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ABSTRACT 

••Give a person a fish and he will have food for a day; teach him to grow fish and 

he will have food for a lifetime", so goes the old Chinese saying. Application of this 

wisdom on a world-wide scale could go a long way in producing food for the hungry 

millions. To help spread this principle and philosophy is important in aquaculture. This 

thesis focuses on strategies to improve the growing techniques of juvenile flatfish with 

emphasis on yellowtail flounder, Limandajern1ginea (Storer), which has been identified 

as a potential species for cold-water aquaculture along the north-east coast of Canada. 

Optimal food rations can affect the commercial success of any aquaculture venture. 

The effects of ration levels on growth performance of 0+ juvenile yellowtail flounder was 

examined for fish held under a l6L:80 photoperiod. Two experiments were conducted; 

the first using ration levels of 1, 2, 4, 6o/o (body weight·d-1 (bw ·d-1
)) on small juveniles 

(mean initial weight :1: SE 1.0 ± 0.04 g) held at 7.0°C with a stocking density of0.9S kg·m· 

2 
(- 45% bottom coverage). The second experiment used ration levels of 1, 1.5, 2, 3% bw 

·d-1 on large juveniles (mean initial weight :1: SE 7.39:1: .07 g) held at 10°C with a stocking 

density of 1.45 kg·m·2 (- 34% bottom coverage). Survival in both experiments was not 

significantly different. Results of experiment l indicated that fish fed 1% bw ·d-1 had 

significantly lower growth (weight, length, body depth and specific growth rates)(p<O.OS) 

than those fed 2, 4 and 6% bw ·d-1
• Significant differences (p<O.OS) with gross food 

conversion ratios (GFCR's) were found between fish fed rations of 1% and 2% and those 
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fed 4% and 6o/o rations, but 4-6% bw · d-1 were poor in terms of gross food conversion 

ratios, resulting in food wastage. Results of experiment 2 indicated that fish fed 1, 1.5 and 

2% bw ·d-1 had significantly lower growth (weight, length and specific growth rates ) 

(p<0.05) than fish fed 3% bw ·d-1
. Gross food conversion ratios (GFCR's) were 

significantly different (p<0.05) for all4 rations. Overall, this study demonstrated that it 

would be more feasible to use a ration of 2 o/o bw ·d-1 for small juveniles and 1-1.5% bw 

·d-1 for large juveniles. 

It has been demonstrated that increased photoperiods improve growth and 

survival during the larval stage of this species. I conducted an experiment to determine 

the effect of photoperiod on growth and survival of 1 +juvenile yellowtail flounder. This 

experiment compared growth and survival rates of juveniles (mean initial weight± SE = 

9.25 ± 0.22 g) under 24, 18, 12 and daily ambient photoperiod. A stocking density of 

0.47 kg·m·2 
(- 10% bottom coverage) and a feeding ration of2% (body weight·d-1 (bw·d· 

1
)) was used. Temperature was held at 7.0°C. No significant differences in growth or 

survival among juveniles were found under the different photoperiods. It appears that the 

most cost-effective approach is to provide a simulated natural photoperiod for juvenile 

yellowtail flounder. 

There is a need for an "optimal stocking density" of juvenile flatfish to be 

established for cultured species in hatchery situations. This final study in my thesis 

examined the effects of three different stocking densities on the growth performance and 

survival ofO+ juvenile yellowtail flounder held under 16L:80 photoperiod. Three 
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densities of0.47, 0.95 and 1.9 kg·m·2 with 23%,45% and 90% bottom coverage was 

used. Juvenile yellowtail (mean initial weight± SE = 1.02 ±0.05 g) were fed a feed ration 

of2% (body weight·d·' (bw -d-1
)). Temperature was 7.0°C. No significant differences in 

growth or survival between juveniles were found under the different stocking densities. 

However, stocking densities with 9()0/o bottom coverage had slightly lower growth rates 

and higher gross food conversion ratios. 

Overall results suggests that juvenile yellowtail flounder can be stocked at densities 

greater than 100% bottom coverage. Economically, it appears more feasible to use a 

ration of 2 % bw ·d"1 for small juveniles and l-1.5% bw ·d"1 for larger juveniles and it 

appears that the most cost-effective approach is to provide simulated natural photoperiod 

(min. 6-8 hours) for juvenile yellowtail flounder production. 
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CBAPTERl 

INTRODUCTION 

World aquaculture production has been increasing rapidly for more than a decade, 

and the rate of increase has remained fairly constant. This is remarkable considering the 

present worldwide economic situation. Aquaculture production currently accounts for 

290/o of the total yield from the fisheries of the world and aquaculture is currently the only 

worldwide growth sector within fisheries (Anonymous, 2000). As the fishery catch is 

predicted to stabilize at its present level, aquaculture is considered the only option to meet 

the increasing demand for aquatic proteins (Harache, 1997). 

In recent years, scientists have become aware that the world's oceans, lakes and 

rivers represent a major source of animal protein that nations are not fully utilizing. When 

this is coupled with the ever-expanding global human population and the finite nature of 

the capture fisheries, a sense of urgency is brought to bear on the development of 

aquaculture. Production from the capture fisheries peaked in 1989 and has since 

fluctuated near that level, indicating the aggregate stocks of the world are being harvested 

at or near their maximum sustainable yield (MSY) (Aiken & Sinclair, 1995). Many stocks 

are being over fished, and some have collapsed (ie. Atlantic cod). We may already be 

extracting the maximum from our capture fisheries, and future increases in marine protein 

production may have to come from the world's culture fisheries. This concept has 

important implications for the coastal nations of the world which may exploit aquaculture. 

We may however, be able to increase the productivity ofthe world's capture fisheries by 

15-20 million tonnes annually through improved management practices (Aiken & Sinclair, 



1995). However, this increase is not enough to meet the increasing demands ofworld's 

protein supply. 

Aquaculture will no doubt increase its productivity in years to come. Aquaculture 

has the potential to become as important to the people of the 21st century as agriculture 

has been to those of the 20th century (Aiken & Sinclair, 1995). Fish farming will be a top 

performer for the new millennium and is going to be the growth industry of the next 30 

years (Drucker, 1999). 

Newfoundland is an ideal setting for cold water aquaculture development, 

possessing the right mix of abundant natural resources, technical expertise and research 

support. Tilseth ( 1990) stressed that market value, cost of production and quality of 

production are all important contributors to the success of marine aquaculture. For 

Newfoundland aquaculture, the potential species must not only be biologically suited to 

intensive culture, but must also be able to withstand extreme cold water conditions ( <0°C) 

which can prevail over a four to five month period (Brown et a/., 1992 a). 

The sudden and dramatic decline in the Atlantic Canadian ground fishery (Table 

1.1 ), has left hundreds of fishing communities in despair and caused thousands of fisher 

people to depend on government aid programs. This collapse of once-abundant cod and 

groundfish stocks is being felt throughout the region, but nowhere more deeply than in 

Newfoundland, where a moratorium has been imposed on both the inshore and offshore 

cod fisheries in most areas. 
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Table 1.1: Activity in the fishing indusuy ofNewfoundland and Labrador. 

Quantity (tonnes) 

1994 1995 %Change 

Groundfish 31723 16726 -47.3 

Pelagics 26798 31025 15.8 

Shellfish 78463 88078 12.3 

Total Landings 136984 135829 -0.8 

lmpons for Processing 27731 288-'2 4.0 

Aquacultwe Production 827 1280 54.8 

TOTAL 165542 165951 0.2 
Source. Fishery: http://www.gov.nf.ca/exec/publicarleconomy/fish.hun 

Alternative employment opportunities are few for the inhabitants of the tiny fishing 

communities scattered along the island's 18,000 km coastline. People whose working lives 

have been spent in the harvesting and processing sectors of the fishery are reluctant to 

leave their communities and unique way of life to seek work elsewhere. 

Administrators in both the provincial and federal government are struggling to 

come to grips \\'ith the enormity of the problem. Training fisher people for work in 

aquaculture is one possible alternative for employment. Traditional fishing skills, blended 

with appropriate aquaculture technologies may provide a real opportunity to sustain these 

numerous tiny fishing communities. 

Within Atlantic Canada, climatic conditions, cold ocean temperatures and winter 

sea ice has restricted marine aquaculture development. However, in spite of these 
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restrictions there are active commercial aquaculture operations: Atlantic salmon farming in 

the Bay ofFundy, New Brunswick, blue mussel farming along the shores of Prince 

Edward Island and Newfoundland, and steelhead trout farming on the south coast of 

Newfoundland. The fishery crises has provided impetus for a program of aquaculture 

development throughout the region. In Newfoundland, development agencies, fish 

farmers and scientists are working together to commercialize the farming of a diverse 

range of cold water marine species. There are many reasons for diversification within the 

aquaculture industry. Primary among these are to broaden the base of aquaculture in the 

area, to develop new products for a growing market, and to provide job opportunities for 

a region hard hit by the recent decline in the capture fisheries (Table 1.1 Brown eta/., 

1995). Yellowtail flounder Limandajern1ginea (Storer) is being considered as a new 

species for marine aquaculture along with Atlantic cod, Atlantic halibut, witch flounder 

and spotted wolffish. 

1.1 BIOLOGY AND DISTRIBUTION 

Yellowtail flounder Limandajem1ginea (Storer) is a member of the family 

Pleuronectidae (Cooper & Chapleau, 1998), or right-eyed flounder, meaning that during 

metamorphosis the left eye migrates as the fish settles on its left side (Scott & Scott, 

1988). Distribution in the northwest Atlantic extends from the Strait of Belle Isle to 

Chesapeake Bay including the Gulf of St. Lawrence and the Grand Banks (Pitt, 1970; 

Laurence & Howell, 1981) and the species is rarely found in waters deeper than 90-l 00 m 

4 



(Laurence & Howell. 1981; Perry & Smith, 1994). They are most frequently found at 

depths around 60 mat temperatures of3-5°C. Characteristics that distinguish it from 

other flounder include a small mouth, concave dorsal profile of the head, a lateral line 

which arches above the pectoral fin, the yellow colouration of the under surface of the 

caudal peduncle. and the bright rust-coloured spots on the pigment side (Scott, 194 7). 

Yellowtail flounder produce large numbers of small pelagic eggs (750-900 !Jm). 

Eggs do not have an oil globule and hatch at approximately 60° days (E vseenko & 

Nevinskiy, 1982). Larvae are between 2.4-3.5 mm in standard length (notochord) at 

hatch. They are serial batch spawners (multiple spawnings) which spawn between May 

and July in Canadian waters (Zamarro, 1991 ). Batch spawners such as yellowtail flounder 

ponion their vitellogenic oocyte production into a series of ovulatory events (Manning & 

Crim, 1998). 

Yellowtail flounder became important to Canadians in the late 1960's and early 

1970's when a fishery developed on the Grand Banks. The stock is mainly concentrated 

on the southern Grand Bank and is recruited from the Southeast shoal area nursery 

ground, where the juveniles and adults overlap in their distribution (Walsh, 1997). 

