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ABSTRACT

Logistic regression analysis and classification methods using decision tree analysis
were used to generate two quantitative mineral potential maps for the Lake Ambrose area
(NTS 12A/10) of central Newfoundland. The response variable consisted of 47 surface
mineral occurrences plus 49 randomly selected sites representing nonmineral occurrences.
Mineral deposit models and regional exploration methods were used. to choose a set of
predictors consisting of geology, fault proximity, till and lake sediment geochemistry, and
surficial geology. A spatial weighting function predictor was developed to account for the
clustering of the mineral occurrences.

The predictors were analyzed and recoded to derive a set useful in developing the
quantitative models. The categorical geology predictor was converted into two binary
predictors; felsic volcanics and mafic volcanics. Fault proximity was analyzed by the
weights of evidence method to determine the optimal buffer threshold to convert the
continuous distance values to a binary measure ‘close to faults’ versus ‘far from faults’.
The optimal thresholds were the 400 m and 1000 m buffers. Principal components
analysis was applied to the till and lake sediment geochemistry to derive component
summary variables. Three component predictors were added to the database: till
component 2 (TPC2) representing base metals and gold, lake sediment component 2
(LPC2) representing base metals and lake sediment component 4 (LPC4) representing

gold and its pathfinder elements. The till geochemistry predictors (Au, Cu, Pb, Zn and



TPC2) were analyzed for spatial autocorrelation and an interpolated surface was derived
using kriging techniques. The lake sediment geochemistry predictors (Au, Cu, Pb,
residual Zn, LPC2 and LPC4) were converted to a surface by mapping their values on the
catchment basins in which they were sampled.

The decision tree analysis indicated the spatial weighting function, felsic volcanics
and the 400 m binary fault proximity predictor were significant predictors of mineral
potential. Logistic regression analysis indicated that the spatial weighting function, felsic
volcanics, the 1000 m binary fault proximity predictor and copper in till were significant
predictors of mineral potential. The agreement, at the 96 sample sites, between these
two modelling methods was 84.3%. The decision tree and logistic regression raster
mineral potential maps were compared using Yule's o.. A value of 0.54 indicates good
agreement between the maps. Both models correctly classified approximately 79% of the
96 mineral/nonmineral occurrences. Due to the sparseness of the dataset, accuracy could
not be measured as there were not enough samples to set aside a test dataset.

Mineral potential reliability maps were generated using the mutually exclusive and
exhaustive regions from the decision tree analysis and the joint probability model for the
logistic regression analysis. The mineral potential and reliability maps were combined
(multiplied) to form a favourability map. The favourability maps from the decision tree
and logistic regression analyses were combined to indicate overall zones of high mineral
potential and high reliability. Mineral exploration claims cover much of the study area and

only a minor part of the high favourability areas were not claimed as of September 2000.
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CHAPTER 1

Introduction

1.1 Background

Mineral potential mapping is a significant tool in developing new mineral
exploration targets as weli as providing information to aid in the assessment of boundaries
for new parks and native land claim areas. Objective quantitative methods of calculating
mineral potential are becoming easier through the use of Geographic Information Systems
(GIS), geostatistical and statistical programs. The statistical programs are used to
determine the degree of association between mineral occurrences and various predictors
without regard for the spatial associations. GIS and geostatistical programs provide the
tools to assess and display these spatial associations.

An appropriate set of predictors for mineral potential mapping can be determined
by reviewing the mineral deposit models applicable to the study area. Mineral deposit
models are general descriptions of the formation of mineral deposits based on theoretical
and empirical data. They include such information as the geological setting,
lithogeochemical signatures and spatial characteristics (Kirkham et al., 1993).

In addition to predictors determined through mineral deposit models, regional
geochemical data (such as till and lake sediment geochemistry) have proved to be excellent
predictors in providing regional mineral exploration targets. In many areas of Canada,

extensive glacial cover and the presence of numerous lakes and swamps (many of them



glacially derived) overlie and hide surface mineral occurrences. To stimulate mineral
exploration activity in this difficult terrain, Canadian federal and provincial geological
surveys provide the results of these regional geochemical surveys at little or no cost
(Davenport et al., 1993).

The combination of data types and data distributions resulting from the varied
predictors limit the types of statistical analyses which can be performed. Common
parametric statistical tests require normally distributed numerical data. Mixtures of
categorical (e.g. geology) and continuous (e.g. geochemistry) data with a binary

dependent variable (mineral occurrence) reduce the number of useful statistical analyses to

only a few.

1.2 Purpose

The purpose of this study is to develop an inductive, quantitative model for
assessing mineral potential by determining the statistical relationship between mineral
occurrences and geological, geochemical and spatial factors. Mineral deposit models and
traditional exploration methods are used to indicate an appropriate set of predictors to
assess (e.g. geology, fault proximity, till and lake sediment geochemistry). In addition to
standard exploration predictors, a spatial weighting function has been developed to
provide a spatial measure of proximity between mineral occurrences to account for the
grouping of the mineral occurrences.

The mixture of data types (continuous and categorical) and data distributions (non-

normal) being analyzed limits the statistical methods which can be used to determine the



quantitative association between the mineral occurrences (as a binary response variable)
and the geological, geochemical and spatial factors (as the predictor variables). The
sparse mineral occurrence dataset also imposes limitations on the statistical methods.
Logistic regression analysis (LRA) and classification methods using decision tree analysis
(DTA) are two methods that can handle various data types and data distributions as well
as sparse datasets. Due to the sparse dependent dataset, accuracy analysis cannot be
accomplished by splitting the data into a training dataset and a test dataset. Therefore, a
comparative analysis of the results of the two modelling methods (LRA and DTA) is used
to provide an indication of their agreement. The reliability of the two individual models is
also assessed, by combining estimates of the errors for the individual predictors. The
mineral potential maps and reliability maps are combined to provide a favourability map.
Areas which have a high mineral potential with a high reliability are most favourable for
mineral exploration.

A better understanding of the statistical and spatial relationships between mineral
occurrences and associated significant predictors helps to determine if these quantitative
methods can benefit mineral potential modelling. These results may provide more insight
and a savings of time and money in the search for new exploration targets and assessments

of boundaries for land use planning.



CHAPTER 2

Background Information and Literature Review

The statistical analysis of spatial data requires a good understanding of the factors
involved in their genesis and spatial distribution. Statistical analysis methods are
dependent on data types and the statistical distribution of the data. This chapter will
review the nature of some common geochemical media and provide a summary of

statistical methods used in similar studies in the past.

2.1 Exploration Methods

As a part of a mineral exploration program, till and lake sediment samples provide
the means to determine areas which have anomaious concentrations of either the primary
metals of interest (e.g. gold and copper) or pathfinder elements which are often associated
with the primary metals (e.g. arsenic and antimony). The assumption commonly held is
that anomalous till or lake sediment samples should indicate the proximity of anomalous
source rocks and possibly mineral occurrences or deposits.

To properly assess the results of till and lake sediment geochemistry the variation
(anomalous versus background values) in their geochemical values, the sampling
methodology and techniques of chemical analysis in the laboratory need to be understood.
Variations in the value of each element are based on numerous factors inherent in sampile

genesis, location, collection, preparation and analysis.



The location of previously known mineral occurrences are of primary interest to
exploration geologists because deposits and occurrences often occur in groups or clusters
(mining ‘camps’). Obvious surface occurrences have been found by prospectors and
geologists so information from these known occurrences, along with information from

mineral deposit models, can be used to indicate the potential of new areas.

2.1.1 Till Sampling Surveys

Till sampling programs have been an integral part of many mineral exploration
programs in Canada due to the extensive glacial sediment cover over much of the bedrock.
Therefore, a good understanding of glacial processes and the specific glacial history of an
area is essential in order to analyze the results of a till sampling program.

It is the aim of regional till sampling programs to define areas of exploration
interest. Tills, which are sediments produced exclusively from glacial erosion,
transportation and deposition, provide an excellent geochemical exploration tool.
Theoretically, till samples containing anomalous values of an element (e.g. copper) can be
traced back to their bedrock source by following the dispersion train in the up-ice flow
direction (Shilts, 1976). Dispersion trains resulting from a single source have been
modelled by negative exponential curves (Figure 2.1; Shilts, 1976, Strobel and Faure,
1987). This model indicates that a basal till sample is predominantly composed of local-
provenance material that gradually decreases in proportion to new material being added

and original material being deposited down-ice. The shape of the negative exponential



curve is dependent on factors such as the lithology, structure and topography of the

source and dispersal areas, the proximity of ice divides, and the size of the ice sheet.
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Figure 2.1 : Negative exponential dispersal curve indicating similar patterns for all three
sediment fractions (after Shilts, 1993).

The method of analysis of till samples plays an important part in determining
anomalous samples and also in determining their provenance. Till samples are initially
separated into size fractions grading from pebble-size clasts to sand, silt and clay size
fractions. The lithologies of the pebble-size clasts are analyzed in an attempt to trace
provenance. Finer fractions, such as the silt and clay size fractions, are the preferred

fractions for geochemical analysis (Shilts, 1993).



To determine the most favourable fraction for geochemical analyses (i.e. a fraction
which produces the highest signal-to-noise ratio), it is necessary to understand the
partitioning of the minerals into the different size fractions. The partitioning is based on
the ‘characteristic terminal mode’ of the source rocks (Shilts, 1993). Glacial erosion and
abrasion of the minerals composing the rock will result in each mineral being selectively
partitioned into a characteristic grain size, due to such factors as the hardness or structure
of the mineral. Analyzing each grain size fraction will result in a geochemical signature
reflected by the minerals that dominate that fraction.

The most popular grain size for trace element analysis in Newfoundland is the
“silt+clay” (<63 um) fraction (Batterson, 1989). This size fraction is favoured for analysis
because compared to larger size fractions it contains higher concentrations of metallic
clements, as opposed to inert silicate minerals, and therefore produces a higher signal-to-
noise ratio, making it easier to detect anomalies. The “silt+clay” fraction can be easily
separated from the bulk sample using a sieve and is more cost effective than the clay
fraction which requires settling or centrifuging techniques.

Klassen (1994) sampled upper C or lower B horizon soils developed on tills
throughout the Buchans-Robert’s Arm and Victoria Lake Group areas. Over 800 samples
were collected at a sampling density range of 4 to 100 km®. The conclusions reached were
that till geochemical patterns essentially reflected the bedrock composition. Base metal
values were elevated in the tills of the Lake Ambrose area compared to tills in the other

areas. The tills above the Tally Pond and Tulks Hill volcanics were geochemically distinct

from each other.



Batterson ef al. (1998) sampled tills from the Grand Falls-Mount Peyton area in a
systematic manner with an approximate sampling density of 1 sample per 3 km? for a total
of about 800 sites. They sampled the BC or C horizon tills. A cursory analysis of the data
using principal components analysis indicated inter-element associations reflecting mafic
lithologies, peralkaline granite affinity, light rare earth element affinity, and gold and its
pathfinder elements (i.e. arsenic and antimony). These four components accounted for
about 60% of the total variance in the data. From graduated dot plot maps of the
elements, visual analysis indicated that measurable geochemical dispersion trains
commonly extended less than S km whereas field observations indicated clasts of distinct

geological units were found up to 10 km away.

2.1.2 Lake Sediment Sampling Surveys

Lake sediment sampling surveys are a cost-effective means of reconnaissance
mineral exploration to determine favourable areas as follow-up targets (Coker et al.,
1979). These surveys have been carried out in Canada since the early 1960s by private
exploration companies and since the early 1970s by the federal and provincial geological
surveys.

A lake sediment sample is considered to be geochemically representative of the
catchment basin it resides in. This model is based on two concepts: 1) the clastic portion
of the lake sediment is a composite representation of the catchment basin as a result of
physical weathering (Levinson, 1980; Rogers, 1988), and 2) the fine-grained particles of

the lake sediment (e.g. clays and organic material) adsorb metal ions which are a product



of chemical weathering (Levinson, 1980). There may also be a component of metals from
groundwater recharge into the lake (Levinson, 1980). Limnological studies of Nova
Scotian lakes by Ogden (1986, in Rogers, 1988) indicate only limited groundwater-
lakewater interaction occurring in the perilimnion zone (zone of water recharge; Figure
2.2), with no groundwater movement in the tardelimnion zone (zone below recharge

zone). Therefore, in most lakes surficial processes play a much larger role than previously

anticipated.
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Figure 2.2 : The lake catchment exploration model (after Rogers, 1988). Sediments and
metal ions are derived from the catchment area.

Lakes within a catchment basin containing a metallic mineral occurrence are more

likely to contain anomalous metal values than similar lakes in barren basins. Many factors



may combine to mask true anomalies or create false anomalies. According to Levinson

(1980) and Hornbrook et al. (1975), factors that may need to be determined in order to

effectively understand the variation in geochemistry of a lake sediment sample include:
1) the prevalent type of weathering of the bedrock and sediments,

2) whether ground or surface waters are the most likely method of trace element
transport,

3) the most suitable lake sampling sites,
4) the size and depth of the lake,

5) mineralogy and terminal mode particle size (/.e. most likely size for each mineral)
of the bedrock and surficial sediments,

6) effects of adsorption by iron and manganese hydroxides and organics,

7) the rate of erosion and sedimentation in the catchment basin (related to such
factors as topography and vegetation),

8) contamination by anthropogenic sources, and

9) the oxidizing or reducing conditions of the material sampled.
The change in the sediment geochemistry due to some of these factors (e.g. oxidized
materials) can be reduced by the selective sampling of a consistently similar material
throughout the study area. Other effects (e.g. lake depth or adsorption by organics) can
be negated by using residual values derived from linear regression techniques (Davenport
etal., 1974).

Analysis of lake sediment samples collected in Newfoundland since the late 1970s

has indicated element correlations with the size and depth of lakes, as well as with iron,

manganese and loss-on-ignition values (an indication of the amount of organic material



present). Through the use of stepwise linear regression, false anomalies caused by these
factors have been removed (Davenport et al., 1974). The residual values (expressed as
normalized Z values) have provided a clearer picture of the spatial distribution of

anomalous element values in lake sediments.

2.1.3 Mineral Occurrences

‘Mineral occurrence’ is a generic term given to all locations where there is the
presence of minerals of potential economic interest. These occurrences range from minor
mineral indications (i.e. the presence of economic minerals on an outcrop or a minimum
assay value of a metallic element; Stapleton, 1999) to producing deposits. Since the early
1970s, mineral occurrences have been mapped and tabulated in Newfoundland and
Labrador (Stapleton et al., 2000). The digital Mineral Occurrence Data System (MODS)
consists of detailed descriptions of all mineral occurrences and an abbreviated tabular
database. The descriptions of each mineral occurrence were summarized from industry
assessment reports as well as Department of Mines and Energy geology reports. The
tabular database is a summary of selected items from the descriptive data and includes
information such as the mineral deposit name, location (UTM coordinates), major and
minor commodities (e.g. gold, copper, zinc), rock type and a short description of the
mineralization.

MODS is used extensively by the mineral industry to assess the potential and
simplify the compilation of data for new areas of interest. This information provides

geologists with the type and style of mineralization that occurs in an area and indicates the
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rock types in which the mineralization occurs. Given this information, the exploration
geologist can focus on an exploration method best suited to finding the specific mineral

deposits of interest (Swinden, 1992).

2.2 Statistical Analysis Techniques

The analysis of exploration geochemical data is a multistage process that includes
spatial and nonspatial techniques. Univariate descriptive statistical analyses, such as the
mean and standard deviation and methods used in exploratory data analysis (EDA) such as
box-and-whisker plots, provide a first-order indication of the variability in the
geochemistry. Trace element concentrations coupled with analytical detection limits can
produce a limited range in variance of the geochemical values. This limited variance can
reduce the significance of statistical tests. Bivariate statistical analyses, such as correlation
analysis, are useful in indicating inter-element associations. Unusually strong associations
may indicate adsorption of metals by organic materials or by iron and manganese
hydroxides, causing false anomalies. Multivariate analyses within a dataset, such as
principal components analysis (PCA), are useful in reducing a large dataset to a few
components that better represent key summary factors of the data (e.g. geochemistry of
sediments). Multivariate analyses among datasets, including linear regression techniques,
nonlinear logistic regression analysis, and decision tree analysis, are useful in indicating
associations between different types of variables.

Adding a spatial factor to statistical analysis techniques provides a representation

of real-world systematics to field data (e.g. mineral occurrence locations). Geostatistical
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techniques, such as variogram analysis and Moran’s I calculations, can help determine
whether point sample values are spatially related. This provides important information on
whether the data can be represented as an interpolated surface, if autocorrelated, or as
polygonal units, if it does not show spatial autocorrelation. The following sections

provide a brief overview of the types of statistical analyses mentioned above.

2.2.1 Univariate and Multivariate Analysis within a Dataget

The initial analysis of geochemical data consists of confirmatory statistical analysis
(e.g. mean, median, standard deviation, skewness or coefficient of variation). Information
provided by confirmatory statistics indicates the variation in element values as well as the
data distribution (Davenport et al., 1994). Single element or multi-element plots using
contours or symbols to represent classes of data provide a view of the spatial distribution
of the element values (Flornbrook et al., 1975; Klassen, 1994; Cook ef al., 1995).

An alternative to confirmatory statistical methods is exploratory data analysis
(EDA) that provides a set of resistant techniques (Sibley, 1991). Resistant techniques are
better suited to the analysis of geochemical data which do not exhibit the characteristics of
a gaussian distribution. O’Connor et al. (1988) used EDA techniques, such as box-and-
whisker plots, frequency histograms and cumulative probability plots, to determine class
intervals of stream sediment sample analyses. Symbol plots were visually assessed to

determine inter-element correlations as well as correlations between the elements and the

geology.
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Symbol plots assume that the geochemistry of a sample is representative of the
‘point’ at which the sample was obtained. To determine the actual zone of influence
around lake sediment sample points, Bonham-Carter and Chung (1983) used
autocorrelograms and kriging methods to determine that most of the spatiat
autocorrelation was due to the lithological units. Other studies (e.g. Bonham-Carter and
Goodfellow, 1984) indicated that after the effects of lithology had been removed, no
spatial autocorrelation structure remained in the residual values of many elements.
Therefore, rather than representing the lake sediment data as points or as interpolated
surfaces using kriging, Bonham-Carter and Goodfellow (1984, 1986) determined that a
catchment basin model was a better zone of influence for [ake and stream sediment
samples (Bonham-Carter et al., 1987, Wright et al., 1988; Rogers, 1988). The catchment
basin is represented by a polygon that can be subsequently coded to represent different
element values.

Spatial autocorrelation of polygonal data, such as the geochemistry of the

catchment basins, can be tested using Moran’s I coefficient, which is based on comparing

the values of neighbouring polygons (Cliff and Ord, 1981; Chou ez al., 1990):

I= nZiZjW;I(xi - ;)(xi - ;)
SRS

where » is the number of polygons in the study area, x is the variable being studied (e.g.

the variable ‘Burn’, where x=1 for polygons which have been burned and x=0 otherwise),
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W is the spatial weight where =1 if the ith and jth polygons are contiguous, and S is the
sum of the spatial weights 3. " W, .

Chou e! al. (1990) tested various alternatives to the contiguity weight used in the
Moran'’s I coefficient. Chou ef al. (1990) determined alternative weighting factors to
defining a ‘neighbour’ such as the length of the boundary between adjacent polygons. The
authors determined that the contiguity weight alone was actually the best method of
defining the neighbours. Based on this finding they developed a spatial weighting function
that defined the contiguity between neighbouring polygons and used this function as a
spatial predictor in subsequent regression analyses.

A similar approach was developed by Kvamme (1990) but he applied the Moran’s
I coefficient for data distributed at specific points rather than polygons (Cliff and Ord,
1981). Instead of using a weight defined by spatial contiguity, Kvamme used the inverse
distance between two points as the weight. Therefore, where data cannot be logically
converted from points to areal representations, spatial autocorrelation can be tested using
weights based on inverse distaace measurements.

