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Abstract

This thesis is divided into three parts. The first two parts deal with two differ-
ent methods for predicting the manoeuvring characteristics of ships using a neural
network technique. The third part deals with the application of the random decre-

ment concept to the coupled sway-yaw motions.

In the first part of this thesis, a new predictive method is presented for the
estimation of the hydrodynamic characteristics of a ship performing certain stan-
dard manoeuvres. This method uses the static neural network technique to predict
the nonlinear hydrodvnamic forces of the ship during its motion in the horizontal
plane. The neural network model uses a steepest descent search to find the neural
network weights. In this thesis, a back propagation algorithm is used to calculate
the slope of the sum-of-squared-error curve as a function of the different weights.
Data for training the neural network consists of the data from a 33-35 degree zigzag
manoeuvre. Surge, sway, yaw velocities and rudder angles are used as input to the
predictive model. The target output data 5ré~the lumped nonlinear hydrodynamic

functions.

The generalization of the trained neural network model is checked by simulating
the manoeuvres of the ship in a situation different from the one used in the training
of neural network. A moderate 20-20 degree zigzag manoeuvre, a 25 degree turning

(starboard) and a 20 degree Dieudonne spiral manoeuvre are selected to check the

i



validity of the neural network model.

In the second part of this thesis, another approach to predict ship turning ma-
noeuvres is proposed. This model maps the relationship between sway velocities
and yaw rates during the circular manoeuvre using a neural network technique.
This method reduces the number of equations to be used in the prediction to a sin-

gle yaw equation. This new yaw equation can then be used for predicting turning

manoeuvres.

In the last part of the thesis work, the extension of the random decrement ap-
proach to the nonlinear sway-vaw motions is presented. The random waves are
simulated based on the ITTC spectrum formula. The linear system and the nonlin-
ear system of sway and yaw motion eqﬁations are discussed. The autocorrelation
functions of the response of sway and yaw velocities in random waves are obtained.
A method for using these functions to identify the hydrodynamic characteristics of

the coupled sway-yaw motions is suggested.
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Chapter 1

Introduction and Literature
Survey

1.1 Introduction

With the great progress in the area of Naval Architecture, more and more different
types of ships have been developed in the maritime transportation. Due to the
growth in ship sizes and the diversity in ship types, a great deal of attention has
been paid to the manoeuvrability of a ship for the safe navigation in ports and
waterways. For a ship designer, careful examination of the ship manoceuvrability is
needed at the preliminary design stage. Moreover, at the time of ship completion,
manoeuvring information such as the manoeuvring booklet and the wheelhouse
poster should be provided for each ship. This is required by Panama Canal Regu-
lations (1977).

To meet the above requirements, it is necessary to provide reliable data for pre-
dicting ship manoeuvring motion during a ship’s trip. Prediction of ship manoeu-

vring motions is best performed through the use of mathematica! models (Haddara



and Sabin, 1993). The three manoeuvring motions, surge, sway and vaw, can be
described by a set of three coupled first order nonlinear differential equations. For
special cases, the roll equation is needed. These equations are all based on the
second Newtonian law. The hyvdrodynamic surge and sway forces and yaw moment
are usually expressed in their Taylor series expansions. The derivatives in the Tay-
lor series are known as ship hydrodynamic coefficients. The more accurate these
hvdrodynamic coefficients, the more reliable the results of the prediction of the ship

manoeuvring motions.

Currently, four principal approaches are used for the prediction of the hydrody-
namic forces and moments acting on a ship during its manoeuvring motion. These
approaches are: theoretical methods, semi-empirical methods, experimental meth-
ods and parametric identification methods. The last one of the four is quite new
and powerful compared with the other three. In this thesis, a new method for
parametric identification will be presented to predict ship manoeuvring motions in

a more efficient and more economical way.

1.2 Theoretical Methods

Several theoretical methods for the evaluation of the hydrodynamic coefficients for a
ship’s manoeuvring motions can be found in the literature. Mikelis and Price {1980)
used a three-dimensional potential flow analysis of the fluid and a finite element
method to calculate hydrodynamic coefficients. Accurate acceleration coefficients
can be developed taking into account the ship’s form. An assumption of a double

layer singularity distribution over the hull with a hydrodynamic vortex sheet was



emploved by Remez (1989) for the estimation of hydrodynamic derivatives in the
case of small Strouhal number. Clarke et al. (1982) used the assumption that the
hull is a low aspect ratio wing turning on its side. By considering the horizontal
added mass coefficients for sections along the hull, Clarke extended the slender body
strip method to yield expressions for the hydrodynamic derivatives dependent on
hull shape through the longitudinal added mass distribution. Wu and Liu (1990)
presented a boundary element method for estimating the lateral hydrodynamic
forces and yaw moment acting on a ship during its manoeuvring motion. The
effect of free surface and separate vorticity was taken into consideration in their

method.

