footwall is very different from the hanging-wall portion of 

the fault geometry. Foremost the footwall is offset above the hanging wall as the 

Round Head fault is in net extension within the survey area. The footwall section 

of the study area covers approximately the northern one-third of the overall 

space. Stratigraphically identical to the hanging-wall, the seismic expression of 

the footwall is characteristic of the top platform event throughout the bay. The 

seismic data coverage of the northern footwall area is sparse in comparison to 

the hanging-wall portion and therefore interpretation relied more heavily on the 

surrounding lines of the Hunt survey. 

Overall the platform footwall surface can be described as a structural high with 

the apex of an anticlinal structure being juxtaposed against the Round Head fault 

slightly north-northwest of the tip of Shoal Point (Figures 6.9a, b, c, d). At its 

shallowest the footwall structural high is about 750ms TWT. This depth 

increases in time on its flanks to greater then 900ms TWT. It is this structure that 

Hunt and PanCanadian probably attempted to test through the drilling of the 

Shoal Point K-39 well. 
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6.3.3 Pre-Ordovician Labrador Group 

Imaging of the Labrador Group within the 3D volume is generally poor with some 

areas of deeper penetration and resolution on the eastern side of the point. 

When the geology is imaged the horizons correspond perfectly with the Labrador 

Group expression imaged on the Shoal Point landline (Figure 6.10). A geologic 

package with extremely high seismic velocities from 6000m/s to 6500m/s the 

Labrador Group is relatively shallow. Overall, its thickness appears to be 

constant. This is approximate, as the basal contact with the underlying basement 

is not clearly imaged. 
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6.3.4 Grenvillian Basement 

The 3D seismic volume does a fair job of imaging the basement and in particular 

the southerly dipping basement fabric. Figures 6.10 is annotated for the 

characteristic basement horizon imaged on all three of the interpreted datasets, 

seismically the reflector is identical with the same attributes of the basement 

horizon discussed in the previous interpretations. Both the 20 landline and the 

3D volume correlate with the results expressed by Quinlan et aI., (1992) in the 

onshore Newfoundland Lithoprobe studies, presenting the southeast dipping 

horizons as the internal fabric resultant from the Mid-Ordovician to Mid-Silurian 

strain. In all of the interpreted datasets, including the 3D volume I have 

interpreted, the Round Head fault appears to sole at basement depths in a 

surface that is not seismically imaged. 

Overall basement depth variation within the 3D dataset is identical to that of the 

Hunt data. In figures 6.5a-d it is obvious that the basement is shallowest at the 

Round Head fault zone. The inferred top of basement horizon trends with the dip 

and orientation of the platform, stepping up to a maximum shallow depth of 

1500ms I 3500m at the intersection of the top basement and the Round Head 

fault surface. 
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6.3.4 Round Head Fault 

A general expression of the Round Head fault is already clear based on the 

previous interpretation and discussion of the carbonate platform surfaces. The 

Round Head fault varies from net compression on land on the Port au Port 

peninsula to net extension in Shoal Bay. Mapping of the interpreted horizons 

from the current study area has allowed for a detailed image of the fault 

expression as it traverses the center of the bay past Shoal Point. 

In the following figure, the hanging-wall and footwall cutoff fault points have been 

clearly annotated. It is obvious that the fault tracks east-west towards the 

midpoint of the study area at which point they begin to diverge (Figure 6.11). 

Figure 6.11, a map view of the area demonstrates that past the midpoint of the 

bay, the fault system begins a north-eastern transgression and the footwall cutoff 

fault begins to migrate to the northeast with a continuous azimuth change 

towards the north for more easterly locations. The hanging-wall fault expression 

is slightly different; as the fault plane migrates past the midpoint of the bay, it 

begins to gently turn south for a distance of 1 km before it again changes direction 

and arcs northeastward (Figure 6.11). Both the footwall fault surface and 

hanging wall fault surface beyond the midpoint can be described as arcuate 

stepping north the further east the location. 
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6.4 Correlation of Drilling Data 

PanCanadian et al. drilled the Shoal Point K-39 well in 1999. Spudded at the 

very tip of Shoal Point the well was drilled directionally north apparently in an 

attempt to test the structural high of the footwall carbonate platform. K-39 was 

abandoned as a dry hole and PanCanadian and partners have since dropped the 

licence containing the Port au Port peninsula. 

