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ABSTRACT 

The Avalon terrane of Newfoundland has been the subject of considerable study, 

especially in relation to the other tectono-stratigraphic terranes of the 

Appalachian Orogen. The Grand Banks of Newfoundland in particular, located 

within the Avalon terrane, has been intensely investigated on both a local and 

crustal scale. 

Gravity data is available for the Avalon terrane. A number of processing 

techniques, in both the space and frequency domains, was applied to the data in 

an effort to extract the topography of the Moho for the Grand Banks region. The 

data were passed through a series of low-pass filters, each having progressively 

lower cut-off frequencies to isolate the long-wavelength signal from Moho. 
c 

To ensure that the observed long-wavelength signal was due primarily to 

sources at Moho depth and not from intervening sources, the gravity field of the 

Mesozoic rift basins of the Grand Banks, also long-wavelength in character, was 

modelled and subtracted from the observed field. 

Using an average depth to Moho derived from spectral analysis of the field and 

from seismic data for the region as well as a density contrast obtained from direct 

' (seismic refraction results) and indirect (inferred geology) sources, the data was 

inverted to obtain a map of depth to Moho. Profiles along selected seismic 

reflection line locations were extracted and the Mohos compared. 

The broad Moho relief obtained from the inverted gravity data agreed with that 

of the seismic Moho, however, the amplitude of the topography generated by the 
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inversion is significantly reduced. In light of the sparse deep seismic coverage 

within the study area, the inversion results give a good first approximation to a 

comprehensive map of Moho topography for the region. 
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CHAPTER 1: INTRODUCTION 

The objective of this thesis is to use available gravity data to produce a three

dimensional map of the Mohorovicic discontinuity (M-discontinuity or Moho) 

beneath the Avalon terrane of the Appalachian Orogen onshore and offshore in 

Newfoundland and beneath the Grand Banks. Seismic refraction and reflection 

profiling samples isolated regions of the subsurface and can only provide two

dimensional or cross-sectional images of the Moho. Thick layers of sediment 

and the presence of strong multiples sometimes obscure signals from the deep 

crust (see, for example, Figures 1.1 (a) through 1.1 (d)). Moreover, inferences of 

Moho topography from seismic refraction and reflection surveys are dependent 

on the accuracy of velocity information derived for the deep crust by the seismic 

processors and interpreters. Magnetic field data cannot be used to 'see' the 

Moho since temperatures at Moho depths would demagnetize any potentially 

magnetic source rock. For these reasons, areal gravity data is a good candidate 

for providing a continuous, three-dimensional representation of the topography of 

the Moho. 

Knowledge of Moho topography can be applied to many areas of earth 

sciences. Maps of Moho topography are suitable for the study of isostasy. Here, 

they can be used to investigate how the shape of the Moho has been redefined 

in response to isostatic adjustment of the crust to extensional and compressional 

tectonics as well as to deficiencies and excesses of mass within the crust. 
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Studies of extensional tectonics examine the various aspects of extension 

including the mechanics of how crust thins and separates. Ancient planes of 

detachment show up on deep seismic profiles but it is sometimes unclear 

whether or not these fault planes extend to Moho depths or sole out above the 

Moho. Seismic profiling gives a two-dimensional view of decollement zones and 

detachment faults within the crust but three-dimensional maps of the Moho can 

be more illustrative. This is especially significant for the passive margin of 

eastern Canada, which was formed by rifting and extension. In particular, 

reliable maps of Moho topography across passive margins can be applied to the 

investigation of conjugate margins, such as those of western Europe and eastern 

Canada. 

The long-wavelength signal from the sedimentary basins on the Grand Banks 

may interfere with the long-wavelength signal from sources at Moho depths. 

Therefore, the gravity effect of the Mesozoic basins was modelled and the 

modelled field subtracted from the original gravity field . Modelling of the basins 

was carried out by approximating them as stacked series of horizontal, polygonal 

laminae (Talwani and Ewing, 1960) using a published depth to basement contour 

map and density information derived from industry well logs. Once the effect of 

the basins was removed, the gravity field data were passed through a series of 

low-pass filters with progressively lower cut-off frequencies to isolate the long

wavelength features generally associated with Moho topography. Analysis of the 

energy spectrum of the filtered field gave an ensemble average depth (Spector 

and Grant, 1970) to these long-wavelength sources. The gravity data were then 
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inverted to obtain Moho relief using COflstraints on density from borehole data 

and average depth derived from seismic refraction data and the energy spectra. 

The results were then compared with the d9t~ from $eismic reflection transects 

across the Grand Banks. 

Deep crustal seismic coverage over the Grand Banks is moderate but is 

restricted mainly to the periphery of the region covered by the available gravity 

data (the majority of the deep seismic transects are situated norma~ to the ocean-

continent boundary). The continuous, three-dimensional image of the Moho 

derived from the gravity data supplements the seismic data and provides 

information over a greater geographic area. 

1.1 GEOLOGY 

' 

The following geological summary is based largely on the work of Grant and 

McAlpine (1990). 

The Grand Banks of Newfoundland form the continental shelf to the south and 

east of the island. They are bounded by the northeast Newfoundland Shelf and 

Slope (DeSilva, 1999). To the south and east, the Grand Banks terminate at the 

continental slope and rise. They are separated from Flemish Cap, a positive 

continental fragment of Hadrynian age (King et al., 1985}, by Flemish Pass Basin 

and from the Scotian Shelf to the southwest by the Laurentian Channel. Water 

depths on the Grand Banks are generally less than 500 m except at Flemish 

Pass, a bathymetric trough where water depths exceed 1100 m. Figure 1.2 
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shows the bathymetry of the region . The Pass is underlain by the Flemish Pass 

Basin (DeSilva, 1999). 

The present structure of the Grand Banks results from a series of complex 

rifting episodes during the Mesozoic that migrated northward along the margin of 

eastern Canada. The Grand Banks are underlain by rocks of the Appalachian 

Orogen, specifically those of the Avalon and Meguma terranes, and contain 

basins, typically half-grabens formed by Mesozoic rifting events (Tankard and 

Welsink, 1988; Enachescu, 1987) separated by basement highs. The basins 

contain Mesozoic and older sediments and are roughly parallel to the structural 

trend of terranes of the Appalachian Orogen exposed on the island (Grant and 

McAlpine, 1990), therefore they may be related to the reactivation of pre-existing 

Paleozoic and Precambrian structures. 

1 . 1. 1 Pre-Mesozoic Geology 

Beginning in the late Precambrian, rifting of Grenvillian basement accompanied 

by profuse igneous activity initiated the development of the Iapetus Ocean 

margin. This ancient margin is recorded in the rocks of western Newfoundland. 

In the late Early Ordovician, the destruction of the margin was precipitated by the 

closure of the Iapetus Ocean. This led to the development of the Appalachian 

Orogen, a succession of accretionary episodes that continued throughout the 

Paleozoic (Haworth, et al. , 1994). The orogen in Newfoundland and on the 

Grand Banks is composed of five terranes (Williams, 1979; Williams, et al. , 
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1988). From west to east they are the Humber, Dunnage, Gander, Avalon, and 

Meguma terranes (Figure 1.3). 

The majority of the Grand Banks is underlain by rocks of the Avalon terrane 

which is the largest of the tectono-stratigraphic zones into which the rocks of the 

Appalachian Orogen are divided (Figure 1.3). The Avalon terrane is composed 

primarily of belts of unmetamorphosed and undeformed late Precambrian 

volcanic and sedimentary rocks separated by faults. These are overlain by white 

quartzite which, in tum, is overlain by lower Cambrian fossiliferous shales 

exhibiting Atlantic trilobite faunas (Williams, 1979). The southern Avalon terrane 

is underlain by Precambrian mafic and ultramafic units (Miller, 1987). The 

Avalon terrane may be an amalgam of several terranes which were joined 

together before being accreted to the Gander terrane (Keppie, 1985; Keppie, et 

al. , 1989). During the Precambrian, faults between the sedimentary and volcanic 

belts were active. These faults were reactivated during the Paleozoic and 

Mesozoic. The Mesozoic basins of the Grand Banks formed within these pre

existing Precambrian sedimentary basins (Haworth, et al. , 1994). 

The Meguma terrane on the Grand Banks occupies a smaller area south of the 

Collector Anomaly, a prominent magnetic feature on the southern Grand Banks. 

It consists of the Meguma Group, which is a conformable, 13 km thick sequence 

of Cambrian-Ordovician sediment, consisting of a greywacke unit overlain by 

shale. The Meguma Group is then overlain by an assemblage of undated 

volcanic and sedimentary rocks and covered by Devonian sediments (Williams, 

1979). 
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1.1.2 Mesozoic and Cenozoic Geology 

Figure 1.4 illustrates the stratigraphic relationships between major units and 

unconformities in key regions of the study area as well as their chronologie 

relationship to major tectonic events. 

In the Early Jurassic, rifting between Nova Scotia and Africa (Figure 1.5(a)) 

initiated the development of northeast-southwest trending basins on the southern 

Grand Banks. Sediments deposited within the basins over pre-Mesozoic 

basement at this time include red clastics of the Eurydice Formation, evaporites 

such as halite of the Osprey and Argo Formations, and carbonates such as 

oolitic limestones and anhydritic dolomite of the Iroquois Formation (Figure 1.4). 

Occurrences of basalt in drill cores on the Grand Banks and diabase dykes 

located on the Avalon Peninsula of Newfoundland that are about 200 Ma old 

(Hodych and Hayatsu, 1980) suggest that there was volcanic activity related to 

the tensional stresses between Nova Scotia and Africa and to the imminent sea 

floor spreading in the central North Atlantic (Pe-Piper and Jansa, 1986). Rifting 

between Nova Scotia and Africa was terminated north of the Newfoundland 

Fracture Zone at the southwest margin of the Grand Banks (Figure 1.6). 

Between the Early and Late Jurassic, the region underwent epeirogenic 

subsidence during which shallow marine shales and limestones were deposited 

in a series of regionally gradational formations. Shale of the Downing Formation 

was deposited in this low-energy epeiric sea environment and is conformably 
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overlain by fine- to medium-grained quartzose sandstone with secondary 

amounts of shale, coal, and oolitic limestone of the Voyager Formation - marginal 

marine sediments with low accumulation rates, indicative of a shallowing of the 

epeiric sea. The Rankin Formation, consisting of Upper Jurassic oolitic 

limestone and minor amounts of fine-grained quartz sandstone rests conformably 

upon the Voyager Formation (Figure 1.4). 

During the Late Jurassic, upwarping of the Grand Banks, referred to as the 

Avalon Uplift (Figure 1.6), initiated rifting between Iberia and North America at 

the southeastern Grand Banks (Figure 1.5(b)). The deposition of rift-related 

clastic sediments replaced that of epeirogenic carbonates and shales. Medium-

to coarse-grained brown and red sandstones and conglomerates of the Eider 

Formation were deposited in this rifting environment while toward the northern 

Grand Banks, shallow water shales and siltstones of the Nautilus Shale were 
~ 

deposited. Volcanic activity associated with continental breakup formed the 

strongly magnetic Newfoundland Ridge (Figure 1.2) and the Newfoundland 

Seamounts southeast of the Grand Banks (Figure 1.6) (Sullivan and Keen, 

1977). Hot-spot volcanism formed the J-Anomaly Ridge (Tucholke and Ludwig, 

1982; Figure 1.2), also called Anomaly MO. North American-Iberian separation 

was completed to the stage of sea floor spreading by the late Early Cretaceous. 

Rifting between western Europe and North America at the northern Grand 

Banks (Figure 1.5(c)) terminated at the Charlie-Gibbs Fracture Zone (Figure 1.6) 

northeast of Newfoundland and culminated in their separation about the mid-

Cretaceous. There Is evidence of volcanism on the southern Grand Banks along 
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the Avalon-Meguma contact around this time (Gradstein et al. , 1977; Jansa and 

Pe-Piper, 1986). By the end of the Early Cretaceous, igneous activity on the 

Grand Banks had ended, indicating that tensional stresses in the area had 

relaxed. Stratigraphically, there is a transition from rift to drift sediments (Figure 

1.4). Turonian and Cenomanian sediments consisting predominantly of shale 

with lesser amounts of siltstone and sandstone are found in the Dawson Canyon 

Formation. After the separation of Europe and the northern Grand Banks, 

sediment supply was irregular. When the rate of thermal subsidence overtook 

that of sedimentation, deep water chalky limestones such as those of the 

Wyandot Formation and the Petrel Member of the Dawson Canyon Formation 

were deposited. 

Subsequent to the formation of the eastern Canadian margin, the Grand Banks 

experienced constant subsidence with some disruption of Tertiary sediments by 
~ 

the migration of subsurface salt. During the Tertiary, however, subsidence was 

extensive, particularly in the northern Grand Banks (Keen, et al. , 1987a). 

Sediment supply had once again declined by the Eocene. Throughout the 

Tertiary, deep water shales of the Banquereau Formation were deposited. 

During the Middle to Late Miocene, the Grand Banks may have been subaerially 

exposed due to a drop in sea level prior to the widespread glaciation of the 

Pleistocene. 

Progressing northward, the sedimentary basins of the Grand Banks exhibit a 

change in trend from northeast-southwest (e.g. Whale, Horseshoe, Carson and 

southern Jeanne d'Arc Basins) to north-south (e.g. northern Jeanne d'Arc and 
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Flemish Pass Basins), The change in trend reflects the change in rift strike from 

the northeast-southwest trending rift zone between the southern Grand Banks 

and Iberia to the north-south trending rift zone between the northern Grand 

Banks and Europe (Figure 1.6). Separating pre-rift metasediments of Paleozoic 

and Precambrian age and syn-rift sediments of Mesozoic age from post-rift 

sediments within these basins and across the Grand Banks is the Avalon 

Unconformity (Jansa and Wade, 1975), a prominent geological feature of the 

region associated with the Mesozoic Avalon Uplift. The Avalon Unconformity is a 

principal seismic marker (Keen and de Voogd, 1988) covered by Upper 

Cretaceous and Cenozoic sediments which thin landward but become very thick 

toward the northeast, particularly in the East Newfoundland Basin. Over the 

Carson, Horseshoe, southern Jeanne d'Arc and Whale Basins, and surrounding 

platformal areas, depth to the Avalon Unconformity stays fairly constant. Its 

depth over the Jeanne d'Arc Basin depocentre, though, is increased. 

Progressively younger sediments are found beneath the subsurface peneplain to 

the southwest and northeast representing 50 to 60 Ma of uplift, deformation and 

erosion. The Avalon Unconformity is actually several unconformities associated 

with no less than four Late Jurassic to early Late Cretaceous erosional events. 

They include the Kimmeridgian, Barremian, Aptian, and Cenomanian 

unconformities (Figure 1.4). 

The deep crust in the study area is relatively homogeneous (Haworth, et al. , 

1994). Results from seismic refraction surveys reveal that the continental crust 

below the southern Grand Banks has a fairly uncomplicated structure, which 
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consists of a main crustal layer that thins toward the southwestern margin. 

Studies of syn- and post-rift subsidence (Keen and Dehler, 1993; Dehler and 

Keen, 1993) show that the crust of the Grand Banks has been thinned and 

stretched, severely in some regions. Crust of the northeastern Grand Banks has 

undergone considerable extension, forming the broad Orphan Basin. Values for 

the stretching parameter f3 (i.e. the amount of stretching or thinning, where f3 = 1 

indicates no stretching while increasingly large values of f3 tend toward infinite 

stretching) in this region are approximately 2.0. In the central Grand Banks 

region, i.e. west of Flemish Cap and including the northern Jeanne d'Arc Basin, 

the crust has been moderately thinned with f3 about 1.35 (Enachescu, 1988). 

Toward the southern Grand Banks, f3 = 1.59 (Enachescu, 1988). East-dipping 

deep crustal faults alongside Whale and southern Jeanne d'Arc Basins seen on 

deep multichannel seismic lines have been suggested by Keen, et al. (1987a) to 

be planes of extension extending to Moho depths (e.g. simple shear; Wernicke, 

1985) that facilitated the development of these basins. 

1.2 PREVIOUS GEOPHYSICS 

In the 1950s potential field, seismic refraction and in situ sampling surveys of 

the North American margin were conducted by both Canadian and American 

governments as well as by university research teams (Grant and McAlpine, 

1990). The discovery of large quantities of sediments on the Grand Banks 

interested the petroleum industry. To date, more than 700 000 km of exploration 
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seismic data have been acquired and at least 158 wells have been drilled 

(DeSilva, 1999). 

In 1964 the Earth Physics Branch carried out the first published gravity survey 

of Newfoundland (Weaver, 1967, 1968). The Atlantic Geoscience Centre has 

carried out marine gravity measurements on the Grand Banks for a number of 

years (see Figure 1. 7). Comprehensive gravity surveys were restricted to the 

southern and central Grand Banks as well as the Gulf of St. Lawrence during the 

latter half of the 1960s. From 1982 to 1984 surveys concentrated on the 

continental shelves and margins of Newfoundland and Nova Scotia. The 

National Gravity data base, maintained by the Geological Survey of Canada, 

contains edited and adjusted gravity values from the offshore region of 

Newfoundland as well as from the rest of the country. Memorial University 

researchers collected gravity data on land and led several underwater gravity 

surveys in the near shore area (Miller, 1982a; Miller, 1987). 

Deep crustal seismic data have been collected and interpreted on the Grand 

Banks and across the margin (Keen et al. , 1987a; Keen et al. , 1989; Marillier et 

al. , 1994). Figures 1.8 and 1.9 illustrate the deep seismic reflection and 

refraction coverage, respectively, across the Grand Banks and around 

Newfoundland. The Geological Survey of Canada and the Lithoprobe Project 

have gathered 2400 km of deep multichannel seismic reflection data (Keen et al. , 

1989). In 1984, more than 1 000 km of data were recorded northeast of 

Newfoundland as part of Lithoprobe East (Keen et al. , 1987a), as were wide

angle reflection and refraction data across the Appalachian orogen in 1991 
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(Marillier et at., 1994). As part of the Frontier Geoscience Project, the Geological 

Survey of Canada collected over 6800 km of deep reflection seismic data off the 

coast of eastern Canada between 1984 and 1990. DeChassy et al. (1990) 

presented a compilation of deep seismic profiles across conjugate margins of the 

North Atlantic, which were used here for comparison with resultant gravity 

models. Reid and Keen (1990) and Reid (1993, 1994) investigated the deep 

crustal structure of the Grand Banks using seismic refraction techniques. 
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Figure 1.1 (a). Migrated depth section along Refiection Line 84-3. Location shown in Figure 1.7. From DeChassy, et al. (1990). 
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Figure 1.7. Track plot showing the coverage of marine gravity measurements off the coast of 
eastern Canada. (From Verhoef, et al., 1987). 
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Figure 1.9. Location of deep seismic refraction lines in the Grand Banks region. (Modified from a 
Geological Survey of Canada web page containing an East Coast of Canada Refraction 
Catalogue for surveys between 1983 and 1992 inclusive; 
http://agc.bio.ns.ca/pubprod/ecref/index.html). 
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CHAPTER 2: DATA PROCESSING SEQUENCE 

The Bouger anomaly data for the onshore-offshore portion of the Avalon 

terrane beneath eastern Newfoundland and the Grand Banks were subjected to 

a sequence of processing techniques discussed in this chapter to determine 

Moho topography. The gridding, display techniques and preparatory processing 

of the data for Fourier transformation are also discussed. 

Since the long-wavelength (1 00 - 200 km) signal of the Grand Banks 

sedimentary basins may interfere with the long-wavelength (> 1 00 km) signal from 

sources at Moho depths, the gravitational effect of these basins was modelled 

and the modelled field subtracted from the observed gravity field. This was 

accomplished using a three-dimensional modelling procedure devised by Talwani 

and Ewing (1960) with density information obtained from well logs and geometry 

information obtained from depth to basement contour maps. 

The resultant gravity field was low-pass filtered in an effort to determine an 

ensemble average depth to Moho. This depth, along with other external 

information regarding Moho depth and crustal density derived mainly from 

seismic data and well logs was subsequently used to invert the data to derive a 

contoured map of Moho topography. 

Each of these processing steps is discussed in detail in the following sections. 
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2.1 THE DATA 

Figure 2.1 shows the Bouger gravity anomaly map for the Grand Banks and 

Avalon Peninsula region. The data are comprised of land, underwater, and 

shipborne gravity measurements. On land, gravity data were collected by the 

Dominion Observatory during the 1960s (Weaver, 1967, 1968). The data were 

collected at a spacing of approximately 13 km using the G7 4 and G9 LaCoste 

and Romberg gravimeters and two Wallace and Tiernan altimeters. Uncertainty 

in the Bouger anomaly values is approximately ±2 mGal with the greatest 

uncertainty attributed to the large error in elevation measurements 

(corresponding to ±0.9 mGal; Weaver, 1967). 

From 1979 to 1986, Memorial University of Newfoundland, in collaboration with 

the Geological Survey of Canada, collected land gravity observations along the 

roads of the Avalon Peninsula with a mean spacing of 2.5 km, and by helicopter 

with a spacing of 5 km. Gravity measurements were made with a Sharpe CG2 

gravimeter, while elevation measurements were made using Wallace and 

Tiernan altimeters (Miller, et at. , 1985). The data were tied to the ISGN71 base 

system by base readings at St. John's. At each station, the Bouger anomaly was 

calculated using the 1967 International Gravity Formula with a crustal density of 

2.67 g/cm3
. Uncertainties in the elevation measurements of ±2 m and in the 

horizontal position of ±50 m produce an associated uncertainty in the Bouger 

anomalies of ±0.4 mGal (Miller, et at. , 1985; Miller, 1987). 
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Underwater gravity measurements were made within the major bays of the 

Avalon Peninsula (within 30 km of the coast) as part of a joint survey of Memorial 

University of Newfoundland and the Geological Survey of Canada from 1982 to 

1986. The data were collected at a spacing of approximately 6 km using two 

LaCoste and Romberg underwater gravimeters (Miller, et al. , 1985). Water 

depths were determined using the ship's depth sounder and horizontal positions 

were determined using a Mini-Ranger system consisting of three transponders 

located on shore. The Bouger anomalies were calculated in the same way as for 

the aforementioned land gravity data but a water density of 1 . 03 g/cm3 was 

incorporated. The data were tied to the ISGN71 base network using St. John's, 

Newfoundland and Dartmouth, Nova Scotia base stations. Uncertainty in the 

water depth is approximately ±1 m while uncertainties in the horizontal positions 

of (i) the ship's antenna, and (ii) the underwater gravimeter with respect to the 

ship's antenna are approximately ±25 m each, giving a cumulative uncertainty in 

the horizontal position of the gravimeter of ±50 m. Therefore, the Bouger 

anomalies have an associated uncertainty of ±0.2 mGal. 

Dynamic shipboard gravity data were collected by the Atlantic Geoscience 

Centre and the Geological Survey of Canada under the auspices of the 

Department of Energy, Mines and Resources (see Figure 1. 7). From Davis 

Strait, east of Baffin Island, to the Gulf of Maine, the Atlantic Geoscience Centre 

and the Geological Survey of Canada have recorded approximately 2.3 million 

observations on 73 cruises spanning 21 years (Verhoef, et al., 1987; Woodside 

and Verhoef, 1989). Initially, the position of the ship was determined using 
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Survey Decca in the ranging mode which has an accuracy of 50-150 m. Long 

Range Navigation-C (LORAN-C) in the ranging mode replaced the Survey Decca 

after 1972. With the use of the Navy Navigation Satellite System (NNSS) and 

the Bedford Institute of Oceanography Integrated Navigation System (BIONAV), 

the accuracy of the ship's position was about 200 m (Verhoef, et al. , 1987). Prior 

to 1981 , the gravity measurements were made with the Graf-Askania Gss2 sea 

gravimeter. It was replaced with the Bodenseewerk Geosystem Kss30 

gravimeter. The LaCoste and Romberg S and SL sea gravimeters and the Graf

Askania Gss3 have also been used on occasion. (Verhoef, et al. , 1987). 

