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ABSTRACT 

The A-17 cored interval from the Cretaceous Ben Nevis Formation of the White Rose 

oilfield, located approximately 350 km ESE of St. John's NL, consists of 106.25 m of 

predominantly shallow-marine shoreface deposits ofwhich fine- to very fine-grained low 

angle cross-stratified and massive sandstones form the main hydrocarbon-bearing 

intervals. The principal focus of this thesis is to test aspects ofthe depositional model 

currently in use by industry geologists, and on the reservoir scale, investigate the 

influence of the sedimentology on reservoir fluid flow. Addressing these issues might 

assist in the future exploration and/or development of the White Rose oilfield. 

To address these issues, grain size, sedimentary contacts, diagenetic and shelly 

components, and facies are described, classified, coded and/or quantified. These 

sedimentological data are integrated along with closely-spaced probe permeameter 

measurements into an extensive database, permitting direct comparison between 

sedimentological and permeability data. 

Core from the White Rose A-17 well can be divided into 9 facies and displays 4 

principal types of contacts/boundaries. Fine- to very fine-grained, low angle cross­

stratified sandstone and structureless sandstone are the most abundant facies types, 

whereas planar laminated, moderately inclined cross-stratified, pervasively calcite­

cemented, and shell-bearing sandstones are much less abundant. Bioturbated, very fine­

grained sandstone and siltstone is restricted to the uppermost 5-6 m ofthe core. The most 

common contact type is erosive, followed by abrupt and cementation contacts. Erosive 

contacts represent bed boundaries; abrupt contacts represent internal surfaces within 

11 



beds. Gradational boundaries are uncommon and typically represent a decrease in grain 

size or the upward reduction of bioclastic material. Neither facies nor contacts/boundaries 

appear to be well organized vertically in the core. 

The A-17 cored interval is interpreted to represent deposition in a high-energy, 

storm-dominated, middle to lower shoreface environment. This is based on the 

abundance of well sorted, very fine-grained quartzose sandstones, repeated fining-upward 

grain-size trends, a predominance oflow-angle, gently curved, convex-up laminations, 

structureless beds, numerous erosional contacts overlain by transported bioclastic debris, 

rare mud and siltstone laminae, and limited biogenic structures. 

Over the entire cored interval horizontal probe permeability measurements to air 

(kha) do not correlate well with grain size. Only in selected cases can linear correlations 

be established. Each grain size is typically associated with a range of permeabilities; 

these ranges generally increase with increasing grain size. Changes in permeability across 

contacts and intervals can occur without changes in grain size; however, where there are 

grain size changes there is a wide range of changes in permeability. The highest mean 

permeability and highest overall permeabilities occur in well sorted, clean, structureless 

sandstones. The lowest permeabilities occur in pervasively calcite-cemented sandstones. 

In addition to bioturbation and bioclastic material, poor sorting due to the presence of 

variable amounts of silty and carbonaceous debris appears to reduce permeability. 

Results ofthis study demonstrate that for the White Rose A-17 cored interval, and 

potentially the south Avalon pool, a middle to lower shoreface depositional model is 

appropriate. Additionally, for indurated sandstones such as those represented in the White 
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Rose A-17 core, grain size may be used as a predictor of maximum permeability for 

given reservoir facies. However, because most facies have overlapping grain-size­

permeability distributions, prediction of facies using grain size and permeability is likely 

not possible. To more accurately determine the controls on permeability, other factors 

such as cementation should be incorporated from petrographic and image analysis 

studies. 
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CHAPTERl 

GRAND BANKS, JEANNE d'ARC BASIN, AND WHITE ROSE 
FIELD 

1.1 Introduction 

1 

The goal ofthis chapter is to provide an overview of the evolution and geology of 

the Grand Banks and its basins, with emphasis on the structure and stratigraphy of the 

Jeanne d'Arc Basin and, in the easternmost part of the Jeanne d'Arc basin, the White 

Rose field. Topics specific to the White Rose field which are addressed include the 

exploration history of the field, the development of the field, and remaining problems in 

understanding the reservoir geology. This latter topic leads into the thesis objectives. The 

final section of this chapter outlines the topics covered in the thesis chapters. 

1.2 Regional Setting and Geology 

The broad continental margin offNewfoundland's east coast encompasses an area 

of approximately 36,000 square kilometers, and is host to a series of northeast-trending, 

interconnected Mesozoic rift basins separated by Precambrian and Paleozoic basement 

highs (Figure 1.1 ). Development of the rift basins and the continental margin around the 

Grand Banks is inherently linked to break-up of the Pangaean Supercontinent and 

sequential south to north opening ofthe North Atlantic Ocean. Various authors (Haworth 

and Keen, 1979; Hubbard et al., 1985a; Tankard and Welsink, 1987; Enachescu, 1987) 

note that the development, geometry and distribution of basins on the Grand Banks was 

controlled in part by the Mesozoic extension direction and the pre-existing tectonic fabric 
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Fig.l.l. Mesozoic rift basins ofthe Grand Banks and the Precambrian and Paleozoic 
basement highs that separate them. Rift basins are in gray and basement highs are in white. 
Red circle indicates the approximate position of the White Rose field. Modified from 
Keen et al. (1987). 
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in the Avalon and Meguma zones. A tectonic history ofthe break-up of Pangea and 

opening of the Atlantic Ocean is preserved in the thick sequences of strata in the rift 

basins of the Grand Banks (Enachescu, 1987). 

1.3 Evolution of the Grand Banks and its Basins 

Three rifting episodes affected the Grand Banks region beginning in the Late 

Triassic, ceasing by mid-Cretaceous time (Haworth and Keen, 1979; Enachescu, 1987). 

Each phase of extension was followed by a prolonged period of thermal and/or fault­

induced subsidence as expressed by thick limestone and shale successions that extend 

across the basins (McAlpine, 1990). 

3 

The initial rift phase, termed the Tethys rift (Jenkyns, 1980; Lemoine, 1983; 

Bernoulli, 1984), began in the Late Triassic and ceased by mid-Pliensbachian (mid-Early 

Jurassic) time. Extension occurred in a northwest-southeastward direction, forming a 

series of northeast-southwest-trending rift basins. The trend ofthese basins on the Grand 

Banks is parallel with tectonostratigraphic elements ofthe Avalon Zone of the 

Appalachian Orogen exposed on Newfoundland (Grant et al., 1986). 

During the first rift episode, continental red beds and restricted marine evaporite 

deposits filled the newly developed extensional basins. These deposits belong to the 

Eurydice and Argo formations respectively. By the end of this first rifting phase, nearly 

all the present-day troughs and basins had been initiated and the southern Grand Banks 

transform margin was established (Enachescu and Dunning, 1994). 



4 

Following this initial rift phase, a thermal subsidence phase ensued, beginning in 

the mid-Pliensbachian and ending in Kimmeridgian time. It was during this time that a 

broad epicontinental sea occupied the Grand Banks and thick accumulations of shale and 

limestone were deposited. In the Jeanne d'Arc basin, a strong, mid-Jurassic seismic 

marker, the Whale Member of the Downing Formation, was deposited. This widespread 

limestone reflects the stability ofthe basin at this time. Approaching the end of this 

thermal subsidence phase, important source rocks belonging to the Egret Member of the 

Rankin Formation (Figure 1.2) were deposited in restricted, silled, anoxic basins. These 

calcareous, organic-rich, oil-prone shales are the principal proven source rocks for the 

Hibernia, Terra Nova and the White Rose fields (McAlpine, 1990). 

A second episode of extension began at the end of the Jurassic (Kimmeridgian 

time), rejuvenating existing rift basins and opening new depositional areas on the Grand 

Banks. In the Jeanne d'Arc Basin, the prominent Kimmeridgian Unconformity (Figure 

1.2) reflects the beginning ofthis renewed episode of rifting. Extension was directed east­

west leading to the separation of Iberia from Newfoundland by the late Early Cretaceous, 

thus establishing the eastern limit of the Grand Banks (Keen et al., 1987). This second rift 

episode is known as the North Atlantic rift (Keen and Barret, 1981; Jansa et al., 1979; 

Wade, 1981; McWhae, 1981; Storetvedt, 1985). This event is believed to have been an 

important source of siliciclastic input into the Jeanne d'Arc Basin. Sediment for three of 

the four main reservoirs was provided during this time. These are the Jeanne d'Arc, 

Hibernia, and Catalina Formations (Figure 1.2). 
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Beginning in the mid-Early Cretaceous, a second phase of thermal subsidence 

began. In the Jeanne d'Arc Basin, this is expressed by thick successions of shale assigned 

to the White Rose Formation (Figure 1.2), punctuated by laterally persistent limestones, 

signifying a return to basin stability. The "B" Marker, a limestone unit found above the 

Hibernia Formation, and the "A" Marker, found below the Avalon Formation (Figure 

1.2), provide excellent regional stratigraphic and seismic markers. 

A third and final episode of structural deformation to affect the Grand Banks 

began in Aptian-Albian time. Extension was directed northeast-southwest leading to the 

separation ofNorth America from Greenland-Northwest Europe and establishment of 

Newfoundland's northeastern continental margin (Masson and Miles, 1984; Srivastava 

and Tapscott, 1986). During this time, a number of northwest-southeast-trending normal 

faults severely fragmented the basins and intervening basement highs (Husky Energy, 

2004). This third rift episode appears to be associated with a period of uplift and erosion, 

producing a prominent unconformity or series of unconformities, collectively termed the 

Avalon Unconformity (Jansa and Wade, 1975). The hiatus represents as much as 50-60 

million years of erosion over the southern and central Grand Banks, and as various 

authors point out (Keen et al., 1987) the Avalon Unconformity is laterally equivalent to a 

number of unconformities and intervening stratigraphic units in basins flanking the 

Avalon uplift. In the south, the Avalon unconformity is underlain by Middle Jurassic to 

basal Lower Cretaceous strata, and overlain by 1-2 km ofUpper Cretaceous and younger 

sedimentary rocks and strata (Keen et al., 1987). In the north, the Avalon Unconformity 

is less easily identified, as it is not an angular unconformity and is more deeply buried 
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under post-rift sediments of Late Cretaceous and younger age. Uplift and erosion of the 

broad regional arch on the southern Grand Banks (Avalon Uplift) during the Late Jurassic 

to Early Cretaceous is believed to have been an important source of siliciclastic input into 

the Jeanne d'Arc Basin. By the end of the second rift phase, the present-day configuration 

of the Grand Banks and its basins was in place (Keen et al., 1987). 

During Cenomanian time, a third and final thermal subsidence phase began and 

the whole Grand Banks area subsided as an intact block (Tankard and Welsink, 1987). 

Marine shale, chalky limestone, shelf sandstone and turbidite sequences of the Dawson 

Canyon, Wyandot, and Banquereau formations (Figure 1.2) were deposited during the 

Late Cretaceous to Paleogene and Neogene on the subsiding passive margin (Keen et al., 

1987). At the top of the Cretaceous section there is a regional unconformity indicating a 

marked relative sea-level drop, which resulted in the deposition of submarine fans (South 

Mara Member sandstones) at the toe of the Late Cretaceous slope (DeSilva, 1994). 

Throughout the Paleogene and Neogene, low sediment influx, long-term subsidence and 

tilting led to the deposition of a structurally undisturbed marine succession, typical of the 

drift phase of a passive margin (McAlpine, 1990). In the Jeanne d'Arc Basin, mainly 

marine shales and minor chalks of the Banquereau Formation characterize the Tertiary. 

However, two regressive sandstone units appear to signify the return to shallow marine 

and paralic environments in the Oligocene (Pemberton et al., 2001). Since the Tertiary, 

most sediment on the Grand Banks has been glacio-marine in origin. 



8 

1.4 Jeanne d'Arc Basin: Location, Structure and Stratigraphy 

Of the nine basins that occupy the Grand Banks, it is the Jeanne d'Arc Basin that 

has proven most prospective for oil accumulation and entrapment; thus it is of great 

interest to oil companies. To date, all major oil and gas discoveries offNewfoundland's 

east coast are restricted this basin (Figure 1.3) (DeSilva, 2004). The Jeanne d'Arc Basin 

is located approximately 300 km east-southeast of St. John's Newfoundland (Figure 1.1), 

and encompasses an area of approximately 10,500 km2 (Husky Energy, 2004). The 

Jeanne d'Arc Basin is one of the largest, and is the deepest of all the interconnected 

basins found beneath the Grand Banks (Keen et al. 1987; Tankard and Welsink, 1987). 

Upwards of 14 km of syn-rift fill are contained within the basin (Figure 1.3). The basin is 

an asymmetrical half graben, narrow in the south and widening towards the north, 

forming an elongate trough oriented north-northeast (Driscoll and Hogg, 1995). Major 

tectonic elements, active during the development of the basin, now form its boundaries. 

To the west, the Jeanne d'Arc Basin is limited by the Bonavista Platform and by the 

Murre Fault that separates the basin and the platform (Figure 1.4). In the east it is 

bounded by the Central Ridge Complex, and to the south by the Avalon Uplift (Figure 

1.4). Internally the basin is characterized by a series of trans-basinal fault trends (Sinclair 

et al., 1992). A majority of these faults terminate below or at the Albian-Cenomanian 

unconformity, indicating that structural development was essentially complete by the 

Late Cretaceous (Grant et al., 1986). 

The thick succession of sedimentary strata contained within the Jeanne d'Arc 

Basin is host to three key sandstone reservoirs. These are the Upper Jurassic (Tithonian) 
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Jeanne d'Arc Formation, the Lower Cretaceous (Berriasian to Valanginian) 

Hibernia Formation and the mid-upper Lower Cretaceous (Aptian-Albian) Ben Nevis 

Formation (see Figure 1.2). Production at White Rose will be from a thick succession of 

fine to very fine-grained sandstones of the Ben Nevis Formation (Sinclair, 1995a). 

1.5 White Rose Field: Location, Structure and Stratigraphy 

The White Rose field is situated on the northeastern flank of the petrolifero us 

Jeanne d'Arc Basin, approximately 350 km ESE of St. John's (Figure 1.1), and 

approximately 50 km equidistant from both the Hibernia and Terra Nova fields, in 120m 

of water (Figure 1.4). Structurally, the field is complicated (Figure 1.5). It is cored by salt 

at depth and consists of numerous rotated fault blocks (Husky Energy, 2004). It owes is 

current configuration to extensional tectonics and halokinesis, which are intimately 

linked to the three rift episodes responsible for the development of the Grand Banks and 

its basins. Three main structural features surround the field. To the east it is the basin­

bounding Voyager Fault Zone; to the north is the White Rose Diapir, and to the south is 

the Amethyst Ridge (Figure 1.5) (Husky Energy, 2004). Structurally, the field is located 

in a highly faulted area on the hanging wall ofthe Voyager Fault above the White Rose 

Diapir and Amethyst Ridge (Figure 1.5) (Husky Energy, 2004). Three sets of faults 

oriented northwest- southeast, north- south and northeast- southwest dissect the area 

(Figure 1.5). Sealing faults separate three pools, which comprise the field. 

During the third episode of rifting, imbricates of the Voyager Fault created a 

series of tilted fault blocks in the southern part of the field (Figure 1.6). The faults that 
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Fig.1.4. Major structural elements that delimit the Jeanne d'Arc Basin and the locations 
of the Hibernia, Terra Nova and White Rose fields. Modified from Husky Energy (2003). 
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Fig.1.6. Structural cross-sections through the south White Rose field, highlighting the 
numerous rotated fault blocks and position of the Ben Nevis Formation; the principal 
reservoir interval at White Rose. Note the position of well A-17 on the "terrace" 
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(upper left)- a rotated fault block on the hangingwall of the Amethyst Fault. Additionally, 
note the position of well E-09 (center), the discovery well at White Rose. Inset map 
(upper right) shows the location of both cross-sections. Modified from Husky Energy 
(2001). 



bound these blocks are growth faults. During this faulting, the Aptian Ben Nevis 

reservoir sandstones were deposited. The thickest amounts of sediment accumulated on 

the down-thrown fault-blocks. 
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In the White Rose area, Upper Jurassic to Paleogne and Neogene rocks have been 

penetrated in a number of the exploration and delineation wells. The following is a 

review (see Husky White Rose website) of the stratigraphic section encountered in the 

White Rose area (Figure 1. 7), beginning with the oldest strata penetrated. 

Rocks of the Upper to Middle Jurassic Voyager Formation (Bathonian to 

Oxfordian in age) are the oldest rocks to have been penetrated in the White Rose area. 

They were encountered in the White Rose N-22 well in the northern part of the field. 

Unconformably overlying the Voyager Formation is the Oxfordian to Kimmeridgian 

Rankin Formation. In the White Rose area, the Rankin Formation consists of an 

assortment of shales and siltstones with minor limestones and sandstones. The Egret 

Member, which belongs to the Rankin Formation, is the main source rock for the 

Hibernia, Ben Nevis, and White Rose fields. It was penetrated in the A-90 well. A coeval 

section was penetrated towards the base of the N-22 and E-09 wells; however, source 

rocks were not encountered. Unconformably above the Rankin Formation lies the Late 

Jurassic, Kimmeridgian to Portlandian Fortune Bay Formation. It is a basinal, shaly, 

time-equivalent of the Jeanne d'Arc Formation. It consists predominantly of silty marine 

shale, and has been penetrated in the White Rose N-22 and J-49 wells where it 

unconformably overlies the Rankin Formation. It was also found at the bottom of the A-
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17 well. The Fortune Bay Formation is interpreted to represent deposition during a major 

transgression in the Late Jurassic. 

Conformably overlying the Fortune Bay Formation is the Hibernia Formation. 

Rocks of the Hibernia Formation are the oldest Cretaceous rocks in the White Rose area. 

They are Berriasian to Valanginian in age and have been penetrated in the White Rose A-

17, E-09, N-22, and J-49 wells. In the White Rose area, the Hibernia sandstones form a 

regressive succession, which can be separated into an upper and lower member, with a 

distinct basal unit. The upper member is poorly developed and consists of non-reservoir­

quality siltstone and sandstone. It decreases in thickness to the north. The lower member 

consists of fine- to medium-grained, light gray/brown and slightly silty sandstones. It was 

deposited primarily as a prograding shoreface as part of an overall regional regressive 

package. The gross thickness of the Hibernia Formation ranges from 272m in the White 

Rose J-49 well to 86 min the A-17 well where it has been largely eroded, beneath the 

Avalon Unconformity. Overlying the Hibernia Formation is the Neocomian Cape Broyle 

Formation. The Cape Broyle Formation represents a regional transgressive package of 

marine shale with minor siltstone. The regionally correlative B Marker, found throughout 

most of the Jeanne d'Arc Basin, is poorly developed in the White Rose area due to 

erosion. It is present in the N-22 and E-09 wells but is eroded in the White Rose A-17 

and Trave E-87 wells. Reservoir-quality rocks are not present in the Cape Broyle 

Formation at White Rose. 

The Cape Broyle Formation is succeeded by the Hauterivian to Barremian Eastern 

Shoals Formation. Throughout much of the White Rose field the Eastern Shoals 
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Formation unconformably underlies the Ben Nevis Formation, but elsewhere it is eroded 

beneath the Avalon Unconformity. The White Rose E-09, L-08, N-30, N-22, L-61, and 

the J-49 wells all penetrate the Eastern Shoals Formation. In the N-22 and J-49 wells it is 

comprised of interbedded shale, siltstone and sandstone. The A marker, another 

regionally extensive marker in the Jeanne d'Arc Basin is preserved in the J-49 and L-61 

wells only; in other wells it is eroded by the Avalon Unconformity. 

Above the unconformity is the Aptian Ben Nevis Formation. This is the primary 

reservoir in the White Rose field. It is dominated by fine- to very fine-grained sandstone, 

siltstone, and shale. The Ben Nevis Formation generally represents a marginal marine 

shoreface succession throughout most ofthe White Rose field. It is 0-400 m thick. The 

main sandstone accumulations are located in the southeastern portion ofthe field within 

the E-09, L-08, and A-17 wells (South Avalon pool), where the formation is 350m thick. 

In the White Rose A-90 and Trave E-87 wells, the Ben Nevis Formation is absent. It is in 

unconformable contact with the Eastern Shoals Formation and separated from it by the 

Avalon Unconformity. 

Conformably overlying the Ben Nevis Formation is the mostly Albian Nautilus 

Formation. It has been penetrated by all the wells in the White Rose area, but is not 

present to the north in the Trave E-87 well. Though the Nautilus Formation conformably 

overlies the Ben Nevis Formation, they are laterally equivalent where the Nautilus 

Formation "shales out". In the White Rose area, the Nautilus Formation consists of gray 

siltstone and shale with minor sandstone and is of non-reservoir quality. 



The Cenomanian to Coniacian Dawson Canyon Formation unconformably 

overlies the Nautilus Formation and consists primarily of marls and calcareous shales, 

and ranges from 100 to 500 m thick in the White Rose field. At the top of the Dawsons 

Canyon Formation is the Petrel Member. It consists of a thin, light gray to brown 

argillaceous limestone. 

18 

The youngest rocks in the White Rose area belong to the Paleogene and Neogene 

Banquereau Formation, including its South Mara equivalent. The Banquereau is a thick 

(~2500 m) shale succession, with coarser clastics at its base. It represents deposition 

during the final stage of thermal subsidence. 

1.6 Exploration History of the White Rose Field 

Exploration of the White Rose field spans nearly two decades, commencing in the 

mid nineteen eighties. In November of 1984, the drilling and testing of the White Rose 

N-22 exploration well marked the initial discovery, encountering both oil and gas (C­

NOPB, 2001). N-22 was drilled on the southeastern flank ofthe White Rose diapir in 

what is now termed the West Avalon pool (Figure 1.5). Following the initial discovery, 

two more wells, J-49 and L-61, were drilled in 1985-86. Results were encouraging, as 

both oil and gas were once more encountered. Exploration wells J-49 and L-61, likeN-

22, were both drilled in the larger White Rose domal area and results were promising. In 

1987-1988, discovery well E-09 was drilled (Figures 1.5 and 1.6). It encountered 

approximately 90 m of net oil pay (NOP) and tested 5108 bopd (Husky Energy, 2004). E-

09 is thought by many to be the primary discovery well at White Rose. Unlike previous 
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exploration wells, E-09 was drilled into a structurally separate culmination on the 

southern flanks of the White Rose complex (Husky Energy, 2004) and was the first well 

to be drilled in the southern A val on pool. 

After the successful drilling and testing of well E-09, delineation well A-90 was 

drilled to the immediate east in another elevated fault block (Figures 1.5 and 1.6). No oil­

bearing sandstones were encountered. The well completely missed the Cretaceous Ben 

Nevis reservoir sandstones and bottomed in highly deformed Jurassic strata (Husky 

Energy, 2004). The failure of A-90 to encounter reservoir sandstones is attributed to a 

poor understanding of reservoir distribution. No wells were drilled between 1989 and 

1999. Husky and its partners returned to active exploration ofthe Grand Banks in 1995, 

with the intention of acquiring new sets of seismic data over the White Rose field. 

The summer of 1997 saw renewed activity in the White Rose area and a state-of­

the-art seismic survey was completed. Processing allowed the unconformable nature of 

the base ofthe reservoir and the position ofthe reflector associated with the top of the 

Ben Nevis Formation near the E-09 well to be properly imaged for the first time (Husky 

Energy, 2004). Additionally, stratigraphic markers such as the Base Tertiary and 

Kimmeridgian unconformities encountered at both the Hibernia and Terra Nova fields 

were also imaged. Both the A and B limestone units, which make excellent seismic 

markers elsewhere in the basin, appear to be only locally present in the White Rose area 

(Husky Energy, 2004). 

Based on the success ofthe 1997 seismic survey, a three-well delineation program 

was conducted in the summer of 1999. Well N-30 was drilled downdip from the N-22 
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well (see Figure 1.5) in the north part of the White Rose structure (Husky Energy, 2004). 

Results from this well helped to define the extent of the hydrocarbon pool first 

encountered by the N-22 well. Wells A-17 and L-08 were drilled south ofthe initial 

discovery in rotated fault blocks which are imbricates of the larger Voyager Fault Zone. 

Each of the three wells encountered over 100 m net oil pay (NOP), further highlighting 

the economic potential ofthe field. In the spring of2000, another well, H-20, was drilled 

to delineate the northern limit ofthe South Avalon Pool. Two more wells were drilled in 

2003 in the South A val on pool, encountering significant thickness of reservoir sandstone, 

as in White Rose A-17 well (Enachescu, personal communication, 2004). 

Pressure data and fluid contacts (separate oil/water and gas/oil contacts) indicate 

that the Ben Nevis Formation in the White Rose field is divided into three separate pools, 

each with an associated gas cap (C-NOPB, 2001). These are the West, North and South 

Avalon pools (Figure 1.5). Faults and structural closure associated with the faults 

separate the pools. 

The West Avalon pool is penetrated only by well J-49 (Figure 1.5). A series of 

northwest-southeast-trending elongate faults divide the area into a number of narrow fault 

blocks making the trap structural. The North Avalon pool is delineated by two wells, N-

22 and N-30. Two sets of faults oriented mainly north-northwest to south-southeast and 

north-northeast to south-southwest dissect the area (Figure 1.5). The most significant 

pool, the South Avalon pool, has been defined by the H-20, E-09, L-08 and A-17 wells 

(C-NOPB, 2001). The pool is limited by faults to the east, west, and south with a 

stratigraphic limit to the north between E-09 and H-20 where the reservoir sandstones 
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pinch out (Husky Energy, 2004). Based on core interpretation, the South Avalon pool 

reservoir sandstones are interpreted as middle to lower shoreface deposits, and the West 

and North Avalon pools as shelf deposits (e.g. Husky Energy exploration geologists, 

2004). Development in the White Rose area is focused principally in the Southern Avalon 

pool where over 100 m of net oil pay has been encountered in each of the four wells that 

delineate the field (see Figure 1.5). The area ofthe pool is~ 40 km2
. 

1. 7 Remaining Problems in Understanding the Reservoir Geology of the White Rose 

Field, and Thesis Objectives 

The White Rose field, Jeanne d'Arc Basin, comprises a Cretaceous, sandstone­

rich reservoir up to several 1 OO's of meters thick that exhibits a limited range of sandstone 

textures and sedimentary structures. There are no sedimentological reports in the public 

domain regarding these rocks, so the following comments reflect information in 

confidential reports (e.g. Plint (1999)) or transmitted to the author by Husky Energy 

geologists. 

The key reservoir facies are moderate to well sorted, fine- to very fine-grained, 

quartz arenite sandstones (Husky Energy, 2004). These predominantly show low-angle to 

horizontal laminations, can be structureless, and have very low to moderate amounts of 

bioturbation. Silt and mudstone interbeds are very rare and vertical facies successions are 

not obviously developed and/or recognized. Thus, the reservoir facies at White Rose 

seem poorly organized. Additionally, the cored section does not fit any established 

depositional facies model. This is problematic since facies models are typically used, or 
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are relied upon heavily, in the pursuit for and development of hydrocarbon resources 

(Walker and James, 1992). One of the main functions of a facies model is its ability to be 

used as a predictor in new geological situations (Walker and James, 1992). As an 

example, if the cored section from the White Rose A-17 well was to be part of a paleo­

shoreline system, models which incorporate shorelines could be used to predict the 

distribution and/or geometry of such a system. 

