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Abstract 

The limit of active ice, accurate to within 49 m, is extracted from SAR imagery of 

the Barnes Ice Cap, using a sequence of image speckle filtering, image texture analysis, 

supervised image classification, image segmentation and edge detection. Overall 

classification accuracies of the ice marginal environment are between 42 and 53%. 

Despite misclassification of some proglaciallandfonns it is possible to detect the limit of 

active ice as these surfaces are separated from the ice cap by supraglacial debris cover, an 

elevated ice cored debris ridge and perennial snowbeds. 

Comparisons of opposing look angles reveal that 'downglacier' illumination 

produces the highest classification accuracies of ice marginal features and debris covered 

ice surfaces, whereas illumination from an off-ice perspective, looking 'upglacier', is 

found to produce higher classification accuracies for proglacial surfaces. Comparisons of 

standard and fine mode imagery conclude that 25 m spatial resolution yields higher 

classification accuracies than 8 m spatial resolution. Quantitative analysis of surface 

roughness demonstrates that the dominant grain size of surficial materials is the best 

method for relating surface cover to radar brightness. 

Second order texture measures mean, homogeneity and correlation are found to 

be effective variables for maximum likelihood classification of ice marginal SAR 

imagery. Texture window size should be as large as the smallest feature to be identified, 

in this case approximately 85 x 85 m for the mean and homogeneity measures and 185 x 

185 m for the correlation measure. 
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l.Introduction 

This research examines the issue of ice margin mapping using spacebome radar 

data. The topic of ice margin placement is explored and the mechanics of radar image 

mode selection and image processing procedure are investigated. 

Ice masses form a vital component of global climate. They contain large volumes 

of the earth's freshwater resources and their presence is a controlling factor in global 

atmospheric circulation. Ice mass shrinkage as a function of global warming has 

important implications both for sea level rise and global circulation (Houghton et al., 

1996). In order to model global climate and glacio-eustasy the contributory changes of 

ice mass balance must be quantified. Fluctuations in mass balance are manifested 

primarily as a raising or lowering of an ice surface, and an advance or retreat of the ice 

front. Thus accurate mapping of ice front position forms a part of any ice mass 

monitoring program. 

Observations of ice front position have traditionally been carried out by manual 

survey and aerial photography. These methods are expensive, time consuming, limited in 

scale of application and constrained by weather conditions. Spacebome remote sensing 

offers an alternative method of monitoring ice margins, which can be applied at a large 

scale, in remote areas, and at frequent time intervals. 
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RADARSAT synthetic aperture radar (SAR) is an active microwave satellite 

sensor that was launched in 1995. It transmits pulses at the C·band wavelength of 5.6 em 

and has horizontal-like polarization. It offers a range of beam modes with spatial 

resolutions between 8 m and 100 ~ and look angles between 20° and 60°. As an active 

remote sensing system, data collection is independent of solar illumination. This is 

especially important for the regular imaging of icc masses at high latitudes which 

experience polar night. The wavelength of the radar pulse allows penetration of rain and 

cloud cover and means that image acquisition schedules are reliable. These advantages of 

all·time and weather independent imaging make radar imagery particularly suitable for 

ice mass monitoring (Masso~ 1991). 

Radar data contain information about surface roughness, relief, moisture content 

and the dielectric properties of the surface materials at a relatively fine spatial resolution. 

Despite many years of radar image acquisition over icc marginal environments there is no 

scientific agreement on the best sensor mode to be employed, and no standard method of 

image analysis and ice margin extraction. This research seeks to address this disparity 

and, through the development of a methodology, to broaden the application of 

spacebome synthetic aperture radar (SAR) in contemporary glacial environments. 

One of the objectives of remote sensing is to perform mapping tasks 

automatically and hence, conven data into information in an efficient and timely manner 



3 

(Jensen. 1996). Image classification methods assign image pixels to landcover classes of 

interest in order to produce thematic maps, but these have typically been designed for use 

with multispectral imagery. As radar data are monoband da~ an alternative strategy for 

the development of a classification method is required. Image texture analysis examines 

the spatial relationship of pixel values rather than the individual pixel values. Texture 

images are derived from the original image using texture measure algorithms to quantify 

the spatial variation in. pixel values. Texture images may be used as input to a 

classification method and therefore provide a suitable automated technique of radar 

image analysis. 

The purpose of this research is to develop an automated technique of SAR image 

analysis for an ice marginal environment. from which an accurate map of ice extent can 

be produced. The technique is developed for a section of the margin of the Barnes Ice 

Cap in the Canadian Arctic. In addition to the ice cap margin itself the study examines 

proglacial landforms, their surface characteristics in terms of radar parameters, and the 

capabilities of SAR for mapping the proglacial zone. 

The background chapter introduces the context of ice margin mapping, the 

associated glacial geomorphology. and describes the specific challenge of identifying the 

active ice margin. The nature of radar data is explained and the approach of remote 

sensing to glaciology and its progress to date are outlined. The concepts of image 

processing for radar image analysis and thematic map production are described The third 
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chapter summarizes the problems specific to the remote mapping of ice margins and 

states the objectives of this thesis. The Barnes Ice Cap study area is presented in chapter 

four. The methodology employed in the fieldwork and the image analysis is described in 

chapter five. The results of the field investigations are given in chapter six and the image 

processing results are given in chapter seven. Chapter eight discusses the results7 the 

success of the methodology. and makes comparisons with other research. Chapter nine 

concludes with a summary of the achievement of the research objectives and 

recommendations for further studies. 



s 

2. Background 

The remote mapping of a glacial environment using SAR imagery requires an 

understanding of glaciology in the context of radar image interpretation and 

classification. This chapter presents the fundamentals of each of these topics. In the first 

section the glaciology and the geomorphology of the ice marginal environmen~ with 

specific reference to the Barnes Ice Cap study area are presented. The second section 

reviews the current literature on glaciological applications of remote sensing. The third 

section explains the nature of synthetic aperture radar (SAR) data and gives examples of 

how the glacial environment responds to SAR. The fourth section is a review of ice 

margin mapping applications using SAR. The creation of thematic maps from radar data 

requires extensive image processing. This chapter provides explanations of image 

processing procedures. Section five descnbes the concept of radar noise. known as 

'image speckle• and the methods used to remove this noise. Section six reviews the 

concept of image texture and the methods for extraction of texture from radar imagery. 

Section seven presents the various procedures of image classification and the creation of 

maps from images. Section eight explains image edge detection and how 'this is used to 

extract linear or boundary features of interest from an image. 

2.1 Glaciology 

The mapping of ice front position is a component of monitoring overall ice mass 

changes. This section explains the concept of glacier mass balance and briefly reviews 

the role of remote sensing in monitoring mass balance. The second subsection presents 
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basic ice margin dynamics and describes the margin of the Barnes Ice Cap. The final 

subsection descn"bes the glacial geomorpholgy of the proglacial zone with specific focus 

on the conditions prevalent in the Canadian Arctic. 

2.1.1 Glacier mass balance 

Glacier mass balance is the concept used to descnbe the balance between annual 

ice mass gains (accumulation) and losses (ablation) (Hambrey. 1994). Changes in ice 

volume are manifested as a raising or lowering of the ice surface. and/or a retreat or 

advance of the ice front. Changes in ice thickness may be measured using ground 

penetrating radar, radar altimetry or manual survey of ice surface transects. Movement of 

the ice front may be monitored by manual survey or by remote observation. Proxy 

measures for monitoring mass balance have been developed which use shifts in the 

equilibrium line altitude (ELA) to quantify ice volume changes (0strem, 1975; Orheim 

and Lucchitta, 1987). The ELA is the divide between the accumulation zone (the area 

where there is net annual gain of ice primarily through precipitation and refreezing) and 

the ablation zone (the area that experiences net annual ice mass loss through melt and 

iceberg calving) at the end of the melt season (Paterson, 1994). The ELA represents 

where the glacier is a constant thickness as ice input balances ice loss. The exlent of the 

accumulation zone is identified in imagery as the lower limit of the snowpack at the end 

of the ablation season, referred to as the 'snowline'. The end of melt season snowline is 

sometimes used as the proxy for the ELA (Krimmel and Meier. 1975; Paterson, 1994). 

There bas been some doubt expressed about this method particularly for ice masses with 
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a significant portion of their accumulation through the formation of superimposed ice 

(Parrot et al., 1993) and this technique was rejected by Jacobs et al. (1993) for the Barnes 

Ice Cap for this reason. Moreover, snowpack extent is highly variable from year to year, 

therefore, ice thickness and ice front position are more reliable and robust indicators of 

long term ice volume changes. In light of these two factors this research focuses solely on 

monitoring the position of the ice front. 

It has been suggested that for glacier mass balance studies, the ice front should be 

placed with an accuracy of 50 to 75 m (Adam et al., 1997). Such accurate mapping of the 

ice front requires recognition of the characteristics of the marginal ice and the area 

directly in front of the ice mass, the proglacial zone. Where the ice front is obscured by 

debris an examination of the local geomorphology is necessary to identify the extent of 

the ice. 

2.1.2 Ice margin morphology 

Ice margins occur in many different forms as a function of the subglacial surface 

combined with the internal glacial dynamics and sediment transport mechanisms. The 

type of flow and the nature of the sediment in transport will characterize the morphology 

of the ice surface and front. Flow is broadly the result of gravity forces which cause the 

ice to spread by the process of creep under its own weight (Drewery, 1986). For ice 

surface morphology longitudinal variations in velocity are of interest. Two flow states are 

possible and these are extending and compressing flow (Nye, 1957). Extending flow, or 
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thinning. occurs as a result of the ice accelerating and causes crevassing. Ice acceleration 

is due to either. an increase of ice mass in the accumulation area. or an increase in the 

gradient of the subglacial surface. Glaciers confined to a channel demonstrate extending 

flow on the outside of bends and where side streams join the glacier. Compressing flow is 

due to deceleration of the ice and is manifested as bulges and compression ridges on the 

ice surface. Compressing flow occurs where the subglacial surface gradient decreases. 

toward the ice margin where ablation causes ice mass loss, on the inside of valley glacier 

bends and where a confined channel widens (Hambrey. 1994). 

Compressing flow permits the flow of debris·laden basal ice up toward the ice 

surface along shear planes. This debris is exposed and released by ablation at the surface, 

where it contributes to the volume of supraglacial material and eventually to the 

formation of moraines. Other contributors of supraglacial debris are nunataks and valley 

sides. Lateral and medial morainic material may obscure the ice surface both upstream 

and where the debris becomes concentrated toward the margin. Figure 2.1 illustrates the 

paths of debris transport within a glacier and how englacial and basal debris becomes 

supraglacial. debris at the margin of a glacier. Supraglacial debris causes ice margins to 

be significantly different from clean upglacier ice and snow. 

Also shown in Figure 2.1 are the formation processes of tills. Tills are one of the 

final deposits of glacially transported debris. These sediments are deposited by the direct 

action of ice, either in the process of ice melt. producing meltout till or by accretion 
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under a moving glacier, producing lodgement till. Tills modified by post-depositional 

processes are referred to as flow and deformation tills. Tills are key components of the 

deglaciated landscape. If they were deposited subglacially by active ice they may contain 

evidence of ice flow direction such as drumlins, flutes or lineations (Hart, 1995), and 

their composition controls local sediment supply and consequently contemporary 

geomorphological processes. Examination of till composition is a key methodology in 

reconstructing ice dynamics of previous glaciations (Dreimanis, 1971 ). 

1-f---- Stagnating ice ------71~,.---------- Active ice --------~• 

Supraglacial 
meltout till 

Supraglacial 
debris 

~-------~ 

Depositional zone ----------~-Erosional zone 

(Source: Modified from Hambrey and Alean, 1992) 

Figure 2.1 Longitudinal profile through a retreating valley glacier 

In addition to debris, meltwater is an important factor in ice margin morphology. 

Supraglacial meltwater channels vary from very shallow and narrow, in the order of 

centimeters, to deeply incised, with pools and moulins with dimensions of meters. 

Patterns of meltwater flow will not only modify the form of the ice but will also influence 

the distribution of supraglacial sediment. Supraglacial streams may deposit or erode 

debris from the ice surface depending on the flow regime, resulting in cleaner or debris 
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covered surfaces along the edges of the channel. Where meltwater collects at the margin 

in topographical depressions, glaciolacust:riile environments develop. Lacustrine ice 

margins may be in cliff form, with ablation loss occurring predominately through iceberg 

calving, or floating ice lobes which thin distally due to basal melt and surficial ablation. 

Land based ice margins produce a wide variety of ice margin forms. These range 

from gentle gradient ice fronts to sheer ice cliffs: Supraglacial debris may be present or 

absent due to local sediment supply and glacial transport mechanisms. Lengthy ice 

margins such as the edges of ice sheets, as opposed to confined valley glacier snouts, are 

more complex due to spatial variations in the local topography and substrate geology, 

mass balance fluctuations and localized ice flow patterns. 

2.1.3 Ice cor-ed moi'Bines of the Banes Ice Cap 

The active processes at the Barnes Ice Cap margin bave been the source of some 

debate on account of the presence of a large and dominant ice cored moraine. Goldthwait 

(1951) and Hooke (1973) have studied the moraines of the Barnes Ice Cap and provide 

two theories of formation which include ice shear planes, phases of retreat and advance 

and the development of perennial snowbeds along the margin. The presence of this ice 

cored moraine has important implications for the mapping of the ice margin. 

The focus of this study is the delineation of the currently active ice margin. The 

active ice margin is defined here as the distal limit of ice that is still adjoined to and 

supplied by flow from the main ice mass. Ice cored moraines are separated from the main 
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body of ice by a trough containing debris and typically a stream, see Figure 2.2a. These 

are therefore considered to be detached from the ice mass and distal to the present active 

ice margin. In contrast, a covering of supraglacial debris merely overlies the marginal ice 

and does not segregate blocks of ice from the main body, the structure is shown in Figure 

2.2b. It is thus still possible for the main ice mass to supply the underlying ice and so the 

active ice margin is judged to lie beneath the supraglacial debris cover. The limit of 

active ice is shown in Figure 2.2 a and b to be just inside the actual extent of the glacier 

ice. This is in accordance with the division between active and stagnant ice as defined by 

Hambrey and Alean (1992) and shown in Figure 2.1. On account of confusion at the ice 

margin it is necessary to examine both the ice cap itself and the landforms of the adjacent 

land surface, in order to determine the exact position of the limit of active ice, as this is 

considered here to be the ice margin. 

(a) 

Limit of 
a.c:tive ice 

I 
I 
I 

(b) 
Limit of 
a.c:tive ice 

I 
I 
I 

Figure 2.2 (a) Margin with ice cored moraine (b) Margin with supraglacial debris cover 

2.1.4 The proglacial zone 

The preglacial zone is the land area directly adjacent to the ice front. It has 

distinctive geomorphology on account of the unique interactions between ice, water and 
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sediments. The deglaciated terrain is either a glacial erosion surface such as exposed 

bedrock, or a combination of glacial depositional features and glaciofluvial sediments. 

The present day landscape is a result of the regional geology, the thermodynamics of the 

glacier that covered the area (Sugden, 1978; Shaw, 1994) and contemporary geomorphic 

processes. The Barnes Ice Cap is located on Baffin Island in the Canadian Arctic. The 

Canadian Arctic Archipelago is typically characterised by cold-centered arctic ice caps. 

Cold based glaciers have no significant basal meltwater and so basal sliding is 

impossible, thus capacity for basal erosion and debris transport is limited. On account of 

this it is common for periglacial surfaces and landscapes of previous glaciations to be 

preserved under a cold-centered ice cap. The deglaciated terrain is characterised mainly 

by residuum and colluvium with a notable absence of streamlined and ice molded 

structures (Dyke, 1993). Residuum is rubble or felsemneer with in-situ weathered 

boulders, the angular clasts indicative of periglacial weathering rather than subglacial 

erosion. Colluvium is fine grain size material that is derived from movement and vertical 

accretion of components of residuum; it collects in depressions and may demonstrate 

tundra patterned ground characteristics. 

The cold ice cap center may besurrounded entirely, or in part, by a warm-based 

periphery. Meltwater activity is constrained to the warm-based periphery where it creates 

erosional or depositional surfaces. Bedrock scour and washing produces rock surfaces 

with boulder lag and scoured ponds. Depositional processes are responsible for the 

construction of several glacial landforms, in particular kames, eskers and kettle holes. 



13 
Kames are ice contact glaciofluvial landforms which occur as isolated hummocks or 

broad plateau areas. They consist of well sorted stratified sand and gravel and vary from 

100 to 1000 meters in length and tens of meters in width. Eskers are sinuous ridges of 

glaciofluvial deposits formed by the deposition of sub-. supra- and englacial stream 

material. They are distinctive on account of their orientation parallel to the ice flow 

direction. Kettle boles are steep sided water filled pits formed by the melting of detached 

blocks of ice. They may be tens of meters in diameter and although cone shaped when 

freshly formed, slumping over time causes infill and shape modification (Hambrey. 

1994). 

Large quantities and seasonal fluctuations in melt-water discharge cause the 

formation of extensively braided river systems. Unless the river is confined by valley 

walls these outwash rivers deposit vast quantities of glaciofluvial material which are 

known as outwash plains. Alluvial fans form where decreases in stream channel velocity 

cause abrupt sediment deposition. Where meltwater channels enter proglacial lakes or 

larger river systems, sediment deposition creates deltas. Major phases of glacier retreat 

result in reduction in meltwater volume and lowering of lake levels, this produces 

abandoned lake shorelines and river terrace systems which may be dated and used in the 

reconstruction of glacial chronology. This has been done for the Barnes Ice Cap by 

Barnett (1967). 
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The reconstruction of glacial chronology may also be achieved through the 

mapping of moraines. Moraines are arguably the most significant of all proglacial 

landforms as they are fonned by the direct interaction of ice and sediments at the ice 

front, and are therefore indicative of former ice extent. End moraines form parallel to the 

ice front and perpendicular to the ice flow direction. They are created by a variety of 

processes depending on the nature of the transport of glacigenic sediments and the 

method of deposition (Sugden and John, 1976). Cold based ice masses are limited in the 

manner in which they build end moraines. Minimal subglacial meltwater precludes the 

processes of proglacial tectonic deformation (Hart, 1994). instead the process of shear 

planes and the deposition of debris from a supraglacial position are more likely 

(Goldthwait, 1951; Weertman, 1961). Unless there is in-situ stagnation to form ice cored 

moraines, there is •dumping' of material down. the ice front. Figure 2.3 shows the 

formation of a •dump moraine' (Small, 1983). 

When the ice retreats the resultant deposit is termed an 'end moraine' . These 

features are usually curvilinear in form and vary in dimensions from a few meters to tens 

or even hundreds of meters depending on the sediment supply and the length of time the 

ice remained at the one location. As they are indicative of previous ice margin positions, 

end moraine mapping allows the extrapolation of patterns of ice mass shrinkage. Where 

the moraines can be dated using lichenometry the calculation of retreat rates is facilitated. 
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Figure 2.3 Dump moraine formation 

In contrast to end moraines, ice cored moraines decay unevenly due to ice 

exposure, core melt and dissection by meltwater streams, to form linear hummocky 

moraine. Hummocky moraine is produced by the slow and uneven downwasting of debris 

covered stagnant ice beyond the currently active ice margin. It is characterized by chaotic 

uneven topography with undulations, mounds and water filled hollows or kettle holes. 

The dimensions of the components of hummocky moraine are usually in the order of 

meters and tens of meters (Sugden and John, 1976). The presence and absence of ice 

cored moraines may vary along the length of the ice margin according to the glacier 

thermal regime. Ice cored moraines develop where the glacier is frozen to the subsoil but 

are absent where persistent meltwater channels create local temperate basal conditions 

(Tatenhove, 1996). Consequently the observation of ice cored moraines, end moraines 

and hummocky moraine provide clues to the basal thermal regime of the glacier and 

meltwater flow patterns. 
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2.2 AppHaatioas of remote sensiag to glaciology 

Released from the logistical constraints of fieldwork in inaccessible and 

inhospitable environments, remote sensing offers an attractive alternative method of 

glaciological data collection. Remotely sensed data may be collected using airborne or 

spaceborne platforms and applications are constrained mainly by the resolution and the 

nature of the data. For small scale studies such as alpine valley glaciers, airborne imagery 

can be used to give ground re&<>lution in meters. Airborne imagery is however, still 

restricted by weather and the expense of frequent flights. Spacebome data acquisition 

offers the advantages of data collection at frequent time intervals irrespective of the 

weather and season. Satellite imagery is much coarser in resolution, typically tens to 

hundreds of meters and is suitable for large glaciers, ice caps and ice sheets. 

The ftrst satellites measured reflectance of soJar radiation in the optical range of 

the electromagnetic spectrum (0.4 to 0.7 J.1.Q1 wavelength). In glacial environments these 

sensors distinguish between snow, slush, and bare ice using decreasing levels of spectral 

reflectance (Williams et al., 1991), but saturation of the sensor at the short wavelengths 

due to high albedo, has restricted the effectiveness of this method. Sensors such as 

Landsat Thematic Mapper {TM), which record reflectance at the near infra-red and the 

thermal infra-red regions of the spectrum significantly increased the capabilities of snow 

and ice cover assessment. Hall et al. (1987) and Hall et al. (1989) developed a method of 

enhancing snow and ice features in TM imagery using a ratic of TM bands 4 and S. The 

enhancement of these features aids the delimitation of the accumulation and ablation 
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zones and the extent of supraglacial debris cover. Linking the field studies of Benson 

(1962) to optical image interpretation of glaciers, Williams et al. (1991) summarized the 

applications of optical imagery with the glacier facies concept. 

Mapping ice margin position in optical imagery is particularly complex due to 

difficulties in determining debris laden glacier termini from the surrounding outwash 

plain (Hall and Ormsby, 1983). Hall et a/, (1989) used a ratio of TM bands 4 and 5 to 

enhance the contrast between ice and debris covered surfaces and separate them from the 

deglaciated terrain. The ratioing technique was applied to the Vatnajokull glacier in 

Iceland and the Pasterze glacier in Austria to map decadal patterns of margin retreat (Hall 

et al., 1992). Hallet al. (1992) state that .. a line may be drawn on the image around the 

glacier terminus''. It is inferred from their diagram that this line separates the ice mass 

from the outwash plain and incorporates all the ice covered with supraglacial debris. Hall 

et al. recognise that the supraglacial debris cover is thicker over recessional areas than 

advancing areas but give no quantification of the breadth of debris cover and no estimate 

of the quantity of stagnant ice included in the ice mass. 

The TM band ratio method bas also been successfully applied to the Barnes lce 

Cap by Jacobs eta/. (1997). Here the limit of clean ice was taken to represent the margin. 

A 100 m buffer was applied to this limit in order that all the debris covered ice and ice 

cored moraines be included in the glacier ice extent calculations. It was believed that the 
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exclusion of these features would result in a considerable overestimation of the amount of 

retreat. 

Passive optical imaging systems are constrained by the conditions of solar 

illumination. Manipulation of the timing and direction of the sensor may be used to 

enhance certain features through shadowing (Thomas, 1993). This offers possibilities for 

the enhancement of ice surface topography and ridge-shaped, proglacial features such as 

eskers and moraines. However, for high latitude regions this solar illumination 

requirement prohibits data acquisition for up to two and half months a year due to polar 

night. In addition to the image acquisition time restrictions there are weather restrictions 

imposed on optical imagery. Optical wavelengths cannot penetrate cloud and rain. so on 

cloudy days or in stormy weather the land surface cannot be imaged; this is arguably the 

biggest disadvantage of optical sensors. 

Microwave wavelengths, because they are longer than the optical wavelengths, 

have the advantage that, except for very severe rainstorms, they are able to penetrate 

cloud and atmospheric moisture. Microwave sensors can therefore image in most weather 

conditions. Microwave sensing may be passive or active. Passive remote sensing 

measures the amount of radiation emitted by the earth • s surface which is related to the 

surface temperature. These surface temperature data have proved useful for the 

monitoring of accumulation zones but the extremely coarse, kilometre scale spatial 
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resolution severely constrains the range of applications (Ron. 1984; Rees and Squire, 

1989). 

