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Abstract 

A detailed study of gravel barrier beaches at Ship Cove and Big Barasway 

has shown significant differences in morphology, sediment texture and 

structures, as well as lateral variability within each system. The individual 

shoreline assemblages reflect differences in the amount and seasonal variability 

of sediment supply, in the hydrodynamic settings of the barachoix and, in the 

orientation with respect to the prevailing southwesterly waves. At Ship Cove, 

the bayhead barrier has a high elevation, steep beachface, and extensive cusp 

development; the morphology is a result of its swash alignment, its fixed 

sediment supply and high wave energy reaching the barrier. The sediment 

shows a strong cross-shore sorting by shape and size, and cusps largely influence 

the orientation of clast fabrics. 

The presence of a gently-sloping subtidal and intertidal platform in the 

central BOOm and a 200m-long vegetated island within the bayhead barrier 

system at Big Barasway, result in the development of separate and distinctive 

flow cells, each with differing dynamics and sedimentation. The swash 

alignment, the high wave energy, and the fixed sediment supply of the southern 

section result in a similar morphology and sediment texture to that at Ship Cove. 

The moderate wave energy reaching the northern section results in a 

gentler beachfront slope and lower elevation. In addition, the drift alignment 

and sediment removal along the northern section is causing a thinning of the 

barrier in areas and progradation in other places. Cross-shore sorting of sediment 

by shape and size is weaker than that at the southern end of Big Barasway and at 

Ship Cove. Clast fabrics are generally weaker, although strong orientations can 

occur. 
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Overwashing and ice foot development act to modify both shorelines. 

Landward movement of the barriers is estimated at 0.3-0.9 m/year. The outlet 

at Big Barasway is stable, whereas that at Ship Cove opens and closes on a daily 

basis in mid- to late summer. Anthropogenic modification at Ship Cove has 

caused instability, as a result of aggregate removal and a forced northerly re­

location of the outlet. Radiocarbon dates, sedimentological and archaeological 

data indicate that transgression is currently occurring along the southeast 

Placentia Bay shore, and further modification of the coastline is anticipated in the 

subsequent century. 
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Chapter 1 

Background Information 

1.1 Introduction 

Gravel barriers formed by marine processes display wide varieties of 

morphology, sedimentology, and behaviour. They are generally associated 

with embayed coasts where wave processes dominate over tidal influences. 

These features may be located at the head, mouth or within an embayment 

and are called bayhead, baymouth, and midbay barriers, respectively. They 

frequently enclose freshwater or brackish lagoons. 

In eastern Canada, gravel barriers are commonly called barachoix, 

baraswa ys, barrisw a ys, or barachois. The first known version of the word, 

'barrachoa', was in a Basque document written in 1609 referring to an event 

in 1602 (Barkham, 1987). In this citation 'barrachoa' is explicitly applied to the 

bar, not the lagoon. Versions of the word later became associated with the 

enclosed lagoon. (Barkham, 1985; Glossary of Generic Terms in Canada's 

Geographical Names, 1987). The names of communities often include a 

version of 'barrachoa'. This occasionally causes discrepancies between local 

spellings of communities and the official or unofficial versions printed on 

topographic and road maps. 

These features are common in Newfoundland as well as in other mid­

to high-latitude areas (Carter and Orford, 1984; Forbes, 1984). Glacial processes 

brought high volumes of gravel-sized clasts to the coastal environment. 

These sediments have either been reworked from offshore deposits by marine 
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transgression or are actively being eroded from headlands or adjacent cliffs. 

The glacial sources vary greatly, depending on the local glacial history, and 

include drumlin fields, glaciomarine and glaciofluvial deposits, thin veneers 

of glacial diamicton and thick deposits of ice-contact sediments (Forbes and 

Taylor, 1987). 

The types and amounts of the glacial sediment sources greatly 

influence the morphology and stratigraphy of gravel barriers. Since gravel 

barriers are conditioned by glaciation, it is important when studying the 

modem forms to distinguish between relict glacigenic sediments and 

morphology and the effects of modern processes on these glacial deposits. 

This is particularly important when analyzing the temporal and spatial 

variation of sediment supply and how these variations affect the 

morphodynamics of beach systems. 

In spite of their widespread occurrence, the morphodynamics and 

sedimentary assemblages of gravel beaches are poorly understood. Until 

recently, research has emphasized sand-dominated coastal environments 

(Williams and Caldwell, 1988). Beaches composed of sand behave differently 

from those of gravel, which may in tum behave differently from beaches 

composed of mixtures of sand and gravel (Kirk, 1975; Kirk, 1980). 

With the increasing interest in global and regional climatic change in 

addition to regional glacio-isostatic rebound, questions have arisen 

concerning the responses of these features to rises and to differing rates of 

rises in sea-level (Carteret al., 1989; Forbes et al. 1989). The response of gravel 

barriers to sea-level change has direct socio-economic consequences, for these 

landforms commonly protect communities and agricultural areas. For 
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instance, a large section of the town of Placentia, Newfoundland is built 

directly on a gravel barrier. At present the town is subject to periodic, 

extensive flooding (Rood Information Map: Placentia; 1985) and will be 

extremely sensitive to any rise in sea-level or increase in storm activity. 

Remedial measures are cost! y. In 1992, the Federal and Provincial 

governments and the town of Placentia allocated more than $3 million for 

the 'Sea Wall Project', an attempt to solve the flooding problems (Liverman 

et al., 1994). With a better understanding of coastal processes, problems such 

as the potential flooding of the town of Placentia may be handled effectively. 

In addition to the modern applications of the morphodynamics of this 

study, detailed sedimentological analysis will aid in the interpretation of pre­

Holocene deposits. The lack of understanding of the complexity and 

variability of modern processes frequently hinders interpretation of ancient 

deposits (Hart and Plint, 1989; Bourgeois and Leithold, 1984). 

1.2 Present Study 

This research deals with a comparative analysis of two gravel barriers, 

Ship Cove and Big Barasway, Placentia Bay, Newfoundland (Figure 1). The 

geomorphology and sedimentology will be described in detail. Lateral, 

vertical and seasonal variations, and storm responses in the geomorphology 

and sedimentology are documented. Differences within and between the two 

beach systems are explained by the differences in the dynamics and sediment 

supplies of the barriers. In addition, the stability of the outlets and the 

landward movement of the barriers through overwashing are explored. The 
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results are compared with models created by Carteret al. (1989), Forbes et al. 

(1990) and Orford et al. (1991). 

1.3 Previous Work 

Analysis of beach profiles and the variation of profile configuration 

over time leads to a better understanding of process-form relationships 

(Caldwell and Williams, 1986). Beach profiles reflect the interplay of the 

characteristics of beach sediments, the local wave-energy regime, and 

nearshore geometry. Thus, they dynamically respond to and mirror changes 

in nearshore processes (Sherman, 1991). Profile variability is considered less 

for gravel-dominated beaches than sand-dominated ones (Carter and Orford, 

1984). 

Beach models for sand-dominated systems often show a seasonal 

change from 'winter' to 'summer' profiles (for example, Shepard, 1950). A 

'winter' profile is comparatively low in elevation, concave upward, and has 

an offshore bar. A 'summer' beach profile has a high berm and is convex 

upward. The convex versus concave geometries reflect differing beach 

volumes. The winter profile reflects sediment removal to the offshore by 

steep storm waves while the summer profile indicates sediment accretion by 

low-amplitude, long-period summer swell waves (Sherman, 1991). On a 

shorter time scale than a seasonal one is the cycle of storm erosion and fair 

weather, swell wave beach recovery (Zenkovitch, 1967). The beach profiles 

for storm and recovered states are similar to the 'winter' and 'summer' states. 

The concept of cyclic profile variation often evident in sand-dominated 

beaches has been applied to gravel-dominated systems with varying results. 
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For example, Sherman (1991) showed erosion and accretion cycles similar to 

sand-dominated systems. Seasonal variations were seen at two beaches in 

Wales (Caldwell and Williams, 1986). In a study by Carr et al. (1982), no 

seasonal accretion or erosion periods were observed. During 'winter' (storm) 

season beach variability was greatest. 

Important differences exist in the behaviour and morphology of sand­

and gravel-dominated beach systems. Gravel-dominated beaches have steep 

slopes which are, in part, a response to high percolation rates and high angles 

of repose. As a consequence, these beaches mainly show characteristics of a 

reflective state (Wright and Short, 1984) and rarely change into a dissipative 

state, as sand beaches frequently do. Waves breaking close to shore along 

gravel beaches allow the generation of strong longshore currents close to the 

shoreline and high shear stresses which allow the powerful ejection of clasts 

landward (Orford et al., 1991). 

Because gravel is generally transported as bedload (except during 

extreme storm events), size, shape and its relationship to the background 

sediment mass greatly influence the capacity of gravel to move. Rejection of 

large-grained clasts leads to better sorted and graded beaches (Orford et al., 

1991). Bluck (1967) formulated a model for gravel-beach particle zonation 

based on clast size and shape. This model has been used in the 

interpretations of ancient deposits (Bourgeois and Leithold, 1984; Massari and 

Parea, 1988). Orford (1975) and Williams and Caldwell (1988) have shown 

that Bluck's model is not universally applicable. Bluck's model also excludes 

secondary sorting caused by cusps (Sherman et al., 1990; Sherman et al., 1993). 
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A body of literature on gravel barriers has grown over the past fifteen 

years. The majority of the work has been undertaken in Ireland and Nova 

Scotia by Carter, Orford, Forbes, and their colleagues and students (for 

example, Caldwell and Williams, 1986; Carr et al. , 1982; Carter, 1983; Carter 

and Orford, 1988; Carteret al., 1990; Duffy et al., 1989; Forbes and Taylor, 1987; 

Forbes et al., 1990; Jennings and Smyth, 1990; Kirk, 1980: Orford and Carter, 

1982a; Orford et al., Sherman, 1991). Because of the relatively few people 

involved in this field, new researchers are needed. 

Carteret al. (1989) recognized a hierarchy of mechanisms which 

control barrier development: sea -level change, basement characteristics 

(which include the geologic setting and the requirement of maintaining cross­

shore drainage), sediment-supply, wave and tide regimes, and sediment 

texture of the barrier. In Ireland where sea-level has been rising slowly <1 

mm/yr over the past 3000- 4000 years (Carteret al., 1989), many barriers are in 

compartmented, headland-controlled embayments where sediment supply is 

limited and little exchange of sediment occurs between embayments. Carter 

et al. (1989) classified the barriers in Ireland by the type of lagoon they 

enclosed (freshwater, brackish, or saltwater) and the type of cross-shore 

drainage. 

In contrast, the coast of Nova Scotia has undergone a rapid rate of sea­

level rise. Between 5000 BP and the last century sea-level rise averaged 2 

mm/yr, after which the rate of rise increased to 3.5 mm/yr (Shaw et al., 1993). 

Classification of barriers along Nova Scotia was based on depositional setting 

and sediment composition (Forbes et al., 1990). Five categories were 

developed and included prograded beach-ridge complexes, high gravel storm-
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ridges, gravel barriers subject to high rates of washover, trailing and fringing 

gravel spits and ridges, and sandy barrier complexes with low dunes. 

Orford et al. (1991) have synthesized the majority of work on gravel 

barriers and have proposed a model for the evolution of gravel barriers. The 

first stage begins as a drift-aligned barrier along an eroding transgressive front 

that, after a period of consolidation and stabilization, may become swash­

aligned. This stage is followed by a breakdown stage which is a response to 

depleting sediment supplies and/ or rising sea-levels. 

1.4 Terminology 

In this paper the following terms will be used (Figure 2). The 

backbarrier refers to that part of the barrier landward of the crest. The highest 

point of the barrier, the crest, marks the transition between landward-dipping 

barrier slopes and seaward-dipping barrier slopes. The beachface includes the 

region above mean low tide and below the beach crest. The upper-beachface 

refers to the steeper-dipping slopes above the area of active sediment 

accumulation and the crest, which at Ship Cove and Big Barasway, begins at 2 

-3m above mean sea-level. The mid-beachface refers to the area between 

mean high tide and the upper-beachface whereas the lower-beachface 

indicates the area between the mean low tide and mean high tide. The 

nearshore zone is the region between mean low tide and the point where the 

waves first break. 
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1.5 Objectives 

This project was designed to include the following objectives: 1) To 

describe in detail the geomorphology of the beach systems, 

2) To document the dynamics of the beaches under varying weather 

regimes. This involved observing: 

• the changes in beach profiles 

• the movement of sediment 

• the stability of stream outlets 

• the amount of seepage 

• the extent of overwashing during storm events 

• the amount of sediment available to the systems. 

3) To create sedimentary assemblages describing the sedimentary 

environments. 

4) To outline the critical factors that control the morphology and the 

sedimentary organization of the individual barriers. 

5) To suggest the course of evolution of the barriers throughout the 

Holocene. 

6) To predict the behaviour of the barriers in the near future. 

1.6 Outline 

Following discussion of the study area (chapter 2) and the methods 

used for data collection (chapter 3), 14c ages and interpretations of Holocene 

sea-level change along Placentia Bay, Newfoundland are presented in chapter 

4. Chapters 5 and 6 describe and discuss the barrier at Ship Cove. Similarly, 

chapters 7 and 8 describe and discuss the barrier complex at Big Barasway. The 
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stratigraphy of the four sediment cores taken from the lagoon at Big Barasway 

are presented and interpreted in chapter 9; followed by a discussion (chapter 

10) of the critical factors controlling the barrier systems at the two sites. 
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Chapter 2 

Study Area 

2.1 Location and Physical Setting of Study Area 

The study area is located along the eastern coast of Placentia Bay on the 

Avalon Peninsula of Newfoundland (Figure 1). The coast south of Placentia 

town is characterized by a series of small valleys with braided streams and 

gravel beaches in the littoral zone. The surrounding hills are high and slope 

steeply into the valleys and coast. The two beaches chosen, Big Barasway 

(47.08'N 54•04'W) and Ship Cove (47"06'N 54"0S'W), have developed in 

adjacent coves located approximately 12 km and 15 km south of Placentia 

respectively. The 1.3 km long beach at Big Barasway is dominated by a 1.1 km 

long baymouth barrier. In contrast the 0.5 km long beach at Ship Cove 

consists of a bayhead barrier along the northern half. These two sites were 

chosen for analysis because, despite their proximity, the morphology and 

sedimentology of the barrier systems differ considerably. 

2.2 Climate 

2.2.1 General Climatic Setting 

The climate of Newfoundland is shaped by the interaction of the 

northern hemisphere mid-latitude atmospheric circulation forming the 

prevailing Westerly winds, the island's location relative to the Canadian 

mainland, and the proximity to a cold ocean surface. The Labrador Current 

strongly influences the climate by bringing southerly flowing Arctic waters to 
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the coastline. Placentia Bay falls into the Dfb Koppen classification: a cold 

Boreal Forest climate characterized by adequate precipitation throughout the 

year. Because of the island's shape, its extensive and indented coastline, and 

the presence of mountains in the west, complex regional and local variations 

can be significant (Banfield, 1983). Severe storms can occur in any season; 

however, most storm waves are generated in late autumn and winter by 

'extra-tropical cyclonic disturbances'. Tropical storms in late summer 

generally dissipate by the time they reach Newfoundland (Forbes, 1984). 

2.2.2 Wave Climate 

The long axis of Placentia Bay is aligned NNE-SSW. Placentia Bay is 

protected by the central mass of Newfoundland to the north, by the Avalon 

Peninsula to the east and by the Burin Peninsula to the west of Placentia Bay. 

This distribution of land masses reduces the possibility of locally-generated 

waves. Southwester! y storms have the most pronounced impact on this area. 

Figure 3 shows the region of locally-generated seas affecting the study area 

and the direction of waves from offshore regions (modified from Shawmont 

Martec, 1984). 

Detailed climatic data for this region is limited. For Placentia, the 

prevailing winds for November to February are Westerlies, with a mean 

monthly speed ranging between 28.5 to 30.6 km/hr. For the rest of the year, 

the prevailing winds are south-southwesterlies with monthly means ranging 

from 22.0 to 29.1 km/hr (Canadian Climate Normals, 1982). Off the open 

Atlantic: coast to the southwest of Newfoundland, annual deep-water 
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significant wave heights are in the 7 - 8 m range, whereas the 10-year 

significant wave heights range from 10 to 13m (Forbes and Taylor, 1987). 

Figure3: Map of Placentia Bay showing the 
region of locally generated seas 
affecting the study area and the 
direction of waves from the offshore 
regions, (modified from Shawmont 
Martec, 1984). 
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A study conducted to determine the extent of flooding in the area of 

the town of Placentia (Shawmont Martec, 1984) used wind data tapes for the 

years between 1971 and 1982 (from the Atmospheric Environment Service) to 

determine hindcast wave data for Placentia Bay. The Shawmont Martec study 

revealed a mean wave period of 4 - 5 seconds and 81% of the wave heights 

less than 1.8 m. However, the limited fetch of Placentia Bay rarely allows 

waves to fully develop, so there could be a wide range of heights and periods 

at any given time. This influences the shoaling process and wave run-up on 

the beaches. 

Table 1 shows the deep-water wave height distributions for extreme 

events in Placentia Bay (Shawmont Martec, 1984). It is estimated that for a 

fifty-year event, extreme heights would range between 5.9 and 7.8 m. For the 

hundred-year event, extreme heights would range between 6.3 and 8.6 m. 

Return 
Period 
(years> 

1.0 
1.1 
1.3 
2.0 
5.0 

10.0 
20.0 
50.0 

100.0 
200.0 
500.0 

Wave 
Height 

Estimate 
(metres) 

1.7 
2.2 
2.8 
3.6 
4.6 
5.3 
6.0 
6.8 
7.5 
8.1 
8.9 

Lower 
Limit 

(metres) 

4.1 
4.7 
5.2 
5.9 
6.3 
6.8 
7.5 

Upper 
Limit 

(meqes) 

5.1 
5.9 
6.7 
7.8 
8.6 
9.4 

10.4 

Table 1: Extreme wave heights for Placentia Bay 
(Shawmont Martec, 1984; 4-26) 
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2.2.3 Tides 

Based on tidal information at Argentia, St. Brides, and Placentia, the 

mean tidal range is 1.6 m and the large tidal range is 2.5 m for the study area 

(Canadian Tide and CWTent Tables, 1993; Shawmont Martec, 1984). Although 

technically the area can be classified as a mesotidal environment (Davies, 

1964), the tidal range is primarily below 2m. Because of the relative steepness 

of the nearshore slope at Ship Cove and Big Barasway, wave energies are high 

and thus, the coast is classified as wave-dominated (Davis and Hayes, 1984). 

2.2.4 Sea lee 

Placentia Bay is generally free of sea ice during the winter months 

(Markham, 1980), although ice foot development along shorelines affects the 

wave dynamics. Ice feet are ridges of ice that may form between the beach 

crest and intertidal area. In recent years, ice foot development has increased 

along Placentia Bay (Catto and Hooper, 1994; Catto et al., 1994). 

2.2.5 Climate and Hydrology 

The monthly mean temperatures and mean precipitations for Argentia 

for the period between 1951 and 1980 are given in Table 2 (Canadian Climate 

Normals, 1982). The winters are mild, and the mean temperature for January 

is -1.5°C. The summers are cool with a mean temperature of 14.0°C for July. 

Precipitation is heaviest between November and February and lowest 

between March and July. The mean total is 1067.9 mm. 
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Argentia Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

Daily Temperature (°C) -1.5 -1.9 -0.5 2.3 5.6 9.7 14.0 15.3 12.5 8.4 5.0 0.3 5.8 

RainfaJl (mm) 167.6 120.1 66.0 120.1 42.6 46.5 83.8 143.5 74.2 M M M M Snowfall (mm) 53.4 40.7 30.9 9.2 2.2 1.0 0.0 0.0 0.0 1.0 3.2 2'J.4 171.0 Total Precipitation (mm) 113.9 106.2 70.6 77.3 67.4 74.7 72.7 96.2 83.5 89.6 105.4 110.4 1067.9 
...... 
...... 

Table 2: Mean monthly and annual temperature and precipitation data for Argentia. 
The values are adjusted since data are missing in the period of 1951-1980; 

(Canadian Climate Normals, 1951-1980: Temperature and Precipiation, 1982). 



The mean annual precipitation for Argentia is noticeably lower than 

for other parts of the Avalon Peninsula; for example, Colinet has a mean of 

1391 mm and St. John's west, 1579 mm (C.E. Banfield, Memorial University 

of Newfoundland, unpublished). The lower precipitation figure is likely due 

to a rainshadow effect caused by higher ground to the south and east, and to 

the coastal location of the weather station at Argentia. 

The monthly mean temperatures and monthly precipitation values for 

the weather station at Big Barasway for the duration of the study Oune 1991-

June 1993) are given in Table 3 (AES). The total precipitation at Big Barasway 

for 1992 was 1051 mm, a value close to that of the mean annual at Argentia. 

The area of the drainage basin of the unnamed stream exiting at Big 

Barasway is 65.3 km2, as estimated from 1:50,000 topographic maps (1 M/1 and 

1 N/4). The highest elevation in the drainage basin is 285m, along Castle 

Ridge toward the centre of Placentia Peninsula. The main channel length is 

13.1 km, and the slope, defined as the percentage of the vertical displacement 

divided by the horizontal distance, is 4.6%. The stream drains peatland and 

wooded areas. 

The drainage basin for the unnamed stream at Ship Cove covers an 

area of 33 km2. The highest point in the basin is 255 m. The main channel 

length is 9.4 km, and the slope is 1.1%. The stream drains peatland and 

wooded areas. 

The mean annual runoff for the drainage basins is between 800 - 1800 

mm (Department of Environment and Lands, unpublished). Throughout 

most of Newfoundland, including the Avalon Peninsula, runoff is 

approximately 80% of precipitation. Stream discharge varies throughout the 
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Mean Temp. Rain Snow Total Precip. 
Manth .fll (mm} 1mml (mml 
Jun-91 7.1 62.2 0.0 62.2 
Jul-91 11.9 72.4 0.0 72.4 

Aug-91 13.3 50.8 0.0 50.8 
Sep-91 12.0 110.6 0.0 110.6 
Oct-91 8.0 166.0 10.0 176.0 
Nov-91 4.7 126.0 0.0 126.0 
Dec-91 -2.5 71.0 45.0 116.0 
Jan-92 -4.6 60.0 6.0 66.0 
Feb-92 -4.3 46.0 30.0 76.0 
Mar-92 -1.9 109.0 8.0 117.0 
Apr-92 -0.4 45.0 15.0 60.0 
May-92 5.5 109.6 0.0 109.6 
Jun-92 9.6 51.0 0.0 51.0 

Jul-92 11.4 124.0 0.0 124.0 
Aug-92 14.4 81.0 0.0 81.0 
Sep-92 12.6 76.6 0.0 76.6 
Oct-92 7.6 171.0 0.0 171.0 
Nov-92 1.0 49.0 6.0 55.0 
Dec-92 -0.8 47.4 16.0 63.4 
Jan-93 -5.4 67.8 11.8 79.6 
Feb-93 -4.6 119.8 17.6 137.4 
Mar-93 -1.5 88.0 17.0 105.0 
Apr-93 2.8 77.0 5.0 82.0 
May-93 6.0 101.4 0.0 101.4 
Jun-93 8.7 114.2 0.0 114.2 

Table 3: Monthly mean temperature and precipitation values 
for Big Barasway, June 1991-June 1993, 
(AES, unpublished). 
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1\) 
0 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 
1983 2.45 0.865 2.51 1.35 0.846 1.95 0.692 1.07 1.26 2.08 1.91 1.69 1.56 
1984 2.01 3.49 0.990 3.06 1.84 0.687 0.354 1.27 2.52 0.580 0.783 1.32 1.56 
1985 0.896 0.950 1.61 2.21 3.14 0.853 2.11 0.568 0.873 0.747 1.45 1.41 1.41 
1986 2.75 2.40 3.85 3.56 0.524 1.90 0.932 0.539 0.714 1.35 3.50 0.685 1.88 
1987 1.62 1.73 2.48 3.67 1.25 0.539 0.381 0.289 0.429 1.64 1.56 1.58 1.43 
1988 0.698 4.48 2.78 1.83 1.03 2.94 1.35 0.479 0.601 0.899 2.06 1.05 1.67 
1989 2.42 2.22 1.01 2.78 0.589 0.:'90 0.581 0.776 1.05 1.41 1.94 1.53 1.42 
1990 2.49 2.53 2.20 2.47 1.24 2.35 0.454 0.550 1.05 2.73 1.38 2.73 1.84 
1991 0.420 3.62 2.94 1.02 0.893 0.474 0.283 0.277 0.874 2.16 2.02 1.62 1.37 
1992 1.91 0.656 5.52 1.60 3.43 0.471 1.26 0.559 1.07 2.35 0.928 1.63 1.80 

Mean 1.766 2.294 2.589 2.355 1.478 1.295 0.840 0.638 1.044 1.595 1.753 1.525 1.594 

Table 4: Monthly and annual mean discharges in cubic metres per second for 1983-1992; 
Little Barasway Brook near Placentia- Station no. 02ZK003; 

(Department of Environment and Lands, unpublished). 



year. Increased flows on the Avalon Peninsula generally occur between 

March and June and between October and December. Increased flow may also 

occur between January and February, triggered by mild temperatures and 

combined rainfall and winter snowmelt (Water Resources Atlas, 1992). 

Table 4 shows the monthly and annual mean discharges for Little 

Barasway Brook in the drainage basin north of Big Barasway (Department of 

the Environment, Water Resource Branch, unpublished). For the period 1983 

- 1990 the highest discharge occurs between January and April and the lowest 

between July and September. The annual mean drainage is 50,400,000 m3 (1.6 

cumecs). The drainage basin covers an area of 37.2 km2. Assuming that the 

discharges of the streams at Big Barasway and Ship Cove are proportional to 

that at Little Barasway Brook, the annual discharge is estimated at 88,471,000 

m3 which is an average of 2.8 cubic metres per second (cumecs) for the stream 

at Big Barasway and 44,710,000 m3 (an average of 1.4 cumecs) for the stream at 

Ship Cove. 

2.3 Soils and Vegetation 

The study area falls within the Atlantic pedoclimatic zone of 

Newfoundland (Woodrow and Heringa, 1987). The mineral soils are very 

acidic and generally developed from till. Thicknesses range between a few 

centimetres and about 1 metre. 

The coastal areas principally contain Orthic and Placic Ferro-Humic 

Podzols (Heringa, 1981b). The valleys are composed mainly of the Angel's 

Cove series (Heringa, 1981b) which has a sandy loam texture, is moderately to 

exceedingly stony, and moderately well drained. The hills adjacent to the 
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valleys along the coast (Patrick's Cove series) are poorly drained and have 

similar surface textures and stone content to that of the valleys (Heringa, 

1981b). 

Areas adjacent to the coastline near sea-level are composed of the 

Bauline series (Heringa, 1981b) which consists of a sandy loam, is exceedingly 

stony and rapidly to well drained. The base of the valley at Ship Cove differs 

from most of the valleys along this coast, as it contains soils of the Waterford 

series of the Orthic Gleysol sub-group, characterized by a sandy loam, 

moderate to high gravel content and poor drainage (Heringa, 1981b). 

Poorly drained Organic soils, Placic Humo-Ferric Podzols, and Placic 

Ferro-Humic Podzols cover the higher elevated terrain toward the centre of 

Placentia Peninsula. Bedrock is commonly exposed along the interior of the 

Peninsula, on the high grounds between the valleys, and along the coast 

(Heringa, 1981b ). 

The coastal areas are dominated by balsam fir and spruce forest. 

Interspersed are small barrens having a heath-shrub cover, with plants such 

as sheep-laurel, blueberry, bunchberry, raspberry, partridgeberry, crowberry, 

tall meadow rue, and reindeer moss (Heringa, 198la). Two main types of bog, 

dry dwarf shrub-sphagnum and wet sedge-sphagnum, occur. Dry dwarf 

shrub-sphagnum is associated with forested areas whereas the sedge­

sphagnum lies adjacent to heathland, barrens, and shrub forest (Pollet, 1981 ). 

Fens in the area are dominated by Picea mariana (black spruce) and Larix 

laricina (tamarack) (Catto, 1992a). 
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2.4 Bedrock Geology 

The island of Newfoundland represents the northeastemmost 

extension of the Appalachian Orogen system in North America. The orogen 

is divided into four tectono-stratigraphic zones, each recording a different pre­

Silurian evolutionary history. The western Humber and Dunnage Zones 

represent the ancient margin of North America whereas the Gander Zone 

includes remnants of the Palaeozoic Iapetus Ocean (Williams, 1979). The 

Precambrian elements of the Avalon Zone, the easternmost zone, predate the 

Iapetus Ocean and were originally attached to North Africa (O'Brien and 

King, 1982). This zone is approximately twice the width of the remainder of 

the Appalachian Orogen, extending roughly 250 km offshore to the present 

continental margin (Haworth and Lefort, 1979; O'Brien and King, 1982). 

The Avalon Peninsula of the Avalon Zone is primarily composed of 

unmetamorphosed Hadrynian volcanic and clastic sedimentary rocks 

(McCartney, 1967; King, 1988). Small exposures of post-Cambrian granite, the 

Iona Islands Intrusive Suite, lie offshore to the north of Argentia in Placentia 

Bay. A more extensive irregular stock of Hadrynian granite, the Holyrood 

Intrusive Suite, lies east and northeast of the study area. Palaeozoic rocks 

crop out along the eastern and western sides of the Placentia Peninsula and 

along the heads of Trinity and Conception Bays (King, 1988). These outcrops 

consist of slate, shale, and minor limestone beds which are transitional 

upward into more clastic Lower Ordovician beds (McCartney, 1967). Sills of 

gabbro, diabase and diorite crop out on the southwestern tip of Placentia 

Peninsula (King, 1988). 

23 



The Musgravetown Group forms the majority of Placentia Peninsula. 

The Big Head Formation of the Musgravetown Group is directly adjacent to 

Big Barasway and Ship Cove, but is thin and poorly defined at the latter 

(McCartney, 1967). This formation consists mostly of fine grained, wavy 

bedded, grey to green sedimentary rocks that overlie the predominant! y 

volcanic Bull Arm Formation and underlie the purplish red sandstone and 

siltstone beds of the Maturin Ponds Formation (McCartney, 1967; King, 1988). 

At Ship Cove, grey to black shale of the Heart's Content Formation crops out 

(King, 1988). 

The structural geology of the area was shaped by the two periods of 

mountain building on the Avalon Peninsula. The first, the Avalonian 

Orogeny, occurred about 570-650 million years ago. The second occurred 

dwing the Cambrian and Ordovician, about 570 to 450 million years ago 

(King, 1989). On the Placentia Peninsula, orogenic activity has produced a 

series of northeast-southwest trending gently-dipping synclines and 

anticlines. At Big Barasway and Ship Cove the beds dip gently to the 

southeast. A minor fault with a west southwesterly-east northeasterly trend 

lies between Ship Cove and Big Barasway, separating the rocks of the Big 

Head Formation from the Heart's Content Formation to the south. 

The cliffs along this expanse of coastline are steep. The lithology and 

steeply-dipping structure of the exposed bedrock along western Placentia 

Peninsula make the coast moderately to highly resistant to wave attack. 
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2.5 Glacial History 

MacClintock and Twenhofel (1940) and Summers (1949) proposed that 

the Avalon ice cap was a residual of ice that had invaded the peninsula from 

the northwest, perhaps originally from Labrador. This remnant ice cap 

radiated from the central Avalon Peninsula during the later phases of the 

Wisconsinan. Henderson (1972) concluded that the Avalon Peninsula was 

never invaded by northwest ice; instead, it was an area of Wisconsinan ice 

accumulation which gave rise to a vigorous independent ice cap. Eastward 

flowing ice was diverted from the Avalon by moving northeast and 

southwest down Trinity and Placentia Bays. The northern half of the 

Isthmus of Avalon may have been covered by ice from the northwest 

(Henderson, 1972). 

The ice centre in Henderson's (1972) reconstruction was in the basin of 

St. Mary's Bay. It radiated outward in all directions and attained a thickness 

of at least 2000 ft (approximately 620 m), a height necessary to have glaciated 

surrounding highlands on Placentia Peninsula such as the Beaver Pond Hills 

with an elevation of 275m. The ice attained this thickness because it was 

restricted from moving southward (Henderson, 1972). 

According to Henderson's (1972) reconstruction, during deglaciation 

the ice centre moved northwards from the mouth to the head of St. Mary's 

Bay while southerly drainage increased out of St. Mary's and Placentia Bays. 

The westward flow of ice over the Placentia Peninsula diminished. The west 

facing slopes along the Placentia Peninsula coast became ice-free first. 

Meltwater deposits were laid down and meltwater channels were eroded on 

ice-free slopes west of the north-south divide. As deglaciation progressed the 
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ice centre moved to the Trepassey Peninsula. The depositional and erosional 

features on the Placentia Peninsula were not affected by this move or by later 

glacial events. 

Recently, Catto (1992a; 1992b) mapped the surficial geology of the 

southwestern Avalon Peninsula. Through analysis of striae, geomorphology 

and sediments, Catto has concluded that separate ice caps occupied the 

Isthmus of Avalon and that the St. Mary's ice cap, centred at the head of the 

St. Mary's Bay, extended to the southwest, west, northwest, and northeast. 

Both Henderson and Catto have thus established that the direction of ice flow 

on the eastern shore of Placentia Bay was westward from centres in St. Mary's 

Bay and on the Placentia Peninsula. 

The coastal areas of western Placentia Peninsula often contain complex 

sedimentary sequences in the incised valleys (Catto, 1992a). At Big Barasway, 

marine sediments extend into the valley reaching elevations of 10 m and 

overlie till and glaciofluvial materials. Farther up the valley an organic 

veneer overlies a glaciofluvial apron. On the valley sides colluvial and till 

veneers overlie bedrock. On the high grounds between and behind the 

valleys, organic veneers over! ying bedrock and/ or till dominate (Catto, 

1992b). The till consists mainly of large clasts, pebbles, cobbles and boulders 

with a sandy matrix. At present, a detailed investigation of the bluff at Big 

Barasway is being undertaken (House, in preparation). This bluff, 

approximately 70 m high, is located westward of a bedrock outcrop. Within 

the barrier complex at Big Barasway, there is a vegetated section overlying 

diamicton. Adjacent to the northern end of the barrier, a marine terrace of 

gravel at approximately 5 m overlies till and glaciofluvial sediments. 
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The base of the valley at Ship Cove is similar to that at Big Barasway. 

The valley sides are less steep and are marked by fewer colluvial sediments 

than at Big Barasway, with exposed bedrock and till veneers dominating 

(Catto, 1992b). Unconsolidated bluffs of diamicton border both sides of the 

gravel barrier. 

2.6 Holocene Sea-level Changes 

A Holocene sea-level curve has not been published for the east coast of 

Placentia Bay or for other parts of the Avalon Peninsula. Curves have been 

developed for the northern Northern Peninsula (Grant, 1972; Grant, 1989), 

Cape Freels in northeast Newfoundland (Shaw and Forbes, 1990), and St. 

Georges Bay and Port au Port area in southwest Newfoundland (Brookes et 

al., 1985; Forbes et al., 1993). Until recently, little geomorphological, 

sedimentological and chronological analysis had been undertaken on the 

Avalon Peninsula. 

The existing curves show that for most of the island of Newfoundland, 

sea-level rapidly fell initially after deglaciation to below present levels and 

subsequent! y rose to present levels. An exception to this general trend is 

present along the northern part of the Northern Peninsula which has 

experienced continual emergence following deglaciation (Brookes and 

Stevens, 1985). 

Numerical models have been developed that describe the behaviour of 

the lithosphere under ice load and the earth's response once that load is 

removed (Clark, 1980; Clark and Lingle, 1979; Peltier et al., 1978; Quinlan and 

Beaumont, 1981; 1982). These models indicate that postglacial sea-levels can 
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be categorized into distinctive zones which depend on the distances from the 

ice centre. Although the island of Newfoundland supported local ice caps, 

the effect of the Laurentide Ice Sheet essentially overwhelmed the influences 

of the local caps (Grant, 1989). Consequently, the island's position at the 

southeastern margin of the Laurentide Ice Sheet is more important in 

determining the generalized shapes of sea-level curves. Other factors such as 

thermal expansion affect sea-level curves; however, the order of magnitude is 

much smaller than that due to forebulge migration. 