Current consensus recognizes an overall shallow marginal-marine setting for the 

Ben Nevis in the White Rose field; however, the depositional model for the reservoir 

facies is uncertain (Husky Energy, 2004). As well, the extent to which the sedimentology, 

specifically grain size and facies relate to permeability is not known. Reducing 

uncertainty on the depositional model and establishing if any combination of the 

sedimentological fabrics within the key reservoir facies type has a value in predicting 

permeability (or vice versa) would assist in the future development of the White Rose 

field. 

This thesis project therefore has three main objectives: 

1) To describe, classify, and quantify the variety of sedimentary textures, 

boundaries, and facies within the White Rose A-17 cored interval; 

2) To interpret the sedimentology of the White Rose A-17 cored interval; 

3) To compare the sedimentological data with probe permeability data to 

determine the extent to which these datasets correlate. 
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1.8 Thesis Outline 

This thesis consists of five chapters intended to elucidate the sedimentology of the 

Ben Nevis Formation in the White Rose A-17 well, and to investigate the relationships(s) 

between the sedimentology and permeability. The chapter topics are explained below: 

1) Chapter 2 describes the methods and data types used in the study. Descriptions of 

how data types were collected and their relevance to the study are explained. 

2) Chapter 3 documents and interprets the sedimentology of the White A-17 core. Its 

primary focus is on grain size, grain size trends, sedimentary contacts and 

boundaries, facies descriptions, facies interpretations, and the proposal of a 

depositional model. 

3) Chapter 4 investigates the relationships between the sedimentological data and 

permeability data. 

4) Chapter 5 delivers the major findings ofthe thesis, makes some recommendations 

for potential additional work on White Rose cores and for similar types of studies, 

and provides a list of the implications/applicability of these findings with respect 

to the A-17 cored interval and the White Rose field in general. 
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CHAPTER2 

DATA TYPES AND INDIVIDUAL METHODS 

2.1 Introduction 

The aim of this chapter is to familiarize the reader with the methods used to 

collect the range of data needed to address the thesis objectives. The data are 

subsequently used to explain depositional processes and to correlate reservoir textures 

and fabrics with probe permeability measurements. The principal method of data 

collection involved logging 106.25 m of core from the White Rose A-17 well. Probe 

permeability data were collected by Core Labs Inc. in Calgary and provided to the author 

by Husky Energy. All of the sedimentological and permeability data can be found in 

Appendix A on a compact disc. 

2.2 Choice of the A-17 Well: Location, Thickness and Reservoir Facies 

The White Rose A-17 well is a vertical well, and was drilled into a small 

( ~ 10 km 2) fault block directly east of the East Amethyst Ridge in the southeastern 

portion of the White Rose field (Figure.1.6). The angle of the bedding in the fault block is 

relatively low, ranging from~ 0 to 8 ° (Petro-Canada geologists, personal 

communication, 2005). Because the bedding is not horizontal, the dip angles of contacts 

and laminations recorded for this thesis are not true dips - they are apparent only. 

However, that being said, all dip angles are thought to be relatively low. 

The cored section of 106.25 m (Figure 2.1) is mostly sandstone of Aptian age, and 

is typical of the reservoir facies in the South A val on pool. The key reservoir facies are 
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well sorted, very fine grained sandstones that exhibit predominantly low-angle to 

horizontal lamination, can be structureless and have very low to moderate amounts of 

bioturbation (Figure 2.1). Fine-grained mudstone interbeds are extremely rare and 

vertical facies sequences are not obviously developed and/or recognized. Transported 

clasts ofbiogenic and sedimentary origin can be associated with bedding contacts, 

especially where these are erosive (Figure 2.1). 
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The cored section was chosen specifically because it is located in a proven 

hydrocarbon pool and because it presents a challenging set of sedimentological 

properties. The large pre-existing petrophysical dataset available in A-1 7 allows the inter­

relationships between texture and permeability to be evaluated. 

2.3 Types of Data Collected and Methods 

The methods of data collection for this thesis differ from those conventionally 

employed when logging oilfield cores. This is because the lithology of the cored section 

is almost homogeneous. The key reservoir facies have a limited range of texture, physical 

sedimentary structures, and appearance (Figure 2.1). Similarly, changes associated with 

these features are particularly subtle. In an attempt to overcome these difficulties, core 

features were either semi-quantified or were coded. An inventory of important features 

against depth was entered into an Excel® spreadsheet designed to allow a straightforward 

synthesis and evaluation of the data. 

A thorough examination of the core revealed that the following features could be 

either semi-quantified or coded: 
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1) Grain-size- semi-quantified 

2) Fossils and diagenetic components- semi-quantified 

3) Contacts and other transitions- coded 

4) Facies - coded 

The following sections provide justification for, and describe in full, the methods used to 

semi-quantify and code features observed in the core. 

2.3.1 Grain-Size 

2.3.1.1 Rationale for Measuring Grain Size 

Acquiring grain-size data is a primary objective of this thesis. The reason for this is 

two-fold: 

1) Initial inspection of the core revealed that the range of grain-size is extremely 

limited, and vertical grain-size trends are either absent or ill-defined. Establishing 

the existence of subtle differences in grain-size and vertical trends is considered to 

be crucial to the interpretation of the depositional history. 

2) Grain size (in unconsolidated sands) is a major factor controlling permeability. 

However, the extent to which grain size and permeability are correlatable in 

consolidated sandstones, and in particular, this core, has not been demonstrated. 

Assessing the relationship between grain size and permeability was considered to 

be a valuable approach to help explain reservoir properties. 

For these two reasons, the decision was made to assign numerical values to grain 

sizes which would allow for plotting of the data. 
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2.3.1.2 Method of Grain Size Measurement 

Grain sizes were measured using a Canadian Stratigraphic grain-size comparator card 

positioned adjacent to core slabs under the 40x objective of a Wild Leitz binocular 

microscope. 

Initial examination ofthe core revealed that sand grains are restricted to the very fine­

grained and fine-grained size classes. These grain sizes occupy the four finest grain-size 

divisions on the grain-size comparator card: upper fine, lower fine, upper very fine, and 

lower very fine. These four categories were deemed insufficient, however, to capture the 

subtle differences in grain-size that were presumed to exist in the core. Therefore, 

because each grain-size division on the comparator card displays a range of sizes of 

imaged grains, it was itself subdivided into lower, middle and upper parts with each part 

assigned a corresponding value in microns (Table 2.1 ). 

To reiterate, because a principal aim of this thesis is to compare grain size to 

permeability, a larger number of grain sizes than those available on the comparator card 

were required. 

2.3.1.3 Calibration of the Grain Size Card 

Before sand-sized grains in the core were measured, it was first necessary to measure 

the range of sizes of grains, in microns, imaged on the comparator card for each of the 

four divisions. This was accomplished by placing the comparator card under the 40x 

objective of a Nikon Eclipse E600 POL® petrographic microscope. A sufficient number 

ofmeasurements (approximately 100 for each division) confirmed that the range 
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Grain Size Comparator Grain Size Comparator Revised Comparator Scale 
Size of grains in letter Size of grains in Midpoints of size classes 

format for the four finest micrometers for the four used for this thesis 
card swatches finest card swatches 

190 Jlm 
fU- fine Upper 177-250 Jlm 214 Jlm 

238 Jlm 
134 Jlm 

fL - fine Lower 125-177 Jlm 151 Jlm 
168 J.tm 
94J.tm 

vfU - very fine Upper 88-125 JliD 107 Jlm 
119 Jlm 
6611m 

vfL- very fine Lower 62-88 Jlm 75 Jlm 
84Jlm 

Table.2.1.Grain size comparator categories (letter and micrometer format) and the revised 
micrometer format used for this thesis. The first and second columns display the 
conventional divisions as seen on most grain size comparator cards. The third column 
shows the twelve grain-size values assigned to spot measurements in core. 
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of sizes of grains, in microns, imaged in each of the lowermost four divisions on the 

comparator card were reasonably valid. The maximum and minimum sizes of imaged 

grains for each division were found to differ by+/- 5 microns compared to stated values. 

Imaged grains on the far left of each division are the smallest in the range while those 

imaged on the far right of each division are the largest. Between these end members, 

there is grain size grading, and in the middle of each division, a value close to the average 

occurs. 

2.3.1.4 Grain Size Subdivisions 

The sizes, in microns, assigned to the lower, middle, and upper parts of each 

division on the card were obtained by dividing the micron range into three equal parts 

and then selecting the arithmetic mid-point of each part as the value to be recorded. 

To clarify this procedure, the following example is provided. The range in microns for 

the finest class on the comparator card is 62-88 Jlm. Now, 88-62 Jlm = 26 Jlm, and 26/3 = 

~8.7 Jlm. The three parts of this division therefore have micron boundaries of 62-70.7 

Jlm, 70.7-79.3 Jlm and 79.3-88 Jlm, with midpoint values of ~66.3 Jlm, 75 Jlm, and~ 83.7 

Jlm. These are then rounded offto integer values (Table 2.1). This procedure gives upper 

and lower possible values for the sand in each size category that are entirely within the 

range provided on the comparator card. Using this procedure avoids overlapping values 

from one division to the next. Note that the actual range, in microns, for successive grain­

size divisions increases with the absolute size. This is because the scale used on 

comparator cards is logarithmic. 
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In total, twelve values (expressed in microns) are used to represent the grain-size 

of the sandstones in the core. It is important that the reader understand that these values 

are not absolute - they are only relative estimates of the actual sizes. 

Because silt-sized grains are not imaged on the grains-size comparator card, 

assigning values to them is quite subjective. Nevertheless, best estimates were made by 

placing core slabs underneath the 40x objective of a Wild Leitz microscope and using the 

smallest grain size division on the comparator card as a reference. The values assigned to 

silt-sized particles are based on those as defined by Folk and Ward (1957). They are 

23,28,36, and 46 Jlm. 

2.3.1.5 Location of Grain Size Measurements, Measurement Repeatability, 

Measurements Accuracy and Sorting 

Grain sizes were measured above and below each contact, gradational transition, 

and break in the core at depths equal to the nearest probe permeameter measurement. 

This procedure led to the collection of 1176 grain-size measurements. The distance 

between each grain size and probe permeameter measurement was typically less than one 

half of a centimeter and never exceeded one centimeter. To ensure that replicate grain­

size measurements were unbiased, measurements were taken at different times 

throughout the analysis ofthe core. To ensure accuracy, grain size determinations were 

made - 20-30 times at each measurement depth. Replicate grain size measurements were 

found to differ by (at most) - 5 Jlm for the 2 finest classes and by - 10 Jlm for the two 



coarser grain size classes from individual measurements. It is very important to restate 

that these grain size measurements are relative estimates only- they are not absolute. 

33 

In addition to grain-size measurements, grain-size sorting was measured on 

selected samples (seven thin-sections) to determine its relationship with permeability. 

These selected samples represent facies 1, 2, 3, and 4, and each ofthe cores three units as 

discussed in chapter 3. Facies 5 and 6 were not chosen because they are pervasively 

calcite-cemented(- 0 mD horizontal permeability). Facies 7, 8, and 9 were not chosen 

because they have bimodal sorting (bioclasts and silt-sized grains). Each of the three units 

were chosen because they appeared to have differing degrees of cementation (visual 

estimation). 

To determine sorting values, the following steps were implemented. First, digital 

images of thin-sections selected from the various facies and units were taken using a 

Nikon DXM1200F digital camera mounted on top of the Nikon Eclipse E600 POL 

petrographic microscope. Digital images were taken while viewing thin-sections under 

1 Ox magnification. Second, enhancements and adjustments to the digital images were 

made using Nikon ACT -1 digital picture software. Third, the digital images were 

imported into the Simple PCI- Image Analysis software. Fourth, the long axis diameter of 

eighty to one hundred quartz grains from each of the thin-sections was measured. Fifth, 

sorting values were calculated in and Excel® spreadsheet using the formula of Folk and 

Ward (1957). The formula is as follows: 

Sorting cr 0 = 0 84- 0 16 + 0 95 - 0 5 

4 6.6 



where 
cr =sorting 
0 = the grain size in phi units at the nth percentage frequency 

Terms used to describe sorting values obtained from the Folk and Ward (1957) formula 

are: 

0 less than 0.35 
0.35-0.50 
0.50-0.71 
0.71-1.00 
1.00-2.00 
greater than 2.00 

very well sorted 
well sorted 
moderately well sorted 
moderately sorted 
poorly sorted 
very poorly sorted 

2.3.2 Fossils and Diagenetic Components 

A variety of shells (principally bivalve fragments), serpulid worm tubes and 

authigenic siderite are widely present in the core. Additionally, there are a number of 
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pervasively calcite-cemented zones. These cemented zones are typically coincident with 

shell-hash horizons. Throughout the core, the fossils and diagenetic minerals can occur 

either together or separately. For this thesis, the abundance of each feature is reported 

using an ordinal scale. The ordinal scale has a minimum value of zero and a maximum 

value ofthree. Zero implies a feature is completely absent. The number one implies that a 

feature is of low abundance; the number two is used where a feature is moderately 

abundant, and the number three indicates that a feature is very abundant. Measurements 

with ordinal scales are ordered in the sense that higher numbers represent greater 

abundance. However, the points on each ordinal scale not imply equal difference in 

abundance. It is important to state that allowances for cross sections through bioclasts 



were not made; therefore, in some cases, the ordinal values assigned to report the 

abundance ofbioclasts might be high. 

2.3.3 Contacts and Transitions 
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In this study, the word "contact" is used for any sharp and distinct surface, 

whereas the word "transition" is used if a change in core properties is gradational. 

Particular attention was paid to the variety of contacts and transitions recognized in the 

core. Nevertheless, the nature of some of these contacts and transitions remain uncertain. 

For example, in several instances it is unclear whether contacts signify true bed 

boundaries, amalgamation surfaces, or simply the foresets of cross-bedding. This 

uncertainty stems from the lithologic homogeneity and limited width of the core. In this 

thesis, erosive contacts are termed bed boundaries; these typically coincide with a 

noticeable increase in grain-size or the presence of bioclastic material. All other sharp 

and distinct surfaces, which are not clearly erosive, are inferred to be internal bed 

boundaries. Such surfaces may represent the boundaries between amalgamated beds or 

stratification within very low angle cross beds. They sometimes bound the top of distinct 

shell accumulations and on rare occasions, they separate unbioturbated and bioturbated 

lithologies. 

Contacts and gradational transitions may be important for the following reasons: 

1) Facies and textural changes in the core are subtle. The assumption is that the best 

places to observe measureable amounts of change are across contacts and zones of 

lithologic change. 



2) The type, nature, and spatial distribution of a majority of the contacts and 

transitions had not been previously documented. 
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3) A principal aim of this thesis is to uncover the relationship between grain-size and 

permeability. This relationship can most readily be tested for grain sizes and 

permeability values recorded adjacent to and across contacts and other transitions, 

where the most pronounced changes are expected to occur. Contact type is 

expected to influence changes in these parameters. 

In total, 639 contacts and gradational transitions (including 90 breaks in core 

continuity) were documented in the core from the White Rose A-17 well. These can 

display a range of geometries. The criteria used to distinguish between each type are 

described below. 

1) Erosive contacts: A contact is erosive if it truncates a minimum of one laminae or 

bed or if there is significant evidence to suggest that the character of the above 

zone is distinctly different from that below (e.g. grain-size increases or distinct 

facies change). In numerous instances, erosive contacts are associated with and 

are overlain by an assortment of shells and/or serpulid worm-tube debris. Changes 

in facies (both the same and different facies) across erosive contacts are typically 

more evident than are changes across abrupt contacts. 

2) Abrupt contacts: Abrupt contacts are sharp, but show no evidence for truncation. 

Changes in core features, particularly grain-size, are less pronounced across 

abrupt contacts than across erosive contacts. Abrupt contacts are less frequently 



overlain by shell and serpulid debris than erosive surfaces. Abrupt contacts are 

not necessarily bed boundaries. 
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3) Cementation Contacts: Cementation contacts either separate pervasively calcite­

cemented sandstones from more porous sandstones, or they separate cemented 

zones with abundant shelly debris from less fossiliferous but still cemented 

sandstone. In the latter case, the contact is within calcite-cemented rock. A 

majority of the contacts separating more porous sandstone from pervasively 

cemented sandstone are presumed to have no sedimentological significance: 

however, there are a few that are erosive, but for the purpose of this study they are 

not considered in detail. 

4) Gradational transitions: the term "gradational contact" is inherently contradictory. 

Therefore, these textural or facies changes are referred to as gradational 

transitions. In the core, these transitions most typically occur where fragments of 

shells and serpulid worm tubes (of varying abundance) gradually diminish upward 

away from underlying (or rarely overlying) contacts, or where shell fragments 

aligned with stratification cease to be present. They also occur over sections in the 

core where there is a noticeable change in grain-size not marked by a distinct 

boundary, and between unbioturbated and bioturbated intervals. By convention, a 

gradational transition was recognized at the position in the core (a), which 

separates shell-bearing sandstone from sandstone containing no shells, (b) where 

the maximum amount of grain-size grading in a section of core is achieved, and 

(c) above or below bioturbated zones. 
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Contacts and gradational transitions are non-quantifiable features. However, 

assigning codes to them facilitates classification and tabulation of the frequency of 

occurrence of each type. Contacts and transitions were recorded using a one-or two-digit 

numeric code. These codes do not indicate such things as the absolute change in grain­

size or the amount of overlying shell and/or serpulid debris nor do they capture changes 

in facies. It is worth noting that contacts and transitions were recorded wherever there 

was any noticeable change in core properties. Table 2.2 lists each contact type, the 

different geometries, and resultant codes. 

When describing grain-size trends in Chapter 3, the terms 'bed' and 'interval' are 

used frequently. These are distinguished by their contacts. All erosive contacts are 

defined as first-order boundaries, whereas abrupt contacts are defined as second-order 

surfaces. The term 'bed' is used for deposits bounded by two first-order bed boundaries. 

The term 'interval' is used for deposits bounded either by two second-order surfaces, or 

by one second-order and one first order surface. This distinction is made because 'beds' 

are more likely the deposits of separate events preceded and followed by scour and 

erosion, whereas 'intervals' might have been emplaced by pulses of current activity 

during longer depositional episodes. In total, there are 61 beds without any internal 

second-order surfaces. The remaining 261 beds contain at least one internal second-order 

surface, and combined account for 566 intervals. This means that many beds contain 

several intervals and second-order surfaces. 



Contact and other Boundary Types First Digit Erosive Subtypes Code 

Erosive contact 1 Erosive, very gently to moderately 
11 undulatory and non-inclined 

Abrupt contact 2 

Gradational transition 3 Erosive, very gently to moderately 12 
undulatory and inclined 

Cementation contact 4 

Discontinuities 5 
Erosive, gently to highly curved 

13 and convex-up 

Geometrical Variations Second Digit Abrupt Subtypes Code 

Very gently to moderately 
1 

Abrupt, very gently to moderately 21 
undulatory and non-inclined undulatory and non-inclined 

Very gently to moderately 2 
Abrupt, very gently to moderately 

22 
undulatory and inclined undulatory and inclined 

Gently to highly curved 
3 

Abrupt, gently to highly curved 23 
and convex-up and convex-up 

Table.2.2.Contact and boundary types, subtypes, and their codes. 
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2.3.4 Facies 

A facies is defined as a body of rock characterized by a particular combination of 

lithology, physical and biological structures that bestow an aspect ("facies") different 

from the rocks above, below and laterally adjacent (Walker, 1992). Facies and facies 

associations provide guidance for the selection of probable depositional settings through 

comparison with modem analogues having the same characteristics. Distinctly different 

facies are not obvious in the cored section from the White Rose A-17 well, and facies 

associations are not obviously developed. Nevertheless, in an attempt to better understand 

the organization of these deposits, subtly different facies are assigned numeric codes. 

Each facies is assigned a one-digit number. In total, 9 facies are recognized (Table 2.3). 

This procedure has two main advantages: 1) Assigning codes to facies and entering them 

into a spreadsheet provides an easy way of accessing and sorting data, and 2) 

permeability measurements can be directly compared between facies. 

2.5 Probe Permeametry 

The permeability data used in this thesis were collected using a frame-mounted 

PDPK-200 probe permeameter, based on a non-steady-state, pressure-decay technique 

described by Jones (1992). This instrument is designed to make a large number ofrapid, 

localized, non-destructive permeability measurements on the face of core slabs (Goggin, 

1988). To obtain permeability measurements, slabs of core are placed beneath the probe 

tip, the device releases a known tank volume of gas (air in this case) to the sample (core 

slab), tank pressure is recorded as a function oftime, and the slope of the pressure-decay 



Facies Numeric Code 

H-om-ogeneous sandstone l 

Planar laminated sandstone 2 

Low angle cross-stratified sandstone 3 

Moderately inclined cross-stratified 
4 

sandstone 

Pervasively calcite-cemented sandstone 5 

Pervasively calcite-cemented sandstone 6 
vvi.th abundant shelly material 

Shell-serpulid- and siderite-bearing 
7 

sandstone 

Shelly sandstone 8 

Bioturbated sandstone and siltstone 9 

Tab1e.2.3. Brief description of facies (1eft), and their corresponding numeric codes 
(right). 
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curve yields an instantaneous flow-rate function that is substituted in to the apprdpriate 

form ofDarcy's equation (Jones, 1992). Solving Darcy's equation for 'k' yields a 

permeability value. For this thesis 1176 probe permeameter measurements are utilized. 

2.4 X-radiography 
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To determine if "structureless" beds/intervals in the White Rose A-17 core are 

devoid of stratification a number of X -rays were taken. Core segments, which appeared 

homogeneous, were X-rayed using an industrial Picker X-ray source (model6321). 

Placing cores on a specially designed aluminum plate prevented dark-edge effects 

produced by overexposure at core edges. Best results were obtained when core segments 

were exposed for~ 2 minutes at a voltage of 60 kV and a current of 50 rnA. Standard 

developing procedures were used. 



CHAPTER3 

SEDIMENTOLOGY OF THE WHITE ROSE A-17 CORE 

3.1 Introduction 

Previous studies on White Rose cores are limited, and have not been done in 

significant detail. The principal goal of this chapter is to provide a thorough account of 

the sedimentology of the White Rose A-17 cored interval and provide insight into its 

significance. Specifically this chapter has four goals: 

1) To provide a comprehensive record of the textural data, describe and discuss 

grain-size trends, and provide insight into their significance; 
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2) To present and describe the four principal contact and transition types observed 

in the core, variations in their geometry and discuss their significance; 

3) To present and describe the variety of facies recognized in the core, discuss the 

vertical organization of facies, and provide process interpretations for each facies, 

and 

4) To hypothesize the most probable depositional setting(s) for the cored interval. 

3.2 Grain Size and Grain-Size Trends 

3.2.1 Grain Size 

This section is primarily concerned with presenting and discussing the grain size 

and grain-size trends in the A-17 core. A total of 1176 grain sizes were measured and 

recorded above and below the 639 contacts and transitions; including 79 breaks in the 

core and 11 styrofoam inserts where samples had been previously taken for other studies. 
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The discrepancy between the number of grain-size measurements and boundaries (i.e. 

639 x 2 =1278) is attributed to three factors: 1) grains could not be measured above and 

below the base and top of the core because rock was not present (2 grain sizes), 2) grains 

could not be measured above and below breaks where core had been extracted for special 

core analysis and replaced by styrofoam (22 grain sizes), and 3) seventy-eight boundaries 

share a single grain-size measurement because they were closely spaced and only one 

permeability measurement was present in the zone of core between them, which is where 

grains were measured. 

Grain size in the White Rose A-17 core ranges from a minimum of~ 23 11m to a 

maximum of214/1m, with an average grain size of~107 11m (Figure 3.1). The equivalent 

phi values are ~5.44 0 and ~2.22 0 for the range, and ~3.22 0 for the average (Figure 

3.2). Grains are primarily very fine-grained and are well sorted (Figure 3.2). 

Before measurements were taken, it was evident that fine-grained sandstone is 

common towards the base and siltstone towards the top; however, smaller-scale grain­

size trends were not obvious. Though sand-sized grains are restricted to the fine- and very 

fine-grained size classes, there is a considerable amount of variation within these classes. 

These variations were captured by using a large number of possible grain-size values 

(Table 2.1). 

Grain-size trends are presented and discussed at three scales, these are first, 

second, and third order grain size trends. To best highlight these trends, a number of grain 

size logs will be shown. The first order grain-size trend is at the scale of the entire cored 

interval, second order grain-size trends are at the bed-set scale, which is typically a few 
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Fig.3.1.Grain-size distribution for the White Rose A-17 core. Grains were measured (where 
possible) above and below all contacts, boundaries, and breaks in the core. In total, 1176 
grain sizes were measured, averaging 107 Jlm or very fine-grained. 
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Fig.3.2. Cumulative% grain size for grains measured in the White Rose A-17 core. Red 
x's mark the appropriate phi values (x-axis), and their cumulative percentage (y-axis). The 
steepness of the curve indicates that the grains are well sorted. Approximately 70% of the 
measured grains are very fme-grained sand. 



meters, and third order grain-size trends are at the bed/interval scale which are typically 

less than one meter. 

3.2.2 Grain-Size Trends 

3.2.2.1 First Order Grain-Size Trends 
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First order grain-size trends occur at the scale of the entire cored interval (Figures 

3.3 and 3.4). Overall, the cored interval fines upward. Internally, it is characterized by a 

large number of grain-size fluctuations. On grain size alone, the cored interval can be 

segmented into three units. The lower unit, representing the lowermost 27m from 3047-

3020 m, consists mostly of fine-grained sandstone with rare very fine-grained sandstone, 

and only a minute fraction of carbonaceous and silt-sized material. Above this lower unit, 

over a zone of two meters from 3020-3018 m, the most significant and noticeable change 

in grain size occurs (Figures 3.3 and 3.4). The decrease in grain size is approximately 60-

65 J.Lm. Above this point, grain size rarely reverts to fine sand size (Figures 3.3 and 3.4). 

The middle unit encompasses ~75 m of the core, and extends from ~3020-2945 m 

depth (Figures 3.3 and 3.4). This unit is composed almost exclusively ofvery fine­

grained quartz sandstone with rare silt-sized particles. Throughout the bulk of this unit, 

the general trend remains is an overall fining-upward one; however, meter-scale grain­

size fluctuations are frequent, but their magnitudes are small. These smaller trends are 

discussed in the next section. 
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Fig. 3.3. Smoothed grain-size profile for the White Rose A-17 core. From base to top, the 
interval displays an overall fining-upward grain-size trend (also depicted by arrow).Values 
used in the construction of this grain-size proftle were obtained by running a moving 
average over every five grain sizes with averages placed at the midpoint. 
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Fig.3.4. Plot of Grain size (microns, at fixed standard values) vs. Depth (meters). Blue dots 
representing fme-grained sandstones are mainly restricted to the lowermost 25 m of the core 
(L ), red dots representing very fme-grained sandstones dominate the middle part of the core 
(M),and siltstones both coarse (yellow) and medium (green) are primarily restricted to the 
uppermost 5-6 m of the core (U). 



The middle unit is succeeded by a 5-6 m upper unit, which consists of very fine­

grained sandstone and siltstone (Figures 3.3 and 3.4). This upper unit is the only unit in 

the core composed of more than one lithology. 

3.2.2.2 Interpretation and Implications 
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The overall fining-upward grain-size trend represented in the A-17 core reflects a 

gradual decrease in the amount of energy in the depositional system and may suggest a 

change in the depositional environment, from one in which fine- and very fine-grained 

sand was dominant to one in which very fine-grained sand and silt were dominant. This 

overall fining-upward grain-size trend might also be a function of sediment supply and/or 

sediment availability. 