Department of Fisheries and Oceans (DFO) stock assessment data indicates that recent 

year classes have been poor relative to year classes in the 1970's (Walsh, 1997). This may 

be a result of high fishing mortality on juveniles in the late 1980's and early 1990's (Walsh, 

1997). It has since been suggested that the stock should be able to sustain a limited 

fishery, not exceeding 4000 metric tonnes and confined to the main component of the 

5 



stock in Div. JNO in 1998 (Walsh, 1997). Since this recent decline in the traditional 

fisheries, yellowtail flounder has become a species of interest for aquaculture. 

1.1 REASONS TO CULTURE YELLOWTAIL FLOUNDER 

Yellowtail was a commercially important species in the capture fishery until the 

recent decline in stocks, and there is every indication that it has good market potential 

(Brown et al., 1995). The total allowable catch (T AC) has declined from 20,000 metric 

tonnes in the early 1980's to 287 metric tonnes in 1996, and as already stated the 

recommended T AC since 1998 is not to exceed 4000 metric tonnes in divisions 3 L, 3 N 

and 30 (Walsh, 1997). 

If commercial development of yellowtail flounder aquaculture is possible, it could 

support a significant growth industry supplying an already developed market (Goff, 1993). 

Yellowtail is a medium value, small flounder with premium white flesh. Scott and Scott 

( 1988) reported that yellowtail flounder has the fastest growth rate among the small 

commercial flounders. Goff(l993) reported that yellowtail flounder is the preferred 

choice of small commercial flatfish for aquaculture, and has the highest fillet yield of small 

flatfish. The fillet yield from a 30-45 em wild yellowtail flounder can be close to 40% 

(Table 1.2). Fillet yield and quality may be improved when grown under ideal aquaculture 

conditions due to reduced foraging costs of the fish. 
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Table 1.2 Fillet yield from 3045 em. yellowtail Rounder. 

30cm/225 g 35 cm/375 g .JO em /650 g .J5 em /950 g 

Month %Yield fillet <g> fillet <g> fillet <g> fillet (g) 

January 32.5 73 122 211 309 

May 34.5 78 129 22-1 328 

July 37 83 139 240 351 

October 38 86 143 247 361 

Source: Goff. 1993. 

Yellowtail flounder have many positive attributes from an aquaculture 

perspective. The flounder life cycle has been completed in culture at the Ocean Sciences 

Centre (OSC), Memorial University of Newfoundland, where wild broodstock (replaced 

every few years) have been maintained since 1992. These wild broodstock have provided 

a high percentage of viable gametes, and the average fecundity per kilogram of fish can be 

as high as 1.5 million eggs, per fish ranging from 0.84-0.98 mm diameter (Manning and 

Crim, 1998). This indicates they are capable of acclimating to controlled culture 

conditions. Larvae reach metamorphosis relatively quickly at an age of 40-70 days at 

l0°C. Survival through metamorphosis to settlement has been> 500/o with some egg 

batches at the OSC and it may be possible to consistently achieve upwards of 50% with 

improved protocols (refer to Appendix 1). Another positive attribute is that mortality is 

low after metamorphosis ( <5% ). At present there are F 1 brood stock held at the OSC 

which were reared from gametes received during the 1996 spawning season of wild 

broodstock. 
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1.3 RESEARCH TO DATE 

Yellowtail flounder studies have been ongoing since the 1920's. Because of its 

commercial importance, most studies have dealt primarily with wild stocks, particularly 

distribution and stock abundance (Perley, 1852; Huntsman, 1922; Bigelow & Welsh, 

1925; Hildebrand & Schroeder, 1928; Bigelow & Schroeder, 1953; Ross & Nelson, 1992; 

Walsh 1992), summer feeding intensity (Efanov & Vinogradow, 1973), seasonal food 

habits (Libey & Cole, 1979; Langton, 1983), age and growth (Pitt, 1974; Lux & Nichy, 

1969), food consumption and feeding (Bigelow & Schroeder, 1953; Efanov & 

Vinogradow, 1973; Pitt, 1976; Collie, 1987), fecundity (Howell & Kesler, 1977), seasonal 

changes in ovaries of adults (Howell, 1983), reproduction (Zamarro, 1991) and diel 

movements oflarvae (Smith el a/., 1978). 

Research into the culture of yellowtail flounder began during the 1970's with 

induced spawning and larval rearing (Smigielski, 1979) and continued into the 1980's with 

yolk- utilization rates of yolk-sac larvae, temperature and salinity effects on egg 

development, growth and survival (Howell, 1980; Laurence & Howell, 1981; Howell, 

1983). All published data during the 1980's that involved fecundity, egg quality and larval 

work pertained to the Southern New England stock. 

Yellowtail flounder research began at the OSC in 1993. Wild Grand Bank 

yellowtail were captured by either D.F.O. trawls or OSC divers and transported to holding 

tanks at the OSC. These fish were maintained as broodstock, and hand stripped during the 

spawning season thus releasing viable gametes from which juvenile fish were produced. 
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This early success aided in directing research towards understanding the 

reproductive physiology of yellowtail flounder under captive conditions. Yellowtail 

research at the OSC has focussed on broodstock management, reproductive biology, egg 

incubation and larval rearing. Studies to date have included: neural endocrinology

physiology of reproduction (advancement of spawning using GnRH analogues, 

reproduction of captive yellowtail flounder, sperm quality, cryopreservation of semen), 

(Crim & Bettles, 1997; Larsson et a/., 1997; Manning & Crim, 1998; Clearwater & Crim, 

1998a; Clearwater & Crim, 1998b; Clearwater & Crim, 1998c; Richardson eta/., 1999), 

growth and behaviour oflarvae (French, 1995; Copeman 1996; Morris, 1997; Rabe, 1999; 

Rabe & Brown, 2000), larval prey densities (Puvanendran & Brown, 1995), histological 

and histochemical studies (Murray eta/., l994a; Murray t!l a/., 1994b; Murray eta/., 

1996; Baglole el a/., 1997) and lipid utilization and feeding of juveniles (Whale~ 1999). 

There is little information available on optimal rations, photoperiod or stocking 

densities for on-growing juvenile yellowtail flounder. My research objectives are to 

identify rearing protocols for feeding and on-growing of juvenile yellowtail flounder. 

Specifically the objectives of my work were: 

1) To determine food rations for 0+ juvenile yellowtail of different sizes. 

2) To determine rearing protocols for juvenile yellowtail focussing on stocking 

density and photoperiod requirements. 

9 



CHAPTER2 

2.1 INTRODUCTION 

"The quality and quantity (ration) of food is a prime factor in determining the 

growth performance of fis~ but the efficiency of assimilation of available energy is 

markedly influenced by other factors, such as ambient temperature, stocking density, 

ontogeny and season" (Reddy eta/., 1994). Knowing the optimal ration for cultured fish 

is important not only in terms of fish growth, but also for economic and environmental 

reasons: minimising feed wastage decreases both nutritional loss and water pollution 

(Langar & Guillaume, 1994; Litvak, 1996). By optimizing feeding, economic benefits can 

also be realized. Because food ration can affect the growth of cultured fish, the 

commercial success of any aquaculture venture depends on knowing what the optimal 

food ration is. Fish are usually fed a prescribed percentage of their body weight per day 

(ration), acllihilllm, or to satiation. Food ration is described as the amount of food fed 

per day and is expressed as a percentage of body weight per day (Quinton & Blake, 1990). 

The estimations of daily rations should take into account the numerous biotic (controls 

that are associated with the animal and their internal regulatory system ) and abiotic 

(factors associated with the environment and quality of the diet) factors which influence 

appetite (Goddard, 1996; Anderson, 1999). 

Food conversion ratios are important quality-performance indicators. Under 

routine hatchery operations low food conversions are seldom realized because there is 

always some food waste (Westers, 1987). Some ofit simply escapes (drain) and some 

may be refused. Food loss can also result from characteristics of a rearing unit such as fish 



rearing density, and water quality (high turbidity, for instance). All attempts should be 

made to minimize food loss and I or wastage. 

Currently no published information is available on growth rates and optimal 

rations for cultured juvenile yellowtail flounder. The objective of this study was to 

determine the effects of ration levels (bw·d·n on the growth performance of o+ juvenile 

yellowtail flounder. 

2.2 MATERIALS AND METHODS 

The ration experiments were carried out at the Ocean Sciences Centre (OSC), 

Memorial University ofNewfoundland. Fish used in these experiments were reared from 

broodstock held at the OSC. Eggs were stripped from the broodstock and all larvae were 

reared at the OSC. Newly weaned juveniles (0 .. fish) were used in these experiments. 

Juveniles were maintained under l8L:6D photoperiod and fed daily in large holding tanks 

(3000 L ). Fish were then acclimated to experimental tanks for two weeks prior to the 

start of the experiment. Water quality parameters such as temperature, salinity, dissolved 

oxygen, ammonia, nitrogen and pH were monitored and were within acceptable levels 

during the experiment. 

Water depths in raceways and tanks where flatfish are cultured is maintained at 

low levels compared to other species and for that reason fish density expressed as 

kilograms per volume unit may be as high as 800 kg·m·3 (0iestad, 1999). However when 

dealing with yellowtail and bottom-dwelling or benthic fishes which lie on the bottom 
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most of their time when not feedin& the density should ideally be expressed as a 

proportion of the surface area (density per m"2
} of the bottom of the experimental tank as 

opposed to kg·m·1 which has been adopted for salmonoids and other pelagic fish species 

which have a more even distribution throughout the water column . Density is expressed 

in kg·m·2 in this thesis (refer to Appendix 1). 

Fish used in both experiment l and 2 were of the same age but of different sizes 

due to improvements in rearing protocols from one year to the next. It is important to 

understand that the weight/size of fish is an important factor in trying to determine the 

amount of food to be fed, as daily specific growth rates change from smaller fish to larger 

fish, along with assimilation. 

2.1.1 EXPERIMENT 1 

Prior to the experiment, fish were taken from holding tanks and transferred to 

experimental groups. Four different ration groups (with 2 replicates), of SO fish each were 

established. Density (measured as percent coverage of the tank bottom) offish in each 

tank at the start was 0.95 kg·m·2 , which comprised- 45% bottom coverage (refer to 

Appendix 1). Fish were placed in 0.26 m diameter black circular 13.5 litre tanks (22 em 

water depth), provided with filtered sea water (mean± SE = 7 ± 0.3°C ), at a rate ofO.S 

Umin. (2.2 exchanges per hour). 

Fish were acclimated to experimental tanks for two weeks prior to the start of the 

experiment. Fish were matched for weight (mean ± SE = 1. 00 ± 0. 04 g), standard length 
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(mean ± SE = 3. 90 ± 0.4 em) and body depth (mean± SE = l. 7I ± 0.02 em) at the 

beginning of the experiment. 

Growth measurements (weight, standard length and body depth) were taken at I4 

day intervals on 10 fish from each replicate (20 from each treatment). Wet weight (WW) 

was taken (to the nearest 0.0 I gram) of each fish using an electronic balance. Standard 

length (SL, nearest 0.1 em) was measured with the mouth closed, from the tip of the 

lower lip to the end ofthe vertebral column, and body depth (80, nearest O.I em) was 

taken from the base of the dorsal fin to the base of the anal fin. Fish were not fed on the 

day before measurements were taken. 