The goal of this section is to correlate K-39 geological tops and the Round Head 

fault location in time to the 3D seismic data using an interactively selected 

seismic line from the 3D volume. The 3D seismic line was picked so that the true 

K-39 well trajectory lies in the section (Figure 6.12). This will confirm the validity 

of the 3D data, as well as provide a better understanding of the unsuccessful K-

39 well. The subsurface well track was derived using the known surface and 

bottom hole UTM locations, along with the well report survey information and the 

VSP. Using this survey information, surface location along with its corresponding 

subsurface true vertical depth can be correlated to its correct seismic travel time. 

All seismic travel times to key geological horizons and faults were obtained via 

correlation of the geological strip log to well VSP information (Table 6.3). The 

following tables contain the relevant information used to project the K-39 well 

track over the current 3D seismic data. 
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Table 6.1: Well information for well trajectory reconstruction. 

Surface True Two- Northing Offset from # of inlines 
Vertical way (UTM) surface corresponding 
Depth seismic well to offset 
(m) travel- location(m) 

time 
(ms) 

1.0 500 290 5389192 0 0 
2.0 750 420 5389421 229 18 
3.0 1000 580 5389656 464 37 
4.0 1500 770 5390052 860 69 
5.0 Round 1890 900 5390266 1074 86 
Head fault 
I Catoche 
6.0 Top of 2590 1100 5390446 1254 100 
Labrador 
Group 
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Table 6.2: K-39 Well Location. 

Well Location X Y 3D Inline 3D Xline 
Surface 5389192.133 N 364249.278 E 224 68 
Bottom hole 5390445.87 N 364160.04 E 325 66 

Table 6.3: K-39 Geological tops with corresponding seismic travel times. 

FORMATION LOG TOPS (m) TVD (m) Seismic TWT 
(s) 

KB 10.56 
Humber Arm 1031.5 943 530 
Allochthon 
Carbonates 
Round Head 2207 1899 900 
Fault 
Catoche 2207 1899 900 
Fault 1 2251 1940 
Fault 2 2296 1980 
Boat 2341 2021 

. Harbour 1 
Boat Harbour 2369 2047 
Discon. 1 
Fault 3 2452 2122 
Boat 2461 2131 
Harbour 2 
Boat Harbour 2490 2158 
Discon 2 
Fault 4 2535 2200 
Fault 5 2570 2234 
Petit Jardin 1020 
VSP bottom 2897 2556 1120 

Figure 6.13 displays the resultant correlation of the K-39 well path with the 3D 

seismic data. There are two key locations of specific interest annotated on figure 

6.13 as points 5 and 6 that should be discussed. These positions are important 
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because they mark a major fault and geological sequence boundaries. It was 

crucial that these main boundary points recorded from the well data correspond 

to the 3D seismic to have a positive correlation. 

Position 5 defines the location in the well information corresponding to the Round 

Head fault and the transition from Allochthonous carbonates to the Ordovician 

carbonate platform. The well site geologist recorded the first platform formation 

encountered by the drill as the Catoche (Table 6.3), corresponding to an internal 

platform formation, i.e. the drill did not enter into the top of the platform but lower 

into the stratigraphic sequence (Figure 2.2). Comparing this information to the 

interpreted seismic, it is clear that the top of the carbonate platform is above the 

well track, and that the well travels into what is seismically imaged as the face of 

the Round Head fault footwall surface. 

Position 6 defines the location of the Carbonate platform / Labrador Group 

boundary as stated in the well report. Again the interpreted seismic corresponds 

to the well trajectory and geological information. Therefore I can state that the 3D 

seismic section corresponding to the true well trajectory correlates perfectly to 

the K-39 well geological summary, well location survey, strip log and VSP data. 