All the data were added to the National Gravity data base maintained by the 

Geological Survey of Canada. Crossovers, numbering over 21 000, were 

adjusted using a least squares network adjustment. The resulting data set has 

an accuracy of approximately 2.5 mGal (Verhoef, et al. , 1987; Woodside and 

Verhoef, 1989). 

National gravity data base information for eastern Canada including the 

offshore study area (up to the late 1980s) was obtained by Hugh Miller from the 

Geological Survey of Canada in the late 1980s (H. Miller, pers. comm., 2000). A 

polygon containing the study area was defined and the individual gravity data 

(i.e. Bouger and free-air anomalies, position) extracted for each gravity 

observation point located within the polygon. This resulted in a working data 

base of approximately 60 000 points. To facilitate processing, these were 

interpolated onto a regular 5 km grid using a simple inverse distance weighting 

procedure in the Geosoft Oasis Montaj geophysical software package. The 
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resulting gridded data were used by Miller and Singh (1995) and provided for use 

in this thesis. 

The data extends from UTM 320000 E (59° 20' W) in the west to UTM 1365000 

E (45° 30' W) in the east and from UTM 4935000 N (44° 20' N) in the south to 

UTM 5750000 N (51 o 45' N) in the north. Before being used in this thesis, Miller 

clipped the data tens of kilometres landward of the inferred ocean-continent 

boundary, which is delineated by a strong seaward positive gravity gradient (H. 

Miller, pers. comm., 2000). The data are bounded as follows: west of the ocean

continent boundary from about UTM 1250000 E, 5250000 N (approximately 47° 

N, 47° 08' W) to about UTM 1100000 E, 4950000 N (approximately 44° 30' N, 

49° 30' W); north of the Collector Anomaly, from about UTM 11 00000 E, 4950000 

N (approximately 44° 30' N, 49° 30' W) in the east to UTM 325000 E, 5125000 N 

(approximately 46° 15' N, 59° 15' W) in the west; near the Gander-Avalon 

Terrane boundary, i.e. from about UTM 325000 E, 5125000 N (approximately 46° 

15' N, 59° 15' W) in the south to about UTM 875000 E, 5750000 N 

(approximately 51° 45' N, 51° 30' W) in the north; and around the western edge 

of the East Newfoundland Basin in the north. This clipping was undertaken to 

remove the gravitational edge effect due to the transition from continental to 

oceanic crust and to ensure only the Avalon terrane was considered. 

The data were projected onto the map using the Universal Transverse 

Mercator (UTM) Zone 21 North projection method using the North American 

Datum (1927) (NAD 27). 
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The data covers the onshore-offshore region underlain by the Avalon Terrane 

of the Appalachian Orogen. The negative Bouger gravity anomalies in the 

offshore region are associated with sedimentary basins. In particular, the Jeanne 

d'Arc Basin on the northeastern Grand Banks is identified by an extreme gravity 

low (approximately -39 mGal) located near UTM 1125000 E, 5150000N (Figure 

2.1 ). Generally, basins that have developed within continental crustal fabric 

exhibit negative gravity anomalies whereas basins that developed over the edge 

of the continental shelf generally exhibit positive anomalies, occasionally with 

flanking lows (Woodside and Verhoef, 1989) suggestive of a locally 

uncompensated load. The small areas of positive gravity anomaly on the interior 

of the Grand Banks correspond to platform regions. The Flemish Cap is 

identified by a large positive anomaly (40 to 50 mGal) centred on UTM 1333000 

E, 5275000 N. Immediately east of the Avalon Peninsula is an elongate negative 
~ 

(approximately -22 mGal) Bouger anomaly (extending from about 850000 E, 

5200000 N UTM to 825000 E, 5300000 N UTM) likely produced by a 

sedimentary basin comprised of Precambrian to Siluro-Devonian sedimentary 

rocks (Miller, et al. , 1985). The boundary between the Gander and Avalon 

Terranes is expressed as the linear gravity anomaly in the western portion of the 

field extending from approximately UTM 875000 E, 5650000 N in the northeast to 

UTM 625000 E, 5350000 N in the southwest. 
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2.2 PRE-PROCESSING AND DISPLAY 

Advances in imaging software and computational efficiency have made 

processing and presentation of potential field data much simpler. Computers 

with larger memories can store and process enormous amounts of data. The 

increased speed and imaging capability of contemporary computers allow the 

user to immediately view the effects of processing on data sets. Dynamic links 

between software packages allow different geophysical data to be integrated 

smoothly for a more comprehensive interpretation. 

A limitation of computer-aided processing is that the data must be regularly 

spaced on a two-dimensional grid to perform such operations as Fourier 

transformation. The irregularly spaced nature of gravity field data requires that it 

be interpolated onto a regularly spaced grid. 

All gravity field and topography maps displayed here were created using the 

GEOSOFT Oasis Montaj Data Processing and Analysis software package on a 

Windows platform. The gravity data were interpolated onto a regular grid with 5 

km cell size in both horizontal directions using the minimum curvature algorithm 

of Oasis Montaj which fits a smooth minimum curvature surface to the observed 

values. A two-dimensional cubic spline is fitted to the data by solving its 

equivalent differential equation. The solution is constrained by forcing the 

surface to adopt the observed values at the observation points and by minimizing 

the total squared minimum curvature. This is accomplished by setting the partial 

derivatives of the total squared curvature equal to zero. A set of finite difference 

• 
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equations expressed in terms of grid spacing and grid point values is produced 

that relate all of the surrounding grid points within a specified search radius, 

weighted by their inverse distance from the central grid point. The set of 

equations is solved iteratively until the smoothest possible surface is determined 

(Briggs, 197 4 ). The advantage of the algorithm is that it readily accepts 

randomly spaced data sets. However, it is limited by the fact that the gridded 

values are interpolated estimates rather than precise values. 

There are several variations on the presentation of potential field maps. The 

data may be contoured with lines drawn at selected intervals or at multiple 

intervals. Data ranges may be assigned specific colours to produce colour-

contoured maps. The colour tables available in Oasis Montaj for application to 

gridded data sets range from grey-scale to full colour spectrum. Colour scaling 

can be linear or equal area. In linear colour scaling data values are divided 
~ 

linearly and each division is assigned a colour. With equal-area scaling the 

statistical histogram of data values is equalized so that each colour occupies 

equal area on the map. While equal-area colour scaling is useful for displaying 

data sets with large dynamic ranges, linear colour scaling gives a more accurate 

representation of the distribution of the data values. 

2.3 MODELLING 

The main concern in the interpretation of potential fields is identification of the 

source producing the observed field. A given potential field can be generated by 
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an infinite number of source distributions making interpretation of the field 

ambiguous. Modelling the potential field data is a key approach to interpretation. 

Three methods of modelling potential field data are two-dimensional (2-D) 

modelling, two-and-a-half-dimensional (2%-D) modelling, and three-dimensional 

(3-D) modelling. 

Two-dimensional modelling is applied in situations where the geological 

structure of interest is linear. For example, dykes, continental margins, and 

fracture zones are typically longer than they are wide and produce lineated 

magnetic and gravity anomalies (Blakely, 1995). For two-dimensional modelling 

to produce reliable results, the length to width ratio of the anomaly should be 

significantly large. Peters ( 1949) suggested a ratio of 3:1 as a suitable 

prerequisite for two-dimensionality in estimating depth to magnetic sources. 

Miller (1982b) used a length to width ratio of 5:1 to model the thickness of the 
~ 

Holyrood Pluton in Newfoundland, while Haworth and Miller (1982) used a 6:1 

ratio to model oceanic rocks beneath Notre Dame Bay, Newfoundland. Grant 

and West (1965) suggested that a ratio of 20:1 was needed to model near-

surface ribbon-like structures. If the structure is sufficiently linear then it is 

treated as infinite in the direction parallel to length. In the plane perpendicular to 

length, the body is often modelled as an n-sided polygon (Talwani, Worzel, and 

Landisman, 1959; Won and Bevis, 1987) but can also be represented by 

rectangles of various size (Tanner, 1967) or triangular facets (Pedersen, 1978). 

For.structures that do not have an appropriate length to width ratio but are still 

roughly linear, end corrections can be applied (Rasmussen and Pedersen, 1979) 

33 



to accommodate their finite extent. This is two-and-a-half-dimensional modelling, 

which is applied in situations where the conditions of two-dimensionality cannot 

be adhered to. 

For structures that do not meet the criteria of two- or two-and-a-half-

dimensionality, three-dimensional modelling is used. An areal array of data 

values is required for three-dimensional modelling. The source distribution can 

be approximated by stacked horizontal laminae (Talwani and Ewing, 1960; 

Jacobi, 1967), cubical blocks (Mufti, 1975), rectangular prisms (Nagy, 1966; 

Cordell and Henderson, 1968), or polyhedra (Paul, 1974; Coggon, 1976; Barnett, 

1976). 

2.3.1 MODELLING THE GRAVITY FIELD OF THE SEDIMENTARY BASINS 

~ 

The primary geological features of interest on the Grand Banks are the 

Mesozoic rift basins, half-grabens resulting from the extension and continental 

breakup that precipitated the formation of the Atlantic Ocean. Examination of the 

gravity anomaly map of the region (Figure 2.1) reveals that the gravity anomalies 

associated with the sedimentary basins have wavelengths on the order of 1 00 to 

200 km. Since the purpose of this study is to isolate the long-wavelength (>100 

km) effects of Moho topography, considerable problems can arise in attempting 

to distinguish Moho-related effects from basin effects. Therefore, the gravity 

effect of the sedimentary basins was modelled and subtracted from the observed 

gravity field. The model effect was calculated at each data point using the 

34 



method of Talwani and Ewing (1960), i.e. using stacked polygonal laminae, since 

depth to basement contour maps that outline the approximate shape of the 

basins were readily available. The FORTRAN program used is given in 

Appendix A. It was modified from an existing program provided by Hugh Miller 

(1970). 

The underlying premise is that any three-dimensional body can be defined by a 

set of contours. Each contour defining the body is replaced with a horizontal, n

sided irregular polygonal lamina (Figure 2.2) and the gravity anomaly of the 

lamina may be calculated at any external location. 

A three-dimensional body M bounded vertically at z,op and z 6ouom is shown in 

Figure 2.2 with respect to a left-handed Cartesian coordinate system. The origin 

of the coordinate system, P , is the point at which the gravity anomaly is to be 

calculated. Letting the polygonal lamina ABCDEFGH of infinitesimal thickness 

dz replace a contour on the surface of M at a depth z below the origin, the 

gravity anomaly at P due to ABCDEFGH is (after Talwani and Ewing, 1960) 

~=Vdz, 

... (2.1) 

where V is the gravity anomaly caused by the lamina per unit thickness. V is 

expressed as a surface integral over the surface of ABCDEFGH but can be 

rewritten as two line integrals along the boundary of the lamina: (after Talwani 

and Ewing, 1960) 
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... (2.2) 

where z, f/1' , and r are the cylindrical coordinates describing the boundary of the 

lamina. As illustrated in the second part of Figure 2.2, V can be expressed in 

terms of the geometry of ABCDEFGH: (after Talwani and Ewing, 1960) 

V Gi~{ . _1 z cosO; . _1 z cosfjJ }] 
= ~ lf/;+1 -lf/; -stn ~ 2 2 +stn ~ 2 2 . 

1=1 P; +z P; +z 

... (2.3) 

Integration from z bottom to ztop gives the total gravity anomaly caused by body M: 

(after Talwani and Ewing, 1960) 

Ztop 

flgtot = Jvdz. 

. .. (2.4) 
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For processing by computer, V can be expressed in terms of the coordinates of 

two consecutive vertices of the polygonal lamina, i.e. (x;~Y;,z) and (x;+1,y;+1,z): 

(after Talwani and Ewing, 1960) 

where p is the volume density of the lamina, 

1i,i+l 'i,i+l r' 
1 

J; = X; - xi+l . xi+l + Y; - Yi+l Yi+l 

7i;+l 'i+l 1i,i+l 'i+l I 

r =+~x? +y2 
I I I 1 
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S = +I if P; is positive, 

S = -I if P; is negative, 

W = +I if m; is positive, and 

W = -I if m; is negative. 

. .. (2.6) 

The computer program calculates V for each of the laminae. The gravitational 

attraction due to the entire body is obtained by numerical integration of the effect 

of each lamina. Letting ~,V2 ,andV3 denote V at depths z1,z2,andz3, 

respectively, then (after Talwani and Ewing, 1960) 

Vdz-- V: 1 3 (3z -z -2z )+V 1 3 +V 1 3 (3z -z -2z) iz3 1 [ (z - z ) (z - z )3 
(z - z ) ] 

-I 2 3 1 2 3 21 3 
zl 6 (zl -z2) (z2 -z3)(z2 -zl) (z3 -z2) 

... (2.7) 

The effect of the entire body is obtained by integrating over successive groups 

of three depths. This process is repeated for all constituent bodies of the model. 

In this way, the gravitational attraction of all the bodies in the model can be 

calculated at any external location. 

Therefore, the information required by the program to calculate ~g is: (i) the 

coordinates of the points that define each contour of the body; (ii) the density of 
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the body; and (iii) the coordinates of the external points at which the anomaly is 

calculated. With these data, the program will output the calculated anomaly at 

each of the external input locations. 

The closeness of fit between the polygons and the contours of the body, as 

well as the precision of the numerical integration over all polygons, determines 

the accuracy of the modelling procedure. The shape of any contour can be more 

closely approximated by increasing the number of sides in the representative 

polygon. Likewise, the shape of any three-dimensional body can be more closely 

approximated by increasing the number of constituent laminae. The greater the 

number of sides per lamina and/or the more closely spaced the laminae are, the 

more accurate the resultant anomaly will be. Increasing the number of sides in a 

polygon, however, will increase the computation time. Taking into consideration 

the speed of computers available at the time of publication of this method (1960) 
~ 

as compared to the speed of those presently available, the problem of computing 

time becomes less critical. 

Talwani and Ewing (1960) compared the calculated anomaly due to a circular 

lamina with that of a 72-sided polygon (inscribed within the lamina) and found 

that the maximum difference occurred at the location of minimum separation 

between the lamina and the point of calculation. Even then, the difference 

amounted to less than one third of one percent of the total anomaly. Therefore, 

the closeness of fit between the contour and its polygon only becomes significant 

if the boundary of the polygon is near the point at which the anomaly is being 

calculated and, even then, only minimally so. 
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The accuracy of the numerical integration depends on the contour interval. 

The assumption that V is smoothly continuous between the contours is based 

on the assumption that the depth of the surface of the body is also smoothly 

continuous between the contours. Therefore, adding more contours between 

existing contours does not necessarily increase the accuracy of the method in 

determining the anomaly and only proves to be more labour intensive. However, 

the selected contour interval should be selected to ensure that the depth of the 

contours or the distances between them does not inordinately affect the 

calculated anomaly. 

2.4 FREQUENCY DOMAIN PROCESSING 

The application of frequency domain processing techniques to potential fields 

first appeared in a paper on the use of Fourier series in gravity interpretation by 

Tsuboi and Fuchida in 1937. 

Processing in the frequency domain has many applications in the interpretation 

of gravity anomaly data. They include enhancement or attenuation of features of 

the gravity field through analytic continuation, delineation of the extent of the 

source body via first and second vertical derivatives, and estimating source depth 

and geometry from spectral analysis of the potential field. Potential field data is 

processed more easily and efficiently in the frequency domain. 
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2.4.1 Fourier Transformation 

Conversion of a function from the space, or time, domain to the frequency, or 

wavenumber, domain is via the integral Fourier transform. Given a two-

dimensional function j(x.y), its Fourier transform is expressed as 

00 00 

F(k:c, ky)= J fJ(x,y)exp[-2Jri(kxx+kyy)]dyd.x 

... (2.8) 

where kx =2Jr 12 x and kY =2Jr 12 Y are wavenumbers of the function in units of 

radians per unit distance and F (kx, k) and j{x.y) form a transform pair, i.e. 

F(kx, ky) B j{xJJ) . (In one dimension, given the function j{x) , its Fourier 

transform is 

00 

F(k)= Jt(x)exp(-27cikx)dx 

... (2.9) 

and F (k) B f(x) .) 

Conversely, the inverse Fourier transform allows for conversion from the 

frequency domain to the space domain, i.e. given the function F (kx, kY) , 

41 



coco 

f(x,y)=ll4n- 2 J JF(kx, ky)exp[2n-i(kxx+kyy)]dkxdky. 

. .. (2.10) 

Transformations between the frequency and space domains are exact; that is, 

there is no loss of information during the conversion. This is a useful property 

since calculations performed in the frequency domain are more efficient. 

Operations such as continuation of the field (Bhattacharyya, 1967) and vertical 

and horizontal derivatives (Blakely, 1995) are simple linear relationships in the 

frequency domain. Convolution in the space domain corresponds to 

straightforward multiplication in the frequency domain. 

The integral Fourier transform is obtained from the integration over infinite 

space of a continuous, non-periodic function whose flanks asymptotically 

approach zero (Cordell and Grauch, 1982). If a function or its derivatives are 

discontinuous then the fit between it and its Fourier transform is poor 

approaching the discontinuity. As the order of the Fourier series increases, the 

area of misfit becomes increasingly large and is referred to as Gibb's 

phenomenon (Sheriff, 1973). However actual data sets are not infinite in extent 

so the discrete form of the Fourier transform (also referred to as the fast Fourier 

transform, FFT) is used. By convolving a function j{xJl) with a Dirac comb, a 

periodic function is generated. This function is then discretely sampled at evenly 

A 

spaced intervals to form a sequence, fj, J = 0,1, ... , N -1 where N is the number 
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of discrete samples. The fast Fourier transform is obtained by summing the 

sequence over the number of samples, i.e. (after Cordell and Grauch, 1982) 

N-1 

~ = ~· exp[-2Jri(k1 IN)], j , k = 0,1, ... ,N -1 
J={) 

... (2.11) 

Formulae relating geologic parameters of the source to the field function are 

derived using the integral Fourier transform but, in practice, use the discrete 

Fourier transform. While the discrete transform is more practical for the 

manipulation of real, finite data sets, its use generates a new set of difficulties. 

At zero wavenumber (i.e. the de level), the value of the discrete transform is 

lower than that of the integral transform. Since the de term of the integral 

transform, F(k = O) , is used to obtain the total anomalous Gaussian mass, M, in 

the case of gravity field interpretation (i.e. F (O) = 2nGM ), underestimation of this 

value will result in an underestimate of the total anomalous mass. This problem 

is resolved by the convolution of the original function with a Dirac comb to 

produce a periodic function as described previously since this phenomenon is 

most apparent when the function is simply sampled periodically (i.e., multiplied 

by a Dirac comb rather than convolved with it). 

A problem inherent in the discrete Fourier transform is the presence of a high-

frequency tail (Cordell and Grauch, 1982) in the spectrum of the function at large 

wavenumbers, which becomes more pronounced as wavenumber increases. 
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The tail is caused by sampling the actual data set only a finite number of times 

and is evidenced by the divergence of the discrete transform from the integral 

transform at large wavenumbers. Due to the inherence of the tail in discrete 

Fourier transformation, it is invariably found in the discrete spectra of real data 

sets. The problem is remedied to some extent by convolution of the function with 

a Dirac comb, which swings the tail closer to the value of the integral transform. 

In practical situations, however, the high-frequency tail is best treated as noise 

and, as such, should be filtered out. This is particularly important in processing 

applications that tend to amplify the signal at large wavenumbers, such as 

downward continuation and differentiation. 

2.4.2 Wavelength Filtering 

A filter is an operator that acts on an input data set in such a way as to produce 

a modified output data set. Filtering simply separates data into its component 

parts in an effort to distinguish valuable information from irrelevant information, 

i.e. noise. When the observed signal and the attendant noise can be 

differentiated in some fundamental sense, e.g. they have different spectral 

(§2.4.2.1) characters, then this is easily accomplished. However, if noise is 

embedded within the observed signal (as is most often the case), this proves to 

be more complicated. In the frequency domain, useful information is extracted 

by specifying frequency components in the data to be accepted, i.e. passed, or 
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rejected. Depending on the frequencies to be passed or rejected, a filter is 

referred to as a low-pass, high-pass, band-pass, or notch filter. 

Filters are characterized by their frequency responses - how they behave in 

the frequency domain at all frequencies. The frequency response, R(f), of a 

low-pass filter is as follows: (after Buttkus, 2000) 

{
lfor- fc < f < fc 

R,(f)= 
Ootherwise 

where f c is the cutoff frequency. For a high-pass filter: 

{
1 for fc < IJ1 

Rh(f)= 
Ofor- fc <f<fc · 

... (2.12) 

... (2.13) 

Band-pass and notch filters operate by passing or rejecting frequencies between 

11./ 11./ /min = fo -- and /max = fo +-, where 11./ = /max - j~ . The frequency 
2 2 

response of a band-pass filter is given by 

45 



{
1 for fmin < 111 < fmax 

~(f)= 
Ootherwise 

and that of a notch filter by 

-{Oforjmin <111 <fmax 
~(/)- h . . 

lot erwtse 

... (2.14) 

.. . (2.15) 

A potential field measurement taken at a single location is a composite of all 

subsurface sources. In other words, potential field data is broadband. Long-

wavelength components of potential fields are usually associated with both large 

coherent bodies near the observational surface (e.g. sedimentary basins, 

batholiths) and deeply buried sources whose surface expression is a broad 

anomaly. Short-wavelength components are associated with relatively small 

near-surface mass distributions and noise. 

This feature of potential fields allows sources to be discriminated by the 

wavelength of the anomaly they produce. Low-pass and high-pass filters 

distinguish the effects of deep, long-wavelength sources from shallow, short-

wavelength sources. Low-pass filters applied to data sets in the frequency 

domain will pass the low-frequency (long-wavelength) components of the field 

unaltered. The high-frequency content will be suppressed contingent on the 
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specified cut-off frequency. Similarly, high-pass filters will pass the high-

frequency (short-wavelength) content of a potential field and suppress the low-

frequency signals. However, an abrupt cut-off frequency will result in ringing 

(Gibb's phenomenon) in the filtered data. Properly designed, a low-pass filter will 

smoothly attenuate the data values through the transitional range between 

values that are passed and those that are suppressed. A low-pass cosine roll-off 

filter was used here which smoothly attenuates the data within a 'roll-off range. 

That is, frequencies less than the specified roll-off frequency (the frequency at 

which to begin attenuating the data), fr, are passed unaffected and frequencies 

greater than the cut-off frequency, f c , are eliminated. Data with frequencies 

between f r and fc are attenuated according to the function 

... (2.16) 

where n is the degree of the cosine function; the lower the degree, the more 

gradual the attenuation will be. A degree of n=2 was used here to ensure as 

sharp a cutoff as possible while eliminating ringing. 

To apply filters to a set of potential field data, it must be converted to the 

frequency domain using a fast Fourier transform algorithm. For transformation in 

Oasis Montaj, the gridded data must (1) be square (i.e. same number of data 

points in each of the two horizontal directions), (2) have no dummy values (i.e. no 
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absent data points), and (3) be periodic at its edges. This involves a series of 

preprocessing steps to prepare it for transformation. Trend removal followed by 

expansion of the gridded data and filling of the expanded area with extrapolated 

values will modify the data so it will meet these requirements. 

Trend removal is a form of regional-residual separation in which a polynomial 

function or surface is fitted to the regional potential field. The degree of the 

function depends on what information is to be derived from the data. It can refer 

to the mean value of the field or an nth-order polynomial surface. The removal of 

a low-order polynomial surface removes the regional field. For example, 

removing a zeroth-order polynomial surface subtracts a mean value from the 

observed field. Removing the first-order polynomial surface will highlight the 

general strike of the potential field while the second-order polynomial surface will 

outline more specifically the trend of the field. The removal of higher-order 

polynomial functions will resolve the residual, near-surface features of the 

potential field. The trend to be removed is estimated from either the edge points 

at the margin of the potential field or all the data points defining the field. Using 

the edge points tends to yield a more accurate representation of the regional 

field. Trend removal is an important step. If left in the data, an appreciable trend 

will cause the expansion and filling processes to introduce a step function in the 

expanded area to make the data periodic and will contaminate the low-frequency 

estimates. This step function may produce ringing in the data upon 

transformation to the frequency domain. 
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A problem that arises when transforming the data is the appearance of a 

suspect periodicity which generates spurious fields near the edges of the data 

set (Parker, 1973). This is counteracted by adding a fringe of dummy values 

around the field to insulate it from these effects. To make the data smoothly 

periodic at its edges (and since the Fourier transform algorithm in Oasis Montaj 

does not accept dummy values) they are replaced by values extrapolated from 

the gridded data. 

