

1+l e

Bibliothéque nationale
du Canada

Direction des acquisitions et

Your My Wowre rievency

Our Mg ANw g redevence

Acquisitions and
Bibliographic Services Branch des services bibliographiques
395 Welkington St Welling
Ottawa, Ontano reet géwu:bmano)m
K1A ON4 K1A ON4
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
RS.C. 1970, c¢. C-39, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféreé le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

A Computerized Data Acquisition and Control
System for Fabry-Perot Interferometry

® -

Shidong Tong, M. Sc. (Central China Normal Univ.)

A thesis submitted to the School of Graduate
Studies in partial fulfillment of the
requirements for the degree of
Master of Science

Department of Physics
Memorial University of Newfoundland
July 6, 1990

St. John’s Newfoundland

I ¥ . National Library

of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Welington
Onawa, Ontano Onawa (Ontano)
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Your Me Voire reldeence

Owr g Notre redgvence

L’auteur a accordé une licence

irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese A la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-08486-8

Canada

Abstract

Fabry-Perot interferometry is one of the most powerful techniques in high reso-
lution spectroscopy, especially in Raman and Brillouin scattering. Proper operation
ofa Fabw-?aot interferometer presumes the Fabry-Perot plates to be maintained in
parallel alignment for a reasonable period of time while the experiment is in progress.

Misalignment and laser frequency drift can cause very serious losses of finesse, and

therefore of resolving power and contrast.

Various methods of stabilizing the interferometer system have been reported pre-
viously. May ef al. described a data acquisition and stabilization system for the
Fabry-Perot interferometer which automatically compensates for all instrumental fre-
quency drifts, maintains interferometer alignment, and permits extended data acqui-
sition time in selected spectral regions of interest. The commerdal version of this
data acquisition system is known as DAS-1. It was originally produced by Burleigh
Instruments, Inc. i 1976 and has been the accepted standard among commerdially
available instruments. However it has not been available for several years.

Hardware and software packages which perform multichannel scaling (MCS) are
now commercially available from several sources. The ACE-MCS package as supplied
by EG&G-ORTEC and used in the present work consists of an IBM PC plug-in card
and an MCS emulation program. This ACE-MCS package is simple and easy to
use, but it lacks some essential features required in Fabry-Perot interferometry. The

main problem is that it does not permit active feedback control of the interferometer

alignment. In addition, it does not provide for a segmented ramp-voltage output,
which is necessary in situations where the scattered light is very weak.

In order to adapt this MCS package for Fabry-Perot interferometry, it was conse-
quently necessary to modify and augment the hardware and software to accommodate

the following functions:

e Drift stabilization
¢ Finesse optimization
e Segmented ramp scanning

The drift stabilization and finesse optimization functions mainly required software
development, while segmented scanning required hardware development in the form
of a digital electronic circuit.

A prototype system, based on an IBM-XT clone, has been developed at relatively
modest cost and has been tested to record Brillouin scattering spectra of fused quartz.
The experimental results show that the system is able to maintain Fabry-Perot align-

ment as well as the original Burleigh DAS-1 system.

Acknowledgements

I would like to express my sincere appreciation and gratitude to my supervisors
Dr. M. J. Clouter and Dr. H. Kiefte for their excellent guidance, valuable help, and
abundant encouragement at every stage of this research work and in the preparation
of this thesis.

Special thanks are also extended to Dr. J. Zuk for his assistance in performing
the Brillouin experiments.

The cooperation of EG&G ORTEC (Oakridge, Tennessee) in providing the source
code for the MCS program is gratefully acknowledged.

I also wish to acknowledge the financial support from Memorial University of New-
foundland in the form of a Fellowship and Teaching/Research Assistantship during

my graduate studies.

Finally, I would like to thank my wife, Siyuan, for her understanding and constant

encouragement.

v

Contents

Abstract
Acknowledgements
Table of Contents
List of Figures

1 INTRODUCTION
1.1 Brillouin SCAttering « - « « ¢ e et et e e e

1.2 The Purposeof the Presemt Work,

2 FABRY-PEROT INTERFEROMETRY
2.1 BasicCharacteristics . . . v c v ¢« v v i v v o e e e et et e e
22 Multi-Pass Fabry-Perot

23 Fabry-PerotScanming.t v ettt tensannens
24 SystemStabilization0 ...

38 COMPUTER CONTROL FUNCTIONS

12

14

15

20

3.1 Existing Hardware and Software 20

32 TheSegmentedRampc00 .0 26
3.3 Drift Compensation and Finesse Control 33
34 MCS Software Development 0. 37
4 EXPERIMENTAL RESULTS 47
4.1 ExperimentalSetup.............. ... 0. 0. 47
4.2 Drift and Finesse Stabilization 48
43 Segmented Ramp Seanning. ci... 52
44 Suggested Further Modifications 53
Bibliography 63
A MCS Program Listing 85
Al mMCSPAS . ¢ i v it ittt et e et e e et e e 65
A2 TamP.PaS . « o o ¢ttt bt ettt st et 67
A3 WINAOW PaS . . & ¢ it i ettt e ettt e et 77
Ad step.Pas . . . i i it et e e et 81
A VO PasS . v vt ittt ittt i i e et e e e e e e 83
A6 getemd2pasl e 91
AT7 doemdopas i i i ittt et e e 103
AB MalnPas . « . . ittt ittt e e ettt e e 114
B Interrupt Service Routine 116

List of Figures

1.1

1.2

2.1

2.2

3.1

3.2

33

3.4

3.5

3.6

4.1

4.2

4.3

44

4.5

Brillouin scattering process of a photon by aphonon 3
A simplified arrangement for a light : cattering experiment 4
Fabry-Perot interferometer 00 8
Brillouin scattering spectrum using a double-pass interferometer . . . 13

MCS program screendisplay o oo o ., 24
Logic diagram of Timer/Counter 27
Logic diagram of external clock for segmentedramp 29
The 8253 Timer/Counter. ot vt v it vt v e 30
The timing diagram of the 8253, mode1 30
The timing diagram of theexternalclock 31
Experimentalsetup v v v v ittt it i 48
A typical Brillouinspectrum 49
Brillouin spectrum of quartz, 0.5 hour. 55
Brillouin spectrum of quartz, 12hours 56
Average counts per second of the eightspectra 57

4.6 DBrillouin spectrum of quartz, drift and finesse control ON 58
4.7 Brillouin spectrum of quartz, drift contro! ON, finesse control OFF . 59
4.8 Brillouin spectrum of quartz, drift and finesse control OFF 60
4.9 Brillouin spectrum of quartz, linearramp 61
4.10 Brillouin spectrum of quartz, segmentedramp 62

il

Chapter 1
INTRODUCTION

1.1 Brillouin Scattering

Light scattering spectroscopy has been found to be a powerful tool for the investi-
gation of molecular structures. When a beam of monochromatic light falis on an
atomic or molecular sample, a small fraction of the light is scattered in all directions.
The scattering can be divided into three types; they are the (quasi-elastic) Rayleigh
scattering, and the inelastic Raman and Brillouin contributions. It is only the latter,
frequency-shifted components that are of interest here, and Brillouin scattering is
emphasized as being most relevant for this project.

Brillouin scattering can be described classically as the scattering of light by sound
waves. The thermal motion of molecules creates regions of compression and rarefac-
tion resulting in fluctuations in the density of a medium. These variations propagate
through the mediura as sound waves. Since these density variations produce cor-
responding changes in the refractive index, the sound wave may be thought of as

a three-dimensional diffraction grating moving at the sound velocity through the

medium. Incident light waves are reflected from this grating according to the Bragg
condition. Since the incident light is reflected by the sound wave, or a grating which
is moving at the velocity of the sound, the frequency of the reflected light is shifted
due to the Doppler effect. It is readily shown that the amount of the frequency shifi is
equal to the frequency of the sound waves which are effective in the scattering along

the particular directicn of observation, and is given by

2ny, . 6
Av = +y, = :tT sin g (1.1)

where n is the mean refractive index of the medium, A the wavelength of the incident
light, v, the velocity of the sound waves in the medium, and @ the scattering angle.

Quantum mechanically, the event is considered as interactions between incident
photons and phonons in a medium. An incident photon of frequency v, and wavevec-
tor k, interacts with a phonon of frequency v, and wavevector k, resulting in a
scattered photon of frequency v and wavevector k, as shown in Fig. 1.1.

The conservation laws of the energy and momentum for this interaction give:
hv, = hv £ hy, (1.2)

1k, = ik % hk, (1.3)

It is easily seen from Eq. (1.2) that the frequency difference between the incident
photon and the scattered photon Av is equal to the frequency of the phonon v,. Since

the momentum of the phonon k, is much less than that of the photon k,, therefore

Scattered photon

Incident photon (%e.¥s)
Phonon
k
k,
[
%

Figure 1.1: Brillouin scattering process of a photon by a phonon
[k| = |ko|. From Fig. 1.1 we can write

k, = 2ksin g (1.4)

Substituting k, = 27y, /v, and k = 27nv/c, where ¢ is the velocity of light, we

obtain the Brillouin equation

Av =14y, = ﬂ:z":'” sin -g-. (1.5)

In general, for a crystalline substance, there are three types of acoustic waves, one
longitudinal and two transverse, giving rise to three frequency-shifted components in

a typical Brillouin spectrum.

1.2 The Purpose of the Present Work

In the field of laser light scattering spectroscopy the most widely used instrument
for detailed analysis of the frequency shifted components is the Fabry-Perot inter-
ferometer. The Fabry-Perot interferometer is able to achieve a vezy high ;:wolving
power and is particularly well suited for resolving the Brillouin components from the

Rayleigh peak. A simplified arrangement for a light scattering experiment is shown

in Fig. 1.2.

L2

Figure 1.2: A simpliﬁea arrangement for a light scattering experiment

Proper operation of the Fabry-Perot interferometer presumes the Fabry-Perot
plates to be maintained in parallel alignment during the entire course of the ex-
periment. Misalignment and laser frequency drift can cause very serious losses of
finesse, and therefore of resolving power and contrast.

Various methods of stabilizing the interferometer system have been reported previ-

ously. A data acquisition and stabilization system for the Fabry-perot interferometer

has been described by May et al1] This system automatically compensates for all
instrumental drifts, maintains interferometer alignment, and permits extended data
acquisition time in selected spectral regions of interest. The commercial version of this
data acquisition system is known as DAS-1. It was originally produced by Burleigh
Instruments, Inc.!? in 1976. However it has not been available for several years.

Hardware and software packages which perform multichannel scaling (MCS) are
now commercially available from severa! sources. The ACE-MCS package as supplied
by EG&G-ORTECH! and used in the present work consists of an IBM PC plug-in
card and an MCS emulation program. The MCS emulation program is written in
Microsoft Pascal and 8086/8088 Assembly Language. The MCS card can continue
to acquire data while the IBM PC performs other tasks. This ACE-MCS package is
simple and easy to use, but it lacks some essential features required in Fabry-Perot
interferometry. The main problem is that it does not permit active feedback control
of the interferometer alignment. In addition, it does not provide for a segmented
ramp-voltage output, which is necessary in situations where the scattered light is
very weak.

The purpose of the present work was to modify and augment this MCS package
to perform all the functions of data acquisition and feedback control required for
scanning Fabry-Perot interferometry using either single-pass or multi-pass modes. It
was consequently necessary to modify and augment the hardware and software to

accommodate the following functions:

e Drift stabilization
e Finesse optimization
e Segmented ramp scanning

The drift stabilization and finesse optimization functions mainly required software
development, while segmented scanning required hardware development in the form
of a digital electronic circuit.

The organization of this thesis is as follows: Chapter 2 discusses the Fabry-Perot
interferometer and the technique of system stabilization. Chapter 3 describes the
design and implementation of computer control functions. Chapter 4 presents the
experimental results obtained using this computerized Jata acquisition system in the
Brillouin scattering experiments. Appendix A lists the MCS program. Appendix B

lists the interrupt service routine.

Chapter 2

FABRY-PEROT
INTERFEROMETRY

The Fabry-Perot interferometer is one of the most usefel spectroscopic instruments
for high resolution spectroscopy. This instrument was first introduced by Fabry and
Perot in the last years of the 19th century. It is simple, elegant and powerful. Today,
the Fabry-Perot interferometer is used not only in high resolution spectroscopy, but
also in many other fields. Here we briefly discuss the general characteristics of the
Fabry-Perot interferometer. Detailed treatments can be found in books such as those

by Born and Wolfl4), Vaughan®®), and Hernandez!®.
2.1 Basic Characteristics

A plane Fabry-Perot interferometer consists of two plates of glass or fused quartz
which are parallel to each other and separated by a distance d. The inner surfaces of
the plates are worked extremely flat and coated with films of high reflectivity. The
plates are made slightly wedged in order to avoid beams reflected from the outer
surfaces.

! /A’:

=" \]. ...-v/
%l& ‘

Figure 2.1: Fabry-Perot interferometer

0

When a beam of monochromatic light from an extended source is incident on the
Fabry-Perot interferometer (see Fig. 2.1), it undergoes multiple reflections between
the two plates and forms a set of narrow circular fringes in the focal plane of the lens L.
For the case in which a monochromatic light beam falls on the plates and its intensity
is taken to be unity, the transmission intensity I(§) is given by the well-known Airy

function,

T ., 1
10 =GR Ty ma-rrare (@1)

where R and T are the refiectance and transmittance respectively. The phase differ-
ence § between two successive reflections is given by § = (2x/))2nd cos 8, here n is the
refractive index of the medium between the plates, d the distance between the plates,
0 the angle of the incident rays with respect to the optical axis, and A the wavelength
of the incident light. Maximum transmission occurs if the phase difference 6 equals

2mx, i.e. the optical path is equal to an integer multiple of A,
2ndcos 0 = mA (2:2)

where m is an integer and is called the order of interference. For normal incidence of

the light, and n = 1 for air, Eq. (2.2) becomes
2d = mA. (2.3)

The spectral separation between the mth and the (m+1)th order can be considered
" intermsofa change in wavelength of the radiation, or a change in the optical spacing.
If this optical spacing is fixed, the necessary change in wavelength to move the order
by one unit is called the free spectral range (FSR). Consider two wavelengths A and
X. If X exceeds A by one free spectral range A()), the mth-order fringe for X will

coincide with the {m + 1)th-order fringe for A,
(m+1)A=m) =m(A+ AX). (2.4)

From Eq. (2.3) and Eq. (2.4), we have

(AX)Fsr = % (2.5)

which is the usual free spectral range expressed in wavelength units. The correspond-

ing free spectral range expressed in terms of the frequency is

(Av)psr = é (2.6)

where ¢ is the velocity of light. The free spectral range is the maximum spectral
separation of adjacent transmission maxima which can be observed without overlap.
One of the important characteristics of the Fabry-Perot interferometer is the fi-

nesse, F', which is defined as the ratio of the fringe separation and the fringe full

width at half maximum (FWHM). The phase interval ¢ for the fringe FWHM can be

found from Eq. (2.1) when solved for I(¢/2) = I.-/2, ie.,
4R/(1 — R)*sin®(e/4) = 1. 2.7

Since ¢ is usually very small, sin®(¢/4) = (¢/4)?, then we can find the fringe FWHM,

2(1 - R)
= . 2.8
==& (28)
The phase interval of fringe separation is 2%, we then obtain the expression
2r =VR
F_?_I—R' (2.9)

An important consideration in any spectrometer is the ability of the instrument to
resolve spectral lines which are close to each other. This is determined by the resolving
power ol the instrument. The resolving power is defined by the ratio Af/A)\, where
the spectrometer can just resolve the lines of wavelength A and A + A). There exist
different criteria to specify whether two spectral lines can be said to be just resolved.
The most commonly used criterion is that two identical lines are considered to be
just resolved when their maxima are separated by their full-width at half-maximum
(FWHM). In order to obtain the expression for the resolving power, we need to derive

the wavelength interval A\ corresponding to the phase interval A6 which is equal to
the fringe FWHM ¢. Since § = (27/))2d, we have

Al
Ab= Zwvzd. (2.10)

Let A§ =¢, we find A/AAX in terms of FWHM ¢,

Ab=e= 2x%2¢l : (2.11)

10

A_,\ = ~£—-;\- (2.12)
With Eq. (2.3) and Eq. (2.9), we obtain
A mzvV R
—AT- I—R —mF. (2.13)

As can be seen from the above expression, the resolving power of the Fabry-Perot
interferometer is proportional to the interference order m and the finesse F.

Since m = 2ndcos@/), it seems that a higher resolving power can be obtained
by simply increasing the spacing between the plates. But increasing the spacing
will decrease the free spectral range of the Fabry-Perot because the free spectral
range is inversely proportional to the spacing. Hence we need to be able to attain a
large enough free spectral range with sufficient resolution, and this usually involves a
compromise which avoids the confusion of overlapping orders.

Another important factor of the Fabry-Perot is the contrast, defined as the ratio
of the maximum transmission intensity to the minimum transmission intensity. The
contrast is the ability of the Fabry-Perot to detect weak lines in the presence of
strong lines in the same spectrum. From Eq. (2.1), it is easy to find the maximum

and minimum of the transmission intensity. For § = 2mn,

= (—L_y2
for 6 = (2m + 1)r,
= (—L_y
Iin = 1+R) . (2.15)

11

The contrast is

_Imez _ 1+ R, _ . 4F?
C=TE=(—pP=1+—7. (216)

Imin

Contrast has a very important significance in light scattering spectroscopy. In the
field of Brillouin scattering, the Fabry-Perot interferometer is the most satisfactory
instrument available for the detection of components that are frequency-shifted by
only a few GHz. The resolving power of the Fabry-Perot is sufficient for measuring
the Brillouin compornents. But the contrast of a conventional Fabry-Perot is usually
less than 10* which is not enough in some cases, such as in the measurements of
non-transparent crystals in backscattering experiments. This kind of difficulty can

be overcome by using a multi-pass Fabry-Perot interferometer.

2.2 Multi-Pass Fabry-Perot

Houstonl? first introduced a compound interferometer having two Fabry-Perot etalons
of different thickness arranged in tandem. It was shown that if the ratio of the thick-
nesses of the two etalons is an integer, then the free spectral range of this instrument
will be determined by that of the thin etalon, while the resolving power will be some-
what larger than that of the thick one. According to the calculations of Meisnerts],
the intensity distribution of the compound interferometer is just the product of the
intensity expression for the each interferometer. If the two etalons are identical, then
the contrast C is equal to Cy2, where C, is the contrast of the single-pass Fabry-Perot.

The difficulty of using two Fabry-Perots in tandem is that of keeping the two

12

interferometers in precise alignment. A simple and attractive method was suggeésted
by Dufour and successfully demonstrated by Hariharan and Sen!®). Instead of using
two Fabry-Perots in tandem, they employed a double-pass interferometer which only

used one Fabry-Perot, but with the light made to pass through it twice.

1

PR

% %
% 1]

-t < 0 [~ w
FREQUDNCY SFTS (cai’)

Figure 2.2: Brillouin back scattering spectrum of SbSI using a double-pass interferom-
eter. The upper curve shows the same spectrum obtained using a single pass through
the same interferometer.

In a series of excellent studies, Saadercock successfully applied the multi-pass
Fabry-Perot to Brillouin scattering experiments. For example, a double-pass Fabry-
Perot interferometer was used to study the Brillouin scattering spectrum (Fig. 2.2) in
the ferroelectric SbSIN0), The scattered light was made to reflect back through the
. Fabry-Perot again by means of a comer cube. The upper curve shows the backscat-

tering spectrum of SbSI using a conventional single-pass interferometer where the

13

longitudinal phonon peak is just resolved in the wings of the Rayleigh peak. As
can be seen from the lower curve in Fig. 2.2, the contrast was greatly improved for
double-passing through the same Fabry-Perot. The transverse modes are now re-
solved in addition to the longitudinal modes. The wings of the Rayleigh peak are
drastically reduced.

Later Sandercock further improved the system described above by constructing a
five-pass Fabry-Perot interferometerill: 12 using two triple-reflection retroreflectors.
With a high contrast in excess of 10°, Sanderce-k was able to measure the Brillouin

scattering spectra of non-transparent semiconductorsi!3] and thin films4.

2.3 Fabry-Perot Scanning

In order to obtain a light scattering spectrum by a scanning process, we must contin-
uously move the fringes relative to an aperture. The possible means to achieve this

relative movement, or scanning, can be found in Eq. (2.2), i.e.,
2nd cos§ = mA.

This expression indicates that in order to change the order m, one or more of the left
side variables n, d, and/or 6 must be changed.

A change in the refractive index n may be considered as a change in the optical
thickness nd, or in the effective wavelength of the radiation nA. This method of
scanning is called refractive index scanning. Changing the physical distance between

the plates is called mechanical scanning, while changing the angle @ is called spatial

14

scanning.

