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Abstract

This thesis is divided into three parts. The first two parts deal with two differ-
ent methods for predicting the manoeuvring characteristics of ships using a neural
network technique. The third part deals with the application of the random decre-

ment concept to the coupled sway-yaw motions.

In the first part of this thesis, a new predictive method is presented for the
estimation of the hydrodynamic characteristics of a ship performing certain stan-
dard manoeuvres. This method uses the static neural network technique to predict
the nonlinear hydrodvnamic forces of the ship during its motion in the horizontal
plane. The neural network model uses a steepest descent search to find the neural
network weights. In this thesis, a back propagation algorithm is used to calculate
the slope of the sum-of-squared-error curve as a function of the different weights.
Data for training the neural network consists of the data from a 33-35 degree zigzag
manoeuvre. Surge, sway, yaw velocities and rudder angles are used as input to the
predictive model. The target output data 5ré~the lumped nonlinear hydrodynamic

functions.

The generalization of the trained neural network model is checked by simulating
the manoeuvres of the ship in a situation different from the one used in the training
of neural network. A moderate 20-20 degree zigzag manoeuvre, a 25 degree turning

(starboard) and a 20 degree Dieudonne spiral manoeuvre are selected to check the

i



validity of the neural network model.

In the second part of this thesis, another approach to predict ship turning ma-
noeuvres is proposed. This model maps the relationship between sway velocities
and yaw rates during the circular manoeuvre using a neural network technique.
This method reduces the number of equations to be used in the prediction to a sin-

gle yaw equation. This new yaw equation can then be used for predicting turning

manoeuvres.

In the last part of the thesis work, the extension of the random decrement ap-
proach to the nonlinear sway-vaw motions is presented. The random waves are
simulated based on the ITTC spectrum formula. The linear system and the nonlin-
ear system of sway and yaw motion eqﬁations are discussed. The autocorrelation
functions of the response of sway and yaw velocities in random waves are obtained.
A method for using these functions to identify the hydrodynamic characteristics of

the coupled sway-yaw motions is suggested.

i
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Chapter 1

Introduction and Literature
Survey

1.1 Introduction

With the great progress in the area of Naval Architecture, more and more different
types of ships have been developed in the maritime transportation. Due to the
growth in ship sizes and the diversity in ship types, a great deal of attention has
been paid to the manoeuvrability of a ship for the safe navigation in ports and
waterways. For a ship designer, careful examination of the ship manoceuvrability is
needed at the preliminary design stage. Moreover, at the time of ship completion,
manoeuvring information such as the manoeuvring booklet and the wheelhouse
poster should be provided for each ship. This is required by Panama Canal Regu-
lations (1977).

To meet the above requirements, it is necessary to provide reliable data for pre-
dicting ship manoeuvring motion during a ship’s trip. Prediction of ship manoeu-

vring motions is best performed through the use of mathematica! models (Haddara



and Sabin, 1993). The three manoeuvring motions, surge, sway and vaw, can be
described by a set of three coupled first order nonlinear differential equations. For
special cases, the roll equation is needed. These equations are all based on the
second Newtonian law. The hyvdrodynamic surge and sway forces and yaw moment
are usually expressed in their Taylor series expansions. The derivatives in the Tay-
lor series are known as ship hydrodynamic coefficients. The more accurate these
hvdrodynamic coefficients, the more reliable the results of the prediction of the ship

manoeuvring motions.

Currently, four principal approaches are used for the prediction of the hydrody-
namic forces and moments acting on a ship during its manoeuvring motion. These
approaches are: theoretical methods, semi-empirical methods, experimental meth-
ods and parametric identification methods. The last one of the four is quite new
and powerful compared with the other three. In this thesis, a new method for
parametric identification will be presented to predict ship manoeuvring motions in

a more efficient and more economical way.

1.2 Theoretical Methods

Several theoretical methods for the evaluation of the hydrodynamic coefficients for a
ship’s manoeuvring motions can be found in the literature. Mikelis and Price {1980)
used a three-dimensional potential flow analysis of the fluid and a finite element
method to calculate hydrodynamic coefficients. Accurate acceleration coefficients
can be developed taking into account the ship’s form. An assumption of a double

layer singularity distribution over the hull with a hydrodynamic vortex sheet was



emploved by Remez (1989) for the estimation of hydrodynamic derivatives in the
case of small Strouhal number. Clarke et al. (1982) used the assumption that the
hull is a low aspect ratio wing turning on its side. By considering the horizontal
added mass coefficients for sections along the hull, Clarke extended the slender body
strip method to yield expressions for the hydrodynamic derivatives dependent on
hull shape through the longitudinal added mass distribution. Wu and Liu (1990)
presented a boundary element method for estimating the lateral hydrodynamic
forces and yaw moment acting on a ship during its manoeuvring motion. The
effect of free surface and separate vorticity was taken into consideration in their

method.

1.3 Semi-empirical Methods

Several semi-empirical methods can be used to derive empirical expressions for
the hydrodynamic derivatives based on measured values from the planar motion
mechanism and rotation arm experiment. Clarke et al. (1982) used multiple linear
regression analysis to find empirical formulas to explain the variation in the available
data for the velocity and acceleration derivatives. Inoue et al. (1981b) presented a
practical calculation method for the ship manoeuvring motion using the principal
particulars of a ship hull, propeller and rudder as basic input data. The effect
of the loading condition on the ship manoeuvrability was investigated by taking
three factors into conscideration: the draft, the trim and the immersed rudder area.
Inoue et al. (1981a) proposed a method for estimating the linear derivatives of
the force acting on the bare hull using the nonlinear lifting surface theory and

the measured results. The linear and nonlinear derivatives in the mathematical



models for manoeuvring were examined semi-empirically by both using the model
tests of various kinds of ships and applying a theoretical approach. Kijima et al.
(1993) apﬁlied the prediction method of ship manoeuvring characteristics for zig-
zag manoeuvre and free running model test. Compared with the model test results,
the predicted ship manoeuvrability has a very good agreement with experimental

results.

1.4 Experimental Methods

Captive model tests in tanks are now carried out using a planar motion mechanism
(PMM) or a rotating arm. The model is tested over a suitable range of important
variables such as drift angle, yaw rate, sway acceleration, yaw acceleration, propeller
RPM and rudder angle, and the results are analyzed to obtain the hydrodynamic
coeflicients required in the equations of motion; see Crane et al. (1989). Yang et al.
(1992) presented a formula for calculating the hydrodynamic coefficients for ships
by analyzing a database using multi-variate regression techniques. The difficulties
in the use of the experimental methods lie in both the high expense of model tests

and the unavoidable viscous scale effects.

1.5 Parametric Identification Methods

Parametric identification determines an estimate of the parameters in the mathe-
matical model which are related to the observed data from a given input/output
data record of experiments or simulations. The unknown parameters of the model

are determined by choosing them to optimize the performance index that measuies



how well the mathematical model represents the observed data. The values of the
parameters are continuously updated by an algorithm that minimizes the error

functions.

Gill (1975) suggested a method of predicting the coefficients in the equations of
- motion from standard full-scale ship manoeuvring trials. The equations of motion
used were applicable over a wide range of forward speeds. The coefficients in the
equations may be obtained either from model tests (constrained or free-sailing) or
from full-scale ship trials. The technique used in Gill {1975) was based on standard
full-scale manoeuvring trials, namely, spiral manoeuvres. The procedure for iden-
tifying the coefficients was a mixture of output error and equation error methods.
The spiral test results were used to establish certain relationships among some of
the coefficients. By varying these unknown coefficients, different solutions of the
equations were obtained, and these were compared with the measured output from
the trials results of the spiral test. The solution closest to the measured output

(i.e. minimum output error) indicated the best coefficient values.

Before the process of the identification in Gill (1975) was started, some pre-
coefficients could be estimated fairly accurately, others could be estimated to within
certain limits, and furthermore, relationships between some coefficients were estab-
lished. This process reduced the range and number of variables from 12 to 4 or 3,
which immediately simplified the actual matching problem. All the pre-coefficients
could be estimated from standard resistance and propulsion model experiments,

from the principal dimensions of the ship, or by using empirical formulae estab-

Cn



lished from constrained model tests by rotating arm and oblique tow tests, or

planar motion mechanism experiments.

The final equations were verified by other trials, and for this purpose some tran-
sient manoeuvres should be performed. Kempf manoeuvre was an obvious choice
and it was desirable to perform a number of manoeuvres using different rudder
anglés and heading angle changes. The set of equations described the manoeuvring
properties of the directionally unstable VLCC fairly accurately and would be emi-

nently suitable for programming into a real-time ship handling simulator.

Abkowitz (1980) and Abkowitz and Liu (1988) applied the system identification
analysis technique to specified ship trial maneuvers and provided a way of "mea-
suring” the hydrodynamic coefficients of the ship and helped to verify proper form
of the equations of motion used in simulation. The system identification programs
using the extended Kalman filter technique were developed for direct application to
realistic ship maneuvers wherein the ship may suffer large speed loss and significant
currents may exist. The identification process compared”the measured output with
the given input. The input to the system identifization process was both the rudder
deflection and the resulting motion responses, while the output was the identified
parameters of the simulation model. The motion variables in case of u, v, r, and ¥
as functions of time were compared with the measured variables and the difference
was the error in the estimation. In the extended Kalman filter (EKF) approach
of Abkowitz (1980), the hydrodynamic coeflicients were treated as additional state

variables, but must be constant in time.



Full-scale trials of ship maneuvers were carried out and the results were ana-
lyzed using the identification programs. Those maneuvers performed specifically for
system identification purposes were mild zigzag maneuvers (10-degree rudder/ 10-
degree heading), moderate zigzag maneuvers (20-degree/ 20-degree), offset zigzag
(5 to 25 to 3-degree rudder), and tight turning circles of 35-degree rudder. This
system identification procedure has been successfully applied to the maneuvering
trials in deep and shallow water. When the identified valucs of the coefficients were
used to simulate the trial maneuvers, very good agreement was obtained between

the simulated motion responses and those measured during the ship trials.

Trankle {1989) used Marine Coefficient Identification System (MARCIS) to es-
timate the coefficients for the nonlinear hydrodynamic model in the manoeuvring
motions. The complete sysi::m identification method used to process raw sensor
data to determine hydrodynamic coefficient estimates had two steps: filtering and
paver.ster estimation. Filtering useti an extended Kalman filter to compute esti-
ﬁlafes of vessel velocity and acceleration. These values were used as input to the
process of hydrodynamic parameter estimation. The unknown parameter values
were adjusted using a nonlinear optimization procedure to minimize mean square

error between actual measurements and simulated measurements.

The MARCIS package functioned effectively throughout the trials, recording
all of the desired data channels with no data dropouts. All of the desired system

identification results including estimation of both linear and nonlinear aspects of



the livdrodynamic model were produced using MARCIS processor alone.

The methods described above are time consuming and do not provide accu-
rate estimates for the individual coefficients. The main difficulty arises from the
large number of the parameters to be estimated. It is well known that in system
identification procedures, the more parameters that need to be identified from the
same pieces of data, the less likely that successful identification will be achieved.
Abkowitz and Liu (1988). Another problem that these techniques suffer from is
the cancellation effect. Compensating errors in two or mor= of the coefficients may
result in a reasonable prediction of the motion response for a certain manoeuvre,
Abkowitz (1980). The method suggested in this thesis tries to avoid these difficul-

ties.

1.6 The Scope of This Study

A new parametric identification approach is presented in this thesis. It is assumed
that the hydrodynamic forces or moments are composed of two components: a
linear part and a lumped nonlinear part. The former is the linear terms in the pre-
vious Taylor series expansions and the latter is made up of all the nonlinear terms
in the remaining Taylor series expansion. The linear part can be estimated using
semi-empirical methods as in Clarke et al. (1982) and the lumped non-linear com-
ponent can be obtained using a neural network technique based on full scale ship
trial data. Finally, the relationship between the lumped non-linear functions and
the variables of surge velocity, sway velocity, vaw rate and rudder angle are iden-

tified. The approach enables us to obtain the values of the hydrodynamic forces.



Velocities can then be determined in real time. Therefore. the on-line prediction of

ship trajectory can be available for the purpose of ship navigation.

The present approach shares the common advantages of the parametric identifi-
cation methods (Had<ara and Sabin, 1993). These are: 1) elimination of the scale
effects. 2) The accuracy of coefficient can be checked based on the measured ship
response. 3) The cost is low because the input data to the identiﬁf,aﬁc;n process
are from measuring instruments usually found on board ships. 4) If the identifica-
tion process is obtained on-line (real time), the trajectory can then be predicted to
help the captain in steering his ship. Moreover, the new approach can effectively
avoid the cancellation effects of coefficients by employing only two parts {linear and
nonlinear) in the expression of the hydrodynamic forces. This is because a fewer
number of hydrodynamic coeflicients are being predicted. With respect to the re-
quired data, this new approach needs only one set of surge, sway and yaw velocities
from one 35 degree zigzag manoeuvre and the time lag for measuring data is about
2 to 5 seconds. This makes the required full scale trials much simpler than that in

Abkowitz (1980) and Gill (1975). More details can be found in chapter 4.



Chapter 2
Neural Network Model

2.1 Static Neural Networks

The technique of neural networks has a wide applications in performing a variety of
computational tasks including sequence recognition, trajectory following, nonlinear
prediction, and system modeling. The network models are partitioned into two
basic categories: static networks and dynamfc networks. In this thesis, the static

neural network model is used to predict nonlinear functions.

Static networks, of which the multi-layer perceptron (MLP) is the most widely
used, are characterized by node equations that are memoryless. That is, their out-

puts are functions only of the current input, not of past or future inputs or outputs.

Static networks implement nonlinear transformations of the form O = G(I),
where I and O represent the input vector with &in dimensions and the output vec-
tor with kon dimensions, respectively. The network structure used in this thesis
consists of an input layer, a middle layer and an output layer of neurons or nodes.

This is usually referred to as a two-layer network. Figure 2.1 shows the details of
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the neural network structure. -

MIDDLE LAYER
M net+1

INPUT

I kin+1

1

Figure 2.1: Structure of Neural Networks

The neural network will be modeled as the sum of weighted sigmoidal functions

(Hornik et al., 1989). The input to the ith node in the middle layer consists of a

weighted sum of the kin+ 1 components in the input vector. This can be expressed

as

kin+1
Mi= 3 Wi+

_,_

where [xine1 = 1.

