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Abstract

Topological spaces of the same homotopy type as CW-complexes
are considered (CW-spaces). Constructive methods are used to give
algebraic characterizations of CW-complexes, firstly of finite type,
and secondly, of finite dimension. When both conditions are satisfied,
there is an element of the projective class group of the integral
group ring of the fundamental group of the space, a homotopy type
invariant, whose vanishing is necessary and sufficient to guarantee

that a CW-complex be finite.
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Introduction

CW-complexes, first introduced by J. H. C. Whitehead [19] almost
thirty years ago, were shown by Whitehead himself to possess properties
very useful in the study of algebraic topology. This thesis concerns
itself with the homotopy type of such complexes. There are various ways
of phrasing the right questions to be asked in this context; historically,
because of its importance in differential topology, the approach took
the following form:

Q. Suppose X 1s a space which 1s dominated by (a) a Ch-complex,
(b) a countable CW-complex, or (c) a finite CW-complex; then when is
X of the same homotopy type as (a), (b) or (c)?

In fact, the two conditions '"dominated by'" and "of the same homotopy
type' were seen to be equivalent in the case (a) [18] (1950), in the
case (b) [9] (1957) and, for simply connected spaces X, in the case (c)
[16] and [6] (1959). 1t was conjectured that the two conditions were
equivalent in the case (c) for arbitrary spaces X. The question was
now taken up by C. T. C. wall [16] and C. B. de Lyra [7], who realized
that a closer examination of the algebraic properties (by this, I mean
homotopy and homology groups) of such spaces was required; in particular,
a close examination of the action of the fundamental group on the higher

homotopy groups. Of the two, Wall was the more successful, and he gave












li. Sn-l is a

. . n-1 .
We call this process attaching n-cells to K ~. Since

closed subspace of ||. En, it follows that the map Iﬁ—l is one to
. n n n . noo.
one and closed. The image of Ej'\ Sj’ denoted ej, in K 1s called

an n-cell of K" and the restriction of ?n-l to this domain is called

a characteristic map; a closed n-cell being the image of E?.

We now define a CW—comEIex K to be the union of all the Kn, n > 0,

with the weak topology with respect to the inclusions K" € K. The spaces

Kn, n > 0, are called the n-skeletons of K. If there exists an integer

K"

m > 0 such that ¥n > m, we have K" = ; we say that K 1is of

finite dimension m; 1if all the sets Jn used in the construction are

finite or countable, we say that K 1is of finite type or countable,

respectively. If K 1is of finite type and is finite dimensional, then
we say that K 1is a finite CW-complex.

With respect to the above construction, we note that if we are
working in Top, we may take the coproduct to be the disjoint union, but
if we give our spaces base points and consider base point preserving maps,
then we take the coproduct to be the wedge (one point union).

CW-complexes possess particularly nice topological properties; they
satisfy the separation axioms T0 through T4 and are paracompact and
locally contractible; for CW-complexes, the concepts of connectedness
and path connectedness are equivalent. In what follows, we always take

CW to be the category of pointed connected CW-complexes and pointed con-

tinuous functions. Also, we always take W to be category of pointed













































Before going on to give a brief account of cohomology with local
coefficients, we recall a few standard results relating maps of base

spaces to maps of covering spaces.

Theorem 2.2 - If f : X - Y 1is n-connected, then so is the induced or

lifted map denoted £ : X~ Y.

Proof - This follows from the following commutative diagram

£
_—

G
P q

f
—_—

<, ——— =}

P e <}

which gives rise to the following commutative diagram

nr+1(X)———§ wr+1(Y)___+ wr+1(f)-——+ nr(X)———+‘nr(Y)
P.| = q,| = P.| = q.| =

T X— 7 Ve () (X)—— 7 (¥)

to which we apply the five lemma (r <n-1). //

Theorem 2.3 - If Y dominates X, that is, we have maps j : X > Y and

r : Y > X such that rj = lx, then 1rj = li, that is, Y dominates

X and, furthermore, Hi+1(;) z Hi(j), for all i > 1.
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§ 1.3 Finitely Generated Projective R-modules

