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Abstract

The direct exposure of eggs to ozonated water has generated interest as a means of

ensuring pathogen-free eggs without the use of harsh chemicals. However, there are

numerous knowledge gaps including safe contact times, exposure levels in both fresh

water and sea water, and as potential long-term effects on aquaculture species such as

Atlantic cod, Atlantic salmon, and rainbow trout. The effect of different ozone doses (0.5-

1.0, 1.5- 2.0 and 2.5- 3.0 mg O3 L-1 for 1.5 min) was tested on recently fertilized Atlantic

cod and eyed salmonid eggs vis-à-vis the commercial disinfectant Perosan™ (0.004 mg

L-1) and Ovadine (100 mg L-1) as well as an untreated control (similar handling and

husbandry). The impact of ozone application was evaluated based on larval nucleic acid

concentration, hatching success, larval growth, and survival. Overall, the study showed no

negative effect of ozonation at < 3.0 mg O3 L-1 for 1.5 min on cod eggs, cod larvae (up to

30 dph), and Atlantic salmon and rainbow trout eggs monitored until 85% yolk sac

depletion.

The ability of ozone to eradicate Saprolegnia diclina infection on salmonid eggs

as well the impact of ozone disinfection on S. diclina in the absence of salmonid eggs

were also investigated. Results suggest that ozonation of S. diclina hyphal mats can

reduce the growth of the fungus, with the level of impact being dependent on volume of

S. diclina initially present.
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1. Introduction

1.1 Atlantic cod

A global decline in exploitable wild Atlantic cod (Gadus morhua) stocks resulted

in increased demand for sustainably produced, cultured Atlantic cod in the marketplace

(Jobling & Pedersen 1995). Cod was historically considered an alternative species in

aquaculture but the increased demand and high market value in the wake of declining

fishing quotas resulted in renewed interest in large-scale production. Cod is well

positioned to meet the growing demand due in part to the similarities in infrastructure and

technology between its culture and that of other commercial established species as well as

a wealth of historical research into both wild and farmed stocks (Brown 2003, Fahay et

al. 1999).

The subsequent recovery of wild cod stocks effectively decreased the interest in

cod aquaculture research. However the understanding gained from decades of research in

husbandry and early juvenile rearing made Atlantic cod an ideal candidate for a research

species on which to investigate the safety and efficacy of ozone.  Atlantic cod therefore

was selected as a model species in this study to examine the potential effect of ozone on

marine finfish eggs and larvae reared in seawater.

1.2 Atlantic Salmon and Rainbow Trout

Salmonid culture is a relatively new component of aquaculture, however, in only a

few decades it has dominated the market. Two genera in particular, Salmo and

Oncorhynchus, capitalize a large portion of the global market (Stickney 2000) and within
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these genera two species, Atlantic salmon (Salmo salar) and rainbow trout

(Oncorhynchus mykiss), account for approximately 14% of global aquatic animal

production (FAO 2013).

Interest in the farming of salmonid species began in the 19th century, focusing first

on the propagation of trout species, primarily for the purpose of stocking ponds and rivers

in France (Greenberg 1960), Denmark and Norway as well as for their introduction into

new regions of the world (Monahan 1993). Although France would be the first country to

open a trout hatchery in 1851 (Greenberg 1960), it is in Denmark that the industry

experienced the greatest success leading into the 20th century (Laird 1996) and to a lesser

extent in southern Norway where cold water temperatures limited success of trout

propagation (Monahan 1993). In part due to this temperature limitation of trout, as well as

in response to declining numbers of wild fish stocks, Atlantic salmon replaced a large

portion of the industry during the 20th century, in the process absorbing and adapting

much of the existing infrastructure and technology developed for trout in the process

(Monahan 1993). Salmon were favored by the industry for their high market value,

amenability to growth in artificial conditions and wider tolerance to environmental

conditions than trout.

It would not be until the 1980s, however, that salmonid aquaculture rapidly

expanded into the market. In response to declining wild stocks (Laird 1996), high market

demand and a greater appreciation of the nutritional value of fish by North American

consumers, substantial aquaculture technology began to develop, particularly in Norway

(Monahan 1993), and a rapid expansion of salmonid products was seen globally. In just

forty short years, salmonid aquaculture has expanded into a multi-billion dollar business,
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grown in over 68 countries and producing over 2.5 million tonnes of product in 2011

(FAO 2013).

