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Abstract 

This thesis develops innovative procedures to address problems in imaging multi-

channel reflection seismic data in regions of complex geology. Conventional common 

midpoint (CMP) based processing fails to produce adequate Earth images for complex 

geological structures with both vertical and lateral heterogeneities. This failure is due 

to the breakdown of assumptions such as common midpoint stacking and exploding 

reflector models. In these cases, seismic prestack depth migration is necessary since 

it can produce an accurate subsurface image- provided that a good estimate of the 

low wavenumber component of the velocity model is available. Two powerful prestack 

depth migration techniques are developed through the integral and finite-difference 

solutions of the wave equation. 

I first develop a new~ robust~ and accurate traveltime calculation method which is 

essentially a wavefront tracing procedure. This is implemented as a combination of a 

finite-difference solution of the eikonal equation, an excitation of Huygens' secondary 

sources, and an application of Fermat's principle. This method is very general and 

can be directly applied to compute first arrival traveltimes of incident plane waves. 

These traveltimes are extensively used by the Kirchhoff integral method to determine 

the integral surface, and also by the reverse-time migration to determine imaging 

conditions. 

The prestack Kirchhoff integral migration of shot profiles which is developed using 
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the WKBJ approximation to the Green's function is simply a summation of ampli

tudes of differential traces along an integral surface with amplitudes being modulated 

by certain geometrical functions. I demonstrate that this summation scheme along a 

general integral surface is the mathematically more rigorous extension of the summa

tion scheme along diffraction surfaces and of the superposition scheme of aplanatic 

surfaces. With the utilization of efficient traveltime computations, the integral depth 

migration is very computationally effective. It can be easily used to perform target

oriented imaging tasks by migrating selective shots and traces. 

In contrast to the Kirchhoff method, reverse-time migration is based on a direct 

solution of the wave equation by approximating the differential terms of the wave 

equation with finite differences. It is theoretically more accurate than the Kirchhoff 

method since it attempts to solve the wave equation without a high frequency approx

imation. In addition to such attractions as implicit static corrections and coherent 

noise elimination based on velocity information~ I find that there exist self-healing 

mechanisms of the wavefield due to constructive interference during the reverse-time 

propagation of the unaliased wavefield. The self-healing ability of waves thus provides 

the basis of migrating sparsely and irregularly sampled unaliased recordings relative 

to a fine finite-difference grid without prior interpolation of missing traces. This 

is particularly valuable in migrating unaliased shot records with a gridded velocity 

model as fine as common depth point (CDP) bins with no explicit trace interpola

tion. As in the integral method, I implement the reverse-time migration directly from 

topography using the actual source and receiver positions. 

Considering the nature of imaging in geologically complex areas, I view the geo

physicists' goal of obtaining an accurate Earth image as an iterative interpretive imag-
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ing procedure. This procedure consists of an initial velocity model building followed 

by iterative prestack depth migration. geological interpretation and velocity analysis. 

I formulate a very general nrestack depth migration velocity analysis method with il

lustrations of both simple and complex examples. The evaluation of the performances 

of both the integral and the reverse-time migrations. especially through extensiYe ap

plication examples of both methods to geologically complex areas. demonstrates that 

the Kirchhoff integral scheme should be a better candidate for iterative imaging from 

the cost effectiveness viewpoint. ~e,·ertheless. reverse-time migration is a valuable 

complement to Kirchhoff migration. since it can possibly produce a more accurate 

image of the Earth during the final imaging iterations. In this study. I extensively 

compare Kirchhoff and reverse-time migration procedures both on model data and 

an Alberta foothills real data set provided by Husky Oil Inc. 
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Chapter 1. Introduction 

Exploration seismology is the most important tool in the search for oil and natural 

gas. It is carried out by producing seismic waves that propagate in the Earth, re

flected from different get:> logical formation boundaries and are recorded at the Earth's 

surface. These recorded signals are then processed at computer centres to produce 

seismic sections or velocity models which provide geologically meaningful images of 

the subsurface. Geological interpretations are routinely carried out at different stages 

parallel to or cascaded with such a processing stream. 

Traditionally, seismic data processing is based on the concept of a common mid

point ( CMP) gather which is a set of traces sharing a same midpoint between source 

and receiver (Sheriff, 1991, p46). The CMP based processing is strictly valid only 

for layered Earth models in which velocity varies only with depth. In such Earth 

models~ stacking or summation of traces which share a single CMP position but have 

different source-receiver offsets significantly enhances the signal to noise ratio of the 

result. As the search for oil and gas moves into more and more geophysically difficult 

environments with very complicated geological structures, this simple CMP based 

method often fails to fulfill its designated tasks: producing approximate structural 

images and velocity estimations of the interest area. To confront such challenges, 

geophysicists must create more advanced processing schemes and apply them more 

wisely. 
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In this dissertation, I investigate two powerful prestack depth imaging methods 

which can accurately image complex geology with strong velocity variations both 

vertically and laterally. The Kirchhoff integral and the reverse-time migrations are 

based on the integral and finite-difference solutions to the acoustic wave equation 

respectively. By performing depth migration with prestack data, most independent 

processing steps in the CMP based processing system are included in a single prestack 

depth wavefield extrapolation and imaging procedure. This prestack depth processing 

scheme is no longer dependent upon such concepts as CMP gathers. It aims to 

remove the wavefield propagation effect taking place in a physical experiment such 

as a shot gather nsing wave equation solutions. The key to such a depth migration 

is an accurate velocity model. In this dissertation, I extensively demonstrate the 

effectiveness of both the Kirchhoff and the reverse-time migration techniques coupled 

with robust and general velocity analysis methods in imaging both model data and 

real data from geologically very complex areas. 

1.1. A critical review of standard CMP based processing 

A CMP gather is a group of traces which share the same midpoint between 

source and receiver. It is also called a common depth point (COP) gather, though 

they are not exactly the same in dipping interface cases. If the Earth is horizontally 

layered, then a CMP gather is just a common reflection point (CRP) gather in which 
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each trace records reflections from the same subsurface position of a given reflecting 

surface. In such cases, a sum or stack of these CMP traces, after proper static and 

dynamic time corrections, will produce a better representation of the reflectivity for 

that CMP position, because of the stacked trace's drastically improved S/N ratio. 

The advent of velocity analysis methods based on the semblance or stacking power of 

CMP gathers (Taner and Koehler, 1969) marked the zenith of CMP based processing. 

The conventional CMP based processing procedure consisted of static and dynamic 

corrections, CMP sorting, velocity analysis, and stacking. This procedure, typically 

used in the 1960s, worked very well when the exploration target was of a simple layer

cake geology. With the addition of post-stack migration, this CMP method could 

even provide reasonably good images of the subsurface with some mild structural 

variations , though it was found that reflection points in a CMP gather were not 

common for dipping layers (Levin, 1971). This reflection point smearing problem 

can be removed by dip-moveout processing (DMO) (Deregowski, 1982; Hale, 1984) 

in media without lateral velocity variations. DMO is a process that creates apparent 

CRP gathers by a convolution applied to adjacent CMP gathers. After DMO, the 

normal moveout for reflections from a dipping bed no longer depends on the dip 

angle. Figure 1.1 is a simplified flowchart of this processing scheme based on the 

Cl'viP concept. In practice, this flowchart is often augmented with additional quality 

control components. Here I will review some of the key steps in this procedure. 

1.1.1. Static and dynamic corrections 

Two time corrections have to be applied to each trace before CMP stacking. This 

will ensure that each trace in a ClVIP gather records the reflections from the CMP 
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Figure 1.1: Standard CMP based processing flowchart. 
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with nearly the same travel time in a layer-cake Earth model, and thus stacking is 

coherent. 

E,+E.:-2EJ 
At...,n.:= V .. 

(a) (b) 

Figure 1.2: (a) Conventional statics model works well with Earth models covered by 

a low velocity layer where emergent rays are nearly vertical. (b) The model is a poor 

approximation for cases with high velocity layer coverage where rays bend away from 

vertical. 

Static corrections compensate for traveltime anomalies caused by source and/or 

receiver elevations and near surface heterogeneity. Thus in their simplest form, static 

corrections are essentially a geometrical re-datuming process which maps recordings 

from the Earth's surface to some reference level. This geometrical approach is a 

good approximation as long as rays travel nearly vertically between the topography 

and the datum (Figure 1.2a). In most sedimentary basins where there exists a low 

velocity layer at the Earth's surface, raypaths are nearly vertical near the surface. 

However, there still exist many geological areas where high velocities exist at the 
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Earth's surface. A good example is the Alberta foothills where thrust faults placed 

high velocity rocks at the surface. In such cases, raypaths significantly deviate from 

the vertical, as shown in Figure L2b~ and the conventional static correction is thus 

not appropriate (Lines et al., 1996). 

The dynamic, or normal moveout (NMO) correction ru.ms to remove the offset 

dependency of traveltimes in a laterally invariant medium. Using small offset/depth 

ratio assumption, traveltimes are often approximated by (Dix, 1955) , 

( 1.1) 

This is equivalent to the assumption that the reflection traveltimes follow hyperbolic 

trajectories. Such a treatment is acceptable when offset is limited. However, as 

greater source-receiver offsets become common, traveltimes at far offsets, especially 

for shallow reflectors , can never be properly described by equation (1.1). A ~ood 

example is the Husky-Alberta foothills line which I will use extensively in this thesis 

where the maximum offset is greater than 6 km while the exploration target is only 

about 3 km in depth. 

1.1.2. DMO and stacking 

The NMO correction removes only the offset dependence of traveltimes. In the 

case of a dipping interface as shown in Figure 1.3a, source-receiver pairs sharing a 

common midpoint will generally record reflections from different segments of the re-

£lector. Hence the sorted CMP gathers are no longer equivalent to CRP gathers. Such 

reflection point smearing is particularly deleterious for shallow dipping formations , a 

common feature in mountainous areas. In fact, even with horizontal interfaces, there 
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(a) (b) 

Figure 1.3: Reflections from a given reflector in a CMP are not from a common 

reflection point. Such reflection smearing can be due to dipping interfaces (aL or 

lateral heterogeneities (b). DMO can only remove the dipping layer effect in (a). s/g 

represents an identical source-receiver position. 

is still the possible problem of reflection smearing due to lateral velocity variations, 

as shown in Figure 1.3b. In addition to smearing, there is another component of 

traveltime variations due to the dipping effect. DMO is designed to solve both prob

lems of the reflection point smearing and the time dependence on dips (Hale, 1984; 

Deregowski, 1986). However, DMO can only solve the problem shown in Figure 1.3a. 

The problem in Figure 1.3b is essentially a depth migration issue. 

DMO, combined with NMO, thus can effectively transform each offset trace into 

a zero-offset one. This implies that after DMO, a CMP gather essentially contains 

reflections from a CRP. Stacking these DMO corrected traces is thus truly CRP 

stacking which should be coherent after NMO. In areas with lateral variations and/or 

strong vertical variations, DMO is, nevertheless, not totally effective. 

7 



1.1.3. Post-stack migration and the exploding reflector model 

Migration is the mathematical process of moving reflection and diffraction events 

to their true originating places. Post-stack migration is based on the assumption that 

a stacked section is equivalent to a zero-offset section. How good is this assump

tion? vVe actually only record signals without zero-offset components due to the field 

difficulties of placing a detector at the same place as the source. The process of 

"'N 1\tf 0 + D M 0 + stacking" which I just described transforms the non-zero offset 

sections into a zero offset one based on the assumption of hyperbolic trajectories of 

the reflections. As I reviewed above, such a hyperbolic assumption is not valid for 

cases with large offset/depth ratios. It introduces a significant error in areas with 

strong lateral velocity variations. As will be seen in the later chapters, such viola

tions of the assumption exist in the Husky-Alberta foothills data. In these cases. it 

is impossible to expect post-stack migration to do a good imaging job, as migration 

cannot recover the loss of information due to the inadequacies of time corrections. 

DMO and stacking. 

In addition to the hyperbolic approximations, post-stack migration is also based 

on an imaginative model- the exploding reflector model. Instead of placing sources 

and receivers at identical positions at the Earth's surface, the model assumes that 

sources are excited in unison on impedance interfaces and reflections are then picked 

up by receivers at the surface. To make the sections time comparable, we can either 

halve the velocities, or halve the size of the velocity model in proportion, or just double 

the traveltime. The exploding reflector model is very powerful for both simulation 

and migration. However, it still cannot predict all the wave phenomena in the zero 
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S/Q 

(0) (b) 

Figure 1.4: Two examples of zero-offset sections where received reflections do not 

follow the travel-paths of the downgoing waves due to the effects of a low velocity 

lens (a), and a combination of antithetic faults (b). s/g represents an identical source

receiver position. 

offset section. As pointed out by Claerbout (page 11, 1985}, there are at least three 

occasions where the reflector model fails. The first is in its inability to predict some 

events which appear in a zero-offset section. Figure 1.4a illustrates that many non

perpendicular reflections, in addition to the perpendicular one~ could be reflected from 

the reflecting horizon and arrive at the same surface position as the source position due 

to the highly focusing function of the low velocity lens in a high velocity environment. 

These non-perpendicular raypaths are nevertheless not described by the reflecting 

model. Figure 1.4b shows another example of such non-perpendicular reflections 

bouncing between steeply dipping antithetic faults . Secondly, the exploding reflector 

model only predicts multiples that strike the Earth's surface with odd numbers, which 

implies that about half of the multiple family is not properly included by the exploding 
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reflector model. A third mismatch of the exploding reflector model with a zero-offset 

section lies in the polarity of reflections from an interface. According to the exploding 

reflector model, interfaces will emit waves to both sides with the same polarity while 

the reflection law actually dictates that these reflections should be of opposite polarity. 

In addition, the amplitudes predicted by the exploding reflector model are different 

from those in a zero-offset experiment. This is due to the different transmission effects 

and geometrical divergence as a result of halving the propagation procedure. 

From all the above analysis, it is apparent that in geologically complex areas , a 

C:MP gather is no longer equivalent to a CRP gather; the conventional static cor

rections model and the exploding reflector model break down; and DMO fails in 

lateral velocity variation areas. Therefore, there is no doubt that the standard CMP 

based processing scheme cannot produce a good subsurface image in these complex 

geological environments. 

1.2. Prestack depth migration: its promises and premises 

A critical review of the CMP based processing strategy indicates that it cannot 

properly handle the problem of imaging steeply dipping reflections, especially those 

far offset components. Neither can it be applied to areas with strong lateral hetero

geneity. The failure is basically due to the breakdown of the hyperbolic approximation 

of reflections. Thus, even prestack time migration cannot properly image subsurface 
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with such strong lateral variations as it is also based on the same hyperbolic assump-

tion described by a single velocity- the RMS velocity. In fact, as the CMP based 

procedure of "NMO + DMO + stacking + post-stack migration" is approximately 

equivalent to prestack time migration if the vertical velocity variation is not too dras-

tic (page 337, Yilmaz~ 1987), it is not surprising that prestack time migration will 

also fail in areas with lateral velocity variations. 

Field Records 

Preprocessing 

Velocity analysis 

Prestack depth 
migration 

Figure 1.5: Schematic flowchart for prestack depth processing. 

Prestack depth migration is promising for such situations. This migration, as is 

theoretically expected, uses a physically meaningful velocity - the interval veloc-

ity model of the Earth - to backward propagate the recorded seismic signals at 

the Earth's surface to their true originating places in depth. Figure 1.5 schemati-
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cally illustrates the key processing components in a prestack depth processing proce

dure. Comparison of Figure 1.5 with Figure 1.1 clearly demonstrates the simplicity 

of prestack depth processing. Thus, a wave equation based prestack depth imaging 

process such as the Kirchhoff integral or the reverse-time migration method which I 

will discuss in later chapters provides the following promises: 

· lVIigration is directly based on solutions of the wave equation of the true physical 

process without the use of such concepts as CMP and the exploding reflector model. 

· Independent processes such as statics, NMO, DMO, and migration in a ClVIP 

based processing strategy are automatically included in the sole prestack depth mi

gration program, making the whole processing procedure more compact. This single 

program is even capable of filtering selectively, and interpolating missing traces of 

unaliased seismic data. 

· Migration will be theoretically accurate with no restriction on the nature of the 

structure and velocity variations of the earth. Thus, diffractions will be fully focused 

to their true diffractor locations; dip reflections will truly move to their true spatial 

positions. 

· Migration will be directly applicable to topographic areas with strong vertical 

and lateral velocity variations as migration uses the true source and receiver positions. 

· Migration can be highly target-oriented as it is performed on shot gathers. If 

the integral method is used, we can even select only a portion of traces in a gather. 

Such shot gather migration also significantly simplifies the data management and 

processing without the need to sort to other data structures. Such profile migration 

is naturally tailored to parallel processing. 

·Migration only uses one velocity function, the interval velocity in contrast to sev-
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eral different velocity functions for each processing step in the CMP based method. 

Though many different velocity tools are available in the CMP based system~ using 

the rock velocity as a single necessary velocity function makes the procedure more 

physically interpretable and theoretically simpler. In addition. migration itself pro

vides a theoretically more accurate domain and data set for rock velocity analysis. 

· Migration provides a depth section of reflectivity, stacked over a range of il

luminated angles~ which is a directly interpretable geological section. This section 

contains no vertical and lateral exaggerations. 

· N!igration provides a more accurate estimation of reservoir locations and reservoir 

volumes. 

Therefore, prestack depth migration should be theoretically performed whenever 

possible to achieve all the above benefits. Nevertheless, such benefits can only be 

achievable with the following two premises: 

· Very powerful computing resources are available, as prestack depth migration 

generally requires huge amounts of computation for wavefield extrapolation. Previ

ously, this was the bottleneck in the implementation of prestack depth migration. 

With the drastic increase of computational powers in the past few years, this con

straint is becoming less critical. 

· A reasonably good estimate of the interval velocity model is available. As such 

a velocity model is used for the wavefield propagation purposes, a macro model with 

the low wavenumber components of the velocity field often suffices for this purpose 

(Berkhout, 1984). Theoretically, this model is progressively approachable by velocity 

analysis after prestack depth migration itself. An approximate starting model is often 

provided by the CMP based processing flowchart, as no prestack depth migration is 
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attempted without preliminary CMP processing. 

It is seen that prestack depth migration offers great promise to improve imaging 

in complex geological settings. I will layout the overview of the two approaches to 

accomplish the imaging task: prestack Kirchhoff and reverse-time depth migrations. 

1.3. Overview of the dissertation 

This thesis develops two powerful prestack depth migration techniques to image 

complex geological structures using seismic data. Seismic imaging is fully based on 

wave equation solutions of wave propagation in true physical processes. Such prestack 

depth imaging is nevertheless computationally highly intensive. The ultimate objec

tive of this dissertation is to develop an accurate imaging strategy for seismic data 

acquired from very complex geological areas using prestack depth migrations with 

reasonably inexpensive computations. 

For this objective, a new, efficient, and robust traveltime calculation method is 

first developed by tracing propagating wavefronts. This method is used for a prestack 

Kirchhoff migration method, which is developed in Chapter 3. Though the Kirchhoff 

method has been around for about 2 decades, I have made several innovations to 

make the technology more widely applicable and more efficient. The technique is now 

applicable to any heterogeneous media for any recording geometry. In the prestack 

reverse-time migration, I find its implicit interpolation mechanism during its back-
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ward wavefield extrapolation. I demonstrate that this mechanism makes it possible 

to migrate irregularly and sparsely spaced unaliased seismic data directly without 

explicit trace interpolation. Both the prestack Kirchhoff and the reverse-time migra-

-, tions are extensively compared from both theoretical and application perspectives . It 

is one of the first such comparisons in the area of prestack depth migrations. The 

prestack migration moveout theoretical derivations are totally new, and also more 

general than any previous publications. Because of the difficulty of obtaining an ac-

curate velocity model, the imaging of complicated geological structures is completed 

by an iterative interpretive imaging procedure which I develop in this thesis. This 

imaging strategy of complex geological settings is certainly innovative. In addition, I 

have extensively applied the developed prestack Kirchhoff and reverse-time imaging 

techniques to produce improved images of both complex model and real seismic data. 

Throughout this dissertation, I will extensively use a synthetic seismic data set -

the lVIarmousi model (Versteeg, 1993), and a real seismic data set from the Alberta 

foothills-the Husky-Alberta foothills line. Figure 1.6 shows the lVIarmousi velocity 

model. It is based on a geophysical model from the Cuanza Basin of Angola. The 

basin is dominated by growth faults due to salt creep (Bevc, 1997). Figure 1.7 is 

the final velocity model of the Husky-Alberta foothills line. The Alberta foothills 

line entails many geological features such as rough topography and shallow steeply 

dipping formations due to thrust faulting that make seismic imaging difficult (Skuce. 

