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FRONTISPIECE: Vie s of the del installed in the box frame (top) and the 

experimental set-up (botta.). 
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ABSTRACT 

The problem of well test interpretation in acute systems has been 

investigated both theoretically and experimentally. This investigation : 

a) establishes a basic understanding of the near wellbore flow mechanism 

in acute systems; b) formalizes the intersection angle-dependent 

variations in the streamline pattern and hence in pressure distribution 

and observed response; and c) provides mathematical tools to predict these 

variations. 

The theoretical component of this study involves: a) the derivation, 

for acute systems, of the governing differentia 1 equation of flow in 

fractures; b) the introduction of analytical models for constant-flux 

tests under transient and steady-state conditions; c) the formulation of 

the streamline-equipotential network created by injection/pumping through 

acute systems under initially non-uniform heads; and d) the development of 

a general, semi-analytical model accounting for the roughness, turbulence 

and intersection effects in interpreting single-well, constant-flux tests. 

The experimental investigation is intended: a) to verify the 

formation of the idealized streamline pattern and examine the effects of 

likely interactions at the acute intersections, particularly during 

injection tests; and b) to quantify the exit/entry loss coefficients as a 

function of the intersection angle. The experimental set-up designed to 

carry out this investigation includes three distinct fracture-wellbore 

system models with go•, 20• and 10• intersection angles. The laboratory 



iv 

progra0111e involved testing these models for three different apertures 

under steady, constant-flux, injection and pumping conditions. The overall 

experimental set-up successfully simulated the conceptual testing 

environment which the mathematical model is expected to reproduce. 

The pumping pressure distribution observed in the acute system model 

tests is in good agreement with the predictions whereas the injection 

pressure distribution at large intersection angles proves to be 

directionally variable. Although the latter poses a theoretical 

limitation, the mathematical models, in practice, are equally capable of 

interpreting single-well, injection as well as pumping test data, and are 

valid for the design of the wellbore activities. 
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GLOSSARY OF SELECTED TERMS 

Active well: a well in which the pressure disturbance is induced. 
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Fabrication aperture: distance adjusted between the model plates during 
the model fabrication. 

Fracture: natural and man-induced rock mass discontinuities whose third 
dimension (i.e. aperture) is much smaller than their areal 
dimensions. The natural discontinuities range from faults and joints 
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independent of the entry effects. 
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disturb the boundary layer structure at a given Reynolds number. 
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cartesian coordinates. Also called rectilinear, parallel or 
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I INTRODUCTION 

Wells provide access to the subsurface for purposes such as: a) 

resource exploration, exploitation and management; b) geotechnical site 

assessment, remediation and monitoring; and c) waste disposal and 

containment. Depending on the nature and operating environment of these 

projects, well testing is needed at various stages to assess such 

parameters as: a) the extent and producibility of the reserve; b) the cost 

of production, drainage or artificial recharge; and c) the stability and 

tightness of the ground. 

Well testing is based on the principle of: a) inducing a pressure 

disturbance; b) monitoring the flow/pressure response of the perturbed 

medium; and c) drawing inferences about the hydraulic properties of the 

medium. The corresponding procedure is: a) to remove/add fluid or stop 

production; b) to record transient/steady pressure (and flow rate); and c) 

to select an appropriate mathemat ica 1 mode 1 that can reproduce the 

observed response. This way of identifying the properties of an 

unknown/incompletely defined system (i.e. inverse problem) inevitably 

results in non-unique answers. Being based on various simplifications, 

none of the models may be assured of reproducing the behaviour of the 

medium under different levels and/or periods of disturbances. The better 

the subsurface control and wider the range of tests, the more evolved and 

reliable the selected model is for designing planning strategies. 

1.1 State.ent of the probl~ 

In the evaluation of well tests the observed relationship between 
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the disturbance and the response is attributed to the nature of the system 

as conceptualized. In other words the accuracy of the model predictions 

remain unknown since the influence of any overlooked system parameter on 

the response is implicitly absorbed by the lumped model parameters such as 

hydraulic conductivity. In this respect, fundamental investigations toward 

a better understanding of the role of every identifiable system parameter 

are essential for the progress of well test evaluation. The investigation 

of the influence of the fracture-wellbore intersection angle is therefore 

a step forward in this direction. A particular gain of this is in refining 

various predictions made through single-well tests. 

The probabi 1 ity that a we llbore intersects natural fractures at 

acute angles is close to certainty. To a lesser extent, this is also true 

for hydraulic fractures since the least principal stress may not be 

aligned exactly parallel or normal to a plane including the wellbore axis. 

However, because of the absence of relevant models for well-test 

evaluation, intersections of fracture-wellbore systems are usually 

approximated as being parallel or normal to such a plane. How much error 

is involved in this and which approximation is best for a given acute 

intersection cannot be answered definitively. 

In some cases, the system intersection angle required by the 

employed model is produced via oriented drilling. In geotechnical 

applications, for example, it is an established practice to drill normal 

to the fracture {set} whose permeability is to be determined {Louis and 

Maini, 1970; Rissler, 1978). The possibility of making positive 

permeability determinations in acute systems so that the investigated rock 
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volume can be sampled more homogeneously with a given number of wellbores 

is worthwhile to pursue. Again for interpretation purposes, Hot Dry Rock 

(HDR) geothermal recovery wells (deviated at the production levels) are 

assumed to orthogonally intersect the hydraulic fractures created in the 

injection wells (Murphy, 1979). For fluid recovery wells, in general, the 

impact of producing such an intersection on the well losses and hence on 

the production cost cannot be assessed accurately. 

l.Z Purpose and scope 

The objectives of this study are therefore: a) to establish an 

understanding of the influence of the {fracture-wellbore) system 

intersection angle on the near well flow mechanism; and b) to develop 

mathematical models which can reproduce the responses of acute systems to 

various forms of disturbances under different conditions. The pursuit of 

these interlacing objectives involves, as a base: a} a synthesis of the 

present knowledge of flow in fractures and fracture-wellbore systems; and 

b) derivation of a basic differential equation governing flow in 

conceptualized acute systems. Thereafter, the study focuses on: a) seeking 

analytical solutions to this equation for transient and steady-state 

constant-flux test conditions; b) investigating the extent and geometry of 

the zone influenced by the induced disturbances; c) extending the steady­

state solution to a semi-analytical model accounting for the effects of 

fracture roughness, flow turbulence and system intersection on single-well 

test results; and d) devising physical models to conduct an experimental 

study of actual flow processes in acute systems as conceptualized. 



2 FUNDAMENTALS OF FLOW IN FRACTlllED MEDIA 

It is evident that the influence of the system intersection angle on 

the well test response can be investigated in a general sense only if the 

system components can be idealized to some common forms, e.g. a hollow 

cylinder for the wellbore and a parallel plate conduit for the fracture. 

It is then essential to understand the mechanics of flow through such 

forms and the theoretical concerns behind such idealizations. Because the 

results of well tests are often extrapolated to a larger scale, it is also 

important to analyze the nature of the rock-mass scale heterogeneities and 

modelling methods. These fundamental points are reviewed in a critical and 

comprehensive manner in the following sections. 

Z.l Introduction 

The Navier-Stokes equation, the general equation of Newtonian fluid 

motion, can be derived from simultaneous consideration of forces acting on 

an infinitesimal fluid element (Rouse, 1961). For isothermal flow of an 

incompressible fluid, considering that the body forces usually consist 

only of the weight forces, the Navier-Stokes equation may be written, in 

local cartesian coordinates, as 

{i,j=1,2,3 (2.1) 

where v: (microscopic) velocity, 

t;: time, 

p: density, 
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g: gravitational acceleration, 

P: hydrostatic pressure, 

z: elevation from a datum, and 

v: kinematic viscosity. 

The fundamental flow laws that constitute the core of the fracture flow 

theory are based on this equation. Integrating Equation 2.1 over a 

macroscopic (representative) volume of granular porous media, Hubbert 

( 1956) showed that the empirica 1 Darcy law of laminar flow is of a 

universal nature at a proper scale. Accordingly, the Darcy law for any 

porous medium, 

- ah v .=-K--
~ OX· .z 

(2.2) 

where v: average (macroscopic) velocity, 

K: {homogeneous and isotropic) hydraulic conductivity, and 

h: hydraulic head, a combined expression of pressure and 

elevation heads, i.e. _L+z 
pg . 

The hydraulic conductivity term in the Darcy law was shown to be a 

lumped, variable parameter (Hubbert, 1940;1956) 

(2.3) 

where k• represents the permeability of the medium and the role of fluid 

is expressed by its kinematic viscosity. The inherent difficulty of 

relating the permeability to some quantifiable property of the medium 
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resulted in theoret ica 1 approaches that employ different conceptua 1 models 

and medium parameters {Bear, 1972) according to the type of effective 

porosity (i.e. granular, karstic or fracture). Section 2.2 describes the 

application of such an approach to single fractures using a parallel plate 

idealization. 

Theoretically-derived permeability relations hold provided that the 

geometry of the real flow domain is well represented by the model and flow 

obeys the Darcy law. Cases where these conditions fail in fracture flow 

are discussed in Section 2.3 whereas Section 2.4 explains how these 

situations can be treated using empirical modification factors and 

completes the formulation at the scale of a single fracture. The basic 

concepts, problems and methodologies of the fracture flow studies at the 

rock-mass scale are reviewed in Section 2.5. 

2.Z Theoretical basis of single-fracture .adels 

Rock fractures have often been idealized as planar conduits {Figure 

2.1.a) bounded by two parallel plates with smooth walls (Baker, 1955; 

Huitt~ 1956; Snow, 1969; louis, 1974; Iwai, 1976). This geometric 

simplification allows an exact analytical solution of the Navier-Stokes 

equation (Equation 2.1) subject to the following conditions (Schlichting, 

1979): 

av. 
--

1 =0: steady flow, at 

v 2 =v3 =0: one-dimensional flow, in the Xl direction, 
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av. aX: =0: continuity condition (in fully established flow through a 

constant cross-section)~ and 

av. 
a~ =O: constant cross-sect ion a long the width. 

Substituting these, Equation 2.1 reduces to 

O=-l:. o(P+pgz) 
e a~ 

(2.4) 

Writing this in terms of hydraulic head~ 

(2.5} 

and integrating twice with respect to x3 , 

v. = g oh X: + c x + c 
l v aXi 2 1 3 2 

(2.6) 

where C1 and ~ are the integration constants. 

The no-slip condition at the boundaries, i.e. v1 =O at x 3 =±b, 

requires that 

(2.7) 

where b is the half-width of the parallel plate opening (Figure 1). Thus 
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g oh X:-b2 

v =-----
1 v a~ 2 

(2.8) 

which shows that the velocity profile is parabolic under the specified 

flow conditions. 

Averaging the velocity across the flow section 

+b 

- ~~ vl = 2b v1 dx3 
-b 

(2.9) 

yields a linear relationship known as the Poiseuille law 

v. =- gC2b> z ah 
1 ~2v a~ 

(2.10) 

which is a specialized form of the Darcy law (Equation 2.2). The hydraulic 

conductivity of a fracture with smooth, parallel walls therefore is 

K = g(2b) 2 

£ 12V 
(2.11) 

It follows from Equation 2.3 that the permeability of this idealized 

fracture is given by 

(2 .12) 

which compares to the typ i ca 1 permeab il i ty expression suggested for 

granular porous media (Hubbert, 1940) 

k*=NcP (2.13) 

where N is a shape factor depending on certain properties describing the 
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void space geometry of the specific medium {e.g. angularity of grains) and 

d is a characteristic length of that medium {e.g. mean grain diameter). 

From a visual inspection of Equations 2.12 and 2.13~ the shape factor for 

the parallel plate flow geometry appears to be 

N£=_!_ 
12 

{2.14) 

It is of both practical and academic interest to determine when Equation 

2.14 becomes inadequate in describing flow geometry of rock fractures. 

The Poiseuille law (Equation 2.10) can be expressed in terms of q, 

the flow rate per unit width of the fracture, 

q= _ g < 2b > 3 ah 
1.2v a~ 

(2.15) 

which is the so-called cubic law. The Poiseuille (or cubic) law may be 

taken as approximately valid for parallel plate conduits having gradual 

variations in the local apertures and/or curved (undulating) surfaces, the 

radii of curvature of which are large compared with the local apertures 

(lamb, 1945). In both forms (Equations 2.10 and 2.15) the su11111arized 

solution of the Navier-Stokes equation has been the basic model in the 

study of laminar flow through rock fractures. 

2.3 Deviations fro. Poiseuille law 

Fracture flows that can be fully characterized by the Poiseuille law 

(Equation 2.10) are rare occurrences in nature. The deviations stem from: 

a) overs imp 1 ifying the fracture void structure; and b) ignoring the 

inertial forces. Fractures generally are planar features with surfaces 
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that can be characterized by asperities superimposed on larger seale 

undulations. These surface elements often produce a highly complicated 

void structure surrounding and enclosed by areas in contact, and hence 

tortuous flow paths throughout the fracture plane {Sharp and Maini, 1972; 

Pyrak-Nolte et al. 1987). As the fracture void structure becomes 

increasingly different from a simp 1 e opening between para 11 e 1 smooth 

walls, the theoretical permeability {Equation 2.12) cannot sustain the 

linearity between mean flow velocity and corresponding gradient, although 

flow may still be of laminar character. 

Groundwater flow usually occurs under low hydraulic gradients {Bear, 

1979). However, in many engineering environments, such as those near 

active wellbores and excavated faces, artificial disturbances frequently 

induce steep gradients. The consequent increase in inertial forces is 

accompanied by shifting of streamlines due to flow separation at the 

diverging and/or curved points of the void structure (Bear, 1972). This 

implies that the microscopic structure of the effective voids imposes an 

additional control on the initiation and intensity of flow separation. 

Increasing significance of inertial forces relative to shear forces 

results in a nonlinear relationship between mean velocity and hydraulic 

gradient, regardless of the void structure. 

In summary, deviations from the Poiseuille law can be attributed to 

tortuosity and/or inertial forces. From a practical point of view, the 

deterministic approach is ideal for the treatment of these complications. 

The main concern in this approach is not in the details of the void 

structure {i.e. in geometric similarity between the model and fractures), 
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but in reproducing equivalent responses to given excitations. In selecting 

the model it is advantageous: a) to maintain the theoretical base gained 

by the Poiseuille law; and b) to use the parallel plate aperture as a 

parameter providing physical continuity for the entire formulation. 

In accordance with the above rationale, major experiments designed 

to investigate hydraulic behaviour of fractures (Baker, 1955; Huitt, 1956; 

Parrish, 1963; Louis, 1974, Rissler, 1978; Cornwell and Murphy, 1985) have 

consistently used physical models consisting of parallel plate conduits of 

varying roughness (Figure 2.1.b). Although introducing roughness as an 

additional parameter improves void structure characterization, it does not 

entirely prevent some loss of control over the phenomenon being 

investigated. Owing to the large number of and complex relations between 

the (unknown) system parameters involved in well test evaluations and 

rock-mass scale characterization, present practice relies heavily on 

developments based on the parallel plate idealization. The next section 

explains the procedure that enables the use of the parallel plate concept 

in estab 1 i shing flow express ions for rough fractures and/or non 1 inear 

conditions for which the Poiseuille law fails. 

2.4 Hydraulics of parallel plate conduits 

For fully established flow through straight, uniform conduits, the 

difference in the hydraulic head between any two points arises from the 

energy dissipation due to both: a) viscous shear and/or turbulent mixing 

within the fluid body; and b) frict iona 1 and/or pressure drag on the 

conduit walls and protrusions. The resulting head gradient, regardless of 
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the causes, can be predicted from the Darcy-Weisbach equation, originally 

derived for pipes of circular section (Vennard and Street, 1982). Dropping 

indicial and partial derivative notations, this empirical equation has the 

general fom 

where 

dh 11"? -=A.---
dx Dh 2g 

A.: friction factor, and 

Db: hydraulic diameter. 

(2.16) 

The conduit geometry in Equation 2.16 is specified through the 

hydraulic diameter term defined as 

(2.17) 

where A: cross-sectional area, and 

r: perimeter (i.e. length of contact between fluid and 

boundary). 

Hence, for an opening between two parallel plates, 

Dh=4 ( 2b) w=2 (2b) 
w+w 

where w is the width of the opening. 

(2.18) 

The Darcy-Weisbach equation {Equation 2.16) does not explicitly 

account for the influences of roughness, flow regime and fluid viscosity. 

The friction factor can, however, be effectively scaled by means of two 

dimensionless parameters {Vennard and Street, 1982): a) relative 

roughness, the ratio of mean absolute height of the protrusions, k (Figure 
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2 .l.b) to the hydrau 1 ic diameter, Dh (Equation 2.18); and b) Reynolds 

number, the ratio of inertial to viscous forces, and therefore an index of 

the flow regime, 

-vn 
Re=--b 

v 
(2.19) 

On the basis of the hydrau 1 i c approach out 1 i ned above, several 

investigators including Huitt (1956) and Louis (1974) have attempted to 

empirically determine friction factor expressions from rough model 

fractures under a wide range of flow conditions. The friction factor 

expressions adopted in this study are listed in Table 2.1. The domains of 

each expression are delineated in Figure 2.2. Before explaining the 

integration of the expressions into flow laws for these domains, the 

following properties of Table 2.1 and Figure 2.2 need emphasis and 

clarification: 

a) the transitions from; (i) laminar to fully turbulent flow, (ii) 

hydraulically smooth to camp 1ete ly rough behaviour, and (iii) 

parallel (k/Dh~O.D33) to non-parallel (k/Dh>D.033) wall 

geometry are all assumed to be abrupt, resulting in discontinuous 

boundaries between the flow domains, 

b) above the boundary value of k/ Dh = o. 033 , the friction factor 

corresponding to the Poiseuille law is no longer valid due to 

additional energy dissipation in the process of viscous damping of 

increased wall disturbances, 

c) below k/Db=0.033, the critical Reynolds number, marking the 
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persistence 1 imit of laminar flow, is constant at Rec=2300, 

d) below k/Dh=0.033, the friction factors of classical hydraulics 

are valid, and 

e) below k/Db=0.033, in the turbulent domain, as the viscous 

sublayer gets thinner and/or disrupted with increasing Reynolds 

number, the resulting exposure of protrusions changes hydraulic 

behaviour of the model fracture from smooth to rough. 

