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ABSTRACT 

Logistic regression analysis and classification methods using decision tree analysis 

were used to generate two quantitative mineral potential maps for the Lake Ambrose area 

(NTS l2A/1 0) of cenual Newfoundland. The response variable consisted of 47 sudace 

mineral occurrences plus 49 randomly selected sites representing nonmineral occurrences. 

Mineral deposit models and regional exploration methods were used to choose a set of 

predictors consisting of geology, fault proximity, till and Jake sediment geochemistry, and 

surficial geology. A spatial weighting function predictor was developed to account for the 

clustering of the mineral occurrences. 

The predictors were analyzed and recoded to derive a set useful in developing the 

quantitative models. The categorical geology predictor was converted into two binary 

predictors; felsic volcanics and mafic volcanics. Fault proximity was analyzed by the 

weights of evidence method to determine the optimal buffer threshold to convert the 

continuous distance values to a binary measure 'close to faults' versus 'far from faults' _ 

The optimal thresholds were the 400 m and 1000 m buffers. Principal components 

analysis was applied to the till and lake sediment geochemistry to derive component 

summary variables. Three component predictors were added to the database: till 

component 2 (TPC2) representing base metals and gold, lake sediment component 2 

(LPC2) representing base metals and lake sediment component 4 (LPC4) representing 

gold and its pathfinder elements. The tiD geochemistry predictors (Au, Cu, Pb, Zn and 



TPC2) were analyzed for spatial autocorrelation and an interpolated surface was derived 

using kriging techniques. The lake sediment geochemistry predictors (Au, Cu, Pb, 

residual Zn, LPC2 and LPC4) were converted to a surface by mapping their values on the 

catchment basins in which they were sampled. 

The decision tree analysis indicated the spatial weighting function, felsic volcanics 

and the 400 m binary fault proximity predictor were significant predictors of mineral 

potential. Logistic regression analysis indicated that the spatial weighting function, felsic 

volcanics, the 1000 m binary fault proximity predictor and copper in till were significant 

predictors of mineral potential. The agreement. at the 96 sample sites, between these 

two modelling methods was 84.3%. The decision tree and logistic regression raster 

mineral potential maps were compared using Yule's a. A value of0.54 indicates good 

agreement between the maps. Both models correctly classified approximately 790/o of the 

96 minerallnoomineral occurrences. Due to the sparseness of the dataset, accuracy could 

not be measured as there were not enough samples to set aside a test dataset. 

Mineral potential reliability maps were generated using the mutually exclusive and 

exhaustive regions from the decision tree analysis and the joint probability model for the 

logistic regression analysis. The mineral potential and reliability maps were combined 

(multiplied) to form a favourability map. The favourability maps from the decision tree 

and logistic regression analyses were combined to indicate overall zones of high mineral 

potential and high reliability. Mineral exploration claims cover much of the study area and 

only a minor part of the high favourability areas were not claimed as of September 2000. 
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1.1 Background 

CHAPTER 1 

Introduction 

Mineral potential mapping is a significant tool in developing new mineral 

exploration targets as well as providing information to aid in the assessment of boundaries 

for new parks and native land claim areas. Objective quantitative methods of calculating 

mineral potential are becoming easier through the use of Geographic Information Systems 

(GIS), geostatistical and statistical programs. The statistical programs are used to 

detennine the degree of association between mineral occurrences and various predictors 

without regard for the spatial associations. GIS and geostatistical programs provide the 

tools to assess and display these spatial associations. 

An appropriate set of predictors for mineral potential mapping can be determined 

by reviewing the mineral deposit models applicable to the study area. Mineral deposit 

models are general descriptions of the formation of mineral deposits based on theoretical 

and empirical data. They include such information as the geological setting, 

lithogeochemicaJ signatures and spatial characteristics (Kirkham et al., 1993 ). 

In addition to predictors determined through mineral deposit models, regional 

geochemical data (such as till and lake sediment geochemistry) have proved to be exceUent 

predictors in providing regional mineral exploration targets. In many areas of Canada, 

extensive glacial cover and the presence of numerous Jakes and swamps (many of them 
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glacially derived) overlie and hide surface mineral occurrences. To stimulate mineral 

exploration activity in this difficult terrain, Canadian federal and provincial geological 

surveys provide the results of these regional geochemical surveys at little or no cost 

(Davenport eta/., 1993). 

The combination of data types and data distributions resulting from the varied 

predictors limit the types of statistical analyses which can be performed. Common 

parametric statistical tests require normally distributed numerical data Mixtures of 

categorical (e.g. geology) and continuous (e.g. geochemistry) data with a binary 

dependent variable (mineral occurrence) reduce the number of useful statistical analyses to 

only a few. 

l.l Purpose 

The purpose of this study is to develop an inductive, quantitative model for 

assessing mineral potential by determining the statistical relationship between mineral 

occurrences and geological, geochemical and spatial factors. Mineral deposit models and 

traditional exploration methods are used to indicate an appropriate set of predictors to 

assess (e.g. geology, fault proximity, till and l~e sediment geochemistry). In addition to 

standard exploration predictors, a spatial weighting function has been developed to 

provide a spatial measure of proximity between mineral occurrences to account for the 

grouping of the mineral occurrences. 

The mixture of data types (continuous and categorical) and data distributions (non­

normal) being analyzed limits the statistical methods which can be used to determine the 
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quantitative association between the mineral occurrences (as a binary response variable) 

and the geological, geochemical and spatial factors (as the predictor variables). The 

sparse mineral occurrence dataset also imposes limitations on the statistical methods. 

Logistic regression analysis (LRA) and classification methods using decision tree analyf:is 

(DT A) are two methods that can handle various data types and data distributions as well 

as sparse datasets. Due to the sparse dependent dataset, accuracy analysis cannot be 

accomplished by splitting the data into a training dataset and a test dataset. Therefore, a 

comparative analysis of the results of the two modelling methods (LRA and DT A) is used 

to provide an indication of their agreement. The reliability of the two individual models is 

also assessed, by combining estimates of the errors for the individual predictors. The 

mineral potential maps and reliability maps are combined to provide a favourability map. 

Areas which have a high mineral potential with a high reliability are most favourable for 

mineral exploration. 

A better understanding of the statistical and spatial relationships between mineral 

occurrences and associated significant predictors helps to determine if these quantitative 

methods can benefit mineral potential modelling. These results may provide more insight 

and a savings of time and money in the search for new exploration targets and assessments 

ofboundaries for land use planning. 
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CHAPTER% 

Background Information and Literature Review 

The statistical analysis of spatial data requires a good understanding of the factors 

involved in their genesis and spatial distribution. Statistical analysis methods are 

dependent on data types and the statistical distribution of the data_ This chapter will 

review the nature of some common geochemical media and provide a summary of 

statistical methods used in similar studies in the past. 

2.1 Explontion Methods 

As a part of a mineral exploration program, till and lake sediment samples provide 

the means to detennine areas which have anomalous concentrations of either the primary 

metals of interest (e.g. gold and copper) or pathfinder elements which are often associated 

with the primary metals (e.g. arsenic and antimony). The assumption commonly held is 

that anomalous till or lake sediment samples should indicate the proximity of anomalous 

source rocks and possibly mineral occurrences or deposits. 

To properly assess the results of till and lake sediment geochemistry the variation 

(anomalous versus background values) in their geochemical values, the sampling 

methodology and techniques of chemical analysis in the laboratory need to be understood. 

Variations in the value of each element are based on numerous factors inherent in sample 

genesis, location, collection, preparation and analysis. 



The location of previously known mineral occurrences are of primary interest to 

exploration geologists because deposits and occurrences often occur in groups or clusters 

(mining 'camps'). Obvious surface occurrences have been found by prospectors and 

geologists so information from these known occurrences, along with information from 

mineral deposit models, can be used to indicate the potential of new areas. 

2.1.1 Til Sampling Surveys 

Till sampling programs have been an integra! pa-rt nf many mineral exploration 

programs in Canada due to the extensive glacial sediment cover over much of the bedrock. 

Therefore, a good understanding of glacial processes and the specific glacial history of an 

area is essential in order to analyze the results of a till sampling program. 

It is the aim of regional till sampling programs to define areas of exploration 

interest. Tills, which are sediments produced exclusively from glacial erosion, 

transportation and deposition, provide an excellent geochemical exploration tool. 

Theoretically, till samples containing anomalous values of an element (e.g. copper) can be 

traced back to their bedrock source by following the dispersion train in the up-ice flow 

direction (Shilts, 1976). Dispersion trains resulting from a single source have been 

modelled by negative exponential curves (Figure 2.1; Shilts, 1976; Strobel and Faure, 

1987). This model indicates that a basal till sample is predominantly composed of local­

provenance material that gradually decreases in proportion to new material being added 

and original material being deposited down-ice. The shape of the negative exponential 
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curve is dependent on factors such as the lithology, structure and topography of the 

source and dispersal areas, the proximity of ice divides, and the size of the ice sheet. 
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Figure 2.1 : Negative exponential dispersal curve indicating similar patterns for all three 
sediment fractions (after Shilts, 1993). 

The method of analysis of till samples plays an important part in determining 

anomalous samples and also in determining their provenance. Till samples are initially 

separated into size fractions grading from pebble-size clasts to sand, silt and clay size 

fractions. The lithologies of the pebble-size clasts are analyzed in an attempt to trace 

provenance. Finer fractions, such as the silt and clay size fractions, are the preferred 

fractions for geochemical analysis (Shilts, 1993). 
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To determine the most favourable fraction for geochemical analyses (i.e. a fraction 

which produces the highest signal-to-noise ratio), it is necessary to understand the 

partitioning of the minerals into the different size fractions. The partitioning is based on 

the 'characteristic terminal mode' of the source rocks (Shilts, 1993). Glacial erosion and 

abrasion of the minerals composing the rock will result in each mineral being selectively 

partitioned into a characteristic grain size, due to such factors as the hardness or structure 

of the mineral. Analyzing each grain size fraction will result in a geochemical signature 

reflected by the minerals that dominate that fraction. 

The most popular grain size for trace element analysis in Newfoundland is the 

"silt+clay, ( <63 J.Lm) fraction (Batterson, 1989). This size fraction is favoured for analysis 

because compared to larger size fractions it contains higher concentrations of metallic 

elements, as opposed to inert silicate minerals, and therefore produces a higher signal-to­

noise ratio, making it easier to detect anomalies. The "silt+clay" fraction can be easily 

separated from the bulk sample using a sieve and is more cost effective than the clay 

fraction which requires settling or centrifuging techniques. 

Klassen ( 1994) sampled upper C or lower B horizon soils developed on tills 

throughout the Buchans-Robert's Arm and Victoria Lake Group areas. Over 800 samples 

were collected at a sampling density range of 4 to I 00 km2
. The conclusions reached were 

that till geochemical patterns essentially reflected the bedrock composition. Base metal 

values were elevated in the tills of the Lake Ambrose area compared to tills in the other 

areas. The tills above the Tally Pond and Tulks Hill volcanics were geochemically distinct 

from each other. 



Batterson eta/. ( 1998) sampled tills from the Grand Falls-Mount Peyton area in a 

systematic manner with an approximate sampling density of 1 sample per 3 km2 for a total 

of about 800 sites. They sampled the BC or C horizon tills. A cursory analysis of the data 

using principal components analysis indicated inter-element associations reflecting mafic 

lithologies, peralkaline granite affinity, light rare earth element affinity, and gold and its 

pathfinder elements (i.e. arsenic and antimony). These four components accounted for 

about 600/o of the total variance in the data. From graduated dot plot maps of the 

elements, visual analysis indicated that measurable geochemical dispersion trains 

commonly extended less than 5 km whereas field observations indicated clasts of distinct 

geological units were found up to 10 km away. 

2.1.2 Lake Sediment Sampling Sun-eys 

Lake sediment sampling surveys are a cost-effective means of reconnaissance 

mineral exploration to determine favourable areas as follow-up targets (Coker et a/., 

1979). These surveys have been carried out in Canada since the early 1960s by private 

exploration companies and since the early 1970s by the federal and provincial geological 

surveys. 

A lake sediment sample is considered to be geochemicaUy representative of the 

catchment basin it resides in. This model is based on two concepts: I) the clastic portion 

of the lake sediment is a composite representation of the catchment basin as a result of 

physical weathering (Levinson, 1980; Rogers, 1988), and 2) the fine-grained particles of 

the lake sediment (e.g. clays and organic material) adsorb metal ions which are a product 
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of chemical weathering (Levinson, 1980). There may also be a component of metals from 

groundwater recharge into the lake (Levinson, 1980). Limnological studies ofNova 

Scotian lakes by Ogden (1986, in Rogers, 1988) indicate only limited groundwater-

lakewater interaction occurring in the perilimnion zone (zone ofwater recharge; Figure 

2.2), with no groundwater movement in the tardelimnion zone (zone below recharge 

zone). Therefore, in most lakes surficial processes play a much larger role than previously 

anticipated. 
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··---./~-~ ... ., ........ ' -..... 
b- '\ ' \ ---- -.... . 
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' - -~ .... _.,. 
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groundwater flow 

water table 

+ metal onions/cations 

• discrete particles 

stream 

___.._ edge catchment 

.,._. input to catchment 

~..J!J; water recharge 

Figure 2.2 : The lake catchment exploration model (after Rogers, 1988). Sediments and 
metal ions are derived from the catchment area. 

Lakes within a catchment basin containing a metallic mineral occurrence are more 

likely to contain anomalous metal values than similar lakes in barren basins. Many factors 
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may combine to mask true anomalies or create false anomalies. According to Levinson 

(1980) and Hornbrook eta/. (1975), factors that may need to be determined in order to 

effectively understand the variation in geochemistry of a lake sediment sample include: 

1) the prevalent type of weathering of the bedrock and sediments, 

2) whether ground or surface waters are the most likely method of trace element 
transport, 

3) the most suitable lake sampling sites, 

4) the size and depth of the lake, 

S) mineralogy and terminal mode particle size (i.e. most likely size for each mineral) 
of the bedrock and surficial sediments, 

6) effects of adsorption by iron and manganese hydroxides and organics, 

7) the rate of erosion and sedimentation in the catchment basin (related to such 
factors as topography and vegetation), 

8) contamination by anthropogenic sources, and 

9) the oxidizing or reducing conditions of the material sampled. 

The change in the sediment geochemistry due to some of these factors (e.g. oxidized 

materials) can be reduced by the selective sampling of a consistently similar material 

throughout the study area. Other effects (e.g. lake depth or adsorption by organics) can 

be negated by using residual values derived ftom linear regression techniques (Davenport 

eta/., 1974). 

Analysis of lake sediment samples collected in Newfoundland since the late 1970s 

has indicated element correlations with the size and depth of lakes, as well as with iron, 

manganese and loss-on-ignition values (an indication of the amount of organic material 
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present). Through the use of stepwise linear regression, false anomalies caused by these 

factors have been removed (Davenport et aJ., 1974). The residual values (expressed as 

normalimt Z values) have provided a clearer picture of the spatial distribution of 

anomalous element values in lake sediments. 

1.1.3 Mineral Occurrences 

'Mineral occurrence' is a generic term given to all locations where there is the 

presence of minerals of potential economic interest. These occurrences range from minor 

mineral indications (i.e_ the presence of economic minerals on an outcrop or a minimum 

assay value of a metallic element; Stapleton, 1999) to producing deposits. Since the early 

1970s, mineral occurrences have been mapped and tabulated in Newfoundland and 

Labrador (Stapleton et aJ., 2000). The digital Mineral Occurrence Data System (MODS) 

consists of detailed descriptions of all mineral occurrences and an abbreviated tabular 

database. The descriptions of each mineral occurrence were summarized from industry 

assessment reports as well as Department of Mines and Energy geology reports. The 

tabular database is a summary of selected items from the descriptive data and includes 

information such as the mineral deposit name, location (UTM coordinates), major and 

minor commodities (e.g. gold, copper, zinc), rock type and a short description of the 

mineralization. 

MODS is used extensively by the mineral industry to assess the potential and 

simplify the compilation of data for new areas of interest. This information provides 

geologists with the type and style of mineralization that occurs in an area and indicates the 
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rock types in which the mineralization occurs. Given this information, the ~loration 

geologist can focus on an exploration method best suited to finding the specific mineral 

deposits of interest (Swinden, 1992). 

Z.l Statistical Analysis Techniques 

The analysis of exploration geochemical data is a multistage process that includes 

spatial and nonspatial techniques. Univariate descriptive statistical analyses, such as the 

mean and standard deviation and methods used in exploratory data analysis (ED A) such as 

box·and-whisker plots, provide a first·order indication of the variability in the 

geochemistry. Trace element concentrations coupled with analytical detection limits can 

produce a limited range in variance of the geochemical values. This limited variance can 

reduce the significance of statistical tests. Bivariate statistical analyses, such as correlation 

analysis, are useful in indicating inter-element associations. Unusually strong associations 

may indicate adsorption of metals by organic materials or by iron and manganese 

hydroxides, causing false anomalies. Multivariate analyses within a dataset, such as 

principal components analysis (PCA), are useful in reducing a large dataset to a few 

components that better represent key summary factors of the data (e.g. geochemistry of 

sediments). Multivariate analyses among datasets, including linear regression techniques, 

nonlinear logistic regression analysis, and decision tree analysis, are useful in indicating 

associations between different types of variables. 

Adding a spatial factor to statistical analysis techniques provides a representation 

ofreal·world systematics to field data (e.g. mineral occurrence locations). GeostatisticaJ 
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techniques, such as variogram analysis and Moran's I calculations, can help determine 

whether point sample values are spatially related. This provides important information on 

whether the data can be represented as an interpolated surface, if autocorrelated, or as 

polygonal units, if it does not show spatial autocorrelation. The following sections 

provide a brief overview of the types of statistical analyses mentioned above. 

2.2.1 Univariate aad Multivariate Analysis within a Dataset 

The initial analysis of geochemical data consists of confinnatory statistical analysis 

(e.g. mean, median, standard deviation, skewness or coefficient of variation). Information 

provided by confirmatory statistics indicates the variation in element values as well as the 

data distribution (Davenport et al., 1994). Single element or multi-element plots using 

contours or symbols to represent classes of data provide a view of the spatial distribution 

of the element values (Hornbrook et al., 1975; Klassen, 1994; Cook et al., 1995). 

An alternative to confirmatory statistical methods is exploratory data analysis 

(EDA) that provides a set of resistant techniques (Sibley, 1991). Resistant techniques are 

better suited to the analysis of geochemical data which do not exhibit the characteristics of 

a gaussian distribution. O'Connor et al. (1988) used EDA techniques, such as box-and­

whisker plots, frequency histograms and cumulative probability plots, to determine class 

intervals of stream sediment sample analyses. Symbol plots were visually assessed to 

determine inter·element correlations as well as correlations between the elements and the 

geology. 
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Symbol plots assume that the geochemistry of a sample is representative of the 

'point • at which the sample was obtained. To determine the actual zone of influence 

around lake sediment sample points, Bonham-Carter and Chung (1983) used 

autocorrelograms and kriging methods to determine that most of the spatial 

autocorrelation was due to the lithological units. Other studies (e.g. Bonham-Carter and 

Goodfellow, 1984) indicated that after the effects of lithology had been removed, no 

spatial autocorrelation structure remained in the residual values of many elements. 

Therefore, rather than representing the lake sediment data as points or as interpolated 

surfaces using kriging, Bonham-Carter and GoodfeUow (1984, 1986) determined that a 

catchment basin model was a better zone of influence for lake and stream sediment 

samples (Bonham-Caner eta/., 1987; Wright eta/., 1988; Rogers, 1988). The catchment 

basin is represented by a polygon that can be subsequently coded to represent different 

element values. 

Spatial autocorrelation of polygonal data, such as the geochemistry of the 

catchment basins, can be tested using Moran's I coefficient, which is based on comparing 

the values of neighbouring polygons (Cliff and Ord, 1981; Chou eta/., 1990): 

I- n_L1_LiW9(x;- x)(xi- x) 
- SoL;(X1 - x)1 

where n is the number of polygons in the study area, xis the variable being studied (e.g. 

the variable 'Burn', where .r-1 for polygons which have been burned and x=O otherwise), 
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W is the spatial weight where W= 1 if the ith and jth polygons are contiguous, and So is the 

sum of the spatial weights L; L
1 
W9 . 

Chou eta/. (1990) tested various alternatives to the contiguity weight used in the 

Moran's I coefficient. Chou eta/. (1990) determined alternative weighting factors to 

defining a 'neighbour' such as the length of the boundary between adjacent polygons. The 

authors determined that the contiguity weight alone was actually the best method of 

defining the neighbours. Based on this finding they developed a spatial weighting function 

that defined the contiguity between neighbouring polygons and used this function as a 

spatial predictor in subsequent regression analyses. 

A similar approach was developed by Kvamme (1990) but he applied the Moran's 

I coefficient for data distributed at specific points rather than polygons (Cliff and Ord, 

1981). Instead of using a weight defined by spatial contiguity, Kvamme used the inverse 

distance between two points as the weight. Therefore, where data cannot be logically 

converted from points to areal representations, spatial autocorrelation can be tested using 

weights based on inverse distWtce measurements. 

Given the large volumes of attribute data produced by modem laboratory 

analytical techniques, principal components analysis (PCA) has been used to reduce the 

numerous attributes to a few key groups of elements (i.e. components). These 

components may show strong association with certain rock types or secondary alteration 

(Lindqvist eta/., 1987; George and Bonham-Carter, 1989). PCA is based on the 

covariance between pairs of elements and a transformation onto a new set of axes that are 

- IS -



by definition uncorrelated (Daultry, 1976). The transformed principal component scores 

can be used as attributes in further analysis. 

2.2.2 Multivariate Analysis Between Datasets 

Comparison of data between datasets often involves dealing with differences in 

data types (continuous versus categorical data) and conforming to assumptions necessary 

for classical statistical analyses (e.g. normality, linearity etc.). For example, multiple linear 

regression and discriminant analysis techniques require multivariate normality and equal 

covariance matrices for all groups (Noru!is, 1990). For mixtures of data types with a 

good possibility of non-normal and non-linear distributions, methods such as logistic 

regression analysis and decision tree analysis are preferable (Tabachnick and Fidell, 1996). 

2.2.2.1 Linear Multiple Regression 

Linear multiple regression has been used extensively to determine factors 

influencing the variation in geochemistry of till, lake sediment, stream sediment or soil 

samples. The technique bas been used to study inter-element associations in datasets to 

detect false anomalies caused by Fe and Mn hydroxide adsorption (see section 2.1 .2). 

Linear multiple regression bas also been used extensively to analyze a wide range of data 

from different datasets where the data is commonly continuous and conforms to statistical 

assumptions. 

Wright et al. (1988) tested ordinary and stepwise multiple linear regression to 

detennine the best linear combination of lake sediment elements (i.e. gold, arsenic. tin and 
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tungsten) associated with gold mineral occurrences. The lake sediment catchment basin 

polygons were used to associate the lake sediment site with mineral occurrences occuning 

within the same basin. The strength of the results were measured using the squared 

multiple correlation coefficient (R2
), and indicated that of the four elements, gold is the 

strongest predictor of gold mineral occurrences. 

Bonham-Carteret a/. (1987) ran a number of regression experiments to determine 

the effects of iron, manganese, pH, areal proportion of rock types, presence/absence of 

rock types and co-occurrence of various rock types among other effects affecting the 

variation of stream sediment geochemistry. There is an association (spatial 

autocorrelation) between a stream sediment sample upstream and its neighbouring sample 

located downstream. Therefore, statistical tests of significance could not be used because 

the samples were not independent. But regression analysis can still be run to determine 

associations between various predictor variables and the dependent variable. The results 

indicated that iron, manganese and lithologic effects explained a very high proportion of 

the variance in the stream sediment geochemistry. Residual element content in each 

catchment basin was calculated once the background associations (i.e. variation due to 

lithology, adsorption by organics or Fe and Mn hydroxides etc.) were determined 

(Bonham-Carter eta/., 1987). A residuals map for each element of significance can be 

compared to the spatial distribution of mineral occurrences by running a regression similar 

to Wright eta/. (1988) as described above. 
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2.2.2.1 Decision Tree Analysis 

Decision tree analysis (Kass, 1980; Breiman eta/., 1984) is an inductive method of 

classifying observations (i.e. independent variables such as till copper geochemisty or 

geology) into homogenous subsets used to predict or indicate the best relationship to a 

response variable. The results are output as a set of 'IF-THEN' rules stipulating the 

values of predictor variables used to predict the best response event. The primary 

advantages of decision tree analysis over other multivariate statistical techniques used to 

classify data (e.g. multiple regression analysis and discriminant analysis) are the lack of 

assumptions concerning data distribution (e.g. linearity, normality, heterogeneity), the lack 

of restrictions on measurement types (e.g. mixtures of continuous, categorical and binary 

data are acceptable) of both response and predictor variables and the acceptance of small 

sample sizes. Significances are tested using the chi-squared and F-tests, which are more 

robust to skewed and non-normal distributions, especially for larger datasets. DT A, as 

discussed below, is based on methods used in the KnowledgeSeeker~ program (Angoss, 

1993). 

All the data is initially entered into the system, with one variable identified as the 

dependent variable. Categorical data can be analyzed as alphanumerics rather than being 

recoded as numbers (as required by logistic regression as indicator or dummy variable 

encoding; Noruiis, 1990). Continuous data is automatically subdivided into a number of 

discrete categories approximately equal in size (the default is 1 0). The number of 

categories can be altered as can the class boundaries. Defining the cluster type for each 

variable is important in order to arrive at the appropriate output groupings. Monotonic 
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clustering is assigned to ordered variables (ordinal, interval or ratio measurement types) 

for which adjoining values will be grouped. Similarly, the floating cluster type is assigned 

to ordered variables which have missing values. Free clustering is assigned to categorical 

variables (nominal measurement type) which places no restrictions on how categories are 

combined into groups. 

Two methods are available to split the independent data: cluster and exhaustive. 