1.3 Semi-empirical Methods

Several semi-empirical methods can be used to derive empirical expressions for
the hydrodynamic derivatives based on measured values from the planar motion
mechanism and rotation arm experiment. Clarke et al. (1982) used multiple linear
regression analysis to find empirical formulas to explain the variation in the available
data for the velocity and acceleration derivatives. Inoue et al. (1981b) presented a
practical calculation method for the ship manoeuvring motion using the principal
particulars of a ship hull, propeller and rudder as basic input data. The effect
of the loading condition on the ship manoeuvrability was investigated by taking
three factors into conscideration: the draft, the trim and the immersed rudder area.
Inoue et al. (1981a) proposed a method for estimating the linear derivatives of
the force acting on the bare hull using the nonlinear lifting surface theory and

the measured results. The linear and nonlinear derivatives in the mathematical



models for manoeuvring were examined semi-empirically by both using the model
tests of various kinds of ships and applying a theoretical approach. Kijima et al.
(1993) apﬁlied the prediction method of ship manoeuvring characteristics for zig-
zag manoeuvre and free running model test. Compared with the model test results,
the predicted ship manoeuvrability has a very good agreement with experimental

results.

1.4 Experimental Methods

Captive model tests in tanks are now carried out using a planar motion mechanism
(PMM) or a rotating arm. The model is tested over a suitable range of important
variables such as drift angle, yaw rate, sway acceleration, yaw acceleration, propeller
RPM and rudder angle, and the results are analyzed to obtain the hydrodynamic
coeflicients required in the equations of motion; see Crane et al. (1989). Yang et al.
(1992) presented a formula for calculating the hydrodynamic coefficients for ships
by analyzing a database using multi-variate regression techniques. The difficulties
in the use of the experimental methods lie in both the high expense of model tests

and the unavoidable viscous scale effects.

1.5 Parametric Identification Methods

Parametric identification determines an estimate of the parameters in the mathe-
matical model which are related to the observed data from a given input/output
data record of experiments or simulations. The unknown parameters of the model

are determined by choosing them to optimize the performance index that measuies



how well the mathematical model represents the observed data. The values of the
parameters are continuously updated by an algorithm that minimizes the error

functions.

Gill (1975) suggested a method of predicting the coefficients in the equations of
- motion from standard full-scale ship manoeuvring trials. The equations of motion
used were applicable over a wide range of forward speeds. The coefficients in the
equations may be obtained either from model tests (constrained or free-sailing) or
from full-scale ship trials. The technique used in Gill {1975) was based on standard
full-scale manoeuvring trials, namely, spiral manoeuvres. The procedure for iden-
tifying the coefficients was a mixture of output error and equation error methods.
The spiral test results were used to establish certain relationships among some of
the coefficients. By varying these unknown coefficients, different solutions of the
equations were obtained, and these were compared with the measured output from
the trials results of the spiral test. The solution closest to the measured output

(i.e. minimum output error) indicated the best coefficient values.

Before the process of the identification in Gill (1975) was started, some pre-
coefficients could be estimated fairly accurately, others could be estimated to within
certain limits, and furthermore, relationships between some coefficients were estab-
lished. This process reduced the range and number of variables from 12 to 4 or 3,
which immediately simplified the actual matching problem. All the pre-coefficients
could be estimated from standard resistance and propulsion model experiments,

from the principal dimensions of the ship, or by using empirical formulae estab-
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lished from constrained model tests by rotating arm and oblique tow tests, or

planar motion mechanism experiments.

The final equations were verified by other trials, and for this purpose some tran-
sient manoeuvres should be performed. Kempf manoeuvre was an obvious choice
and it was desirable to perform a number of manoeuvres using different rudder
anglés and heading angle changes. The set of equations described the manoeuvring
properties of the directionally unstable VLCC fairly accurately and would be emi-

nently suitable for programming into a real-time ship handling simulator.

Abkowitz (1980) and Abkowitz and Liu (1988) applied the system identification
analysis technique to specified ship trial maneuvers and provided a way of "mea-
suring” the hydrodynamic coefficients of the ship and helped to verify proper form
of the equations of motion used in simulation. The system identification programs
using the extended Kalman filter technique were developed for direct application to
realistic ship maneuvers wherein the ship may suffer large speed loss and significant
currents may exist. The identification process compared”the measured output with
the given input. The input to the system identifization process was both the rudder
deflection and the resulting motion responses, while the output was the identified
parameters of the simulation model. The motion variables in case of u, v, r, and ¥
as functions of time were compared with the measured variables and the difference
was the error in the estimation. In the extended Kalman filter (EKF) approach
of Abkowitz (1980), the hydrodynamic coeflicients were treated as additional state

variables, but must be constant in time.



Full-scale trials of ship maneuvers were carried out and the results were ana-
lyzed using the identification programs. Those maneuvers performed specifically for
system identification purposes were mild zigzag maneuvers (10-degree rudder/ 10-
degree heading), moderate zigzag maneuvers (20-degree/ 20-degree), offset zigzag
(5 to 25 to 3-degree rudder), and tight turning circles of 35-degree rudder. This
system identification procedure has been successfully applied to the maneuvering
trials in deep and shallow water. When the identified valucs of the coefficients were
used to simulate the trial maneuvers, very good agreement was obtained between

the simulated motion responses and those measured during the ship trials.

Trankle {1989) used Marine Coefficient Identification System (MARCIS) to es-
timate the coefficients for the nonlinear hydrodynamic model in the manoeuvring
motions. The complete sysi::m identification method used to process raw sensor
data to determine hydrodynamic coefficient estimates had two steps: filtering and
paver.ster estimation. Filtering useti an extended Kalman filter to compute esti-
ﬁlafes of vessel velocity and acceleration. These values were used as input to the
process of hydrodynamic parameter estimation. The unknown parameter values
were adjusted using a nonlinear optimization procedure to minimize mean square

error between actual measurements and simulated measurements.