The input to the ith node in the middle layer is applied upon by a nonlinear

11



transformation, also called a squashing function. We will use the following trans-

formation:

1

The reasons for the choice of this form for the squashing function are that it is
differentiable and it can be easily differentiated; thus, it makes the back-propagation

algorithm easier to implement. The derivative of the squashing function is given as

IO - 1w - 5 23)

No squashing function is applied at the output layer. It is common practice to
use linear output nodes since this tends to make the learning easier. The output of

the kth node in the output layer is given as

net4l

O = Z By x f(M;) (2.4)
i=]

2.2 Nonlinear Function Approximation

The nonlinear function approximation can be carried out using a neural network
(Hornik et al., 1989). The function is approximated by a combination of net squash-
ing functions from each of the net nodes in the middle layer. Let's consider a net-
work which has one node in its input, output and middle layers. Equation 2.4 is

then reduced to

O = Boy + By f(Wildy + Way) (2.3)
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Figure 2.2: One Input/Output, One Middle-layer Node Mapping

Figure 2.2 shows the relationship between the input and output of this simple
network. The bias weights W5, and B, change the position of the sigmoid in
the horizontal and vertical directions while Wy; and By change the scale of the
sigmoid in the horizontal and vertical directions. Hinchey (1994) stated that in the
general case, a map of nonlinearity is formed by patching together in a hyperspace
many scaled and shifted squashing functions. Because of the continuity of the
sigmoid function, the approximation is smooth and continuous. The numerous
alternatives to the sigmoid include tanh(a), er f(a), a/(1 + |a|) etc. It was shown
in Cybenko (1989) that a 2-layer network which contains one middle layer can form

an arbitrarily close approximation to any continuous nonlinear mapping.

2.3 Steepest Descent Search

In order to carry out the transformation of O = G(I), the most common learning
algorithm for MLP neural networks uses a gradient search technique to find the

network weights that minimize a criterion function. The criterion function to be
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minimized is the sum-of-squared-error function given by

kon

E=Y (O:—Te) (2.6)

k=1

where T} is the kth target data corresponding to the kth output node. Substi-

tuting equation 2.1 into equation 2.6 gives

kon net+l
E = Z( Z B f(M;) —T:)? (2.7)

k=1 =l
where T} is considered to be constant. So, the sum of the squared errors, E,
depends on B;; and f(M;). Consider a small variation in a specific By and a

specific f{M;), the variation in the sum of squared errors, E, is given as

05} .
- -éBik 6B + =22 §1F(My)] 2.8)

o8 Eia)

Using equations 2.1, 2.4 and 2.6, one gets the following form

kin+1

SF(M)] = 8[F( 3 Wy=I)

j=1

_ 9f
= g Wi (2.9)

where in equation 2.9, the I’s are considered constants. Then equation 2.8 can

be rewritten as

oE 0E 0Of

°F = 58 B+ T Franiaw;

§W; (2.10)
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According to the principle of steepest descent. the weights of the (n+1)th iter-
ation In training are obtained from the weights of the nth iteration in the following

fashion:

OF ,
Bix(n+ 1) = Bun) — M5B (2.11)
oF 0o
Wij(n+1) = Wi;(n) - rT] 895-- (2.12)
ij

where 7 is the training rate.

2.4 Back-propagation Algorithm

The derivatives in equation 2.11 and 2.12 can be easily obtained through a number
of manipulations. The final forms of the derivatives will be directly related to the
error Iof a single node in the output layer, Ey = Oy — Ti. This algorithm is known
as -the Back-propagation algorithm. For the derivatives with respect to Bj., one

gets

8E O[T (Or — Ti)?)
OBy 0Bix

a0
= 20 —Tk)aB:

(2.13)

where the target data T} is considered to be constant. Substituting equation

2.4 into equation 2.13 gives



80k ATt By f(Mi)
@B,—k - aBik
= S (2.14)

Combining equations 2.13 and 2.14 gives the form for the derivatives, a—af:, as

.3_33% = 2(0x — Te) f (M) (2.13)

‘For the derivatives with respect to W;; in equation 2.12, it can be worked out

as follows

8E of _ {Zfn(0«—~TW)?%) of

of oW,; af oW;;
_ 80, oOf
= 2(0r ~T) 5 oW, (2.16)
where T} is a constant and
90r _ O{TIt By x £(My))
af Of (M)
= By (2.17)
Using equations 2.1, 2.3 and 2.16, one gets
af _ Of(M;) oM,
oWy —  OM;, OWy
O{TEmH Wi, + I}
= M _ 7\/1_ J= J M
M;(1 — M) oo
= JM;(I “T"%;‘W{)Ij (2.18)
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where Iis are constants. Finally. an expression for the derivatives of E with

respect to W; can be obtained as

OE 8f VR A A T .
37w = 2%~ T BuMi(l = M)+ (2.19)

Equations 2.15 and 2.19 enable us to compute the derivatives of the sum-of-

squared error, E, with respect to each weight in the neural network from the output

layer backwards.

2.5 Empirical Rules to Improve Network Train-
ing

The learning rate in equations 2.11 and 2.12 can be chosen in different ways. It

can be the same for all weights in the network, the same for all weights in the same

layer, or it can be different for each weight in the network. In general, it is J::licult

to determine the best learning rate, but a useful empirical rule is to make the‘rate

fof each node inversely proportional to the average magnitude of vectors feeding

into the node. If the magnitude of the rate is chosen too large, the iteration of

steepest descent search cannot converge towards the global minimum of the error,

E.

A simple approach that works quite well in practice is to add a momentum term
of the form a(W({n) — W(n — 1)) to modify the updated weights, where 0 < a < 1
and n is the nth iteration. The weight updating equations can thus be rewritten as

follows:
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B,-k(n + 1) = B,-k{n) — Uég—;:;‘ + a(B;k(n) - B;k(n - 1)) (2.20)

OE 0Of

Wij(n +1) = Wij(n) — "5F W,
ij

+ a(Wi;(n) — Wi(n — 1)) (2.21)

The momentum term modifies the current search direction by a weighted aver-
age of the previous direction, and helps in keeping the weights moving across the
flat portions of the performance surface after they have descended from the steep

portions (Hush and Horne, 1993).

With regards to the stopping rule of the search algorithm, the process of com-
puting derivatives and adjusting weights is repeated until a minimum is found.
But, it may be difficult to terminate the algorithm automatically. There are sev-
eral stopping criteria that may be considered. The first is to use the magnitudes
of the derivatives as a criterion. One can terminate the search when the magni-
tudes of the derivatives are suﬁicieﬁtly small. Another criterion for terminating the
search is to set a fixed threshold for the error. Thus, the search is terminated when
the error reaches a magnitude less than the preset threshold value. However, this
requires somé knowledge of the acceptable minimal values of the error. A third
method would be to terminate the search when a fixed number of iterations have
been performed. There is little guarantee that it will stop the algorithm at the ex-
act minimum point. Still a fourth method is to use the method of cross-validation
to monitor the generalization performance during learning. Typically, two sets of

data are prepared. One is a training set used for training the network, the other is
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a test set for measuring the generalization performance of the trained network.

In t.lvlis thesis, the last three methods are combined together and the results
show that this combination is helpful and robust. Before the network is trained, a
set of training data and a set of test data are prepared. During the process of data
training, an estimated number of iterations is set. After the iteration is finished, the
error is checked to determine if the next iteration is necessary. If the error is small
enough. the vt.raining task will be completed and the trained network will be used
to simulate a nonlinear function. Based on these functions, a set of data, say, surge
velocity, sway velocity and yaw rate will be calculated using numerical integration.
These data will be compared with a set of test data to check how well they fit with
the test data. If they fit well, it indicates a good generalization performance of
the network and a successful prediction of nonlinear function using neural network.
This is a trial and error process and it requires one’s wits and patience. Details are

in chapter 4.
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Chapter 3

Numerical Simulation of Ship
Motions

The application of numerical simulation will provide a controlled test for checking
the validity of the proposed method by comparing the results with the ones ob-
tained from simulation. The set of surge velocity, sway velocity and yaw rate from
different simulations of zigzag manoeuvres are used for training and validating the
neural network model in this thesis. The simulations of the ship turning and spiral
manoeuvres are used to check the generalization of the proposed model trained
from a zigzag manoeuvre. The hydrodynamic coefficients used in simulation are
also employed to check the estimated coefficients as identified by a multi-variate

regression using the neural network results.

3.1 Ship Motion Equations

Numerical simulation of ship manceuvring motion is based on ship motion equa-
tions. The equations of ship motion describing ship manoeuvres in the horizontal
plane can be written with respect to a system of coordinate axes fixed in the ship.

This system will be denoted ozyz, where the origin of the coordinates will be at-
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tached to the center of gravity of the ship. The ship trajectory should be referred
to a global coordinate system which is fixed relative to the earth. This system is

denoted oxpypzp. The relationships between the two axes are given by

Tg = ZIcosy — ysiny (3.1)

Yo = ISinY + ycosy (3.2)
Figure 3.1 shows the two coordinates systems. The most frequently used ship

9 Xo

‘\ Yeo

X0
Figure 3.1: Coordinate Systems
motion equations in horizontal plane are a set of three coupled first order nonlinear

differential equations that describe the surge, sway and yaw motions of the ship.

in Crane et al. (1989), these equations are expressed as
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Surge . (A - ,Y,_,)u = f[ (u._ v. T, 53) (33)
Sway: (A-=-Y)o—Yir = fo(u,v, 7, 6g) (3.4)

Yaw: =N+ {I,— N;)r = fa{u,v,r,6g) (3.3)

where u, v, r and ég are surge velocity, sway velocity, vaw rate and rudder
angle, respectively. A dot over the variable denotes differentiation with respect to
time. A is the mass of ship and I, is the mass moment of inertia of ship about the
zg-axis. fi, f2 and fj are the hydrodynamic forces and moments acting on the ship
in the surge, sway and yaw modes, respectively. X, Y and N are the surge force
in x-direction, the sway force in y-direction and the yaw moment about z-axis. A
subscripted variable designates the derivative of the variable with respect to the

subscript.

The hvdrodynamic forces f, f» and f3 are functions of u, v, r, 5 and their time
derivatives, the propeller thrust and its velocity. These forces can be expressed in

their Taylor series expansions as follows:

filu,v,7,8g) X0+ X, 6u + 1/2X 6 + 1/6 Xy bu®
1/2X,00 + 1/2X 12 + 1/2X556% + 1/2X 0?60
1/2X,mr26u + 1/2X,;5u6236u + (.Xw + A)‘UT

Xosvbp + X,srbp + Xumrrdu + X5, v056u

+ + + 4

Xrsurpbu (3.6)
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folu,vor,6g) =

+ + + 4+ o+

fa(u,v,7,6R)

+ o+ + o+ o+

Yo + ¥.26u + Y2, 6u° + Y,u

1/6Yeent® + 1/2Y,, 01 4 1/2Y 55063 + Y véu
1/2Y, 0 vét® 4 (Y; — Aug)r + 1/6Y,r3 4+ 1/2Y 007
1/2Y,5516% + Yiurbu + 1/2Y, 164> + Yisbg
1/6Ys5555 + 1/2Y5,,0pv° + 1/2Y5,, 612 + Y5, 6560

1/2Y5u,6R0U” + Yirsorde (3.7)

NO 4 NO6u? 4 N 6u% + Nyu

1/6Nuust® + 1/2Nyerur? + 1/2N, 55065 + Noyvéu
1/2N,0ub8? + No7 + 1/6 Nyt + 1/2N,y102
1/2N,5576% + Npurbu + 1/2Npuréu® + Nsbp
1/6N5556% + 1/2N;s0u86 0% + 1/2N5,.6p7r2 + Ny, Spbu

1/21V5uu636U2 + IVU,.,;UT‘GSR (38)

where ug is the ship approach velocity and du = u — u,.

Substituting equations 3.6 to 3.8 into equations 3.3 to 3.5 and decoupling them

gives

= filu,v,7,6R)
T (A-X,)

23



. (Iz - lVi')f2(ue v, T, 53) + },r"f«'i(uev'.rs 6R)
VNS A A AR A Y

(3.10)

s (A — Y;'J)f3(uavsrs ‘5R) + *[Vi'f2(ua v, T, 53)
r= (A —Y)(I. - V) - NoYs (3.11)

3.2 Zigzag Manoeuvre Simulation Procedures

The zigzag manoeuvre is also known as the Kempf overshoot or "Z" manoeuvre.
The results of this manoeuvre are indicative of the ability of a ship’s rudder to
control the ship. Moreover, the results depend somewhat on the stability charac-
teristics of the ship as well as on the effectives of the rudder motion. The typical

procedure for conducting the zigzag manoeuvre is given as follows (Gertler, 1959):
(a) Steady the ship on a straight course at a preselected approach speed, up.

(b) Deflect the rudder at maximum rate to a preselected angle, say 20 degrees,

starboard, and hold until a preselected heading angle, say 20 degrees, is reached.

(c) At this point, deflect the rudder at maximum rate to an angle of 20 degrees,
port, and hold until the heading angle reaches 20 degrees at the side of port. This

completes one cycle of zigzag manoeuvre.

(d) If a zigzag test is continued, deflect the rudder again at maximum rate to

the same angle as that in step (b). This procedure can be repcated through the
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third, the fourth cycle and so on.

3.3 Results of Zigzag Simulation

The data for a Mariner Class ship given in Crane et al. (1989) are used to generate
the simulations. The particulars of the ship used to obtain the simulations are

shown in Table 3.1.

