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Abstract 

This thesis is primarily aimed at the development of new functional organic 

materials based on two classes of important π-conjugated molecular building blocks, 

namely conjugated oligomers and tetrathiafulvalene analogues (TTFVs). While rational 

molecular design has been the overarching theme of my synthetic and characterization 

work, the ultimate objective of this research is locked on exploring applications in 

nanoscale molecular and supramolecular materials and devices. The detailed thesis work 

consists of three major projects as summarized below.  

The first project investigates a series of boronic acid functionalized π-conjugated 

oligomers as efficient fluorescence chemosensors for some biologically important 

analytes (e.g., monosaccharides and fluoride ion). The novelty of this project lies in the 

design of diverse shapes and -conjugation patterns of the oligomer fluorophores. In 

particular, structurally-defined co-oligomers made of phenylene ethynylene and 

phenylene vinylene repeat units (simply referred to as OPE/OPV hybrids), which were 

constructed in linear, cruciform, and H-shapes. Synthetic access to these unprecedented 

-oligomers has allowed systematic characterizations and comparative studies to be 

conducted, leading to in-depth understanding of the fundamental structure-property 

relationships. The second project deals with the synthesis of dithiafulvalene (DTF) 

endcapped OPE/OPV co-oligomers and the characterization of their supramolecular 

interactions with carbon nanomaterials (fullerenes and carbon nanotubes). These studies 

indicate that the DTF functionality plays a key role in enhancing the non-covalent binding 
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of the DTF-derived oligomers with fullerenes and carbon nanotubes, owing to the 

excellent electron-donating properties of DTF. The third project embarked on the design 

of a group of novel TTFV-arene hybrids as synthetic receptors for fullerenes and 

transition metal ions. The chemical synthesis of these functional materials has been 

implemented on the basis of various classical and modern organic synthetic 

methodologies, such as the Arbuzov reaction, the Horner-Wittig reaction, the Sonogashira 

coupling and the Cu-catalyzed alkyne azide coupling (one of the flagship click reactions). 

The use of such high-yielding reactions paved the way for modular preparation of TTFV-

based chemosensors and other functional molecular systems.  

While a major portion of this thesis work is dedicated to advanced organic 

synthesis, material characterizations using state-of-the-art instrumental techniques 

constitutes an indispensible part as well. It is worth highlighting that the characterization 

work done in this thesis encompasses a broad range of analytical methods, including UV-

Vis absorption and fluorescence spectroscopy, electrochemical (cyclic voltammetry and 

differential pulse voltammetry) analyses, atomic force microscopy (AFM), and single-

crystal X-ray structure analysis. Moreover, the acquired UV-Vis and fluorescence data in 

the studies of chemosensors and receptors were subjected to a comprehensive global 

spectral fitting analysis to elicit equilibrium constants and binding stoichiometry in an 

accurate and reliable manner.  
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Chapter 1  

Introduction 

1.1 An Overview of Nanomaterials 

 

The word “nano” has captured considerable attention from almost all scientific 

disciplines in the past few decades, as it shows the way to the nanometer-scale world 

where the smallest human–made devices can have a communication with the atoms and 

molecules of the natural world.
1
 In general, nanotechnology and nanoscience refer to the 

study and manipulation of nanosize materials. These nanomaterials are characterized by 

their spatial dimensions, ranging from about 0.1 nm to 500 nm, and they have 

demonstrated novel applications in numerous fields. Nanomaterials exhibit significantly 

different chemical and physical properties compared to the bulk materials with the same 

chemical composition. The unique and unprecedented structural properties of 

nanomaterials can lead to new generation of devices and technologies, however, the 

synthesis of nanomaterials with controlled sizes and shapes is a challenging task. For this 

reason, great efforts have been made by material chemists to pursue useful synthetic 

methods to access well-defined nanomaterials as well as to explore their practical 

applications.  
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The beginning of nanotechnology can be traced back to a visionary statement by Richard 

Feynman, a famous physicist who won the Noble prize in physics in 1965. In 1959, 

Feynman gave a series of lectures on physics at an American Physics Society meeting 

held at Caltech. In one of the lectures, he started with that, “there is plenty of room at the 

bottom, not just room at the bottom, what I demonstrate is that there is plenty of room 

that you can decrease the size of things in a practical way”. With that being said, he 

continued to suggest that ordinary machines could be brought to the molecular level by a 

step down process.  Eventually, this lecture laid the foundation for a new field of science 

and technology, which is now widely known as nanotechnology. In theory, the 

production of nanomaterials can be conducted via two major approaches, “top-down” and 

“bottom-up”, as categorized by professor Ozin at the University of Toronto.
2
 The top-

down approach has been mainly developed by the community of solid-state physicists 

and it is associated with the break-down of bulk materials using microfabrication 

methods to nanometer size with a desired shape. However, this method has an important 

limitation; that is, a large proportion of materials is wasted during the production process. 

On the other hand, the bottom-up approach, which has been mostly adopted by chemists, 

utilizes the fundamental principles of self-assembly to make nanomaterials with large 

superstructures from small molecular building blocks. The field of nanochemistry has 

thus grown explosively because of an increasing interest in the bottom-up approach by 

chemists and it provides an alternative to the preparation of nanomaterials that cannot be 

accessed via the top-down approach.  
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Figure 1.1: Schematic diagram showing the top-down and bottom-up approaches for the 

synthesis of nanomaterials (left) and applications of nanomaterials (right) (Adopted from 

reference 2 with permission). 

One of the greatest challenges in nano-science and technology is how to 

synthetically create functional nanomaterials with desired properties, high degrees of 

structural order, and high performance. In recent years, the bottom-up approach for the 

synthesis of nanomaterials has become more popular than the top-down approach, as it 

allows better structure and property control at the molecular level. A thorough 

understanding of the concepts of supramolecular chemistry has enabled various synthetic 

protocols to be developed for precise and convenient assembly of molecular components 

into complex supramolecular structures. Nature has created a vast array of complex 

nanostructures on the nanometer scale with amazing accuracy and precision. This has 

been a key inspiration behind the synthetic methodologies developed to create 

nanostructures through the bottom-up approach. For example, an understanding of the 



4 
 

self assembly of tobacco mosaic virus (TMV) has inspired the construction of some 

analogous nanodevices (Figure 1.2).
3
  

 

Figure 1.2: Self assembly of TMV virus (Adopted from reference 3 with permission). 

It is a known fact that mimicking naturally existing nanostructures based on the 

current synthetic chemistry is too complicated and always challenging. More efforts are 

needed to first understand the self-assembling behavior in biological nanostructures. 

Presently, one of the key goals in the research on nanotechnology is aimed at the creation 

of ultra-miniaturized nanodevices that show superior properties and unprecedented 

molecular functions. Initially, the development of new nanomaterials and new fabrication 

methodologies for molecular devices was mainly based on inorganic materials. However, 

in the last two decades, there has been an exponential growth of nanotechnology as a 

result of the development of new synthetic strategies for organic based nanomaterials in 

conjunction with the availability of advanced research tools for their characterization and 

manipulation. In this respect, the number of -conjugated organic nanomaterials for 
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electronic, optoelectronic and photonic applications has increased significantly and the 

use of organic nanomaterials has encompassed a wide range of fields; for example, 

organic light-emitting diodes (OLEDs), organic thin-film transistors (OTFTs), optical 

lasers, photodynamic therapies (PDT), and organic solar cells.
4
 In the following section, 

some landmarks in recent nanochemistry research will be introduced and discussed.  

1.2 Landmarks in Nanochemistry 

There are several milestones in the history of nanoscience and nanotechnology. In 

the mid 1980s, Eric Drexler, one of the founding fathers of modern nanotechnology, 

introduced the concept of building nanomaterials in an atom-by-atom manner and 

dreamed of constructing nanomachines.
5
 Since then the focuses on nanoscience and 

nanotechnology have interfaced with other disciplines, such as biology, chemistry, 

electrical engineering, and many others, to create a completely new area of research. 

According to Drexler, a nanomachine is a toolbox consisting of many nanorobots. Each 

of the nanorobots can move molecules so quickly and place them in a systematic manner 

to produce any kinds of desirable substances. He also envisioned that these tiny machines 

would interact directly with the molecular components of cells and be capable of 

repairing the tissue or killing frozen cells. However, with the current technology, this 

imaginary concept is most unlikely to happen soon. On the other hand, there are on-going 

investigations into mimicking biologically existing materials that are of great interest to 

current nanotechnology research.    
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1.2.1 Supramolecular Chemistry        

The most important field of chemistry that has indeed accelerated the 

development of nanoscience and nanotechnology is supramolecular chemistry. Jean-

Marie Lean, a renowned French chemist, is known as the father of supramolecular 

chemistry. He shared the 1987 Noble Prize in chemistry with Donald Cram and Charle 

Pedersen for his pioneered work in supramolecular chemistry. Simply defined as “beyond 

the molecular chemistry”, supramolecular chemistry primarily focuses on the studies of 

the non-covalent interactions between molecules rather than the covalent forces within 

molecules; for instance, how molecules recognize each other and self-assemble into 

functional supramolecular systems.
6
  

 

 

 

 

Scheme 1.1: From molecular to supramolecular chemistry: molecules, supermolecules, 

molecular and supramolecular devices. 

The discipline of supramolecular chemistry has expanded substantially 

accelerated during last two decades, with a thorough understanding of the principles of 

molecular recognition and self-organization has been well established. The knowledge 
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offers guidance to the creation of functional molecular nanostructures and devices.
6
 For 

instance, numerous synthetic receptors capable of recognizing specific substrates have 

been developed based on the fundamental principles of non-covalent interactions taking 

place in guest-host chemistry. The non-covalent forces are usually weaker than covalent 

bonding, but if there are numerous such forces acting together between molecules 

oriented at appropriate distances and geometries, the overall interaction can be strong 

enough to dictate the molecular and supramolecular properties. Typical non-covalent 

forces include ion-ion, ion-dipole, and dipole-dipole interactions as well as -stacking, 

van der Waals forces, and hydrophobicity. 

Self-assembly and self-organization processes in combination with molecular 

recognition mechanisms offer an alternative to both top-down and bottom-up 

nanofabrication approaches for creating various advanced supramolecular materials and 

nanomaterials.
6
 Self-assembly is a process of association between two or more molecules 

by spontaneous non-covalent binding forces to create large nanostructures with desirable 

shapes. For example, the most complex structure of DNA has been made by the self-

organization process, where two individual strands self-assemble via hydrogen bonding 

and aromatic -stacking to form a double helical structure. The development of self-

assembly as a synthetic approach to create highly ordered functional nanomaterials has 

been a great challenge. However, synthetic chemists have found ways to control the 

physical behavior of various molecular materials by altering the functional groups within 

the molecules. For example, Yagai et al. recently demonstrated the hierarchical self-

assembly of amide substituted azobenzene dimers into toroidal, tubular, and helical 
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nanostructures under the control of temperature, concentration, or light (Scheme 1.2).
7
 

This is one of the finest examples of synthetically derived nanomaterials that mimic 

biologically existing systems such as the Tobacco Mosaic Virus (TMV).  

 

Scheme 1.2: Schematic representation of hierarchical self-assembly of compound 1 

(Adopted from reference 7 with permission).    

 

Figure 1.3: AFM images of compound 1 (left and middle), and TEM image of the 

aggregates of compound 1 (Adopted from reference 7 with permission).  
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1.2.2 Carbon Nanomaterials 

1.2.2.1 Discovery of Fullerenes 

Another important milestone in nanotechnology is the discovery of [60]fullerene, 

which was deemed as the first carbon nanomaterial. Robert Curl, Richard Smalley, and 

Harold Kroto made the discovery of C60 in 1985, which led them to winning the Noble 

Prize in chemistry in 1996. Their experimental techniques for the production of fullerenes 

were published in Nature in 1985.
8
 Among all hollow-carbon materials discovered, C60 

has been the most thoroughly studied fullerene because it is relatively stable, highly 

symmetric, and can be abundantly produced.  

 

Figure 1.4: Structures of C60 (left) and C70 fullerenes (right). 

C60 fullerene appears like a soccer ball in shape and it consists of 12 pentagons 

and 20 hexagons fused all together. The molecule is spherical and each of the C-C bond 

angles is deviates from the ideal 120
o
 for an sp

2
-hybridized carbon center, which in turn 

results in a significant bond angle strain. As a result, fullerene exhibits characteristics 

resembling a polyalkene system. The relief of this strain is primarily responsible for the 

chemical reactivity of C60 fullerene. The electronic properties of C60 dictate that it has a 
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low-lying triply degenerate LUMO level, which makes C60 a good electron acceptor. 

Upon reduction, the surface of C60 can hold up to six electrons in total. 

Initially, C60 could be synthesized only in small quantities due to the low yield of 

the production method. In 1990, Wolfgang Kratschmer and Donald Huffman came up 

with a simple method of producing C60 fullerene by arc-vaporization of graphite, which 

opened the avenue for large-quantity production of C60.
9
 Indeed, the scientific community 

immediately benefited from this discovery, while the study of C60 based nanomaterials 

has been substantially developed ever since then. The low solubility of fullerenes in 

common organic solvents and water restricts their use in various applications. However, 

covalent and non-covalent functionalizations of C60 fullerene have produced a wide 

variety of C60 fullerene derivatives which not only show greatly improved solubility but 

also retain most of the properties of pristine C60.  

 

Scheme 1.3: Cyclopropanation reaction on C60 fullerene. 

In recent years, the scientific community has made tremendous efforts to develop 

new synthetic methodologies for the functionalization of fullerenes. Among them 

cycloaddition and nucleophilic addition reactions have been most widely used, since C60 
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fullerene behaves as an electron-deficient alkene rather than a polyaromatic hydrocarbon. 

In 1993, Bingel for first time devised a cyclopropanation protocol for C60 fullerene (i.e., 

the Bingel reaction), which later has become the most widely used method for 

regioselective functionalization of fullerenes.
10

 In this method, the nucleophilic addition 

of an anion to fullerenes takes place first followed by an intramolecular nucleophilic 

substitution (Scheme 1.3), leading to the formation of methanofullerene derivatives.  

 

Scheme 1.4: Formation of fullerene dimers via carbene dimerization. 

Eventually, the cyclopropanation reaction has been successfully applied to the 

functionalization of various fullerenes and set a platform for the development of novel 

fullerene derivatives such as fullerene-dendrimers, fullerene-containing thermo-liquid 

crystals, and fullerene dimers.
11,12

 In 1999, Dragoe and co-workers reported fullerene 

dimers C121 and C122 which were prepared through a carbene intermediate of 
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methanofullerene as outlined in Scheme 1.4.
13

 It is worth noting that the researchers 

performed STM imaging of the C121 and C122 dimers, and the results clearly showed a 

dumbbell like molecular shape (Figure 1.4).  

 

Figure 1.5: STM image of C122 deposited on graphite. (Adopted from reference 13 with 

permission) 

Recently, a variety of supramolecular C60 and tetrathiafulvalene (TTF) based 

dyads and polyads have been constructed by [4+2] cycloaddition reactions in which the 

TTF group acts as an electron donor. In 2002, Guldi and co-workers reported a series of 

C60-TTF dyads where an anthracene containing π-extended TTF unit was linked to C60 by 

the Diels-Alder reaction (Scheme 1.5).
14
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Scheme 1.5: Fluorescence switches based on C60-TTF dyads 9. 

The cycloaddition reaction shown in Scheme 1.5 is thermally reversible, which 

enables the molecular system to function as a fluorescent switch. Other examples of 

active dyads bearing TTF functionalities and porphyrin units have been reported where 

electron transfer reactions were observed. The inherent photonic and electronic properties 

of fullerenes have played an active role in the development of nanoscale materials and 

devices. One of the most successful applications of fullerenes is related to the electron 

transfer process (artificial photosynthesis) in which the electron donors such as TTFs, 

metallocenes, amines, π-conjugated oligomers and dendrimers are connected to electron 

accepting fullerenes. The electron transfer process can easily take place between fullerene 

and a chromophore that absorbs light such as porphyrin and phthalocyanine. In the case 

where non-photoactive units are involved, such as TTF and ferrocene units, the fullerene 

gets excited at first by light irradiation to a singlet excited state and then the electron 

transfer occurs from donor to acceptor. 
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Figure 1.6: Chemical Structures of compounds 10 and 11. 

The design of organic solar cells comprised of fullerenes and organic active 

materials has become the most promising field in materials science over the past few 

years. These devices are mostly fabricated based on the so-called “bulk heterojunction” 

(BHJ) approach in which C60 acts as an electron acceptor and organic materials such as 

organic conjugated polymers and oligomers as donors.
15-17

 The use of functionalized 

fullerenes such as C61-butyric acid methyl ester (PC60BM) has greatly increased the 

interactions of fullerenes with soluble organic materials when compared to the case of 

using pristine C60 fullerene.                    

In 2009, Nguyen and co-workers designed and synthesised a solution-processable 

DPP-based thiophene derivative by using a fused benzofuran core blended with PC60BM 

11 (Figure 1.6).
18

 The obtained LUMO level of DPP(TBFu)2 10 is much higher than that 

of PCBM with a difference of 0.5 eV. The bulk heterojunction solar cell using this small 

molecule as electron donor and PC71BM as electron acceptor yielded the best power 

conversion efficiency of over 5.2 % at a solar irradiation of 100 mW cm 
-2

 with a high fill 
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factor of 0.48 at low light intensity at 23 mW cm 
-2

, when a mixture of 70/30 

donor/acceptor (by weight) is used as the active layer.  

 

Figure 1.7: Structures of polymers 12, 13 and fullerene derivatives 11 and 14. 

As another example, in 2007, Heeger and co-workers reported a multi-layer bulk 

heterojunction tandem cell comprised of polythiophene-based materials 12 and 13 as 

active layers, and PC60BM 11 and PC70BM 14 as electron acceptors (Figure 1.7).
19

 The 

two polymer-fullerene cells are separated by a TiO2 layer and a highly conductive hole 

transport layer made of poly(3,4 ethylenedioxylenethiophene)-polystyrene sulfonic acid 

(PEDOTPSS). A much higher efficiency has been achieved with this tandem cell, a value 

of 6.5 % at  low light intensity of 7.8 mA/cm
2
.  
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Over the past few years, polymer-based solar cells have been continuously 

optimized for better performance. The current state-of-the-art of polymer solar cell have 

reached an efficiency of 8.6% and higher.
20-22

 More recently, in 2011, researchers at 

Mitsubishi Chemicals reported an organic solar cell with 9.2% power conversion 

efficiency, which may compete with the traditional inorganic solar cells. So far this is the 

highest value ever claimed in the field of organic solar cells. However, the power 

conversion efficiency is not the only important factor relevant applications. Other factors 

such as the lifetime and stability of the organic materials being used must also be taken 

into consideration. In general, most of the organic semiconducting materials undergo 

photo-catalyzed reactions with oxygen or water to form non-semiconducting species.
23

 

There are two main approaches to increase the stability of organic materials. The first is 

to develop materials with intrinsic stability at ambient conditions. The second strategy is 

to use encapsulation techniques to limit the exposure of organic semiconducting materials 

to reactive elements. 

With the ever growing research on novel fullerene materials, the supramolecular 

architectures containing fullerenes have received significant attention due the fact that 

fullerenes can form relatively stable complexes with aromatic moieties via non-covalent 

forces, such as hydrogen bonding, metal templates, and π-stacking. An interesting class 

of supramolecular nanoring structures have been constructed which can incorporate 

fullerenes in their cavity by means of concave-convex π-staking. In general nanorings are 

cyclic loops with continuous overlap of π-orbitals along their cyclic backbones.  



17 
 

In 2003, Oda and co-workers synthesized a series of paraphenyleneacetylene 

carbon nanorings with the average diameters of 13.2 and 17.3 Å. With these nanorings, 

Oda investigated their host-guest interactions with fullerenes. The experiments showed 

that [6]paraphenyleneacetylene 15 formed a 1:1 complex with fullerene 4 (Scheme 1.6), 

whereas [8]paraphenyleneacetylene exhibited very weak binding with fullerene 4. 

Furthermore, the complex of [6]paraphenyleneacetylene 15 and a fullerene derivative has 

been characterized by X-ray analysis to reveal the precise features of the binding (Figure 

1.8).
24

 

 

Scheme 1.6: Complexation of fullerene derivative 4 with [6]paraphenyleneacetylene 

nanoring (Adopted from reference 24 with permission). 

 

Figure 1.8: X-ray structure of 4@15 (Adopted from reference 24 with permission). 
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Another type of interesting fullerene-containing supramolecular architecture is the 

carbon peapod (Figure 1.9) discovered in the late 1990s as side products of carbon 

nanotube production. In the year 2000, Luzzi and Smith reported the first production 

method for carbon peapods.
25

 The fullerene balls are successfully introduced into the 

cavity of carbon nanotubes by laser vaporization and subsequent annealing of raw carbon 

nanotubes in the presence of nitric acid and fullerenes. Recently, advanced methods for 

production of carbon peapods have been reviewed, and nowadays carbon peapods can be 

prepared by easy and cost-effective procedures.
26

              

 

Figure 1.9: Structure of a carbon peapod (Adopted from reference 27 with permission).
27

  

1.2.2.2 Discovery of Carbon Nanotubes 

Carbon nanotubes (CNTs) were discovered in 1991 as a new class of carbon 

allotropes.
28

 Since then, CNTs have become enormously popular and have triggered an 

explosive growth of research and development. Unlike fullerenes, the CNTs are tubular-

shaped carbon nanomaterials (imagine a sheet of graphite being rolled into a tube), and 

were initially observed as a minor byproduct of fullerene synthesis. A great deal of effort 

has been made in last two decades towards their synthesis, purification, and structural 
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elucidation. CNTs can be single-walled carbon nanotubes (SWNTs) and multi-walled 

carbon nanotubes (MWNTs) in terms of layer formation (Figure 1.10).  

 

Figure 1.10: Representative structures of SWNTs, MWNTs and three different types of 

SWNTs according to the angle of chiral vector.  

It is almost impossible to name CNTs based on the IUPAC nomenclature rules; 

however, the structure of CNTs is characterized according to the different angles in 

which a graphene sheet is rolled up to form various types of SWNTs, such as “zigzag”, 

“armchair”, and “chiral” (Figure 1.10). They are defined based on the chiral vector (Ch) 

of graphene lattice and a pair of descriptors (n,m). If n = m, CNTs are called armchair, 

when m = 0, they are named zigzag nanotubes, otherwise they are identified as chiral 

(Figure 1.10). In the case of armchair CNTs, the graphene sheet is turned by 30
o
 before it 

starts to roll up, whereas in chiral CNTs the rolling angle is between 0
o
 and 30

o
. These 

wrapping angles have profound effects on the electronic properties of CNTs, as they 

dictate the changes in wave functions before and after wrapping of the graphene sheet.  In 

terms of electronic properties, CNTs can be categorized into “metallic” and 



20 
 

“semiconducting” tubes. If n-m=3x (x is an integer), the CNTs are referred as metallic, 

otherwise they are semiconducting. 

In addition to their excellent optical and electrical properties, CNTs also exhibit 

unique mechanical and thermal properties that make them very useful in current science 

and technology. The properties of a CNT usually depend on the radius and the helicity (or 

chirality) of the tube. The C-C bond present in a CNT is considered as one of the 

strongest bonds in nature, providing high tensile strength and stiffness normally about 

220 times that of steel. It has been noted that the Young’s modulus for CNTs is several 

times larger than diamond, which gives a very high elastic strength to the tubes.
29

 The 

sidewall of an ideal SWNT is composed of hexagonal networks of carbon atoms with sp² 

hybridization, whereas the end cap contains hexagonal as well as pentagonal networks of 

carbon atoms.                               

In general, the chemical reactivity of CNTs arises from their π-orbital mismatch 

around the tube. It has been known that, the mechanical deformation on the curved 

surface of a CNT may directly influence its chemical reactivity. For example, it is 

predicted by the calculations that the hydrogenation energies of C atoms around the 

center of the CNT increases as the bending angle increases from 0
o
 to 40

o
 (Figure 1.11).

30
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Figure 1.11: Chemical reactivity (hydrogenation energy) change as a function of bending 

angle (Adopted from reference 30 with permission). 

SWNTs can interact strongly with one another to form more or less closely 

packed bundles of highly complex architectures by supramolecular forces such as π-π 

interactions and van der Waals forces on their sidewalls.
31

 The bundling effect of SWNTs 

makes it extremely difficult to disperse them in solvents. This restricts the direct use of 

SWNTs in device fabrication. To overcome this obstacle, various chemical 

functionalization methods have been developed, among which the so-called covalent and 

non-covalent functionalization methods have been extensively investigated. Details of 

these methods will be discussed in Chapter 3.                    

Many methods have been exploited for producing CNTs, while some commercial 

“as-prepared” SWNTs are actually named after their production methods; for example, 

high pressure CO disproportionation (HiPCO), and cobalt-molybdenum catalyzed 

(CoMoCAT) nanotubes. These nanotubes have been popularly used in research and 

various applications; however, the preparation of SWNTs with specific diameters and 
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lengths is very challenging. Several groups have been engaged in synthesizing 

structurally uniform SWNTs. In 2013, Itami and co-workers reported the total synthesis 

of SWNTs by using carbon nanorings such as cyclic polypheneylenes as templates (See 

Figure 1.12).
32

 

 

Figure 1.12:  A ‘growth-from-template’ strategy for the bottom-up synthesis of carbon 

nanotubes (Adopted from reference 32 with permission). 

Another promising approach for the synthesis of SWNTs is by “carbon nanotube 

cloning” which allows the consistent growth of carbon nanotubes with selected chirality 

and uniform diameter. Although only preliminary progress has been made in this 

direction, there is a hope that this could solve this important problem in nanotube 

chemistry. This process involves the preparation of the end cap of a CNT followed by the 

cloning of this end under chemical vapor deposition (CVD) conditions. In 2010, Liu and 

co-workers reported the synthesis of SWNTs from an opened C60 fullerene by the end cap 

approach (as shown in Figure 1.13). In this work, CVD growth of nanotubes from a 

defined half-fullerene end cap was successfully achieved at 900 
o
C for 20 min.

33
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Figure 1.13: CVD growth of an end cap to a carbon nanotube (Adopted from reference 

33 with permission). 

 Applications of carbon nanotubes 

CNTs have captured a great deal of interest because of their unique mechanical, 

electronic, and chemical properties that make them the leading nanomaterials in various 

applications.
34-36

 

One of the most interesting applications associated with CNTs is hydrogen gas 

storage, which is an ideal source of energy because of its environmental friendliness and 

capability of regeneration. Because of their specific cylindrical and hollow geometry, 

SWNTs are excellent candidates for storing gases and liquids within their cavity.
37,38 

However, to make this technology commercially viable, large-scale and low-cost 

preparation methods for CNTs must be well established, while a number of obstacles 

arising from the effect of other materials on hydrogen storage also need to be overcome. 

CNTs can be used as templates for making nanowires and nanosheets, taking advantage 

of the strength, durability, and flexibility of CNTs. A superelastic CNT has been reported 

(Figure 1.14) as a nanosheet with elongation strength about 220% at 80-1900 kelvin 

temperatures.
39
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Figure 1.14: Photographic image of a rigidly end-supported 50-mm-long by 2-mm-wide 

nanotube sheet strip (top), and the same sheet strip expanded in width by applying 5 kV 

with respect to ground (bottom) (Adopted from reference 39 with permission). 

In addition to the applications mentioned above, CNTs have also found uses in 

many other fields; for example, biosensors,
40

 nanomedicine,
41

 conductive textiles,
42

 and 

organic solar cells,
43

 just to name few.  

1.2.2.3 Discovery of Graphene 

The most recent milestone in the history of nanochemistry is the discovery of 

graphene which is a two-dimensional crystalline form of sp
2
 hybridized carbon. This 

nanomaterial was first isolated by Novoselov et al. in 2004,
44,45

 and since then, it has 

become a subject of intense research, not only for theoretical curiosity, but also for many 

application aspects. The graphene sheet has been a theoretical model for understanding 

the structural properties of CNTs and fullerenes and it is also considered as a basic 

building block for carbon nanomaterials as shown in Scheme 1.7.  
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Scheme 1.7: Formation of nanomaterials from graphene. 

Due to its high transparency (~ 97.7%),
46

 high carrier mobility (200 000 cm
2 

v
-1 

s
-

1
),

44
 large specific surface area (2630 m

2
 g

-1 
for single-layer graphene),

47
 high Young’s 

modulus (~ 1 Tpa),
48

 and excellent thermal conductivity (3000-5000 W m
-1

 K
-1

),
49

 

graphene has become the most interesting candidate in electrical,
50,51

 mechanical,
48,52 

and 

optoelectronic devices.
46

  Ever since Novoselov and Geim’s first isolation of single-layer 

graphene, the research on graphene-based materials has grown at a spectacular pace. A 

simple “pealing” method has been developed by using a tape to extract single layers of 

graphene from graphite flakes. Although this technique requires a lot of patience and 

practice, it has indeed produced high quality single layer graphene (Figure 1.15).
44
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Figure 1.15: Photograph of a multilayer graphene flake with thickness ~3 nm (left), and 

AFM image of single-layer graphene (Adopted from reference 44 with permission). 

 

Figure 1.16: The resistance of p-type material decreases upon exposure to electron 

withdrawers (e.g., NO2) and increases upon exposure to electron donors (e.g., NH3) 

(Adopted from reference 55 with permission). 

Recently, a number of groups has been working on graphene-based chemical 

sensors,
53,54

 where the resistance of graphene material was monitored in response to the 

interactions with various analytes. For instance, Kaner’s group demonstrated a moderate 

sensory function of chemically derived graphene materials for a few small-molecule 

analytes, such as NO2, NH3, and dinitrotoluene at ambient temperatures.
55

 In particular, 
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electron-donating groups were found to increase the hole population in pristine graphene, 

leading to increased conductivity as illustrated in Figure 1.16.  

Because of its high transparency, single layer graphene can replace the current 

standard indium tin oxide (ITO) as a coating material in optoelectronic devices, including 

LEDs and dye-sensitized solar cells. The first graphene-based transparent conductor was 

reported in 2008 by Miller and co-workers.
56

 This group used a simple method for the 

fabrication of graphene layers from dip-coating of graphene oxide (GO) sheets on the 

substrate followed by thermal annealing. However, the solar cell built on graphene 

materials gave a PCE of 0.26%, which was much lower than those of ITO-based devices.   

 

Scheme 1.8: Synthesis of two-dimensional graphene nanoribbon 20. 
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Many groups are interested in synthesizing graphene-like polycyclic aromatic  

hydrocarbons (PAHs) as they can be used as models for understanding the properties of 

graphene. A major breakthrough in this area emerged in 2008, when the synthesis of 

nanoribbon-like PAHs 20 up to 12 nm in length was reported by Mullen’s group.
57

 SEM 

and TEM characterizations are shown in Figure 1.17, which disclose well-ordered layers 

of graphene. The Suzuki-Miyaura reaction was used as a key step in the synthesis 

(Scheme 1.8). 

 

Figure 1.17: SEM and TEM images of polymer 20 (Adopted from reference 57 with 

permission). 

1.2.2.4 Conjugated Polymers (CPs)  

Research on conjugated polymers (CPs) has been the most appealing field to both 

academic and industrial sectors since 1977, when the metallic properties of doped 

polyacetylenes (PAs) were first discovered. It was demonstrated that the PAs could be 

oxidized in the presence of iodine vapors and displayed an electric conductivity of 10
-5

 

S.
58

 This unique property of CPs thus opened a door to a new area in materials science, 
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many thanks to the seminal work of three pioneering scientists, Heeger, MacDiarmid, and 

Shirakawa, who were later honored with the 2000 Nobel Prize in Chemistry.  

For years, remarkable progress has been made on the synthesis and device 

applications of functionalized CPs. From the 1990s, research on CPs has received another 

boost after Holmes and co-workers discovered the electroluminescent property of poly(p-

pheneylenevinylene)s (PPVs) and demonstrated their use in organic light emitting diodes 

(OLEDs). In an OLED, the emitting layer material such as PPV is placed between two 

metallic electrodes as schematically illustrated in Figure 1.18.
59

 This discovery has 

become one of the most important landmarks in the history of polymer science. Due to 

their small band gap of about 2.5 eV and electroluminescent properties, PPVs have been 

considered as one of the most useful light emitting conjugated polymers.  

                         

 

 

 

     

Figure 1.18: Schematics of an electroluminescent device fabricated using PPV as the 

active material. 
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The efficiency of an optoelectronic device, such as an OLED, can be altered by 

inclusion of functional groups into the backbone of the polymer-based active material as 

well as by changing the length of the alkyl substitutions on the side chain of the polymer. 

In addition to PPVs, a large number of polymer-based light emitting diodes has been 

demonstrated in the literature; for example, polycarbozoles, polyfluorenes (PFs), and 

polythiophenes (PTs). The electronic properties of all these polymers are different, 

offering controllability over a wide range of emission colors. Due to their relatively large 

bandgaps, PFs tend to give blue-colored light emission, whereas PPVs are generally 

green light emitters and PTs are red light emitting.   

 

Figure 1.19: Structures of cyano-substituted PPV derivatives for electroluminescence.   
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Examples developed as polymeric light emitting materials 21-25 are shown in 

Figure 1.19.
60-62

 It is worth noting the high power efficiency of 5 cd A
-1

 corresponding to 

a luminous intensity of 1000 cd M
-2

 measured for MEH-CN-PPV 21 at 6 V. From the 

viewpoint of commercial viability, the polymer-based LEDs are quite promising, as they 

offer thinner, lighter and higher-resolution displays than conventional LED materials. 

Many big companies have already started marketing OLED gadgets, including some 

popular electronic products such as Google Nexus-one, Samsung Jet, Wave, Galaxy-S, 

Nokia N8 and E7, and several HTC phones.  

Another type of important devices built on conjugated polymers is the solid-state 

lightning device, which offers new opportunities for electronic and semiconducting 

industries. The delocalized π-electrons present in conjugated polymers make them 

capable of absorbing sunlight directly, generating long lived charge separation and 

enabling proper charge transport to usable electric power.  

The first laser application of conjugated polymers was demonstrated in 1992 by 

Moses and co-workers. In their experiment, a solution of poly-2-methoxy-5-(2-

ethylhexoxy)-p-phenylenevinylene (MEH-PPV) 26 in xylene was photo-pumped at 534 

nm. The laser input and output powers were monitored at different concentrations. 

Interestingly, when dilute solutions were used, the laser output power increased very 

rapidly. The researchers also measured the spontaneous emission intensities of MEH-

PPV 26 solutions. There was a significant reduction in the spectral line width observed in 

the laser output occurred, providing evidence for laser action (Figure 1.20).
63
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Figure 1.20: Structure of MEH-PPV 26 (left), and comparison of the spontaneous 

emission spectra of the MEHPPV chromophore (measured without one of the external 

cavity mirrors in diluted solution) to spectrum of the MEH-PPV laser (measured with the 

two external cavity mirrors, in a more concentrated solution of 1mg/mL) (right) (Adopted 

from reference 63 with permission).  

After this successful demonstration of laser application of conjugated polymers in 

the solution phase, many research groups continued to develop solid-state lasers based on 

conjugated polymers. In 1996, Heeger and co-workers reported the first solid-state laser 

application using an MEH-PPV/polystyrene film blended with suspended titanium 

dioxide (TiO2) nanoparticles.
64

 

Without any doubt, conjugated polymers have been the most appealing materials 

to many future sciences and technologies. In addition to the applications mentioned 

above, many commercial devices have been fabricated, in which the conjugated polymers 

are used as the active materials. For example, photoconductors,
65

 polymer solar cells 
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(PSCs),
19

 laser dyes, scintillators,
66

 switching and signal processes,
67

 nonlinear optics 

(NLO),
68

 and optical data storage media.
69

  

1.3 The Heart of Nanochemistry 

The heart of nanochemistry still lies in the design and synthesis of functional 

nanomaterials. Nanomaterials can be broadly divided into two categories, inorganic, and 

organic. Compared to the organic nanomaterials (conjugated polymers, oligomers, 

macromolecules, dendrimers, and small functional organic molecules), the inorganic 

materials (nanoparticles, clusters, and quantum dots) have been more extensively studied 

since the very beginning of the rise of nanoscience. However, progress towards the 

development of synthetic methodologies for the production of both organic and inorganic 

nanomaterials has been remarkable in past two decades. In the following section, some of 

the important synthetic methods for producing nanomaterials will be presented based on 

the literature.  

1.3.1 Inorganic Nanomaterials 

Several methods have been employed for the preparation of inorganic 

nanomaterials (e.g., nanocrystals), and in most cases, the synthesis followed the top-down 

approach. The most common method used for the preparation of metal nanoparticles is 

the reduction of metal salts in the presence of suitable capping agents such as 

polyvinylpyrrolidone (PVP) and tetrakis(hydroxymethyl)phosphonium chloride (THPC). 

For example, Au nanocrystals can be obtained by the reduction of HAuCl4 with THPC 
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acting as the capping agent.
70

 As described by Liz-Marzan and co-workers, Ag 

nanocrystals were synthesized by using N,N-dimethylformamide (DMF) as both the 

stabilizing agent and capping agent.
71,72

  

 

            

Figure 1.21: TEM image of Ag nanoprisms (top), and schematic diagram of the 

proposed light-induced fusion growth of Ag nanoprisms (bottom). (Adopted from 

reference 73 with permission) 

In 2003, Mirkin and co-workers came up with a new strategy for preparing Ag 

nanoprisms which was published on Nature in 2003. As shown in Figure 1.21, the Ag 

nanoprisms were formed by irradiating a mixture of sodium citrate and bis(p-

sulfonatophenyl)phenylphosphine dihydrate dipotassium capped Ag nanocrystals under 

irradiation of a 150 W xenon lamp. The TEM image showed that two different size 
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distributions of nanoprisms were observable.
73

 The scope of this light-driven process has 

later been extended to the synthesis of branched nanocrystals.
74

  

In 2006, Sun and co-workers synthesized magnetic FePt nanocubes with an 

average size of 6.9 nm. In the procedure, FePt nanocubes were synthesized by a reaction 

of oleic acid and Fe(CO)5 with a benzyl ether/octadecene solution of Pt(acac)2. The 

resulting nanocubes could self-assemble into textured super lattice arrays (Figure 1.22). 

This type of nanocrystals can be potentially used as high density information storage 

materials
75 

and high performance permanent magnets.
76

     

 

Figure 1.22: (A) TEM images of (A) Fe50Pt50 nanocubes, (B) HRTEM image of a single 

FePt nanocube, (C) FFT of the cube in (B) (Adopted from reference 75 with permission). 

Metal oxide nanocrystals can be synthesized by solvothermal decomposition of 

organometallic precursors. However, this method usually involves reactions carried out at 

high temperatures in a sealed tube. When low-boiling solvents are used, very high 

pressures are generated during the process. As described by Steigerwald and co-workers, 

the TiO2 nanoparticles can be prepared by reacting low-valent organometallic precursors 
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such as bis-(cyclooctatetraene)titanium (Ti(COT)2) with dimethylsulfoxide (DMSO) in o-

dichlorobenzene.
77

     

Among all metal oxide nanocrystalline materials, ZnO nanocrystals have been the 

most intensively studied systems, owing to their unique optoelectronic properties. They 

are highly semiconducting materials with a large bandgap of 3.37 eV and a large 

excitation binding energy of 60 meV. The potential applications of these nanocrystals 

include UV-lasers, light-emitting diodes, solar cells, and sensors. Recently Hyeon and co-

workers demonstrated a non-hydrolytic sol-gel method could be used to produce ZnO 

nanocrystals in hexagonal and rod shapes (Figure 1.23). In this reaction the ZnO 

nanocrystals are produced by the reaction of zinc acetate with 1, 12-dodecanediol in the 

presence of surfactants at 250 
o
C.

78
 

 

Figure 1.23: TEM images of cone-shaped ZnO nanocrystals (Adopted from reference 78 

with permission). 

In the past two decades, significant advances have been made in the synthesis of 

quantum dots (QDs), colloidal nanocrystals of metal chalcogenides. QDs are highly 
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semiconducting, visible-luminescent nanoparticles composed of an inorganic core 

surrounded by an organic outer layer of surfactant molecules. Research progress in QDs 

has found many applications in optoelectronic devices and biological labeling. The 

emission properties of QDs can be tuned by varying their sizes and shapes as shown in 

Figure 1.24. The QDs made of CdTe/CdS and CdSe/ZnS can strongly emit luminescence 

in specific spectral ranges and have been successfully used for the fabrication of 

fluorescent sensors. For example, the synthesis of CdTe QDs can be performed in the 

aqueous phase by reacting NaHTe solution with a solution of CdBr2 in 3-

mercaptopropionic acid (MPA) at 60 
o
C.

79
                  

 

Figure 1.24: Size dependent emission profiles of QDs.  
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1.3.2 Organic Nanomaterials  

As discussed previously, a major challenge in organic material design lies in how 

to synthesize materials with a high degree of structural order and well-defined properties. 

This requires the development of more efficient and versatile synthetic methodologies 

that are task specific, capable of tackling molecules of great complexity, and widely 

accessible to many synthetic chemists. Fortunately, during the past few decades, the 

number of important synthetic methodologies being explored for the synthesis of 

advanced organic based materials has grown significantly. In the following section, three 

of the most popular synthetic approaches for the synthesis of organic materials, which 

appear more often in the literature than others, will be reviewed.   

1.3.2.1 Olefin Metathesis Reactions 

The emergence of olefin metathesis has greatly expanded the scope of organic 

synthetic chemistry in materials science. The olefin metathesis reaction allows the 

reorganization of carbon-carbon double bonds between different olefins. In the last 

decade, the olefin metathesis reaction has been applied to the synthesis of naturally 

existing compounds as well as functional organic materials.  
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Scheme 1.9: Summary of types of olefin metathesis reactions. 

Although the olefin metathesis reaction was reported as early as 1967, the true 

nature of this reaction was revealed in 1971, when professor Chauvin discovered the 

mechanism for olefin metathesis reaction by envisioning a metallacyclobutane 

intermediate (Scheme 1.10).
80

 Elucidation of this reaction mechanism has indeed opened 

the door for the development of more and more efficient catalysts.  

 

Scheme 1.10: Chauvin’s mechanism for the olefin metathesis reaction. 

As shown in Scheme 1.9,
81

 olefin metathesis is used in different processes such as 

intermolecular reactions, cross metathesis reactions (CM), ring-opening cross metathesis 

reactions, diene-based reactions such as acyclic diene metathesis (ADMET), ring-closing 
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metathesis (RCM), and ring-opening metathesis polymerization (ROMP). Through these 

reactions, it is possible to have access to novel olefinic materials that would be very 

difficult to make via other methods.  

The scope of the olefin metathesis reaction would have been limited if 

improvements in catalyst performance had not flourished. In order to achieve high 

selectivity in olefin metathesis, a wide variety of ruthenium based catalysts as well as 

other metal catalysts has been investigated to achieve high activity, stability, and 

functional group tolerance. Figure 1.25 shows the metal catalysts developed for all types 

of olefin metathesis reactions.
81
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Figure 1.25: Examples of catalysts developed for olefin metathesis reactions (adopted 

from reference 81 with permission). 
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 Applications of Olefin Metathesis Reactions  

Whenever a carbon-carbon double bond exists, the olefin metathesis reaction has 

played a major role as scissors to rearrange the bond connection. In this respect, many 

synthetically challenging molecules such as natural products, small and large organic 

functional materials, higher oligomers and conducting polymers, dendrimers, and 

macrocycles have been successfully synthesized by using olefin metathesis reactions. Of 

many applications, only a narrow selection of important examples which emerged in the 

recent literature will be reviewed in the following section.  

 Synthesis of Natural Products 

 

Scheme 1.11: Total synthesis of (S,S)-(+)-dehydrohomoancepsenolide 30. 

In the year 2000, Furstner and Dierkes reported the total synthesis of a natural 

product, (S,S)-(+)-dehydrohomoancepsenolide 30, which involved sequential ring closing 

metathesis (RCM) and alkyne metathesis reactions.
82

 The cyclic butenolide precursor was 

first constructed by an RCM reaction catalyzed by Grubb’s catalyst. Subsequent alkyne 
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metathesis with the Schrock catalyst followed by partial catalytic hydrogenation reaction 

using the Lindlar’s catalyst successfully yielded the natural product 30 (Scheme 1.11).    

Very recently, a short route (five steps, 60% overall yield) for insect pheromones 

(pest control agents) with Z-selectivity of 88% was reported by Grubbs and co-workers. 

The synthesis began with a commercially available starting material, 4-pentenol (32), 

which was subjected to cross metathesis reaction (CM) with 1-dodecene to afford 

precursor 33. A sequence of tosylation, alkylation, and finally epoxidation reactions led 

to natural product 36 as shown Scheme 1.12.
83

  

 

Scheme 1.12: Total synthesis of pheromone 36. 

 Synthesis of Functional Organic Materials 

The ring opening metathesis polymerization (ROMP) reaction is one of the most 

important reactions that have been widely used for the preparation of many conducting 

polymers. This reaction involves the ring opening of a cycloalkene, where the release of 

ring strain provides the driving force for the reaction. The first industrial application of 
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ROMP reaction was launched in the year of 2000.
84

 The ring opening reaction of 

cyclopentene produced trans- and cis-cyclopentamers as the products. This reaction is 

very attractive for the synthesis of polyacetylenes (PAs).  

In 2003, Grubbs and co-workers prepared a series of endcapped polyenes 

(telechelic polymers) and polyacetylenes by the ring opening metathesis reaction 

(ROMP) on 1,3,5,7-cyclooctatetraene (COT) in the presence of a wide range of 

endcapping reagents (Sheme 1.13 ). The resulting polymers retain high solubility even 

when the chain length reaches up to 20 double bonds.
85

 

 

Sheme 1.13: Synthesis of polyacetylene polymers (the structures of the catalyst are 

shown in Figure 1.25). 

Poly(phenylenevinylene)s (PPVs) and poly(fluorylenevinylene)s (PFVs) can be 

efficiently prepared by acyclic diene metathesis (ADMET) reactions. The first 

application of the ADMET reaction was attempted by Eichinger in 1992 in the synthesis 

of PPVs 48 (Scheme 1.14). Due to the lack of solublizing groups, this polymer was 
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highly insoluble.
86

 The problem was later tackled by putting long alkyl chains on polymer 

backbone, such as polymer 51.
87

 

 

Scheme 1.14: Synthesis of PPVs by olefin metathesis reaction (the structures of the 

catalyst are shown in Figure 1.25).  

 

Scheme 1.15: Synthesis of PCVs, and PFVs via the ADMET reaction. 

In 2001, Nomura et al. synthesized both PFVs and poly 

(carbobezoylenevinylene)s (PCVs) by employing ruthenium-catalyzed ADMET reactions 

on monomers 52 and 54 (Scheme 1.15).
88

 The polymers were investigated by UV-Vis 

absorption and emission spectroscopy. Surprisingly, both of the polymers exhibited the 

same absorption maximum, indicating that the nitro substituent in PCVs has little effect 
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on the electronic properties in comparison with those of PFVs. This work highlights the 

importance of the ADMET reaction in preparation of conjugated polymers with tunable 

functionality.  

 

Scheme 1.16: Synthesis of magic rings. 

An important approach for synthesis of mechanically interlocked macrocycles 

such as catenanes and rotaxanes relies on the use of olefin metathesis reactions. These 

macrocycles have been used as the key components in the active monolayers of some 

electronic devices, such as volatile bistable switches in both memory and logic 
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circuits.
89,90

 One example of the synthesis of [2]catenane and [2]rotaxanes using the ring 

closing olefin metathesis reaction (RCM) is the work done by Stoddart and Grubbs in 

2005. The RCM reaction between macrocyclic polyether 56 and macrocycle 60 gives 

[2]catenane 61 in 75% yield. In the same way, dumbbell-shaped component 57 and 

macrocycle 56 yielded [2]rotaxanes 59  in the presence of the Grubbs’ catalyst (Scheme 

1.16).
91

  

 

Scheme 1.17: Synthesis of PAHs and helicenes through olefin metathesis. 

The RCM approach has been further expanded to the field of polyaromatic 

hydrocarbon (PAHs) and helicene chemistry. PAHs are interesting molecular materials as 

they provide models to understand the properties of fullerenes and carbon nanotubes. For 

example, as shown in Scheme 1.17, a double RCM reaction has been used for the 
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construction of PAHs 63 and 64.
92

 In 2006, Collins et al. described the synthesis of 

helicenes using the RCM reaction as shown in Scheme 1.17.
93

 This methodology can 

easily produce substituted helicenes and in most cases they are M-selective.  

1.3.2. 2 Cross-Coupling Reactions 

Cross-coupling reactions are the most highly studied reactions in organic 

synthesis and research on these reactions has indeed revolutionized modern synthetic 

methodologies for pharmaceuticals, natural products, and organic materials. Metal-

catalyzed cross-coupling reactions are considered as an important class of C-C and C-N 

bond forming reactions. A large number of synthetic methods has been developed and 

reported in the literature based on metal-catalyzed cross-coupling reactions, while studies 

dedicated to the development of novel ligands, mostly phosphine ligands, for various 

organometallic catalysts have constituted one of the major focuses of this research.  