1995). The migration methods developed in this thesis will be tested on these two 

difficult data sets. Figure 1.8 is the final geological interpretation of the Husky-

Alberta foothills data using the iterative interpretive imaging strategy developed in 

this thesis. This interpretation outlines the geological formations in the subsurface. 
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1.3.1. Wavefront tracing 

Seismic traveltime is one of the most fundamental parameters in exploration 

geophysics. Ray tracing via solutions to the eikonal equation is a standard technique 

for traveltime determination. The eikonal equation describes a relationship between 

the gradient of the traveltime field and the medium velocity. The finite difference 

solution method provides another alternative for solving the eikonal equation. 

In Chapter 2, I formulate a comprehensive algorithm for traveltime calculations 

by tracking wavefronts in complicated media. This method combines the finite differ

ence solution of the eikonal equation, excitation of Huygens' secondary wavelets, and 

the application of Fermat's principle. The method is in fact a unified algorithm for 

computations of first arrival traveltimes. It is directly applicable to tracking plane 

waves. Its accuracy and robustness are demonstrated through examples of compli

cated Earth models with very high velocity contrast both vertically and laterally. 

Examples show that first arrivals are properly tracked for direct waves, transmitted 

waves, head waves, and even diffracted waves. 

1.3.2. Imaging via prestack Kirchhoff depth migration 

In Chapter 3, I present a unified integral formulation for prestack depth migra

tion of common shot gathers acquired with any recording geometry in structurally 

complex areas. Firstly, the classic summation method along hyperbolae and the 

superposition method of circular wavefronts are shown to be extendible for use in 

variable velocity areas by replacing the hyperbolic diffraction trajectories and cir

cular wavefront patterns with generalized hyperbolic curves and aplanatic surfaces 
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which define isochrons of possible diffraction/reflection points for a given source and 

receiver pair. These extensions are useful for imaging complex structures if amplitude 

information is not critical. Using the \VKBJ approximation to the Green's function, 

I then derive several migration integral equations which are termed Kirchhoff inte

grals. These integrals are very general and are applicable to any recording pattern 

over complex structures. The general Kirchhoff integral is shown to be a simple sum

mation of amplitudes of differential traces along an integral surface with amplitudes 

being modulated by certain geometrical functions. 

Using the stationary phase concept, I derive an integral equation for migrating 

data acquired along a line instead of over an area. The integral over a line is more 

complicated than its 3D counterpart. It is essentially a curvilinear integral of differ

ential trace amplitudes affected by some geometrical factors. The determination of 

the integral curve, along with the weighting factors, constitutes the main challenge 

to the calculation of this integral. The implementatioii of such an integral using trav

eltimes provided by the wavefront tracing method of Chapter 2 proves to be viable. 

The chapter concludes with application examples of the general integral implementa

tion to the Marmousi model where very complicated geological structures exist. and 

to the Husky-Alberta foothills line with rough topography and strong near surface 

heterogeneities due to thrust fault movement. 

1.3.3. Imaging irregular data via prestack reverse-time migration 

Reverse-time migration, currently the most accurate migration method applica

ble to both 2D and 30 surveys, is investigated in Chapter 4. In addition to its intrinsic 

advantages, such as simultaneous static correction and selective filtering based on the 
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velocity model, I find that it also has the inherent interpolation mechanism which 

results from the wavefield self-healing ability via interference of waves during the 

reverse-time propagation procedure. However, such mechanisms function properly 

only when the original records are not both temporally and spatially aliased. Snap

shots taken during reverse-time migration of the Marmousi synthetic data and a line 

of the Husk"Y-Alberta foothills data clearly demonstrate the wavefield self-healing pro

cedures. These tests provide the experimental results for migrating unaliased seismic 

data, either stacked or prestack, without the need of prior interpolation of missing 

traces. In fact, by treating recordings as distributed sources on the recording surface~ 

the wave equation can directly be driven backward in time with these distributed 

sources acting continuously. Thus migration of unaliased data without interpolation 

of missing traces is also developed. However, such an implicit interpolation mecha

nism is very difficult to explain from the boundary value viewpoint of the recordings. 

The self-healing mechanism of the wavefield thus provides the basis for directly 

migrating sparsely spaced unaliased data. This is especially important in prestack 

cases where there is seldom one trace per grid point on the recording surface if a grid 

model with the mesh size as fine as the CDP bin size is used. This implementation 

of reverse-time migration has been extensively applied to data sets both of stacked 

and shot gathers acquired over structurally very complex areas. The imaging of 

the Husk"Y-Alberta foothills line, where traces are generally sparse and irregularly 

spaced relative to the fine finite-difference grid, demonstrates a successful example of 

this reverse-time migration implementation on unaliased data, without the need for 

interpolating the missing traces in advance. 
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1.3.4. Iterative interpretive imaging 

In Chapter 5, I move one step further in trying to propose an ambitious imaging 

system which will solve the imaging problem in a reasonably accurate and efficient 

way. For that development, I first make a comparison of two of the most widely used 

prestack depth migration methods - the Kirchhoff integral and the reverse-time tech

niques discussed in Chapters 3 and 4. Theoretical insights tell us that both are wave 

equation based methods applicable to very complex geological areas even with rough 

topographies. Both are good candidates for algorithm optimization through several 

levels of parallelization and vectorization. However, the integral scheme is trace based 

processing, and thus can migrate data selectively for some pre-specified targets. On 

the other hand, reverse-time migration is theoretically more accurate. Its high accu

racy is achieved at the expense of significantly more computation. The application 

of both methods to the Husky-Alberta foothills line demonstrates that the Kirchhoff 

method can produce a migration image nearly as accurate as the reverse-time mi

gration method, with much less computational effort. This is due to our inability to 

obtain an exact interval velocity model in the real data case. From such comparisons, 

I conclude that the Kirchhoff method should be the primary migration technique 

in the process of the iterative interpretive imaging strategy, with the reverse-time 

migration being applied at the last iterations to possibly provide a better image. 

The interval velocity model determination is both our goal and also an assumed 

input for this imaging scheme. This appears to be a dilemma. As prestack depth 

migration itself is very sensitive to velocity errors, common image gathers ( CIGs) 

formed from prestack depth migration results are shown to be an effective domain 
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for analyzing and updating velocity. However, interval velocity should be updated 

with proper geological input, otherwise significant errors could be introduced into 

the velocity model due to improper definition of formations. For more efficient and 

accurate determination of the interval velocity field, I propose to use as many parallel 

means as possible during the process of this iterative interpretive imaging. 

1.4. Summary 

The thrust of this thesis is to use solutions to the wave equation, both via Kirch

hoff integrals and finite-difference schemes, to perform a general prestack depth migra

tion. This procedure greatly simplifies the standard CMP based processing scheme~ 

while maintaining validity in structurally complex settings. Both the prestack Kirch

hoff and reverse-time migrations are incorporated into an iterative interpretive imag

ing procedure which consists of initial velocity model setup, prestack depth migration. 

geological interpretation of migrations sections and velocity analysis. The final result 

of such an interpretive imaging procedure produces not only improved images of the 

subsurface, but also a detailed interval velocity model. The consistent results of the 

migration image and the velocity model are very helpful in structural interpretation 

and reservoir analysis. 
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Chapter 2. Traveltime determination by 

tracing of wavefronts 

Seismic traveltimes are the primary data recorded in geophysical applications 

ranging through locating earthquake epicenters, seismic modeling, seismic tomogra

phy, and seismic migration and inversion. Traditionally, theoretical traveltim.es have 

been computed with ray tracing methods. The ray equations are derived from the 

eikonal equation whose solutions are raypaths or characteristic curves of the eikonal 

equation. Physically, rays are the trajectories along which high frequency energy 

transports. A number of efficient methods for solving the ray equations have been 

developed in the past two decades (Langan et al. , 1985; Cerveny, 1987) 

In contrast to tracing rays, graphic methods were proposed for tracing wavefronts 

m simple models, and were computerized and further generalized to layered me

dia. Reshef and Kosloff (1986) first formulated a finite difference scheme to solve the 

eikonal equation for traveltimes on a uniform grid by depth extrapolating the gradient 

of the traveltime field , followed by a depth integration of the gradient field. Subse

quently, Vi dale ( 1988) proposed a very general and efficient quasi-wavefront tracing 

algorithm directly based on a finite difference scheme for the eikonal equation. Based 

on the assumptions of local plane or circular wavefronts, Vidale solves the eikonal 

equation by progressively extrapolating the traveltime field of the first arrival waves 
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outward from an "expanding square" centered at the point source. However, Vi

dale's original method often fails in geologically complex settings where large velocity 

contrasts exist. 

In this chapter, I will first examine the intrinsic assumptions in the derivation of 

the eikonal equation which helps give a better appreciation of the validity of applying 

the eikonal equation in the real geophysical world. Then I will formulate a scheme 

for extrapolating wavefronts of first arrivals in a very general sense. The scheme 

is essentially a combination of the finite difference solution of the eikonal equation, 

the excitation of Huygens~ secondary sources, and application of Fermat's principle. 

This formulation is applicable to calculating traveltimes from any shape of the initial 

wavefront. 

2.1. The eikonal equation and its ray solution 

Current seismic data processing practices are mainly structured on the acoustic 

wave equation. Using a high frequency approximation, the eikonal equation is derived 

which describes the relationship between the traveltime gradient field and the velocity 

distribution of the medium. In this section, a solution of the eikonal equation is 

formulated as a ray tracing system using the traveltime as the independent integral 

variable. By tracing a fan of rays from the distributed source, it is shown that this is 

equivalent to tracing the wavefronts. 
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The heterogeneous acoustic wave equation governs wave propagation in a general 

acoustic medium (Kelly et al., 1982): 

(2.1) 

where c = /K7P is the propagation velocity of the compressional waves in the media. 

It is generally a function of space, i.e., c = c(r) = c(x 11 x 2 , x3 ). pis the mass density; 

and K is the compressional modulus of the medium, i.e., the reciprocal of compress-

ibility. u is either the acoustic pressure or the rate of particle displacement. From 

both acoustic and elastic wave propagation studies (Alford et al., 197 4; Kelly et al., 

1976; and vVapenaar and Berkhout, 1989), it is seen that a vertically oriented seis-

mometer primarily records compressional waves, especially when the recorder is not 

far away from the source. As the current seismic industry is still dominated by verti-

cal component seismometers, this scalar wave equation would thus be an appropriate 

substitute for the elastic wave equation. 

From (2.1) it is apparent that the influence of an inhomogeneous density distri-

bution on the compressional wave propagation is simply to introduce an extra source 

term whose strength is dependent on both the gradient field of the pressure and the 

gradient of the density function. Hence, in a homogeneous medium where v p = 0. 

the wave equation simplifies to 

(2.2) 

Equation (2.2) is the starting point for geophysical applications and analysis. In 

fact, it can be validly used if the following condition holds (Berkhout, 1982), 

lvlnpl << k, (2.3) 
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or, 

IV PI 21T" 
-P-<< T' (2.4) 

where k is the wavenumber; .X is the wavelength. This condition simply states that 

the relative variation of the density is far smaller than 27r within the distance of a 

single wavelength. This condition is true for most geological formations, especially 

under the assumption of the high frequency approximation which is widely used in 

seismology. 

Even in the normal seismic frequency band (10 - 100 Hz), there are good rea-

sons to drop the density term acting as a source. Claerbout ( 1985, p48-49) gives 

two explanations for this approximation: the relative difficulty in obtaining a good 

density information, and for ease of mathematical treatment of the wave equation. 

For example, spatial Fourier transforms will be applicable to (2.2), greatly simpli-

fying the solution procedure. In fact, dropping the source term due to the density 

heterogeneity does not simply mean we neglect the density function altogether in the 

wave equation. In reality its main inftuence is properly included in the description 

of wave propagation by both the velocity and the impedance which is the product of 

density and velocity. 

Now assume equation (2.2) has the following Fourier series trial solution (Berkhout, 

1982, p85), 

u(r, t) = 2: A.:(r)e-jw;[t-r;(r')J. (2.5) 
i 

For this trial function, we have 

'172 u - ~ ( [ -wf A;('17r; )2 + '172 A; J + jw; [2v A;- '17r; + A;'172 r; J) e-i~•[<-r;(')] (2.6) 

(2.7) 

27 



Substituting the above expressions into (2.2) leads to 

~ {[ -wf .4.; ( ('17 T; )
2 

- ~ )' + '172 A; l + jw; [ 2'17 A; . '17 T; + A; '172r; l } e -jw;[<-T; (i")] = o. 
(2.8) 

Thus both the real and the imaginary parts should be zero 

2 2 ( 2 1) V A · - w -A · (Vr.·) --a a a a c2 - 0; (2.9) 

(2.10) 

Equation (2.10) is the transport equation. In the case of high frequency content or 

spatially slowly varying wave amplitudes, it follows that 

(2.11) 

and (2.9) simplifies to (Bleistein, 1984, p258), 

Equation (2 .12) is the well-known eikonal equation. That is, traveltime T is the 

solution of the eikonal equation. This formulation clearly indicates that the traveltime 

field r(r) is independent of frequency provided that condition (2.11) holds. 

As V'ri = 0, or Ti = const represents a wavefront where all the waves are in phase, 

condition (2.11) implies that there is little amplitude variation along the wavefront 

or the waves are of very high frequency. That is , when the frequencies of the waves 

studied are high, or the amplitudes change little along the wavefront even with fre-

quency band-limited content, the wave propagation can be mathematically described 

by the eikonal equation. 

After the traveltime field r( r) is obtained, it can be used to calculate the amplitude 

information using the transport equation (2.10). 

28 



Now we will seek a solution of the eikonal equation by ray tracing. First we will 

rewrite the eikonal equation as 

2 2 2 2 
PI + P2 + P3 = p , (2.13) 

where Pi = ;;_ ,j = 1, 2, 3! and p = ~- p is called slowness, while p = (pi,P2,P3) 
) 

is named the slowness vector. The characteristics of first-order nonlinear differential 

equations (Bleistein, 1984, p12-18) can be expressed as 

dx -__ J 
- >-.pi, j = 1,2,3 

du 
dpi dp 

j = 1, 2, 3 (2.14) - )..pd, 
du x -] 

dr )..p2 
du 

-

where ).. is a parameter. If we specifically choose ).. = c2
, then : = 1. So this choice 

of).. corresponds to specifying the traveltime itself as the independent parameter u 

along the ray. In this special case, (2.14) becomes 

dx- 2 ] j = 1,2, 3 
dr 

- c Pi, 

dpi dp 
j = 1, 2, 3. - cd! dr x -] 

(2.15) 

This is a ray tracing system which is a system of ordinary differential equations with 

traveltime T itself as the independent variable. This system can be easily solved 

by standard integration algorithms. One good candidate for this solution, if proper 

initial conditioLs can be formulated, is provided by the fourth-order Runge-Kutta 

method. The most natural way of specifying the initial conditions is using the source 

position r"o = (x?, xg, xg) and the ray directivity p0 = (P?! pg, pg) corresponding to 

the take off angle at the source position where T = 0. The solution of this system 
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not only determines the raypaths emanating from the source, it also automatically 

locates the wavefronts during outward propagation if we simultaneously shoot a beam 

of rays from the source. 

To demonstrate these principles, Figure 2.1 shows an example of ray tracing 

-E 
~ -..c 
+-' a. 
Q) 

0 
0 

Cl 5 

Distance (km) 
5 

Figure 2.1: Traveltimes calculated from ray tracing systems. The velocity of the 

model is simply a linear function of depth, v(z) = v0 + az with v0 = 1500 m/s and 

a = 0.75 s- 1
• The rays are traced from the surface source at (x 6 , z5 ) =(0.0, 0.0) m. 

The wavefronts are at intervals of 200 ms. 

through a medium where the velocity changes vertically, v( z) = v0 + az with v0 = 

1500 m/ s and a = 0.75 s- 1
• A total of 30 rays have been traced from the surface 

30 



source at (x,, z,) = (0.0, 0.0) m. The wavefronts simultaneously traced are at 

intervals of 200 ms. 

It is seen that the ray tracing scheme works well in this simple situation. However, 

as we will see in the next section, the simple ray tracing solution of the eikonal 

equation breaks down in situations often encountered in the real Earth. 

2.2. Finite difference calculation of the first arrival traveltimes 

by wavefront tracing 

Although the ray tracing method in the last section works quite well for models 

with moderate velocity variations, it has significant drawbacks. These arise from the 

fact that waves propagate not only in normal continuous forms, but also in discon

tinuous ways. What the ray tracing systems describe corresponds to the normal 

portion. which is clearly explained by the validity condition (2.11) in the last sec

tion. Shadow zones occur where wavefield discontinuities exist. Vidale's (1988) finite 

difference solution of the eikonal equation alleviates the shadow zone problem. How

ever it does not solve the problem totally. The use of the finite difference technique 

does not change the nature of the physics described by the eikonal equation, but only 

provides more efficient and possibly more accurate solutions, as the finite difference 

solution still assumes that a single wavefront is intrinsically propagating through the 

Earth. 
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Thus, to fully describe the traveltime field, the discontinuous portion of the wave-

field should be properly taken into account. Theoretically there should be waves 

propagating in the shadow zone. These waves come from discontinuities which scat-

ter secondary wavelets, or diffraction waves, according to the Huygens' principle. So, 

a combination of the finite difference solution and the excitation of Huygens' sec-

ondary sources would be a reasonable solution to find the traveltimes of first arrivals 

in every corner of the Earth. 

2.2.1. General formulations and a numerical test 

To formulate the method, the slowness field s( x, y) is first discretized into identi-

cal cells with size of hr by h:, the grid spacings horizontally and vertically respectively. 

The slowness s(x, y) here is fixed for each grid point, while the slowness pin the last 

section is a vector and is related to a ray. The slowness in each cell of the mesh is 

assumed to be constant, and its value is assigned to the upper left grid point as shown 

in Figure 2.2. Other choices of discretization could be substituted. 

Now, suppose that in one cell, we already know the traveltime at three corners, 

say A, B, C as shown in Figure 2.3. If there is any geometrical ray traveling to D 

in a direction between arrows 1 and 2, then this ray can be described by the eikonal 

equation (2.12). Using a finite difference stencil centered at the mesh center, and 

averaging the first order difference at the opposite sides, we obtain the following 

second-order finite difference approximations 

fJt 1 
Bx lo= 2hx [(tv- tc) + (tB- tA)], (2.16) 
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Figure 2.2: Discretization of the model. The model is uniformly discretized into cells 

with size of hx by h:. The slowness in each cell is constant. Its value is registered at 

the upper left comer C of the cell. 

or, 

at 1 

a?'lo = -h [(to- tB) + (tc- tA)]. 
- 2 : 

(2.17) 

Substituting equations (2.16) and (2.17) into the eikonal equation (2.12), however. 

will generally produce a second order algebraic equation which involves five multi-

plications, one division and one square root operation. In contrast, in the extreme 

case of hx = h: the computation reduces significantly to two multiplications and one 

square root operation, 

(2.18) 

Thus the finite difference solution of the eikonal equation simplifies to the evaluation 

of only an analytic expression (2.18). 
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Figure 2.3: Finite difference stencil at cell center 0. Traveltime at D is calculated 

from traveltimes at A, B, C, if there is a transmitted wave propagating in within the 

two directions 1 and 2. 

To implement Huygens' principle, we only need to remember that the timed points 

A, B, C (Figure 2.3) where waves have already reached will scatter secondary wavelets 

which are not regular solutions of the eikonal equation. So, we will calculate the 

possible diffraction arrivals , as shown in Figure 2.4. Arrows denote direction of prop-

agation. In the case of the discretized model, if the discretization is fine enough 

(Nickerson, 1994) , then there are only five candidates in the cell. As the velocity in 

every cell is constant, we simply have 

tg - tc+h · min(s, s~), 

tB + h · min(s, sD), (2.19) 
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Figure 2.4: Arrivals due to Huygens ' secondary wavelets. Five candidates for arrivals 

are examined at D due to the scattering of the secondary sources at A, B, and C. 

Arrows denote possible directions of travel for first arrivals. 

t'tJ = (4 + Vihs, 

where s 0 is the slowness assigned to grid point D , whiles(. is the slowness in the cell 

just above the CD edge. The first arrival to D is just the least of the traveltimes of 

all the possible waves 

(2.20) 

Thus, the total scheme for the single square is a combination of the finite difference 

solution of the eikonal equation, the scattering of the secondary sources and the 

application of Fermat's principle. 

Based on this scheme, the traveltime calculation of first arrivals from a point 

source can be outlined as follows (see Figure 2.5): 
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Figure 2.5: illustration of extrapolation procedures. (a) illustrates that the initializa-

tion can be either over the squared ring around the source(left) , or over a half-squared 

ring (right) if the source is on or close to a model boundary. In (b) , the expanding 

quasi-wavefront has already reached the inner square with seven points on each side. 