In the glacio-isostatic models, the crust deforms under the weight of 

ice, causing material to move toward the margins of the ice sheet. Ice 

marginal forebulges, elevated areas with this displaced material, migrate 

toward the location of the former ice mass as the ice sheet melts during and 

after deglaciation. The rate and direction of forebulge migration for the island 

is being studied and, based on marine shell evidence throughout the island, is 

likely faster than glacio-isostatic models have predicted (Liverman, in press). 

As the viscoelastic properties of the earth cannot be measured directly, 

geophysicists require information on glacial extent, the manner and rate of 

deglaciation, and postglacial sea-level responses. 

Quinlan and Beaumont (1981) developed models describing postglacial 

relative sea-levels in Atlantic Canada and showed four types of sea-level 

curves that could ensue (Figure 4). These curves range from continual 

emergence (zone A} to continual submergence (zone D). The two 

intermediate zones, Band C, are characterized by initial emergence, followed 

by submergence. However, in zone B, emergence is greater than submergence 

while in zone C, submergence is greater than emergence. Hence, raised 
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Figure 4a: Schematic diagram of a peripheral bulge at two points in time, 
18,000 BP and now. The bulge migrates in the direction of the 
arrow affecting relative sea-level (RSL) at sites A, B,C, and D, 
shown in Figure 4b. (after Quinlan and Beaumont, 1981). 
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Figure 4b: Schematic diagram showing the RSL history at each of the sites 
A through D resulting from forebulge migration. These sites 
and RSL curves are taken as type examples. At location A, the 
RSL history is characterized by continual emergence, whereas at 
location D, the RSL history shows continual submergence. 
At locations Band C, ~e RSL histories show initial emergence 
followed by submergence. At location B, the emergence is greater 
than the submergence, whereas at location C, submergence is 
greater than emergence. (after Quinlan and Beaumont, 1981 ). 
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marine features would be found in zones A and B, whereas zones C and D 

would show no marine features above present sea-level. 

In Quinlan and Beaumont's (1981) model, the Avalon Peninsula was 

placed within zoneD, indicating continual submergence. More recently, 

Grant (1989) showed the division between type Band type C curves at the 

Isthmus, thus indicating that the study area falls within either zones Cor D. 

However, the raised marine deposits at 10m asl at Big Barasway and Ship 

Cove and the deltaic deposits at Point Verde suggest that the western part of 

the Avalon Peninsula has undergone emergence. Furthermore, a lowstand 

at the head of Placentia Bay has been estimated at 8 m below present sea-level 

(Shaw and Forbes, in press), which in addition to the raised features, indicates 

that the western part of Placentia Peninsula lies within zone B, as does most 

of the island. 

2.7 Human Activity 

The Cape Shore was initially settled during the early nineteenth 

century by Irish immigrants, principally from the counties of Wexford, 

Waterford, and Tipperary, The first record of permanent settlement along 

this coast was at Ship Cove in 1802 (Mannion, 1974). These settlers were 

isolated, ethnically homogeneous, and subsisted on pastoral farming. 

Involvement in the commercial fishery increased toward the mid-1800's 

(Mannion, 1974). 

Given the rugged terrain of this shore and the pattern of Irish 

settlement, homesteads were sparsely scattered in the small, more protected 

and fertile valleys. These were initially occupied by no more than two 
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families (Mannion, 1974). With subsequent generations the land units were 

divided amongst the children, creating a cluster of houses within an ancestral 

farm unit. The legacy of settlement can still be seen today. The coastline is 

sparsely populated with pockets of families within the valleys, such as at 

Little Barasway and Ship Cove with only one to three families. 

Compared to more developed areas the beaches at Ship Cove and Big 

Barasway have experienced relatively minor anthropogenic influence. 

However, at Ship Cove the removal of aggregate adjacent to the beach for 

road construction in the 1960's and 1970's and a forced northerly relocation of 

the outlet in the mid 1960's have affected the beach morphology. 
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Chapter 3 

Methods 

3.1 Characteristics of Barrier Sediment 

3.1.1 Clast Shape 

Clast shape analysis is frequently used in Quaternary studies to 

determine the palaeoenvironmental conditions of deposition. It is 

particular! y important for distinguishing between beach and fluvial deposits, 

for the former may be used to determine a palaeoshoreline (Howard, 1992). 

However, the parameters and the definitions of these parameters are not 

universally accepted (Barrett, 1980}. In this research, clast-shape description 

involved three major components: roundness, sphericity and overall shape. 

The roundness measurements employed the scale developed by 

Powers (1953), where 0.1 to 0.3 is angular, 0.3 to 0.5 is subangular, 0.5 to 0.7 is 

subrounded and 0.7 to 0.9 is well rounded. The degree of roundness was 

assessed qualitatively in the field and estimated to the nearest 0.1 division. 

Clasts with sharp surfaces created by fractures, but showing well-rounded 

surfaces over most of their areas, were considered well-rounded. At each 

sample site, a total of 25 randomly selected clasts were assigned Powers 

roundness grades. The grades were then combined and the modal roundness 

of the assemblage described in qualitative terms. This procedure allows the 

relative degree of abrasion to be assessed between the two beach systems at Big 

Barasway and Ship Cove, as well as permitting the assessment of differences 

within the individual beaches. 
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Sphericity is a measure of the ratio of the three mutually perpendicular 

axial lengths of a clast. The concept was originally developed by Wadell (1935) 

and modified by Krumbein and Pettijohn (1938). In this study, clasts were 

described as having either low, medium, or high sphericity. Clasts with a low 

shortest axis:longest axis ratio are described as having low sphericity. In 

contrast, clasts with axes of approximately equal length are classified as 

having high sphericity. As with the evaluation of roundness, the 

classifications obtained from 25 randomly selected clasts at each sample site 

were combined and the modal sphericity assessed qualitatively. 

The Zingg (1935) classification was used to determine overall clast 

shape. The divisions are based on intermediate:long axis ratio and 

short:intermediate axis ratio. Clasts are defined as either discoid, for which 

the intermediate:long axes ratio is greater than 2/3; bladed, for which both 

ratios are less than 2/3; roller, for which for the shortintermediate axis ratio 

is greater than 2/3; or equant, for which both ratios are greater than 2/3. The 

oblate-prolate index developed by Dobkins and Folk (1970) is preferred by 

some researchers, for example, Barrett (1980) and Gale (1990), for 

distinguishing depositional environments. However, this method does not 

distinguish between rollers and equants, therefore limiting its use as a general 

descriptive tool. 

The axial lengths of the clasts were not measured numerically, and the 

assignment of the Zingg shapes was done visually in the field. The 

proportion of the clasts which fell into each shape category at each sample site 

are reported. Although this procedure does not allow rigorous statistical 
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analysis, it does permit semi-quantitative comparisons among different 

locations between and within the beaches at Ship Cove and Big Barasway. 

3.1.2 Sediment Texture 

Since the majority of sediment within both beaches is coarser than 

medium-sized pebbles, it is impractical to obtain samples for laboratory 

analysis that contain enough pebbles, cobbles and boulders for a statistically 

meaningful result (Catto, 1989; Gomez, 1983). Gale and Hoare (1992) 

evaluated existing sampling methods and discussed the difficulty of 

determining the mass of sample required to obtain a representative sample of 

each size fraction present in a coarse-clastic deposit. For example, Church et 

al. (1987) recommend a minimum sample size of 1000 kg to adequately 

categorize gravel deposits containing a maximum particle diameter of 100 

mm. The beaches at Big Barasway and Ship Cove contain clasts> 256 mm, 

and thus each textural sample size would have to be much larger than 1000 kg 

in order to obtain statistically valid results from textural analysis (Gale and 

Hoare, 1992). Consequently, visual estimates of volume percentages of clasts 

of each grain size were made in the field using the charts developed for the 

estimation of mineral percentages by Shvetsov (1954). Size categories were 

based on the logarithmic (to the base 2) modified Wentworth-Udden Scale 

(Udden, 1898; Wentworth, 1922; Krumbein, 1934). 

3.1.3 Clast Fabrics 

Clast fabrics were taken along the beaches at Ship Cove and Big 

Barasway. Visual examination at the onset of the study revealed strong clast 
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imbrication along the beaches, particularly along berm crests. Imbrication was 

consistently seaward and varied at individual locations up to ± 45° from the 

trend of the shoreline. 

Upon preliminary examination, it was apparent that imbrication 

varied with clast shape. Discoid clasts consistently showed imbrication 

patterns with seaward dipping a/b planes, a common pattern noted in other 

beaches (Bourgeois and Leithold, 1984; Jennings and Smyth, 1990; Reineck 

and Singh, 1975). In contrast, elongated clasts (rollers and blades) appeared to 

demonstrate non-random patterns of a-axis imbrication. It was decided, 

therefore, to evaluate the usefulness of the fabric method involving analysis 

of the orientation and plunge of the a-axes (Mark 1973; Woodcock 1977; 

Rappol 1985), in environments where the orientations of the beaches and the 

direction of wave approaches are known. Thus, the data obtained by a-axis 

fabric analysis can be compared with the orientations of the strongly 

imbricated a/b planes of the discoid clasts. 

Clast fabrics involving a-axis determinations were taken along the 

barriers following the method described by Catto (1989). At each site a sample 

of 25 clasts was chosen from within an area of 1/2 m x 1/2 m. Although the 

sediment along the beaches at both locations contains large percentages of 

discoid clasts (see chapters 5 and 7), the majority of sites contained a mixed 

population, with discs and spheres totaling~ 50% of the total proportion of 

clast shapes. Sites marked by concentrations of discs and spheres in excess of 

50% of the total clast assemblage were not tested. The imbrication of the a/b 

planes of discoid clasts at all sites were noted. Oasts of similar sizes were 

chosen for analysis, predominately large pebbles and cobbles. All clasts were 
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taken from the surface layer, except for the fabrics taken from natural cut 

banks present along stream outlets. 

A Brunton pocket transit was used for the measurements. The trends 

and plunges of the a-axes were measured. Clasts were chosen that had a-axes 

at least 1.5 times longer than the intermediate b-axes. Despite the large 

percentages of discs and spheres, a sufficient number of clasts fulfilling the 

shape criteria were available within each of the small grid areas analyzed. 

The results were plotted on a Schmidt equal area stereonet and 

statistically analyzed using the Stereo package for the Apple Macintosh 

Computer (McEachran, 1989). With the stereonet, clasts with shallow angles 

of a-axis plunge plot toward the edge of the circle whereas those with steep 

angles plot toward the centre. Clasts with a northward or southward trend 

plot along they-axis whereas those with a more east-west trend plot along the 

x-axis on the stereonet. The azimuths of the clasts can be estimated by reading 

the graduations along the margin of the net. 

The Stereo package calculates the mean linear trend and dip, the 

normalized eigenvalues, and K values based on eigenvector and eigenvalue 

methods described by Mark (1973), Woodcock (1977), and Rappol {1985). The 

normalized eigenvalues (Si= lambdai/n) describe the strength of the clast 

orientation, where S1 +52+ S3 = 1. The normalized eigenvalues can range 

from 0.33 to 1, where 0.33 represents randomness and 1.0 indicates perfect 

orientation. Values of 0.6 and greater are considered moderately strong 

values for the littoral environments being studied in this research. 

Another statistical parameter, K, where K = ln(S1/S2) I ln(S2/S3), 

describes the overall shape of the distribution. K values less than 1 indicate a 
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girdle distribution, values greater than 1 show a cluster distribution. Where 

K = 1, distributions have equal girdle and duster tendencies (Woodcock, 

1977). 

3.2 Tracer Oasts 

Use of marked, painted, radioactive, or lithologically distinct tracer 

clasts has been a common procedure in marine beach studies (Boon, 1969; 

Donoghue and Greenfield, 1991; Sherman et al. 1989; Sherman et al., 1990). 

These clasts, if recovered along the shore, can be used to assess the direction 

and velocity of sediment migration. In September 1991 a 1 m x 1m area with 

mainly small to large pebbles exposed on the surface along the mid-beachface 

along zone A at Ship Cove, and a 1 m x 1 m area of similar clasts along the 

upper-beachface near transect BB- 30 along zone 0 at Big Barasway, were 

painted with Armor Coat Interior/Exterior Fluorescent Spray Paint. After 

three days, the paint on the clasts at Ship Cove had been extensively eroded. 

No painted clasts could be seen on a visit to the beach at Ship Cove two weeks 

after the initial painting, and none were subsequently recovered on any visits. 

Approximate[ y 25 clasts with paint could be seen at Big Barasway after two 

weeks and 6 clasts were visible throughout the subsequent months. Paint was 

being removed from the clasts at Big Barasway, but the rate was less than that 

at Ship Cove. 

In March 1992, 4 samples of 250 pebbles each were taken from zones A 

and C at Ship Cove and from zones A and C at Big Barasway. These clasts 

were thoroughly dried and then painted with Matchless ™ Alkyd Marine 

Paint. The samples of clasts were returned to the zones from which they were 
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taken and placed in the intertidal zone. Two colours, yellow and red, were 

used at each beach. A visit to the beaches one week later, as well as 

subsequent visits, resulted in no siting of painted clasts. 

The clasts were painted in attempts to trace the movement of clasts; 

however, it appears that the paints used could not withstand the constant 

wave action. The few clasts that retained the paint were located along the 

backbarrier at Big Barasway and were thus removed from the wear of wave 

action. 

In August 1992 two samples of 250 white granite clasts each, obtained 

from a beach near Musgrave Harbour, Newfoundland, were deposited in the 

intertidal areas of zone A at Ship Cove and zone Cat Big Barasway. As these 

granitic clasts are not indigenous to the study area and differ lithologically 

from the local clasts, it was hoped that they could be located during 

subsequent visits. Unfortunately, none were found. The clasts were either 

moved offshore or were covered by locally derived clasts. 

3.3 Profile Measurements 

Transects were spaced 20m apart at both Ship Cove and Big Barasway, 

with the exception of transects BB-15 and BB-18 along zone Cat Big Barasway 

(Figures 5 and 6). These transects were spaced 40 m apart. The orientations of 

the transects were aligned normal to the beach trend. Divisions along each 

transect were based on either slope or sediment textural changes. Horizontal 

distances were taken using a measuring tape and a clinometer was used to 

measure slope angles. Estimates of mean water level initially were 

determined from tide tables for Argentia, located to the north of the study 
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area, and subsequently from direct observation at the sites. Profiles were 

plotted based on height above mean sea-leveL 

In July 1993, a coastal monitoring program was initiated jointly by the 

Newfoundland and Labrador Department of Mines and Energy and the 

Geological Survey of Canada. Three transects were established along Big 

Barasway and one at Ship Cove. Repetitive measurements on several 

occasions were made using a simple paired-staff leveling and tape system. 

Two of the GSC transects at Big Barasway correspond to BB-10 and BB-34. The 

transect at Ship Cove corresponds to SC-11. The profiles of the GSC boulder 

site transect and GSC-393 (BB-10) measured in February 1994 show the 

location of the ice foot. When measurements were taken during February, 

the surveying rod was pushed through the snow on top of the foot until the 

ice prevented further penetration. 

Transect measurement of BB-10 in June 1993 using the method 

employed in this study revealed a height of 3.1 m and a backbarrier width of 

42 m. The height of the GSC profile taken at the same location in July 1993 

revealed a height of 2.8 m and a backbarrier width of 43 m. The two methods 

yield a difference in height of 0.3 m and in width of 1 m. Observations by the 

author on both occasions indicated that the beach in this area had altered little 

between June and July 1993. The GSC method has been in use for over 10 

years and has been checked by electrical surveying equipment. The accuracy 

of the beach elevations is estimated at ± 10 em (D. Forbes, Atlantic Geosciences 

Centre, personal communication). 

Taking repeated measurements using the clinometer and tape method 

between July 1991 and September 1991 (during a time period marked by no 
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crestal breaching by waves) of transects that had undergone no alteration in 

height and backbarrier width revealed similar barrier heights. Profiles of 

transect SC-11 show a difference of 0.4 m between the profiles taken in July 

1991 and in September 1991. Transect SC-17 shows a difference of 10 em 

between the profile taken in July 1991 and the one in September 1991. The 

accuracy of angle measurements taken using the clinometer is within ± 0.5°. 

Using the overall beachface and backbarrier slopes yields an error of± 0.5 min 

barrier height. 

Detailed profile data and sediment descriptions were executed during 

July 1991 and September 1991. Following this, the barriers were visited 

regularly at least once every six weeks to a maximum of once a week between 

September 1991 and March 1993. In May 1992, the beaches were visited for 

five consecutive days. Profile measurements were taken when time and 

assistance were available. The generalizations in patterns or trends in 

sediment structure and morphology presented in this thesis are based on 

actual measurements and visual observations. 

3.4 Echo Sounding Measurements 

Echo sounding measurements were taken using a "MX-2250" White 

Line/Straight Line Chart Recorder September 5, 1992 when Placentia Bay was 

calm and the visibility was clear. The locations of the boat offshore were fixed 

using two positions along the barrier. Brunton pocket transits were used by 

shore-based observers to take the bearings of the boat from the barrier 

locations. The two beach positions were fixed using a theodolite and 

surveying rods. At Big Baraswa y the zero angle for the theodolite was based 
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on two locations: one at the end of Otter Point (Figure 7) and the second at the 

northern end of the bridge (not shown on Figure 7). A surveying rod was 

used to measure the distance between the base location at Otter Point and the 

locations on the barrier. The theodolite was positioned on the locations on 

the barrier and distances and angular measurements were taken to cross­

check the first measurements based at Otter Point. Distances between 

locations were measured to the nearest metre, giving an error of ± 0.5 m for 

the positions used for offshore bearings. At Ship Cove the theodolite was 

positioned on the northern end of the bridge. The zero angle for the 

theodolite was based on the line drawn between the northern headland and 

the northern end of the bridge. As at Big Barasway the theodolite was 

positioned on the locations of the barrier and distances and angular 

measurements were taken to cross-check the first measurements. 

The error associated with a bearing using the Brunton pocket transit is 

estimated at± 1°. The error associated with an offshore fixing (using simple 

trigonometry) increases with distance and smaller angles. After plotting the 

offshore positions, the position (point C on Figure 5) marked by the largest 

distances from the fixed positions on shore and the smallest angular bearing 

was chosen to estimate the largest error associated with the offshore positions 

used in this study. 

Figure 5 illustrates the calculation of error for point Cat Big Barasway. 

The distance between points A and Bon shore is 231 ±1m. The bearing 

taken by the observer at point A gave an angle of 28° ± 1° for <CAB, whereas 

the bearing taken at point B gave an angle of 140° ± 1 o for <ABC. 

Determining one-half of the difference in the distances of X (the line 

41 



perpendicular to line AB) between the two cases where the errors are greatest 

will give an estimate of the error. Thus: 

tan27° = XI (230 + Y); and 

tan 39° = X/Y, or Ytan39° = X. 

Substituting one equation into the other and solving results in Y = 391 m and 

X= 317m. 

Likewise, for the other case of theoretical extreme error: 

tan29° = X/(232 + Y); and 

tan 41° = X/Y. 

Substitution then results in Y = 400 m and X= 348m. This gives a difference 

of 31 m for X. Thus, the maximum error associated with the offshore 

positions determined at Ship Cove and Big Barasway is estimated at± 16 m. 

Most offshore sites, marked by more central positions and larger bearing 

angles, had smaller theoretical maximum errors associated with their precise 

locations. 

139 -141° 

~-----~----------------------------------------~~-'39-~1°_ 
A 231 ±1m B Y 

c 

X 

Figure 5: Sketch showing the calculation of error associated with location 
of the offshore position, point C. Points A and Bare the positions 
on land. The determination of X is explained in the text. 
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3.5 Cores 

Four cores were taken from the lagoon at Big Barasway using a 

modified Livingstone corer on October 14, 1992. The locations are shown on 

Figure 7. Textural analyses of the core samples entailed sieve analysis and 

hydrometer suspension analysis (ASTM 1964). Grain size designations were 

based on the modified Wentworth-Udden scale (Krumbein, 1934). 

3.6 Exposures 

Two naturally exposed cut banks were examined. The thicknesses, 

structure, and textures of the sedimentary units and the fossil composition of 

the organic units of the stratigraphic sequences were described using the 

methods outlined previously. The modes of formation of the peats were 

determined by analysis of their composition and by comparison with modem 

peats in the study area. N.R. Catto identified the species of marine shells. 

Two samples of wood fragments with bark were dated by gasometric 14c 

analysis at the laboratory of the Geological Survey of Canada in Ottawa. 

3.7 Oiff Erosion 

The bluffs bordering both Ship Cove and Big Barasway are actively 

eroding. To estimate the rate of cliff retreat, seventeen sites were established 

at Ship Cove and 21 sites at Big Barasway. Two markers were placed at each 

site. Orientation to the cliff edge was determined at each site and the distance 

was measured using a tape. The short duration of the study precludes 

accurate assessment of long term retreat. However, these measurements, in 

addition to comparison of 1948 and 1980 air photos and estimates by residents 
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who have lived in the cove communities for over 40 years, allowed estimates 

of the rate of cliff retreat. 

3.8 Aerial Photos 

Longer term comparisons of the morphology are possible using 

successive air photos taken in 1948, 1967 and 1980. The small scales of the 

1948 (1:40,000) and the 1980 (1:56,000) air photos and the size of the gravel 

barriers make it difficult to accurately quantify the changes in barrier widths 

and lengths along the zones, as well as the landward displacement. A 

inaccuracy in the measurement of two points of 1 nun on the 1:56,000 scale of 

the 1980 air photo would result in an error of± 56 m. The 1:17,000 scale of the 

1967 air photo shows more detail, and a 1 mm inaccuracy would result in an 

error of± 17m. Comparison of morphological changes of the barriers at Ship 

Cove and Big Baraswa y in the air photos in addition to changes observed 

during the study allow an estimate of landward retreat. This estimate is 

supplemented by observations made by residents who have lived in the 

communities for more than 40 years. 

44 



Chapter 4 

14C Age Determinations and 
Holocene Sea-level 

4.1 Description 

Two samples of autochthonous forest peat containing arboreal wood 

fragments were submitted for gasometric 14(: analysis to the laboratory of the 

Geological Survey of Canada in Ottawa. At Ship Cove (Figure 6), an 

autochthonous fibric peat unit 25 em thick is present at sea-level in a natural 

cut bank adjacent to the lagoon (Catto, in press; Catto and Thistle ,1993; Catto 

et al., 1994). The peat contains Picea mariana (black spruce) fragments, many 

of which are covered with adhering bark. This unit contains no marine 

fossils, and is similar in its organic content and degree of decomposition to 

fibric peats developed under modem black spruce-tamarack forests in the 

Ship Cove area, including those adjacent to the present coast (Catto, 1992 a, b). 

Analysis indicated a 14C age of 1340 ±70 B.P. (GSC-5306; Catto, in press; Catto 

and Thistle, 1993; Catto et al., 1994). 

At Big Barasway, a sample was obtained from an autochthonous peat 

layer capping a naturally-eroded sedimentary exposure 2.5 m above sea-level 

backing the zone B segment of coastline (Figure 7). This peat unit contained 

bark-covered fragments of Picea mariana as well as Abies balsamea (balsam 

fir), lacked marine fossils, and resembled both modem forest peats mapped in 

the vicinity (Catto, 1992 a; b) and the forest peat which underlies the 
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tuckamore vegetation present on the shore of the lagoon along the landward 

side of the Zone B segment of coastline. The peat sample yielded a gasometric 

14C age determination of 3480 ± 60 B.P. (GSC-5319; Catto and Thistle, 1993; 

Catto et al., 1994; Catto, in press). 

Figures 8 (Ship Cove) and 9 (Big Barasway) illustrate the stratigraphic 

successions in which the samples were located. At Ship Cove, unit 1 consists 

of a laterally discontinuous bed of subrounded and rounded imbricated 

pebbles and cobbles, underlying 25 em of peat (unit 2). The sample which was 

14C-analyzed was taken from the base of the peat unit at the present mean sea­

level. The peat is overlain successively by 30 em of sand (unit 3) and 35 em of 

peat (unit 4). The succession is capped by a 10 em thick layer of silt (unit 5), 

overlain by anthropogenicall y disturbed sediment and soil. The silt 

contained shell fragments of the extant mollusc Mytilus, and badly 

decomposed fragments of marine rockweed, possibly Ascophyllum (Catto, 

N., personal communication). At Big Barasway, the 46 on thick peat layer 

directly overlies diamicton, and is capped by modern organic material 

developed under coastal grasses and herbaceous vegetation. 

4.2 Discussion 

The similarity of the peat deposit at Ship Cove to modem peats 

forming under terrestrial forest deposits and the lack of marine fossils 

indicate that the peat unit at Ship Cove represents and in situ terrestrial 

forest deposit. Its position at mean sea-level suggests formation when 

relative se-level was at an elevation lower than that of the present sea-level. 

The autochthonous terrestrial peat present at Big Barasway suggests that 
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relative sea-level was below 2.5 m elevation approximately 3480 B.P. A peat 

sample taken from a coastal bluff 10.5 m above present sea-level at Point 

Verde, to the north of the study area, has yielded a 14C age of 6130 ± 80 B.P. 

(GSC-5158). Along the Cape Shore, other 14C analyzed terrestrial peat deposits 

from Patrick's Cove (7660 ± 90, GSC-5414), Little Barasway (5600 ± 60, GSC-

5580), and Fox Harbour (5150 ± 80, GSC - 5169) indicate that sea-levels were at 

or below present throughout the early- and mid-Holocene (Catto and Thistle, 

1993; Catto et al., 1994; Catto, in press). The emerged marine deposits at 10 m 

a.s.l. underlying the peat unit at Point Verde indicate that, shortly after 

deglaciation, sea-level was above the present level (Catto, 1992a; Catto and 

Thistle, 1993). During the early Holocene sea-level dropped rapidly, reaching 

a lowstand of -8 m a.s.l. at the head of Placentia Bay approximately 7,000 B.P. 

(Shaw and Forbes, in press). The locations of the terrestrial peat sites along 

the Cape Shore in exposed marine environments where coastal erosion is 

evident suggest that transgression subsequently occurred along Placentia Bay, 

and that relative sea-level did not reach its present position until some time 

after 3,480 B.P. 

The imbricated pebble and cobble unit at the base of the sequence at 

Ship Cove could have been deposited in either a fluvial or marine beach 

environment. The gravel shows textural similarities to the beach deposits 

associated with the modern barrier; however, the clasts are less rounded and 

the beds are laterally discontinuous. A fluvial origin for this gravel is thus a 

likely explanation. As at Big Barasway, the sedimentary characteristics of the 

peat indicate that it is autochthonous. 
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The silt layer (unit 5) at Ship Cove could be either a marine or an 

aeolian deposit. If the deposit is aeolian, however, the presence of the marine 

shell and rockweed fragments would require deposition by onshore winds. In 

the present environment, little (if any) silt is exposed along the beach for 

transportation by wind. Along the Cape Shore, aeolian deposition of silt is 

associated with cliff-top settings such as at the tip of Point Verde, rather than 

in coves (Catto and Thistle, 1993). Although the shell and rockweed 

fragments could have been deposited by birds, animals, or humans, the 

position of the organic fragments interspersed with the silt in unit 5 suggests 

simultaneous deposition of both silt and fragments. Furthermore, if 

humans were responsible for the deposition of the rockweed (which is 

commonly used for fertilizer in gardens by residents of the Cape Shore), larger 

clasts would likely be deposited also. Mixtures of marine plant matter and 

pebbles commonly mark areas where rockweeds have been applied as 

fertilizer, as has been noted at Little Barasway (Catto, personal 

communication) and at several seacoast localities along the eastern Burin 

Peninsula (Ruffman, A., Geomarine Associates, personal communication). 

During this study, high lagoon levels at Ship Cove, reaching 90 em 

above mean sea-level and near the base of unit 5 have occurred. These higher 

lagoon levels develop when the stream outlet was closed, the height being 

limited by the hydraulic head. Deposits resulting from outlet closure and 

consequent increased elevation of the surface level of the lagoon waters, 

however, would likely contain wood fragments derived from erosion. The 

silt layer lacks any terrestrial wood fragments. Destruction of the barrier and 

subsequent opening of the lagoon to marine infiltration at the present (or 
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lower) sea-level would necessitate a large storm event. The low-energy 

deposition indicated by the silt, however, requires the presence of a protective 

barrier. Deposits associated with storm overwash along the barrier and in the 

lagoon are dominated by coarse clasts and contain large driftwood fragments, 

frequently of tree species not native to Newfoundland (Catto, in press), and 

fine sediment is not present. 

An outlet could possibly open during a storm , exposing the lagoon to 

marine infiltration, and then close shortly after or during the waning stages 

of the storm. If the discharge of the stream were low, marine water could 

then be trapped in the lagoon and a low-energy depositional environment 

would temporarily exist. This sequence of events could occur if sea-level was 

either at its present position, or if the level was slightly lower. 

Low energy marine deposition could also reflect higher lagoon levels 

resulting from higher sea-levels (Catto, in press). If this is the case, another 

possible explanation for the 14C ages of the terrestrial peats and the sequences 

at Ship Cove and Big Barasway is that a transgression occurred after 3480 B.P., 

and continued until it reached a maximum of at least 75 em but less than 2.5 

m above modem sea-level, at some time after 1340 B.P. Following this, sea­

level fell to at least the present level. 

Regardless of which explanation is the correct one for the deposition of 

the silt layer, regional evidence (Catto, in press; Catto and Thistle, 1993; Catto 

et al., 1994) indicates that sea-level has been rising throughout the past 1000 

years. A fragment of Picea (spruce) associated with autochthonous forest peat 

found 0.5 m below sea-level at Biscay Bay Brook, southeast of the study area, 

has been 14C dated at 750 ± 90 B.P. (GSC-5414; Catto, in press). On the western 
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side of Placentia Bay, 0.5 km south of Little St. Lawrence on the Burin 

Peninsula, peat with wood fragments was found 1.7 m below the high water 

level (Tucker et al., 1982). The peat was determined to have a 14C age of 

970±50 B.P. (GSC-2569) and the wood 1080 ±50 B.P. (GSC-2617). Also on the 

Burin Peninsula, rooted stumps and other in situ wood deposits have been 

found in several locations (Grant, 1989, 1991; Liverman, personal 

communication). In situ wood situated at 1.22 m below highest tide level 

and overlain by salt marsh peat was 14(: dated at 970 ± 80 B.P. (Grant, 1991). 

These terrestrial deposits indicate a 1-2m rise in sea-level over the last 1000 

years. Intertidal autochthonous forest peat and rooted stumps along the east 

coast of Prince Edward Island indicate similar rates and timing of 

submergence (Frankel and Crowl, 1961; Grant, 1970, 1989). In July 1994, the 

discovery of four rooted Picea stumps between mean high and mean low tide 

levels at Mobile, Newfoundland, south of St. John's, indicates that sea-level 

has also risen along the eastern Avalon coast. A sample from one of these 

stumps has been submitted to the Geological Survey of Canada for 14C 

analysis (Catto, personal communication). 

Archaeological evidence also suggests recent rises in relative sea-level. 

A fragment of a wall at Fort Frederick, Placentia, has been located 

approximately 2m below present sea-level (Royce Gaines, personal 

communication to Catto, 1993; Catto, in press; Catto and Thistle, 1993). This 

fort was constructed in 1722, and the position of the wall thus suggests that 

sea-level may be currently rising at approximately 0.7 em per year at Placentia. 

Archaeological evidence has been used to date submergence at Fortress 

Louisbourg, Nova Scotia, as well as a submerged corduroy road near Fort 
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Beausejour, New Brunswick (Grant, 1970, 1989). Seventeenth century 

structures recently excavated at Ferryland, Newfoundland, also suggest recent 

submergence in this area (Catto and Thistle, 1993). The possibility of local 

subsidence surrounding the Fort Frederick wall, induced by its own weight, 

and the additional possibility that the original wall may have been built to 

extend below sea-level create difficulties in assessing the true rate of 

submergence. The actual rate is probably between 0.3-0.6 em/year (Catto, in 

press; Catto et al., 1994), a rate similar to that occurring along the coast of 

Nova Scotia (Shaw et al., 1993). Further research is needed to quantify the 

true rate of rise. Notwithstanding the difficulties involved in determining 

the precise numerical rate of transgression, the interpretations of the 

behaviour and sedimentology of the barriers at Ship Cove and Big Barasway 

have demonstrated that a transgression is presently occurring. 

53 



Chapter 5 

Description of the Barrier at Ship Cove 

5.1 Morphology 

The beach at Ship Cove is 0.5 km long (Figure 6 ). The northern 200 m 

consists of a bayhead barrier with widths that range between 26 and 60 m and 

heights that range between 2 and 5.5 m above mean sea-level. The greatest 

heights of 6 mare reached not on the barrier itself but on the beach adjacent 

to the southern end of the barrier. Headlands bordering the north and south 

sides have a layer of diamicton, with thicknesses ranging between a thin 

veneer to 5 m, overlying siltstone and sandstone of the Musgravetown Group 

(King, 1988). Echo sounding measurements revealed depths of 14m at the 

mouth of the cove. The echo sounder profiles show a steeper gradient of 0.1 

towards the northern side of the cove and a gentler gradient of 0.02 towards 

the south side of the cove. The beach is influenced by plunging breakers 

which generally break 2 to 15m from the shoreline. Plates 1 and 2 show an 

overview of the barrier and lagoon. 

Twenty transverse profiles taken in July, 1991 and May, 1992 are shown 

in Figures 10- 18. Table 5 shows the transect trend, the height, the foreshore 

and backshore widths, the foreshore and backshore slopes, and the total width 

for each transect, taken in July, 1991. Nine of these transects (SC-11 to SC-19) 

were taken on the bayhead barrier. Ten (SC-1 to SC-10) were taken along the 

southern half of the beach, and one transect, SC-20, was taken to the north of 

the barrier. 
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Plate 1: Overview of the barrier at Ship Cove, looking south. May 1992. 

Plate 2: Backbarrier and lagoon at Ship Cove, July 1991. Also shown is the 
location of GSC -5306. 
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Transect I[i:Dd {o} Height !m} Fgre~b!.m: Width lml Slgpe {0
} Da~~~bgre Wigth {ml SI!JI2i: lol Iglal Width !ml 

sc -1 297 2.6 25 .1 5.9 25.1 

sc- 2 293 3.2 29.2 6.2 pit 29.2 

sc" 3 296 3.4 29.5 6.5 pit 29.5 

sc- 4 290 3.5 21.8 9.2 21.8 

sc- 5 293 4.4 24 .0 10.2 24.0 

sc -6 291 4.5 20.6 12.3 20.6 

sc -7 289 4.9 25.5 10.8 25.5 

sc- 8 287 5.4 29.4 10.5 29.4 

sc " 9 287 6.0 28.3 12.1 2~ .3 

sc - 10 280 5.ti 27.3 12.0 27.3 

sc. 11 279 5.5 25.9 12.0 24.0 5.8 49.9 
01 sc -12 278 5.5 m 28.7 11.0 28.9 11.0 57.6 

sc -13 278 5.3 27.7 10.9 31.7 9.6 59.4 

sc -14 278 4.7 23.1 11 .5 25.2 10.6 48.3 

sc" 15 272 5.0 25.1 11.2 20.3 13.7 45.4 

sc. 16 269 5.0 27.8 10.2 18.1 15.4 45.9 

sc - 17 267 4.9 23.6 11.7 21.8 12.7 45.4 

sc" 18 263 4.1 33.5 7.0 12.4 18.3 45.9 

sc- 19 259 2.7 13.7 11.0 12.4 12.2 26.1 

sc. 20 253 2.3 15.1 8.7 10.0 2.3 26.1 

Table 5: Dimensions of the barrier beach at Ship Cove. 
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For convenience, the beach will be discussed in three sections, arranged 

from south to north. Zone A is comprised by transects SC-1 to SC-3; zone B, 

SC-4 to SC-7; and the third, zone C, SC-8 to SC-20. 

During July 1991, the southern section (zone A) was characterized by 

comparatively gentle foreshore slopes of approximately 6°. Heights were 

approximately 3 m. A storm berm was present at 1.5 - 2 m asl. Shallow cusps 

were present with wavelengths of 6.5 - 11.7 m and heights of 0.3 - 0.7 m. This 

section of the beach is used by caplin to spawn during the summer. Landward 

of transects SC-2 and SC-3 there is an artificial pit filled mainly with granules. 

