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ABSTRACf 

The full processing of seven reconnaissance. deep seismic reflection profiles recorded 

in western Botswana reveal the presence of a single, deep basin with a relatively uniform 

fill of I 2 to I 5 km of sedimentary rocks underlain by a mid to lower crust which shows 

considerable structure and reflectivity. Much of western Botswana falls within the broad 

physiographic region known as the Kalahari where much of the bedrock geology is 

concealed by Cretaceous to Recent Kalahari sands making regional tectonic interpretations 

difficult. Potential field data suggested the existence of deep sedimentary basins which 

prompted the Government of Botswana, with assistance from Petro-Canada International 

Assistance Corporation (PCIAC), to acquire approximately I ,000 km of 12 to 15 fold 

deep seismic reflection data in the western Kalahari region to evaluate its petroleum 

potential. A followup well drilled to a total depth of approximately 4 km along one of 

these profiles showed that a majority (> 2 km) of the rocks are sedimentary and of late 

Proterozoic (Ghanzi?) to early Cambrian (Nama) age. The stratigraphic break between the 

rocks of the Nama Group and those of the Permo-Carboniferous - Jurassic Karoo 

Supergroup is marked by a major unconformity and represents a considerable hiatus ( ::: 

200 - 300 Ma). The gross lithologic nature of "bright" mid to lower crustal reflectors is 

explored in a qualitative fashion by examining possible correlations between the potential 

field anomalies and these zones of increased reflectivity. These seismic data also indicate 

the possible presence of large-scale extensional structures suggestive of continental rifting. 
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These extensional structures. along with an ~1'Ar-'9 Ar date of 1.071. 7 ± I I. I Ma frnm a 

gabbroic body forming part of the Kalahari Line. and a series of continental rift sequences 

exposed along the northern and westem fringes of the Kalahari regill!1. all provide 

evidence of a widespread late Middle Proterozoic rifting event affecting much of the 

Kalahari region. This rifting may have marked the disassembly of a proposed Proh:rozoic 

supercontinent. 
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1 INTRODUCTION 

1.1 Location 

Botswana is a landlocked nation located in the centre nf the south 1\ frican 

subcontinent and has international boundaries with South Africa. Zimbabwe. Zambia and 

Namibia. The location of Botswana and its boundaries with neighbouring southern A fi·ka 

nations is illustrated in Figure 1.1. The country covers an area of approximatt:ly 5H2.000 

km2 with much of it falling within the physiographic region known as the Kalahari - pm1 

of a continental plateau of generally low relief which extends from Angola and Zambia 

in the north. As a consequence, much of the geology of Botswana's western region is 

concealed by the sands of the Kalahari making regional tectonic interpretations di fticult. 

What is known of the geology has largely been derived from structural, scdimentologieul 

and geochronological studies of sparse and isolated outcrop and regional scale geophysical 

surveys, particularly aeromagnetic. 

1.2 Geological Setting 

The general geological setting of Botswana is illustrated in Figure 1.2. It is essentially 

defined by a core of Archean cratonic nuclei represented by gneisses, granitoids and 

greenstones of the Kaapvaal and Zimbabwe Provinces which are separated by the 

Limpopo Province, an intervening mobile belt, also of Archean age. These Archean 

provinces are surrounded by Proterozoic and younger Palaeozoic fold belts of the 

Namaqua and Damara Provinces. Late Permian tectonism associated initially with 

lntrmluctimll I 
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Figure 1.1 Location map of Botswana showing its general geography and international 
boundaries with neighbouring southern Afri~a nations. 
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convergence at the edge of the Gondwanan continent, followed by the Jurassic to 

Cretaceous breakup of Gondwana which led to the creation of the South Atlantic and 

Indian Oceans, resulted in widespread Penno-Carboniferous to Jurassic Karoo 

sedimentation in the continental interior tenninated by extensive mafic volcanism (Hall 

el a/., J 990; Bally et a/., I 989). This was followed by late Cretaceous to Recent 

deposition of the extensive and undefonned cover of the Kalahari Basin. It is this 

Mesozoic to Recent Karoo and Kalahari sedimentary cover which extensively masks the 

older rocks of western Botswana making the use of geophysical methods essential tools 

in exploring the pre-Karoo, subsurface geology of the Kalahari region. 

1.3 Previous Worl<. 

The I 975-77 National Reconnaissance Aeromagnetic Survey of Botswana was one of 

the first regional geophysical surveys of the Kalahari in western Botswana. A significant 

and important outcome of this survey was the recognition of the Kalahari Line (K-K' of 

Figure 2.2), a relatively narrow, north-south magnetic lineament characterized by strong, 

positive anomalies and great lateral continuity (Reeves and Misener, 1988; Reeves and 

Hutchins, I 982; Reeves, 1978). With the knowledge of an early Proterozoic fold and 

thrust belt exposed farther to the south in the northern Cape Province of South Africa, 

initial interpretations of the aeromagnetic data from the Kalahari Line suggested that it 

represented a suture marking the Proterozoic collision of an oceanic "plate" to the west 

with a continental "plate" to the east (Reeves, 1978). Based on this interpretation, the 
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strong positive anomalies associated with the Kalahari Line would be the result of the 

obduction onto, and preservation of oceanic material on. an ancient continental margin 

during collision. Thus the Kalahari Line would represent the westernmost edge of the 

Archean Kaapvaal craton which is exposed or buried at shallow depth to the east. 

West of the Kalahari Line the magnetic anomaly pattern is characterized hy a 

sequence of pronounced linear, SW-NE trending anomalies with wavelengths of 50 km 

or more which terminate against this prominent north-south feature. This anomaly pattern 

would imply the deep burial (> I 0 km) of magnetic basement beneath a non-magnetic 

cover. Reeves ( 1978) originally proposed the existence of two separate and distinct basins 

west of the Kaapvaal craton possibly separated by a basement high. as suggested by the 

change in amplitudes of the magnetic and gravity anomaly patterns. within the region of 

23° 30'S. He named the northernmost basin the Ncojane Basin and the one farther to the 

south the Nosop Basin. Although both basins were thought to contain thicknesses of non­

magnetic sediment in the range of I 0-15 km, the Nosop Basin was distinguished from the 

Ncojane Basin by the highly magnetic character of the basement rocks forming its floor. 

This interpretation encouraged the Government of Botswana, with assistance from 

Petro-Canada International Assistance Corporation (PCIAC), to collect approximately 

1000 km of 12 to 15 fold multichannel seismic reflection data within this region in 1987 

and 1988. The location of these seismic Jines is indicated in Figure 1.2. The 

reconnaissance seismic reflection survey was designed to evaluate the basins' petroleum 

potential with a main objective of determining the overall thickness of the sediments and 
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any stratigraphic boundaries and/or intrabasinal structure (Hall et al., 1989). Indeed, the 

distinctive aeromagnetic anomaly pattern of the Nosop/Ncojane basins played a major role 

in the siting of the seismic lines which were sited to provide regional coverage of both 

basins and the postulated basement high that separated them. 

Preliminary interpretations of these deep seismic data by Wright and Hall ( 1990) and 

Hallet a/. (1990) suggested that the Kalahari Line does not mark the western limit ofthe 

Kaapvaal craton. Seismic lines orientated along the SW-NE strike of the major 

aeromagnetic anomalies reveal thinning of the sedimentary section northeastwards 

approaching the Kalahari Line and clearly display a thickening of the crust eastwards 

across the Kalahari Line. Based on these observations, Wright and Hall ( 1990) interpreted 

the Kalahari Line as representing a hinge line for sedimentary deposition that might be 

associated with either an Archean or Proterozoic rifted margin of the Kaapvaal craton. 

East of the Kalahari Line the craton retained its original thickness, while to the west, the 

craton was thinned by rifting so that an extended Kaapvaal crust underlies the basin area. 

Another important recognition derived from the seismic data was that only one large basin 

of relatively uniform depth ( 12 to 15 km), rather than the two separate basins originally 

interpreted by Reeves (1978), exists west ofthe Kalahari Line (Hall et a/., 1990; Wright 

and Hall, 1990). 

1.4 Purpose and Scope 

The focus of this thesis is the full processing of all seven deep reflection seismic lines 
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recorded within the Nosopf.l.lcojane region and a re-examination of their interpretation 

within the "known" regional tectonic framework of this enigmatic area of the south 

African subcontinent. Although the quality of the initially processed lines used fi>r the 

earlier interpretations (Hall et a/., 1990; Wright and Hall. 1990) is quite good. full 

processing was carried out with inclusion of the shallower data ( < 5 s TWT) which. until 

recently, was proprietary as it formed part of the confidential assessment of the regional 

petroleum potential. Also, as part of the processing, phase-shift migrations of all seven 

lines were performed which, in the past, has proven to be di1licult due to the lines' 

crossing closely-adjacent structures of different strike (Hallet a/., 1990). These migrations 

have been most helpful in better imaging some of the more complex structures present 

in the deep seismic data and worked particularly well in enhancing structures associated 

with a buried fold and thrust belt which is present on one of the deep seismic lines. In 

addition to the processing, a wealth of geological information obtained from a deep 

exploratory borehole ( :::: 4,000 m total depth) drilled along one of the seven reflection 

profiles has recently become available through open files. This has provided several 

geological constraints for this interpretation which were unavailable in previous 

interpretations. 

Of primary concern to this present interpretation is the examination of the possible 

link between the nature of the basement magnetization, indirectly expressed by the 

magnetic anomaly patterns, and zones of "bright" basement reflectors seen in the deep 

seismic data. The primary rationale for this reconnaissance seismic reflection programme 
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was to evaluate the petroleum potential of two, presumed, major basins rather than the 

single, large basin the deep seismic data later revealed. It was the magnetic anomaly 

pattern in the region of 23° 30'S which made Reeves ( 1978) suggest possible closure of 

the Ncojane Basin to south. If indeed the anomaly pattern present in this region is 

generated by the deep basement, then the seismic data indicate that it must be due to 

lateral magnetisation contrasts within the basement itself rather than to structural relief 

on its top surface. Alternatively, the anomaly pattern may be associated with the presence 

of magnetic material within the sedimentary section itself. These ideas are explored in a 

qualitative fashion within the present interpretation. 

1.5 Methodology 

Chapter 2 provides the geological setting of western Botswana, beginning with a 

discussion of its lithostratigraphy. A tentative tectonostratigraphic chart is presented and 

is used to summarize the spatial and temporal relationships between the major structural 

provinces of the "greater" western Botswana region. This is followed by a discussion of 

the Proterozoic structures found in the rocks presented in the tectonostratigraphic chart. 

Finally, a possible scenario for the fragmentation of a postulated Late Proterozoic 

supercontinent with focus on the southern Africa region is presented. This provides an 

insight into the gross tectonics that were at play during this critical time period in the 

evolution of the southern Africa subcontinent. 

Chapter 3 introduces the deep seismic reflection data set and describes, in some detail, 
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the processing sequence utilized for its processing. The theory behind each of the 

processors is very briefly summarized and. in some cases, the algorithm employed by a 

processor is discussed to provide a better understanding of its exact function. The tinal 

unmigrated, time and depth migrated sections are presented. 

Chapter 4 deals with the interpretation of the seismic data beginning with the 

geological information derived from the deep exploratory borehole drilled along one of 

the seismic profiles. This information is used to place constraints on the ages and 

thicknesses of various stratigraphic units present in the uppermost part ( ~ 4 km) of the 

basin. This is followed by a general description of the dominant patterns of reflectivity 

common to all of the seismic lines with the stronger and more laterally coherent reflection 

events being systematically labelled. The main structural and stratigraphic features evident 

on each of the lines are then described (with reference to the previously labelled 

reflectors) and the similarities and differences between these features is discussed. The 

possible link between the highly reflective zones seen in the basement and the anomaly 

patterns apparent in the aeromagnetic data is then explored in a qualitative way. Also, 

detailed gravity data collected within this area are presented and its relationship to the 

deep seismic and aeromagnetic data is discussed. Finally a synthesis of all the geological 

and geophysical information previously outlined is presented. The synthesis otters 

possible scenarios for the lithostratigraphic content of both the sedimentary basin and 

underlying basement as well as for the geological evolution of the area as a whole. 

Chapter 5 provides a synopsis of the major findings. 
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Southern Africa is divided into a number of geological provinces based on 

geographical identity and the age of the last "major" tectonothermal event that is recorded 

by isotope geochronology. There are three Archean and three Proterozoic provinces and 

these are illustrated in Figure 2.1. How exactly they are defined and where and what their 

boundaries are, are matters of current debate and research. Nevertheless, they provide a 

useful first approach to understanding the tectonic development of southern Africa. 

Recognition of these provinces and their boundaries is particularly difficult in 

southwestern Botswana because the widespread cover of young Karoo and, especially, 

recent Kalahari sand Jim its exposure of older rocks, leading to reliance on sparse outcrop, 

a few wells and interpretation of potential field data. 

The Kaapvaal, Limpopo and Zimbabwe Provinces are of Archean age and represent 

stable continental nuclei onto which subsequent provinces have accreted. The Early 

Proterozoic Kalahari Province evolved along the western flanks of the Archean provinces 

between 2,000 and 1, 700 Ma. The Middle Proterozoic Namaqua Province is a broad 

region of high grade metamorphism which extends for some 2,000 km across the southern 

flank of the Kaapvaal Province and has a 1,200 to 900 Ma metamorphic-plutonic history. 

The Late Proterozoic to Early Palaeozoic Damara Province fonns part of the southernmost 

extension of the Pan-African cycle ( = I ,000 to 500 Ma) of tectonothermal crustal 

reorganization and consists of a north to northwest-trending coastal branch as well as a 

northeast-trending intracratonic arm (Henry eta/., 1990). 
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The pnmary foci of this thesis are the Proterozoic provmces of southwestern 

Botswana which. for the most part. are obscured by rocks of the Cenozoic "Kalahari 

Beds" and the Late Paleozoic to Middle Mesozoic Karoo Supergroup. However. the 

qualitative interpretation of regional geophysical surveys. particularly aeromagnetic. has 

led to the division of the basement into a number of tectonic elements on the hasis of 

distinct geophysical character (Reeves, 1978; Hall et a!., 1989). The aeromagnetic data 

for western Botswana, as well as the interpieted structural elements and the discontinuities 

that separate them, are illustrated in Figure 2.2. 

2.1 Stratigraphy 

Figure 2.3 presents a tentative tectonostratigraphic chart f(lr western Botswana and 

environs. This chart provides a generic synthesis of the geology contained within the 

greater western Botswana region from the Kaapvaal Province in the southeast to the 

Damara Province in the northwest. More importantly, however, it is helpful in providing 

a pictorial summary of the crustal evolution which occurred within this hroad region of 

the southern African subcontinent. 

Brief descriptions of the lithostratigraphy contained within each of the structural 

provinces of the greater western Botswana region are now presented trom oldest to 

youngest with possible correlations between these regions also discussed. 
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2.1.1 Archean 

The Marydale Formation is an Archean greenstone belt and rc:presents th~: oldest unit 

exposed in the Kaapvaal Province and the adjoining Kheis Subprovince (KHs of Figures 

2.1 and 2.2) ofthe northern Cape Province of South Africa. Where cxpl)scd. th~: thickness 

of the Marydale Formation is estimated to be about 8 km. Pb-Pb radiometric dating of 

this greenstone belt has yielded an age of 3.000 Ma (Tankard e/ a! .. 19!\2). Late An:hcan 

granitoids intrude the Marydale greenstones and the oldest of these has been dah:d at 

2,900 Ma (Burger and Coertze. 1973 ). 

2.1.2 Early Proterozoic 

The Ventersdorp Supergroup is a volcano-sedimentary scquem:e which 

nonconformably overlies the Archean granitoids in both the Kaapvaal Province and the 

Kheis Subprovince. The Ventersdorp succession exceeds 8 km in thickness and is 

primarily comprised of basaltic, dacitic and rhyolitic lavas (> 2 km) interbedded with 

agglomerate, subgreywacke and conglomerate, and subordinate shale and limestone 

(Tankard · et a!., 1982). U-Pb radiometric ages determined from the Ventcrsdorp 

Supergroup fall into two groups clustered around 2,300 Ma and 2,500 to 2, 700 Mu, 

respectively (Van Niekerk and Burger, 1978). 

Overlying the Ventersdorp Supergroup unconformably are the rocks of the Griquulund 

West Supergroup. The thickness of the Griqualand West Supergroup is estimated to be 

4.5 km and is thought to have been deposited in a vast epeiric basin, covering at least 5.0 
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, 105 km2 of the Archean Kaapvaal Province (Tankard et al., 1982). The lithology of the 

Griqualand West Supergroup is represented by a basal quartz arenite grading into 

dolomite, banded iron-formation with slate and laminated mudstone, capped by andesitic 

tuff and lava. Sedimentation and volcanism probably initiated after 2,300 Ma and had 

ceased by about 2, I 00 Ma. 

A large percentage of the Kheis Subprovince within Botswana (KHs of Figure 2.2) 

is buried beneath Kalahari and Karoo cover but isolated exposures and borehole data 

show a belt of tightly folded metasedimentary rocks associated with the Olifantshoek 

Sequence which extend southward into the northern Cape Province of South Africa 

(Hartnady et al., I 985; Levin, I 981; Reeves, 1978). The Olifantshoek Sequence consists 

primarily of quartzites, phyllites and amphibolites which are separated from the 

underlying rocks by a major disconformity (SACS, 1980). Because of the intense folding 

and thrusting within this metasedimentary succession, the total thickness of the 

Olifantshoek Sequence is uncertain (Stowe, 1986). The age of this sequence and also the 

age of the main metamorphism is broadly constrained between the 2,000 Ma Hartley 

Formation lavas near its base, and the overlying 1,300 Ma WilgenhoutsdrifGroup (Stowe, 

1986: Barton and Burger, I 983). These rocks are thought to have been deposited in fluvial 

to shallow marine settings which may have existed parallel to the Kaapvaal Province 

during the Early to Middle Proterozoic. 

The Okwa Basement (ODe of Figures 2.1 and 2.2) was first defined wholly 

geophysically by Reeves (1978). Recent geological studies by Aldiss (1988) and Aldiss 
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and Carney (1992) of isolated exposures of outcrop along the Okwa dry river valley. 

referred to as the Ohm Inlie1: have revealed an Early Proterozok crystalline basement 

complex. termed the Okwa Basement Complex. unconformably overlain by cover 

sequences ranging from Middle Proterozoic through to earliest Paleozoic of the Okwa and 

Nama Groups. 

Felsites and sericitic quartzites of the Okwa Basement Complex were intruded by 

varied granites between 2,100 and 2,000 Ma (Aidiss and Carney, 199.2). The Ehurnian 

orogeny at = I ,800 Ma transformed these granites to augen gneisses and. indeed. the most 

widespread lithologic association exposed in the Okwa Inlier is between the megacrystic 

granites and gneisses. Aldiss and Carney ( 1992) contended that the Okwa Basement 

Complex is a piece of Early Proterozoic crust which was accreted to the Archean craton 

at about I ,800 Ma, probably adjacent to the epicratonic sediments associated with the 

Olifantshoek Sequence of the Kheis Subprovince. 

Because of the extensive cover of the relatively undeformed late Proterozoic - early 

Paleozoic Nama Group, Permo-Carboniferous to Jurassic Karoo Supergroup and recent 

Kalahari sand, the lithologic nature and age of the basement forming th!.! enigmatic 

Rehoboth Subprovince is unknown (Hartnady et a/., I 985). 

Pre-Damaran basement is exposed along the margins and as large inliers scattered 

throughout much of the Damara Province. In northern areas, the basement is represented 

by supracrustal metamorphic suites, by gneisses and granitoids and by an anorthositic 

intrusive suite (Tankard et a/., 1982). In the central and southern areas, largely 
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allochthonous Damara metasediments rest on gneisses and other supracrustal metamorphic 

suites. The basement rocks generally yield radiometric ages that suggest resetting during 

the time span of two periods of pre-Damara tectonism: these are the Eburnian ( = 2,000 

Ma) and Kibarian ( = 1,400 to 900 Ma) (Tankard et al., 1982). 

2.1 .3 Middle Proterozoic 

Overlying the Olifantshoek Sequence in the Kheis Subprovince arc the rocks of the 

Koras Group which consists of a succession of calc-alkaline lavas and immature 

sediments deposited in graben-like depressions which developed shortly after the cessation 

of folding in the underlying Olifantshoek Sequence (SACS, 1980; Aldiss, 1988). Total 

thickness ofthe Koras Group is estimated to be 8 km (Borg, 1988) and U-Pb radiometric 

dating of quartz porphyry lavas from this volcano-sedimentary sequence have yielded ages 

of I 085 ± 80 Ma to 1180 ± 74 Ma (SACS, 1980). The Koras Group is also 

nonconforrnably floored, in some areas, by granitoids and radiometric dating of these 

rocks have yielded ages of I ,000 to I ,200 Ma which are typically Namaquan (Tankard 

et a/. , 1982). 

Situated directly north of the Kheis Subprovince, the Tshane Complex (Tc of Figures 

2.1 and 2.2) is one of the larger mafic complexes of western Botswana. Originally defined 

from the regional aeromagnetic data, this distinctive and extensive magnetic feature 

associated with the larger Kalahari Line (K-K' of Figures 2.1 and 2.2) was drilled to 

depths at which the causative bodies were believed to be located (Hutchins and Reeves, 
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1980; Meixner and Peart, 1984 ). 

On the southern portion of Tshane Complex at latitude 24° 14'S. borehole CKP-SC -I 

. 
(location shown on Figures 2.I and 2.2) encountered a pre-Karoo. layered gabbroic body 

at a depth of approximately 800 m. This gabbro was overlain by a well-developed and 

essentially complete succession of the Karoo Supergroup. Meixner and Peart ( l9S4) 

classified this body as a probable cumulate gabbro or gabbroic noritc. 411Ar- .wAr dating 

of this gabbro yielded an age of I ,07I ± II Ma and these radiometric dating results arc 

further discussed in Chapter 4. 