Table 3.1: Ship Principal Dimensions

Length | Beam Draft Block Coef. | Velocity Rudder Rate
1324 m | 21.763 m { 8.138 m | 0.600 7.614 m/sec | 2.5 deg/sec

The hydrodynamic coeflicients needed to calculate the hydrodynamic forces f,
fo and f3 in equations 3.6 to 3.8 are given in Table 3.2, taken form Crane et al.
(1989). The velocities, u, v and r are calculated by applying a fourth order Runge-
Kutta integration method to equations 3.9 to 3.11. Performing the integration over
a selected time period will give a set of simulation data for u, v and r. The velocities
are integrated once more to obtain a trajectory of the ship. The trajectories are

calculated using the following equations:

t-4t

() = (0) + Z r(7)6t (3.12)
t—dt

zoe(t) = 206(0) + Z{u T)cogh(r) — v(r)siny(r)}6t (3.13)
t—4t

Yoc(t) = yog(0) + Y {v(r)cosw(r) + u(r)sinp(r)}6t (3.14)
=0
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Table 3.2: Hydrodynamic Coeflicients of a Mariner Class Ship

Coefficients | Values Coeflicients | Values Coefficients | Values
{X-equation) (Y-equation) (N-equation)
A-X, 0.17700 | A =Y, 0.32700 || N; 0.00221
X. -0.02530 || Y -0.00077 || I, — N; 0.01750
Xuu 0.01896 || Y, -0.24400 || N, -0.05530
Xouu -0.01302 || Yyeo -10.2120 || Nypy 2.07400
Xy -0.37800 || Y. - 0 Noyrr 0
Xer 0.01272 || Yiss -0.00160 || Nyss 0.00528
Xss -0.04000 || Y.. 0 Ny 0
Xvuu 0 I/tmu 0 Arvuu 0
Xeru 0 Y.— A -0.10500 || N, -0.03747
Xééu 0 1/r':"r 0 Nrrr 0
Xor + A 0.16800 || Vi 6.46000 || Nyyy- -2.31600
Xos - 0.01960 || Y45 0 N.ss 0 -
Xrs 0 Yo 0 Ny 0
Xuru 0 Y’ruu 0 N‘run 0
Xosu 0 Y 0.05860 || Ns -0.02930
Xisu 0 Ysss -0.05850 || Nsss 0.02822
A0 0 Ysoo 0.50000 || Nsy, 0.20640
Ysrr 0 Ar&rr 0
Y5u 0 Nsy, 0
Y5uu 0 NJuu 0
Yvr6 0 er& 0
Y'Y -0.00080 If NV 0.00059
Yo 0 A 0
Y’ 0 NU 0

uu
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where 2o (). yog(t) are the instantaneous coordinates of the path of the center
of gravity of the ship relative to the fixed set of earth axes. ¥(¢) is the instantaneous

orientation of the ship.

It should be mentioned here that tlic process of rudder’s deflection can be sim-

ulated in real time as follows

Sr(t) = bg(to) until t >t (3.13)
Sr(t) = br{te) + rate(t — to) until Sp(t) = Sreonst (3.16)
then (SR(t) = 63,:0“5: (317)

where 6g is rudder angle, rate is rudder turning rate snd tp is the time point

from which rudder starts to turn. 8pconse is the selected rudder angle.

The results of simulation of 20-20 and 35-35 degree zigzag manoeuvres are shown
in Figures 3.2 to 3.7. The velocities from the 35-35 degree zigzag manoeuvre will
be used to train neural netwerk models for predicting other different ship motions.
The results from the 20-20 degree zigzag manoeuvre will be compared with the
outcome of neural networks to check the generalization of this model. In addition
to using a 20-20 zigzag manoeuvre, a 25 degree turning circle (starboard) will be
simulated in a similar way. The velocity and the trajectory of the 25 degree circle
will provide an alternative test to check the validity of the generalization of this

model.
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Figure 3.2: Surge Velocity of 20-20 and 35-35 degree Zigzag Manoeuvres
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Figure 3.3: Sway Velocity of 20-20 and 35-35 degree Zigzag Manoeuvres
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Yaw Rate ~ Time
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Figure 3.7: Ship Heading and Rudder Command of 20-20 Zigzag Manoeuvre
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3.4 Ship Turning Simulation

All ship manoeuvres involve turning. The forces and moments produced by the
rudder and the response of the ship to these forces involve a transient and a steady
turning phases. The motions in these two phases are governed by the ship motion
equations 3.3 to 3.5. The same ship where the hydrodynamic coefficients are shown
in Table 3.2 is used to simulate the turning circle manoeuvre. Figures 3.8 to 3.11
show the velocities and trajectory during the ship turning manoeuvre with a rudder

angle of 25 degrees, starboard.

Surge Velocity ~ Time (25 deg Turning, Starboard)
8 T T —
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Figure 3.8: Surge Velocity of 25 degree Turning (Starboard)
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Sway Velocity ~ Time (25 deg Turning, Starboard)
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Figure 3.9: Sway Velocity of 25 degree Turning (Starboard)

Yaw Rate ~ Time (25 deg Tuming, Starboard)
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Figure 3.10: Yaw Rate of 25 degree Turning (Starboard)
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Trajectory Y ~ X {25 deg Turning, Starboard)
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Figure 3.11: Trajectory of 25 degree Turning (Starboard)

3.5 Ship Spiral Manoeuvre Simulation

The direct or Dieudonne spiral manoeuvre is a definitive ship trial (Dieudonne,
1953) which identifies the directional stability characteristics of the vessel. The

manoeuvre consists the procedures as follows:

(a) Initially, the ship is kept on a straight course at a constant speed. After
about 1 minute, the rudder is turned to an angle of, say, 20 degrees, starboard.
The rudder is held until the rate of change of yaw angle maintains a constant value

for about 1 minute.

(b} The rudder angle is then decreased by a small amount, say, 5 degrees and

held fixed again until a new yaw rate is achieved and is constant for 1 minute.
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(c) The foregoing procedure is repeated for different rudder angles changed by
small increments from large starboard values to large port values and back again

to large starboard values.

The numerical measure obtained from the above spiral manoeuvre is the steady
vaw rate as a function of the rudder angle. The spiral manoeuvre simulation is
obtained using the ship and its hydrodynamic coefficients as shown in Table 3.2.
The maximum rudder angle of this spiral manoeuvre is 20 degrees, starboard and
port. The small increment of the rudder in this manoeuvre is 5 degrees. The time
interval between consecutive rudder deflections are 60 seconds. Figure 3.12 shows
the relationships between steady yaw rates and rudder angles in the 20-degree spiral
manoeuvre. The simulation gives a sloped loop in Figure 3.12 indicating a slight

directional instability of the ship.

34



Yaw Rate ~ Rudder Angle
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Figure 3.12: Yaw Rates and Rudder Angles in 20 degree Spiral Manoeuvre



Chapter 4

Parametric Identification Using
Neural Networks

4,1 Mathematical Model

Equations 3.6 to 3.8 are usually used to calculate hydrodynamic forces acting on
the ship during ship manoeuvres under the condition that the hydrodynamic coef-
ficients are known. The coefficients in these equations can be obtained by different
approaches as mentioned in chapter 1. Identification of the individual coefficients
in these equations is difficult, Abkowitz (1980). Instead of identifying individual
hydrodynamic coefficients in equations 3.6 to 3.8, the new method that we will de-
velop in this thesis is to identify the hydrodynamic forces f,, f> and f3 in equations
3.6 to 3.8 using experimental results obtained from full scale trials. To test this
method, the results of numerical simulation of ship motions will temporarily take
the place of the experimental data required in this method. For the purpose of this
work, we are going to express the hydrodynamic forces and moments as the sum
of a linear part and a nonlinear part. The linear part of forces will retain their

Taylor series expansions while the nonlinear part will be lumped together in one
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term. known as lumped nonlinear function. The surge force f|, the sway force f;

and the yaw moment f; will be written as follows

filu, v, r, 65) = Xobu + 1/2X556% + g1 (u. v, 7, 85)

fg(u.;v.,r, (53) = YU'U + (Y;— - A’U.o)?’ + Y;s(SR + gg(u,v, 1‘,6;3)

f3(U, v, T, 63) =-_-\,I'U.U + JV,.T -+ 1\2563 + 93(us v, T, 6R)

(4.3)

where g, go and g3 are lumped nonlinear functions in surge, sway and vaw

moces and they are dependent on the surge velocity u, the sway velocity v, the yaw

rate r and the rudder angle ég.

Compared with equations 3.6 to 3.8, g1, g2 and g3 corresponc to the nonlinear

terms in the forms as

o (’U., U, T 6R)

gg(u, u, T, 6;{) =

+ + o+ o+ o+

= X% 4+1/2X,6u% + 1/6X pubu®
1/2X,00% + 1/2X,, 72 4 1/2X ,puv?bu
1/2X rur26u 4+ 1/2X 55,6560 + (Xor + A)vr

Xosvbrp + Xosrbr + Xyrevrou + Xys,végbu

+ o+ + o+

X surbrbu

Yo + Y06u + Y2 6u°

1/6Yuv® + 1/2V,, 072 4 1/2Y 5506% + Y, wbu
1/2Y,uuvbt® + 1/68Y,r 1 + 1/2Y,,r0®

1/2Y,4506% + Yiurbu + 1/2Y,urbu’

1/6Y3566% + 1/2V5,,6p0% + 1/2Y5,.6p7% + Yiubpbu

1/2Y5,,6p6u? + Y rsvrbp
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galu,v,7,65) = N+ N%u? + N 6u?

1/6N,,0° + 1/2Nyvr? 4+ 1/2N,5506% + Nyyvbu
1/2N,uu 6t + 1/6Nppor 4 1/2N,r0°
1/2N,s576% + Npyréu + 1/2N, réu?

1/6N;556% + 1/2N5,6p0® + 1/2N5 6572 + Nsubrbu

+ + o+ o+ o+

1/2N,;w636u2 + N, svrép (46)

It should be mentioned that the second order term 1/2X;;6% in the surge equa-
tion 4.1 was separated from the nonlinear function g;. This second order term is
quite significant because there is no first order term X8z in the surge equation. In
equations 4.1 to 4.3, the linear part gives a qualitative description of ship manoeu-
vres while the nonlinear part plays the role of the refinement of the quantitative

description of these manoeuvres.

The linear coefficients in equations 4.1 to 4.3 will be estimated using Clarke’s
formula, Clarke et al. (1982). The lumped nonlinear functions g;, g and g3 will be

identified through a neural network approach.

4.2 Estimation of the Linear Part

To identify the hydrodynamic forces f, f» and f3, we need to estimate the linear
derivatives of hydrodynamic forces in equations 4.1 to 4.3. These can be obtained
by doing plannar motion mechanism or rotation arm ship model tests. In this

thesis, we use Clarke’s Formula, Clarke et al. {1982), to obtain estimates for these
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derivatives as follows

Y, = —w(T/L)*(1 + 0.16CB/T — 5.1(B/L)?) (+4.7)
Y; = —n(T/L)*(0.67B/L — 0.0033(B/T)?) (4.8)
Y, = —m(T/L)*(1 + 0.40Cs B/T) (4.9)
Y, = —a(T/L)*(-1/2 +2.2B/L — 0.080B/T) (4.10)
Ys = (A/L/T)(T/L)const  (Note : const = 3.0) (4.11)
Ny = —n(T/LY*(1.1B/L — 0.041B/T) (4.12)
N; = —n(T/L)*(1/12 4+ 0.017CsB/T — 0.33B/ L) (4.13)
N, = —m(T/L)*(1/2 4 2.4T/L) (4.14)
N, = —x(T/L)*(1/4 +0.039B/T — 0.56B/L) (4.15)
Ns = —1/2Y; (4.16)

where L, B, T and Cp are ship length, breadth, draft and block coefficient. A
is the rudder area. In this work, we take the ratio of A to LT to be 0.02. All of
the above derivatives are nondimensionalized using the system of density p, length
L and velocity up. In this work, we use p, L, T and ug system and transform the
nondimensional coefficients into p, L, T and ug system by multiplying the above
formulae with L/T. The derivative X, is estimated by 5% of the displacement of
the ship. X, is chosen in the range of -0.02 to -0.05. It is very difficult to get
the exact estimation of X, because it depends on so many factors as the propeller
properties, the interaction effects of ship and propeller and the rotation speed of
propeller etc. But, the errors of the estimation will not affect the accuracy of the
neura) network model. According to equations 4.1 to 4.3, the left hand sides of

equations are hydrodynamic forces and the right hand sides are composed of two
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parts: the linear part and the lumped nonlinear functions. If some errors occur in
the estimation of the liner part, the lumped nonlinear part will offset these errors
to keep the left hand side forces still correct. Therefore, the errors in estimating

the linear coefficients will be absorbed in the nonlinear components of the forces.

As to X5, we have the relationship
X = —Ytandg (4.17)

where X is the x-component of the rudder force. Y is the component of the
rudder force normal to the ship center plane when the rudder is turned at an angle

of 8p degrees. Equation 4.17 can be rewritten as follows

X = =Y tan&R
= —Ysdptanbp
= —Yibp(6r—1/66%+ ... )

= —Y;6% +1/6Y36% — ... (4.18)

where Yj is the derivative of Y with respect to §. From equation 4.18, it is
easy to find that X5 is equal to —2Y; where the nondimensional Y; in Clarke et al.

(1982) is as follows
A

Ys=17

* 3.0 (4.19)

N

where A is the rudder area.

So X5 will end up in the following form:

Xss = —2Y;
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Figure 5.1: Velocity Space of 35-35 deg Zigzag and 20-20 deg Zigzag
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Figure 5.2: Velocity Space of 35-35 deg Zigzag and 25 deg Turning
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entiation algorithm was used to obtain the accelerations. Figures 4.4 to 4.6 show
the numerical results of the surge, sway and yaw accelerations of the 35-35 degree
zigzag manoeuvre. Witil the coeflicients in equations 4.21 to 4.23 estimated using
Clarke’s Formula (Clarke et al., 1982), the three lumped nonlinear functions g1, g2
and g¢a in equations 4.21 to 4.23 corresponding to the set data of u, v, r and ég can
be obtéined. This will make it possible to employ a neural network to approximate
the relationship between u, v, r, ég and ¢,, g2, g3- In this neural network model,
u, v, r and 6 are used as input data to the network, while g;, g, and g3 are used
as target data for the output of the network. After training the network using
different data samples, we will finally have a functional mapping between u, v, r,

Sp and g1, g2, g3, which can be used to predict ship manoeuvring motions.

4.4 Training Static Neural Networks

4.4.1 Choosing Training Samples and Setting Up Network

Generalization in neural networks is a measure of how well the network performs on
the actual problem once training is complete. It is influenced by three parameters:
the number of data samples (how well they represent the problem at hand), the

complexity of the underlying problem, and the network size and structure.