Atlantic salmon have a widespread distribution, and can be found on either side of

the Atlantic Ocean in both North American and European waters. Atlantic salmon are

spawned and hatched in fresh water and remain there during the larval and fry stages,

eventually travelling to the ocean where they remain for the rest of their natural lifespan

(average 4 years), returning only to their freshwater origins between October to January

to propagate (FAO 2004b).

In both wild and hatchery environments, fertilized Atlantic salmon eggs will ‘eye’

at about 250 degree days (dd: used to estimate the various stages of development, it is the

sum of the mean temperature per day during incubation) and hatch at 500 dd. The larvae

have a large yolk sac, an endogenous food reserve that sustains them for approximately

300 dd before exogenous feeding starts.

Rainbow trout have a relatively narrow distribution being found naturally only on

the Pacific side of North America from Alaska to Mexico. However, through artificial

introduction, rainbow trout can now be found on all continents except Antarctica (FAO

2005). Rainbow trout are capable of living in either fresh or salt water, or in both during

certain periods, as strains and environmental conditions dictate.  Spawning of rainbow

trout occurs between January to May (FAO 2005).

Rainbow trout eggs incubate over a period of 370 dd, followed by hatching over

2-3 days. In hatchery conditions, a yield of 95% hatch is often achieved for a disease-free

population.  Like their salmon counterparts, rainbow trout hatch with a yolk sac food
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reserve, which sustains them post-hatch until the commencement of exogenous feeding

(FAO 2005).

1.3 Aquatic Disease in the Hatchery

Disease is currently the largest single cause of economic loss in aquaculture,

resulting in billions of dollars in lost revenue in cultured aquatic species (OIE 2011). The

importance of producing clean, disease-free fish and maintaining this status throughout all

stages of development cannot be understated.  Aquatic diseases are not a phenomenon

resulting from aquaculture; however, the intensive rearing of aquatic animals in high

densities and close proximity allows for disease outbreaks to amplify rapidly as can be

seen in a hatchery setting. Pathogens can be introduced into a hatchery population by a

number of means, including anthropogenic activities, transmission from another infected

individual (horizontal transmission) or by the passage of the pathogen from broodstock to

the egg through infected reproductive fluids (vertical transmission). The latter method can

be particularly challenging to halt if disease-free broodstock are not available and can

create a disease reservoir in fish hatcheries. The importance of interrupting transmission

at this stage has led to the implementation of egg disinfection in aquatic facilities as a

necessary biosecurity step, and is one of the most important methods of controlling

transmissible diseases in an aquaculture facility. Current disinfection methods focus

heavily on the application of strong chemicals to eliminate surface-borne pathogens, with

approved chemicals varying with country, fish species, and timing of application.
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1.3.1 Nodavirus

Found globally, except in South America, the RNA-virus family Nodaviridae is

the causative agent of viral nervous necrosis (VNN), alternately vacuolating

encephalopathy and retinopathy (VER) and fish encephalopathy in both warm and cold-

water cultured teleost fish (Johnson et al. 2002, Munday et al. 2002, Nakai et al. 2009).

VNN consists of an icosahedral-shaped, non-enveloped particle measuring between 25-

34nm comprised of two single-stranded, positive sense RNA molecules (RNA1 and

RNA2) (Mori et al. 1992).  There are four distinct species of nodavirus in fish belonging

to the genus Betanodavirus. Along with other cold water species such as Atlantic halibut

(Hippoglossus hippoglossus), Atlantic cod are affected by the virus species designated

barfin flounder nervous necrosis virus (BFNNV) (Johnson et al. 2002, Nakai et al. 2009).

The first case of VER in Atlantic cod was diagnosed in 1999 in Nova Scotia, Canada

followed shortly by an outbreak in Scotland in 2001 and then Norway in 2006 (Starkey et

al. 2001; Patel et al. 2007). Vertical transmission has not been established in Atlantic cod,

but there is evidence of this type of disease transfer in Atlantic halibut (Comps et al.