Given the large volumes of attribute data produced by modern laboratory
analytical techniques, principal components analysis (PCA) has been used to reduce the
numerous attributes to a few key groups of elements (i.e. components). These
components may show strong association with certain rock types or secondary alteration
(Lindqvist et al., 1987, George and Bonham-Carter, 1989). PCA is based on the

covariance between pairs of elements and a transformation onto a new set of axes that are
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by definition uncorrelated (Daultry, 1976). The transformed principal component scores

can be used as attributes in further analysis.

2.2.2 Multivariate Analysis Between Datasets

Comparison of data between datasets often involves dealing with differences in
data types (continuous versus categorical data) and conforming to assumptions necessary
for classical statistical analyses (e.g. normality, linearity etc.). For example, multiple linear
regression and discriminant analysis techniques require multivariate normality and equal
covariance matrices for all groups (Norusis, 1990). For mixtures of data types with a
good possibility of non-normal and non-linear distributions, methods such as logistic

regression analysis and decision tree analysis are preferable (Tabachnick and Fidell, 1996).

2.2.2.1 Linear Multiple Regression

Linear multiple regression has been used extensively to determine factors
influencing the variation in geochemistry of till, lake sediment, stream sediment or soil
samples. The technique has been used to study inter-element associations in datasets to
detect false anomalies caused by Fe and Mn hydroxide adsorption (see section 2.1.2).
Linear multiple regression has also been used extensively to analyze a wide range of data
from different datasets where the data is commonly continuous and conforms to statistical
assumptions.

Wright et al. (1988) tested ordinary and stepwise multiple linear regression to

determine the best linear combination of lake sediment elements (i.e. gold, arsenic, tin and
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tungsten) associated with gold mineral occurrences. The lake sediment catchment basin
polygons were used to associate the lake sediment site with mineral occurrences occurring
within the same basin. The strength of the results were measured using the squared
multiple correlation coefficient (R?), and indicated that of the four elements, gold is the
strongest predictor of gold mineral occurrences.

Bonham-Carter ef al. (1987) ran a number of regression experiments to determine
the effects of iron, manganese, pH, areal proportion of rock types, presence/absence of
rock types and co-occurrence of various rock types among other effects affecting the
variation of stream sediment geochemistry. There is an association (spatial
autocorrelation) between a stream sediment sample upstream and its neighbouring sample
located downstream. Therefore, statistical tests of significance could not be used because
the samples were not independent. But regression analysis can still be run to determine
associations between various predictor variables and the dependent variable. The results
indicated that iron, manganese and lithologic effects explained a very high proportion of
the vanance in the stream sediment geochemistry. Residual element content in each
catchment basin was calculated once the background associations (i.e. variation due to
lithology, adsorption by organics or Fe and Mn hydroxides etc.) were determined
(Bonham-Carter et al., 1987). A residuals map for each element of significance can be
compared to the spatial distribution of mineral occurrences by running a regression similar

to Wright et al. (1988) as described above.
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2.2.2.2 Decision Tree Analysis

Decision tree analysis (Kass, 1980; Breiman ef a/,, 1984) is an inductive method of
classifying observations (i.e. independent variables such as till copper geochemisty or
geology) into homogenous subsets used to predict or indicate the best relationship to 2
response variable. The results are output as a set of ‘IF-THEN’ rules stipulating the
values of predictor variables used to predict the best response event. The primary
advantages of decision tree analysis over other multivariate statistical techniques used to
classify data (e.g. multiple regression analysis and discriminant analysis) are the lack of
assumptions concerning data distribution (e.g. linearity, normality, heterogeneity), the lack
of restrictions on measurement types (e.g. mixtures of continuous, categorical and binary
data are acceptable) of both response and predictor variables and the acceptance of smali
sample sizes. Significances are tested using the chi-squared and F-tests, which are more
robust to skewed and non-normal distributions, especially for larger datasets. DTA, as
discussed below, is based on methods used in the KnowledgeSeeker® program (Angoss,
1993).

All the data is initially entered into the system, with one variable identified as the
dependent variable. Categorical data can be analyzed as alphanumerics rather than being
recoded as numbers (as required by logistic regression as indicator or dummy variable
encoding; Norusis, 1990). Continuous data is automatically subdivided into a number of
discrete categories approximately equal in size (the default is 10). The number of
categories can be altered as can the class boundaries. Defining the cluster type for each

variable is important in order to arrive at the appropriate output groupings. Monotonic
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clustering is assigned to ordered variables (ordinal, interval or ratio measurement types)
for which adjoining values will be grouped. Similarly, the floating cluster type is assigned
to ordered variables which have missing values. Free clustering is assigned to categorical
variables (nominal measurement type) which places no restrictions on how categories are
combined into groups.

Two methods are available to split the independent data: cluster and exhaustive.
The cluster method (Kass, 1975; Kass, 1980) compares all the values of a predictor with
the response variable and groups the predictor values such that the within-group similarity
compared to the between-group difference is maximized at a chosen significance level
(default a = 0.05). Increasing the default value (e.g. @ = 0.10) will result in more branches
to the tree. The variable(s) with the highest significance test will be used to split each
group until a threshold is reached (Biggs ef al., 1991). This method is not considered
exhaustive because once a value is grouped with other values it is not considered again.

The exhaustive method (Biggs ef al., 1991) uses the maximum statistical
significance for each split with the response variable. Initially, a contingency table is made
for each predictor category (c) versus each response variable category. Each pair of
predictor categories is tested, allowing for monotonic, floating or free clustering, and
those which are statistically similar are combined until only two compound groups remain
(Kass, 1980; Biggs et al., 1991). Compound categories then need to be checked for
similarity and may be split apart again. The most significant predictor grouping overall
(with k groupings) will be chosen to subdivide the response variable into k < ¢ optimal

categories. The process is repeated for all predictors at each new node until the
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significance is reduced past a critical value or a stopping value (defined by a minimum
number of cases).

The chi-squared statistic is used to test associations between categorical predictors
and response variables and the F statistic is used to test associations which are a mixture
of categorical and continuous (Biggs et al., 1991). Setting the Bonferroni adjustment to
the ‘adjusted’ significance setting has the effect of adjusting (lowering) the significance
threshold level to counteract the effects of re-testing and choosing the ‘best’ grouping
(Angoss, 1993). Another Bonferroni adjustment is used to adjust for the number of
predictors which may be highly correlated. Setting the ‘filter’ to the ‘exploration’ setting
sets the adjusted error rate to 20% and provides a method of reviewing the data for
patterns which may be missed on a more rigorous setting (Angoss, 1993). The
‘prediction’ setting provides an adjusted error rate of 5%, which is more in line with
standard statistical decision making levels of significance.

On the final analysis, the branches of the resultant tree should be checked for
overfitting. With a large dataset, pruning the tree can be accomplished through the use of
a random subset of the data not used in building the tree (cross-validation). With smaller
datasets, specifying a minimum threshold case size or stop size (i.e. branches cannot
contain fewer cases than the specified stop size) will help to reduce overfitting. Terminal
nodes can also be checked to see if they actually add to the results by checking the
accuracy rate. If terminal nodes do not significantly increase the accuracy rate then they
are removed. Note that for smaller datasets, when the same data is used to build and test

the tree, the accuracy is overestimated (Angoss, 1993). KnowledgeSeeker outputs the
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results as a set of mutually exclusive and exhaustive statistically significant ‘IF-THEN’
decision rules which can be mapped as a set of conditions.

Reddy and Bonham-Carter (1991) used decision tree analysis to determine the
best group of data (consisting of geological and geophysical independent variables) to
predict the presence of mineral occurrences. They compared two methods of analysis:
one using binary predictors (optimized using weights of evidence modelling) and the other
using continuous predictors (i.e. distance from contacts and geophysical values) converted
into categorical classes. The resulting DTA ‘IF-THEN’ rules provided a summary of the
independent variable values used to predict the response variable and the accuracy of that
prediction. Overall, the continuous predictors provided a better prediction accuracy of
mineral occurrences than the binary predictors optimized by weights of evidence

modelling.

2.2.2.3 Logistic Regression Analysis

Logistic regression techniques are used to determine the probability of a discrete
event occurring as well as to provide information on the independent variables (IVs) best
suited for predicting the discrete event (Tabachnick and Fidell, 1996). Definitions and
methods discussed in this section are predominantly based on the logistic regression
techniques applied by SPSS™ (Norusis, 1990 and Anonymous, 2000).

The main advantages in using logistic regression over other regression techniques
are its lack of assumptions regarding the distribution of the predictors (i.e. normal

distributions, linear relationships and homoscedasticity) and the lack of constraints on the
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predictor measurement type (i.e. any combination of continuous or categorical variables;
Norusis, 1990; Tabachnick and Fidell, 1996). Other statistical techniques, such as
discriminant analysis, can also be used to predict discrete response variables but these may
show increased association between response variables and dichotomous predictors
(Hosmer and Lemeshow, 1989). Another advantage of logistic regression is that the
output can be stated in terms of probabilities with values between 0 and 1 (Figure 2.3;

Norusis, 1990).

Probabili
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z

Figure 2.3 : Logistic Regression S-shaped curve. Note that probability values for the
curve are between 0 and 1 for any standard normal deviate, Z.

Figure 2.3 indicates the S-shaped (nonlinear) nature of the logistic regression curve

that is mathematically defined as:

P(event) = (Norusis, 1990)

l1+e
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where P(event) is the probability of an event occurring, and u is a linear sum of

coefficients and independent variables similar to a linear multiple regression equation:
u=B, +BiX, +B.X; +.... + B.Xs

Rewriting the logistic regression equation as the log of the odds (i.e. logit) indicates the

nature of the equation:

In[ €™ _1_y  (Tabachnick and Fidell, 1996)
1- P(event)

Therefore, the linear sum of coefficients and predictors, u, is equal to the log. of the ratio
of the probability of an event occurring versus the probability of it not occurring.
Equations of this type are solved using iterative calculus techniques, using the maximum
likelihood method to determine the best linear combination of predictors (Tabachnick and
Fidell, 1996).

A first step in any logistic regression analysis is to check if a model with all
predictors (the ‘fuil’ model) improves the prediction of an event compared to a model
containing just the constant. If the difference between these two models is not significant
(e.g. @=.05) then it is not likely that the independent variables chosen to predict the
response variable are adequate.

Applying stepwise analysis and checking the difference in the log likelihoods can
help determine the best statistical model, that is, the model with the fewest number of
predictors which best predicts the event (Tabachnick and Fidell, 1996). Due to problems
with partial correlations, Hosmer and Lemeshow (1989) suggest increasing the probability

value to enter the model, from the default of 0.05 to a value such as 0.20. Similarly, the
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probability value to be removed from the model should be increased from the default of
0.10 to, say, 0.30. Using these values, each predictor can be tested individually and in a
stepwise analysis to see the effects of predictors on each other and on the outcome.

The best set of predictors to use in the model can be based on a number of

statistical tests. The Wald test is defined as:
w=(2)? (Norulis, 1990)
SE

where B is the coefficient and SE is its standard error. For 1 degree of freedom and for
large sample sizes, this tests the significance that each coefficient is 0 (Norusis, 1990).
This test is distributed as chi-square. Problems with the Wald test occur if the absolute
value of the coefficient is very large, producing large standard errors. In this case the
predictor values can be altered (transform by logging or removing a standard value, to
reduce the large values) or other tests can be applied to judge the significance of the

predictor.

Coefficients which prove to be significant in the model provide information on the
change in the odds of an event occurring given a single unit change in that predictor
(Tabachnick and Fidell, 1996). This is provided by the odds ratio (¢®) where B is the
predicted coefficient. Therefore, if the coefficient is greater than 1, e® will be greater than

1 and the odds of an event occurring are increased if that predictor is included in the

model (Norusis, 1990).



Other information provided in the output for the coefficients includes the partial
correlation (R) of each predictor with the response variable, given that all other predictors

are included. The partial correlation is given by:

_ Wald - 2K
- 2log likelihood

where K is the number of parameters estimated and the log likelihood ts of the model
containing only the constant (Norusis, 1990).

Using a chi-squared goodness-of-fit test, each predictor can, in turn, be tested by
including it and removing it from the model. The test used is the difference in the log
likelihood (ll) for the model including the predictor versus the model without the
predictor:

1} = —2[ll(bigger model) - Ji(smaller model)}
The difference is multiplied by two to obtain a chi-squared distribution (Tabachnick and
Fidell, 1996). This same method can also be used to test the significance of a larger model
against a smaller model, where the smaller model is a subset of the larger model.

As a check on the final model, output of the standardized residuals, Z, indicate

those cases that are outliers to the solution:

residual,

Z = (Norusis, 1990)
\/(pred. prob.)(1— pred.prob.)

Examination of outliers may lead to increased understanding of the predictors in the
model. Removal of outliers and repeating the analysis may have the effect of changing the

relative importance of predictors (Tabachnick and Fidell, 1996; Norusis, 1990).
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Chou et al. (1990) described a logistic regression method to determine the
probability of a wildfire occurring within a polygon i. Using the basic logistic regression

model:

L]

P(occurrence); = T
+e

P(occurrence); was the probability of a wildfire occurring in polygon i and u; was defined
as:
u; = By + B,AREA, + B,PER]; + B;ROTA; + B,BLDG;

+ BsCAMP; + BsROAD; + B, TEMP; + BsRAIN; + B;SWF; + ¢;

where By, B), B,,..., By are the logistic regression coefficients which will be estimated
from a logistic regression program, AREA and PERI are the area and perimeter of the ith
polygon, ROTA is the fire rotation weight, BLDG, CAMP, and ROAD are the areal
proportions within range of human influence as defined by buildings, campgrounds and
roads, TEMP is the average July maximum temperature, RAIN is the annual precipitation,
SWF is the spatial weighting function (representing the local spatial autocorrelation or
neighbourhood effect) of the ith polygon, and e; is the random error term (Chou et al.,
1990). The results of the logistic regression analysis indicated that the SWF significantly
improved the results of forecasting wildfires in a polygon. This indicated that knowledge

of wildfire history was the most significant factor in predicting future wildfires.
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2. 3 Summary

in summary, there have been numerous approaches undertaken to statistically
compare spatial data and determine significant associations. Based on the literature,
confirmatory and exploratory statistical methods and data plots have been chosen to
provide a preliminary statistical and spatial assessment of the data. Correlation, linear
regression and PCA provide information on how to reduce the number of attributes.
Spatial autocorrelation analysis provides information on the spatial distribution of
attributes. LRA and DTA determine those independent variables that best predict the

mineral occurrences to provide a quantitative mineral potential map of the study area.
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CHAPTER 3

Study Area and Data

3.1 Study Area
3.1.1 Location, Access and Physiography

The characteristics of a good study area for mineral potential modelling include the
availability of geological, geochemical and mineral occurrence data at a scale, density and
variability to provide reasonable comparative analysis. The area chosen for this study is in
central Newfoundland, south of Red Indian Lake, and consists of the Lake Ambrose
1:50,000 scale map sheet (NTS 12A/10; Figure 3.1). This area is approximately 15 km
south of the Buchans mining camp which extracted copper, lead and zinc ores and is
presently undergoing a resurgence in exploration activity. The Lake Ambrose map area
has an important mining camp in its own right, consisting of the Victoria Mine prospect
(copper-zinc-lead-sulphides in felsic volcanic rocks) and numerous mineral occurrences
within proximity (Kean and Jayasinghe, 1980). There are also many mineral occurrences
(predominantly consisting of copper, lead, zinc, and gold) throughout the map area. The
bedrock and surficial geology are varied, as are the geochemical results from till and lake
sediment samples.

Much of the Lake Ambrose map area is not easily accessible due to the presence of
wetlands (covering approximately 10% of the area), lakes (covering approximately 13%

of the area) and dense forest (covering approximately 70% of the area). However, since
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Figure 3.1 : Location of the Lake Ambrose map area (NTS 12A/10).




the early 1900s, the construction of forestry roads has provided increased access (Neary,
1981). The main road from the Trans-Canada highway leads from Badger southwest to
Millertown, the closest town to the study area (Figure 3.1).

The Lake Ambrose map area is characterized by an undulating relief with
numerous small hills widely scattered throughout (Figure 3.2). The elevation ranges from
a high of 480 m above mean sea level (amsl) northwest of Red Indian Lake to a low of
157 m amsl at Red Indian Lake. South of Red Indian Lake, the maximum elevation
occurs to the north and west of Lake Ambrose where two hills reach 420 m amsl. The
central part of the study area is comparatively flat lying (Figure 3.2) and extensively
covered by wetlands. Bedrock exposure is poor due to the glacial till cover (Evans et al.,
1990). The lakes vary in size and occur randomly throughout the area. The lakes are

predominantly elongate, with a NE-SW trend (Figure 3.2), parallel to the local structural

and bedrock trend.

3.1.2 Bedrock Geology and Mineral Occurrences

The geology of the Lake Ambrose map sheet is predominantly composed of the
Victoria Lake Group (VLG; Figure 3.3). The VLG is part of the Exploits Subzone,
occurring to the south of the Red Indian Line structural lineament, which goes through
Red Indian Lake (Williams ef al., 1988). The following geological description and age
dates are based on Evans ef al. (1990) unless otherwise stated.

The VLG consists of pre-Caradocian volcanic and sedimentary rocks. There are

two assemblages of volcanic rocks in the map area, consisting of the Tulks Hill volcanic
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Figure 3.2 : The topography of the Lake Ambrose map area (NTS 12A10). The elevation is gridded on a continuous scale from
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rocks (494-504 Ma) to the southwest of the map area and the Tally Pond volcanic rocks
(511-515 Ma) to the southeast. Both volcanic suites consist of felsic pyroclastic units
intercalated with mafic flows, pillow lava, tuff, agglomerate and breccia. The Tally Pond
volcanic rocks tend to be more mafic in composition whereas the Tulks Hill volcanic rocks
are characterized by more intense deformation. Lower greenschist facies metamorphism is
prevalent through much of the map area except along the southern margin where rocks
grade to lower-amphibolite facies. Chlorite and sericite define a regional foliation in the
VLG. The sedimentary rocks occur predominantly to the northeast and are interpreted as
a turbidite sequence derived from the volcanic rocks. The sedimentary rocks include
greywacke and interbedded siltstone, shale, argillite, conglomerate and some limestone.
Intrusive rocks in the VLG (362-443 Ma; Evans ef al., 1994) consist of quartz monzonite,
granite, granodiorite, diorite and gabbro and form the major hills in the area.

The VLG is unconformably overlain by the Rogerson Lake Conglomerate (418-
443 Ma) in the southeast corner of the map sheet (Figure 3.3). In the area of the Red
Indian Lake basin (north and west sections of the map sheet), the VLG is conformably
overlain by siltstone and sandstone of the Harbour Round Formation (458-504 Ma). To
the west, Devonian and Carboniferous (345-362 Ma) sediments occur consisting of
conglomerate, sandstone, shale and siltstone.

According to Evans and Kean (1987), two main types of mineralization occur
within the VLG; volcanogenic massive sulphide (VMS) and epigenetic gold (Table 3.1).
VMS mineralization occurs predominantly within the Tally Pond and Tulks Hill volcanic

belts and consists of copper, zinc and lead mineralization with minor silver and gold
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Table 3.1 : Mineral deposit types (from Stapleton, 1999) of the surface mineral occurrences in NTS 12A/10.

_Deposit Type Description

0 Insufficient data to classify

‘Stratabound Mineralization: Seafioor (voicanogenic) Sulphide Association (110-168)
Deposits of the marine volcanic association formed through sub-seafloor hydrothermal processes;
includes both volcanogenic massive sulphides and volcanogenic stockworks.