3.2.2.3 Second Order Grain-Size Trends 

Second order grain-size trends refer to grain-size trends that occur at the bed 

and/or bed-set scale. They span beds that consist of a number of intervals that fine, 

coarsen or remain the same upwards, and in some instances a number of beds or bed-sets 

that do the same. These units typically comprise less than one meter of core, but may be 

as thick as two meters. In total, there are 322 beds in the A-17 core; they range from ~ 

2.5 em to 197.5 em in thickness, and average ~75 em thick (Figure 3.5). Because the plot 

of grain size versus depth for the entire core (Figures 3.3 and 3.4) does not reveal 

medium-scale trends with any degree of detail, the grain-size log was subdivided into a 

number of segments that were individually enlarged. Aside from the lowermost segment, 
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Fig. 3.5. Histogram ofbed thickness for the White RoseA-17 core. Beds range from a minimum 
of2.5 em to a maximum of 197.5 em, and average approximately 75 em thick. Bed thicknesses 
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with data plotted at midpoints. 
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which is 7 m thick (3047-3040m), each segment represents 10m (Figures 3.6-3.16). This 

was thought to be a suitable scale to display second order grain-size trends. Any smaller, 

and the number of logs becomes too great for visual comparisons and some trends are 

missed; any greater and some of the details are missed. Only the most general trends are 

symbolized by the use of arrows. Arrows are simply a means of showing that grain size 

has a tendency to change. The word 'general' is emphasized because these trends do not 

imply that grain size consistently decreases, increases or stays the same vertically; rather, 

it has a tendency to vary in one way. 

Arrows set adjacent to just one bed signify that the bed consists of a number of 

smaller intervals that either fine, coarsen or generally remain the same upwards. Arrows 

set adjacent to a number of beds signify that the beds have an overall tendency to fine, 

coarsen or remain generally the same upwards. For comparative purposes, grain-size 

logs which show all surfaces (left side ofFigures 3.6-3.16) are shown beside grain-size 

logs that use data above and below bed boundaries only (right side ofFigures 3.6-3.16). 

This is done primarily to visually show why some beds are considered to show grain-size 

trends and why others are grouped together into bed-sets to show trends. Only the most 

obvious bed-scale and bed-set-scale trends are highlighted by the use of arrows. 

There are three types of second order grain-size trends. They are as follows: 

1) Fining-upward trends; 

2) Coarsening-upward trends; 

3) Static trends. 
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Fig.3.6. Grain size vs. Depth from 2950-2940 m. Log on left (A) represents the positions of 
all contacts and tops of transitions between 2950-2940 m while the log on the right (B) marks 
only bed boundaries. Arrows are used to show the general tendency for grain size to increase, 
decrease or remain the same vertically. 
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Fig.3.7. Grain size vs. Depth from 2960-2950 m. Log on left (A) represents the positions 
of all contacts and tops of transitions in the core between 2960-2950 m while the log on 
the right (B) marks only bed boundaries. Arrows are used to show the general tendency 
for grain size to increase, decrease or remain the same vertically. 
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Fig.3.8. Grain size vs. Depth from 2970-2960 m. Log on left (A) represents the positions 
of all contacts and tops of transitions between 2970-2960 m observed in the core while the 
log on the right (B) marks only bed boundaries. Arrows are used to illustrate the general 
tendency for grain size to increase, decrease or remain the same vertically. 
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Fig.3.9. Grain size vs. Depth from 2980-2970 m. Log on left (A) represents the positions of 
all contacts and tops of transitions recorded between 2980-2970 m while the log on the right 
(B) marks only bed boundaries. Arrows are used to show the general tendency for grain size to 
increase, decrease or remain the same vertically. 



A 
2980 

2981 I 

I 
............. 

2982 I 

\ 

"" 2983 

" I 

2984 

...-._ 

""-
\ 

t:l) 
$-o " Q) 

2985 .... 
Q) 

s 
........ 

\ 
....._, 
...s::= .... 
0.. 2986 Q) 

Cl 
\ 
I 

\ 

2987 \ 
2988 

I 
~ 

\ 

2989 I -
I 

2990 
I I I I I I I I I I 

0 40 80 120 160 200 

Grain Size (microns) 

B 
2980 

2981 

2982 

2983 

2984 

2985 

2986 

2987 

2988 

2989 

2990 

"'l 
~ 
~i 

I~ 
""-
~ 

.......... 

~ 

~ 

\I 
............ 

I 
~ 

~ 
I -~ 

I I I I I I I I I I 

0 40 80 120 160 200 

Grain Size (microns) 

Fig.3.10. Grain size vs. Depth from 2990-2980 m .. Log on left (A) represents the positions 
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of all contacts and tops of transitions between 2990-2980 m observed in core while the log on 
the right (B) marks bed boundaries only. Arrows are used to show the general tendency for 
grain size to increase, decrease or stay the same vertically. 
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Fig.3.11. Grain size vs. Depth from 3000-2990 m. Log on left (A) represents the positions 
of all contacts and tops of transitions recorded between 3000-2990 m while the log on the 
right (B) marks only bed boundaries. Arrows are used to show the general tendency for grain 
size to increase, decrease or remain the same vertically. 
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Fig.3.12. Grain size vs. Depth from 3010-3000 m. Log on left (A) shows the positions 
of all contacts and tops of transitions recorded between 3010-3000 m while the log on the 
left (B) shows the positions of bed boundaries only. Arrows are used to show the general 
tendency for grain size to increase, decrease or remain the same vertically. 
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Fig.3.13. Grain size vs. Depth from 3020-3010 m. Log on left (A) represents the positions 
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of all contacts and tops oftransitions recorded between 3020-3010 m while the log on the right 
(B) marks only bed boundaries. Arrows are used to show the general tendency for grain size 
to increase, decrease or remain the same vertically. 
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Fig.3.14. Grain size vs Depth from 3030-3020 m. Log on left (A) represents the positions of 
all contacts and tops of transitions between 3030-3030 m while the log on the right (B) marks 
bed boundaries only. Arrows are used to show the general tendency for grain size to increase, 
decrease or remain the same vertically. 
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Fig.3.15. Grain size vs. Depth from 3040-3030 m. Log on left (A) represents the positions 
of all contacts and tops of transitions observed between 3040-3030 m in the core while 
the log on the right (B)marks only bed boundaries. Arrows are used to show the general 
tendency for grain size to increase, decrease or remain the same vertically. 
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Fig.3.16. Grain size vs. Depth from 3047-3040 m. Log on left (A) represents the positions 
of all contacts and tops oftransitions observed in the core between 3047- 3040 m while the 
log on the right (B) marks only bed boundaries. Arrows are used to show the general 
tendency for grain size to increase, decrease or remain the same vertically. 
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The bulk of the core consists of fining-upward grain-size trends. These fining­

upward trends range from 30 em to 1.75 m, averaging -75 em in thickness (refer to 

Figures 3.6-3.16). Fining-upward grain-size trends may encompass one bed (i.e., normal 

grading) or a number of beds. Beds exhibit grain-size trends if they consist of a number 

of intervals that have a tendency to fine upward. In most instances, the term 'compound 

normally graded bed' is the best phrase to describe their architecture because they consist 

of a number of ungraded to normally graded intervals. Very rarely do these beds contain 

reversely graded intervals. Fining-upward grain-size trends spanning more than one bed 

are more common than those spanning single beds. The grain-size changes through 

intervals with fining-upward trends range from a minimum of- 20 p,m to a maximum of 

120 p,m, averaging -7 5 p,m. 

Second in abundance to the fining-upward trends are coarsening-upward trends. 

These trends are much less common than fining-upward ones. Intervals of these trends 

range from -20 em to 1.2 m, and average -70 em thick. These trends are comprised 

largely of a succession of normally graded beds, less commonly ungraded and normally 

graded beds, and rare inverse and non- graded to normally graded beds. Nowhere in the 

core are coarsening-upward trends represented by a single inversely graded bed. The 

grain-size increase over coarsening-upward trends ranges from a minimum of 20 p,m to a 

maximum of 100 p,m, and averages -50 p,m. 

Static trends are defined as those trends which show no significant vertical 

increase nor decrease in grain size. They represent sections of the core which consist of a 

succession of normally graded, and non graded to normally graded beds. They are the 
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least common of the medium-scale trends. They range from 50 em to 2.0 m, and average 

~90 em thick. Reversely graded beds are absent from these trends. 

3.2.2.4 Interpretation and Implications 

Single normally graded beds, and compound normally graded and ungraded to 

normally graded beds that form fining-upward grain-size trends, imply cyclic net 

decreases in the amount of energy in the depositional system. These trends (from base to 

top) might represent different sub-environments with specific energy regimes; however, 

the fining-upward trend does not imply that the sediment source changed. This is 

substantiated by the fact that grain sizes have little absolute variation from base to top of 

such trends, and the mineralogy is nearly constant. 

The coarsening-upward trends consist of combinations of normally graded, 

ungraded, and rarely reversely graded beds. These suggest a net increase in energy from 

base to top. They might signify different sub-environments but are not thought to indicate 

a change in the sediment source for the reasons given above. The rarity of these trends 

might imply that progressive increases in energy through time were less common than 

progressive decreases. Note however, that in the middle unit, there is no net increase or 

decrease. This is because each progressive fining trend ends with a bed with markedly 

greater grain size. 

Static trends imply no significant medium-scale net increases or decreases in 

energy in the depositional system. They also strongly suggest that the sediment available 

during their deposition was essentially uniform in size. 
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3.2.2.5 Third Order Grain-Size Trends 

Third order grain-size trends are a property of the smallest units and characterize 

what have been defined as intervals. Intervals are parts of beds and are therefore within­

bed trends. There are 566 intervals in the White Rose A-17 core. Intervals range from 0.7 

em to 190 em, averaging 30 em thick (Figure 3.17). These intervals are most commonly 

ungraded. 

There are 332 ungraded intervals representing ~44.25% of the core. These 

intervals range from 1-117 em thick with a mean thickness of ~14 em. Because of their 

abundance, they appear to be distributed uniformly. In a number of cases, (refer to 

Figures 3.6-3.16) they stack vertically and are the building blocks ofthe fining and 

coarsening trends. They also (in combination and with normally graded intervals) 

constitute a number of the normally graded beds, which therefore are effectively step­

wise graded. 

Second in frequency to the ungraded intervals are normally graded intervals. 

There are 216 such intervals representing ~41.5% of the core. These intervals are on 

average 19 em thick and range from 1.3 -116 em. Grain-size change over these intervals 

ranges from a minimum of~ 10 J-tm to a maximum of 80 J-tm, averaging 18 J-tm. Normally 

graded intervals appear to have no preferred distribution in the core. 

Reversely graded intervals are the least abundant of all intervals. There are only 

18 such intervals, which represent ~3 .6% ofthe core. Reversely graded intervals range 

from 4.6 to 90 em, and average ~9 em thick. These intervals are most commonly found in 

the lowermost 20 m and uppermost 40 m of core, where they form parts of thicker 
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Fig. 3.17. Histogram displaying the frequency of thickness for the 566 intervals in the 
White Rose A-17 core. Intervals range from a minimum of0.7 em to a maximum of 189 em 
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log-normal distribution ( cf. Drummond and Wilkinson, 1996).Class width is 5cm with data 
plotted at midpoints. 



coarsening-upward trends. They are not found in cored intervals with medium-scale 

fining-upward and static trends. 

3.2.2.6 Interpretation and Implications 
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The ungraded intervals in the A-17 core have two probable explanations. They 

might represent deposition under static conditions, or the sediment available during their 

deposition was of uniform size even if energy levels fluctuated. In some cases, due to the 

presence of shells and cements, the ungraded character of some intervals might be a false 

impression of grain-size variability. Most such intervals, however, are unequivocally 

ungraded when examined with a binocular microscope. 

Normally graded intervals appear to be a result of suspension sedimentation from 

waning flows. During such processes, particles settle from suspension at different rates. 

Denser or larger particles settle out first, followed by finer grains. Normally graded beds 

form in shallow-water settings by sedimentation from suspension clouds generated by 

storm activity on a shelf, or in deltas with fluctuating fluvial input (Boggs, 1987). During 

the onset of a storm, large waves put large volumes of seafloor sediment into suspension. 

When the storm passes, the suspended material returns to the bottom. The larger, heavier 

grains fall first, followed by the smaller, lighter grains. The abundance of normally 

graded intervals in the A-17 core implies repeated deposition by decelerating flows, 

which might be attributed to the onset and passage of storms on a shallow shelf. A shelf 

setting is interpreted for these deposits based on sedimentological criteria later in this 

chapter. 



Reversely graded intervals are the most difficult of the three to interpret and 

explain. In the sedimentary record, inverse grading is a relatively rare phenomenon. 

Boggs (2001) notes that reverse grain-size grading has been attributed to two 

mechanisms: (1) dispersive pressure and (2) kinetic sieving. Dispersive pressure is 

believed to be proportional to grain size. Thus, higher dispersive pressures act on the 

larger particles and tend to force them into the zone of least shear, placing them atop of 

the finer grains. Kinetic sieving occurs when small grains infiltrate the voids between 

larger ones. This process presumably takes place in a mixture of grains undergoing 

agitation. Because reversely graded intervals in the A-17 core are very rare, and the 

formative mechanism(s) are poorly understood, little significance is placed on these 

intervals in this thesis. 

3.3 Contacts and Transitions 

3.3.1 Introduction 
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Six hundred and thirty-nine contacts/transitions (minus the 90 discontinuities) 

with a number of geometries belonging to four principal types were observed and coded 

in the White Rose A-17 core. Codes distinguish contact geometry. Changes in grain size 

and permeability across different contact types provide essential data for this study. This 

section is concerned primarily with the photographic documentation of each principal 

contact type. 
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3.3.2 Erosive Contacts 

The most abundant type of contact in the White Rose A-17 core is erosive. 

Erosive contacts are presumed to be bed boundaries. They typically truncate laminae, 

correspond with marked increases in grain size, and in a number of cases are mantled by 

bioclasts. Rarely, erosive contacts are draped by fine-grained silty/carbonaceous material. 

There are 201 erosive contacts in the core. 

Erosive contacts have three principal geometries. The first type of erosive contact 

ranges from very gently to moderately undulatory and is non-inclined (Plate 3.1). There 

are 76 of these contacts. A range of bioclastic debris may mantle these contacts, including 

serpulid worm tubes, bivalves, and rarely brachiopods (Plate 3.1, Photos A and C). The 

amount, density, and diversity of this material is variable. Patches of authigenic siderite 

cement locally accompany the bioclastic debris (Plate 3.1, Photo A). In other cases 

bioclastic debris is minimal or absent (Plate 3.1. Photo B). Underlying laminae (typically 

those highlighted by thin disarticulated bivalves and silty/carbonaceous material) are 

sometimes unequivocally truncated (Plate 3.1, Photos B and C); in other cases truncation 

is suspected but uncertain (Plate 3.1, Photo A). 

The second type of erosive contact is very gently to moderately undulatory and 

inclined (Plate 3 .2). There are 78 of these contacts. Inclination of these contacts measured 

relative to a plane perpendicular to the edge of the core ranges from a minimum of 3 ° to 

a maximum of 12 °, averaging 6 °. The dips of these contacts are apparent dips. As with 

the non-inclined erosive contacts, the amount, density, and variety of bioclastic debris 

overlying these contacts is highly variable. The quantity of material may be great (Plate 



Plate 3.1. Examples of gently to moderately undulatory non-inclined erosive contacts as 
observed in the White Rose A-17 core. Arrows mark the position of contacts on both sides of 
each core segment. Depths ofthe contacts are: A) 2951.20 m, B) 2961.80 m, C) 2979.80 m, 
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Plate 3.2. Examples of gently to moderately undulatory inclined erosive contacts as observed 
in the White Rose A-17 core. Arrows mark the position of contacts on both sides of each core 
segment. Depths of the contacts are: A) 2941.69 m, B) 2949.492 m, C) 2958.356 m. 



3.2, Photo C), moderate (not shown) or completely absent (Plate 3.2 Photos A and B). 

Underlying laminae may be unequivocally truncated (Plate 3.2, Photos A and B) or are 

very difficult to see (Plate 3.2, Photo C). Spraying of the core with water clarifies that 

many of the contacts do indeed truncate faint low-angle laminae. 
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The third and least abundant erosive contact is gently to highly curved, and 

convex-upward in shape (Plate 3.3). There are 47 such contacts. These contacts are only 

rarely overlain by bioclastic debris (Plate 3.3, Photos A). Instead, bioclastic debris is 

typically absent above these contacts (Plate 3.3, Photos Band C). Underlying laminae are 

typically hard to recognize, but in a few cases are clearly truncated (Plate 3.3, Photo C). 

In most cases these contacts are overlain by low angle, gently curved, concordant laminae 

(Plate 3.3, Photos Band C). 

3.3.3 Abrupt Contacts 

The second most abundant type of contact is abrupt. As with erosive contacts, 

abrupt contacts have three principal geometries, which total 183 in number. Abrupt 

contacts occur within beds, between different facies, between zones of the same facies, 

and above shell accumulations (they do not define bed boundaries). They may be 

demarcated by thin shell fragments, thin silty/carbonaceous laminae or may be very 

subtle. 

The first type of abrupt contact is very gently to moderately undulatory and non­

inclined (Plate 3.4). In the White Rose A-17 core, there are 63 such contacts. In a number 

of cases, the finer-grained sediment is above the contact (Plate 3 .4, Photos A and C); less 
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Plate 3.3. Examples of gently to highly curved, convex-up erosional contacts as observed in 
the White Rose A-17 core. Arrows mark the position of contacts on both sides of each core 
segment. Depths of the contacts are: A) 2960.82 m, B)3033.218 m, C) 2995.248 m. 



Plate 3.5. Examples of very gently to moderately undulatory inclined abrupt contacts as 
recognized in the White Rose A-17 core. Arrows mark the position of contacts on both 
sides of each core segment. Depths of the contacts are: A) 2941.625 m, B) 2966.779 m, 
C) 2977.16 m, D) 3003.478 m. 
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commonly, the reverse is true (Plate 3.4, Photo B). These contacts are usually highlighted 

by thin bioclasts and silt (Plate 3.4 Photos A, B, and C) and are less commonly are found 

directly above bioclastic accumulations (not shown). 

The second type of abrupt contact is very gently to moderately undulatory and 

inclined (Plate 3.5). There are 64 such contacts. These contacts have apparent dips that 

range from 2°-15°, and average 6-7° measured relative to a plane at right angles to the 

edge of the core. The variation in the apparent dip of the se contacts may be a function of 

the angle with which the core barrel intersected bedding-bedding dips range from 0-8° 

degrees (Petro-Canada geologists, personal communication, 2005). These abrupt contacts 

are principally found within beds. They may separate different facies, occurrences of the 

same facies, and less often they are found above shell accumulations. 

The least abundant type abrupt contact is gently to highly curved, and convex-up 

(Plate 3.6). There are 56 ofthese contacts in the White Rose A-17 core. These contacts 

are the most difficult to recognize because there is limited textural contrast associated 

with them. These contacts range from very gently curved and convex-up (Plate 3.6, 

Photos A and B) to moderately or highly curved and convex-up (Photo C). Overlying 

laminae (where present) are usually concordant with these abrupt contacts (Plate 3.6, 

Photos A and B). 

3.3.4 Cementation Contacts 

Third in abundance after erosive and abrupt contacts are cementation contacts. 

There are 90 such contacts. Cementation contacts either separate pervasively cemented 
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Plate 3.4. Examples ofvery gently to moderately undulatory non-inclined abrupt contacts 
as recognized in the White Rose A-17 core. Arrows mark the position of contacts on both 
sides of each core segment. Depths ofthe contacts are: A) 2949.505 m, B) 3012.808 m, 
C) 2982.757 m. 



78 

Plate 3.4. Examples of very gently to moderately undulatory non-inclined abrupt contacts 
as recognized in the White Rose A-17 core. Arrows mark the position of contacts on both 
sides of each core segment. Depths of the contacts are: A) 2949.505 m, B) 3012.808 m, 
C) 2982.757 m. 
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sandstone from more porous sandstone (Plate 3.7, Photos A-F), or separate pervasively 

calcite-cemented sandstone without bioclasts from those that do contain bioclasts (Plate 

3.8, Photos A-D). 

Cementation contacts that separate pervasively cemented sandstone from more 

porous sandstones are always distinct and sharp. Geometrically, they can appear concave­

up, convex-up, or moderately undulatory (Plate 3.7, Photos E and F); however, they are 

most often inclined at angles of 15-30° measured relative to a plane perpendicular to the 

edge of the core (Plate 3.7, Photos A-D). The fact that these contacts routinely cut across 

stratification confirms that they are post-depositional features. Their geometry suggests 

nodular shapes. 

Contacts that separate pervasively calcite-cemented zones which do not contain 

shells from those that do have a multitude of geometries (Plate 3.8, Photos A-D). 

However, for the purpose of this thesis, they have not been studied in detail because 

permeability is negligible on either side of these contacts; thus, they have little reservoir 

significance. Additionally, because there are only 29 of these contacts and their 

geometries conform to those described for erosive and abrupt contacts, they are believed 

to add little new to the analysis of the contacts. However, from a stratigraphic point of 

view they may have significance and thus would require additional investigation, which 

was not carried out in this thesis. 
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Plate 3. 7. Examples of cementation contacts as recognized in the White Rose A -1 7 core. 
Arrows mark the positions of contacts on both sides of each core segment. Depths of the 
contacts are: A) 2978.91 m, B) 2950.873 m, C) 2995.630 m, D) 2996.355 m, E) 3021.18 m, 
F) 3043.340 m. 
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Plate 3.8. Examples of cementation contacts between Facies 5 and Facies 6 as recognized 
in the White Rose A-17 core. Arrows mark the positions of contacts on both sides of each 
core segment. Depths of the contacts are:A) 2943.325 m, B) 2945.249 m, C) 2948 and 
2948.18 m, D) 2950.16 m. 



3.3.5 Gradational Transitions 

Gradational transitions are relatively uncommon. In total, the size of grains was 

recorded above and below 64 such transitions. The abundance ofbioclasts, authigenic 

siderite and silt were recorded at the same positions using an ordinal scale. 
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Gradational transitions most typically occur where bioclasts (of varying 

abundance) diminish upward away from underlying contacts or where bioclasts, which 

are aligned with stratification, diminish to zero abundance (Plate 3.9, Photos A and B 

respectively). Gradational transitions also occur across zones of noticeable change in 

grain size (Plate 3.9, Photo C). Some gradational transitions occur between unbioturbated 

and bioturbated zones (Plate 3.9, Photo D), though this is rare. 

Grain size, and the abundance ofbioclastic debris and authigenic siderite were 

recorded above and below the top of each gradational transition. This was done to 

evaluate changes in permeability, discussed in the following chapter. From a 

sedimentological standpoint, gradational transitions are important because they represent 

a decrease in energy. The White Rose A-17 core is dominated by small- to medium-scale 

fining-upward grain-size trends, which internally each have a number of gradational 

transitions. It is therefore believed that high-energy conditions repeatedly delivered 

coarser-grained sand and in some cases bioclasts, and that these episodes were followed 

by waning energy. 



Plate 3.9. Examples of gradational transitions as recognized in the White Rose A-17 core. 
Dashed arrows represent the gradational intervals. Red dots mark the approximate positions 
where depth measurements were recorded. Grain sizes were recorded above and below the 
maximum extent of gradation (i.e. above and below the red dots). Depths for each red dot 
are: A) 2971.76 m, B) 2988.672 m, C) 3011.323 m, .D) 2947.40 m. 
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3.4 Facies 

3.4.1 Introduction 

Based on lithology, sedimentary structures, trace fossils, body fossils and 

diagenetic components, nine facies are recognized in the A-17 core (Table 3.1). The 

following subsections define, describe, and provide a process interpretation for each 

facies. This section will conclude by discussing the most probable depositional 

environment for the A-1 7 cored interval, based on facies characteristics and process 

interpretations. 
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Some overlap exists between facies. For example, very thin zones of facies 7 and 

facies 8 identified based upon their shelly components-can appear within facies 1, 2, 3, 

and 4, which are recognized based upon their characteristic homogeneity or physical 

sedimentary structures. Specifically, thin-shelled bivalves that characterize facies 8 can 

occur aligned with stratification in facies 2, 3, and 4. Similarly, these bivalves can occur 

in facies 7 but are very rare and the zones are so thin that they could not have been shown 

separately in a graphic column. Additionally, a minor amount of overlap exists between 

facies 5, which is pervasively cemented by calcite, and facies 9, which is defined by its 

bioturbation. Zones that are both bioturbated and cemented are included in facies 5. 

Biogenic traces that are abundant in facies 9 also occur as isolated structures in facies 3, 

so are discussed under facies 3. 

The number ofvertical transitions between (a) facies and (b) facies contacts are 

summarized in Tables 3.2 and 3.3, respectively. Facies associations will be described as 

part of each facies description. 
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Facies Description Percent of 
Process Interpretation Core 

Fine- to very fine-grained light gray 
Rapid deposition from 

Facies 1 to beige "clean" homogeneous 14.7% 
sandstone 

suspension 

Fine- to very fine-grained, planar Deposition by strong 
7.0% unidirectional or 

Facies 2 laminated sandstone 
combined-flow currents 

Low-angle cross-stratified, fine- to 
53.3% 

Product of strong 
Facies 3 very fine-grained sandstone combined-flow currents 

Moderately inclined, fine- to very 
4.6% 

Product of strong 
Facies 4 fine-grained sandstone combined flow currents 

Pervasively calcite-cemented 
Dissolution followed by 

Facies 5 sandstone 
12.3% re-precipitation of the 

shells as calcite cement 

Strong erosive currents 

Facies 6 
Pervasively calcite-cemented and rapid deposition. After 

sandstone with abundant shelly 3.1% deposition shells dissolve 
material andre-precipitated as 

calcite cement. 
Facies 7 

Shell-serpulid- and siderite-bearing 
Erosion, winnowing, and 

2.3% transport followed by 
sandstone mainly rapid deposition 

Facies 8 
Erosion, winnowing, and 

Shelly sandstone transport followed by 
1.4% deposition under a strong 

unidirectional current 

Burrowing predominantly 
Facies 9 Bioturbated sandstone and siltstone 

1.3% 
by dwelling, deposit- and 
rare suspension-feeding 

organisms 

Table 3.1. A brief summary ofthe facies identified in the White Rose A-17 core (left 
column), the percentage of the core that they occupy (middle column), and their process 
interpretations (right column). 
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F A c I E s 

1 2 3 4 5 6 7 8 9 Total 

1 0 10 49 6 4 1 6 2 0 78 

F 2 5 0 26 2 0 1 5 1 3 43 

A 3 44 26 0 19 5 0 24 14 1 133 

c 4 6 2 18 0 3 0 2 0 0 31 

I 5 2 0 8 2 0 18 1 2 1 34 

E 6 1 0 3 0 17 0 0 0 1 22 

s 7 19 3 15 1 1 0 0 0 1 40 

8 2 0 14 1 1 1 0 0 0 19 

9 0 1 0 0 3 2 2 0 0 8 

Total 79 42 133 31 34 23 40 19 7 

Table 3.2 Transition matrix for the nine facies identified in the White Rose A-17 core. 
Facies 1 through 9 are numbered in bold text in the leftmost column and uppermost row. 
Matrix records the number of upward transitions from one state to the next (in this case 
the states are facies) when viewing rows. As an example, facies 3 (leftmost column, 
fourth row) is followed by facies 1 (uppermost row, second column) 44 times. Columns 
record the number of times a facies succeeds another. In this case, facies 3 succeeds 
facies 1 49 times (second row, fourth column). Note that most facies are associated with 
facies 3. 
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3 39 6 

2 25 1 

11 38 1 

4 43 8 

2 45 7 
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FACIES/CONTACTS 

5 6 7 8 9 11 12 13 21 22 23 Total 

4 1 1 1 0 11 11 5 9 10 8 88 

0 1 1 0 2 9 5 8 9 5 3 57 

5 0 4 2 0 46 47 29 38 38 37 294 

2 0 1 0 0 4 4 4 0 7 5 38 

0 16 0 1 1 0 0 0 0 0 0 25 

17 0 0 0 1 0 0 0 0 0 0 22 

0 0 0 0 1 2 5 0 4 3 0 41 

1 1 0 0 0 0 1 0 2 0 0 19 

3 2 0 0 0 1 1 0 0 0 0 8 

0 0 11 4 0 0 0 0 0 0 0 75 

0 0 16 4 0 0 0 0 0 0 0 75 

0 0 4 5 0 0 0 0 0 0 0 46 

0 0 1 0 1 0 0 0 0 0 0 62 

0 0 2 2 2 0 0 0 0 0 0 64 

0 0 0 0 0 0 0 0 0 0 0 54 

32 21 41 19 8 73 74 46 62 63 53 

Table 3.3 Transition matrix for the nine facies (1-9 bold text highlighted blue), the three 
types of erosive (11-13 bold text highlighted yellow), and the three types of abrupt 
contacts (21-23 bold text highlighted yellow). Cementation contacts, gradational 
transitions and core breaks are not represented in this matrix. As an example, erosive, 
very gently to moderately undulatory, non-inclined erosive contacts (11, in the leftmost 
column) are followed by facies 3 (third column uppermost row) 32 times. Erosive, very 
gently to moderately undulatory, non-inclined contacts succeed facies 3 a total46 times 
(fourth row, twelfth column). Note that most facies and contacts are associated with 
facies 3. 
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To clarify, the use of the term interval(s) in the rest of this chapter, and in the 

remainder of this thesis is not used in the same sense as it was in Chapter 2 and in section 

3.2 regarding grain-size trends. For the purposes of facies descriptions, it refers to a 

section where a particular facies occurs and implies thickness. For the remainder of the 

thesis it implies thickness, and it is used independently of contacts and surfaces. 