Borehole CKP-8A (location shown on Figures 2.1 and 2.2) situated fl1rthcr north at 

latitude 23° 50'S encountered rocks of the lower Karoo Supergroup resting on basalt at 

a depth of approximately 250 m. Below this contact, sandstones arc interbedded with 

chilled basalt flows and below 300m these basalts grade downward into dolerite. Meixner 

and Peart (I 984) believed the dolerite represented the top portion of a ditlcrcntiatcd body, 

continuous with depth, containing higher magnetic concentrations (relative to the 

overlying basalts) to a depth of at least I km below the surtace. 

The lower Okwa Group of the Okwa Inlier consists of pale-coloured tclsites, red 

sandstones, siliceous siltstones and mudstones together with felsic lapilli tuff.~. During 

Mid-Proterozoic times, the felsic tuffs and red sandstones of the lower Okwa Group were 

intruded by dolerite sills, and a contemporary northeasterly dyke swarm intruded the 

basement granitoids of the Okwa basement Complex (Aidiss and Carney, 1992). The 

upper Okwa Group rests unconformably on the lower Okwa Group and is comprised of 
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a heterogeneous red bed assemblage and this sequence grades from pebbly arkosic 

sandstone to medium-grained feldspathic sandstone, and interlaminated mudstone and 

wacke. Aldiss and Carney (1992) estimated the thickness of the Okwa Group to be in 

excess of 800 m and the age of the lower Okwa Group is constrained between that of the 

main basement metamorphic event, at = I,800 Ma (Ebumian), and ages yielded from K­

Ar determinations of the basement gneisses which suggest an isotopic re-setting event at 

= 1,150 Ma (Kibarian). 

Aldiss ( I988) and Aldiss and Carney (1992) assigned the uppermost units exposed in 

the Okwa Inlier to the widespread and younger Nama Group. The Nama Group, as 

exposed in the Okwa Inlier, consists of red breccias and conglomerates, gently dipping 

laminated fine sandstones and siltstones displaying, in places, cross lamination. The Nama 

Group is a late Proterozoic to early Paleozoic sequence (SACS, 1980) and its thickness 

within the Okwa Inlier is estimated to be approximately I 00 m. 

2.1.4 Late Proterozoic 

On the southern margin of the Damaran Province, the Ghanzi-Chobe fold belt (GCf 

of Figure 2.1 and 2.2) consists of a sequence of folded, Late Proterozoic sedimentary 

rocks and forms a northeast trending structural ridge. This topographic feature is referred 

to as the Ghanzi ridge and extends northeastward into Botswana from the Namibian 

border for some 350 km. 

The volcano-sedimentary rocks of the Kgwebe Group outcrop intermittently along 
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strike of the Ghanzi ridge. The Kgwebe Group is composed of massive porphyries and 

felsites interstratified with sandstones, minor conglomerates, tuffaceous sediments and 

vesicular diabases (Thomas, 1973). The porphyries and felsites are tine-grained. flow 

banded and flow brecciated indicating an extrusive origin. The associated sediments arc 

predominantly tuffaceous being comprised of green, brown and purple fcldspathic and 

epidotic sandstones and siltstones and conglomerates containing recognizable porphyry 

fragments. Due to the sparsity of outcrop of Kgwebe Group along the Ghanzi ridge. the 

total thickness of this volcano-sedimentary sequence is uncertain. 

Overlying the rocks of the Kgwebe Group, possibly unconformably (Ratsoma eta/., 

1991) is the Ghanzi Group. This unconformity is not thought to repre:;cnt a major hiatus 

but rather is regarded as being related to a syn-rift (Kgwebc) phase and a thcm1al 

subsidence phase (Ghanzi) of a pre-Damaran basin (Ratsoma eta/., 1991 ). The thickness 

of the Ghanzi Group is estimated to be 13 km and consists of over 90% of medium­

grained arkosic sandstones. The remaining I 0% is composed of intercalations, which arc 

never more than 50 m thick, of mudstones, siltstones and limestones. Sedimentary 

structures such as slumping and current bedding preserved within the sandstones indicate 

a shallow-water, fluviatile depositional environment for the Ghanzi sediments. A 

maximum age for the Ghanzi Group sediments is derived from radiometric dating of the 

quartz feldspar porphyries of the underlying Kgwebe Group. The Rb-Sr isochron yielded 

an age of 821 ± 43 Ma (Key and Rundle, 1981) with the scatter being attributed to a 

"resetting" event which occurred at about 650 to 700 Ma. Key and Rundle ( 1981) 
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proposed that the Damaran orogeny was responsible for this isotopic resetting. 

Deposition of the Nosib Group began at about 1,000 to 900 Ma with the infilling of 

grabens produced in rifted continental crust with up to 6 km of cJastic sediments and 

minor amounts of volcanic rock (Tankard et a/., 1982). Three parallel grabens trending 

northeast have been recognized in the intracontinental branch of the Damara Province and 

each was approximately 50 to 70 km wide and 200 km long. Arkosic arenites, which are 

locally conglomeratic, have been attributed to fluvial or shallow marine infilling of the 

Nosib grabens. Marine incursions in later Nosib times resulted in the formation of impure 

carbonates and anhydrite, now metamorphosed to calc-silicate rocks (Tankard et al., 

1982). A minimum age for this continental rift sequence is derived from radiometric 

dating of acid volcanics present in the upper Nosib Group. The Rb-Sr isochron from these 

volcanics yielded an age of 840 :1: 12 Ma (Kroner, 1982). 

It has been suggested that the Ghanzi Group rocks exposed farther south in the Ghanzi 

ridge could be correlative with the Nosib Group (K. Hoffinan, 1989). Similarly, Aldiss 

and Carney ( 1992) suggested that the upper Okwa Group could be the same age as the 

Nosib Group, and its lateral continuation in Botswana, the Ghanzi Group. 

2. t.5 Jlhanerozoic 

The Nama Group is a late Proterozoic to early Paleozoic sequence that extends over 

much of the Kalahari Province and into the Damaran Province. Its predominant lithologies 

are quartzites, limestones, sandstones and shales (SACS, 1980). Its stratigraphy has been 
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described in detail by Germs (1972, 1974 and 1983) and has been subsequently divided 

informally into three subgroups. The lowermost Kubuis Subgroup includes basal 

transgressive clastics which are capped by distinctive black limestones. The succeeding 

Schwartzrand Subgroup is dominated by arenaceous and argillaceous clastics, although 

limestone does form an important constituent of this subgroup. The uppermost unit of the 

Schwartzrand follows a significant unconformity. Then, following another unconfbnnity, 

the uppermost Fish River Subgroup forms a thick redbed sequence of conglomerates, 

sandstones and mudstones. It is this unconformity, along with the molasse sedimentation 

of the uppermost Fish River Subgroup, that is suggestive of convergence and torcland 

basin development as indicated in the tectonostratigraphic chart of Figure 2.3. 

Lawrence ( 1989), referring to the work of Germs ( 1983 ), uses lithostratigraphic and 

facies relationships as a key in providing depositional patterns and subsidence, and the 

relative importance of the craton versus the rising Damara orogen as a sediment source 

for a developing foreland basin. Kubuis Subgroup facies relationships show tluvial 

systems building westwards from the craton into a marine foredeep. Schwartzrand 

Subgroup depositional patterns show a broad conformity with those of the Kubuis, except 

that fluvial or fan-delta sedimentation from the rising orogen to the north becomes 

increasingly important. In the Fish River Subgroup, sedimentation was dominated by 

fluvial systems building out southwards from the rising orogen. 

The Vreda 281 #1 deep borehole situated 30 km west of the Botswana border in 

Namibia at about latitude 24° IS'S intersected 833 m ofNama Group clastics overlain by 



78 I m of lower Karoo sediments and 105 m of the Kalahari beds (Wilson, 1964; Meixner 

and Peart, 1984 ). Also, the deep exploratory borehole, PCJAC-GSD Maset1heng Pan-1 

drilled at latitude 23° 42'S (location shown in Figure 2.2), along one of the deep seismic 

profiles, encountered 1,113 m of interpreted Nama sediments beneath an overlying Karoo 

section (Petro-Canada, 1 990). 

Between 750 and 530 Ma, the central area of the Damara Province underwent 

polyphase folding and voluminous (> 50% of the area) intrusions of syntectonic and 

posttectonic granitoids (Tankard et a/., 1982). Some of these Damaran granitoids may 

have been derived from partial melting of sediments and basement granitoid gneisses 

during high temperature medium Prr metamorphism. Initial Sr and Nd isotope ratios of 

posttectonic diorite and granites indicate that their magmas were derived both directly 

from the upper mantle and by melting of material with a previous crustal history 

(Hawkesworth eta/., 1981). 

The lithostratigraphy of the Karoo Supergroup in Botswana has been formalised by 

Smith (1984) and is comprised of stratiform consolidated sedimentary rocks capped by 

Jurassic basaltic lavas. The sedimentary rocks consist of arenaceous deposits that 

accumulated in a continental environment during the Late Paleozoic to Middle Mesozoic 

(Penno-Carboniferous to Jurassic). The deposition of the Karoo sediments was controlled 

by a crustal downwarp of the Kalahari craton associated with the breakup of the 

Gondwana supercontinent (F arr et a/., 1981) and were laid down in a number of 

subbasins. The final phase of Karoo sedimentation was tenninated by the voluminous 
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Jurassic outpouring of basaltic magma with acid volcanism continuing into the Early 

Cretaceous (Tankard et a/.. 1982). The total thickness of Karoo sediments in Botswana 

is uncertain, but Farr et al. ( 1981) estimated a maximum thickness of 1.000 m. In 

southwestern Botswana. the PCIAC·GSD Masetlheng Pan·l stratigraphic t~st bnn:holc 

penetrated I, 162 m of Karoo sediments with 283 m of this interval represent~<.! hy dolerite 

with shale interbeds (Petro·Canada. 1990). 

Overlying much of the Karoo Supergroup in southwestern Botswana arc the a~rially 

extensive Tertiary to Recent unconsolidated and semi-consolidated aeolian and alluvial 

deposits of the Kalahari beds. In the Ghanzi ridge area. the Kalahari hcds attain a 

thickness of 30 m (Litherland, 1982) and the PCIAC·GSD Masetlheng Pan· I borehole 

situated some I 00 to 150 km farther south encountered I 09 m of Kalahari beds (Petro· 

Canada, 1990). 

2.2 Stnucture 

The geological history of the southern African subcontinent stretches tar back in time 

to a limit presently fixed at approximately 3.8 billion years and the most rel:cnt 

comprehensive summary of the geology of this region is given by Tankard et a/. (19M2). 

Most of this extensive geological history is Precambrian and an overview of the course 

of geologic events in southern Africa indicates that the crust passed through a well· 

defined sequence of evolutionary stages. 

A period of Archean crustal development gave rise to crystalline massifs represented 
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by the Kaapvaal, Limpopo and Zimbabwe Provinces (Figure 2.1 ). This was followed by 

a period of Early Proterozoic supracrustal development in which the Archean basement 

was buried beneath a largely sedimentary cover. Several Proterozoic orogens in the 

southern and western parts of the subcontinent resulted in older crystalline rocks and their 

supracrustal cover being reworked tectonically, with geosynclinal deposits accumulating 

and massive granitoid intrusions emplaced by partial melting of older crust and by 

additions from the mantle. The Paleozoic Gondwana era ushered in a period of aborted 

rifting and unparalleled continental sedimentation throughout the Gondwanan 

supercontinent, of which southern Africa fonned the hub. Cretaceous fragmentation of 

Gondwana was preceded by Jurassic continental rift volcanism and injection of 

diamondiferous kimberlites, carbonatites and other alkaline intrusions. Late Mesozoic and 

Cenozoic sedimentation was restricted to the newly fonned margins of the stable 

subcontinent and depressed areas of the interior. The following discussion focuses on 

Proterozoic structures found in the rocks of the Kaapvaal, Kalahari and Damara Provinces 

presented in the tectonostratigraphic chart of Figure 2.3. 

2.2.1 Ebumian Orogeny 

The Eburnian Orogeny is broadly constrained between 1,800 and 2,000 Ma (Tankard 

eta/., 1982). It appears to be focussed on the N-S Kheis Subprovince of the northern 

Cape Province of South Africa, where at least five major thrust sheets are recognized 

within and beneath the Olifantshoek Sequence which are separated by mylonites (Stowe, 
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1986). The thrusting was directed eastwards and large-scale recumbent fblds display 

eastwards tectonic vergence, towards the older craton. 

The Ebumian Orogeny transformed the granites of the Okwa Bao;;emcnt Complex to 

produce augen gneisses. Ebumian deformation was alo;;o accompanied by metamorphism 

of pre-tectonic mafic dykes in the epidote amphibolite facies and sporadic exposures of 

deformed metadolerites and metadiorites also occur within the mcgacrystk granitoids of 

the Okwa Basement Complex (Aldiss, 1988; Aldiss and Carney. 1992). This orogeny thus 

appears to be related to easterly accretion of the Early Proterozoic Kalahari Province onto 

the Archean Kaapvaal Province. 

2.2.2 Kibarian Orogeny 

Following Ebumian tectonism, rocks of the Okwa Basement Complex and the lower 

Okwa Group were affected by a second and rather less ductile compressional deformation 

associated with the Kibarian Orogeny which occurred between I ,400 and 900 Ma 

(Tankard et a/., 1982). Kibarian structures occur in the lower Okwa Group and arc 

comprised of NE-SW trending upright tolds and associated coarse fracture cleavage with 

subvertical mineral lineation and this deformation is believed to have occurred at :::: I, 150 

Ma (Aidiss and Carney, 1992). Previous Eburnian foliations in the Okwa Basement 

Complex are folded and cross-cut by mylonite zones produced by later Kiharian 

tectonism. The metadolerite dyke swarm and sills lack the main foliation of the basement 

gneisses, and therefore post date the most pervasive phase of Ebumian dcf(,rmation 
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affecting the Okwa Basement Complex. However, these dykes and sills are fractured, 

brecciated and locally mylonitised and is probably related to Kibarian deformation. This 

would imply that the Kibarian compressional event was preceded by a tensional phase, 

when the northeasterly dykes were emplaced (Aidiss and Camey,1992). The 

compressional event appears to represent a phase of SE-directed accretion of the Kalahari 

Province onto the Kaapvaal craton. 

2.2.3 1be Damara Orogeny 

Published tectonic models for the Damara Orogeny (750 to 530 Ma) fall broadly 

within two groups (Hawkesworth eta/., 1986). In the first, structural and metamorphic 

asymmetry across the orogen and the presence of a possible ophiolite fragment has 

suggested that a limited ocean (500-800 km) developed between the southern Kalahari 

craton and the northern Congo craton which was later subducted along the leading edge 

ofthe Congo craton via an Andean-type collision (Burke eta/. , 1977; Barnes and Sawyer, 

1980; Kasch, 1983). The second group of tectonic models invokes some form of 

intracontinental rift or aulacogen which was also a zone of high mantle heat flow (Martin 

and Porada, I 977; Kroner, 1982). These models highlight the intracratonic nature of the 

orogen, the suggested stratigraphic continuity across it and the palaeomagnetic evidence 

tor little relative movement between the Kalahari and Congo cratons. 

The Khomas and Swakop Subprovinces (KMs and SWs of Figure 2.1) constitute the 

intracratonic branch of the Damara Province with the Ghanzi-Chobe fold belt forming its 
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southern margin. The southern Khomas Subprovince contains a deeply exhumed. 

southeasterly vergent fold and thrust belt. including an outlier klippe. the Nauklult Nappe 

Complex (NNe of Figure 2.1 ), and a variety of deeper thrust system elements such as 

duplex structures, antifonnal stacks and tectonic windows. This NaukluH Nappe Complex 

is comprised of five major, south-verging thrust nappes which have been subsequently 

subdivided lithostratigraphically (Tankard et a! .• 1982). The Nama Group serves as an 

autochthonous foundation for the nappe complex and probable stratigmphi•· equivalents 

to it are found within the complex itself. 

The Ghanzi-Chobe fold belt of Botswana is generally considered to be part of the 

southern margin of the Damara Province and the rocks which comprise it arc believed to 

have been defonned during the Damaran Orogeny (750- 530 Ma) whid1 produced large 

open folds with axes trending southwest to northeast (Aidiss and Carney. 1992; Ratsoma 

eta/., 1991; Borg, 1988). Within this fold belt, Damaran deformation has thrown Kgwcbc 

and Ghanzi Group rocks into a regional scale NE trending fold and thrust belt. On the 

extreme NE flank of the Ghanzi ridge, the belt has the form of a narrow anticlinorium 

cored by Kgwebe Group rocks. This anticlinorium is comprised of a series of large scale 

tight folds which can be traced over tens of kilometres along the strike of the Hlld hell 

(Ratsoma eta/., 1991). These major folds have upright or steep NW-dipping axial planes 

and horizontal or gently plungine; axes. Farther southwest along strike of the Ghanzi ridge 

in the vicinity of the Botswana-Namibia border, the folds have a more open, asymmetrical 

style and extend southwestwards into Namibia where Nama Group rocks have been 



preserved in synclinal cores (Ratsoma et al., 1991 ). 

There are several important unanswered questions regarding the relationship of 

Proterozoic to Archean provinces in this area of Botswana. Of special relevance to this 

thesis is that the basement of the Proterozoic is unknown - it is not clear whether there 

is reworked Archean core or whether the Proterozoic blocks are relatively juvenile. 

With the stratigraphy and structure of the greater western Botswana region now 

adequately introduced, the following section examines what role the south African 

subcontinent may have played in the evolution of a proposed Late Proterozoic 

supercontinent. 

2.3 Global Relevance 

2.3.1 A Late Proterozoic Supercontinent? 

It has been postulated that the period of Earth history encompassing 700 to 500 Ma 

witnessed the fragmentation of a Late Proterozoic supercontinent (Dalziel, 199 I; Hoffman, 

1991; Moores, 1991 ). This idea stemmed from the observation that rifting and continental 

breakup occurred contemporaneously around the margins of Laurentia (North America and 

Greenland), Baltica (Baltic shield and Russian platform), Siberia and parts of 

Gondwanaland. However, due to the lack of sufficient palaeomagnetic data, the spatial 

relationship of this hypothetical supercontinent with the continents forming Gondwanaland 

(South America, Africa, Arabia, India, Antarctica and Australia) is unclear for this 

geologic interval. An alternate means of establishing former linkages between separated 
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Figure 2.4 
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continents is through the correlation of Precambrian orogenic belts that were once 

presumed continuous but that are now truncated at modem or ancient continental margins. 

Based on such evidence, Hoffman ( 1991) presented a qualitative model for the breakup 

of a Late Proterozoic supercontinent centred on Laurentia and the subsequent assembly 

of Palaeozoic Gondwanaland. In comparison, reconstructions presented by Dalziel ( 1991) 

and Moores ( 199 I) focus more on the hypothesis that the Laurentian and East Antarctic­

Australian cratons were once continuous in the late Precambrian and that their Pacific 

margins formed a conjugate rift pair. As such, their reconstructions do not specifically 

address the positions of the constituent cratons which comprise the present day African 

continent, relative to Laurentia, during this late Precambrian period. Thus, for the 

purposes of this thesis, Hoffman's model is presented and his reconstructions are 

illustrated in Figure 2.4. 

Hoffman ( 1991) uses age of orogeny as evidence as to which continents may have 

been adjacent and south of Laurentia before the opening of the Iapetus Ocean, if east 

Gondwanaland (India-Australia-Antarctica) did indeed separate from western Laurentia. 

The Appalachian and Ouachita margins of southern Laurentia are confined to areas 

affected by Grenvillian orogeny, a major compressional event which affected much of 

Laurentia between 1 ,300 and 1,000 Ma. Thus cratons which are bordered by Grenvillian 

belts are better candidates to have been conjugate to southern Laurentia than those like 

the West African craton that lack Grenvillian belts. Grenvillian belts marginal to cratons 

in Gondwanaland include the Rondonia-Sunsas belt (RS of Figure 2.4) of the Amazonia 

Geological Sening/32 



craton, the Irumide and Kibaride belts (IR and Kl of Figure 2.4) of the Congo craton and 

the Namaqua-Natal belt (NN of Figure 2.4) of the Kalahari craton. The observation that 

Grenvillian rocks in both the Namaqua-Natal belt and southern Laurentia have isotopic 

ages that cluster around 1,400 Ma further supports the reconstruction of Figure 2.4(A ). 

Thus, the cratons that are most likely to have been conjugate to eastern and southern 

Laurentia in the Late Proterozoic are Baltica, Amazonia. Congo and Kalahari . 

Hoffman (1991) proposed that Gondwanaland was assembled through a rotationul 

collapse of its constituent cratons. This assembly is implied by the separution of Australia­

Antarctica and Amazonia-Baltica from western and eastern Laurentia respectively und 

could have been achieved by counter-clockwise rotation of Australia-Antarctica and 

dextral translation (with or without clockwise rotation) of Amazonia, relative to Laurentia 

(with Baltica left behind). He points out that available palaeomagnetic data arc compatible 

with the implied rotation and with the large-scale convergence between east and west 

Gondwanaland, possibly lasting until the late Cambrian. Rotation about a pole ncar the 

Weddell Sea (WS of Figure 2.4) would account for the dominantly transcurrent motion 

observed in east to northeast trending belts of Pan-African (800 to 500 Ma) age. Such 

belts would approximate small circles of rotation. For instance, the Damara-Zambczi belt 

(DZ of Figure 2.4) shows geological evidence for dominantly sinistral transcurrent shear 

and palaeomagnetic evidence for a 35° clockwise rotation for the Kaapvaal craton with 

respect to the Congo craton (Hartnady eta/., 1985; Renne eta/., 1990). 