To isolate the long-wavelength gravitational effect of the Moho, a series of low

pass filters was applied to the data, each having a progressively lower cut-off 

frequency. This technique has been used by Agarwal, et al. (1995) to identify 

sources lying at Moho depth, Lefort and Agarwal (1996) to delineate undulations 

in the Moho beneath the Paris Basin related to the European Alpine orogen, and 

by Lefort and Agarwal (2000) to identify a lineated crustal bulge beneath Brittany, 

France. 

The data was prepared for Fourier transformation by (1) removing the mean 

trend using edge points only, (2) expanding the grid to square dimensions, and 

(3) filling the expanded area with extrapolated values, allowing them to taper to 0 

mGal over 25 km (i.e. 5 times the grid spacing). This was found to suppress 

ringing in the data. The data was low-pass filtered using cut-off wavelengths of 

100, 150, 175, and 200 km to isolate progressively longer wavelength 

components of the field. 
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2.4.2.1 Depth Estimation 

Using angular frequency OJ= 2trf, the Fourier transform of a function can be 

written complexly as 

F(OJ) = A(OJ)exp(i<l>(OJ)] 

... (2.17) 

where A (OJ) refers to the amplitude spectrum of the function and <D( OJ) refers to 

its phase spectrum. The square of the Fourier amplitude spectrum is the power 

spectrum: 

... (2.18) 

Depth to causative mass distributions can be obtained by analyzing a plot of the 

logarithm of the power spectrum as a function of wavenumber (or frequency). 

Spector and Grant ( 1970) devised a method of estimating the depth to 

subsurface sources by applying a basic principle of statistical mechanics to the 

power spectrum of magnetic fields. The underlying assumption of their 

hypothesis is that the subsurface is divided into a number of ensembles of right 

rectangular prisms and the observed magnetic field is a synthesis of the 

anomalies produced by each of the ensembles. Each prism is described by a set 
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of parameters including physical dimensions (e.g. length, width, thickness), 

depth, and magnetization (or density contrast). These parameters possess 

probabilities that are shared by the entire ensemble. Separation of the effects of 

individual ensembles is based on the statistical postulate that the ensemble 

average of the power spectrum is equal to its mathematical expectation value 

(E). 

The expectation value of the power spectrum is expressed as the product of a 

depth extent factor, a depth factor, and a size factor. The depth extent factor, 

(1- exp(- tk))2 (where t is the depth extent of the ensemble) produces a peak in 

the spectrum. As the depth extent of the source ensemble increases, the peak 

shifts to smaller wavenumbers (Figure 2.3(a)). For an ensemble of prisms whose 

thickness is indiscernible, i.e. bottomless prisms, the peak occurs at k = 0 and, in 

- -
many cases, is not even visible. The depth factor, exp(-2~) (where h is the 

mean ensemble depth and k = ~kx2 + k/ ) dominates the power spectrum since 

it determines the rate of decay of the power spectrum with increasing 

wavenumber. As the depth of the sources increases, the peak moves toward 

smaller wavenumbers. The size factor, S\k), is a function of the length and 

width of the prismatic ensemble and attenuates the spectrum toward higher 

wavenumbers. 

The amplitude of the spectrum at any wavenumber is finite and approaches 

zero exponentially with increasing wavenumber (Bhattacharyya, 1967). The 

power spectrum exhibits intervals of wavenumber in which the logarithm of power 

varies approximately linearly with wavenumber. That is, the logarithm of power 
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decreases linearly with increasing wavenumber within discrete segments of the 

spectrum. The slopes of these linear segments are proportional to the depths to 

the top of the prism ensembles. 

Curvature of the power spectrum suggests that as many as five linear 

segments or ensemble depths can be identified (Con nard, et al. , 1983). The 

most commonly encountered situation is one in which there are two ensembles 

of sources - deep and shallow. These ensembles are recognizable by a change 

in the rate of decay of the power spectrum with wavenumber. As discussed 

above, the mean ensemble depth dominates the spectrum so a significant 

change in the depth of the ensembles results in a significant change in the rate of 

decay. 

The power spectrum generally has two components arising from two source 

ensembles. The deeper ensemble of sources is manifested in the small-

wavenumber end of the spectrum while the shallow ensemble manifests itself in 

the large-wavenumber end (Figure 2.3(b)). The tail of the spectrum is a 

consequence of high-wavenumber (high-frequency) noise. 

Depth estimates in Oasis Montaj were calculated using the radially averaged 

power spectrum. This is obtained by averaging the power in all directions for 

each wavenumber. The ensemble depth is calculated using the formula 

h = log(E) 
4.7r k . 
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Since the slope of the logarithmic power spectrum is log( E) I k , depth is obtained 

by dividing the slope by 47£. 

2.4.3 Vertical Derivative 

The gravitational effect of a subsurface distribution of mass varies as the 

inverse of the square of the distance between the mass and the observation 

point. The first vertical derivative varies as the cube of that distance; the second 

vertical derivative varies as the fourth power of the distance, and so forth. In this 

way, vertical derivatives tend to amplify the effects of shallow sources while 

attenuating the effects of deeper ones. This is evident in the calculation of 

vertical derivatives in the frequency domain. Given a potential field f{x,y;z) , the 

nth-order vertical derivative is calculated as follows, 

... (2.20) 

where F refers to the Fourier transform operator, F - I refers to the inverse 

Fourier transform operator and lkl = ~kx2 + k/ where kx and kY are the 

wavenumbers in the x- and y- directions, respectively. Clearly, multiplying the 

transformed potential field by lkl to any power will magnify short-wavelength 
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features of the potential field typically associated with near-surface sources while 

attenuating long-wavelength components. 

Higher order derivatives are unstable since they tend to amplify short

wavelength noise inherent in the potential field. First and second derivatives are 

the most commonly used. The first vertical derivative of the observed gravity 

field is required as input for the inversion algorithm used here. 

2.5 INVERSION 

The modelling procedure is performed in one of two modes: forward or inverse. 

With the forward method, an initial model of the source is constructed. The 

model anomaly is calculated and compared to the observed anomaly. If there is 

an unacceptable discrepancy between the two, the parameters of the model (i.e. 

geometry and/or density) are adjusted and the anomaly recalculated. The model 

parameters are adjusted after each comparison until there is reasonable 

agreement between the observed and calculated anomalies. 

Inverse modelling is an automated procedure. Upon construction of an initial 

model and calculation of its anomaly, the fit between the observed and calculated 

anomalies is computed. The model is then automatically adjusted based on the 

misfit. This automated procedure is repeated until the error between the 

observed and calculated anomalies has been minimized. The initial model can 

be provided by the user or can be derived automatically from the observed field. 
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When modelling a gravitational field, the general equation to be solved is 

(Condi et al. , 1999) 

... (2.21) 

where g is the vector of gravity field values, A is the matrix describing the 

geometry of the source, and j5 is the vector of source densities. In forward 

modelling, A and j5 are assumed and g is calculated and compared with the 

observed values. In inverse modelling, either j5 or A or both are unknown and 

must be determined from g. If it is only j5 that is unknown, the inverse problem 

- -
may be considered linear. If A or both A and j5 are unknown, the problem is 

non-linear. 

Depending on the chosen inversion scheme, attributes such as non-

uniqueness of the solution and uncertainty in the model at each step can be 

estimated - an advantage over forward modelling (Condi et al. , 1999). 

Furthermore, using inversion rather than forward modelling significantly reduces 

the time required to fit the data to a model. A drawback of the inversion method 

is that it is essentially a mathematical procedure based on the 'goodness of fit' 

between the observed and calculated anomalies and may not yield a geologically 

significant solution. 
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Inversion methods can be divided into three categories (Condi et al. , 1999): (1) 

iterative methods (Batt, 1960; Cordell and Henderson, 1968); (2) optimization 

methods (Li and Oldenburg, 1998; Barbosa et al. , 1999; Condi et al. , 1999); and 

(3) Fourier transform methods (Oldenburg (1974) based on Parker (1973); 

Gerard and Debeglia (1975); Chenot and Debeglia (1990)). 

Iterative methods involve modelling the source as a distribution of polygonal (in 

two dimensions) or polyhedral (in three dimensions) bodies, calculating the 

expected anomaly and comparing it to the observed anomaly. This procedure is 

repeated until a suitable model is produced. 

Optimization methods concentrate on optimizing the inversion process by 

modifying existing algorithms or designing new ones that try to mitigate some of 

the inadequacies inherent in inversion. 

Fourier transform methods generally involve solution of the following equation: 

F [updated source distribution]= F [f(x ,y , z)] - :t C- lkl)" F[initial source distribution] 
A n! 

... (2.22) 

where fl.x.Jl,z) is the potential field, F is the Fourier transform operator, and A is 

an expression describing the physical property (density) of the body. An initial 

estimate of the source distribution is substituted into the right-hand side of the 

equation and solved for a corrected model. The corrected model is then 

substituted in place of the initial model into the right-hand side of the equation 

and a more recent model calculated. This is repeated until a model is obtained 
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that is geologically sound and minimizes the error between observed and 

calculated anomalies. 

There are two major problems inherent in gravity modelling: non-uniqueness of 

the solution and poor depth resolution. There are an infinite number of mass 

distributions that will produce a given gravitational field. An infinitesimally thin 

layer of material located immediately below the surface is one such distribution, 

implying that there is no depth resolution inherent in the gravity field (Li and 

Oldenburg, 1998). As well , resolution of subsurface sources is restricted to 

features whose wavelength is comparable in magnitude to the source

observational surface distance because short-wavelength signals decay quickly 

with distance from the source. It is, therefore, important to incorporate as much 

external geophysical and geological information as possible into the inversion 

procedure to constrain the model. Seismic refraction and reflection 

measurements, borehole information, and results from prior gravity and magnetic 

studies will reduce the number of models whose gravitational field matches the 

observed field and will ensure that the final model is geologically reasonable. 

2.5.1 Inverse Modelling of Moho Topography 

The inversion algorithm used here was developed by Chenot and Debeglia 

(1990). The algorithm models the observed gravity anomaly as a horizontal 

contrast interface between two media. Above the interface, the density 

distribution can be represented by an exponential function and below it by a 
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density contrast map. In this application, the contrast interface is the Moho. 

Above the Moho, an exponential density function was used to describe the crust, 

and below it, a constant density was assumed for the mantle. 

The inversion is an iterative process that determines the topographic relief, 

Z(xJl) (where (xJl) are surface coordinates coincident with gridded data points) 

of the interface by calculating the depth of the Moho at each grid point. Local 

deviations of depth, calculated at each step, are fitted until a suitable model is 

generated. The majority of the operations used in the inversion scheme are 

performed in the wavenumber domain. Gerard and Debeglia (1990) considered 

the use of this technique in the wavenumber domain to be advantageous since it 

reduced the number of iterations required to arrive at an acceptable model. 

Calculations performed in the wavenumber domain are also more rapid. The 

FORTRAN inversion program is given in Appendix B. The Fast Fourier 

Transform subroutine used in the program is taken from a compilation of United 

States Geological Survey Potential Field Geophysical Software (Cordell, et al. , 

1992). 

Input data required for the depth inversion include the gravity anomaly field, the 

first vertical derivative field, the mean interface depth and the density contrast 

across the interface. The density contrast across the interface can be a constant 

or a one-, two-, or three-dimensional function. In this application, the density 

contrast, C, is a function of depth: 
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... (2.23) 

where G is the universal gravitational constant 6.672 xl0-11 N · m2 /kg2
, p 1(z) is 

the exponential density function for the region above the interface and p 2 is the 

density of the region below the interface. Here, 

Pt = Poo[l-Pexi(-y ZJ] 

.. . (2.24) 

where Poo is the asymptotic crustal density approaching mean Moho depth, Zm, 

Poo(l - /3) is the surface density, i.e. the top of the crustal layer, and r is the 

decay constant of crustal density with depth. 

If P is the number of observed gravity values comprising the gravity field and, 

given the gravity field, G, the mean interface depth, Zm, and the vertical gravity 

gradient field, M, then a transfer function, 1'z , can be calculated: 
m 

... (2.25) 
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T2 is a first-order approximation to the downward continuation of the gravity field 
m 

to the mean interface depth from which variations of depth about the mean are 

calculated: 

~ = Zm- (Tz )/C i = 1,2, ... ,P 
m 

... (2.26) 

where Z; is the depth calculated at each observation point i . An initial model, 

Z0 , is calculated using this formula. 

At each step of the inversion, the model gravity and vertical gravity gradient 

fields are calculated in the Fourier domain. The Fourier transform of the gravity 

field of the modelled interface can be expressed as the sum of (1) the effect 

(G1(kx,k) ) due to the density contrast between the mantle and the crustal layer 

immediately above the interface having density equal to the asymptotic crustal 

density, and (2) the effect (GzCkx,k) ) due to the density contrast between the 

crustal layer lying immediately above the interface and the main crustal unit 

whose density is described by an exponential function; i.e., 

G (kx,ky) = Gl kx,ky) + Gi kx,ky) 

= L Ap(kx,k) {A - poo}[(expf-2trftp)/2.nj] 
p 

+ L Ap(kx,ky)PdJ [(expt-(2trf + YJzp)1(2trf + n] 
p 

... (2.27) 
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where kx and kY are wavenumbers of the field in the x- and y-directions, 

respectively, f = ~ kx 
2 + kY 

2 
is the radial frequency, Z P is the depth of the 

interface at data point P , /3, r. p2 , Poo and P are as defined earlier, and 

... (2.28) 

~ and PY refer to the grid spacing in the x- and y-directions, respectively. The 

Fourier transform of the gravity gradient field of the modelled interface is given as 

M(kx,ky)==(.A - Ai'LAp(kx,ky) expE-2nfz P) ~ 
p 

... (2.29) 

Furthermore, residual functions !'1G and 11M corresponding to the difference 

between the observed and most recently calculated gravity and gravity gradient 

fields, respectively, are calculated. Using the residual gravity and gravity 

gradient fields, a residual transfer function, !),TN- t, is calculated: 

... (2.30) 
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where N is an index referencing the inversion step, and Z N-I are the most 

recently adjusted depth values. New adjustments to the depth values are made 

using the residual transfer function: 

... (2.31) 

At each iteration the root mean square (r.m.s.) error between the observed and 

calculated fields is determined. If (1) the r.m.s. error falls below a preset 

acceptable error, e , or (2) the number of iterations exceeds a preset limit, then 

the inversion process stops. 
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Figure 2.1. Bouger gravity anomaly map of the Avalon Terrane. 
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Figure 2.2 Geometrical elements involved in the computation of the gravity anomaly caused by a 
three-<Jimensional body. (From Talwani and Ewing, 1960). 
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CHAPTER 3: APPLICATION OF DATA PROCESSING STEPS 

The gravity effects of the Carson, Horseshoe, Whale, and Jeanne d'Arc Basins 

were modelled using the method of Talwani and Ewing (1960) in which the 

basins were represented by a stack of horizontal polygonal laminae (§ 2.3. 1 ). 

Estimation of the input parameter values for the modelling procedure, i.e. basin 

geometry and densities, are discussed in this chapter. The modelled gravity 

effect of the basins was removed from the observed gravity field to ensure that 

an unambiguous signal from below was obtained. 

An ensemble average depth to sources at Moho depth was derived from 

spectral analysis of the field after the application of a series of low-pass filters. 

This depth was used in the determination of the input parameter values for the 

inversion algorithm. 

Determination of the values used in the inversion program as well as a 

discussion of the pre-processing of the data prior to inversion are covered here. 

A synthetic data set was passed through the inversion program to evaluate its 

performance. 

3.1 THE DATA 

The Bouger anomaly map for the region is shown in Figure 3. 1. The data were 

extracted from the National Gravity data base of the Geological Survey of 

Canada and interpolated onto a regular grid with 5 km spacing. The data were 
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then projected onto the map using the UTM Zone 21 North projection method 

using the North American Datum (1927). 

The sedimentary basins are indicated on the map and are associated with 

negative anomalies. The positive northeastern edge of the field corresponds to 

the western margin of the East Newfoundland Basin. 

3.2 MODELLING THE GRAVITY EFFECT OF SEDIMENTARY BASINS 

To prevent the long-wavelength signal from the Mesozoic rift basins of the 

Grand Banks from masking that of the Moho, the gravitational attraction of each 

of the basins was modelled and subtracted from the observed field. The gravity 

effects of the Carson, Horseshoe, Whale and Jeanne d'Arc Basins were 

modelled and removed from the observed field to ensure that the remaining long

wavelength components of the field were originating from sources at depths 

comparable to Moho. As noted in Chapter 2, the modelling procedure is 

significantly improved by incorporating as much a priori information as possible. 

To effectively model the sedimentary basins, information regarding their density 

and geometry is necessary. The modelling procedure employed here (§ 2.3.1) 

models the basins as bodies comprised of stacked series of horizontal, polygonal 

laminae one kilometre thick (Talwani and Ewing, 1960). In some cases the basin 

has a second, less deep trough associated with it. These basins were modelled 

using two or more bodies that are themselves stacked; that is, they are vertically 

adjacent such that they replicate the shape of the basin. 
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3.2.1 Basin Geometry Contours 

A map of depth to Lower Paleozoic basement compiled by Wade, et al. (1977) 

was used to obtain geometry information for each of the modelled basins. The 

map series, comprising a region from approximately 46° W to 86° W and 38° N to 

64 o N, covers all of eastern Canada from the Grand Banks of Newfoundland in 

the east to the Great Lakes in the west and from the northeastern United States 

in the south to Baffin Island and western Greenland in the north. Information 

gathered from deep seismic reflection profiles, some deep refraction surveys, 

high resolution seismic surveys, well cores, well sample cuttings, and marine 

gravity and magnetic studies was incorporated to produce the depth to basement 

contour map with a contour interval of one kilometre. 

Figure 3.2 shows the portion of the depth to basement map used here. It 

indicates the locations of the Carson, Horseshoe, Whale, and Jeanne d'Arc 

Basins. The shape of each of the contour levels comprising a basin was digitized 

to produce a polygonal lamina. The latitude/longitude coordinates defining each 

contour line were converted to UTM coordinates in order to maintain the gravity 

anomaly field and basin geometry data sets at the same projection and 

coordinate system, thus co-registering the two data sets. When stacked, the 

laminae closely approximate the shape and volume of the basin. 
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3.2.2 Basin Densities 

An empirical relationship exists between compressional velocity through marine 

sediments and sedimentary rocks and their porosity that allows for estimation of 

other parameters such as density and elastic constants characteristic of the 

medium (Nafe and Drake, 1957a). The path lengths of compressional waves 

through sediments are usually large and the frequencies of these waves low, so 

that calculated velocities tend to be averaged over large thicknesses of sediment 

(Nafe and Drake, 1963). The compressional velocities of near-surface sediments 

can be readily measured, however, at depth, the exact relationship between 

velocity and porosity becomes uncertain. It can only be estimated based on 

repeated observation and laboratory experimentation. Therefore, velocities are 

estimated, giving further uncertainty to density values thus derived. For this 

reason, density values for each basin were derived from density logs taken at 

representative wells. 

The shallow structure of the Grand Banks has been investigated by at least 

158 wells (DeSilva, 1999). Using the Schedule of Wells for the Newfoundland 

Offshore Area compiled by the Canada-Newfoundland Offshore Petroleum Board 

(C-NOPB) in 1995 and maps delineating the locations of these wells (e.g. Figure 

6.1 of Grant and McAlpine, 1990), representative wells were chosen for each of 

the modelled basins (Figure 3.3). Density log information collected at these wells 

was used to assign an average density to each basin for input into the modelling 

program. For each well , the density log was sampled either every one metre or 
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1 0 feet, depending on the units used to measure depth on the log. Variations in 

the lithology result in variation in the observed density values so an average 

density, weighted by the thickness of rock exhibiting similar density values, was 

calculated for each kilometre of thickness, i.e. 

n 

LPl; 
- i=l p=-n--

Lti 
i=l 

... (3.1) 

where P; and t ; are the density and thickness if the ith interval, respectively. The 

average density of each body comprising the basins was used for input into the 

modelling program. This requires that the density as a function of depth be 

known at each contour level, i.e. for each lamina. The contours from the depth to 

basement map (Wade, et al. , 1977) were chosen to represent the configuration 

of the basin, not the stratigraphy. Therefore, the logical approach is to determine 

the average density. 

There are very few wells that go to basement and the ones that do are on the 

edges of the basins therefore there is an inherent uncertainty in the densities 

used. Furthermore, a slight change in the assumed basin density results in a 

significant change in the calculated anomaly. The total drilled depths of the 

selected wells are considerably less than the thicknesses of the modelled basins 

so the density values at depth were extrapolated from the shallow densities 
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obtained from the logs. These factors combine to produce a significant 

uncertainty in the density value assigned to each basin. Where possible, density 

information was taken from multiple wells to fill any gaps that may have been 

present in the record. Variations in the observed well densities are indicative of 

changes in sampled lithology. The approach is to determine the average density 

in the basins based on a combination of an understanding of the stratigraphy and 

the density logs. Depths to the geologic tops of various stratigraphic sequences 

are referred to and correlation between wells is also briefly discussed. 

3.2.3 Carson Basin 

Carson Basin is a northeast-southwest trending basin located on the east-

northeast Grand Banks at the edge of the shelf. The depocentre of the basin has 
~ 

a depth of approximately 5 km. Only one well , Osprey H-84, provided density 

information for Carson Basin (Figure 3.3). The total drilled depth is 3473.8 m (11 

397 ft) , approximately 1% km less than the basin thickness. The well terminates 

in the Eurydice shale. Figure 3.4 shows the density-depth information for Carson 

Basin derived from analysis of the Osprey H-84 density log. Areas in which the 

log information was unintelligible are left blank. Aside from thin isolated areas of 

increased density, the density appears to be consistent between 2. 1 and 2.2 

g/cm3
. The geologic top of the Argo Formation occurs at approximately 1250 m 

depth. The top of the Eurydice Formation is marked by a sharp increase in 

density at approximately 3300 m depth. The average measured density of the 
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shale is 2.6 g/cm3
. The average density of shale is about 2.4 g/cm3 (Telford, et 

al. , 1990) so a higher measured density suggests some degree of compaction of 

the sediments at depth. Weighted average densiti.es for each kilometre of 

thickness were calculated and are tabulated in Table 3.1. The densities were 

plotted as a function of associated depth range and extrapolated back to 5 km 

depth (Figure 3.5(a)) giving an average density for Carson Basin of 2.35 g/cm3 

with a density contrast of -0.32 g/cm3 using the typical crustal density of 2.67 

g/cm3
. 

3.2.4 Horseshoe Basin 

Horseshoe Basin is a northeast-southwest trending basin located west of 

Carson Basin with a depocentre 7 km deep. In Horseshoe Basin there is only 

one exploratory well, Bittern M-62. The total depth drilled is 4780.2 m (15 683ft). 

As with Osprey H-84, Bittern M-62 terminates in Eurydice shale. Figure 3.6 

shows the density-depth information for Horseshoe Basin derived from analysis 

of the Bittern M-62 density log. The density recorded in this well remains fairly 

consistent between 2.6 and 2.8 g/cm3
. The sharp decrease in density at about 

4700 m depth coincides with the geologic top of the Argo salt Formation. The 

salt has a thickness of approximately 20m here. This is followed by a significant 

increase in density marking the top of the Eurydice shale. 

Weighted average densities for each one-kilometre slab are given in Table 3. 1. 