Four ration levels were established by feeding 1%, 2%, 4% and 6% body weight· 

d-1 (bw·d-1
). Biomass was calculated daily on achieved specific growth rates and the 

amount of feed adjusted to achieve the desired rations. Actual growth rates were taken at 

two week intervals. The ration was divided into three feedings (0900, I 500 and 2100 

hours), and food was provided at these times every second day. Any uneaten food that 

did not exit via the drain was removed the following day. Food was provided every 

second day to minimize intraspecific variation in growth rates within groups of fish, and to 

reduce hierarchy effects common among cultured species (Irwin et a/., 1997). The fish 

were fed a diet of fry feed (C700-Cl000 Biokyowa). Food selection and schedules were 

based on previous growth experiments at the OSC (unpublished data). 

Light levels were kept at 600 lux at the water surface with a photoperiod of 

l8L:6D; artificial dawn and dusk. Artificial dawn and dusk was maintained by low 
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wattage lamps in the ceiling controlled by a timer. 

This experiment lasted for 10 weeks and provided baseline data used for 

experiment 2. 

z.z.z EXPERIMENT Z 

For experiment 2, large juveniles were used and the rations chosen were based on 

results from experiment 1. Prior to the experiment, fish were taken from holding tanks 

and transferred to experimental groups. Four different ration groups (with 2 replicates) of 

100 fish each were established. Density offish in each tank at the start was 1.45 kg·m·2
, 

which comprised - 34% bottom coverage (refer to Appendix I). Fish were placed in 0.8 

m diameter black circular tcmks (water depth= 35 em) and provided with filtered sea 

water (mean± SE = 10° ± 0.2°C) at a rate of5 Umin. (1.35 exchanges per hour). 

Fish were acclimated to experimental tanks for two weeks prior to the start of the 

experiment. Fish were matched for weight (mean ± SE = 7. 40 ±0. 08 g) and standard 

length (mean± SE = 7.32 ± 0.03 em) at the beginning of the experiment. 

Growth measurements (weight and standard length ) were taken at 14 day intervals 

on 30 fish from each replicate (60 from each treatment). Measurements were taken as 

described in experiment 1. Fish were not fed on the day before measurements were 

taken. 

Four ration levels were established by feeding 1%, 1.5%, 2% and 3% body weight 

·d-1 (bw·d-1
) . Biomass was calculated daily on achieved specific growth rates and amounts 
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of food were adjusted to achieve the desired percentage of ration. Actual growth rates 

were taken at two week intervals. The ration was divided into three feedings (0900, l 500 

and 2100 hours). Food was provided at these times every second day, and any uneaten 

food removed the following day. The fish were fed a diet of Moore -Clark's Nutra Fry 

1.0 crumble, 1.5 & 2.0 mm dry feed pellet. Feed type was different from experiment 1 

because import regulations made it difficult obtain BioKyowa from Japan. Additionally 

the high cost and poor growth results obtained in experiment l and its lack of availability 

in a larger size all contributed to this change in diet. Light levels were kept at 120 lux 

(lower than experiment I based on personal observation that fish do not need high light 

intensities) at the water surface and a photoperiod of l8L:60; artificial dawn and dusk. 

Artificial dawn and dusk was maintained by low wattage lamps in the ceiling controlled by 

a timer. 

Prior to the experiment, 20 whole fish were randomly sampled and frozen for 

initial body composition/nutrient analysis (completed in triplicate) of dietary moisture, 

crude protein, crude lipid, ash, carbohydrates and gross energy. At the end of the study, 

20 whole fish were randomly selected from each treatment (treatments pooled) for final 

body nutrient analysis (completed in triplicate). Proximate analysis of diets was also 

sampled for dietary moisture, crude protein, crude lipid, ash, carbohydrates and gross 

energy (completed in triplicate) and are tabulated and compared to the manufacturers 

guaranteed analysis. 

Nutrient analyses on chemical composition of diets and whole-body fish were done 
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by standard methods. The moisture content was obtained by placing pre-weighed samples 

in an oven set at lOS °C until the dry weight was constant (24 hours.). Samples were 

cooled in a desiccator to eliminate moisture. The protein content of dried samples was 

determined using the Kjeldahl method (Tecator Digestion System 20, 1015 digester, 

Sweden; Tecator Kjeltec System 1028 Distilling Unit, Sweden). Total nitrogen was 

converted to protein by multiplying by 6.25 on the assumption that the protein in the feed 

is approximately 16% nitrogen. The crude lipid content was carried out using a hexane

based Soxhlet lipid extraction apparatus (Tecator Soxtec System HT 1043 Extraction 

Unit, Sweden). The ash content was measured by placing pre-weighed crucibles with 

either the dried diet or body samples in a muftle furnace (Thermolyne, Sybron 

Corporation, Dubuque, Iowa, USA) set at @450°C for 24 hrs., cooling in a desiccator and 

re-weighing the crucible and sample. The carbohydrate content was determined by 

subtracting the sum of the other nutrients from 100 (Goddard, 1992). The gross energy 

was calculated by multiplying the percent protein by 5.6 kcallgram, percentage lipid by 9.5 

kcal!gram and percentage carbohydrate by 4.1 kcallgram (Goddard, 1992). These values 

are the gross energy per calorie for each of protein, lipid and carbohydrate. The sum of 

these values equals the gross dietary energy per 100 grams. Diets were analysed using the 

same methods. 

2.2.3 DATA ANALYSIS 

Data on mean weight (g), standard length (mrn), body depth (mm), specific growth 
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rate (SGR)~ gross food conversion ratio (GFCR)~ coefficient of variance (CV o/o), Fulton's 

condition factor (K)~ stocking density or percent bottom coverage ( kg·m-2 or o/o), body 

composition, food composition and survival were collected (see Appendix 1 ). 

Data sets for both experiments 1 & 2 were analysed using SAS/ST AT (SAS 

Institute, 1988). A nested analysis ofvariance (ANOVA) (Zar, 1982) was used to test for 

tank effects. A General Linear Model (GLM) determined if age or treatment influenced 

the growth parameters of juveniles under different treatments (rations) and for each 

growth measurement. Homogeneity of slopes was tested using interaction terms and if no 

significant interactions were found, an analysis of covariance was performed. 

Residual plots were examined for equality of variance and normality ofthe data. 

For data where equality of variance was not satisfied, the data were log transformed. 

Analysis of covariance (ANCOVA) was followed by Tukey's multiple comparison test 

( cc=0.05). All statistical tests were deemed acceptable, as the residuals were found to be 

independent of the model, and normal in distribution (Sokal & Rohlf, 1995). 

1.3 RESULTS 

Mortalities were low (1/400= 0.25% in experiment 1 and 14/800 = 1.75% in 

experiment 2) and were not analysed (Tables 2.1 and 2.2). Coefficients of variation 

(CVo/o) between r~tions were also minimal between treatments in both experiments 

(Figures 2.1 a, b, c and 2.5 a, b) which suggests food was not limited. 
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2.3.1 EXPERIMENT 1 

The coefficient of variance (% CV) for weight and length remained relatively 

unchanged over the 10 week experimental period (Figures 2. 1 a, b, c). 

A nested ANOV A showed no significant differences (ie. no tank effect) between 

the replicates of treatments for weight (df=4; F=0.93 ; p=0.444), standard length (df=4; 

F=0.72; p=0.579),or body depth (df=4; F=0.25; p=0.907) and subsequently data were 

pooled. Significant differences (oc=O.OS) were found among rations for weight (df=J; 

F=4.04; p=0.008), standard length (df=J; F=3.30; p=0.020) and body depth (df=3; 

F=4.21; p=0.006) when data was analysized using ANCOV A. with week as the 

covariable. However, no significant differences among treatments (p > 0.05) were found 

when data were analysized bi·weekly using ANOV A. 

Results indicated that juveniles fed a ration of 1% bw·d·1 had significantly lower 

growth (mean final weight, length and body depth) than those fed 2%, 4% and 6% bw·d·1 

(Table 2.1 ; Figures 2.2 a, b, c). A ration of 1% was close to being significantly different 

(df=J; F=6.50; p=0.051) from all other rations in terms of a lower specific growth rate 

(SGR's- Figure 2.3). Significant differences (df=J; F=l60.9; p< 0.05) in gross food 

conversion ratios (GFCR's) were found between fish fed rations of 1% and 2% and those 

fed 4% and 6% rations (Table 2.1 and Figure 2.4). 
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Table 2.1 Mean initial weight (g ± SE), mean final weight (g :t: SE), initial bottom coverage (%), final bottom coverage(%), initial condition (K) 
factor, final condition (K) factor, specific gro"1h rate (%per day SGR), gross food conversion ratios (GFCR) and survival (%) foro· yellowtail 
flounder fed four different rations of 1~ •• 2~o, 4%, 6cy. body weight·d·' (bw·d'1) , (N= 20 per treatment). 

Ration Mean Initial Mean Final Initial Final Initial Final Specific Gross Food Survival 
Group Weight (g) Weight (g) Bottom Bottom K-factor K-factor Growth Conversion (%) 
(bw·d'1) Coverage Coverage Rate Ratio's 

(%) (%) (%per day) (GFCR) 

1% 1.03 ±,09 1.80* ±.IS 46 (.6 1.67 1.70 0.80 1.19• 100 

2% 1.01 ±.07 2.33 ±.17 44 78 1.70 I. 71 1.20 1.58• 100 

4% 0.94 ±.07 2.14±.19 43 73 1.65 1.72 1.19 3.34 100 

6o/e 1.01 ±.09 2.39 ±.21 42 78 1.69 1.76 1.2S 4.45 99 

•. Indicates a significant difference between the treatments (P<O.OS). (Tukcy's multiple comparison test). 
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2.3.2 EXPERIMENT 2 

The coefficient of variance (CV %) for weight and length increased slightly over 

the first 6 weeks, increased sharply in week 8 and stabilized for the remaining 6 week 

experimental period (Figures 2. S a, b). 

A nested ANOV A showed no significant differen~es (ie. no tank effect) between 

the replicates of treatments for either weight (df=4; F=l.04; p=0.384) or standard length 

(df=4; F=0.64; p=0.634) and subsequently data were pooled. Significant differences 

(oc=O.OS) were found among rations for weight (df=3; F=6.81; p<0.05) and standard 

length (df=3; F=S.44; p=O.OOl) when data were analysized using ANCOV A, with week as 

the covariable. 

There were no significant differences in the specific growth rates of any group 

(df=3; F=4.12; p=O.I03). Fish fed a ration of3% bw · d-1 had higher (even though not 

significant) growth rates than those fed 1%, 1.5% and 2% bw · d-1 (Table 2.2, Figures 2.6 

a, b). The specific growth rates (SGR's) were higher for fish fed 3% as compared to 1%, 

1.5% and 2% rations (Table 2.2 and Figure 2.7). Gross food conversion ratios (GFCR's) 

were significantly different (df=3; F=l004.15; p<O.OS) for all4 rations. It was lower for 

l% than 1.5%, 2% and 3% rations (Table 2.2 and Figure 2.8). 