1994) as well as in European sea bass (Dicentrarchus labrax) and Asian (Lates

calcarifer) sea bass, striped jack (Pseudocaranx dentex), barfin flounder (Verasper

moseri) and sevenband grouper (Epinephelus septemfasciatus) (Nakai et al. 2009).

Nodavirus infection is characterized in cultured juveniles and older fish by

anorexia, darkening of the skin, alternate periods of lethargy at the bottom or the tank,

erratic swimming (including whirling, looping and spiralling) and/or loss of equilibrium

including floating belly-up (Johnson et al. 2002, Munday et al. 2002). VNN produces no
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gross clinical signs on the body or gills of fish nor does it produce unusual swimming

patterns in the larval stage of development (Nakai et al. 2009). Internally VNN results in

degeneration of the brain and retinal tissues as a result of vacuolative encephalopathy and

histiocytic retinitis (Johnson et al. 2002).

1.3.2 Saprolegnia

Oomycetes are a class of mycotic organisms collectively known as water moulds.

Though the class is comprised of eight genera, only three (Achlya, Aphanomyces and

Saprolegnia) are significant in aquaculture (Bruno et al. 2011), of which Saprolegnia is

the most common and economically devastating.  Endemic populations of Saprolegnia

sp. can be found worldwide in fresh water. The genus’ life cycle, as with most water

moulds, is obligate on a host (nectrotrophic), relying on an initial source of dead or

decaying animal matter to complete its reproductive phases (Bruno et al. 2011).

Saprolegnia sp. are capable of both sexual and asexual reproduction (Noga 1993), an

adaptation which aids in their reproductive success and in establishing and maintaining

strong populations. This ability to propagate and persist in variable conditions is in part

what gives Saprolegnia sp. the power of affliction on a host population.

Saprolegnia sp. presents a particular obstacle to aquaculture for species with a life

stage in fresh water. Infections can occur throughout the life stages, from egg to adult fish

(Bruno et al. 2011), become epizootic within a population and remain and persist within

a facility in water supply lines, causing chronic events leading to substantial economic

losses. In a hatchery setting, fungal growths on eggs can cause significant mortality as

moribund and/or dead eggs provide an ideal substrate for Saprolegnia spores and the



7

resultant growth can rapidly spread to adjacent healthy eggs (Meyer 1991). Saprolegnia

infections are characterized by a white, wool-like or cotton-like growth on eggs and

freshwater stages of a fish. This growth, which is visible to the naked eye, represent in

fact large mats of mycelium. If left untreated, mats can fully envelop living eggs, killing

them by either extensive damage to the cells (Van West 2006), suffocation (Meyer 1991),

or a combination of both. In fish, Saprolegnia infections are not tissue-specific, although

they are more frequently observed initially in the epidermal tissues around the head from

which they radiate to the tail in a series circular growths (Van West 2006). Separate

circular growths may expand until they contact as a series of large clusters, eventually

enveloping the entire animal and resulting in cellular necrosis and death from

osmoregulatory failure (Pickering & Willoughby 1982, Hatai & Hoshiai 1994).

1.4 Ozone

Ozone (O3) is a molecule consisting of three atoms of oxygen. It is allotropic to

oxygen and is capable of existing in a solid, liquid and gas phase. Ozone is highly

oxidative, and acts on organic material by non-selectively destroying double bonds

(Evans 1972); it is capable of oxidizing amino acids, fatty acids, proteins containing

sulfhydryl groups and pyrimidine nucleotides, all biochemical compounds present in

living organisms (Carmichael et al. 1982). It is this characteristic which enables ozone to

be applied as a potent disinfectant.

Interest in ozone’s application in aquatic systems began in the 1930’s, when it was

first introduced as a means of improving the quality of supply water for stocked fish.

Initial studies determined ozone ameliorated water quality by oxidizing organic matter in



8

aquatic systems but also emphasized on its considerable toxicity to fish and aquatic

organisms when supplied continuously (chronically) in supply water (Hubb 1930).