The most recent developments are associated with the method of mechanical scan-
ning. Mechanical scanning of a Fabry-Perot is very attractive, since it is necessary
only to change the spacing between the plates by A/2 in order to scar one order of
interference. The most successful method to achieve mechanical scanning has been
associated with the use of piezoelectric materials. Piezoelectric elements made of bar-
ium titanate have been widely used. The use of piezoelectric materials satisfies most
of the requirements for mechanical scanning, and has very few drawbacks. Among the
advantages of using piezoelectric scanning is the mechanical stability and the rather
moedest requirements for the operation of these devices. However, the most impor-
tant advantage of piezoelectric scanning is the realization of dynamic alignment of
the Fabry-Perot, rather than relying cn the mechanical stability itself, which will be
discussed later. The presently available piezoelectric materials for mechanical scan-
ning are found to have measurable non-linearity and their behavior has been studied
in some detail!5l, It is necessary to select and match the behavior of the individual
piezoelectric elements, and to modify the scanning ramp function in order to achieve
linear scanning. The remainder of the discussion will be limited the piezoelectric

scanning technique.
2.4 System Stabilization

Proper operation of a Fabry-Perot presumes the plates of the Fabry-Perot to be

parallel, or aligned, and maintained stable for a reasouable period of time while the

15

experiment is in progress. Misalignment can cause very serious losses of finesse, and
therefore of resolving power and contrast. This problem of maintaining parallelism
is not easy to solve. In general there are two ways to solve the problem: one is
by using very refined mechanical construction and thermostating of the Fabry-Perot
interferometer, and the other is by using automatic devices to maintain dynamic
parallelism. The former is a passive method and the latter is active. In practice it is
more effective to use an active method to maintain parallelism.

Ra.msa.y[lsl first developed a rapid scanning Fabry-Perot interferometer with au-
tomatic parallelism control. Sandercocki10 also used 2 stakilization technique in his
first double-pass Fabry-Perot interferometer. Various methods for automatic paral-
lelism control have been reported in the literaturel 7211, One of the earliest hard
wired data acquisition and control systems for a Fabry-Perot interferometer was de-
veloped by Jones in 196919). It has been used ever since in laser light scattering
spectroscopy with little change in the basic equipment and logic.

May et al 1l described a data acquisition and stabilization system for Fabry-Perot
interferometry which automatically compensates for all instrumental drifts, maintains
Fabry-Perot alignment, and allows extended data acquisition time in selected regions
of a spectrum. The spectrometer consists of a piezoelectrically scanned Fabry-Perot
interferometer, a photomultiplier detector, photon counting electronics, and a data
acquisition system. A digital clock generates a series of pulses which are accumu-

lated in a scaler. The scaler output feeds a digital-to-analog converter to produce

16

a voltage ramp. This voltage ramp is applied to the three piezoelectric elements on
which one of the plates is mounted. The zero-level of the scaler is controlled by the
drift compensation logic circuitry. The clock is also used to sequentially address the
channels of a 1024 (or 512) channel memory. Therefore the channel number is directly
proportional to the frequency shift Av.

The principle of frequency-drift compensation is similar to that described by
McLaren and Stegeman!l?). In order to eliminate the effect of frequency drift, a
prominent spectral feature is locked to a selected memory channel, say channel N,
At first, the spectral peak to be locked is brought to channel N by manually adjusting
the zero-level of the ramp scaler. Two digital registers are used to accumulate the
photon counts falling into the two channel windows beside channel N. On each sweep,
register A keeps the counts in the lower window from channel N — AN while register
B keeps the counts in the upper window from N + AN. Ignoring the statistical fluc-
tuations, if the counts in register A are more than in register B, it means that the
spectral peak has drifted away from the channel NV toward lower channel numbers, or
vice versa. Upon comparing the contents of the two registers, a correction is made to
the zero-level of the scaler controlling the ramp so as to bring the peak back toward
channel N.

The procedure for finesse optimization is a little more complicated. The principle
of finesse optimization is based on the fact that the maximum transmission of a

spectral line by the Fabry-Perot is determined by the finesse of the Fabry-Perot.

17

Assuming a constant incident light intensity, any decrease in this peak transmission
indicates that Fabry-Perot misalignment has occurred. Similarly, test voltages can
be intentionally applied to the piezoelectric elements, resulting in a slight change in
the finesse. Once the outcome of this test is known, appropriate correction voltages
may be applied to achieve improved finesse. This approach can be implemented as
follows.

A window centered at channel N is selected, and the counts falling into the window
are stored in a register. This window usually encompasses less than the full-width
at half-maximum of the reference spectral line. Since the maximum transmission of
the Fabry-Perot is determined by the instrumental finesse, the change of counts in
the register shows whether the system is in the optimum alignment. The procedure
of finesse optimization consists of four sweeps. On the first sweep the contents of
the register are stored as a measure of the existing finesse. On the next sweep the
plates are tilted a small amount in such a way that the distance between the centers
of the plates remains unchanged. By comparison of the contents accumulated during
the two sweeps, appropriate voltages are then applied to the piezoelectric elements
to make the correction. During the next two sweeps the alignment is tested and
correction is made about the orthogonal axis. This procedure maintains an optimum
finesse which is better than that achieved manually.

Another important feature of the data acquisition systemll] is segmented scan-

ning. Because the same clock is applied to generate the voltage ramp and to address

18

the memory, the relation between piezoelectric extension and memory address is in-
dependent of the ramp clock rate. Therefore the scanning voltage can be chosen as a
segmented, or multi-slope ramp, which permits rapid scanning through uninteresting
part of the spectrum and devotes most of the real experimental time to the more in-
teresting spectral regions. This technique greatly enhances the signals and therefore
the signal to noise ratio (SNR) in the selected regions.

The commercial version of this data acquisition system is known as DAS-1. It
was originally produced by Burleigh Instruments, Inc. in 1976 and has been the
accepted standard among commerdcially available instruments. However it has not
been available for several years. It was necessary to develop an IBM PC-based data

acquisition and control system for Fabry-Perot interferometry.

19

Chapter 3

COMPUTER CONTROL
FUNCTIONS

3.1 Existing Hardware and Software

The multichannel analyzer (MCA) is widely used in spectroscopic data acquisition.
The basic requirement of an MCA is that it be able to gather and store spectral data
acquired from a detector, and be able to present that data for display and further
analysis. The most commonly used MCA acquisition modes are: pulse height analy-
sis (PHA), and multichannel scaling (MCS). Pulse height analysis is the traditional
operating mode of the MCA, and is used for accumulating a spectrum of the fre-
quency distribution of the height from a sequence of input pulses. The PHA mode
is usually used for nuclear and x-ray energy spectroscopy. The desired spectrum is
accumulated by measuring the amplitude of each input event, converting it to a chan-
nel number that is proportional to the pulse height, and storing the information in a
memory composed of individual channels. The count value of each channel is equal

to the total number of pulses processed whose amplitudes correspond to the channel

number.

In the multichannel-scaling mode, the individual channels of the memory are anal-
ogous to a sequence of counters, with each channel counting the data for a preset dwell
time. At the completion of each dwell time the counting operation is automatically
passed to the next channel in the memory, resulting in a time histogram of the count-
rate data where each channel represeats a sequential time interval. The dwell time for
each channel is set by an internal clock or by =n external channel advance signal. The
MCS mode is useful in those applications where analysis of count-rate data related to
elapsed time is of interest. Measurement of decay rate of short-lived isotopes, X-ray
diffraction, and Méssbauer analysis are typical applications of the MCS mode. The
present thesis focuses on its application to Fabry-Perot interferometry.

Basic MCS hardware and software packages that perform multichannel scaling are
commercially available. The package used in the present case was that developed by
EG&G ORTECS!. This MCS package is made up of an IBM PC plug-in card and
associated software which was written in the Pascal language. It includes a graphics
routine which provides a2 dynamic display of the spectral data being collected.

The spectral data collected by the MCS card can at any time be transferred to
a special data area in the IBM PC memory. This data buffer is used to manipulate
collected data while the MCS card is acquiring the next spectrum. The spectral data,
as well as results of calculation, can be displayed or printed, and can be stored as

disk files for later retrieval.

21

A number of setup functions allow the uscr to define the operating characteristics
of the system. There are two basic modes for data acquisition, namely, the auto
(erase) mode and the collecting mode. When working in auto mode, old data from
the previous sweep are automatically ecased by newly acquired data and the behavior
of the graphics display is similar to that of an oscilloscope. This mode is useful,
indeed essential, for the performance of initial adjustments to the optical system.
The collecting mode, as its name implies, is used for actual data collection; i.e., new
data are summed with old data until the process is terminated by the operator, or
until a preset number of sweeps has been completed. In either case the total number
of channels can be preset in the range from 4 to 4096, and the total maximum number
of counts that can be accumulated in any given channel is 224 at a maximum count
rate of 100 MHz.

In addition to the foregoing selection, a choice can also be made to operate the
MCS card under either internal or external control. If the internal (free-running)
mode is selected, successive sweeps are automatically initiated after a 200 microsecond
delay. Futhermore, the preset (2 microsecond to 30 min) dwell time must be the same
for each channel and cannot be changed without terminating the data collection
process. This method of operation did not provide sufficient flexibility for the present
purpose, and has only limited application. When operating under external control,
an independent external device is needed to provide (1) a start signal for each and

every sweep and (2) separate channel-advance signals for stepping the data collection

process through successive channels. This method provided the complete control over
the operation of the MCS board which was necessary in the present application.

An essential requirement of the system was, of course, that the scanning of the
MCS board be locked in synchronism with the scanning of the Fabry-Perot interfer-
ometer. In this connection, the EG&G package conveniently provided an optional
(piggy-back) board which generated a 0 to 10 V (ramp) output in direct proportion
to the MCS channel number. It was consequently only necessary to amplify this
output to the levels (0 to 1000 V) required to drive the piezoelectric elements in the
Fabry-Perot. Details of the various hardware modifications, including the external
timing circuitry, will be discussed later.

The EG&G software was designed to control up to eight MCS cards. Most com-
mands involve one or two keystrokes, with the key definitions being displayed on the
monitor screen. When the program is started, the monitor display appears as in
Fig. 3.1. The boxes on the left side of the screen labelled F'1 through F10 represents
the 10 function keys. The text and symbols inside the boxes indicate their functions
and sometimes indicate the status of the system.

The second line up from the bottom of the screen display is the menu line. There
are five menus: MAIN menu, PRESETS menu, CALC menu, I/O menu, and UTILITIES
menu. The commands displayed in each menu are invoked by holding down the ALT
key and then pressing the appropriate upper-row number key. For example, while

in the MAIN, ALT-1 starts data acquisition, ALT-2 stops it, ALT-3 clears the data

text command file contains a series of MCS commands. The available commands
include presets commands such as presets dwell time, control commands such as
start, stop, wait, and quit, and printer or disk I/O commands, etc. The program
parsemcs.exe is then executed to check for errors in the txt file. If no error is found,
a command file is generated in a form that can be executed by the MCS software.
The newly created command file has a filename extension cmd, and can be invoked by
pressing ALT-3 in the MCS UTILITIES menu. It can also be executed by including the
name of the ¢cmd file on the DOS command line (eg. C:MCS filename), or including
it in a DOS batch file. The cmd files are useful in defining initial conditions and
performing repetitive tasks.

The MCS package provided by EG&G is simple and easy to use. However, as pre-
viously noted, it is not adequate for direct application to Fabry-Perot interferometry.
The principal shortcoming is that there is no provision for the active feedback control
required to maintain the interferometer alignment. In this connection the required
new features include both drift stabilization and finesse optimization, and involve soft-
ware development as well as hardware modifications. In addition, it was necessary to
add the segmented ramp feature which was needed in the often-encountered situation
where the level of scattered light is very low. This modification primarily involved
hardware development in the form of digital timing circuitry. The implementation of

these additional control features will now be described in some detail.

3.2 The Segmented Ramp

The partitioning of the scanning ramp for the Fabry-Perot into alternately slow and
fast segments is frequently desirable as a means of economizing on accumulation time.
The minimal requirement, as implemented here, is for two different scanning rates —
one fast (or normal) rate for covering uninteresting regions of the spectrum, and one
slow rate for concentrating the data collection time in regions of particular interest.
Each of these two scanning rates must be independently selectable as part of the
initial setup procedure.

As already noted, the most convenient means of generating the scanning ramp
was via an optional output from the MCS card which was proportional in magnitude
to the channel number being addressed. Segmentation of this ramp was consequently
achieved by changing the per-channel dwell time with the MCS card operating under
the control of an external clock which was capable of generating two different pulse
trains with independently selectable frequencies. For example, if the (normal) dwell
time for a 1000 channel sweep is chosen to be 1 ms, but is to be increased to 50 ms
over the range from channels 490 to 510, then the external clock must be programmed
to deliver 490 pulses at 1 kHz, followed by 21 pulses at 20 Hz, and the remaining 489
pulses at 1 kHz again. This, in turn, must be followed by a programmed 100 ms delay
to allow the piezoelectric elements to recover before starting the next sweep.

The pulse trains were conveniently provided by readily available IBM Data Acqui-

sition and Control Adapters (#6451502) which were designed as plug-in expansion

26

pulses from OUT1 was a multiple of that from OUTO. These (OUT1) pulses were
used to define the slow, or extended, dwell time with available multipliers in the range
from 2 t0 999. The output pulses from both OUTO aad OUT1 were delivered as input
to a separate timing circuit external to the computer which could be programmed
to determine the distribution of fast and slow segments in each sweep, and which
delivered the appropriate sequence of channel-advance pulses to the MCS board.

The logic diagram for the external clock circuit is shown in Fig. 3.3. It consists
of three Intel 8253 timers/counters, a 74LS151 8-to-1 multiplexer, and a numbter of
gated logic circuits. The Intel 8253 chip (see Fig. 3.4) consists of three independently
programmable 16-bit timer/counters. Of the six possible modes of operation for this
device, the programmable one-shot mode was chosen for the present purposes. A
timing diagram of this operation mode is shown in Fig. 3.5. In this mode, a rising
edge on the GATE pin inijtiates counting and resets output on the OUT pin after the
next clock cycle. The output level remains low during counting, and it goes high upon
counting down to zero. Thus, a pulse whose width is proportional to the data value
loaded into the count register is generated at the OUT pin each time the GATE input
is triggered. The loading of the registers, i.e. the programming of the counters, was
conveniently accomplished from the computer keyboard via the 16-bit digital output
port provided as a standard function on CARD-0.

As can be seen in Fig. 3.3, each GATE input of a timer is connected to the OuT

pin of another timer. The rising edge of the output pulse from the first timer triggers

28

PIN CONFIGURATION BLOCK DIAGRAM

[\] ™
[Ma K u gv“ o
o,(]2 2D wWR fe———
o:[;) 214D o, D.(‘T_i/ oty (‘—J) <:> COUNTER b Gateo
K BUFFER
o, ¢ na ouT o
D,C $ 20{)a, :
o,0s¢ 8253 nwDa, | I
o,(} 7 s Ecuu H
-Ja vw[our2
c qe 6 [Jcarte? RO ———(e
out og 0 1 e wR -9
GATEO n 4
2 I}

PIN NAT""3

CONTROL
0,0, OATABUS woil) one
REGISTER

[fe—— CLx 2

READ! COUNTER
WRITE 21 foe————— GATE Y
1Gatet A] tocic
ano(] [Jout . —— = out 1
L
. cs ______T F—I

T
K N Uy R b catea

F———0uT 2

CLK N COUNTER CLOCK INPUTS
GATE N COUNTER GATE INPUTS
OUT N COUNTER OUTPUTS

RD READ COUNTER

wR WRITE COMMAND OR DATA . L }
cs CHIP SELECT

AL A COUNTER SELECT

Vee +5 VOLTS 7 . /

GNO GROUND INTERNAL BUS

Figure 3.4: The pin configuration and block diagram of the 8253 Timer/Counter

ctock LA MMM~ N
wReT L
TRIGGER —

4 3 2 1 0

OUTPUT I '

(n=4)

TRIGGER | 1 J
4 3 2 4 3 2 1 0
OouTPUT 1 |

Figure 3.5: The timing diagram of the 8253, mode 1

30

the second timer, and in turn, the secoud timer triggers the third one, and so on.
Finally the last timer triggers the first one. Thus, once the first timer is initiated by
a switch, each timer will start counting and output pulses one after another until the
timer is reset manually.

On the basis of past experience it was decided that a maximum of three siow
segments would be adequate for the present application (DAS-1 allows more segments
to be defined). Since a sweep always begins and ends with a normal segment, 2
minimum of seven timers was required to provide three slow segments and four normal
segments, and an additional 8th timer was needed to produce the time delay between
successive sweeps.

The scanning process was initiated by programming the 8253 timer to produce
pulses at their OUT pins in the desired time sequence and with widths corresponding
to the duration of the required segments (7 maximum). Pulses from pins Ul OuT2,
U2 OvuTl, and U3 OUTO were chosen to correspond to slow segments, and were
combined through a NAND gate. This output was in turn ANDed with the pulse
train from OUT1 of CARD-0 to provide channel-advance pulses for scanaing slow
segments. Similarly, pulses from pins Ul OuTl, U2 Out0, U2 OvUT2, and U3
OUT1 are combined together and ANDed with the puise train from OUTO of CARD-
0 to provide channel-advance pulses for scanning normal segments. Finally, these two
series of pulses with different frequencies are combined to form the required continuous

sequence of channel-advance pulses for the entire scan.

32

Because the ramp segmentation requirements are variable, the circuitry must be
flexible enough to accommodate a range of situations. The 74LS151 chip was used
for this purpose. Four of its input pins are connected to Ul OuTtl, U2 OuTO, U2
OuT2, and U3 OuT], and its output is connected to Ul GATEO, the GATE input
pin of the delay timer. One of these 8253 OUT pins is selected according to the
position of the mechanical switch sw2. When sw2 is set to position ‘0’, a linear ramp
is generated without segments. When sw2 is set to position ‘1’, ‘2’, or ‘3’, the results
is a segmented ramp with one, two, or three slow segments. Fig. 3.6 shows a typical
timing diagram for the external clock circuit. The are two slow segments in this
example.

Switch swl is used to start or reset the clock. When sw1 is switched from RESET
to START, a rising edge is sent to the START.IN pin of the MCS card to start the first
sweep. The start signal for the subsequent sweeps is produced by the output from

the delay timer OUTO on Ul.
3.3 Drift Compensation and Finesse Control

The requirement for drift comp.nsation arises from instabilities throughout the sys-
tem which result in time-dependent changes, either real or apparent, in the observed
frequency shift for a given spectral line. The basic procedure, as previously outlined,
involves the application of bias corrections to the three piezoelectric translators upon
which the moving reflector of the Fabry-Perot is mounted. Drift compensation is

effected by the application of a common correction to all three translators at once,

33

while finesse control requires a more complicated procedure which involves a cycle
of test and correction voltages applied to the individual translators, and spanning
several successive sweeps. The required total of four bias supplies was provided by
the two pairs of DAC’s which were present on the IBM Adapter cards (CARD-0 &
CARD-1). These cutputs were software controllable, and the necessary test/correction
operations were performed during the deadtime between successive sweeps.

Branching to the appropriate software was achieved via the interrupt signal which
is generated by the MCS board on completion of each sweep. This signal forces the
8086 /8088 CPU to suspend execution of the main (MCS) program and pass control to
an interrupt service routine (ISR). After the interrupt service routine is completed,
control is returned to the point where the CPU previously left the main program.
The ISR, which is listed in the Appendix, comnprises 2 number of subroutines for
performing routine tasks as part of the original MCS software. A new subroutiae,
named stabilization, was added to ISR in order to achieve active feedback control of
the interferometer alignment.

The stabilization routine provided a number of different options depending on the
status of the system. The choice of options was determined by checking three different
flags. The first of these is the drift.control flag which is set from the keyboard when
the operator requires drift control to be active. If only this flag is set, then drift
corrections only will be performed. A separate finesse.control flag, which can likewise

be set from the keyboard, is subsequently checked to determine whether the finesse

control feature should also be active in addition to drift control. It is noted in passing
that finesse control by itself is not a realistic option, and is prohibited. A check is also
made on the sum.-flag which is automatically set when the collect mode is active (i.e.,
it is reset when the auto mode is active). The testing of this flag is necessary because
the requirements for drift and finesse control are different for the two data acquisition
modes. If only drift stabilization is required in the auto mode, then a correction to
the drift control voltage is made after each sweep since only the current-sweep counts
are retained in this mode, and a simple comparison of the (current) counts in the
two drift windows is all that is required. If both drift and finesse control are required
in the auto mode, then a cycle of four sweeps is necessary. At the end of the first
sweep the counts in the two drift windows are compared, and a correction to the
drift control voltage is made (as above). In addition, the total counts in the finesse
window are stored for reference in the next sweep, and appropriate test voltages are
applied to the three piezoelectric elements to achieve a tilt about the x direction.
After the second sweep, the total count in the finesse window is compared with that
for the first sweep and finesse control voltages are adjusted according to the result of
this comparison. No drift correction is attempted at this point because of possible
interference between the two types of correction. The next two steps in the cycle
perform the finesse adjustment with respect to the y direction.