La.inar do~~ains 

The friction factor denoted as Poiseuille (Table 2.1) can be derived 

from equating hydraulic gradient terms in the Darcy-Weisbach (Equation 

2.16) and Poiseuille (Equation 2.10) equations and making use of Equations 

2.18 and 2.19. Comparing this with the friction factor of Louis L 

{laminar), the modification factor, f, necessary in the laminar domain 

with k/Dh>0.033 appears to be 

f= (1+8.8 (k/Dh) LS] (2.20) 

Introducing this as an external parameter into the Poiseuille law 

(Equation 2.10) reveals that the shape factor (Equation 2.14) is a 

function of surface roughness in this domain 

(2.21} 

Turbulent da.ains 

Two distinct forms of flow relationships are widely used to 
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formulate the observed nonlinearity between the velocity and hydraulic 

gradient (Basak, 1978; Hannoura and Barends, 1981): a) the series form of 

the Forchheimer equation 

dh =av+cl? 
dx 

and b) the exponential form of the Missbach equation 

{ 1<n<2 

(2.22) 

(2.23) 

where a, c, and~ are empirical proportionality coefficients. The symbol 

~ denotes the hydraulic conductivity of a fracture under turbulent flow 

conditions. The Forchheimer equation provides a better alternative in 

cases where the transitional turbulent flow persists over a considerable 

spatial extent for a wide range of flow rates, such as in granular porous 

media (Bear, 1972). However, for (particularly convergent/divergent) flow 

through fractures, transition to fully turbulent flow is more abrupt. 

Therefore, it is appropriate to apply the Missbach equation in the 

turbulent flow domains shown in Figure 2.2 (louis and Maini, 1970; louis, 

1974; Zeigler, 1976; Rissler, 1978). 

In accordance with the assumption of abrupt transition to fully 

turbulent flow (Figure 2.2), the Missbach equation (Equation 2.23) is 

taken to be quadratic, i.e. n = 2 • Equating the Mi ssbach and Darcy-We i sbach 

(Equation 2.16) equations yields the turbulent domain hydraulic 

conductivity, ~, in terms of the empirical friction factors and the 

parallel plate aperture 
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-l. 1 
, - 4 (2b) g (2.24) 

Critical Reynolds nu.ber 

Any observed relationship between the mean velocity and hydraulic 

gradient can now be formulated by selecting the appropriate flow law 

{Equation 2.10 or 2.23) and then adjusting its proportionality constant 

{i.e. hydraulic conductivity) adopting an appropriate friction factor 

expression (Table 2 .. 1). For this purpose, the values of the relative 

roughness of the fracture and the Reynolds number of flow can be directly 

compared to the flow boundary domains depicted in Figure 2.2 and Table 

2.1. The critical Reynolds numbers defining the boundaries of these 

domains are calculated in the following manner: 

a) for k/Dhs;0.033: the critical Reynolds number, Rec, is 

essentially constant (Figure 2.2) 

Rec = 2300 (2.25) 

b) for k/Dh>0.033: Rec can be obtained by the simultaneous 

solution of the friction factor expressions of Louis L {laminar) and 

Louis T {turbulent) {Table 2.1) 

Re.=384 [1 +8. 8 (k/Dh) 1.s) (log ;i~J2 

(2.26) 

c) for k/Dh;S;0.033 and Re>2300: the boundary between 

hydraulically smooth and completely rough flow domains satisfies the 



17 

friction factor expressions of both Blasius and Nikuradse 

( 
3. 7 )

8 

Rec=2.553 log k/Dh (2.27) 

Any formulation derived by the procedure as outlined includes two 

unknowns, namely, the aperture and hydraulic gradient. In practice, 

hydraulic gradient is measured in order to determine the equivalent 

parallel plate aperture of fractures. 

2.5 Flow in rock .asses 

Assessment of the seepage, production or contaminant transport 

potential in fractured media ideally requires knowledge of: a) the spatial 

distribution of active fractures; and b) the geometric, hydraulic and 

mechanical properties of these fractures. Obviously such a thorough 

description of the flow network is practically an impossible notion. 

Therefore studies on flow through fractured rock masses have adopted 

indirect approaches assuming the existence of: a) an equivalent (granular) 

porous medium {EPM) behaviour (Snow, 1969; Castillo, 1972; Louis, 1974); 

and b) statistically equivalent networks of discrete fractures (Long and 

Witherspoon, 1985; Schwartz and Smith, 1985; Rouleau, 1988; Nordqvist et 

al., 1992). 

2.5.1 Directional per.eability of equivalent continua 

Fractures impart anisotropy and heterogeneity to the permeability of 

rock masses. In anisotropic media, the Darcy law {Equation 2.2) becomes 

(Bear, 1972) 



-- • g 
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(2.28) 

where kiJ is a second order tensor defining the permeability at a point 

and z1 denotes the components of the overall head gradient. This equation 

implies a fictitious continuum replacing the multiphase (solid and pore) 

medium. Therefore the tensor represents the average permeabi 1 ity of a 

certain volume of the actual medium centred at that point. If the 

permeability is insensitive to slight changes in this volume, it is 

specified as the representative elementary volume (REV) (Hubbert, 1956; 

Bear, 1972). In order that the same REV can be defined at all points of 

the flow domain (Bear, 1979), heterogeneities should have a high 

volumetric density {relative to the REV) which can be uniform or vary 

smoothly across the flow domain. Consequently a fractured medium is said 

to behave 1 ike an EPM {or a continuum) if the REV exists at a seale 

smaller than that of the measurement and also of the detail required in 

the studied flow problem {Neuman, 1987). 

A method to calculate the directional permeability tensor in 

fractured media was developed by Snow (1969) who implicitly assumed the 

existence of the REV with uniform heterogeneity density. Incorporating the 

cubic law modification factor to the equivalent parallel plate 

permeability, the tensor for a single fracture is {Snow, 1969; Rissler, 

1978) 

(2.29) 
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where &i1 : Kronecker delta, 

ni,n1 : direction cosines of the normal to the fracture, and 

Di: scanline vector of length D. 

The underlying assumptions of the method are that: a) all fractures 

traversed repeat for every scanl ine length D so that the orthogona 1 

distance (or spacing) between each fracture and its image is ln1 Dil; b) 

fractures are continuous (or extend to a specified boundary); and c) there 

is no flow interference at the fracture intersections. 

The first assumption implies that the rock is homogeneous at the 

seale of the scan 1 ine length since ident ica 1 heterogeneities can be 

sampled along every such length. The average permeability calculated from 

such a representative elementary length (REL) equals the REV (Bear, 1972). 

The summation of all single-fracture tensors for each scanline station 

yields the permeability tensor for the REV. As the number of stations 

increases, the tensor is refined by averaging, hence reducing the sampling 

bias. Also the more extensive the fracture is, the higher its chance of 

being traversed by multiple scanlines and being weighted more heavily. 

Therefore, for the multiple scanline surveys the REL contains an imaginary 

but more representative sample of fractures. 

The second assumption indicates that contribution of a fracture to 

the overall permeability is not affected by its network connectivity. Each 

fracture encountered along a scanline contributes to the permeability of 

the REV independently and proportionally to its equivalent aperture, 

roughness and orientation with respect to the overall gradient vector. 
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Fractures oblique to the scanline are weighted more heavily to eliminate 

the orientation bias. 

Flow rate reduction and pressure loss at the fracture intersections 

due to cross flow {i.e. flow interference) are negligible in laboratory 

model experiments in the laminar flow range (Wilson and Witherspoon, 1976) 

verifying the third assumption. However, Neuman (1987} suggested, 

referring to a field case study in the literature, that intersections may 

exert a greater influence on the overall hydraulic conductivity than do 

fracture planes. 

The magnitude and directions of the principal permeabilities are 

obtained from the eigenvalues and eigenvectors, respectively, of the final 

permeabi 1 ity tensor. Velocity and gradient vectors in an anisotropic 

medium do not coincide except in the principal directions of permeability. 

The polar plot of the inverse square root of the permeability in the 

direction of the overall gradient yields an ellipsoid whose axes are the 

principal directions of permeability (Bear, 1972). The degree of 

elipticity reflects the degree of deviation from a continuum behaviour. 

The influence of various network parameters on continuum behaviour 

was investigated by several two dimensional network models. These include 

the conceptua 1 (square and triangular) grid models for the aperture 

variations (Parsons, 1966), the resistivity analogs of a square grid model 

for the finite size of fracture sets (Caldwell, 1972), and the statistical 

networks for the degree of interconnection (long and Witherspoon, 1985). 

The maximum permeability calculated by the outlined method of Snow {1969) 

was found to be a reasonable approximation in homogeneous media given that 
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the length of fractures exceeds a certain limit (Long and Witherspoon, 

1985). 

2.5.2 Heterogeneity in fractured rocks 

The type of medium determines the scale at which the REV may exist. 

Fractured rock masses usually exhibit several episodes of fracturing, each 

resulting in a higher level of heterogeneity at a given site (Chernyshev 

and Dearman, 1991). These levels display differences not only in fracture 

density but also in connectivity and ability to form a globa 1 flow 

network. Networks formed by dense but isolated, or sparse but active 

fractures are natural probabilities. Accordingly there may be more than 

one volumetric scale at which the REV behaviour exists at a given point 

(Wilson et al., 1983; de Marsily, 1985; Smith and Schwartz, 1985). Only 

the largest of these might be the true REV scale for the flow domain. 

A number of field observations imply that geometrically and 

hydraulically defined fracture frequencies can be very different. From 

measurements of injection pressures at which pre-existing fractures start 

opening, Cornet (1992) concluded that stress heterogeneities are 

associated with active zones, and the regional stress field is not 

perturbed by most of the fractures. Similarly, Tsang et al. (1990), using 

a time sequence of electrical conductivity logs, detected merely nine 

active fractures scattered along a 900 m wellbore interval. The preceding 

observations also indicate that, although there is a general decline in 

the well yield with increasing depth at shallow depths of hydrogeological 

interest (Wooley, 1982), this is not a rule for long intervals 
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particularly when away from the zone of surface weathering and 

percolation. 

A parametric study using two dimensiona 1 synthetic networks of 

randomly distributed and oriented fractures (i.e. homogeneous and 

isotropic at the REV scale) demonstrated that the existence and scale of 

the REV are strongly dependent on the length of the fractures (long and 

Witherspoon, 1985). The occurrence of fractures in clusters is, however, 

a common phenomenon inconsistent with the assumption of randomness (Snow, 

1970; de Marsily, 1985; Schwartz and Smith, 1985). To form a global flow 

network, fractures in such cases may have to be extremely long for the REV 

to exist if loca 1 networks are not connected by severa 1 pervasive 

fractures. 

These results emphasize the importance of improving in situ 

detection, testing and evaluation methods to obtain more refined estimates 

of network parameters and to identify the most significant fractures at a 

given scale (Wilson et al. 1983). Particularly, single-hole packer testing 

to obtain hydraulically derived geometrical information or direct local 

permeability is an essential method (Wilson et al. 1983; Neuman, 1987). 

Techniques to determine fracture connectivity include, in accordance with 

the nature of the problem, cross-hole tests involving multi-level 

measurements of pressure signals (Hsieh, 1987), temperature (Silliman and 

Robinson, 1989) and gamma ray (Marine, 1980) variations in response to 

injection or pumping. 

Hydraulic characterization of fractured rock masses generally 

requires the use of multiple sources of information to assess 
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heterogeneity variation at different scales (Hsieh, 1987). In planning to 

acquire such information, geological and mechanical controls of fracturing 

intensity such as lithology, thickness, structural association and depth 

(Stearns and Friedman, 1972) should be considered first. Geophysical and 

hydrological testing should follow this guide in delineating areas of 

uniform heterogeneity where the permeability tensor can be determined and 

in extrapolating the available data to the whole flow domain. The extent 

of testing to be undertaken depends on the quality, quantity and variety 

of the data needed, which in turn is determined by whether there is REV 

behaviour. Statistical models incorporating the available geometrical 

fracture data might be useful in answering these questions. 

2.5.3 Statistical .udels 

The EPM approach assumes a priori that REV exists, while studies 

with discrete fracture networks test whether and under what conditions the 

REV might exist. Discrete fracture network models need statistical 

information about the geometry and spatial distribution of fractures. 

Density, length, location, orientation, aperture, etc. of fractures are 

considered random entities from a probability distribution function (Long 

and Witherspoon, 1985; Rouleau, 1988). Distribution parameters are 

estimated from sample observations. These distributions are then randomly 

sampled to generate statistically equivalent networks. 

Different levels of heterogeneity can be modelled by including major 

fractures separately (Wilson et al., 1983) or by superimposing 

independently generated fracture assemblages (long and Witherspoon, 1985). 
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Single fractures are idealized as, for example, parallel plate discs, 

rectangles, etc. whose aperture may be constant (Rouleau, 1988) or 

variable (Nordqvist et al., 1992). Distribution of apertures (Bianchi and 

Snow, 1969) as well as lengths (long and Witherspoon, 1985) of fractures 

in a sampled rock volume might obey a lognormal distribution function. 

Since flow network parameters such as connectivity and areal extent 

cannot be directly measured, statistical network models are designed to 

predict them using other parameters such as frequency and trace length. 

More significantly there may be a few fractures controlling network 

connectivity in which case their apertures cannot be simply estimated. An 

alternative to avoid these shortcomings is a method which treats the 

conductivity values determined by single-hole packer tests as random 

variables generated by a stochastic process defined over a continuum 

(Neuman, 1987). 
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2b Equivalent aperture 

k Absolute roughness 

Figure 2.1.a) An arbitrarily oriented parallel plate conduit and the flow velocity 
profile in local coordinates, b) parameters characterizinq the geometry of rough 

parallel plate conduits. 
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Figure 2.2. Fracture flow domains and corresponding friction factors (Table 2.1). 



Table 2.1. Friction factors governing fracture flow in the domains delineated in 
Figure 2.1 (after Louis, 1974). 
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3 THEORY Nil PROBLEMS OF SINGLE-WELL TESTS IN FRACTURED MEDIA 

The intersection angle which determines the shape of the inner 

boundary of the fracture flow domain is merely one of the system 

parameters that may influence the response observed in the active well. It 

is therefore necessary to examine the test situations in which various 

parameters become influent ia 1 and dominate deviations from the idea 1 

response. This analysis, in turn, allows the identification of specific 

conditions and test methods for which intersection angle can be isolated 

as the rna in parameter for the purposes of the present investigation. These 

concerns, relating to the theory and problems of the single-well tests, 

are dealt with in this chapter. 

3.1 Introduction 

The law of conservation of mass requires that the net inward flux 

through any arbitrary volume be equal to the rate of accumulation. For 

fluid flow within porous media, this balance (per unit volume and time) 

can be expressed as 

a < P v) = a < p , > 
axi at; 

{3.1) 

where q» is the porosity (defined over the REV) and p is the fluid 

density. The rate of accumulation of the fluid mass under confined 

conditions is related to the elasticity of the solid-fluid system 

occupying the concerned volume (Jacob, 1940; Bear, 1972) 

a ( p cp) = p [ p g ( cp (J + a ) ] ah = p [ s 1 ah at l m at s at; (3.2) 
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where a 1. and am are the compressibi 1 ity of the fluid and the (moving) 

solid matrix, respectively, and S
5 

is the specific storativity of the 

system. 

Since the spatial density variations can be assumed negligible in 

most problems (Hantush, 1964), Equation 3.1 when combined with Equation 

3.2 reduces to 

(3.3) 

Assuming laminar flow conditions, and hence substituting the average 

velocity as determined from the Darcy law for homogeneous isotropic media 

(Equation 2.2) yields the fundamental equation of diffusion in porous 

media 

(3.4) 

Here both specific storat ivity and conductivity are referenced to the 

initial values of the system properties. Integrating through the entire 

thickness, 2b, of the saturated zone 

(3.5) 

where s and T are the storativity and transmissivity of the zone, 

respectively, 

S=S
5 

{2b) 
T=K (2b) 

(3.6} 
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Note that Equation 3.5 applies only to isotropic, non-leaky, confined 

aquifer conditions. Variations in this equation address other 

possibilities such as anisotropy in permeability, leakage to/from 

confining layers, unconfined (gravity) drainage and/or steady-state 

behaviour (Hantush, 1964; Kruseman and de Ridder, 1970; Lohman, 1972). 

The solution of Equation 3.5 or its various equivalent forms for 

given initial/boundary conditions and flow domain geometry allows one: a) 

to estimate the subsurface hydraulic properties from field measurements; 

and subsequently b) to predict the pressure behaviour upon changes in 

boundary conditions or upon natural/artificial disturbances. The former is 

referred to as the inverse problem whereas the latter is the forecasting 

problem (Bear, 1979). 

The essential aim and usage of well testing is to solve the inverse 

problem. Section 3.2 briefly outlines the constitution of the well test 

models from this general perspective. The underlying assumptions and the 

derivation of the basic constant-flux test solutions are reviewed in 

detail in Section 3.3. This review constitutes the core of the evaluation 

models for single-well, constant-flux tests (Section 3.5) and sets a 

comparative basis for the mathematical developments presented in Chapter 

4. While maintaining the generality in the variety of test methods, this 

chapter thereafter focuses on the basic evaluation models for single-well 

tests in confined media. This is to highlight the influence of individual 

fracture characteristics on the near well flow phenomena and consequently 

on the observed response. First the inherent problems of the observations 

in an active well are thoroughly discussed in Section 3.4. The subsequent 
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sections (Sections 3.5 and 3.6) include brief descriptions of the 

application, testing and evaluation procedures for single-well tests and 

a critical appraisal of their results with reference to Section 3.4. 

3.2 Well test evaluation .udels 

The mathematical models used in the analyses of well tests consist 

of (analytical) solutions of Equation 3.5 and its variations for different 

conceptual models and inner boundary conditions. These conditions vary 

according to the test technique (e.g. constant-flux/head, slug, pulse) and 

other considerations such as wellbore storage, skin effect, finite well 

radius, intersecting fracture, wellbore penetration {Gringarten, 1982; 

Karasaki, 1987). The conceptual models are built upon idealizations about 

the medium {e.g. confined, multilayered, composite, double-porosity), the 

flow domain geometry (e.g. the outer boundary, thickness, orientation) and 

consequently the flow pattern (e.g. parallel, radial, polar). Detailed 

general reviews of the analytical models of well test evaluation are 

ava i 1 ab 1 e both for granu 1 ar porous media ( Hantush, 1964; Matthews and 

Russell, 1967; Kruseman and de Ridder, 1970; Lohman, 1972) and fractured 

media (Zeigler, 1976; Streltsova, 1978; Gringarten, 1982; Karasaki, 1987). 