This basin was divided into two separate but vertically adjacent bodies each 
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comprised of stacked polygons since there is a secondary depression associated 

with it. The first of the two Horseshoe Basin bodies extends to 4 km depth and 

was assigned an average density of 2.668 g/cm3 giving a density contrast of 

-0.002 g/cm3
. The second body extends from 4 to 7 km depth and was assigned 

an average density of 2.73 g/cm3
. Note that this is based only on the density 

information in the last 0.78 km of the well log. With reference to the 

lithostratigraphic chart for the southern Grand Banks (Figure 1.3), the 

anomalously high density can be attributed to a layer of anhydritic dolomite and 

limestone (Iroquois Formation) extending from approximately 3470 m to almost 

4700 m depth. Limestone densities range from 1.55 g/cm3 to 2.75 g/cm3
, while 

those of dolomite fall between 2.72 g/cm3 and 2.84 g/cm3 (Oihoeft and Johnson, 

1994). This high-density limestone-dolomite layer is also found in most of the 

other wells, as described below. The integrated average density over the whole 

of the log is approximately 2.67 g/cm3
, the average crustal density used for the 

Bouger correction, which explains the lack of a significant associated anomaly 

over the basin (see Figure 3.1). Therefore, a density contrast of 0 g/cm3 was 

assigned to this basin. 

3.2.5 Whale Basin 

Whale Basin, another of the northeast-southwest trending basins on the Grand 

Banks, has a depocentre of about 7 km. As with Horseshoe Basin, Whale Basin 

was modelled using two vertically adjacent bodies: the first to 6 km depth; the 
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second extends from 6 to 7 km depth. There are four wells in Whale Basin that 

extend to such depths that significant density information was obtainable from 

them. They are: (1) Coot K-56 which has a total depth of 3535.7 m (11 600ft) 

and terminates in the Eurydice shale Formation; (2) Gannet 0-54 which has a 

total drilled depth of 3048 m ( 1 0 000 ft) and extends to basement; (3) Razorbill F-

54 which has a total depth of 3135.2 m (10 286ft) and extends to basement; and 

(4) Sandpiper 2J-77 which has a total depth of 3525.4 m (11 566 ft) and 

terminates in the Horton Formation. Figure 3. 7 shows the density-depth 

information for Whale Basin from the Coot K-56, Gannet 0-54, Razorbill F-54, 

and Sandpiper 2J-77 density wells. 

The density log recorded from the Coot K-56 well shows alternating areas of 

high and low densities. Large portions of the record were incomprehensible. 

Densities taken from the Gannet 0-54 well were highly variable. The 

Cenomanian unconformity occurs at approximately 1700 m. Basement rock is 

sampled beginning at approximately 2925 m. The Razorbill F-54 density plot 

shows an increasing trend of density with depth to about 2075 m. The 

Cenomanian unconformity is represented by a sharp decrease in density at 

approximately 1250 m depth. This is shallower than in the Gannet 0-54 well to 

the southwest. The top of the Argo salt Formation is at approximately 2075 m 

depth and coincides with a significant drop in density from about 2.65 to 2.1 

g/cm3
. The depth to basement in this well is approximately 2600 m. The 

Sandpiper 2J-77 densities are very oscillatory between 1200 (which marks the 

top of the Argo Formation) and 1500 m. Between 1500 and 3000 m density 
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fluctuates between 2.1 and 2.3 g/cm3 but increases overall. The presence of 

Windsor evaporites is marked by the sharp increase in density at 3000 m depth. 

The drop in density at 3250 m coincides with the top of the Horton Formation. 

Tabulated averages for each well are found in Table 3.1 . 

A direct comparison of density with depth indicates poor agreement between 

wells. However, comparison of the formation densities from well to well reveals 

that there is remarkable agreement. The Petrel Member (of the Dawson Canyon 

Formation) densities recorded in the Gannet 0-54 and Razorbill F-54 wells are 

practically the same (approximately 2.55 g/cm3
) as are the Eider Unit densities 

(approximately 2.4 g/cm3
) . In both the Gannet 0-54 and Sandpiper 2J-77 logs, 

the Windsor evaporites have high densities. The density of the Horton Formation 

in both of these wells has a median density around 2.55 g/cm3
. The density of 

the Iroquois Formation varies between 2.5 and 2.75 g/cm3 in the Coot K-56, 

Razorbill F-54, and Sandpiper 2J-77 wells. For the Argo Formation, however, 

they all give the same low density (approximately 2.2 g/cm3
) . The Eurydice 

Formation densities in the Coot K-56 and Sandpiper 2J-77 wells are also similar 

(approximately 2.5 g/cm3
) . In general, the densities appear to remain steady 

between 2.6 and 2.7 g/cm3
. 

For each kilometre of thickness, an average density was calculated using 

densities from each of the wells. Extrapolating back (Figure 3.5(b)), a density of 

2.5 g/cm3 was obtained for the first body giving a density contrast of -0.17 g/cm3
. 

A density of 2.65 g/cm3 was obtained for the second body (i.e. from 6 to 7 km 

depth) giving a density contrast of -0.02 g/cm3
. 
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3.2.6 Jeanne d'Arc and East Newfoundland Basins 

The shallow western edge of the East Newfoundland Basin is covered by the 

gravity data. Therefore, it was included in the modelling operation. Furthermore, 

density logs from the basin were examined to ensure a reliable density estimate 

was obtained for the entire Jeanne d'Arc-East Newfoundland Basin system. 

The Jeanne d'Arc Basin on the northeast Grand Banks is a petroliferous basin 

and is host to a number of oil and gas discoveries including the Hibernia, Terra 

Nova, and White Rose oil fields. The vast majority of the exploratory, 

delineation, and development wells on the Grand Banks are located here. The 

basin trends northeast-southwest to north-south and has a depocentre of at least 

12 km (as illustrated by Wade, et al., 1977; however, it is known that Jeanne 

d'Arc Basin is at least 15 km deep (Tankard, et al. , 1989; Grant and McAlpine, 

1990)). The East Newfoundland Basin, north of the Jeanne d'Arc Basin, is a 

broad basin on the northeast Newfoundland Shelf extending to about 15 km 

depth. Above about 9 km depth, the Jeanne d'Arc and East Newfoundland 

Basins coalesce into one large basin. For modelling purposes, the East 

Newfoundland-Jeanne d'Arc Basin system has been divided into three vertically 

adjacent bodies: (1) the Jeanne d'Arc Basin from 9 to 12 km depth; (2) the East 

Newfoundland and Jeanne d'Arc Basins from 6 to 9 km depth; and (3) the East 

Newfoundland and Jeanne d'Arc Basins to 6 km depth. 
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Wells from the Jeanne d'Arc Basin used to obtain density estimates are 

Bonanza M-71 , Hibernia G-55A, and Spoonbill C-30 (Figure 3.8). The Bonanza 

M-71 exploratory well extends into basement with a total depth of 5294.7 m (17 

367 ft) . Densities taken from the Bonanza M-71 well exhibit an increase of 

density with depth. The Rankin limestone Formation is denoted by a significant 

rise in density at 4240 m depth. The Hibernia G-55A delineation well extends 

into basement with a total depth of 3460.1 m (11 349 ft) . Densities in this well 

tend to increase between 1250 and 2200 m depth after which they stay fairly 

constant. At about 3400 m, density rises sharply corresponding to the presence 

of volcaniclastics. The Cenomanian unconformity is denoted by a decrease in 

density at about 1750 m. The Spoonbill C-30 exploratory well terminates in 

Paleozoic redbeds with a total depth of 2757.3 m (9046 ft) . The densities 

observed in the Spoonbill C-30 well are quite variable. The Iroquois limestone 

and dolomite Formation corresponds to the thick zone between 900 and 1200 m 

with a density of 2.8 g/cm3
. The top of the Argo Formation is at approximately 

1250 m and coincides with a sharp decrease in density. The high density peak 

at around 1550 m corresponds to a mafic sill, evidence of igneous activity during 

Mesozoic rifting. The increased density below 2500 m correlates to Paleozoic 

redbeds. 

Wells located in the East Newfoundland Basin include Cumberland B-55, with a 

total depth of 4136.5 m (13 568ft), and Linnet E-63, with a total depth of 4520.2 

m (14 826 ft) (Figure 3.8). Both wells terminate in metasedimentary basement. 

Density in the Cumberland B-55 well increases with depth. The Cenomanian 
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unconformity occurs at about 3700 m depth, considerably deeper than in the 

Gannet 0-54, Razorbill F-54, or Hibernia G-55A wells. It is marked by a distinct 

decrease in density values. In the Linnet E-63 well , densities oscillate between 

2.0 and 2.25 g/cm3 between 1000 and 2000 m depth. Beyond 2000 m, density 

tends to increase with depth. The geologic top of the Dawson Canyon Formation 

coincides with an increase in density at about 2500 m depth. The weighted 

average densities for each well are given in Table 3.1. 

Figure 3.8 shows comparative density-depth information for the Jeanne d'Arc

East Newfoundland Basin from the Bonanza M-71, Hibernia G-55A, Spoonbill C-

30, Cumberland B-55, and Linnet E-63 wells. Densities for the Dawson Canyon 

Formation are poorly correlated in the Cumberland B-55, Hibernia G-55A, and 

Linnet E-63 wells. Similarly, the Nautilus shale densities in the Hibernia G-55A 

and Linnet E-63 wells are in poor agreement. The high Iroquois Formation 

density recorded in Spoonbill C-30 (approximately 2.8 g/cm3
) corresponds to the 

high density observed for the same formation in the Coot K-56 well 

(approximately 2. 75 g/cm3
) . The Argo Formation density in this well is still 

relatively low. The density of the Eurydice Formation is higher (approximately 

2.6 g/cm3
) than that found in Coot K-56 or Sandpiper 2J-77. It is evident from 

Figure 3.8 that density increases linearly with depth, at least to a depth of about 

5300 m. 

For each body in the Jeanne d'Arc-East Newfoundland Basin system, an 

average density was calculated using densities from each of the wells. Plotting 

these densities and extrapolating back (Figure 3.5(c)) , the densities obtained for 
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each body are (with density contrast in brackets): (1) 2.65 g/cm3 (-0.02 g/cm3
) ; 

(2) 2.64 g/cm3 (-0.03 g/cm3
); and (3) 2.50 g/cm3 (-0.17 g/cm3

) . 

These results are given in Table 3.2. 

3.2. 7 Removal of the Gravity Field of the Sedimentary Basins 

Figures 3. 9 through 3. 11 show the gravity anomaly due to each of the Carson, 

Whale, and Jeanne d'Arc-East Newfoundland Basins, respectively, as calculated 

using the models based on depths and densities discussed above. Figure 3.12 

shows the cumulative effect of all the basins. The noise generated by the 

modelling procedure is evident in this figure. To gauge the uncertainty in the 

gravity due to uncertainties in the estimated density contrasts, the variability of 

the basin gravity effects was examined by varying the contrasts by ±1 0% and 

±25%. Ranges of uncertainty for Horseshoe Basin were estimated based on 

starting density contrasts of -0.002 g/cm3 for the upper body (to a depth of 4 km) 

and +0.06 g/cm3 for the lower body (4 to 7 km depth), which were the originally 

calculated values. Uncertainty ranges for each of the Carson, Whale and Jeanne 

d'Arc Basins are based on the average densities determined in sections 3.2.3, 

3.2.5 and 3.2.6, respectively. Profiles were taken across the resultant gravity 

field maps to illustrate the variability of the gravity anomalies in response to these 

changes. The locations of these profiles are shown in Figure 3. 12. Figures 3.13 

and 3.14 show the gravity anomalies across profiles A-A' and B-B', respectively. 

Since only the basinal regions were modelled there should be no change in the 
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gravity anomaly over the platformal regions (e.g. between 175 and 300 km along 

A-A' and less than 25 km along B-B'). The greatest variability occurs above the 

depocentres of the basins. The northern portion of Horseshoe Basin is seen as 

the small near-zero anomaly located at about 240 km along profile A-A'. 

Perturbations in the assumed density contrast of this basin had very little effect 

on the amplitude of the calculated anomaly. Over Whale Basin (negative 

anomaly at about 1 00 km along profile A-A'; Figure 3.13) a change of ±25% in 

the density contrast produces a change in the anomaly of approximately ±20 

mGal. This represents about 25% of the average anomaly. Over Carson Basin 

(negative anomaly centred at 330 km along A-A'; Figure 3. 13) the response of 

the anomaly to changes of ±25% is also symmetric about the average value and 

is on the order of ±17 mGal, which is about 25% of the average anomaly. The 

calculated anomaly over the Jeanne d'Arc Basin (negative anomaly in Figure 

3.14) varies by ±31 mGal (25%) in response to changes in the density contrast of 

±25%. Given a ±1 0% change in the density contrast, the maximum change 

observed in the calculated anomalies is about ±12 mGal and occurs over Jeanne 

d'Arc Basin. Therefore, at its greatest, the uncertainty in the modelled basin 

effect is ±31 mGal. This is fairly large and will undoubtedly affect the uncertainty 

associated with the final model of Moho topography. Given the uncertainty in the 

raw data of ±2.5 mGal (§2.1) and the uncertainty in the modelled basin effect of 

±31 mGal, then an r.m.s. error of less than 35 mGal in the inversion process 

would be acceptable. 
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Figure 3.15 shows the observed gravity field after the effect of the sedimentary 

basins calculated using the average model densities was removed. The 

presence of large positive anomalies over the Jeanne d'Arc and Carson Basins 

suggest that the Moho is drawn up beneath the basins, i.e. the mantle has 

warped upward to isostatically compensate for the depth of the basins. The 

anomaly associated with Whale Basin is significantly reduced. The large positive 

anomaly around UTM 950000 E, 5650000 N is the modelled edge of the East 

Newfoundland Basin. There was some concern that this artifact of the modelling 

procedure would affect the three-dimensional inversion process by creating an 

unrealistic step in the Moho topography function. Therefore, the northern 

extremity of the data was removed during the inversion. The portion of the field 

contained within the rectangle in Figure 3.15 was passed through the inversion 

algorithm. 

3.3 WAVELENGTH FILTERING 

Figure 3.16 shows the power spectrum of the observed gravity field. Figure 

3. 17 shows the power spectrum of the observed field with the gravitational effect 

of the sedimentary basins removed. There is no significant change in the 

character of the spectrum. This gravity field was low-pass filtered using a 

number of progressively lower cut-off frequencies to isolate sources at depths 

comparable to that of Moho. 
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Figure 3. 18 shows the gravity field filtered to remove wavelengths less than 

1 00 km. The effects of the Jeanne d'Arc and Carson Basins can still be seen, 

i.e. compare with the original field (Figure 3.15). The linear gravity low marking 

the Gander-Avalon Terrane boundary is also still very strong. Figure 3.19 shows 

the power spectrum calculated from the filtered field. There is a noticeable drop

off in energy around k = 0.01 km-1. A depth of approximately 32 km was 

obtained for the source ensemble corresponding to the average Moho depth. 

Figure 3.20 shows the gravity field filtered to remove wavelengths less than 

150 km. The Jeanne d'Arc Basin anomaly is still prevalent which indicates that 

the crust is thinned below the basin. There are also significant positive 

anomalies over the Whale and Carson Basins. The power spectrum of the 

filtered field is shown in Figure 3.21 . The decline in energy of the field is 

noticeable near k = 0.007 km-1
. The source ensemble gave an average depth of 

33 km. The field was filtered further to ensure that the effects of shallower 

features were not visible. 

Figure 3.22 shows the gravity field filtered to remove wavelengths less than 

175 km. The effects of shallow structure have disappeared. The high associated 

with Whale Basin persists but this may not be a true feature of the field (Kane 

and Godson, 1985). The power spectrum of the field is shown in Figure 3.23. 

Around k = 0.0057 km-1 the energy drops off. The average depth is 

approximately 30 km, comparable to Moho depth. The field filtered with this cut

off wavelength is considered to be due primarily to the topographic relief of the 

Moho. 
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Figure 3.24 shows the observed field filtered to remove wavelengths less than 

200 km. The associated power spectrum is given in Figure 3.25 showing the 

reduction in energy at about k = 0.005 km-1. A depth of about 40 km was 

obtained for the source ensemble. 

The ensemble average depths from each filtered field are given in Table 3.3. 

Interpretation of wavelength filtered data is affected by the quality of the input 

data as well as the specifications of the filter. The data provided for this study 

are considered to be of reasonably high quality. However, the Moho cannot be 

reliably defined using analysis of the spectra of the filtered fields because the 

relief of the Moho is very small compared to its mean depth (Lefort and Agarwal, 

1996). The results of this spectral analysis show a range of mean depths (Table 

3.3). An unambiguous estimate of depth to Moho was not possible; therefore, 

the data was inverted using a variety of depths. 

3.4 INVERSION 

The gravity data were inverted using an algorithm of Chenot and Debeglia (1990) 

which models the Moho as a contrast interface above which the density is 

described by an exponential function and below by a constant density. The 

modelled gravity and vertical gradient fields are calculated in the wavenumber 

domain while iterative adjustments to the depth are calculated in the space 

domain. 
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Tsuboi (1979) presented a method of determining the condensed (i.e. 

concentrated on a horizontal plane) mass distribution from the observed gravity 

field by expressing both the gravity and mass distributions as Fourier series, 

g(x,y) and M(x,y), respectively. If the observed field is due to the undulation of 

an interface separating two media of different densities, p and p ' , then the 

function describing the amplitude of undulation, h(x,y), is found by dividing 

M(x,y) by the density contrast. However, Tsuboi's (1979) method assumes that 

the interface separates two isotropic and homogeneous media with two different 

but constant densities. The use of an upper layer density that varies 

exponentially with depth deviates from this assumption and is more consistent 

with observed density variations as determined from well logs. The method used 

in this thesis also attempts to deal with lateral density variations in the upper 

layer by correcting for the basin effects. 

3.4.1 Model Parameters 

The main parameters required for input into the inversion scheme are the mean 

Moho depth and densities of the layers above and below the Moho. 

3.4. 1. 1 Estimation of Mean Depth to Moho 

Mean Moho depth estimates were obtained from the interpretations of several 

deep seismic reflection and refraction profiles across the Grand Banks within the 
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data range (Figure 3.26) and from the spectral analysis discussed above. It is 

important to recognize that these seismic sections are dependent on the 

assumptions of the processors, particularly regarding the estimation of deep 

crustal seismic velocities. The objective here is not to re-process or critically 

assess the seismic data but rather to use the published interpretations (i) as a 

calibration tool to determine an average depth to Moho along profile, and (ii) for 

comparison with the gravity models derived here. The assumption is that the 

processing was critically assessed by the authors prior to publication and by the 

referees for the publications as part of the review process. The Moho depths 

along the seismic profiles were taken from the published sources; no time to 

depth conversion was undertaken as part of this thesis. As no estimate of the 

crustal velocity uncertainty is discussed by the source authors, one cannot 

assess the depth uncertainty in the seismic Moho depths. The depth of 

interpreted Moho on each of these lines was sampled at 5 km intervals along 

profile and then averaged. DeChassy, et al. (1990) provide a full set of deep 

seismic profiles across the conjugate margins of the North Atlantic Ocean from 

which depth to Moho along AGC reflection lines 84-3, 85-1 , 85-3, and 85-4 was 

taken. 

Reflection line 84-3 (Keen, et al. , 1987a; Keen and de Voogd, 1988; 

DeChassy, et al. , 1990) runs east-northeast sub-parallel to the Charlie-Gibbs 

Fracture Zone and crosses the broad Orphan Basin on the northeast 

Newfoundland Shelf. The data collected along line 84-3 was adversely affected 

by the presence of long-period water-bottom multiples. Therefore, the signal-to-
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noise ratio, particularly from deep reflectors such as the Moho, is very low. For 

this reason, depth information could only be taken from the first 70 km of the 

profile at its western extreme since information from the remainder of the line 

was considered to be unreliable. The average depth measured on this portion of 

the line is 37.5 km. 

Reflection line 85-1 (DeChassy, et at. , 1990) is located on the southern Grand 

Banks where it runs southeast across the Whale and Horseshoe Basins and 

meets reflection line 85-2 on the South Bank High. Below the basins the deep 

reflections are heavily masked possibly due to the presence of thick sedimentary 

sequences which dampen the signal. For this reason, reliable depth estimates 

could only be taken along the first 40 km of the western end of the profile and the 

last 80 km at the eastern end, the latter of which is beyond the range of available 

gravity data. The average depth to Moho measured along this line is 

approximately 36.5 km. 

Reflection line 85-3 (Keen and de Voogd, 1988; Keen, et at. , 1989; DeChassy, 

et at. , 1990) runs roughly east-northeast, sub-parallel to line 84-3 and passes 

across the northern Jeanne d'Arc Basin, Flemish Pass Basin, and Flemish Cap. 

Large thicknesses of sediment diminished the deep crustal reflectivity but 

reasonable measurements of depth to Moho were obtainable along the entire 

profile. On that portion of the line coincident with the gravity data (the western 

300 km), the average depth to Moho was estimated to be 32 km. 

Reflection line 85-4 (Keen and de Voogd, 1988; DeChassy, et at. , 1990) strikes 

east-southeast and crosses the southern Jeanne d'Arc and Carson Basins on the 
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eastern Grand Banks. Only the western portion of the line gave significant depth 

estimates for the Moho. Offshore, beyond the continent-ocean boundary, Moho 

reflections were picked up more clearly but this is outside the range of available 

gravity data. An average Moho depth of 32 km was also estimated for this line. 

Lithoprobe East refraction line 91-2 (Marillier, et al. , 1994) is the only one of the 

selected seismic lines that lies entirely within the area covered by the gravity 

data. It lies parallel to the east coast of the Avalon Peninsula of the island of 

Newfoundland. The Moho depth measured along this line is 40 km and is 

constant along the entire region sampled by the survey. 

All of the measured depths were summed and averaged to obtain a mean 

depth to Moho of 35 km with a standard deviation of 4 km. This value is limited 

by the fact that the seismic lines from which it was derived lie mainly along the 

periphery of the available data (Figure 3.26). Average depths derived from 

spectral analysis of the gravity field (Table 3.3) yield a more comprehensive 

estimate for the entire region than the depth derived from the sparse seismic 

coverage (Figure 3.26). The average ensemble depths to Moho obtained from 

spectral analyses of the wavelength filtered fields range from 30 to 40 km, which 

is comparable to the statistical estimate obtained from the seismic data. Since 

an unambiguous estimate of depth was not possible and since spectral analysis 

gave a range of depths, the data was inverted using depths ranging from 30 to 

40 km with an increment of 2.5 km to assess the results. 
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3.4.1.2 Estimation of Density Parameters 

In order to obtain the density of the crust, the densities at the top (surface 

density) and bottom (asymptotic density) of the crust and the density decay 

constant of the crustal unit must be estimated, as seen from inspection of 

equation (2.24). Of the wells selected to obtain density information for each of 

the Grand Banks basins (§ 3.2. 1) six extended into crustal basement. Two more, 

Jaeger A-49, an exploratory well located on the South Bank High with a total 

depth of 938.5 m (3078 ft) , and Blue H-28, an exploratory well on the northeast 

Newfoundland Shelf with a total depth of 6103.1 m (20 018 ft) were also used to 

assess the basement density. Figure 3.27 shows the locations of the wells used 

to estimate basement density. Table 3.4 gives the basement thickness sampled, 

the observed density range, and weighted average densities for each wel l. 

Basement density corresponds to surface density, i.e. atop the crustal unit. 

Weighted according to thickness, the average surface density calculated from 

all the well logs is 2.62 g/cm3
. The density obtained from the Linnet E-63 well log 

does not agree well with the others and, if neglected, a surface density of 2.67 

g/cm3 is obtained, which is consistent with the average crustal density used in 

the Bouger reduction. 