This pit was the result of aggregate removal for highway construction in the 

1960's and 1970's. Subsequently, beach processes deposited granules and filled 

in the pit (Plate 3 ). 
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Although deviations from the general pattern occur, repetitive 

observations through 1991, 1992 and 1993 revealed granule-sized sediment 

removal along this reach of the beach occurs during the months of September 

to December. This results in exposure of the underlying pebble and cobble 

framework of the beach and steepening of the profile. 

Plate 3: Overview of Ship Cove, looking north. Zone A is in the foreground 
with the pit landward. Zones Band Care in the background. July 
1991. 

During July 1991, the central section (zone B; SC-4 to SC-7) was 

characterized mainly by a linear profile with a 10-12" slope. A berm was 

present in the mid- to upper-beachface along SC-6. An actively eroding small 

bluff(< 1m high), consisting mainly of pebbles and cobbles with a sandy 

matrix, bounded the back of the beach. Transects SC-5 and SC-7 bisect cuspate 

features that extended the width of the beach. The bluff behind these 
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transects is eroding more extensively than elsewhere along this section. 

Repetitive observations during 1991, 1992 and 1993 revealed that the removal 

of fine clasts from this boulder-dominated zone resulted in little change in 

the overall beach shape throughout the seasons (Plate 4). 

Plate 4: The eroding bluff bounding zone Band sediment along the upper 
beachface. July 1991. 

In the northern section (zone C) of the beach, the area represented by 

transects SC-8 to SC-10 has no back beach. SC-11 marks the southern edge of 

the barrier part of the system. Transects 19 and 20 were taken in the vicinity 

of the outlet. The highest elevations of 6 m occur in this section of the beach. 

During July, 1991 the overall beachface slopes were between 10 and 12° (Plate 

5). 
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During July 1991, this section was characterized by tiers of cusps. As 

many as four tiers were present between transects SC-10 and SC-15 (Table 6). 

Figures 19a and 19b show schematic diagrams of cusp morphology and 

terminology. The upper level cusps located in the upper-beachface reached 

the barrier crest, 6 m asl, and had wavelengths (measured from hom to 

adjacent hom) of 15 - 28.6 m and heights (vertical distance) of 2-3 m. The cusp 

embayments had steep slopes, 20-25·, and were shallow with small cusp 

horns along the crest. 

Plate 5: Lower-beachface cusps along zone C and eroding bluff bounding the 
northern end of the barrier. July 1991. 

The middle two levels (the second and third level cusps located in the 

mid-beachface) had undergone modification and were not as dearly defined. 
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Wavelength (m) Vertical Height (m) Width (m) 
Zone A 

9.1 0.5 5.2 
9.1 0.3 3.3 
11.7 0.4 3.9 
6.5 0.4 4.0 
7.8 0.4 7.8 
9.1 0.7 6.5 

mean 8.9 0.5 5.1 
s.d. 1.1 0.1 1.7 

ZoneC 
upper tier 21.5 25 

195 2.1 12.4 
28.6 3.0 9.1 
18.9 2.0 
15.0 2.5 7.9 

mean 20.7 2.4 
s.d. 5.0 0.4 

middle tiers 9.8 1.1 8.5 
13.0 1.4 
13.0 1.2 11.1 
11.0 1.6 9.8 
11.1 1.4 8.4 
11.7 1.2 3.9 

mean 11.6 1.3 
s.d. 1.2 0.2 

lower tier 5.8 
3.3 
2.0 
7.2 
3.9 
3.3 
8.5 
8.5 
3.9 
8.5 
3.9 
7.2 

mean 5.5 
s.d. 2.4 

Table 6: Dimensions of cusps at Ship Cove, July 1991. 
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Figure 19a: Schematic planar view of cusp morphology. The cusp hom is an 
accumulation of sediment extending seaward. The cusp centre is 
the embayed region between adjacent horns. Cusp wavelength is 
defined as the distance between the axes of adjacent horns. 
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Figure 19b: Schematic cross-section of a cusp. The height is the vertical 
distance between the cusp base and the cusp top. The width 
is the horizontal distance between the cusp base and cusp top. 
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These two levels of cusps were not in phase with each other and in places the 

third level cusps merged with the second. The cusps in the mid-beachface 

had deeper embayments with pronounced horns. As the summer progressed 

and the beachface increased in steepness, the horns of the mid-beachface cusps 

developed a distinct landward dip. Both middle levels had wavelengths of 9-

14m and heights of 1.5 m. The third level reached a height of 4 m asl and the 

base of the second level was at 0.5 - 1 m asL The lowest level cusps located 

within the intertidal zone had wavelengths of 2.0 - 8.5 m and heights of 

approximately 0.5 rn and became very elongated when the tide was low (Plate 

5). 

Plate 6: Cusps along zone C. August 1991. 
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Cusps occur frequently throughout the year, although only one to three 

tiers were observed in 1992 and 1993. The upper, largest cusps were destroyed 

during a storm on Christmas Day, 1991. On 15 December 1993, large cusps 

similar to those present along the upper tier in July 1991 were observed. 

These cusps extended throughout the beachface and reached to 0.5- 1m below 

the beach crest. The lengths ranged between 23 and 29 m. 

As cusps were prevalent features along this section of the beach during 

July 1991, the profiles of the beachface are marked by berms at different 

elevations along each transect. The number of berms varies between 

individual profiles. The variances are a result of which section of the cusp 

morphology individual transects intersected. A transect intersecting a cusp 

hom will have a berm on its profile unlike the profile of a transect that 

intersects a cusp centre. 

During July 1991, as well as during 1992 and 1993, the backbeach was 

characterized by extremely steep slopes (30- 45°) directly adjacent to the 

lagoon. This steeply-sloping area has a maximum height between 2 and 3m 

asl. The area of the backbeach between the steep section and the barrier crest 

has slopes ranging from 6° to 11°. 

In general, during the summer months (May /June through 

August/September), the profiles have an overall convex shape resulting from 

net sediment accumulation. As the summer progresses the beachface 

increases in steepness, as sediment is moved landward. This pattern can be 

seen in the profiles of SC-11 and SC-17 (Figures 20 and 21). With net 

sediment removal during the autumn months, the beachface takes on a more 

concave shape. Between late January and March an ice foot develops in the 

72 



mid- and upper-beachface. The active sediment zone is confined mainly to 

the intertidal zone. Sediment is thrown on top of the ice foot; however, the 

ice protects the sediment within the mid- and upper-regions of the barrier. 

Blocks of ice with sediment overtop the barrier. With spring thaw, this 

resulted in mounds of small- and medium-sized pebbles on top of the cobble­

dominated barrier crest (Plate 7). 

Plate 7: Circular mound of pebbles amongst the cobble-dominated beach crest 
after spring thaw. April1992. 
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The major storm event on Christmas Day, 1991, marked by 

southwesterly winds, caused the removal of large amounts of sediment and 

exposed underlying cobbles and boulders. The barrier along the entire 

northern section had a regular concave shape throughout its height (Plate 8). 

Overtopping had occurred, with sediment being deposited on the barrier crest, 

in addition to sediment removal from the front (Figures 22 and 23). The 

profiles taken in May, 1992, show the effects of this storm and other events 

during the winter and spring of 1991- 1992. The profiles of transects SC-14 

and SC-17 taken in July 1991, May and December 1992 (Figure 23) also show an 

increase of barrier height by 0.2 - 0.5 m, a decrease of backbarrier widths by 

approximately 3-4m, and an increase of backbarrier slopes. Although the 

profiles of transect SC-11 (Figure 22) do not show an increase of height 

between July 1991 and May 1992, the decrease in backbarrier width is evident. 

The profiles of SC-11 show a removal of sediment between July 1991 and 

December 1992. The profiles of transect SC-2 (Figure 22) reveal an increase of 

height. 

In July 1993, a transect was established by the Newfoundland 

Department of Mines and Energy near transect SC-11. Since July 1993, profiles 

have been taken in August, September, December and February 1994. The 

results are shown in Figure 24. The profiles taken in July, August and 

September 1993 show steep, erosive upper-beachfaces, similar to that seen in 

the upper-beachface of the profiles taken in May 1992 and December 1992. 

The mid- to lower-beachface in the July, August, and September 1993 profiles 
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Plate 8: Convex beachface profile after winter storms along zone C. December 
1991. 
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show an accumulation of sediment that has been removed in the December 

1993 profile. The profile taken in February 1994 shows the results of 

overtopping. Sediment had been transported over the crest and the barrier 

height increased by approximately 0.4 m. The mid- and lower-beachface of 

the profile taken in February 1994 may not reflect sediment accumulation for 

a pronounced ice foot was present at the time measurements were taken. 

Toward the northern end of the barrier, near transect SC-12, the one 

overwash channel seen over the course of the study was formed between 14 

March and 28 March 1992. The channel measured 5.2 m wide and 0.5 m deep 

(Plate 9). The base of the channel contained imbricated granules and pebbles. 

The long axis of the channel was oriented at 249°. This channel was most 

likely formed during a period of prolonged storm activity, between March 19-

241992, which was marked by strong westerly and southerly winds (AES, 

unpublished). An overwash fan formed but did not remain, as the sediment 

that was transported landward was transported seaward again by the stream. 

On 28 March 1992, the stream flowed through a comparatively wide outlet, 6 

m, and had a estimated velocity of 1.7 m/s. 

The outlet at Ship Cove is unstable. It opens and closes on a daily basis 

during the summer months, depending on fluvial discharge and wave 

activity. Plate 10 shows an outlet in the process of opening in August 1991. 

Plate 11 shows a large outlet and swash bars in October 1992. The short 

duration of the study limits generalizing the pattern of outlet status (whether 

open or closed) throughout the course of a year; however, over the time 

period of the study, a pattern was emerging. During the periods between 

September and December, and between April and May, the outlet is generally 
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open. Between June and August, the outlet is generally dosed. Between 

January and March the outlet is variable, but tends to be open more than 

closed. Table 7 shows selected dates when the outlet was open or closed 

during the study. When it is dosed seepage occurs throughout the barrier 

front, although less seepage occurs in the winter months when the lagoon 

and interstitial water within the barrier are frozen. Air photos taken in 1967 

show that the position of the outlet was located at the southerly end of the 

lagoon adjacent to transect SC-11. In 1973 or 1974, the northern end of the 

barrier was subjected to explosives {Tobin, 5., Ship Cove, personal 

communication). This caused the outlet to move to its present more 

norther! y position. 

The extent of lateral transport of the sediment at the mouth bars, as 

well as elsewhere along the beach, is not known. Clasts that were painted and 

placed along transects SC-9 and SC-4 were not found subsequently. However, 

the swash alignment of the beach to the incident waves indicates that the 

majority of movement is offshore/ onshore. The angle between wave 

swash/backwash interactions show a northerly direction of less than 45°. An 

obtuse swash/backwash angle indicates strong longshore drift (Antia, 1989) 

Consequently, little longshore transport is expected for the sediment at the 

swash bars or elsewhere along the beach. 

Comparison of 1948 and 1980 air photos reveals a landward movement 

of the barrier of approximately 10 - 25 m (Figure 25). The meadow adjacent to 

the stream and lagoon has been overtopped by the barrier. According to Mr. 

Stan Tobin, a local resident, 20- 30m of the meadow have been covered or 

eroded by the stream at its present outlet. After extensive overwashing by a 
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major storm on 14- 15 February 1982, fence posts were exposed along the 

barrier top in the vicinity of SC-16- SC-18. Mr. Tobin remembers the date 

well for this was the storm associated with the loss of the oil drill rig, Ocean 

Ranger, and its crew. 

Plate 9: Overwash channel. March 1992. 
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Plate 10: An outlet forming. August 1991. 

Plate 11: Swash bars along outlet. October 1992. 
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~ Qmkt Channd Width {m} 12i:~th {m} 
Jul-91 c 

30/7/91 c 
22/8/91 0 0.5 0.2 
23/8/91 0 2.5 0.4 
24/8/91 c 
14/9/91 c 
23/9/91 0 2.0 0.3 
5/10/91 0 5.0 1.5 
6/10/91 0 6.0 0.5 
28/10/91 c 
4/11/91 0 4.0 0.5 
13/12/91 0 1.0 0.4 
17/1/92 c 
27/1/92 0 1.5 0.5 
12/2/92 c 
3/1/92 c 
14/3/92 0 3.0 1.0 
28/3/92 0 6.0 1.0 
21/4/92 0 2.0 1.5 
13/5/92 0 1.5 0.5 
2/6/92 0 0.5 0.2 
30/6/92 c 
25/7/92 c 
5/9/92 c 

10/10/92 0 3.0 0.5 
14/10/92 0 5.0 1.5 
16/12/92 c 
1/15/93 c 
15/2/93 0 4.0 0.5 
17/3/93 0 LO 0.4 
28/3/93 c 

c =closed 
o= open 

Table 7: Status of outlet at Ship Cove on selected dates. 
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for further discussion. 
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5.2 Oast Lithology 

To determine the lithology of the beach clasts, a sample of 67 clasts was 

taken from the barrier crest and a second sample of 57 was taken at mean sea­

level on the stream mouth swash bar along the outlet. Table 8 shows the 

composition of the samples individually and combined. 

swash bar crest combined 

siltstone 47% 51% 49% 

sandstone 30 40 35 

conglomerate 9 0 4 

basalt 5 6 6 

rhyolite 5 1 3 

granite 4 1 2 

Total 100% 99% 99% 

Table 8: Compositions of the clast lithologies for the samples taken from the 
barrier crest and the swash bar, and for the samples combined. 

The igneous component (basalt, rhyolite and granite) of the mouth bar 

was 14% whereas on the crest it was 8%. The combined clast lithological data 

show 88% of the clasts to be locally-derived siltstone, sandstone and 

conglomerate. Basalt, rhyolite, and granite form 12% of the total assemblage 

(Figure 26). 
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5.3 Sediment Texture 

The beach at Ship Cove shows considerable surface textural differences 

along its length, as well as across individual transects. Overall, the southern 

section, zone A, consists mainly of granules and sand; zone B mainly of 

boulders with an infill of pebbles; and zone C, the northernmost section, of 

pebbles and cobbles. 

Figure 27 shows surface texture analyses from samples taken in July 

1991. The samples were taken on the lower-beachface, the mid-beachface area, 

and the crest. Since the back of SC-3 has been anthropogenically altered, the 

crest is considered the top of the storm berm. Transects were chosen within 

each zone; SC-3 for zone A, SC-6 for zone B, and SC-13 for zone C and are 

used as representative of the zones. Also shown are the textural analyses for 

the stream mouth swash bar taken in September 1991 and the textural 

assemblage for the entire beach which includes more data than that obtained 

from the transects alone. The numerical quantities in the graphs and 

discussion in chapter 6 are used to indicate qualitatively how the beach 

sediment varies landward and alongshore. 

Along all three transects, estimated clast size increased with increased 

distance from the water's edge. Along transect SC-3, cobbles dominated the 

storm berm (70%) whereas small-sized pebbles mainly composed the mid­

beachface area (80o/o) and sand and granules dominated the lower-beachface 

(95%). Along transect SC-6, boulders dominated throughout the beachface. 

Cobbles, however, decreased from 25% on the crest to 5% along the lower­

beachface, as smaller clasts increased seaward. Cobbles decreased from 95% on 

the crest to 60% midway to 30% near the shore along transect SC-13. Plate 12 
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shows the imbricated cobble-dominated clasts on the barrier crest along zone 

C. Landward of the crest on the overwash fans, the sediment composition is 

similar to that of the crest and is dominated by cobbles. 

Plate 12: Imbricated cobbles along the beach crest. July 1991. 

The sediment on the stream mouth bar shows an unsorted mix of clast 

sizes, ranging from sand to cobbles. The samples along the transects show a 

high degree of sorting by size, except for the crest of SC-6 that was estimated to 

consist of a mixture of 5% granules, 5% small-sized pebbles, 5% medium­

sized pebbles, 10% large-sized pebbles, and 25% cobbles in addition to the 

boulder frame. The beach as a whole was dominated by cobbles (estimated 

41%) in July 1991. Small to large-sized pebbles combined formed an estimate 

of 47% and sand and granules 10%. 
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Cuspate features showed sorting of sediment. Although the upper 

cusp showed little sorting of sediment by shape or size between the hom and 

centre, more spherical clasts accumulated at the base of the steep slopes of the 

centre. The mid-beachface cusps showed imbricated large pebbles and cobbles 

on the horns, imbricated medium to large pebbles at the base and 

disorganized pebbles in the centre. The cusps along the lower-beachface in 

the intertidal zone were shallow and had distinct clast zonations. Imbricated 

medium- to large-sized pebbles formed the horns, small- to medium-sized 

pebbles lined the edge of the cusp embayment, and sand and granules were 

present elsewhere, except for a channel of large pebbles and cobbles bisecting 

the centre (refer to Plate 5 for lower-level cusps). 

As the morphology changes with seasons and storm activity, variability 

was seen in the texture. After storm events, such as the Christmas Day storm 

of 1991, large amounts of pebbles were removed, exposing mainly cobbles and 

boulders. The beach was visited two days after the Christmas Day event. At 

this time, the beachface was characterized by a convex shape. 

In contrast, however, two days after the March 15, 1993 the intertidal 

area contained sand while pebble and cobble cusps were present along the 

mid- and upper-beachface along zone C, the northern section. In addition, 

although sediment was removed along zones A and B exposing boulders 

along the lower-beachface of zone A and more of the boulders in zone B, a 

layer of sand and granules was deposited. 

In general between November and March, underlying cobbles and 

boulders dominate throughout zone C with pebbles, granules, and sand 

increasing during the other months. Along zones A and B, net sediment 
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removal occurs between November and March, although great variability 

exists with onshore and offshore transport of sands and granules. An 

excavation into the lower-beachface along the southern section in October 

1991 revealed alternating strata of coarse sand and granules overlying pebbles 

and granules. Figure 28 shows this sequence. 

At times, when the outlet opened, sedimentary structures within the 

barrier were exposed by erosion. On 22 August 1991, three units were exposed 

on the barrier along the northern side of the outlet, 1 m asl (exposure A, 

Figure 29; Plate 13). The basal wtit consisted mainly of seaward-imbricated 

open-work pebbles and cobbles with a minimum thickness of 10 em. A 2 em 

thick stratum (unit 2) of open-work granules overlay the lower unit along a 

sharp contact. This in tum was overlain sharply by a 15- 20 em thick unit of 

seaward-imbricated pebbles and cobbles with a 5°/o infill of sand, granules, and 

detrital seaweed. The thickness of the unit increased landward. The beds 

dipped 10 - 1s· seaward. 

Also on the northern side of the outlet on August 22, a distinct 15-20 

em thick stratum of open-work imbricated cobbles was exposed between layers 

of imbricated pebbles containing a sandy and organic matrix at 0.5 m asl 

(exposure B, Plate 14). The beds dipped 15-20°. 

On June 2, 1992 an exposure (exposure C, Figure 30) revealed a 

minimum of 13 em of imbricated open-work cobbles at the base. Unit 1 was 

overlain by 17 em of imbricated pebbles with an infill of granules (unit 2), in 

turn capped by a 12 em layer similar to unit 1. The beds dipped 10 - 15• 

seaward and, similar to the other exposures, the contacts were sharp. 
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Plate 13: Exposure A. The pencil measures 13 em. 

Plate 14: Exposure B. The pencil measures 13 em. 
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5.4 Oast Shape 

Figure 31 shows the clast shape analysis of the four samples taken on 

the crest, mid-, and lower-beachface along transects SC-3, SC-6, and SC-13. 

These transects were chosen as representatives of the zones in which each is 

located. In addition, clast shape analysis of a sample from a stream mouth bar 

was performed. Also shown in Figure 31 are the estimated clast shape 

compositions of each transect, combining the samples along each transect 

width and the clast shape composition of the entire beach which includes the 

total samples taken in July 1991 (n = 163), than those discussed in detail here. 

Discs and blades formed of at least 80% of the composition for each 

sample along the transects whereas rollers and equants comprised less than 

20%. The crests, however, had a slightly lower proportion of rollers and 

equants. Along transect SC-3, rollers and equants comprised 6% of the 

assemblage at the crest, and 12% and 19°/o on the mid- and lower-beachface 

sections, respectively. Transect SC-6 had no rollers or equants on the crest 

whereas the mid-area had 8% and the lower had 7%. Lastly, transect SC-13 

had 4% of these shapes on the crest whereas the mid- and lower-beachface 

sections consisted of 20% and 12°/o respectively. In addition, although not 

shown graphically, the percentages of equants and roller increased from 4% 

along the crest to 12% along the edge of the barrier on the overwash fan. For 

the combined clast assemblage of each transect, transect SC-6 had a lower 

percentage of rollers and equants, So/o compared to 17% and 13%. 

The clast shape assemblage on the stream mouth bar was distinct. Discs 

and blades composed 59% of the total assemblage with rollers and equants 

comprising 41 °/o. 
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With few exceptions, the clasts are rounded to well rounded 

throughout the width and length of the beach. With the exception of those in 

the vicinity of the present location of the outlet (the mouth bar) the clasts are 

characterized by low sphericity. Around the outlet, the clasts are mainly 

moderately spherical. 

5.5 Fabric Analysis 

The a/b planes of the discoid clasts had a strong seaward imbrication on 

the berm crests, the barrier crest and backbarrier. At these locations along the 

barrier, the orientations of the a/b planes ranged between± 45° of the transect 

trend and the plunges generally ranged between 15- 30°. At the base of and 

along steeply-dipping berm scarps, the imbrication of the a/b planes were less 

well defined and the plunges were gentler, ranging between 0- 15°. 

Thirty-two a-axis clast fabrics were taken from the beach sediments at 

Ship Cove. Figures 32 - 39 show the plots of these fabrics. Table 9 shows the 

statistical values, the transects along which the fabrics were taken, the transect 

trend, and the deviation of the fabric trend from the transect trend. Negative 

values indicate a trend deviation to the north whereas positive values 

indicate a trend deviation to the south. The first twenty-five fabrics were 

taken along the transects during July 1991. The locations are shown on the 

profiles of the transects (Figures 10 - 18). Seven fabrics (SC-26 to SC-32) not 

associated with transects were taken at later dates from the sediment in the 

vicinity of the outlet. Consequently, the columns for transect trend and 

deviation are blank in Table 9. 
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The principal eigenvalues range between 0.524 and 0.813, with a mean 

of 0.644 and a standard deviation of 0.066. Eight of the thirty-two fabrics have 

principal eigenvalues less than 0.6, eighteen have values between 0.6 and 0.7, 

and six are greater than 0.7. 

Three fabric patterns have K values greater than 1. The others show 

girdle distributions with K values less than 1. The plunge values range 

between 3.9" and 37.7". The majority, 24 out of 32, have values between 10° 

and 25". 

Five of the 25 fabrics taken along the transects have net trends which 

show little deviation ( < +I- 5") from the transect trends, and are thus aligned 

perpendicular to the shoreline. Twelve show deviations to the south. Of 

these twelve, seven show comparatively large deviations (36./ to 58.9"). The 

other five have deviations between 11.4" and 26.4°. Of the eight fabrics that 

deviate to the north, two have large deviations, -39.4 ° and -55.2.. The other 

six fall between -13.3" and -29 .T. 

When the fabrics were taken in July 1991, the beach was characterized 

by tiers of cusps. Consequently, most fabrics were taken along a part of the 

cusp form with the majority taken on the crests or on the bases of cusps that 

had been filled and modified by lower level, seaward cusps. 

Two fabrics, SC-14-14 and SC-18-23 with trends of 295.2° and 244.2" and 

plunges of 25.8" and 15.5" respectively, were taken along the backbeach. 

Their S1 values are similar, 0.673 and 0.687, as are the absolute values of the 

deviations from their respective transect trends, 17.2" and 18.8• respectively. 

However, the trend of fabric SC-14-14 deviates to the north, whereas that of 

SC-18-23 deviates to the south. 
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SC-19-24 276.9 249 _ _ ._0J49._i----%rOs7 - --1.10-- I --259-l -17.9 

sc-20-25 280.2 19.1 r-- 0.739 o.~(-- -__ ~~-~z --1-- ~3-_1 __ -27.2 -= 
t------1------+----t - - ---!- -- .. r- --· -·-- : --- --

t--~----.,.--+------+-----,~:-:!--- ~= ~= -~-~~;- I =~~:~~-- ---
9.1 0.574 o.osc-· --·a.it- -- -exposure I 

t---=-=--:--+-----+--1-0.-8------jr---0-.66-1 0.023- ·- - ·0.28-- -ex_.p--o-su_r_e-+i -----t 

17.9 0.524 0.075 -- 0~16-- -fan i 
~----=-=--+-----+--12-.-::-7----+-o-.600-- - -o.ro(r - ___ o.l_9_ -1"--ra-il-t 

SC-26 205.4 
SC-27 164.0 
SC-28 253.7 
SC-29 218.3 
SC-30 311.6 
SC-31 345.3 

37.7 0.813 : 0.065 2.99 adjacent to outlet 

t-----+-----+---:-~~-7 ---=~ ~-~ii= ~-~ i~ -_ ~=~~~F= 
t-----+----r------ r--- --- . - ---

16.9 0.644 0.055 0.51 

SC-32 236.7 

min 164.0 
max 345.3 

mean 261.9 
1-----1-------+----- ·- - --·-- -·- -- - -- - -------11--------t 

s. d. 38.8 7.1 0.066 0.050 0.54 
- ·- · - · ·- -- -- - -- -- --1------i 

t--~ __ .___ ___ _..__ __ ___.__-----~--------- -- .- - -- ··-r----------t------1 

Table 9: Clast fabric data for Ship Cove. 
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Figure 32: Clast fabrics, Ship Cove. 
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Figure 33: Clast fabrics, Ship Cove. 
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Figure 34: Oast fabrics, Ship Cove. 
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Figure 35: Clast fabrics, Ship Cove. 
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Figure 36: Clast fabrics, Ship Cove. 

107 

-16-18 

BT 

N 

• 

+ 

BT 



N 

BT 

-17- 21 

c -18-23 
A= 244.2° 
p = 15.5° 
51= 0.687 

• 

• 

• ••D 
• •• • 

o Principal Eigenvector 
A = Azimuth Trend 
P =Plunge 
BT = Beach Trend 

Figure 37: Clast fabrics, Ship Cove. 
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Figure 38: Clast fabrics, Ship Cove. 
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Figure 39: Clast fabrics, Ship Cove. 
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No explicit pattern of increasing plunge values with distance from the 

sea is evident. For example, moving landward along transect SC-9, the 

plunge values of fabrics SC-9-4, SC-9-3 and SC-9-2 are 13.5*, 14.2·, and 23./. 

The lower two values are similar whereas the upper one is distinct. Other 

transects show increasing plunge values, but the differences are not strong. 

Furthermore, along transect SC-13 the plunge value of the fabric taken on the 

barrier crest, SC-13-9, is 17.2° whereas the other two fabrics, SC-13-10 and SC-

13-11 have plunge values of 19.2. and 20.4* respectively. The differences in 

these three values are insignificant. 

The magnitude and direction of deviation of fabric trend from the 

transect orientation shows no discernible pattern with distance from the sea. 

Frequently, fabrics taken at similar elevations and similar positions on 

cuspate features show differing trends. For example, SC-13-10 was taken at 

the base of a steep slope and has a trend of 281.3·, whereas SC-13-11, taken 

along the same transect at approximately 20 em lower elevation, has a trend 

of 225.8·. 

The trend value large I y depends on the position on the cusps where 

the fabric determinations were made. The shape of the cusp, whether 

symmetrical or asymmetrical, also influences the measured trend. For 

example, SC-16-19 was taken towards the centre of an asymmetrical cusp crest 

with the elongated end towards the north. In contrast, SC-16-18 was taken 

along the southern margin of the same cuspate feature. The trend of SC-16-19 

is 246.2. with a deviation of 22.8·. The trend of SC-16-18 is 216.r with a 

deviation of 52.9·. Both fabrics deviate to the south, with fabric SC-16-18 

(taken at the margin) having a stronger southerly component. 
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Clast fabric SC-17-20 was taken to the south of the centre of a 

symmetrical cusp crest, and had a trend value of 292./ with a deviation of -

25.6°. Along this cusp, the imbrication of the a/b planes of the discoid clasts 

was structured. The clasts toward the centre were imbricated parallel to the 

transect trend, whereas to the south the imbrication was aligned to the north. 

Clasts located north of the centre of the cusp showed a southerly imbrication 

(Figure 40). 

Clast fabrics SC-26, SC-27, SC-28, and SC-29 were taken on exposures 

along the barrier formed by the opening of the stream outlet. SC-26 and SC-27 

were taken in August 1991, whereas SC-28 and SC-29 were taken in July 1992 

on separate strata within the same exposure (detailed descriptions are in the 

texture section). SC-26 has trend of 205.4 ·, a plunge of 8.1° and an St of 0.690. 

SC-27 has a trend of 164.0°, a plunge of 3.9° and an S1 of 0.606. SC-28 has a 

trend of 253.7°, a plunge of 9.r and an St of 0.574. Fabric SC-29 has a trend of 

218.3·, a plunge of 10.8° and an St of 0.661. 

The principal eigenvalues of the fabrics taken from the exposures of 

sediment adjacent to the outlet are similar to those found on the existing 

beach surface. The trend orientations for SC-26 and SC-28 are similar to those 

taken along the transects, but that of SC-27 (164.0°) is more southerly. 

Although two of the fabrics taken along the transects have low plunges ( < 

10°}, the majority (23/25} have plunges greater than 10°. The fabrics taken 

from the exposures all have low plunges. 

Clast fabrics SC-30 and SC-31 were obtained from two separate fans 

which dosed the outlet in July 1992. The S1 values are 0.524 and 0.600, 

112 



respectively. The trends are 311.6° and 345.3°, and the plunges are 17.9° and 

12.7° respectively. 

The last clast fabric, SC-32, was taken directly to the south of the open 

outlet in August 1991. It has the highest S1 value (0.813t the highest plunge 

(37./) and the highest K value (2.99). The trend is 236.7'. 
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Figure 40: Top: Schematic diagram showing pattern of water flowing 
through cusp centre. Bottom: Orientation of clasts observed 
on symmetric and asymmetric cusp horns; explanation in text. 
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Chapter 6 

Discussion of the Barrier at Ship Cove 

6.1 Morphology 

6.1.1 Cusp Formation 

Tiers of beach cusps have been observed on the beach at Ship Cove. 

Along zone C, each tier had progressively larger wavelengths farther up the 

beachface. In July, 1991, the uppermost tier had a mean wavelength of 

20.7 m and height of 2.4 m. The mid-beachface cusps had a mean wavelength 

of 11.6 m and height of 1.3 m, and the lower had a mean wavelength of 5.5 m 

and height of 0.5 m. The cusps along zone A had a mean wavelength of 8.9 m 

and height of 0.5 m. 

Field observations of cusp formation in the lower- and mid-beachface 

showed a circulation where the swash action ran up the beachface, became 

divided at the horns and flowed seaward in the embayments (Figure 40). 

Backwash flow, particularly evident in the lower-beachface at low tide, 

concentrated in the centre of the emba yments and removed finer sediment, 

leaving large pebbles and cobbles exposed. Similar observations were made by 

Longuet-Higgins and Parkin (1962), Russel and Mcintire (1965), and Worrall 

(1969). However, other observations have shown a reverse circulation where 

flow moves from the embayments to the horns (Norris, 1956; Komar, 1971; 

and Williams, 1973). 

Cusp formation involves both erosional and depositional processes. 

Assuming accretion occurs when swash action overrides backwash action and 
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erosion when backwash overrides swash, then deposition in this case occurs 

on the horns and erosion in the troughs (Sallenger, 1979). It is likely that the 

well-sorted imbricated cobbles in a seaward-dipping bed in exposure B were 

from a cusp horn. Deposition would also occur on the base, or floor, of the 

embayment (Allen, 1984). This leads to the possibility of preserving whole 

depositional structures superimposed over erosional forms (Otvos, 1964). 

The most widely used theory for the origin and spacing of cusps 

involves alongshore standing waves, and was originally proposed by 

Longuet-Higgins and Parkin (1962.). In the most accepted theory, cusps result 

mainly from subharmonic, or less frequently, synchronous edge waves 

(Inman and Guza, 1982). Other explanations describe cusp formation as an 

interaction between swash action and beach morphology (Werner and Fink, 

1993) and by intersecting progressive waves of the same period. The latter 

cause periodic longshore variations in water levels and rip currents which 

can then create cuspate forms on shore (Dalrymple and Lanan, 1976). 

Edge waves are formed by wave motion that becomes trapped against 

the shoreline by refraction and then moves alongshore. The interaction of 

the edge wave and the incident wave cause perturbations in the wave height 

(Sallenger, 1979). The spacing of the perturbations depends on the 

wavelength of the edge wave which is expressed in the wavelength of the 

cusps. Synchronous edge waves occur when the edge wave period equals the 

incident wave period and, the cusps that result will be equal to one edge wave 

wavelength. Subharmonic edge waves have periods twice that of the 

incident waves; consequently wave height maximums alternate with wave 

height minimums with the passage of every incident wave crest. The 
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resulting cusps will have wavelengths one-half that of the edge waves 

(Sallenger, 1979). It is speculated that edge waves are necessary to initiate cusp 

development but are not required to develop the mature cusp topography 

(Inman and Guza, 1982). Edge waves are initiated during fair weather or 

storm decay swells and may help to channel wave run-up over the barrier 

crest (Orford and Carter, 1984). 

The formulas formulated by Inman and Guza (1982) used to 

approximate edge wavelength are: 

lc = Le/2 = (ght )(Ti2) tanb, subharmonic 

and, 

lc = Le = (g/2x }(Tj2) tanb, synchronous; 

where: 

lc = the cusp wavelength, 

Le = longshore wavelength, 

g =gravity 

Ti =incident wave period. 

tanb = the slope of the beach. 

The predicted values roughly approximate observed cusp wavelengths along 

many beaches (Inman and Guza, 1982). At Ship Cove the incident wave 

periods are not known for the upper-beachface cusps. Assuming the cusp 

wavelengths approximate one-half the more common subharmonic edge 

waves, then the incident waves had periods of 5.3 s (using a slope of 20·) for 

the upper cusps. 
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The cusps shown in Plate 6 were taken during the waning stages of 

Hurricane Bob on 24 August 1991. The resulting cusps had wavelengths of 

approximately 12m. Visual estimates showed an incident wave period of 8 s. 

Using a beach slope of 11° gives a predicted value of 4.5 s, a value lower than 

observed. For the lower-level cusps, the predicted value is 3 s (using a beach 

slope of tr). Observed wave periods were 6 or 7 s. For the cusps in zone A, 

the predicted incident wave period is 5.1 s, again lower than the observed 

values of 6 to 7 s. Comparisons of the observed and predicted incident wave 

periods better approximate the less frequent synchronous waves where the 

cusp wavelength equals the edge wavelength. The beaches discussed by 

Inman and Guza (1982), for the most part, are composed of sand and located 

along long beaches exposed to ocean waves where edge waves can fully 

mature. Ship Cove, in contrast, is enclosed, small, and composed of large­

sized clasts. 

Inman and Guza (1982) relate maximum cusp vertical height with 

wavelength by the formula: 

gc = 0.24Klc tanb; 

where: 

Sc = maximum cusp vertical height, 

K =constant, function of breaker height, beach slope, permeability, etc., 

on the order of 1 (i.e. K = 1). 

Using this formula gives maximum cusp heights of 1.19 m for the upper 

cusps, 0.54 m for the middle cusps, and 0.25 for the lower cusps along zone C. 

The calculated height for the cusps at zone A is 0.23. All of these values are 
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less than observed and likely result from inadequacies of applying this 

formula to a gravel-dominated pocket beach. 

6.1.2 Outlet Stability 

The status and position of the outlet has important consequences for 

the nearshore wave dynamics because it influences edge wave development 

and subsequent cusp formation (Orford et al., 1988). An open outlet also 

allows a seaward transfer of sediment, although this may not be as important 

a factor in the morphodynamic development as in sand-dominated 

environments where tidal sediment exchange plays an important role (Hayes, 

1991; Chasten and Seabergh, 1993). In this area, the microtidal to low 

mesotidal range, small drainage basin, low discharge, and a high proportion 

of large clasts in the surrounding diamicton, result in little seaward transport 

of sediment. 