3.3 Basic .odels of constant-flux tests 

The most conrnon well tests involve measurements of changes in 

hydraulic head (or pressure) in the observation (and active) wells in 

response to fluid suction/injection at a constant rate from/into the 

tested medium. Data obtained during such tests conducted in confined media 
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may be evaluated by one of the two fundamental analytical models assuming 

that: 

a) the medium is homogenous and isotropic, of infinite extent {i.e. 

boundary effects are not felt during testing), horizontal and of 

constant thickness, 

b) the zones immediately overlying and underlying the medium do not 

leak under induced vertical pressure differentials, 

c) the well fully and vertically penetrates, and uniformly 

communicates with the medium, 

d) the hydraulic head distribution prior to testing is uniform, 

e) flow is radially symmetric (as conditioned by a-d), 

f) water is instantaneously released from/enters into the storage as 

the hydraulic head descends/rises, respectively, and 

g) the wellbore radius is infinitely small, i.e. the well acts as a 

line sink/source with no self-storage. 

The last two assumptions are necessary only when the head response is 

time-dependent {i.e. transient). 

3.3.1 Transient head 

Distribution of transient hydraulic head in a radial flow field can 

be expressed in one dimensional form by writing Equation 3.5 in plane 

polar coordinates 

(3.7) 

The initial and boundary conditions posed by the assumptions are 



formulated as 

where 

h(r,O) =h0 

b(oo, c) =ho 

lim ah 
r=rw-0 [21tiT ar]=Q 

h 0 : initial hydraulic head, 

rw: wellbore radius, and 

Q: flow rate. 
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(3.8) 

Re-writing Equation 3.7 in terms of net drawdown/rise in the initial 

hydraulic head, i.e. s=ho -h(r, t) , and applying the Laplace transform 

method (Hantush, 1964) yields 

-
s(r,t) = Q Je-xdx=_g_W(u) 

41tT X 41tT 
u 

where x: integration variable, and 

w: constant-flux well function. 

{
u= Sr2 

4 TC 
(3.9) 

This solution, first introduced by Theis (1935) by analogy to the 

equivalent heat conduction problem, is now known as the Theis equation. 

The numerica 1 values of the function w are obtained from the series 

expansion of the exponential integral (Jacob, 1940; Tuma, 1987) 

1 u2 1 u 3 
W(u) =-y-lnu+u---+---··· 

22! 33! 
( 3.10) 
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where y=0.5772 (Euler's constant). 

The Theis equation is extensively used in practice despite being an 

oversimplification. The computation of the two unknowns (S and T) in 

Equation 3. 9 is accomp 1 i shed by means of graph ica 1 procedures such as 

type-curve matching (Theis, 1935) or straight-line plotting through the 

so-called logarithmic approximation (Cooper and Jacob, 1946). The latter 

is based on the fact that for a long testing period 

W(u) ~-y-In u (3.11) 

and hence 

s(r, t) =~ ln 2 · 25 Tt; 
41t T r 2 S 

(3.12) 

the semi-logarithmic plots of which form straight lines, regardless of the 

choice of the independent variable. Among these, the drawdown-time graph 

enables the determination of the transmissivity from the measurements in 

active wells. 

3.3.2 Steady head 

Steady-state implies that subsurface pressures have assumed a new 

state of equilibrium in response to the induced disturbance. As the 

drawdown is a continuous function of time (Equation 3.9), equilibrium is 

theoretically impossible. However, when the hydraulic gradient stabilizes 

(i.e. ~~~ 1 - ~~~2 =0) and/or transients are negligible (i.e. ah;at=O) 

after some period of pumping/injection, it is justifiable to assume that 

steady-state is attained (Lohman, 1972). 
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for oh/at=O, Equation 3.7 reduces to the Laplace equation 

(3.13) 

When integrated using the underlying boundary conditions 

h(R) =hR 

lim oh 
r=r w--.. o [ 2 tt r T or] = Q 

(3.14) 

the result is known as the Thiem equation {Lohman, 1972) 

s(r) =___Q_ ln r 
21tT R 

(3.15) 

where R is the radia 1 distance to the observation we 11. In the case of 

single-well data the initial hydraulic head is utilized as an estimate of 

the undisturbed head at a point outside the zone of influence. 

3.4 Nature of .easur~nts in active wells and well losses 

Pumping from porous media, under the assumptions of the Theis/Thiem 

equations (Equations 3.9 and 3.15}, results in an axisymmetric cone of 

depression representing the hydraulic head distribution within the zone of 

disturbance (Figure 3.1). According to Equation 3.15 the hydraulic heads 

measured simultaneously at any two points along a radial section in this 

zone should vary 1 inearly as a function of the logarithmic distance 

between these points. In practice, however, the heads measured in and 

around the vicinity of active wells are substantially lower than 

theoretically predicted {Figure 3.1). 



36 

As the fluid under the induced gradient moves from the radius of 

influence, through the porous medium, into the wellbore and up to the pump 

(or tubing) intake, part of its mechanical energy is lost to maintain 

motion. This loss manifests itself as the difference in hydraulic heads 

measured in the active well before and during pumping, i.e. the total 

drawdown (Jacob, 1947). It is recognized that the total drawdown consists 

of four distinct components (Rorabaugh, 1953; Bruin and Hudson, 1955) 

which in the spatial order of their contribution are {Figure 3.1) 

(3.16) 

where s 1 and sn: linear and nonlinear head losses due to flow resistance 

of the medium under laminar and turbulent conditions, respectively, 

se: exit head loss due to sudden enlargement of section and change 

in flow direction, and 

sw: wellbore head loss due to the wall friction within the well. 

The preceding discussion equally applies to injection for which: a) the 

sequence of the head 1 osses are reversed due to upcon i ng; and b) the 

symbol se represents the entry head loss due to sudden contraction and 

directional change of flow section. 

The first operational relationship between the total drawdown and 

pumping rate was introduced by Jacob (1947), 

s=BQ+CQ2 (3.17) 

where B and c: linear formation loss and well loss constants, 
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respectively, and 

r 1 : radius of influence. 

The quadratic exponent in the we 11 loss component originates from the 

fluid mechanics approximations of the exit/entry and frictional losses in 

pipes (Vennard and Street, 1982). The linear formation loss is as given by 

the Theis/Thiem equations (Equations 3.9 and 3.15). 

Rorabaugh {1953) recognized that above a critica 1 pumping rate, 

turbulent conditions dominate flow from a critical radius, rc, to the well 

face (Figure 3.1). As the rate increases the critical radius extends 

further away implying increasing contribution of the nonlinear formation 

loss. Consequently B and c are not constants in practice. However, to 

enable the graphical determination of these, Rorabaugh (1953) modified 

Equation 3.17 as 

s=BQ+CQn (3.18) 

where the exponent n accounts for variations from reference values of B 

and c. These expressions (Equations 3.17 and 3.18) constitute the basis 

for the analysis of step-drawdown tests. 

Measurements in an active well are also influenced by the zone of 

altered permeability immediately surrounding the wellbore. In the case of 

enhanced permeability (such as by gravel packing around water wells), the 

resulting head recovery is accounted for by adopting an effective well 

radius (Jacob, 1947). On the contrary, a zone of reduced permeability, 
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known as skin (van Everdingen, 1953; Matthews and Russell, 1967) around 

oil wells, increases flow resistance. The corresponding head loss is 

included in the well loss component of the total drawdown as {Ramey, 1982) 

(3.19) 

where F 9 is the skin factor and Dn is the constant reflecting a combined 

influence of the nonlinear formation and exit losses. 

Flow rate efficiency of a fracture (or fractures of a set) under the 

same gradient can vary significantly depending on the distribution of the 

effective flow area relative to the active wellbore intersection (Sharp 

and Maini, 1972). This argument was verified by an electrical analog study 

(Sundaram and Frink, 1983) and numerical simulations {Smith et al. 1987) 

of radial fracture flow. Such pronounced influence of the near well 

fracture geometry occurs because a large percentage of the pumping/ 

injection head is lost within a short distance of the wellbore. Therefore 

analyses of active well data assuming homogeneity at the scale of the 

narrow sampling window of the wellbore intersection may produce highly 

biased estimates of hydraulic properties. Observation wells offer the 

advantage of avoiding this bias as well as well losses, and of studying 

the inter-well connectivity. Aquifer/reservoir scale hydraulic 

characterization based on multiple observation wells is more dependable in 

strongly heterogeneous media in which the flow pattern may substantially 

differ from the assumed one. 
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3.5 Single-well constant-flux tests 

As exp 1 a i ned in Section 3. 4, head measurements in active we 11 s 

during constant-flux tests are altered by an additional, constant amount. 

The slope of the data plot (s vs. log t:) from the late (infinite-acting) 

period therefore yields a transmissivity estimate using Equation 3.12. 

This estimate, although free of the effects of well losses and near-the­

well heterogeneities, pertains to the part of the reservoir controlling 

the rate of head changes during the late period. This part corresponds to: 

a) the matrix domain for the equivalent homogeneous porous medium models 

(EHM) in which overall fracture anisotropy is represented by a single, 

high-permeability, vertical/horizontal fracture intersecting the active 

well (Gringarten, 1982); b) the outer continuum domain for the composite 

models (CM} in which inner (concentric) domain consists of discrete 

(vertical/horizontal/inclined) fractures intersecting the active well 

(Karasaki, 1987); and c) the entire domain within the zone of influence 

for the double-porosity models (DPM) of uniformly fractured porous media 

(Streltsova, 1978). 

On the other hand, constant-flux test solutions based on the 

conceptual models such as EHM and CM predict that the early period is 

dominated by the fractures intersecting the active well (if wellbore 

storage and skin is negligible). This period, however, lasts only a few 

minutes in fractured water wells whereas in oil wells it usually is in the 

range of a few hours (Gringarten, 1982). Therefore it may not always be 

possible to capture data during this informative period. 

In summary, apart from determining the magnitude of well losses and 
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of near-the-well bias in head measurements in active wells, the hydraulic 

characteristics and attitude of these fractures also modify the response 

patterns during the early period of testing. Recognition of these 

relations enables the assessment and improvement of the quality of the 

inferences made particularly through single-well testing. The constant­

flux test methods usually conducted by means of a single well are examined 

below from this standpoint. 

3.5.1 Pressure build-up or recovery tests 

In producing oil fields, build-up tests are frequently used in place 

of constant-flux pumping tests, the ana lyses of which require uniform 

initial head distribution in the reservoir (Matthews and Russell, 1967). 

It is also a common practice in water well testing to record the head 

recovery in the wellbore after a constant-flux pumping/injection period. 

Analysis of the recovery data produces a check value for the 

transmissivity {lohman, 1972). 

The recovery upon stopping product ion is mathematically expressed by 

superposing the temporal variations in head as a result of hypothetical 

injection and continuing production at the same point and rate (Theis, 

1935). Assuming no change in the transmissivity and storativity at the 

start of pumping and recovery, and utilizing the logarithmic approximation 

(Equation 3.12), 

s 1 ( t 1) = Q ln ..E.. 
41t T t 1 (3.20) 

where s 1 is the residual head {i.e. difference in head at the start of the 
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actual pumping period and any time during recovery), and c' is the time 

elapsed since the pump was shut-off. The transmissivity value is 

calculated from the slope of the data plot (s1 vs. log t/t1 ). It should 

be noted that the influence of well losses developed during the actual 

pumping period propagates into the recovery period in the form of a delay 

(in the actual process) during which formation pressure at the wellbore 

face equilibrates with the pressure in the packer-isolated interval and 

reaches the theoretical level predicted by the Theis equation (Equation 

3.9). 

3.5.2 Step-drawdown tests 

The optimum well yield, the total drawdown at a desired pumping 

rate, and changes in the efficiency of a well after being used or 

developed are the essential information needed in the design of production 

and drainage wells and well fields. The necessary information can be 

extracted from a step-drawdown test, originally suggested by Jacob (1947) 

to quantify the well loss. The standard procedure to conduct this test is 

to record the total drawdown while increasing the pumping rate in stepwise 

manner. The well loss constant (and the exponent) are calculated from the 

slope of the data plotted in the following formats by rearranging: a) 

Equation 3.17 as 

and b) Equation 3.18 as 

s -=B+CQ 
Q 

(3.21) 
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(3.22) 

With the latter method the linear formation loss constant is repeatedly 

estimated until a straight line of slope (n-1} is obtained. 

The actua 1 extent and pumping rate dependence of the head loss 

domains of Equation 3.16 are not considered in the graphical solutions. 

This is probably the main reason that tests in water wells yield values of 

the exponent as high as n = 2 . 5 ( Rorabough, 1953) and even up to n = 3 . 5 

(Lennox, 1966). Theoretically the value of this exponent should equal 2 

for exclusively linear flow as well as for linear flow with an abrupt 

transition to fully turbulent nonlinear flow within the medium. The 

existence of a long transitional nonlinear flow domain should reduce the 

value to less than 2. Any changes between the test steps such as stress­

induced permeability reduction around wells, particularly in 

unconsolidated media, may substantially contribute to the deviations cited 

in the literature. 

llell efficiency 

Since the linear formation loss is an inevitable consequence of 

fluid movement through porous media, well efficiency is referenced to this 

loss as (Rorabaugh, 1953} 

E = BQ 
W' s (3.23) 

According to this definition, the efficiency of a well can be improved by 

reducing the well loss and especially the nonlinear formation loss. This 
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can be achieved by applying methods such as gravel packing and improving 

screen design in water wells {Kruseman and de Ridder, 1970), acidization, 

sand propping and hydraulic fracturing in oil wells (Baker, 1955; Matthews 

and Russell, 1967) and enlarging well radius in general. 

3.5.3 Geotechnical per.eability tests 

The need for in-situ determination of permeability arises from the 

presence of heterogeneities in rock masses that cannot be tested in the 

laboratory at the scale/complexity with which they contribute to the bulk 

permeability. From the geotechnical point of view, in-situ information is 

crucial to delineate the distribution of seepage forces around engineering 

structures (Cedergren, 1988). In this context, field permeability values 

are obtained through well testing, generally based on steady-state 

approximation. This is adequate in engineering design, especially at 

shallow depths of investigation where the well head stabilizes relatively 

fast due to high permeability of fractures (Maini et al. 1972). 

Constant-flux pumping/injection permeability tests are usually 

conducted in packer-isolated intervals in order to profile vertica 1 

conductivity and/or concentrate on the depths/features of interest along 

the fractured wells. The pumping tests require expensive large wellbores 

and are limited to saturated zones. Therefore the injection tests (also 

known as water pressure or lugeon tests), although prone to the clogging 

effect for there may be impurities in the test water (Cedergren, 1988), 

are routinely applied in site investigations. 

Because of cost concerns and the desire to obtain a representative 
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sample of local permeabilities, much effort is focused on single-well 

tests. The permeability derived from the single-well injection tests is a 

local value (Louis and Maini, 1970), even for a single fracture, and only 

the fracture(s) directly intersecting the wellbore influence the results 

{Zeigler, 1976; Rissler, 1978). Considering the latter and assuming that 

fractures occur in orthogona 1 sets, we 11 bores are reconnended to be 

drilled normal to each set in order to derive permeability independently 

{Louis and Maini, 1970; Maini et al. 1972). The penmeability values can 

then be used either in a discrete (statistical) fracture network or in an 

anisotropic continuum model to study seepage and the alternative remedies. 

ProbleiiS and Ethod oF analysis 

The flow rate response of a packer-isolated fracture under high 

injection pressures may be significantly altered, in addition to well 

losses, by (Louis and Maini, 1970; Maini et al. 1972; Zeigler, 1976; 

Cedergren, 1988): a) the enlargement of fracture aperture; b) leakage of 

packers; and c) redistribution and/or washing out of filling materials. 

Assuming the confining blocks and the fracture to be extensive, aperture 

changes are limited to the elastic deformation of the matrix if injection 

pressures are be low the overburden pressure. Low pressures a 1 so help 

control the leakage problem and the nonlinear formation loss. In general 

practice the causes altering the flow rate response to pressure increment 

are recognized from various nonlinear signatures on the flow rate-pressure 

graphs drawn from multistage injection test data. The graphic format of 

Equation 3. 21 is more appropriate when used as for the step-drawdown 
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tests. 

In the range where the nonlinearity is due solely to well losses, 

the analysis of single-well permeability tests can be based on the 

formulation of the head loss components (Equation 3.16}. For a steady, 

radial, two-regime flow {i.e. one in which linear and nonlinear domains 

co-exist as specified for Equation 3.18) through a rough fracture, the 

relationship between the net head change in the active well and flow rate 

is approximated by (Rissler, 1978) 

Similar forms of this equation were also derived by Rorabaugh (1953), 

Baker ( 1955) and Bruin and Hudson {1955}. The express ions for the 

conductivity and friction factor in the linear and nonlinear formation 

loss components (Equation 3.24), respectively, are selected from Table 2.1 

according to the relative roughness of the fracture. Details of the 

derivation in a fully explicit form of Equation 3.24 and the selection of 

the roughness-dependent parameters can be found in Section 4.5 for the 

generalized formulation of flow through arbitrarily oriented fractures. 

3.6 low-per.eability .edia tests 

It is contemplated that hazardous wastes might be disposed in low­

permeability {crystalline, fractured) media at great depths. The high 

risks associated with the containment of these wastes in the repositories 

demand different well testing procedures and analysis methods for 

hydraulic characterization of such unusual media. A thorough description 
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of the groundwater system (under probable field gradients) and therefore 

of the effective fracture network is essential for an accurate portrayal 

of the migration patterns for the released contaminants. Well testing in 

this context is focused on defining the network mainly at the scale of a 

constituent fracture (Wilson et al., 1979; Doe et al., 1982). 

Transient single-well test methods (i.e. constant-head injection, 

slug and pulse tests) are best suited for estimating the aperture, extent 

and connectivity of the packer-isolated fracture(s) in low-permeability 

media (Wilson et al., 1979; Doe and Remer, 1980; Doe and Osnes, 1985). 

These parameters are combined with other geometrical observations such as 

orientation and spacing to form statistically equivalent networks (Doe et 

a 1., 1982). 