Direct evidence regarding the lithology of the lower crust comes from the 

investigation of ophiolite suites, xenoliths from volcanic rocks, and exposures of 

deep continental crust that include granulite facies metamorphic rocks and 

peridotite massifs (Wilshire, 1987; Nielson-Pike, 1987). From these direct 
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measurements of density can be made. In ophiolite suites, the lower crust is 

composed predominantly of gabbro (Wilshire, 1987) and according to 

Christensen (1994) the crust immediately above the mantle is chemically 

equivalent to gabbro. As well , exposures of deep continental crust have 

exhibited mafic granulite formed by metamorphosis of lower crustal mafics at 

granulite facies (Nielson-Pike, 1987). Indirect evidence of lower crustal lithology 

comes from wide-angle and deep refraction seismic studies, which compare in 

situ seismic velocities with laboratory measurements of velocity for a variety of 

materials. The deep crustal seismic velocities from a number of deep seismic 

profiles on the Grand Banks are given in Table 3.5. The locations of these lines 

are shown in Figure 3.28. The average velocity for the deep crust is 6.8 km/s. 

Using the Nate-Drake curve (Nate and Drake, 1957b) relating seismic velocity to 

density this corresponds approximately to a density of between 2.95 and 3.00 

g/cm3
. This agrees well with the density for gabbro of 2.97 g/cm3 (Oihoeft and 

Johnson, 1994) and the density range of 2.67 to 3.10 g/cm3 for granulite (Oihoeft 

and Johnson, 1994). Therefore, 2.97 g/cm3 was chosen for the asymptotic 

density, pa) . 

Given that PooCl - fJ) equals the surface density 2.67 g/cm3 and substituting Poo 

into the expression, the factor f3 is found to be 0.1. Solving the general formula 

for exponential growth and decay, 

p(z)= p(O)er z 

... (3.2) 
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using Poo = p(35)= 2.97 g/cm3 and surface density = p(O)= 2.67 g/cm3
, gives the 

decay constant r= 0.003 g/cm3
. Equation (2.24) can then be solved for the 

density of the crust at any depth. 

A density of 3.33 g/cm3 was selected for the mantle. This is a generally 

accepted value which agrees with densities of 3.33 g/cm3 used by Watts and 

Fairhead (1999), 3.3 g/cm3 used by Reid (1994), and 3.34 g/cm3 used by Keen 

and Potter (1995) and Keen, et al. (1994). 

R.m.s. errors, c1, of 2.5 mGal between the observed and calculated gravity 

fields and c2 of 2.5 mGal/km between the observed and calculated gravity 

gradient fields were chosen to be acceptable margins of error since the accuracy 

of the observed gravity values is no better than 2.5 mGal (§2.1 ). This is the best 

uncertainty one can expect to achieve in the final model. If the error between the 

original and modelled fields falls below these values or if the inversion does not 

converge after 10 iterations the inversion process ceases. 

3.4.2 Pre-Processing 

Before the data can be passed through the inversion scheme, it must be pre

processed to facilitate convergence. Pre-processing of the data was carried out 

using GEOSOFT's Oasis Montaj data processing software package. 

The first vertical derivative of the gravity field was calculated from the observed 

gravity field (with the effect of the sedimentary basins removed) in the Fourier 
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domain. Prior to Fourier transformation, the data, excluding the portion 

associated with the edge of the East Newfoundland Basin, was expanded to 

rectangular dimensions (since the data set is fairly large and has a roughly 

rectangular shape) and the expanded area filled with extrapolated values. 

The primary disadvantage of inversion algorithms of this type is that at high 

frequencies the process diverges, creating high-frequency oscillations in the 

generated model. This instability is due mainly to the presence of high-frequency 

noise generated by the use of the discrete or fast Fourier transform as well as the 

contribution to the field of shallow bodies in the subsurface which themselves 

generate high-frequency noise. Amplification of high frequencies (short 

wavelengths) is inherent in inversion (as well as in downward continuation). The 

amplitude of a short-wavelength anomaly (e.g. < 10 km) due to the undulation of 

a source interface at crustal depths (e.g. 30- 40 km) is many times larger than 

that of a source interface located at or very near the surface. Consequently, it is 

very unlikely that the high-frequency (short-wavelength) content of the gravity 

anomaly field is related to undulations in the Moho (Marillier and Verhoef, 1989). 

If the topography of the interface, Z(xJl) , has small local variations, LlZ(xJl), 

then the inversion procedure will likely converge. Otherwise, the application of a 

low-pass filter to the data during pre-processing will eliminate high-frequency 

components and increase the chance of convergence. In general, successful 

convergence of the inversion procedure requires that the high-frequency 

components of the field be removed (Guspi, 1992). Care is needed because 

arbitrary filtering may produce over-filtered or under-filtered data, resulting in loss 
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of information or no significant loss of noise. Loss of high-frequency content 

prevents detailed modelling of short-wavelength anomalies. The trade-off is 

convergence toward a suitable model. A cut-off frequency of 0.4/~max (Guspi, 

1992), where ~max is the maximum topographic variation of the interface, has 

been shown to give good results. Here, the maximum relief is estimated to be 

about 10 km, which gives a cut-off frequency of 0.04 km-1. According to Guspi's 

(1992) formulation, this corresponds to a cut-off wavelength of approximately 150 

km. Because of the uncertainties in the mean depth estimates, there are 

associated uncertainties in the values of maximum relief. Therefore, filters using 

cut-off wavelengths of 50, 100, 150, 200, and 250 km, were used on the data to 

assess the results. 

3.4.3 Test Model 

A synthetic data set of 60 x 60 data points was passed through the inversion 

procedure as a test. A depth map representing an area of upwarp or doming of 

the mantle, gridded at 2 km spacing is shown in Figure 3.29(a). The structure is 

20 km wide, 100 km long, and has a mean depth of 29.6 km. The topographic 

relief of the body is 5 km. A constant density of 3.4 g/cm3 was used for the 

mantle while an exponential density function, with Poo = 2.97 g/cm3
, f3 = 0.1, and 

r = 0.004 g/cm3 !km, was used to describe the crust. The corresponding gravity 

field, covering an area of 120 x 120 km2
, is shown in Figure 3.30. The data was 
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low-pass filtered using a cut-off frequency of 0.1386 km-1 and a mean trend was 

removed. The vertical gravity gradient of the field is shown in Figure 3.31 . 

The inversion was allowed to proceed to achieve maximum r.m.s. errors 

between the synthetic and modelled fields of 8 1 =I mGa1 and 8 2 =I mGal/km. 

After one iteration the inversion achieved an r.m.s. error between the original and 

modelled gravity fields for the inferred topography of 0.685 mGal and 0.007 

mGallkm between the synthetic and modelled gravity gradient fields. Figure 

3.29(b) shows the resultant depth map. The lobes at the sides of the structure 

are caused by inverting on the very small lobes produced by the low-pass 

filtering of the data prior to inversion (Kane and Godson, 1985). 

In an effort to gauge the response of the inversion program to noise, noise in 

the range of ±1 mGal was added to the gravity data (Figure 3.32). Again, the 

inversion was successful after one iteration with no change in the r.m.s. error: 

0.685 mGal between the synthetic and modelled gravity fields and 0.007 

mGallkm between the synthetic and modelled gravity gradient fields. The 

resultant depth map is shown in Figure 3.29(c). 

A profile was taken across each of the depth-to-structure maps perpendicular 

to strike (A-A' in Figures 3.29(a), 3.29(b), and 3.29(c)) to better gauge the 

agreement between the actual and inverted depths. Figure 3.33 shows these 

profiles. The almost perfect superposition of the inverted depth profiles illustrates 

the program's lack of response to high-frequency noise in the data set. There is 

a discrepancy of less than 2.5 km between the actual and inverted peak depths 

but this is less than 1 0% of the actual mean depth. The inversion does a 
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reasonable job of reproducing the geometry of the model. The maximum 

amplitude as measured from the minor flat area on the edge of the bump is 

consistent with the model but the absolute depth is not perfectly deduced in 

Figure 3.33. 

It can be expected that, since a reasonable match was achieved between the 

actual depth distribution of the Moho and the modelled depth, a plausible model 

of the Moho topography will be obtained from inversion of the real data. 
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TABLE3.1: DENSITY LOG INFORMATION BYWELL 
Sampled Weighted 

Well Layer Thickness Average 
(m) (glee) 

Osprey H-84 869.25-1 000 m 127.7 2.364 
1000-2000 m 826.15 2.219 
2000-3000 m 988.41 2.153 
3000-3464.8 m 440.4 2.318 

Bittern M-62 1464-2000 m 514.65 2.682 
2000-3000 m 964.78 2.664 
3000-4000 m 986.28 2.665 
4000-4782.4 m 739.55 2.730 

Gannet0-54 1525-2000 m 438.4 2.368 
2000-3000 m 972.55 2.692 
3000-3043.9 m 43.9 2.700 

Razorbill F-54 921 .1 -1 000 m 78.9 2.128 
1000-2000 m 984.75 2.501 
2000-3000 m 661 .45 2.499 
3000-3126.25 126.25 2.650 

Sandpiper 2J-77 793-1000 m 207 2.444 
1000-2000 m 984.75 2.288 
2000-3000 m 876.15 2.210 
3000-3522.75 IT 518.5 2.671 

Coot K-56 1640.9-2000 m 215.75 2.676 
2000-3000 m 551 .65 2.461 
3000-3534.95 IT 534.95 2.271 

Spoonbill C-30 860.1-1000 m 133.8 2.732 
1000-2000 m 951 .2 2.511 
2000-2757.2 m 626.05 2.390 

Hibernia G55-A 505-1000 m 220 2.790 
1000-2000 m 709 2.333 
2000-3000 m 969 2.418 
3000-3456 m 456 2.457 

Bonanza M-71 3475-4000 m 579 2.249 
4000-5000 m 955 2.583 
5000-5300 m 275 2.680 

Cumberland C-55 1311 .5-2000 m 679.3 2.225 
2000-3000 m 958.5 2.375 
3000-4000 m 947.1 2.508 
4000-4141 .29 IT 138.24 2.657 

Linnet E-63 975-1000 m 25 2.150 
1000-2000 m 991 2.109 
2000-3000 m 958 2.311 
3000-4000 m 923 2.561 
4000-4500 m 500 2.486 
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TABLE 3.2: DENSITIES USED TO MODEL 
SEDIMENTARY BASINS 

DEPTH DENSITY DENSITY CONTRAST 
BODY RANGE (glee) (glee) 

Carson Basin 2-5 km 2.35 -0.32 
Horseshoe Basin 2-4 km 2.668 -0.002 
Horseshoe Basin 4-7 km 2.73 0.06 
Whale Basin 2-6 km 2.50 -0.17 
Whale Basin 6-7 km 2.65 -0.02 
Jeanne d'Arc Basin 9-12 km 2.65 -0.02 
Jeanne d'Arc and East 

Newfoundland Basins 6-9 km 2.64 -0.03 
Jeanne d'Arc and East 

Newfoundland Basins 2-6 km 2.50 -0.17 

TABLE 3.3: MOHO DEPTHS FROM SPECTRAL 
ANALYSES OF THE FILTERED FIELDS 

Cut-off Wavelength Ensemble Average Depth 
(km) (km) 
100 32.7 
150 32.8 
175 30.5 
200 39.8 
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TABLE 3.4: BASEMENT DENSITIES FROM WELL LOGS 
WELL THICKNESS (m) DENSI1Y AVERAGE* 

RANGE (glee) DENSI1Y (glee) 
Gannet0-54 115.9 no range 2.70 
Razorbill F-54 503.3 2.60-2.65 2.63 
Linnet E-63 300.0 2.4-2.625 2.41 
Cumberland B-55 380.7 2.3-2.7 2.70 
Blue H-28 236.0 2.6-2.675 2.68 
Hibernia G-55A 41 .0 no range 2.70 
Jaeger A-49 36.6 2.575-2.675 2.65 
Bonanza M-71 17.0 no range 2.75 

* Weighted according to thickness 

TABLE 3.5: DEEP CRUSTAL SEISMIC VELOCITIES 
LINE VELOCI1Y REFERENCE 

(kmls) 
Refraction line 87-3 6.7 Reid , 1993 
Refraction Line 84-1 6.5 Todd. et al. , 1988 
Refraction line 84-2 6.5 Todd, et al., 1988 
Refraction line 84-3 7.5 Todd, et al.. 1988 
Refraction line 84-4 6.4 Todd, etal. , 1988 
Refraction line 84-5 6.4 Todd, et al. , 1988 
Refraction line 84-6 7.7 Todd, et al. , 1988 
Refraction line 84-14 7.0 Todd, etal., 1988 
Refraction line 84-11 6.5 Reid. 1988 
Refraction line 87-1 7.2 Reid and Keen, 1990 
Refraction line 87-7 6.8 Reid , 1994 
Refraction line 91-2 6.96 Marillier, et al. , 1994 

AVERAGE 6.8 
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Figure 3.1. Bouger gravity anomaly map of the Avalon Terrane. The approximate locations and 
shapes of the Grand Banks basins are shown. 

98 



Figure 3.2. Depth to basement on the Grand Banks. The contour interval is 1 km. (From Wade, 
et. al. , 1977). 
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Figure 3.3. Locations of offshore exploratory wells used to determine basin density. 
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Figure 3.4. Density for Carson Basin from the Osprey H-84 well log. 
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Figure 3.9. Modelled gravity anomaly field of Carson Basin. 

106 



~ 1400m~ 

~ + + + + + + + + + ~ 
] + + + + + + + + ~ 
~ ~ 00~ + + + + + + + ·10.0 

-20.0 
-30.0 

~ ~ 
.qo.o 

+ + + + + + -50.0 
-60 .0 

~ ~ 
-66.8 

+ + + Gravi~ 
(mGal 

~ + + ~ 
~ + + ~ "' 
~ + + + + ~ 
~ + + + + + + + + + + + + ~ 
~ 40COJO ~ WXXXl "I'OCQX) 8CaXX) 9(((0) 10000:0 110CUJJ 12(((00 1~ 140COJO 

1o:n::'O 0 to:xm 20:Xm -f-"'a"' 

Figure 3.1 0. Modelled gravity anomaly field of Whale Basin. 

107 



~3nm 

~ + + + + + + + + + ~ 
~ + + + + + + + + ~ -0.0 

0.0 
-10.0 

~ ~ 
-20.0 

+ + + + + + + + -30.0 
-40 .0 
-50.0 

i ~ 
-60.0 

+ + + + + + -70.0 
-80 .0 

~ ~ 
-90.0 

+ + + -100.0 
-110.0 
-120 .0 

~ ~ 
-130.0 

+ + Gravifr 

~ ~ 
(mGal 

+ + + 
"' 

~ + + + + ~ 
~ 

... 
+ + + + + + + + + + + 1~~ ... 3nm 400XXJ 500:XX) EnXXXl 700XX) a:xxm 900XX) 10COOOO 11oo:m 1100:m 13nm 

100::00 0 100::00 2XXW -f-
rnGI."" 

Figure 3.11. Modelled gravity anomaly field of Jeanne d'Arc-East Newfoundland Basins. 

108 



~DXW 

~ + 

~ + 

~ + 

i + 

~ + 

~ + 

~ + 
"' 

~ + 

~ + 

+ + 

+ + 

+ + 

+ + 

+ 

+ 

+ + 

100Xl0 0 100XJO :.a:x:o:Xl 

+ + 

+ 

+ + + + 

+ + + 

+ + + 

+ + + 

+ 

+ 

+ + + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ ~ 
+ ~ 
+ ~ 
+ ~ 
+ ~ 
+ ~ 
+ ~ 
+ ~ 

1~m 

Gravity 
lfi\Ga~ 

-f-
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Figure 3.16. Power speclrum of observed gravily field. 
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Figure 3.18. Observed gravity field, low-pass filtered to remove wavelengths less than 100 km. 
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Figure 3.19 Power spectrum of gravity field filtered to remove wavelengths less than 100 km 
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Figure 3.20. Observed gravity field, low-pass filtered to remove wavelengths less than 150 km. 
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Figure 3.22. Observed gravity field, low-pass filtered to remove wavelengths less than 175 km. 

119 



..... 
N 
0 

Ol 
0 

I I t 1 . . 
10 I I I I I I I I I I I I I I I I f I I f I I I I I I I I I I I I t I I f 1 1 t 1 t f t I 10 I I I I I I I I I I I t 1 

\ I I I I 

0 .. ' .... ' I I I I I I I I I I I I I I I I I I I 1 I I I I I f 1 t 1 I I t 1 1 o o 0 o 0 I f I I I I I I I I 

. . 
~ 

' : ~ . 
~· 

~ 

' . : ~- . . . . '·""'-- . . 
t '-.... I I 

·10 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -:':-'-;--........__.~1 I I I I I I I I It I I 1 •10 
I I I I 1 1 

' I t I t 

0.00 0.02 0.04 0.06 0.08 0.10 

Wavenumber (km.
1
) 

Figure 3.23 Power spectrum of gravity field filtered to remove wavelengths less than 175 km 
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Figure 3.24. Observed gravity field, low-pass filtered to remove wavelengths Jess than 200 km. 
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Figure 3.25 Power spectrum of gravity field filtered to remove wavelengths less than 200 km 



1 00000 0 1 00000 

metre 

78!1B 
76.10 
7321 
7D.:Il 
67 .•• 
6•$ 
61Q 
!lEI.78 
55.!1! 
S:JJl1 
!0.13 
•724 
H:Ji 
•1 .47 
E5B 
:JS.m 
:JZB1 
29.!D 

-:B.:D 

Gravity 
(mGal) 

+ 

Figure 3.26. Location of seismic reflection and refraction lines used to determine mean depth to 
Moho on the Grand Banks. 

123 



:rom .arom 000000 f>OOOOO 7IXXro IDXXW) 90(Kn) 1ooxo:l 11000CO 1~ 1~ 
78!1! 
76.10 

~ 
7321 
7D.:D 

+ + .. ... + 67 .•• 
64.SS 
61.6? 
!8.78 

~ 
5SSD 
5301 
!0.1:3 
472• 

JlueH-28 

~ .. .. .. .. 

.. + .. ~ 
• • ~ 

.. ... ~ 
+ .. .. ~ 

o Razorbal F-54 

~ 
·:B.:D 

<t Gravity 

Gannet 0 -54 JaegerA-49 
(mGal) 

<) 

:mm ..ocooo 000000 7IXXro 90(Kn) 1oco:xxl 11000CO 1200nl 

100000 0 100000 + metre 

Figure 3.27. Location of exploration wells used to determine basement density. 

124 



Figure 3.28. Location of seismic reflection and refraction lines used to determine deep crustal 
seismic velocity. (Modified from a Geological Survey of Canada web page containing an East 
Coast of Canada Refraction Catalogue for surveys between 1983 and 1992 inclusive; 
http://agc.bio.ns.ca/pubprod/ecref/index.html). 
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Figure 3.29. (a) Depth to Moho map of synthetic data set. (b) Modelled depth to Moho for the 
synthetic data set. (c) Modelled depth to Moho for the synthetic data set with noise (±1 mGal) 
added. The contour interval is 1 km. 
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Figure 3.30. Gravity field of synthetic data set. 
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Figure 3.31 . Vertical gravity gradient field of synthetic data set. 
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Figure 3.32. Gravity field of synthetic data set with noise (±1 mGal) added. 
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CHAPTER 4: INVERSION RESULTS 

As discussed in section 3.4.1, the results obtained from the inversion depend 

on the following parameters: mean Moho depth, Z m; crustal density, p 1 , which is 

a function of surface density, Poo(l - P> and the density decay constant, r; and 

mantle density, p 2 . Estimates of mean Moho depth were derived from spectral 

analysis of the wavelength filtered data as well as from seismic data collected in 

the region. Well logs around the Grand Banks yielded surface density estimates 

while the density decay constant was derived from both the surface density and 

the asymptotic density of the crust as it approached the Moho. The asymptotic 

density was obtained from deep seismic refraction measurements and compared 

with indirect geological information found in the literature {Christensen, 1994; 

Olhoeft and Johnson, 1994). 

A sensitivity analysis was carried out on each of the parameters used in the 

inversion scheme. 

As the input mean depth, zm I is increased, the calculated interface depth also 

increases and vice versa. This relationship between mean and modelled depths 

is evident in all of the inverted Moho topography profiles of Figures 4.1 through 

4.5. 

A 20% change in the values of r and P had no significant effect on the 

modelled topography. However, a change in the mantle density, p 2 , of ± 0.1 

g/cm3 resulted in a significant change (25%) in the r.m.s. error between the 
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observed and calculated gravity fields. No change in the misfit between the 

gravity gradient fields was observed when any of these parameters was 

changed. 

As f3 and p 2 increase and/or as r decreases, the density contrast, C, across 

the Moho increases. An increase in C reduces the modelled relief between the 

shallowest and deepest Moho topographies. Similarly, an increase in r and/or a 

decrease in f3 and p 2 results in a reduced density contrast. A reduction in C 

increases the modelled relief. 

Confidence in the final model can be gauged by assessing the control that 

each of the input parameters has on it. 

4.1 COMPARISON OF GRAVITY AND SEISMIC MODELS 

The gravity field was low-pass filtered using five different cut-off wavelengths: 

2c = 50, 100, 150, 200, and 250 km. For each set of filtered data passed through 

the inversion program, five different mean depths to Moho were used: Zm = 30, 

32.5, 35, 37.5, and 40 km. This was done for a number of reasons. (1) 

Examining the effects of a range of cut-off wavelengths ensured that the best 

filter was used. An appropriate filter will increase the likelihood of convergence 

by removing short-wavelength features of the field. Forcing the inversion 

operation to fit these short-wavelength features can slow the rate of convergence 

by increasing the number of iterations required to obtain a model or it can cause 

the procedure to diverge altogether. It also circumvents any problems caused by 
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over-filtering or under-filtering the data. (2) Calculating the modelled topography 

for a range of mean depths accounted for any discrepancy that occurred in 

estimating the mean depth initially (§ 3.4.1.1 ). This was done using seismic lines 

that lie mainly on the periphery of the data set and cross the ocean-continent 

boundary. This gives a somewhat inaccurate value for mean depth to Moho on 

the Grand Banks. 

The inversion procedure produced an r.m.s. error of 14.3 mGal for the gravity 

fields and 0.4 mGal/km for the gravity gradient fields after one iteration. 

Considering the appreciable uncertainty in the gravity field associated with the 

calculation of the sedimentary basin effects in the modelling procedure, which 

may be as large as ±31 mGal as noted earlier (§3.2.7), and the inherent noise in 

the observed field (±2.5 mGal), the large r.m.s. error is within the realm expected. 

For each subsequent iteration, the calculated depths increased so dramatically 

that by the third iteration they were incomprehensibly large. The depths 

oscillated severely about the mean depth. When these depths were gridded (at 5 

km spacing) and contoured, they produced 'bulls-eyes' about each grid point. 

That is, each grid point was surrounded by a closed contour owing to the severe 

oscillation in depth in all directions. Given this behaviour, the first inversion 

results were accepted. 

Several techniques were tried to obtain better convergence. A mean trend was 

removed from the depth data, which was then low-pass filtered as discussed 

earlier. Since the gravity anomaly observed at a point is due to material below 

and adjacent to it, an attempt was made to smooth the calculated depth 
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adjustments over the surrounding data points. This failed to improve 

convergence. Downward continuation of the field to the mean interface (Moho) 

depth (Parker, 1973; 1974) or to a plane just above the topography (Parker and 

Huestis, 1974) is another way of improving convergence. This is accomplished 

through the transfer function of equation (2.25). However, at depths comparable 

to Moho downward continuation of the field is notoriously unstable. 

The sensitivity analysis has shown that decreasing the mantle density, p 2 , by 

0.1 g/cm3 will decrease the r.m.s. error between the observed and calculated 

gravity fields by as much as 25%. Reducing p 1 was examined as a way to 

improve convergence. It was found that to minimize the misfit, p 2 would have to 

be reduced to values much less than typical mantle densities. None of the 

techniques significantly reduced the r.m.s. error. Oscillations of modelled depth 

after few iterations is not uncommon so it was decided to cease after one 

iteration (H. Miller, pers. comm.). The best achievable uncertainty in the model is 

14.3 mGal. The ideal uncertainty of 2.5 mGal (i.e. the uncertainty in the 

originating data set; §2. 1, §3.4.1.2) was not obtained due to the large uncertainty 

in the correction for the sedimentary basin effects, which may be as large as ±31 

mGal. 

