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Abstract

In this thesis, regional models for the prediction of flood quantiles for streams on the island of
Newfoundland are developed using historical streamflow data which has been subject to peak-
over-threshold analysis. The Peak-Over-Threshold method of flood frequency analysis allows
extraction of more relevantdata from a historical flow series than would be available using the
conventional annual maximum flow method. As aresult, the peak-over-threshold method is of

particular interest in regions where data on streamflows is limited. This is the case in

Newfoundiand.

Streamflow series from 63 rivers on the island of Newfoundland are considered. This data is
modelled using a Poisson amrival process and the Exponential and Pareto magnitude distributions.
Results from single-station peak-over-threshold analysis are compared to those obtained from the
annual maxima series modelled using the 3-Parameter Lognormal and Generalized Extreme Value
distributions. The island is divided into hydrologically homogeneous regions. Hydrologically
homogeneous regions are defined as geographic areas in which flood flows are identically
distributed except for scale. Regional index flood estimators are developed using the data

generated from the peak-over-threshold approach.

For the quantile estimates generated for the 63 data series analysed, there is no statistically

significant difference between the central position of the results of the 3-Parameter Lognormal,



Generalized Extreme Value, Poisson-Exponential, and Poisson-Pareto models. Model error for
the single station analysis is tested using a bootstrap approach. For the standard error of quantile
estimates generated by resampling, the Poisson-Exponential Distribution model exhibited
comparable standard error for lower quantiles and lower standard error for higher quantiles.
Because of this, the Poisson-Exponential model was determined to be the most robust for a variety
of quantiles. Although the Poisson-Pareto distribution is moreflexible, itappears to be inferiorto

the Poisson-Exponential model in this case.

Regional models were developed using an index flood approach. The index flood was taken as
the two-year return period flood, Q(2), and regional estimators for index floods for eachrregion
were developed by non-linear regression on physical basin descriptors. Regional models developed
using nonlinear regression exhibited better fit to theunderlying data than did themodels produced
using the traditional log-linearmethod. The nonlinear modeis exhibited lowerbias, and also less
estimation error. The ratios of Q(T)/Q(2) were easily calculated, and allowed estimation of flood
quantiles for stations in theregions with a reasonably goodfitto the expected values. For most
regions RMSE was less than 10% of the mean of the expected values. The estimated values from
application of the index flood technique tended to overestimate the quantile slightly and results were
somewhat positively skewed from expected values. This will tend to produce more conservative

(higher) estimates of flood quantiles.
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In the Southwest Region the equation which performed best (generated estimates with the lowest
error) relied on three basin descriptors. The number of gauge records available in this region was
only six. The coefficients developed for this equation are also somewhat suspect as they suggest
asignificant scalingof the result. Inthis region, the use of the wholeisland equation may provide

a more reliable result and is recommended.

Quantile estimates generated using the index flood method produced the poorest results in the
Northwest Region. However, results were still reasonable and atlower quantiles, the RMSE was
less than 10% of the mean expected value. When the estimators derived for the whole island were
applied to this region they produced slightly better results. Thus with the exception of the
Northwest Region, the use of regional index floods produced improved quantile estimates when

compared to the estimates produced by equations developed for the whole island.
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1. INTRODUCTION

This chapter starts with a discussion of hydrologic modelling, howmodels are developed, and the
types of models commonly applied to predict peak flows. Followingthis general discussion, the
objectives and methodology of this thesis are explained, and the outline of the thesis is given. At
this time, it should be noted that the work of this thesis is concerned only with the island portion of
the province of Newfoundland and any reference to Newfoundlandin this thesis is intended to

indicate only the island portion.

1.1 Background

One of the most difficult problems in hydrology is the prediction of frequency of occurrence of
future streamflow magnitudes, or flood quantiles. A flood quantile is aflood eventof known or
estimated probability of recurrence. That s, for 100 years of data the 75* quantile is the flood
event not exceeded 75% of the time. When studying this problem, the engineer or hydrologist
wants to develop amodel by which he can predict the probability thata future event of a given
magnitude will occur within some time period of interest. For example, an event with a magnitude
which occurs on average once every hundred years has a probability of occurrence of 1/100 in any
given year. Suchan eventis referredto as a hundred-year event or as an event with a 100-year

return period.



The hydrologist and engineer must understand these events in terms of their probability of
occurrence overthelifeof astructure. The accurate prediction of flood quantiles is difficult, but
this information is critical in the design of bridges, culverts, dams, flood protection works, and other
works which areimpacted by the flow of astream. Failure to design thesestructures with sufficient
capacity can result in failures which are costly and result in loss of human life. Alternatively,
structures which are designed with excessive capacity are unacceptably costly to construct. Hence,
the ability to provide accurate probabilistic models of flood events has significance from both an

economic and environmental standpoint (Bobée and Rasmussen, 1995).

Hydrologic models allow the hydrologist or engineer to reduce complex physical systems to
components and to make predictions of hydrologic behaviour in adeterministic or probabilistic
sense (Haan, Johnson and Brakensiek, 1982). However, all models are incomplete approximations
of real behaviour, and the output information from a model is seldom an exact representation of the
actual response of thereal system tothe same inputs. Additionally, models are generally designed
to predict only limited components of system output response. Thus amodel designed to predict
flood quantiles may predict the magnitude of aflood corresponding to a particular probability of
occurrence but may say nothing about the duration of that flood or the shape of the flood
hydrograph. Generally, asthe amountof explanatory information integrated into the model and the

amount of information contained in the model output increases, the complexity of the model and



the uncentainty associated with the model outputincreases as well. The task of themodelleristo

model the actual system as closely as possible while keeping the model as simple as possible.

The simplest type of flood model occurs where individuals living adjacent to a stream witness a
flood event and subsequently adjust their construction practices to accommodate this high flow
condition. Overalong period, information on the behaviour of a stream is passed along through
the group and an understanding of the stream s behaviour, amodel, becomes cultural information.
Theindividuals involved do not require any understanding of the underlying processes related to

the high flow or any knowledge of probability concepts to apply their model.

Models which require intimate knowledge of the behaviour of a particular stream over an extended
period of time are limited in their application to the stream upon which the knowledge is based.
To extrapolate the behaviour of unobserved streams from knowledge about observed streams,
mathematical models are used. Information about streams with known behaviourisutilized to
develop an idea of the behaviour of a stream which has notbeen observed. Where components
of mathematical models are considered to befree from random variation, the model is defined as
deterministic (Haan, Johnson and Brakensiek, 1982). The Associate Committee on Hydrology
(1989) describes the flood envelope chart as an example of a deterministic approach. An

example of this type of chart from the work of Neill (1986), is included as Figure 1.1. High flood



discharges may be plotted against drainage area to show a relationship. This relationship may be

expressed as an equation:

Q=C=4 " M

Where Q is ahigh discharge of unknown return period, 4 beingthe area of the drainage basin, and
C and B being coefficients determined by the modeller. The selection of drainage area as a primary
predictor of flood flows is a logical one since the amount of water available for streamflow is
directly related to theamount which is collected over the drainagebasin area. This approach is
based on a collection of observed maximum flows for a number of rivers in a region and no
probability of occurrence is implied. The assumption of similar hydrologicbehaviour among
streams in close proximity is implicitin this model. The concept of regional hydrologic homogeneity

will be discussed in some detail later in this thesis.

In statistical modelling, the modeller uses known information about the event of interest and the
underlying explanatory phenomena to develop models which allow inferences about future events.
The mathematical model provides a simplified explanation of how the explanatory variables
influencethe variable of interest. The quality of themodel is determined to a large degree by the
modeller’s understanding of therelationship between the variables, and by the amount and quality

of relevant explanatory information which it uses to produce its outcome.



Some models use an underlying phenomenon, such as rainfall, to obtain model inputs with known
probability of occurrence. The model then relates these inputs to streamflow in terms of basin

characteristics. The rational formula is an example of this type of model.

O = kCIA @

Where Q is adischarge of known return period, 4 being the areaof the drainage basin, /being a
rainfall eventof known intensity, duration and frequency of occurrence, Cbeing acoefficient
related to surface characteristics of the drainage basin, and kbeinga conversion factorto allow
use of metric units. The rational formula is an attempt to model the output characteristics of a
stream (streamflow) based on the physical relationship between the system input (rainfall) and the
drainage system it must pass through. In this type of model, the inputs are estimated using a
statistical model of rainfall, basin characteristics are estimated from maps or field data, equations
are derived relating rainfall inputs to streamflow, and these equations are calibrated to the

streamflow conditions for known inputs.

Inmodels like the rational formula, the quality of the input data has asignificant influence on the
reliability of the outcome. For the rational formula to work well, long rainfall records are required
containing not justdaily rainfall amounts but information about rainfall intensity. The rainfall data

must come from a source in close proximity to the stream which is being studied. In addition, the



model implies that the probability distribution of basin output is the same as that of input, which may
not necessarily bethe case. The rational formula works best for small uncomplicated drainage
basins where rainfall input produces output response quickly and there are few attenuating features.
In large complex basins, the inputsignal takes much longerto propagate through the system and
is moderated by a number of processes. The outputoflarge systems may notreflect the shape of
theinputsignal. Thus, for large basins theremay be problems with application of models like the

rational formula.

Statistical methods have long been applied to historical streamflow data to estimate the frequency
of occurrence of future streamflow magnitudes. If along streamflow record exists for the stream
under consideration, an appropriate probability model may be fitted to this long data record to
yield good estimates of flood quantiles and results from themodel may be calibrated against known
data points within the record. Forexample, if a probability model is fitted to a data series with 100
years of data, the calculated magnitude of an event with probability of 0.04, may be compared to

the fourth highest recorded flow in the 100 years.

The most common methods use series of Annual Maximum Flows (AMF )from gauged streams.
In this approach, only the maximum flow in any year is considered relevant. Otherinformation
about flow magnitudes is discarded. Probability distributions are fitted to the annual series to

produce estimates of flood quantiles, Qq, for gauged streams.



The 3-Parameter Lognormal Distribution and the Generalized Extreme ValueDistribution are two
probability models which have been applied for prediction of flood quantiles from AMF data
series. Otherdistributions arealso available, including the Log-Pearson Type II1, and the Wakeby
distribution. However, Beersing (1990) found that the Log-Pearson Type Il and Wakeby
distributions exhibited poorer fit for Newfoundland data than the 3-Parameter Lognormal and
Generalized Extreme Value. Only the 3-Parameter Lognormal and Generalized Extreme Value

distributions have been considered for modelling of AMF series in this thesis.

Where the record of historical streamflows is short, fitting probability distributions to AMF series
can be problematic. Obtaining a satisfactory fit may be difficult, and once afitis obtained the
outcomes may beunstable and highly dependent on individual values inthe data. Someresearchers
have found that the limited availability of data reduces the utility of sophisticated probabilistic
models and that simpler models perform just as well for these limited data sets (Bobée and
Rasmussen, 1995). Oneway tocombat this problem is to extract more data from the historical
records available. Where the amountof historical data which is available for the construction of
models is very limited, the peak-over-threshold method of analysis offers certain advantages. The
primary advantage of the peak-over-threshold method, compared to the conventional annual
maximum flow approach, is thatit allows the incorporation of more explanatory information in
model formulation. The inclusion of more explanatory information should improve the quality of

model outputs.



ThePeak-Over-Threshold (POT) method is astatistical approach which allows extraction of more
data from a streamflow record than would be available using the AMF approach (NERC, 1975).
The POT method is also known as the Partial-Duration-Series (PDS) method. In the POT
approach, all independent flow peaks above a set threshold are considered relevant. The POT
method can be particularly useful when the period of record is shortbecause POT series canbe
selected to contain a larger number of peaks than the AMF series (ACH, 1989). The threshold
may be adjusted to increase or decrease the amount of information considered. The larger
amounts of data generated using the POT method should permit better fitting of probability
distributions. This additional information constitutes the added value inusing this approach rather
than the more conventional AMF method. However, results must be evaluated against known
stream behaviour, and it is incorrect to assume that the use of a larger number of peaks will

necessarily produce a more efficient model (NERC, 1975).

Themodelling of POT data is generally done by combining a Poisson recurrence process with
anotherdistribution for magnitude. The Exponential Distribution and Pareto Distribution are
popular choices and theiruse is well supported in a number of studies. The Exponential distribution
has the advantage thatitis simple and requires the estimation of only one parameter. The Pareto
distribution is more flexible but requires estimation of two parameters. Theuseofboth of these

distributions is examined in this thesis.



As has been discussed in the preceding paragraphs, where the designerhas access to long or short
streamflow records, some understanding of the distribution of flood peaks for the stream may be
reached. However, in many cases thereis no data available for the location of interest. In these
cases the designer must use regional models to estimate flood quantiles. A regional model is a
model of drainage basin output (streamflow) which relates the output to basin descriptors and
which has as an underlying assumption, the concept that basins with a hydrologically homogeneous
region will behave in asimilar manner. These models use flood frequency information from
hydrologically similar streams to predict flood quantiles for the stream of interest. In cases where
thereis some streamflow information but it is limited, quantile estimates from regional models may
be better than those obtained from distributions fitted to the data for the location. Such equations
allow estimation of the flood quantile, Qr, ataspecificsitebased onregional equations. These
equations may be developed for any region with similar hydrologic conditions throughout. In
general, regional estimators are useful forimproving flood quantile estimation at sites where little
hydrologic information exists, and are essential for estimating flood quantiles at sites where no
hydrologic data are available (Ashkar, 1994). Regionalisation is probably one of the most

promising ways to improve flood quantile estimates (Bobée and Rasmussen, 1995).

The hydrologist or engineer must exercisecare in using either deterministic or statistical models.
Model calculations generally require the assumption of homogeneity of response between the

watershed under study and the watershed used to construct the model. Models are generally



devised using data from a restricted study region and individuals using thesemodels must be sure
that theassumptions and conditions of the model apply to the stream which they arestudying. For
example, the United States Department of Agriculture developed the SCS Curve Number Method
(SCS, 1972)to simulate rainfall-runoff relationships for small agricultural basins. This method is
unsuitable for areas with frozen ground and runoff from melting snow, andis of imited use in

simulating rainfall-runoff events in the cold Canadian climate (ACH, 1989).

Both deterministic and statistical models may produce results which deviatesignificantly from actual
streamflow behaviour. When interpreting model results, itis important that the designer exercise

judgement and uselocal historical knowledge of thestream’s behaviour to evaluate model outputs.

1.2 Research Objectives

A numberof methods are used in the prediction of peak flows for Newfoundland. Theseinclude
the Rational Method, SCS Curve Number Method, channel capacity methods, and local historical
knowledge. Recent advances includethe work of Beersing (1990) Regional Flood Frequency
Analysis for the Island of Newfoundland, and the work of Susan Richter (1994) in her thesis
Relationships of Flow and Basin Variables on the Island of Newfoundland, Canada, witha

Regional Application.

10



The purpose of this work is to investigate the use of peak-over-threshold analysis to construct
improved regional models for prediction of flood quantiles for insular Newfoundland. Caissie and
El-Jabi(1991a)indicated that the POT method could be applied as successfully to Newfoundland
flow series as it could to flow series for any other province. They also indicated thatthe POT
method was found to work well in the eastern regions of Canada. They considered fifteen (15)
gauge records for the island portion of Newfoundland, and the island was treated as one

homogeneous region.

In this thesis, single station quantile estimators will be constructed by fitting probability distributions
to streamflow data extracted using the peak-over-threshold method. Sixty-three(63) stations are
used in this analysis. Using these single station quantile estimates, the island will be divided into
regions and regional models will be constructed relating basin descriptors to flood quantiles. The
index flood is related to quantile estimates obtained using POT analysis, and regional quantile

estimators are produced.

This thesis incorporates more streamflow records than previous studies, extracts more data from

each series by using the POT method, and generates regional quantile estimates using non-linear

regression. This should producebetter estimates of flood quantiles than those currently available.

11



1.3 Research Methodology

This thesis applies the peak-over-threshold method to generate flood quantiles for streamflow
records for the island portion of Newfoundland. Regional quantile estimator models are
constructed forthe island. An extensive literature review is part of this research and the resuits of
this review arecontained in the first few chapters of this document. Thelast two chapters contain
the experimental results and conclusions based on the literature review and the results. The general

methodology applied in this research is explained below:

1. Incorporate the maximum number of suitable flow records into the data set.

2. Perform AMF and POT analysis of selected flow records.

3. Fit probability models to extracted data using the three parameter log-normal
(3LN) and generalized extreme value (GEV) distributions for annual maximum
flood (AMF) series, and the Poisson-Exponential (PED) and Poisson-Pareto
(PPD) distributions for the POT series.

4. Compare theoutput of AMF and POT models for prediction of flood quantiles for
stations with historical records.

5. Divide the island into regions and test regions for hydrologic homogeneity.

6. Develop regional equations to estimate flood quantiles from basin parameters.

12



1.4 Organization of this Document

This thesis starts with an introduction to the concepts of flood frequency analysis and the reasons
forthe application of the POT method to data series for the Island of Newfoundland. In Chapter
2, the study area is described and the known hydrologic characteristics discussed. In Chapter3,
the methods for flood frequency analysis of single data sets using annual maximum floods, AMF,
and POT approaches arediscussed and the quantile estimators denved for a number of probability
distributions. In Chapter 4, the rationale for regionalisation and the methods for defining regions
arediscussed. In Chapter S, drainage basin descriptors and the methods used to develop regional
models areexplained. In Chapter 6, the results of experimental analysis are presented. And finally,

in Chapter 7 some conclusions are made regarding the expected and obtained results.
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2. DESCRIPTION OF STUDY AREA

In this chapter the location, topography, climate and hydrology of Insular Newfoundland are
discussed. In addition, in thefinal section of this chapter, the availability of streamflow datafor the

island is presented.

2.1 Location of Study Area

TheProvinceof Newfoundland and Labrador, the easternmost province of Canada, consists of
an island portion, Newfoundland, and a continental portion, Labrador, as showninFigure2.1.

Theisland portion has an area of 111390 square kilometres (DOE, 1992). Theisland is subject
to continental weather from Canada as well as the Eastern seaboard of the United States. The
waters of the Guif of St. Lawrence and North Atlantic surround theisland and moderate continental
effects while the Labrador Current and Gulf Stream both act to influence island climates. Because
of these influences, the streamflow records for Newfoundland do not always exhibit the same

behaviour as records at similar latitudes in Canada.
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2.2 Topography and Land Use

Cassie and El-Jabi (1991a) treated Newfoundland was treated as a single homogeneous
hydrologicregion. However, the island of Newfoundland has a diverse geographicmakeup. The
Water Resources Atlas of Newfoundland (DOE, 1992), states that, while most of the terrain
is hilly and rugged, the nature of the landforms, surficial geology, and ground cover vary greatly and

from east to west. A map of the island is shown in Figure 2.2

The west coast is dominated by the Long Range Mountains, a partof a chain which stretches as
farsouth as New England. In Newfoundland these mountains extend from the southwestern tip
oftheisland to the end of the Northern Peninsula. The terrain ranges from 200 to 600 metres in
elevation with some higher peaks (DOE, 1992). The mountains and long coasta!l inlets have
profound localized impacts on the hydrology of this area. Much of this areais sparsely populated
but timber harvesting activity is prevalent throughout. The Southwestern comner of the island is
exposed to incoming storms and moist ocean air. Strong orographic influences may dominatethe

local hydrology. This area is sparsely populated, and much of the terrain is barren.