The cluster method (Kass, 1975; Kass, 1980) compares all the values of a predictor with 

the response variable and groups the predictor values such that the within-group similarity 

compared to the between-group difference is maximized at a chosen significance level 

(default a= 0.05). Increasing the default value (e.g. a= 0.10) will result in more branches 

to the tree. The variable(s) with the highest significance test will be used to split each 

group until a threshold is reached (Biggs eta/., 1991). This method is not considered 

exhaustive because once a value is grouped with other values it is not considered again. 

The exhaustive method (Biggs eta/., 1991) uses the maximum statistical 

significance for each split with the response variable. Initially, a contingency table is made 

for each predictor category (c) versus each response variable category. Each pair of 

predictor categories is tested, allowing for monotonic, floating or free clustering, and 

those which are statistically similar are combined until only two compound groups remain 

(Kass, 1980; Biggs et al., 1991). Compound categories then need to be checked for 

similarity and may be split apart again. The most significant predictor grouping overall 

(with k groupings) will be chosen to subdivide the response variable into k ~ c optimal 

categories. The process is repeated for all predictors at each new node until the 
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significance is reduced past a critical value or a stopping value (defined by a minimum 

number of cases). 

The chi-squared statistic is used to test associations between categorical predictors 

and response variables and the F statistic is used to test associations which are a mixture 

of categorical and continuous (Biggs et a/., I 991 ). Setting the Bonferroni adjustment to 

the 'adjusted' significance setting has the effect of adjusting (lowering) the significance 

threshold level to counteract the effects of re-testing and choosing the 'best' grouping 

(Angoss, 1993). Another Bonferroni adjustment is used to adjust for the number of 

predictors which may be highly correlated. Setting the 'filter' to the 'e'Q)loration' setting 

sets the adjusted error rate to 20% and provides a method of reviewing the data for 

patterns which may be missed on a more rigorous setting (Angoss, 1993 ). The 

'prediction' setting provides an adjusted error rate of 5%, which is more in line with 

standard statistical decision making levels of significance. 

On the final analysis, the branches of the resultant tree should be checked for 

overtitting. With a large dataset, pruning the tree can be accomplished through the use of 

a random subset of the data not used in building the tree (cross-validation). With smaller 

datasets, specifying a minimum threshold case size or stop size (i.e. branches cannot 

contain fewer cases than the specified stop size) wiU help to reduce overfitting. Terminal 

nodes can also be checked to see if they actually add to the results by checking the 

accuracy rate. If tenninal nodes do not significantly increase the accuracy rate then they 

are removed. Note that for smaller datasets, when the same data is used to build and test 

the tree, the accuracy is overestimated (Angoss, 1993). KnowledgeSeeker outputs the 
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results as a set of mutually exclusive and exhaustive statistically significant 'IF-THEN' 

decision rules which can be mapped as a set of conditions. 

Reddy and Bonham-Carter ( 1991) used decision tree analysis to determine the 

best group of data (consisting of geological and geophysical independent variables) to 

predict the presence of mineral occurrences. They compared two methods of analysis: 

one using binary predictors (optimized using weights of evidence modelling) and the other 

using continuous predictors (i.e. distance from contacts and geophysical values) converted 

into categorical classes. The resulting DTA 'IF-THEN' rules provided a summary of the 

independent variable values used to predict the response variable and the accuracy of that 

prediction. Overall, the continuous predictors provided a better prediction accuracy of 

mineral occurrences than the binary predictors optimized by weights of evidence 

modelling. 

2.2.2.3 Logistic Regression Analysis 

Logistic regression techniques are used to determine the probability of a discrete 

event occurring as weD as to provide information on the independent variables (IVs) best 

suited for predicting the discrete event (Tabachnick and Fidell, 1996). Definitions and 

methods discussed in this section are predominantly based on the logistic regression 

techniques applied by SPSS™ (Noru~is, 1990 and Anonymous, 2000). 

The main advantages in using logistic regression over other regression techniques 

are its lack of assumptions regarding the distribution of the predictors (i.e. normal 

distributions, linear relationships and homoscedasticity) and the lack of constraints on the 
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predictor measurement type (i.e. any combination of continuous or categorical variables; 

Norusis, 1990; Tabachnick and Fidell, 1996). Other statistical techniques, such as 

discriminant analysis, can also be used to predict discrete response variables but these may 

show increased association between response variables and dichotomous predictors 

(Hosmer and Lemeshow, 1989). Another advantage of logistic regression is that the 

output can be stated in terms of probabilities with values between 0 and 1 (Figure 2.3; 

Norusis, 1990). 
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Figure 2.3 : Logistic Regression S-shaped curve. Note that probability values for the 
curve are between 0 and 1 for any standard normal deviate, Z. 

Figure 2.3 indicates the S-shaped (nonlinear) nature of the logistic regression curve 

that is mathematically defined as: 

eu 
P(event) = 

1 +eu 
(Norusis, 1990) 



where P( event) is the probability of an event occurring, and u is a linear sum of 

coefficients and independent variables similar to a linear multiple regression equation: 

u =Bo + B1X1 + BzXz + .... + B..X. 

Rewriting the logistic regression equation as the log of the odds (i.e. logit) indicates the 

nature of the equation: 

In [ P(event) ] = u 
l-P(event) 

(Tabachnick and FideU, 1996) 

Therefore, the linear sum of coefficients and predictors, u, is equal to the loBe of the ratio 

of the probability of an event occurring versus the probability of it not occurring. 

Equations of this type are solved using iterative calculus techniques, using the maximum 

likelihood method to determine the best linear combination of predictors (Tabachnick and 

Fidell, 1996). 

A first step in any logistic regression analysis is to check if a model with all 

predictors (the 'full' model) improves the prediction of an event compared to a model 

containing just the constant. If the difference between these two models is not significant 

(e.g. a=. OS) then it is not likely that the independent variables chosen to predict the 

response variable are adequate. 

Applying stepwise analysis and checking the difference in the log likelihoods can 

help detennine the best statistical mode~ that is, the model with the fewest number of 

predictors which best predicts the event (Tabachnick and Fidel~ 1996). Due to problems 

with partial correlations, Hosmer and Lemeshow (1989) suggest increasing the probability 

value to enter the mode~ from the default of0.05 to a value such as 0.20. Similarly, the 
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probability value to be removed from the model should be increased from the default of 

0.10 to, say, 0.30. Using these values, each predictor can be tested individually and in a 

stepwise analysis to see the effects of predictors on each other and on the outcome. 

The best set of predictors to use in the model can be based on a number of 

statistical tests. The Wald test is defined as: 

W= (~) z 
SE 

(Norusis, 1990) 

where B is the coefficient and SE is its standard error. For 1 degree of freedom and for 

large sample sizes, this tests the significance that each coefficient is 0 (Noru§is, 1990). 

This test is distributed as chi-square. Problems with the Wald test occur if the absolute 

value of the coefficient is very large, producing large standard errors. In this case the 

predictor values can be altered (transform by logging or removing a standard value, to 

reduce the large values) or other tests can be applied to judge the significance of the 

predictor. 

Coefficients which prove to be significant in the model provide information on the 

change in the odds of an event occurring given a single unit change in that predictor 

(Tabachnick and Fidell, 1996). This is provided by the odds ratio ( e8
) where 8 is the 

predicted coefficient. Therefore, if the coefficient is greater than 1, e8 will be greater than 

1 and the odds of an event occurring are increased if that predictor is included in the 

model (Noru§is, 1990). 
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Other information provided in the output for the coefficients includes the partial 

correlation (R) of each predictor with the response variable, given that all other predictors 

are included. The partial correlation is given by: 

R= 
- 2log likelihood 

Wald-2K 

where K is the number of parameters estimated and the log likelihood is of the model 

containing only the constant (Norusis, 1990). 

Using a chi-squared goodness-of-fit test, each predictor can, in tum, be tested by 

including it and removing it from the model. The test used is the difference in the log 

likelihood (II) for the model including the predictor versus the model without the 

predictor: 

z2 = -2(!/(bigger model) -/l(smaller model)] 

The difference is multiplied by two to obtain a chi-squared distribution (Tabachnick and 

FideU, 1996). This same method can also be used to test the significance of a larger model 

against a smaller model, where the smaller model is a subset of the larger model. 

As a check on the final mode~ output of the standardized residuals, Z, indicate 

those cases that are outliers to the solution: 

z. = residual; (Noru!is, 1990) 
' ~(pred.prob.;)(1- pred.prob.;) 

Examination of outliers may lead to increased understanding of the predictors in the 

model. Removal of outliers and repeating the analysis may have the effect of changing the 

relative importance of predictors (Tabachnick and Fidel~ 1996; Noruiis, 1990) . 
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Chou et a/. ( 1990) described a logistic regression method to determine the 

probability of a wildfire occurring within a polygon i. Using the basic logistic regression 

model: 

P( occurrence )i = e"' 
l+e"' 

P( occurrence )i was the probability of a wildfire occurring in polygon i and Ui was defined 

as: 

where 8 0, B~, 82, .. . , 89 are the logistic regression coefficients which will be estimated 

from a logistic regression program, AREA and PERI are the area and perimeter of the ith 

polygon, ROT A is the fire rotation weight, BLDG, CAMP, and ROAD are the areal 

proportions within range of human influence as defined by buildings, campgrounds and 

roads, TEMP is the average July maximum temperature, RAIN is the annual precipitation, 

SWF is the spatial weighting function (representing the local spatial autocorrelation or 

neighbourhood effect) of the ith polygon, and ei is the random error term (Chou eta/., 

1990). The results of the logistic regression analysis indicated that the SWF significantly 

improved the results of forecasting wildfires in a polygon. This indicated that knowledge 

of wildfire history was the most significant factor in predicting future wildfires. 
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2. 3 Summary 

In summary, there have been numerous approaches undertaken to statistically 

compare spatial data and determine significant associations. Based on the literature, 

confirmatory and exploratory statistical methods and data plots have been chosen to 

provide a preliminary statistical and spatial assessment of the data. Correlation, linear 

regression and PCA provide information on how to reduce the number of attributes. 

Spatial autocorrelation analysis provides information on the spatial distribution of 

attributes. LRA and DTA determine those independent variables that best predict the 

mineral occurrences to provide a quantitative mineral potential map of the study area. 
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3.1 Study Area 

CHAPTER3 

Study Area and Data 

3.1.1 Location, Access and Physiography 

The characteristics of a good study area for mineral potential modelling include the 

availability of geological, geochemical and mineral occurrence data at a scale, density and 

variability to provide reasonable comparative analysis. The area chosen for this study is in 

central Newfoundland, south of Red Indian Lake, and consists of the Lake Ambrose 

1:50,000 scale map sheet (NTS 12A/10; Figure 3.1 ). This area is approximately 15 km 

south of the Buchans mining camp which extracted copper, lead and zinc ores and is 

presently undergoing a resurgence in exploration activity. The Lake Ambrose map area 

has an important mining camp in its own right, consisting of the Victoria Mine prospect 

(copper-zinc-lead-sulphides in felsic volcanic rocks) and numerous mineral occurrences 

within proximity (Kean and Jayasinghe, 1980). There are also many mineral occurrences 

(predominantly consisting of copper, lead, zinc, and gold) throughout the map area. The 

bedrock and surficial geology are varied, as are the geochemical results from till and lake 

sediment samples. 

Much of the Lake Ambrose map area is not easily accessible due to the presence of 

wetlands (covering approximately 10% of the area), lakes (covering approximately 13% 

of the area) and dense forest (covering approximately 70% of the area). However, since 
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Figure 3.1 :Location of the Lake Ambrose map area (NTS 12A/10). 



the early 1900s, the construction of forestry roads has provided increased access (Neary, 

1981 ). The main road from the Trans-Canada highway leads from Badger southwest to 

Millertown, the closest town to the study area (Figure 3.1 ). 

The Lake Ambrose map area is characterized by an undulating relief with 

numerous small hills widely scattered throughout (Figure 3 .2). The elevation ranges from 

a high of 480 m above mean sea level (amsl) northwest of Red Indian Lake to a low of 

157 m amsl at Red Indian Lake. South of Red Indian Lake, the maximum elevation 

occurs to the north and west of Lake Ambrose where two hills reach 420 m amsl. The 

central part of the study area is comparatively flat lying (Figure 3.2) and extensively 

covered by wetlands. Bedrock exposure is poor due to the glacial till cover (Evans eta/., 

1990). The lakes vary in size and occur randomly throughout the area. The lakes are 

predominantly elongate, with a NE-SW trend (Figure 3 .2), parallel to the local structural 

and bedrock trend. 

3.1.2 Bedrock Geology and Minenl Occurrences 

The geology of the Lake Ambrose map sheet is predominantly composed of the 

Victoria Lake Group (VLG; Figure 3.3). The VLG is part of the Exploits Subzone, 

occurring to the south of the Red Indian Line structural lineament, which goes through 

Red Indian Lake (Williams eta/., 1988). The foUowing geological description and age 

dates are based on Evans et al. (1990) unless otherwise stated. 

The VLG consists of pre-Caradocian volcanic and sedimentary rocks. There are 

two assemblages of volcanic rocks in the map area, consisting of the Tulks Hill volcanic 
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Figure 3.3 : Geology of the Lake Ambrose map area (NTS 12A/10; after Evans et al., 1994). 
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rocks (494-504 Ma) to the southwest of the map area and the Tally Pond volcanic rocks 

( 511-515 Ma) to the southeast. Both volcanic suites consist of felsic pyroclastic units 

intercalated with mafic flows, pillow lava, tuff, agglomerate and breccia. The Tally Pond 

volcanic rocks tend to be more mafic in composition whereas the Tulks Hill volcanic rocks 

are characterized by more intense deformation. Lower greenschist facies metamorphism is 

prevalent through much of the map area except along the southern margin where rocks 

grade to lower-amphibolite facies. Chlorite and sericite define a regional foliation in the 

VLG. The sedimentary rocks occur predominantly to the northeast and are interpreted as 

a turbidite sequence derived from the volcanic rocks. The sedimentary rocks include 

greywacke and interbedded siltstone, shale, argiUite, conglomerate and some limestone. 

Intrusive rocks in the VLG (362-443 Ma; Evans el a/., 1994) consist of quartz monzonite, 

granite, granodiorite, diorite and gabbro and form the major bills in the area. 

The VLG is unconformably overlain by the Rogerson Lake Conglomerate (418-

443 Ma) in the southeast comer of the map sheet (Figure 3.3). In the area of the Red 

Indian Lake basin (north and west sections of the map sheet), the VLG is conformably 

overlain by siltstone and sandstone of the Harbour Round Formation (458-504 Ma). To 

the west, Devonian and Carboniferous (345-362 Ma) sediments occur consisting of 

conglomerate, sandstone, shale and siltstone. 

According to Evans and Kean ( 1987), two main types of mineralization occur 

within the VLG; volcanogenic massive sulphide (VMS) and epigenetic gold (Table 3.1). 

VMS mineralization occurs predominantly within the Tally Pond and Tulles Hill volcanic 

belts and consists of copper, zinc and lead mineralization with minor silver and gold 
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Table 3.1 : Mineral deposit types (from Stapleton. 1999) of the surface mineral occurrences in NTS l2AI10. 

D!po!lt TyP! Description 

0 lnsuf'licient data to classify 

Strlltabound Mineralization: Sealloor (volcanogenic) Sulphide Association (110-189) 
Deposita of the marina volcanic association formed through sub-seafloor hydrothermal procassas: 
includes both volcanogenic massive sulphides and volcanogenic &tockworks. 

Deposits associated with sequences of mixed mafic • felsic volcanic rocks (130-139) 
130 Undivided volcanogenic sulphide deposits in thick, mixed maficJfelsic volcanlclepk:lastic sequences 
131 Masatve sulphide(± atockwork) 

Deposits associated with dominantly falsie volcllnic rocks that are ~rt of thick votc.rdcleplclllttic sequences (140-141) 
140 Undivided volcanogenic sulphide deposits In thick, felsic-dominated volcanlclapiclastlc sequences 
141 Massive sulphide (t. stockwork) 

151 
Deposits hosted b~ marine sedimentary rocks that are nonetheless part or a dominantly volcanic association (150-151) 
Clastic holt (e.g. "Basahi-type" ma&&ive sulphides) 

Hydrothermal, Structurai~-Controllad Mineralization (300-391) 
Deposit& for which the controllng mechanisms are dominantly structural (e.g, shear zones, faults, fold hinges} 
rather than stratigraphic. 

300 Unc:ivided hydrothermal, IS1ructurally-controlled deposits 

Structurally-controlled vein systems with base or precious metals (310-328) 
31 0 Undivided hydrothermal vein systems 



(Swinden et al., 1989). Gold mineralization in the VLG appears to be epigenetic and 

spatially related to major fault zones, lineaments and alteration zones (Evans et al., 1990). 

The genetic model for the formation of VMS mineral deposits was first outlined by 

Oftedahl in 1958 (Franklin, 1993). These deposits are a syngenetic accumulation of 

sulphides that are deposited from rapidly cooled hydrothermal fluids escaping through 

fracture and fault zones below sea floor vents (Figure 3 .4). Alteration of the host rocks 

(commonly submarine volcanic rocks), including silicification, sericitization and 

chloritization, occurs along the faults and fracture zones, as does copper-rich sulphide 

(stockwork-zone; Figure 3.4). Large accumulations of copper-zinc-lead sulphides form 

mounds and bedded ores immediately around the seafloor vents. 

Strattfication ---­Sharp hanging ~ 
---- wall contact 

.. Exhallte" or 
•Tufflte• horizon 
SI02 ± Py :tHem 

---------

·------ --------Massive, rubbfy or brecciated structure 
(strong chemical zonation pattern) 

------

Gradational footwall 
contact 

STOCKWORK ZONE 

Cpy :t Py% Po sulphide mineralization 

chloritic hydrothermal alteration 

Py • Sp ± Gn sulphide mineralization 

serlcitlc-chlorltlc hydrothermal alteration 

Figure 3 .4 : Volcanogenic massive sulphide model indicating zonation ofmineralization 
(after Lydon, 1988). 
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3.1.3 Glacial History and Surficial Geology 

The glacial history in the area of Red Indian Lake is complex with numerous and 

changing ice flow directions. From the work ofMurray (1955), Grant and Tucker (1976), 

James and Perkins (1981), Vanderveer and Sparkes (1982) and Sparkes (1985, 1987) the 

following glacial history has been summarized by Klassen (1994). 

During the Late Wisconsinan, the Island of Newfoundland was glaciated by local 

ice caps (Grant, 1974) centred on high altitude areas around the province. Klassen ( 1994) 

described four phases of ice flow based on the work of previous geologists and from his 

own work on glacial striations and dispersal trains of red granite and red micaceous 

sandstone. The oldest ice flow directions, possibly pre-Wisconsinan, were centred north 

ofRed Indian Lake and flowed south (Phase Ia and lb, Figures 3.5a and 3.5b). James and 

Perkins ( 1981) noted glacial dispersal trains of Buchans-type ore up to eight kilometres 

southwest ofBuchans. The next phase of glacial ice flow (Phase II, Figure 3.Sc) was a 

regional ice flow with an ice cap centred between Lake Ambrose and Victoria Lake to the 

southwest of the NTS 12A/1 0 area (Sparkes, 1985). In the study area, the ice flow was to 

the northeast, as indicated by red micaceous sandstone erratics found to the northeast of 

Red Indian Lake and also Gullbridge-type ore erratics found northeast of Gullbridge 

(O'Donnell, 1973). The youngest phases, Phase III and IV (Figure 3.5d), indicate another 

south to southeast ice flow direction with a final set of flows that tended to be 

topographically controlled, such as that along the Red Indian Lake basin (Grant, 1975). 

Klassen ( 1994) concluded by stating that despite the complex glacial history, the till 

geochemistry largely reflected the composition of the underlying bedrock geology . 
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a) b) 

c) d) 

Figure 3.5: Ice flow history of the Red Indian Lake area (modified from Klassen, 1994). 
a) Phase I - oldest flow, b) Phase I - younger flow, c) Phase II - older flow to the NE, 
younger flow to the NNE, d) Phase ill - older flow to the SE, Phase IV - youngest 
flow followed topography. 
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Glacial sediments in the area are predominantly composed of varying thicknesses 

of till and ice-contact stratified drift (Figure 3.6). An early compact gray basal till, 

composed predominantly of local volcanic rocks, is associated with the southerly flow of 

Phase I (Sparkes, 1985). Other sediments in the area consist of organic material (peat), 

alluvial deposits, and outwash deposits. Alluvial and outwash deposits predominantly 

occur along the banks of rivers except for a large outwash deposit to the east of the 

Victoria River where it enters Red Indian Lake. 

In the Victoria Mine area, Mihychuck (1985) determined that the maximum drift 

thickness was 7.0 m. Three till units were identified in the area: 

I) a grey-brown basal till, probably related to the northeasterly flow, containing 
subangular volcanic clasts in a silty-sandy matrix, 

2) a light-grey lower till, probably related to an earlier flow, containing 
subrounded to subangular clasts in a silty overconsolidated matrix, and 

3) a brown-red overlying till, probably of local derivation, containing many 
angular clasts in a sandy-silty matrix. 

Mihychuck's (1985) work in the Tally Pond area, east of the southeast comer of the NTS 

12A/l 0 map sheet, indicated drift cover averaging S m in thickness. Only one till unit was 

identified in this area. The till was light brown, containing subrounded to subangular 

clasts in a silty, highly overconsolidated matrix. This unit was interpreted as a late stage 

basal till from ice flow to the northeast. 
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Figure 3.6 : Surficial geology of the Lake Ambrose map area (NTS 12A/10; after Klassen, unpublished data). 



3.2 Data 

Most of the data used in this study was available in digital format. Analog data 

were converted to digital format as described below. Issues related to data accuracy and 

the representation of data types for different types of analyses will be addressed in Chapter 

4. 

3.2.1 Topographic Data 

Topographic data provides a generallocatiooal framework on which to base visual 

analysis (relative location of lakes, rivers, roads etc.). The topographic data also provides 

information about the drainage system (lakes, rivers, bogs and elevation data). This 

information may be useful in the analysis of the till and lake sediment geochemistry. 

3.2.1.1 Topographic Base Map 

The digital topographic data for the NTS 12A/10 map sheet (I :50,000 scale) was 

obtained from the Geological Survey (Newfoundland and Labrador Department of Mines 

and Energy) who had acquired it from the Surveys and Mapping Division (Newfoundland 

and Labrador Department of Government Services and Lands). The data were provided 

in CARIS* vector format based on the North American Datum (NAD) 83 and was 

converted to NAD27 because most of the other data and paper maps were in NAD27. 

The data is based on 1986 aerial photography, with an estimated planimetric accuracy of 

10m and an estimated altimetric accuracy of 5 m (from metadata file for NTS 12A/10 

supplied by the Surveys and Mapping Division, Department of Government Services and 
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Lands, 1998). Vector data codes are based on National Topographic Database (NTDB) 

standards. Neatline (surrounding the map sheet), lakes, rivers, wetlands, contours, and 

roads were extracted as separate layers from the database and reformatted for use in other 

GISIDTMS software (i.e. Arc View• and MaplnfoTM). Lakes, double-sided rivers and 

wetlands were polygonized and coded appropriately. Elevation values (in metres amsl) 

were included as attributes on contour lines and rivers and occur as spot heights on local 

topographic high points as well as the surface of large lakes. Benchmarks, which are 

useful for checking the accuracy of digital elevation models (DEM), are not present in the 

NTS 12A/10 area. 

3.2.1.2 Catchmeat Basin Deliaeation 

The delineation of catchment basins can be used to determine the areal extent that 

each lake sediment sample represents. There are two methods commonly used to 

delineate catchment basins; manual and automated techniques. The automated technique 

requires the development of a OEM. 

The OEM was based on the elevation information coded on the contours, rivers 

and lakes included with the 1:50,000 digital topographic data. The NTS 12A/10 study 

area was covered with asystematic sample of30,000 points which were assigned the 

elevation value from the closest contour, lake or river and the distance to this vector. 

Points with distances greater than 25m (i.e. the resolution of the final raster DEM) were 

deleted from the database in order to remove unnecessary points in flat areas. The OEM 

was created from a TIN model in the program SURFER• (Keckler, 1995). The DEM was 
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checked against 48 stratified random sample spot heights measured off' the paper 

topographic map. The RMS error calculated from these 48 spot heights was 2.3 m. The 

altimetric error cited for this map sheet is Sm. Combining the two vertical errors 

(i.e . ..Js2 + 2.32 
) resulted in a cumulative error ofS.S m. Therefore, the OEM did not add 

much error (i.e. only 0.5 m) to the inherent error in the map sheet. 

The OEM was used to delineate catchment basins using the Spatial Analyst 

HYDROLOGIC functions in ArcView 3.1e (ESRI, 1996) and the WATERSHED module 

in IDRisn-w- 1.0 (Eastman, 1993). Both of these methods resulted in poor delineation 

of the basins when visually compared with a few catchment basins delineated manually. 

These methods may work better in areas with higher relief{more mature drainage) and a 

better resolution than the 25 m resolution of this DEM. Due to the poor results obtained 

from the ArcViewe and IDRIS~ modules, the catchment basins were manually delineated 

based on the elevation data on a paper copy of the 1:50,000 scale topographic map. These 

basins were digitized, polygonized and coded based on the lake sediment samples they 

contained (Figure 3.7). The data were imported into ArcViewe and MaplnfoTM for 

comparative analysis with other data layers. 

3.2.2 Mineral Occurrences 

The MODS information for the NTS 12A/10 area was extracted and converted to 

dBase and Lotus 123 formats for viewing and plotting (Figure 3.8; Table 3.2). Prior to 
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Figure 3. 7 : Catchment basins corresponding to the lake sediment samples. 
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Table 3.2 :Partial attribute file for all the minc:ral OCCUDaiCCS in the 
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1999, the most recent information for the NTS 12A/10 area was compiled in 1994, which 

excluded confidential data for the previous three years. Therefore, 1991 data were the 

most recent information available. A recent check on the database (July 2000) indicated 

the addition of only two more mineral occurrences, both of which occur in the vicinity of 

previously mapped mineral occurrences and are not surface occurrences. Therefore, they 

were not added to the database. 