The MARCIS package functioned effectively throughout the trials, recording
all of the desired data channels with no data dropouts. All of the desired system

identification results including estimation of both linear and nonlinear aspects of



the livdrodynamic model were produced using MARCIS processor alone.

The methods described above are time consuming and do not provide accu-
rate estimates for the individual coefficients. The main difficulty arises from the
large number of the parameters to be estimated. It is well known that in system
identification procedures, the more parameters that need to be identified from the
same pieces of data, the less likely that successful identification will be achieved.
Abkowitz and Liu (1988). Another problem that these techniques suffer from is
the cancellation effect. Compensating errors in two or mor= of the coefficients may
result in a reasonable prediction of the motion response for a certain manoeuvre,
Abkowitz (1980). The method suggested in this thesis tries to avoid these difficul-

ties.

1.6 The Scope of This Study

A new parametric identification approach is presented in this thesis. It is assumed
that the hydrodynamic forces or moments are composed of two components: a
linear part and a lumped nonlinear part. The former is the linear terms in the pre-
vious Taylor series expansions and the latter is made up of all the nonlinear terms
in the remaining Taylor series expansion. The linear part can be estimated using
semi-empirical methods as in Clarke et al. (1982) and the lumped non-linear com-
ponent can be obtained using a neural network technique based on full scale ship
trial data. Finally, the relationship between the lumped non-linear functions and
the variables of surge velocity, sway velocity, vaw rate and rudder angle are iden-

tified. The approach enables us to obtain the values of the hydrodynamic forces.



Velocities can then be determined in real time. Therefore. the on-line prediction of

ship trajectory can be available for the purpose of ship navigation.

The present approach shares the common advantages of the parametric identifi-
cation methods (Had<ara and Sabin, 1993). These are: 1) elimination of the scale
effects. 2) The accuracy of coefficient can be checked based on the measured ship
response. 3) The cost is low because the input data to the identiﬁf,aﬁc;n process
are from measuring instruments usually found on board ships. 4) If the identifica-
tion process is obtained on-line (real time), the trajectory can then be predicted to
help the captain in steering his ship. Moreover, the new approach can effectively
avoid the cancellation effects of coefficients by employing only two parts {linear and
nonlinear) in the expression of the hydrodynamic forces. This is because a fewer
number of hydrodynamic coeflicients are being predicted. With respect to the re-
quired data, this new approach needs only one set of surge, sway and yaw velocities
from one 35 degree zigzag manoeuvre and the time lag for measuring data is about
2 to 5 seconds. This makes the required full scale trials much simpler than that in

Abkowitz (1980) and Gill (1975). More details can be found in chapter 4.



Chapter 2
Neural Network Model

2.1 Static Neural Networks

The technique of neural networks has a wide applications in performing a variety of
computational tasks including sequence recognition, trajectory following, nonlinear
prediction, and system modeling. The network models are partitioned into two
basic categories: static networks and dynamfc networks. In this thesis, the static

neural network model is used to predict nonlinear functions.

Static networks, of which the multi-layer perceptron (MLP) is the most widely
used, are characterized by node equations that are memoryless. That is, their out-

puts are functions only of the current input, not of past or future inputs or outputs.

Static networks implement nonlinear transformations of the form O = G(I),
where I and O represent the input vector with &in dimensions and the output vec-
tor with kon dimensions, respectively. The network structure used in this thesis
consists of an input layer, a middle layer and an output layer of neurons or nodes.

This is usually referred to as a two-layer network. Figure 2.1 shows the details of
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the neural network structure. -

MIDDLE LAYER
M net+1

INPUT

I kin+1

1

Figure 2.1: Structure of Neural Networks

The neural network will be modeled as the sum of weighted sigmoidal functions

(Hornik et al., 1989). The input to the ith node in the middle layer consists of a

weighted sum of the kin+ 1 components in the input vector. This can be expressed

as

kin+1
Mi= 3 Wi+

_,_

where [xine1 = 1.

The input to the ith node in the middle layer is applied upon by a nonlinear

11



transformation, also called a squashing function. We will use the following trans-

formation:

1

The reasons for the choice of this form for the squashing function are that it is
differentiable and it can be easily differentiated; thus, it makes the back-propagation

algorithm easier to implement. The derivative of the squashing function is given as

IO - 1w - 5 23)

No squashing function is applied at the output layer. It is common practice to
use linear output nodes since this tends to make the learning easier. The output of

the kth node in the output layer is given as

net4l

O = Z By x f(M;) (2.4)
i=]

2.2 Nonlinear Function Approximation

The nonlinear function approximation can be carried out using a neural network
(Hornik et al., 1989). The function is approximated by a combination of net squash-
ing functions from each of the net nodes in the middle layer. Let's consider a net-
work which has one node in its input, output and middle layers. Equation 2.4 is

then reduced to

O = Boy + By f(Wildy + Way) (2.3)
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Figure 2.2: One Input/Output, One Middle-layer Node Mapping

Figure 2.2 shows the relationship between the input and output of this simple
network. The bias weights W5, and B, change the position of the sigmoid in
the horizontal and vertical directions while Wy; and By change the scale of the
sigmoid in the horizontal and vertical directions. Hinchey (1994) stated that in the
general case, a map of nonlinearity is formed by patching together in a hyperspace
many scaled and shifted squashing functions. Because of the continuity of the
sigmoid function, the approximation is smooth and continuous. The numerous
alternatives to the sigmoid include tanh(a), er f(a), a/(1 + |a|) etc. It was shown
in Cybenko (1989) that a 2-layer network which contains one middle layer can form

an arbitrarily close approximation to any continuous nonlinear mapping.