Terrainin the central region ranges in elevation from 200 to 300 metres (DOE, 1992). This area
isalso sparsely populated and timber harvesting is prevalent. The Avalon zone is connected tothe

main body of the Island by anarrow isthmus. This region has lower more undulating topography
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with isolated peaks to 300 metres (DOE, 1992). This area is the mostdensely settled areaof the

province and contains the provincial capital.

2.3 Climate

Newfoundland is subjectto varying weather patterns influenced by latitude, general atmospheric
circulation, continental weather, and ocean currents. The normal seasonal conditions of Canada
are prevalent, but there may be variations because of the strong influence of the surrounding ocean.

A mild winter and cool summer are typical (DOE, 1992).

Temperature varies across the island with five degrees Celsius the average for the Avalon and Burin
Peninsularegions and one degree Celsius average for the Northern Peninsula (DOE, 1992). Mean
annual precipitation varies from 779 millimetres to 1644 millimetres across the island (DOE, 1992).
Richter (1994) described the climate as cool, moist and maritime, characterized by unsettled

weather with few extremes of temperature or precipitation.

Theislandis positioned in the belt of westerly trade winds (Richter, 1994). Prevailing winds flow
from west to east bringing air and weather patterns from Eastemn North America. Stormstend to
cross the island in a generally southwest to northwest direction (Richter, 1994). In summerthe

prevailing westerly flow delivers warm air from the continent, and in winter cold continental air is
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delivered to theregion. The continental influence on local air temperatures is moderated by
surrounding water and tends to decrease as onemoves to the east. Variations in the position of the
jetstream may produce winter conditions with incoming cold air from eastern Canada, or warm
air from the eastern seaboard of the United States. Some parts of Newfoundland frequently

experience midwinter warming which may persist for days.

Ocean circulation also has a major impact on Newfoundland weather. Along the Northern and
Northeastern coasts the Labrador Currentdelivers cold water throughout the year. Alongthe
South coast there is a strong impact from the warm Gulf Stream and many inlets remain ice free.
The cold Labrador Current and the warm Guif Stream converge atthe southeasttip of the island

and produce variability in atmospheric conditions. Fog is common in this region.

2.4 General Hydrology

Newfoundland streamflow records typically follow the normal patterns for continental North
America. There are usually aspring peak and a fall peak with the spring peak being the most
significant. However, as a result of the climate variability mentioned earlier, there are
Newfoundland streams which do not fit the continental hydrology pattern or are subject to more
vanability than normal. The hydrographs in Figure 2.3 illustrate the variety of hydrologic patterns

which are present in Newfoundland.
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Thestreamflow records presented in Figure 2.3 are produced from the average daily flow over the
period of record for each gauging station, smoothed by a seven day moving average. This average
daily flow approach was adopted because it is more representative of general behaviour of the
stream than one year of record. Torrent River, Figure 2.3a, on the Northern Peninsula, has a large
spring runoff with much lower peaks later in the year. This river is most likely exhibiting a
significant melt-out in the spring which produces the peak streamflow for this basin. However,
some additional high flows occur as a result of storms later in the year. Northeast Pond River,
Figure 2.3b, in thesoutheastern partof'the island typically has its highest peak flow in the spring
but also has significantevents inthefall. Inthis areaof the island, the occurrence of peak flows is
less associated with snowmelt and more associated with storm events and rain-on-snow events.
The Humber River, Figure 2.3c, shows a significant spring peak around April/May and then much
lower peaks in thefall. Inthis basin, snowmelt produces significant runoff which generates high
spring flows, butthis river has alargebasin which tends to attenuate the influence of storm events.
GanderRiver, Figure2.3d, shows a high spring peak, most likely associated with snowmelt, and

some fall peaks which are associated with a fall storm events.

Surface water is more important than groundwater in Newfoundland (Richter, 1994). The island
geology with a few exceptions is characterised by bedrock with a thin veneer of glacial till (Richter,
1994). Infiltration effects and aquifer storage do not have the significant impacts on flood flows

which they have inregions with deep soil cover. This would lead to an expectation of quick runoff
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and basins which were highly responsiveto variations in rainfall input. However, in many basins,

the presence of numerous water bodies and swamps flattens flood hydrographs (ACH, 1989).

Causes of flooding on the island of Newfoundland include rainfall alone, rainfall plus melting snow,
icejamming, and tidal events (ACH, 1989). Severe flooding which occurred in 1983 involved

rainfall, melting snow, and ice jamming (ACH, 1989).

2.5 Seasonal Effects

Seasonal variations may be a source of problems in flood series analysis (Ashkar, 1994). The
peaks associated with spring and fall may be different enough in mean and variance to comprise
two different populations. Most annual flood series in Canada contain floods of two types which,
on occasion, comprise two populations (ACH, 1989). Itmay notbe feasibleto assume that the
daily flows of May have the same distribution as those of December (Taesombut and

Yevjevich,1978).

In the Avalon and Burin Peninsula areas of the island most peak flows are the result of rainfall
combined with melting snow (Beersing,1990). However, peak flows have occurred in every month
of the year and are not strongly grouped into one season. In the Central area most of the peak
flows occurin April and May and are primarily caused by melting snow (Beersing, 1990). Inthe
Northwest area melting snow is also the most prevalent cause of peak flows but peaks occur from
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Aprilto June (Beersing, 1990). In the Southwest area most peak flows occur most often between

October and December as a result of rainfall events (Beersing, 1990).

A treatment which divides the flow record into seasons complicates the preparation of frequency
analysis considerably (ACH, 1989). There is littlereason to perform this division unless treatment
as a single population produces a peculiar problem (ACH, 1989). In addition, for long data
series, peak size tends to override seasonal effects (NERC, 1975). Ashkar(1994) considered
only spring peaks. However, this type of data censoring is whatone is trying to avoid by using the

POT method.

In Newfoundland, peak flows occur in the periods April through June and November through
February with little distinction as to timing between rainfall only and rain with melting snow events
(ACH, 1989). Fora study of flood quantiles the timing of the flood within the hydrologic year is
of less interest than its magnitude. Because seasonal effects are poorly defined for Newfoundland,
and because the modelling of seasonal effects increases model complexity significantly, seasonal

variations were not modelled in this thesis.
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2.6 Availability of Data

Data on streamflow is limited for much of Newfoundland. Anareaof111390square kilometres
has 93 active hydrometric stations. Most streamflow record are short and long records are biased

toward larger watersheds.

Including both active and discontinued locations, data are available for one hundred and eleven
numbered hydrometric stations at various locations throughout the province. Records vary inlength
from one year to about seventy years. Physiographic data for gauged basins are availablefrom the

Department of Environment and Labour, Government of Newfoundland.

Climate records are available from the Atmospheric Environment Service, Environment Canada.

However, the climate network is sparse and most stations are coastal and at low elevation, making

the data of limited use for hydrologic analysis (Richter, 1994).
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Figure 2.1

Map of Eastern Canada
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3.0 SINGLE STATION ANALYSIS

This chapter discusses the approaches to fitting frequency distributions to data sets for individual
gauged streams. Analysis usingthe Annual Maximum Flow Series and Peak-Over-Threshold
Series are compared and then each method is discussed in some detail. Probability distributions
associated with each approach arediscussed. Finally, the quantile estimators for each method are

explained.

3.1 Peak-Over-Threshold versus Annual Maxima

When applying any statistical method, it is preferable that the maximum amount of raw data is
incorporated into the analysis. By including more data, a statistical model can be made tofit nature
more closely and to model the system under study through a wide range of conditions and states.
However, theresearcher is notalways interested in the total behaviour of the system. In most
cases, the results desired relate to the centre of the data and the upper and lower extremes.
Models developedto predict probability of occurrence of streamflow maximums will generally not
be improved by inputting data which relates to the low flow characteristics. This additional data
does nothing to improve the behaviourof the model and increases the computational load. There

is always a trade off between inclusiveness and utility.
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As an example, arecord of daily flows contains a largeamount of data. Five years of data contains
approximately 1826 data points. Asone cansee from Figure 3.1, thereis a lotof information in

the dataset, howeveritis difficult to make this information meaningful in terms of peak flow events.

The Annual Maximum Flow, AMF, series excludes everything except the maximum flow fora
given year. Anyflow events within the year with magnitude less than the annual maximum are
discarded. This data may be used to construct models which estimate probability of occurrence
of future flood magnitudes. The disadvantage of this method is that multiple events in any yearmay
be higher than the maximum in another year, but these events are discarded if lower than the annual
maximum. The advantageis that itis simple to extract the annual maxima, and as one cansee from

Figure 3.2, the amount of data which must be manipulated is greatly reduced.

ThePeak-Over-Threshold, POT, series is generated using a different approach than the annual
maximum flow series. Inthe POT approach, all events which exceed a specific threshold, q ,, are
counted as flood events and areincluded in the extracted dataseries. As shown in Figure 3.3, this
can produce a greater number of events than the AMF series while keeping the amount of data
manageable. In addition, by proper selection of q,, the modeller may include more events which
are more representative of peak flow conditions than would be available using the AMF approach.
As mentioned above, the AMF method may discard significant events which may be included in

analysis using a POT approach. The use of more data, and the use of data which more directly
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reflect peak flow conditions, should resultin improved fit of flood quantile estimators. However,
the idea that more data arenecessarily better is not always true. In some cases the AMF approach

produces smaller estimate variability than the POT approach. (INERC, 1975)

Wherethere is a scarcity of streamflow data, the researcher is faced with a problem. How does
one estimate the probability of future events with only a limited knowledge of what has gone
before? Thesolutionto this problem, in some cases, may lie in a more intensive examination of the
data which does exist. It is possible that additional information has been suppressed by the
application of methods like AMF, which excludes all butthe maximum event inany given year. An
alternative approach like the POT method, which extracts more information from the available data,
may allow aresearcherto better fit a probability distribution to the streamflow series. Thus, peak-
over-threshold based estimation procedures may be useful in estimating floods when thereis a

limited amount of data (Ashkar, 1994).

Themain strengthof POT models in comparison to AMF is that, by appropriate selection of the
threshold they allow a better inclusion of events which are to be considered floods (Ashkar, 1994).
Taesombut and Yevjevich (1978) suggested that some of the problems of short streamflow
records could be overcome by the consideration of all the flood peaks above a carefully set

threshold. The estimates generated from POT series should be subjectto lesseruncertainty than
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those generated from AMF data if the threshold is selected properly (Taesombut and Yevjevich,

1978).

POT thresholds areusually selected to include a greater number of events than would be produced
by the AMF method. Generally the fitof POT models is better than AMF for low quantiles, and
is known to deteriorate at higher quantiles wherethe threshold is selected too low (Wang, 1991).
Care should be exercised in the use of the POT method to derive quantile estimates for events with
high return periods (NERC, 1975). POT outcomes may depart significantly from those developed

using AMF series.

Where the threshold is selected to produce an average of one flood per year, equivalent to the
AMF method, the POT model and AMF model have similar efficiency forhigh quantile estimation
(Wang, 1991). In addition, for long records the estimate produced from POT and AMF series

will tend to converge.

3.2 Annual Maxima Models

Inthe AMF approach, a probability distribution is fitted to the series of annual maximum flows.
This allows one to predict the probability of occurrence of a given flood magnitude. The series of

annual maximum flow events is generally assumed to be independent and stationary (Bobée and
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Rasmussen, 1995). The independence of individual flood events in the series makes sense, since
most of these events are separated by substantial time periods. A number of tests are also
available to test the data series for serial correlation or trend. If a serial correlation or trend is
detected in the data, the fundamental assumptions of the probability model are violated and

measures must be taken to model the data differently.

A number of probability distributions have been proposed as models forflood frequency. Some
distributions are better at modelling the behaviourof'the data within the range of the data set, and
some distributions are better at modelling the estimated values outside the known data (Bobée and
Rasmussen, 1995). In this thesis, the focus is on prediction of flood quantiles, most of which are
outsidethe known data. A number of models have been discussed in literature and some have been
specifically developed for the purpose of predicting frequency of occurrence of flood flows. Most
notable among the models used for flood frequency analysis are the Three Parameter Log-normal
(3LN), Generalized Extreme Value (GEV), Gumbel, Wakeby, and Log-Pearson. All of these

models have relative advantages and disadvantages.

In Regional Flood Frequency Analysis for the Island of Newfoundland (Beersing, 1990), the
annual maximaseries was modelled using the bestfitting of the GEV and 3LN. Ofthethirty-nine
stations considered, the GEV model had the best fit for eighteen stations, and the 3L N best fit the

other twenty-one (Beersing, 1990). The results for both models were very close, within five
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percent, and using the criteria of that study, either model would have made an adequate fit
(Beersing, 1990). Inthis thesis, results of the 3LN and GEV fit to the annual maximum flow series
are used for comparison to the results of peak-over-threshold modelling. The application of these

distributions is explained in the following two sections.

3.2.1 Lognormal Distribution

The two parameter Log-normal, 2LN, and three parameter Log-normal, 3LN, models are
adaptations which allow the use of the Normal, or Gaussian, distribution to predict flood quantiles.
The Three Parameter Log-normal distribution has beenused extensively throughout Canadaand
the United States (ACH, 1989). The model is well understood and works reasonably well for

many flood series.

Normal distribution curves may be completely described by two parameters, their mean and
variance. However, the familiar bell shaped curve of the Normal distribution has a range along the
x-axis described by -» <x < =, while most hydrologic phenomena have alowerbound of zero
(R_L.Bras, 1990). Toovercomethe inconsistency between the data and the distribution, the data
may be transformed into logarithmicspace. Inthe 2LN distribution, a new transformed variable
is developed, y = In(x), and for the 2LN model the two parameters are the mean and variance of

the transformed variable. Althoughthis transformation resolves the issue of the lower bound, a
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better fit may generally be obtained by the introduction of a third parameter which modifies the
position of the data prior to transforming it into logarithmic space. Inthe3LN distribution, the new
transformed variable is y = In(x-£), and for the 3LN model the three parameters are the lower

bound &, and the mean and variance of the transformed variable.

For positively skewed data the parameter £, is a lower bound which may be estimated from the

x-data using a formula given in Maidment (1992):

. |
€= xnuxn'n x-dmn (3)

X max "Xmin ~2X o edian

This process works well for positively skewed data. However, the 3LN distribution does not work
well for negatively skewed data. When the data are negatively skewed the formula standard
deviation (o,), and skew (g,) of the x-values. The second step is to solve the foll for the
transformed y-values changes to y = In(¢-x) and & becomes a positive upper bound. A more
general method for derivation of the lower orupper bound using method of moments estimators
is elaborated by Pilon and Harvey (1994), and is preferable to the estimator given by Maidment
(1992) when data may be negatively skewed. The first step is to obtain the mean (u,), owing

equation for c:
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c?+3c-g,=0 @)

In most applications the x-values are positively skewed. Following Pilon and Harvey (1994), the

lower bound may be estimated for positively skewed x-values using Equation 5.

C
E=h-— (5)

Where x-values are negatively skewed, the upper bound may be estimated using Equation 6.

cx
E=n+— ©)

Thetransformed variable y =/n(x-{) or y =In({-x), has arange -»= <x < e, consistent with the
Normal distribution, which has a probability density distribution which is effectively described by

Equation 7:

I B P!
o= ek 1e g -
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Within the transformed space one can find p,, the sample mean and o,, the sample standard
deviationof y. Aithough asimple equation for the cumulative distribution function is notavailable,
it is easy to estimate the probability of non-exceedence of any y- value by use of the standard
deviate z=(y-p,)/o,, and standard tables for the calculation of cumulative probability for the

Normal distribution.

3.2.2 Generalized Extreme Value Distribution

The Generalized Extreme Value, GEV, distribution has also been applied with success in most
regionsof Canada. The GEV type distributions are divided into three classes corresponding to the
shape parameter, k. (Pilon and Harvey, 1994).. If k<0 the distribution is a Frechet’s Type II,
EV2,ifk=0itisaGumbel Typel, EV1, and if K>0 itis a Weibull Type ITI, EV3 (Martins and
Stedinger, 2000). The k-valueis generally in therange -0.6<k<0.6 (Pilon and Harvey, 1994).

The cumulative probability distribution function is effectively described by Equation 8:

-t1-Xee-npr
Pee)ee [1-=(-2)) ®)

This can be seen to be equivalent to the equation describing the Poisson-Pareto distribution used

with the POT series in later sections.
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Thederivation of the parameters of the GEV is somewhat more complex thanforthe 3LN, and

distribution parameters are typically estimated using probability weighted moments. The
distribution is described by three parameters: &, is a bound or location parameter, ais ascale
parameter, and k the shape parameter. In a paper on the Pareto distribution, Rosbjerg et.al.
(1992), indicated that method of moments estimators were as efficient as others for parameters of
the GEV and Pareto distributions. Using method of moments, the scale parameter a, and theshape

parameter k, may be estimated as shown in Equations 9 and 10 respectively.

1 #
1
k~2 r 1) (10)

Ifk=0, thedistribution is defined as atwo parameter EV1, or Gumbel Distribution. Ifk is less than
zero then the distribution is an EV2 and the lowerbound &, is defined by equation 12. Ifk is greater
than zero then the distribution is defined as an EV3 and the upper bound &, is defined by Equation

1.

E=u+alk (11)
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Altemnately, the parameters may be estimated using L-moments or maximum likelihood estimators.

In the L-moment approach the value of k is estimated first (Martins and Stedinger, 2000).

k = 7859z + 29554z (12)
and

z=2/(7;+3)-In2/In3 (13)
where

73= A /4, (14)

and,, A,, and A, are the L-moment estimators. A number of methods are available forestimating
the A; values and are discussed in depth in Pilon and Harvey (1994) and Martins and Stedinger

(2000). Once k has been calculated, the other parameters are calculated easily.

a=21k/{(1-27°T(1+ k)} (15)

E=A,+a{l(1+ k)-1}/k (16)

GEYV parameter estimates using method of moments or L-moments have both been found
satisfactory by a number of researchers (Martins and Stedinger, 2000). Maximum likelihood
estimators, MLE’s, havealsobeen used to estimate GEV parameters but have performed poorly

for small samples (Martins and Stedinger, 2000).
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3.3 Peak-over-threshold Approach

3.3.1 Setting the Threshold

Thefirstcritical decision in the design of a POT model is the selection of a threshold value. Some
researchers select the threshold, q,,, based on physical constraints which determine whether or not
an eventisrelevant. Otherresearchers have indicated that the threshold should be selected to
producea preselected recurrence rate for flood events. Still others havesuggested selecting the

threshold to produce a POT series which has characteristics of the distribution used to model it.