The second factor is fixed because the complexity of the problem is to approxi-
mate high order multi-variate functions as shown in equations 4.4 to 4.6. As to the
structure of the network, the four input nodes are input of u, v, r and §g. The only

one output node is one of the three lumped nonlinear equations. So, three different
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networks are employed for training three nonlinear equations. As far as the number
of the middle layer nodes is concerned. it is suggested in theorv (IEEE Press, 1992a
and b) that 2n+1 would be sufficient where n is the number of inputs. Here, n=4,
so 2n+1 is 9. The larger the number of the middle layer nodes, the more squashing
functions the network can form and the more likely the true function mapping is
achieved. But, too many middle layer nodes would result in » u‘etwérk that is not
good at generalization. We set the number of the middle layer nodes to 11. How-
ever, according to Hinchey’s opinion (1994), common sense would suggest that a
mapping for even a single input / single output svstem could require thousands of
hidden neurons. The number depends only on the complexity of system. For the
work of this thesis, we set the number of middle-layer nodes to 11 and have found

that the neural network training results are pretty good. (See Figures 4.7 to 4.9)

After the size of the network is set, the issue becomes how many training samples
are required in this network. It is known that all ship manoeuvres involve turning
motions. For one specific turning, only one steady sway velocity, yaw rate and
their corresponding rudder angle are available. For generalization, many different
rudder-angle turning manoeuvres are required in the training samples. One simple
and reliable approach is to take the zigzag manoeuvre. Consider a typical zigzag
manoeuvre, see Figures 3.2 to 3.4. During zigzag manoeuvre, the rudder is turned
to a selected rudder angle, say, 35 degrees, at the rudder rate of 2.5 degree/second.
After the heading angle is reached, a selected heading angle, say, 35 degrees, the
rudder will deflect to the opposite side until 35 degrees rudder angle is reached and

so on. If the data measuring frequency is 1 per second. the data of surge, sway
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and yaw velocities at the rudder angles of 0. 2.5, £5.0, +7.5, £10.0. ..., 35 degrees
can be obtained. These data will provide sufficient information of different rudder
angle turning motions. Therefore, one zigzag manoceuvre is sufficient to provide
the training sample. The reasons for choosing 35-35 degree zigzag manoeuvre are:
1) the maximum rudder angle is usually 35 degrees and the 35-35 degree zigzag
can cover the range of rudder angles from 0 to £35.0 degrees with an interval of
2.5 degrees. 2) The nonlinear components in the hydrodynamic terms in equations
at large rudder angle zigzag manoeuvres are more significant than those at small
rudder angle manoeuvres. For training the lumped nonlinear functions, we should
consider using a large rudder angle zigzag manoeuvre to get a sufficiently large
magnitude in the nonlinear terms. Figures 4.1 to 4.3 show the difference between

35-35 degree zigzag and 15-15 degree zigzag manoeuvre.
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Figure 4.1: Comparison of Nonlinear Part in Surge Function
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Figure 4.2: Comparison of Nonlinear Part in Sway Function
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A reasonable length of measured data, u, v, r and g is sufficient to formulate
the model with good generalization. The measuring length of data of u, v, r and 8
is 6 minutes, about two cycles of zigzag motions. The data measuring frequency is 1
per second. An alternative way to do this is to use the Dieudonne spiral manoeuvre

with maximum rudder angle of 35 degrees. This is not done in this thesis.

4.4.2 Nondimensionalization of the Input and Output

To facilitate the training, we will use the dimensionless forms of input data and

target data. Their nondimensional forms are given as follows

u' = ufug (4.24)
v = v/ug (4.25)
r' = rLug (4.26)
21 = 91/(0.3pLTug) (4.27)
g2 = 91/(0.53pLTuj) (4.28)
&) = 91/ (0.5pL2Ta) (4.29)

where ¥/, ¥/, ¥/, ¢}, g5 and g} are dimensionless forms of surge velocity, sway

velocity, vaw rate and the lumped nonlinear functions.

This helps, for example, if r is adopted as input of the neural network, the
magnitude of r is very small, say, 0.01 rad/sec, and the nondimensional ' will
enlarge their values by L/ug times, i.e., 152.4/7.614 times. The magnitude of r’

will be in the range of 10~! to 10°. This makes it easier to train enlarged data in
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neural network. In another way, the huge ship surge. sway force and vaw moment
will be changed into small magnitude in nondimensional forms. These nonlinear
forces will thus be decreased from the magnitude of around 10° to that of around
10™!. See Figures 4.1 to 4.3 and 4.7 to 4.9. The nondimensionalization will greatly

improve the accuracy and the efficiency of the neural work model.

4.4.3 Training Process

Three similar neural networks are used for training g, g» and g3. Each of the three
has four input nodes, u, v, r and éz. The data of u, v, r and 65 are from the 35-35
degree zigzag manoeuvre. Eleven middle-layer nodes are employed. One output
node is used for each of the three netv‘;'orks. Target data for each of the three net-
works are calculated according to equations 4.21 to 4.23, where the accelerations
in them can be obtained either by differentiating velocities with respect to time or
by measuring them on board the ship. Figures 4.4 to 4.6 give the surge, sway and

vaw accelerations of the 35-35 degree zigzag manoeuvre.

The initial weights in these three networks are taken at random. The initial
training rate 5 is set 1072 and the number of the iteration is fixed to 6000. For each
iteration, the weights are updated by those from the previous iteration acccrding
to equations 2.20 and 2.21. The derivatives of sum-of-squared-error with respect
to every weight are given in equations 2.15 and 2.19, which is a back-propagation
algorithm. After a fixed number of iterations, we check the errors between the
target data and the network output. After the first 6000 times’ training, the er-

rors are still pretty large. Then, we set the number of iteration to 10,000 and the
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Figure 4.4: Surge Accelerations of 35-35 deg Zigzag
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Figure 4.5: Sway Accelerations of 35-35 deg Zigzag
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) x 10-3 Yaw Acceleration ~ Time
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Figure 4.6: Yaw Accelerations of 35-35 deg Zigzag

training rate to 1073. After finishing that training, we find that the errors become
smaller, but they haven’t converged to the global minimum. So, the training rate
is decreased to 107% and the training is repeated 60,000 times. At that time, the

training results become quite satisfactory. (see Figures 4.7 to 4.9)

Hinchey (1A994) postulated that for large W « I + B in the squashing function
of f(W x I 4+ B), the value of the squashing function changes slowly and the slopes
are very small; thus, steepest descent training is often very slow. After training
several thousands of times, the errors decrease significantly, but they still remain
at a certain level that may probably be a local minimum. Noise is added to the
weights to shake up the iteration by increasing the training rate from 10~% to 1073,

After shaking up the network, we restore the training rate to 107 The noise is
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used periodically to avoid converging to local minima.
Tables 4.2 and 4.3 give the weights of each of the three neural networks after

a total 6 million iterations of training. Figures 4.7 to 4.9 show the training results

after 6 million iterations.
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Figure 4.7: Trained Network Force g; and Simulation Values

The trained g;, go and g3 are then used to calculate a set of data, u, vand r
through numerical integration, see the next section. These results from networks
will be compared with the training data of the 35-35 degree zigzag. In addition
to this, the trained g,, go and g3 are also used to generate different modes of ship
manoeuvres, say, 20-20 degree zigzag manoeuvre or 25 degree turning to check the

validity of this trained neural network model. See chapter 5 for details. Only if
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Table 4.2: Trained Weights

Notation | Weights of g, | Weights of g, | Weights of g3
Wi, 6.881667e-01 | 1.124596e-01 1.445560e-01
Wia -3.944832e-01 | -7.153330e-01 | -2.026504e-01
Wi -3.927213e-02 § -3.141433e-01 | -2.895210e-01
Wia 1.328625e-01 | -1.211525e400 | 1.018099e-01
Wis -5.807726e-02 | 3.582274e-01 -1.470738e-02
W -2.488225e-01 | -9.658395e-02 | -2.212969e-02
Wa o 3.612388e-01 | 1.236665¢-01 -1.891460e-03
Was 2.930168e-01 | 2.227684e-01 4.450960e-01
Waa 3.809817e-01 | 7.343950e-01 1.628508e-01
Wa s -5.631810e-01 | 3.268214e-02 -3.2848635e-01
Wi 6.661130e-01 | -1.964452e-02 | 8.668510e-02
Wi 1.378698e-02 | -2.574852e-02 | -3.123397e-01
Wasa 2.381621e-01 | -2.938214e+00 | -4.291038e-01
Wa 4 -4.724814e-01 } -1.301846e-03 | 4.851505e¢+00
Wiz 1.035585e+00 | 1.931175e+00 | 5.937653e-01
Wa 2.416924e-01 | -3.331723e-01 | -2.162823e-01
Wao -8.350883e-01 | -5.640769e+00 | 7.046855e-01
Wais 8.619278e-02 | -3.519750e-01 | -3.534379%¢-02
Wia 3.073842e-01 | 9.035505e4-00 | -1.547367e+00
Was 2.183856e-01 | 5.283974e+00 | 9.43843%-01
W, 6.596430e-02 | 3.748139¢-01 | 5.365179€-01
Ws.2 2.319937e+00 | -4.943792e+400 | -3.47136%e+-00
Wss 5.187373e-01 | -2.324225¢+00 | 1.004732€-01
Ws. 8.867126e-01 | 1.210262e+00 | -5.075208e-01
Wi 9.101403e-01 | 7.052080e-01 | 1.020630e+00
Ws.1 3.826588e-01 | 2.684716e+00 | 1.233939e+00
Weo 7.144276e-01 | -3.650819e-+00 | -3.840159e+00
We.3 9.013611e-01 | 6.843653e-02 8.110864e-01
W4 1.115638e+00 | 9.748793e+00 | 2.627589e+00
Ws 5 5.981893e-01 | -2.510483e+00 | -2.661712e-01
Wi, 1.048308e-01 | -6.160183e-01 | -7.446582e-02
W; 2 4.564520e-01 | -3.237246e+-00 | -1.769820e-01
Ws3 4.807633e-01 | -1.897283e-01 | -8.972702e-01




Table 4.3: Trained Weights (continued)

Notation | Weights of g; | Weights of go | Weights of g3
W74 4.643421e-01 | 8.722503e-01 | 2.205615e-01
W25 3.196577e-01 -7.771210e-01 | 4.379680e-01
Wsa 1.245919e-01 -2.064622¢-01 | -5.369309%e-02
Wsa 1.681337e-01 -4.559899%¢-01 | -2.104892e+00
Wys 2.966626e-01 2.110949e-01 -1.580829e4-00
Wsa 1.904150e+00 | 9.413087e-01 7.669541e-01
Wss 1.492542e+00 | -1.514163e+00 | 8.674012¢-01
Wo 1.395203e-01 5.816624e-01 | -2.474599e-01
Wo o 1.715687e+00 | 2.860595e+00 | -2.268058e-+00
Wy s -3.235515e-01 | -3.586910e+00 | -9.999372e-01
Wy 4 5.407330e-01 3.418939e-02 5.782262¢-01
Was 1.070580e+00 | 1.895018e+00 | 7.882830e-01
Wio 1.190725e-01 -6.458673e-01 | 4.028050e-01
Wioa -1.572068e+00 | -5.328222e¢+00 | -1.200331e+00
Wios -6.974020e-01 | -3.754626e+00 | -1.791450e-01
Wioa -1.500409e+00 | -4.340130e-01 | 1.934278e+00
Wios -7.620439e-01 | 1.397392e+00 | -3.149415e+00
Wi 8.695507e-03 | -1.026031e-01 | -4.551900e-01
Wha -1.817876e+400 | -5.718252¢+-00 | 2.809314e-01
Wiis -7.909079¢-01 | 4.083211e-01 | -3.350986e-02
Wii4 3.808360e-01 -1.006815e+01 | -6.576354e-01
Wis 7.625293e-01 | 2.389434e4-00 | 3.685727e+00
By 1.6423%2e-01 3.261543e-01 1.806269¢+-00
B -2.390909e+00 | -5.411926e+4-00 | -2.776546e-G1
B, -6.168362¢-02 | -2.400292e+00 | -1.465113e-01
Bs.) 1.042998e+4-00 | 4.345065e-01 | 3.826147e+00
B; 1.271263e-01 | 4.989832e-02 | -2.857234e+00
Bs,| 1.347139¢-01 | -5.240397e-01 | -1.536862e-01
B;, 2.764921e-01 | -3.369925e+00 | 2.142906e-01
Bs 1 -7.323281e-03 | -2.489338e+00 | 1.552479¢-01
By 2.374341e+00 | 9.109346e-01 3.129434e+00
By, -1.182426e+-00 | 2.402799e-01 | -1.006095e+00
B -1.643149e-01 | -3.054061e-01 | -7.080138e-01
Bia 1.259074e+00 | -2.960220e+00 | -3.138889¢-02
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the results from the networks fit well with the test data can the training process be

considered complete.

In the process of training the data, we find that the lumped surge function g;
converges so slowly that it takes three times as long as the sway function g, and

the yaw function g3. This is caused by the dependence of surge force on (u — up).

Since there are many different order nonlinear terms in these three lumped non-
linear functions, the speed for training the neural network to map the relationship
between g, go, g3 and u, v, 1, dg is slow. For example, it takes 6 million iterations
and 10 hours of computation time to complete training the network for the function
g2. However, this is still cheaper than using the experimental methods to determine

these hydrodynamic force functions.