Deposits associated with sequences of mixed mafic - feisic volcanic rocks (130-139)
130 Undivided volcanogenic sulphide deposits in thick, mixed maficffelsic volcanic/epiclastic sequences
13 Massive sulphide (& stockwork)

Deposits associated with dominantly felsic volcanic rocks that are part of thick volcanic/epiclastic sequences (140-149)
140 Undivided volcanogenic sulphide deposits in thick, felsic-dominated volcanic/epiciastic sequences
141 Massive sulphide (¢ stockwark)

Deposits hosted by marine sedimentary rocks that are nonetheless part of a dominantly voicanic association {150-159)
15% Clastic host {e.g. "Besshi-type" massive sulphides)

Hydrothermal, Structurally-Controlled Mineralization (300-399)

Deposits for which the controling mechanisms are dominantly structural (e.g, shear zones, faults, fold hinges)
rather than stratigraphic.

300 Undivided hydrothermal, structurally-controlied deposits

Structurally-controlled vein systems with base or precious metals (310-329)
310 Undivided hydrothermal vein systems



(Swinden er al., 1989). Gold mineralization in the VLG appears to be epigenetic and

spatially related to major fault zones, lineaments and alteration zones (Evans ef al., 1990).

The genetic model for the formation of VMS mineral deposits was first outlined by

Oftedahl in 1958 (Franklin, 1993). These deposits are a syngenetic accumulation of
sulphides that are deposited from rapidly cooled hydrothermal fluids escaping through
fracture and fault zones below sea floor vents (Figure 3.4). Alteration of the host rocks
(commonly submarine volcanic rocks), including silicification, sericitization and
chloritization, occurs along the faults and fracture zones, as does copper-rich sulphide
(stockwork-zone; Figure 3.4). Large accumulations of copper-zinc-lead sulphides form
mounds and bedded ores immediately around the seafloor vents.

MASSIVE SULPHIDE LENS
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—_— -
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—— wall contact —_— ‘~-\\\
- " Massive, rubbly or brecciated structure
Exhalite” or g LA i
“Tutfite” horizon {strong chemical zonation pattern)
Si0,* Py*Hem S : T
: 1% NN -
e ’ . N Bedded or layered structure
T ~ . R (chemically heterogenous)
S \:\\
= S
L RGeS . XS \~\‘
. vl:r' N
\ um \\\\\ A.
NN —
—_—
\ Gradational footwall
T . contact
Hydrclnhermal \ "
alteration pipe T\
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Cpy t Py £ Po sulphide mineralization
chioritic hydrothermal alteration

...‘."'
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T sericitic—chioritic hydrothermal aiteration

Figure 3.4 : Volcanogenic massive sulphide model indicating zonation of mineralization
(after Lydon, 1988).
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3.1.3 Glacial History and Surficial Geology

The glacial history in the area of Red Indian Lake is complex with numerous and
changing ice flow directions. From the work of Murray (1955), Grant and Tucker (1976),
James and Perkins (1981), Vanderveer and Sparkes (1982) and Sparkes (1985, 1987) the
following glacial history has been summarized by Klassen (1994).

During the Late Wisconsinan, the Island of Newfoundland was glaciated by local
ice caps (Grant, 1974) centred on high altitude areas around the province. Klassen (1994)
described four phases of ice flow based on the work of previous geologists and from his
own work on glacial striations and dispersal trains of red granite and red micaceous
sandstone. The oldest ice flow directions, possibly pre-Wisconsinan, were centred north
of Red Indian Lake and flowed south (Phase Ia and Ib, Figures 3.5a and 3.5b). James and
Perkins (1981) noted glacial dispersal trains of Buchans-type ore up to eight kilometres
southwest of Buchans. The next phase of glacial ice flow (Phase II, Figure 3.5c) was a
regional ice flow with an ice cap centred between Lake Ambrose and Victoria Lake to the
southwest of the NTS 12A/10 area (Sparkes, 1985). In the study area, the ice flow was to
the northeast, as indicated by red micaceous sandstone erratics found to the northeast of
Red Indian Lake and also Gulibridge-type ore erratics found northeast of Gullbridge
(O’Donnell, 1973). The youngest phases, Phase III and IV (Figure 3.5d), indicate another
south to southeast ice flow direction with a final set of flows that tended to be
topographically controlled, such as that along the Red Indian Lake basin (Grant, 1975).
Klassen (1994) concluded by stating that despite the complex glacial history, the till

geochemistry largely reflected the composition of the underlying bedrock geology.
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Figure 3.5 : Ice flow history of the Red Indian Lake area (modified from Klassen, 1994).
a) Phase I - oldest flow, b) Phase I - younger flow, c) Phase II - older flow to the NE,

younger flow to the NNE, d) Phase III - older flow to the SE, Phase IV - youngest
flow followed topography.
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Glacial sediments in the area are predominantly composed of varying thicknesses
of till and ice-contact stratified drift (Figure 3.6). An early compact gray basal till,
composed predominantly of local volcanic rocks, is associated with the southerly flow of
Phase I (Sparkes, 1985). Other sediments in the area consist of organic material (peat),
alluvial deposits, and outwash deposits. Alluvial and outwash deposits predominantly
occur along the banks of rivers except for a large outwash deposit to the east of the
Victoria River where it enters Red Indian Lake.

In the Victoria Mine area, Mihychuck (1985) determined that the maximum drift
thickness was 7.0 m. Three till units were identified in the area:

1) a grey-brown basal till, probably related to the northeasterly flow, containing
subangular volcanic clasts in a silty-sandy matrix,

2) alight-grey lower till, probably related to an earlier flow, containing
subrounded to subangular clasts in a silty overconsolidated matrix, and

3) abrown-red overlying till, probably of local derivation, containing many
angular clasts in a sandy-silty matrix.
Mihychuck’s (1985) work in the Tally Pond area, east of the southeast corner of the NTS
12A/10 map sheet, indicated drift cover averaging 5 m in thickness. Only one till unit was
identified in this area. The till was light brown, containing subrounded to subangular

clasts in a silty, highly overconsolidated matrix. This unit was interpreted as a late stage

basal till from ice flow to the northeast.
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Figure 3.6 : Surficial geology of the Lake Ambrose map area (NTS 12A/10; after Klassen, unpublished data).




3.2 Data
Most of the data used in this study was available in digital format. Analog data

were converted to digital format as described below. Issues related to data accuracy and
the representation of data types for different types of analyses will be addressed in Chapter

4

3.2.1 Topographic Data

Topographic data provides a general locational framework on which to base visual
analysis (relative location of lakes, rivers, roads etc.). The topographic data also provides
information about the drainage system (lakes, rivers, bogs and elevation data). This

information may be useful in the analysis of the till and lake sediment geochemistry.

3.2.1.1 Topographic Base Map
The digital topographic data for the NTS 12A/10 map sheet (1:50,000 scale) was

obtained from the Geological Survey (Newfoundland and Labrador Department of Mines
and Energy) who had acquired it from the Surveys and Mapping Division (Newfoundland
and Labrador Department of Government Services and Lands). The data were provided
in CARIS® vector format based on the North American Datum (NAD) 83 and was
converted to NAD27 because most of the other data and paper maps were in NAD27.
The data is based on 1986 aerial photography, with an estimated planimetric accuracy of
10 m and an estimated altimetric accuracy of 5 m (from metadata file for NTS 12A/10

supplied by the Surveys and Mapping Division, Department of Government Services and
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Lands, 1998). Vector data codes are based on National Topographic Database (NTDB)
standards. Neatline (surrounding the map sheet), lakes, rivers, wetlands, contours, and
roads were extracted as separate layers from the database and reformatted for use in other
GIS/DTMS software (i.e. ArcView® and MapInfo™). Lakes, double-sided rivers and
wetlands were polygonized and coded appropriately. Elevation values (in metres amsl)
were included as attributes on contour lines and rivers and occur as spot heights on local
topographic high points as well as the surface of large lakes. Benchmarks, which are
useful for checking the accuracy of digital elevation models (DEM), are not present in the

NTS 12A/10 area.

3.2.1.2 Catchment Basin Delineation

The delineation of catchment basins can be used to determine the areal extent that
each lake sediment sample represents. There are two methods commonly used to
delineate catchment basins; manual and automated techniques. The automated technique
requires the development of a DEM.

The DEM was based on the elevation information coded on the contours, rivers
and lakes included with the 1:50,000 digital topographic data. The NTS 12A/10 study
area was covered with a systematic sample of 30,000 points which were assigned the
elevation value from the closest contour, lake or river and the distance to this vector.
Points with distances greater than 25 m (i.e. the resolution of the final raster DEM) were
deleted from the database in order to remove unnecessary points in flat areas. The DEM

was created from a TIN model in the program SURFER® (Keckler, 1995). The DEM was

-4] -



checked against 48 stratified random sample spot heights measured off the paper
topographic map. The RMS error calculated from these 48 spot heights was 2.3 m. The

altimetric error cited for this map sheet is 5Sm. Combining the two vertical errors

(ie m ) resulted in a cumulative error of 5.5 m. Therefore, the DEM did not add
much error (i.e. only 0.5 m) to the inherent error in the map sheet.

The DEM was used to delineate catchment basins using the Spatial Analyst
HYDROLOGIC functions in ArcView 3.1® (ESRI, 1996) and the WATERSHED module
in IDRISIFW® 1.0 (Eastman, 1993). Both of these methods resulted in poor delineation
of the basins when visually compared with a few catchment basins delineated manually.
These methods may work better in areas with higher relief (more mature drainage) and a
better resolution than the 25 m resolution of this DEM. Due to the poor results obtained
from the ArcView® and IDRIST® modules, the catchment basins were manually delineated
based on the elevation data on a paper copy of the 1:50,000 scale topographic map. These
basins were digitized, polygonized and coded based on the lake sediment samples they
contzined (Figure 3.7). The data were imported into ArcView® and MapInfo™ for

comparative analysis with other data layers.
3.2.2 Mineral Occurrences

The MODS information for the NTS 12A/10 area was extracted and converted to

dBase and Lotus 123 formats for viewing and plotting (Figure 3.8; Table 3.2). Prior to
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Figure 3.7 : Catchment basins corresponding to the lake sediment samples.




_vv-

57°00"

o45' o
4845&_ \V
- S

4

s
HALFWAY
Fotnman
\

48°48'

Legend
v Gold
Y Copper
Y Zinc
Y Pyrite
~ Contacts
o Faults

48°30'
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Table 3.2 : Partial attribute file for all the mineral occurrences in the study area.
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1999, the most recent information for the NTS 12A/10 area was compiled in 1994, which
excluded confidential data for the previous three years. Therefore, 1991 data were the
most recent information available. A recent check on the database (July 2000) indicated
the addition of only two more mineral occurrences, both of which occur in the vicinity of

previously mapped mineral occurrences and are not surface occurrences. Therefore, they

were not added to the database.

3.2.3 Bedrock Geology
The bedrock geology (Figure 3.3) was compiled at a 1:50,000 scale in digital form

by S. Colman-Sadd of the Geological Survey Branch, Newfoundland Department of
Mines and Energy (Ash and Colman-Sadd, 1997). The geological linework was digitized
from the most accurate geology maps (e.g. Evans et al., 1994) and composited together in
CARIS . The final data were obtained from the Geological Survey in MaplInfo format.
Separate layers were available for geological polygons, geological contacts and faults.
Attribute information was included with the geology polygons (Table 3.3; Colman-Sadd,
2000). Outcrop locations, for use in subsequent reliability analysis, were digitized from

Map 94-223 (Evans ef al., 1994).

3.2.4 Surficial Geology

The glacial history, surficial geology and striation patterns of an area provide a
framework on which to base the interpretation of the geochemistry of till samples and

possibly lake sediment samples.
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Table 3.3 : Partial attribute file for the geology map. Each row represents a separate polygon.

Group Formation Lowef
Age |
(012A/10/0686 red ssi; Botwood Gp7)| 443
12A/10/0686 SD |nirusions) 443
Spruce Brook Formation 550
Lake Douglas terrene 545
Buchans Group 476
Buchans Qroup Sandy Lake Formation 478
Vicloria Lake  Tulks Bolt 504
012A/10/0886 red ssi; Botwood Gp7)| 443
Vicioria Lake Group | Tulks Belt S04
Victoria Lake Group [Tulks Ball 504
Harbour Round Formation 504 | 458 [Kean, 1976
Skidder basait S45 | 4N Iimsl al, 1994a
|Skidder basalt 545 | 471 Evans #lal, 1984a
Buchans Group _ [Sandy Lake Formation 476 | 487 [Thurlowand Swaensen, 1981 |
(012A/Y0/0686 SD intrusions) 443 | 382 [Evansetal, 10840 |
|Shanadithi Formation 362 | 345 [Evenselal, 1904
Buchans Group Sandy Lake Formation 476 | 487 |Thurdow and 1081
Vicloria Lake Vicioria Bridge ssquence 487 | 458 |Evene ot al. 1094a
volcaniclastic Victoria Lake Group |Victoria Bridge saquence 467 | 458 [Evansetal, 1094a
volcanic, felsic marine Victoria Lake Group | Tulks Balt 504 | 494 [Evans elal, 19942
mafic 12AI1OIM;“;S_QU|I_n_ulnm__)__________44_3_1 382 [Evans et al, 1994a
slliciclastic, marine Victoria Lake Grou 515 | 460 |Evansolal. 1984a
volcanic, felsic masine Victoria Lake Group [Tulks Belt 504 | 494 [Evansetal. 19942
mafic sarine Victoria Lake Group | Tulls Belt S04 | 454 [Kesn, 1982
iermadiste 12A/10/0888 SD inwusions) 443 | 362 [Evans stal, 1994a
volcaniclastic Victoria Lake G Viclorla 467 | 458 [Evanselal, 1994a
onic, mafic 12A/10/0888 SD intusions) 443 | 362 Evanseinl, 1954a
volcanic, mafic marine Vicioria Lake Group  |Tulks Belt S04 | 494 1978
ic, malls 12A/10/0885 SD intrusions) 443 | 362 |[Ewansetal, 1984a
volcanic, (elsic marine Victoria Lake Group  [Tulies Balt S04 | 404 [Evansetal, 1094a
siliciclasiic, marine sandstone Victoria Laks Group 51§ | 450 [Evansetal, 1994a
sificiclastic, black shale Victoria Lake Group 515 | 460 [Kean, 1982
siliciciastic, marine Victoria Lake Group 515 | 480 lEvans etal., 1894a
utonic, intermediate {012A/10/0686 SD intrusions) 443 | 362 |Evans etal., 1994a
mallc 12A/10/0688 SD intrusions) 443 | 362 [Evans etal. 1984a
volcanic, mafic masine Victorla Lake Group  [Tally Pond Bell 515 | 511 [Evanselal, 1994a
voicanic, fslsic marine Victosia Lake G Tally Pond Beht 5§15 | 511 |[Evenselol, 1084s
siliciclestic, non-marine R Lake Conglomenats 443 | 418 |Evensetal, 1084a
volcanic, felsic marine Victoria Lake Tally Pond Bek 515 | S11 [Evans etal., 1084a
onlc, intermadiate 12A/10/0688 SD intrusions 443 | 362 [Evansetlal, 1994a
, mafic (012A/10/0888 SD intrusions) 43 | 382 [Evanselsl, 1994a
sificiclastic, marine Victoria Lake Group 515 | 480 [Evans elal., 1994a
volcanic, mafic marine Victoria Leke Group | Tulks Bolt 504 | 464 [iean, 1082
volcanio, malic masrine Victoria Lake Group [ Tulke Bel 504 | 484 [Kean, 1978a
black shale Vicioria Lake G 515 | 480 [Keen, ?




3.2.4.1 Ice Flow Data

A province-wide striation database is available in digital format through the
Newfoundland and Labrador Department of Mines and Energy (Figure 3.9; Taylor et al.,
1993). This database of point locations of striations includes information on the relative
ages of the striae and whether they have a directional component. Ice flow indicators
were also recorded by Klassen (1994) at the time of regional till sampling and were
incorporated in the ice flow history of the area (Figure 3.5). Other ice flow indicators (i.e.

pebble lithologies) have been collected over the years but their use was beyond the scope

of this study.

3.2.4.2 Surficial Geology Map
The surficial geology, at the 1:50,000 scale, was mapped by R.A. Klassen of the

Geological Survey of Canada (GSC) in 1991 and 1992. Klassen updated information from
previous work by Vanderveer and Sparkes (1982) and Sparkes (1985 and 1987). The
preliminary GSC map (Figure 3.6) was digitized but has not been published (Klassen,
1997). There were eight units mapped in the area. The units consist of bedrock,
drift/rock, till, till/gravel, drift, outwash, alluvium, and organics. Klassen (pers. comm.,
2001) uses the term ‘till’ to refer to sediment deposited directly from glacial ice with no
reworking. ‘Drift’ is a sediment very much like till but may have had minor reworking.
‘Outwash’ refers to poorly sorted sand, gravel and boulder gravel deposited by glacial

meltwaters, whereas ‘alluvium’ is composed of silt, sand, gravel and boulder gravel
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deposited by rivers and streams unrelated to glacial meltwaters (i.e. more modern in

origin).

3.2.5 Till Sampling and Chemical Analysis

The most recent till sampling program to include the 12A/10 map sheet area was
completed by Klassen in 1992 (Klassen, 1994) and subsequently included as part of the
Buchans-Robert’s Arm multidisciplinary project (Honarvar et al., 1996). Approximately
250 till samples were collected in the Lake Ambrose map area, predominantly along
woods roads and old railway lines (Figure 3.10). Unweathered upper C or lower B soil
horizon (till) samples, representative of the original parent material, were the preferred
sampling material (Klassen, 1994). In addition to sample numbers and UTM coordinates,
field descriptions included sample colour, soil horizon and depth of sample below the
surface.

Two geochemical datasets were prepared from the till field samples. A clay
fraction (< 2 pm) and a “silt+clay” fraction (< 63 pm) were obtained from each field
sample. Both sets of samples were analyzed (at Chemex Ltd., Vancouver) by inductively
coupled plasma-atomic emission spectrometry (ICP-AES) following a hot acid digestion.
Hot nitric acid-hydrochloric acid liberates loosely adsorbed metals and metals from most
sulphides but does not decompose most silicates (Levinson, 1980) and so is considered a
‘partial’ analysis. The samples were analyzed by ICP (denoted by the suffix ©_C") for the
following elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg,

Mn, Mo, Na, Ni, Pb, Sb, Sc, Sr, Ti, TL, U, V, W, and Zn. The “silt+clay” fraction was
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also analyzed by instrumental neutron activation analyses (INAA, by Neutron Activation
Laboratories) which provides a total analysis of the sample. The samples were analyzed
by INAA (denoted by the suffix <_N") for the following 35 elements: Ag, As, Au, Ba, Br,
Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, Ir, La, Lu, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sn,
Sr, Ta, Tb, Th, U, W, Yb, and Zn. Analytical precision was monitored by the analysis of
laboratory duplicates (Klassen, 1994).

A comparison of Klassen’s data with tiil data collected and analyzed by the
Newfoundland Geological Survey laboratory (‘Liverman’s dataset’) for the Buchans-
Robert’s Arm study indicated slight differences due to different analytical techniques
(Davenport ef al., 1996). To plot the two datasets on one map, the data were levelled
(i.e. the differences were removed or reduced) using regression techniques as described by
Davenport et al. (1996). The INAA and ICP methods used by Liverman were both ‘total’
analysis methods. Therefore, to obtain a final dataset of ‘total’ analyses for this study,
those elements from Klassen’s INAA (also a ‘total’ analysis) dataset which showed a well-
defined linear relationship with Liverman’s data were retained (see Table 15, Davenport e?
al., 1996). In addition, those elements from Klassen’s ICP method (a ‘partial’ method)
which showed a well-defined linear relationship with Liverman’s data were obtained from
the combined (levelled) dataset (essentially a ‘total’ analysis). The final dataset reflects
‘total’ element concentrations of the till samples and contains 250 samples. Three samples
were duplicates, resulting in 247 samples for statistical analysis.