Ozone continued to generate interest in water treatment in the decades that followed,

focusing on water quality optimization and disease control in both flow-through and

recirculating systems.  It has been used successfully to remove nitrite as well as non-

biodegradable organic material (Summerfelt & Hochheimer 1997) and to sterilize water

supplies and discharge.  It has been implemented as a means of improving water quality

by removing particles and protein, reduce microflora (Summerfelt & Hochheimer 1997)

and eliminate fish pathogens (Liltved et al. 2006) including infectious pancreatic necrosis

virus (Liltved et al. 2006) and striped jack nervous necrosis virus (Arimoto et al. 1996).

The direct application of ozonated water to fish species as a means of disinfection

against pathogens generated only minimal interest in the aquaculture industry in ensuing

decades. Attempts at applying ozone successfully focused on chronic-ozone freshwater

applications at the egg, fry and fingerling stages (Benoit & Matlin 1966; Wedemeyer et

al. 1979, Grischkowsky et al. 1983) and yielded variable results. Two initial findings

were that the non-selective oxidation of organisms by ozone generated a crucial surface

area-volume relationship. The authors propose that this accounts for ozone’s potential

ability to control pathogens such as bacteria and fungi without exhibiting toxicity on fish

eggs (Benoit & Matlin 1966). However, the application of ozone to rainbow trout (10- 13

cm) produced such extensive destruction of gill lamellar epithelium that it resulted in the

death of the fish (Wedemeyer et al. 1979).  Further research yielded favourable results

when ozonated water was applied at the egg stage of development. It has been suggested

that the membrane of the egg could provide a protective barrier for the developing
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embryo against the oxidative action of ozone (Asbury & Coler 1980), allowing for the

effective application of ozone as surface disinfectant to fish eggs.

A rising need for alternative means of disinfection to eradicate pathogenic

organisms resistant to current disinfection methods, as well as a need to replace previous

disinfection methods no longer considered safe or environmentally sustainable have

created an ever-growing platform of research into safe dosing in both freshwater and

saltwater species. In saltwater species, ozone has been used successfully applied to

Atlantic halibut (Hippoglossus hippoglossus), turbot, haddock (Melanogrammus

aeglefinus) and Atlantic cod eggs on a non-industrial sized scale (Grotmol et al. 2003,

Buchan et al. 2006). In freshwater salmonid culture, ozone has been the focus of

considerable research into treatment of fresh water for rearing fish (Øye & Rimstad

2001), although very little work exists on its application as a disinfectant to freshwater

eggs. The impact of the disinfection process on eggs is affected by both the concentration

of ozone applied (C) and the contact time (T). The strength of the disinfection is then

scored as a combined value of concentration * time (CT). In order to be applied

effectively, a safe dose of ozone incorporating both C and T should be determined for the

species of interest (Grotmol et al. 2003, Liltved et al. 2006).

1.5 Overall Objectives

The intent of this research was to examine the safety and efficacy of the

application of ozone to fish eggs in a hatchery at a semi-commercial scale through the use

of ozonated water in either a saltwater or freshwater environment as the natural biology of

the fish species dictates. To achieve this, three species, one saltwater species (Atlantic
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cod) and two anadromous freshwater species (Atlantic salmon and rainbow trout) were

exposed to 0.5- 3.0 mg L-1 O3 to determine if there was a measurable effect on egg quality

and larval performance following ozone application. By conducting the research on eggs

potentially exposed to two pathogens, a virus (Nodavirus- Atlantic cod) and a common

fungus (S. diclina- Atlantic salmon and rainbow trout), the study also sought to determine

the efficacy of the application against transmissible aquatic pathogens.
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2. The Effect of Ozonated Seawater Application on Atlantic Cod Egg

Development and Larval Success

2.1 Introduction

Increased interest in the late-80s- early-90s in cod aquaculture resulted in a

substantial research effort dedicated to improving egg quality, nutrition and

environmental conditions, including water temperature, light regimes and water quality

for cod (Roselund & Halldórsson 2007). The productions of fertile eggs of high quality,

and subsequently the production of larvae with high survival and growth rates, are among

the most important aspects of aquaculture (Abi-ayad et al. 1997). Stocking hatcheries

with disease-free eggs is key to the production of healthy juveniles. Broodstock may be

from either wild stocks or commercial stocks and carry with them the potential for

pathogen transfer to their progeny (vertical disease transmission). Hatcheries must rely on

broodstock screening, good husbandry and biosecurity to prevent the introduction and

spread of pathogens. Health screening of potential broodstock is an important step in

disease control; however current detection methods for some pathogens necessitate lethal

sampling, a requirement that is not feasible from a production standpoint. As a result,

effective egg disinfection prior to introduction into the hatchery is a key control measure

to halt any vertical transmission from the broodstock to the progeny.