3.4.2 Facies 1- Fine- to Very Fine-Grained, Well-Sorted, Structureless Sandstone 

Facies 1 consists chiefly of very fine-grained, clean, mineralogically and 

texturally mature, light gray to beige quartz arenites (Plate 3.1 0, Photos A, B, and C). It 

represents ~ 14.7% of the core. The average thickness of facies 1 is 17.5 em; they range 

from 1.1 to 115.6 em thick. Based on 158 measurements made in intervals of facies 1 

(Figure 3 .18), grain sizes range from a minimum of 7 5 J.Lm ( ~ 3. 7 4 0) to a maximum of 

214 J.Lm (~2.22 0), and averages 119 J.Lm (~3.0 0). Rock fragments and matrix are almost 

non-existent giving facies 1 an exceptionally "clean" appearance. The only discemable 

accessory mineral is glauconite, which occurs as very small ( <1 mm) pellets that can only 

be seen with the aid of a microscope. Intervals of facies 1 display no evidence of traction­

produced sedimentary structures and appear to be completely homogeneous. X­

radiographs confirmed that these intervals are indeed massive and that laminations are 

not present. No biogenic sedimentary structures are present. Shells are diminutive; 

however, where present, shells exist as small, thin, disarticulated fragments showing no 

preferred orientation. These are likely bivalve fragments similar to those observed in 
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Plate 3.10. Examples ofFacies 1- Fine- to very fine-grained structureless sandstone. Depths 
are given for the base and top of each core segment. A) 2981.466-2981.341 m, B) 3004.244-
3004.119 m, C) 2991.739-2991.655 m. 
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Fig. 3.18 Grain size (~m) vs. Depth (m) for facies 1, 2, and 3. Each graph illustrates the range of grain s~es for the facies and 
the generalized vertical distribution of the facies in the cored interval. Where there are gaps, the facies is not present. 
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other sections of the core. Siderite is extremely rare and appears as small (<3 mm) round 

to oval patches. 

Vertically, facies 1 is strongly associated with facies 3 and to a lesser degree 

facies 2 and 7 (Table 3.2). It is frequently bounded at its base by erosive surfaces and to a 

lesser degree, abrupt surfaces (Table 3.3). At its top it is bounded by a variety of erosive 

and abrupt contact types almost equally (Table 3.3). All other facies have minimal 

affiliation with facies 1. 

3.4.2.1 Process Interpretation for Facies 1 

The origin and significance of sandstones that appear to be structureless have 

been matters of speculation (Hamblin, 1965). Some authors (Allen, 1970; Longwell and 

Flint, 1962) reason that stratification results from changes that occur during the process 

of sedimentation, and that homogeneous beds represent a special environment in which 

sedimentary processes are uniform and free of change. Others point out that structureless 

intervals may arise because the rate of sedimentation is too rapid for the particles to be 

sorted out into layers (Geikie, 1903; Arnott and Hand, 1989) or that the material being 

delivered to the depositional environment is so uniform that textural layering is 

impossible (Gilluly et al., 1959). Arnott and Hand (1989), through a number of flume 

experiments, showed that abundant sediment fallout provides an adequate explanation for 

a lack of lamination in massive deposits. Other explanations for massive bedding include 

diagenesis (Selley, 1988) and intense burrowing by organisms (Pettijohn, 1957; Frey, 

1990; Boggs, 1987; Pemberton et al., 2001). Burrowing by organisms has been regarded 
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as a major contributor to the homogeneity of sediments, because organisms can disrupt 

sediment after stratification forms. In Hibernia K-14 and B-27 cores from the Ben Nevis 

interval, Pemberton et al. (2001) note that some of the well-sorted, massive sandstone 

intervals are most likely cryptobioturbated. Bioturbation by microorganisms or 

meiofauna (Pemberton et al., 2001) is not considered likely in facies 1 for the following 

reasons: 

1) There is no visual evidence to suggest that micro-organisms disrupted the 

sediment; 

2) The homogeneous intervals are essentially devoid of silty or carbonaceous 

material to provide a food source and materials for constructing burrows. 

Therefore, it seems a reasonable conclusion that the homogeneous intervals were rapidly 

deposited from a highly concentrated suspension cloud. Arnott and Hand (1989) 

concluded that suppression of laminae at high fallout rates results in reduced lateral 

segregation due to quick burial and therefore limited traction. In addition, the 

exceptionally limited textural and color contrast and good sorting in Facies 1 would make 

any subtle layering imperceptible. Although rapid fallout of grains from highly 

concentrated suspension clouds and the mineralogical and textural maturity of Facies 1 

provides the best explanations for the absence of laminations, some uncertainty remains. 

A lack of structures is actually negative evidence against, rather than positive evidence 

for, a particular process. 
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It was considered that cementation might be responsible for the structureless 

appearance of facies 1. However, this seems unlikely because other intervals and facies in 

the core are much more cemented yet laminae are readily discemable. 

3.4.3 Facies 2 - Fine- to Very Fine-Grained, Planar Laminated Sandstone 

Facies 2 is composed of very fine- to fine-grained, moderately to well sorted, 

planar laminated quartzose sandstone (Plate 3.11 ). Approximately 7% of the core is 

represented by facies 2. Intervals of facies 2 range in thickness from a minimum of 2.2 

em to a maximum of51.1cm, and average~ 12.9 em thick. Based on 101 measurements 

made in intervals of facies 2 (Figure 3 .18), grains are primarily restricted to the very fine­

grained sand size class ranging from 62 J.Lm (~4.0 0) to 214 J.Lm (~2.22 0), with an 

average size of 109 J.Lm (~3.20 0). Lithic fragments (typically <1mm) are more common 

in facies 2 than in facies 1. They appear as dispersed flecks only weakly controlled by the 

stratification. Accessory minerals represent less than one percent of facies 2 and include 

both glauconite and pyrite. Matrix, in the form of silt and carbonaceous material, is 

uncommon. Some intervals of facies 2 display low to moderate amounts of patchy calcite 

cement, often associated with very thin, fragmented, bivalves (Plate 3.11, Photos B and 

C). 

Planar stratification differentiates facies 2 from all other facies. Stratification is 

mostly in the form oflaminae that range in thickness from 0.1 to 0.9 mm, with an average 

of0.5 mm. One to two centimeter-thick beds are present but uncommon. In clean, well­

sorted intervals, minimal textural and color contrast make laminae faint and almost 
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Plate 3 .11. Examples ofF acies 2 - Very fine- to fine-grained planar laminated sandstones. 
Depths are given for the base and top of each core segment. A) 3025.31- 3025.198 m, 
B) 3032.55 - 3032.438 m, C) 3046.60 -3046.50 m, D) 3047.00- 3046.90 m. Note that the 
planar laminations are very faint. 
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indiscernible (Plate 3.11, Photo A). More often, laminae are highlighted by very thin ( ~ 1 

mm, small bivalve fragments, which display preferential horizontal alignment (Plate 3.11, 

Photos B and C), though these fragments are often difficult to discern. Small, millimeter­

sized siderite specks and serpulid worm tubes also accompany shells and highlight the 

laminae, but are very uncommon. Planar laminations are also made apparent by thin silt 

laminae; however; this is rare and restricted to the uppermost. 10 m of the core. Ungraded 

and normally graded intervals are most common while reversely graded intervals are very 

rare. Change in color from light beige to gray is often a reliable indicator of grain-size 

grading. 

Vertically, facies 2 occurs throughout the entire core; however, there are a number 

of gaps in its distribution (see Figure 3.18). Facies 2 is most commonly associated with 

facies 3 and less commonly with facies 1 (refer to Table 3.2). Only rarely is it in 

transition with other facies. All erosive and abrupt contact types are associated with 

facies 2 (refer to Table 3.3). 

3.4.3.1 Process Interpretation for Facies 2 

Planar stratification is the simplest of all sedimentary structures (Nichols, 1999). 

It is a sedimentary structure that forms under both lower and upper flow regimes. A 

bedform stability diagram has two regions where plane (i.e. flat) beds are stable (Figure 

3.19). Lower flow-regime flat beds in sand finer than 0.6mm (600 Jl.m, or ~0.75 0) are 

unstable, and any small irregularity on the bed grows into a ripple. In coarse sand, ripples 

cannot form so lower flow-regime flat beds occur and are stable. Upper flow-regime flat 
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beds are principally restricted to sands finer than 0.3 to 0.4 mm mean grain size (Figure 

3.19). When the mean velocity is greater than or equal to ~1 m/s, ripples and dunes are 

destroyed and are reworked into parallel bedding during the upper flow-regime stage of 

flow (Boggs, 2001). The upper flow regime is distinguished by sheet-like, rapid flow of 

water. It occurs under shooting flow or transitional flow with a Froude number of~ 1. 

Harms et al. (1982) present a range of conditions for which oscillatory flows can 

produce a plane bed. Flat and/or parallel bedding is favored by fine grain sizes and short 

wave periods with orbital velocities equal to or in excess of 1.0 m/s. Harms et al. (1982) 

note that beaches, and other nearshore settings where strong shoaling waves prevail are 

typical places where flat beds may exist. 

The planar laminations of facies 2 are interpreted to represent deposition under 

either unidirectional or oscillatory upper flow-regime conditions, during the plane-bed 

stage of flow. This is strongly supported by the flume experiments conducted by 

Bouguchwal and Southard (1990), where they show that sediment finer than ~0.4 mm 

(1.25 0) subjected to a mean flow velocity greater than or equal to 1 m/s invariably 

develops planar laminations. Both unidirectional and oscillatory conditions are 

considered equally plausible for the formation of the planar stratification because both 

types of flow are common in shallow-marine settings. It would likely only be possible to 

distinguish these two possibilities by undertaking fabric analysis on samples from 

oriented cores. Such studies have been conducted on outcrops (e.g. Shelton and Mack, 

1970; Cheel, 1991; Yagishita et al., 1992; Yokokawa, 1995). 
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Fig.3 .19. A bedform stability diagram showing the stability fields of different bedforms 
in sediment of different grain sizes at different flow velocities in ~ 40 em flow depth. 
Modified from Harms et al. (1975). 
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3.4.4 Facies 3 - Low angle Cross-Stratified, Fine- to Very-Fine Grained Sandstone 

Facies 3 is the most abundant facies in the White Rose A-17 core, representing 

approximately 53.3% ofthe core. Intervals offacies 3 range from 1 to 317 em in 

thickness, averaging 35cm. Sandstones of facies 3 consist of fine- to very fine-grained, 

moderately to well sorted quartzose sandstone. They contain low angle stratification, and 

are light gray to beige in color (Plate 3 .12). Quartz grains range from a minimum of 62 

Jlm (~4.0 0) to a maximum of214Jlm (~2.22 0), with a mean size of 102 Jlm (~3.3 0), or 

very fine-grained sand. In total, 608 estimates of grain size (quartz) were recorded within 

intervals of facies 3 (Figure 3 .18). Accessory minerals include trace amounts of 

glauconite, pyrite, and heavy minerals. Lithic fragments (commonly <1 mm in diameter) 

are present in trace amounts. Facies 3 is exceptionally "clean" in that carbonaceous and 

silty material are minor in most samples (Plate 3.12, Photos A, Band C). Some intervals 

of facies 3 contain low to moderate amounts of calcite cement, which has a patchy 

distribution. This cement is usually associated with thin bioclasts although these are rare 

and limited to the lowermost 10 m of the core. Most intervals of facies 3 are ungraded to 

normally graded; however, textural gradation is generally moderate to weak. The average 

difference in grain size from the base to the top of intervals of facies 3 is generally less 

than 20 Jlm but can be as high as 50 Jlm. 

Low-angle, gently curved laminations distinguish facies 3 from other facies 

(Plates 3.12 and 3.13, all photos). Laminations are primarily convex-upward, rarely 

concave-upward and have an average apparent dip of around 5 ° (range 2-9°) measured 

relative to a plane perpendicular to the edge of the core. The angle of apparent dip of 
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Plate 3.12 Examples of Facies 3 -Low angle cross-stratified fine- to very-fine grained 
sandstone. Depths are given for the base and tops of each segment. A) 2958.99 - 2958.885 m, 
B) 2997.00- 2996.90 m, C) 2984.48- 2984.375 m, D) 3015.285- 3015.185 m. 
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Plate 3.13 Examples ofFacies 3- Low angle cross-stratified fine- to very fmc-grained 
sandstone. Depths are given for the base and top of each segment. E) 2998 - 2997.895 m, 
F) 3014.56-3014.455 m, G) 3015- 3014.91 m, H) 3031.30-3031.21 m. 
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these laminations can change by as much as 5 degrees through an interval; however, this 

is relatively rare and might be a function of how the core intersects bedding. Laminae 

range from 0.1 to 0.9 em thick with an average thickness of 0.4 em. Only on one occasion 

(Plate 3.13, Photo E) do laminae appear to thicken across the face of the core. In addition, 

laminae are remarkably consistent in their apparent dip orientation (Plate 3.12 and 3.13, 

all photos except Plate 3.12, Photo A). Laminae commonly are concordant with abrupt 

surfaces, including those that display a convex -up or hummocky morphology (Plate 3 .12, 

Photo D and Plate 3.13, Photo F and G). This makes the bounding surfaces sometimes 

hard to recognize. 

Frequently, laminae are subtly developed due to the textural and mineralogical 

maturity of the sandstones and the limited color contrast. However, in the lowermost 20-

30 meters of the core, low-angle laminae are accentuated by thin (<2 mm), short (<5 

mm), and discrete, disarticulated shell fragments (Plate 3.13, Photos H). Small (<3 mm), 

specks of siderite found with the shells also emphasize laminae, although only locally. 

Biogenic sedimentary structures are extremely uncommon in facies 3. Only a few 

Ophiomorpha traces were identified. These occur in the uppermost 1Om of the core. 

Facies 3 is present throughout the core (Figure 3 .18). It is associated with all 

facies but is most strongly associated with facies 1 and 2 (Table 3 .2). It is generally 

associated with both abrupt and erosive surfaces (Table 3.3). 
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3.4.4.1 Process Interpretation for Facies 3 

The processes that form low-angle bedforms are not fully understood and are 

rarely discussed in sedimentology texts, except for hummocky cross-stratification (HCS). 

Abbot and Francis (1977) recognize stages of sediment transport intermediate 

between bed-load transport and suspension as defined by Bagnold (1973). At higher 

stages of transport, because of higher shear stress, grains rise higher from the bed and 

travel farther in the water column, thus suppressing slip-face avalanching, resulting in 

lower-angle stratification. Allen and Underhill (1989) note that when suspended-load 

transport is relatively important, foreset angles of dunes are low. 

The low-angle cross-stratification which dominates the A-17 cored interval is not 

interpreted to represent the migration of a two-dimensional unidirectional dune-scale 

bedform. Unidirectional bedforms form where bedload transport and unidirectional 

currents are dominant. Grains of sand are transported up the stoss side of the bedform and 

avalanche down the lee side. Such cross beds/laminae mostly lie at the angle of rest of the 

sand, except for asymptotic toesets if suspension fallout is considerable (Allen, 1982). 

Unidirectional dune-scale bedforms form in fine- to very coarse-grained sand and gravel 

but are not found in very fine-grained sands (Figure 3 .19) A very important aspect of 

HCS is the grain size in which it most commonly occurs. Various authors (Dott and 

Bourgeois, 1982; Duke, 1985a; Brenchley, 1985; Swift et al., 1987) note that this grain 

size varies from coarse silt to fine sand. HCS in coarser sediment is relatively rare but has 

been reported. 
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Potter and Pettijohn (1977) have recorded a wide range in the angle offoreset dip 

for unidirectional bedforms. These dips have a mode from 20-25 degrees, with dips as 

high as 30 degrees in some instances. These foreset dip angles far exceed the 2-10 degree 

dip angles in facies 3. Hence, it is concluded that the stratification in facies 3 was not 

produced by the migration of unidirectional dune-scale bedforms. 

Based upon the geometry of laminae, dip angles and internal textural grading, 

intervals of facies 3 most commonly resemble what is termed hummocky cross­

stratification (Harms et al., 1975). It is worth mentioning that some of what has been 

called hummocky cross-stratification in the White Rose A-17 core may instead be swaley 

cross-stratification (for an example see Leckie and Walker, 1982). However, because a 

vast majority of the stratification and abrupt contacts are in the convex-upward position, 

the term hummocky cross-stratification will be used throughout the remainder of this 

chapter. Distinction between HCS and SCS is problematic when viewing cores because 

of the large scale of each of these bedforms. 

Controversy surrounds the exact process responsible for the formation ofHCS 

(Allen, 1985). Because HCS has not actually been observed to form in nature, ideas on its 

mode of formation are inferred from its association with other sedimentary structures and 

from flume experiments. The form of HCS is highly variable, suggesting that there might 

be several possible types and modes of formation. 

Most early workers consistently attributed HCS formation to powerful oscillatory 

conditions (e.g. Harms et al., 1975). This mode of formation is apparently favored when 

laminae are both conformable and symmetric, and display random dip directions (e.g. 
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Yagishita et al., 1992). Swift et al. (1983) thought that such stratification is formed under 

the influence of oscillatory and unidirectional currents. Nottvedt and Kresia (1987) also 

proposed that HCS is the product of combined flows. They showed a conceptual bedform 

phase diagram (Figure 3.20) in which spectrums of oscillatory-unidirectional currents 

were proposed. As an example, they suggested that in the case of fine-grained sands and 

intermediate flow energy, combined flow with a less intense unidirectional current may 

produce classical hummocky cross-stratification, whereas combined flow with a slightly 

more vigorous unidirectional flow may produce low-angle megaripples in which the 

laminae have a tendency to dip in a preferred orientation. Amott and Southard (1990) and 

Southard et al. (1990) were able to produce structures under purely oscillatory conditions 

which closely resemble HCS; with only a minor unidirectional flow component the 

bedforms became asymmetrical. 

In the A-17 core, grain size, concordant surfaces, laminae, and textural grading 

closely resemble the characteristics ofHCS. The differences in laminae dip and dip 

direction can best be explained by suggesting that these intervals formed under both 

oscillatory and unidirectional flows (combined flows). Some authors suggest that the 

variable dip directions recorded in some HCS beds are the result of the complex orbital 

nature of waved-induced currents. With the introduction of a unidirectional flow 

component, it seems probable that bedforms would tend to migrate rather than just 

aggrade vertically, and that laminae would have a tendency to dip in a preferred direction. 

The Ophiomorpha traces found in intervals of facies 3, are indicative ofthe 

Skolithos ichnofacies (Pemberton et al., 1992). Ophiomorpha is believed to represent the 
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Fig.3.20. Conceptual bedform phase diagrams for variable current type, current 
velocity, and grain size. Modified from Nottvedt and Kresia (1987). Fine-grained 
sand under low energy conditions and unidirectional flow will form small-scale 
current ripples. With increasing energy and the addition of an oscillatory component, 
combined flow ripples will form. Under purely oscillatory flow, wave ripples are 
produced. Passage from angle-of-repose, to low-angle, to classical hummocky 
megaripples is transitional and marked by gradual decrease in foreset inclination 
and appearance of numerous internal truncation surfaces. For increased velocities, 
upper-stage plane beds will develop, regardless of the relative importance of 
oscillatory and unidirectional components. 
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dwelling burrow of a suspension feeding crustacean (Pemberton et al., 2001 ). Its pelletal 

burrow lining suggests that reinforcement to the burrow wall was required to maintain an 

open burrow in a high-energy setting with a shifting substrate. These traces can be 

prolifically abundant in marine shoreface settings, particularity in the middle to lower 

shoreface. 

3.4.5 Facies 4 - Moderately Inclined Cross-Stratified, Fine- to Very Fine-Grained 
Sandstone 

Facies 4 represents only a small proportion (~4.6%) of the cored interval. It 

generally consists of very fine- to fine-grained, moderately to well sorted, light beige to 

gray quartzose sandstone. Facies 4 comes in two forms. Type 1 (Plate 3.14) is the more 

common form. It is typically coarser grained and contains little to no carbonaceous 

material. Type 2 (Plate 3.15) is less common. It contains abundant thin (<lmm thick) 

wispy carbonaceous and silty laminae and always occurs in finer-grained intervals. 

In the coarser-grained intervals Type 1, grains range in size from 75 p,m (3.75 0) 

to a maximum of 168 p,m (~2.6 0), and average 98 p,m (~3.25 0). In the finer-grained 

intervals Type 2 grains range from a minimum of 62 p,m ( ~4.0 0) to a maximum of 84 

p,m (~3.58 0), and average78 p,m (~3.7 0). In total, the sizes of quartz grains in 68 

intervals of facies 4 were recorded (Figure 3.21 ). As is other facies, lithic fragments are 

present but very minor. Accessory minerals include trace amounts of glauconite, pyrite, 

and heavy minerals. Serpulid worm tubes and patches of authigenic siderite cement are 

rare in facies 4 Type 1, and are absent in facies 4 Type 2. 
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Plate 3.14. Examples of Facies 4 Type 1- Moderately inclined, cross-stratified fine- to very 
fine-grained sandstone. Depths are given for the base and top of each segment. A )2987 .14-
2987.04 m, B) 2984.76-2984.66 m, C) 2983.585-2983.50 m, D) 2999.78-2999.679 m. 
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Plate 3.15. Examples ofFacies 4 Type 2- Moderately inclined very fine-grained cross­
stratified sandstone with abundant carbonaceous and silty debris. Depths are given for 
the base and top of each segment. A) 2982.384 - 2982.283 m, B) 2978.375 - 2978.36 m, 
C) 2995.128- 2995.018 m, D) 3003.478- 3003.373 m. 
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Moderately inclined (10-15°) cross-stratification distinguishes facies 4 from other 

facies. For Type 1, laminae typically dip (apparent dip) at ~12 ° (range 10-15°), and 

appear almost planar or gently convex-up (Plates 3.14 and 3.15, all photos). The angle 

with which the core barrel intersected the bedding in the reservoir interval may have had 

and effect on these apparent dip angles. Inclined planar laminae are subordinate to the 

convex-up type. Laminae may be almost very faint (Plate 3.14, Photo A), may be 

highlighted by thin ( <2mm), short ( <5mm), broken, disarticulated shells strewn in a 

discontinuous manner (Plate 3.14, Photos C, and D) or in a very few cases are highlighted 

by small sideritized shell fragments in combination with thin, broken, bivalve fragments 

(Plate 3 .14, Photo C). Laminae in type two are very similar to those of Type 1, with the 

exception that they are easily identifiable because they are highlighted by abundant wispy 

carbonaceous and silty material (Plate 3.15, all photos). Again, a convex-up geometry is 

the most common form; concave-up and planar varieties are subordinate. Laminae for 

each type average ~0.5 em-thick, perhaps a little thinner for type two. Rare 2 em-thick 

beds are found in facies 4 Type 1. Intervals of facies 4 range in thickness from 2.4-35.5 

em, and average ~ 14.25 em thick. 

Facies 4 is limited to 3042-2965 m depth (Figure 3.21) with a number of gaps 

where the facies is absent. Facies 4 is almost exclusively associated with facies 3 and to a 

lesser degree facies 1 (Table 3.2). It is bounded by mostly abrupt and erosive contacts, 

and rarely by erosive convex-up and abrupt undulatory non-inclined contacts. It is 

succeed by most contact types, though not by the abrupt undulatory non-inclined type 

(Table 3.3). A key characteristic of facies 4 Type 2 is that it is always separated at its 
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base from facies 4 Type 1 by an abrupt surface. Laminae are always concordant with the 

basal abrupt surfaces. 

3.4.5.1 Process Interpretation for Facies 4 

Because of the geometrical similarities and co-occurrence with facies 3, a similar 

process is interpreted for facies 4. The greater apparent dip angles (10-15°) likely 

represent different parts of hummocky bedforms. The abundant carbonaceous material, 

which differentiates Type 2 from Type 1, implies either a change in sediment source, or a 

less vigorous set ofhydrodynamic conditions in which finer-grained sediment was able to 

settle and accumulate. Both of these hypotheses are plausible, as sand grains in facies 4 

Type 2, are typically finer than those which occur in other facies. 

3.4.6 Facies 5 - Pervasively Calcite-Cemented Sandstone 

Facies 5 is one of two diagenetic facies present in the A-17 cored interval. It 

represents ~ 12.3% of the total core. Intervals of facies 5 range from 1.8-75 em, and 

average ~32. 7 em thick. These intervals are found primarily in the lowermost 30 m and 

uppermost 20m of core, and occur only sparsely throughout the rest of the core (see 

Figure 3.21). Facies 5 consists of fine- to very fine-grained quartzose sandstone 

completely cemented with calcite, giving it a distinct light gray to bluish-gray appearance 

(Plate 3 .16). Calcite cement was confirmed with 10% hydrochloric acid (HCl). The 

dominant and only easily recognizable framework grain in this facies is quartz . Only 

occasionally were accessory minerals recognized. These include a minute fraction of 
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Plate 3.16. Examples ofFacies 5- Pervasively calcite-cemented sandstone. Arrow heads 
mark the position of traces and letters are abbreviations for trace fossil names. Depths are 
given for the base and top of each interval. A) 2941.285- 2941.135 m, B) 2942.75- 2942. 
625 m, C) 2944.24- 2944.115 m, D) 2940.70-2940.548 m, E) 2995.92-2992.748 m, 
F) 3043.60- 3043.428 m. Op = Ophiomorpha. 
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disseminated carbonaceous material, glauconite, and pyrite. Because grain boundaries are 

obscured by the presence of calcite cement, the absolute grain size could not be 

confidently determined. However, measurements done to the best of the present author's 

ability revealed grains from~ 40 Jlm (~4.65 0) to 214 Jlm (~2.22 0) in size, averaging 

114 Jlm (~3.13 0). Thus, it is apparent that this diagenetic facies is not restricted to any 

particularly grain size, and spans the range of grain sizes observed elsewhere in the core. 