Other regional samples of till have been taken in the NTS 12A/10 area and may be

useful in filling in some of the sparse areas in Klassen’s sampling. These consist of 226
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regional samples taken by Vanderveer and Sparkes (1979) and 158 detailed samples taken
by Mihychuck (1985) on two 200 m interval sampling grids around the Victoria Mine and
the Tally Pond showing (northeast of Tally Pond). These samples were analyzed by AAS
at the Geochemical Laboratory of the Department of Mines and Energy for the following

elements: Cu, Pb, Zn, Co, Ni, Ag, Mn, Fe, Mo, and U.

The Klassen (1994) and Vanderveer-Sparkes (1979) datasets were compared to
determine if they could be combined to provide a more complete till coverage of the
12A/10 area. Using ANOVA to compare the datasets, it was determined that more than
half the elements had unequal means, therefore, the datasets could not be easily combined.
Moreover, the Vanderveer-Sparkes data has not yet been relcased to the public.

Therefore, only Klassen’s data were used in this study.

3.2.6 Lake Sediment Sampling and Chemical Analysis

Regional lake sediment sampling in the NTS 12A/10 area was carried out during
1977. Almost 200 samples were collected (Figure 3.11), using a helicopter, at an
approximate sampling density of one site per 6 km? (Davenport e al., 1990a). The
samples were dried and sieved through a 180 micron stainless-steel sieve. Analyses on the
fine fraction were carried out using instrumental neutron activation analysis (INAA —
‘total’ analysis, at Becquerel Laboratories Inc., Mississauga, Ontario) for 27 elements (Au,
As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Ta, Tb, Th,
U, W, Yb and Zn). Uranium was also analyzed by delayed neutron counting analysis

(DNA). Following a partial hot acid digestion using 4M HNO, - 1M HCI (Davenport ef

-53.



-VS_

56°30"

57°00°

46°45'
, Legend
* o Lake Sediment
Sample Location
|
1.
B N
W<¢>E
t' : s
“ 0 5
N Kilometres
DN | ﬁ-ww
56°30"

Figure 3.11 : Lake sediment sample locations.




al., 1990a), 7 elements (Cu, Pb, Za, Co, Ni, Mn, and Fe) were analyzed by atomic-
absorption spectrophotometry (AAS) at the Geochemical Laboratory of the Department
of Mines and Energy. Molybdenum was also analyzed by AAS, but the digestion was in
concentrated HNO;. To indicate the different analyses a numbered suffix is added to each
element symbol; ‘1’ indicates INAA, ‘3’ indicates AAS, ‘S’ indicates AAS for the
molybdenum digestion, and ‘8’ indicates DNA for uranium. Loss-on-ignition (LOI), a
measure of organic-carbon content, was determined by weighing before and after a three
hour ashing at 500°C. Duplicate samples were taken from approximately 5% of the lakes
to provide a measure of field precision (noise). Five percent of the samples were split in
the lab to provide a measure of laboratory precision (added noise). Accuracy was
measured by analyzing one standard sample for every 20 field samples. Information on the

duplicates and standards is discussed by Davenport (1990a).
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CHAPTER 4

Methodology

A quantitative model to reliably predict mineral occurrences must contain a set of
appropriate predictor variables. This chapter outlines the methods used to prepare the
response and predictor variables as well as describing the development of the quantitative
models using decision tree analysis (DTA) and logistic regression analysis (LRA).
Methods used to compare and estimate the reliability of the two models are also discussed.

A series of programs were used to explore and analyze the data. Confirmatory
statistics, exploratory data analysis (EDA), principal components analysis (PCA), and
LRA were processed through SPSS™. Cumulative frequency plots were output through
the program UNISTAT (Nolan, 1990). Spatial statistics (variogram analysis and kriging)
were analyzed and output using GS*™ (Robertson, 1998). DTA was analyzed through
KnowledgeSeeker® (Angoss, 1993). Various GIS and desktop mapping systems,
including CARIS®, Arc/Info® , ArcView® , Maplnfo Professional™ |, and IDRISI®,
provided spatial analysis (e.g. proximity analysis) as well as visual display and output of
the results. Microsoft Excel® was used for spreadsheet calculations in the Weights of
Evidence modelling and the Moran’s I calculations for point data. In addition, a few
programs (see Appendix A) were written in Microsoft QuickBASIC® to reformat or
analyze simple sets of data (e.g. determination of spatial weighting function based on point

distance table output from Arc/Info®).
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4.1 Data Preparation
4.1.1 Response (Dependent) Variable

To arrive at an effective response variable, the mineral occurrences in the study
area were screened and only surface occurrences and specific deposit types were chosen.
The surface mineral occurrences were more likely to be reflected in the till and lake
sediment samples and can be related to the surface geology whereas mineral occurrences
noted at depth in drill core can not easily be related to surface phenomena. The prevalent
deposit type in the study area is volcanogenic massive sulphide (VMS) with economic and
pathfinder minerals consisting of pyrite (an iron sulphide), chalcopyrite (a copper/iron
sulphide), galena (a lead sulphide), sphalerite (a zinc sulphide), and gold. Of the 59
mineral occurrences in the study area, 39 are surface occurrences of the VMS deposit type
(deposit type codes 130 to 151; see Table 3.1). To increase the number of occurrences in
the database, 5 occurrences of the hydrothermal/structurally-controlled deposit types were
included (coded 300-310; see Table 3.1). The mineralization in this deposit type consists
of the same economic minerals of interest as the VMS deposit type. There are also 3
surface mineral occurrences that did not contain enough information to classify (deposit
type code O; Table 3.1) but they contain the same economic minerals of interest as the
above and so were included in the database. This resulted in a total of 47 surface mineral
occurrences. As a check on the validity of this pooling, an additional attribute (VMS) was
added to the database and coded ‘1’ to represent the VMS deposit type plus all the

nonmineral occurrences and ‘2’ to represent the gold and unknown deposit types. The
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DTA and LRA were repeated on the VMS group (i.e. VMS= 1) to determine if the results
were significantly different from the grouped (i.e. VMS= 1 and 2) results.

The DTA and LRA were based on an attribute file consisting of mineral and
nonmineral occurrences. The 47 mineral occurrences were coded ‘1’ in the attribute file
(variable MINOCC) indicating the presence of mineralization. A similar number of sites
were chosen to represent the ‘absence’ of mineralization. These sites were chosen using
the stratified random sampling method of IDRISI’s® SAMPLE module (Eastman, 1997).
The stratified random sampling method reduces bias and provides a good coverage of the
study area. Of 50 points located by IDRISI®, 49 fell within the study area and did not
coincide with the mineral occurrence point locations. The locations (UTM easting and
northing) of these 49 points were added to the attribute file and coded “0° (variable
MINOCC) indicating the absence of mineralization. Therefore, the attribute file contained
a total of 96 data points using a binary coding scheme to represent the dependent variable
MINOCC. The locations of these 96 data points were used to extract data for each
independent predictor variable (e.g. geological rock type).

Classical statistical tests require that data be independent and randomly distributed.
To test that the 96 data points were randomly distributed the nearest neighbour index
(Hammond and McCullagh, 1978) was calculated.

The nearest neighbour index, R, is a ratio of the observed mean-distance (Dy)
between the nearest neighbour sites to the expected mean-distance (D<) of the same

number of sites randomly distributed.
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D

R=—%
oxp

where Do = Z (dw) / N, Degp = 1/2J/N/area , dx is the distance between nearest
neighbours and N is the number of points. A z-score can be calculated to determine the
significance of the result R (Hammond and McCullagh, 1978).

z2=(Dos -~ Dep)/ Opap
where Opeg, =0.26136/ \/n’ /area . In the test of significance the null hypothesis tests
for a random point distribution. Z-scores less than 2.58 (a = 0.01) indicate the nuil

hypothesis is acceptable and the points are randomly distributed.

4.1.2 Predictor (Independent) Variables

An effective mineral potential model will contain the fewest and most reliable
predictors that best explain the presence/absence of mineralization. The predictors chosen
for this study were based on information from previous studies, ore deposit models for the
study area and factors that may influence other predictors (e.g. the effects of wetlands on
till geochemistry).

As a general exploration tool, till and lake sediment geochemistry have been shown
to indicate regionally favourable areas for exploration. Ore deposit models associated
with the types of mineral occurrences in this study area (e.g. VMS) can help in defining
useful predictors. A review of the VMS deposit models indicated the presence of felsic

volcanic rocks, mafic volcanic rocks, various alteration types and proximity to faults
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(Franklin, 1993) were positive factors to include in a study. Rock alteration was not
systematically mapped or compiled in the study area and therefore not included. Other
predictors that may have an effect on the geochemistry of till and lake sediments are
surficial geology and wetlands. And a measure of proximity or neighbourhood effects of
the mineral occurrences should be included. Overall, about 20 predictors were included in
the analysis (i.e. 3 geology predictors, 3 fault proximity predictors, 5 till predictors, 6 lake
sediment predictors, surficial geology, wetlands and a spatial weighting function) and will

be discussed in more detail below.

4.1.2.1 Till and Lake Sediment Geochemistry

The review and analysis of both the till and lake sediment geochemistry databases,
follow a similar procedure with some minor individual analyses unique to each database.
The general procedure is outlined in Table 4.1.

A review of the database using EDA techniques consisting of box-and-whisker
plots, histograms and cumulative frequency plots provided an overview of the variation in
the geochemistry values as well as indicating elements that may be poorly distributed or
truncated (usually caused by instrumental detection limits at the low end of the scale).
Poorly distributed variables may cause problems in statistical analyses due to deflated
correlations (Tabachnick and Fidell, 1996). These variables were removed from the
geochemistry databases. Univariate statistics, consisting of the mean, standard deviation,

median, geometric mean, log standard deviation and range, were tabulated as a summary
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Table 4.1 : Procedure to review and analyze the till and lake sediment databases.

Database Review:

a) EDA

b) univariate Statistics
“¢) visual Spatial Distribution

Linear Regression Analysis:
-lake sediments only — used to remove lake effects

Principat Components Analysis:
a) review factorability

b) review outliers

¢) estimate number of components
d) judge results

Produce Surface:

Tills—

Spatial Autocorrelation -

a) variogram and correlogram analysis
b) kriging

¢) CV reliability surface

Lake sediments —

Catchment basin assignment

Extract Values from surface and input into attribute table

overview of the data. To assess normality of the distributions, the shape of the
distributions were evaluated using box-and-whisker plots and histograms. Skewness and
kurtosis were not used because the number of samples was too large (e.g. greater than
150 to 200) for a reliable test (Tabachnick and Fidell, 1996). All values were logged to
bring all element values into the same scale range (Brower and Merriam, 1990). To

maintain consistency of scale and for interpretation purposes all the units were changed to
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ppm values (i.e. Au ppb was changed to ppm; Fe, Na, Mg, and Ca percent was changed to
ppm).

A visual assessment of the spatial distribution (as graduated dot plots) of element
concentrations in till and lake sediment samples can indicate preliminary associations
between the elements and other spatial factors (e.g. bedrock geology, faults).

To reduce false anomalies caused by lake effects (change in element concentrations
due to the lake environment, such as adsorption on hydroxides and organics, as well as
lake area and sample depth) all elements were regressed against logFe, logMn, LOI_pct,
loglarea and logsdpth (Davenport et al., 1974). The data were checked for univariate and
multivariate outliers prior to running the linear regression. Extreme outliers were removed
from the database so their values would not adversely affect the linear regression results.

Linear regression was used to remove lake effects on those elements which
correlated (using r>0.5 ; Davenport, 1974) with at least one independent variable (IV;; i.e.
logFe, logMn, LOI_pct, loglarea and logsdpth). Therefore a preliminary stepwise linear
regression analysis was run with each element as the dependent variable against all 5 I'Vs.
The results of this regression run were checked and the change in R? values was noted.
Only those I'Vs that enter the equation causing a greater than 2% change in R*were
retained. The next stepwise linear regression was run using only the retained IVs and the
computed residuals were saved. These residuals were reviewed and cases which were
outliers (i.e. cases where the standardized residual value was greater than £3.29) were
removed from the final linear regression run. These outliers were cases that could not be

well predicted by the solution. To include the “outlier’ cases in the database (as they may
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be anomalous and of significance for mineral exploration), their residuals were manually
calculated using the final regression equattons and input back in the database (P.
Davenport, pers. comm., 2001).

It is not practical to review the statistical and spatial distribution of every element
in a large database. PCA is an excellent method of reducing the database to 2 small set of
orthogonal components that will provide insight into the underlying nature of the data.
Outliers and poorly distributed variables can greatly affect the results of PCA because it is
based on correlations. Variables that were poorly distributed were already removed from
the database at the initial phase of data screening. To check the effect of outliers in the
database, PCA was run before and after removal of univariate and multivariate outliers
and the results compared. If the results were essentially the same then the outliers would
be left in the database. If the analysis was not robust to outliers then the outliers would be
removed and the data reanalyzed. As mentioned above, outliers may be anomalous and of
significance for mineral exploration. Therefore, if outliers were removed their scores were
manually computed using the results of the PCA analysis on the nonoutlier cases (P.
Davenport, pers. comm., 2001).

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was calculated to
determine if the data was suitable for PCA. A KMO value greater than 0.6 indicates that
the dataset can be factored (Tabachnick and Fidell, 1996). The next step was to determine
the number of components to extract by reviewing the eigenvalues and the scree plot. The
number of components with eigenvalues greater than 1.0 and the component number at

the change in slope of the scree plot provide an indication of the approximate number of
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components to extract. Other factors to take into account when assessing the number of
components are that the components should make sense with respect to their geochemical
consistency, they should not be composed of just one or two elements and the maximum
loadings in each component should be fairly high (e.g. > 0.7; Tabachnick and Fidell,

1996). Examination of communalities and the residuals matrix also indicate the
effectiveness of the number of components chosen (Tabachnick and Fidell, 1996).
Removal of elements with low communalities may change the loadings of the elements in
different components. This is an iterative technique.

To determine if a ‘simple’ method of PCA analysis was robust, Spearman’s rank
correlation matrix (a nonparametric technique), calculated on the raw, unlogged data was
used as input in the PCA instead of data that had been checked for normality, linearity,
outliers etc. If this nonparametric method of PCA analysis provides results similar to the

parametric method then PCA can be easily calculated and incorporated into more

exploration analyses.

To determine if till geochemistry is important as a predictor of mineral
occurrences, it is necessary to add the till geochemistry to the mineral occurrence attribute
database by extracting the geochemical values at each mineral/nonmineral occurrence site.
This requires that the till point data be represented as a surface. Only the ore-forming
elements (i.e. Au, Cu, Pb, and Zn, as logged values) and the component that most
represented the ore-forming minerals were considered, to determine if the individual

elements or the component was a better predictor of mineral occurrences. Variograms



and correlograms were analyzed to determine if the variables showed positive spatial
autocorrelation and could be interpolated as a surface.

The variograms were reviewed with and without outliers to see if the presence of
outliers caused significant changes in the variogram model parameters. If outliers did
cause significant changes then they were removed. The best variogram model was chosen
based on the minimum value of the reduced sum of squares (RSS) which indicates how
well the model fits the data using the lag parameters specified (Robertson, 1998). The
isotropic and anisotropic models were compared to determine which best fit the data.

Correlograms were also reviewed to determine the distance over which positive
autocorrelation exists. Based on Moran's I calculations, the correlogram graphically
shows the distance over which positive spatial autocorrelation occurs.

If the till data was determined to be spatially autocorrelated then the point data can
be interpolated using block kriging methods. Input parameters in the block kriging
procedure consist of the number of nearest neighbours, the local grid size, the search
radius, and the best variogram model (which is automatically input based on decisions
made in the variogram analysis section). The number of nearest neighbours to include in
the kriging and the local grid size were iteratively tested by comparing the minimum and
maximum of the output data with the input minimum and maximum. The cross-validation
plot of observed versus preﬁicwd values provides an indication of whether the data
contains outliers that are causing a bias in the variogram. These checks ensured an

interpolated surface which best represented the measured points.
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Once the best kriged surface was calculated, an error surface (in standard
deviations) was also calculated to provide an indication of the reliability of the interpolated
surface based on the distribution and variation of the point data (Robertson, 1998). A
coefficient of variation (CV) surface was calculated by dividing the standard deviation
surface by the mean surface. The mean surface was represented by the kriged surface (for
which each point represents the mean in that immediate area). The CV surface was
multiplied by 100 to provide an indication of the percent variability around each point
(Berry, 1993) An increase in variability indicates an increase in uncertainty (Berry,
1995).

When the kriged and CV surfaces had been prepared for each till element and PCA
component of interest, their values at each of the 96 mineral/nonmineral occurrence site

were extracted and added to the attribute database.

The lake sediments were assumed to be representative of the catchment basin from
which they were collected (see Chapter 2.1.2). Therefore, rather than kriging the lake
sediment data, the catchment basin polygons were assigned the value of each ore-forming
element (i.e. Au, Cu, Pb and Zn as logged or residual values) or component. These values

were extracted at the mineral/nonmineral occurrence site and added to the final attribute

database.
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4.1.2.2 Geology
There are 12 rock types in the study area (Table 3.3). The alphanumeric rock

types were extracted from the digital geology map at the 96 mineral/nonmineral
occurrence sites and added to the attribute database (variable GEOLOGY). Numeric
codes are often easier to work with and are necessary for some analyses (e.g. SPSS™
boxplot factor list requires numeric codes). Therefore, the alphanumeric GEOLOGY
descriptors were recoded to numeric values I to 12 (variable GEOLCODE). Deposit
models for VMS deposits indicate some deposit types favour felsic volcanic rocks while
other deposit types favour mafic volcanic rocks (Franklin, 1993). Therefore, the 12 rock
types were recoded to binary values where ‘1’ represents felsic volcanics and ‘0’
represents non-felsic volcanics in the variable VOLCFELS and ‘1’ represents mafic
volcanics and ‘0’ represents non-mafic volcanics in the variable VOLCMAF-.

To provide an indication of agreement between the regional 1:50,000 scale
geology (Colman-Sadd, 2000) and the detailed geology from the MODS database, the
rock types (variable HOST_ROC) were extracted from MODS for the 47 surface mineral
occurrence sites and added to the attribute database. The rock types in HOST_ROC and
GEOLOGY were compared to indicate if the scale of geological mapping produces

significantly different results overall.
4.1.2.3 Fault Proximity and Weights of Evidence Modelling

VMS and gold deposit models indicate fault proximity is important as an aid to

mineral exploration (Franklin, 1993). Therefore the digital fault vectors were rasterized
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using a 200 m cell resolution, based on the £100m uncertainty of many of the mineral
occurrence locations (Stapleton and Smith, 1999).

Three faults occur adjacent to the NTS 12A/10 map sheet but do not cross onto
the map sheet in the southeast corner. These faults may extend into the map sheet area
but were not mapped by the geologists due to a lack of evidence in this area (e.g. due to
glacial debris cover). Therefore, to account for the possibility that these faults may exist
on the NTS 12A/10 map sheet, they were extended slightly into the map sheet so buffering
will indicate their presence. The proximity to the faults was determined using IDRISI’s®
DISTANCE module where 0 metres was recorded on a fault and distance (in metres)
increased away from the faults. The continuous fault proximity surface was sampled
(variable FLTDST) at the 96 mineral/nonmineral occurrence sites and added to the
attribute database.