Orthogonal to the Damara-Zambezi belt is the Mozambique belt (MO of Figure 2.4) 
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which welds east and west Gondwanaland. The Mozambique belt also provides strong 

geological evidence to support a pole of rotation near the Weddell Sea. Although the 

southern limit of the Mozambique belt is uncertain, some workers (Kaimin, I 988) have 

envisaged that this Late Proterozoic collision zone extends between the Kalahari and east 

Antarctic cratons. Others (Sacchi et a/., 1984; Cadoppi el a!., I 987) have interpreted the 

southernmost extremity of the belt as essentially Grenvillian in age: this would imply that 

the Kalahari craton belongs to east Gondwanaland and the collision zone between east and 

west Gondwanaland is translated from the Mozambique belt to the Gariep belt (GA of 

Figure 2.4) by way ofthe Damara-Zambezi belt. Consequently, the Damara-Zambezi belt 

should have experienced net dextral rather than sinistral transcurrent shear. 

Thus, according to HotTman (I 99 I), the final assembly of Gondwanaland must 

postdate the breakout of Laurentia for the proposed scenario to be viable. This 

requirement constitutes a clear tc:st of the model. Rifting had begun in western Laurentia 

by 780 Ma (P. Hoffman, 1989) and in eastern Laurentia by 600 Ma (Williams and 

Hiscott, 1987). A minimum age for continental breakup of 620 to 560 Ma is inferred from 

the onset of long-lived thermal subsidence along both margins (Bond et a/., I 984) and 

stratigraphic evidence suggest an Early Cambrian rift-to-drift transition. However, no 

equivalents of the Late Proterozoic Beardmore and Pampean orogenies that affected the 

Transantarctic and Andean margins respectively can be found in the Cordillera and 

Appalachians. This implies, if these orogenies are correctly dated, that east and west 

Gondwanaland had separated from Laurentia before the end of the Proterozoic. The age 
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of consolidation of east and west Gondwanaland is also uncertain. Subduction of oceanic 

lithosphere below the Arabian-Nubian shield ended at 640 to 620 Ma. To the southeast. 

however, a terminal collision of latest Cambrian age (51 0 to 500 Ma) has been postulated 

between an active margin in northeast Somalia and east Gondwanaland. Thus. the scenario 

proposed by Hoffman ( 1991 ) may or may not be viable depending on whil:h set of age 

estimates is confirmed. 

The Kalahari craton forms a major structural province of the western Botswana region 

and its position within the postulated Late Proterozoic supercontinent may have imJ)Ortant 

implications for the tectonic evolution of the southern Africa subcontinent. The south. 

central portion of Laurentia, the "proto" North American craton, is the present day site 

of the Mid-continent rift system (MRS). This continental rift system is 1.110 to I,OI.JO Ma 

in age and marine seismic reflection data from the Great Lakes has revealed an 

extraordinary thickness (> 30 km) of volcano-sedimentary rocks (Behrendt et a/. , 19XX ). 

Similarly, within the greater western Botswana region, significant thicknesses of volcano­

sedimentary rocks of continental rift affinity associated with the Koras. Okwa and 

Ghanzi/Kgwebe Groups as previously described in this chapter also provide evidence of 

a late Middle Proterozoic rifting event affecting much of the southern Africa region 

(Aldiss and Carney, 1992; Borg, 1988). The juxtaposition of the Kalahari and Laurentia 

cratons of Hoffman's proposed reconstruction suggest that the North American Mid­

continent rift and the similar aged rift affecting the southern Africa subcontinent may 

represent preserved portions of the same precursory and widespread late Middle 

Proterozoic continental rifting event which marked the breakout of Laurentia from this 

Proterozoic supercontinent. These ideas are expanded further in Chapter 4 which deals 
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with the interpretation of the seismic data. Chapter 3 now follows which describes the 

acquisition and processing of the western Botswana deep seismic reflection data set. 
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3 sttsMtc ru:FLEcnoN t>ATA 

3.1 Introduction 

In 1987 and 1988 Petro-Canada International Assistance Corporation (PCIAC), 

through Sonics Exploration Limited, collected about 1.000 km of 12 to 15 li.lld 

multichannel reflection seismic data for the Government of Botswana. The seismic lines 

were sited so as to provide regional coverage in both the Nosop-Ncojane hasin lo~:atcd 

in southwest Botswana and the Passarge Basin farther to the northeast. The locations of 

the seismic lines recorded in the Nosop-Ncojane basin arc indicated in Figure 3.1. 

The primary objective of these surveys was to determine the overall thickness of the 

sediments and any stratigraphic boundaries and/or intra-basinal structure. A recording time 

of 8 s was originally proposed to meet this objective but a 15 s record time was finally 

decided on so that the deep crustal structure could be investigated in order to provide a 

better understanding of the regional tectonic framework of this part of southern Africa. 

Such deep seismic data would be valuable in providing insight into the tectonic setting 

of the region and to constrain possible models tor basin evolution. 

3.2 Acquisition Parametets 

The acquisition parameters used to collect the reflection seismic data in western 

Botswana are summarized in Table 3.1. A DFS-V seismic acquisition system was utilized 

and the data were recorded in SEG-B format using a 2 ms sample rate with a total record 

length of 15 s. The recording array consisted of a symmetrical split spread of 120 
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Figure 3.1 
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Location of western Botswana seismic profiles in relation to major tectonic 
clements (after Reeves, 1978; Meixner & Peart, 1984; Aldiss & Carney, 
1992). 

geophone groups spaced at 50 m intervals with a 150 m gap at the shot point giving a 

total spread length of approximately 6 km. The source used was dynamite and typically 

consisted of 12 kg shots split among 6 holes, each 6 m in depth. Shotpoints were placed 

at either 200 m intervals for 15 fold coverage or 250 m intervals for 12 fold coverage. 
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Table 3.1. Acquisition parameters for western Botswana seismic profiles (atlcr Hall cr a/ .• 
1990). 

Geophone Groups 
Geospace I 0 Hz phones. 18 per group. spaced at 5.~~ 
m (I 00 m total group length). 

Spread 
120 groups at 50 m interval for a total spread length 
of 6,050 m. symmetrical split. 150 m gap at shotpnint. 

Source 
Dynamite, typically 6 x 2 kg in 6 m holes. shots at 
200 m interval ( 15 told) or 250 m interval ( 12 t(lld). 

DFS- V. SEG-B. 2 ms sample rate. 15 s record length 
Reconting (line 99 recorded to 20 s), 8 Hz low-cut filter at IX 

dB/octave, 128 Hz high-cut tiltcr at 72 dB/octaw 

3.3 Processing 

The processing sequence used on this deep retlection seismic data set is outlined in 

Table 3.2. All data were processed solely by the author on a CONVEX CJ mini-

supercomputer using Texaco's STA RPA K software (Texaco, 1989). The right to usc these 

data was obtained from the Government of Botswana by Memorial University's Centre 

for Earth Resources Research. The data had been previously dcmultiplcxcd from the 

original field tapes by PC lAC to SEG- Y tonnat. 

In the following sections, brief descriptions of the STA RPA K processors used in the 

processing of the western Botswana deep seismic data set are provided. 

3.3. t Geometry 

One of the first essential steps in seismic processing is to define the shooting and 

recording geometry of the line and to assign relevant geometry information to the 
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Table 3.2. General processing sequence for western Botswana seismic profiles; All 
seismic data were processed solely by the author. 

Geometry Definition & Application 

Processing Line D~finition. Common Midpoint 
(CMP) Binning & Application 

Ti.;!d Statics D~(rnition & Application 

CMP Gathering 

V eloci~v A na~vsis 

Nonnal Moveout (NMO) Con·ection 

Front Mute Detennination 

Spectral Balancing 

Standard Mean Stack 

M igration(s) 

Coherency Filte1ing 

Trace A n-aying & Summing 

Low Pass Filter 

Gain Control 

Display: High Bias - Valiahle A rea 

recorded traces. This was accomplished through the use of the STA RPA K processor 

:GEOM. 

The survey data (provided by PCJAC in SEG-P format) describing the geographic 

locations and elevations of stations is combined with the information provided in the 

observer's logs which describe the positioning of sources and receivers relative to the 

stations and to each other. This allows the precise determination of the source, receiver 

and midpoint coordinates for each trace. This and other geometry information related to 

the traces and stations are stored in a database (defined by processor :DBAS) for use by 

subsequent processors. 
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Processor :GMAP was used to apply the geometry inti.1m1ation defined hy :GEOI\1: 

i.e. to fill the relevant portions of the trace header and to kill or reverse polarity of had 

traces identified by visual inspection of all shot gathers. 

3.3.2 Processing Line and Binning 

Multichannel seismic data is recorded in the common shot or shot-receiver domain 

whereas seismic data processing is conventionally performed in the common midpoint 

(CMP) or midpoint-offset domain (Yilmaz, 1987). The sorting of the data intn the CMP 

domain essentially groups individual traces associated with a common midpoint between 

various shot and receiver locations. This sorting process is presented schematically m 

Figure 3.2. It is this grouping of traces which make up the CMP gather. 

The acquisition of multichannel seismic data can sometimes result m the spatial 

scattering of the common midpoints; this is particularly true for seismic data acquired 

along crooked lines. A common solution to this scattering is to extend the dctinition of 

the common midpoint to cover a small area which is often referred to as a "bin" (Hatton 

et a/., 1986). Processor :PROC was used to define the "processing line" which is 

essentially a line along the earth's surface along which the common midpoint hins 

(defined by :BIND) will be located.This processing line can be different from the 

acquisition line (defined in :GEOM), especially for crooked lines. However, in the case 

of the western Botswana data, the survey lines were exceptionally straight and the 

processing lines generally coincided with the acquisition lines. 
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figure 3.2 Raypath differences between A) common shot domain where data is 
recorded and B) common midpoint domain where data is normally 
processed (after Yilmaz, 1987). 

:PROC detines a series of points along the surface which are connected by straight 

line segments and these points are referred to as "nodes". These nodes and their 

coordinates comprise the processing line description which is then stored in the database. 

:PROC allows three different ways to specifY these node coordinates and, for this data set, 

the processing verb AUTO was used to automatically derive a smoothly varying 

processing line which is, in some sense, a "best fit" to the midpoints. 

Processor :BIND accesses the geometry and processing line infonnation previously 

generated by :GEOM and :PROC and contained within the database. From this, it defines 

bin position, size, shape and orientation and detennines the trace-bin correspondence (i.e. 
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which traces fall into which bins). An important consideration of the hinning pw~css is 

to choose a bin size and shape at a point along the processing line: which gives a 

sufficiently large bin population of source-receiver common midpoints (C'MPs) without 

being large enough to reduce spatial resolution (Hatton ct a!.. 19S6). The bins arc 

rectangular in shape and are equally spaced and centrc:d along the processing litll'. The 

coordinates of the bin comers and the trace-bin correspondence arc then stored in the 

database for later access by subsequent processors. 

Processor :BINA applies the bin information stored m the database to the trace 

headers in preparation for CMP gathering. 

3.3.3 Field Statics 

:FSIN was the first of three processors used in the tield statics correction sequcm:c 

:FSIN ... :FSCA - :FSAP. It is used to define a near surface model consisting of one or 

more layers with a thickness and velocity specified for each. A model is defined hy usc 

of the verb MODEL and, in the case of this data set, consisted of: 

I) Surface elevations specified in :GEOM retrieved automatically from the databusc by 

:FSIN. 

2) A single layer defined by the shot depth and upholc time spccitied in :GEOM also 

retrieved automatically from the database. 

3) Replacement velocity. 

4) Replacement datum. 
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The layer is built from the surface down with its base being located at the buried shot 

tocations and the layer velocity is determined from the shot depths and uphole times. This 

layer information is then stored in the database for subsequent use by the other field 

statics processors. 

:FSCA is then employed for the calculation of the field statics corrections from the 

information previously stored in the database by :GEOM and :FSIN. The time shifts are 

calculated in a two step process: 

A) Calcula!ion of Sttipping Time. This is the travel time from the surface through the 

defined layer or, in this case, simply the uphole time. 

B) Calcula!ion of Replacement Time. This is the travel time from the base of the defined 

layer to the desired datum (using the replacement velocity, SUBVEL, specified in 

:FSIN). 

The replacement time minus the stripping time is the field static correction. A negative 

correction shifts the trace earlier in time and a positive correction shifts the trace later in 

time. 

:FSAP is the application phase of the field statics correction sequence. It applies the 

field statics corrections to the data traces and the static shift is applied to the nearest 

sample. 

3.3.4 CMP Gathering 

With the trace headers now containing relevant geometry information, processor 
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:GATHER was used to sort the data from the common shot domain to the common 

midpoint (CMP) domain (see Figure 3.2). 

The sorting of traces into the CMP domain utilizes the data redundancy inherent in 

the seismic acquisition technique to improve the signal-to-noise (SIN) ratio. This 

redundancy is achieved by using multiple sources per trace. ns. multiple receivers per 

trace, nR and multiple offset coverage of the same subsurface point. nr. during the fidd 

operation. Given the total number of elements in the recording system. N = ns•nH•n1, the 

SIN ratio is theoretically improved by a factor of ..fN (Yilmaz, 1987). This is based on the 

assumptions that the reflection signal on traces of a CMP gather are identical and that the 

random noise is uncorrelated from trace to trace. However, in practice. these assumptions 

rarely hold and the improvement in the SIN ratio gained by stacking is somewhat less 

than ..fN. 

~--------x--------

D 

Figure 3.3 Raypath geometry for a single horizontal reflector (after Yilmaz, 1987). 
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3.3.5 Velocity Analysis and Nonnal Moveout (NMO) Conection 

Figure 3.3 illustrates the simple case of a single horizontal reflector. At a given 

midpoint location M, the traveltime along the raypath from shot position S to depth point 

D, then back to receiver position R is t(x). It can be demonstrated (Dix, 1955) that this 

traveltime equation expressed as a function of shot-receiver offset can be written as: 

(3.1) 

where x is the distance or offset between the source and receiver positions, v is the 

velocity of the medium above the reflecting interface, and t(O) is twice the traveltime 

along the vertical path MD (Yilmaz, 

1987). Equation 3.1 describes a hyperbola 

and this traveltime curve is schematically 

depicted m Figure 3.4. The difference 

between the two-way travel time at a 

given offset t(r:) and the two-way zero-

otfset time t(O) is called the nonnal 

moveout or NMO (see Figure 3.4). \\'hen 

offset x and two-way travel times t(x) and 

t(O) are known, the velocity v can be 

computed from Equation 3.1. 

Nonnal moveout is the one basis for 

1---X 

Offset 

1(0) ······· ···· ··········:····1 ·----- ­
: t!..r 

! I 
r(x) · · - - • ·- ---- • · - - - - - - --- - - · '- - - - - · • 

Tune 

Figure 3.4 Traveltime curve associated 
with a single horizontal 
reflector. The apex of the 
hyperbola is located at zero­
offset (after Yilmaz, 1987). 
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velocity determination from seismic data. Once the NMO velocity l" is dctcm1in.:d the nm,, ' 

traveltimes can be corrected to remove the effects of oftset. Traces in the NMO-corr.:ctcd 

gather can then be summed to obtained a stacked trace at that particular CMP lo.:ation. 

For the western Botswana data set, two different methods of stacking wlocity 

detem1ination were employed. 

The first and probably the simplest method of velocity determination was the usc of 

constant velocity stacks (CVS). This was accomplished by using processor :VFANAL. In 

this method, 25 adjacent multi-trace CMP records were corrected t(lr normal movemat 

over a range of constant velocities (2600, 3000, 3800, 4400, 5000, 5400 and 6000 m /s), 

stacked and then displayed. A typical velocity analysis from this data set is displayed in 

Figure 3.5. These stacked records were then studied to determine which velocity yielded 

the largest amplitude and/or coherence of the various reflection events seen within the 

section. From this examination, a set of time-velocity pairs were obtained which 

constituted an optimum stacking velocity function at that particular CMP location and 

"neighbourhood". These velocity functions were later used for normal moveout correction 

in subsequent processing. These CVS analyses were carried out at every 200 CM P 

locations along each of the seismic lines. 

The second method, which was run concurrently with the CVS method (i.e. within the 

same processing run), used velocity spectra. This was done through the usc of processor 

:MERVEL. The velocity spectrum at a particular CMP location was combined with the 

corresponding CVS on the display in order to aid in more accurate picking of the time-
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Figure 3.5 

l 
"I 

I 
.I 

I 
I I I 
I - l .;,r- ·-,-·t --~ ---:-, - 'i. --. ~1 

:~ 
I I 

- I -J '~ . l 
I. • 

OOJZ L-~--------~--~~~--~~~~---L~--~---L~-------L--~----~·--~--~--__J~' 
~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ w - ~ ~ ~ 

e ~ ~ ~ ~ ~ ~ ~ n 

Typical velocity analysis from the western Botswana deep seismic data set 
containing both constant velocity stacks (CVS) and velocity spectra. 
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velocity pairs. The spectrum or contour plot of Figure 3.5 is essentially n measure uf how 

well a hyperbolic trajectory of some trial curvature, dependent upon 10 und ,., ,.,,.. tits the 

CMP data itself at a particular time 1 (Hatton el a/., 19S6). The measure of lit or 

"coherence" used by processor :MERVEL is called the semhlance and is cxpn:ssed us: 

Semblance (3.2) 

where a,1 is the amplitude of time sample i on trace j within the C'MP gather. It should 

be noted that 0 < Semblance < I, with pertect correlation corresponding to I. 

Whereas the CVS method utilized 25 adjacent CMP records for sta~king, the vdo~ity 

spectra produced by :MERVEL used only 5 adjacent CMPs t(lr its analysis. The velocity 

increment used for the semblance calculation was 50 m/s with the calculation confined 

between low velocity limits of 2,000 to 4,000 m/s from 0 to 6 s respectively and a high 

velocity limit of 6,000 m/s, also from 0 to 6 s (see Figure 3.5). Also, only semblance 

values between 0.4 and 0.9 were contoured and plotted on the final spectrum display. 

3.3.6 Front Mute Detennination 

An undesirable side-effect of NMO correction is frequency distortion, particularly f(lr 

shallow events and at large offsets (Yilmaz, 1987). This distortion is referred to as N MO 

stretch. Since the aim of the NMO correction is to shift all reflections to their respective 

zero-offset times, a waveform with dominant period T is stretched so that its period after 
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correction, T', is somewhat greater. This frequency distortion of the waveform shifts 

events to lower frequencies and can be expressed quantitatively as: 

&j = &tnmo 
f t(O) 

(3.3) 

whercfis the dominant frequency, 4fis change in frequency and .dt111,, is the difference 

between t(.r:) and t(O) of Equation 3.1 (Yilmaz, 1987). 

Because of the stretched waveform at large offsets, stacking all traces of the NMO 

corrected CMP gather will severely damage shallow events. This problem is solved by 

muting the most-stretched zones in the gather prior to stacking. For the western Botswana 

data set, determination of these front mutes was done by displaying every 200th NMO 

corrected CMP gather along each of the line and then manually picking time-offset pairs 

which defined the undesirably-stretched zones. These front mutes are then linearly 

interpolated between these control points and applied to the NMO corrected data via the 

use of processor :MUTE prior to stacking. 

3.3. 7 Spectral Balancing 

Immediately prior to stacking, the data were spectrally balanced by way of processor 

:AFBAL. This processor designs non-overlapping narrow-band trapezoidal filters in the 

frequency domain based on user input. These narrow-band filters, when applied in the 

frequency domain, separate the trace into its spectral components. It is worthy to note that 

in order tor spectral balancing to provide effective whitening, the bandwidth of the 
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seismic data should be ;:: 2 octaves. 

The user specifics an upper and lower frequency and the number of tillers hl usc 

within this frequency range. The input trace is then tiltcrcd in the frcquem:y domain and 

the filtered results are then Fourier transtonned to the time domain. balanced in the same 

manner as processor :GAIN. (processor description to ti.)llow in a subsequent section) mul 

then summed. The result is a trace that is both spectrally whitened over the th:lJW.:ncy 

range specified and temporally balanced. It should be noted that this processor operat~:s 

on each trace independently. 

To detennine an appropriate frequency range to balance over. a series of bandpass 

tilters were applied to a portion of the stacked section and then displayed in order to 

ascertain the dominant reflection frequencies contained within the data. These Iiller panels 

are displayed in Figure 3.6. Pass bands of I 0 to 20 Hz, 20 to 40 Hz, 30 to 60 Hz and 40 

to 80 Hz were used and based upon the examination of the filtered results, it was decided 

to spectral balance the data from 5 to 45 Hz using 3 pass bands. The pass band of each 

filter in the frequency domain has a width= [4x{45- 5}]/[{3x3}+1] or 16Hz. The first 

node of the first filter is the lower frequency and the next filter node begins at the first 

node of the previous filter plus [(3x5)/4] or 15 Hz. Table 3.3 lists the nodes of the three 

filters used. For temporal balancing of the data upon compietion of the filtering, a fixed 

length sliding window of I second was used tor calculation of the gain function that is 

applied to all samples in the trace from the first to last sample. 
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Filter panels of the western Botswana deep seismic data set displayed with 
pass bands of 10 to 20 Hz, 20 to 40 Hz, 30 to 60 Hz and 40 to 80 Hz. 

Sei ·mic Reflection Data/52 



Table 3.3 Filter nodes (Hz) of the three filters used in the spectral balancing of the 
western Botswana deep seismic data set. 

Filter 0% Pass 100% Pass 100% Pass 0% Pass 

I 5 9 17 21 

2 17 21 29 ~~ 

3 29 33 41 45 

3.3.8 Stacking 

Processor :STACK was used to output a single "stacked" trace ti.lr each CMP record 

input. Data samples on all traces within the record are summed rat each time and this 

result is then divided by the number of values summed (excluding muted zones on the 

front of each trace). This process is known as standard mean stacking. 