High thresholds are those which produce average peak recurrence rate of less than one event per
year, extracting less peaks than would be contained in the AMF series. Forhigh thresholds, the
quality of low quantile estimates will tend to deteriorate, but the quality of high quantile estimates
may improveslightly (Wang, 1991). The improvement in high quantile estimates is limited, and
where short data records arebeing studied itis difficult to justify using less than one peak per year.
In Hydrology of Floods in Canada (ACH ,1989), and in the work of Taesombut and Yevjevich
(1978),aminimum of 1.65 peaks per year is recommended for POT series. High threshold series

are not considered in this thesis.
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Lowthresholds produce large mean annual recurrence rates. The difficulty with lowthresholds is
that independence of peak events may be compromised. Inaddition, additional peaks introduced
by lowering the threshold correspond to events with a high probability of occurrence. These events
contain less information related to flood events which have a relatively low probability of

occurrence. Thus, the calculation load is increased with no increase in model performance.

Some researchers argue that q, should be selected based onreal physical conditions of the stream
(Caissie & El-Jabi, 1991b). These physical constraints may include bank-full conditions, hydraulic
capacity of the stream, percentage of mean flow or other parameters. This approach produces a
series of events which can be identified as floods, but the POT series produced may not be

amenable to statistical treatment.

Other researchers adopt an approach where an average annual rate of exceedance, 2, is preset
and.q, is adjusted to produce this value of A. In general, the base is selected low enough that at
least one event in each year is included. Taesombut and Yevjevich (1978) found that where
A2 1.65, theresults of models constructed from POT senies had less variance than those from AMF

series.

Cassieand El-Jabi (199 1b) suggested using the mean to variance ratio of flood recurrence toset

q.. Assuming aPoisson arrival process for flood recurrence, Mo?=1, where o?isthevariancein
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recurrence rate. Because it is generated from the data, this threshold setting method has the
advantage of being somewhat more robust and less arbitrary than the preceding two. However,
in using this approach significant numbers of iterations may be required to obtain a threshold which
satisfies the A=o criteria, and the A=c? criteria may besatisfied at thresholds which produce very
high orvery lowrecurrencerates. Some judgement may berequired on the part of the researcher

to determine if the threshold selected using this method will produce thetype of dataseries desired.

3.3.2 Selecting Independent Peaks

One major concern of users of peak-over-threshold analysis, is that the sequence of events
extracted might be dependent since some peaks may occur on therecession limb of aprior event
(Taesombutand Yevjevich, 1978). However, for the proper application of most statistical models,
each event mustbe separate and distinct. A variety of methods have been proposed to ensurethe

independence of events.

Ashkar (1994) set two criteria for independent flood peaks:
(1)  Two consecutive peaks must be separated by at least seven days;
(2) The flowbetween two consecutive peaks must drop below aspecified fraction

(50%) of the lesser of the two peaks.
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Taesombut and Yevjevich (1978) suggested the Water Resources Council guideline:
(1)  Fiveday separation plus the natural logarithm of the drainage area in square miles;
2) The flow between two consecutive peaks must dropbelow 75% of the lower of

the two peaks.

For the purposes of this thesis, two criteria were used to exclude dependant peaks:
(1) aminimum seven-day separation;
(2)  atleastoneintervening daily maximum flow below 50% of the lesser of the two

peaks.

As stated earlier, groundwater effects on flood flows are limited in Newfoundland because the soil
layer is typically thintill overbedrock (Richter, 1994). Thus, the recession limb of flood events is
fairly snort, and where flows have dropped below 50% of the lower of the two peaks, there is
reasonable security in assuming that the effects of the prior event are insignificant in the
development of the second. If the threshold is taken adequately high and the criteria for
independence applied as given above, theassumption thatindividual peaks are independent events

should be a reasonable one.
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3.3.3 Modelling Recurrence Distribution

The second major decision in applying the POT methodology is the distribution selected for
modelling recurrence of flood events. This has generally been done with aPoisson recurrence
model, but a variety of tenable distributions have been proposed for recurrence (Taesombut and

Yevjevich, 1978). Common recurrence distributions are shown in Table 3.1.

Flood peaks may be defined as successes in aseries of randomly spaced Bernoulli trials, each
representing the occurrence of a peak (Taesombut and Yevjevich, 1978). Where the events are
independent, this implies a Poisson arrival process (Taesombut and Yevjevich, 1978). Givena
series of length N years, and an average exceedence rate of A, the total number of expected peaks

M is defined as M=NA (NERC, 1975).

ForaPoisson process, Adefines the value of the mean and variance of the distribution. Generally

this follows the formula of Equation 17:

Ae?

plx)= . a7n

where x=0,1,2, ...



Which, considering the probability of exceedence any numberof times P(1,2, .. .n), inaperiod
T, gives:
PQ1.2,...2)=1-¢* (18)

This can then be manipulated simply to produce a probability of non-exceedence: the

probability that no flow will exceed a given threshold (NERC 1975):

P0O) = 1-PQ,2,.=) = e™* (19)

3.3.4 Modelling Magnitude Distribution

Wessee abovethat one can produce a probability that flow does or does notexceed q,, but so far
we do not know anything about the magnitudeof these exceedence events. The size of the peaks
above q, may be modelled using a continuous distribution such as the exponential (Taesombut and
Yevjevich 1978). A variety oftenable distributions for magnitude have been proposed and are

shown in Table 3.2.

Taesombut and Yevjevich (1978) found that the exponential distribution had the best fit for

magnitude of exceedences. The exponential is the most frequently used distribution for modelling
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exceedences and, since only one parameter is estimated, may lead to amore precise prediction

of flood quantiles than a more complex model (Rosbjerg et.al., 1992).

A probability of non-exceedence for any given flood magnitude which has Poisson recurrence was

described by Ekanayake and Cruise (1994):

P(x)=e M F&D) (20)

where x =q-q, and F(x) s the distribution of the magnitude of flood exceedences. If F(x) follows

the standard form of the exponential distribution, then

F(x)=1-¢=* 1)

where f equals p, the mean of the x values. This may be substituted into Equation 20,

P(x)=e ™" (22)

which yields the probability of non-exceedence or curnulative distribution function for an event of
magnitude x. This model, which looks ata peak-over-threshold series as having a Poisson armival

process and exponential magnitude distribution, may be refemred to as the PED model. Theresults
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of the PED model follow the same shape as the Gumbel Distribution used to model AMF series

(NERC, 1975).

Any distribution for magnitude may be satisfactorily substituted for F(x) if it satisfies the data.

Ashkar (1994) described the Pareto distribution as:
. L]
Fx)=1-(1 -T)* (23)

Where a and k are the scale parameter and shape parameter respectively.

Rosbjerg et.al. (1992), expressed these parameters using the method of moments:

e,
ﬂ—‘z-l(;; 1) (29)
1o
k—2(02 1) (25)

Where p is the samplemean and o the sample variance of the magnitude of peak-over-threshold
events. These method of moments estimators aresimple to use, and were found tobe as efficient

as estimation by probability weighted moments (Rosbjerg et.al., 1992).
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The Pareto distribution equation may be substituted into Equation 20 to give:

ki
Pay=e = (26)

The advantage of the Pareto distribution is its flexibility and ease of use. The distribution
parameters are easily obtained and should produce more consistently reliableresults than less
flexible single parameter models. This model, with a Poisson arrival process and a Pareto
magnitude distribution, may be referred to as the PPD model, and follows the GEV Distribution

as used to model flood quantiles for the AMF series.
3.4 Quantile Estimators

By manipulating the form of the cumulative distribution function for the flood frequency distributions,
equations may be developed to produce flood quantile estimates. Where the data extracted as
peaks overthreshold is assumed to have a Poisson recurrence distribution and an Exponential
magnitude distribution, the estimate of the flood with probability of exceedence P=1/T, is given by

Equation 27:

(7)=q,+Pio+BinT 27
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Where the data extracted as peaks over threshold is assumed to have a Poisson recurrence
distribution and a Pareto magnitudedistribution, the estimate of the flood with probability of

exceedence P=1/T, is given by Equation 28:
a 1
= —[1-(—
OD)=9,+211-(5 (28)

Where data is extracted as aseries of annual maxima, and is assumed to havea 3LN distribution,
the quantile estimator of the flood with probability of exceedence P=1/T, is given by Equation 29

(Maidment, 1992):

xp=5+e (oD (29)

wherey is the transformed variable, py is the mean of y, oy is its standard deviation, and £ is a
lower bound parameter described earlier. The constant z; is the normal score corresponding to
the probability of non-exceedence for a given return period “T.” Thesez-scores may be obtained

from standard tables.
Wheredata is extracted as a series of annual maxima, and is assumedto havea GEV distribution,

the quantile estimator of the flood with probability of exceedence P=1/T, is given by Equation 30

(Maidment 1992):
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X;=&+ 2 11-Cn(1-1/D)Y)] (30)

As mentioned previously, the GEV and 3LN distributions were found to have similar efficiency in
fitting the AMF series for Newfoundland (Beersing 1990). The GEV model and 3LLN model will

be used in this thesis for comparison to the PED model and PPD model.
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Table3.1 Recurrence Distributions for Peaks over Threshold Model (after Taesombut and

Yevjevich, 1978).

Distribution Parameters Comments

Poisson A most popular approach

Mixed Poisson AL A accounts for seasonal variation
Hyper Poisson A0

Negative Binomial r

Mixed Geometric 6,6, 7 a

Non-parametric a,, aja;... based on data

Table3.2 Magnitude Distributions for Peaks over Threshold Model (after Taesombut and

Yevjevich, 1978).

Distribution Parameters Comments

Exponential B Simplest

Gamma B,y

Pearson Type 11 Xo B ¥

Weibull ab

Mixed Exponential B, B2

Pareto k,a Flexible, includes exponential s
a special case

Normal M, o

Non-parametric a;, a,a;... Based on data
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4.0 REGIONALISATION

In this chapter the method of regionalisation is discussed. Reasons for using the regional approach
aregiven, and methods for determining regional groupings are considered. Previous regional

delineations for Newfoundland are also discussed.

4.1 Reasons for Regional Analysis

In simplest terms, regional analysis assumes that onestream in aregion will have hydrologic
behaviour similarto other streams in that region. Regional flood frequency analysis of streamflow
data involves grouping streams with similar hydrologic properties intoregions and developing

regional equations which estimate flood quantiles from basin descriptors.

The effective esimation of flood quantiles for a gauged stream may require single station analysis,
regional analysis, or a combination of both. Where long streamflow records exist, the flood
quantiles predicted by single station analysis may beexcellent. In fact these estimates may be
superior to regional estimates (ACH 1989). However, where streamflow records are short, the
errors in single station quantile estimates are correspondingly large. There are problems with

identifying the distribution which best fits the data and with estimating the parameters for the
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distribution (Bobée and Rasmussen, 1995). Inthese cases, the quality of quantile estimates can

be improved by the application of regional equations (ACH 1989).

To estimate flood frequency for ungauged basins a regional approach must beused (Caissie & El-
Jabi, 1991a). Obviously, since no gauge data exists for the study stream, inferences based on the
behaviour of adjacent gauged streams are necessary to make predictions about the behaviourof
the stream understudy. This is true of both statistical and deterministic models. Forungauged
basins, any model which uses data from neighbouring basins is making an assumption of similar
response between the study basin and its neighbours. Theuse of popular models like therational
method or SCS method assumes some level of homogeneity between the study basin and the

basins used to calibrate those models.

Regional analysis is generally recognized as a powerful means to improve flood quantile estimates
(Bobée and Rasmussen, 1995). There has been some resistence to the broad application of
regional analysis. However, in Newfoundland, the local regulatory agency has encouraged local
practitioners to adopt the RFFA of Beersing (1990). While this has met with widespread
acceptance, the reality is that many practitioners apply this method without concern for the
statistical nature of the approach or for the parameter boundaries discussed in the research. The

method is often applied in a deterministic manner.
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Of primary interest in this thesis, is the usefulness of regionalisation for the island of Newfoundland.
If quantile estimates produced from four regional equations are not significantly superior to

estimates based on a single region, then there is no benefit in regionalisation.

4.2 Region Delineation

The delineation of regions is a complex procedure. The usual approach is to groupbasins into
areas with similar geographic, hydrologic, and climatic characteristics. Most research has relied
on physical properties of basins to determine regional boundaries (Richter, 1994). Typical physical
characternistics include location, elevation, topography, ground cover, and exposure to prevailing
winds. However, theuseof geographically contiguous regions has been criticized as being arbitrary
(Bobée and Rasmussen, 1995). In any study of historical flow records, the statistical properties of
these records mustbe given substantial weight when grouping the stations into hydrologically similar
regions. A methodology for delineating similar regions should bebased on both physical properties

of the basins, and statistical analysis of basin response (Ashkar, 1994).

In practice, most regions are defined geographically, using a combination of physical characteristics
and gauge record information. Regional boundaries may be defined loosely using physical
parameters, then gauge statistics may be tested to determine if a basin should beamember of a

region, or of some adjacentregion. The purpose of these tests is to detect stations having flow
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records which are nothomogeneous with the general pattem for aregion. When nonconforming
stations are detected, the boundaries may be adjusted so that the stations are reassigned to aregion
with similar hydrologic response. Once regions have been delineated and stations tested for

homogeneity, regional quantile estimations can be developed.

Within any homogeneous region, gauged stations should produce data which is consistent with
otherstations withinthe region. A variety of hydrologic parameters are commonly used to test for
homogeneity including mean annual runoff per unit area, mean peak flow per unit area, and

coefficient of variation or coefficient of standard error.

A popular statistic for testing regional homogeneity is theratio of the ten-year flood quantile to the
mean annual flood (Beersing, 1990). A variation of this is the ratio of the ten-year flood quantile
to the two-year quantile. First the quantile ratio is calculated for each gauge in the region, then the
summary statistics of mean and standard deviation of Q(10)/Q(2) are calculated. Assumingthat
the dataare normally distributed, the stations are tested against the supposition that all stations
within ahomogeneous region should produceresults within some confidence interval set by the

researcher; 95% is commonly used.

Other popular test statistics include the coefficient of standard deviation, CS, and coefficient of

variation, CV. The coefficientof standard deviation for any flood quantile maybe calculated as
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the ratio of its standard deviation to that quantile’s mean value. The use of this ratio allows
comparison of standard deviation across basins of differing size across aregion. The coefficient
of variation is similarly calculated. However, testing for homogeneity with the coefficient of

variation has been found to be a weak test which accepts homogeneity too often (Richter, 1994).

Some researchers have looked at methods of grouping basins in a data space which is not
geographical (Richter, 1994). In some cases, basins in the same geographic area may exhibit very
different streamflow behaviour. The set ofall gauges in astudy areamay be grouped into regions
according to a test parameter applied to gauge data. Some parameters used to derive station

clusters include mean flow per unit area, quantile vanation, skew and kurtosis (Richter, 1994).

TheRegion Of Influence, ROI, approach dispenses completely with geographic groupings (Bobée
and Rasmussen, 1995). Each study site is treated as the centre of gravity of amultidimensional
space in which vectors correspond to a variety of statistical or descriptive characteristics. These
descriptive characteristics are weighted with respect to their influence on the central site (Bobée
and Rasmussen, 1995). Distance in the multidimensional space is measured in terms of difference

between characteristics of the central site and the regional sites, rather than physical distance.

Another alternativeis cluster analysts. Inthis approach, characteristics are selected whichare

thought torelate the response at the study site to the behaviour at the gauge sites. Starting from
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the study site and working in the same type of multidimensional space used in the ROI approach,
gauge sites which are most similar are clustered to the study site until the difference in

characteristics reaches a cutoff point.

In addition, some researchers have sought to group sites into regions based on the nature of the
statistical description which best fits their flood frequency data (Bobée and Rasmussen, 1995). A
number of distribution characteristics including coefficient of variation and skew have been used
as the basis forregional delineation. Theuse of various L-moments has gained some popularity

among proponents of this method of regional grouping (Bobée and Rasmussen, 1995).

It mustbe understood that regional groupings based on statistical properties of basin responsedo
not necessarily translate into geographical groupings. One additional problem with this approach
is that statistical data is required to assign any stream under study to anon-geographic region and

this data is unavailable for ungauged streams.

4.3 Hydrologic Regionalisation in Newfoundland

Caissieand El-Jabi (1991a), analysed records from fifteen (15) hydrometric stations, and treated
Newfoundland as one homogeneous region. However, Newfoundland has varied landforms and

climate influences. There may be some benefit to dividing the island into regions.
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The Atlantic Development Board (1969) divided Newfoundland into four hydrologic regions:
Avalon & Burin Peninsula, South & East Coast, West Coast and Great Northern Peninsula, and

Northeast Coast.

Inthe DOE (1984) study Regional Flood Frequency Analysis for the Island of Newfoundland,
theisland was divided into two regions: North and South. This division was based on the causative

factors behind peak flow events (DOE, 1984).

Beersing (1990) divided the island into four regions. This division was based on mean annual flow
perunit area and time of occurrence of peak flows. Theregions delineated also make sense from
an examination of the topography and geography of the island. The Eastern Region comprises the
Avalon and Burin Peninsulas. This areahas generally lowrelief, and is subject to mixed weather
produced by the confluence of the Gulf Stream and Labrador Current. The Central Region
includes the central landmass of the province, and includes both coastal and non-coastal areas.
This region’s interior is less subject to oceanic effects and experiences greater extremes of cold
and heatthan coastal areas. The Northwest Region is defined by the Humber Valley and Northemn
Peninsula. This area is characterized by the large watershed of the Humber River, and Long Range
Mountains and a coastal plain along the Northern Peninsula. The Southwest Region includes the

southwesttipof the island. This area also has strong relief and may be subject tostrong orographic
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influences. In general, the Southwest is the first area affected by incoming storms as they move

from the waters of the Gulf of St. Lawrence onto the land.

Beersing (1990) used thirty nine (39) gauge records and divided the island into four homogeneous
regions. Peak flow series were extracted using the AMF approach and flood quantiles were
estimated using either the Three Parameter Lognormal Distribution or the Generalized Extreme
Value Distribution. Regional quantile estimates were generated by regression on log-transformed

data.

Richter (1994) investigated a variety of methods for delineating homogeneous hydrologic regions.
This included analysis in non-geographic dataspace. Richter (1994) found that mathematically
rigorous methods for region delineation did not significantly improve model outcomes when

compared to the regions of Beersing (1990).

In this thesis, the regions delineated by Beersing (1990) were adopted as the initial regional
divisions and were then tested for hydrologic homogeneity. The use of oneregion for the entire
island was also evaluated. There area number of methods availableto determine the grouping of
hydrologicstations intoregions. A brief description of some of these methods has been provided
insection 4.2 of this thesis. These approaches have been described somewhat exhaustively by

Richter (1994). These methods were not applied in this work and as such, any further discussion
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of the methods would be beyond the scope of this work. Details of the results of regional
homogeneity testing are presented in Chapter 6 of this thesis. Briefly, the stations within each
region are tested to see if they meet the criteria that the Q10/Q2 ratio for a station is within the

95% confidence interval for Q10/Q2 ratios described for the region’s population.