Analysis of whole body nutrient composition of yellowtail showed no significant 

differences (p>0.05) among treatments for moisture (df=4;F=2.63; p=0.098), lipi4 (df=4; 

F=2.20; p=O.l42), carbohydrates (df=4; F=2.98; p=0.074) or gross energy (df=4; F=3 .10; 

p=0.067). However, significant differences were found for protein (df=4; F=3 .69; 
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Table 2.2 Mean initial weight (g :t: SE), mean final weight (g :t: SE), initial bottom coverage(%), final bottom coverage(%), initial condition (K) 
factor, final condition (K) factor, specific growth rate W• per day SGR), gross food conversion ratios (GFCR) and survival ('Y•) foro· yellowtail 
flounder fed four different rations of lo/e, I.So/e, 2o/e, 3% body weight·d·' (bw·d-1

), (N= 60 per treatment). 

Ration Mean Initial Mean Final Initial Final Initial Final Specific Gross Food Survival 
Group Weight (g) Weight (g) Bottom Bottom K-factor K-factor Growth Rate Conversion (%) 

Coverage Coverage (%per day) Ratio 
(o/e) (%) (GFCR) 

lo/e 7.39 ±.17 21.26 ±.79 34 66 1.87 1.88 0.9S 1.02• 99 

I.S% 7.37 ±.IS 21.20 ±.78 34 68 1.86 1.84 0.95 I. SO• 98 

2o/e 7.39 ±.16 21.71 ±.76 33 68 1.90 1.89 0.97 1.95• 98 

3% 7.46 ±.IS 23.1S•:t:.89 34 70 1.88 1.93 1.02 2.86• 99 
•, Indicates a significant difference between the treatments (P<O.OS). (Tukey's multiple comparison test). 
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Figure 2. 7 Mean daily specific growth rate for 0+ yellowtail flounder fed 
rations of 1%, 1.5%, 2.0% and 3.0% body weight* day-1. 
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Figure 2.8 Mean gross food conversion ratios of 0+ yellowtail flounder 
fed rations of 1%, 2°/o, 4%, and 6% body weight* day-1. 
Different letters indicate significant differences at a=0.05. 
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p=0.043) and ash content ( df=4; F=S.ll; p=O.Ol7) (Table 2.3). 

Table 2.3 Mean values of whole-body nutrient tomposition for% body moisture.% body protein. %body 
lipid., %body ash. %body calbobydrates and gross dietary energy per 100 grams (kcallg) foro· juvenile 
yellowtail flounder fed four different rations of 1 o/o. 1.5,-o. 2o/o. 3% body weight·ct' (bw·d"1

). (N= 20 per 
treatment). Values are mean± standard error (SE); n=3(complicated in triplicate). 

Sample Moisture Protein Lipid Asb Carbohydrates Gross Energy 
% % % % % kcall& 

Initial 7S.I2 :0.08 48.39 ±3.96• 2S.96 %0.95 13.50 :0.28• 3.02:0.73 5.20±0.10 

1.00/o 75.04 :0.27 57.94 ±1.15 23.79%0.99 12.35 :0.18 1.60:0.24 S.43 :0.07 

l.S% 74.61 %0.16 55.61 ±1.78 25.83 ±0.25 12.11 %0.31 1.65 ±0.44 5.52:0.06 
2.()% 76.07 ±0.10 61.71 %0.51* 23.75 ±0.13 12.57 %0.59 0.47:0.03 5.61 ±0.03 

3.0% 74.78 ±0.54 55.54 ±1.21 26.43 ±0.73 10.78 %0.06• 1.85 ±0.37 5.59±0.09 
•. Indicates a significant dilference between the treatments (P<0.05). (Tukey's multiple comparison test). 

Nutrient analysis of the diets (Moore-Clark Nutra Plus Crumble and Nutra Fry dry 

feed) used in this experiment shows that the manufacturer's guaranteed analysis is very 

close to what is being delivered and provided on the label (Tables 2.4 ~b). 

Table 2.-l a Nutrient analysis of diet (Salmonid starter feed. Moore-Clark Nutra Plus Crumble and Nutra 
fry Pellet) fed too· juvenile yellowtail flounder in ration experiment 2. 1 Values are mean ± standard 
error (SE); n=3 (complicated in triplicate). 

Sample Moisture Protein Lipid Ash Carbohydrate Gross Energy 
% % o/o % % kcal/g 

#Ierum. 5.2-l±O.OO 54.83 ±0.74 16.94 ±0.34 10.45 ±0.02 12.54 ±O.-l8 5.09 ±0.01 

1.5 mm 6.33 ±0.02 52.82 ±0.26 25.07 ± 0. 10 7.88±0.03 7.88 ±0.30 5.56 ±0.01 

2.0 mm 7.76±0.02 51.02 ±0.25 21 .50 ±O.SS 6.96 ±0.01 12.77±0.78 5.32 ±0.03 
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Table 2.4 b Manufacturer's (Moore-Clark) guaranteed analysis offish fry feed 1
•

2 fed to o• juvenile 
yellowtail flounder in ration experiment 2 (Section 2.2.2). 

Manufacture's 
Guaranteed 
Analysis 

#l crumble 

l.S mm 

2.0 mm 

Protein 
Minimum 

(o/o) 

S2.00 

48.00 

48.00 

Lipid 
Minimum 

(o/o) 

20.00 

24.00 

24.00 

Ash 
Ma.-Qmum 

(%) 

10.00 

7.00 

7.00 

1 Salmonid starter feed. Moore-Clark Nutra Plus Crumble and Nutra Frv. 
1 Ingredients: Fish meal. fish oil. whole wheat. krill meal. blood meal. betaine. lecithin. vitamin premix. 
mineral premix. 

2.4 DISCUSSION 

The economics of aquaculture is an area of increasing interest to fish farmers. In 

contrast to agriculture, aquaculture has less history in regard to its economics. This is 

mainly due to the relative youth of the aquaculture industry and the fact that development 

up to now has been mostly technology based (Neiland, 1994 ). There is also a widely held 

belief among scientists that they should "get the science right first" before involving other 

disciplines such as economics (Neiland, 1994). Science is very important, but baseline 

data from other disciplines (economics) can be equally as important. 

Experiment I demonstrated that o+ juvenile yellowtail flounder fed a 1% d"1 ration 

were smaller (mean final and specific growth rate) than those fed a 2%, 4% or 6%, bw·d·1 

ration. Fish fed rations of 2%, 4% or 6% bw · d"1 showed greater specific growth rates, 

but rations of 4%-6% bw·d·1 were poor in terms of gross food conversion ratios, thus 
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resulting in food wastage. A 2% bw·d"1 ration is more appropriate in terms of growth and 

efficient food conversion ratios for small 0+ yellowtail flounder juveniles held under the 

above conditions. 

Experiment 2 indicated that large juvenile fish fed a 3% bw·d-1 ration had higher 

growth (mean final and specific growth rate) than fish fed a 1%, 1.5% or 2% bw·d-1 ration. 

Fish fed a ration of 30fc, bw·d-1 were better in terms of specific growth rates, but not as 

good in terms of gross food conversion ratios which resulted in food wastage. Therefore, 

a 1.0 o/o-1.5 % bw·d·' ration appears more economical in terms of growth and efficient 

food conversion ratio for larger 0+ yellowtail flounder juveniles held under the above 

conditions. 

Both experiments indicated that maximum conversion efficiency occurs at ration 

levels below those at which maximum growth occurs as referenced by Goddard, 1996. It 

is evident that there is a range of possible feeding levels, the choice of which depends on 

whether maximum growth; optimal food conversio~ or a balance between the two is 

sought. 

As indicated in both experiments, when using high ration levels of 3%, 4%-6 % 

bw·d-1 ration, gross food conversion ratio (GFCR) increased to 2.86-4.45 indicating a 

poor food conversion ratio. At lower ration levels of 1-2 o/o bw·d-1 rations, gross food 

conversion ratio (GFCR) decreased to 1.02-1.95, indicating a better food conversion ratio. 

As described above, it is advisable to achieve a feeding level which balances both growth 

and food conversion. 
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Ration can change with size, age and temperature. Daily specific growth rates 

and gross food conversion ratios may be valuable indicators of food ration. My results 

are similar to those feeding studies which have been conducted with other flatfish and non

flatfish species. Hatanaka et al., ( 1956) found for two pleuronectids that a ration of 

1.12% d-1 was adequate for 42-279 g Limandayolcohamae, and 0.95% was adequate for 

87-234 g Kareius bicoloratus at temperatures of 13-1 S°C. Frame ( 1972) reported a 

maintenance ration of 1.5% d-1 for 30-100 g winter flounder, Pseudopleuronectes 

americam1s under 12-20°C. Tyler and Dunn ( 1976) showed that food intake with adult 

winter flounder was 2% d-1 under ad libitum feeding conditions. It ha~ also been shown 

with groups of large Japanese plaice (Kareius bico/oratus) that they consume mean 

rations of 1.21-6.43% d-1 under ad libitum feeding conditions, the rations varying 

inversely with body size and directly with temperature (Hatanaka et al., 1956). Quinton 

and Blake (1990) showed with 36.24 g (mean weight) rainbow trout Oncorhynchus 

mykiss (Walbaum), that all groups offish were overfed at rations of3%, S% and 7% 

bw·d-1 
• Increased rations only decreased conversion efficiency, indicating overfeeding as 

found with the higher rations I used in my experiments. 

In this study (with some low ration allocations) feed was provided every second 

day with the intention to minimize variation in growth rates within groups of fish and to 

reduce hierarchy effects common under laboratory conditions (Magnusson, 1962; Eaton & 

Farley, 1974; Jobling, 1982; Abbott eta/., 1985; Ruzzante, 1994; Irwin et al., 1997). If 

fish are fed meals of reduced ration on a daily basis, then larger or more aggressive fish 
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may feed at the expense of smaller fish (Goddard, 1996). It is possible for larger fish to 

feed at maximum rates, while others in the same group are feeding on restricted rations. 

Differences in body size could have a significant impact upon an individual's ability to 

compete socially and may be reflected in growth being suppressed. In light of these 

works, feeding regimes were selected to give all fish equal opponunities to eat when food 

was provided and thus reduce or abolish size hierarchy effects. 

Coefficients of variation between treatments was minimal (weight and length) in 

both experiments, which seems to indicate that fish were not deprived of feed. Growth 

dispensation has been reported for flatfish held in groups (Purdom, 1974; Ehrlich eta/., 

1976). Caner et a/. ( 1996) suggested that individual differences in food consumption, 

mediated through exploitation competition, contribute to growth dispensation in 

greenback flounder Rhomhoso/ea tapiri11a. Pittman ( 1998) stated that many flatfish have 

lower ingestion rates and food requirements after metamorphosis because of higher food 

conversion efficiency. 