The stacking process is a very simple but powerful tool tor improving the signal-to-

noise ratio of seismic reflection data. Each time sample of a single trace from the 

common mid-point gather can be regarded as an estimate of the primary rctlected signal 

at a particular two-way tr2'.rel time, contaminated by random noise (Hatton et a/., 19S6 ). 

The redundancy of the information inherent in the seismic recording technique can be 

used to reduce the error in this estimate by taking a statistical average. The most 

commonly used estimator is the mean. 

After correction of the data for normal moveout, the mean sample value at each two-
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way travel time can be calculated. Defining the amplitude of the ith time sample of the 

jth trace to be a;;• the mean will be giver. by: 

(3.4) 

where N is the total number of time samples per trace and M is the total number of traces 

contained within each CMP gather. This summation or stacking of traces in Equation 3.4 

is nonnalised by the fa~.:tor liM which results in the signal having the correct amplitude 

after the stack. If each trace after nonnal moveout correction is thought of as containing 

the same amount of signal plus the addition of Gaussian noise, the signal-to-noise 

improvement in the stacking process should be ..; M. The final unmigrated time stacks for 

lines 90, 91, 92, 93, 94, 97 and 99 are presented in Section 3.4. 

3.3.9 Migration 

Migration moves or "migrates" dipping reflectors into their true subsurface positions 

and collapses diffractions, thereby delineating detailed subsurface features such as fault 

planes (Yilmaz, 1987). Thus the goal of migration is to make the stacked section appear 

similar to a geological cross-section along the seismic line. The migration process can 

produce both a migrated time section (displayed in two-way travel time) and a migrated 

depth section (displayed in depth) which are referred to as time migration and depth 

migration respectively. 

These data were migrated using the Landmark/IT A INSIGHT poststack processing 
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package. The primary motivation for the switch from STA RPA K to INS/GilT fbr 

migration purposes was the much wider varit:ty of migration algorithms oftcred hy the 

INSIGHT software. All of the western Botswana seismic lines. except for line 99, were 

time migrated to their maximum record length, 15 s. and depth migrated to 45 km. Line 

99, due to its longer record length, was time migrated to 20 s and depth migrated to 60 

km. 

The algorithm that was chosen to migrate the western Botswana data was the Gazdag 

phase-shift implementation of a frequency-wavenumber migration which produces hoth 

a time and depth migrated section. This method involves a coordinate transti.mnation from 

frequency (the transform variable associated with the input time axis) to vertu.:al 

wavenumber (the transform variable associated with the output depth axis). while keeping 

the horizontal wavenumber unchanged (Yilmaz, 1987). 

Fourier transform methods in migration were introduced by Stolt ( 1978 ). Gazdag 

( 1978) published his work on the phase-shift method which led to a further um'crstanding 

of wave field extrapolation in the transform domain. As pointed out by Yilmaz ( 1987), 

frequency wavenumber ((-k) migration is not easily explained from a physical view point 

and referred to rhe work of Chun and Jacewitz ( 1981) as providing good insight into the 

principles of.f-k migration. 

Figure 3.7 presents a flowchart of the phase shift method. Downward continuation 

involves a pure phase-shifting operation exp(-ik,z) and, at each depth step, z, a new 

extrapolation operator with the velocity defined for that z value is computed (Yilmaz, 
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Flgure 3.7 Flowchart for Gazdag's phase-shift method of migration (after Yilmaz, 
1987). 
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1987). As for any other migration, the imaging principle (t = 0) needs to be invoked at 

each extrapolation step to obtain the migrated section. The imaging principle refers to the 

fact that the wavefront shape at t = 0 corresponds to the reflector shape tor the wave field 

generated by an exploding reflector (Yilmaz, 1987). The imaging condition t = 0 is met 

by summing over all frequency components of the extrapolated wave lield at each depth 

step. The procedure of downward continuation and imaging is repeated until the entire 

wave field is migrated. 

The INSIGHT phase-shift migration algorithm. PSMIG_FAST, requires the dclinition 

of a number of time-frequency bands which are used to define a range of frequencies to 

migrate for a given time. Since the data had been previously spectrally balam;ed between 

5 and 45 Hz, a single frequency band of 5 to 45 Hz was chosen fix the entirety of the 

record to migrate over. 

The phase-shift method can only handle vertically varying velocities. To enable the 

tying of all seven depth migrated sections at their respective cross-overs. a constant depth 

step or depth sampling interval, az, was required. This could only be accomplished by 

using a single velocity function for the migration of all seven seismic profiles. As such, 

in order to utilize a migration velocity function which provided a certain dcgn.:~ of 

geologic control, integrated two-way sonic times and corresponding depths were picked 

from the adjusted sonic log of the stratigraphic test well drilled on line 99 (labelled "GSD 

Pan- I" on Figures 3.27 - 3.29). 

Since the adjusted sonic log did not extend entirely to the surface, it was necessary 
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to perform first break refraction analyses of a few shot gathers cent:ed about the well 

location in order to provide near surface velocity-depth information. These refraction 

analyses along with the time-depth picks from the sonic log allowed the compilation of 

an interval velocity function for the well interval. 

To tie this function with deeper(> 2 s TWT) velocity information, interval velocities 

were converted to RMS (root-mean-square) values using the following equation (Dix, 

1955): 

n J 

_LV/t; 2 

vrms = i=l (3.5) 
n 

,Ltj 
i = I 

where Y; and t; being respectively the interval velocity in, and the travel time through, 

the i1" layer. These RMS velocities were then combined with velocity picks from a 

conventional velocity analysis (as described in Section 3.3.5) performed at the well 

location to produce a final velocity function used for the migrations. This RMS velocity 

function is illustrated in Figure 3.8. The final time and depth migrations for all the 

profiles are presented in Section 3.4 

3.3.1 0 Coherency Filtering 

With the migrations completed, the data was moved ba'-i... to STA RPA K to perform 

coherency filtering. This was achieved by using processor :CANE which is a spatial 

coherency filter. The filtering is accomplished by stacking sub-windows of d2.ta from 
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Figure 3.8 RMS velocity function used to migrate all seven deep seismic rcllection 
profiles from the Nosop Basin, western Botswana. 
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several adjacent traces. By properly time aligning these sub-windows with the reference 

or current trace, an optimum coherence stack is obtained and undesirable noise is 

suppressed. 

:CANE crosscorrelates a sub-window of the current trace with corresponding sub­

windows on a selected number of adjacent traces centred on the current trace. The largest 

peak of each crosscorrelation is searched for, within a limited temporal range. The 

corresponding trace sub-windows are then shifted by the peak lag times, weighted, stacked 

and then tapered. The resulting sub-stacks are summed, at the appropriate times, to form 

the output trace. The sub-window is moved down the trace in steps of half the sub­

window's length between the selected start and end times. The crosscorrelation length is 

chosen to just include events of desirable dip and is expressed as ms/trace. 

A trace window of nine adjacent traces, a time sub-window of 120 ms and a 

crosscorrelation of 8 ms/trace was used for both the unmigrated and time migrated stacks. 

A smaller rather than larger trace window was opted for as the data were to be later trace­

mixed and summed. Lateral "smearing" of the trace energy prior to these steps should be 

minimized. Also, a crosscorrelation length of8 ms/trace was chosen as this number would 

encompass the range of time dips seen in the unrnigrated and time migrated sections. 

For the depth migrations, because the sampling interval was no longer in terms of ms 

but rather m, the sub-window length was chosen to include the same number samples that 

were used for the time sections. This was also true for the choice of crosscorrelation 

length. 
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3.3.11 Trace Mixing and Summing 

Processor :ARRAY was used to perfonn an array simulation on the stacked traces. It 

utilizes a time-invariant weighting function which may be either symmetrical or 

asymmetrical. The output trace is a linear combination of th~ input traces in the array 

multiplied by the weighting function. Nonnalization of the trace weights is necessary to 

accommodate for dead traces and for tapering of the edges of the data. 

A three weight symmetrical array with weights of 1-2-1 was used to array the 

unmigrated and migrated stacks. The same number of traces were output as were input 

with the array moving along the stacked traces in a roll-along fashion. As with the 

coherency filtering, a small array was opted tor to prevent the data from looking highly 

mixed on final output. 

Adjacent arrayed traces were then summed using processor :TSUM. This processor 

vertically stacks or sums a selected number of adjacent traces. The summed traces arc 

then scaled by the number of live traces in the adjacent trace group. A three adjacent 

trace sum was used on the arrayed data. 

3.3.12 Filtering 

Prior to gaining and final display, a low-pass, minimum-phase time domain filter was 

applied to the unrnigrated and time migrated stacks using processor :TIMEF1LT. A cut-ofl" 

frequency of 30 Hz with a 16 dB/octave roll-off was chosen. These parameters were 

selected based on examination of the filter panels previously generated tor design of the 
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spectral balancing. It was felt that this filter would pass the most dominant frequencies 

present in the data given the source used and the record length (i.e. predominantly lower 

frequencies). Also, since the data had been previously spectral balanced, frequencies in 

this range (5-30 Hz) would have been equalized in terms of their amplitudes. 

It should be noted that the depth migrated stacks were not filtered. Since the traces 

making up the depth migrations were now expressed in terms of depth rather than time, 

the application of a low-pass time domain filter was questionable and, in the end, avoided. 

3.3.13 Gaining 

In order to produce a final section which can be interpreted, the trace amplitudes must 

be somehow balanced so that both high and low energy reflection events can be seen. 

This was done through the use of processor :GAIN. 

A fixed or variable length window slides down the trace one sample at a time. Within 

this window, the average absolute amplitude of all non-zero amplitudes is calculated as 

follows: 

A= i:~ 
i=l N 

(3.6) 

where N is the number of time samples contained within the window and a; is the 

amplitude at time sample i. The ratio of the desired output average amplitude to the 

average amplitude calculated within the window is the gain scalar, S. This gain scalar can 

be applied to one of twu sample locations within the window: 
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I} If the centre of the window is specified. the scalar S is multiplied hy the 

amplitude a" of the centre sample of the window. 

2} If the bottom of the window is specified. the scalar S 1s multiplied hy the 

amplitude a, of the last sample of the window. 

In either case, S•a,. or S•ah represents the balanced amplitude for that particular sample. 

A clipping option exists for the centre window option to prevent excessive attenuation 

of amplitudes in the region of high energy reflections. This clipping option limits the 

contribution of high energy amplitude events to the computed average by dipping. The 

clipping level is determined by multiplying the clipping scalar, specified ~y the clipping 

scalar verb, by the trace average absolute amplitude within the defined clipping window. 

A fixed length window of 1,000 ms and the default average amplitude normalization 

level of 3,000 were chosen for the amplitude balancing of the unmigrated and time 

migrated sections. The calculated gain scalar was applied to the centre of the window and. 

due to the presence of high energy reflections contained within the data, the clip option 

was chosen with the mandatory clipping window and clipping scalar verbs. The clipping 

level scalar used was 0.5 with a clipping window length of 3,000 ms and 4,000 ms for 

line 99 (20 s record}. These were selected by running a number of tests by first changing 

the value of clip scalar and examining the output to determine its optimum value and, 

using this clip scalar value, altering the clipping window length to determine it.s optimum 

value. 

For the depth migrated stacks, values of 1,500 ms, 0.5 (dimensionless) and 4,500 ms 
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were used for the fixed window length, the clip scalar and the clipping window 

respectively. For line 99 (60 km record length), the values ofthe fixed window length and 

the clipping window were increased to 2,000 ms to 6,000 ms respectively. 

3.3.14 Trace Display 

Processor :PWT was used for the final display of the stacked sections. For the 

unmigrated and time migrated sections, the horizontal and vertical scales used for plotting 

was 16 traces/em and 2.54 cm/s (0.83 cmlkm for the depth sections) respectively. These 

scales yielded a final display with a I: I vertical exaggeration assuming an average 

velocity of 6 km/second. The mode of display chosen for the traces was variable area 

positive with the application of a high negative bias. This produced a display with good 

contrast with the high bias accenting only the most prominent reflections seen within the 

stacked sections. The plotting direction (CMP numbers increasing right to left vs. left to 

right) for each stacked section was chosen so that the western end of the line was always 

situated on the left-hand side of the section and the eastern end on the right. 

3.4 Final Processed Sections 

The final processed unmigrated time sections and their respective time and depth 

migrations for lines 90, 91, 92, 93, 94, 97 and 99 are presented in Figures 3.9 through to 

3.29 respectively. All seven lines clearly show the presence of a single, extensive 

sedimentary basin containing !2 to 15 km of strata which thin substantially to the east. 
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Below this basin. the crust also appears to be highly stratitied containing numerous 

horizontal to sub-horizontal reflectors, some of which are very coherent and excl.!cdingly 

continuous and traceable for tens of kilometres. In the following chaptl.!r. only the depth 

migrations overlain with simplified line drawings are presented l1lr interprct<ttion and 

discussion purposes. 

It should be noted that the two digit line identities used in this thesis nrc the lust two 

digits of the first four digits of the line numbers assigned by PC'IAC' (cg. "90" herein 

corresponds to 9490-87 in PCIAC reports). 
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Figure 3.10 Time migrated section for Line 90. 
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Figure 3.18 Unmigrated time section for Line 93. 
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Figure 3.21 Unmigrated time section for Line 94. 
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Figure 3.22 Time migrated section for Line 94. 
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Seismic Reflection Data/BO 



93 

l 
1665 1586 1482 1386 1289 1190 1091 992 893 794 695 596 497 398 ~9!) 



0 

W 0 
~ 

z~ 

..... 
01 ..,. 

!§: 
10 

liB I< 

llO:l 10 
$ 

Depth (km) 

31131 

010 



92 90 

N l l s 
101 200 299 398417 

5.0 -en -Q) 

E 
i-
>-

~ 
I 

0 

~ 
10.0 

Figure 3.24 Unmigrated time section for Line 97. 

~ 
0 
I 

~ 
'< 
-1 
3 
CD -(/) -

Seiwmc !lejlectitm D11tullll 



92 

N l 
101 200 299 

5.0 -UJ -Q) 

E 
i-
~ 

~ 
I 

0 

~ 
10.0 

Figure 3.25 Time migrated section for Line 97. 

90 

l s 
398417 

5.0 

~ 
0 
I 

~ 
'< 
'"""i 
3 
(1) -en -10.0 

Seismic Rejlectitm Data/82 



92 90 

N l l s 
101 200 299 398417 

15.0 15.0 

-E 
::tt! -.£:.. -a. 
Q) 
0 

-;1\ 

3 -
30.0 30.0 

Figure 3.26 Depth migrated section for Line 97. 

Sei.,·mic RejleL"Iitm /Juta/HJ 



94 

NNW l 
101 131 230 329 428 527 626 725 

0.04--1-...:---'---~----'----'---~----'---

20.0 

Figure 3.27 Unmigrated time section for Line 99. 
Seismic Rejlediorr Data/B./ 

O : jl! >< .... 



OLD 

EftE 

·~~~~iMf :}~~J.tx":, Wti~.~.~:1.·· .h1.l,'t~.·~~~1 t~~;\::1w~~)~ :~;.i~i,?.:;:,·. w'· ·t~~~~~~~~ .;~\l,:'~~~~~~~·,l1: \{,1·:11·! :.~',l. ,.:~.! ~.! ~;\1 · ·I ··l··il; il1:iSl1.1'::.~ ,,·. :,;!,· ::,,,~; l'~· ~·!,w~'-.\ , !~; ··~,;; .. ,. · 'l!'~·.'t:~,·;/!-''1. : •• /:'i,~· .. . !.!. ;11 · < :~k~ ·~· ·1•1' · •, tl! ':f• '· <' \' '1(."'\1' 1 , •. ,• , , •t 1'·'~\ 1'1 I> · I I •t• " ' ' ·" • ' "J' 1 '\ · , ·~ o\ ' ' ' • '•' ' ' 'I ''I 1"' ··~~)>;;~;{• 't,·l,.. t,,~JtJ\l' J.·,YJ1;,,, :•'t ·.~:·?.~,(·~· ·::::·,··~.· ~~,.~~· · i·d';l ;.I•· ·1··/i-'/
1.,' •11. i 1 

11 1
1 :y.t.tl\ ,,\J' ,, •: 'I: 1:1 ·r,·: ·,•:l(,,'l ,'t/.~ '1' : , ·.·.''·'1\ , .' :.!;'\ .~ ~·:! !,:1,.;.,,·.:· · ·. :: ~ · :, · '{ .. 

~ >: r •. ,, \! ~~h~, -~u\ ·· · .'l ,• ~ ··' ·l ·l · l'''\ ·'\• ''' •'•tv•lt:l• 1 · • ,, • •, • • 1 •' •' t'• · 1 • ,, 1·1. • ·, •1•1 • t';' ,., .• r . · l" , . l , • ,, 

lir·~~!.J :1.~~~~1~~u~~; ~i~N,:~rt~i~~~~~ ~l~)J,;Ht~J~ l'lf~~~)#l ~~~: t,!~t~:~~:;Jf~:,,~ll ;~,: 1 '! · ;~~:· .~~~:~~~:;t:t'i1 ; YJ .1 : 
.t :.'\•W . I \',1~!·. •') ~!t, ' 1,1 ., ,o,l·.· ~·-~:~·~' .~·. '•'·''~'' .:l(. .... ~ •• !: ·'!'tV •,: ,,,, • {:,· pr.f•'; ., ' ' ' . I • II n ' ,' il •'.· (I ) •, ,)' 'li).'I I( ; . lL·,. .. 1: ,~. · ·'l ., ( 't ··.· .•;'. 'I' .;•( ' -: '·· ~•. • . 

- ·~jl/·1·~~\;'t•'l ·<'·~.~~l'' 'j(\1•" ' 'l ' "l ·i·p~·'· '•'••l,.( I ''~'\' ' ~~~··; · • I l'l 1~1 :1',, ' I ··· · ·'.111•1''1' \' .,, l . . , ., ' "· I . ..•. , ,·,,,. \>(: '·~ 

IP,~}~11; fA\\~~ i~tJ,: ~~K , .. ;i.\~~ :*itt.t i~;i,i~ ;W~~~ ~~~;Jl;!l,,! Wll:illl iit;~~ \1? :::1,~~}\ }li~1\~1~f~.~:t~\ :,~;(·,: ·· ~~:,::)t~.it\:(;r !i!*:;%1\!if:; il ~· ~ 
,h ~\:''(•\ '1'' ,,,~"1 '•\l1•1tff'(\ :..)• . ,J .,o\ ",~' ' ''1' · •4J\ l'1 1 · \ ,••• \'f ' 1 •\ ,lit : ,lu'.,/;r ' ' •. •, , ;,ro, • ·~ \ ~ ' . ' ' . .~ ·,, 1 • • ~. ~~ 

~·\·'I' '' '·l.lj I . ''[',, \'•\ ·t·,, .r' oo;.r,l,l/11.(' ' ~ "l ,,. ' ·, '1 I'· '• I~. vr·· •1 '• ·' 11 • ' :, ·,.,, ' ' '(' : .• ··r·•·t '( . "' ., I 

. ~,·;!«W~· ·~!.\t-~t!(\:\:f ·~~1~~~).~:~ W.:Mt1~j:~:·~.:)!~!:· ;;M~~l·,"~~~~~.:( .. !r ~~}~( \H·
1
'),;,. ~w~\.;(·~. ·t\ · t\t':~ l, .. :/f:i 1 • .r:.~,~~i~:·~~~: . \:,1\\\. \!\ t1 '; ~ .:~.·::.: ~~,:~,· · ~··!.~ j ·! ) ... :. · ,;r :~: ·. ·1i· · :~ ~·,, I 

• •1\V· ~ ·'! •' . rt\, , · ·11'~f '1\ '-' r(\1_: 1({,~ •• ·• ,•'JIJ~c) . 'Y ' I 1;1 J '\',(' J, ~, \ 1 1·' •-\~ 1 1\ 1 \•1, .• • .·~, 1 ~, , • • ~ :i: , . 1.· • • 1 ~ ,1 1 •,' ·· · 1• l, , /1 

• tr,tt~\\ ~~~l~~ t.~\~l~.fulli~~ ~~~;~ ~~li1!:f~~MJ$.\WN/tl ~~ . ;~~ 1 ! r-.\1 1!1.1~,) l ~~ M ).\:~JI r ~u:~ ( M. · i ~ tM:,;W.;;t::ii :;/i'tt· %~;:;;~~ · : 

~1:!1>\1\~~. 1':;,,,!·~.,' 1,ltlt , .. . ~~h ·~:li'•~, • .t 1~.1 ., ·''·•'r.;;):t,.J ),.'. ,,, 1.\ 't 'i :l.,' :J,·,I ,~·· i•11 ,,\,l~•;l,!f ' ,,. 1\J.r; .t . .o: ~,; :1 · . • ~\ i ·; .. ~····· 

~~t l,·;~~~~ .. wli1w~·A~;.~·.\~:'/:'!?·;.·,J,:~~l.:/,t; h\·!,.;~: •. ;.: .. ;:~·w ·y1:i1·\i,, • j(·~·J.·!·~ ::.·.r1 ;(··,. Vi)\ k!'Pt·,1 .. 1~. ·1; :\ rt'-'·'·l v,i' i .. ~.i~·; ·:: J , ,. , • •• ''! .. :,.."', .: .•. : .. ,. :· ·. , : ,·i'.J.'/f}t.l . 
:M~i~~ly~~~)~.~1)~\,:1.i!~~~ '~~g:-~:f ~}{.~\*!; l.i?f.\Vt.\~~ft~~;I~'1/t.M! i~·,';tj;:;;;: 'ry1,t·:;rl1! 'il··~ ,~ I :·;M~I() !/i;'i ;,? :'!~tt~\:·:~\iri,rA'~J· · :. · ;: ;:··: .1\':f .. Hr ~l ~r;· \<!I:~ : .JlJy{~ ·?.li.~Nifl.if''\}'"(1 \"I'll' i 'I! n··~ .•. \{1:• ... ,:.. .. :' \ J:~l!.'f .,,j,'l '·~u.~i~l\1·~ /,< r,tl·,', ~ ';.\1 'i . {J''I " I·'!, . t j···ll . I ;I~ l ~ " : . ~ ,) ·, . ' : ~~~ ' : L. I 0(1,1 ,! . .. . 'I &:' ',: . I r{f' 
-M::r;w~%t:Jw,~:t;t.~!t~.{N:i~(;~~~i«P~W1.: {\~~lf<-~~~{~~~·~:;1,:~}~,~:~iJ1#:rA:: :·;:.~J/;!' 1t·': I· .: .. : ~n :·/:~l.:'\j':i · \1.:\ ~~:~~,: ~:;.'{;·~~!.H ·~ .:/~.i .\>: ~~ ::.··~.\r .~: · -.. .; :·:, ~~ ·' ~~ ~ .:.~~~ ~ \ 
: :.i/:t.mN~~:,~\~'.iYt·~:}>~l~i!t~.~ll;,,i~f.,·m;:,:,,:. ~;;;~w:-::)n::i,~,·~/<!;\\,.Mt1\.:!i~~l 11f.,;?;'f: .·;·:~,v}~·(~J ,,iJ,,J,t~~.~r, 1,'.'· ~ · P;li.1Yf-~;~,l~~~~:~l· ;~~ ~·:; ·,iJ

1 
~· ;¥X::.::.; :~ ·;:;::~v · ::·.: : ~ <f' 1r,1 .· :~ ·iJ; ;~~~~~ . -' . .,. . l " l~ ,. \ ~, .. ~ ' 'lA •f ~ •:"t·' ·~ , - t . . ... '\t• f' . ., • t . . .,H I ' t f( jJI I I • 1 tr'fl, ' ' . I • l .. , I ' 

:: ~~ l -~~;~· ~~'\\:t}~·t~i3·l~t;·.r.:;:~~:~ .. ;~:~;·~n·:·,t~': t'~\~;;::: ;t.- ~ ;;·i·i 1'~'.;,·H l~) 'l· .h··:/·:!·1· .-t_.;/i~' ~1~.(·1··i1 ; ·~ ·iJ:':,q; ;, '·:·~p ifH 1, .• !:1\·· ,;i · tffJ· ·:J.: ;{,.:·:' . .- ·. ·. 1·r: ·1~1:lt .. t. -: ... ,, i· .~ t ;·· :-;,'J''/1\~'~ · ~~· · · ~ : '(< · p.',• . .. ·. ·: ·:' . .'.-. \ ~ ,, _., ,, . ,,.· ·, 1', ,· ~, .1,· ... , ... : •·: •• :·, t1:. ,

1 
.... ,,, :'(. ···· '/ · !~ ~ 4 '; . , ~;: , , . · •• r,. 