3.6.1 Constant-head injection tests 

These tests can be rapidly applied over a wide range of 

permeabilities and are free of wellbore storage effects (Doe and Remer, 

1980). The test procedure involves injecting fluid into a packer-isolated 

section under constant-head and recording the flow rate decline. Employing 

the analogy between a single fracture and a confined aquifer {Doe et al., 

1982), the basic solution becomes the same as that of constant drawdown 

tests in extensive confined aquifers (Jacob and Lohman, 1952) 

Q(t} =21tTsG( Tt) {3.25) 
Sr2 .,. 

where G is the constant-head well function and s is the induced head 

change in the active well. The definition and the numerical values of the 
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function G and the associated type curve (log G vs. log Tt:/sr!) are 

given by Lohman (1972). 

A data plot (log Q vs. log t) from a single fracture test may 

revea 1 up to three tempora 1 phases: a) an in it i a 1 infinite response 

period; b) a steep decline signalling a (partly) closed or low 

permeability boundary; and c) stabilization indicating induced leakage or 

network connection (Doe et al., 1982; Doe and Osnes, 1985). The 

transmissivity and storativity of the fracture are obtained using curve 

matching of the first section of the data plot. The distance to the 

(closed or constant-head) boundary can be determined from an empirical 

relation such as that of Uraiet and Raghavan (1980) 

( 
Tt )

1

'

2 

- b 1 rb- -- +r 
S 0.11t "' 

(3.26) 

where rb is the distance to the equivalent circular boundary and tb is 

the time at which the boundary is felt. 

The main limitation of this test methodology is the difficulty of 

obtaining early time data in rigid and/or finite fractures (Doe and Osnes, 

1985). Additionally, flow rate dependence of the well losses and time 

dependence of fracture opening complicate data analysis from the early 

response period. 

3.6.Z Slug and pulse tests 

Both tests consist of instantaneous elevation or lowering of the 

head in the test interval and monitoring the decay or recovery, 
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respectively. Slug tests are conducted by addition or removal of a known 

volume into the test section through the open tubing whereas pulse tests 

involve~ pressurizing or de-pressurizing a packer-isolated interval. This 

difference in producing the head change translates into different boundary 

condition expressions. Accordingly the flow rate~ for example, into the 

fracture equals (Bredehoeft and Papadopulos~ 1980): a) the rate of fluid 

volume decrease in the open tubing during slug tests, i.e. 

2 I T oh (Is, t;) =7t I2 olr ( t) 
1t s or c at {3.27) 

and b) the rate of volumetric expansion of fluid in the pressurized 

section during pulse tests, i.e. 

oh (rs, t) alu• ( t) 
27tr T =V.: o pg-~~~ 

s ar 0 1 at (3.28) 

where r 9 : radius of the wellbore in the test interval, 

rc: radius of the open tubing, 

V0 : initial fluid volume in the test interval, and 

H•: head in the tubing or test interval. 

The analytical solution simulating the head transient during a slug 

test in a finite diameter well in a confined aquifer is of the form 

(3.29} 

where H; is the initial head in the tubing and F is the pulsed-head well 
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function the definition and numerical values of which were first 

introduced by Cooper et al. (1967). This solution is also valid for pulse 

test response when, from Equations 3.27 and 3.28, the following 

substitution is made 

(3.30) 

Successful applications of this solution for both tests require limiting 

the head increments to the lowest possible level to prevent fracture 

opening and to minimize well losses during the early period. 

The field observations can be evaluated by matching the data plot 

(H./H~ vs. log c) to one of the type curves (H•!H;, vs. log Tt/r~). Data 

collected during the 50 to 80 % decay period is sufficient for this 

purpose {Bredehoeft and Papadopulos, 1980). However, type curves for large 

variations of the group parameter, r!S/r~ (Equation 3.29) are very 

similar in shape and therefore transmissivity is the only reliable 

estimate from these tests (Cooper et al., 1967). 

The fracture volume influenced by these tests at the end of the full 

decay of a given head increment is a function of the radius of the 

tubingjwellbore and storativity of the fracture. On the other hand the 

length of time required for percent decay is solely determined by the 

transmissivity for a given head increment, tubing/wellbore radius and 

storativity. The range of transmissivity over which these tests apply is 

determined by this length of time which should be short to be practically 

observed, but not too short to obtain sufficient data free of wellbore and 
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instrumental effects. In this sense Pulse tests are adequate for very 

tight fractures (e.g. 2b< 20~-Lm) and are therefore complementary to 

constant-head injection tests (Wilson et al., 1979). 

The closed boundary is felt as stabilization of head at an 

incomplete decay whereas a constant-head boundary should accelerate full 

decay. The distance to the equivalent circular boundary of a single 

fracture can be estimated from the total volume change at the time the 

boundary is felt. 
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Figure 3.1. Radial half-section through the cone of depression developed 
upon pumping from a confined aquifer/fracture under the Theis/Thiem 
assumptions. Note the actual (A) and theoretical {T} head profiles, the 
components of the total head loss, and the corresponding flow domains. 



4 MATHEMATICAL liiJDELS FOR WELL TESTS IN ACUTE FRAC~E-MELLBORE SYSTEMS 

4.1 Introduction 

The review in Chapter 3 demonstrates that the attitude as well as 

hydrau 1 i c properties of the fractures intersecting an active we 11 may 

become important system parameters when the data being evaluated is from 

the active well (and the early test period, if the response is transient). 

The main purpose of this chapter is to develop analytical well test models 

for evaluating such data. A brief account of the most relevant literature 

is given in Section 4.2. The methodology of the model development 

described in Section 4.3 provides a firm ground on which the problem is 

formulated. The analytical solutions to the general diffusion equation 

developed in Section 4.3 are presented in Section 4.4 for transient and 

steady constant-flux tests. At the end of Section 4.4, potential theory is 

utilized to delineate the flow network and the zone of influence in acute 

systems during tests under initially non-uniform head conditions. The 

likelihood of nonlinear flow regime and its influence on the observed head 

changes and hence the aperture (or transmissivity) predictions are 

addressed in Section 4.5 where a general formulation is introduced. 

Section 4.6 provides an overall discussion for various models proposed and 

also includes a subsection addressing the natural extension of the basic 

concepts to refine estimates of other well test models. 

4.Z Previous studies relating to acute syste.s 

No well-test models that consider the system intersection angle as 

a variable that controls the intersection area and alters the flow pattern 
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and head distribution in the fracture were encountered during the course 

of this study. The mode 1 s based on a hor i zonta 1 or vert i ca 1 fracture 

intersecting a wellbore (such as outlined in Zeigler (1976) and Gringarten 

(1982)) form the end members of a general system model in which both 

fractures and wellbores can change attitude. Another end member was 

conceived by Louis and Maini (1970) assuming the wellbore to be orthogonal 

to an inclined fracture. 

Cinco-Ley (1974) developed a unique model simulating the transient 

response to a constant-rate production of a slab reservoir as a function 

of the fracture-wellbore intersection angle. Since the fracture in this 

model was considered to be a plane sink, the intersection angle merely 

changed the reservoir volume to be drained. Through a numerical simulation 

of the steady injection tests in unsaturated zones, Rissler (1978) 

evaluated the influence of fracture inclination in acute systems composed 

of a vertical wellbore intersected by an inclined fracture as well as in 

orthogonal systems with inclined fractures. In order to account for the 

dominance of the intersecting fractures on the near wellbore flow, 

Karasak i ( 1987) conceptua 1 i zed the fractured medium as two concentric 

zones: the inner zone composed of a vertical, horizontal or inclined 

intersecting fracture (or fractures with identical hydraulic properties 

and attitude) and the outer zone of a three-dimensional, well­

interconnected fracture network. For the case of an inclined fracture, the 

inclination was assumed to produce a three-dimensional connectivity 

between the two zones leading to a spherical flow field in the outside 

zone reducing to radial flow in the inner zone (or vice versa). 
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4. 2 Methodology 

Theoretical basis 

The Darcy law (Equation 2.2) in vectorial form can be written as 

v=-Kgrad(h) 
{

grad=_E_ ii . ax . ~ 
~ 

(4.1) 

where ii is a unit vector. The velocity and gradient vectors at any point 

are co-linear in isotropic media (i.e. where conductivity is a scalar). 

With regard to their definition, the gradient vectors are normal to the 

equipotential surfaces (delineated by h=const.) and the streamlines are 

tangent to the velocity vectors. Therefore, all equipotential surfaces and 

(instantaneous) streamlines intersect each other at right angles (Rouse, 

1961). This deduction also holds for turbulent two-dimensional flow in 

homogeneous, isotropic media (Bear, 1972). Furthermore, in such media, the 

streamline pattern in an induced flow field is solely controlled by the 

geometry of the flow domain for an initial head distribution. These 

theoretical considerations underlie the assumptions necessary to validate 

specific flow patterns conceptualized to form during well tests. 

The inner boundary of a convergent/divergent flow field in a 

fracture is the intake/out let sect ion at the fracture-we llbore 

intersection. This section coincides with the innermost equipotential 

surface to which streamlines will be normal. Provided that the fracture 

void space is homogeneous, isotropic and extensive and that the head 

distribution before flow is induced is uniform, streamlines will remain 

normal and hence straight. Since the induced head distribution along all 
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these streamlines will be identical, equipotential surfaces pass through 

points of equal distance from the wellbore face. Again for this reason, 

most analytical models of well tests are formulated in plane-polar 

coordinates which is best suited to describe the head distribution along 

straight radial streamlines. 

Description of the conceptual .ode1 

It is clear from the preceding discussion that the geometry of the 

inner boundary determines the streamline pattern and subsequently the head 

distribution. The boundary geometry is, in turn, determined by the angle 

of intersection between a fracture and the wellbore. Here, the fracture is 

thought of as a parallel plate conduit, an idealization theoretical 

aspects of which are extensively discussed in Chapter 2. For parallel and 

orthogonal intersections (Figure 4.l.a), the inner boundary outline are of 

linear and circular forms, and the resulting streamlines are parallel and 

radial, respectively (Figure 4.1.b). For acute intersections, models based 

on assumptions constraining streamlines to these forms provide approximate 

estimates, the accuracy of which could not be quantified previously. 

Acute fracture-wellbore intersections (Figure 4.l.a) produce 

intake/outlet sections that are elliptical in plan view (Figure 4.l.b). 

For a given wellbore radius, as the ratio of the axes of the ellipse 

varies with the intersection angle, the streamline pattern is not of a 

fixed form but a general one (Figure 4.l.b). The streamline pattern, given 

that the head distribution is initially uniform, is independent of the 

inclination of the fracture-wellbore system with respect to datum. 
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Justification for single fracture syste. .odels 

Fluid exchange between fractured rock masses and wellbores generally 

takes place via a limited number of fractures (Sharp and Maini, 1972). 

These fractures contribute to the total flow rate in varying proportions 

and form fracture-wellbore subsystems. The contribution of each subsystem 

is determined by the attitude and hydraulic properties of its fracture 

component. For example, the fracture with the largest aperture in the test 

section dominates the flow rate (Rissler, 1978; Doe and Remer, 1980) given 

that all the fractures are parallel and identically connected to the flow 

network. 

In well testing practice, it is equally essential to understand the 

interactions at the subsystem level. For example, oil wells are often 

terminated at the interval where the first significant mud loss occurs 

generally because of the presence of a single dominant fracture (Baker, 

1955}. Hydraulic fracturing for the stimulation of fluid recovery wells 

typically creates a single fracture dominated flow condition. Another 

conmon case is where a single fracture is packer-isolated in the test 

section. 

Significance of total head in convergent/divergent flatts 

For viscous, incompressible, established flows through uniform 

conduits, the (weighted-mean) total head across a flow section is given by 

the modified Bernoulli equation (Rouse, 1961) 

v2 
H=h+a.-

2g 
(4.2) 
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where H: total head {or total mechanical energy per unit weight), 

v 2 /2g: velocity (or kinetic) head, 

": kinetic energy correction factor for non-uniform velocity 

profiles, and 

v: average velocity calculated from the continuity condition. 

In such conduits, the difference in the total head between two sections is 

AH=Ah (4.3) 

which verifies that the driving force of the fluid movement, i.e. the 

gradient, can be conveniently expressed in terms of the hydraulic head 

rather than the total head. However, when the area of flow at each of 

these sections is different, both the magnitude and the profile of the 

velocity varies, 

(4.4) 

In convergent/divergent flows, velocity variations occur regardless 

of the conduit geometry. For example, fluid particles flowing toward a 

well through a uniform parallel plate accelerates in response to narrowing 

flow area to maintain the continuity in volumetric flow rate. This 

phenomenon is accommodated by the continuous transformation between 

hydraulic and velocity heads. Subsequently, the irrecoverable losses in 

the energy of fluid can be directly depicted only in terms of the total 

head (Figure 4.1.c). In conclusion, the Darcy law (Equation 2.2 or 4.1) 

and other flow equations discussed in Chapter 2 must be re-written in 

terms of the total head in order to be adapted to the formulation of well 
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flow problems, especially wherever the velocity head differences are 

expected to be significant. 

4.3 Mathe.atical for.ulation of the proble. 

The first step in the development of analytical models to simulate 

well tests {and any subsurface flow problem) is to write the diffusion 

equation (e.g. Equation 3.5) in appropriate coordinates. The purpose of 

this section is therefore to introduce the derivation of this fundamental 

differential equation, for the present problem, for which analytical 

solutions will be sought. 

In a (convergent) flow field displaying the general streamline 

pattern, the net accumulation of fluid mass during a finite period within 

an elemental volume bounded by (concentric) equipotential surfaces may be 

expressed by 

A t:(r11 .. u (2b) (p v1 ) -rj1 (2b) [ (p v1 ) +A< p v 1 ) I) =rj1 (2b) Al (q> p) ~~· .. c 

{4.5) 

where r is the perimeter of the equipotential surfaces passing through 

points at distances 1 and 1+41 from the wellbore face, and v 1 is the 

average velocity normal to these surfaces. Obviously, it is not possible 

to proceed from Equation 4.5 unless the perimeter of the equipotential 

surfaces can be formulated as a function of the distance from the wellbore 

face. The derivation of the perimeter expression for the general 

streamline pattern is presented in Appendix A. The resulting functional 
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relationship is (Equation A.lS) 

rlz=21t (e+l) (4.6) 

where e is the perimeter of the ellipse divided by 21t. Substituting 

Equation 4.6 in Equation 4.5 and dividing both sides by the elemental 

volume, rll {2b) ~1, 

(4.7) 

Passing to the differentials {and remembering that v 1 11 > v 1 11.A1 ), 

(4.8) 

Neglecting the density variations along streamlines (i.e. ~~ -o), and 

substituting the velocity term with the Darcy law {Equation 2.2) and the 

right hand side with Equation 3.2 (both re-written in terms of the total 

head) 

(4.9) 

which is the desired diffusion equation. By taking ah/ot=CJH/at, it is 

also assumed that the velocity field is steady. Since, by the definition, 

the velocity term in Equation 4.2 represents an average of the flow 

section, Equation 4.9 can also be written as 

0Z H + ~ aH _ S aH 
a12 <e+l> a1- Tat (4.10) 
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which is the counterpart of Equation 3.7. However it should be noted that 

the solution domain in Equation 4.10 starts from the wellbore face whereas 

in Equation 3.7 from the wellbore axis. 

4.4 Analytical .adels of constant-flux tests 

In this section, solutions of Equation 4.10 corresponding to the 

Theis and Thiem equations {Equations 3.9 and 3.15) are presented. The 

assumptions underlying these solutions are specified in the following 

{using the same order as in Section 3.3): 

a) the fracture is homogenous and isotropic in aperture and 

roughness {i.e. parallel plate idealization is valid), of infinite 

extent (i.e. boundary effects are not felt during testing), and of 

arbitrary inclination, 

b) the matrix of the confining blocks behave as impermeable {under 

induced vertical pressure differentials), 

c) the well intersects the fracture at an arbitrary angle, 

d) the hydraulic head distribution prior to testing is uniform, 

e) the streamline pattern is not axisymmetric but of a general type 

(as conditioned by a-d), and 

if the head response is transient, 

f) water is instantaneously released from/enters into the storage as 

the hydraulic head descends/rises, respectively, and 

g) the test section is a short, packer-isolated interval so that the 

wellbore storage is negligible, but the wellbore has a finite 

diameter. 
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Attention needs to be drawn particularly to the assumption (e) which 

provides originality to the following solutions. As the equipotential 

surfaces approximate circular rings (i.e. e+l = 1) at some distance from 

the wellbore face (Figure 4.1.b), it may be allowed to assume more 

reasonably that the fracture is of finite extent and connected to a 

laterally extensive fracture flow network (Karasaki, 1987). Naturally, any 

differences between the hydrau 1 ic properties of the network and the 

fracture should be reflected in the observed response pattern. 

4.4.1 Transient head 

The preceding assumptions lead to the initial and boundary 

conditions, 

H(l,O) =h0 

H( oo, t;) =h0 

1 im [2 1t ( € + 1) T B!!] = Q 1-o a1j 

(4.11) 

where the initial head level is chosen as datum (i.e. h 0 =0). Employing 

the Laplace transform method and the initial condition, the diffusion 

equation (Equation 4.10) can be reduced to the (zero order) modified 

Bessel equation 

{ e + 1) 2 cJ.2 H + ( e + 1 ) dH - P ( e + 1) 2 H = o 
d]_2 d1 

{ k=~ ~ s (4.12) 
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where H(l, S} =Sf [H(l, t)] and s is the transform variable. The general 

solution of Equation 4.12 is (Tuma, 1987) 

H=~I0 [k (e+l) 1 +~Ko [k (e+l)] {4.13) 

where I 0 and Ko are the (zero order) modified Bessel functions, and At_ 

and~ are constants. From the first boundary condition,H(co,S) =h0 /s=O 

and since Ka (co) =0 and I 0 (co) =oo, ~ =0. Hence 

(4.14) 

Applying the second boundary condition and taking the derivative of 

Equation 4.14 with respect to 1 

~=- Q/2tcT ~ 
s ek~ [.ke] 

(4.15) 

where ~ is the (first order) modified Bessel function. Substituting ~ 

(Equation 4.15) and k (defined in Equation 4.12) in Equation 4.14 

- Q [ Ko ['t'JS) l 
H=- 21t T s {6>,[S) ~ [Ca>/S] {

-r=.[S/T(e+l) (4.16) 
6> =.[S/Te 

Employing the inverse transform of the function in the main brackets given 

by Carslaw and Jaeger (1959) results in the desired solution 

H(l, t> =-_Q_ z(_E_, ..!..) 
4 1t T (&)2 Ca> 

where 

{ 
t/6)2 = tT/ Se2 (4.17) 
-r/(&) = (e+l) /e. 