Nutrient analysis of diets which provides an indication of levels of moisture, 

protein, fat, ash, carbohydrate and energy, may aid nutritionists in modifying the 

composition of the carcass in hatchery situations to meet consumer demands (Shearer, 

1994). Analysis of whole body nutrient composition of yellowtail showed no significant 

differences (p>0.05) between treatments with moisture, lipid, carbohydrates or gross 

energy. Significant differences were found between initial and final fish sampled using a 

2% bw·d-1 ration with protein, and 3% bw·d-1 ration with ash. 
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Nutrient analysis of diets (Moore-Clark Nutra Plus Crumble and Nutra Fry dry 

feed) clearly showed that the stated analysis of fish food used in this experiment was close 

to that being delivered as the final product, and to that written on the food label attached 

to the bag. This is an important consideration since producers try to feed their fish the 

best diets available, which in tum may improve growth rates and survival of fish. 

Attention must also be focussed on diets, because when high-energy, lipid rich 

food pellets are used in aquaculture, the fish tend to build up excess lipids, resulting in fish 

with high fat content. However, this was not seen in my experiments. The increased use 

of high fat diets in aquaculture has increased the need for future studies to focus on the 

effect of feed formulation (protein energy, total energy) on the deposition of growth 

energy of hatchery-reared juveniles (Grant eta/. 1998). 

Research directed towards fish nutrition is important and should continue in order 

to optimize the effects of dietary protein, carbohydrate and fat levels when using cold 

water marine finfish feeds. Protein supplements and fish oils are expensive components of 

commercial fish diets. Hjertnes et a/. ( 1991) showed that growth is reduced when protein 

levels are replaced by carbohydrates and/or fat for juvenile Atlantic halibut. Protein is 

more expensive to incorporate into diets than lipids. Unfortunately, feed manufacturing 

companies are producing marine diets which are lower in protein (minimum 48%) and 

higher in lipids (minimum 200/o). Hjertnes and Opstvedt (1989) and Hjertnes eta/. (1991) 

showed that juvenile halibut have a food requirement of at least 58% dietary protein. 

Cowey eta/. (1972) found optimal dietary protein to be SO% for plaice, while Lie eta/. 
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( 1988) found maximum growth rates in cod with 6QO/o dietary protein. 

My study indicates that feed rations are important in determining the growth 

performance of fish. Rations should accommodate the short term fluctuations which 

occur in appetite, and should b.e adjusted to meet the changing feed demands as fish grow 

or water temperatures and other environmental factors change (Goddard, 1996). Feeding 

the yellowtail flounder juveniles restricted rations in these experiments demonstrated a 

greater control of gross food conversion ratios. An understanding of feed rations and feed 

conversions is fundamental in developing cost effective feeding programs which are aimed 

at maximizing food conversion efficiencies and growth. By optimizing feeding strategies, 

economic benefits can be realized. 

Gross food conversion ratios indicate that economically it would be more feasible 

to use a ration of 2 % bw·d-1 for small juveniles and l-1. So/o bw·d-1 for larger juveniles. 

It is also important to feed diets which contain optimal levels of dietary protein. 

carbohydrate and fat levels when using cold water marine finfish feeds. 
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CIIAJ'TER3 

3.1 INTRODUCTION 

Information concerning the effects of environmental factors, such as photoperiod, 

on the growth of juvenile flatfish is limited. Jones (1973) found that growth of juvenile 

turbot showed a distinct seasonal pattern: higher in summer than in winter. It was later 

suggested that this growth pattern was partly due to seasonal changes in day length 

(lmsland eta/., 1995). Photoperiod acts as a zeitgeber, entraining endogenous rhythms in 

fishes (Duston & Saunders, 1990). It has been shown to affect growth, locomotor 

activity, smoltin~. and sexual maturation in some species of fish (Villarreal et a/., 1988 ). 

This can be a result of the rate of change of day length (differential effect) or the absolute 

day length (proportional effect) (Eriksson & Lundqvist, 1980). 

Extended photoperiod has resulted in increased growth of juvenile Atlantic 

salmon, Salmo sa/ar, in freshwater (Saunders eta/., 1989; Stefansson et a/., 1989; Berg et 

a/., 1992) and post smolts in seawater (Saunders & Harmon, 1988; Krikenes eta/., 

1991 ). Corroborative evidence for the growth-promoting effect of extended photoperiod 

has been demonstrated in studies with green sunfish, Lepomis cyanellus (Gross eta/., 

1965), plaice, Pleuro11ectes platessa, and sole, So/ea so/ea (Fonds, 1979), juvenile 

splitnose rockfish, Sebastes diploproa (Boehlen, 1981 ), Atlantic cod, Gadus morhua, 

(Folkvord & Otteri, 1993) and winter flounder, Pseudopleuro11ectes americanus (Casey 

& Litvak, unpublished data). 

Fuchs ( 1978) who worked with juvenile sole, So/ea solea, found no significant 

differences in growth and survival between 12, 18 and 24 h light. Kiyono and Hirano 



( 1981) reported that juvenile growth did not significantly differ with black porgy, Mylio 

macrocephalus under 13, 18 and 24h light. Surprisingly, there is little literature on the 

biology of larvae and juveniles as it relates to survival and growth in hatcheries (Barlow et 

a/., 1995). No research on juvenile yellowtail flounder with respect to photoperiod is 

currently available. The purpose of this study was to determine a photoperiod which 

promotes the best growth and survival of juvenile yellowtail flounder. 

3.2 MATERIALS AND METHODS 

Yellowtail flounder oocytes and sperm were obtained from captive broodstock, 

held at Memorial University's Ocean Sciences Centre, in Logy Bay, Newfoundland. 

Fertilized embryos were incubated in 200 Litre conical incubators and supplied with air 

and seawater. First feeding larvae were fed cultured rotifers and Artemia. 

Metamorphosing larvae were transferred to 1 metre circular tanks (depth 40 em), and 

weaned onto artificial food (Fry Feed Kyowa). Larvae and young juveniles were 

maintained under 24 and 12 hours light per day respectively. 

Prior to the experiment, fish were taken from large holding tanks ( 12L: 120) and 

transferred to experimental groups. Four groups (with 2 replicates) of 40 fish were 

established and the density offish in each tank at the start was 0.47 kg·m·2, which 

comprised 10% bottom coverage offish (refer to Appendix I). Fish were placed in square 

tanks ( 90 x 90cm with 30 em water depth), provided with filtered salt water (mean± SE 

= 7° ± 0.3°C ) flowing at a rate of 6 Umin. for a tank exchange rate of 1.48 times per 
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hour. Fish were matched for weight (mean :t: SE = 9.25 ±0.22 g), standard length (mean± 

SE = 7.99 ± 0.07 em) and body depth (mean± SE = 3.58 ± 0.03 em) at the beginning of 

the experiment. 

Lighting was supplied by 60 Watt (incandescent) bulbs placed 30 em from the 

water in the middle of the t~ which distributed light evenly to all tank areas. Light 

intensity was ISO lux at the water's surface. Lights were turned on and offby automatic 

timers and came on at 0900 hr. Treatment 1 received 24 hours of light per day 

(24Light:ODark), treatment 2- 18 hours (18L:6D), treatment 3- 12 hours (12L: 120) and 

treatment 4- ambient photoperiod (for this treatment, the photoperiod was adjusted every 

week (to the nearest 1/4 hour) to our latitude 47°N beginning September 30). 

Fish were fed a formulated pellet (Fry Feed Kyowa-C3000) over a 30-40-min. 

period (apparent satiation) twice daily during the light phase (of the shortest photoperiod) 

at a ration of2% body weight·d-t (bw·d-t). A 2% bw·d-t ration proved to be significantly 

above maintenance (high ration excess), which was indicated by some food remaining in 

the tanks after feedings. Previous experiments (Dawes, 1930 a, b, c; Bromley, 1974) 

indicated that sole were satiated and growth was promoted at a 2% bw·d-1 ration. (Also 

refer to Tables 2.1 and 2.2 in Chapter 2). Biomass was calculated daily on achieved 

specific growth rates to ensure a 2% bw·d-t ration. 

Growth measurements (weight, standard length and body depth ) were taken at 21 

day intervals on 20 fish from each group ( 40 from each treatment). The wet weight (WW) 

was taken (to the nearest 0.01 gram) of each sampled fish using an electronic balance. 
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Standard length (SL, nearest 0.1 em) was measured with the mouth closed, from the tip of 

the lower lip, along the lateral line, to the end of the vertebral column, and body depth 

(BD, nearest 0.1 em) was taken from the base of the dorsal fin to the base of the anal fin. 

Fish were not fed on the day before measurements were taken. 

3.2.1 DATA ANALYSIS 

Data were analysed using SAS/ST AT (SAS Institute, 1988). A nested analysis of 

variance (ANOVA) (Zar, 1982) was used to test for tank effects. A General Linear 

Model (GLM) determined if age or treatment influenced the growth parameters of 

juveniles under different treatments (photoperiods) and for each growth measurement. 

Homogeneity of slopes was tested using interaction terms and if no significant interactions 

were found, an analysis of covariance was performed. 

Residual plots were examined for equality of variance and normality of the data. 

For data where equality of variance was not satisfied, the data were log transformed. 

Analysis of covariance (ANCOVA) was followed by Tukey's multiple comparison test 

(oc=0.05). All statistical tests were deemed acceptable, as the residuals were found to be 

independent of the model, and normal in distribution (Sokal & Rohlf, 1995). 

3.3 RESULTS 

Mortalities were low (4/320 = .0125%) and were not analysed (Table 3.1). 

Weight (g), standard length (em) and body depth (em) increased over the course of the 
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study (Table 3.1 and Figures 3.1 a, b, c). A nested ANOVA showed no significant 

differences (ie. no tank effect) between the replicates of treatments for either weight 

(df=4; F=.71; p=O.S83), standard length (df=4; F=l . ll; p=0.351) or body depth (df=4; 

F=.66; p=0.620) and subsequently data were pooled. 

Overall data shows that photoperiod had no significant effect on weight ( df=3; F= 

0.6L p=0.611), standard length (df=3; F=l.22; p=0.300), or body depth (df=J; F=l.78; 

p=O. ISO) of juvenile yellowtail flounder (Tables 3.1 and 3.2). There were no significant 

differences found among treatments for specific growth rates (SGR- Figure 3.2) (df=3; 

F=0.31; p=0.818) and I or gross food conversion ratios (GFCR's- Figure 3.3) (df=3; 

F=O.lS; p=0.922). 
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Table 3.1: Mean initial weight (g ± SE), mean final weight (g ±SE), initial bottom coverage (o/e), final bottom coverage(%), initial condition (K) 
factor, final condition (K) factor, specific growth rate (%per day SGR), gross food conversion ratios (GFCR) and survival (%) for I • yellowtail 
flounder under photoperiods of 24L:OD, 18L:6D, Ill: 120 and ambient (which was adjusted every week to our latitude beginning September,. 30) 
which were fed a ration of 2% body weight·d·1 (lm"d'1) which equalled satiation, (N= 40 per treatment). 