This independent data further substantiates the interpretation in the foregoing 

sections. 
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6.5 Interpretation Summary 

The interpretation of the 3D dataset proved difficult but ultimately was 

accomplished through close consideration of all available surrounding seismic. 

By mapping the carbonate platform footwall and hanging-wall surfaces the 

primary goal of the project was accomplished. Correlation of the K-39 well to the 

3D data provided an additional check to overall data quality and interpretation 

validity, given the processing difficulties and non-conventional methods applied to 

the data in order to achieve a final product. In short, from the 3D data we are 

able to achieve a better understanding of the dominant geological formations and 

processes of the Port au Port peninsula along with a more detailed description of 

the Round Head fault within the bay. 

The following figures (6.14a, b, c, d) are various viewing orientations of the 

carbonate platform surface, both the hanging-wall and footwall. Features such 

as the structural highs, the hanging-wall synclinal feature and the expression of 

the Round Head fault hanging-wall and footwall fault cutoff surfaces much more 

visible in orientation and positional relationship to one another in these figures. 

Combination of all of the interpreted horizons into mapped surfaces generates 

the final 3D view; this figure gives an excellent overall picture of all of the 

interpreted geological sequences and how they are positioned together within 

Shoal Bay (Figure 6.15). 
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Figure 6.14a. 3D map view of complete top carbonate platform surface. 
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Figure 6.14d. Complete footwall! hanging-wall 3D carbonate platform surface 

oriented into the page, note the fault offset between the two surfaces. 
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Figure 6.15. 3D image of all previously discussed geological sequences of the 

study area. 



7.0 Conclusion and Recommendations 

The primary objectives of the Shoal Point seismic project initially discussed in 

Chapter 1, were established as the following: 
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To demonstrate a novel and cost-effective technique to acquire, 

process and interpret 3D data in a shallow water transition zone. 

To develop a better understanding of the complex geology and 

tectonic history of the area. 

To provide a seismic image at the Shoal Point K-39 well location. 

Create a 3D mapped surface to the top of the Ordovician 

carbonate platform. 

The entire project was designed, acquired and interpreted with these four main 

goals in mind. The acquisition, though not part of this thesis was completed as 

designed in a precise manner within a strict timetable and budget, meeting the 

initial aspects of the first goal. Processing and interpretation of both the 20 and 

3D datasets resulted in the successful completion of the second half of the first 

goal. The results of this work led to a successful accomplishing of the remaining 

objectives. 

The final two objectives above can be considered the ultimate in the successful 

completion of the project. By correctly acquiring and processing a dataset that 
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could be interpreted to correlate perfectly with exploration seismic and drill data it 

is possible make several points with respect to the previous petroleum 

exploration of the area, and therefore the continued petroleum potential of the 

area. 

The correlation of the K-39 well with the 3D seismic shows that PanCanadian et 

al. missed their target, stated in the drilling report as "Ordovician age carbonates 

of the Table Head and St. Georges Group". As was previously discussed the drill 

passed through the Round Head fault entering directly into the Catoche 

Formation of the Port au Port Group (Figure 2.2) missing the top platform Table 

Head Group completely, drilling into the face of the fault below the desired target. 

Therefore, it can be concluded that the desired target was missed and that the 

structural high footwall play concept was not successfully tested. 

Presentation of the 3D maps in Chapter 6 meets the requirements of the fourth 

and the final project goal. The successful interpretation of the 3D volume allowed 

the mapping of the top of the Ordovician carbonate platform, the Round Head 

fault, allochthonous thrust slices and other geological boundaries. From the 3D 

mapped surface, we obtain an increased level of accuracy for the platform 

orientation and geological features, (i.e. the footwall anticline) along with a better 

understanding of the Round Head fault expression. 
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Consideration of all of the current study data does add to the overall 

understanding of the complex geology and tectonic history of the area. It 

provides a better picture of possible petroleum targets, also allowing the analysis 

of previous drilling and seismic exploration within the area. In closing I think the 

project clearly indicates that petroleum potential for the area still exists and that 

using the 3D maps and the increased knowledge of the geological setting the 

footwall anticline is a viable target that can be tested correctly. 
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