2.3 Steepest Descent Search

In order to carry out the transformation of O = G(I), the most common learning
algorithm for MLP neural networks uses a gradient search technique to find the

network weights that minimize a criterion function. The criterion function to be
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minimized is the sum-of-squared-error function given by

kon

E=Y (O:—Te) (2.6)

k=1

where T} is the kth target data corresponding to the kth output node. Substi-

tuting equation 2.1 into equation 2.6 gives

kon net+l
E = Z( Z B f(M;) —T:)? (2.7)

k=1 =l
where T} is considered to be constant. So, the sum of the squared errors, E,
depends on B;; and f(M;). Consider a small variation in a specific By and a

specific f{M;), the variation in the sum of squared errors, E, is given as

05} .
- -éBik 6B + =22 §1F(My)] 2.8)

o8 Eia)

Using equations 2.1, 2.4 and 2.6, one gets the following form

kin+1

SF(M)] = 8[F( 3 Wy=I)

j=1

_ 9f
= g Wi (2.9)

where in equation 2.9, the I’s are considered constants. Then equation 2.8 can

be rewritten as

oE 0E 0Of

°F = 58 B+ T Franiaw;

§W; (2.10)
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According to the principle of steepest descent. the weights of the (n+1)th iter-
ation In training are obtained from the weights of the nth iteration in the following

fashion:

OF ,
Bix(n+ 1) = Bun) — M5B (2.11)
oF 0o
Wij(n+1) = Wi;(n) - rT] 895-- (2.12)
ij

where 7 is the training rate.

2.4 Back-propagation Algorithm

The derivatives in equation 2.11 and 2.12 can be easily obtained through a number
of manipulations. The final forms of the derivatives will be directly related to the
error Iof a single node in the output layer, Ey = Oy — Ti. This algorithm is known
as -the Back-propagation algorithm. For the derivatives with respect to Bj., one

gets

8E O[T (Or — Ti)?)
OBy 0Bix

a0
= 20 —Tk)aB:

(2.13)

where the target data T} is considered to be constant. Substituting equation

2.4 into equation 2.13 gives



80k ATt By f(Mi)
@B,—k - aBik
= S (2.14)

Combining equations 2.13 and 2.14 gives the form for the derivatives, a—af:, as

.3_33% = 2(0x — Te) f (M) (2.13)

‘For the derivatives with respect to W;; in equation 2.12, it can be worked out

as follows

8E of _ {Zfn(0«—~TW)?%) of

of oW,; af oW;;
_ 80, oOf
= 2(0r ~T) 5 oW, (2.16)
where T} is a constant and
90r _ O{TIt By x £(My))
af Of (M)
= By (2.17)
Using equations 2.1, 2.3 and 2.16, one gets
af _ Of(M;) oM,
oWy —  OM;, OWy
O{TEmH Wi, + I}
= M _ 7\/1_ J= J M
M;(1 — M) oo
= JM;(I “T"%;‘W{)Ij (2.18)
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where Iis are constants. Finally. an expression for the derivatives of E with

respect to W; can be obtained as

OE 8f VR A A T .
37w = 2%~ T BuMi(l = M)+ (2.19)

Equations 2.15 and 2.19 enable us to compute the derivatives of the sum-of-

squared error, E, with respect to each weight in the neural network from the output

layer backwards.

2.5 Empirical Rules to Improve Network Train-
ing

The learning rate in equations 2.11 and 2.12 can be chosen in different ways. It

can be the same for all weights in the network, the same for all weights in the same

layer, or it can be different for each weight in the network. In general, it is J::licult

to determine the best learning rate, but a useful empirical rule is to make the‘rate

fof each node inversely proportional to the average magnitude of vectors feeding

into the node. If the magnitude of the rate is chosen too large, the iteration of

steepest descent search cannot converge towards the global minimum of the error,

E.

A simple approach that works quite well in practice is to add a momentum term
of the form a(W({n) — W(n — 1)) to modify the updated weights, where 0 < a < 1
and n is the nth iteration. The weight updating equations can thus be rewritten as

follows:
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B,-k(n + 1) = B,-k{n) — Uég—;:;‘ + a(B;k(n) - B;k(n - 1)) (2.20)

OE 0Of

Wij(n +1) = Wij(n) — "5F W,
ij

+ a(Wi;(n) — Wi(n — 1)) (2.21)

The momentum term modifies the current search direction by a weighted aver-
age of the previous direction, and helps in keeping the weights moving across the
flat portions of the performance surface after they have descended from the steep

portions (Hush and Horne, 1993).

With regards to the stopping rule of the search algorithm, the process of com-
puting derivatives and adjusting weights is repeated until a minimum is found.
But, it may be difficult to terminate the algorithm automatically. There are sev-
eral stopping criteria that may be considered. The first is to use the magnitudes
of the derivatives as a criterion. One can terminate the search when the magni-
tudes of the derivatives are suﬁicieﬁtly small. Another criterion for terminating the
search is to set a fixed threshold for the error. Thus, the search is terminated when
the error reaches a magnitude less than the preset threshold value. However, this
requires somé knowledge of the acceptable minimal values of the error. A third
method would be to terminate the search when a fixed number of iterations have
been performed. There is little guarantee that it will stop the algorithm at the ex-
act minimum point. Still a fourth method is to use the method of cross-validation
to monitor the generalization performance during learning. Typically, two sets of

data are prepared. One is a training set used for training the network, the other is
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a test set for measuring the generalization performance of the trained network.