This test may be compared to the popular test of Dalrymple(1960). Fill and Stedinger (1995)
provided a critical appraisal of the Dalrymple test of regional homogeneity. Following Dalrymple
(1960), they describe ahydrologically homogeneous region as one where flood flows when scaled
by theirmean Q(T)/u areidentically distributed. This implies that for any homogeneous region, all
ratio Q(T)/u should fall within some confidence interval which can be defined for thatregion. The
test suggested by Dalrymple (1960) assumes a Gumbel probability distribution and thus the mean
flood flowis qual to Q(2.33). Essentially, for any station a return period value T is calculated based
on the fit of Q(10) to the distribution curve plotted for the region. This calculated T-value is

compared to the Lower and Upper limits of the 95% confider.ce interval for T for record of length

N.

Inthis thesis, the Q10/Q2 ratio is analogous to the Q(T)/u ratiodiscussed by Fill and Sedinger
(1995) and which forms the basis of the Dalrymple (1960) test. The testing of a station for
acceptance within the confidence interval for this ratio is a valid test statistic which should produce

results similar to the Dalrymple (1960) test and analogous approaches.
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There are anumber of papers of specific relevance in developing models for Newfoundland. The
work of Caissieand El Jabi (1991a, 1991b) provided useful information on the development of
truncation levels and regions forthe island. However, they used a very small datasetof only fifteen
stations for the island and treated it as one region. In addition, the fonmula which they developed
for truncation level did not perform well for the data analysed here. The work of Beersing (1990)
was important in the selection of hydrologically homogeneous regions and in the analysis of AMF
series. One criticism of the work of Beersing (1990), is that he extended a number of flow record
artificially and thus may havereduced variability in some of his data sets. However, the hydrologic
regions developed by Beersing have provided results as good as more rigorously defined regions
(Richter, 1994). The work of Richter (1994) provides much valuable information on the hydrology
of Newfoundland including regionalization and regional modelling of flows. Richter (1994) points
out that the deficiencies in hydrologic input(rainfall) data for the island seriously impact on the
development of accurate flow models. Indeed, regionalization is described as one method of
overcoming this problem by grouping stations into regions with similar hydrologic input

characteristics.



5.0 REGIONAL MODELLING

5.1 Parameters of Regional Models

In regional flood frequency analysis, the equations which relate flood magnitude to probability of
occurrence are represented as functions of physical descriptors. Some of the possible basin

descriptors are categorized and listed in categories in Table 5.1.

Any number of these parameters, X, . . .X,, may be included in a regional model. A properly
constructed model will incorporate only those parameters which add significant information to the
outcomes. Tobe useful forregional peak flow models these physical parameters must have some

basic properties:

1. They can be readily extracted from the information available for the basin
2. They must contain relevant information about the streamflow of the basin
3. It must be possible to express them as a numerical value

Theobjective is to create equations which will allow theuserto compute flood quantiles forboth

gauged and ungauged streams within homogeneous regions. Many researchers have noted that
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finding the proper basin characteristics to include in a regional model is more important than fitting

the best model to those characteristics (Richter, 1994).

Some characteristics, such as basin geology, cannot be expressed satisfactorily as a numerical
index (Richter, 1994). While an understanding of these characteristics and their interactions may
givearesearcher amuch betterunderstanding of the processes occurring within a drainage basin,

they are of limited value when developing modelling equations.

Some parameters are commonly used in most models. Drainage area is included in almost all
models, firstly because it seems logical to include it, and secondly because itis usually strongly

correlated to streamflow magnitude.
Richter (1994) states that Riggs (1973) listed three physical descriptors (drainage area, the basin
slope, percent lakes and swamps) and one climate descriptor (mean annual precipitation) as

explaining most variability in basin response.

Caissieand El-Jabi (1991a) used drainagearea, areas of lakes and swamps, area of forest, and

drainage density as explanatory variables for estimating flood quantiles for Newfoundland streams.
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Richter (1994) found that drainage area, areacontrolled by lakes and swamps, fraction of barren
area, and distance of the basin from defined lines were the most important explanatory variables

for estimating mean annual flow for ungauged Newfoundland streams.

In the DOE (1984) study five parameters were selected: drainage area, mean annual runoff,
percentarea controlled by lakes and swamps, shape factor, and latitude. One general model for
the island and two regional models for the north and south regions were developed using
combinations of these variables. The parameters of these models are listed in Table 5.2. The
Mean Annual Runoff, MAR, occurs inall of the equations and is the mostimportant variable after
drainage area. However, Lye and Moore (1991) identified MAR as a problematic variable,
because it had a very high influence on model output, it was difficult to estimate accurately, and it
was derived using a parameter, DA, already included in the model. Beersing (1990) also felt that
the use of MAR in these equations was problematic because equation results were very sensitive

to MAR and the descriptor was difficult to obtain accurately for ungauged streams.

Richter(1994)discussed the use of Effective Precipitation, EffP, expressed as an average annual
runoff depth over abasin, whichis equivalentto MAR. This derived variable may be used as a
proxy for precipitation input. There is an understandable desire to include precipitation input as an
explanatory variable in astudy of flowseries. EffP and its analog, MAR, have been identified as

very significant predictors of peak flow magnitudes. Where there is no base precipitation data or
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data is very limited, a proxy variable may be introduced to represent this data. However,
precipitation is aresult of atmospheric processes, notbasin processes. Where inferences are made
about precipitation series from flow series data, special care must be taken to allow for the

damping and amplifying effects which basin processes may generate.

Beersing (1991)selected different parameters for each of the four regions which heused. The
parameters selected arelisted in Table 5.3. In Newfoundland the influence of lakes and swamps
canbequitesignificantin determining the flowregime of a stream. Both the area of lakes and
swamps and the area controlled by these lakes and swamps are important. To provide a
descriptor which represents both the area of lakes and swamps and their influence area, Beersing
(1990) used a Lakes and Swamps Factor, LSF:

FLSAR

LSF=1+FACLS-
1<FACLS G

Where FLSAR isthefraction of the drainage basin occupied by lakes and swamps, and FACLS

is the area controlled by lakes and swamps.

Some techniques are available to select model vaniables prior to regression analysis. By selecting
explanatory variables properly the amount of analysis can be reduced and problems such as cross-

correlation can be avoided.
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A simple analysis is done by generating multiple plots of basin vanables against other basin
variables. This technique was employed by Richter (1994), who provided an extensive set of
plots. As expected, the magnitudes of the mean flood and average daily flow were strongly
correlated to Drainage Area(DA). Slope (SLP) was positively correlated to flood magnitude.

Richter (1994) indicated that Shape (SHP) also appeared to be significant.

Care must beused in interpreting these types of plots. The influence of some factors, notably
drainage area, is dominant and may mask the influence of other factors (Richter, 1994). In general,
the relationships of various descriptors tend to confirm the relationships put forward in other
research. Flow magnitudeis strongly comrelated to drainage area, while the basin slope, the fraction
of the area controlled by lakes and swamps and other basin characteristics have varying amounts

of influence on flood magnitude.

5.2 Developing Models by Regression

Regional flood frequency modeis are commonly constructed by the techniques of linear and
nonlinear regression. Software is readily available to perform both linear and non-linear
regression. In general terms, all regression approaches construct a relationship between
explanatory variables and outcomes and seek to minimize error. Error is defined as the difference

between model outcomes and expected values.
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By simple linear regression and multiple linear regression, flood quantiles for gauged basins may
be related to physical descriptors of those basins. These regional quantile estimators must produce
results which are consistent with the results of single station estimates within the region. Linear
regression models represent results as having a straight-line relationship with thetr explanatory

variables. The goal is to find an equation for a line that minimizes the sum of squared errors.

Equations from multiple linear regression on untransformed data take the form given in Equation
32. This form is not very popular for the study of hydrologic phenomena. Although itmay produce
usable results, this model form does not relate the physical parameters to each other in any

meaningful way.

o(Nn)= apgtax +tayx,.. (32)

To make explanatory variable and outcomes more amenable to linear regression, a variety of
transforms areused. With thedata in the transformed space, models are constructed using linear
regression, then transformed back into the real domain. One popular approach is the power
transform, where all datais transformed by taking the logarithm. Inside the transformed log-space,

the regression equations for estimating regional flood quantiles take the form given in Equation 33:

In(O(T)) = ln(ao) +a, ln(.vrl )+ a, ln(.nr2 )+... (33)
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When thereversetransform is performed, the equation parameters are reorganized into a nonlinear

form:
OD=a,x, 'x, x, ... (34)

Where Q(T)is the expected flow for some return period T, a ; is a coefficient derived from multiple
regression in log-space, and x; is some physical parameter of the drainage basin. The derived

values, a, . . . a,, are only valid for the retun period for which they were calculated.

The nonlinearrelationship of Equation 34 is derived using linearregression. In this approach a
nonlinear relationship is transformed such that it can be handled by linear means. Oncethelinear
regression is performed, the equation may be transformed back to its original nonlinear form. The
transformation of datain this manner distorts the model error. Errors and bias which are generated
in the transformed space must also be un-transformed for analysis of how well the equations fitthe

data.

Nonlinear regression resolves the problem of transformation generated bias. This method, like
linear regression, attempts to minimize the sum of the squared error, where error is measured as
the distance of the data from the model curve. Because the equations being manipulated in the

regression are not linear, more computing effort is required than for linear regression techniques.
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Nonlinear regression requires that you initially define the expected relationship between the result
and explanatory variables. Because of this, nonlinear regression requires a deeper initial
understanding of the interaction of results and explanatory variables. Generally, the approximated
model equation is of the form given in Equation 34. The model is then fitted to the datausing the
estimated parameters, and by repeated adjustment of model parameters error is minimized. The
output values finally arrived at may depend to some extent on the parameter values setinitially. To
compensate forthis itis important that theinitial values make sense on a physical basis. Variables
which are initially assigned strong positive relationships must have a strong physical explanation for
this relationship. This understanding of how the variable relate to the outcome is important, because
relationships developed using this method will not produce an equation which can be plotted and

confirmed by visual examination.

5.3 Regional Estimators

Given that flood quantiles have been modelled by analysis of gauged basins, and thatadequate
physiographic information is available for these gauged basins, there are two approaches which

may be taken in the development of regional quantile estimators:
1. Regression on Quantiles: For eachregion and each return period, T, develop
equations which correlaterecurrence probability and flood quantile magnitude

based on hydrologic and physiographic data.
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2. Index Flood: For each region, develop an index flood equation based on
hydrologic and physiographicdata. Develop a rating curve which correlates flood

quantile magnitude to the index flood.

Thedisadvantage of the first approach, regression on quantiles, is that a large number of equations
must be developed. Each equation can only be applied for its specific return period and its
specificregion. Ifa practitioner needs quantile estimates for return periods other than those given,
hemust interpolate. The advantageof this approach is that variation in basin response for different

size events is well modelled.

In the second approach, the index flood equation for a region is developed based on the
relationship of an index flood to basin physiographic characteristics. Flood quantiles are described
by their relationship to this index flood (Caissie & El-Jabi, 1991a). For an index flood to perform
well fora region, the ratio of flood quantiles, Q(T), to the index flood must be consistent throughout

the region.

In régional models based on the series of annual maxima, the index flood is often taken as the
mean annual flood. Richter (1994)refers to this value as Qavgfld, and indicates thatit is frequently

used as an index flood in regional flood frequency analysis.
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Determination of the index flood is complicated by theuse of POT series. The mean annual flood
is not equal to the average value of all the POT peaks. In addition, the averagerecurrencerate,
A, may notbe constant from station to station. For anindividual station, where the model is PED
the average annual flood can be estimated from the model parameters by using Equation 35
(NERC, 1975). This approach produces results very similarto those produced using the series of

annual maxima.

u=q,+Blnr+0.5772p (35)

An alternative tousing the mean annual flood or similar average flow, is tousea low retum period
flood quantile as the index flood. Theuse of the estimate of the two-year retumn flood, Q(2), is an
example of this approach. For the PED series, the estimate of Q(2) should be as good as the

estimate produced by Equation 35, since this equation is of the same form as the estimator for

Q(2).

The disadvantage of the index flood approach is that errors in estimating the index flood equation
will be carried through into quantile estimates. Richter (1994) indicates that errors in estimates of
the index flood are a large source of error in estimates of flood quantiles. Variations in basin
response to events of differing sizes may be poorly modelled. The main advantage is that

calculations are very much simplified. Caissie and El-Jabi (1991a)felt that the regression on
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quantiles approach was superiortothe index flood method in mostregions. For Newfoundland,
however, theresults of index flood and regression on quantiles weresimilar (Caissie and El-Jabi,

1991a)

Theindex flood method is a powerful technique. Forany basin, only one estimate of the index flood
is required. Quantile estimates may then be obtained by simple mathematical or graphical
relationship tothe index flood. Inaddition, where errors in extraction of relevant physiographic
parameters affect thereliability of theindex flood, the same errors will similarly affectindividual

quantile estimators. The index flood approach is the method of regional quantile estimation which

is investigated in this thesis.
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Table 5.1 Parameters for Regional Models.

Climate:

Mean Annual Precipitation (MAP)

Effective Precipitation (EffP)

Annual Dry Days/Wet Days

Streamflow

Mean Annual Runoff (MAR)

Mean Annual Flow (MAF)

Mean Annual Flood (MAFL)

Basin Physiography

Drainage Area (DA)

Land Slope (SLP)

Perimeter (P)

Shape Coefficient (SHP)

Mean Elevation of Basin (MELE)

Basin Length-Width Ratio

Latitude of basin Centroid (LAT)

Longitude of basin Centroid (LONG)

Channel Length (L)

Channel Slope (S)

Channel Shape

Stream Order

Drainage Density (DRD)

Area of lakes and swamps (ALS)

Influence area of lakes and swamps (ACLS)
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Table 5.1 Parameters for Regional Models (continued).
Surface Conditions Ground Cover Type
Area of Forest (AF)
Area of Pasture (AP)
Area of Barren (AB)
Soil Type Rock
Soil Classification
Soil Permeability
Soil Depth
Moisture Conditions Moisture condition of Ground Cover
Moisture condition of Soil
Table 5.2 Explanatory Variables from DOE 1984.
Region Explanatory Vanables
Entire Island | drainage area, mean annual runoff, percent area controlled by lakes and
swamps, and shape factor
North drainage area, mean annual runoff, latitude
South drainage area, mean annual runoff, percent area controlled by lakes and
swamps, and shape factor
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Table 5.3 Explanatory Variables from Beersing 1990.

Region Explanatory Variables

Avalon drainage area, lakes and swamps factor, drainage density

Central drainage area, drainage density

Northwest drainage area, lakes and swamps factor, drainage density, slope of main
channel

Southwest drainage area, lakes and swamps factor
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6.0 RESULTS AND DISCUSSION

Inthis chapter, theselection of streamflow series, the testing of single station models, the testing of
regional homogeneity, and the development and testing of single sation and regional models is

discussed.

6.1 Selection of Data Series for Analysis

The streamflow series used in this thesis include data from federal and provincial gauging stations,

available as HYDAT CD-ROM Version 1.05.8, compiled by Environment Canada.

Four criteria were applied when selecting data sets from the one hundred eleven records available

for active and discontinued hydrometric stations for the island portion of Newfound!and:

1. Each station must have at least 10 years of data

2. Any structural control of flows upstream must be insignificant
3. Records must be reasonably complete (no missing years)

4. Urbanized streams are excluded
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Applying theabove criteriato the one hundred eleven records available, sixty-three data series
were found to besuitable foranalysis. Seventeen omitted stations were regulated, and five omitted
streams had diversions. A furthersixteenstations were omitted because of short records, and six
stations were omitted because they were inurban areas. Threestations were also omitted because
they provided information which could be obtained from longer records atother locations in their

watershed. One station was omitted because of missing data.

Data series forthe single station analysis were tested for trend and independence using the standard
measures of these properties as contained in CFA 3.1 (Pilon and Harvey, 1994). A number of

series were found to have some problems.

Trend was detected in the AMF series for station 02ZF001 at 5% significance. More detailed
graphical analysis of this datashowed trend to be weakly defined. Regression of values on position
explained only a small portion variability. In addition, the POT series data did not exhibit any

significant trend. This series was retained for analysis in its entirety.

Trend was detected in the AMF series forstation 02YK002. This was attributed to a diversion

which was installed on this stream. Only 23 years of data following the diversion were retained.
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Trend was detected in the AMF series for station 02ZHO001. This basin was subjecttoafirein
the 1960s and this is the probable cause of this apparent trend. Regression of values on position
explained only a small portion of variability (r-squase = 8.3%). The POT series showed no

evidence of trend. This series was retained in its entirety.

A detailed analysis of trend, independence, randomness and outliers for Newfoundland streamflow

records is presented in the work of Rollings (1999).

Thesixty-three stations selected for analysis included the thirty-nine (39) stations used by Beersing
(1990) in Regional Flood Frequency Analysis for the Island of Newfoundland, and the fifteen
(15) stations used by Caissie and El-Jabi (1991a) in their analysis of Newfoundland streamflows.

A complete listing of the hydrometric stations used in this analysis is included in Table 6.1.

6.2 POT Data Extraction and Com puter Program

As partof'this research, a computer program was developed to set athreshold and extract peaks.
The program set an initial threshold, extracted all values above that threshold, applied peak
independence criteria, discarded values which failed independencecriteria, and calculated mean
and variance of recurrence of extracted peaks. The mean and variance of recurrence ware

compared and evaluated against the Poisson distribution criteria. If therecurrence statistics were
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not within acceptable tolerances (usually <0_1 difference), the program reset the threshold and

repeated the procedure until a satisfactory threshold was found.

Caissie and El-Jabi (1991b) produced an equation for estimation of q, for Newfoundland

streamflow records based on mean annual flood levels:

g,=0.587xMAFL-2.514 (36)

Ininitial tests of the extraction program, the estimate of Equation 28 was used to get astarting value
for the threshold. However, on many occasions this estimator predicted a threshold which
produced low recurrence rates, and the mean and variance of recurrence failed to converge.
Because of this, the estimator used to obtain an initial threshold was modified to produce alower

initial estimate.

While the Poisson recurrence distribution criteria were used to set thresholds for peak extraction,
there were some occasions where, the mean and variance of recurrence converged only at very
high recurrence rates (eightto ten peaks per year). This recurrence level increases the calculation
load significantly in later analysis, and may compromise the independence of peak-over-threshold

events. Forthesereasons, where the Poisson criteria produced high recurrence rates, the threshold
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was set higher and peak-over-threshold series extracted with between three and five peaks per

year.

All extracted series were tested to see that their recurrence pattem fit that expected for a Poisson
arrival process. This was done using theKolmogorov-Smimov test. All extractedseries passed

the Kolmogorov-Smimov test, and thus were determined to be reasonably well fitted by a Poisson

Distribution.

6.3 Comparison of Results of Single Station Analysis

Flood quantiles were modelled for series of annual maxima using the Three Parameter Log-Normal
Distribution (3LN), and the Generalized Extreme Value Distribution (GEV). Forthe Peak-over-
threshold data series, flood quantiles were modelled using the Poisson-Exponential Distribution

(PED) and the Poisson-Pareto Distribution (PPD).