;·:.' ' :·~~A.:;J~ :·{(ir/· •.'v' · \! · :: :"' . . u·:·'·,:. ·· ··;':.·: ! '.\' ... ...,.-.,. ;,',. ·J/,·l··J,•, ·:: !·. I . · ·i ~· l··l ·' . ·:- ~ . : :· \ · -\ , .;p ·. ·, :. ,.:.,,, ·_ : . .. · :~; r 

.:g~,: ; .\~~·\ ' ~1: ~:;.:-:;:?r·::: ·.'~\~~:; ;:<~:· : :i~.';'· :,;;:•; ::_:·.' : ·/:j:;;:--;\:. l; i:' i:· ' ·, .. • ;o~.l~:: :.::t:/: :: ~ 1:: '::.:.
1
!. ~~. :• : :~ _·!' :·:,:! ·~ ~:};; · '; .' ;:;. , • 1 ~ I ; ', ; :' .' ;' .: ! .... . ;, - : ,:' :, ·: ~ ;L. :I: ::_ 

~ 
o 

~ 
10 

~ 

~ 

"' 

~ ..... 

~ 

~ 
01 

FOI.U 
~ HEliE c.n 

~ 
bo 

~ 

"" 

N 
~ 
N 

~ 
G> en 

0 



GS GSD PAN-1 

l 
~111 10<'2 1121 1220 1319 1418 1517 1616 1715 1814 1913 2012 2111 2210 2309 



"' w 0 ffi 
u.. X 

92 

lssE 
2408 2507 2606 2705 2804 2903 3002 3101 

-f/) -

~~~~~~~~~~~~~~~~~~~~~15.0 

······~ 20.0 



-"' -Cl) 

E 
t= 

NNW 
101 131 

0.0 

~ 10.0 

~ 
I 

0 

~ 

Figure 3.28 Time migrated section for Line 99. 

230 

c w 
ll II: 

· W 
u. : X 

94 

l 
329 428 527 626 72! 

Seismic Reflection Dalii/B5 



94 G 

l 
725 824 928 1022 1121 1220 1319 1418 1517 1616 1715 1814 1913 201 2 ~1 1 1 



GSD PAN-1 

l 
1220 1319 1418 1517 1814 1913 2012 21 11 2210 2309 2408 

Q 



92 

lssE 
2507 2606 2705 2804 2903 3002 3101 

-(/) -



NNVv 
101 131 230 329 

-E 
~ -

428 527 626 

Q : W 
-' ' II: O · W ... . ~ 

94 

l 
725 

.£.:. 30.0~~~~~~~~'!-E~~~~~~~~~~ 

i c 

Figure 3.29 Depth migrated section for Line 99. 
Seismic Refledion Dt111111J6 





GSDPAN-1 

l 



0 w 
g ffi 
... ::1: 

2507 2606 2705 2804 2903 3002 

92 
I 
+ssE 

3101 



4 INTERPRETATION 

4.1 PCIAC-GSD Masedheng Pan-1 

PCIAC-GSD Masetlheng Pan-1 was a s.:atigraphic test well designed to evaluate the 

age and prospectivity of the dt>eper sedimentary sequences contained within the Nosop 

Basin (Petro-Canada, 1990). This well was spudded on November 18th, 1989 by Petro­

Canada International Assistance Corporation (PCIAC) in cooperation with the Government 

of Botswana's Geological Survey Department (GSD) and drilled to a total depth of 4,016 

m (13,177 ft) which was reached on April 15th, 1990. 

The drilling of this stratigraphic well followed from Wasilenkoffs ( 1 988) original 

interpretation of the 1987-88 regional deep seismic reflection survey of the Nosop Basin. 

Based on ties to other exploration boreholes farther west in Namibia, he postulated the 

presence of a thick ( = 3,000 m) sequence of Palaeozoic sediments concealed between the 

base of the Karoo Supergroup and the underlying Proterozoic section which he assumed 

consisted predominantly of Nama Group. In fact, his interpretation of a possible hidden 

Palaeozoic section existing in the Nosop Basin was largely hinged on extrapolations made 

to the Vreda-281 well drilled 30 km west of the Botswana!Namibia border and some 75 

km southwest from the ends of seismic lines 90 and 92. Wasilenkoff (1988) thought that 

this "extra" section of Ordovician to Carboniferous rocks were equivalents of the Mulden 

Group of Namibia, Cape Supergroup of South Africa and the Likupekupe Formation of 

Zambia. 

To test the existence of this additional Palaeozoic section, Wasilenkoff (1988) 
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showing thicknesses and ages of the various sedimentary sequences 
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recommended that a strdtigraphic borehole be drilled at shot point 2193 (labelled "GSD 

Pan-1" on Figure 4.7) on line 99 (latitude 23° 41' 59.57"S,longitude 20° 51' 08.00E) with 

a projected depth of 4000 m (13,124 ft). This location was selected in order to test an 

onlapping reflection close to total projected depth. 

The geological summary of the PCIAC-GSD Masetlheng Pan- I well is presented in 

Figure 4.1. As indicated by this figure, the test borehole penetrated a sequence of Karoo 

sediments to a depth of 1162 m (3812 ft) and then passed into a thick succession of 

Proterozoic aged sediments which have been assigned to the Nama and Gariep Groups 

(Petro-Canada. 1990). The Proterozoic section located in the lowest portion of the well 

is comprised of highly indurated arkosic sandstones and an interval of marine sediments 

is present close to total depth. This deeper marine sequence has been intruded by a 

gabbro/dolerite which yielded a K-Ar date of 333 ± 17 Ma (lower Carboniferous). 

The stratigraphic break at I I 62 m marking the top of the Pre-Karoo strata is an 

obvious major unconformity and represents a large hiatus. This unconformity separates 

the glaciomarine sediments of the lower Dwyka Group from the well-cemented arkosic 

sandstones of the Pre-Karoo section. Although being predominantly composed of arkosic 

sandstones, this Pre-Karoo section also contains local intervals of subarkose, quartzarenite 

and subquartzarenite. The sandstones below this unconformity are, as stated, generally 

more indurated and notably more physically compacted than those encountered in the 

Karoo section (Petro-Canada, 1990). This compaction would seem to suggest a longer and 

more ~omplex diagenetic history and supports the notion that the um:onformity does 
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indeed represent a large span of missing geological time in which a considerable amount 

of sediment had been deposited and subsequently removed. 

Petro-Canada ( 1990) correlated the upper half ( 1.162 - 2,275 m) of the well's Pre­

Karoo section with the Nama Group. This was largely based on a biostratigraphk Late 

Precambrian age (Vendian) determined from a shaley interval at 2,225 m. This 

biostratigraphic age, along with the close resemblance of these shales with those of the 

Kubuis Subgroup of the Nama Group in Namibia, combined with the apparent 

stratigraphic break at 2,275 m suggests lithologic parallels with Nama sedimentation 

(Petro-Canada, 1990). Exact subdivision of the Nama Group in the predominantly 

continental sequence lying above the shales is difficult but it may be that the interpreted 

lithologic break at 1,689 m may relate to the widespread basal unconformity (as identified 

in Namibia) which separates the uppermost Fish River Subgroup from the lower Nama 

stratigraphy. 

Petro-Canada's (1990) correlation of the lower halt (2,275 - 4,016 m) of the Prc-Karoo 

section with the Gariep Group should be questioned. The Gariep Group represents a 

sequence of Late Proterozoic to Ear~y Cambrian volcano-sedimentary rocks with 

exposures along the Atlantic coast and straddling the international boundary between 

Namibia and South Africa. There are no known occurrences of Gariep Group rocks within 

Botswana and indeed the known exposures of the Gariep Group just mentioned arc some 

hundreds of kilometres from the Masetlheng Pan- I well. The decision to correlate the 

Gariep Group with the deeper Proterozoic sediments encountered in the borehole seems 
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to be based solely on the statement that "In Botswana no sedimentary deposits older than 

Karoo are known ... " (Petro-Canada, 1990) which is, of course, not true. 

A much better and more plausible correlative for the pre-Nama sediments encountered 

in the PCIAC-GSD Masetlheng Pan- I stratigraphic well would be the Ghanzi Group. As 

discussed in Chapter 2, there is abundant outcrop of Ghanzi Group rocks in the extreme 

northwest comer of Botswana (northern and western international borders with Namibia) 

which were described in detail by Litherland ( 1982). These outcrops are situated only 

some 150 km due north of the Pan- I borehole and its lithologic character is strikingly 

similar to the pre-Nama sediments assigned to the Gariep Group also consisting chiefly 

of arkoses. It is beyond the scope of this thesis to provide a detailed comparison and 

correlation of the Ghanzi Group rocks with the pre-Nama strata encountered in the 

borehole. However, it is felt by the author that the lithological descriptions and 

subsequent discussions of the pre-Nama strata provided in the Petro-Canada report ( 1990) 

might have been better served in terms of the Ghanzi Group rather than the Gariep Group. 

4.1.1 Well Tie with Depth Migmtions 

In order to verify the accuracy of the depth migrations, a check was made as to 

whether the well depths could be tied directly to the migration depths. To illustrate the 

validity of the ties, Figure 4.2 displays the comparison of the synthetic seismogram 

generated for the PCIAC-GSD Masetlheng Pan- 1 well with portions of the time and depth 

migrations at the well location on line 99 (SP 2193). 
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Referring to this figure, the synthetic seismogram has annotated along its time axis 

both the time and depth picks for base: of Ecca dolerite (Karoo), top of Nama and Gariep 

(Ghanzi?) derived for the well. The time picks, according to the Petro-Canada report 

( 1990), were obtained from the correlation of the VSP (vertical seismic profile) data for 

the well with the actual seismic data itself. This correlation was apparently good and 

enabled the m~jor reflectors to be identified with some confidence. The depth picks were 

simply taken from the lithology log for the well. These time picks from the synthetic 

seismogram arc then directly transferred to the time migration and the reflecting events 

coinciding with these picks are then matched to the same events on the depth migration 

thus giving the appropriate depth values for the stratigraphic units in question. The depth 

values yielded from this procedure are annotated along the depth axis of the depth 

migration tor line 99 at the well location. 

As is evident from Figure 4.2, there is good correspondence between the major 

fommtion depths reported tor the well and those provided by the tie to the depth 

migration. The percent difference between the actual well depths and those derived from 

the depth migration are 7.2%, 5.9% and 1.5% for base of Ecca dolerite (Karoo), top of 

Nama and top of Gariep respectively. Thus the depth migrations would appear to be 

accurate, at least tor the stratigraphic interval encompassed by the well, and this depth 

information can certainly be used for interpretation purposes. 

It is important to note that the "shallow" reflection events, labelled A, A 1 and A2 

(Figures 4.3 to 4.9; discussed in the following sections), picked on the seven seismic 
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profiles all have depths substantially greater than that penetrated by the stratigraphic test 

well (i.e. > 4 km). The actual depth extent of the PC'IAC'-GSD Masetlheng Pan- I well. 

labelled "GSD Pan-1" on Figure 4. 7, is indicated by the inset located at SP 2193. Thl' 

picked reflection event which is penetrated by the well. labelled "W" on Figure 4. 7. may 

correspond to Wasilenkoffs ( 1988) onlapping reflection close to total projected depth ( = 

3,600 m) and appears to be coincident with the younger gabbro/dolerite intrusive which 

yielded the lower Carboniferous K-Ar date (333 ± 17 Ma). 

4.2 Line Descriptions 

Interpreted versions ofthe depth migrations tor lines 90, 92,94. 93,99, 91 and 97 arc 

presented in Figures 4.3 to 4.9 respectively. The profiles show a series of dear and 

correlatable reflection events which have been labelled appropriately. The mature of 

reflecting events common to all or some of the profiles is first briefly described I<Jllowcd 

by more detailed descriptions of the structures of each profile in turn. 

A common and prominent feature of all seven profiles is the presence of a particularly 

strong reflector labelled "B" which marks the top of a very reflective sequence and 

represents the boundary between a deep sedimentary basin some 12 to 15 kilometres thick 

and a highly reflective and stratified mid to lower crust. Although event B docs exhibit 

some lateral variability along its length, it can be picked with confidence over all of the 

profiles. 

Within the sedimentary basin there are at least two prominent reflectors which can be 
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correlated with reasonable certainty from profile to profile. These events, labelled "A I" 

and "A2", like the underlying event B, also exhibit some lateral variability wi1h coherency 

fading in areas which only allows these reflectors to be picked in a piece-wise fashion. 

In addition to events A I and A2 there are reflection events on some of the profiles which 

arc quite prominent but cannot be traced from line to line. These are not labelled and 

were only traced on the individual profiles to illustrate the "layer-cake" style of the basin's 

stratigraphy. 

Lines 90, 92 and 94, all show a series of clear and strongly dipping reflectors 

(labelled "K" and "F") at or near their NE terminations. These reflectors, together with 

rctlcctor B. and many others contained within the sedimentary basin, gradually rise up the 

section with the separation between them steadily decreasing as the layers thin towards 

the Kalahari Line. 

A significant increase in reflectivity is marked by event "C" which occurs at a depth 

of 16 to 18 km on a majority of the profiles. The C event marks the start of a zone of 

reflectivity which varies both in thickness and character from line to line, being rather 

thin on some of the profiles ( z I krn) and having a patchy appearance, to having a 

thickness of 3 to 5 km and being somewhat more continuous and coherent. Also the dips 

of individual reflectors comprising this zone vary from horizontal to moderate ( z 15° -

20°). 

Event "D" marks another zone of increased reflectivity occurring at a deeper crustal 

level ( z 24 km) on most of the seismic profiles. Like event C, it displays considerable 
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lateral variability of thickness and internal structun:. 

Lines 90, 92 and 94 all have SW-NE orientations and structures imagcd on thcse threc 

profiles are described first. This is followed by a des~ription of structurcs imagcd (ll\ lincs 

93 and 99 which have NNW-SSE orientations. Lines 91 and 97 nrc thcn described which 

are tie lines to the above SW-NE and NNW-SSE profilcs and both have northerly 

orientations. 

4.2.1 Line 90 

Line 90 (Figure 4.3) is the southernmost of the three SW-NE protilcs and is the only 

one which crosses the Kalahari Line to image the easternmost edge of the Nosop Basin. 

The sedimentary section exhibits uniform layering over a majority of its length hut there 

are some secondary structures which offset the sedimentary reflectors between stutions 

2368 and 2566. The sedimentary section is rapidly attenuated as the reflectors steeply rise 

up section to the east and are overstepped by overlying strata ncar or at the surf~tcc 

between stations 883 and 1477. 

As indicated on Figure 4.3 (and Figures 4.10 and 4.11 in rear pocket), line 90 passes 

over borehole CKP-8C-I and provides geologic control on the shallow stratigraphy at this 

location. As mentioned in Chapter 2, borehole CKP-8C-I was sited on the southern 

portion of the Tshane Complex, one of the more prominent and extensive magnetic 

megafeatures of the Kalahari Line. Drilled to a total depth of 795 metres, this borehole 

penetrated a well-developed, well-preserved and essentially complete succession of the 
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Karoo Supergroup which rests unconformably upon a pre-Karoo, layered gabbroic body 

at a depth of 772 metres. The upper contact of this mafic body is not chilled and therefore 

is not believed to be intrusive into the lower Karoo (Meixner and Peart, 1984). 

Thus it is likely that Karoo rocks provide the "pinchout" of the deeper Nosop Basin 

sediments which rise very close to surface at this locale. The pre-Karoo gabbro 

encountered in borehole CKP-8C-l may be imaged on the seismic profile as a series of 

strong and laterally continuous reflectors evident at the borehole location at a depth of 0. 7 

to l km (sec enlargement inset of Figure 4.3 ). It may be that a majority of the stronger 

reflectors existing in this region could represent lateral and/or depth equivalents of the 

mafic body penetrated by borehole CKP-8C-I. This might explain some of the complexity 

and chaotic nature of the deeper reflectors (:::: 9 to 15 km depth) seen on the northeastern 

end of this profile. 

Probably the most distinguishing feature of the lower crust imaged on line 90, and 

indeed on the other two SW-NE profiles, is the very notable contrast in reflectivity below 

the basin and immediately west of the Kalahari Line (indicated by strong, positive 

magnetic response and labelled "KL" at the NE end of the magnetic profile of Figure 4.3). 

At this location the reflectivity is stronger and more ubiquitous through the middle and 

lower crust as evidenced by the presence of the K reflectors. Indeed, the moderate to 

steep dips of this reflective sequence as well as the presence of a deeper series of 

reflectors (:::: 24 km), labelled "F" on Figure 4.3, may be indicative of a crustal shear zone 

at or just below the F event. A complementary dipping event, labelled "M", may represent 
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an interrelated shear zone at the base of the crust ( = 33 to 36 km) although its lateral 

extent is very much limited. A more convincing demonstration of the M event is indicated 

by the unmigrated section for line 90 presented in Figure 3.9. The fom1 of these two 

events, along with the thickening of the basin to the southwest, suggests that the crustal 

basement lying below a majority of the Nosop Basin may he extended or strctch~:d 

Kaapvaal craton which is known to exist east of the Kalahari Line. 

The lower crustal events C and D are not as easily recognizable as on other lines. 

The two sets of deeper reflectors visible between stations 2368 and 3061 at depths of 21 

and 24-30 kilometres respectively are tentatively identified with C and D ewnts. Certainly 

below the middle portion of the basin on this profile there is little or no change in the 

reflectivity through the middle and lower crust. 

4.2.2 Line 92 

Line 92 (Figure 4.4) shows uniform layering in the sedimentary section, hroadly 

defined by the interval of 0 to I 5 km, for most of its length. However, similar to line 90, 

some structure is present within the sedimentary section which seems to be off.'>ct between 

stations 3170 and 3368. On approach to the Kalahari Line the reflectors rise up section 

and rapid thinning of the sedimentary section occurs over a few tl.!ns of kilometres and 

appears to be equally distributed among the recognizable units. Onlap of the reflectors 

towards the Kalahari Line is observed, as is some complexity of structure, and, concurring 

with Hallet al. (1990}, there appears to be no obvious angular unconformity present to 
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indicate a pulse of deformation rather than a continuous subsidence of the basin. 

As with line 90, the clearest deeper crustal feature is the apparent contrast between 

the reflectivity seen below the main basin and that at the northeastern edge of the profile 

in the vicinity of the Kalahari Line. The middle and lower crustal sections show a 

stronger and more pervasive reflectivity at this edge as again indicated by the presence 

of the K reflective sequence. Also. comparable to line 90, the moderate to steep dips 

imaged at this end of the line along with another reflective zone lying just below the level 

of the K reflectors, similarly labelled "F", may be evidence that a crustal shear zone exists 

at or below the F event. However, it should be noted that the F event on line 92 is much 

shallower ( 12 - 15 km vs. 24 km) than on line 90 and, as such, correlating these two 

events as one should be considered tentative. There is no clear indication of the existence 

of a complementary shear zone M at or near the base of the crust as with line 90. 

However, there are two solitary reflectors situated between stations I 091 and 1289 at the 

very base of the profile (i.e. 45 km) that might be an expression of this possible deep 

shear zone but it could also be a migration artifact. The presence of the M event is 

probably better corroborated by examining the unmigrated section of line 92 presented 

in Figure 3.15. 

Another interesting feature of this deep seismic reflection profile is the series of 

reflectors located below the B reflector (12 - 15 km) near the intersection with line 91 

between stations 794 and 1487. This reflective package corresponds well with the Bl 

package of line 91 and, as such, has been labelled the same. These reflectors appear to 
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be confonnable with the overlying sub-8 ret1ectors but it should be noted that. because 

of the orientation of line 92. it may represent a near-strike line to the B I package imaged 

on line 91. In this case no noticeable dips would be observed in the B I pm:kage of line 

92 and an angular relationship of it with the higher B reflector would not he llhserwd. 

Unlike line 90, reflectors C and D are not at all discernible on this profile and it 

would seem that the reflectivity below a majority of the main basin is quite homogeneous 

and weak with no noticeable change in pattern throughout the mid to lower crust. 

4.2.3 Une 94 

Line 94 (Figure 4.5) shows all the features of both lines 90 and 92, but they arc much 

more apparent on this profile. However. unlike on the other two protiles. the mid to lower 

crust beneath the basin away from the Kalahari Line is much more reflective and displays 

considerable structure. There is obvious thinning of the sedimentary section towards the 

Kalahari Line and, as with the lines 90 and 92, the presence of the gentle to moderate 

dipping reflective package, again labelled "K", may indicate the prescm.:e of a broad 

crustal shear zone. However, the picking of event "F", which was done with the other two 

SW-NE profiles and would mark the approximate location of the shear zone, is difficult. 

This is because there is no clear indication of a distinct reflective package lying below 

the K reflectors at a lower crustal level as is evident on lines 90 and 92. Thus the F event 

was picked to lie at the base of the K reflective package on this profile. 

Along with the presence of the K reflectors, there is other strong evidence f(>r the 
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Figure 4.5 

c w 
iS ffi 
... % 

-tc 1400 - 1300 
fn 1200 0 

; 1100 Q) 
£: 1000 
CJ) 

900 ra 
:2 800 

99 

sw l 
2s2124n 2378 2279 2180 2081 1982 1883 1784 

15.0 

-E 
~ -.r:::. -c. 
G) 
0 

30.0 

45.0~~;,.,;.,;,~;mm~~~~~~~~~;;;;r,;;m;,~~~~~~~ 

Interpreted version of the depth migration for Line 94. 

lnterpretlllioltll 03 



w 
ffi 
:X: 

c u. 
5 ffi 
... :X: 

---- .... --- -----·-------
93 

l 

c uJ 

lS ffi ... :z: 



-90 G) 
-100 .., 

I» 
-110 < ;::::;: 
-120 '< I -

------ --- ---- --- ... -130 3 
-140 (Q 

I» I 
-150 -93 

l NE 

-A' 
3 -

c w 
1;l ffi 



existence of a shear or fault zone at the NE end of line 94. A reflective package. lahdh:d 

"R", which lies above the K package. dips in the opposing direction and appeilrs to he 

terminated by it. The SW dipping K and F events, along with shape of the compkmentary 

dipping R reflectors. are suggestive of a large scale listric f~lUit with devdopment of a 

rollover against the margin of the craton to the east. This structure along with the 

complementary dipping event M, which is clearest on this proiile. suggests that it was 

formed by extension of the crustal basement in the east by movement along this shear 