Active microwave sensing provides its own energy source by means of an 

electrical pulse with a wavelength in the order of centimeters to meters. This independent 

energy source means that it is possible to image during conditions of no solar 

illumination. SAR technology facilitates a finer spatial resolution than for optical sensors. 

The finest spatial resolution currently available by spacebome SAR is the fine mode of 

RADARSAT (8 m). Interpretation of the first radar imagery of glacial environments, for 

example, Bindschadler et al. (1981), Bindschadler and Vomberger (1992) and Hallet al. 

(1995), was undertaken using combinations of both optical and radar imagery. Hall and 

Ormsby (1983) advocated that additional information was provided by SAR for debris 

covered termini and interlobate areas, but generally it was considered that SAR imagery 

contained no more information than was already contained in visual and infra-red 

imagery, (Rott and Matzler, 1987; Rees and Squire, 1989). However, it is now becoming 

apparent that the information provided by SAR sensors has much to offer glaciological 

investigation as an independent data source. 

In addition to guaranteed imaging SAR has four other advantages. Firstly, SAR is 

sensitive to surface moisture conditions which makes it particularly suitable for snow and 

ice applications (Vomberger and Bindschadler, 1992; Shi and Dozier, 1993). Secondly, 

SAR has a penetration capability that enables subsurface features such as medial 
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moraines (Bindschadler et a/., 1987), buried crevasses and relic drainage channels to be 

detected in cold arid environments. Aridity is coiD.Dl()n in high latitude glacial 

environments as the extremely low air temperatures prohibit the presence of moisture. 

The amount of penetration varies according to the radar wavelength. the surface materials 

and topography, consequently the sensor must be selected to enhance the subsurface 

features of interest. Thirdly, phase differences between radar images of the same area 

separated by shon time intervals, may be used in the detection of surface displacement 

using interferometry. This is particularly valuable for monitoring ice velocity (Rignot et 

al.. 1996; Rignot et a/., 1997; Mohr, 1997; Gray et a/., 1998), and with more than one 

interferometric pair it is possible to extract surface elevation and produce a digital 

elevation model (DEM) (Mohr, 1991). Founhly, SAR images of the same area with 

different look directions have stereoscopic properties and may be viewed for a perception 

of relative elevation and used in the creation of DEMs (Sabins, 1987). 

2.3 Radar image interpretation 

Radar image brightness is the recorded radar backscatter from an imaged surface. 

The strength of the radar backscatter is controlled by the relief, moisture content, 

dielectric constant and the surface roughness of the imaged surface. 

2.3.1 Relief 

Relief interacts with the surface properties in controlling the radar return. Slopes 

that face the sensor (foreslopes) reflect the pulse directly hac~ therefore producing a 

higher backscatter response. Conversely, slopes that face away from the sensor 
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(backslopes) direct the pulse away aud therefore produce lower radar returns. In areas of 

very rugged terrain the effects of relief produce three phenomena which complicate radar 

image interpretation. They are layover. foreshortening and shadowing. Where the 

foreslopes are very steep the radar pulse is returned from the top of the slope before the 

bottom. This results in unusually bright pixel values at the location of the slope referred 

to as ~layover'. Foreshortening is where steep foreslopes are misrepresented as 

proportionally shorter than reality. due to the radar pulse reaching the top of the slope in 

almost the same amount of time it takes to reach the foot of the slope. Shadowing occurs 

where the backslope is steeper than the radar incidence angle, for these areas no radar 

backscatter is recorded. Consequently, in areas of high relief a proportion of the image 

may lack data. Image shadow is an important factor for visual interpretation of imagery and 

aids the identification of linear features. 

2.3.2 Moisture content and dielectric constant 

Moisture content and dielectric constant are directly related. The dielectric 

constant or conductivity of a material affects the radar return through 'dielectric losses'. 

A material with high conductivity absorbs some of the microwave energy through high 

dielectric losses and so lowers the intensity of the backscatter. The presence of water 

increases the conductivity of a medium and so increases the dielectric losses, thus 

lowering the backscatter from a wet surface. Materials with high moisture content and 

high dielectric constants therefore produce lower radar returns than their dry 

counterparts. 
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Due to moisture sensitivity, SAR has strong potential for mapping patterns of 

snow melt. Therefore, most microwave glaciological applications to date have focused on 

snowline mapping and delimiting the areal extent of the accumulation zone and the 

characteristics of the snow and ice cover (Ron, 1984; Ron and Matzler, 1987; Donald et 

al., 1993; Fahnestock et al., 1993; Jezek et al., 1993; Ron and Nagler, 1993; Shi and 

Dozier, 1993; Maxfield, 1994; Shi eta/., 1994; Rees eta/., 1995; Brugman eta/., 1996; 

Smith et al., 1991). Forster et al. (1993) have proposed the concept of 'radar glacier 

zones'. In summary, dry snow of high latitude ice sheet accumulation zones of 

Greenland and Antarctica produces a bright uniform response. The percolation facies. 

where meltwater percolates into the snow layer and refreezes to form networks of ice 

lenses and ice pipes, also produces high backscatter. The percolation zone differs from 

the accumulation zone in that it usually contains image texture due to topographically 

controlled drainage patterns {Jezek et al., 1993). The wet snow and slush facies produce 

very low radar backscatter during the melt season due to the presence of melt water and 

high dielectric losses. During the accumulation season however, these facies are both 

frozen and produce similar high backscatter responses. Radar backscatter from bare ice is 

complex. Ice surface roughness relative to radar wavelength determines the backscatter 

and so results differ significantly between study areas and sensors. 

In the proglacial environment surface moisture varies with drainage capabilities 

and vegetation cover. Large grain sizes and elevated surfaces drain more easily and are 
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characteristically drier than fine sediment surfaces and topographic depressions. 

Subsequently~ surfaces composed of large grain sizes such as boulders, produce higher 

radar backscatter than fine sediment surfaces. The presence of vegetation will affect the 

radar response of a surface due to retention of moisture in the plant leaves and ste~ and 

increased moisture retention in the soil due to root structure (Loor. 1968). Vegetation is 

particularly sparse in the proglacial environment due to the inhospitable climate and the 

instability of the sediments. Lichen cover is abundant but unable to retain moisture and 

probably ineffectual for altering radar response. Vegetation is found only in the stable 

areas of the proglacial zone in the form of low growing herbs. woody plants, grasses and 

sedges. These plants alter the moisture retaining capacity of the surface materials and 

may affect the radar response. However. for active microwave sensors operating at lower 

frequencies and with higher incidence angles. such as is characterized by the 

RADARSAT SAR, soil moisture and dielectric constant are considered to be of lesser 

importance than surface roughness (Aitese et al., 1996). 

2.3.3 Surface roughness and structure 

Surface roughness is determined by the arrangement of small scale surface 

features similar in size to the radar wavelength. such as pebbles or gravel particles. 

Surface roughness is a combination of both the vertical and horizontal dimensions of the 

surface variation, although vertical relief is found to be an adequate estimation of surface 

roughness (Sabins, 1987). Surfaces are rough or smooth depending on the surface height 

variation relative to the radar wavelength and the local incidence angle. 
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The threshold between radar smooth or rough surfaces has been defined by the 

Rayleigh criterion (Sabins, 1987). 

where: 

Rough (diffuse) =h >(AI 8)/cos8 

A. :. radar wavelength (em) 
9 : local incidence angle ( o) 
h : root mean square of surface height variation 
n : number of observations 
y, : observation i 

y :mean Y 

(2.1) 

(2.2) 

A set of two equations have modified the Rayleigh criterion to incorporate an 

intermediate category between rough and smooth surfaces (Peake and Oliver, 1971) as 

follows: 

Rough (diffuse)= h > (A/4.4) /cos8 (2.3) 

Smooth (specular) = h < (iJ25) I cos8 (2.4) 

Smooth surfaces behave as specular reflectors and scatter little of the transmitted 

radar pulse back to the sensor, therefore producing low returns and dark areas in an 

image, see Figure 2.4a. Examples of smooth surfaces would be standing water bodies, 

and fine glaciofluvial sediments. Rott (1984) found that there was confusion between 

relatively smooth proglacial alluvial deposits and the similarly low backscatter values 
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produced by the frrn and the wet snow facies upon the glacier. Rough surfaces produce 

diffuse reflectance which backscatters some of the pulse to the sensor and so the area 

appears bright on the image, see Figure 2.4b. Examples of rough glacial surfaces would 

include crevassed areas, areas with numerous incised supraglacial streams, or uneven 

boulder covered surfaces. 

Surface structures such as comer reflectors exert influence over the nature of the 

radar backscatter. Comer reflectors are formed when two smooth surfaces are arranged at 

right angles, this structure reflects the radar pulse directly back to the sensor producing 

high returns and very bright spots in the imagery, see Figure 2.4c. Objects which might 

simulate corner reflectance in the remote tundra and glacial landscape are a rock within a 

pond or an ice cliff bordering a water body or a smooth bedrock surface. 

(a) Diffuse (b) Specular 
reflectance reflectance 

(c) Comer 
reflectance 

(Modified from Lillesand and Kiefer, 1994) 

Figure 2.4 Specular and diffuse reflection of active microwave radiation from rough and 
smooth surfaces and a comer reflector 
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Measurements of the surface roughness are important for modeling radar 

backscatter and have been accomplished through the use of close up stereophotography 

(Weeks eta/., 1996), fine scale laser altimetry (Schaber eta/., 1976) and a tool termed a 

'terrain templet' (Gaddis et al .• 1990; Benallegue et a/., 1995). The terrain templet 

consists of a linear array of closely spaced vertically movable rods. The vertical 

displacement of the rods to reflect the ground surface, quantifies the height variation at 

the surface. The profile data are used to calculate statistical parameters of surface 

roughness. 

The grain size of the surficial sediments is a natural control on the range of 

vertical height variation and therefore plays an imponant role in surface roughness. Grain 

size analysis is thus a logical method of indirectly quantifying the surface height 

variation. Grain size composition, particularly the relative proportions of clay and sand 

particles, influence the ability of a soil to retain moisture, therefore exerting further 

control on the radar response. Consequently, soil texture has been quantitatively analysed 

for agricultural applications of radar (Dobson and tnaby, 1981). At larger scales, grain 

size is important for geological and structural applications of radar imagery. Lithology 

influences surficial characteristics of rock surfaces and the size of particles produced by 

weathering, hence grain size is a key factor in the interpretation of radar imagery for 

geological mapping (Hanks and Guritz, 1997). Nevenheless, investigations of 

lithological grain size related to radar backscatter remain qualitative in nature and of 

secondary importance to measurements of vertical height variation. A detailed 

description of surface height variation and grain size composition for surface materials of 
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Death Valley, Califomi~ related to Seasat SAR data (L-band SAR with wavelength 23.5 

em), concluded that .. radar signlltUres alone cannot be used to identify the composition 

of materials" (Sabins. 1987). 

2.3.4 Radar penetration 

Where the surface is smooth and dry there is no absorption of the radar pulse by 

dielectric losses and no immediate backscatter due to surface roughness. In this case the 

radar pulse will penetrate the surface materials and the subsurface properties will control 

the backscatter. Penetration depths vary with pulse wavelength and moisture content of 

the surface and subsurface materials. For smooth surfaces. example penetration depths 

for the C-hand are, -5 em for wet snow (Ron, 1984), 20 em for dry snow, and up to 9 m 

for bare ice (Rignot et al., 1996). 

2.4 Ice margin mapping applications of SAR 

Much work using radar has focused on ice masses terminating in water bodies. 

The intense crevassing associated with ice cliffs and iceberg calving produces very rough 

surfaces and consequently a very high radar return. There is a marked contrast between 

this and the low return of still water surfaces which reflect specularly. The clear 

distinction between rough ice and smooth water permits accurate identification of ice 

margin positions. Glaciomarine margin mapping applications using ERS-1 SAR data (C­

hand with like vertical polarization, nominal spatial resolution of 30 m and a 23° look 

angle) have been successful in Greenland (Fahnestock and Bindschadler, 1993) and 
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Antarctica (Skvarca eta/., 1995). Hall eta/. (1995) advocate late ablation season imaging 

of terrestrial ice margins in order to capitalise on the contrast between the open water of 

ice marginal lakes and the glacier surface. 

Terrestrial glaciers were the focus of a study by Shi and Dozier (1993) which 

concluded that in areas of very high relief the complications of layover, foreshonening 

and shadow rendered SAR no more effective for glacier monitoring than optical sensors .. 

Shi et al. (1994) insisted that SAR was useful for the delimitation of snow cover but, as it 

could not distinguish between rock and glacier ice, optical imagery was preferable for ice 

margin mapping. In contrast, Adam et a/. (1997) used ERS-1 SAR imagery to 

automatically map the divide between rock and ice surfaces at the margin of the Place 

Glacier Basin, British Columbia, a region of rugged terrain. Adam et a/. obtained a 

locational accuracy of 75 m for the margin and which is in accordance with the accuracy 

required for hydrological purposes and mass balance calculations (Adam et al., 1997). 

In an area of low relief. Rott (1984) found that the debris covered termini were 

clearly distinguishable from sUITounding terrain in SAR imagery. on account of the 

elevated, rough surface of the terminus producing a much higher backscatter value than 

the lowlying surrounding terrain. This makes SAR particularly useful for ice margin 

mapping. 
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Sohn and Jezek (1996) developed an automated method of ice margin extraction 

for a length of the Greenland ICe Sheet margin using ERS-1 SAR imagery. The method 

identified the limit of clean ice to within 300 m of the limit as seen on the visually 

interpreted image. When SPOT HRV and air photo data were included in the method the 

accuracy improved to 150 m (So~ 1996). 

Two points are immediately apparent from the examination of previous studies. 

Firstly, conclusions on the usefulness of SAR in the study of the ice marginal 

environment are conflicting. Despite the initial negative conclusions of Sbi and Dozier 

(1993) and Shi etal. (1994), SAR imagery has been used successfully in other ice margin 

mapping studies and demonstrates potential for further exploitation. Secondly, in both 

optical and microwave imagery there is a lack of consistency in tile definition of the term 

'ice margin'. Typically the term 'rock and ice divide' is used, which suggests that the 

authors do not acknowledge the presence or absence of supraglacial debris. Alternatively 

the extent of clean ice is specified, but apart from Jacobs et al. (1997), no estimation of 

the breadth of the marginal debris cover is provided. With no consideration of the nature 

of the margin and its dynamics it is impossible to judge whether the extracted margin 

truely represents the limit of active ice or how accurately the margin is placed 

considering the spatial resolution of the data. 
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2.5 Speckle aad image ftlterfng 

Radar image data contains high frequency noise referred to as •speckle' _ Speckle 

causes random variation in grey levels that result in a grainy or salt and pepper 

appearance of the radar image (Rees, 1990). Image speckle must be removed, or at least 

reduced to make image values consistant for a surface cover type (Frost et al., 1982). It 

has been established that speckle filtering is essential to improve the accuracy of pixel by 

pixel image classification (Durand et al.,. 1987; Pultz and Brown, 1987). Various filter 

procedures have been developed for the reduction of image speckle, some operating in 

the frequency domain and others in the spatial domain. Durand et al. (1987) rejected 

frequency domain noise filtering because they found that it introduced low frequency 

interference, or artificial. texture, on the SAR image as well as smoothing edges and 

removing legitimate textural areas. Spatial domain filtering is therefore examined here as 

a method of image speckle removal. 

2.5.1 Spatial domain filtering 

Spatial domain filters operate directly upon the image values. Original averaging 

box filters, which simply smooth image values, have now been superseded by adaptive 

filters. Adaptive filters modify the filtering process according to local image statistics, in 

order that information contained within the image values is preserved (Shi and Fung, 

1994). These adaptive filters reduce smoothing over edges, preserve areas of 

heterogeneity and isolated scatterers, while smoothing areas of homogeneity (Lee. 1980; 

Frost et al., 1982; Kuan et al.~ 1987; Lopes et al., 1990; Lopes et al., 1993). In this 
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manner image texture is detected and preserved. A comparison of 10 different speckle 

filtering methods by Durand et al. (1987) concluded that the adaptive filters were 

superior because they distinguished between useful information and speckle during the 

filtering process. Mastin (1985) concluded that adaptive smoothing filters were the best 

compromise between the competing goals of variance reduction and edge preservation. 

2.5.2 Multilook image processiag 

Speckle may also be reduced by multilook image processing. This process 

reduces image speckle by combining images of the same scene and averaging the 

backscatter values (Rees, 1990). Thus each pixel value for the resultant image is an 

average value and bas already experienced some smoothing. The RADARSAT fine 

mode image is a single look image, but the standard mode images are four look images. 

The disadvantage of this averaging method is the degradation in spatial resolution. The 

four look images have 25 m spatial resolution compared to 8 m spatial resolution of the 

single look. 

2.6 Image texture 

hnage texture is the spatial variability of the tonal values within an image. The 

large scale, uneven nature of a surface causes variation in pixel backscatter values that is 

expressed as image texture. Heterogeneous surfaces have a large range of backscatter 

values over a small area. This high variability is expressed as coarse texture. 

Homogeneous surfaces have low variability and hence, fine image texture. Image texture 

assists the visual interpretation of radar imagery and when modeled mathematically. it 
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may be used as an input to radar image classification (Ulaby et al., 1986). Image textural 

information has been shown to increase image classification accuracy (Ulaby et al., 1986; 

Gong and Howarth, 1990; Shi and Dozier, 1993; Kushwaha et al., 1994; Nezry et al., 

1996; Rotunno et al., 1996) 

There are a large number of quantitative approaches to texture analysis. Of the 

most common are the analysis of the Fourier power spectrum resulting from the discrete 

Fourier transform (Stromberg and Farr, 1986; Ehrhard et al .• 1993), first order statistics 

of grey levels {Hsu, 1978), second order texture statistics (Haralick et al., 1973; 

Haralick, 1979), grey run length statistics (Galloway, 1975), texture units and spectra 

(Wang and He, 1990) and most recently, developments in fractal modeling of image 

texture (Dodd, 1987; Stewart et al., 1993; Liu and Chang, 1997). The fractal methods 

produce good results (Liu and Chang, 1997) but are new and relatively inaccessible. 

Comparative investigations of the other texture analysis techniques have found that first 

and second order texture measures have been consistently most successful (Barber et al .• 

1993; Weska et al., 1976, Hsu, 1978; Conners and Harlow, 1980; Ulaby et al., 1986; 

Alparone et al., 1990). 

First and second order measures use texture algorithms to quantify the 

relationship that a pixel has to its neighbouring pixels within a texture window. The 

window is an uneven number of pixels square so that the centre pixel may be assigned 

the value computed by the texture measure algorithm. The size of the texture window is 
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an important consideration when extracting image texture (Woodcock and Strahler9 1987; 

Dillworth, 1991; Dillworth et al., 1994) and the window must be smaller than the 

expected area of the features to be identified (Baraldi and Parmiggiani, 1995; Rotunno et 

al., 1996) in order that a pure texture statistic be extracted. 

2.6.1 First order texture measures 

First order texture measures quantitY the amount of tonal variation within a 

texture window in terms of mean, standard deviation and variance. A low variance 

characterizes a homogeneous area while a high variance implies a heterogeneous area. 

First order texture measures have been used in glacial environment classification (Shi and 

Dozier, 1993; Shi et al., 1994; Sobn and Jezek, 1996). Shi and Dozier (1993) improved 

the classification accuracy of rock and ice surfaces from 66% to 74% through the 

inclusion of a variance texture measure. Sohn and Jezek (1996) used the coefficient of 

variance as a discriminator for measuring the coarseness of ice sheet and deglaciated rock 

area texture. 

2.6.2 Second order texture measures 

Second order texture measures use statistics calculated from grey level 

cooccurrence matrices (GLCMs). By quantifying the distribution patterns of the elements 

within the matrix they are able to provide information about the nature of the tonal 

variation, rather than just the amount of variation as calculated by the first order texture 

measures. They have been used with success in sea ice discrimination (Holmes et al., 

1984; Barber and LeDrew. 1991; Sbokr. 1991; Barber et al., 1993), terrain discrimination 
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(Weska et al., 1976; Franklin and Peddle, 1987) and glacial environment image 

classification (Baraldi and Parmiggiani. 1995; Adam et al ... 1997). The GLCM approach 

assumes that the texture information in an image is contained in the overall spatial 

relationship between grey values of an image (Shanmugan et al., 1981) and this 

information is captured in the GLCM .. The GLCM is a square matrix with n2 elements 

where n is the number of possible image values or digital numbers (DN) a pixel may 

assume. A matrix element (i. j) denotes the frequency with which a DN i occurs adjacent 

to a DN ofj. Adjacent is defined as a specified pixel distance from one pixel to another in 

a particular direction. This directional factor is known as the spatial function and is 

expressed as displacement or 5 =(Ax, Ay), for example 8 = (1, 0) would be the adjacent 

pixel to the right. Figure 2.5 shows the pixel values for a small image segment of S x 5 

pixels with gray tone values 0-3 and the resultant GLCM. 

0 1 1 2 J 0 1 2 3 

0 0 l J J 0 1 l 1 0 
0 1 l 2 3 1 0 1 3 0 
1 l J 2 2 2 0 0 3 s 
2 l J J 2 J 0 0 2 2 

Orl&bW Jlllale ftlaes Rt ...... GLCM....a'b:f• 
llilllt ...... 4lllplaceatllt 
1, I 

Figure 2.5 GLCM example 
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Features in radar imagery are dependent on the look direction, consequently the 

choice of spatial function produces preferential detection of features with a particular 

orientation. To eliminate the angular dependency of the final texture image it is 

advantageous to calculate texture values for four opposing directions and average the 

results (Sun and Wee, 1982). 

The diagonal elements of the GLCM matrix represent the numbers of directly 

adjacent identical pixels. The amount .of dispersion that the matrix elements have about 

the diagonal may be measured statistically through different texture algorithms. Fourteen 

texture algorithms were originally proposed by Haralick et al. (1973), yet there exists no 

general consensus on which measures are the best. as results vary considerably with the 

application. However, six measures occur most frequently in the literature and have been 

used successfully in a variety of geomorphological applications such as terrain class 

discrimination (Weska et a/., 1976; Franklin and Peddle, 1987), glacial environment 

classification (Baraldi and Parmiggiani, 1995) and the mapping of lava flows (Gaddis et 

al., 1990). These six measures are contrast, angular second moment. correlation, 

homogeneity, entropy and standard deviation. 

2. 7 Image classification 

Image classification is the delimitation of the areal extent of categories of interest 

in remotely sensed imagery in order to produce thematic maps. Automated image 

classification methods may be divided into hard or fuzzy logic (Jensen, 1996). Hard 
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classification logic is where each pixel is assigned to one class only. Fuzzy logic 

recognises the existence of mixed pixels and each pixel is assigned to every class with 

varying probabilities of membership. The fuzzy method is valuable for examining the 

makeup of mixed pixels (Fisher and Pathirana, 1990; Foody and Trodd~ 1993) but bard 

classification logic is necessary for the production of thematic maps. 

Automated methods of image classification are based on computed statistics and 

may be divided into unsupervised and supervised approaches. The unsupervised 

approach uses computer algorithms to identify spectral clusters in the data. the most 

common methods are the K-means and the isodata approach (Jensen, 1996). The spectral 

clusters are then identified and labeled by the analyst as information classes using 

ancillary data sources. The supervised approach extracts sample spectral signatures from 

pixels of known land cover type referred to as training areas. These example signatures 

train the classifier in the recognition of areas of similar response in the image, and a 

classification algorithm is used to classify the entire image and produce a thematic map. 

For the supervised approach the three most common classification algorithms are the 

parallelpiped, minimum distance to means and the maximum likelihood. These per-pixel 

classifiers consider individual pixel values and use statistical rules to assign pixels to a 

land cover class. Supervised classification may be considered as the more direct method 

as the classes of interest are specified from the outset. 

The parallelpiped method uses the range of values of a training area to assign 
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image pixels to a class. Pixels which fall within the range of the training pixels are 

classified, those which fall outside are left unclassified. This method is computationally 

simple but cannot distinguish between overlapping class ranges and takes no account of 

the distribution of pixel values. The minimum distance to means classification algorithm 

assigns a pixel to the class with the closest mean value. The overlap problem of the 

parallelpiped is therefore avoided. but again. no account of the variability or pattern of 

dispersion of values is made. 