The3LN and GEV models havebeen used to model series of annual maxima for Newfoundland
in the past. These methods wereused by Beersing in the Regional Flood Frequency Analysis
(Beersing, 1990). In general, he found thatboth approaches produced acceptableresults for flood
series in Newfoundland. However, the 3LN method is best suited to positively skewed data.

Some of the annual maximaseries for Newfoundland exhibitnegative skew. Where aseries of
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annual maxima exhibits negative skew, the 3LN method is not well suited to describing the
distribution of the data and derivation of the distribution parameters is more difficult than with
positively skewed data. Because of these difficulties infitting the model, there were six annual
maxima series for which the 3LN model was notfitted as part of this research. The GEV model

was fitted to the sixty-three annual maxima series.

The Poisson-Exponential Distribution (PED) and Poisson-Pareto Distribution(PPD) models were
fitted to the sixty-three peak-over-threshold data series for Newfoundland. The Poisson
component of these distributions is derived during the extraction of the peaks over threshold data,
and the Poisson parameter A, is equal to the recurrence rate for the peaks. The Exponential
Distribution is the simplest magnitude distribution to derive, as it only has one parameter j.
However, this reduces theflexibility of this distribution. The Pareto Distribution is more complex,
requiring the derivation of a and k, the shape and scale parameters. Although the additional
parameters of the Pareto model increases model complexity and add some model error, the

increased flexibility of the Pareto distribution should allow it to fit the data more closely.

The first comparison of the output of the four flood quantile models under consideration was a
comparison of ceniral position for the model outputs. The extracted AMF and POT data sets were
modelled using 3LN and GEV forthe AMF, and PED and PPD for the POT. Quantile estimates

were generated for 2, 5,10, 25, 50,100, 500, and 1000 year return periods. This was done for
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all 63 sets of station data (57 for 3LN model). These results were then compared using ANOVA.
Using this method, the central positions of quantile estimators for the different flood quantiles can
be compared across distributions. Examination of the data presented in Table 6.2 shows that, for
the four distributions considered, the means of model outputs were similar for all of the models
considered. Examining themean values for each quantile estimator, and considering the upper and
lower limits of the 95% t-confidence interval for the mean, all of the models have outputs which,

for each quantile level, are not statistically significantly different.

Thebox-plots inFigure 6.3 provide graphical confirmation of the above conclusion. Foreach
group of quantile estimates, the position of the means and medians for the four models are both
similar. For each group of quantile estimates the datasets are similarly positively skewed (mean
greaterthan median). Some differences in themodel results are apparentin Figure 6.3. For all of
the quantile estimates, the 3LN distribution has a somewhat larger inter-quartilerange (IQR)
indicated by a larger box, and this effect becomes more pronounced at the higher quantiles. For
quantile estimates of 25 years retumn or greater, the PED distribution exhibits asmaller IQR than
the other distributions. For thetwo highest quantiles, the PPD data exhibits larger IQR than the

PED data ad the PPD data has high outliers.
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Based onthe ANOVA analysis of the quantile estimates and the examination of the boxplots, it
would appear that all of the models produce similar results, and thatthe PED has slightly less

variability at higher quantiles.

The second comparison of the outputs of the four flood quantile models under consideration was
a comparison of the robustness of the models, or sensitivity of the model to variations in the
underlying data set. The better model not only fits the data closelybut is resistant to variations in

the underlying data. To test this quality a resampling approach was used.

For each setof AMF and POT data, the model parameters and quantile estimates were generated
fortheunderlying data set. The underlying data sets were then resampled with replacement and
new model parameters and quantile estimates calculated based on the resampled data. Thus aset
of new model outcomes was produced from data sets which contained only the dataavailable from
the original but with variation from the original. For any quantile, calculation of the standard error
(standard deviation) of the produced quantile estimates gives ameasure of thesensitivity of the
model to variations in the data. Comparison of the standard error of results from different models

allows a comparison of the relative robustness of the models.

Forthe 3LN model, resamplng sometimes produced data sets for which the method used to derive

the model parameters failed. For some of the original 63 data sets this failure on resampled data
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occurred in a large proportion (>25%) of the resampling events. Where this occurred, the
standard error was not calculated forthe resampled data. Onthisbasis, in additionto the 6 series
omitted because theunderlying data s=t could not befitted, an additional 20 series were omitted

from analysis of standard error of 3LN quantile estimates.

The3LN distribution is commonly used for single station analysis and has met with good success
intheisland of Newfoundland (Beersing, 1990). However, the distribution does not work well for
data with negative skew. In this work a number of short series and series with skew close to zero
were analysed. During resampling it is easy for skew to be shifted slightly thus causing a3LN
model intended for positively skewed data to fail. However, the comparison of central position and
error for the distributions analysed should remain valid. The factthat nostatistically significant

difference was found in central position of the distributions tends to confirm this.

Similarly to theanalysis of the central position, the standard error was analysed using ANOVA.
Examination of the data presented in Table 6.3 indicates that for lower quantile estimates the
standard error of the model outcomes is similar for ali the models. Using the mean standard error
and 95% t-confidence interval, to compare the model outcomes for the 2, 5, 10 and 25 year
quantile groups, there is no statistically significant difference between thestandard errorof the
model outcomes within each quantile group. Forthe 50 year quantile estimates, the standard error

of PED outcomes is the lowest of the four, and the 3L N is the highest. In fact, while the mean of
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the PED standard error is within the 95%t-confidence interval of the 3L N, the mean standard
ermorof the 3LN is higher than theupper limit of the confidence interval for the PED standard error.
Atthe 100 year quantilelevel thestandard error of the 3LN and PED are significantly statistically
different, and while the GEV and PPD outcomes are higher than the upper limit of the 95% t-
interval for the PED, the PED is barely within the lower limits of the confidence interval for the

GEYV and PPD outcomes.

At the 500 and 1000 year quantiles, the standard error of the PED outcomes is significantly
statistically different than that of the 3LN, GEV, and PPD. Based on this analysis, it would appear
that the four models exhibitsimilar standard error for low quantiles, with the PED model exhibiting

better performance at higher quantiles.

Examination of the box plots of Figure 6.4 tends to confirm the results of the ANOVA analysis.
Forthe lower quantiles, the standard error is similar for all models. Athigher quantiles, starting at
about Q(50), thesize of the IQR, indicated by the height of the box, begins to be noticeably smaller
forthe PED outcomes. Indeed, for the higher quantiles, the position of the PED standard error
median is lower, and thebox is significantly smaller. In addition, there are fewer outliers for the
PED data and the outliers are closerto the expectedrange. This tends to indicate that the PED

model has comparable performance at lower quantiles, and better performance at higher quantiies.



Overall, for both AMF and POT series, the PED model had the lowest standard error in model
outcomes for resampled data. The quantile estimates from PED models were consistent with those
of the other methods over therange of return periods under consideration. This seems to indicate
that the PED model produces a reasonably good fit to the data and is more resistant to changes
in thedata. Thus, among the models tested, the PED model is determined to provide the best

estimates.

6.4 Results of Regional Homogeneity Testing

Asdiscussed in Section 4.3 of this thesis, the division of Newfoundland into four hydrologically
homogeneous regions as defined by Beersing (1990) was adopted for this research. This approach
was examined by Richter (1994), who found that more complex methods of delineating regions did
not improve the performance of regional models. As a check on the validity of these regions,
homogeneity testing was done on the island as a single region and on the four regions delineated
by Beersing (1990). Thestations withinthe regions were tested for homogeneity using theratio
of the ten-year and two-year flood quantiles, Q(10)/Q(2). These quantiles were selected as
reliableindicators because all stations had at least ten years of data. The ratio Q(10)/Q(2) was
calculated for all stations in a region, and the mean and standard deviation of the ratio was

computed. All stations were then tested to be within the 95% and 99% t-confidence interval
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about themean. Thestations were also tested using the nonparametric outlier cnteriaof the boxplot

(LL = QL - 1.5IQR, UL = QU + 1.5IQR).

Testing the whole island as one region, two stations failed for the 95% t-confidence interval and
one failed for the 99% t-confidence limits. Station 02YDO0O01 failed for the 95% t-confidence
interval but passed for 99%. This station also failed the non-parametricoutlier criteria. Station
02ZMO009 failed atboth the 95% and 99% t-confidence levels and was well below the lower limit.

Station 02ZMO009 also failed the non-parametric outlier criteria.

Forthe Avalon Regiononestation, 02ZMO009, failed for the 95% t-confidence interval but passed
forthe 99% interval. Station 02ZM009 also failed the non-parametric outlier criteria. This station
is located at the southeastem comer of the Avalon Peninsula and is highly exposed to the oceanic

weather effects which occur in this region.

Forthe Central Region all stations passed for the 95% and 99% t-confidence intervals and for the
non-parametricoutlier criteria. For the Northwest Region all stations passed forthe 95% and 99%
t-confidence intervals and for the non-parametric outlier critenia. Station 02YDO0O1, which was

marked as an outlier for the wholeisland region, was not an outlier in the northwest region. For the

90



Southwest Region all stations passed atboth 95% and 99%t-confidence intervals and for the non-

parametric outlier criteria.

6.5 Results of Regional Modelling

6.5.1 Model Generation by Linear and Nonlinear Regression

As discussed in Section 5.2 of this thesis, regional models typically follow the nonlinear form given

in Equation 34, repeated here:

O(D=ayx,x, ;... (34)

Traditionally, nonlinear models for flood quantiles, as shown above, have been derived by
transforming thedata into log-space, performing linear regression, and then transforming the
equations back intonormal space and applying them to thedata. This method introduces bias into
the equations as aresult of the transformation. Development of regional models by direct nonlinear
regression should produce superior results to the traditional log-linear method. Thebias inherent
to the logarithmic transformation is not generated, and the fitting of the model coefficients is

performed in the real data space.
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Inthis thesis, the traditional log-linear method of model development was used to generate regional
models for the two-year return flood quantile. Direct nonlinear regression was also used to
generateregional models for the two-year reun flood quantile. The regional model outcomes from
linear and nonlinear regression are compared to each other on the basis of their goodness of fit to

the expected flood quantile values.

Variables considered in the development of regional equations were limited to physical descriptors
of basin characteristics. This data was available from the Newfoundland Department of
Environment and Labour. Variables related to basin position were eliminated because
regionalisation effectively addresses position. Variables related to mean annual runoff and other
analogs for precipitation were eliminated as well. Variables related to soils, infiltration rates, and
soil permeability were eliminated because information on these basin properties was not readily

available.

Explanatory vaniables were then included and excluded following an iterative process. The drainage
areawas selected as the first explanatory variable for all regions. Following this, slope, fractional
areaoflakes and swamps, lakes and swamps factor, drainage density, and shape were considered.
Factors such as fractional area of barrens and forest were also considered but were not found to
improve the performance of estimates. The order of variable testing and the combinations of

variables tested was determined by the author in an organized sequence. The performance of
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variables was judged based on the r-square, mean error, and root mean square error of the

regional estimate developed.

Model parameters which were considered as possible explanatory vanables included the drainage
area, the basin slope, the fraction of the basin controlled by lakes and swamps, the lakes and
swamps factor, the drainage density, the and shape. Drainage area is typically the most significant
component of regional models because the system inputs (rainfall, fog, or melting snow) are
distributed over thebasin at some depth and the input volume is the product of the drainage area
and the input depth. Drainage area was found to be the most significant parameter for the regional

models developed here.

Two parameters were considered for addressing the influence of lakes and swamps: Fractional
Area Controlled by Lakes and Swamps (FACLS), and Lakes and Swamps Factor (LSF). The
FACLS is calculated simply as the ratio of the area of the basin hydrologically controlied by lakes
and swamps to theentire area of the basin. The calculation of the L SF, as explained in Section 5.1
of this thesis, is done using the FACLS and the fractional area of lakes and swamps (FLSAR), and
is slightly more complicated. The influence of lakes and swamps in abasin is typically to mitigate
the height of flood peaks, and the use of the FACLS is intended to allow the model to include this
attenuating effect. The LSF was adopted by Beersing (1990) to include the effect of the open

water surfaces of lakes and swamps which reduce infiltration in the drainage basin. In this thesis,
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only oneof'the FACLS or L SF was included in any regional model - the one which produced the

best fit.

The basin slope (SLP) was considered potentially significant because steeper basins tend to
concentrate water more rapidly, and thus will tend to respond to shorter duration and higher
intensity precipitation inputs. Drainage density (DRD) is computed as the ratio of the length of all
the streams in a watershed to the area of the watershed, and gives a measure of how well drained
the basinis. The implication is that an increase in drainage density will produce an increase inflow.
The shape parameter (SHP) is a measure of how elongated a basin is, with amore elongated basin

having a higher shape factor. Shape is calculated using a simple formula (Beersing 1990):

SHAPE= 028 x Perimeter + \| DrainageArea (37)

A number of parameters which are popular for the development of regional models were not
employed. No parameter for precipitation was included inthe analysis. This information was
excluded because the climate network for Newfoundland is sparse and availability of accurate
precipitationis limited. The problems with theuse of precipitation data or its analog, mean annual
runoff, have been discussed at some length by Lye and Moore (1991), and Beersing (1990). The

use of Latitude and Longitude or Northing and Easting parameters was not considered. Where
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aregional model is applied, the region is assumed to be hydrologically homogeneous so position

within the region should not influence the model outputs.

6.5.2 Comparison of Linear and Nonlinear Models

A number of measures of model fit are available to compare model outcomes for the regional
models. Thethree measures selected to compare the model outcomes are the adjusted R-square
value, the mean error (ME), and root mean square error (RMSE). The adjusted R-square value
indicates how muchof the variability of the dependant data is explained by the model. Error was
calculated as the difference of the predicted value less the expected value of Q(2), and the mean
error (ME) was calculated as the simple average of the error. This approach gives an indication
of the location of the central position of the model outputs compared to the expected value, and
allows one to get anindication of the bias of the model. The root mean square error is calculated
attheroot of the average of the error squared. The RMSE is a measure of the average size of the

deviation between the predicted and actual values of the dependant variable.

In general, the models generated by nonlinear regression produced higher R-square values and
lower RMSE for the same model parameters. Mean error, ME, was consistently smaller and
positively skewed for thenonlinear models. This indicates thatthe models derived using nonlinear

regression had less bias, and theirbias was toslightly overestimate the flood quantile. Considering
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the error properties of the models, the nonlinear derived models were generally better than those

derived using the log-linear method.

Results for log-linear and nonlinear regression on the whole island, are presented in tables 6.4 and
6.5, respectively. For the whole island, the best fit was obtained using the drainage area, slope,
lakes and swamps factor, and drainage density. Results for the Avalon region are presented in
Tables 6.6 and 6.7 respectively, and show that the best fit for the Avalon region is obtained by
nonlinear regression using DA, LSF, and DRD. It should be noted that the model gave good results
when just DA and LSF were used, and the improvement in the fit by the addition of DRD was
slight. For the Central Region, nonlinear regressionusing DA and FACLS produced the best
model. The addition of slope to the equation produced a slightly higher R-square value and a
slightly lower ME, butincreased RMSE. For the Northwest Region, nonlinear regression on DA,
SLP, and DRD produced the best result with the highest R-quare value, and ME and RMSE which
were very closeto the lowest for themodel results. For this regional equation the addition of LSF
did improve the RMSE slightly, but the R-squared and ME values were made worse. For the
Southwest Region, nonlinearregressionon DA, SLP, and SHP gave thebest estimate, witha much

higher R-square value, and ME and RMSE than any other combination of parameters tested.

In general, thenonlinear regression models outperformed the log-linear regression models. Forthe

same parameters, the nonlinear models exhibited higher R-squared values, and lower RMSE. The
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mean error, ME, which was ameasure of bias, was much better for the nonlinear models than for

the log-linear models.

The parameters FACLS and LSF, contribute similar information to the model, and for most models
the addition of either of these parameters produced similar results. Sincethe FACLS is simpler
to derive, it is probably the best choice for representing the effect of lakes and swamps in the

models.
6.6 Index Floods

The index flood method for estimating flood quantiles forregions is an approach with along and
successful history. This was the method of developing regional quantile estimators for the whole

island and the four regions considered in this thesis.

Theindex flood selected was the 2-year quantile estimate, Q(2). Other popularchoices for the
index flood include the mean daily maximum flow and the mean annual maximum. The process of
generating the index flood curves foreach region is a simple one. First the flood quantiles for
various return periods are calculated for each station. In this case the PED quantile estimates were
generated forthe 2, 5, 10, 25, 50, 100, 500, and 1000 year return periods. The Q(T)/Q(2) ratio

for each station and each quantile was then calculated. Then foreach region, the mean ratio of
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Q(TY/Q(2) ratio was calculated for each quantile. This mean Q(T)/Q(2)ratio allows the estimation
of Q(T) for anungauged site once the index flood Q(2) is known. Estimates of Q(2) forungauged
stations may be generated using the formulas developed for each region in section 6.5 of this thesis.
Once the index flood for any site is known, estimates of quantiles may be calculated by the

following formula:

o),

2N =02,

a(2), (38)

Where Q(T)r/Q(2)R is the known ratio of the flood quantile to the index flood for the region.

An analysis of the errors associated with quantile prediction using the index floods and ratios
derived in this thesis is presented in Table 6.16. The mean error, ME, is typically quite small
compared to the mean estimate and is also somewhat positively skewed, indicating that the
estimates tend to be somewhat higher than the expected values. For mostregions the RMSE is
quite small atlow quantiles and remains at less than 10% of the mean expected valueevenatthe

highest quantile estimates.

Forthe Northwest region, however, the performance of the estimators is not as good as for the
otherregions, and RMSE is >10% for quantile estimates above the 25 year return period. The

Q(T)/Q(2) ratios for the whole island were applied to generate estimates for the 19 stations in the
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Northwest region These estimators did produce somewhat lower RMSE for the samples, but they
also behaved poorly at the higher quantiles and had RMSE >10% of the mean expected value for
quantiles of Q(50) and higher. These estimates were also somewhat negatively biased and tended

to underestimate the expected flow.