3.2.3 Bedrock Geology 

The bedrock geology (Figure 3 .3) was compiled at a 1:50,000 scale in digital form 

by S. Colman-Sadd of the Geological Swvey Branch, Newfoundland Department of 

Mines and Energy (Ash and Colman-Sadd, 1997). The geologicallinework was digitized 

from the most accurate geology maps (e.g. Evans eta/., 1994) and composited together in 

CARIS . The final data were obtained from the Geological Survey in Maplnfo format. 

Separate layers were available for geological polygons, geological contacts and faults. 

Attribute information was included with the geology polygons (Table 3.3; Colman-Sadd, 

2000). Outcrop locations, for use in subsequent reliability analysis, were digitized from 

Map 94-223 (Evans eta/., 1994). 

3.2.4 Surficial Geology 

The glacial history, surficial geology and striation patterns of an area provide a 

framework on which to base the interpretation of the geochemistry of till samples and 

possibly lake sediment samples. 
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Table 3.3 : Partial attribute file for the geology map. Each row represents a separaae polygon. 

ftodi_!W'!_ G_~ Fonnallon Lower !Upper ft.r.rence 
Age Age 

lilldd8atlc IIOIHIIerine I1012N1111'0188 r.d at· 8otwaod Gp?) 443 312 E-e181.1119411 
plutonic, inllnnedllh i{t)12AI111111688 so lntruaions) 443 382 Evana •11. 19t411 
lillc:iciMtic IMfine ~ 8nlok Fonn8llon 5!50 475 Ccllrnan-Sedd lnd Ruuell 1981 
Wlcanlc. felllc IMIIne l.fte Daualaa te~nne 545 451 Colman-Sedd 1N7 
wbnlc !Milne 8uctlans GIOUII 471 487 Willlmllt ... 1815 
valcanla IMflo m..tne 8uchana GfOUII Sandy Late Formllllon 478 467 Thurlaw and SMIIIOII 1111 
valcanla m.nc IMrine Vlc1orla Lillie Gfouil Tullal Ball 504 414 K.M 1171111 

IIOIHnlf'• .. i{012AI10108116 red nt· Bolwood G~ 443 312 E-..ltlll.tiMa 
vo~c:~~n~g rn.flc marine Vk:toria I.Be GrDIIJ) TIAaBell !504 414 K.M 11171111 
valc:enlc felllc marine V!do1111 Lillie GIOUII TulbBell !504 ... E-elal.1114a 
lllclc:lllllc m.nn. lilllble Hlnbour Round Fomlllllon !504 451 Kiln 1117111 
;I!WIIIIic felsic Slldder blull 545 471 E-elll. 111411 
lllutllllic felalc Slldder beult 545 471 EwMaeUI. 11148 
Vlllc8rliG mafic nwrlnl BuchMs Gcoup ls.ndw Lillie Formallon 478 417 11lurtDw llld s-- 1111 
IJ!lulcllllc felsic IC.012Ait111081S SD inllullonll 443 312 e.. .. .a. 1111141 
lilic:iciMtlc narrmlllnl Sflanadllllil Foml8llon 362 345 Ewnl .. ll. 1111141 
volc:anla mafic IMrinll Buehana GrOIIII I Sind¥ laU fofnlllioa 476 487 Thwbnncl s-- 1811 
walclnlc fellla mallne VIctoria Lalr.e Group Vldofla Bridge. 487 451 Evana • Ill. 1111141 
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3.2.4.1 Ice Flow Data 

A province-wide striation database is available in digital format through the 

Newfoundland and Labrador Department of Mines and Energy (Figure 3.9; Taylor et al., 

1993). This database of point locations of striations includes information on the relative 

ages of the striae and whether they have a directional component. Ice flow indicators 

were also recorded by Klassen (1994) at the time of regional till sampling and were 

incorporated in the ice flow history of the area (Figure 3.5). Other ice flow indicators (i.e. 

pebble lithologies) have been collected over the years but their use was beyond the scope 

of this study. 

3.2.4.2 Surficial Geology Map 

The surficial geology, at the 1:50,000 scale, was mapped by RA Klassen ofthe 

Geological Survey of Canada (GSC) in 1991 and 1992. Klassen updated information from 

previous work by Vanderveer and Sparkes (1982) and Sparkes (1985 and 1987). The 

preliminary GSC map (Figure 3. 6) was digitized but bas not been published (Klassen, 

1997). There were eight units mapped in the area. The units consist of bedrock, 

drift/rock, till, tiiVgrave~ drift, outwash, alluvium, and organics. Klassen (pers. comm., 

2001) uses the term 'till' to refer to sediment deposited directly from glacial ice with no 

reworking. 'Drift' is a sediment very much like till but may have bad minor reworking. 

'Outwash' refers to poorly sorted sand, gravel and boulder gravel deposited by glacial 

meltwaters, whereas 'alluvium' is composed of silt, sand, gravel and boulder gravel 
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deposited by rivers and streams unrelated to glacial meltwaters (i.e. more modem in 

origin). 

3.2.5 Till SampliDg aad Chemical Analysis 

The most recent till sampling program to include the l2A/l 0 map sheet area was 

completed by Klassen in 1992 (Klassen, 1994) and subsequently included as part of the 

Buchans-Robert's Ann multidisciplinary project (Honarvar eta/., 1996). Approximately 

250 till samples were collected in the Lake Ambrose map area, predominantly along 

woods roads and old railway lines (Figure 3.1 0). Unweathered upper C or lower 8 soil 

horizon (till) samples, representative of the original parent material, were the preferred 

sampling material (Klassen, 1994). In addition to sample numbers and UTM coordinates, 

field descriptions included sample colour, soil horizon and depth of sample below the 

surface. 

Two geochemical datasets were prepared from the tiU field samples. A clay 

fraction ( < 2 Jlm) and a "silt+clay" fraction ( < 63 Jlm) were obtained from each field 

sample. Both sets of samples were analyzed (at Chemex Ltd., Vancouver) by inductively 

coupled plasma-atomic emission spectrometry (ICP-AES) foUowing a hot acid digestion. 

Hot nitric acid-hydrochloric acid liberates loosely adsorbed metals and metals from most 

sulphides but does not decompose most silicates (Levinson, 1980) and so is considered a 

'partial' analysis. The samples were analyzed by ICP (denoted by the suffix '_C') for the 

following elements: Ag, AI. As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, 

Mn, Mo, Na, NL Pb, Sb, Sc, Sr, TL n U, V, W, and Zn. The "silt+clay'' fraction was 
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also analyzed by instrumental neutron activation analyses (INAA, by Neutron Activation 

Laboratories) which provides a total analysis of the sample. The samples were analyzed 