{

R= Jl. (x) Y0 ('t'/(a) x) - Yl. (x) J 0 ('t'/(a) x) 

x2 [Jf (x) + ~ <x> 1 
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{ 4.18) 

and Z is the acute intersection well function, x is the integration 

variable, J 0 , J 1 , Y0 and Y1 are the Bessel functions of zero and first 

order. A solution of the same form as Equation 4.17 was previously applied 

to the radial flow in orthogonal wellbore-aquifer systems with finite 

diameter wells by Hantush {1964). A short table of values for a function 

that equals (1/41t) Z was presented by Ingersoll et al. (1950). Thus, the 

transmissivity of a fracture forming an acute intersection with the active 

well can be predicted by matching the well head (or drawdown) vs. time 

graph to the type curve (Figure 4.2), drawn from these values 

corresponding to 't'/(t) =1 (i.e. the wellbore face). On Figure 4.2, the 

acute intersection type curve is compared with that of the line source 

solution of Theis {1935} in order to demonstrate another advantage of the 

present solution. 

4.4.Z Steady head 

The diffusion equation (Equation 4.10) reduces to the Laplace 

equation when it can be assumed that oH/ot=O 



1 aH =o 
(e+l) ol 
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(4.19) 

The boundary conditions for steady constant-flux tests in acute systems 

are 

H(L) =HL 

lim [21t (e+l) Tat!] =Q 
1-o olj 

(4.20) 

where L is the distance to the point of measurement. Following the 

standard integration procedure for these conditions (Equation 4.20), 

s(l) =_Q_ ln( e+l) 
21tT e+L 

(4.21) 

The zone of influence in unsaturated zones 

In many cases, an acute system is created by a vertical wellbore 

cutting through an inc 1 i ned fracture. When the in it i a 1 heads are not 

uniformly distributed, the pattern of streamlines will deviate from that 

of the uniform heads (Figure 4.1.b). This situation is frequently 

encountered during injection tests for foundation permeability 

determination in unsaturated zones. It is therefore of interest to 

de 1 ineate the modified network of streamlines and equipotent ia ls to assess 

the compounded (asymmetric) bias in the fracture surface coverage in such 

test settings. 

The influence of fracture inclination can be simulated by the 

(fictitious) gravity flow (louis and Maini, 1970). Utilizing the linearity 
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of the Laplace equation {Equation 4.19), the resultant head distribution 

is obtained from the superposition of the solutions for the source 

(Equation 4.21) and gravity flows 

H(l,6) -H(L,6) = 
2 

() ln(e+l)+x(1,6) sin"i' 
1t T e+L 

(4.22) 

where x(l, 0) and 8 are as defined in Appendix A (Equation A.8 and Figure 

A.1, respectively), and C1 is the inclination of the fracture from the 

horizontal. Similarly, the stream function for the superposed source and 

gravity flows is 

.(1,8) = (Q l) r(1,6) -y(1,6) KsinCi (2b) 
21t e+ (4.23) 

where 

r(1,8) = ~"'p E(1t,cx) +1 tan-1( t~:) s1n s1n 
(4.24) 

y(1,0), 1t and ex can be obtained from Equations A.9, A.16 and A17, 

respectively, and E(K,cx) is the incomplete elliptical integral of the 

second kind. As the point of stagnation exists at 8=0, the general 

equation defining the zone of influence in acute systems is found to be 

lir(1,8) =0 (4.25) 

An example of the zone of influence upon injection in acute and orthogonal 

systems is illustrated in Figure 4.3. 

4.5 Total dra~own in steady-state, two-regi~ flows 

The solutions (Equations 4.21 and 4.17) developed in Section 4.4 are 
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based on the assumption of laminar flow (i.e. va 1 idity of Darcy law). 

Therefore the drawdown predicted by these solutions represents the linear 

formation loss component of the total drawdown (Equation 3.16). 

Considering that the turbulent flow domain is generally limited to near 

wellbore region where the velocity is largest and that the onset of 

turbulence is facilitated during injection by the intersection geometry 

(Maini et al., 1972), it is desirable to pursue equivalent solutions for 

the turbulent flow conditions. This is particularly important for steady­

state injection tests where focus is on the near wellbore environment. 

The relationship between the total head gradient and the average 

velocity in a fully turbulent flow domain is given by the Missbach 

equation (Equation 2.23) 

dH =11\? 
dl { 

- 1 
,_ 4g (2b) (4.26) 

where 11 is as defined in Equation 2.27. Substituting this in the equation 

of continuity (Vennard and Street, 1982) 

Q=vA { A=21t (e+l) (2b) (4.27) 

and integrating between any two points within the domain yields 

(4.28) 

where sn is the nonlinear formation loss component of the total drawdown 

(Equation 3.16). 

With analogy to the pipe flow studies (Vennard and Street, 1982), 

exit and wellbore losses in fracture-wellbore systems can be modeled as 
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linear functions of the velocity heads at the inlet/outlet section and 

within the wellbore, respectively, as in Equation 3.24 (Rissler, 1978). 

Hence, introducing the concept of the critical distance and writing the 

conductivity in terms of the aperture, the expression of total drawdown 

for the entire flow system results 

s= 6 Vf Q [ln (e+108) -ln {e+l ) ]+ 
g'tt (2b) 3 c 

.:l 0 2 ( ...!. _ 1 ) + ~ 0 2 + ~ 0 2 

16 g 1t2 {2b) 3 e e+ lc e 8 g1t 2 e2 (2b) 2 
W' 2g1t2 r! 

(4.29) 

where f: conductivity modification factor (Equation 2.20), 

1 0 s: distance from the wellbore face to the outer boundary, 

lc: critical distance at which an abrupt transition between 

laminar and fully turbulent flow conditions is assumed to take 

place, and 

~e and ~w: empirical exit/entry and wellbore loss coefficients, 

respectively. 

The critical distance can be estimated from 

1 = Q -e 
c v 1tRec { 

v- Q 
- 2 1t ( e + 1) { 2b) (4.30) 

where Rec, the critical Reynolds number, can be computed as explained in 

Section 2.4.2 for a given estimate of the relative roughness of the 

fracture. This estimate is also necessary to compute the friction factor 
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in the nonlinear flow domain (Table 2.1) and the conductivity modification 

factor in the linear domain (Equation 2.20). Therefore, the predictive 

ability of this semi-analytical model of steady, constant-flux tests 

(Equation 4.29}, within the limitations of its assumptions, is primarily 

based on the estimate of the relative roughness. 

The variations in the magnitude of the exit/entry loss coefficient 

(Equation 4.29) as a function of the intersection angle is investigated by 

the laboratory study described in the following Chapters 5 and 6. In the 

meantime, differences in aperture predictions at the same injection head 

for various intersection angles are presented in Figure 4.4 by assuming 

that the total head at the wellbore face is known. 

4.6 Discussion 

A conceptual study undertaken to understand how the intersection 

angle between a fracture and a wellbore modifies the response lead to both 

transient (Equation 4.17) and steady-state (Equation 4.21) solutions for 

constant-flux tests in acute systems. No further assumptions other than 

those of the Theis/Thiem equations (Equations 3.9 and 15) were introduced, 

whereas the vertical wellbore and horizontal aquifer/fracture assumptions 

were lifted. The test models can simulate the head response in the entire 

range of intersection angles. These models offer a better physical 

understanding of flow around the fractured wells and exemplify flow 

analysis where the streamline pattern is asymmetric with respect to the 

origin. However, the use of the acute intersection models are as easy as 

their radial equivalents. Various aspects and practical implications of 
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these models are discussed below. 

The type curve depicted in Figure 4.2 indicates that, for all 

intersection angles, the transient response pattern is identical in the 

domain of the dimensionless time, t/~2 • It is also shown on Figure 4.2 

that for t/~2 ~25, the acute system response coincides with that 

predicted from the Theis (line source} solution (Equation 3.9). However, 

the real time t at which this is realized are delayed with reference to 

the orthogona 1 system by a factor of (ep/e90) 2 as the intersection angle 

decreases. In other words, the early period where the intersection angle 

dominates the response is longer for smaller angles. The delay factor 

(ep/e90) 2 reaches an order of magnitude at 13 ... 12°. 

The solution for steady response (Equation 4.21} predicts the linear 

formation loss, and therefore is directly incorporated in the model of 

total drawdown (Equation 4.29). The streamline-equipotential network that 

develops during tests under steady, laminar flow conditions in unsaturated 

zones can be analytically simulated using the formulation presented in 

Equations 4.22 to 4.25. Interestingly, the zone of influence is 

practically unchanged with the intersection angle (Figure 4.3). This 

observation is important in that individual permeability test results from 

acute systems with different intersection angles can be directly 

integrated in a rock mass model. 

The development of a model (Equation 4.29) to evaluate the steady, 

constant-flux tests in acute systems with rough fractures is of utmost 

practical significance. Based on this model, Figure 4.4 illustrates that 
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the fracture aperture for an acute system is overestimated by the 

orthogonal system model (Equation 3.24). The magnitude of the error at any 

head level is constant for a given intersection angle, and varies only 

slightly for different combinations of test variables because of the 

remarkable sensitivity of the total head loss to the aperture. Obviously, 

this magnitude will be somewhat different if one references the 

predictions to the head inside the wellbore and includes the intake/exit 

loss for that intersection angle. 

Looking at Figure 4.4 from a cost efficiency perspective, it becomes 

very clear that well losses can be significantly prevented by reducing the 

intersection angle using oriented drilling at the production levels. 

Similarly, efficiency of wells drilled by the identical procedures into 

the same medium may differ substantially if the fractures dominating the 

flow rate form different intersection angles in each wellbore. 

Furthermore, the necessity of mu lt ip le orthogona 1 dri 11 ing in 

determination of anisotropic permeability is unjustified as a single 

wellbore may be sufficient for this purpose. 

Equivalent radius concept in the evaluation of single-well tests 

Beside constant-flux tests, there are a variety of other single-well 

tests (Chapter 3) evaluation of which equally needs consideration of the 

fracture-wellbore intersection angle. Although specific models for each 

test type may be developed, at least through numerical inversion of the 

solution in laplace space (Stehfest, 1970), this is beyond the scope of 

the present study. However, it is noteworthy that the equivalent radius 
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concept as defined in Equation A.IS may be used to refine the estimates of 

the available solutions of the single-well tests. According to this, an 

acute fracture-wellbore system is replaced with an orthogonal system which 

has proportionally larger wellbore radius. Thus the influence of the acute 

intersection is reduced to a simpler problem of changing the wellbore 

radius. This approach can be extended to other solutions based on more 

complicated conceptual systems such as the composite model (Karasaki, 

1987) and the equivalent homogeneous medium model with wellbore storage 

and skin effects (Gringarten, 1982). 
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5 LABORATORY STWY OF FLOW TlllOUGH ACUTE FRACTURE-WELLBORE SYSTEMS 

5.1 Introduction 

The total head loss that occurs during single-well, constant-flux 

injection/pumping tests conducted through acute systems is formulated in 

Section 4.5 (Equation 4.29). As a semi-analytical equation, this: 

a) provides a basis for a controlled laboratory design and 

systematic analysis intended to develop a better understanding of 

flow mechanics in acute systems; and 

b) necessitates comprehensive testing to establish a fully 

functional expression. 

Accordingly, the objectives of the laboratory study are defined: 

a) to test the validity of the conceptual streamline pattern and 

study the flow interactions at the intersection under both pumping 

and injection conditions; and 

b) to determine the empirical relationship between the intersection 

angle and exit/entry losses related to sudden changes in flow area 

and direction at the intersection. 

Previous experimental work and the theoretical background are 

reviewed in Sections 5.2 and 5.3, respectively. Then the design features 

and fabrication procedure of the acute system models and the box frame are 

explained using detailed drawings (Section 5.4). Description of the 

experimental set-up also includes water circulation and instrumentation 

components. Finally, experimental design and test results are outlined 

(Section 5.5). Analysis and interpretation of experimental data are 

presented in Chapter 6. 
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5.2 Physical .odels of orthogonal syste.s 

Experimental research on flow through fracture-wellbore systems is 

focused on identifying causes of head losses in order to improve 

predictive radial flow models and/or minimize the well losses, for a wide 

variety of industria 1 app 1 ications. The influence of turbulence and 

surface roughness in radial flow was first studied experimentally by Baker 

(1955). He devised a physical model made of concrete to specifically 

simulate fractures in limestone reservoirs. In his mathematical derivation 

of a two-regime radial flow expression, parallel plate conductivity was 

employed in the linear regime, and roughness was expressed as a 

coefficient in the turbulent regime. This coefficient and the critical 

Reynolds number were determined as empirical constants. 

In an attempt to improve water pressure (lugeon) test analysis, 

Rissler (1978) tested the validity of theoretical and empirical one­

dimensional flow expressions (reviewed in Chapter 2) in describing 

divergent, two-regime, radial flow. His physical model consisted of a 

rigid, open and rough {radially isotropic) fracture with apertures as 

small as 10·• m. A satisfactory agreement between measured and calculated 

pressures was reported. Atkinson (1987) extended this to convergent radial 

flow in rough deformable fractures and addressed the problem of mine 

dewatering using vertical drainage wells. 

An extensive experimental study was undertaken by Murphy {1979) 

mainly to explore the influence of acceleration on convergent laminar and 

turbulent flow predictions. Tests with laminar flow through a rigid, 

smooth, open fracture verified pressure profiles obtained from a numerical 
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solution of Navier-Stokes equation (Equation 2.1) in radial coordinates. 

The study by Murphy (1979) is specifically concerned with the flow 

mechanism near the outlet of a geothermal recovery well. 

Experimental set-ups used in these earlier studies have been 

reviewed in detail to provide a viable, versatile and functional design in 

the current study. 

5. 3 Theoret i ca 1 basis for .ode 1 design 

Model design is centred around the Reynolds number concept (Equation 

2.19) which: 

a) allows generalization of the results obtained from experiments 

with physical models designed for one set of variables, and from a 

limited number of test runs; 

b) helps set an optimum range for flow rate and fluid temperature 

that will produce Reynolds numbers typical of field experiments; and 

c) provides flexibility in determining model dimensions (effective 

flow length, well radius, aperture) and boundary pressures, that 

will produce the targeted Reynolds numbers. 

Simulating the flow processes using the Reynolds number is reliable under 

hydraulically smooth conditions for which the friction factor is 

approximated as a function of only the Reynolds number for both (laminar 

and turbulent) flow regimes (Table 2.1). Otherwise, the friction factor, 

and therefore associated head losses, are partly or totally independent of 

the Reynolds number. The model testing should therefore be conducted under 

hydraulically smooth conditions (Table 2.1) unless the model fracture is 
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morphologically smooth {i.e. k/ Dh = o ) . 

5.4 Description of experi.ental set-up 

The overall experimental set-up (Figure 5.1) used in this work 

consists of a) three fracture-wellbore system models separately fastened 

to b) a steel box frame, c) scheme for water circulation, and d) 

instrumental components. It should be clear from the experimental 

objectives that the set-up is expected to simulate and control the 

conditions on which the mathematical model (Equation 4.29) is based. These 

can be stated as: 

a) the fracture is rigid (i.e. insensitive to changes in fluid 

pressure), of infinite areal extent, isotropic and homogeneous in 

hydraulic conductivity; 

b) hydraulic heads are temporally constant at the boundaries and 

initially uniform over the confined flow domain; and 

c) flow is isothermal. 

The fracture properties are intended to produce straight streamlines, and 

head distribution and flow temperatures are prescribed to ensure steady­

state tests. The following section explains how the above parameters are 

satisfied and other design features are decided. 

5.4.1 Design of acute syst~ .odels 

The intake/outlet flow area at fracture-wellbore intersections is 

the key factor causing differences in flow responses of parallel, 

orthogonal and acute fracture-wellbore systems (Figure 4.l.a). A plot of 
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normalized flow area vs. intersection angle (Figure 5.2) indicates that 

this difference should become significant for angles less than 40°. To 

capture these more pronounced effects of the intersection geometry, the 

design and fabrication of two models with 10° and 20° intersection angles 

were carried out for the laboratory study. An orthogonal model was used 

mainly to verify the performance of the experimental set-up as a whole. 

Figure 5.3 illustrates various design features of these models as 

discussed below. 

The areal dimensions of the models were determined on the basis of: 

a) an optimum effective length along which flow would fully establish and 

significant pressure differentials would develop; and b) a wellbore 

diameter which enables high Reynolds numbers to be reached at low flow 

rates and boundary pressures. A flow length of 0.27 m {0.28 m for 10° 

model) and a wellbore diameter of 25 mm were found to be satisfactory. 

Similar dimensions have been used in earlier models {Rissler, 1978; 

Murphy, 1979), but in different combinations. The short flow length of the 

models, however, requires the outer boundary to conform to the propagation 

front of the straight streamline flow in order to satisfy the assumption 

of infinite fracture extent. 

The acute angle between the wellbore axis and fracture plane, and 

the obliquity of the intake/outlet flow section produce directional 

variations in the streamline bending angle (i.e. in inertial loss) and in 

the geometry of the section {i.e. in flow resistance), respectively. 

Coupled with contraction/enlargement of the section during flow exchange 

between a wellbore and a fracture, directional dependence of injection 
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pressure profiles are likely very influential in preventing a straight 

streamline flow pattern. This demanded a detailed study of pressure 

profiles along typical arrays (Figure 5.3.a), coinciding with expected 

streamlines, at test Reynolds numbers, i.e. in addition to low rate tracer 

injection tests which confirmed streamline flow visually. 

Pressure holes were located so as to capture logarithmic variation 

in pressure. A few holes in each model were located on S.YJ1111etrical 

streamlines at the same flow lengths in order to check aperture 

uniformity. Wellbore pressures were measured at the well bottom parallel 

to the wellbore axis and at two upstream positions {for 10• and 20• 

models) to monitor flow structure and wellbore losses in inclined holes. 

Such pressure holes would likely introduce a slight disturbance in 

flow: an array of pressure holes along a streamline will record an 

increased disturbance downstream. In this study any such effect when 

recorded fell within the uncertainty range of pressure measurements, since 

readings on two radial arrays (Figure 5.3.a-90•) were almost identical 

with those holes at the same radial distance. 

Transparent acrylic (Plexiglass) sheeting was chosen as the model 

material on the basis of workability, flow visibility and cost. It was 

decided to use a sheet thickness of 25 RID to help maintain flexural 

rigidity and also provide adequate depth to support the pressure holes and 

adapters (Figure 5.3.c-Inset). This also allowed for two central 0.22 m 

diameter disks to be mounted in the same main plates in the design of the 

20• and go• models (Figure 5.3.c). This resulted in a more tedious model 

fabrication but enabled machine drilling of the 20• inclined wellbore and 
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reduced material cost and labour. The long span of the inclined drill 

section of the 10° system required the fabrication of a separate model 

(Figure 5.3.b). 