In LRA, variable coding affects the direction of the odds ratio and the sign of the
B coefficient. If predictors are coded such that the higher values are most likely positively
associated with the response variable then the resulting logistic regression parameter
estimates will be positive and interpretation will be simplified (Tabachnick and Fidell,
1996). The values in FLTDST range from 0 m, on the fault, to over 8000 m furthest from
the faults. The VMS and gold deposit models indicate that close proximity to faults is a
positive factor in the exploration for mineral occurrences. Therefore, FLTDST was
recoded into the variable NFLTDST by normalizing the distances:

max(FLTDST) - FLTDST
max(FLTDST)

NFLTDST =
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This results in a continuous variable (NFLTDST) ranging from 1 (representing a point on
a fault) to O (representing a point far removed from a fault). The distribution of
NFLTDST is negatively skewed. The normalized distances were arcsine transformed to
produce a continuous variable (ARCSFLT) which has a more normal distribution but a
comparable range to NFLTDST.

A binary measure of fault proximity simplifies the proximity measurement to those
areas close to faults (coded ‘1°) and those areas far from faults (coded ‘0”). Weights of
evidence modelling (see below) was used to determine the optimal threshold distance

which represents areas close to faults and favourable for mineral occurrences.

Weights of evidence (WOE) modelling is a method of combining binary maps to
produce an output binary map with an optimal measure of spatial association between two
input maps (Bonham-Carter, 1994). One map is considered the response map (e.g.
mineral/nonmineral occurrences) and the other is the predictor map (e.g. fault proximity).
By changing the input predictor map (e.g. increasing buffer distances), the map with the
best spatial association to the input response map can be determined. In this study, the
spatial association was based on a density measurement of the number of mineral
occurrences in close proximity to faults versus the number of nonmineral occurrences far
from faults. The following procedure is based on Bonham-Carter (1994).

The study area was converted into a raster grid with a resolution of 200 m, based
on the uncertainty of the location of many of the mineral occurrences. The subsequent

calculations were done on counts of the unit cells. Each unit cell intersecting a mineral
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occurrence was coded ‘1°, otherwise it was coded ‘0°. N(T) represents the total number
of unit cells in the study area. N(MO) represents the number of mineral occurrence cells.
Therefore, N(MO)/N(T) represents the average density or prior probability, P(MO), of
occurrences in the study area given no other information. To determine how the
probability of mineral occurrences changed with the addition of new information (i.e. a

fault buffer), the conditional probability was calculated as:

P(MO[FB) = P(MO n FB) / P(FB)

where P(MO|FB) represents the conditional probability of a mineral occurrence (MO)
given the presence of a fault buffer (FB), POMO ~ FB) represents the probability of
mineral occurrences and a fault buffer occurring simultaneously and P(FB) represents the
probability of a fault buffer (after Bonham-Carter, 1994). Stating this in terms of counts

of units cells results in the following:
P(MO|FB) = N(MO ~ FB) / N(FB)
where the conditional probability was calculated as the number of unit cells where both

mineral occurrences and a fault buffer occurs divided by the total number of unit cells

where a fault buffer occurs (after Bonham-Carter, 1994).
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The WOE calculations are based on the conditional probabilities, given the
presence and absence of the mineral occurrences and fault buffers. The weights were
calculated for both the presence (positive weight W) and absence (negative weight W") of
the new information (i.e. fault buffers) given the presence and absence of mineral

occurrences. The positive weights of evidence is:

W' = In [P(FB]MO) / P(FB|MO) ]

where P(FBMO) and P(FB|MO ) represent the conditional probability of the fault buffer
given the presence and absence of mineral occurrences, respectively (after Bonham-Carter,
1994). The negative weights of evidence is:

W = In [P(FB MO)/ P(FB|MO) ]

where P(FB [MO) and P(FB |MO ) represent the conditional probability of the absence of
the fault buffer given the presence and absence of mineral occurrences, respectively (after
Bonham-Carter, 1994). Note that positive values for W* and negative values for W
indicate that the new information (i.e. fault buffer) adds to the prediction of mineral
occurrences. If W = W= 0 then no correlation is indicated and the fault buffers add no
additional information in predicting mineral occurrences. The four conditional

probabilities for the above equations were calculated as follows:

P(FB/MO) = P(FB ~ MO) / P(MO) = N(FB ~ MO) / N(MO)
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P(FB|MO) = P(FB ~ MO )/P(MO ) =N(FB ~ MO)/N(MO)
P(FB |MO) = P(FB~ MO) / P(MO) = N(FB ~» MO) / N(MO)
P(FB|MO) = P(FBAMO ) /P(MO ) =N(FB~MO)/N(MO)

(after Bonham-Carter, 1994).

The optimal buffering distance (i.e. fault proximity value) for converting
continuous proximity values to binary values was determined by calculating contrast
values. A contrast value was calculated for each fault proximity buffer distance (in

increments of 200m from 0 to a maximum of 2400m):

Cu=W .-.W

The contrast is a measure of correlation between the mineral occurrence map and the data
in each of the fault proximity maps (Bonham-Carter, 1994). Contrast values usually range
from O (indicating spatial independence between the two maps) to 2 (indicating a positive
spatial association). A plot of contrast versus distance (where distance is the cutoff for the
buffer area around the fault) indicates the best threshold distance to use to recode the
continuous variable FLTDST into a binary variable. FLTDST values from 0 m to the
threshold value were coded as ‘1’ (representing distances from faults favourable for
mineral occurrences) and values greater than the threshold value were coded as ‘0’

(representing distances from faults unfavourable for mineral occurrences).
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The variance of the weights and contrasts is calculated as a check on their
uncertainty. The variance of the weights and contrasts can be approximated by the

following equations, assuming a large number of occurrences (Bishop et al, 1975):

§? (W' = [1 \N(FB n MO)] + [1 \ N(FB n M0O))

S? (W) = [1 \N(FB A MO)] +[1 \N(FB~ MO)]

§2 (Cw) = S*(W") + S3(W') and s(Cw) = Jsz(cw)

Note that the variances are unit dependent and, therefore, only significant in a relative
sense (Bonham-Carter, 1994). The standard deviation of the contrast is used to calculate
the Studentized value of the contrast (SC), an approximate test of the null hypothesis C=0

(i.e. no correlation between the maps):
SC =Cw/ s(Cw)

Values of SC much greater than 2 indicate reliability in the contrast (Bonham-Carter,

1994).
4.1.2.4 Surficial Geology

Surficial geology information may be significant in providing a framework on

which to relate till and lake sediment geochemistry. Klassen (1997) mapped 9 surficial
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sediment types in the study area (Figure 3.6). The surficial geology descriptors (e.g.
bedrock, till) were extracted from the digital map (Figure 3.6) at the 96
mineral/nonmineral occurrence sites and added to the attribute database (variable
SURFICIA). The 96 alphanumeric descriptors were recoded to numeric values 1 to 9 and
added to the attribute database (variable SURFCODE) to simplify analyses and further
coding schemes. To determine if a relationship exists between the thickness of tills and
their geochemical values, bedrock and the four sediments (i.e. drift/rock, till, till/gravel,
and drift) were recoded with the mean thickness for the sediment (variable SURFTHIC).
The mean thickness was based on the range of thickness assessed by Klassen (1997). Till
geochemistry (e.g. logCu) was plotted against SURFTHIC using box-and-whisker plots to

quickly assess any relationships.

4.1.2.5 Wetlands
The geochemistry of till and lake sediments may be affected if the samples were

collected within a wetlands area. Wetlands cover about 10% of the study area and are
coded on the topographic map as ‘wetlands’ (WAWL) and ‘string bogs’ (WASB). The
wetland codes were extracted at the 96 mineral/nonmineral occurrence sites and added to
the attribute database (variable BOG). Only 4 of the 96 sites occurred within wetland
polygons, so further subdivision (e.g. using Peatland Inventory information) of the wetland
type was not necessary. The variable BOG was recoded to a binary variable (BOGCODE)
where ‘1’ represents wetlands and ‘0’ represents nonwetlands. This is a highly skewed

dataset (with the potential for producing low correlations; Tabachnick and Fidell, 1996)
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but was still used in nonparametric analysis (e.g. box-and-whisker plots) to determine if

these 4 samples were related to any other factors.

4.1.2.6 Spatial Weighting Fuaction

A known trait of mineral occurrences is that they often occur in spatial proximity
to one another (Lydon, 1988). This trait will be incorporated in the database as a spatial
weighting function (SWF) based on the spatial point-distribution of the mineral/nonmineral
occurrences (Kvamme, 1990; Chou er al., 1990). In a polygonal analysis of spatial
autocorrelation, Chou ef al. determined that the contiguity of neighbouring polygons
represented the most basic form of the spatial relationship and applied a contiguity weight
in the SWF. In point analysis of spatial autocorrelation, Kvamme (1990) applied the
inverse distance between two points to represent the most basic form of spatial
relationship.

Before developing a SWF it was necessary to demonstrate quantitatively that the
data (mineral/nonmineral occurrences) show positive spatial autocorrelation and therefore
warrant the use of a SWF. The calculations to determine the spatial autocorrelation
measure are from Kvamme (1990). The statistical test was set up such that the null
hypothesis tested the probability that all sites are equally mineral occurrences (i.e. no
spatial autocorrefation). The alternative hypothesis was that a site neighbouring a mineral
occurrence had a higher probability of being a mineral occurrence than not being a mineral
occurrence (positive spatial autocorrelation). The spatial autocorrelation for point data

were evaluated using the Moran’s I statistic for point data and tested using the
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randomization model for Ho, at a = 0.05. The randomization model was used because it
is not based on any assumptions about the distribution of the x; whereas the alternative
normality model assumes the x; are normally distributed (Kvamme, 1990). Since only
positive spatial autocorrelation is of interest, a one-tailed test was used where the standard
normal deviate is z = [I-E(T)] //var(I) . The spreadsheet and equations used to calculate
Moran’s I are presented in Chapter 5 (Tables 5.15 and 5.16).

The SWF was based on the distance between the mineral/nonmineral occurrence
sites. This distance was calculated using Arc/Info’s® POINTDISTANCE algorithm. A
search radius of 5000 m provided a list of sites within 5000 m of each other. The list
consisted of the identification of the point in question, ‘i’, the id of the neighbouring point,
‘j’, and the distance (in metres) between them. If an optimum search radius was later
determined to be less than 5000 m then the list could be easily pruned to eliminate the
longer distances. The optimum search radius was determined from a correlogram
(Moran’s I versus Separation Distance) of the 96 mineral/nonmineral occurrence sites.
The distance over which Moran’s I is positive indicates the neighbourhood (i.e. search
radius) over which positive spatial autocorrelation occurs.

The spatial weighting function was calculated as follows (see Program A2 in

Appendix A):

ZWU *x,
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where the weight, W;;, is the inverse distance between points i and j and x; equals 1 if the
jth point is a mineral occurrence and 0 otherwise. This SWF is very similar to Chou et
al.’s (1990) SWF, only differing in the weight assigned. The values for the SWF vary
between 0 (indicating the point is not close to any mineral occurrences) and 1 (indicating
all neighbours around a point are mineral occurrences). The SWF values were calculated

for each of the 96 mineral/nonmineral occurrence sites and incorporated into the attribute

database.

4.2 Decision Tree Analysis

Decision tree analysis (DTA) is a robust method of classifying (i.e. splitting into
subsets) dependent variables based on their relationship to the independent variable. The
relationship is interpreted as a set of statistically significant ‘IF-THEN’ rules developed
using the procedures in the KnowledgeSeeker® program (Angoss, 1993). See Chapter
2.2.2.2 for a more indepth discussion of DTA.

The KnowledgeSeeker® program requires the dependent variable (i.e. MINOCC)
to be specified. Each independent variable (IV) was viewed to check the cluster type (e.g.
continuous variables should be specified as monotonic or floating depending on whether
they include missing values; binary variables should be listed as free clustering). The
‘grow’ method was set to ‘exhaustive’, which produces statistically reliable splits (Angoss,
1993). The filter level was initially set to the ‘exploration’ mode. This provides an
adjusted error rate of 20% (a=0.20) used in testing the validity of the relationships

(Angoss, 1993). The exploration mode was used to review the data and indicate potential
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patterns. The filter level was reset to the ‘prediction’ mode (=0.05) on the final run to
check the results at the more stringent filter setting. Competing significant splits were
reviewed at each node in order to assess splits that may make more logical sense but may
not be as statistically significant. If there was no reason to override a statistical decision
then no splits were forced. The procedure was repeated to test various combinations of
IVs (e.g. the three different fault proximity variables). The Bonferroni value was adjusted
accordingly when correlated IVs (e.g. till zinc values and PCA2) were included in the
analysis at the same time.

The resulting “IF-THEN” rules are a set of conditions with associated probability
values for the binary response variable. A rule-based map was produced using the IVs
listed in the decision rules. The probability values, also listed as part of the decision rules,
were assigned to each condition to arrive at a map indicating the ‘weight’ or ‘probability’,
from O to 1, of the mineral potential. Since the data set is sparse, it was not practical to
separate a test data set to use for accuracy testing. Therefore, accuracy testing was done
by comparing the DTA results to the logistic regression analysis results (see below). A
reliability map, based on the error or CV maps of each significant independent variable,

was calculated for the rule-based map (see below).

4.3 Logistic Regression Analysis
Logistic regression is another robust technique that predicts the probability of a

case belonging in one group or another. This technique was used to determine the

independent variables that best group cases based on the dichotomous response variable
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‘mineral occurrences’ (i.e. which variables best explain the presence or absence of
mineralization and, therefore, mineral potential).

A preliminary logistic regression was run, with all IVs entered, to determine
whether the full model improved the prediction of the mineral occurrences (the response
variable) compared to the constant-only model. If the full model improved prediction of
mineral occurrences, this would indicate that at least some of the IV's were useful in
predicting mineral occurrences.

With minimal prior knowledge about the relationship between the data and the
mineral occurrences, stepwise logistic regression was applied to determine which I'Vs were
most useful in predicting mineral occurrences. The probability value to enter the model
was increased from 0.05 to 0.20 and the probability value to be removed from the model
was increased from the default of 0.10 to 0.30 to account for the interaction among
predictors (Hosmer and Lemeshow, 1989). Each predictor which entered the equation
was also tested individually by including it and removing it from the model. The chi-
square goodness-of-fit (see Chapter 2) was calculated to determine the significance of
adding the new predictor to the model.

Once the significant predictors had been determined, cases with large standardized
residuals (i.e. >3.29, indicating the case was not well predicted by the model) were
selected out and the regression repeated. Classification tables were analyzed at the final

stages of model building to determine the percentage of correctly and incorrectly classified

cases.
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To determine if the assumption of pooling the VMS, gold, and ‘unknown’ deposit
types was justified the LRA was run on just the VMS mineral occurrences (n1=39) and all
the nonmineral occurrences (n=49). The results for the subset of VMS occurrences versus
all the occurrences in the database were compared.

A mineral potential map was created from the logistic regression equation using
IDRISI’s® IMAGE CALCULATOR. A reliability map was also calculated (see below),

based on the error and CV maps of each significant IV in the model equation.

4.4 Comparison of Results from DTA and LRA

The mineral potential maps produced as a result of the DTA and the LRA
consisted of two different measurement types. Due to the limited number of rules, the
DTA map was composed of discrete probability values whereas the LRA map was
composed of continuous probability values. These maps can be compared in a number of
ways of which three were used in this study.

The first method was to determine how similar (level of agreement) the results of
the DTA and LRA modelling methods were at the 96 sites used in the study. The
probability values from the two modelled mineral potential maps were extracted at the 96
sites. These values were converted to binary codes where ‘0’ represented probability
values from 0% to just less than 50% and ‘1’ represented probability values from 50% to
100%. The binary probabilities were compared to determine how many sites were
classified the same by both methods (a measure of agreement) and how many sites were

classified correctly by the two methods. A visual assessment of the spatial distribution of
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the correctly and incorrectly classified data was also completed to note any obvious

patterns.

The second method of comparing results used the same binary coding as above
but, instead of a site analysis, the DTA and LRA mineral potential maps were converted to
binary maps. A cross-tabulation of the resuits plus quantitative map comparison indices
(Kappa and Yule's o; Bonham-Carter, 1994) were used to compare the maps.

The third method of comparing results was to summarize a cross-tabulation table
of the actual values in the raster maps as opposed to comparing binary values. The cross-
tabulation list provided the frequency of each LRA value for the discrete values in the

DTA and was summarized by a box-and-whisker plot.

4.5 Reliability and Favourability Analysis
The reliability (i.e. certainty) of the models was assessed by combining the

reliability maps for each of the significant predictors in the final DTA and LRA models.
The predictors of interest consisted of the spatial weighting function (SWF), volcanic
felsics (VOLCFELS), the binary fault proximity predictors (FLT400 and FLT1000), and
copper in till (TLOGCU). The reliability for the SWF could not be determined because it
was a calculated variable. The reliability for the remaining predictors was based on the
source of the data for that predictor and will be discussed in more detail below.

Geology (specifically felsic volcanics) was determined to be a significant predictor.
The reliability of the geology, in general, was assessed by comparing the geology from the

regional 1:50,000 scale mapping to the detailed site-specific geology from the MODS
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database. This comparison will give an indication of the usefulness of the 1:50,000 scale
geology maps for quantitative analysis.

A reliability map for felsic volcanics was based on the locations of the outcrops
because the geology is most reliable at these sites. The outcrop locations were digitized
and buffered. Those cells close to outcrops were considered reliable whereas those cells
furthest from the outcrops were considered most unreliable. The histogram of the cell
proximity values was assessed to determine a reliability coding scheme. The maximum
reliability on an outcrop was coded as 90% (S. Colman-Sadd, pers. comm., 2000), due to
the less than perfect reliability of assessing the location and rock type, and decreased to
10% for those locations furthest from outcrops. The outcrop proximity map was recoded
with the reliability values.

A reliability map for the fault variables was based on the buffers resulting from the
WOE analysis. Evans et al. (1994) coded the faults in the study area as ‘assumed’ and
‘approximate’. There were no ‘defined’ faults in the area. This may be due to the
extensive forest and glacial cover. Therefore, no areas were considered reliably (i.e.
100%) a fault or reliably ‘not a fault’. The most reliable areas were in proximity of the
faults and also far distant from the faults. These areas were assigned a reliability of 80%.
The least reliable areas were the edge of the buffers around the faults (Berry, 1993).
Therefore, the buffer boundaries were assigned a reliability of 50% and one cell from the
boundaries were assigned a reliability of 65%.

The map of till copper values was determined from an interpolated surface using

kriging techniques. The kriging procedure also provided a standard deviation map, from
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which a CV map was calculated by dividing the standard deviation map by the till copper
map. The CV map was subtracted from 100 to conform to the reliability scale indicated
above.

Once the reliability maps for each predictor were determined they were combined
based on the method of calculating the DT A or LRA mineral potential maps. The DTA
mineral potential map was calculated from rule-based conditions. The summary rules (see
Chapter 5, Table 5.19) indicated that each rule was a combination of the SWF and one
other predictor (VOLCFELS or FLT400). Since the SWF does not have an associated
reliability map, then the reliabilities for the VOLCFELS or FLT400 maps were combined
based on the areas they influenced. For example, those areas on the DTA mineral
potential map defined by Rule 1 (i.e. SWF <0.17 and VOLCFELS=1) were assigned the
reliability from the VOLCFELS reliability map for that area. The LRA reliability map was
based on a combination of predictors as indicated in the final logistic regression equation
(see Chapter 5.4). A simple method of determining the reliability for the LRA was based
on the joint probability model as described by Berry (1993). In this method the reliability
maps for each predictor in the logistic regression equation were multiplied together to
provide a joint probability reliability map.

As a final summary analysis, those areas which have high mineral potential and
high reliability will be most favourable for further mineral exploration. To define these
favourable areas, the mineral potential maps were multiplied by their reliability maps. The
favourability maps were converted to binary and the two final maps, for the DTA and
LRA models, were combined (added together) to provide an overall favourability map.