by INAA (denoted by the suffix '_N') for the following 35 elements: Ag, As, Au, Ba, Br, 

~~~~~~~~*~~~~~~~~·~~~~ 

Sr, Ta, Tb, Tb, U, W, Yb, and Zn. Analytical precision was monitored by the analysis of 

laboratory duplicates (Klassen, 1994). 

A comparison of Klassen's data with till data collected and analyzed by the 

Newfoundland Geological Survey laboratory ('Liverman's dataset') for the Bucbans­

llobert' s Arm study indicated slight differences due to different analytical techniques 

(Davenport eta/., 1996). To plot the two datasets on one map, the data were levelled 

(i.e. the differences were removed or reduced) using regression techniques as described by 

Davenport eta/. (1996). The INAA and ICP methods used by Liverman were both 'total' 

analysis methods. Therefore, to obtain a final dataset of'total' analyses for this study, 

those elements from Klassen's INAA (also a 'total' analysis) dataset which showed a well­

defined linear relationship with Liverman's data were retained (see Table 15, Davenport et 

a/., 1996). In addition, those elements from Klassen's ICP method (a 'partial' method) 

which showed a well-defined linear relationship with Liverman's data were obtained from 

the combined (levelled) dataset (essentially a 'total' analysis). The final dataset reflects 

'total' element concentrations of the till samples and contains 250 samples. Three samples 

were duplicates, resulting in 247 samples for statistical analysis. 

Other regional samples of till have been taken in the NTS 12A/ 10 area and may be 

useful in filling in some of the sparse areas in Klassen's sampling. These consist of226 
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regional samples taken by Vanderveer and Sparkes (1979) and 158 detailed samples taken 

by Mihychuck ( 1985) on two 200 m interval sampling grids around the Victoria Mine and 

the Tally Pond showing (northeast of Tally Pond). These samples were analyzed by AAS 

at the Geochemical Laboratory of the Department of Mines and Energy for the following 

elements: Cu, Pb, Zn, Co, Ni, Ag, Mn, Fe, Mo, and U. 

The Klassen (1994) and Vanderveer-Sparkes (1979) datasets were compared to 

determine if they could be combined to provide a more complete till coverage of the 

12A/10 area. Using ANOVA to compare the datasets, it was determined that more than 

half the elements had unequal means, therefore, the datasets could not be easily combined. 

Moreover, the Vanderveer-Sparkes data has not yet been released to the public. 

Therefore, only Klassen's data were used in this study. 

3.2.6 Lake Sediment Sampling and Chemical Analysis 

Regional lake sediment sampling in the NTS 12AJ I 0 area was carried out during 

1977. Almost 200 samples were collected (Figure 3 .11 }, using a helicopter, at an 

approximate sampling density of one site per 6 km1 (Davenport eta/., 1990a). The 

samples were dried and sieved through a 180 micron stainless-steel sieve. Analyses on the 

fine fraction were carried out using instrumental neutron activation analysis (INAA -

'total' analysis, at Becquerel Laboratories Inc., Mississauga, Ontario) for 27 elements (Au, 

As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Mo, Na, N~ Rb, Sb, Sc, Se, Sm, Ta, Tb, Th, 

U, W, Yb and Zn). Uranium was also analyzed by delayed neutron counting analysis 

(DNA). Following a partial hot acid digestion using 4M HN~ - 1M HCI {Davenport et 
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a/., 1990a), 7 elements (Cu, Pb, Zn, Co, Ni, Mn, and Fe) were analyzed by atomic­

absorption spectrophotometry (AAS) at the Geochemical Laboratory of the Department 

of Mines and Energy. Molybdenum was also analyzed by AAS, but the digestion was in 

concentrated HN03. To indicate the different analyses a numbered suffix is added to each 

element symbol; ' I , indicates INAA, '3' indicates AAS, '5, indicates AAS for the 

molybdenum digestion, and '8' indicates DNA for uranium. Loss~on-ignition (LOI), a 

measure of organic-carbon content, was determined by weighing before and after a three 

hour ashing at 500°C. Duplicate samples were taken from approximately 5% of the lakes 

to provide a measure of field precision (noise). Five percent of the samples were split in 

the lab to provide a measure of laboratory precision (added noise). Accuracy was 

measured by analyzing one standard sample for every 20 field samples. Information on the 

duplicates and standards is discussed by Davenport (1990a) . 
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CHAPTER4 

Methodology 

A quantitative model to reliably predict mineral occurrences must contain a set of 

appropriate predictor variables. This chapter outlines the methods used to prepare the 

response and predictor variables as well as describing the development of the quantitative 

models using decision tree analysis (DT A) and logistic regression analysis (LRA). 

Methods used to compare and estimate the reliability of the two models are also discussed. 

A series of programs were used to explore and analyze the data. Confirmatory 

statistics, exploratory data analysis (EDA), principal components analysis (PCA), and 

LRA were processed through SPSSTM. Cumulative frequency plots were output through 

the program UNISTAT (Nolan, 1990). Spatial statistics (variogram analysis and kriging) 

were analyzed and output using os•"IM (Robertson, 1998). DT A was analyzed through 

KnowledgeSeeker• (Angoss, 1993). Various GIS and desktop mapping systems, 

including CARis•, Arc/Info• , Arc View• • Maplnfo ProfessionafiM , and IDRIS~. 

provided spatial analysis (e.g. proximity analysis) as weD as visual display and output of 

the results. Microsoft Excel• was used for spreadsheet calculations in the Weights of 

Evidence modelling and the Moran's I calculations for point data. In addition, a few 

programs (see Appendix A) were written in Microsoft QuickBASic• to reformat or 

analyze simple sets of data (e.g. determination of spatial weighting function based on point 

distance table output from Arc/Info~. 
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4.1 Data Prepantion 

4.1.1 Response (Dependent) Variable 

To arrive at an effective response variable, the mineral occurrences in the study 

area were screened and only surface occurrences and specific deposit types were chosen. 

The surface mineral occurrences were more likely to be reflected in the till and lake 

sediment samples and can be related to the surface geology whereas mineral occurrences 

noted at depth in drill core can not easily be related to surface phenomena. The prevalent 

deposit type in the study area is volcanogenic massive sulphide (VMS) with economic and 

pathfinder minerals consisting of pyrite (an iron sulphide). chalcopyrite (a copperfaron 

sulphide), galena (a lead sulphide), sphalerite (a zinc sulphide), and gold. Of the 59 

mineral occurrences in the study area, 3 9 are surface occurrences of the VMS deposit type 

(deposit type codes 130 to 151; see Table 3.1). To increase the number of occurrences in 

the database, 5 occurrences of the hydrothennallstructurally-controlled deposit types were 

included (coded 300-31 0; see Table 3 .I). The mineralization in this deposit type consists 

of the same economic minerals of interest as the VMS deposit type. There are also 3 

surface mineral occurrences that did not contain enough information to classifY (deposit 

type code 0; Table 3.1) but they contain the same economic minerals of interest as the 

above and so were included in the database. This resulted in a total of 47 surface mineral 

occurrences. As a check on the validity of this pooling, an additional attribute (VMS) was 

added to the database and coded ' 1 ' to represent the VMS deposit type plus all the 

nonmineral occurrences and '2 • to represent the gold and unknown deposit types. The 
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DTA and LRA were repeated on the VMS group (i.e. VMS= 1) to determine if the results 

were significantly different from the grouped (i.e. VMS= 1 and 2) results. 

The DTA and LRA were based on an attribute file consisting of mineral and 

nonmineral occurrences. The 47 mineral occurrences were coded '1' in the attribute file 

(variable MINOCC) indicating the presence of mineralization. A similar number of sites 

were chosen to represent the 'absence' of mineralization. These sites were chosen using 

the stratified random sampling method of IDRISI' se SAMPLE module (Eastman, 1997). 

The stratified random sampling method reduces bias and provides a good coverage of the 

study area. Of 50 points located by IDRIS~, 49 feU within the study area and did not 

coincide with the mineral occurrence point locations. The locations (UTM casting and 

northing) of these 49 points were added to the attribute file and coded '0' (variable 

MINOCC) indicating the absence of mineralization. Therefore, the attribute file contained 

a total of 96 data points using a binary coding scheme to represent the dependent variable 

MINOCC. The locations of these 96 data points were used to extract data for each 

independent predictor variable (e.g. geological rock type). 

Classical statistical tests require that data be independent and randomly distributed. 

To test that the 96 data points were randomly distributed the nearest neighbour index 

(Hammond and McCullagh, 1978) was calculated. 

The nearest neighbour index, R, is a ratio of the observed mean-distance (Do~~~) 

between the nearest neighbour sites to the expected mean-distance (Dcxp) of the same 

number of sites randomly distributed. 
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R= Do~~~ 
Dcxp 

where Do~~~ = l: (d..) IN, Dap = 112.J N I area , d.. is the distance between nearest 

neighbours and N is the number of points. A z-score can be calculated to determine the 

significance ofthe result R(Hammond and McCullagh, 1978). 

z = (D • - D..,) I anap 

where O'Dap. = 0.26136/ .Jn2 1 area . In the test of significance the nun hypothesis tests 

for a random point distribution. Z-scores less than 2.58 (a= 0.01) indicate the null 

hypothesis is acceptable and the points are randomly distributed. 

4.1.1 Predictor (Independent) Variables 

An effective mineral potential model will contain the fewest and most reliable 

predictors that best explain the presence/absence of mineralization. The predictors chosen 

for this study were based on information from previous studies, ore deposit models for the 

study area and factors that may influence other predictors (e.g. the effects of wetlands on 

till geochemistry). 

As a general exploration too~ till and lake sediment geochemistiy have been shown 

to indicate regionally favourable areas for exploration. Ore deposit models associated 

with the types of mineral occurrences in this study area (e.g. VMS) can help in defining 

useful predictors. A review of the VMS deposit models indicated the presence of felsic 

volcanic rocks, mafic volcanic rocks, various alteration types and proximity to faults 
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(Franklin, 1993) were positive factors to include in a study. Rock alteration was not 

systematically mapped or compiled in the study area and therefore not included. Other 

predictors that may have an effect on the geochemistry of till and lake sediments are 

surficial geology and wetlands. And a measure of proximity or neighbourhood effects of 

the mineral occurrences should be included. Overall, about 20 predictors were included in 

the analysis (i.e. 3 geology predictors, 3 fault proximity predictors, 5 till predictors, 6lake 

sediment predictors, surficial geology, wetlands and a spatial weighting function) and will 

be discussed in more detail below. 

4.1.2.1 Till and Lake Sediment Geochemistry 

The review and analysis of both the till and lake sediment geochemistry databases, 

follow a similar procedure with some minor individual analyses unique to each database. 

The general procedure is outlined in Table 4 .1. 

A review of the database using EDA techniques consisting ofbox-and-whisker 

plots, histograms and cumulative frequency plots provided an overview of the variation in 

the geochemistry values as well as indicating elements that may be poorly distributed or 

truncated (usually caused by instrumental detection limits at the low end of the scale). 

Poorly distributed variables may cause problems in statistical analyses due to deflated 

correlations (Tabachnick and FideU, 1996). These variables were removed from the 

geochemistry databases. Univariate statistics, consisting of the mean, standard deviation, 

median, geometric mean, log standard deviation and range, were tabulated as a summary 



Table 4.1 : Procedure to review and analyze the till and lake sediment databases. 

Database Review: 
a)EDA 
b) univariate Statistics 

·c) visual Spatial Distribution 

Liaear ~ ... __.ioa Aaalysis: 
·lake sediments ooly - used to remove lake effects 

Principal Conauonents Analysis: 
a) review factorability 
b) review outliers 
c) estimate number of components 
d) judge results 

Produce Surface: 
TU. 
Spatial Autocorrelation -
a) variogram and correlogram analysis 
b) kriging 

c) CV reliability surface 
Lake sediments-
Catchment basin assignment 

Eitract Values from surface and input into attribute table 

overview of the data. To assess normality of the distributions, the shape of the 

distributions were evaluated using box·and·whisker plots and histograms. Skewness and 

kurtosis were not used because the number of samples was too large (e.g. greater than 

1 SO to 200) for a reliable test (Tabachnick and Fidell, 1996). All values were logged to 

bring all element values into the same scale range (Brower and Merriam, 1990). To 

maintain consistency of scale and for interpretation purposes all the units were changed to 
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ppm values (i.e. Au ppb was changed to ppm; Fe, Na, Mg, and Ca percent was changed to 

ppm). 

A visual assessment of the spatial distribution (as graduated dot plots) of element 

concentrations in till and lake sediment samples can indicate preliminary associations 

between the elements and other spatial factors (e.g. bedrock geology, faults). 

To reduce false anomalies caused by lake effects (change in element concentrations 

due to the lake environment, such as adsorption on hydroxides and organics, as well as 

lake area and sample depth) all elements were regressed against logFe, logMn, LOIJJct, 

loglarea and logsdpth (Davenport eta/., 1974). The data were checked for univariate and 

multivariate outliers prior to running the linear regression. Extreme outliers were removed 

from the database so their values would not adversely affect the linear regression results. 

Linear regression was used to remove lake effects on those elements which 

correlated (using r>O.S; Davenport, 1974) with at least one independent variable (IV; i.e. 

logFe, logMn, LOI_pct, loglarea and logsdpth). Therefore a preliminary stepwise linear 

regression analysis was run with each element as the dependent variable against all S IV s. 

The results of this regression run were checked and the change in R 2 values was noted. 

Only those IV s that enter the equation causing a greater than 2% change in R2 were 

retained. The next stepwise linear regression was run using only the retained IVs and the 

computed residuals were saved. These residuals were reviewed and cases which were 

outliers (i.e. cases where the standardized residual value was greater than ±3.29) were 

removed from the final linear regression run. These outliers were cases that could not be 

wen predicted by the solution. To include the 'outlier' cases in the database (as they may 
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be anomalous and of significance for mineral exploration), their residuals were manually 

calculated using the final regression equations and input back in the database (P. 

Davenport, pers. comm., 2001). 

It is not practical to review the statistical and spatial distribution of every element 

in a large database. PCA is an exceUent method of reducing the database to a small set of 

orthogonal components that will provide insight into the underlying nature of the data. 

Outliers and poorly distributed variables can greatly affect the results of PCA because it is 

based on correlations. Variables that were poorly distributed were already removed from 

the database at the initial phase of data screening. To check the effect of outliers in the 

database, PCA was run before and after removal of univariate and multivariate outliers 

and the results compared. If the results were essentially the same then the outliers would 

be left in the database. If the analysis was not robust to outliers then the outliers would be 

removed and the data reanalyzed. As mentioned above, outliers may be anomalous and of 

significance for mineral exploration. Therefore, if outliers were removed their scores were 

manually computed using the results of the PCA analysis on the nonoutlier cases (P. 

Davenport, pers. comm., 200 I). 

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was calculated to 

detennine if the data was suitable for PCA. A KMO value greater than 0.6 indicates that 

the dataset can be factored (Tabachnick and Fidell, 1996). The next step was to determine 

the number of components to extract by reviewing the eigenvalues and the scree plot. The 

number of components with eigenvalues greater than 1. 0 and the component number at 

the change in slope of the scree plot provide an indication of the approximate number of 
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components to extract. Other fictors to take into account when assessing the number of 

components are that the components should make sense with respect to their geochemical 

consistency, they should not be composed of just one or two elements and the maximum 

loadings in each component should be fairly high (e.g.> 0.7; Tabacbnick and Fidell, 

1996). Examination of communalities and the residuals matrix also indicate the 

effectiveness of the number of components chosen (Tabachnick and Fidell, 1996). 

Removal of elements with low communalities may change the loadings of the elements in 

different components. This is an iterative technique. 

To determine if a 'simple' method ofPCA analysis was robust, Spearman's rank 

correlation matrix (a nonparametric technique), calculated on the raw, unlogged data was 

used as input in the PCA instead of data that had been checked for normality, linearity, 

outliers etc. If this nonparametric method of PCA analysis provides results similar to the 

parametric method then PCA can be easily calculated and incorporated into more 

exploration analyses. 

To determine if till geochemistry is important as a predictor of mineral 

occurrences, it is necessary to add the till geochemistry to the mineral occurrence attribute 

database by extracting the geochemical values at each mineral/nonmineral occurrence site. 

This requires that the till point data be represented as a surface. Only the ore-forming 

elements (i.e. Au, Cu, Pb, and Zn, as logged values) and the component that most 

represented the ore-forming minerals were considered, to determine if the individual 

elements or the component was a better predictor of mineral occurrences. V ariograms 
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and correlograms were analyzed to determine if the variables showed positive spatial 

autocorrelation and could be interpolated as a surface. 

The variograms were reviewed with and without outliers to see if the presence of 

outliers caused significant changes in the variogram model parameters. If outliers did 

cause significant changes then they were removed. The best variogram model was chosen 

based on the minimum value of the reduced sum of squares (RSS) which indicates how 

well the model fits the data using the lag parameters specified (Robertso~ 1998). The 

isotropic and anisotropic models were compared to determine which best fit the data. 

Correlogram.s were also reviewed to determine the distance over which positive 

autocorrelation exists. Based on Moran's I calculations, the correlogram. graphically 

shows the distance over which positive spatial autocorrelation occurs. 

If the till data was determined to be spatially autocorrelated then the point data can 

be interpolated using block kriging methods. Input parameters in the block kriging 

procedure consist of the number of nearest neighbours, the local grid size, the search 

radius, and the best variogram model (which is automatically input based on decisions 

made in the variogram analysis section). The number of nearest neighbours to include in 

the kriging and the local grid size were iteratively tested by comparing the minimum and 

maximum of the output data with the input minimum and maximum. The cross-validation 

plot of observed versus predicted values provides an indication of whether the data 

contains outliers that are causing a bias in the variogram. These checks ensured an 

interpolated surface which best represented the measured points. 
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Once the best kriged surface was calculated, an error surface (in standard 

deviations) was also calculated to provide an indication of the reliability of the interpolated 

surface based on the distribution and variation of the point data (Robertson, 1998). A 

coefficient of variation (CV) surface was calculated by dividing the standard deviation 

surface by the mean surface. The mean surface was represented by the kriged surface (for 

which each point represents the mean in that immediate area). The CV surface was 

multiplied by 100 to provide an indication of the percent variability around each point 

(Berry, 1993) An increase in variability indicates an increase in uncertainty (Berry, 

1995). 

When the kriged and CV surfaces had been prepared for each till element and PCA 

component of ihterest, their values at each of the 96 minerallnonmineral occurrence site 

were extracted and added to the attribute database. 

The lake sediments were assumed to be representative of the catchment basin from 

which they were coUected (see Chapter 2.1.2). Therefore, rather than kriging the lake 

sediment data, the catchment basin polygons were assigned the value of each ore-forming 

element (i.e. Au, Cu, Pb and Zn as logged or residual values) or component. These values 

were extracted at the minerallnonmineral occurrence site and added to the final attribute 

database. 



4.1.2.2 (;eol~ 

There are 12 rock types in the study area (Table 3.3). The alphanumeric rock 

types were extracted from the digital geology map at the 96 minerallnonmineral 

occurrence sites and added to the attribute database (variable GEOLOGY). Numeric 

codes are often easier to work with and are necessary for some analyses (e.g. SPSSTM 

boxplot factor list requires numeric codes). Therefore, the alphanumeric GEOLOGY 

descriptors were recoded to numeric values I to 12 (variable GEOLCODE). Deposit 

models for VMS deposits indicate some deposit types favour felsic volcanic rocks while 

other deposit types favour mafic volcanic rocks (Franklin, 1993). Therefore, the 12 rock 

types were recoded to binary values where '1' represents felsic volcanics and '0' 

represents non-felsic volcanics in the variable VOLCFELS and ' 1' represents mafic 

volcanics and '0' represents non-mafic volcanics in the variable VOLCMAF. 

To provide an indication of agreement between the regional 1:50,000 scale 

geology (Colman-Sadd, 2000) and the detailed geology from the MODS database, the 

rock types (variable HOST_ROC) were extracted from MODS for the 47 surface mineral 

occurrence sites and added to the attribute database. The rock types in HOST _ROC and 

GEOLOGY were compared to indicate if the scale of geological mapping produces 

significantly different results overall. 

4.1.2.3 Fault Pro:simity and Weights of Evidence Modelling 

VMS and gold deposit models indicate fault proximity is important as an aid to 

mineral exploration (Franklin, 1993). Therefore the digital fault vectors were ruterized 
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using a 200 m cell resolution, based on the ±1OOm uncertainty of many of the mineral 

occurrence locations (Stapleton and Smith, 1999). 

Three faults occur adjacent to the NTS 12A/10 map sheet but do not cross onto 

the map sheet in the southeast comer. These faults may extend into the map sheet area 

but were not mapped by the geologists due to a lack of evidence in this area (e.g. due to 

glacial debris cover). Therefore, to account for the possibility that these faults may exist 

on the NTS 12A/10 map sheet, they were extended slightly into the map sheet so buffering 

will indicate their presence. The proximity to the faults was determined using IDRISrs* 

DISTANCE module where 0 metres was recorded on a fault and distance (m metres) 

increased away from the faults. The continuous fault proximity surface was sampled 

(variable FL IDST) at the 96 mineral/nonmineral occurrence sites and added to the 

attribute database. 

In LRA, variable coding affects the direction of the odds ratio and the sign of the 

B coefficient. If predictors are coded such that the higher values are most likely positively 

associated with the response variable then the resulting logistic regression parameter 

estimates will be positive and interpretation will be simplified (Tabachnick and Fidell, 

1996). The values in FL TDST range from 0 m, on the fault, to over 8000 m furthest from 

the faults. The VMS and gold deposit models indicate that close proximity to faults is a 

positive factor in the exploration for mineral occurrences. Therefore, FL TDST was 

recoded into the variable NFL TDST by normalizing the distances: 

NFLTDST = max(FLIDST)- FL TDST 
max(FLIDST) 
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This results in a continuous variable (NFL TDST) ranging from I (representing a point on 

a fault) to 0 (representing a point far removed from a fault). The distribution of 

NFL TDST is negatively skewed. The normalized distances were arcsine transformed to 

produce a continuous variable (ARCSFL T) which has a more normal distribution but a 

comparable range to NFL TDST. 

A binary measure of fault proximity simplifies the proximity measurement to those 

areas close to faults (coded '1 ')and those areas far from faults (coded '0'). Weights of 

evidence modelling (see below) was used to determine the optimal threshold distance 

which represents areas close to faults and favourable for mineral occurrences. 

Weights of evidence (WOE) modelling is a method of combining binary maps to 

produce an output binary map with an optimal measure of spatial association between two 

input maps (Bonham~Carter, 1994). One map is considered the response map (e.g. 

mineraVnonmineral occurrences) and the other is the predictor map (e.g. fault proximity). 

By changing the input predictor map (e.g. increasing buffer distances), the map with the 

best spatial association to the input response map can be determined. In this study, the 

spatial association was based on a density measurement of the number of mineral 

occurrences in close proximity to faults versus the number of nonmineral occurrences far 

from faults. The following procedure is based on Bonham-Carter (1994). 

The study area was converted into a raster grid with a resolution of 200 m, based 

on the uncertainty of the location of many of the mineral occurrences. The subsequent 

calculations were done on counts of the unit cells. Each unit cell intersecting a mineral 
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occurrence was coded '1 ', otherwise it was coded '0'. N(T) represents the total number 

ofunit cells in the study area. N(MO) represents the number of .mineral occurrence ceUs. 

Therefore, N(MO)IN(T) represents the average density or prior probability, P(MO), of 

occurrences in the study area given no other information. To determine how the 

probability of mineral occurrences changed with the addition of new information (i.e. a 

fault buffer), the conditional probability was calculated as: 

P(MOIFB) = P(MO n FB) I P(FB) 

where P(MOIFB) represents the conditional probability of a mineral occurrence (MO) 

given the presence of a fault buffer (FB), P(MO n FB) represents the probability of 

mineral occurrences and a fault buffer occurring simultaneously and P(FB) represents the 

probability of a fault buffer (after Bonham-Carter, 1994). Stating this in terms of counts 

of units cells results in the following: 

P(MOIFB) = N(MO ll FB) I N(FB) 

where the conditional probability was calculated as the number of unit cells where both 

mineral occurrences and a fault buffer occurs divided by the total number of unit cells 

where a fault buffer occurs (after Bonham-Carter, 1994). 
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The WOE calculations are based on the conditional probabilities, given the 

presence and absence of the mineral occurrences and fault buffers. The weights were 

calculated for both the presence (positive weight W) and absence (negative weight W) of 

the new information (i.e. fault buffers) given the presence and absence of mineral 

occurrences. The positive weights of evidence is: 

W = In [P(FBIMO) I P(FBI MO) ] 

where P(FBIMO) and P(FBI MO) represent the conditional probability of the fault buffer 

given the presence and absence of mineral occurrences, respectively (after Bonham-Carter, 

1994). The negative weights of evidence is: 

---
W= ln [P(FBIMO)IP(FBIMO)] 

---where P( FB IMO) and P( FBI MO) represent the conditional probability of the absence of 

the fault buffer given the presence and absence of mineral occurrences, respectively (after 

Bonham-Carter, 1994). Note that positive values for Wand negative values for W 

indicate that the new information (i.e. fault buffer) adds to the prediction of mineral 

occurrences. If W = W = 0 then no correlation is indicated and the fault buffers add no 

additional information in predicting mineral occurrences. The four conditional 

probabilities for the above equations were calculated as follows: 

P(FBIMO) = P(FB n MO) I P(MO) = N(FB n MO) I N(MO) 
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P(FBIMO) = P(FB r1 MO)/ P(MO) =N(FB n MO)IN(MO) 

P( FB IMO) = P( FB r1 MO) I P(MO) = N( FB n MO) I N(MO) 

P( FBI MO) = P( FB ~"'~ MO) I P( MO) = N( FB n MO) IN( MO) 

(after Bonham-Carter, 1994). 

The optimal buffering distance (i.e. fault proximity value) for converting 

continuous proximity values to binary values was determined by calculating contrast 

values. A contrast value was calculated for each fault proximity buffer distance (in 

increments of 200m from 0 to a maximum of2400m): 

Cw=W-W 

The contrast is a measure of correlation between the mineral occurrence map and the data 

in each of the fault proximity maps (Bonham-Carter, 1994). Contrast values usually range 

from 0 (indicating spatial independence between the two maps) to 2 (indicating a positive 

spatial association). A plot of contrast versus distance (where distance is the cutoff for the 

buffer area around the fault) indicates the best threshold distance to use to recode the 

continuous variable FL TDST into a binary variable. FL TDST values from 0 m to the 

threshold value were coded as '1' (representing distances from faults favourable for 

mineral occurrences) and values greater than the threshold value were coded as '0' 

(representing distances from faults unfavourable for mineral occurrences). 
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The variance of the weights and contrasts is calculated as a check on their 

uncertainty. The variance of the weights and contrasts can be approximated by the 

following equations, assuming a large number of occurrences (Bishop eta/., 1975): 

S2 (W} = [1 \ N(FB () MO)] + [1 \ N(FB f"\ MO )] 

s2 (W) = [t \ N(FB() MO)] + [t 'N(FB(') MO)J 

S2 (Cw) = S2(W) + S2(W) and s(Cw) = ~S2(Cw) 

Note that the variances are unit dependent and, therefore, only significant in a relative 

sense (Bonham-Carter, 1994). The standard deviation of the contrast is used to calculate 

the Studentized value of the contrast (SC), an approximate test of the null hypothesis C=O 

(i.e. no correlation between the maps): 

SC = Cw I s(Cw) 

Values of SC much greater than 2 indicate reliability in the contrast (Bonham-Carter, 

1994). 

4.1.2.4 Surficial Geology 

Surficial geology information may be significant in providing a framework on 

which to relate till and lake sediment geochemistry. Klassen (1997) mapped 9 surficial 
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sediment types in the study area (Figure 3.6). The surficial geology descriptors (e.g. 

bedrock, till) were extracted from the digital map (Figure 3.6) at the 96 

minerallnonm.ineral occurrence sites and added to the attribute database (variable 

SURFICIA). The 96 alphanumeric descriptors were recoded to numeric values 1 to 9 and 

added to the attribute database (variable SURFCODE) to simplify analyses and further 

coding schemes. To determine if a relationship exists between the thickness oftiUs and 

their geochemical values, bedrock and the four sediments (i.e. drift/rock, till, tilVgrave~ 

and drift) were receded with the mean thickness for the sediment (variable SlJRFfHIC). 

The mean thickness was based on the range of thickness assessed by Klassen ( 1997). Till 

geochemistry (e.g. logCu) was plotted against SURFTIDC using box-and-whisker plots to 

quickly assess any relationships. 

4.1.2.5 Wedancb 

The geochemistry of till and lake sediments may be affected if the samples were 

collected within a wetlands area. Wetlands cover about 1 00/o of the study area and are 

coded on the topographic map as 'wetlands' (WAWL) and 'string bogs' (WASB). The 

wetland codes were extracted at the 96 mineraVnonmineral occurrence sites and added to 

the attribute database (variable BOG). Only 4 of the 96 sites occurred within wetland 

polygons, so further subdivision (e.g. using Peadand Inventory information) of the wetland 

type was not necessary. The variable BOG was recoded to a binary variable (BOGCODE) 

where ' 1' represents wetlands and '0' represents nonwetlands. This is a highly skewed 

dataset (with the potential for producing low correlations; Tabachnick and Fid~ 1996) 
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but was still used in nonparametric analysis (e.g. box-and-whisker plots) to determine if 

these 4 samples were related to any other factors. 

4.1.2.6 Spatial Weighting Function 

A known trait of mineral occurrences is that they often occur in spatial proximity 

to one another (Lydon, 1988). This trait wiD be incorporated in the database as a spatial 

weighting function (SWF) based on the spatial point-distribution of the minerallnonmineral 

occurrences (Kvamme, 1990; Chou et al., 1990). In a polygonal analysis of spatial 

autocorrelation, Chou et al. determined that the contiguity of neighbouring polygons 

represented the most basic form of the spatial relationship and applied a contiguity weight 

in the SWF. In point analysis of spatial autocorrelation, Kvamme (1990) applied the 

inverse distance between two points to represent the most basic form of spatial 

relationship. 

Before developing a SWF it was necessary to demonstrate quantitatively that the 

data (mineraVnonmineral occurrences) show positive spatial autocorrelation and therefore 

warrant the use of a SWF. The calculations to determine the spatial autocorrelation 

measure are from Kvamme (1990). The statistical test was set up such that the null 

hypothesis tested the probability that all sites are equally mineral occurrences (i.e. no 

spatial autocorrelation). The alternative hypothesis was that a site neighbouring a mineral 

occurrence had a higher probability of being a mineral occurrence than not being a mineral 

occurrence (positive spatial autocorrelation). The spatial autocorrelation for point data 

were evaluated using the Moran's I statistic for point data and tested using the 
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randomization model for Ho, at a = 0. 05. The randomization model was used beQUse it 

is not based on any assumptions about the distribution of the Xi whereas the alternative 

normality model assumes the Xi are normally distributed (Kvamme, 1990). Since only 