When the outlet is closed, seepage occurs, particularly at low tide when 

the hydraulic head (the difference between the lagoon level and the sea-level) 

is greatest. Seepage discharge occurs throughout the barrier but is greatest at 

the present northern location of the outlet and at the former position along 

the southern edge of the lagoon. The main factors controlling the discharge 

of seepage are the permeability of the sediment within the barrier, the 

potential cross-barrier head, and the discharge of the drainage basin (Carter et 

al., 1984). The potential cross-barrier head decreases with increased barrier 

width and increases with increased hydraulic head differential. Given the 

predominance of large-sized clasts and the small barrier widths of 25- 60 m, 
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the barrier at Ship Cove is susceptible to seepage when a channel is not 

present. 

Using the discharge values at Little Barasway Brook suggests an 

estimated discharge of 1.4 cumecs for the stream at Ship Cove. In examples 

from Ireland it was found that discrete channels formed in barriers when 

stream discharges exceeded 1.0 -1.5 cumecs (Carteret al., 1984). The estimate 

of discharge at Ship Cove falls within this range. Since 1.4 cumecs is an 

average value, seasonal variability will cause the stream flow to exceed this 

value (primarily in the spring and fall months} while at other times, the 

discharge will fall below this mean. 

Table 7 shows the status of the outlet on several dates and the channel 

dimensions. In general, the outlet was closed during July and August and 

parts of June and September. During the months of March through May and 

October through November, it was open. Conditions during the other 

months were variable. 

Deviations from this general trend can be seen, however. Since the 

soil capacity for water retention is low and the channel gradient relatively 

high, stream discharge responds rapidly to rainfall events. For example after 

the passage of Hurricane Bob on August 19 and 20, 1991, which produced the 

extreme daily precipitation of 13 mm on August 19 for that month, the 

stream outlet was open and reached a width of 2.5 m on August 23. 

Subsequently, with little or no rain on the days following the passage of the 

storm, the outlet dosed on 24 August 1991. Seaweed that had been thrown 

ashore during the storm acted as a binding agent for the clasts and helped 

create a more effective outlet plug. Seaweed matter was found within some 
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of the strata exposed within the barrier along the outlet at later dates. This 

was associated with deposition around storm events and/ or outlet closure. 

The mean discharge at Little Barasway Brook was 0227 cumecs for 

August 1991, and the total August precipitation at Big Barasway was 50.8 mm 

(Table 7). This suggests a proportional discharge of 0.2 cumecs at Ship Cove, a 

value well below the Carteret al. (1984) estimate of 1.0- 1.5 cumecs required 

for channelization. In contrast, in November 1991 the mean discharge for 

Little Barasway Brook was 2.02 cumecs, giving a proportional discharge of 1.8 

cumecs for the stream at Ship Cove. The outlet was open when visited on 4 

November 1991. 

On 28 October 1991, however, the outlet was dosed. The mean 

discharge for October 1991 at Little Barasway Brook was 2.16 cumecs, a larger 

quantity than in November 1991. The days with higher discharge were early 

in the month, particularly October 4 and 8. Consequently, with relatively 

mild wave conditions and low to moderate rainfall, the outlet had closed by 

October 28. A large rainfall event, 36 mm on 1 November 1991, contributed to 

the opening of the outlet as seen on 4 November. 

Development of the outlet favours places where barriers are least 

coherent and where barrier heights are lowest as a consequence of reduced 

breaking wave heights (Lowry and Carter, 1982). Given the present 

morphology of the barrier at Ship Cove, the highest elevations of 5.3 - 5.5 m 

asl are between transects SC-11 and SC-13. Beach overtopping was found at 

higher elevations of 6 m between transects SC-9 and SC-10, but these sites are 

not on the barrier itself. This would indicate that the area toward the centre 

of the cove receives the highest wave run-up. The general configuration of 
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the cove causes lower waves to reach both ends. Furthermore, the ridge seen 

in the 9 and 12m bathymetric contours (Figure 6) may promote wave­

focusing in the centre. This causes an increase of wave run-up and as a 

consequence, the present northern position of the outlet is in an area which 

receives comparatively reduced wave run-up. 

Prior to the forced relocation of the outlet to the north, the outlet was 

located between SC -11 and SC -12, in the higher energy areas. The 1948 and 

1967 air photos and the 1954 photograph show a small outlet at this central 

location Given its small size and location it is likely the outlet was unstable 

then, as it is now. The forced relocation of the outlet created a channel 

behind the barrier that extended from the lagoon to the northern end of the 

cove. The creation of this channel has allowed the outlet to favour the 

northerly location where waves reaching the barrier are lower. Also shown 

in the air photos is a small lagoon formed by a brook to the north behind the 

present outlet location (Figure 25). Overwash fans can be seen between the 

two lagoons. 

When the outlet was diverted to the north, it stayed at that location, as 

it is now located in an area where wave run-up is generally lower compared 

to the central portion of the cove. With the northerly stream flow behind the 

barrier, erosion has increased along the pasture land adjacent to the lagoon 

and has eroded the overwash fans shown in the 1954 photo. Undercutting of 

fence posts can be seen along the edge of the meadow. This may be providing 

minor amounts of sand and silt to the beach system. 

Whenever the outlet was open during this study, mouth or swash bars 

formed and extended below mean sea-level. The size varied to a maximum 
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length and width of approximately 15m depending on the intensity of stream 

discharge and wave activity. The increased sphericity of the clasts on the bars 

may indicate a stronger fluvial influence than elsewhere on the beach. 

Similar features formed by fluvial flood events are described by Cooper (1990) 

along the Natal coast of southeast Africa. Over time, wave activity moved 

the sediment landward and eventually closed the outlet. 

Plate 15: Overview of the beach at Ship Cove looking south, taken in August 
1954. The stream outlet was located at the southern end of the 
lagoon. Overwash fans are present in the foreground of the photo. 
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6.1.3 Seasonal Change, Storm Response, and Recent Evolution 

May through late summer is a period of net sediment accretion. Tiers 

of cuspate features are prevalent and the outlet is generally closed. Along 

zone C, the mid- and lower-beachface steepens as sediment is transported 

landward. Berms along the mid-beachface develop a distinct landward dip. 

As wave energies increase with the frequency and intensity of storms, the 

combined effect of increased backwash and gravity from the steepened slopes 

causes progressive undercutting of the berms in the mid-beachface, and 

removal of sediment. With more intense storms more sediment is removed, 

cusps form and crestal overtopping occurs, transporting sediment landward. 

This results in an increase of barrier height and a narrowing of backbarrier 

widths. During January, February, and parts of March, ice foot development 

protects the barrier from overtopping and erosion from the mid- and upper­

beachface. The active sediment zone is then in the intertidal area below the 

ice foot. With warming during March, wave activity undercuts the foot and 

aids in its destruction. 

However, ice foot development appears to have been more common 

in the past five years than between 1975- 1988 (Catto, in press; Catto and 

Hooper, 1994; Catto et al., 1994). If this is so, then the morphodynamics would 

have differed, particularly in January, when storm activity can be the most 

intense. Overwashing would have been more frequent. 

Periods of accretion do occur between October and April and allow cusp 

and berm development along the mid- and lower-beach zones. As noted by 

Carr et al. (1982) in beaches in England and Wales, profile variation is greater 

in the 'winter' months. Nonetheless these winter oscillations fit within a 
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larger seasonal cycle. Periods of erosion can occur in the 'summer' but are 

not prolonged, and the beach recovers relatively quickly. Furthermore, 

within the seasonal fluctuations, the barrier is moving landward as a 

response to overtopping and overwashing events that occur mainly in the 

fall and spring months. 

The removal of finer sediment from the beach, resulting from the 

infilling of the pit behind zone A, would have affected the lower-beachface in 

particular, and consequently, the shoaling process and run-up ability would 

have changed. Beach slopes likely would have increased, the waves would 

have broken closer to shore and the waves would have been able to reach 

farther up the beach. Subsequent to aggregate removal, it was likely the 

barrier front increased in steepness and height. 

6.2 Sedimentology 

6.2.1 Cross-shore Shape and Size Sorting 

Low-sphericity, well-rounded, bladed and discoid clasts dominate 

throughout the entire length and width of the beach at Ship Cove. During 

the time of detailed study in July and August 1991, the proportions of rollers 

and equants were consistent! y lower on the beach crest than along the mid­

and lower-beachface. However, the pattern in which the proportions of these 

shapes increased down beach differed. Along transect SC - 3, rollers and 

equants formed an estimate of 12% on the mid-section and increased to an 

estimate of 19% along the lower-beachface. Transect SC-6, in contrast, 

showed little change in shape composition, 8% to 7%, between the mid- and 

lower sections. Transect SC-13 showed an estimated decrease of rollers and 

125 



equants from 20% midway to 12% along the lower-beachface. These relative 

proportions indicate that the shape composition along the crest was distinct 

from the mid- and lower-beachface sections, whereas the mid-and lower areas 

showed greater variability and were not distinct from one another. Discoid 

clasts are more efficiently transported in suspension enabling farther 

transport by wave or swash turbulence than is the case for rollers or equants 

(Orford, 1975). As a consequence, more discs overtop the beach crest during 

storm events. 

In July 1991, the beach was characterized by tiers of berms and cusps 

throughout the beachface. Shape sorting was evident between the berm crests 

(or cusp horns) and the bases of the berm scarps (or bases of cusps). The berm 

crests showed lower proportions of higher sphericity rollers and equants than 

did the bases. For example, along transect SC-13 the mid-beachface sample 

was taken from the base of a steep cusp centre and contained comparatively 

high proportions of equants and rollers. Towards the seaward edge of the 

cusp base, fewer equants and rollers were fonnd. The more pivotable rollers 

and equants move seaward under gravity flow during backwash (Orford, 

1975). Consequently, at the base of steep cusp embayments, more spherical 

clasts were found. With cuspate development along the lower level, where 

the base of the upper cusp becomes the crest of that below, less spherical clasts 

dominate. As a result of cuspate berm development along the beachface, 

secondary shape sorting exists within the primary down-beach shape sorting 

pattern (Williams and Caldwell, 1988). 

The swash bar at the mouth of the outlet showed the greatest 

percentage of rollers and equants. This assemblage was distinct along the 
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beach. The clast shape distribution indicates a greater fluvial component than 

elsewhere along the beach. Although the swash/backwash motions remain 

the most dominant force in shape segregation and modification, the rolling 

motion of bedload in unidirectional flow has influenced the composition of 

the assemblage, by partially dampening the oscillatory flow. 

Locally-derived sedimentary sandstone and siltstone form the largest 

fraction of the clast lithology in the samples taken on the swash bar and beach 

crest. This contributes to the predominance of low-spherical shapes 

characteristic of this beach. However, the igneous clast component was larger 

on the swash bar than along the crest. The igneous clasts are more resistant to 

abrasion and are unlikely to form low-sphericity discoids. Thus, the igneous 

clasts may contribute more to the roller and equant shape fraction than to the 

blade and disc component. Abrasion on a cobble and boulder-dominated 

pocket beach in Maine resulted in the preferential modification of isotropic 

(having no preferred mineral orientation) granitic clasts into compact 

(equant) forms (Waag and Ogren, 1984). In part, as a result of lithological 

control, larger percentages of more pivotable roller- and equant-shaped 

igneous clasts are present in the mid- and lower-beachface at Ship Cove. 

The beach at Ship Cove showed landward coarsening with cobbles 

dominating the upper-beach and crest, similar to the pattern found along 

most beaches, such as Chesil Beach, England (Carr, 1969). Seaward coarsening, 

though, has been observed on beaches along Nova Scotia (Bryant, E., 1983; 

Taylor et al., 1985) Pebbles increased proportionally along the mid- and lower­

beachface and sand was present in the intertidal zone. During the summer of 

1991, the mid- and lower-beachface along zone C showed distinct inverse 
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grading of small-, medium-, and large-sized pebbles. With removal of 

sediment during seasonal change and storm events, an underlying cobble­

dominated framework was exposed along zone A and C (compare Plates 5 and 

8). Zone B mainly contained large boulders in the framework and at the 

surface. The larger clasts of the framework in all three zones during the 

summer months had higher sphericity and contained more rollers and 

equants than did the surface sediments. 

Bluck (1967) discussed clast size and shape zonation on gravel beaches 

in South Wales. He found beach clasts organized into four zones down 

beach. The upper berm crest (zone 1) mainly contained cobble-sized discs. 

Successive zones were comprised by imbricated disc-shaped pebbles (zone 2); 

an infill towards the base where pebble-sized equants and rollers filled in a 

framework of cobble-sized equants (zone 3), and an outer frame at the base 

made up of equant cobbles (zone 4). 

The beach along zone Cat Ship Cove shows similarities to that 

described by Bluck (1967). The crest and backbarrier contain imbricated open­

work blade and disc-shaped cobbles, corresponding to Bluck's zone 1. The 

upper-beachface (zone 2 of Bluck) contained mainly blade- and disc-shaped 

cobbles, with imbrication being less well developed than in Bluck's model 

due to the presence of seaward-dipping steep slopes inside cusp centres. The 

mid-beachface (zone 3) contained higher percentages of roller and equant 

pebble- and cobble-sized clasts, overlying larger cobbles of higher sphericity. 

The lower-beachface in the intertidal zone contained sand and imbricated 

pebbles. The outer zone consisting mainly of pebbles and cobbles, and the 
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cobble and boulder~dominated nearshore zone correspond to zone 4 of 

Bluck' s model. 

In Bluck's (1967) model, clast shape was a more important depositional 

factor than was size. In addition, the clast shape was not primarily the result 

of wave abrasion. Deposits of pre-existing clasts were reworked by waves, and 

the interaction of clast shapes and the relative amount of energies reaching 

across the beachface determined the clast shape and size zonations. Dobkins 

and Folk (1970), however, showed the importance of wave action in clast 

shape determination along basalt-dominated beaches in Tahiti. 

The high wave energies of this environment and the limited sediment 

supply allow a high degree of reworking of the sediment. This, in addition to 

the sedimentary origin of the clasts, results in discs and blades. Both 

sediment source and process are thus important in particle shape 

distributions on gravel beaches, as noted by Kirk (1980). 

The swash bars are temporary features as the outlet opens and doses 

depending on the dynamic interplay of marine and fluvial activity. When 

the outlet is closed, the sediment on the swash bars is moved landward. 

Preservation of these sediments in the geologic record is thus limited in this 

wave-dominated swash-aligned environment; however, increased 

proportions of rollers and spheres are seen in the vicinity of the outlet even 

when the outlet is closed. These findings may be useful when examining 

pre-Holocene deposits. If comparisons of shape distributions taken from 

lateral sections at similar elevations along a sedimentary unit reveal a distinct 

clast group of increased rollers and equants and higher sphericity, then this 

may indicate the presence of an outlet within a beach environment. 
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Furthermore, the lack of an over! ying discoid layer corresponding to the 

beach crest in a vertical sequence marks a fluvial component. These findings 

correspond to those of Hobday and Banks (1971) from a pocket beach in 

Norway. There, the beach had similar shape zonations to that of Bluck's 

(1967) model but the swash bars showed less distinct shape assemblages. 

6.2.2 Lateral Textural Variation 

In addition to cross-shore size sorting, the clast-size distributions 

showed textural compartmentalization, with the southern end of the cove 

(zone A) dominated by sand and granules. A large proportion of finer clasts 

are also found in zone B, amongst the boulder framework. Pebbles, cobbles 

and large boulders form the under! ying framework of the beach along zone A 

and are exposed after extreme storm events. The overlying finer sediment is 

moved offshore, forming a bar in the nearshore zone. With sediment 

aggregation the sand and granules move onshore again. 

Sand is present in the lower-beachface along zone C, but proportionally 

less than the other zones. It is unlikely that the sediments of zone Care 

completely isolated from zones A and B. As a consequence of protection by 

the headlands on the southern side of the cove from the dominant 

southwesterly waves and the gentler nearshore gradient along zone A, this 

section of the beach receives less wave energy, and finer sediment dominates. 
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6.2.3 Fabric Analysis 

The orientation, plunge, strength, and distribution of clast fabrics in 

beach environments are the result of complex interactions of the 

hydrodynamics, morphology and sediment. Johansson (1965, p. 19) states: 

The orientation is thus influenced by the following main 
hydrodynamic conditions, eg. the direction, height, length and 
period of the incoming waves, the velocity, depth and flow 
properties of the uprush and backwash (which may not have the 
opposite direction, owing to the direction of the incoming waves 
and the percolation of the swash water into the foreshore. 

At Ship Cove, the seaward-imbricated a/b planes of the discoid clasts 

on berm crests, barrier crest and backbarrier were well organized and varied 

generally within± 45° of the transect trends. The angle of imbrication varied 

between 15 and 30°. The high energy, reflective nature, and cusp 

development of a swash·aligned, coarse-sediment beach results in the 

creation of girdle-shaped a-axis fabrics with a mean principal eigenvalue of 

0.644. The coarse texture allows high percolation of swash waves and thus 

significantly diminishes backwash flow. Hence, the clast fabrics are oriented 

with moderate principal eigenvalue strengths. 

Prentice (1993) obtained similar principal eigenvalues, K values, and 

deviations of a-axis fabric orientations from transect trends for clast fabrics 

taken on the gravel barrier at Topsail Beach, Newfoundland. Sixty percent of 

the clast fabrics on Topsail Beach showed a directional component of the 

dominant westerly wave front. The others were oriented parallel to the 

shoreline or landward. 

131 



Prior to the work of Prentice (1993), Norrman (1964) showed that four 

preferred orientations occurred in a cobble-dominated bay: one parallel to the 

shoreline, two oblique at approximately 45• to the shoreline and one parallel 

to the wave front. Fraser (1935) and Williams and Gulbrandsen (1977) 

reported gravels oriented parallel to shoreline trend. 

Norrman (1964) attributed the oblique positions to swash action and 

the perpendicular positions to cobbles that are aligned, but not transported by, 

wave action. The beach at Ship Cove must be exposed to higher wave 

energies than the beach described by Norrman, as cobbles are not only re­

aligned but are transported by wave action. Clast-size distributions did not 

have a profound effect on the resulting clast fabrics, as the cobble-dominated 

beach crest has similar trends, plunges and statistics as the fabrics taken on the 

pebble-dominated mid- and lower-beachface. 

At Ship Cove, however, except for fabric SC-27 taken along an 

exposure, none of the mean orientations were parallel to the shoreline or 

oriented landward. This may be attributed, partly, to the low sphericity bladed 

clasts common here. Although blade-shaped clasts are common at Topsail 

Beach, the clast sphericity is greater there than at Ship Cove (Prentice, 1993). 

Consequently, the clasts at Topsail Beach can pivot more easily and respond 

more to gravity in conjunction with backwash flow than at Ship Cove. The 

similar coarse sediment textures at both beaches indicate that the backwash 

flows are weak in both locations. The lack of parallel orientations are 

primarily a response to a lack of more pivotable clasts and secondarily to the 

hydrodynamic, morphological and lithological reasons which initially 

contribute to clast-shape distribution. 
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The organization of the imbrication of the a/b planes and the a-axis 

plunges show similarities. The plunges determined from the a-axis fabric 

method, as well as the imbrications of the a/b planes of the discoid clasts in 

the sample grids, do not show a distinct increase in angle farther up the 

beachface such as was noted at Little Sister Bay, Wisconsin by Krumbein 

(1939). Instead, the plunges demonstrate cross-shore variability with a mean 

of 16.9°. The low-sphericity, bladed and discoid shapes allow a tight packing 

of clasts with individual areas of steep plunges (Sanderson and Donovan, 

1974). 

Cuspate features play an important role in determining the a-axis 

orientation of clast fabrics of the bladed and roller clasts, as well as the 

imbrications of the a/b planes of the discoid clasts. Cusps allow a focusing of 

wave energy as swash action moves up the beach. Swash action strikes and 

overtops the sides of the cusp horn at different angles. Hence, the position on 

the cusp where the fabric is taken will influence the mean clast orientation. 

Asymmetric cusps with the elongated end downdrift of the swash direction 

will have a stronger orientation toward the swash than elsewhere on the cusp 

(clast fabrics SC-16-18 and SC-16-19). 

On symmetric cusp horns, the clasts along the centre axis of the hom 

were aligned parallel to the transect trend (or wave direction), whereas to the 

south of the hom axis, clasts were aligned to the north of its axis (or transect 

trend). Likewise, clasts located to the north of the axis of the hom deviated to 

the south of the horn axis trend (Figure 40). 

The clast orientations follow the movement and focusing of waves up 

cusp centres (Figure 40). As waves move up cusp centres along both sides of 
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the horn, the cusp along the southern side of the hom causes the clasts to 

have a trend towards the north along the southern side of the hom. In 

contrast, the cusp centre to the north results in the clasts oriented more to the 

south along the northern edge of the horn as waves become directed from the 

cusp sides to the cusp centres. The orientations of the a-axis fabrics and the 

directions of the imbrications of the a/b planes of the discoids in the grid 

samples illustrate the same transport regime. 

A clast fabric taken on a swash bar had the strongest eigenvalue, 0.813, 

of all the fabrics taken on the beach. It also had the highest plunge value, 

37.7. and the highest K value of 2.99. These statistics suggest a high-energy 

fluvial environment. However, the orientation of the fabric is 236.7° 

indicating deposition from seaward flow. This fabric was taken at low tide on 

a day when wave activity and stream velocities were low. It may be that this 

strong fabric was formed when flood tidal flow overrode the oscillatory waves 

and created a unidirectional flow. If an outlet already existed before the flood 

tidal flow, the flood flow would have been strongest along the sides of the 

stream, as stream velocities would be higher in the centre of the thalweg. As 

the tide rose, the stream velocities would decrease as the gradient between the 

lagoon and sea-level decreased. Undercutting along the sides of the channel 

would cause slumping of sediment into the channel which could then be 

remobilized by tidal flow. Weaker ebb flow would have used the existing 

stream channel and not destroyed the flood deposits. 

The strong orientation could also have been created by tidal flow 

cutting into the barrier and forming an outlet. In this way the faster-moving 

tidal flow within the cut bank area can create a strong orientation. 

134 



Clast fabrics taken from fans which closed the outlet had weaker 

eigenvalues than along the swash bar, 0.524 and 0.600 and had girdle 

distributions with K values less than 1. These characteristics are similar to 

the fabrics taken along the beachface and cannot be used to distinguish 

between these morphological features on the beach. 

6.2.4 Exposures 

Due to the unconsolidated nature of the sediments, it was impossible 

to examine extensive lateral and vertical exposures. The seaward open-work 

pebbles and cobbles in the lower unit along exposure A, examined on 22 

August 1991, had a more southerly orientation (164.) and lower plunge (3.9°) 

than values typical of the beach. The seaward-imbricated pebbles and cobbles 

that overlay the layer of open-work granules show an overpassing event. 

Overpassing, or bed armouring, has been described under conditions of 

unidirectional flow (eg., Allen; 1983, Everts, 1973; Foley, 1977). Larger-sized 

particles gain momentum by their high exposure in the boundary layers, 

become entrained in fast-moving flow, and roll over the underlying smaller 

clasts. Everts (1973) suggested that the grain size difference between the layers 

must be small, otherwise the underlying bed would be eroded. In Foley's 

(1977) and Allen's (1983) descriptions, particle size differences may be large. 

These models are most applicable to roller- or equant-shaped particles, as 

these shapes are more likely to roll in traction. The pivoting angles of 

equants are less than that of angular clasts or imbricated ellipsoids and thus 

require lower velocity flows for entrainment than the latter types (Komar, 
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1987; Komar and Li, 1986). However, once in motion, discoid clasts can move 

easily and rapidly (Allen, 1983). 

Isla (1993) proposed an explanation for overpassing in beach 

environments. During the stronger swash flow, entrainment of mixed-sized 

sediment distribution is set in motion. During backwash, declining flow 

velocities favour inverse grading whereby finer particles (sand and granules) 

become trapped between the larger particles with higher inertia. A point is 

reached during the initial stages of backwash when the finer particles are 

deposited and the larger ones roll over them. When bed flow decreases below 

that necessary to maintain overpassing of the larger particles, deposition of 

these larger clasts occurs. 

In Isla's model, spherical clasts were considered, and the applicability of 

the model to low-sphericity discs and blades is not discussed. The evidence 

from Ship Cove, however, indicates that this process likely occurs. The 

higher flows necessary to initiate movement in imbricated discs and blades 

would result in higher inertia. With declining flows during the initial stages 

of backwash, the inertial motion of the imbricated discs and blades may allow 

them to continue moving landward for a short time. 

The infill of sand and granules in this overpassing layer could either 

result from simultaneous deposition of all clast sizes, or could have filtered 

down from later overlying deposits not clearly seen in this exposure. Similar 

processes have been demonstrated in fluvial environments (Frostick et al., 

1984; Beschta and Jackson, 1978). Organic matter, mostly seaweed, was present 

throughout the unit and likely was deposited with the imbricated discs 

during a high-energy storm event, perhaps resulting in closure of the outlet. 

136 



The fabric in this unit (SC-28) is similar to those taken on fans (SC-30 and SC-

31) which caused the closure of the outlet. However, as noted above, the 

fabrics on the fans are not distinct from those taken on cusps along the 

beachface. 

The open-work nature of the imbricated cobble layer in exposure B 

likely indicates a cusp horn area where kinetic sieving has moved finer 

materials downward (Orford and Carter, 1982b). It is probable that similar 

conditions prevailed when units 1 and 3 of exposure C were deposited. The 

granule infill of unit 2 may have been partly deposited simultaneously with 

the pebbles and partly by kinetic sieving. These granules may have become 

trapped within the pebble layer and not moved farther down. 

6.2.5 Summary of Sediment Distribution 

Given the strong differences between the southern end (zone A) and 

the northern section (zone C), two types of sedimentation occur on the beach. 

Zone B is transitional between zones A and C. 

Zone A: 

The storm berm along the upper-beachface consists of stratified, 

seaward-imbricated discoid and bladed pebbles and cobbles. The mid- and 

lower-beach consists of alternating strata of granules and sand overlying 

roller and equant cobbles. 
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Zone C (Gravel Barrier): 

(1) The crest and backbarrier contain crudely stratified, landward­

dipping strongly seaward-imbricated open-work blade- and disc-shaped 

cobbles. (2) The upper-beachface contains mainly blade- and disc-shaped 

cobbles, not as well imbricated due to the presence of seaward-dipping steep 

(20 - 25°) slopes inside cusp centres. This area is characterized by erosional 

surfaces. (3) The mid-beachface contains stratified seaward-dipping pebbles 

with higher proportions of roller and equant clasts than on the crest, 

overlying large cobbles of higher sphericity. This is the most laterally 

changeable section of the beach, for depositional surfaces alternate with 

erosional surfaces with cusp development. ( 4) The lower-beachface in the 

intertidal zone is composed of stratified beds of imbricated pebbles and sand 

dipping at 8- 12°. (5) The outer zone or step contains mainly pebbles and 

cobbles. (6) Lastly, the nearshore zone is dominated by cobbles and boulders. 

Table 10 summarizes the sedimentary characteristics of Ship Cove. 

These findings are very similar to the characteristics of the barrier at 

Mutton Bay (Forbes and Taylor, 1987). Both the Mutton Bay and Ship Cove 

barriers are compartmented by prominent headlands which limit sediment 

availability by impeding longshore transport. Both barriers are highly 

reflective and reach similar heights of 5-6 m above mean sea-level. 
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Number llnit ~ Slope Structure/texture 

1 backbarrier supratidal 8-10° stratified, seaward-imbricated; 
(landward} open-work blade and disc cobbles 

2 upper- supratidal 20° erosional surfaces caused by large cusps; 
beachface (seaward) mainly blade and discs; 

poor to chaotic clast orientation 

3 mid-beach supratidal 10-15° stratified imbricated pebbles and cobbles; 
(seaward) cusp development; 

~ 

higher percentages of equants and rollers (,) 
(0 

4 lower- intertidal 8-12° stratified, imbricated pebbles and sand 
beach face (seaward) 

5 step subtidal 4-6° stratified, pebbles and cobbles 
(seaward) 

6 nearshore subtidal 5-8° cobbles and boulders 
(seaward) 

Table 10: Summary of the sedimentary characteristics along zone C, Ship Cove. 



Chapter 7 

Description of the Barrier System 
at Big Barasway 

7.1 Introduction 

The 1.3 km long gravel beach system at Big Barasway consists of two 

baymouth barrier beaches separated by a 200m-long vegetated island (Woody 

Island). The overall shape of this barrier differs from most other barriers 

along the eastern shore of Placentia Bay, as it forms an undulating seaward 

arc (Plate 16). The headlands that border the southern end of the beach are 

flanked by bluffs of unconsolidated diamicton with thicknesses that range 

between 1 and 5 m overlying bedrock. To the north of Big Barasway, the 

gravel beach continues for 1.5 km. The shore in this area is flanked by a 70 m 

high-bluff of unconsolidated diamicton . 

A continuous lagoon flanks the landward side of the barrier and is fed 

by an unnamed stream. The stream enters the lagoon at its northern end, 

flows south within the lagoonal area for approximately 400 m, and exits into 

Placentia Bay. 

Although the beach overall consists mostly of large pebbles and cobbles, 

there are lateral differences in morphodynamics and in the sediment shapes 

and textures. Based on these differences, the beach is divided into four zones: 

A, B, C, and D, as shown in Figure 7. The sedimentology and 

morphodynamics of each of these zones initially will be discussed separately. 
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Following consideration of each zone, a comparative analysis will be 

presented. 

Plate 16: Overview of the barrier at Big Barasway looking south. ZoneD is in 
the foreground. Zone Cis to the south of the outlet, followed by 
zone B, the vegetated section. Zone A is in the background. July 
1991. 

7.2 ZoneA 

7.2.1 Morphology 

The beach in this zone is aligned SSE-NNW, and is 325m-long of 

which the barrier forms the northern 200 m. Fourteen transverse profiles, 

taken between July 27 and July 30, 1991, are illustrated in Figures 41 - 46. Table 

11 lists the azimuth of each transect, the total width, the foreshore and 
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Transect Azimuth Hei~t (m} fo[esbar~ !ml Sl21!e el :Uadssh2r~~: (ml Sl21!1 (0
} IotiJ Wigtb {ml 

BB - 1 263 3.8 21.5 10.0 0.0 21.5 
BB-2 259 3.9 19.0 11 .6 0.0 19.0 
BB-3 256 4.0 17.5 12.9 0.0 17.5 
BB-4 254 3.9 17.5 12.6 7.0 6.5 24.5 

BB-5 247 4.0 17.0 13.2 10.0 4.6 27.0 

BB-6 246 4.6 23.5 11.1 20.8 125 44.3 

BB-7 250 4.5 24.4 10.4 30.1 8.5 54.5 

BB-8 242 3.6 21.7 8.6 29.9 6.9 51.6 
BB-9 242 3.3 31.3 6.0 54.8 3.4 86.1 

...I. BB -10 242 3.1 38.7 4.6 40.6 4.4 79.3 

.c:a. 
1\) BB-11 247 2.6 32.0 4.6 48.7 3.1 80.7 

BB-12 256 2.5 21.1 6.8 39.3 3.6 60.4 
BB -13 253 2.3 19.3 6.8 25.0 53 44.3 
BB -14 267 2.3 12.6 10.3 39.0 3.4 51.6 

Table 11: Dimensions of the barrier along zone A, Big Barasway. 
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-4 

~ co 

m 
asl 

m 
asl 

4 

3 

2 

1 

0 

-1 

4 

3 

2 

1 

0 
-1 

0 20 

0 20 

BB -13 

40 
distance (m) 

BB -14 

40 
distance (m) 

60 

MHW 
MSL 

60 

Figure 46: Profiles of transects BB-13 and BB-14; zone A, Big Barasway 

MLW 

80 

MLW 

80 



backshore widths, the height above mean sea-level, and the overall back and 

foreshore slopes. 

For convenience, zone A is discussed as a single unit, although 

morphological variations are present. The southern half of the beach, 

comprised by transects BB-1 through BB-7, is characterized by relatively high 

elevations (3.8 to 4.0 m asl), and steep foreshore slopes, 10.0° to 13.2°. At the 

southern end, transects BB-1 through BB-5 are marked by little or no 

backbarrier area. Consequently, they are narrow in comparison to the other 

profiles. The lagoon flanks the landward end of transects BB-6 and BB-7. 

These represent the beginning of the barrier system that continues to the 

north. These transects have comparatively steep backshore slopes of 8.5° and 

12.5°, and the widths of the backshore along these transects are 20.8 and 

30.1 m, respectively. 

The northern half of zone A, comprised by transects BB-8 through BB-

14, is characterized by lower elevations (2.3 to 3.6 m asl) gentler foreshore 

slopes (4.6° to 10.3°) and gentler backshore slopes (3.1 ° to 6.9°). The widths of 

the backshore range between 25 and 54.8 m. Two large overwash fans are 

present. One fan is located between transects BB-8 and BB-10, and the other is 

located between BB-11 and BB-13. 

The profiles of the transects along the southern half show a storm ridge 



bisected the embayments of cusps. BB-4 was aligned through the margin of a 

cusp embayment whereas BB-3 traversed the crest of a cusp. The cusps along 

this segment of beach towards the upper·beachface had wavelengths of 7 - 9 

m and heights of 1.2 m. The shape of the mid- and upper-beachface along 

profile BB-5 shows the presence of large boulders and does not clearly reflect 

the presence of cusps. 

Between 1.5 and 2 m asl, transects BB-2, BB-3, BB-4 and BB-6 show 

slight! y concave lower beach profiles. These shapes show the presence of 

lower beach cusps with wavelengths of 5 - 6 m and heights of 0.8 - 1 m asl. 

These concave shapes, however, are not as distinct as those on the upper­

beachfaces and show modification by more recent wave activity. 

Comparison of the profiles of transects BB-7 and BB-8 reveals a 

transition between the southern and northern parts of zone A. In addition to 

the storm berm ridge and the morphological features associated with cusps, a 

second ridge, below a cusp, is evident at 1.5 m asl in transect BB-7. This 

represents the initial upshore development of a linear ridge, which became 

very pronounced between BB-8 and BB-11. North of transect 11, the ridge 

declines in prominence and does not appear on the profile of transect BB-14. 

On transect BB-9, a third linear ridge was evident in summer 1991 at 

1m asl. This ridge became prominent between transects BB-10 and BB-11. To 

the north of BB-11, this ridge decreases in height and, as in the case of the 

second linear ridge, was not recorded on transect BB-14 (Plate 17). 

In the summer of 1993, a coastal monitoring program was initiated 

jointly by the provincial Geological Survey Branch and federal Geological 

Survey of Canada. Two transects were established along zone A. One 
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(referred to as the boulder site) is located south of transect BB-6 and the 

second is located along transect BB-10. Figure 47 illustrates the profiles for 

July, September, and December 1993 and February 1994. 

Plate 17: Northward transport of sediment along the northern end of zone A. 
July 1991. 

Gravel cones and depressions, similar to those described by Eyles (1976) 

at Holyrood Pond, Newfoundland, were observed along the back-beach 

between transects BB-9 and BB-12 (Plate 18). Also seen were sand/granule 

ridges leeward of larger clasts. Circular depressions and cones reached 25 em 

in width at the base and 15 em in height. The discoid clasts tended to have a 

seaward imbrication whereas the other shaped clasts lacked imbrication. 
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Plate 18: Gravel cones and depressions on the backbarrier along zone A. June 
1993. 

7.2.2 Morphological Variation 

The beach in this zone showed a yearly cyclical pattern in morphology, 

although deviations from the general trend occurred. During July, August 

and September, the slope of the beachface increased to 17- 20· at the southern 

end and 9 - 12• at the northern end. This was followed by a decrease in 

foreshore slope and a straight or concave foreshore profile as sediment was 

moved offshore (Plate 19). 
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Plate 19: Overview of the southern end of zone A. July 1992. 

Figure 48 compares the profiles taken on October 1991 of BB-3 and BB-8 

with those taken in July 1991. These two transects show the general trend of 

morphological change in the southern and northern beach sections. 

The profile of BB-8 shows a slight increase in slope. The ridge at 

approximately 2 m elevation had been pushed landwards and upwards. As 

well, sediment from the seaward edge of this ridge had been removed. This 

shows the transition from sediment accumulation to sediment erosion. Prior 

to July 1991, sediment was pushed landward. Between July and October, 

sediment removal began. The profile of BB-3 shows removal of sediment 

and the development of a concave shape for the lower three-quarters of the 

profile. Although not clearly demonstrated in the profile taken in October, 
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the beachface of the southern end had increased in steepness throughout the 

late summer and early autumn. Sediment removal continues through 

December although, within this general pattern, episodes of accumulation 

occur. For example, the GSC profile for the boulder site in December 1993 

shows a large accumulation of sediment along a linear ridge that extended 

along the southern half of this zone. 