The maximum likelihood method is the most robust of the classification 

algorithms. It takes account of the variability and distribution of category values by 

modeling a probability density surface using equiprobabillty contours for each class. The 

structure of the classification feature space and the equiprobability contours is illustrated 

in Figure 2.6. Each pixel is assigned to the class for which it has the highest probability 

of membership. In the construction of the equiprobability contours the method assumes a 

Gaussian distribution for all training area input data. Care must therefore be taken to 

ensure that the Gaussian approximations are valid (Schott, 1997). 

Where there is great overlap of class equiprobabillty contours, the inclusion of a 

priori probabilities has been shown to significantly improve classification accuracies 

(Mather, 1985). A priori probabilities or weights are used in the calculations of pixel 

class membership probabilities. The weights should represent the relative proportion of 

each image class determined from independent knowledge of the area (Strahler, 1980). 
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Figure 2.6 An example of a maximum likelihood feature space and equiprobability 
contours defined for an ice marginal environment 
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When the Gaussian data distribution conditions for the maximum likelihood 

method are not satisfied alternative methods of image classification such as neural 

networks and discriminant function analysis may be used. Neural networks work by an 

iterative process which trains the classifier to balance class weightings until the classifier 

can correctly identify the training areas, or at least to a desirable degree of accuracy. The 
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developed method is then applied to the entire image. 

Neural networks are an example of artificial intelligence and represent the leading 

edge in classification methodology. Tentative results suggest improved classification 

accuracies using neural networks over conventional classification algorithms (Hepner et 

al., 1990; Foody eta/., 1994), but the still developing software and high demands on 

computational time and memory, currently restrict their widespread application. 

Discriminant function analysis is similar to layered classification or decision tree 

classification. In this method decision rules are used to assign pixels to classes in a series 

of stages (Schowengerdt, 1983; Jensen, 1996; Lillesand and Kiefer, 1994). These 

classifiers are computationally simple and are most effective when pixel values are 

clearly separated into groups, for example when including ancillary nominal data into the 

classification method. Remote sensing data are continuous, and significant overlap of 

class values implies that statistical methods are more appropriate. 

The maximum likelihood algorithm has emerged as the one of the most 

commonly used algorithms (Kushwaha et a/., 1994) and has been used in several ice 

margin classification case studies to date, for example, Shi and Dozier (1993), Shi eta/. 

(1994), Adam et a/. (1991). Other ice margin classification studies have used 

thresholding algorithms similar to discriminant functions, for example Jacobs et al. 

(1997), Sohn and Jezek (1996) and Sohn (1996). These decision methods have been 

successful where the number of image classes is very small. There is some skepticism 
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expressed over the suitability of the maximum likelihood method for radar da~ 

particularly that the presence of speckle in radar imagery makes the Gaussian assumption 

of training data invalid (Frost and Yurovsk.y, 1985; Wong and Posner, 1993). Speckle 

filtering reduces the relevance of this argument. Classification of SAR imagery has been 

performed using a variety of algorithms and methods, all with apparent success for their 

chosen application. No one classification method emerges to be consistently more 

successful than any another. Simple statistical methods such as minimum distance to 

means have been successful (Carr, 1996; Alparone et al., 1990), thresholding algorithms 

or decision methods are frequently used, new clustering algorithms (Wong and Posner, 

1993) and neural networks are being developed, and despite the Guassian data 

distribution point of discussion, the maximum likelihood method continues to be widely 

utilized. 

2.8 Edge detection 

Edge detection or edge enhancement is particularly useful for detecting linear 

features and image components which cannot be considered as independent image 

classes. An ice margin is a perfect example as it represents the divide between a glaciated 

and nonglaciated surface. Edge detection identifies abrupt changes in image values such 

as are characterised by class boundaries. The method involves running a special edge 

detection filter kernel through the entire image (Gonzalez and Woods, 1992). The pixel 

values of the resultant edge image are the product of the filter kernel weightings and the 

original image values, they are referred to as 'edge amplitudes'. The size and weighting 
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distribution of the filter kernel determines the type of edges that are detected- Weightings 

may be balanced in all directions so that all abrupt changes in image values are identified. 

such as the Laplacian filter shown in Figure 2.7(a), or in direct opposition to detect linear 

features of a particular orientation, such as the Sobel 2.7(b) and Prewitt 2.7(c) kernels. 

Edge images with specific orientation may be combined later to produce omnidirectional 

edge images. 

The resultant edge image values are indicative of the edge amplitude at that point. 

Different features or types of edge are represented by different edge amplitudes. Where 

the image class values are known, the possible edge values produced by filter kernel 

weightings may be calculated, and so the different types of boundaries may be identified 

and classified. 
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Figure 2. 7 Example edge filter kernels 
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Edge amplitude is calculated from the image values within the edge filter kernel. 

If different boundary features have similar backscatter values or similar degrees of 
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contrast, the resulting edge amplitudes will be similar and boundary type will be 

indistinct. If the image is first classified and image classes assigned specific values, then 

the calculated edge amplitudes will be clearly representative of the boundary type. and so 

it becomes possible to distinguish the edges of interest from all the edges of the image. 

Sobn (1996) and Sohn and Jezek (1996) used the Roberts method of edge 

detection in their automated technique of ice margin extraction. Using a SAR image 

classified into three classes, a Roberts filter was applied to detect all the boundaries of 

the rock surfaces. A recursive line following algorithm then extracted all the rock 

boundaries as line vectors. A threshold length criterion was used to determine which 

vectors represented the rock and ice boundary and which short vectors were spurious lake 

edges or artifacts and therefore removed. 

In summary. the method of edge detection is vital for the detection of boundary 

features for which classification is inappropriate. A combination of image classification 

and edge detection. as developed by Sohn (1996) and Sohn and Jezek (1996), is 

necessary to identify only the edges of interest. This method provides the most promising 

results for the automatic extraction of ice margins from radar imagery. 
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3. Problems and research objectives 

The literature review highlights the glaciological and geomorphological 

difficulties encountered in mapping a glacial environment and reveals the limitatioo.s of 

remote sensing studies of land based ice margins to date. This chapter isolates the two 

major problems of remote ice margin mapping and outlines a strategy of study to find 

solutions. 

3.1 Problems 

Terrestrial ice margins present particular problems for the measurement of 

terminus position. Delimiting the exact extent of an ice mass is complicated on account 

of dirty ice, supraglacial debris and the presence of both ice cored and end moraines. The 

similar geological properties of bedrock outcrops, supraglacial debris, moraine and 

outwash plain material produce similar spectral responses, and so ice marginal features 

are difficult to distinguish using optical remote sensing techniques (Hallet al., 1989). 

These features must be identified in order to accurately map the extent of the active ice. 

Radar data are controlled by relief, surface roughness and surface moisture 

content rather than spectral properties therefore, this alternative source of data may prove 

to be suitable for ice margin mapping. Methods of automated image classification and ice 

margin extraction for radar imagery are being developed, but they currently lack 

consistency in the definition of the ice margin. 
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3.2 Research objectives 

The global objective of this research is to assess the potential of radar imagery for 

the classification of an ice marginal environment, and for the delineation of the limit of 

active ice. The classification method is to be based on image parameters which can be 

extracted by computation, thereby allowing automated. classification and ice margin 

extraction from subsequent radar imagery of the same location. The classification method 

is to be based on the characteristics of ice marginal landforms in terms of image texture. 

The secondary objectives examine the characteristics of different RADARSAT 

images with regard to look directions and spatial resolution: 

1. To quantify the surface roughness variations characteristic of different 

landforms. understand how they are related to radar brightness values 

and conclude whether the differences between features are sufficient to 

be used in their identification in radar imagery. 

2. To examine image texture in standard mode imagery and establish 

whether different image texture measures can be used to distinguish 

between ice marginal features. 

3. To compare the classification accuracies obtained for 8 m fine and the 

25 m standard spatial resolution and determine which is most 

successful for resolving ice marginal features. 

4. To identify the optimal radar look direction for identifying the limit of 

active ice. 
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4. Study site and data 

The Barnes Ice Cap provides a suitable site for the development of a classification 

method for radar imagery of an ice marginal environment.. The area contains a variety of 

typical glacial landforms, has an associated body of literature and is accessible for the 

collection of ground truth data. This section describes the Barnes Ice Cap study area in 

detail, justifies the choice of study area and lists the data sources employed in this 

research. 

4.1 Location and c:baraeteristic:s of the Barnes lee Cap 

The Barnes Ice Cap is located on the central plateau of Baffin Island, Nunavut, 

Canada, between 69.5° and 70.5° N. latitude. Figure 4.1 shows the ice cap with the 

coverage of the RADARSAT imagery and the location of the study area. The limited 

topographic variation of the interior lowlands of Baffin Island causes the ice cap to be 

almost elliptical in shape with no major protruding outlet glaciers. It is approximately 

150 km. long, has a maximum width of 62 lan and covers an area of 5900 km2
• A slight 

constriction near the southern end separates the topographic high of the south dome from 

the main body, or north dome, of the ice cap (Uken and Andrews, 1966). The summits 

of the north and south domes are 1128 and 975 m a.sJ. respectively (Sagar, 1966). 
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4.2 Previous studies of the Dames lee Cap 

Studies of the region by lves and Andrews (1963) have determined that the ice 

cap is a remnant of the last ice age and that it attained its present configuration 

approximately 3000 years ago. Investigations of the ice surface have concluded that the 

ice cap is currently maintained by the formation of superimposed ice and tim 

accumulation, with the ice surface being characterised by puddles and slush and the 

absence of a dry snow accumulation zone (Baird et al., 1952; Sagar, 1966; Hooke et al., 

1987). Most authors concur that the Barnes Ice Cap is a cold based ice mass (Goldthwait, 

1951; Baird et al., 1952; Hooke, 1973; Holdsworth, 1973 and Hooke et al., 1987); 

although Holdsworth (1973) suggests that the interior basal ice is at pressure melting 

point. 

It has been concluded that the ice cap is experiencing thinning (Hooke et al., 

1987) and asymmetric retreat due to precipitation and solar radiation distribution patterns 

(Sagar, 1966; L9Jken and Andrews, 1966; Holdsworth, 1977). Mapping of end moraines 

by L0ken and Andrews (1966) found greater rates of retreat for the northern margins of 

the ice cap than for the south over the last 250 years, 18 and 2.5 m yr-1 respectively. 

Recent work has confirmed these asymmetric retreat rates for the past three decades 

Rates of 10 to 30 m yr-1 were recorded for the Lewis Glacier of tbe north dome (Jacobs et 

al., 1993) compared to only 4 m yr-1 for the south dome (Jacobs et al .• 1997). An 

examination of the results of Jacobs et al. (1997) reveals slightly increased amounts of 

retreat for the south-west facing margins of the south dome than for those facing north-
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east. The overall trend is a slight north-eastward migration of the ice cap. 

4.3 Radar study area 

This study focuses on a 23 km long section of the north-east margin of the 

southern dome. The study area extends three kilometres either side of the margin. thus 

incorporating all ice marginal and proglacial landforms. The total area studied is 140 

km2
• The area has been chosen for study primarily because of the limited local 

topographic variation. The surrounding terrain ranges from 425 to 625 m a.sJ., this 

relatively low relief makes the area an ideal location to develop the radar classification as 

it reduces the complications of radar layover, foreshortening and image shadowing. A 

body of literature specific to the ice margin morphology and glacial geomorphology and 

chronology of the are~ provides the necessary background information for 

comprehension of the ice marginal dynamics. In addition to the already mentioned 

studies of Hooke (1973) and Goldthwait (1951), a detailed map of the glacial 

geomorphology of the study area was prepared by 14ken and Andrews (1966). The 

glacial chronology of the area was reconstructed using lichenometry and radiocarbon 

dates from shorelines, lacustrine deltas and spillways by Barnett (1967) and Andrews and 

Barnett (1979). 

The local geology is dominated by the granites, gneisses and shists of the 

Canadian Shield formed by volcanic activity 2.5 billion years ago (Thorsteinsson and 

Tozer, 1976). The absence of soft sedimentary strata precludes the presence of silt and 
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clay in the study area. Grain sizes therefore range from sand to large boulders and 

bedrock outcrops are common. 

4.4 Data SC)Ilftes 

A combination of data sources facilitates objective scientific investigation and 

allows verification of results and conclusions. The following sections describe the radar 

imagery, the aerial photographs, the topographic map sheets and the field data sources 

used in this research. 

4.4.1 RADA.RSAT imagery 

RADARSAT is an active microwave satellite imaging system that was launched 

by the Canadian Space Agency and the United States National Aeronautics and Space 

Administration on November 4th 1995. It transmits horizontal like polarized C-band (5.6 

em) pulses. In addition to the general advantages offered by radar remote sensors, 

RADARSAT bas a variety of beam modes and look angles which enable imagery to be 

obtained over a specified area at a particular resolution and with a look angle chosen to 

enhance features of interest. 

Three RADARSAT images of the Barnes Ice Cap were acquired during the 

summers of 1996 and 1997. The characteristics of each image are listed in Table 4.1. 

together with the weather conditions for the day of acquisition and the preceding three 

days. The weather data were obtained from the Dewar Lakes automatic weather 

recording station and synoptic surface weather maps (Atmospheric Enviromnent 
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Service). From these the surface moisture conditions, waterbody surface roughness and 

wind distribution of lake ice at the time of image acquisition were inferred 

Table 4.1 RADARSAT image characteristics and acquisition time weather conditions 

Image mode and Standard4 Stancl•nl4 FiDel 
spatial resolutioa d -"~- 25m -"~- 25m -"~- 8m 
Pixel spacing (m) 12.5 12.5 6.25 
Incidence angle e> 34-40 34-40 37-40 
Look direction NNE-WSW NNW-ESE NNW-ESE 
Scene coverage (km) 1()() X 100 100 X 100 SOx SO 
Multilook speckle yes yes no 
reduction 
Date 961815 91nl26 9718/12 
Time 11:31 22:11 22:15 
Wind conditions liszhtWSW moderateSE lightSWS 
Max. Temp. 4.4 15.3 3.4 
Min. Temp. ec) -0.5 5.9 0.5 
4 Day overview cool with little or warm. and dry cool with light 

no precipitation snowfall 

4.4.2 Ancillary data 

Aerial stereo-photographs taken in 1958 and 1961 provide detailed coverage of 

the study area at a scale of 1:57000. Four of these photographs were scanned and 

georegistered in a database to enable overlay with the radar imagery. Map sheets from 

field surveys in 1961 provide topographical information at a scale of 1:50000. The 

national topographic series (NTS) map sheets have locational accuracy of 25 m. These 

maps have a Universal Transverse Mercator (UTM) projection registered to North 

American Datum 1927, and the study area spans western zones 18 and 19. Figure 4.2 

shows the NTS map sheet sections with the flight lines of the aerial photographs. 
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A geomorphological map of the southern dome of the ice cap was produced by 

~ken and Andrews (1966), which covers the study area at a scale of 1:80,000. 

4.4.3 Field data 

Field surveys were undertaken from July 7lh to August 7m 1997 and were divided 

into three parts: glaciological observations, the collection of nominal training and ground 

truth data. and the quantitative measurement of surface roughness characteristics. 

The glaciological observations included field sketching and geomorphic mapping 

of the ice margin. Conclusions about the ice margin dynamics and paths of sediment 

transport were drawn from these observations. The final sketches were combined to 

produce a field map that was georegistered and incorporated into the database. This 

allowed investigations of radar response and observed supraglacial debris conditions. The 

map was created using GPS field control points with an accuracy of± 100 m. 

Over the four week field season 181 ground truth sites were visited and the 

location of each site recorded using a GPS. The data were recorded as landcover classes. 

At each point a qualitative estimate of the parameters which affect the backscatter 

response of the land surface. i.e., relief, surface roughness, moisture content and 

percentage vegetation cover, was made. Surface roughness was assessed at all ground 

truthing points in terms of percentage sediment grainsize present within a 12.5 x 12.5 m 

pixel representative area. 
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At 29 representative sites the surface height variation was measured using a 

terrain templet. These measurements were 30 em transects with a horizontal resolution of 

0.5 em and a vertical resolution ofO.l c~ 
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Figure 4.2 NTS map sheet sections with aerial photograph flight lines and study area extent 
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S. Methodology 

This chapter is divided into two sections. The first section provides the details of 

the field methods and the second presents the sequence of image processing and the 

strategy of image analysis. 

S.l Field methods 

A four week field season during the summer of 1997 was used to collect 

information about the local ice dynamics and proglacial landfonns in terms of the radar 

parameters, training data for image classification and ground truth data for classification 

accuracy assessment. Observations of the length of the margin were needed to draw 

conclusions about the ice marginal processes of sediment transport, and to address the 

issue of a definition of the 'ice margin'. Measurements of surface roughness, grain size 

composition. vegetative cover and moisture content of proglacial surfaces were made 

simultaneously with the collection of training and ground truth data. Surface properties 

were assessed over a 12.5 x 12.5 m area marlc:ed out on the ground representative of one 

image pixel. 

S.l.l Field observations of tbe ice lll8I1Pn and the proglaeial zone 

The ice margin was observed and the landforms recorded in field sketches. Using 

field trigonometry and GPS coordinates as tie points for the field sketches. a scaled 

geomorphological map of the margin was produced with a locational accuracy of± 100 

m. This map was incorporated into the database, in order that ground truth points could 

be extracted for the accuracy testing of the final classification method. Observations of 
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ice front morphology, distribution patterns of supraglacial debris and cross sections 

through ice cored moraines enabled the author to objectively assess the ice marginal 

dynamics of the Barnes Ice Cap. 

5.1.2 CoUection of training and ground tnath data 

The coordinates of the sample points were randomly generated for the study area 

and the sites located in the field using a GPS and 1:50,000 topographic maps. In some 

cases it was physically impossible to access the randomly generated ground truth location 

and so additional points were surveyed at suitable substitute locations. A total of 181 

points over the 140 km.2 study area were collected. This data set was then divided into 

two parts. One half to be used as training data and the second as ground truth data for 

testing the accuracy of the final classification method. General feature descriptions were 

collated from all the points visited by noting the gradient, feature dimensions (width, 

height and length). 

5.1.3 Surface roughness 

The terrain templet suggested by Gaddis et al. (1990) and Benallegue et al. 

( 1995) was used to measure surface roughness. The dimensions of surface roughness 

required to produce specular and diffuse reflectance varies as a function of the radar 

wavelength and the local incidence angle, as was shown in equations 2.1, 2.3 and 2.4. 

Table 5.1 summarizes the surface height variations required to produce smooth and rough 

responses in a 5.6 em wavelength C-band radar image with look angles of 34-40°, over 
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the range of possible local incidence angles. 

Table 5.1 Surface height variations determining rough and smooth surfaces in a 5.6 em 
radar wavelength image with look angles of 34 40°, for possible local incidence angles 

Terrain Incidence Rayleigh Criterion Modified Rayleigh Modified 
slope angle(9o) Threshold between Criterion Rayliegh 

smooth and rough Lower limit of Criterion 
surfaces (em) rough(cm) Upper limit of 

smooth(cm) 
oo 34-400 0.82-0.87 1.48-1.57 0.26-0.28 
so 29-35° 0.78-0.82 1.41-1.49 0.25-0.26 
wo 24-30° 0.76-0.78 1.37-1.43 0.24-0.25 
15° 19-25° 0.74-0.76 1.33- 1.38 0.23-0.24 
20° 14-20° 0.71-0.74 1.30-1.34 0.23 
30° 4-10° 0.70-0.71 1.27-1.29 0.22-0.23 
400 0-60 0.69-0.70 1.27-128 0.22 
50° 10-16° 0.70-0.71 1.29-1.31 0.23 
600 20-26° 0.74-0.76 1.34-1.40 0.23-0.24 
70° 30-36° 0.78-0.83 1.37- 1.51 0.25-0.26 

The surface roughness measurements for C-band are small. sub-centimetre scale 

and a 30 em roughness profile should be sufficient to capture the features which will be 

affecting the radar response. 

The design of the templet is shown in Figure 5.1. The tem.plet pins are spaced at 

0.5 em intervals and pass through two guidance rods, the horizontal resolution is 

therefore 0.5 em. The wooden backing board is graduated in mmimetre intervals to 

facilitate reading of pin displacement values in the field, thus the vertical resolution is 0.1 

em. The maximum variation measurable in both the horizontal and vertical dimensions is 

30 em is, thus the templet is useful only for grain sizes smaller than 30 em. The templet 
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has legs to enable it to stand unsupported on the ground surface whilst the pins find their 

own level. 

Backing hoard 
graduated in mm 

Gui.daJtce rods d--~~l++tttt+t 

Figure 5.1 Terrain templet 

40 CJil 

Pills 

Overall width. 40 CJil 

Overall 
height 60 CJil 

Gaddis et al. (1990) corrected for slope angles by 'deprofiling' or normalizing the 

values in order to obtain true surface roughness figures. The slope of the top of the terrain 

templet was measured in the field with a compass-clinometer. Where slope correction is 

necessary the relative vertical displacement of rods across the profile as a function of the 

slope angle is calculated and graphed, the affected pin values are then adjusted to 

compensate for the slope. The final surface roughness is expressed using three 

parameters: 



l. Standard deviation of the surface height. Sh (em). This is the standard 

deviation of profile point heights after deprofiling .. 

2. Correlation of length, L (em). This is the distance from the start.ofthe 

profile at which the autocorrelation function first falls to -0.37. 

3 _ Standard deviation of surface height slope, Sp (em/em). This is 

calculated by Sb/L and has been demonstrated to be the most 

informative statistic when characterizing the roughness of different 

surfaces for identification using radar (Campbell and G~ 1993; 

Benallegue et al .• 1995). 
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A total 29 example surface roughness profiles were recorded for alluvi~ 

residuum. bedrock, kame, supraglacial debris, ice and moraine surfaces. The selected site 

for the profile was as closely representative of the homogeneous pixel area as possible. 

According to Table 5.1 surface height variation exceeding -1.27 em should produce a 

radar response termed broadly as rough. The terrain templet is used only for surfaces 

with sediments of small grain size and therefore limited surface height variation. In order 

to capture this larger scale information surface types were also characterised in terms of 

grain size. 

5.1.4 Grain size 

Particle size and sediment composition plays an important role in controlling 

surface configuration and the moisture retention properties of a landform, it is therefore 
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an indirect control on the radar response. At each field site percentage surface cover by 

grain size was visually estimated within the 12.5 x 12.5 m marked pixel area. The grain 

size classes are the Udden-Wentworth size classes (Lindho~ 1987) and the class 

divisions are given in Table 5.2. 

Table 5.2 Grain size categories, modified from Udden-Wentworth sediment grain sizes 

Cateaory Lona-axis (em} 
Boulder >25 
Cobble 6-24.9 
Pebble 0.4-5.9 
Granule 02-0.39 
Sand 0.06-0.19 
Silt 0.0039 - 0.059 
Clay <0.0038 

Analysis of the grain size measurements was performed in two stages. The first 

stage examines weighted mean radar brightness (p0
) for different grain size surfaces. 

using the % of each grain size as the weight. The second stage examines the relationship 

of predominant grain size to po. This analysis excluded any surfaces with surface slopes 

greater than 15° in order to reduce the effects of relief on the po. po values for water and 

ice are included in the grain size analysis for the sake of comparison. 

5.1.5 V egetadoo cover 

The presence of vegetation alters surface roughness and moisture characteristics 

and will therefore affect radar response. Percentage vegetation cover by plant type. 
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lichen, moss, grass, sedge, vascular plant or shrub, within the pixel area was noted at 

each survey point. These data are used in the general feature descriptions and densely 

vegetated surfaces are analysed as a separate category in the dominant grain size analysis. 

5.1.6 Moisture content 

Surface moisture was qualitatively assessed at all survey sites using the criteria 

defined in Table 5.3. These data were used in the general description of features. 