positive spatial autocorrelation is of interest, a one-tailed test was used where the standard 

normal deviate is z = [I-E(I)] t.Jvar(l). The spreadsheet and equations used to calculate 

Moran's I are presented in Chapter 5 (Tables 5.15 and 5.16). 

The SWF was based on the distance between the m.ineral/nonmineral occurrence 

sites. This distance was calculated using Arcllnfo•s• POINTDIST ANCE algorithm. A 

search radius of 5000 m provided a list of sites within 5000 m of each other. The list 

consisted of the identification of the point in question, 'i', the id of the neighbouring point, 

T, and the distance (in metres) between them. If an optimum search radius was later 

determined to be less than 5000 m then the Jist could be easily pruned to eliminate the 

longer distances. The optimum search radius was determined from a correlogram 

(Moran's I versus Separation Distance) of the 96 minerallnonmineral occurrence sites. 

The distance over which Moran's I is positive indicates the neighbourhood (i.e. search 

radius) over which positive spatial autocorrelation occurs. 

The spatial weighting function was calculated as follows (see Program A2 in 

Appendix A): 
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where the weight, W ij, is the inverse distance between points i and j and x; equals 1 if the 

jth point is a mineral occurrence and 0 otherwise. This SWF is very similar to Chou et 

a/. 's (1990) SWF, only differing in the weight assigned. The values for the SWF vary 

between 0 (indicating the point is not close to any mineral occurrences) and 1 (indicating 

all neighbours around a point are mineral occurrences). The SWF values were calculated 

for each of the 96 minerallnonmineral occurrence sites and incorporated into the attribute 

database. 

4.2 Decision Tree Analysis 

Decision tree analysis (DTA) is a robust method of classifying (i.e. splitting into 

subsets) dependent variables based on their relationship to the independent variable. The 

relationship is interpreted as a set of statistically significant 'IF· THEN' JUles developed 

using the procedures in the KnowledgeSeeker• program (Angoss, 1993). See Chapter 

2.2.2.2 for a more indepth discussion ofDT A 

The KnowledgeSeeker• program requires the dependent variable (i.e. MINOCC) 

to be specified. Each independent variable (IV) was viewed to check the cluster type (e.g. 

continuous variables should be specified as monotonic or floating depending on whether 

they include missing values; binary variables should be listed as free clustering). The 

'grow' method was set to 'exhaustive', which produces statistically reliable splits (Angoss. 

1993). The filter level was initially set to the 'explontion' mode. This provides an 

adjusted error rate of200/o (a=0.20) used in testing the validity of the relationships 

(Angoss, 1993). The exploration mode was used to review the data and indicate potential 
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patterns. The filter level was reset to the 'prediction' mode (tt=O.OS) on the final run to 

check the results at the more stringent filter setting. Competing significant splits were 

reviewed at each node in order to assess splits that may make more logical sense but may 

not be as statistically significant. If there was no reason to override a statistical decision 

then no splits were forced. The procedure was repeated to test various combinations of 

IVs (e.g. the three different fault proximity variables). The Bonferroni value was adjusted 

accordingly when correlated IVs (e.g. till zinc values and PCA2) were included in the 

analysis at the same time. 

The resulting "IF-THEN'' rules are a set of conditions with associated probability 

values for the binary response variable. A rule-based map was produced using the IV s 

listed in the decision rules. The probability values, also listed as part of the decision rules, 

were assigned to each condition to arrive at a map indicating the 'weight' or 'probability', 

from 0 to 1, of the mineral potential. Since the data set is sparse, it was not practical to 

separate a test data set to use for accuracy testing. Therefore, accuracy testing was done 

by comparing the DTA results to the logistic regression analysis results (see below). A 

reliability map, based on the error or CV maps of each significant independent variable, 

was calculated for the rule-based map (see below). 

4.3 Logistic Regression Analysis 

Logistic regression is another robust technique that predicts the probability of a 

case belonging in one group or another. This technique was used to determine the 

independent variables that best group cases based on the dichotomous response variable 
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'mineral occurrences' (i.e. which variables best explain the presence or absence of 

mineralization and, therefore, mineral potential). 

A preliminary logistic regression was run, with all IV s entered, to determine 

whether the full model improved the prediction of the mineral occurrences {the response 

variable) compared to the constant-only model. If the full model improved prediction of 

mineral occurrences, this would indicate that at least some of the IV s were useful in 

predicting mineral occurrences. 

With minimal prior knowledge about the relationship between the data and the 

mineral occurrences, stepwise logistic regression was applied to determine which IV s were 

most useful in predicting mineral occurrences. The probability value to enter the model 

was increased from 0.05 to 0.20 and the probability value to be removed from the model 

was increased from the default ofO.IO to 0.30 to account for the interaction among 

predictors {Hosmer and Lemesbow, 1989). Each predictor which entered the equation 

was also tested individually by including it and removing it from the model. The chi­

square goodness-of-fit (see Chapter 2) was calculated to determine the significance of 

adding the new predictor to the model. 

Once the significant predictors had been determined, cases with large standardized 

residuals (i.e. >3.29, indicating the case was not weU predicted by the model) were 

selected out and the regression repeated. Classification tables were analyzed at the final 

stages of model building to determine the percentage of correctly and incorrectly classified 

cases. 
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To determine if the assumption of pooling the VMS, gold, and 'unknown' deposit 

types was justified the LRA was nan on just the VMS mineral occurrences (n=39) and all 

the nonmineral occurrences (n=49). The results for the subset of VMS occurrences versus 

all the occurrences in the database were compared. 

A mineral potential map was created from the logistic regression equation using 

IDRISI's• IMAGE CALCULATOR. A reliability map was also calculated (see below), 

based on the error and CV maps of each significant IV in the model equation. 

4.4 Comparison of Results from DTA and LRA 

The mineral potential maps produced as a result of the DTA and the LRA 

consisted of two different measurement types. Due to the limited number of rules, the 

DT A map was composed of discrete probability values whereas the LRA map was 

composed of continuous probability values. These maps can be compared in a number of 

ways of which three were used in this study. 

The first method was to determine how similar Oevel of agreement) the results of 

the DT A and LRA modelling methods were at the 96 sites used in the study. The 

probability values from the two modeUed mineral potential maps were extracted at the 96 

sites. These values were converted to binary codes where '0' represented probability 

values from OOA. to just less than SOOA and ' 1 ' represented probability values from SOOAt to 

I 00%. The binary probabilities were compared to determine how many sites were 

classified the same by both methods (a measure of agreement) and how many sites were 

classified correctly by the two methods. A visual assessment of the spatial distribution of 



the correctly and incorrectly classified data was also completed to note any obvious 

patterns. 

The seQ>Dd method of comparing results used the same binary coding as above 

but, instead of a site analysis, the DT A and LRA mineral potential maps were converted to 

binary maps. A cross-tabulation of the results plus quantitative map comparison indices 

(Kappa and Yule's a; Bonham-Carter, 1994) were used to compare the maps. 

The third method of comparing results was to summarize a cross-tabulation table 

of the actual values in the raster maps as opposed to comparing binary values. The cross­

tabulation list provided the frequency of each LRA value for the discrete values in the 

DT A and was summarized by a box-and-whisker plot. 

4.5 Reliability and Favourability Analysis 

The reliability (i.e. certainty) of the models was assessed by combining the 

reliability maps for each of the significant predictors in the final DT A and LRA models. 

The predictors of interest consisted of the spatial weighting function (SWF), volcanic 

felsics (VOLCFELS), the binary fault proximity predictors (FLT400 and FLTIOOO), and 

copper in till (TLOGCU). The reliability for the SWF could not be determined because it 

was a calculated variable. The reliability for the remaining predictors was based on the 

source of the data for that predictor and will be discussed in more detail below. 

Geology (specifically felsic volcanics) was determined to be a significant predictor. 

The reliability of the geology, in general, was assessed by comparing the geology from the 

regionall :SO,OOO scale mapping to the detailed site-specific geology from the MODS 



database. This comparison will give an indication of the usefulness of the I :50,000 scale 

geology maps for quantitative analysis. 

A reliability map for felsic volcanics was based on the locations of the outcrops 

because the geology is most reliable at these sites. The outcrop locations were digitized 

and buffered. Those cells close to outcrops were considered reliable whereas those ceUs 

furthest from the outcrops were considered most unreliable. The histogram of the cell 

proximity values was assessed to determine a reliability coding scheme. The maximum 

reliability on an outcrop was coded as 900/o (S. Colman-Sadd, pers. comm., 2000), due to 

the less than perfect reliability of assessing the location and rock type, and decreased to 

I 0% for those locations furthest from outcrops. The outcrop proximity map was recoded 

with the reliability values. 

A reliability map for the fault variables was based on the buffers resulting from the 

WOE analysis. Evans eta/. (1994) coded the faults in the study area as 'assumed' and 

'approximate'. There were no 'defined' faults in the area. This may be due to the 

extensive forest and glacial cover. Therefore, no areas were considered reliably (i.e. 

I 000/o) a fault or reliably 'not a fault'. The most reliable areas were in proximity of the 

faults and also far distant from the faults. These areas were assigned a reliability of 80%. 

The least reliable areas were the edge of the buffers around the faults (Berry, 1993). 

Therefore, the buffer boundaries were assigned a reliability of SO% and one cell from the 

boundaries were assigned a reliability of 65%. 

The map of till copper values was determined from an interpolated surface using 

kriging techniques. The kriging procedure also provided a standard deviation map, from 
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which a CV map was calculated by dividing the standard deviation map by the till copper 

map. The CV map was subtracted from 100 to conform to the reliability scale indicated 

above. 

Once the reliability maps for each predictor were determined they were combined 

based on the method of calculating the DT A or LRA mineral potential maps. The DT A 

mineral potential map was calculated from rule-based conditions. The summary rules (see 

ChapterS, Table 5.19) indicated that each rule was a combination of the SWF and one 

other predictor (VOLCFELS or FL T 400). Since the SWF does not have an associated 

reliability map, then the reliabilities for the VOLCFELS or FLT400 maps were combined 

based on the areas they influenced. For example, those areas on the DTA mineral 

potential map defined by Rule 1 (i.e. SWF <0.17 and VOLCFELS=l) were assigned the 

reliability from the VOLCFELS reliability map for that area. The LRA reliability map was 

based on a combination of predictors as indicated in the final logistic regression equation 

(see Chapter 5.4). A simple method ofdetennining the reliability for the LRA was based 

on the joint probability model as described by Beny (1993). In this method the reliability 

maps for each predictor in the logistic regression equation were multiplied together to 

provide a joint probability reliability map. 

As a final summary analysis, those areas which have high mineral potential and 

high reliability will be most favourable for further mineral exploration. To define these 

favourable areas, the mineral potential maps were multiplied by their reliability maps. The 

favourability maps were converted to binary and the two final maps, for the DT A and 

LRA models, were combined (added together) to provide an overall favourability map. 



This map was compared with the mineral occurrence sites to determine how many sites 

coincided with the maximum favourability areas. 

4.6Su•mary 

The preparation of valid response and predictor variables is of primary importance 

to the modeUing procedure. The geochemical databases took time to screen to provide 

optimal predictors. The varied data types (e.g. continuous geochemical values, nominal 

rock types, binary fault proximity) limited the methods available for quantitative 

modelling. Both DT A and LRA were able to handle all the data types. DT A and LRA 

were compared to provide an indication of the reliability of the modelling techniques, since 

the sparseness of the dataset did not allow for a separate test dataset. 
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CHAPTERS 

Variable Analysis and Modelling Results 

This chapter presents the results of preprocessing of the response and predictor 

variables for input into the quantitative modelling of mineral potential. The significance of 

the predictors in determining mineral potential will be analyzed by two methods: decision 

tree analysis (DT A) and logistic regression analysis (LilA). The results of the analyses 

will be presented along with an assessment of their reliability. Overall favourability for 

mineral potential will be calculated by combining the mineral potential and reliability maps 

for the two models. 

S.l Response Variable 

Randomly distributed data is a necessary requirement for classical statistical tests. 

The nearest neighbour index (Hammond and McCullagh, 1978) was used to test that the 

response variable, MINOCC, had a random spatial point distribution. Based on the 

equations presented in Chapter 4 .1. 1 : 

Da =I (d-) IN= 1.824 km 

Dexp = 112.J N I area = 1.633 km 

D 
and R = --2!!!..= 1.12 

Dllllp 



where d.. is the distance between nearest neighbours and N is the number of points. An 

index value close to I indicates that the points are randomly distributed. The z-score, to 

determine the significance of the nearest neighbour index is: 

z = (D oa. - D..,,) I uo.., (Hammond and McCullagh, 1978) 

where ueap. =0.26136/ .JN2 /area =0.087 

' 
therefore, z = (1.824- 1.633) I 0.087 = 2.19 

A z-score less than 2.58 (at a= 0.01) con1irms the index value of 1.12 and indicates an 

random point distribution. 

5.2 Predictor Variables 

5.2.1 TiD Geochemistry 

The till geochemistry database consists of247 samples with analyses for 34 

elements. The first step in data analysis was to remove those elements which had a limited 

or poor distribution of data. A review of the till database using EDA techniques (e.g. box-

and-whisker plots) and frequency tables indicated the elements Ag, Ca, Mo, Ta and W had 

more than 500/o of their values less than the analytical detection limit. Also, Cs had 3 7% 

of its values less than the detection limit and the remaining Cs values were severely limited 

in range. These elements were all removed from the database. 

Univariate statistics consisting of the minimum, maximum, median, mean and 

standard deviation, log mean and standard deviation and geometric mean, were tabulated 

as a summary overview ofthe remaining 28 elements (Table 5.1). Histograms of the 
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Table 5.1 : Univariate statistics for elements in till samples in the NTS 12A/l0 area. 

Standard 
Element Unit N Minimum Maximum Median Mean Deviation 
MN ppm 246 3.6 180 36.5 43.5 29.74 
AuN pQb 246 <2 41 6.0 6.4 5.60 
BaN ppm 246 <50 620 330 338 88.4 
Br N ppm 246 <0.5 81.0 2.6 4.1 6.78 
Ce N ppm 246 23 110 57.0 58.3 15.69 
CoN pp1!l_ 246 5 62 16.0 16.8 7.22 
Cr N ppm 246 21 160 50.0 58.6 26.03 
Cu C ppm 240 15 392 72.1 80.3 40.03 
Eu N ppm 246 0.4 2.5 1.50 1.45 0.331 
FeN pet 246 1.9 9.18 4.32 4.37 1.211 
Hf N ppm 246 3.0 24.0 5.0 6.0 2.77 
La N ppm 246 8.8 50 24.5 25.3 6.03 
Lu N ppm 246 0.29 1.00 0.580 0.589 0.112 
Mg_C pet 240 0.52 1.79 0.93 0.94 1.641 
Mn C ppm 240 562 4026 1273 1363 457.7 
NaN pet 246 0.48 2.73 1.66 1.66 2.995 
Nl C ppm 240 10 78.1 26.2 28.0 10.15 
Pb C ppm 240 7 88.9 17.8 20.0 9 .46 
Rb N ppm 246 <5 99.0 31.0 31 .9 18.17 
Sb N ppm 246 0.5 13.0 2.15 2.40 1.410 
Sc N ppm 246 9.0 28.0 18.0 17.6 3.19 
Sm N ppm 246 1.8 8.5 4.90 4.94 1.172 
Tb N ppm 246 <0.5 1.5 0.90 0.83 0.333 
Th N ppm 246 2.6 15.0 6.30 6.65 1.813 
UN ppm 246 <0.5 11.0 2.10 2.49 1.297 
vc ppm 240 59 191 107.7 111.8 23.88 
Yb N ppm 246 2.0 6.7 3.90 3.96 0.755 
ZnC ppm 240 42 731 105.3 111 .2 52.70 

Logarthmlc Log Standard Geometric 
Mean Deviation Mean 

1.55 0.293 35.2 
0.65 0.396 4.5 
2.51 0.147 324 
0.25 0.623 1.8 
1.75 0.120 56.2 
1.19 0.173 15.5 
1.73 0.169 54.0 
1.86 0.206 72.1 

0.150 0.107 1.41 
0.624 0.120 4.17 

0.74 0.156 5.6 
1.39 0.106 24.6 

-0.238 0.0845 0.578 
-0.040 0.0740 0.91 

3.11 0.130 1301 
0.212 0.0830 1.62 

1.42 0.154 26.3 
1.27 0.170 18.4 
1.37 0.426 23.6 

0.334 0.188 2.16 
1.24 0.0816 17.3 

0.681 0.110 4.80 
-0.13 0.236 0.74 
0.808 0.112 6.43 
0.340 0.235 2.19 
2.039 0.0908 109.4 
0.590 0.0855 3.89 
2.019 0.146 104.4 



element values showed a positively skewed distribution. Therefore, all values were logged 

to normalize the distributions. This had the added benefit of stabilizing the variance 

(Davis, 1986; George and Bonham-Carter, 1989). 

A visual assessment of the spatial distribution of the elements can reveal 

associations between the elements and spatial factors such as proximity to faults. 

Therefore, graduated dot plots of many elements were plotted and any interesting spatial 

associations were noted. Values near the 95th, 85th, 70th, and 50th percentiles were used as 

quick break point values. The spatial distribution of copper values in till samples (Figure 

5.1) shows a distinct difference between samples to the northwest of Victoria River versus 

samples to the southeast of the river. The distribution may indicate elevated background 

copper values in the Tally Pond volcanics in the southeast versus the Tulks Hill volcanics 

in the northwest. The copper values for these two areas were extracted, with the dividing 

line being the southern extent of the Tulles Hill volcanics (Figure 5. 1 ). A comparison of 

the box-and-whisker plots (Figure 5.2) for these two areas indicates some overlap in the 

interquartile range but the 95% confidence interval for the medians (Rock, 1988) for the 

two areas do not overlap (see below) indicating two separate groups: 

95% Confidence Interval= median± 1.58 (interquartile range) 1../D 

Northwest Area: 95% CI = 53.9 ± 1.58 (24.3) t..f% = 53.9 ± 3.9 
(actual range = 50.0 to 57. 9) 

Southeast Area: 95%CI=89.2± 1.58(44.1)/.J150 =89.2±5.7 
(actual range= 83.5 to 94.9) 
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Figure 5.2 :A comparison of copper values in till samples collected from the northwest 
and southeast of the study area. 

A graduated dot plot map of the gold values in the till samples (Figure 5.3) 

indicates a similar distribution to copper, but graduated dot plots and box-and-whisker 

plots of lead and zinc do not show any distinct spatial distribution. These results suggest a 

gold-copper association, which is supported by Spearman's rank correlation coefficient 

between logCu and logAu (r-0.45; Table 5.2). Spearman's rank correlation coefficient is 

used instead of the Pearson correlation coefficient because, even though the data is 

logged, some of the elements do not exhibit a true normal distribution. 

Moderate to strong correlations (Table 5.2) exist between most ore elements 

(logAu, logCu, logPb, and logZn) as well as some pathfinder elements (logAs, logSb ). 
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Table 5.2 : Spearman's rank correlation coefficient ( r) for selected indicator elements 
from till samples. Note that all correlations are 2-tailed and significant at the O.Ollevel. 

LOGAS LOGAU LOGCU LOGPB LOGSB LOGZN 
LOGAS r 1.00C 

N ~4E 
LOGAU r .447 1.00Cl 

N 24E 24e 
LOGCU r .491 .45Cl 1.00Cl 

N 24l 24( 24(] 
LOGPB r .60 .251 .311 1.000 

N 24l 24Cl 24Cl 24Cl 
LOGSB r .651 .397 .48~ .41~ 1.00Cl 

N 24E 24e 24Cl 24 24E! 
LOGZN r .~ .408 .887 .45l .415 1.000 

N 24C 24Cl 24Cl 241 24C 24Cl 

The strongest relationship is between logCu and logZn (r=0.667), which supports the 

relationship between copper and zinc as indicated by the VMS deposit model. Due to 

the moderately high correlations in Table 5.2 and for the rest of the database, principal 

components analysis (PCA) should work well to reduce the 28 elements to a smaller 

number of components. 

The KMO measure of sampling adequacy was calculated to determine if the data 

was suitable for PCA; a value greater than 0.6 indicates good factorability (Tabachnick 

and Fidell, 1996). The KMO measure of sampling adequacy was 0.827, which indicates 

that the overall database is factorable. 

PCA is sensitive to multivariate outliers. To test the sensitivity of the till database 

to multivariate outliers, the PCA results were compared before and after the outliers were 

removed. Multivariate outliers are determined by calculating the Mahalanobis distance 

(MD), available through the SPSS111 linear regression procedure. For 28 elements the 
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critical chi-squared value, for a= 0.001, is 56.9. Therefore, a MD greater than 56.9 

indicates a multivariate outlier case. There were 13 cases greater than 56.9. A box-and-

whisker plot of the MD values (Figure 5.4) indicates the gap between the outlier values 

(i.e. 6 cases from 56.9 to 63) and extreme values (i.e. 7 cases from 78 to 147). 
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Figure 5.4: Mahalanobis distance for till samples. Note the gap between the outlier 
values (57 to 63 : circles) and extreme values (78 to 147: stars). 

Therefore, the 7 cases greater than 78 were considered multivariate outliers. These 1 

cases were temporarily removed from the database. The PCA was repeated, with a 

varimax rotation, and the results noted. The 7 cases were then included in the database 

and the PCA was run again. The results (i.e. components, variance explained, loadings in 

the rotated component matrix as well as the component values) were compared with and 

without the 7 multivariate outliers. The components on both runs consisted of the same 
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sets of elements. The percent variance explained for each component differed by less than 

0.8% and the overall cumulative variance explained diifered by 0.5%. The loadings in the 

rotated component matrix were all comparable. The correlations on the output factor 

scores were greater than 0. 99 for each of the four components. This indicates that, for 

this dataset, PCA is robust to these 7 multivariate outliers. Therefore, all cases were 

included in the final PCA. 

The next step was to determine the number of components to be extracted. Three 

measurements provide an indication to the number of components to extract: the number 

of eigenvalues greater than 1.0, the change in slope of the scree plot and the change in 

variance explained from one component to the next. Six components had eigenvalues 

greater than 1.0. The change in slope ofthe scree plot (Figure 5.5) occurs between 4 and 

5 components. The rotated sum of squared loadings percent of variance explained was 

19.8, 13.7, 13.5, 13.5, 8.9 and 4.8, respectively by the 6 components. The change in 

variance explained from the fifth to the sixth component was much greater than the other 

components. Therefore, S components were extracted and analyzed. The fifth component 

had no loadings greater than 10.71 and consisted oflogCr, logBr and logTb. These 

elements are not geochemically interpretable. Therefore, the next analysis extracted 4 

components. Each of the resulting 4 components is geochemically interrelated and has 

strong loadings. The communalities for logBr and logTb were less than 0.2, indicating 

that very little variance in these two variables was accounted for by the 4 components. 

Therefore, logBr and logTb were removed from further PC analysis. LogAu had the next 

• 94-



lowest communality of0.277 but since gold is a significant element for this study it was 

kept in the analysis. 

Scree Plot 
12~----------------------------------~ 

10 

8 

6 

3 5 7 9 11 13 15 17 19 21 23 25 27 

Component Number 

Figure 5. 5 : Scree plot for till PCA indicating the decrease in eigenvalues with increasing 
number of components. To determine the appropriate number of components to extract 
note the component number at the change in slope. 

The PCA was repeated, extracting four components and saving the scores in the 

till database. The final results are listed in Table 5.3. Each component explains more than 

100.4 of the variance in the data with a total of 69.7% variance explained. The 

communalities indicate how much of the variation of each element is accounted for by the 

components (Tabachnick and FideU, 1996). A summary of the elements characterizing 

each component and their geochemical affiliation is provided in Table 5.4. The largest 

communalities are for elements in component 1 (i.e. TPCI), indicating that their variance 
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is very well explained by the components. TPC2 is the most important component for 

exploration purposes in that it is characterized by the base metals (e.g. logZn, logCu, 

logPb and logCo), gold and gold pathfinder elements (i.e. logAu, togAs and logSb). 

Table 5.3 : Principal components analysis results for till samples in the NTS 12AIIO area, 
with varimax rotated component matrix. Only loadings >0.3 are shown. Bold values 
indicate component element affinities. 

Rotated Component Matrix 
Element Component Communality 

1 2 3 4 
~OGYB 0.101 o.8ae 
~OGLU O.IICI 0.8~ 

~OGSM 0.177 0.32 0.92! 
~OGEU O.IICI 0.348 0.89:.1 
.. OGLA 0.111 0.513 0.84~ 

~OGCE 0.654 0.511 0.797 
11-0GZN 0.711 0.723 
~OGAS 0.757 0.713 
~OGCU 0.32e 0.711 0.39E 0.7851 
... OGCR ·0.613 0.53S 0.69:.1 
~OGHF -0.~ -0.4SKI 0.688 
~OGFE 0.491 0.511 0.473 0.843 
'"OGCO 0.447 O.llfi 0.4~ 0.762 
~oGMN 0.391 0.557 0.36(l 0.614 
~oGSB 0.479 0.101 0.301 0.59~ 
~OGAU 0.47! 0.271! 
~OGTH 0.310 O.UCI 0.827 
"""OGNA 0.308 ..0.151 0.623 
"""OGBA 0.13~ 0.32<4 0.516 
'"OGPB 0.171 0.111 0.70~ 

'"OGU 0.18_!1 0.431 
~.OGRB 0.54CI 0.313 
~OGMG 0.113 0.781 
11-0GV 0.12! 0.897 
11-0GSC 0.31S 0.7541 0.7~ 
~OGNI 0.377 0.1&2 0.61-4 
%of 
variance 21.-4 18.5 15.2 14.6 69.7 
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Table 5.4 : A summary of the geochemical affinity of the four till principal components. 

Component 
TPCI 

TPC2 

TPCJ 

TPC4 

Elements 
Yb, Lu, Sm, Eu, La, Ce 

Zn, Cu, Pb, Co, Fe, Mn, 
Au, As, Sb 

Th, -Na, Ba, Ce, Pb, U, 
La, Rb 

Mg, V, Sc, Ni 

Geochemical Amnity 
Rare Earth Elements 

Base Metals & Gold Association 

Granophile Elements 

Mafic Elements 

Outliers in the resulting component scores indicated those cases for which the 

factor solution was not appropriate. In the four components there were only three 

negative outliers (i.e. standardized values less than -3.29) and one positive outlier that 

was only slightly higher than +3.29 (i.e. 3.46 in TPC4). TPC2, the component of most 

interest in this study, had no outliers (range -2.53 to 2.45) indicating that all cases fit this 

solution well. Therefore, outliers to the solution were not deemed critical and the final 

PCA was not repeated. 

Data screening is required prior to PCA because it is based on the Pearson 

correlation coefficient matrix, which is affected by skewness, linearity etc. A more robust 

method of analysis would replace the Pearson correlation with Spearman's rank 

correlation coefficient in the PCA. The Speannan's rank correlation coefficient has no 

assumptions about the distribution of the data. The raw geochemical data can be used 

without tedious data screening requirements. PCA results based on the Spearman's rank 

-97-



correlation coefficient on the raw data produced essentially the same components as the 

Pearson correlation on the logged data. 

To determine whether the individual ore elements (i.e. Au, Cu, Pb, and Zn) or 

component 2 (i.e. TPC2) are significant predictors of mineral occurrences their values 

must be extracted at the 96 minerallnonmineral occurrence sites. Therefore, the till point 

data must be represented as a surface. If the data has a positive spatial autocorrelation 

then kriging methods can be used to prepare an interpolated surface. Semi-variograms 

and Moran's I plots were evaluated for the four ore-forming elements (Au, Cu, Pb, and 

Zn) and for TPC2 (representing the base metals and gold pathfinder elements). Outliers 

were changed to values just above the lower neighbouring value (Tabachnick and Fidell, 

1996). For example, logCu had one high outlier (2.59) which was adjusted to 2.33 (next 

lower value is 2.32). Adjustments of outliers had very little effect on the results. 

Therefore the original values were retained. The variograms and Moran's I plots are 

presented in Figures 5.6a to 5.10b. A summary of the variogram results are listed in Table 

S.S. 

The results of the variogram and correlogram analyses indicate that all the 

variables are positively, spatially autocorrelated and can be spatially interpolated using 

kriging techniques. The following parameters were determined to provide the best block 

kriging: a search radius of8000 m, 3Xllocal block grid and the use of6 nearest 

neighbours. For example, Figure 5.11 presents the interpolated surface for logCu. In 

addition to indicating spatial autocorrelation, the correlograms also provide specific 

information about the individual variables; TPC2 has the highest Moran's I of0.594 at an 
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Figure 5. 6a : Variogram of logAu in till. The best fitted model is exponential where 
Co=0.049, Co+C=0.156, Ao=1190, r2=0.682 and Rss=0.0002. 
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Figure 5. 6b : Correlogram of logAu in till. Positive autocorrelation occurs to a distance of 
about 6,000 m. 
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Figure 5.7a: Variogram oflogCu in till. The best fitted model is gaussian where 
Co=0.023, Co+C=0.057, Ao=24740, r2=1.000 and Rss=O.OOOO. 
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Figure 5. 7b : Correlogram of logCu in till. Positive autocorrelation occurs to a distance of 
about 12,000 m. 
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Figure 5. 8a : Variogram of logPb in till. The best fitted model is exponential where 
Co=0.013, Co+C=0.027, Ao=2930, r2=0.968 and Rss=O.OOOO. 
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Figure 5. 8b : Correlogram of logPb in till. Positive autocorrelation occurs to a distance of 
about 10,000 m. 
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Figure 5. 9a : Variogram of logZn in till. The best fitted model is exponential where 
Co=0.005, Co+C=0.018, Ao=3400, r2=0.990 and Rss=O.OOOO. 
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Figure 5. 9b : Correlogram of logZn in till. Positive autocorrelation occurs to a distance of 
about 10,000 m. 
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Figure 5. 1 Oa : Variogram of the base metal component (TPC2) from till. The best fitted 
model is gaussian where Co=0.404, Co+C=0.879, Ao=9890, r2=0.999 and Rss=0.0002. 
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Figure 5. 1 Ob : Correlogram of TPC2 from till . Positive autocorrelation occurs to a 
distance of about 9,800 m. 
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Table S.S :Parameters for variograms of selected elements in till samples. 

average lag of 1010 m and logCu has the longest positive autocorrelation of 12 km. 

As well as providing the interpolated surfaces, the program GS+ also provides a 

standard deviation surface. This surface indicates the variability of the data around each 

point. A coefficient of variation (CV) surface was derived from the standard deviation 

surface by dividing it by the kriged surface (representing the mean). The CV surface for 

logAu in till ranges from 11 .1 to 27.4%. Similarly, logCu and logZn also have good 

reliability with logCu CV rmging from 7.5 to 18.4% and logZn CV ranging from 8.3 to 

26.3%. LogPb had the worst variance with CV ranging from 18.5 to 41 .5%. TPC2 CV 

range from 6.4 to 40.5%. An analysis of the CV values extracted at the 96 

minerallnonmineral occurrence sites indicates the highest values occur at the nonmineral 

occurrence sites. This may be a reflection of the wider spacing (poorer spatial 

autocorrelation) occurring around the nonmineral occurrence sites. 

5.2.1 Lake Sediment Geochemistry 

Similar to the till database, the first step in data analysis was to remove elements in 

the lake sediment database which had a poor data distribution. EDA techniques indicated 
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the elements Eu, F, Se, Ta, and Wall had more than 50010 of their values less than the 

detection limit, and Ag, Cr, Cs, Hf, and Rb all bad more than 40% of their values less than 

the detection limit. These ten elements were removed from the database, leaving 22 

elements (i.e. As, Au, Ba, Br, Ce, Co, Cu, Fe, La, Mn, Mo, Na, Ni, Pb, Sb, Sc, Sm, Tb, 

Th, U, Yb, Zn) plus loss-on-ignition (LOI-pct), sample depth (sampdpth), and lake area 

(lakarea). 

The frequency table for LOI indicated S samples with LOI values greater than 

95%; the next highest value was 79%. These 5 samples bad less than 5% sediment (i.e. 

silt plus clay) and so their trace element composition was suspect. These 5 samples were 

deleted from the database. This reduced the number of lake sediment samples to 194. 

Univariate statistics were tabulated as a summary overview of the 22 elements 

(Table 5.6). Histograms of the element values showed a positively skewed distribution. 

Therefore, all values were logged which tended to normalize the distributions and stabilize 

the variance (Davis, I 986; George and Bonham-Carter, 1989). 

A visual assessment of the spatial distribution of lake sediment geochemistry can 

reveal spatial associations. Element values were mapped onto the catchment basins and 

plots (e.g. Figure 5.12) were axamined to identify any spatial associations. Values near 

the 951h, 85111
, 70tll, and 50111 percentiles were used as quick break point values. Unlike the 

tiD data, the spatial distributions of the element values in the catchment basins did not 

show any obvious visual associations with factors such as faults or rock type. 

Spearman's rank correlations between selected lake sediment elements (Table 5.7) 

may indicate associations which provide information on the nature of the geochemical 
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Table 5.6: Univariate statistics for elements in lake sediment samples in the NTS l2A/10 area. 

Standard Logarithmic Loa Standard Geometric 
Element Unit N Minimum Maximum Median Mean Deviation Mean Deviation Mean 

As1 ppm 193 1.2 375 20 36.8 49.81 1.30 0.488 20.1 
Au1 ppb 193 <2 129 <2 2.35 9.267 0.152 0.282 1.42 