During the months of mid- to late January through mid-March, a 

prominent ice foot developed in the mid-beachface area along the length of 

the beach (Plate 20). The profiles of the boulder site and GSC-393 (BB-10) in 

February 1994 show the location of the ice foot. Interstitial ice within the 

sediment and the ice foot itself influence the shape of the barrier. The active 

area of sediment movement is confined to the intertidal zone. April through 

June showed an overall sediment accumulation, resulting in more convex 

beachface profiles. 

Two major southwester! y storm events on 25 December 1991 and 15 

March 1993 caused extensive removal of sediment throughout the beachface. 

These events resulted in a distinct concave profile forming at the southern 

end and formation of a slightly concave to straight profile at the northern 

end. On 17 March 1993, the sediment removed from the beachface could be 

seen directly below the low tide mark along the southern end. This resulted 

in the waves breaking farther (approximately 15 - 25 m) from the shoreline 

than the average of 5 - 15 m. 

Figures 49 and 50 compare profiles of transects BB-3, BB-6 and BB-10 

taken in July 1991, December 1992, and June 1993. A cycle of accumulation 

and erosion is evident in these profiles. The profiles of BB-10 show the 
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largest transport of sediment as a linear ridge was formed, removed, andre­

formed. Although not as dramatic as BB-10, BB-3 and BB-6 show alternating 

episodes of accumulation and erosion. In particular, a more pronounced 

concave shape extends from the beach crest to the mid-beachface area on the 

profiles taken in December, whereas the ones taken in June and July show 

berm development higher up the beachface. 

Overwashing was confined to the northern end. Crestal topping 

occurred at the southern end but transported little sediment. Although little 

landward movement of the barrier was observed during the study, 

comparison of 1948 and 1980 air photos allows estimates of a landward 

movement of 10- 25m (Figure 51). 

Plate 20: Ice foot development along zone A. February 1992. 
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7.2.3 Clast Lithology 

Samples of 40 clasts were taken at the crest and along the lower­

beachface to determine the lithology of the beach clasts. The samples were 

analyzed separately and the results then combined to determine the 

lithological assemblage of the entire zone. The results are shown in Figure 

52. The sample taken at the crest of the beach was composed of 69% 

sandstone, 22% siltstone, and 9% basalt clasts. In contrast, the sample taken 

on the lower-beachface contained a large component of igneous clasts (26°/o 

basalt, 13% rhyolite, and 6% granite), in addition to sedimentary clasts. Also 

found were minor amounts of breccia, ironstone, and quartzite. The 

combined clast lithological data show 66°/o of the clasts to be siltstone, 

sandstone, or conglomerate. Volcanic basalt and rhyolite clasts represent 27% 

of the total assemblage. 

7.2.4 Sedimrnt Texture 

As well as morphological variation, zone A shows textural variations 

along the length of beach and across individual transects. Along the entire 

length of the zone, cobbles and boulders dominate the beachface from the 

subtidal zone to slightly above mean sea-level. fhe textural analyses involve 

samples taken above this area. 

Figure 53 shows the results of surface texture analyses taken in July 

1991. The samples were taken at the lower-beachface above the cobble and 

boulder step, mid-beachface, and the beach crest along transects BB-5 and BB-

11. These transects are representative of the northern and southern sections, 
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although sediment texture varied slightly within both sections and the 

transition between the northern and southern sections is gradational. The 

sediment texture composition of the crest along BB-11 is similar to that 

observed along the width of the backbarrier along this transect. BB-11 

intersects an overwash fan and thus the textural composition of the crest 

indicates the composition of an overwash fan. 

Transect BB-5, located toward the southern end of the zone, is 

composed mostly of large pebbles and cobbles. In contrast, BB-11, taken 

toward the northern end, shows a high percentage of sand, granules, and 

small and medium pebbles. As in the analysis of the sediment at Ship Cove, 

the numerical quantities are used to indicate qualitative differences in 

sediment on the beach. This is then used to interpret differences in barrier 

morphod ynamics. 

Along transect BB-5, the proportion of cobbles increases from 2% on 

the lower beach to 41% midway to 88% at the beach top. BB-11 does not show 

a distinct increase in grain size with elevation on the beachface. Large 

percentages of small- and medium-sized pebbles (80%) form the lower­

beachface along a linear ridge from which the sample was taken. The mid­

beachface sample is dominated by large pebbles, cobbles and boulders (70%). 

The top shows mainly sand and granules (50%). Additionally, in all samples 

there is a wide range of clast sizes, from sand to boulders. 

With removal of sediment during the fall and winter months, the 

surface sediment texture along the entire beachface changed. The exposed 

clasts throughout the width and length of the beachface were dominated by 80 

- 90% cobbles and boulders. 

163 



7.2.5 Clast Shape 

Figure 54 shows the results of clast shape analyses for the surface 

samples at the three sites along transects BB-5 and BB-11. Also shown are the 

results for the three sites along each transect combined. This gives overall 

estimated clast-shape distributions for each transect. 

Transect BB-5 shows an increase of discs and a decrease in equants with 

distance from the seaward edge. In contrast, the relative proportions of clast 

shapes remain approximately constant along transect BB-11. When the 

results of the three sites for each transect are combined, no significant change 

in shape is evident between the clasts of transects BB-5 and BB-11. 

Figure 55 shows the histograms for clast roundness and sphericity. 

Along BB-11, the clasts are less rounded and slightly more spherical than 

along BB-5. No angular or subangular clasts were present along BB-5. 

The cobble and boulder-dominated lower-beach step is largely 

composed of blades, rollers and equants. With removal of sediment during 

the fall and storm events, the underlying large cobbles and boulders are 

exposed in the mid-beachface area and show an increase in equants and 

rollers. In general, the larger clasts show greater sphericity and lower 

percentages of discs. 

With removal of sediment, clast-shape zonations are more 

pronounced. Discs dominate the upper-beachface and crest while the clasts in 

the mid- and lower-beach areas are mainly rollers and equants. 
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7.2.6 Fabric Analysis 

Ten clast fabrics using the a-axis method were taken on the beach 

within zone A (Figures 56- 58). The direction of imbrication of the a/b planes 

of the discoid clasts ranged betw ~en ± 45° of the transect trend along the 

southern end and deviated more commonly by~ 30° to the south of the 

transect trend along the northern end, although isolated areas in the 

northern end had deviations to the north of the transect trend. As at Ship 

Cove, the seaward plunges of the a/b planes generally ranged bet-ween 15-30°. 

Table 12 shows the statistics, the transects along which the a-axis fabrics were 

taken, the transect trend, and the deviation of the fabric trend from the 

transect trend. Negative values indicate a trend deviation to the north, 

whereas positive values indicate a trend deviation to the south. The 

designations of the fabrics indicate the transect along which they were taken. 

NY.mber Trend Plunse ~ 53 K T&:mi[end Deviation 

BB-4-1 253.9 33.1 0.653 0.053 0.46 254 0.1 

BB-5-2 292.8 7.5 0.550 0.135 0.66 247 -45.8 

BB-5-3 291 .9 13.2 0.653 0.071 0.64 247 -44.9 

BB-6-4 255.2 22.3 0.691 0.065 0.80 246 -92 
BB-7-5 263.9 16.1 0.617 0.080 054 250 -13.9 

BB-9-6 296.6 17.7 0.683 0.078 0.93 242 -54.6 

BB-10-7 225.9 19.1 0513 0.065 0.11 242 16.1 

BB-11-8 235.1 27.8 0.472 0.093 0.05 247 11.9 

BB-11-9 226.8 17.8 0.746 0.036 0.69 247 20.2 

BB-12-10 276.3 15.9 0.550 0.063 0.19 256 -20.3 

mean El s.d. El 

south 0.633 0.053 

north 0593 0.117 

all 0.613 0.088 

Table 12: Clast fabric data for zone A, Big Barasway. 
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The principal eigenvalues range between 0.472 and 0.746. Fabrics BB-5-

2, BB-10-7, BB-11-8, and BB-12-10 with eigenvalues of 0.550, 0.513, 0.472 and 

0.550 respectively, are weakly oriented. The other fabrics show moderate to 

strong orientations. The K values for all the fabrics are less than 1, and thus 

they represent girdle distributions. 

The clast fabrics were taken on different morphological features along 

the beach. The locations where the fabrics were taken are shown on the 

profiles of the transects. Fabric BB-4-1 with an S1 of 0.653, a plunge of 33.1• 

and a deviation of 0.1· from the transect trend was taken on the centre of a 

cusp horn. 

Clast fabric BB-5-2 with a low plunge value of 7.5· was taken at the base 

of a steep beach berm scarp. Clasts from the scarp above had fallen into this 

area. This fabric has a relatively low S1 of 0.550 and a large deviation of -45.8. 

from the transect trend. Fabric BB-5-3 was taken on the beach top. Although 

it has a similar trend to BB-5-2, the plunge of 13.2· and S1 of 0.653 differ. 

Clast fabrics BB-6-4, BB-7-5, and BB-9-6 were located along the landward 

trough of the linear berm ridge where the beach profiles slope landward. The 

plunges for these are similar, 22.3·, 16.1 • and 17./; as are the eigenvalues, 

0.691, 0.617, and 0.683 respectively. The trend of BB-9-6 deviates -54.6. from 

the transect trend, whereas BB-6-4 and BB-7-5 deviate -9.2. and -13.9. 

respectively. 

Fabric BB-10-7 was taken toward the upper-beachface. It has an S1 

value of 0.513, a plunge of 19.r, and a deviation of 16.r. Fabric BB-11-8 was 

taken on a berm located 1 m asl. It has the lowest S1 value, 0.472, of all the 

169 



clast fabrics and a high plunge value of 27.8•. It deviates from the transect 

trend by 11. 9•. 

Fabric BB-11-9, taken on a recently formed berm above the high tide 

mark along transect BB-11, has an S1 of 0.746, the strongest S1 recorded in 

zone A. It has a plunge of 17.8. and deviates from the transect trend by 20.2°. 

Clast fabric, BB-12-10, was taken on the back of the barrier. Its plunge, 

15.9·, is similar to fabric BB-5-3, also taken at the back of the barrier. BB-12-10 

shows a weaker orientation, however, with an S1 of 0.550. It deviates from 

the transect trend by -20.3·. 
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7.3 Zone B 

This zone measures 200m long (Plate 21). One profile was measured 

along this stretch of the beach (Figure 59). It has a height of 3 m above mean 

sea-level and a width of 19.8 m. It has a linear to slightly concave foreshore 

profile with a slope of 8.5... This profile is characteristic of the entire length of 

this zone. Little seasonal variability has been observed. This section of the 

beach has maintained a linear front throughout seasonal changes during the 

study. The sediment consists mainly of boulders with an infill of subangular 

to subrounded granules, pebbles and cobbles. Elongated cuspate features 

extending in a northerly direction indicate a northward transport of 

sediment. 

Plate 21: Overview of zone B. GSC-5319 was taken from the peat bounding 
the beach. August 1992. 
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The sedimentary bluff at the back of the beach consists of diamicton 

ranging between 0.5 to 2.5 m thick, capped by peat. This area is actively 

eroding, losing between 0.5 to 1m per year at the seaward edge between 1990 

and 1993. Air photos reveal a landward retreat of 10-25 m between 1948 and 

1980, a rate of 0.3- 0.8 m per year (Figure 51). 

The top of the bluff is vegetated with grasses seaward and spruce 

landward. Beach clasts are interspersed with vegetation toward the southern 

end. Cores were taken from three living trees using a Swedish Increment 

Borer. Counting the tree rings re'Jealed ages of 54, 63 and 88 years. The girths 

of the trees were 70 em, 70 em, and 97.5 em respectively. 

ZoneB 
4 

3 

m 2 

asl 

0 

·1 
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Figure 59: Profile of transect along zone B, Big Barasway. 
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7.4 ZoneC 

7.4.1 Morphology 

The segment of the barrier representing zone C is 180 m long (Plate 22). 

The southern half is aligned north-south. The northern half forms a convex­

seaward curve from north to east, terminating at the stream outlet. Six 

transverse profiles, taken on 23 and 24 August 1991, are illustrated in Figures 

58 and 59. Transects BB-15, BB-16, BB-17 and BB-18 are spaced 40 m apart, 

whereas transects BB-18, BB-19 and BB-20 are spaced 20m apart. Table 13 lists 

the azimuth, height, foreshore and backshore widths and slopes, and the total 

width for each transect. The height of the barrier in this section ranges 

between 3.1 and 3.7 m asl. The total widths range between 33.4 and 67 m. 

Below mean sea-level there is a gently-sloping ( <2.) platform along the 

northern half. During low tides a lateral bar is exposed along the outlet (Plate 

23). 

Plate 22: Overview of zone C. July 1991. 
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Transect Al.iWYlb Hei&}lt (m) Foreshore (m) Slope (0
) Backsbore (11]) Slgpe (0

) Total Width Cml 

BB-15 283 3.2 17.5 10.3 22.4 8.1 39.9 
BB-16 274 3.7 15.2 13.7 18.2 11.5 33.4 
BB-17 301 3.6 26.0 7.9 20~5 10.0 465 
BB-18 325 3.1 43.2 4.1 23.8 7.4 67.0 

~ 
BB-19 350 3.1 38.6 4.6 27.8 6.3 66.4 

....., BB-20 64 3.1 9.9 17.4 26.6 6.6 36.5 ....., 

Table 13: Dimensions of the barrier along zone C, Big Barasway. 
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Plate 23: Lateral bar along the southern side (zone C) of outlet exposed during 
low tide. July 1992. 

As with zone A, the barrier along zone C shows lateral differences. The 

southern half, illustrated by transects BB-15 and BB-16, has linear foreshore 

profiles, with slopes of 10.3° and 13./ along the respective transects. The 

backshores are characterized by linear profiles similar to the foreshores, with 

slopes of 8.1° and 11.5°. 

Transects BB-18 and BB-19 have a convex foreshore profile with a 

linear ridge dominating the mid-beachface. Also present on these two 

profiles were two pronounced ridges on the top of the barrier. The landward 

ridge is at a slightly lower elevation than the seaward one. 

Transect BB-17 shows a transition between the south and north 

sections. It has a linear foreshore as do the transects to the south, but the 
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foreshore slope is gentler at 7.9· The backshore slopes linearly at 10°, similar 

to the transects to the south. 

Transect BB-20 was taken along the margin of the stream outlet. This 

profile is marked by a relatively short (9.9 m) and steep (17.4°) foreshore. The 

backshore is similar to transects BB-19 and BB-20 with a width of 26.6 m and a 

slope of 6.6°. 

The barrier in zone C showed only slight profile changes during the 

duration of the study. Sediment was removed from the southern half during 

the fall and winter months and the beachface became slightly concave. At the 

northern end sediment was removed from the mid-beachface ridge. The 

beach maintained a convex shape throughout the year, however. 

Plate 24: Erosion of the barrier near the outlet, zone C. The lateral bar is in the 
background. July 1992. 
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The barrier around the outlet is undergoing modification. The stream 

is eroding the barrier along this zone as it widens in a southerly direction. 

Approximately 10m of the length of the barrier was re1noved between July 

1991 and June 1993 (Plate 24). Some of this sedhnent has been transported 

landward. A pronounced hook has fonned in the backbarrier area of zone C 

along the southern margin of the stream outlet. 

7.4.2 Clast Lithology 

A sample of 71 clasts taken along the beach crest fro1n zone C contained 

48% sandstone, 35% siltstone, 6% conglomerate, 6% basalt, 3% granite, and 3% 

quartzite. Figure 62 illustrates the lithological analysis. The 88% of 

sedimentary origin here is similar to the 91% of sedimentary origin along the 

crest in zone A. 

Lithology 
3% 3% 

Ill Sandstone 
• Siltstone 
Iii Conglomerate 
~ Basalt 
~ Granite 
rn Quartzite 

Figure 62: Lithology for zone C, Big Barasway. 
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7.4.3 Sediment Texture 

The sediment texture differs between the south and north sections 

(Figure 63). As with previous sections discussing sediment texture, the 

numerical quantities are used to indicate general increasing or decreasing of 

sediment clast sizes. Transect BB-16, typical of the southern section, is 

composed mostly of boulders and cobbles. Along this transect the relative 

proportion of boulders and cobbles vary with the lower beach composed of 

80% boulders, 10°/o cobbles and 10% small to large pebbles. The mid-beachface 

shows an increase of cobbles to 40% and an increase of pebbles to 30%. The 

barrier top is composed of 70% cobbles, 20% boulders, and 10% pebbles. On 

the lower slopes of the backbarrier, the texture is marked by a 10% increase of 

smaller pebbles and granules. 

Transect BB-18, typical of the northern segment, contains more pebbles 

and fewer large clasts. The lower-beachface is composed of 40% boulders, 30% 

cobbles, lOo/o small pebbles, and 20% granules. The mid-beachface sample, 

taken along the ridge, is entirely composed of pebbles, with 20% large, 40% 

medium and 40% small. The top of the beach contains 40% cobbles, 50% large 

pebbles, and lOo/o medium pebbles. 

The sediment textures varied relatively little over the duration of the 

study. In particular, the southern sections of zone C remained essentially 

unchanged. With removal of small and medium pebbles from the m.id­

beachface ridge in the northern sections during storm events, larger-sized 

pebbles were exposed. 

Erosion of the barrier along the outlet, exposed a cross-section of the 

interior stratigraphy. This exposure was located near the top of the barrier, 
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landward of the ridges shown on profiles BB-18 and BB-19. It measured 30 an 

in height. The sediment was loose and unstable, precluding further 

excavation. The section, illustrated in Figure 64, consisted of 5 - go landward 

dipping planar beds. The lowermost exposed stratum consisted of open work 

pebbles and cobbles with granules infilling the voids. This stratum was 

successively overlain by 2.5 em of granules, a 3.5 em bed of small- and 

medium-sized pebbles, 1.5 em of granules and small-sized pebbles and 4.0 em 

of granules. Capping the sequence was a cobble stratum with a granule infill. 

7.4.4 Clast Shape 

Figure 65 illustrates estimates of the overall clast shape analysis for 

three sites along transects BB-16 and BB-18. The lower site of BB-16 showed 

33% discs, 31% blades, 3°/c, rollers and 33% equants. The mid-beachface site 

contained 33% discs, 37% blades, 4% rollers and 26% equants, whereas the 

beach crest showed 37% discs, 50°/o blades, 0% rollers and 13% equants. 

The lower site of BB-18 was composed of 29% discs, 42% blades, 19% 

rollers and 10% equants. The mid-beachface contained 48°/o discs, 48°/o blades 

and 4% equants, whereas the top was composed of 52% discs, 30°/o blades, 4% 

rollers and 15% equants. Along both transects the proportion of rollers and 

equants was significantly less on the crest than on the lower- and mid­

beachface. 

The roundness and sphericity change between the north and south 

sections. The clasts to the south near zone B were largely angular to 

subangular with moderate to high sphericity. In contrast, clasts to the north 

are subangular to subrounded with low to moderate sphericity. In addition, 
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combining the shape compositions for the three samples along each transect 

reveals a decrease of rollers and equants from 26% at BB-16 to 17% at BB-18. 

7.4.5 Fabric Analysis 

Three a-axis clast fabrics were taken from this zone (Table 14, Figure 

66). The imbrication of the a/b plane of the disc component of the sample 

sites were noted. Clast fabric C-1 was taken on the lateral bar during low tide. 

It has an azimuth of 320.1° and a plunge of 13.5. (seaward). The S1 is 0.619 

and the K value is 0.22. 

Clast fabric C-2 was taken within the pebble and cobble lower layer of 

the exposed section along the bank. This yielded an azimuth of 104.8° and a 

plunge of 9.2· (landward). The St is 0.596 and the K value is 0.23. 

Clast fabric C-3 was taken at the base of the barrier along transect BB-19. 

It has an azimuth of oo7· which is a 17° deviation from the transect azimuth, 

and a plunge of 15.9•. It has an St of 0.720 and a K value of 0.5. 

Number Trend Plunge Sl 53 K Tran Trend Deviation 
ZoneC-1 320.1 13.5 0.619 0.027 0.22 

ZoneC-2 104.8 9.2 0.596 0.043 0.23 
ZoneC-3 7.0 15.9 0.720 O.OJO 0.50 350 -17 

Table 14: Clast fabric data for zone C, Big Barasway. 
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7.5 ZoneD 

7.5.1 Morphology 

This segment of the beach is 420 m long. Heights range between 3 and 

3.5 m asl. The outlet bounds this zone to the south. To the north a beach 

extends 1.5 km at the base of a 70 m high bluff of diamicton. Twenty 

transverse profiles spaced 20m apart, taken in July 1991, are illustrated in 

Figures 67- 74. Table 15 lists the azimuth, the height, foreshore and 

backshore widths and slopes, and the total width for each transect. The 

lagoon extends north from the outlet to south of transect BB-38. Transects 

BB-38 through BB-40 have minor or no backshores. 

For convenience, the morphology will be discussed in four sections. 

The first, most southerly section near the outlet, is comprised by transects 

BB-21 to BB-24. The second section consists of transects BB-25 to BB-29. The 

third consists of transects BB-30 to BB-34, and the fourth and most norther! y 

section, is comprised by transects BB-35 to BB-40. 

A sinusoidal shape characterized the southern section as the N-S trend 

at BB-21 curves toward a SSW-NNE trend at BB-22, and back toN-S trend at 

transects BB-23 and BB-24. During July 1991, the foreshore slopes ranged 

between B.T and 13.6°, whereas the backshore slopes ranged between 9.9" 

and 12.6". The overall widths ranged between 25.8 and 36.7 m. On the crest 

and back beach area, Cakile edentula (sea rocket), Lathyrus japonicus (beach 

pea), and Mertensia maritima (sea mertensia) grow during the summer and 

cover approximately 5% of the crest and backbeach area in this section. Little 

or no vegetation was seen along zones A and C. 
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Trapsect Azimyth Heia,bt {m} E2r~12hsu~ {ml Sl212e l0 l Bas:lslbQ[e lml SIOJ2~ {0
} IotiJ ~hUb lm} 

BB- 21 266 3.1 17.2 10.2 16.1 10.9 33.3 

BB- 22 290 3.0 18.2 9.4 16.1 10.6 34.3 
BB- 23 278 3.0 12.4 13.6 13.4 9.9 25.8 
BB- 24 264 3.0 19.5 8.7 17.2 12.6 36.7 

BB · 25 292 3.1 45.4 3.9 20.6 8.6 66.0 

BB- 26 311 3.3 55.1 3.4 18.2 10.3 73.3 

BB- 27 340 3.4 46.2 4.2 18.2 10.6 64.4 

BB- 28 330 3.3 44.1 4.3 19.6 9.6 63.7 
BB- 29 333 3.2 37.4 4.9 25.9 7.0 63.3 

BB-30 327 3.4 22.2 8.7 21.9 8.8 44.1 

BB- 31 330 3.0 18.2 9.4 19.8 8.6 38.0 
BB- 32 329 3.4 18.6 10.7 52.5 3.7 71.1 

BB -33 333 3.5 19.5 10.2 40.1 5.0 59.6 
BB- 34 315 3.2 18.0 10.1 27.2 6.7 45.2 - BB- 35 309 3.1 20.9 8.4 14.7 11.9 35.6 

<D - BB- 36 299 3.2 19.4 9.4 15.6 11.6 35.0 

BB-37 297 3.5 24.5 8.1 13.9 14.1 38.4 
BB -38 296 3.3 14.6 12.7 22.6 37.2 

BB -39 296 3.3 24.8 7.6 7.0 31.8 

BB -40 300 2.8 19.4 8.2 0.0 19.4 

Table 15: Dimensions of the barrier along zoneD, Big Barasway. 
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Figure 67: Profiles of transects BB-21- BB-24, zone 0, Big Barasway. 
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Figure 71: Profiles of transects BB-31 and BB-32, zoneD, Big Barasway. 
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Figure 72: Profiles of transects BB-33 and BB-34, zoneD, Big Barasway. 
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Figure 73: Profiles of transects BB-35- BB-37, zoneD, Big Barasway. 
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The barrier extends 18m to the south of transect BB-21. At the tip of 

the barrier, a hooked spit composed of granules and small pebbles curving 

toward the back of the barrier, was present during the summer of 1991. 

During the fall of 1991, this feature was eroded and was completely removed 

by November 1991. The feature had reformed by the summer of 1992 and had 

eroded, as in 1991, in the autumn of 1992. This pattern was repeated again in 

1993. 

The foreshores in the southernmost section were characterized by 

linear to convex profiles in July 1991. Small linear ridges were present. The 

profile of transect BB-21 shows a modification of this overall shape. A 5 m­

wide berm was present in the upper-beachface, the steep berm scarp topped a 

relatively gently-sloping mid-beachface area and the lower-beachface dropped 

sharply to the outlet. The crest and foreshore area were modified to some 

extent as a result of all-terrain vehicle traffic. 

The section to the north (BB-25- BB-29) is characterized by a gently­

sloping ( < r) boulder and cobble platform in the intertidal zone. The 

shoreline trend curves from SSW-NNE at transect BB-25 to WSW-ENE 

toward transect BB-27. During July 1991, the overall foreshore slopes ranged 

between 3.9° and 4.9°, whereas the backshore slopes ranged between I and 

10.6°. The total widths ranged between 63.3 and 73.3 m. Summer vegetation 

cover on the barrier crest and backbarrier area here is estimated at 5%. 

A pronounced spit of small- and medium-sized pebbles dominated the 

foreshore morphology during the summer of 1991 in the area of transects 

BB-25 and BB-26. It reached a height of 2.5 m asl and widths of 10 m. The spit 

followed the curvature of the barrier and continued as a Linear ridge to the 
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north. The ridge was most distinct at transect BB-27 and lessened northward 

at transects BB-29 and BB-30. Directly landward of the spit, small overwash 

fans were present and contained small- and medium-sized pebbles, similar to 

that observed on the crest and front of the spit. During the autumn of 1991, 

sediment from this feature was moved landward and northward. The spit 

merged with the barrier, producing convex profiles for the foreshores of 

transects BB-25 and BB-26, as shown in Figure 75. No similar spits developed 

during the summers of 1992 or 1993. 

Between transects BB-27 and BB-29, elongated cusps with a northerly 

alignment occur sporadically. These have wavelengths of 9 to 12m and 

heights of 0.5 m. These cuspate features indicate a northward transport of 

sediment, similar to those observed along zone B (Plate 25). 

Plate 25: Elongated cusps becoming backwash channels along zone D. July 
1992. 
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The third section (BB-30 to BB-34) has a shoreline trend of SW-NE. 

During July 1991 the foreshore slopes ranged between 8.7· and 10.7· whereas 

the backshore slopes ranged between 3./ and 8.8·. The total widths ranged 

between 38 and 71.1 m. The backshore profiles of transects BB-32, BB-33 and 

BB-34 show the presence of a large fan. Approximately 60% of the mid- to 

back areas of the fan is covered by Angelica atroparpurea (angelica) during the 

summer, but seaward of the fan vegetation is absent. 

The foreshores in this section had linear profiles during July 1991. 

Backwash channels with widths between 0.5 and 1 m and heights of 10-25 em 

were present in the foreshores of this section. The orientation of these 

channels varied between 01s• and 034 • with deviations of 26 • to 34 • from 

the shoreline trends. The southward edge of these channels had an 

armouring of cobbles while the interior of the channels were domina ted by 

medium and small pebbles (Plate 26). 

Based on profile measurement and visual inspection throughout 1991-

1993, this section has shown an alternating pattern of sediment accumulation 

during the summer months (May- September) and sediment erosion during 

the other months, although deviations from this general trend occurred 

depending on the direction and intensity of wave activity (Plate 27). In 

addition to seasonal change, examination the beach as a whole and 

individual profiles indicates that there has been a net loss of sediment along 

the beachface to the north of BB-30. The profiles of BB-34 show accretion in 

the mid- and lower-beachface between December 1992 and June 1993 showing 

seasonal variability while the upper-beachface and crest is retreating 

consistently (Figure 76). At 0.7 m below the barrier crest along transect BB-34, 
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Plate 26: Backwash channels farther to the north of Plate 26, zone D. July 
1992. 

Plate 27: Overview of the beachface along sections 3 and 4, zone D. 
December 1991. 
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Plate 28: Exposure of wooden frame along zone D. June 1993. 

Plate 29: Overview of the barrier taken August 1954. The wooden frame 
shown in Plate 29 is the remains of one of the wooden stages on the 
barrier shown in the 1954 photo. The outlet in 1954 was located at 
the northern end. 
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80 em of wooden frame was exposed by September 1993 (Plate 28). Initial 

exposure of the frame began dwing the winter of 1991/1992 and erosion has 

continued throughout the course of this study. Approximately 

1m of sediment from the barrier front has been removed between 1991 and 

1993. In a photo taken on August 23, 1954 (Plate 29) two wooden stages are 

located on the barrier in the vicinity of BB-34. The frame is probably part of 

one of the buildings. Evidently, between 1954 and 1991, sediment overtopped 

and eroded this area as the barrier moved landward. 

The fourth section (BB-35 to BB-40) has a SSW-NNE trend. During 

July 1991 the foreshore slopes ranged between 8.4" and 12.7' whereas the 

backshore slopes were comparatively steep (11.9" to 14.r). The total widths 

ranged between 21.4 and 38.4 m. Approximately 2% of the crest and back 

beach areas is covered by the same species found in the southern sections. 

At the time the profiles were measured in July 1991, large amounts of 

sediment had accumulated. The prcfile of transect BB-40 was taken through 

the centre of a cusp and has a concave shape in the mid- to upper-beachface. 

The other transects were characterized by linear to convex shapes. A storm 

berm was present on the upper-beachface of profiles BB-35, BB-36, BB-38 and 

BB-39. Transect BB-39 shows a pronounced berm in the mid-beachface area 

while transects BB-35 and BB-37 show a lesser berm at the same elevation. 

Transect BB-36 shows a steep mid-beachface area. 

When these profiles were taken poor! y defined cusps were present 

with wavelengths of 6 to 9 m and heights of 0.5 - 0.75 m. Cusps occurred 

sporadically throughout the duration of the study with wavelengths that 

ranged between 5 and 10m. The cusps generally occur along the mid- to 
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Iower-beachface, are shallow and composed of sand in the centres and small 

to medium pebbles on the cusp horns. 

Plate 30: Southward transport of sediment along section 4, zone D. 

In July 1993, transect GSC-392 was established along transect BB-34. 

Figure 77 illustrates the profiles taken in July, September and December 1993. 

The profile measured in September 1993 has increased sediment, and more 

pronounced, higher elevated berm development than that measured in July. 

The profile taken in December 1993 shows a loss of sediment from September 

1993. Although this demonstrates a similar summer/winter cycle as observed 

at Ship Cove and zone A, Big Barasway, this section of the beach does not 

show a consistent seasonal accumulation/ erosion cycle. The beachface 

alternates between concave and convex profiles as sediment is either 

removed or added with wave activity. Linear ridges of sediment initiated at 

the northern end dissipate towards the southern end of this section (Plate 30). 
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These ridges occur occasionally and indicate a southward movement of 

sediment. Frequently after storm events, large amounts of seaweed are 

present (Plate 31). 

Breaching of the barrier crest occurs throughout zone 0, although little 

sediment is transferred landward along most of the barrier for the variations 

in profiles show little change. Between transects BB-35 and BB-36, more 

extensive overwashing occurs during storm events. Two small overwash 

fans are present here and deposition has occurred during the study (Plate 32). 

Six painted clasts placed between transects BB-30 and BB-31 in September 1991 

were found on the fan along the back of transect BB-36 in November 1991. 

Plate 31: Large accumulation of seaweed after a storm. November 1992. 
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Plate 32: Overwashed sediment along the northern end of zone D. June 1993. 

7.5.2 Clast Lithologtj 

Samples of 72 clasts were taken along the beach crest and along the 

lower-beachface to determine the lithological distribution. The samples were 

analyzed separately and the results then combined to determine the 

lithological assemblage of the entire zone. The results are shown in Figure 

78. The sample taken at the crest was composed of 29% sandstone, 47o/o 

siltstone, and 13% conglomerate. Basalt, rhyolite, granite, tuff and quartzite 

formed 9% of the assemblage. The sample taken along the lower-beachface 

contained a larger amount and variety of igneous clasts; 13% basalt, 11% 

rhyolite, 4% granite, and 4% pumice. The pumice is not locally-derived and 
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most likely arrived as ship ballast or as Gulf Stream flotsam. Also found were 

ultrabasic, granodiorite, tuff, breccia, and chert clasts. The combined data 

show a concentration of 71% sandstone, siltstone and conglomerate, 15% 

basalt and rhyolite, and 14% of a mixture of clast types mentioned above. 

7.5.3 Sediment Texture 

Along the entire length of zoneD, cobbles and boulders dominate from 

the subtidal zone to 0.5 m above mean sea-level. The surface textural 

analyses were based on samples taken above this area. 

Figure 79 shows the estimated texture for transects BB-22, BB-26, BB-32, 

and BB-36 which are representative of their associated subdivisions. The 

samples were taken at the lower-beachface above the cobble and boulder step, 

mid-beachface, and the beach crest. These quantities as at zones A and C and 

at Ship Cove are intended to illustrate how the barrier sediment composition 

varies and the patterns that were observed. Along BB-22 the beach crest and 

lower-beachface were dominated by large pebbles and cobbles, whereas the 

mid-beachface area consisted mainly of medium-sized pebbles. At BB-26, the 

clast size increased up the beachface. The lower-beachface was dominated by 

small pebbles (50%) with no cobbles, the mid-beachface contained an unsorted 

mix of clast sizes with 20% cobbles, whereas the beach crest consisted of 80°/o 

cobbles. Boulders (60%) dominated the lower-beachface of BB-32 in contrast 

to the mid-beachface which contained 70% small pebbles. The beach crest had 

a larger component of cobbles (40%) but also a mixture of pebbles sizes. Lastly, 

BB-36 showed a predominance of sand and granules (50%) in the lower­

beachface as well as the mid-beachface (60%). The crest, on the other hand, 
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consisted mainly of cobbles (70%). Plate 32 shows the textural composition of 

overwashed deposits. Although dominated by cobbles, similar to that 

observed on the crest of transect BB-36, overwashed sediment contains more 

smaller-sized clasts, particularly granules and small pebbles. 

These textural analyses show the variability and inconsistency along 

transects and between lateral regions of the barrier. For instance, along BB-26 

the sediment size increased from the base to the crest, whereas along BB-36 

the sediment size decreased. Furthermore, in most samples, a wide range of 

clast sizes from sand and granules to cobbles and boulders is found Also 

shown in Figure 79 are the textural compositions for the combination of the 

samples for each transect combined. BB-22 had a nearly even mix of cobbles, 

large- and medium-sized pebbles; BB-26 had a bimodal distribution of cobbles 

and small pebbles; BB-32 had a large component of small pebbles, whereas BB-

36 had a bimodal distribution of cobbles and sand/ granules. 

7.5.4 Clast Shape 

Figure 80 illustrates the results of clast shape analyses for three sites 

(crest, mid-beachface, lower-beachface) along the four subdivisions in zone D. 

Results from transect BB-22 represent the clast shape distribution for section 

1, those from transect BB-26 for section 2, those from transect BB-32 for 

section 3 and lastly, those from transect BB-36 for section 4. Also illustrated 

are the results for the three sites along each transect combined to show the 

overall clast-shape distributions for each transect. As with the sediment 

texture analyses, the quantities for clast shape compositions are interpreted 

qualitatively. 
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All four transects show an increase of discs and a decrease of equants 

with distance from the seaward edge. Discs increase from 19% to 57% along 

transect BB-22, 24% to 50% along transect BB-26, 19% to 65°/o along transect 

BB-32, and 32% to 56% along transect BB-36. In contrast, equants decrease 

from 44% to 0% along transect BB-22, 47% to 14% along transect BB-26, 42% to 

8% along transect BB-32, and 3So/o to 7% along transect BB-36. The percentages 

of blades show minor changes along the transects, fluctuating between 26% 

and 43%. Rollers are confined to the mid- and lower-beachface areas. When 

the results for the three sites along each transect are combined, no significant 

change in shape is evident among the clasts along the four transects. The 

overall clast-shape distribution, incorporating data from all transects, is 45% 

discs, 35% blades, 4% rollers, and 17% equants. 

Throughout the four subdivisions the roundness remains similar, 

with the clasts mostly subrounded (70%) and rounded (25°/o). Minor amounts 

of subangular clasts are present. 