In total, the sizes of quartz grains in 92 intervals of facies 5 were measured and recorded 

(see Figure 3.21). Grain-size grading was particularly hard to identify in facies 5. 

Tentatively, it is thought that these intervals display only weak normal grading. 

Intervals of facies 5 display faint, low angle ( <1 0 ° apparent dips), gently curved, 

convex-up laminations (Plate 3.16 Photos A and D), and less commonly planar 

laminations. Moderately inclined (1 0-15°) laminations are exceptionally rare. Only in the 

upper 5-6 m of the core can laminae be unquestionably identified because there they are 

highlighted by silty and/or carbonaceous material. In this same interval, the trace fossil 

Ophiomorpha is present and easily identifiable (Plate 3 .16, Photo A). These traces range 

from 1-2 em in diameter, have distinct bulbous outer linings and are generally spaced 2-5 

em apart. 

Facies 5 is invariably associated with facies 6 (Table 3.2 and Figure 3.21). These 

facies are always bounded by cementation contacts. When facies 5 underlies or overlies 

more porous sandstone cementation contacts are in several cases abrupt, steeply dipping, 

highly arcuate and cut through stratification (Plate 3.6). Facies 5 is infrequently affiliated 

with other facies in the core. 
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3.4.6.1 Interpretation of Facies 5 

The pervasively calcite-cemented intervals are interpreted to have been deposited 

under similar conditions to those inferred for facies 1, 2, 3, and 4. A detailed explanation 

of the diagenetic processes responsible for the calcite cement in facies 5 will not be given 

here, as it is beyond the scope of this thesis. A more thorough account of the types of 

cements and processes can be found on the Husky White Rose website 

(www.huskywhiterose.com). 

Plint (1999) postulates that much ofthe cement in the calcite-cemented intervals, 

which he refers to as concretions (based upon FMI images and contact relationships), was 

provided by the dissolution of aragonite shells dispersed throughout the cored interval. 

This is logical, as the associated facies 6 contains numerous bioclasts. Alternatively, the 

bioclasts might have provided a nucleation site for calcium and bicarbonate ions in the 

pore water. 

The Ophiomorpha traces, like those in facies 3, are believed to represent the 

dwelling burrow of a suspension feeding crustacesan (Pemberton et al., 2001). Its pelletal 

burrow lining suggests that energy conditions were relatively high and that reinforcement 

was required to survive and feed in a high-energy setting within a shifting substrate. 

These traces can be prolific in post Paleozoic marine shoreface settings, particularity in 

the middle to lower shoreface (Pemberton et al., 2001). 
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3.4. 7 Facies 6 - Pervasively Calcite-Cemented Sandstone with Abundant Shelly 

Material 

Facies 6 is similar to facies 5 in that it is pervasively cemented. However, it 

contains an assortment ofbioclastic debris (Plate 3.17). Hence, it is both a distinct 

sedimentary and a diagenetic facies. Facies 6 represents only a small percentage (~3.1 %) 

of the cored interval. Intervals of facies 6 range in thickness from a minimum of 2.2 em 

to a maximum of 22.4 em. The average interval thickness is ~ 10.5 em. Facies 6 consists 

of fine- to very fine-grained quartzose sandstone. Lithic grains and accessory minerals 

were difficult to identify and estimate; however, minor amounts of glauconite and pyrite 

are associated with the shell fragments. Quartz grains range from 66 11m (~3.92 0) to a 

maximum of214!lm (~2.22 0), and average 109 11m (~3.2 0). Quartz grains were 

measured at 46 points in facies 6 (Figure 3.21). Coarser grained (fine sandstone) 

intervals are principally restricted to the lowermost 20 m of the core and very fine-

grained intervals are primarily situated in the uppermost 10m of the core (Figure 3.21). 

Grain size trends were difficult to identify. It is thought, however, that some intervals 

display weak normal grading. Facies 6 does not possess any detectable physical or 

biogenic sedimentary structures. The amount and type of shell material changes vertically 

throughout the core (Plate 3.17 all photos). For example, in the lowermost sections ofthe 

core, shell fragments are limited to bivalves, a few gastropods and a potentially a few 

brachiopods (Plate 3.17 Photo F). In the upper portions of the core, where facies 6 is 

' considerably more abundant, intervals are thicker, and are host to a wider variety of shell 

types. These include brachiopods, bivalves, oysters, and gastropods (Plate 3.17, Photos 
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Plate 3.17. Examples ofFacies 6- Pervasively calcite-cemented sandstone with abundant 
shelly material. Abbreviations are used to highlight the various bioclasts and the authigenic 
siderite cement found in this facies. Depths are given for each interval. A) 2943.32-
2943.13 m, B) 2946.895- 685 m, C) 2950.69- 2950.525 m, D) 2955.69- 2955.56 m. 
E) 2958.092- 2957.962 m, F) 3040.52- 3040.427 m. B=bivalve fragment, G= gastropod 
fragment, 0= oyster fragment, Se= serpulid worm tube fragment, Si= authigenic siderite 
cement. 
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A, B, and C). In these uppermost occurrences of facies 6, shell fragments (bivalves, 

oysters and gastropods) and serpulid worm tubes are nearly always accompanied by 

siderite cement (Plate 3.17, Photos A, B, C) as 0.5-3.0 em, irregularly shaped, circular to 

oval blotches. 

In most cases, bioclasts of facies 6 are poorly sorted and display no preferential 

orientation. However, in some cases shells are relatively intact (Plate 3.17). Shell debris 

is generally dispersed in a matrix of very fine sand but is locally clast-supported. The 

size, orientation and morphology of shell debris can differ markedly from one interval to 

the next. Serpulids, in particular, show an assortment of sizes, shapes, and orientations. 

They may be almost completely whole and circular, oval, or appear as tiny ( <1 mm) 

fragments. Oyster fragments, which are prevalent in the uppermost intervals, display a 

wide range of orientations, but do not appear in the hydrodynamically stable (convex-up) 

position. They range in size from 0.1-0.3 mm thick, and from 1.0-3.5 em in length. 

Facies 6 is principally restricted to the lowermost and uppermost 20 m of core. 

Facies 6 is generally intercalated with facies 5 and only rarely with other facies (see 

Table 3.2). 

3.4.7.1 Process Interpretation for Facies 6 

The mechanisms responsible for the development of facies 6 are thought to have 

occurred in three phases. Firstly, strong currents (either unidirectional or combined flow) 

eroded, winnowed, and then concentrated the shelly material. Secondly, the shelly 

material was transported to the depositional site, likely as bedload. Thirdly, the shelly 
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material was rapidly deposited. This interpretation is strongly supported by the character 

of the shells and serpulid worm tubes. In all cases, the shells, and in most instances the 

serpulid worm tubes, are disarticulated or broken. This strongly suggests that the shells 

and serpulid worm tubes were eroded and underwent sufficient transport to become 

broken before being deposited. Furthermore, the shell and serpulid worm tube fragments 

are not size sorted. This implies that intervals of facies 6 were rapidly deposited and that 

they were not deposited by waning flows, which would have instead have provided more 

time to sort the shells. Additionally, the shells and serpulids display no preferential 

orientation. Thus, it is highly unlikely that these deposits were reworked by subsequent 

unidirectional currents or combined flows. Lastly and perhaps most important is the fact 

that intervals of facies 6 are bounded at their bases by erosive surfaces which are highly 

cemented. This last point strongly supports the notion that high-energy conditions 

prevailed during deposition. 

3.4.8 Facies 7- Shell-, Serpulid- and Siderite-Bearing Sandstone 

Facies 7 occupies ~2.4% of the core. It is defined by its shells (principally thin, 

broken bivalve fragments), serpulid worm tubes, patchy authigenic siderite cement, and 

moderate to rare oyster fragments (Plate 3 .18). These constituents, however, do not 

always occur together and vary in proportion throughout the uppermost 80 m of core A-

17. Facies 7 is different and thus is described independently of facies 6 because its 

intervals are not pervasively calcite-cemented, they are always thinner than intervals of 
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Plate 3.18. Examples of Facies 7- Shell-serpulid-and siderite-bearing sandstone. Abbreviations 
are used to exemplify the presence ofbioclasts and authigenic siderite in this facies. A) 2987.669 
- 2987.59 m, B) 2970.43 -2970.368 m, C) 2967.02 -2966. 96 m, D) 2996.87- 2996.815 m, 
E) 2953.425-2953.347 m, F) 2949.45- 2945.39 m. B = bivalve fragment, 0 = oyster fragment, 
Se = serpulid worm tube fragment, Si = authigenic siderite cement. 
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facies 6, and do not contain gastropod fragments; however, their process interpretations 

are quite similar. 

Facies 7 consists chiefly of very fine-grained quartzose sandstone. The sediment is 

moderately to well sorted. Accessory minerals include very small amounts of glauconite 

and pyrite; the pyrite is associated with the shell matter. Quartz grains in facies 7 range 

from 66 J.Lm (~3.92 0) to 134 J.Lm (~2.9 0), and average 98 J.Lm (~3.35 0). Only a few 

intervals contain fine-grained quartz. Quartz grains belonging to 60 intervals of facies 7 

were measured and recorded (Figure 3.22). 

In facies 7,the nature, proportion and abundance ofbivalve fragments, serpulid worm 

tube fragments, oyster fragments, and authigenic siderite change considerably throughout 

the core. Intervals may be dominated by serpulid worm tubes of varying sizes, shapes and -

orientations with only a few bivalves and minor amounts siderite (Plate 3 .18, Photos C 

and D). Others are dominated by randomly orientated oyster fragments with only minor 

serpulids (Plate 3 .18, Photo E), or may have similar proportions of bivalve fragments and 

serpulids, with a variety of sizes and orientations (Plate 3.18, Photos A and B). Bioclasts 

in facies 7 range from less than 2 mm to a maximum of 1. 5 em in length. Most are broken 

(Plate 3. 18, Photos B and F) while the oyster shells are better preserved (Plate 3 .18, 

Photos A and E), though are broken. Bioclasts in facies 7 are both matrix and clast 

supported. When oyster fragments are abundant, matrix support is most common (Plate 

3.18, Photo E). 

Intervals of facies 7 range from 1.2-32 em, and average ~6.4 em thick. They are 

limited to 3015-2942 m depth, and are absent from the lowermost 30m of the core 
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Fig. 3.22. Grain size (~m) vs. Depth (m) for facies 7, 8, and 9. Each graph illustrates the range of grain sizes for the facies 
and the generalized vertical distribution of the facies in the cored interval. Where there are gaps, the facies is not present. 
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(Figure 3.22). Intervals of facies 7 become more closely spaced upward in the core (see 

Figure 3.22). Facies 7 is mostly strongly associated with facies 3 and facies 1 (Table 3.2). 

Erosional surfaces frequently bound facies 7 (Table 3.3), much more often than do abrupt 

surfaces. 

3.4.8.1 Process Interpretation for Facies 7 

It is considered that unidirectional or combined flow currents first eroded, 

winnowed, transported, and then deposited the bioclastic material, which constitutes 

facies 7. 

The shells are disarticulated and the serpulid worm tubes primarily occur as 

fragments because of current reworking. In some instances, unidirectional and/or 

combined-flow currents aligned the bioclastic material. Where oyster fragments are 

dominant, rapid deposition is inferred because they display no preferential alignment, and 

are not size-sorted. However, another possibility is that their irregular shape made it less 

likely for them to become oriented under the influence of a combined/unidirectional 

current. 

3.4.9 Facies 8 - Shelly Sandstone 

Facies 8 occupies ~ 1.3% of the core and is comprised principally of fine-grained, 

texturally submature to mature, quartzose sandstone. Intervals of facies 8 are relatively 

thin. They range in thickness from 3-10 em and average 5-6 em. Facies 8 contains 

numerous thin, disarticulated bivalves (Plate 3.19, all photos). Although many other 



Plate 3.19. Examples ofFacies 8- Shelly sandstone. Depths given refer only to shelly 
intervals. A) 3044.08- 3043.99 m, B) 3043.89- 3043.80 m, C) 2982.75- 2982.675 m, 
D) 3045.032-3045.962 m, E) 3031.14-3031.065 m. 
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facies in the core possess thin disarticulated bivalves very similar to those in facies 7, 

facies 8 is distinguished by its distinctive shell accumulations. 

Intervals of facies 8 and its shells have the following defining characteristics: 

1) Bivalves are in every case disarticulated and thin (Plate 3.19, all photos); 

2) Shells are typically highly concentrated and occur over thin intervals of core); 

3) Shells locally display a strong horizontal to sub-horizontal alignment, some of 

which are in the convex-upward (hydrodynamically stable) position (Plate 3.19, 

all photos); 

4) Intervals of facies 8 rarely possess serpulid worm tubes or siderite and, if present, 

their size is small and amounts are very minor (Plate 3.19, Photos C and E); 

5) The majority of intervals of facies 8 occur in the lowermost 30 m of core A-17 

where the sediment is fine grained sand; 

Quartz grains in facies 8 range in size from 84 Jlm (~3.57 0) to 190 Jlm (~2.40 0). 

They average ~135 Jlm (~2.89 0), making them predominantly fine-grained. Quartz 

grains were measured at 27 positions, mostly in the lowermost 27 m of the core below 

3020 m depth (Figure 3.22). This is the only facies in the core, which is dominantly fine 

grained rather than very fine grained. Identifiable accessory minerals include very small 

amounts of pyrite and glauconite. Silty and carbonaceous material is not present in facies 

8. 

Facies 8 is predominantly restricted to depths below 3020 m with only a few 

occurrences between 3020-2960 m (see Figure 3.22). Facies 8 is most strongly associated 



with facies 3 (Table 3.2) and is frequently bounded by erosive contacts and to a lesser 

degree abrupt contacts (Table 3.3). 

3.4.9.1 Process Interpretation for Facies 8 
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The shells scattered through facies 8, were eroded, winnowed then transported to 

their site of deposition by strong unidirectional and/or combined-flow currents. A 

majority of the shells in this facies are orientated in the hydrodynamically stable (convex­

upward) position (Plate 3.19). Shells in facies 8 underwent significantly more 

transportation than those in facies 6 and facies 7. They were subjected to considerable 

winnowing, so are typically highly concentrated. 

3.4.10 Facies 9- Bioturbated Very Fine-Grained Sandstone and Siltstone 

Bioturbated intervals are exceptionally rare in the A-17 core. They represent only 

1.2% of the total core and are found primarily in the uppermost 6-7 m (Figure 3 .22). 

These intervals range in thickness from 2.3 to 35.0 em, and average~ 11 em thick. 

Bioturbated intervals have no visible primary sedimentary structures. Sandstone intervals 

that contain biogenic traces as well as primary sedimentary structures are not included in 

this facies; they are assigned to other facies (principally facies 3). Biogenic traces 

occasionally occur in facies 5 as well. 

Bioturbation occurs principally, and is most intense, in the silty sandstone and 

siltstone intervals. These intervals range from moderately to extensively bioturbated 

(Plate 3.20, all Photos, Photo A in particular). Recognizable traces include abundant 



Plate 3.20. Examples ofFacies 9- Bioturbated very fine-grained sandstone and siltstone. 
Arrowheads mark the position of traces, and abbreviations are used for the names of 
traces. Depths are given for the base and top of each core segment. A) 2941.615-2941. 
475 m, B) 2941.785- 2941.725 m, C) 2941.92- 2941.91 m, D) 2943.61 - 2943.50 m, 
E) 2944.78- 2944.67 m, F) 2947.75- 2947.63 m. As= Asterosoma, Ch= Chondrites, 
DI = Diplocraterion, Op = Ophiomorpha, Pa = Paleophycus, Pl = Planolites, 
Th = Thalassinoides, Ri = Rhizocarillium?, Se = serpulid worm tube fragments. 
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Chondrites, Paleophycus, Planolites, with rare Asterosoma, Rhizocorallium?, and 

Thalassinoides (Plate 3.20). The common similarity between these traces is that they are 

almost all horizontal. 

Sections through abundant Chondrites traces occur as an array oftiny (~1-2 mm) 

elliptical sand filled specks and are most common in dark siltstone horizons (Plate 3 .20, 

Photos C, D, E, and F). Paleophycus traces are particularly abundant in some of the silty 

sandstone intervals (see Plate 3.20, Photo F). They are typically small and cylindrical in 

shape and have a sediment fill identical to the host stratum. Thin walls of Paleophycus 

burrows are distinctly lined by silty material. Planolites traces are small, circular in cross­

section, unlined, sand-filled, smooth-walled, and are filled with a different lithology than 

the host rock (Plate 3.20, Photos C and F). Rhizocorallium traces were identified by their 

retrusive spreiten and sub-horizontal inclination (Plate 3 .20, Photos D and E). 

Thalassinoides traces are typically semi-circular to oval in shape, are sand-filled, and are 

contained in black siltstone (see Plate 3.20, Photos B). Rare Asterosoma and traces are 

identified in cross-section by their small circular sand-filled arms surrounded by a silt 

packing (Plate 3.20, Photos A and D). 

Some intervals are so thoroughly bioturbated that biogenic traces are not 

discemable (see Plate 3.20, Photo A). Locally there are oyster and serpulid worm tube 

fragments, although this is rare. The majority of the bioturbated intervals overlie cleaner, 

fine-grained, low angle cross-stratified sandstones, which in some cases overlie 

centimeter-thick bioclastic lags. A few ofthe bioturbated intervals have distinct, abrupt, 

lower contacts; the majority oflower contacts are gradational because of the intrinsic 
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nature of infaunal tiering. In other instances, the nature of the contact is uncertain because 

of a break in the core. Very rarely, biogenic traces are seen directly above erosional 

surfaces. 

3.4.10.1 Interpretation for Facies 9 

Paleophycus traces represent the dwelling burrow of a predaceous polychate 

(Pemberton and Frey, 1984). This interpretation is inferred from their passively filled 

burrows. Paleophycus is generally associated with the Skolithos ichnofacies. It is found in 

both high- and-low energy shoreface environments. It can also be found in episodic storm 

sands (tempestites) and brackish-water assemblages (Frey, 1990). The Skolithos 

ichnofacies is generally indicative of relatively high levels of wave or current energy, and 

is typically developed in clean, well sorted, loose or shifting particulate substrates 

(Pemberton et al., 1992a). In such environments, sudden changes in the rates of 

deposition, erosion and physical reworking are frequent. The traces recognized in the 

very fine-grained sandstone are thus interpreted to represent the dwelling· and feeding 

behaviors of organisms adapted to a high-energy, presumably shoreface setting (Figure 

3.23). 

The numerous horizontal, predominantly unlined burrows found in the silty 

sandstone and siltstone intervals are representative of the Cruziana ichnofacies (Figure 

3.23) although Planolites can be found in virtually all environments from freshwater to 

deep marine (Pemberton et al., 1992a). Chondrites are a common element of the 

Cruziana ichnofacies. The Chondrites trace fossil is interpreted to represent a complex 
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FigJ .23. Shoreface settings and position of characteristic shallow-marine ichnofacies. Modified from Pemberton et a!. (200 1 ). 
The Skolithos ichnofacies is generally restricted to the foreshore through to the upper lower shoreface. The Cruziana ichnofacies 
typically begins in the middle-lower shoreface and proceeds distally to the offshore zone. MHW =Mean High Water, MLW = 
Mean Low Water, NWB =Normal (fairweather) Wave Base, MWB =Maximum (storm)Wave Base. 
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deposit-feeding strategy of a siphunculid worm, and is therefore commonly associated 

with fully marine conditions (Simpson, 1957). In recent literature, Chondrites have 

described from brackish environments or in brackish water deposits (Pemberton et al., 

2001). Thalassinoides is a domicile (dwelling burrow) in which a crustacean filters food 

out ofthe water column (suspension feeder) (Bromley and Frey, 1974). Some authors 

also consider the organism that produces Thalassinoides to be a predator. The main 

significance of Thalassinoides is that, because it is a sharp smooth-walled burrow, the 

sediment in which it appears was stable (non-shifting). This implies that the organism did 

not have to support the burrow with a lining. Because Thalassinoides represents 

feeding/dwelling behavior, it fits best with the Cruziana ichnofacies. Teichichnus, which 

is commonly found in lower shoreface to offshore environments, is also associated with 

the Cruziana ichnofacies (Figure 3.23). It is interpreted to represent the dwelling/feeding 

burrow of a deposit-feeding organism (Frey, 1990). The few Asterosoma traces identified 

in the core are also a common element of the Cruziana ichnofacies. These traces 

represent the specialized feeding structures of a worm which are generally found in the 

upper lower shoreface. Rhizocorallium is interpreted to represent deposit-feeding 

behavior and is a common element of the Cruziana ichnofacies (Pemberton et al., 2001). 

Conditions for the Cruziana ichnofacies typically range from moderate energy 

levels in shallow water, below fair-weather wave base but above storm wave base, to 

lower energy in deeper, quieter water (Pemberton et al., 1992). Sedimentation rate in 

such a setting is inferred to be moderate. 
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The horizontal traces found in the silty sandstone and siltstone intervals represent 

more specialized feeding/deposit-feeding behavior in a quieter, lower-energy setting 

opposed to those in the sandier intervals, which are less burrowed. 

3.5 Depositional Environment 

3.5.1 Previous Interpretations 

. This section will begin by presenting the interpretations proposed by Plint 

(1999), the only person to have published information regarding the A-17 core. 

Plint (1999) recognized and described ten facies in White Rose cores. Three of 

these facies occur in the A-17 core. These are his facies 2, 4, and 5 as described in Plint 

(1999). His classification of facies is different from that presented in this thesis. The 

differences are attributed to the different aims of the research. This thesis is focused on 

the affect of facies characteristics on permeability; therefore, a more detailed 

classification scheme is used. 

Plint's facies 2 (similar to facies 9 in this thesis) consists of centimeter-scale, 

sharp-based beds ofvery fine- to fine-grained sandstone, interbedded with and grading 

upwards into centimeter- to decimeter-scale beds of bioturbated silty mudstone. Physical 

structures range from fine parallel lamination, to low-angle inclined lamination, to 

massive bedded. The basal portion of these beds commonly contains layers ofbioclasts. 

The silty/muddy portion of each bed is thoroughly bioturbated. Plint (1999) interpreted 

this facies as storm deposits on a low-energy muddy shelf in water depths of 20-50 m . 



This is based on the trace-fossil assemblage and the lack of evidence of fair-weather 

deposits. 
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Plint described his facies 4 (facies 3 in this thesis) as being very fine-grained, 

clean, well sorted sandstone that generally contains millimeter- to centimeter-scale 

parallel to low angle (typically <1 0°), planar to gently curved lamination. He noted that 

beds are occasionally massive, and that burrows are neither large nor abundant. 

Amalgamated beds separated by subtle erosional surfaces are common. This facies was 

interpreted by Plint (1999) to represent deposition in a shoreface setting during intense 

storms. Individual laminated sandstone units were interpreted as single or possibly 

amalgamated storm events. Plint (1999) noted that the absence ofmud laminae in this 

facies suggests that deposition took place in an environment in which all traces of mud 

deposited during times of fair-weather were removed by storms. 

Facies 5 ofPlint (1999) (facies 7 in this thesis) is rich in serpulid worm tubes and 

various species of bivalves, including several species of oysters, with rare brachiopods. 

Shells are generally dispersed through a matrix of very fine-grained sandstone but are 

occasionally clast supported. These beds can range from one shell thick ( <5mm) to 

typically 5-30 em thick. Calcite concretions are invariably associated with these shell 

horizons. Calcite commonly extends several decimeters above and below the shell beds, 

sometimes resulting in several shell beds being incorporated into one large concretion. 

Plint interpreted the shell beds of his facies 5 to be basal lag deposits genetically related 

to the laminated and massive sandstones of his facies 4. Each lag was interpreted to 

represent a major storm event. From the interpretations ofPlint (1999), it is apparent that 
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most of the A-17 core represents deposition in a high-energy storm-dominated shoreface 

setting. The bioturbated intervals represent periods of fair weather deposition, during 

which there was enough time for organisms to rework the sediment. 

A number of other cores from the Ben Nevis formations have similar 

characteristics to the White Rose A-17 core. 

Harding (1988) described facies and depositional environments recorded in the 

North Ben Nevis M-61 well taken from the Lower Cretaceous Ben Nevis Formation. His 

shoreface facies association resembles parts ofthe White Rose A-17 core. The sandstone 

layers are very fine-grained, sharp based and commonly contained aligned intraclasts. 

Sandstone units were interpreted to contain hummocky cross-stratification of very low 

relief. Harding (1988) states that long-wavelength, low-reliefhummocks have been 

inferred from the Ben Nevis Formation in the cored intervals of other Grand Banks wells. 

A number of cores from the Ben Nevis Formation have been described and 

interpreted by Sinclair (1988). He noted that the Ben Nevis Formation consists of a large 

percentage of normally graded sandstones. The quartzose sandstones typically grade 

upward from clean and fine grained to argillaceous and very fine grained in the Ben 

Nevis 1-45 well (Mobil Oil Canada, 1981 ). Intervals of abundant calcite cement occur 

throughout these sandstones. In places, the calcite-cemented zones are associated with 

beds of shell debris, and in other places, the cemented zones apparently contain no shell 

debris. The contacts separating these zones from more porous sandstone cut steeply 

across bedding planes (Sinclair, 1988). In a number of wells (e.g. North Trinity H-71) 



sandstones are clean, fine to very fine grained, massive and/or low-angle cross-bedded 

and contain lag deposits. 
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Pemberton et al. (2001) have described several cores from the Avalon and Ben 

Nevis formations, taken from the Hibernia, South Mara, and Ben Nevis fields. A number 

ofthese cores contain intervals very similar to parts ofthe White Rose A-17 core. Their 

facies 13 belongs to the Ben Nevis Formation. This facies is present in a number ofwells 

including South Mara C-13, North Ben Nevis M-61 and Hibernia B-27. It consists of 

amalgamated, scour-based, fine to very fine-grained sandstone, which completely lacks 

bioturbation and carbonaceous particles. Bivalve debris and siderititic mud clasts are 

found above erosive surfaces (Pemberton et al., 2001, their figure 203). Massive beds are 

common. Cementation by calcite occurs throughout some intervals of core (up to 2m). 

Pemberton et al. (2001) interpret this facies to be indicative of deposition by high-energy 

waves and currents. The abundance of scours overlain by mud and shell rip-up clasts, as 

well as the amalgamation, were attributed to repetitive storm deposition in a shoreface 

environment. The absence ofbiogenic activity in the clean sandstones stems from the low 

amount of organic material (i.e., food) and, the high-energy depositional conditions 

(Pemberton et al., 2001). 

It is apparent that the descriptions provided by other authors have a number of 

striking similarities to the facies recognized and described in the White Rose A-17 core. 