The traveltim.es at the solid dots and inside the inner square have been determined. 

The traveltimes on the outside ring are to be determined by sweeping the four sides 

sequentially as labeled. Four steps are used to extrapolate one inner side outward. (c) 

illustrates this extrapolation for a side. Here large solid dots denote local minimum 

points; a cross (X) denotes a local maximum point; small solid dots denote points 

where traveltimes have been computed; and a hollow circle ( o) represents a point 

where traveltime is being computed at the current step. 
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A. Initialization of traveltimes at the source point and its close neighbors. These 

neighbors can be just a square ring around the source, or even several rings or quasi

rings (Figure 2.5a). 

B. From the outermost ring of the initialization, traveltimes are extrapolated one 

ring outward by calculating traveltimes from side to side (Figure 2.5b ). 

C. For each edge of the ring, outward extrapolation is executed in the following 

manner. First the traveltime extremes are detected by computing the product of 

ti+l - ti and ti- ti-t· If the product is not positive, then point i is an extremum. From 

the extrema, we can then find the position of local traveltime minima and maxima 

(Figure 2.5c.1). By Fermat's principle, the traveltime minima define first arrivals for 

a wavefront hitting a row of grid points. These points act as Huygens ' secondary 

sources for arrivals as shown in Figure 2.5c. These local minimum points are thus 

first extrapolated one row outward to compute the traveltimes at the corresponding 

points of the outer row(Figure 2.5c.2). To compute the arrival times at other points 

in the outer row as shown in Figure 2.5c.3 and Figure 2.5c.4, we use the traveltime 

computation method described in Figure 2.3 and Figure 2.4. In order to compute the 

set of possible traveltimes, we have to sweep right (as in Figure 2.5c.3) and sweep left 

{as in Figure 2.5c.4) in the direction from a relative minimum to a relative maximum, 

and apply the computational formulae (2.18) and (2.19) . We then compare the times 

computed from Figure 2.5c.3 and Figure 2.5c.4, and take the minimum time at each 

grid point, thereby defining arrival times in the outer row. 

D. The last two procedures are repeated throughout the total model. 

To illustrate the effectiveness and robustness of the proposed scheme, I design a 

model with a very high velocity contrast which is shown in Figure 2.6. This model is 
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certainly not geologically plausible. It nevertheless presents a good challenge to the 

traveltime calculation algorithms. Most of the current available methods~ including 

Vidale's (1988) original method fail to handle a model with such high velocity con

trasts (Nickerson, 1994). Figure 2.6 also shows the traveltime contours of the first 

arrivals. The source is positioned at the center of the upper surface. We can see that 

there are very few geometrical rays penetrating the first interface. Note the develop

ment of head waves in both sides of the top layer due to the first interface of high 

velocity contrast. The waves in the second, third, and fourth layers are almost all 

diffracted waves by the secondary sources excited at the upper interface of the corre

sponding layer. I name these diffractions the first, second and third order diffractions 

as they have been diffracted sequentially with corresponding times. However, in the 

bottom layer, due to its extremely low velocity, its upper boundary acts as an excel

lent lens which focuses the diffracted ray arrivals. The focused rays in the bottom 

layer are essentially straight rays, similar to formal geometrical rays, but with little 

energy. 

This example clearly shows that all the possible waves are properly considered 

for the purpose of determining first arrivals. These first arrivals can be of either 

transmitted waves, head waves, or even diffracted waves. 

2.2.2. Application to the Marmousi model 

Now I will show applications of this wavefront tracing technique to a very com

plicated velocity model, the Marmousi model. The Marmousi model, as described by 

Versteeg (1993), has become a well known test model for seismic imaging algorithms 

throughout the industry. Figure 2. 7 shows the computed traveltime contours from the 
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Figure 2.6: Traveltimes in a model of a very high velocity contra t. Velocities in 

the five shaded blocks are 11 5, 10, 15, and 1 km/s respectively from top to bottom. 

The traveltime contours correspond to a source at the center of the upper surface. 

Tra.Yeltimes are of inten·als of 100 ms. 
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Marmousi velocity model with the source positioned at (2000, 0.0) m. The velocity 

model is overlain with the traveltime field. This traveltime field is very complicated, 

possibly just as complicated as the model itself. Nevertheless, the waves in the right 

side of the model are mainly non-geometrical waves. For example, in the upper right 

part, waves are mostly head waves, while around the bottom right comer, waves are 

mainly diffracted in nature. Figure 2.8 shows the wavefronts from the point source at 

(6000, 0.0) m which lies in the central part of the model where complicated steep dip 

faulting and salt creep exist. The traveltime field is also very complicated. However, 

waves in one narrow curved band are easily identified as diffracted waves which can 

be approximately traced from ( 4500, 1000) m to the left edge with coordinate (0.0, 

1800) m. Different types of waves develop during the propagation through the model. 

A characteristic in common with the previous example is the occurrence of tumed 

rays, the result of head waves or diffractions, especially in one or both sides of the 

model. 

This test confirms that the innovative approach to solving for the wavefronts and 

traveltimes for first arrivals is effective and stable even in very complicated settings. 

where most previous formulations have failed or are deficient in describing all of the 

components of the first arrivals: direct, transmitted, diffracted, or head waves. 
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Figure 2. 7: Traveltime contours in the Marmousi model with the source position at 

(2000 0.0) m. The velocity model is overlaid with the traveltime contours in seconds . 
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Figure 2.8: Traveltime contours in the Marmousi model with the source position at 

(6000, 0.0) m. The velocity model is overlaid with the traveltime contours in seconds. 
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2.3. Unification of the finite difference traveltime computa

tions and plane wave traveltimes 

In the last section, I proposed a finite difference scheme for traveltime compu

tations from a point source. The procedure is similar to Vidale's (1988) original 

method with the inclusion of exciting Huygens' secondary wavelets. Huygens: prin

ciple is used by Qin et al. (1992) to improve the accuracy of traveltimes around the 

source point in their method of expanding the "actual" wavefronts instead of rings. 

There are still problems of stability due to the square root of negative values which 

occur in complicated models (Nickerson, 1994). In addition, there are other problems 

such as sacrifice of efficiency, difficulty of vectorization, and increased use of computer 

memory for tracking the"actual" wavefronts. Schneider et al. (1992) use a mapping 

procedure to calculate traveltimes. Their formulation of the problem is of a more 

mathematical nature. Their mapping scheme is basically equivalent to the applica

tion of Huygens' principle with the inclusion of Fermat's principle to select the first 

arrivals. To make the method robust, they have to sweep the model twice, in different 

directions. Thus the number of computations are about twice that of Vidale's. In 

addition, their calculations are still of first order accuracy. Nevertheless, this method 

should be a good candidate for application to problems with complicated velocity 

models where robustness is often of first concern. Podvin and Lecomte ( 1991) imple

ment a parallel approach for traveltime calculations based on the explicit application 

of Huygens' principle. Their expanding strategy is along rings in 20 or cubes in 3D, 
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which is the same as Vidale's (1988, 1990). Their scheme is nevertheless of first order 

of accuracy. Compared to Vidale's method, their method has proven to be robust at 

the expense of less accuracy. 

My proposed systematic application of finite difference solutions of the eikonal 

equation, excitation of Huygens' secondary sources, and the application of Fermat's 

principle is more general than the above cited algorithms. I see it as a unified al

gorithm for first arrival traveltimes that is in fact very general in the nature of its 

application. In the last section, it was shown that the algorithm can compute travel

times from point sources. 

The method can be extended to calculate the traveltimes of incident plane waves 

by considering a plane wave impinging along one edge of the model with its wavefront 

making an angle() with the model edge (Figure 2.9). There are two possible methods 

for calculating the traveltimes in the model due to this incident plane wave. 

The first method treats the first point excited by the plane wave in the model 

as a point source, and expands the quasi-wavefronts by quarter rings (upper panel 

of Figure 2.9). The extrapolation procedure is almost the same as that described in 

the last section, with the exception that the application of Fermat's principle at the 

upper surface, AB, should include one more term due to the direct arrival from the 

plane wave. This scheme takes proper account of head waves produced in the near 

field. 

The second method is to use the direct arrival traveltimes at the upper surface 

as initialized traveltimes (lower panel of Figure 2.9). The initial datum acts as a 

computerized "wavefront". The wavefront at the upper surface will extrapolate the 

traveltime field into the model row by row using the procedures illustrated in Figure 
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Figure 2.9: Two computational methods for calculating plane wave traveltimes. The 

plane wave is impinging on the upper surface. The wavefront forms an angle of(} 

with the upper surface AB. The first scheme (a) treats the first point excited by 

the plane wave in the model as a point source, and expands the quasi wavefront by 

quarter rings. The second method (b) uses the direct arrival times at the surface as 

initialized traveltimes. This computerized "wavefront" at the interface AB will be 

extrapolated into the model according to the procedures illustrated in Figure 2.5c. 
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2.5c. This treatment is generally simpler than the first scheme as it involves only one 

edge. In very complex velocity models, it would be preferable to follow the downward 

extrapolation procedure by a second sweep but with reverse direction to include first 

arrivals corresponding to turned rays (Schneider et al.~ 1992). 

These two methods of computing plane wave traveltimes by finite difference schemes 

produce almost identical first arrival traveltimes in most geological models. The first 

scheme is both physically more sound and mathematically more complete. However, 

it often requires 50 % more computational effort. 

Now I will show two examples of traveltime computations in the case of plane 

wave incidence. Figure 2.10 shows the propagating wavefronts in a model which is 

the same as that used in Figure 2.1, which is a vertically variant velocity model with 

constant velocity gradient. The incident wavefront is parallel to the upper surface 

of the model. In this case the wavefront keeps its original orientation as it moves 

from top to bottom, consistent with Snell's law. In contrast, Figure 2.11 plots the 

wavefronts in the same model with the incident wave plane impinging at an angle of 

45° to the upper surface of the model. It shows that the traveltime contours, i.e., the 

wavefronts, experience drastic changes during the propagation through the model. In 

fact, near the upper right side of the model, the wavefronts indicate that the rays there 

are tumed rays. In the deeper part of the model, the wavefronts do not correspond to 

geometrical waves. For the current velocity model, v(z) = 1500.0 + 0.75z , and initial 

incident ray angle, fJ = 45°, the ray corresponding to the incident plane wave has its 

deepest penetration of Zo = 828.28m (Slotnick, 1974, p205-211). Thus, there will be 

no arrivals found if standard geometrical ray tracing is used. 

In summary, this finite difference traveltime algorithm also provides an efficient 
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Figure 2.10: Propagation wavefronts in a v(z) velocity model with a vertically incident 

plane wave. The velocity function is v(z) = 1500.0 + 0.75z. 
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Figure 2.11: Propagation wavefronts in a v(z) velocity model with an obliquely in-

cident plane wave. The velocity function is v(z) = 1500.0 + 0.75z. The plane wave 

impinges on the upper surface with an incident angle of 45°. 
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and robust traveltime calculation method for plane waves. This method parallels the 

ray tracing scheme described by Whitmore {1995); however, my algorithm is much 

more efficient and complete. Its only drawback is the lack of availability of raypaths, 

a drawback common to all finite-difference traveltime computation methods. This 

problem is often obviated by using the steepest descent method to derive the raypaths 

(Vidale, 1988). 

49 



Chapter 3. Imaging of complex geological 

structures by prestack Kirchhoff depth 

migration 

Historically, the conventional summation method along hyperbolae and super

position of circular wavefronts were the first numerical migration schemes which had 

their physical basis in the scalar diffraction theory of Huygens' and Fresnel (Schneider, 

1971, 1978; French, 1975). The basic geometric migration theory was excellently dealt 

with by Hagedoom (1954) in terms of wavefronts and diffraction charts. Schneider 

(1978) first mathematically formulated migration as a solution to the acoustic wave 

equation in the form of a Kirchhoff integral where the surface recordings were the 

known boundary values. Though Schneider (1978) derived the Kirchhoff integral for 

migration based on a homogeneous medium and planar recording geometry, the basic 

idea is directly applicable to any geometry, and even heterogeneous media if geomet

rical ray theory is a reasonable approximation. However, a difficulty arises in the 

efficient and accurate determination of the integral surface which is defined by the 

tra veltimes. 

In this chapter, I will first extend the classic summation and superposition schemes 

to the variable velocity case for any recording geometry, by replacing hyperbolic 
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diffractions and circular wavefronts with general hyperbolae and aplanatic surfaces. 

Then, I will derive several migration integrals which are applicable to any heteroge

neous media for any recording geometry, by application of the WKBJ approximation 

of the Green's function to the Kirchhoff integral solution for the acoustic wave equa

tion. These integrals are all accurate under the WKBJ theory, and are shown to be 

very similar to each other, and can thus be unified by a single integral formula. This 

general migration integral is simply a summ.ation of differential traces along some in

tegral surface with the amplitudes being modulated by certain geometrical functions. 

A differential trace is a trace derived from the recorded one by a differential operator 

of :;:. , where m = t for 2D case while m = 1 for 3D case. The determination of 

the integral surface, nevertheless, constitutes the computational kernel of this general 

Kirchhoff migration. 

3.1. Superposition of aplanatic surfaces versus summation along 

diffraction surfaces 

N!a.ximum convexity migration and superposition of amplitudes along "'aplanatic 

surfaces'' of equal travel times are the first digital migrations which were mathemat

ically developed by Hagedoorn (1954). They are also the most comprehensible of 

all available migration methods. Though the methods were originally described in 

terms of circular wavefronts and hyperbolic diffraction curves, the basic principle of 
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the method still applies to any recording geometry in any geology. However, in the 

case of variable velocity media, the wavefronts and the diffraction hyperbolae have 

to be replaced by the general aplanatic and diffraction curves which are now of any 

shape. 

Figure 3.1 illustrates the summation method along diffraction curves. Point D 

denotes a diffractor in the Earth. The media are considered to be variable both 

vertically and laterally. Any diffraction excited at the diffractor D by the direct wave 

from the source S, and received at R, does not necessarily follow a straight line. In 

fact, the travel path could be of any shape. I use dashed lines to represent any such 

complicated paths for simplicity. In the same figure, I have plotted the diffraction 

curve due to the excitation of the source at S. Thus, for the diffractor point, the 

vertical axis is depth; while for the diffraction curve, the vertical axis is defined in 

time. The diffraction curve is no longer hyperbolic, nor is its apex laterally coincident 

with the diffractor. The apex could be anywhere along the curve, determined by 

the velocity structure and the excitation and recording geometry of the diffraction. 

Figure 3.2 is one such computed diffraction curve in the Marmousi velocity model 

for a diffractor at (x, z) = (4.0, 1.5) km corresponding to a surface source at x=6.0 

km. This diffraction curve is significantly deviated from a hyperbola. The use of 

hyperbolic summation is definitely deemed to be in significant error. Nevertheless, 

the first step of the classical summation method, in which amplitudes are summed 

along the diffraction curve, is still applicable in this general case. However, the second 

step, putting the summed amplitude at the lateral position of the diffraction apex D' 

is no longer valid. Instead, the sum should directly be placed onto the diffractor D 

itself. 
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Figure 3.1: Migration by summation along diffraction curves. The diffraction curve is 

either determined by ray tracing or finite difference solutions of the eikonal equation. 

The sum of the input amplitudes along the diffraction curve is put at the position of 

the diffractor D instead of the apex of the diffraction curve, D'. 

The above procedure for a single diffractor is essentially the reverse procedure of 

diffraction which can be clearly explained by Huygens' principle. Thus, if D is a real 

diffractor! a large sum will be produced at the position of D in the migrated section. 

This diffraction point certainly works for any continuous reflector, as such a reflector 

can be considered of a continuum of diffractors. The images of all these individual 

diffractors will finally merge to be a smooth, continuous reflector (Schneider, 1911). 

Thus the classical summation method is easily extended to variable velocity media. 

Its kernel computation is the determination of the diffraction curve. This could be 

carried out by either ray tracing or any solution of the eikonal equation. I will 

return to comment on this point later when I make a simple comparison between this 

summation scheme and the the superposition method of aplanatic curves. 
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Figure 3.2: A diffraction curve in the Marmousi model. It corresponds to a diffractor 

at (x, z) = (4.0, 1.5) km with a surface source at x=6.0 km. 
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Similarly I can extend the classical wavefront migration to any recording geometry 

in variable velocity media. Figure 3.3 illustrates the migration of two samples in a 

single trace along two aplanatic curves. For each trace at R, due to a source at S, its 

amplitude at time T could come from any possible diffractor D along the aplanatic 

curve, which is the locus of equal travel times from S to D, then from D to R. In the 

case of constant velocity, these aplanatic curves are simply ellipses with the foci at the 

source pointS and receiver position R. In general cases, these aplanatic curves have to 

be explicitly determined by setting up two traveltime tables, using either ray tracing 

or eikonal equation solutions twice, once for the source, the other for the receiver. 

The collection of points with the same sum of the two traveltime tables essentially 

defines the aplanatic curve for that specific time. Migration can thus be effectively 

performed by scattering the amplitude at time T onto the corresponding aplanatic 

curve. In Figure 3.3, I have illustrated the migration procedure for two samples of 

the trace at R. Though a single aplanatic curve is not a useful image itself, the linear 

superposition of all such aplanatic curves will produce a useful subsurface image. At 

positions where a reflector or diffractor exists, these aplanatic curves will intersect. 

Thus the amplitudes will constructively interfere, producing a high superposition 

amplitude. On the other hand, at places without reflecting or diffracting bodies, the 

amplitudes on different curves will destructively interfere, resulting in a null or small 

amplitude (Schneider, 1971). 

In the above, I have shown that the determination of the diffraction curves, or the 

aplanatic curves, is the essential part of migration methods in variable media. I use 

the method I have developed in Chapter 2 for determining these diffractions. However 

there are some differences in the determination of these curves. For a model of Nx by 
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Figure 3.3: Migration by superposition of aplanatic curves. C 1 and C2 are two apla

natic curves corresponding to two samples of a trace at R due to a source at S. The 

dashed path S-D-R symbolically represents a general raypath of any shape. Each 

amplitude at every trace is thrown onto its corresponding aplanatic curve. The linear 

superposition principle indicates that the superposition result is essentially the final 

migration image of the subsurface. 

N::, the determination of the aplanatic curves needs solutions of the eikonal equation 

only about N:r times. However, for the summation method, theoretically it requires 

Nr · N:: times of similar solutions. An alternative is available to reduce the solution 

times to Nr also. But much more effort is needed to rearrange the time table according 

to each individual grid point. The most significant difference is that summation along 

diffraction curves operates on many input traces simultaneously, while superposition 

of aplanatic curves operates trace by trace, which makes the latter ideal for parallel 

processing. In most cases, single trace processing is preferred to the multichannel 

processing in implementation. I have thus employed the superposition method of 

aplanatic curves for most of the applications included in this thesis. As illustrated 
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by Robinson and Treitel (1980, p385 ), both methods are equivalent in principle. The 

choice of the superposition scheme is for ease of implementation and illustration. 

Figure 3.4 shows a suite of aplanatic charts corresponding to a surface source 

position at x = 2000 m, and a surface receiver position at x = 6000 min the Marmousi 

velocity model. In this plot, none of the aplanatic curves is similar to either an ellipse 

or a circular arc. Their shapes are totally determined by the recording geometry and 

traveltimes. The latter in turn are determined by the velocity distribution. Figure 3.5 

shows the final migrated section of the Marmousi model data by simple superposition 

of aplanatic surfaces. The Marmousi model is based on a geological model from the 

Cuanza Basin of Angola. The model seismic data set contains 240 shot records. each 

with 96 traces. It is computed using a finite difference solution to the acoustic wave 

equation. Even in this simple migration, the main features of the the structures such 

as the steep faults are reasonably well imaged. There are even some indications of 

the positions of the reservoir in the subsalt anticline at a depth of about 2.6 km and 

lateral extent of 6.0 "" 7.5 km. In this model data migration, the biggest difference 

from the accurate reverse-time migration result which I will describe in Chapter 4 

probably lies in the change of phase signature. This phase variation is well known 

to be related to neglecting the differential operation's effect on the input data before 

migration, which I will elucidate in section 3.3. 
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3.2. A unified integral migration formulation in heterogeneous 

media 

Migration consists of two connected parts: wavefield extrapolation and the ap-

plication of an imaging principle. The natural way of deriving a migration formula is 

thus to first obtain the wavefield extrapolator, the equation necessary to express the 

wavefield in the interior of the Earth from the surface recordings. 