Chemical treatment is the primary method of disinfection in commercial

hatcheries. Current chemical disinfection methods evaluated on Atlantic cod eggs include

iodophores, chloramines, hypochlorites, glutaraldehydes, hydrogen peroxide and

common antibiotics (streptomycin, penicillin) (Grotmol et al. 2003; Peck et al. 2004).
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However, recent studies have shown that viral pathogens are more resistant to current

disinfection methods than bacterial pathogens (Grotmol et al. 2003), leading to vertical

transmission, disease outbreaks and/or latent and sub-clinical symptoms resulting in

horizontal transmission to others in the population (Arimoto et al. 1996). One such

pathogen is the RNA virus nodavirus, the causative agent of Viral Nervous Necrosis.

Nodavirus is a major constraint on marine fish culture (Munday et al. 2002) and results in

high mortality levels in larval and juvenile fish (Johnson et al. 2002). It poses a

significant risk to larval culture and has been shown to transmit vertically in larval striped

jack (Pseudocaranx dentex) (Arimoto et al. 1992). It is also highly resistant to

disinfection methods and is capable of surviving temperature extremes, pH ranging from

2 to 9 (Frerichs et al. 1996), UV and concentrated chemical disinfection, including levels

well beyond the tolerance or toxicity range of fish species themselves. However, previous

work using ozone to eradicate the virus has been met with some success where levels

were reached that could eliminated the virus without affecting the hatching rate of some

gadoids (Grotmol et al. 2003). Ozone has been effectively applied to the eggs of several

marine species, including Atlantic halibut, turbot, haddock and Atlantic cod eggs on a

non-industrial sized scale (Grotmol et al. 2003; Buchan et al. 2006). However, ozone

toxicity appears to be an issue, resulting in delayed or asynchronous hatch (Grotmol &

Totland 2000) and reducing the hatch rates of several marine fish species (Mimura et al.

1999, Grotmol & Totland 2000; Battaglene et al. 2006). It has been proposed that

oxidants formed during seawater ozonation may negatively impact the functionality of

the chorion of the eggs thereby reducing hatch rates (Grotmol & Totland 2000, Grotmol

et al. 2003). Prior work on the effect of ozone on Atlantic cod eggs led to the conclusion
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that an optimum level for ensuring the destruction of fish pathogens might be attained

that would not affect hatchability if exposure was limited to ≤ 2 minutes at a

concentration of 2 mg O3 L-1 (CT of ≤ 4: Grotmol et al. 2003). Operationally, ozonated

seawater at 1.5- 2 mg O3 L-1 for 1.5 minutes (CT of 2.25-3) has been used on Atlantic cod

eggs kept at the Ocean Sciences Centre (NL, Canada) since 2004 in response to the use of

nodavirus positive broodstock in initial production cycles. However, this procedure has

never been validated scientifically and knowledge gaps are numerous in terms of

exposure levels, duration, and toxicity to the gametes.

The intent of this research was to evaluate the effectiveness of three

concentrations (0.5-1.0, 1.5-2.0, and 2.5-3.0 mg O3 L-1) of ozonated sea water for 1.5

minutes on a semi-commercial scale to disinfect recently fertilized Atlantic cod eggs in

order to potentially control the vertical transmission of nodavirus as well as establish a

toxicity threshold and determine any long term effects on larvae. The success of the

ozonation procedure was measured using parameters of larval quality and ozone efficacy:

larval hatch rates (% hatch), larval survival (%) at 30 days post hatch (dph), RNA:DNA

of larvae at 0, 10, 20 and 30 dph and nodavirus detection (by qPCR) on eggs and larvae.