In the sequel, we give conditions under which a map f : K -+ X
in W has the property that nn(f) is finitely generated and projective
over R. So we must be able to manipulate such objects. Let R be
any ring and consider functions f which assign to each finitely
generated projective R-module X a value f(X) 1in some abelian group
subject to the conditions:

(1) if X =Y then f(X) = f(Y);

(ii) f(X ®Y) = £(X) + f(Y);

(iii) f(R) = 0.
Among all such funcpions f there is one which is universal (its

universality 1s not of interest here and is omitted); the group in which

it takes its values is called the reduced projective class group of R,

and we write it as K; if the f's are required to satisfy only the
first two axioms, the universal group 1s just the projective class
AToup written (1)[.

There is an extensive theory of such groups and taken in much greater
generality, but here we require only a few simple facts. First of all,
we build the groups K and K. So let A be the class of all finitely
generated projective R-modules and B be the subclass of all finitely

generated free R-modules; denote also their sets of isomorphism classes

by [A] and [B], respectively.

(1

ﬁhc usual notations are K = KO(R, and K KO(R); sce, for example,
[1] and [2].






to
(93]
1

in B and so K®E®M=F is in B and L®E®M =G 1is in B, so
that P ® F = Q ® G, as required. //
There i1s only one other small thing to note; that if P ® Q = F € B

with P, Q€ A, then P =-Q, for [P®Q] - [P] - [Q) ER = {P®Q} -

{P} - {Q) =0 €K or {F} - {Pt-{Q}=0€EK= -P-Q=0E€K.
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group nz(f). In either case, the d[hi] belong to ﬂn_l(K) (and, hence,

by exactness, to the kernel of f#) and choosing representatives hi of

n-1 n-1

the é[hi], we have hi : S -+ K and these define a map h : VIS -+ K;
take the pushout,
n h n, _
_ =
VIE K, (VIE ) L
. n
L (4.2)
- h
v_s" 1———————§K

Now the 6[hi] € ker f,, so that f#[hi] [fhi] = [*], that is

fh = * and thus extends to a map f : VIEn » X so that the outer square

commutes in (4.3) below,

(4.3)

Hence, there exists a g : L -~ X such that gi = f and gh = f. Since

Kn—l is the (n-1)-skeleton of L by construction, it follows from (1.10)
that i : K> L 1is (n-1)-connected. Then since f 1is also (n-1)-connected,
it follows immediately from the homotopy sequence of the triple (X, L, K)

that g 1is (n-1)-connected; to show that g 1is also n-connected, consider

the same sequence,
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...——)'nn(i)__r__\-rn(f) \ﬂn(g) >"n-1(i) =0— ...,
in which it suffices to show that the map r 1s onto. But as in Section

e

1.2, by construction 'n(i) = Hn(;) Cn(i)’ where now Cn(i) is the

free R-module on the n-cells of L of which there is one for each generator

(R or Z) of nn(f), so that r 1s onto. Hence nn(g) = 0, as

required. //

Theorem 4.4 - Let K € CW and X € W and let f : K - X be (n-1)-connected.

Then we can attach cells of dimension > n to K to form a Ch-complex L

and a homotopy equivalence g : L - X.

Proof - We use (4.1) to obtain an n-connected map gn from a CW-complex

L™ to X. We now apply (4.1) repeatedly to obtain (n+r)-connected maps

gn+r : L™T + X and finally let L = iiT>OLn+r with the weak topology,
so we obtain g : L » X which is m-connected, ¥m, and hence (by 1.9)

a homotopy equivalence. //

We now give the first use of our construction which might appear

artificial.