Suppose we have an array of recordings on the Earth's surface S0 in a single 

physical experiment as shown in Figure 3.6. The natural choice for this experiment is 

a shot gather. The recordings of this experiment are the result of wave propagation 

down from the source and then scattered up to the surface by discontinuities of the 

Earth. This physical phenomenon of wave propagation is mathematically formulated 

by the acoustic wave equation 

(3.1) 

where x~ denotes the position of the source. u(.i, t; £~) is the wavefield at time t at 

position .i due to a point source at x~. As I explained in Chapter 2, this acoustic wave 

equation is only an approximation for the real wave propagation problem. However, 

as pointed out by Kelly et al. (1982), such an acoustic approximation matches very 

well with real synthetic seismograms in many applications while at the same time 

avoiding the complexity of the full elastodynamic wave equations. 

Temporally Fourier transforming this equation leads to the Helmholtz equation 
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Figure 3.6: Integral geometry for the Kirchhoff equation (3.5). 

(Bleistein, 1984, p92), 

(3.2) 

where w is the temporal frequency and k = c~l is the wavenumber. In the interior of 

the Earth, x E (V- 8V), equation (3 .2) reduces to 

(3.3 ) 

where av is the boundary of volume v. 

The Green's function, G(r,w; x), representing the wavefield at r due to a point 

impulse at x, satisfies the wave equation 

(3.4) 
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Now applying Green's second theorem (Goodman, 1968, p34) to the scattered wave-

field u(x, w; x-:) and the Green's function G(x-;., w; x) in the volume V with a tiny 

volume around x being excluded to avoid singularities, we have (Goodman, 1968, 

p37) , 

_ _ [ { _ _ oG(x-;. , w; x) G( _ _) ou(x-;., w; x-:) }d 
u(x ,w; Xs) = lav u(XnW; Xs) On - XnW; X an S. ( 3.5) 

This is an exact expression regardless of the complexity of the Earth model. This 

integral equation relates the scattered wavefield in the Earth's interior to its values 

on the surface. Nevertheless, this relation involves both the wavefield itself, and its 

normal derivative component which is not usually recorded in seismic exploration. 

In exploration seismology, we generally record the wavefield on the Earth's surface; 

our recordings never cover the whole Earth surface. However, as long as the wavefield 

u satisfies the Sommerfeld radiation condition (Bleistein, 1984, p182) 

n (- _..) .n..u x ,w: Xs --+ 0, as R--)- oo: 

R ( 8u(X,w; x-;) _ ·kn ( _ . -)) 
On J X U X, W, X s --+ 0, as R--)- oo. 

where R is the distance between x and x-:, the integral (3.5) is still a very good 

approximation to the wavefield in the Earth, with the surface of integration consisting 

of the recording surface S only. 

To simplify the integral, I suppose that there is a totally identical half space above 

the Earth 's surface which forms a symmetrical image of the actual subsurface. Fur-

thermore, I consider a Green's function which is the result of two monopoles with 

opposite sign situated symmetrically on either side of the Earth's surface (Figure 

3. 7) . As long as the recording surface is planar, the Green's function will be zero any-
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where at the surface, as each monopole will contribute exactly the same propagation 

wavefields but opposite signs, i.e., 

X 

-. 
n 

' -EBR 

Figure 3. 7: Green's function for the Rayleigh integral. It is the responses of two 

monopoles of opposite sign symmetrically at opposite sides of the Earth's surface. 

G(x-;.,w;x) = c+(x-;.,w;x) + c-(x-;.,w;x) = 0, (3.6) 

where G+(x-;., w; x) obeys equation (3.4) in the lower half space. To write the normal 

derivative of the Green's function. we can extrapolate easily from the homogeneous 

case, 

8G(x-;.,w; i) = 
2

ac+cx-;.,w; x). 
an an (3.7) 

Using this definition of the Green's function and following the same lines as in the 

derivation of (3.5 ), I obtain the general Rayleigh integral (Berkhout, 1985, p145) 

( - - ) 2 r ac+ ( x-;.' w; x) ( - - ) d -
U X 1 Wj X$ = ls an U XnWi X 6 Xr. (3.8) 

This integral applies to most complex media as well. Its validity is only challenged 

when the recording surface is extremely rough which includes topographies with both 
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very large elevation variations and large spatial wavenumber components. Figure 3.8 

schematically illustrates that the Rayleigh integral (3.8) is in significant error when 

the recording surface is rough. In these cases, the general Kirchhoff integral (3.5) 

should be used. 

\ 

' 

-R 

\ 

-

Figure 3.8: The error of the Rayleigh integral in areas of non-planar topography. In 

rough topographic areas, the Green's function due to two contrasting monopoles is 

no longer zero at the surface. The full Kirchhoff integral should be used. 

Equation (3.8) generally formulates the scattered wavefield in the heterogeneous 

Earth based on recordings on the surface of the Earth in cases for which surface 

roughness is negligible. Now I will expand this formulation using the WKB.J the-

ory (Aki and Richards, 1980, p415-419). The WKBJ approximation of the Green's 

function c+ ( x-;.' w; x) can be expressed as 

G+(£ w· x) - A (£ · x)e-iw-rc(:£~:X1 
r' ' - G r' ' (3.9) 
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where .-lc is the amplitude and TG is the traveltime related to phase. The normal 

derivative term of the Green·s function is 

(3.10) 

C nder the high frequency approximation. the first term of the normal derivative is of 

lower order in frequency. thus the above equation can be approximated by its leading 

term in ... ,: 

(3.11) 

In fact. this is a good approximation of the normal derivative of the Green's function 

even with low frequency content. as the following condition 

(:3.12) 

holds for most e~"Ploration problems. This condition is simply the asstmlption that 

the amplitude changes slowly spatially. 

Substituting (3.11) into (3.8) leads to 

_ -) ·) · ! - 'r'7 ( - -) 1 ( - -) ( - - ) -i_.,-,-(r-;. :.i) / -ll ( .r ..... ;; .r s . = - _l,.;.; Tl • \ ' Tc_; .1' r: .l' ."1.(; .l' r; .C ll .l' r • .,,;; .l' 5 t ' c .r r. 
$ 

( 3.13) 

The corresponding tirne domain expression is 

(3.1-!) 

where u' is the time derivative of u. 

For migration purposes. we need to extrapolate the source wavefidd too. The 

source \\'a\·efield D( .r. t: .z~) is reconstructed with the assumption that it consists of 

any direct arrivals from the source at .l:: without any secondary scattered energy. 
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C nder this assumption. D(-1!. t: .l-=:) is simply a Green ·s n.wction G+ (.r. t: .f~) 

( 3.15) 

Csing the \VKB.J approximation. the source wavefield takes the form of equation (3.9) 

but with a phase advance instead of delay 

( 3.16) 

Xow. we are ready to evaluate the acoustic impedance discontinuities. The first 

measure of these discontinuities is the illuminated reflectivity at .r \vhich is defined 

to be the ratio of the scattered to the source wa\·efields at that position 

u ( .r . .... .:: .z::) 
R( .r . ... .:: .l-=:) = . 

D( .r .... .:: .r-:) + € 
( 3.17) 

This fornllllation also has a time domain definition first proposed by Claerbout ( 1911). 

The inclusion of the small constant E is to improve stability by avoiding division by 

zero. This formulation properly describes the angular reflecti,~ity function of the 

subsurface. Csing (3.13) and (3.16). we obtain 

1 
4.c(.L-:- • .r) -•• (,..c<.r-,.:.il+,..r:;(Y:.r-:.l) 

- - . - - - .. r• - - -R(.r . ...::.rs) = -2t .... · _n·VTc(.rr:.r) -. :- tt(.rr ..... ·:.t·~k d.l'r. 
::. Ac(.r .. t,) + E 

( 3.18) 

By recognizing that the travel times Tc( .L:-;.: .r) and Tc( .C: .z-=:) correspond ro th(' tra\·-

eltimes from the interior point :r to the receiver position .z:-;.. and from the source 

position .1-=: to .r respectin•ly. 

- .... (- -) 1(; .l •. Ls. 
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(3.18) can be rewritten as 

1 
AG(£. x) -iw(r.{x;:r-;)+r,.(:r-;;X)) 

R(x,w;x-:)=-2iw ii-\7r,.(x-;.;x)
4 

(- .:') u(x-;.,w;x"~)e dx-;.. 
s . G x; x. + € 

(3.19) 

By integrating through the whole frequency band. we have the following angular 

reflectivity 

(3.20) 

This is the generalized Kirchhoff migration integral for prestack depth imaging. It in-

dicates that the migration of a single physical experiment can be effectively performed 

by summing the differential traces along the traveltime curve r.(x; x-:) + r,.(x-;.; x) with 

the amplitudes modulated by the geometrical divergence factor A A<(-~:fJ_ , the corre-c :r,:r. ( 

sponding obliquity cos 8,. and velocity Cr at the receiver position x-;. , as ii · \i'r,.(x-;.: x) = 
coso .. 

c,. 

As I mentioned above, the computation of this angular reflectivity using (3 .20) 

requires some measure in advance for stability. In fact, in migration, we are more 

interested in the qualitative description of discontinuities than the reflectivity values. 

A common definition of migration is the cross-correlation of source and scattered 

wavefi.elds (Claerbout, 1971) 

Rc(x, w; x-:) = u(x, w; x-; )D*(x, w ; x-:) , (3.21) 

where n· is the complex conjugate of D. This definition gives a measure of the 

relative reflectivity. It can be expressed as 

(3.22) 
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It is apparent that this expression has a very similar form to the angular reflectivity 

(3.20) with the only difference appearing in the geometrical spreading term. There 

no longer exists the problem of instability as in equation (3.20). 

In many implementations of migration, especially in reverse-time migration which 

I will discuss in Chapter 4, another definition of migration imaging is often used. 

It simply takes the scattered wavefield at the excitation time of position x as the 

measure of the relative reflectivity 

(3.23) 

where T.s(.i; x-:) is the excitation time of position .i due to a point source at x-: (Chang 

and l\tlcl\tlechan. 1986). Using equation (3.14), it can be directly written as 

(3.24) 

By comparing this formula with (3.22), it is evident that this excitation-time 

imaging formulation is a special case of the angular reflectivity formulation when 

A.c(x;x-:) = 1. (3.25) 

This corresponds to assuming that the amplitude of the source wavefield function is 

unit everywhere in the Earth. 

Equations (3.20), (3.22) and (3.24) are three very general migration integrals which 

can all be termed as Kirchhoff integrals. They are all directly applicable to variable 

velocity media. They can essentially be unified using a general integral 

R(.i; x-:) = 2 Is ii. ~Tr(x-;.; x}A( x-:.; x; x-: )u'( x-;., T.s(.i; x-:) + Tr( x-;.; .i); x-: )dx-;., (3.26) 
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with the amplitude correction due to wavefront spreading being generalized to be 

A.(x-;.; .i; x-:). Almost all Kirchhoff migration methods available can be explained by 

this general formulation (Schneider, 1978; Keho and Beydoun, 1988; Docherty, 1991). 

By combining all individual angular reflectivity functions provided by each sepa-

rate shot, 

R(.i) = L R(.i; x-; ), (3.27) 

we should be able to obtain a relatively good estimate of the discontinuities in the 

Earth, as long as these shots provide a symmetric coverage of illumination including 

wide angles. 

3.3. 2.50 prestack depth migration integrals 

In the last section, I obtained three integral formulations for prestack depth 

migrations. These formulations are uniquely represented by a more general integral 

equation. This migration equation can theoretically be applied to any velocity model 

and recording topography. However, its application requires the availability of an 

areal coverage of records. At present, most seismic data are still acquired along lines 

using point sources. Prestack depth migrations are thus required for such data from 

geologically complex areas. As the data are limited to a single line, migration is thus 

based on the assumption that the Earth is uniform perpendicular to the seismic line, 

which is essentially a 2.50 problem. The term of 2.50 refers to 30 wave propagations 
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in a medium varying only along the seismic line (Bleistein, 1984). I will show that the 

2.5D integral migration equation is much more complicated than its 3D counterpart. 

This reflects the fact that the natural way is usually the simplest, both physically 

and mathematically. 

To derive the 2.5D integrals for migration, I follow Bleistein (1984) to integrate 

the x 2 part by means of the stationary phase method. First I will rewrite equation 

(3.26) as follows, 

R(.i; x-:) = 2 J -iwdwl(x; x-:; w ), (3.28) 

where, 

(3.29) 

where ( = ((t, ( 2 ) is the surface position parameter to represent x-: and x~, and 4> is 

the total travel time, 

(3.30) 

Its first derivative with respect to 6 is, 

(3.31) 

Using the definition that 

(3.32) 

where p = 11 c( x) is the slowness, we have 

8</> 6 { - .... ) r ( .... ....) 

86 = P2 x; X& + P2 Xr; X • (3.33) 
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Now using the fact that velocity c(.i) is independent of x 2 , or 6, we have~ 

dp2 = 0, 
du 

(3.34) 

from the second equation of (2.18). Thus, without loss of generality, p2 can be ex-

pressed as (Bleistein, 1986) 

1 . . {3 P2 =-:;- smo stn , 
c(~) 

(3.35) 

where a, {3 are two parameters describing the direction of the ray. 

Similarly, from the first equation of (2.18), we obtain, 

(3.36) 

Note that I have here used A. = 1 in the above expression. 

At the stationary phase position, 84>/ 86 = 0, that is, 

(3.37) 

or, using P2 = 6/a- from equation (3.36), 

(3.38) 

Thus, 6 = 0. That is, the stationary phase occurs at the plane 6 = 0. 

To carry out a stationary phase analysis, we have to compute the second derivative 

of the phase function, 

(3.39) 

Using the relation between 6 and p2 in equation (3.36), we have, 

{3.40) 
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At the stationary point where p 2 = 0, this results in 

(3.41) 

Thus, 

(3.42) 

It is apparent that, 

(
82</J) 

sgn 8~i = 1. (3.43) 

Now the integral (3.29) can be evaluated by the contribution in the plane 6 = 0~ 
using the stationary phase formulation (Bleistein, 1984, p108) 

Thus, the in-plane reflectivity can be expressed as, 

or, using the fact that x-;. is uniquely determined by ~ 1, 

I 

R 'Jj- ~ (-;:'\A(---) 1 (du):r(_ (- -) (- -) -)d-=- n· vTr XriXJ XrjXjX 6 -d Xr,T.s XjX, +Tr XrjX ;x, Xr· 
../u-;1 +ur 1 t 

(3.46) 

Note that I have omitted a constant of V2ir in the above expression. In this expres-

sian, the vectors x-;., x, x-: are only two dimensional. This is the general migration 

equation based on the assumption that the seismic records are only available on a 

line which itself is the result of 3D wave propagation from a point source. That is, it 

is a migration for 2.5D imaging. This formulation essentially shows that migration of 

a single line can be accomplished by summation of differential trace amplitudes along 
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complicated diffraction curves with the amplitudes being modulated by both the in 

plane geometrical spreading and the obliquity before summation (Figure 3.9). Com-

pared to its corresponding 3D equation, this is somewhat more complicated. This is 

a very good example of the common observation that problems from nature are often 

the simplest. 

\ 
\ 

\ 
\ 

\ 
\ 

~ Differential 
section 

Figure 3.9: 2.5D migration by the prestack integral scheme. Migration of a gather is 

accomplished by summing amplitudes of the differential traces along diffraction tra

jectories. The differential amplitudes are modulated by a plane geometrical spreading 

and obliquity before migration. The obliquity is the cosine of the emergent angle 8. 

I will now consider the special case of constant velocity~ c(.i) = eo for equation 

(3.46). In this case, we have, 

rr~~ = eolx- x~l; {3.47) 

(3.48) 
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and, 

(3.49) 

With these specializations, equation (3.46) reduces to, 

R 2 f COS (} A( ..,. ..,. ..,. ) = VCO .'"1 Xr; x; X 5 

I- .... II .... -I d !. x- X 5 Xr- X ( u) 2 
(- ( ........ ) ( ........ ) - )d-

1
.... ....

1 1
_ .... 

1 
-d Xr,15 x;X5 +•r Xr;x ; x, Xr-

X- X 5 + Xr- X t 

(3.50) 

This equation is now familiar. As the general amplitude term .4.(x-;. ; x; x~) of the 

Green's function can also be explicitly expressed as functions of lx-;. - xl , and/or 

lx- x~l, this integral can simply be implemented on input traces without the need for 

determining the integral curve which is the most time consuming and also difficult 

in general cases. Two fundamental operations are involved here. First, each trace 

is half differentiated in time . Then a summation of the differentiated amplitudes 

along a hyperbolic trajectory with its apex at the lateral position x, is implemented. 

The amplitudes on each trace are modulated by both the emergent angle (J at the 

receiver's position, and also a geometrical function which is now an analytic function 

of distances traveled, lx-:. - xl and lx- x~l -

74 



3.4. Prestack migration examples of complex structures by the 

Kirchhoff method 

In the last section. I derived the 2 .. 5D I-\:irchhoff migration integral ( 3.-16). T'vo 

main constituents of that equation are the determination of the diffraction curves and 

the in-plane geometrical spreading factors. Both of them can be computed by dy

namic ray tracing (Cerveny. 1981) or paraxial ray tracing (Beydoun and Keho. 1981). 

processes involving significant computations. I have effectively used the \"idale-t:ype 

solution of the eikonal equation which I developed in Chapter 2 for rhe pm·pose 

of determining the traveltimes. These traveltimes correspond to first arrival rimes . 

. \s questioned by Geoltrain and Brae (1993). such arrivals possibly are not the ar

rivals \Yhich carry the most energy. In such cases. the use of the first arrival times 

would probably not get the best image (Gray and ~lay. 1994: Xichols. 1996). Xe,-

ertheless. these calculated rraveltimes determine the integral cmTe for the Kirchhoff 

migration. This drastically enhances computational efficiency. Though \"idale and 

Houston ( 1990) ~how that geometrical amplitudes can be computed using eikonal trav

elrimes. it is nevertheless less accurate than those calculated by dynamic ray tracing. 

In addition. the determination of emergence angles using such eikonal rra\·eltimes 

lacks accuracy. although this determination is possible. Based on these observations 

and the relative success of imaging the :\Iarmousi data with the simple superposi

tion method of aplanatic curves as shown in section 3.1. I use an approximation to 

the geometrical spreading factors based on some average measurement of the Earth 

model. This approximation is very similar to that of Gray and ~lay ( 1994) in their 



migration of the Marmousi data. Such an approximation is mainly based on the fol

lowing observations. First, a knowledge of the arrival time of an event, coupled with 

a general amplitude of that event, is often adequate for preliminary interpretation 

{Kelly et al. , 1982). Second, the input for migration is seldom of true amplitude~ 

as such processes as FK filtering and AGC are often applied before migration. The 

third is the observation that the migration result of the Husky-Alberta foothills line 

from such an approximation for the Kirchhoff method is almost the same as that 

of the reverse-time migration which is theoretically accurate. As summation along 

diffractions is equivalent to superposition of aplanatic curves which I elucidated in 

the first section of this chapter, I have implemented the migration in the mode of 

aplanatic superposition. 

3.4.1. Prestack Kirchhoff migration of the Marmousi model data 

I will show in this section a migration example of a standard test data set, the 

Marmousi model. This model test illustrates the accuracy and effectiveness of the 

above scheme. 

The Marmousi model data has served as an excellent testbed for both prestack 

depth migration and velocity analysis since its creation (Versteeg, 1993). It is based 

on a geophysical model from the Cuanza Basin of Angola. The model is created 

using a high order finite difference solution of the acoustic equation. Figure 3.10 

shows the velocity model. The structure of the basin is dominated by steep growth 

faults which arise from salt creep (Bevc, 1997). The reservoir in the subsalt anticline 

around a depth of 2.6 km and laterally at 6.0 "' 7.5 km is one of the exploration 

targets and thus an imaging objective. The whole synthetic data set consists of 
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96 traces. Figure 3.11 is the near offset section \vhich shows a significantly distorted 

model structure. In fact. in areas of complex stntctures with significant velocity 

heterogeneity like the ~Iarmousi model. prestack depth migration is a necessity for a 

proper imaging (Versteeg. 1993: Gray and May. 199-l). Figure 3.12 shows the final 

migration stack of the ~Iarmousi data by the prestack depth I\:irchhoff migration 

that I formulated in this chapter. In this migrated section. it is e\·ident that most 

of the salient features of the model have been properly imaged. The growth faults 

are well resolved. £,·en the subsalt anticline is imaged. However. it seems that the 

reservoir interfaces are not imaged clearly. This could be due to several causes. One 

is the approximation in the amplitude calculation of the Green·s functions .. -\nother 

possibility is the fact that the Kirchhoff migration method assumes a zero phase 

signature while the input can be of minimum phase due to the effect of deconvolution. 