Photo-Period Mean Initial Mean Final Initial Final Initial Final 
Group Weight (g) Weight (g) Bottom Bottom K-factor K·factor 

Coverage Coverage 
(%) (~o) 

24L:OD 8.96±.4S 36.12 ±I.SO 10 23 1.81 2.01 

18L:6D 9.37 ±.43 36.49 ±1 .68 10 23 1.81 2.01 

12L:l2D 9.34 ±.32 35.14 ±1.19 10 22 1.75 2.06 

Ambient 9.34 ±.SI 3S.S9 ±1.63 10 22 1.88 2.14 
•, Indicates a significant difference between the treatments (P<O.OS). (Tukey's multiple comparison test). 
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Figure 3.1 A) Mean weight (g), B) mean standard length (em) and C) mean 

body depth (em) of 1+ yellowtail flounder under photoperiods of 

24L:OD, 18L:6D, 12L:12D and ambient. Vertical bars represent 

standard error. N= 40 per treatment. 
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Figure 3.2 Mean daily specific growth rate of 1 + yellowtail flounder under 
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Table 3.2: Results ofTukey.'s Range Test for weight (WW), standard length (SL) and body depth (BD) 
for 1• yellowtail Rounder under photoperiods of24L:OD, l8L:6D, 12L: 120 and ambient (which was 
adjusted every week to our latitude beginning September, 30) which were fed a ration of 2% body 
wcight·d·1 (bw·d-1) which equalled satiation. (N= 40 per treatment). Values have been log transformed for 
this table. Means with the same letter are not significantly different (p<0.05). 

Dependent 
Variable 

Weight 

Standard Length 

Body Depth 

Treatment 

l8L:6D 

Ambient 

24L:OD 

12L:l2D 

l8L:6D 

12L:12D 

24L:OD 

Ambient 

18L:6D 

Ambient 

· 12L:12D 

24L:OD 

3.4 DISCUSSION 

Mean N= Tukey Grouping 

24.i467 240 A 

22.2339 2-10 A 

21.9895 2-'0 A 

21.881 2-'0 A 

10.32208 2-'0 A 

10.25813 2-'0 A 

10.20604 2-'0 A 

10. 17542 240 A 

4.84167 2-'0 A 

... 84125 240 A 

... 82625 2-'0 A 

4.75625 240 A 

In this 16 week study photoperiod did not significantly affect the growth or 

survival of juvenile yellowtail flounder. 

Increased growth of larvae has been demonstrated under longer photoperiod for 

several marine species, including sole, So/ea solea (Fuchs, 1978), sea bass, Dicentrarchus 

labrax (Barahona-Fernandes, 1979), black porgy, Mylio macrocephalus (Kiyono & 
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Hirano, 1981 ), gilthead sea bream, Sparus aurata (Tandler & Helps, 1985), rabbittish, 

Siganus gullatus (Duray & Kohno, 1988), barramundi, Lates ca/carifer (Barlow et a/., 

1995), Atlantic cod, Gadus morhua (Puvanendran & Brown, 1999) and yellowtail 

flounder, Limanda ferruginea, (Puvanendran, pers. comm. ). 

Photoperiod did not affect the juvenile growth in sole, So/ea solea (Fuchs, 1978), 

black porgy, Mylio macrocephalus (Kiyono & Hirano, 1981 ), barramundi, Lates 

calcarifer (Barlow et al., 1995), and Atlantic halibut, HipfXJg/ossus hippoglossus 

(Hallariker el a/., 1995). Growth was significantly increased in the juveniles of splitnose 

rockfish, Sebastes diploproa (Boehlert, 1981), Atlantic cod, Gadus morhua ( Folkvord & 

Otteri, 1993), turbot, Scophthalmus maximus, (lmsland eta/. 1995) and winter flounder, 

Pleuronectes americanus, (Casey & Litv~ unpublished data) when reared under 

extended photoperiods. 

Increased photoperiod can influence growth of fish through physiological 

mechanisms such as increased hormone production (Brett, 1979; Meissel & Dodt, 1981; 

Bittman, 1985), which in tum can lead to improved food conversion efficiency (CoUie & 

Stevens, 1985; Busacker et a/., 1990; Sun & Farmanfarmaian, 1992; Fine et a/., 1993; 

Peter & Marchant, 1995). Hence, increasing photoperiod has the potential of increasing 

growth rates without an increase in food consumption. 

In experiments where fish are fed to satiation, increased photoperiods may cause 

higher growth rates through increased food consumption (Clarke et a/., 1978; Boehlert, 

1981; Folkvord & Otteri, 1993; Imsland et al., 1995). In my experiment, however, fish 
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were fed to satiation and no significant differences in growth were found. This suggests 

that when food is not limited, photoperiod still has no effect on growth. 

The degree to which a panicular species of fish responds in terms of growth and 

survival to changes in photoperiod seems to be largely influenced by their natural 

distribution. Freshwater or anadromous species generally show greater responses to 

photoperiod than do those found in the marine environment (lmsland eta/., 1995). 

There are many factors which influence the growth of juvenile fish in hatchery/on

growing situations. Temperature, stocking density, light intensity, diet, and tank-type 

(raceway, etc.) are all factors which can affect growth and require investigation before 

optimal rearing environments for juvenile yellowtail flounder are determined. 

A study looking at the effect of continuous feeding over the 24-hour light cycle 

may be useful in gathering growth data to determine the limitations of fish growth over 

time. Future research to test effects of photoperiod on sexual maturation may also be 

important for smaller flatfish species to determine if longer day lengths may suppress 

maturation. My experiment showed that photoperiod does not have a significant impact 

on the growth or survival of juvenile yellowtail flounder. Therefore longer photoperiods 

(18-24 daylight) are not necessary for optimal on-growing and suggest that yellowtail 

flounder juveniles can be cultured under ambient photoperiod, thereby eliminating the cost 

of anificial illumination. 

48 



CHAPTER4 

4.1 INTRODUCTION 

Variation in growth rates and relative sizes attained by individuals of a cohort in a 

given space is a ubiquitous phenomenon (Ambeker & Doyle, 1990). One of the obvious 

differences between the natural environment and artificial environment is the high 

population densities at which hatchery fish are maintained (Fenderson & Carpenter, 1971 ). 

Increased stocking density results in stress which could lead to enhanced energy 

requirements causing reduced growth and food utilization (Hengsawat et a/., 1997). In 

hatcheries, it is routine to reduce the number of fish per rearing unit as the mean size of 

the fish increases. Often the fish from different batches are grouped together following 

grading to establish more homogenous size distribution, but it is not known what 

consequences this may have for subsequent growth performance (Jobling & Wandsvik, 

1983). 

Thus, there is a need to establish an "optimal stocking density" for cultured species 

in hatchery and on-growing situations. An important factor determining the economic 

-
feasibility of any aquaculture species is the maximum stocking density that can be 

maintained without substantial reduction in growth rate and survival (Bjornsson, 1994). 

Research into stocking densities of juvenile flatfish during initial and final grow-out phases 

is limited. We need a way of predicting the growth rate to market size based on the 

juvenile growth rates at optimal stocking densities (Dambo & Rana, 1992). 

Previous research dealing with stocking densities of salmonid species has dealt 



primarily with social interaction, growth depression, spatial requirements, behavioural 

responses and growth variation (Fenderson & Carpenter, 1971; Refstie, 1977; Soderberg 

& Meade, 1987; Brown eta/., 1992b; Papst eta/., 1992). For flatfish species like turbot, 

Scophthalmus maximus L. (Martinez-Tapia & Femandez-Pato, 1991; Lyngstad, 1994; 

Klokseth & 0iestad 1999a), Olive flounder, Paralichthys o/ivaceous (Chang & Yoo, 

1988, Chang et al., 1995; Jeon eta/., 1993), Atlantic halibut, Hippog/ossus hippog/ossus 

L. (Bjomsson, 1994; Klokseth & 0iestad l999b ), summer flounder, Para/ichthys dentat11s 

( King et a/., 1998) and winter flounder, Pseudopleuronectes americanus (Casey & 

Litvak, unpublished data) there is evidence that higher stocking densities affect growth. 

Chang & Yoo (1988) used% bottom coverages for small (2.5 em) fish up to 

410% (4.1 times the bottom surface area) with flounder, Paralichthys olivaceous juveniles 

without negatively affecting growth. However, Bjomsson ( 1994) on the other hand found 

that stocking density did have a negative affect on the growth rate of larger halibut ( 5-14 

kg) when densities above 100% coverage of the tank bottom were used. 

To date, few studies have demonstrated optimal stocking densities for juvenile 

flatfish under 10 g and none have examined 0 .. juvenile yellowtail flounder stocking 

density. The objective of this experiment was to determine the optimal stocking densities 

for growth and survival of small juvenile 0+ yellowtail flounder. 

4.1 MATERIALS AND MEmODS 

The experiment was carried out at the Ocean Sciences Centre (OSC.), Memorial 

so 



University ofNewfoundland. Fish used in this experiment were reared from broodstock 

held at the OSC. Eggs were stripped from broodstock and all larvae were reared at the 

OSC. 

Two weeks prior to the start of the experiment, fish were taken from holding tanks 

and transferred to experimental groups for acclimation. Three groups (with 2 replicates) 

were established with densities of(0.47, 0.95, 1.9 kg·m·2 or 25, 50 and 100 fish per tank) 

with a% bottom coverage of22.5, 45 and 90% respectively (refer to Appendix 1). 

Densities of(0.47, 0.95, 1.9 kg·m-2
) were chosen and the results would create a baseline 

for future stocking densities. Fish were matched for weight (mean± SE = 1.02 ± 0.05 g), 

standard length (mean± SE= 3.96 ± 0.06 em) and body depth (mean± SE = 1.69 ± 0.03 

em) at the beginning of the experiment. The fish were placed in 0.26 m diameter black 

circular 13.5 litre tanks (22 em water depth), provided with filtered salt water (mean± SE 

= 7°. ± 0.3°C) at a rate of0.5 L/min. exchange rate of(2.2 exchanges per hour). Growth 

measurements (weight, standard length and body depth) were taken at 14 day intervals on 

ten fish from each group (20 from each treatment). Fish were not fed on the day before 

measurements were taken. 

Fish were fed a ration of2% body weight·d"1 (bw·d"1
). A formulated pellet of fry 

feed kyowa (C700-C1000 Biokyowa) was fed over a 30 to 40 min. period (apparent 

satiation) three times every second day (0900, 1500 and 2100 hours), and any uneaten 

food removed the following day. Biomass was calculated daily on achieved specific 

growth rates to ensure a 2% bw·d"1 ration. Food was provided every second day to 
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minimize intraspecific variation in growth rates within groups of fish or to reduce 

hierarchy effects common among cultured species (Irwin eta/., 1997). Food ration 

selection and schedules was based on previous growth experiments conducted at the OSC 

(Chapter 2&3 ). 

Light levels were kept at - 600 lux at the water surface and a photoperiod of 

18L:6D with artificial dawn and dusk. Artificial dawn and dusk was maintained by low 

wattage lamps in the ceiling controlled by a timer. The experiment lasted for 10 weeks. 

4.2.1 DATA ANALYSIS 

Data on mean weight (g), standard length (em), body depth (em), specific growth 

rate (SGR), gross food conversion ratio (GFCR), coefficient of variance (CV %), Fulton's 

condition factor (K), stocking density or percent bottom coverage ( kg·m·2 or%) and 

survival were collected {see appendix 1). 