The mean and median ratio values for estimation of quantiles from the index flood Q(2), are given
in Table 6.15. In this thesis, the mean ratios were used to generate estimates for flood quantiles
at each gauging site. Figure 6.6(a-e) allows graphic interpretation to determine flood quantile ratios

for return periods other than those used to generate the curve.
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Table 6.1 Hydrometric Series for the Entire Island.
No. Station No. [ Station Name ! Record Years |
1 02YAO001 St. Genevieve River 28
2 02YA002 Bartlett’s River 12
3 02YC001 Torrent River at Bristols Pool 39
4 02YD001 Beaver Brook 20
5 02YDO002 Northeast Brook near Roddickton 18
6 02YEO001 Greavett Brook 14
7 02YFO001 Cat Arm River 15
8 02YGO001 Main River at Paradise Pool 12
9 02YHO01 Bottom Creek near Rocky Harb. 13
10 02YJ001 Harrys River 30
11 02YJ003 Pinchgut Brook 11
12 02YK002 Lewaseechjeech Brook at L .Grand Lake 23
13 02YKO004 Hinds Brk. near Grand Lake 24
14 02YKO00S5 ShefTield Brook near TCH 26
15 02YK007 Glide Brook 13
16 02YKO008 Boot Brook 13
17 02YLO001 Upper Humber R. near Reidville 70
18 02YL 004 South Brook at Pasadena 15
19 02YL005 Rattler Brook near Mcivers 13
20 02YMO003 South West Brook near Baie Verte 18
21 02YNO002 Lloyds R. below King George IV Lake 17
22 02Y 0006 Peters River near Botwood 17
23 02Y0007 L eech Brook 13
24 02YO008 Great Rattling Brk. Above tote Rv. 14
25 02Y0010 Junction Brook near Badger 12
26 02YPQ01 Shoal Arm Brook 15
27 02YQ001 Gander R. at Big Chute 49
28 02YQ004 NW Gander River near Gander Lake 15
29 02YQO00S5 Salmon River near Glenwood 11
30 02YRO001 Middle Brook Near Gambo 39
31 02YR002 Ragged Harbour River 20
32 02YRO003 Indian Bay Brook near NW Arm 17
33 02YS001 Terra Nova Riv at Eight Mile BridgLe 34
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Table 6.1 Hydrometric Series for the Entire Island (continued).
34 02YS003 Southwest Brook at Terra Nova Park 31
35 02ZA001 Little Barachois Brook neat St. Georges 19
36 02ZA002 Highlands River at TCH 16
37 02ZA003 Little Codroy R. Near Doyles 15
38 02ZB001 Isle Aux Morts River 36
39 02Z2C002 Grandy Brook 16
40 02ZE001 Salmon River at Long Pond 22
41 02Z2F001 Bay du Nord River 48
42 02ZG001 Garnish River 40
43 02Z2G002 Tides Brook 20
44 02ZG003 Salmonier River near Lamaline 18
45 02Z2G004 Rattle Brook near Boat Harbour 17
46 02ZH001 Pipers Hole Riv. At Mothers Brk. 46
47 02ZH002 Come By Chance River 30
48 022J001 Southern Bay River near Sthrn Bay 22
49 02Z2J002 Salmon Cove River near Champneys 15
50 02ZJ003 Shoal Harbour River 12
51 02ZK001 Rocky River near Colinette 30
52 02ZK 002 Northeast River near Placentia 16
53 02ZK003 Little Barachois Riv. Near Placentia 15
54 02ZK004 Little Salmonier Riv. Near North Harbour 15
55 02ZK 005 Trout Brook 11
56 02Z1.003 Spout Cove Brook 18
57 02Z1.004 Shearstown Brook at Shearstown 15
58 02ZL005 Big Brook at Lead Cove 13
59 02ZMO006 Northeast Pond River at NE Pond 45
60 02ZM009 Seal Cove Brook near Cappahayden 19
61 02ZMO016 South Riv near Holyrood 15
62 02ZNO001 Northwest Brook at NW Pond 30
63 02ZN002 St Shotts Riv 13
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Table6.1a  Hydrometric Series for the Avalon Region.

No. Station No. | Station Name Record Years
1 02ZG001 Garnish River 40
2 02ZG002 Tides Brook 20
3 02ZG003 Salmonier River near Lamaline 18
4 02Z2G004 Rattle Brook near Boat Harbour 17
5 02ZH001 Pipers Hole Riv. At Mothers Brk. 46
6 02ZHO002 Come By Chance River 30
7 02ZK001 Rocky River near Colinette 50
8 02ZK002 Northeast River near Placentia 16
9 02ZK003 Little Barachois Riv. Near Placentia 15
10 02ZK 004 Little Salmonier Riv. Near North Harbour 15
11 02ZK 005 Trout Brook 11
12 02Z1.003 Spout Cove Brook 18
13 02Z1.004 Shearstown Brook at Shearstown 15
14 02Z1.005 Big Brook at Lead Cove 13
15 02ZM006 Northeast Pond River at NE Pond 45
16 02ZMO009 Seal Cove Brook near Cappahayden 19
17 02ZMO016 South Riv. near Holyrood 15
18 02ZNO001 Northwest Brook at NW Pond 30
19 02ZN002 St. Shotts Riv. 13
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Table 6.1b  Hydrometric Series for the Central Region.
No. Station No. | Station Name Record Years
1 02YNO002 Lloyds R. below King George IV Lake 17
2 02YO0006 Peters River near Botwood 17
3 02Y0007 Leech Brook 13
4 02YO0008 Great Rattling Brk. Above tote Rv. 14
5 02Y0010 Junction Brook near Badger 12
6 02YPO0O1 Shoal Arm Brook 15
7 02YQO001 Gander R. at Big Chute 49
8 02YQO004 NW Gander River near Gander Lake 15
9 02YQO005 Salmon River near Glenwood 11
10 02YROO01 Middle Brook Near Gambo 39
11 02YRO002 Ragged Harbour River 20
12 02YRO003 Indian Bay Brook near NW Arm 17
13 02YS001 Terra Nova Riv at Eight Mile Bridge 34
14 02YS003 Southwest Brook at Terra Nova Park 31
15 02ZE001 Salmon River at Long Pond 22
16 02ZF001 Bay du Nord River 48
17 022]J001 Southern Bay River near Sthm Bay 22
18 02ZJ002 Salmon Cove River near Champneys 15
19 022)003 Shoal Harbour River 12
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Table 6.1c  Hydrometric Series for the Northwest Region.

%\Io. Station No. | Station Name % Record Years P
1 02YAO001 St. Genevieve River 28
2 02YA002 Bartlett’s River 12
3 02YCO001 Torrent River at Bristols Pool 39
4 02YDO001 Beaver Brook 20
5 02YDO002 Northeast Brook near Roddickton 18
6 02YEQOI Greavett Brook 14
7 02YF001 Cat Arm River 15
8 02YGO001 Main River at Paradise Pool 12
9 02YHO001 Bottom Creek near Rocky Harb. 13
10 02YJ003 Pinchgut Brook 11
11 02YK002 Lewaseechjeech Brook at L Grand Lake 23
12 02YK004 Hinds Brk. near Grand Lake 24
13 02YKO005 Sheffield Brook near TCH 26
14 02YKO007 Glide Brook 13
15 02YK008 Boot Brook 13
16 02YL001 Upper Humber R. near Reidville 70
17 02YL004 South Brook at Pasadena 15
18 02YL005 Rattler Brook near Mcivers 13
19 02YMO003 South West Brook near Baie Verte 18

Table 6.1d  Hydrometric Series for the Southwestern Region.

No. Station No. | Station Name Record Years
] 02YJ001 Harrys River 30
2 02ZA001 Little Barachois Brook neat St.Georges 19
3 02ZA002 Highlands River at TCH 16
4 02ZA003 Little Codroy R. Near Doyles 15
S 02ZB001 Isle Aux Morts River 36
6 02Z2C002 Grandy Brook 16
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Table6.2 Mean and Upper and lower 95% t-confidence limit for quantile values derived
using four distributions.
Distribution
Quantile LN3 GEV PExp PPar
Mean Mean Mean Mean
LL UL LL UL LL UL LL UL
2 96.9 90.8 92.9 92.6
59.8 134.0 58.4 123.1 61.8 124.0 61.7 123.5
5 121.0 119.7 1183 118.3
75.6 166.4 779 161.5 79.0 157.6 78.4 158.2
10 140.9 138.4 137.5 138.3
89.0 192.8 90.8 186.0 92.0 183.0 90.8 185.7
25 167.8 162.1 162.8 165.9
107.5 | 228.] 1074 | 2167 | 109.2 | 2165 | 107.2 | 2245
50 186.0 179.9 182.0 188.0
120.2 | 251.9 120.2 | 2396 | 122.2 | 2419 | 119.6 | 256.3
100 206.5 198.2 201.2 2114
1345 | 2785 133.6 | 2628 | 135.1 267.3 132.0 | 290.8
500 256.7 2439 245.8 272.6
169.8 | 343.5 | 167.7 | 320.1 165.3 | 3263 160.6 | 384.7
1000 280.0 265.9 265.0 302.8
186.2 | 373.8 | 1844 | 3474 | 178.2 | 351.7 | 172.8 | 4328
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Table6.3 Mean and Upper and Lower 95% confidence limit for standard error of quantile
values derived using four distributions
Distribution
Quantile LN3 GEV PExp PPar
Mean Mean Mean Mean
LL UL LL UL LL UL LL UL
2 5.44 7.66 5.96 5.927
3.583 | 7.291 444 10.87 | 3.988 | 7.932 | 4048 | 7.807
5 7.10 9.33 884 8.46
4.78 9.42 6.06 12.61 6.00 11.69 5.80 .11
10 9.45 10.79 11.03 10.95
6.46 12.45 7.56 14.02 7.53 14.53 7.55 14.35
25 15.24 14.58 13.91 15.47
10.58 | 19.91 | 10.38 18.79 9.54 18.28 | 10.72 | 20.22
50 21.27 19.57 16.08 20.12
1493 | 27.60 | 1267 | 2546 | 11.05 | 21.11 13.97 | 26.26
100 30.13 26.41 18.28 26.06
2134 | 3892 | 18.08 | 34.73 12.59 | 2397 | 18.06 | 34.05
500 63.13 50.01 23.35 45.68
44,31 | 8196 | 3296 | 67.07 | 16.12 § 30.57 | 30.70 | 60.65
1000 85.4 64.3 25.53 57.14
583 112.5 41.8 86.8 1764 | 33.42 | 3746 | 7683
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Table 6.4 Whole Island Results of Log-Linear Regression.
Quantile |Parameters R2 |ME RMSE
Coef [DA |SLP |FACLS |LSF |[DRD [SHP
ao al a2 a3
Q(2) 0.8396 0.8 86.1 |-5.55 |[55.50
Q@) 0.4762 }0.947 |0.393 89.0 |-5.172 |42.90
Q) 0.447 10.940 (0.348 |-0.320 89.9 |-5.191 |35.65
Q) 0913 1]0.932 {0.349 -1.10 90.2 |-4.56 [32.159
Q) 0.6643 |0.992 |0.344 -0.952 ]0.428 91.8 |-4.56 |32.667
Q@) 0.8025 {0.885 ]0.349 -1.19 0.755 |90.7 |-6.75 [36.67
Q) 0.575 ]0.944 |0.343 -1.04 |0.438 |0.797 |92.4 |-6.62 ]37.36
Table 6.5 Whole Island Fits of Nonlinear Regression.
Quantile |Parameters R2 ME RMSE
Coef |DA SLP FACLS |LSF DRD [SHP |%
ao al a2 a3 a4 as a6
Q) 2.122 10.670 80.36 |0.834 |50.20
Q) 0.932 |0.855 ]0.368 86.43 10.673 141.16
Q) 0.637 |0.889 [0.377 |-0.601 92.76 |0.242 (29.72
Q) 1.645 [0.883 |0.4119 -1.321 93.06 |2.37 29.33
Q(2) 1.597 |0.896 [0.355 -1.386 10.237 93.61 |0.526 [27.66
Q(2) 1.571 |0.887 [0.421 -1.408 0.078 192.91 |-0.043 |29.15
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Table 6.6

Avalon Region Fits of Log-Linear Regression.

Quantile |Parameters R2 |ME RMSE
Coef |DA |[SLP |FACLS |[LSF |DRD ([SHP
ao al a2 a3
Q) 0.706 {0.883 93.7 |1.69 16.61
Q(2) 0.745 {0.867 |-0.039 93.3 |1.54 15.85
Q) 0.608 {0.907 0.600 95.1 {0.0035 [9.52
Q) 0.773 |0.897 -0.326 }0.581 949 10.175 [9.26
Q(?) 0.604 [0.905 0.063 |0.033 |94.7 [0.091 [9.40
Q) 0.601 [0.906 -0.085 0.588 94.8 |0.066 [9.25
Table 6.7 Avalon Region Fits of Nonlinear Regression.
Quantile |Parameters R2 |ME RMSE
Coef |[DA |SLP |FACLS |LSF |DRD |SHP
a0 al a2 a3 a4 as a6
Q(2) 1.522 |0.728 94.8 10.541 [9.796
Q) 1.685 [0.679 |-0.21 95.5 |-0.172 |8.895
Q(2) 0.992 10.812 0.382 95.7 10.184 |8.64
Q(2) 1.75 |0.723 -0.178 [94.6 |0.815 [9.71
Q(2) 1.295 10.748 -0.265 95.1 |0.315 }9.25
Q(2) 2978 ]0.694 -0.966 95.8 10.710 |8.56
Q(2) 1.889 [0.773 -0.869 10.361 96.5 (0.313 |{7.61
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Table 6.8 Central Region Fits of Log-Linear Regression.
Quantile |Parameters R2 |ME RMSE
Coef |DA |SLP |FACLS |LSF |DRD |SHP
ao al a2 a3
Q) 0.486 ]0.843 92.0 [|-7.77 |59.81
Q) 0.259 [1.03 |0.402 92.8 |-1.05 |59.13
Q(2) 0461 |0.831 -0.714 93.2 |-4.58 |28.10
Q(2) 1.019 |0.828 -1.19 92.8 |-6.02 |31.53
Q(2) 0385 |0.917 0.518 93.8 |-8.80 |59.59
Q(2) 0.206 |1.10 |0.402 0.518 94.7 |-5.08 |59.43
Q(2) 0.3012 |0.960 {0.280 [-0.573 93.9 |-3.90 |29.79
Table 6.9 Central Region Fits of Nonlinear Regression.
Quantile |Parameters R2 ME |[|RMSE
Coef [DA |SLP |FACLS |LSF |DRD ([SHP
a0 al a2 a3 a4 as a6
Q(2) 0.950 [0.762 B6.13 [3.25 |58.37
Q(2) 0.798 |0.853 |0.287 87.15 [4.70 [54.32
Q(2) 0.465 |0.829 -0.809 96.99 |-1.28 }26.38
Q(2) 1.089 [0.844 -1.495 96.79 |-2.23 |27.16
Q(2) 0.712 0.827 0.294 85.84 [3.47 |57.31
Q) 1.313 |0.815 -1.131 |87.58 |2.04 [53.62
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Table 6.10  Northwest Region Fits of Log-Linear Regression.

Quantile {Parameters R2 |ME RMSE
Coef |DA |SLP |[|FACLS |[LSF |DRD |[SHP
ao al a2 a3
Q(2) 0.5862 |0.857 85.5 |-13.35 |49.14
Q(2) 0.339 0.984 |0.481 90.9 {-8.54 |37.30
Q(2) 0.2698 11.01 }0.462 |-0.256 91.9 |-8.78 |34.34
Q) 0.5075 (1.027 |0.47 -1.15 92.5 |-5.04 |31.38
Q(2) 0313 [1.01 [0.479 0.133 90.6 |-4.90 |30.77
Q) 0475 |1.04 |0.465 -1.11 |0.089 92.1 |-3.90 |30.23
Q) 0.3396 {0.983 |0.451 0.019 {90.3 |-8.20 {37.14

Table 6.11 Northwest Region Fits of Nonlinear Regression.

Quantile {Parameters R2 ME RMSE
Coef |DA |[SLP |FACLS |[LSF |DRD |SHP
a0 al a2 a3 a4 as a6 (%)
Q(2) 0.469 0918 89.6 |1.46 39.16
Q(2) 0.234 |1.057 |0.498 93.37 |-0.517 |30.37
Q) 0.272 11.026 |0.47 |-0.266 93.28 [1.166 [29.58
Q) 0.408 }1.024 10.476 -0.612 93.16 |0.413 |29.89
Q(2) 0.326 [1.015 |0.443 0.225 93.98 |0.496 [|27.98
Q2 0.304 |1.019 |0.445 0.088 |0.234 93.55 [0.626 |27.96
Q(2) 0.104 |1.133 10.545 0.597 |93.43 |-1.763 [29.26
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Tabie 6.12  Southwest Region Fits of Log-Linear Regression.
Quantile |Parameters R2 |[ME |RMSE
Coef DA |[SLP |FACLS |LSF |[DRD |SHP
ao al a2 |a3
Q(2) 3.03 0.685 48.1 |-5.65 |56.98
Q(2) 0.0000203 2.89 |2.62 78.3 [-6.64 |34.82
Q(2) 0.000111 2.71 |2.26 1.55 80.9 |1.91 |18.46
Q) 0.000001122 [3.66 [3.36 1.96 |98.2 |-7.51 {12.64
Table 6.13  Southwest Region Fits of Nonlinear Regression.
Quantile |Parameters R2 |ME |RMSE
Coef DA |[SLP |FACLS |LSF |DRD |SHP
ao al a2 |a3
Q) 15.83 0.40 269 (045 [49.75
Q2) 0.0000353 2.80 |2.51 548 [0.32 {34.04
Q) 0.000309 2.33 |1.82 [-0.648 80.4 |-0.48 |18.52
Q(2) 0.00199 222 |1.69 -2.12 86.2 {0.30 |15.61
Q(2) 0.000000192 |4.03 |3.72 -2.23 196.1 |-0.18 }7.57
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Table 6.14  Regional Equations for the 2-Year Return Period Flood Quantile.

Region Parameter
Coef DA SLP FACLS LSF | DRD SHP
Island 1.645 0.883 | 0.4119 -1.321 |0.237
Eastern 1.889 0.773 -0.869 | 0.361
Central 0.461 0.831 -0.714
Northwest 0.3259 1.015 | 0.4431 0.225
Southwest 0.000000192 4026 |3.722 -2.228
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Table 6.15  Index Flood Ratios.
Means of Ratios Q(T)/Q(2)

Q(5) Q(10) |QE@25) |Q(50) |Q(00) [Q(500) | Q(1000)
Region
Island 1.279 1.490 1.769 1.981 2.192 2.682 2.893
Avalon 1.264 1.463 1.726 1.926 2.125 2.588 2.787
Central 1.271 1.476 1.747 1.951 2.156 2.632 2.837
Northwest 1.307 1.539 1.845 2.078 2.310 2.849 3.081
Southwest 1.267 1.468 1.736 1.937 2.139 2.608 2.810

Medians of Ratios Q(T)/Q(2)

Q) Q(10) Q(25) Q(50) Q(100) | Q(500) | Q(1000)
Region
Island 1.281 1.495 1.776 1.989 2.203 2.697 2910
Avalon 1.265 1.466 1.732 1.933 2.134 2.602 2.803
Central 1.269 1.472 1.740 1.944 2.147 2.618 2.821
Northwest | 1.298 1.523 1.821 2.047 2.273 2.797 3.022
Southwest 1.268 1.471 1.739 1.942 2.145 2.615 2.819
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Table 6.16  Emors in Quantile Estimates Generated using the Index Flood Ratios.
Whole Island
Quantile Q(5) Q(10) Q(25) Q(50) | Q(100) | Q(500) | Q(1000)
Mean Error 0.579 1.017 1.595 2.033 2.471 3.487 3.925
RMSE 4.282 7.523 11.803 15.042 18.282 25.802 29.042
Mean Value 118.299 | 137.486 | 162.848 | 182.034 | 201.220 | 245.769 | 264.955
% Mean Error 0.489 0.739 0.980 1.117 1.228 1.419 1.481
% RMSE 3.620 5.472 7.248 8.263 9.085 10.499 10.961
Avalon Region
Quantile Q(5) Q(10) Q(25) | Q(50) | Q(100) | Q(500) | Q(1000)
Mean Error 0.183 0.322 0.505 0.644 0.782 1.104 1.243
RMSE 0.838 1.471 2.309 2943 3.576 5.048 5.681
Mean Value 50.296 58.122 68.467 | 76.292 84.118 | 102.289 | 110.114
Mean % Error 0.364 0.554 0.738 0.844 0.930 1.080 1.129
% RMSE 1.666 2.532 3.373 3.857 4252 4935 5.160
Central Region
Quantile Q(5) Q(10) Q25) | Q(0) | Q(100) | Q(500) | Q(1000)
Mean Error 0.086 0.152 0.238 0.303 0.368 0.520 0.585
RMSE 3.708 6.512 10.220 13.024 15.830 22.341 25.146
Mean Value 162.673 | 188.849 | 223.451 | 249.627 | 275.803 | 336.580 | 362.756
Mean % Error 0.053 0.080 0.107 0.122 0.133 0.154 0.161
% RMSE 2.279 3.448 4.574 5.217 5.740 6.638 6.932
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Table6.16 Error in Quantile Estimates Generated using the Index Flood Ratios (continued).