For the collect mode, the stabilization procedures are different because in this

mode the counts accumulated during a given sweep are always summed with the

counts accumulated during previous sweeps. It is consequently necessary to sub-
tract the total window counts for two successive sweeps in order to obtain the net
counts collected during the most recent sweep. Thus, the number of sweeps needed
to complete a cycle of drift and finesse control is doubled in the collect mode.

One of the problems addressed in the stabilization routine was the effect of sta-
tistical noise upon the drift and finesse controls. With respect to drift control, the
principal effect is that the counts in the two windows are rarely identical even if the
system is perfectly stable and no drifting has in fact occurred. This causes the drift
control voltage to change unnecessarily after almost every sweep with the result that
spectral lines can be significantly broadened. In order to avoid this, the routine was
modified to prohibit corrections when the difference N; — N; between the two window
counts, N, and NV,, was less than their statistical uncertainty. In the event of a no-
correction condition, the value of N; — N, was allowed to accumulate over successive
cycles of drift control until it eventually exceeded the statistical uncertainty, at which
point a correction was made.

A similar procedure was employed with respect to finesse control. As an example,
suppose that the finesse-window count increased after a given tilt test, thereby indi-
cating improved alignment. As above, a correction was made only if the increment in
the window count exceeded the statistical error, otherwise the finesse control voltages
were reset to their value before the tilt test. In this case the corresponding tilt test

in the next control cycle was chosen to be identical to the previous one as being the

36

best guess for improved alignment. On the other hand, if the finesse-window count
was found to decrease after a given tilt test, and the no-correction criterion was sat-
isfied, then the corresponding tilt test during the next control cycle was made in the
opposite direction.

Another problem which required attention was that of DAC overflow and under-
flow. The 12-bit DAC’s in question could only accommodate input (control) data in
the range from 0 to 4095 corresponding to analog outputs from 0 to 10 V. A consistent
decrease or increase in the calculated input data for a DAC could eventually result in
the characteristic wraparound condition where the output voltage suddenly switches
from one extreme to the other. Given that the maximum single test or correction step
was constrained to a DAC input value of less than 50, this condition was avoided by
restricting the input data to the range 100 to 4000 as controlled by software. If either
limit of this range was reached for any one of the four DAC’s, then data acquisition

was terminated with an appropriate warning message being displayed on the monitor.

3.4 MCS Software Development

In addition to the modifications of the interrupt service routine as described in the
previous section, it was necessary to make extensive chauges to the MCS software.
These changes were primarily designed to provide maximum (keyboard) control over
the functioning of the system, with particular emphasis on the stabilization and seg-
mented ramp features. This included extensive modifications of the monitor display

routine,

37

The MCS software is coded in Microsoft Pascal Language as we_ as 8086/8088

Assembly Language. It consists of:
e a Pascal main program MCS.PAS,

e an additional Pascal module, CALCULAT.IMP, which provides most of the

mathematical functions for manipulation of data,

e an Assembly Language module, CGA_901.ASM, which controls the graphics

display,

e an Assembly Language module, SUPPORT.ASM, which provides support for

interrupt service.

Each of these was compiled separately before linking into an executable program,
MCS.EXE.

The body of the main program is relatively simple and straightforward. The
program first performs a number of system initialization tasks, and then enters a
repeat loop. It repeatedly searches the keyboard to see if any key has been pressed
by the user. Jf no key has been pressed, the program simply updates the screen
display and continues keyboard searching. If a valid command key has been pressed,
the program responds by taking appropriate actions according to the current status
of the system. The program repeats this loop until it receives a QUIT command.

In the present connection the following statements are of primary interest.

else if (get_cmd(cmd)) then begin
do_cmd(cmd) ;
end

Here get_cmd is a function which reads the keyboard, checks for errors, and assigns an
appropriate command to the variable cmd if no error is found. do.cmd is a procedure
which executes the command.

The function get.cmd invokes another function get_key_cmd to identify which
key has been pressed and assigns an appropriate command to cmd-name if the key
corresponds to a valid MCS command. The function get_key.cmd in turn calls an
8086/8088 assembly language routine get_key to determine the current status of the
keyboard. The assembly language routine get_key is a function which checks for a
key pressed and returns True if a key is available, otherwise it returns False. It also
returns the shift-key status, ASCII code and scan_code of the key defined by IBM PC
BIOS if a key has been pressed.

To add new commands to the MCS system it was necessary to modify the functions
get_cmd and do-cmd, and write new procedures corresponding to each new command.
First of all, cmd_name_type was redefined to include the names of the new commands.
cmd-name_type is an enumerated type which was defined as follows:

cnd_name_type = (cmd_update_display,
emd_setup,
¢cmd_roi_mode,

cmd_display_mode,

cmd_end_loop) ;

39

All MCS commands must be defined here. There were 56 commands in the original
MCS program. The following commands were added to accommodate the segmented

ramp and system stabilization features. Unique key combinations were assigned to

each of these commands.

cmd_menu_ramp displays a menu for programming the external clock for

segmented ramp operation.

cnd_menu_window displays 2 menu for setting up the reference channel,

the drift window and finesse window.
cmd_menu_help displays a menu for on-line help.
cmd_auto_collect switches data acquisition auto/collect mode.
cmd_marker_ref sets the marker at the reference channel.
cnd_set_marker_channel sets the marker at a specified channel.

cmd_disp_window displays the reference channel and the drift window and

finesse window.

cnd_disp_segment displays the channel numbers for the slow segments.

emd_disp_step displays the test and correction steps for drift and finesse

control.

cmd_set_window sets the reference channel and widths of the drift window

and finesse window.

cnd_set_step sets the drift and finesse control test and correction steps.

40

cmd_set_drift_control switches the drift_control flag on/off.
cmd_set_finesse_control switches the finesse_control flag on/off.

cmd_set_dwell_time sets the dwell time per channel for the external

clock.

cmd_set_segment defines up to three slow segments in a spectrum.

cud_delete_segment deletes the slow segments which have been defined

previously.
cnd_set_segnent_mult sets the segmented ramp multiplier.
cnd_start_ramp starts the external clock.
cmd_set_drift_volt sets the initial drift control voltage.
cud_set_tiit_A_volt sets the initial finesse control voltage A.
end_set_tilt_B_volt sets the initial finesse control voltage B.
cad_set_tilt_C_volt sets the initial finesse control voltage C.

cnd_vert_arrov_A allows up/down arrow keys to increase/decrease fi-

nesse control voltage A.

cmd_vert_arrovw_B allows up/down arrow keys to increase/decrease fi-

pesse control voltage B.

cmd_vert_arrow_C allows up/down arrow keys to increase/decrease fi-

nesse control voltage C.

41

cnd_vert_arrow_D allows up/down arrow keys to increase/decrease drift

control voltage.
emd_drift_volt_up increases drift control voltage.
cmd_tilt_A_volt_up increases finesse control voltage A.
cmd_tilt_B_volt_up increases finesse control voltage B.
cmd_tilt_C_volt_up increases finesse control voliage C.
cmd_drift_volt_down decreases drift control voltage.
cmd_tilt_A_volt_down decreases finesse control voltage A.
emd_tilt_B_volt_down decreases finesse control voltage B.
emd_tilt_C_volt_down decreases finesse contro] voltage C.
cmd_help_info displays the MCS system information.
cmd_help_menu displays information on the menu.
cmd_help_f_key displays information on the function keys.
cmd_help_alt_£_key displays information on the alt-function keys.
cmd_help_key_pad displays information on the keypad.

cmd_help_cmd_key displays information on the MCS command keys.

There are a number of procedures which actually execute these commands and
they must appear before tke main body of the program. To avoid editing a very large
program, these procedures were edited separately and incorporated into the MCS

42

program during compilation via the Microsoft Pascal metacommand, $include. The
following are the files which contain the procedures, they are listed in a order in which
they appear in the main program. Most of the procedures were modified, and those
with major modification are marked by t. Those files marked by }are newly created

to accommodate new commands.

general.pas contains a variety of functions and procedures used by various routines.
display.pas contains several procedures for displaying various information.
do.scrn.pasf draws the screen as shown in Fig. 3.1.

conﬁg.pasf contains two functions: get_config and put_config, they are used for

saving and retrieving the MCS system configuration.
setup.pasf allows the user to set the system configuration.

upda.i:e.pass't displays: (i) the number of sweeps completed, (ii) the counts accumu-
lated in the current marker channel, (iii) 2 graphics plot of the data spectrum,

and (iv) the DAC data for the drift and finesse control voltages.

This procedure is invoked most frequently by the procedure do_cmd since the
function get_cmd always assigns cmd_update_display to the variable emd if no

key has been pressed or if an error has been found in getting a command.

fkeys.pas contains 2 number of procedures for adjusting the graphics display, such

as changing the horizontal or vertical scale, and switching the display between

43

the MCS card and the Buffer.
marker.pas contains procedures for marker positioning functions.
roi.pas contains procedures for searching for a Region of Interest.

buffer.pas contains two procedures. The procedure fill_buffer transfers data spec-
trum from the MCS card to the Buffer, while the procedure restore transfers

data from the Buffer to the MC_S card.

presets.pas contains three procedures which allow the user to preset the dwell_time,
passdength, and pass_count_preset. The dwell_time determines the data acqui-
sition time per channel in internal dwell_time clock mode, the pass_length sets

the total number of channels in a spectrum, and the pass.count_preset sets the

total number of sweeps desired.

type-dat.pas sends spectral data to a printer. In the full spectrum display mode,
all data are printed. In expanded display mode, if the marker is inside an ROI
then data in the ROI will be printed, otherwise spectral data that are currently

displayed on the screen will be printed.
save.pas saves the spectrum currently in the Buffer to a disk file.
recall.pas retrieves data which were previously saved in a disk file.

compare.pas prompts the user for a spectrum file name, reads and displays that

spectrum, and compares it with the spectrum in the Buffer.

44

start.pas? contains several procedures:
start — starts data acquisition,
stop — stops data acquisition,
clear — clears the current spectrum,
auto.collect — changes the auto/collect mode,
set_drift.control — switches drift control on/off,

setfinesse_conirol — switches finesse control on/off.

spawn.pas includes two procedures whereby the user can execute a DOS command

or program without quitting the MCS program.

ra.mp.pasI contains procedures for programming the external clock:
set.dwell time — sets the dwell time of the external clock,
set_segment.mult — sets the segmented ramp multiplier,
set_segment — allows up to three slow segments to be defined in a spectrum,
erase_segment — deletes the segments which have previously been defined,

start.ramp — starts the external clock.

window.pasI is used to set the reference peak channel, drift window width, and

finesse window width.

step.pasi is used to set the drift control correction step, finesse control test step,

and finesse control correction step.

volt:.p::\st provides procedures that allow the user to set the initial drift and finesse

45

sontrol voltages, and to increase/decrease voltages step by step manually.
help.pas1 provides on-line help for the MCS system.
get:_cmd.pasJr is used to detect the keyboard and get the MCS commands.

do_crnd.pasf cails corresponding procedures listed above to perform the tasks de-

fined by the function get.cmd.

it.\itia.l.pasJr performs the system initialization. It invokes the function get.config
to get the old system configuration from the disk file sys_file. If sys_file does
not exist or an error occurs during retrieval of the old configuration, then this

procedure sets the default configuration of the system.

main.pas is the main program. It uses the function get_cmd to get a command and
invokes the procedure do_.cmd to execute that command. It performs system

initialization in the beginning of the program and saves the system configuration

to a disk file before the program ends.

46

Chapter 4
EXPERIMENTAL RESULTS

This MCS data acquisition and control system has been tested to record Brillouin
scattering spectra of quartz, and performance was compared with that of the Burleigh

DAS-1 system.
4.1 Experimental Setup

The typical experimental setup for Brillouin scattering studies is shown in Fig. 4.1.
The incident light was produced by a single-mode Argon ion laser (Spectra Physics
165) tuned at a wavelength of 514.5 nm. The laser beam was focused on the sample
by a lens L1. It was reflected upwards by a mirror M. A He-Ne laser beam was used
to define the optical axis of the spectrometer. These two laser beams crossed at the
sample and defined the location of the scattering volume. The scattered light passed
through lenses L2 and L3 before entering the Fabry-Perot interferometer (Burleigh RC
110) which was equipped with plates flat to A/200 at A = 500 nm having a reflectivity
of 92% for triple-pass operation. Light coming through the Fabry-Perot was focused

by a lens L4, passed through a pinhole P, and then collected by a photomultiplier

47

(ITT FW 130). The output pulses from the photomultiplier were passed through an

amplifier discriminator (PAR 1120) before being collected by the MCS system.

— S B O O L

FpP
He—Ne Laser

L2 A2 L3 L4 P

I R - u

Ar+ Laser Lt A

IBM-PC

Figure 4.1: Block diagram of the experimental setup for Brillouin scattering. Al -
A2 apertures, L1 — L4 lenses, P pin-hole, M mirror, F'P Fabry-Perot interferometer,
PMT photomultiplier, AD amplifier-discriminator, HV high voltage amplifier

4.2 Drift and Finesse Stabilization

The Brillouin spectrum of fused silica (quartz) was used to assess the performance
o1 the system. A typical spectrum is shown in Fig. 4.2 and cénsists of two pairs
of symmetrically shifted components in addition to the strong central, or Rayleigh,
component R. The components labelled L are due to scattering from longitudinal
acoustic waves, and those labelled T are associated with scattering from transverse

acoustic waves.

48

II\\R
oA
200}~ .
“ L
3 E |
e ||
-
5 100}
o
o
JUsa) e U
oL | .

1 1 1 1 1]
. (o] +10
FREQUENCY SHIFT (GHz)

Figure 4.2: A typical Brillouin spectrum

Before each experiment was started, the Fabry-Perot interferometer was adjusted
carefully to obtain the best alignment using the Rayleigh scattering from the sample.
This was done in two steps. First the Fabry-Perot was set in single-pass mode in
order to enhance the signal level. The drift control voltage Vp was adjusted to bring
a selected Rayleigh peak to the preset reference channel. The other three finesse
control voltages V4, Vg, and V¢ were then adjusted to maximize the peak height.
The Fabry-Perot was then set to triple-pass operation.

Because the light transmitted in the triple-pass mode is weaker than for the single-
pass mode, a slow segment encompassing the central peak was set whenever necessary
to ensure adequate signal level. It was found that about 40 to 50 counts at the central

peak were needed for the MCS system to work properly to maintain Fabry-Perot

49

alignment (c.f. 100 counts for the DAS-1). After further manual fine-tuning of the
finesse, the automatic dnft and finesse controls were turned on. The peak counts were
seen to increase gradually within a few minutes and were subsequently maintained at
the maximum level.

It is important that the MCS system be able to bring the Fabry-Perot back to
the best alignment if for some reason misalignment has occurred. To test this, the
drift control voltage was deliberately adjusted to position the central peak away
from the preset reference channel. It was observed that the drift control woltage was
automatically adjusted and the central peak was brought back to its previous position
in a few sweeps, as long as the tail of the peak was initially within the drift windows.
A similar behavior was observed after deliberate detuning of the finesse: the finesse
was automatically maximized (over a somewhat longer period of time) as long as the
central peak was initially within the finesse window. The results of further testing
showed that the MCS system was capable of automatically maintaining optimum
finesse indefinitely.

A series of spectra were taken to observe iae behavior when the drift control and
finesse control were turned off. Before the experiment was started, the Fabry-Perot
interferometer was aligned carefully to produce the spectrum of Fig. 4.3 where the
lower diagram shows the details of the essential features. The central channel was
chosen at channel 520, with a drift window width of 8 channels and a finesse window

width of 5 channels. The total number of channels was 1024, and the dwell time was

was 1 ms per channel. The segmented ramp was not used since the scattered light
intensity was adequate.

At the beginning of the experiment, the count rate at the central channel was
about 160 per sweep, and the FWHM of the central Rayleigh peak was 8 channels.
The finesse of the Fabry-Perot did not degrade very much within the first two hours
of the experiment. However, the spectral peak did drift to channel 518 with about
65 counts per sweep after two hours. The lines became noticeably broader after four
hours, and the central peak drifted to channel 506 with 30 counts per sweep. The
transverse peaks which were clearly seen at beginning of the experiment were obscured
due to the drifting of the central peak. Twelve hours later, the central ‘peak’ had
drifted to channe] 486 with only 12 counts per sweep as shown in Fig. 4.4

Fig. 4.5 shows these eight spectra together. For the purpose of clarity, only the
first 400 channels are shown. The data have been divided by the accumulation time
for each spectrum, so that the vertical scale is average counts per second.

Experiments were also performed over the same time period for the conditions:
(e) both drift and finesse control were turned on; and (b) drift control was on, but
finesse control turned off. The results are shown in Fig. 4.6 and Fig. 4.7, respectively.
The spectrum that was taken when both drift and finesse control were turned off is
also shown in Fig. 4.8 for comparison. The vertical scales of the spectra are chosen
the same. Although spectrum Fig. 4.7 is not as good as that of Fig. 4.6, the central

peak is still at the same position, i.e., drift control was functioning well. The peak

51

heights of Fig. 4.7 are only 60% compared to Fig. 4.6, because of finesse control being
turned off. The results show that the effects of drift and finesse control produce a

much superior spectrum.

4.3 Segmented Ramp Scanning

Segmented ramp scanning was also tested on this MCS data acquisition system.
Fig. 4.9 and Fig. 4.10 show the Brillouin spectrum of quartz observed by using a

linear ramp and a segmented ramp, respectively. Both spectra used a dwell time of 1

ms per channel for normal, or fast, segments.

It took 2 hours to obtain the spectrum shown in Fig. 4.9 using linear ramp scan-
ning. The total number of sweeps was 6540. The total counts at the transverse peak
and longitudinal peak were 1800 and 10000, respectively, while the Rayleigh peak
count was 860000. When the segmented ramp was used, it took only half an hour to
get the spectrum of Fig. 4.10. Two regions of interest were set, namely, channel 543
to 564 for the transverse peak, and channel 700 to 733 for the longitudinal peak. The
segment multiplier was 20, i.e., the time per channel spent in the region of interest
was 20 ms, or twenty times longer than that in other normal regions. The total num-
ber of sweeps was 923, with a total count of 120000 at the Rayleigh peak, 260 at the
transverse peak, and 1400 at the longitudinal peaks. But in the region of interest,
the transverse and longitudinal peak counts were 4900 and 28000, respectively, i.e.,
twenty times higher than that in the normal region.

Since the scattered light from quartz in this experiment was strong enough for the

52

MCS system to obtain a spectrum without using the segmented ramp, the advantages
of using this feature are not so obvious. However, if the transverse peak signal were
extremely weak, then segmented ramp scanning is necessary to adequately define this

peak within a reasonable period of time.
4.4 Suggested Further Modifications

The performance of the MCS system is comparable to that of the Burleigh DAS-1.

With further modifications the performance of the system can be further improved.

1. Keyboard control of initial alignment in a dark laboratory is not as convenient
as using switches and knobs as with the DAS-1. The latter should be introduced

as optional controls.

2. The spectral graphic display of the MCS system works very well when the system
is operating in the collect mode. However, it needs improving to meet the
requirements for performing initial Fabry-Perot alignment. The auto mode is
always selected for performing initial alignment, and a large segment multiplier
is used when the signal level of the Brillouin lines is extremely weak. In this
case, the spectral display on the MCS system is not as satisfactory as for the
corresponding mode on the DAS-1, where the old spectrum is completely erased
before starting the next sweep so that changes in the spectrum are clearly seen.
By comparison, the MCS system simply overwrites the old data with the new,

so that small changes in the Fabry-Perot finesse are not easily observed on the

53

monitor. Further modification of the 8086/8088 Assembly Language graphics
routine or using a faster computer, e.g. with an 80386 CPU, can improve the

performance of the spectral graphics display in these circumstances.