In all of the descriptions, sediment is fine to very fine grained, laminations are typically 

of very low angle, and sharp bed bases are commonly overlain by shell accumulations. 
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3.5.2 Interpretation Developed for this Thesis 

The cored interval from the A-17 well is interpreted to represent deposition in a 

high-energy, shoreface setting, which experienced intense and/or frequent storm activity 

with a subordinate amount ofnormal, fair-weather activity. The overall upward fining 

grain-size trend and change in lithology imply a shift in the depositional environment 

through time from a more proximal to a more distal shoreface setting. 

Numerous lines of evidence support the proposed environmental interpretation. They 

are itemized below. 

1) The A-17 core consists almost exclusively of amalgamated fine- to very fine­

grained sandstones grading upward (over~ 100 m) into very fine-grained 

sandstones interbedded with siltstones. 

2) Erosional surfaces mantled by bioclastic debris are frequent. 

3) Low relief cross-stratification is the dominant bedform. 

4) Silt, carbonaceous material and biogenic sedimentary structures are almost 

completely absent, with the exception of a few intervals and the uppermost 5-6 m 

of the studied core. 

5) Rapid deposition is indicated by the common homogeneous intervals. 

6) Normal grain-size grading. 

7) Only the uppermost 5-6 m of the core contain interbedded siltstone with biogenic 

structures. 

This evidence suggests that deposition was restricted primarily to a high-energy, 

storm-influenced, marine depositional setting. Two settings where such criteria are met 
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are the middle and lower shoreface. The middle shoreface (Figure 3.23) is defined as an 

area that extends over the zone of shoaling and initial breaking of waves (Reinson, 1984 ). 

Storms have a strong influence on the middle shoreface (Pemberton et al., 2001). 

Sandstones in the middle shoreface tend to be well sorted, well winnowed, and medium 

to fine grained with only minor shale and siltstone. 

The lower shoreface extends downward from fair-weather to storm-weather wave 

base (Reinson, 1984). Most structures reflect storm deposition including hummocky 

cross-stratification, rarer swaley cross-stratification and quasi-planar stratification 

(Pemberton et al., 2001). Intervals not dominated by erosional amalgamation may show 

waning-stage oscillation ripples or combined-flow ripples capping the low-angle 

structures. Hummocky cross-stratification has been widely reported in wave-dominated 

settings, and it is inferred to represent storm-wave deposition above storm wave base 

(Harms et al., 1975; Dott and Bourgeois, 1982; Hunter and Clifton, 1982). 

Many authors have suggested that HCS is often encountered in middle to lower 

shoreface settings below fair-weather wave base (Harms et al., 1975; Dott and Bourgeois, 

1982; Brenchley and Newall, 1982; Brenchley et al., 1982; Duke et al, 1991). Because 

the A-17 core is dominated by HCS (or a variant thereof) it is logical to suggest that it too 

formed in a high-energy middle to lower shoreface setting. HCS in the A-17 core is 

primarily erosively amalgamated with little to no intervening silt/mudstone layers, fair­

weather sedimentary structures, or bioturbated intervals. This is almost certainly a 

function of the intensity or frequency of storm activity and the position/setting in which 

sands were deposited. Only in the uppermost few meters of the core are sandstone and 
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siltstone interbedded, and trace fossils become common. Amalgamated HCS is 

characterized by thick (up to several tens of meters) sandstone deposits and differs from 

the other HCS associations by the lack of mudstone and absence of a preferred sequence 

of structures. Duke (1985a) notes that beds in such associations are in erosional contact 

with underlying beds and that erosion locally eliminates the upper parts of the previously 

emplaced sandstone/mudstone layer. Occurrences of such amalgamated deposits have 

been interpreted as representing highly agitated, shallow- marine environments that 

experienced either extremely energetic or frequent storm activity. The lateral variability 

ofHCS beds has been documented by relatively few authors (e.g. Dott and Bourgeois, 

1982; Brenchley, 1985). Based upon their description, from proximal to distal settings the 

following generalizations and relation to the A-17 cored interval can be made. 

1) Thicker sandstone beds occur in proximal settings: amalgamated HCS sandstones 

grade laterally into discrete HCS beds in more distal deposits. This onshore­

offshore trend is seen in the A-17 core, which consists predominantly of 

amalgamated HCS grading upward into discrete HCS beds. 

2) Grain size decreases distally. This fits with observations from the A-17 core, 

because grain size decreases vertically in the core, which is interpreted to 

represent deposition in more distal settings due to progressive relative sea level 

nse. 

3) There is decreasing sandstone to siltstone ratio distally. 



Mean 
Fair-weather wave base 

Setting represented 
in the White Rose A -17 core 

Shoreface Inner shelf 
with strong 
storm waves 

Mid-outer 
Shelf 

Increasing silt to sand ratio 

Increasing amalgamation of storm beds 

Increasing bioturbation 

Mean 
Storm wave base 

Outer shelf 
below mean 

storm-wave base 

Fig.3.24. Schematic of a shoreline cross-section used to illustrate the proximal to distal 
relationships ofHCS beds. Modified from Brenchley (1985). As distance from the shoreface 
increases, the amount of interbedded silt and sand increases, the abundance of erosively 
amalgamated HCS beds decreases, and bioturbation increases. Below mean storm wave base, 
extreme events still deposit tempestites. The boxed in area represents the depositonal setting 
interpreted for the A-17 cored interval. 
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4) There are more prominent gutter casts distally. Gutter casts were not observed in 

core, but this is not surprising because of the limited width of the core. Some of 

the undulatory contacts might be cross-sections of gutter casts. 

5) There is a distal increase in the abundance ofwave ripples passing into current 

ripples, and, lastly into graded-beds. Nowhere in the core are there small-scale 

wave or current ripples recorded. 

6) Normal grain-size grading does dominate intervals of the A-17 core, but because 

of the limited grain-size range, it does not appear that normal grading is better 

developed in any particular section of the A -1 7 core. However, in the uppermost 

few meters, very fine-grained sandstones does grade into bioturbated siltstone. 

7) Moving distally, there is an increase in intensity of bioturbation, particularly at the 

tops ofHCS beds. This is true for the A-17 core. The tops ofbeds in the 

uppermost 5-6 mare bioturbated. 

Brenchley (1985a) provides a shoreline cross-section (Figure 3.24), which illustrates 

the proximal to distal relationships in HCS beds. In this diagram, it is clear that in more 

proximal shoreface settings, storms have a significant influence on the stratigraphy. Beds 

ofHCS tend to be amalgamated, and show little to no preservation of interbedded 

silt/mudstone nor bioturbation. As distance from the shoreface increases, interbedded 

HCS sandstone and siltstone beds increase. Additionally, fair-weather sedimentary 

structures, including current ripple cross-lamination and wave-ripple cross-lamination 

increase, as does the degree of bioturbation. 
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For the A-17 cored interval, deposition is inferred to have taken place mainly in a 

high-energy, middle to lower shoreface setting. Through time, possibly because of 

transgression, mean grain size decreased gradually from fine- to very fine-grained sand 

and eventually to silt. This decrease in grain size and the change in lithology point to a 

relative sea level rise and a shift in sedimentary environments. From this it is inferred that 

the uppermost 5-6 m of the core represent deposition in a more distal setting, possible 

lower shoreface. The change from unburrowed fine-grained sandstone to burrowed silt 

and silty sandstone in the uppermost 5-6 m represents a transition to deposition under 

normal [air-weather offshore conditions where organisms had ample time to construct 

domiciles and feed upon the sediments. 

3.5.3 Problems with the Depositional Model 

Though most of the deposition is thought to have occurred predominantly in a 

high-energy middle to lower shoreface setting, a number of enigmas still surround the 

interval represented by the A-17 core. Firstly, it is difficult to understand why there are 

absolutely no small-scale wave-produced sedimentary structures when the dominant 

bedform is interpreted to be the result of wave activity. Did all the deposition occur 

below fair-weather wave base, or were all [air-weather structures completely eradicated 

by the passage of the next storm? Secondly, how is it that 1 00+ m of shallow-marine 

sandstone contains virtually no silt-sized particles or carbonaceous material ? Was the 

water column so agitated that such material could never settle and accumulate, or if it did, 

was it eroded and transported away by the passage of the next major storm? Thirdly, what 
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Thirdly, what set of conditions allowed for the 100+ meters of fine- to very fine-grained 

sandstone to be deposited in virtually the same setting with no evidence for a major 

discontinuity? What were the roles of basin subsidence, relative sea-level change, eustatic 

sea-level change, and sediment supply in ensuring such thick aggradation? Additional 

analysis of several of the White Rose cores in conjunction with seismic and structural 

analysis and interpretation are required if these questions are to be answered. This 

additional work is beyond the scope of this thesis. 



CHAPTER4 

LINKS BETWEEN GRAIN SIZE, FACIES, AND PERMEABILITY 

4.1 Introduction 
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The principal objective of this chapter is to investigate and interpret relationships 

between the sedimentological and permeability data in the White Rose A-17 core. This is 

because: 1) there are a large number of permeability measurements available for 

comparison with the sedimentological data, and 2) these relationships have not been 

previously investigated in this, and in other White Rose cores. 

This chapter is divided into four main sections. The first section will explain a 

number of aspects of permeability including what it is, why it is important, and what 

factors influence and/or control it. The second section is concerned with presenting and 

discussing the permeability data and grain-size versus permeability relationships. Section 

three focuses on changes in permeability and grain-size across the main types of contacts 

and boundaries. The fourth and final section is concerned with investigating and 

interpreting lithofacies-specific permeability trends and the relationship(s) between 

permeability and grain-size for each of the nine facies in the core. 

4.2 Permeability: Definition, Importance, and Controls 

4.2.1 Definition 

Permeability is defined as the ability of a fluid to pass through a porous material, 

or the rate at which it passes through a material (Selley, 1998). In clastic rocks, 

permeability is determined by the size of pore throats present in the rocks and by the 

number of connected pores (Evans et al., 1997). The unit of measurement is the Darcy, 
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named after the French engineer who investigated the flow of water through filter beds 

near Dijon France in 1856. Muskat and Botset (1931), Botset (1931), and Muskat (1937), 

further developed the work ofDarcy and formulated Darcy's Law. Darcy's Law is as 

follows: 

where 

Q = kCP1-Pi}A, 
l-tL 

Q = rate of flow 
k =permeability 
(P1-P2) =pressure drop across the sample 
A = cross-sectional area 
L = length of the sample 
l-1 = viscosity of the sample 

Rearranging for permeability the equation becomes: 

k = QJ.Ll 
(P1-Pz)A 

One Darcy is defined as the permeability that will permit a fluid of one centipoise ( cP) 

viscosity to flow at a rate of one cubic centimeter per second through a cross-sectional 

area of one square centimeter when the pressure gradient is one atmosphere per 

centimeter (Selley, 1988). In practical units, one Darcy will yield a flow of approximately 

one barrel per day of one centipoise oil through one foot of formation thickness in a well 

bore when the pressure differential is one pound per square inch (psi) (Simpson, personal 

communication, 2004). Darcy's law is valid assuming that: 1) the fluid in question is 

under laminar flow conditions; 2) there is no reaction between the fluid and the rock, and 

3) only one fluid phase is present. These conditions are seldom satisfied; thus, variations 
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of the Darcy equation are required. In dual porosity systems where, for example, rocks 

with fractures and vugs occur, more complex relationships exist than those that can be 

accurately expressed by Darcy's law (Selley, 1998). Reservoirs typically have 

permeabilities less than a Darcy, and for that reason, the millidarcy (mD) is most often 

used (1D = 1000 mD). Permeabilities in clastic reservoirs can range from <0.1 mD to > 

10 Darcys (Evans et al., 1997), although average permeabilities in reservoirs are typically 

in the range of 5 to 500 mD (Selley, 1998). 

4.2.2 Importance 

Permeability is a key parameter influencing the economic value of a hydrocarbon 

accumulation (Evans et al., 1997), and according to Dryer et al. (1990) it is the single 

most important factor influencing fluid flow in a reservoir. The spatial variation of 

permeability significantly influences the migration and distribution of fluids and gases 

and determines the ability of a reservoir to release its fluids and gases (Pryor, 1973). 

4.2.3 Controls 

A number of factors are known to control the magnitude and distribution of 

permeability. The most important ones are grain-size, sorting, compaction, and 

cementation (Cade et al., 1994) (Figure 4.1). In addition, grain shape and grain packing 

also influence permeability (Beard and Weyl, 1973; Selley 1998). Because several of 

these parameters are in turn regulated by depositional environments, previous authors 

have related permeability distributions to depositional facies (Jones et al., 1985; 
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Fig.4.1. An interpretation of the effects of various controls on porosity and permeability. 
Modified from Ethier and King (1991). 



146 

Haldorsen, 1986; Hearn et al., 1986; MacMillan et al., 1986; Stalkup et al., 1986; Weber, 

1986). 

The following text will briefly describe how compaction and cementation affect 

permeability. This is followed by a much more thorough explanation ofhow textural 

factors, particularly grain-size and sorting, influence permeability. Grain shape was not 

considered for this study because little comparative data exists. Next, sedimentary 

structures, trace fossils, and depositional environments are discussed with reference to 

their relationship(s) to permeability. 

4.2.3.1 Compaction and Cementation: Their Affect on Permeability 

Compaction will always have an adverse effect on reservoir quality, particularly 

permeability (Evans et al., 1997). During compaction, pore-throat sizes are reduced as 

grains become more tightly packed, which leads to a gradual decline in permeability with 

a reduction in porosity (Selley, 1998). 

Cementation usually brings about permeability reduction (Ehrlich et al., 1997) by 

constricting pore throats and reducing pore-throat size. Reduction of pore-throat size 

increases capillary pressure and decreases permeability. 

Unquestionably, in consolidated sandstones, diagenesis (compaction and 

cementation) has an important effect on permeability. The precise effect on permeability 

depends on the amount of compaction and distribution of the cements. Increasing 

compaction and cementation alters or obscures the relationship between texture and 



permeability but appears to never completely eliminate the influence of the original 

syndepositional texture (Ehrlich et al., 1997). 

4.2.3.2 Textural Controls on Permeability 
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The texture of sediment is closely correlated with its porosity and permeability 

(Selley, 1998). As noted by Beard and Weyl (1973), past investigations have shown that 

the most important textural properties of natural clastic sediments are: 1) grain size, 2) 

sorting, 3) grain shape (sphericity), 4) roundness (angularity), and 5) packing. Ofthese, 

grain size and sorting are the most important with respect to porosity and permeability 

while sphericity, roundness, and packing are of lesser importance. Grain orientation 

(another characteristic of fabric) also has an influence on permeability (Mast and Potter, 

1963; Pryor, 1973; Selley, 1988). The text to follow provides a summary ofhow each of 

these parameters relate to permeability. 

4.2.3.2.1 Grain size and Permeability 

It is imperative to note that relationships between grain size and permeability are 

only documented for unconsolidated sands (Shepard, 1989). Lithification tends to reduce 

permeability regardless of grain size, but little is known concerning details of this 

relationship in consolidated sandstones (Ehrlich et al., 1997). A major element ofthis 

thesis is to investigate and describe the relationships between permeability and grain size 

in well-consolidated sandstones. 
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In unconsolidated sands and gravels, strong correlations exist between 

permeability and grain size (Ehrlich et al., 1997). Shepard (1989) states that permeability 

is an exponential function of grain size, with the relationship proportional to grain size 

raised to the power 1.3 to 2 in well-sorted sands. Work done by Beard and Weyl (1973) 

shows that for any given porosity, permeability will systematically increase with grain 

size. Conversely, permeability declines with decreasing grain size because pore diameters 

decrease and capillary pressures increase. 

4.2.3.2.2 Sorting and Permeability 

Another important textural control on permeability is sorting (Beard and Weyl, 

1973). Both Krumbein and Monk (1942), and Beard and Weyl (1973) demonstrated that 

greater sorting correlates with greater permeability. As an example, Selley (1988) states 

that well sorted sand has a high proportion of detrital grains to matrix (particles < 62JLm) 

as opposed to poorly sorted sand, which has a low proportion of detrital grains to matrix. 

The finer grains of the matrix fill the pores and obstruct pore-throat passages within the 

framework, thus reducing porosity and inhibiting permeability. This heterogeneity 

diminishes permeability by increasing the tortuousity of the pore system. Similarly, rocks 

with poorer sorting will have smaller mean pore-throat diameters and, therefore, lower 

permeability than better sorted rocks with the same mean grain size (Evans et al. , 1997). 

Kegley et al. (1994) analyzed the texture and made 4200 permeability measurements in 

Eocene and Miocene units in the Mixed Waste Disposal (MWD) area at the Savannah 

River Sites in South Carolina. They concluded that the distribution of permeability is 
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primarily controlled by mud (silt and clay) content of the sediment. Units with low mud 

content have a higher permeability than those with high mud content. The distribution of 

permeability is also more variable with varying mud content, compared to units with 

uniform mud content. 

Sorting will differ from reservoir to reservoir and the degree of sorting will 

depend upon a number of factors including sandstone composition and the environment 

of deposition. For texturally and mineralogically mature sandstones deposited in virtually 

a fixed setting, such as those from the Ben Nevis Formation in the South White Rose 

field, sorting has a very limited range; therefore, its affect on permeability is rather 

difficult to address. Nevertheless, a few comments on the sorting data at its relationship 

to permeability are made and, as well, general remarks regarding the effect with which 

bioclasts and silt have on permeability are made. The latter remarks have no quantitative 

backing. 

4.2.3.2.3 Grain Shape, Fabric, and Permeability 

Very little is known of the relationship between grain shape (roundness and 

sphericity), packing, and permeability due to lack of relevant data. Fraser (1935) noted 

that porosity might decrease with increasing sphericity because spherical grains 

potentially pack more tightly than subspherical ones. He did not discuss the relation 

between sphericity and permeability. 

The relationship between grain fabric and permeability is more straightforward. In 

sediments, grains are normally deposited with a statistically preferred long axis because: 
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1) grains are most often deposited under the influence of a unidirectional current, and 2) 

clastic grains are rarely spherical. It can be predicted that fluid flow is less tortuous and 

that permeability is greater parallel to the fabric alignment. Selley (1988) notes that most 

sand grains in planar laminated sediments are elongated parallel to the current direction, 

and that this direction coincides with maximum permeability. This relationship has been 

seen in planar-bedded sandstones in fluvial and turbidite sections (Shelton and Mack, 

1970; Martini, 1971; Von Rad, 1971). 

4.2.3.3 Sedimentary Structures and Permeability 

A number of authors have investigated the relationships between sedimentary 

structures and permeability. Most of these studies involve fluvial cross-bedding. 

One of the earliest studies was conducted by Mast and Potter (1963). They 

demonstrated the relations amongst cross-stratification, grain orientation, and 

permeability. They found that permeability in sandstones is greatest in the plane parallel 

to the foresets of cross-stratification. Hewitt and Morgan (1965) determined that 

horizontal permeabilities were at a maximum parallel to the trough axis of cross-bedding 

and minimum permeabilities were documented perpendicular to the laminae of the 

crossbed sets. Dodge et al. (1971) also concluded that permeabilities are higher parallel to 

the dip directions of cross-bedding than in the strike directions. Pryor (1973) concluded 

that permeability in modem fluvial deposits is highest in the deepest and central part of 

trough cross-beds parallel to grain orientation. Selley (1988) notes, that for cross-bedded 

sandstones, grain-size variations appear to exert more of an influence on permeability 
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than grain orientation. For example, in fluvial cross-bedding, permeability will decrease 

as grain size decreases from the foresets to toesets. Weber (1982) reports that, in the case 

of festoon cross-bedding, the important elements are the bottomset and foreset laminae 

with the lowest permeabilities occurring in the bottomsets. He also noted that variability 

in permeability was more pronounced within sedimentary structures than between them. 

Another thorough account of permeability variation within sedimentary structures, 

mainly cross-bedding, has been given by Hurst and Rosvoll (1991). They, like Weber 

(1982) determined that the main source of permeability variation in sandstones exists 

within sedimentary structures. 

For bioturbated facies, permeability is most often hindered by the presence of silt 

particles infilling pores and obstructing pore throats (Weber, 1982). It is common, 

however, to find permeable streaks, especially if there are a number of sand-filled 

burrows. 

4.2.3.4 Depositional Environments and Permeability 

As with sedimentary structures, there have been some studies of the relationships 

between permeability and depositional environments. One of the earliest was conducted 

by Pryor (1973). He determined porosity, permeability, and textural parameters for 992 

oriented, undisturbed sand samples from Holocene river-bar, beach, and dune deposits. 

Sand bodies from the various depositional environments exhibit well-organized and 

different spatial patterns ofpermeability. Results from Pryor (1973) are taken to 

indicate that the largest variation in permeability of the three environments studied was in 
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river point bars. Permeability ranged from 4 millidarcies to 500 Darcies with an average 

of 93 Darcies. Beach sands had the second broadest permeability distribution with a 

range of3.6 to 166 Darcies and an average of68 Darcies. Dune sands had the least 

variation in permeability with a range of 5 to 104 Darcies and an average of 54 Darcies. 

Of these three environments, river point bars are the most heterogeneous and have the 

widest variation in texture whereas dune deposits are the least heterogeneous and contain 

the least variation in texture. Weber et al. (1982) examined the permeability distribution 

of unconsolidated Holocene channel-fill sands. They found that permeability was highest 

near the center of the channel-fill and gradually decreased towards the channel edges. 

Chandler et al. (1989) and Goggin (1988) characterized permeability distributions in the 

eolian Jurassic Page Sandstone. They found a close correlation between strata type and 

permeability, and determined that the average permeability of each lithology was 

significantly different from other types. For instance, grain-flow, wind-ripple, interdune, 

and extra-erg (non-eolian) deposits have progressively poorer reservoir characteristics. 

The study ofDryer et al. (1990) documented a close connection between depositional 

facies and permeability. Based on their data, five permeability classes were distinguished 

corresponding to different depositional environments. 

There have been few published examples of the relationship(s) between marine 

depositional settings and permeability. Nevertheless, a number of generalities can be 

made. For example, in shallow-marine and shoreline settings the major controls on 

permeability (before compaction and cementation) should be, by analogy with the 

previous examples, grain size and the distribution of silts and clays. Factors affecting 
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these are provenance, depositional energy/setting, and bioturbation. Coarse-grained 

sediments that are both free from silts/clays are those subject to highest wave energy or 

tidal action. Such coarse-grained clean sediments are typically deposited in littoral 

environments where wave and tidal action can be vigorous. The sediments deposited in 

these settings should have the highest permeabilities. Extensive bioturbation can 

effectively destroy small-scale permeability trends related to earlier bedding structures. 

Bioturbation redistributes or mixes finer grained sediments such as silt and clay that 

might otherwise exist as laminations or beds. In shallow marine settings, permeability 

likely decreases offshore as finer grained material and bioturbation increase. 

It appears that both grain size and sorting significantly influence permeability in 

both unconsolidated and consolidated sands, irrespective of their environment of 

deposition. This may be by either increasing or decreasing permeability. 

4.3 Permeability: Description of the A-17 Core Data and its Relation to Grain Size 

4.3.1 Introduction 

The purpose ofthis section is to: 1) present and remark on the White Rose A-17 

permeability data and, 2) investigate its relation to grain size. The data used in this 

section include 1176 grain-size and permeability measurements. In this section and the 

sections to follow the grain size of sandstone is indicated by the characteristic size, in 

microns, of grains which were measured during core description. For example, a 

sandstone for which the characteristic size is 84 J-tm is referred to as a sandstone of 84 urn 



grain size, even though the sediment is not all of identical size (i.e. sandstones in the 

cored interval are not perfectly sorted). 
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This section will begin by presenting the White Rose A-17 permeability data in 

both profile and histogram format. This is done so the reader can obtain a sense of the 

nature of the permeability population and how it is distributed stratigraphically. Next, the 

relationship(s) between grain size and permeability is investigated at various scales. This 

is somewhat similar to how grain-size trends were treated in Chapter 3. The first is at the 

scale of the entire cored interval. Next, grain size and permeability are compared with 

one another in each unit. Finally, smaller-scale relationships are investigated. Vertical 

profiles and cross plots are used to highlight the findings in the data. 

4.3.2 Permeability Data 

Permeability in the White Rose A-17 core ranges from a minimum of ~0.001 rnD 

to a maximum of 451 rnD, and averages ~75 rnD (Figure 4.2A). When the dataset is 

'clipped' by excluding values less than 1 rnD (most ofwhich correspond to facies 5 and 

facies 6) the average permeability is ~85 rnD (Figure 4.2 B). These 'clipped' 

permeability data approximate a log-normal distribution (c.f. Drummond and Wilkinson, 

1996). This is confirmed when the logarithms of each value greater than 1 rnD are plotted 

(Figure 4.3). The result is a somewhat negatively skewed distribution, with a tail of small 

permeability values; however, it approximates a normal distribution ( c.f. Drummond and 

Wilkinson, 1996). 
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Fig.4.2. Permeability frequency distributions for the White Rose A-17 cored interval with 
all data (A), and minus permeabilities from Facies 5 and Facies 6 (B). The mean is ~10 mD 
higher for (B) when pervasively calcite-cemented intervals are eliminated. The distribution 
of the data in (B) approximates a log-normal distribution (c.f. Drummond and Wilkinson, 
1996).Bin size is 10 mD with data plotted at midpoints. 
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A vertical permeability profile demonstrates that the data are highly variable 

within the A-17 core (Figure 4.4). There are few if any consistent trends in the data. 

Permeabilities higher than 85 mD (the mean ignoring permeability data from facies 5 and 

6) occur mostly between 3019-2996 m and 2990-2979 m. Low permeabilities of <50 mD 

occur intermittently throughout the cored interval but are particularly common from 

2955-2940 m. Zones of extremely low permeability (i.e. <1 mD) appear mostly in the 

upper 10 m and lower 30 m of the core. These correspond mostly with pervasively 

calcite-cemented intervals (see Appendix B). 

From the data, it appears that texturally and mineralogically mature shallow­

marine sandstones ofthe White Rose A-17 cored interval have a log-normal permeability 

distribution and highly a variable vertical permeability profile. 

4.3.3 Permeability and its Relationship(s) to Grain size 

4.3.3.1 For the Entire Cored Interval 

For unconsolidated sands, Beard and Weyl (1973) demonstrated that there is a 

close relation between grain size and permeability. As grain size increases, permeability 

increases. The relation between grain size and permeability in the White Rose A-17 cored 

interval is not so straightforward. To illustrate this, vertical grain-size and permeability 

profiles are overlain for comparison (Figure 4.5). Over the whole interval, these two 

variables do not appear to track one another closely (i.e. they do not co-vary strongly). 

This indicates, at least at this scale, that grain size and permeability are not closely 

related. 
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Fig.4.4.Vertical permeability profile for the White Rose A-17 cored interval. Data used 
for the construction of this vertical permeability profile is raw; it has not be modified. 
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Fig.4.5. Vertical permeability profile (black) and vertical grain-size profile (red) for the 
White Rose A-17 cored interval overlain for purposes of comparison. Note that these data 
do not correlate strongly. The data used for the construction of these vertical profiles has 
not been modified. 
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When grain-size and permeability measurements are cross-plotted (Figure 4.6), 

relationships amongst the data are clearer and a number of inferences can be made. 