For each topographic contour map created from the inverted depths, profiles 

were extracted along the locations of deep seismic lines so a direct comparison 

could be made. Refraction line 91-2 and reflection lines 84-3, 85-1 , 85-3, and 

85-4 were used. Figures 4.1 through 4.5 show profiles comparing the Moho 
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topography obtained using different mean depths for each low-pass filter used 

and for each seismic line. 

4.1. 1 Seismic Control on Moho Depth 

It is important to reiterate that the objective here is not to re-process the 

seismic data but to use the published interpretations for comparison with the 

resultant gravity models. The location of the Moho on each of these sections 

relies heavily on the assumptions of the processors of the original seismic data. 

Their published results are taken to be the best available. 

Figure 4.6 shows the locations of the seismic refraction and reflection lines 

used to estimate mean Moho depth. These profiles were also used for 

comparison with the inverted gravity models. It is apparent that the regional 

coverage provided by these lines is very poor. Estimates of Moho depth 

obtained from these lines, therefore, are not representative of the entire region. 

For the most part, the seismic studies were conducted to investigate the 

character of the deep crust across the ocean-continent boundary of the 

Newfoundland passive margin. Gathering information regarding rift geometry, 

crustal thinning and extension, and the nature of the ocean-continent transition 

was the object of these studies. The majority of the region covered by the gravity 

data, i.e. the inner portion of the continental shelf, has not been investigated by 

deep seismic surveys (Figure 4.6) and hence, the control on seismic Moho here 
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is very poor. The poor control on Moho depth is mitigated to some extent by the 

ensemble average depths derived from spectral analysis (§3.4.1 ). 

4.1.2 Refraction Line 91-2 

Refraction line 91-2 (location shown in Figure 4.6) is the only deep seismic line 

located entirely within the data range. 150 km of Moho was sampled by this 

survey. The velocity structure along line 91-2 was obtained using five ocean 

bottom seismometers (OBS) (Marillier, et al., 1994). The upper crust here is 

typified by large velocity gradients whereas the lower crust is relatively 

uncomplicated and homogeneous. The Moho shows no topography and has a 

constant depth of 40 km. 

Figures 4.1 (a) through 4.1 (e) show the seismic and gravity models of Moho 

topography along line 91-2 for each filtered data set. Models derived from data 

sets filtered to retain wavelengths greater than 50, 100, 200, and 250 km 

(Figures 4.1 (a), 4.1 (b), 4.1 (d), and 4.1 (e), respectively) show more variation of 

topography than for the models obtained from A.c = 150 km (Figure 4.1 (c)). The 

models for A.c = 150 km show almost no relief at all. With the exception of the 

A.c = 150 km (Figure 4.1(c)) and A.c = 250 km models (Figure 4.1(e)), they all 

show a deepening of the Moho at about 150 km offset. In the models calculated 

from the long-wavelength data sets ( A.c = 200 and 250 km; Figures 4.1 (d) and 

4.1 (e)), topographies with alternating mean depths show comparable relief. In 
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Figure 4.1 (d) ( A-c = 200 km}, for example, Moho topography corresponding to 30, 

35, and 40 km mean depth have the same appearance whereas models using 

zm = 32.5 and 37.5 km exhibit similar relief. 

The gravity model corresponding to 2c = 100 km, Z"' = 37.5 km (Figure 4.1 (b)) 

demonstrates the best agreement with seismic Moho. Interestingly, models 

calculated using Z"' = 40 km did not correlate with the seismic Moho at any 

wavelength. 

4.1.3 Reflection Line 85-3 

Reflection line 85-3 (location shown in Figure 4.6) crosses the northern Jeanne 

d'Arc and Flemish Pass Basins and the ocean-continent boundary northeast of 

Flemish Cap. West of Jeanne d'Arc Basin the crust is fairly thick (approximately 

40 km) but thins to about 30 km beneath the basin (DeChassy, et al. , 1990). The 

crust continues to thin as it approaches Flemish Pass attaining a thickness of 

approximately 25 km beneath Flemish Pass Basin. Below Flemish Cap, the 

crust thickens to about 30 km. Northeast of this continental fragment, the crust 

gradually thins to 1 0-15 km as it approaches the ocean-continent boundary. 

Figures 4.2(a) through 4.2(e) show the Moho topography along line 85-3 

computed from seismic and gravity modelling. Only the eastern 300 km of the 

line is used in order to match the length of the gravity profile. The seismic Moho 

shows the crustal thinning below the Jeanne d'Arc Basin (near 1 00 km offset) 

and Flemish Pass Basin (near 250 km offset). 
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When 2c =50 km and A.c = 100 km (Figures 4.2(a) and 4.2(b)), the gravity 

models exhibit a similar topography as the seismic Moho but are displaced 

westward by as much as 50 km in places. In Figure 4.2(a), for example, there is 

an eastward dip in seismic Moho at about 150-175 km offset. In the gravity 

Moho, the dip occurs at about 100-125 km offset. There is virtually no 

agreement between the gravity and seismic Mohos for the A.c = 200 km and 

A.c =250 km models (Figures 4.2(d) and 4.2(e)). The removal of wavelengths 

less than 200 km clearly results in a loss of detailed information. The gravity 

models corresponding to 2c = 150 km (Figure 4.2(c)) exhibit the same general 

relief as the seismic Moho but the amplitudes of the undulations are greatly 

diminished. The modelled Mohos possess the same form for each input mean 

depth used, demonstrating the consistency of the inversion procedure. 

4.1.4 Reflection Line 85-4 

Reflection line 85-4 (location shown in Figure 4.6) traverses the Jeanne d'Arc 

and Carson Basins, then crosses the ocean-continent boundary east of the 

Grand Banks. The sediments of the Carson Basin reduce the transmission of 

seismic energy and as a result there is poor control on Moho topography beneath . 
the continental slope east of the basin (Keen and de Voogd, 1988). Fortunately, 

this is outside the area covered by the gravity data. Below the Bonavista 

Platform (west of the Jeanne d'Arc Basin) the crust is almost 40 km thick. The 
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Moho beneath the basin is pulled up giving a local crustal thickness of about 30 

km. Under Carson Basin, the crust thickens once again. 

Figures 4.3(a) to 4.3(e) show seismic and gravity models of Moho topography 

along line 85-4 for each set of wavelength filtered gravity data. The rise of Moho 

beneath the Jeanne d'Arc Basin is seen on the seismic Moho at an offset of 

about 75 km. With the exception of the A.c = 50 km model (Figure 4.3(a}), all of 

the gravity models exhibit a decrease in depth that roughly coincides with the 

decrease in Moho depth beneath Jeanne d'Arc Basin. The topographic models 

for A.c = 50 km are nearly the reverse of the seismic model, i.e. a decrease in 

depth of the seismic Moho corresponds to an increase in that of the gravity Moho 

and vice versa. 

In general, because the seismic Moho along line 85-4 exhibits long-wavelength 

relief, the models derived from the long-wavelength gravity fields ( A.c ~ 150 km 

(Figures 4.3(c), 4.3(d), and 4.3(e)) agree best. Of these models, the mean depth 

that is most compatible with the seismic Moho is Zm = 32.5 km. 

4.1.5 Reflection Line 84-3 

The most prominent feature revealed on reflection line 84-3 (see Figure 4.6 for 

location) is a set of subhorizontal midcrustal reflections. They are interpreted as 

evidence of a zone of decollement between 6 and 1 0 km depth related to 

Mesozoic extension (Keen, et al. , 1987a; Keen and de Voogd, 1988). Intense 

water-bottom multiples present in the data obscured the signal from deep crustal 
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reflectors including the Moho (Keen, et al. , 1987a). Therefore, reliable depth 

estimates for the Moho were only obtained from the western 70 km of the line. 

Figures 4.4(a) to 4.4(e) show the seismic and gravity models of Moho. The 

short section of seismic Moho appears to display a long-wavelength character. 

Progressing eastward, it steps from about 39 km to 37 km depth. This step is 

evident in all of the gravity models regardless of filter cut-off. The topographic 

profile produced using Z"' = 35 km most closely resembles the seismic Moho, 

particularly for the data filtered with .:ic = 150 km (Figure 4.4(c)). 

4.1.6 Reflection Line 85-1 

Reflection line 85-1 (location is shown In Figure 4.6) crosses both the Whale 

and Horseshoe Basins before meeting reflection line 85-2 on the southeastern 

Grand Banks. The upper crust is relatively non-reflective along this line whereas 

the lower crust adjacent to the basins is fairly reflective (DeChassy, et el. , 1990). 

Below the basins, deep reflections are muted by the thick sedimentary wedges. 

Moho is imaged at the western end of the line where it climbs eastward from 37.5 

km to 35 km. Definitive reflections from Moho are not picked up again until the 

far eastern end of the line which is beyond the extent of available gravity data. 

Figures 4.5(a) through 4.5(e) show the topographic profiles derived from the 

gravity and seismic data. There is far too little seismic Moho to make a 

meaningful comparison. Most of the models did not even detect the increase in 
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Moho depth. However, A.c = 150 km, Zm = 37.5 km (Figure 4.5(c)) shows the 

most promise. 

4.2 RESULTANT MOHO TOPOGRAPHY 

The r.m.s. errors between the observed and calculated gravity and gravity 

gradient fields for all cut-off wavelengths and mean depths used are shown in 

Figures 4.7(a) and 4.7(b). The misfit between the observed and calculated 

gravity fields decreased with increasing mean depth, however, there was no 

change in this misfit as the cut-off wavelength varied. Misfit between the 

observed and calculated gravity gradient fields decreased with increasing cut-off 

wavelength but did not change with mean depth. 

Overall, the models generated from the gravity field filtered with cut-off 

wavelength of 150 km showed the best agreement with the seismic models. 

Analysis of the misfit between observed and calculated gravity gradient fields 

(Figure 4.7(b)) reveals a local minimum at 2c = 150 km. Although the r.m.s. error 

continues to decrease, the loss of information at higher cut-off wavelengths is too 

great. The compromise between the fitting of detailed Moho topography and 

minimizing the r.m.s. error is most acceptable using 2c = 150 km. 

Guspi (1992) showed that a low-pass cut-off frequency equal to 0.4/ ,1Zmax 

improves the chance of convergence, where .1Zmax refers to the maximum 

topographic relief of the interface. Assuming a maximum relief of 1 0 km here, a 
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cut-off frequency of 0.04 km-1 is obtained. This corresponds to a cut-off 

wavelength of approximately 150 km. Therefore, removing wavelengths less 

than 150 km should improve convergence. 

Gravity fields consisting of wavelengths less than 250 km generally show the 

effects of structures on a continental scale (Kane and Godson, 1985). In 

mapping undulations in the Moho beneath the Paris Basin, Lefort and Agarwal 

(1996) low-pass filtered the local gravity field using a cut-off wavelength of 150 

km. They noted that the effects of shallow features were no longer observed and 

concluded that the long-wavelength signal was due primarily to Moho 

undulations. 

Figure 4.7(a) suggests that the r.m.s. misfit decreases linearly with increasing 

mean depth. It would make sense then, to select a Moho topography model that 

used a large mean depth. Comparison of seismic and gravity topography models 

along reflection lines 84-3, 85-3, 85-4, and 85-1, i.e. lines that lie along the 

periphery of the data set, suggest a mean depth of 35 km. The modelled 

topography along refraction line 91-2 correlates best with a mean depth of 37.5 

km. Therefore, Z"' = 37.5 km was chosen as the model that most closely 

represents Moho topography on the Grand Banks. 

The largest source of uncertainty associated with modelling the Moho 

topography here is in the densities used to model the sedimentary basins. Using 

the parameters that gave the best model (i.e. 2c = 150 km, Z"' = 37.5 km), the 

gravity field data derived from varying the basin density contrasts by ±1 0% and 

±25% were inverted in an effort to estimate the uncertainty in the final model. 
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Figures 4.8 through 4.12 show the variability in Moho depth along profiles 

coinciding with each of the seismic refraction and reflection lines used for earlier 

comparison. The inverted Moho depth is very erratic in response to changes in 

density contrast along reflection line 85-1 (Figure 4.12). The remainder of the 

profiles show good agreement in both the amplitude and wavelength of the Moho 

topography. Reflection lines 85-3 and 85-1 (Figures 4.9 and 4.12), which lie 

directly over the Jeanne d'Arc and Whale Basins (see Figure 3.26 for location), 

respectively, show the most variability. The other lines, which either cross a rift 

basin at its edge (e.g. reflection lines 85-4 (Figure 4.1 0) and 84-3 (Figure 4 .11)) 

or do not cross one at all (e.g. refraction line 91-2 (Figure 4.8)) show much less 

variation. The most apparent change is the lateral variation of Moho depth rather 

than the expected vertical variation. For example, Figure 4. 1 0 shows that, at an 

offset along profile of 120 km, the present model indicates a depth to Moho of 36 

km. Decreasing the density contrast in the underlying Jeanne d'Arc Basin by 

10o/o changes the Moho depth at 120 km offset to 36.5 km, effectively shifting the 

Moho westward to 115 km offset. Similar variation in Moho depth is seen for all 

other changes in basin density contrast. The maximum uncertainty in the 

inverted Moho depths is 35 km laterally (as seen at 36.5 km depth on line 85-3; 

Figure 4.9) and 1 km vertically (as seen at 65 km offset on line 85-3; Figure 4.9). 

That is, the wavelength of the topography may be inaccurate by as much as 70 

km while its amplitude is uncertain by about ±1 km. This seems anomalously low 

considering that 1) the uncertainty assigned to the modelled basin gravity effect 
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is ±31 mGal and 2) the best achievable r.m.s. error for the inversion is 14.3 

mGal. 

Figure 4. 13 shows the contour map of modelled depth to Moho for the Grand 

Banks region using a mean depth of 37.5 km and a wavelength filter of 150 km. 

This will be discussed further in Chapter 5. Figure 4.14 shows the residual 

gravity field for the region. This is the observed gravity field (corrected for the 

gravity effects of the sediments) minus the gravity effect computed for the Moho 

topography model obtained from the inversion. The three most conspicuous 

anomalies are the gravity minimum over the northern Jeanne d'Arc Basin (near 

1150000 E, 5250000 N UTM), the positive region west of the Jeanne d'Arc Basin 

(about 1025000 E, 5250000 N UTM), and the moderate positive anomaly (60-70 

mGal) above the Avalon Peninsula (from approximately 500000 to 700000 E, 

5275000 to 5400000 N UTM). The positive gravity residual west of Jeanne d'Arc 

Basin results from inverting on a small flanking lobe created by the filtering 

process. It does not correspond to any real undulation in the Moho. The 

negative residual over the northern Jeanne d'Arc Basin is symptomatic of the 

poor control on basin density. The wells used to determine an average density 

for Jeanne d'Arc Basin (Bonanza M-71 , Hibernia G-55A, Spoonbill C-30) are 

widely scattered around the basin's edges. 

The majority of the residuals are between ±30 mGal. The r.m.s. error between 

the observed and calculated gravity fields obtained during the inversion process 

is 14.3 mGal. If the mean value is taken to be 0 mGal then, for large data sets, 

the standard deviation of the residual gravity field data is equivalent to the r.m.s. 
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error (Miller, 1978). In an normal, or Gaussian, distribution of data values 68% of 

the data lies within ±1 standard deviation of the mean while 95% of the values lie 

within ±2 standard deviations of the mean. Therefore, 95% of the gravity values 

lie within 30 mGal (i.e. twice the standard deviation) of the mean, that is, in the 

±30 mGal range. This means that less than 5% of the residual gravity values 

exhibit an anomalously large residual. Note that this includes the most 

noticeable feature of the residual field, the positive anomaly associated with the 

flank of the Jeanne d'Arc Basin. 
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

5.1 DISCUSSION OF ERRORS 

5. 1.1 Modelling the Sedimentary Basins 

The accuracy of the algorithm designed using the method of Talwani and 

Ewing ( 1960) depends on 1) the closeness of fit between the depth to basement 

contour line and its representative polygonal lamina, and 2) the choice of contour 

interval. The former becomes significant only when the distance between the 

lamina and the external point at which the gravity anomaly is calculated is 

relatively small - the maximum discrepancy occurring at the point of minimum 

separation- and then only to a maximum of less than one third of a percent of 

the total anomaly. The latter is negligible if an appropriate contour interval is 

chosen, i.e. one that ensures even coverage of the body. Given that the 

depocentres of the modelled basins range from 5 to 12 km, the contour interval 

of 1 km is reasonable. 

Changes in the density of the sedimentary column and/or changes in its 

thickness may change the observed gravitational anomaly significantly. In this 

case, the depth to Paleozoic basement, i.e. the thicknesses of the Mesozoic 

sediments is fairly well known from seismic reflection and refraction surveys, 

potential field studies, and well logs. The densities, particularly at depth, are not 

as well constrained. The number of wells per basin is small, particularly for 
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Carson and Horseshoe Basins. The wells were very shallow in relation to the 

total thickness of the basins. The deepest of the wells, Bonanza M-71 in Jeanne 

d'Arc Basin, only extended to a depth of 5300 m compared with a maximum 

estimated depth of at least 15 km (Tankard, et al., 1989; Grant and McAlpine, 

1990). With the exception of Whale Basin, the wells are located at the edges of 

the basins, where the sediments pinch out against the basin-bounding faults. 

Therefore, a large uncertainty in the calculated gravity effects (±31 mGal; §3.2.7) 

is associated with the uncertainties in the densities assigned to each basin due to 

both the averaging of the near-surface density log values and the extrapolation of 

densities to depth. The effects of sedimentary compaction have been addressed 

by assuming that basin densities increase with depth. 

Uncertainty in the basin densities can be reduced as more accurate density 

information becomes available, particularly at depth. 

5.1.2 Inversion of Gravity Field Data 

Changes in the density of the crust or the mantle and/or changes in the 

thickness of the crust can change the observed gravitational anomaly 

significantly. Furthermore, a change in the thickness of the crustal layer (effected 

by a change in the depth of the Moho) will change the observed gravity anomaly 

by the same amount as a commensurate change in density contrast (effected by 

a change in crustal or mantle density). Choosing a range of depths from which 

several models were derived has mitigated uncertainties in the estimate of mean 
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depth to Moho. The surface density (2.67 g/cm3
) is well established, however, 

the asymptotic density (2.97 g/cm3
) is based on indirect evidence as discussed 

earlier. 

The present model is limited by the assumption of a horizontally stratified 

crustal model. Horizontal layering of the crust changes the resultant average 

Moho depth but does not alter the modelled undulations greatly (Marillier and 

Verhoef, 1989). The methodology used here does not account for lateral 

variation of density within the crust aside from the Mesozoic sedimentary basins 

or the possible presence of anomalous bodies or structure, e.g. faults, folds, 

intrusions, or mafic layering or underplating which itself has a significantly large 

density that will not be reflected in the density-depth function. Furthermore, 

lateral variations of density in the mantle have not been addressed. 

The Moho here is assumed to be a sharply defined interface between two 

media of differing densities. Contrary to this, Braile (1989) and Braile, et al. 

(1989) have suggested that the Moho may instead be characterized in places by 

a transition zone up to a few kilometres thick, across which seismic velocity 

changes. It is not unreasonable to expect that density would also vary across 

such a boundary. 

A problem affecting the accuracy of the Moho topography model is the 

proximity of the region to the ocean-continent boundary. The crust thins as it 

approaches the boundary and this thinning is not reflected in the model because 

the distinctive gravity anomaly across it is not a part of the data set and was 

therefore not incorporated into the inversion scheme. 
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The broadband nature of the potential field itself can introduce uncertainty into 

the final model through the leakage of energy from broad, near-surface features 

into the power spectrum. These produce long-wavelength signals, which may 

have been misinterpreted as originating from undulations in the Moho. Although 

every effort has been made to remove the gravitational effect of the sedimentary 

basins, the modelling procedure can lead to residual energy that will appear in 

the spectrum. 

With the removal of the long-wavelength gravity effects of the Mesozoic 

sedimentary basins in the region, the remaining long-wavelength gravity 

anomalies have been interpreted as due solely to the density contrast across the 

crust-mantle boundary. As noted above, this assumes an oversimplified view of 

crustal structure. 

5.2 DISCUSSION 

Geodynamic models of rift basin and continental margin formation have been 

proposed by Grant (1987), Keen, et al. (1987b), Tankard and Welsink (1987), 

Enachescu (1988); Keen and Dehler (1993), and Bassi, et al. (1993), among 

others, to explain the margin geometry of Newfoundland. The prevailing 

extensional model used to describe the evolution of rifted margins is as follows: 

Rifting produces extension in the lithosphere. The amount of extension, f3 , can 

vary throughout the rift zone. During rifting, the collapse of fault blocks causes 

lithospheric flexure, if the lower crustal lithosphere is strong. The crust is thinned 
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by the extension and the region vacated by the thinning is passively filled with 

asthenospheric material, raising the geothermal gradient and increasing heat 

flow. The surface topography is uplifted in response to the thermal expansion. 

This is offset by subsidence due to the upwelling of mantle material. Overall, 

subsidence, referred to as syn-rift subsidence, prevails. After extension, the 

lithosphere cools and thermal subsidence, also called post-rift subsidence, takes 

over. Although post-rift subsidence decays as thermal equilibrium is reached 

(approximately 200 m.y. for oceanic crust) , subsidence continues due to 

sediment loading. 

Different types or amounts of extension produce different rifted margin 

structure. The two end-members of the range of extensional styles are the pure 

shear model of McKenzie (1978) and the simple shear model of Wernicke 

(1985). 

The symmetrical pure shear model of McKenzie (1978) proposes that the 

continental crust and lithosphere is thinned by an amount f3 (and consequently 

undergoes syn-rift subsidence). While ductile deformation takes place in the 

lower crust and mantle, brittle deformation occurs in the upper crust. The basin 

associated with pure shear extension forms above the zone of thinned crust. 

Depth-dependent extension models (Royden and Keen, 1980) propose layers 

with different stretching factors within the lithosphere. 

The simple shear model of Wernicke ( 1985) proposes that lithospheric 

extension occurs along a detachment fault that cuts the lithosphere in its entirety. 

The amounts of thinning above and below the detachment fault may differ, e.g. 
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the crustal portion may be thinned by an amount p and the mantle lithosphere 

thinned by amount o . The basin associated with simple shear extension 

develops proximal to the surface expression of the detachment fault. Lower layer 

thinning increases toward the distal end of the fault and upper layer thinning 

increases toward the proximal end. 

A combination of pure and simple shear is most often used to describe margin 

structure, particularly for complex margins. A detachment fault in the crust, 

above which brittle deformation occurs, that soles out at Moho depths paired with 

ductile necking in the mantle lithosphere illustrates this type of combination 

model. 

The delaminational model of Lister, et al. (1986) proposes a single shear zone 

throughout the lithosphere that is offset at different locations. A low-angle fault 

passes through the brittle upper layer, traverses an intra-crustal brittle-ductile 

transition, and dips down to sole out at or near the Moho. 

Runaway lithospheric thinning (Buck, 1991) describes a pure shear extensional 

model where the thinned area cools and hardens. The area becomes stronger, 

preventing further thinning. Because extension concentrates in the weakest 

zone of the lithosphere, the deformation and thinning migrate laterally, widening 

the rift zone (Kuznir and Park, 1987). Rupture will normally occur in the weakest 

area, producing an asymmetric conjugate margin with a broad margin, evenly 

thinned, on one side of the rift and a narrow margin on the other. This 

asymmetry is usually interpreted as due to simple shear extension prior to 

rupture. 
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Lithospheric response to extension can be described as the sum of kinematic 

and isostatic components (Karner and Driscoll, 1993). Movement of fault blocks 

along detachment faults both thins the crust and lithosphere and creates 

structural 'holes' to be filled with sediments. Extension above a detachment fault 

or brittle-ductile transition zone must be balanced by a commensurate amount of 

extension below it. The loads placed on the crust during rifting (e.g. thermal 

uplift, magmatic underplating, sedimentation, subsidence) must be compensated. 

The flexural state of the lithosphere is determined by this compensation (Karner 

and Driscoll, 1993). 