In t.lvlis thesis, the last three methods are combined together and the results
show that this combination is helpful and robust. Before the network is trained, a
set of training data and a set of test data are prepared. During the process of data
training, an estimated number of iterations is set. After the iteration is finished, the
error is checked to determine if the next iteration is necessary. If the error is small
enough. the vt.raining task will be completed and the trained network will be used
to simulate a nonlinear function. Based on these functions, a set of data, say, surge
velocity, sway velocity and yaw rate will be calculated using numerical integration.
These data will be compared with a set of test data to check how well they fit with
the test data. If they fit well, it indicates a good generalization performance of
the network and a successful prediction of nonlinear function using neural network.
This is a trial and error process and it requires one’s wits and patience. Details are

in chapter 4.
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Chapter 3

Numerical Simulation of Ship
Motions

The application of numerical simulation will provide a controlled test for checking
the validity of the proposed method by comparing the results with the ones ob-
tained from simulation. The set of surge velocity, sway velocity and yaw rate from
different simulations of zigzag manoeuvres are used for training and validating the
neural network model in this thesis. The simulations of the ship turning and spiral
manoeuvres are used to check the generalization of the proposed model trained
from a zigzag manoeuvre. The hydrodynamic coefficients used in simulation are
also employed to check the estimated coefficients as identified by a multi-variate

regression using the neural network results.

3.1 Ship Motion Equations

Numerical simulation of ship manceuvring motion is based on ship motion equa-
tions. The equations of ship motion describing ship manoeuvres in the horizontal
plane can be written with respect to a system of coordinate axes fixed in the ship.

This system will be denoted ozyz, where the origin of the coordinates will be at-
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tached to the center of gravity of the ship. The ship trajectory should be referred
to a global coordinate system which is fixed relative to the earth. This system is

denoted oxpypzp. The relationships between the two axes are given by

Tg = ZIcosy — ysiny (3.1)

Yo = ISinY + ycosy (3.2)
Figure 3.1 shows the two coordinates systems. The most frequently used ship

9 Xo

‘\ Yeo

X0
Figure 3.1: Coordinate Systems
motion equations in horizontal plane are a set of three coupled first order nonlinear

differential equations that describe the surge, sway and yaw motions of the ship.

in Crane et al. (1989), these equations are expressed as
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Surge . (A - ,Y,_,)u = f[ (u._ v. T, 53) (33)
Sway: (A-=-Y)o—Yir = fo(u,v, 7, 6g) (3.4)

Yaw: =N+ {I,— N;)r = fa{u,v,r,6g) (3.3)

where u, v, r and ég are surge velocity, sway velocity, vaw rate and rudder
angle, respectively. A dot over the variable denotes differentiation with respect to
time. A is the mass of ship and I, is the mass moment of inertia of ship about the
zg-axis. fi, f2 and fj are the hydrodynamic forces and moments acting on the ship
in the surge, sway and yaw modes, respectively. X, Y and N are the surge force
in x-direction, the sway force in y-direction and the yaw moment about z-axis. A
subscripted variable designates the derivative of the variable with respect to the

subscript.

The hvdrodynamic forces f, f» and f3 are functions of u, v, r, 5 and their time
derivatives, the propeller thrust and its velocity. These forces can be expressed in

their Taylor series expansions as follows:

filu,v,7,8g) X0+ X, 6u + 1/2X 6 + 1/6 Xy bu®
1/2X,00 + 1/2X 12 + 1/2X556% + 1/2X 0?60
1/2X,mr26u + 1/2X,;5u6236u + (.Xw + A)‘UT

Xosvbp + X,srbp + Xumrrdu + X5, v056u

+ + + 4

Xrsurpbu (3.6)
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folu,vor,6g) =

+ + + 4+ o+

fa(u,v,7,6R)

+ o+ + o+ o+

Yo + ¥.26u + Y2, 6u° + Y,u

1/6Yeent® + 1/2Y,, 01 4 1/2Y 55063 + Y véu
1/2Y, 0 vét® 4 (Y; — Aug)r + 1/6Y,r3 4+ 1/2Y 007
1/2Y,5516% + Yiurbu + 1/2Y, 164> + Yisbg
1/6Ys5555 + 1/2Y5,,0pv° + 1/2Y5,, 612 + Y5, 6560

1/2Y5u,6R0U” + Yirsorde (3.7)

NO 4 NO6u? 4 N 6u% + Nyu

1/6Nuust® + 1/2Nyerur? + 1/2N, 55065 + Noyvéu
1/2N,0ub8? + No7 + 1/6 Nyt + 1/2N,y102
1/2N,5576% + Npurbu + 1/2Npuréu® + Nsbp
1/6N5556% + 1/2N;s0u86 0% + 1/2N5,.6p7r2 + Ny, Spbu

1/21V5uu636U2 + IVU,.,;UT‘GSR (38)

where ug is the ship approach velocity and du = u — u,.