Table 5.3 Soil moisture criteria 

Ca 

Saturated 
Wet 

Moist 

S.llmage processing methodology 

This section describes all stages of the image processing. Radiometric and 

geometric correction methods are detailed. followed by the training area selection 

procedure and a method of training area signature analysis. Speckle filter and texture 

measure algorithms are given and explained. The maximum likelihood classification 

algorithm is provided and the strategy of accuracy testing of the classification method is 

outlined. The final section explains the edge detection filtering used to extract the limit of 

active ice. The image processing sequence is shown schematically in Figure 5.2. 



Marinuun likalilloud classificalioa 

Post dusifieatioa llllOothiq 

Prudueticm of 811'01' matrices 8IUl elasdieatioa aeeancy 
stat:isties 

Figure 5.2 Image processing sequence 

5.2.1 Radiometric corredioa 
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Radar brightness ((i0 ) is the radar signal backscattered from the land surface and 
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recorded by the sensor. Radar data must be calibrated to radar brightness values in order 

to undertake quantitative analysis and to compare radar data from different scenes and 

platforms. The raw image data is supplied in a scaled format that maximises the visual 

interpretation potential of the image. the necessary radiometric correction is performed 

using equation 5.1 and the values provided in the image radiometric data record. 

where: 

pok = lO*log10 [(ON k 2 + A3)/A2J (5.1) 

po k: radar brightness for pixel (dB) 
DN k : magnitude of the k th pixel from the start of the range line in the image data 
A2 k : scaling gain value for the .. th pixel from the start of the range line in the 

image data 
A3: offset 

5.2..2 Geometric correction 

Geometric correction is the registering of the image to a known georeferencing 

coordinate syste~ in order that any point on the image may be accurately located on the 

surface of the earth. The procedure involves tying the image to a reference grid at a 

series of ground control points (GCPs). GCPs are features that can be recognised on both 

the image and on a map with a known reference coordinate system. The image is then 

transformed around the GCPs to fit the reference grid. The nature of the glacial 

environment means that distinctively shaped ponds, islands and stream confluences are 

suitable features for GCPs. although care must be taken in selecting features directly 

adjacent to the ice margin as they are subject to change more frequently. 
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As with any map, remote sensing imagery requires an attached estimate of the 

locational accuracy. This is derived from the accuracy of the map from which the GCPs 

were taken, and from the goodness of fit of the image achieved in the image registration 

process. This is termed the 'overall root mean square' or 'overall RMS' and is calculated 

using equation 5 .2. It provides an estimate of the possible error associated with the 

location of any point on the radar image. 

Overall RMS = ~ {locational error of GCPs (m) t +{image registration error (m) )
2 

(5.2) 

The GCPs were taken from NTS map sheet with locational accuracy of 25 m. thus 

all GCPs are accurate to within 25 m with respect to the map sheet. The standard mode 

radar image has a spatial resolution of 25 m, thus no feature with dimensions less than 25 

m will be identifiable in the image. Consequently, the accuracy of the final image cannot 

exceed 25 m. Although the fine mode image has 8 m spatial resolution the accuracy is 

still constrained by the 25 m accuracy of the map sheet. Overall RMS values were in the 

order of 25 to 35 m. 

A second order polynomial was used to fit the radar image to the UTM tie points. 

The second order transform corrects for distortion in the range and azimuth directions. 

but not for vertical distortion. As the study area has relatively low relief it is satisfactory 

to correct in these two dimensions only. The nominal pixel sizes of 12.5 and 6.5 m for 
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standard and fine mode imagery respectively. are preserved in the resampling of the 

corrected image. The fitting of the image to the UTM grid involves nearest neighbour 

resampling of pixel values. In this method there is no pixel averaging and so the original 

data is preserved. 

Training areas are areas identified on the image for which the Iandcover 

characteristics have been established using ancillary data sources. Sample image statistics 

derived from these areas are used in the investigation of speckle filter performance, 

texture measure performance and in the final classification. Field surveys provide UTM 

coordinates of points of known landcover types and training area polygons are digitized 

on screen around these points. Random pixels are extracted from training area polygons 

to reduce the effects of spatial autocorrelation on training image statistics, as 

recommended by Campbell (1981), Genderen and Uiterwijk (1987) and Wilson (1992). 

Each landcover class has approximately 300 training pixels. 

5.2.4 Image statistics and signature separability 

The analysis of image statistics refers to an examination of the mean, standard 

deviation and coefficient of variation of texture image pixel values for landcover training 

areas. If the coefficient of variation is high the area is not homogenous and therefore not 

a good representation of that land cover class. It is best to minimize the coefficient of 

variation for training areas so that there is minimal overlap between class statistics and 

classes are distinguishable (Rand, 1985). In order that image class statistics are valid and 
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to truly separate classes. they must have unimodal and normal distributions. 

Once image statistics for training areas have been extracted a comparative method 

known as signature separability is used to determine whether landcover classes are 

statistically separable or not. Signature separability values are used to identify which 

speckle filtered and texture images are best able to distinguish between features, and will 

therefore make the best classification input variables. The measure used is Jeffries-

Matusita or Bhattacbarrya distance (Swain, 1978) and is computed using the formula in 

equation 5.3. 

J(i,j) = 2*[1-exp ( -a(i,j))] (5.3) 

and 

a(i, j)=0.124*[Mi-Mj]T*[A(i, j)r1*[Mi,..Mj]+O.S*In{ (A(i, j)) li« I "[(Si) det * (Sj) det]} 
(5.4) 

where: 
J(i, j) : Ieffries-Matusita distance between class i and j 

A (i, j) : 0.5*[(Si) + (Sj)] 
(Si) : covariance matrix for class i, which. has n channel by n channel elements 

( )det : determinant of matrix 
[ rl :inverse of matrix 

In { } : natural logarithm of scalar value 
Mi : mean vector of class i, where the vector bas n channel elements 

(n : number of channels used) 
[ ] T : transpose of matrix 

Where more than two classes are compared the average 1 value is calculated to 

quantify the separability of classes. In summary, I values of 0- 0.1 indicate complete 

signature overlap. I values of 0.1 - 1.0 indicate very poor separability, I values of 1.0-
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1.9 indicate medium separability. J values of 1.9 - 2.0 indicate very good separability. 

The separability algorithm assumes normality in the data, therefore training area image 

statistics are examined to ensure this criterion is met. 

5.25 Speckle and image filtering 

The Enhanced Lee. the Enhanced Frost and the Kuan adaptive filters were found 

by Shi and Fung (1994) to be the most successful in a comparative study and they are 

investigated here for application to an ice marginal environment. All investigations of 

speckle filters are perfonned on the S4 ascending mode image. As the main feature of 

interest is image texture. the absolute minimum level of image filtering is desirable and 

so a filter window size of 3 x 3 pixels is used. 'Ibis correlates with a ground area of 37.5 

x 37.5 m. Image statistics and signature separabilities are used to evaluate filter 

performance. The choice of the 3 x 3 filter window is small compared to 

recommendations of 5 x 5 and 1 x 7 made by the developers of the speckle filters, 

however, the landforms of the ice marginal environment are small, typically with 

dimensions of tens of metres, and the small filter window is essential to prevent the 

removal of texture within smalllandfonns. 

5.2.5.1 Enbanced. Lee mter 

The original Lee filter is based on the additive noise model. The filter uses a 

linear relationship to model image speclde as a function of the central pixel value and 

local variance within the filter window {Lee, 1980), pixels are smoothed by the 

replacement of the central pixel with the mean pixel value within the filter window, 
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equation 5.5. The Lee filter was modified by Lopes et aL (1990) to incorporate the use of 

thresholds, these thresholds determine which pixels are to be filtered and which pixels 

should retain their original values. The thresholds separate pixel values into three classes, 

these are: 1) homogeneous areas with low variance in the filter window, these pixels are 

smoothed, equation 5.5, 2) heterogeneous areas which represent image texture, these 

pixels are minimally smoothed, equation 5.6, and 3) isolated scatterers, in this case the 

original values are preserved, equation 5. 7. These thresholds are defined by values of 

variance within in the filter window. 

where: 

R=J.1 11 whenC <=Cu 

R=J.L
11 

*W +CP*(l-W) whenCu<C<Cmax 

R = CP when C >=Cmax 

and W = exp (-Damp (C- Cu)/(Cmax- C) 

c: a ~~'J.L~~ 
Cmax: ~(1+2/NLOOK) 

CP : central pixel grey level 
Cu : 11 ~(NLOOK) 
J.l 11 : mean grey level in the filter window 

NLOOK: number of looks 
0' 

9 
: variance in the filter window 

Damp : dampening factor 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

The dampening factor is a constant that specifies the extent of the filtering. Small 

damp values produce greater smoothing, large damp values reduce smoothing and 

preserve edges. A dampening factor of 1 has been found to be an effective compromise 
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between point and edge preservation and homogeneous area smoothing by Shi and Fung 

( 1994) and is the damp value used in these investigations. 

5.2.5.2 Enhanced Frost F"dter 

The original Frost filter was developed by Frost et al. (1982) and uses the model 

of multiplicative noise. Multiplicative noise assumes that the brighter the image the 

greater the amount of speckle and so the amount of image filtering increases as the radar 

backscatter increases. This filter models the radar backscatter using only the local 

variance and excludes the central pixel of the filter window from the calculations9 in this 

manner it can be said to be a model of scene reflectivity. Like the Lee filter it has been 

modified by Lopes et al. (1990) to perform image smoothing within three thresholds~ as 

defined in equations 5.9, 5.10 and 5.11. 

R = J.l.g where Ci < Cu 

R = Rf where Cu <= C <= Cmax 

R = CP where C > Cmax 

and Rf= (Gl*Wl +G2*W2 + ..... Gn*Wn)/(Wl+ W2 + ..... +Wn) 

and W =exp(Damp*(C- Cu) I Cmax- C) + T) 

where: 
C: "(a g IJLJ 

Cmax: "(1+2/NLOOK) 
CP : central pixel grey level 
cu : 1/v(NLOOIC) 

Damp : the exponential dampening factor 
J1 g : mean grey level in the filter window 

NLOOK : number of looks of radar image 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 



G 1. .. Gn : grey levels of each pixel in filter window 
T : the absolute value of the pixel distance from the centre pixel to its 

neighbours in the filter window 
<J g : the variance of the grey levels in the filter window 

W1 ... Wn: weights for each pixel 

5.2.5.3 Kuan FUter 
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The Kuan filter was developed by Kuan et al. (1987) and is based on a linear 

model of signal dependent additive noise. It has the same form as the original Lee filter 

in that it models image noise using a linear relationship of image values and the variance 

within the filter window, but it has a different weighting function and. unlike the 

enhanced enhanced Frost and Lee filters, it has no thresholds to separate classes for 

filtering and preservation. All image pixels are filtered using algorithm given in equation 

5.14. 

where: 

R = CP*W +f.L; *(1 - W) 

and W = (1-CufC)/ (1 +Cu) 

C:ag/1 
CP : central pixel in window 
Cu: 1/NLOOK 

f.L ;: mean grey level in the filter window 
NLOOK : number of looks of image 

a; : variance in the filter window 

5.2.6 Texture Measures 

(5.14) 

(5.15) 

Texture measure success varies with application, both first and second order 

texture measures have proved to be useful in different situations. Texture measures that 

have been found to be useful in other studies are tested for suitability in an ice marginal 
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environment. Six second order texture measures, angular second moment (ASM), 

contrast, correlation, homogeneity, mean and variance, are investigated here. Although 

they are all based on the GLCM approach, mean and variance may be considered very 

similar to first order texture measures. These six measures provide a thorough analysis of 

the image texture as they examine average tonal values, the amount of tonal variation as 

well as the nature of the tonal variation. To avoid angular dependency of the texture 

images. texture values are calculated for four opposing directions and averaged, as 

recommended by Sun and Wee (1982). All texture measure investigations are performed 

on the S4 ascending mode image. The texture algorithms are based on Haralick et aL 

(1973) and Haralick (1979) and are as follows: 

(5.16) 

ASM measures uniformity by quantifying pixel pair repetitions. High values are 

obtained when the grey level distribution within the texture window is constant and the 

area is homogeneous. 

Contrast= I. [(g- h)2 p(g, h)] (5.17) 

GLCM contrast is a measure of the difference between the highest and lowest 

values of a contiguous set of pixels, and therefore quantifies the amount of local variation 

within the image. Homogeneous regions are characterized by low contrast texture values. 
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Correlation = l: ( p( g, h) (g- fJ. J ( h -JL &)] I (ag. ab)0.s] (5.18) 

Correlation measures the linear grey tone dependencies by quantifying the degree 

to which the rows and columns resemble each other. High correlation values imply 

linearity within the image window. 

Homogeneity = l: [p(g, h) I 1 + (g - h)2 ] (5.19) 

Homogeneity measures tonal differences in pair elements. Homogeneous areas. 

with small differences in tone therefore produce high homogeneity values. 

Mean= I, [g *p(g, h)] (5.20) 

Mean is the average grey level value within the texture window, as determined 

from the nonnalised GLCM. 

Variance = l: [p(g, h)* (g - fJ. J 2] (5.21) 

This measure is the variance of grey levels within the texture window determined 

from the GLCM. 
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where: 
g : grey level row of the cooccurence matrix 
h : grey level column of the cooccurence matrix 

(g, h) : matrix element, i.e number of times that the same grey level of the pixel at the 
center of the texture window occurs at a 

p(g, h) : normalised co-occuaence matrix, ((g, h) element divided by the sum of all the 
GLCM matrix elements) 

J.L g : mean of the row sums of the matrix 
J.L h : mean of the column sums of the matrix 
cr g : variance of the row sums 
crh : variance of the column sums 
~ : spatial function 

Various texture window sizes are tested to identify the optimum window size for 

distinguishing ice marginal textural features. Ice marginal feature dimensions are 

typically in the order of tens of metres, therefore texture windows of 3 x 3, 5 x: 5 and 7 x 

7 pixels, corresponding to ground dimensions of 37.5 x 37.5 m. 62.5 x 62.5 m and 87.5 x 

87.5 m are investigated. Linear features may be hundreds of metres in length, therefore 

the correlation measure is examined using larger texture windows of 7 x 7, 13 x 13 and 

15 x 15 pixels. Texture window performance is evaluated using texture image statistics 

from the training areas. 

Speckle filtering has the effect of removing some image texture, the selection of 

the texture window size must therefore consider the effects of the speckle filter. A 

speckle filter window of 3 x 3 will remove texture over this area, consequently the 

texture measure will detect no texture over this same area. A texture window that is 
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larger than the speckle filter window will be best able to detect different blocks of texture 

within features. A texture window that is the same size as the speckle filter will be 

restricted to the detection of blocks of texture preserved by the speckle filter. 

5.2. 7 Classification method 

The maximum likelihood classification (MLC) algorithm has proved to be one of 

the most robust classification algorithms available and it is used in this classification 

method. The MLC algorithm calculates a probability density surface for each image class 

using the mean and the standard deviation. Unimodality and normality of the ttaining 

data are assumed for the calculation of class probabilities. In actuality the classifier has 

been found to be robust to small deviations from the normal as long as the primary 

requirement of unimodality is satisfied (Swain and Davies, 1978). Prior to classification 

all input image training data is examined for normality. If bi- or trimodality is observed 

then training areas are separated for the classification algorithm and merged for the 

production of the final thematic map. 

The algorithm used is the Mahalanobis minimum distance classifier provided by 

Schowengerdt (1983). This algorithm allows the user to decide on the threshold values 

in terms of standard deviations, from which the equiprobability contours of the feature 

space are constructed, and the inclusion of a priori probabilities. One standard deviation 

is used as the threshold value in order to reduce the problems of substantial overlap in 

class image statistics and the percentage class cover, as observed in the field, is used for 

the a priori weightings. 
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The MLC algorithm is applied in two stages. First it is determined for each class 

(i=l, ... .n) whether pixel X lies within the hyperellipsoid for that class, based on the 

following: 

[X-Ui]T [Sir1(X-Ui) <=Ti2 must be true (5.22) 

If X lies outside all hyperellipsoids then the pixel is assigned to the null class. 

Where pixel X lies within two or more class hyperellipsoids the probability of 

membership to each class (MPi(X)) is calculated and the pixel is assigned to class with 

the highest probability. The calculation of membership probabilities is performed using 

equation (5.23). 

where: 

MPi(X) =112 (X-Ui)T (Sir1(X-Ui)- (n/2)log(27t)- (l/2)log(Si)del+log (Pi) (5.23) 

Si : the (n by n) covariance matrix for class i 
(Si)dcl: the determinant of the covariance matrix 

n : Number of channels in the classification 
MPi(X) : Probability of membership to class i for pixel X 

Pi : a priori probability for the class 
Ti : threshold value for class i 
Ui: the (n by 1) mean vector for class i 
X : (xl, ....... xn) the (n by 1) pixel vector of grey levels 
7t: 3.1415 
T : transpose of matrix 
-I: inverse of matrix 

Per pixel classifiers examine pixel values independently with no consideration of 

position of adjacent elements. The classification output is often disjointed with numerous 

erroneous pixels and can be difficult to interpret. Post classification smoothing is a form 

of contextual filtering and is found to improve both the visual appearance, and the final 

accuracy of a classified image. The use of a majority filter with dimensions equivalent to 
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the size of the smallest feature of interest. is recommended by Davis and Peet (1971). 

Oassified image smoothing is performed here using a 1 x 1 pixel majority filter. The 1 x 

1 pixel filter represents the maximum ground area of the smallest feature it is hoped to 

detect. 

5.2.8 Ground truth data and performance evaluation 

The three RADARSAT images are classified independently and the accuracy of 

each image is assessed using ground truth data collected during the 1997 field season. 

Additional test data sets are taken from the aerial photographs and from the 

geomorphological sketch map. Each classified image therefore bas three associated error 

matrices and classification accuracies. It is important to bear in mind the structure of the 

test data sets when analysing overall accuracies. The composition of the test data sets is 

given in Table 5.4. The sketch map has entirely ice and ice marginal features. In contrast, 

the air photos and field data sets have large proportions of terrestrial landforms in 

addition to the ice and ice marginal features. The test data sets for the fine and standard 

mode images differ slightly due to the reduced coverage of the study area of the fine 

mode image. 
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Table 5.4 Test data set composition 

Field data Geomorphological Aiiphoto data 
sketch ID811) data 

Landcover class Standard Fine Standard Fine Standard Fine 
Water 6 6 6 6 20 20 
Bedrock 2 2 - - 8 8 
Residuum 16 15 - - 22 22 
Till 1 1 - - - -
Alluvium 17 17 - - 24 2S 
Kame 3 3 - - 12 12 
Dump moraine 2 2 5 4 ll 11 
Snow bed 2 2 20 19 lO 10 
ICDR 7 7 19 17 18 18 
soc 4 4 56 56 54 17 
Ice 10 13 61 58 36 36 
Total test points 70 72 167 160 215 179 

Classification performance is evaluated using the visual result and accuracy 

statistics calculated from the error matrix. Accuracy statistics are examined for individual 

classes and for each image overall. Class commission and omission errors are 

investigated, together with the standard producers. users, and overall accuracy statistics. 

Table 5.5 provides an example of an error matrix. Commission errors are the errors of 

inclusion of wrong classes in the classified data and omission errors are the errors of 

exclusion of pixels from a class. The error matrix is used to calculate the producer's 

accuracy (5.24). the user's accuracy (5.25) and the overall accuracy (5.26) of the 

classification method. 



Table 5.5 Error matrix example 

Ground truth data ~ 
Classified data J., a 

a a=a 

b a:;t:b 

c a:;t:c 

d a:;t:d 

Column marginal ~ 

where: 
= : correctly classified 
# : misclassified 

b 
b:;t:a 

b=b 

b:;t:c 

b:;t:d 

J4b 
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c d Row marginal 
c:;t:a d:;t:a Xa+ 
c:;t:b d:;t:b ~+ 
c=c d:;t:c Xc+ 
c:;t:d d=d ~+ 
x+C J4d N 

The producer's accuracy is the percentage probability that a pixel from the ground 

truth data set has been classified correctly, it is calculated by: 

Producer's Accuracy= r xlOO (5.24) 

LX+i 
i= l 

The user's accuracy is the percentage probability a classified image pixel is 

actually that class on the ground. It is calculated by: 

User's Accuracy= xlOO (5.25) 

The overall accuracy is the standard reporting format for image classification 
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accuracy and is calculated by: 

where: 

r 

l:xa 
Overall Accuracy= i=L x 100 

N 

N : total number of observations 
r : number of rows in the matrix 

(5.26) 

Xu : number of observations in row i and column i (entry on the major diagonal) 
]4, : total of observations in column i 
X;+ : total of observations in row i 

The overall accuracy provides an overall estimate of image accuracy, however, it 

may conceal significant variability in accuracy of classification between classes. For this 

reason individual class accuracies are also given. It bas been suggested that the kappa 

statistic is a better overall estimate quantification of classification accuracy (Rosenfield 

and Fitzpatrick-LiDs. 1986). The KHAT or Kappa statistic is a measure of the extent to 

which the percentage coaect values of an error matrix are due to true agreement versus 

chance agreement (Fitzgerald and Lees. 1994). It is calculated using values from the error 

matrix and equation (5.27) 

,. r 

N}:x"- I,(xi+-X+() 
KHAT= e=t e=t 

N
2

- f.(xi+-x+J 
(5.27) 

i=l 
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KHAT ranges between zero and one. The ideal case is KHAT equals one, here 

true agreement equals one and chance agreement equals zero. A value of 0.67 % 

indicates that the classifier is 67 % better than the chance classifier or random assignment 

of pixels. KHAT agreement values of <0.4 are poor, 0.4-0.75 are good and >0.75 are 

excellent (Landis and Koch, 1977). The accuracy of the final classification method is 

assessed using the KHAT statistic. 

5.2.9 Edge detection 

The limit of active ice is represented by the boundaries between ice, snowbed and 

debris covered ice surfaces. The boundaries are identified using image edge detection. 

The edge detection filter kernel has pixel weightings in opposition in order to detect 

changes in blocks of image values, and thus image boundary features. Image classes are 

assigned pixel values which, when reflected in edge amplitudes, make it possible to 

detect the nature of the boundary. For example, ice pixels are assigned a value of 1000, 

therefore all ice edges have amplitudes greater than 1000, the supraglacial debris is 

assigned a value of 100, therefore all ice and supraglacial debris boundaries are multiples 

of 100. Image classes of the deglaciated surface are assigned values of 0 to prevent 

spurious edges away from the ice margin. Figure 5.3 shows two example image 

boundaries, the edge detection kernel weightings, the kernel calculations and the 

resulting edge image values. 

The example kernels shown in Figure 5.3 detect only boundaries with specific 
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orientation. In order that all possible boundaries are detected the image is filtered for 

edges in all directions. and the results combined to extract the edge of maximum 

amplitude. maximum amplitude corresponding to the most pronounced boundary 

between classes. The four directional filter kernels are shown in Figure 5.4. 

Soow (value= 80) ·1 ·1 •1 

0 0 0 

1 1 1 

Suprasl.cial debris 
(value =100) 0 ·1 ·1 

1 0 -1 

1 1 0 

Figure 5.3 Edge detection filter examples 
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Figure 5.4 Edge detection filter kernels 
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In Figure 5.3 it was shown that the edge image is characterised by a double line of 

pixels, this double line is thinned to a single line by removing the pixels which overlap 

with the ice classified area The pixel values along the line indicate the nature of the limit 

of active ice. An overall accuracy of the limit of active ice is calculated using equation 

5.2 and the image registration error and the error associated with the line. The error of the 

line is assessed using field observations of feature size. A linear feature extraction 

programme is used to follow the line of pixels and remove shon spurious edges, resulting 

in a line vector of the limit of active ice. 
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6. Field results 

This chapter presents the results of the field surveys. The first section describes 

the observations of the Barnes Ice Cap margin and conclusions are drawn about the 

active ice marginal processes. The second section summarises the landforms of the 

proglacial zone. The final sections quantitatively analyse the surface roughness and grain 

size composition characteristics of the proglacial landforms and relate the roughness to 

radar brightness. 