So far, a vast array of interesting research articles, reviews and books has been 

published on the topic of metal-catalyzed cross-coupling reactions. Transition metals 

such as palladium and nickel have been of particular interest in the development of C-C 

and C-N bond forming reactions because of their versatility and high functional group 

tolerance. In recent years, the use of other transition metals, such as iron and cobalt, as 

catalysts for coupling reactions has also received great attention in order to develop 

methodologies with good reactivities and relatively low costs.  
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 As shown in Scheme 1.18, cross-coupling reactions can be broadly categorized in 

to two types. Some cross-coupling transformations have been developed based on the 

nature of electrophilic and nucleophilic partners, and they are mostly named reactions 

including Heck, Suzuki, Negishi, Stille, Buchwald, and Sonagashira reactions (Figure 

1.26). Because of their pioneered research on the development of Pd-catalyzed cross 

coupling reactions, three scientists, Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki, 

shared the 2010 Nobel Prize in chemistry. 

Among all cross-coupling reactions, the Sonagashira, Suzuki, and Stille reactions 

are widely utilized in the synthesis of conjugated materials. The following section will 

present the synthesis of a few molecular materials reported in the recent literature. 

 

Scheme 1.18: General representation of cross-coupling reactions using Pd(0) catalyst. 
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Figure 1.26: Popular transition metal catalyzed coupling reactions. 

In 2005, Tykwinski and co-workers demonstrated the synthesis of the longest iso-

polydiacetylenes (iso-PDAs) that showed a unique cross-conjugated π-framework.
94

 

These type of material exhibit large third-order nonlinear optical properties (NLO), and 

are potentially useful for the fabrication of signal processing devices. As shown in 

Scheme 1.19, the iso-polydiacetylene 75 was synthesized through Pd-catalyzed cross-

coupling reactions (Sonagashira reactions) with a vinyl triflate precursor 72 as a coupling 

partner. UV-Vis analysis showed a steady redshift of λmax with increasing chain length 

from dimer to higher oligomers of iso-PDAs. Further, the fluorescence spectra of iso-

PDAs gave enhanced emission intensity as the oligomer chain length increased. 

Interestingly, the iso-PDAs (n > 7) adopt a coiled helical conformation in solution.  
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Scheme 1.19: Synthesis of iso-PDAs by the Tykwinski group using Sonogashira 

coupling reactions. 
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Scheme 1.20: Synthesis of CP-PAHs materials. 

Recently in 2012, Plunkett et al. reported the synthesis of two cyclopenta-fused 

polycyclic aromatic hydrocarbons (CP-PAHs) and demonstrated their electron accepting 

properties (Scheme 1.20).
95

 The synthesis was started by using Pd-catalyzed cross-

coupling reactions of trimethylsilylacetylene (TMSA) and dibromo compounds 76 and 

80. The TMS groups were successfully converted to bromides with N-bromosuccinimide 

(NBS) to generate corresponding dibomo partners 78 and 83. Finally, Sonagashira cross-

coupling reactions were employed to couple the dibromo partners (78 and 83) with the 

phenylacetylene building block to give the desired CP-PAHs 79 and 84. The resulting 

CP-PAHs possess low optical band gaps (1.52 and 1.51 eV respectively) and they display 

two reversible reductions as displayed by fullerene and its derivatives. Fluorescence 
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quenching experiments suggested that electron transfer was observed between the poly(3-

hexylthiophene) (P3HT) donor and the CP-PAHs acceptor. These materials could be 

potentially used as electron acceptors in place of fullerenes.  

 

Scheme 1.21: Synthesis bis(carbazol-9-ylphenyl)aniline end-capped oligoarylenes by the 

Suzuki reactions.  

In 2013, Promarak and co-workers synthesized a series of bis(carbazol-9-

ylphenyl)aniline end-capped oligoarylenes (BCPA-Ars) by Pd-catalyzed cross-coupling 

reactions (Suzuki reactions) of a diiodo intermediate 85 with corresponding boronic acids 

and boronates as shown in Scheme 1.21. It was demonstrated that by varying the π-
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conjugation length of respective oligoarylenes, the energy gap between HOMO and 

LUMO could be easily tuned. Upon illumination the solutions or thin films of these 

oligoarylenes, different emission colors were observed ranging from blue to red. Further, 

these oligoarylenes were applied in an OLED device as the active components. The 

results showed that the single-layer OLED gave a luminance efficiency of 3.85 cd A
-1

 

and a low turn-on voltage of 2.4 V.
96

  

 

Scheme 1.22: Synthetic route for pyrazinoquinoxaline containing thiophene based 

conjugated polymers. 

In 2013, Janssen and co-workers prepared a series of pyrazinoquinoxaline 

containing thiophene based conjugated polymers through Stille cross-coupling 
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polymerization of corresponding pyrazinoquinoxaline dibromo precursors with stanyl 

derivatives 93 and 96 under Pd catalysis (Scheme 1.22).
97

 The LUMO energy level was 

increased from -4.0 to -3.8 eV when the electron-withdrawing CF3 groups were replaced 

with electron-donating ethylhexyl chains in the case of polymer 97. Efficient electron 

transfer was observed from polymer 97 to the PC71BM acceptor.  

1.3.2. 2 Homo-Coupling Reactions 

In parallel to cross-coupling reactions, metal-catalyzed homo-coupling reactions 

have also received considerable attention in the construction of a wide range of molecular 

materials such as conjugated oligomers, dendrimers, polymers, and macrocycles. Homo-

coupling of various terminal alkynes is one of the most popular reactions utilized to 

create functional polymer/oligomer materials. Cu(I) salts are extensively used as catalysts 

in these reactions.  

 

Figure 1.27: Structures of compounds 98, 99, and 100. 

Some synthetically challenging alkynyl compounds such as oligoynes and 

polyynes can be readily constructed by Cu-catalyzed oxidative homocoupling reactions. 

Due to their unique electronic, optical, and photophysical properties, oligoynes and 
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polyynes and their derivatives are more often used as molecular wires and one-

dimensional molecular rods. A series of oligoynes has been synthesized and some of 

them are listed below. In 1970, Walton and co-workers prepared a series of bistrimethyl 

protected oligoynes. The longest oligoyne obtained was composed of 16 C≡C repeating 

units. However, due to their instability, these oligoynes were not completely 

characterized as they polymerized quickly when the solvent was removed.
98

              

 

  

Scheme 1.23: Synthesis of polyynes rotaxanes 103. 

Recently, Tykwinski and co-workers disclosed that the stability of long oligoynes 

could be improved if they were terminated by bulky endcapping groups such as platinum 
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phosphine complexes and dendrimers. They have synthesized the longest monodisperse 

polyyne by using ‘super trityl’, tris(3,5-di-tert-butylphenyl)methyl (Tr*), as the 

terminating group. The polyyne is composed of 22 repeating conjugated C≡C units with 

44 sp carbon atoms and represents the longest oligoynes reported so far.
99

 In 2012, the 

Tykwinski group in collaboration with the Anderson group reported a series of polyyne-

based rotaxanes which contain a phenanthroline-based macrocycle.
100

 The rotaxanes 103 

was successfully synthesized by Cu-catalyzed homo-coupling reactions of alkynes 101 in 

the presence of the phenanthroline-based macrocycle 102. The single crystal structure of 

103 was elucidated by X-ray analysis, showing a solid-state packing motif of oligoynes 

into pairs. π-Stacking was observed between phenanthroline units. This type of polyyne 

rotaxanes are expected to show higher stability than the corresponding polyynes with 

same length.  

In 2013, Morin and co-workers demonstrated the synthesis and self-assembly 

behavior of the phenylacetylene macrocycle 114. This compound acted as the precursor 

to intriguing organic “nanorods”. For the synthesis, sequential Cu-mediated homo-

coupling and Pd-catalyzed cross-coupling reactions were performed (Scheme 1.24).
101

 

The gelation properties of macrocycle 114 were studied in common organic solvents. The 

results suggested that the supramolecular assembly of macrocycle 114 led to nanofibers 

with diameters of ca. 200 nm and lengths on the scale of microns. By irradiating the 

organogel under a UV lamp at 254 nm, a covalent network of nanorods was formed.  
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Scheme 1.24: Topochemical polymerization of phenylacetylene macrocycle (PAM 114). 
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1.3.2. 3 Click Reactions 

Over the past decade, increasing attention has been devoted to novel 

methodologies for the preparation of synthetically challenging architectures. In this 

respect, the concept of click chemistry emerged from a landmark review describing a new 

synthetic strategy for organic chemistry in 2001 by Sharpless and co-workers.
102

 As 

described in this review, an ideal click reaction must meet the following criteria:  

 Modularity and of wide application scope 

 High yielding 

 Generation of inoffensive by-products that can be removed without 

chromatography 

 

 Stereospecific (but not necessarily enantioselective) 

 Simplicity in experimental implementation 

 Easy availability of starting materials and reagents 

Based on the above criteria, several chemical reactions that have been identified 

as click reactions (Scheme 1.25) and are classified into four major categories:  

1) Cycloaddition reactions (most commonly Huisgen 1,3-dipolar cycloaddition
6–9

 ) 

2) Nucleophilic ring-opening reactions of strained heterocyclic electrophiles 

(epoxides, aziridines and aziridinium ions) 

3) Non-aldol carbonyl chemistry (oximes and hydrazones)  

4) Additions to carbon–carbon multiple bonds (especially thiol–ene chemistry and 

Michael additions) 
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Among all click reactions, the most extensively studied reaction is the copper-

catalyzed Huisgen 1,3-dipolar cycloaddition of terminal azides and alkynes to form 1,2,3-

triazole rings. Originally, the Huigen reaction was performed at high temperatures 

yielded 1,4- and 1,5-substituted 1,2,3-triazoles. The use of Cu(I) catalysts results 

exclusively in the formation of 1,4-substituted 1,2,3-triazole (Scheme 1.26) and this 

reaction is undoubtedly the premier example of click reactions.  

 

Scheme 1.25: Types of click reactions 

 

Scheme 1.26: The Huisgen cycloaddition and CuAAC reactions. 
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Based on independent research by the Sharpless and Meldal groups, the Cu-

catalyzed alkyne azide coupling (CuAAC) reaction has been widely adopted for the 

synthesis of many functional organic materials. A brief review on this topic is given 

below.  

The CuAAC reaction has been used in the synthesis of hyper-branched dendritic 

macromolecules. In the preparation of dendrimers, the issues of poor solubility and 

lengthy chromatographic separation are challenges frequently encountered. To 

circumvent these problems, the synthesis requires the use of reactions with high yield and 

specificity, such that the demand of processing and separation subsequent to the reaction 

would be minimized. To this end, Hawker, Fokin, and Sharpless pioneered the field of 

efficient dendrimer synthesis by devising a highly reliable two-step convergent synthetic 

method (Scheme 1.27)
103

.  
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Scheme 1.27: Convergent synthesis of dendrimers using the CuAAC reaction.  

In 2005, Hawker and co-workers prepared an unsymmetrical diblock dendrimer 

127 in which two dendrons 125 and 126 were connected through a triazole linker by the 

CuAAC reaction as shown in Scheme 1.28. This type of unsymmetrical dendrimer allows 

the introduction of a variety of functional groups to dendrimers.
104
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Scheme 1.28: Synthesis of a diblock dendrimer 127. 

Many applications of the CuAAC reaction have been found in polymer science, 

since the CuAAC reaction provides an efficient synthetic tool for both polymer backbone 

construction and side-chain functionalization. In 2005, Bunz and co-workers synthesized 

a class of functionalized poly(phenylene ethylene)s (PPEs) by using the CuAAC reaction. 

In the synthesis, both pre- and post-functionalization methods were used (Scheme 

1.29).
105

 The post-functionalization method allows a large variety of functional groups to 

be introduced after the polymer backbone is constructed. In the case of pre-

functionalization, the polymerization reaction is the last step of the synthesis. The pre-

functionalization method has some advantages over the post-functionalization method; 
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for example, it allows the correction of monomers if necessary. Overall, it has been 

demonstrated that the CuAAC reaction is suitable for both the pre- and post-

functionalization methods in making polymers. The CuAAC reaction has been applied to 

the synthesis of numerous types of polymers, such as linear conjugated polymers, 

biopolymers, cyclic dendronized polymers, macrocyclic polymers, and triblock-

copolymers. 

 

Scheme 1.29: Pre- and post-functionalization of poly(p-phenylene ethynylene)s (PPEs). 



65 
 

In 2012, Song and co-workers reported the incorporation of single-walled carbon 

nanotubes (SWNTs) into the network of a polyvinyl alcohol hydrogel through the 

CuAAC click reaction (Scheme 1.30). The results showed that SWNTs could be 

dispersed with the alkyne functionalized polymer in dimethyl sulfoxide (DMSO), and 

gelation occurred after the resulting SWNT/polymer complexes was subjected to the 

CuAAC reaction.
106

 These hybrid materials acted as electrically conducting hydrogels 

and could be useful for biomedical applications. 

 

Scheme 1.30: Preparation of carbon nanotube hydrogels via the CuAAC reaction 

(Adopted from reference 106 with permission) 

The 1,4-disubtituted triazole unit resulting from the click reaction has not only 

been extensively investigated as a robust linker in material synthesis, but is also 

frequently employed as an integral part in the preparation of many synthetic receptors. 
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This has greatly promoted the studies of the so-called “click derived” chemical sensors in 

recent years. The triazole group is well known to bind with both cations and anions. The 

chemical sensing process in general involves the detection of changes that are signaled by 

the interaction of a receptor group with an analyte. Many chemosensors have been 

designed based on the photophysical and/or electrochemical changes that take place when 

they are bound to certain analytes. The changes can be detected by UV-Vis, fluorescence, 

and electrochemical methods, depending on the nature of the reporter group attached to 

the receptor. In this respect, many “click generated” chemosensors have been developed 

for the detection of biologically and environmentally important species.  

 

Scheme 1.31: Click synthesis of chemosensor 144. 
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In the following section, selected examples of chemosensors recently reported are 

reviewed, where the “click generated” triazole unit functions as both the structural 

(linker) and functional (receptor or ligand) component in the chemosensor design. 

In 2007, Chung and co-workers designed and synthesized a calixarene-based 

chemosensor in which an anthracene chromophore was attached to the lower rim of 

calix[4]arene via the click reaction (Scheme 1.31).
107

 A double CuAAC reaction between 

the calixarene precursor 143 and 9-(azidomethyl)anthracene led to calixarene receptor 

144. Fluorescence titration experiments demonstrated that the emission intensity of 

receptor 144 could be significantly reduced with increasing addition of Pb
2+

. 

Interestingly, when the solution of Pb
2+

@144 complex was titrated with K
+
, the emission 

intensity was significantly enhanced resulting in the formation of complex K
+
@144. As 

receptor 144 contains two binding sites (triazole and crown ether), it could be potentially 

used for sensing both Pb
2+

 and K
+
 cations. 

 

Figure 1.28: Binding models of chemosensor 144 with metal ions. 
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Bunz and co-workers prepared a water soluble chemical sensor based on 

benzothiadiazole by performing double click reactions of the intermediate resulting from 

desilylation of diethynylbenzothiadiazole 145 with azide precursor 146.
108

 The resulting 

double-click product showed excellent selectivity for Cu
2+

 ions as evidenced by UV-Vis 

and florescent spectroscopic analyses. The UV-Vis spectral changes showed an isosbestic 

point at 409 nm upon titration with CuSO4. The fluorescence of 146 was substantially 

quenched when Cu
2+

 ion was continuously added.  

 

Scheme 1.32: Synthesis of chemosensor 147. 

Recently, in 2010, Flood and co-workers synthesized and demonstrated the 

switching properties of some light-active foldamers (153 and 154) in the presence of 

chloride ions. The foldamers were synthesized through multiple CuAAC reactions as 

shown in Scheme 1.33. In the presence of Cl
-
 ion, under visible light (465 nm), the 

foldamer 153 adopts a trans-trans conformation in the form of a chloride-receptor 

complex. Upon irradiation of complex under UV light at 365 nm, 153 is switched to a 

cis-cis conformation, resulting in the dissociation of chloride ion as shown in Figure 1.29. 

The switching events were monitored by UV-Vis and 
1
H NMR analyses.

109
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Figure 1.29: Functioning of a molecular photo-switch containing click generated triazole 

linkers (Adopted from reference 110 with permission).
110
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Scheme 1.33: Synthesis of light active foldamers 153 and 154. 

 

1.4 Molecular Materials and Devices Based On Conjugated Oligomers 

 

-Conjugated materials have attracted increasing attention in materials chemistry. 

π-conjugated organic polymers have been extensively investigated and very successfully 

applied in device fabrications for many years. Small molecules, on the other hand, also 

show interesting properties and promising application potential. Especially, well-defined 

monodispersed -conjugated oligomers are alternatives to their relatively large polymer 
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cousins, and, in many cases, their use in device fabrication can lead to significant 

improvement of device performance.  

The word “oligomer” is generally used to refer to the compound that carries 

relatively fewer repeating units than a polymer structure, or in a simple way, an oligomer 

can considered as the intermediate structure between a small molecule and a polymer. 

Unlike polymers, oligomers are easy to prepare and purification requires less effort. As 

such, an oligomer can be readily obtained with monodispersity, meaning that all the 

oligomer molecules have an identical number of repeat units in the backbone. 

Monodispersed π-conjugated oligomers feature some advantageous physical properties 

over polydisperse polymers. These include precise HOMO and LUMO energy levels, no 

structural defects, and good solubility in common organic solvents. The structural 

uniformity of monodispersed π-conjugated oligomers make them an effective models for 

studying structure-property relationships which offer guidance to understanding the 

complex properties of corresponding polymers. 

Significant progress has been made on the study of well-defined conjugated 

oligomers as novel molecular materials, and there have been many articles and reviews 

devoted to related topics. The versatility in applications has made conjugated oligomers 

very promising candidates in materials science. Depending on the π-electron 

delocalization in their molecular design, the monodisperse π-conjugated oligomers can 

take several different shapes, ranging from linear (1D) to multi-dimensional (2D, 3D) 
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structures. Among all of them, the linear π-conjugated oligomers have been the most 

studied as a result of their relatively easy synthetic access.  

 

 

 

 

 

 

 

Figure 1.30: Examples of 1D and 2D -conjugated oligomers. 

The emergence of higher-order multi-dimensional oligomers (especially 2D) has 

captured increasing interest in the community of oligomer chemistry in recent years. 

These oligomers were synthesized and investigated mainly aiming at exploration of some 

unprecedented molecular properties that can be used in development of novel molecular 

sensors,
111,112

 switches,
113

 nonlinear optical materials (NLO),
114

 organic field effect 

transistors (OFET),
115

 photoluminescence,
111

 and so on. According to the literature, 2D-

conjugated oligomers can be generalized into X-, Y- and Z-shaped assemblages (referred 

as X-mers, Y-mers, and Z-mers as shown in Figure 1.30).
116

 The following sections will 
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highlight on selected example of 1D and 2D conjugated oligomers that have received 

much attention in recent research.  

1.4.1 Chemical Sensors Based On π-Conjugated Oligomers 

A chemosensor is a molecular or supramolecular ensemble that can give 

detectable responses (e.g., optical or electrochemical changes) upon binding to some 

analytes. This requires the structure of a chemosensor to possess three essential 

components: receptor, reporter, and linker. Many synthetic receptors based on small 

organic molecules have been developed for metal ions, anions, and biologically important 

molecules. In most cases the chemosensors were designed to give rapid and significant 

UV-Vis, fluorescent, and electrochemical responses to chemical binding. For instance, 

after an analyte is bound to a chemosensor, it is possible to observe a change in the 

spectroscopic or electrochemical properties of the reporter unit attached to the receptor. If 

a fluorophore or chromophore is used as the reporter, changes in emission properties can 

render the system a fluorescent sensor, while changes in absorption properties give a 

colorimetric sensory function. If a redox-active unit is used as the reporter, the system 

becomes an electrochemical sensor. In order to increase the efficiency and selectivity of 

any chemical sensor, several parameters, including the molecular architecture, selection 

of chromophore/fluorophore, binding mechanisms, and solvation effects, must be 

carefully considered. The molecular architecture is an important factor, since it dictates 

the binding strength and selectivity. For this reason, many pre-organized molecular 



74 
 

shapes have been explored in chemosensor design; for example, molecular tweezers, 

macrocycles, molecular cages, and so on.  

 

Figure 1.30a: Structures of cruciforms 155-158. 

Despite their remarkable photophysical properties, conjugated oligomers have not 

been thoroughly studied in chemical sensing applications. However, in recent years, the 

research towards the development of chemosensors based on conjugated oligomers has 

been progressing rapidly. The Bunz group synthesized a series of donor-substituted 

functional cruciform oligomers (X-mers) 155-158 and demonstrated their chemical 

sensing properties with different metal ions.
117

 A combination of Horner-Witting 

olefination and Sonagashira coupling reactions has been employed in the construction of 

cruciforms. The fluorescence titration data reveals that the compound 158 is blueshifted 



75 
 

from 570 nm to 420 nm on addition of 0.84 eq of Zn
2+

 ion. On addition of 4 eq of Zn
2+

 

ion, the emission of cruciform 158 is redshifted back to 530 nm as shown in Figure 1.31. 

In the case of cruciform 156, addition of Zn
2+

 ion leads to a blueshift of the fluorescence 

band, while the addition of Zn
2+

 ion to cruciform 157 leads to a redshift. The emission 

spectra of cruciform 156 and 157 do not change with addition of more Zn
2+

 ion. These 

results indicate that the substituents on the cruciform backbone play a major role in the 

sensing functions and control the binding preference of the metal ions. 

 

Figure 1.31: Emission spectra of cruciform 158 upon addition of Zn
2+

 ion (Adopted form 

reference 117 with permission). 

  By structural modifications of the cruciform skeleton, selectivity for different 

metal ions can be achieved. As another example, in 2008 Zhao and co-workers prepared a 

series of H-shaped π-conjugated co-oligomers based on linear 

oligo(phenyleneethynylene)s (OPEs) and oligo(phenylenevinylene)s (OPVs). They 

studied the molecular properties of these H-shaped oligomers and performed titrations of 
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metal ions and trifluoroacetic acid (TFA) with them. The H-shaped oligomers were 

synthesized mainly through Sonagashira and Horner-witting reactions. 

 

Figure 1.32: Structures of H-shaped OPE/OPV oligomers. 

 

Figure 1.33: Absorption (left) and emission (right) spectral changes of compound 160 in 

the presence of AgOTf (Adopted from reference 118 with permission). 

The fluorescence and UV-Vis titrations of 160 and 161 showed that during the 

titration with Ag
+
 or TFA, a shift of isosbestic point was observed, suggesting the 

involvement of multistep processes in the binding (Figure 1.33). Based on the spectral 

changes, these H-shaped oligomers were found to be useful as sensors for transition metal 

ions.
118
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1.4.2 Molecular Materials Based on Oligomer-Fullerene Hybrids 

During the past decade, the number of C60/π-conjugated oligomer donor-acceptor 

ensembles being explored as advanced materials for electronic and photonic applications 

has grown significantly. The driving force behind this research is to find a molecular 

approach to improve the so-called “bulk heterojunction” (BHJ) organic photovoltaic cells 

using C60 and π-conjugated oligomers as electron acceptor and donor components 

respectively. This type of device can be made by two different approaches. In the first 

approach, the active components such as C60 and conjugated oligomers can be mixed by 

some mechanical methods, while the second approach involves the synthesis of hybrid 

compounds in which the C60 fullerene and conjugated oligomers are covalently connected 

to each other.  

 

Figure 1.34: Examples of conjugated oligomers used in blends with C60. 

The blends of semiconducting conjugated oligomers, such as oligo-

(phenylenevinylenes) (OPVs) and oligothiophenes (OTs) with C60 have been applied in 

some new types of plastic solar cells which yielded comparatively moderate power 
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efficiencies. A major problem associated with this kind of device is the tendency of the 

active materials, especially of pristine C60, towards severe phase segregation. In addition, 

clustering frequently occurs in the blends to form strong aggregates. However, this 

problem has been solved through the second approach where covalently linked 

C60/oligomers hybrids are used as the active components of devices.  

 

Figure 1.35: Structures of C60-OPV and C60-OT dyads.  

A huge number of C60-oligomer hybrid systems (dyads and triads) have been 

reported in the literature, and their photophysical properties have been investigated. For 

example, Nierengarten et al., in 2000 prepared a fulleropyrrolidine derivative based an 
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OPV-C60 dyad for the first time (Figure 1.35). After a thorough investigation of the 

photophysical properties of 168, a simple photovoltaic device was fabricated by spin-

coating a thin film of 168 between an indium-tin oxide (ITO) coated glass electrode and a 

vacuum evaporated aluminum electrode. This device gave a short circuit current density 

(JSC) of 10 uA . cm
-2

 and an open circuit voltage (VOC) of 0.46 V under monochromatic 

irradiation (400 nm, 12 mW . cm
-2

).
119

  

In 2005, Otsubo and co-workers synthesized a series of oligothiophene-fullerene 

dyads 169a-b and two triads 170-171 (Figure 1.35). In the triads, quaterthiophene (4T) 

170 and octithiophene (8T) 171 are connected through a methylene group and these 

oligomers are attached to a C60 fullerene. The cyclic voltammograms and electronic 

absorption spectra of these triad compounds showed that there was no electronic 

interaction among the three electroactive components in the ground state. The low 

emission intensity of 170 and 171 pointed to facile electron transfer and/or energy 

transfer from the oligothiophene to C60. Comparison between the emission spectra of 

triads (170 and 171) and dyads (169a-b) suggested that the additionally attached 

octithiophene or quaterthiophene units in the triads were in fact involved in the 

photodeactivation mechanism. The devices made by 4T-8T-C60 showed a relatively 

poorer photovoltaic performance than the 8T-C60 device, due to the absence of long 

distance charge separation via photoinduced electron transfer.
120

 

In 2006, Gust and co-workers prepared a hybrid star-shaped dendrimer 172, 

comprised of aryleneethynylene units surrounding a hexaphenylbenzene core. The 
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oligomer was linked to a porphyrin-fullerene (donor-acceptor) segment (Figure 1.36).
121

 

Photoinduced electron transfer was observed between the porphyrin unit and fullerene 

which resulted in a long-lived P
.+

-C60
.- 

charge-separated state. The charge recombination 

rates were measured and are 8.9 ns for 46a and 15.3 ns for 46b. The authors suggested 

that this type of system can be a functional mimic of natural photosynthetic antenna-

reaction center complexes.  

 

 

 

 

 

 

 

Figure 1.36: Structure of C60/Star shaped dendrimer. 

The design of single-molecule sized nanomachines such as molecular motors, 

switches, and gears has become a topical research area in recent years. The pioneering 

research in this area was made by Professor James Tour at Rice University who opened a 

new avenue for the construction of nanoscale machines based on conjugated oligomers. 
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In 2005, the Tour group prepared a class of surface-rolling molecules known as 

“nanocars”, the “chassis” of which were constructed by rigid, H-shaped OPE units, and 

the wheels of which were spherical organic groups, such as [60]fullerene and carborane 

(Figure 1.37).
122

 The results disclosed in his publications on the fullerene-wheeled 

nanocars demonstrated that a nanocar remains stationary on the surface until the surface 

temperature reaches to 170 
o
C due to strong interactions between the fullerene wheels 

and the gold surface. Above this temperature, the molecule starts rolling on the surface by 

translation and pivoting motion in two-dimensional paths as evidenced by STM imaging 

studies.    

 

Figure 1.37: One example of Tour’s Nanocars. 

In 2006, the Zhao group constructed a C60-tetraayne-C60 molecular dumbbell 

(Figure 1.38). Solid-state thermal polymerization of this molecular dumbbell at 160 
O
C 
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led to highly extended C60-polyenyne networks, and this type of polymer could be 

potentially used as an active materials in various optical devices.
123

    

 

Figure 1.38: Structure of Zhao’s molecular dumbbell.  

1.4.3 Organic Light Emitting Diodes Based On Conjugated Oligomers 

As mentioned earlier, the organic light emitting diodes (OLEDs) are one of the 

important classes of molecular materials and extensive research has been carried out to 

promote these materials into commercialization. The development of OLEDs began in 

the 1980s when the first report on efficient and low-voltage OLEDs from p-n 

heterostructure devices using thin films of vapor-deposited organic materials was 

disclosed by Tang’s group.
124

 A following breakthrough work was done by Holmes and 

co-workers on electroluminescence of conjugated PPVs.
59

 Since then, many different 

types of OLEDs materials based on π-conjugated oligomers have been synthesized and 

fabricated, such as oligothiophenes (OTs, oligophenylenes (OPs), and 

oligo(phenylenevinylene)s (OPVs) and so on.  
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Figure 1.39: Structures of blue-light emitting oligoquinolines 175-178. 

  In 2007, Tonzala and co-workers reported several highly emissive n-type 

conjugated oligoquinolines 175-178 (figure 1.39).
125

 Owing to their reversibility during 

the reduction process and high electron affinities (2.68-2.81 eV), these oligomers acted as 

good electron transport materials. Furthermore, devices fabricated based on these 

oligomers as blue emitting materials have shown the best performance with a high 

brightness (19740 cd m
-2

 at 8.0 V), high efficiency (cd A
-1

), and external quantum 

efficiency of 6.56% at 1175 cd m
-2

.    

As shown in Figure 1.40, another important class of OLEDs materials based on 

fluoro-substituted oligoarylenevinylenes 179-182 has been prepared by Liu and co-

workers.
126

 These oligomers are highly fluorescent with high quantum yields ( = 0.98-

0.68) and the colors of emission (448-579 nm) are significantly affected by the positions 

of the fluoro substituents. This fluoro-substitution effect on the emissions can be 

rationalized by means of HOMO-LUMO simulations. Among all oligomers prepared, 
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oligomer 179a gave a remarkable high external quantum efficiency (ɳ ext= 4.87%) at J = 

20 mA cm
-2

, a high luminescence efficiency of 5.91 cd A
-1

 at J = 53 mA cm
-2

, and a 

maximum brightness at 10.2 V of 22 506 cd m
–2

.  

 

Figure 1.40: Structures of fluoro-substituted oligo(arylenevinylene)s 179-182. 

1.4.4 Molecular Wires Based On π-Conjugated Oligomers 

Recently, the development of highly conducting molecular wires has attracted 

great attention due to their potential applications in the area of nanoelectronics, since 

their precise lengths and bonding architectures can enhance their molecular charge 

transport properties. As such, these materials are often used in various electronic devices 

such as semiconducting molecular wires or rods. For years, single molecular electronic 

devices have been pursued based on conjugated oligomers such as oligothiophenes, 

oligo(phenyleneethylene)s, and oligophenylenes. In 2007, Aso and co-workers 
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synthesized oligothiophenes 183 with a length of 10 nm using a block coupling synthetic 

protocol based on the Stille coupling reaction (Figure 1.41).
127

 The authors suggested 

that, due to their long effective conjugation lengths and high carrier transport nobilities, 

these oligothiophenes could be potentially used as molecular wires in single molecular 

electronic devices.  

 

 

 

Figure 1.41: Structure of oligothiophene molecular wire 183. 

In 2009, the Krebs group prepared an OPV derivative 184 with a chain length of 

12 nm. By stepwise Horner-witting reactions, OPVs containing 3-19 phenyl units were 

synthesized (Figure 1.42). Thioacetate functional groups were introduced to the 

endgroups for the formation of gold-thiolate bond to silicon-on-insulator (SOI) based 

vertical nanogap electrical devices (VNDs). The results suggested that the functionalized 

OPVs gave a nonlinear response with a major onset conductance around 1.4 V bias 

voltage.
128
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   Figure 1.42: Structure of an OPV based molecular wire. 

1.5 Outline of the thesis 

This PhD thesis has accomplished three major projects focusing on the synthesis 

and property characterization of functionalized π-conjugated oligomers and TTFV-based 

molecular materials. A modular click strategy based on the CuAAC reaction has been 

utilized to a great extent in the synthetic work. Detailed studies on these functional 

materials are elaborated in Chapters 2 to 4.  

Chapter 2 focuses on the synthesis and molecular properties of boronic acid 

functionalized 1D and 2D conjugated oligomers with linear, cruciform, and H-shaped 

structures. The synthetic routes have involved the use of Sonagashira coupling, Witting-

Horner, and click reactions as the key steps. Electronic and spectroscopic properties of 

these functionalized oligomers with different saccharides were investigated by UV-Vis 

absorption and fluorescence spectroscopic analyses. The results indicate that these 

boronic acid functionalized oligomers have unique environment-sensitive fluorescence 

properties, which enable them to act as efficient fluorescence sensors to detect and 

discriminate saccharide molecules under physiological conditions (aqueous, pH 7.41). It 
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is also demonstrated that the boronate-appended oligomers showed remarkably sensitive 

fluorescence turn-off sensing of fluoride ions. The results of this project highlight the 

importance of tuning and manipulation of the fluorophore to improve the performances of 

π-conjugated oligomer-based fluorescent chemo- and bio-sensors. 

Chapter 3 describes the synthesis of a new class of dithiafulvene (DTF) end-

capped oligomers, and the supramolecular interactions of these oligomers with fullerenes 

and SWNTs. The supramolecular properties were studied by UV-Vis-NIR, fluorescence 

spectroscopy, Raman spectroscopy, atomic force microscopy (AFM), and cyclic 

voltametry. It has been found that when these oligomers interact with fullerenes, the C=C 

bond of DTF undergoes a facile oxidative cleavage reaction in air and ambient light to 

form highly fluorescent aldehyde-endcapped oligomers as the product. Further, the DTF-

oligomers not only show the ability to disperse SWNTs in chloroform, but also can 

release the SWNTs under the control of solvent properties. Overall, the work in this 

project has demonstrated that DTF is a fascinating substituent group which not only 

introduces rich redox and electronic properties, but can also bring about novel chemical 

reactivities, and photophysical and supramolecular properties to organic functional 

materials. 

Chapter 4 introduces the synthetic approaches to the construction of a series of 

TTFV derivatives including TTFV macrocycles and TTFV tweezers. These compounds 

were investigated as receptors for fullerenes, saccharides, anions, and certain transition 

metal ions by UV-Vis and fluorescence spectroscopy, and cyclic voltametry. 
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Electrochemical sensing of boronic acid functionalized TTFV derivatives with different 

saccharides has been successfully demonstrated. The results from TTFV-anthracene 

based tweezers and macrocycles disclose that these receptors give fluorescence turn-on 

response to fullerenes as well as metal ions. It was also demonstrated that in the presence 

of TFA these TTFV-based receptors can easily release fullerenes. The results disclosed in 

this chapter underscore the importance of using TTFV-arene hybrids to design and 

prepare fluorescent and electrochemical properties with different analytes. 
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Chapter 2 

Cruciform, Linear, and H-shaped π-Conjugated 

Oligomers: New Fluorescent Receptors for 

Detection of Saccharides and Fluoride Ions 

2.1 The importance of saccharides  

It has been well recognized that carbohydrates such as saccharides, 

phosphosugars, and nucleotides play an important role in a wide range of biological and 

pathological processes,
1
 including cancer metastasis, cell adhesion, cell signaling, 

embryo development, egg fertilization, protein function regulation, cellular 

communications, and so forth.
2-6

 The changes occurring in pathological processes such as 

development of malignancy are often associated with the changes in cell surface 

carbohydrates. Monitoring the levels of these carbohydrates has become a useful 

approach for researchers to study various biological systems.    

For biomedical applications, monitoring D-glucose is a main research focus, as it 

provides the metabolic energy for most of higher organisms. The most common condition 

that results from the ineffective transport of D-glucose in the blood stream is diabetes 

mellitus.
7
 From a medicinal perspective, it is important to monitor blood sugar levels as a 

means of controlling diabetes. Other conditions resulting from the breakdown in the 
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transport pathways of D-glucose include cancer,
8
 cystic fibrosis,

9
 and renal glycosuria.

10
 

Most clinical methods currently available for glucose monitoring are enzyme-based and 

usually require invasive amounts of blood to be taken from a pricked finger.
11

 The 

detection principles of these kinds of method are based on immobilized glycoenzyme-

catalyzed reactions of saccharide substrates.
12

  

It is an undisputed fact that the availability of methods to monitor glucose levels 

has revolutionised the quantity of life; however, the enzymatic approach has some 

limitations such as high cost, difficult storage, poor stability, and low specificity. 

Therefore, there is a need for development of other methods to attain specific and high 

affinity carbohydrate recognition. In addition to glucose and other monosaccharides 

(Figure 2.1), and oligosaccharides are also of great importance in biomedical research as 

they control cell recognition events for infection, inflammation, and immunity.
13

  

 

Figure 2.1: Examples of saccharides of biomedical interest.  

 

2.2 Chemosensors and biosensors for saccharide detection 
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 Molecular recognition is a process that involves intermolecular interactions 

between two or more molecules such as a host and a guest, a lock and a key, a receptor 

and a substrate. This process is essential for the design of specific selective receptors. 

Further, for the receptor to be of a practical use, a systematic communication has to be 

established between the receptor and the outside world. This additional property would 

convert a receptor into a sensor. In general, chemical sensors can be broadly categorized 

into either biosensors or synthetic chemosensors. A biosensor makes use of biological 

analytes such as a protein or enzyme for recognition.  A great number of biosensors as 

receptors for saccharides have been documented in the literature.
14

 Expensive analytical 

techniques are often required to study the binding events taking place in biosensors. 

Biosensors based on proteins have some limitations due to degradation or environmental 

factors. To address this issue, alternative approaches have been pursued. A synthetic 

receptor achieves recognition of the analyte by using synthetically prepared compounds. 

In this research area, a great amount of attention has been given to the development of 

molecular receptors and modular sensors for the detection of saccharides in the last two 

decades. A few examples are highlighted in the following sections which are based on 

non-boronic acid and boronic acid based saccharide receptors.  

2.2.1 Non-boronic acid based synthetic receptors for saccharide detection  

Many systems based on non-boronic acid appended synthetic sensors have been 

reported in the literature which rely mainly on non-covalent interactions such as 

hydrogen bonding interactions for molecular recognition of saccharides.
15

 The 
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complexation behavior of resorcinarenes, a calixarene based synthetic receptor 185 

(Figure 2.2), was studied by Aoyama and co-workers in 1989,
16

 which showed non-

covalent hydrogen bonding interactions with the hydroxyl groups of saccharides. It was 

observed that 1,4-cis selectivity was dominant in the case of complexation with 

saccharides through face-to-face recognition.  

 

Figure 2.2: Calixarene based synthetic saccharide sensor. 

In the reported experimental details, very high concentrations of saccharides were 

used for complexation and the binding events which were monitored by 
1
H NMR. D-

ribose and 2-deoxyribose were found to be readily extracted into CCl4 by receptor 185. 

1
H NMR studies have confirmed that D-ribose is bound to the hydroxyl groups at C-1 and 

C-4 of   receptor 185.  
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Figure 2.3: Structure of binaphthalene derived synthetic receptor 186 for saccharide 

detection 

In 1995, Diederich and co-workers studied the sensing properties of 

binaphthalene derived macromolecules 186 with different glucopyranosides.
17

 The sensor 

186 (where  n = 1) was shown to have good selectivity for glucopyranosides and the 

stability constants were measured based on 
1
H NMR data in CDCl3 at 300K. The change 

in chemical shift of the OH protons of the receptor 186 was monitored as a function of 

concentration of guest, through which the formation of stable 1:1 complexes was 

confirmed.   

The majority of non-boronic acid receptors
15

 rely on non-covalent interactions 

and binding with sugar moieties is possible only in aprotic solvents such as chloroform. 

In aqueous media, a serious drawback is aroused from competitive hydrogen bonding 

interactions with the solvent. For practical uses or biological applications, the sensors 
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need to be tuned in such a way that they can perform the sensory functions in aqueous 

media and under physiological pH. This has been made possible by taking advantage of 

the selective covalent interactions between boronic acid receptors and saccharides. A 

wide range of stable boronic acid receptors has been developed and shown to be very 

useful.  

2.2.2 Boronic acid based synthetic receptors for the saccharide detection      

Boronic acids have been known for over a century since Michaelis and Becker 

carried out the first synthesis of phenylboronic acid.
18

 They have played a significant role 

in organic synthesis for many years.
19

 In 1954, Kuivila and co-workers reported the 

binding properties of boronic acids to the diols of mannitol by using a simple 

phenylboronic acid as receptor, where they observed the formation of a cyclic ester 

product,
20

 indeed this discovery has set up a platform for the development of boronic acid 

based synthetic receptors.  

 

Scheme 2.1: Formation of phenyl boronate complexes with diols. 
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 As the boronic acids interact with diols of the sugars, a covalent bond is formed 

with 1,2- or 1,3-diols for the formation of a five or six membered rings respectively 

(Scheme 2.1). This interconversion is very fast in basic aqueous media. In 1959, Lorand 

and Edwards disclosed the quantitative interactions between phenylboronic acid and 

polyols, and extracted the binding constants based on pH measurements.
21

 They also 

found that the phenylboronic acid had the following selectivity towards several mono 

saccharides: D-fructose > D-galactose > D-mannose > D > glucose.     

As shown in Scheme 2.2, in the binding between the diols of saccharides and the 

boronic acid, a few important changes are noticeable.
22

 As the binding occurs, the Lewis 

acidity of the boronic acid is increased, resulting in lowering the pKa of the boronic acid. 

If the system is buffered at an appropriate pH level, these changes cause a shift in 

equilibrium from the boronic acid form to the boronate form. The trigonal planar 

geometry of the boronic acid becomes tetrahedral in the boronate ion. The differences in 

the rate of 10
4 

are observed between these two forms in the equilibrium state. All these 

changes are carefully considered to generate a signal in the presence of diol. 
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Scheme 2.2: Equilibria of boronic acid-diol interaction in aqueous media. 

Over the last two decades, a large array of synthetic saccharide sensors has been 

developed based upon phenylboronic acid receptors
23,24

 and research along this direction 

is still actively ongoing aiming at further improving sensor performances, for example, 

sensitivity, selectivity, and stability. Basically, the most common design architecture for a 

saccharide sensor contains three essential units: receptor, reporter (i.e., read-out unit), and 

linkage group, wherein the reporter group acts to signal the binding event(s) happening at 

the receptor through optical or electrical outputs (Figure 2.4). 

 Organic chromophores, fluorophores, and electrophores are commonly 

incorporated as reporter units in the design of saccharide sensors, which lead to a variety 

of colorimetric,
25,26

 fluorimetric,
27-29

 and electrochemical
30,31

 saccharide sensors. Choice 

of the type of linkage groups is often made to meet the requirements if both sensor 

performance and synthetic accessibility. The following section will introduce some of 

examples of fluorescence sensors as it is pertinent to the work of this chapter, although 
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many systems have been developed based on colorimetric and electrochemical sensing 

mechanisms.  

 

Figure 2.4: Schematic representation of the reporter-spacer-receptor design assembly for 

sensory systems. 

2.2.2.1 Fluorescent sensors for saccharides detection  

Different fluorescent receptor systems have been developed to achieve effective 

sensing functions based on various signaling mechanisms such as photoinduced 

electron/energy transfer (PET), photoinduced charge transfer (PCT), intramolecular 

charge transfer (ICT), fluorescence resonance energy transfer (FRET), and aggregation-

induced emission (AIE). The evolution of fluorescent saccharide sensors, as well as the 

mechanisms that are predicted to generate a signal, are discussed below together with 

some representative examples taken from the literature.  
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Figure 2.5: The first fluorescent sensor for saccharides: 2-anthranylboronic acid. 

In 1992, Yoon and Czarnik reported the first fluorescent saccharide sensor, in 

which they used anthranylboronic acid 187 as a receptor (Figure 2.5).
32

 It was noted that, 

upon addition of fructose, the emission intensity of sensor 187 was decreased by ~ 30%. 

The typical pKa of the system was dropped from 8.8 to 5.9, when the boronic acid was 

converted to boronate anion. The decrease of the emission intensity can be explained by a 

PET mechanism. When the bound system is in the anionic state, it can be predicted that 

there is a photoinduced electron transfer between the negatively charged boronate and the 

vacant ground-state So. Although the sensor 187 displayed a modest modulation of 

fluorescence of 30% in the presence of saccharides, it opened the door to many 

fluorescent sensors with improvements in selectivity, solubility, sensitivity, and 

photophysical properties.  

 

Scheme 2.3: Benzylic amine spacer with an anthracene boronic acid receptor. 
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A plethora of fluorescent saccharide sensors was contributed by Shinkai and 

James, using a benzylic amine spacer to link a phenylboronic acid receptor to a 

fluorophore.
24,33

 This system is similar to the so-called Wulff-type receptors,
34,35

 in which 

the interaction of boronic acid and an adjacent amine lowers the pKa of the boronic acid 

and resulting in effective binding at neutral conditions. In this type of system, the 

fluorescence of neutral boronic acid is quenched by the PET from the amine to the 

fluorophore. In the presence of saccharides, however, the fluorescence enhancement is 

observed when the amine is quaternized and thus unable to donate electrons at both 

neutral pH and low pH. In this line, the first PET sensor 188 was reported by James et al. 

in 1994, which showed a turn-on response towards different saccharides (Scheme 

2.3).
36,37

 The sensor showed higher selectivity to fructose than other monosaccharides 

tested. The order of the selectivity was the same as that documented by Lorand and 

Edwards for phenylboronic acid receptor.
21

 

Shown in Figure 2.6 is an improved sensor system developed by Zhang and Zhu, 

in which the electron rich tetrathiafulvalene (TTF) unit was introduced as an electron 

donor and a linker instead of nitrogen.
38

 As predicted, the fluorescence of sensor 189 was 

quenched by PET from the TTF unit. Upon addition of saccharides, the PET from TTF 

shut down and the fluorescence of the sensor 189 is recovered. The sensor 189 displayed 

the same selectivity order for different saccharides as others mentioned above. 
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Figure 2.6: TTF based sensor 189 

It has been demonstrated in the literature that most monoboronic acid fluorescent 

sensors show high selectivity and sensitivity to fructose. For biological applications, the 

receptor design was tuned to achieve selectivity for glucose or other biologically 

important saccharides by incorporating multiple boronic acids in the design. For this 

purpose, the so-called “modular approach” has been successfully established as a 

productive and effective method for the design and preparation of functional saccharide 

sensors.
39,40

 A basic modular sensor is made of a receptor, reporter and a linkage which 

are connected to the molecular scaffold in such a way as to permit these sub-units to be 

varied independently.                           

In 1994, Shinkai et al prepared the first glucose-selective boronic acid-based 

fluorescence sensor 190 (Figure 2.7).
41

 The bis-boronic acid sensor 190 showed an 

excellent selectivity for glucose with a 1: 1 binding ratio. The binding constant was 

measured to be 3981 M
-1

 for glucose, 316 M
-1

 for fructose and 158 M
-1 

for galactose. The 

sensor 190 showed similar fluorescence turn-on response for other saccharides to that of 

sensor 188. It was noticed that the high glucose affinity shown by sensor 190 allows 

glucose sensing at sub-mM levels. It was suggested that the C–H…π interactions that 
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exist between the hydrocarbon skeleton of glucose and the aromatic π surface of the 

anthracene unit in 190 might contribute to the high affinity for glucose.  

 

Figure 2.7: Bis boronic acid based modular sensors of glucose detection 

A few years later, Norrild and co-workers designed and synthesized a pyridinium 

derivative of 190, sensor 191 as shown in Figure 2.7.
42

 The ionic nature of sensor 191 

improves the water solubility and increases the acidity of the boron centre. These 

structural modifications allow glucose sensing in completely aqueous solution at 

physiological pH. The high binding constant of 2521 M
-1

 was calculated from 

fluorescence spectral titration of sensor 191 with glucose. NMR spectroscopic studies 

indicated that sensor 191 binds to -glucofuranose at its 1,2,3,5-hydroxyl groups.  

 

Figure 2.8: Wang’s saccharide sensor 192.  
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Wang and co-workers investigated the sensing properties of a variety of diboronic 

acid sensors and documented the results in the literature to display the selectivity for 

glucose.
43-45

 For example, the sensor 192 (Figure 2.8) showed fluorescence turn-on 

response to the all saccharides tested but with different binding affinities.
44

 It was noticed 

that the sensor 192 show high selectivity for glucose. The stability constants go as 

follows: 34 M
-1

 with D-fructose, 1470 M
-1

 with D-glucose, and 30 M
-1

 with D-galactose. 

The central benzene ring was replaced with several other fluorophores and the resulting 

sensors were examined in terms of selectivity for different saccharides.   

 

Figure 2.9: Molecular structure of click fluor 193 

As seen in the previous sections, most of the florescent saccharide sensors contain 

an amine group as linker and electron donor (e.g., the Wulff-type receptors). The “click 

reaction-generated” 1,2,3-triazole moiety was introduced in structural design of 

saccharide sensors for the first time by James et al. in the year 2008.
46

 As shown in 

Figure 2.9, the structure of click-fluor 193 comprised of a phenyl group and an o-

methylphenylboronic acid moiety connected through a 1,2,3-triazolyl linker through click 

chemistry. The click-fluor 193 displayed reasonable fluorescent sensing functions 

towards saccharides in an alkaline aqueous medium (pH 8.21) requiring the presence of 
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an organic co-solvent (52% wt MeOH in H2O), while the concentrations of saccharides 

detected were in the range of ca. 10
-2

 to 1 M.      