. The external clock circuit for the segmented ramp is a separate unit installed
in a small box. The switches swl and sw2 on the box need to be set to proper
position when dwell time or segment multiplier are changed, which is somewhat
inconvenient. This circuit may be built in the form of an IBM PC plug-in card,

and the switches can be eliminated in favor of software control.

counts

counts

300000

600000

300000

15000

10000

5000

J

(after 12 hours)

0 200 400 600 800 1000
channel number
i T T T | T T T T I T T T T] T T T T j
0 100 200 300 400

channel number

Figure 4.4: Brillouin spectrum of quartz after 12 hours

56

100000

75000
©
C
O
O
%
~ 50000 -
%]
4
-
-
O
O
25000 -

O DD
vy v v T §{ v ¥v.1r [vV ¥y v [v I 117 7

0 200 400 600 800 1000
channel number

Figure 4.5: Average counts per second of the eight spectra

Y

6000000

7 (12 hours)
4000000 -~
ﬂ 4
-
-3
O
Q 4
2000000 -~
0 ——Av—r—r—v—%r—y—ﬂ—ﬂlvkv—y—v—v—‘%ﬁ—r—r—rl&j
0 200 400 600 800 1000
channel number
75000 -~
50000 -
2 =
C -
-3
o) 4
o .
25000
O T T T T I T T T T] T T T T I T T T T 1
0 100 200 300 400

channel number

Figure 4.6: Brillouin spectrum of quartz, drift and finesse control ON

58

counts

counts

Figure 4.7:

6000000

4000000

2000000

75000

50000

25000

Brillouin spectrum of quartz, drift control ON, finesse control QFF

. (12 hours)
T T T T] T 1 1] T] T T T 1 T T T ‘lkl ? ‘l B T lll\j
0 200 400 600 800 1000
channel number
T T T 1] T T T T I T T T T I T T T T ﬁ
0 100 200 300 400

channel number

59

6000000

4000000

counts

2000000

75000

50000

counts

25000

(12 hours)
Al L] T T T T]7 T A T | T T R} L] T T T T LR 1
200 400 600 800 1000
channel number
T T T T l T T T v | T T T T] T T T T]
100 200 300 400

channel number

Figure 4.8: Brillouin spectrum of quartz, drift and finesse control OFF

60

counts

counts

900000

J

600000 -

r

300000]

0 -JL—!—V—V%—V—V—J-LV_\——V—V‘LF#V—#JL
0 200 400 600 800 1000
channel number

0 T T ¥ T]' T T T T]' T ¥ T ¥ | T T T

400 500 600 700 800

channel number

Figure 4.9: Brillouin spectrum of quartz, linear ramp

61

Bibliography

[1] W. May, H. Kiefte, M. J. Clouter, and G. 1. A. Stegeman, Appl. Opt. 17, 1603

(1978)
[2] Burleigh Instruments, Inc., Burleigh Park, Fishers, NY 14453
{3] EG&G ORTEC, 100 Midland Road, Oak Ridge, TN 37831-0895
[4] M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980}

[5] J. M. Vaughan, Fabry-Perot Interferometer. History, Theory, Practice and Ap-

plications (Adam Hilger, Bristol, 1988)

[6] G. Hernandez, Fabry-Perot Interferometers (Cambridge University Press, Cam-

bridge, 1986)
[7] W. V. Houston, Phys. Rev. 29, 478 (1927)
[8] K. W. Meissner, J. Opt. Soc. Am. 31, 405 (1941); 82, 185 (1942)
[9] P. Hariharan and D. Sen, J. Opt. Soc. Am. 51, 398 (1961)

[10] J. R. Sandercock, Opt. Commun. 2, 73 (1970)

63

[11] J. R. Sandercock, in Proc. 2nd Int. Conf. on Light Scattering in Solids, M.

Balkanski, Ed. (Flammarion, Paris, 1971)
(12] J. R. Sandercock, RCA Rev. 36, 89 (1975)
[13] J. R. Sandercock, Phys. Rev. Lett. 28, 237 (1972)
[14] J. R. Sandercock, Phys. Rev. Lett. 29, 1735 (1972)
[15] G. Hernandez, Appl. Opt. 17, 3088 (1978)
(16] J. V. Ramsay, Appl. Opt. 1, 411 (1962)
[17] R A. McLaren and G. L. A. Stegeman, Appl. Opt. 12, 1396 (1973)
[18] G. Hernandez and O. A. Mills, Appl. Opt. 12, 126 (1973)
{19] Q. H. Lao, P. E. Schoen, and B. Chu, Rev. Sdi. Instrum. 47, 418 (1976)
[20] D. Bechtle, Rev. Sci. Instrum. 47, 493 (1976)

[21] D. Bechtle, Rev. Sci. Instrum. 47, 1377 (1976)

Appendix A
MCS Program Listing

This listing is not complete. It includes only those files which have either been
extensively revised or introduced as completely new.

A.1 mcs.pas

{$title:?913 Control Program’}
{$1inesize:120}

{$debug-}

{$symtab-}

{$floatcalls+}

{$message: ’including suputldd interface’} {$include: ’suputldd.int’}
{$message: ’including filhanff interface’} {$include: ’filhanff.int’}
{$message: ’including memorymm interface’} {$include: ’memoryme.int’}
{$message: ’including calculat interface’} {$include: ’calculat.int’}
{ }

program mcs(input,output);
uses suputldd,filhanff memorymm,calculat;
{ }

{
12-19-86 Start with Magstro ver 4.05b and modify for the 913 mcs card.
First change the variables and data structures.
1-2-87 Worked on fkeys --- nothing tested yet and some stubs
1-4-87 More changes to data structures, 913->buffer routines
1-7-87 Start on presets, changes to get_cmd, do_cmd and presets
1-9-87 Changed data structures from arrays over cur_913 to records.
will have to redo some of the other work above.
1-17-87 Changed the buffer to sys[0].

65

1-18-87

1-20-87
1-23-87

2-24-87
3-27-87

4-06-87
6-05-87

11-06-87
1-19-88

7-06-90

}

Program compiles now with many stubs. Activate start first.
Added the isr routines for int3 support in file support.asm.
Add stop, clear, save and recall spectrum.

Add rol save and recall, type.dat, and compare. Not much left
but calc functions now.

All calc functions except report done. Need library lookup still
and parse but ready for a lot of testing now.

Everything is done. Made change to sys structure for handling
external dwell with fast times.

Minor change in £ill_buffer so calidb routine cycles correctly.
Modified asm routines to eliminate lodsw, which doesn’t work on
the new IBM model 30. Ready for release - name Ver 1.1.

Fix to allow pass preset of four dyte integer. Ver 1.2.

Fix loading of pass length problem in start.pas. Ver 1.3

add drift and finesse stabilization, extermal clock for
segmented ramp scanning, and provide help. (ST.)

{$message:’input the number 1 for Emhanced Graphics Adaptor, O for other’}

{$inconst:ega}
{$if ega $then}

{$message: ’compiling EGA version of MCS.PAS’}
{$else}

{$message: *compiling non-EGA version of MCS.PAS’}
{$end}
{$message: ’defining constant’} {$include: ’const.inc’}
{$message: ’defining type’} {$include: ’type.inc’}
{$message: ’defining variables’} {$include: ’var.inc’}
{$message: ’defining external procedures’} {$include: ’proc.inc’}
{$mossage: ’including procedures ...’}
{$message: ’including general’} {$include: ’general.pas’}
{$message: ’including display’} {$include: ’display.pas’}
{$message: ’including do_scrn’} {$include: ’do_scrn.pas’}
{$message: ’including contig’} {$inciude: ’config.pas’}
{$message: ’including setup’} {$include: ’setup.pas’}
{$message: ’including update’} {$include: ’update.pas’}
{$message: ’including fkeys’} {$include: ’fkeys.pas’}
{$message: ’including marker’} {$include: ’marker.pas’}
{$message: *including roi’} {$include: ’roi.pas’}
{$message: ’including buffer’} {$include: ’buffer.pas’}

66

{$message:
{$message:
{$massage:
{$message:
{$message:
{$message:
{$message:
{$message:
{$message:
{$message:
{$message:
{$message:
{$nessage:
{$message:
{$nessage:
{Smessage:
{$nessage:

{$message:
{$message:

including presets’}
'including type.dat’}
*including save’}
’including recall’}
’including compare’}
'including start’}
'including spawn’}
'including ramp’}
'including window’}
*including step’}
*including volt’}
including help’}
’including get_cmdi’}
'including get_cmd2’}
’including get.cmd3’}
’including do_cmd’}
'including initial’}

‘beginning main program’}
’e=- @nd of MCS.PAS ---'}

A.2 ramp.pas

{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:
{$include:

{$include:

{-- programming external clock for segmented ramp

procedure set_dwell_time;

const

delay_const = 100e3; {100mS}

vaxr

dwell_int4 : integer4;
num_string : lstring(20);

begin

{set_dwell_time}

’presets.pas’}
’type.dat.pas’}
*save.pas’}
'recall.pas’}
>compare.pas’}
*start.pas’}
*spawn.pas’}
:rmp.w’}
’window.pas’}
’step.pas’)
‘volt.pas’}
’help.pas’}
‘get_cmdl.pas’}
*get_cmd2.pas’}
*get_cund3.pas’}
*do_cnd.pas’}
*initial.pas’}

‘main.pas’}

July 1990, ST. ==}

prompt(’Enter external clock dwell time: (10..65535 uS) ’);
read_string(mm_string,upper(num_string));
it (decode(num_string,dwell_int4)) then begin

it ((dwell_int4 >= 10) and (dwell_int4 <= 65535)) then begin

{-- in order to write dwell_time into sys_file.913 --}
syslcur_913] .dwell _time := dwell_int4;

ramp_count_dwell :» wrd(dwell_int4);

{convert to woxd type}

eval(encode(message, ramp_count_dwell:5));

vrite_string(message, r_dwell_disp, c_dwell_disp);

{-- set delay time >= 100 mS, note: /word_tpye is not allowed}
ramp_count_delay :» round(delay_const /dwell_int4);
if (ramp_count_delay < 1) then ramp_count_delay := 1;

1~ompt{’please re-start the external clock’);
aend
else begin {dwell_int4 <10 or >65535}
proumpt(’Value not in range -- aborting set dwell time’);
end;
end
else begin
prompt{(’Exror in the input, aborting set dwell time’);
end;
end; {set_dvell_time}

{ }
procedure set_segment_mult;
var
temp_muit : ingeger;
num_string : 1string(20);
begin

prompt (’Enter segment multiplier : (2..999) *);
read_string(rum_string,upper (aum_string));
it (decode(num_string, temp_mult)) then begin
it ((temp.mult >= 2) and (temp_mult <= 999)) then begin
ramp_count mult := temp_mult;
eval (encode(message, ramp_count.mult:-3));
write_string(message, r_mult_disp, c.mult_disp);
white_line;
end
else begin {temp_mlt <=0 or >999}
prompt (*Value not in range ~- aborting set multiplier’);
end;
end
else begin
prompt(’Exror in the input, aborting set multiplier’);
end;
end; {set_segment_mult}

{ }
procedure remind_switch;
var

message2 : lstring(10);

begin
message := ’Please set switch to ’;
message2 := ’’’Linear’’’;
if (segi_start <> 0) then message2 := *’’1’’’;
it (seg2_start <> 0) then message2 := ’’’2*>’;
if (seg3_start <> 0) then message2 := *’’3*’’;
concat(message, message2);
concat (message, ’ on the Ramp-Clock-Box’);
prompt (message) ;

end; {remind_switch}

{ 3
procedure set_segment;
var
get_new_segment : boolean;
temp_start,
temp_end : integer;
num_string ¢ lstring(20);

function get_start_end : boolean;
var
max_ch,
exchange : integer;
begin
max_ch := gys[cur_913].pass_langth - {;
prompt (’Enter segment start chanmel : °);
read_string(num_string,upper (num_string));
if (decode(num_string,temp_start)) then begin
if ((temp_start > 0) and (temp_start < max_ch)) then begin
{go on to get_end}
end
else begin
prompt(’Value not in range -- aborting set segment’);
get_start_end := false;
return;
end;
end {if decode}
else begin
prompt (’Error in the input, aborting set segment’);
get_start_end := false;
return;
end; {not decode}

prompt (’Enter segment end channel : °);

69

read_string(num_string,upper{num_string));
it (decode(num_string,temp_end)) then begin
if ((temp.end > 0) and (temp_end < max_ch)) then begin
it (temp_start < temp_end) then begin
get_start_end := true;
end
else if (temp_ztart > temp.end) then bdegin
exchange := temp_start;
temp_start := temp_end;
temp.end := exchange:
get_start_end := true;
end
else begin
prompt (’start-channel = end-channel! -- aborting set segment’);
got_start_end := falge;
end;
end
else begin
prompt(’Value not in range -- aborting set segment’);
get_start_end := false;
end;
end {if decode}
else begin
prompt(’Error in the input, aborting set segment’);
get_start_end := false;
end;
end; {get_start_end}

begin {set_segment}
get_new_segment := false;

if (segl_start = 0) then begin {no segment defined}
if (get_start_end) then begin
segl_start := temp._start;
segl_end := temp_end;
get_nevw_segment := true;
end;
end {segl = O}
olse if (seg2_start = 0) then begin {only segl defined}
if (get_start_end) then begin
if (temp.start > segi_end +1) then begin
seg2_start := temp_start;
seg2_end := temp_end;
got._new_segment := true;
end

70

else if (temp_end < segi_start -1) them begin

seg2.start := segl_start;

seg2_end := segl_end;
segl_start := temp_start;
segl_end := temp_end;
get._new_segment := true;
and
else begin
prompt(’segment overlap!
end;

end; {get_start_end}
end {seg2 = 0}

-- aborting set segment’);

else if (seg3_start = 0) then begin

if (get_start_end) then begin

if (temp_start > seg2_end +1) then begin

seg3_start := temp_start;

sog3_end := temp.end;

got_new_segment := true;
end

else if ((temp_start > segl_end +1)
and (temp_end < seg2_start =-1)) then begin

seg3_start :m= seg2_start;

seg3_end := seg2_end;

seg2_start := temp_start;

seg2_end := temp.end;

get_new_segment := true;
end

else if (temp.end < segl_start -1) themn begin

seg3_start := gseg2_start;

seg3_and = gog2_end;
seg2_start := segl_start;
seg2_end := segl_end;
segl_start := temp_start;
gsegl_end := temp_end;
get_now_sogment := true;
end
oelse begin
prompt(’segment overlap!
end;

end; {get_start_end}
end {seg3 = 0}
else begin {3 segments are set}

-- aborting set segment’);

prompt(’You can’’t have more than three segments’);

end;

&

7

if (get_new_segment) then begin
disp.segment;
remind_switch;
end;
end; {set_segment}

{ - memmum-}
procedure delete_segment;
var
deleted : boolean;
temp_delete : integer;
num_string : lstring(20);

begin
deleted := false;

if (segl_start = 0) then begin
{no segment exist}
end
else begin {segl <> O}
prompt (’Enter segment number to be deleted : ?);
read_string(num_string,upper(num_string));
if (decode{num_string,temp_delete)) then begin
if (temp_delete = 1) then begin
segl_start := seg2_start;
segl_end := seg2_end;
seg2_start := seg3_start;
seg2_end := seg3_end;
seg3_start := 0Q;
seg3_end :=0;
deleted := true;
end
else if (temp_delete = 2) then begin
seg2_start := seg3._start;

seg2_end := seg3_end;
seg3_start := 0;
gseg3_end := 0;

deleted := true;
end
else if (temp_delete = 3) then begin
seg3_start := O;
sog3_end := 0;
deleted := true;
end
olse begin {temp_delete <> 1,2,3}

72

prompt(’Value not in range -- aborting delete segment’);
end;
end {if deccde}
else begin
prompt(’Error in the input, aborting delete segment’);
end;
end; {segl <> 0}

if (deleted) then begin
disp_segnment;
remind_switch;
end;
end;{delete_segment}

{ +
procedure start_ramp;

Jan. 9, 1990
progranm 8253 Timer/Counter on card0, chipi, chip2, chip3
generate pulses of two frequences for segmented ramp voltage

Card_0 counter 0 and counter 1 generate clock T1, T2 (ie. dwell, muilt)
Card_O Binary_output_port interracinmg to 8253 chips
BO...B7 -=-=-=-= D0...D7

B8 ecmmmcecu- 40

Bg —====c--- A1

B10 ==~===oee- WR

Bl ==ememmem CS_chipl (delay, n1, n2)
B12 ~--=-—--- CS_chip2 (n3, n4, n5)
B13 ----—---- CS_chip3 (n6, n7)
B14 --------- (®C.)

B1S --------- (¥c.)

examnle:

caxrd0, counter®

wvrite mode: out(card0_counter_ctrl, cO_modei_ctrl_byte);
write count: out(card0_c0_lo, count_lo);

out(card0_cO_hi, count_hi);

chipi, counteri

write mcde: out(card0_binary_ out_lo, ci_model_ctrl_ byte,;
out(card0_binary_out_hi, chipi_ctrl_reg + or_kigh);
out(card0_binary_out_hi. ckipi_ctrl_reg + wr_low);

73

write count:

const

out(card0_binary_out_hi,
out (cardO_binary_out_lo,
out(cardO_binary_out_hi,
out(card0_binary_out_hi,
out (cardO_binary_out_hi,
out{cardO_binary_out_lo,
out (cardO, _binary_out_hi,
out(card0_binary_out_hi,
out (cardO_binary_out_hi,

chipl_ctrl_reg + wr_high);
count_lo0);

chipi_ci + wr_high);
chipi_cl + wr_low);
chipi_cl + wr_high);
cecunt_hi);

chipi_ci + wr_high);
chipl_cl + wr_low);
chipi_cl + wr_high);

cardO._dev_num_reg_lo = 16#C2E2; {reg. hi not used}
card0_binary out_lo = 16822E2;
card0_binary_out_hi = 16822E3; {dev_number of Binary_out_reg =8}

card0_cO_lo = 16882E2
caxrd0_cO_hi = 16#82E3
cardO_ci_lo = 16892E2;

cardO_cl_hi = 16892E3;
cardO_counter.ctrl = 168B2E2; {reg.hi not used}

cO_model_ctrl byte = 2800110010;
cil_model_ctrl_byte = 2801110010;
c2_model_ctrl_byte = 2#10110010;
cO_mode2_ctrl_byte = 2#00110100;
cl_mode2_ctrl_byte = 2801110100;
c2_mode2_ctrl._byte = 2£10110100;

chipi_cO0 = 28#00110000; {B11 (CS_chipl) = low}
chipl_c1 = 2#00110001;
chipi_c2 = 2#00110010;
chipi_ctrl = 2#00110011;
chip2_cO0 = 2200101000; {B12 (CS_chip2) = low}

chip2_ci = 2#00101001;
chip2_c2 = 2800101010;
chip2_ctrl = 2800101011;

chip3_co
chip3_c1
chip3_c2

= 2800011000;

= 2800011001;
= 2#00011010;
chip3_ctxrl = 2800011011;

wr_low = 2#00000000;

4

{B13 (CS_chip3) = low}

wr_high = 2800000100;

procedure write._mode;
procedure write_cardO_mode{ctrl_byte : byte);
begin
out(cardO_counter_ctrl, ctrl_byte);
end; {write_cardO_mode}

procedure write_chip _mode(ctrl_reg, ctrl_byte : byte);
begin
out (cardO_binary_out_lo, ctrl_byte);
out{cardO_binary_out_hi, ctrl_reg + wr_high);
out(cardO_binary_out_hi, ctrl_reg + wr_low);
out (cardo_binary_out_hi, ctrl_reg + wr_high);
end; {vrite_chip_mode}

begin {wvrite_mode}
write_cardO_mode(cO_mode2_ctrl_byte);
write_cardO_mode(cl_mode2_ctrl_byte);
write_chip_mode(chipi_ctrl, cO_modei_ctrl _byte);
write_chip_mode(chipi_ctrl, cil_model_ctrl_byte);
write_chip_mode(chipi_ctrl, c2_model_ctrl_byte);
write_chip mode(chip2_ctrl, cO_model_ctrl_byte);
vrite_chip_mode(chip2_ctrl, ci_model_ctrl_byte);
write_chip_mode(chip2_ctrl, c2_model_ctrl_byte);
write_chip_mode(chip3_ctrl, cO._model_ctrl_byte);
write_chip_mode(chip3_ctrl, ci_model_ctrl_byte);

end; {write_mode}

procedure write_count;
procedure write_cardd_dwell{(count:word);
begin
out(card0_c0_lo, lobyte(count));
out(cardC_cO_hi, hibyte(count));
end;

procedure write_cardd_mult(count:integer);
begin
out (card0_ci_lo, lobyte(count));
out (card0_ci_hi, hibyte(count));
end;

procedure write_chip_count(chip_counter:byte; count:integer);
begin

(£

out (card0_binary_out_lo,
out(cardO_binary_out_hi,
out(card0_binary_out_hi,
out(card0_binary_out_hi,
out(cardO_binary_out_lo,
out{(card0_binary_ocut_hi,
out (card0_binary_out_hi,
out(cardO_binary.out_hi,

lobyte(count));
chip_counter + wr_high);
chip_counter + wr_low);
chip_counter + wr_high);
hibyte(count));
chip_counter + wr_high);
chip_counter + wr_ low);
chip_counter + wr_high);

end;

procedure set_cs_wr high;
begin
out (cardO_binary_out_lo,
out (cardO_binary_out_hi,
end;