4.5 Prediction of Ship Motion Using Trained g,
g2 and g3

If an initial condition of u, v, r and 65 is known, the hydrodynamic forces acting
on the ship can be calculated using equations 4.1 to 4.3. Substituting equations 4.1

to 4.3 into equations 3.3 to 3.5 gives the following forms:

(A = Xo)i = X,6u + 1/2X536% + g1{u,v,7,6) (4.30)
(A =Y)o = Yir =Y, u+ (Y, — Aug)r + Ysbr + go{u,v,1,6R) (4.31)
- Nyv+ (I, — N;)# = Ny,v + N.r + Nsbp + ga{u,v,7,6g) (4.32)
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The above equations are coupled by accelerations of u, # and 7. Decoupling the

three equations gives

l_l _ ‘Yu(su + 1/2.Y§662R + gl(u, U, ‘rﬂ 6R)

@-X)) (4:33)
. - 1
T (A=Y, - N;) = N,Y;
(I = No)[You + (Y, — Que)r 4 Yybr + go(u, v, 7, 6r))
-+ Y;[N,,-v + Nyr 4+ NJ(SR + gg(u, v, 7, 63)]} (4.34)
. 1
(A =Y ){I. — N;) — V;Y;
* {(A=Y;)[Nyv + Nor + Ngbr + ga(u, v, 7, 6g)]
+ Ni[Yov + (Y, = Aug)r + Ysbr + ga(u,v,7,68)]} (4.35)

The linear terms in the above equations are estimated using Clarke et al. (1982)
formula in chapter 4. The lumped nonlinear functions ¢, to ¢z are obtained from
the three trained neural networks. The velocities, u, v and r are calculated by
applying a fourth order Runge-Kutta integration method to equations 4.33 to 4.35.
Performing the integration over a time period of 300 seconds, will give a set of
data for u, v and r, which are designated the neural network values in the figures.
According to equations 3.12 to 3.14, the velocities are integrated cuce more to
obtain a ship trajectory. Figures 4.10 to 4.17 show the velocities, trajectories and

accelerations calculated from the neural network model.
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Figure 4.10: Predicted Surge Velocity of 35-35 deg Zigzag Manoeuvre

Sway Velocny Time

1.5

- Neural Network Values
Slmulatlon Valugs

Sway Velocity (m/sec)

o] 50 100 150 200 250 300
Time (sec)

Figure 4.11: Predicted Sway Velocity of 35-35 deg Zigzag Manoeuvre



Yaw Rate ~ Time

0.025 - Neural Network Values
0.02k -, oo —Simulation Values. ~ .. ... ..
0.015Ff :
9 :
g 0.01 .......... » ..: .........
B .
20.005..
o
z 0 | :
3-0.005 } : |
_0’01 ....... B S P . :
-0.015 : : ..... o
-0.02 i '

0 50 100 150 200 250 300
Time (sec)

Figure 4.12: Predicted Yaw Rate of 33-35 deg Zigzag Manoeuvre

Heading and Rudder Angie ~ Time

60 : A - Simulation Values

5 --- Neural:Network Valueg,
@ 40k oo W R L TR [y
= : .
° ‘ Headlng
g:’ 20} :
]
s
S 0 ........................
o
©
c
© -20
o
£ : : : \
g : ‘ ; : :
i.)_40. Ruddel’Anng ...... {f - e 4

60 ; ; , ; ;

0 50 100 150 200 250 300

Time (sec)

Figure 4.13: Predicted Heading Angle of 35-35 deg Zigzag Manoeuvre

37



Trajectory Y ~ X
350 y T

250 N

n
(=]
o

-
(=]
o

Y Distance {(m})
o
o

___ Simulation Values
--- Neural Network Values

6 500 1000 1500
X Distance (m)

Figure 4.14: Predicted Trajectory of 35-35 deg Zigzag Manoeuvre
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Sway Acceleration ~ Time
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Chapter 5

Generalization of the Neural
Network Model

5.1 Choosing Test Manoeuvres

The method developed in this thesis can only be useful if the predicted model
simulates the manoeuvrability of the ship in a situation different from the one used
to train the neural network. This is usually tested by evaluating the performance of
the network on a new set of data different from the training set. A moderate zigzag
manoeuvre (20-20 degree zigzag manoeuvre), a 25 degree turning (starboard), and
a 20 degree Dieudonne spiral manoeuvre have been selected to check the validity of
the trained network model. In addition to the fact that the rudder angle commands
in each of the above test manoeuvres are unique, the surge, sway velocities and yaw
rates form a totally different path with time in the space of u, v and r, as shown in

Figures 5.1 and 5.2.
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Figure 5.1: Velocity Space of 35-35 deg Zigzag and 20-20 deg Zigzag

Surge, Sway Velocities and Yaw Rate

—_35-35degzigzag - )
0.03.00025 deg turn,starboard

Yaw Rate (rad/s)

>

4
Sway Velocity (m/s) -2 2 Surge Velocity (m/s)

Figure 5.2: Velocity Space of 35-35 deg Zigzag and 25 deg Turning
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5.2 Results of the Generalization Check

The 20-20 degro« zigzag manoeuvre predicted by the neural network model in Fig-
ures 5.3 to 3.7 fits well with the 20-20 degree zigzag manoeuvre from simulations.
When the results of the 25 degree turning (starboard) using the neural network are
comnpared with the simulation, a good agreement is reached indicating a good gen-
eralization of this model. See Figures 5.8 to 5.11. Figure 3.12 gives the relationship
h~tween the steady vaw rate and the rudder angle in a 20 degree Dieudonne spiral
manoeuvre. From the results predicted by the neural network in this figure, we can
judge that the ship has a slight directional instability as can be deduced from the

existence of a hysteresis loop.

Surge Velocity ~ Time
8 - ; 1 ?
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Figure 5.3: Predicted Surge Velocity of 20-20 deg Zigzag Manoevre
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Sway Velocity ~ Time
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Starboard Heading and Rudder Angle ~ Time
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Yaw Rate ~ Time
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Yaw Rate ~ Rudder Angle
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Figure 5.12: 20 deg Dieudonne Spiral Manoeuvre

5.3 Regression Analysis

In this section, we will show the results of a multi-regression analysis on the hy-
drodynamic forces using the software package MINITAB. The objective is to try
to identify the individual hydrodynamic coefficients in the three lumped nonlinear
functions, g, g2 and g3 that are obtained from the neural network model. The
coefficients are identified up to the third order and compared with the original ones
used for simulations. We use 301 sets of data of u, v, r, § and their corresponding
lumped nonlinear functions, g;, g» and g3, that were calculated by neural network
in the prediction of a 35-35 degree zigzag manoeuvre. Figures 5.13 and 5.14 show

the data used in the regression analysis.

We set 6u, du®, 6ud, v2, r?, 6%, v26u, r26u, 6%6u, vr, vbg, rég, vréu, vépdu,
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Figure 5.13: Lumped Nonlinear Functions g, to g3 in 35 deg Zigzag Prediction
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régbu, as the multivariables of the lumped nonlinear function g, set v. v3, vr?,
v6%, vbu, r, v, rv?, ré%, réu, r(bu)?, b, 6%, Srv?, Sgr?, Spbu, Sp(6u)?. vrép,
Su, (6u)? as the multivariables of the lumped nonlinear function g¢», and set w,
v, vr?, vk, véu, r, 3, rvl r6%, réu, r(bu)?, bp, 8%, Spv?, brr?, 6Rbu, Sg(6u)?,
vrép, bu, (6u)? as the multivariables of the lumped nonlinear function g3. du is

equal to u —ug. The values of these individual variables are calculated based on the

301 sets of data of u, v, r and d5 provided from the above neural network prediction.

Using the multiple regression approach in MINITAB gives the predictor coef-
ficients for each variable. Then, we analyze the results of regression and remove
the highly correlated variables, say, rru or 6%11, to make sure that the statistic
index p-value less than 0.05 and R-sq greater than 0.95. The p-value in this section
is the probability of getting the regression mapping model.. When the p-value is
small, the probability of obtaining the result purely by chance is small and the null
hvpothesis can be rejected. But how small does it have to be? The answer is set
by convention as something smaller than 0.05. Monk (1991) stated that according
to experience, 0.05 is small enough to prevent us from building theories on chance
results but not so strict that experiments become extremely expensive to run be-
cause very large quantities of data have to be collected in order to rule out the
possibility of a chance result. As to the R-sq, it is used to compare the deviance of
the regression equation with the deviance from the mean. The higher the R-sq is

the stronger the relationship between the variables.

The unusual observations in data should also Le removed. The unusual obser-
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vations in data are the data which deviate far from the regression mapping model.

The removal of these points helps to find the regression predictors more accurately.

Re-do the regression until the above statistical requirements are satisfied and no

unusual observation points appear. The final regression equations are obtained as

follows

g2

g3 =

-+
+

/51

= —1364.9 + 7826u + % * 18048.26u? + % * 25746u®

% (—226472)02 + -;- * 1723673872 + % x (—18208)6%

N =N

* 2862.26%6u + 16698306vr + 9086565 {3.1)

1 )

—30334 + 181042y + g (—2549592)v3 + % * (—1851248)vé5
1 "

(—39167)véu + 3* (—140688832)r6% + (—1419969)r6u

(—270453)65 + % * (—5290458)8% + % x T628766 gv? (5.2)

4127219 + 16850178v + %}- x 20248674

1 .
%  (—~17342416)u8, + (~1391213568)r + 5 * (~4781049344)r0?
(~102213384)r6u + (—30002672) 67 + % ¥ 17786337665
% ¥ 58221352 % Sv? + (—1203891)6 pbu  (33)

The nonlinear hydrodynamic coefficients can be directly obtained from regres-

sion equations 3.1 to 3.3. The linear hydrodynamic coefficients can be solved by

adding the Clarke’s estimated linear coefficients to the ones from the regression
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equations 3.1 to 5.3. Tables 5.1 to 3.3 give the details. In each of the three ta-
bles, the second column includes the hydrodynamic coefficients from the regression
equations 3.1 to 3.3. The third column gives the nondimensional forms of the co-
eficients in the second column. The nondimensionization is based on L, B, T and
ug system. The fourth column gives the linear coefficients estimated by Clarke’s
formula in Clarke et al. (1982). The fifth column gives the final estimated co-
efficients by adding Clarke’s linear coefficients to the regression linear ones. The
sixth column provides the original hydrodynamic coeflicients for comparison with
the final regression coefficients. The results in these three tables suggest that most
of the coefficients have a good agreement with the original coefficients except some
coupled acceleration coefficients such as Y;, N;. However, the errors do not affect

the accuracy in the prediction of ship manoeuvres.

The regression coefficients shown in the fifth column have been used to simu-
late a 15-15 zigzag manoeuvre. The results in Figures 5.15 to 3.19 fit well with
the simulation using the original hydrodynamic coeflicients. Because the regression
coefficients are obtained through two approximation processes, neural network ap-
proximation and regression approximation, it is reasonable that the results of 15-15
degree zigzag manoeuvre are not as perfect as those integrated directly based on
the neural network model. The regression method presented here checked again the
validity of the neural network model in training three lumped nonlinear functions.
The results of checking are satisfactory and the good agreement in the 15-15 degree
manoeuvre prediction indicates the good generalization of the network model once

more.

72



Table 3.1: Regression and Original Coefficients (SURGE)

Coef. Regres. V. | Nondim. V. | Clarke V. | Estimated V. | Original V.
A—-X, 0.17993 0.17993 0.177
X 782 1 0.000165623 -0.0253 -0.02513 -0.0253
X 18048.2 1 0.029104573 0.029105 0.01896
Xuvu 2574 0.03160448 0.031604 -0.01302
Xy -226472 | -0.365209325 -0.36521 -0.378
Xss -18208 -0.0005065 | -0.04008 -0.04059 -0.04
Xovu 0 0 0 0
Xiru 0 0 0 0
Xisu 2862.2 0.0006062 0.000606 0
Xor+4A | 16698306 | 0.176691147 0.176691 0.168
Xus 90865 | 0.019244698 0.019245 0.0196
Xs 0 0 0 0
Xor 0 0 0 0
Xosu 0 0 0 0
Xrou 0 0 0 0
X° -1364.9 | -0.000037966 -3.8E-5 0
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Table 5.2: Regression and Original Coefficients (SWAY)

C Regres. V. | Nondim. V. | Clarke V. | Estimated V. | Original V.
A-Y; 0.364741 0.327
Y. -0.01209 -0.0007704
Y, 181042 -0.27543 -0.244
Youe -2549592 -10.212
Yorr 0 0
Yiss -1851248 | -0.098020989 -0.0016
You -59167 0
Youu 0 0 0
Y.—A 0 0 -0.1043 -0.105
Yire 0 0 0
Yo 0 0 6.46
Yiss | -140688832 0
Yiu -1419969 | -0.015025233 0
Y. 0 0
Y; -270453 -0.007523 0.06 0.0586
-5290458 |  -0.1471617 -0.0585

762876 -0.5

0 0

0 0

0 0

0 0

-30334 | -0.000843783 -0.6008

0 ¢

0 0

74




Table 5.3: Regression and Original Coefficients (YAW)

Coef. Regres. V.| Nondim. V. | Clarke V. | Estimated V. | Original V.
N; -0.00796 -0.00796 0.00221
I.— N 0.024085 0.024085 0.0175
N, 16850178 | 0.023417147 | -0.10538 -0.08196 -0.0555
Nowo 20248674 1.631 1.531368 2.07
Nyrr 0 0 0 0
Nyss -17542416 | -0.024379169 -0.02438 0.00528
Noyw 0 0 0 0
Ny 0 0 0 0
N, -1391213568 -0.0126864 | -0.04602 -0.05871 -0.03747
Nepr 0 0 0 0
Nrvw -4781049344 -2.52751 -2.52751 -2.316
N5 0 0 0 0
Ny -102215384 | -0.00709698 -0.0071 0
Nwu 0 0 0 0
Ns -50902672 | -0.00929088 -0.03 -0.03929 -0.0293
Nisss 177863376 0.032464 0.032464 0.02892
Nsoo 58221352 | 0.6160602341 0.616062 0.2064
Nipr 0 0 0 0
Ns. -1203891 | -0.001673079 -0.00167 0
Nsuu 0 0 0 0
Nurs 0 0 0 0
N 4127219 0.00075331 0.000753 0.00059
N? 0 0 0 0
ND, 0 0 0 0
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Chapter 6

Ship Turning Manoeuvre
Prediction

6.1 Mathematical Formulation

In this chapter, we will introduce an approach to predict ship turning manoeuvres.
In this thesis, we will follow the analysis developed by Clarke (1971). He stated
that when a ship has a yaw rate, r, in a ship turning manoeuvre, it will have a
corresponding side-slip velocity, v, and the relationship between r and v is almost
linear. Figure 6.1 shows the relationships in a 30° a 20° and a 10° turning ma-

noeuvre simulations.

Thus, v can be expressed in terms of a high order polynomial in r, as follows
v = v(r)
= ag+ a;7 +agri+agrd + ... (6.1)
If we try to map the relationship between v and r in equation 6.1, the neural

network model can be suggested as a good approach. Since the coefficients in equa-

tion 6.1 are dependent on the rudder angle used in the turning manoeuvres, we will
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Figure 6.1: Relationships between v and r in Turning Manoeuvres

need a different set of neural network weights to map v and r for each rudder angle.
The data of v and r for training neural networks can be obtained from simulations,
ship model tests or full scale ship trials. In this thesis, we will use data of v and
r from a 10° a 20° and a 30° turning manoeuvre simulations which were used in

chapter 3 to train three different neural network models.