2.3 Objectives of the research reported in this chapter 

Detection and recognition of saccharides under physiological conditions and 

monitoring the concentration of saccharides in vivo are challenging tasks that require a 

sustained effort to be dedicated to the development and refinement of new sensor 

systems. At present, boronic acid receptors have been extensively used in conjunction 

with various fluorogenic groups to form functional fluorescent sensors for saccharides. In 

this context, sensor design has been recently focused on tuning the receptor, 

donor/ligand, and linkage groups in order to strengthen boronic acid-saccharide binding 

at neutral pH, to enhance photoinduced electron/energy transfer for effective signaling, 

and to introduce cooperativity for binding with specific saccharides. On the other hand, 

the fluorophore component acting primarily as the “read-out” unit of the sensor can 

significantly influence solvation, steric hindrance of the binding site, and polarity 

matching with saccharides. Hence, the fluorophore effect also has a key impact on the 

efficiency and selectivity of fluorescent sensors.  

In the current literature, the fluorophores utilized for constructing saccharide 

sensors are mostly polyaromatic-based fluorogenic groups such as naphthalene, 

anthracene, and diazobenzene. Conjugated oligomers, owing to the excellent 

controllability and tunability of their optoelectronic properties, have found wide-ranging 

applications in fluorescent sensory devices. However, fluorescent saccharide sensors 



116 
 

based on π-conjugated oligomer fluorophores have not been investigated, despite their 

excellent photophysical properties. To address this issue, we have designed bis- and tetra-

boronic acid appended oligomers 194-198 (Scheme 1) as models for a qualitative 

understanding of the basic structure-property relationships for oligomer-based fluorescent 

saccharide sensors as a primary goal. Note that the π-frameworks of the oligomer 

fluorophores are designed in three distinct motifs, cruciform, linear, and H-shapes, in this 

thesis work. As such, the effect of oligomer fluorophore on sensor properties can be 

readily probed by way of comparative studies. Since the phenylboronate and 

phenylboronic acid derivatives are also known as good receptors for fluoride ions, I have 

herein investigated the fluoride ion sensing properties of boronate precursors of 

oligomers 194-198. The following sections outline the detailed synthesis and 

photophysical investigations of these target oligomers. Some of the data in this chapter 

have been published in Org. Biomol. Chem. 2011, 9, 1332-1336 as a communication, in 

which I am the first author of the paper. Our previous group member Dr. Guang Chen 

conducted, the AFM studies in this paper and, as part of a collaboration with Professor 

David W. Thompson, Chemistry Department, Memorial University, his PhD student Mr. 

Prateek Dongare conducted spectroscopic characterizations of all oligomers with 

saccharides and anions. 
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Figure 2.10: Molecular structures of oligomers 193-198 for saccharides detection. 
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2.4 Results and Discussion 

2.4.1 Short and long cruciform-shaped OPV/OPE oligomers   

To construct the short cruciform OPV oligomer 194, two essential precursors 205 

and 210 were first synthesized as shown in Schemes 2.4 and 2.5. The synthesis of 

precursor 205 began with p-xylene as the starting material. As shown in Scheme 2.4, 

iodination of p-xylene afforded 2,5-diiodo-1,4-dimethylbenzene 200. Treating compound 

200 with N-bromosuccinimide (NBS) gave 201 which was purified by recrystallization 

from CHCl3 and hexanes.  

The dibromide 201 was then subjected to an Arbuzov reaction with P(OEt)3, 

giving 2,5-diiodo-1,4-bis(diethylphosphonatomethyl)benzene 202 in a yield of 83%. A 

Horner-Wittig reaction between 202 and benzaldehyde in the presence of NaH afforded 

phenylenevinylene trimer 203 as a yellow crystalline solid. Treating 203 with 

trimethylsilylacetylene (TMSA) under the catalysis of Pd/Cu in a mixed solvent of Et3N 

and THF gave 204 in a yield of 87%. Removal of the trimethylsilyl (TMS) groups in 204 

with K2CO3 finally led to the formation of the key precursor 205. 

The synthesis of another key intermediate 210 was started by treating 

commercially available o-bromotoluene with trimethyl borate in presence of n-BuLi to 

provide o-tolylboronic acid 207. A simple esterification reaction was performed between 

206 and pinacol to afford compound 208, which was then subjected to a radical 
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bromination reaction with NBS followed by azidation in presence of NaN3 to afford 

precursor 210 as thick syrup.    

 

 

Scheme 2.4: Synthetic route for OPV building block 205 

 

Scheme 2.5: Synthesis of azido-pendant phenylboronate 210. 
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With 205 and 210 in hand, the synthesis continued as outlined in Scheme 2.6. A 

Cu-catalyzed alkyne azide coupling (CuAAC) reaction between the azido-pendant in 210 

and the acetylene unit in 205 in the presence of CuI and i-Pr2EtN in DMF at 65 
o
C to 

provide 211. Compared with numerous high-yielding CuAAC reactions reported in the 

literature, the yield of this click reaction was only at a moderate level (69%). The reduced 

efficiency of this reaction is likely due to some side reactions involving the insertion of 

Cu into the C–B bonds.
47

 The boronate groups of intermediate 211 were then hydrolyzed 

via a transesterification reaction between boronate 211 and excess o-tolylboronic acid 

207 in dioxane/H2O to give the short cruciform-shaped OPV oligomer 194 along with the 

tolylboronate byproduct 208. It should be noted that compound 208 serves as a useful 

precursor for the preparation of azido-phenylboronate 210. 

 

Scheme 2.6: Synthetic route for the preparation of short cruciform OPV oligomer 194. 
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Subsequent to the synthesis of short cruciform OPV oligomer 194, a longer 

cruciform OPV/OPE oligomer 195 was prepared by using similar synthetic strategy. 

Outlined in Schemes 2.7 and 2.8 is the designed route to compound 195. 1,4-

Dihydroxybenzene 212 was alkylated with 1-bromodecane in the presence of KOH in 

refluxing EtOH to give 1,4-bis(decyloxy)benzene 213, which was then iodinated to 

afford compound 214 in a yield of 80%. Cross-coupling of 214 with only 0.6 equiv of 

trimethylsilylacetylene (TMSA) afforded monoiodide 215 as the major product, which 

was then silylated using triisopropylsilylacetylene (TIPSA), giving compound 216 in a 

yield of 88%. Compound 216 was treated with K2CO3 to selectively remove the TMS 

group, yielding compound 217 in 91% yield. 

 

Scheme 2.7: Synthesis of OPV/OPE building block 219. 
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Scheme 2.8: Synthetic route for longer version cruciform OPE/OPV oligomer 195.  

Sonogashira coupling between compound 203 and 217 first produced long 

cruciform OPV/OPE precursor 218 in 81% yield. After deprotection of 218 with TBAF, 

the resulting terminal alkyne 219 (Scheme 2.8) was subjected to a CuAAC reaction with 

compound 210 in presence of CuI, yielding the boronate of long cruciform OPV/OPE 
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oligomer 220 in 59% yield (Scheme 2.8). For the hydrolysis of 220, however, the 

transesterification method was problematic due to the formation of some intractable 

impurities. A stepwise hydrolysis route was then used, in which the boronate 220 was 

first converted into trifluoroborate 221 with KHF2 and then hydrolyzed into boronic acid 

in the presence of trimethylsilyl chloride (TMSCl). This synthetic route led to the desired 

long cruciform OPV/OPE oligomer 195 in a very good yield and satisfactory purity 

(Scheme 2.8). 

With the successful synthesis of the previous two cruciforms 194 and 195, the 

linear-shaped OPE 196 was prepared according to Scheme 2.9. First compound 214 was 

cross-coupled with TMSA under Sonagashira conditions and followed by the desilylation 

reaction with K2CO3 to afford phenylacetylene building block 223. Compound 223 was 

further elongated by cross-coupling reaction with 214, yielding OPE trimer 224, which 

was desilylated with K2CO3 to obtain active phenylacetylene precursor 225 in 88% yield.  

In a similar manner, linear OPE precursor 225 was reacted with compound 210 under 

CuAAC reaction conditions, yielding boronate intermediate 226 in 55% yield. A two-step 

hydrolysis procedure was applied as illustrated in Scheme 2.9 to convert boronate 

intermediate 226 into corresponding boronic acid-attached linear OPE  196.    
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Scheme 2.9: Preparation of OPE trimer oligomer 196. 

2.4.2 Synthesis of H-shaped OPV oligomers   

To construct the two isomers H-mer 197 and 198, two tetraethynyl substituted 

OPV precursors 237 were first synthesized. The synthesis of these OPV precursors began 

with the preparation of two key building blocks 232 and 234 as outlined in Scheme 2.10. 

First, 2-aminobenzoic acid 227 was brominated with Br2 to give 2-amino-5-
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bromobenzoic acid 228. Compound 228 underwent a diazotization reaction followed by 

treatment with KI to yield 5-bromo-2-iodobenzoic acid 229, which was then subjected to 

an esterification with MeOH in the presence of H2SO4 to yield methyl ester 230. 

Compound 230 was reduced into benzyl alcohol 231 by diisobutylaluminum hydride 

(DIBAL). Oxidation of 231 with pyridinium chlorochromate (PCC) resulted in the 

formation of 5-bromo-2-iodobenzaldehyde 232 in 85% yield. The synthesis of compound 

234 began with a radical bromination of p-xylene using NBS, which afforded compound 

233 in 21% yield. An Arbuzov reaction between 233 and P(OEt)3 then yielded 234 in 

56% yield.  

 

Scheme 2.10: Synthetic route for the precursors 232, and 234. 

Once the two building blocks 232 and 234 were prepared, a Horner-Wittig 

reaction was performed between them in the presence of NaH in DMF solvent at room 

temperature, affording the tetrahalo substituted OPV precursor 235 in 88% yield as a 
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yellow solid. Cross coupling of 235 with TMSA followed by desilylation reaction 

resulted in the formation of tetraethynyl OPV precursor 237 as a bright yellow solid 

(Scheme 2.11).  

 

Scheme 2.11: Synthesis of tetraethynyl OPV precursor 237. 

 

Scheme 2.12: Synthesis of tetraethynyl OPV precursor 242. 
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A similar synthetic strategy was applied for the preparation of tetraethynyl OPV 

precursor 242 as outlined in Scheme 2.12. In the detailed work, a selective formylation 

was done on 1,3,5-tribromobenzene by using n-BuLi and DMF to yield compound 239 in 

a very high yield. A Horner-Witting reaction between 234 and 239 using NaH as base 

gave tetrabromo OPV precursor 240 in 71% yield. Finally, cross-coupling reaction on 

240 in the presence of excess TMSA under Sonagashira conditions, followed by 

deprotection reaction with K2CO3, yielded the desired precursor 242.  

 

Scheme 2.13: Synthetic route for H-shaped OPV oligomer 197. 
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Scheme 2.14: Synthetic route for H-shaped OPV oligomer 198. 
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Once the tetraethynyl OPV precursors 237 and 242 were obtained, two 

functionalized H-shaped OPV oligomers, 197 and 198, were readily synthesized as 

outlined in Schemes 2.13 and 2.14. Tetraethynyl OPV 237 was reacted with an azido-

phenylboronate ester 210 via the Cu(I)-catalyzed alkyne-azide coupling (CuAAC) 

reaction to afford tetraboronate-appended H-mer 243 in a very good. OPV H-mer 243 

was then deprotected through a transesterification reaction with an excess of o-

tolylboronic acid 207 to yield the desired H-shaped OPV oligomer 197 in 76% yield 

(Scheme 2.13). In the same manner, tetraethynyl OPV 242 was “clicked” with 

tetraboronate groups to give H-mer 244, which was deprotected to yield the tetraboronic 

acid appended H-shaped OPV 198 (Scheme 2.14).  

2.4.3 Single Crystal Structure of boronate oligomer 211 

Single crystals of boronate oligomer 211 were grown by slow evaporation of its 

solutions in CH2Cl2/methanol (1:1) at low temperature (4 
o
C), and their detailed 

molecular and solid-state structures were characterized by single crystal X-ray 

crystallography. As can be seen from Figure 2.11, the X-ray structure of 211 shows 

crystallographic features as follows: (1) the cruciform π-framework takes a non-planar, 

highly twisted orientation, and (2) the N atoms of the triazole rings do not directly 

interact with the boronate groups. 
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Figure 2.11: ORTEP drawing of boronate cruciform 211 (at 50% probability). Color 

scheme: grey = carbon, blue = nitrogen, red = oxygen, green = boron. 
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2.4.4 Electronic spectroscopic properties of cruciform and linear OPE/OPV 

oligomers 

The UV-Vis absorption and fluorescence properties of the prepared boronic acid 

appended linear and cruciform OPE/OPV oligomers 194, 195, and 196 as well as related 

boronate esters 211, 220, and 226 were studied and the results are shown in Figure 2.12. 

From Figure  2.12A and C, it can be seen that all the oligomers measured show two 

distinctive π → π* transition bands in the absorption spectra, while changing the 

chromophores between two boronic acids or esters resulted in altered energies of 

absorption bands which are mainly redshifted.  

 As shown Figure 2.12B, the emission spectral profile of short cruciform oligomer 

194 can be assigned to the S1 → S0 transition featuring two distinctive vibronic modes. 

The spectrum of oligomer 195 exhibits a broad structureless band which is blueshifted 

relative to that of oligomer 194. Similar to oligomer 194, the linear oligomer 196 shows 

two characteristic bands. However, changing the boronic acid groups in the oligomers to 

boronate esters results in small changes in the energies of the emission bands, and the 

spectral features are almost the same as those of boronic acid appended oligomers (Figure 

2.12D). All the oligomers are highly emissive as evidenced by their measured quantum 

yields (Table 2.1).  
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Figure 2.12: Normalized UV-Vis spectra (A) and fluorescence spectra (B) of oligomers 

194, 195, and 196 measured in DMSO. Normalized UV-Vis spectra (C) and fluorescence 

spectra (D) of oligomers 211, 220, and 226 measured in THF.  
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Table 2.1: Quantum yield for linear and cruciform oligomers 

Oligomer Φyield 

PBS THF DMSO 

211  0.16  

194 0.075  0.18 

220  0.29  

195 0.099  0.28 

226  0.23  

196 0.063  0.21 

 

2.4.5 Saccharides sensing of cruciform and linear OPV/OPE oligomers 

2.4.5.1 Fluorescence titrations 

To evaluate their sugar sensing functions, the OPE/OPV oligomers 194, 195, and 

196 were subjected to a series of fluorescence titration experiments with four selected 

sugars, D-fructose, D-ribose, D-galactose, and D-glucose, under physiological conditions. 

Despite the limited solubility of fluorophores 194, 195 and 196 in water, their dissolution 

in a neutral (pH 7.41) aqueous potassium phosphate buffer solution with concentration 

10
-5

 M (suited for fluorescence spectroscopic measurements) was readily attained with 

the aid of a minimal amount of DMSO as the co-solvent (H2O/DMSO > 99 : 1, v/v).   



134 
 

For the cruciform sensor 194, significant fluorescence enhancement (turn-on 

sensing) was observed in the titrations with all the saccharides investigated. Figure 

2.13A–D illustrates the fluorescence changes upon titration of 194 with different 

saccharides.  Titrations of the four saccharides resulted in similar trends of spectral 

changes with increasing addition of saccharide titrants. The emission spectrum of 

cruciform 194 is composed of a peak at 430 nm and a shoulder at 403 nm. Note that with 

increasing titration, distinctive vibronic bands emerged, resembling the emission features 

of boronate ester 211, which is an indicative of complexation of boronic acid receptors 

with saccharides to form boronates. The affinities of 194 for saccharides vary to a large 

extent as manifested by the plots in Figure 2.14, which shows the correlation between 

fluorescence enhancement (F/F0) at 430 nm and saccharide concentration. 
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Figure 2.13: Fluorescence titration of 194 (11.8 µM) with D-fructose in an aqueous 

buffer solution (pH 7.41) at 298 ± 3 K (λex = 340 nm). (B) Fluorescence titration of 194 

(13.8 µM) with D-galactose in an aqueous buffer solution (pH 7.41) at 298 ± 3 K (λex = 

340 nm). (C) Fluorescence titration of 194 (13.8 µM) with D-ribose in an aqueous buffer 

solution (pH 7.41) at 298 ± 3 K (λex = 340 nm). (D) Fluorescence titration of 194 (12.0 

µM) with D-glucose in an aqueous buffer solution (pH 7.41) at 298 ± 3 K (λex = 340 nm). 
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Figure 2.14: Plots of fluorescence enhancement (F/Fo, λ = 430 nm) against saccharide 

concentrations with fittings extracted from SPECFIT.  

It can be clearly seen that the sensitivity of cruciform 194 for different 

saccharides is in the order of: D-fructose > D-ribose ~ D-galactose > D-glucose. Also of 

remark in Figure 2.14 is the high sensitivity of 194 for D-fructose and D-ribose in the 

range of 10
-3

 to 10
-4

 M. Such a performance renders cruciform 194 at least comparable if 

not superior to those water soluble fluorescent sensor systems reported in the recent 

literature with high saccharide sensitivity under physiological conditions,
28,29,48,49

 which 

are highly desirable features for practical sensing applications (e.g. detection or 

monitoring of saccharides in whole blood). 
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Table 2.2: Stability constants (K) for complexation of cruciform 194 with various 

saccharides determined by global spectral fitting 

Saccharide log K1 (M
-1

) log K1K2 (M
-2

) 

D-fructose 4.02 ± 0.5 7.27 ± 0.5 

D-ribose 3.24 ± 0.2 6.09 ± 0.1 

D-galactose 3.87 ± 0.2 6.26 ± 0.1 

D-glucose 2.53 ± 0.3 4.21 ± 0.4 

 

To gain a quantitative understanding of the mechanisms for complexation 

between sensor 194 and various saccharides, global spectral fitting analysis was 

undertaken using the modified Marquardt-Levenberg algorithm implemented in the 

SPECFIT software package.
50

 Table 1 lists the stability constants (K) determined by 

global spectral fitting. 

From Table 2.2, it can be seen that all the four saccharides bind to cruciform 194 

in a two-step mechanism. The spatial arrangement of the two boronic acid receptors in 
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194 does not facilitate any “pincer-like” binding mode with saccharides. D-Fructose 

shows the strongest binding strength with 194 which is about two orders of magnitude 

greater than that of D-glucose. The binding constants for D-ribose and D-galactose are 

similar and stay in the middle range among the four saccharides. The quantitative 

measurements are in agreement with the trend of saccharide sensitivity as revealed in 

Figure 2.14.  

2.4.5.2 
1
H NMR studies on cruciform oligomer 194 

As mentioned, the complexation of phenylboronic acid with saccharides (polyols) 

is reversible and pH dependent,
24

 while the formation of stable phenylboronic acid and 

saccharide complex at neutral pH usually requires a stabilizing effect by some ligand 

groups, such as in the case of the widely known “Wulff-type” receptor 

(odialkylaminomethylphenylboronic acid).
34,35

 From the fluorescence titration 

experiments, it is evident that the boronic acid groups in cruciform 194 are effectively 

bound to saccharides under physiological conditions. This result suggests that the 1,2,3-

triazolyl moiety resulting from the click reaction not only acts as a linker group, but plays 

an important role in saccharide binding.  

To gain a deeper insight into this aspect, 
1
H NMR titration of 194 with D-fructose 

was then performed. For solubility reasons, the experiments were conducted by adding 

aliquots of D-fructose dissolved in a phosphate/D2O buffer solution at pD 7.41 to a 

DMSO-d6 solution of 194. Detailed NMR titration results are presented in Figure 2.15. 

Although the change of solvent system from water to DMSO may lead to a considerable 
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degree of variation on binding constants, the binding motif however should not be 

significantly different. As shown in Figure 2.15, the signal of boronic acid protons (Hb) 

vanishes gradually with the addition of D-fructose, while the signals of the methylene and 

aromatic protons (Hc and Hd) show a slight upfield shift by less than 0.1 ppm. These 

observations also corroborate the transformation of boronic acid to boronate ester in 

binding to saccharides. Of particular note is that the triazolyl proton (Ha) dramatically 

shifts downfield by more than 0.2 ppm. This result indicates that the triazolyl group 

experiences a pronounced change of chemical environment in binding with saccharides, 

likely induced by either a very strong solvation or a hydrogen bonding effect. Given that 

solvation interactions are usually affected by dipole-dipole forces without significant 

selectivity and specificity, hydrogen bonding appears to be a more likely reason for the 

unique downfield shift of the triazolyl signal. 

 

Figure 2.15: 
1
H NMR titration of 194 with D-fructose in DMSO-d6 and phosphate buffer 

solution (pD 7.4) at 298K (showing aromatic region). 
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2.4.5.3 Molecular modeling studies 

According to the model system illustrated in Figure 2.16, in binding with a 1,2-

diol, the triazolyl unit adjacent to the phenylboronic acid group acts as a ligand (hydrogen 

bond acceptor) to coordinate with a molecule of water. This “water insertion” model is 

analogous to the binding motif of the “Wulff-type” boronic acid receptor in aqueous 

media. Energetically, it provides stabilization of the boron-diol complex by ΔH = -11.2 

kcal mol
-1

, which well accounts for the significant binding of cruciform 194 with various 

saccharide in neutral aqueous solutions. 

 

Figure 2.16: DFT (B3LYP/6-31G (d)) optimized structure for the complex of o- 

triazolylmethylphenylboronic acid with ethylene glycol in the presence of water. 

2.4.5.4 AFM studies on cruciform oligomer 194  

For the remarkable fluorescence transduction properties exhibited by cruciform 

194, neither photoinduced electron transfer (PET) nor intramolecular charge transfer 

(ICT) mechanism offers meaningful interpretation. Instead, the sensing mechanism can 

be rationalized from a standpoint of aggregation-modulated emission. Recent studies 

have disclosed that the aggregation state of OPVs in solution can exert a very significant 
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impact on their excited-state dynamics and emission yields.
51,52

 To shed light on this 

point, we further analyzed the aggregation behavior of cruciform 194 with and without 

binding to saccharides. Aliquots taken from the solution prepared for fluorescence 

titration of 194 with D-fructose were spin-cast on freshly cleaved mica surfaces for 

atomic force microscopic (AFM) imaging. 

 

 

Figure 2.17: AFM image (tapping mode) of aggregates of 194 on mica (top), AFM 

image (tapping mode) of aggregates of 194 and D-fructose on mica (bottom).  



142 
 

The aggregates of cruciform 194 prior to complexation with D-fructose are in a 

size range of 60 to 100 nm (Figure 2.17 top). After complexation with D-fructose, much 

smaller (6–14 nm) aggregates are formed (Figure 2.17 bottom). Clearly, the binding of 

cruciform 194 with saccharides results in considerably reduced size of aggregates in 

solution, and it is reasonable to believe that the aggregation effect plays a crucial role in 

the fluorescence enhancement observed in the titrations of cruciform 194 with various 

saccharides. Two types of rationalization can be conceived at this juncture. First, the 

complexation with saccharides leads to increased de-aggregation/solvation of cruciform 

194 to suppress fluorescence self-quenching.
53

 On the other hand, the possibility that 

saccharide binding induces more planar OPV orientation in the aggregates of 194 may 

also offer a sound explanation for the observed fluorescence enhancement. The latter 

argument is in line with the aggregation-induced emission (AIE) for some π-conjugated 

systems.
54

 The UV-Vis titration data of oligomers 194-196 with saccharides are presented 

in the appendix. 
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Figure 2.18: (Left) Fluorescence titration of 195 (7.23 µM) with D-fructose in an 

aqueous buffer solution (pH 8.21) at 298 ± 3 K (λex = 350 nm). (Right) Fluorescence 

titration of 195 (6.83 µM) with D-ribose in an aqueous buffer solution (pH 8.21) at 298 ± 

3 K (λex = 350 nm).  
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Figure 2.19: (Left) Fluorescence titration of 196 (5.80 µM) with D-fructose in an 

aqueous buffer solution (pH 8.21) at 298 ± 3 K (λex = 350 nm). (Right) Fluorescence 

titration of 196 (5.80 µM) with D-ribose in an aqueous buffer solution (pH 8.21) at 298 ± 

3 K (λex = 350 nm).  
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2.4.5.5 Fluorescence titrations of cruciform oligomer 195 and linear oligomer 196 

Finally, fluorescence titrations of cruciform oligomer 195 and linear oligomer 196 

with various saccharides in neutral aqueous solutions were also carried out using the 

same protocol as that for cruciform 194. To our surprise, the emission spectrum of 195 

and 196 did not show any major changes during the titrations with saccharides (Figures 

2.18 and 2.19). Increasing the basicity of solution did not improve the sensing function 

significantly. For instance, addition of D-fructose to 196 in a basic buffer solution at pH 

8.21 resulted in only a slight drifting of spectral baseline (Figure 2.19). However, the 

cruciform oligomer 195 showed minor spectral changes during the titrations at neutral pH 

(Figure 2.18). Given that boronic acid tends to strongly complex with saccharides under 

basic conditions, the poor saccharide sensing function displayed by oligomers 195 and 

196 can be reasonably ascribed to an inert response to saccharide binding events.  

2.4.6 Electronic spectroscopic properties of H-shaped oligomers  

The steady-state UV-Vis absorption and emission spectra of H-mers 197 and 198 

as well as their boronate ester precursors 243 and 244 were determined and detailed 

spectral data are shown Figure 2.20. From the absorption spectra (Figure 2.20 left), it is 

evident that changing the boronic acid groups in the H-mers to boronate esters results in 

small changes in the energies of the absorption bands, and the band envelopes are almost 

superimposable. This is consistent with weak electronic coupling between the OPV 

choromophore and the pendant substituents in the ground state. The spectra of H-mers 
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197 and 243, however, have distinctly different intensity patterns with 243 possessing a 

much greater extinction coefficient for the lowest-energy transition than that of 197. 
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Figure 2.20: UV-Vis (left), and fluorescence spectra (right) of H-mers 197, 198, 243, and 

244; the spectra of 197 and 198 were measured in DMSO, while 243 and 244 in THF. 

All the H-mers are highly emissive upon electronic excitation and the emission 

spectral band shapes isomers are very similar (Figure 2.20 right). The fluorescence 

quantum yields () of boronic acid H-mers 197 and 198 measured in DMSO are 0.26 and 

0.29 respectively, which are similar to the  values of boronate H-mers 243 (0.32) and 

244 (0.34) determined in THF. In aqueous solutions, however, the fluorescence 

properties of the H-mers are considerably altered. From Figure 2.21, it can be seen that 

the fluorescence intensity of H-mers 197 and 198 shows a gradual depression with an 

increasing ratio of water as a co-solvent with DMSO. At a certain threshold, the 

fluorescence spectra of 197 and 198 are changed dramatically into a weak broad band 

with a notably red-shifted maximum emission wavelength. 
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Figure 2.21: Fluorescence spectra of 197 (3.68 µM) left and 198 (3.68 µM) right, 

measured in a co-solvent system of DMSO/H2O at varied volumetric ratios. 

The emergence of this low-energy band is associated with the triazole group, 

since OPV precursor 242 when subjected to similar water-dependent measurements 

showed only fluorescence quenching but no shift of emission peaks was noticed (Figure 

2.22). 
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Figure 2.22: Fluorescence spectra of OPV 242 (21.1 µM) measured in a co-solvent 

system of THF and water at varied volumetric ratios (λex = 335 nm). 

 

Figure 2.23: Jablonski diagram depicting the mechanism of environment-sensitive 

fluorescence for H-mers 197 and 198. 

The water-dependent emission behavior is indicative of H-mers 197 and 198 

being environment-sensitive,
55-57

 and it can be rationalized by the mechanism depicted in 

Figure 2.23. In the aqueous medium, water solvation stabilizes a charge-transfer (likely 

from OPV to triazole
58,59

) state to result in the attenuation of S1 → S0 emission and the 
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emergence of a longer-wavelength C-T emission band. Increasing the hydrophobicity of 

the solvation environment destabilizes the C-T state and hence restores the S1 → S0 

emission.  

2.4.7 Saccharides sensing of H-shaped OPV oligomers  

The fluorescence sensing properties of H-mers 197 and 198 towards saccharides 

were investigated by fluorescence titration experiments. H-mers 197 and 198 due to the 

presence of tetrakis(phenylboronic acid) groups were readily dissolved in an aqueous 

phosphate buffer (pH 7.41) with the aid of a tiny amount of organic co-solvent DMSO 

(0.4% v/v). To these H-mer solutions, four selected saccharides, D-fructose, D-galactose, 

D-ribose, and D-glucose, were titrated respectively. The titration processes were 

monitored by fluorescence spectroscopy and detailed spectral data are given in Figure 

2.24.  

In the buffer solution, H-mer 197 gave a weak C-T emission at ca. 482 nm. Upon 

titration of D-fructose, the emission of 197 at 482 nm increased steadily, while a high-

energy band at 432 nm assigned to the S1 → S0 emission grew pronouncedly (Figure 

2.24A). This trend is in line with the observation in Figure 2.21 (left) indicating that the 

binding of D-fructose with 197 caused a considerable perturbation to the solvation 

environment. The same trend of fluorescence changes was observed in the titration of 197 

with D-galactose (Figure 2.24B). For the titration of D-ribose, the emission at 482 nm 

decreased slightly, while the emission at 432 nm grew moderately. The titration of D-

glucose led to a moderate increase of emission at both 482 nm and 432 nm. Clearly, the 
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binding of 197 with D-ribose showed a very different fluorescence behavior than other 

saccharides, alluding to significant differences in the binding mode.      
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Figure 2.24: Fluorescence titration of H-mer 197 (7.67 µM) with (A) D-fructose, (B) D-

galactose, (C) D-ribose, and (D) D-glucose in an aqueous phosphate buffer solution (pH 

7.41) at 298 ± 3 K (λex = 350 nm). 

The fluorescence responses of H-mer 198 to D-fructose and D-galactose (Figure 

2.25A and B) are similar to those of H-mer 197. For the titration of D-ribose with 198, 

the C-T emission band at ca. 474 nm was significantly quenched, while the S1 → S0 
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emission band was not observed throughout the titration. Instead, an isosbestic point 

could be seen at 420 nm. For the titration of 198 with D-glucose, the fluorescence spectra 

were only slightly changed with a small degree of increase in intensity. 
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Figure 2.25: Fluorescence titration of H-mer 198 (7.36 µM) with (E) D-fructose, (F) D-

galactose, (G) D-ribose, and (H) D-glucose in an aqueous phosphate buffer solution (pH 

7.41) at 298 ± 3 K (λex = 350 nm). 

The fluorescence responses of H-mers 197 and 198 to various saccharides were 

further assessed in the form of a heat map (Figure 2.26), where the ratios of fluorescence 
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enhancement (Is/Io) for the C-T emission and S1 → S0 bands at the saturation point of 

titration are depicted. The statistical patterns shown in Figure 2.26 clearly indicate the 

function of saccharide discrimination by using the two H-mers as fluorescent probes. 

Such a performance was not present with the short cruciform sensor 194 we previously 

devised. These results here manifest that proper tuning of the fluorophore unit can lead to 

improved and/or new sensor functions. 

 

Figure 2.26: Heat map depicting the fluorescence enhancement (Is/Io) of the C-T 

emission and S1 → S0 bands for H-mers 197 and 198 in interacting with four saccharides. 

Io and Is denote the fluorescence intensity measured at the initial and saturation points of 

titration respectively. 

Finally, the fluorescence titration data were subjected to SPECFIT analysis to 

determine the binding stoichiometry and binding constants (Table 2.3). The obtained data 

shows that H-mer 197 has much greater affinity for saccharides than H-mer 198 does, 

which testifies to the significant influence of molecular shape on binding properties. The 
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UV-Vis titrations of H-shaped oligomers 197 and 198 with saccharides are presented in 

the appendix. 

Table 2.3: Stability constants (K) for complexation of H-shaped oligomers 197, and 198 

with various saccharides determined by global spectral fitting 

Oligomer Saccharide log K1 (M
-2

) log K1K2 (M
-4

) 

 

 

197 

 

D-fructose 

 

 

     ± 0.27
 

 

9.62 ± 0.14 

D- glucose 

 

     ± 0.091
 

 

4.90 ± 0.13 

D- ribose weak response weak response 

D- galactose      ±  0.44  

 

     ±  0.32 

 

 

 

 

198 

 

D-fructose 

 

 

     ± 0.18
 

 

 

     ± 0.31 

D- glucose 

 

weak response weak response 

D- ribose 2.65 ± 0.071 

 

4.89 ±  0.11 

 D-galactose      ±  0.29 

 

     ±  0.31 

 

2.4.8 Fluoride ion sensing of cruciform and linear-shaped oligomers  

As mentioned earlier, the phenylboronate and phenylboronic acid derivatives, 

aside from their broad applications in synthetic chemistry, have also been extensively 

investigated as effective receptor units for anion sensors.
60

 The boronate groups in 
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fluorophores 211, 220, and 226, owing to their large Lewis acidity, are capable of 

interacting with hard bases, for example, fluoride anion [F
-
], to form stable 

complexes.
61,62

 If the complexation causes significantly altered photophysical properties, 

the fluorophores should give rise to sensing function to [F
-
], the detection of which has 

been of great importance in biological applications.
60

 

The interactions of [F
-
] with the boronate ester groups in fluorophores 211, 220, 

and 226 were probed by titration of the fluorophores in THF (ca. 10
-4

 to 10
-5

 M) with n-

Bu4NF. The titrations were monitored by fluorescence spectroscopy, and the results are 

shown in Figure 2.27. The emission spectrum of short cruciform fluorophore 211 (Figure 

2.27A) shows two vibronic bands at 437 and 455 nm. Upon titration with 4.5 molar equiv 

of n-BuN4F, the fluorescence intensity of 211 was substantially quenched by ca. 98%, 

indicating a strong binding with [F
-
]. In addition, the two emission bands were redshifted 

to 443 and 465 nm respectively. For the long cruciform fluorophore 220, the fluorescence 

spectrum shows a broad single emission band at 448 nm. Upon [F
-
] titration, the emission 

was attenuated and a notable redshift of the maximum emission peak (λem) from 448 to 

460 nm was observed. After addition of 88 molar equiv of n-Bu4NF, the fluorescence 

intensity was suppressed by ca. 87%. 
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Figure 2.27: Fluorescence titration of boronate-oligomer fluorophores (10
-4

 – 10
-5

 M) 

with n-Bu4NF in THF at 298 K. (A) Short cruciform 211 (λex = 344 nm); (B) long 

cruciform 220 (λex = 360 nm, the inset shows the spectra upon titration of Bu4NF from 88 

to 765 equiv); (C) linear fluorophore 226 (λex = 365 nm). 

Continued titration of 220 with n-Bu4NF from 88 to 765 molar equiv resulted in 

only slightly reduced fluorescence intensity at 460 nm and a significant rise of a low-
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energy band at 562 nm (Figure 2.27B). Like short cruciform 211, the fluorescence of 

linear fluorophore 226 shows two distinctive vibronic bands at 429 and 453 nm. Addition 

of aliquots of n-Bu4NF up to 605 molar equiv, however, only led to a moderate reduction 

of the fluorescence intensity (ca. 48% at λem = 429 nm), without causing any significant 

shifts of the emission bands (Figure 2.27C). From the fluorescence titration results, it is 

clear that the cruciform-shaped fluorophores 211 and 220 exhibit much better [F
-
] sensing 

performances than the linear fluorophore 226 does. In particular, the short cruciform 211 

shows the sensitivity that is far superior to the others. 
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Figure 2.28: Comparision spectra of oligomer 211 with all halides (F
-
, Cl

-
, Br

-
, and I

-
) at 

3.7 eq. 

The fluorescence sensing properties of boronates 211, 220 and 226 towards other 

halide anions such as Cl
-
, Br

-
, and I

-
 were tested in THF. As shown in Figures 2.29, 2.30, 

and 2.31, these halides caused very poor to medium fluorescence suppression during the 

titrations.  For example in case of boronate 211, at the saturation point, only F
-
 titration 
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(ca. 3.7 molar equiv) led to substantial fluorescence quenching (> 96%, Figure 2.28) with 

very large binding constants (Table 2.4), whereas other halide anions caused insignificant 

fluorescence suppression (ca. 0% for Cl
-
, 3% for Br

-
, and 22% for I

-
). Similar trend was 

noticed with other two boronate oligomers 220 and 226 as well. 
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Figure 2.29: (A) Fluorescence titration of boronate-oligomer fluorophore 211 (36.0 µM) 

with n-Bu4NCl (B) Fluorescence titration of boronate-oligomer fluorophore 211 (42.2 

µM) with n-Bu4NBr, and (C) Fluorescence titration of boronate-oligomer fluorophore 

211 (38.6 µM) with n-Bu4NI in THF at 298 K (λex = 344 nm).  
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Figure 2.30: Fluorescence titration of boronate-oligomer fluorophore 220 (10.0 µM) 

with (A) n-Bu4NCl (B) n-Bu4NBr, and (C) n-Bu4NI in THF at 298 K (λex = 360 nm). 
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Figure 2.31: Fluorescence titration of boronate-oligomer fluorophore 226 (1.5 µM) with 

(A) n-Bu4NCl (B) n-Bu4NBr, and (C) n-Bu4NI in THF at 298 K (λex = 365 nm). 

The fluorescence titration data of oligomers 211, 220, and 226 with fluoride ions 

was subjected to SPECFIT analysis to determine stability constants (Table 2.4). The data 

in Table 2.4 shows that the fluoride ions bind to all oligomers in a one-step mechanism 

with 1:2 binding stoichiometry.  
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Table 2.4: Stability constants (K) for complexation of cruciform 211, 220, and 226 with 

fluoride ions determined by global spectral fitting 

Oligomer Binding 

stoichiometry 

log K1 (M
-2

) 

211 1:2      ± 0.62 

220 1:2 

 

     ± 0.31 

226 1:2      ± 0.14 

 

2.4.8.1 NMR studies on cruciform 211 

The binding of [F
-
] with the boronate ester groups in short cruciform fluorophore 

211 was further examined by 
1
H and 

19
F NMR titrations, the results of which indicated 

that the formation of a tetrahedral fluoro-boronate complex (Scheme 2.15) was the 

dominant product. Of particular note from the NMR data is that the triazole proton of 3 

was considerably shifted from 8.08 to 8.81 ppm after binding with [F
-
]. This observation 

agrees with molecular modeling studies, which suggest a strong fluorine-triazole 

interaction through a hydrogen-bond as proposed in Scheme 2.15 (the H-F distance is 

calculated as 2.39 Å). Theoretical calculations have also revealed that such an interaction 

not only modulated the electron density of the π-oligomer moiety to a significant extent 

(electrostatic potential maps in Scheme 2.15), but greatly altered its structural and frontier 



160 
 

molecular orbital (FMO) properties (Figure 2.34). These effects thus account for the 

fluorescence sensing behavior of short cruciform fluorophore 211 to fluoride ions. The 

UV-Vis titrations of oligomers 211, 220, and 226 with all halides are presented in 

appendix. 

                

Scheme 2.15: Binding of fluoride ions with phenylboronate 211. 
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Figure 2.32: 
1
H NMR (500 MHz, 1:4 CD2Cl2/DMSO-d6) spectra of (A) Bu4NF and 

compound 211 (10
-2

 M) in (B) the absence and in the presence of (C) 1.2, (D) 2.4, and 

(E) 3.6 molar equiv of Bu4NF. 
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Figure 2.33: 
19

F NMR (564 MHz) spectra of (A) Bu4NF in DMSO-d6 and compound 211 

(10
-2

 M) in CD2Cl2/DMSO-d6 (1:4, v/v) in the presence of (B) 1.0, (C) 2.0, and (D) 3.0 

molar equiv of Bu4NF. 
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Figure 2.34: FMO plots of (left) cruciform oligomer 211 and (right) [211 + 2F]
2-

 

complex calculated at the AM1 level of theory 

2.4.9 Halide ion sensing of H-shaped oligomers  

The fluorescence sensing properties of boronate oligomers 243 and 244 towards 

halide anions (F
-
, Cl

-
, Br

-
, I

-
) were tested in THF as similar to the cruciform oligomer 

211. The results from Figures 2.35 and 2.36 indicated that the oligomers 243 and 244 

show similar response (fluorescence quenching) to the halides F
-
, Cl

-
, and Br

-
 as 

cruciform oligomer 211 does but with different concentrations of halide ions. We noticed 

that these oligomers 243 and 244 are more sensitive to fluoride ions than the cruciform 
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oligomer 211. Unlike the cruciform 211, the two H-shaped oligomers 243 and 244 are 

also sensitive to iodide ions.    

The fluorescence titration data of oligomers 243 and 244 with fluoride ions and 

iodide ions was subjected to SPECFIT analysis to determine stability constants (Table 

2.5). The data in Table 2.5 shows that the both fluoride ions as well as iodide ions bind to 

all oligomers in a two-step mechanism with 1:2 and 1:4 binding stoichiometry. The UV-

Vis titrations of H-shaped oligomers 243 and 244 with halides are presented in the 

appendix. 
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Figure 2.35: Fluorescence titration of boronate-oligomer fluorophore 243 (8.86 µM) 

with (A) n-Bu4NF, (B) n-Bu4NCl, (C) n-Bu4NBr, and (D) n-Bu4NI in THF at 298 K (λex 

= 360 nm). 
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Figure 2.36: Fluorescence titration of boronate-oligomer fluorophore 244 (4.51 µM) 

with (A) n-Bu4NF, (B) n-Bu4NCl, (C) n-Bu4NBr, and (D) n-Bu4NI in THF at 298 K (λex 

= 365 nm). 
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Table 2.5: Stability constants (K) for complexation of oligomers 243, and 244 with 

fluoride and iodide ions 

Oligomer Halide log K1 (M
-2

) log K1K2 (M
-4

) 

 

 

197 

 

 

198 

Fluoride 

 

5.11 ± 0.27
 

9.11 ± 0.31 

Iodide 

 

     ± 0.48      ± 0.30 

Fluoride       ± 0.47      ± 0.25 

Iodide      ± 0.20     ± 0.18 

 

2.4.10 The role of triazole 

As a recap from the previous sections, being a linker, the triazole unit plays a 

significant role in saccharide, as well as fluoride ion, sensing properties. According to the 

modeling studies, for saccharide sensing, in binding with a 1,2-diol, the triazolyl unit 

adjacent to the phenylboronic acid group acts as a ligand (hydrogen bond acceptor) to 

coordinate with a molecule of water. This water insertion model is proposed as analogous 

to the binding motif of the “Wulff-type” boronic acid receptor in aqueous media. To 

provide another piece of evidence, we have resynthesized a model compound 245, 

according to the literature procedure reported by James and co-workers (Figure 2.37), and 

performed 
1
H NMR studies in different solvents.  
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Figure 2.37: Molecular structure of model compound 245. 

As seen from Figure 2.39, by changing the solvent from CDCl3 to DMSO-d6, the 

triazole proton shifted downfield from 7.74 ppm to 8.49 ppm (difference of about 0.75 

ppm). This result indicates that there is strong deshielding on the triazole moiety. This 

deshielding can’t be induced by simply changing solvent from CDCl3 to DMSO-d6, as the 

solvent interactions are purely non-specific in nature and attributable to dipole-dipole 

interactions, resulting in a less than 0.1 ppm shift. As shown in Figure 2.40, it can be 

predicted that the water present in DMSO-d6 can co-ordinate with the triazole and cause a 

significant shift of the triazole proton only. Methylene protons (from 5.91 to 5.87 ppm) 

and other aromatic protons are less affected by the effect caused by water coordination 

with boron and triazole. Experimentally, the methylene protons are observed to give less 

than 0.1 ppm shift when changing the solvent from CDCl3 to DMSO-d6.  

 

Figure 2.38: Model compound 245 in its free and water-coordinated state. 
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To shed more light on the solvation and water coordination effects on 
1
H NMR 

shifts in the model compound 245, DFT calculations were conducted. As indicated in 

Table 2.6, the experimentally observed shift of the methylene protons (-0.04 ppm) in 

CDCl3 and DMSO-d6 is consistent with the theoretically calculated value (-0.12 ppm) in 

the case that the model compound is in the “free” form (I) (Figure 2.38). However, the 

experimental observed shift of the triazolyl proton (0.75 ppm) from CDCl3 to DMSO-d6 

is considerably greater than the theoretical prediction on the free form (which is 1.92 

ppm). Obviously, another stronger effect than solvent polarity is at work. In modeling the 

water-coordinated form (II) (Figure 2.38), the solvent-dependent shift of the methyl 

protons (-0.33 pm) appears to be in a reasonable agreement with the experimental value 

(-0.04 ppm). In the meantime, a significant downfield shift of the triazolyl proton (1.92 

ppm) is predicted by the DFT calculations. Although this theoretical value calculated 

from the water-coordinated model is more than double that of the experimental value, the 

trend of shift is indeed consistent from one to the other. Moreover, the DMSO-d6 solvent 

used contains only a small amount of water, therefore the observed 0.75 ppm shift is 

mostly likely resulting from an average of “water-bound” and “free” forms in the 

solution. So far, the solvent-dependent NMR studies concur with the water-insertion 

modeling proposed in Figure 2.16.  
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Table 2.6: Theoretical and experimental values of triazolyl and methylene protons. 

Solvent (ppm)

in CDCl3 

(ppm)

in DMSO-d6 

Δδ (ppm) 

Triazolyl proton (exp)  
7.74 8.49 0.75 

Methylene protons (exp) 5.91 5.87 -0.04 

Triazolyl proton (theor)  8.31* 8.42 0.11 

Methylene protons (theor)  

(average of two protons) 

5.89* 6.01 -0.12 

Triazolyl proton (theor, water-

coordinated) 

-- 10.23 -- 

Methylene protons (theor, average of 

two protons, water-coordinated) 

Triazolyl proton (theor, Fluoride-

coordinated) 

Methylene protons (theor, average of 

two protons, water-coordinated) 

-- 

 

8.42* 

 

4.78* 

 

6.22 

 

8.55 

 

5.36 

-- 

* CH2Cl2 was chosen as the solvent in lieu of CDCl3 for the NMR theoretical calculations. 

 

 



171 
 

 

 

Figure 2.39: (Top) Optimized structure (B3LYP/6-31G*) for [245] in DMSO. (E = -

996.100106 au, dipole moment = 8.29 Debye), (bottom) Optimized structure (B3LYP/6-

31G*) for [245 + H2O] in gas phase. (E = -1073.52637 au, dipole moment = 6.14 

Debye). 

 

Figure 2.40: Partial 
1
H NMR spectra of model compound 245 in both DMSO-d6 and 

CDCl3.   
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In another experiment, we performed 
1
H NMR titrations on model compound 245 

with TBAF, in both CDCl3 and DMSO-d6, to study the binding effect on the triazole 

proton in the presence of fluoride ions. In CDCl3, as the titration progressed, the triazole 

proton gradually shifted from 7.74 to 8.64 ppm, a 0.9 ppm shift (Figure 2.41). There is 

strong hydrogen bonding between the fluoride attached to the boron atom and the triazole 

proton. This is consistent with the modeling studies proposed in Scheme 2.15. However, 

in DMSO-d6, the difference in the shift of triazole proton before and after the fluoride               

                      

Figure 2.41: Partial 
1
H NMR spectra of compound 245 in titration with TBAF in CDCl3 

showing the aromatic region. Signals labeled by * refers to the triazolyl proton and 

methylene protons. 
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Figure 2.42: Partial 
1
H NMR spectra of compound 245 in titration with TBAF in 

DMSO-d6 showing the aromatic region. Signals labeled by * refers to the triazolyl proton 

and methylene protons. 

addition is considerably reduced, from 8.49 to 8.91 ppm, a 0.4 ppm shift (Figure 2.42). 

Once again, the different magnitudes of triazolyl proton shifts upon addition of fluoride 

ion in CDCl3 and DMSO-d6 support the previous conclusion that the model compound 

exists in a free form in CDCl3 and a water-bound form in DMSO-d6. If otherwise (i.e., the 

model compound stays mainly in free form in DMSO-d6), the coordination of the boron 

center with fluoride ion should give a similar degree of downfield shift of triazolyl proton 

in the two solvents. 

2.5 Conclusions  

In this chapter, we have prepared a series of fluorescent saccharide sensors 194-

198 made up of π-conjugated oligomers click functionalized with phenylboronic acids, in 
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order to take advantage of the synthetic modularity and efficiency of click chemistry as 

well as the unique ligand effect of the 1,2,3-triazolyl linker resulting from the click 

reaction. Electronic and spectroscopic properties of the all oligomers were investigated 

by UV-Vis absorption and fluorescence spectroscopic characterizations. Cruciform 194 

was found to show fluorescence turn-on sensing function for saccharides in an aqueous 

buffer solution at physiological pH (7.41) with high sensitivity. Of particular interest is 

that when the oligomer fluorophore was switched to a linear-shaped oligo(phenylene 

ethylene) (OPE) unit, the saccharide sensing function was diminished completely. The 

marked difference between cruciform 194 and other two oligomers 195 and 196 in 

fluorescent sensing for saccharides thus underscores that the nature of fluorophore with a 

proper structural design is a determinative factor in controlling the sensory performance.  