Ba1 ppm 193 <50 2080 72 125 193.0 1.88 0.409 75.4 
Br1 _ppm 193 2.6 85.4 26 28.7 14.98 1.39 0.270 24.5 
Ce1 ppm 193 <2 273 18 24.1 28.07 1.17 0.519 14.7 
Co3 ppm 194 <2 102 7.0 9.72 11.40 0.804 0.398 8.37 
Cu3 ppm 194 3 80 24 27.7 14.29 1.39 0.221 24.4 
Fe3 pet 194 0.13 15.6 1.3 1.98 2.123 0.119 0.394 1.32 
La1 .PPm 193 <2 81 10 12.4 8.320 1.02 0.258 10.5 
Mn3 ~. 194 41 96700 339 1753 7883 2.62 0.559 417 -s Mo5 ppm 194 <2 22 3.0 4.11 3.015 0.516 0.297 3.28 
Na1 pet 193 <0.05 2.36 0.14 0.322 0.4405 -0.775 0.475 0.168 
N13 ppm 194 <2 66 15 17.2 10.57 1.16 0.258 14.6 
Pb3 ppm 194 <2 343 5.0 8.19 24.78 0.687 0.379 4.86 
Sb1 ppm 193 <0.05 4.3 0.34 0.471 0.5052 -0.494 0.391 0.320 
Sc1 ppm 193 0.5 20 5.1 6.03 3.749 0.704 0.261 5.06 
Sm1 ppm 193 0.2 18.8 2.9 3.28 1.887 0.450 0.252 2.82 
Tb1 ppm 193 <0.5 2.8 0.55 0.615 0.3438 -0.271 0.230 0.535 
Th1 ppm 193 <0.2 17.5 1.5 2.07 1.847 0.208 0.297 1.81 
U8 ppm 194 <0.2 16.2 2.3 2.87 2.129 0.364 0.294 2.31 

Yb1 ppm 193 <0.5 4.4 1.2 1.36 0.9938 -0.0311 0.428 0.931 
Zn3 ppm 194 4 478 96 112 76.37 1.95 0.311 89.4 
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affinities. The highest correlatioos are between logPb and logSb (r-0.58) and between 

logZn and togAs (r-0.54). These associations, between base metals (logPb and logZn) and 

the gold pathfinder elements (logSb and togAs), may indicate the presence of gold in the 

vicinity of the base metals. 

Table 5.7 : Spearman's rank correlation coefficients for selected elements from lake 
sediment samples. 

LOG AS LOGAU LOGCU LOOPB LOOSE LOGZN 
LOG AS Correlation Coefticien 1.000 

Sig. (2-tailcd 
~ 193 

LOGAU Correlation Coefficienl .lU 1.000 
Sig. (2-tailedl .002 

N 191 19'3 
LOGCU Correlation Coeftici~nl .22i .22i 1.000 

Sig. (2-railcd .002 .001 
N 193 193 194 

LOGPB Correlation Coefficicn .309 .128 .22~ 1.00~ 

Sig. (2-tailed .000 .076 .002 
N 191 193 194 194 

LOOSE Correlation Coefticien .498 .2fki .361 .51i 1.000 
Sig. (2-tailed .000 .000 .000 .QOO 

~ 193 193 193 193 193 
IT 1')(;7.N Correlation Coefficien1 .541 .039 .39i .454 .464 l.()()(J 

Sig. (2-tailed .OOC .587 .000 .000 .000 
N 193 193 194 ·~ 193 194 

Linear regression analysis was performed on the Jake sediment database to reduce 

false anomalies caused by lake effects (see Chapter 2. I .2). Prior to linear regression, it is 

necessary to remove univariate and multivariate outliers. Univariate outliers were 

determined by reviewing standardized Z values of all the Jogged elements. Standardized 

values greater than an absolute value of 3.29 (for a = 0. 00 I) were considered univariate 
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outliers. Six univariate outliers were temporarily removed from the database prior to 

linear regression analysis. Multivariate outliers were checked among the independent 

variables (IVs) in the analysis (i.e. logFe,logMn, LOI_pct, loglarea and logsdep; 

Tabachnick and FideU, 1996). Multivariate outliers are determined by checking the 

Mahalanobis distance (MD), available through the SPSSTM linear regression procedure. 

The critical chi-square value (for a= 0.001 and 5 degrees of freedom) is 20.515. 

Therefore, a MD greater than 20.5 indicates a multivariate outlier case. There were 3 

cases greater than 20.5, but the maximum MD was 27.5, which is not much greater than 

the critical value. Therefore, no cases were removed due to multivariate outliers. The 

linear regression analysis was run on 187 samples. 

Linear regression analysis was performed on those elements where the correlation 

between the element and lake effects (logFe,logMn, LOI_pct, loglarea or logsdpth) was 

greater than 0.5 (Davenport eta/., 1974; Davenport and Nolan, 1991). All elements 

except logAu, logCu, logNL and logPb had a correlation coefficient greater than 0.5 with, 

at least, some IVs. Stepwise linear regression was run for each element using only the 

correlated IV s. The computed residuals were saved to the lake sediment database. The 

residuals were examined and 3 outlier cases (not the same 3 cases as the multivariate 

oudiers) were removed and the linear regression analysis was repeated. Eight elements 

(togAs, logBr,logCo, logNa, logSc,logTh, logYb and logZn) had significant enough 

correlations (i.e. were strongly influenced by lake effects; see methodology in Chapter 

4 .1.2.1) to justify calculation of their residual values for use in subsequent analyses. The 

five lake effects accounted for 41% to 72% of the variance of these 8 elements. The 
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residual values for the outliers were calculated manually using the final linear regression 

equations (P. Davenport, pers. comm., 2001). 

A comparison of the correlations based on the residual arsenic and zinc values 

(Table 5.8) as opposed to their log values (Table 5. 7) indicated a considerable decrease. 

For example, the correlation between logZn and logAs was 0.54, which was reduced to 

0.11 for rZn and r As. This indicates the significance of lake effects on element values and 

how the removal of the lake effects may affect statistical analyses by reducing correlations. 

Low correlations among the 22 lake sediment elements, compared to the till 

elements, may indicate that PCA will not be as effective. Therefore, the KMO measure of 

sampling adequacy was calculated to determine if the lake sediment data was factorable. 

The KMO measure of sampling adequacy was 0.81 0. KMO values greater than 0.6 

indicate that the overall database is factorable (Tabachnick and Fidell, 1996). 

To reduce the effects of outliers on the PCA, multivariate outliers were determined 

by calculating the MD. For 22 elements the critical chi-square value (for a = 0.001) is 

48.3. Therefore, any MD greater than 48.3 indicates a multivariate outlier case. There 

were 7 cases much greater than 48.3. These cases were temporarily removed and the 

PCA calculated. 

After the outliers were removed the number of components to be extracted in the 

PCA were determined using eigenvalues, the scree plot and the change in component 

variance. The number of eigenvalues greater than 1. 0 was 7, but the scree plot (Figure 

S .13) indicates a change in slope at 4 to 6 components. The percent of variance explained 

by the varimax rotation had the largest drop from 10.4% to 7.1% from the 4111 to the sth 
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Table 5.8: Spearman,s rank correlation coefficients for selected lake sediment elements 
against residual As and Zn. Note the reduced correlations compared to values in Table 
5.7. 

RAS RZN 
RAS Correlation Coc:fficien 1.()()(] .111 

Sit. (2-tailed .124 
N 193 193 

LOOAl Correlation Coefficient .124! -.061 
Sig. (l·tailed .082 .39., 

N 193 193 
LOGCU Correlation CoefliciCDI .033 .163 

Sig. (2-lailed .654 .023 
N 193 19~ 

LOGPE Correlation Coefficient .231 .26~ 

Sig. (2-tai1c:d) .001 .000 
N 193 194 

LOG Sf) Correlation Coefficien . 19~ .134 
Sig. (2·tai1ed .()(Mi .062 

N 193 193 

RZN Correlation Coeflicien .Ill 1.000 
Sig. (2-tai1ed) .124 

N 193 194 

components, respectively. Therefore, 5 components were extracted on the next analysis. 

The communality for rCo was the lowest in the list (0.25), indicating that the 

factors did not account for much of the variance in rCo, so rCo was deleted. The fifth 

component had low loadings(< 10.61) and the variables contributing to the fifth component 

were not geochemically consistent. Therefore, 4 components were extracted on the next 

analysis. The fourth component (LPC4) contained low loadings (nothing greater than 

10.61) but the variables were geochemically consistent and significant to this study (i.e. 

gold and its pathfinder elements rAs and logSb). The component scores were saved to the 

lake sediment database. The component scores were reviewed and 1 score was an outlier 

to the solution. Since this outlier was not in LPC2 or LPC4 (the two components of 

interest in this study) the final PCA was acceptable. The PCA results are listed in Table 
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Figure 5. 13 : Scree plot for lake sediment PCA indicating the decrease in eigenvalues with 
increasing number of components. Note the change in slope around 5 components. 

S. 9. The scores for the 7 multivariate outliers were calculated using the component score 

coefficient matrix and input back into the database (P. Davenport, pers. comm., 2001). 

Each of the first three components explains more than 1 0% of the variance. 

Component 4 (LPC4) only explains 90/o of the variance but is composed of logAu and it 

pathfinder elements, logAs and logSb. Component 2 (LPC2) is characterized by the base 

metals (e.g. logNi, logCu, logMn and logMo). Overall, the four components explain 

61. 90/o of the variance. A summary of the elements characterizing each component and 

their geochemical affiliation is provided in Table 5.10. 
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Table 5.9: Principal components analysis results for Jake sediment samples in the NTS 
12A/l0 area, with varimax rotated component matrix. Only loadings >0.3 are shown. 
Bold al . d" I affini . v ues m acate component e ement ties. 

Rotated Component Matrix 
Element Component Communality 

1 2 3 4 
Log La 0.108 0.918 
LogSm 0.100 0.898 
LogTb 0.170 0.827 
LogCe 0.711 0.832 
tTh 0.114 0.320 0.386 0.846 
LogU 0.511 0.338 0.385 0.581 
rYb 0.475 0.425 0.514 
Log Fe 0.511 0.725 0.804 
LogNi 0.702 0.524 
LogCu 0.810 0.538 
LogMn 0.475 0.672 0.703 
LogMo 0.648 0.459 
rSc 0.852 0.780 
rNa 0.151 0.780 
rZn 0.103 .0.378 0.822 
LogBa 0.371 0.313 0.491 0.518 
LogPb 0.305 0.430 0.404 
LogAu 0.590 0.394 
rBr -0.585 0.478 
rAs 0.414 0.300 
LogSb 0.415 0.425 0.385 0.474 0.712 
%of 
variance 23.6 15.9 13.4 8.9 61 .9 

Table 5.10 : A summary of the geochemical affinity of the four lake sediment principal 
components. 

Component Elements Geoc.emical AMaity 

LPCI La, Sm, Tb, Ce, Tb, U Rare Earth Elements 

LPC2 Ni, Cu, Mn, Mo Base Metals 

LPC3 Sc, Na, Zn, Ba, Pb Mafic Volcanics 

LPC4 Au, As, Sb Gold Association 

• 114 -



As a test on the effects of the outliers, the PCA results were compared before and 

after the outliers were removed. Unlike the results from the till PCA, the lake sediment 

PCA results with and without the outliers were significantly different, indicating the lake 

sediments PCA is not robust to outliers. This may be because the till outliers were only 

moderately greater than the MD whereas the Jake sediment outliers were much greater 

than the MD critical value. 

5.2.3 Geology 

The VMS deposit model indicates that submarine volcanic rocks (e.g. felsic and 

mafic marine volcanics) are the host rocks for the Cu-Pb-Zn mineralization. Table 5.11 

presents a summary of the rock types (from the 1:50,000 scale geology map) occurring at 

the 96 mineral and nonmineral occurrence sites. The largest frequency of occurrence {21 

of96) is of the rock type 'volcanic, felsic marine' and occurs predominantly at the mineral 

occurrence sites. Marine siliciclastics (an undifferentiated group of marine clastic rocks) 

are the most common rock type at the nonmineral occurrence sites (12 of96). Marine 

sandstone and marine siltstone can also be included in the marine siliciclastic group, 

occurring at 6 nonmineral occurrence sites. 

5.2.4 Fault Pro:Dmity and Weights of Evidence ModeDing 

Both the VMS and gold deposit models indicate that the proximity to faults is a 

positive factor in the exploration for these types of mineral occurrences. Therefore, the 

distance from faults may be an important predictor in the mineral potential models. 
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Table 5.11 : Frequency of I :50,000 scale rock types at mineral occurrence and norunineral 
occurrence sites. 

Rock Type (Geolcode) Frequency at Frequency at 
Mineral OCcurrences Nonmineral Occurrences 

Volcanic, felsic marine (1 0) 21 6 
Volcanic, mafic marine (11) 7 9 
Volcaniclastic (12) 8 7 
Plutonic, felsic (1) 1 
Plutonic, intermediate (2) 2 1 
Plutonic, mafic (3) 1 3 
Siliciclastic, marine (5) 6 12 
Siliciclastic, marine sandstone (B) 4 
Siliciclastic, marine siHstone J7). 2 
Siliciclastic, non-marine (8) 2 
Siliciclastic, non-marine conglomerate (9) 2 
Siliciclastic, black shale (4) 2 

Total 47 49 

Fault proximity values in the study area range from 0 m to over 8000 m with a 

very positively skewed distribution. Mineral occurrence distances from the faults range 

from 0 m to 5622 m whereas nonmineral occurrences range from 0 m to 8109 m. 

The normalized fault distance (NFL TDST) was calculated from FL TDST - the 

distance in metres from the faults. The NFL TDST was very positively skewed. 

Therefore, the arcsine transform was used to convert it to a more nonnal distribution in 

the variable ARCSFL T. ARCSFL T values close to 0 represent areas far from faults and 

maximum ARCSFL T values are close to faults. 

The binary representation of fault distance was calculated by the weights of 

evidence modelling method (Bonham-Carter, 1994) which is used to determine the 

optimal threshold or cutoff distance (see Chapter 4. 1.2. 3. 1). The weights of evidence 

calculations are based on a raster set of fault proximity buffers from 200 m to 2400 m 
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away from the faults. Most of the mineral occurrences occur within the 2400 m buffer (3 I 

of 47) so it was unnecessary to increase the buffer size beyond 2400 m. The calculations 

for the positive and negative weights of evidence. along with their variance. are presented 

in Tables S .12 and S .13. Note that all the w+ are positive and all the W are negative, 

indicating a positive correlation between the fault buffers and the mineral occurrences. 

Table 5.12 : Weights of evidence calculations for W (based on Bonham-Carter. 1994). 

Buffer N(BID) N(O) P(BID) - - - P(BID)/ w szN'£) N(BID) N(D) P(BID) P(BID) 
P.201 7 47 0.148E 1598 25853 0.0618 2.4095 0.8794 0.143~ 

0-401 14 47 0.297Sl 2607 25853 0.1008 2.9539 1.0831 0.071e 

0.S01 16 47 0.3404 3902 25853 0.1509 2.2555 0.8134 0.062S 

D-801 19 47 0.4043 4843 25853 0.1873 2.158(] 0.7694 0.0528 

D-1001 24 47 0.510El 6248 25853 0.2417 2.112fl 0.7481 0.0418 

D-1201 26 47 0.5532 7143 25853 0.2763 2.0022 0.6942 0.0386 

D-1401 2E 47 0.5532 801E 25853 0.3101 1.7841 0.5789 0.038E 

P.1601 28 47 0.5957 9144 25853 0.3537 1.68441 0.5214 0.035S 

P-1801 29 47 0.617(l 10069 25853 0.3895 1.5843 0.4601 0.034E 

0-2001 2ll 47 0.6170 11003 25853 0.4256 1.4498 0.3714 0.0346 

D-2201 30 47 0.6383 11650 25853 0.4506 1.4165 0.3482 0.0334 

0-2401 31 47 0.6596 12278 25853 0.4749 1 .3882! 0.3285 0.0323 

Note: N(BID) =number of fault buffer cells mtersectmg mineral occurrences, N(D) =number of 
mineral occurrences, P(BID) = probability of a fault buffer cell given a mineral occurrence = - -
N(BID)/N(D), N(BI D ) =number of fault buffer cells intersecting nonmineral occurrence, N( D ) = 
number of nonmineral occurrences, P(BI D ) = probability of a fault buffer cell given a nonmineral 

occurrence= N(BID )/N(D ), W'= ln[P(B!D)IP(BID )], s2(W} = 1/N(BID) + 1/N(BID ). 

Table 5.14 contains the contrast calculations and the Studentized C values (SC). 

The SC values were all greater than 2.0 with two-thirds being greater than 3.0, indicating 

good reliability in the contrast (Bonham-Caner, 1994). The maximum contrast occurs at 
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Table 5.13 :Weights of evidence calculations for W (based on Bonham-Carter, 1994). 

Buffer N(D) -- - -- P(B 10)/ w sl~ N(B ID) P(BID) N(BID) N(D) P(B(D) 
~(BlD_l 

0..201 4( 47 0.8511 2425!i 2585~ 0.9~ 0.9071 ..0.097~ 0.025(] 

o.-401 3~ 47 0.7021 232443 25853 0.899~ 0.780S ..0.2473 0.030~ 

~1 31 41 0.659E 21951 2585~ 0.8491 o.nee ..0.252!i 0.0323 

0.801 2il 47 0.5957 2101Cl 2585~ 0.8127 0.7331 -0.310~ o.o3g 

0..1001 23 47 0.48SN 1960! 25853 0.758~ 0.845~ ..0.438Cl 0.043! 

~1201 21 47 o . ....ae 1871(1 25853 0.7231 0.617~ ·0.4~ 0.0471 

~1401 21 47 o . ....ae 17837 2585~ 0.889S 0.647E ..0.434!i 0.0471 

~1601 1~ 41 0.4043 1670~ 2585~ 0.6463 0.825! ..0.489~ 0.052i 

P-1801 1e 47 0.383~ 15784 25853 0.610! 0.627~ ·0.486~ o.osse 
P.2001 1~ 47 0.383( 1485(] 25853 0.57~ 0.6661 -0.405~ O.OSSE 
D-2201 11 47 0.3611 14203 25853 0.54~ 0.6~ -0.418C 0.058~ 

P-2401 1E 47 0.34~ 13575 258~ 0.5251 0.6483 ..0.4334 0.062E 

Note: N( 8 ID) = number of nonfault buffer cclls intersecting mineral occum:nces, N(D) = number 

of mineral occurrences, P( B ID) = probability of a nonfault buffer cell given a mineral ocaurence 

= N(B ID)IN(D), N(B ID) = numberofnonfauhbuffer cells intersecting nonmincral occurrence, 
- --

N( D ) = number of nonmineral occurrences, P( 8 1 D ) = probability of a nonf.wlt buffer ceO given 

anonmineral OCCU1'l'a1CC = N(B ID )/N(D ), W= In[P(B ID)IP(B ID )], s2(W) = 1/N(B ID) + --
IIN(B ID ). 

a buffer distance of 400 m (Figure S.l4), which also had the highest SC value of 4.16. A 

secondary maximum occurs at I 000 m. From this information, two new variables were 

added to the attribute table. The variable FL T400 was coded '1' for FL TDST values 

ranging from 0 to 400 m and coded '0' for FL IDST values greater than 400 m. A second 

variable, FL Tl 000, was coded 'I' for FL TDST values ranging from 0 to I 000 m and 

coded '0' for FLTDST values greater than 1000 m. 
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Table 5. 14 : Contrast and Studentized C calculations (based on Bonham-Carter, 1994 ). 

Contrast Buffer rcc> s(C) SC=C/s(C) 

0.976& 0-201 0.1685 0.4105 2.3797 

1.3301 O..t01 0.10~ 0.3196 4.1621 

1.0655 0-601 0.0951 0.3083 3.457~ 

1.0797 0-801 o.o8ae o.29n 3.6273 

1.1111 0-1001 0.085-i 0.2922 4.0597 

1.1765 0-1201 0.086~ 0.2937 4.005! 

1 .01~ 0-1401 0.0863 0.2937 3.4505 

0.990E 0-1601 0.0885 0.297!3 3.329E 

0.9285 0..1801 0.0902 0.3003 3.084e 

0.7768 0-2001 0.0902 0.300~ 2.5~ 

0.7661 0-2201 0.0923 0.3031! 2.521E 

0.761e 0-2401 0.094S 0.3081 2.472e 

- • 2 - .2. .z . Note. Contrast - W - W, s (C ) - s (W)+s (W). 

1.4 

1.3 

1.2 

1n 1.1 I! -c 
0 
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Figure 5.14 : Contrast plot indicating two optimal distances ( 400 m and 1 000 m) to 
convert fault proximity from a continuous distribution to a binary distribution (based on 
Bonham-Carter, 1994). 
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The binary FL T 400 and FL T 1000 variables will be compared with the continuous 

fault proximity measure ARCSFL T in the DT A and LRA modelling to determine which 

variable better predicts mineral occurrences. 

5.2.5 Surficial Geology 

Table S .I 5 presents a summary of the surficial geology units occurring at the 96 

mineraVnonmineral occurrence sites. The highest frequency of sites (34 of96 sites) 

occurs over drift/rock, which has an average sediment thickness of 1 m. The average 

thickness of surficial sediments, as estimated by Klassen (unpublished map), was 

compared with the values oflogAu, logCu, logPb, logZn and TPC2 from the till samples. 

The maximum Spearman's rank correlation coefficient was between the sediment 

thickness and logCu (r-0.302). The box-and-whisker plots (Figure 5.15) indicate a slight 

increase in copper values with increasing thickness of sediment, but the reasons for this are 

beyond the scope of this study. 

Table 5.15 : Surficial geology descriptors, codes, frequency, and mean thickness. 

Mean 
Description Code Frequency thickness 

(metres) 

Bedrock 1 18 0 
Drift/rock 2 34 1 
Till 3 12 3 
Till/gravel 4 17 3.5 
Drift 5 7 6 
Outwash 6 2 -
Alluvium 7 1 -
Organic material 8 3 -
Unlabelled 9 2 -
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Figure 5.15 : Relationship between copper values (log ppm) and thickness of surficial 
sediments: bedrock (0.0 m mean thickness of sediment), drift/rock (1.0 m mean thickness), 
till (3.0 m mean thickness), tiWgravel (3.5 m mean thickness) and drift (6.0 m mean 
thickness). 

5.2.6 Wetlands 

To determine if there is a relationship between wetlands and the geochemistry of 

till samples, the wetland type (i.e. wetland, stringbog or dryland) was extracted at the 96 

minerallnonmineral occurrence sites. Only 4 sites occurred within wetlands. Box-and-

whisker plots of the 4 samples in wetlands compared to the 92 samples on dry land did not 

indicate any major difference in the values oflogAu, logCu, logPb, logZn, and TPC2 from 

tiUs. The 95% confidence interval for the medians of the wetland group overlapped the 

values for the nonwetland group for the five variables. For example, the 95o/o confidence 
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interval for the median for logCu in wetands is 1.61 to 1.97, whereas the values are 1.81 

to 1.87 for JogCu in dryland. 

5.2.7 Spatial W eigbting Function 

The nearest neighbour index (Chapter 5.1) indicated the 96 minerallnonmineral 

occurrences are randomly distributed. Prior to developing a spatial weighting function, it 

was also necessary to show that the 96 occurrences are positively spatially autocorreJated. 

The spatial autocorrelation was evaluated using the Moran's I statistic for point data 

(Kvamme, 1990; Cliff and Ord, 1973; see Chapter 4.1.2.6). Sums used in the spatial 

autocorrelation calculations are presented in Tables 5.16 and 5.17. 

Table 5.16: Calculation of moments (based on Kvamme, 1990). The total number of 
points is 96 (points 4 to 93 have been removed for presentation purposes), where xi = 1 
for the 4 7 mineral occurrences and xi = 0 for the 49 nonmineral occurrences. 

10 UTMeast UTMnorth X (x-meanx) (x-meanx).t (x-meanxt 

1 51115(J 538715(J 1 0.511W 0.2805 0.067S 

• 52171( 539830C 1 0.51~ 0.2e0! 0.087S 

~ 51855( 5378525 1 0.5104 0.260! 0.06'R . . 
94 5314~ 539822E ( -0.489E 0.2391 0.0575 
9~ 53574e 539582S c -0.489tl 0.2391 0.057~ 

9E 52772~ 539946E c -0.489E 0.2391 0.057! 

sum= .. , 0.000(] 23.989E 6.00~ 

meanx- 0.4t 

bz'• 1.00~ 
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Table 5. 17 : Weighted calculations between pairs of points (based on Kvamme, 1990). 
A total of 105 pairs of points were within 2500m of each other (point pairs 8 to 102 
have been removed for presentation purposes). Distance between points was measured 
in metres. The weight (w) is measured as the inverse of the distance. 

I j distance w=1/d w,L Xi Xj (x.-meanx) (x,-meanx) 

1 26 581.81 1.78E..03 3.17E-08 1 1 0.5104 0.5104 

1 33 338.38 2.96E-03 8.73E-08 1 1 0.5104 0.5104 

1 37 1614.75 6.19E-04 3.84E-07 1 1 0.5104 0.5104 

1 40 335.41 2.98E-03 8.89E·06 1 1 0.5104 0.5104 

1 41 2367.64 4.22E·04 1.78E-07 1 1 0.5104 0.5104 

1 42 2186.4 4.62E-04 2.13E.07 1 1 0.5104 0.5104 

2 21 1012.04 9.88E-04 9.78E-07 1 1 0.5104 0.5104 
. . . . . . . : . . . . . . . . . 

67 68 1026.25 9.74E-04 9.49E-07 0 0 -0.4896 -0.4896 

70 78 2109.56 4.74E-04 2.25E-07 0 0 -0.4896 -0.4896 

75 83 123621 8.09E·04 6.54E-07 0 0 -0.4896 -0.4896 

Half matrix sums 9.61E-02 2.11E-04 

Full matrix sums 1.92E·01 4.22E-04 

The spatial autocorrelation measure for Moran • s I is: 

I=n[l:wij(Xi·mx)(Xj-mx)] I Wl:i(Xi·mxi 

= 96*[2.75*10.2]/ 0.1922*23.9896 

=0.5726 

w (xrmeanx) <.xrmeanx) 

4.64E-04 
7.70E.Q4 

1.61E-04 

7.nE-04 

1.10E-04 

1.20E-04 

2.57E-04 

: 
2.34E-04 

1.14E-04 

1.94E-04 

1.37E-02 

2.75E-02 

(where the above values were obtained from Tables 5.16 and 5.17; mx represents the 

mean ofx, W=Iwij = 0.1922). 

The expected value of I is: 

E(I)=-(n-1)"1 = -0.0105 

Using the randomization assumption, the significance test for I is: 
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where P.=(n2-3n+3)S• = 7.5397 ( St=2I:wi/= 8.44 x 10 .. ), 

P:r3W2-nSz = -0.3411 ( Sz=4Ii(l:jWij)2 = 4. 71 x 10"3
, values from Appendix A: 

Program AI), 

P3=(n2-n)S1 = 7.6992, and 

P4=6W2-2nSz = -0.6823. 

h2=ni:i(Xi-mxt I [l:i(Xi-mx)2
]

2 
= 1.0017 (values from Table 5.16) 

therefore, VarR(I) = 0.0222. 

The test for Moran's I using the standard normal deviate, z, is : 

z=[I-E(I)] I ~var(l) 

=[0.5726-(-0.0105)] I ~0.0222) = 3.91 . 

The value of the point-pattern Moran's I statistic is 0.573 with an expected value 

of -0.0105. The variance (under the randomization model) is 0.0222 resulting in a 

standard normal deviate of3.91. For a one-tailed test, where a=O.OS, Zc=l.64S. 

Therefore, the null hypothesis is rejected in favour of the alternative hypothesis that the 

mineral and nonmineral occurrence points are spatially autocorrelated (i.e. neighbouring 

values tend to be similar). Therefore, the use of a spatial weighting function, representing 

the potential for mineralization, is warranted as an independent variable. 

The spatial weighting function (SWF) calculations were described in Chapter 

4.1.2. 7. Prior to calculating the SWF, the appropriate search radius (neighbourhood) 

must be determined. The neighbourhood was determined by plotting a correlogram 

(Moran's I versus Separation Distance) of the minerallnonmineral occurrences (Figure 
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5.16). The correlogram indicates the neighbourhood of positive spatial autocorrelation 

extends to about 2500 m from the occurrence sites. Therefore, only points within a 2500 

m neighbourhood of each site were included in the SWF calculations. 
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Figure 5.16: Correlogram ofthe mineral/nonmineral occurrences, indicating the range (0 
to 2500 m) over which spatial autocorrelation is positive. 

The equation for the SWF is: 

" :rwif *xi 
SWF. = .:..1"'...;..

1
---

• " Lwv 
j=l 

where the weight, Wij, is the inverse distance between points i and j and Xj equals I if the 

jth point is a mineral occurrence and 0 otherwise. The program used to calculate the SWF 
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is presented in Appendix A:. Program A2. The resulting SWF values range from 0 to I 

where 0 indicates the point does not have any mineral occurrence neighbours and I 

indicates all the neighbouring points are mineral occurrences. The median SWF values for 

mineral and oonmineral occurrences are 0.81 and 0.00, respectively. 

5.3 Decision Tree Analysis 

DT A was used to classify the 20 predictor variables (consisting of till and lake 

sediment geochemistry, fault proximity, geology, surficial geology, wetlands and the 

SWF) based on their relationship to the mineral occurrence response variable, MINOCC. 

A preliminary DT A was calculated on the full dataset to determine whether the 

predictors could explain the response variable significantly more than chance. At this 

stage the filter level was set to exploration mode (i.e. a= 0.20) to determine preliminary 

associations between the variables. The Bonferroni level was set to 3 to reduce spurious 

groupings by adjusting for correlations within the till, lake sediment, geology and fault 

predictors (e.g. high correlations exist between tilllogCu, logZn and PC2). The 'grow 

method' was set to exhaustive and the preliminary decision tree was grown automatically. 

The resulting accuracy of prediction was 80.2%. This high accuracy indicated that at least 

some variables predict the mineraVnonmineral occurrences well. Subsequent analyses 

were used to determine the fewest and best predictors of mineral occurrences. 

Wrth the filter level still set to exploration mode (a= 0.20) and the grow method 

set to 'exhaustive' the analysis was repeated more slowly by using the 'find split' method. 

The most significant split on the dependent variable MINOCC was by the SWF (Figure 
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5.17) with a significance of0.001 and an accuracy of72.9010. This indicates that the 

neighbourhood effect is the most important predictor. Other significant splits at this level 

were VOLCFELS, FELSICS, FL T1 000, FL T400 and GEOLOGY with significance 

levels ranging from 0.002 to 0.070, respectively and accuracy ranging from 60% (for 

FLT400) to 69010 (for GEOLOGY). GEOLOGY split the data into 3 groups; with 

volcanic felsics being the major rock type (27 of29) of one group. Twenty-three of the 

29 cases in this group were mineral occurrences. This validates the importance of the 

volcanic felsic association with mineral occurrences as indicated in the VMS deposit 

model (see Chapter 3.1.2). Overall. the SWF was retained as the primary predictor 

because it seems reasonable to assume that neighbourhood effects are significant in 

determining mineral potential. Of the 47 mineral occurrences, 39 (83%) are related to the 

larger SWF values (i.e. 0.17 to 1.0), confirming the positive spatial association between 

mineral occurrences (i.e. similarity with their neighbours). 

The most significant split oft" the SWF node [0.17 to 1.0] was by FL T400 (Figure 

5.17) with a significance of0.045. This split did not increase the classification accuracy, 

which remained at 72.90/o. FLT400 split the 57 sites into two groups; IS sites occur 

within 400 m of a fault (FLT400=1) and 42 sites occur more than 400 m from a fault 

(FL T400=0). The FL T 400=1 node was further split by the SWF (Figure S .11). This split 

characterized 14 mineral occurrences with very high SWF values from 0.64 to 1. This 

split also classified a single case as near faults but with only moderate SWF values (0.17 

to 0.64). The node increased the classification accuracy along this branch from 72.9% to 
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Figure 5.17 : Decision tree analysis results. Eleven rules are defined (see Table 5 .18). 



74.00/o. No further splits were significant along this node at the 'exploration' filter level (a 

=0.20). 

The most significant split otfthe SWF node [0,0.17) was by volcanic felsics 

(Figure 5.17). This split increased the classification accuracy along this node from 72.9% 

to 77.1%. Alternative splits to VOLCFELS consisted ofFELSICS, GEOLOGY and the 

lake sediment PC variables LPC4 (gold affinity) and LPC2 (base metals affinity). 

VOLCFELS was retained as the secondary split as there were no other predictors as 

significant. 

The nonvolcanic felsics (i.e. VOLCFELS=O) node was split by LPC4 (Figure 

5.17), the lake sediment component that represents gold and its pathfinder elements. The 

majority of these sites (i.e. 20 of35 sites) contain no information (i.e. are missing LPC4 

values). This node was further split by ARCSFLT (the arcsine transformed fault 

proximity variable). These last two splits (Figure 5 .17) did not provide any interesting 

information for mineral exploration purposes. 

A total of II rules were defined by the DTA (Figure 5.17 and Table 5.18) under 

the 'exploration' filter level (a= 0.20). Rules 2 to 8 do not define factors (or conditions) 

that are of significance in predicting mineral occurrences. Rules 2 to 8 are also not 

significant at the 'prediction' filter setting (a= 0.05) and therefore were mapped together 

as 'SWF=[0,0.17) and VOLCFELS=O'. The final five rules, as summarized in Table 

5.19, were mapped by defining the mutually exclusive areas (i.e. rules). Note that the five 

rules are defined by only three predictors: SWF, VOLCFELS and FL T400. VOLCFELS 

- 129-



Table 5.18 : Decision tree results expressed as ·IF-THEN' rules. Refer to Figure 5.17 for 
the decision tree. 

RULE 1: IF SWF = [0,0.17) and VOLCFELS =I 
THEN MINOCC = I (probability= JOO.Oo/o, n=4) 

RULE2: IF SWF= [0,0.17)and VOLCFELS = 0 and LPC4 =???and 
ARCSFLT = [0.0,1.185) 
THEN MINOCC = 0 (probability =IOO.Oo/o, n=18) 

RULE 3: IF SWF = [0,0.17) aod VOLCFELS = 0 and LPC4 =???and 
ARCSFLT = (1.185,1.349) 
THEN MINOCC = 1 (probability =100.0%, n=1) 

RULE 4: IF SWF = (0,0.17) and VOLCFELS = 0 and LPC4 = ??? and 
ARCSFLT = [1 .349,1.571] 
THEN MINOCC = 0 (probability =100.0%, n=1) 

RULES: IF SWF = [0,0.17) and VOLCFELS = 0 and LPC4 = [-2.251,-0.735) 
THEN MINOCC = 0 (probability =50.0%, n=1) 
MINOCC = I (probability =50.0%, n=1) 

RULE 6: IF SWF = (0,0.17) and VOLCFELS = 0 and LPC4 = [-0.735,0.364) 
1HEN MINOCC = 0 (probability =IOO.Oo/o, n=7) 

RULE 7: IF SWF = (0,0.17) and VOLCFELS = 0 and LPC4 = [0.364,0.6) 
1HEN MINOCC = 0 (probability =33.3%, n=l) 
MINOCC = 1 (probability =66.7%, n=2) 

RULE 8: IF SWF = [0,0.17) and VOLCFELS = 0 and LPC4 = [0.6,1.902} 
11iEN MINOCC = 0 (probability =100.0%, n=3) 

RULE 9: IF FLT400 = 1 and SWF = [0.17,0.64) 
mEN MINOCC = 0 (probability =lOO.Oo/o, n=1) 

RULE 10: IF FLT400 =I and SWF = [0.64,1} 
11iEN MINOCC = 1 (probability =100.0o/o, n=14) 

RULE 11 : IF SWF=[0.17,1JandFLT400=0 
TI1EN MINOCC = 0 (probability =40.So/o, n=17) 

MINOCC = 1 (probability =59.5%, n=25) 
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and FL T400 are represented by binary raster maps. The SWF is a point database of96 

mineraVnonmineral occurrence sites. The SWF values were converted to a continuous 

surface through the inverse distance squared weighting method. This map was recoded 

into 3 groups defined by the SWF decision rules (i.e. 0 to 0.16, 0.17 to 0.63 and 0.64 to 

1.0). The maps representing VOLCFELS, FL T400 and SWF were combined to form the 

mutually exclusive and exhaustive areas by applying the rule-based conditions in Table 

S .19. The probability of mineral occurrences was mapped onto each condition to provide 

a map of mineral potential (Figure 5 .18). For example, the area defined by Rule I 

{SWF<O.l7 and VOLCFEL=l) was assigned a probability value of 1.0 {1000/o probability 

ofmineral occurrences). 

Table 5.19 : Probability of mineral occurrences {rounded to the nearest 1%) in relation to 
significant predictors determined from the DT A Note that the mapped probabilities are 
unique conditions. 

Spatial Weighting Function 

Oto 0.16 0.17 to 0.63 0.64 to 1.0 

VOLCFELS=O 
P(minocc)=O. 11 

(Rules 2-8) 

VOLCFELS=1 P(minocc)=1.00 
(Rule 1) 

FLT400=0 P(minocc)=O.eo P(minocc)-0.60 
(Rule 11) (Rule 11) 

FLT400=1 P(minocc)=O.OO P(minocc)=1.00 
(Rule 9) (Rule 10) 
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Figure 5.18: Mineral potential map from the Decision Tree Analysis method. Mineral potential consists of four discrete 
values from 0% (low mineral potential) to 100% (high mineral potential), using the same colour range as on other figures. 
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Once the best overall predictors bad been determined, DTA was used to determine 

which predictor, of a set of similar predictors (e.g. FLT400, FLTIOOO and ARCSFLT), 

was most significant at directly classifying mineral occurrences. Each predictor was 

forced to split MINOCC in order to provide a significance and accuracy level to compare 

with the other predicton in the group. Therefore, the filter setting was specified at a = 

1.0 so any significance value, no matter bow poor, was displayed. The first comparison 

was done on the set of fault proximity predictors. FL T 1000 had the most significant split 

offMINOCC with a significance of0.004 and an accuracy of64.6%. Aggregating 

ARCSFLT into 3 groups (by visual inspection) resulted in a split offMINOCC with a 

significance of0.010 and an accuracy of62.5%. FLT400 had the worst significance 

(0.015) and accuracy (60.4%) compared with the other fault predicton. Overall, 

FL T 1000 provided the best significance and classification accuracy of mineral 

occurrences directly. This is in contrast to the results with all predictors included in 

aualysis, where the SWF was the primary split and FL T 400 was the secondary split. 

Comparing the till base metal elements and TPC2 (i.e. the base metal principal 

component), to determine the best classifier of mineral occurrences, indicated that logCu 

(grouped into 10 classes) provided the best split with a significance of0.072 and an 

accuracy of65.6%. TPC2 did not provide a good split and only bad a significance of 

0.270. Similarly, for the lake sediment variables (base metal elements, LPC2 and LPC4) 

residual Zn (grouped into 10 classes) provided the best split off the mineral occurrence 

node with a significance of 0.070 and an accuracy of65.6%. LPC4 (grouped into 7 

classes) did provide a reasonable split with a significance of 0.191 and an accuracy of 
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62.5% (which is significant in 'exploration' mode with a= 0.20). None of the till or lake 

sediment geochemical predictors could significantly (i.e. a= 0.05) classify MINOCC. 

A comparison ofVOLCFEL with VOLCMAF (volcanic felsics and mafics, 

respectively) indicated the significance ofVOLCFEL in classifYing MINOCC. VOLCFEL 

had a significance ofO.OOI and an accuracy of66.7% whereas VOLCMAF had a very 

poor significance of0.6S3 and an accuracy of only S 1% (no increase over chance). 