After the mapping of equation 6.1 is done, the sway motion equation 3.4 can be

replaced by

dfv(r))
dt

_ dilr) .
= el (6.2)

Q.

Substituting equation 6.2 into the yaw motion equation 3.5 gives
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_ f3(u:vera 63)
- AT AT d
I, — N; — N, el

(6.3)

where the vaw moment, f3(u,v,r ég), is given in equation 3.8 and -‘f% can
be obtained by differentiating the neural network model with respect to r. The
ship particulars and surge and yaw hydrodynamic coefficients used here are the
same as those given in chapter 3. Together with the surge acceleration equation
3.9, equations 6.2 and 6.3 will enable us to get instantaneous surge velocities, sway
velocities and yaw rates through a fourth order Runge-Kutta integration with time.
Based on equations 3.12 to 3.14, trajectories can be obtained by integrating the

velocities once more.

6.2 Mapping v = v(r) using Neural Networks

Three different neural networks are trained for a 10° a 20° and a 30° turning
manoeuvres. In each of the networks, the input and output nodes are r and v, re-
spectively. The training data of v and r come from simulations of a 10°, a 20° and
a 30° turning manoeuvres (starboard), shown in Figure 6.1. The number of middie
layer nodes is set to 5. The steepest descent search (see chapter 2) is adopted to
adjust the input weights, W;;, and the output weights, By in an iterative fashion,
starting from a random distribution of weights. Since the input data, r, are positive
and the data of output target, v, are négative in the turning to starboard, we set
the initial output weights, B, negative. If the input, 1, is positive and the values
of the squashing function 2.2 are positi\;e, the initial output weights, B;; should be

negative to guarantee the output with a negative value.
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During the training process, we use a back propagation algorithm to calculate
the derivatives of the sum-of-squared-error with respect to each weight as shown
in equations 2.11 and 2.12. The training rate in these equations is set in the
range from 1072 to 10~! to change the sensitivity of the weights. But, the rate
cannot be increased without limitation, otherwise, the search cannot converge to
the minimal point. Fifteen thousand iterations are required to train each of the
three neural networks. Table 6.1 shows the sum-of-squared-error, E, after 15,000
iterations. Table 6.2 gives the trained weights for the 10°, the 20° and the 30°

turning manoeuvres.

Table 6.1: Sum of Squared Error in Training

10° Turning | 20° Turning | 30° Turning
Error | 1.778437e-8 | 3.168374e-8 | 1.638284e-7

6.3 Results and Discussion

We have trained data for three rudder angles, 10 degrees, 20 degrees and 30 degrees.
Figures 6.2 to 6.16 show the results of sway velocity, yaw rate, turning trajectories,
sway acceleration and vaw acceleration in 10°, 20° and 30° turning manoeuvres,
respectively. In these figures, the set of r's and v’s fit well with the simulation
values in the transient period of the circular motions. As the v and r gradually
become constant, there exist a slight error compared with the simulation values.
The code of prediction sets a separation time point after which r and v are kept

constant. However, it is difficult to figure out the exact point where the yaw rate

becomes constant. One can only estimate the approximate point at which r and v
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Table 6.2: Trained Weights

Notation | 10° Turning 20° Turning 30° Turning
Wi -1.906287e-02 | 1.978335e-02 | 5.776109e-02
Wia 1.843463e+00 | 4.399924e-01 | 2.766127e-01
Woa 1 -2.470639e-02 | -3.093730e+00 | -4.756842e+00
Wa.a -3.105290e-03 | -6.400691e-02 | -8.601323e-02
Wi -3.202809e-01 | 7.327562e-02 | 9.395256e-02
Ws2 -1.748573e+00 | -2.12043%-01 | -2.111839¢-01
Wi 1.298166e+02 | 9.839515e+00 | 9.838378e+00
Wio -2.677744e+01 | 7.365877e+00 | 7.451086e+00
Ws.1 1.105923e+01 | 8.051810e+00 | 9.432881e+00
Ws.o 1.990898e+01 | 7.150448e-01 | 6.660824e+00
B, -1.658517e+01 | -2.982559+00 | -3.795949e+00
B, -4.133165e-01 | 1.544899e+00 | 7.996171e-01
Bj, -1.456758e+01 | 6.082410e+00 | 6.027607e~+-00
By 6.416173e+00 | 9.207373e+00 | 9.205272e+00
B; -1.276617e+00 | 8.060044e+00 | 8.167284e+00
Bs 0.000000e+00 | 0.000000e+00 | 0.000000e+00
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approach constant values.

If the surge velocity loss is insignificant and the effect of the surge velocity on the
sway and vaw motion is trivial, one can ignore the surge acceleration equation 3.9
and consider u as a constant during turning manoeuvres. In this method, the sway
acceleration equation 6.2 is obtained using a neural network model and the vaw
acceleration equation 6.3 is simplified by substituting equation 6.2 into equation
3.5. These manipulations will give a single yaw motion equation 6.3 in which only
the hydrodynamic coefficients related to yaw motion are required. This can greatly
simplify the work of prediction in ship turning manoeuvres. But, for the turning
manoeuvres at different rudder angles, different neural networks are needed to map
the different relationships between v and r. So, this method of prediction is less

powerful than the one presented in chapters 4 and 5.
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Chapter 7

Study of Sway and Yaw Motions
in Random Waves

In this chapter, the main objective is to show that the random decrement concept
can be extended to coupled sway-vaw motions and this can be the basis for another
parametric identification technique. The simplest systems, the linear systems and
the nonlinear systems of the sway-yaw motions are studied in this chapter. For each
of the systems, we give the random responses, the free motion responses of sway and

yaw velocities and their corresponding autocorrelation functions for comparison.

7.1 Exciting Wave Forces

7.1.1 Random Waves

The random wave excitation is simulated by the superposition of a number of
sinusoidal waves obtained from the ITTC spectrum. The ITTC wave spectrum
formula (two parameters) is appropriate to model open ocean wave conditions and

is given as follows:
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S{w) = %e(—3f~‘> (7.1)

[

in which

H%, 691
A=17322L B=—
T T}

where S is the spectral density and w is the wave frequency. The two parameters,

(7.2)

Hys3 and T}, are the significant wave height and the period corresponding to the
average wave frequency. In this thesis, we take H;3 =5 m and T\ =10 sec. Figure

7.1 shows this spectrum.
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Figure 7.1: ITTC Spectrum

It is assumed that a random wave having an ITTC spectrum is composed of a
large number of sinusoidal components. The frequency w; and the random phase

angle 6; of each of the sinusoidal components are expressed as follows:
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]
n—1
6; = 2%y 0 <~<1 (7.4)

w; = wp + (wp — wp) : =0.1,...n-1 (7.3)

w; varies between frequency limits wy and wy in the frequency band of the ITTC
spectrum. 7 is an uniform random number chosen such that the phase angle varies

hetween 0 and 2.

The amplitude of the ith component of the wave is calculated using

A; = 4/25; dw | (7.3)

where S; is the spectrum density corresponding to w; and

Wr — Wy
dw = L —=2 :
“ n—1 (7.6)

In this thesis, a random wave is constructed using twenty regular wave compo-

nents with frequencies between w;, = 0.3 rad/sec and wy = 1.25 rad/sec.

7.1.2 Wave Exciting Forces and Moments

The exciting forces and moments in random waves can be calculated by superposi-
tion of the exciting forces and moments produced by the individual regular waves
which constitute a random wave. The exciting force and moment of one sinusoidal
wave may be calculated by integrating the pressure distribution in the wave over
the wetted surface of the hull. Only the pressure distribution in the incident wave is

considered and the effect of the presence of the ship hull on the pressure distribution
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is neglected. The resulting force is called the Froude-Krylov exciting force. This
approximation can be considered accurate only if the wave length of the incident
wave is large enough. The average wave length in this thesis can be estimated using

the dispersion relationship in deep water as

w? = gk (7.7)
we can get
27 27 -
('ﬁ) 5y (7.8)

then the average wavelength of the random wave is

_ g 9.8%10°
T o 27

A = 156(m) (7.9)

7 ¢  Water Line
/ Z.0

Wave Crest

Figure 7.2: Coordinate Axes

The pressure distribution in the wave can be expressed in the hull coordinate

system in Figure 7.2 as follows (Haddara, 1970):
p(z,y, 2, 1) = pg(z — 20) — pgAie " sin(kix — koy + wt + 8;) (7.10)
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where

ki = wi/g (7.11)

ky = k;cosé (7.12)

ko = k;sind (7.13)

w = w; + k;ucosé (7.14)

5 is the angle between the ship heading and the wave propagation direction. %;,
w;, A; and 8; are wave number, wave frequency, wave amplitude and wave phase
angle, respectively. zp is the vertical distance from the waterline to the position of
the center of gravity of the ship. p is the water density. u is the surge velocity of

ship.

The sway exciting force, Yy, and yaw exciting moment, Ny, calculated according

to the Froude-Krylov hypothesis are given as
Y =//—p(m,y,z,t)dxdz (7.15)

Ny = /Lp(x,y,z,t)(ydydz — zdzdz) (7.16)

If the ship is cut along the ship length into m sections , along the ship draft into n
slices and along the beam into ! segments. The exciting force and moment can be

calculated in this way

n m

Yi= Z z —p{Tik, Yiks ik, t) Dz Dz (7.17)

k=1 i=]

n !

Ne = 303 plk. Yijks 2jks t)yju Dy Dz
k=1 j=1

n m

+ 3 2 [—plzi, Yirs 2k, ))zix Dz D2 (7.18)
k=1ti=1
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Tables 7.1 and 7.2 give the offsets for calculation of the ship geometry. The wave
exciting force of sway and the wave exciting moment of vaw for 4;=0.503m. w;
=0.65 rad/sec and § =45 degrees are shown in Figures 7.3 and 7.4. The amplitudes
of exciting forces of sway and moments of yaw with different wave propagation

directions from 0 to 180 degrees are given in Figures 7.5 and 7.6.

Table 7.1: Table of Qffsets (Half-breadths, m)

Half | bottom | 4-ft WL | 8-ft WL | 16-ft WL

Station | Breadth | tangent | 1.219m | 2.438m 4.877
0, FP 0 0.759 0.581 0.108
0.5 0.394 1.308 1.432 1.270
1 0.483 1.968 2.438 2.730
1.5 0.571 2.978 3.848 4.626
2 0.660 4.324 5.534 6.575
3 0.660 0.860 7.509 8.909 10.173
4 0.660 3.8321 10.293 | 11.208 11.830
) 0.660 9.144 | 11.417| 11.916 12.039
6 0.660 6.268 | 10.344 | 11.338 11.983
7 0.660 2.324 6.833 8.490 10.627
8 0.660 0.679 3.314 4.423 6.788
8.5 0.660 0.660 2.207 2.896 4.518
9 0.660 1.445 1.778 2.508
9.5 0.432 0.549 0.568 0.600
10, AP

10-ft aft
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Table 7.2: Table of Offsets Continued (Half-breadths, m)

24-ft WL | 27-ft WL | 32-ft WL | 40-ft WL | Main
Station 7.315m 8.230m 9.754m | 12.192m | Deck
0, FP 0.133 0.879 | 2.337
0.3 1.172 1.245 1.613 2.775 | 4.483
1 2.962 3.140 3.610 4.823 | 6.518
1.5 5.102 5.359 5.886 6.988 | 8.404
2 7.315 7.597 8.003 8.979 | 9.966
3 10.792 10.956 11.195 11.484 | 11.716
4 11.986 12.007 12.033 12.039 | 12.039
) 12.039 12.039 12.039 12.039 | 12.039
6 12.039 12.039 12.039 12.03% | 12.039
7 11.703 11.899 12.033 12.039 | 12.039
8 9.458 10.271 11.246 11.932 { 12.039
8.5 7.306 8.417 9.976 11.389 | 11.890
9 4.677 5.962 7.973 10.252 | 11.370
9.5 1.533 3.057 5.410 8.236 | 10.001
10, AP 2.130 4.861 | 6.826
10-ft aft 2.658 | 4.553
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7.2 Simplest Case of Sway-Yaw Motions

7.2.1 Analytic and Numerical Solutions

Consider a ship that has only linear uncoupled hyvdrodynamic coefficients. The

sway and yaw motion equations in random waves can be expressed as follows
(A =Yy)v=Y.v + Ys0p + Ys(t) (7.19)
(I. — Ni)i = Nor + Nsbp + Ng(t) (7.20)

To simplify these equations, we assume that the rudder angle is set to zero
when the ship with initial vy and 7g is disturbed by the wave exciting forces. Thus,

equations 7.19 and 7.20 become

.Y, Yy(t)
v o= A—Y;,U+A—Y,-,
Y(t
= anv-+ A'f—(})’}, (7.21)
O N, Ny (t)
= I,—-N;T+Iz--1\’}
_ Ny(t) .
= (l227'+m (l22)

The solution of each of the above two equations is a combination of 2 homogeneous

solution and a particular solution as follows

v(t) = wpe®* + Y/ (t) (7.23)

r(t) = roe®® + Nj(t) (7.24)

If we take the logarithm of equations 7.23 and 7.24 with the wave excitation terms

set to zero, one gets

ln(v&)) = In(vo) + an;t (7.25)
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ln(r(t)) = In(rg) + asnt (7.26)

The numerical solutions of equations 7.21 and 7.22 with the initial v = 1 m/sec and
rg = -0.02 rad/sec are shown in Figures 7.7 and 7.8. The solutions without wave
excitation in these figures are the exact the homogeneous solutions in equations

7.21 and 7.22.
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1 T T T T
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Ty .
3] \ . . . .
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Figure 7.7: Responses of Sway V:locity in Simplest System

7.2.2 Autocorrelation Functions

The autocorrelation function Ry(r) for random data #(t) describes the g:neral
dependence of the values of the data at one time, on the values at a later time. An
estimate for the autocorrelation between the values of ¢(t) at time, t, and time,
(t + 7) may be obtained by taking the product of the two values and averaging

them over the observation time, T". Mathematically, the autocorrelation function
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Figure 7.8: Responses of Yaw Rate in Simplest System

is represented by

1T
Rs(7) = E[$(t)d(t +7)] = lim = /0 S(t)o(t + 7)dt (7.27)

T* o0 T

- For discrete data, the autocorrelation function can be calculated using the formula

n—k
Rolk) = - X o6t + 1) (7.28)

where k =0,1,..., Kand 1l < K < n.