As mentioned in the previous sections, a plethora of boronic acid-based sensor 

systems was reported to operate via mechanisms involving photoinduced electron transfer 

(PET) and internal charge transfer (ICT). However, these mechanisms appear to be 

inadequate in accounting for the sensing behavior of cruciform 194. Previously, we 

speculated that the sensing mechanism of 194 was tied to de-aggregation processes, but 

the parameters governing the de-aggregation process remains unclear. To address these 

issues, we investigated the fluorescent sensing properties of two structurally isomeric H-

shaped tetrakis(phenylboronic acid)-OPV hybrids (H-mers 197 and 198) as model 

systems with different saccharides. The results from the titrations evidenced that these H-

shaped oligomers 197 and 198 can not only detect saccharides at neutral pH, but also they 

discriminate between various saccharides. The environment-sensitive fluorescence 
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behavior exhibited by the two H-mers enabled effective sensing and discrimination of 

various saccharides in neutral water media.  

In addition, we have also investigated molecular properties of boronate-appended 

oligomers 211, 220, 226, 243, and 244 with halide ions. The titration results have clearly 

proved that cruciform-shaped boronate-oligomer fluorophores and H-shaped oligomers 

show better fluoride ion sensing performances than the linear one. In summary, the facile 

synthesis and remarkable sensor performance of these π-conjugated oligomers for 

saccharides and fluoride anion respectively attest to a wide-ranging applicability of the 

“click” functionalization method in the development of new boron-based chemosensors. 

2.6 Experimental  

Chemicals were purchased from commercial suppliers and used directly without 

purification. All reactions were conducted in standard, dry glassware and under an inert 

atmosphere of nitrogen unless otherwise noted. Evaporation and concentration were 

carried out with a water-aspirator. Flash column chromatography was performed using 

240-400 mesh silica gel, and thin-layer chromatography (TLC) was carried out with silica 

gel F254 covered on plastic sheets and visualized by UV light. Melting points (m.p.) 

were measured with Fisher-Jones melting point apparatus and are uncorrected. 
1
H and 

13
C NMR, and 

19
F NMR spectra were measured on a BrukerAvance 500 MHz 

spectrometer and BrukerAvance III 300 MHz multinuclear spectrometer. Chemical shifts 

are reported in ppm downfield from the signal of the internal reference SiMe4 for 
1
H and 

13
C NMR spectra. Coupling constants (J) are given in Hz. Infrared spectra (IR) were 
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recorded on a Bruker tensor 27 spectrometer. UV-Vis-NIR absorption spectra were 

measured on a Cary 6000i spectrophotometer. Atomic force microscopy (AFM) images 

were taken with a Q-Scope AFM operated in tapping mode. MALDI-TOF MS analyses 

were performed on an Applied Biosystems Voyager instrument using dithranol as the 

matrix. 

2,5-Diiodo-p-xylene (200) 

 

To a solution of p-xylene 199 (10.0 g, 94.2 mmol), and H5IO6 (8.95 g, 39.3 mmol) 

in water (37.5 mL), H2SO4 (5.50 mL), and acetic acid (185 mL) was added iodine (19.1 

g, 75.1 mmol). The resulted dark mixture was heated at 100 
o
C under stirring for 4 h. 

Water (250 mL) was then added and the flask was cooled in ice bath to promote 

crystallization of the product. The crude product was filtered, washed with water, and 

recrystallized from acetone to give pure compound 200 as a white solid (22.9 g, 61.9 

mmol, 68%). 
1
H NMR (CDCl3, 500 MHz): δ 7.65 (s, 2H), 2.34 (s, 6H); The data are 

consistent with those reported in the literature.
63

  

1,4-Bis(bromomethyl)-2,5-diiodobenzene (201)  
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To a solution of Compound 200 (10.0 g, 0.0280 mol) in chloroform was added 

NBS (22.0 g, 0.124 mol), and benzoylperoxide (0.500 g, 2.06 mmol) and then refluxed 

under a bright light irradiation for 4h. The solution was then allowed to stand overnight at 

rt for a complete crystallization of the product. The product was filtered together with the 

succinimide byproduct. Removal of the succinimide by water rinsing afforded the crude 

product 201, which was further purified by recrystallization from chloroform and hexane 

to yield compound 201 as a white solid (2.92 g, 5.66 mmol, 20%). 
1
H NMR (CDCl3, 500 

MHz): δ 7.90 (s, 2H), 4.48 (s, 4H); The data are consistent with those reported in the 

literature.
63,64

  

1,4-Bis(diethylphosphoromethyl)-2,5-diiodobenzene (202) 

 

Compound 201 (1.83 g, 3.55 mmol) and triethylphosphite (7.40 mL, 46.2 mmol) 

were taken into a round bottomed flask and refluxed for 3 h. Colorless crystals were 

formed while cooling the mixture to rt. The excess triethylphosphite was decanted, and 

the remaining white solid was washed by hexanes multiple times at rt to completely 
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remove the unreacted triethylphosphite and then dried under vaccum to afford pure 

compound 202 as a white solid (1.87 g, 2.96 mmol, 83%). 
1
H NMR (CDCl3, 500 MHz):  

δ 7.88 (s, 2H), 4.11-4.06 (m, 8H), 3.33 (d, JH,P =20.5 Hz, 4H), 1.29 (t, J = 7.0 Hz, 12H); 

The data are consistent with those reported in the literature.
63,64

  

1,4-Bis((E)-2-styryl))-2,5-diiodobenzene (203) 

 

 To a solution of compound 202 (1.20 g, 1.89 mmol) in dry THF (20 mL) was 

added NaH (0.114 g, 4.80 mmol) in small portions at 45 
o
C under N2 atmosphere. The 

solution gradually turned into a vivid purple-red color. Benzaldehyde (0.45 mL, 4.16 

mmol) dissolved in THF (10 mL) was added in small portions over a period of 30 min 

through a syringe. The reaction was kept under stirring and heating for another 2 h before 

work-up. The reaction mixture was carefully quenched with water and extracted three 

times with chloroform. The chloroform layer was washed by brine, dried over MgSO4, 

and concentrated to precipitation. The residual was crystallized from hexanes to yield 

compound 203 as yellow crystals (0.64 g, 1.20 mmol, 63%). 
1
H NMR (CDCl3, 500 

MHz): δ 8.09 (s, 2H), 7.57 (d, J = 7.5 Hz, 4H), 7.40 (t, J = 7.3 Hz, 4H), 7.31 (t, J = 7.15 

Hz, 2H), 7.22 (d, J = 16.0 Hz, 2H), 7.00 (d, J = 16.1 Hz, 2H); The data are consistent 

with those reported in the literature.
64,65
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1,4-Bis(E-styryl)-2,5-bis(trimethylsilylethynyl)benzene (204) 

 

Compound 203 (0.40 g, 0.74 mmol), trimethylsilylacetylene (0.42 mL, 3.0 mmol), 

PdCl2(PPh3)2 (26 mg, 0.036 mmol), and CuI (14 mg, 0.073 mmol), were added to THF 

(10 mL), and Et3N (10 mL) mixture. The solution was bubbled by N2 at rt for 5 min, and 

then stirred at 45 
o
C under N2 protection overnight. After the reaction was complete as 

checked by TLC analysis, the solvent was removed in vaccum. The resulting residue was 

diluted with ethyl acetate, and then was filtered through a MgSO4 pad. The solution 

obtained was sequentially washed by aq HCl (10%) and brine. The organic layer was 

dried over MgSO4 and concentrated under vacuum to give a crude product of 204. The 

crude product was then purified by silica flash column chromatography (hexanes/CH2Cl2, 

95:5) to give compound 204 (0.31 g, 0.65 mmol, 87%) as a yellow solid. 
1
H NMR 

(CDCl3, 500 MHz): δ 7.81 (s, 2H), 7.61 (d, J = 16.0 Hz, 2H), 7.54 (d, J = 7.5 Hz, 4H), 

7.38 (t, J = 6.5 Hz, 4H), 7.29 (t, J = 7.5 Hz, 2H), 7.23 (d, J = 16.0 Hz, 2H), 0.33 (s, 18H); 

The data are consistent with those reported in the literature.
66

  

1,4-Diethynyl-2,5-di-(E)-styrylbenzene (205) 
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 To a solution of compound 204 (0.380 g, 0.800 mmol) in 1:1 MeOH/THF (15 

mL) was added K2CO3 (0.633 g, 4.57 mmol). After being stirred at rt for 30 min, the 

reaction mixture was diluted with excess water and extracted in CHCl3 two times. The 

organic layer was washed with water, dried over MgSO4, and concentrated under vacuum 

to give a crude product of 205. The crude was purified by silica flash column 

chromatography (hexanes/CH2Cl2, 90:10) to yield compound 205 as a yellow solid 

(0.227 g, 0.688 mmol, 86%). 
1
H NMR (CDCl3, 500 MHz): δ 7.87 (s, 2H), 7.59-7.55 (m, 

6H), 7.38 (t, J = 6.5 Hz, 4H), 7.30 (t, J = 6.5 Hz, 2H), 7.19 (d, J = 16.0 Hz, 2H), 3.48 (s, 

2H); The data are consistent with those reported in the literature.
66

  

o-tolylboronic acid (207) 

 

To a solution of 2-bromotoluene 206 (5.00 g, 29.2 mmol) in dry THF (100 mL) 

was added n-BuLi (13 mL, 1.2 M, 2.17 g, 33.9 mmol) slowly over a period of 30 min at -

78 
o
C. Then the reaction mixture was stirred for 1 h at same temperature. This was then 

added trimethylborate (6.4 mL, 5.96 g, 57.8 mmol) and allow the reaction stirred at rt for 
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2 hrs before it was quenched with aqueous 1M HCl. The obtained cloudy solution was 

extracted into ethyl acetate and washed with water two times. The organic layer was 

separated and dried over MgSO4, and concentrated under vaccum to give crude product 

207. This was further purified by washing with hexanes to afford pure compound 207 as 

white solid (2.86 g, 21.0 mmol, 72%). 
1
H NMR (CDCl3, 500 MHz): δ 8.23 (d, J = 7.4 Hz, 

1H), 7.46 (td, J = 7.4, 1.4 Hz, 1H), 7.33-7.27 (m, 2H), 2.82 (s, 3H). The data are 

consistent with those reported in the literature.
67

  

4,4,5,5-tetramethyl-2-o-tolyl-1,3,2-dioxaborolane (208) 

 

Compound 207 (1.20 g, 8.82 mmol), and pinacol (1.25, 10.6 mmol) were added in 

toluene (100 mL), and refluxed for 2 h by using dean and stark condenser. The reaction 

was then allowed to cool to rt and washed with water three times.  The solvent was dried 

over MgSO4 and concentrated under vaccum to afford pure product 208 as colorless 

liquid (1.61 g, 7.38 mmol, 84%). TLC matched with authentic sample,
67

 and proceeded to 

the next step.  

4,4,5,5-tetramethyl-2-o-tolyl-1,3,2-dioxaborolane (209) 
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To a solution of compound 208 (1.30 g, 5.96 mmol) in acetonitrile (50 mL) was 

added NBS (1.51 g, 8.88 mmol), and AIBN (15 mg, 0.091 mmol). The reaction mixture 

was stirred and heated to 100 
o
C for 4 h. The solvent was removed under reduced vaccum 

to give crude product 209, which was dissolved in ethylacetate and washed several times 

with water. The organic layer was separated and dried over MgSO4 and concentrated 

under vaccum to afford pure product  209 as low melting solid (1.51 g, 5.08 mmol, 84%). 

1
H NMR (CDCl3, 500 MHz): δ 7.82 (d, J = 7.2 Hz, 1H), 7.42-7.38 (m, 2H), 7.30-7.28 (m, 

1H), 4.98 (s, 2H), 1.38 (s, 12H). The data are consistent with those reported in the 

literature.
46,67

  

azido-pendant phenylboronate (210) 

 

To a solution of compound 209 (2.0 g, 6.73 mmol) in dry DMF (15 ml) was 

added NaN3 (0.870 g, 13.4 mmol) and stirred at rt for 3 h. After the reaction was 

monitored by TLC, water was added and the compound was extracted into ether (100 

mL). The organic layer was washed with cold water to remove traces of DMF and dried 
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over MgSO4 and removed under vaccum to afford pure compound 210 as colorless liquid 

(1.58 g, 6.09 mmol, 91%). 
1
H NMR (CDCl3, 500 MHz): δ 7.89 (d, J = 7.2 Hz, 1H), 7.46 

(t, J = 7.2 Hz, 1H), 7.35-7.22 (m, 2H), 4.66 (s, 2H), 1.36 (s, 12H). The data are consistent 

with those reported in the literature.
67

  

Pinacolyl boronate-attached cruciform OPV (211) 

 

Compound 205 (100 mg, 0.302 mmol), azidophenylboronate 210 (180 mg, 0.695 

mmol), and diisopropylethylamine (0.026 mL, 0.151 mmol) were dissolved in DMF (2 

mL). The solution was deoxygenated by bubbling N2 at rt for 5 min, and then CuI (5.76 

mg, 0.030 mmol) was added. The reaction mixture was heated at 60 
o
C overnight. After 

the reaction was complete as checked by TLC analysis, the solvent was removed under 

reduced pressure. The obtained residue was diluted with EtOAc and was subsequently 

filtered through a MgSO4 pad to remove the inorganic salts. The filtrate was sequentially 

washed with brine and water. The organic layer was dried with MgSO4 and concentrated 

under vacuum to give crude product 211, which was further purified by silica flash 

column chromatography (EtOAC/hexanes, 3:7) to yield pure compound 211 (177 mg, 

0.208 mmol, 69%) as a pale yellow solid. m.p. 191-192 
o
C; IR (neat): 2979, 1652, 1598, 

1491, 1382, 1348, 1167 cm−1; 
1
H NMR (500 MHz, CD2Cl2): δ 8.08 (s, 2H), 7.89 (d, J = 
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7.3 Hz, 2H), 7.79 (s, 2H), 7.48 (td, J = 7.6, 1.2 Hz, 2H) 7.40-7.31 (m, 14H) 7.26 (t, J = 

7.1 Hz, 2H) 7.14 (d, J = 16.2 Hz, 2H), 5.94 (s, 4H), 1.25 (s, 24H); 
13

C NMR (125 MHz, 

CDCl3): δ 145.8, 140.8, 137.3, 136.7, 134.9, 131.9, 130.9, 129.4, 128.7, 127.9, 127.6, 

127.1, 126.6, 126.3, 123.3, 84.1, 53.4, 24.7 (two peaks fewer than expected due to 

coincidental peak overlap); HRMS (MALDI-TOF) m/z Calcd for C52H54B2N6O4, 

848.4393; Found, 849.4525 [M + H]
+
. 

Boronic acid-attached cruciform OPV oligomer (194) 

                                                    

To a solution of compound 211 (100 mg, 0.117 mmol) and o-tolylboronic acid 

207 (96.1 mg, 0.707 mmol) in dioxane (10 mL) was added aqueous HCl (5M, 3 mL). The 

mixture was stirred and heated at 100 
o
C overnight. After the reaction was complete as 

checked by TLC analysis, the dioxane was removed under reduced pressure. The 

resulting solid was washed with water and air-dried to afford crude product 194, which 

was further purified by recrystallization from MeOH to give pure compound 194 (66.9 

mg, 0.097 mmol, 83%) as an off white solid. m.p. 254 - 255 
o
C; IR (neat): 3573, 1690, 

1658, 1598, 1493, 1442, 1357, 1267 cm−1; 
1
H NMR (500 MHz, DMSO-d6): δ 8.42 (s, 

2H), 8.36 (s, 4H), 8.09 (s, 2H), 7.68 (d, J = 7.3 Hz, 2H), 7.59 (d, J = 16.3 Hz, 2H), 7.50 

(d, J = 7.5 Hz, 4H), 7.42-7.28 (m, 12H), 7.19 (d, J = 7.6 Hz, 2H), 5.91 (s, 4H); 
13

C NMR 
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(125 MHz, DSMO-d6): δ 144.9, 139.7, 137.0, 136.0, 134.4, 134.1, 130.4, 130.3, 129.6, 

129.1, 128.8, 128.7, 128.3, 128.0, 127.9, 127.7, 127.0, 126.5, 125.8, 124.4, 66.2, 53.0; 

HRMS (MALDI-TOF) m/z Calcd for C40H34B2N6O4, 684.2828; Found, 685.2951 [M + 

H]
+
. 

1,4-Bis(decyloxy)benzene (213) 

 

1-Bromodecane (13.7g, 61.9 mmol), 1,4-dihydroquinone 212 (3.40 g, 30.9 mmol) 

and KOH (4.35 g, 77.4 mmol) were added into EtOH (90 mL) and refluxed for 4 h. The 

reaction was cooled down. Water and CH2Cl2 were added. The organic layer was 

isolated, washed by brine, and dried over MgSO4. After the solvent was removed in 

vaccum, a pale brown solid was obtained. The solid was recrystallized from methanol to 

give 213 as white solid (9.59 g, 24.4 mmol, 79%). 
1
H NMR (CDCl3, 500 MHz): δ 6.82 (s, 

4H), 3.90 (t, J = 7.0 Hz, 4H), 1.78-1.72 (m, 4H), 1.46-1.41 (m, 4H), 1.38-1.29 (m, 24H), 

0.88 (t, J = 6.0 Hz, 6H); The data are consistent with those reported in the literature.
63

  

1,4-Bis(decyloxy)-2,5-diiodobenzene (214)  
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To a solution of compound 213 (8.60 g, 22.0 mmol) in CH2Cl2 (150 ml) were 

added Hg(OAc)2 (19.5 g, 61.3 mmol), and I2 (15.5 g, 61.0 mmol). The dark reaction 

mixture was stirred overnight at rt, then the formed slurry was filtered through a MgSO4 

pad, and rinsed with CH2Cl2. The filtrate was washed with Na2S2O3 (10% aq), satd. 

NaHCO3, water, brine, and dried over MgSO4. The solvent was removed in vaccum and 

the crude product was recrystallized from ethanol to afford product 214 as colorless 

flakes (11.3 g, 17.6 mmol, 80%). 
1
H NMR (CDCl3, 500 MHz): δ 7.17 (s, 2H), 3.92 (t, J = 

6.5 Hz, 4H), 1.82-1.77 (m, 4H), 1.53-1.46 (m, 4H), 1.35-1.28 (m, 24H), 0.88 (t, J = 7.0 

Hz, 6H); The data are consistent with those reported in the literature.
68

  

1,4-Bis(decyloxy)-2-iodo-5-(trimethylsilylethynyl)benzene (215) 

 

  Compound 214 (6.50 g, 10.6 mol), trimethylsilylacetyelene (0.850 mL, 6.36 

mmol), PdCl2(PPh3)2 (160 mg, 0.228 mmol), CuI (95.0 mg, 0.500 mmol), Et3N (20 mL) 

were added to THF (60 mL). The solution was bubbled by N2 at rt for 5 min and then 

stirred at 45 
o
C under N2 protection overnight. After the reaction was complete as 

checked by TLC analysis, the solvent was removed under vaccum. To the obtained 

residue was added EtOAc, and the mixture was filtered through a MgSO4 pad. The 

filtrate was sequentially washed with aq HCl (10%) and brine. The organic layer was 

dried with MgSO4 and concentrated under vacuum to afford the crude product, which 
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was then purified by silica flash column chromatography (hexanes/CH2Cl2, 90:10) to 

yield compound 215 (2.97 g, 4.79 mmol, 48%) as light yellowish solid. 
1
H NMR 

(CDCl3, 500 MHz): δ 7.25 (s, 1H), 6.83 (s, 1H), 3.93 (t, J = 6.5 Hz, 4H), 1.82-1.75 (m, 

4H), 1.53-1.48 (m, 4H), 1.34-1.28 (m, 24H), 0.88 (t, J = 6.5 Hz, 6H), 0.25 (s, 9H); The 

data are consistent with those reported in the literature.
68

  

((2,5-Bis(decyloxy)-4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)trimethylsilane (216) 

 

Compound 215 (2.20 g, 3.59 mmol), triisopropylsilylacetylene (1.68 mL, 3.93 

mmol), PdCl2(PPh3)2 (0.107 g, 0.152 mmol), and CuI (53.6 mg, 0.286 mmol), and were 

added to Et3N (40 mL). The solution was bubbled by N2 at rt for 5 min and then stirred at 

45 
o
C under N2 protection for overnight. After the reaction was complete as checked by 

TLC analysis, the solvent was removed by rotary evaporation. To the obtained residue 

was added chloroform. The mixture was filtered over a MgSO4 pad. Then it was 

sequentially washed by aq HCl (10%) and brine. The organic layer was dried over 

MgSO4 and concentrated under vacuum. The crude product was then purified with silica 

flash column chromatography (hexanes/CH2Cl2, 90:10) to yield compound 216 (2.12 g, 

3.30 mmol, 88%) as a light yellow solid. The TLC matched with an authentic sample,
63

 

and the material was used in the next step.  

((2,5-Bis(decyloxy)-4-ethynylphenyl)ethynyl)triisopropylsilane (217) 
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To a solution of compound 216 (1.0 g, 1.5 mmol) in 1:1 MeOH/THF (20 mL) was 

added K2CO3 (0.11 mg, 0.82 mmol) and stirred at rt for 30 min. After the reaction was 

monitored by TLC, the reaction mixture was diluted in chloroform and sequentially 

washed by aq HCl (10%) and brine. The organic layer was dried over MgSO4. Filtration 

to remove MgSO4 followed by evaporation under vacuum afforded the crude product 

which was purified with silica flash column chromatography (hexanes/EtOAc 98:2) to 

yield compound 217 as pale yellow solid (0.81 g, 1.4 mmol, 91%). TLC matched with 

authentic sample,
63

 and proceeded to the next step.  

1,4-Di(E-styryl)-2,5-bis(2,5-bis(decyloxy)-4-triisopropylsilylethynylphenylethynyl) 

benzene (218) 

 

Compound 203 (0.50 g, 0.93 mmol), 217 (1.4 g, 2.3 mmol), PdCl2(PPh3)2 (19.0 

mg, 0.027 mmol), CuI (8.0 mg, 0.042 mmol) were added to THF (30 mL), and Et3N (60 

mL) mixture. The solution was bubbled by N2 at rt for 5 min, and then stirred at 45 
o
C 

under N2 protection for overnight. The reaction mixture was diluted with ethylacetate and 
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then filtered through a MgSO4 pad. The solution obtained was sequentially washed by aq 

HCl (10%) and brine. The organic layer was dried over MgSO4 and concentrated under 

vacuum. The crude product was washed with acetone and dried under vaccum to yield 

compound 218 (1.1 g, 0.75 mmol, 81%) as a yellowish solid. 
1
H NMR (CDCl3, 500 

MHz): δ 7.91 (s, 2H), 7.76 (d, J = 16.5 Hz, 2H), 7.58 (d, J = 6.5 Hz, 4H), 7.35 (t, J = 7.5 

Hz, 4H), 7.29-7.24 (m, 4H), 7.01 (s, 2H), 6.99 (s, 2H), 3.98 (t, J = 7.0 Hz, 4H), 3.92 (t, J 

= 6.5 Hz, 4H), 1.82-1,73 (m, 8H),  1.53-1.14 (m, 98H), 0.88-0.84 (m, 12H). The data are 

consistent with those reported in the literature.
66

 

1,4-Bis(E-styryl)-2,5-bis(2,5-bis(decyloxy)-4-ethynylphenylethynyl)benzene (219) 

 

 

 

To a solution of compound 218 (0.41 g, 0.28 mmol) in THF (40 mL) was added 

TBAF (0.17 g, 0.55 mmol) and stirred at rt for 30 min. After the reaction was monitored 

by TLC, the reaction solvent was removed by rotary evaporation. The residue was 

dissolved in chloroform and sequentially washed by aq HCl (10%) and brine. The organic 

layer was dried over MgSO4. Filtration to remove MgSO4 followed by evaporation under 

vacuum afforded the crude product which was washed acetone and dried under vaccum 

to afford compound 219 as yellow solid (0.29 g, 0.25 mmol, 92%). 
1
H NMR (CDCl3, 500 
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MHz): δ 7.92 (s, 2H), 7.75 (d, J = 16.5 Hz, 2H), 7.58 (d, J = 7.5 Hz, 4H), 7.36 (t, J = 7.5 

Hz, 4H), 7.29-7.24 (m, 4H), 7.05 (s, 2H), 7.03 (s, 2H), 4.04-4.01 (m, 8H), 3.37 (s, 2H), 

1.86-1.71 (m, 8H), 1.53-1.16 (m, 56H), 0.88-0.84 (m, 12H); The data are consistent with 

those reported in the literature.
66

 

Pinacolyl boronate-attached OPV/OPE oligomer (220) 

 

Compound 219 (250 mg, 0.216 mmol), compound 210 (185 mg, 0.713 mmol) and 

DIPEA (0.018 ml, 0.108 mmol) were dissolved in dry THF (10 ml). The solution was 

degassed by bubbling N2 at rt for 5 min. Then CuI (8.23 mg, 0.043 mmol) was added, and 

the reaction mixture was heated at 60 
o
C for overnight. On completion as checked by the 

TLC analysis, the solvent was removed under reduced pressure. The obtained residue was 

diluted with CH2Cl2 and filtered through a MgSO4 pad. Then the filtrate was sequentially 

washed with brine and water. The organic layer was dried with MgSO4 and concentrated 

under vaccum to give crude 220, which was further purified by silica flash column 

chromatography (ethyl acetate/ hexane, 2:8) to yield pure compound 220 (214 mg, 0.208 

mmol, 59%) as a pale yellow solid. m.p 175 – 176 
o
C; IR (Neat) 2921, 2113, 1601, 1553, 

1467, 1443, 1387, 1357, 1271, 1144; 
1
H NMR (500 MHz, CD2Cl2): δ 8.02 (s, 2H), 7.98 
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(s, 2H), 7.95 (s, 2H), 7.91 (dd, J = 7.4, 1.1 Hz, 2H), 7.79 (d, J = 16.4 Hz, 2H, alkenyl H), 

7.62 (d, J = 7.4 Hz, 4H), 7.44 (dt, J = 7.6, 1.4 Hz, 2H),  7.39-7.27 (m, 10H), 7.16 (d, J = 

7.8 Hz, 2H), 7.14 (s, 2H), 5.93 (s, 4H), 4.18 (t, J = 6.7 Hz, 4H), 4.02 (t, J = 6.7 Hz, 4H), 

1.83-1.71 (m, 8H), 1.49-1.43 (m, 4H), 1.34 (s, 24H), 1.31-1.18 (m, 52H), 0.88 (t, J = 7.1 

Hz, 6H), 0.83 (t, J = 7.2 Hz, 6H); 
13

C NMR (125 MHz, CDCl3): δ 154.3, 148.7, 142.6, 

140.9, 137.4, 137.3, 136.6, 131.7, 130.45, 128.7, 128.66, 128.63, 127.8, 127.7, 126.9, 

126.1, 123.8, 122.6, 121.3, 116.2, 112.2, 111.5, 92.6, 92.3, 84.1, 69.7, 68.9, 31.9, 31.8, 

29.59, 29.55, 29.36, 29.33, 29.31, 29.30, 29.2, 26.0, 25.9, 24.8, 22.69, 22.67, 14.2; 

MALDI-TOF MS m/z calcd. for C108H142B2N6O8 1673.108, found 1674.126 [M + H]
+
.  

Trifluoroborate-attached cruciform OPV/OPE oligomer (221) 

 

Compound 220 (100 mg, 0.059 mmol) in MeOH (5 ml) and THF (5 ml) was 

added to aqueous potassium hydrogen difluoride (0.8 ml, 3M, 2.36 mmol) within a 

plastic beaker. The resulting pale yellow color slurry was stirred at rt for overnight. After 

the reaction was complete as checked by the TLC analysis, the solvent was removed 

under reduced pressure gave residue. This was then dissolved in hot acetone and filtered, 

the filtrate was concentrated under vaccum. The obtained crude was crystallized in ether 

and hexane (1:1) mixture to afford compound 221 (84.0 mg, 0.051 mmol, 86%) as yellow 
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color solid. m.p. 268 – 270 
o
C; IR (Neat) 3407, 2040, 1597, 1466, 1385, 1339, 1059; 

1
H 

NMR (500 MHz, DMSO-d6): δ 8.30 (s, 2H), 8.06 (s, 2H), 7.87 (s, 2H), 7.74 (d, J = 16.4 

Hz, 2H), 7.65 (d, J = 7.1 Hz, 4H), 7.54 (d, J = 16.3 Hz, 2H), 7.49 (d, J = 6.7 Hz, 2H), 

7.41 (t, J = 7.4 Hz, 4H), 7.31 (t, J = 7.1 Hz, 2H), 7.24 (s, 2H), 7.09-7.02 (m, 4H), 6.89 (d, 

J = 7.2 Hz, 2H), 5.71 (s, 4H), 4.15 (t, J = 6.3 Hz, 4H), 4.03 (t, J = 6.4 Hz, 4H), 1.73-1.65 

(m, 8H), 1.43-1.36 (m, 4H), 1.28-1.05 (m, 52H), 0.85 (t, J = 7.0 Hz, 6H), 0.75 (t, J = 7.3 

Hz, 6H); 
13

C NMR (125 MHz, CDCl3): δ 154.4, 149.2, 141.9, 138.8, 137.67, 137.61, 

133.0, 131.8, 129.5, 129.1, 129.0, 127.7, 127.6, 126.9, 126.62, 126.61, 125.5, 122.8, 

122.3, 117.1, 112.0, 111.6, 93.8, 92.6, 74.3, 70.0, 69.4, 53.8, 32.19, 32.13, 29.91, 29.87, 

29.84, 29.7, 29.6, 29.5, 29.4, 29.2, 26.44, 26.42, 25.8, 22.97, 22.95, 14.8, 14.7.  

Boronic acid-attached cruciform OPV/OPE oligomer (195) 

 

To a solution of Compound 221 (65.0 mg, 0.039 mmol) in acetonitrile (5 ml), 

THF (5 ml) and water (0.05 ml, 2.73 mmol), was added trimethylsilyl chloride (0.1 ml, 

0.795 mmol). The resulting clear yellow solution was stirred at rt for overnight. After the 

reaction was complete as checked by the TLC analysis, the reaction mixture was poured 

in to water and the obtained solid was filtered and dried. The crude was crystallized in 

ether and hexane mixture (1:1) to yield pure compound 195 (48.6 mg, 0.032, 81%) as 
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pale yellow solid. m.p. 205 – 206 
o
C; IR (Neat) 3539, 2205, 1598, 1468, 1386, 1272, 

1051; 
1
H NMR (500 MHz, 4:1 acetone-d6/DMSO-d6): δ 8.41 (s, 2H), 8.07 (s, 2H), 8.01 

(d, J = 8.98, 6H), 7.89-7.85 (m, 4H), 7.72 (d, J = 7.5 Hz, 4H), 7.54 (d, J = 16.4 Hz, 2H), 

7.46-7.39 (m, 6H), 7.36-7.32 (m, 4H), 7.28 (s, 2H), 7.24 (d, J = 7.7 Hz, 2H), 5.97 (s, 4H), 

4.22 (t, J = 6.3 Hz, 4H), 4.13 (t, 6.5 Hz, 4H), 1.87-1.77 (m, 8H), 1.54-1.48 (m, 4H), 1.45-

1.40 (m, 4H), 1.29-1.15 (m, 48H), 0.88 (t, J = 7.0 Hz, 6H), 0.81 (t, J = 7.2 Hz, 6H); 

MALDI-TOF MS m/z calcd. for C96H122B2N6O8  1508.951  found 1509.967  [M + H]
+
. 

No meaningful 
13

C NMR was obtained due poor solubility. 

1,4-Bis(decyloxy)-2,5-bis(trimethylsilylethynyl)benzene (222) 

 

Compound 214 (1.30 g, 2.01 mmol), trimethylsilylacetylene (1.40 mL, 10.1 

mmol), PdCl2(PPh3)2 (28.3 mg, 0.040 mmol), and CuI (15.3 mg, 0.080 mmol), were 

added to THF (10 mL), and Et3N (10 mL) mixture . The solution was bubbled by N2 at rt 

for 5 min, and then stirred at 45 
o
C under N2 protection overnight. After the reaction was 

complete as checked by TLC analysis, the solvent was removed in vaccum. The resulting 

residue was diluted with ethyl acetate, and then was filtered through a MgSO4 pad. The 

solution obtained was sequentially washed by aq HCl (10%) and brine. The organic layer 

was dried over MgSO4 and concentrated under vacuum to give a crude product of 222. 

The crude product was then purified by silica flash column chromatography 
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(hexanes/CH2Cl2, 95:5) to give compound 222 (1.02 g, 1.76 mmol, 87%) as a yellow 

solid. 
1
H NMR (CDCl3, 300 MHz): δ 6.88 (s, 2H), 3.94 (t, J = 6.5 Hz, 4H), 1.83-1.73 (m, 

4H), 1.51-1.26 (m, 28), 0.88 (t, J = 6.5 Hz, 6H), 0.25 (s, 18H);  The data are consistent 

with those reported in the literature.
68

  

1,4-Bis(decyloxy)-2,5-diethynylbenzene (223) 

 

To a solution of compound 222 (0.42 g, 0.72 mmol) in 1:1 MeOH/THF (20 mL) 

was added K2CO3 (0.29 g, 2.1 mmol). After being stirred at rt for 30 min, the reaction 

mixture was diluted with excess water and extracted in CHCl3 two times. The organic 

layer was washed with water, dried over MgSO4, and concentrated under vacuum to give 

a crude product of 223. The crude was purified by silica flash column chromatography 

(hexanes/CH2Cl2, 90:10) to yield compound 223 as a yellow solid (0.29 g, 0.67 mmol, 

94%). 
1
H NMR (500 MHz, CDCl3): δ 6.95 (s, 2H), 3.97 (t, J = 6.5 Hz, 4H), 3.32 (s, 2H) 

1.82-1.77 (m, 4H), 1.53-1.43 (m, 4H), 1.34-1.27 (m, 24H), 0.88 (t, J = 6.5 Hz, 6H). The 

data are consistent with those reported in the literature.
68

  

Synthesis of linear OPE (224) 
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Compound 223 (0.22 g, 0.50 mmol), compound 215 (0.79 g, 1.3 mmol), 

PdCl2(PPh3)2 (7.1 mg, 0.010 mmol), and CuI (3.8 mg, 0.020 mmol), were added to THF 

(10 mL), and Et3N (10 mL) mixture . The solution was bubbled by N2 at rt for 5 min, and 

then stirred at 45 
o
C under N2 protection overnight. After the reaction was complete as 

checked by TLC analysis, the solvent was removed in vaccum. The resulting residue was 

diluted with ethyl acetate, and then was filtered through a MgSO4 pad. The solution 

obtained was sequentially washed by aq HCl (10%) and brine. The organic layer was 

dried over MgSO4 and concentrated under vacuum to give a crude product of 224. The 

crude product was then purified by silica flash column chromatography (hexanes/CH2Cl2, 

95:5) to give compound 224 (0.57 g, 0.41 mmol, 81%) as a yellow solid. 
1
H NMR (500 

MHz, CDCl3): δ 6.99 (s, 2H), 6.95 (d, J = 7.8 Hz, 4H), 4.02-3.95 (m, 12H), 1.84-1.78 (m, 

12H), 1.51-1.24 (m, 102H), 0.87 (t, J = 6.5 Hz, 18H).  The data are consistent with those 

reported in the literature.
69

  

Synthesis of acetylenic linear OPE (225) 

 

To a solution of compound 224 (0.41 g, 0.29 mmol) in 1:1 MeOH/THF (20 mL) 

was added K2CO3 (0.16 g, 1.2 mmol). After being stirred at rt for 30 min, the reaction 

mixture was diluted with excess water and extracted in CHCl3 two times. The organic 

layer was washed with water, dried over MgSO4, and concentrated under vacuum to give 



196 
 

a crude product of 225. The crude was purified by silica flash column chromatography 

(hexanes/CH2Cl2, 90:10) to yield compound 225 as a yellow solid (0.32 g, 0.25 mmol, 

88%). 
1
H NMR (500 MHz, CDCl3): δ 7.00-6.97 (m, 6H), 4.01(t, J = 5.7 Hz, 12H), 3.33 

(s, 2H), 1.83-1.79 (m, 12H), 1.49-1.25 (m, 84H), 0.87 (t, J = 6.5 Hz, 18H). The data are 

consistent with those reported in the literature.
69

  

Pinacolyl boronate-attached linear OPE (226) 

 

Oligomer linear OPE 225 (220 mg, 0.174 mmol), azidophenylboronate 210 (149 

mg, 0.574 mmol), and DIPEA (0.015 mL, 0.087 mmol) were dissolved in dry THF (10 

mL). The solution was degassed by bubbling N2 at rt for 5 min, then CuI (6.62 mg, 0.043 

mmol) was added. The reaction mixture was heated at 60 ◦C overnight. The progress of 

the reaction was monitored by TLC. On completion, the solvent was removed under 

reduced pressure. The resulting residue was diluted with CH2Cl2 and filtered through a 

MgSO4 pad. The filtrate was sequentially washed with brine and water. The organic layer 

was dried with MgSO4 and concentrated under vacuum to give crude product 226, which 

was purified by silica flash column chromatography (EtOAc/hexanes, 15:85) to yield 

pure compound 226 (171 mg, 0.095 mmol, 55%) as a pale yellow solid. m.p. 84-85 
o
C; 
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IR (neat): 2919, 2100, 1601, 1552, 1466, 1388, 1356, 1271, 1168 cm
−1

; 
1
H NMR (500 

MHz, CDCl3): δ 7.96-7.91 (m, 6H), 7.42 (td, J = 7.6, 1.4 Hz, 2H), 7.34 (td, J = 7.4, 0.9 

Hz, 2H), 7.15 (d, J = 7.7 Hz, 2H) 7.02 (d, J = 4.4 Hz, 4H), 5.94 (s, 4H), 4.15 (t, J = 6.7 

Hz, 4H), 4.03 (t, J = 6.6 Hz, 4H), 3.94 (t, J = 6.7 Hz, 4H), 1.90-1.81 (m, 8H), 1.70-1.65 

(m, 4H), 1.53- 1.46 (m, 8H), 1.33 (s, 24H), 1.25 (m, 76H), 0.90-0.83 (m, 18H); 
13

C NMR 

(125 MHz, CDCl3): δ 154.1, 153.4, 148.7, 142.7, 140.9, 136.6, 131.7, 128.6, 127.7, 

123.7, 120.9, 117.4, 116.4, 114.4, 112.6, 111.4, 91.7, 90.5, 84.0, 69.7, 69.6, 68.8, 53.3, 

31.93, 31.91, 29.71, 29.70, 29.65, 29.64, 29.60, 29.56, 29.50, 29.43, 29.40, 29.38, 29.37, 

29.33, 29.31, 26.06, 26.04, 26.03, 24.8, 22.7, 22.67, 14.1, 14.0; HRMS (MALDI-TOF) 

m/z Calcd for C112H170B2N6O10, 1781.3165; Found, 1781.3358 [M]
+
. 

Trifluoroborate-attached linear OPE 226a 

 

To a solution of compound 226 (100 mg, 0.056 mmol) in MeOH (5 mL) and THF 

(5 mL) placed in a plastic beaker was added to aqueous KHF2 (0.75 mL, 3 M, 2.24 

mmol). The resulting pale yellow color slurry was stirred at rt overnight. After the 

reaction was complete as checked by TLC analysis, the solvent was removed under 

reduced pressure. The residue was dissolved in hot acetone and filtered. The filtrate was 

concentrated under vacuum, affording crude product 226a, which was crystallized from 

Et2O/hexanes (1:1) to afford compound 226a (80.2 mg, 0.051 mmol, 86%) as yellow 
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color solid. m.p. 228-229 ◦C; IR (neat): 3387, 2358, 2101, 1599, 1466, 1389, 1348, 1270, 

1058 cm−1; 
1
H NMR (500 MHz, DMSO-d6): δ 8.26 (s, 2H), 7.80 (s, 2H), 7.48 (d, J = 7.4 

Hz, 2H), 7.08-7.00 (m, 8H), 6.86 (d, J = 7.4 Hz, 2H), 5.70 (s, 4H), 4.08 (t, J = 6.1 Hz, 

4H), 4.01 (t, J = 6.2 Hz, 4H), 3.96 (t, J = 6.8 Hz, 4H) 1.78-1.68 (m, 8H), 1.51-1.44 (m, 

4H), 1.33- 1.07 (m, 84H), 0.86-0.75 (m, 18H); 
13

C NMR (125 MHz, DMSO-d6): δ 154.1, 

153.7, 149.2, 142.0, 138.9, 133.0, 127.4, 126.8, 126.5, 125.3, 121.9, 117.5, 116.9, 114.5, 

112.6, 111.6, 92.7, 91.2, 74.3, 69.7, 69.3, 69.2, 53.7, 32.23, 32.20, 30.0, 29.97, 29.96, 

29.90, 29.87, 29.81, 29.70, 29.69, 29.61, 29.5, 26.46, 26.43, 26.3, 25.8, 22.98, 22.95, 

14.7, 14.68, 14.64; MS (ESI, negative) m/z Calcd for [C100H146B2F6N6O6]
2−

, 831.6; 

Found, 832.1. 

Boronic acid-attached linear OPE (196) 

 

To a solution of compound 226a (58 mg, 0.033 mmol) in acetonitrile (5 mL), 

THF (5 mL), and water (0.04 mL, 2.33 mmol), was added trimethylsilyl chloride (0.08 

mL, 0.665 mmol). The resulting clear yellow solution was stirred at rt overnight. After 

the reaction was complete as checked by TLC analysis, the reaction mixture was poured 

in to water and the resulting solid was filtered and air-dried, affording crude product 196, 

which was crystallized from Et2O/hexanes (1:1) to yield pure compound 196 (45 mg, 

0.027 mmol, 84%) as pale yellow solid. m.p. 161-163 
o
C; IR (neat): 3417, 1600, 1457, 
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1375, 1273, 1046 cm−1; 
1
H NMR (500 MHz, 4:1 acetone-d6/DMSO-d6): δ 8.37 (s, 2H), 

8.03 (s, 2H), 7.93 (s, 2H), 7.84 (d, J = 7.1 Hz, 2H), 7.42-7.38 (m, 4H), 7.34 (t, J = 7.5 Hz, 

2H), 7.21 (d, J = 7.5 Hz, 2H), 7.11 (s, 2H), 7.09 (s, 2H), 5.96 (s, 4H), 4.16 (t, J = 6.2 Hz, 

4H), 4.11-4.06 (m, 8H), 1.89-1.81 (m, 8H), 1.63-1.55 (m, 8H), 1.43-1.22 (m, 80H), 0.89-

0.81 (m, 18H); No meaningful 
13

C NMR spectrum was obtained due to its poor 

solubility. HRMS (MALDI-TOF) m/z Calcd for C100H150B2N6O10, 1617.1600; Found, 

1617.1881 [M]
+
. 

2-Amino-5-bromobenzoic acid (228) 

 

  To a solution of anthranilic acid 227 (10.0 g, 72.9 mmol) in 160 mL of glacial 

acetic acid was added 4.7 mL of bromine (14.7 g, 92.1 mmol) was added dropwise at 16 

o
C. The product was filtered and then boiled up with 350 mL of water containing 20 mL 

of conc. HCl. The content was filtered and the insoluble residue was extracted twice with 

400 mL of boiling water. The filtrates upon cooling yielded compound 228 (8.01 g, 36.5 

mmol, 51%) as a white solid. 
1
H NMR (500 MHz, CDCl3):  δ 8.03 (s, 1H), 7.39 (d, J = 

8.7 Hz, 1H), 6.59 (d, J = 8.7 Hz, 1H) (protons of NH2 and COOH were not observed due 

to rapid proton exchange). The data are consistent with those reported in the literature.
70

 

5-Bromo-2-iodobenzoic acid (229) 
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To a solution of 228 (3.9 g, 18 mmol), NaNO2 (1.5 g, 22 mmol) and NaOH (0.90 

g, 23 mmol) in 55 mL of water was added dropwise to a stirred and cooled solution of 6.4 

mL of HCl in 9 mL of water at 0 
o
C over a period of 1.5 h. The stirring was continued for 

30 min at same temperature and the formed suspension of diazonium salt was added to a 

stirred solution of KI (4.5 g, 27 mmol) and 1.1 mL of H2SO4 in 7.5 mL of water at 40 
o
C 

over 20 min. The mixture was then heated to 90 
o
C and stirred for 30 min. The mixture 

was stirred and cooled. The crude product was filtered and washed with water, and then 

dissolved in 40% NaOH. The undissolved components were separated by decantation and 

the clear solution was acidified with concentrated HCl. The product was extracted by 

diethyl ether. The extract was dried with MgSO4 and concentrated under vacuum. The 

residue was crystallized from 50% aqueous ethanol to give compound 229 (3.2 g, 10 mol, 

56%) as a pale yellow solid. 
1
H NMR (500 MHz, CDCl3): δ 8.14 (s, 1H), 7.91 (d, J = 8.3 

Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H) (proton on COOH was not observed due to rapid proton 

exchange). The data are consistent with those reported in the literature.
70

 

Methyl 5-bromo-2-iodobenzoate (230) 

 



201 
 

To a solution of compound 229 (15.3 g, 48.0 mmol) in methanol (150 mL) was 

added H2SO4 (6 mL) dropwise and then refluxed overnight. The reaction was cooled to rt. 

The solvent was removed by rotary evaporation. The obtained residue was dissolved in 

ethylacetate. The solution was washed by brine, and dried over MgSO4. After removal of 

EtOAc under vacuum, the resulted crude product was purified by silica column 

chromatography (hexanes/EtOAc, 9:1) to yield compound 230 (15.2 g, 45.0 mmol, 97%) 

as a pale yellow solid. 
1
H NMR (500 MHz, CDCl3,): δ 7.94 (s, 1H), 7.84 (d, J = 8.0 Hz, 

1H), 7.29 (d, J = 8.0, 1H), 3.94 (s, 3H). The data are consistent with those reported in the 

literature.
70

 

(5-Bromo-2-iodophenyl)methanol (231) 

 

 To a solution of compound 230 (2.92 g, 8.56 mmol) in dry CH2Cl2 (20 mL) was 

added DIBAL (17.1 mL, 1 M in THF, 17.1 mmol) at 0 
o
C. The reaction was slowly 

warmed up to rt and stirred overnight. The mixture was cooled to 0 
o
C, added 15% 

aqueous citric acid dropwise, and extracted with CH2Cl2. The organic layer was washed 

with brine, and dried with MgSO4. After removal of CH2Cl2 under vacuum, the resulting 

crude product was purified by silica column flash chromatography (hexanes: EtOAc, 

8.5:1.5) to give compound 231 as a white solid (1.75 g, 5.59 mmol, 67%). 
1
H NMR (500 

MHz, CDCl3): δ 7.66 (d, J = 8.5 Hz, 1H), 7.63 (d, J = 2.5 Hz, 1H), 7.14 (dd, J = 9.0, 2.0 

Hz, 1H), 4.63 (s, 2H). The data are consistent with those reported in the literature.
70
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5-Bromo-2-iodobenzaldehyde (232) 

 

To a solution of compound 231 (4.00 g, 12.7 mmol) in 100 mL of CH2Cl2 was 

added PCC (3.81 g, 17.6 mol) portions wise, and celite. The reaction was stirred for 

another 4 h. The reaction mixture was filtered through celite to remove undissolved 

materials and the filtrate was concentrated under vacuum to give the crude product of 

232. The crude product was purified by silica flash column chromatography 

(hexanes/CH2Cl2, 70:30) to give compound 232 (3.37 g, 10.8 mmol, 85%) as a white 

solid. 
1
H NMR (500 MHz, CDCl3): δ 9.99 (s, 1H), 7.99 (s, 1H), 7.82 (d, J = 8.3 Hz, 1H), 

7.42 (d, J = 6.1 Hz, 1H). The data are consistent with those reported in the literature.
70

 

α, α’ -Dibromo-p-xylene (233)  

 

To a solution of p-Xylene (6.00 g, 56.5 mmol), and benzoylperoxide (20 mg) in 

200 mL of CHCl3 was added NBS (20.1 g, 113 mmol) and refluxed under a bright light. 