Data was analysed using SAS/ST AT (SAS Institute, 1988). A nested analysis of 

variance (ANOVA) (Zar, 1982) was used to test for tank effects. A General Linear 

Model (GLM) determined if age or treatment influenced the growth parameters of 

juveniles under different treatments (stocking densities) and for each growth measurement. 

Homogeneity of slopes was tested using interaction terms and if no significant interactions 

were found, an analysis of covariance was performed. 

Residual plots were examined for equality of variance and normality of the data. 

For data where equality of variance was not satisfied, the data were log transformed. 
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Analysis of covariance (ANCOV A) was followed by Tukey's multiple comparison test 

( oc=O.OS). All statistical tests were deemed acceptable, as the residuals were found to be 

independent ofthe model, and normal in distribution (Sokal & Rohlf, 1995). 

4.3 RESULTS 

Mortality was low (10/350 or 3.5%) during the experiment. Mortality was highest 

in the treatment with the higher stocking densities (Table 4. I ). Coefficients of variation 

(CV, o/o) among densities was minimal between treatments and remained fairly constant 

during the study (Figures 4.1 a, b, c). 

A nested ANOVA showed no significant differences (ie. no tank effect) between 

the replicates of treatments for either weight (df=3; F=0.25; p=0.866), standard length 

(df=3; F=0.28; p=0.839),or body depth (df=3; F=0.36; p=0.780) and subsequently data 

were pooled. Overall data shows that stocking density had no significant effect on weight 

(df=2; F=l.21; p=0.30 1), standard length (df=2; F=3.25; p=0.040), or body depth (df=2; 

F= 1. 98; p=0.139) of juvenile yellowtail flounder. 

Statistical analysis (ANCOV A) showed no significant difference between stocking 

densities of25, 50 or 100 fish per tank (Table 4.2) with overall specific growth rates, 

overall gross food conversion ratios or survival. Even though not significant (SGR:df=2; 

F=3.36; p=O. l716) and (GFCR:df=2; F=5.02; p=0.1104), treatments held at lower and 

medium stocking densities had higher values of specific growth rate (SGR's) , lower gross 

food conversion ratio values (GFCR) and higher survival than treatments held at highest 

densities (Table 4. 1, Figures 4.2 a, b, c, Figure 4.3 and Figure 4.4). 
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Table 4.1 Mean initial weight (g ± SE), mean final weight (g ± SE). initial bouom coverage (%), final bottom coverage (%), initial condition (K) 
factor, final condition (K) factor, specific growth rate (%per day SGR), gross food conversion ratios (GFCR) and survival (%) foro· yellowtail 
flounder with% bonom coverages of 22.5%, 45% and 90% per tank \\'hich were fed a ration of 2% body weight·d·1 (bw·d'1), (N= 20 per treatment). 

Density Mean Initial Mean Final Initial Final Initial Final Specific Gross Food Survival 
Weight (g) Weight (g) Bottom Bottom K-factor K-factor Growth Conversion (%) 

Coverage Coverage Rate Ratio 
(%) (o/o) (%per day) (GFCR) 

25 1.00 ±.08 2.33 ±.19 22.5 39 1.63 1.72 1.21 1.54 98 

so 1.01 ±,07 2.33 ±.17 45.0 78 1.71 1.79 1.20 1.55 100 

100 0,98 ±.10 1.93 ±.17 90.0 131 1.61 1.81 0.91 2.25 96 

•, Indicates a significant difference between the treatments (P<O.OS). (Tukey's multiple comparison test). 
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Figure 4.1 Mean coefficient of variation (%) for A) weight (g) 

B) standard length (em) and C) body depth (em) 

of 0+ yellowtail flounder with % bottom coverages of 

22.5%, 45°/o and 90% per tank. N= 20 per treatment. 
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per tank. Vertical bars represent standard error. 

N= 20 per treatment. 
56 



2 

--;fl. -s 
"' a:: 
.c. 
j 
e 
(!) 
0 1 'i: ·o 
C1) 
~ en 
.>-

"' c 
c 

"' C1) 

:E 

2 4 6 

Week 

8 

%Bottom 
Coverage 

I I 22.5°/o 
PZZJ 45.0°/o 
KSS1 90.0°/o 

10 
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58 



Table -'.2 Results ofTukcy·s Studentized Range Test for weight (W1).standard length (SL) and body 
depth (BD) for ydlowtail flounder held under densities of 25. SO and 100 per tank which were fed a ration 
of 2% bw-d·1

• (N= 20 per treatment). Values have been log transfonned for this table. Means with the 
same Jetter are not significantly different (p<O.OS). 

Dependent Treat111ent Mean N= Tukey•s 
Variable Grouping 

Weight so -'.52583 120 A 

25 .J.S0083 120 A 

100 -'.4225 120 A 

Slandard Length 50 1.99917 120 A 

25 1.93083 120 A 

100 1.91667 120 A 

Body Depth 50 1.60967 120 A 

25 1.56108 120 A 

100 l.-'7158 120 A 

4.4 DISCUSSION 

Results indicate that small, recently weaned yellowtail flounder stocked at initial 

densities of 0.47, 0.95, 1.9 kg·m·2 (25, 50, 100 fish/tank) corresponding to 22.5, 45 and 

90% coverage of the tank bottom by fish showed similar growth patterns during the 10 

week study. 

Fish stocked at the highest density {9()0/o coverage) showed a trend towards lower 

growth than those in both of the other two treatments. Brown et a/. ( 1992a), suggests 

that "growth rates for salmonoids is similar to that of other fish species in that growth 
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rates are higher at lower sta<::king densities, and as density increases, growth rates tend to 

decrease proportionally". Increased densities may lead to increased aggression which in 

tum may reduce growth rates. However, in this experiment growth was not reduced 

enough to warrant the reduction of the number of fish at the highest stocking density. 

Fish density at the end of the 10 week experiment reached 1.10, 2.19, 3.39 kg·m·2 

or 39, 78 and 131% bottom coverage without impacting growth, which suggests that 

yellowtail can be stocked at densities greater than 1 000/o coverage. King et a/. ( 1998) 

showed that 0. 7 g summer flounder could be stocked at densities of at least 200% 

coverage. Klokseth and 0iestad ( 1999a) showed that densities up to 210% coverage and 

growth rates of 4. S-11 SGR % are possible with 1-12 g turbot in raceway systems. Chang 

and Yoo (1988) used% bottom coverages for fish up to 410o/o with flounder, 

Para/ichthys olivaceous juveniles without negatively affecting growth. Litvak ( 1999 

Casey & Litvak, unpublished data) tested stocking densities of SO, 100 and 1 500/o bottom 

coverage for winter flounder, Pseudople11ronectes americmms and found no difference in 

growth and survival among treatments. However, Bjomsson (1994) found that stocking 

density affects growth rate oflarger halibut (S-14 kg.) only above a certain threshold of 

100% coverage of the tank bottom. It is imponant that to note that fish size may be an 

important factor in determining stocking density as well. 

The high degree of homogeneity in the coefficients of variance with weight, length 

and body depth throughout this experiment suggests that all fish were given equal 

opportunity to feed and a 2% body weight·d-1 (bw·d-1
) ration was adequate (Jobling, 
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1982). This is also supported by (Koebele, 1985) as cited by Dambo and Rana (1992) that 

if there is no size disproportional food acquisition, there will not be a size hierarchy effect. 

Once a size hierarchy within a population is established, the smaller fish are inhibited from 

feeding satisfactorily because of the physical presence of the larger fish (Dambo &. Rana, 

1992 ). Begon ( 1982) observed that smaller individuals perceive the population density as 

being much higher than it is, while larger individuals perceive the density as being lower 

than it is. Increased coefficients of variation when fish are reared in groups rather than in 

isolation have been observed in plaice, flounders and their hybrids (Purdom 1974) as cited 

by Dambo and Rana ( 1992). Understanding size variation between individual groups may 

be worth pursuing when raising flatfish at high stocking densities. Size grading may be an 

important factor in improving growth rates of hatchery raised fish. 

Westers (1987) cited by Dambo and Rana (1992) suggested that under hatchery 

conditions, the condition factor averages about the same for groups of fish. As they grow 

the values often remains relatively constant during the hatchery life cycle (Dambo & Rana, 

1992). There are many interesting relationships between growth parameters and stocking 

densities that can be addressed in future research. 

In conclusion, results were positive (growth rates and survival) but I did not 

determine the upper limit of stocking densities which may have been one reason why there 

were no differences between treatments for yellowtail flounder. Additional experiments 

could be conducted to determine optimal stocking densities using small and large fish, 

grading times during production cycles, larger tanks, shelving, raceway systems and water 
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quality parameters as stocking density increases. 
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CHAPTERS 

SUMMARY, GENERAL DISCUSSION AND FUTURE RESEARCH 

The experiments described in this thesis examined feeding and on-growing 

strategies for juvenile yellowtail flounder Limandaferruginea (Storer). 

Optimisation of feed efficiency is of utmost economic importance in aquaculture. 

Even with nutritionally adequate diets, much variation might be encountered in terms of 

feed efficiency, depending on feeding practices and schedules. Ration sizes should be 

adapted to nutrient, energy needs and growth rates. It is important to consider 

temperature, fish size , genotype, growth rate, nutrient and energy requirements for a 

given growth performance, dietary energy density, nutrient concentra~ion, etc. The food 

ration experiments in this thesis showed that smaller yellowtail flounder proportionally 

require more food (body weight·d-1 (bw · d"1
) during early stages of the juvenile period 

during year one. 

There are many different views on fish feeding practices: one viewpoint is to feed 

the fish to the point of satiation and let the recipient indicate when sufficient food energy 

has been taken in. It is known that fish will eat more food than required for maximal 

growth, provided of course that they are given a high-quality feed and that water quality is 

optimal. Best feed-to-gain ratios are often obtained when fish are fed at a rate below 

satiation. It is complicated and time consuming, but more economical and cleaner to feed 

below satiation, since nutrients consumed in excess of requirements (as will happen in 

satiation feeding) are simply excreted. Over-feeding is a waste of money and an 



unnecessary burden on the environment. 

The point at which fish reach maximum protein deposition needs to be studied. In 

some species of larger fis~ protein deposition levels off but fat deposition continues to 

increase. Protein gain makes live weight gain_ not lipid gain. This is very hard to achieve 

in small fish which weigh much less and have a lower percentage of tissue and muscle 

mass. A better understanding of the relationship between growth and nutrient deposition is 

important for marine species (economic models) and in particular the development of new 

species where economics determines its potential. A decrease in feed efficiency isn't 

always an economic loss if you can get a little more growth and have more product to sell. 

In future research, it may be important to look at protein and energy deposition as a 

function of intake as opposed to live weight gain. 