Firstly, the relationship between grain size and permeability is not linear, which means 

that the data do not cluster around, or cannot be defined by a straight trend line. For any 

given grain size there is a broad range of possible permeabilities. The relationship 

amongst these variables is best defined by a surface that envelops maximum 

permeabilities (data envelope), with the exception of a few 'high' permeability outliers 

(Figure 4.6). In general, for each increase in grain size the range of associated 

permeabilities increases. For example, sandstones of 66 p,m grain size correspond to 

permeabilities which range from ~0.008 mD to 75 mD. Sandstones of94 p,m grain size 

correspond to permeabilities which range from ~0.005 mD to ~250 mD, and sandstones 

of 134 p,m grain size correspond to permeabilities which range from ~0.001 mD to 265 

mD (excluding the few outliers). Above a grain size of 134 p,m, the range of 

permeabilities no longer increases with increasing grain size. In fact, maximum 

permeabilities are slightly lower (excluding the few outliers) than those associated with 

sandstones of 107 to 134 p,m grain size. From this it can be deduced that the coarsest­

grained sandstones do not correspond with the highest permeabilities. Equally high and 

higher permeabilities are associated with sandstones of significantly finer size. In 

addition, it is clear that minimum permeabilities are essentially the same(~ ::::;; 0.01 mD) 

irrespective of grain size (Figure 4.6). These findings demonstrate that grain size 

(particularly above 134 p,m) is not the only factor controlling permeability in the White 

Rose A-17 core. Other factors such as compaction and 
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cementation (see Figure 4.1) are likely also significant, obscuring the direct relationship 

between grain size and permeability demonstrated by Beard and Weyl (1973) from 

unconsolidated sands. Grain-size sorting is not interpreted to be an important factor 

influencing permeability over the cored interval as sorting values are essentially the same 

(Table 4.1) and, with the exception of one sample, can all be described as well sorted 

according to the terminology ofFolk and Ward (1957). 

4.3.3.2 For the Three Units 

The cored interval is divisible into three units based upon dominant grain-size 

class and lithologies (refer to Figure 3.4). As a result, cross plots of grain size and 

permeability were constructed for each unit (Figure 4.7). Though each cross plot is 

somewhat similar to the global cross plot in Figure 4.6, (i.e. as grain size increases the 

range of associated permeabilities increase) there are fundamental differences, which 

otherwise would not have been recognized without stratigraphically segmenting the data. 

Ranges in permeability for sandstones with equal maximum grain size differ 

between units, as do average permeabilities (Table 4.2). The largest range of 

permeabilities and highest average permeabilities for sandstones with equal grain sizes 

occur in the middle unit; followed by the upper unit then the lower unit. Ranges in 

permeability also increase with grain size at different rates. The fastest rate corresponds 

to the middle unit, followed by the upper unit, and then the lower unit (Figure 4.7). For 

both the lower and middle unit, permeability stops increasing beyond a certain grain size. 
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Table 4.1 Sorting values from the seven analyzed thin-sections. The sorting values were obtained 
using the procedures outlined in chapter 2. Note that only one analyzed sample (thin-section) is 
very well sorted and the rest are well sorted according to the terms as per by Folk and Ward (1957). 
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Upper Unit Middle Unit Lower Unit 

Grain KMin KMax KAvg KMin KMax KAvg KMin KMax KAvg 
size mD mD mD mD mD mD mD mD mD 
JLID 

38 0.001 0.001 0.001 3 20 11.5 

84 16 40 34 3.5 113 56 0.05 50.5 32 

94 0.003 108 33 0.6 245 88 8 55 23 

107 1.2 248 125 1.0 78 47 

Table 4.2. Examples used to demonstrate the broad range of permeabilities and different 
average permeabilities for sandstones of the same grain size between the different units. 
Empty cells imply that there is no data. 
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In the lower unit this is 168 microns; in the middle unit this is 119 microns. The 

corresponding maximum permeabilities are 250 mD and 275 mD respectively. From 

these observations, it is clear that grain size is not the only factor controlling permeability 

in the White Rose A-1 7 core; therefore, other factors must be involved. 

The most probable explanation for the range of permeabilities between units is 

the amount of cement. Sandstones with low amounts of cement normally have higher 

permeabilities (for any given grain size) than sandstones with abundant cement. For each 

of the three units, larger ranges of permeability imply higher maximum permeabilities. 

This is because minimum permeabilities for all grain sizes are essentially zero; therefore, 

the maximum value determines the range. Since all grain sizes in the middle unit are 

associated with higher maximum permeabilities compared with the upper and lower units 

it is likely that, on average, sandstones in the middle contain less cement. Conversely, 

because the lower and upper units have both lower maximum and average permeabilities 

than the middle unit (Table 4.2), they likely contain more cement. 

The influence of sandstone grain-size sorting on permeability is (if at all) interpreted to 

be minor for and between each of the three units. These is because sorting values are very 

similar and, with the exception of one sample, are all classified as well sorted according 

the terminology ofFolk and Ward (1957). 

The rate at which permeability ranges increase with increasing grain size for and 

between each unit cannot be explained based on the data collected; therefore, it is beyond 

the scope of this thesis and additional work is required. 
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4.3.3.3 For Small-Scale Intervals 

The previous two sub-sections have presented permeability and grain-size data for 

the entire cored interval and for the lower, middle, and upper units. At these scales, it is 

clear that: 1) the relationship between grain size and permeability is not linear, 2) this 

relationship is best defined by a data envelope that defines the maximum permeability for 

a given grain-size range, 3) the maximum range in permeability is generally associated 

with sandstones of 119 to 134 J.Lm grain size, 4) ranges in permeability are different for 

sandstones of the same grain size, and 5) these ranges differ according to depth. 

The intention ofthis sub-section is to investigate four small-scale (1-5m) intervals 

where grain size and permeability trends appear concordant. Investigation at smaller 

scales is important because at larger scales (as discussed in the above text) the correlation 

between grain size and permeability is limited. The selection of smaller intervals was 

done without adopting statistically-based sampling methods; therefore, they are 

somewhat subjective. However, covariation between grain size and permeability is rare, 

and in the cored interval only four somewhat convincing examples were noted (Figure 

4.8). Comparisons of grain size and permeability at 10m intervals can be made by 

examining the logs in Appendix B. 

The relationship between grain size and permeability for the small-scale intervals 

is different from the relationships that characterize the entire cored interval and the three 

units. Firstly, grain size and permeability appear to track one another closely when 

plotted side by side (Figure 4.8). When grain size increases permeability generally 

increases, and when grain-size decreases permeability generally decreases. Secondly, 
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increases in grain-size do not necessarily correspond with increasing ranges of 

permeability (Figure 4.9, left diagrams). Instead, the relationship between grain-size and 

permeability can be closely approximated by a best-fit line in these small-scales intervals 

(though perhaps not for Figure 4.9 D). However, dependent upon the scale and 

stratigraphic position of examination (refer to Fig.4.8) the strength of the relationship 

between grain size and permeability between the small-scale intervals differ. This is 

because best-fit lines to the data have different correlation coefficients. This might 

indicate that the degree of cementation is different between these small-scale intervals. 

Though the relationship(s) between grain size and permeability seem quite 

different at smaller scales, there is a fundamental similarity between these and the larger 

data sets; that is, there still exists a range (though smaller) ofpermeabilities associated 

with most grain sizes (Figure 4.9). This implies that: 1) maximum grain size cannot 

explain all of the variation in permeability regardless of the vertical scale at which they 

are compared, 2) grain size might explain more of the variation in permeability if it is 

measured at a more refined scale, and 3) there are other factors, such as compaction, 

cementation, and facies type, that in combination with grain size influence and/or control 

permeability. These outstanding issues could likely be resolved by thin section analyses. 

Again, sandstone grain size sorting is thought to have little influence on the permeability 

values in the A-17 core, as sorting values are essentially the same (see Table 4.1). 



A) 

B) 

C) 

D) 

~ 
450 

400 

350 
_.q 300 

~ 
e 
Cl.l 

ll-. 

250 

200 
150 

100 

50 

0 

450 

0 400 
E 350 

_.q 
~ 

Cl.l 

e 
Cl.l 

ll-. 

300 
250 

200 
150 

100 

50 

R'=0.7854 

0 20 40 60 80 100 120 140 160 180 200 220 

Grain size (~m) 

R'=0.7463 

/ 
: J • 

0 
0 20 40 60 80 100 120 140 160 180 200 220 

Grain size (~m) 

~ 
450 

400 
350 

_.q 300 

~ 
§ 
Cl.l 
~ 

250 

200 

150 

100 

50 

R'=0.6155 

1/ /i. 
0+--.~~~~--~-r~--~--~~ 

450 

0 400 
E 350 

g 
~ 

Cl.l 

300 
250 

200 e 15o 
Cl.l 
~ 100 

50 

0 20 40 60 80 100 120 140 160 180 200 220 

Grain size (~m) 

R'=0.45 

0 20 40 60 80 100 120 140 160 180 200 220 

Grain size (~m) 

450 

400 

350 

300 

250 
200 
150 
100 
50 

• .. . 
' t 

; 1 " di ; 
0 +-~~~~~~~~~~~----~ 

0 20 40 60 80 100 120 140 160 180 200 220 

450 

400 

~ 350 
__ .q 300 

250 
:0 
~ 
Cl.l e 
Cl.l 

ll-. 

200 

!50 

100 

50 

0 

450 
0 400 
E 350 _.q 
~ 

Cl.l e 
Cl.l 

ll-. 

~ 

300 
250 

200 

150 

450 

400 

350 
_.q 300 

:0 
~ 
Cl.l e 
Cl.l 

ll-. 

250 

200 
150 

100 

50 

0 

Grain size (~m) 

. 
i 

.. 

0 W ~ ~ W IOOIWI~I~IWWOnO 

Grain size (~m) 

. 
l 1 

0 20 40 60 80 100 120 140 160 180 200 220 

Grain size (~m) 

• . 
t 
I 1 • li i : 

• 4 

! 
I 

t 

• 
• • 
• 

0 20 40 60 80 100 120 140 160 180 200 220 

Grain size (~m) 

Fig.4.9. Grain size (J.lm) vs. Permeability mD cross plots for the four small-scale intervals selected to 
demonstrate the apparent close relationship between grain size and permeability. Graphs on the left display 
data points for the selected intervals, while graphs on right display all of the 1176 data points (the yellow 
diamonds being those data points from the selected intervals. Note the different slopes and correlation 
coefficients between intervals. 

170 



171 

4.4 Parallel and Unrelated Changes in Both Permeability and Grain size Across 
Contacts and Gradational Transitions 

The intent of this section is to demonstrate and comment briefly on the changes in 

both permeability and grain size across most of the major contacts and boundaries in the 

White Rose A-17 core. Permeability and grain-size measurements were collected below 

and above each contact; therefore, changes in these variables across contacts can be 

evaluated. To the knowledge of this author, an analysis of this type has never been 

undertaken for consolidated sediments. 

Upward changes in grain size or permeability across contacts can be positive, 

negative, or essentially zero (i.e. no real change). There are therefore nine possible 

upward changes in the pair (grain size, permeability):(+,+),(+, 0), (+, -), (0, +), (0, 0), 

(0, -), (-, +), (-, 0), and(-,-). Three ofthese are called "parallel changes"[(+,+), (0, 0), (-, 

-)],whereas the others correspond to a change in one variable that is not reflected in a 

corresponding predictable change in the other. These are called "unrelated" changes. 

Because of the numerous contact subtypes (refer to Table 2.2), changes in 

permeability and grain size across them, as well as comparisons between them (the 

subtypes) might be difficult to establish; therefore, all subtypes are grouped under each 

major contact type. As well, because changes in grain size almost certainly do not 

influence permeability across cementation contacts (i.e. from "less cemented" to 

pervasively cemented intervals) they are ignored. 

It is not the intent of this section to investigate or explain all of the positive, 

negative, as well as the highly variable combinations of changes (parallel and unrelated) 
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in both permeability and grain size across each contact; this would be extremely difficult. 

Therefore, only general relationships are listed and only a few inferences are made. 

Across erosive and abrupt contacts and gradational transitions, the following 

generalities with respect to permeability and grain size can be made. 

1) A single, easily defined pattern or rule-of-thumb to predict changes in either 

permeability or grain size across any of the contacts and/or boundaries is not 

recognized (Figures 4.1 0, A, B, and C). 

2) Changes in permeability (both positive and negative) need not be accompanied by 

parallel changes in grain size, nor are changes in grain size (both positive and 

negative) typically accompanied by parallel changes in permeability (Figures 

4.1 0, A, B, and C). 

3) The magnitude (amount) and direction of change (i.e. positive, negative, or any 

combination thereof) for both permeability and grain size are highly variable 

across the range of recognized contacts and boundaries (Figures 4.10 A, B, and 

C). The largest amount of change in permeability occurs across erosive contacts, 

followed by abrupt contacts and then gradational transitions (Figures 4.1 0, A, B, 

and C). 

4) In the absence of simultaneous changes in grain size (i.e., when~ grain size= 0), 

upward changes in permeability across erosive contacts are mostly negative. For 

abrupt contacts these changes are somewhat more positive than negative, and for 

gradational transitions these changes are mostly positive (Figures 4.1 0, A, B, and 

C). 



A) 300 
Erosive Contacts 

n=201 
0 200 s 

(-,+) . (+,+) . . . . . 
0 ·- 100 -~ 
0 e 0 
0 

A.. 

<l -100 

. I · . . . . .. ;: :: . . . 
:. .... . 
·1:~. ·;: . 
• :~! .. 

I 

~:::i= •• . .. . ·:~: ( -,-) . . . (+,-) . : . . 
-200 

. 
-100 -50 0 50 100 150 

.6. Grain Size (JJ.m) 

B) 300 
Abrupt Contacts 

n=183 

0 200 
s 

(-,+) (+,+) 
. 

g 100 
. . . . 

~ 
0 

0 e 
0 

A.. 

<l -100 

. . . . . . .. . . 
' ·.' . ,.~ . .. . . . 

... i ,.;i . 
(+,-) (-,-) . .. " .. ~ ~ . . . . .. 

-200 
-100 -50 0 50 100 150 

.6. Grain Size (JJ.m) 

Gradational Transitions 
C) 300 

n=64 

0 s 200 (-,+) (+,+) 

0 
:.::::: 100 ·-~ 

. . 
·. . 

. 
0 e 0 
0 

A.. 

<l -100 

: . ... .. 
• I 

(-,-) . . ·.··· . (+,-) 

-200 
-100 -50 0 50 100 150 

.6. Grain Size (JJ.m) 

Fig. 4.10. Plots of change in Grain size (J..Lm) vs. change in Permeability mD across 
erosive and abrupt contacts and gradational boundaries. d = "change in". See text for 
details. 

173 



174 

5) Across each type of contact and gradational transition, changes in grain size (both 

positive and negative) are typically accompanied by a wide range of changes in 

permeability (Figures 4.1 0, A, B, and C). 

6) Across erosive contacts, changes in grain size are mostly positive; they are rarely 

negative. Associated changes in permeability are both positive and negative, 

though with increasingly positive changes in grain size, changes in permeability 

tend to be more positive (Figure 4.10 A). 

7) Across abrupt contacts and gradational transitions, most changes in grain size are 

negative, as are changes in permeability. For abrupt contacts, there are a few cases 

where positive increases in grain size are accompanied by positive increases in 

permeability (Figures 4.1 0, B and C). 

8) Across abrupt contacts and gradational transitions, some decreases in grain size 

are accompanied by increases in permeability; this does not occur across erosive 

contacts (Figures 4.1 0, B and C). 

From the above list and from Figures 4.10 A, 4.10 B, and 4.10 C, it is clear that 

across contacts and/or boundaries, the amount of change in both permeability and grain 

size is highly variable and that changes in permeability and grain size do not strongly 

correlate with one another. Increases in grain size do not always imply increases in 

permeability or vice-versa. As well, a particular amount of change in maximum grain size 

across a contact and/or boundary does not imply an equivalent degree of change in 

permeability, whether positive and negative. 
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The variety of changes (parallel and unrelated) in both permeability and grain size 

across erosive and abrupt contacts and gradational transitions is likely the result of a 

number of factors. For example, the wide range of increases in permeability which 

accompany each increase in grain size across erosive contacts might be the result of 

dissimilar amounts of cement, variable amounts of bioclastic material and/or authigenic 

siderite, or the juxtaposition of different facies below and above these contacts. The wide 

range of decreases in permeability accompanied by increases in grain size across erosive 

contacts might occur for similar reasons. The large degree of scatter in permeability 

across erosive contacts without accompanying changes in grain size is further evidence 

that grain size and permeability are not strongly correlated with one another. 

The abundance of positive increases in grain size across erosive contacts also 

supports the notion that erosive contacts demarcate bed boundaries. This is because, in 

Chapter 3, it was determined that beds in the White Rose A-17 core are almost always 

coarser at their base and finer at their top. The few decreases in grain size might mean 

that depositional events were less vigorous or only finer material was available. 

Across abrupt contacts and gradational transitions, changes in permeability, which 

cannot be explained by changes in grain size, might also be the result of variable amounts 

of cement, bioclastic material and authigenic siderite, or the juxtaposition of different or 

similar facies below and above these "surfaces". The fact that there are a variety of 

changes in permeability (both positive and negative) for each change in grain size across 

these contacts and boundaries further supports the notion that permeability and grain size 

are not strongly correlated with one another. Because grain size either decreases or does 
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not change at all across most abrupt contacts and gradational transitions, it is fair to 

conclude that such surfaces indeed do represent internal surfaces and not bed boundaries. 

This is because: 1) bed boundaries are most often demarcated by an increase in grain size 

and, 2) beds are ungraded or normally graded; therefore, within beds, decreases or no 

changes in grain size are expected until the next overlying bed boundary is reached. 

Since a large number of the changes in permeability across the various contacts and 

boundaries cannot be explained by grain size alone, and because the degree to which 

other factors such as cementation affect these changes is not known, further analysis is 

required. 

4.5 Relationships between Grain Size, Permeability, and Facies 

The purpose of this section is to: 1) examine and discuss the grain-size versus 

permeability relationships for the nine facies recognized in the core, 2) examine the 

permeability distributions for each facies and, 3) provide geological explanations for 

some of the findings. Similar to the last section, data are discussed separately for the 

lower and middle units. Because only a small amount of data (permeability and grain-size 

measurements) comes from the upper unit, and because it consists mostly of bioturbated 

and pervasively calcite-cemented facies, it is not considered in depth. It is worth noting 

that mostly qualitative inferences about the relationship(s) between permeability and 

facies are made. This is because sample sizes and permeability variances from facies to 

facies are quite different; therefore, statistical tests were not applied. 
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Most investigations regarding the relationship between depositional facies and 

permeability have been conducted on either unconsolidated sands or outcrops. The 

examination of permeability and facies in this thesis is considerably different from 

previous (published) studies for the following reasons: 1) this investigation involves core 

data, 2) this study has a large number of grain-size measurements accompanying each 

permeability measurement which can be related to facies, 3) the range of grain sizes in 

each facies is limited, and 4) the depositional environment is restricted to a shallow­

marine, high-energy, storm-influenced middle shoreface setting. 

4.5.1 Grain-size Versus Permeability Relationships for Facies in the White Rose A-

17 Core 

Most facies in the White Rose A-17 core have similar grain-size versus 

permeability relationships (Figure 4.11 ). That is, ranges in permeability generally 

increase with increasing grain size, and above 107-119 11-m grain size, maximum 

permeabilities cease to climb. This is similar to the global data set (see Figure 4.6), and is 

particularly true for facies 3. However, for facies 8 and facies 9, which contain abundant 

shelly material and moderate to abundant amounts of bioturbation respectively, this is not 

the case. In each of these facies, ranges in permeability do not increase systematically 

with increasing grain size. For facies 1, 2, 3, 4, and 7, increasing ranges ofpermeability 

are generally well established for sandstones ::;107 11-m grain size (Figure 4.11); however, 

for facies 1, this trend is well pronounced for sandstones ::;119 11-m grain size. In fact, very 

fine-grained sandstones in intervals of facies 1 correspond with most of the highest 
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permeabilities. Conversely, fine-grained sandstones in each facies do not correspond with 

well-defined increases in permeabilities. In fact, maximum permeabilities in fine-grained 

intervals remain somewhat constant (facies 1 and facies 7), decrease (facies 3), or are 

scattered and show no trends at all (facies 2 and facies 4). The exceptions to these 

generalities are the few outliers. 

In each facies, minimum permeabilities in very fine-grained sandstones and 

coarse to medium-grained siltstones are mostly negligible with the exception of facies 1. 

In facies 1, minimum permeabilities which correspond to grains of the very fine-grained 

size class generally increase with increasing grain size (Figure 4.11, graph A). For 

example, sandstones of75 J.tm grain size correspond to a minimum permeability of ~38 

mD, sandstones of94 J.tm grain size correspond to a minimum permeability of 52 mD, 

and sandstones of 119 J.tm grain size correspond to minimum permeabilities mostly >125 

mD (Figure 4.11, graph A). Increases in minimum permeabilities occur in facies 2, 3, 4, 

and 7, but are mostly restricted to sandstones of 100 J.tm grain size and greater; however, 

these trends are neither well defined nor do they occur over limited grain-size ranges. For 

facies 8, minimum permeabilities regardless of grain size are generally no greater than 25 

mD, and for facies 9 they are approximately 1 mD. 
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4.5.2 Grain-size Versus Permeability Relationships for Facies in the Lower and 

Middle Parts of the White Rose A-17 Core 

Facies 1, 2, 3, 4 and 8 (excluding facies 5 and facies 6) occur in the lower and 

middle units ofthe core consist ofboth very fine- and fine-grained sandstones (Figures 

3.18, 3.22, and 3.23). When grain size and permeability data for each facies are separated 

stratigraphically (Figure 4.12) each increase in grain size in the middle unit is 

accompanied by an increase in the range of permeabilities; this relationship is well 

defined for each facies with the exception of facies 8. Minimum permeabilities are 

similar to those ofthe entire dataset (refer to Figure 4.6) with the exception is facies 3. 

Above a grain size of 84 Jlm minimum permeabilities in facies 3 generally increase with 

. . . . 
mcreasmg gram s1ze. 

For the lower unit, increasing ranges of permeability with increasing grain size 

are best defined for facies 3. For facies 1 and 2, this relationship is not as well defined, 

though maximum permeabilities generally increase with increasing grain size; again with 

some exceptions (Figure 4.12). These relationships are much less clear for facies 4 and 8, 

as there are few data points and they are scattered. The stratigraphic subdivision of data 

reveals that, for the lower unit, minimum permeabilities are no different from those 

observed when all the data are examined (Figure 4.11 ). 

Maximum permeabilities for sandstones of the same grain size are different 

between the middle and lower units (Figure 4.12). This is most apparent in facies 3. For 

example, the maximum permeability for sandstones of 84 Jlm grain size in the middle 

unit is 105 mD and only 60 mD in the lower unit. Similarly, the maximum permeability 
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for sandstones of 107 J.Lm grain size is nearly 27 5 J.Lm in the middle unit and of only 7 5 

mD in the lower unit. This reinforces the conclusion drawn in the previous section; that 

is, permeabilities for sandstones of the same grain size are less in the lower unit than in 

the middle unit. As well, it would appear that facies have little influence on this 

relationship. The lower permeability values, in the lower unit, might be attributed to more 

extensive cementation or different cementation patterns. 

4.5.3 Distribution of Permeabilities for Each Facies 

High permeabilities (those greater than 300 mD) occur in facies 1, 2, and 3 with 

the highest values belonging to facies 1 (Figure 4.11, graph A). Facies 1 also has the 

largest number ofpermeabilities greater than 200 mD. This is followed by facies 3 and 2 

(Figure 4.11, graphs C and B). Facies 4 and 7 have only a few values higher than 200 mD 

while facies 8 and 9 have none (Figure 4.11, graphs F and G). Facies 1 has the largest 

percentage of values in excess of 200 mD, followed in order of decreasing percentage by 

facies 4, 3, 2, 7, 8, and 9 (Figure 4.11, all graphs). Most facies have a number of 

permeabilities equal to or in excess of 100 mD though this is quite uncommon for facies 

8 and is not true for facies 9 (Figures 4.11, graphs F and G). Facies 3 has the largest 

number of values in excess of 100 mD. This is followed by facies 1, 2, 4, 7, 8 and 9. 

Facies 1 also has the highest percentage ofpermeabilities in excess of 100 mD. This is 

followed by facies 4, 3, 2, 7, 8, and then 9. 

Minimum permeabilities are generally the highest and exhibit the most 

pronounced trend in facies 1 for very fine-grained sandstones (Figure 4.11, graph A). For 
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fine-grained sandstones, minimum permeabilities are as high as 200 mD but this is rare; 

they are generally less than 20 mD. For facies 2, minimum permeabilities are very low 

for both siltstones (<3-5 mD) and most very fine-grained sandstones. For sandstones of 

107 to 134 J-tm grain size, minimum permeabilities range from 25-50 mD, decrease to 

0.01 mD at 151 J-tm, then increase rapidly to a maximum of 340 mD at 214 J-tm grain size 

(Figure 4.11, graph B). Minimum permeabilities in facies 3 are negligible for most grain 

sizes, but increase from ~20 mD to a maximum of~ 100 mD for the coarsest fine-grained 

sandstones (Figure 4.11, graph C). For facies 4 minimum permeabilities are very low 

(<10 mD) for sandstones <100 J-tm grain size, increase and remain constant at ~20-25 mD 

for sandstones of 107 to 134 J-tm grain size, and then increase linearly to a maximum of 

~115 mD at 168 J-tm grain size (Figure 4.11, graph D). Minimum permeabilities for facies 

7 are generally very low (<10 mD); however, values as high as 30 mD do exist (Figure 

4.11, graph E). Minimum permeabilities for facies 8 are remarkably constant at ~15 mD, 

with minor exceptions (Figure 4.11, graph F). Minimum permeabilities for facies 9 

remain constant, and are low (~ 1 mD) irrespective of grain size (Figure 4.11, graph G). 

In the White Rose A-17 core, mean permeabilities for facies 1 and 9 are 

significantly different from all other facies. Facies 1 has the highest mean permeability, 

and facies 9 has the lowest (Figure 4.13). Although the range ofpermeabilities and 

number of permeability measurements for facies 2, 4, 7, and 8 and facies 2, 3, and 4 are 

somewhat different, there is no reason to suggest that their mean permeabilities are 

significantly different from one another because 95% confidence intervals about their 

means overlap. This signifies that there is more than 1 chance in 20 that the facies share 
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Fig.4.13. Permeability frequency distributions for Facies 
1, 2, 3, 4, 7, 8, and 9. Facies 5 and 6 are excluded because 
their permeabilities are negligible. The red bands on each 
figure represent the 95% confidence interval about the mean. 
This implies that there is a 95% chance that the mean value 
lies within the red band (confidence interval), and a 1 in 20 chance 
that it does not. The mean permeabilities for facies 1 and 9 
are significantly different than for all other facies. Facies 1 has the 
highest mean permeabilities, and facies 9 has the lowest. The 
mean permeability for facies 2, 4, 7, and 8 do not significantly 
differ from another because there is overlap of their confidence 
intervals. This is also true for facies 2, 3, and 4 However, facies 3 
has overlapping confidence intervals with two groups of facies, and 
only misses overlapping with facies 7 and 8 by a small amou}\t. 
Because the individual distributions are not exactly log-normal, 
this marginal lack of overlap is not taken as strong enough evidence 
to separate facies 3 from facies 7 and facies 8. 



the same mean value of permeability. A probability of less than 1 in 20 is generally 

needed to reject the hypothesis that the means are the same. 
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Discrimination between mean permeabilities was determined by calculating the 

95% confidence intervals about the means for facies 1, 2, 3, 4, 7, 8 and 9 (Figure 4.13). 