After the being refluxed for 8 h, the solution was cooled to rt. The generated succinimide 

was filtered. The yellow solution was concentrated to give the crude product which was 

purified by silica flash column chromatography (hexanes) to yield compound 233 (3.20 g, 
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12.1 mmol, 21%) as a white solid. 
1
H NMR (500 MHz, CDCl3,): δ 7.37 (s, 4H), 4.48 (s, 

4H). The data are consistent with those reported in the literature.
70

 

Tetraethyl 1,4-phenylenebis(methylene)diphosphonate (234) 

 

1,4-Bis(bromomethyl)benzene 233 (1.00 g, 3.80 mmol) and triethylphosphite (6 

mL) were refluxed for 12 h. The mixture was cooled to rt, yielding colorless crystals. The 

excess unreacted triethylphosphite was decanted. The remaining white solid was washed 

three times with hexanes and dried under vaccum to afford compound 234 as a white 

solid (0.81 g, 2.14 mmol, 56%). 
1
H NMR (500 MHz, CDCl3): δ 7.29 (s, 4H), 4.04-4.00 

(m, 8H), 3.14 (d, J P;H = 20.6 Hz), 1.25 (t, J = 7.5 Hz, 12H). The data are consistent with 

those reported in the literature.
70

 

1,4-Bis(5-bromo-2-iodostyryl)benzene (235) 
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To an oven-dried flask protected under N2 were charged tetraethyl 1,4-phenylene 

bis(methylene)diphosphonate
 
234 (0.50 g, 1.32 mmol), 60% NaH (0.15 g, 3.91 mmol), 

and dry DMF (8 mL). The solution gradually turned into dark orange color. A solution of 

compound 232 (0.82 g, 2.62 mmol) in DMF (5 mL) was added in small portions over a 

period of 10 min via a syringe. The reaction was kept under stirring for another 30 min 

before workup. On completion as checked by TLC analysis, the reaction mixture was 

poured in to ice, and the obtained solid was filtered, washed with water several times and 

finally with methanol to give pure product 235 (0.82 g, 1.18 mmol, 88% ) as a yellow 

solid. 
1
H NMR (300 MHz, CDCl3): δ 7.76 (d, J = 2.3 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 

7.57 (s, 4H), 7.26 (d, J = 16.0 Hz, 2H), 7.11 (d, J = 2.3 Hz, 1H), 7.08 (d, J = 2.3 Hz, 1H), 

6.97 (d, J = 16.0 Hz, 2H). The data are consistent with those reported in the literature.
70

  

1,4-Bis( 2,5-bis(trimethylsilylethynyl)styryl)benzene (236) 

 

To an oven-dried round-bottom flask protected under N2 were charged compound 

235 (0.586 g, 0.848 mmol), trimethylsilylacetylene (0.71 mL, 0.489 g, 4.98 mmol), 

PdCl2(PPh3)2 (87.3 mg, 0.124 mmol)), CuI (47.2 mg, 0.248 mmol), and Et3N (50 mL). 

The solution was degassed by N2 bubbling at rt for 5 min, and then was heated to 85 
o
C 

under stirring and N2 protection overnight. After the reaction was complete as checked by 
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TLC analysis, the solvent was removed by rotary evaporation. The residue was diluted 

with EtOAc and was filtered through a MgSO4 pad. The solution obtained was 

sequentially washed with aq HCl (10%) and brine. The organic layer was dried over 

MgSO4 and concentrated under vacuum to give crude product 236, which was further 

washed with methanol and dried to yield pure compound 236 (0.450 g, 0.674 mmol, 

81%) as a yellow solid. 
1
H NMR (300 MHz, CDCl3): δ 7.79 (s, 2H), 7.65 (d, J = 16.4 Hz, 

2H), 7.54 (s, 4H), 7.42 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 1.5 Hz, 2H), 7.19 (d, J = 16.4 Hz, 

2H),  0.31 (s, 18H), 0.27 (s, 18H). The data are consistent with those reported in the 

literature.
70

  

1,4-Bis(2,5-diethynylstyryl)benzene (237) 

 

To a solution of compound 236 (0.38 g, 0.64 mmol) in MeOH/THF (1:1, 20 mL) 

was added K2CO3 (0.31 g, 2.25 mmol). The mixture was stirred at rt for 30 min, and then 

the reaction solvent was removed by rotary evaporation. The residue was diluted in 

CH2Cl2 and sequentially washed with aq HCl (10%) and brine. The organic layer was 

dried with MgSO4 and concentrated under vacuum to afford the crude product of 237, 

which was further washed with methanol and dried to yield pure compound 237 (0.23 g, 

0.60 mmol, 94%) as a yellow solid. 
1
H NMR (500 MHz, CDCl3): δ 7.84 (s, 2H), 7.61 (d, 
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J = 16.3 Hz, 2H), 7.56 (s, 4H), 7.48 (d, J = 7.9 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.18 (d, 

J = 16.3 Hz, 2H), 3.48 (s, 2H), 3.19 (s, 2H). The data are consistent with those reported in 

the literature 
70

  

3,5-dibromobenzaldehyde (239) 

 

To a solution of 1,3,5-tribromobenzene 238 (2.01 g, 6.35 mmol) in ether (63 mL) 

was added n-BuLi (6.25 mL, 1.2 M, 0.481 g, 7.62 mmol) slowly over a period of 30 min 

at -78 
o
C. Then the reaction mixture was stirred for 30 min at same temperature. This was 

then added dry DMF (4.7 mL, 4.40 g, 20.9 mmol) and allow the reaction stirred at rt for 1 

h before it was quenched with aqueous 1M HCl. The obtained cloudy solution was added 

ether (50 mL) and washed with water two times. The organic layer was separated and 

dried over MgSO4, and concentrated under vaccum to give crude product 239. This was 

further purified by silica flash column chromatography (hexanes/EtOAc, 9.5:0.5) to yield 

pure compound 239 as off-white solid (1.30 g, 4.92 mmol, 77%). 
1
H NMR (500 MHz, 

CDCl3): δ 9.90 (s, 1H), 7.94-7.72 (m, 3H). The data are consistent with those reported in 

the literature.
71

  

1,4-Bis( 3,5 dibromostyryl) benzene (240)   
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To an oven-dried flask protected under N2 were charged tetraethyl 1,4-phenylene 

bis(methylene)diphosphonate 234 (0.50 g, 1.44 mmol), NaH (0.13 g, 5.76 mmol), and dry 

DMF (8 mL). The solution gradually turned into dark orange color. A solution of 3,5 

dibromobenzaldehyde 239 (0.76 g, 2.88 mmol) in DMF (5 mL) was added in small 

portions over a period of 10 min via a syringe. The reaction was kept under stirring for 

another 30 min before workup. On completion as checked by TLC analysis, the reaction 

mixture was poured in to ice, and the obtained solid was filtered, washed with water 

several times and finally with methanol to give pure product 240 (0.61 g, 1.02 mmol, 

71% ) as a yellow solid. m.p. 256-259.3 
o
C; IR (neat): 3021, 1672, 1630, 1575, 1539, 

1419, 1100, 948, 838, 736 cm
-1

; 
1
H NMR (500 MHz, DMSO-d6): δ 7.87 (d, J = 1.5 Hz, 

4H), 7.71 (t, J = 1.5 Hz, 2H), 7.64 (s, 4H), 7.48 (d, J = 16.4 Hz, 2H), 7.29 (d, J = 16.4 Hz, 

2H); 
13

C NMR (75  MHz, DMSO-d6): δ 141.5, 136.4, 131.9, 131.2, 128.1, 127.3, 125.7, 

122.9; HRMS (MALDI-TOF, +eV) m/z calcd for C22H14Br4, 593.7829;  found 593.7795 

[M]
+
.  

1,4-Bis( 3,5-bis(trimethylsilylethynyl)styryl)benzene (241)  
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To an oven-dried round-bottom flask protected under N2 were charged compound 

240 (0.47 g, 0.78 mmol), trimethylsilylacetylene (1.78 mL, 1.23 g, 12.4 mmol), 

PdCl2(PPh3)2 (0.05 g, 0.07 mmol)), CuI (0.03 g, 0.16 mmol), and Et3N (30 mL). The 

solution was degassed by N2 bubbling at rt for 5 min, and then was heated to 65 
o
C under 

stirring and N2 protection overnight. After the reaction was complete as checked by TLC 

analysis, the solvent was removed by rotary evaporation. The residue was diluted with 

EtOAc and was filtered through a MgSO4 pad. The solution obtained was sequentially 

washed with aq HCl (10%) and brine. The organic layer was dried over MgSO4 and 

concentrated under vacuum to give crude product 241, which was further washed with 

methanol and dried  to yield pure compound 241 (0.38 g, 0.56 mmol, 72%) as a yellow 

solid. m.p. 251-253 
o
C; IR (neat): 2955, 2155, 1579, 1423, 1249, 1161, 949, 843 cm

-1
; 

1
H 

NMR (500 MHz, CDCl3): δ 7.55 (d, J = 1.3 Hz, 4H), 7.49-7.47 (m, 6H), 7.13 (d, J = 16.3 

Hz, 2H), 7.02 (d, J = 16.3 Hz, 2H), 0.26 (s, 36H); 
13

C NMR (75 MHz, CDCl3): δ 137.6, 

136.7, 134.4, 129.84, 129.79, 127.11, 127.05, 123.8, 104.0, 95.1, 0.0; HRMS (MALDI-

TOF, +eV) m/z calcd for C42H50Si4, 666.2990;  found 666.2988 [M]
+
.  
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1,4-Bis( 3,5-diethynylstyryl)benzene (242)  

 

To a solution of compound 241 (0.37 g, 0.55 mmol) in MeOH/THF (1:1, 20 mL) 

was added K2CO3 (0.92 g, 6.66 mmol). The mixture was stirred at rt for 1 h, and then the 

reaction solvent was removed by rotary evaporation. The residue was diluted in CH2Cl2 

and sequentially washed with aq HCl (10%) and brine. The organic layer was dried with 

MgSO4 and concentrated under vacuum to afford the crude product of 242, which was 

further washed with methanol and dried under vaccum  to yield pure compound 242 (0.19 

g, 0.51 mmol, 91%) as a yellow solid. m.p. 219-222 
o
C; IR (neat): 3277, 1579, 1426, 

1249, 955, 863 cm
-1

; 
1
H NMR (500 MHz, CDCl3): δ 7.61 (d, J = 1.6 Hz, 4H), 7.50 (s, 

6H), 7.14 (d, J = 16.3 Hz, 2H), 7.04 (d, J = 16.3 Hz, 2H), 3.11(s, 4H); 
13

C NMR (75 

MHz, CDCl3): δ 137.8, 136.6, 134.4, 130.4, 130.1, 127.1, 126.8, 122.9, 82.5, 78.0; 

HRMS (MALDI-TOF, +eV) m/z calcd for C30H18, 378.1409, found 378.1391 [M]
+
. 

Pinacolyl boronate-attached H-shaped OPV oligomer (243)  
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Compound 237 (120 mg, 0.32 mmol), azido phenylboronate 210 (822 mg, 3.20 

mmol) and 
i
Pr2EtN (27.6 μL, 0.16 mmol) were dissolved in dry THF (5 mL). The 

solution was degassed by bubbling N2 at rt for 5 min. Then CuI (24.6 mg, 0.13 mmol) 

was added, and the reaction mixture was heated at 60 
o
C overnight. After the reaction 

mixture was complete as checked by TLC analysis, the solvent was removed under 

reduced pressure. The residue was diluted with CH2Cl2. The mixture was filtered through 

a MgSO4 pad and the filtrate was sequentially washed with brine and water. The organic 

layer was dried over MgSO4 and then concentrated under vacuum to give crude 243, 

which was further purified by silica flash column chromatography (EtOAc/hexanes, 2:8) 

to yield pure compound 243 (368 mg, 0.26 mmol, 82%) as a pale yellow solid. m.p. 225-

227 
o
C; IR (neat): 2978, 1602, 1448, 1347, 1266, 1213, 1146, 1053, 962, 859 cm

-1
; 

1
H 

NMR (500 MHz, CD2Cl2): δ 8.22 (d, J = 1.0 Hz, 2H), 7.95 (s, 2H), 7.92-7.89 (m, 4H), 

7.77-7.70 (m, 6H), 7.49-7.46 (m, 6H), 7.40-7.30 (m, 12H), 7.17 (d, J = 16.2 Hz, 2H), 

5.93 (d, J = 2.6 Hz, 8H), 1.38 (s, 24H), 1.24 (s, 24H); 
13

C NMR (75 MHz, CD2Cl2): δ 

147.4, 146.6, 141.68, 141.66, 137.4, 137.2, 136.6, 132.3, 132.3, 132.3, 131.6, 131.1, 
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130.9, 130.3, 129.8, 129.7, 128.4, 128.3, 127.6, 127.5, 125.3, 123.7, 123.6, 121.0 84.8, 

84.7, 25.3, 25.2 (two peaks fewer than expected due to coincidental peak overlap); 

HRMS (MALDI-TOF, +eV) m/z calcd for C82H90B4N2O8 1414.7377, found 1414.7374 

[M]
+
.  

Boronic acid-attached H-shaped OPV oligomer (197) 

 

To a solution of compound 243 (70 mg, 0.05 mmol) and o-tolylboronic acid 207 

(59.6 mg, 0.44 mmol) in dioxane (10 ml) was added HCl (5 M, 2.5 ml). The reaction 

mixture was stirred and heated at 100 °C overnight. On completion as checked by the 

TLC analysis, the solvent was removed under reduced pressure. The resulting solid was 

washed with water, dried and further recrystallized from dioxane to give pure compound 

197 (41 mg, 0.038 mmol, 76%) as an off-white solid.  m.p. 273-279 
o
C; IR (neat): 3361, 

1602, 1448, 1361, 1323, 1268, 961, 826 cm
-1

; 
1
H NMR (500 MHz, DMSO-d6): δ 8.65 (s, 

2H), 8.34 (s, 8H), 8.30-8.29 (m, 4H), 7.87-7.85 (m, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.68-

7.62 (m, 4H), 7.51 (s, 4H), 7.40-7.37 (m, 4H), 7.35-7.30 (m, 8H), 7.18 (d, J = 7.3 Hz, 

2H), 7.13 (d, J = 7.9 Hz, 2H), 5.89 (d, J = 3.3 Hz, 8H); 
13

C NMR (75 MHz, DMSO-d6): δ 

145.9, 145.2, 139.72, 139.70, 136.6, 135.3, 134.5, 130.6, 130.1, 129.8, 129.7, 128.64, 
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128.60, 127.99, 127.88, 127.2, 127.1, 127.0, 126.6, 124.5, 124.2, 122.6, 122.1, 53.1(three 

peaks fewer than expected due to coincidental peak overlap); HRMS (MALDI-TOF, 

+eV) m/z calcd for C58H50B4N12O8, 1086.4247, found 1086.3743 [M]
+
. 

Pinacolyl boronate-attached H-shaped OPV oligomer (244)  

 

Compound 242 (0.15 g, 0.39 mmol), azido phenylboronate 210 (1.02 g, 3.96 mmol) 

and 
i
Pr2EtN (34.5 µL, 0.19 mmol) were dissolved in dry THF (5 mL). The solution was 

degassed by bubbling N2 at rt for 5 min. Then CuI (0.03 g, 0.16 mmol) was added, and 

the reaction mixture was heated at 60 
o
C overnight. After the reaction mixture was 

complete as checked by TLC analysis, the solvent was removed under reduced pressure. 

The residue was diluted with CH2Cl2, and then filtered through a MgSO4 pad. The filtrate 

was sequentially washed with brine and water. The organic layer was dried over MgSO4 

and concentrated under vacuum to give crude 244, which was further purified by silica 
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flash column chromatography (EtOAc/hexanes, 3:7) to yield pure compound 244 (0.45 g, 

0.32 mmol, 83%) as a pale yellow solid. m.p. 260-262 
o
C; IR (neat): 2975, 1602, 1447, 

1343, 1268, 1220, 1142, 1051, 956, 853 cm
-1

; 
1
H NMR (500 MHz, CD2Cl2): δ 8.04 (s, 

2H), 7.95-7.90 (m, 12H), 7.56 (s, 4H), 7.47 (t, J = 6.8 Hz, 4H), 7.38 (t, J = 7.3 Hz, 4H), 

7.30-7.20 (m, 8H), 5.92 (s, 8H), 1.37 (s, 48H); 
13

C NMR (75 MHz, CD2Cl2): δ 147.4, 

141.6, 139.0, 137.3, 137.2, 132.6, 132.3, 129.7, 129.6, 128.5, 128.4, 127.7, 127.5, 123.5, 

122.3, 121.0, 84.8, 25.3; HRMS (MALDI-TOF, +eV) m/z calcd for C82H90B4N2O8 

1414.7377, found 1414.7423 [M]
+
.  

Boronic acid-attached H-shaped OPV oligomer (198)  

 

To a solution of compound 244(103 mg, 0.073 mmol) and o-tolylboronic acid 207 

(87.8 mg, 0.656 mmol) in dioxane (10 mL) was added HCl (5M, 3 mL). The reaction 

mixture was stirred and heated at 100 
o
C overnight. On completion as checked by the 

TLC analysis, the solvent was removed under reduced pressure. The resulting solid was 
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washed with water, dried and was further recrystallized from dioxane to give pure 

compound 198 (58.6 mg, 0.054 mmol, 74%) as an off-white solid.  m.p. 267-271 
o
C; IR 

(neat): 3359, 1602, 1449, 1377, 1334, 1256, 1055, 960, 812, 761 cm
-1

; 
1
H NMR (500 

MHz, DMSO-d6): δ 8.58 (s, 4H), 8.21 (s, 4H), 8.05 (s, 2H), 7.69-7.67 (m, 8H), 7.41-7.38 

(m, 8H), 7.33 (t, J = 6.6 Hz, 4H), 7.15 (d, J = 7.5 Hz, 4H), 5.88 (s, 8H); 
13

C NMR (75 

MHz, DMSO-d6): δ 146.0, 139.7, 138.3, 136.5, 134.5, 131.8, 129.7, 128.9, 128.0, 127.1, 

127.0, 124.4, 122.6, 122.0, 53.1(two peaks fewer than expected due to coincidental peak 

overlap); HRMS (MALDI-TOF, +eV) m/z calcd for C58H50B4N12O8, 1086.4247, found 

1086.4592 [M]
+
.  
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Chapter 3  

Interactions of DTF-endcapped Oligomers with 

SWNTs and Fullerenes  

3.1 Introduction 

3.1.1 Importance of functionalized SWNTs 

As briefly introduced in Chapter 1, carbon nanotubes (CNTs) are carbon 

allotropes in tiny cylindrical structures. They can be single-walled carbon nanotubes 

(SWNTs) and multi-walled carbon nanotubes (MWNTs) in terms of their layers 

formation. Conceptually, SWNTs can be viewed as a rolled-up sheet of graphene with 

hemispherical fullerene caps at both ends, while MWNTs are a number of SWNTs 

concentrically assembled together (Figure 3.1).
1
 The diameter of a typical SWNT is 

usually between 0.7 and 3.0 nm, while those for MWNTs range from 2 and 30 nm.                                

 

Figure 3.1: Schematic representation showing the rolling of a graphene sheet into a 

SWNT and MWNT (adopted from reference 1 with permission). 
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Due to their unique optical, electrical, and mechanical properties such as high 

aspect ratio, high strength, and excellent current carrying capability, SWNTs have been 

extensively investigated for many potential applications, including molecular 

electronics,
2,3

 sensors,
4-6

 field-emission devices,
7
 and components in high-performance 

composites.
8
 However, because of the high cost, lack of solubility, and difficulty of 

manipulation in all solvents, the applications of SWNTs are still restricted to the 

preliminary stage. One major obstacle is that SWNTs can interact strongly with another 

to form more or less closely packed bundles of highly complex architectures by 

noncovalent forces, such as π-π interactions and van der Waals attractions between their 

sidewalls. The bundling nature of SWNTs makes them extremely difficult to be 

dissolved/dispersed in solvents. This limits their direct use in device fabrications where 

solution-phase processing is involved. To overcome this barrier, various chemical 

functionalization methods have been developed as shown in Figure 3.2.
9
 By these 

methods, it is possible to solubilize and disperse SWNTs in various solvents, organic 

and/or aqueous media.  
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Figure 3.2: Functionalization methods for SWNTs: A) noncovalent exohedral 

functionalization with polymers, B) defect-group functionalization, C) noncovalent 

exohedral functionalization with surfactants, D) covalent sidewall functionalization, and 

E) endohedral functionalization with, for example, C60 (adopted from reference 9 with 

permission). 

As summarized in Figure 3.2, the methods used for the functionalization of 

SWNTs including defect functionalization, covalent functionalization of the sidewalls, 

noncovalent exohedral functionalization, and endohedral functionalization, have been 

developed to overcome the solubility limitations. Among these methods, the covalent and 

noncovalent sidewall functionalization methods have been widely exploited during recent 

years as they can offer effective ways not only to remove impurities, such as remaining 

catalysts employed in the nanotube synthesis, from as-produced SWNT samples, but also 
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to break aggregates to form individualized and well dispersed SWNTs. The following 

sections will briefly discuss two types of SWNT functionalization methods, namely 

covalent and noncovalent functionalization. 

3.1.2 Covalent functionalization of SWNTs 

In this method, SWNTs are covalently modified by introducing a variety of 

functional groups on their surface of SWNTs. The covalent method, however, invariably 

causes changes in the hybridization state of the carbon atoms functionalized from sp
2
 to 

sp
3
. Among various reactions, oxidation is the most widely studied one for SWNT 

functionalization, which normally can be induced at the tips or at defects in the nanotube 

side walls to generate carboxylic acid functional groups. In a typical oxidation process, 

SWNTs are treated with HNO3 which oxidizes the surface and introduces carboxylic acid 

groups. These carboxylic acid groups can be used as chemical anchors for further 

attachment of other organic molecules. As such, the solubility of functionalized SWNTs 

can be greatly improved, for example in common organic solvents
10

 or even in water.
11

 

Moreover, by varying the functional groups, the properties of covalently functionalized 

SWNTs can be greatly altered in comparison with the intrinsic properties of pristine 

SWNTs.  

Gromov and co-workers
12

 reported the synthesis of a class of soluble 

functionalized SWNTs by attaching amino groups to carboxylated SWNTs. As shown in 

the Scheme 3.1, two synthetic approaches have been devised. The first method involves 

the formation of amide-SWNTs followed by the Hofmann rearrangement (path A), while 
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the second uses a Curtis rearrangement of acid chloride groups attached to SWNTs to 

form amino-SWNTs.  

                        

Scheme 3.1: Synthesis of amino-functionalized SWCNTs via the Hofmann 

rearrangement of carboxylic acid amide (path A) and the Curtius reaction of acyl azide 

(path B) 

In 2005, Adronov and co-workers reported the covalent functionalization of 

SWNTs by using the CuAAC reaction (click reaction) between alkyne-functionalized 
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SWNTs and azido-polystyrenes (Scheme 3.2).
13

 The resulting polystyrene functionalized 

SWNTs achieved very high solubility in organic solvents, such as THF, CHCl3, and 

CH2Cl2.  

     

Scheme 3.2: Adronov’s preparation of polystyrene functionalized SWNTs via the 

CuAAC reaction.  

In another example, Guldi and co-workers functionalized SWNTs with zinc 

porphyrins and studied the donor-acceptor properties of the resulting SWNTs-ZnP 

conjugates. As described in Scheme 3.3,
14

 a simple click reaction approach was applied 

between alkyne-functionalized SWNTs and the zinc porphyrin azide counterparts. The 

click derived SWNTs-ZnP conjugates were found to have good solubility in organic 

solvents. Furthermore, characterizations based on steady-state and time-resolved 
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spectroscopic measurements indicated the formation of reduced SWNT and oxidized ZnP 

species after photoexcitation. 
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Scheme 3.3: Functionalization of SWNTs with zinc porphyrin azides by click strategy 

In 2007, Langa and co-workers for the first time reported the synthesis of a 

conjugated hybrid of C60-fullerene and SWNTs by the amidation reaction of carboxylic 

acid functionalized SWNTs and amine derived C60 fullerene (Scheme 3.4).
15

 An 

esterification reaction with n-pentanol on the remaining acid chloride groups brought 

good solubility to the complex. It was suggested that this type of nanoscale hybrid 

material could be potentially useful in optoelectronic devices.    
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Scheme 3.4: Synthesis of C60-SWNTs nanohybrid material 260. 

Although  covalent functionalization is an effective way for dispersing nanotube 

bundles and creating a large number of nanomaterials; however, it has some drawbacks. 



230 
 

The chemical reactions happening on the surface of the nanotubes can cause structural 

damage to the tube, which leads to the undesirable disruption in the electronic and 

mechanical properties of the SWNTs. On the other hand, the noncovalent 

functionalization method has obvious advantages over the covalent method, as it does not 

require any chemical reactions to be performed on the surface of the nanotube. In the 

following section, the noncovalent functionalization of SWNTs will be presented in detail 

with some representative examples from the recent literature.  

3.1.3 Noncovalent functionalization of SWNTs      

Noncovalent functionalization of SWNTs has received considerable attention in 

the field of nanotube-based science and technology, not only because it provides a direct 

solution to the problems of insolubility and poor processability of as-produced SWNTs, 

but also because it enables easy ways for sorting specific types of SWNTs out of as-

produced SWNT mixtures.
16,17

 Usually, in this method, the SWNTs can be functionalized 

through surface binding of macromolecule-based dispersants such as surfactants,
9,18

 

polymers
17,19-23

 and DNA,
24

 and adhesion of small molecules
25-27

 to improve the 

solubility in various solvents.  

Jeffrey S. Moore and co-workers recently reported that the noncovalent 

functionalization of SWNTs using an oligo(m-phenylene ethynylene)s foldamers (m-PE 

13 mers) as shown in Figure 3.3.
28

 These oligomers do not show significant 

intramolecular -stacking and adopt unfoldable confirmation in chlorinated solvents. 

When mixed with SWNTs, stable supramolecular complexes are formed in which 
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SWNTs are wrapped by the oligomers through - interactions. Interestingly, by the 

addition of polar solvents such as acetonitrile to the dispersed oligomer-SWNT 

complexes, the oligomers show a stronger tendency for self-folding as a result of 

increasing solvophobic effect, and the conformational change in the oligomers disrupts 

the intramolecular π-π interactions between the surface of the nanotube and the 

oligomers, resulting in the nanotubes being released from solution. The dissolved 

SWNTs were measured to be 700 mg/L in chloroform as solvent. The authors have 

concluded that these foldable oligomers can potentially be used for the purification of 

SWNTs.  

 

  

 

Figure 3.3: Solution process for dispersion and release of SWNTs by mPE-13mers 

(adopted from reference 28 with permission). 
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Bao and co-workers reported that the dithiafulvalene (DTF)/thiophene based 

copolymers such as poly(dithiafulvalene-fluorene-co-m-thiophene)s (pDTFF-mT) could 

selectively disperse semiconducting SWNTs in toluene through noncovalent wrapping.
29

 

The DTF groups are substituted on the polymer back bone to create large planar surfaces 

which facilitate the strong interaction with SWCNT walls as well as the possibility of 

interaction through charge transfer. It is noted that the presence of thiophene units in the 

polymer backbone is helpful in the selective dispersion of SWNTs.  The results from UV-

Vis-NIR and Raman spectroscopy indicated that small length polymers (pDTFF-1T) are 

more selective towards semiconducting SWNTs and higher length polymers (pDTFF-3T) 

are selective towards metallic SWNTs. Interestingly, the polymer that has only one 

thiophene in the repeat unit shows high degree of dispersion of SWNTs in comparison 

with other analogous polymers.  

 

Figure 3.4: Chemical structure of pDTFF-mT 261 designed for the noncovalent 

functionalization of SWNTs.  
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In the Zhao group, TTFV-based conjugated polymers have been designed and 

synthesized to reversibly disperse and release SWNTs in organic solvents simply under 

the control of pH or redox stimuli (Figure 3.5).
30

 The wrapping mode facilitates the 

interactions between TTFV-polymer 262 and SWNTs, leading to a strong dispersion of 

individual small diameter tubes, while the adhesion mode works better for large-diameter 

tubes to form supramolecular networks and produces TTFV-polymer/SWNTs sol-gels. 

The TTFV unit is known to undergo reversible protonation that is associated with 

switching of its conformation from cis to trans. This switching behavior of TTFV has 

been successfully utilized in controlling the TTFV-polymers to perform reversible SWNT 

dispersion and their release in organic solvents.  
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Figure 3.5: Chemical structure of TTFV-polymer 262 for SWNTs wrapping (top), and 

schematic representation showing the reversible wrapping and unwrapping of SWNT by 

a TTFV polymer (down) (adopted form reference 30 with permission). 
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Figure 3.6: Chemical structure of pyrene-ex TTF 263 (top), and molecular modeling 

image of SWNT/pyrene-ex TTF complex (down) (adopted from reference 31 with 

permission). 

The noncovalent functionalization of SWNTs by using small aromatic moieties 

such as anthracene, pyrene, and porphyrin derivatives has been studied in the literature. 

Martin and co-workers reported supramolecular interactions between SWNTs and π-

extended TTFs such as “pyrene-ex-TTF”.
31

 The pyrene unit is essential to surface 

immobilization on SWNTs through π-π interactions. The electronic properties of the 

complex have been investigated because of the electron donor ability of ex-TTF and 

electron accepting properties of SWNTs.  

Park and co-workers recently studied the use of naphthalene based azo dispersants 

for the selective extraction of semiconducting SWNTs from a mixture. The compound 
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264 shows unique double selectivity for SWNTs. The undecomposed form of compound 

264 selectively disperses semiconducting SWCNTs, whereas the decomposed product of 

264 which is a naphthyl-based radical species can selectively bond to metallic SWNTs. 

This result provides a simple method for the separation and purification of 

semiconducting SWNTs in high yield. With density gradient ultracentrifugation, they 

have obtained >98% semiconducting SWNTs in a single pass of purification.
32

 

 

Figure 3.7: Chemical structure of naphthalene-based azo dispersant 264. 

3.1.4 Objectives of this chapter 

As mentioned earlier, SWNTs have attracted much attention due to their 

exceptional mechanical, thermal, chemical, electrical, and electronic properties which 

may find in various devices. For device fabrication, high-purity metallic or 

semiconducting SWNTs are highly desired. However, all current reported methods 

produce a mixture of metallic and semiconducting SWNTs, and highly efficient 

purifications methods are required for the separation of these SWNTs. For this purpose, 

various chemical functionalization methods can be used, among which noncovalent 

functionalization presents a particularly intriguing approach not only because it provides 

a direct solution to the problems of insolubility and poor processability of as-produced 
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SWNTs, but also because it enables easy ways for sorting specific types of SWNTs out of 

as-produced SWNT mixtures.  

Usually, macromolecule-based dispersants such as surfactants, polymers, and 

DNA are preferred for debundling and dispersion of SWNTs in various solvents, as they 

tend to form stable complexes with SWNTs with sufficient dispersant–SWNT 

interactions via van der Waals forces or π-stacking. The use of relatively small π-

conjugated oligomers to disperse SWNTs, however, has not been extensively studied yet. 

In recent years, various DTF- and TTF-containing compounds have been found to show 

significant supramolecular interactions with SWNTs. These results thus inspired us to 

investigate the supramolecular interactions between the DTF–oligomers (265, 266, 267, 

and 268) and the carbon nanomaterials such as SWNTs and fullerenes.   

Most of the data in this chapter have been published in J. Mater. Chem. C. 2013, 

1, 5116-5127 as a full article, in which I am the first author of the paper.  
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Figure 3.8: Chemical structures of DTF-oligomers designed for SWNT dispersion. 
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3.2 Results and Discussions 

3.2.1 Synthesis of DTF substituted linear and Z-shaped OPE/OPV co-oligomers 

The synthesis began with the preparation of a key intermediate S-decyl thione 270 

and linear and Z-shaped π-conjugated aldehyde building blocks 273, 276 and 278, 279. 

The following section describes the synthetic details of all the intermediates and final 

target compounds.   

Synthesis of S-decyl thione 

S-decyl thione 270 was prepared using known procedures. As shown in Scheme 

3.5, the synthesis started with a radical reaction between Na and CS2 using DMF as 

solvent. The resulting dithiolate was chelated with Zn
2+

 upon addition of ZnCl2 and 

NH3.H2O, and precipitated out as a stable red colored salt 269 in the presence of 

tetraethylammonium bromide (TEAB). The overall yield of this sequence of reactions 

was 88%. Salt 269 was then dissociated into free dithiolate in refluxing acetone, and the 

resulting intermediate was subsequently alkylated with 1-decyl bromide to afford S-decyl 

thione 270 in 74% yield.  
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Scheme 3.5: Synthesis of S-decyl thione intermediate 270. 

3.2.2 Synthesis of linear and Z-shaped π-conjugated aldehydes 

(a) Synthesis of short and long linear π-conjugated aldehydes 

As shown in Scheme 3.6, the synthesis of short linear shaped π-conjugated (SL-

CHO) 273 was started with a Sonagashira reaction performed on commercially available 

4-bromobenzaldehyde with trimethylsilylacetylene (TMSA), and subsequent desilylation 

using K2CO3 resulted in compound 272. Compound 272 was converted into SL-CHO 273 

via the cross-coupling reaction with 1,4-diiodobenzene with a 78% yield (crude). 

Compound SL-CHO 273 showed very poor solubility in common organic solvents due to 

the lack of any solubilizing groups, and for this reason it was isolated merely in a crude 

form.  
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Scheme 3.6: Synthesis of short linear aldehyde (SL-CHO) 273. 

The synthesis of long linear π-conjugated (LL-CHO) 276 is outlined in Scheme 

3.7. The first step was the cross-coupling reaction of compound 215 with compound 272, 

followed by desilylation, yielding the phenyl acetylene building block 275. Next, 

compound 275 was cross-coupled with 1,4-diiodobenzene under Sonagashira conditions 

to afford LL-CHO 276.  

 

Scheme 3.7: Synthetic route for LL-CHO 276. 
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(b) Synthesis of short and long Z-shaped π-conjugated aldehydes 

To construct the short and long Z-shaped aldehydes, the essential diiodo building 

block 277 was first prepared as shown in Scheme 3.8. A Horner-Wittig reaction between 

2-iodobenzaldehyde and 1,4-bis(diethylphosphonatomethyl)benzene 234 in the presence 

of NaH afforded compound 277 as a yellow solid. Treating 277 with compound 272 

under Sonagashira conditions gave short Z-shaped aldehyde 278 in 65% yield as a yellow 

solid. Similarly, the reaction of compound 277 with the phenylacetylene building block 

275 under Sonagashira conditions afforded the long Z-shaped aldehyde 279 in 72% yield.  
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Scheme 3.8: Synthesis of both short and long Z-shaped OPE/OPV aldehyde precursors. 

(c) Synthesis of linear OPE/OPV co-oligomers with DTF end groups 

With compounds SL-CHO 273 and LL-CHO 276 in hand, the synthesis of linear 

DTF substituted co-oligomers was straightforward and it was achieved as outlined in 

Scheme 3.9. Despite the difficulty in attaining satisfactory purity, compound SL-CHO 

273 was subjected to a P(OMe)3-mediated olefination reaction with S-decyl thione 270, 

giving DTF-endcapped phenylacetylene trimer 265 that showed much better solubility 
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and was readily purified by column chromatography. By a similar olefination reaction, 

the aldehyde groups of compound 276 were reacted with S-decyl thione 270 to yield 

DTF-endcapped phenylacetylene pentamer 266 in 76% yield . 

 

Scheme 3.9: Synthesis of DTF endcapped linear OPE/OPV trimer and pentamer. 

For the synthesis of Z-shaped DTF substituted OPE/OPV oligomers, the 

aldehydes 278 and 279 were subjected to P(OMe)3-mediated olefination reactions with S-

decyl thione 270 to afford short Z-shaped and long Z-shaped DTF oligomers 267 and 268 
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in 67% and 71% yields respectively (Scheme 3.10). The short Z-shaped DTF oligomer 

267 was obtained as thick brown syrup and its long oligomer 268 as a yellow colored 

solid.

 

Scheme 3.10: Synthesis of DTF substituted short and long Z-shaped oligomers. 

All the DTF functionalized OPE/OPV linear and Z-shaped oligomers and their 

corresponding OPE/OPV precursors have been characterized by IR, 
1
H and 

13
C NMR 
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spectroscopy and mass spectrometry, the results of which offer convincing proof of their 

molecular structures and purities.  

3.2.2 UV-Vis absorption, emission, and electrochemical properties 

(a) UV-Vis absorption properties 

 As shown in Figure 3.8a shows the UV-Vis absorption spectra of all DTF 

functionalized co-oligomers in comparison with their aldehyde-endcapped precursors, 

except the short linear aldehyde-OPE 273 due to its poor solubility, measured in 

chloroform at room temperature. It can be seen from Figure 3.8a that the maximum 

absorption wavelength of long linear DTF-OPE 266 (at 423 nm) is redshifted by only 12 

nm relative to short linear DTF-OPE 265 (at 412 nm), as a consequence of increased 

conjugation of the oligomer π-framework. Comparison of the absorption spectra of long 

linear DFT-OPE 266 and its precursor aldehyde-OPE 276 (λmax = 408 nm) reveals a 

redshift of λmax by 15 nm, which is ascribed to the substitution effect of DTF endgroups 

on the electronic properties of the oligomer unit. 
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Figure 3.8a: Normalized UV-Vis absorption spectra of oligomers 265, 276, 266, and 

278, 267, 279, and 268 measured in CHCl3 at room temperature. 

The spectrum of short Z-shaped DTF-OPE/OPV 267 shows a low-energy 

absorption band at 368 nm along with a shoulder at 402 nm. Its precursor aldehyde-

OPE/OPV 278 exhibits a similar low-energy spectral profile, but the absorption band and 

shoulder are slightly blueshifted to 361 nm and 387 nm respectively. The spectrum of 

long Z-shaped DTF-OPE/OPV 268 shows a maximum absorption band at 408 nm, which 

is similar to that of its precursor aldehyde-OPE/OPV 279 (λmax = 407 nm). The spectrum 

of 268 shows a distinctive absorption band at 388 nm and a shoulder at 432 nm in the 

low-energy region. 

(b) Emission properties 

 The electronic emission properties of DTF-functionalized co-oligomers and 

related aldehyde-oligomer precursors were investigated by fluorescence spectroscopic 
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analysis. As shown in Figure 3.9, the aldehyde-endcapped oligomers appear to be highly 

fluorescent when compared to their DTF functionalized co-oligomers.  

 

 

 

 

Figure 3.9: Fluorescence spectra of oligomers 276, 278, 279, and 265-268 measured in 

CHCl3 at room temperature. 

From Table 3.1, it can be predicted that the emission of DTF-endcapped 

oligomers is substantially attenuated with quantum yields around ca. 1%. The suppressed 

emission is attributed to facile non-radiative decay mainly due to photoinduced electron 

transfer which takes place from the DTF donor to the oligomer fluorophores.  
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Table 3.1: Summary of photophysical data for DTF-oligomers and their aldehyde-

oligomer precursors 

 

Entry 

 

Absorption 

 /nm (/ 10
4
 cm

-1
 M

-1
) 

 

 

Emission 

 /nm 

 

Quantum 

yield ( 

 

265 

 

276 

 

266 

 

278 

 

267 

 

279 

 

 

 

 

268 

 

412 (6.72 ), 319 (2.56) 

 

407 (7.92), 331 (4.45), 299(3.42), 

  

423(11.2), 326 ( 3.82) 

 

387(2.51), 361(3.65), 318(5.38) 

296 (3.98), 246 (1.78) 

402(s) (4.90), 368 (6.49), 

301(4.14) 401(s) (6.21), 

366(7.65), 327(5.98),  

308(6.41) 432(8.47), 406(10.5), 

384(9.33), 357(7.52), 314(6.19), 

245(5.04) 

   

  488, 466 

   

  485, 454 

 

  487, 468 

   

  487, 462 

 

444           

   

  487, 474 

 

 

 

 

488, 466 

 

    0.012 

 

0.591 

 

0.013 

 

0.406 

 

    0.010 

     

    0.676 

 

 

     

 

    0.013 

(c) Electrochemical properties 

  The electrochemical redox properties of DTF-functionalized oligomers were 

investigated by cyclic voltammetry (CV). Figure 3.10 shows the cyclic voltammograms 

that were measured in the multi-cycle scan mode. For the first cycle of CV scans, the 

voltammogram of DTF-OPE 265 clearly shows an anodic peak at +0.82 V and a cathodic 
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peak at +0.54 V, which are assigned to the oxidation of DTF into [DTF]
+
 and the reverse 

reduction.
33-35

 Starting from the second cycle of CV scans, a new anodic peak at ca. +0.6 

V emerges and its intensity grows steadily together with the cathodic peak at +0.54 V. 

The rise of this new peak is due to the continuous formation of [TTFV]
2+

 as a result of 

oxidative dimerization of DTF (Scheme 3.11) on the surface of working electrode. The 

voltammogram of long linear DTF-OPE 266 shows a similar growth of [TTFV]
2+

 peak 

upon multi-cycle scans; however, the [DTF]
+
 peak appears to reduce more dramatically 

in intensity in comparison with 265. 

 

 

 

 

 

Figure 3.10: Cyclic voltammograms (CV) (left) and Differential pulse voltammogram 

(DP) (right) of 265 (1.33 × 10
-3

 M), 266 (0.98 × 10
-3

 M), 267 (1.45 × 10
-3

 M), and 268 

(0.94 × 10
-3

 M). Experimental conditions (CV): Bu4NBF4 (0.1 M) as the supporting 

electrolyte, CH2Cl2 as the solvent, glassy carbon as the working electrode, Pt wire as the 

counter electrode, Ag/AgCl as the reference electrode, and the scan rate: 50 mV s
-1

. 

Experimental conditions (DP): Bu4NBF4 (0.1 M) as the supporting electrolyte, CH2Cl2 as 

the solvent, glassy carbon as the working electrode, Pt wire as the counter electrode, 
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Ag/AgCl as the reference electrode, scan rate: 20 mV s
-1

, pulse width: 20 mV, pulse 

period: 200 ms, pulse amplitude: 50 mV, and step: 4 mV. 

  Rationalization for the different CV patterns can be made as follows: when one of 

the DTF groups in 265 undergoes oxidative dimerization, the resulting [TTFV]
2+ 

dication 

imposes a significant electron-withdrawing effect on the other DTF group via the 

relatively short OPE π-spacer, which in turn lowers its reactivity toward dimerization. 

 

  



 

 

 

 

 

 

Figure 3.11: Cyclic voltammograms of DTF–oligomers measured in the multi-cycle scan 

mode. Experimental conditions: Bu4NBF4 (0.1 M) as the supporting electrolyte, CH2Cl2 
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as the solvent, glassy carbon as the working electrode, Ptwire as the counter electrode, 

Ag/AgCl as the reference electrode, and scan rate = 100 mV s
-1

.  

 

 

 

Scheme 3.11: Oxidative dimerization of DTF. 

  The electrochemical reactions on the working electrode therefore result in 

dimerization or a low-degree of oligomerization of 265, after which a significant amount 

of DTF endgroups still remain unreacted. For DTF-OPE 266, however, the relatively 

longer OPE bridge attenuates electronic communications between the two DTF 

endgroups. As a result, each of them undergoes oxidative dimerization independently, 

resulting in a quicker consumption of DTF units and relatively higher degrees of 

polymerization upon multiple CV scans (Figure 3.11). The voltammogram of long Z-

shaped DTF-OPE/OPV 268 shows a similar electrochemical behaviour to that of the  

compound, long linear DTF-OPE 266. Of particular note are the CV features of short Z-

shaped DTF-oligomer 267. In the first cycle of scan, two anodic peaks at +0.82 V and 

+1.09 V and two cathodic peaks at +0.56 V and +0.94 V can be seen. This result suggests 

that the two DTF groups in 267 have such a significant degree of electronic 

communications that they are oxidized in a stepwise rather than a simultaneous manner. 

With increasing cycles of CV scans, the [TTFV]
2+

 peak at ca. +0.61 V becomes observed 

but with a rather weak current intensity. The voltammogram of 267 clearly shows that its 
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DTF endgroups are quite unreactive towards oxidative dimerization. Such a different 

electrochemical behaviour is tied to the strong electronic communications between the 

two DTF groups via the short Z-shaped OPE/OPV π-bridge of 267. Overall, our 

comparative CV studies confirm that the π-spacers exert an important effect on the 

electrochemical properties and reactivities of DTF-endcapped oligomers 

3.2.3 Interactions of DTF-endcapped oligomers with fullerenes 

When a small amount of fullerene (C60 or C70) was added into diluted solutions of 

the DTF- oligomers, a steadily increasing fluorescence was observed. At the first glance, 

this property was a bit puzzling, given the known fluorescence quenching effects arising 

from both DTF endgroups and fullerenes on oligomer fluorophores.  

                         

Figure 3.12: Photographic images of DTF-oligomer 268 before and after addition of C60 

fullerene. 

To shed light on this issue, 
1
H NMR analysis was performed on a solution of 

oligomer 268 and C60 fullerene (3 eq) at various time intervals, which was not 

deliberately degassed. It was observed that the DTF units of oligomer 268 are gradually 
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converted into aldehyde groups, leading to compound 279 and thione as products (Figure 

3.12). Fullerene C60 has a wide spectral absorption range and a low-lying triplet state. It is 

therefore reasonable to assume that upon exposing to ambient light, some kind of 

fullerene-sensitized reaction pathway leads to singlet oxygen (
1
O2) formation.

36,37 
Singlet 

oxygen is known to react with electron-rich alkenes to form 1,2-dioxetane, which 

subsequently undergoes O-O bond cleavage to yield C=O products.
38-40

 Scheme 3.12 

outlines a proposed mechanism to account for the transformation of DTF to aldehyde 

promoted by singlet oxygen.  

 

Figure 3.13: 
1
H NMR spectra in the aromatic and aliphatic regions showing the gradual 

conversion of DTF–oligomer 268 to aldehyde–oligomer 279 in the presence of C60 

fullerene at 298 K. Initial concentration of 268: 8.9 x 10
-4

 M, concentration of C60: 26.7 x 

10
-4

 M, and solvent: C6D6. 
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Non-fluorescent DTF-oligomers undergoing this singlet oxygen promoted C=C 

cleavage reaction afford highly fluorescent aldehyde-oligomers, giving rise to the 

observed fluorescence enhancement. A value of 149 fold fluorescence enhancement was 

observed in the case of reaction with C60 fullerene, whereas the reaction with C70 results 

162 fold fluorescence turn on with respect to the emission intensity of DTF-oligomer 

268.   

 

Scheme 3.12: Proposed mechanism for singlet oxygen-induced C = C bond cleavage of 

DTF. 

To further probe the kinetic properties of the fullerene-sensitized C=C bond 

cleavage reactions, diluted solutions of 268 mixed with either C60 or C70 fullerene were 

examined by fluorescence spectroscopic analysis at varied times (Figure 3.14). From 

Figure 3.14A, the fluorescence enhancement (F – F0) is observed to show a linear 

relationship with reaction time (τ) in the first 16 h. Assuming that (F – F0) is proportional 

to the concentration of fluorescent product 279, the correlation is in line with a zero-order 

kinetics. When C70 was used instead of C60 as the sensitizer, the correlation of (F – F0) 

with τ appears to be in a good agreement with a first order kinetics. 
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Figure 3.14: (A) Fluorescence spectra of 268 (1.8 x 10
-6

 M) with C60 in benzene at varied 

times. (B) Fluorescence spectra of 268 with C70 in benzene at varied times. Inset plots: 

fluorescence enhancement (F – F0) as a function of time (τ). F0 and F denote fluorescence 

intensities measured at initial and later stages at 440 nm.  

 A tentative rationalization of these different kinetic properties can be made based 

on the kinetic analysis described in Scheme 3.13. In the case where singlet oxygen 

generation is the rate determining step and the concentration of dissolved oxygen in 

solution is deemed as constant, a steady-state approximation can be assumed to give zero-

order behavior for the observed reaction rate. On the contrary, if the C=C bond cleavage 

is the rate determining step, a rapid equilibrium approximation is valid, which leads to a 
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first-order kinetics for the overall reaction. The results of kinetics analysis suggest that 

C70 produces singlet oxygen at a much faster rate than C60.  

 

Scheme 3.13: Kinetics of singlet oxygen induced C=C bond cleavage of aryl-DTF. 

The involvement of singlet oxygen as an oxidant in the fullerene-sensitized C=C 

bond cleavage is evidenced by the following experimental observations: 

(i) The reaction rate was considerably slowed down when the reaction was carried 

out under argon. As can be seen from Figure 3.15, after the solution of 268 and C60 in 

benzene was deoxygenated by three cycles of free-pump-thaw and then placed under 

argon, the fluorescence spectral monitoring shows a much slower reaction rate in 

comparison with that observed in the presence of oxygen. This result suggests that 

oxygen in the air is the oxidant of the reaction. 

 (ii) The use of a classical singlet oxygen sensitizer, methylene blue, in place of 

C60, also led to the same C=C bond cleavage reaction. As shown in Figure 3.16, after 

mixing with methylene blue under air for 48 h, the fluorescence intensity grew 

significantly, indicating the occurrence of C=C bond cleavage leading to a highly 

fluorescent aldehyde product 279. The result suggests singlet oxygen is the active oxidant 
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to induce C=C bond cleavage in 268; however, the reaction under this condition 

proceeded relatively at a slower rate than the case where C60 is used as the sensitizer, 

indicating that methylene blue is a poorer sensitizer than fullerenes. 

 

Figure 3.15: Fluorescence spectra of 268 (1.8 × 10
-6

 M) with C60 under argon in benzene 

at varied times. The solution was subjected to three cycles of free-pump-thaw under 

argon before fluorescence spectroscopic analysis. Inset plot: fluorescence enhancement 

(F – F0) as a function of time (τ). F0 and F denote fluorescence intensities measured at 

initial and later stages at 440 nm. Excitation wavelength = 370 nm.  
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Figure 3.16: Fluorescence spectra of 268 (1.8 × 10
-6

 M) in benzene upon addition of 

methylene blue (MB) under air for varied times and the fluorescence spectrum of pure 

MB in benzene. Excitation wavelength = 370 nm. 