The use of first arrivals instead of most energetic arri'\"als could be another possible 

factor also ( Geoltrain and Brae. 1993: Gray and ~Iay. 1994: Xichols. 1096 ). Regardless 

of these possibilities. overall. the migration as shown in Figure 3.12 gives au image 

very close to the model within the seismic resolution. 

3.4.2. Kirchhoff Migration from topography of the Husky-Alberta foothills 

line 

The Husky-Alberta foothills line is an open file of real seismic data which is 

anticipated to serve as an excellent test data for imaging complicated structures with 

rough topography. The Alberta foothills are generally characterized by overthrust 

structures of steep dip and considerable lateral '\-ariation. The lin<" is of excellent 

signal quality (Stork et al.. 1995). Figure 3.13 shmn one near offs<>t section with 
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Figure 3.10: The Marmousi velocity modeL 
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Figure 3.11: Near offset (200 m) section of the Marmousi data set. 
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Figure 3.12: Migration section of the Marmousi data set by prestack Kirchhoff depth 

migration. The migration is based on a velocity grid of 12.5 m by 12.5 m. 
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offset of 60 m, which in many cases can be taken as a good approximation of the zero 

offset section. Figure 3.14 shows a similar near offset section with negative offset of 

60 m, basically illustrating similar problems to those in Figure 3.13. By comparing 

these two near offset sections, it is apparent that the Earth is definitely not of layer 

cake structure with vertical variations only. These sections suggest that there exist 

significant lateral inhomogeneities. 

For migration purposes in such mountainous areas, the integral migration should 

theoretically be done with the Kirchhoff integral by calculating the amplitudes of the 

Green's functions and the related geometrical factors from the actual source and re

ceiver positions. For computing economy as described earlier this chapter, I have used 

the Rayleigh integral for migration here. By computing the aplanatic surfaces using 

the finite difference traveltime computation methods which I developed in Chapter 2, 

the total line is imaged by migration from topography (Lines et al., 1996). Using a 

velocity model (Figure 3.15) developed through an iterative interpretive depth imag

ing procedure (Zhu and Lines, 1996; Wu et al., 1996) which I will dissect in detail 

in Chapter 5, I obtain the migration result shown in Figure 3.16. In this migration 

image, the shallow dipping formations at the upper left side of the section are clearly 

imaged. Two main thrust faults are well defined approaching the surface, around 

CDP numbers of 580 and 810 respectively. Overall, this prestack Kirchhoff depth mi

gration provides a very encouraging result. Its geological interpretation is essentially 

the same as the velocity model, because they are consistent with each other in many 

respects at this final stage of the iterative interpretive depth imaging procedure. This 

indicates that even this approximate solution of integral migration works very well as 

long as migration is implemented from the topography in a single unified procedure. 
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Figure 3.13: Near offset (60 m) section of the Husky-Alberta foothills line. 
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3.5. Summary 

The classic summation along hyperbola and superposition of circular wavefronts 

were extended to variable velocity media for any recording geometry. Based on the 

WKBJ approximation of the Green's function to the acoustic wave equation, I ob

tained several migration integrals. These integrals were unified by a single integral 

formula. I demonstrated that this general integral is simply a summation of differ

ential trace amplitudes along an integral surface. The determination of the integral 

surfaces was shown to be the primary computations in this general Kirchhoff migra

tion. The migration example of the Marmousi model illustrated the effectiveness of 

the method in imaging very complex geological structures including steep dip faults. 

The method was successfully applied to imaging the Husky-Alberta foothills line by 

migration from topography. 
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Chapter 4. Prestack reverse-time 

migration of sparse and irregular data 

Compared to the integral migration method studied in the last chapter. reverse

time migration is a relatively new technique. The idea of using finite-difference wave 

equation solutions for reverse-time migration was originally published in a paper 

"Equations d'onde et modeles"(Hemon, 1978). Hernon did not emphasize the poten

tial applications. At about the same time, Whitmore (1982) had extensively used 

the method, but did not publish results of the method until his participation in 

the 52nd SEG annual meeting's migration workshop. During the next year, anum

ber of reverse-time migration papers appeared including the independent pioneering 

work of Baysal et al. (1983), Loewenthal and Mufti (1983)~ McMechan (1983) and 

\tVhitmorc (1983). These papers established reverse-time migration as a very general 

imaging tool for seismic reflection data. It is solely based on the symmetry of the 

acoustic wave equation in time, which makes it possible to use basically the same 

finite-difference code for extrapolating the recorded wavefields backward in time as 

in forward modeling. 

Nevertheless, reverse-time migration is computationally very expensive. In addi

tion to its expense, it generally has more restrictions on the sampled seismic data. It 

was commonly assumed that the input traces in a record had to be equally spaced 
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on a relatively fine grid. However, many recent advances in reverse-time migration 

demonstrate that most of these restrictions can be removed without detrimental ef

fects on the final migration results (Mufti et al., 1996; Zhu and Lines, 1997), especially 

for stacked data. Mufti et al. (1996) have shown that interpolation of traces can be 

eliminated by using relatively large horizontal grid steps compared to the fine ver

tical ones. Their method works whenever horizontal spatial wavenumbers are much 

smaller than the vertical wavenu.mbers. Their treatment is based on the insight that 

reflected waves mostly propagate vertically in the stacked section so that the disper

sion horizontally is minimal compared to that vertically. Nevertheless, due to the 

nature of seismic acquisition and irregular data sampling relative to a finely spaced 

finite-difference mesh, such treatment will be very difficult. For prestack data where 

waves travel in nearly all directions, Mufti et al. 's method ( 1996) will generally not 

be applicable. 

In this chapter, I will first illustrate that the reverse-time wave equation extrap

olation procedure also has the capability of implicitly interpolating missing traces, 

whenever unaliased input records are considered to be sparsely and irregularly sam

pled. The interpolation is essentially based on the ability of the wavefield to heal 

itself due to constructive wavefield interference during propagation. Then I will show 

applications of this new treatment to the Marmousi and the Husky-Alberta foothills 

data. These applications demonstrate that reverse-time migration can be directly ap

plied to sparsely and irregularly sampled records without any interpolation of missing 

traces in advance. The missing traces are simultaneously reconstructed during the 

migration by constructive interference. 
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4.1. Principles of reverse-time migration 

Migration is the mathematical procedure which maps reflections and diffrac-

tions in time to their corresponding reflectors and diffractors in depth. It essentially 

consists of two closely connected steps: reverse propagation and imaging. The re-

verse propagation step tries to drive the recorded waves back into the Earth along 

the paths they originally traveled. It thus is basically a de-propagation procedure. 

The imaging step determines when the backward propagating energy represents the 

relative reflectivity of the Earth. 

As I have discussed in Chapter 3, wave propagation phenomena can be accurately 

described by the wave equation. In 2D form, 

82u(x, z, t) 82u(x, z, t) _ 1 82u(x, z, t) _ -f( _ ) 
a 2 + 8.,.2 2( "') !U2 - x , ... , t , 

X - C X,- U~ 
( 4.1) 

describes wave propagation in ( x, z )-plane of a 3D medium excited by a line source, 

f(x, z , t), distributed parallel to the y-axis along which the medium is uniform. As 

the source used in practice is often a point source, the recorded data thus have to 

be amplitude corrected in order to use equation (4.1). Theoretically, the spherical 

wave amplitude is inversely proportional to the distance the wave traveled, while the 

cylindrical wave amplitude is inversely proportional to the square root of the distance 

(Sheriff, 1991, p277). Thus, multiplication of each sample with the square root of the 

distance traveled would compensate for the most important factor of the amplitude 

due to the point source. This compensation makes the recorded amplitudes as if it 

were acquired with a line source. In practice, there are many factors contributing to 
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amplitude decay and seismograms are generally corrected with some type of amplitude 

balancing that provides energy balancing over chosen data windows (Robinson and 

Treitel, 1980). 

Because of the second order differentiation of the wavefield u with respect to time 

t, and also of the time independence of the coefficients in equation (4.1), (4.1) also 

describes wave propagation backward in time. Mathematically it can be easily proven 

that, if u( x, z, t) is a solution to ( 4.1), then u( x, z, T - t) will also be a solution for 

any constant T. 

To backward propagate the recorded wavefields using equation (4.1), a finite-

difference approximation is employed to solve ( 4.1). Figure 4.1 shows a finite-difference 

mesh overlying a geological model. The mesh consists of uniform cells with lateral 

and vertical spacings of D.x and D.z respectively. Any point P with coordinates 

(x. z) in the model can be represented by an indexed integer pair (m, n), where 

x = (m- l)D.x, z = (n- l)D.z. Any physical property, say the velocity, at the point 

P, can thus be represented as c(m, n) , or, Cm.n· If the geological model considered is 

spatially limited, its gridded velocity model can be represented by a velocity matrix. 

say C(ivl, N) with M, N representing the lateral and vertical ranges of the mesh. 

Similarly, we introduce the index l to represent the time instants such that instant 

t = (l- l)D.t. With these discretizations of the Earth model and time, the wavefield 

u at timet= (l- 1)D.t and point P(x, z) can be discretely represented by u(m, n.l). 

l or um,n 

Now I will approximate the differential terms of equation (4.1) based on Taylor 

Series expansion. The time differential term is approximated by a second order central 
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Figure 4.1 : The finite-difference mesh for reverse-time migration. A uniformly gridded 

mesh overlies the geological model consisting of two curved reflectors. Each cell is of 

the same size with lateral and vertical length of ~x and ~z. 

finite-difference scheme, 

( 4.2) 

This approximation often is accurate enough as ~t is very small in exploration seis-

mology. The spatial differential terms, however, generally need higher order differ-

encing approximations. This is partially due to the need to reduce spatial dispersion 

effects which could otherwise be very disturbing (Alford et al., 1974; Dablain, 1986). 
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Though much higher order finite-difference schemes can be used, I found the fourth 

order scheme often provides the best cost effective results. The x, z derivatives are 

approximated as, 

82u(m, n, l) 
8x2 

82u(m, n, l) 
8z2 

-

-

12
!x2 [16(u!n+t,n + u!n-l ,n)- (u!n+2,n + u!n_2,n)- 30u!n.nJ + 0(.6.x

4
) 

(4.3) 

12~z2 [16(u!n,n+l + u!n,n-l)- (u!n,n+2 + u!n,n-2)- 30u!n,nJ + 0(.6.z
4

) 

(4.4) 

Substituting (4.2)- (4.4) into (4.1) leads to , 

ul-l = 
m ,n 

+ 

+2u~ ,n -u!;,~ + f(m , n, l) + 0(.6-x\ Llz\ .6.t2
). (4.5) 

This is a very general reverse-time extrapolation formulation for any rectangular 

gridded model, with each rectangle of the size of Llx by ~z. It can be generally 

expressed as the following recursive matrix formulation, 

U t-t =A + 2U l- U t+t' ( 4.6) 

if we omit the source term. A represents the spatial differential function of the 

wavefield which is basically a spatial filter, as differentiation is equivalent to high 

pass filtering (Berkhout, 1984, p30-36) . This expression is a backward recursive 

formulation which enables one to compute the wavefields at the ( l - 1 )th step from 

its values at the lth and ( l + 1 )th steps. This will drive the wavefields at two later 

time instants t = l.6.t, (l + 1).6.t to its past ones at t = (l- 1).6-t. In the special case 
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of a square gridded mesh. _\.r = _\.:. equation ( 4.5) is simplified to. 

u~.~ (2- 5p2)lt!n.n- ll~~ + f(m.n.l) 

p'l. [( I I I I ) 12 llm+2.n + llm-2.n + llm.n+2 + llm.n-2 

16 ( u!,+ L.n + "~•-l .n + "~• -•+ 1 + u!...n-l)] + 0( h 
4 . ..lt' ). ( -1. ;- i 

where p = em~~~ .. and h = _\.l· = _\.;. This is well knmvn (Alford et al.. 191-l). 

Comparing this simplification with equation ( -!.5 ). it is clear that ( 4.1) involves only 

4 multiplications for every grid point at each extrapolation step. while ( -!.5) needs 

at least I multiplications. In addition. ( 4.5) requires one more additional 2D array 

to store the precomputed constants. The computational effort for equation ( 4.5) is 

almost t"·ice that of equation ( 4.1) for a same size geological model. making ( -l.l) 

much more attractive. It is for this reason that equation ( -l.l) is used more often 

than equation ( -!.5) in seismic modeling and imaging. 

\Yith t.'quatiou ( -L I). reverse-time migration can no,,· be illnstraterl by a singlf' 

point diffractor model as shown in Figure 4.2. The wan~field extTapolation is per-

formed in a griddecl n~locity model based on geological and geophysical information. 

At every extrapolation step. a constant time strip of amplitudes in the record are 

simultan<'onsly imposed on the recording surface. either planar or topographic. The 

finite-difference stencil ( -l./) then drives the recorded wavefields backward into the 

Earth model by computing the wavefields at earlier time instants from their present 

and future instant values. 

During this back"·ard propagation procedure. reflected and diffracted \Yaves move 

along their original tra\·el paths back into the Earth. They will focus at the spatial 
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Figure 4.2: Prestack reverse-time migration principles. At each backward extrapola

tion step, the amplitudes at that time slice of the recordings are simultaneously acting 

on the recording topography. The wave equation solution then drives the wavefields 

into the Earth model by computing the wavefields at earlier instant from the corre

sponding later instants. The backscattered waves (solid curves) will gradually focus 

to the diffractor point at the imaging time tim, and then defocus thereafter. The 

dashed curves define the trajectories of points which satisfy the imaging condition. 

Adapted from McMechan, 1989. 
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positions where they originate at the arrival time of incident waves (see the third panel 

of Figure 4.2). The focusing time is called "excitation time" by Chang and l\tlcMechan 

(1986). It is determined by the finite-difference solution of the eikonal equation 

discussed in Chapter 2. At every extrapolation step, the wavefi.elds at the spatial 

locations of the wavefront of the incident waves are extracted from the backward 

extrapolated snapshot to fill the corresponding locations of the image space, 

(4.8) 

where r.,(x, z) is the excitation time of point (x, z). This imaging step in the reverse 

time migration is mathematically identical to the imaging procedure of the Kirchhoff 

scheme (3.24). In the case of the point diffractor as shown in Figure 4.2, the bach.-ward 

extrapolated energy focuses at the point diffractor position at the time of tim~ with 

tim being the excitation time of the point diffractor corresponding to the incident 

wavefront which is shown in dashed curves in Figure 4.2. With time moving further 

backward, the extrapolated energy is defocused again. Nevertheless, as we are mainly 

interested in the combination of the imaged wavefront positions, only the focused 

energy at the extrapolation step tim gives us the reflectivity information. When the 

reverse-time extrapolation proceeds back to the initial time of the shot, the complete 

shot image space will be filled. This shot image represents a partially illuminated 

reflectivity of the Earth. 

The above illustration is simple as it only considers a single point diffractor with 

one shot. Nevertheless, as any complicated Earth model can be described as a con

tinuum of diffractors, this simple illustration does represent our ability to process 

such complexity. The main point to be stressed is that each shot illuminates only 
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part of the model, and thus we need to optimally define this illuminated range. A 

proper definition is very important: a too narrow window will result in loss of reflec

tivity imaging, especially for steep reflectors; a too wide window will introduce extra 

computations. I use sliding image windows to help minimize computations while still 

retaining the migration aperture wide enough. Each sliding window is of the same 

depth range as the imaging depth intervaL However, the lateral extent of each win

dow is relatively difficult to determine, as it is dependent on the recording geometry 

of the shot, and especially on the velocity modeL One ideal way to do this would 

be by using ray tracing to determine the possible reflection loci for the current shot; 

however, this is very expensive and impracticaL I have found it practical to delimit 

the lateral extent based on personal insight and a rough ray tracing test. In general, 

the lateral extent of a migration shot should at least be wide enough to include the 

shot position and all the receiver positions. For areas where structural dips do not 

exceed 30 degrees, it is often good enough to pad 500 m on both sides of the current 

shot recording extent. For structurally more steep cases, it would be necessary to 

pad 100 m or even more on either side. In the case of the Husky-Alberta foothills 

case, I padded 800 m on each side. Figure 4.3 shows two such sliding windows (.41 -

.4.2 and B 1- B2 ) for two neighboring shots A and B. The windows are of transparent 

boundaries laterally. A 1 , A 2 delimit the lateral range of the migration shot A, while 

B 1 , B2 delimit the image space of B laterally. These neighboring windows generally 

share a considerable overlap and the final migration is simply a superposition of all 

such migration sliding windows. 

96 



A 8 

Figure 4.3: Sliding migration shot windows. Each window defines the image space of 

one shot gather. 
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4.2. Implicit interpolation of reverse-time migration 

In the last section, I have shown that reverse-time migration essentially involves 

two steps: the reverse-time wave:field extrapolation and the subsequent imaging. The 

wavefield extrapolation is effectively provided by the finite-difference solution of the 

wave equation. This solution allows us to solve the past time instant wave:fields from 

the future ones in a time backward sequence, as easily as solve the forward modeling 

problem in a time forward manner. During this extrapolation procedure, the recorded 

traces act as either known boundary conditions or source distributions to drive the 

finite-difference mesh. In this section, I will further demonstrate that the reverse-time 

extrapolation procedure also has the capability of interpolating the missing traces if 

the unaliased recordings are considered to be sources. 

However, there is a stringent restriction on the recorded traces if the recordings are 

considered to be known boundary values: there is one trace at each grid point on the 

recording surface. Due to the nature of seismic acquisition, there are many cases where 

traces are missing, or not uniformly spaced along the recording topography. What is 

even more common is that the computational grid is much smaller than the recorded 

trace spacing, as the grid size is determined by the resolution requirement. In either of 

the above two cases, it is necessary to interpolate the missing traces at the surface grid 

positions using the original recordings. Figure 4.4 illustrates this practice of reverse

time migration by treating the recordings as known boundary conditions. Here a shot 

gather consisting of traces in heavy curves is displayed. This original record is both 

sparsely spaced with respect to the computational grid, and irregularly distributed as 
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the traces are not uniformly sampled on the recording topography. From this original 

configuration, the missing traces, shown as light curves, are interpolated. Commonly 

used interpolation techniques are simple linear interpolations, F-X interpolations 

(Spitz, 1991), and T - p or T - x methods (Claerbout and Nichols, 1991; Claerbout, 

1992). Nevertheless, there are many cases where such interpolation schemes do not 

work well to create the missing traces. 

In contrast to the above treatment of recordings, I take the recordings as 

known distributed sources to drive the wave equation backward in time, while the 

recording topography is still subject to its proper boundary conditions of a free sur

face. In this perspective, the original recordings are directly applied at the recording 

surface as distributed sources, which does not require that there be one trace at every 

grid point on the recording surface. Thus, there is no need for explicit trace inter

polation - provided the record is originally not spatially aliased. This treatment is 

thus more like a wave equation modeling procedure using a finite-difference technique. 

The difference is that the source function now is time reversed and its duration is the 

total reverse-time extrapolation period. In fact, by using the finite-difference method, 

the reverse-time extrapolation itself will automatically build the missing traces. This 

interpolation of missing traces is simultaneously done by the wave equation during 

the reverse-time extrapolation of the gather. The traces are essentially created by 

saving the backward extrapolated wavefields at every grid point on the surface in 

each extrapolation step. Figure 4.4 schematically illustrates this new practice. In

stead of interpolating the missing traces (light curves), the recorded traces (heavy 

curves) , are directly applied to the recording surface as distributed sources, with each 

trace reversing its sample orders in advance. The missing traces are simultaneously 

99 



---

k-1 A+2 k k+l I p = p-p : 
I 

~---------VV:--av_e_E_q_u_a_ti_on __ M_a_c_ht_·n_e ___________ _j 

Figure 4.4: Two implementations of reverse-time migration. The original shot gather 

consists of traces in heavy curves which are sparse and irregular relative to the fine 

computational grid. The common solution is to interpolate the missing traces, in light 

curves, from the recordings, then apply the total data as known boundary values for 

migration. In contrast, the recordings can be directly applied as distributed sources at 

the recording topography, with the missing traces being built by the finite-difference 

solution of the wave equation itself during reverse-time extrapolation. 
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interpolated by the wave equation during the reverse-time extrapolation procedure. 