6.1. Observatious of ice margin dynamics 

Observations and sketches of the ice margin morphology were combined to 

produce a sketch map of the margin and to draw conclusions about the active ice 

marginal processes. An example segment of the sketch map is given in Figure 6.1 

Observations of the ice cap itself reveal two ice surface types, wet ice where the surface 

has slush flows and pools, and dry ice where the meltwater is confined to incised stream 

channels and narrow but deep pockets. The dry ice surface is more common toward the 

margin as the surface assumes a gradient and the surface drainage improves. The margin 

of the ice cap is characterised by the following five margin forms. 

1. A thin layer of supraglacial debris with a clean ice surface and a steep 

ice face or snowbed on the distal side, see Figure 6.2 (1). 
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2. A low ridge of ice cored debris, up to 3m above the relatively clean ice 

surface with a steep ice face or snowbed on the distal side, see Figure 

6.2 (2). 

3. A prominent ridge of ice cored debris more than 3 m above the debris 

strewn ice surface with a snowbed on the distal face, see Figure 6.2 (3). 

4. A convex snowbed that is capped by a narrow band of supraglacial 

debris or "dirt line", see Figure 6.2 (4). 

5. Clean ice cliffs that calve or melt directly into ice marginal water 

bodies, see Figure 6.2 (5). 
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Figure 6.2 The five active ice limit scenarios of the Barnes Ice Cap margin 
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For the purpose of mass balance studies it is important to identify the limit of 

active ice. In the case of ice cliffs the limit of active ice is clear. However9 where 

snowbeds or supraglacial debris characterise the surface the active ice limit becomes 

indistinct. The relative height of the ice and the amount of supraglacial debris behind the 

ice cored ridge is the key factor in. determining whether or not the ridge is active. Where 

the ridge is less than three metres above the clean ice surface, it can be concluded that the 

ridge is underlain by active ice. Englacial debris is carried into the ridge and released 

therefrom9 either to rest on the surface of the ridge if it is banked by a snowbed, or to fall 

down the distal side if the ridge has a sheer ice face. In summary, an absence of 

supraglacial debris behind the ridge means that the active ice limit is taken to be the ridge 

itself, as shown in Figure 6.2 (l) 

Where the ridge is elevated many metres above the general ice cap surface, 

supraglacial debris is present behind the ridge and active shear planes bring material to 

the surface many metres back from the ridge. Here recession has caused downwasting of 

the ice but the insulating properties of the debris cover protect the ice core of the ridge 

and so it retains its elevation. In this case the ice cored ridge itself is now stagnant and 

the active ice limit lies to the ice proximal side of the ice cored ridge. Where there is a 

double ridge or large flat area of thick supraglacial debris cover, the active ice limit is 

suggested to lie at the ice proximal limit of this cover, as shown in scenarios (2) and (3) 

of Figure 6.2. 
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In light of the fact that some sections of the debris covered ridge may be currently 

active and cannot be considered as stagnant ice cored moraine, the term "ice cored debris 

ridge" (ICDR) is considered more accurate than ice cored moraine. 

Plate 6.1 shows a cross section through an active ICDR. The debris capped ice is 

only a metre above the general ice surface. The vertical foliations indicate complex ice 

flow patterns and the crest of this ridge would be taken as the limit of active ice. 

Plate 6.1 Small active ice cored debris ridge 
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Plate 6.2 shows a larger and more developed ice cored ridge. The ridge is more 

than 3 m above the ice surface and the supraglacial debris cover (SOC) bebind the crest is 

extensive. The active ice limit for this feature would be the proximal edge of the ridge 

feature. 

The fourth type of margin is characterized by snowbeds tens of metres bigh and 

similar dimensions thick. They are distinct from the glacier ice on account of lighter 

colour and density. The point at which they join the ice cap is typically marked by a £din 

line'; this thin line of debris marking where the glacier ice begins to over-ride the 

superimposed ice of the snowbed, bringing debris to the subaerial surface. Plate 6.3 

shows a section of ice margin with snowbeds and the characteristic •dirt line'. In this 

scenario the ~dirt line' represents the limit of active ice. 

It is concluded that where the ice cored debris ridge is the first surfical expression 

of supraglacial debris, this is taken to be the limit of the active ice and therefore the item 

of particular interest when mapping the ice margin. In cases where the ridge is preceded 

by an expanse of supraglacial debris, or it possesses a particularly wide or double form, it 

is concluded to be stagnant and the limit of active ice is the ice proximal limit of the 

debris cover. 
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Plate 6.2 Advanced stagnant ice cored ridge, elevated from the surrounding ice surface 

Plate 6.3 Ice marginal snowbeds with dirtline 
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Where the convex snowbeds characterise the margin the limit of active ice is 

taken to be the surficial expression of the dominant active shear plane, referred to here as 

the dirt line. 

On the basis of the described previous work and the author's field observations it 

is assumed that the limit of active ice is surficially expressed through the ICDR. the 

presence of supraglacial debris and the dirt line. These three features are therefore used 

to define the limit of active ice in this study. Beyond this limit is a mix of perennial 

snowbeds and superimposed ice which is not fed by flow from the accumulation zone. 

This inner placement of the limit of active ice is in agreement with Hooke (1973) and 

Holdsworth (1973). who state that flow at the edge of the Barnes Ice Cap is negligible 

within 50 m of the (visible) margin because there the glacier is thin and frozen to its bed. 

6.2 Observations of the proglaelal mne 

The following subsections describe the observed landforms of the proglacial 

zones and consequently, the image classes to be used in the image classification. 

6.2.1 Bedrock 

Exposures of bedrock are found as small outcrops and as large expanses of 

washed bedrock with scattered boulders or 'boulder lag'. Streams and ponds are common 

on the bedrock surface and density of lichen cover is related to exposure since ice retreat. 

Generally the bedrock surface is dry and bare. Plate 6.4 shows a washed bedrock surface 

with boulder lag. 
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6.2.2 Residuum 

Residuum characterises approximately half of the entire proglacial area. The 

boulders range in size from 25 em to 2m along the A-axis and are lichen covered to 

different extents depending on the length of exposure following ice retreat. Residuum 

occurs as large scale undulating bills, criss-crossed and modified by redundant meltwater 

channels. Periglacial weathering of bedrock outcrops contributes to boulder production. 

Plate 6.5 shows a residuum surface with a tape marking a 12.5 x 12.5 m area for scale. 

The large grain sizes cause residuum surfaces to be well drained and dry. Interspersed 

with the residuum are small pockets of colluvium. These fine sediments have been 

washed into slight depressions and have collected to form isolated pockets several metres 

in diameter. As they are smaller than a pixel area colluvium cannot be considered as a 

separate Iandcover class but is taken as a component of the residuum surface. 

6.2.3 Till 

Till is generally found on low gradient surfaces and forms unusually wet areas 

with extensive moss and grass growth. It is a diamict composed of sand, granules, 

pebbles and occasional cobbles, and demonstrates tundra patterned ground 

characteristics. Mud boils are common on flat areas and vegetation stripes are present 

where there is a slight gradient. Plate 6.6 shows an example of till. 
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Plate 6.4 Washed bedrock surface with boulder lag 

Plate 6.5 Residuum 
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Plate 6.6 Till with evidence of sediment sorting 

Plate 6. 7 Kame deposit 
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6.2.4Kames 

Kames are sand and gravel mounds and ridges that mark the positions of former 

proglacial meltwater channels. In the field they are clearly distinguished by their abrupt 

relief and light colour due to their high sand content. Kames are dry and barren 

landforms. their elevation and consequent exposure to the ice cap winds, in addition to 

good drainage characteristics, make them unable to retain moisture and nutrients. They 

are consequently inhospitable to plant life. Plate 6.7 provides an example of a kame 

surface. 

6.2.5 Alluvium 

The category of alluvium incorporates all non-glacial water-lain sediments. They 

are varied in composition depending on the length of time since deposition, water 

velocities at time of deposition and current environment stability. The absence of silt and 

clay from the local area means that the lowest energy fluvial environments are 

characterised by sand and granule deposits. 'Ibis is evident along lake margins, which 

form narrow sandy beaches devoid of vegetation, and over areas of low lying flood plain. 

The active floodplain is characterised by low gradient surfaces with high moisture 

content and extensive moss and grass growth. Areas with low risk of inundation have 

dense grass coverage and sedge and herb growth. 

The narrow river reaches that link the lake sections and the ice marginal 

meltwater channels are higher energy fluvial environments. These are characterised by 

larger, cobble and boulder grain sizes with frequent pockets of standing water between 
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boulders in the riparian zone. Plate 6.8 shows the large grain sizes that form the bank of 

the river in the foreground and the low energy deltaic sediments on the far side of the 

river. Included in the alluvium class are river terraces. These stable and elevated surfaces 

are composed of sand and gravel between small boulders. They have good drainage and 

support moss, grass, herbs and woody plants. The alluvium category is generally level 

surfaces, fine grain sized material, high moisture content and vegetation. 

6.2.6 End moraines 

There are two types of end moraines within the study area. active and inactive end 

moraines. To the north west there is a series of nested moraines that delineate previous 

positions of the ice front. These moraines were first identified and mapped by uken and 

Andrews ( 1966) and are referred to as the L&A moraines from here on. They are 

typically several metres wide across the ridge and between 15 and 25 m across the base, 

5 to 15 m high and 100 - 1000 m long. Their predominantly sand and granule 

composition with intermittent larger clasts permits good drainage and so the dry surfaces 

support only minimal lichen and some moss colonization. An example of the L&A 

moraines is shown in Plate 6.9. 

The second type of moraine is the actively forming tenninal moraine. Frequently 

the morainic material is still supported by ice, but in a few rare cases the material forms 

an independent ridge shaped mound. Instability prohibits any vegetation cover of these 

features. Such ridges are approximately 5-10 m high with narrow peaks, basal widths of 
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less than 10 m and lengths rarely exceeding 25 m. Plate 6.10 shows an example of an 

actively forming terminal moraine by the process of falling supraglacial debris or 'dump'. 

6.2. 7 Waterbodies 

Waterbodies form the final proglacial landcover category. Although usually 

clearly distinguishable in radar imagery some confusion is encountered in the proglacial 

environment due to the presence of lake ice. Lake ice pans, candling of the ice surface 

and the presence of icebergs complicate the radar waterbody response. This is a highly 

variable temporal and spatial phenomenon with daily wind patterns significantly altering 

the distribution of ice pans and bergs, and air temperatures altering the surface conditions 

of the ice. 

6.8 River bank and deltaic alluvium surfaces 
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Plate 6.9 L¢ken and Andrews moraine 



Plate 6.10 Actively forming dump moraine at the base of a sheer ice face 

6.3 Terrain templet results 
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Figure 6.3 presents the terrain templet measurements and the calculated standard 

deviation of surface height slope (Sp) for the different landcover classes. The bedrock has 

the lowest Sp value (0.152 em/em) as would be expected from a smooth rock surface. 

Alluvium is characterised by generally low Sp values, 0.34 to 0.43 em/em between the 

two hinges, which are characteristic of the sand and granule low energy lake margin 

environments and vegetated deltaic surfaces. However, the relatively large (0.23 to 1.93 

em/em) range of alluvium Sp values is indicative of the wide variety of sediments 

categorised as alluvium. Kame deposits and the L&A moraines are predominantly 

composed of similar sand and granule grain sizes and have a similar range of Sp values 

(0.42 to 0.47 em/em). 
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Residuum demonstrates the largest range of Sp values (0.20 to 2.32 em/em). This 

is due to the large cobbles and boulders producing generally high roughness values whilst 

the scattered pockets of finer sediments produce occasional low Sp values. The ICDR is 

composed of only the largest boulders and so produces the very highest surface height 

variation with an average Sp value of 1.87 em/em. The supraglacial debris surface 

contains boulders, pebbles and cobbles resting on a smooth ice surface, the resultant Sp 

value reflects the surface height variation from all of these very different surfaces and 

produces a median value of 0. 71 em/em. The final category of ice produces a surprisingly 

wide range of values (0.54 to 1.33 em/em), despite the visual appearance of a relatively 

smooth surface. This is due to the presence of small yet deep (up to 30 em) pits in the ice 

surface, induced by ablation around small aeolian sediment accumulations. 
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Figure 6.3 Box and whisker plot of Sp by landcover class 
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6.4 Grain size results 

The first stage of the grain size analysis looks at percentage grain size cover in 

relation to po. The weighted mean po values calculated using the percentage cover as the 

weight are listed in Table 6. L T -tests for the significance of difference of means were 

then possible between grain size classes and Table 6.2 shows a matrix of the results. 

The po for water surfaces are significantly different from all other surfaces and 

should therefore be clearly identifiable in radar imagery. Ice surfaces are significantly 

different from surfaces composed of large grain sizes but are very similar to san~ granule 

and vegetated surfaces. Sand surfaces are generally well separated from the other land 

surfaces. Confusion is most common between bedrock. vegetation, boulder, pebble and 

cobble surfaces. 

Table 6.1 Weighted mean radar brightness values by grain size class 

Grain size category Weighted mean po (dB) 
Bedrock -11.21 
Boulder -9.05 
Cobble -9.96 
Pebble -9.99 
Granule -14.27 
Sand -14.06 
Vegetation -11.49 
Ice -14.23 
Water -17.92 



Table 6.2 T -test results for significant difference in mean radar brightness 

Grain size Bould' Cob' Peb' Gran' 
class 
Bedrock 2.03 2.10 2.03 2.11 
Boulder - 0.86 0.88 4.59* 
Cobble - 0.05 6.00* 
Pebble - 5.93* 
Granule -
Sand 
Vegetation 
Waur 

Bold = Significant at the 95% confidence level 
Bold • = Significant at the 99% confidence level 

Sand Veg' Water 

3.52* 0.46 10.06* 
4.19* 2.28 14.18* 
5.m• 2.53 12.04• 
5.01* 2.47 11.92* 
0.23 4.43• 4.14* 
- 3.15* 4.50* 

- 4.50* 
-

100 

Ice 

5.68• 
4.90* 
8.04• 
7.91• 
0.06 
0.22 
0.22 
6.10* 

In the second stage of grain size investigation the influence of the dominant grain 

size on ~o was examined. This produces a more interesting picture of class separability. 

Figure 6.4 is a box and whisker plot of dominant grain size class against po. 
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Figure 6.4 Box and whisker plot of dominant grain size class against radar brightness 
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Predominantly pebble, cobble and boulder surfaces are inseparable at the 5.6 em 

radar wavelength. In contrast the sands. granules and bedrock surfaces are well separated 

with non overlapping 95% confidence intervals. There is still overlap with the bedrock 

and the vegetation class and with the granules, bedrock and ice. The overlap of sand and 

water is thought to be caused by saturation of sandy lake margins. 
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7. Image analysis results 

This chapter presents the results of the image analysis. The accuracy of the 

geometric correction is given and the results of the speckle filter investigations arc 

presented together with the final choice of filter to be applied. The texture measure 

investigations are summarized and the choice of classification variables is explained. 

Thematic map output and accuracy assessments for each of the classified images are 

provided The final section presents the extracted limit of active ice. 

7.1 Geometric correction 

A total of 26 GCPs were used in the image registration process. The image 

characteristics and overall RMS for each image is given in Table 7 .1. 

Table 7.1 Image registration error 

Image S4, Descending, S4, Ascending, F1, Ascending, 
1996 1997 1997 

Spatial resolution (m) 25 25 8 

Pixel spacing (m) 12.5 12.5 6.5 

Registration error (pixels) 1.55 1.53 2.04 

Registration error (m) 19.37 19.12 13.26 

Map Locational error (m) 25 25 25 

Overall RMS (m) 31.6 31.5 28.3 
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7.2 Speelde ruterperf'oi'IIIIIDCe 

Filtering increases tonal signature separability but removes fine texture detail. 

Judging the filter performance is complex as changes in texture measure performance 

must be judged as well as tonal averaging. Table 7.2 presents the average Jeffries-

Matusita separabilities for the differently filtered images for tone alone and four texture 

measures. 

Table 7.2 Average Jeffries-Matusita tonal and textural separabilities for three adaptive 
speckle filters 

Image (Texture window) Enhanced Lee Enhanced Frost Kuan 

Tone 0.513 0.690 0.511 

Mean(7 x 7) 0.658 0.957 0.654 

Homogeneity (7 x 7) 0.542 0.416 0.541 

Contrast (7 x 7) 0.568 0.525 0.575 

Correlation ( 15 x 15) 0.774 0.696 0.778 

The enhanced Frost filter clearly performs the most image smoothing as is shown 

by the increased separabilities of tone and the mean texture measure. The Kuan and 

enhanced Lee filtered imagery produce similar results but with slightly higher texture 

image separabilitics. The averages provided in Table 7.2 indicate generally higher 

separabilities of texture images than image tone alone, and the superiority of the mean 

texture measure particularly when performed on the enhanced Frost filtered image. 
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Another method of evaluating the effect of image filtering on the performance of texture 

measures is to look at the number of class combinations successfully separated, by 

implying a Jeffries-Matusita separability of greater than 1.9. Table 7.3 shows the number 

of class combinations successfully separated, those poorly separated and those 

unsuccessfully separated for each filtered image and texture measure. 

Table 7.3 Number of landcover class combinations having Jeffries-Matusita texture 
image separabilities of> 1.9, l.0-1.9, <LO 

Texture measure Enhanced Lee Enhanced Frost Kuan 
(window size) 

Mean (7 x 7) l, 7, 28 7, 7,22 1, 7, 28 

Homogeneity (7 x 7) 0, 5, 31 0,3,33 0,5,31 
Contrast (7 x 7) 0,4,32 o. 5, 31 0,4,32 

Correlation ( 15 x 15) 0,13,23 0,10,26 0, 13, 23 

The enhanced Lee, enhanced Frost and Kuan filters produced generally similar 

textural separabilities although the Kuan and Lee filters are slightly better in the cases of 

homogeneity and correlation. However. the Frost filter is found to far outperform the 

other two filters in the case of the mean texture measure, which is tentatively found to be 

the most effective texture measure. Due to this imponance of the mean texture measure 

and the desired efficiency of having only one speckle filtering stage it was decided that 

all image processing would be performed on enhanced Frost filtered imagery. 
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7.3 Texture measure performance 

The results of the texture image analysis and the conclusions from this section 

provide the basis for the decisions on the final classification input. The role of texture 

window size is investigated followed by a detailed examination of the six texture 

measures. The visual interpretation and statistical discrimination strengths and 

weaknesses are provided for each texture measure in order tD justify the selection of 

classification variables. 

7.3.1 Texture window size 

Apart from the ASM texture measure, increasing the size of the texture window is 

found to increase the separability of Iandcover classes. This is shown by the trends in 

average Jeffries-Matusita separabilities given in Table 7 .4. Therefore, it is decided to use 

as large a texture window as possible bearing in mind the size of the features. It is also 

considered necessary that the texture window be larger than the size of the speckle filter 

window to avoid detecting only the texture produced by the filtering process. Features of 

the ice marginal zone typically have dimensions of lOs of metres. A texture window of 7 

x 7 pixels, corresponds to an area of 87.5 x 87.5 ~ this is the absolute maximum ground 

area possible considering some of the smaller proglacial features, for the smaller dump 

and L & A moraines it is possibly too large~ But a balance is sought for the effectiveness 
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of the measures and so a minor sacrifice on the part of the dump moraines and the L & A 

moraines is made. A 7 x 1 window is used for all the texture measures apart from the 

correlation measure. Linear features of the proglacial environment are hundreds of meters 

long and so a larger texture window of 15 x 15 pixels (187.5 x 187.5 m) is used .. 

Table 7.4 Average Jeffries-Matusitaclass separabilities for six texture measures and 
three window sizes 

Window size Mean Variance Homogeneity ASM Contrast Correlation 
(pixels) 

3 X 3 0.777 0.203 0.145 0.090 0.327 -
Sx5 0.912 0.358 0.279 0.339 0.400 -
7x7 0.951 0.484 0.416 0.326 0.525 0.163 

13 X 13 - - - - - 0.535 

15 X 15 - - - - - 0.696 
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7.3.2ASM 

The ASM average separability of 0.326 is the lowest of all the texture measures. 

No classes are well separated~ six class combinations are poorly separated and 72 class 

combinations are inseparable. Visually the ASM texture image is difficult to interpre~ 

The ice cap has generally lower ASM values than the non-ice categories, but landforms 

are not obvious and waterbodies are not clearly distinguished from the land. The only 

surfaces that are vaguely separable are waterbodies and dump moraines and even this 

class combination only has a Ieffries-Matusita separability of 1.5. ASM class 

separabilities are given in Table 7 .5. 

Table 7.5 Separability matrix for ASM texture image 

Bk Rs AI TDl Lti IUD Sw OM ICDR soc 01 WI 

Water 1.5 1.2 0.9 1.1 1.2 0.9 0.7 1.5 1.1 0.9 0.9 0.9 
Bedrock 0.3 0.5 0.3 0.3 0.5 0.7 0.1 0.4 0.6 0.6 0.6 
Residuum 0.1 0.0 0.0 0.1 0.2 0.4 0.0 0.1 0.1 0.1 
Alluvium 0.0 0.1 0.0 0 .0 0.7 0.1 0.0 0.0 0.0 
TID 0.0 0.0 0.2 0.5 0.1 0.1 0.1 O.l 
L&A 0.1 0.2 0.5 0.1 0.1 0.1 0.1 
Kame 0.1 0.6 0.1 0.0 0.0 0.0 
Snow 0.8 0.2 0.1 0.0 0.0 
Dump 0.4 0.8 0.7 0.7 
lCDK 0.1 0.1 0.1 
soc 0.0 0.0 
Dry ic:e 0.0 
Bold character : I. 1.0 to 1.9 
Regular character : I. <LO 
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7 .3.3 Contrast 

Average separability for the contrast texture image is O.S2S with no classes well 

separated, eleven classes poorly separated and 67 class combinations being inseparable. 

Visually the ice surface is distinct from the land due to higher contrast values, and edge 

features such as lake margins, ICDR and ice marginal channels are well identified by 

very high contrast values. Snowbeds produce surprisingly high contrast values which 

make this texture measure good for separating snow from ice surfaces, but causes 

confusion between snow and ICDR and SOC. The contrast separabilities are given in 

Table 7.6. 

Table 7.6 Separability matrix for contrast texture image 

Bk Rs AI TiD Lti Kat Sw OM ImR soc Dl WI 

Water 0.3 0.1 0.2 0.0 0.3 o.s 1.1 0.3 1.2 0.5 0.1 0.2 
Bedroc:k 0.7 0.0 0.1 0.0 0.1 0.8 0.9 0.9 0.2 0.0 0.0 
Residuum 0.5 0.3 0.7 0.8 1.3 0.1 1.4 0.8 0.5 0.6 
Alluviam 0.1 0.0 0.1 0.7 0.7 0.9 0.1 0.0 0.1 
Till 0.1 0.3 0.9 0.4 1.1 0.3 0.0 0.1 
L&A 0.1 0.7 0.9 0.9 0.1 0.0 0.1 
Kame 0.4 1.0 0.6 0.0 0.2 0.3 
Snow 1.3 0.0 0.4 0.9 1.0 
Dump 1.4 0.9 0.7 0.8 
I CDR 0.5 1.0 1.1 
SDC 0.3 0.3 
Dry ice 0.0 
Bold character ; 1. 1.0 to 1.9 
Regular character : J.<l.O 
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7 .3.4 CorrelatioD 

The average correlation separability of 0.696 is the second highest of the six 

measures. No classes are well separat~ sixteen class combinations are poorly separated 

and 62 are considered inseparable. The correlation texture image produces high values 

where there is linearity in the pixel values, therefore linear features are broadly separable 

from those features with anisotropic texture. Linear contrast features such as lake 

margins, rivers channels and ice marginal features such as the ICDR, the strips of SOC 

and the snowbeds that flank the margin of the ice cap produce high correlation values and 

are shown clearly on the resulting texture image. The ice surface and the land surface 

produce broadly similar low correlation values. Table 7.7 presents the statistical 

separabilities for the correlation texture image. 