(iii) Upon UV light irradiation under air, DTF-oligomer 268 underwent the same 

C=C bond cleavage reaction without the presence of C60. As shown in Figure 3.17, the 

solution of 268 in benzene under air was subjected to UV light irradiation at 365 nm and 

monitored by fluorescence spectroscopy at varied times. The results show a steady 

increase in the fluorescence intensity similar to the case of Figure 3.14A but with a longer 

reaction time, indicating that 15 underwent oxidative cleavage reaction in the presence of 

singlet oxygen.  
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Figure 3.17: Fluorescence spectra of 268 (1.8 × 10
-
6 M) in benzene upon UV light 

irradiation (at 365 nm) under air for varied times. Excitation wavelength = 370 nm. 

Finally, the reaction has also been attempted on a larger scale, where DTF-

oligomer 268 was converted into 279 in a high yield of 89% (isolated) in the presence of 

C60 (3 molar equiv) at room temperature within 20 hours.  

3.2.4 Interactions of DTF-oligomers with carbon nanotubes 

(a) UV-Vis-NIR results of DTF-oligomers-SWNTs complexes 

Two commercially available SWNTs were studied throughout this work, namely 

HiPCO and CoMoCAT nanotubes. With the DTF-oligomers in hand, dispersion 

experiments were then conducted with each type of carbon nanotube in a similar manner. 

In our experiments, first pristine SWNTs were added to the solutions of DTF-oligomers, 

the mixture was subjected to the ultrasonication for 60 min at rt, and then filtered through 

a cotton plug to remove undissolved material. The resulting solutions were centrifuged 

for 10 min and filtered through a cotton plug again to afford SWNTs suspension. If the 
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DTF-oligomers successfully dissociated the carbon nanotube bundles, a stable black 

solution would be observed after filtration.  

 

Figure 3.18: Photographic images of filtrates of DTF–oligomer solutions mixed with 

HiPCO SWNTs after sonication for 1 h. Rows: (A) oligomer 265, (B) oligomer 266, (C) 

oligomer 267, and (D) oligomer 268. Solvents tested (from left to right): chloroform, 

chlorobenzene, toluene, methylene chloride, and hexanes. 

The photographic images in Figure 3.18 depict the outcomes of HiPCO SWNTs 

dispersed with DTF– oligomers, from which it is clearly seen that HiPCO SWNTs form 

stable black suspensions in the chloroform solutions of all four DTF–oligomers, where 

long oligomers 266 and 268 give much better dispersion results than short oligomers 265 

and 267. In methylene chloride, long oligomers 266 and 268 can also induce efficient 

dispersion of HiPCO SWNTs, but short oligomers 265 and 267 cannot. For other 

common organic solvents, including chlorobenzene, toluene, and hexanes, no effective 

dispersion of HiPCO SWNTs can be obtained using DTF–oligomers as dispersants. 

Although both short and long Z-shaped oligomers 267 and 268 were able to effect 
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dispersion of SWNTs in chlorobenzene immediately after sonication and filtration 

through a cotton plug, the suspensions were not stable enough and SWNTs precipitated 

out of the solution within a short period of time.  

 

 

 

 

Figure 3.19: Normalized UV-Vis-NIR spectra of HiPCO SWNTs dispersed by DTF–

oligomers in chloroform. 

The HiPCo SWNTs suspensions in chloroform were then examined by UV-Vis-

NIR absorption analysis. From Figure 3.19, it can be seen that the Vis-NIR absorption 

profiles of the SWNTs dispersed by the four oligomers are very similar to one another. 

There are two distinct sections in the spectrum of HiPCO SWNT solutions that can be 

attributed to metallic and semiconducting nanotubes. From the literature, it is known that 

the peaks which are seen in the range of 930–1500 nm are attributed to inter-band 

transitions of semiconducting SWNTs (S11), while the peaks from 500–930 nm are due to 

metallic (M11) and semiconducting (S22) bands.
41,42

 The results indicate that the SWNTs 

were well dispersed and debundled in the solution of DTF-oligomers.  
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Figure 3.20: UV-Vis-NIR spectrum of HiPCO SWNTs dispersed with 268, and 267 in 

CH2Cl2. 

As mentioned earlier, only long DTF-oligomers could disperse SWNTs in DCM 

solvent. Similar characteristic bands have been observed with HiPCO SWNTs dispersed 

by long DTF oligomers in DCM solvent (Figure 3.20). In the spectrum of CoMoCAT 

SWNTs dispersed by long linear DTF-oligomer 266 in DCM solvent, a prominent peak at 

999nm is observed, which is assigned to SWNTs with chiral index of (6,5) (Figure 3.21). 

In addition, peaks at 576 and 668 nm can be assigned to (6,5) and (7,6) SWNTs 

respectively.
43,44
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Figure 3.21: UV-Vis-NIR spectrum of CoMoCAT SWNTs dispersed with 266 in 

CH2Cl2. 

(b) Raman spectroscopic results of DTF-oligomers SWNTs complexes 

 

 

 

 

Figure 3.22: Raman spectra of HiPCO SWNTs dispersed by DTF oligomers in the RBM 

region (λex 534 nm). 

The dark solutions were evaporated to obtain SWNTs-oligomers complexes, 

which were then characterized by Raman spectroscopy. Figure 3.22 shows the Raman 

spectra in the radial breathing mode (RBM) region. Usually, Raman frequency in this 
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region is inversely proportional to the diameter of the nanotubes. The Raman frequency 

in the region of 265-280 nm can be ascribed to small diameter nanotubes, while the peaks 

at 190-220 nm are assigned to relatively large diameter nanotubes. It is concluded from 

the figure that the DTF-oligomers can selectively disperse the nanotubes of relatively 

smaller diameters in pristine HiPCO SWNTs.  

 (c) AFM results of CoMoCAT SWNTs-DTF oligomer complexes 

The samples for AFM measurement were prepared by spin-coating of dilute 

SWNT-DTF oligomers suspensions on a freshly cleaved mica surface. The excess DTF-

oligomers were rinsed off with chloroform followed by drying with nitrogen flow. Figure 

3.23 depicts the AFM image of the supramolecular assemblies of HiPCO SWCNTs and 

DTF-oligomer 266 wherein oligomer agglomerates are clearly observed to stack around 

the sidewalls of debundled SWNTs. Such interactions are believed to be the major 

driving force for effective dispersion of SWNTs in the solution phase. Figures 3.24 and 

3.25 are examples of results obtained for DTF-oligomers 268 and 267 with HiPCO 

SWCNTs. Both images show fairly consistent surface morphologies as obtained for DTF-

oligomer 266.  
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Figure 3.23: AFM image of supramolecular assemblies of HiPCO SWNTs and oligomer 

266 spin-cast on a mica surface (tapping mode). 

 

 

 

Figure 3.24: AFM image of supramolecular assemblies of HiPCO SWNTs and oligomer 

268 spin-cast on a mica surface (tapping mode). 
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Figure 3.25: AFM image of supramolecular assemblies of HiPCO SWNTs and oligomer 

267 spin-cast on a mica surface (tapping mode). 

(d) Releasing of SWNTs from DTF oligomer-SWNTs complexes 

The releasing of SWNTs was readily accomplished by a simple solvent mixing 

method. To a stable suspension of HiPCO SWNTs and DTF-oligomer 268 in chloroform 

(1 mL), an equal amount of hexane (1 mL) was added. Precipitation of SWNTs was 

immediately observed (Figure 3.26). The mixture was then filtered through a filter paper 

to separate the released SWNTs from DTF-oligomer solution.  

 



268 
 

 

Figure 3.26: Photographic images of (A) HiPCO SWNT suspension with 268 in 

chloroform and (B) after addition of an equal amount of hexanes. 

By this way, pristine SWNTs were conveniently recovered from the dispersion. 

The actual solubility of SWNTs in DTF-oligomer solutions was then determined. As 

listed in Table 3.2, the solubility of SWNTs in the solutions of long DTF-oligomers 268 

and 266 is much greater than their short oligomers 267 and 265, likely due to their longer 

π-conjugated lengths and more solubilizing decyl side chains. 

Table 3.2: Solubility of HiPCO SWNTS in DTF–oligomer chloroform solutions 

 

      

DTF-oligomer 

Concentration of the 

oligomer (mM) 

Solubility of SWNTs 

(mg mL
-1

) 

265 2.34 0.01 

266 1.58 0.20 

267 2.00 0.05 

268 1.39 0.29 
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The HiPCO SWNTs released from the suspension in the solution of DTF-

oligomer 268 were examined by Raman spectroscopy. As shown in Figure 3.27, the 

spectrum of the released SWNTs shows only one significant peak at 272 cm
-1

 in the 

region of radial breathing mode (RBM). The spectral feature is quite similar to that of the 

HiPCO SWNTs dispersed in the chloroform solution of DTF-oligomer 268. For pristine 

SWNTs, the Raman spectrum shows two significant peaks at 267 and 225 nm 

respectively. It is evidenced that DTF-oligomer 268 can selectively disperse the 

nanotubes of relatively smaller diameters in pristine HiPCO SWNTs. 

          

Figure 3.27: Normalized Raman spectra showing the RBM region of (a) HiPCO SWNTs 

released from the dispersion, (b) HiPCO SWNTs dispersed with 268, and (c) pristine 

HiPCO SWNTs. 

  It has been observed that the released SWNTs are cleanly separated from 

oligomer dispersants, which is evidenced by Raman spectroscopic analysis. As shown in 

Figure 3.28, the spectrum of the released SWNTs does not show significant signals at ca. 

2200 cm
-1

, which is due to the C≡C stretching mode of oligomer 268.  
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    Figure 3.28: Normalized Raman spectra of the released SWNTs, pristine SWNTs, and 

pure oligomer 268 in the region of 1500 to 2500 cm-1. 

The DTF group is a crucial and indispensable factor to SWNT dispersion. This 

point has been confirmed by a comparative study in which the aldehyde–oligomer 

precursors (273, 276, 278, and 279) were tested for SWNT dispersion under the same 

conditions used by the DTF–oligomers. The results clearly showed that, without DTF 

groups, the π-oligomers could not induce any effective dispersion on SWNTs in common 

organic solvents. 

3.2.3 Solvent effects on DTF-oligomers  

It is believed that the solvent plays a major role in the supramolecular properties 

of these DTF-oligomers for the reversible dispersion of SWNTs. From the results 

disclosed, it is clear that the dispersion of HiPCO SWNTs with DTF–oligomers appears 

to be particularly effective in chloroform. However, the exact reason is unclear and 

awaits further investigation. Nevertheless, 
1
H NMR analysis on DTF–oligomer 268 
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discloses a dramatic degree of changes in the resonance frequencies of aromatic protons 

in different solvents (Figure 3.29). Of particular note is that one of the vinyl protons was 

found greatly downfield shifted from 7.84 ppm (in CDCl3) to 8.29 ppm (in C6D6). This 

behavior is indicative of substantial changes in conformation and aggregation states in 

different solvent systems,
45

 which is believed to cause the different dispersion outcomes 

in various solvents. Non-polar chlorinated solvents such as chloroform and methylene 

chloride happen to solubilize the supramolecular assemblies of DTF–oligomers and 

HiPCO SWNTs more effectively than other organic solvents.  

 

Figure 3.29: 
1
H NMR (500 MHz) spectrum of 268 in different solvents (showing the 

aliphatic region). 
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3.3 Conclusions 

The thesis work described in this Chapter focuses on a series of DTF-endcapped 

OPE/OPV hybrid conjugated oligomers 268, 267, 266, and 265 in a linear and Z-shaped 

molecular structures. The electronic and electrochemical properties of the DTF groups 

have been found to vary with the properties of the π-oligomer. As a strong electron 

donor, the DTF group exerted a substantial quenching effect on the fluorescence emission 

of the π-oligomers. When the DTF-endcapped oligomers were mixed with fullerenes (C60 

and C70), the C=C bond of DTF undergoes a facile oxidative cleavage reaction under air 

and ambient light to form highly fluorescent aldehyde-endcapped oligomers as the 

product. A fullerene-sensitized photooxygenation mechanism has been proposed to 

rationalize this reaction, while C70 fullerene appeared to be a more efficient sensitizer 

than C60 in promoting this unique reaction. The consequence of this reaction is a 

substantial fluorescence turn-on response to fullerenes by these DTF–oligomers, 

suggesting potential use in fullerene sensing and recognition.  

The DTF endgroups have imparted the π-oligomers with remarkable effectiveness 

at dispersing SWNTs in chloroform or methylene chloride. Moreover, the supramolecular 

interactions between DTF-oligomers and SWNTs have been demonstrated to be tube 

diameter-dependent. The dispersion outcomes are highly solvent-dependent and very 

easy to control. Based on this property, reversible dispersion and release of SWNTs in the 

solution phase were achieved, which are expected to find application  in making 

SWNT-based semiconducting electronic devices. In conclusion, this chapter has 
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demonstrated that DTF is a fascinating substituent group which not only introduces rich 

redox and electronic properties, but also can bring about novel chemical reactivities, 

photophysical and supramolecular properties to organic functional materials. 

3.4 Experimental 

Chemicals were purchased from commercial suppliers and used directly without 

purification. HiPCO SWNTs were purchased from Carbon Nanotechnologies Inc. 

CoMoCAT SWNTs were purchased from Southwest Nanotechnologies Inc. All reactions 

were conducted in standard, dry glassware and under an inert atmosphere of nitrogen 

unless otherwise noted. Evaporation and concentration were carried out with a water-

aspirator. Flash column chromatography was performed using 240-400 mesh silica gel, 

and thin-layer chromatography (TLC) was carried out with silica gel F254 covered on 

plastic sheets and visualized by UV light. Melting points (m.p.) were measured with SRS 

OptiMelt melting point apparatus and are uncorrected. 1H and 13C NMR spectra were 

measured on a BrukerAvance 500 MHz spectrometer and BrukerAvance III 300 MHz 

multinuclear spectrometer. Chemical shifts are reported in ppm downfield from the signal 

of the internal reference SiMe4 for 
1
H and 

13
C NMR spectra. Coupling constants (J) are 

given in Hz. Infrared spectra (IR) were recorded on a Bruker tensor 27 spectrometer. UV-

Vis-NIR absorption spectra were measured on a Cary 6000i spectrophotometer. Atomic 

force microscopy (AFM) images were taken with a Q-Scope AFM operated in tapping 

mode. Raman spectra were measured on a Horiba Jobin Yvon confocal Raman 

spectrometer operated at a laser wavelength of 532nm. Cyclic voltammetric (CV) 
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experiments were carried out in a standard three-electrode setup controlled by a BASi 

Epsilon workstation. MALDI-TOF MS analyses were performed on an Applied 

Biosystems Voyager instrument using dithranol as the matrix. 

Bis(tetraethylammonium) bis(1,3-dithiole-4,5dithiolate)zincate (269) 

 

 

Na (8.56 g, 372 mmol) and CS2 (47 mL, 779 mol) were mixed and then refluxed 

for 20 min under N2 protection. Dried DMF (50 mL) was added dropwise over a period 

of 20 min. The mixture was refluxed for 2 h and then concentrated under vacuum at 30 

°C. MeOH (60 mL) was added to the residue under cooling in an ice-water bath to 

quench unreacted Na. A solution of ZnCl2 (13.3 g, 97.5 mmol) in 1:1 MeOH/NH3-H2O 

(100 mL) was then added carefully to the filtrate. To the resulting mixture, Et4NBr (24.9 

g, 118 mmol) in H2O (80 mL) was then added. Then the mixture was left standing in the 

fume hood overnight. The resulting mixture was then subjected to suction filtration. The 

residue was sequentially washed with H2O and Et2O to yield 269 as a red-colored solid 

(29.8 g, 41.0 mmol, 88%). The salt was directly taken to the next step without further 

characterization. 
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4,5-Bis(decylthio)-1,3-dithiol-2thione (270) 

 

 

To a solution of 269 (10.1 g, 14.1 mmol) in acetone (100 mL) was added 1-decyl 

bromide (18.4 g, 83.2 mmol). The mixture was refluxed for overnight and filtered. The 

residue was washed with acetone. The filtrate was cooled under ice bath condition for 0.5 

h. Precipitate was collected by suction filtration to afford 270 as a bright yellow solid 

(4.97 g, 10.4 mmol, 74%). 
1
H NMR (500 MHz, CD2Cl2): δ  2.85 (t, J = 7.2 Hz, 4H), 

1.69-1.63 (m, 4H), 1.42-1.27 (m, 28H), 0.88 (t, J = 6.1 Hz, 6H);  The 
1
H NMR data is 

consistent with those reported in the literature.
46

  

4-(trimethylsilylethynyl)benzaldehyde (271) 

 

To an oven-dried round-bottom flask protected under N2 were charged 4-

bromobenzaldehyde (5.10 g, 27.5 mmol), trimethylsilylacetylene (22.8 mL, 15.8 g, 161 

mmol), PdCl2(PPh3)2 (94.1 mg, 0.134 mmol), CuI (52.8 mg,  0.277 mmol), and Et3N (100 

mL). The solution was degassed by N2 bubbling at rt for 5 min, and then was heated to 65 

o
C under stirring and N2 protection overnight. After the reaction was complete as checked 

by TLC analysis, the solvent was removed by rotary evaporation. The residue was diluted 

with EtOAc and was filtered through a MgSO4 pad. The solution obtained was 
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sequentially washed with aq HCl (10%) and brine. The organic layer was dried over 

MgSO4 and concentrated under vacuum to give crude product 271, which was purified by 

flash silica column chromatography (5% EtOAc/Hexanes)    to yield pure compound 271 

(5.13 g, 25.3 mmol, 92%) as a off-white solid. 
1
H NMR (500 MHz, CDCl3); δ 10.01 (s, 

1H), 7.82 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 8.8 Hz, 2H), 0.28 (s, 9H). The 
1
H NMR data is 

consistent with those reported in the literature.
47

  

4-(ethynyl)benzaldehyde (272) 

 

To a solution of compound 271 (1.0 g, 4.9 mmol) in MeOH/THF (1:1, 20 mL) 

was added K2CO3 (2.1 g, 15 mmol). The mixture was stirred at rt for 30 min, and then the 

reaction solvent was removed by rotary evaporation. The residue was diluted in CH2Cl2 

and sequentially washed with aq HCl (10%) and brine. The organic layer was dried with 

MgSO4 and concentrated under vacuum to afford the crude product of 272, which was 

further washed with methanol and dried to yield pure compound 272 (0.52 g, 4.0 mmol, 

81%) as a yellow solid. 
1
H NMR (300 MHz, CDCl3); δ 10.02 (s, 1H), 7.84 (d, J = 8.5 Hz, 

2H), 7.64 (d, J = 8.3 Hz, 2H), 3.29 (s, 1H). The 
1
H NMR data is consistent with those 

reported in the literature.
47
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4,4
1
-(1,4-Phenylenebis(ethyne-2,1-diyl))dibenzaldehyde (273) 

 

To an oven-dried round-bottom flask protected under N2 were charged compound 

272 (0.354 g, 2.72 mmol), 1,4-diiodobenzene (0.409 g, 1.23 mmol), PdCl2(PPh3)2 (21.2 

mg, 0.0299 mmol)), CuI (11.5 mg, 0.0603 mmol), and Et3N (40 mL). The solution was 

degassed by N2 bubbling at rt for 5 min, and then was heated to 45 
o
C under stirring and 

N2 protection overnight. The obtained precipitate from the reaction was filtered and 

washed with CH2Cl2 and air dried to give compound 273 (0.365 g, 1.09 mmol, 78% 

crude) as off-white solid. m.p. 191-194 
o
C; IR (neat): 1696, 1595, 1417, 1204 cm

-1
; 

Meaningful 
1
H NMR and 

13
C spectra of 273 could not be obtained due to poor solubility. 

HRMS (MALDI-TOF, +eV) m/z calcd for C24H14O, 334.0994; found 334.1039 [M]
+
. 

Synthesis of compound (274) 

 

To an oven-dried round-bottom flask protected under N2 were charged compound 

215 (0.300 g, 2.30 mmol), compound 272 (1.41 g, 2.30 mmol), PdCl2(PPh3)2 (40.1 mg, 

0.0584 mmol), CuI (21.9 mg, 0.116 mmol), dry Et3N (30 mL), and dry THF (20 mL). 

The solution was degassed by N2 bubbling at rt for 5 min, and then was stirred at rt under 

N2 protection overnight. After the reaction was complete as checked by TLC analysis, the 
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solvent was removed under vacuum. The residue was diluted with CH2Cl2 and was 

filtered through a MgSO4 pad. The resulting solution was sequentially washed with 

water, dried over MgSO4, and concentrated under vacuum to give crude product 274, 

which was further purified by silica flash column chromatography (hexanes/CH2Cl2, 9:1) 

to yield pure compound 274 (1.26 g, 2.05 mmol, 89%) as a yellow solid. m.p. 45-46 
o
C; 

IR (neat): 2924, 2850, 2208, 1699, 1595, 1463, 1382 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 

10.02 (s, 1H), 7.86 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 6.97 (d, J = 3.6 Hz, 2H), 

3.99 (q, J = 6.3 Hz, 4H); 1.88-1.77 (m, 4H), 1.57-1.50 (m, 4H), 1.32-1.25 (m, 24), 0.90-

0.84 (m, 6H) 0.27 (s, 9H); 
13

C NMR (75 MHz, CDCl3): δ 191.4, 154.2, 153.8, 135.4, 

132.0, 129.8, 129.6, 117.2, 116.9, 114.7, 113.3, 93.9, 90.2, 69.59, 69.57, 31.9, 29.70, 

29.65, 29.61, 29.49, 29.41, 29.39, 29.35, 26.12, 26.09, 22.7, 14.1;  HRMS (MALDI-TOF, 

+eV) m/z calcd for C40H58O3Si 614.4155;  found 614.4179 [M]
+
.  

Synthesis of compound (275) 

 

To a solution of compound 274 (1.19 g, 1.94 mmol) in MeOH/THF (20 mL, 1:1) 

was added K2CO3 (0.805 g, 5.83 mmol). The mixture was stirred at rt for 30 min and then 

diluted with CH2Cl2 (100 mL). The mixture was sequentially washed with brine and 

water. The organic layer was dried over MgSO4 and concentrated under vacuum to afford 

the pure product of 275 (0.951 g, 1.76 mmol, 91%) as a yellow solid. m.p. 43-44 
o
C; IR 
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(neat): 3284, 2918, 2849, 2364, 1698, 1597, 1501, 1462, 1385 cm
-1

; 
1
H NMR (500 MHz, 

CDCl3) δ 10.02 (s, 1H), 7.86 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.00 (d, J = 4.7 

Hz, 2H), 4.01 (dt, J = 6.6, 2,9 Hz, 4H); 3.36 (s, 1H); 1.86-1.70 (m, 4H), 1.55-1.45 (m, 

4H), 1.40-1.24 (m, 24H), 0.90-0.85 (m, 6H); 
13

C NMR (75 MHz, CDCl3): δ 191.4, 154.1, 

153.7, 135.4, 132.0, 129.7, 129.6, 117.7, 116.9, 113.7, 113.5, 93.9, 89.9, 82.7, 79.9, 77.2, 

69.7, 69.6, 31.91, 31.89, 29.7, 29.6, 29.4, 29.34, 29.29, 29.1, 26.1, 25.9, 22.7, 14.1; 

HRMS (MALDI-TOF, +eV) m/z calcd for C37H50O3 542.3760, found 542.3799 [M]
+
. 

Long linear aldehyde-OPE (276) 

 

To an oven-dried round-bottom flask protected under N2 were charged compound 

274 (0.102 g, 0.309 mmol), 1,4-diiodobenzene (0.369 g, 0.679 mmol), PdCl2(PPh3)2 

(5.30 mg, 0.0075 mmol)), CuI (2.80 mg, 0.014 mmol), and Et3N (50 mL). The solution 

was degassed by N2 bubbling at rt for 5 min, and then was heated to 45 
o
C under stirring 

and N2 protection overnight. After the reaction was completed as checked by TLC 

analysis, the solvent was removed by rotary evaporation. The residue was diluted with 

CH2Cl2 and was filtered through a MgSO4 pad. The solvent was removed by vacuum 

evaporation and the residual was washed with hexanes to give pure compound 276 (0.275 

g, 0.237 mmol, 78%) as a yellow solid. m.p. 123-124 
o
C; IR (neat): 2919, 2850, 1698, 

1596, 1459, 1212, 943 cm
-1

; 
1
H NMR (300 MHz, CDCl3): δ 10.02 (s, 2H), 7.87 (d, J = 
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8.4 Hz, 4H), 7.68 (d, J = 8.2 Hz, 4H), 7.51 (s, 4H), 7.03 (d, J = 0.9 Hz, 4H), 4.05 (t, J = 

6.4 Hz, 8H), 1.91-1.82 (m, 8H), 1.60-1.50 (m, 8H), 1.41-1.25 (m, 48H), 0.89-0.85 (m, 

12); 
13

C NMR (75 MHz, CDCl3): δ 191.3, 153.9, 153.7, 135.4, 132.0, 131.5, 129.8, 

129.6, 123.3, 116.9, 116.8, 114.7, 113.3, 95.0, 94.0, 90.2, 87.9, 69.7, 69.6, 31.91, 31.90, 

29.7, 29.6, 29.43, 29.36, 29.33, 26.1, 22.70, 22.68, 14.14, 14.12; HRMS (MALDI-TOF, 

+eV) m/z calcd for C80H102O6 1158.7676, found 1158.7665 [M]
+
. 

1,4-Bis((E)-2-iodostyryl)benzene (277) 

 

To an oven-dried flask protected under N2 were charged tetraethyl 1,4-phenylene 

bis(methylene)diphosphonate (234) (1.03 g, 2.64 mmol), NaH (60%) (0.320 g, 7.92 

mmol), and dry THF (50 mL). The solution gradually turned into dark yellow color at 50 

°C. A solution of 2-iodobenzaldehyde (1.21 g, 5.21 mmol) in THF (20 mL) was added in 

small portions over a period of 10 min via a syringe. The reaction was kept under stirring 

at same temperature for another 3 h before workup. On completion as checked by TLC 

analysis, the reaction mixture was poured in to ice, and the obtained solid was extracted 

into CH2Cl2 and washed with water several times. The organic layer was dried over 

MgSO4, concentrated under vacuum to afford compound 277 which was finally washed 

with methanol to give to the pure form (0.690 g, 1.29 mmol, 49%) as a yellow solid. m.p. 

159-161 
o
C; IR (neat): 1460, 1424, 1007, 957, 814 cm

-1
; 

1
H NMR (500 MHz, CDCl3): δ 
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7.89 (dd, J = 7.9, 1.1 Hz, 2H), δ 7.65 (dd, J = 7.8, 1.5 Hz, 2H) 7.57 (s, 4H), 7.37-7.34 (m, 

4H), 7.00-6.95 (m, 4H); 
13

C NMR (75 MHz, CDCl3): δ 140.2, 139.7, 136.7, 132.6, 131.1, 

129.0, 128.4, 127.2, 126.2, 100.6; HRMS (EI-TOF, +eV) m/z calcd for 

C22H16I2,533.9341;  found 533.9336 [M]
+
. 

Aldehyde OPV (278) 

 

To an oven-dried round-bottom flask protected under N2 were charged compound 

277 (0.301 g, 0.561 mmol), compound 272 (0.183 g, 1.40 mmol), PdCl2(PPh3)2 (9.80 mg, 

0.0139 mmol)), CuI (5.30 mg, 0.027 mmol), and Et3N (50 mL). The solution was 

degassed by N2 bubbling at rt for 5 min, and then was heated to 45 
o
C under stirring and 

N2 protection overnight. After the reaction was complete as checked by TLC analysis, the 

solvent was removed by rotary evaporation. The residue was diluted with CH2Cl2 and 

was filtered through a MgSO4 pad. The solution obtained was sequentially washed with 

water, dried over MgSO4, and concentrated under vacuum to give crude product 278, 

which was further purified by silica flash column chromatography (hexanes/EtOAc, 

95:15) to yield pure compound 278 (0.197 g, 0.366 mmol, 65%) as a yellow solid. m.p. 

175-178 
o
C; IR (neat): 1695, 1598, 1389, 1293, 1206, 1158, 1013 cm

-1
; 

1
H NMR (500 
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MHz, CDCl3): δ 10.04 (s, 2H), 7.91-7.87 (m, 4H), 7.76-7.70 (m, 8H), 7.59-7.58 (m, 4H), 

7.40 (t, J = 7.4 Hz, 2H), 7.30-7.23 (m, 2H); Meaningful 
13

C NMR spectrum of 12 could 

not be obtained due to its limited solubility. HRMS (MALDI-TOF, +eV) m/z calcd for 

C40H26O2 538.1933; found 538.1939 [M]
+
.  

Aldehyde-OPE/OPV (279) 

 

To an oven-dried round-bottom flask protected under N2 were charged compound 

277 (0.260 g, 0.490 mmol), compound 275 (0.661 g, 1.07 mmol), PdCl2(PPh3)2 (6.80 mg, 

0.0970 mmol)), CuI (3.60 mg, 0.0194 mmol), and Et3N (100 mL). The solution was 

degassed by N2 bubbling at rt for 5 min, and then was heated to 45 
o
C under stirring and 

N2 protection overnight. After the reaction was complete as checked by TLC analysis, the 

solvent was removed by rotary evaporation. The residue was diluted with CH2Cl2 and 

was filtered through a MgSO4 pad. The solution obtained was sequentially washed with 

water, dried over MgSO4 and concentrated under vacuum to give crude product 279, 

which was further purified by silica flash column chromatography (hexanes/EtOAc, 9:1) 

to yield pure compound 279 (0.480 g, 0.352 mmol, 72%) as a yellow solid. m.p. 153-155 
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o
C; IR (neat): 2919, 2851, 2204, 1704, 1598, 1420, 1340, 1213 cm

-1
; 

1
H NMR (500 MHz, 

CDCl3): δ 10.00 (s, 2H), 7.84-7.81 (m, 8H), 7.74 (d, J = 7.9 Hz, 2H), 7.65 (d, J = 8.2 Hz, 

4H), 7.58-7.56 (m, 4H), 7.35 (t, J = 7.7 Hz, 2H) 7.25-7.22 (m, 4H), 7.06 (s, 4H), 4.03 (t, J 

= 6.3 Hz, 8H), 1.87-1.81 (m, 4H), 1.76-1.71 (m, 4H), 1.56-1.46 (m, 8H), 1.41-1.31 (m, 

12H), 1.27-1.16 (m, 36 H), 0.86-0.82 (m, 12H); 
13

C NMR (75 MHz, CDCl3) δ 191.3, 

153.9, 153.6, 138.8, 137.1, 135.3, 132.7, 132.0, 129.8, 129.5, 128.6, 127.3, 127.2, 126.9, 

124.7, 122.4, 117.2, 116.8, 115.2, 113.1, 93.98, 93.95, 91.1, 90.3, 77.2, 69.9, 69.6, 45.8, 

31.89, 31.87, 29.7, 29.61, 29.59, 29.56, 29.5, 29.4, 29.2, 26.1, 25.9, 22.7, 14.1; HRMS 

(MALDI-TOF, +eV) m/z calcd for C96H114O6 1362.8615;  found 1362.8542 [M]
+
.  

Short linear DTF-OPE (265) 

 

A solution of thione 270 (0.109 g, 0.396 mmol) and compound 273 (0.342 g, 

0.172 mmol) in trimethylphosphite (20 mL) was stirred and heated to 130 
o
C for about 6 

h under N2 atmosphere. On completion, the excess trimethylphosphite was removed by 

vacuum distillation. The obtained crude product was purified by silica flash column 

chromatography (EtOAc/hexanes, 1:99) followed by recrystallization from acetone to 

yield pure compound 265 (0.0500 g, 0.0418 g mmol, 13%) as yellow solid. m.p. 103-104 

o
C; IR (neat) : 2916, 2846, 1571, 1414, 933 cm

-1
; 

1
H NMR (500 MHz, CD2Cl2): δ 7.52 (t, 
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J = 5.2 Hz, 8H), 7.22 (d, J = 8.4 Hz, 4H), 6.49 (s, 2H), 2.85 (td, J = 7.3, 2.6 Hz, 8H), 

1.69-1.62 (m, 8H), 1.45-1.39 (m, 8H), 1.32-1.27 (m, 48H), 0.89-0.86 (m, 12H); 
13

C NMR 

(75 MHz, CD2Cl2): δ 136.9, 134.9, 132.1, 131.9, 128.3, 126.9, 125.4, 123.5, 120.1, 113.6, 

91.9, 89.9, 36.6, 36.5, 32.3, 30.3, 30.2, 29.97, 29.93, 29.7, 29.5, 28.92, 28.90, 23.0, 14.3 ; 

HRMS (MALDI-TOF, +eV) m/z calcd for C70H98S8 1194.5434, found 1194.5444 [M]
+
. 

Long linear DTF-OPE (266) 

 

A solution of thione 270 (0.190 g, 0.396 mmol) and compound 276 (0.200 g, 

0.172 mmol) in trimethylphosphite (15 mL) was stirred and heated to 130 
o
C for about 3 

h under N2 atmosphere. On completion, the excess trimethylphosphite was removed by 

vacuum distillation. The obtained crude product was purified by silica flash column 

chromatography (EtOAc/hexanes, 1:99) followed by recrystallization from acetone to 

yield pure compound 266 (0.264 g, 0.131 mmol, 76%) as yellow solid. m.p. 81-82 
o
C; IR 

(neat) : 2918, 2850, 1568, 1460, 1212, 1059 ; 
1
H NMR (500 MHz, CD2Cl2): δ 7.52-7.50 

(m, 8H), 7.22 (d, J = 8.6 Hz, 4H), 7.03 (s, 4H), 6.49 (s, 2H), 4.04 (td, J = 6.4, 1.9 Hz, 8H) 

2.84 (td, J = 7.4, 1.8 Hz, 8H), 1.88-1.83 (m, 8H), 1.69-1.52 (m, 8H), 1.59-1.54 (m, 8H), 

1.56-1.50 (m, 4 H), 1.45-1.37 (m, 16 H), 1.34-1.27 (m, 88H), 0.89-0.86 (m, 24H); 
13

C 

NMR (75 MHz, CDCl3): δ 154.1, 154.0, 136.7, 134.7, 132.0, 131.8, 128.4, 126.9, 125.4, 



285 
 

123.7, 120.5, 117.2, 117.1, 114.7, 113.9, 113.7, 95.6, 94.8, 88.5, 87.0, 70.0, 32.3, 36.6, 

36.5, 32.3, 30.3, 30.2, 30.1, 30.0, 29.97, 29.94, 29.84, 29.77, 29.73, 29.55, 29.53, 28.93, 

28.91, 26.5, 23.11, 23.09, 14.31, 14.28; HRMS (MALDI-TOF, +eV) m/z calcd for 

C126H186O4S8 2019.2117, found 2019.2097 [M]
+
. 

Short Z-shaped DTF-OPV (267) 

 

A solution of thione 270 (0.408 mg, 0.888 mmol) and compound 278 (0.208 g, 

0.386 mmol) in trimethylphosphite (15 mL) was stirred and heated to 130 
o
C for about 3 

h under N2 atmosphere. On completion, the excess trimethylphosphite was removed by 

vacuum distillation. The obtained crude product was purified by silica flash column 

chromatography (EtOAc/hexanes, 1:99) to yield pure compound 267 (0.362 g, 0.258 

mmol, 67%) as thick syrup. IR (neat) : 2919, 2849, 1671, 1599, 1458, 1259, 957; 
1
H 

NMR (500 MHz, CDCl3): δ 7.77 (d, J = 16.4 Hz, 2H), 7.73 (d, J = 7.7 Hz, 2H), 7.60 (s, 

4H), 7.56 (d, J = 7.7 Hz, 4H), 7.34 (t, J = 7.5 Hz, 2H), 7.25-7.20 (m, 6H), 6.45 (s, 2H), 

2.84-2.79 (m, 8H), 1.69-1.60 (m, 8H), 1.42-1.37 (m, 8H), 1.29-1.24 (m, 48H), 0.89-80 
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(m, 12H); 
13

C NMR (75 MHz, CDCl3): δ 138.9, 137.5, 136.9, 134.9, 132.9, 132.0, 130.1, 

128.9, 128.3, 127.8, 127.5, 127.0, 125.4, 125.1, 122.7, 120.4, 113.6, 95.3, 88.9, 36.6, 

36.5, 32.3, 30.3, 30.1, 29.9, 29.7, 29.6, 28.96, 28.91, 23.1, 18.9, 14.3; HRMS (MALDI-

TOF, +eV) m/z calcd for C86H110S8 1398.6373, found 1398.6267 [M]
+
. 

Long Z-shaped DTF-OPE/OPV (268) 

 

A solution of thione 270 (0.169 g, 0.354 mmol) and compound 279 (0.210 g, 

0.153 mmol) in trimethylphosphite (15 mL) was stirred and heated to 130 
o
C for about 3 

h under N2 atmosphere. On completion, the excess trimethylphosphite was removed by 

vacuum distillation. The obtained crude product was purified by silica flash column 

chromatography (EtOAc/hexanes, 1:99) followed by recrystallization from acetone to 

yield pure compound 268 (0.240 g, 0.107 mmol, 71%) as yellow solid. m.p. 92-93 
o
C; IR 

(neat): 2918, 2948, 1601,1565, 1419, 1383, 1213, 1027 cm
-1

; 
1
H NMR (500 MHz, 

CD2Cl2): δ 7.85 (d, J = 16.4 Hz, 2H), 7.77 (d, J = 7.9 Hz, 2H), 7.61 (s, 4H), 7.57 (dd, J = 

7.7, 1.0 Hz, 2H), 7.49 (d, J = 8.4 Hz, 4H), 7.37 (td, J = 7.5, 1.0 Hz, 2H), 7.29-7.25 (m, 
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4H), 7.18 (d, J = 8.4, 4H), 7.07 (d, J = 0.8 Hz, 4H), 6.46 (s, 2H) 4.04 (td, J = 6.7, 3.1 Hz, 

8H) 2.84 (td, J = 6.6, 0.9 Hz, 8H), 1.86-1.81 (m, 4H), 1.77-1.71 (m, 4H), 1.69-1.62 (m, 

8H), 1.56-1.50 (m, 4 H), 1.45-1.35 (m, 16 H), 1.34-1.17 (m, 92H), 0.90-0.82 (m, 24H);  

13
C NMR (75 MHz, CD2Cl2): δ 154.0, 139.1, 137.5, 136.7, 134.6, 132.9, 132.0, 130.2, 

129.0, 128.4, 127.7, 127.6, 127.2, 126.9, 125.3, 125.1, 122.8, 120.6, 117.2, 114.6, 114.3, 

113.7, 95.6, 93.7, 91.8, 87.1, 70.2, 70.1, 36.6, 36.5, 32.32, 32.29, 30.3, 30.2, 30.1, 30.0, 

29.98, 29.94, 29.89, 29.82, 29.79, 29.76, 29.74, 29.6, 29.56, 29.54, 28.94, 28.92, 26.6, 

26.4, 23.12, 23.09, 14.32, 14.29; HRMS (MALDI-TOF, +eV) m/z calcd for C142H198O4S8 

2223.3056, found 2223.3082 [M]
+
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Chapter 4 

TTFV Tweezers and Macrocycles: Fluorescent 

and Electrochemical Sensors for Fullerenes, Metal 

Ions, and Saccharides  

4.1 Introduction 

As introduced in Chapter 1, chemical sensing involves the use of receptors that 

provide detectable responses to specific interactions with analytes. The association 

between a sensor and an analyte could be achieved by non-covalent interactions through 

hydrogen bonding, metal coordination, hydrophobic interactions, π-π interactions, or 

electrostatic forces. Many useful chemosensors have been introduced in order to monitor 

biologically and environmentally important analytes. In particular, fluorescence-based 

chemical sensing has been studied extensively for the past several decades.
1-5

 As 

mentioned in Chapter 2, a fluorescence sensor is a molecular system in which the 

photophysical properties change upon interaction with a chemical species in such a way 

that a detectable fluorescent signal is elicited. Over the past years, different techniques 

have been developed for fluorescence sensing of analytes based on various signaling 

mechanisms; for example, photoinduced electron (PET),
6 photoinduced charge transfer 

(PCT),
7 intramolecular charge transfer (ICT),

8
 and so on. In particular, fluorescence turn-
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on sensing is advantageous over turn-off sensing in several aspects, including good 

signal−to−noise ratio, high sensitivity, and reduced false signaling. Further research on 

the development of chemosensors is still needed to satisfy the demand of biological and 

environmental research. The following section will discuss the fluorescence and 

electrochemical sensing of few important analytes (metal ions, fullerenes, and 

saccharides) that is relevant to the thesis work reported in this chapter.  

4.1.1 Chemical receptors for the detection of fullerenes 

The search for synthetic receptors capable of forming stable complexes with 

fullerenes has been an active field of research in fullerene chemistry. With the increasing 

application of fullerene-containing materials in modern materials science and biological 

technology, how to detect and separate different types of fullerenes has captured 

considerable attention.
9-13

 In this context, the use of various synthetic receptors to form 

guest-host inclusion complexes with fullerenes has been extensively studied.
14-16

 From a 

practical viewpoint, three important features are desirable for an ideal fullerene receptor: 

(1) selectivity for specific types of fullerenes, (2) effective sensory function, and (3) 

controllable reversibility in interactions with fullerenes.  

The selectivity issue has been widely sought after by design of aromatic-rich 

molecular and macromolecular systems pre-organized in such shapes as molecular 

tweezers, rings, helix, cups, and cages, based upon the notion of concave-convex 

complementarity (Figure 4.1).
14 The chemical sensing of fullerenes by rapid and non-

invasive methods such as fluorescence spectroscopy, on the contrary, has been rarely 
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reported in the literature.
17,18

 It is particularly worth noting that devising fluorescence 

turn-on sensing for fullerenes is a challenging task, given that fullerenes usually cause 

attenuation of emission when bound to various fluorescent systems.
19-21

 Finally, 

reversibility of fullerene binding/release requires certain switching mechanism(s) to be 

included in fullerene receptors, as such a function is of great value for the effective 

separation of different types of fullerenes.
22,23

 

 

Figure 4.1: Shapes of synthetic receptors for the detection of fullerenes. 

In 1992, Diederich and co-workers reported the first molecular receptor for C60 

fullerene, where they used aza-crown ether with lipophilic alkyl chains as a receptor 

unit.
24

 Two years later, Atwood and co-workers synthesized bowl-shaped calixarenes 

with hydrophobic cavities and studied their binding properties with C60 and C70 

fullerenes.
10

 These calixarene receptors were successfully utilized to separate C60 

fullerene from the fullerene extract. Over the years, several synthetic receptors have been 

developed in the molecular recognition of fullerenes. Among them, porphyrins
22,25-30

 and 

calixarenes
10,17,31-33

 are well known and extensively studied receptors to interact 

favorably with fullerenes both in solution and in the solid state. In addition, large -

conjugated compounds such as corannulenes have been studied as receptors for 
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fullerenes.
34

 As shown in Figure 4.2, Georgiou and co-workers recently reported the 

solid-state structure of a 1:1 complex made of C60 fullerene and corannulene.
35

 As 

relevant to this chapter, a selection of synthetic receptors taking the shapes of molecular 

tweezers, macrocycles and cages are presented in the following section.   

 

Figure 4.2: X-ray structure of C60 fullerene and corannulene complex (1:1). 

 In 2006, Martin and co-workers investigated the molecular properties of ex-TTFs 

280 as a tweezer-like receptor for fullerenes.
36

 In their design, the two exTTF units are 

separated by a spacer, an isopththalate diester. As evidenced by the Job plot, the binding 

behavior of tweezer 280 with C60 fullerene was found to be solvent dependant. In 

aromatic solvents such as chlorobenzene, the tweezer 280 formed a 1:1 complex with C60 

fullerene, whereas in CHCl3/CS2 mixtures, the tweezer gave 2:1 and 2:2 complexes 

(Scheme 4.1).  
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Scheme 4.1: Molecular tweezers 280 and its complexation of C60 fullerene. 

The same group also synthesized a series of a bis-exTTFs based macrocycles 281 

with different aromatic spacers (Figure 4.3) and investigated the binding properties with 

fullerenes.
37

 It was observed that the UV-Vis spectral features of the macrocycle and C60 

complex are very similar to those of tweezers 280. Very large binding constants were 

obtained from the UV-Vis titration of macrocycle 281a with C60. They also probed the 

binding event by 
13

C NMR spectroscopy, which confirmed the association of macrocycle 

281a with C60. 
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Figure 4.3: Molecular structures of macrocycle 281 (top), and the energy-minimized 

structure of macrocycle 281a and C60 (bottom), a) side-view and b) top-view.  

Recently, a porphyrin cyclic trimer 282 was synthesized and its binding affinities 

with C60 and C70 fullerenes were studied by Anderson and co-workers (Figure 4.4).
21

 The 

binding constants of macrocycle 282 were determined to be 2 × 10
6
 and 2 × 10

8
 M

-1
 with 

C60 and C70 fullerenes respectively. It was demonstrated that the binding between 

macrocycle 282 and C60 or C70 fullerene was highly solvent dependent, where the highest 

binding constant was achieved in cyclohexane as solvent.  
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Figure 4.4: Molecular structure of macrocycle 282 and the calculated structure of its 

complex with C60. 

Very recently, as shown in Figure 4.5, Chiu and co-workers synthesized 

molecular cages 283a and 283b and demonstrated their potential use as selective 

receptors for C70 fullerene.
38

 The data from 
1
H NMR studies indicated that the receptor 

283b could not show any binding with both fullerenes (C60 and C70) tested, as neither of 

the guests (C60 or C70) could enter into the cavity of receptor 283b by penetrating its 

smaller openings. However, molecular cage 283a showed high binding affinity for C70 
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even in the presence of C60 fullerene. Dissociation of the complex 283a/C70 can be 

achieved by adding CH2Cl2 to the solution of complex 283a/C70 in toluene.  

 

 

Figure 4.5: Molecular structures of cages 283a and 283b (top) and schematic 

representation showing the purification of C70 from mixture of C60 and C70 (bottom). 

4.1.2 Chemosensors for the detection of metal ions 

The detection of metal ions is of great interest with respect to environmental 

remediation, biological studies, and industrial applications.
39

 In this area of research, 

numerous recent literature reports have been dedicated to the development of various 

chemosensors with fluorescent, colorimetric and electrochemical sensing functions to 
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selectively and sensitively detect metal ions.
8,40-47

 In this regard, considerable effort has 

been given to fluorescent chemosensors. As relevant to this chapter, examples of several 

newly developed fluorescent chemical sensors are highlighted in the following section.  

 

Figure 4.6: Representative examples of fluorescent chemical sensors for metal ions 

detection.  

Zhang and co-workers designed fluorescent chemosensors 284a and 284b, in 

which tetraphenylethylene (TPE) compounds are linked to adenine and thymine moieties, 

respectively (Figure 4.6).
48 They have also investigated the sensing properties of TPE 

chemosensors 284a and 284b for transition metal cations. Among all the metal ions 
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tested, it was found that sensor 284a was very selective to Ag
+
 ions, whereas the sensor 

284b showed selectivity towards Hg
2+

 ions. It was hypothesized that the sensors 284a 

and 284b gave weak fluorescence in solution, but they became more emissive after 

aggregation induced suitable metal ions.  This selective fluorescence enhancement was 

ascribed to the so-called aggregation induced emission (AIE) mechanism.  

Jiang and co-workers reported the behavior of an acetamidoquinoline based 

sensor 285 bearing di-2-picolylamine groups (DPA) as receptor units for metal ions 

(Figure 4.6).
49 Compound 285 displayed a strong fluorescence enhancement upon 

interaction with Zn
2+

 and Cd
2+

 metal ions. Moreover, the sensor 285 not only showed the 

selectivity to distinguish Cd
2+

 from Zn
2+

 by two different sensing mechanisms (PET for 

Cd
2+

 and ICT for Zn
2+

). In 2007, two rodamine based fluorimetric chemosensors 286a 

and 286b were synthesized (Figure 4.6),
50

 in which diethylenetriamine or 

triethylenetetriamine are attached as receptor units. These compounds exhibited sensing 

function toward Fe
3+

 and Cr
3+

 ions respectively. Interestingly, sensor 286a formed a 1:1 

(host:guest) complex with Fe
3+

 ion, whereas a 2:1 (host:guest) complex was observed in 

case of sensor 286b bound to Cr
3+

 ion. 

The applications of TTFV based compounds in chemical sensing of metal ions are 

rarely reported.
51,52

 TTFV derivatives are very good electron donors,
53 and they show 

substituent-dependant conformational changes upon oxidation, making them attractive 

building blocks for the construction of electrochemical sensors. As shown in Scheme 4.2, 

in 2008, Lorcy and co-workers investigated the electrochemical behavior of TTFV 
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derivative 287.
54

 It was demonstrated that when sensor 287 was bound to Zn
2+

ions, the 

conformational change during oxidation was restricted. According to CV experiments, 

the oxidation potential was shifted to the positive direction and coalescence of two 

single-electron oxidations into a two-electron oxidation was observed. It was proposed 

that a clip motion would occur, when the sensor reacted with ZnCl2 to form 287 and a 

bivalent zincate complex (Scheme 4.2). 