To better illustrate this interpolation mechanism of the reverse-time migration, 

I take one specific shot, shot No.120, from the Marmousi model data set {Versteeg, 

1993). This shot lies at the central part of the model where complicated faulting 

overlies a salt creep. It is evenly spaced with 25 m trace spacing. Five traces are 

randomly removed in order to make the record variably spaced. Figure 4.5 is the 

record for the migration input. This shot is migrated on a gridded velocity model 

of 12.5 m by 12.5 m. Figure 4.6 shows some selected snapshots taken during the 

reverse-time extrapolation of the record. As the snapshots show, at extrapolation 

time of 2.47 s (Figure 4.6a), the wavefields are limited to the upper central area of 

the section, while the recorded traces act as sources to drive the Earth model. As 

time steps backward, the recorded traces act as sources to propagate the wavefields 

to greater depths. At the time of 1.3 s (Figure 4.6d), the front of these excited 

wavefields has already reached every corner of the model. From this point on~ though 

the recordings are still continuously acting on the surface, the characteristics of the 

'vvavefields become very complicated, mainly because of the complex nature of the 

Earth model and the corresponding complex interference patterns related to the wave 

propagations. 

The migrated shot image is shown in Figure 4. 7 which is almost the same as 

that produced when an interpolated shot gather of the filtered original is used as the 

input to the reverse-time migration program. Figure 4.8 shows the interpolated shot 

gather when the sparsely and unevenly spaced shot gather (Figure 4.5) is used as 

input. This gather is created by saving the extrapolation wavefield on each surface 

grid point in every backward extrapolation step. Comparing Figure 4.8 with Figure 
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Figure 4.5: Shot record No.120 of the Marmousi model data with 5 traces randomly 

removed. The shot point is located at 6 km away from the left edge of the model 

(Figure 3.10), near the central part of the model where complicated faulting overlies 

salt creeping. 

102 



(]) 
() 
c 
ro~ 
~ 

en ·-0 

(]) 
() 
c 
ro~ 
~ 

en 
0 

-<.0 
E 

.:::t::. -(]) 
() 
c 
CCS-q-...._. 
en ·-0 

0 C\J 0 C\J 

I 

0 C\J 0 C\J 

0 C\J 0 C\J 

(w)f) 4ldao (w)f) 4ldao 
Figure 4.6: Selected snapshots taken during the reverse-time migration of the record 

No.l20. The snapshots are sequentially taken at time of 2.47 s (a), 2.08 s (b), 1.69 s 

(c) 1.30 s (d) , 0.91 s (e) and 0.52 s (f). 
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4.5, it is observed that the shot gathers are essentially identical. The only difference 

is that the trace spacing now is halved, and there is noise introduced prior to the 

first arrivals. This noise arises from numerical errors in discretization, the limited 

recording aperture, and also due to the finite length of computer words. From the 

above comparisons, it is clearly demonstrated that trace interpolation of the input 

gather is already implicitly included in the reverse-time migration just as is the static 

correction (McMechan and Chen, 1990; Reshef, 1991}. 
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Figure 4.7: Migration shot image of the record No.120 from the Marmousi modeL 
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Figure 4.8: The interpolated shot record No.l20 created by the reverse-time migration 

itself. 
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The above model data example demonstrates very well the mechanism of the 

interpolation implicit in the reverse-time migration. Now I will show a real data 

example, the Husky-Alberta foothills line. The data is acquired over a highly variable 

topography which is shown in Figure 4.9. Although there are significant bursts of 

abnormally high amplitude and serious static problems due to the rough topography 

and near surface velocity heterogeneity, overall this line exhibits good signal quality. 

From the perspective of applying the reverse-time migration technique, the traces in 

the original gathers are nevertheless sparsely sampled, and also somewhat irregularly 

distributed along the survey line, and are thus not ideal for the direct application. 
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Figure 4.9: Topography of the Husky-Alberta foothills line. The highlighted part of 

the topography is where the acquisition was completed. 

To investigate the interpolation mechanism implicit in the reverse-time migration 

for the real data, consider a specific shot gather, record 142. It is edited for noisy 
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traces, low-pass filtered, and shown in Figure 4.10 with most traces 20 m apart. Using 

a velocity model with 10 m by 10m grid spacing which is iteratively built based upon 

structural information and migration velocity analysis, this shot gather is reverse

time migrated. Figure 4.11 shows six snapshots during the reverse-time migration of 

the shot. At an extrapolation time of 2.954 s (Figure 4.11a), just immediately after 

the initialization of the migration, the snapshot basically reflects the fact that the 

recorded traces are simultaneously exciting the mesh at the recording topography. At 

time 2.584 s (Figure 4.11b ), the wavefront shown in the first panel has propagated to 

a greater depth while the recordings are still actively exciting the topography. From 

that stage on, we can see that propagated waves form quite understandable patterns 

due to the interference of waves propagating from different sources. 

It is commonly assumed that the reverse-time migration procedure of a single ex

periment will simulate the wave propagation patterns that occur in the corresponding 

forward problem. This is usually true in the case of stacked data. However, this is 

not the case for shot gather migrations, as we can not expect to have these patterns of 

wavefields in the corresponding snapshots in forward modeling the data with the sin

gle source. Furthermore, these patterns are very different from what we have observed 

in the lVIarmousi case. The complicated patterns of the wavefields in the lVIarmousi 

example are mainly due to the velocity model complexity, especially its steep faults 

and the salt creep while the relatively identifiable patterns in the current case arise 

from the relatively gently dipping nature of the Earth. With time marching further 

backward~ waves propagate into deeper parts of the Earth, with all wave propagation 

phenomena occurring simultaneously. One striking feature in all the snapshots is the 

continuous action of the recorded traces as distributed sources on the topography. In 
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Figure 4.10: The conditioned original shot record No.142 of the Husky-Alberta 

foothills data set. This record is near the end of the line corresponding to high 

CDP numbers shown in Figure 4.9. The question marks identify the areas where 

problems such as amplitude variation exists. 
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Figure 4.11: Snapshots during the reverse-time migration of the record shown in 

Figure 4.10. The snapshots are sequentially taken at time of 2.954 s (a), 2.584 s (b), 

2.215 s (c), 1.846 s (d), 1.477 s (e), and 1.108 s (f). 
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fact, these observed wavefield patterns are basically similar to those produced by a 

forward modeling procedure with a spatially limited source distribution located on 

the topography. The only difference from the modeling problem is that the sources 

are acting continuously during the observation time. 

In Figure 4.12 I show the corresponding shot migration image. As shown by Zhu 

and Lines ( 1996), this result is basically similar to that obtained by the prestack 

Kirchhoff depth migration algorithm which I discussed in the last chapter. In this 

migration, the shallow dipping formations are properly imaged. An interface is clearly 

imaged in this single shot migration as a good reflector at a depth of 2.8 km to 3.4 

km. This interface expresses itself as a relatively gentle boundary in the left part, 

then as a right dipping refracting boundary because of its high acoustic contrast. 

This good imaging at least confirms the fact that the reverse-time migration algo

rithm can migrate an unevenly and sparsely spaced shot record with the resulting 

migration image similar to that obtained with prestack Kirchhoff migration. That 

is to say, reverse-time migration is directly applicable to shot records which were 

previously considered to be too sparse and irregular. In fact reverse-time migration 

tries to recover the nature of wave propagation from the source using the recorded 

shot gather. This is obvious by noticing the overall similarity between the inter

polated shot gather which is shown is Figure 4.13 , created during the reverse-time 

extrapolation procedure, and the original gather, Figure 4.10. The traces in Figure 

4.13 are now evenly spaced on the recording topography with trace spacing of 10 m. 

Despite the overall similarity, there are still differences between the interpolated and 

the original. In the area before first breaks, there is noise in the interpolated gather 

due to the limited recording aperture and the approximation of the wave equation 

110 



by finite differences. In addition, there are several places labeled by question marks 

where the interpolation procedure does not seem to work well. My explanation of 

this phenomenon is that there exist problems in the original record. As we can see, 

there exist abrupt amplitude changes between neighboring traces, in addition to the 

noisy nature of the original record, as shown in Figure 4.10. These are not what 

we e:x."Pect from a physical point of view. This variability between traces introduces 

additional sources of noise during the reverse-time extrapolation procedure. These 

problems can be largely reduced by balancing the shot gathers before migration, if 

the true amplitude is not critical in the final migration results. 

The above tests clearly demonstrate that there are interpolation mechanisms im

plicit in the prestack reverse-time depth migration procedure. In fact, such mech

anisms work equally well for stacked data. They are also valid in 3D. Figure 4.14 

is a salt intrusion velocity model (courtesy of Phil Bording, University of Texas at 

Austin). Figure 4.15 shows a synthetic zero offset seismic section from this salt modeL 

The trace spacing of the synthetic data is 40 m. Figure 4.16 shows the reverse-time 

migrated section with a grid spacing of 40 m using only every second trace of the 

stacked section. This would not be able to be directly migrated from the previous 

viewpoint of reverse-time migration. Nevertheless, this migration still provides a 

sharply defined image of the salt body. In fact, there is little difference noticeable 

between this result and the corresponding reverse-time migrated section, shown in 

Figure 4.17, using the whole stacked data. Thus, this migration (Figure 4.16) of half 

the stacked data set, though sparse compared to the computational finite-difference 

grid, still gives a reasonable recovery of the subsurface model, in both the lower part 

and the upper part of the modeL 
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Figure 4.12: Migration image of the shot No.142 of the Husky- Alberta foothills line. 
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Figure 4.13: Interpolated shot record No.l42 of the Husky-Alberta foothills line. 

Compared to the original shown in Figure 4.10, there is extra noise introduced in the 

record, especially around places labeled with question marks. 
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Figure 4.14: Salt intrusion velocity model with grid size of 40 m by 40 m. 
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Figure 4.15: Zero offset section from the salt intrusion model shown in Figure 4.14. 

The CDP spacing is 40 m. This simulated stacked section has little resemblance to 

the salt model. 
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Figure 4.16: Reverse-time migration of the salt intrusion synthetic section with a 

computational grid of 40 m by 40m. Only half of the CDP traces are used in migration. 

Thus, there is one trace missing at every second surface position. 
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Figure 4.17: Reverse-time migration of the salt intrusion synthetic section with a 

computational grid of 40 m by 40m. All the CDP traces are used in migration. 
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This example again demonstrates that reverse-time migration of sparse stacked 

sections relative to the fine finite-difference grid works equally well as if the missing 

traces had already been interpolated from the original traces. This implicit interpola

tion of the reverse-time migration is essentially based upon the ability of the wavefield 

to heal itself during its propagation (Zhu and Lines, 1997). Thus, in such cases. the 

interpolation of missing traces can often be bypassed without much sacrifice of the 

accuracy of the final migration results. 

4.3. Prestack reverse-time migration without interpolation

the Marmousi model example 

In the last section, I have shown that reverse-time migration can be directly 

applied to spatially sparse and irregular data sets without a priori interpolation 

of the missing traces. These missing traces are implicitly interpolated during the 

reverse-time extrapolation procedure with unaliased irregular input records. The in

terpolation is essentially based on the ability of the wavefield to "heal itself'' during 

propagation. I have also shown that this mechanism applies equally well to 2D~ 3D, 

post-stack or prestack migrations. In this section, I will demonstrate the effectiveness 

of this treatment on migration of the Marmousi model data. 

As discussed before, the Marmousi data set consists of 240 shots with every shot 

record consisting of 96 traces. The data set models a marine seismic line with group 
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intervals of 25 m, and shot spacing of 25 m. The traces are thus uniformly distributed 

at the water surface. Figure 4.18 shows some selected shot gathers from this model 

data. The shots contains many non-hyperbolic reflections and back-scattered energy. 

This is one good indicator of the necessity for prestack depth migration to correctly 

image the data. This acquisition geometry results in a CDP spacing of 12.5 m. the 

distance between sampled subsurface points. Ideally, migration should match this 

spatial resolution. Hence, a velocity model of 12.5 m grid spacing is used in migration. 

With such a fine gridded velocity model, the original model data are sparse, though 

regular, as there is one trace missing at every second surface grid point. Nevertheless, 

each shot record, is directly migrated without a priori interpolation, using the reverse

time migration algorithm by taking the traces as distributed sources on the surface. 

Figure 4.19 shows some migrated shots which correspond to the gathers in Figure 

4.18. The imaged traces in each migrated shot are now equally spaced with distance 

identical to the CDP spacing. 

Figure 4.20 shows the final migrated section of the Marmousi model data obtained 

by the reverse-time migration of the shot gathers. In this migration, almost all 

the main features of the model have been imaged properly: the dipping layers are 

correctly positioned with respect to their true spatial locations; the steep fault planes 

are very well imaged; and the subsalt anticline is reasonably well resolved. This 

result is comparable to other published results (Versteeg, 1993; Gray and May, 1994: 

Nichols, 1996) and also to the results in the last chapter. This successful imaging 

of the Marmousi data indicate that reverse-time migration could be directly applied 

to sparsely sampled seismic records, as long as the original records are not spatially 

aliased. 
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Figure 4.18: Selected shot gathers from the Marmousi model data. 
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Figure 4.19: Selected migration hot of the ~1armousi model data by pre tack reYer e-

tin1e migration. 
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4.4. Prestack reverse-time migration without interpolation -

the Husky-Alberta foothi11s example 

In this section, the reverse-time migration will be applied to the Husky data 

set from the Alberta foothills. In this foothills line, there are 143 shots. The shot 

spacing is variable because of the difficulties of properly locating the shot holes in 

the rough mountainous terrain. The normal shot spacing is 100 m with a maximum 

of about 300 m (Figure 4.21). For this acquisition, there are nominally 300 traces 

per shot. At the start of the line, the spread rolls into the live station range so that 

the number of traces per shot gather increases from 150 to 300. At the end of the 

line, the spread remains stationary while the shot rolls out. Figure 4.22 shows the 

trace numbers in each shot. Compared to the shot spacings, the receiver groups are 

generally spaced regularly with little variation. Figure 4.23 is a plot of the group 

spacing of a representative shot. Thus, this acquisition would sample the subsurface 

with a CDP spacing of 10 m. However, the subsurface is not uniformly sampled. 

Figure 4.24 shows this nonuniform nature of the stacking fold. 

To achieve image resolution at the CDP spacing, a velocity model with a grid 

size of 10 m by 10 m (Figure 4.25) is used to migrate the whole seismic line. The 

velocity model is built through an interpretive imaging process which consists of iter

ative prestack depth migration, velocity analysis and geologic interpretation. Though 

the traces are sparsely and irregularly distributed in space with respect to the grid, 

the reverse-time migration is performed directly using the raw records as distributed 
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sources. Figure 4.26 shows one representative shot from the original line. It is basi

cally a split spread experiment. Two traces are edited as dead because of the signal 

quality. Overall the record exhibits relatively good quality. The reverse-time migra

tion of this record is displayed in Figure 4.27. 

This shot migration is quite complicated and is much more difficult to interpret on 

its own. This is because each shot only illuminates part of the Earth, and its illumi

nation extent is not easily definable. Its interpretation would be relatively easier by 

combining with the final migrated section which is shown in Figure 4.28. Although 

we have run many tests on this foothills line at MUSIC (vVu et al. , 1996; Lines et 

al. , 1996; Zhu and Lines, 1996, 1997), Figure 4.28, produced by reverse-time migra

tion without a priori interpolation is essentially identical to the best previous result. 

Because at this final stage of imaging this data, the migrated section and velocity 

model are geologically consistent in many respects, the geological interpretation of 

this imaging is essentially the same as the velocity model (Wu et al. , 1996) 

The successful migration of this complicated foothills line using the reverse-time 

migration clearly demonstrates that trace interpolation can be by-passed in many ap

plications. In fact, as I have shown in this chapter, these missing traces are implicitly 

interpolated during the reverse-time extrapolation procedure. The interpolation is 

nevertheless essentially based upon the self-healing mechanism of the wavefield by 

interference during backward extrapolation (Zhu and Lines, 1997). 
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4.5. Summary 

In this chapter, I have developed another implementation of reverse-time migra

tion by treating the recordings as sources. I have also illustrated that reverse-time 

wave equation migration has the capability of implicitly interpolating missing traces 

whenever the unaliased input gathers are sparsely and irregularly sampled. The 

implicit interpolation was shown to be due to the wavefield self-healing mechanism 

through constructive interference of propagating wavefields. This new implementa

tion of reverse-time migration was applied to migrate prestack seismic data from 

the Marmousi model~ and the Husky-Alberta foothills line. Both the synthetic and 

the real data applications demonstrated that this prestack reverse-time migration 

technique was directly applicable to sparsely and irregularly sampled seismic records 

without the need of prior interpolation of missing traces as long as the recordings are 

not aliased. 
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Figure 4.21: Shot spacing of the Husky-Alberta foothills line is varied. The largest 

spacing is about 300m. 
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Figure 4.22: The number of traces in each shot in the Husky-Alberta foothills line. 

Every shot has almost the same number of geophone groups except at the beginning 

of the line. 
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Figure 4.23: A representative display of the group intervals in a single shot. The 

group interval is kept at its normal value of 20 m very well considering the rough 

topography of the area. 
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Figure 4.24: The CDP stacking fold of the Husky-Alberta foothills line. The subsur

face is non-uniformly sampled as shown by the reasonable variation of the stacking 

fold. 
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Figure 4.25: Velocity model of the Husky- Alberta foothills line. 
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Figure 4.26: A representative shot gather from the Husky-Alberta foothills line. 
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Figure 4.27: A representative shot migration from the Husky-Alberta foothills line 

using reverse-time migration. 
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Figure 4.28: The final migrated section of the Husky-Alberta foothills line using 

reverse-time migration. 
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Chapter 5. An imaging strategy for 

complex geological settings 

Seismic imaging plays a key role in the petroleum industry as it reconstructs 

the proper geological structures from the seismic recordings. Nevertheless. imaging 

does not simply mean migration; it is often accomplished by an iterative procedure 

consisting of initial velocity model building, migration, geological interpretation! and 

iterative velocity analysis. In complex geological areas where both strong vertical and 

lateral velocity variations exist, prestack depth migration has to be pursued. 

In this chapter, I will first pursue a comparison of Kirchhoff and reverse-time mi

grations, two of the most widely used depth migration methods, especially with their 

application to prestack depth imaging of complex geology. These comparisons, in 

addition to our theoretical insights on both methods, will expose the advantages and 

disadvantages of either method. They might be used as a template for geophysicists 

to choose a proper method in different stages of the imaging problem. Following these 

comparisons, I will address the problem of determining interval velocities. I will illus

trate that prestack depth migration is very sensitive to velocity errors, and common 

image gathers ( CIGs) or common surface point gathers can be effectively used for 

velocity analysis. However, ample attention should be paid to the interpretation of 

such CIGs. I propose to use tomographic inversion to set up a near surface velocity 
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structure, in order to speed up the determination procedure. It is often of great help 

to use as many parallel means as available to analyze the velocity information. 

In the last section of this chapter, I will develop a practical imaging strategy for 

complex structures. This strategy is basically an interpretive imaging procedure which 

consists of early cycles of pres tack Kirchhoff depth migration. geological interpretation 

and velocity analysis, and the final application of reverse-time migration to refine the 

Kirchhoff integral migration result with the hope of providing a more accurate image 

of the earth. 

5.1. Comparison ofprestack Kirchhoff and reverse-time depth 

migration methods 

I have demonstrated in the last two chapters that the Kirchhoff integral and 

reverse-time migrations are two of the most widely used depth migration techniques. 

Both are among the methods utilized in x-t domain. Both methods are soundly 

based on the wave equation, the mathematical description of seismic wave phenom

ena. However, the Kirchhoff method handles high frequency approximations to the 

wave equation, while the reverse-time migration works better for low frequencies. or 

equivalently longer wavelengths. Theoretically they both are capable of migrating 

steep dip reflections. Thus far, both the Kirchhoff integral and reverse-time migra

tions have been applied to real seismic data, even in the case of 3D with some degree 
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of success. However, there are few publications on data sets where both Kirchhoff 

and reverse-time migration methods are applied to prestack depth imaging of complex 

geology. Lamer and Hatton (1990) give a very objective comparison of the Kirchhoff 

integral and finite-difference migrations in the case of stacked data, concluding that 

both methods produce comparable migration accuracy, though their finite-difference 

migration is based on a one-way wave equation. Whitmore at el. (1988) obtain similar 

conclusions in a comprehensive survey of poststack depth migration methods. Here. 

as I focus on prestack depth migration, however, I presume that the Kirchhoff integral 

and reverse-time migrations could possibly perform differently in some aspects. 

This section provides a comparison of the Kirchhoff integral and reverse-time 

migration methods. I will focus discussions on algorithm evaluation, accuracy or 

migration effectiveness, and computation performance. 