Substituting equations 3.6 to 3.8 into equations 3.3 to 3.5 and decoupling them

gives

= filu,v,7,6R)
T (A-X,)
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. (Iz - lVi')f2(ue v, T, 53) + },r"f«'i(uev'.rs 6R)
VNS A A AR A Y

(3.10)

s (A — Y;'J)f3(uavsrs ‘5R) + *[Vi'f2(ua v, T, 53)
r= (A —Y)(I. - V) - NoYs (3.11)

3.2 Zigzag Manoeuvre Simulation Procedures

The zigzag manoeuvre is also known as the Kempf overshoot or "Z" manoeuvre.
The results of this manoeuvre are indicative of the ability of a ship’s rudder to
control the ship. Moreover, the results depend somewhat on the stability charac-
teristics of the ship as well as on the effectives of the rudder motion. The typical

procedure for conducting the zigzag manoeuvre is given as follows (Gertler, 1959):
(a) Steady the ship on a straight course at a preselected approach speed, up.

(b) Deflect the rudder at maximum rate to a preselected angle, say 20 degrees,

starboard, and hold until a preselected heading angle, say 20 degrees, is reached.

(c) At this point, deflect the rudder at maximum rate to an angle of 20 degrees,
port, and hold until the heading angle reaches 20 degrees at the side of port. This

completes one cycle of zigzag manoeuvre.

(d) If a zigzag test is continued, deflect the rudder again at maximum rate to

the same angle as that in step (b). This procedure can be repcated through the
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third, the fourth cycle and so on.

3.3 Results of Zigzag Simulation

The data for a Mariner Class ship given in Crane et al. (1989) are used to generate
the simulations. The particulars of the ship used to obtain the simulations are

shown in Table 3.1.

Table 3.1: Ship Principal Dimensions

Length | Beam Draft Block Coef. | Velocity Rudder Rate
1324 m | 21.763 m { 8.138 m | 0.600 7.614 m/sec | 2.5 deg/sec

The hydrodynamic coeflicients needed to calculate the hydrodynamic forces f,
fo and f3 in equations 3.6 to 3.8 are given in Table 3.2, taken form Crane et al.
(1989). The velocities, u, v and r are calculated by applying a fourth order Runge-
Kutta integration method to equations 3.9 to 3.11. Performing the integration over
a selected time period will give a set of simulation data for u, v and r. The velocities
are integrated once more to obtain a trajectory of the ship. The trajectories are

calculated using the following equations:

t-4t

() = (0) + Z r(7)6t (3.12)
t—dt

zoe(t) = 206(0) + Z{u T)cogh(r) — v(r)siny(r)}6t (3.13)
t—4t

Yoc(t) = yog(0) + Y {v(r)cosw(r) + u(r)sinp(r)}6t (3.14)
=0
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Table 3.2: Hydrodynamic Coeflicients of a Mariner Class Ship

Coefficients | Values Coeflicients | Values Coefficients | Values
{X-equation) (Y-equation) (N-equation)
A-X, 0.17700 | A =Y, 0.32700 || N; 0.00221
X. -0.02530 || Y -0.00077 || I, — N; 0.01750
Xuu 0.01896 || Y, -0.24400 || N, -0.05530
Xouu -0.01302 || Yyeo -10.2120 || Nypy 2.07400
Xy -0.37800 || Y. - 0 Noyrr 0
Xer 0.01272 || Yiss -0.00160 || Nyss 0.00528
Xss -0.04000 || Y.. 0 Ny 0
Xvuu 0 I/tmu 0 Arvuu 0
Xeru 0 Y.— A -0.10500 || N, -0.03747
Xééu 0 1/r':"r 0 Nrrr 0
Xor + A 0.16800 || Vi 6.46000 || Nyyy- -2.31600
Xos - 0.01960 || Y45 0 N.ss 0 -
Xrs 0 Yo 0 Ny 0
Xuru 0 Y’ruu 0 N‘run 0
Xosu 0 Y 0.05860 || Ns -0.02930
Xisu 0 Ysss -0.05850 || Nsss 0.02822
A0 0 Ysoo 0.50000 || Nsy, 0.20640
Ysrr 0 Ar&rr 0
Y5u 0 Nsy, 0
Y5uu 0 NJuu 0
Yvr6 0 er& 0
Y'Y -0.00080 If NV 0.00059
Yo 0 A 0
Y’ 0 NU 0

uu
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where 2o (). yog(t) are the instantaneous coordinates of the path of the center
of gravity of the ship relative to the fixed set of earth axes. ¥(¢) is the instantaneous

orientation of the ship.

It should be mentioned here that tlic process of rudder’s deflection can be sim-

ulated in real time as follows

Sr(t) = bg(to) until t >t (3.13)
Sr(t) = br{te) + rate(t — to) until Sp(t) = Sreonst (3.16)
then (SR(t) = 63,:0“5: (317)

where 6g is rudder angle, rate is rudder turning rate snd tp is the time point

from which rudder starts to turn. 8pconse is the selected rudder angle.