This map was compared with the mineral occurrence sites to determine how many sites

coincided with the maximum favourability areas.

4.6 Summary

The preparation of valid response and predictor variables is of primary importance
to the modelling procedure. The geochemical databases took time to screen to provide
optimal predictors. The varied data types (e.g. continuous geochemical values, nominal
rock types, binary fault proximity) limited the methods available for quantitative
modelling. Both DTA and LRA were able to handle all the data types. DTA and LRA
were compared to provide an indication of the reliability of the modelling techniques, since

the sparseness of the dataset did not allow for a separate test dataset.



CHAPTER 5

Variable Analysis and Meodelling Results

This chapter presents the results of preprocessing of the response and predictor
variables for input into the quantitative modelling of mineral potential. The significance of
the predictors in determining mineral potential will be analyzed by two methods: decision
tree analysis (DTA) and logistic regression analysis (LRA). The results of the analyses
will be presented along with an assessment of their reliability. QOverall favourability for
mineral potential will be calculated by combining the mineral potential and reliability maps

for the two models.

5.1 Response Variable

Randomly distributed data is a necessary requirement for classical statistical tests.
The nearest neighbour index (Hammond and McCullagh, 1978) was used to test that the
response variable, MINOCC, had a random spatial point distribution. Based on the
equations presented in Chapter 4.1.1:

Debs =2 () / N =1.824 km

Dup=1/2JN/area =1.633 km

and R= PJ#"‘—'—‘ 1.12
D
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where d,, is the distance between nearest neighbours and N is the number of points. An
index value close to 1 indicates that the points are randomly distributed. The z-score, to
determine the significance of the nearest neighbour index is:
2= (Dow — Dexp,) / Opep (Hammond and McCullagh, 1978)
where Opep, =0.26136/ VN?/area =0.087
.

therefore, z = (1.824 - 1.633)/0.087 =2.19

A z-score less than 2.58 (at o = 0.01) confirms the index value of 1.12 and indicates an

random point distribution.

5.2 Predictor Variables

5.2.1 Till Geochemistry

The till geochemistry database consists of 247 samples with analyses for 34
elements. The first step in data analysis was to remove those elements which had a limited
or poor distribution of data. A review of the till database using EDA techniques (e.g. box-
and-whisker plots) and frequency tables indicated the elements Ag, Ca, Mo, Ta and W had
more than 50% of their values less than the analytical detection limit. Also, Cs had 37%
of its values less than the detection limit and the remaining Cs values were severely limited
in range. These elements were all removed from the database.

Univariate statistics consisting of the minimum, maximum, median, mean and
standard deviation, log mean and standard deviation and geometric mean, were tabulated

as a summary overview of the remaining 28 elements (Table 5.1). Histograms of the
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Table 5.1 : Univariate statistics for elements in till samples in the NTS 12A/10 area.

Standard Logarthmic | Log Standard | Geometsic
Element| Unit | N Minimum Maximum Medlan Mean Deviation Mean Deviation Mean

As N | ppm | 246 36 180 36.5 435 29.74 1.55 0.293 352
AuN | ppb | 246 <2 41 6.0 6.4 5.60 0.65 0.396 45
Ba N | ppm | 246 <50 620 330 338 88.4 2.51 0.147 324
B8r.N | ppm | 246 <05 81.0 26 4.1 6.78 0.25 0.623 1.8
Ce N | ppm | 246 23 110 57.0 58.3 15.69 1.756 0.120 56.2
Co N | ppm | 246 5 62 16.0 16.8 7.22 1,19 0.173 15.5
Cr N | ppm | 246 21 160 50.0 58.6 26.03 1.73 0.169 54.0
Cu C ppm | 240 15 392 72.1 80.3 40.03 1.86 0.206 72.1
Eu N ppm | 245 0.4 2.5 1.50 1.45 0.331 0.150 0.107 1.41
Fe N pct | 246 1.9 9.18 4,32 4.37 1.211 0.624 0.120 4.7
HE N | ppm | 246 3.0 24.0 5.0 6.0 2.77 0.74 0.156 5.6
La N | ppm | 246 88 50 24.5 253 6.03 1.39 0.106 246
Lu N | ppm | 246 0.29 1.00 0.580 0.589 0.112 -0.238 0.0845 0.578
Mg C pet | 240 0.52 1.79 0.93 0.94 1.641 -0.040 0.0740 0.91
Mn C | ppm | 240 562 4026 1273 1363 457.7 an 0.130 1301
Na N pct | 246 0.48 2.73 1.66 1.66 2.995 0.212 0.0830 1.62
_NI_C ppm | 240 10 78.1 26.2 280 10.15 1.42 0.154 26.3
Po C | ppm | 240 7 88.9 17.8 20.0 9.46 1.27 0.170 18.4
Rb N | ppm | 246 <5 99.0 31.0 319 18.17 1.37 0.426 236
Sb N | ppm | 246 0.5 13.0 215 2.40 1.410 0.334 0.188 2.16
Sc N | ppm | 246 9.0 28.0 18.0 17.6 3.18 1.24 0.0816 17.3
Sm N | ppm | 246 1.8 8.5 4.90 4.94 1.172 0.681 0.110 4.80
To N { ppm | 246 <0.5 15 0.90 0.83 0.333 -0.13 0.236 0.74
Th N | ppm | 246 26 15.0 6.30 6.65 1.813 0.808 0,112 6.43
UN ppm | 246 <0.5 11.0 210 2.49 1.297 0.340 0.235 2.19
vV C ppm | 240 59 191 107.7 111.8 23.868 2.039 0.0908 109.4
Yo N | ppm | 246 20 6.7 3.90 3.96 0.765 0.590 0.0855 3.89
Zn C | ppm | 240 42 731 105.3 111.2 52.70 2.019 0.146 104.4




clement values showed a positively skewed distribution. Therefore, all values were logged
to normalize the distributions. This had the added benefit of stabilizing the vartance
(Davis, 1986; George and Bonham-Carter, 1989).

A visual assessment of the spatial distribution of the elements can reveal
associations between the elements and spatial factors such as proximity to faults.
Therefore, graduated dot plots of many elements were plotted and any interesting spatial
associations were noted. Values near the 95®, 85", 70" and 50" percentiles were used as
quick break point values. The spatial distribution of copper values in till samples (Figure
5.1) shows a distinct difference between samples to the northwest of Victoria River versus
samples to the southeast of the river. The distribution may indicate elevated background
copper values in the Tally Pond volcanics in the southeast versus the Tulks Hill volcanics
in the northwest. The copper values for these two areas were extracted, with the dividing
line being the southern extent of the Tulks Hill volcanics (Figure 5.1). A comparison of
the box-and-whisker plots (Figure 5.2) for these two areas indicates some overlap in the
interquartile range but the 95% confidence interval for the medians (Rock, 1988) for the
two areas do not overlap (see below) indicating two separate groups:

95% Confidence Interval = median + 1.58 (interquartile range) / Jn

Northwest Area: 95% CI =53.9+ 1.58 (24.3) /+/96 =53.9+3.9
(actual range = 50.0 to 57.9)

Southeast Area: 95% CI=89.2+1.58 (44.1)/4150 =89.2+5.7
(actual range = 83.5 to 94.9)
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Figure 5.2 : A comparison of copper values in till samples collected from the northwest
and southeast of the study area.

A graduated dot plot map of the gold values in the till samples (Figure 5.3)
indicates a similar distribution to copper, but graduated dot plots and box-and-whisker
plots of lead and zinc do not show any distinct spatial distribution. These results suggest a
gold-copper association, which is supported by Spearman’s rank correlation coefficient
between logCu and logAu (r=0.45; Table 5.2). Spearman’s rank correlation coefficient is
used instead of the Pearson correlation coeflicient because, even though the data is
logged, some of the elements do not exhibit a true normal distribution.

Moderate to strong correlations (Table 5.2) exist between most ore elements

(logAu, logCu, logPb, and logZn) as well as some pathfinder elements (logAs, logSb).
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of the map.




Table 5.2 : Spearman’s rank correlation coefficient ( r ) for selected indicator elements
from till samples. Note that all correlations are 2-tailed and significant at the 0.01 level.

| " TLOGAS] LOGAU LOGCU LOGPB! LOGSH LOG.
| LOGAS[ r | 1.000
IN 2
[LOGAY r .44% 1. o
N 2 2
LOGCU r | 497 450, 1.000l
N 2 24 240
LOGPH r .80 25 311 1.0
N 240 2400 240 2
LOGSH r 651 397 482 412 1.000
N :ﬁ 2 2400 2
LOGZN r . 4 .66 .450( .415_1 1000
I'N 2400 240 2 2400 240 240

The strongest relationship is between logCu and logZn (r=0.667), which supports the
relationship between copper and zinc as indicated by the VMS deposit model. Due to
the moderately high correlations in Table 5.2 and for the rest of the database, principal
components analysis (PCA) should work well to reduce the 28 elements to a smaller
number of components.

The KMO measure of sampling adequacy was calculated to determine if the data
was suitable for PCA; a value greater than 0.6 indicates good factorability (Tabachnick
and Fidell, 1996). The KMO measure of sampling adequacy was 0.827, which indicates
that the overall database is factorable.

PCA is sensitive to multivariate outliers. To test the sensitivity of the till database
to multivariate outliers, the PCA results were compared before and after the outliers were

removed. Multivariate outliers are determined by calculating the Mahalanobis distance

(MD), available through the SPSS™ finear regression procedure. For 28 elements the
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critical chi-squared value, for a =0.001, is 56.9. Therefore, a MD greater than 56.9
indicates a multivariate outlier case. There were 13 cases greater than 56.9. A box-and-
whisker plot of the MD values (Figure 5.4) indicates the gap between the outlier values

(i.e. 6 cases from 56.9 to 63) and extreme values (i.e. 7 cases from 78 to 147).
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Figure 5.4 : Mahalanobis distance for till samples. Note the gap between the outlier
values (57 to 63: circles) and extreme values (78 to 147: stars).

Therefore, the 7 cases greater than 78 were considered multivariate outliers. These 7
cases were temporarily removed from the database. The PCA was repeated, with a
varimax rotation, and the results noted. The 7 cases were then included in the database
and the PCA was run again. The results (i.e. components, variance explained, loadings in
the rotated component matrix as well as the component values) were compared with and

without the 7 multivariate outliers. The components on both runs consisted of the same
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sets of elements. The percent variance explained for each component differed by less than
0.8% and the overall cumulative variance explained differed by 0.5%. The loadings in the
rotated component matrix were all comparable. The correlations on the output factor
scores were greater than 0.99 for each of the four components. This indicates that, for
this dataset, PCA is robust to these 7 multivariate outliers. Therefore, all cases were
included in the final PCA.

The next step was to determine the number of components to be extracted. Three
measurements provide an indication to the number of components to extract: the number
of eigenvalues greater than 1.0, the change in slope of the scree plot and the change in
variance explained from one component to the next. Six components had eigenvalues
greater than 1.0. The change in slope of the scree plot (Figure 5.5) occurs between 4 and
5 components. The rotated sum of squared loadings percent of variance explained was
19.8, 13.7, 13.5, 13.5, 8.9 and 4.8, respectively by the 6 components. The change in
variance explained from the fifth to the sixth component was much greater than the other
components. Therefore, 5 components were extracted and analyzed. The fifth component
had no loadings greater than |0.7} and consisted of logCr, logBr and logTb. These
elements are not geochemically interpretable. Therefore, the next analysis extracted 4
components. Each of the resulting 4 components is geochemically interrelated and has
strong loadings. The communalities for logBr and logTb were less than 0.2, indicating
that very little variance in these two variables was accounted for by the 4 components.

Therefore, logBr and logTb were removed from further PC analysis. LogAu had the next



lowest communality of 0.277 but since gold is a significant element for this study it was

kept in the analysis.
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Figure 5.5 : Scree plot for till PCA indicating the decrease in eigenvalues with increasing
number of components. To determine the appropriate number of components to extract
note the component number at the change in slope.

The PCA was repeated, extracting four components and saving the scores in the
till database. The final results are listed in Table 5.3. Each component explains more than
10% of the variance in the data with a total of 69.7% variance explained. The
communalities indicate how much of the variation of each element is accounted for by the
components (Tabachnick and Fidell, 1996). A summary of the elements characterizing
each component and their geochemical affiliation is provided in Table 5.4. The largest

communalities are for elements in component 1 (i.e. TPC1), indicating that their variance
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is very well explained by the components. TPC2 is the most important component for
exploration purposes in that it is characterized by the base metals (e.g. logZn, logCu,
logPb and logCo), gold and gold pathfinder elements (i.e. logAu, logAs and logSb).

Table 5.3 : Principal components analysis results for till samples in the NTS 12A/10 area,
with varimax rotated component matrix. Only loadings >0.3 are shown. Bold values
indicate component element affinities.

— Rotated Component Matrix
Element Component Communality
1 | 2 3 4

LOGYB 0.9085 0.886
LOGLU 0.890) 0.822|
LOGSM 0.877]  0.323 0.928
LOGEU 08600 0.34 0.892
LOGLA 0.69% 0.56 0,
LOGCE 0. 0.588 0.79
LOGZN o.né” 0.723
L OGAS 0.757| 0.713
LOGCU 0.32 0.711] 0.3 0.789
LOGCR -0.613 0.53 0.652
LOGHF -0.604] -0.4 0.688
) OGFE 0.491 0.589 0473 0.84
LOGCO 0.447, 0.568 0.4 0.7%
LOGMN 0.381 0.587| 0.360 0.614
LOGSB 0.47 0.506{ 0.301 0.59
LOGAU 0.475 0.27
LOGTH 0.310] 0. 0.827]
LOGNA 0.308{ -0.659 0.623
L OGBA 0.632 0.32 0.51
LOGPB 0.571 0.581 0.70
LOGU 0.569 0.431

OGRB 0.540 0.31

OGMG 0.883 0.781
LOGV 0.828 0.697]
LOGSC 0.31 0.756 0.763
LOGNI 0.3 0.562 0.614)

of

vanance | 214 18§ 15 G| 807
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Table 5.4 : A summary of the geochemical affinity of the four till principal components.

Component Elements Geochemical Affinity

TPC1 Yb, Ly, Sm, Eu, La, Ce Rare Earth Elements

TPC2 Zn, Cu, Pb, Co, Fe, Mn, Base Metals & Gold Association
Au, As, Sb

TPC3 Th, -Na, Ba, Ce, Pb, U, Granophile Elements
La, Rb

TPC4 Mg, V, Sc, Ni Mafic Elements

Qutliers in the resulting component scores indicated those cases for which the
factor solution was not appropriate. In the four components there were only three
negative outliers (i.e. standardized values less than —3.29) and one positive outlier that
was only slightly higher than +3.29 (i.e. 3.46 in TPC4). TPC2, the component of most
interest in this study, had no outliers (range -2.53 to 2.45) indicating that all cases fit this
solution well. Therefore, outliers to the solution were not deemed critical and the final
PCA was not repeated.

Data screening is required prior to PCA because it is based on the Pearson
correlation coefficient matrix, which is affected by skewness, linearity etc. A more robust
method of analysis would replace the Pearson correlation with Spearman’s rank
correlation coefficient in the PCA. The Spearman’s rank correlation coefficient has no
assumptions about the distribution of the data. The raw geochemical data can be used

without tedious data screening requirements. PCA results based on the Spearman’s rank
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correlation coefficient on the raw data produced essentially the same components as the
Pearson correlation on the logged data.

To determine whether the individual ore elements (i.e. Au, Cu, Pb, and Zn) or
component 2 (i.e. TPC2) are significant predictors of mineral occurrences their values
must be extracted at the 96 mineral/nonmineral occurrence sites. Therefore, the till point
data must be represented as a surface. If the data has a positive spatial autocorrelation
then kriging methods can be used to prepare an interpolated surface. Semi-variograms
and Moran’s I plots were evaluated for the four ore-forming elements (Au, Cu, Pb, and
Zn) and for TPC2 (representing the base metals and gold pathfinder elements). Qutliers
were changed to values just above the lower neighbouring value (Tabachnick and Fidell,
1996). For example, logCu had one high outlier (2.59) which was adjusted to 2.33 (next
lower value is 2.32). Adjustments of outliers had very little effect on the results.
Therefore the original values were retained. The variograms and Moran’s I plots are
presented in Figures 5.6a to 5.10b. A summary of the variogram results are listed in Table
5.5.

The results of the variogram and correlogram analyses indicate that all the
variables are positively, spatially autocorrelated and can be spatially interpolated using
kriging techniques. The following parameters were determined to provide the best block
kriging: a search radius of 8000 m, 3X3 local block grid and the use of 6 nearest
neighbours. For example, Figure 5.11 presents the interpolated surface for logCu. In
addition to indicating spatial autocorrelation, the correlograms also provide specific

information about the individual variables; TPC2 has the highest Moran’s I of 0.594 at an
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Figure 5.6a : Variogram of logAu in till. The best fitted model is exponential where

C0=0.049, Co+C=0.156, Ao=1190, r’=0.682 and Rss=0.0002.
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Figure 5.6b : Correlogram of logAu in till. Positive autocorrelation occurs to a distance of
about 6,000 m.
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Figure 5.7a : Variogram of logCu in till. The best fitted model is gaussian where
Co=0.023, Co+C=0.057, Ao=24740, r’=1.000 and Rss=0.0000.
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Figure 5.7b : Correlogram of logCu in till. Positive autocorrelation occurs to a distance of
about 12,000 m.
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Figure 5.8a : Variogram of logPb in till. The best fitted model is exponential where
Co0=0.013, Co+C=0.027, Ao=2930, r’=0.968 and Rss=0.0000.
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Figure 5.8b : Correlogram of logPb in till. Positive autocorrelation occurs to a distance of
about 10,000 m.
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Figure 5.9a : Variogram of logZn in till. The best fitted model is exponential where
Co0=0.005, Co+C=0.018, Ao=3400, r’=0.990 and Rss=0.0000.
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Figure 5.9b : Correlogram of logZn in till. Positive autocorrelation occurs to a distance of
about 10,000 m.
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Figure 5.10a : Variogram of the base metal component (TPC2) from till. The best fitted
model is gaussian where Co=0.404, Co+C=0.879, A0=9890, r’=0.999 and Rss=0.0002.
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Figure 5.10b : Correlogram of TPC2 from till. Positive autocorrelation occurs to a
distance of about 9,800 m.

- 103 -



Table 5.5 : Parameters for variograms of selected elements in till samples.

Element[Active] Lag [Nu Sill_[Range[ Effective | Model | RSS | R
Lag |[Class] Co |[Co+C| Ao Range E
u 16000 2600 0.0486{ 0.1562 1180 35700 Exponen. R.19x10 0.
ogCu | 28000] 3600 0.0229| 0.056¢1 2474 42851 Gauss. [.78x10" | 1.00
JogPb | 16000 2300 0.0134] 0.026 879 26370 Exponen. [1.84x10° | 0.97]
ogZn | 13500] 2000 0.0053| 0.0176/ 3410]  10200] Exponen. [5.11x10” | 0.99
C2__| 13000 2000 0.4040] 0.6790] 9890] 17130 Gauss. |1.60x10" | 1.00

average lag of 1010 m and logCu has the longest positive autocorrelation of 12 km.

As well as providing the interpolated surfaces, the program GS+ also provides a

standard deviation surface. This surface indicates the variability of the data around each

point. A coefficient of variation (CV) surface was derived from the standard deviation

surface by dividing it by the kriged surface (representing the mean). The CV surface for

logAu in till ranges from 11.1 to 27.4%. Similarly, logCu and logZn atso have good

reliability with logCu CV ranging from 7.5 to 18.4% and logZn CV ranging from 8.3 to

26.3%. LogPb had the worst variance with CV ranging from 18.5 to 41.5%. TPC2 CV

range from 6.4 to 40.5%. An analysis of the CV values extracted at the 96

mineral/nonmineral occurrence sites indicates the highest values occur at the nonmineral

occurrence sites. This may be a reflection of the wider spacing (poorer spatial

autocorrelation) occurring around the nonmineral occurrence sites.