5.1.1. Integral vs finite-difference solutions 

As I have discussed in Chapter 3, Kirchhoff migration of a single shot can be 

generally expressed by the surface integral, 

R( .... .... ) h .... "' ( .... ....)A( .... - .... ) m ( - ( - - ) . .... ....) .... )d -x : x 5 = n · vT,. x,. ; x x,.;x;x5 u x,.,T5 x;x 5 + T,.lx,. ; x ; x 5 x,. , 
E 

(5.1) 

where E is the recording surface, T5 and r,. are the traveltimes from the source point 

x-: to the subsurface position x, and from x to the receiver at £,. respectively. ii is 

the outward normal of the surface E. Here um denotes the time derivative of the 

recorded traces. For the 2D case, m = }. The term A(x-;.; x; x-:) is the geometri-

cal spreading term which functions here as an amplitude modulator to the recording 

traces. Using a far-field approximation, migration by using equation (5.1) is basically 
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a weighted summation of the derivative traces along the presumed diffraction trajec

tory t =Is+ lr. The weight of each sample is appropriately determined by velocity, 

the distance traveled, and the obliquity of the emergent ray at the recording surface. 

Thus the determination of both Is and lr plays a key role in the calculation of the 

integraL These are traditionally evaluated by ray tracing. For the sake of economy. 

the obliquity of the emerging ray is not properly treated in our present implemen

tation. This would not be a problem for the deeper part of the earth where rays 

will finally reach surface at relatively small angles. The shallow steep reflectors~ on 

the other hand, could suffer some accuracy deterioration. In addition to the far-field 

approximation, this approximation further deteriorates the migration accuracy. As 

observed by Kelly et al. (1982), a general amplitude with a correct knowledge of 

the arrival time is often adequate for structural interpretation purpose. Thus it is 

expected that the approximations made to the Kirchhoff method would not affect 

the final migration image too much. In fact~ as we will see in the comparison of the 

Husky-Alberta foothills line, the final migrated section of the line by the Kirchhoff 

method is very similar to that of the theoretically accurate reverse-time migration. 

This therefore indicates that the approximations would generally be acceptable in the 

real world. 

In essence, the prestack Kirchhoff depth migration is performed non-recursively. It 

simply operates on the data trace by trace. A single trace is migrated by distributing 

the recorded energy along aplanatic curves with the amplitudes modulated by some 

geometrical functions. Figure 5.2 shows the Kirchhoff migration impulses of a single 

trace at a surface position of 3 km based on a faulted block velocity model (Figure 

5.1). In this migration result for a single trace consisting of 6 events, the geometrical 
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distributions of the possible scatterer uggested by the e event are correctly i1n-

aged. The migration amplitudes are also properly computed except at the t\YO zone 

·where refraction takes place. These refraction zones need to be pecially treated if 

migration amplitude are to be pre en:ed. Such treatment generally requires extra 

con1putations . 
Distance (km) 
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Figure 5.1: Faulted Yelocity n1odel. A normal fault is developed throughout the depth 

range. The Yelocity in each block linearly increa es ''Tith depth. 

In contrast to the Kirchhoff 1nethod. reverse-time n1igration uses the finite-difference 

olution of the wave equation to extrapolate the recorded \YaYefields backvvard. As 

discu sed in Chapter 4, by treating the recorded traces a distributed sources. the 

wavefield can be effectively extrapolated by the following finite-difference cheme in 
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Figure 5.2: Kirchhoff migration impulses. This is the migration of a single trace at a 

surface position of 3 km based on a faulted velocity model shown in Figure 5.1. 

reverse-time order: 

k-1 - A 2 k k+1 k-1 
U · · - + U· . -u. · +s · · l,J l ,J , ,J l ,J ' (5.2) 

where s represents recorded traces A is the finite-difference approximation of the 

Laplacian operation on the wavefield, and i, j, k are indexes for x, z and t respectively. 

The effect of A is basically a 2D spatial filtering on the present (tk) wavefield. 

Implementation of reverse-time migration can be summarized in four steps: deter-

mine the excitation-time imaging condition by solving the eikonal equation· extrap-

olate recorded wavefields backward in time using equation (5.2)· apply the imaging 

condition· and then sum the individual migrated shots to produce a final stacked im-

age. The first three steps are basically the same as described by Chang and McMechan 

(1986) and are essentially a shot record migration. Figure 5.3 shows the reverse-time 
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migration impulses with the same input data as used by Figure 5.2. Compared to the 

Kirchhoff migration impulses, this result accurately recovers not only the geometrical 

shapes but also the amplitudes. As expected the critically refraction areas are mi-

grated of small amplitude arrivals. It also clearly indicates that migration reflections 

will occur at the geological interfaces if the full wave equation is used and the veloc-

ity model is not properly smoothed (Loewenthal et al. 1987). Migration reflections 

refer to those reflected at model interfaces during time backward propagation of the 

wavefield due to impedance changes. Such migration reflections can also be signifi-

cantly reduced by use of the non-reflecting wave equations by introducing a density 

function inversely proportional to the velocity function (Baysal et al. 1984; Zhu and 

Lines, 1994). 
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Figure 5.3: Reverse-time migration impulses. The migration is based on the same 

input data and the same velocity model as used in Figure 5.2. 
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5.1.2. Performance evaluations 

Kirchhoff migration can be performed both recursively and non-recursively. My 

choice of the non-recursive method is largely based on the ability to accurately cal

culate the traveltimes. This eliminates the need of extrapolating the wavefields from 

depth to depth without sacrificing accuracy, thereby reducing the computation signifi

cantly. The enhancement in computational efficiency is worth the loss of extrapolated 

snapshots. 

Generally, for a model of Nx by N= grid points, migrating one shot with N traces~ 

the Kirchhoff integral method will take O(N; · N= · N) operations (Table 5.1). In 

most cases, the migration aperture N; is much smaller than the model lateral extent 

Nr· It is seen from this expression that the computation is directly dependent on the 

number of traces in the gather. For example, the special case of migrating a single 

trace gather, as shown_ in Figure 5.2~ only takes 24 son a SPARC station 10/30. Of 

this, 17 s are due to the overall preparation for the migration. The computation of 

traveltimes takes about 40% of the total computations. This number is somewhat 

dependent on the complicated nature of the model which arises from the search of 

computing wavefronts in traveltime calculation. However, the number can be much 

reduced by setting up time tables before the integration procedure if there is enough 

memory available. In addition, Kirchhoff migration used here is accurate to the extent 

that both the far-field approximation and the neglect of the obliquity are acceptable. 

This presumption certainly is in error near the surface of the earth. 

One of the most important attributes of the Kirchhoff method is that it can use 

selective shots and traces to image some prespecified targets as it is trace based 
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Table 5.1: Differences between Kirchhoff and reverse-time migrations for shot gathers. 

N is the number of traces in a shot. Nz and N= are grid point numbers of the model 

laterally and vertically. N; is the shot migration aperture. Nt is the sample numbers 

of the trace, and N: is the time extrapolation steps. 

Kirchhoff RT 

recursive no yes 

selective yes no 

accuracy very good• excellent 

desirable frequency high f low f 

inclusion of topography easy reasonably easy 

computation cost O(N~ · N= · N) O(N~ · N= ·N;) 

cost & frequency ex f- / 2 ex !3 

vectorization good excellent 

parallelization excellent excellent 

data preparation easy with some effort 

"'except near surface. 

(Gray and May, 1994; van der Schoot et al., 1989). This also makes the Kirchhoff 

method easy to use in areas with rough topography. Thus, near surface topographic 

corrections can be easily included in the Kirchhoff shot migration (Gray and Marfurt. 

1995; Lines et al. , 1996). Furthermore, the preparation of the model and data in the 

Kirchhoff migration is much simpler than for other methods. The selectivity of the 

data, high computational efficiency, plus the easy preparation of data set s render 

Kirchhoff migration as the preferred method, especially for the process of recursive 

migration and velocity analysis (Jervis et al., 1996). 

Reverse-time migration is recursive in time and represents a general wave equation 

based method. It can be a very accurate method as the only possible error other 
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than that due to the velocity model is the discretization error which occurs when 

differentials are approximated by finite differences. Its high accuracy is nevertheless 

traded off against its very intensive computations. For a model of Nz: by N::, reverse

time migrating a single shot of N traces with each consisting of Nt samples, will take 

O(N~ · N:: · N;) operations. N~ is generally chosen as in the Kirchhoff case~ depending 

on the nature of the earth model and the recorded wave:fields. N; is the number 

of extrapolation time steps. It is often much larger than the value of Nh as N; is 

determined by the stability condition of the finite-difference scheme. Compared to 

the 0( N~ · i.V: · N) operations involved in the Kirchhoff scheme, reverse-time migration 

will generally require many more computations, as N; would be much larger than N 

in most cases. It is apparent from this estimation that the computations involved in 

reverse-time migration are independent of the number of traces in each shot, which 

is definitely in contrast to Kirchhoff method. So reverse-time migration for a gather 

of a single trace is computationally just the same as migration of a gather with 

many traces. Thus, it is hoped that reverse-time migration can use this advantage to 

achieve its high accuracy for migration of seismic data acquired with a large number 

of channels, which is currently the industry tendency. As a special example, the 

migration of Figure 5.3 which is on a gather of only one trace, takes 41 minutes on 

the same SPARC station 10/30. This estimation also implies that when the grid 

size is halved for a given two-dimensional model, the computation time will increase 

to 8 times the original for the reverse-time migration, and 4 times the original for 

the Kirchhoff method. Moreover, the preprocessing for reverse-time migration used 

to be considered as being more complicated. Our recent study, however, indicates 

that interpolation of missing traces, which is very difficult in complicated areas, can 
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be bypassed in many cases, since wavefields are capable of healing themselves by 

interference during the reverse-time extrapolation procedure (Zhu and Lines, 1997). 

Despite the highly demanding computations, reverse-time migrations tend to have 

wider applicability. This is a reflection of geophysicists' endless pursuit of higher ac

curacy. Compared to the Kirchhoff method, its independence of accuracy and com

putations on the complexity of the geological model is also an advantage. These char

acteristics, in addition to the implicit ability to perform statics corrections, filtering, 

and self-healing of wavefields make reverse-time migration a very powerful method 

for imaging geologically complex areas (McMechan and Chen, 1990; McMechan and 

Sun, 1991; Reshef, 1991; Lines et al., 1996). 

In addition to the differences we discuss above, Table 5.1 gives a more compete 

summary of performance comparisons between the two migration techniques. 

5.1.3. Migration comparison for the Marmousi data 

Both the prestack Kirchhoff and the reverse-time migration algorithms described 

in the last section have been extensively tested on this model. Figure 5.4 shows 3 

selected migration shots using the prestack Kirchhoff integral scheme. In contrast. 

Figure 5.5 shows the corresponding shot migrations produced using the reverse-time 

migration technique. Both sets of migrations cover basically the same geological 

zones. However, there are still noticeable differences between them. The most obvious 

difference probably is around the sources where the Kirchhoff result lacks detail in 

the migration shots compared to the reverse-time migration result. This is partly 

due to the far field approximation made in the Kirchhoff method. In addition, in the 

reverse-time migration shots, it seems that the direct waves have masked the images 
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somewhat. This reflects the fact that the reverse-time migration uses the complete 

recorded wavefields while the Kirchhoff method essentially deals with reflections and 

diffractions. Though there exist other striking differences between these two sets, it 

is still not evident which method provides the better image except the near source 

zone. Figure 5.6 shows the whole migration image with the Kirchhoff integral method 

when a 12.5 m grid size is used. This migration takes about 2.44 hours of CPU time 

on Memorial University's campus computer DEC Alpha Server 1000 with a clock 

frequency of 200 MHz. Figure 5.7, on the other hand, shows the migrated stacked 

section with the reverse-time migration algorithm using the same gridded velocity 

model as in the Kirchhoff migration. However, this migration takes 21.43 hours of 

CPU on the same machine. These two plots are displayed with the same plotting 

parameters, so a direct comparison should be applicable. It is apparent that both 

methods have fairly well restored the geological features of the model despite the 

striking differences in the migration shots. Nevertheless, as we notice. there are 

several places where the two images are different. The left and the middle faults 

in the Kirchhoff result are not as sharply defined as in the reverse-time migration 

image. The reverse-time migrated section presents a sharp image of the right fault 

while the integral result smears the image of the fault around a depth of 1.5 km. In 

addition, reverse-time migration provides a slightly more continuous definition of the 

subsalt anticline structure than the Kirchhoff method. These differences are mainly 

due to the algorithm details involved in the two methods, especially the neglect of the 

obliquity and the use of first arrival times in the Kirchhoff method (Nichols, 1996). 

Thus, in the example of the Marmousi data, the reverse-time migration gives a 

more accurate migration image than the Kirchhoff method. Its higher accuracy is 
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Figure 5.4: Selected migration of shot records from the Marmousi model data pro-

duced by the Kirchhoff integral method. A velocity model with 12.5 m of grid spacing 

is used in the migration. 
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Figure 5.5: Selected migration of shot records from the Marmousi model set produced 

by the reverse-time migration method. A velocity model with 12.5 m of grid spacing 

is used in the migration. 
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Figure 5.6: The final migrated section of the Marmousi model data set produced by 

the Kirchhoff integral method. 
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nevertheless based on the use of the true velocity model and is traded off against a 

much higher amount of computational time. 

5.1.4. Migration comparison of the Husky-Alberta foothills data 

The Husky-Alberta foothills line presents a challenging imaging case as there is 

no known answer due to its being real data. I use this foothills data set to evaluate the 

accuracy and effectiveness of both the Kirchhoff and reverse-time migration methods 

in a real case where only an approximate model is available. 

Figure 5.8 shows a comparison of migration shot No.142 produced by Kirchhoff 

integral and reverse-time migrations when a 10 m by 10 m gridded velocity model 

is used. The velocity model is originally created based on structural geological in

formation and the stacked section. The nearby well log information provides good 

constraints to the velocity model. The model is then updated by an interpretive 

imaging procedure consisting of iterative prestack depth migration, migration veloc

ity analysis. and geological interpretation. Both results image the shallow dipping 

layers very well. They are very similar in many respects, especially considering the 

fact that they are only based on a single shot gather. Nevertheless, there are differ

ences identifiable between the two shot migrations. As in the Marmousi example. the 

zone of the greatest contrast lies near the source area. 

Figure 5.9 shows the final Kirchhoff migrated section. In this migration image, the 

shallow dipping formations at the upper left side of the section are clearly seen to be 

detached from the underlying gentle formations at about the depth of 2600 m. Two 

main thrust faults are well defined around CDP numbers of 580 and 810 respectively. 

Overall, this migration result offers a very encouraging result which is relatively easy 
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Figure 5.8: A compaxison of a representative migration shot from the Husky-Alberta 

foothills line. The left corresponds to the Kirchhoff result. The right is the reverse

time migration result. 
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to interpret. The migration of this foothills line, however, takes about 22.91 hours of 

CPU time (Table 5.2). In fact, in the early stages of studying this line, the migration 

was done on a much coarser grid {20m by 20m). In that case, the Kirchhoff migration 

takes only about 5.61 hours of CPU time with quite similar results . .rviy impression 

of the difference is that the coarser grid lacks a bit of continuity at the shallow parts 

of the earth model. From the table of CPU times, it is seen that use of a grid which 

is twice as dense will increase the CPU time by about 4.2 times, which is near to our 

theoretical estimate of 4 times, considering the overhead of computations involved in 

the migration. 

Table 5.2: Computation cost examples of Kirchhoff and reverse-time depth migra

tions. 

Marmousi data Husky-Alberta foothills line 

h=25.0 m h=12.5 m h=20 m h=10 m 

Kirchhoff 37.28 minutes 2.44 hrs 5.61 hrs 22.91 hrs 

RT 2.41hrs 21.31 hrs 13.59 hrs 135.65 hrs 

Note: based on a DEC .L\.lpha Server 1000 with a clock frequency of 200 MHz. 

In contrast, Figure 5.10 shows the reverse-time migrated section. It is based 

on the same velocity model as used in Figure 5.9. It essentially reveals the same 

salient features of the geology as Figure 5.9 with a little improvement in the triangle 

zone around CDP 800-1200. In the enlarged view of the migration image which 

corresponds to the upper left portion of the whole, as shown in Figure 5.11 and 

Figure 5.12, it is still difficult to tell one from the other. However, the production 

of this image with the reverse-time migration method requires about 135.65 hours 

of CPU time! This is definitely a significant increase in computer time compared 
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Figure 5.9: The final migrated section of the Husky-Alberta foothills line produced 

by the Kirchhoff integral technique. 
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to the 22.91 hours taken by the Kirchhoff method. For comparison purposes~ we 

have also tested the reverse-time migration technique on this line using a coarser 

gridded velocity model of 20 m by 20 m. In that case, it takes 13.59 hours of CPU 

time. Thus, for the reverse-time migration in the case of this foothills line, when the 

model grid is twice as fine, the computation time nearly increases by a factor of 10 

which is a bit higher than our theoretical estimate of a factor of 8. This possibly is 

due to the fact that a larger proportion of CPU time has been involved in swapping 

data as the digital model gets larger. The similarity of the two migrated sections 

of this foothills line, from application perspective, supports the adequacy of the the 

approximations made in the Kirchhoff integral method. Nevertheless, the similarity 

of the migration results between the Kirchhoff and reverse-time migration methods 

does not necessarily indicate that the Kirchhoff method is as accurate as the reverse

time method. It probably implies that there are still errors in the estimated velocity 

model. Due to these errors, it is not evident which method works better in achieving 

migration accuracy. Thus, both methods are similar in performance for real data 

where only an estimated velocity model is available. 
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Figure 5.10: The final migration section of the Husky-Alberta foothills line produced 

by the reverse-time migration technique. 
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Figure 5.11: The enlarged view of the final migrated section of the Husky-Alberta 

foothills line produced by the Kirchhoff integral technique. 
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Figure 5.12: The enlarged view of the final migrated section of the Husky-Alberta 

foothills line produced by the reverse-time migration technique. 
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5 .2. Fundamentals of interval velocity analysis with prestack 

migration moveout 

In this thesis, I have extensively examined the physical and mathematical aspects 

of the seismic migration problems with the focus on the evaluation of two of the 

most widely used and accurate schemes, the Kirchhoff integral and the reverse-time 

migrations. I have shown that both are theoretically based on the wave equation, the 

mathematical expression of wave propagation phenomena. Both can accurately image 

reflections and diffractions without dip restriction if a reasonable approximation of 

the velocity field is available. Thus, the velocity model becomes the key component 

in these migration applications. As I pointed out in the introduction chapter, many 

alternatives exist for velocity analysis. In this section, I will address the basic theories 

in interval velocity analysis utilizing prestack migration moveout. 

Consider the general subsurface structure and recording geometry as shown in 

Figure 5.13a. P denotes the arbitrary scattering point in the earth's interior. S and 

R are a source-receiver pair illuminating P. D is the surface image of P. Assuming 

that the average velocity above P is v, and that the diffraction received at R due to 

a source wavelet from S and then diffracted at P never travels beneath P, then its 

arrival time can be expressed as: 

1 (- -) t='D SP+RP. (5.3) 

When an average velocity iim is used for migration, the diffraction signal received from 

P will be migrated to an incorrect point P'. P' generally has both vertical and lateral 
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Figure 5.13: ".\Iigration depth-velocity relationship diagram in a general subsurface 

stntcture. (a) A wrong velocity migrates the reflection to a position P' which has a 

lateral displacement ~.L· in addition to a vertical displacement ~=. (h) is an enlarged 

view of the lmn'r part of (a). 
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displacements from the true position P. I denote these displacements with ~x = P'Q 

and ~z = Q P. In this case, the traveltime will be, 

t v~ [sP' + P' .R] = v~ [(SP- PtP) + (RP- P2P)] 

- ~ [(SP- QtP) + (RP- Q2P)] + .;._ (P2Q2- P1Qt). (5.4) 
Vm Vm 

From Figure 1.13b, the following relationship holds in the triangle ~P'QO, 

SID a, SID Or sin(} 
P'O - QO = ~x. ( 5.5) 

Thus, we have, 

~X • ~X • 
- -:--

8 
sin ar - --:----

8 
sin a, 

Sill Sln 

~X ( • • ) - -:--
8 

Sill Or - Sln a, 
sin 
~X • Or- a, 

---sln---
cos(8/2) 2 

(5.6) 

In the derivation of the last equation above, I have used the following relationships 

sin(} = 2 sin !l cos !l_. and sin a - sin a = 2 cos ~sin a,.-a, 
2 2' r " 2 2 • 

Therefore, the distance part of the last term of ( 5.4) would be an order smaller than 

~x as long as lsin{a,-ar)/2)1 < 0.10 and(} is not close to 180°. The latter condition 

generally holds, as a, and Or would not be zero for most cases. The first condition is 

equivalent to Ia,- arl < 12°, i.e., the difference between the two illuminating angles 

being less than 12°. As Ia,- arl = 2a where a is the structural dip at P, the above 

inequality thus only holds for structures of gentle dip. In such cases. (5.4) can be 

properly approximated by 

t = __!:_. [(SP- QtP) + (RP- Q2P)]. 
Vm 

(5.7) 
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This equation is physically equivalent to the assumption that the lateral displacement 

~xis negligible compared to the vertical one. Eliminating t from equations (5.3) and 

( 5. 7), I obtain, 

where /3 = ~- From Figure 5.13, the following general relations hold, 

S P = z I cos a.,; 

RP = Z I COS Or; 

Q 1 P = -~z coso.,; 

Q2P = -~z COS Or. 