The ozonation procedure was also compared to the usage of Perosan™ (5.1 %

peroxyacetic acid, 5-15% acetic acid, 21.7% hydrogen peroxide- ZEP Manufacturing,

Atlanta, GA, U.S.A.) a commonly employed disinfectant in marine finfish hatcheries.

The ratio of RNA to DNA (RNA:DNA) is an index of short-term changes in the growth

rate of larvae, which reflects changes in protein synthesis rates, and hence potential larval

growth, over periods as short as 1-4 days (Caldarone 2005). The physiological basis of

this indicator is due to the constant amount of deoxyribonucleic acid (DNA) in somatic
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cell versus the varying concentration of ribonucleic acid (RNA) due to protein synthesis

(Buckley 1984, Rooker & Holt 1996, Caldarone et al. 2003). Hence, organisms in good

condition will tend to have higher RNA:DNA than those in poor condition (Chícharo &

Chícharo 2008).

2.2 Material and Methods

2.2.1 Atlantic Cod Eggs

Prior to the commencement of the study, a review of the handling of animals and

research protocol were met with full approval from the Institutional Animal Care

Committee of Memorial University of Newfoundland (Protocol # 10-09-DH).

Communally spawned Atlantic cod eggs were collected at the Joe Brown Aquatic

Research Building (JBARB) of the Ocean Sciences Centre, Logy Bay, NL from January

27 to February 28, 2011. The broodstock were captive wild fish, initially transferred to

the facility in 2005. This stock was photo-advanced by 6 months and had previously

been found to be nodavirus positive (Provincial veterinary services, DFA-NL). Eggs to be

used for these trials were collected once daily at 8 a.m. from an external egg collector,

which accumulates eggs from within the tank into a Nitex® bag suspended in sea water.

In order to obtain a batch of eggs of a similar age for treatment, the collector was emptied

at 6 p.m. the night prior to collection and reset with a clean, empty Nitex® bag. Only

fertilized eggs spawned within the previous 14 hours in the broodstock tanks were

employed for each trial.
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2.2.2 Ozone System

Ozone for egg disinfection was generated using a corona-discharge ozone

generator (Pacific Ozone O-series model 01- Pacific Ozone Technologies, CA, USA)

previously installed in the hatchery of the JBARB. Ozone was produced and directed

from the ozone generator cells into a venturi injector, where ozone was injected into sea

water by means of a vacuum created when pumped sea water is forced through a conical

device, creating a differential pressure between the inlet and outlet ports (Lenntech 2009;

Ozone Solutions n.d.). Ozonated sea water was in turn pumped into the egg contact

chamber located inside a fume hood. The contact chamber consisted of a small 25L

fibreglass tank with a conical bottom leading to a valve. When the valve was opened,

ozonated sea water filled the chamber from the base up and was pumped in at a constant

rate throughout treatment. As the water reached the top of the chamber, excess water

escaped via an overflow line on the top of the tank. Within the chamber, a round basket

consisting of Nitex® mesh was held in place by a polyvinyl chloride base, holding the

egg basket in place and allowing sea water to be pumped through the base, coming in

direct contact with the eggs before any ozone dissipated (Figure 1).
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Figure 1: Egg ozonation system at the Ocean Sciences Centre.
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2.2.3 Egg Quality

Viable Atlantic cod eggs are buoyant and only egg batches with an excess of 1800

mL floating eggs (a sufficient volume to proceed with all treatments within a single

batch) were considered for this study. Egg quality was assessed in 100 eggs per batch by

examining the fertilization success (# of eggs showing cell division out of 100), the cell

stage (# of cells), and six parameters of blastomere normality as revised for Atlantic cod

by Penney et al. (2006) from Shields et al. (1997) as follows: (1) uniformity of cell size

and shape (all cells are of equal size visually), (2) adhesion (adjacent cells are

contacting), (3) margins (cell margins are well resolved), (4) clarity of cell cytoplasm

(cell cytoplasm is not obscured by darkening of the cell membrane or presence of

vacuoles of unknown composition), (5) symmetry (bilateral symmetry of blastomeres

about the axes are symmetrical) and (6) cell number (even number indicating normal cell

division patterns). Any eggs showing variations outside of these criterions were counted

and normality was expressed as:

[(# of eggs - # of eggs with variation) (# of eggs)-1] * 100.