2800000000) ;{data line=low}
2200111100) ;{cs, wc =high}

begin {write_count}
vrite_card0_dvell(ramp_count_dwell);
write_cardO_mmlt (ramp_count_mult);
write_chip_count(chipi_cO, ramp_count_delay);
write.chip_count(chipl_cl, ramp_count_1);
write_chip_count(chipl_c2, ramp_count_2);
write_chip_count(chip2_c0, ramp_count_3);
vrite_chip_count(chip2_ci, ramp_count. 4);
write_chip_count(chip2_c2, ramp_count_5);
write_chip_count(chip3_c0, ramp_count_6);
write_chip_count(chip3_ci, ramp_count.7);
set_cs_wr_high;

end; {write_count}

procedure gat_count;
begin
ramp_count_.l := syslcur_913].pass_length;
ramp_count_2 := 1;
ramp.count. 3 := 1;
ramp_count_ 4 := 1;
Tamp_count 5 := 1;
ramp.count 6 :s 1;
ramp_count 7 := 1;

{linear}

it (segi_end <> 0) then begin
ramp_count.l := segl_start;
ramp_count._2 := segl_end - segl_start + 1;
ramp_count_3 := sys[cur_913].pass_length
- ramp_count_i - ramp_count_2;

76

end; {segl <> 0}

if (seg2.end <> 0) then begin
ramp.count_3 := seg2_start - segl_end - 1;
ramp.count. 4 := seg2.end - seg2_start + 1;
ramp_count_5 := sys[cur_913] .pass_length
- ramp_count.l - ramp.count.2
- ramp._count_3 - ramp_count_4;
end; {seg2 <> 0}

it (seg3_end <> 0) then bagin
ramp_count_5 := seg3_start - seg2_end - 1;
ramp_count_6 := seg3_end - seg3_start + 1;
ramp_count_7 := sys{cur_913].pass_length
- ramp_count_l - ramp_count_2
= ramp_count_3 - ramp_count_4
- ramp.count_5 - ramp_count._§;
end; {seg3 <> 0}
end; {get._count}

begin {start_ramp}
if (not sysicur_913].external_start) then begin
prompt (’Please choose external start by setup-config.’);
end
else if (not sys[cur_913].external_dwell) then begin
prompt (’Please choose external dwell by setup-config.’);
end
else degin {ext-start and ext-dwell}
out (Card0.dev_num.reg.lo, 8); {enadle binary port}
write_mode;
get_count;
write_count;
out (Card0_dev_num_reg._lo, 9); {enable dac port}
prompt(’Please press RESET and START key on the Ramp-Clock-Box’);
end;
end; {start_ramp}

A.3 window.pas

{set reference channel, drift window, and finesse window ST.}

procedure set_window;
var
temp_ref,

temp_dr,

temp_fi,

total_chns,

index : integer;
num_string : 1lstring(20);

function get_ref : boolean;
begin
get_ref := false;
prompt(’Enter reference peak channel:’);
read_string(num_string,upper(num_string));
it (decode(num_string,temp_ref)) then degin
total _chns := sys[cur_913] .pass_length;
it ((temp.ref > 1) and (temp_ref < total_chns)) then begin
get_ref := true;
and {0 < temp_ref < total_chns}
alse begin
prompt(’Value not in range -- aborting set window?’);
end; {temp_ref out of range}
ead {if decode}
else begin
prempil’Exrror in the input, aborting set window’);
end;
end; {ge:_ref}

function get_dxrift_window : boolean;
var
dr_left, dr_right : integer;
begin
get_drift_window := false;
prompt(’Enter drift window width: (on each side of the rof-peak)’);
read_string(num_string,upper(num_string));
if (decode(num_string,temp_dr)) then baegin
if ((temp_dr > 0) and (temp.dr < 100)) then begin
dr_left := temp_ref - temp_dr;
dr_right := temp_ref + temp.dr;
total_chns := sys[cur_913].pass_length;

if ((dr_left > 0) and (dr_right < total_chns)) then begin
get_drift_window := true;
end
else begin
prompt (°drift window out of range -- aborting set window’);
end;
end {0 < temp_dr < 100}

78

else begin
prompt(’Value not in range -- aborting set windov’);
end;
end {if decode}
else begin
prampt(’Error in the imput, aborting set window’);
end;
end; {get_drift_window}

function get_finesse_window : boolean;
var
fi_left, f£i_right : integer;
begin
get_finesse_window := false;
prompt(’Enter finesse window width: (centered on the ref-peak)’);
read_string(num_string,upper(num_string));
it (decode(num_string,temp_fi)) then begin
if ((temp_fi > 0) and (temp.fi < 100)) then begin
temp_fi := (temp_fi div 2) * 2 + 1; {odd number}
fi_left := temp_ref - temp_fi;
fi_right := temp_ref + temp_fi;
total_chns := sys(cur_913].pass_length;

if ((filleft > 0) and (fi_right < total_chns)) then begin
get_finesse_window := true;
end
¢lse begin
prompt(*finesse window out of range ~- aborting set window’);
end;
end {0 < temp_fi < 100}
else degin
prompt(’Value not in range -- aborting set window’);
end;
end {if decode}
else bdegin
prompt(’Exrror in the input, aborting set window’);
end;
end; {get finesse window}

procedure erase_window_mark;
var
left, right, index : integer;
begin
left := raf_channel - dr_wvindow_width;
right := ref_channel + dr _window_width;

79

for index := left to right do begin
adcami~[index] := adcaml~[index] and 168ffffff;
end;
end;

procedure mark_drift_window;

vaxr
left, right, index : integer;

begin
left := ref_channel - dr_window_width;
tight := ref_chamn¢l + dr_window_width;
for index := left to xright do begin

adcami~[index] := adcami~[indexl or 16#80000000;

end;

end;

begin {set_window}
drift_control := false;
finesse_control := false;
sweep._count := 0;
disp_drift_control;
disp_finesse_control;

disp_window;
erase_window_mark;

if (get_ref) then begin
eval (encode(zessage,temp._ref:4));
write_string(message, r_ref_disp, c_ref_disp);
end
else begin
disp_window; {old windows}
mark_drift_window;
return;
end; {if get_ref}

if (get_drift_window) then begin
eval (ancode(message,temp_dr:2));
write_string(message, r_dr_wd_disp, ¢_dr_wd_disp);
end
else begin
disp_window;
mark _drift_window;
Teturn;
end; {if get_drift_window}

80

i? (get_finesse_window) then begin
eval(encode(message, temp_£i:2));
vrite.string(message, r_fi_wd_disp, c_fi _wd_disp);

end

else begin
disp_window;
mark_drift_window;
return;

end; {if get finesse window}

ref_channel := temp.ref;
dr_window_width := temp_dr;
23 _window_width := temp_fi;
mark_drift_window;
vhite_line;

end; {set_window}

A.4 step.pas
{set drift control step, finesse test and corection steps. July 1990, ST.}

procedure set_step;

var
temp._dr_step,
temp_fi_test,
temp._Ti_corr : integer;
num_string : 1string(20);

function get_drift_step : boolean;
begin
get_drift_step := false;
prompt(’Enter drift control voltage step: (1..40)’);
read_string(num_string,upper(num_string));
if (decode(num_string,temp_dr_step)) then begin
it ((temp._dr_step > 0) and (temp_dr_step <= 40)) then begin
get_drift_step := tIue;
end
else begin
prompt(’Value not in range -- aborting set step’);
end;
end
else vegin
prompt(’Error in the input, aborting set step’);

81

end;
end; {set_drift_step}

function get_finesse_test : boolean;
begin
get_finesse_test := false;
prompt(’Enter finesse test step (1..40)%);
read_string(num_string,upper(num_string));
i2 (decode(num_string,temp_fi_test)) then begin
if ((temp.fi_test > 0) and (temp_fi_test <= 40)) then begin
got_finessa_test := true;
end
else begin
prompt(’Value not in range -- aborting set step’);
end;
end
else begin
prompt (’Exror in the input, aborting set step’);
end;
end; {get_finesse_test}

function get_finesse_corr : boolean;
begin
get_finesse_corr := false;
prompt(’Enter finesse correction step (1..40)’);
read_string(num_string,upper(num_string));
if (decode(aum_string,temp.fi.corr)) then begin
if ((temp_fi_corr > 0) and (temp.fi.corT <= 40)) then begin
goet_finaesse_corr := true;
end
else begin
prompt(’Value not in range -- aborting set step’);
end;
and
else begin
prompti’Error in the input, aborting set step’);
end;
end; {get_finesse_corr}

begin {set step}
drift_control := false;
finesse_contxol := false;
sweaep_count := 0;
disp_drift_control;

82

disp_finesse_control;
disp.step;

i? (get_drift_step) then bdegin
eval(encode(message,temp.dr_step:2));
write_string(message, r_dr_step_disp, c_dr_step_disp);

end

else begin
disp_staep;
return;

end;

it (get_finesse_test) then begin
eval (encode(message,temp_fi_test:2));
write_string(message, r_Fi_test_disp, c_Fi_test_disp);
end
olse begin
disp_step;
return;
end;

if (get_finesse_corr) then begin
eval (encode(message,temp _fi_corr:2));
urite_string(message, r_Fi_corr_disp, c_Fi_corr_disp);
end
else begin
disp_step;
return;
end;

drift_coxrr_step :@= temp.dr_step;
finesse_test_step := temp_fi_test;
finesse_corr_step := temp_fi_corr;
z_test_data := finesse_test_step;
y-test_data := finesse_test._step;
x_corr_data := finesse_corr_step;
y.corr_dzta := finesse_corr_step;
white_line;
end; {set step}

A.5 volt.pas

procedure set_drift_volt;

var
temp_data : integer;
num_string : 1string(20);

begin {set_drift_volt}

prompt(’Enter drift control DAC data (100 ... 4000) : *);
read_string(num_string,upper(num_string));
it (decocde(num_string,temp_data)) than begin
if ((temp_data >= 100) and (temp_data <= 4000)) then begin
dac_data_drift := tamp._data;
out (CardO_DAC_ctrl_reg.Bi, DAC_channel _0);
out (Card0_DAC.data_reg_ Lo, lobyte(dac_data_drife));
out (CardO_DAC_data_reg.Hi, hibyte(dac_data_drift));
white_line;

end {(temp_data >= 100) and (temp_data <= 4000)}
else begin

prompt(’Value not in range -- aborting set Drift voltage’);
end;
end {if decode}
else begin
prompt(’Exror in the input, aborting set drift control voltage’);
end;
end; {set_drift_volt}

{ }
procedure set_tilt_A_volt;
var
temp_data : integer;
oum_string : 1string(20);

begin {set_tilt_A_volt} y
prompt (°’Enter finesse tilt_A voltage (100 ... 4000) : *);
read_string(mm_string,upper(num_string));
if (decode(num_string,temp_data)) then begin
if ((temp.data >= 100) and (temp_data <= 4000)) then begin
dac_data_tilt_A := temp.data;
out (Cardi_DAC_ctrl_reg Hi, DAC_channel 0);
out (Cardi_DAC_data_reg._lo, lobyte(dac_data_tilt_A));
out (Cardi_DAC_data_reg_Hi, hibyte(dac_data_tilt_A));
white_line;
end
else begin

prompt(’Value not in range -- aborting set Tilt_A voltage’);
end;
end {if decode}
else begin
prozpt (’Error in the input, aborting set tilt_A voltage’);
end;
end; {set_tilt_A_volt}

{ ¥
procedure set_tilt_B_volt;
var
temp_data : integer;
num_string : 1lstring(20);

begin {set_tilt_B_volt}

prompt (’Enter finesse tilt_B voltage (100 ... 4000) : ’);
read._string (oum_string,upper(num_string));
iz (decode(num_string,temp_data)) then begin
it ((temp.data >= 100) and (temp._data <= 4000)) then begir
dac_data_tilt_B := temp_data;
out (Card0_DAC_ctrl_reg_Bi, DAC_channel_1);
out (Card0_DAC_data_reg.Lo, lobyte(dac_data_tilt_B));
out (Card0_DAC_data_reg Hi, hibyte(dac_data_tilt_B));
vhite_line;
end
else begin
prompt(’Value not in range -~ aborting set Tilt_B voltage’);
end;
end {if decode}
else begin
prompt (’Error in the input, aborting set tilt_B voltage’);
end;
end; {set_tilt_B_volt}

{ }
procedure set_tilt_C_volt;
var
temp_data : integer;
num_string : lstring(20);

begin {set_tilt_C_volt}

{

prompt(’Enter finesse tilt_C voltage (100 ... 4000) : *);
read_string(num_string,upper(num_string));
i? (decode(num_string,temp_data)) then begin
it ((temp_data >= 100) and (temp._data <= 4000)) then begin
dac_data_tilt_C := temp._data;
out (Cardi_DAC_ctrl_reg_Hi, DAC.channel_1);
out (Cardi DAC_data_reg.lo, lobyte(dac_data_tilt_C));
out (Cardi_DAC_data_reg.Hi, hibyte(dac.data_tilt.C));
white_line;
end
else begin
prompt(’Value not in ranga -- aborting set Tilt_C voltage’);
end;
end {if decode}
else begin
prompt{(’Error in the input, aborting set tilt_C voltage’);
end;

end; {set_tilt_C_voltl}

H
procedure clear_volt_arrow;
begin
write_string(’ ’, r_arrow.A, c_arrow_i);

write_string(’ ’, r_arrow_.C, c_arrow.C);

?

write_string(’ ’, r_arrow_ B, c.arrow_B);
?

write_string(’ ’, r_arrow.D, c_arrow D);

end;

{

{

procedure vert_arrow_A;
begin

clear_volt_arrow;
if (vert_arrow_mode = volt_A) then begin
vert._arrow_mode := vert_scale;
end
else begin
vert_arrow_mode := volt_A;
write_string{chr(18),r_arrow_A, c_arrow_i); {up/dn arrow}
end;

end; {vert_arrow_A}

procedure vert_arrow_B;
begin

clear _volt_arrow;

it (vert_arrow_mode = volt_B) then begin
vert_arrow_mode := vert_scale;

end

else begin
vert_arrow_mode := volt_B;
write_string(chr(18),r_arrow B, c._arrow. B);

end;

end; {vert_arrow_B}

{ }
procedure vert_arrow_C;
begin
clear_volt_arrow;
if (vert_arrow_mode = volt_C) then begin
vert_arrow_mode := vert_scale;
end
elsae begin
vert_arrowmode := volt_C;
write_string(chr(18),r_arrow.C, c.arrow.C);
end;
end; {vert_arrow_C}

{ —~=}
procedure vert_arrow_D;
begin
clear_volt_arrow;
it (vert_arrow_mode = volt_D) then begin
vert_arrow._mode := vert_scale;
end
else begin
vert_arrow_mode := volt D;
write_string(chr(18),r_arrow.D, c_arrow.D);
end;
end; {vert_arrow_D}

{ 3
procedure drift_volt_up;
var

temp_data : integer;

begin
temp_data := dac_data_drift + drift_corr_step;
if (temp_data <= 4000) then begin
dac_data_drift := temp._data;
out (Card0_DAC_ctrl.reg Hi, DAC_channel_ 0);

87

out (Card0_DAC_data_reg_Lo, lobyte(dac_data_drift));
out (Card0_DAC_data_reg Hi, hibyte(dac_data_drift));
end
else begin
prompt(’drift volt out of range ! °);
write(chr(7));
end;
end;

{ 3
procedure drift_volt_down;
var
temp_data : integer;

begin
temp_data := dac_data_drift - drift_corr_step;
if (temp_data >= 100) then begin
dac_data_drift := temp_data;
out (Card0_DAC_ctrl_reg_Bi, DAC_channel_0);
out (Card0_DAC_data_reg Lo, lobyte(dac_data drift));
out (Card0_DAC_data_reg Hi, hibyte(dac_data_ drift));
end
else begin
prompt(’drift volt out of ranmge ! ’);
vrite(chr(7));
end;
end;

{ }
procedure tilt_A_volt_up;
var
temp_data : integer;

begin
temp_data := dac_data_tilt_A + finesse_corr_step;
if (temp_data <= 4000) then begin
dac_data_tilt_A := temp_data;
out (Cardl_DAC_ctrl_reg Hi, DAC_channel _0);
out (Cardi_DAC.data_reg_Lo, lobyte(dac_data_tilt_A));
out (Cardi_DAC_data reg Hi, hibyte(dac_data_tilt_A));
aend
else begin
prompt(’tilt A volt out of ramge ! ’);
wvrite(chr(?);
end;

end;

{------- -}
procedure tilt_A_volt_down;
var
temp_data : integer;

begin
tamp_data := dac_data_tilt_A - finesse_corr_step;
if (temp_data >= 100) then begin
dac_data_tilt_A := temp_data;
out (Cardi_DAC_ctrl_reg HEi, DAC_channel 0);
out (Cardi_DAC_data_reg_Lo, lobyte(dac_data_tilt_A));
out (Cardi_DAC_data reg Hi, hibyte(dac_data_tilt_A));
end
else begin
prompt(’tilt A volt out of range ! *);
write(chr(7));
end;
end;

{ 3
procedure tilt_B_volt_up;
var
temp_data : integer;

begin
temp_da.ta := dac_data_tilt_B + finesse_corr atop,
if (temp_data <= 4000) then begin
dac_data_tilt_B := temp_data;
out (Card0_DAC.ctrl_reg Hi, DAC_channel_1);
out (Card0_DAC_data_reg.Lo, lobyte(dac_data_tilt_B));
out (Card0_DAC_data_reg Hi, hibyte(dac_data_tilt_B));
end
alse begin
prompt(’tilt B volt out of range ! ’);
write(chr(7));
end;
end;

{ }
procedure tilt_B_volt_doun;
var
temp_data : intager;

begin
temp_data := dac_data_tilt_B - finesse_corr_step;
if (temp_data >= 100) then begin
dac_data_tilt B := temp.data;
out (Card0_DAC_ctrl_reg_Hi, DAf._channel_1);
out (Card0_DAC_data_reg_Lo, lolyte(dac_data_tilt_B));
out (Card0_DAC_data_raeg.Hi, hibyte(dac_data_tilt_B));
end
else begin
prompt(’tilt B volt out of range ! *);
write(chr(7));
end;
end;

{ 3
procedure tilt_C_volt_up;
var
temp_data : integer;

begin
tamp_data := dac_data_tilt_C + finesse_corr_step;
if (temp_data <= 4000) then begin
dac_data_tilt C := temp_data;
out (Cardi_DAC_ctrl_reg_Hi, DAC._channel_i);
out (Cardi_DAC_data_reg Lo, lobyte(dac_data_tilt_C));
out (Cardi_DAC_data_reg Hi, hibyte(dac_data_tilt_C));
end
else begin
prompt(’tilt C volt out of range ! *);
write(chr(7));
end;
end;

{ >
procedure tilt_C_volt_down;
var
temp_data : integer;

begin
tamp_data = dac_data_tilt_C - finesse_corr_step;
if (temp_data >= 100) then begin
dac_data_tilt _C := temp._data;
out (Cardi_DAC_ctrl_reg Hi, DAC_channel.l);
out (Cardi_DAC_data_reg_Lo, lobyte(dac_data_tilt_C));
out (Cardi_DAC_data_reg Hi, hibyte(dac_data_tilt_C));

90

end
else degin
prompt(’tilt C volt out of range ! ’);
write(chr(7));
end;
end;

A.6 get_cmd2.pas

{---if in local mode get the next command---}
{---uses IBM bios definitions of the keyboard scan codes---}

function get_key_cmd(var cmd : cmd_type) : boolean;

var
shift : boolean;
scan_code,kaey : byte;
num_string : lstring(20);
temp_int : integar;
temp._long : integersd;
temp_real : real;

begin
get_Xkey.cmd := true;
{alvays returns true and updates display if nothing else}

if (not get_key(shift,scan_code,key)) then begin
cnd.cmd_name := cmd_update_display;
Teturn;

end; {if not get key}

{a Xey has been pressed, identify the ey and get a cud name for do_cmd}
if (not shift) then begin
white_line;
cage scan_code of

£1 : cmd.cmd_name := cmd_start;
12 : cad.cmd_name := cmd_stop;
£3 : cmd.cmd _name := cmd_clear;
£4 : cmd.cmd_name := cmd_auto_collect;

5
t6
£7
18

cmd.cmd_name := cmd_set_drift_control;
cmd.cnd_name := cmd_set_finesse_control;
cmd.cmd_name := cmd_vert_arrow D;
ced.cmd_name := cmd_vert_arrow_B:

% te 61 9 se s ee w¥

91

29 : cmd.cmd_name := cmd_vert_Aarrovw_A;
£10: emd.cmd_name := cmd_vert_arrow _C;

a_fl : cnd.cnd_name := cad_disp_fast;

a_f2 : cmd.cmd_name := cad_roi_mode;

a_f3 : cod.cmd_name := cmd_MCB_buffer;
a_f4 : cmd.cad_name := cmd_full_expand;
a_f5 : cmd.cad_name := cmd_disp_info;

a_f6 :

a_f7 : cmd.cnd_name := cmd_set_drift_volt;
a_f8 : cmd.cmd _name := cmd_set_tilt_B_volt;

a_f9 : cmd.cmd_name := cmd_set_tilt_A_volt;
a_£10. cmd.cmd_name := c¢cmd_set_tilt_C_volt;

c.f1 : begin
cad.cod_name := cmd_set_mcb;
cad.int_num := §;

end;

c.f2 : begin
cnd.cad_name := cmd_set_mch;
ced.int_num = 2;

end;

c.f3 : begin
cmd.crd_name := cmd_set_mcb;
cnd.int_num := 3;

end;

c_f4 : bagin
cmd.cmd_name := cmd_set_mch;
cad.int_num := 4;

end;

c.25 : begin
cad.cmd_name = cmd_set_mch;
cad.int_num := 5;

end:

c.£6 : begin
cnd.cnd_name := cmd_set_mch:
cnd.int_num := §;

end;

c.I7 : begin

cmd.cnd_name := cmd_set_mcb;
cmd.int_naum := T;
end;

c.f8 : begin
cad.cmd_name :* cmd_set_uch;
cmd.int_num := 8;

end;

up : begin
case (vert_arrcw_node) of
vert_scale : cmda.cmd_name
volt_a : cmd.cmd_pame
volt_B : cond.cmd_name
volt.C : czd.cnd_name
volt D :
otherwise
end;
end;

down : begin
case (vert_arrow_mode) of
vert_scale : cmd.cmd_name
volt_ A : ced.cmd_name
volt B : ced. cnd _name
volt_C cnd.cmd_name
volt D : ced. cnd_name
ctherwise cxd. cnd_name
end;
end;

left cad.cmd_name
xight : cmd.cmd_name
pgdn : emd.cud_name
PEUp : cad.cnd_name
home : cmd.cmd_ name
end _key : cmd.cmd _name
back_space: cmd.cmd_name

equal : begin

prompt(’Entar marker chamnel (0 ..