The intake/outlet sect ion becomes off-set for any aperture, 2b, 

other than that for which the we 11 is dr i 11 ed through the fracture. 

Quantitative analysis of test results from each model is therefore limited 

to that fabrication aperture, 2b. An aperture of 1 mm was decided upon as 

a compromise between possible flow rates, pressure heads and desired 

Reynolds numbers. The chosen aperture value is also within a range 

encountered in nature (Bianchi and Snow, 1968; Chernyshev and Dearman, 

1991). 

If any morpho logica 1 roughness is to be designed into the mode 1 

fracture, it should be isotropic and homogeneous, but these are 

technically difficult features to provide. A relative roughness of 0.01, 

for example, would limit tests to Re<sooo (Figure 2.2) if theoretical 

validity is to be maintained. The fracture surfaces were therefore left 

smooth ( k/ Dh;::; o ) , in the mode 1 s used here. 

5.4.2 Steel box frue 

Fluid pressure distribution and flow rate are extremely sensitive to 

aperture changes near the wellbore where pressure differentials are 

largest. Adjusting and maintaining aperture uniformity is therefore the 

most vital requirement for the reliability of the test results. A steel 

box frame {Figure 5.4.a) was designed to act as an internally rigid system 

under calculated test pressures. The resultant assembly, when the 
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plexiglass models were installed in the frame, simulated a fracture in a 

rigid rock mass cut through by a wellbore& 

The box frame contains two identical halves each consisting of four 

tie-beams with high flexural rigidity welded in parallel to two H-beams, 

thereby providing fixed ends& Each fracture model plate was fastened to 

the frame with twelve steel shoes {Figure 5646a-Inset)& These were 

distributed evenly and symmetrically and not to block pressure holes in 

any of the three models. The shoes allowed for alignment of boundaries and 

uniform adjustment of the aperture. The frame design permitted the maximum 

closure or opening of the fracture aperture to be calculated from measured 

linear strains. At maximum differential test pressures the frame allowed 

an aperture change of only 0.01 mm. 

5.4.3 Fabrication procedure 

The trial and error process of fabrication was eliminated by 

computer aided design of the models and box frame. Most of the fabrication 

was done by the Engineering Technica 1 Services faci 1 it ies of Memoria 1 

University. Similar procedures were followed during fabrication of all 

physical models. To extend the wellbore length and to accoRJDodate the 

push-in PVC connection pipe, thick plexiglass pieces were first fused onto 

the external surfaces of the plates. To avoid off-centring of the drill 

hole and to obtain the desired aperture, the model plates were clamped 

together with the aperture laminae placed in between. 

Whereas the 20° and 90° holes were machine produced, the 10° hole 

was manually drilled through a guide hole. In this model, a 400 mm 



84 

inclined section was completed at the prescribed 10• angle by successively 

enlarging a smaller guide hole. Some boundary irregularities at the 

intersection resulting from drill vibration were smoothed using plexiglass 

flakes dissolved in methyl chloride. No such problem was encountered 

during fabrication of other models. 

The large plates were cut to the theoretica 1 outer boundary geometry 

by a computerized lathe at the NRC Institute of Marine Dynamics. The 

pressure holes were drilled 1.5 11111 in diameter with square edges at 

calculated coordinates for accurate measurements (Goldstein, 1983). The 

holes were widened and threaded halfway for the pressure adapters (Figure 

5.3.c-Inset). Finally the threaded holes for bolting the frame shoes were 

drilled on external surfaces of the plates. 

5.4.4 Water circulation syste. 

The components of the water circulation system were designed such 

that steady-state, pumping and injection tests could be conducted with 

minimal change in the set-up (Figure 5.1). A polyethylene tank of 0.90 m 

diameter was used to accommodate the box frame and installed model. This 

tank has side-wall access for inclined wellbore sections, drainage and a 

thermocouple probe. The box frame, and hence the model fracture, was laid 

horizontally in the tank to provide mechanical stability, and minimize 

space and data analysis complications. The results, however, are 

applicable to systems of any orientation with uniform and constant 

boundary hydraulic heads. 

Reduction of injection pressure below vapour pressure at test 
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temperatures seems inevitable unless downstream pressures are high enough 

to compensate for the largest pressure drop at the entry vena-contracta. 

Wellbore pressure under vacuum pumping is also below the vaporization 

limit. This problem might be avoided by using a model tank that can be 

sealed and pressurized. However the results of earlier experiments with 

similar injection (Rissler, 1978) and pumping {Murphy, 1979) set-ups 

suggested that such an expensive option was unjustified. In both injection 

and pumping tests the vapour pressure limit was exceeded but no bubble 

formation was observed even at the highest flow rates. Large amounts of 

bubble formation would cause expansion and higher flow rate readings in 

the pumping set-up, and would violate the applicability of the Bernoulli 

equation based on the assumption of incompressibility (Equation 4.2). 

In steady injection experiments, a net maximum head of 2.2 m was 

reached by elevating the water tank. The required Reynolds numbers are 

easily produced by this natural hydraulic head. Water supplied to the tank 

was de-a ired through air vents and stabi 1 ized by the constant head 

apparatus. A valve located about 20 pipe diameters downstream from the 

flow sensor was used to regulate the flow rate. Water level in the model 

tank was kept below the level of the fracture to produce constant and 

uniform atmospheric pressure at the outer boundary. 

For steady pumping experiments the mode 1 tank was allowed to 

overflow to ensure constant water table level. A centrifugal (1/6 hp) pump 

was sufficient to withdraw water at the same flow rates as used in the 

injection tests. In both injection and pumping set-ups the upstream length 

of the pipe from the flow sensor was about 40 pipe diameters to allow flow 
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to be fully established. The wellbore itself was kept straight and 

consistent in section for more than 20 diameters to eliminate flow 

disturbances. 

5.4.5 Instru.entation 

Details of instrumentation and wiring are illustrated on Figure 5.1 

in an overall experimental setting. The data acquisition unit consisted of 

a plug-in card interfacing with a personal computer through a customized 

software that acquired and stored data in the required format. All 

measuring devices were connected to the card by an externa 1 term ina 1 

panel. Fluid temperatures were measured by a subminiature thermocouple 

probe inserted into the water in the model tank through its side wall. The 

open circulation of cold tap water provided very stable temperatures with 

less than ± 0.25 oc variation during a test run. 

Five solid state piezoresistive pressure transducers were used for 

both gauge and vacuum pressure measurements at twenty locations. Each 

transducer was connected to four manometer tubes with a 5 -way va 1 ve. 

Injection/withdrawal flow rates were measured by a paddlewheel flow sensor 

connected to a signal conditioner for computer interfacing. The pipe 

assembly housing the flow sensor was made portable for easy rearrangement 

between the injection and pump set-ups and for fast mounting alignment. 

A full bridge circuit strain gauge measurement technique was used to 

monitor any deformation of the fracture that may have taken place. Two 

active gauges were fixed on central tie-beams to measure linear strain due 

to their flexure and two other "dunany" gauges on an H-beam for temperature 
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compensation. All were covered with the protective coatings for underwater 

operation. Strain gauge responses were calibrated by simultaneous direct 

LVDT measurements of deflection due to step loading at the mid-span. 

5.5 Experi~ntal design and test results 

The main parts of the experimental work were injection and pumping 

tests of the model fractures at the fabrication aperture. In order to 

detect Reynolds number dependent variations, each test was conducted at 

several flow rates. A series of test runs were performed at arbitrarily 

chosen, and occasionally repeated, flow rates to prevent the development 

of any systematic error in the readings. Water temperatures during each 

series of runs was kept constant to allow direct correlations of pressure 

measurements. 

Nonlinearities or unexpected changes in observations during step­

drawdown and other multi-rate tests often result from a combined effect of 

hydraulic opening/closure and turbulence. The influence of opening/closure 

of the aperture can be evaluated by adjusting the aperture manually and 

comparing the results with those obtained for the fabrication aperture. 

Since the wellbore axis becomes offset in acute systems with any change in 

aperture, it is also important to determine sensitivity of flow mainly to 

aperture change and somewhat to geometric structure at the intersection. 

Therefore this has been made an integral part of the systematic testing 

programme. 

Each model was mechanically adjusted to the fabrication aperture and 

the frame-model assembly then lowered into the model tank. Both injection 
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and pumping test runs were completed under identical settings. PARKER 

PRESTOLOK-type connecters (Figure 5.3.c-Inset) with polyethylene manometer 

tubing were ideal for fast mounting of the models, de-airing of the tubes 

and accessing background pressures. The model, while in the model tank 

(Figure 5.1), was then re-adjusted to the specific aperture value to be 

tested and the testing procedure was repeated. 

A total of twelve test series, each with an average of six runs were 

completed. The variables recorded during each run and the parameters 

characterizing each series are presented on Table 5.1 in testing sequence 

and in a format reduced to consistent metric units. Analysis of the data 

is the subject of the following chapter. 
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Figure 5.1. A generalized view of the experimental set-up with the frame-20• model 
assembly placed in the model tank. Water circulation in pumping tests is shown ~ 

schematically. "" 
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and b) plan view of the lower half frame with the model boundaries superimposed. 
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Table 5.1. outline of exper:imental. data fran steady flow tests with a:naoon 

set-up parameters for each run series. 

.mJN NO.- 1 2 3 4 5 6 7 8 SEr-UP 
-- = 

Q1: 0.423 0.281 0.215 0.170 0.515 0.758 0.639 8 : 20. 
T: 11.47 11.47 11.54 11.57 11.54 11.35 11.35 2b: 1.1 

h,}: 0.417 0.229 0.154 0.111 0.564 1.075 0.803 has= 0.00 
Rers= 4056 2692 2067 1634 4945 7246 6105 

Reas= 382 254 195 154 466 683 576 

Q: 0.810 0.757 0.681 0.182 0.288 0.443 0.202 B : 20° 
T: 14.58 14.35 14.59 13.57 12.84 13.68 14.10 2b: 1.1 
~: -0.931 -0.764 -0.541 0.397 0.269 0.012 0.377 has= 0.52 

RelB: 8395 7799 7062 1838 2858 4488 2070 
Reoa: 791 735 666 173 269 423 195 RJMPrnG 

Q: 0.363 0.229 B : 20° 
T: ll.91 11.78 2b: 0.6 
~: -1.226 -0.395 has= 0.52 

RelB: 3512 2213 

Reas= 331 209 RJMPDlG 

Q: 0.610 0.777 0.408 0.287 B : 20° 
T: 11.33 11.29 11.32 11.34 2b: 1.6 
~: 0.315 0.478 0.161 0.091 has= 0.00 

RelB: 5831 7411 3899 2739 
Reas= 550 699 368 258 

Q: 0.175 0.279 0.343 0.433 0.473 0.524 B : go· 
T: 16.21 15.69 15.65 15.80 15.59 15.61 12b: 1.1 
~: 0.263 0.560 0.782 1.167 1.390 1.694 jhos= 0.00 

ReiB: 3947 6207 7620 9643 10473 11614 
Reos= 188 296 363 459 499 553 I INJECI'ION 

Q: 0.292 0.183 0.395 0.454 0.481 0.391 B : goo 
T: 15.67 15.63 15.61 15.60 15.59 15.57 2b: 1.1 
~: -0.322 0.151 -0.947 -1.382 -1.599 -0.918 hoe= 0.52 

RelB: 6478 4057 8753 10056 10649 8646 
Reas= 308 193 417 479 507 412 FUMPING 

Q: 0.247 0.304 0.355 0.151 0.277 0.176 B : go· 
T: 11.22 11.21 11.17 11.16 11.15 11.14 2b: 0.6 
~: -2.037 -3.077 -4.170 -0.650 -2.568 -0.966 hos= 0.52 

RelB: 4907 6027 7038 2990 5491 3489 
Reas= 234 287 335 142 261 166 PUMPlNG 
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Table 5.1. cont. 1d 

RUN NO.- 1 2 3 4 5 6 7 8 SEr-UP 
-- -- -- = = -- --

Q: 0.383 0.498 0.600 0.661 0.346 s : go· 
T: 10.91 11.06 11.01 10.94 10.95 2b: 1.6 

hw= 0.439 0.701. 1.004 1.192 0.369 hos= 0.00 
Rera= 7548 9832 11842 13017 6817 

Reas= 359 468 564 620 325 nDECI'ION 

Q: 0.371 0.583 0.676 0.497 0.175 0.220 0.298 0.392 B : 10" 
T: 14.35 14.37 14.36 14.35 14.37 14.38 14.42 14.43 2b: 1.1 

hw= 0.183 0.327 0.401 0.262 0.072 0.091 0.134 0.1.96 hoe= 0.00 
Rera= 2086 3278 3804 2792 984 1235 1677 2211 
Reaa= 321 504 585 429 151 190 258 340 nDECI'ION 

Q: 0.193 0.312 0.366 0.537 0.601 0.664 0.375 0.451 B : 10° 
T: 14.54 14.52 14.49 14.46 14.43 14.39 14.39 14.39 2b: 1.1 

hw= 0.409 0.342 0.306 0.171 0.111 0.049 0.300 0.242 hos= 0.486 
Rera= 1089 1762 2068 3027 3385 3739 2108 2540 
Reas: 167 271 318 465 520 575 324 390 :roMPING 

Q: 0.182 0.283 0.323 B : 10° 
T: 15.11 15.02 14.92 2b: 0.6 
~: 0.090 -0.190 -0.312 hoe= 0.486 

RelB: 1042 1618 1845 
Reas= 160 249 284 RJMPDlG 

Q: 0.378 0.285 0.204 0.546 0.731 0.587 B : 10° 
T: 15.29 15.12 15.13 15.14 1.5.10 15.06 2b: 1.6 

llw= 0.075 0.043 0.029 0.121 0.179 0.132 hos= 0.00 
Ret a: 2178 1637 1171 3133 4193 3362 
Reaa= 335 252 180 481 644 517 nDECI'ION 

1
) Units: Q (ltjs) or (10-3 ·m3js); T (°C); h (m); 2b (nm) or (l0-3 ·m) 

2
) SUbscripts: w (wellbore); IB (inner boun::lary); OB (outer boun::lary) 



6 ANALYSIS AND DISCUSSION OF TEST RESULTS 

6.1 Introduction 

The second phase of the laboratory study involves critical 

examination of the experimental data outlined in Table 5.1 and fully 

listed in Appendix B. In this phase the objectives are two-fold: 

a) to assess the performance of the laboratory set-up; and 

b) to fulfil the general objectives of the laboratory study, i.e. to 

determine the agreement between measured head profiles and those 

predicted by Equation 4.29, and the exit/entry loss coefficients in 

this equation as a function of the intersection angle. 

The chapter begins with a background section {Section 6.2) reviewing 

ava i 1 able information re 1 evant to analysis procedure and theory. The 

results are presented and interpreted in separate sections for pumping 

{Section 6.3) and injection {Section 6.4) tests. The results of the test 

series are illustrated graphically in each section. Verification of the 

laboratory set-up performance and the data quality is based on the pumping 

test results from the 90° model {Section 6.3). The chapter concludes with 

a brief summary of the significance of the laboratory study (Section 6.5). 

6. Z Background 

Knowledge of flow processes and resultant head losses associated 

with sudden changes in flow area and direction is essent ia 1 to the 

interpretation of the data. Flow visualization experiments using 

contracting/enlarging sections (JSME, 1988) provide direct evidence for 

the scale and geometric variables of related processes. Numerous other 
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studies as compiled by, for example, Fried and Idelchik (1989) examine the 

resultant head losses in conduits of various shapes. These one-dimensional 

flow studies provide a basis for interpreting the data from 

accelerating/decelerating flows. The following is aimed to concisely 

introduce the relevant aspects of the present knowledge. 

Fluid flowing through a sharp-edged entrance of an abruptly 

contracting conduit separates from the walls and forms a compressed jet 

(Figure 6.l.a). The acceleration of fluid mass, resulting from resistance 

to the sharp turn in flow direction, ends at the vena-contracta where 

effective flow area is minimum. After this point, the jet quickly expands 

to fill the conduit. Strong deceleration results in an adverse pressure 

gradient (i.e. increasing in the flow direction) which favours formation 

of unsteady eddies causing dissipation of mechanical flow energy (Vennard 

and Street, 1982). The entry process is completed as the eddies decay 

downstream and the velocity profile is fully established. The distance 

along which the whole process takes place is called the entry length 

(Figure 6 . 1. a) . 

The entry process in the case of acute intersections (Figure 6.l.b) 

is notably different than observed in orthogonal entry sections. The 

separation zone is asymmetric, irregularly enlarged and very unsteady, and 

the entry length is longer. These visual differences due to different 

intersection angles are also manifested in the magnitudes of head losses, 

usually modelled by a dimensionless loss coefficient (Fried and Idelchik, 

1989) 

~ = 4.P/pg 
e l?/2g 

{6.1} 
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4-P: static pressure change between end points of the entry 

length, and 

v: average velocity of fully established flow. 

This expression is equally valid for the calculation of exit as well as 

entry loss coefficients. Variation of this coefficient with the 

intersection angle is suRIDarized in Figure 6.2. for Reynolds numbers 

(Equation 2.19) greater than 104
• 

Ward-Smith (1980) reviewing the numerical solutions of the Navier­

Stokes equation (Equation 2.1) of co-axial flow into infinite parallel 

plates reco11111ended an entry loss coefficient of en=O .662 y and an entry 

lengthy L, given by 

L= 0. 022 Re (2b) (6.2) 

for Re> 1.0 3 • Based on similar empirical expressions, Rissler (1978) 

derived loss coefficients of en =0. 71.1. and ~n = 0. 41.5 for laminar and 

turbulent co-axial flows, respectively, into parallel plate contractions. 