This was not done for facies 5 and facies 6 because their permeabilities are insignificant. 

A 95% confidence interval about the mean implies that there is 95% chance that the mean 

falls within the determined range (confidence interval), and a 5% chance that it does not. 

This is true for normally distributed populations/samples and therefore was applied to 

these data because the logarithms ofpermeabilities for facies with n >25 are 

approximately normally distributed (Figure 4.13). Because there is overlap between 

confidence intervals amongst facies 2, 3, and 4 it is concluded that the mean 

permeabilities for those facies are not significantly different. The same is true for facies 

2, 4, 7, and 8. However, facies 3 has overlapping confidence intervals with two groups of 

facies, and only misses overlapping with facies 7 and 8 by a small amount. Because the 

individual distributions are not exactly log-normal, this marginal lack of overlap is not 

taken as strong enough evidence to separate facies 3 from facies 7 and 8. Therefore, only 

facies 1 and 9 are concluded to have significantly different mean permeabilities than the 

rest of the facies. 

Caution is advised when making inferences using the distribution of the data from 

the confidence limits about the mean. Overlapping confidence intervals can arise even if 

other population parameters are clearly different. This is well exemplified for facies 8 



where the confidence interval about the mean is similar to most other facies; however, 

from Figure 4.11 it is very clear that the range of its permeabilities are much less. 

4.5.4 Interpretation of the Permeability Data for Each Facies 
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The purpose of this subsection is to discuss and provide some geological 

explanations for the permeability distributions in each facies. Because of the large range 

of permeabilities that occur in most facies, interpretation of all the data is beyond the 

scope of this thesis. As a result, mostly high, low, and average values are discussed. 

Additionally, because bioclasts, authigenic siderite, and serpulid worm tubes are best 

represented in facies 7, their affect on permeability is described under that facies. These 

three components are dispersed in varying abundance throughout the core, though not to 

the same extent as in facies 7. Thorough representations of their abundance, stratigraphic 

positions, and relation to facies, grain size, and permeability can be found in Appendix B. 

However, a thorough examination of their influence on permeability other than in facies 7 

is not covered in the following text. 

In the White Rose A-17 core, facies 1 is the most permeable. It has the highest 

mean permeability, the highest permeability values, the highest percentage of 

permeabilities above 100 mD and 200 mD, and the largest minimum permeabilities 

(specifically for very fine-grained sandstones). There might be a number of reasons for 

this; however, based upon the available data it appears that facies 1 absence of 

stratification is the most probable. 
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Laminations are typically distinguished by silty material, bioclastic debris, and 

heavy minerals. These features may inhibit fluid flow across laminae. This is because of 

1) decreased sorting and 2) packing differences. Both of these factors likely increase the 

tortuousity of fluid movement and as a result, reduce permeability. The higher 

permeability of facies 1 might indicate that there are packing or pore-to-pore-throat 

connectivity differences associated with homogeneous sandstones which are not found in 

the other facies. Petrographic and/or image analysis would be required to investigate and 

prove such a hypothesis. Table 4.1 would suggest that the higher permeabilities 

associated with facies is not a function of sorting as values amongst the facies are very 

similar. However, that being said, it is possible that additional thin-section analysis could 

prove otherwise. 

Although facies 1 is generally more permeable than other facies, it still contains a 

wide range of permeabilities. Because this cannot be explained by differences in grain 

size and sorting alone, other factors must also be significant. A probable explanation for 

the range of permeabilities would be the degree, type, and spatial distribution of cement. 

These characteristics likely vary throughout the cored interval; therefore, dependent upon 

the location of each probe permeameter measurement, different values will arise. 

The stratified units, which include facies 2, 3, and 4, possess similar permeability 

characteristics since their mean permeabilities are similar and cross plots of grain size 

and permeability for each of these facies are comparable (refer to Figures 4.13 and 4.11). 

These similarities might be the result of their analogous sedimentological characteristics. 

Each of these facies are moderately to well-sorted, they are stratified, and possess 
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variable amounts of carbonaceous and silty detritus, bioclastic material, serpulid worm 

tube fragments, along with authigenic siderite. 

Differences in permeability distributions between the stratified facies are not 

easily explained since only a limited number of variables were examined. Nevertheless, 

reasons for some of the differences can be inferred. As an example, the large number of 

permeabilities ~ 150 mD in facies 3 (Figure 4.11) might be a function of the abundance 

of this facies in the core. Facies 3 accounts for approximately 53% of the cored interval; 

therefore, the probability of obtaining a larger number of values ~ 150 mD is higher for 

facies 3 than for any other facies. Conversely, these higher values might be the result of 

different cementation patterns. In general, these high values correspond with zones that 

do not bioclastic material or authigenic siderite cement (see Appendix B). The influence 

that sandstone grain size sorting has on these permeabilities is interpreted to be minimal 

as sorting values (see Table 4.1) for each of the stratified facies are very similar. The 

affect that the minor differences in sorting values has on permeability is difficult, if not 

impossible, to interpret. 

A few of the low permeabilities in facies 4 correspond well with those intervals 

where stratification is highlighted by abundant amounts of carbonaceous and silty 

material (Figure 4.14). These intervals constitute facies 4 (Type 2) (Chapter 3; Plate 

3 .15). Presumably, the carbonaceous material has a similar affect on permeability as does 

silt laminae; it reduces vertical permeability. This theory was not tested using thin-section 
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Fig.4.14. Grain Size (J..Lm) vs. Permeability mD cross plot for Facies 4 (Type 1) and (Type 2). 
The blue diamonds correspond to data from Facies 4 Type 1 and the red diamonds correspond to 
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most of the low permeabilities occur where there is abundant carbonaceous material (red­
diamonds) and high permeabilities occur where there is no such material; however, it must be 
kept in mind that the low permeabilities associated with the carbonaceous material might also 
reflect the fme grain sizes associated with the carbonaceous material. 



190 

analysis as silty sandstone intervals have polymodal grain size distributions. Analyzing 

such samples is not accounted for in the Folk and Ward (1957) equation. The range of 

permeabilities associated with intervals that contain carbonaceous material might be a 

function of its abundance and distribution because these two parameters differ between 

intervals. The alternative to these statements is that the very-fine grain sizes associated 

with the carbonaceous material (Figure 4.14) account for these low permeabilities. 

Differentiation of these two theories would require petrographic (thin section) or image 

analysis. 

The range of permeabilities in each of the stratified facies, which cannot be 

accounted for by grain size and sorting, is likely the result of variable amounts of cement. 

It might also be that the small amount of bioclastic material and siderite cement in these 

facies influence some of these values (refer to Appendix B); however, without further 

data this is difficult to establish. Confirmation of this would likely require detailed 

petrographic or image analysis. 

The negligible permeabilities associated with facies 5 and facies 6 are attributed 

to pervasive calcite cementation. The near-zero permeabilities imply that intervals of 

these facies have almost no ability to transmit fluids (in this case air). Cementation 

reduces pore-throat size, which means that capillary pressures increase, and, as a result­

permeability decreases. 

Facies 7, which is characterized by variable amounts of bioclastic debris and 

authigenic siderite, has an overlapping 95% confidence interval with those for facies 2, 4, 

8, and nearly facies 3 (Figure 4.13). Additionally, facies 7 is similar to facies 1, 2, 3, and 
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4, given that their grain-size versus permeability cross plots are comparable (though 

permeabilities in facies 7 are somewhat lower) (see Figure 4.11). This would suggest that 

shells, serpu1id worm tubes, and authigenic siderite do not affect permeability much more 

than if they were rare or not present at all. However, because higher permeabilities in 

facies 7 are clearly associated with low amounts of shell material and low- to very low 

permeabilities are associated with abundant shelly material (Figure 4.15) it appears that 

the amount of shell material does influence permeability (in combination with other 

factors including serpulid worm tubes and authigenic siderite cement). This result 

indicates that the range of permeabilities for sandstones of equal grain size between 

facies 7 and facies 1-4 arise for different reasons; permeabilities in facies 7 are a result of 

variable amounts and combinations of shell fragments, serpulid worm tubes, authigenic 

siderite and poor sorting. Conversely, the range of permeabilities in facies 1-4 is most 

likely the result of variable amounts of cement, and to a lesser degree, bioclastic material 

and carbonaceous/silty material. 

Facies 7 differs from facies 1, 2, 3, and 4 in that permeabilities ;:::: 150 mD are rare; 

most of the maximum permeabilities are generally no greater than 100 mD. This lower 

limit to maximum permeabilities might be the result of poorer sorting compared with 

other facies due to the bioclastic material (shell and serpulid worm tube fragments). 

Patches of authigenic siderite also likely limit the attainment of higher permeabilities by 

infilling pores and blocking pore throats. Again, this would require petrographic analysis. 

The near-equal range of permeabilities for each grain size in facies 8 suggests that 

factors other than grain size are important in controlling permeability (Figure 4.11 ). The 
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Fig.4.15.Grain size (J..Lm) vs. Permeability (mD) cross plot for Facies 7. The differently colored data 
points (diamonds) represent different amounts of shelly material. For instance, yellow colored 
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defmed separation of data points suggesting that the amount of shelly material influences permeability. 
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absence ofhigh permeabilities (e.g. those over 100 mD) and limited range of 

permeabilities in facies 8 as compared with facies 1-4 and 7 is either a result of the 

stratigraphic position of facies 8 in the core (see below) or the abundant shelly material 

that it contains. 

Facies 8 is principally restricted to depths below 3020 m, in the lower unit of the 

core. Through a number of examples in the above text, it was determined that 

permeabilities for sandstone of the same grain size in a number of different facies are 

typically less in the lower unit as compared to the middle unit. This is taken to suggest 

that (in the absence of additional information) the degree of cementation is greater in the 

lower unit and as a result, permeabilities are lower. Similar to facies 6, it is also possible 

that shells in facies 8 acted as both nucleation sites for calcite cement or dissolved and re­

precipitated as calcite cement. This might explain the absence of the high permeabilities 

and limited range of permeabilities in this facies. However, petrographic analysis would 

be required to investigate and resolve this issue. 

In addition to the greater amount of cement presumably associated with facies 8, 

the tightly packed nature and preferred orientation of the shelly material (Plate 3 .19) 

might be responsible for the generally low permeabilities. The high concentration of 

shells likely inhibits fluid flow into and around the pores and pore-throat networks by 

partially blocking them. Some of the permeabilities in facies 8 might be lower than those 

in facies 7 because of the orientation of the shelly material. Shells in facies 7 are typically 

randomly orientated whereas those in facies 8 have a preferred sub-horizontal to 

horizontal orientation. Sub-horizontally to horizontally oriented shell fragments could 
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affect the way in which fluid travels outward from the tip of the probe permeameter, in a 

way different to the case of randomly oriented shell fragments. However, experiments 

would have to be designed to test such an hypothesis. 

The very low to low permeabilities associated with facies 9 are most likely the 

result of the very fine grain sizes and poorer sorting that characterizes this facies. For 

almost all facies, it has been shown that the finest grain sizes correspond to both low 

permeabilities and limited permeability ranges. Because facies 9 consists of very fine­

grained sandstone and siltstone, it is not surprising that it to has very low permeabilities. 

Poor sorting also likely contributes to these low permeabilities. Burrowing organisms 

redistribute silt and sand, which would have otherwise existed in separate layers (laminae 

or beds). They bioturbate sediments causing heterogeneity at varying scales. This mixing 

causes silt particles to infill pores and block pore throats, which inhibits permeability 

(Weber, 1982). The higher permeability values in facies 9 correspond to those areas 

where there is a higher degree of sorting (more uniform grain sizes and less silt), where 

there are sand-filled burrows, and where there are unburrowed very fine-grained 

sandstones. The range of permeabilities for each grain size in facies 9 might imply that 

sorting differs from one probe permeameter measurement position to the next, or that the 

amount and distribution of cement is variable. 
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CHAPTERS 

CONCLUSIONS, RECOMMENDATIONS, AND IMPLICATIONS 

5.1 Introduction 

This study was undertaken to address two issues with respect to the White Rose A-17 

cored interval and, in general the White Rose field. The first was to test aspects of the 

depositional model currently in use by industry geologists and the second was to 

investigate the influence of the sedimentology on reservoir fluid flow. These issues are 

important for two reasons. First, a principal function of a depositional model is to provide 

a predictor in new geological situations; therefore, if a more accurate model is formulated 

it might be used to better predict the distribution and/or geometry of the reservoir facies 

in other parts of the White Rose field. Secondly, permeability is the single most important 

factor influencing fluid flow in a reservoir; consequently, if sedimentological 

characteristics can be related to permeability, prediction of permeability using these 

characteristics might be possible. Addressing these issues might aid in the future 

development and/or expansion ofthis field. 

This chapter pulls together the most important conclusions of this study, provides 

recommendations for future work on White Rose and other cores, and highlights some of 

the implications of the results of this study to the White Rose oilfield. 
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5.2 Inventory of the Main Conclusions 

The following conclusions with regards to the sedimentology of the White Rose A-17 

cored interval, the depositional environment represented by the cored interval, and 

relationships between the sedimentology and permeability can be made. 

5.2.1 Sedimentology and Depositional Environment 

• Grain size in the White Rose A-17 cored interval ranges from a minimum of 23 

p,m (~ 5.44 0) to a maximum of214 p,m (~ 2.22 0), with an average grain size of 

107 p,m (~ 3.22 0). These are very fine-grained sandstones. 

• Grain-size trends are recognized at different scales: 1) the entire cored interval, 2) 

the bed-set scale, and 3) the bed and interval scales. At the scale of the entire 

cored interval, grain size overall fines upward. At the bed-set scale, fining-upward 

trends are the most common. At the bed and interval scale, static trends then 

fining-upward trends are most common. 

• The cored interval is divisible into three distinct units based upon dominant grain­

size class and lithology. The lowermost 20 m consists predominantly of 

moderately to well sorted fine-grained quartzose sandstone; the middle unit which 

spans ~75 m consists chiefly of very fine-grained sandstones, and the upper unit 

consists of interbedded/ interlaminated very fine-grained sandstone and siltstone. 

• Four principal types of contacts/transitions are recognized in the A-17 cored 

interval. The most abundant type of contact is erosive. This is followed by abrupt 

and cementation contacts, then gradational transitions. Erosive contacts represent 
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bed boundaries; abrupt contacts represent internal surfaces within beds. 

Cementation contacts either separate pervasively cemented intervals from more 

porous sandstone, or separate facies 5 from facies 6, where facies 5 is pervasively 

calcite-cemented, and facies 6 is similar but contains abundant bioclastic material. 

Gradational transitions are uncommon and typically represent a decrease in grain 

size or the upward reduction of bioclastic debris. Contacts do not appear to be 

organized vertically nor do they have preferred associations with facies in the 

core. Facies 3, which constitutes over half of the core by volume, is the exception. 

• Based on physical and biogenic sedimentary structures, diagenetic features and 

shelly components, nine facies are recognized in the A-17 cored interval. Fine- to 

very fine-grained, low angle cross-stratified sandstone (facies 3, 53.3%) and 

structureless sandstone (facies 1, 14.7%) are the most abundant facies types, 

whereas planar laminated (facies 2, 7.0%), moderately inclined cross-stratified 

(facies 4, 4.6%), pervasively calcite-cemented (facies 5 and 6, combined 15.4%), 

shell-bearing sandstones (facies 7 and 8, combined 3.7%) and bioturbated, 

intercalated very fine-grained sandstones and siltstones (facies 9, 1.3%) are less 

abundant. As with contacts, facies are not well organized stratigraphically. In 

addition, facies associations are poorly developed, with the exception of facies 5 

and facies 6. 

• Facies 1 represents deposition from highly concentrated suspension clouds. Facies 

2 reflects deposition under either unidirectional or oscillatory upper flow-regime 

conditions, during the plane-bed stage of flow. Facies 3 is interpreted as 
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hummocky cross-stratification formed under the combined influence of 

oscillatory and unidirectional currents. Because of the geometrical similarities and 

co-occurrence with facies 3, a similar process is interpreted for facies 4, which­

due to greater apparent dip angles - likely represents different parts (locations 

within) hummocky bedforms. Dissolution andre-precipitation of bioclastic 

components as calcite cement is the most plausible explanation for the cement in 

facies 5 and 6. Erosion, winnowing, and transport, followed by mainly rapid 

deposition is interpreted for intervals of facies 7, while erosion, winnowing, and 

transport followed by deposition under a strong unidirectional current is 

interpreted for intervals of facies 8. The trace fossils that characterize facies 9 

mostly represent specialized feeding/deposit-feeding behavior. 

• The White Rose A-17 cored interval represents deposition in a high-energy 

middle to lower shoreface setting, which experienced frequent and/or intense 

storm activity. This is based on the abundance of well sorted, very fine-grained 

quartzose sandstones, repeated fining-upward grain-size trends, a predominance 

of low-angle, gently curved, convex-up laminations, structureless beds, numerous 

erosional contacts overlain by transported bioclastic debris, rare mud and siltstone 

laminae, and limited biogenic structures. However, through time the depositional 

environment gradually shifted from a more proximal to distal environment, as 

indicated by a change in lithology and the occurrence ofbiogenic sedimentary 

structures which are represented in the upper unit of the core. 
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5.2.2 Sedimentology and its Relation to Permeability 

• Over the entire cored interval, permeability measurements are not strongly 

correlated with grain size. Only in rare cases can linear correlations be 

established. The relationship between grain size and permeability is best defined 

by a data envelope that defines the maximum permeability for a given grain-size 

range. All grain sizes are associated with a range of possible permeabilities; (and) 

these ranges generally increase with increasing grain size. These observations 

suggest that grain size (particularly above 134 11-m) is not the only factor 

controlling permeability and that other factors such as compaction, cementation, 

and sorting (are also significant). 

• For all grain sizes, the middle unit has the largest range ofpermeabilities and the 

highest average permeabilities. This is followed by the upper unit, then the lower 

unit. This is somewhat of a surprise, because the lower unit is the coarsest, with a 

characteristic size of fine sand. The rate at which permeability increases with 

increasing grain size is fastest for the middle, followed by the upper and lower 

units. These observations demonstrate that the middle unit is the most 

homogeneous with respect to permeability. 

• For the middle and lower units, the maximum permeability ceases to increase 

with increasing grain size beyond a certain size; these sizes are different for each 

unit. In the middle unit, this limiting size is 119 11-m; in the upper unit it is 134 

11-m. Different maximum permeabilities associated with these grain sizes, from 

unit to unit, demonstrates that grain size and permeability are not strongly related 
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to one another. Other factors such as compaction, cementation, and sorting likely 

obscure the direct relationship between grain size and permeability that is well 

documented for unconsolidated sands. 

• Changes in grain size and permeability across contacts and boundaries, can be 

linked (i.e., both parameters increase or decrease), or seemingly unrelated to one 

another. Changes in permeability across contacts can occur independently of grain 

size; however, where there is a grain-size change there is typically a change in 

permeability. Most increases in permeability that are accompanied by increases in 

grain size occur across erosive contacts. Most permeability decreases 

accompanied by decreases in grain size occur across abrupt contacts and through 

gradational intervals. 

• The abundance of increases in grain size across erosive contacts provides 

additional support that erosive contacts demarcate bed boundaries. Conversely, 

because the grain size either decreases or does not change at all across most 

abrupt contacts and gradational boundaries, it is reasonable to conclude that such 

surfaces represent internal surfaces and not bed boundaries. 

• The largest permeabilities (those greater than 300 mD) occur in facies 1, 2, and 3 

with the highest values in facies 1. Facies 1 also has the largest number of 

permeabilities greater than 200 mD. This is followed by facies 3 and 2. Facies 4 

and 7 have only a few values higher than 200 mD, while facies 8 and 9 have none. 

Permeabilities equal to or greater than 100 mD in facies 8 are uncommon, and in 

facies 9 are non-existent. 
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• Facies 1 and facies 9 have distinctly different mean permeabilities from all other 

facies in the core. Facies 1 has the highest mean permeability whilst facies 9 has 

the lowest (excluding tightly cemented facies 5 and facies 6). Mean permeabilities 

of all other facies have overlapping 95 % confidence limits about their means 

(the exception being facies 3, though it only misses overlapping by a very small 

amount). 

• High permeabilities, particularly those in facies 1, 2, and 3, appear to be a 

function of good sorting, and in the case of facies 1, the absence of stratification. 

Low permeabilities, especially those in facies 4 (Type 2), facies 7, facies 8, and 

facies 9, appear to be a function of poor sorting associated with carbonaceous 

material or silt, bioclasts, and bioturbation. For each facies, the range of 

permeabilities that cannot be explained by grain size and sorting is likely a 

function of variable amounts and distributions of cement. 

5.3 Recommendations for Future Studies 

• Instead of using a grain-size comparator card positioned adjacent to core slabs 

under a binocular microscope; an ocular micrometer on a petrographic 

microscope could be used to measure grain sizes. Because there are different 

levels of magnification on a petrographic microscope, the sizes of very fine­

grained sandstones and siltstones would likely be easier to determine. However, 

difficulty arises when trying to place core slabs on such microscopes. 
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• Fabric analysis on samples from single pieces of core could be used to distinguish 

whether or not the planar laminated sandstones of facies 2 were produced under 

unidirectional or oscillatory flow conditions. Within a single piece of core, the 

mutual relative orientation of each fabric sample would be known, even if the 

absolute orientation is not. Similarly, this technique could be applied to the low 

angle cross-stratified sandstones of facies 3 to determine whether they were 

produced under purely oscillatory or combined-flow conditions. 

• A more comprehensive x-radiography analysis could be undertaken to determine 

ifthe structureless intervals (facies 1) are, throughout the core, devoid of 

stratification. 

• More cores from the north, south, and west White Rose pools could be logged and 

interpreted in a similar manner to that of the A-17 core to confirm or challenge 

the depositional model, and to evaluate the lateral and vertical continuity of the 

various reservoir facies. 

• Other variables known to have an effect on permeability, particularly cement, 

should be quantified and incorporated into future studies. This is because grain 

size in the White Rose A-17 cored interval is not strongly correlated with 

permeability. 

• To evaluate the type(s), spatial distributions(s), and amount of cement, 

petrographic and/or image analysis techniques could be utilized. 

• Thin-sections of core slabs could be cut around the localities of probe 

permeability measurements. If the position of a permeability measurement on a 
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thin-section were known, it would greatly enhance the ability to determine what 

factors control the magnitude of that measurement. 

• A suite of logs (e.g. gamma, spectral gamma, neutron-density, resistivity etc.), 

could be compared visually with vertical permeability profiles and/or statistically 

with permeability measurements. Correlations might exist which otherwise could 

not be recognized/determined through a conventional core-based analysis. 

• A more in-depth examination of the sorting and its relationship with permeability 

could be undertaken utilizing thin-sections. 

5.4 Implications for the Future Development and/or Exploration of the White Rose 

Oilfield 

• Results of this study demonstrate that for the White Rose A-17 cored interval, and 

potentially the White Rose field, a middle to lower shoreface depositional model 

is appropriate for future development and/or exploration. 

• The A-1 7 cored interval is divisible into three units. The middle unit, which 

represents depths from ~3018-2945 m, is on average the most permeable of the 

three units. Reservoir models should incorporate this observation. 

• The pervasively calcite-cemented intervals represented by facies 5 and facies 6 

have mostly nodular geometries; thus, they are unlikely to be laterally continuous 

and should not significantly affect the vertical migration of fluids. 

• Grain size can be used as a predictor of maximum permeability for given 

reservoir facies though permeability could be much less. In addition, maximum 
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permeabilities for each facies differ between the lower, middle, and upper units of 

the core. 

• Most facies have overlapping grain-size versus permeability distributions, hence, 

the prediction of facies type using grain size and permeability alone is likely not 

possible. 

• Structureless, fine- to predominantly very- fine grained quartzose sandstones of 

Facies 1 have the highest mean permeability and are the most permeable for any 

given grain size. A better understanding of the origin and geometry of Facies 1 

would be beneficial to production and reservoir modeling teams. 
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APPENDIX A 

CD with Excel File of the White Rose A-17 Core Sedimentological and Permeability 
Data- Back Cover of Thesis 
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APPENDIXB 

Logs with Sedimentological and Permeability Data 
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Grain Size (~m) Permeability mD Shells Siderite Serpulids 

From left to right, logs displaying grain size, position of facies, permeability, and the abundance of shells (fragments), siderite (authigenic), 
and serpulid worm tubes (fragments) for the interval between 2950-2940 m, White Rose A -17 core. 

Scale 15mm = lm 
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Grain Size (~m) Permeability mD Shells Siderite Serpulids 

From left to right, logs displaying grain size, position of facies, permeability, and the abundance of shells (fragments), si erite (authigenic), 
and serpulid worm tubes (fragments) for the interval between 2960-2950 m, White Rose A-17 core. 

Scale 15mm = lm 
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Grain Size (~m) Permeability mD Shells Siderite Serpulids 

From left to right, logs displaying grain size, position of facies, permeability, and the abundance of shells (fragments), siderite (authigenic), 
and serpulid worm tubes (fragments) for the interval between 2970-2960 m, White Rose A-17 core. 

Scale 15mm = lm 
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From left to right, logs displaying grain size, position of facies, permeability, and the abundance of shells (fragments), siderite (authigenic), 
and serpulid worm tubes (fragments) for the interval between 2980-2970 m, White RoseA-17 core. 

Scale 15mm = lm 
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Siderite Serpulids 

From left to right, logs displaying grain size, position of facies, permeability, and the abundance of shells (fragments), siderite (authigenic) 
and serpulid worm tubes (fragments) for the interval between 2990-2980 m, White Rose A-17 core. 

Scale 15mm = lm 
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Siderite Serpulids 

From left to right, logs displaying grain size, position of facies, permeability, and the abundance of shells (fragments), siderite (authigenic), 
and serpulid worm tubes (fragments) for the interval between 3010-3000 m, White RoseA-17 core. 

Scale 15mm = lm 
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Serpulids 

From left to right, logs displaying grain size, position of facies, permeability, and the abundance of shells (fragments), siderite (authigenic), 
and serpulid worm tubes (fragments) for the interval between 3000-2990 m, White Rose A-17 core. 

Scale 15mm = lm 
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Grain Size (~m) Permeability mD Shells Siderite Serpulids 

From left to right, logs displaying grain size, position of facies, permeability, and the abundance of shells (fragments), siderite (authigenic), 
and serpulid worm tubes (fragments) for the interval between 3020-3010 m, White RoseA-17 core. 

Scale 15mm = lm 
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Serpulids 

From left to right, logs displaying grain size, position of facies, penneability, and the abundance of shells (fragments), siderite (authigenic), 
and serpulid wonn tubes (fragments) for the interval between 3030-3020 m, White Rose A-17 core. 

Scale 15mm = lm 
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Grain Size (~m) Permeability mD Shells Siderite Serpulids 

From left to right, logs displaying grain size, position of facies, permeability, and the abundance of shells (fragments), siderite (authigenic), 
and serpulid worm tubes (fragments) for the interval between 3040-3030 m, White Rose A-17 core. 

Scale 15mm = lm 
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Siderite Serpulids 

From left to right, logs displaying grain size, position of facies, permeability, and the abundance of shells (fragments), siderite 
(authigenic), and serpulid worm tubes (fragments) for the interval between 3047-3040 m, White Rose A-17 core. 

Scale 15mm = lm 