zone. This implies that the R retlector and its lateral correlatives are part of a 

sedimentary/volcanic sequence and that the C event may mark the top of crystalline 

basement. 

The C reflective package is very well defined on this profile and it exhibits siguificant 

structure along its length. Lying at a depth of IS to 21 km. its southwestern end is 

dominated by a thick (:::: 7 km) and extremely coherent series of SW dipping reflectors 

between stations 1388 and 1883. These reflectors have been labelled "C I" to indicate they 

may be a subset of the C package although the "stratigraphic" relationship between these 

two packages is unclear. The underlying D package on this profile is quite striking as its 

uppermost reflector, which marks the lower crustal layering, can be trm:ed fi1r 

approximately 70 km (stations I 091 - 2521) from the SW end to the middle part of the 

profile. 
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4.2.4 Une 93 

Line 93 (Figure 4.6) along with line 99 are two of the profiles which span the Nosop 

Basin in a NNW-SSE direction and essentially run parallel to one another. On the 

northwest end of these lines, buried structures associated with the Ghanzi - Chobe fold 

helt are imaged, most clearly and dominantly on line 93 as the NNW tennination of this 

profile is much closer to the surface exposures of the Ghanzi Group. The association of 

these buried told and thrust structures imaged on line 93 with those exposed in the 

Ghanzi - Chobe told belt itself is supported by their similar SE structural polarities. In 

fact, the start of line 93 falls within one of Litherland's ( 1982) study areas and is less than 

I 0 km from outcrop of the Ghanzi Group rocks which he described and as outlined in 

Chapter 2. 

The phase-shift migration has done a reasonably good job in resolving the true fonn 

of the major folds and possible related thrust faults that are a part of the Ghanzi-Chobe 

t()ld belt. The scale of these folds is indeed huge with wavelengths on the order of 25 km 

and structural relief of approximately 6 km. The folds appear to be detached on thrust 

faults, labelled "Fl" to "F3" on Figure 4.6. 

Evidence tor the existence of these faults is provided by the antifonnal feature, 

labelled "G I", whose internal reflectors are abruptly tenninated by an interpreted fault, 

labelled "FI ",between stations 681 and 780. Also, the sudden change in dips at the base 

of the reflective zone labelled "G2" is further evidence of faulting. Here NNW dips of 15° 

- 20° change to horizontal to subhorizontal over a very short depth interval (::; I km) 
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across the "F2" boundary. The G2 reflectors could represent a broad shear zone that is 

soled by event F2 which resulted from thrust movement during the orogenesis that formed 

the Ghanzi-Chobe fold belt. Alternatively, the reflectors comprising the G2 zone might 

represent the bedding of :.~n older sedimentary package which was either originally laid 

down on an inclined surface or were tilted in an earlier orogenic event. The overlying B 

reflector would then represent an angular unconformity and the F2 event at the base of 

G2 might be a thrust that was activated along the original depositional surface. F2 and 

F3 may be the deepest thrusts of the Ghanzi-Chobe fold-thrust system, with blind 

termination within the A2-B sequence. However, there are similarly dipping reflection 

segments just below F3 which may be cogenetic and thus represent the furthest SW extent 

of the belt. 

Within the sedimentary section the B reflector is offset by one of the previously 

discussed faults labdled F3 between stations 1572 and 1770. The identification of 

reflectors above the fold and thrust structure is difficult as their continuity is quite limited 

and the overall appearance of the sedimentary section on this part of the line is somewhat 

chaotic. The interval A2 to B appears to thicken over the G2 reflective package between 

stations 879 to 1473 and suggests that this was an original thickness variation ofthe A2-B 

interval itself. Hall et a!. ( 1990) point out that since the A2-B sequence is affected by the 

told and thrust belt, the age of this interval, at least in part, is pre-thrusting. Also, the fact 

that the A2-B interval thickens towards the fold belt indicates modest foreland basin 

development in front of a growing fold belt. Thus the A2-B stratigraphic interval overlaps 
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with the development of the Ghanzi-Chobe fold belt. 

Another noticeable feature is the presence of a series of southeast dipping reflectors 

located between stations 3156 and 3651 at the SSE end of the profile lying just below the 

B reflector. These dipping reflectors. labelled "81 ".may represent an older Sl'dimentary 

package, like the G2 package. which has an angular relationship with the overlying B 

reflector. "B" would then represent an angular unconformity. It is important to noh: that 

the SSE end of this profile is intersected by line 91 and it might he possible that the B 1 

reflectors of line 93 are related to, or part of. the same structure that is in<.!!~·ah:d hy the 

Bl reflective package on line 91. 

Event C is easily recognizable and can be traced over most of the profile beneath the 

undisturbed portion of the basin. However, beneath the zone ncar the start of the fi.,ld belt 

deformation(:::: station 1473), it ends abruptly. The exact reason fiJr this is not dear hut 

since the deeper events (i.e. event D) associated with the lower nust do continue un<.h:r 

the fold belt, there is no reason to believe that the abrupt change in the rcfkctivity of 

event C is due to defocussing caused by the told belt itself: The internal reflectors below 

event C show considerable structure in places. Between stations I X6<J and 2265, these 

reflectors take on a synformal appearance. Event D is visible beneath the f(,ld belt 

structures between stations 681 and 1671 . Although it is not completely continuous over 

this interval, the reflectors that make up its various pieces arc strong and show good 

coherency over their respective lengths. Although it lies at the same crustal level as the 

depth extensions of faults F I and F2, it is hard to say whether event D has been involved 
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in the dcf{mnation of the told belt structures which lie above it. 

4.2.5 Une 99 

This profile (figure 4.7) displays many of the same features as line 93 but since it 

does not extend as far north as its parallel counterpart. the major structures related to the 

Ghanzi-Chohe fold bdt are not imaged to the same extent. However, there is evidence 

of thrusting ncar the intersection with line 94 (stations 626 - 725) marked by interpreted 

fault "F3" to indicate possibly the same fault as labelled on line 93. Above this proposed 

thrust and within the basin itself~ thickening of sedimentary units (A I to B) is clearly 

seen. Also present is a thick ( = 6 km) reflective package, again labelled "G2", which dips 

to the NNW and may represent the continuance of the G2 package imaged on line 93 to 

the southeast. 

The mid-crustal reflective package C is observable on this profile but certainly not as 

clearly as it is imaged on line 93. The D event of the lower crust appears to be reasonably 

dc1ined displaying good continuity and, like the mid to lower crustal refl-::ctors of the 

other profiles. possesses substantial structure over most of the profile. To illustrate tl.is, 

a series of NNW dipping reflectors is clearly visible between stations 1220 and I 616. In 

contrast, the SSE end (stations 2012 - 2507) consists of a series of opposing, SSE dipping 

reflectors. Also at its NNW end between stations 428 and 928, the D reflector appears to 

gradually rise up section approaching the same crustal level as the F3 fault which marks 

the base of the G2 package. Again it is difficult to state whether this portion of event D 
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Figure 4.7 
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could be involved in the thrusting associated with the defonnation of the fold belt that is 

so clearly imaged on line 93. 

4.2.6 Line 91 

Line 9 I (Figure 4.8) is orientated in a N-S direction and ties with lines 90, 92 and 93. 

It parallels the Kalahari Line and thus could be considered a "strike" line; indeed the 

thickness of the sedimentary section is remarkably unifonn (I 0 - II km) over the entire 

profile. 

The most noticeable feature of line 91 is the presence of a series of north dipping 

reflectors located between stations 596 and 992 at a depth of II to 15 km just below 

event B. These dipping reflectors, labelled "Bl ", may represent a deeper (and probably 

older) sedimentary package and the angular relationship between them and overlying 

reflector B may represent an angular unconfonnity. Augmenting the Bl reflectors is 

another sequence of reflectors, labelled "B2". Although this reflective package is sparsely 

observed between stations 893 to 1289 and is a good deal thinner than B I, it does have 

gr~:atcr lateral extent and possesses shallower north dips than the B I reflective package. 

The mid to lower crustal reflectors C and D can also be patchily observed on profile 

91. It is interesting to note that reflector C, like events B 1 and B2, also displays a 

northward dip along most of its length. However, reflector D for the most part seems to 

be flat-lying for most of its length and, in fact, exhibits an opposite, shallow, southward 

dip near its northern end (stations 398 to 794). Situated at a depth of about 30 km below 
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event 0 between stations 794 to 1685 is another reflective feature labelled M which, like 

line 90, may represent the base of the crust. Like events Bl, B2 and C which occupy 

higher crustal l<!vels, the M event also displays a noticeable northward dip. 

4.2. 7 Line 97 

Line 97 (Figure 4.9), like line 91, is also orientated in a N-S direction and ties with 

lines 90 and 92. Being the shortest of all seven profiles ( = 16 km) and located farther 

west than line 91, this other "strike" line shows a somewhat thicker and uniform basin fill 

of approximately 15 km across its length. Other than the A and B reflectors labelled on 

this profile, this line shows little else with respect to increased reflectivity in the mid to 

lower crust giving it an appearance similar to line 92. 

4.3 Potential Field Data 

The gravity and aeromagnetic field data for the Nosop Basin are displayed in Figures 

4.10 and 4.11 respectively (rear pocket). As with the seismic data, the right to use these 

potential field data was obtained from the Government of Botswana by Memorial 

University's Centre for Earth Resources Research. 

The gravity data set provided was originally collected by Compagnie Generate de 

Geophysique (CGG) for the Government of Botswana as a component of the 1987-88 

reconnaissance reflection seismic programme. As with the seismic programme, gravity 

was collected in the Nosop Basin in the southwest as well as the Passarge Basin farther 
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Figure 4.9 
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to the northeast. These data w~re collected on a regularly spaced grid with a station 

spacing of approximately 3 km along profile lines and an average spacing between 

adjacent profile lines of approximately 22.5 km. A majority of the grid lines were 

orientated in a NW-SE direction with their lengths spanning much of the Nosop Basin 

within the international borders of Botswana's western region as is evident from Figure 

4.10. 

The gravity data displayed in Figure 4.10 is the Bouguer anomaly map based on a 

correction t:fensity of 2.67 gm/cm3
• These data crrived at Memoriai University in a line-

oriented, ASCll fonnat and, a'> such, some processing was required in order !o produce 

the map presented in Figure 4.1 0. This was accomplished through the use of GEOSOFTw, 

a commercially available, microcomputer-basl;d software package that allows the 

processing and mapping of various types of geophysical data. The primary aim of the 

processing was to transform the gravity data from a line-oriented, ASCII format to a grid-

oriented, binary format which can then be easily displayed in map form. The griddcd, 

binary data consists of cells, usually square in shape, of fixed size with each comer of a 

cell containing a data value. 

A bi-directional method of gridding (GEOSOFT®ts BIGRlD program) was utilized to 

grid the gravity data set. The method is designed to interpolate roughly paralic: line-based 

data and uses linear, minimum curvature or Akima splines to interpolate grid nodes 

between lines in the direction of the overall trend of the data (Geosoft Inc., 1995). The 

bi-directional gridding process consists of two principal steps. Each original survey line 
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is first interpolated along its length to yield data values at the intersection of it with the 

required grid lin~. The intersection data values from each grid line arc then inh:rpo!atcd 

along the length of the grid line to produce values at each required grid point. This 

second interpolation process creates grid lines which arc essentially a series of numhcrs 

that represent all the values along the various rows in the grid. In the case of the Nosop 

Basin gravity data set, a 1.2 x 1.2 km cell size was chosen for gridding purposes and a 

minimum curvature spline was employed for the grid interpolation. 

Once thf" data had been gridded, they were smoothed via 3 pa<;scs of a 9-point 

Hanning filter prior to display (GEOSOFI'~"s GRIDHANN program). The Hanning liltcr 

used a 3x3 point kernel filter defined by the following coefficients: 

0.06 

0.10 

0.06 

0.10 

0.36 

0.10 

0.06 

0.10 

0.06 

This smoothing was performed in order to improve the cosmetic appearance of the colour 

contours presented in Figure 4.1 0. 

The total intensity aeromagnetic data presented in Figure 4.11 (a) is a subset of the 

1975-77 National Reconnaissance Aeromagnetic Survey of Botswana. Unlike the gravity 

data, this data set was already in a gridded, binary format and consisted of a total of 12 

grid files covering the entire country. Two of these grid files cover much of the western 

half of the country including the Nosop Basin were merged using GEOSOFJ'p,,s 

GRIDBOOL program to produce a single grid of the area of interest. This program 
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applies Boolean functions between two input grids to produce a combined output grid 

based on the presence or absence of a dummy or null value at a grid point (Geosoft Inc., 

I 995 ). In the case of the two western Botswana grids, the resultant output grid contai:1s 

data values from botlJ grids where either of the two input grids are valid (i.e. non-dummy) 

and the area of overlap was averaged between the valid data values of the two grids. 

This larger, combined grid was then re-gridded, again using BIGRID, in order to 

resample from the original cell size of 0.6 x 0.6 km to the 1.2 x 1.2 km cell size output 

f(.>r the gravity data. When re-gridding grids, BIGRID treats each grid line as an XYZ 

survey I ine and performs the same interpolation procedures as were previously discussed 

(Geosoft Inc., 1995). In order to produce a finai grid with the same geographic shape and 

size as the gravity data set, a multiplier of +I was applied to this ;1bined and 

resampled aeromagnetic grid and then added to the gravity grid which had a multiplier 

of 0 applied. This was accomplished through the use of the GRIDADD program which 

simply adds two grids together, grid point by grid point, with multiplier factors applied 

to each grid before the addition. As with the gravity data, the final aeromagnetic grid 

values were smoothed via three (3) passes of the 9-point Hanning filter prior to display. 

In order to facilitate a more rigorous treatment of the aeromagnetic data with respect 

to its correlation to the deep seismic data, it was necessary to reduce these data to the 

magnetic pole. This filtering process essentially centres the peaks of the magnetic 

anomalies over their sources making the data easier to interpret while not losing any 

geophysical meaning (Geosoft Inc., 1995). Reduction to the magnetic pole was 
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accomplished using GEOSOFT~··s 2-D FFT (fast fourier transforn1) proc~ssing system 

MAGMAP. 

For the sake of mathematical convenience and speed. MAGMAP applies tilt~:rs in the 

wavenumber or Fourier domain. To do this requires a number of st~:ps. each th~ 

responsibility of a separate progran1 in the MAGMAP system. Pre-processing steps 

involve the preparation of the original space domain grid for filtering and its transf(mn 

to the wavenumber domain. The filter application step applies the desir~:d filtcr(s) to the 

wavenumber grid. Post-processing steps involves returning (inverse fast f(luricr transf(mn. 

IFFT) the filtered wavenumber data to the same size and shape as the original spm:c 

domain grid. 

MAGMAP's reduce to the magnetic pole filter, REDP, was applied to the 1111smoothed 

total intensity aeromagnetic data for western Botswana as described above. This filter. 

expressed in the wavenumber domain, has the form: 

L(6) = l , if (Ia < /), Ia I 
[sin(/a) - icos(/)-cos(D + 6)f 

where I is the geomagnetic inclination, !,, is the inclination for amplitude correction (never 

Jess than/) and D is the geomagnetic declination. For the western Botswana dataset, I = 

fu = -60° and D = 345°. These reduced to the pole data were also smoothed via three (3) 

passes of the 9-point Hanning filter prior to display and are presented in Figure 4.11 (b). 
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4.3.1 Correlations with Deep Seismic Data 

As is evident from Figures 4.10 and 4.11 (b), both the gravity and aeromagnetic data 

show a series of wide, SW-NE trending anomalies west of the Kalahari Line. These 

anomalies have wavelengths ou the order of 50 km or more and have been appropriately 

labelled f(>r further discussion. Complementing these map data, the gravity (dashed line) 

and aeromagnetic (solid line; reduced to the pole) profiles along each of the deep seismic 

reflection lines are also displayed in Figures 4.3 to 4.9 at the top of the presented 

sections. The gravity and aeromagnetic profiles along each of the seismic lines were 

extracted from their respective grids using GEOSOFT19's GRIDPROF program. The 

possible correlation of the major gravity and magnetic anomalies of the Nosop Basin with 

the various reflectors described from the deep seismic profiles are now discussed in a 

qualitative manner on anomaly by anomaly basis. The focus of this discussion will be 

directed towards the nature of the crustal material which may constitute the reflective 

zones. 

4.3.1.1 Anomalies -GAl and -MAl 

The negative1 gravity anomaly -GAl and negative aeromagnetic anomaly -MAl both 

coincide with the intersection of reflection profiles 93 and 94. Although these anomalies 

have a large areal extent, their peak intensities occur approximately between stations 1473 

- 2285 and stations 695 - 1487 on lines 93 and 94 respectively. Referring to Figures 4.6 

·nu: h:nn "ncgati\'c" is us•-d hen: in a n:lative fashion as all the gravity data lies in the negati\'e mgal range. 
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and 4.5 which display reflection profiles 93 and 94. there appears to he no stru~.~tural n:licf 

within the basin itself v.•hich might account fi.)r these anomalies. It would seem then that 

the source responsible for these anomalies would be situated at the sub-basin kn:l. 

A plausible choice for this deeper source is the mid-crustal C reflc:ctor. The late .. .o~l 

extent of this event(s). indicated by the thickened lengths on these two rdlcctilm protih:s 

of Figures 4.10 and 4.11 (b). shows good correspondence with the gravity and 

aeromagnetic anomalies. Thus if the C reflective package is the causative hlldy l(lr these 

potential field anomalies, then it is likely that. at least in this po11ion of the husin, it is 

composed of deeper and older, probably Proterozoic sediments. This idea would ulsu he 

supported by the considerable structure exhibited by the internal rc1lectors of the mid­

crustal C reflective package indicating further sedimentary layering beneath the basin. 

4.3.1.2 Makgadikgadi Line (M-M~ and Anomalies +MA3 -MA2 

The expression of the Makgadikgadi Line is clearly visible on the aeromagnetic data 

of Figure 4.ll(b) and is indicated by the thick solid line labelled M-M'. Defined by the 

sharp gradient separating the +MA3 and -MA2 anomalies, this magnetic lint:amcnt bisects 

the Nosop Basin in a SW-NE direction. The +MA3 aeromagnetic anomaly, which ulso 

follows the dominant SW-NE regional aeromagnetic trend, consists of two strong peaks 

at its SW and NE ends separated by an intervening saddle. 

The Makgadikgadi Line and the +MA3 anomaly are the same features which Reeves 

(1978) and Hutchins and Reeves (1980) interpreted as a possible structural high which 
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separated two distinct basins, the Nosop and Ncojane. However, its is clear from the 

observation of the deep seismic data for lines 93 and 99 presented in Figures 4.6 and 4. 7, 

there is no evidence for the existence of this structural high. There is only one basin of 

a fairly uniform depth and this observation was originally made by Hall eta!. ( 1990) and 

Wright and Hall ( 1990). 

It would appear then, that the aeromagnetic anomaly patterns may be due to lateral 

magnctisation contrasts at the mid to lower crustal level. Again referring to the deep 

seismic data for lines 93 and 99 (see Figures 4.6 and 4.7), line 93 crosses the easterly 

tlank of the NE peak of the +MA3 anomaly between stations 3354 - 3651 while line 99 

crosses the same NE peak between stations 2111 - 2804. These locations on profiles 93 

and 99 coincide with both the termination of mid-crustal C reflector(s) and the southerly 

dipping B I reflective packages indicated on these two profiles. In addition, line 99 at this 

location also shows the onset of southerly dips of the D reflector(s) and its subsequent 

tennination and, farther to the SSE, the B reflector exhibits a significant downwarp ( ~ I 

km) at station 2705. The termination of the C and D reflectors, the onset of southerly dips 

and the downwarp of the B reflector are all suggestive of crustal scale normal faulting 

which may have produced a mid to lower crustal "edge". Thus the Makgadikgadi Line, 

which marks the sharp change between the +MA3 anomaly and its -MA2 complement, 

may represent the magnetic response to this crustal "edge" or discontinuity. 

To test this "edge effect" hypothesis, a least squares inversion was performed using 

the total tield aeromagnetic data extracted along a portion of line 93 (again using 
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GEOSOFI·)\ •s GRIDPROF program) and heyond tollowing the strike direction \)f this 

seismic profile. This inversion was accomplislu:d using th~: United Statl!s Geological 

Survey's (USGS) potential field modelling sothvare package SAKI and the results me 

presented in Figure 4. 12. A simple prism was used as a starting modd with lah:ral extents 