As with the overall clast shape, there are differences in the sphericity 

between the lower-beachface and the beach crest. The lower-beachface is 

characterized by moderate to highly spherical clasts while the crest is 

dominated by low to moderately spherical clasts. 

7.5.5 Fabric Analysis 

The imbrications of the a/b planes of the discoid clasts on the barrier 

along zoneD were less defined than at Ship Cove and in zone A at Big 

Barasway. In most areas, the orientation of imbrication generally deviated 

between 0 and 30° to the south of the transect trend. The plunges of the 
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imbrications ranged between 5 and 25° seaward and were gentler than along 

zone A or at Ship Cove. Ten a-axis clast fabrics were taken on the beach 

within zone D. Figures 81-83 show the plots of the fabrics. Table 16 lists for 

each fabric the azimuth, plunge, St, S3, K, transect trend and deviation of 

fabric trend from transect trend. All the K values ar~ less than 1.0. The 51 

values range between 0.535 and 0.728. 

Both clast fabrics, BB-22-1 and BB-27-2, were taken along the cobble­

dominated step located on the lower slopes of the barrier front. The modal 

azimuths for BB-22-1 and BB-27-2 are 006.5" and 358.7° with deviations of 

-76.5° and -18.7·, respectively. The plunges are 02.6° and 11.2", respectively. 

The St values are 0.651 for BB-22-1 and 0.654 for BB-27-2. 

Clast fabric BB-27-3 was taken on the back of the barrier in the centre of 

an erosional channel, developed from the crest towards the backbarrier area. 

Seaward of the fabric site a large log lay across the head of the channel. The 

fabric has an modal azimuth of 297./, a plunge of 10.5", an St value of 0.728 

and a deviation of 42.3·. 

Clast fabric BB-29-4 was taken along a small berm at the base of a steep 

slope. It has an azimuth of 225.5•, a plunge of 04.6·, an St of 0.574 and a 

deviation of 107.5°. 

Clast fabric BB-31-5 was taken on a linear berm ridge. It has an azimuth 

of 319.8", a plunge of 24.0·, an St of 0.570 and a deviation of 10.2". 

Fabrics BB-35-6 and BB-35-7 were taken on the backbarrier. BB-35-6 has 

an azimuth of 308.5·, a plunge of 09.3·, an St of 0.619 and a deviation of o.s·. 

BB-36-7 was obtained from overwash deposits. It has an azimuth of 163.1°, a 

plunge of 7.3· (landward), an St of 0.538 and a deviation of 155.9". 
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Clast fabrics BB-38-8, BB-40-9, and BB-40-10 were taken on berms. 

BB-38-8 has an azimuth of 279.4°, a plunge of 21.4°, an S1 of 0.627 and a 

deviation of 16.6°. BB-40-9 has an azimuth of 278.8°, a plunge of 20.r, an 51 

of 0.586 and a deviation of 21.2°. BB-40-10 has an azimuth of 300.1°, a plunge 

of 21.8°, an 51 of 0.662 and a dev~ation of -o.r. 

Numlu~r Trend Plunge S1 S3. K Tran Trend DeviatiQn 
BB-22-1 6.5 2.6 0.651 0.042 0.38 290 -76.5 
BB-27-2 358.7 11.2 0.654 0.048 0.43 340 -18.7 
BB-27-3 297.7 10.5 0.728 0.055 0.89 340 42.3 

BB-29-4 225.5 4.6 0.574 0.057 0.24 333 107.5 

BB-31-5 319.8 24.0 0.570 0.035 0.15 330 10.2 
BB-35-6 308.5 9.3 0.619 0.056 0.37 309 0.5 

BB-36-7 163.1 7.3 0.538 0.036 0.09 299 135.9 
BB-38-8 279.4 21.4 0.627 0.061 0.43 296 16.6 
BB-4Q-9 278.8 20.1 0.586 0.044 0.22 300 21.2 

BB-40-10 300.1 21.8 0.662 0.064 0.60 300 -0.1 

mean 0.621 

S.d. 0.056 

Table 16: Clast fabric data for zone 0, Big Barasway. 
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Chapter 8 

Discussion of the Barrier System 
at Big Barasway 

8.1 Introduction 

The morphodynamics and sedimentology of the barrier system at Big 

Barasway are largely controlled by the gently-sloping sub- and intertidal 

platform situated in the central 800 m. Complex wave refraction patterns 

result and wave energies reaching the barrier behind and to the sides of the 

platform are dissipated. Zone B, located directly behind the platform, is not 

actually part of the barrier itself, but an 'island' separating two barrier systems; 

the barrier developed in zone A, from another barrier composed of zones C 

and D. Under the influence of the northerly direction of longshore drift, as 

shown by the geomorphological evidence of elongated cusps along zone B, 

sediment from the island is contributing to the barrier along zones C and D to 

the north. Little or no sediment from zone B is transported to zone A to the 

south. In addition, as zone A contains higher proportions of clasts with 

discoid shapes, higher roundness and lower sphericity than that of the clasts 

along zones B, C and D, it is apparent that zone A contributes minimal (if 

any) amounts of sediment to the zones to the north. 

Boulders and cobbles were seen on the platform during low tides. 

When taking echo sounding measurements in September 1992, boulders and 

cobbles were observed in the nearshore zone. Boulders, rather than bedrock 

strata, were exposed at the base of the bluff along zone B. 
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The fan shape and its likely composition of unconsolidated sediments 

indicate that the platform is a modified glacigenic feature. The large bluff 

bordering the barrier to the north and the diamicton along zone B were 

deposited as subaqueous mass movement deposits (House, in preparation). 

Consequently, during deglaciation, floating ice in the valley may have caused 

the formation of an underflow fan. With rising sea-levels, the clasts along 

the fan, capable of being transported by wave action, would have moved 

landward and formed the barrier leaving the bouldery platform as a lag 

deposit. 

Although Placentia Bay is generally ice-free during the winter months, 

during other periods in the Holocene, intertidal sea ice may have contributed 

to the dose packing of the cobbles and boulders within finer sediments on the 

platform and the lower reaches of the barrier. Boulder pavements similar to 

that seen at Big Barasway are described by Hansom (1983) and McCann et al. 

(1981). However, since wave processes are more important than ice processes 

in the present environment, ice related features such as striae (Hansom, 1986) 

would not have been preserved. 

As the result of the bathymetry of the relict glacigenic fan, the two 

barriers are controlled by separate flow cells. The different hydrodynamic 

settings cause the barriers to exhibit striking morphological and 

sedimentological differences. The lithological assemblages are similar 

between the zones and thus do not contribute to the sedimentary differences. 

The southern half of zone A shows characteristics of a swash-aligned barrier, 

whereas the barrier along zones C and D is drift-aligned. The eroding bluff 

backing zone B supplies sediment to the northern zones and is part of that 
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flow cell. Since two barriers exist, the organization of the morphodynamics 

and sedimentary assemblages of zones B, C and D will be discussed together 

but separately from zone A. 

8.2 ZoneA 

8.2.1 Morphology 

Because of the shallow nearshore bathymetry and complex refractory 

patterns along the platform, edge waves cannot fully develop. Therefore, the 

cusps along the southern end are poorly formed, infrequent, and confined to 

a small segment. The lack of complete edge wave development largely 

accounts for the lower barrier heights here, as compared to Ship Cove, where 

cusp development from edge waves increases wave run-up. The height of 

the barrier marks the limit of extreme wave run-up. 

With removal of sediment from the beach along the ridges in the 

autumn and winter months to the nearshore zone, a part of the sediment is 

transported southward. A northward recycling occurs again during the 

lower-energy summer months. Given the stronger northward flowing drift, 

it is unlikely all the sediment undergoes circular transport. The bluffs 

bordering the southern end supply minor amounts of new sediment. The 

southern end of the zone, thus either maintains a fixed sediment quantity or 

experiences a net removal of sediment, while the northern end receives a net 

gain. This limited (and perhaps depleting) sediment supply along the 

southern end, in addition to cuspate development characteristic of swash­

aligned beaches, contributes to the high barrier heights and steep beachface 
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slopes. These are particularly evident in the upper- and mid-beachface 

regions above the high tide mark and in the upper-intertidal mark. 

Although the duration of the study is short (2 l/2 years) the time series 

profiles along transect BB-6 show a slight landward movement of sediment 

and a corresponding flattening of the beach crest. The barrier height has 

remained essentially the same. Air photo analysis shows that the barrier has 

moved landward. Ice foot development and relatively quiet wave climate 

during the study may have dampened the average rate of landward 

movement. 

The mechanism for landward movement of gravel barriers is by 

rollover (Orford et al., 1991). Sediment along the beachface is reworked, 

transported to the beach crest and backbarrier, buried, and then exposed again 

on the beachface as the barrier moves landward. The profiles show that 

rollover is occurring at a rate of 0.3- 0.8 m per year, in contrast to rapidly 

migrating barriers such as that at Story Head, Nova Scotia (Forbes et al., 1991). 

Sediment starvation in conjunction with rising sea-levels may 

eventually lead to instability, whereby the erosive capability of the wave 

activity will increase. The barrier width and height would decrease in the 

vicinity of transect BB-6 and an overwash channel or inlet may result during 

an extreme storm event. Given the extreme southerly position of the lagoon 

around BB-6 and the entrance of the stream into the lagoon at the northerly 

extreme, it is unlikely the main stream outlet would reposition itself around 

BB-6. In addition, a bedrock outcrop located behind transect BB-9 constricts 

the width of the lagoon. Consequently the main stream outlet or outlets are 
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confined to positions north of the outcrop, as was an outlet located in the 

vicinity of transect BB-10 during the last century. 

The old outlet location at the northern end of zone A (around BB-10) is 

in a downdrift location. It is probable that an extreme storm or series of 

storms deposited sediment and closed the outlet, forming the overwash fan 

now present in that area. With a large accumulation of sediment here, the 

stream would have located a weaker position along the barrier and forced an 

opening. This could have been facilitated by erosive activity by the storm or 

series of storms along other portions of the barrier, in particular the northern 

part of zoneD, where the outlet was located in 1948. 

Although the profiles taken of the northern end do not show landward 

movement it is likely the northern end is moving at a faster rate than the 

southern, as the northern end follows the erosion and retreat of the island. 

Under present hydrodynamic conditions, the ridges along the beachface 

terminate within zone A and are frequently removed offshore or overwashed 

during storm events. Under the transgression this region is experiencing, 

these ridges may be extended into zone Band perhaps farther north as water 

levels over the boulder platform increase. A rise in sea-level would result in 

increased erosion along the bluff within zone Band overtopping of the 

island, which would eventually be incorporated as part of the barrier. The 

amount of new sediment introduced from the bluffs into the system would 

be small; however, with increased sea-level rise, landward movement of the 

barrier would continue along the northern end of zone A. Areas to the south 

of zone B would be controlled by separate flow cell or cells, as is now the case. 
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8.2.2 Cross-shore Clast Shape and Size Sorting 

The sedimentological differences seen along the length of the barrier at 

zone A reflect changes in nearshore bathymetry. The southern edge of the 

platform begins around transect BB-9, correspondingly, the type and 

organization of the sediment changes. During July 1991, the surface sediment 

along the southern half (BB-1 - BB-7) was dominated by rounded, low­

sphericity bladed and discoid clasts. Although the proportions of overall clast 

shapes remained similar along the length of the barrier, the northern half 

(BB-7- BB-14) contained clasts with higher sphericity and lower roundness. 

In addition, the southern half showed a distinct decrease in equants and 

rollers along the barrier crest from the mid- and lower-beachface. The 

northern half, on the other hand, showed little sorting by shape along 

transects. 

The sediment texture along the southern area showed landward 

coarsening, as seen at Ship Cove, with cobbles dominating the crest and 

pebbles along the lower sections above the cobble and boulder frame. The 

northern half showed an unsorted mix of clast sizes throughout the beachface 

and crest. Overall, higher percentages of smaller clasts were found along the 

northern half. 

The primary factors contributing to the differing sedimentary 

assemblages are the amounts of wave energy reaching the barrier on a regular 

basis, and more importantly, the responses to storm events. The amotmt of 

new sediment entering the system is negligible, and it is unlikely sediment is 

moving northward into the other zones. Wave processes are thus reworking 

a limited sediment supply within a constant area. 
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Within zone A the linear ridges formed under the lower wave 

energies of the summer months showed northward movement of sediment. 

The cuspate formation along the southern half, albeit poor, showed a greater 

swash alignment with a higher component of offshore/ onshore movement 

of sediment. The increased asymmetry of the cusps northward reflect the 

increased importance of longshore drift along the northern half. 

The trend of increasing proportions of small clasts northward reflects 

lower wave energies resulting from the interaction of the offshore platform; 

in contrast to the higher energy conditions along the southern end where 

nearshore bathymetry is deeper. The decreased roundness and increased 

sphericity northward toward zone B, particularly along the back beach, 

indicates less abrasion and thus less exposure to wave activity. The clasts 

more closely resemble those within the diamicton along zone B. Since the 

linear ridges and northerly-elongated cusps indicate a northward movement 

of sediment, these clasts are not derived from the south where roundness is 

greater. These clasts are either relict sediments that were deposited closer to 

the formation of the barrier and have not been exposed to as much wave 

activity as those to the south, or they have been introduced to the system 

more recent! y from the island. 

The latter explanation is more probable. The 14c dates on wood in this 

region (see chapter 4) indicate that Holocene transgression has occurred here. 

The relatively high rates of erosion along zone B, the presence of ripped 

clumps of sod thrown on the top of the bluff and the presence of beach clasts 

amongst the vegetation along the southern portions of zone B may indicate 

increased storm activity and/ or sea-level rise. The northern end of the 
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present barrier along zone A was likely part of the island, which has been 

eroded and breached with rising sea-levels. Diamicton, similar to that 

exposed along the bluff of zone B, may underlie the surface beach deposits. 

This possibility is further supported by the increased presence of exposed 

boulders along the beachface and back here. The clasts, consequently, are 

found closer to the originating glacigenic deposits. 

Increased sphericity of the rounded clasts in the northern half of zone 

A may also indicate slight variances in the mode of transportation. 

Northward transport of sediment largely occurs along the linear ridges within 

the mid-beachface. As clasts move northward along the ridges they undergo 

more 'rolling' motions as clasts move northward along the transport corridor 

(Carter and Orford, 1991). Clast interactions may wear equally on all sides and 

thus increase sphericity (Dobkins and Folk, 1970). In contrast, the larger clasts 

to the south may undergo more 'tossing or sliding movement'; thereby 

favouring the formation and selection of discs (Dobkins and Folk, 1970). 

The lack of sorting of sediment by shape or size along the northern end 

is primarily a response to storm activity. Overwashing was limited between 

transects BB-9 and BB-12. After storm events large amounts of sand and 

granules were deposited along the crest and backbeach. Cobbles with seaweed 

attached were also observed in areas that been overwashed (Plate 33). The 

seaweed adds buoyancy and cobbles can thus be transported farther up the 

barrier (Gilbert, 1984). 

Subsequent to overwash deposition along the backbarrier between 

transects BB-9 and BB-12, strong onshore winds and gusts transport 

sand/ granules landward. Eyles (1976) attributes the formation of gravel cones 
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and depressions to 'wind devils'. This phenomena is thought to cause a 

circular transport of pebbles around the cones and a circular scour and pebble 

lag in the depressions. 

Plate 33: Cobble with seaweed attached along the barrier crest, zone A. 
January 1992. 

The features seen at Big Barasway, however, are not as well formed as 

those described at Holyrood Pond. The beach at Holyrood Pond is 

considerably wider and contains a larger proportion of sand than does Big 

Barasway. At Big Barasway the wind devils have less sand into which to 

scour depressions, and the frequent presence of large clasts interfere with the 

circular route around the gravel cones. With the limited supply of sand, 

complete coverage of these features, as described by Eyles, was not observed. 
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In addition, the southwesterly orientation and steep, high headland bordering 

both sides of the harbour at Holyrood Pond allow a greater funneling of 

winds, which results in higher wind speeds at Holyrood Pond than at Big 

Barasway. 

At Holyrood Pond, winds contribute to the presence of sand in the back 

beach, whereas at Big Barasway sand and granules are mainly deposited by 

overwashing. Eyles (1976) suggested that wind cones and depressions may be 

preserved in the geologic record. Sand deposited during more quiescent 

periods of wind velocity would bury the cones and depressions. 

With limited sand supply, this mechanism for preservation is unlikely 

at Big Barasway. If the intensity of the overwashing is great and erosive 

overwash channels form, then the features may be destroyed completely. 

Overwash channels, though, have not developed over the duration of the 

study. Sedimentary layers formed from storm events along the backbarrier 

may have nonerosive contacts. The likelihood of nonerosive contacts 

increases farther from the crest, or source of wave energy. Preservation 

potential, thus, increases farther from the crest. However, the overwashed 

sediment filling the depressions and surrounding the cones has a similar 

texture to that of the cones and depressions and thus it would be difficult to 

differentiate wind from water-formed deposits. Although as Eyles (1976) 

concluded, these features may be used to indicate a coastal environment with 

strong onshore winds, recognition in the sedimentary record in systems as 

Big Barasway is unlikely. 

The limitation of overwash activity between transects BB-9 and BB-12 

is a consequence, largely, of the orientation to storm events. This section of 

232 



the beach is most exposed to southwesterly storms. Headlands bordering the 

southern end of the cove provide protection for the southern sections of the 

beach. Despite the dissipating effects of the platform, storm-induced waves 

overwash the barrier along that portion. Farther to the north of zone A and 

zones B, C, and most of zoneD, the platform dissipates the wave energies to a 

greater extent, and overwashing was not observed. 

The well-sorted linear ridges formed during the summer months show 

the main morphological response to wave dynamics along the beachface of 

the northern half. The higher elevated ridge composed of medium- and 

large-sized clasts was formed by higher-energy wave action than the lower 

beach ridges composed of smaller-sized clasts. The norther! y merging of the 

ridges, dominated by smaller-sized clasts, reflects the dissipation of energy 

caused by the rough-surfaced bouldery platform. 

These ridges represent corridors of actively moving sediment directly 

above the high water mark. Carter and Orford (1991) recognized similar cross­

shore zonations along drift-aligned gravel barriers. In their description, the 

active transport zone is within the upper-beachface, directly below the crest, 

and above the upper and lower intertidal frames. At Big Barasway, though, 

the active transport zone is located in the mid-beachface with an upper­

beachface extending 1.5 m to the crest. 

The organization of cross-shore clast shape and size assemblages along 

the southern half reveals similarities to Ship Cove. During July 1991, discoid 

cobbles dominated the beach crest and back, while the mid- and lower­

beachface contained larger proportions of pebble-sized equants and rollers. 
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Clast imbrications on the crest, back-beach and berm crests were not as 

pronounced as those at Ship Cove. 

During the summer months as sediment accumulated, five primary 

sedimentary zonations occur. The upper- and back-beach were composed of 

discoid cobbles (zone 1). The mid-beachface contained larger proportions of 

equant- and roller-shaped pebbles (zone 2), whereas the upper-intertidal 

frame contained highly-spherical boulders and cobbles with a veneer of 

pebbles (zone 3). The lower-intertidal frame was marked by more exposure of 

the bouldery frame (zone 4). Boulders and cobbles dominated the gently­

sloping nearshore zone (zone 5). During the higher wave energy months, the 

sediment from the mid- and lower-beachface is removed, exposing the cobble 

and boulder framework. 

8.2.3 Fabric Analysis 

The diversity in orientation and plunge of the a-axis clast fabrics of and 

the imbrication of the a/b planes of the discoid clasts show the complexity of 

this coastal environment. The dynamics of the waves differ between the 

northern and southern halves of the system. Of the five a-axis fabrics taken 

along the southern half, one of the principal normalized eigenvalues was less 

than 0.600; the northern half, in contrast, had three of five principal 

normalized eigenvalues lower than 0.600. 

The mean of 0.633 and low standard deviation of 0.053 along the 

southern half is similar to the mean of 0.644 and standard deviation of 0.066 

of the fabrics taken along the barrier at Ship Cove. This suggests that they 

represent similar sedimentary environments, as indicated by the clast shape 
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and size. Ukewise, the strong seaward imbrications of the a/b planes of the 

discoid clasts in these samples showed deviations that varied to the north and 

to the south of the transect trends. These deviations result from wave flow 

through cusps, as discussed in chapter 6. 

The clast fabric with the lowest principal eigenvalue (BB-5-2) was 

influenced by clasts falling from above, which also contributed to the low 

plunge of 7.s·. This individual clast fabric adds scatter to the overall fabric 

assemblage. In palaeoenvironmental reconstruction of potential marine 

environments of coarse clastic deposits, it may thus be advisable to analyze a 

lateral and vertical collection of fabrics. An unusual fabric, such as BB-5-2, 

may reflect secondary depositional processes resulting from an erosional 

surface. 

Except for fabric BB-4-1, which was taken on the centre of a cusp hom 

and has an orientation parallel to the transect trend, the fabrics along the 

southern end all deviate to the north. At Ship Cove the numbers of north 

and south deviations were nearly even and reflected the multitude of cusp 

formations. At Big Barasway, the sample size of the fabrics is smaller (5) 

versus that at Ship Cove (25). The fabrics at Big Barasway were taken along 

the southern side of cuspate horns (northern side of cusp centres). 

The lower mean principal eigenvalue of 0.593 and higher standard 

deviation of 0.542 along the northern half of Big Barasway corresponds to and 

is indicative of less-organized sedimentary assemblages. Fabric BB-11-9 was 

taken directly above high-water mark and was formed during the previous 

high tide. It had the highest principal eigenvalue (0.746) recorded along zone 

A. The lower-beachface location makes this sedimentary accumulation a 
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transitory feature. Depending on the direction and intensity of the waves 

during the next high tide, the resulting fabric may be totally different. 

Preservation of sediments with fabrics with high eigenvalues is possible; 

however, inconsistency is typically marked by many fabrics with low to 

moderate orientations surroWlding isolated fabrics with strong orientations. 

A-axis clast fabrics BB-10-7, BB-11-8, and BB-11-9 all have deviations to 

the south of the transect trend. Likewise the imbrication of the a/b planes of 

the discoid clasts deviated to the south of the transect trend by up to 30°. This 

pattern indicates that longshore drift was more significant. On occasions, 

poorly defined cuspate features form along the northern half. However, 

cusps are less important in the creation of the sedimentary assemblage here 

than along the southern half and are much less significant than at Ship Cove. 

Consequently, swash action is generally from the southwest and not directed 

and reoriented within cusp centres. 

8.2.4 Summary of Sedimentary Assemblages 

The proximity of large variations in sedimentary assemblages 

demonstrates the complexity and variability of this coastal environment. 

Although the discussion so far has concentrated on describing and 

generalizing the sediments of zone A into two areas, that is the southern and 

northern halves, the change between the two halves is gradationaL 

The sedimentary assemblage of the southern half shows similarities to 

Ship Cove and correspondingly to Bluck's (1967) model. The crest and 

backbarrier contain landward-dipping, stratified, open-work bladed- and 

discoid-cobbles inclined at 8 - 12•. The imbrication, however, is not as strong 
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as that at Ship Cove. The upper-beachface contains mainly bladed- and 

discoid-cobbles, dipping seaward at 10 - 15°. As at Ship Cove this area has 

erosional surfaces, although the vertical height of approximately 0.5 m is less 

than at Ship Cove (1.5 - 2.5 m). The smaller height results from the lack of 

large cuspate features, such as those that form at Ship Cove. The mid­

beachface contains pebbles and cobbles with higher percentages of equants and 

rollers over! ying the framework of larger cobbles and boulders of high 

sphericity. This section is the most variable with cuspate features occasionally 

forming here, and has a mixture of erosional and depositional surfaces. The 

lower-beachface dips seaward at 10 - 15° with a veneer of pebbles and sand 

overlying the cobble and boulder framework. A cobble and boulder­

dominated nearshore zone is also present. 

The sedimentary assemblage along the northern half is divided into 

four primary zones. The sediments of the overwash deposits along the beach 

crest and backbeach show an unsorted mixture of size and shape with a large 

proportion of sand and granules. The layers are landward-dipping with 

gentle inclinations of 3 - so. Patches of pebbles and cobbles are imbricated in a 

seaward direction, whereas wind-influenced patches show confused 

imbrication. Flotsam and organic debris are intermittently found. The 

principal normalized eigenvalues of fabrics are low ( <0.600). The upper­

beachface shows a similar mix of unsorted clasts as with the overwash 

deposits. However, the layers are seaward-dipping, inclined at 7- 10°, and 

aeolian features are not present. Clast fabrics are poorly oriented. The mid­

and lower-beachface contains inversely graded sorted pebbles overlying a 

boulder and cobble frame, perhaps underlain by diamicton. The beds dip 
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seaward at 10- 12° and show better imbrication than in the other zonations. 

The lowermost zone is the cobble and boulder dominated platform, extending 

into the nearshore. Table 17 summarizes the sedimentary assemblages. 
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Number lln.it Zme. ~ Structure/texture 

Ssmth~:rn 1 backbarrier supratidal 8-12° imbricated stratified openwork 
(landward) blades and discs; 

2 upper- supratidal 10-15° erosional generally; 
beachface (seaward) blades and discs 

3 mid-beach supratidal varied: imbricated pebbles and cobbles with higher 
10-20° (seaward) percentages of equants and rollers; erosive and 
2-5°(land ward) depositional cusp development; moderate fabrics 

4 lower- intertidal 10-15° veneer of pebbles overlying 
beachface (seaward) cobble and boulder framework 

1\) 
(1.) 
<0 5 nearshore subtidal 3-6° cobbles and boulders 

(seaward) 

~suUu~m backbarrier supratidal 3-5° poor stratification; unsorted mix ot sand-boulders; 
(landward) seaward and confused imbrication; poor fabrics 

2 upper- supratidal 7-10° unsorted clasts; poor fabrics 
beachface (landward) 

3 mid-lower- intertidal 8-10° landward coarsening imbricated 
beachface (seaward) pebbles and sand 

4 nearshore subtidal to lower- 1-4° cobbles and boulders 
intertidal (seaward) 

Figure 17: Summary of sedimentary characteristics along zone A, Big Barasway. 



8.3 Zones C and D 

8.3.1 Morphology 

Longer term comparisons of the morphology are possible using 

successive air photos taken in 1948, 1967 and 1980. The small scales of the 

1948 (1:40,000) and the 1980 (1:56,000) air photos and the size of the gravel 

barriers make it difficult to accurately quantify the changes in barrier widths 

and lengths along the zones, as well as the landward displacement. The 

1:17,000 scale of the 1967 air photo shows more detail. 

In the 1948 air photo, the stream outlet was narrow and located at the 

northern end of the lagoon. In contrast, the outlet in the 1967 and 1980 air 

photos appears wider and more permanent. An oblique photograph taken in 

August 1954 shows the outlet at the northern location (Plate 29). Evidently, 

the outlet switched to a more southern location sometime between August 

1954 and July 1967. Over the period of the present study the outlet has moved 

in a southerly direction by approximately 10 m. 

The seaward side of the island has eroded approximately 15- 35m 

between 1948 and 1980; likewise, the barrier has moved landward along its 

entire length. The barrier has decreased in width along the southern half of 

zone C and the northern half of zone D. This has resulted in the barrier 

having more of a sinusoidal shape in the 1980 air photo than the seaward 

convex shape of the 1948 air photo. The lagoon has decreased in area by 

approximately 1000- 3000 m2. 

The progradational ridges shown on the profiles of transects BB-18 and 

BB-19 within zone C show an accumulation of sediment that most likely 

occurred after the relocation of the outlet to its present vicinity. With the 

240 



outlet south of its present position, the northward transfer of sediment would 

have been disrupted, causing deposition on the updrift side of the 

interference created by the stream. Under the present hydrodynamic 

conditions caused by the boulder platform and the stream outlet, zone Cis 

relatively protected from storm events. Consequently, limited seasonal 

change or longer term fluctuations were seen along transects BB-15 through 

BB-19. The longer term trend of landward movement and erosion along the 

southern half of zone C indicates that this pattern of little seasonal 

fluctuation will continue for there will be no significant new input of 

sediment and sea-level will likely continue to rise. 

Periods when the outlet was in a southerly position were marked by 

increased deposition to the north of the outlet (zone D), as this position 

prevented efficient northward movement of sediment by the dominant 

southwesterly waves. Sediment has accumulated along zoneD largely by the 

erosive activity of the ocean waves and by the stream flow along the edge of 

zone C. Gravel material has been and continues to be removed from the 

stream banks and incorporated into the barrier along zone D. A 

progradational ridge shown on the profiles of transect BB-26 has formed 

during the study period and may reflect increased erosion of zone C. 

Some sediment along the outlet margin within zoneD may originate 

from the north. The northerly-aligned elongated cusps observed between 

transects BB-27 and BB-29 and the backwash channels along the beachface 

between BB-30 and BB-34, however, indicate a dominance of sediment 

transfer to, not from, the north. 
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In addition to the evidence for northerly transport of sediment from 

regions to the south, the barrier front between BB-30 and BB-34 was eroded 

during the study period. Increased erosion may also have resulted from the 

southerly relocation of the outlet. By interfering with northward transport, 

areas downdrift experience sediment depletion and thus increased erosion. 

The edge of the boulder platform is located in the vicinity of BB-34. As 

a result, the orientation of the barrier changes here from a SW-NE trend to a 

SSW-NNE trend and more closely follows the orientation of the overall 

coastline. The lack of headlands and the large diamicton bluff bordering the 

barrier to the north allow occasional transport of sediment from the north to 

the part of the barrier between transects BB-35 and BB-40. Storms involving 

Nor NW winds erode the toe of the bluff, causing large amounts of sediment 

to accumulate in the northern part of zone D. Extreme wave heights are not 

possible under northerly winds, due to the relatively small fetch to the north 

in Placentia Bay. Consequently, northerly or northwesterly storms are 

usually constructive, resulting in sediment accumulation. Because of the low 

wave energies from a limited fetch, the accumulated sediment is largely 

composed of sand and granules. 

The large backbarrier fan along zone D (between transects BB-32 and 

BB-34) was formed before 1948 and has remained unaltered since then. The 

comparatively dense vegetation during the summer months supports 

stability and infrequency of overwashing. No overwashing was observed in 

this area between 1991 and 1993. 

In the 1948 air photo two well-formed overwash fans, oriented N-5, are 

situated to the south of the large vegetated fan. The 1967 and 1980 photos 
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show modification of these features. With the change of the outlet location 

between 1948 and 1967, the margin of the southernmost fan became the edge 

of zoneD along the outlet. The southerly-flowing stream eroded the 

landward edge of the middle fan (the one adjacent to the large vegetated fan), 

only leaving remnants in the 1980 air photo. Visual inspection of the barrier 

showed remains of the middle fan in the vicinity of transect BB-25. 

The N-5 orientation of the overwash fans visible in the 1948 air photo 

indicate that incident waves from a northerly direction formed the fans. In 

order for overwashing to occur from the north, either one or more extreme 

northerly storms occurred and/or this section of the barrier was lower and 

contained less sediment. A low crestal height would make this portion of the 

barrier more susceptible to overwashing. 

As the outlet during the last century was located within zone A, the 

stream would have flowed along the back of the barrier. The modification of 

the fans by the stream between 1948 and 1967 indicate that the fans were 

formed after the outlet changed location from zone A to the northern part of 

zone D. The curved 'fanlike' shape of the overwash fans would not have 

been visible on the 1948 air photo had the outlet been located to the south at 

the time after formation. 

Also present in the 1967 and 1980, but not in the 1948 air photos, is a 

small overwash fan to the north of the large vegetated fan. This corresponds 

to the location of transect BB-35 - BB-36, an area which has undergone 

overwashing during the study period. The E-W trend of this fan is unlike the 

other three fans discussed in the 1948 photo, and it was likely formed by 
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southwesterly storms. Painted clasts placed near BB-30 were deposited on the 

backbarrier fan along BB-35, and indicate deposition by southwest storms. 

As the shore platform generally provides protection from southwest 

storms, the development of the E-W oriented overwash fan appears 

somewhat anomalous. A west-southwesterly wave front may have been 

refracted around the northern edge of the platform resulting in incident 

waves normal to the shoreline trend. Cuspate features form occasionally 

along the northern section of zone 0 and their troughs may facilitate 

overwashing. 

Mr. Edmund O'Keefe, a local resident who has lived at Big Barasway 

over 60 years, stated that a carriage path in the 1800's traversed Otter Point, 

the point of land opposite transect BB-27 (Figure 7), and a bridge crossed the 

point to the north side of the lagoon where the barrier is presently located. In 

the 1800's the present barrier area was part of the mainland, behind the 

lagoon. The beach was located considerably seaward, perhaps 30 -50 m. The 

carriage path followed the coast northward along what is now the barrier, up 

the bluff and then landward through the woods. Over the years the beach 

moved landward and the outlet moved to the north as the barrier extended 

northward. In his lifetime, Mr. O'Keefe estimates the island, as well as the 

northern bluff bounding the beach, have eroded approximately 15 metres. 

The stages shown in the 1954 oblique photo were abandoned and eventually 

destroyed by storms. Mr. O'Keefe has observed the barrier thin, but remain 

approximately the same height. 

Although the air photos cannot confirm the location of the outlet and 

the position of the beach in the 1800's, they do confirm Mr. O'Keefe's 
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observations of landward movement. The present study has not directly 

observed landward movement, although the island has eroded, as well as the 

southern part of zone C and the northern part of zone D. The study was of 

relatively short duration, and may have been conducted during a relatively 

quiet period. Vegetation growing on the backbarrier suggests stability. During 

the 1993- 1994 season more overwashing was observed than during the past 

few years. 

In addition, ice foot development during the study provides some 

protection from storm events. Mr. O'Keefe has seen an increase in ice foot 

development (or barricades as he calls them) in the past 5- 10 years. He 

remembers ice foot formation similar to that seen in recent years when he 

was a child. Therefore, roughly between 1945 -1985, ice foot formation was 

less common on the beach at Big Barasway. 

Mr. O'Keefe also commented that the lagoon has become progressively 

more shallow during his lifetime. During the 1940's and 1950's, he was able 

to drive a motor boat within the lagoon, even during low tides. Now, the 

lagoon nearly empties. Sediment cores have not revealed thick sequences of 

sediment (chapter 9), thus indicating that deposition has not increased in 

recent years. Likely, the thinning of the barrier and a resulting larger and 

more permanent outlet allows a greater exchange of water during tides and, 

thus, the lagoon level has lowered despite rising sea-levels. Although the 

outlet at Ship Cove has changed position along the beach, it is unlikely the 

unstable nature of the outlet has changed over the years. The headlands 

bordering the sides of the cove hinder removal of sediment from the barrier. 
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It is unlikely, therefore, the tidal exhange in the lagoon at Ship Cove has 

changed significant! y. 

Unlike the pocket beach at Ship Cove, the barrier at Big Barasway is 

more prone to sediment depletion, particularly along zones C and D. The 

limited sediment supply along zone B is unlikely to keep pace with the net 

loss of sediment to the north. Sediment may come from the bluff to the 

north of zone D but observations have not shown a transfer of sediment to 

the south of BB-35, where the platform begins. Some sediment from the 

bluff may travel offshore and eventually be deposited on the barrier to the 

south in the vicinity of the platform. However, the addition of large 

amounts of sediment to the southern part of the barrier is improbable, as, 

after norther! y storms, sediment accumulation is confined to the areas north 

of transect BB-35. To the south, the barrier remains relatively unaffected. 

With sediment depletion in conjunction with transgression, the 

barrier will continue to thin and overwashing frequency will increase. The 

outlet position may change back to a northerly position perhaps in the 

vicinity of BB-30 or between BB-35- BB-37 where the barrier is thinner and 

erosion is occurring. Without the dampening effect of the stream outlet in its 

present southerly position, sediment in this area would move northward and 

landward and the areas around the outlet along zones C and D would move 

landward at a faster rate. 

8.3.2 SedimentologtJ 

The angular to subangular cobble and boulder-dominated southern 

end of zone C indicates its proximity to the originating glacigenic source along 
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zone B. As with the northern end of zone A, rising sea-levels would result in 

erosion of the island of zone B and incorporation of the sediment and the 

island frame into the barrier complex. The barrier frame towards the 

southern end of zone Cis likely diamicton. Elsewhere along zones C and D 

the roundness is higher and sphericity is lower. 