Theorem 4.5 - Given an (n-1l)-dimensional CW-complex K and an (n-1)-connected

map f : K+ X, X € W, such that nn(f) is free as a module over R
and with Hr(i) = 0, ¥r > n, then we can attach n-cells to K to get
an n-dimensional CwW-complex L and a map g : L - X which is a homotopy

equivalence.

hY
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Proof - Perform the construction of (4.1) to get L and g : h ; X using
free R (or Z, if n = 2) generators of ﬂn(f); L 1is certainly n-
dimensional and g 1is n-connected. By (4.4), we may attach cells of
higher dimension to get a CW-complex homotopy equivalent to X which has
L as its n-skeleton; we call this new CW-complex X also. ke want to
show that the inclusion of L in X 1is a homotopy equivalence, and for
this, we use universal covers; it is enough to show that all the Hr(é)
vanish, where we have KC$L>L<Ji>X with gj = f, for then ﬁ and i
have isomorphic homology and, hence, by (1.9) isomorphic homotopy, so
that L and X have isomorphic homotopy for r > 1 and also for r = 1
since g 1s n-connected and so are homotopy equivalent through g.

That Hr(é) vanishes for all r is easy to check. First of all,
by construction, Hr(i) vanishes for r # n, and Hr(%) vanishes for
T < n.

Note now that Hr(?) vanishes also for r > n since K is (n-1)-

dimensional and Hr(i) = 0 for r > n by hypothesis. Hence all that

e

remains to be shown is that Hn(f) Hn(%) (this by exact homology sequence
of the triple (i, ﬂ, R)) but Hn(i) = Cn(i) which is the free R-module
on the generators of nn(f) H Hn(f) which is itself this same free R-module

by hypothesis, and hence the result. /y

Next we show various results that can be obtained when attaching
trivial cells, that is, cells that are attached via trivial maps (explained

further below).









Proof - Writing ﬂn(f) as B there is a free R-module F equipped with

a submodule A such that F = A ® B, since B 1is projective. Now

consider the module
P=B@®@A@Be®AB® ...;

this is isomorphic to the free module H = F ® F + ..., bracketing
after even terms and to the module B @& H, bracketing after the odd
terms. We attach trivial n-cells to K one for each generator of H
to obtain a CW-complex Y which dominates K and amap g : Y -~ X
which is still n-connected, all of this by the preceding results of

this section. Since Y dominates K, the exact sequence of the triple

Ked,YeB,Xx (with gj = f) splits so that Hn(é) - Hn(%) ® Hn(ﬁ); but

Cn(Y) = H, by construction, and then by (2.4), this becomes

H (3)

n

rn(g) ﬂn(f) ® H=B®H=H, which is free as required. //

Now something interesting happens to the cell attached to the

universal cover X when we attach a trivial cell to X.

Theorem 4.10 - Suppose we have an X € W such that nn(X) = P ® B,

n > 2, where B and P are finitely generated projective R-modules such
that A ® B = F 1is free (and finitely generated), where A 1is some
finitely generated projective R-module. If we now attach to X some
(n+l)-cells, one for each free R-generator of F by means of the pro-
jection F—-B ¢ nn(X), this has the effect of attaching to i, (n+l1)-

cells by the images of the free Z-generators of F.















~1

Jx s pon. K«
7 -,
. H (K)——H (L) ——H (ViS)——H (K)— ...,

in which Hn+1(K) = 0 since K 1is n-dimensional and so ¢ is monic.
Note that all the terms above are finitely generated free abelian groups.

By exactness, to show Hn+1(L) = 0, we need only show that Kk, is monic.

So consider the following commutative diagram,

n (}\1]* .
H (§') ———H_ (K) 1 — k.
n n 1

I: ), Tn I I e

n 1" - .
n (ST — =1 (K) 1]k, ]

The map (ki)# takes the generator of ﬂn(Sn), [lsn] to the corres-

n 15“ n ki
ponding [ki] € ﬂn(K), by definition of (ki)# . (S )Si »K);

and it follows that (ki)* takes the generator of Hn(Sn) to Li € Hn(K)
since the square commutes. Hence, (ki)* is monic and hence, also, is

K,, as required. /7

Theorem 4.17 - Let X € W be simply connected and be dominated by a

finite CW-complex L of dimension n. Then X 1s of the homotopy type

of a finite n-dimensional CW-complex.