(expressed in terms of profile distance) of 5 to 120 km, depth extents of:!O to ~0 km and 

a magnetic susceptibility contrast of = 1.2 x I o-~ cgs units. During the inversion process. 

the vertices defining the causative body (in terms of profile distance and depth) were 

allowed to vary repeatedly while the magnetization direction remained fixed (i .e. 

considered induced magnetisation only) until a least squares solution was ohtained. 

As is evident from Figure 4.12, the depth extents("' 15- 15 km) of the causative 

body generated from the inversion of the total field aeromagnetic data wrrcsp!mds vcry 

well with the mid-crustal C reflective package of line 93. More importantly. however. is 

that the southern edge of this body matches well with the tem1ination of the C reflect ive 

package. Thus the results from the modelling and inversion of the a~:romagnctic data 

would appear to support the existence of a mid-crustal "edge" or discontinuity within this 

region of the Nosop Basin. 

As is apparent from Figure 4.Jl(b), line 92 tracks just north of the trough of the­

MA2 anomaly which, like its +MA3 complement, consists of two strong negative peaks 

at its SW and NE ends separated by an intervening saddle. Also of note, the +GA2 

anomaly of Figure 4.10 appears to be coincident with the Makgadikgadi Line und 

separates the more negative anomalies (-127 to -148 mgal) in the NNW portion of the 
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extracted along a portion of reflection seismic Line 93. 
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basin from the less negative anomalies ( -95 to -1.25 mgal) in the SSE. The port inn nf 

seismic profiles 9.2 and 99 which encompass the -MA2 and +GA::! imomalies (statil1ns 

2180 - 2972 and stations 2804 - 310 I on 92 and 99 respectively) show little or no 

pronounced reflectivity in the mid to lower crust. This lack of rdlcctivity may knJ 

further support to the existence of the mid-crustal structural discontinuity that was 

introduced in the previous section. 

The mid to lower crustal C and D reflective packages so clearly imaged on lines 9~. 

94 and 99 terminate abruptly at the Makgadikgadi Line (and the +GA2 anomaly) and 

farther to the south, reflectivity in the mid to lower crust. as indicated t·.y line lJ2 (Figun: 

4.4) is generally lacking. Thus the normal faulting which prodw.:ed this proposed 

structural discontinuity may have juxtaposed crustal material of notably diftcrcnt reflective 

character in this region of the Nosop Basin. Although not sp1xifically moddlcd, the 

+GA2 anomaly may also represent the gravity response to this crustal edge. 

The NE peak of the -MA2 anomaly coincides with the interst:ction of scismil: profiles 

91 and 92. This peak is somewhat more negative and has a broader extent than its than 

its SW complement and shows reasonable correlation with the B I package on both lines 

91 and 92 (Figures 4.8 and 4.4 ). The lateral extent of the B I reflectors is indicated by the 

thickened lengths on these two reflection profiles of Figures 4.10 and 4. 11 (b). Th:.: 

internal reflectors of the B 1 reflective package of line 91, as previously stated, show 

considerable dips to the N and exhibit a layered character and would again suggest a 

possible sedimentary origin for the B I package. 
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In addition to this, the Bl reflectors of line 93 (stations 3354 - 3552; Figure 4.6) 

possess opposing southerly dips to the Bl package of line 91. These opposing dips may 

also give support to the existence of crustal scale normal faulting on the extreme SSE 

ends of Jines 93 and 99. To illustrate this, Figure 4.13 presents a composite of the 

interpreted depth migrations for Jines 93 and 9 J joined at their respective cross-overs. As 

is evident from Figure 4.13, the structural style exhibited by the B I reflectors of lines 91 

and 93 is very reminiscent of a large graben. Thus the intervening area between and 

below these dipping reflectors may be a down faulted crustal block with the B I reflectors 

themselves representing sediment infill into this wide depression. 

In summary, the causes of the gravity and magnetic anomalies of the Nosop Basin, 

west of the Kalahari Line, are most likely attributed to deep sources located beneath the 

B reflector. The correlation of the deep seismic information with the potential field data 

re-continned that there are not two distinct basins separated by a basement high but rather 

one broad basin of fairly uniform depth which is referred to as the Nosop Basin. The B I 

and C reflectors, because of their considerable internal structure as indicated by the 

seismics, are interpreted as sedimentary or volcano-sedimentary packages. The 

Makgadikgadi Line, as defined by the sharp gradient between the +MA3 and -MA2 

anomalies, is interpreted as the magnetic response to a mid-crustal "edge" or discontinuity 

fonned by crustal scale normal faulting. This idea is supported by modelling and 

inversion of the aeromagnetic data as well as the reflection seismic data itself. 
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4.4 Discussion 

With the seismic reflection profiles adequately described and some of the more 

prominent reflecting events suitably correlated with the potential field anomalies, it is 

important to review as to what this information can reveal about the geologic and tectonic 

history of this area. To do this, the Kalahari Line, the Nosop Basin and the Ghanzi-Chobe 

fi.lld belt are now discussed individually in light of the seismic data as well as other 

geophysical and geological information as a means of providing an understanding about 

the role these three major tectonic elements may have played in the geological evolution 

of western Botswana. 

4.4.1 The Kalahari Line 

As has been stated, the Kalahari Line is a major tectonic element of western 

Botswana. This feature has great lateral extent ("" 600 km) and is defined geophysically 

by strong, positive magnetic and gravity anomalies along its length. Drilling has shown 

these to be caused by shallow (:5: I km} mafic bodies such as basalts, gabbros and 

dolerites. Some of the mafic bodies responsible for producing these strong potential field 

anomalies have been described in Chapter 2, and the location of the boreholes CKP-8C-l 

and CKP-8A which penetrated these causative rocks are shown on both Figures 4. ! 0 <lnd 

4.11. 

A core sample of the Tshane Complex gabbro recovered from borehole CKP-8C-l 

was obtained by Memorial University and homblendes extracted from this sample have 
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Table 4.1 40Ar- 39Ar release data for hornblende extracted from Tshanc Complex gahhro 
recovered from borehole CKP-8C-l, western Botswana. 

Temp ~0Ar 37Ar .\bAr Moles ·"Ar 0/o~11Ar A~t· 
oc ·'9Ar 3"Ar 3"Ar 

3":\r %Total Had 
IVCa (!\Ill) 

(lo·'!l 

720 95. 13 3.412 0.0970 127.1': 13.0 70.2 0. 14~ hh1'.') I 

h.O 

870 113.4R 10.477 0.0407 247.6 15.1 90.:! 0.04(1 1)4~,4 I 

s.x 

980 117.12 12.792 0.0279 :!36.R 24.1 93.9 0.03X IOO~.IJ l 

1).2 

1020 123.35 16.157 0.0189 S6.5 R.S 9h.h 0.030 1 ()(,I). 1 I 

9.2 

1060 121.80 17.080 0.0146 98.5 10.0 97.7 0.028 1 Oh1'.3 I 

14.9 

1080 122.45 17.469 0.0160 65.2 6.(1 'J7.4 (1.028 1 070.:! I 

9 .I 

1130 123.81 18.069 0.0190 57.2 5.8 96.7 0.027 1074.2 .I 

8.5 

1170 125.06 18.616 0.0241 34.6 3.5 95.(· 0.026 107:'1 .2 I 

R.X 

1210 129.09 18.393 0.0366 18.6 1.9 92.9 0.026 1075.2 + 
13.1 

FUSE 133.44 16.723 0.0810 9.3 0.9 83.2 0.029 1013.0 .I 

19.9 

TOTAL GAS AGE 982.1 100.0 970.') 1 

') .4 

PLATEAU AGE 1071.7 ± 11.1 

been radiometrically dated by Dr. Daniel Lux of the University of Maine at Orono using 

the 40 Ar- 39 Ar technique. The results of his analysis are shown in Table 4.1. Although the 

data are somewhat discordant, the large jumps in the young ages occurring in the early 
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tcmpl:rature increments are associated with a release phase that has a relatively high K/Ca 

ratio. This is most likely attributed to a biotite impurity that was not removed during the 

mint.!ml separation procedure (Lux, pers. comm.). Increments 1 020°C through 121 0°C 

have consistl!nt ages and consistent K/Ca ratios that are reasonable for hornblende. These 

im:n.:mcnts were used to calculate the plateau age, I 071.0 ± 1 I .1 Ma, and is probably 

most representative of the time the gabbro cooled through the closure temperature for 

homhlcndc, about 500°C. Although this represents only a single date, the I ,07 1. 7 ± I 1.1 

Ma plateau age tor this gabbro is significant if one considers the position of the Kalahari 

craton with respect to Laurentia in Hoffman's ( 1991) proposed late Proterozoic 

supercontinent of Figure 2.4 presented in Chapter 2. 

The continental area encompassing the present day Great Lakes (located on the south 

central portion of Laurentia, the "proto" North American craton) displays some of the 

largest potential tield anomalies in the interior of the North American continent. These 

anomalies arc associated with the Mid-continent rift system (MRS) which extends along 

a 2300 km arc northeastward from central Kansas through Lake Superior and southward 

through Michigan, perhaps into Ohio (Green, 1983). This continental rift system is 1,110 

to 1,090 Ma in age (Keweenawan) and marine seismic reflection data from Lake Superior 

reveal an extraordinary thickness of mafic lavas and sedimentary rocks deposited in a 

number of discrete mega-grabens/half-grabens (Green et a!., 1989). Total vertical 

thickness of layered Keweenawan strata exceeds 30 krn beneath some parts of Lake 

Superior which may make it the thickest section of continental rift deposits on the planet 
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(Behrendt et a/., 1988). Although this rift was abortive. it n:presents a major and 

widespread period of Keweenawan continental extension and subsidence which was 

accompanied by extrusion of voluminous flood bao;;alts. d~:position of minor intertlow 

sediments and intrusion of major igneous bodies including the huge Duluth layered 

complex (Green et a!.. 1989). Given its position near the south central margin of' the 

proto-Laurentia continent, it is postulated that Mid-continent rift system (MRS) represents 

a preserved portion of a precursory I, II 0- I ,090 Ma widespread continental rifiing event 

that may have affected some of the constituent cratons (i.e. Kalahari and Congo cratons) 

of Hoffman's ( 1991) proposed supercontinent which bordered Laun.:ntia to the west. 

Although the breakout of Laurentia probably did not occur until 550 - 500 Ma. this 

proposed Middle Proterozoic rifting event may represent a gross crustal re-organization 

of the constituent cratons comprising the late Proterozoic supercontinent prior to the 

breakout of Laurentia. Thus the I ,071 Ma mafic volcanism associated with the Kalahari 

Line of western Botswana may be the manifestation of the same rifting event preserved 

on the Kalahari craton. 

Estimates of the thickness of igneous rocks present along the Kalahari Line can he 

obtained by examining the results of forward modelling of the aeromagnetic datu (Zhou, 

1988). In order to define the subsurface geometry of the causative bodies, he 

quantitatively modelled a total of 46 magnetic profiles whic:h cross the Kalahuri Line 

spaced along its entirety from about latitude 23° 30'S to 26° 30'S. Results from the 

forward modelling of these profiles show that the bodies giving rise to the large positive 
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magnetic anomalies have a wide variety of geometric shapes and magnetic susceptibilities. 

Along the southern part of the Kalahari Line between latitudes 25° OO'S and 26° 16'S, the 

bodies arc generally dipping at very low angles to the west. Moving north of latitude 25°S 

the bodies arc much steeper. The widths of these bodies vary from I 0 to 40 kilometres 

with depths-to-top ranging from I to 6 kilometres. More importantly, the thicknesses of 

these bodies vary from 6 to 27 kilometres. Jt seems evident from the magnetic modelling 

of the Kalahari Line that the causative bodies producing this feature have considerable 

depth extent. This represents a significant addition of mafic material to the crust by either 

extrusive or intrusive igneous activity associated with a continental rifting event of the 

same scale as that of the Mid-continent rift system. 

The presence of major thicknesses of mafic volcanics along the Kalahari Line, and 

possibly in the Nosop Basin itself, may also be supported by the deep seismic reflection 

data. Referring to Figure 4.3, the interpreted section for line 90 which crosses the 

Kalahari Line in a sub-perpendicular orientation, the chaotic nature of the reflectivity seen 

beneath borehole CKP-8C-l on the northeastern end of this profile may be an expression 

of the emplacement of mafic material to mid and upper crustal levels. Also the mid to 

lower crustal "K" and "F" reflectors of lines 94, 92 and 90 (Figures 4.5, 4.4, and 4.3 

respectively) exhibit a layered character nearer the Kalahari Line and, indeed, within the 

central portion of the basin itself, which may indicate the presence of interbedded mafic 

lavas and sediments and/or mafic sills which may have been sourced from the Kalahari 

Line. 
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In addition to the drilling results. potential field modelling and the pattern of 

reflectivity, another seismic indicator which provides more evidence of a late middle 

Proterozoic rifting event affecting the south African sub-continent is the presence of 

crustal-scale extensional faults. Again referring to lines 90, 92 and 94 of Figures 4.J. 4.4 

and 4.5, all three of these profiles were interpreted with crustal faults and/or shear Zlmes. 

labelled F, at various crustal levels which appear to be listric in shape. Affiliated with 

these through-going crustal faults are the complementary dipping event(s). labelled "M". 

which may represent an interrelated shear zone at the base of the crust. As previously 

stated, the form of these two events, along with the thickening of the basin to thl! 

southwest, suggests that the crust beneath a majority of the Nosop Basin may be extended 

or stretched Kaapvaal craton. If this is so, then it may contradict Hartnady cl a/. (I <JX5 )'s 

nomenclature of the tectonic provinces and Subprovinces of southern Africa~ . at least in 

Botswana, that is presented in Figure 2.1 of Chapter 2. This figure shows clements of the 

larger Kalahari Province, particularly the Rehoboth Subprovince which is somewhat 

enigmatic in itself, extending west of the Kalahari Line. However, a majority of the 

"basement" flooring the Nosop Basin may be thinned or attenuated continental crust of 

the Kaapvaal craton thus throwing the extent of the Rehoboth Subprovince into question. 

In summarizing, the Kalahari Line is a major geophysical lineament of western 

Botswana and drilling has shown that the causative rocks responsible for producing the 

strong positive gravity and magnetic anomalies associated with it are products of rift­

related mafic volcanism. The 40 Ar - 39 Ar radiometric date of I 071 .0 ± 11.1 Ma yielded 
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from a Kalahari Line gabbro and the juxtaposition of the Kalahari and Laurentia cratons 

of HotTman's proposed Proterozoic supercontinent suggest that the North American 1.11 0 

- I ,090 Ma (Keweenawan) Mid-continent rift system and the Kalahari rift proposed here 

both represent preserved portions of a precursory and widespread late Middle Proterozoic 

continental rifting event that may have marked the initiation of the breakout of Laurentia 

from this Proterozoic supercontinent. Forward modelling of the magnetic data 

demonstrates that considerable thicknesses (6 - 27 km) of mafic material could account 

for the anomaly pattem(s) exhibited by the Kalahari Line and may represent the addition 

of significant volumes of intrusive/extrusive mafic volcanics to the continental crust 

associated with a rifting episode. This idea is also supported by the pattern of reflectivity 

exhibited by the deep seismic reflection data at or near the Kalahari Line which also 

shows signs of crustal-scale extensional faulting. These extensional faults along with 

complementary dipping events at the base of the crust provide further proof that the 

continental crust of western Botswana witnessed a period of crustal extension during the 

late Middle Proterozoic. 

4.4.2 1be Nosop Basin 

The Nosop Basin is situated directly west of the Kalahari Line and encompasses a vast 

area (> I o~ km2
) of Botswana's western Kalahari region. As previously stated, the basin 

appears to be uniform in depth with total sediment thicknesses reaching 12 to 15 km and 

may be even deeper if the reflectors below the B event are considered to be of 
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sedimentary or volcano-sedimentary origin. The overall fom1 of the Nosop Basin's 

stratigraphy, as defined by the structure (or its absence) exhibited by the mon: prominent 

reflective packages imaged on the seismic profiles. gives it a similar appearance. on a 

much larger scale, to depositional sequences of younger basins t(mm:d on modern rifled 

continental margins such as the Mesozoic extensional basins of otlshore eastern Canada. 

This is not to suggest that the Kalahari region witnessed the development of an "Atlantic­

type" rifted, passive margin and full development of oceanic crust but is introduced to 

demonstrate how seismic sequence stratigraphy, so often used to understand a basin's 

extensional history, may be applied to the Nosop Basin, at least on a gross scale. to gain 

similar insights. 

The continental margin off eastern Canada is regarded is an "Atlantic-type" margin, 

where a prism of sediments accumulated in the Mesozoic and Cenozoic as the early ocean 

widened and deepened. Around Newfoundland the continental margin experienced two 

episodes of seafloor spreading, and, as such, the region has a complex geological history 

which is reflected in the regional physiography and changing trends in basement structure 

(Grant and McAlpine, 1990). Two distinct episodes of rifting are recon.Jec.J in the 

extensional basins of the Grand Banks of Newfoundland's offshore region. The northeast­

southwest trending basins began to develop during the Late Triassic to Early Jurassic by 

rifting between North America and Africa. Updoming on the Grand Banks in the latest 

Jurassic initiated a second period of rifting that culminated in separation of Iberia from 

the Grand Banks in the late Early Cretaceous. 
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In the JeC:tnne d'Arc Basin, probably the most studied of all Grand Banks basins due 

to its hydrocC:trbon potential, four major erosional events separate the Mesozoic -Cenozoic 

strC:ttigraphic record into six depositional sequences (Grant and McAlpine, 1990). These 

stratigraphic sequences and the erosional events that separate them can be directly related 

to the geological history of the Newfoundland continental margin and record the initial 

rift and subsequent drift which occurred between North America and Africa. By analogy, 

it may be possible to infer something about the geological history of western Botswana 

by examining the stratigraphy of the Nosop Basin. 

Although it would ~c very difficult to define the stratigraphy of the Nosop Basin in 

the same detailed way as has been done for the Jeanne d'Arc Basin (Grant and McAlpine, 

1990), it may be possible to roughly divide th~ Nosop's stratigraphy into two depositional 

megasequcnccs which are illustrated in Figure 4.14. This figure presents an idealized SW­

NE geological cross-section of the Nosop Basin based on the structural and stratigraphic 

styles imaged on line 94. The 8 reflector, which can be traced with some confidence over 

a majority of the profiles, appears to divide the basin's sedimentary fill into two 

distinctive packages based on their internal reflectivity. The pattern of reflectivity which 

exists below B exhibits considerable structure and coherency and is thought to represent 

a suite of sedimentary or volcano-sedimentary rocks deposited in a continental rift setting. 

Above 8 , the pattern of reflectivity is horizontal to sub-horizontal with a minimum of 

stru~.:ture and is consistent with a layer-cake stratigraphy indicative of a period of thermal 

subsidence which ensued after the major episode of crustal extension had ended. An 
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Figure 4.14 
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intermediate depositional sequence separating the syn-rift and thermal subsidence phases 

is also proposed which would mark the transition from active rifting to thermal relaxation. 

The existence of this transitory sequence is very loosely based on the presence of 

horizontal to sub-horizontal reflectors which lie directly below the B reflector and, like 

the transition sequences of the Jeanne d'Arc Basin, may represent deposition in a rapidly 

changing tectonic setting and record the rifted of continental crust. 

As indicated on Figure 4.14, the presence of the CI and R reflective packages of line 

94 probably provides the strongest seismic evidence in support of a proposed syn-rift 

sequence. These reflective packages, as previously discussed, exhibit good coherency, 

significant structure and, more importantly, gentle to moderate dips that may be associated 

with extensional faulting. The location of these extensional faults, which are interpreted 

to be listric, are indicated on Figure 4.14 and terminate the Cl and R reflectors to the SW 

and NE respectively. The geometry of these faults along with the dipping reflectors they 

bound yields a form reminiscent of large half-grabens. These extensional features are in 

many cases associated with rifted margins (and indeed aborted rifts in the case of the 

MRS) and develop early in the rift's history (i.e syn-rift) in response to the onset of 

crustal extension. In addition to C I and R reflective sequences of line 94, the B I 

reflective package of lines 91 and 93 (Figure 4.13) is also of similar form and may 

provide further evidence in support of the proposed syn-rift sequence. Thus the sub-B 

dipping reflective sequences of these three individual profiles may be representative of 

a thick accumulation of syn-rift sediments of volcano-sedimentary origin that were 

/nterpretation/13 7 



deposited early in the development of the proposed late Middle Proterozoic rift which 

affected the Kalahari area. 

If these dipping packages are indeed truly representative of<m early syn-ritt sequence 

laid down in grabens and/or half-grabens associated with restrictive. continental riH 

basins, then they could be linked to the evolution of other similar sequences that border 

the Kalahari craton to the north and west. Borg ( 1988) pointed to a number of late middle 

Proterozoic basins which are aligned along the western and northern margins of the 

Kalahari craton which contain thick and relatively undcformed volcano-sedimentary 

sequences with rocks of the previously discussed Ghanzi and Koras Groups comprising 

two of these major sequences. In the past, many authors have pointed out the lithological 

and structural similarities of these various basins in an attempt to cmTclate their 

lithostratigraphy (Borg, 1988; SACS, 1980; Watters, 1977; Toens, 1974). 