In summary, DTA indicated that the predictors, SWF, VOLCFELS and FLT400, 

were significant in classifying mineral occurrences. In addition to these three predictors, 

FL T I 000 was significant in classifying MINOCC on an individual basis. The best 

predictor in the set of till and lake sediment geochemistry was logCu in tills. This 

predictor was only significant at a= 0.20, whereas the other four predictors were 

significant at a = 0.05. The significance of these predictors will be checked through 

confirmatory analysis using logistic regression. 

5.4 Logistic Regression Analysis 

To confirm the results of the DT A. LRA was performed on the full set of20 

precictors, using stepwise analysis to determine the best predictors of mineral occurrence. 

The first step in LRA is to determine if the full set of predictors improves the 

prediction of mineral occurrences compared to the constant-only model (Tabacbnick and 

Fidell, 1996). The full model, including 6 lake sediment predictors with missing values, 
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was not statistically more reliable (X2=29. 7, df=20, sig=0.075) than the constant-only 

mode~ at a=O.OS. Due to the missing values, this model only contained 54 cases (i.e. 31 

mineral occurrences and 21 nonmineral OCQJJTences) and, as a group, did not predict 

mineral occurrences weD. Removing the 6 predictors with missing values and repeating 

the analysis resulted in a statistically reliable model (xl::J8.3, df=l4, sig=O.OOO), with a 

79.2% correct classification. Therefore, the group of 14 predictors with all96 cases 

included, was useful in predicting mineral occurrences. 

The stepwise logistic regression procedure was used to determine which predictors 

were most statistically significant in predicting mineral occurrences. Since the full model 

(20 predictors, 54 cases) was not more reliable than the constant-only modeL it was not 

analyzed in detail by stepwise logistic regression. A preliminary stepwise analysis did 

indicate that no lake sediment predictors were significant Therefore, only the model with 

14 predictors and 96 cases was analyzed in detail. 

The variables which entered the model on stepwise analysis were SWF, followed 

by VOLCFELS, FLTIOOO and TlogCu, respectively (Table S.20a). The addition of each 

variable on subsequent steps changed the parameter values due to their interactions with 

each other (Table 5.20b). Note the decrease in the exp(B) ofthe SWF from 7.97, when 

SWF was the only variable in the modeL to 4.22, when the other 3 predictors entered the 

model. 
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Table 5.20a: LRA results for the best predictors in the stepwise regression Parameters 
are for each IV as it entered the model. 

IV Step Sig B S.E. Wald Sig R Exp(B) e;.cc- ¥.CC· e;.cc-
Chi-sq. (Ciai) <W@Idl MO NM total 

SWF 17.~ O.OOCJ 2.07~ 0.~23 15.7~ O.OOCJ 0 .32_2 7.97 14.5 6S.3 69.8 
VOLCFELS 7.7~ O.OOE 1.464 0.553 7.00 o.oom 0.194 4.32 83.0 69.4 76,() 

fLT1000 S.1~ 0.023 1.166 0 .521 5.01 0.02~ 0.150 3.21 14.5 81.6 78.1 nogeu 2.31 0.1~ 3.203 2.186 2.15 0.143 0.033 24.61 76.6 81.6 79.2 
Note: -YoCC=pcrcent comedy classified, MO=mineral oc:cum:nce, NM=nonminera.l occurrence. 

Table 5.20b : LRA results for the best predictors in the stepwise regression. Parameters 
are for the final model, including the constant. with all four predictors entered as a block. 

95% Cl for Exp(B) 

IV B S.E. Wald Silt (Wald) R Exp(B) l..ower UDDer 
~nstant -7.714 4.178 3.41 0.065 
SWF 1.439 0.511 6.3S 0.01_1 0.181 4.22 1.38 12.92 
VOLCFELS 1.771 o.s~ 8.88 0.003 0.227 5.81 1.83 18.83 
FLT1000 1.451 0.57~ 6.3~' 0.012 0.181 4.27 1.38 13.18 
TiogCu 3.203 2.18E 2.15 0.143 0.033 24.61 0.34 1786.97 

The standardized residuals of the model were checked and only one case bad an 

outlier to the solution (i.e. standardized residual = -4.60). Since there was only one 

outlier to the solution and since all the parameter estimates and standard errors were of a 

reasonable size it was concluded that the predictors, SWF, VOLCFELS, FLTIOOO and 

TlogCu, provided a good model fit (Tabacbnick and Fidell, 1996). A reasonable size for 

the parameter estimates and standard error also indicates the ratio of cases (96) to 

variables (14) was sufficient. The final classification indicates that 79.2% ofthe 96 

mineral/noomineral occurrences were reliably predicted by this model (Table 5.21). 

Twenty sites (9 mineral occurrences and 11 nonmineral occurrences) were not reliably 
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predicted. The nonmineral occurrences bad a S% better classification accuracy than the 

mineral occurrences. The final LRA equation is: 

where 

A e,. 
Y=-­

l+e,. 

u = -7.7143 + 1.4393*SWF + 1.7708*VOLCFELS + l.45ll*FLTIOOO + 3.203l*TiogCu 

This equation was mapped using the IDRIS~ IMAGE CALCULATOR. The resulting 

mineral potential map indicates the percent probability of mineral occurrences (Figure 

5.19). 

Table 5.21 : Classification table from the logistic regression analysis. 

Predicted 
Nonmin. Occ. Mineral Occ. %Correct 

Observed Nonmin. Occ. 40 9 81.8 
Mineral Occ. 11 38 78.8 

Overall 79.2 

A comparative analysis was done for each of the four predictors to determine its 

individual significance in improving the model (Tabachnick and Fidell, 1996). The models 

with and without each of the four predictors were compared by using the chi-squared 

goodness-of-fit test (see Chapter 2). VOLCFELS had the lowest cbi-sqaured significance 

(0.002) when the 3 other variables were considered as a block, followed by FLTIOOO (sig 

= 0.009), SWF (sig = 0.011) and TlogCu (sig = 0.129). These significance values 

indicate all4 predictors improved the model fit 
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Figure 5.19: Mineral potential map from the Logistic Regression Analysi s method. Mineral potential extends on a 
continuous scale from 0% (low mineral potential) to 100% (high mineral potential). 
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To determine ifthe assumption of grouping the VMS, gold and 'unknown' deposit 

types was justified, the LRA was run with just the VMS mineral occurrences (n=39) and 

all 49 nonmineral occurrences. The LRA results for the VMS mineral occurrences (n=39) 

were comparable or slightly worse in all parameters (e.g. x2 significance, Wald, exp(B)) 

than the model with the grouped deposit types (n=47). The significant predictors in the 

VMS model were the SWF, VOLCFEL and FLTIOOO; TiogCu was not significant. 

Overall, the grouped model performed better than the VMS modeL indicating the 

grouping of the deposit types did not detract from the performance of the model. 

Similar to the DT A, LRA was used to compare the significance between similar 

sets of predictors (such as the three fauh proximity predictors) in predicting mineral 

occurrences directly. FL Tl 000 predicted MINOCC with a significance of 0.004 and 

accuracy of64.6%, whereas FLT400 bad a significance ofO.OlS and an accuracy of 

60.4%, exactly the same as the DTA results. ARCSFLT, with a continuous distribution, 

classified MINOCC with a significance of0.004 and an accuracy of61.5%, which was a 

better significance and comparable accuracy to the ternary grouping of ARCSFL T in the 

DT A. Overall, FL T I 000 was the best fault proximity predictor of mineral occurrences 

when no other predictors were considered in the model. 

A comparison of the till base metal elements and TPC2 (i.e. the base metal 

principal component) indicated that TPC2 was best at predicting mineral occurrences with 

a significance of0.081, which is not significant at cx=O.OS but is significant at a =0.20 (the 

significance level set to enter the stepwise model). TiogCu had the worst significance of 

0.50 and an accuracy no better than chance. For the lake sediment base metal elements, 
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LPC2 and LPC4 (where n=S4), UogPb bad the best significance of0.57. LlogAu had a 

poor significance (0.51) but the best accuracy of63.00/o. All other till and lake sediment 

predictors, beside LlogAu, bad accuracies between 500/o and 600/o. And finally, a 

comparison between VOLCFEL and VOLCMAF (volcanic felsics and mafics, 

respectively) indicated the significance ofVOLCFEL to the model. VOLCFEL had a 

significance ofO.OOOl and an accuracy of66. 7% whereas VOLCMAF had a significance 

of0.648 and an accuracy of only 51% (no increase over chance). 

In summary, LRA indicated that the predictors, SWF, VOLCFELS, 

FLTIOOO and TiogCu, were significant in classifying mineral occurrences. SWF, 

VOLCFELS, and FLTlOOO were significant at a= 0.05, but TiogCu was only significant 

at a= 0.20. In addition to these four predictors, ARCSFLT (the continuous fault 

proximity predictor) was significant (at a= 0.05) in classifying MINOCC directly. In the 

set of till and lake sediment geochemistly, the best predictor ofMINOCC directly was 

TPC2, the till base metal and gold component. This predictor was only significant at 

a=0.20. 

5.5 Reliability and Favounbility A•alysis 

One of the most significant predictors resulting from the DTA and LRA modelling 

was felsic volcanics (VOLCFELS). An indication of the reliability of this predictor can be 

determined from a comparison of the geology from the regionall :50,000 scale mapping 
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versus the detailed site-specific geology from the MODS files. Reviewing the geology 

from the two sources for the 4 7 surface mineral occurrence sites, 26 have the same rock 

types in both detailed and regional geology, I 0 are similar and the remaining II 

occurrences have different detailed and regional geology. Therefore, only 36 of 47 (7?0/o) 

mineral occurrence sites have similar detailed and regional geology. The regional geology, 

with 12 rock types, was not the best predictor of mineral occurrences; the best geology 

predictor was the binary presence and absence of volcanic felsics. When the geology data 

were reduced to a binary code and compared for the two scales, the same rock type 

occurs at 33 sites, similar rock types at 6 sites and 8 sites are different. Using this binary 

code, the reliability of the regional geology as compared to the detailed geology increases 

from 7?0/o to 83% (i.e. 39 of 47 sites are similar). This indicates that regional 1:50,000 

scale geology can be used for quantitative modelling with good confidence in its reliability. 

The reliability analysis above provides an overall impression of the reliability of the 

geology at the 1:50,000 scale. To assess the DTA and LRA modelling results, the 

reliability of each of the significant predictors in the models needs to be assessed. Overall. 

the significant predictors in both modelling results are SWF, VOLCFELS, FL 1400, 

FLTIOOO, and TlogCu. 

The reliability of the SWF was not presented as a separate map because it was 

based on distance calculations from the minerallnonmineral occurrences. The uncertainty 

on the locations of the mineral occurrences (i.e. maximum of ±100 m) was incorporated 

into the other predictors as the basis for the cell resolution of all the raster maps. 
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Reviewing the reliability of the volcanic felsics in the study area required an 

assessment of the proximity of the volcanic felsic outcrops (as point locations) to each 

other and to nonvolcanic felsics. The outcrop locations were digitized and two maps were 

produced; a felsic volcanic map was coded with a 'I' for volcanic felsic outcrops and '0' 

otherwise and a nonvolcanic felsic map was coded with a ' I' for nonvolcanic felsics and 

'0' otherwise. Since the rock units in the study area trend NE-SW, a small line 3 cells 

long (representing the maximum length of the smaller outcrops) and trending 050 (average 

of trends measured from volcanic units) was centred on each outcrop and buffered to 

produce a proximity map. The buffering of the line provides an elliptical NE-SW shape 

resembling the shape of the geological units, rather than a circular shape which occurs 

with point buffering. The felsic volcanic outcrop proximity map was masked to the 

outlines of the felsic volcanic contacts from the geology map. This provides proximity 

values from the outcrops to the contacts of the felsic volcanics. Those cells close to 

outcrops of felsic volcanic are considered reliable whereas those ceUs furthest from the 

outcrops but still within the felsic volcanic unit are considered unreliable. The plot of 

these ceU proximity values (Figure S .20) was assessed and the information was used to 

derive a coding scheme (Table 5.22). Due to the intrinsic limitations on precisely locating 

outcrops and determining rock types in the field, the maximum reliability is considered to 

be 900/o (S. Colman-Sadd, pers. comm., 2000). The reliability decreases to 10% for cells 

greater than 3000 m from a felsic volcanic outcrop. 
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Figure 5.20: Distance of raster ceUs from felsic volcanic outcrop in the study area. 

Table 5.22 : Coding scheme representing reliability based on proximity to outcrop. 

Distance from Outcrop (m) Reliability ('*') 
>3000 10 

2001-3000 20 
1001-2000 30 
801-1000 40 
801-800 50 
401-800 eo 
201--400 70 
2-200 80 

0-1 90 
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Similarly, the nonvolcanic felsics (i.e. all other rock types besides volcanic felsics) 

were masked to provide a proximity map of their outcrops. A plot of these cell proximity 

values was similar to the felsic volcanics, so the same coding scheme was used for both. 

The two maps were combined to form a final reliability map for the binary felsic volcanics 

(Figure 5.21). 

The fault proximity predictors of significance in the DT A and LRA modelling are 

FL T400 and FL Tl 000. These are the binary fault proximity maps with the buffer 

thresholds at 400 m and 1000 m from the fault, respectively. Assuming the center-line of 

the buffer polygon (i.e. the location of the fault) is the most reliable area (Berry, 1993), 

these areas were assigned the highest reliability of 80%. The boundary threshold was 

assigned the lowest reliability of SO% (Berry, 1993). The reliability map of the FLT400 

proximity buffers is presented in Figure 5.22. 

The only geochemical predictor of significance was logCu in till. This predictor 

was only significant in the LRA. The reliability for the tilllogCu map was calculated as 

discussed in Chapter 4.5, using the standard deviation map resulting from the kriging. The 

standard deviation map was divided by the kriged logCu map, to result in a coefficient of 

variation (CV) map. The CV map was subtracted from 100 to arrive at a reliability map. 

The reliability map is presented in Figure 5.23. Reliability values range from 75% to 93%, 

indicating a very reliable kriged logCu map. 
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scale from 0% (not reliable) to 100% (reliable). 
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With reliability maps prepared for each of the significant predictors, they were 

combined to provide the reliability for the DTA and LRA mineral potential maps. Due to 

the nature of the DT A results (Table S .19), eacb mutually exclusive area was defined by 

the SWF and only one other predictor (i.e. VOLCFELS or FL T400). Since the SWF does 

not bave a reliability map then only one predictor was mapped in each area. Therefore, 

the DT A reliability map was pieced together by masking the reliability maps of the 

individual predictors, VOLCFELS and FL T400, for the areas they influenced. The DTA 

reliability values range from 100/o to 90% (Figure 5.24). 

Berry's joint probability method ( 1993) was used to determine the reliability for 

the LRA mineral potential map by multiplying the reliability maps for predictors 

VOLCFELS, FLTIOOO and TlogCu. The resulting LRA reliability values range from 4% 

to 67% (Figure 5.25). 

To determine favourable areas for further exploration, the mineral potential map 

for each model was multiplied by its reliability map and converted to a scale from 0 

(indicating low mineral potential with low reliability) to 1.0 (indicating high mineral 

potential with high reliability). The range of values for the DTA favourability map was 

0.00 to 0.90 and the range of values for the LRA favourabiltiy map was 0.00 to 0.62. The 

histograms of both maps were analyzed to determine how best to classify the results. The 

DTA histogram bas a large peak at 0.48 favourability, due to the large area assigned as 

600/o mineral potential and 80% reliability. This peak covers the 48th to 94tb percentiles. 

Therefore, these values can only be reclassed as a block. The most interesting 

favourability (consisting of high mineral potential and high reliability) is the top 6% from 
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Figure 5.24 : Reliability for the Decision Tree Analysis mineral potential map. Reliability extends on a continuous scale 
from 0% (not reliable) to 100% (reliable). 
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Figure 5.25 : Reliability for the Logistic Regression Analysis mineral potential map. Reliability extends on a continuous 
scale from 0% (not reliable) to 100% (reliable). 



the 95• to I oo• percentiles. These values were reclassed as a ' 1 ' and values less than the 

95th percentile were reclassed as '0'. Therefore, the top 6% of the LRA favourability map 

was also reclassed to 'I' (as highly favourable areas) and all other values were reclassed to 

'0' (as not highly favourable). The two maps looked somewhat similar, with high 

favourability extending along the volcanic belts. To provide a final summary map of 

favourability, the DT A and LRA binary favourability maps were added together resulting 

in a map where '0' represents areas of no interest in either mode~ 'I' represents areas with 

high mineral potential and high reliability in at least one of the models, and '2' represents 

areas with high mineral potential and high reliability in both models (Figure S .26). 

As a final comparison, the locations of the mineral occurrences were compared 

with the combined favourability map. Of the 47 mineral occurrences, 10 were within areas 

coded '2', 15 were within areas coded 'I • and 22 were within areas coded '0'. The top 

6% favourability area defined by DT A contained 17 mineral occurrences and the LRA 6% 

favourability area contained 18 mineral occurrences. Overall, 53% (25 of 47) of the 

mineral occurrences were within the top 6% favourability for either the DTA or LRA or 

both models. 

5.6Summa., 

After preparation of the individual predictors, two quantitative mineral potential 

models were developed; a rule-based DT A model and a continuous LRA model. Both 

models indicated SWF and VOLCFELS were significant predictors of mineral potential. 

Both models also indicated fault proximity was significant but the DT A favoured a 400 m 
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fault buffer whereas the LRA favoured a 1000 m fault buffer. Copper in till was only a 

significant predictor in the LRA model. 

Reliability maps were determined for each of these significant predictors and 

combined to provide reliability maps for the DT A and LRA models. Favourability maps, 

for eacb model, were derived by multiplying the mineral potential by the reliability. 

Overall favourability was determined by combining the favourability for the two models. 

A comparison between the overall favourability map and the 47 mineral occurrences 

indicated that 53% of the mineral occurrences were in the highest 6 percentiles for at least 

one model. 
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CHAPTER6 

Discussion and Conclusions 

The primary goal of this study was to develop a quantitative model for mineral 

potential mapping using statistical and geostatistical methods on geochemical, geological 

and spatial predictors for the Lake Ambrose area in central Newfoundland. The two 

statistical techniques used for modelling were decision tree and logistic regression analysis. 

These techniques required prescreening and processing of the geological and geochemical 

raw data to produce a set of useful predictors for classifYing mineral occurrences. A 

spatial predictor was also calculated from the neighbourhood analysis of the mineral 

occurrences. The following discussion reviews the predictors and the results of the 

mineral potential modelling. In particular, the mineral potential maps resulting from DT A 

and LRA are compared, and their reliability maps are assessed. An overall favourability 

map, based on the mineral potential and reliability maps, reveals that a few small regions (a 

few kilometres in size) within the Tally Pond and Tulks Hill volcanic belts, close to faults 

and known mineral occurrences, have high mineral potential and high reliability. 

6..1 Discuuioa of Predicton 

Twenty predictors were initially considered for the mineral potential modelling. Of 

these, S (i.e. SWF, VOLCFELS, FLT400, FLTIOOO and TlogCu) proved to be the most 
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useful and the others were not significant. The following discussion focuses on the S 

important predictors, but reviews some key points about the other predictors. 

Principal components analysis of till geochemistry resulted in a component 

characterized by base metals plus gold and its pathfinder elements (i.e. TPC2). Since the 

base metals and gold occur in the same component, it gives strong support to the decision 

to group the gold and VMS mineral occurrence deposit types as one population in the 

modelling. This decision was further supported when the VMS mineral occurrences 

(without the gold and unknown occurrences) were analyzed separately by LRA and the 

results substantiated the fact that grouping the gold and VMS occurrences produces very 

similar results to analyzing VMS occurrences on their own. 

Of the till geochemical predictors, TlogCu was the only predictor that was 

significant in predicting mineral occurrences. TlogCu was significant in the stepwise LRA, 

along with 3 other predictors, and it was also significant as a direct predictor of mineral 

occurrences in the DT A. This may reflect the fact that copper minerals are more prevalent 

in the mineral occurrences (present in 23 of 47 occurrences) than minerals of the other 

elements. TlogAu, TlogPb, TlogZn and TPC2 were not significant in predicting mineral 

occurrences. 

The processing of the lake sediment data to remove lake effects, such as element 

adsorption on Fe and Mn hydroxides, also removes part of the primary geochemical signal 

of the elements regressed against them (Davenport, 1990). This changes the correlations 

among the elements, which, in tum, affects the lake sediment PCA results. This problem 

is illustrated by residual zinc (rZn) which is unexpectantly associated with component 3 
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(i.e. mafic volcanic lithologies) in the lake sediment PCA, as opposed to component 2 (i.e. 

base metals). The expected association of zinc with the base metals is substantiated in the 

till PCA where logZn is associated with the base metals component. Therefore, PCA 

results for the lake sediment data should be treated with caution due to the removal of part 

of the primary geochemical signal of the regressed elements. 

The lake sediment database was problematic because only 54 of 96 

mineraVnonmineral sites (i.e. 31 mineral occurrences and 23 nonmineral occurrences) 

occurred within catchment basins containing lake sediment samples. Therefore, 42 cases 

bad missing data. An advantage of the decision tree modelling method was that it 

incorporated the missing data as a group. The LRA could not incorporate the missing 

data and removed all pairwise cases with missing data from the analysis (i.e. 42 sites not 

within a catchment basin). 

LPC4, the lake sediment gold PCA component, was the only predictor which was 

somewhat significant (0.087) at predicting mineral occurrences in DTA, in conjunction 

with SWF, VOLCFELS, and FLT400. Residual zinc in lake sediments was also somewhat 

significant (0.070) at directly predicting mineral occurrences in DT A In contrast, none of 

the lake sediment predictors (i.e. LlogAu, LlogCu, LlogPb, rZn, LPC2 and LPC4) were 

significant in the LRA, as part of the stepwise analysis or as a direct predictor of mineral 

occurrences. The significance in some of the lake sediment predictors in DT A indicates 

that there may be fundamental differences between DT A and LRA; specifically, DTA can 

incorporate missing values as a group and continuous values are grouped into specified 

discrete bins. When the LRA included the lake sediments, it analyzed only 54 cases, 
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whereas DT A was able to include the lake sediment predictors and still analyze all 96 

cases. 

The applicability of the regional 1:50,000 scale geology as a basis for quantitative 

modeUing had to be assessed. A comparison of the regional geology with that specifically 

reported for the 47 mineral occurrence sites, indicated good reliability (77% agreement) 

which was increased still further (83% agreement) when the geology was reclassed to 

binary volcanic felsics. The good agreement indicates that I :50,000 scale geology, readily 

available in digital format for most of the province, provides reliable geological 

information for quantitative modelling analysis. 

Based on the literature, the VMS deposit model has felsic and mafic volcanics as 

the most common hosts to VMS deposits (Franklin, 1993). Both DTA and LRA 

confirmed that, in the Lake Ambrose area, felsic volcanics (not mafic volcanics) are 

associated with the mineral occurrences. The mafic volcanics were not at all significant in 

classifying mineral occurrences in either DT A or LRA The nominal geology predictor, 

consisting of 12 rock types, was not significant in predicting mineral occurrences. 

Based on the literature, deposit models for VMS and gold deposits indicate that 

proximity to faults is an important factor in the exploration for these mineral occurrences 

(Franklin, 1993). The binary predictors FLT400 and FLTIOOO were both significant in 

classifying mineral occurrences in DTA and LRA, respectively. As a direct predictor of 

mineral occurrences, FL T 1000 was the best predictor in both DTA and LRA FL T400 

was a significant predictor in DTA, rather than FLTIOOO, probably because it only 

classified a portion of the cases (i.e. 51 of96) otrthe primary predictor, SWF, whereas, in 
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LRA, each predictor classifies all 96 cases. The ARCSFL T predictor was not significant 

in classifying mineral occurrences. 

The surficial geology and wetlands predictors were not significant in predicting 

mineral occurrences. The wetlands data was too skewed (i.e. only 4 of the 96 sites 

intersected wetlands) to provide a reasonable analysis. The surficial geology was mapped 

on a regional scale and an assessment of its reliability is not available. The deposition of 

surficial sediments by glacial processes are not directly related to mineral occurrences, 

except for the possibility that surface mineral occurrences may be more easily found where 

bedrock is eKpOsed or covered by only thin sediment units (e.g. drift/rock, which averages 

less than 1 m in thickness). However, the thickness of surficial sediments may be related 

to the till geochemistry. Copper values in till increased with increasing sediment thickness. 

The reasons for this are beyond the scope of this thesis, but indicate that a combined 

surficial geologymogCu predictor may be of future interest. 

The tabulated glacial striation database was included as part of the database for 

this study but was not assessed as a predictor of mineral occurrences. The striation data 

are not directly related to mineral occurrences but may play a part in assessing the spatial 

proximity of anomalous till geochemistry to mineral occurrences. Striation data may be 

more useful in areas where only one major ice flow direction is recognized, and in areas 

that have less complex geology such as only a few contrasting lithogeochemical units. 

This would permit striation data to be correlated with the transport and provenance of till. 

This information could be used to back-correct the location of the till data (closer to the 

source) and then the corrected till predictors could be used in mineral potential modelling. 
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This approach could best be tested in areas with less complex geology than the Lake 

Ambrose area used in this study. Till and lake sediment geochemistry are presently used 

by exploration geologists only on an empirical basis at a regional scale to locate areas of 

potential exploration interest. With corrected till predictors, mineral potential mapping 

may be able to provide more focused areas for exploration. 

The most significant predictor in both the DT A and LRA was the spatial weighting 

function. The SWF values were calculated based on the proximity to neighbouring 

mineral occurrences and represent the potential for mineralization. This predictor 

quantifies and spatially defines the exploration geologists "rule-of-thumb" that new 

mineral occurrences are often to be found ''within sight'" of known mineral occurrences. 

6.2 DTA and LRA ModeUing Resulb 

Due to the sparseness of cases in the database, a test dataset could not be 

partitioned for use in determining the accuracy of the results. Therefore, two modelling 

techniques, decision tree analysis and logistic regression analysis, were chosen to act as a 

comparative test in assessing the relative accuracy of their resulting mineral potential 

maps. The resulting maps were compared in a number of ways, including a visual 

inspection. a site comparison (based on the 96 mineraVnonmineral occurrence sites) and a 

comparison of the two raster mineral potential maps. 

The DTA indicated that SWF, VOLCFELS, and FLT400 were the 3 predictors 

which best classify mineral occurrences. The model correctly classified 78.1% of the 96 

mineraVnonmineral occurrences. The mineral potential map resulting from the DTA 
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modelling consists of four mutually exclusive areas (Figure 5. 18) as defined by the rule­

based conditions. Most of the map area is defined by two probabilities for mineral 

potential; II% and 600/o. A probability of 1000/o is defined by two rules; i) whl!re the 

number of mineral occwrences in a neighbourhood is low (SWF<O.l7), the presence of 

volcanic felsics defines a high mineral potential uea, and ii) where the number of mineral 

occurrences in a neighbourhood is high (SWF>0.64), the proximity to faults is important. 

An unusual case occurs for areas close to faults but with a moderate number of 

neighbourhood mineral occurrences (0.16<SWF<0.64). These areas are defined as having 

0% mineral potential and were classified based on only 1 case. Therefore, a larger mineral 

occurrence database may help to reduce this type of spurious classification. Also, pruning 

the decision tree of splits defined by too few cases (where the threshold number of cases is 

defined by the analyst) will help to define more robust rule-based conditions. 

The LRA indicated that SWF, VOLCFELS, and FLTIOOO and TlogCu were the 4 

predictors which best classify mineral occurrences. The model correctly classified 79.2% 

of the 96 mineraVnonmineral occurrences; 5% more nonmineral occurrence sites were 

correctly classified than mineral occurrence sites. The mineral potential map resulting 

ftom the LRA modelling consists of a continuous probability surface of mineral potential 

(Figure 5.19) as defined by the logistic regression equation. Most of the map area is 

defined by less than 30% probability of mineral potential. Two NE-SW trending belts 

contain greater than 70% mineral potential. These two belts coincide with the Tally Pond 

and Tulles Hill volcanic belts where most of the mineral occurrences are located and where 

the faults and anomalous copper in till occurs. 
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The DT A and LRA mineral potential maps were compared in a number of different 

ways. The first method was to determine how similar (level of agreement) the results of 

the DTA and LRA modeHing methods were at the 96 sites used in the study. The 

probability values from the two modelled mineral potential maps were extracted at the 96 

sites. These values were converted to binary codes where '0' represented probability 

values from 00/o to just less than 500/o, and '1' represented probability values from SO% to 

1000/o. Eighty-one of the 96 sites (84.3%) were predicted the same by both methods 

(whether correctly classified or not); 5 mismatches occurred at mineral occurrence sites 

and 10 occurred at nonmineral occurrence sites. Therefore, there is good agreement for 

the 96 sites between the two methods, indicating that they do produce comparable results 

for the data provided. 

The above mismatch test only compares the models with one another (i.e. test of 

agreement) and does not indicate whether the sites were predicted correctly (i.e. test of 

accuracy). Probability values greater than 500/o were classified as mineral occurrences, 

and values less than 500/o were classified as nonmineral occurrences. The LRA predicted 

80.9% of the mineral occurrence sites correctly and 81.6% of the nonmineral occurrence 

sites correctly (Table 6.1). The DTA predicted 91.5% of the mineral occurrence sites 

correctly but only 65.3% of the nonmineral occurrence sites were correctly classified. 

Twelve sites were not correctly classified by either method due to predictor values that 

were not consistent with the VMS model (e.g. mineral occurrences in nonvolcanic felsic 

rock types). Spatially, the 12 sites are distributed in all sections of the map area. 
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Table 6.1 :A comparison of the classification accuracy ofthe DTA and LRA modelling 
methods for the mineral occurrence (MO) and nonmineral occurrence (NMO) sites. 

Predicted 
Observed DTA LRA 

MO NMO MO NMO 
MO 43 17 38 9 

NMO 4 32 9 40 

The second method of comparing results used the same binary coding as above 

(using 500/o probability as the cutoft) but, instead of a 96 site analysis, the DTA and LRA 

mineral potential maps were recoded to binary maps. A cross-tabulation of the results 

(Table 6.2) was used to compare the maps. Overall, 62.1% of the cells are in agreement. 

The binary DTA results indicate 57.00/o of the area bas a "good" mineral potential (i.e. 

>50% probability) whereas the binary LRA indicates that only 23 .5% of the area bas a 

"good" mineral potential. The overlap of areas with "good" mineral potential between the 

two maps is 21.3%. Within this 21.3% area there are 37 ofthe 47 mineral occurrence 

sites (78.7%). 

Table 6.2 : Cross-tabulation (number of grid cells) of the results of DT A and LRA 
converted to binary maps. Mineral occurrences= I and nonmineral occurrences=O. 

Binary OTA Resuns 
0 1 Total 

Binary 
LRA 

0 10576 {40.8%) 9248 (35.7%) 19824 {76.5%) 

ResuHs 1 563 (2.2%) 5513 (21.3%) 6076 (23.5%) 

Total 11139 {43.0%) 14761 (57.0%) 25900 {1 00%) 
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Measures of map similarity provide a quantitative assessment of the spatial 

association between maps. Two measures of spatial association were detennined from the 

cross-tabulation data in Table 6.2. The kappa coefficient of agreement (Bonham-Carter, 

1994) compares the total observed agreement (pii) with the total expected agreement due 

to chance ( qu): 

" " LP,Lq,; 
I(= r=l r=l 

Kappa values range from -1 (disagreement) to +1 (agreement). For the DTA and LRA 

mineral potential maps kappa= 0.29, indicating a moderate level of agreement. But, 

values of kappa may be underestimated due to the overestimate of the expected agreement 

(Foody, 1992). Therefore, Yule's a. may provide a more appropriate map comparison. 

Yule's a. can be calculated using the following equation (Bonham-Carter, 1994): 

a, ~Tu ll;t -~~2 IT2z 