<md.cmd_name :
cmd.cmd_name :

:= cod_vert_up;
cand_tilt_A_volt_up;
cad_tilt_B_volt_up;
cmd_tilt_C_volt_up;
cad_drift_volt_up;
cad_update_display;

0
[]

:= cmd_vert_down;

:= cmd_tilt_A_volt_down;
= cad_tilt _B_volt_down;
= cmd_tilt_C_volt_down;
= cad_drift_volt_doun;
:= cmd_update_display;

= cmd_marker_left;

= cmd_maxker right;

:= cmd_marker_fast_left;
:= cmd_marker_fast_right;
:= cmd_maxker_home;

:= cmd_marker_end;

:s cmd_marker_ref;

4095):?);

read_string(num_string,upper(num_string));
if(decode(mm_string,temp_int)) then begin
cad.cmd_name := cad_set_marker_channel;

cnd.int_num := temp.int;

93

end{if}
else begin
prompt (’ExTor in the input, aborting set marker chamnel’);
cind . cud_name := cmd_update_display;
end; {else}
end;

minus : cad.cmd_name := cmd_display_compress;
plus : cmd.cmd_name := cmd_display_expand;

ins : cad.cmd_name := cmd_insert_roi;
del : cmd.cnd_name := c¢md_delete_xroi;

space._bar, return_code : begin
white_line;
ced .cmd_name := cmd_update_display;
end;

a_l, xey_1 : begin
case menu of
main: begin
cnd.cnd_name := cmd_menu_presets;
end; {main}

help: begin
cnd.cnd_name := cud _help_info;
end;{help}

presets: begin
cmd.cnd_name := cmd_set _window;
end;{presets}

ramp: begin
if (sys[cur_913].external_dwell) then begin
cud.cnd_name := cmd_set_dwell_time;
end
else begin {internal dwell clock}
prompt(’Enter internal clock dwell time in microseconds: ’);
read_string(mm_string,upper{num_string));
if(decode(mum_string,temp_real)) then begin
i? {temp_real < 65536) then begin
ced.cmd_name := cmd_preset_dwell_time;
cnd.long.num := round4(temp_real);
end
else begin

prompt (’Exror in the input, aborting PRESET’);
cnd.cnd_name := cmd_update_display;
end;{else}
end
else degin
prompt (’Erxror in the input, aborting PRESET’);
cnd.cmd_name := cmd_update_display;
end;
end; {internal dwell clock}
end; {ramp}

calc: begin
cnd.cmd_name := cmd_calib;
aend;{calc}

i_o: begin
cad.cmd_name := cmd_save;
cnd.strng := null;
get_name(cmd.strng, ‘mcs’);
end; {i_o}

utils: begin
prompt(’MCB -> Buffer, (Y/N) ? °);
if (confirm) then begin
cad.cmd_name := cmd_fill_buffer;
end;
end;{utils}

otherwise begin
prompt(°That key is not defined’);
cnd.cmd_name := cmd_update_display;
end;
end;{case menu of}
end; {case a_1}

a_2, key.2 : begin
case menu of
main: begin
cud.cod_name := cmd_menu_ramp;
end; {main}

help: begin

cmd.cmd_name := cmd_help_menu;
and; {help}

95

presets: begin
cod.cmd _name := cmd_set_step;
end;{presets}

ramp: begin
if (not sys[cur_913].external_duwell) then begin
prompt (’Please reset configuation, select extermal clock’);
cnd.cnd_name := cmd_update.display;
end
else if (not sys[cur_913].external_start) then begin
prompt(’Please reset configuation, select external start trigger’);
cmd.cmd_name :» cmd_update_display;
end
else begin
cmd.cmd_name := cnd_set_segment_mult;
end;
end;

calc: begin
cnd.cnd_name := cmd_rol_area;
end;{calc}

i_o: begin
crd.cmd_name := cmd _recall;
cmd.stxng := null;
get_name(cmd.strng, ’mes’) ;
end;{i_o}

utils: begin
prompt (’Exit to DOS, (Y/N) 7 *);
if (confirm) then begin
cnd.cnd_name := cmd_dos;
end
else begin
cnd.cmd_name := cmd_update_display;
end;
end;{utils}

otherwise begin
prompt (*That key is not defined’);
cmd.cnd_name := cmd_upde”e_display;
end;
end;{case menu of}
end; {case a_2}

a_3, key.3 : begin
case menu of
main: begin
cond.cud _name := cmd_menu_calc;
end;{main}

help: begin
cand.cnd_name := cmd_help_f_key;
end; {help}

presets: begin
prompt (’Enter number of channels per sweep (4..4096) : ?);
read_string(aum_string,upper(aum_string));
if(decode (num_string,temp_int)) then begin
cmd.cmd_name := cmd_preset_pass_length;
cad.int_num := temp_int;
end{if}
else begin
prompt(’Exror in the input, aborting PRESET’);
<nd.ced _name := cmd_update_display;
end; {else}
end;

ramp: begin
if (not sys[cur_913] .axternal_dwell) then begin
prompt(’Please reset configuation, select external clock’);
cnd.cmd_name := cmd_update_display;
end
elss if (not sys[cur_913].external_start) then begin
prompt(’Please reset configuation, select external start trigger’);
cod.cnd_name := cmd_update_display;
end
else begin
cnd.cd_nane := cmd_set_segment;
end;
end;

calc: begin
cmd.cnd_name := cmd_pezk_info;
end;{calc}

i_o: bdbegin
cad.cnd_name := cad_save_roi;
cmd.strng := null;
get_name(cmd.strng,’roi’);

97

end;{i_o}

utils: begin
cad.cnd_name := cmd_user;
prompt(’Enter an executable command, as though at the dos prompt’);
read_string(cmd.strng,upper(cmd.strng));
end;{utils}

otherwise begin
prompt(°That key is not defined’);
cnd.cnd _name := cmd_update_display;
end;
end;{case menu of}
end; {case a_3}

a_4, key.4 : degin
case menu of
main: begin
cnd.cnd_name := cmd_menu_i_o;
end ; {main}

help: begin
cad.cmd_name := cmd_help_alt_f_key:
ond;{help}

presets: begin
prompt(’Enter total number of sweeps preset : ’);
read_string(num_string,upper(num_string));
i2(decode(num_string,temp_long)) then degin
cad.cmd_name := cmd_preset_pass_count;
cmd.long _num :& temp_long;
end{if}
else begin
prompt{’Error in the input, aborting PRESEI’);
cnd.cmnd_name := cmd_update_display;
ond;{else}
end;

ramp: degin
if (not sys[cur_913].external_dwell) then degin
prompt(’Please reset configuation, select external clock’);
cnd.cmd_name := cmd_update_display;
end
else if (not sys[cur_913].external_start) then begin
prompt(’Please reset configuation, select extermal start trigger’);

98

cnd.cmd_name := cmd_update.display:;
end
else begin
cmd.cmd_name := cmd_delete_segment;
end;
end;

calc: begin
prompt(’Data divided by the number of sweeps, (Y/N) ? ?);
if (confirm) then begin
cnd.cmd_name := cmd_normalize;
end
else begin
cmd.cnd_name := cmd.update_display;
end;
end;{calc}

i_o: begin
cod.cmd_name := cmd_recall_roi;
cnd.strng := null;
get_name(cmd.strng, ’roi’);
end;{i_o}

utils: begin
get_cmd_array;
if (have_cmds) thon begin
prompt(’Executing external command file’);
cmd_exr := HO_ERR;
cod_mode := disk_file;
cmd.cmd_name := cmd_update_display;
ond; {if}
end; {utils}

otherwise begin
prompt{’That key is not defined’);
cmd.cmd_name := cmd_update_display;
end;
end;{case menu of}
end; {case a_4}

a_5, key.S : begin
case menu of
main: begin
cnd.cnd_name := cmd_menu_utils;
end; {main}

99

help: begin
cnd.cmd_name := cmd_help_keypad;
end;{help}

presets: begin
prompt(’Setup system configuration, (Y/N) ? ’);
i? (confirm) then begin
cnd.cmd_name := cmd_setup;
end
else begin
cnd.cmd_name := cmd_update_display;
end;
and;{presets}

ramp: begin
if (not sys[cur_913].external_dwall) then begin
proupt(’Please reset configuation, select external clock’);
Zud.cmd_name := cmd_update_display;
end
else if (not sys[cur_913].external_start) then begin
prompt(’Plaase reset configuation, selact external start trigger’);
cad.cmd_name := cmd_update_display;
end
else begin
cnd.cmd_name := cmd_start_ramp;
aend;
end;

calc: begin
cnd.cmd_name := cmd_smooth;
end;{calc}

i_o: begin
cnd.cond_name := comd_print;
end;{i_o}

utils: begin
cnd.cmd_name := cmd_compare;
end;{utils}

otherwise begin
prompt(’That key is not defined’);
cmd.cmd_name := cmd_update_display;
end;

100

end;{case menu of}
end; {case a_5}

a_6, key_6 : begin
case meanu of
main: begin
cnd.cmd, name := cmd_menu_help;
end; {main}

help: begin
cmd.cud _name := cmd_help_cmd_koy;
end; {help}

calc: begin
cud.cmd_name := cmd_total_sum;
and;{calc}

utils: begin
prompt(’Buffer -> MCB, (Y/N) ? *);
it (confirm) then begin
cnd.cmd_name := cmd_restore;
end;
end;{utils}

otherwisa begin
prompt(’That key is not defined’);

cnd.cmd_name := cmd_update_display;
end;

end;{casa menu of}
end; {case a_6}

a7, key_7 : begin
case menu of
calc: begin
cmd.cmd _name := cmd_report;
prompt(‘Enter report filename (PRN for prinmter) : ’);

read_string(cmd.strng,upper(cnd.strng));
end;{calc}

otherwise begin
prompt (’That key is not defined’);

cad.cnd _name := cmd_update_display;
end;

end;{case menu of}
end; {case a_7}

101

a_9, key. 9 : begin
case xmenu of
main: begin
prompt (*Quitting program ... (Y/N) ? ’);
if (confirm) then begin
cad.cmd_name := cmd_quit;
end
else begin
cmd.cmd_name := cmd_update_display;
end;
end;

othervise begin
prompt(’That Xey is not defined’);
cmd.cmd_name := cmd_update_display;
end;
end;{case menu of}
end; {case a_9}

a_0, key_0 : begin
case menu of
main: begin
proupt(Copyright) ;
reverse_chars(r_copyright,c.copyright,14);
cnd.cmd_name := ¢md_update._display;
and;

otherwise begin
cmd.cmd_name := cmd_menu_main;
and;
ond;{case menu of}
end; {case a_0}

anm : cmd.cmd_name := cmd_menu_main;
a_p : cmd.cmd_name := cmd.menu_presets;
a_r : cmd.cmd name := cmd_menu_ramp;
a_c : cod.cmd_name := cmd_menu_calc;
a_li : cmd.cmd _name := cmd _menu_i_o;
a_u : cmd.cmd_name := cxd_menu_utils;
a_h : cmd.cnd_name := cmd_menu_help;

otherwise begin
prompt (*That key is not defined’);
cnd.cmd_name := cmd_update_display;

102

and; {otherwise}
end; {case scan_code of}
end {if not shift key}
elsae begin {shift key}
white_line;
case scan_code of
left : cmd.cmd_name := emd_index_left; <{shift left arrow}
right : cmd.cmd_name := cmd_index_right; {shift right arrow}
otherwise begin
prompt(’That key is not defined’);
cnd.crd_name := cmd_update_display;
end; {otheruwise}
end; {case scan_code}
end; {else shift keyl}

end; {function get_key_cmd}

A.7 do._cmd.pas

{===-- Perform the command assed by one of the cmd getter routines ----- }
{ added new commands for drif: .omtrol, clock, and help. July 1990, ST. }

{

Input error checking is donme by get_cmd. Error checking that depends on
the state of the mca machine, such as commands legal only when in the
calc mode or when a specific mca must be selected, is done by do_cmd.
Exrrors in implementing the¢ command - such as an illegal file name or out
of range numeric imput - are reported by the specific procedure called
to perform the command. The global variable cmd_err (integexr) will be
sot to give some indication of the error that has occurred :

cnd_err = NO_ERR = 0;
0 Successful execution

MODE_ERR = 1
1 Aborted by procedure do_cmd, illegal in the current mode

PARM_ERR = 2
2 Aborted by a called procedure, usually a parameter error

EXEC_ERR = 3

3 Aborted by a called procedure, an execution or machine error
such as disk full, commmication with Adcam error, etc.

103

4 - 9 Reserved
ADCAM_ERR
10 Adcam refuses the command - example : trying to start an
active segment
Get.cmd should always check cmd_exr when in disk _file or remote modes
and halt with erzor message.

3
procedure do_cmd(emd : cmd_type);
begin

case cmd.cmd_name of

cnd_update_display : update_display:
cmd_setup : £1_setup_display;
cnd_roi_nmode : £2_roi;

cmd_full expand ¢ £3_full_expand;
cac _MuB_buffexr : f4_adcam _buffer;
emd_vert_down : £5_vart_down;
cad_vext_up : f6_vaert_up;
cmd_display_compress : £7_compress;
cmd_display_expand : £8_expand;
cmd_maxrker_left : £9_left;
cmd_maxker_right : £10_right;
cmd_marker_fast_left : £9_fast_left;
cmd_marker_fast_right : £10_fast_right;
<nd_maxker_home : marker_home;
cmd_marker _end : marker_end;
cmd_set_marker_channel : set_marker_channel(cmd.int_num);
cmd_marker_ref : marker_ref;

cmd_set_mcd : dbegin
cmd_err := NO_ERR;
if(cmd.int_num = 0) then begin {display the buffer}
i2(plot_913) then begin
f4_adcam_buffer;
end; {if}
end{else if}
else begin
if(not plot_913) then begin
14 _adcam_buffer;
end;

104

switch_913(cmd.int_num);
end;{else}
end;

cnd_index_left : begin
cmd_err := NO_ERR;
index_left;

end;

cmd_index_right : begin
cmd_exrr := KO_ERR;
index_right;

end;

cmnd_insert_roi : begin
cmd_exr := KO_ERR;
insert_xroi;

end;

cmd_delete_roi : begin
cnd_err := NO_ERR;
deleta_rol;

end;

cmd_start : begin
cmd_err := KD_ERR;
if(not plot_913) thern begin
prompt (’START applies to MCS only., please select the desired MCB’);
cmd_err := MODE_ERR;
end{it}
olse begin
start;
end;{aelse}
end;

cnd_wait : begin
cmd_err := NO_ERR;
if(not plot_913) then begin
prompt (’WAIT applies to MCS only, please select the desired MCB’);
cmd_err := MODE_ERR;
end{iz}
else begin
wvaiting := true;
end:{else}
end;

105

cmd_stop : begin
cmd_exr := NO_ERR;
if(not plot_913) then begin
prompt(’STOP applies to MCS only, please select the desired MCB’);
emd_aerr := MODE_ERR;
end{if}
else begin
8top;
ond;{else}
end;

cmd_clear : begin
cmd_exr := NO_ERR;
if(not plot_913) then begin
prompt (’ERASE applies to MCS only, please selact the desired MCB');
cmd_orr := MODE_ERR;
end{if}
else begin
clear;
end;{else}
end;

cod_menu_main : begin
menu := main;
disp_menu;

end;

cmd_menu_help : begin
menu := help;
disp_menu;

end;

cmd_menu_presets : begin

if(not plot_913) then bagin
24_adcam_buffer;
prompt(’PRESET applies to MCB only, switching you to MCB’);

end;
menu :® pPresets;
disp._menu;

end;

cmd_menu_ramp : begin

if(not plot_913) then begin
14 _adcanm_buffer;

106

prompt (’RAMP applies to MCB only, switching you to MCB’);
end;
menu := yYamp;
disp_menu;
disp_segment;
end;

cd_menu_calc : begin

i2(plot_S13) then begin
14 _adcam_buffer;
prompt(’CALC applies to Buffer only, switching you to Buffer’);

end;{if}
menu := calc;
disp_menu;

end;

cmd_menu_i_o : begin
i£(plot_S13) then begin
14_adcam_buffer;
prompt (’I/0 applies to Buffer only, switching you to Buffer’);
end;{if)
menu := i_o;

disp_menu;

end;

cmd_menu_utils :
menu := utils;
disp_menu;
end;

cod_preset_dwell_time : begin
¢md_err := NO_ERR;
if(not plot_913) then begin
prompt (’PRESET applies to MCS only, please select the desired MCB?);
cud_err := MODE_ERR;
end{if}
else if (sys[cur_913].external_dwell) then bagin
prompt(’Can’’t set dwell in external dwell clock mode’);
cnd_err := MODE_ERR;
end{else if}
else begin
preset_dvwell_time(cmd.long _num);
disp_presets;
end;{else}
end;

107

cmd_preset_pass_length : begin
cmd_err := NO_ERR;
if(not plot._913) then begin
prompt (’PRESET applies to MCS only, please select the desired MCB’);
cmd_ exrr := MODE_ERR;
end{if}
else begin
preset_pass_length(cmd.int_num);
disp_presets;
end;{else}
end;

cnd_preset_pass_count : begin
cad_err := NO_ERR;
if(not plot_913) then begin
prompt (’PRESET applies to NCS only, please select the desiraed MCB’);
cmd_err := KODE_ERR;
end{if}
else begin
preset_pass_count (cmd.long_num) ;
disp_presets;
end;{else}
end;

cmd_calib : begin
cmd_exx := NO_ERR;
i#2(plot_913) then begin
prompt(°Calc functions apply to Buffer only, please select the Buffer’);
cud_exrr := MODE_ERR;
end{if}
else begin
calibrate;
end;{else}
end;

cmd_roi_area : degin
cnd_eorr := NO_ERR;
if(plot_913) then begin
prompt(’Calc functions apply to Buffer only, please select the Buffer’);

cad_err := MODE_ERR;

end{if}

else begin
roi_sum;

end;{else}

108

end;

cmd_peak_info : begin
cmd_exr := KO_ERR;
if(plot_913) then begin
prompt(’Calc functions apply to Buffer only, plcase select the Buffer?);
cmd_err := MODE_ERR;
end{if}
else begin
peak_info;
end;{else}
end;

cnd_normalize : dbegin
cmd_exr := NO_ERR;
if(plot_913) then begin
prompt(’Calc functions apply to Buffer only, please select the Buffaer’);
cnd_err := MODE_ERR;
end{if}
else baegin
normalize;
end; {else}
end;

cmd_smooth : begin
cad_erxr := NO_ERR;
if(plot_913) then begin
prompt{(’Calc functions apply to Buffer only, please select the Buffer?’);
cmd_err := MODE_ERR;
end{if}
else begin
smooth;
end;{else}
end;

cod_total_sum : begin
cnd_err := NO_ERR;
i#(plot_913) then begin
prompt(’Calc functions apply to Buffer only, please select the Buffer’);
cnd_err := MODE_ERR;
end{if}
else begin
total_sum;
end;{else}
end;