Table 7.7 Separability matrix for correlation texture image 

Bk Rs AI TUl Lti Kill Sw OM ICDR soc Dl WI 

Water 0.7 0.0 0.3 0.4 0.9 0.9 1.3 0.0 1.6 1.3 0.1 0.1 
Bedrock 0.7 0.1 0.1 0.1 0.0 0.5 0.4 0.7 0.3 0.3 0.4 
Residuum 0.4 0.4 1.0 1.0 1.3 0.1 1.7 1.4 0.1 0.2 
AUuviwn 0.1 0.2 0.2 0.5 0.1 0.8 0.5 0.1 0.2 
Till 0.4 0.2 0.9 0.3 1.3 0.8 0.1 0.1 
L&A 0.1 0.2 0.6 0.3 0.1 0.6 0.7 
Kame 0.5 0.6 0.7 0.3 0.5 0.6 
Snow 0.9 0.2 0.2 1.0 1.2 
Dump 1.2 0.9 0.1 0.2 
ICD.R 0.1 1.4 1.6 
soc 1.0 1.2 
Dry ice 0.0 
Bold character : J. 1.0 to 1.9 
Regular character : 1.<1.0 
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7 .3.5 Homogeneity 

The average separability for the homogeneity texture measure is 0.418 with no 

classes well separated, nine classes poorly separated and 69 class combinations 

inseparable. Visually the image shows low homogeneity values for the ice surface and 

medium homogeneity values for the land surface, individual landforms are 

indistinguishable. High contrast edge features such as lake margins and ice marginal 

features are identified by their particularly low homogeneity values. The most successful 

separations are between surfaces of most extreme surface characteristics. the dump 

moraine and ICDR features produce the highest separabilities distinguishing them well 

from ice and other relatively smooth terrestrial surfaces. Table 7.8 shows the class 

separabilities for homogeneity. 

Table 7.8 Separability matrix for homogeneity texture image 

Bk Rs Al TW L&A Kill Sw OM ICDR soc Dl WI 

Water 0.3 0.1 0.1 0.1 0.3 0.4 0.8 0.4 1.2 0.4 0.2 0.2 
Bedrock 0.6 0.0 0.1 0.2 0.0 0.3 0.9 0.6 0.2 0.0 0.0 
Residuum 0.4 0.2 0.8 0.7 1.0 0.1 1.5 0.6 0.5 0.5 
Alluvium 0.0 0.2 0.1 0.4 0.7 0.7 0.0 0.0 0.0 
Till 0.4 0.2 0.5 0.4 0.9 0.1 0.1 0.1 
L&A 0.3 0.7 1.2 1.0 0.3 0.1 0.1 
Kame 0.2 1.0 0.4 0.0 0.1 0.1 
Snow 1.2 0.1 0.2 0.5 0.4 
Dump 1.6 1.0 0 .9 0.9 
I CDR 0.4 0.8 0.8 
SDC 0.1 0.1 
Dry ice 0.0 
Bold character : J. 1.0 to 1.9 
Regular character : 1.<1.0 
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7.3.6Mean 

The mean texture measure was found to be the most effective texture measure, 

with. an average class separability of 0.957, and eleven class pairs are well separated, 25 

class pairs are poorly separable and 42 class combinations considered as inseparable. 

Ice, land surfaces and waterbodies are generally well separated. The mean texture image 

is particularly good for visual interpretation due to the preservation of the radar 

brightness values and real edges and linear features. The separabilities given in Table 7.9 

show that the main problems are confusion between alluvium, kame, bedrock and 

supraglacial debris covered surfaces. Despite two distinctly different types of ice cap 

surface observed in the field the ice surfaces themselves were not well separated. The ice 

marginal features of snowbed, ICDR and SDC are not well separated. 

Table 7.9 Separability matrix for mean texture image 

Bk Rs AI nu L&:A Km Sw DM ICDR soc DI WI 

Water 2.0 2.0 1.5 2.0 ~ 2.0 1.0 aJl !:! 1.6 a:!! 2.0 
Bedrock 1.1 0.3 0.7 0.3 0.0 0.7 1.8 0.1 0.2 0.4 0.6 
Residuum 1.3 0.1 1.8 1.1 1.5 0.9 0.8 1.0 Ia! y 
Alluvium 1.1 0.7 0.2 0.2 1.7 0.1 0.0 0.4 0.4 
Till 1.5 0.8 1.4 1.3 0.6 0.8 1.7 1.8 
L&A 0.3 1.1 !J! 0.6 0.7 0.5 0.7 
Kame 0.7 1.8 0.1 0.1 0.7 0.5 
Snow 1.8 0.5 0.3 0.7 0.6 
Dump 1.5 1.5 a:!! aJl 
I CDR 0.1 0.5 0.6 
soc 0.4 0.5 
Dry ice 0.0 
Bold character : J. >1.9 
Bold character : J. 1.0 to 1.9 
Regular character : J.<l.O 
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7 .3.7 Variance 

The average class separability is 0.484, with no classes well sep~ 15 pairs 

are poorly separated and 63 are inseparable. Visually the image is difficult to interpret, 

ice has generally a slightly higher variance than the non-ice categories but no distinctive 

landforms are obvious, waterbodies have similar variance values as the land surface. The 

only information contained in the image is in the linear contrast features such as lake 

margins and ice marginal channels which have extremely high variance values. 

Statistically the only separable features are waterbodies and dump moraines. Waterbodies 

are characterised by low variance and the dump moraines have abnormally high variance, 

all other surfaces are characterised by medium variance values with overlap and poor 

separability. The values shown in Table 7.10 show that very few separabilities are above 

0.5 and these are confined to the dump moraines. waterbodies and ICDR. 

Table 7.10 Separability matrix for variance texture image 

Bk Rs AI TDl L&cA Km Sw OM I CDR soc 01 WI 

Water 1.7 1.5 1.3 1.3 1.6 1.2 1.2 1.8 1.5 1.4 1.2 1.3 
Bedrock 0.0 0.3 0.1 0.5 0.1 0.1 0.4 0.4 0.4 0.5 0.6 
Residuum O.l 0.0 0.3 0.0 0.1 0.5 0.4 0.2 0.2 0.3 
Alluvium 0.1 0.0 0.1 0.2 0.9 0.7 0.0 0.0 0.1 
TW 0.2 0.0 0.1 0.7 0.5 0.1 0.1 0.2 
L&cA 0.2 0.4 0.0 0.9 0.0 0.1 0.1 
Kame 0.0 0.1 0.4 0.1 0.1 0.2 
Snow 0.4 0.3 0.3 0.3 0.4 
Dump 0.0 1.0 1.1 1.2 
I CDR 0.8 0.8 0.9 
soc 0.0 0.0 
Dry ice 0.0 
Bold character : I. 1.0 to 1.9 
Regular character: I. <1.0 
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The ASM and variance measures produced relatively poor class separabilities and 

are not used for classification. The mean texture measme performed exceptionally well 

and is selected for input to the classification process. The correlation measure is selected 

on account of its reasonable performance and the unique information about image 

structure that it contains. The contrast and homogeneity measures separate the same 

classes with a similar amount of success. Therefore either homogeneity or contrast will 

provide information to the classification method and only one need be chosen. 

Training area statistics are examined for unimodality and normality as a 

prerequisite for the classification input and classes are subdivided where necessary. The 

contrast measure is found to have the greatest deviation of class values from normality. 

Significant negative skew is present in most of the contrast training data sets. 

Homogeneity value distributions are closer to normal and therefore, despite just slightly 

lower class separabilities, this measure is selected as the third classification variable. The 

three selected texture measures of mean, correlation and homogeneity provide 

complementary information to the classifier. The mean texture image provides 

information about original backscatter values, the correlation measure provides 

information about image structure, and the homogeneity image provides information 

about the surface variability. Of the six tested measures no other measure appeared to 

provide significant additional information and so other classification variables are 
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deemed unnecessary. The mean, correlation and homogeneity texture images as used ·in 

the final classification method are shown in Figures 7.1, 7.2 and 7.3 respectively. 

No texture measure was able to distinguish between tbe two different observed 

ice swfaces. separabilities of consistently less than 0.1 suggest signature merging. Ice is 

therefore examined as one category in tbe classification. The ~ken and Andrews 

moraines were also a poorly separable class. These moraines are important proglacial 

features and would have been useful for mapping former extents of tbe ice cap, however, 

they are not necessary for mapping the contemporary ice margin and, on account of their 

high level of confusion, they are omitted from the final classification method. 
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Figure 7.2 Correlation texture image 
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7.4 Image classification and accuracy asecsmeot 

The land cover classes as identified in the field and their possible subsets. are 

listed in Table 7.1L These classes are the basis of the supervised classification. The 

percentage cover of each class is included in the table for input as a priori weightings in 

the classification, as recommended by Strahler (1980). 

Table 7.11 Ice marginal landcover classes 

Landcover classes (% cover) Possible subclasses 
Open water (5) Standing 

Flowing 
With ice cover 

Bedrock (5) With boulder lag 
Scoured with ponds 

Residuum (25) 
Till(!) Saturated 

Damp 
Alluvium (5) Saturated lake margins 

Low energy lacustrine deposits 
High energy fluvial 
Deltaic sediments 
River terraces 

Kame(l) Hummocky 
Ridge 

Dump moraine (1) 
Snow (1) Saturated 

Dry 
Ice with supraglacial debris (SOC) (1) Bare ice with intermittant debris 

Thick supraglacial debris cover 
Ice cored debris rid2e (JCDR) (1) 
Ice cap (50) Wet ice with surface pools and slush 

Dry ice 

'Ihe following subsections present the resultant thematic maps and the accuracy 

statistics for each of the classified images. Individual class accuracies are shown in order 

that the strengths and weaknesses of each image may be evaluated. 
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7.4.1 S4 desc:eadlag image 

The classified S4 descending image is shown in Figure 7 .4, the associated error 

matrix is given as Table 7.12 and a summary of class accuracies is provided in Table 

7.13. Visual inspection of the classified image shows that the margin is correctly 

characterised by snowbeds. with sections of ICDR and small areas of SOC. The ice cap 

surface has some areas misclassified as bedrock but is well separated from the terrestrial 

surface along the margin. Lake margins are frequently misclassified as snowbeds, and 

river channels are misclassified as ICDR. An area of lake ice is correctly classified as ice. 

Kames. alluvium and bedrock are confused and often misclassified as ice. 

Table 7.12 Error matrix of S4 descending image 

Field Data 

Classified Wr Bk Rs AI Till ICm Sw DM lCDR soc Ice Total 

data 
Water 4 0 0 0 0 0 0 0 0 0 0 4 
Bedrock 0 1 1 1 0 0 0 0 0 0 0 3 
Residuum l 0 10 4 1 0 0 0 0 0 0 16 
Alluvium 1 0 0 2 0 l 0 0 0 0 1 5 
Till 0 0 2 1 0 0 0 1 0 0 0 4 
Kame 0 0 1 0 0 0 0 0 0 0 0 1 
Snow 0 0 0 4 0 0 2 0 0 l 1 8 
Dump 0 0 1 0 0 0 0 1 0 0 0 2 
I CDR 0 0 0 1 0 0 0 0 5 0 0 6 
soc 0 0 0 l 0 0 0 0 2 1 0 4 
Ice 0 1 1 3 0 2 0 0 0 2 8 17 
To!al 6 2 16 17 1 3 2 2 7 4 10 70 
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Table 7.13 Class accuracies and coverages of S4 descending image 

Class Producer's User• s accuracy Relative Area(km2) 

accurac.r (%) (%) area(%} 
Water 66.7 100.0 3.2 4.8 
Bedrock 50.0 33.3 8.2 12.3 
Residuum 62.5 66.7 22.6 34.0 
Alluvium l1.8 40.0 5.1 8.6 
Till 0.0 0.0 1.9 2.8 
Kame 0 .0 0.0 1.4 2.1 
Snow 100.0 25.0 4.4 6.7 
Dump moraine 50.0 50.0 0.7 l.O 
ICDR 71.4 83.3 2.8 4.2 
soc 25.0 25.0 1.9 2.8 
Ice 80.0 47.1 47.1 70.8 
Total 100.0 150.1 

The descending image identifies the ice cored debris ridge and residuum surfaces 

well. Snow and ice surfaces have large commission errors. The method is unable to 

accurately classify till and kame deposits. Alluvium has a large omission error due to 

confusion with residuum, snow and ice surfaces. The percentages of area covered are in 

the anticipated order of magnitude as applied through the a priori probabilities. The 

overall accuracies and Kappa coefficients given in Table 7.14 demonstrate that the 

classification results are approximately SO% and may be considered to be in the 'poor• 

performance range of the Kappa statistic. 

Table 7.14 Overall accuracies and Kappa coefficients for S4 descending image 

Field data Sketch map data Airphoto data 
Overall accuracy (%) 50.0 52.1 43.7 
Kappa coefficient 0 .37 0.41 0.37 
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7.4.2 S4 ascending image 

The classified S4 ascending image is shown in Figure 7.5 and the· associated error 

matrices and accuracies given in Tables 7.15, 7.16 and 7.17. The classified image shows 

the presence of narrow snowbeds along some of the margin and many ice marginal 

channels. ICDR characterises much of the length with some areas of SOC. The ice is well 

represented but there is confusion of SOC and bedrock at the very edge of the ice cap. 

Lake margins and river channels are misclassified as snowbed and ICDR and kame and 

alluvium surfaces are frequently misplaced. 

Table 7.15 Error matrix for S4 ascending image 

Field Data 

Classified Wr Blc: Rs AI Till Km Sw DM ICDR soc Ice TO(al 

data 
Water 5 0 0 l 0 0 0 0 0 0 0 6 
Bedroc~ 0 2 1 5 0 0 0 0 0 1 1 10 
Residuum 1 0 13 2 1 0 0 1 0 1 0 19 
Alluvium 0 0 0 2 0 0 0 0 0 0 0 2 
TiU 0 0 0 1 0 0 0 0 0 0 0 1 
Kame 0 0 1 0 0 0 0 0 0 0 0 1 
Snow 0 0 0 1 0 0 2 0 1 1 0 5 
Dump 0 0 0 1 0 0 0 0 0 0 0 1 
ICDR 0 0 0 2 0 0 0 1 6 0 0 9 
SDC 0 0 0 1 0 0 0 0 0 1 0 2 
Ice 0 0 1 1 0 3 0 0 0 0 9 14 
Total 6 2 16 17 1 3 2 2 7 4 10 70 

Ice marginal features in the ascending image have slightly higher accuracies of 

classification than in the descending image. Ice, ICDR. water and residuum are well 

classified but the method is unable to identify till and kame surfaces. Bedrock and snow 
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have high errors of commission and the alluvium has 88% omission. Percentage area 

coverages are reasonably close to the expected areas although there is a considerable 

overestimation in the area classified as ice. The overall accuracies in Table 7.17 show a 

wide range of values, the field data Kappa coefficient is within the 'good' category, the 

overall accuracy is 57%, yet the airphotos and sketch map data sets produce KHAT 

values of 0.37and 0.3 and overall accuracies of 46 and 45% respectively. 

Table 7.16 Class accuracies and coverages for S4 ascending image 

Class Producer's User's accuracy Relative Area(km2) 
accurac~ (%) (%) area(%~ 

Water 83.3 83.3 5.1 7.7 
Bedrock 100.0 20.0 7.0 10.5 
Residuum 81.2 72.2 20.6 31.1 
Alluvium 11.8 100 3.7 5.5 
Till 0.0 0.0 1.0 1.5 
Kame 0.0 0.0 0.7 1.0 
Snow 100 40.0 3.2 4.8 
Dump moraine 50.0 50.0 0.5 0.7 
ICDR 85.7 66.7 2.9 4.3 
soc 25.0 50.0 3.5 5.2 
Ice 90.0 64.3 51.8 77.8 
Total 100.0 150.1 

Table 7.17 Overall accuracies and Kappa coefficients for S4 ascending image 

Field data Sketch map data Airphoto data 
Overall accuracy (%) 57.1 46.1 44.6 
Kappa coefficient 0.51 0.30 0.37 
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7.4.3 Fine mode ascending image 

The classified fine image is shown in Figure 7 .6, the associated error matrix and 

accuracy statistics are provided in Tables 7.18, 7.19 and 7.20. Figure 7.6 shows the ice 

surface itself is well classified although there is confusion in a certain area with 

residuum. The margin is characterised by snowbed and ICDR, standing water and a 

minimal proportion of SOC. The same confusion of lake margins and river channels as 

snowbed and ICDR is apparent as in the other images. Similarly kame, alluvium and 

bedrock surfaces are confused with each other and with ice. 

Table 7.18 Error matrix for the fine mode image 

Field Data 

Classified Wr Bk Rs Al Till Km Sw OM ICDR soc Ice Total 

Data 
Water 4 0 0 0 0 0 0 0 0 0 0 4 
Bedrock 0 0 2 4 0 1 0 0 0 2 0 9 
Residuum 1 0 9 1 I 0 0 1 0 0 1 14 
Alluvium 0 1 1 4 0 0 0 1 0 0 0 7 
Till 0 0 0 0 0 0 0 0 0 0 0 0 
Kame 0 0 0 0 0 0 0 0 0 0 0 0 
Snow 1 0 0 2 0 0 0 0 0 0 0 5 
Dump 0 0 0 1 0 0 2 0 0 0 0 1 
ICDR 0 0 0 2 0 0 0 0 7 2 0 11 
soc 0 0 0 0 0 0 0 0 0 0 0 0 
Ice 0 1 3 3 0 2 0 0 0 0 12 21 
Total 6 2 15 17 1 3 2 2 7 4 13 72 

The fine image identifies the ice surface particularly well and shows a clearly the 

large areas of residuum. However, the supraglacial debris, dump moraine, snowbed, till 

and kame surfaces have 100% omission errors. ICDR and ice have large errors of 

commission. The percentage coverage of classes is far from the expected with 

considerable over classification of ice and residuum areas. 
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The overall accuracies shown in Table 7.20 are relatively high with 52.8%, but 

this cannot be considered as truly representative of the success of the classification 

method. The range of the Kappa coefficients, 0.26 to 0.43, is a better indicator of the poor 

classification. The finer spatial resolution does not seem to enhance the accuracy of the 

classification method. 

Table 7.19 Class accuracies and coverages of fine mode image 

Class Producer's User's accuracy Relative Area(lcm2) 
accurac~ (%) (%) area(%~ 

Water 66.7 100 4.4 6.4 
Bedrock 0.0 0.0 4.3 6.3 
Residuum 60.0 69.2 29.2 42.5 
Alluvium 23.5 57.1 2.7 4.0 
Till 0.0 0.0 0.4 0.5 
Kame 0.0 0.0 0.2 0.2 
Snow 100.0 40.0 4.3 6.3 
Dump moraine 0.0 0.0 0.4 0.6 
I CDR 100.00 63.6 3.4 4.9 
soc 0.0 0.0 0.9 1.2 
Ice 75.0 42.9 49.8 72.5 
Total 100.0 145.4 

Table 7.20 Overall accuracies and Kappa coefficients of the fine image 

Field data Sketch map data Airphoto data 
Overall accuracy 52.8 42.5 52.8 
Kappa coefficient 0.39 0.26 0.43 

7 .S Edge Detecdon 

The limit of active ice is represented by the boundaries between the snowbed, 

SOC, ICDR and ice image classes, as discussed in chapter six and shown in Figure 6.2. 
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Edge detection is used to identify these class boundaries in the image. The edge detection 

is performed on the S4 descending image. A standard image is used because of the higher 

classification accuracies than with the fine mode image. Despite the slightly higher 

overall classification accuracies of the ascending image, the descending image is superior 

for the edge detection procedure because the landforms around the ice margin are better 

identified. In the classified ascending image there is a break: in the margin where a major 

supraglacial stream cuts through the ICDR. The immediate alluvium and bedrock 

surfaces are misclassified as ice and the result is that ice appears to spill out of the ice cap 

in a spurious lobate form. Such a misrepresentation of the ice margin is avoided by using 

the descending image. 

The misclassification of the ice as alluvium. bedrock and kame surfaces is 

overcome by converting their image values to those of ice. The true ice cap is then 

extracted from the image using an ice polygon size criterion, spurious off ice polygons 

are small and therefore removed from the image. Misclassified pixels upon the ice cap 

are thus incorporated into the ice mass. The edge detection is performed upon an image 

containing only the classes of ice, snowbed, ICDR and SOC, specific image values are 

assigned to each class and all other pixels are assigned a value of zero. 

The final edge image is shown in sections in Figures 7.7, 7.8 and 7.9, the limit of 

active ice is characterised by the four different types of ice margin. Figure 7.10 shows the 

extracted vector lain over the original radar image. The limit of active ice is characterised 
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by 45 % snowbed, 17 % ICDR, 13 % SDC and 24% cla&ified as 5 0ther', essentially 

water or residuum. 

Where the ice directly adjoins open water or the deglaciated terrain, the 

placement of the limit of active ice is within one pixel. The width of the ICDR is between 

2 and 10 m, therefore where the ice adjoins the ICDR we can be confident that the limit 

of active ice is also within one pixel. Where the ice adjoins a snowbed the limit of active 

ice may be displaced ice proximally as some active ice shear planes are apparent ice 

proximal to the true ~dirtline'. Such shear planes are observed to occur within a 

maximum of20 m of the true ~dirtline' and so any displacement of the active ice limit is 

unlikely to exceed two pixels. Accuracy of the ice and snowbed limit is thus within two 

pixels or 25 m. Where the active ice limit is characterised by SOC it is possible that 

active ice shear planes may extend beyond the beginning of the SOC for up to 30 m, the 

accuracy of this type of limit is within three pixels or 37.5 m. Using the maximum error 

of placement of the line (37.5 m) and the error associated with the image registration 

(31.6 m) the overall RMS error of the limit of active ice is calculated to be 49 m. 



0 2 4 6 

Figure 7.7 Limit of active ice for the west section ofthe study area 
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Figure 7. 8 Limit of active ice for the middle section of the study area 
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Figure 7.1 0 Limit of active ice as a line vector lain over the original radar image 
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8. Discussion 

This chapter discusses the results of the field investigations and the image 

processing. The strengths and weaknesses of the method are explored and where 

possible, recommendations for further studies are made. Comparison with results from 

other studies provide an objective evaluation of this research. 

8.1 Glaciology and remote mapping of ke margiDs 

The importance of the nature of the ice margin, in ice margin mapping 

applications of remote sensing, is emphasised by the research completed here. As ice 

marginal processes vary spatially, initiating a variety of ice front morphologies, the more 

specific 'limit of active ice' is introduced as an alternative to the general term ' ice 

margin'. The limit of active ice is considered to be more accurate as it excludes stagnant 

ice at the margin and therefore gives a better estimate of contemporary ice extent. It is 

suggested that future ice margin mapping studies should describe the nature of the margin 

and clearly state the feature that is mapped as the 'ice margin'. 

8.2 Image classification and orbital cbaraeteristics 

This research set out to assess the potential of SAR imagery for classification of 

an ice marginal environment and for the delineation of the extent of active ice. Image 

classification was accomplished but was considerably more successful for the features of 

the ice margin than for the proglacial environment. Consequently, whilst it is possible to 
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delineate the limit of active ice from a classified image, it is not possible to classify all 

landforms of the proglacial zone using SAR imagery alone. 

The differences in the classification results of the three RADARSAT images 

highlight the role of the image look direction and the spatial resolution. The descending 

orbit illuminates the surface from an off ice perspective looking 'upglacier'. In this 

manner the ice distal slopes of the ICDR, with or without snowbed cover, and ice 

marginal features such as dump moraines and meltwater channels form the foreslope 

features and are well detected. Waterbodies and bedrock surfaces are clearly identified in 

the descending image. Ice proximal ICDR slopes and SOC surfaces are sometimes in 

shadow and less reliably identified. This is reflected in the low overall accuracy ( 46%) of 

the sketch map test data set. On the other hand, the terrestrial surfaces are well identified 

and the overall accuracy of the field data test set is 57%. 

The ascending orbit illuminates the surface from a 'downglacier' perspective, 

hence, the ice, SOC and ice proximal slopes of ICDR are well detected. Distal slopes of 

steep ICDR and. snowbeds are backslope features and subject to shadowing, the land 

surface immediately adjacent to the ice cap is less reliably classified. However. since the 

proximal slopes of ICDR and the SOC cover are the primary features of interest when 

mapping the Barnes Ice Cap limit of active ice, these illumination conditions are optimal. 