Based mainly on the examination of lithostratigraphy, geochronology and regional 

distribution of volcano-sedimentary assemblages deposited in a number of these basins, 

Borg (1988) proposed the existence of a late middle Proterozoic continental rill system 

which developed along the margins of the Kalahari craton. He named this the Koras­

Sinclair-Ghanzi (KSG) rift, the names being derived from the locales where these 

lithological assemblages were originally described. These basins are narrow, fault-bounded 

continental rift grabens which were depocentres for thick accumulations of coarse clastic 

continental sediments and distinctly bimodal volcanics which range in thickness from 

8,000 to 15,000 metres. 
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He believed that these basins developed along two branches of a propagating 

continental rift system - the Koras to Sinclair (SE - NW) distribution forming one active 

arm of the rift and the Sinclair to Ghanzi (SW - NE) distribution forming the other. A 

distinct younging along the rift from the southern Koras end (I ,300 - I ,200 Ma) to the 

northeastern Ghanzi end (I ,050 - 900 Ma) is indicated from the radiometric ages of 

volcanic rocks contained within the basins. Borg ( 1988) interpreted this younging trend 

as evidence of rift propagation along an older zone of crustal weakness and suggested that 

the tectonic evolution of the late Proterozoic to early Palaeozoic Damara orogen followed 

trends established by the earlier KSG rift and was probably caused by the same 

continuous rifting event. The lack of any significant deformational event marking the 

transition from the late phase of the KSG rift ( 1000 - 950 Ma) to the early phase of 

Damara rifting (950- 800 Ma) led Borg (1988) to postulate that the mechanism of crustal 

extension may have been the migration of the African plate over a stationary mantle 

plume. 

Thus the distinct sub-B dipping reflective packages imaged on profiles 91 , 93 and 94 

of the Nosop Basin may represent buried basinal equivalents of the continental grabens 

of the Koras-Sinclair-Ghanzi rift system exposed along the northern and western margins 

of the Kalahari craton. If these dipping structures do have an evolutionary link to Borg's 

proposed late Middle Proterozoic rift system, then it would seem plausible that this 

extensional event was somewhat more widespread affecting the whole of the Kalahari 

craton (stretched Kaapvaal craton?) rather than being confined to its margins. Whatever 
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the case, it is important to note that, in addition to the deep seismic evidence, there also 

appears to be ample geological evidence in support of widespread continental rifling of 

the Kalahari region during the late Middle Proterozoic. 

Referring back to the thermal subsidence depositional sequence of Figure 4.1-t. it 

would first appear that this sequence records an extraordinarily long history of subsidence 

( ~ I ,000 Ma) for the Nosop Basin. However, as the drilling results of the PC' lAC' -GSD 

Masetlheng Pan-1 well has shown, the stratigraphic record, at least tor the upper 4 km 

of the sequence (the well's = T.D.), is by no means continuous. The stratigraphic break 

at 1,162 m marking the top of the Pre-Karoo strata, which was interpreted as Nama 

Group, is an obvious major unconformity and represents a substantial portion (late 

Proterozoic - Late Carboniferous) of missing geologic time (:::: 300 Ma). Although 

probably dominated by thermal effects, the magnitude of this unconformity would suggest 

that the subsidence (and uplift?) history recorded by this thick and seemingly undisturbed 

sequence (excluding the Ghanzi-Chobe structure) may be somewhat more complex than 

a simple thermal relaxation in response to rifted continental crust. 

The lithological data tor the Masetlheng Pan-! well provides reasonable control on 

the age and thicknesses of the stratigraphy for the uppermost portion of the proposed 

thermal subsidence sequence. There are substantial thicknesses(> I km) of Karoo, Nama 

and what are believed to be Ghanzi rather than the originally interpreted Garicp Group 

rocks recorded in the well. Of course, these thicknesses may change from profile to 

profile but it would probably be safe to assume that these rocks would still comprise a 
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majority of at least the upper 4 km of stratigraphy of the thennal subsidence sequence 

throughout the basin. Given that Litherland ( 1982) estimated the thickness of the Ghanzi 

Group to be about 13 km from his mapping of exposures farther to the north peripheral 

to the basin, it is quite conceivable that a large portion of the deeper stratigraphy ( 4-15 

km) consists solely of Ghanzi Group sediments. 

To conclude, the Nosop Basin is broad and encompasses much of the vast Kalahari 

region of western Botswana and contains considerable thicknesses (> 15 km) of 

Proterozoic aged sedimentary and/or volcano-sedimentary rock. The gross form of the 

basin as described by the pattern of the reflectivity seen in the deep seismic reflection 

profiles may allow its stratigraphy to be divided into two possible depositional 

megasequences; an early syn-rift sequence located below the prevalent B event and a later 

thermal subsidence sequence located above it. The reflectivity of the syn-rift sequence is 

dominated by significant structure and dip and is thought to represent a suite of 

sedimentary and/or volcano-sedimentary rocks deposited in fault-bounded, continental rift 

grabens associated with a proposed late Middle Proterozoic extension which affected 

much of the Kalahari area. In contrast, the thermal subsidence sequence exhibits minimal 

structure and is indicative of a long period of thennal subsidence which followed after 

the major episode of extension had ended. This syn-rift sequence may represent buried 

equivalents of the continental rift sequences of Borg's ( 1988) proposed late Middle 

Proterozoic Koras-Sinclair-Ghanzi rift system which are exposed along the western and 

northern margins of the Kalahari craton. Lithological data from the PCIAC-GSD 
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Masetlheng Pan-1 well suggests that the uppermost stratigraphy (0-4 km) of th~ thcm1al 

subsidence sequence is probably comprised of rocks from the Karoo Supergroup und 

Nama and Ghanzi Groups. However, the hiatus of 300 Ma b~tween Nama and Karon 

Groups indicates that the Karoo is much younger and unrelated. Given the thickness nf 

the Ghanzi Group measured in outcrop farther north. it is possible that Ghanzi Group 

sediments comprise a large portion of the lower stratigraphy of this them1al subsidence 

depositional sequence. 

4.4.3 The Ghanzi-Chobe Fold Belt 

The buried expression of the Ghanzi-Chobe fold belt imaged on the NNW end of line 

93 (less so on line 99) is represented by an impressive fold and thrust structure whose 

scale is truly enormous. This fold and thrust structure is schematically depicted in Figure 

4.15 which presents an idealized NNW-SSE geological cross-section ofthe Ghanzi-Chobe 

belt based on the structural and stratigraphic styles imaged on line 93. The wavelengths 

on these folds are on the order of 25 km and their structural relief is approximately 6 km. 

Associated with significant crustal shortening, the presence of these compressive 

structures on these two NNW-SSE trending profiles would seem to be in direct 

contradiction of the proposed late Middle Proterozoic extensional event set forth in the 

previous discussions above. However, this contradiction can be resolved if the timing of 

deformation of the Ghanzi-Chobe fold and thrust structures is examined. 

Although exposures of the Ghanzi-Chobe fold belt originally described by Litherland 
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Figure 4.15 
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Idealized seismo-geological cross-section of Line 93 illustrating the fold 
and thrust structures associated with the Ghanzi-Chobe belt. 
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( 1982) are confined to the low, narrow Ghanzi ridge of northwest Botswana. regional 

geophysical surveys have shown that these folded, mid-Proterozoic metasedimentary rocks 

occupy a 100 km wide zone which extends across much of the northwl.!stcrn western 

region of Botswana (Reeves. 1978~ Meixner and Peart. 1984). This fold belt is now 

generally thought to define the southeastern most part of the Damara Province with its 

deformation being associated with the Damara orogeny (750- 530 Ma) which produced 

large open folds with SW-NE trending fold axes (Ramokate et a! .• 1994~ Aldiss and 

Carney, 1992; Ratsoma eta/., 1991; Borg, 1988). 

As stated in Chapter 2, published tectonic models for the Damara orogen call ti)f 

either the development of a limited ocean between the Kalahari and Congo cratons which 

was later subducted via an Andean-type collision or formation of an intracratonic ritl or 

aulacogen initiated by a zone of high mantle heat flow. Lawrence ( 1989) proposed a 

possible scenario for the evolution of a basin system stretching from Namibia through 

Botswana to Zimbabwe including the Ncojane-Nosop Basin complex which encompasses 

the Nosop Basin discussed in the preceding section. In attempting to understand the 

development of this basin complex, Lawrence (1989) utilized the tectonic model of Kasch 

(1983) which presents a Wilson cycle model (partial ocean opening followed by 

subduction) for the evolution of the Damara orogen. Lawrence's summary of Kasch's 

model is presented here to provide a possible insight on the timing of deformation 

recorded in the Ghanzi-Chobe fold belt. 

Initial convergence in the context of evolution of the Damara orogeny is marked by 
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the onset of subduction of the partial ocean fonned by rifting during the late Middle 

Proterozoic northward beneath the leading edge of the Congo craton. The beginning of 

this subduction is believed to have occurred between 670 and 650 Ma. FuiJ advancement 

to :m active margin along the edge of the Congo craton is indicated by the fonnation of 

the forearc K.homas trough which included the entrainment of ophiolitic "splinters" and 

accretionary prism development. Collision of the Congo active margin with the passive 

margin of the Kalahari craton is equated with lower Nama sedimentation in an early 

foredeep basin of Lawrence's (1 989) proposed ba:;in complex. This is believed to have 

occurred at about 600 Ma. The first major orogenic cycle recorded in the Damara 

Province is portrayed as a "squashing" of the active margin, later to fonn the K.homas 

Subprovince, with the metamorphic - magmatic margin of the Congo craton which later 

fonned the Swakop Subprovince. 

The progressive pushing of the active margin against the passive margin heralded the 

start of the later orogenic cycle recorded in the rocks of the Damara Province. The 

telescoping of passive margin sediments along low-angle detachments onto the Kalahari 

foreland marked the development of the Nama foreland basin in the evolutionary scenario 

of Lawrence's ( 1989) proposed basin complex. This second orogenic cycle is characterized 

by considerable crustal shortening and is thought to have started around 570 Ma and 

culminating with the emplacement of the Naukluft Complex and late stage deformation 

at about 530-525 Ma. 

Thus, given the location ofthe Ghanzi-Chobe fold belt on the southeastern most edge 
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of the Damaran structural front, it is likely that the late stages (530 - 525 Ma) of this 

second orogenic event are responsible for the fold and thrust structures seen at the NNW 

ends of seismic profiles 93 and 99. It is envisaged that this structural front experienced 

a slow, southeast migration in response to an increased compressive regime as the 

convergence between the Congo and Kalahari cratons progressed. Thus more and more 

of the passive margin sediments of the Kalahari foreland would have been caught up in 

the deformation associated with the steady, southeastern movement of this structural front. 

It would appear then that the time of deformation of the Ghanzi-Chobe structures 

significantly postdates the late Middle Proterozoic rift proposed in the preceding sections 

for the Kalahari region (530 - 525 Ma vs. I ,090 - 1,070 Ma). However, it should be noted 

that line 94, oriented sub-perpendicular to lines 93 and 99, appears to intersect these two 

lines at the leading edge of the deformational front of the imaged fold and thrust 

structures at their NNW terminations. Thus it could be that some of the structure seen in 

the mid to lower crustal levels of line 94 may represent a tectonic overprint of the 

Ghanzi-Chobe deformation. 

Lawrence's (1989) proposal for the development of a foreland basin would certainly 

have implications on the subsidence history suggested for the thermal subsidence 

sequence discussed in the preceding Nosop Basin section. Indeed, Hallet a/., (1990) also 

considered foreland basin development as a possible mechanism to explain the substantial 

subsidence recorded in the Nosop Basin. Hall et a/. ( 1990) found it difficult to explain 

how the ISO km length of line 99 could have subsided by means of flexure associated 
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with the lithospheric loading by the Ghanzi-Chobe structures alone. There seemed to be 

no evidence that a majority of the + 1 5 km fill has the asymmetry usually connected with 

foreland basin flexure. They pointed out that the B event is less than I km shallower at 

the SSE end than the NNW end and would be too little to offer a flexural explanation 

since it implies that, in order that the whole fill be generated this way, the flexural 

wavelength would have to be well over 2,000 km, and thus much longer than usually 

interred for foreland basins (Beaumont, 1981 ). Thus, as previously stated, other 

mechanisms appear to be required to account for the majority of subsidence recorded in 

the Nosop Basin. 

In concluding, the buried expression of the Ghanzi-Chobe fold belt imaged on lines 

93 and 99 represent structures of large proportions. The age of deformation of the Ghanzi­

Chobc fold and thrust structures is thought to be synchronous with a second, late phase 

orogenic cycle proposed for the Damara orogeny. This second cycle occurred at 530- 525 

Ma and was characterized by substantial crustal shortening involving the telescoping of 

passive margin sediments along low-angle detachments onto the Kalahari foreland. This 

compressive deformational event occurred much later than the late Middle Proterozoic rift 

proposed tor the Kalahari and, as such, the co-existence of compressive and extensional 

structures on the seismic profiles is not paradoxical. Development of a possible foreland 

basin in response to lithospheric loading implied by the Ghanzi-Chobe structures cannot 

alone explain the considerable history of subsidence recorded by the proposed thermal 

subside:-~ce sequence of the Nosop Basin discussed in the preceding section. 
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5 CONCLUSIONS 

The processing of the seven regional deep seismic reflection pro tiles reconkd in the 

Nosop Basin of western Botswana was successful in producing images of a deep 

sedimentary basin (12 - 15 km) underlain by highly reflective mid to lower crust. The 

quality of these reflection seismic images demonstrates that reconnaissance deep seismic 

reflection profiling can be utilized early in the investigation of frontier an··•s to identify 

a broad base of exploration targets which could be further pursued in greater detail at a 

later stage in the exploration. Certainly, the deeper crustal structure imag~:d on these 

profiles has provided greater insight and understanding of the regional tectonic lhunework 

in this region of the south African sub-continent. 

The geological information recorded for stratigraphic test well PCIAC'-GSD 

Masetlheng Pan-1 provides a certain degree of control on the age and thicknesses of the 

lithostratigraphy occupying the upper 4 km of the Nosop Basin. As indicated from the 

well information, this stratigraphy is represented by significant thicknesses ( > I km) of 

Karoo Supergroup, Nama Group and what is believed to be Ghanzi Group ratht:r than 

the Gariep Group that was originally interpreted from the well. A majority of the well's 

stratigraphy is late Proterozoic (Ghanzi) to early Cambrian (Nama) in age and the 

stratigraphic break between the rocks of the Nama Group and those of the Karoo 

Supergroup, which is Permian to Jurassic in age, is marked by a major unconf(mnity 

which represents a considerable portion of missing geologic time ( = 200 - 300 Ma). 

Given the estimated thickness of the Ghanzi Group exposed farther north along the 
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Ghanzi ridge, it is quite conceivable that Ghanzi Group sediments comprise a large 

portion of the lower sediment fill of the Nosop Basin. The major formation depths 

reported for PCJAC-GSD Masetlheng Pan-1 well tied very well w:th the depths yielded 

from the depth migration for line 99 with the difference for all ties being Jess than 1 0%. 

Thus the depth information provided by these migrations is accurate, at least for the 

stratigraphic interval encompassing the well, and can be reliably used for interpretation 

purposes. 

The broad gravity and magnetic anomalies west of the Kalahari Line appear to be 

produced by causative sources located beneath the B reflector(> 12- 15 km) and these 

anomalies show good correlation with the reflecting events imaged on the seismic profiles 

at this crustal lewis. The correlation of the deep seismic information with the potential 

field data re-confirmed that, contrary to previous interpretations of the aeromagnetic data 

alone, there are not two distinct basins separated by a basement high but rather one broad 

basin of fairly uniform depth which is referred to as the Nosop Basin. Because of the 

considerable internal seismic structure exhibited by the B J and C reflectors, these 

reflective packages are interpreted as sedimentary or volcano-sedimentary packages. The 

Makgadikgadi Line, as defined by the sharp gradient between the +MA3 and -MA2 

anomalies, is interpreted as the magnetic response to a mid-crustal "edge" or discontinuity 

formed by crustal scale normal faulting. This idea is supported by modelling and 

inversion of the aeromagnetic data as well as the reflection seismic data itself. 

The Kalahari Line is a major tectonic feature of the western Botswana region. Being 
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defined by a series of strong. positive magnetic and gravity anomalies along its length. 

drilling has shown that matic igneous rocks arc primarily responsible tor producing these 

strong potential field anomalies. Forward modelling of the magnetic data along the 

Kalahari Line demonstrates that the causative mafic rocks have considl.!rahlc depth extent 

(6 - 27 km) and may represent the addition of significant volumes of mafic material to 

crust associated with a continental rifting event. The 411Ar-''1 Ar date of 1.071 ± I 1.1 Ma 

yielded from one of the Kalahari Line gabbros may be signifil~ant if considered in light 

of the paleogeography of Hoffman's ( 1991) late Proterozoic supercontinent. The south 

central margin of Laurentia, the proto North American craton, was the site of a major 

continental rifting event as recorded by the extensive Mid-continent rift system (MRS) 

which is 1,110 - I ,090 Ma in age (Keweenawan). Given the juxtaposition of the Ki.l!<:.hari 

and Congo cratons with Laurentia and the 1 ,071 Ma radiometric age yielded f(•r the 

Kalahari Line causative mafic rocks, it is postulated that Mid-continent rifl system and 

the proposed Kalahari rift represent preserved portions of a widespread and precursory 

late Middle Proterozoic rifting event which may have marked the breakout of Laurentia 

from Hoffman's late Proterozoic supercontinent. This rifting idea is supported by the deep 

seismic reflection data, particularly the SW-NE profiles, which arc orientated sub­

perpendicular to the Kalahari Line, as they indicate the possible presence of 

complementary dipping shear zones which may be the manifestation of crustal-scale 

extension associated with continental rifting. The form of these complementary shear 

zones along with the thickening of the sedimentary basin to the SW is suggestive of a 
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stretched Archean Kaapvaal craton, thinned and attenuated by this proposed late Middle 

Proterozoic continental rifting event, extending beneath a majority of the Nosop Basin. 

The No sop Basin is a deep and expansive basin which envelops much of the Kalahari 

region west of the Kalahari Line and contains considerable thicknesses (> I 5 km) of 

Proterozoic and younger sedimentary and/or volcano-sedimentary rock. By comparison 

to younger extensional basins of rifted continental margins, the gross form of the Nosop 

Basin may allow its stratigraphy to be divided into two possible depositional 

megasequences; an early syn-rift sequence and a later thermal subsidence sequence. 

Significant structure and dip characterizes the reflectivity of the syn-rift sequence and is 

thus thought to represent a suite of sedimentary and/or volcano-sedimentary rocks 

deposited in fault-bounded, continental rift grabens associated with a proposed late Middle 

Proterozoic extension which affected much of the Kalahari area. The thermal subsidence 

sequence exhibits minimal structure and is indicative of a long period of thennal 

relaxation which ensued after the major episode of extension had ended. This syn-rift 

sequence may represent buried equivalents of the continental rift sequences of Borg's 

(I 988) proposed late Middle Proterozoic Koras-Sinclair-Ghanzi rift system which are 

exposed along the western and northern margins of the Kalahari craton. Borg's proposed 

rift system provides further geological evidence in support of a widespread late Middle 

Proterozoic rifting event affecting the Kalahari region. 

The buried expression of the Ghanzi-Chobe fold belt imaged on the northwestern edge 

of the Nosop Basin represent fold and thrust structures of large scale. The age of 
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deformation of the Ghanzi-Chobe fold and thrust structures is thought to be ~ynchronous 

with a second, late phase orogenic cycle proposed for the Damara orogeny by Ka~ch 

( 1983 ). Characterized by substantial crustal shortening. this second cycle occurred at 

about 530 - 525 Ma and involved the telescoping of passive margin ~edimcnts along low­

angle detachments onto the Kalahari foreland. Thus the much later timing of thi~ 

compressive tectonic event with respect to the proposed late Middle Protero:t.(lic Kalahari 

rift allows for the co-existence of compressive and extensional structures on thl' ~ci~mic 

profiles and, as such, is not paradoxical. The considerable history of suh~idencc ( > I ,000 

Ma) recorded for the Nosop Basin by the proposed thermal subsidence sequence cannot 

be explained solely by the development of a possible foreland basin in response to 

substantial lithospheric loading implied by the Ghanzi-Chobe structures. 
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