109

cmd_report : begin
cad_err := NO_ERR;
i2(plot_913) tken begin
prompt(’Calc functions apply to Buffer only, please select the Buffer’);
cmd_exr := MODE_ERR;
end{if}
else begin
report(cmd.strng) ;
end;{else}
end;

cmd_save : begin
cmd_exr := NO_ERR;
it (plot_913) then begin
prompt (’SAVE works only from the Buffer, please select the Buffer’);
cmd_err := MODE_ERR;
end{if}
else begin
save_spectrum(cmd.strag) ;
end;{else}
end;

cmd_recall : begin
cnd_orr := NO_ERR;
iz (plot_913) then begin
prompt (’RECALL works only to the Buffer, please select the Buffer’);
cmd_err := MODE_ERR;
end{if)
else begin
recall_spectrun(cmd.strng);
end;{else}
end;

cmd_save_roi : begin
czd_err := NO_ERR;
save_roi(cmd.strng);
end;

cad_recall_roi : begin
cad_err := NO_ERR:
recall_roi{cmd.strng);
end;

cmd_recall_calib : begin

110

cmd_erxr := NO_ERR;
if (plot_913) then begin
prompt (*CALIBRATE works only to the Buffer, please select the Buffer’);

cmd_err := MODE_ERR;

end{it}

alse begin
recall_calibration(cmd.strng);

end;{else}

end;

cmd_describe_detecter : begin
cmd_err := NO_ERR;
i? (plot_913) then begin
prompt(’Can only describe the Buffer, please select the Buffer’);
cnd_exrxr := MODE_ERR;
end{if}
else begin
buf_det_desc := cmd.strng;
end;{else}
end;

cmd._describe_sample : begin
ced_err := RO_ERR;
if (plot_913) then begin
prompt(’Can only describe the Buffer, please select the Buffer’);
cmd_err := MODE_ERR;
end{if}
else begin
buf_smp_desc := cmd.sting;
end;{else}
end;

cmd_£ill_buffer : begin
cmd_err := NO_ERR;
if(not plot_913) then begin
prompt(’Please saelact the desired MCB’);
cmd_ery := MODE_ERR;
end{if}
else begin
£i1l_buffer;
ond:{else}
end;

crd_restore : begin
cnd_exr := NO_ERR;

111

if(not plot_913) then begin
prompt(’Please select the desired MCB');
cmd_err := MODE_ERR;

end{if}

else degin
rastore;
disp_presets;

end;{else}

end;

cad_print : begin
cmd_err := NO_ERR;
i£(plot_913) then degin
prompt (’PRINT works only from the Buffer, select the Buffer.’);
cnd_err := MODE_ERR;
end{if}
else dbegin
type.das;
end;{else}
end;

cmd_dos : begin
cmd_err := NO_ERR;
dos;

end;

cnd_user : begin
cmd_err := NO_ERR;
spawn_child(crd.strng);
end;

cmd_extern : begin
cmd_exr := NO_ERR;
end;

cnd.compare : begin
cod_err := KO_ERR;
if(plot_913 or (not page)) then begin
prompt(’Compare only functions on the Buffer, in expanded view’);
cnd_exrr := MODE_ERR;
end{if}
else begin
compare;
end;{else}
end;

112

cmd_quit : begin
done := true;
end;

crd_disp_window
cmd _disp_segment
cmd_disp_step
cmd_disp_info
cmd_disp_fast

cnd_set_window
cnd_set_step

cmd_set_drift_control
cnd_set_finesse_control

cad_auto_collect

cmd_set_dweall _time
cmd_set_segment _mult
cnd _set_segment
cnd_delete_segment
cmd _start _ramp

cmd_set_drift_volt
cmnd_set _tilt_A_volt
cmd_set_tilt_B_volt
cmd_set_tilt_C_volt
cmd_vert_axrow_A
cnd_vert_arrow_B
cnd_vert_arrow_C
cmd_vert_arrow. D
cmd_drift_volt_up
cmd_tilt_A_volt_up
cmd_tilt_B_volt_up
cmd_tilt_C_volt_up
cand_drift_wvolt_down
cmd_tilt_A_volt_down
cmd_tilt_B_volt_down
cmd_tilt_C_volt_down

cmd_help_info
cmd_help_menu
cmd_help_f _key
cnd_help_alt_f _key
cmd_help_keypad

: disp_window;

disp.segment;
disp_step;

: disp_info;

e

er s¢ ee

disp_fast;

set_window;
set_step;
set_drift_control;
set_finesse_control;

: auto_collect;

20 o0 68 90 92 ¢ 8¢ e ev ¥e e an

e v ev oo

#e 00 o0& 88 90

set_dwell_time;
set_segment_mult;
sat_segment;
delete_segment;
start_ramp;

set_drift_volt;
set_tilt_A_volt;
set_tilt_B_volt;
set_tilt_C_volt;
vert_arrow_A;
vert_arrow._B;
vert_arrow._C;
vert_arrow_D;
drift_volt_up;
tilt_A_volt_up;
tilt_B_volt_up;
tilt_C_volt_up;
drift_volt_down;
tilt_A_volt_down;
tilt_B_volt_down;
tilt C_volt_down;

help._info;
help_menu;
help_t_key;
help_alt_f_key;
help_keypad;

113

cmd_help_cmd_key : help_cmd_key;
otherwise prompt(’Invalid command’);

end; {case}
end; {procedure do_cmd}

A.8 main.pas

{--- main }
begin {main}
old_video_mode := get_video_mode;
initial;
install_isr;
disp_menu;

prompt (’EGEG Ortec ACE-MCS Software Release 1.3’);

repeat {forever}
it (vaiting; then begin
if (not sys[cur_913] .active) then begin
vaiting := false; {interrupt service routine set active = 0}
update_display;
end{if not active}
else if (get_key(shift,scan_code,key)) then begin
it (key = esc) then bagin
prompt (*User ended wait command.’);
waiting := false;
end{if (key = esc)}
else if (key = 0) then begin
case scan_code of

£3 : £3_full _expand;
£5 : £5_vexrt_down;
£6 : f6_vert_up;

£7 : £7_compress;
£8 : £8_expand;

£9 : f9.1left;

£10 : £9_right;

a_f9 : £9_fast_left;

a_f10 : £9_fast_right;

home : marker_home;

end_key : marker_end;

otherwise prompt(’Key not defined while WAITING’);
end; {case}

114

end; {else if (key = 0)}
end{else if get_key}
else begin
update_display;
end; {else}
end{if waiting}
else if (get_cmd(cmd)) then begin
do_cmd(cmd) ;
end{if get_cudl}
else begin
{do nothing just a stub}
and; {else}
until done;

if (not put_config) then begin
prompt(*Error writing data -- is disk full?...<RETURN> to continue’);
pause; {waiting for enter key to be pressed}
end; {if not put_config}
video_mode(olde_video_mode) ;
restore_isr;
err_exit (errorlevel);

end. {main}

115

Appendix B

Interrupt Service Routine

;numbexr ¢f installed 913°’s
;the currently addressed 913

;array[0..max_9138] of data strucs

extrn num_913s :word

extrn cur_913 :word

extrn sys tbyte

extrn switch_flag :byte
extrn drift_control :byte
extrn finesse_control :byte
extrn update_drift :byte
extrn update_finesse :byte
extrn sweep.count :word
extrn ref_channel :word
extrn dr_window_width :woxd
extrn £i_window_width :word
extrn drift_corr_step :woxd
extrn x_test_data sword
extrn x_corr_data :word
extrn y._test_data :word
extrn y._corr_data :word
extrn dac_data_drift sword
extrn dac_data_tilt B :word
extrn dac_data_tilt_A :gord
extrn dac_data_tilt_C swoxrd

116

;pascal boolean

;pascal integer

;card0 dacO
;card0 daci
;cardl dacO
;cardl dacl

extrn dr_window_counts :word ;for pascal display
oxtrn Tfi_window_counts :word
extrn dr_window_differ :word
extrn fi_window_differ :word
extIn err_code tword
dgroup group _data
-data segment word public
~data ands
assume cs:support,ds:dgroup
support segment para public ’code’
page 40,132
; 1990/3/4(ST.)
drift_corr_done db 0 ;if drift correction have been done,
; clear accumnlated drift counts
left_lo dw 0 sleft window counts
left_hi dw 0
right_lo dw o ;right window counts
right_hi dw (o]
centerl_lo dw 0 ;2inesse window counts before test
centerl_hi dw 0
center2_lo dw 0 ; after test
center2_hi dw 0
old_left_lo dw 0 ;used in collect mode
old_left_hi Qu 0
old_right_lo dw o
old_right_hi dw 0
old_centeri_lo dw 0
old_centeri_hi dw 0
old_center2_lo dw 0
old_center2_hi dw 0
data_seg dw ? ;8tore pascal dgroup segment
old_int_off dw ? ;8ave area to restore the int vector
old_int_seg . dw ?
old_int_mask db ? ;8ave area for old int mask
active_offs equ 0 ;offset of active flag

117

cbyte_offs equ 1 ;offset of cbyte within structure
sum_offs equ s ;operating mode: sum or oscilloscope
length_offs equ 10 ;offset of pass length
pass_offs equ 12 ;offset of pass count
pass_pre_offs equ 16 ;offset of pass count preset
abort_offs equ 60 ;offset of abort flag

;define constant

err_drift equ 1 ;card0_dacO data overflow
err_tilt_A equ 2 ;caxrdi_dacO

err_tilt B equ 3 ;card0_dacil

err_tilt_C equ 4 ;cardl_dacl

err_left equ s ;net left window counts overflow
err_right equ 6 ; right

err_centeri equ 7 ; .o

err_canter2 oqu 8 H oo

exy_sweep equ 9 ;sWeep number out of range
adcani_seg equ 0d000h ;address of MCB spectrum memory
adcaml_offset equ 0000k ; segment:offset = d000:0000
cardO_base_addr equ 02E2h ;AD/DA card_O base address
cardl_base_addr equ OGE2h ;AD/DA card_i base address
dev_num_reg_offset equ 0C000h ;device number register offset
dac_ctrl_reg_offset equ 1000h ;DAC control register offset
dac_data_reg._offset equ 3000h ;DAC data register offset
cardO_dev_num_reg equ 0C2E2h

card0_dev_num reg Hi equ OC2E3h ; not used

card0_dac_ctrl _reg equ 12E2h ; not used
card0_dac_ctrl_reg Hi equ 12E3h

cardO_dac_data_reg equ 32E2h

cardO_dac_data_reg Hi equ 32E3h

cardl_dev_num_reg equ 0C6E2h

cardi_dev_mum_reg Hi equ OC6E3h ; not used

cardi_dac_ctrl_reg equ 16E2h ; not used
cardl_dac_ctrl_reg Hi equ 16E3h

cardi_dac_data_reg equ 36E2h

cardl _dac_data_reg Hi equ 36E3h

dac_dev_num equ 9

dac_channel 0 equ 0 ;2 channels on crad 0
dac_channel_1 equ 1

118

;to use card_0 DAC channel #0:

1. sat dac_device_number (9) to card0_dev_num_reg,
dev_num_zeg_Hi not used

2. set dac_channel 0 (0) to card_O_dac_ctrl_reg._Hi,
ctrl_reg_Lo not used

3. load DAC data double word to cardO_dac_data_reg

000h = 0.000v
FFFh = 9.998v 1 LSB = 2.4414nv

we ¢ we We B @

step 1 have been done by PASCAL procedure initial

;install an interrupt service routine for the 913
public install_isr

install isr proc far
cli ;don’t bother me
push es
push ds ;pascal dgroup segment

;save the old intexrupt vector to restore when program exits
mov 21,0bh ;ixq3 + const offset of 8 = 11
mov ah,35h ;get vector service from dos
int 21h ;dos call es:bx has vector
mov cs:0ld_int_off,bx
mOv cs:o0ld_int_seg,es

mov dx,offset isr ;:need address of isr in ds:dx

push cs

Pop ds ;ds has this code segment

mov ah,25h ;install int vector service
mov al,Obh 3irq3 + const offset of 8 = 11
int 21h ;dos call

pop ds jTestore data addressability
pop es

mov cs:data_seg,ds ;store dgroup seg for isr

in al,21ih ;interrupt controller mask
mov cs:o0ld_int_mask,al ;Testore when we leave
and al,11110111d ;clear irq3 mask

out 21h,al ;restore mask

119

:1989/9/22(ST.) -
nov al,20h

out 20h,al ;reset 8259 interrupt contreoller
sti ;Teady for interrupt
Tot

install_isr endp

;Testore irq3 to its value as stored by imstall_isr
public restore_isr

restore_isr proc far
push ds

:need address of isr im ds:dx

mov dx,cs:0ld_ int_off
mov ds,cs:old.int_seg
nov ah,25h ;install int vector service
mov al,Obh ;irg3 + const offset of 8 = i1
int 21h ;dos call
nov al,es:0ld_int_mask ;ag we found it
out 2ih,al ;restore mask
Pop és
ret
restore_isr endp

;This is a pascal procedure to terminate the program and return an errer
;level. Use as the last statement in the program.
public err_exit

exr_exit proc far
push bp ;8ave caller’s frame pointer
mov bp,sp ;8etup to get variables
mov al,byte ptr [bp+6] ;get exrr_level
mOV ah,4ch ;terminate with error level
int 2th ;dos function call
POP bp ;never get to here
ret 2 ; but just in case
err.exit endp

120

;revised procedure marker from cga_901.asm

;to draw or clear a smaller marker line

;don’t want to touch cga_901, so put it here

;pascal daclaration: procedure marker_small(cursor_line:integer);extern;

marker_small proc far
push bp ;save the frame pointer
mov bp,sp ;prepare to pick up relative channel
mov bx, [bp+6] ;got the channel offset
push es :8ave es segment
mov ax,0b800h ;video segment
mov e8,ax ;ready to write to video
mov cl,bl ;8ave the low order 3 bits
and cl,07h ;clear the top five dits to get count
shr bx,1
shr bx,1
shr bx,1 ;divide by 8 to get the byte number
mov al,80h sput a one in the msb
shr al,cl ;oov the one to the correct offset
add bx,1376 ;8kip the function key and top border
;====- was mov cx, 66 ;66 points each even and odd rows
g skip upper part of the marker lime (ST. 1990/5/28)
add bx,5120 ;skip upper 64 points (5120=64#%80)
mov cx,2 ;2 points below sepctrum base line
marker_loop: xor es: [bx] a1 ;mark or clear a dot in the column
xOY es: [bx+8112] ,a1 ;mark or clear preceding odd row
add bx,80 ;8kip a full screen xow
loop marker_loop ;66 times is the full display area
pop es
PoP bp
ret 2 ;clean the stack
marker _small endp

public marker_szmall

Interrupt Service Routine

.
?
.
14
-
»
-
»
-
»
.
L4

This routine assumes it knows the length and offsets within a data
structure in the pascal code. Any changes in the definition of

that structure or even the compiler may require modifications.
public isr

121

isx proc near
‘sti ;0K to interrupt me.
push ds ;night be another isr’s dseg
mov ds,cs:data_seg ;point to pascal’s dgroup
push ax
pusk bx
push cx
push dx
mov ¢x,num_913s ;hov many installed?
isx_loop:
mov bx,cx ;currently serviced 913
mov al,bl ;8elect 913
dec al ;index 0-7 instead of 1-8
mov dx,292h ;point to 913 address port
out dx,al
;~~--- check if sweep completed on this 913 (may have more than one) -----
mov dx,294h ;913 status and control register
in al,dx :read his status
test al, 10000000b
jnz pass_completed ;bit 7 = i, pass completed
jmp isr_loop.end ;bit 7 = 0, pass not completed
pass_completed:
mov al,81h ;Iirst set the control register
out dx,al ; bits 0 and 7 (stop? ST.)
H bx point to the sys[cur_913] start address --~---
shl bx,1 ;oultiply by 64 - structure length
shl bx,1
shl bx,1
shl bx,1
shl bx,1
shl bx,1
add bx,0ffset dgroup:sys ;now points to structure start
;===~=— assume we’re thru =----
mov byte ptr [bx + active_offs],0

;====- check user hardware stop =----

122

;we will not restart if user stop is active
; and wve must clear the active flag

in al,dx ;read 913 status register

test al,00000001b ;isolate bit O

joz icr_loop.end ;bit O=1, usr hardware stop
o= increase pass_count =-----

mov ax.[bx + pass_otffs] ;pick up pass_count_low

ine Lx sbump it

mov [bx + pass_offs],ax ;and put it away

jrnz no_overflow ;pass_count_low over 64k?

inc word ptr [bz + pass_offs + 2]
no_ovaerflow:

ottt compare pass_count with pass_count_preset —----
cap ax, [bx + pass_pre_offs] ;pass_count_lo equal?
jne not_equal
mov ax, [bx + pass_offs + 2] ;pass_count_high ?

cmp ax, [bx + pass_pre_offs + 2]
jne not_equal

Jump isr_loop_end ;don’t restart if preset equalled
not_equ.i.:
jm——— check abort_flag for user conditional stop -----

cmp byte ptr [bx + abort_offs], 1 ;conditional stop?

je isr_loop.end ;yes, don’t restart
ju——- check switch_flag ==---

cup switch_flag, 1 ;switch auto/sum?

jne no_switch

mov suitch_flag, 0

xor byte ptr [bx + sum_offs], 1 ;sum = not(sum)

xor byte ptr [bx + cbyte.offs], 00001000b ;cbyte bit 3

mov word ptr [bx + pass_offs], 1 ;pass_count = 1

mov word ptr [bx + pass_offs + 2], 0

mov sweep_count, 0

jump start_next_sweep ;8kip drift control
no.switch:

;=——=- check drift_control ==-~-
check_drift_control:
cmp drift_control, 1
je drift_ctrl_on
drift_ctrl_off:

ROV sveep_count, 0

123

jup start_nert_swaep
drift_ctrl_on:
call stabilization
cmp aerxr_code, O
Je start_next_sweep ;exr code = 0, no err
mov sweep_count, O ;exrr code <> 0, sth wrong
jmp isr_loop ;skip start
e start next sweep —-—--~
start_next_sveep:
mov byte ptr [bx + active_offs],i ;still running
mov al, [bx + cbyte_offs] ;from pascal array
out dx,al ;done!
isr_loop_end: dec cx ;do all existing 913’s
j=z isr_loop_done ;usually only one
Jup isr_loocp
isr_loop_docne:
?
mov ax,cur_913 ;must restore for main program
dec ax 31..8 maps to 0..7
mov dx,292h ;address port
out dx,al ;as we found it
Pop ax
pop <
PoP bx
cli
mov al, 20k
out 20h,2l :tell 8259 we are thru
Pop ax
pop ds sclean up
iret
isr endp
stabilization proc near
push ax
push bx
push cx
push dx

124

push
push

mov
mov

shl
add

<cup
je
jne

sum_drift_finesse:
call

jmp

sun_drift_only:
call
Jmp

auto_drift_finesse:
call

mp

auto_drift_only:
call
jmp

stabilizatior_end:
pop
pap
pop
pop
pop
pap

ax, adcaml_seg
es, ax

al, [bx + sum_offs]
al, 1
al, finesse_control

al, 00000011b
sum_drift_finesse

al, 00000010b
sum_drift_ornly

al, 00000001b
auto_drift_finesse
auto_drift_only

sum8
stabiiization_end

sum2
stabilization_end

autod
stabilization_end

autol
stabilization_aend

sl
es
dx
ex
bx
ax

125

;segment of adcaml = d000h
;o8 has this segment

;ds has PASCAL data segment
;bx point to sys(]

;al = sum *2 +finesse_ctrl

ret

stabilization endp

auto4 proc near

;auto mode:
;drift stabilization and finesse optimizatiom
;4 sweeps a cycle

inec sweep_count ;count + 1 after each sweep
cup sweep_count, 1
jeo antod_1
cmp sweep._count, 2
je auto4_2
cmp swveep_count, 3
je auto4_3
cmp sweep_count, 4
je auto4_4 ;it must be 1..4
auto4_err:
mov err._code, err_sweep ;never get to here
reot
auto4_1: Jjmp auto4_sweepl
auto4_2: jmp antod_sweep2 .
auto4_3: jop anto4._sweep3
auto4_4: mov sweep_count, O ;4 sweeps per cylce
jop auto4_sweep4
auto4 _sweepi:

; drift correction

; Tinesse x_test_tilt
call calc_left
call calc_right
call calc_centaril

call drift_correction

call z_test_tilt

mov update_drift, O ;tell pascal vpdate display
ret

126

auto4_sweep2:
: finesse x_tilt_corection
call calc_center2
call x_correction
mov update_finesse, O
Tet

-
L]

auto4,_sweep3:

; drift correction

; finesse y_test_tilt
call cale_left
call calc.right
call calc_centerl

call drift_coxrection
call y.test_tilt

mov update_drift, O
rot

»
auto4_sweap4d:
; finesse y_tilt_corection
call calc_center2
call y_correction

mov update_finesse, 0
ot

H

auto4 endp

autol proc near

;auto mode:
;drift stabilizatien only, no finesse optimization
;1 sweep a cycle

call calc_left

call calc_right

call drift_correction
mov update_drift, O

mov sweep_count, 0 ;1 sweep per cylce

127

near

;sum mode:

;drift stabilization and finesse optimization

;8 sweeps & cycle
inc

TESBEACATRTRTECY

sweep_count

sweep_count, 1
sum8_1
swveep_count, 2
sum8_2
sweep_count, 3
sum8_3
sveep_count, 4
suxn8_4
sweep_comt, S
sum8_5
sweep_count, 6
sum8_6
sweep_count, 7
sum8_7
sweaep_count, 8
sunB_8

sumB_exr:

mov err_code, err_sweep

ret
sum8_1: jop sum8_sweepl
sum8_2: jmp sun8_sweep2
sum8_3: jmp sum8_sweep3
sumg_4: jmp sum8_sweapd
sum8_5: jop sumB_sweeps
sum8_6: j=p sumB_sveepb
sum8_7: jmp sum8_sweep?
sum8_8: mov sweep_count, 0

Jop sumB_sweep8
sum8_sweepi:

call calc_left

call calc_right

128

;count + 1 after each sweep

;must be 1..8

;never get to here

;8 sweeps per cylce

call calc_centerl

call save_left
call save_right
call save_centerl

ret

;

sum8_sweep2:
call calc_left
call calc_right
call calc_centerl
call net_left
call net_right
call net_centeri
call drift_correction
call x_test_tilt
mov update_driftc, 0O
reat

sun8_sweep3:
call calc_center2
call save_center?
Teat

H

sum8_sweep4:

; finesse x correction
call calc_center2
call net_center2

calli x_corraection
nov update_finesse, 0
Tret

sum8_sweepS:

;8Weep 5 is the same 2s sweep 1
call cale_left
call calc_right
call calc_centerl

call save_left
call save_right
call save centeri
Tet

129

sum8_sveepb:

;8imilar to sweep2 except y._test_tilt
call calc_left
call calc_right
call calc_centerl

call net_left
call net_right
call net_centeri

call drift_correction
call y.test_tilt
mov update_drift, O

sumB_swaeep7:

;8Waeep7 is the same as sweep 3
call calc_canter2
call save_center2
rot

’

sumB_sweep8:

;sinmilar to sweepéd except y_correction
call calc_center2
call net_center2

call y.correction

mov update_finesse, O
reot

sun8 endp

; -

H

sum2 proc near

;sum mode:
;drift stabilization, no finesse optimization
;2 sveeps per cycle

inc sweep_count ;count + 1 after each sweep
cnp sweep_count, 1
jo sum2_1

130

cup sweep.count, 2 ;it must be 1..2

jeo sum? _2
sum2_err:
mov oerr_code, err_swaep ;never get to here
rot
sum2_1: jmp sum2_sweepl
sum2_2: mov sweep_count, 0 12 sweeps per cylce
jmp sum?2_sweep2
sum2_sweepl:
call calc_left
call calc_right
call save_left
call save_right
ret
sum2_sweep2:
call calc_ left
call calc_right
call net_left
call net_right
call drift_correction
mov update_drift, 0
ret
sum2 endp
calc_count proc near
calc_left:
mov si, ref_channel
sudb s8i, dr_window_width ;18t channel of left window
shl 8i, 1
shl s8i, 1 ;4 bytes data per channel
xor ax, ax
xOY dx, dx
mov ¢x, dr_window_width
left _sum_loop:

131

add ax, es:[si]
adc dx, es:[si+2]
add si, 4

loop left_sum_loop

and dh, 01111111b ;:MSB is ROI martk
mov ¢s:left_lo, ax
mov cs:left _hi, dx
Tret
calc_right:
mov 8i, ref_channel
inc si ;1st channel of right window
shl si, 1
shl si, 1
xox ax, ax
xox dx, dx
mov cx, dr_window_width
right_sum_loop:
add ax, es:[si]
ade dx, es:[si+2]
add 8i, 4
loop right_sum_loop
and dh, 0111111%b
mov cs:right_lo, ax
mov cs:right hi, dx
Tot
calc_centerl:

mov 8i, ref_channel

mov ax, fi_window_width

shr ax, 1 ;finesse window div 2

sub si, ax ;ref_ch - (window div 2)

shl 8i, 1 ; = 1st channel of fi window
shl 8i, 1

xor ax, ax

xor dx, dx

mov cx, £i_vindow_width
centerl_sum_ loop:

add ax, es:[si]

adc dx, es:([si+2]

add 8i, 4

132

loop

centerl_sum_loop

and ¢h, 01111111b
mov ¢s:centeri_lo, ax
mov cs:centerl_hi, dx
ret
calc_center2:
mov 8i, ref_channel
mov ax, fi_window_width
shr ax, 1
sub si, ax
shl s8i, 1
shl si, 1
xoY ax, ax
xor dx, dx
mov cx, fi_window_width
center2_sum_ loop:
add ax, es:([si]
adc dx, es:[si+2]
add 8i, 4
loop caenter2_sum_loop
and dh, 021111111b
mov cs:center2_lo, ax
mov es:center2_hi, dx
Tot
calc_count endp
H
save_count proc near
save_left:
mov ax, cs:left_lo
mov cs:0ld_left_lo, ax
mov ax, cs:left _hi
mov cs:0ld_left _hi, ax
Tret
’
save_right:
mov ax, cs:right_lo

133

mov
mov
mov
ret

save_centeri:

mov
mov
mov
mov
Iet

save_center2:

mov
mov
nov
ret

¢s:old_right_lo, ax
ax, cs:right_hi
es:old_right_hi, ax

ax, cs:caenteri_lo
¢s:o0ld_centeri_lo, ax
ax, cs:centaeri_hi
¢s:0ld_centeri_hi, ax

ax, cs:center2_lo
¢s:0ld_center2_lo, ax
ax, cs:caenterz. hi
ca:0ld_center2_hi, ax

’
save_.count

endp

net_count

proc

near

net_left:

nmov
nov
sub
sbb
mov
mov
rot

net_right:

net_centeri:

ax, cs:left_lo
dx, cs:left_hi
ax, c¢s:old_left_lo
dx, cs:old_left_hi
cs:left_lo, ax
cs:left _hi, dx

ax, cs:right_lo
dx, cs:right_hi
ax, cs:old_right_lo
dx, cs:old_right_hi
cs:right_lo, ax
cs:right hi, dx

134

mov ax, cs:cantari_lo

mov dx, cs:centeri_hi
sub ax, cs:old_centeri_lo
sbb dx, cs:o0ld_centeri_hi
mov cs:canteri_lo, ax
mov cs:centeri_hi, dx
ret

H

net_center2:
mov ax, cs:center2_lo
mov dx, cs:centar2_hi
sub ax, cs:old_center2_.lo
sbb dx, cs:old.center2_hi
mov cs:center2_lo, ax
mov cs:center2_hi, dx
Tet

net_count endp

drift_correction proc near

drift = right window counts - left window counts
i? (drift > 0) then begin
it (drift > 255) then begin
dacO increase;
end
else bdbegin
if (drift»drift > counts) then dacO increase;
else no correction;
end;
end
else if (drift < 0) then begin
drift = - drift
if (drift > 265) then begin
dac0O decrease;
end
else begin
if (driftxdrift > counts) then dac)d decrease;
else no correction;
end;)
; end
; else begin
; no correction

W We wWe o we ws W ws

wes we ®e we ws

we ws we we we

135

; end;

;normally, 0 < window counts < OOQOFFFFh,

cup
inz
cup
jnz
j=z
left_overflow: mov
Tet
right_overflow: mov
ret

*

drift_no_overflow:

cs:laft_hi, O
left_overflow
cs:right hi, O
right_overflow
drift_no_overflow

err_code, axr_left

err_coede, exr._right

ia.

hi_word = O

;calculate counts differences, using only lo_word since hi_word = 0

cmp
jz

mov
mov

calc_current_drife:
mov
add
rer
mov

drift_right:

cs:drift_coxrr_done, O
calc_current. drift
dr_window_differ, O
cs:drift_corr_done, 0

dx, cs:right_lo

dx, cs:left_lo

dx, 1
dr_window_counts, dx

ax, cs:right_lo
ax, ¢s:left lo
ax, dr_window_differ
dr _window.differ, ax

ax, O
drift_right
drift_left

ax, 255
volt _D_up
al

ax, dx
volt_D_up

136

;correction done last time?
»10,
;yes, clear accumulated drift

;dx = right
;dx = (right + left)
;dx = (right + left) / 2

;ax = right - left
;accumulate drift counts

;drift to the right or left?
;drife > 0
;drift < 0
;drift = 0

;drift > 288 ?

;yos, make correction

;2x = al*al = differ~2
;drift~2 >= counts ?

;yes, drift >= gqr(counts)

drift_left:

volt_D_up:
;dac_data_drift

»
volt_D_down:
;dac_data_drift

rot ino, drift < error

neg ax ;ax = positive

cmp ax, 255 ;ax > 2585 7?7

ja volt_D_down iyos

mul al ;ax = alsal = differ~2
cap ax, dx

jae volt_D_down

reot ;drift < error

= dac_data_drift + drift_corr_step

mov al, 0 ;s8elect channel 0
mov dx, card0_dac_ctrl_reg._Bi

out dx, al

mov ax, dac_data_drift

add ax, drift_corr_step ;80 up by drift_corr_step
cmp ax, OFFFh

ig drift_overflow ;drift volt > 10w

mov dac_data_drift, ax ;drift volt < 10v

mov dx, cardO._dac._data_reg

out dx, ax

mov cs:drift_corr_done, 1

ret

= dac_data_drift - drift_corr_step

mov al, 0 ;select channel 0
mov dx, card0_dac_ctrl_reg_Hi

out ax, al

mov ax, dac_data_drift

sub ax, drift_corr_step ;g0 down by drift_corr_step
cnp ax, 000

j1 drift_overflow ;drift volt <€ Ov

nov dac_data_drift, ax ;drift volt => Ov

mov dx, card0_dac_data_reg

out dx, ax

mov cs:drift_corr_done, -1

137

ret

drift_overflow: mov
ret

err_code, err_drift

drift_correction endp

x_test_tilt proc near
call check_dac
cop erxr_code, 0
jne x_teost_tilt_end ;dac data over range

;=== x_test ---

:dac_data_tilt _A := dac_data_tilt_A + x_test_data
;dac_data_tilt_C := dac_data_tilt_C - x_test_data

x. test_tilt_end:
rot

x_.test_back:

al, 0

dx, cardl_dac_ctrl_reg Hi
dx, al

ax, dac_data_tilt_A

ax, x_test_data
dac_data_tilt_A, ax

dx, cardi_dac_data_reg
dx, ax

al, 1

dx, cardl_dac_ctrl_reg Hi
dx, al

ax, dac_data_tilt_C

ax, x_test_data
dac_data_tilt_C, ax

dx, cardl_dac_data_reg
dx, ax

;dac_data_tilt_A := dac_data_tilt_A - x_test_data
;dac_data_tilt_C := dac_data_tilt_C + x_test_data

al, 0
dx, cardi_dac_ctrl_reg_Hi
dx, al

138

;select channel 0

;8elect channel 1

;select channel O

mov ax, dac_data_tilt_A

sub ax, x_test_data
mov dac_data_tilt_A, ax
mov dx, cardi_dac_data_reg
out dx, ax
mov al, 1 ;select channel 1
mov dx, cardl_dac_ctrl_reg Hi
out dx, al
mov ax, dac_data_tilt_C
add ax, x_test_data
mov dac_data_tilt _C, ax
mov dx, cardl_dac_data_reg
out dx, ax

x_test_back_end:
reot

x.test_tilt endp

x_correction proc near

;x_test_back

;if (center differ > 0) then begin
if (center differ > statistical error) then begin
correct_x;
finesse_correction := 1;
; end;
;end
;else if (canter differ < 0) then begin
x_test_data := ~ x_test_data; ;reverse tilt direction
x_corr_data := - x_corr_data;
if (lcenter differ| > statistical error) thanm begin
H correct_x;
; finesse_correction := -1;
; end;
;end
;else begin
x_test_data := -~ x_test_data; ;reverse tilt direction
x_corr_data := - x_corr_data;
finesse_correction := 0;
end;

we we wo

we we wo

s ws we we w»

139

;dac over range check has been done in tilt_test
;therefore dac over range will not occur during correction
; because normally correction step is smaller than test step

call x_test_back ;back from test tilt

;normally, O < window counts < O0OOFFFFh, ie. hi_word = O
cmp cs:centeri_hi, 0

jaz x_ci_overflow
cmp cs:center2_hi, 0
jnz x_c2_overflow
jz x_calc_center_differ
x.cl_overflow: mov err_code, err_centeri
Tet
x_c2_overflow: mov err_code, err_center2
ret

;calculate center differ, using only lo_word since hi_word = 0
x_calc_center _differ:

mov dx, cs:centeri_lo

add dx, cs:center2_lo ;dx = (centerl + center2)
rer dx, 1 ;dx = (centerli + centaer2)/2
mov fi_window_counts, dx

mov 2x, cs:center2_lo

sud ax, ¢s:centerl_lo ;ax = center differ

mov fi_window_differ, ax

comp ax, 0

ig x_test_right ;differ > O

j1 x_test_wrong ;differ < O

x_test_no_differ:

neg x_test_data ;differ = 0
neg x_corr_data ;change dirction next time
Treot ;110 correction
x_test_wrong: ;ax = differ <0
neg ax ;ax = [differ| > O
neg x_test_data ;change dirction next time
neg x_corr_data
X_test_right: ;ax =|differ|, dx =centeri

140

;note: statistical error = sqrt(N)

;if (differ) > sqrt(center counts) then correction

;ie. if (differ » differ) > (center counts) then correction
;8ince maximum counts = 65535, 80 maximam error = sqr(counts) = 256
; 8o if (differ) > 255 then correction

cup

ja

mul
cup
jae
ret

do_x_corr:

ax, 255 ;ax = differ > 255 ?
do_x_corxr ;yes

H
al ;differ~2 = alsal -> ax
ax, dx ;differ >= error?
do_x_corT iyes

;0

;dac_data_tilt_A := dac_data_tilt_A + x_corr_data
;dac_data_tilt_C := dac_data_tilt_.C - x_corr_data

mov
mov
out
mov
add
mov
mov
out

mov
mov
out
mov
sub
mov
mov
out
rot

al, 0

dx, cardi_dac_ctrl_reg Hi
dx, al

ax, dac_data_tilt_A

ax, x_corr_data
dac_data_tilt_A, ax

dx, cardl_dac_data_reg
dx, ax

al, 1

dx, cardi_dac_ctrl_reg Hi
dx, al

ax, dac_data_tilt_C

ax, x_corr_data
dac_data_tilt_C, ax

dx, cardl_dac_data_reg
dx, ax

x_correction endp

»

y_test_tilt proc near

;
call check_dac
cap err_code, O
jne

;8elect channel O

;select channel 1

y.test_tilt_end ;dac data over range

141

;=== y.test ---

;dac_data_tilt_A := dac_data_tilt_A + y_test_data
;dac_data_tilt_C := dac_data_tilt_C + y_test_data
;dac_data_tilt_B := dac_data_tilt_B - y_test_data *2

nov
nov
out
mov
add
mov
mov
out

mov
mov
out
mov
add
mov
mov
out

mov
mov
out
mov
sub
sub
mov
mov
out
y.test_tilt_end:
Tot

21, 0

dx, cardi_dac_ctrl_reg Hi
dx, al

ax, dac_data_tilt_A

ax, y.test_data
dac_data_tilt_A, ax

dx, cardi_dac_data_reg
dx, ax

al, 1

dx, cardi_dac_ctrl_reg Hi
dx, al

ax, dac_data_tilt_C

ax, y.test_data
dac_data_tilt_C, ax

dx, cardi_dac_data_reg
dx, ax

al, 1

dx, card0_dac_ctrl_reg_Hi
dx, al

ax, dac.data_tilt_B

ax, y.test_data

ax, y.test_data
dac_data_tilt B, ax

dx, cardO_dac_data_reg
dx, ax

y_test_back:

;dac_data_tilt_A := dac_data_tilt_A - y_test_data
ydac_data_tilt_C := dac_data_tilt_C - y_test._data
jdac_data_tilt_B := dac_data_tilt_B + y._test_data *2

al, ©

dx, cardil_dac_ctrl_reg_Hi
dx, a1

ax, dac_data_tilt_A

ax, y_test_data
dac_data_tilt_A, ax

142

;88lect cardl_dac

;8elect cardi_daci

;80lect card0_daci

;8elact cardl_dacO

mov dx, cardi_dac_data_reg

out dx, ax
mov al, 1 ;select cardi_dact
mov dx, cardl_dac_ctrl_reg_Hi
out dx, al
mov ax, dac_data_tilt_C
sub ax, y.test_data
mov dac_data_tilt_C, ax
mov dx, cardi_dac_data_reg
out dx, ax
mov al, 1 i18elect card0_dacil
mov dx, cardO_dac_ctrl_reg_Hi
out dx, al
mov ax, dac_data_tilt B
add ax, y_test_data
add ax, y.test_data
mov dac_data_tilt_B, ax
mov dx, cardO_dac_data_reg
out dx, ax

y-test_back_end:
ret

y-test_tilt endp

-

»

’
y-correction proc near

-
»

call y.test _back

;normally, O < window counts < O00QFFFFh, ie. hi_word = 0
cmp cs:centeri_hi, O
jn=z y_cl_overflow
cmp cs:centexr2_hi, 0
jnz y.c2_overflow

j=z y.calc center_differ
y-cl_overflow: mov err.code, err_centerl
reot
y.c2_overflow: mov err_code, err_center2
ret

y-calc_ceonter_differ:

143

mov
add
rer
mov

sub
nov

Cup
g
ji
y.test_no_differ:
neg

neg
Tet

y-test_wrong:
reg
neg
neg

y_test_right:
cump
ja
mul
cmp
jae
ret

do_y.coxr:

dx, cs:centeri_lo

dx, cs3:center2_lo ;:dx = (centerl + center2)
dx, 1 ;dx = (centerl + center2)/2
£i_window_counts, dx

ax, cs:center2_lo
ax, cs:centeri_lo ;ax = center differ
£i_window_differ, ax

ax, 0
y-test_right ;differ > O
y-test_vwrong ;differ < 0
y-test_data ;differ = 0
y-corr_data ;change dirction next time
;differ = 0
ax ;ax = |differ]|
y-test_data ;change tilt dirction
y.corr_data
ax, 2585 ;differ > 255 ?
do_y.coxx ;yes
sno
al ;differ"2 = al%xal -> ax
ax, dx ;differ >= arror?
do_y._coxr ;yes,

sho,

;dac_data_tilt_A := dac_data_tilt_A + y_corr_data
;dac_data_tilt_C := dac_data_tilt_C + y_corr_data
;dac_data_tilt_B := dac_data_tilt B - y_corr.data *2

mov
mov
out
mov
add
mov
mov
out

al, 0 ;select cardi_dacO
dx, cardi _dac_ctrl_reg_Hi

dx, al

ax, dac_data_tilt A

ax, y.corr_data

dac_data_tilt_A, ax

dx, cardi_dac._data_reg

dx, ax

144

mov al, 1
mov dx, cardi_dac_ctrl_reg_Hi
out dx, al
mov ax, dac_data_tilt C
add ax, y.corr.data
mov dac_data_tilt_ C, ax
mov dx, cardl_dac_data_reg
out dx, ax
nov al, 1
mov dx, cardO_dac_ctrl_reg_Hi
out dx, al
mov ax, dac_data_tilt_ B
sub ax, y.corr_data)
sub ax, y.corr.data
mov dac_data_tilt_B, ax
mov dx, cardO_dac_data_reg
out dx, ax
y-correction_end:
ret
y_correction endp
3
check_dac proc near
;check dac over range
mov ax, dac_data_tilt_A
cmp ax, 4000
ig A_ovarflow
cmp ax, 100
j A_overflow
movy ax, dac_data_tilt B
cmp ax, 4000
ig B_overfiow
cp ax, 100
1 B_overflow
mov ax, dac.data_tilt_C
cmp ax, 4000
jg C_overflow
cmp ax, 100
j1 C_overflow

145

;8elect cardl_dacl

;select card0_dacl

;no overflow

ret

A_overflow: mov err_code, exr_tilt_A
ret

B_overflow: mov err.code, err_tilt_ B
ret

C_overflow: mov err_code, err_tilt._C
Trot

s=

check_dac endp

support ends

H
end

146