The S4 ascending image produced the highest classification accuracies. The sketch map 
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accuracy is 53% and the field and airphoto test sets. produce slightly lower accuracies of 

50% and 44% respectively. 

The accuracies show that the look direction. has a significant impact on the 

features that are successfully identified. IDumination from a 'downglacier' perspective 

produces higher classification accuracies for the features of importance in the mapping of 

the limit of active ice. It should be noted however, that these are the characteristics of the 

Barnes margin and are not necessarily valid for all other ice masses. In addressing the 

secondary objective of identifying the optimal look direction for ice margin mapping, it is 

concluded that the selection of the orbital path must be made using knowledge of local 

ice dynamics and the features of importance in the placement of the limit of active ice. 

The fine mode image has massive overclassification of residuum and ice, the 

percentage coverages are far higher than the anticipated coverages assigned through the a 

priori weightings. The field and airphoto test data sets have large proportions of these 

two categories and so produce the highest accuracies, both with 53% overall accuracy. 

Despite the optimal •downglacier' illumination, the accuracy of the ice features as 

reflected in the sketch map accuracy is low, only 42% compared to 53% for the standard 

mode image. 

This reduction in accuracy is predominantly due to the misclassification of dump 

moraines and SOC. Dump moraines are misclassified as residuum or alluvium and the 
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SOC surfaces are misclassified as bedrock or ICDR. It is suggested that the 

misclassification of SOC occurs at the finer spatial resolution because SOC responses 

separate more distinctly into smooth ice and thick debris cover, rather than being an 

average of the two surfaces. These responses are then more likely to be confused with 

smooth bedrock and rough ICDR.. The SOC bas a vital role in the delineation of the limit 

of active ice and so it is concluded that the fine image is the least useful for ice margin 

mapping. The fine image does not prove any more useful for other landcover types and as 

with the standard mode, kames and till are misclassified. There is no significant 

improvement in the accuracies of alluvium and residuum, and the bedrock surfaces are 

more frequently misclassified in the fine mode image. With regard to the study objective 

to identify optimal spatial resolution it is concluded that 25 m spatial resolution is 

superior to 8 m spatial resolution. 

The decrease in classification accuracy of the tine mode image may be related to 

the increased amount of image speckle. The standard mode images have multilook 

speckle reduction, in contrast the fine image is a single look image. Although all the 

images were filtered for speckle using the enhanced Frost filter, fine mode images. may 

require an increased amount of adaptive speckle filtering compared to standard mode 

images. 
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8.3 Edge detection 

The limit of active ice is characterised by four edge types: ice adjoining snowbed. 

iCe adjoining ICDR. ice with beginning of SOC and ice adjoining any other surface, such 

as open water or immediate terrestrial surface. It is acknowledged that the accuracy of 

this line is entirely dependent on the accuracy of the classification method used in the 

derivation of the edge detection image. The overall accuracy of the segmented image 

upon which the edge detection is performed. which contains only the classes of ice 

marginal features, is 70%. 

The classification problems which affect the accuracy of this line may be 

summarised as follows. A minor problem is observed with ICDR being misclassified as 

SOC. This error attaches a lower accuracy of placement (three pixels) to a limit that is 

actually accurate to within one pixel. The main problems are the misclassification of 

SDC as ice and sometimes as snow. Where SOC is misclassified as ice this would place 

the limit of active ice slightly distal to the beginning of the SDC, therefore slightly distal 

to the first active shear plane, but still within the three pixel accuracy limit assigned to 

this particular type of limit. Where ice is misclassified as snow, the limit would be placed 

ice proximal to the true limit of active ice, thus underestimating the true extent of active 

ice. As 45% of the resulting edge image is classified as ice adjoining snowbed, this latter 

problem is considered to be the most serious. The detected limit of active ice is therefore 

taken to be an absolute minimum estimate of the position of the limit of active ice for the 

Barnes Ice Cap. 
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The placement of the limit of active ice is considered to be accurate to within 49 

m. This is comparable to the accuracies achieved by Adam et al. (1991) using ERS-1 

SAR da~ and well within the 75 m accuracy they consider necessary for glacier 

hydrology studies. It is considerably more accurate than the 300 m obtained using ERS-1 

SAR data for a section of the Greenland Ice Sheet (Sohn and Jezek, 1996) and the 150 m 

obtained using a combination of radar and multispectral data for the same area (Sohn, 

1996). The results would therefore be useful for mass balance studies. The results may 

be considered more interesting from a glaciological perspective as they relate the ice 

dynamics to ice front morphology in radar imagery. With reference to the multispectral 

study of the Barnes Ice Cap by Jacobs eta/. (1997) these results may be considered more 

accurate. The multispectral study identified the limit of clean glacier ice and then applied 

a 100 m buffer in order to include the ICDR and SOC. In light of this indepth field and 

radar study. the inclusion of the buffer zone considerably overestimated the extent of 

active ice of the Barnes Ice Cap. 

8.4 Image pr~essing for ice margiDal spacebome radar imagery 

Of the three adaptive speckle filters it is apparent that the Kuan and enhanced Lee 

filters perform less image smoothing than the enhanced Frost filter and so preserve more 

image texture. Consequently, the Kuan and enhanced Lee filters produce slightly higher 

texture separabilites for most texture measures. That the Kuan and the enhanced Lee 

filters produce the same degree of filtering is no surprise, the Kuan filter is after all, an 

extension of the original Lee filter based on the additive noise model. The enhanced Frost 
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filter is based on the multiplicative model for speckle and is designed specifically for 

radar imagery. The multiplicative model states that the brighter the radar response the 

more developed the speckle. therefore the greater the amount of appropriate filtering. 

Subsequently. more filtering is performed and the Frost image is the smoothest. For the 

purposes of signature separability, particularly for the mean texture measure, this image 

smoothing has a positive effect on signature separability and so the enhanced Frost filter 

is deemed the most effective. 

In image texture analysis increasing texture window size is found to increase 

signature separability. As the number of pixels used in the GLCM calculation increases. 

the signatures have greater capacity for variation and so become more distinct and 

individual. The constraining factor in choosing texture window dimensions is the size of 

the smallest feature it is desired to detect. For all texture image processing the texture 

window should be as large as possible. taking into account the size of the features of 

interest. 

GLCM texture measures were examined to identify whether image texture could 

be used to distinguish between ice marginal features. No one measure could identify all 

landforms and different measures had success with different features. Of the six measures 

investigated the mean texture image is by far the most usefuL Representing the average 

of original backscatter values it retains information about relief, surface moisture content 

and surface roughness. With this information it is best able to distinguish between 
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landcover types. Variance quantifies the amount of backscatter variation within the 

texture window, the resulting values are similar for many different landcover types and 

produce a highly confusing texture image. The ASM texture measure is the opposite of 

variance and quantifies uniformity within the texture window. Lik:e.tbe variance measure 

landcover class values are not distinctive and texture separabilities are low. 

Contrast texture gives information about the range of image values. Features with 

a large range of backscatter values within their coverage, due to the effects of relief or 

abrupt image boundaries, are distinctive. Dump moraines and ICDR show well due to the 

highly contrasting values produced by steep foreslopes and shadowed backslopes. 

Snowbeds are narrow features often with small boulder patches of slumping debris, 

which produce high contrast values. These make snowbeds separable from the low 

contrast ice surface but cause confusion with the ICDR and SOC. Waterbody margins are 

very high contrast features and are well identified in the contrast texture image. The 

homogeneity measure quantifies the degree to which pixel values are similar and is the 

opposite of the contrast measure, accordingly the two measures identify the same 

landforms with a comparable success rate. 

The correlation measure proves particularly useful as it detects linear structure 

and this is a key element in the ice marginal environment. The only problem is that all 

linear contrast features, such as stream channel and waterbody edges, in addition to the 

actual linear landforms such as ICDR, snowbeds and dump moraines, are detected. The 
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correlation image must be used in conjunction with other information in order that the 

linear features of interest are identified. 

It appears that some ice marginal features are distinguishable in radar imagery 

using image texture but others are not. Waterbodies, ICDR., snowbed. residuum and 

dump moraines are well detected, ice and SOC are detected but with slightly lower 

accuracy. Proglacial features such as kames, alluvium. bedrock and till surfaces are not 

reliably distinguishable from each other, and are frequently confused with ice. These 

preglacial features have similar backscattering characteristics so they are not identifiable 

with the mean texture measure, they are medium contrast features, therefore they do not 

show up in the contrast and homogeneity texture measures, and they are anisotropic, thus 

they are not identified by the correlation measure. 

Previous ice marginal radar studies have reported confusion of ice surfaces with 

proglacial alluvium (Rott, 1984) and also smooth bedrock surfaces (Shi and Dozier, 

1993; Shi et al., 1994) resulting in reduced classification accuracies. Despite more 

detailed image texture analysis, the same problems are identified in this study. It would 

appear that the separation of alluvi~ kame. bedrock and ice surfaces will continue to be 

problematic for radar classification until a methOd of texture analysis that can recognise 

more complex patterns is developed. The eventual replacement of the rigid algorithms 

and texture windows of the second order GLCM texture measures with flexible measures 

more suited to natural surfaces, such as fractals, would seem desirable. 
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The mean, correlation, contrast and homogeneity texture measures were 

successful in this context but these results are not duplicated in any other study. It may 

be concluded that texture measure performance varies greatly with the nature of the 

environment being studied and the size of the texture window used For example the 

correlation measure was found to be particularly useful in this study because of the 

natural linearity of features, whilst variance was found to be poor. In contrast, studies 

using larger texture windows for a more general impression of image texture over a 

glaciated region have found variance to produce good results (Sobn, 1996). 

8.5 Surface roughness measures for radar 

A secondary objective of this study set out to quantify the surface roughness 

characteristics of proglaciallandforms and determine whether the variations in roughness 

would be sufficient to produce significantly different radar backscatter between features. 

The terrain templet derived Sp values give a good indication of the surface roughness 

associated with the different landcover types, despite the limited number of samples. The 

Sp values are low for smooth surfaces such as bedrock and high for rough surfaces such 

as ICDR and residuum. Ice has a surprisingly high Sp value indicative of a rough surface 

similar to residuum. This is due to the presence of small but deep holes on the ice surface 

producing large standard deviations of surface heighL The Sp values for the L&A 

moraines. kames and alluvium overlap because they are composed of similar materials. 
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Consequently. similar radar brighbless values and confusion in radar imagery is 

anticipated. In conclusion, it is not possible to distinguish between proglacial landforms 

on the basis of surface roughness alone. 

A problem was observed in the field with the weight of the templet pins 

disturbing the surface materials. Where surface materials were loose, such as sandy lake 

margins and on wet ice surfaces, particles were dislodged and the pins found their level 

on the more stable subsurface. How this subsurface differed from the surface producing 

the radar response is difficult to assess, particularly if the surface was wet. This problem 

would need to be addressed in the design. of any subsequent terrain templet The length of 

the profile is also open to question. Theoretically, considering the radar wavelength, the 

30 em profile should have been satisfactory. However, the influence of the deep holes in 

the ice surface may have been reduced by using a longer profile, and the resulting ice Sp 

values would have been more representative of the generally smooth ice surface. 

The weighted mean po results have large sample sizes which facilitate the 

calculation of confidence intervals and significance tests. The mean radar brightness 

values show that water is distinguishable from all other surfaces with a distinctively 

low ~o of --18 dB. po values for boulders, cobbles and pebble surfaces vary between -9 

and -10 dB and are not significantly different, therefore confusion is likely. Bedrock and 

vegetation surfaces produce confused ~o values of --11 dB. Ice, sand and granules 
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produce similar po values of- -14 dB, thus one may predict classification confusion of 

these surfaces if using radiometric response alone. This confusion stems mainly from the 

fact that many of these surfaces are of mixed grain size composition. therefore both rough 

and smooth components are averaged over the pixel ~o value. 

The surface roughness investigations proved to be less successful in the proglacial 

environment than for the lava flows and agricultural soils for which they were originally 

developed (Gaddis et a/. 1990; Campbell and Garvin, 1993; Benallegue et a/., 1995). 

Lava flows have distinctive surface roughness on account of the thermal mechanics of 

lava cooling and agricultural soils are distinctive by the method of tillage. Proglacial 

landforms are the same materials arranged in different forms under the natural influences 

of gravity and waterflow. Consequently, the angles of rest for particles are limited and 

the range of surface roughness values is small, hence, proglacial landforms are 

indistinguishable on surface roughness alone. 

The dominant grain size results are the most interesting. It is shown that while 

predominantly pebble, cobble and boulder surfaces are indistinguishable at the C-band 

wavelength, there is distinct separation between the sand, granule and smooth bedrock 

surfaces when one particular grain size dominates. Figure 6.4 shows non overlap of the 

95% confidence intervals of these fine grain sizes and smooth terrestrial surfaces. There 

is still confusion with these surfaces and the ice cap. therefore this concept could only be 

exploited in areas where the ice is absent or has been masked. The detectable surface 
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composition is dependent on the radar wavelength. For the C-ban«L with a A. of 5.6 ~ 

the roughness criterion calculates smooth to be less than 0.28 em, intermediate to be 0.28 

to 1.27 em and rough to be greater than 1.27 em. These results show that separable 

surfaces are smooth bedrock, sand surfaces with grain sizes of up to 0.19 em. and granule 

surfaces with grain sizes of between 0.2 and 0.59 em. According to the roughness 

criterion both bedrock: and sand would be considered as smooth and granules would be 

considered intermediate. Grain sizes greater than these are not separable and 

amalgamated in the rough class. From these results it is suggested that there are further 

subdivisions of the smooth category defined by the Rayleigh criterion. However, it is 

acknowledged that these results are tentative due to the small sample sizes and superficial 

nature of the data. Further studies are needed with larger sample sizes. a method of 

quantification other than subjective visual estimates, grain size class divisions designed 

for the particular radar wavelength and quantitative analysis of moisture content, in order 

to explore the possible relationship between radar backscatter and dominant grain size 

composition. 

These results indicate that, in certain situations, it may be possible to identify 

dominant grain size composition for surfaces using IJ0 values. This is a complete 

contradiction to the statement of Sabins (1987) that radar brightness alone cannot 

determine surface composition. Sabins' comment was made with reference to Seasat 

SAR data with a relatively long radar wavelength of 23.5 em_ A shorter wavelength, such 

as the C-hand may prove to be more successful for this application. The importance of 
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grain size composition bas already been highlighted in agricultural applications using soil 

texture (Dobson and Ulaby. 1981) and in large scale geological applications of radar. for 

example, Hanks and Guritz (1997) .and Rudant et al. (1994). but has yet to be exploited 

for use in medium and small scale geomorphology. 
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9. Conclusion 

A new approach to remote ice margin mapping has been presented using the 

definition 'limit of active ice'. which takes into account spatial variation in ice front 

motphology. This method produces more accurate estimates of contemporary ice extent. 

as stagnant masses of ice along the margin are excluded from ice mass balance. In order 

to identify the limit of active ice. the ice marginal dynamics and their surficial expression 

must be fully understood. Once the nature of the limit has been established then the orbit 

characteristics of the sensor may be selected to highlight the features of interesL It has 

been shown that it is possible to extract the limit of active ice from the Barnes Ice Cap. 

accurate to within 49 m, using only RADARSAT SAR imagery and a sequence of image 

processing. image classification and edge detection. For the Barnes Ice Cap the limit of 

active ice is characterised by interlinking sections of snowbed, ice cored debris ridge and 

supraglacial debris cover. 

Overall classification accuracies for the ice marginal environment are between 

43% and 57%, and kappa coefficients are on the border between good and poor. The 

radar imagery bas success with the morphology of the ice front. overall accuracies of the 

ice marginal features are approximately 70%, but bas difficulty identifying proglacial 

landforms. The classifier can distinguish between ice and rough terrestrial surfaces such 

as residuum, but is unable to differentiate ice from smooth terrestrial surfaces. Proglacial 

deposits such as kames and alluvium, and smooth bedrock surfaces are frequently 
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confused with each other, and with the ice surface. Despite this misclassification it is 

possible to delineate the limit of active ice as it is separated spatially from the smooth 

proglacial surfaces by other landcover classes such as snowbeds, supraglacial debris and 

an elevated ice-cored debris ridge. 

Radar image processing used the enhanced Frost filter for the removal of image 

speckle in preparation for texture analysis. Investigations concluded that the texture 

window should be as large as the smallest feature it is hoped to detect for optimum class 

discrimination. For 25 m spatial resolution imagery this is a texture window of 87.5 x 

87.5 m and for 8 m spatial resolution imagery this window is 84.5 x 84.5 m. Linear 

features of the ice marginal environment are much longer and so larger texture windows 

are used for the correlation measure, 187.5 x 187.5 m and 162.5 x 162.5 m, for the 

standard and fine mode images respectively. Of the six texture measures investigated it 

was found that second order mean was the most useful for class discrimination, 

correlation was the second most useful, contrast and homogeneity produced similar 

results and variance and ASM were poor. Input classification variables were chosen in 

order that they provide complementary information about features and the most normal 

training data distributions. as are required by the maximum likelihood classifier. The 

selected input variables were mean, correlation and homogeneity. 

Comparisons of orbital characteristics reveal that 'downglacier' illumination 

conditions produce the highest classification accuracies of ice marginal features. The 
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only problem associated with this image is a small spurious ice polygon adjoined to the 

margin. This occurs where a large supraglacial stream cuts through the ice cored debris 

ridge. and links a section of misclassified alluvium and bedrock surfaces to the ice cap. 

The descending image with illumination from an 'off ice, upglacier' perspective. has 

higher classification accuracies of proglaciallandforms and is not subject to this spurious 

ice edge. however, it has a slightly lower accuracy of supraglacial debris classification 

due to shadowing behind the ice cored debris ridge. 

The classification accuracies show a decrease in the accuracy of the fine mode 

image compared to the standard mode imagery. It appears to be particularly difficult to 

classify the supraglacial debris cover in the fine image. The benefits of increased 

classification accuracy and greater areal coverage offered by the standard mode imagery 

make this the obvious choice for ice margin mapping studies using RADARSAT data. 

A secondary objective of this study examined surface roughness and radar 

brightness differences between proglaciallandforms. Terrain templet measurements were 

used with some success to quantify surface height variation of features. The results 

indicate overlap in the roughness of proglacial landforms composed of similar grain 

sizes, such as kames, the L&A moraines and alluvium and. surprisingly. ice surfaces 

which produce surface roughness values similar to those of residuum. An investigation of 

dominant grain size and radar brightness shows that surfaces which are predominantly 

smooth bedrock. sands or granules produce markedly different radar responses. 
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Therefore. although it is not possible to distinguish between landforms, it may be 

possible to make inferences about dominant surface grain size composition using radar 

brightness alone. 



152 

10. References 

Adam, S., A. Pietroniro and M. Brugman, 1997, Glacier snow line mapping using ERS-1 
SAR imagery, Remote Sensing of the E101ironment, 61:46-54 

Alparone, L., G. Benelli and A. Vagniluca, 1990, Texture-based analysis techniques for 
the classification of radar images, IEEE Proceedings, 137, Part F(4):276-282. 

Altese, E., 0. Bolognani, M. Mancini and P. Troch. 1996, Retrieving soil moisture over 
bare soil from ERS-I synthetic aperture radar data: sensitivity analysis based on a 
theoretical surface scattering model and field ~ Water Resources Research, 
32(3):653-661. 

Andrews, J. and D. Barnett. 1979, Holocene (neoglacial) moraine and proglacial lake 
chronology, Barnes Ice Cap, Canada, Boreas, 8:341-358. 

Baird, P., W. Ward and S. Orvig, 1952, The glaciological studies of the Baffin Island 
expedition, 1950, Journal of Glaciology, 2:2-23. 

Baraldi, A. and F. Pamriggiani, 1995, An investigation of the textural characteristics 
associated with grey level cooccurrence matrix statistical parameters, IEEE Transactions 
on Geoscience and Remote Sensing, 33(2):293-304. 

Barber, D. and E. LeDrew, 1991, SAR sea ice discrimination using texture statistics: a 
multivariate approach, Photogrammetric Engineering and Remote Sensing, 57(4):385-
395. 

Barber, D., M. Shokr, R. Fernandes, E. Soulis, D. Flett and E. LeDrew, 1993, A 
comparison of second order classifiers for SAR sea ice discrimination, Photogrammetric 
Engineering and Remote Sensing, 59(9):1397-1408. 

Barnett, D., 1967, Development, landforms and chronology of Generator Lake, Baffin 
Island, N.W.T., Geographical Bulletin, 9(3):169-188. 

Benallegue, M., 0. Taconet, D. Vidal-Madjar and M. Normand, 1995, The use of radar 
backscattering signals for measuring soil moisture and surface roughness, Remote 
Sensing of the Environment, 53:61-68. 

Benson, C., 1962, Stratigraphic studies in the snow and tim of the Greenland Ice Sheet, 
SIPRE Research Report, 10. 



153 

Bindschadler, R., K. Jezek and J. Crawford, 1987, Glaciological investigations using the 
synthetic aperture radar imaging syste~ Annals of Glaciology, 9:11-19. 

Bindschadler, R. and P. Vomberger. 1992, Interpretation of SAR imagery of the 
Greenland ice sheet using coregistered TM imagery, Remote Sensing of the Environment, 
42:167-175. 

Brugman, M., A. Pietroniro and J. Shi, 1996, Mapping alpine snow and ice using Landsat 
1M and SAR imagery at Wapta Icefield, Canadian Journal of Remote Sensing, 
22(1):127-136. 

Campbell, J. B., 1981, Spatial autocorrelation effects upon accuracy of supervised 
classification of land cover, Photogrammetric Engineering and Remote Sensing, 47:355-
363. 

Campbell, B. and J. Garv~ 1993, Lava flow topographic measurements for radar data 
interpretation, Geophysical Research Letters, 20(9):831-834. 

Carr, J., 1996, Spectral and textural classification of single and multiple band digital 
images, Computers and Geosciences, 22(8):849-865. · 

Conners, R. and C. Harlow, 1980, A theoretical comparison of texture algorithms, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(3):204-222. 

Davis. W. and F. Peet, 1977, A method of smoothing digital thematic maps. Remote 
Sensing of the Environment, 6:45-49. 

Dillworth, M., 1991, Geographic windows in remote sensing: does window size matter?, 
ASPRS/ACSM Annual Convention Technical Papers, 3:122-128. 

Dillworth, M., I. Whistler and I. Merchant, 1994, Measuring landscape structure using 
geographic and geometric windows, Photogrammetric Engineering and Remote Sensing, 
60(10): 1215-1224. 

Dobson, M. and F. Ulaby, 1981, Microwave backscatter dependence on surface 
roughness, soil moisture, and soil texture: part m - soil tension, IEEE Transactions on 
Geoscience and Remote Sensing, GE-19(1):51-61. 

Dodd, N., 1987, Multispectral texture synthesis using fractal concepts, IEEE 
Transactions on PanemAnalysis and Machine Intelligence, PAMI-9:703-707. 



154 
Donald, J., F. Seglenicks, E. Soulis, N. Kouwen and D. Mullins, 1993, Mapping partial 
snowcover during the melt season using C-hand SAR imagery. Canadian Journal of 
Remote Sensing, 19(1):68-76. 

Dreimanis, A., 1971, Procedures of till investigations in North America, in Goldthwait R. 
P. (ed), Till, a symposium, Ohio State University Press, :27-37. 

Drewery, D. I., 1986, Glacial Geologic Processes, Edward Arnold, London, UK 

Durand, J., B. Gimonet and J. Perbos, 1987, SAR data filtering for classification, IEEE 
Transactions on Geoscience and Remote Sensing. GE-25(5): 629-637. 

Dyke, A. S., 1993, Landscapes of cold-centred late Wisconsinan ice caps, Arctic Canada, 
Progress in Physical Geography, 17(2):223-247. 

Ehrhard, D. G., R. Easton Jr., J. Schott and M. Comeau., 1993, Frequency-domain texture 
features for classifying SAR images, Proceedings of SPIE's DE/Aerospace and Remote 
Sensing. 1993, Orlando, Florida, 1960(3):21-32. 