Flow adjustment to sudden co-axial enlargements involves similar 

processes: flow separation, eddy formation, expansion of jet and re­

attachment (Figure 6.3.a). The resultant head losses are again related to 

incomplete pressure recovery. The exit loss coefficient, ex, for uniform 

velocity profiles is usually given by the Borda-Carnot relation (Ward­

Smith, 1980) 

(6.3) 
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where ~ and ~ are flow areas at the up- and down-stream faces of the 

enlargement, respectively. In accordance with this relation, Fried and 

Idelchik (1989) showed from the experimental literature that the exit loss 

coefficient is not sensitive to the intersection angle when the velocity 

of the passing stream, vP, in the enlarged section is much less than the 

exit velocity, vx (Figure 6.3.b). In fracture-wellbore systems, this 

condition likely often holds if one identifies ~ and ~ with the exit and 

wellbore areas, and vx and vP with the exit and wellbore velocities. For 

experimental analysis, however, the magnitude of exit losses will be 

investigated using Equation 6.1. 

Accounting for the effects of variable Flow section 

The Poiseuille law (Equation 2.10) governs one-dimensional laminar 

flow through uniform parallel-plate conduits where the velocity profile is 

invariably parabolic. The kinetic energy correction factor (KECF) 

(Equation 4.2) for such flows has a constant value of 1.54 (Vennard and 

Street, 1982). In convergent/divergent flows, this value is relevant at 

some distance from the wellbore depending on the flow rate. Closer to the 

wellbore where the velocity becomes less parabolic (and more uniform), the 

KECF approaches unity. The knowledge of the KECF as a function of the 

distance from the wellbore face is therefore necessary in order to 

differentiate between the contributions of the frictional head loss and 

the variable velocity head to the observed hydraulic head changes 

{Equation 4.4). 
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Murphy {1979) compared a numerical solution of the Navier-Stokes 

equation (Equation 2.1) with its approximate analytical solutions which 

assume constant KECFs of 1.54 and 1.2 at all radii. Since the velocity 

head at large radii is negligible? the latter solution provides a better 

overall fit to the numerical predictions. Therefore the constant KECF of 

1.2, which was also adopted by Baker {1955), louis and Maini {1970) and 

Rissler (1978), will be used in the analyses of pressure data in the 

linear domain. 

6.3 Pu.ping tests 

Inspection of the experimental data (Appendix B) revealed that: a) 

exit losses are not Reynolds number dependent in the test range; and b) no 

systematic changes in percent discrepancy between measured and predicted 

pressure heads exists between the runs of any pumping test series. General 

characteristics of the data can therefore be exemplified by any one run 

from each series. The runs with most equal flow rates were selected for 

the graphical presentation of the data from corresponding series of each 

model {Figures 6.4 to 6.9). This selection allows the most direct 

comparison of the measured pressure profiles as a function of the 

intersection angle. 

The graphs {Figures 6.4 to 6.9) consist of the direct pressure head 

measurements along all the pressure hole arrays (Figure 5.3.a) and the 

predicted pressure heads calculated from Equation 4.29 (with the total 

head loss term expressed by Equation 4.4). Equivalent radius {Equation 

A.IS) adapted as abscissa is a useful concept which: a) allows a scaled 
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comparison between sizes of exit areas, and b) offers an alternative 

visualization of an equivalent radial pressure distribution as a function 

of wellbore radius. 

Despite a fastidious fabrication and experimentation procedure, the 

deve 1 opment of uncertainty in the resu 1 ts is i nevi tab 1 e and can be 

attributed to interacting uncertainties associated with all the measured 

variables, dimensions and geometries (Kline and McClintock, 1953). The 

only measure of the extent of the resultant uncertainty can be obtained by 

comparing the 90° model data with the radial flow predictions established 

by earlier experiments (Rissler, 1978; Murphy, 1979). Measuring 

essentially the same pressure profiles along all pressure hole arrays of 

the 90° model and excellent agreement of these with the predicted profiles 

suggest that the laboratory set-up operated as designed. For a given run, 

discrepancy {between measured and predicted pressures) at any point tends 

to be proportional to the pressure gradient, clearly because of great 

sensitivity of pressure to aperture variations. Percent discrepancy over 

the full scale of the pressure difference is generally less than five 

percent for all runs. 

Laminar flow predictions were proven valid despite high Reynolds 

number range attained particularly in 90° model tests (Table 5.1). As a 

result of convergent radia 1 air flow experiments in a similar smooth 

model, Murphy (1979) also noted that measured profiles are consistent with 

the laminar predictions for Reynolds numbers ranging from 210 to 20700. 

Convergent, radial water flow through an open, rough fracture, however, 

reveals a considerably limited but still an extended range for laminar 
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flows up to Reynolds numbers of 4000 to 8000 (Baker, 1955). Murphy (1979) 

suggested that agreement at low Reynolds numbers establishes the validity 

of the experimental procedures and measurements. The agreement above the 

critical Reynolds number of 2300 (Figure 2.2), marking onset of the 

turbulence in one-dimensional flow, is attributed to the stabilizing role 

of positive pressure gradients on boundary layers in accelerated flow 

(Sch 1 icht ing, 1979). Accordingly, during pumping tests, the laminar­

turbulent transition in fractures characterized by k/Dhs.o. 033 may be 

expected to occur at Reynolds numbers higher than 2300. 

Variation in pumping pressure head as a function of the intersection 

angle is well predicted by the mathematical model. Minor entry losses from 

the model tank into the fracture are satisfactorily estimated using 

Equation 6.1 with ~n=0.662. As can be found from Equation 6.2., flow is 

likely fully established before reaching the first pressure hole from the 

outer boundary. The percent discrepancy or the quality of predictions for 

the pumping test runs with the closure aperture (Figures 6.7 to 6.9) are 

not affected from the offset of the wellbore axis in the acute models. 

The review in the preceding section indicates that exit losses are 

independent of the intersection angle in one-dimensional flow. The exit 

loss coefficient is substantiated to be approximately unity for 

accelerating flow. The fact that the wellbore axis is oblique to the 

fracture plane in the acute system models did not seem to affect the 

magnitude of the exit losses. This is probably because, although 

streamlines approaching the wellbore from different directions undergo 

bending in varying degrees, the overall loss is balanced out. 
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The pressures measured in the downstream section of the wellbore 

were slightly below that measured at the well bottom. Since the span of 

the monitored section was limited to two and four wellbore diameters for 

the 20• and 10• models, respectively, it was not possible to differentiate 

between entry effects and established flow losses in the wellbore. 

However, the data suggest no noticeable variation in wellbore losses due 

to changes in the intersection angle. 

6.4 Injection tests 

The injection pressure heads from the selected runs of each model 

are plotted on successive graphs (Figures 6.10 to 6.15) using different 

scales to emphasize variations along different pressure hole arrays. 

Similar discharge rates of the runs representing the group of test series 

for each aperture value facilitate direct comparison of the results as a 

function of the intersection angle. The distinct pressure patterns 

recognized for each of these runs are co11111on characteristics of their 

series. Uncertainty in pressure head measurements stated in the previous 

section also applies to the injection tests. 

The pressure head profiles predicted by Equation 4.29 and the entry 

loss coefficients are also illustrated on the graphs. The coefficients 

were calculated in terms of the entry velocity although associated losses 

vary continuously over the entry length. This calculation procedure causes 

the injection head to excessively drop at the entrance to the fracture to 

a level such that the total head at the outer boundary approximates zero. 

It was assumed here that the entry losses reach maximum within the model 
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boundary. 

Pressure measurements near the we llbore boundary provide direct 

evidence for the vena-contracta formation and its magnitude (Figures 6.10 

to 6.15). Note, however, that two of the holes in the 20• model which are 

located nearest to the boundary and along the major axis of the inlet 

section {hole no. 1 and 9 in Figure 8.1) are largely exposed to the 

wellbore pressure regime due to the obliquity of the inlet section 

(Figures 6.11 and 6.14). 

The pressure head profiles measured a long different arrays are 

variable for the acute models. This is most distinguishable for the 10• 

model tests exhibiting two distinct grouping of the measurements: along 

the arrays parallel to the minor axis of the inlet (involving 90° bending 

of streamlines) and the other arrays (Figures 6.12 and 6.15). For the runs 

simulating opening of the fracture (Figures 6.13 to 6.15), the profiles 

follow similar patterns. Consequently, straight streamline visualization 

cannot be strictly true because of non-axisymmetric pressure distribution 

observed during injection tests in acute models. 

The entry loss coefficients for all models form a tight cluster 

between ~n=0.65-0.71 and ~n=0.65-0.75 for the fabrication (2b=l.l 

mm) and opening (2b=l.6 mm) aperture series, respectively. Note that, as 

the intersection angle decreases and/or aperture increases, the inlet area 

increases and hence the ratio of the velocity in the wellbore to that at 

the inlet increases. A slight increase in the coefficients from the 90° to 

10• models and from the fabrication to opening apertures is therefore 

consistent with the results of one-dimensional flow experiments {Figure 
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6.2.Inset). It follows that the choice of the entry loss coefficients 

should be based on the ratio of the wellbore to inlet areas. The values of 

the coefficients calculated for Reynolds numbers up to 12000 span the 

range indicated by Rissler (1978) and Ward-Smith (1980) for one­

dimensional flow between parallel plates. The coefficients of all test 

series appear to be independent of Reynolds number as in one-dimensional 

flow. 

The mathematical model (Equation 4.29) incorporating the empirical 

entry loss coefficients is capable of reliably estimating one of the three 

basic test parameters (fracture aperture, injection head and flow rate) 

given the other two. Nevertheless, it hardly reproduces the in-fracture 

injection pressure distribution because of vena contracta formation and 

decay in all models, and small magnitude directional variations in the 

acute models. The results clearly demonstrate prevalence of the entry 

processes in determining pressure distribution around the wellbore where 

the turbulent regime is also most influential. This situation is treated 

in terms of an equivalent system of two superimposed independent 

processes. However, all these have little practical consequence because 

what needs to be measured/predicted is the total head at the boundaries 

rather than the actual energy transformation path within the fracture. 

6.5 Su..ary 

The Reynolds numbers calculated at the we llbore face (Table 5.1) 

suggest that the findings of this experimental study apply to a broad 

range of practical situations. With this incentive in mind, a better 
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understanding of the near well flow mechanisms taking place during pumping 

and injection tests has been established for the acute systems. The semi­

analytical model {Equation 4.29) as a predictive tool has been verified 

and refined as a result of the laboratory study. The observations have 

been comprehensively discussed to provide a guidance for the deductions. 



Figure 6.1. Profiles of bounding streamlines of flow from a large tank into a pipe 
mounted: a) normal; and b) oblique to the tank surface (schematized from JSME, 

1988). 
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7 SUMMARY All) CONCLUSIONS 

The problem of well test interpretation in acute systems has been 

investigated both theoretically and experimentally, and presented 

following a unifying and comprehensive approach. This investigation : a) 

establishes a basic understanding of the near wellbore flow mechanism in 

acute systems; b) formalizes the intersection angle dependent variations 

in the streamline pattern and hence in pressure distribution and observed 

response; and c) provides mathematical tools to predict these variations. 

In the following, the summary of the underlying work and the conclusions 

{including their implications and recommendations) are presented 

separately for each component. 

The theoretical component of this study involved: 

a) the derivation of the governing differential equation of flow in 

fractures of acute systems, 

b) the introduction of analytical models for constant-flux tests 

under transient and steady-state conditions, 

c) the formulation of the streamline-equipotential network created 

by the injection/pumping through acute systems under initially non­

uniform heads, and 

d) the development of a general, semi-analytical model accounting 

for the roughness, turbulence and intersection effects in 

interpreting single-well constant-flux tests. 

The main conclusions are enumerated as follows: 

I. The early period during which the system intersection angle dominates 
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the response is extended by a factor of (e 11/€g0 ) 2 as this angle becomes 

smaller. Ignoring the intersection angle in the evaluation of data from 

the early period will therefore lead to an overestimate of transmissivity. 

2. The zone of influence is essentially independent of the intersection 

angle. Thus, the biased response in reflecting the properties of the near 

wellbore area (due to logarithmic pressure distribution) is not further 

complicated due to non-orthogonality of the fracture-wellbore 

intersection. This implies that single-fracture permeability tests can be 

utilized in a network model without any reservations. 

3. Interpretation of steady, single-well constant-flux tests by assuming 

an orthogonal system will produce overestimated aperture and hence 

hydraulic conductivity values. 

4. In developing production strategies, it should be considered that: a) 

well losses can be minimized naturally by producing a system with the 

lowest possible intersection angle: and b) efficiency of and interference 

distance between producing wells largely depends on the intersection angle 

of the effective fracture(s) in the producing intervals. 

5. A single wellbore may be adequate to obtain anisotropic point 

permeability in a fractured rock mass. This may result in a more 

homogenous sampling and/or substantial saving in drilling costs. 
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6. The predictions of any single-well test model based on an orthogonal 

system assumption can be refined by simply substituting the actual 

wellbore radius with the equivalent radius, e. 

7. The single-fracture, constant-flux test models developed in this study 

can be readily extended to the interpretation of tests conducted in long 

wellbore intervals with multiple fractures by weighing the intersection 

angle of each subsystem with reference to the aperture distribution. 

A considerable effort has been made to undertake a laboratory study: 

a) to verify the formation of the idealized streamline pattern and examine 

effects of likely interactions at the acute intersections particularly 

during injection tests; and b) to quantify the exit/entry loss 

coefficients as a function of the intersection angle. The original 

experimental set-up designed to carry out this investigation includes 

three distinct fracture-wellbore system models with 90°, 20° and 10° 

intersection angles. The laboratory progra11111e involved testing these 

models for three different {i.e. fabrication, 2b=l.l mm; closure, 2b=0.6 

mm; opening, 2b=1.6 mm) apertures under steady, constant-flux, injection 

and pumping conditions. 

The overall experimental set-up successfully simulated the 

conceptual testing environment which the mathematical model is expected to 

reproduce. It was therefore possible: a) to test the predicted pressure 

distribution and response; b) to interpret the deviations in terms of near 

wellbore flow mechanisms; and c) to derive the entry and exit loss 
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coefficients. The main conclusions reached are: 

1. The mathematical models were successful in predicting the response 

observed in single-well, pumping tests and they are appropriate for 

interpreting the field test data. The quality of predictions are not 

influenced from the offset of the wellbore axis due to fracture closure. 

2. The exit loss coefficient is virtually unchanged from unity and not 

affected by fracture closure. 

3. The streamline pattern during injection tests, at both fabrication and 

opening apertures, however, does not form exactly as conceptualized. The 

reason for this is the dependence of the entry length, position and 

intensity of vena-contracta, and subsequently the distribution of the 

entry losses, on the streamline position with respect to intake section. 

Having recognized this limitation, the developed mathematical models still 

provide the best alternative in interpreting single-well injection tests 

in acute systems. 

4. Entry loss coefficient is not very sensitive to the intersection angle 

and can be roughly taken as 0.65 for all angles, probably less than about 

5°. In field applications, this coefficient may slightly change for 

different ratios of wellbore to inlet areas due to differences in wellbore 

radius and/or apertures. 
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APPEflliX A 

AN EXPRESSION FOR THE PERIMETER OF AN EQUIPOTENTIAL SURFACE IN A 

CONVERGENT/DIVERGENT FUJII FIELD CIIIPOSED OF STRAIGHT STR~INES NORMl 

TO THE ElliPTICAL INNER BOUNDARY 

where 

The parametric equations of an ellipse (Figure A.l) are 

x 0 =a cosO 
y 0 =b sin8 

a: semi-major axis, 

b: semi-minor axis, and 

8: position angle. 

(A.l) 

Equation A.l defines the position vector R describing the ellipse by 

R(8) =i a cos6+j b sinO (A.2) 

Taking the derivative of the position vector R produces a vector T 

tangent to the ellipse, 

~R(8) s T(6) =-i a sin8+J b cos9 (A.3) 

A vector iJ norma 1 to this tangent vector f can be found from the 

orthogonality condition 

N·T=O (A.4) 



as 

N(8) =I b cos6+ J a sin6 

The norma 1 vector N can be assigned any length 1 to obtain 

L(9)- _ 1 (I b cos8+] a sinS) 
IN{8) I 
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(A.S) 

(A.6) 

Hence, the position vector P for an equipotential surface at any normal 

distance 1 from the ellipse is defined by (Figure A.l) 

P(6) =R<6> +LC6> (A.7) 

which enables writing the parametric equations of an equipotential surface 

in the same plane as 

x(O) =(a+ I!- b )cosO 
N(8) I 

y(O) =(b+ .! a )sin8 
IN{O) I 

{A. B) 

(A.9) 

Any expression for the perimeter r of such an equipotential surface 

needs to satisfy the general arc length equation for closed curves 
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JC/2 
r=4 J .Jr:r-X'-r<:-:::a~> -=-1-=-2 +---=-rY'"""'T"":"'< a~>:--::J~2 d8 (A.IO) 

0 

Differentiating Equations A.S and A.9, and, substituting these in Equation 

A.IO, the perimeter r expression is established as 

JC/2( 
r=4 I ].+ 1 a b )l&<a> !ell 

o 1&<6> 13 
(A.ll) 

Referring to Equation A.lO, the perimeter of an ellipse rz is 

readily obtained as 

JC/2 

rz= 4 f !.&<a> I ae {I.&< a> I= It< a> I (A.12) 
0 

The expression for the perimeter r (Equation A.ll) then reduces to 

(A.13) 

Solving for the integral in the second term, Equation A.l3 takes on a 

compact form 

(A.14) 
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Rearranging Equation A.14 results in a more familiar format7 the perimeter 

expression for an equivalent circle, 

r=2~(e+1) { e= ..!:!_ 
21t 

(A.IS) 

where the term (e+l) may be considered as the equivalent radius. 

The perimeter of an ellipse r8 (Equation A.12) is usually given by 

(A.l6} 

where E(K,Tt/2) is the complete elliptical integral given by (Tuma, 1987) 

JC/2 

E(x,1t/2) = J ../1. -K2 sin2 cz d« 
0 

{«=90+6 (A.17) 

The values of this function are tabulated in most mathematical handbooks 

(e.g. Tuma, 1987). 

An interesting point is that Equation A.l6 is a general result, 

valid regardless of the geometry of the inner flow boundary. For 

applications with other geometries the term r 8 should be replaced with the 

corresponding perimeter expression. 
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Figure A.l. Pictorial definition of the terms used in the derivation. 



IN-FRACTURE PRESSURE HEAD MEASUREMENTS 

I. The pumping and injection series are tabulated separately for 

90°, 20° and 10° models. 