In Figures 7.9 and 7.10, the autocorrelation functions of the responses of v(t)
~and r(t) are calculated using a program based on equation 7.28. For comparison,
we generate the curves of autocorrelation functions for the responses with the wave
excitation term set to zero. We find that these curves of the autocorrelation fit well

with those of excitation responses. It indicates that the process of autocorrelation
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can eliminate the effect of a zero mean random process of waves.
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Figure 7.9: Autocorr. Functions of v(t) in Simplest System

The analytic autocorrelation functions of equations 7.23 and 7.24 with the ex-

citation terms set to zero can be developed as follows

. 1 /T
dim = fo (t)u(t + 7)dt
1 (T
Thm T_./ voe““tvoe"“(”")dt
S T Jo
: U(z) ay r( 2e11 T
= Tl_l_l'flm Sar, T (e -1)
vg
—Y__ganr (7.29)

" 2ay,T"

R,.(t) =

fl

where lim7. o, €2*17" = 0 because a;; < 0. T~ is the observation time. In a similar

way, we can get the autocorrelation function for yaw rate, r, as follows
2

——_T0  ganr
R..(1) 2aneT- e (7.30)
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X 10‘6 Rrr ~ Time
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Figure 7.10: Autocorr. Functions of r(t) in Simplest System

where a9y < 0. Both the autocorrelation functions of wave and no wave excitation
should have the same forms as shown in equations 7.29 and 7.30. When we take
the logarithm of the hand side of equations 7.2% and 7.30, the logarithm of R,, and
R, can be obtained as follows

2

IRy (7)) = In(~ Qa:J?T') +ant (7.31)
2
In(R..(7)) = In(~ 20:(2]1"‘) + agor (7.32)

It is easy to find that the slope of line in equation 7.31 is the same as the one
in equation 7.25. So is the case for equations 7.32 and 7.26. Figure 7.11 shows
the curves of In(v(t)), In(r(t)), In(R,,) and In(R,,). In Figure 7.11, the points of
In(v(t)) and In(r(t)) are scattered away from the straight line after a certain time

period because the values of R,, and R, vibrate at the zero point with time as
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shown in Figures 7.9 and 7.10 and the logarithm program forces the negative values

to hecome positive.

In{v) ~ Time In{r) - Time
4] 0
.10 .
5
% E 20 NG e
10}
. -30 e =z
— No Wave Excitation ___ NoWave Excitation
-15 - - -40
0 100 200 300 0 100 200 300
Time (s) Time {s)
In{Rwv) ~ Time In(Rrr) ~ Time
0 -10 ‘
L4 ay’ 1 Ll n
o Ty
5.10. é.ao .................................
£ 5
-15} -~ Wave Excitation : . . -40}- - - Wave Excitation- -
— No Wave Excitation ___ No Wave Excitation
- - - -50 -
260 100 200 360 4] 100 200 300
Time (s) Time (s)

Figure 7.11: Logarithm of the Functions in Simplest System

7.3 The Linear System

The linear system for describing sway and yaw motions in random waves can be

expressed in the following form:

(A —Y3)0 = Yit = Yyu + Yor + Ysbp + Y5(2) (7.33)

—Nyi + (I, = Ny)# = Nyv + Nor + Nybg + Ny (t) (7.34)

To simplify the problem, we set the rudder angle to zero. The motion of the

ship in random waves will be the motion with an initial sway velocity and yaw rate
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and the rudder angle set to zero. The linear system then can be described by

[(I. = N))Y, + ViN,Jo
A Y. — N;) = NoY;
(I. — NO)Y, + ViN)r
(A - Yv)(Iz - N;) = N;Y:
(I. — N2)Y5(8) + YN (1)
(A - Y:,)(Iz - .N,'-) - N',;,}’;z
= anv+apr+Y7(t) (7.35)

[N;Y, + (A = Yy)N,Ju
(A =Y:)(I: — N:) — N5
[NYr + (A = Y,)N]r
(A = Y3)(L, = N:) — NyYs
NoYr(t) + (A = Yi)Ng(e)
(A =Y5)(I: — N:) = N;Y;
= apv + anpr + N(t) (7.36)

The numerical solution of equations 7.35 and 7.36 with the initial vo =1 m/sec
, Up = 0, ro = -0.02 rad/sec and 7y = 0 is shown in Figures 7.12 and 7.13. For
comparison, the solution of equations 7.35 and 7.36 without wave excitations is also

calculated.
In equations 7.35 and 7.36 with the excitation term set to zero, the characteristic
roots, A\; and As of this linear system satisfy the following characteristic function:

A2 — (a1; + ag)A + aj1a22 — aj2az; =0 (7.37)

The solution of the two roots is as follows

N, = dtae \/(a“ — a)? + 4aizay
2= " 5

(7.38)
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Figure 7.12: Responses of Sway Velocity in Linear System
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Figure 7.13: Responses of Yaw Rate in Linear System
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For the ship particulars and coefficients used in chapter 2, we get A\; < A2 < 0.

So. the analytical solution for equations 7.35 and 7.36 without wave excitation will

be in form of

v =creMt + cpet?t (7.39)
r=dieM' + dye™ (7.40)

where according to the :nitial conditions, the constants can be obtained as

follows
¢ = A:Ofg)\, (7.41)
e = A’:’_W\;] o (7.42)
dy = ,\:0:.\2)‘1 (7.43)
dy = A:rf’\):l (7.44)

When we calculate the autocorrelation functions of v(t) and r(t) in this linear
system, the random wave excitation can be deleted by the autocorrelation functions

shown in Figures 7.14 and 7.13.

The autocorrelation function of equation 7.39 can be developed in the following

form:
R,(r) = _lim -~ /T. (cr1e™! + coe™!)(er M) 4 cpe (7)) dt
v Toreo T Jo ! 2 ] 2
1 Cy ) AT
—I{—1 1
T.[( )(2A1 + A] +A2)Cle

c2 € AT
20 A+ A2)026 ]

= kyceM + kycge™T (7.45)

il
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Figure 7.14: Autocorr. Functions of v(t) in Linear System
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Figure 7.15: Autocorr. Functions of r(t) in Linear System
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where the constants &, and Ay are combinations of ¢, and ¢».

In a similar form, K, is obtained as follows
Roo(m) = LidieM7™ + ladye™™ (7.46)

where the constants !, and [ are combinations of d; and dy. In this linear svstem,
the autocorrelation functions of v(t) and r(t) are one of the general solutions of
equations 7.39 and 7.40. Through the process of autocorrelation, we can eliminate
the effect of random excitation and find one solution of the motion equations in the

linear system.

7.4 The Nonlinear System

In the nonlinear system, the sway and yaw motion equations in random waves can

be obtained as follows:
(A =Yy)0 = Yir = f-lu,u,7,6p) + Yi(2) (7.47)

- JV,;.‘I') + (Iz - *N-f')f = f3(u,'ll,1",6R) + Nf(t) (748)

where fo{u,v,r,8g) and f3(u,v,r, 63) are hydrodynamic force and moment given

in equations 3.7 and 3.8. The initial conditious for the numerical solution is vy
=lm/sec, 79 = 0, rop =-0.02 rad/sec and 7y = 0. The numerical solutions of

equations 7.47 and 7.48 are shown in Figures 7.16 and 7.17. The solutions for no

wave excitation are also giver. for comparison.

The autocorrelation functions for v(t) and r(t) with wave excitation and without

wave excitation are given in Figures 7.18 and 7.19. T'he curves of the autocorrelation
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Figure 7.16: Responses of Sway Velocity in Nonlinear System
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function with wave excitation have a good agreement with those without wave

excitation.

Rvv ~ Time
0.1 r

_ —— No Wave Excitation
008 .......... .....

0.06F % i . e

2

m0.04_. ......... ....... ........... ...........

0‘02. .......
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Time (sec)

Figure 7.18: Autocorr. Functions of v(t) in Nonlinear System .-

7.5 Discussion

In case of the simplest sway-yaw motion system, it is easy to find the parameters,
a); and aq, by taking logarithm of the autocorrelation functions of sway and yaw
velocities in random waves. The slopes of the logarithm functions are exactly the

values of a); and ass.

For the nonlinear system, the autocorrelation for the nonlinear sway and yaw
motions excited by random waves are similar to the free sway and yaw motions. The

autocorrelation functions may help us to identify the parameters in the nonlinear
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Figure 7.19: Autocorr. Functions of r{t) in Nonlinear System
equations of the sway and yaw motions. However, the theory to prove the validity

of the above statement for the nonlinear system is not available now. This can be

a logical extension for this work.



Chapter 8

Conclusions

In this work, we have presented three methods for the parametric identification of
the manoeuvring motions of ships. The results of the method developed in chapter
4 show that using one set of data from a zigzag manoeuvre, we are able to formu-
late a model which can represent the manoeuvrability of the ship under different
conditions, with sufficient accuracy. This method can then be used to formulate
manoeuvring models for different ships using their full scale trial data. From the
theoretical basis of the proposed method and the results it has produced so far,
this new method has some advantages over other existing parametric ideritification

methods for ship manoeuvrability prediction. These advantages are:

1. Elimination of scale effects. The inputs for this neural network model are
data of surge, sway, yaw velocities and rudder angles from the full scale ship trials
during standard ship manoeuvres. No model tests or considerations of viscous scale

effects are required.

2. The cost is minimized. If the input data to the identification model is directly
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obtained from the measuring instruments that usually exist on board the ship, the

cost of trial is limited.

3. The accuracy of the identification process can be easily checked, because

actual ship responses are measured for the validation of the identification model.

4. The new method can effectively avoid the cancellation effects of hydrody-
namic coefficients by only applying linear and nonlinear components in the expan-

ston of hydrodynamic forces.

5. Unlike other identification techniques developed for this problem, only one
set of measured data of reasonable length is sufficient to formulate the model using
this method. This will greatly save ship trial resources and increase the efficiency

of the parametric identification work.

The work in chapter 6 provides an attempt to predict ship turning manoeuvres.
The approach in chapter 6 can reduce the required motion equations to one, i.e.,
the yaw equation. But, for different rudder angle turning manoeuvres, different
mappings of sway and vaw velocities are needed. Thus, this approach is less robust

than the method developed in chapter 4.

In chapter 7, we have presented a study of the sway and yaw motions in random
waves. Using a simple analysis, we have shown that the concept of a random

decrement can be extended to the coupled sway-yaw motion in random waves. The
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results are preliminary and the analysis needs to be extended and validated. This

is the subject of future work.
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Appendix A

Results Using a Great Lake Bulk

Carrier

In the appendix, results are given for the work in chapters 4 and 5 using another

different ship, a 730-ft Great Lake Bulk Carrier. This ship’s principal particulars

and its hydrodynamic coefficients can be found in Eda et al. {1982).

A.1 Ship Principal Particulars and Hydrodynamic

Co efﬁcients

Table A.1: Ship Principal Particulars

Length Beam Draft Block Coef.

Velocity

Rudder Rate

217.627m | 23.005m | 8.100 m | 0.905

5.144 m/sec

2.5 deg/sec
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Table A.2: Hydrodynamic Coefficients of 730-ft Great Lake Bulk Carrier

Coefficients | Values Coefficients | Values Coefficients | Values
(X-equation) (Y-equation) (N-equation)
A-X; 0.19505 ||A-Y; 0.33234 || N, 0
X. -0.02000 || Y: 0 I.—N; 0.02724
Xuu 0.01800 (Y, -0.32535 {| N, -0.08732
Xuwu -0 Yoo -7.38289 || Ny -3.04665
Xow -0.26007 || Y, -0.60718 || Nyrr 0.07376
X 0.01310 Yo.ss 0 Nyss 0
Xss -0.09833 || Y,. 0 Nou 0
X vou 0 Yvuu 0 JVvuu 0
Xrru 0 Y.-A -0.16200 || N, -0.04433
Xssu 0 Y., 2.40185 || Nyrr -0.24180
X+ A 0.299023 || Yive 0 Nrevy -0.84361
Xus 0 Yess 0 Nyss 0
Xrs 0 Y 0 New 0
Xoru 0 Yeuu 0 Nrwy 0
Xosu 0 Ys 0.08194 || N -0.04675
Xrsu 0 Ysss -0.25469 || Nsss 0.23857
X? 0 Ysu0 0 N, dvv 0

Ysrr 0 Nipr 0

y:fu 0 N du 0

}%uu 0 Jvé'uu 0

Yors 0 Nyrs 0

Y? 0 NO PO

YD 0 NO 0

Y? 0 NY 0
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A.2 Neural Network Training Results

The neural network is trained using data fromn a 33-35 degree zigzag manoeuvre
simulation. The inputs to the networks are surge. sway velocities, yvaw rate and
rudder angle. The output targets are lumped nonlinear functions, g, to g;. Three

neural networks are used to map the three lumped nonlinear functions. Details are

in chapter 4.