Fahnestock, M. A. and R. A. Bindschadler, 1993, Description fo a SAR investigation of 
the Greenland ice sheet and an example of margin change detection using SAR. Annals of 
Glaciology, 17:332-336. 

Fisher. P. and S. Pathirana, 1990, The evaluation of fuzzy membership of land cover 
classes in the suburban zone, Remote Sensing of the Environment, 34:121-132. 

Fitzgerald, R. W. And B. G. Lees, 1994, Assessing the classification of accuracy of 
multisource remote sensing data, Remote Sensing of the Environment, 47:362-368. 

Foody. G. and N. Trodd, 1993, Non-classificatory analysis and representation of 
heathland vegetation from remotely sensed imagery, Geolournal, 29(4):343-350. 

Foody, G., M. McCulloch and W. Yates, 1994, Crop classification from C-hand 
polarimetric data, International Journal of Remote Sensing, 15( 4):2871-2885. 

Forster, R., A. Klein, T. Blodgett and B. Isacks, 1993, Glaciological studies in the 
Central Andes using AIRSARtrOPSAR Summaries of the tl" Annual J.P.L Geoscience 
Workshop Oct. 25lh.2gh, AIRSAR Workshop, 3:13. 

Franklin, S and D. Peddle, 1987, Texture analysis of digital image data using spatial 
cooccurrence, Computers and Geosciences, 13(3):293-311. 



155 

Frost, V. S., J. A. Stiles, K. S. SlWunugan and J. C. Holtzman, 1982, A model for radar 
images and its application to adaptive digital filtering of multiplicative noise, IEEE 
Transactions Pattern Analysis and Machine Intelligence, 4(2):157;.166. 

Frost, V. S. and L. S. Yurovsky, 1985, Maximum likelihood classification of synthetic 
aperture radar imagery. Computer Vision, Graphics and Image Processing, 32:291-313. 

Gaddis, L., P. Mouginis-Mark and J. Hayashi. 1990, Lava flow surface textures: SIR-8 
radar image texture, field observations and terrain measurements, Photogrammetric 
Engineering and Remote Sensing, 56(2), p.211-224. 

Galloway, M., 1975, Texture classification using grey level run lengths, Computer 
Graphics and Image Processing, 4:172-179. 

Genderen. J. van, and U. Uiterwijk, 1987, A practical procedure for classifying digital 
imagery, Proceedings of the 13"' Annual Conference of the Remote Sensing Society, 
University of Nottingham, 287-296. 

Goldthwait, R. P., 1951, Development of end moraines in east-central Baffin Island, 
Journal ofGeology, 59:567-577. 

Gong, P. and P. Howarth, 1990, The use of structural information for improving land­
cover classification accuracies at the rural-urban fringe, Photogrammetric Engineering 
and Remote Sensing, 56(1):67-73. 

Gonzalez, R. and R. Woods, 1992, Digital Image Processing, Addison-Wesley 
Publishing Company, Reading, Massachusetts. 

Gray, A. L., K. E. Mattar, P.W. Vachon, R. Bindschadler, K. Jezek,, R. Forster and J. P 
Crawford, 1998, InSAR results from the RADARSAT Antarctic Mapping Mission data: 
estimation of glacier motion using a simple registration procedure, in Jezek, K. (ed.), 
Early Results from the First RADARSAT Antarctic Mapping Mission, BPRC Technical 
Report No. 98-02, Byrd Polar Research Center, The Ohio State University, Columbus, 
Ohio, 10-11. 

Hall, D. and J. Ormsby, 1983, Use of SEASAT synthetic aperture radar and Landsat 
Multispectral Scanner subsystem data for Alaskan glaciology studies, Journal of 
Geophysical Research, 88(C3):1597-1607. 

Hall, D. I. Ormsby, R. Bindschadler and H. Siddalingaiah, 1987, Characterisation of 
snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data, Annals 
of Glaciology, 9:104-108. 



i56 

Hall, D., K.. Bayr and W. Kovalick, 1989, Determination of glacier mass balance using 
Thematic Mapper data, Proceedings of the Eastern Snow Conference, Lake Placid, New 
York, 7m- 9m June :192-196. 

Hall, D., R. Williams Jr. and K. Bayr, 1992, Glacier recession in Iceland and Austria, Eos 
Transactions of American Geophysical Union, 73(12):129-144. 

Hall, D., D. Williams Jr. and 0. Sigurdsson, 1995, Glaciological investigation of 
Bn1arjokull, Iceland, using synthetic aperture radar and thematic mapper satellite data, 
Annals of Glaciology, 21:371-377. 

Hambrey, M. and J. Alean, 1992, Glaciers, Cambridge University Press, Cambridge. 

Hambrey, M., 1994, Glacial Environments, UCL Press, London. 

Hanks, C. and R. Guritz, 1997, Use of Synthetic Apenure Radar (SAR) for geological 
reconnaissance in Arctic regions: an example from the Arctic National Wildlife Refuge, 
Alaska, American Association of Petroleum Geologists Bulletin, 81(1): 121-134. 

Haralick, R. M., 1979, Statistical and structural approaches to texture, Proceedings of the 
IEEE, 67(5):786-804. 

Haralick, R. M., K. Sbanmugan and I. Dinstein, 1973, Textural features for image 
classification, IEEE Transactions on Systems, Man and Cybernetics, 6:610-621. 

Hart, I. K. 1994, Proglacial glaciotectooic deformation at Melabakkar-Asbakkar, west 
Iceland, Boreas, 23:112-121. 

Hart, 1. K. 1995, Drumlins, flutes and lineations at Vestari-Hagafellsjokull, Iceland, 
Journal of Glaciology, 41:596-606. 

Hepner, G ., T. Logan, N. Ritter and N. Bryant, 1990, Artificial neural network 
classification using a minimal training data set: a comparison to conventional supervised 
classification, Photogrammetric Engineering and Remote Sensing, 56(4):469-473. 

Holdsworth, G., 1973, Evidence of a surge on Barnes Ice Cap, Baffin Island, Canadian 
JounuJl ofEanh Sciences, 10:1565-1574. 

Holdsworth, G., 1977, Surge activity on the Barnes Ice Cap, Nature, 269:587-590. 

Holmes, Q., D. Nuesch and R. Schuchman, 19849 Texture analysis and real time 
classification of sea-ice types using digital SAR data, IEEE Transactions on Geoscience 
and Remote Sensing. GE-22:113-120. 



157 

Hooke, R. Le B, 1973, Flow near the margin of the Barnes Ice Cap, and development of 
ice cored moraines, Geological Society of America Bulletin, 84:3929-3948. 

Hooke, R. Le B., G. Johnson, K. Brugger, B. Hanson and G. Holdswonh, 1987, Changes 
in mass balance, velocity and surface profile along a flow line on Barnes Ice Cap, 1970-
1984, Canadian Journal of Earth Sciences, 24:1550-1561. 

Houghton, J., L. Meira Filho, B. Callander, N. Harris, A. Kattenberg and K. Maskell 
(eds.), 1996, Climate Change 1995: 11re Science of Climate Change, Second Assessment 
Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 
Cambridge. 

Hsu, S., 1978, Texture-tone analysis for automated land use mapping, Photogrammetric 
Engineering and Remote Sensing, 44(11):1393-1404. 

Ives, J.D. and J. T. Andrews, 1963, Studies in the physical geography of north-central 
Baffin Island, N.W.T, Geographical Bulletin, 19:5-48. 

Jacobs, J. D., R. Heron and J. E. Luther, 1993, Recent changes at the northwest margin of 
the Barnes Ice Cap, Arctic and Alpine Research, 25(4):341-352. 

Jacobs, J. D .• E. L. Simms and A. Simms, 1997, Recession of the southern part of the 
Barnes Ice Cap, Baffin Island, Canada. between 1961 and 1993, determined from digital 
mapping of Landsat TM. Journal of Glaciology, 43(143):98-102. 

Jensen, J., .1996, Introductory Digital/mage Processing: A remote Sensing Perspective, 
second edition, Prentice-Hall, Upper Saddle River, New Jersey. 

Jezek, K., M. Drinkwater, J. Crawford, R. Bindschadler and R. Kwok, 1993, Analysis of 
synthetic aperture radar data collected over the southwestern Greenland Ice Sbee~ 
Journal of Glaciology, 39(131):119-132. 

Krimmel, R. and M. Meier, 1975, Glacier applications of ERTS images, Journal of 
Glaciology, 1.5:391. 

Kuan, D. T .• A. A. Sawchuk, T. C. Strand and P. Chavel, 1987, Adaptive restoration of 
images with speckle, IEEE Trans. ASSP.,3.5(3):373-383. 

Kushwaha, S., S. Kuntz and G. Oeste~ 1994, Applications of image texture in forest 
classification, International Journal of Remote Sensing, 15(11):2273-2284. 



158 

Landis, J. and G. Koch, 1977, The measurement of observer agreement for categorical 
data, Biometrics, 33:159-174. 

Lee, J. S., 1980, Digital image enhancement and noise filtering by the use of local 
statistics, IEEE Transactions on Pattern. Antdysis and Machine Intelligence, P AM1-2(2). 
March. 

Lillesand, T. M. and R. W. Kiefer, 1994, Remote Sensing and Image Interpretation, third 
edition, John Wiley & Sons, New York. 

Lindholm, R., 1987. A Practical Approach to Sedimentology, Allen and Unwin, London. 

Liu, S. and S. Chang, 1997, Dimension estimation of discrete-time fractal Brownian 
motion with applications to image texture classification, IEEE Transactions on Image 
Processing, 6(8):1176-1184. 

[4ken, 0. H. and J. T. Andrews, 1966, Glaciology and chronology of fluctuations of the 
ice margin at the south end of the Barnes Ice Cap. Baffin Island, N.W.T., Geographical 
Bulletin, 8(4):341-359. 

Loor, G. P., de, 1968, Dielectric properties of heterogeneous mixtures containing water, 
Journal of Microwave Power, 3:67-73. 

Lopes. A. R. Touzi and E. Nezry, 1990, Adaptive speckle filters and scene heterogeneity, 
IEEE Transactions on Geoscience and Remote Sensing, 28(6):992-1000. 

Lopes, A., E. Nezry, R. Touzi and H. Laur, 1993, Structure detection and statistical 
adaptive speckle filtering in SAR images, International Journal of Remote Sensing, 
14(9): 1735-1758. 

Massom. R., 1991, Satellite Remote Sensing of Polar Regions, Belhaven Press, London. 

Mastin, G., 1985, Adaptive filters for digital image noise smoothing: an evaluation, 
Computer Vision. Graphics and Image Processing, 31:103-121. 

Mather, P., 1985, A computationally efficient maximum likelihood classifier employing 
prior probabilities for remotely sensed data. International Journal of Remote Sensing, 
6(2):369-376. 

Maxfield, A. W .• 1994, Radar satellite snowmelt detection in the Canadian Rocky 
Mountains, in Stein, T. (ed), Proceedings of IGARSS '94, Surface and Atmospheric 
Remote Sensing: Technologies, Data Analysis and Interpretation, Pasadena, Califomitl, 
August 8-12, 1994, Institute of Technology, California, USA. 4:2074-2077. 



159 

Mohr, J. J., 1997, Repeat track SAR. interferometry; an investigation of its utility for 
studies of glacier dynamics. Ph.D. thesis, W 125. Technical University of Denmark, 
Copenhagen, Denmark. 

Nezry, E.. A. Lopes, D. Ducrot-Gambar4 C. Nezry and J. Lee, 1996, Supervised 
classification of K-distributed SAR images of natural targets and probability of error 
estimation, IEEE Transactions on Geoscience and Remote Sensing, GE-34(5):1233-1242. 

Nye. J. F., 1957, The distribution of stress and velocity in glaciers and ice sheets, Royal 
Society of London Proceedings, 239A:113-133. 

Orheim, 0. and B. K. Lucchitta, 1987, Snow and ice studies by thematic mapper and 
multispectral scanner Landsat images, Annals of Glaciology, 9 :109-118. 

0strem, G., 1975. ER.TS data in glaciology- an effort to monitor glacier mass balance from 
satellite imagery, JoU17Ull of Glaciology, 15(73):403-415. 

Parrot. J .• N. Lyberis, B. Lefaueonnier and G. Manby, 1993, SPOT multispectral data and 
digital terrain model for the analysis of ice-snow fields on arctic glaciers, International 
Journal of Remote Sensing, 14(3)425-440. 

Paterson, W., 1994, The Physics of Glaciers, third edition, Pergamon Press, New York. 

Peake, W. and T. Oliver, 1971, The response of te"estrial surfaces at microwave 
frequencies, Ohio State University Electroscience Laboratory, 2440-7, Technical Report 
AFAL-TR-70-301, Columbus, Ohio. 

Pultz, T., and R. Brown, 1987, SAR image classification of agricultural targets using 
first- and second-order statistics, Canadian Journal of Remote Sensing, 13(2):85-91. 

Rand, R.., 1985, Texture analysis and cartographic feature extraction, US Army Corps of 
Engineer Topographic Laboratories7 Technical Report En..-0370, AD-A 159 220, Fort 
Belvoir, Virginia. 

Rees, W. G., 1990, Physical Principles of Remote Sensing, Cambridge University Press, 
Cambridge. 

Rees, W. and V. Squire, 1989, Review article: technological limitations to satellite 
glaciology, International Journal of Remote Sensing, 10(1):7-22. 



160 

Rees~ W., J. Dowdeswell and A. Diament, 1995, Analysis of ERS-1 synthetic aperture 
radar data from Nordausdandet. Sval~ International Journal of Remote Sensing, 
16(5):905-924. 

Rignot, E., R. Forster and B. Jsacks, 1996, Interferometric radar observations of Glacier 
San Rafeal, Chile, Journal ofGltlciology, 42:279-291. 

Rignot, E., S. Gogineni, W. Krabill and S. Ekholm, 1997, North and northwest Greenland 
ice discharge from satellite interferometry, Science, 276(May):934-937. 

Rosenfield, G. and K. Fitzpatrick-tins, 1986, A coefficient of agreement as a measure of 
thematic classification accuracy, Photogranunetric Engineering and Remote Sensing, 
52(2):223-227. 

Rott, H., 1984 Synthetic aperture radar capabilities for snow and glacier monitoring, 
Advances in Space Research, 4(11):241-246. 

Rott. H. and C. Matzler, 1987, Possibilities and limits of synthetic aperture radar for 
snow and glacier surveying, Annals of Glaciology, 9:195-199. 

Rott, H. and T. Nagler, 1993, Snow and glacier investigations by ERS-l SAR - first 
results, in Kaldeich B. (ed), Proceedings of the First ERS-1 Symposium Space at the 
Service of our Environment, 4-6 November 1992, Cannes, France, European Space 
Agency Special Publication SP-359, Paris, 2:577-582 

Rotunno F., 0., P. Treitz, E. Soulis, P. Howarth and N. Kouwen, 1996, Texture 
Processing of radar data using second-order spatial statistics, Computers and 
Geosciences, 22(1):27-34. 

Rudant, J., J. Deroin and L. Polidori, 1994. Multi-resolution analysis of radar images and 
its application to lithological and structural mapping; Larzac (southern France) test site, 
International Journal of Remote Sensing, 15(12):2451-2468. 

Sabins, F., Jr., 1987, Remote Sensing Principles and Interpretation, Second Ed., W. H. 
Freeman and Company, New York. 

Sagar, R., 1966, Glaciological and climatological studies on the Barnes Ice Cap, 1962-
64, Geographical Bulletin, 8(1):3-47. 

Schaber, G., G. Berlin and W. Brown, 1976, Variations in surface roughness within 
Death Valley,- California: geologic evaluation of 25 em wavelength radar images, 
Geological Society of America Bulletin. 87:29-41. 



161 

Schott, I .• 1991. Remote Sensing: The Image Chain Approach, Oxford University Press, 
Oxford. 

Schowengerdt, R. 1983, Techniques for Image Processing and Classification in Remote 
Sensing. Academic Press, New York. 

Shanmugan? S., V. Narayanan, V. Frost, J. Stiles and J. Holtzman, 1981, Textural 
features for radar image analysis. IEEE Transactions on Geoscience and Remote Sensing, 
GE-19(3):153-156. 

Shaw, J. 1994, A qualitative view of sub-ice-sheet landscape evolution. Progress in 
Physical Geography, 18(2):159-184. 

Shi, J. and J. Dozier? 1993, Measurements of snow- and glacier-covered areas with single­
polarisation SAR, Annals of Glaciology, 17:.72-76. 

Shi, Z. and Ko. B. Fung? 1994, A comparison of digital speckle filters, Proceedings of 
!GRASS 94, August 8-12, IV:2129-2131. 

Shi, J., I. Dozier and H. Rott, 1994? Snow mapping in. alpine regions with synthetic 
aperture radar? IEEE Transactions on Geoscience and Remote Sensing? GE-32(1):152-
157. 

Shok:r, M.. 1991. An evaluation of second-order textural parameters for sea ice 
classification in radar images. Journal of Geophysical Research, 96(C6):1062S-10640. 

Skvarca. P., H. Rott and T. Nagler, 1995, Satellite imagery, a base line for glacier 
variation study on James Ross Island, Antarctica. Annals of Glaciology, 21 

Small, AJ. 1983? Lateral moraines of Glacier Tsijore Nouve: form development and 
implications. Journal of Glaciology, 29:250-259. 

Smith, L .• R. Forster, B. lsacks and D. Hall, 1997, Seasonal climatic forcing of alpine 
glaciers revealed with orbital synthetic aperture radar, Journal of Glaciology, 
43( 145) :480-488. 

Sohn, H-G., 1996, Boundary detection using multisensor imagery: application to ice 
sheet margin detection, Ph.D. Thesis. Ohio State University, Columbus, Ohio. 

Sohn, H-G, and K. Jezek, 1996, Automatic approach to detect ice sheet margin using 
ERS-1 synthetic aperture radar imagery, International Archives of Photogrammetry and 
Remote Sensing, volume XXXI, part B7, Vienna. 



162 

Stewart, C., B. Moghaddam, K. Hintz. and L. Novak, 1993, Fractal Brownian motion 
models for synthetic aperture radar imagery scene segmentation, IEEE Proceedings, 
81:1511-1522. 

Strahler, A., 1980, the use of prior probabilities in maximum likelihood classification of 
remotely sensed data, Remote Sensing of the Environment, 10:135-163. 

Stromberg, W. and T. Farr, 1986, A Fourier-based textural feature extraction procedure, 
IEEE Transactions on Geoscience and Remote Sensing, GE-24(5):722-731. 

Sugden, D. E., 1978, Glacial erosion by the Laurentide Ice Shee~ Journal ofG/aciation, 
20:367-391. 

Sugden, D.E and B.S. John, 1976, Glaciers and Landscape, Edward Arnold, London, 
p.256. 

Sun, C. and W. Wee, 1982, Neighbouring grey level dependence matrix for texture 
classification, Computer Vision. Graphics and Image Processing, 23:341-352. 

Swain, P. and S. Davis, (eds), 1978, Remote Sensing: The Quantitative Approach. 
McGraw-Hill Inc., New York. 

Swain, P. H., 1978. "Fundamentals of pattern recognition in remote sensing", In P. H. 
Swain and S. M. Davies, eds, Remote Sensing: The Quantitative Approach, McGraw­
Hill, New York. 

Tatenhove, F. G. van, 1996, Changes in morphology at the margin of the Greenland Ice 
Sheet (Leverett Glacier), in the period 1943-1992: a quantitative analysis, Eanh Surface 
Processes and Landforms, 21:797-816 

Thorsteinsson, R. and E. Tozer, 1976, Geology of the Arctic Archipelago. in Douglas, R. 
(ed) Geology and Economic Minerals of Canada, Part B (Chapters VIll - XIII and 
Index), Geological Survey of Canada, Department of Energy, Mines and Resources, 
Ottawa. 

Thomas, R., 1983, Ice sheets, in. Gurney R.. J. Foster and C. Parkinson (eds), Atlas of 
Satellite Observations Related to Global Change, Cambridge University Press, 
Cambridge, U.K. 

illaby, F., P. Batlivala amd M. Dobson, 1978. Microwave backscatter dependence on 
surface roughness. soil moisture and soil texture: part 1 - bare soil. IEEE Transactions on 
Geoscience and Remote Sensing, GE-16(4):286-295. 



163 

Ulaby. F., F. Kouyate, B. Brisco and T. Lee Williams, 1986, Textural information in 
SAR images, IEEE Transactions on Geoscience and Remote Sensing, GE-24(2):235-245. 

Vincent, R., 1997, Fundamentals of Geological and Environmental Remote Sensing, 
Prentice-Hall Inc., Upper Saddle River, New Jersey. 

Vomberger, P. and R. Bindscbadler, 1992, Multispectral analysis of ice sheets using co­
registered SAR and TM imagery, International Journal of Remote Sensing, 13(4):637-
645. 

Wang, L. and D. He, 1990, A new statistical approach for texture analysis, 
Photogrammetric Engineering and Remote Sensing, 56(1):61 -66. 

Weeks, R., M. Smith, Kyung Pak, Wen-Hai Li, A. Gillespie and B. Gustafson, 1996, 
Surface roughness, radar backscatter, and visible and near-infrared reflectance in Death 
Valley, California, Journal of Geophysical Research,101(El0):23,011 -23,090. 

Weertman, I .. 1961, Mechanism for the formation of inner moraines found near the edge 
of cold ice caps and ice sheets, Journal of Glaciology, 3(30):965-978. 

Weska, J. S., C. R. Dyer and A. Rosenfeld, 1976, A comparative study of texture 
measures for terrain classification, IEEE Transactions on Systems, Man and Cybernetics, 
SMC-6 (4):269-285. 

Williams, R. S. Jr, D. K. Hall and C. S. Benson, 1991, Analysis of glacier facies using 
satellite techniques, Journal of Glaciology, 37(125) :120-127. 

Wilson, J. D., 1992, A comparison of procedures for classifying remotely-sensed data 
using simulated data sets incorporating autocorrelations between spectral responses, 
International Journal of Remote Sensing, 13(14):2701-2725. 

Wong, Y. and Posner. E. C., 1993, A new clustering algorithm applicable to multispectral 
and polarimetric SAR images. IEEE transactions on Geoscience and Remote Sensing 

Woodcock, C. and A. Strahler, 1987, The factor of scale in remote sensing, Remote 
Sensing ofthe Environment, 21(3):311-322. 



164 

11. Data source Ust 

Aerial Photographs, 1958, Flight line A-16344~ #63-66, Department of Energy, Mines 
and Resources, Ottawa, Ontario. 

Aerial Photographs, 1961, Flight line A-17043, 118-32, Department of Energy, Mines 
and Resources, Ottaw~ Ontario. 

Atmospheric Environment Service, 1996 and 1997, Surface Analysis Charts (Daily, 
12Z), A.E.S Atlantic Region. Bedford, Nova Scotia. 

NTS Map Sheet. Gee Lake, District of Franklin, NWT., 1967, UTM Zone 18 W, NAD 
27, Sheet #37 D/l6, Surveys and Mapping Branch, Department of Energy, Mines and 
Resources, Ottawa, Ontario. 

NTS Map Sheet. Sam Fiord River, District of Franklin, NWT., 1967, UTM Zone 19 W, 
NAD 27, Sheet #27 C/13, Surveys and Mapping Branch, Department of Energy, Mines 
and Resources, Ottawa, Ontario. 

RADARSAT Image, 1996, Barnes Ice Cap, Baffin Island, Aug. 6~ S4 DESC., Product ID # 
M0062745, ADRO project #303, RADARSAT International, Richmond. BC; CD-ROM. 

RADARSAT Image, 1997, Barnes Ice Cap, Baffin Island, July 2~ S4 ASC .• Product ID # 
M0122606, ADRO project #303, RADARSAT International, Richmond. BC; CD-ROM. 

RADARSAT Image, 1997, Bight, Aug. 12th. Fl ASC., Product ID # M0126935, ADRO 
project #303, RADARSAT International, Richmond. BC; CD-ROM. 