5.2.2 Lake Sediment Geochemistry

Similar to the till database, the first step in data analysis was to remove elements in

the lake sediment database which had a poor data distribution. EDA techniques indicated
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the elements Eu, F, Se, Ta, and W all had more than 50% of their values less than the
detection limit, and Ag, Cr, Cs, Hf, and Rb all had more than 40% of their values less than
the detection limit. These ten elements were removed from the database, leaving 22
elements (i.e. As, Au, Ba, Br, Ce, Co, Cu, Fe, La, Mn, Mo, Na, Ni, Pb, Sb, Sc, Sm, Tb,
Th, U, Yb, Zn) plus loss-on-ignition (LOI-pct), sample depth (sampdpth), and lake area
(lakarea).

The frequency table for LOI indicated 5 samples with LOI values greater than
95%; the next highest value was 79%. These S samples had less than 5% sediment (i.e.
silt plus clay) and so their trace element composition was suspect. These 5 samples were
deleted from the database. This reduced the number of lake sediment samples to 194.

Univariate statistics were tabulated as a summary overview of the 22 elements
(Table 5.6). Histograms of the element values showed a positively skewed distribution.
Therefore, all values were logged which tended to normalize the distributions and stabilize
the variance (Davis, 1986; George and Bonham-Carter, 1989).

A visual assessment of the spatial distribution of lake sediment geochemistry can
reveal spatial associations. Element values were mapped onto the catchment basins and
plots (e.g. Figure 5.12) were axamined to identify any spatial associations. Values near
the 95", 85® 70™ and 50" percentiles were used as quick break paint values. Unlike the
till data, the spatial distributions of the element values in the catchment basins did not
show any obvious visual associations with factors such as faults or rock type.

Spearman’s rank correlations between selected lake sediment elements (Table 5.7)

may indicate associations which provide information on the nature of the geochemical
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Table 5.6 : Univariate statistics for elements in lake sediment samples in the NTS 12A/10 area.

Standard | Logarithmic| Log Standard | Geometric
Element | Unit N_|Minimum| Maximum ) Median| Mean_ | Deviation Mean Deviation Maan

As1 “ppm | 193 1.2 375 20 36.8 49.81 1.30 0.488 20,1
Aul ppb | 193 <2 129 <2 2.35 9.267 0.152 0.282 1.42
Ba1 ppm | 193 <50 2080 72 125 193.0 1.88 0.408 75.4
Br1 ppm | 193 2.6 85.4 26 28.7 14.98 1.39 0.270 24.5
Ce1 ppm | 193 <2 2731 18 24.1 26.07 1.17 0.518 14.7|
Col ppm | 184 <2 102 7.0 9.72 11.40 0.804 0.398 6.37
Cu3 m | 194 3 80 24 277 14.29 1.38 0.221 24.4
Fel pct 194 0.13 15.6 1.3 1.98 2.123 0.119 0.384 1.32
La1 ppm | 193 <2 81 10 124 8.320| 1.02 0.258 10.5
Mn3 ppm | 194 41 98700 339 1753 7883 282 0.558 417
MoS ppm | 194 <2 22 3.0 4.11 3.015 0.516 0.207 3.28
Na1 pet 193 <(0.05 2.36 0.14] 0.322 0.4405 -0.775 0.475 0.168
Ni3 ppm | 194 <2 66 15 17.2 10.57 1.16 0.258 14.6
Pb3 ppm | 194 <2 343 5.0 8.19 24.78 0.687 0.379 4.86
Sb1 ppm | 183 <0.05 4.3 0.34] 0471 0.5052 -0.484 0.391 0.320
Sc1 ppm | 193 0.5 20 5.1 8.03 3.749 0.704 0.261 5.06
Sm1 ppm { 183 0.2 16.8 2.9 3.28 1.887 0.450 0.252 2.82
Tbi ppm | 1983 <0.5 2.8 0.55] 0.815 0.3438 -0.271 0.230 0.535
Thi ppm | 183 <0.2 17.5 1.5 2.07 1.847 0.208 0.297 1.61

Us ppm | 194 <0.2 16.2 2.3 287 2.129 0.364 0.294 2.31
Yb1 ppm | 183 <0.5 4.4 1.2 1.38 0,9838 -0.0311 0.428 0.931
Zn3 ppm | 194 4 478 08 112 76.37 1.95 0.311 89.4
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affinities. The highest correlations are between logPb and logSb (r=0.58) and between
logZn and logAs (r=0.54). These associations, between base metals (logPb and logZn) and
the gold pathfinder elements (logSb and logAs), may indicate the presence of gold in the

vicinity of the base metals.

Table 5.7 : Spearman’s rank correlation coefficients for selected elements from lake
sediment samples.

| LOGAS| LOGAU| LOGCU| LOGPB| LOGSH| LOG:
LOGAS| Correlation Coefficiend  1.000

ﬁuz-mh% .
193]

LOGAU| Correlation Coefficient .21 1.000

Sig. (Z-taﬂ% 002 .
19 19

LOGCU| Correlation Coefficient 227 22 1.000)
Sig. (2-tailedi 002 .001 .
193] 193] 19

LOGPB| Correlation Coefficient] 309 .12 225  1.000
Si&(z-tailedl} 0000 .07 .00 .
193 193 19 19

LOGSH| Correlation Coefficien: 49 2861  .361 517 1.000
Sig. (2-tailed) . . 0000  .000 )
N 193 193 193 193 193
Correlation Coefficien sS4l 039 397 .45 4 1.000
Sig. (Z-taile% 0000 587 000  .000f . .

193 193 194] 194] 193 194]

Linear regression analysis was performed on the lake sediment database to reduce
false anomalies caused by lake effects (see Chapter 2.1.2). Prior to linear regression, it is
necessary to remove univariate and multivariate outliers. Univariate outliers were
determined by reviewing standardized Z values of all the logged elements. Standardized

values greater than an absolute value of 3.29 (for o = 0.001) were considered univariate
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outliers. Six univariate outliers were temporarily removed from the database prior to
linear regression analysis. Multivariate outliers were checked among the independent
variables (IVs) in the analysis (i.e. logFe, logMn, LOI_pct, loglarea and logsdep;
Tabachnick and Fidell, 1996). Multivariate outliers are determined by checking the
Mahalanobis distance (MD), available through the SPSS™ linear regression procedure.
The critical chi-square value (for a = 0.001 and 5 degrees of freedom) is 20.515.
Therefore, a MD greater than 20.5 indicates a multivariate outlier case. There were 3
cases greater than 20.5, but the maximum MD was 27.5, which is not much greater than
the critical value. Therefore, no cases were removed due to multivariate outliers. The
linear regression analysis was run on 187 samples.

Linear regression analysis was performed on those elements where the correlation
between the element and lake effects (logFe, logMn, LOI_pct, loglarea or logsdpth) was
greater than 0.5 (Davenport et al., 1974; Davenport and Nolan, 1991). All elements
except logAu, logCu, logNi, and logPb had a correlation coefficient greater than 0.5 with,
at least, some IVs. Stepwise linear regression was run for each element using only the
correlated IVs. The computed residuals were saved to the lake sediment database. The
residuals were examined and 3 outlier cases (not the same 3 cases as the multivariate
outliers) were removed and the linear regression analysis was repeated. Eight elements
(logAs, logBr, logCo, logNa, logSc, logTh, logYb and logZn) had significant enough
correlations (i.e. were strongly influenced by lake effects; see methodology in Chapter
4.1.2.1) to justify calculation of their residual values for use in subsequent analyses. The

five lake effects accounted for 41% to 72% of the variance of these 8 elements. The
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residual values for the outliers were calculated manually using the final linear regression
equations (P. Davenport, pers. comm., 2001).

A comparison of the correlations based on the residual arsenic and zinc values
(Table 5.8) as opposed to their log values (Table 5.7) indicated a considerable decrease.
For example, the correlation between logZn and logAs was 0.54, which was reduced to
0.11 for rZn and rAs. This indicates the significance of lake effects on element values and
how the removal of the lake effects may affect statistical analyses by reducing correlations.

Low correlations among the 22 lake sediment elements, compared to the till
elements, may indicate that PCA will not be as effective. Therefore, the KMO measure of
sampling adequacy was calculated to determine if the lake sediment data was factorable.
The KMO measure of sampling adequacy was 0.810. KMO values greater than 0.6
indicate that the overall database is factorable (Tabachnick and Fidell, 1996).

To reduce the effects of outliers on the PCA, multivanate outliers were determined
by calculating the MD. For 22 elements the critical chi-square value (for a = 0.001) is
48.3. Therefore, any MD greater than 48.3 indicates a multivariate outlier case. There
were 7 cases much greater than 48.3. These cases were temporarily removed and the
PCA calculated.

After the outliers were removed the number of components to be extracted in the
PCA were determined using eigenvalues, the scree plot and the change in component
variance. The number of eigenvalues greater than 1.0 was 7, but the scree plot (Figure
5.13) indicates a change in slope at 4 to 6 components. The percent of variance explained

by the varimax rotation had the largest drop from 10.4% to 7.1% from the 4™ to the 5®
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Table 5.8 : Spearman’s rank correlation coefficients for selected lake sediment elements
against residual As and Zn. Note the reduced correlations compared to values in Table

5.7.
RAS RZN|
RAS} Correlation Coefficient] 1.000{ .11}

Sig. (z-uﬂ% ] .12
193] 193

LOGAU| Correlation Coefficient| .128 -.061
Sij._(2-taileﬂ 082 .39

193] 193]
LOGCU Correlation Coefficiend .033] .163]
Sig. (2-tailed% 654 .02

193] 19
LOGPB] Correlation Coefficientf .231] .26
Sig. (2-tailed) .001[ 000
193 19
LOGSB! Correlation Coefficiend .198 .134]
Sig. (2-uiled) .006] 062
N 193 193
Correlation Coefficien .111{ 1.000

Sig. (2-mﬂa% 124 .
193] 194

components, respectively. Therefore, 5 components were extracted on the next analysis.

The communality for rCo was the lowest in the list (0.25), indicating that the
factors did not account for much of the variance in rCo, so rCo was deleted. The fifth
component had low loadings (< [0.6{) and the variables contributing to the fifth component
were not geochemically consistent. Therefore, 4 components were extracted on the next
analysis. The fourth component (LPC4) contained low loadings (nothing greater than
|0.6]) but the variables were geochemically consistent and significant to this study (i.e.
gold and its pathfinder elements rAs and logSb). The component scores were saved to the
lake sediment database. The component scores were reviewed and 1 score was an outlier
to the solution. Since this outlier was not in LPC2 or LPC4 (the two components of

interest in this study) the final PCA was acceptable. The PCA results are listed in Table
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Figure 5.13 : Scree plot for lake sediment PCA indicating the decrease in eigenvalues with
increasing number of components. Note the change in slope around 5 components.
5.9. The scores for the 7 multivariate outliers were calculated using the component score
coefficient matrix and input back into the database (P. Davenport, pers. comm., 2001).
Each of the first three components explains more than 10% of the variance.
Component 4 (LPC4) only explains 9% of the variance but is composed of logAu and it
pathfinder elements, logAs and logSb. Component 2 (LPC2) is characterized by the base
metals (e.g. logNi, logCu, logMn and logMo). Overall, the four components explain
61.9% of the variance. A summary of the elements characterizing each component and

their geochemical affiliation is provided in Table 5.10.
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Table 5.9 : Principal components analysis results for lake sediment samples in the NTS
12A/10 area, with varimax rotated component matrix. Only loadings >0.3 are shown.
Bold values indicate component element affinities.

Rotated Component Matrix
Element Component Communality
1 2 3 4

LogLa 0.906 0918
LogSm 0.900 0.808
LogTh 0.870] 0.827
LogCe 0.785 0.632
fTh 0.584 0.320 0.386 0.646
LogU 0.561 0.336 0.365 0.561
rYb 0.475 0.425 0.514
LogFe 0.511 0.725 0.804
LogNi 0.702 0.524
LogCu A 0.680| 0.538)
LogMn 0.475 0,672 0.703
LogMo 0.648 0.459)
rSc 0.852 0.760
Na 0.851 0.780
2n 0.603 -0.378 0.622
LogBa 0.371 0.313 0.491 0.518
LogPb 0.305 0.430] 0.404
LogAu 0.590 0.354
rBr -0.585 0.478
rAs 0.484 0.300
LogSb 0.415 0.425 0.365 0.474 0.712
% of

variance 236 15.9 13.4 8.9 61.9

Table 5.10 : A summary of the geochemical affinity of the four lake sediment principal
components.

Component Elements Geochemical Affinity
LPC1 La, Sm, Tb, Ce, Th, U Rare Earth Elements
LPC2 Ni, Cu, Mn, Mo Base Metals

LPC3 Sc, Na,Zn, Ba, Pb Mafic Volcanics

LPC4 Au, As, Sb Gold Association
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As a test on the effects of the outliers, the PCA results were compared before and
after the outliers were removed. Unlike the results from the till PCA, the lake sediment
PCA results with and without the outliers were significantly different, indicating the lake
sediments PCA is not robust to outliers. This may be because the till outliers were only

moderately greater than the MD whereas the lake sediment outliers were much greater

than the MD critical value.

5.2.3 Geology

The VMS deposit model indicates that submarine volcanic rocks (e.g. felsic and
mafic marine volcanics) are the host racks for the Cu-Pb-Zn mineralization. Table 5.11
presents a summary of the rock types (from the 1:50,000 scale geology map) occusring at
the 96 mineral and nonmineral occurrence sites. The largest frequency of occurrence (21
of 96) is of the rock type ‘volcanic, felsic marine’ and occurs predominantly at the mineral
occurrence sites. Marine siliciclastics (an undifferentiated group of marine clastic rocks)
are the most common rock type at the nonmineral occurrence sites (12 of 96). Marine
sandstone and marine siltstone can aiso be included in the marine siliciclastic group,

occurring at 6 nonmineral occurrence sites.

5.2.4 Fault Proximity and Weights of Evidence Modelling
Both the VMS and gold deposit models indicate that the proximity to faults is a
positive factor in the exploration for these types of mineral occurrences. Therefore, the

distance from faults may be an important predictor in the mineral potential models.

- 115 -



Table 5.11 : Frequency of 1:50,000 scale rock types at mineral occurrence and nonmineral
occurrence sites.

Rock Type (Geolcode) Frequency at Frequency at
Mineral Occurrences | Nonmineral Occurrences

Volcanic, felsic marine (10) 21 6
Volcanic, mafic marine (11) 7 _9
Voicaniclastic (12) 8 7
Plutonic, felsic (1) 1
Plutonic, intermediate (2) 2 1
Plutonic, mafic (3) 1 3
Siliciclastic, marine (5) 6 12
Silicictastic, marine sandstone (6) 4
Siliciclastic, marine siltstone (7) 2
Siliciclastic, non-marine (8) 2
Siliciclastic, non-marine conglomerate (9) 2
Siliciclastic, black shale (4) 2

Total 47 49

Fault proximity values in the study area range from 0 m to over 8000 m with a
very positively skewed distribution. Mineral occurrence distances from the faults range
from O m to 5622 m whereas nonmineral occurrences range from 0 m to 8109 m.

The normalized fault distance (NFLTDST) was calculated from FLTDST - the
distance in metres from the fauits. The NFLTDST was very positively skewed.
Therefore, the arcsine transform was used to convert it to a more norma!l distribution in
the variable ARCSFLT. ARCSFLT values close to O represent areas far from faults and
maximum ARCSFLT values are close to faults.

The binary representation of fault distance was calculated by the weights of
evidence modelling method (Bonham-Carter, 1994) which is used to determine the
optimal threshold or cutoff distance (see Chapter 4.1.2.3.1). The weights of evidence

calculations are based on a raster set of fault proximity buffers from 200 m to 2400 m
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away from the faults. Most of the mineral occurrences occur within the 2400 m buffer (31
of 47) so it was unnecessary to increase the buffer size beyond 2400 m. The calculations

for the positive and negative weights of evidence, along with their variance, are presented

in Tables 5.12 and 5.13. Note that all the W™ are positive and all the W™ are negative,

indicating a positive correlation between the fault buffers and the mineral occurrences.

Table 5.12 : Weights of evidence calculations for W* (based on Bonham-Carter, 1994),

P(BIQ /

Buffer | N(BID) | NO) | P(BID) || N®|D) | N(D) |PEID) || pgy 5y | W | 5W)
0-201 71 47 0.1489 1598 25853 0.0618/} 24095 0.87 0.143
0-401 14 ﬁ[ 0.2979[ 2607 2585§| 0.1008|| 29539 1.0831 0.071&]
0-601 16 47 0.3404]] 3907 25853 0.1509] 22555 0.8134 0.062¢
0-801 19 47 0.404 4843 25853y 0.1873)] 2.1580) 07692 0.0528
0-1001 24 47 051 6248 25853 0.241 21129 0.7481 0.041§
0-1201 26 47| 05532 7143{ 25853[ 02763{| 20022 06842 0.038¢
0-1401 26] 47| 0.5533 8016] 2sas:ﬂ 0.3101); 1.7841 0.5789| 0.0386]
0-1601 280  47] 05967]] 9144 25853 0.3537]] 1.6844] 0.5214] 0.035§
0-1801 2g[ 4% 0.6170 1006q 25853[ 0.3895 1.584:}L 0.4601 0.03461
0-2001 29 47 0.6170 11003 25853] 0.42561 1.4498] 0.371 0.0346|
0-2201 30 47] 0.6383| 11650 25853] 0.4506| 1.4165| 0.3482] 0.0334]
0-2401 31| 47] 0.6596[] 12278 25853 0.4749{| 1.3888 0.3285 0.0323

Note: N(B|D) = number of fault buffer cells intersecting mineral occurrences, N(D) = number of
mineral occurrences, P(B|D) = probability of a fault buffer cell given a mineral occurrence =

N(BIDY/N(D), N(B| D ) = number of fault buffer cells intersecting nonmineral occurrence, N(D ) =
number of nonmineral occurrences, P(B| D ) = probability of a fault buffer cell given a nonmineral
occurrence = N(B|D )/ N(D ), W* = In[P(B{D)/P(B} D )], s*(W") = I/N(B|D) + I/N(B|D ).

Table 5.14 contains the contrast calculations and the Studentized C values (SC).

The SC values were all greater than 2.0 with two-thirds being greater than 3.0, indicating

good reliability in the contrast (Bonham-Carter, 1994). The maximum contrast occurs at
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Table 5.13 : Weights of evidence calculations for W™ (based on Bonham-Carter, 1994).