Proof - The homology groups of X are just retracts of those of L in
this situation, and so they are all finitely generated since the homology

of L is finitely generated and this tells us also Hm(X) = 0, ¥m > n.





















of r nl(Y) -~ G; hence by attaching a wedge of 2-cells to Y by

*

means of representatives of these elements, we obtain a space Y1 and a

map Ty : Yl - X which induces a fundamental group isomorphism; furthermore,
. r,| Y=r
Yl dominates X (X——l—eY C’Yl——l————;X); hence, (rl), i n,(Y) -~ G 1s

an epimorphism and so T is 2-connected.

) n . - - -
Now suppose, for n > 3, that Y is finite. By the induction
. . n- - . .
hypothesis, since Y ! is certainly finite, we may suppose that the
retraction r : Y -~ X 1is (n-1)-connected, perhaps replacing Y by some

Yn-l’ obtained from Y by attaching cells of dimension < n - 1. e ther

apply (I.4.4) and so we may suppose that X 1s obtained from Y by
attaching cells of dimension > n; in other words, that Y and X have
the same skeletons up to and including dimension n - 1. Now, by (I.2.3),

- Sy - s _ . gyn=2 N .
we have nn(r) z Hn(r) = Hn_l(J). Take k = j|X , then Hn_l(J) is

a quotient of Hn_l(K), as seen in (i) = (iii);

X, X K H j X, X2
i R .

O, X, X e (R) ) - Hn_z(“, X

0

1 1in X; since the cells

) >

n

But Tt 1is just the inclusion, and rj

~

. . . i .n-2
of X - Y have dimension > n, this homotopy restricted to X can be

taken to lie in Y, so we can assume k 1is just the inclusion of

- - ~ ~1) - ~Ne 2
X" 2 N 2 in Y. So consider (Y, y! l, Yo 9,

n-1 .°n-2 S oon-2 S ooon-1
. —9Hn_l(Y , Y )——»Hn_l(Y, Y )——7Hn_l(Y, Y ),

where the last term is zero. So Hn_l(Y, Yn—Z) = Hn_l(ﬁ) is a quotient

n-2

of Hn_l(§n°l, ) ) a finitely generated R-module by section (1.2).
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§ I1.2 CW-Spaces of Finite Dimension

Once again, we give various conditions on X.

Dn : Hi(i) = 0, for i > n and Hn+1(X; B) = 0 for all systems
of local coefficient B (see section (I.2)).

Note that we do not require that D(n - 1) holds. The case n =1

1s entirely different from the rest, and we treat it first.

Theorem 2.1 - If X satisfies D1, it has the homotopy type of a bouquet

of circles.

Proof - All the homology groups of X vanish and thus, so do all of its
homotopy groups so X 1is contractible. In any case, X has only one
non-vanishing homotopy group nl(X) = G. So if B has fibre F, we
can identify HZ(X; B) with the set of extensions of F by G which

corresponds to the action of G on F. So let
F > K -G,

be an exact sequence where K 1is a free group. By the remarks above,
this extension splits and so G 1is isomorphic to a subgroup of the
free group K and so is also free. The result is now immediate, for

spaces with only one non-vanishing homotopy group are unique up to homotopy

wre- //

Note that if X now also satisfies F1 then X 1s a finite one-

dimensional CW-space, and further if Y dominates X and satisfies DI,
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§ I1.3 The Obstruction to Finiteness

We are, 1n this section, primarily concerned with CW-spaces
A satisfying both Fn and Dn. It turns out that such a space is
only dominated by a finite n-dimensional complex, this domination
becoming equivalence only under the conditions described below. But
certainly, we can find an (n-1)-connected map f : K - X with K
being finite of dimension n - 1, and with rn(f) being finitely
generated and projective over R. Hence, rn(f) determines an
element w € K; we wish to show that w depends only on X. MWrite
P for "n(f) and let F be R-frece of finite rank with F = P & Q
for some (finitely generated projective; R-module Q. As in (I1.4.8),
for each generator of F attach an n-sphere to K by taking an (n-1)-
sphere to the base point of K (by a constant map) to form an

n-connected map g : L - X with L finite of dimension n, and

nn+l(g) = Q. Observe that the class of Q 1in R 1is minus that of P.