A response of the lithosphere to extension and stretching is flexural isostatic 

rebound of the flanks of the rift basins. The geometry of rift basin flanks is a 

consequence of regional isostatic compensation. Finite mechanical strength is 

required by extended lithosphere to accommodate this regional compensation. 

Flexural uplift in response to the creation of structural holes during rifting is 

centred below the hole. Uplifted rift flanks are transformed by the influx of 

seawater and sedimentation, which act to depress the topography. The 

magnitude of the uplift is decreased if the hole is filled with sediments but the 

wavelength of uplift remains constant. The compaction of sediments in very 

deep basins (e.g. Jeanne d'Arc Basin) means that the density of the sediments at 

depth approaches that of continental crust. The flexural uplift associated with the 

creation of these 'holes' is offset by the effect of the positive sediment load 

(Keen, et al., 1987b). Nonetheless, both the extension and subsidence 

processes will be manifested in the Moho topography below the region. 

171 



Changes in the topography of Moho beneath the region may be too subtle to be 

detected by inversion processes. 

Figure 4.13 shows the modelled Moho depth for the Avalon Terrane of 

Newfoundland. The absence of any distinct discontinuity in the relief of the Moho 

suggests that the crust was extended via pure shear (McKenzie, 1978) extension 

or facilitated along detachment faults (Wernicke, 1985) that sole out at or near 

Moho, or both. 

The Airy-Heiskanen hypothesis proposes that variations in crustal thickness 

support surface topography. Large topographic features with excess mass are 

compensated by mass deficiencies at depth, i.e. the downwarping of crustal 

material into the mantle, and those having a mass deficiency are compensated 

by an excess of mass at depth, i.e. upwarping of mantle material into the crust. 

Gravity anomalies of such compensating masses have long wavelengths and 

correlate negatively with long-wavelength surface topography. This is readily 

apparent in Figure 4.13, where the crust is thicker beneath the Newfoundland 

landmass and thins beneath the major basins, particularly beneath the northern 

Jeanne d'Arc Basin. 

The average thickness derived for the crust is 38 km. The crust attains a 

maximum thickness of near 42 km adjacent to the Jeanne d'Arc Basin while the 

minimum thickness of less than 32 km occurs beneath the northern Jeanne d'Arc 

Basin. This gives a peak-to-trough amplitude of undulation of 11 km. The 42 km 

deep trough is a side-effect of inversion of the lobes flanking the Jeanne d'Arc 

Basin, therefore a more realistic value of the amplitude of undulation is nearer 4 
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or 5 km. Toward the Avalon Peninsula the crust thickens to approximately 38 

km. Beneath the Jeanne d'Arc Basin the crust is thinned to less than 32 km. 

The undulation amplitude of the Moho is about 1 to 2 km in the western region of 

the data (i.e. west of 800000 E UTM) and about 4 to 5 km in the eastern region 

beneath the sedimentary basins. Considering the isostatic uplift of the Moho 

beneath the basins, the amplitudes are not unreasonable. The shallowest 

depths to the Moho correlate well with the positive gravity features observed on 

the long-wavelength (>150 km; Figure 3.20) gravity field and vice versa. This 

confirms that the general relief calculated for the modelling program is 

acceptable. 

Seismic results show that the half-grabens of the Grand Banks are bounded by 

listric extensional faults (Keen and de Voogd, 1988; Reid and Keen, 1990; 

DeChassy, et al. , 1990) that dip predominantly to the east at apparent angles of 

about 30° to 40° (Keen, et al. , 1987b). These faults extend deep into the crust 

and flatten along or just above the Moho. Dipping reflectors seen on reflection 

line 85-1 , which may be continuations of upper crustal faults, appear to graze the 

Moho (DeChassy, et al. , 1990). If these basin-bounding faults sole out at or 

above the Moho rather than penetrate it, then the Moho should be fairly 

continuous beneath the basins. The present model of Moho topography, which 

does not show any discontinuities beneath the major Grand Banks basins, or 

elsewhere in the study region, supports this. 

Refraction results from the Jeanne d'Arc Basin show that the deep crustal 

structure is fairly complex even though Moho is relatively smooth at between 35 
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and 37 km (Reid and Keen, 1990) depth. The crust is layered; in particular, there 

exists a lower crustal layer of constant thickness with a seismic velocity of 7.2 

km/s. There is evidence of igneous activity on the Grand Banks during Mesozoic 

extension and rifting (Jansa and Pe-Piper, 1986; Grant and McAlpine, 1990). 

Therefore, the layer may be the result of magmatic underplating or intrusion. 

This layer is absent further south (Reid, 1988). At the southeastern Grand Banks 

the crust has a modelled thickness of 36 km. Refraction data collected at the 

southeastern (Reid, 1993) and southwestern (Reid, 1988) Grand Banks put the 

Moho at an average depth of 30 km. The refraction results from the southeast 

Grand Banks also show the presence of a high velocity (>7 km/s) layer in this 

region (Reid, 1993). 

The modelled depth to Moho from the present study was compared to the map 

of crustal thickness compiled by Shih, et al. (1988) who used information 

collected from seismic refraction surveys, and free-air gravity, depth to 

basement, and bathymetric measurements to calculate crustal thickness. Their 

average crustal thickness is approximately 25 km, however this estimate includes 

the zones of thinned crust at the margin's edges. Crustal thickness at the 

southern Grand Banks is greater than 30 km, which differs from the present 

model by at least 6 km. Shih, et al. (1988) give a crustal thickness of over 35 km 

beneath the Jeanne d'Arc Basin while the modelled depth to Moho here is about 

32 km. They show that landward of the Grand Banks the crust exceeds 35 km 

thickness which is comparable to the modelled thickness and covers the largest 

areal extent by far. 
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5.3 CONCLUSIONS 

The main objective was to develop a technique to obtain the relative 

undulations in the Moho topography and their geographic locations throughout 

the region in order to supplement the present limited knowledge derived from 

seismic lines. This has been achieved. As observed in Chapter 4, the actual 

depth of the Moho and the Moho undulations are largely dependent on the mean 

depth used in the inversion program. 

The study has demonstrated that an estimate of Moho topography for the area 

can be extracted from the Bouger gravity data following correction for the effects 

of the sedimentation in the basins and wavelength filtering. The Moho relief 

obtained is consistent with the limited seismic control. The present model 

approximates the Moho topography of the region sufficiently well to make 

conclusions regarding the general structure of the crust. The results show how 

regional surface topography, particularly sedimentary infilling and subsidence of 

the major Mesozoic basins of the Grand Banks, is sustained by variations in 

crustal thickness. The crust is thicker beneath the Avalon Peninsula and thins 

beneath the basins. The Jeanne d'Arc Basin is a particular example. The 

smoothness of the Moho topography in the region is suggestive of either a pure 

shear extensional mode of margin formation or extension via a combination of 

pure and simple shear facilitated along a detachment fault that soles out at or 
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above the Moho. This is consistent with the present knowledge of the geology 

and tectonics of the region. 

The inversion used here was not intended to examine crustal thinning toward 

the ocean-continent boundary. Inclusion of a high density mafic layer such as 

interpreted by Reid and Keen (1990) and Reid (1993) would have increased the 

asymptotic density of the crust. This would result in a larger density for the 

crustal layer as a whole and a reduced contrast across the crust-mantle 

interface. Such a reduction in the contrast increases the amplitude of the 

modelled relief. 

The algorithm created by Chenot and Debeglia (1990) was designed to model 

the interface between sedimentary basins and crustal basement, i.e. basement 

topography. This study has shown that it can be applied to modelling Moho 

topography. The inversion program could possibly be improved by applying 

optimization techniques. 

The Moho relief inferred by this study could be improved if (1 ) more deep 

seismic information were available over a broader geographic area, and (2) 

density data were available for deeper portions of the basins. Given that both of 

these are expensive to obtain, the map of Moho topography presented here can 

be considered a successful first attempt at extracting the Moho topography from 

the gravity data. 
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APPENDIX A: FORTRAN PROGRAM FOR CALCULATION OF 
GRAVITATIONAL FIELD 

C GRAVITY.f 
C For calculating the 3D gravitational effect of a body whose coordinates are defined in the 
C UTM projection. Modified from a program received from Hugh Miller. 

REAL X(20,50,2500), Y(20,50,2500),PX(2500),PY(2500),R(2500),RC 
&(2500),BM(2500),Ff(2500),P(2500),Q(2500), V(20,50), VTOT(50),Z 
&(20,50),RH0(20), GDEL(20),DELG(20,50), THETA(20), GRA V 1(20,50), 
&GRA V2(20,50),GRA V3(20,50),SGRA V(15000) 
INTEGER NCORD(20,2500),NHT(50),SLA T(15000),SLONG(15000),SZED 

&(15000),KSTN,NBLKS,NBLOC,COUNT 
CHARACTER *72 HELLO 
EXTERNAL COORD 
OPEN(1,FILE='/net/srvr07/public/janet/BASIN.DAT',STATUS= 

&'unknown') 
OPEN(6,FILE='/net/srvr07 /public/janet/BASIN.XYZ',STA TUS= 

&'unknown') 
PIE=3.1415927 
EROS=O.O 
READ(1,915)HELLO 
WRITE(6,915)HELLO 
READ(1,900)KSTN,NBLKS 
DO 42 K= l,KSTN 

READ( 1,906)SLONG(K),SLA T(K),SZED(K) 
42 CONTINUE 

C Read in the block parameters 
DO 31 K= 1,NBLKS 

READ( 1,901 )NBLOC,RHO(K),NHT(K) 
NH1=NHT(K) 
DO 31 J= l ,NH1 

READ(1,903)Z(K,J),NCORD(K,J) 
NC1=NCORD(K,J) 
READ(1,904)(X(K,J,I),Y(K,J,I),I= 1,NC1) 

29 CONTINUE 
31 CONTINUE 

COUNT=2 
DO 43 L= 1,KSTN 

SORA V(L)=O.O 
DO 150 K= 1,NBLKS 

NH1=NHT(K) 
GDEL(K)=O.O 
DO 107 J= l ,NHl 

VTOT(J)=O.O 
NCl=NCORD(K,J) 
DO 45 1=1,NC1 

45 CALL COORD(SLAT(L),SLONG(L),X(K,J,I),Y(K,J,I),PX(I), 
&PY(I),THETA(I)) 

NCOR1 =NCl + 1 
PX(NCOR1)=PX(1) 
PY(NCOR1)=PY(1) 
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STHETA=O.O 
DO I07 I=I,NC1 

R(I)=SQRT(PX(I)**2.0+PY(I)**2.0) 
R(I+ I)=SQRT(PX(I+ I)**2.0+PY(I+ I)**2.0) 
RC(I)=SQRT((PX(I+ I)-PX(I))**2.0+(PY(I+ I)-PY(I))**2.0) 
BM(I)=(PY(I)*PX(I+ 1)-PY(I+ I)*PX(I))/(R(I)*R(I+ 1)) 
FT(I)=((PX(I)-PX(I+ I))*PX(I+ I)+(PY(I)-PY(I+ I))*PY(l+ I))/ 

&(RC(I)*R(I+ I)) 
P(I)=((PY(I)-PY(I+ I))*PX(I)-(PX(I)-PX(I+ I))*PY(I))/RC(I) 
Q(I)=((PX(I)-PX(I+ I))*PX(I)+(PY(I)-PY(I+ I)*PY(I)))/(RC(I)* 

&R(I)) 
STHETA=STHETA+ THET A(I) 
S=I 
W=l 
IF(P(I))55,60,60 

55 S=-S 
60 IF(BM(I))65,70,70 
65 W=-W 
70 GK=6.67 

ALPHA=(PX(I)*PX(I+ I)+PY(I)*PY(I+ I))/(R(I)*R(I+ I)) 
BETA=Z(K,J)*Q(I)*S/SQRT(P(I)* *2. 0+ Z(K,J)* *2. 0) 
GAMMA=Z(K,J)*FT(I)*S/SQRT(P(I)**2.0+Z(K,J)**2.0) 
IF(ABS(ALPHA)-I.0)92,92,91 

91 ALPHA=LO 
92 IF(ABS(BETA)-I.0)94,94,93 
93 BETA=l.O 
94 IF(ABS(GAMMA)-1.0)96,96,95 
95 GAMMA=l.O 
96 V(I,J)=GK*RHO(K)*(W* ACOS(ALPHA)-ASIN(BETA)+ ASIN(GAMMA)) 

IF(ABS(STHETA-2*PIE)-0.0005)90,90,IOI 
90 V(I,J)=V(I,J)+2*PIE*GK*RHO(K) 
I01 VTOT(J)=VTOT(J)+V(LJ) 
107 CONTINUE 

NHTl=NHT(K)-2 
DO I50 J=I,NHTl 

GRA V1(K,J)=VTOT(J)*(Z(K,J)-Z(K,J+2))*(3*Z(K,J+ 1)-Z(K,J+2)-2* 
&Z(K,J))/(Z(K,J)-Z(K,J+ 1)) 

GRA V2(K,J)=VTOT(J+ I )*(Z(K,J)-Z(K,J+ 2))*(Z(K,J)-Z(K,J+ 2))* 
&(Z(K,J)-Z(K,J+2))/((Z(K,J+I)-Z(K,J+2))*(Z(K,J+l)-Z(K,J))) 

GRA V3(K,J)=VTOT(J+2)*(Z(K,J)-Z(K,J+2))*(3*Z(K,J+ 1)-Z(K,J)-2* 
&Z(K,J+2))/(Z(K,J+2)-Z(K,J)) 

DELG(K,J)=(GRA V1(K,J)+GRA V2(K,J)+GRA V3(K,J))/6.0 
GDEL(K)=GDEL(K)+DELG(K,J) 
SGRA V(L)=SGRA V(L)+GDEL(K) 

I50 CONTINUE 
WRITE(6,9IO)SLONG(L},SLAT(L),SGRA V(L} 

43 CONTINUE 
900 FORMAT(2I5) 
901 FORMAT(I5,F10.3,15) 
902 FORMAT(2X,'FOR BLOCK #',I5,',THE DENSITY IS ',Fl0.3,' glee.') 
903 FORMAT(F7. I,I5) 
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904 FORMAT(9F8.0) 
906 FORMAT(I7,18,I2) 
910 FORMAT(2X,I7,18,F12.7) 
911 FORMAT(I5,F15.3,F10.3) 
912 FORMAT(2X,F10.3) 
915 FORMAT(A72) 
916 FORMAT('THE DEPTH OF CONTOUR ',15,' IS ',F10.3,' km.') 
917 FORMAT('Line ',14) 

STOP 
END 

SUBROUTINE COORD(SLAT,SLONG,X, Y,PX,PY, THETA) 
INTEGER SLA T,SLONG 
REAL X, Y,PX,PY,THETA 
PX=(SLONG-X)*2.5 
PY=(SLAT-Y)*2.5 
IF(PX.EQ.O)GOTO 10 
THETA=AT AN2(PX,PY) 
GOT020 

10 THETA= l.57079*SIGN(PY, l.O) 
20 CONTINUE 

RETURN 
END 

APPENDIX 8: FORTRAN INVERSION PROGRAM 

C INVERT.f 
c **************************************************************************** 
C * INVERT.f is a three-dimensional inversion program designed to construct a depth function * 
C * Z(x,y) describing the topography of an interface separating two different media given 1) a * 
C * set of gridded gravity data, G(x,y), and 2) a density contrast across the interface. The * 
C * interface topography to be determined here is the Mohorovicic discontinuity (Moho) * 
C *between the crust and mantle. The algorithm used is that ofChenot and Debeglia (1990) * 
C * which allows for both vertical and lateral variation of the density contrast within the media * 
C * and across the interface. * 
c **************************************************************************** 
c 

c 

REAL BETA,CNTRST,DEPTH(1 0,50000),ERRGRD,ERRGRV,FREQ(50000),GAMMA, 
&GRAD(50000),GRA V(50000),MEANZ,P,PX,PY,RH01,RH02,RHOAS,RGRAD(10, 
&50000),RGRA V ( 1 0,50000),RMSGRD,RMSGRV,RTRANS(1 0,50000),STORE( 60000) 
&,SUMGRD,SUMGRV, TRANS( 50000), U(50000), V(50000) 

C BETA = RHOAS(1-BETA) is the surface density 
C CNTRST = density contrast at the Moho (glee) 
C DEPTH(l 0,50000) = depth function at interface (km) 
C ERRGRD = maximum acceptable error between observed gradient field and 
C calculated gradient field 
C ERRGRV = maximum acceptable error between observed gravity field and 
C calculated gravity field 
C FREQ(50000) = radial frequency 
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C GAMMA= decay constant of density in crust (glee km) 
C GRAD(10,50000) =expanded vertical gradient of gravity field (to 
C avoid appearance of Gibbs phenomenon) 
C GRA V(10,50000) =expanded gravity field (to avoid the appearance 
C of Gibbs phenomenon) 
C MEANZ =Mean depth to Moho (km) 
C P = number of data points (grid nodes) in gravity field 
C PX =spacing in the x-direction (km) 
C PY = spacing in the y-direction (km) 
C RHOI =exponential density function of first layer (crust) (glee) 
C RH02 =density of second layer (mantle) (glee) 
C RHOAS = asymptotic value of density in the crust (glee) 
C RGRAD(10,50000) =residual gradient function 
C RGRA V(10,50000) =residual gravity function 
C RMSGRD = r.m.s. error of calculated gradient values 
C RMSGRV = r.m.s. error of calculated gravity values 
C RTRANS(10,50000) =residual transferred field function 
C STORE(60000) =internal array used for data storage 
C TRANS(50000) =transferred field at depth MEANZ 
C U(50000) = wavenumber in the kx direction 
C V(50000) = wavenumber in the ky direction 
c 

INTEGER N,NDIM,NN(2),NORDER,NX,NY,XCOORD(50000),YCOORD(50000) 
c 
C N = inversion index 
C NDIM =dimension of fast Fourier transform 
C NN(2) = array of length NDIM containing the lengths of each dimension 
C NORDER = order of vertical derivative 
C NX =number of data elements in the S-N (y) direction 
C NY = number of data elements in the W-E (x) direction 
C XCOORD(50000) = x-coordinate (UTM) of gravity field data point (km) 
C YCOORD(50000) = y-coordinate (UTM) of gravity field data point (km) 
c 

c 

COMPLEX MGRAD(50000),MGRA V(50000),MGRA V1(50000),MGRA V2 
&(50000),TEMP1(50000),TEMP2(50000) 

C MGRAD(50000) =gradient of the modelled field 
C MGRA V(50000) = MGRA VI +MGRA V2 (modelled gravity field) 
C MGRA Vl(50000) =effect of density of bottom layer compared to asymptotic 
C value of density 
C MGRA V2(50000) = effect of the difference between asymptotic density and the 
C 'normal' density RH01 
C TEMP1(50000) = temporary array containing residual gravity function (since 
C FOURN accepts only 1-D array) 
C TEMP2(50000) = temporary array containing residual gradient function (since 
C FOURN accepts only 1-D array) 
c 

OPEN(1,FILE='/net/srvr08/public/janet/INVERT.DAT',STATUS= 
&'unknown') 
OPEN(7,FILE='/net/srvr08/public/janet/MODEL1.XYZ',STATUS= 

&'unknown') 
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c 

OPEN(8,FILE='/net/srvr08/public/janet/MODEL2 .XYZ',ST A TUS= 
&'unknown') 
OPEN(9,FILE='/net/srvr08/public/janet/MODEL3 .XYZ',ST A TUS= 
&'unknown') 
OPEN( 1 O,FILE='/net/srvr08/public/janet/MODEL4 .XYZ',ST A TUS= 
&'unknown') 
OPEN( ll,FILE='/net/srvr08/public/janet/MODEL5 .XYZ',ST A TUS= 

&'unknown') 
OPEN( 12,FILE='/net/srvr08/public/janet/MODEL6.XYZ',ST A TUS= 

&'unknown') 
OPEN(l3,FILE='/net/srvr08/public/janet/MODEL 7.XYZ',STA TUS= 

&'unknown') 
OPEN( 14,FILE='/net/srvr08/public/janet/MODEL8.XYZ',ST A TUS= 

&'unknown') 
OPEN(15,FILE='/net/srvr08/public/janet/MODEL9.XYZ',STA TUS= 

&'unknown') 
OPEN(16,FILE='/net/srvr08/public/janet/MODEL10.XYZ',STATUS= 

&'unknown') 
OPEN(20,FILE='/net/srvr08/public/janet/ERROR.XYZ',ST A TUS= 

&'unknown') 

C INVERT.DAT --file containing gravity data & inversion parameters (input) 
C MODELl.XYZ--file containing initial interface topography model 
C MODEL2.XYZ--file containing second interface topography model 
C MODEL3.XYZ--file containing third interface topography model 
C MODEL4.XYZ--file containing fourth interface topography model 
C MODEL5.XYZ--file containing fifth interface topography model 
C MODEL6.XYZ--file containing sixth interface topography model 
C MODEL 7 .XYZ--file containing seventh interface topography model 
C MODEL8.XYZ--file containing eighth interface topography model 
C MODEL9.XYZ--file containing ninth interface topography model 
C MODELlO.XYZ--file containing tenth interface topography model 
C ERRORXYZ--file containing r.m.s. error of the initial model and 
C each iteration 
c 

c 

PI=3.1415927 
G=6.67 
NDIM=2 

C *************************PRE-PROCESSING******************************* 
C * Read in the gravity and vertical gradient fields as well as the inversion parameters * 
C************************************************************************* 

READ( 1,900)P,NX,NY 
900 FORMAT(F7.1,215) 

READ(1,902)MEANZ 
902 FORMAT(F10.3) 

READ(1,904)RHOAS,RH02,BETA,GAMMA 
904 FORMAT(4F10.3) 

READ(l,905)ERRGRV,ERRGRD 
905 FORMAT(2F6.3) 

READ(1,906)PX,PY 
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906 FORMAT(2F7.1) 
DO 21 1=1,P 

READ(1, *)XCOORD(I),YCOORD(I),GRA V(I),GRAD(I) 
21 CONTINUE 

CLOSE(1) 
903 FORMAT(215,F12.5) 

c 

DO 1=2,P-1 
U(I)=2*PI/(1 *PX) 
V(I)=2 *PII(I*PY) 
FREQ(I)=SQRT(U(I)**2+V(I)**2) 

END DO 

C*************************INITIAL MODEL************************************* 
C * Calculate the transferred field and use for the initial depth conversion. Derive the residual * 
C *functions and calculate error. * 
C**************************************************************************** 

SUMGRV=O.O 
SUMGRD=O.O 
NN(1)=NX 
NN(2)=NY 
RH01=RHOAS*(l-BETA*EXP(-(GAMMA*MEANZ))) 
CNTRST=2*PI*G*(RH02-RHOI) 
DO 41 1=1,P 

TRANS(I)=GRA V(I)+MEANZ*GRAD(I) 
DEPTH(1,I)=MEANZ-(TRANS(I)/CNTRST) 
WRITE(7 ,903)XCOORD(I), YCOORD(I),DEPTH( 1 ,I) 

41 CONTINUE 
DO 80 1=2,P-l 

MGRA V1(I)=2*PI*G*(SIN(PI*U(I)*PX)/(PI*U(I)))*(SIN(PI*V(I)*PY)/ 
& (PI*V(I)))*EXP(-(2*PI*CMPLX(0,1)*(U(I)*XCOORD(I)+ 
& V(I)*YCOORD(I) )))*(RH02-RHOAS)*EXP( -(2 *PI*FREQ(I)*DEPTH 
& (1 ,1)))/(2*PI*FREQ(I)) 

MGRA V2(1)=(2*PI*G*(SIN(PI*U(I)*PX)/(PI*U(I)))*SIN(PI*V(I)*PY)/ 
& (PI*V(I)))*EXP(-(2*PI*CMPLX(0,1)*(U(I)*XCOORD(I)+ 
& V(I)*YCOORD(I))))*RHOAS *BETA *(EXP( -((2 *PI*FREQ(I)+GAMMA)* 
& DEPTH(1,1))))/(2*PI*FREQ(I)+GAMMA) 