Table A.3: Estimated Nondimensional Linear Coefficients of Surge

A — Xﬂ .Xu ){66
Clarke Values | 0.20089 | -0.02000 | -0.09720
Original Val. | 0.19505 | -0.02000 | -0.09833

Table A.4: Estimated Nondimensional Linear Coeflicients of Sway

A=Y, | Vi Y, oA Y
Clarke Values | 0.34968 | -0.00516 | -0.23715 | -0.13349 | 0.08100
Original Val. | 0.33234 | 0.00000 | -0.32535 | -0.16200 | 0.08194

Table A.5: Estimated Nondimensional Linear Cbefﬁcients of Yaw

N, I.—N: [N, |N, N;
Clarke Values | 0.00002] 0.02577 | -0.06891 | -0.03526 | -0.04050
Original Val. | 0.00000 | 0.02724 | -0.08732 | -0.04433 | -0.04675
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Table A.6:

Trained Weights

Notation | Weights of ¢g; | Weights of go | Weights of g3
Wi 5.895030e-01 | -1.644226e-02 | -4.978991e-01
Wia -5.101392¢-01 | -7.713196e-02 | -2.853818e-01
Wis -4.659019¢-01 | 1.928862e-01 | 5.776727e-03
Wia -4.460121e-02 | -1.619135e-01 | 3.656041e-02
Wis -4.867011e-02 | -4.117465e-01 | -1.245193e-02
Wa, -2.046416e-01 | -1.677549e-01 | -5.201320e-01
Wy 2.385297e-01 | -1.597654e-01 | 1.717111e-01
Was 2.272791e-01 | 1.184133e-01 | 3.020742e-01
Waa 2.810622e-01 | 2.055512e-01 1.657087e-01
Was -2.168948e-01 | 7.063461e-02 | 4.414481e-02
Wi, -6.145441e-02 | -6.958561e-02 | -4.223113e-02
W3 -6.821217e-02 | -5.005843e-02 | 2.536432¢-01
Ws3 4.816088e-01 | 7.552275e+00 | -1.080965e+00
W34 -4.123380e-01 | -5.573477e+00 | 4.341185e-01
Wi s 2.271601e+00 | 7.338701e+00 | 2.734414e+00
Wi 4.649881e-01 ; 7.052553e+00 | 9.620253e-01
Wyo 1.569679e+00 | -4.823S33e+00 | -1.254879¢+00
Was 3.362712e-01 | -2.522815e+00 | 9.223097e-01
W, 1.15157%e-01 | 6.926483e-01 | 3.038447e-01
W.s 4.85111e-01 | 1.962100e+00 | -2.477811e+00
Wsa 3.962634e-01 | 8.427783e-01 | -6.725365e-01
Wsa -8.201121e-03 | -5.228190e+00 | 6.987717e-01
Wss 1.236354e+00 | -1.233700e+00 | 5.641754e-01
Wsa 5.865262e-01 | 1.560384e+00 | 6.77463%-01
Ws.s 1.041159e+00 | 6.161842¢-01 | 2.903182¢-01
We. 6.128371e-01 | -2.470856e+00 | 6.764593e-01
We.2 5.301277e-01 | 3.890111e+00 | 1.833881e-01
Wsa 7.278556Re-01 | -7.132983e-01 | -4.262110e-01
We.a 7.153789e-01 | 3.512534e+00 | 7.672549e-01
Wes 7.600573e-01 | -9.44670(.2+00 | 8.054027e-01
W=, 2.109046e-01 | 1.439624e-01 | 2.462407e-01
W2 4.104700e-02 | -4.667036e+00 | -2.101112e+-00
Wsa [ -2.145962e+00 | -4.853948e-02

3.354941e-01
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Table A.7: Trained Weights {continued)

Notation

Weights of ¢

Weights of g,

Weights of g3

Wi 4

2.651775e-01

-1.449891e+00

3.016999e-01

2.748926e-01

Wis 3.458968e-01 | 3.680478e+00 | 4.902010e-01
Wsi 5.677670e-02 | 5.543678e+00 | 5.072873e-01
Ws.2 -1.026354e-01 | -7.4857396+00 | -1.156052e+00
Wsa 73.303378¢-01 | -3.831410e-01 | -8.224130e-01
Ws.a 4.583949e-01 | 1.054555e+00 | -9.894984e-02
Wss 5.035724e-01 | 2.210118e-01 1.149003e+00
Wi 1.750813e-01 | -1.362159e+00 | -2.129860e+00
Wo o 5.931805e-01 | 1.4909966+00 | -3.719720e+00
Wosa -5.124242e-01 | -5.247389e+00 | -3.029870e+00
Wa 8.924522e-01 | 9.821609e-01 2.242333e-01
Was 4.135829¢-01 | -7.330523e-02 | 2.356684e+00
Wioa 1.056319e+-00 | 1.431287e4-00 | -4.757902e-01
Wioe 3.427937e-01 | -5.987463e+00 | -1.234124e+00
Wios 1.016600e4-00 | 3.011864e-01 | -2.540873e-02
Wioa 3.613229e-01 | -1.559887e-01 | 1.424949e+00
Wios -95.335799¢-01 | -2.786591e4-00 | -2.503572e+00
Wi 8.915049e-01 | -1.135106e4-00 | 1.248511e+00
Wiio 8.189336e-01 | -2.802571e+00 | -4.441569¢+00
Wiia 1.075846e-+00 | 3.700991e-01 | -1.289067e-01
Wiia 6.5904945e-01 | -2.973912e+00 | -1.118210e+00
Wiis 1.657708e-01 | 6.759818e+00 | 1.911629e+-00
By, 2.881164e-01 | -5.625140e-01 | 2.609107e+00
B, -1.772791e-01 | -4.733456e+00 | -2.907100e+00
B, -2.705117e-01 | -2.057686e+00 { 1.344162e+00
By, 1.721803e-01 | 2.303149e+00 | -1.477014e+00
Bs . 2.651809e-01 | -3.330589e+00 | -1.622480e+-00
Bg . 6.119982e-01 | 7.620719e-01 | 8.719896e-01
_By,l -3.971309e-01 | -5.380048e+00 | 6.877767e-01
Bs, 1.201942e-01 | -1.733426e+00 | 6.242699e-01
By, 7.603484e-01 | -6.288702e-01 | 1.144689e+00
B, -2.353278e-01 | 2.390890e+00 | 2.699315e-02
By 4.143471e-01 | -2.118129e+400 | 2.667664e+00
Bi2, -7.088545e+00 | -5.379578e-01
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Nondimensional Surge Force g1 & Network Training Values
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Figure A.1: Trained Network Force g; and Simulation Values
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Figure A.3: Trained Network Moment g3 and Simulation Values

A.3 Prediction of Ship Manoeuvres (1)

In this section. the results of the predition of the 35-35 degree zigzag manoeuvre

are given. This can check how well the trained neural network results fit with the

expected simulation values.
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Figure A.8: Predicted Trajectory of 33-35 deg Zigzag Manoeuvre

A.4 Prediciton of Ship Manoeuvres (2)

In this section, a 20-20 degree zigzag manoeuvre and a 25 degree turning manoeu-

vre are predicted to check the generalization of the neural network model trained

from a 33-33 degree zigzag manoeuvre.
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Appendix B

Neural Network Training Code

ccceceeecececeecgeececceececasceccececcocececeeecce

c Code of Neural Network c

c for Training Sway Force c

c (Similar to Codes for training e

c Surge Force and yaw Moments c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCee
input laycr weights : wi

output layer weights : wo
net inputs : ri

net outputs : ro

target outputs : rt

middle outputs : rm/rms
errors : eo / ems

learning rate : rate

target data (f): ttd

net data(f): tnn

inputs of

surge speed: u

sway speed: Vv

yaw rate: r

rudder angle: del

middle layer neurons : net
number of training loops : kit
number of data points : kot
number of inputs : kin
number of outputs : kon

naaoaoanoaoaoaanooaoaaoaaaoacaonoQnn

implicit real*8{a-z)

integer i,j,net,met,kin,kon,kot,mot,iseed,it,iot
dimension wi(99,11),wo(99,11),tnn{222),ttd(222)
dimension vdot (222),rdot (222)

dimensicn u(222),v(222),r(222),del {222)
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aQa

100

103

dimension ri{11),ro(11),rt(11),rm(99)
dimension rms(99) ,rmsd(99)

dimension eo{ll),ems (39}
common/two/yvdot, yrdot,yv,yr,yb

Read Principal Dimensions of a Ship
open(l,file='init.d’,status="unknown’)
read (1, *) len,bre,dra,cb,rho,ul

close (1) -
open(l,file='dat.d’, status='unknown’) . -
read(l,*) rate,scale,sin,sout

read (1, *) net, kln kon

read(l,*) kit,kot,mot

kin=kin+1

close (1)

open(2,file=’ series.o’,status=’unknown’)
do 100 i=1,kot

read(2, *) du u{i),v{i),r(i;

continue

close(2)
open(3,file="accele.o’,status='"unknown’)
do 103 i=1,kot

read (3, *) du, del (i) ,dul,vdot (i), rdot (1)
del(i)=de1(i)*3.1415927d0/180.d0
continue

close (3)

Generate Linear Coef. from Clarke’s Formulas
call coe(len,bre,dra,cb, rho,ul)

Generate Target Data

open (4, file='func2.0’, status='unknown’)
do 104 i=1,kot
ttd(l)-yvdot*vdot(i)-yrdot*rdot(i)

& -yv*v(i)-yr*r(i)-yb*del (i)
write(4,*) i, del(i)., ttd(i)
ttd (i) ttd(l)/(O.SdO*rho*len

&*dra*u0*u)

104 continue

close (4)

Using Nonlinear Velocities
do i1=1,kot

u{i)=u(i)/vo

v{i)=v(i) /u0
r{i)=r(i)*len/uo

end do

Initiate Weights
Use Random Weights
if (mot.eqg.1l) then
iseed=123457
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10

25

50

22

de 5 i=1,net

do 5 j=1,kin
gwi=ran (iseed)
wi(i,j)=gwi*sin
continue
met=net+1

do 10 i=1,met

do 10 j=1,kon
gwo=ran (iseed)
wo(i,j)=gwo*sout
continue

else

Use 0l1ld Weights
open(2,file='weights2.d’,status='unknown’)
met=net+1

do 25 j=1,met
read{2,*) wo(j,1)
continue

do 50 j=1,net

do 50 i=1,kin
read(2,*) wi(j,1i)
continue

close(2)

end if

Loop of kit Trainings
it=1

iot=1

do 1, while (it.lt.kit)

Loop of kot data

do 2, while (iot.lt.kot)
ri{l)=u(iot)
ri(2)=v(iot)
ri(3)=r(iot)

ri(4)=4el (iot)
ri(5)=1.d0
rt(1)=ttd(iot)

do 33 i=1,net
rm(i)=0.0d0

do 22 j=1,kin
rm{i)=xrm(i)+wi(i, j) *ri(3)
continue

if (rm(i).ge.25.d40) then
rms(i)=1.040

else if (rm(i).lt.(-25.d0)) then
rms(i)=0.040

else
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33

66

77

88
99

121
242

111
222

363
484

333
444

rms{i)=1.0d40/(1.0d0+dexp(-xm(i)))
end if '

rmsd (i) =rms (i) *(1.0d0~-rms (1))
continue

rms (met)=1.0d0

do 66 i=1,kon

ro(i)=0.040

do 44 j=1,met
ro(i)=ro(i)+wo(j,i) *rms (j)
continue

continue

Error

do 77 j=1,net

ems(j)=0.0d0

continue

do 99 i=1,kon
eo(i)=rt (i) -rc(i)
eo(i)=eo(i) *scale

do 88 j=1,net

ems (j) =ems (j) +eo (i) *wo (j, 1)
continue

continue

Update Weights

car=0.0d0

do 242 i=1,kon

do 121 j=1,met
cor=dabs (eo (i) *xrms (j))

if (cor.ge.car) car=cor
continue

continue

do 222 i=1,kon

do 111 j=1,met
cor=eo (i) *rms(j)
wo(j,i)=wo(j,1i)+rate*sout*cor/car
continue

continue

car=0.0d0

do 484 i=1,kin

do 363 j=1,net
cor=dabs (ems (j) *rmsd (j) *xri (i))
if (cor.ge.car) car=cor
continue

continue

do 444 i=1,kin

do 333 j=1,net
cor=ems (j) *rmad (j) *ri (i)
wi(j,i)=wi(j,i)+rate*sin*cor/car
continue

continue
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iot=iot+1
2 continue

it=it+1
1 continue
End of Training

0NN

Qutput of Net

iot=1

do 555, while (iot.lt.kot)
ri{l)=uliot)

ri(2)=v(iot)

ri(3)=r(iot)

ri(4)=del (iot)

ri(S5)=1.40

do 303 i=1,net

rm(i)=0.0d0

do 202 j=1,kin

rm{i)=rm{i)+wi(i,§)*ri(3j)
202 continue

if (rm(i).ge.25.d0) then
rms(i)=1.0d40

else if (rm(i).lt.(-25.40)) then
rms(i)=0.0d0

else

rus (1) =1.0d0/{1.0d40+dexp(-rm(i)))
end if

303 continue
rms (met) =1.0d0
do 606 i=1,kon
ro(i)=0.0d49
do 404 j=1,met
ro(i)=ro{i)+wo(j,i) *rms(Jj}

404 continue

606 continue
tnn (iot)=ro (1)
iot=iot+1

555 continue

Data of Net and Target
open(4,file="dat2.0’,status='unknown’)
do 777 i=1,kot

write(4,*) ttd(i),tnn(i)

777 continue
close (4)

c Output Weights
open(3,file="weights2.d’,status='unknown’)
do 888 j=1,met
write(3,*) wo(j,1)

888 continue

oo

143



999

do 999 j=1,net

do 999 i=1,kin
write(3,*) wi(j,1)
continue

close(3)

End of Main Program

Sub-program of Clarke’s Formulas for Linear Coef
subroutine coe(len,bre,dra,cb, rho,u0)

implicit real*8 (a-2z)
common/two/yvdot , yrdot,yv, yr,yb

pi = 3.1415927d0

disp=rho*len*bre*dra*cb
yvdotd=-pi*{(dra/len) * (dra/len) * (1.0d40

& +0.16d0*cb*bre/dra-5.1d0* (bre/len)* (bre/len))
& *len/dra

yvdot=yvdotd*0.5d0*rho*len*len*dra

yvdot=disp - yvdok

yrdotd=-pi* (dra/len) * (dra/len)

& *(0.67d0*bre/len-0.0033d0* (bre/dra) * (bre/dra))
& *len/dra
yrdot=yrdotd*0.5d0*rho*len*len*len*dra

yvd=-pi* (dra/len) *(dra/len)
& *(1.040+0.40d0*cb*bra/dra)*len/dra
yv=yvd*Q.5d0*rho*len*dra*u0

yrd=-pi* (dra/len) * (dra/len)
& *(-0.5d40+2.2d0*bre/len-0.08d0*bre/dra)

& *len/dra

yr=yrd*0.5d0*rho*len*len*dra*ul
yvr=yr-disp*ul

ybd=0.02d0*dra/len*3*len/dra
yb=ybd*0.5d0*rho*len*dra*ul*ud
return

end

dat.d

dhkkhkdkhdhkhkhkhktrRrhhhhkhkhkhrhhthrdhhkhkddthbhbhkhbhhkihhdhh
1.0E-6 1.0 1.0 1.9 rate, scale, sin, sout

11 4 1 net, kin, kon
6000000 85 0 kit, kot , mot
init.d

khkkdhbdhdbrhkrhhkhdhhkhkdhhhbhkhkhkhhkkdbhhhbhkhkhkhkbkkhhhrbi

Lenghth, Beam, Draft, Cb, Water Density, U0
152.4 21.763 8.138 0.6 1000.0 7.614
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