Lemma 3.1 - Let X satisfy Dn and g : L - X be n-connected. Then

g has a homotopy right inverse, so L dominates X.

Proof - Replace g by an equivalent fibre map, still called g and
note that nr_l(F) = rr(g), where F 1s the fibre of g. According
to (I.1.11), the obstructions to finding a cross-section lie in the
groups Hr(X; nr(g)). But for i < n, ni(g) vanishes, and for 1r > n,
the cohomology group vanishes by D(r - 1) which holds by Dn and

Z.34). Thus, there are no obstructions and a section exists. //
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and so we write X(n) = Kv (vAs“) v (vBsn) =Yv (\'Bs“), where Y = Kv (V,S").
So suppose inductively that we have constructed X(m), m = n + 2k such

that i(m) = Y'V(VBSm), that 1is i(m) is of the homotopy type of a Y

1K

with m-spheres attached corresponding to a decomposition ﬁm(X(m))
nm(Y) ® B. Now we form X(m + 1) as follows: consider the composition

P : F-—+9B>——>nm(X(m)) and let a; be an R-generator of F, then

p(ai) € nm(X(m)) and so we attach (m+l)-cells to i(m) by means of

these. As in (1.4.10), this attaches an (m+1l)-cell to X(m) by the images
of the free Z-generators of F. Now F = A ® B and so the generators

of A yield trivially attached cells and in the resulting space X(m + 1),
the cells attached corresponding to the generators of B will have killed
(made homotopically trivial) all the spheres in VBSm, this by construc-
tion and so X(m+ 1) = Yv (V,s™), and m (Xme 1) = (Y) @ A

So we attach (m+2)-cells to X(m + 1) via the composition F —» A>—>
ﬂm+l(X(m + 1)) and the resulting space X(m + 2) now satisfies the
induction hypothesis. Thus we attach cells of all dimensions and eventually

determine a space X 1in which VBSn has been destroyed so that X = Y.
The conditions Fn and Dn still hold for X since X(n) dominates
X just as in (3.1); the inclusion i : K« X 1is (n-1)-connected and has

nn(i) = A so that the obstruction w(X) 1is (—1)n times the class of

A in K and, hence, w(X) 1is arbitrary. //
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AEEendix B

We examine here the conditions Fn when the group ring R 1is

noetherian (see section II.1).

Definition B.1 - A ring R with unit is said to be noetherian if every

ideal of R 1is finitely generated [see Northcott; Ideal Theory;

Cambridge Tracts, ed. W. Hodge, Cambridge University Press, London (1953),

p. 19].

This is equivalent to the condition that every ascending chain

sequence R1<1 R2 < R3 ... of ideals be such that Rn = Rm’ ¥n > m,
some m [see Northcott, p. 20]. If R 1is noetherian, we have that

every submodule of a finitely generated module over R 1is finitely
generated.

We simplify the conditions Fn as follows:
(NF2): G 1is finitely presented and Hz(i) is finitely generated over R;

(NFn): NF(n - 1) holds and Hn(i) is finitely generated over R.

a B .
Lemma B.2 - If A =~ B > C 1s an exact sequence of modules over a

noetherian ring, and if A and C are finitely generated, then so is B.

Proof - If C 1is finitely generated then so is 1m(&8), so take 1m(g)

to have generators s(fj) and take A to have generators e, Then

a(ei) and fj generate B. For take x € B and write g(X) = ijs(fj) =
2.f) = (X - $a.f.) = 0= X - Ja.f. = . ) = X = )a_.f. X .

B E;) = e (X - aEy) - yE5 = Dyalep) = Dyf5 « Dryaley)

/

as required. //



