The beachface along the southern end of zone C contains minor 

amounts of transportable sediment. The continuation of backwash channels 

from zone B provide the means of northward sediment transport. Since this 

area is undergoing net erosion, the more transportable pebble clasts are being 

moved northward and are leaving the cobble and boulder-dominated frame 

exposed. Consequently, there is little cross-shore sorting by size here. 

With the reduced wave energies reaching the barrier north of BB-17, 

the sediment texture along the beachface correspondingly becomes dominated 

by smaller pebbles. The sediment texture of the mid-beachface along BB-18 

shows similarities of the mid-beachface textures along BB-26 and BB-32. The 

ridge dominating the mid-beachface of BB-18 correlates to the mid-beachface 

along the spit/ridge of BB-26, which continues to the north and terminates 

near BB-34. 

Boulders are likely either relict clasts along the crest and backbarrier 

from glacigenic deposits the barrier has incorporated with landward 

movement, or lag deposits along the lower-beachface. Excluding the 

contribution of boulders to the textural assemblage, the modal clast size 

increases up the beach along all transects. However, the clast size range is 

large, ranging from sand and granules to cobbles within the samples taken 

along the transects, particularly north of transect BB-26. This differs from 
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Ship Cove and the southern end of zone A, which show a high degree of 

sorting by size. The differences in textural sorting are attributable to the 

amount of wave energy that reach the individual systems on a regular basis 

and the ability to recycle sediment. The embayed nature at Ship Cove and the 

deeper nearshore bathymetries and swash alignments at Ship Cove and the 

southern end of Big Barasway, permit greater sorting by size. 

Although the study may have been conducted during a period of 

relative calmness and extensive ice foot development, the barrier at Big 

Barasway is still experiencing sediment depletion and landward movement 

by overwashing. During storm activity, the barrier is overwashed with a wide 

assortment of sediment sizes transported landward. At Ship Cove the 

majority of clasts overtopping the barrier are mainly cobbles moved landward 

from the upper-beachface. In addition, the lack of sand and granules along 

the mid-, upper and back of the barrier at Ship Cove may in part be a response 

to the removal of fines to the pit behind the southern end of the beach. 

During the lower-energy summer season at Big Barasway the best textural 

sorting along zones C and 0 is along the mid-beachface ridge, the active 

transport zone. 

Except for transect BB-18, there is a consistent pattern throughout the 

length of zones C and D of decreasing proportions of the less-suspendable 

equants and rollers up the beachface. The smallest proportions are found 

along the crest. Correspondingly, the sedimentary component of the 

lithology increases from 54% along the lower beach to 90% along the crest, as 

seen at Ship Cove and zone A at Big Barasway. However, the mid-beachface 
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of transect BB-18 contained less equants and rollers than the crest and the 

crest consisted of fewer equants and rollers than the lower-beachface. 

The consistency of sorting by shape differs from the southern end of 

zone A and at Ship Cove, particularly between the lower and mid-beachface 

areas. The lack of secondary sorting due to cuspate features common at Ship 

Cove, and those occasional! y formed along zone A, allows a more consistent 

sorting based on the varying suspendablity and pivotablity qualities of the 

clast shapes. Furthermore, because of the swash alignment at southern zone 

A and Ship Cove which allows recycling and therefore more attrition and 

abrasion of the clasts, more discoid clasts prevail throughout the beach at 

these locations. 

The percentage of rollers and equants along transect BB-18 was similar 

to that found elsewhere along zones C and D. The mid-beachface sample 

along BB-18 was taken along the top of a seaward ridge. During the study, this 

ridge marked the vertical limit of storm waves, and consequently, this ridge 

was the active barrier crest. The same suspendability and pivotability 

principles hold and are consistent with the rest of the barrier along zones C 

and D. 

8.3.3 Fabric Analysis 

The a-axis fabrics with the highest plunge values are located on berms. 

These fabrics have northerly positive deviations that range between 10.2° and 

21.2°, with the exception of the insignificant deviation for fabric BB-40-10. 

The imbrication of the a/b planes of the discoid clasts also showed positive 

deviations and steeper plunges of 15- 30° than elsewhere along this zone. 
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Although located along a linear ridge, fabric BB-29-4 has a low plunge and a 

large deviation. Clasts from an erosional slope above have fallen from the 

adjacent beachface, as in clast fabric BB-5-2 along zone A. It also has the 

lowest St of the fabrics taken along berms. The positive deviations of the a-

axes and the a/b planes of the discoid clasts demonstrate the stronger drift 

component along zones C and D, similar to that of the northern end of zone 

A. The insignificant deviation of -0.1 • for BB-40-10 shows the influence of 

cuspate features, albeit poorly formed here. 

The clast fabrics taken along the cobble-dominated step (Zone C-3, BB-

22-1, BB-27-2) a1l have comparatively high orientations ranging between 0.651 

and 0.720 and low to moderate plunges. The orientations are similar, 007.0·, 

006.5° and 358.7• and are unaffected by changes in barrier orientation. In 

addition, the clast fabric taken along the lateral bar, primarily pebbles and 

cobbles, had a trend of 320.1° and moderate plunge of 13.5 •. 

The fabrics taken on the back of the barrier (BB-27-3, BB-35-6, BB-35-7) 

all have low plunge values ranging between 7.3 and 10.5•. Their St values, 

though, range between 0.538 and 0.728. The clast fabric with the lowest St 

value was taken on recently formed overwash deposits and shows 

disorganization. Likewise the imbrications of the a/b planes were not well 

defined. The high S1 value was formed in an erosive channel which allowed 

a focusing of overwash activity into unidirectional flow. Consequently, with 

overwash deposits, the clast fabrics generally have low S1 values. Isolated 

occurrences with seeming! y anomalous high S1 values rna y occur and are 

associated with erosive channelization. 
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8.3.4 Summary of Sedimentary Assemblages 

Although differences occur along zone C and D, they consist of mostly 

a single sedimentary assemblage. This assemblage also shows similarities to 

the northern end of zone A. The sediments along the crest and backbarrier 

dip landward and incline at 5 - lOa while the texture shows a wide range of 

clast sizes, but is mainly large pebbles and cobbles. Bladed and discoid shapes 

prevail. Clast fabrics are generally moderately to poorly oriented, although 

isolated fabrics with high St values can occur in association with erosive 

features. Flotsam and organic debris are intermittent. The upper- and mid­

beachface areas are grouped and can be either erosive or depositional. The 

depositional areas are pebble-dominated and may have progradational ridges. 

These areas are associated with gentler nearshore bathymetry and/ or outlet 

proximity. Beds dip seaward 5- lOa and occasionally landward at similar or 

gentler inclinations. The principal eigenvalues of the clast fabrics are 

generally between 0.57 and 0.63, while plunges are high(> 20·). Erosive areas 

in the upper- and mid-beachface are composed of larger-sized clasts than the 

depositional areas, have steeper seaward dips with inclinations of 10 - 15· and 

no associated landward dips, and have lower principal normalized 

eigenvalues. The shape assemblage shows greater proportions of rollers and 

equants. The lowermost zone is the cobble and boulder-dominated platform, 

extending into the nearshore. Table 18 summarizes the sedimentary 

assemblage. 
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Number Unit Z2m Slope Structure/texture 

1 backbarrier supratidal 5-10° poor stratification; 
(landward) poor textural sorting with 

blades and discs dominant; 
generally poor fabrics 

2 mid-upper- supratidal varied; erosive or deposi tiona I; 
1\) 

beachface 5-10° (seaward); pebbles, higher percentages of rollers and equants; 01 
1\) 2-4 (landward) moderate fabrics with frequent steep plunges 

3 lower- intertidal 5-8° sand, granules and pebbles 
beachface (seaward) 

4 nearshore subtidal to 1-40 cobbles and boulders 
lower-intertidal (seaward) 

Table 18: Summary of the sedimentary characteristics along zones C and 0, Big Barasway. 



Chapter 9 

Sediment Cores 

9.1 Descriptions 

The locations of the four sediment cores taken in the lagoon at Big 

Barasway are shown in Figure 7. Core #1 was taken along a 305· bearing from 

the outlet, approximately 50 m from the opposite shore. Core #2 was taken 20 

m behind the northern side of zone B, approximately 20m south of transect 

BB-15. Core #3 was taken 10 m behind transect BB-7 along the southern side 

of zone A. Lastly, core #4 was taken 10m behind the barrier along transect 

BB-13, towards the northern end of zone A. Figure 84 illustrates the 

stratigraphic sequences of the four cores. 

The depth of water at location #1 is 1.96 m below MHW. The core is 65 

em long and is divided into seven units. Unit 1 measures a minimum of 9-

10 em in thickness and consists of disturbed planar laminae spaced 2 mm 

apart. These laminae incline 5 - s·, alternate between fine sand and silty 

sand, and have nonerosional but sharp contacts. The overall texture contains 

56% sand and 44% silt. Plant matter aligned at high angles is present 

throughout the unit, and spruce twigs and a horizontally-aligned angular 

bladed pebble with a 4 mm long axis are found at the base. The upper contact, 

marked by spruce twigs, is erosional and undulating. 

Unit 2 measures 18.5- 19.5 em. The texture contains 70% sand and 30°/o 

silt. An asymmetrical ripple of medium sand is located within the basal 2 em. 

It measures 1 em in length, 4- 5 em in height and has a 10· stoss angle and 
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15· lee angle. Above the ripple area the sediment fines upward from fine to 

medium sand to sandy silt and consists of poorly defined planar laminae 

inclining 3 - SD. Minor bioturbation is found in the upper 5 em. A bladed 

angular siltstone pebble with 4 mm long axis is aligned vertically, while three 

granules and a bladed angular shale pebble with 4 mm long axis are aligned 

horizontally. The upper contact is sharp and horizontal. 

Unit 3 measures 9.5 em and consists of 82o/o sand and 18% silt. The 

lower 5.5 em contains planar laminae alternating between sandy silt and fine 

to medium sand inclining 2-4·. The laminae of coarser sediment measure 2 

mm whereas the finer laminae vary between 0.5 and 1.25 mm thick. 

Disturbance and laterally discontinuous laminae characterize the upper 4.5 

em. A 2 em layer of medium-sized pebbles and spruce twigs bound the upper 

contact and constitutes unit 4. 

Unit 5 is 10 em thick and consists of disturbed horizontal planar 

laminae of fine to medium sand with lenses of sand towards the base. 

Deformation is evident under three vertically-aligned well-rounded roller­

shaped pebbles with long axes measuring 11 mm, 17 mm and 30 mm. Marine 

seaweed and bioturbation features are present throughout. The upper contact 

is sharp and marked by eroded marine shell fragments. 

Unit 6 measures 9 em and consists of normally graded sand to sandy 

silt. The overall texture contains 80% sand and 15% silt. The upper contact is 

gradational. 

Unit 7 is 6 em and consists of modem organic muck. 

The depth of water at location #2 is 1.82 m below MHW. The core 

measures 42 em, and three units are described. Unit 1 is at least 15 em thick 
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and contains 65% sand and 30% silt. Marine shell fragments with muscle 

tissue and a horizontally-aligned bladed siltstone subangular pebble mark the 

base. The lower 5 em is bioturbated whereas the upper 10 em consists of 

horizontal planar laminae of sandy silt. The laminae are 1 mm thick and 

have gradational contacts between individual lamina. The upper contact is 

also gradational. 

Unit 2 measures 16 em and consists of extensively bioturbated sand and 

silt, with a texture similar to unit 1. 

Unit 3 measures 11 em and consists of modern organic muck. 

The depth of water at location #3 is 1.72 m below MHW. The core is 68 

em long and contains 3 units. Unit 1 measures at least 20 em thick and 

consists of 57% sand, 42% silt and 1% horizontal! y-aligned fine pebbles and 

granules. The unit is bioturbated and has conifer and marine seaweed matter 

throughout. The upper contact is gradational. 

Unit 2 measures 20 em. It contains 70% sand, 18% silt and 12% day. 

This unit is similar to unit 1, although not as extensively bioturbated as 

disturbed horizontal laminae are visible. The upper contact is erosional. 

Unit 3 measures 28 em. It contains 4% granules, 77% sand and 19% silt. 

Lenticular bedding forms 1 - 2% of the sediment volume, marked by 

discontinuous lenses of coarse sand and granules. These are 1 em long and 3 

mm high. 

The depth of water at location #4 is 2.06 m below MHW. The core 

measures a minimum of 40 em and consists of 1 unit of 51% sand, 31% silt, 

18% clay and organics. It is extensively bioturbated and eroded shell 

fragments lacking muscle tissue are present at the base. 
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Figure 84: Stratigraphic sequence of cores, Big Barasway. 
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9.2 Interpretation 

The cores were taken in a microtidal to low-mesotidal shallow lagoon 

environment. Core #1 was located closest to the current outlet whereas the 

others were removed from direct effects of modem fluvial input. The 800 m 

by 220 m lagoon limits the fetch, although wind generated waves can be 

produced and may influence sedimentation. Plate 34 shows the lagoon at low 

tide. As the lagoonal depths are generally less than 2m, the entire water 

column may be moved if the winds are of sufficient strength and duration 

(Boothroyd et al., 1985). The NE-SW trend of the lagoon and the protection 

created by the surrounding hills suggest that the winds most likely to generate 

waves are from the southwest or northwest. The tidal prism (the lagoonal 

area multiplied by the tidal range) is small, approximately 2.8 x1oS m3. Tidal 

activity causes ice blocks to buckle during January and February when the 

lagoon freezes. 

Terrestrial sediment enters the lagoon through runoff and fluvial 

discharge. Sediment enters the lagoon from the bay by overwashing of the 

barrier, through the outlet during the tidal cycle, and by surges from storm 

events. However, the cores did not contain any large clasts characteristic of 

the barrier. The backbarrier stratigraphy of barrier lagoons in Maine, U.S.A. 

(Duffy et al., 1989) likewise shows a lack of large clastic storm deposits, despite 

frequent strong winter storms along that coast. Duffy et al. (1989) attribute 

this characteristic to the behaviour of the reflective barriers during storm 

events. As individual storms progress, the barrier increases in height. This 

decreases the occurrence of overwashing (Orford and Carter, 1982b) but 

eventually causes avalanching of the barrier sediment towards the lagoon, 
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resulting in a series of gravel lobes in the lagoon-barrier interface. These 

generally extend less than 2m from the back of the barrier (Carter and Orford, 

1984). Consequently, the barriers protect the lagoons and the lagoons do not 

indicate the high wave energy associated with the barriers. 

The stream is gravel-dominated and the surficial sediment in the area 

contains minor amounts of fine materials. Although this lagoonal 

environment could be conducive for the deposition of silt and clay, the 

availability of these sediments is limited locally. The drainage basin for this 

stream is small (65.3 km2) and the surficial sediment in the area is largely 

composed of large-sized clasts, pebble size or greater. 

Plate 34: Lagoon at low tide, Big Barasway. August 1991. 
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Core#l 

The presence of spruce twigs and the angular pebble at the base of unit 

1 indicates a high-energy event of terrestrial origin, perhaps a spring flood 

event. The environment subsequently quieted and allowed the 

accumulation of planar laminae and the growth of aquatic plants. The 

vertical orientation of the vegetation indicates that the growth was 

simultaneous with the development of the laminae. 

The erosional contact between units 1 and 2 indicates a sharp increase 

of energy. The preservation of both stoss and lee sides in a ripple indicates 

that sediment supply was in equilibrium or more significant than flow 

velocity Oopling and Walker, 1968; Ashley et al., 1982). As energy waned in 

unit 2 the laminae became horizontal and the grain size decreased. The 

vertically-aligned pebble was likely deposited from seasonal ice during spring 

melt. The absence of deformation underneath the pebbles is attributed to 

disturbance by bioturbation. The other horizontally-aligned clasts may be 

attributed to either deposition from seasonal ice or current flow. The latter is 

unlikely under the low-energy conditions generally associated with this 

environment. 

The alternating strata of fine and coarser sand in unit 3 is similar to 

epsilon-cross-stratification described by Allen (1963). It is possible, as Allen 

suggested, that these laminae were deposited on a point bar along a migrating 

minor tidal channel. The differing grain sizes in the laminae, in this case, are 

consequences of changes in the strength of tidal currents. Tidal channels are 

present in the lagoon at Big Barasway and were observed during low tides 

when the lagoon level is low (Figure 85). 
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Figure 85: Map of the barrier and lagoon at Big Barasway showing 
the approximate locations of the tidal features. 
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The spruce twigs and pebbles of unit 4 indicate an erosive flood event, 

which brought terrestrial detritus to the tidal lagoon. 

Unit 5 shows a similar sequence to unit 2. The lenses of sand toward 

the base indicate the formation of ripples under higher-flow regimes. The 

horizontal planar laminae were formed when the energy decreased. The 

vertically-aligned pebbles with deformation underneath indicate deposition 

from seasonal ice. The presence of marine plant matter indicates that the 

increase of energy was more likely the result of a storm event during which 

sea water entered the lagoon, rather than seasonal runoff. 

The presence of marine shell fragments at the contact of units 5 and 6 

and the normally graded sand of unit 6 represent another storm event in 

which large amounts of sediment were in suspension and fell out as energy 

declined. Israel et al. (1987) describe similar sediments for a tidal channel in a 

microtidal environment along the Texas coast. 

The increased marine influx in units 5 and 6 may indicate the change 

in the location of the outlet in the 1960's from the northern position to the 

more southerly position near the location of core #1. If this is so, then the 

upper 20 em of sediment has accumulated over the past 25- 30 years, at a rate 

of 0.6- 0.8 em per year. The higher-energy conditions here than in the other 

core locations suggest that this sedimentation rate is plausible. Boothroyd et 

al. (1985) noted similar rates in sediment limited microtidal lagoons. If sea­

level remains relatively constant, the lagoon will be filled in approximately 

250 - 300 years. 

However, the increased marine input may also be attributed to 

increased storm activity resulting from a rise in relative sea-level. 
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Geomorphic and archaeological evidence and radiocarbon dates on wood and 

peat indicate initial fall followed by a rise in sea-level during the Holocene. 

The two possible scenarios presented are not mutually exclusive. Sea-level is 

rising and it is possible that increased marine influx may be due to the change 

in outlet location. More information is needed to precisely determine current 

sedimentation rates at Big Barasway. 

The general coarsening upward (52% to 80% sand) pattern within the 

stratigraphy of core #1 and the sedimentary structures are similar to those 

within the flood tidal deltas described by Boothroyd et al. (1985), Hayes (1980), 

Hayes (1991) and Israel et al. (1987). Air photos and visual inspection confirm 

the presence of flood tidal deltas in the lagoon at Big Barasway. The deltas 

have remained in relatively the same positions throughout the study (Figure 

85). The horizontal segregation of the ebb and flood tidal flows characteristic 

of these forms would account for the lack of bi-directional laminae in this 

core. 

Core #2 

The marine shell with muscle tissue at the base of core #2 was less 

abraded than those recovered from core #4. Thus, either the shell was 

deposited near its location while alive, or it was brought to the area by a single 

storm event and not subjected to continued wave activity. The horizontally­

aligned pebble indicates deposition by either storm activity or from seasonal 

ice. As the pebble is located at the base of the core, it is impossible to discern 

loading structures associated with dropstones. However, given the 

juxtaposition of the shell and pebble and the possible means of deposition, it 
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is likely that both were brought to the lagoon by a single storm event, after 

which calmer regimes prevailed. 

The bioturbated sediment in the lower 5 em in unit 1 and that of unit 2 

is interrupted by horizontally planar laminae of 1 mm thickness with 

gradational contacts. The texture is the same throughout the two units, 

suggesting that the depositional environment has not changed significantly. 

The laminae most likely extended throughout the units before becoming 

bioturbated. The gradational contacts of the laminae indicate that there were 

gradual decreases in energy between events. 

Core #3 

The texture of 57% sand and 43% silt in unit 3 of core #3 and the 

presence of bioturbation is similar to cores 2 and 4. These suggest similar 

depositional envirorunents. However, unit 1 of core #3 shows a greater 

presence of plant matter (conifer and marine) and horizontally-aligned fine 

pebbles and granules. These indicate a greater influence of terrestrial runoff 

and of marine storm events. Core #3 was located nearer to the surrounding 

vegetated embankments of the lagoon than were the other cores. In addition 

a small brook enters the lagoon on the landward side approximately 100m 

from the core site. The horizontal position of the coarser clasts and the 

disturbance of the sediment from bioturbation make it difficult to discern 

whether the clasts were deposited by seasonal ice or by storms. 

Unit 2 shows a vertical increase of sand content, from 57% to 70%. 

Although deposited by slightly higher energies than unit 1, the planar 

horizontal lamination indicates a low-energy environment. 
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Unit 3 shows a further increase of energy. Lenticular bedding with 

isolated ripples, similar to that recognized by Reineck and Wunderlich (1968), 

is usually associated with beds of sand and mud in which a ripple train of 

sand with a limited supply of sand migrates across a muddy substrate. 

Isolated ripple forms are preserved within the muddy substrate (Lindholm, 

1987). Alternations between quiet and wave or current conditions are 

necessary for this type of deposition. Reineck and Singh (1973) associated the 

changes in energy levels with alternating ebb and flood tidal currents. 

Hawley (1981) discussed the origin of flaser bedding, form sets in which there 

is a greater proportion of sand to mud than is the case for lenticular bedding. 

Flume experiments demonstrated that flaser bedding forms when the shear 

stress necessary to erode mud is greater than that needed to transport sand as 

bedload. Hawley concluded that flaser bedding is likely associated with either 

storm events or spring discharge when there are large amounts of sediment 

in suspension. Thick layers of substrate accumulate during the waning stages 

of the storm or spring runoff. Between consecutive storm events or seasonal 

runoffs, the substrate has time to consolidate and withstand erosion during 

the next high-energy event. 

The character of wut 3 shows similarities to the Reineck and 

Wunderlich (1968) definition, although the substrate is composed of sand and 

silt instead of mud. As coarser ripples are present throughout the unit, there 

must have been alternating periods of lower and higher energy. During the 

periods of higher energy coarse-grained ripples migrated and became isolated, 

as the sediment supply was limited. The finer sediment in suspension was 

deposited with decreasing energies, and became somewhat compacted before 
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the next storm and/ or spring runoff event. It is unlike! y that the lenticular 

bedding in core #3 is associated with tidal events, as the tidal energies in the 

lagoon are comparatively low. 

Core #3 shows an increase of energy throughout the vertical 

succession. Unit 2 has a larger percentage of sand than unit 1. The larger 

quantities of granules in unit 3 could be attributed either to spring runoff or 

to overwashing of the barrier during storm events. The latter would indicate 

that overwashing has increased along this area of the barrier in the recent 

past. Overwashing has been observed SO m to the north of the location of 

core #3 during the course of the study and thus could be the source of granule 

sediment. Factors that could contribute to increased overwashing are an 

increase in storm activity, perhaps as a result of sea-level rise; and sediment 

starvation along the barrier. Both are likely to occur in this system. 

Core #4 

Core #4, the shortest at 40 em, was located in the quietest environment. 

It had the largest fraction of fines of all the cores. Mud formed 49% of the 

sediment, and bioturbation was extensive. The eroded shells at the base of 

the core indicate a storm event, after which calmer conditions prevailed. 

During the last century, the location of this core was near the position of the 

outlet. Consequently, wave and storm activity may have been stronger here 

in the past than is present! y the case. The shells could mark the period of 

closure of the outlet at this southern location. If so, the 40 em of sediment 

would have accumulated over the past 100 years, a rate of 0.4 em per year. 

This rate includes compaction effects, although the sediment texture of the 
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core and the shallow lagoonal environment and short core suggest negligible 

influence. Given the modern environment where this core was taken, this 

sedimentation rate is probable, as Boothroyd et al. (1985) described similar 

rates in quiet lagoonal environments along Rhode Island. 

The rate of 0.4 em per year in core #4 and the possible rate of 0.6 - 0.8 em 

per year in core #1 fall within the probable range of recent sea-level rise. 

Therefore, the accumulation rate may be keeping pace with sea-level rise. Of 

21 lagoons studied along the U.S. Atlantic and Gulf coasts, the majority 

approximate a balance of accretion and sea-level rise (Nichols, 1991). 

However, since the surficial sediment in the drainage basin contains 

large volumes of coarse sediment, these rates rna y be higher than the actual 

rate or rates of deposition of fine sediment in the lagoon. Assuming unit 4 of 

core #1 and the base of core # 4 mark storm events associated with the 

relocation of the outlet, a portion of the sediment would have been from 

reworked earlier deposits. Consequently, the sedimentary record of this 

lagoon environment has been filtered with periods of low depositional rates 

followed by relatively high rates of reworking (Crowley, 1984). 

Figure 86 shows the spatial variability of sedimentation in the lagoon 

with cores #2 and #4largely composed of fines, core #1 of sand and silt, and 

#3 granules, sand and silt. The position of the outlet greatly influences the 

sedimentary features and largely controls which areas of the lagoon are 

dominated by muds and others by larger-sized sediment. Repositioning of 

the outlet results in the deposition of fines over coarser material despite the 

transgression occurring in this region. 
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Vertical and horizontal axes show approximate scale. 



Chapter 10 

Conclusions 

The barriers at both Ship Cove and Big Baraswa y are moving landward 

at similar rates. In part, this is a response to a rise in relative sea-leveL 

Within this general trend, however, the barriers show sedimentological and 

morphological differences between them, as well as within individual 

systems. Although the overall sediment textures have slight differences, the 

barriers at Big Barasway and Ship Cove are pebble and cobble-dominated. 

Likewise, the clasts at both locations are dominated by sedimentary rock types, 

although zoneD at Big Barasway shows a wider assortment of exotic clasts. 

Therefore, differences in sediment texture and clast lithology do not 

contribute to the differences in morphology and sedimentary assemblage. 

The barrier at Ship Cove is enclosed by prominent headlands and has a 

comparatively steep nearshore gradient. Plunging waves break dose to the 

shore. This setting allows swash alignment which, in conjunction with 

coarse material, creates a steep reflective beach (Wright and Short, 1984). 

Steeper slopes show better textural sorting, as shown by studies of beaches in 

New Zealand (McLean and Kirk, 1969). Furthermore, the swash alignment 

allows the juxtaposition of strong textural differences, such as the sand and 

granule-dominated area of zone A and the pebble and cobble-dominated area 

of zone C with a laterally small transitional area along zone B. 

The small drainage basin results in an unstable stream outlet and 

consequently, sediment produced by fluvial action is negligible. Minor 
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amounts of sediment are added to the beach system from unconsolidated 

material within adjacent bluffs or veneers overlying the bedrock headlands. 

The majority of sediment is contained within the cove and undergoes 

considerable attrition and abrasion, which results in a dominance of rounded, 

discoid clasts. The greater amount of sand at Ship Cove (at least before 

anthropogenic removal) and at southern zone A, Big Barasway, than 

elsewhere along the barriers at Big Barasway, aids in the development of 

increased clast roundness (Kuenen, 1956; Matthews, 1983). A part of the 

sediment may be moved to water depths greater than half the incident 

wavelengths below the wave base and becomes trapped within the boulder­

dominated nearshore zone and removed from the beachface. Small rip 

currents formed by cusp development may be the main agents for seaward 

sediment removal, particularly during storm events (Gruszczynski et al., 

1993). The rough bouldery surface of the nearshore zone is unlikely to 

support gravel ripples, as described by Forbes and Drapeau (1989). 

Anthropogenic removal of sediment has resulted in a decrease of fines in the 

lower-beachface and by removing a potential dissipative element, may have 

had a profound impact on the beach morphology (Forbes and Taylor, 1987). 

The critical factors controlling the morphology and sedimentology of 

the beach at Ship Cove are its embayed nature, swash alignment, fixed 

sediment supply, unstable outlet, and steep nearshore bathymetry. 

The barriers at Big Barasway show considerable lateral 

sedimentological and morphological variability and demonstrate the 

juxtaposition of differing morphodynamic settings. The shallow platform in 

the nearshore zone and the island along zone B have caused two separate 
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barriers to form. Zone A has a fixed sediment supply, whereas the location of 

zones C and D at the mouth of the cove and consequent exposure to the 

fringing beach to the north allow net removal of sediment. The rapid retreat 

of the island of zone B causes instability and increased overwashing along the 

northern half of zone A as the barrier moves landward with its island anchor. 

Consequently, although the southern half of zone A attempts to maintain a 

swash alignment, the moving anchor causes the northern half to become 

drift-aligned. The rapidly eroding front does not allow enough time for the 

northern half to become swash-aligned. Thus, the sedimentological and 

morphological organization differs, with the swash alignment of the 

southern half of zone A resulting in better sorting of the clasts by shape and 

size than along the northern half. 

The net removal of sediment of the barrier to the north of zone B is 

causing a thinning of the barrier in places. Drift-aligned barriers are 

inherently weak unless continued sediment supply is maintained (Orford et 

al., 1991). The shallowest part of the platform, located between transects BB-17 

and BB-30, and the present location of the outlet cause an environment 

conducive for the development of progradational ridges. Consequently, 

despite an overall removal of sediment from the system under the 

transgressive regime, isolated areas of sediment accumulation may occur. 

Preservation of these ridges formed during the Holocene is unlikely and 

essentially nil for the geologic record before the Holocene. In addition, the 

ridges at Big Barasway are at nearly the same height above sea-level, unlike 

the descending ridges in isostatically-falling sea-levels such as Hudson Bay 

(Hillaire-Marcel, 1980}, Labrador (Loken, 1962}, Arctic Canada (Andrews, 1970; 
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Dyke, 1983; 1984), and other places that fall within zone A of Quinlan and 

Beaumont's (1981) model of Atlantic Canada, or zone 1 in Peltier et al. (1978) 

glacio-isostatic model. 

Drift alignment may change to swash alignment, particularly with 

dwindling sediment supply and/or change in basement control (Orford et al., 

1991). A change to swash alignment is occurring to the north of BB-35. This 

area is generally drift-aligned and subject to northerly wave attacks 

interspersed within the dominant southwesterly wave regime, thereby 

causing alternating northward and southward movement of sediment. The 

barrier is moving landward faster north of BB-35 than between BB-17 and BB-

35, causing the northern area to become increasingly protected from direct 

attack by southwesterly waves. The shallow platform area around the outlet 

causes refracted southwesterly waves to approach the northern part of the 

barrier orthogonally and thereby creating a swash alignment. Cuspate 

features develop when swash alignment occurs under either southwesterly or 

westerly waves. 

The relatively rapid rate of sea-level in this region is similar to the rate 

occurring in Nova Scotia (Shaw et al., 1993), and there is a limited sediment 

supply at the barriers at Ship Cove and Big Barasway. As a result, residual 

gravel scars or gravel patches may be scattered offshore, similar to those 

found offshore of Chezzetcook Inlet, Nova Scotia (Carteret al., 1991). It is 

unlike! y, though, that drowned barriers would be expected in this 

environment. The drowned barrier at Story Head, Nova Scotia was formed 

in the 1950's from a splitting of a pre-existing larger barrier as the barrier 
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rapidly moved landward (Orford et al., 1991). In contrast, at Big Barasway and 

Ship Cove, the barriers are moving at slower rates than at Story Head. 

The moderate rate of rollover of <1 m/year (Orford et al., 1991) allows 

the development of stratified units with particle zonation on the beachface at 

both Big Barasway and Ship Cove. However, because of the swash alignment 

at Ship Cove and southern Big Barasway, the organization (stratification and 

particle zonation) is more sharply defined than elsewhere along Big 

Barasway. This adds complexity to the creation of models which relate the 

rate of landward movement and the resulting sedimentary assemblages. 

Figure 87 outlines the critical factors which differentiate the 

sedimentology and morphology of the barriers at Ship Cove and Big Baraswa y 

under a transgressive regime. Bedrock control creates the pocket barrier beach 

at Ship Cove. In contrast, an exposed barrier and the relict subaqueous fan at 

Big Barasway affect the relative amounts of wave energy that reach the 

barrier. These differences between the two locations also control the lateral 

variations of energy within the individual beach systems. Based on the 

geologic:U control and wave climate, either swash or drift alignments result. 

The morphology and sedimentology of the barriers depends on the relative 

amounts of energy reaching the barriers and whether the sediment supply is 

fixed, decreasing, or increasing. 

With fixed sediment supply and comparatively high wave energies in 

a swash alignment, as at Ship Cove and at southern zone A at Big Barasway, 

high, single ridges characterize the barriers. The sediment is moderate! y to 

strongly stratified with moderate to strong particle beachface zonation, 

although cusp features add complexity to shape and texture zonations. 
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Figure 87: Outline of the critical factors differentiating the sedimentology and morphology 
of the barriers at Ship Cove and Big Barasway. 



With drift alignment and fixed to increasing sediment supply in a 

downdrift location, as at the northern end of zone A at Big Barasway, the 

resulting barrier is low and has a wide backbarrier. The sediment shows 

crude stratification with a chaotic shape and texture. 

During barrier breakdown, the development of separate flow cells and 

even flow sub-cells (cells within cells) may lead into smaller fringing features 

controlled by the local wave-basement interaction (Orford et al., 1991). With 

drift alignment, n\oderate wave energy, and overall depleting sediment 

supply, as along zones C and D at Big Barasway, the initial stages of barrier 

breakdown and segmentation of the barrier are occurring with progradational 

ridges forming in the central shallow area of the barrier and thinning along 

the other areas. The progradational areas of the barrier at Big Barasway are 

relatively wide with low to moderate height. The sediment shows moderate 

stratification with poor particle zonation. The thinning areas have lower 

elevations, are crude! y stratified to chaotic, and have poor particle beachface 

zonation. Although the northern end of Big Barasway occasionally becomes 

swash-aligned, it is still largely drift-aligned and characterized by this 

sedimentary assemblage. In the future, if it becomes more strongly swash­

aligned, better particle zonation and stratification will likely occur. 

In addition to the factors discussed above, the outlet strongly affects the 

morphology and sedimentology. The W1Stable outlet at Ship Cove causes 

lower barrier elevations in the outlet area when the outlet is closed and 

weaker particle zonation with larger proportions of higher sphericity equants 

and rollers than elsewhere on the barrier. 
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The outlet at Big Barasway has not influenced particle shape 

assemblages significantly. The overall sphericity at Big Barasway is higher 

than at Ship Cove because of lower wave energies reaching the barrier in 

zones C and D and the more recent introduction of diamicton from the 

erosional front. The outlet at Big Barasway aids in the development of 

progradational ridges by dampening wave energy. The ridges are composed 

of well-sorted small- and medium-sized pebbles indicating the size limit of 

clasts capable of being transported. 

This study tested the applicability of using the a-axis fabric method in 

modem beach environments where large percentages of discoid clasts exist. 

The similar results in the significance of the orientations and plunges of a­

axes and a/b imbrications for sedimentary interpretation demonstrate the 

usefulness of the a-axis technique in these beach environments. This 

indicates that the a-axis fabric method may be used in other beach 

environments where discoid clasts are uncommon. 

The potential for the preservation of beach deposits and the transition 

from terrestrial to brackish to marine environments is considered to be better 

under rapidly rising sea-levels (Belknap and Kraft, 1981; Belknap and Kraft, 

1985; Davis and Clinton, 1987). With the relatively rapid rate of rise occurring 

along Placentia Bay, the transition between brackish and marine 

environments should be evident. At Big Barasway, the lagoon is becoming 

increasingly tide-dominated with a larger and centrally located outlet. 

Furthermore, it is now more affected by storm events. With continued, and 

potentially faster landward movement as sediment supply fails, the barrier 

will overlie lagoon deposits which in turn, overlie subaqueous fan deposits. 
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The physiography of the valley limits the lagoon to a landward retreat up the 

stream. At Ship Cove the dynamics of the stream and the small outlet do not 

allow much deposition of fine sediment. Landward retreat would result in 

beach deposits directly overlying either fluvial or peat deposits. However, 

rapid shoreface erosion would truncate the barrier tops and reduce the 

likelihood of extensive barrier sediment preservation. 

Beach ridge deposits are used to indicate former sea-level positions. 

This study demonstrates, that without detailed analysis, errors associated with 

determining a former sea-level position can result. There is a difference of 

four metres between the low and high elevations between Ship Cove and Big 

Barasway. The morphology and sedimentology of the ridges need to be 

analyzed to determine the amount of energy reaching beaches, and whether 

they were drift- or swash-aligned. Single ridge, steep slopes, better size and 

shape particle zonation indicate high-energy swash-aligned beaches. In 

addition, a detailed a-axis fabric analysis that shows a wide range of 

orientations in relations to the trend of the ridge, mainly moderate to steep 

plunges, and a cluster of moderate to strong principal eigenvalues, indicates 

cusp formation and further supports swash alignment and high ridge 

elevations. In contrast, if the fabric analysis yields a general orientation in 

relation to the trend of the ridge, gentler plunges, and a looser cluster of 

principal eigenvalues, then a drift-aligned, lower-elevated ridge is indicated. 