Northwest Region
Quantile Q(5) Q10)| QE5)| Q(0) | Q(100) | Q(500) | Q(1000)
Mean Error 1.007 1.767 2717 3.538 4.299 6.069 6.832
RMSE 7.113 13.550 | 21.262 | 27.097 32932 | 46.481 52.318

Mean Value 123.519 | 144.395 | 171.986 | 192.859 | 213.733 | 262.200 | 283.073

Mean % Error 0.815 1.224 1.614 1.835 2.012 2.315 2.414

% RMSE 6.245 9384 | 12363 | 14.050 | 15408 | 17.727 18.482
Southwest Region

Quantile Q) Q(10) | Q25) | Q(50) | Q(100) | Q(500) | Q(1000)

Mean Error 0.953 1.674 2.626 3.347 4.068 5.741 6.462

RMSE 2.364 4153 6.516 8.305 10.093 | 14.245 16.034

Mean Value 176.598 | 204.281 | 240.878 | 268.562 | 296.246 | 360.526 | 388.210

Mean % Error 0.540 0.819 1.090 1.246 1.373 1.592 1.664
% RMSE 1.339 2.033 2.705 3.092 3.407 3.951 4.130
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Map of Newfoundland Showing Stations
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AVA - Avalon Region
CEN - Central Region
NW - Northwest Region
SW - Southwest Region
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Figure6.2  Map of Newfoundland Showing Regions
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Figure 6.5 Boxplots of Q(2)/Q(10) for the Island, Avalon, Central, Northwest, and Southwest Regions
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Figure 6.6b  Quantile Estimation Chart For Avalon Region, Q(T)/Q(2) with Data Scatter Shown
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Figure 6.6c  Quantile Estimation Chart For Central Region, Q(T)/Q(2) with Data Scatter Shown
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Figure 6.6e  Quantile Estimation Chart For Southwest Region, Q(T)/Q(2) with Data Scatter Shown
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7.0 CONCLUSIONS

Inthis chapter, some conclusions are presented based on the expected and obtained results from
application of the peak-over-threshold method to the development of regional flood frequency

models for Newfoundland.

1. Forthe quantile estimates generated for the 63 data series analysed, there is no statistically
significant difference between the central position of the results of the 3LN, GEV, PED and

PPD models.

2. For the standard error of quantile estimates generated by resampling of the 63 data series
analysed, the Poisson-Exponential Distribution model exhibited comparable standard error
for lower quantiles and lower standard error for higher quantiles. Because of this, the PED

model was determined to be the most robust for a variety of quantiles.

3. Regional models for estimation of the 2-year quantile developed using nonlinear regression
exhibited better fit to the underlying data than did the models produced using the traditional
log-linear method. Thenonlinear models exhibited lower bias as measured by mean error,

ME, and also less estimation error as measured by root mean squared error, RMSE.
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Using the 2-year quantile as the index flood, the ratios of Q(T)/Q(2) were easily
calculated, and allowed estimation of flood quantiles for stations in the regions with a
reasonably goodfittothe expected values. For most regions RMSE was less than 10%

of the mean of the expected values.

Theestimated values from application of the index flood techniquetended to overestimate
the quantile slightly and results were somewhat positively skewed from expected values.

This will tend to produce more conservative (higher) estimates of flood quantiles.

Quantile estimates using the index flood method produced the poorest results in the
Northwest Region. Results were still reasonable and at lower quantiles, the RMSE was
less than 10% of the mean expected value. The Q(T)/Q(2) estimators derived for the

whole island were tried for this region but did not produce significantly better results.

With the exception of the Northwest Region, the use of regional index floods produced
improved quantile estimates when compared to the estimates produced by equations

developed for the whole island.

In the Southwest Region the equation which performed best (generated estimates with the

lowest error) relied on three descriptors. The number of gauge records available in this
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region was only six. The coefficients developed for this equation are also somewhat
suspect as they suggest a significant scaling of the result. In this region, the use of the

whole island equation may provide a more reliable result and is recommended.

Theregional models developed in this thesis, basedon aPOT approach, thefitting of the
Poisson-Exponential model to the at site data, and the development of regional models
using nonlinearregression on basin descriptors provides regional models with relatively low
error when compared to similar models developed for this region using AMF data.
However, because this thesis includes more data sets, uses POT data, and uses non-linear

regression methods, it is difficult to attribute the improved performance one source.

128



8.0 REFERENCES

Ashkar, Fahim, 1994, Regional Flood Frequency Estimation by the Peak-over-threshold Method,
Proceedings of the 1st Workshop on Regional Estimation of Floods (GREHY S-NSERC),

C.E.Delisleand M. A. Bouchard, eds., November 15-17, Montreal, Quebec, Canada.

Associate Committee on Hydrology (ACH), 1989, Hydrology of Floods in Canada, National

Research Council of Canada, Ottawa.

Atlantic Development Board (ADB), 1969, Water Resources of The Atlantic Provinces:

Background Study No 6, Queen’s Printer, Ottawa
Beersing, A. K., 1990, Regional Flood Frequency Analysis for the Island of Newfoundland,
Department of Environment and Lands, Government of Newfoundland and Labrador, St.

John’s, Newfoundland.

Bobeée, Bernard and Peter Rasmussen, Recent Advances in Flood Frequency Analysis, Review

of Geophysics, Volume 33 Supplement, American Geophysical Union, 1995

129



Caissie, Daniel, and Nassir El -Jabi, 19913, A Stochastic Study of Floods in Canada: Frequency
Analysis and Regionalisation, Canadian Journal of Civil Engineering, Canadian Society

of Civil Engineers, Vol. 18.

Caissie, Daniel, and Nassir El-Jabi, 1991b, A Stochastic Study of Floods in Canada: Truncation
Level by Region, Canadian Journal of Civil Engineering, Canadian Society of Civil

Engineers, Vol. 18.

Dalrymple, T., (1960), Flood Frequency Analysis, Water Supply Paper 1543-A, pp.11-51,

United States Geological Survey.

Department of Environment and Lands (DOE), 1992, Water Resources Atlas of Newfoundland,

Government of Newfoundland and Labrador, St. John’s, Newfoundland

Department of Environment and Lands (DOE), 1984, Regional Flood Frequency Analysis for
the Island of Newfoundland, Canada- Newfoundland Flood Damage Reduction
Program, Governmentof Newfoundland and Labrador, St. John’s, and Environment

Canada, Dartmouth, Nova Scotia.

130



Ekanayake, S.T.,andJ. F. Cruise, 1994, Comparative Evaluation of Poisson Partial Duration
Series for Mixed Flood Populations, Stochastic Hydrology and Hydraulics, Volume 8,

Number 3, pp 207-218, Springer International.

Fill, H. D, and Stedinger, J R., (1995) Homogeneity Tests Based Upon Gumbel Distribution and
a Critical Appraisal of Dalrymple’s Test, Journal of Hydrology, Vol. 166, Elsevier

Science Publishers, Amsterdam.

Hann,C. T.,H.P. Johnson, and D. L. Brakensiek, eds., 1982, Hydrologic Modelling of Small

Watersheds, American Society of Agricultural Engineers, St. Joseph, Michigan, U.S.A.

Hebson, C.S.and C. Cunnane, 1987, Assessment of Use of At-Site and Regional Flood Data for
Flood Frequency Estimation, Hydrologic Frequency Modelling: Proceedings of the
International Symposium on Flood Frequency and Risk Analysis - May 1986, Edited

by V.P. Singh, published by D. Reidel Publishing Company
Lye,L.M., and E. Moore, 1991, Discussion: “Instantaneous Peak Flow Estimation Procedures

forNewfoundland Streams” by U. S. Panuand D. A. Smith, Water Resources Bulletin,

American Water Resources Association,

131



Maidment, David R, Ed., 1992, Handbook of Hydrology, McGraw-Hill Inc., New York.

Martins, E.S. andJ R. Stedinger, 2000, Generalized Maximum Likelihood Generalized Extreme
‘Value Quantile Estimators for Hydrologic Data, Water Resources Research, Volume 36,
Number 3, Pages 737-744, American Geophysical Union, Washington, USA, March

2000

Mrawira, M.D., Generalized Pareto Distribution, a paper submitted to Memorial University as

part of the course Engineering 9714: Statistical Methods in Engineering, Fall 1991.

Natural Environment Research Council (NERC), 1975, Flood Studies Report, Volume 1,

Hydrological Studies, London, United Kingdom, pages 185-213

Neill, CharlesR., 1986, Unusual CanadianFloods and the Creager Diagram, Canadian Journal

of Civil Engineering, Volume 13, Ottawa, Canada

Pilon, P. J,, and K. David Harvey, 1994, Consolidated Frequency Analysis Version 3.1:

Reference Manual, Environment Canada, Ottawa

132



Ouarda, T.B.M.J. and Fahim Ashkar, 1995, The Peaks-Over-Threshold Method for Regional
Flood Frequency Estimation, Proceedings of the 48th Canadian Water Resources

Association Conference, Canadian Water Resources Association.

Richter, Susan A., 1994, Relationships of Flow and Basin Variables on The Island of
Newfoundland, Canada, Witha Regional Application, A thesis submitted to Memorial

University of Newfoundland, St. John's, Newfoundland.

Riggs, H.C., 1973, “Regional Analysis of Streamflow Characteristics™, Techniques of Water

Resource Investigations, Book 4, Chapter B3, USGS, Washington, DC

Rollings, K., (1999), Regional Flood Frequency Analysis for the Island of Newfoundland,

Department of Environment and Labour, St. John’s, Newfoundland

Rosbjerg, D.,H. Madsen and P.F. Rasmussen 1992, Prediction in Partial Series with Generalized
Pareto Distribution Exceedances, Water Resources Research, Vol .28, No.11, American

Geophysical Union, Washington, USA, November 1992

Salas, J.D., Delleur, J W, Yevjevich, V., and Lane, W.L., 1988, Applied Modelling of

Hydrologic Time Series, Water Resources Publications, Littleton, Colorado

133



Soil Conservation Service (SCS), 1972, National Engineering Handbook, United States

Department of Agriculture, Washington, D.C.

Taesombutand Yevjevich, V.And V. Yevjevich, 1978, Useof Partial Flood Series for Estimating
Distribution of Maximum Annual Flood Peak, Hydrology Papers No. 97, Colorado State

University, Fort Collins, Colorado

Wang, Q.J., 1991, The POT Model Described by the Generalized Pareto Distribution with

Poisson Arrival Rate, Journal of Hydrology, Vol. 129, Elsevier Science Publishers,

Amsterdam.

134



Appendix A

Data and Error Analysis for Nonlinear Regression Models
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Avalon

Station

1 0229001
2 0229002
3 02zg003
4 0229004
5 02zh001
6 02zh002
7 02zk001

8 02zk002
9 02zk003
10 02zk004
11 02zk005
12 0221003
13 02zi004
14 02z1005

15 02zm006
16 02zm009
17 02zm016
18 02zn001
19 02zn002

Q(2)

56.996
47.9045
50.6158
27.2263
191.017
22.7407
107.886
44,9612
30.1742
72.1584
17.0865
6.04686
10.8401
3.77604
216978
21.5668
8.75295
30.2479
6.90198

DA
km*2

205.0
166.0
115.0
427
764.0
433
285.0
89.6
37.2
104.0
50.3
10.8
289
1.2
3.9
53.6
17.3
53.3
155

SLPM2 FRAC LSF

(%)

0.60
0.78
0.34
1.10
0.38
0.59
0.23
0.57
1.77
0.66
0.88
1.28
1.03
243
242
0.98
2.22
0.61
0.43

ACLS

(-)

0.96
0.92
0.92
0.92
0.91
0.92
0.55
0.81
0.34
0.91
0.50
1.00
0.39
1.00
1.00
1.00
0.90
1.00
0.82

1.9
1.85
1.85
1.83
1.57
1.87
147
1.64
1.24
1.67
145
195
1.36
1.95
1.89
1.93
1.84
1.94
1.75

DRAIN.

km*-1

0.55
1.356
1.55
1.62
0.71
1.1
1.01
1.11
1.16
1.50
1.18
1.09
1.14
1.00
1.04
1.13
1.01
1.09
1.03

SHAPE
DENSITY FACTOR

)

245
1.84
1.62
1.53
1.67
1.66
200
1.91
1.48
1.85
1.90
1.36
1.73
1.52
1.24
1.37
140
206
1.53



Estimates Calculated using DA only Estimates Calculated using DA & SLP

Output  Error Mean Erro Square ErfMSE RMSE Output  Error Mean Erro Square EMMSE RMSE
7369738 16.70138 0541017 278.9361 95.97557 9.796712 69.64164 1264564 -0.1721 159.9123 79.12005 8.894945
63.19045 15.28595 233.6602 57.17186 9.267362 85.884
48.35677 -2.25903 5.103205 5299113 2.375328 5642184
2348732 -3.73898 13.97994 21.15356 -6.07274 36.87817
192.2655 1.248518 1.558796 187.3726 -3.64441 13.28172
23.72743 0.986729 0.973634 24.29035 1.549646 2.401403
93.70248 -14.1835 201.1723 106.6287 -1.2573 1.580804
40.31364 -4.64756 21.59986 40.1907 -4.7705 22.75765
21.24141 -8.93279 79.79469 17.41503 -12.7592 162,7965
4493971 -27.2187 740.8572 43.05874 -29.0997 846.7902
26.46595 9.379454 87.97416 2475274 7666236 58.77117
8623374 2.576514 6.638425 8.092628 2.045768 4.185166
1767108 6.83098 46.66229 16.43818 5.59808 31.3385
8.855023 5.078983 25.79606 7.211766 3.435726 11.80421
4.104324 1934544 3.742461 3.5264 1.35662 1.840417
27.72062 6.153815 37.86944 25.26651 3.699714 13.68788
12.157 3.404051 11.58756 9.874136 1.121186 1.257057
27.60744 -2.64046 6.972036 27.78625 -2.46165 6.059739

11.22141  4.31943 18.65747 12,9362 6.034221 36.41182



Estimates Calculated using DA & DRD Estimates Calculated using DA & FRAC

Output  Error Mean Erro Square ErrfMSE RMSE Output  Error Mean Erro Square ErrMSE RMSE
§9.50561 2.509614 0.184984 6.298161 74.65818 8640496 70.17106 13.17506 0.315833 173.5821 85.70844 9.257885
70.73379 22.82929 521.1766 60.60427 12.69977 161.2842
55.34405 4.728251 22.35636 46.05368 -4.56212 20.81292
25.15875 -2.06755 4274743 21.94939 -5.27691 27.8458
191.2753 0.258312 0.066725 190.4029 -0.61411 0.377131
22.047 -0.6937 0.481226 22.17968 -0.56102 0.314741
98.09068 -9.79531 95.94814 104.0571 -3.82892 14.66061
39.77326 -5.18794 26.91477 39.52196 -5.43924 29.58533
19.8192 -10.355 107.226 2577194 -4.40226 19.37989
50.39422 .21.7642 473.6795 428411 -29.3173 859.5039
25.48893 8.402427 70.60078 29.15986 12.07336 145.7661
7.086979 1.050119 1.102751 76784 163154 2661923
16.03756 5.197464 27.01364 20.5754 9.735303 94.77612
7.063343 3.287303 10.80636 7.890143 4.114103 16.92584
3.041129 0.871349 0.759249 3.584149 1.414369 2.000441
26.40814 4.841336 23.43854 25.449684 3.883039 15.07799
10.09357 1.340621 1.797264 11.2318 2.478651 6.144704
2591102 -4.33688 18.8085 2534322 -4.90468 2405593

9.301156 2.399176 5.756045 10.60397 3.701992 13.70475



Estimates Calculated using DA & LSF Estimates Calculated using DA & LSF & drd

Output  Error Mean Erro Square ErfMSE RMSE Output  Emor Mean Erro Square ErfMSE RMSE
64.13961 7.143607 0.710325 51.03112 73.40004 8.567382 §3.0522 -3.9438 0.313434 15.55358 57.97161 7.613909
57.07824 9.173743 84.15755 64.10801 16.20351 262.5537

4419989 -6.41591 41.16385 50.69916 0.083365 0.00695

2242997 -4.79633 23.00474 24.14092 -3.08538 9.519548

193.5797 2.562697 6.567415 191.3752 0.358229 0.128328

2225122 -0.48948 0.239588 20.97216 -1.76854 3.12772

103.5365 -4.34946 18.91777 106.7658 -1.12018 1.254803

41,8107 -3.1505 9.925661 41.18563 -3.77557 14.25493

29.69118 -0.48302 0.233311 27.00475 -3.16945 10.04544

4558398 -26.5744 706.2 50.77108 -21.3873 457.4174

31.47517 14.38867 207.0338 29.95008 12.86358 165.4718

8.129276 2.082416 4.336457 6.859748 0.812888 0.660786

22.82507 11.98497 143.6395 20.40159 9.561494 91.42216

8.354271 4.578231 20.9602 6.842856 3.066816 9.405361

4.130298 1.960518 3.843632 3.145975 0.976195 0.952957

24.99687 3.430068 11.76537 2420021 2.633411 6.934852

11.93534 3.182394 10.12763 10.09819 1.345236 1.80966

24.82297 -5.42493 29.42986 23.70262 -6.54528 42.84068

11.59489 4.692907 22.02338 9.748026 2.846046 8.09998



Estimates Calculated using DA & SHP
Output  Error Mean Erro Square ErfMSE RMSE

70.01072 13.01472 0.815673 169.3829 94.36929 9.714386

63.25905 15.35455 235.7623
49.63319 -0.98261 0.965519
24.47997 -2.74633 7.542323
194.031 3.013952 9.083908
24.38033 1.639629 2.688383
92.11016 -15.7758 248.8771
40.21717 -4.74403 22.50585
22.29636 -7.87784 62.06033
45.06056 -27.0978 734.2929
26.52489 9.438388 89.08317
9.261071 3.214211 10.33115
18.06737 7.227272 52.23346
9.316537 5.540497 30.69711
4.505559 2.335779 5.455864
29.4328 7.865996 61.8739
12.94597 4.19302 17.58142
27.26424 -2.98366 8.902205