Buffer | N(B |D) [NO) {P(B |D) lN(ElB) N(D) |P(B|D) :Egi%’ W [ sw)
0-201 40 47 0.8s1i|| 24258 25659 0.9 0.9071] -0.0879 0.02
0-401 3y 47 07021|] 232 ziasq 0.8002 0.7809] -0.2473 0.030:
0-601 3| 47 065 21951 25650 0.8491]|  0.7768 -0.2528 0.032
0-801 | j‘ 0.5957)| 21010 25659 0.6127]|  0.7331) -0.310§ 0.0359
0-1001 74 47 0. 19605 25854 0.7589|  0.6453 -0.4380 0.0434
b-1201 | 47| 0.4488| 18710 2 'sa's; 0.723 0.6174 -0.4823 0.04
1401 | 47] 0.4488| 17837 25853 0.68 0.6476] -0.4345 0.047
p-1601 19 47] 04043 | 16709 25853 0.646 0.6255 -0.4697 0.052
0-1801 14 47| 0.3830] 15784] 25653 0.610 06279 -0.4663 0.05
0-2001 1§ 47 0.3830| 14850 25659 057 0.6667] -0.4053 o.os:;
0-2201 17| 47) 0.3617]| 14203 25853 0.54 0.6584] -0.4180 0.0569
0-2401 16 47] 03404 13575 2585 0.5251]|  0.6483 -0.4334 0.0626

Note: N(B |D) = number of nonfault buffer cells intersecting mineral occurrences, N(D) = number
of mineral occurrences, P(ElD)=probabilityofamnfaultbuﬂ'ercellgivmamineraloccurrenoe
= N(B [D)/N(D), N(B | D ) = number of nonfault buffer cells intersecting nonmineral occurrence,
N(D ) = number of nonmineral occurrences, P(B|D ) = = probability of a nonfault buffer cell given
anonmmeraloccunence-N(BlD)lN(D) W =In[P(B [D)P(B|D )], s(W) = UN(B D) +

IN(B|D).

a buffer distance of 400 m (Figure 5.14), which also had the highest SC value of 4.16. A

secondary maximum occurs at 1000 m. From this information, two new variables were

added to the attribute table. The variable FLT400 was coded ‘1’ for FLTDST values

ranging from O to 400 m and coded ‘0’ for FLTDST values greater than 400 m. A second

variable, FLT1000, was coded ‘1’ for FLTDST values ranging from 0 to 1000 m and

coded ‘0’ for FLTDST values greater than 1000 m.

-118-



Table 5.14 : Contrast and Studentized C calculations (based on Bonham-Carter, 1994).

Contrast | Buffer | s(C) s(C) [SC=C/s(C)
0.9769 0-201 | 0.1685 04105 23797
13308 0401 | 01022 03196 4.162
10659 0-601 | 0.0951 03083 34572
1.0797 0-801 0.08 02977[ 3.6273
1.1861) 0-1001 | 0.0854 02922  4.059
11765 0-1201 | 00863 0.2937] 4.005
10134 0-1401 | 00863 02937 3.4508
09806 0-1601 | 0.0885 0.2075  3.3206]
0.9265 0-1801 | 0.0907 03003  3.0848
0.7768 0-2001 | 0.0002 0.3003  2.5854
0.7661] 0-2201 | 0.0823 0.303 25219
0.7618] 0-2401 | 00949 0.3081 24728

Note: Contrast = W - W, s%(C ) = s(W*)+s*(W).

1.4

1.3

1.2

Contrast

09
08 r

0.7 : : : L :
0 500 1000 1500 2000 2500 3000

Distance (m)

Figure 5.14 : Contrast plot indicating two optimal distances (400 m and 1000 m) to
convert fault proximity from a continuous distribution to a binary distribution (based on

Bonham-Carter, 1994).
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The binary FLT400 and FLT 1000 variables will be compared with the continuous
fault proximity measure ARCSFLT in the DTA and LRA modelling to determine which

variable better predicts mineral occurrences.

5.2.5 Surficial Geology

Table 5.15 presents a summary of the surficial geology units occurring at the 96
mineral/nonmineral occurrence sites. The highest frequency of sites (34 of 96 sites)
occurs over drift/rock, which has an average sediment thickness of | m. The average
thickness of surficial sediments, as estimated by Klassen (unpublished map), was
compared with the values of logAu, logCu, logPb, logZn and TPC2 from the till samples.
The maximum Spearman’s rank correlation coefficient was between the sediment
thickness and logCu (r=0.302). The box-and-whisker plots (Figure 5.15) indicate a slight

increase in copper values with increasing thickness of sediment, but the reasons for this are

beyond the scope of this study.

Table 5.15 : Surficial geology descriptors, codes, frequency, and mean thickness.

Mean

Description Code | Frequency | thickness
(metres)

Bedrock 1 18 0
| Drift/rock 2 M4 1
Till 3 12 3
Tillgravel 4 17 35
Drift 5 7 6
Qutwash 6 2 -
| Alluvium 7 1 -
Organic material 8 3 -
Unlabelled 9 2 -
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Figure 5.15 : Relationship between copper values (log ppm) and thickness of surficial
sediments: bedrock (0.0 m mean thickness of sediment), drift/rock (1.0 m mean thickness),
till (3.0 m mean thickness), till/gravel (3.5 m mean thickness) and drift (6.0 m mean
thickness).

5.2.6 Wetlands

To determine if there is a relationship between wetlands and the geochemistry of
till samples, the wetland type (i.e. wetland, stringbog or dryland) was extracted at the 96
mineral/nonmineral occurrence sites. Only 4 sites occurred within wetlands. Box-and-
whisker plots of the 4 samples in wetlands compared to the 92 samples on dry land did not
indicate any major difference in the values of logAu, logCu, logPb, logZn, and TPC2 from
tills. The 95% confidence interval for the medians of the wetland group overlapped the

values for the nonwetland group for the five variables. For example, the 95% confidence
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interval for the median for logCu in wetands is 1.61 to 1.97, whereas the values are 1.81

to 1.87 for logCu in dryland.

5.2.7 Spatial Weighting Function

The nearest neighbour index (Chapter 5.1) indicated the 96 mineral/nonmineral
occurrences are randomly distributed. Prior to developing a spatial weighting function, it
was also necessary to show that the 96 occurrences are positively spatially autocorrelated.
The spatial autocorrelation was evaluated using the Moran's 1 statistic for point data
(Kvamme, 1990; CIiff and Ord, 1973; see Chapter 4.1.2.6). Sums used in the spatial

autocorrelation calculations are presented in Tables 5.16 and 5.17.

Table 5.16 : Calculation of moments (based on Kvamme, 1990). The total number of
points is 96 (points 4 to 93 have been removed for presentation purposes), where x; = 1
for the 47 mineral occurrences and x; = 0 for the 49 nonmineral occurrences.

ID | UTMeast | UTMnorth | x | (x-meanx) |[(x-meanx)‘] (x-meanx)”

1 5191500 5387150 1] 051 0.260 0.087
§21710] 539830 | 05104 0.260§ 0.067
é—smsso'_‘}smsz 1~ 05104 0.260 0.067
5314 53 of -048 0.239 0.057
95 535748 539562 o -048 0.239 0.057
527723 5399466 04896  0.239 0.057
sum= 4 0.00000  23.9896] 6.0052|

meanx=| 0.4q

by 100

Note: b, = [nZi(x-mx)*)/[Zi(x;-mx)’}’ , where mx represents the mean of x.
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Table 5.17 : Weighted calculations between pairs of points (based on Kvamme, 1990).
A total of 105 pairs of points were within 2500m of each other (point pairs 8 to 102
have been removed for presentation purposes). Distance between points was measured
in metres. The weight (w) is measured as the inverse of the distance.

4

i | j| distance | w=1/d wy x; | % | (-meanx) | (x-meanx) |w (x-meanx) (x-meanx)
1 28] 561.81] 1.78E-03[3.17E-08 1 | 1 0.5104f 0.5104 4.64E-04
1 33|  338.38] 2.96E-03|8.73E-06] 1| 1 0.5104] 0.5104 7.70E-04
1] 37| 1614.75] 6.19E-04|3.84E-07] 1 | 1 05104 05104 1.61E-04
1/ 40|  335.41] 2.98E-03|8.89E-06[ 1 | 1 05104 05104 7.77E-04|
1 41| 2367.64] 4.22E-04]1.78E-07[ 1 | 1 0.5104] 0.5104 1.10E-04
1| 42 2166.4] 4.62E-04[2.13E-07] 1 | 1 05104 0.5104 1.20E-04]
2| 21] 1012.04] 9.88E-04/9.76E-07] 1 | 1 05104] 0.5104 2.57E-04
67| 68 1026.25| e.ﬁ_e-m 949E-07/ 0| 0| -0.4896] -0.4896 2.34E-04
70| 78] 2109.56] 4.74E-04{2.25E-07| 0 | 0 | -0.4896] -0.4896 1.14E-04
75| 83| 1236.21] 8.09E-04|6.54E-07| 0 | 0| -0.4808] -0.4896 1.94E-04|
Half matrix sums| 9.61E-02[2.11E-04 1.37E-02
Full matrix sums| 1.92E-01)4.22E-04 2.75E-02

The spatial autocorrelation measure for Moran’s I is:
I=n[Zw;(x;-mx)(x;-mx)] / WEi(x;-mx)
= 96*[2.75*10%)/ 0.1922*23.9896
=0.5726
(where the above values were obtained from Tables 5.16 and 5.17; mx represents the
mean of x, W=Zw; = 0.1922).
The expected value of 1 is:
E()=-(n-1)" = -0.0105
Using the randomization assumption, the significance test for I is:

Varg(I) = {[n(P:+P;)-b2(P3+Ps)] / [(n-1)(n-2)(n-3)W*]}~(n-1)
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where Pi=(n’-3n+3)S, =7.5397 ( S;=2Zw;’=8.44x 10*),
Pa=3W2-nS; = -0.3411 ( S;=4Z(Z;w;)* = 4.71 x 10°, values from Appendix A:
Program Al),
Ps=(n’-n)S, = 7.6992, and
P=6W3-2nS, = -0.6823.
be=nZi(x;-mx)* / [Zi(xi-mx)*]* = 1.0017 (values from Table 5.16)
therefore, Varg(I) = 0.0222.

The test for Moran’s I using the standard normal deviate, z, is :
z=[1-E(1)] /y/var(l)
=[0.5726-(-0.0105)} / ,/0.0222) =391,

The value of the point-pattern Moran’s [ statistic is 0.573 with an expected value
of -0.0105. The variance (under the randomization model) is 0.0222 resulting in a
standard normal deviate of 3.91, For a one-tailed test, where «=0.05, Z=1.645.
Therefore, the null hypothesis is rejected in favour of the alternative hypothesis that the
mineral and nonmineral occurrence points are spatially autocorrelated (i.e. neighbouring
values tend to be similar). Therefore, the use of a spatial weighting function, representing
the potential for mineralization, is warranted as an independent variable.

The spatial weighting function (SWF) calculations were described in Chapter
4.1.2.7. Prior to calculating the SWF, the appropriate search radius (neighbourhood)
must be determined. The neighbourhood was determined by plotting a correlogram

(Moran’s I versus Separation Distance) of the mineral/nonmineral occurrences (Figure
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5.16). The correlogram indicates the neighbourhood of positive spatial autocorrelation
extends to about 2500 m from the occurrence sites. Therefore, only points within a 2500

m neighbourhood of each site were included in the SWF calculations.

1,00 [ Isotropic Correfogram
0s0f O
(]
- g D n
000 4 B 0 —
E ] u [m] a a
050
100
0.00 2500.00 S000.90 7500.00 10000.00
Separation Distance

Figure 5.16 : Correlogram of the mineral/nonmineral occurrences, indicating the range (0
to 2500 m) over which spatial autocorrelation is positive.

The equation for the SWF is:

iWﬂ *x,
SWF, = & ——o
2%,
Jy=1

where the weight, W;;, is the inverse distance between points i and j and x; equals | if the

jth point is a mineral occurrence and 0 otherwise. The program used to calculate the SWF
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is presented in Appendix A: Program A2. The resulting SWF values range from 0 to |
where 0 indicates the point does not have any mineral occurrence neighbours and 1
indicates all the neighbouring points are mineral occurrences. The median SWF values for

mineral and nonmineral occurrences are 0.81 and 0.00, respectively.

5.3 Decision Tree Analysis
DTA was used to classify the 20 predictor variables (consisting of till and lake

sediment geochemistry, fault proximity, geology, surficial geology, wetlands and the
SWF) based on their relationship to the mineral occurrence response variable, MINOCC.

A preliminary DTA was calculated on the full dataset to determine whether the
predictors could explain the response variable significantly more than chance. At this
stage the filter level was set to exploration mode (i.e. a = 0.20) to determine preliminary
associations between the variables. The Bonferroni level was set to 3 to reduce spurious
groupings by adjusting for correlations within the till, lake sediment, geology and fault
predictors (e.g. high correlations exist between till logCu, logZn and PC2). The ‘grow
method’ was set to exhaustive and the preliminary decision tree was grown automatically.
The resulting accuracy of prediction was 80.2%. This high accuracy indicated that at least
some variables predict the mineral/nonmineral occurrences well. Subsequent analyses
were used to determine the fewest and best predictors of mineral occurrences.

With the filter level still set to exploration mode (o = 0.20) and the grow method
set to ‘exhaustive’ the analysis was repeated more slowly by using the ‘find split’ method.

The most significant split on the dependent variable MINOCC was by the SWF (Figure
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5.17) with a significance of 0.001 and an accuracy of 72.9%. This indicates that the
neighbourhood effect is the most important predictor. Other significant splits at this level
were VOLCFELS, FELSICS, FLT1000, FLT400 and GEOLOGY with significance
levels ranging from 0.002 to 0.070, respectively and accuracy ranging from 60% (for
FLT400) to 69% (for GEOLOGY). GEOLOGY split the data into 3 groups; with
volcanic felsics being the major rock type (27 of 29) of one group. Twenty-three of the
29 cases in this group were mineral occurrences. This validates the importance of the
volcanic felsic association with mineral occurrences as indicated in the VMS deposit
model (see Chapter 3.1.2). Overall, the SWF was retained as the primary predictor
because it seems reasonable to assume that neighbourhood effects are significant in
determining mineral potential. Of the 47 mineral occurrences, 39 (83%) are related to the
larger SWF values (i.e. 0.17 to 1.0), confirming the positive spatial association between
mineral occurrences (i.e. similarity with their neighbours).

The most significant split off the SWF node [0.17 to 1.0] was by FLT400 (Figure
5.17) with a significance of 0.045. This split did not increase the classification accuracy,
which remained at 72.9%. FLT400 split the 57 sites into two groups; 15 sites occur
within 400 m of a fault (FLT400=1) and 42 sites occur more than 400 m from a fault
(FLT400=0). The FLT400=I node was further split by the SWF (Figure 5.17). This split
characterized 14 mineral occurrences with very high SWF values from 0.64 to 1. This
split also classified a single case as near faults but with only moderate SWF values (0.17

to 0.64). The node increased the classification accuracy along this branch from 72.9% to
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Figure 5.17 : Decision tree analysis results. Eleven rules are defined (see Table 5.13).



74.0%. No further splits were significant along this node at the ‘exploration’ filter level (o
=0.20).

The most significant split off the SWF node [0,0.17) was by volcanic felsics
(Figure 5.17). This split increased the classification accuracy along this node from 72.9%
to 77.1%. Alternative splits to VOLCFELS consisted of FELSICS, GEOLOGY and the
lake sediment PC variables LPC4 (gold affinity) and LPC2 (base metals affinity).
VOLCFELS was retained as the secondary split as there were no other predictors as
significant.

The nonvolcanic felsics (i.e. VOLCFELS=0) node was split by LPC4 (Figure

5.17), the lake sediment component that represents gold and its pathfinder elements. The
majority of these sites (i.e. 20 of 35 sites) contain no information (i.e. are missing LPC4
values). This node was further split by ARCSFLT (the arcsine transformed fault
proximity variable). These last two splits (Figure 5.17) did not provide any interesting
information for mineral exploration purposes.

A total of 11 rules were defined by the DTA (Figure 5.17 and Table 5.18) under
the ‘exploration’ filter level (¢ = 0.20). Rules 2 to 8 do not define factors (or conditions)
that are of significance in predicting mineral occurrences. Rules 2 to 8 are also not
significant at the ‘prediction’ filter setting (a = 0.05) and therefore were mapped together
as ‘SWF=[0,0.17) and VOLCFELS=0". The final five rules, as summarized in Table
5.19, were mapped by defining the mutually exclusive areas (i.e. rules). Note that the five
rules are defined by only three predictors: SWF, VOLCFELS and FLT400. VOLCFELS
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Table 5.18 : Decision tree results expressed as ‘IF-THEN’ rules. Refer to Figure 5.17 for
the decision tree.

RULE I: IF SWF = [0,0.17) and VOLCFELS = 1
THEN MINOCC =1 (probability = 100.0%, n=4)
RULE 2: IF SWF = [0,0.17) and VOLCFELS = 0 and LPC4 = 777 and

ARCSFLT = {0.0,1.185)
THEN MINOCC =0 (probability =100.0%, n=18)

RULE 3: IF SWF = [0,0.17) and VOLCFELS = 0 and LPC4 = 7?? and
ARCSFLT = [1.185,1.349)
THEN MINOCC =1 (probability =100.0%, n=1)

RULE 4: IF SWF = [0,0.17) and VOLCFELS = 0 and LPC4 = 77? and
ARCSFLT = [1.349,1.571)
THEN MINOCC =0 (probability =100.0%, n=1)

RULE §: IF SWF =[0,0.17) and VOLCFELS = 0 and LPC4 = [-2.251,-0.735)
THEN MINOCC =0 (probability =50.0%, n=1)
MINOCC =1 (probability =50.0%, n=1)

RULE 6: [F SWF = [0,0.17) and VOLCFELS = 0 and LPC4 = [-0.735,0.364)
THEN MINOCC =0 (probability =100.0%, n=7)
RULE 7: IF SWF =[0,0.17) and VOLCFELS = 0 and LPC4 = [0.364,0.6)

THEN MINOCC =0 (probability =33.3%, n=1)
MINOCC =1 (probability =66.7%, n=2)

RULE 8: IF SWF = [0,0.17) and VOLCFELS = 0 and LPC4 = [0.6,1.902]
THEN MINOCC =0  (probability =100.0%, n=3)

RULE 9: IF FLT400 = 1 and SWF =[0.17,0.64)
THEN MINOCC =0 (probability =100.0%, n=1)

RULE 10:  IF FLT400 = 1 and SWF = [0.64,1]
THEN MINOCC =1  (probability <100.0%, n=14)

RULE 11: IF SWF =[0.17,1) and FLT400=0
THEN MINOCC =0 (probability =40.5%, n=17)
MINOCC =1 _(probability =59.5%, n=25)

- 130-




and FLT400 are represented by binary raster maps. The SWF is a point database of 96
mineral/nonmineral occurrence sites. The SWF values were converted to a continuous
surface through the inverse distance squared weighting method. This map was recoded
into 3 groups defined by the SWF decision rules (i.e. 0 to 0.16, 0.17 to 0.63 and 0.64 to
1.0). The maps representing VOLCFELS, FLT400 and SWF were combined to form the
mutually exclusive and exhaustive areas by applying the rule-based conditions in Table
5.19. The probability of mineral occurrences was mapped onto each condition to provide
a map of mineral potential (Figure 5.18). For example, the area defined by Rule 1

(SWF<0.17 and VOLCFEL~1) was assigned a probability vatue of 1.0 (100% probability

of mineral occurrences).

Table 5.19 : Probability of mineral occurrences (rounded to the nearest 1%) in relation to
significant predictors determined from the DTA. Note that the mapped probabilities are

unique conditions.

Spatial Weighting Function

0to 0.16 0.17t0 0.63 0.64t0 1.0
- P(minocc)=0.11
- P(minocc)=1.00

- P(minocc)=0.80 | P(minocc)=0.60
FLT400=0 Rule 11) (Rule 11)

— P{(minocc)=0.00 | P(minocc)=1.00
FLT400=1 Rule 9) (Rule 10)
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Figure 5.18 : Mineral potential map from the Decision Tree Analysis method. Mineral potential consists of four discrete
values from 0% (low mineral potential) to 100% (high mineral potential), using the same colour range as on other figures.




Once the best overall predictors had been determined, DTA was used to determine
which predictor, of a set of similar predictors (e.g. FL.T400, FLT1000 and ARCSFLT),
was most significant at directly classifying mineral occurrences. Each predictor was
forced to split MINOCC in order to provide a significance and accuracy level to compare
with the other predictors in the group. Therefore, the filter setting was specified at o =
1.0 s0 any significance value, no matter how poor, was displayed. The first