 

Scheme 4.2: Molecular clip function of sensor 287 with Zn
2+

 ion. 

4.1.3 Electrochemical receptors for saccharides 

Although a vast array of fluorescent synthetic receptors for saccharides detection 

have been reported in the literature, in recent years, however, the development of boronic 

acid-based electrochemical sensors to detect saccharides has been growing significantly 

as an alternative to the current commercially available enzymatic electrochemical 

sensors.
55

 In this area of research, several electrophores such as ferrocene
56,57

 and 

polyanilines
58,59

 have been extensively studied as reporter units. 
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Figure 4.7: Electrochemical sensors 288-290 for saccharides detection. 

For example, as shown in Figure 4.7, Fabre and co-workers
60

 studied the 

electrochemical behavior of the boronic acid appended bipyridine iron (II) complex 288 

with various mono-saccharides in aqueous buffer solution at pH 6.4. It was observed that 

upon addition of high concentrations of D-fructose, the oxidation peak in the DPV of 

complex 288 was shifted towards more positive values by 50 mV. In 2002, James and co-

workers prepared mono- and bis-boronic acid electrochemical sensors 289 and 290 and 

compared their selectivity for different saccharides (Figure 4.7).
61

 The electrochemical 

sensor 290 showed much better selectivity towards D-glucose than other saccharides 

tested. In particular, the stability constant of the bis-boronic acid sensor 290 with D-

glucose was 40 times greater than with the mono-boronic sensor 289. The results from 

the DPV spectrum showed that the oxidation peak of sensor 290 was shifted by nearly 

100 mV to the positive potential when bound to D-glucose.  
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Figure 4.8: Boronic acid-appended exTTF-based electrochemical sensor 291. 

Despite their remarkable redox activities in organic electronic materials, the TTFs 

and exTTFs are very rarely utilized in the electrochemical sensing of saccharides. Our 

group previously investigated the electrochemical properties of sensor 291, in which the 

π-extended tetrathiafulvalene (TTFAQ) unit acted as redox reporter (Figure 4.8).
62

 

Although sensor 291 gives satisfactory electrochemical responses to various saccharides 

owing to the excellent redox activity of TTFAQ, it still has some drawbacks. First, the 

extended anthraquinone unit in compound 291 renders it hydrophobic and limits its water 

solubility. Actually, a significant amount of DMSO needs to be used as co-solvent to 

reasonably solubilize 291 in H2O. Second, sensor 291 only sensitively responds to 

saccharides under basic conditions (pH 8.75). For practical purposes, a saccharide sensor 

is desired to work under physiological conditions (i.e., aqueous pH 6 – 8). 
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4.2Project design and objectives 

As an excellent organic π-electron donor, the tetrathiafulvalene (TTF) and related 

analogues have attracted enormous attention in the development of functional organic 

electronic materials and devices.
63,64

 Due to its unique structural and redox properties, the 

research involving TTF has been expanded to the preparation of a vast array of TTF 

analogues such as TTF conductors,
65

 TTF macrocycles,
66,67,68

 and TTF polymers and 

dendrimers.
69,70

 A commonly used strategy for the preparation of new TTF derivatives 

can be achieved by expanding the backbone of TTF through diverse π-spacers placed 

between the dithiole rings, leading to the π-extended TTFs (exTTFs). Numerous 

examples of exTTFs have been reported in the literature.
71-73

 

 

Figure 4.9: Structures of TTFV in the neutral and oxidized states. 

Although tetrathiafulvalene (TTF) and its derivatives have been extensively 

studied as important organic electronic materials for many years, tetrathiafulvalene 

vinylogues (TTFVs) still remain a relatively underdeveloped branch in the family of TTF 

derivatives. In the past few years, however, tetrathiafulvalene vinylogue (TTFV) has 
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captured much attention as an appealing molecular building block owing to its versatile 

redox and structural switchability and tunability. As shown in Figure 4.9,
53 the phenyl-

substituted TTFVs are well known to adopt pseudo-cisoid conformation due to the steric 

hindrance of the two phenyl substituents (Figure 4.13). Upon oxidation, the molecule can 

undergo simultaneous two-electron transfer, which leads to dramatic cis-to-trans 

structural change.  

 

 

Figure 4.10: Molecular structures of TTFV-tweezers 292-295. 
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Figure 4.11: Molecular structures of TTFV-macrocycles 296 and 297. 

In addition to redox conditions, our recent studies have also demonstrated that 

diphenyl-TTFV can be reversibly protonated to switch its conformation from cis-to-

trans.
74 These switching behaviors thus led us to the design of new types of redox and pH 

responsive TTFV-tweezers (292, 293, 293a, 294, and 295), and macrocycles (296 and 

297) as receptors for different analytes including metal ions, anions, fullerenes, and 

saccharides (Figures 4.10 and 4.11).  

Further, our theoretical investigations have also revealed that the electronic 

properties of diphenyl-TTFV derivatives are subject to the electronic nature of 

substituents. As an example, the molecular structure and electronic properties of 

dianthryl–TFV 293 were investigated by density functional theory (DFT) calculations at 
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the B3LYP/6-31G (d) level.  In the optimized geometry of 293 (Figure 4.12), the TTFV 

unit shows a pseudo-cis conformation. The HOMO is distributed at the central TTFV 

core, while two degenerated LUMOs are solely located at the two anthryl groups. Such 

spatially separated FMO characters together with the low oxidation potential of TTFV 

suggest that photoinduced electron transfer (PET) quenching of the fluorophore would 

provide a mechanistic basis for sensing function.
75

 Indeed, compound 293 was found to 

show very weak fluorescence (Φ = 0.009) in THF.  

 

Figure 4.12: FMO properties of TTFV-anthracene tweezers 293 calculated at the 

B3LYP/6-31G (d) level of theory using Spartan’10. 

Most of the data in this chapter have been published in the following research 

articles, in which I am the first author of the papers. As part of collaboration with 

Professor David W. Thompson, Chemistry Department, Memorial University, his PhD 

student Prateek Dongare conducted spectroscopic characterizations of TTFV-anthracene 

tweezers 293a with various metal ions.  

1) Tetrahedron Lett.,2014, 55, 382-386 (saccharide sensing) 
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2) Org. Lett.,2013, 15, 4532-4535 (fullerene receptors) 

3) Org. Biomol. Chem., 2012, 10, 2542-2544 (metal ion sensing) 

 

4.3 Results and discussion 

4.3.1 Synthesis of TTFV-tweezers (292-295) and macrocycles (296 and 297) 

The synthesis began with the preparation of essential precursors such as 

acetylenic phenyl-TTFVs (300 and 300a) and azido compounds (304, 307, 311, 314, and 

315). As described in Scheme 4.4, for the preparation of acetylenic phenyl-TTFVs (300 

and 300a), the synthesis was undertaken via a P(OMe)3-mediated olefination reaction 

between S-decylthione 270 and aldehyde precursor 271 to afford DTF precursor 298 as a 

thick reddish brown syrup in 72% yield.  

DTF precursor 298 was then subjected to an iodine-promoted oxidative 

dimerization reaction, yielding cationic dimerized products which were subsequently 

treated with Na2S2O3 to afford neutral acetylenic phenyl TTFV 299 in a good yield of 

82%. The desilylation reaction on compound 299 in the presence of K2CO3 as base 

resulted in acetylenic phenyl-TTFV 300 as a thick syrup. A similar synthetic strategy was 

applied for the preparation of the methyl version of TTFV precursor 300a by taking 

methyl substituted thione 270a as the staring material (Scheme 4.4).  
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Scheme 4.4: Synthetic route for the preparation of acetylenic TTFV precursors 300 and 

300a.  

The synthetic routes for the preparation of azido precursors are outlined in 

Scheme 4.5. 1-(Azidomethyl)naphthalene 304 was prepared by a series of reactions on 1-

naphthaldehyde (301). First, 1-naphthaldehyde was reduced to the corresponding alcohol 

302 with NaBH4, and then the subsequent mesylation reaction with mesyl chloride led to 

chlorinated 303 instead of the expected mesylated product. An azidation reactions on 303 

gave 1-(azidomethyl)naphthalene 304 as a liquid. In the same manner, 9-

(azidomethyl)anthracene 307 was prepared as shown in Scheme 4.5. A commercially 

available compound 305 was subjected to a mesylation reaction with mesyl chloride as 

reported in the literature. This reaction gave 9-(chloromethyl)anthracene 306 exclusively 
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as a yellow solid, instead of the generally expected mesylated product. Further, 9-

(chloromethyl)anthracene 306 was reacted with NaN3 in DMF to afford 9-

(azidomethyl)anthracene 307 as a yellow solid.  

 

Scheme 4.5: Synthesis of mono and di azido precursors. 
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As demonstrated the synthesis of 2-(azidomethyl)pyrene 311 in Scheme 4.5, 2-

pyrenealdehyde 308 was reduced to alcohol 309, and brominated to afford 2-

bromopyrene 310 as an unstable product. The brominated product was immediately 

converted to 2-(azidomethyl)pyrene 311 without any further purification and 

characterization. Similar type of reactions were performed to synthesize diazidoarenes as 

shown in Scheme 4.5. For instance, bis(azidomethyl)anthracene 314 was prepared by 

bromomethylation on anthracene and followed by an immediate azidation with NaN3, 

since the brominated product 313 was obtained as a dark green solid and was too unstable 

to be stored for prolonged period of time. An azidation reaction on compound 233 led to 

the product 315 as a colorless liquid.  

With all the precursors in hand, the synthesis was carried out further to prepare 

desired TTFV-tweezers and macrocycles as outlined in Scheme 4.6. The three mono-

azido precursors 304, 307, and 311were subjected to reaction with acetylenic TTFV 

precursor 300 via the well established click chemistry. In this work, a Cu-catalyzed 

alkyne-azide coupling reaction (CuAAC) was explored to generate corresponding TTFV 

tweezers 292, 293 (and 293a), and 294 in the yields between 83% and 91%. TTFV-

naphthalene tweezer 292 was obtained as a thick syrup and the other two tweezers 293 

and 294 were yellow solids.  

In a similar manner, acetylenic TTFV precursor 300 was coupled with 

diazidoarene 315 and 314 via the CuAAC reaction, wherein the amounts of TTFV 

precursor 300 and respective diazido-arene were controlled at a 1:1 ratio. The click 
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reactions led to the formation of [2 + 2] macrocyclic adducts 296 and 297 in yields of 

47% and 54% respectively (Scheme 4.6), which are quite efficient for a one-pot 

cyclization synthesis. The relatively high yields can be attributed to a “templating effect” 

imposed by the Cu(I) catalyst, for it is known that the triazole group resulting from the 

click reaction can coordinate to transition metal ions to form stable complexes.
40 It is 

proposed that such an effect enhances the preorganization of reactive intermediates to 

favor macrocyclization over other possible side-reactions. 

 

Scheme 4.6:  Click strategy to construct TTFV tweezers and macrocycles. 
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Finally, the synthesis of boronic acid-appended TTFV tweezers 195 was carried 

out through the route described in Scheme 4.7. At first, acetylenic TTFV precursor 300a 

was subjected to a CuAAC (click) reaction with azido-phenylboronate 210 to afford 

bis(phenylboronate)-TTFV tweezers 316 in a very good yield. Treatment of compound 

316 with KHF2 led to TTFV-trifluoroborate 317, which was then hydrolyzed into 

phenylboronic acids with LiOH. The desired product 295 was obtained in 79% yield after 

acidic aqueous workup. 

 

Scheme 4.7: Synthesis of boronic acid-appended molecular tweezers 295. 
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4.3.2 X-ray structure analysis of TTFV precursor 299a and TTFV-anthracene 

tweezer 300a  

Single crystals of TTFV precursor 299a and TTFV tweezer 300a were grown by 

slow evaporation of its solutions in CHCl3/methanol (1:1) at low temperature (4 
o
C), and 

their detailed molecular and solid-state structures were characterized by single crystal X-

ray crystallography. As predicted, the X-ray structures of 299a and 293a show tweezer-

like non-planar and pseudo-cisoid conformations. 

 

Figure 4.13: X-ray single-crystal structure of compound 299a: (A) front view; (B) side 

view. 
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Figure 4.14: (a) ORTEP plot of 293a (50% probability) and (b) side view.  

 

Figure 4.15: Solid-state packing of 293a between anthracene units (50 % probability 

ellipsoid representation).  

4.3.3 Electronic properties of TTFV-tweezers and macrocycles 
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The UV-Vis absorption spectra of TTFV tweezers and macrocycles were 

measured in chlorobenzene at room temperature and are shown in Figure 4.16. Figure 

4.16A compares the absorption spectra of 292, 293, 293a, 294, 296, and 297. In the 

spectrum, TTFV tweezers 292 and TTFV macrocycle 296 show a broad absorption band 

at 370 nm in the low-energy region. In the spectrum of TTFV tweezers 293, a notable 

absorption bands at 352 nm, 370 nm, and 391 nm are observed and can be assigned to the 

S0 → S1 transition featuring three distinctive vibronic modes of anthracene. Irrespective 

of S-alkyl chain length, similar absorption spectrum was observed in the case of TTFV 

tweezers 293a. However, the spectrum of TTFV–anthracene macrocycle297 shows three 

absorption bands which are similar to TTFV tweezers 293 and are slightly red-shifted. 

The UV-Vis spectrum of TTFV tweezers 294, two sharp absorption bands at 330 nm and 

347 nm and a notable absorption shoulder at 375 nm along with a broad long-wavelength 

absorption tail extending to ca. 430 nm are observed.  
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Figure 4.16: (A) UV-Vis absorption and (B) normalized fluorescence spectra of TTFV 

tweezers and macrocycles measured in chlorobenzene. 
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All TTFV tweezers and macrocycles are very weakly emissive upon photo-

excitation. To gain insight into the properties of their first excited states, steady-state 

fluorescence spectroscopic measurements were carried out in chlorobenzene. Figure 

4.16B shows the fluorescence spectra of TTFV tweezers and macrocycles except TTFV-

benzene macrocycle 296, and TTFV tweezers 295 as no meaningful spectrum was 

obtained due to the weak fluorophore benzene.    

The emission spectra of TTFV-anthracene tweezers 293 shows an approximate 

mirror image relation with their absorption spectra (Figure 4.16A). Three emission bands 

are seen at 395 nm, 416 nm and 439 nm and are assigned to the S1→ S0 transition 

featuring three distinctive vibronic modes. Similar emission profile was noticed for the 

remaining two TTFV-anthracene tweezers 293a and TTFV-anthracene macrocycle 297. 

The TTFV-naphthalene tweezers 292 shows very weak emission intensity with a 

featureless emission profile. Compared to the spectra of all TTFV tweezers and 

macrocycles, the emission bands in the spectrum of TTFV-pyrene tweezers 294 are red-

shifted due to the bulky fluorophore. The emission bands appear at 450 nm and 490 nm. 

4.3.4 Electrochemical redox properties of TTFV tweezers and macrocycles 

The electrochemical redox properties of TTFV-hinged tweezers and macrocycles 

were investigated by cyclic voltammetric analysis. Figure 4.17shows the detailed cyclic 

voltammograms of these compounds. From Figure 4.17, it can be seen that TTFV-

anthracene tweezers 293 gives a quasi-reversible redox couple at Epa= +0.94 V and Epc= 

+0.42 V, which are attributed to a simultaneous two-electron process. With Epa at a less 
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positive potential of +0.81 V and Epc at a same potential of +0.42 V, the peak separation 

of TTFV-anthracene macrocycle 297 is much smaller than TTFV-anthracene tweezers 

293. Regardless of the nature of fluorophores attached to the TTFV moiety, little or no 

changes in the oxidation potentials of TTFV moieties are observed in the spectra of all 

TTFV tweezers and macrocycles. 

1.2 1.0 0.8 0.6 0.4 0.2 0.0

-15

-10

-5

0

5

10

C
u
rr

e
n
t 

(
A

)

Potential (V vs Ag/AgCl)

 292

 293

 294

 296

 297

 

 

 

Figure 4.17: Cyclic voltammograms of 292 (2.01 × 10
-3

 M), 293 (1.47 × 10
-3

 M), 294 

(1.68 × 10
-3 

M), 296 (1.14 × 10
-3

 M), and 297 (0.94 × 10
-3

 M). Experimental conditions: 

Bu4NBF4(0.1 M) as the supporting electrolyte, chlorobenzene as the solvent, glassy 

carbon as the working electrode, Pt wire as the counter electrode, satd. Ag/AgCl as the 

reference electrode, and scan rate at 50 mV s
-1

.  

 

 



321 
 

4.3.5 Fluorescent sensing properties of TTFV-anthracene tweezers 293a with metal 

ions 

To explore its sensing functions, TTFV-anthracene tweezers 293a in THF at µM 

concentrations was subjected to UV-Vis and fluorescence titrations with a variety of 

metal ions and a strong Brønsted acid, TFA. As shown in Figure 4.18, of eight transition 

metal ions tested, Cu
2+

, Fe
2+

, and Cd
2+

 give rise to very significant fluorescence 

enhancement. Figure 4.18A illustrates the fluorescence spectral changes of 293a in 

titration with Cu
2+

. The titration results clearly show that with increasing addition of 

Cu
2+

, three emission bands at 395, 416, and 440 nm and one shoulder band at ca. 470 nm 

emerge and grow steadily. At the endpoint of titration, the fluorescence intensity is 

increased by ca. 26-fold at 461 nm (detection limit: 0.26 μM). Besides Cu
2+

 ion, 

compound 293a also shows a considerable degree of fluorescence enhancement in 

titration with Fe
2+

 and Cd
2+

 (Figure 4.18C and E). 

The limits of detection are determined to be 0.48 µM and 0.86 µM respectively. 

For comparison purposes, the titration of 293a with a strong protic acid, trifluoroacetic 

acid (TFA) was also performed. It is observed as in Figure 4.18 that at the sensitivity of 

293a towards the tested cations exhibits a decreasing trend as follows: Cu
2+

> Fe
2+

> 

Cd
2+

> Ag
+
> Mn

2+
> Zn

2+
 ~ Hg

2+
> Pb

2+
> H

+
 (Figure 4.19). 
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Figure 4.18:(A) Fluorescence spectra, (B) UV-Vis absorption of 293a (5.55 μM) 

obtained as a function of increasing concentration of Cu(OTf)2 (0 to 10.1 µM); (C) 

Fluorescence spectra, (D) UV-Vis absorption of 293a (5.49μM) obtained as a function of 
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increasing concentration of Fe(ClO4)2 (0 to 39.8 µM); (E) Fluorescence spectra, (F) UV-

Vis absorption of 293a (5.52 μM) obtained as a function of increasing concentration of 

Cd(ClO4)2 (0 to 76.2 µM); (G) Fluorescence spectra, (H) UV-Vis absorption of 293a 

(5.92 μM) obtained as a function of increasing concentration of AgOTf (0 to 13.2 µM); 

(I) Fluorescence spectra, (J) UV-Vis absorption of 293a (5.51 μM) obtained as a function 

of increasing concentration of Cd(ClO4)2 (0 to 180 µM); (K) Fluorescence spectra, (L) 

UV-Vis absorption of 293a (5.57 μM) obtained as a function of increasing concentration 

of Zn(OTf)2 (0 to 356 µM); (M) Fluorescence spectra, (N) UV-Vis absorption of 293a 

(5.09 μM) obtained as a function of increasing concentration of Hg(ClO4)2 (0 to 21.0 

mM); (O) Fluorescence spectra, (P) UV-Vis absorption of 293a (5.98 μM) obtained as a 

function of increasing concentration of Pb(ClO4)2 (0 to 1.0 M); (Q) Fluorescence spectra, 

of 293a (5.00 μM) obtained as a function of increasing concentration of TFA (0 to 6.91 

mM) in THF at 298 ± 3 K, λex = 350 nm. No meaningful UV-Vis titration spectra of 293a 

with TFA.  
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Figure 4.19: Fluorescence enhancement (λ = 415 nm) at the endpoint of titration. Fo and 

F refer to the fluorescence intensities at the initial and ending points of titration. 

 

 

 

Figure 4.20: Photographic images showing visual detection of sensor 293a with metal 

ions. 
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To further quantify the binding properties of TTFV-tweezers 293a with various 

metal ions, the fluorescence titration data were subjected to SPECFIT global analyses, 

using the Levenberg-Marquardt nonlinear regression minimization procedure. The 

detailed binding stoichiometry and binding constants are listed in Table 4.1. The 

SPECFIT analyses indicate that sensor 293a can bind with transition metal and proton 

ions to form both 1:1 and 1:2 complexes, while the binding constants vary substantially. 

Table 4.1: Binding constants of 293a with select transition metal ions and TFA and 

standard electrode potentials (E
o
) of the cations 

Cation log (β11 M
1
) log (β12 M

2
) E° (298K, V) 

Cu
2+

 7.12 ± 0.7 12.1 ± 0.8 +0.34 (Cu
2+

 →Cu
0
) 

Cd
2+

 5.22 ± 0.6 9.75 ± 0.6 -0.40 (Cd
2+

 →Cd
0
) 

Zn
2+

 4.78 ± 0.2 8.59 ± 0.3 -0.76 (Zn
2+

 →Zn
0
) 

Fe
2+

 4.62 ± 0.4 10.8 ± 0.2 -0.44 (Fe
2+

 →Fe
0
) 

Mn
2+

 4.58 ± 0.1 7.56 ± 0.1 -1.19 (Mn
2+

 →Mn
0
) 

Ag
+
 3.57 ± 0.1 6.67 ± 0.1 +0.80 (Ag

+
 →Ag

0
) 

Hg
2+

 2.72 ± 0.2 4.47 ± 0.2 +0.79 (Hg
2+

 →Hg
0
) 

Pb
2+

 1.72 ± 0.2 2.46 ± 0.3 -0.12 (Pb
2+

 →Pb
0
) 

H
+
 1.63 ± 0.5 2.95 ± 0.6 +0.00 (H

+
 →H2) 
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Figure 4.21: Proposed 1:1 and 1:2 binding modes of sensor 293a with metal ions. 

Plotting the binding constants (log β11 and log β12) of these cations against 

standard electrode potentials of the metal ions (E°) turns out to be very informative. As 

shown in Figure 4.22, the cations fall in two distinct groups in terms of linear correlation 

between log β and E°. Group I consists of Cu
2+

, Cd
2+

, Zn
2+

, Fe
2+

, and Mn
2+

 ions, which 

afford considerably larger binding constants than those of Group II, which includes Ag
+
, 

Hg
2+

, H
+
, and Pb

2+
 ions. These observations are in line with expectations based on hard-

soft acid/base (HSAB) theory. The three metal ions (Cu
2+

, Fe
2+

, and Cd
2+

) that cause 

sizeable fluorescence enhancement of sensor 293a share two common features: (1) they 

belong to Group I, and (2) their relatively high E
o
 values facilitate charge transfer from 

TTFV to metal ions, which efficiently attenuates the PET process from TTFV to 

anthracene. Overall, the relationships revealed in Figure 4.22 are instructive for further 

design and fine-tuning of the selectivity and sensitivity of chemosensors with analogous 

molecular architectures. 
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Figure 4.22: Linear correlations of binding constants (log β) and standard electrode 

potentials (E°) of transition metal and proton ions. 

 

Figure 4.23: Photographic images of solutions of compound 293a and various transition 

metal ions in acetonitrile. 

It was also noted that when the solution of compound 293a was prepared at mM 

or higher concentrations in THF, significant precipitation took place upon addition of 

various metal ions. It is rationalized that, at higher concentrations, metal-sulfur 

interactions become significant in addition to the metal-triazole interactions. As such, the 

resulting complexes would stay in the form of clusters or agglomerates, which lead to 

substantial fluorescence quenching. These complexes are soluble in polar organic 
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solvents such as acetonitrile, and the solutions of certain metal complexes (Cu
2+

, Fe
2+

, 

Cd
2+

, and Pb
2+

) in acetonitrile display visually distinct colors to enable straightforward 

colorimetric detection (Figure 4.23). 

UV-Vis spectral analyses (Figure 4.24) clearly show that Cu
2+

, Fe
2+

, and Cd
2+

 

ions when complexing with 293a at relatively high concentrations give pronounced 

absorptions in the Vis-NIR region of the spectrum. Of particular note is the rise of a new 

band at ca. 500-800 nm, which is likely due to the formation of [TTFV]
+
 and [TTFV]

2+
 

via TTFV-to-metal charge transfer.
53,76

 In addition, a broad weak band ranging from ca. 

800 to 1100 nm can be clearly seen in the Vis-NIR profiles of Cu
2+

 and Fe
2+

 complexes, 

which is tentatively assigned to [TTFV]
+
. The UV-Vis data substantiate that at high 

concentrations the sulfur groups of 293a can also act as ligands to interact with oxidative 

metal ions, such as Cu
2+

, Fe
2+

, and Cd
2+

, to form colorful charge-transfer complexes. 
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Figure 4.24: UV-Vis absorption spectra of compound 293a with various transition metal 

ions measured in acetontrile at room temperature. 



331 
 

 

4.3.5.1 UV-Vis titration of TTFV precursor 299a with TFA and transition metal 

salts 

To understand the electronic absorption features arising from the complexation 

between the TTFV moiety and H
+
 or various transition metal ions, UV-Vis titration 

experiments were carried out by adding H
+
, Cu

2+
, Cd

2+
, and Fe

2+
 respectively to the 

solution of TTFV 299a in THF (Figures 4.25-4.28).  
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Figure 4.25: UV-Vis titration of TTFV 299a (40 mM) with TFA in CHCl3. (a) Addition 

of TFA from 0 to 16,000 molar equivalents. (b) Addition of TFA from 16,000 to 70,000 

molar equivalents. 

Note that in Figure 4.25A, the emerging bands at 643 nm and 950 nm are 

assigned to mono protonated species, [TTFV+H]
+

. As the titration progresses, these two 

bands decrease and another absorption band grows at 719 nm, which is assigned to the  

deprotonated species, [TTFV + 2H]
2+

. 
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Figure 4.26: UV-Vis titration of TTFV 299a (26 mM) with Cu(OTf)2 in THF. Addition 

of Cu(OTf)2 from 0 to 18.2 molar equivalents. 
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Figure 4.27: UV-Vis titration of TTFV 299a (26 mM) with Cd(ClO4)2 in THF. Addition 

of Cd(ClO4)2 from 0 to 56.0 molar equivalents. 
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Figure 4.28: UV-Vis titration of TTFV 299a (26 mM) with Fe(ClO4)2 in THF. Addition 

of Fe(ClO4)2 from 0 to 13.8 molar equivalents. 

4.3.5.2 
1
H NMR studies on 293a 

To shed more light on metal ion binding properties, 
1
H NMR titration 

experiments were conducted between dianthryl-TTFV 293a and select transition metal 

ions, Cu
2+

, Cd
2+

, and Ag
+
 in THF-d8. For the Cu

2+
 ion titration, pronounced line-

broadening of all the NMR signals (Figure 4.29) and significant precipitation was 

observed. The results suggest strong interactions between Cu
2+

 and 293a and a 

considerable degree of aggregation for the resulting complexes in THF-d8. For the 

titration of Cd
2+

 and Ag
+
 ions, the formation of precipitate was not as evident as in the 

Cu
2+

 titration. In general, the 
1
H NMR spectral responses of 293a to Cd

2+
 and Ag

+
 ions 

are kind of similar.  



334 
 

 

Figure 4.29: Partial
1
H NMR titration spectra of compound 293a (7.4 mM) with 

Cu(OTf)2 in THF-d8 showing the aromatic region. 

 

Figure 4.30: 
1
H NMR (500 MHz, CD3CN) spectrum of compound 293a complexed with 

2 mol equiv of Cu(OTf)2. 
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Figure 4.31 illustrates the detailed 
1
H NMR spectral variations in the aromatic 

region upon addition of Cd
2+

ions. It can be clearly seen that most of the aromatic protons 

do not shift with increasing Cd
2+

 addition, except for the triazolyl proton (marked by * in 

the Figure 4.31) which shows a downfield shift from 7.60 to 7.73 ppm after ca. 7.0 molar 

equivalents of Cd
2+

 were added. It is also noted that the line-broadening of certain phenyl 

protons and the SMe protons appear to be far more pronounced than that of the other 

protons. This unusual phenomenon suggests that ligand exchange is rapid on the NMR 

time scale, when specific metals are bound to sensor 293a. 
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Figure 4.31:Partial 
1
H NMR spectra of compound 293a (7.4 mM) in titration with 

Cd(ClO4)2 in THF-d8 showing the aromatic region. Signals labeled by * refers to the 

triazolyl proton. 
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Figure 4.32: Partial 
1
H NMR spectra of compound 293a (7.4 mM) in titration with 

Cd(ClO4)2 in THF-d8 showing the aliphatic region. 
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Figure 4.33: Partial 
1
H NMR spectra of compound 293a (7.4 mM) in titration with 

AgOTf in THF-d8 showing the aromatic region. Signals labeled by * refers to the 

triazolyl proton. 
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Figure 4.34: Partial 
1
H NMR spectra of compound 293a (7.4 mM) in titration with 

AgOTf in THF-d8 showing the aliphatic region. 
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4.3.6 Binding properties of TTFV tweezers and macrocycles with fullerenes  

The binding properties of TTFV tweezers 292, 293, 294 and macrocycles 296 and 

297with C60 and C70 fullerenes were investigated by UV-Vis and fluorescence titration 

experiments in chlorobenzene at room temperature. During the titration of TTFV –

anthracene tweezers 293 with C60, the low-energy absorption bands of 293 at 371 nm and 

391 nm do not change, but the absorptions of pristine C60 at 335 nm and a weak tail 

beyond 450 nm are observed to grow steadily (Figure 4.35A). The emission intensity of 

293 shows a very small degree of enhancement upon addition of C60 (Figure 4.35B). The 

titration results disclose that C60 binds rather weakly with tweezers 293.  

 

Figure 4.35: (A) UV-Vis spectral changes of 293 upon addition of C60 (B) Fluorescence 

spectral changes of 293 upon addition of C60 (λex= 350 nm) in chlorobenzene. 

The titration of 293 with C70, however, shows markedly different outcomes. The 

UV-Vis spectral changes (Figure 4.36A) are complex and difficult to decipher, due to the 

overlap of the absorption bands of C70 with those of 293 in the range of ca. 350-450 nm. 
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The fluorescence bands of 293 show very significant enhancement in intensity during the 

titration of C70 without any shifts in emission wavelength. At the saturation point, the 

maximum emission peak at 418 nm is increased by 1.7 times (Figure 4.36B). Clearly, 

tweezers 293 can effectively bind with C70 in the solution phase. 

 

Figure 4.36: (A) UV-Vis spectral changes of 293 upon addition of C70 (B) Fluorescence 

spectral changes of 293 upon addition of C70 (λex= 350 nm) in chlorobenzene. 

For the titration of the TTFV-anthracene macrocycle 297 with C60, the UV-Vis 

spectra show two distinct stages of changes. As shown in Figure 4.37A, during the 

addition of up to ca. 1 molar equivalent of C60 to the solution of 297, a peak at 339 nm 

grows continuously, while other three absorption peaks at 360 nm, 368 nm, and 399 nm 

decrease in intensity slightly. An isosbestic point is observed at 357 nm in this process. 

During the addition of ca. 1 to 2 equivalents of C60 to 297, the absorption bands decrease 

monotonously together with an increasing low-energy absorption tail from ca. 450 nm to 

700 nm (Figure 4.37B). The UV-Vis titration data clearly indicate two distinct steps of 

complexation, likely due to the formation of 1:1 and 1:2 complexes between macrocycle 
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297 and C60. Macrocycle 297 showed fluorescence turn-on responses to both C60 andC70 

(Figure 4.37C and E). 

 

Figure 4.37: (A) UV-Vis spectral changes of 297 upon addition of up to ca. 1 equiv of 

C60. (B) UV-Vis spectral changes of 297upon addition of ca. 1-2 equiv of C60. (C) 

Fluorescence spectral changes of 297 upon addition of C60 (λex= 350 nm). (D) UV-Vis 



343 
 

spectral changes of 297 upon addition of C70. (E) Fluorescence spectral changes of 297 

upon addition of C70 (λex = 340 nm) in chlorobenzene. 

The TTFV-pyrene tweezer 294 showed prominent fluorescence turn-on responses 

to both C60 and C70 (Figure 4.38B to D) than other TTFV tweezers and macrocycles.  In 

particular, 294 gave a 11.4-fold enhancement at the endpoint of a titration with C60 and a 

4.4-fold enhancement with C70 fullerene. TTFV-naphthalene tweezers 292 and TTFV-

benzene macrocycle 296 did not show any significant fluorescence and UV-Vis 

absorption changes upon titration of fullerenes (Figures 4.49 and 4.40), likely due to their 

arene units (i.e., naphthalene and benzene) being very poor fluorophores. 
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Figure 4.38: (A) UV-Vis spectral changes of 294 upon addition of C60 (B) Fluorescence 

spectral changes of 294 upon addition of C60 (λex= 350 nm) (C) UV-Vis spectral changes 

of 294 upon addition of C70(D) Fluorescence spectral changes of 294 upon addition of 

C70 (λex = 350 nm) in chlorobenzene. 
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Figure 4.39: (A) UV-Vis spectral changes of 292 upon addition of C60 (B) Fluorescence 

spectral changes of 292 upon addition of C60 (λex= 350 nm) (C) UV-Vis spectral changes 

of 292 upon addition of C70 (D) Fluorescence spectral changes of 292 upon addition of 

C70 (λex = 350 nm) in chlorobenzene. 
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Figure 4.40: UV-Vis spectral changes of 292 upon addition of (A) C60 (B) C70 in 

chlorobenzene. 

4.3.6.1 Photoinduced electron transfer (PET) mechanism 

The origin of fluorescence turn-on with TTFV-tweezers and macrocycles can be 

explained by a photoinduced electron transfer (PET) mechanism. As mentioned in the 

previously, these TTFV tweezers (293 and 294) and macrocycle 297 show moderate to 

weak fluorescence, as a result of the quenching effect by the central electron-donating 

TTFV unit via a PET mechanism (Figure 4.41). Upon addition of C60 or C70 fullerene, the 

fluorescence turn-on properties are likely originated from the interactions of electron-

accepting fullerenes with the electron-donating TTFV moiety in the excited state, which 

attenuates non-radiative decay pathways including the PET mechanism. The direct 

contact between C60 or C70 fullerene and the TTFV unit is believed to induce facile PET 

from TTFV to fullerenes, which gives rise to appreciable fluorescence enhancement in 

the titration experiments.  
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Figure 4.41: Proposed PET mechanism for fluorescence turn-on sensing of C60 fullerene. 

4.3.6.2. Binding analysis and modeling studies 

Subjecting the titration data to global spectral analysis using the SPECFIT 

software allows the determination of binding stoichiometry and binding constants (listed 

in Table 4.2). Meaningful spectral fitting could not be attained from the UV-Vis titration 

results due to the complex spectral overlap of various colorful species. The fluorescence 

data, however, allowed good spectral fitting to be achieved to quantitatively elucidate the 

binding properties. The data form binding analysis evidences that all tweezers show 1:1 

complex and macrocycles give 1:2 complex in binding to fullerenes.     
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Table 4.2: Binding constants for TTFV tweezers and macrocycles with fullerenes 

obtained from global spectral analysis of the fluorescence spectral titration data 

host guest complexation 

ratio (H/G) 

logβ11 (M
-1

) logβ12 (M
-2

) 

293 

293 

294 

294 

297 

297 

C60 

C70 

C60 

C70 

C60 

C70 

--- 

1:1 

1:1 

1:1 

1:2 

1:2 

--- 

4.90 ± 0.05 

4.87 ± 0.04 

4.72 ± 0.03 

--- 

--- 

--- 

--- 

--- 

--- 

11.10 ± 0.06 

10.11 ± 0.11 

 

According to the binding constant analysis, tweezers 293 appears to be highly 

selective in binding with C70 over C60. A Molecular modeling study has cast light on the 

origin of the very different binding affinities. Figure 4.42B shows the optimized structure 

for the 1:1 complex of 293 and C60, where intimate π-π contacts take place only between 

C60 and the two anthracene units. The spherical shape of C60 does not allow the central 

TTFV moiety to be involved in the π-interactions with C60. The lack of contact between 

C60 and TTFV donor thus accounts for the very weak binding as well as insignificant 

fluorescence changes in the titration results. The 1:1 complexation of 293 with C70, on the 

contrary, shows a very close contact between one of the dithiole rings of the TTFV unit 
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and C70, in addition to the C70 and anthracene interactions (Figure 4.42C). Apparently, 

the ellipsoidal shape of C70 makes it fit better in the π-cavity created by the dianthryl-

TTFV framework of tweezers 293, rendering it a highly selective receptor for C70 over 

C60.  

 

Figure 4.42: (A) Fluorescence spectral changes of 293 upon addition of C70 in the 

presence of a large excess of C60 (λex = 350 nm). CPK models of optimized molecular 

structures for the complexes of (B) 293 with C60, and (C) 293 with C70. 

To further test the performance of 293 as a selective C70 sensor, a fluorescence 

titration of a solution of 293 with C70 in the presence of a large excess of C60 (>1000 

molar equivalents) was conducted and the results are shown in Figure 4.42A. To our 

satisfaction, significant the fluorescence turn-on sensing property for C70 is still retained 

under these conditions, attesting to the extraordinary efficacy of tweezers 293in 

discriminating a trace amount of C70 in a large excess of C60. 
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However, the interactions of macrocycle 297 with C60 or C70 follow the 1:2 

binding ratio as disclosed by global spectral analysis (Table 4.2). The optimized 

structures of macrocycle 297 binding with C60 and C70 respectively in 1:1 and 1:2 ratios 

are shown in Figure 4.43C and D. Compared with tweezers 293, the structure of 

macrocycle 297 is much more rigid and pre-organized in a cup-like shape. As a result, the 

binding of 297 with C60 and C70 invariably involves the π-interactions with the dithiole 

rings of the TTFVs. In contrast to dianthryl-TTFV 293, the relatively larger π-surface of 

the dipyrenyl groups in 294 gives rise to more intimate π-π contact with C60 and C70 

fullerenes ( Figure 4.43A and B), resulting in strong binding strength but without 

particular selectivity. 

 

Figure 4.43: CPK models of optimized molecular structures for the complexes of (A) 

C60@294, (B) C70@294, (C) 2C60@297, and (D) 2C70@297.  

4.3.6.3 Releasing experiments 

Finally, the controllability over reversible interactions of fullerenes with TTFV-

anthracene receptors was investigated. As mentioned, the TTFV moiety is known to 

undergo reversible protonation/deprotonation processes, which have been recently 
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applied by our group to achieve reversible wrapping and release of single-walled carbon 

nanotubes using a TTFV-phenylacetylene polymer.
74 To demonstrate this feature, UV-

Vis titration of the complexes of macrocycle 297 and C60 with trifluoroacetic acid (TFA) 

was undertaken, where the signature absorption bands of C60 at 334 nm and TTFV 

cations at 646 nm were specifically monitored. Figure 4.44A shows the plot of the 

absorption intensity of 297 at 334 nm as a function of increasing [C60]. The absorption 

changes here show a bell-shaped trend with a maximum appearing at the point where 

approximately one equivalent of C60 is added. The two distinct stages of absorbance 

changes can be ascribed to the stepwise formation of 1:1 and 1:2 complexes. Figure 

4.44B shows the absorbance changes of 297/C60 complexes at 334 nm as a function of 

increasing [TFA]. The plot gives an inverted bell-shaped trend with the minimum 

coinciding with the midpoint of titration. The titration of 297 with TFA exhibits only a 

decreasing trend for the absorbance at 334 nm (Figure 4.44C), while monitoring the 

absorbance at 646 nm reveals a continuous increase of TTFV cations (Figure 4.44D). The 

titration analysis here offers clear evidence for the dissociation of 297/C60 complexes 

with increasing acidity in solution. 
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Figure 4.44: (A) Absorbance of 297 (7.0 μM) at 334 nm as a function of [C60]. (B) 

Absorbance of 297 (6.1 μM) and C60 (30.3 μM) at334 nm as a function of [TFA]. (C) 

Absorbance of 297 (4.3 μM) at 334nm as a function of [TFA]. (D) Absorbance of 297 

(6.1 μM) and C60 (30.3 μM) at 646 nm as a function of [TFA]. All titrations were done in 

chlorobenzene at rt. 
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Figure 4.45: (A) UV-Vis spectral changes of macrocycle 297(6.1 μM) and C60 (30.3 μM) 

in chlorobenzene as a function of [TFA] at room temperature. (B) Expansion of UV-Vis 

spectra showing the titration of TFA from 0 to 4.2 mM. (C) Expansion of UV-Vis spectra 

showing the titration of TFA from 5.6 to 11.2 mM. (D) UV-Vis spectral changes of 

macrocycle 297 (4.3 μM) in chlorobenzene as a function of [TFA] at room temperature. 

4.3.7 Electrochemical properties of TTFV tweezers 295 with saccharides 

The electrochemical saccharide sensing function of boronic acid-appended TTFV 

tweezers 295 was investigated by electrochemical titrations. In the experiments, the 

tweezers 295 was dissolved in a mixture of DMSO and aqueous phosphate buffer 
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solution, wherein the pH value was kept at 7.41. The prepared solution of 295 was then 

subjected to titrations with four different monosaccharides (i.e., fructose, ribose, 

galactose, and glucose) respectively. The titration processes were monitored by 

differential pulse voltammetry (DPV), and the results are shown in Figure 4.46.  

 

Figure 4.46: Differential pulse voltammetric (DPV) titrations of sensor 295 (2.06 mM) 

with (A) fructose, (B) ribose, (C) galactose, and (D) glucose. Experimental conditions: 

solvent: DMSO/phosphate buffer (1:2, v/v); working electrode: glassy carbon; counter 

electrode: Pt wire; reference electrode: Ag/AgCl, NaCl (3 M); scan rate: 20 mV/s; pulse 

width: 50 mV; pulse period: 200 ms; step: 4 mV. The baselines of the voltammograms 

were corrected. 
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As shown in Figure 4.46, the DPV profile of compound 295 in the DMSO/buffer 

solvent showed two noticeable oxidation peaks at ca.+0.34 and +0.14 V. Upon titration 

with fructose (Figure 4.46A), the peak at +0.34 increased steadily in intensity with 

increasing fructose concentration, whereas the change of the peak at +0.14 V showed a 

decreasing trend. In the meantime, a new oxidation peak at ca.+0.73 V began to grow 

with the progress of titration. For the most significant peak at +0.34 V, its oxidation 

potential was found to change in two stages. In the early stage of the titration, up to 

addition of 3 molar equiv of fructose, the peak shifted slightly to the positive direction, 

while in the later stage the potential shifted back to the negative direction and saturated 

after about 17 M equiv of fructose were added. The correlation of changes in peak current 

and peak potential with the concentration of fructose is presented in Figure 4.47A. From 

the trends showing there, it is reasonable to assume that the binding of fructose with 

sensor 295 undergo two distinct stages, most likely due to stepwise formation of 1:1 and 

2:1 complexes given that compound 295 bears two phenylboronic acid groups for binding 

with saccharides. 

The titration of sensor 295 with ribose showed a similar trend to that of fructose 

titration, but took much more titrant (more than 200 molar equiv) to reach saturation 

(Figure 4.46B). The results indicate that sensor 295 binds to fructose and ribose by the 

same mechanism; however, the binding strength of 295 with fructose is much stronger 

than with ribose. 
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Figure 4.47: Correlations of current intensity (blue traces) and potential (red traces) for 

the peak at ca.+0.34 V in the DPV titrations of sensor 295 (2.06 mM) with concentration 

of saccharides. 

The titration of sensor 295 with galactose also gave characteristic changes in its 

DPV profiles, wherein the peak current at ca.+0.34 V significantly increased in intensity 

with titration (Figure 4.46C). The change in peak potential however showed only a 

monotonous decreasing trend and became saturated when about 115 molar equiv of 

galactose were added. The correlation diagram in Figure 4.47 C suggests that the binding 

of galactose with sensor 295 occurs via a mechanism different from that for fructose and 

ribose binding. A reasonable rationalization is that compound 295 directly forms a 1:2 

complex with galactose during the titration. The voltammetric responses of 295 in the 
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titration of glucose are shown in Figure 4.46D. Unlike the previous three saccharides, the 

changes in oxidation peak potential and current appear to be kind of random and lack a 

clear trend. An explanation for this voltammetric behavior can be made by assuming that 

sensor 295 does not bind significantly to glucose. 

4.3.8 Electrochemical properties of TTFV tweezer 316 with fluoride ions 

Apart from the saccharide sensing properties of 295, we further investigated the 

electrochemical responses of TTFV-boronate 316 to the fluoride anion and other halides 

in an organic solvent, THF. The DPV profile of 316 showed an oxidation peak at +0.65 

V(Figure 4.48A), which is consistent with the quasi-reversible redox wave pair (Epa = 

+0.95 V, Epc = +0.51 V) observed in its cyclic voltammetric(CV) diagram (Figure 

4.48C). Upon addition of tetrabutylammonium fluoride (TBAF) from 0 to 1.0 M equiv, 

the oxidation peak in DPV was observed to decrease steadily in intensity and shifted in 

the negative voltage direction. In the CV profiles, the cathodic peak made a significant 

shift from +0.90 to +0.76 V, while the anodic peak remained nearly unchanged. The peak 

currents were observed to reduce considerably as the titration progressed. 

 When more than 1.0 molar equiv of TBAF was added to the solution of TTFV-

boronate 316, both the DPV and CV profiles showed very different patterns of changes 

compared with the results of titration with less than 1.0 equiv of TBAF. In the DPV, the 

oxidation peak at +0.76 V continuously decreased but without significant potential shift. 

In the meantime, two new peaks at +0.38 and +0.94 V emerged. In the CV data, the 

cathodic peak at +0.76 V diminished and two new cathodic peaks at +0.49 and +1.00 V 
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grew steadily. The anodic peak at +0.51 V gradually disappeared as the titration 

continued. Overall, in the process of titration of 316 with TBAF from1.2 to 2.0 equiv, the 

CV characteristics changed from a quasi-reversible to an irreversible pattern. 

 

 

Figure 4.48: Differential pulse voltammetric (DPV) changes of TTFV-boronate 316 

(2.35 mM) upon addition of TBAF (A) from 0 to 1.0 molar equiv, (B) from 1.2 to2.0 

molar equiv. Experimental conditions: solvent: THF; electrolyte: Bu4NBF4(0.1 M); 

working electrode: glassy carbon; counter electrode: Pt wire; reference electrode: 

Ag/AgCl, NaCl (3 M); scan rate: 20 mV/s; pulse width: 50 mV; pulse period: 200 ms; 

step: 4 mV. The baselines of the voltammograms were corrected. Cyclic voltammetric 
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titration of 316 with TBAF (C) from 0 to 1.0 molar equivalent, (D) from 1.2 to 2.0 molar 

equiv. Scan rate: 50 mV/s. 

The distinct two stages of changes in electrochemical properties observed in DPV 

and CV titrations suggest that the binding of TTFV-boronate 316 with the fluoride anion 

undergoes a mechanism in which 1:1 and 1:2 complexes are formed sequentially 

(Scheme 4.48). When the fluoride anion is added to one of the boronate groups, the 

resulting electron-rich fluoroborate anion would make the central TTFV moiety have a 

lowered oxidation potential, which is in agreement with the observations in the DPV and 

CV measurements. When the two boronate groups of 316 are both bound to the fluoride 

anion, the two anionic fluoroborate endgroups are therefore expected to engender 

significant electrostatic repulsive forces. If such is the case, the conformation of the 

TTFV moiety should be greatly changed, very likely to a shape more close to a trans 

conformation. Previous studies done by us and others have shown that TTFV in a trans 

conformation would exhibit a stepwise two electron release upon electrochemical 

oxidation,
77,78

 which can reasonably explain the unique electrochemical behavior of the 

1:2 complex of 316 and the fluoride ion. Electrochemical response of sensor 316 with 

other halide ions (Cl
-
, Br

-
, and I

-
) is presented in the Appendix.  
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Scheme 4.8: Stepwise binding of compound 316 with the fluoride anion. 

4.3.8.1 
1
H NMR studies on sensor 316 

To further understand the binding properties of boronate 316 with the fluoride 

ion, 
1
H NMR titration experiments were conducted. Figure 4.49 shows the changes of 

proton signals in the aromatic region with increasing titration of TBAF in CD2Cl2. As can 

be seen, when less than 2 molar equiv of the fluoride ion were added, the 
1
HNMR signals 

of boronate 316 exhibited broadened line shapes as the titration carried on. In this stage, 

the binding of 316 with the fluoride ion should predominantly result in the formation a 

1:1 complex, in which the fluoride ion possibly undergoes rapid exchange between the 

two boron binding sites.  