MGRA V(l)=MGRA Vl(l)+MGRA V2(I) 
MGRAD(I)=(2*PI*G*(SIN(PI*U(I)*PX)/(PI*U(I)))*(SIN(PI*V(I)*PY)/ 

& (PI*V(I)))*EXP(-(2*PI*CMPLX(O, l)*(U(I)*XCOORD(l)+ 
& V(I)*YCOORD(I)))))*(RH02-RH01)*EXP(-(2*PI*FREQ(I)*DEPTH 
& (1 ,1))) 

80 CONTINUE 
DO I=2,P-1 
GRA V(I)=CMPLX(GRA V(I)) 

END DO 
CALL FOURN(GRA V,NN,NDIM,-1,1,STORE) 
DO 42 I=2,P-1 

TEMP1(I)=GRA V(I)-MGRA V(I) 
42 CONTINUE 

CALL FOURN(TEMP1,NN,NDIM, 1, 1,STORE) 
DO 90 I=2,P-1 
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TEMPI (!)=(TEMPI (1)/(NX*NY)) 
RGRA V(l,I)=REAL(TEMPI(I)) 
SUMGRV=SUMGRV+(RGRA V(l,I)**2) 
GRAD(I)=CMPLX(GRAD(I)) 

90 CONTINUE 
CALL FOURN(GRAD,NN,NDIM,-1, l,STORE) 
DO 46 I=2,P-l 

TEMP2(I)=GRAD(I)-MGRAD(I) 
46 CONTINUE 

CALL FOURN(TEMP2,NN,NDIM, 1, l,STORE) 
DO 91 I=2,P-l 

TEMP2(I)=(TEMP2(1)/(NX*NY)) 
RGRAD(l ,I)=REAL(TEMP2(1)) 
SUMGRD=SUMGRD+(RGRAD(l,I)**2) 

91 CONTINUE 
RMSGRV=( li(P-2))*SQRT(SUMGRV) 
RMSGRD=(li(P-2))*SQRT(SUMGRD) 
WRITE(20,915)RMSGRV,RMSGRD 

915 FORMAT('RMSGRV= ',Fl5.8,' ,RMSGRD= ',Fl5.8) 
IF (RMSGRV.LT.ERRGRV.AND.RMSGRD.LT.ERRGRD) GOTO 99 

c 
C***************************INVERSION*************************************** 
C * If the error between the initial model and observed data does not fall below a predetermined * 
C * acceptable error, proceed with iterative inversion. * 
C**************************************************************************** 
49 DO 51 N=2,10 

SUMGRV=O.O 
SUMGRD=O.O 
RMSGRV=O.O 
RMSGRD=O.O 
00 61 I=2,P-l 

RTRANS(N-1,I)=RGRA V(N-l,I)+DEPTH(N-l ,I)*RGRAD(N-1,1) 
DEPTH(N,I)=DEPTH(N-1,1)-(RTRANS(N-1,1)/CNTRST) 
WRITE(N+6,903)XCOORD(I), YCOORD(I),DEPTH(N,I) 
MGRA Vl(I)=2*PI*G*(SIN(PI*U(I)*PX)/(PI*U(I)))*(SIN(PI*V(I)* 

& PY)/(PI*V(I)))*EXP( -(2*PI*CMPLX(O, 1 )*(U(I)*XCOORD(I)+ 
& V(I)*YCOORD(I))))*(RH02-RHOAS)*EXP(-(2*PI*FREQ(I)*DEPTH 
& (N,I)))/(2*PI*FREQ(I)) 

MGRA V2(I)=(2*PI*G*(SIN(PI*U(I)*PX)/(PI*U(I)))*SIN(PI*V(I)* 
& PY)/(PI*V(I)))*EXP( -(2 *PI*CMPLX(O, 1 )*(U(I)*XCOORD(I)+ 
& V(I)*YCOORD(I))))*RHOAS*BETA *(EXP(-((2*PI*FREQ(I)+GAMMA) 
& *DEPTH(N,I))) )/(2 *PI*FREQ(I)+GAMMA) 

MGRA V(I)=MGRA V1(I)+MGRA V2(1) 
MGRAD(I)=(2*PI*G*(SIN(PI*U(I)*PX)/(PI*U(I)))*(SIN(PI*V(I)* 

& PY)/(PI*V(I)))*EXP( -(2*PI*CMPLX(O, 1 )*(U(I)*XCOORD(I)+ 
& V(I)*YCOORD(I)))))*(RH02-RHO 1 )*EXP( -(2*PI*FREQ(I)*DEPTH 
& (N,I))) 

61 CONTINUE 
00 62 1=2,P-1 

TEMP1(I)=GRA V(I)-MGRA V(I) 
62 CONTINUE 

193 



CALL FOURN(TEMP1,NN,NDIM,l , 1,STORE) 
DO 95 I=2,P-1 

TEMPI (I)=(TEMP l(I)/(NX*NY)) 
RGRA V(N,I)=REAL(TEMPl(I)) 
SUMGRV=SUMGRV+(RGRA V(N,I)**2) 
TEMP2(I)=GRAD(I)-MGRAD(I) 

95 CONTINUE 
CALL FOURN(TEMP2,NN,NDIM, 1, 1,STORE) 
DO 97 I=2,P-1 

TEMP2(I)=(TEMP2(1)/(NX*NY)) 
RGRAD(N,I)=REAL(TEMP2(I)) 
SUMGRD=SUMGRD+(RGRAD(N,I)**2) 

97 CONTINUE 
RMSGRV=( li(P-2))*SQRT(SUMGRV) 
RMSGRD=(li(P-2))*SQRT(SUMGRD) 
WRITE(20,916)N,RMSGRV,RMSGRD 

916 FORMAT('N= ',13,' RMSGRV= ',F15.8,' ,RMSGRD= ',F15.8) 
IF (RMSGRV.LT.ERRGRV.AND.RMSGRD.LT.ERRGRD) GO TO 99 

51 CONTINUE 
99 STOP 

END 
c 
C**************************FOURIER TRANSFORMATION********************** 

SUBROUTINE FOURN(DAT A,NN,NDIM,ISIGN,IFORM, WORK) 
c 
c the cooley-tukey fast fourier transform in usasi basic fortran 
c 
c program by norman brenner from the basic program by charles rader, june 1967. the idea for 
c the digit reversal was suggested by ralph alter. 
c 
c reference-- ieee audio transactions (june 1967), special issue on the fft. 
c 

DIMENSION DATA(500),NN(2),IF ACT(32), WOR.K(1000) 
DATA TWOPI/6.2831853071796/,RTI-aF/0. 70710678118655/ 
IF(NDIM-1)920,1,1 

1 NTOT=2 
DO 2 IDIM=1,NDIM 
IF(NN(IDIM))920,920,2 

2 NTOT=NTOT*NN(IDIM) 
c 

c 

NP1=2 
DO 910 IDIM= l ,NDIM 
N=NN(IDIM) 
NP2=NP1*N 
IF(N-1 )920,900,5 

c is n a power of two and if not, what are its factors 
c 
5 M=N 

NTWO=NP1 
IF= l 
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IDIV=2 
10 IQUOT=M/IDIV 

IREM=M-IDIV*IQUOT 
IF(IQUOT-IDIV)50,11,11 

11 IF(IREM)20,12,20 
12 NTWO=NTWO+NTWO 

IF ACT(IF)=IDIV 
IF=IF+1 
M=IQUOT 
GOTO 10 

20 IDIV=3 
INON2=IF 

30 IQUOT=M!IDIV 
IREM=M-IDIV*IQUOT 
IF(IQUOT-IDIV)60,31,31 

31 IF(IREM)40,32,40 
32 IFACT(IF)=IDIV 

IF=IF+ 1 
M=IQUOT 
GOT030 

40 IDIV=IDIV+2 
GOT030 

50 INON2=IF 
IF(IREM)60,51,60 

51 NTWO=NTWO+NTWO 
GOT070 

60 IF ACT(IF)=M 
c 
c separate four cases--
c 1. complex transform or real transform for the 4th, 9th,etc. dimensions. 
c 2. real transform for the 2nd or 3rd dimension. method--transform half the data, supplying 
c the other half by conjugate symmetry. 
c 3. real transform for the 1st dimension, n odd. method--set the imaginary parts to zero. 
c 4. real transform for the 1st dimension, n even. method--transform a complex array of 
c length n/2 whose real parts are the even numbered real values and whose imaginary parts 
c are the odd numbered real values. separate and supply the second half by conjugate 
c symmetry. 
c 
70 ICASE= l 

IFMIN= 1 
IlRNG=NPl 
IF(IDIM-4)71,100,100 

71 IF(IFORM)72, 72, 100 
72 ICASE=2 

IlRNG=NPO*(l +NPREV/2) 
IF(IDIM-1 )73, 73,100 

73 ICASE=3 
IlRNG=NPl 
IF(NTWO-NP1)100,100,74 

74 ICASE=4 
IFMIN=2 
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NTWO=NTW0/2 
N=N/2 
NP2=NP2/2 
NTOT=NTOT/2 
1= 1 
DO 80 J=1,NTOT 
DATA(J)=DATA(I) 

80 1=1+2 
c 
c shuffle data by bit reversal, since n=2**k. as the shuffling can be done by simple 
interchange, 
c no working array is needed 
c 
100 IF(NTWO-NP2)200,110,110 
110 NP2HF=NP2/2 

J= 1 
DO 150 12=1,NP2,NP1 
IF(J-12)120,130, 130 

120 11MAX=I2+NP1-2 
DO 125 11 =12,11MAX,2 
DO 125 I3=11,NTOT,NP2 
J3=J+l3-12 
TEMPR=DATA(I3) 
TEMPI=DATA(I3+ 1) 
DATA(I3)=DATA(J3) 
DATA(I3+ 1)=DATA(J3+ 1) 
DATA(J3)=TEMPR 

125 DATA(J3+ 1)=TEMPI 
130 M=NP2HF 
140 IF(J-M)150, 150, 145 
145 J=J-M 

M=M/2 
IF(M-NP1)150, 140,140 

150 J=J+M 
GOT0300 

c 
c shuffle data by digit reversal for general n 
c 
200 NWORK=2*N 

DO 270 11= 1,NP1,2 
DO 270 I3=Il,NTOT,NP2 
J=I3 
DO 260 1=1,NWORK,2 
IF(ICASE-3)21 0,220,210 

210 WORK(I)=DATA(J) 
WORK(!+ 1 )=DA TA(J+ 1) 
GOT0230 

220 WORK(I)=DAT A(J) 
WORK(I+ 1)=0. 

230 IFP2=NP2 
IF=IFMIN 
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240 IFP 1 =IFP2/IF ACT (IF) 
J=J+IFPI 
IF(J-13-IFP2)260,250,250 

250 J=J-IFP2 
IFP2=IFP1 
IF=IF+1 
IF(IFP2-NP 1 )260,260,240 

260 CONTINUE 
12MAX=I3+NP2-NP1 
1=1 
DO 270 12=13,12MAX,NP1 
DATA(I2)=WORK(I) 
DAT A(I2+ 1 )=WORK(I+ 1) 

270 1=1+2 
c 
c main loop for factors of two. perform fourier transforms oflength four, with one oflength 
two 
c if needed. the twiddle factor w=exp(isign*2*pi*sqrt(-1)*m/(4*mmax)). check for 
c w=isign*sqrt(-1) and repeat for w=w*(1+isign*sqrt(-1))/sqrt(2). 
c 
300 IF(NTWO-NP1)600,600,305 
305 NP1TW=NP1+NP1 

IPAR=NTWO/NP1 
310 IF(IP AR-2)350,330,320 
320 IP AR=IP AR/4 

GOT0310 
330 DO 340 11= 1,11RNG,2 

DO 340 K1=Il,NTOT,NP1TW 
K2=K1+NP1 
TEMPR=DATA(K2) 
TEMPI=DAT A(K2+ 1) 
DATA(K2)=DAT A(K1 )-TEMPR 
DATA(K2+ 1 )=DATA(K1 + 1 )-TEMPI 
DATA(K1)=DATA(K1)+TEMPR 

340 DATA(K1+1)=DATA(K1+1)+TEMPI 
350 MMAX=NP1 
360 IF(MMAX-NTW0/2)370,600,600 
370 LMAX=MAXO(NP1TW,MMAX/2) 

DO 570 L=NP1,LMAX,NP1TW 
M=L 
IF(MMAX-NP 1 )420,420,380 

380 THETA=-TWOPI*FLOAT(L)/FLOAT(4*MMAX) 
IF(ISIGN)400,390,390 

390 THETA=-THETA 
400 WR=COS(THETA) 

WI=SIN(THETA) 
410 W2R=WR*WR-WI*WI 

W21=2. *WR *WI 
W3R=W2R *WR-W2I*WI 
W3I=W2R *WI+ W2I*WR 

420 DO 530 11=1,11RNG,2 
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.KMIN=Il +IP AR *M 
IF(MMAX-NPI )430,430,440 

430 KMIN=Il 
440 KDIF=IPAR*MMAX 
450 KSTEP=4*KDIF 

IF(KSTEP-NTW0)460,460,530 
460 DO 520 K1 =KMIN,NTOT,KSTEP 

K2=Kl+KDIF 
K3=K2+KDIF 
K4=K3+KDIF 
IF(MMAX-NP 1 )4 70,4 70,480 

470 U1R=DATA(K1)+DATA(K2) 
Uli=DATA(K1 + 1)+DATA(K2+ 1) 
U2R=DATA(K3)+DATA(K4) 
U2I=DAT A(K3+ 1 )+DAT A(K4+ 1) 
U3R=DATA(Kl)-DATA(K2) 
U3I=DAT A(Kl + 1 )-DAT A(K2+ 1) 
IF(ISIGN)471,472,472 

471 U4R=DATA(K3+1)-DATA(K4+1) 
U4I=DATA(K4)-DATA(K3) 
GOTO 510 

472 U4R=DATA(K4+ 1)-DATA(K3+ 1) 
U4I=DATA(K3)-DATA(K4) 
GOT0510 

480 T2R=W2R*DATA(K2)-W2I*DATA(K2+ 1) 
T2I=W2R*DATA(K2+ l)+W2I*DATA(K2) 
T3R=WR *DATA(K3)-WI*DAT A(K3+ 1) 
T3I=WR*DATA(K3+ 1)+WI*DATA(K3) 
T4R=W3R*DATA(K4)-W3I*DATA(K4+1) 
T4I=W3R *DATA(K4+ l)+W3I*DATA(K4) 
UlR=DATA(K1)+T2R 
Uli=DATA(Kl+ l)+T2I 
U2R=T3R+T4R 
U2I=T3I+T4I 
U3R=DATA(Kl)-T2R 
U3I=DATA(Kl + 1)-T21 
IF(ISIGN)490,500,500 

490 U4R=T31-T4I 
U4I=T4R-T3R 
GOT0510 

500 U4R=T4I-T3I 
U4I=T3R-T4R 

510 DATA(K1)=UlR+U2R 
DAT A(K I+ 1 )=U li+U21 
DATA(K2)=U3R+U4R 
DATA(K2+ 1)=U3I+U41 
DATA(K3)=U1R-U2R 
DATA(K3+ l)=Ull-U21 
DATA(K4)=U3R-U4R 

520 DATA(K4+ l )=U3I-U4I 
KDIF=KSTEP 
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KMIN=4 *(KMIN-I 1 )+I 1 
GOT0450 

530 CONTINUE 
M=M+LMAX 
IF(M-MMAX)540,540,570 

540 IF(ISIGN)550,560,560 
550 TEMPR=WR 

WR=(WR+WI)*RTHLF 
WI=(WI-TEMPR)*RTfll.,f 
GOT0410 

560 TEMPR=WR 
WR=(WR-WI)*RTfll.,f 
Wl=(TEMPR+WI)*RTfll.,f 
GOT0410 

570 CONTINUE 

c 

IP AR=3-IP AR 
MMAX=MMAX+MMAX 
GOT0360 

c main loop for factors not equal to two. apply the twiddle factor w=exp(isign*2*pi*sqrt(-
c l)*(jl-l)*(j2-jl)/(ifpl +ifp2)), then perform a fourier transform oflength ifact(if), making use 
c of conjugate symmetries. 
c 
600 IF(NTWO-NP2)605,700,700 
605 IFP 1 =NTWO 

IF=INON2 
NPlHF=NPl/2 

610 IFP2=IFACT(IF)*IFP1 
JlMIN=NPl+l 
IF(JlMIN-IFP1)615,615,640 

615 DO 635 Jl=JlMIN,IFPl,NPl 
THETA=-TWOPI*FLOA T(J 1-1 )/FLOAT(IFP2) 
IF(ISIGN)625,620,620 

620 THETA=-THETA 
625 WSTPR=COS(THETA) 

WSTPI=SIN(THETA) 
WR=WSTPR 
WI=WSTPI 
J2MIN=Jl+IFP1 
J2MAX=Jl+IFP2-IFP1 
DO 635 J2=J2MIN,J2MAX,IFP1 
I1MAX=J2+11RNG-2 
DO 630 Il=J2,I1MAX,2 
DO 630 J3=Il,NTOT,IFP2 
TEMPR=DATA(J3) 
DATA(J3)=DATA(J3)*WR-DATA(J3+l)*WI 

630 DAT A(J3+ 1 )=TEMPR *WI+DATA(J3+ 1 )*WR 
TEMPR=WR 
WR=WR *WSTPR-Wl*WSTPI 

635 Wl=TEMPR *WSTPI+ WI*WSTPR 
640 THETA=-TWOPIIFLOAT(IF ACT(IF)) 
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IF(ISIGN)650,645,645 
645 THETA=-THETA 
650 WSTPR=COS(THETA) 

WSTPI=SIN(THETA) 
J2RNG=IFP1 *(1 +IFACT(IF)/2) 
DO 695 I1=1,11RNG,2 
DO 695 I3=Il,NTOT,NP2 
J2MAX=I3+ J2RNG-IFP 1 
DO 690 J2=I3,J2MAX,IFP1 
JIMAX=J2+IFP1-NP1 
DO 680 J1 =J2,JIMAX,NP1 
J3MAX=Jl+NP2-IFP2 
DO 680 J3=Jl,J3MAX,IFP2 
JMIN=J3-J2+I3 
JMAX=JMIN+IFP2-IFP 1 
I= 1+(J3-I3)/NP1HF 
IF(J2-I3)655,655,665 

655 SUMR=O. 
SUMI=O. 
DO 660 J=JMIN,JMAX,IFP1 

659 SUMR=SUMR+DATA(J) 
660 SUMI=SUMI+DATA(J+1) 

WORK(I)=SUMR 
WORK(I+ 1 )=SUMI 
GOT0680 

665 ICONJ= 1 +(IFP2-2 * J2+I3+ J3 )/NP 1HF 
J=JMAX 
SUMR=DATA(J) 
SUMI=DATA(J+ 1) 
OLDSR=O. 
OLDSI=O. 
J=J-IFP1 

670 TEMPR=SUMR 
TEMPI=SUMI 
SUMR=TWOWR *SUMR-OLDSR+DATA(J) 
SUMI=TWOWR*SUMI-OLDSI+DATA(J+1) 
OLDSR=TEMPR 
OLDSI=TEMPI 
J=J-IFP1 
IF(J-JMIN)675,675,670 

675 TEMPR=WR*SUMR-OLDSR+DATA(J) 
TEMPI=WI*SUMI 
WORK(I)=TEMPR-TEMPI 
WORK(ICONJ)=TEMPR+TEMPI 
TEMPR=WR *SUMI-OLDSI+DAT A(J+ 1) 
TEMPI=WI*SUMR 
WORK(I+ 1 )=TEMPR+ TEMPI 
WORK(ICONJ+ 1 )=TEMPR-TEMPI 

680 CONTINUE 
IF(J2-I3)685,685,686 

685 WR=WSTPR 
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WI=WSTPI 
GOT0690 

686 TEMPR=WR 
WR=WR *WSTPR-WI*WSTPI 
WI=TEMPR *WSTPI+ WI*WSTPR 

690 TWOWR=WR+WR 
I=l 
I2MAX=I3+NP2-NP1 
DO 695 I2=I3,I2MAX,NP1 
DATA(I2)=WORK(I) 
DATA(I2+ l)=WORK(I+ 1) 

695 I=I+2 

c 

IF=IF+l 
IFP1=IFP2 
IF(IFP1-NP2)610, 700,700 

c complete a real transform in the 1st dimension, n even, by conjugate symmetries. 
c 
700 GO TO (900,800,900,701),ICASE 
701 NHALF=N 

N=N+N 
THETA=-TWOPIIFLOAT(N) 
IF(ISIGN)703, 702,702 

702 THETA=-THETA 
703 WSTPR=COS(THET A) 

WSTPI=SIN(THETA) 
WR=WSTPR 
WI=WSTPI 
IMIN=3 
JMIN=2*NHALF-1 
GOTO 725 

710 J=JMIN 
DO 720 I=IMIN,NTOT,NP2 
SUMR=(DATA(I)+DAT A(J))/2. 
SUMI=(DATA(I+ l)+DATA(J+ 1))/2. 
DIFR=(DAT A(I)-DATA(J))/2. 
DIFI=(DA T A(I+ 1 )-DAT A(J+ 1) )/2. 
TEMPR=WR *SUMI+WI*DIFR 
TEMPI=WI*SUMI-WR *DIFR 
DATA(I)=SUMR+ TEMPR 
DAT A(I+ 1 )=DIFI +TEMPI 
DATA(J)=SUMR-TEMPR 
DATA(J+ 1)=-DIFI+TEMPI 

720 J=J+NP2 
IMIN=IMIN+2 
JMIN=JMIN-2 
TEMPR=WR 
WR=WR*WSTPR-WI*WSTPI 
WI=TEMPR *WSTPI+WI*WSTPR 

725 IF(IMIN-JMIN)710,730,740 
730 IF(ISIGN)731, 740,740 
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731 DO 735 I=IMIN,NTOT,NP2 
735 DATA(I+1)=-DATA(I+1) 
740 NP2=NP2+NP2 

NTOT=NTOT+NTOT 
J=NTOT+ 1 
IMAX=NTOT/2+ 1 

745 IMIN=IMAX-2*NHALF 
I=IMIN 
GOTO 755 

750 DATA(J)=DATA(I) 
DATA(J+ 1)=-DATA(I+ 1) 

755 1=1+2 
J=J-2 
IF(I-IMAX)750, 760,760 

760 DATA(J)=DATA(IMIN)-DATA(IMIN+ 1) 
DATA(J+1)=0. 
IF(I-1)770, 780,780 

765 DATA(J)=DATA(I) 
DATA(J+ 1)=DATA(I+ 1) 

770 1=1-2 
J=J-2 
IF(I-IMIN)775, 775,765 

775 DATA(J)=DATA(IMIN)+DATA(IMIN+1) 
DATA(J+1)=0. 
IMAX=IMIN 
GOT0745 

780 DATA(1)=DATA(1)+DATA(2) 
DATA(2)=0. 
GOT0900 

c 
c complete a real transform for the 2nd or 3rd dimension by conjugate symmetries. 
c 
800 IF(I1RNG-NP1)805,900,900 
805 DO 860 13=1,NTOT,NP2 

12MAX=I3+NP2-NP1 
DO 860 12=13,12MAX,NP1 
IMIN=I2+11RNG 
IMAX=I2+NP1-2 
JMAX=2*13+NP1-IMIN 
IF(I2-13)820,820,810 

810 JMAX=JMAX+NP2 
820 IF(IDIM-2)850,850,830 
830 J=JMAX+NPO 

DO 840 I=IMIN,IMAX,2 
DATA(I)=DATA(J) 
DATA(I+ 1 )=-DAT A(J+ 1) 

840 J=J-2 
850 J=JMAX 

DO 860 I=IMIN,IMAX,NPO 
DATA(I)=DAT A(J) 
DATA(I+ 1 )=-DAT A(J+ 1) 
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860 J=J-NPO 
c 
c end of loop on each dimension 
c 
900 NPO=NPl 

NPl=NP2 
910 NPREV=N 
920 RETURN 

END 
c 
C************************REFERENCES**************************************** 
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c *********************************************************************************** 
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