People also argue that there are benefits of feeding to satiation. My experiments 

have shown that feeding to satiation offers the advantage of more uniform growth due to 

reduced competition in the early stages of juvenile fish (0""- t · ). Faster grow-out may 

help to improve food conversion ratios (FCR's) funher by lowering the percentage of 

energy allocated to daily metabolism. Faster grow:-out also improves returns on capital 

investments as stocks can be turned over more quickly. Feed tables may often be 

tabulated to under-feed the fish in an attempt to avoid feed wastage and to minimize 

labour. A fixed ration or percent ofbody weight·d-1 (bw·d"1
) feed amount used in my 

experiments have provided a baseline for feeding practices of yellowtail flounder and other 

small flatfish species. 
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To manually feed fish to satiation (or almost to satiation) requires an increase in 

the amount of work and I or labour. Today, automatic feed controllers are available. 

These provide all the benefits of feeding to satiation and minimize the associated risks of 

environmental impacts (feed wastage) and operating expenses (feed and labour). These 

feed instruments can detect satiation (or non feeding) by sensing the beginning of feed 

wastage in the effluent lines. They are designed for either on-shore culture systems with 

short solid retention times or cage systems. In addition to the economic benefits for 

commercial growers, this controller reduces variables for researchers conducting feed 

trials and other aquaculture research. These systems have data flow analysis components 

which provides instant feedback on fish behaviour, plus data is analyzed by the software. 

Recognition of the important balance between energy and protein in diets is 

critical. The correct balance provides for maximum protein consumption and 

consequently the delivery of as high concentrations of amino acids as can be used to 

support the potential growth rate of fish . Advances can only be made from a baseline of 

precise information. This information has to be gathered from fish farmers and researchers 

and then incorporated back into diet formulation. 

The choice of feed type and feeding regime are significant factors in waste 

pollution. Once rations are determined, the feeding frequency is important to minimize 

wastage. Proper feeding practices lead to lower FCR' s which are important in production 

models and estimates. Gastric evacuation times at different temperatures may be worth 

researching as well to improve FCR' s and in tum growth. In general, it seems better to 
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provide more feed less often, than small amounts at regular intervals. Understanding and 

utilizing good feed management is a critical component of being a successful fish farmer. 

The photoperiod experiment showed that for juvenile yellowtail flounder the most 

cost-effective approach is to provide a simulated natural photoperiod. Extended daylight 

did not negatively affect the growth of juveniles, but did not increase growth either. 

Therefore, there is no advantage in keeping juvenile yellowtail flounder under extended 

light regimes. 

It appears that some fish have distinct feeding patterns. They consume feed 

throughout the day (opportunistic) but have distinct peaks in food intake at dawn and 

dusk (crepuscular). Very rarely did the fish feed in total darkness when food was left over 

from earlier feedings. lt has been shown that juveniles exposed to long day-lengths may 

consume more food, but this energy is expended as non-productive energy associated with 

increased activity of the fish. This concept may be a worthwhile pursuit for future 

research with yellowtail flounder. My photoperiod experiment dealt primarily with feeding 

to apparent satiation twice daily during the light phase of the shortest photoperiod, and 

examining the effects of different photoperiods on growth. Feeding patterns should suit 

the biological rhythms of the species being cultured. If feed distribution occurs out of 

phase with such spontaneous feeding rhythms, some decrease in feed efficiency is 

expected. 

The final chapter in my thesis examined the effects of three different stocking 

densities on the growth performance and survival of 0+ juvenile yellowtail flounder. No 
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significant differences in growth or survival between juveniles were found under the 

different stocking densities. Results were positive but did not indicate the upper limit of 

stocking densities. Yellowtail flounder stocked at low densities usually lie side by side on 

the bottom overlapping each other with a portion of their bodies forming a dense patch in 

one area of the tank until densities increase so that the fish cover all pans of the bottom. 

Threshold levels for stocking densities may vary for different flatfish species or size of fish. 

Larger flatfish may overlap, but do not smother or deteriorate water quality in the same 

manner as smaller flatfish. If the oxygen concentration drops below a certain point~ fish 

will have to leave the bottom and search for better oxygenated sea water. This in tum will 

increase the swimming activity of fish within a system. I did not examine this hypothesis 

but it may be included in future behavioural studies. 

Lower growth and higher gross food conversion ratios were seen in tanks with the 

highest stocking densities. Proportionally more of the food consumed may have been used 

for metabolism than for growth. 

Stocking densities used by fish farmers may be higher than those reported in the 

scientific literature, since they try to maximize space and increase profits. However, the 

fish farmer has to find a threshold between stocking density and water quality that has no 

negative effects on growth rates. The optimal level will depend on capital costs of the fish 

farm per unit of rearing are~ availability of the species, changes in market prices and 

trends with size of fish being raised. 

As outlined in my thesis, feeding and on-growing strategies are very important. 
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The experiments outlined in my thesis will serve as a foundation for rearing of small 

juvenile flatfish. Yellowtail tlounder over the past five years has been targeted as a small 

flatfish for commercial production. My experiments along with many others have all 

helped in putting together a model (refer to Appendix 1) for yellowtail flounder rearing 

from egg/larvae to juvenile on-growing. Research and development in aquaculture of this 

relatively newly utilized species is an important component in exploring the viability of its 

market potential-and bringing it to full commercialization. Further research into the 

optimization of on-growing diets, particularly in relation to their cost effectiveness may be 

useful. Feeding strategies and stock management practices on a larger scale may also be 

useful. The technology transfer and adaption process from this species to others have 

given us the ability to diversify this ever changing and challenging world of aquaculture. 

My experimental results will help bring this species closer to pilot and perhaps full scale 

commercial production. 
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Yellowtail Production Model (egg/larvae) 

Age(d) 0 610 I 12 16 20 ll 32 

Life History 1<-Egg->1<------Yolk-Sac-->1 Begin 
1<------------First Feeding------------->1<-----Metamorphosis---> 

Egg (diam.)/ Larval size 0,8.(),9 2.9 
(Standard length, • mm) 

4 s 7 8.5 10.5 13.5 

1<--I0-->1<-----------····-·-----------------12----------··-·----------> 

Tank System 1<250 L>l<-----------------·-···--·---------3000 L ----···--------> 
(Conical Incubator) Circular Tank/Raceway System 

Water Exclmngc (Umin) 1<-3.0 Umin->1<-----------1.5 Umin-------------->1<--------------------------4-S Umin--------> 

Light Intensity (lux) 1<600 Lux>l<-------------------------------2400 Lux-------·---·->1<-200 Lux-> 

Photoperiod (L:D) 1<----·------------------------------------------24L:OD--------------·--------------> 

Prey Type/s I <------------Enriched Rotifer----------->1 
I<Nauplii><-Enriched Anemia-------> 

Prey Densities (L'1) l<---------------8000------------>1<-----------2000 > 

Green \\'atcr (day ·•) I <------------------1 OL-----------------> I<------------------------------JOL-------------··-·-······---> 

Number of Feedings I<----------------J------·-·-··-------->1<------···-2-·--···-------------> 
(Live Food) (d'1) 

Begins 
Weaning 1<--300 um--> 

Stocking Density (L'1) 1<--10-30 larvae/Litre-->1 
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\' ellowtail Production Model (Juvenile) 
Age (months) 2 3 4 6 8 10 12 14 16 18 20 24 

Life History I<End of Metamorphosis >11<-----------------------------------Juvenile-----------------------------------> 

Larval size 2.0 7.0 11.0 13.0 16.0 20.0 
(Standard Length- em.) 

Temperature (0 C) 1<------------------------------------------------------8- 12-----------------------------------------> 

Tank System 1<--------------------·------·-·-···-·-·---·-··--3000 L··-··---·---·-··--···--··-----·----> 
Shallow Tank &/or Raceway 

Water Exchange (Umin) 1<-4-SUmin->1<-·······---15 Urnin·---·-·--·······>1<····-··········-···-------20-30 L/nsin-------------·------------> 

Light Intensity (lux)l< . .l200 Lux-- . >1<-600 Lux->1 <---···-···---------S0-200 Lux-----------------------------------------> 

Photoperiod (L:D) 

Prey Type/s 
Prey Densities (l'1) 

Green water (day '1) 

Number of feedings 
(Live food) (d'1) 

Weaning 
Ration (bw•d·1) 

Stocking Density 

1<--24L:OD--->1<----18L:60--->I<-----Min. Natural Photoperiod (6-8 hrs. )----------------------·---···> 

Enriched Artemia 
1<-200/L->1 

1<----2--->1 

Ench 

1<--500-750 um-->1<---1.0-1.5 mm--->l<----2.0-2.5mm---->1<------------3.0-4.0 nun-------------> 
I <-3 -4 %->I<------------------2. Oo/o---------------> 1<-------------1 . 0-1 . 5°/o---------------------> 

1<----------------------1 00-200% Bottom Coverage-------------.;.·----> 
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Appendix 1 

DATA ANALYSIS 

The data collected were analysed for calculation of average mean weight, length, 
body depth, specific growth rates, gross food conversion ratio, coefficients of variation, 
condition factor, stocking density or% bottom coverage for fish and survival rates (refer 
to appendix 1 ). 

1) Mean weight = the average weight of fish at t days for each treatment. 

2) Mean length = the average standard length of fish at 1 days for each 
treatment. 

3) Mean body depth = the average body depth was taken from the base of the 
dorsal fin to the base of the anal fin of fish at 1 days for each 
treatment. 

4) Specific growth rate= the specific growth rates (SGR's) were calculated using the 
individual weight measurements as follows: 

Where SGR (%I day) is the overall specific growth rate in body weight per day. 
W1= Initial juvenile weight (g) at time t1 for each sample. 
W 2= Final juvenile weight (g) at time t2 for each sample. 
t= Time in days. 

5) Gross Food Conversion Ratio = the amount of food fed per day divided by the 
weight gain. 

GFCR=F/G 

F= Weight of food fed 
G= Weight gain 
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6) Coefficient of variation = the term applied to standard deviation when it is 
expressed as a percentage of the sample means. It is a value to indicate the size 
variation within the population. 

CV(o/e) = 100 s (SO/mean weight, length or body depth) for each treatment. 

Where r= sample mean weight, length or body depth. 
s= standard deviation of mean weight, length or body depth. 

7) Condition factor= Fulton's condition factor (Ricker, 1975} was calculated 
from: 

K= 100 W L.J 
Where W and L represent wet body weight (g) and length (em), respectively. 

8) a) Stocking density-- Density= kg· m·1 

#fish ·weight (g) I area 

ie: Initial stocking density for ration experiment 2 (Chapter 2) with I 00 fish per 
treatment. 

100 fish x 7.40g 15024 cm2 =740g I .5024 m2 = .740kg 1.5024 m2 

= 1.47 kg·m·2 

b) % bottom coverage for fish 

Area= K(constant) · length"1 or K=areallength·1 

K=0.28 for yellowtail flounder juveniles 
area of tank I area of one fish · # fish in tank 

ie: Tank size for ration experiment 2 (Chapter 2) =5024 cm2 

I fish =15.07 cm2 
• 100 fish=1507 em~ 

%coverage =5024/1507= 33.34% bottom coverage 

c )This is another formula that may be used as well to calculate the surface area in 
cm2 of an individual flatfish. 

Area = 5. 75 · wt 0•
65 
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9) Survival Rate = this was calculated as Nt/No • 100 

Where: 

Nt= is the total number of fish at the end of experiment. 
No= is the initial number of fish at the start of experiment. 
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