When more than two equiv of the fluoride ion were added, the 
1
H NMR signals 

gradually changed back to sharp and well-resolved features. In addition, the signal due to 

the two chemically equivalent triazolyl protons was observed to give a considerable 

downfield shift (labeled by asterisks in Figure 4.49). This observation can be rationalized 

by the hydrogen bonding interaction between the triazolyl protons and fluoride ions when 
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a stable 1:2 complex is formed as proposed in Scheme 4.8. Clearly, the triazole group 

plays an important role in assisting the binding of the fluoride ion with the boron center. 

 

Figure 4.49: 
1
H NMR (500 MHz) titration of boronate 316 (3.86 mM) with TBAF in 

CD2Cl2 at room temperature. Signals corresponding to the triazolyl protons are indicated 

by asterisks (*). 
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4.4 Conclusions 

In this chapter, we have once again demonstrated the power of the click reaction 

to generate a series of TTFV based molecular tweezers and macrocycles. Electronic, 

spectroscopic and electrochemical properties of the all tweezers and macrocycles were 

investigated by cyclic voltammetry (CV), UV-Vis absorption and fluorescence 

spectroscopic characterizations. The dianthryl–TTFV 293a exhibits fluorescence turn-on 

sensing function towards Cu
2+,

 Fe
2+

, and Cd
2+

ions at μM concentrations in THF with 

excellent sensitivity, while at mM concentrations in acetonitrile it allows for colorimetric 

detection of these three metal ions. The investigation on metal-ion binding properties has 

shown that triazole linkers in compound 293a serve as effective ligands (receptors) to 

coordinate with metal ions. To the best of our knowledge, compound 293a is the first 

example of TTFV-based “click sensors”, and we believe it can be a useful design motif 

for the development of fluorophore-based molecular sensory and optoelectronic devices. 

We have also designed and synthesized a new class of supramolecular hosts for 

fullerenes with tweezer-like (293, and 294) and macrocyclic architectures (297). The 

molecular tweezer 293 can selectively bind to C70 fullerene and give fluorescence turn-on 

sensing function toward C70 in the presence of excessive C60, while the macrocycle 

exhibits a very large binding affinity for C60 and C70 fullerenes with 1:1 and 1:2 

host/fullerene complexation ratios. Moreover, these receptors not only show unique 

fluorescence turn-on sensing properties for fullerenes, but have the capability of 

reversibly interacting with fullerenes under the simple control of acidity.  
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Finally, we have designed and synthesized a new type of tweezer-like TTFV 

derivatives carrying phenylboronate and phenylboronic acid endgroups using same 

synthetic strategy. The TTFV-boronic acid derivative 295 was found to show selective 

electrochemical responses to different saccharides, while the TTFV-boronate derivative 

316 exhibited characteristic electrochemical responses to the fluoride anion. The findings 

indicate that more efficient electrochemical probes for saccharides and halide anions by 

fine-tuning analogous molecular structures. 
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4.5 Experimental 

Chemicals were purchased from commercial suppliers and used directly without 

purification. All reactions were conducted in standard, dry glassware and under an inert 

atmosphere of nitrogen unless otherwise noted. Evaporation and concentration were 

carried out with a water-aspirator. Flash column chromatography was performed with 

240-400 mesh silica gel, and thin-layer chromatography (TLC) was carried out with silica 

gel F254 covered on plastic sheets and visualized by UV light. Melting points (m.p.) 

were measured using an SRS OptiMelt melting point apparatus and are uncorrected. 
1
H 

and 
13

C NMR spectra were measured on a Bruker Avance 500 MHz spectrometer and a 

Bruker Avance III 300 MHz multinuclear spectrometer. Chemical shifts (δ) are reported 

in ppm downfield from the signal of the internal reference SiMe4 for 
1
H and 

13
C NMR 

spectra. Coupling constants (J) are given in Hz. Infrared spectra (IR) were recorded on a 

Bruker tensor 27 spectrometer. Cyclic voltammetric (CV) experiments were carried out 

in a standard three-electrode setup controlled by a BASi Epsilon workstation. UV-Vis-

NIR absorption spectra were measured on a Cary 6000i spectrophotometer. Emission 

spectra were measured on a Photon Technology International (PTI) Quantamaster 6000 

spectrofluorometer equipped with a continuous xenon arc lamp as the excitation source. 

MALDI-TOF MS analyses were performed on an Applied Biosystems Voyager 

instrument using dithranol as the matrix. 
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Acetylenic DTF (298) 

 

A solution of thione 270 (1.05g, 2.19 mmol) and 4-

(trimethylsilylethynyl)benzaldehyde 271 (0.443g, 2.19 mmol) in trimethylphosphite (15 

mL) was stirred and heated to 130
o
C for about 3 h under a N2 atmosphere. After the 

reaction was complete as checked by TLC analysis, the excess trimethylphosphite was 

removed by vacuum distillation. The resulting crude product was purified by silica flash 

column chromatography (EtOAc/hexanes, 1:9) to yield pure compound 298 (0.999 g, 

1.57 mmol, 72%) as reddish brown syrup. IR (neat): 2957, 2923, 2852, 2155, 1567, 1542, 

1464, 1249 cm
-1

; 
1
HNMR (500 MHz, CD2Cl2): δ 7.42 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 

8.3 Hz, 2H), 6.45 (s,1H), 2.83 (t, J = 7.3 Hz, 4H), 1.68-1.61 (m, 4H), 1.43-1.26 (m, 28H), 

0.88 (t, J = 7.0 Hz, 6H), 0.24(s, 9H); 
13

C NMR (75 MHz, CD2Cl2): δ 136.8, 134.7, 132.3, 

128.3, 126.8, 125.3, 120.3, 113.6, 105.4, 95.0, 36.5, 36.4, 32.3, 30.2, 30.1, 30.0, 29.9, 

29.7, 29.5, 28.90, 28.87, 23.1, 14.3; HRMS (MALDI-TOF, +eV) m/z calcd for 

C35H56S4Si 632.3034, found 632.3146 [M]
+
. 
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TMS protected -DTF (298a) 

 

Compound 270a (2.51g, 11.0 mmol) was olefination reaction compound 271 

(2.24 g, 11.0 mmol) in trimethyl phosphate (25 mL) for 3 h as described in the procedure 

for the synthesis of compound 298. Silica flash column chromatography (EtOAc/hexane 

1.5:8.5) afforded 298a (2.70, 7.09 mmol, 64%) as yellow solid. 
1
H NMR (500 MHz, 

CD2Cl2): δ 7.43 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 6.44 (s, 1H), 2.44 (s, 3H), 

2.43 (s, 3H), 0.25 (s, 9H). The data are consistent with literature report.
79

 

Neutral acetylenic phenyl TTFV precursor (299) 

 

To a solution of compound 298 (0.700 g, 1.10 mmol) in CH2Cl2 (100 mL) were 

added iodine chips (0.813 g, 3.20 mmol). The resulting dark solution was stirred at rt 

overnight. A saturated aqueous solution of Na2S2O3 (25 mL) was then added to the dark 

solution and stirred for another 3 h at rt. The resulting yellow organic layer was 

separated, washed with water, dried over MgSO4, and concentrated under reduced 
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pressure. The resulting crude product was subjected to silica flash column 

chromatography for purification (EtOAc/hexanes, 1:9), giving pure compound 299 

(0.569g, 0.450 mmol, 82%) as a reddish brown syrup. IR (neat): 2957, 2923, 2852, 2155, 

1521, 1463, 1248 cm
-1

;
1
H NMR (300 MHz, CDCl3): δ 7.37 (d, J = 8.6 Hz, 4H), 7.30 (d, J 

= 8.6 Hz, 4H), 2.83-2.71 (m, 8H), 1.68-1.57 (m, 8H), 1.42-1.26 (m, 56H), 0.88 (t, J = 6.4 

Hz, 12H), 0.23(s, 18H); 
13

C NMR (75 MHz, CDCl3): δ 138.2, 137.2, 132.2, 128.8, 126.3, 

125.5, 123.5, 121.1, 105.2, 94.8, 36.2, 36.0, 31.95, 31.93, 29.7, 29.6, 29.38, 29.35, 29.21, 

29.18, 28.6, 28.5, 22.73, 22.71, 14.2, 0.0; HRMS (MALDI-TOF, +eV) m/z calcd for 

C70H110S8Si2 1262.5912, found 1262.6032 [M]
+
. 

Neutral acetylenic phenyl TTFV precursor (299a) 

 

Compound 298a (1.2 g, 3.2 mmol) was subjected to oxidative dimerization 

reaction in presence of Iodine (2.4 g, 9.4 mmol) in CH2Cl2 for overnight as described in 

the procedure for the synthesis of compound 299. Silica flash column chromatography 

(EtOAc/hexane 2:8) afforded 299a (0.73 g, 1.9 mmol, 61%) as yellow solid. 
1
HNMR 

(500 MHz, CDCl3): δ 7.38 (d, J = 8.3 Hz, 4H), 7.30 (d, J = 8.3 Hz, 4H), 2.42 (s, 6H), 

2.37 (s, 6H). The data are consistent with literature report.
79
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Acetylenic phenyl TTFV precursor (300)  

 

Compound 299 (0.500g, 0.395mmol) was dissolved in MeOH/THF (1:1, 30 mL), 

and to the mixture was added K2CO3 (0.327 g, 2.37 mmol). The reaction mixture was 

stirred for 2 h at rt. On completion, the solvent was removed under reduced pressure. The 

residue was dissolved in CH2Cl2, washed with water, dried over MgSO4, and 

concentrated under reduced pressure to give crude 300. The crude product was subjected 

to column chromatographic purification (EtOAc/hexanes, 3:7) to yield pure compound 

300 (0.380g, 0.339 mmol, 86%) as a reddish brown syrup. IR (neat): 3303, 2956, 2922, 

2850, 2107, 1552, 1484, 1463, 1115 cm
-1

; 
1
H NMR (500 MHz, CD2Cl2): δ 7.41 (d, J = 

8.5 Hz, 4H), 7.34 (d, J = 8.5 Hz, 4H), 3.07 (s, 2H), 2.84-2.80 (m, 4H), 2.74 (t, J = 7.3 Hz, 

4H), 1.66-1.55(m, 8H), 1.43-1.25 (m, 56H), 0.88 (t, J = 6.8 Hz, 12H); 
13

C NMR (75 

MHz, CD2Cl2): δ 139.3, 137.8, 132.7, 129.3, 126.7, 126.0, 123.5, 120.4, 83.8, 78.0, 

36.6,36.4, 32.3,30.16, 30.14, 30.0, 29.96, 29.8, 29.7, 29.59, 29.56, 28.92, 28.89, 23.1, 

14.3; HRMS (MALDI-TOF, +eV) m/z calcd for C64H94S8 1118.5121, found 1118.5137 

[M]
+
. 

 



369 
 

Acetylenic phenyl TTFV precursor (300a)  

 

Compound 299a (0.62 g, 0.82 mmol) was desilylated in presence of K2CO3 (0.68 

g, 4.9 mmol) in MeOH/THF (1:1, 30 mL), for overnight as described in the procedure for 

the synthesis of compound 300. Silica flash column chromatography (EtOAc/hexane 3:7) 

afforded 300a (0.41 g, 0.66 mmol, 82%) as yellow solid. m.p. 140.1-142.3 
o
C; IR (neat) 

3276, 2916, 2096, 1595, 1471, 1309, 885, 833 cm
-1

; 
1
H NMR (500 MHz, CDCl3): δ 7.43 

(d, J = 8.4 Hz, 4H), 7.35 (d, J = 8.4 Hz, 4H), 3.08 (s, 2H), 2.43 (s, 6H), 2.39 (s, 6H); 
13

C 

NMR (125 MHz, CDCl3): δ 138.3, 137.2, 132.5, 128.6, 126.3, 125.2, 123.3, 120.1, 83.6, 

77.8, 18.9, 18.8; HRMS (MALDI-TOF, +eV) m/z calcd for C28H22S8 613.9487, found 

613.9497 [M]
+
. 

1-(Hydroxymethyl)naphthalene (302) 

 

To a solution of 1-naphthaldehyde 301 (1.01 g, 6.41 mmol) in MeOH (20 mL) 

was slowly added NaBH4 (0.721 g, 19.2 mmol) at 0 
o
C under N2 atm. The reaction 

mixture was brought to rt and stirred for 2 h. Then the reaction was slowly quenched with 
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ice water at 0 
o
C. The solvent was reduced under vacuum to give crude product 302, 

which was dissolved in DCM, washed with water and dried over MgSO4, and 

concentrated under vacuum to give pure product 302 (1.02 g, 6.41, 100%) as an off-white 

solid. 
1
H NMR (300 MHz, CDCl3): δ 8.13 (d, J = 7.8 Hz, 1H), 7.90-7.87 (m, 1H), 7.82 

(d, J = 8.1 Hz, 1H), 7.59-7.43 (m, 4H), 5.16 (s, 2H).  

1-(Chloromethyl)naphthalene (303) 

 

To a solution of 1-(hydroxymethyl)naphthalene 302 (0.816 g, 5.16 mmol) and 

TEA (2.4 mL, 16.7 mmol) in DCM (50 mL) was slowly added mesyl chloride (0.8 mL, 

1.18 g, 10.3mmol) at rt under N2 atm. The reaction mixture was stirred at rt for 2 h. On 

completion as checked by TLC analysis, the reaction mixture was diluted with DCM (50 

mL) and washed with water, aq. NH4Cl solution, and water. The organic layer was 

separated, dried over MgSO4, and concentrated under vacuum to give pure product 303 

(0.670 g, 3.79 mmol, 73%) as thick syrup. 
1
H NMR (300 MHz, CDCl3): δ 8.16 (d, J = 8.7 

Hz, 1H), 7.89 (t, J = 9.0 Hz, 2H), 7.64-7.51(m, 3H), 7.46-7.41 (m, 1H), 5.07 (s, 2H). The 

data are consistent with literature report.
80
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1-(Azidomethyl)naphthalene (304) 

 

To a solution of compound 303 (0.603 g, 3.42 mmol) in dry DMF (5 ml) was 

added NaN3 (0.495 g, 7.61 mmol) and stirred at rt for overnight. After the reaction was 

monitored by TLC, water was added and the compound was extracted into ether (100 

mL). The organic layer was washed with cold water to remove traces of DMF and dried 

over MgSO4 and removed under vacuum to afford pure compound 304 as liquid (0. 447 

g, 2.43 mmol, 71%). 
1
H NMR (300 MHz, CDCl3): δ 8.04 (d, J = 8.3 Hz, 1H), 7.93-7.86 

(m, 2H), 7.62-7.52 (m, 2H), 7.50-7.44 (m, 2H), 4.78 (s, 2H). The data are consistent with 

literature report.
81

  

9-(Chloromethyl)anthracene (306) 

 

To a solution of 9-(hydroxymethyl)anthracene 305 (3.02 g, 14.5 mmol) and TEA 

(7.4 mL, 26.7 mmol) in DCM (150 mL) was slowly added mesyl chloride (2.2 mL, 3.16 

g, 27. 5 mmol) at rt under N2 atm. The reaction mixture was stirred at rt for 2 h. On 

completion as checked by TLC analysis, the reaction mixture was diluted with DCM (40 

mL) and washed with water, aq. NH4Cl solution, and water. The organic layer was 

separated, dried over MgSO4, and concentrated under vacuum to give pure product 306 
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(2.51 g, 11.1 mmol, 76%) as yellow solid. 
1
H NMR (500 MHz, CDCl3): δ 8.50 (s, 1H), 

8.33 (d, J = 8.9 Hz, 2H), 8.05 (d, J = 8.1 Hz, 2H) 7.63 (t, J = 7.8 Hz, 2H), 7.51 (t, J = 7.7 

Hz, 2H), 5.63 (s, 2H).  

9-(Azidomethyl)anthracene (307) 

 

To a solution of compound 306 (1.51 g, 6.66 mmol) in dry DMF (10 mL) was 

added NaN3 (0.860 g, 13.2 mmol) and stirred at rt for overnight. After the reaction was 

monitored by TLC, water was added and the compound was extracted into ether (150 

mL). The organic layer was washed with cold water to remove traces of DMF and dried 

over MgSO4 and removed under vacuum to afford pure compound 307 as yellow solid 

(1.22 g, 5.26 mmol, 79%). 
1
H NMR (500 MHz, CDCl3): δ 8.51 (s, 1H), 8.30 (d, J = 8.8 

Hz, 2H), 8.06 (d, J = 8.4 Hz, 2H) 7.60 (t, J = 7.7 Hz, 2H), 7.52 (t, J = 8.0 Hz, 2H), 5.34 

(s, 2H). The data are consistent with literature report.
82

  

2-(Hydroxymethyl)pyrene (309) 
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To a solution of 2-pyrenealdehyde 308 (1.04 g, 4.34mmol) in MeOH (10 ml) and 

THF (10 mL) was slowly added NaBH4 (0.492 g, 13.0mmol) at 0 
o
C under N2 atm. The 

reaction mixture was brought to rt and stirred for 2 h. Then the reaction was slowly 

quenched with ice water at 0 
o
C. The solvent was reduced under vacuum to give crude 

product 309, which was dissolved in DCM, washed with water and dried over MgSO4, 

and concentrated under vacuum to give pure product 309 (1.05, 4.34 mmol, 100%) as off-

white solid. 
1
H NMR (300 MHz, CDCl3): δ 8.38 (d, J = 9.2 Hz, 1H), 8.22-8.14 (m, 4H), 

8.06 (m, 4H), 5.41 (s, 2H). The data are consistent with literature report.  

2-(Bromomethyl)pyrene (310) 

 

To a solution of 2-(hydroxymethylpyrene) 309 (0.51 g, 2.2 mmol) in THF(50 mL) 

was added phosphorous tribromide (0.2 mL, 0.59 g, 2.2 mmol) at rt and stirred for 1 h. 

The resulting mixture was filtered and the residue was washed with ether to yield the 

desired 2-(bromomethyl) pyrene 310 as a pale green solid (0.55 g, 1.8 mmol 84%). The 

product 309 was taken to the next reaction without further characterization.  

2-(Azidomethyl)pyrene (311) 
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To a solution of 2-(azidomethyl)pyrene 310 (0.701 g, 2.37 mmol) in dry DMF (5 

mL) was added NaN3 (0.464 g, 7.13 mmol) and stirred at rt for overnight. After the 

reaction was monitored by TLC, water was added and the compound was extracted into 

ether (100 mL). The organic layer was washed with cold water to remove traces of DMF 

and dried over MgSO4 and removed under vacuum to afford pure compound 311 as 

yellow solid (0. 578 g, 2.24 mmol, 94%). 
1
H NMR (300 MHz, CDCl3): δ 8.30-8.16 (m, 

5H), 8.12-7.97 (m, 4H), 5.05 (s, 2H). The data are consistent with literature report.
83

 

9,10-Bis(bromomethyl)anthracene (313) 

 

 

 

To a solution of anthracene 312 (5.0 g, 28mmol) in a mixture of 48% aqueous 

hydrobromic acid (100 mL) and glacial acetic acid (25 mL) was added 1,3,5-trioxane (5.0 

g, 64 mmol) and tetrabutylammonium bromide (0.2 g, catalytic amount) were added. The 

mixture was stirred and refluxed for 24 h. After cooling, the green solid formed was 

filtered and washed with water and ethanol. The resulting crude product 313 was 
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recrystallized from toluene to give pure product 313 as a green solid (7.5 g, 20 mmol, 

73%). No meaningful 
1
H NMR obtained. The compound 313 was taken to the next step. 

 

9,10-Bis(azidomethyl)anthracene (314) 

 

 

 

To a solution of 9,10-bis(bromomethyl)anthracene 313 (3.0 g, 8.2 mmol) in DCM 

(20 mL) and water (10 mL) was added NaN3 (2.1 g, 32 mmol) and TBAB (0.26 g, 0.81 

mmol) and stirred at rt for 3 h. On completion as checked by TLC analysis, the reaction 

mixture was diluted with DCM (100 mL) and washed with water. The organic layer was 

separated, dried over MgSO4, and concentrated under vacuum to give pure product 314 

as yellow solid (1.5 g, 5.2 mmol, 63%). 
1
H NMR (300 MHz, CDCl3): δ 8.41-8.35 (m, 

4H), 7.68-7.62 (m, 4H), 5.37 (s, 4H). The data are consistent with literature report.
84

 

1,4-bis(azidomethyl)benzene (315) 

 

 



376 
 

To a solution of 1,4-bis(bromomethyl)benzene 233 (0.920 g, 3.48 mmol) in dry 

DMF (10 mL) was added NaN3 (0.682 g, 10.4 mmol) and stirred at rt for 3 h. After the 

reaction was monitored by TLC, water was added and the compound was extracted into 

ether (100 mL). The organic layer was washed with cold water to remove traces of DMF 

and dried over MgSO4 and removed under vacuum to afford pure compound 315 as a 

colorless liquid (0. 591 g, 3.14 mmol, 90%). 
1
H NMR (300 MHz, CDCl3): δ 7.34 (s, 4H), 

4.35 (s, 4H). The data are consistent with literature report.
85

  

TTFV-boronate (316) 

 

Compound 300a (0.151 g, 0.245 mmol), azido-phenylboronate 315 (0.254 g, 

0.982 mmol) and 
i
Pr2EtN (21 µL, 0.123 mmol) were dissolved in dry THF (10 mL). The 

solution was degassed by bubbling N2 at rt for 5 min. CuI (23.3 mg, 0.123 mmol) was 

then added, and the reaction mixture was heated at 60 
o
C overnight. After the reaction 

mixture was complete as checked by TLC analysis, the solvent was removed under 

vacuum. The residue was diluted with CH2Cl2 and then filtered through a MgSO4 pad. 

The filtrate was sequentially washed with brine and water. The organic layer was dried 
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over MgSO4 and concentrated under vacuum to afford crude compound 316, which was 

further purified by silica flash column chromatography (EtOAc/hexanes, 3:7) to yield 

pure compound 316 (0.242 g, 0.214 mmol, 87%) as a pale green solid. m.p. 122-125 
o
C; 

IR (neat): 2980, 1490, 1345, 1216, 1142, 1071, 963 cm
-1

; 
1
H NMR (500 MHz, CDCl3): δ 

7.91 (dd, J = 7.4, 1.2 Hz, 2H), 7.71-7.70 (m, 6H), 7.44-7.40 (m, 6H), 7.36-7.33 (m, 2H), 

7.24 (d, J = 7.7 Hz, 2H), 5.88 (s, 4H), 2.42 (s, 6H), 2.37 (s, 6H), 1.36 (s, 24H); 
13

C NMR 

(75 MHz, CDCl3): δ 147.3, 140.9, 136.7, 136.6, 136.53, 136.50, 131.9, 129.2, 128.3, 

127.9, 127.0, 125.8, 124.9, 124.2, 119.8, 84.2, 53.4, 24.9, 24.8, 18.9, 18.6; HRMS 

(MALDI-TOF, +eV) m/z calcd for C54H58B2N6O4S8 1132.2471, found 1132.2486 [M]
+
.  

TTFV-trifluoroborate (317) 

 

A solution of compound 316 (106 mg, 0.0935 mmol) in MeOH (5 mL) and THF 

(5 mL) was added to aqueous potassium hydrogen difluoride (1 mL, 3 M, 2.99 mmol) in 

a plastic beaker. The resulting pale green color slurry was stirred for 3 h at rt. After the 

reaction was complete as checked by TLC analysis, the solvent was concentrated under 

vacuum. The residue was then dissolved in acetone and the subjected to filtration. The 

filtrate was concentrated under vacuum to give crude product 317, which was washed 
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with methanol to afford compound 317 (92.0 mg, 0.0842 mmol, 90%) as yellow solid.  

m.p. 205-209 
o
C; IR (neat): 2977, 1597, 1487, 1431, 1349, 1191, 958 cm

-1
; 

1
H NMR (500 

MHz, DMSO-d6): δ 8.34 (s, 2H), 7.80 (d, J = 8.5 Hz, 4H), 7.46-7.40 (m, 6H), 7.07-6.99 

(m, 4H), 6.68 (d, J = 7.7 Hz, 2H), 5.69 (s, 4H), 2.44 (s, 6H), 2.37 (s, 6H); 
13

C NMR (75 

MHz, DMSO-d6): δ 145.8, 138.3, 135.5, 135.3, 132.04, 132.00, 130.2, 129.6, 126.7, 

126.3, 125.9, 125.8, 125.6, 124.8, 123.9, 121.6, 52.9, 24.9, 18.2, 18.20, 18.16. 

TTFV-naphthalene tweezers (292) 

 

To a solution of compound 300 (0.300g, 0.267mmol), 1-

(azidomethyl)naphthalene 304 (0.196 g, 1.07 mmol) and 
i
Pr2EtN (22.0 µL, 0.133 mmol) 

in dry THF (8 mL) was added CuI (25.5 mg, 0.133 mmol). The reaction mixture was 

degassed by bubbling N2 at rt for 5 min before it was heated to 60 
o
C overnight. On 

completion, the solvent THF was removed under reduced pressure. The obtained residue 

was dissolved in CH2Cl2 and filtered through a MgSO4 pad. The filtrate was sequentially 

washed with brine and water. The organic layer was dried over MgSO4 and concentrated 

under vacuum to give crude 292, which was further purified by silica flash column 
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chromatography (EtOAc/hexanes, 3:7) to yield pure compound 292 (0.362 g, 0.243 

mmol, 91 %) as a thick syrup. IR (neat): 2920, 2850, 1525, 1495, 1457, 1349, 1265, 1043 

cm
-1

; 
1
H NMR (500 MHz, CDCl3): δ 7.98-7.95 (m, 2H), 7.92-7.88 (m, 4H), 7.63 (d, J = 

8.5 Hz, 4H), 7.52-7.43 (m, 10H), 7.36 (d, J = 8.3 Hz, 4H), 6.01(s, 4H), 2.78 (t, J = 7.3 

Hz, 4H), 2.73 (t, J = 7.3 Hz, 4H), 1.63-1.52 (m, 8H), 1.40-1.21 (m, 56H), 0.87 (t, J = 6.9 

Hz, 12H);
13

C NMR (75 MHz, CDCl3): δ 147.7, 136.9, 136.8, 133.9, 131.2, 130.1, 129.8, 

128.9, 128.7, 128.4, 127.7, 127.3, 126.9, 126.4, 125.8, 125.3, 123.9, 122.8, 119.3, 52.4, 

36.1, 36.0, 31.90, 31.89, 29.63, 29.58, 29.54, 29.53, 29.34, 29.31, 29.2, 28.6, 28.5, 22.7, 

14.1; HRMS (MALDI-TOF, +eV) m/z calcd for C86H112N6S8, 1484.6714, found 

1484.6796 [M]
+
.  

TTFV-anthracene tweezers (293) 

 

To a solution of compound 300 (0.150g, 0.133 mmol), 9-(azidomethyl)anthracene 

307 (0.156g, 0.668 mmol) and 
i
Pr2EtN (11.0 µL, 0.070 mmol) in dry THF (8 mL) was 

added CuI(7.60 mg, 0.040 mmol). The reaction mixture was degassed by bubbling N2 at 

rt for 5 min before it was heated to 60 
o
C overnight. On completion, the solvent THF was 
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removed under reduced pressure. The obtained residue was dissolved in CH2Cl2 and 

filtered through a MgSO4 pad. The filtrate was sequentially washed with brine and water. 

The organic layer was dried over MgSO4 and concentrated under vacuum to give crude 

293, which was further purified by silica flash column chromatography (EtOAc/hexanes, 

3:7) to yield pure compound 293 (0.171 g, 0.107 mmol, 83%) as a pale yellow solid. m.p. 

114-117 
o
C; IR (neat): 2920, 2849, 1527, 1492, 1449, 1337, 1258, 1213, 1037 cm

-1
; 

1
H 

NMR (500 MHz, CDCl3): δ 8.58 (s, 2H), 8.30(d, J = 8.8 Hz, 4H), 8.08 (d, J = 8.4 Hz, 

4H), 7.60-7.57(m, 4H), 7.54-7.48 (m, 10H), 7.24-7.23 (m, 2H), 7.19(s, 2H), 6.54(s, 4H), 

2.73 (t, J = 7.3 Hz, 4H), 2.68 (t, J = 7.3 Hz, 4H), 1.59-1.48 (m, 8H), 1.35-1.18 (m, 56H), 

0.88 (td, J = 6.7, 1.5 Hz, 12H); 
13

C NMR (75 MHz, CDCl3): δ 147.5, 136.8, 136.7, 131.5, 

130.8, 129.9, 129.5, 128.6, 128.3, 127.7, 126.9, 125.7, 125.4, 125.3, 123.9, 123.7, 122.9, 

119.0, 46.5, 36.0, 35.9, 29.6, 29.5, 29.32, 29.29, 29.1, 28.5, 28.4, 22.7, 14.1; HRMS 

(MALDI-TOF, +eV) m/z calcd for C94H116N6S8 1584.7027, found 1584.6682 [M]
+
.  

TTFV-anthracene tweezer (293a) 
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Compound 300a (50.0 mg, 0.081 mmol), 9-(azidomethyl)anthracene 307 (94.8 

mg, 0.406 mmol) and 
i
Pr2EtN (0.007 mL, 0.040 mmol) were dissolved in dry THF (5 

mL). The solution was degassed by bubbling N2 at rt for 5 min. Then CuI (1.54 mg, 

0.0081 mmol) was added, and the reaction mixture was heated at 60
o
C for overnight. 

After the reaction mixture was completed as checked by TLC analysis, the solvent was 

removed under reduced pressure. The residue was diluted with CH2Cl2. The mixture was 

filtered through a MgSO4 pad and the filtrate was sequentially washed with brine and 

water. The organic layer was dried over MgSO4 and concentrated under vacuum to give 

crude 293a, which was further purified by silica flash column chromatography 

(EtOAc/hexanes, 3:7) to yield pure compound 293a (80.5 mg, 0.078 mmol, 91%) as a 

pale yellow solid. m.p. > 265 
o
C (decomp); IR (neat) : 2916, 2365, 1614, 1523, 1484, 

1433, 1421, 1315, 1209, 1181, 1038, 966 cm
-1

; 
1
H NMR (500 MHz, CDCl3): δ 8.59 (s, 

2H), 8.32 (d, J = 8.9 Hz, 2H), 8.09 (d, J = 8.4 Hz, 2H), 7.61-7.49 (m, 14H), 7.25-7.20 (m, 

2H), 6.55 (s, 2H), 2.34 (s, 2H), 2.29 (s, 2H); 
13

C NMR (125 MHz, CDCl3): δ 147.4, 

136.6, 136.3, 131.4, 130.8, 129.9, 129.4, 128.7, 127.9, 127.7, 126.8, 125.7, 125.4, 124.9, 

124.0, 123.7, 122.9, 119.0, 46.4, 18.7; HRMS (MALDI-TOF, +eV) m/z calcd for 

C58H44N6S8 1080.1393, found 1080.1464 [M]
+
. 

TTFV-pyrene tweezers (294) 
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To a solution of compound 300 (0.150g, 0.133mmol), 2-(azidomethyl)pyrene 311 

(0.803 g, 0.668 mmol) and 
i
Pr2EtN (11.0 µL, 0.0669 mmol) in dry THF (10 mL) was 

added CuI (12.7 mg, 0.0666 mmol). The reaction mixture was degassed by bubbling N2 

at rt for 5 min before it was heated to 60 
o
C overnight. On completion, the solvent THF 

was removed under reduced pressure. The obtained residue was dissolved in CH2Cl2 and 

filtered through a MgSO4 pad. The filtrate was sequentially washed with brine and water. 

The organic layer was dried over MgSO4 and concentrated under vacuum to give crude 

294, which was further purified by silica flash column chromatography (EtOAc/hexanes, 

4:6) to yield pure compound 294 (0.189 g, 0.115 mmol, 86%) as a pale yellow solid. m.p.  

88-89 
o
C; IR (neat): 2920, 2849, 1528, 1494, 1456, 1349, 1288, 1213, 1043 cm

-1
; 

1
H 

NMR (500 MHz, CDCl3): δ 8.24-8.18 (m, 8H), 8.14-8.12 (m, 4H), 8.09-8.03 (m, 4 H), 

7.96 (d, J = 7.9 Hz, 2H), 7.57 (d, J = 8.5 Hz, 4H), 7.39 (s, 2H), 7.29 (d, J = 8.7 Hz, 4H), 

6.27 (s, 4H), 2.73 (t, J = 7.3 Hz, 4H), 2.68 (t, J = 7.3 Hz, 4H), 1.59-1.48 (m, 8H), 1.36-

1.17 (m, 56H), 0.85 (td, J = 4.7, 1.9 Hz, 12H); 
13

C NMR (75 MHz, CDCl3): δ 147.7, 

136.9, 136.8, 132.2, 131.2, 130.6, 129.3, 129.1, 128.7, 128.4, 128.3, 127.6, 127.2, 126.9, 
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126.8, 126.4, 125.9, 125.8, 125.7, 125.3, 125.1, 124.9, 124.5, 123.9, 121.9, 119.3, 52.5, 

36.1, 35.9, 31.9, 29.6, 29.55, 29.51, 29.49, 29.31, 29.29, 29.1, 28.5, 28.4, 22.7, 14.1; 

HRMS (MALDI-TOF, +eV) m/z calcd for C98H116N6S8, 1632.7027, found 1632.7168 

[M]
+
.  

 

 

Boronic acid-appended TTFV tweezers (295) 

 

Compound 317 (56.0 mg, 0.0512 mmol) was dissolved in a mixture of acetonitrile 

(4 ml) and water (1 ml). This was added lithium hydroxide (9.80 mg, 0.125 mmol) and 

stirred at rt for overnight. The acetonitrile was concentrated under vacuum and crude 

solution was added 1.2 M HCl (until the solution reaches pH 6). The obtained precipitate 

was filtered and washed with water and methanol to afford pure product 295 (39.2 mg, 

0.0404 mmol, 79%) as a pale green solid. m.p. 195-198 
o
C; IR (neat): 3382, 2957, 1600, 

1528, 1489, 1451, 1346, 1057, 967 cm
-1

; 
1
H NMR (500 MHz, DMSO-d6): δ 8.43 (s, 2H), 

8.32 (s, 4H), 7.81 (d, J = 8.3 Hz, 4H), 7.64 (d, J = 7.6 Hz, 2H) 7.42 (d, J = 7.2 Hz, 4H), 
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7.36-7.28 (m, 4H), 7.03 (d, J = 7.6 Hz, 2H), 5.82 (s, 4H), 2.44 (s, 6H), 2.38 (s, 6H); 
13

C 

NMR spectrum could not be obtained due to low solubility; HRMS (MALDI-TOF, +eV) 

m/z calcd for C42H38B2N6O4S8 968.0906, found 968.0904 [M]
+
.  

 

 

 

TTFV-benzene macrocycle (296) 

 

To a solution of compound 300 (0.109g, 0.0972mmol), 1,4-

bis(azidomethyl)benzene 315 (0.0183 g, 0.0972 mmol) and 
i
Pr2EtN (8.0 µL, 0.0486 

mmol) in dry THF (8 mL) was added CuI (9.20 mg, 0.0486 mmol). The reaction mixture 
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was degassed by bubbling N2 at rt for 5 min before it was heated to 60 
o
C overnight. On 

completion, the solvent THF was removed under reduced pressure. The obtained residue 

was dissolved in CH2Cl2 and filtered through a MgSO4 pad. The filtrate was sequentially 

washed with brine and water. The organic layer was dried over MgSO4 and concentrated 

under vacuum to give crude 296, which was further purified by silica flash column 

chromatography (EtOAc/hexanes, 2.5:7.5) to yield pure compound 296 (0.0603 g, 0.0230 

mmol, 47%) as a pale green solid. m.p. 81-86 
o
C; IR (neat): 2921, 2850, 2096, 1526, 

1493, 1454, 1348, 1258, 1217, 1041 cm
-1

; 
1
H NMR (500 MHz, CDCl3): δ 7.72-7.61 (m, 

12H), 7.44 (d, J = 8.0 Hz, 8H), 7.31-7.22 (m, 8H), 5.56-5.51 (m, 8H), 2.82-2.75 (m, 

16H), 1.64-1.56 (m, 16H), 1.41-1.24 (m, 112H), 0.88-0.85 (m, 24H); 
13

C NMR (75 MHz, 

CDCl3): δ 147.9, 137.1, 136.1, 135.4, 134.8, 128.9, 128.5, 128.4, 127.0, 125.9, 125.3, 

123.8, 119.4, 54.3, 53.8, 53.6, 36.2, 36.0, 34.9, 29.63, 29.56, 29.4, 29.3, 29.2, 28.6, 28.3, 

22.7, 14.1; HRMS (MALDI-TOF, +eV) m/z calcd for C114H204N12S16, 2613.1863, found 

2613.1551 [M]
+
. 

TTFV-anthracene macrocycle (297) 
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To a solution of compound 300 (0.103g, 0.092 mmol), 9,10-

bis(azidomethyl)anthracene 314(26.5 mg, 0.0920mmol) and 
i
Pr2EtN (7.50 µL, 0.046 

mmol) in dry THF (6 mL) was added CuI (5.10mg, 0.040mmol). The reaction mixture 

was degassed by bubbling N2 at rt for 5 min before it was heated to 60
o
C overnight. On 

completion, the solvent THF was removed under reduced pressure. The obtained residue 

was dissolved in CH2Cl2 and filtered through a MgSO4 pad. The filtrate was sequentially 

washed with brine and water. The organic layer was dried over MgSO4 and concentrated 

under vacuum to give crude 297, which was further purified by silica flash column 

chromatography (EtOAc/hexanes, 5:5) to yield pure compound 297 (69.6 mg, 0.024 

mmol, 54%) as a pale green solid. m.p. 142-147 
o
C; IR (neat): 2922, 2850, 1528, 1462, 

1447, 1224, 1209, 1040 cm
-1

; 
1
H NMR (500 MHz, CD2Cl2): δ 8.45-8.42 (m, 10H), 7.69-

7.64 (m, 10H), 7.54-7.42 (m, 8H), 7.35-7.28 (m, 8H), 6.59 (s, 8H), 2.80-2.71 (m, 16H), 
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1.60-1.55 (m, 16H), 1.36-1.20 (m, 112H), 0.88-0.84 (m, 24H); 
13

C NMR (75 MHz, 

CD2Cl2): δ 147.6, 137.1, 131.1, 131.0, 130.9, 129.8, 129.3, 128.5, 128.2, 127.8, 127.7, 

127.4, 127.3, 127.1, 126.6, 125.9, 125.1, 124.7, 124.4, 119.7, 47.0, 46.9, 36.5, 32.3, 29.9, 

29.7, 29.5, 28.9, 28.8, 23.1, 14.3; HRMS (MALDI-TOF, +eV) m/z calcd for 

C160H212N12S16 2814.2523, found 2814.2557 [M]
+
.  
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Chapter 5 

Conclusions and Future Work 

In conclusion, I shall begin with reflecting, at the methodological level, on the key 

steps that make most of my projects successfully implemented. One of underlying themes 

that run across the diversified research projects in this thesis is the development of 

efficient synthetic access to novel functional organic materials based on π-conjugated 

oligomers, DTF derivatives, and TTFV analogues, with the intention to contribute new 

synthetic tools and materials in the field of materials science. In this context, the power of 

click reaction has been judiciously utilized and the results demonstrated in the synthetic 

work have clearly testified to its wide-ranging applicability in modularly making 

complex functional structures. In parallel, the use of comparative approach in 

investigating the molecular and supramolecular properties has proven to be highly 

valuable in gaining understanding on how to control and fine-tune the performances of 

functional molecular materials or devices at the molecular level. 

In the first project, a series of fluorescent saccharide sensors made up of π-

conjugated oligomers functionalized with phenylboronic acids were synthesized in three 

different conjugated structures (linear, cruciform, and H-shaped). As synthetic 

methodologies, the combination of Sonogashira coupling and Horner-Wittig olefination 

reactions operated effectively in preparing these OPE/OPV co-oligomers. In terms of 

fluorescence sensing for saccharides, the markedly different fluorescence turn-on 
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responses displayed by cruciform 194 and other oligomers 195 and 196 indicate the 

importance of the fluorophore effect in controlling their molecular sensing performances. 

For the detailed fluorescence sensing mechanism(s), current experimental results 

correlate the fluorescence turn-on behavior to a de-aggregation effect induced by 

saccharide binding events in aqueous media. However, parameters governing the de-

aggregation process still await further clarification. Investigations on the saccharide 

binding with H-shaped oligomers provided a reasonable explanation on the fluorescence 

sensing mechanism; that is, the fluorescence properties of the oligomer fluorophores are 

highly environment-sensitive. So far, with limited data from mechanistic studies, the 

“environment sensitivity” argument has not been convincingly confirmed yet, while other 

rationalizations such as the typically used photoinduced electron/energy transfer 

mechanism still remain plausible. Studies on the detailed photophysical mechanism(s) 

involved in the sensing processes should therefore be carried out through collaboration 

with Prof. David W. Thompson’ group in the future work. Nonetheless, the results 

achieved from the current study have demonstrated that this new environment-sensitive 

fluorophore strategy intermarried with the powerful click chemistry would open a new 

avenue for the development of efficient and selective fluorescent sensors and modular 

sensor arrays for saccharides.  

In the second project, DTF-functionalized conjugated oligomers were 

conveniently prepared by Horner-Wittig reaction as a key synthetic strategy. Our results 

have disclosed that fullerenes can act as efficient photo-sensitizer to induce an oxidative 

cleavage of the DTF double bonds in DTF-functionalized oligomers. The aldehyde-
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oligomer products resulting from this unique photochemical process show substantially 

increased fluorescence quantum yields in comparison with the corresponding DTF-

oligomers. Such properties may be useful for developing ultra-sensitive detection of 

fullerenes.  Furthermore, the DTF-oligomers not only show the ability to bind with 

SWNTs in chloroform, but also can release SWNTs as controlled by solvent effects. The 

reversible supramolecular interactions with SWNTs thus point to a promising application 

in SWNT purification techniques. In the future work, not only fundamental 

understanding on the selective interactions between DTF-oligomers and SWNTs need to 

be established, but practical techniques to reversibly control the dispersion and release of 

SWNTs with easy and effective stimuli (e.g., solvent, pH, redox) must be pursued. These 

challenges can be best addressed through a rational molecular design approach based on 

well-understood structure-property relationships. 

In the last project, the click reaction generated TTFV macrocycles and TTFV 

tweezers serve as efficient supramolecular hosts to bind with fullerenes, saccharides, 

anions, and certain transition metal ions. It is evident that the triazole group resulting 

from the click reaction acts as a non-innocent linker, assisting the binding events through 

-stacking and hydrogen bonding. In the meantime, selectivity of binding with certain 

guest molecules, such as between C60 and C70 fullerenes, can be controllable by tailoring 

the polyaromatic groups in the TTFV molecular tweezers. For the first time, a highly 

selective fluorescence turn-on sensing for C70 fullerene has been achieved by the click 

synthesized TTFV-anthracene tweezers. Future work of immobilizing such tweezers on 

stationary phases, such as silica gels or polymer resins, is logically conceived so as to 
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develop efficient chromatographic separation techniques for various fullerenes. 

Furthermore, supramolecular self-assembly of the TTFV-based macrocycles and 

tweezers on various metal surfaces is envisioned to be a very intriguing and fruitful 

research direction with significant impact in the fields of solid-state optoelectronic and 

sensory devices.  
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Appendix 

 

1
H NMR and 

13
C NMR spectra of unpublished compounds  

 

 

 

 

Figure S1: 
1
H NMR (500 MHz, CD2Cl2) of compound 220 
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Figure S2: 
13

C NMR (75 MHz, CDCl3) of compound 220 
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Figure S3: 
1
H NMR (500 MHz, DMSO-d6) of compound 221 
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Figure S4: 
13

C NMR (75 MHz, DMSO-d6) of compound 221 
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Figure S5: 
1
H NMR (500 MHz, Acetone-d6/DMSO-d6) of compound 221 
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Figure S6: 
1
H NMR (500 MHz, DMSO-d6) of compound 240 
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Figure S7: 
13

C NMR (75 MHz, DMSO-d6) of compound 240 
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Figure S8: 
1
H NMR (500 MHz, CDCl3) of compound 241 
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Figure S9: 
13

C NMR (75 MHz, CDCl3) of compound 241 
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Figure S10: 
1
H NMR (500 MHz, CDCl3) of compound 242 
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Figure S11: 
13

C NMR (75 MHz, CDCl3) of compound 242 
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Figure S12: 
1
H NMR (500 MHz, CD2Cl2) of compound 243 
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Figure S13: 
13

C NMR (75 MHz, CD2Cl2) of compound 243 
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Figure S14: 
1
H NMR (500 MHz, DMSO-d6) of compound 197 
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Figure S15: 
13

C NMR (75 MHz, DMSO-d6) of compound 197 
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Figure S16: 
1
H NMR (500 MHz, CD2Cl2) of compound 244 
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Figure S17: 
13

C NMR (75 MHz, CD2Cl2) of compound 244 
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Figure S18: 
1
H NMR (500 MHz, DMSO-d6) of compound 198 
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Figure S19: 
13

C NMR (75 MHz, DMSO-d6) of compound 198 
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Figure S20: UV-Vis titration of 194 (11.8 µM) with D-fructose in an aqueous buffer 

solution (pH 7.41) at 298 ± 3 K (B) Fluorescence titration of 194 (13.8 µM) with D-

galactose in an aqueous buffer solution (pH 7.41) at 298 ± 3 K (C) Fluorescence titration 

of 194 (13.8 µM) with D-ribose in an aqueous buffer solution (pH 7.41) at 298 ± 3 K (D) 

Fluorescence titration of 194 (12.0 µM) with D-glucose in an aqueous buffer solution 

(pH 7.41) at 298 ± 3 K. 
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Figure S21: UV-Vis titration of H-mer 197 (7.67 µM) with (A) D-fructose, (B) D-

galactose, (C) D-ribose in an aqueous phosphate buffer solution (pH 7.41) at 298 ± 3 K.  
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Figure S22: Fluorescence titration of H-mer 198 (7.36 µM) with (E) D-fructose, (F) D-

galactose, (G) D-ribose, and (H) D-glucose in an aqueous phosphate buffer solution (pH 

7.41) at 298 ± 3 K. 

 

 

 

 

 

 

 

 



422 
 

250 300 350 400 450 500

0.0

0.5

1.0

1.5

2.0

 

 

A
b
s
o

rb
a

n
c
e

wavelength[nm]

(A)
Equiv of Bu

4
NF

0

4.65

250 300 350 400 450 500

0.0

0.8

1.6

2.4 Equiv Bu
4
NCl

 

 

A
b
s
o
rb

a
n
c
e

wavelength[nm]

0

8.62

(B)

 

300 350 400 450
0.0

0.4

0.8

1.2

1.6

 

 

A
b

s
o

rb
a

n
c
e

Wavelength[nm]

(C)
Equiv of Bu

4
NBr

0

12

300 350 400 450

0.0

0.7

1.4

2.1

2.8

 

 

A
b

s
o

rb
a

n
c
e

wavelength[nm]

(D)
Equiv of Bu

4
NI

0

9.8

 

Figure S23: (A) UV-Vis titration of boronate-oligomer fluorophore 211 (39.5 µM) with 

n-Bu4NF (B) UV-Vis titration of boronate-oligomer fluorophore 211 (36.0 µM) with n-

Bu4NCl (C) UV-Vis titration of boronate-oligomer fluorophore 211 (42.2 µM) with n-

Bu4NBr, and (D) UV-Vis titration of boronate-oligomer fluorophore 211 (38.6 µM) with 

n-Bu4NI in THF at 298 K.  
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Figure S24 : UV-Vis titration of boronate-oligomer fluorophore 220 (10.0 µM) with (A) 

n-Bu4NF (B) n-Bu4NCl (C) n-Bu4NBr, and (D) n-Bu4NI in THF at 298 K. 
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Figure S25: UV-Vis titration of boronate-oligomer fluorophore 226 (1.5 µM) with (A) n-

Bu4NF (B) n-Bu4NCl (C) n-Bu4NBr, and (D) n-Bu4NI in THF at 298 K. 
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Figure S26: UV-Vis titration of boronate-oligomer fluorophore 243 (8.86 µM) with (A) 

n-Bu4NF, (B) n-Bu4NCl, (C) n-Bu4NBr, and (D) n-Bu4NI in THF at 298 K. 
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Figure S27: UV-Vis titration of boronate-oligomer fluorophore 244 (4.51 µM) with (A) 

n-Bu4NF, (B) n-Bu4NCl, (C) n-Bu4NBr, and (D) n-Bu4NI in THF at 298 K. 
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Figure S28:  Cyclic voltammetric titration of 316 (2.35 mM) with (A) TBACl, (C) 

TBAB, and (E) TBAI. DPV changes of 316 (2.35 mM) upon addition of (B) TBACl, (D) 

TBAB, and (F) TBAI. Scan rate: 50 mV/s. Experimental conditions (DPV): solvent: 
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THF; electrolyte: Bu4NBF4 (0.1 M); working lectrode: glassy carbon; counter electrode: 

Pt wire; reference electrode: Ag/AgCl, NaCl (3 M);  scan rate: 20 mV/s; pulse width: 50 

mV; pulse period: 200 ms; step: 4 mV. 

 

 

 

    

 

 

 

 

 