The results of simulation of 20-20 and 35-35 degree zigzag manoeuvres are shown
in Figures 3.2 to 3.7. The velocities from the 35-35 degree zigzag manoeuvre will
be used to train neural netwerk models for predicting other different ship motions.
The results from the 20-20 degree zigzag manoeuvre will be compared with the
outcome of neural networks to check the generalization of this model. In addition
to using a 20-20 zigzag manoeuvre, a 25 degree turning circle (starboard) will be
simulated in a similar way. The velocity and the trajectory of the 25 degree circle
will provide an alternative test to check the validity of the generalization of this

model.
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Figure 3.2: Surge Velocity of 20-20 and 35-35 degree Zigzag Manoeuvres
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Figure 3.3: Sway Velocity of 20-20 and 35-35 degree Zigzag Manoeuvres
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Yaw Rate ~ Time
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Figure 3.5: Trajectory of 20-20 and 35-35 degree Zigzag Manoeuvres
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Figure 3.7: Ship Heading and Rudder Command of 20-20 Zigzag Manoeuvre
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3.4 Ship Turning Simulation

All ship manoeuvres involve turning. The forces and moments produced by the
rudder and the response of the ship to these forces involve a transient and a steady
turning phases. The motions in these two phases are governed by the ship motion
equations 3.3 to 3.5. The same ship where the hydrodynamic coefficients are shown
in Table 3.2 is used to simulate the turning circle manoeuvre. Figures 3.8 to 3.11
show the velocities and trajectory during the ship turning manoeuvre with a rudder

angle of 25 degrees, starboard.

Surge Velocity ~ Time (25 deg Turning, Starboard)
8 T T —

o ~
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Figure 3.8: Surge Velocity of 25 degree Turning (Starboard)
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Sway Velocity ~ Time (25 deg Turning, Starboard)
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Figure 3.9: Sway Velocity of 25 degree Turning (Starboard)

Yaw Rate ~ Time (25 deg Tuming, Starboard)
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Figure 3.10: Yaw Rate of 25 degree Turning (Starboard)

32



Trajectory Y ~ X {25 deg Turning, Starboard)
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Figure 3.11: Trajectory of 25 degree Turning (Starboard)

3.5 Ship Spiral Manoeuvre Simulation

The direct or Dieudonne spiral manoeuvre is a definitive ship trial (Dieudonne,
1953) which identifies the directional stability characteristics of the vessel. The

manoeuvre consists the procedures as follows:

(a) Initially, the ship is kept on a straight course at a constant speed. After
about 1 minute, the rudder is turned to an angle of, say, 20 degrees, starboard.
The rudder is held until the rate of change of yaw angle maintains a constant value

for about 1 minute.

(b} The rudder angle is then decreased by a small amount, say, 5 degrees and

held fixed again until a new yaw rate is achieved and is constant for 1 minute.
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(c) The foregoing procedure is repeated for different rudder angles changed by
small increments from large starboard values to large port values and back again

to large starboard values.

The numerical measure obtained from the above spiral manoeuvre is the steady
vaw rate as a function of the rudder angle. The spiral manoeuvre simulation is
obtained using the ship and its hydrodynamic coefficients as shown in Table 3.2.
The maximum rudder angle of this spiral manoeuvre is 20 degrees, starboard and
port. The small increment of the rudder in this manoeuvre is 5 degrees. The time
interval between consecutive rudder deflections are 60 seconds. Figure 3.12 shows
the relationships between steady yaw rates and rudder angles in the 20-degree spiral
manoeuvre. The simulation gives a sloped loop in Figure 3.12 indicating a slight

directional instability of the ship.
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Yaw Rate ~ Rudder Angle
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Figure 3.12: Yaw Rates and Rudder Angles in 20 degree Spiral Manoeuvre



Chapter 4

Parametric Identification Using
Neural Networks

4,1 Mathematical Model

Equations 3.6 to 3.8 are usually used to calculate hydrodynamic forces acting on
the ship during ship manoeuvres under the condition that the hydrodynamic coef-
ficients are known. The coefficients in these equations can be obtained by different
approaches as mentioned in chapter 1. Identification of the individual coefficients
in these equations is difficult, Abkowitz (1980). Instead of identifying individual
hydrodynamic coefficients in equations 3.6 to 3.8, the new method that we will de-
velop in this thesis is to identify the hydrodynamic forces f,, f> and f3 in equations
3.6 to 3.8 using experimental results obtained from full scale trials. To test this
method, the results of numerical simulation of ship motions will temporarily take
the place of the experimental data required in this method. For the purpose of this
work, we are going to express the hydrodynamic forces and moments as the sum
of a linear part and a nonlinear part. The linear part of forces will retain their

Taylor series expansions while the nonlinear part will be lumped together in one
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term. known as lumped nonlinear function. The surge force f|, the sway force f;

and the yaw moment f; will be written as follows

filu, v, r, 65) = Xobu + 1/2X556% + g1 (u. v, 7, 85)

fg(u.;v.,r, (53) = YU'U + (Y;— - A’U.o)?’ + Y;s(SR + gg(u,v, 1‘,6;3)

f3(U, v, T, 63) =-_-\,I'U.U + JV,.T -+ 1\2563 + 93(us v, T, 6R)

(4.3)

where g, go and g3 are lumped nonlinear functions in surge, sway and vaw

moces and they are dependent on the surge velocity u, the sway velocity v, the yaw

rate r and the rudder angle ég.