As demonstrated by the work of Massari and Parea (1988), it is necessary 

in the geologic interpretation of Quaternary or more ancient potential beach 

deposits to consider the morphodynamics necessary to create the sedimentary 

assemblage. However, many works on ancient deposits use comparisons 
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with Bluck's (1967) model: for example Bourgeois and Leithold (1984) and 

Postma and Nemec (1990); or work on Chesil Beach (Carr, 1969; Hart and 

Plint, 1989). However, as Postma and Nemec (1990) conclude, deposits 

showing similarities to Bluck's model can be formed under either 

transgressive or regressive regimes. Modem beaches such as at Big Barasway 

differ from Bluck's model and Chesil Beach and thus it can be inferred that 

ancient beach deposits do also. Through modem analogues more accurate 

interpretations of ancient deposits can be made. 

Concluding Remarks 

This study has shown that gravel barriers can be dynamic and 

responsive to seasonal change and storm activity. Furthermore, the 

morphology and sedimentology of these landforms can vary considerably as a 

result of differences in wave regimes, sediment supplies and types, and 

alignments. Detailed clast fabric analyses have not been commonly 

undertaken in modern beach environments, and thus the results in this 

study may aid in the interpretations of other deposits. 

The relatively short duration of this study has limited predictions in 

changes to the morphologies of the barriers at Ship Cove and Big Barasway. 

However, continued monitoring of th~ GSC transects would allow further 

study of the behaviour of the barriers. The estimates of landward movement 

made in this study could then be refined. 

277 



References 

Allen, J.R.L., 1963: Classification of cross-stratified units, Sedimentology, 2, 
93-114. 

Allen, J.RL., 1983: Gravel overpassing on humpback bars supplied with 
mixed sediment: examples from the Lower Old Red Sandstone, 
southem Britain, Sedimentology, 30, 285-294. 

Allen, J.R.L., 1984: Sedimentary Structures: Their Character and Physical 
Bases, Elsevier, Amsterdam, 453-461. 

Andrews, J.T., 1970: A geomorphic study of post-glacial uplift with particular 
reference to Arctic Canada; Institute of British Geographers, Special 
Publication 2. 

Antia, E.E., 1989: Studies on swash marks and swash angles on texturally, 
tidally and morphodynamically distinct beaches, Geologie en 
Mijnbouw, 68, 297-300. 

Ashley, G.M., Southard, J.B. and Boothroyd, J.C., 1982: Deposition of 
climbing-ripple beds: a flume simulation, Sedimentology, 29, 67-79. 

Banfield, C.E., 1983: Climate, in Biogeography and Ecology of the Island of 
Newfoundland, South, G.R.(ed), DrW. Junk Publishers, The Hague, 
37-106. 

Barkham, S.H., 1985: The fishermen's contribution to the early cartography 
of eastern Canada, a paper presented at the eleventh international 
conference on the history of cartography, National Map Collection, 
Public Archives of Canada, Ottawa. 

Barkham, S.H., 1987 : Los vascos y las pesquerias transatlanticas, 1517-1713, 
in ltsasoa Los Vascos en el marco Atlantica Norte. Siglos XVI y XVII, 
Ayerbe, E. (ed), ETOR, Donostia-San Sebastian: Cauipll2:coa), 26-210. 

Barrett, P.J., 1980: The shape of rock particles, a critical review, 
Sedimentology, 27, 291-303. 

Belknap, D.F. and Kraft, J.C., 1981: Preservation potential of transgressive 
coastallithosomes on the U.S. Atlantic shelf, Marine Geology, 42, 

278 



429-442 

Belknap, D.F. and Kraft, J.C., 1985: Influence of antecedent geology on 
stratigraphic preservation potential and evolution of Delaware's 
barrier systems, Marine Geology, 65, 235-262. 

Beschta, RL. and Jackson, L.J. 1978: The intrusion of fine sediments into a 
stable gravel bed, Journal Fisheries Research Board of Canada, 36, 
204-210. 

Bluck, B.J., 1967: Sedimentation of beach gravels: examples from South 
Wales, Journal of Sedimentary Petrology, 37, 128-156. 

Boon, J.D. ill, 1969: Quantitative analysis of beach sand movement, Virginia 
Beach, Virginia, Sedimentology, 13, 85-104. 

Boothroyd, J.C., Friedrich, N.E. and McGinn, S.R., 1985: Geology of microtidal 
coastal lagoons: Rhode Island, Marine Geology, 63, 35-76. 

Bourgeois, J. and Leithold, E.L., 1984: Wave-worked conglomerates­
depositional processes and criteria for recognition, in Sedimentology of 
Gravels and Conglomerates, Canadian Society of Petroleum Geologists, 
memoir 10, Kowter, O.H., Steel, R.J.(eds), 331-343. 

Brookes, I.A., Scott, D.B. and McAndrews, J.H., 1985: Postglacial relative sea­
level change, Port au Port area, west Newfoundland, Canadian Journal 
of Earth Sciences, 22, 1039-1047. 

Brookes, LA. and Stevens, RK., 1985: Radiocarbon age of rock-boring 
Hiatella arctica (Linne) and postglacial sea-level change at Cow Head, 
Newfoundland, Canadian Journal of Earth Sciences, 22, 136-140. 

Bryant, E., 1983: Sediment characteristics of some Nova Scotian beaches, 
Maritime Sediments, 19, 127-142. 

Caldwell, N.E. and Williams, A.T., 1986: Spatial and seasonal pebble beach 
profile characteristics, Geological Journal, 21, 127-138. 

Canadian Climate Normals: Temperature and Precipitation, Atlantic 
Provinces, 1951-1980, 1982: Environment Canada, Atmospheric 
Environment Service. 

279 



Canadian Climate Normals: Temperature and Precipitation, 1951-1980, 
Atlantic Provinces: Environment Canada, Atmospheric Environment 
Service. 

Canadian Climate Normals Volume 5 : 1951-1980, 1982 : Environment 
Canada, Atmospheric Environment Service. 

Canadian Tide and Current Tables 1993, volume 1 Atlantic Coast and Bay of 
Fundy, Department of Fisheries and Oceans, Ottawa, Canada. 

Carr, A.P., 1969: Size grading along a pebble beach: Chesil Beach, England, 
Journal of Sedimentary Petrology, 39, 297-311. 

Carr, A.P., Blackley, M.W.L. and King, H.L., 1982: Spatial and seasonal aspects 
of beach stability, Earth Surface Processes and Landforms, 7, 267-282. 

Carter, R.W.G., 1983: Raised coastal landforms as products of modem process 
variations, and their relevance in eustatic sea-level studies: examples 
from eastern Ireland, Boreas, 12, 167-182. 

Carter, R.W.G., Devoy, R.J.N. and Shaw, J., 1989: Late Holocene sea-level 
changes in Ireland, Journal of Quaternary Science, 4, 7-24. 

Carter, R.W.G., Forbes, D.L., Jennings, S.C., Orford, J.D., Shaw, J. and Taylor, 
R.B., 1989 : Barrier and lagoon coast evolution under differing relative 
sea-level regimes: examples from Ireland and Nova Scotia, Marine 
Geology, 88,221-242. 

Carter, R.W.G., Johnston, T.W., Orford, C. and Orford, J.D., 1984: Stream 
outlets through mixed sand and gravel coastal barriers: examples from 
southeast Ireland, Zeitschrift fi.ir Geomorphologie, N.F., 28, 427-442. 

Carter, R.W.G. and Orford, J.D., 1984: Coarse clastic barrier beaches: a 
discussion of distinctive dynamic and morphosedimentary 
characteristics, Marine Geology, 60, 377-389. 

Carter, R. W.G. and Orford, J.D., 1988 : Conceptual model of coarse clastic 
barrier formation from multiple sediment sources, Geographical 
Review, 78, 221-239. 

Carter, RW.G. and Orford, J.D., 1991: The sedimentary organisation and 
behaviour of drift-aligned gravel barriers, in Proceedings of Coastal 
Sedin1ents '91, Kraus, N.C., Gingerich, K.J., Kriebel, D.L. (eds), 

280 



proceedings of specialty conference on quantitative approaches to 
coastal sediment process, American Society of Civil Engineers, New 
York, 934-948. 

Carter, RW.G., Orford, J.D. and Jennings, S.C., 1990: The recent transgressive 
evolution of a paraglacial estuary as a consequence of coastal barrier 
breakdown : lower Chezzetcook Inlet, Nova Scotia, Canada, Journal of 
Coastal Research, Special Publication no. 9, 564-590. 

Carter, R.W.G., Orford, J.D., Forbes, D.L. and Taylor, RB., 1991: 
Morphosedirnentary development of drumlin-flank barriers with 
rapidly rising sea-level, Story Head, Nova Scotia, Sedimentary Geology, 
69, 117-138. 

Carter, R.W.G., Orford, J.D., J~nnings, S.C., Shaw, J. and Smith, J.P., 1990: 
Recent evolution of paraglacial estuary under conditions of rapid sea­
level rise: Chezzetcook Inlet, Nova Scotia, Proceedings of the 
Geologists' Association, 103, 167-185. 

Catto, N.R., 1989: Geology 482 Laboratory Manual, University of Alberta, 
Edmonton, Alberta. 

Catto, N.R., 1992a: Quaternary geological mapping, southwestern 
Avalon Peninsula, Current Research, Newfoundland Department 
of Mines and Energy, Geological Survey Branch, Report 92-1, 
23-26. 

Catto, N.R, 1992b: Surficial Geology and Landform Classification of Ship 
Cove, NTS 1M/1, Newfoundland Department of Mines and Energy. 

Catto, N.R., 1994: Coastal evolution and sea-level variation, Avalon 
Peninsula, Newfoundland: geomorphic, climatic, and anthropogenic 
variation, Coastal Zone Canada, 1994, Bedford Institute of 
Oceanography, in press. 

Catto, N.R., Anderson, R. and Scruton, D., 1994: Coastal Classification of the 
Placentia Bay Shore, Canada Department of Fisheries and Oceans, 
Technical Paper, in press. 

Catto, N.R. and Hooper, R., 1994: Biological and geomorphological shoreline 
classification of Placentia Bay, Newfoundland: a preliminary 
assessment, unpublished report to Department of Fisheries and Oceans. 

281 



Catto, N.R. and Thistle, G., 1993: Geomorphology of Newfoundland, 
International Geomorphological Congress Guidebook, August 1993, 23-
24. 

Cr~st~n. M.A. and Seabergh, W.C., 1993: Beach response and channel 
dynamics at Little River Inlet, North and South Carolina, U.S.A., 
Journal of Coastal Research, 9, 973-985. 

Church, M.A., McLean, D.G. and Wolcott, J.F., 1987: River bed gravels: 
sampling and analysis, in Sediment Transport in Gravel-Bed Rivers, 
Thome, C.R., Bathurst, J.C. and Hey, RD. (eds), Wiley, Chichester, 43-
88. 

Clark, J.A., 1980: A numerical model of worldwide sea-level changes on a 
viscoelastic Earth, in Earth Rheology, Isostasy and Eustasy, Momer, N.­
A. (ed), John Wiley and Sons, London, 525-534. 

Clark, J.A. and Lingle, C.S., 1979: Predicted relative sea-level changes (18,000 
years B.P. to present) caused by late-glacial retreat of the Antarctic ice 
sheet, Quaternary Research, 2, 279-298. 

Cooper, J.A.G., 1990: Ephemeral stream-mouth bars at flood-breach river 
mouths on a wave-dominated coast: comparison with ebb-tidal deltas 
at barrier inlets, Marine Geology, 95, 57-70. 

Crowley, K.D., 1984: Filtering of depositional events and the completeness of 
sedimentary sequences, Journal of Sedimentary Petrology, 54, 127-136. 

Dalrymple, R.A. and Lanan, G.A., 1976: Beach cusps formed by intersecting 
waves, Geological Society of American Bulletin, 87, 57-60. 

Davies, J.L., 1964: A morphogenic approach to world shorelines, Zeitschrift 
fur Geomorphologie, 8, 127-142. 

Davis, Jr., R.A. and Hayes, M.O., 1984: What is a wave-dominated coast?, 
Marine Geology, 60, 313-329. 

Davis, R.A., Jr. and Clinton, H.E., 1987: Sea-level change and the preservation 
potential of wave-dominated and tide-dominated coastal sequences, in 
Sea-level Fluctuations and Coastal Evolution, Nummedal, D., Pilkey, 
O.H. and Howard, J.D. (eds), Society of Economic Paleontologists and 
Mineralogists Special Publication, 41, 167-178. 

282 



Dobkins, Jr., J.E. and Folk, R.L., 1970 : Shape development on Tahiti-Nui, 
Journal of Sedimentary Petrology, 40, 1167-1203. 

Donoghue, J.P. and Greenfield, M.B., 1991: Radioactivity of heavy mineral 
sands as an indicator of coastal sand transport processes, Journal of 
Coastal Research, 7, 189-201. 

Duffy, W., Belknap, D.P. and Kelley, J.T., 1989 : Morphology and stratigraphy 
of small barrier-lagoon systems in Maine, Marine Geology, 88, 243-262. 

Dyke, A.S., 1983: Quaternary geology of Somerset Island, District of Franklin, 
Geological Survey of Canada, Memoir 404. 

Dyke, A.S., 1984: Quaternary geology of Boothia Peninsula and northern 
Distrct of Keewatin, central Arctic Canada, Geological Survey of 
Canada, Memoir 407. 

Everts, C.H., 1973: Particle overpassing on a flat granular boundary, Journal of 
Waterways Harbor Division American Society of Civil Engineers, 
99(WW4), 425-438. 

Eyles, N., 1976: Gravel cones and depressions: sedimentary indicators of 
intense winds, Maritime Sediments, 12, 75-76. 

Flood Information Map: Placentia, 1985: Environment Canada Inland 
Waters, Newfoundland Department of Environment, Water Resources 
Division. 

Foley, M.G., 1977: Gravel-lens formation in antidune-regime flow­
quantitative hydrodynamic indicator, Journal of Sedimentary 
Petrology, 47,738-746. 

Forbes, D.L., 1984: Coastal geomorphology and sediments in Newfoundland, 
in Current Research, Part B, Geological Survey of Canada Paper 84-18, 
11-24. 

Forbes, D.L. and Drapeau, G., 1989: Near-bottom currents and sediment 
transport over the inner Scotian Shelf; sea-floor response to winter 
storms during CASP, Atmosphere-Oceans, 27,258-278. 

Forbes, D.L., Shaw, J. and Eddy, B.G., 1993 : Late Quaternary sedimentation 
and the postglacial sea-level minimum in Port au Port Bay and 
vicinity, west Newfoundland, Atlantic Geology, 29, 1-26. 

283 



Forbes, D.L. and Taylor, R.B., 1987 : Coarse grained beach sedimentation 
under paraglacial conditions, Canadian Atlantic coast, in Glaciated 
Coasts, Fitzgerald, D., Rosen, P. (eds), Academic Press, San Diego, 52-86. 

Forbes, D.L., Taylor, R.B. and Shaw, J., 1989 : Shorelines and rising sea-levels 
in Eastern Canada, Episodes, 12, 23-28. 

Forbes, D.L., Taylor, R.B., Shaw, J., Carter, R.W.G. and Orford, J.D., 1990: 
Development and stability of barrier beaches on the Atlantic coast of 
Nova Scotia, Proceedings of the Canadian Coastal Conference, 
Kingston, Ontario, 83-98. 

Forbes, D.L., Taylor R.B., Orford, J.D., Carter, RW.G. and Shaw, J., 1991: 
Gravel-barrier migration and overstepping, Marine Geology, 97,305-
313. 

Frankel, L. and Crowl, G.H., 1961: Drowned forests along the eastern coast of 
Prince Edward Island, Canada, Journal of Geology, 69, 352-357. 

Fraser, H.J., 1935: Experimental study of the porosity and permeability of 
clastic sediments, Journal of Geology, 43, 910-1010. 

Frostick, LE., Reid, I. and Laymann, J.T., 1984: Changing size distribution of 
suspended sediment in arid-zone flash floods, in Modern and Ancient 
Fluvial Systems, Collinson, J.D. and Lenin, J. (eds), Blackwell Scientific; 
International Association of Sedimentologists, Special Publication 6, 
97-106. 

Gale, S. J., 1990: The shape of beach gravels, Journal of Sedimentary Petrology, 
60,787-789 

Gale, S.J. and Hoare, P.G., 1992: Bulk sampling of coarse clastic sediments for 
particle-size analysis, Earth Surface Processes and Landforms, 17, 729-
733. 

Gilbert, R, 1984: The movement of gravel by the alga Fucus vesiculosus (L.) 
on Arctic intertidal flat, Journal of Sedimentary Petrology, 54, 463-468. 

Glossary of Generic Terms in Canada's Geographical Names, Terminology 
bulletin; 176, Canadian Government Publishing Centre Supply and 
Services Canada, Ottawa, 1987. 

284 



Gomez, B., 1983: Representative sampling of sandy fluvial gravels, 
Sedimentary Geology, 34, 301-306. 

Grant, D.R., 1970: Recent coastal submergence of the Maritime Provinces, 
Canadian Journal of Earth Sciences, 7, 676-689. 

Grant, D.R., 1972: Postglacial emergence in northern Newfoundland, in 
Report of activities, part B, Geological Survey of Canada, Paper 72-18, 
lOQ-102. 

Grant, D.R., 1989: Quaternary geology of the Atlantic Appalachian region of 
Canada, in Quaternary Geology of Canada and Greenland, Fulton, RJ. 
(ed), Geological Survey of Canada, Geology of Canada no 1, 391-440. 

Grant, D.R., 1991: GSC-4670, in Geological Survey of Canada Radiocarbon 
Dates XXIX, Geological Survey of Canada, Paper 89-7, 8-9. 

Gruszczynski, M., Rudowski, S., Semil, J., Slominski, J. and Zrobek, J., 1993: 
Rip currents as a geologic tool, Sedimentology, 40, 217-236. 

Hansom, J.D., 1983: Ice-formed intertidal boulder pavements in the Sub­
Antarctic, Journal of Sedimentary Petrology, 53, 135-145. 

Hansom, J.D., 1986: Intertidal forms produced by floating ice in Vestfirdir, 
Iceland, Marine Geology, 74, 289-298. 

Hart, B.S. and Plint, A.G., 1989: Gravelly shoreface deposits: a comparison of 
modern and ancient facies sequences, Sedimentology, 36, 551-557. 

Hawley, N., 1981: Flume experiments on the origin of flaser bedding, 
Sedimentology, 28, 699-712. 

Haworth, RT. and Lefort, J.P., 1979: Geophysical evidence for the extent of 
the Avalon Zone in Atlantic Canada, Canadian Journal of Earth 
Science, 16, 552-567. 

Hayes, M.O., 1980: General morphology and sediment patterns in tidal inlets, 
Sedimentary Geology, 26, 139-156. 

Hayes, M.O., 1991: Geomorphology and sedimentation patterns of tidal inlets: 
a review, in Coastal Sediments '91, Kraus, N.C., Gingerich, K.J., Kriebel, 
D.L. (eds), proceedings of specialty conference on quantitative 

285 



approaches to coastal sediment process, American Society of Civil 
Engineers, New York, 1343-1355. 

Henderson, E.P., 1972: Surficial geology of Avalon Peninsula, 
Newfoundland, Geological Survey of Canada, Memoir 368. 

Heringa, P.K., 1981a : Soils of the Avalon Peninsula, Newfoundland, 
Agriculture Canada, Research Branch, Newfoundland Soil Survey, 
Report no. 3. 

Heringa, P.K., 1981b : Soils of the Avalon Peninsula, Newfoundland, 
Agriculture Canada, Research Branch, Newfoundland Soil Survey 
Report no. 47, south sheet map, scale 1:100,000. 

Hillaire-Marcel, C., 1980: Multiple component, post-glacial emergence, 
Eastern Hudson Bay, Canada, in Earth, Rheology, Isostasy and Eustasy, 
Momer, N.-A. (ed), John Wiley, London, 215-230. 

Hobday, O.K. and Banks, N.L., 1971, A coarse-grained pocket beach complex, 
Tanafjord (Norway), Sedimentology, 16, 125-128. 

House, R, in preparation, MSc. thesis, Department of Geography, Memorial 
University of Newfoundland, Newfoundland, Canada. 

Howard, J., 1992: An evaluation of shape indices as palaeoenvironmental 
indicators using quartzite and metavolcanic clasts in Upper Cretaceous 
to Palaeogene beach, river and submarine fan conglomerates, 
Sedimentology, 39, 471-486. 

Inman, D.L. and Guza, R.T., 1882: The origin of swash cusps on beaches, 
Marine Geology, 49, 133-148. 

Isla, F.I., 1993: Overpassing and armouring phenomena on gravel 
beaches, Marine Geology, 110,369-376. 

Israel, A.M., Ethridge, F.G and Estes, E.L., 1987: A sedimentological 
description of a microtidal, flood-tidal delta, San Luis Pass, Texas, 
Journal of Sedimentary Petrology, 57, 288-300. 

Jennings, S. and Smyth, C., 1990: Holocene evolution of the gravel coastline 
of East Sussex, Proceedings of the Geologists' Association, 101, 213-224. 

286 



Johansson, C.E., Structural studies of sedimentary deposits, Geologiska 
Foreningens i Stockholm Forhandlingar, 87, 3-61. 

Jopling, A.V. and Walker, RG., 1968 : Morphology and origin of ripple-drift 
cross-lamination, wit.~ exa!nples from the Pleistocene of 
Massachusetts, Journal of Sedimentary Petrology, 38, 971-984. 

King, A.F., 1988: Geology of the Avalon Peninsula, Newfoundland, 
Geological Survey Branch, Newfoundland Department of Mines and 
Energy, map 88-01. 

King, A.F., 1989 : Geological evolution of the Avalon Peninsula, 
Newfoundland, in Geology of Newfoundland and Labrador, special 
issue of the Newfoundland Journal of Geological Education, 10, 
Newfoundland Section of the Geological Association of Canada, 17-32. 

Kirk, RM., 1975; Aspects of surf and run-up processes on mixed sand and 
gravel beaches, Geografiska Annaler, 57 A, 117-133. 

Kirk, R.M., 1980: Mixed sand and gravel beaches: morphology, processes 
and sediments, Progress in Physical Geography, 4, 189-210. 

Komar, P.O., 1971: Nearshore cell circulation and the formation of giant 
cusps, Geological Society of America Bulletin, 82, 2643-2650. 

Komar, P.O., 1987: Selective grain entrainment by a current from a bed of 
mixed sizes: a re-analysis, Journal of Sedimentary Petrology, 57, 203-
211. 

Komar, P.O. and Li, Z., 1986: Pivoting analyses of the selective entrainment 
of sediments by shape and size with application to gravel threshold, 
Sedimentology, 33, 425-436. 

Krumbein, W.C., 1934: Size frequency distribution of sediments, Journal of 
Sedimentology Petrology, 4, 65-77. 

Krumbein, W.C., 1939: Preferred orientation of pebbles in sedimentary 
deposits, Journal of Geology, 47, 673-706. 

Krumbein, W.C. and Pettijohn, F., 1938: Manual of Sedimentary Petrography, 
Appleton-century-Crofts, New York. 

287 



Kuenen, Ph.H., 1956: Experimental abrasion of pebbles 2: rolling by current, 
Journal of Geology, 64,336-360. 

Lindholm, R, 1987: A Practical Approach to Sedimentology, Allen & Unwin, 
London, 21-24. 

Liverman, D., in press: 14C dates on marine molluscs, regional 
geomorphology and relative sea-level history, Newfoundland, Canada, 
Boreas. 

Liverman, D.G.E., Forbes, D.L. and Boger, R.A., 1994: Coastal monitoring on 
the Avalon Peninsula, in Current Research, Newfoundland 
Department of Mines and Energy, Geological Survey Branch, Report 
94-1, 17-27. 

Loken, O.H., 1962: The late glacial and postglacial emergence and deglaciation 
of northernmost Labrador, Geographical Bulletin, 17, 23-56. 

Longuet-Higgins, M.S. and Parkin, D.W., 1962: Sea waves and beach cusps, 
Geographical Journal, 128, 194-201. 

Lowry, P. and Carter, RW.G., 1982: Computer simulation and delimitation of 
littoral power cells on the barrier coast of southern Connty Wexford, 
Ireland, Journal of Earth Science Royal Dublin Society, 4, 121-132. 

MacClintock, P. and Twenhofel, W.H., 1940: Wisconsin glaciation of 
Newfoundland, Bulletin of the Geological Society of America, 51, 1729-
1756. 

Mannion, J.J., 1974: Irish Settlements in Eastern Canada: A Study of Cultural 
Transfer and Adaptation, University of Toronto Press, Toronto. 

Mark, D.M., 1973: Analysis of axial orientation data, including till fabrics, 
Geological Society of America Bulletin, 84, 1369-1374. 

Markham, W.E., 1980: Ice Atlas, Eastern Canada Seaboard, Toronto, 
Environment Canada. 

Massari, F. and Parea, G.C., 1988: Progradational gravel beach sequences in a 
moderate- to high-energy, microtidal marine environment, 
Sedimentology, 35, 881-913. 

288 



Matthews, E.R, 1983: Measurements of beach pebble attrition in Palliser Bay, 
southern North Island, New Zealand, Sedimentology, 30, 787-799. 

McCann, S.B., Dale, J.E. and Hale, P.B., 1981: Subarctic tidal flats in areas of 
large tidal range, southern Baffin Island, eastern Canada, Geographie 
Physique et Quaternaire, 35, 183-204. 

McCartney, W.O., 1967: Whitboume map-area, Newfoundland, Geological 
Survey of Canada, Memoir 341. 

McEachran, D.B., 1989: Stereo™, the stereographic projection program for the 
Macintosh, Distributed by Rockware Inc., Wheat Ridge, Colorado, 
U.S.A. 

McLean, R.F. and Kirk, RM., 1969: Relationships between grain size, size­
sorting, and foreshore slope on mixed sand-shingle beaches, New 
Zealand Journal of Geology and Geophysics, U, 138-155. 

Nichols, M.M., 1991: Response of lagoons to sea-level change, in...Coastal 
Sediments '91, Kraus, N.C., Gingerich, K.J., Kriebel, D.L. (eds), 
proceedings of specialty conference on quantitative approaches to 
coastal sediment process, American Society of Civil Engineers, New 
York, 1237-1247. 

Norris, R.M., 1956: Crescentic beach cusps and barkhan dunes, American 
Association of Petroleum Geologists, 40, 1681-1686. 

Norrman, J.O., 1964: Lake Vattern, Investigations on shore and bottom 
morphology, GA. XL VI, 1-238. 

O'Brien, S. and King, A.F., 1982: The Avalon Zone in Newfoundland, in 
Guidebook for the Avalon Meguma Zones: The Caledonide Orogen, 
King, A.F. (compiler), International Geological Correlation Project 27, 
MUN Department of Earth Sciences Report 9, 1-27. 

Orford, J.d., 1975: Discrimination of particle zonation on a pebble beach, 
Sedimentology, 22, 441-463. 

Orford, J.D. and Carter, R.W.G., 1982a : Geomorphological changes on the 
barrier coasts of South Wexford, Irish Geography, 15, 70-84. 

289 



Orford, J.D. and Carter, RW.G., 1982b: Crestal overtop and washover 
sedimentation on a fringing sandy gravel barrier coast, Carnsore Point, 
southeast Ireland, Journal of Sedimentary Petrology, 52, 265-278. 

Orford, J.D. and Carter, R.W.G., 1984: Mechanisms to account for longshore 
spacing of overwash throats on a coarse clastic barrier in southeast 
Ireland, Marine Geology, 56, 207-226. 

Orford, J.D., Carter, R.W.G. and Forbes, D.L., 1991 : Gravel barrier migration 
and sea-level rise : some observations from Story Head, Nova Scotia, 
Canada, Journal of Coastal Research, 7, 477-488. 

Orford, J.D., Carter, R.W.G., Forbes, D.L. and Taylor, R.B., 1988: Overwash 
occurrence consequent on morphodynamic changes following lagoon 
outlet closure on a coarse clastic barrier, Earth Surface Processes and 
Landforms, 13, 27-35. 

Orford, J.D., Carter, R.W.G. and Jennings, S.C., 1991: Coarse clastic barrier 
environments: evolution and implications for Quaternary sea-level 
interpretations, Quaternary International, 9, 87-104. 

Otvos, E.G., 1964: Observation of beach cusp and beach ridge formation of the 
Long Island Sound, Journal of Sedimentary Petrology, 34, 554-560. 

Peltier, W.R., Farrell, W.E. and Clark, J.A., 1978 : Glacial isostasy and relative 
sea-level: a global finite element model, Tectonophysics, 50, 81-110. 

Pollett, F.C., 1981 : Peatlands of the Avalon Peninsula, in Soils of the Avalon 
Peninsula, Heringa, P.K. (ed), Agriculture Canada, Newfoundland Soil 
Survey, Report no. 3, 20-22. 

Postma, G. and Nemec, W., 1990: Regressive and transgressive sequences in a 
raised Holocene gravelly beach, southwestern Crete, Sedimentology, 37, 
907-920. 

Powers, M.C., 1953: A new roundness scale for sedimentary particles, Journal 
of Sedimentary Petrology, 23, 117-119. 

Prentice, N., 1993: The nature and morphodynamics of contemporary coastal 
sediments at Topsail Beach, Avalon Peninsula, Newfoundland, BA 
honours thesis, University of Sheffield, England. 

290 



Quinlan, G. and Beaumont, C., 1981 : A comparison of observed and 
theoretical postglacial relative sea-level in Atlantic Canada, Canadian 
Journal of Earth Sciences, 18, 1146-1163. 

Quinlan, G. and Beaumont, C., 1982: The deglaciation of Atlantic Canada as 
reconstructed from the post-glacial relative sea-level record; Canadian 
Journal of Earth Sciences, 19, 2232-2246. 

Rappol, M., 1985: Clast-fabric strength in tills and debris flows compared for 
different environments, Geologie en Mijnbouw, 64, 327-332. 

Reineck, H.-E. and Singh, LB., 1973: Depositional Sedimentary 
Environments, Springer-Verlag, New York, 97-102. 

Reineck, H.-E and Wunderlich, F., 1968: Classification and origin of flaser and 
lenticular bedding, Sedimentology, 11, 126 and 99-104. 

Russell, R.J. and Mcintire, W.G., 1965: Beach cusps, Geological Society 
America Bulletin, 76, 307-320. 

Sallenger, A.H.Jr., 1979: Beach-cusp formation, Marine Geology, 29, 23-37. 

Sanderson, D.J. and Donovan, R.N., 1974: The vertical packing of shells and 
stones on some recent beaches, Journal of Sedimentary Petrology, 44, 
680-688. 

Shaw, J. and Forbes, D.L, 1990: Relative sea-level change and coastal 
response, northeast Newfoundland, Journal of Coastal Research, 6, 641-
660. 

Shaw, J. and Forbes, in press: Postglacial relative sea-level changes and coastal 
evolution, Newfoundland, Canada, International Coastal Symposium, 
Hofu, Iceland. 

Shaw, J., Taylor, R.B. and Forbes, D.L., 1993: Impact of the Holocene 
transgression on the Atlantic coastline of Nova Scotia, Geographie 
Physique et Quaternaire, 47, 221-238. 

Shawmont Martec Limited, 1984: Hydrotechnical study of the Placentia flood 
plain, unpublished contract report to Environment Canada and 
Newfoundland Department of Environment, St. John's, 132 pages and 
5 appendices. 

291 



Shepard, F.P., 1950: Beach Cycles in southern California, U.S. Army Corps of 
Engineers, Beach Erosion Board Technical Memo No. 20. 

Sherman, D.J., 1991: Gravel beaches, National Geographic Research & 
Exploration, 7, 442-452. 

Sherman, D.J., Bauer, 8.0., Nordstrom, K.F., Jagger, K.A. and Allen, J.R, 1989: 
Sediment transport in the lee of a groin, Geooko Plus 1, 263-264. 

Sherman, D.J., Bauer, B.O., Nordstrom, K.F. and Allen, J.R., 1989: A tracer 
study of sediment transport in the vicinity of a groin: New York, 
U.S.A., Journal of Coastal Research, 6, 427-438. 

Sherman, D.J., Orford, J.D. and Carter, RW.G., 1990: Particle sorting on gravel 
beach cusps, International Association of Sedimentology, Nottingham, 
Abstract, 495. 

Sherman, D.J., Orford, J.D. and Carter, R.W.G., 1993: Development of cusp­
related, gravel size and shape facies at Malin Head, Ireland, 
Sedimentology, 40, 1139-1152. 

Shvetsov, M., 1954: Concerning some additional aids in studying 
sedimentary formations. Academy of Sciences of the USSR, Koklady 
Earth Sciences, 29, 61-66. 

Summers, W.F., 1949 : Physical geography of the Avalon Peninsula of 
Newfoundland, McGill University, M.Sc. thesis. 

Taylor, R.B., Wittmann, S.L., Milne, M.J. and Kober, S.M., 1985: Beach 
morphology and coastal changes at selected sites, mainland Nova 
Scotia, Geological Survey of Canada, Paper 85-12. 

Tucker, C.M., Leckie, D.A. and McCann, S.B., 1982: Raised shoreline 
phenomena and postglacial emergence in south-central 
Newfoundland, Geographie Physique et Quaternaire, 36, 165-174. 

Udden, J., 1898: Mechanical composition of wind deposits, Augustana Library 
Publication 1. 

Waag, C.J. and Ogren, D.E., 1984: Shape evolution and fabric in a boulder 
beach, Monument Cove, Maine, Journal of Sedimentary Petrology, 54, 
98-102. 

292 



Wadel!, H., 1935: Volume, shape, and roundness of quartz particles, Journal 
of Geology, 43,250-280. 

Water Resources Atlas of Newfoundland, 1992: Water Resource Division, 
Department of Environment and Lands, Government of 
Newfoundland and Labrador. 

Wentworth, C.K., 1922: A method of measuring and plotting the shapes of 
pebbles, U.S. Geological Survey Bulletin, 730-C, 91-102. 

Werner, B.T. and Fink, T.M., 1993: Beach cusps as self-organized 
patterns, Science, 260, 968-971. 

Williams, A.T., 1973: The problem of beach cusp development, Journal of 
Sedimentary Petrology, 43, 857-866. 

Williams, A.T. and Gulbrandsen, L.F., 1977: The orientation of pebbles on 
beaches, Cambria, 4, 174-186. 

Williams, A.T., and Caldwell, N.E., 1988 : Particle size and shape in pebble­
beach sedimentation, Marine Geology, 82, 199-215. 

Williams, H., 1979: Appalachian orogen in Canada, Canadian Journal of 
Earth Sciences, 16, 792-807. 

Woodcock, N.H., 1977: Specification of fabric shapes using an eigenvalue 
method, Geological Society of America Bulletin, 88, 1231-1236. 

Woodrow, E.F. and Heringa, P.K., 1987: Pedoclimatic zones of the island of 
Newfoundland, Canada Soil Survey, Newfoundland, Report 32, 12 
pages. 

Worrall, G.A., 1969: Present-day and subfossil beach cusps on the West 
African coast, Journal of Geology, 77, 484 487. 

Wright, L. and Short, A., 1984: Morphological variability of surf zone and 
beach: a synthesis, Marine Geology, 56,93-118. 

Zenkovitch, V.P., 1967: Process~s of Coastal Development, Oliver & Boyd, 
London. 

Zingg, T., 1935: Beitrage zur Schotteranalyse, Schweizerische Mineralogische 
und Petrograhbische Mitteilungen, 15, 39-140. 

293 



rrrz::p unconsolidated bluff 
16 pit 
r . .:-; .... : ..... J beach sediments 

bathymetric contours 
in metres 

N 

t 
0 100 200 

.I 

metres 

Figure 6: Map of the barrier at Ship Cove. 



54°05'W 

N 

t 
0 100 200 

I 
metres 

rll.lF unconsolidated bluff 
1:··.:·;.:] beach sediments 

bathymetric 
contours in metres 

• core sites 

54°04'W 

Figure 7: Map of the barrier at Big Barasway. 