11.7699 4.867921 23.69665



Central

STATION Q(2)

02yn002
02yo006
02yo007
02yo008
02yo0010
02yp001
02yq001
02yq004
02yq005
02yr001

02yr002
02yr003
02ys001
02ys003
02ze001
02zf001

022j001

022j002

022003

174.19
443773
24.3845
201.651
12.5348
19.1705
548.476
525.105
29.9944
29.0624

65.955
52.3768
177.662
10.3352
289.281
173.737
19.9982
12.1815
22.8753

DA
km"2

469.0
177.0
88.3
823.0
61.6
63.8
4400.0
2150.0
80.8
267.0
399.0
554.0
1290.0
36.7
2640.0
1170.0
67.4
736
106.0

0.30
045
0.88
0.30
0.62
0.53
0.15
0.17
1.03
0.32
0.21
0.23
0.12
1
0.08
0.34
0.50
0.55
0.91

ACLS

1.00
0.97
0.73
0.55
0.89
0.79
0.91
0.44
0.87
0.98
0.96
0.97
0.92
1.00
1.00
0.96
0.86
0.82
0.68

1.91
1.89
1.57
1.40
1.79
1.72
1.82
1.22
1.79
1.86
1.79
1.80
1.76
1.92
1.92
1.84
1.78
1.72
1.58

~ Shape

137
0.80
0.74
0.69
0.77
0.88
0.45
045
1.09
0.26
0.74
0.68
0.73
0.64
0.36
0.61
124
1.1
0.66

DENSITY FACTOR
kmA-1

2.15
1.93
1.52
1.80
1.55
1.62
2.08
163
1.78
1.93
1.68
1.72
2.35
143
1.75
215
1.64
133
1.66



Estimates Calculated using DA only Estimates Calculated using DA & SLPonly

Output  Error Mean Erro Square EMMSE RMSE Output  Error Mean Erro Square ErrMSE RMSE
103.1394 -71.0506 3.251113 5048.194 3407.845 58.37675 107.9333 -66.2567 4.707915 4389.956 2051.302 54.325€9
49.07994 4.702641 22.11483 52.57591 8.198607 67.21715

28.88952 4.505015 20.29516 35.28152 10.89702 118.7451

158.3251 -43.3259 1877.132 174.2858 -27.3652 748.8557

21.9565 9.421698 88.76839 23.46527 10.93047 119.4752

225516 3.381104 11.43187 23.09074 3.920244 15.36832

568.0661 19.59012 383.7729 594.3642 45.88823 2105.73

329.1357 -195.969 38403.98 336.2084 -188.897 35681.93

26.99988 -2.99452 8.967161 3421615 4.22175 17.82317

67.13791 38.07551 1449.745 67.78039 38.71799 1499.083

91.18535 25.23035 636.5703 85.14516 19.19016 368.2624

117.0988 64.72199 4188.936 1144675 62.09072 3855.257

222.9996 45.33757 2055.495 196.7096 19.04764 362.8127

1479638 4.461185 19.90217 17.82005 7.484848 56.02295

384.8823 95.60132 9139.612 323.9149 34.63394 1199.51

207.0084 33.27144 1106.989 243.7408 70.0038 4900.532

23.51502 3.516818 12.36801 23.7688 3.770603 14.21745

25.14613 12.96463 168.0817 26.394 14.2125 201.9951

33.20544 10.33014 106.7117 41.63573 18.76043 351.9538



Estimates Calculated using DA & FACLS

Output

76.60538
34.97408
24.71519
198.1362
15.61581
17.70448
$30.0121
526.5684
19.92216
48.76787
69.23746
80.15546
189.7682
9.246329
321.3972
169.0757
17.29984
19.34153
30.46056

Error

-97.5846
-9.40322
0.330686
-3.51477
3.081006
-1.46602
-18.4639
1.463361
-10.0722
19.72547
3.282465
37.77866
12.10617
-1.08887
32.11617

-4.6613
-2.69836

7.16003
7.585256

Mean Erro Square ErfMSE RMSE

-1.28021 9522.757 695.9943 26.3817
88.42053
0.109353

12.3536
9.492599
2.149226
340.9173
2.141425
101.4499
389.0942
10.77458
1427.227
146.5595
1.185641
1031.449

21.7277
7.281164
51.26603
57.53611

Eslimates Calculated using DA & LSF

Output

74.45143
33.26017
24.39794
191.1793
14.77955
16.17003
528.1317

522.405
18.57787
48.21916
71.36403
93.17667
196.6011
8.589739
316.8205

170.184
16.12787

18.2922
28.17882

Error

-99.7386
111171
0.013443
-10.4717
2.24475
-3.00047
-20.3443
-2.69998
-11.4165
19.15676
5.409027
40.79987
18.93911
-1.74546
27.53947
-3.55297
-3.87033
6.110702
5.303516

Mean Erro Square ErfMSE

-2.23373 9947.782 737.9308
123.5905
0.000181
109.6575
5.038902
9.002815
413.889
7.289913
130.3371
366.9813
29.25757
1664.629
358.6897
3.046634
758.4225
1262362
14.97947
37.34068
28.12728



Estimates Calculated using DA & DRD

RMSE Output  Ermor Mean Erro Square ErfMSE RMSE
27.16488 126.3153 47.8747 3.469568 2291.989 3284.476 57.31035

48.16624 3.788939 14.35606

26.50597 2.121465 4.500614

164.4892 -37.1618 1381.002

19.91093 7.376129 54.40727

21.28223 2.111727 4.459389

581.0668 3259079 1062.16

320.9601 -204.145 41675.13

27.60022 -2.39418 5.732087

48.38688 19.32448 373.4355

92.26536 26.31036 692.2353

118.2685 65.89169 4341.715

242.1325 64.47048 4156.443

12.29349 1.958287 3.834888

357.0746 67.79363 4595 976

212.4098 38.67283 1495.588

2464517 4.64697 21.59433

25.68697 13.50547 182.3978

29.80944 6.934143 48.08234



Estimates Calculated using DA & SHP Estimates Caiculated using DA & SLP &FACLS

Output  Error Mean Erro Square ErfMSE RMSE Output  Error Mean Erro Square EmMSE RMSE
83.03911 -91.1509 2.037112 8308.484 2875458 53.6233 78.86622 -95.3238 -3.90085 9086.622 887.4464 29.79004
424031 -1.9742 3.89746 35.15721 -9.22009 85.01008

31.51792 7.133424 50.88574 25.67201 1.287513 1.657689

160.5471 -41.1039 1689.533 190.4217 -11.2293 126.0969

22.98835 10.45355 109.2768 14.70392 2.169122 4.705089

22.51829 3.347789 11.20768 15.56652 -3.60398 12.98867

534.5016 -13.9744 196.2833 584,2506 35.77465 1279.825

392.842 -132.263 17493.51 464.0179 -61.0871 3731634

2452336 -5.47104 2993229 22.28083 -7.71357 59.49922

§9.27971 30.21731 913.086 47.17635 18.11395 328.1153

95.95436 29.99936 899.9619 62.74879 -3.20621 10.27979

122.821 70.44415 4962.379 86.80141 34.42461 1185.054

171.2843 -6.37769 40.6749 168.9091 -8.75294 76.61398

16.51135 6.176147 38.14479 9.847735 -0.48747 0.237622

428.5445 139.2635 19394.31 286.868 -2.41302 5.82268

1749236 1.186559 1.407923 200.7425 27.00554 729.2094

23.14398 3.145756 9.895779 15.35845 -4.63975 21.52732

316005 19419 377.0975 1767891 5.497407 30.22148

33.10905 10.23375 104.7297 32.16356 9.28826 86.27177



Northwest DA ACLS LSF M2 DENSITY FACTOR

Q) kmA2 {-) (%) kmA-14 )
STATION 2.00
1 02ya001 30.032 306.0 0.96 1.78 0.14 0.54 148
2 02ya002 16.525 336 0.99 1.91 1.21 0.91 164
3 02yc001  177.065 624.0 0.99 1.91 1.01 0.76 1.45
4 02yd001 91.857 237.0 0.73 1.68 0.66 0.34 223
5 02yd002 38.0701 200.0 0.99 1.90 0.47 0.93 1.65
6 02ye001 38.3833 95.7 0.e8 1.82 3.09 0.75 1.64
7 02yf001  265.165 611.0 1.00 1.93 0.73 0.58 1.86
8 02yg001  258.593 627.0 0.63 1.55 1.1 1.30 1.83
9 02yh001  5.40227 334 0.93 1.86 085 1.13 1.68
10 02yj003 289783 119.0 1.00 1.95 0.78 1.73 1.54
11 02yk002  110.495 470.0 1.00 1.92 0.59 0.63 232
12 02yk004 82.25 529.0 0.95 1.77 0.32 0.64 1.78
13 02yk005  60.9237 391.0 0.94 1.85 1.07 0.19 1.98
14 02yk007  23.1046 1120 098 1.91 0.90 1.28 1.61
15 02yk008 8.75146 204 0.65 1.50 1.16 1.28 147
16 02yl001 514.83 2110.0 0.75 1.68 0.46 0.79 1.56
17 02yl004  26.7432 58.5 0.08 1.06 1.04 1.34 1.54
18 02yl005  10.1766 17.0 0.46 1.39 288 1.05 1.10

19 02ym003  35.2427 93.2 0.56 1.49 0.57 0.68 167



Estimates Calculated using DA only

Output

89.75634
11.81278
172.6443
70.98913
60.7461
30.87806
169.3397
173.4061
11.74822
37.71594
133.0941
148.356
112.4064
35.67426
7.471595
528.28
19.65269
6.320115
30.13677

Error

59.72434
-4.71222
-4.42068
-20.8679
22.678
-7.50524
-95.8253
-85.1869
6.345951
8.737641
22.59806
66.10601
51.48272
12.56966
-1.27986
13.44996
-7.09051
-3.85649
-5.10593

Mean Erro Square ErrMSE RMSE

1.46528 3566.996 1533.348 39.15798
22.20497
19.54241
435.4682
514.2008
56.32863
9182.497
7256.803
40.27109
76.34638
510.7176
4370.005

2650.47
157.9964
1.638054
180.9014
50.27538
14.87248
26.07056

Estimates Calculated using DA only

Output

79.12415
11.91567
145.7199
63.56311

549577
29.22048
143.1143
146.3201
11.85486
35.22002
114.2967
126.4874
97.62056
33.43687
7.769604
413.9576
19.16454
6.645697
28.56507

Error

49.09215
-4.60933
-31.3451
-28.2939
16.8876
-9.16282
-122.051
-112.273
6.452593
6.241717
3.801697
44 23742
36.69686
10.33227
-0.98186
-100.872
-7.57866
-3.5309
6.67763

-13.3491

Mean Erro Square ErrfMSE RMSE

2410.04 2414.798 49.14059
21.2459
982.5123
800.5441
285.1909
83.95727
14896.37
12605.2
41.63596
38.95903
14.4529
1956.949
1346.66
106.7559
0.964042
10175.24
57.43609
12.46728
44.59078



Estimates Calculated using DA & SLP
Output  Error Mean Erro Square ErfMSE RMSE

37.27307 7.24107 -0.51712 52.4331 922.3541 30.37028

10.56291 -5.96209 35.54651
212.1939 35.12889 1234.039
62.45914 -29.3979 864.2341
43.32358 5.253483 27.59909
50.93767 12.55437 157.6123
176.1961 -88.9689 7915.472
223.0994 -35.4936 1259.792
8.803726 3.401456 11.5699
32.30964 3.331339 11.09782
120.2928 9.797764 95.99618
99.87022 17.62022 310.4722
132.7922 71.8685 5165.082
32.564259 9.437987 89.0756
6.103726 -2.64773 7.010496
517.1549 2.324943 5.405361
17.60282 -9.14038 83.54657
7.917313 -2.25929 5.104377

21.32723 -13.9155 193.6404



Estimates Calculated using DA & SLP &FACLS Estimates Calculated using DA LSF & SLP

Output  Error Mean Emo Square ErrfMSE RMSE Output  Error Mean Erro Square ErfMSE RMSE
36.69688 8.664882 1.166213 75.08019 875.1627 29.58315 39.50955 9.477547 0.413683 69.8239 893.817 29.89677
10.96539 -5.55961 30.90928 10.96674 -5.53826 30.67233

202.2032 25.1382 631.9293 201.454 24389 594.8232

67.25994 -24.5971 605.0153 66.6812 -25.1758 633.821

43.70454 5.634436 31.74687 43.48854 5.418442 29.35952

51.45096 13.06766 170.7638 $1.67747 13.29417 176.7349

169.1102 -96.0548 9226.525 167.1218 -98.0432 9612.475

239.1132 -19.4798 379.4642 239.8416 -18.7514 351.6143

9.386508 3.984238 15.87416 9.373645 3.971375 15.77182

32.56308 3.584775 12.85061 32.13783 3.159533 9.982647

117.0829 6.587873 43.40007 116.1723 5.677328 32.23206

99.91223 17.66223 311.9544 102.4762 20.22618 409.0983

129.9835 69.05985 4769.263 130.1717 69.24804 4795.291

328045 9.7999 96.03805 326975 9.592898 92.02369

7.205608 -1.54585 2.389659 7.475487 -1.27597 1.628107

522.4418 7.611759 §7.93887 517.9114 3.081411 9.495092

35.22211 8.478914 71.89198 25.84369 -0.89951 0.809122

10.04596 -0.13064 0.017068 10.02579 -0.15081 0.022745

25.49384 -9.74886 95.04029 2540172 -9.84098 96.84483



Estimates Calculated using DA SLP DRD Estimates Calculated using DA SLP LSF DRD

Output  Error Mean Erro Square ErfMSE RMSE Output  Error Mean Erro Square EmfMSE
39.58734 9.555338 0.496702 91.30448 783.4308 27.98983 39.35864 9.326642 0.626506 86.98625 781.8229
12.29872 -4.22828 17.87834 12.3024 -4.2226 17.83035
211.5546 34.48957 1189.53 213.6692 36.60424 1339.87
55.37291 -36.4841 1331.089 54,6583 -37.1987 1383.743
49.54684 11.47674 131.7155 4983062 11.76052 138.3098
51.60739 13.22409 174.8764 51.61981 13.23651 175.2052
168.844 -96.321 9277.728 170.2293 -94.9357 9012.793
250.0457 -8.5473 73.05638 249.2569 -9.33608 87.1624
10.97362 5.571349 31.03993 10.96856 5.56629 30.98359
42.21708 13.23878 175.2654 4274301 13.76471 189.4671
119.8905 9.395537 88.27611 120.7002 10.20519 104.1459
102.8637 20.61371 424 925 102.749 20.49895 420.2071
96.83888 37.91518 1437.561 98.16013 37.23643 1386.552
39.52547 16.42087 269.6449 39.8445 16.7399 280.2241
7.852832 -0.89853 0.807353 7.700816 -1.05064 1.103853
516.4407 1.610689 2.594317 $17.8673 3.037269 9.225003
22.02322 -4.71998 2227817 21.03439 -5.70881 32.59046
9.339256 -0.83734 0.701144 9.088096 -1.0885 1.18484

23.20467 -12.038 1449143 22.71074 -12.532 157.0501



Estimates Calculated using DA only

RMSE Output  Error Mean Erro Square ErfMSE RMSE
27.9611 29.53867 -0.49333 -1.76325 0.243371 856.2264 29.26135

8.326884 -8.19812 67.20911

192.468 15.40301 237.2527

66.7714 -25.0856 629.2874

37.5083 -0.5618 0.31562

4543836 7.055062 49.77391

182.2753 -82.8897 6870.701

233.5742 -25.0188 625.9384

6.921541 1.519271 2.308183

26.45514 -2.52316 6.366327

137.8109 27.31588 746.1573

95.71849 13.46849 181.4001

140.3183 79.39462 6303.506

27.41988 4.315279 18.62164

4331248 -4.42021 19.53827

517.7652 2935242 8.615647

13.84186 -12.9013 166.4445

4864363 -5.31224 28.21986

17.73832 -17.5044 306.4032



Southwest

STATION Q(t)

1 02yj001
2 02za001
3 02za002
4 022a003
5 0220001
6 02zc002

2.00

201.204
107.019
36.6873

98.402
172.434
224.259

DA
kmA2

640.0
343.0

720
139.0
205.0
230.0

M2
(%)

0.35
0.68
2.19
1.46
1.27
1.08

ACLS
)

0.75
0.83
0.43
0.73
0.60
0.34

LSF

1.67
1.78
1.39
1.66
1.52
1.30

DENSITY
kmA”-1

1.12
1.04
1.15
1.46
0.72
0.96

FACTOR
)

1.81
245
1.72
1.68
2.09
1.84



Estimates Calculated using DA only Estimates Calculated using DA SLP

Output  Ervor Mean Erro Square ErfMSE RMSE Output  Error Mean Erro Square ETMSE RMSE
208.5195 7.315524 0.448753 53.51689 2475.8597496 49.75801 180.45 -20.7536 0.325199 430.7117 1159.311 34.04866
162.5786 55.55956 3086.865 167.891 60.87215 3705.418

87.20805 50.52075 2552.346 39.7003 3.013001 9.078177

113.3819 14.97992 224.3981 90.1577 -8.24428 67.96816

132.3947 -40.0393 1603.143 189.134 16.70046 278.9055

138615 -85644 7334.89 174,622 -49.6365 2463.786



Estimates Calculated using DA SLP FACLS

Output  Error

188.5159 -12.6881
139.3429 32.32388
47.1876 10.5003
73.81365 -24.5883
161.074  -11.36
227.2064 2947404

Mean Erro Square EfMSE RMSE

-0.47748 160.9879 343.067 18.52207
1044.834
110.2564
604.5868
129.05
8.687189



Estimates Calculated using DA SLP LSF Estimates Calculated using DA SLP SHP

Output Error Mean Erro Square ErfMSE RMSE Output  Error Mean Erro Square EMSE
193.69390055 -7.5101 0.298883 56.40159 243.7508 15.61252 204.1245 2920531 -0.17804 8.529502 57.30543
130.48710161 23.4681 550.7518 100.7164 -6.30258 39.72251
48.994624247 12.30732 151.4702 3190511 -4.78219 22.86937
72.899647083 -25.5024 650.37 104.9305 6.528518 42.62154
166.79936628 -5.63463 31.7491 183.4399 11.0059 121.1298

22892396123 4.664961 21.76186 213.8206 -10.4384 108.9589
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