Compared with equations 3.6 to 3.8, g1, g2 and g3 corresponc to the nonlinear

terms in the forms as

o (’U., U, T 6R)

gg(u, u, T, 6;{) =

+ + o+ o+ o+

= X% 4+1/2X,6u% + 1/6X pubu®
1/2X,00% + 1/2X,, 72 4 1/2X ,puv?bu
1/2X rur26u 4+ 1/2X 55,6560 + (Xor + A)vr

Xosvbrp + Xosrbr + Xyrevrou + Xys,végbu

+ o+ + o+

X surbrbu

Yo + Y06u + Y2 6u°

1/6Yuv® + 1/2V,, 072 4 1/2Y 5506% + Y, wbu
1/2Y,uuvbt® + 1/68Y,r 1 + 1/2Y,,r0®

1/2Y,4506% + Yiurbu + 1/2Y,urbu’

1/6Y3566% + 1/2V5,,6p0% + 1/2Y5,.6p7% + Yiubpbu

1/2Y5,,6p6u? + Y rsvrbp
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galu,v,7,65) = N+ N%u? + N 6u?

1/6N,,0° + 1/2Nyvr? 4+ 1/2N,5506% + Nyyvbu
1/2N,uu 6t + 1/6Nppor 4 1/2N,r0°
1/2N,s576% + Npyréu + 1/2N, réu?

1/6N;556% + 1/2N5,6p0® + 1/2N5 6572 + Nsubrbu

+ + o+ o+ o+

1/2N,;w636u2 + N, svrép (46)

It should be mentioned that the second order term 1/2X;;6% in the surge equa-
tion 4.1 was separated from the nonlinear function g;. This second order term is
quite significant because there is no first order term X8z in the surge equation. In
equations 4.1 to 4.3, the linear part gives a qualitative description of ship manoeu-
vres while the nonlinear part plays the role of the refinement of the quantitative

description of these manoeuvres.

The linear coefficients in equations 4.1 to 4.3 will be estimated using Clarke’s
formula, Clarke et al. (1982). The lumped nonlinear functions g;, g and g3 will be

identified through a neural network approach.

4.2 Estimation of the Linear Part

To identify the hydrodynamic forces f, f» and f3, we need to estimate the linear
derivatives of hydrodynamic forces in equations 4.1 to 4.3. These can be obtained
by doing plannar motion mechanism or rotation arm ship model tests. In this

thesis, we use Clarke’s Formula, Clarke et al. {1982), to obtain estimates for these
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derivatives as follows

Y, = —w(T/L)*(1 + 0.16CB/T — 5.1(B/L)?) (+4.7)
Y; = —n(T/L)*(0.67B/L — 0.0033(B/T)?) (4.8)
Y, = —m(T/L)*(1 + 0.40Cs B/T) (4.9)
Y, = —a(T/L)*(-1/2 +2.2B/L — 0.080B/T) (4.10)
Ys = (A/L/T)(T/L)const  (Note : const = 3.0) (4.11)
Ny = —n(T/LY*(1.1B/L — 0.041B/T) (4.12)
N; = —n(T/L)*(1/12 4+ 0.017CsB/T — 0.33B/ L) (4.13)
N, = —m(T/L)*(1/2 4 2.4T/L) (4.14)
N, = —x(T/L)*(1/4 +0.039B/T — 0.56B/L) (4.15)
Ns = —1/2Y; (4.16)

where L, B, T and Cp are ship length, breadth, draft and block coefficient. A
is the rudder area. In this work, we take the ratio of A to LT to be 0.02. All of
the above derivatives are nondimensionalized using the system of density p, length
L and velocity up. In this work, we use p, L, T and ug system and transform the
nondimensional coefficients into p, L, T and ug system by multiplying the above
formulae with L/T. The derivative X, is estimated by 5% of the displacement of
the ship. X, is chosen in the range of -0.02 to -0.05. It is very difficult to get
the exact estimation of X, because it depends on so many factors as the propeller
properties, the interaction effects of ship and propeller and the rotation speed of
propeller etc. But, the errors of the estimation will not affect the accuracy of the
neura) network model. According to equations 4.1 to 4.3, the left hand sides of

equations are hydrodynamic forces and the right hand sides are composed of two
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parts: the linear part and the lumped nonlinear functions. If some errors occur in
the estimation of the liner part, the lumped nonlinear part will offset these errors
to keep the left hand side forces still correct. Therefore, the errors in estimating

the linear coefficients will be absorbed in the nonlinear components of the forces.

As to X5, we have the relationship
X = —Ytandg (4.17)

where X is the x-component of the rudder force. Y is the component of the
rudder force normal to the ship center plane when the rudder is turned at an angle

of 8p degrees. Equation 4.17 can be rewritten as follows

X = =Y tan&R
= —Ysdptanbp
= —Yibp(6r—1/66%+ ... )

= —Y;6% +1/6Y36% — ... (4.18)

where Yj is the derivative of Y with respect to §. From equation 4.18, it is
easy to find that X5 is equal to —2Y; where the nondimensional Y; in Clarke et al.

(1982) is as follows
A

Ys=17

* 3.0 (4.19)

N

where A is the rudder area.

So X5 will end up in the following form:

Xss = —2Y;

40






entiation algorithm was used to obtain the accelerations. Figures 4.4 to 4.6 show
the numerical results of the surge, sway and yaw accelerations of the 35-35 degree
zigzag manoeuvre. Witil the coeflicients in equations 4.21 to 4.23 estimated using
Clarke’s Formula (Clarke et al., 1982), the three lumped nonlinear functions g1, g2
and g¢a in equations 4.21 to 4.23 corresponding to the set data of u, v, r and ég<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>