2. All pressure head values are given in meters. 

3. Measurement hole locations are illustrated in Figure B.l. 
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PUMPING SERIES : 8: 90· 217: 1.1 m m 

Run no. z 3 4. 5 6 

Hole Q: 0.29Z lis Q: 0.1831/S 0:0.395 lis Q:0.4541/s Q: 0.4811/s Q: o.J911/s 

no.• T: lS.67"C T: l5.63"C T: 15.61 "C T: 1S.60"C T: 1S.S9"C T: 15.S7"C 

-0. 150 0.217 -0.636 -0.971 -1.137 -0.613 

z 0.263 0.390 0.104 -0.003 -0.054 0. 111 

3 0.419 0.464 0.368 0.336 0.320 0.371 

4 0.494 0.505 0.482 0.474 0.471 0.483 

5 -0. 128 0.232 -0.600 -0.927 -1.090 -0.578 

6 0.280 0.401 0. 131 0.031 -0.019 0. 138 

7 0.43! 0.472 0.389 0.363 0.348 0.391 

8 0. 417 0.463 0.365 0.33! 0.316 0.368 

9 0.414 0.460 0.360 0.326 0.309 0.363 

10 0.507 0.513 0.502 0.499 0. 497 0.502 

11 0.505 0.512 0.499 0.496 0.494 0.499 

1! 0.493 0.504 0.481 0.473 0.470 0.482 

l3 -0.3!2 0.15 l -0.947 -1.382 -1.599 -0.918 

PUMPING SERIES : 8: 90" :!.b: 0 .6 mm 

Run no. 2 J• 4 5 6 

Hole Q: 0.2471/s Q: 0..3041/5 Q: 0.3551/s Q: 0.1511/s Q: o.rn 11s Q : 0.17611s 

no. T: 1U2"C T: lUl"C T: ll.17"C T: 1U6"C T: lLlS "C T: 1Ll4"C 

-1.513 -2.323 -3. 168 -0.431 - 1.9:!.6 -0.679 

2 -0.337 -0.633 -0.928 0.071 -0.487 -0.0!6 

3 0.036 -0.097 -0.224 0.24! -0.034 0. 190 

4 0.373 0.339 0.306 0.434 0.355 0.41S 

5 -1.501 -!.309 - 3. 15! -0.424 -1.913 -0.671 

6 -0.440 -0.150 - 1.061 0.011 -0.601 -0.098 

7 0.0!5 -0.109 -0.238 0.235 -0.046 0. 182 

8 0 .073 -0.055 -0.177 0.263 0.007 0.216 

9 0.028 -0. 106 -o.:3.; 0. 237 -0.04! 0.184 

10 0.363 0.3:!.7 0.29l 0.428 0.343 0.411 

11 0 .352 0.314 0.276 0.421 0.331 0.403 

12 0. 332 0.291 0.250 0.409 0.308 0.389 

13 -2.037 -3.077 -4.170 -0.650 - 2.568 -0.966 

•) For the hole locations, refer to Figure A.2. 

") For tbc pressure bead vs. logaritbmic distaace grapbs of tbe marl::cd runs, refer to Figures 6.4 to 6.15 
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PUMPING SERIES : 8: 20" !b: 1.1 mm 

Run ao. 1 2 3 4 5 6• 7 

Hole Q: 0.810J..S Q: 0.7571/s Q:0.681 J..S Q:O.l821/s Q: 0.2881/1 0:0.4431/s Q:0.2021/s 

DO. T: 14.58 'C T: 14.3S "C T: 14.S9"C T: l3.57"C T: U.84"C T: 13.68"C T: 14.10 "C 

1 -0.887 -0.728 -0.514 0.395 0.!69 0.020 0.376 

2 -0.225 -0. 149 -0.043 0.434 0.360 0.228 0.423 

3 0.223 0.!51 0.290 0.477 0.444 0.389 0.472 

4 0.425 0.433 0.444 0.504 0.493 O . .J7S 0.502 

s -0.817 -0. 667 -0.465 0.398 0.!77 0.041 0.380 

6 -0.181 -0. 107 -0.007 0.441 0.372 0.247 0.431 

7 0.177 0.208 0.253 0.470 0.432 0.370 0.464 

8 0.176 0.!07 0.252 0 .470 0.431 0.369 0.464 

9 -0.866 -0.709 -0.497 0.399 0.274 0.029 0.379 

10 -0.138 -0.067 0.028 0.448 0.384 0 . .!65 0.438 

11 0.228 0.!56 0.294 0.478 0.446 0.392 0 .473 

12 0.436 0.444 0.454 0.506 0.496 O..J80 0.504 

13 -0. 189 -0.115 -0.014 0.440 0.370 0.243 0.429 

14 0.153 0. 186 0.23-l 0.-'66 0.425 0.359 0.460 

15 0.468 0.473 0.479 0.511 0.504 0.493 0.510 

16 0.169 0.201 0.2·47 0.468 o.no 0.366 0.-'62 

17 0.447 O.-l53 0.462 0.507 0.-'99 0.484 0.506 

18 -0.931 -0.764 -0.541 0.397 0.269 0.01! 0.377 

PUMPING SERIES : li : 20" !b: 0.6 mm 

Ruano. r• 2 
-· -- - --

Hole Q: 0.3631/s 0:0.!!91/S 

no. T: 1L91 'C T: 11.78 "C 

-1.101 -0.333 

2 -0.546 -0.082 

3 -0.165 0.112 

4 0.234 0.347 

s -0.973 -0.266 

6 -0.562 -0.092 

7 -0.147 0. 123 

8 -0. 147 0.123 

9 -1.153 -0.364 

10 -0.578 -0. 101 

11 -0.167 0.111 

12 0. 2--'3 0.352 

13 -0.559 -0.090 

14 -0. 139 0. 128 

15 0.238 0.349 

16 -0. 145 0.124 

17 0.221 0.339 

18 -1.226 -0.395 



143 

PUMPING SERIES : 8 : 10" !b: l-1 mm 

Run no. 1 ! 3 4 s 6 7 s• 
Hole Q:o..t931/.1 0:0.3121/.1 Q: 0..3661/s Q: 0.5371/s 0:0.6011/s 0:0.6641/S Q: 0.375 1/s Q:0.4Sll/s 

no. T: 14.54"C T: 14.52"C T: 14.49"C T: 14.46"C T: 14.43"C T: 14.39"C T: 14.39"C T: 14.39"C 

1 0.421 0.368 0.340 0.240 0.197 0. 152 0 .336 0.293 

! 0.434 0.395 0.374 0.300 0.!68 0.236 0.370 0.338 

3 0.450 0.424 0.410 0.364 0.344 0.325 0.408 0.388 

4 0.470 0.458 0.452 0.432 0.425 0.416 0.451 0.443 

5 0.414 0.352 0.318 0.193 0.136 0.079 0.313 0.258 

6 0.442 0.409 0.393 0.336 0.312 0.287 0.390 0.365 

7 0.468 0.454 0.448 0.427 0.419 0.409 0.447 0.438 

8 0.443 0.410 0.394 0.338 0.314 0.289 0.391 0.367 

9 0.423 0.373 0.346 0.249 0.206 0.162 0.342 0.299 

10 0.439 0.405 0.385 0.316 0.285 0.256 0.382 0.351 

tl 0.451 0.427 0.414 0.369 0.349 0.331 0.412 0.39! 

12 0.469 0.456 0.450 0.429 0.421 0.412 0.449 0.440 

13 0.451 0.426 0.412 0.364 0.343 0.323 0.410 0.388 

14 0.449 0.423 0.408 0.359 0.337 0.316 0.406 0.384 

15 0.467 0.45.2 0.446 0.423 0.414 0.404 0.445 0.435 

16 0.446 0.417 0.402 0.349 0.327 0.305 0.399 0.376 

17 0.469 0.456 0.450 0.429 0.421 0.412 0.449 0.440 

18 0.409 0.34.2 0.306 0. 171 0.111 0.049 0.300 0.242 

PUMPING SERIES: B: 10" !b: 0.6 mm 

Run no. 2 J· 

Hole 0:0.1821/s 0:0.2831/s 0: 0.3231/s 

DO. T: 15.11 "C T: 15.02"C T: 14.920C 

0. 116 -0. 118 -0.222 

2 0. 189 0.002 -0.078 

3 0.!72 0.141 0.085 

4 0.404 0.353 0.332 

5 0. 117 -0.148 -0.261 

6 0. 233 0.081 0.015 

7 0.408 0.358 0.338 

II 0.!34 0 .0113 0.017 

9 0.111 -0. 124 -0.229 

10 0.207 0.025 -0.051 

11 0.276 0. 146 0.092 

12 0.409 0.360 0.340 

13 0.280 0. 143 0.088 

14 0.277 0. 139 0.084 

15 0.408 0.355 0.335 

16 0.266 0 .115 0.067 

17 0.405 0.351 0.330 

18 0.090 -0.190 -0.312 
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INJECTION SERIES : 8: 90" :!1:1: 1.1 mm 

Rua ao. 1 2 3 4 s 6' 

Hole Q: 0.175 liS 0:0.!7911S 0:0.343115 0:0.433115 Q:0.473L1 0:0.5241iS 

no. T: 1~1 "C T: 15.69"C T: 15.6S"C T: lS.BO'C T: 1S.S9"C T: 15.61 "C 

1 -0.308 -0.744 -1.099 -1.653 -1.956 -:!.370 

~ 0.061 0.051 0.013 -0.060 -0.070 -0.094 

3 0.05~ 0.063 0.050 0.032 0.046 0.060 

4 o.o:n 0.030 0.017 0.002 0.018 0.036 

5 -0.301 -0.731 -1.082 -1.631 -1.930 -!.339 

6 0.060 0.049 0.010 -0.063 -O.OH -0.098 

7 0.052 0.062 0.049 0.031 0.046 0.060 

8 0.052 0.063 0.050 0.032 0.047 0. 061 

9 0.051 0.061 0.048 0.030 0.044 0.057 

10 0.027 0.031 0.017 0.003 0.019 0.038 

11 0.048 0.054 0.039 0.018 0.030 0.041 

u 0.047 0.054 0.039 0 .017 0.029 0.040 

13 0. 263 0.560 0.782 1.167 1.390 1.694 

INJECTION SERIES : s: 9o• 2b: 1.6 mm 

Run no. l 2 3' 4 5 

Hole 0:0.3&31~ 0:0.4981~ Q: 0.600 L's 0:0.6611~ Q: 0.346 L1 

no. T: 10.91 "C T: ll.II6"C T: lLOl 'C T: 10S4"C T: lo.9S 'C 

-0.586 -0.936 -1.328 -1.608 -0.433 

2 -0.004 -0.053 -0.095 -0.142 0.010 

3 0.027 0.019 0.0!2 0.007 0.031 

4 0.01.:!. 0.008 0.016 0.005 0.016 

5 -0.611 -0.970 -1.373 -1.660 -0.505 

6 0.002 -0.044 -0.083 -0.1~8 0.016 

7 0.026 0.018 0.021 0.006 0.031 

8 0.026 0.018 0.020 0.005 0.030 

9 0. 0~3 0.014 0.015 -0.001 0 .0~8 

10 0.011 0.005 0.013 0.001 O.OlS 

11 0.023 0.013 0.014 -0.002 0.027 

12 0.024 0.015 0.017 0.001 0.0!9 

13 0.439 0.701 1.004 1.192 0.369 
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INJECTION SERIES : B: 20~ 2b: 1.1 mm 

Rua Do. 1 2 3 4 s• 6 1 

Hole 0:0.4231/s 0:0..2811/s Q: 0.!15 lis 0:0.1101/s Q: O.SlS 1/5 0:0.7581/s Q:0.6391/s 

DO . T: 1L47"C T: 1L47"C T: 1154"C T: U.S7"C T: 11.54"C T: 1US"C T: 113S"C 

0.349 0.159 0.1!7 0.103 0.464 0.763 0.7!1 

2 0.0()7 0.069 0.058 0.049 0.049 -0.035 0.01! 

3 0.053 0.049 0.038 0.031 0.049 0.045 0.049 

4 0.028 0.024 0.016 0.012 0.029 D.OSO 0.038 

s 0.038 0.069 0.069 0.062 - o.ozo -0.183 -0.142 

6 0.095 o.on 0.068 0.057 0.085 0.021 0.056 

7 0.091 0.068 0.051 0.041 0.099 0.123 0.111 

8 0.085 0.065 0.049 0.039 0.091 0.111 0.101 

9 0.314 0. 131 0.1!5 0.093 0.418 0.700 0.674 

10 0.069 0.069 0.059 0.050 0.051 -0.03! 0.014 

11 0.062 0.053 0.041 0.033 0.061 0.063 0.063 

1! 0.024 0.022 0.014 0.011 0.023 0.042 0.03! 

13 0.074 o.on 0.061 0.051 0.058 -0.021 0.023 

14 0.056 0 .050 0.039 0.032 0.053 0.051 0.054 

15 0.028 0.024 0.016 0.012 0 .028 0.050 0.038 

16 0.059 0.052 0.040 0.032 0.051 0.051 0.058 

17 0.024 0.022 0.014 0.011 0.023 0.040 0.031 

18 0.417 0.229 0.154 0.111 0.564 1.075 0.803 

INJECTION SERIES : 15 : 20u !b: 1.6 mm 

Run no. t• 2 3 4 ·-----
Hole Q:0.6101/s Q:o.mVs Q:0.4081Js 0: 0.2S71/s 

no. T: U.33 'C T: 1129'-C T: 11.32 "C T: 11...34 "C 

0.290 0.383 0.147 0.083 

2 0.031 -0.006 0.035 0.035 

3 0.031 0.025 0.027 0.022 

4 0.018 0.021 0.014 0.009 

5 -0.012 -0.086 0.024 0.043 

6 0.053 0.022 0.046 0.043 

7 0.062 0.064 0.042 0 .033 

8 0.057 0.058 0.040 0.031 

9 0.261 0.337 0. 132 0.078 

10 0.032 -0.004 0.035 0.036 

11 0.038 0.034 0.030 0 .024 

12 0.015 0.017 0.012 0.008 

13 0.036 0.001 0.038 0.037 

14 0.033 0.028 0.028 0.023 

IS 0.018 0.020 0.013 0.009 

16 0.035 0.031 0.0!9 0.023 

17 0.014 0.016 0.012 0.008 

18 0.315 0.479 0. 161 0.092 



INJECTION SERIES : 

Run no. 

Hole 

no. 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1! 

13 

l4 

15 

16 

17 

18 

1 

Q: 0.37llis 

T: 14.35 'C 

0.039 

0.041 

0.036 

0.0!3 

0.111 

0.060 

0.033 

0.058 

0.04! 

0.050 

0.047 

0.0!8 

0.039 

0.045 

0.032 

0 .035 

0.023 

0.183 

0:0.5831/s 

T: 14.37"C 

0.004 

0.0!1 

0.028 

0.0!1 

0. 117 

0.068 

0 .040 

0 .063 

0.009 

0.037 

0 .048 

0.031 

0.030 

0 .041 

0.036 

0.022 

0 .019 

0.327 

INJECTION SERIES : 

3 

0:0.6761/$ 

T: 14.36'C 

-0.024 

0.004 

0.019 

0.018 

0. 108 

0.066 

0.042 

0.060 

-0.018 

0.024 

0.044 

0.031 

0.020 

0.034 

0.036 

0.010 

0.016 

0.401 

0:0.4971/$ 

T: 14.35 "C 

0. 017 

0.026 

0.028 

0.019 

0 . 124 

0.064 

0.036 

0.060 

0.021 

0.041 

0.045 

0 .028 

0.030 

0.040 

0.032 

0.023 

0.018 

0.!6! 

5 

Q:O.l751Js 

T: 14.37"C 

0.032 

0.028 

0 .022 

0.012 

0.065 

0.033 

0 .016 

0.032 

0. 033 

0.032 

0 .027 

0 .014 

0. 024 

0.0!7 

0.016 

0 .023 

0 .012 

0.072 

6 

Q: 0.220 1/s 

T: l4.38"C 

0.030 

0.027 

0.021 

0.010 

0.076 

0.036 

0.016 

0.034 

0.032. 

0.032 

0.0!7 

0.013 

0.024 

0 .027 

0.015 

0.021 

0.010 

0.091 

Run oo. 1 2 3 4 S 6• 

Hole Q: 0.378 1/s Q: 0.285 1/s Q: 0.2041/$ Q: 0.5461/$ Q: 0.7311/$ Q: 05871is 

no. 

3 

4 

5 

6 

1 

8 

9 

10 

11 

12 

13 

14 

IS 

16 

17 

18 

T: 15.29'C 

0.031 

0.030 

0.025 

0.015 

0.059 

0.031 

0.020 

0.037 

o.ou 
0.022 

0.021 

0 .017 

0.023 

0.022 

0.019 

0.024 

0.019 

0.075 

T: 15.12 "C 

0.019 

0.018 

0.012 

0.003 

0 .039 

0.021 

0.007 

0.0!2 

0.005 

0.011 

0.009 

0 .005 

0.011 

0 .010 

0.006 

0.01 2 

0 .007 

0.043 

T: 15.13 "C 

0.017 

0.015 

0.011 

0.004 

0.028 

0.017 

0.007 

0.017 

0.008 

0.011 

0.009 

0.005 

0.010 

0.010 

0.006 

0.011 

0.006 

0.029 

T: l5.14'C 

0 .030 

0.033 

0 .028 

0.015 

0 .096 

0.048 

0.025 

0.049 

-0.005 

0 .017 

0.021 

0.018 

0.023 

0.02! 

0.022 

0.025 

0.022 

0 .121 

T: 15.10"C 

0.007 

0.019 

0.021 

0.010 

0 .077 

0.043 

0.021 

0.045 

-0.036 

0.000 

0.012 

0.013 

0.013 

0.012 

0 .018 

0.016 

0.018 

0.179 

T: l5.06"C 

0.025 

0.030 

0.026 

0.013 

0.095 

0.047 

0.023 

0.048 

-0.013 

0.013 

0.018 

0.016 

0.020 

0.019 

0.020 

0.022 

0.020 

0.132 

8: to• Zb: l.1 mm 

7 

Q: 0.2981/s 

T: 14.4!"C 

0.036 

0.035 

0.029 

0.015 

0.093 

0 .048 

0.023 

0.046 

0.038 

0.042 

0 .037 

0 .020 

0.03! 

0.036 

0.022 

0.028 

0.016 

0. 134 

8 

0:0.39! 1/$ 

T: l4.43"C 

0.037 

0.040 

0.036 

0.0!3 

0.114 

0.062 

0.035 

0.059 

0.040 

0.050 

0.048 

0.029 

0.039 

0.046 

0 .033 

0.034 

0.023 

0 . 196 

8: 10" !b: L6 mm 

146 