Substituting these relations into (5.8) leads to, 

.<. 

~z = ({3- 1)----
cos 0 6 COS Or 

In the case of zero offset source-receiver pair just at D, a., = ar = 0, I obtain, 

~z = ({3- 1}z. 

(5.8} 

(5.9) 

(5.10) 

This implies that the migration depth z will be shallower than the true depth z if a 

smaller than the true velocity (urn < v) is used for migration, while deeper if a higher 

velocity ( Vm > v) is used. Only when {3 = 1, i.e., the true medium velocity is used 

for migration, will the diffractor be properly located. By denoting ~z0 = ({3- l)z, 

( 5.9) can be rewritten as, 

~zo 
~z(a.,,ar) = ----

cos a_, COS Or 

Now let's consider the following three categories. 

(5.11) 

a. Migration velocity less than the true velocity ( Vm < v). In this case, 

{3 < 1, ~z0 < 0, and ~z( a.,, ar) < ~z0 • Generally the following relation also holds, 

(5.12) 
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for any a,, Or and any nonnegative values of e1 , e2 • This relation indicates that the 

migration image of P will form a smile which curves upward on a common image 

gather ( CIG) which is a display of migration traces versus the source-receiver offset 

corresponding to a fixed surface point. 

b. Migration velocity greater than the true velocity (vm > v). In this 

case, {3 > 1, ~z0 > 0, and ~z(a,,ar) > ~z0 • Similar to (5.12) we have, 

( 5.13) 

This relation indicates that the migration image of P forms a frown which curves 

downward on a CIG. 

c. Migration velocity equal to the true velocity (vm = v). In this special 

case, {3 = 1, ~z0 = 0, thus, 

(5.14) 

for any source-receiver pair. This simply means that when the true velocity is used 

for migration ( Vm = v), the migration images of the diffractor point P will be at 

the exact depth regardless of source-receiver offset. So. its images form a horizontal 

segment on the CIG displays. 

Therefore, the velocity error in migration is very well expressed on the migration 

common image gathers. I will use a point diffractor model to illustrate the above 

theoretical observations. Suppose two point diffractors lie in middle of a uniform 

medium with velocity v = 4000 mfs. The depths of the diffractors are 600 m and 800 

m respectively. 81 shot gathers are theoretically simulated, with each consisting of 

60 traces. Figure 5.14 shows the CIGs for surface position x = 1.0 km when different 

velocities are used in migration. It clearly demonstrates that only when the true 
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Figure 5.14: Common image gathers for a two point diffractors model. The CIG is at 

surface position of x = 1.0 km. A migration velocity lower than, equal to or higher 

than the true velocity produces smiles (left), fiat events (centre) or frowns (right) 

respectively. 
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velocity is used, will the migration images of diffractors be independent on the source

receiver offset. When the velocity is lower than the true velocity ( Vm = 3000 m/ s), 

the diffractor images form smiles at a depth shallower than the true depth. This is 

totally in agreement with equation (5.12). In contrast, when the velocity is higher 

than the true velocity (vm = 5000 mfs), the diffractors will be expressed as frowns on 

a CIG at a depth greater than the true depth. This is just what has been predicted 

by the mathematical expression {5.13). 

In addition to the expressions on CIGs, the velocity error is also well documented 

on the final migration sections, essentially the sum of depth migrations for various 

shots. Interestingly enough, the CIG gathers show shallow smiles for low velocities and 

deep frowns for high velocities (Lines et al., 1993), whereas the final depth migrated 

sections show shallo'IV frowns for low velocities and deep smiles for high velocities 

(Yilmaz, 1987). Figure 5.15 shows prestack depth migrated sections which correspond 

to cases of velocity lower than, equal to, and higher than the true medium velocity. 

A too low migration velocity ( Vm = 3000 m/ s) results in frown-type images, which 

indicates under-migration of the diffractions. This is basically the result of insufficient 

collapse of diffractions. In contrast, using a higher than real velocity (vm = 5000 mf s) 

in migration results in smile-type images, implying over-migration of the recorded 

diffractions. In either of the above two cases, the migration images of the diffractors 

are not properly focused. A smaller velocity results in image shallowing while a 

larger velocity leads to image deepening. Only when the true velocity is used, will 

the diffractions completely collapse to their true positions. 

H we further take a careful look at Figures 5.14 and 5.15, it is seen that the 

curvatures of the shallow smiles/frowns are generally larger than the deep ones. 
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Figure 5.15: Migration of a two point diffractors model. A migration velocity smaller 

than, equal to, and larger than the true velocity is used for the top, middle, and 

bottom images respectively. 
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This indicates that velocity errors are more pronotmced on shallow reflections and 

thus are more easily detected. This is also in agreement \Yith the general observation 

that sufficient offset/depth ratio should be kept in order to properly analyze the 

velocity errors (Lines. 1993). Luckily we often have more constraints available on the 

shallow parts of the earth. such as well logging and geological exposures. \\~e can also 

more effectively use techniques such as first break tomography to constrain the near 

surface velocity estimation. \Vith respect to the deeper stntcture. '.Ve generally have 

to accept that it is coarsely defined and more ambiguous. 

Though the diffractor model is over simplified. it is of vital significance in migra

tion and velocity analysis theory. as any complicated stmctures can be considered as 

a continuum of diffractors. The following example comes from the :\Iarmousi model 

data. Figure .j.l6 displays selective CIGs from this model data set when a velocity 

model systematically lOo/t lower than the tnte model is used in migration. Here we 

only see half smiles in CIGs as the data is of one sided shooting. Almost all the events 

in CIGs curve upward with offset which increases from right to left. \\'"hen the tnte 

velocity model is used in migration. the CIGs basically consist of horizontally aligned 

events (Figure 5.11). However. if migration velocity is systematically 10Sk higher than 

the actual velocity. the CIGs will look like those shmvn in Figtu·e 5.18. It is seen that 

the amplitudes in Figure 5.18 are very different from those in Figure 5.16 and Figure 

5.11. This is because the calculated imaging time ·with a higher migration velocity 

for each grid point is much smaller than the arrival time of the real source ,,.a,·elet. 

resulting in a smaller image amplitude. This again indicates that a larger migration 

Yelocity often does more harm than a smaller one. In these CIGs. images form half 

branch of frowns which trends dO\vnward towards left edge of each CIG panel. 
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Figure 5.16: CIGs for the Marmousi model with smaller velocities. The migration 

velocity is systematically 10 %lower than the true values. Offset increases from right 

to left. 
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Figure 5.17: CIGs for the Marmousi model with true velocities. Offset increases from 

right to left. 
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Con1pared to the simple diffractor modeL it is relatively more difficult to identify 

the smiles and frowns in this complicated model example. Thus. it is often required to 

quantify the migration Yelocity errors. One can measure the event curvatures in CIG 

panels . .-\t each depth. a set of curves are defined by a range of .3'$ in equation ( 5.9 ). 

And migrated amplitudes are sunrmed along every such defined curve. The final sum 

is displayed as a function of 3 and depth z. The normalized maximtml sum at depth 

corresponds to that 3 matching the cm·vatm·e. This velocity analysis is thus based on 

the migration moveout in depth which is quite similar to stacking velocity analysis by 

ma...-.Gmizing the stacking power or semblance after normal moveout correction in time 

(Tauer and Koehler. 1969). Following Tauer and Koehler (1969). if the rnigration 

amplitude is denoted as u(.r . .:m)· with .:m =.:+~.:.the sun1mation along any 

cun"ature can be e~lJressed. 

[ ~r u ( .r. .:m = .: + ( 3 - 1).: 1 coso.., cos a,. l r 
g(.:. }) = ------------:--------. 

~rll:.!(.r . .:m =:; + ( .i -1).:/cososco::-o,.) 

This is a very general expression independent of subsurface structure. 

(5.15) 

the information about angles o 5 • o,. would require expensive computations hy ray 

tracing. Thus. for economic purposes. sumn1ation trajectories are often analytically 

determined using a layered earth model assumption . .-\1-·Yahya ( 1989) observed that 

the depth error due to such a simple structure assumption is quite small once \Ve 

approach a reasonably good estimate of the velocity field. .-\1-Yahya ( 1989) also 

illustrated an example of such au interval velocity analysis method by exten<ling the 

\"elocity spectrum of C~IP gathers to the case of mig-rated CIG gathers. 

Once we have picked up the J \"alues at the maximum summation atnplitude 

locations. a new estimate of the average velocity function can be estimated from the 
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migration velocity, 

(5.16) 

If we know the interval velocity at the surface layer, Vt, (5.16) allows iterative update 

of the deeper layer velocities, 

v · - iv·- (i- 1)v· 1 I - I 1- ' i = 2~ 3, ... N (5.17) 

where N is the total layer numbers of interest. 

Though the above quantitative velocity update formulations are based on hori-

zontal reflector assumptions, they work well in moderately complex structural areas. 

In such cases, the equations are not exact. However, we know that when we have 

horizontally aligned the images in common image gathers, we have no velocity error 

in the migration velocity model. This principle is independent of structure (AI-Yahya, 

1989). 
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5.3. Iterative interpretive imaging 

Prestack depth migration has proven to be a viable technique in imaging com

plex subsurface structures. Its success depends on the availability of a correct interval 

velocity model. Nevertheless, the determination of the interval velocity model in such 

complicated geological areas is often very difficult. Velocity analysis with prestack 

migration moveout as I described in the last section provides one measure to analyze 

and quantitatively update the velocity field. It essentially consists of two steps: esti

mating the average velocity and updating the interval velocity model. The first step 

can be automatically implemented by computers just as the determination of stack

ing velocity by stacking after normal moveout analysis (Taner and Koehler. 1969). 

However, the second step can not be completed without the input of the geological 

understanding of a geoscientist. Otherwise, significant errors will be introduced due 

to the erroneous division of geological formations. The importance of identifying the 

geological formations in this process is similar to the determination of interval ve

locities from RMS velocities using the Dix formula (Dix, 1955). Thus, the interval 

velocity field can not be automatically determined by analysis of migration moveout 

using prestack depth migration. The velocities should be interactively determined 

with the geologist's input. 

In contrast to the above migration moveout analysis, tomography is generally 

implemented without the need of geological input. Often first break tomography is 

used to set up a near surface velocity structure. Such an inverted near surface velocity 

field is often reasonably accurate as first breaks are the most obvious and thus most 
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reliable events to pick. Based on this relatively reliable near surface model, reflection 

tomography can be used to further derive a more detailed velocity model by picking 

reflection events on either shot gathers or common offset sections. Generally shot 

gathers are a good candidate for identifying first breaks as these events are often 

linear or quasi-linear in this domain. For reflection picking, common offset sections 

are a preferred domain as reflection events approximately follow the shape of the 

reflectors. There are a couple of issues in tomographic inversion, however. First, 

there are often millions of readings to be picked which could be a prohibitive factor 

for processors to use the technology. Such a large amount of picking naturally results 

in inversion of a huge matrix. Then, there also exist cases where events are very 

difficult to identify and pick. In such cases significant picking errors will occur which 

will cause errors in the cell velocities, as the picked travel times are the primary data 

in tomographic inversion. Constrained tomography using such information as well 

logging can only improve the accuracy a little bit, though it can significantly improve 

the convergence rate of the inversion. Thus, though tomography can be done in a 

geologically independent way, the inverted velocity often lacks accuracy in addition 

to its low resolution limit. 

Despite such concerns as tedious picking and reading errors, and accuracy and 

resolution limitations, tomography can in many cases be effective in obtaining a 

smoothed interval velocity field. This is particularly attractive in early stages of 

imaging a given data set as it can be done by the processor directly. This traveltime 

inversion velocity field provides a quantitative estimate of the velocity at every point 

of the interest area. It often contains zones where velocities are significantly in error 

due to insufficient coverage. The structural knowledge of a geologist will be highly 
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valuable in identifying such erroneous occurrences of the inverted velocity. Thus an 

interpreted tomographic velocity field can generally serve as a reasonable starting 

model for prestack depth migration and interval velocity determination with migra

tion moveout analysis. After migration, the migrated section will be interpreted by 

a structural geologist. At the same time, common image gathers will be examined to 

analyze the correctness of the average velocity field at some prespecified controlling 

positions. If any significant errors are found by either method, a revised structure 

of the area will be proposed, and the velocity values will be adjusted by the com

puted new velocity v-alue based on equation ( 5.17) combined with the knowledge of 

the area. Using this revised velocity field, another loop of prestack depth migration 

and velocity analysis will be pursued. This iterative interpretive imaging procedure 

will continue until no significant errors are detected both geologically by the geologist 

on the migrated section and geophysically on CIGs. 

The above proposed imaging strategy is schematically outlined in Figure 5.19. 

This is a more complete version of the procedure previously presented ( Zhu and 

Lines, 1995). From section 5.1, we know that Kirchhoff migration performs reason

ably well even in very complex areas. So for economical purposes, it is suggested that 

the prestack depth migration will essentially be a Kirchhoff integral scheme until the 

last loop of the iterations. At the final stage of imaging, reverse-time migration will 

be employed to complement the Kirchhoff integral migrated section. This additional 

migration by the reverse-time technique serves two purposes: providing a possihly 

more accurate image of the earth and providing confidence to geological interpreters. 

Theoretically all the components of the flowchart should be implemented for a more 

accurate definition of the complex nature of the subsurface illuminated by the seis-
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mic data. In practice, some simplified version can often be effectively employed to 

properly image complex areas taking account of the availability of geological exper

tise. Our experience with the Husky-Alberta foothills line indicates that even in the 

Alberta foothills where very complicated thrust sheets spread over young sediments~ 

an interpretive imaging procedure without the application of reflection tomography 

produces a very encouraging result (Wu et al., 1996). 

5.4. Summary 

Theoretical comparisons of Kirchhoff integral and reverse-time migration meth

ods showed that reverse-time migration is more accurate in imaging complex 

geological structures. Both methods were shown to be directly applicable to migrat

ing from rough topography. However, Kirchhoff migration can be used to migrate 

seismic data selectively to image a prespecified target because it is a trace based 

processing. In contrast, reverse-time migration is computationally independent of 

trace numbers of shot gathers, which could be used to achieve its high accuracy for 

migrating seismic data acquired with a large number of channels. The application 

of both migration methods to the Marmousi model data demonstrated that prestack 

reverse-time migration was more accurate in imaging the steep dip faults than the 

prestack Kirchhoff method with nearly 8 times more computational cost. However in 

the case of the Husky-Alberta foothills line, the prestack Kirchhoff migration result 
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Figure 5.19: Interpretive imaging flowchart. 
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was very similar in many respects to that of the reverse-time migration with a much 

cheaper computational cost. I explained this similarity to be related to the inaccu

racy of the velocity model used. Based on these comparisons, I concluded that the 

Kirchhoff migration should be the primary migration technique in the early stages of 

prestack depth imaging of complex structures. 

In this chapter, I also discussed the problem of interval velocity determination. I 

illustrated that prestack depth migration is very sensitive to migration velocity errors 

and common image gathers (CIGs) could be effectively used for velocity analysis. For 

accurate and efficient velocity analysis, I proposed to use as many different means as 

possible. The image problem of geologically complex structures was finally proposed 

to be gradually solved through an iterative interpretive imaging procedure. This 

procedure was shown to be composed of initial velocity model setup, iterative prestack 

depth migration, geological interpretation of the migrated section and velocity model 

analysis. 
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Chapter 6. Conclusions 

Seismic imaging aims to recover the true subsurface structure utilizing recorded 

signals along a seismic survey. Based on the concept of the common midpoint ( CMP) , 

the well-developed processing procedures of static corrections, NMO, DMO, and post

stack migration prove effective in areas without lateral and strong vertical velocity 

variations. In complicated geological provinces with strong vertical and lateral het

erogeneities, including rugged topography, such a CMP-based strategy of imaging 

often fails, mainly due to the breakdown of the assumptions in the procedure. In 

such cases, the most important value of such a CMP processing system, is to pro

vide a geologically meaningful approximate velocity model as a starting point for the 

prestack depth imaging procedure. 

Pres tack depth migration promises to fulfill the geophysicist's goal of producing 

a correct subsurface depth image with the premise that a good estimate of the low 

wavenumber part of the subsurface velocity model is attainable. This imaging pro

cessing is no longer based on concepts such as common midpoints and the exploding 

reflector model; it is solely based on wave equation solutions of wave propagation 

in true physical processes. The price for this gain is that prestack depth imaging 

is computationally highly intensive. The ultimate objective of this thesis research 

is thus to develop an accurate imaging strategy for seismic data acquired from very 

complex geological areas using prestack depth migrations with reasonably inexpensive 
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computations. 

In this dissertation, I have developed two prestack depth migration methods. The 

first is the Kirchhoff integral scheme which is based on the integral solution of the 

acoustic wave equation. The other is the prestack reverse-time migration which is 

based on the finite-difference solution of the wave equation. The determination of 

the integral surfaces, or equivalently the loci of the aplanatics is carried out by trac

ing wavefronts. The tracing method is essentially completed by a combination of a 

finite-difference solution of the eikonal equation, excitation of Huygens' secondary 

wavelets. and application of Fermat's principle. This is a very general algorithm for 

computing first arrival traveltimes. It can even be directly used to calculate trav

eltimes of plane waves. Numerical tests and application examples of this wavefront 

tracing demonstrate that the method is very robust and accurate in calculating first 

arrival traveltimes in complex geological areas with very high velocity contrasts. 

The migration integral equations I developed are based on the vVKBJ approxima

tion to the Green's function of the acoustic wave equation. These Kirchhoff integrals 

are shown to be a simple summation of amplitudes of differential traces along some 

integral surfaces with different amplitude modulators. The simplest approximate 

implementation e:f these integrals is the general summation method along diffraction 

curves or the general superposition scheme of aplanatic surfaces. As an efficient imag

ing technique, the integral method is capable of selectively migrating shots and traces 

to focus on some prespecified target. 

In contrast to the Kirchhoff method, reverse-time migration is theoretically more 

accurate since it utilizes the full wave equation rather than its high frequency approx

imation. In addition to its merits of implicit static corrections and velocity filtering, 
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I found that it is also capable of interpolating missing traces during the reverse-time 

extrapolation of unaliased seismic data. Such interpolating mechanisms are based on 

the self-healing ability of wavefield by constructive interference of propagating waves. 

Such a self-healing mechanism of the wavefield allows migration of sparsely and ir

regularly spaced unaliased data directly without prior interpolation of missing traces. 

This is especially important in migration of prestack data where there is seldom one 

trace per surface grid point when a velocity model with grids as fine as CDP bins 

is used. As in the Kirchhoff method, I have also shown that reverse-time migration 

can directly migrate seismic data acquired over rough topography by using the true 

source and receiver coordinates. Despite these merits, the implementation of prestack 

reverse-time migration is computationally very intensive. 

In this study, I demonstrated that imaging of complex geological structures 

generally requires an iterative interpretive imaging strategy. The imaging procedure 

developed consists of initial velocity model setup and iterative prestack depth migra

tion, geological interpretation and velocity model updates. I have formulated a very 

general velocity analysis method using prestack depth migrated seismic data. The 

effectiveness of the velocity analysis method was demonstrated through both simple 

and complex examples. 

Throughout the dissertation, I have applied the prestack depth imaging tech

ruques developed to various data sets. The imaging of the Nlarmousi model data 

demonstrated that reverse-time migration was much more accurate than the Kirch

hoff method in imaging the steeply dipping faults, although its computational cost is 

much greater. Nevertheless, the application of both methods to the Husky-Alberta 

foothills line produced quite similar results. Both methods successfully imaged the 
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shallow dipping interfaces. The thrust faults were well defined in both migration 

images. However, for imaging this foothills data set, the Kirchhoff method took less 

than a day of CPU time while the reverse-time migration took nearly a week. Based 

on the comprehensive comparison of Kirchhoff and reverse-time migrations, especially 

through their applications to seismic data from very complex geological areas, I con

clude that the Kirchhoff method should at present be the primary prestack migration 

technique for seismic data from complex areas, although from theoretical calculations 

it is expected that the reverse-time migration will become preferred to achieve higher 

accuracy with possibly even fewer computations in migrating seismic records acquired 

with large numbers of channels. For the time being, the Kirchhoff method nev

ertheless constitutes the core element of the iterative interpretive imaging strategy. 
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