~~~ /Tll +~~2 IT22 

where T mn are the values in the mlh row and n111 column of the cross-tabulation table (Table 

6.2). For the DTA and LRA mineral potential maps a.= 0.54, which indicates a good 

level of agreement. 

The third method of comparing results, from the DT A and LRA mineral potential 

maps, was to summarize the cross-tabulation table of the actual values in the raster maps 

rather than converting the values to binary. A cross-tabulation list of this data provided 

the cell frequency of each LRA value (from 4% to 96%) for the 4 unique values in the 
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DTA (i.e. 00/o, 11%, 600.41 and 1000/o). A summary using a box-and-whisker plot (Figure 

6.1) indicates the relationship between the two maps. Note that the interquartile ranges 

are fairly distinct for the 11%, 600/o and 100% decision tree results but the 0% 

interquartile range overlaps the 60% and 1 000/i. As discussed above, the 0% class was 

defined by only 1 case in the DTA (Rule 9 in Figure 5.17). Removing this node (FLT400 

split on SWF into 0.17 to 0.63 and 0.64 to 1.0) would result in this sample (i.e. this group 

ofSWF from 0.17 to 0.64) being assigned a probability of93.3% instead ofO%. 

Even though DTA and LRA modelling methods are conceptually different, 

generally the agreement between the two methods is good, where both produced a 

classification accuracy of approximately 79%. 

6.3 Discussion or Reliability and Favourability 

The reliability of the DT A and LRA mineral potential maps indicates a primary 

difference between the two models. The reliability for the DT A mineral potential map was 

based on mapping individual predictor reliability on mutually exclusive areas, whereas the 

reliability for the LRA mineral potential map was based on the joint probability model. 

Due to the multiplication of predictor reliability in the joint probability mode~ the LRA 

reliability map bad much lower values (maximum of 67% versus 900/o for the DTA 

reliability map). Therefore, when comparing the final favourability maps, the top 6 

percentile was chosen, rather than choosing specific favourability values which would bias 

the favourability due to the DT A reliability. 
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Figure 6.1 : Box-and-whisker summary ofthe continuous logistic regression analysis 
results in comparison to the 4 unique decision tree analysis results. 

The final favourability map (Figure 5 .26), combining the top 6% favourability from 

both the DTA and LRA models, highlighted those areas of felsic volcanic rock type in 

close proximity to faults and other mineral occurrences. Sixty percent of the mineral 

occurrences were within this very favourable mineral potential area. Comparing the 

favourable areas with the latest published mineral claims map (Sept. 30, 2000) indicates 

most of the favourable areas have already been staked by exploration companies. A few 

small areas (Figure 5.26) remain available. 
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6.4 Conclusions 

The relationship between mineral occurrences and spatial, geological and 

geochemical factors were assessed using the quantitative modelling techniques of decision 

tree analysis and logistic regression analysis. These two modelling techniques indicated 

the significant predictors in both models were the spatial weighting function (a measure of 

the proximity of mineral occurrences), volcanic felsic rock type and proximity to faults. In 

addition, the LRA determined that copper in till samples was somewhat significant as a 

predictor. The felsic volcanics and fault proximity predictors support the VMS deposit 

model, and the spatial weighting function supports the exploration geologists general 

"rule-of-thumb" that deposits occur in neighbourhoods. 

Till and lake sediment geochemistry have traditionally been used in mineral 

exploration to indicate areas of potential interest. The results of the quantitative modelling 

did not indicate a clear spatial association between the geochemistry and mineral 

occurrences. For the lake sediments, this may have been due to the sparseness of the 

dataset (i.e. only 54 catchment basins contained both minerallnonmineral occurrences and 

lake sediment samples). Only copper values in till had a somewhat significant association 

with mineral occurrences. To better detennine the association between the mineral 

occurrences and the till geochemistry, infill sampling to provide a better distribution over 

the study area would be beneficial, as well as lithogeochemical studies to better trace the 

source rocks. With this detailed information in the database, the glacial striation database 

may be useful for helping to trace till geochemistry back to its sauce area. 
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The till and lake sediment PCA results did not provide any significant information 

for the determination of mineral potential. But it was determined that the time-consuming 

screening procedure can be avoided prior to running PCA by using Spearman's rank 

correlation coefficient matrix of raw till values instead of the default Pearson correlation 

data. 

Advantages of the DT A over the LRA was the inclusion of missing samples in the 

DT A. Also, the DT A method of splitting data into smaller groups provided insights into 

the nature of the subgroups, whereas the LRA analyzed the data as a whole. Both 

methods bad the advantage, over other quantitative modelling techniques, of handling 

continuous and categorical data and of not being strict regarding the distribution of the 

data. 

One of the problems with the study area was the sparseness of the mineral 

occurrence dataset. This resulted in the lack of an independent dataset to test the 

reliability of the results. Therefore, the results of the two models (LRA and DTA) were 

compared with one another to provide an indication of the agreement, if not the accuracy, 

of the quantitative results. The resulting agreement of 84.3% between the 96 sites of the 

DTA and LRA mineral potentials was quite good. This was substantiated by Yule's 

a=0.54, which indicated a good agreement between the two mineral potential maps. 

Overall, both models correctly classified approximately 7~/o of the 96 minerallnonmineral 

occurrences. 

In addition to the agreement, the reliability of the models was assessed. Due to the 

nature of the reliability calculations (i.e. rule-based conditions for the DTA map versus 
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joint probability model for the LRA map). the DTA model appeared to have the better 

reliability with a maximum reliability of9()0/o versus only 67% for the LRA model. Using 

a weighted technique as suggested by Berry (1993 ). instead of the joint probability modeL 

to cakulate the reliability for the LRA model may produce more similar reliability values 

totheDTA 

The final favourability map (Figure 5 .26), based on high mineral potential and high 

reliability from both the DT A and LRA models, indicates areas of interest for exploration 

for VMS deposit types. As of September 2000, only a few of the favourable areas 

identified in this study were not staked by exploration companies. The two areas of 

primary interest are located in the Tally Pond volcanics and the Tulles Hill volcanics. 

Applying the resuhs of the DT A and LRA modelling to the whole of the Victoria Lake 

Group of volcanic rocks will help to refine the modelling technique, as weU as defining 

other favourable areas for exploration of VMS deposits. 
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Program At: Calculation of'Sl' used in Moran's I Calculations 
'Program used to calculate S2, used in calculating Moran's I statistical sig-
' nificanc:e test under the randomization assumption using the tables 
' as outlined in Kvamme's 1990 paper, pg. 205, for point data 
CLS 
' All pointdistance output file bas pnli, pntj, and distance columns 
INPUf "Enter ascii distance point file name with extension: •; infilelS 

OPEN infilel$ FOR INPtrr AS #I 

'set sum of weights-() and total sum of weights=O 
sumweight == o 
totalsw =- o 

'input 1st pair of points 
INPtrr #1, pntil, pntjl, distance 
IF distance <> 0 THEN 

sumweight = sumweight + (1/ distance) 
END IF 

'input subsequent points 
DO WHILE NOT EOF(l) 
INPur #I, pnti2, pntj2, distance 

' LOCATE 5, 10: PRINT "Working" 

'if first of second pair "" first of first pair then keep adding weights 
IF pntil "'pnti2 TIIEN 

IF distance <> 0 THEN 
sumweight - swnweigbt + {I/ distance) 

END IF 
ELSE 

PRINT "Fori="; pntil; "sum of weights="; sumweight 
pnti 1 = pnti2 
pntj 1 = pntj2 
totalsw ;;; totalsw + (sumweight • sumweight) 
IF distance <> 0 THEN 

sumweight = 1/ distance 
ELSE 

sumweight = 0 
END IF 

END IF 
LOOP 

'print out last sum of weights and final results 
PRINT "Fori= •; pntil; •sum of weights .. •; sumweigbt 
totalsw = totalsw + (sumweight • sumweight) 
PRINT "Total sum of squares for Table A3 = "; totalsw 

CLOSE#l 
END 
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Program A2: Calculation of the Local Spatial Weighting Function 
(swfindst.bas) 

'Program used to calculate the local spatial weighting function of mineral 
' and noumineral occurrences. 
'The SWF is calculated for each point, using an arcinfo point-distance outpUt file. 
'This version calc:uJatcs tbe SWF for maximum distances of2S00m radius around 
'a mineral oc:curreru:e. and uses inverse distance as a weight 
'based on coucept by Chou eta/., 1990 
CLS 
' All pointdistance output file has pnta. pntb, and distance columns 
INPUT "Enter ascii distanc:e point file name with extension: "; infilel$ 
'enter eg dist2SOO.txt 

OPEN infilelS FOR INPUT AS #I 

'output file DaiiiC is same as input file but with swd extension 
n = INSTR(I, infilel$, ".") 
filenS =- LEFI'S(infilelS, (n • 1}) 
outfilel S = filenS + • .swd" 
OPEN outfi1cl$ FOR OUTPUT AS #2 

' Calculate Spatial Weighting Function 
I 

'set sum of all weights = 0 
sumallw=O 
'set sum of mineral occurrence weigbt.PO 
mosumw=O 

'input I st pair of points 
INPUT #1, pntil, pntjl, distance 

IF distance <> o TIIEN 

'in this version, weight=( lid) and sum all weights for min occ and 
'divide by weights for min ~ and nonmin occ 
' based on Chou's and Kvamme's papen 
weight= (I/ distanc:e) 
sumallw = sumallw + weight 

'if j is a mineral occurrence then add weight to summin~ weight 
IF pntj 1 < 48 THEN 

mosumw = mosumw +weight 
END IF 

END IF 
PRINT pntil; ""; sumallw; ""; mosumw;"" 

'input subsequent points 
DO WHILE NOT EOF(l) 

INPUT #1, pntil, pntjl, distance 
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' LOCATES, 10: PRINT "Working" 
'check ifpnti2 pan of set ofpntil 
IF pnti2 = pnli 1 THEN 

'check distance 
IF distam:e <> 0 TI1EN 

weight = (1/ dislancc) 
sumallw = sumallw + weight 

'chec:k if j is a minocc, if yes then add weight to mosumw 
IF pntj2 < 48 THEN 
mosumw "' mosumw + weight 

END IF 
END IF 

'otherwise point is part of a new set or not close to a min occ 
ELSE 

IF sumallw > 0 nmN 
swf= mosumw I sumallw 

ELSE 
swf=O 

END IF 
PRINT #2, USING "#### "; pnti 1; 
PRINT ##2, USING "##.##"; swf 

pntil = pnti2 
pntj 1 = pntj2 
IF distaDce <> 0 THEN 
weight = II distance 

ELSE 
weight = 0 

END IF 
sumallw = weight 
IF pnfj2 < 48 THEN 
mosumw = weight 

ELSE 
mosumw = O 

END IF 
END IF 

LOOP 

'print out last results 
IF sumallw > 0 THEN 
swf= mosumw I sumallw 

ELSE 
swf=O 

END IF 
PRINT #2, USING"###"; pntil; 
PRINT #2, USING "##.##"; swf 

CLOSEtl 
CLOSE#2 
END 
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Program Al: Outcrop Poiat·to-Liae Coavenioa Procnm 

'Propam to c:ouwrt OUiaop xy point locations to idrisi. ~ line file 
1 COQI8ining a small liDe 1n:lldiq in the bedroc:k direction 
I for use in eliptica1 bufl'criDg to obtain a reliability map 
INPUf "Enter outcrop point filename with extension: •; infi1eS 
OPBN infileS FOR INPUI' AS t#l 
10111pat is same as input but with vee and dvc ending 
n = INSTR(l, infilcS. •.•) 
mens= LEFJ'S(infileS. (n- 1)) 
oudilelS = fileaS + •tvec• 
OPEN au1file1S FOR OtrrPt.n' AS N2 
outfilelS • filen$ + •Lcfvc• 
OPEN outfile2S FOR Ol.J'IPtrr AS #3 
CLS 
'input IJI8le of trend and ICDth of line to bufli:r 
INPUT "Enter aag1e (in degrees) of geological trend: •; lleDd 
INPUT "Enter length (in m) of line to boffi:r: •; 1mgtb 
'dctelmiDc min 8Dd max utmeast aud utmnorth of a line 
• centred on ourcrop location of leogth leagth aad angle lmld 
radian- trend. 3.141593/180 
WHILE Nar EOF(l) 
'read input file UbDCaStiJlg, nonhiDg and pointypc 1 =oc. 2=dh 
INPUf t# I, cx:east, ocnonh, pointype 
max.cast = oceast + (.S • lemgth • COS(radian)) 
maxnorth = OCDOrth + (.5 • lcagth • SIN(radian)) 
mineast = oc:east - (.S • leD&th • COS(radian)) 
minnorth ... ocnorth • (.5 • length • SIN(radian)) 
PRINT 112, pointype; 2 
PRINT #2, USING •H~~~HN~ •; mi"CM; 
PRINT 112. USING .. NNDINMMN •; minnorth 
PRINT 112, USING "HIIIHN# •; maxcast; 
PRINT 1#2, USING •NNNNMNN "; maxnorth 
WEND 
PRINT 112, "0 O" 
PRINT 113, "file title : oc buffer tines• 
PRINT 113, "id type : inlepr" 
PRINT 1#3, •me type : ascn• 
PRINT #3, •object type : Jine• 
PRINT 113, •ret. system : p1ane• 
PRINT 113, •m, UDiU : m• 
PRINT 113, "unit clist. : t• 
PRINT #3, 11oUD. X : sooooo· 
PRINT 113, "max. x : 537000" 
PRINT 13. •mm. y : 537160011 

PRINT #3, •max. y : 539960011 

PRINT 113, •pos•n error : unknown* 
PRINT NJ, •resolution : 2s• 
CLOSEt#l 
CLOSE Ill 
CLOSE 113, END 
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