Finally, the diameters (mm) of 10 eggs per batch were measured and recorded.

Egg quality was reassessed in all of the treatment groups as described at 5 hours

post-treatment. This period allowed for cell division to occur while ensuring that the

number of cells would still be able to be counted visually under the microscope.

2.2.4 Treatment

Floating eggs from a single batch were divided into volumes of 300 mL. As ozone

concentration is affected by organic load, it was important that treatment replicates were

of the same volume across all batches. Eggs were briefly removed from water, measured
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into five volumes of 300 mL, and each of these volumes was placed in a beaker

containing 1L of 6°C sea water (filtered (5 μm) and UV-treated). The beakers were held

at 4°C in a cooler to maintain the temperature of the eggs for up to one hour while

awaiting disinfection treatments. Beakers were removed separately from the cooler

immediately prior to disinfection.

Each beaker was randomly assigned to one of five treatments as follows:

untreated Control, 0.004 mg L-1 Perosan™, or either 0.5-1.0, 1.5-2.0 or 2.5-3.0 mg O3 L-1

disinfection treatment for 1.5 minutes. A total of 10 replicate batches (1500 mL of eggs

per batch, 300 mL per treatment) were tested with 4 treatment groups and 1 control

group.

Ozone concentrations were determined by spectrophotometry using an Ozone

Vacu-vials® kit (CHEMetrics, Calverton, VA, U.S.A.) as per the manufacturer’s

instructions. When the sea water within the contact chamber was at the desired

concentration of ozone, eggs to be treated with ozonated sea water were carefully poured

directly into the ozone contact chamber basket. They remained in the system for 1.5

minutes. The contact period was terminated by the removal of the basket from the

system. The eggs were then transported within the basket to the hatchery and rinsed into

the incubators with clean hatchery water. Both the ozonated sea water and the hatchery

water were maintained at 6°C throughout the experiments so that eggs were not

temperature shocked.

The JBARB protocol for PerosanTM treatment consisted of a static bath of 40 mL

of Perosan™ in 10L of 6°C sea water for 1 minute, followed by 4 minutes of rinsing with

sea water by repeatedly filling the basin to remove any remaining solution. The control
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group underwent similar handling to the other treatments including transfer to an egg

basket, followed by seawater rinsing (5 minutes) and subsequent transfer to an incubator.

2.2.5 Egg Incubation and Sampling

Eggs were incubated in 50 L conical flow-through incubators with a flow of 25 L

hour-1 (one turnover per 2 hours) with gentle aeration. Temperature in the incubators was

monitored daily (average: 5.9 ± 0.2 °C) and used to calculate individual batch degree

days. Any dead eggs were removed daily from the incubators by stopping water and

aeration to the tank and allowing viable eggs to float to the surface and dead eggs to sink

during a period of 5- 10 minutes. Dead eggs were then collected through the bottom valve

of the incubator and the total volume measured before disposal to assess the volume

remaining in the incubator. Once larval hatch was observed in a tank, removal of dead

eggs was terminated as larvae could inadvertently be removed during the process.

All sampling equipment was treated with RNaseZap® (Ambion, Austin TX,

U.S.A.) prior to sample collection. Atlantic cod eggs were placed on a 0.150 mm Nitex®

screen to remove excess water prior to collecting triplicate samples of 1.5 – 2.0 mL of

eggs from each treatment in RNase/DNase free microcentrifuge tubes and frozen in dry

ice prior to storage at -70°C for future analysis for nodavirus presence. Egg samples were

collected immediately prior to disinfection treatment and at 1 hour post-treatment for

nodavirus detection.

2.2.6 Larval Rearing and Sampling

After all eggs within a treatment hatched, the larvae were removed from the

incubator and placed in a bucket containing sea water. Larval counts were completed as
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per the JBARB standard method by measuring the total volume of water within each

bucket, and gently agitating the water to create an even distribution of larvae throughout

the water column. Three 50 mL sample were then removed and the number of larvae

hatched was determined by counting the amount in each sample and extrapolating to the

total number of larvae in the incubator using the mean of three counts. All larval counts

were completed in the same manner.

Due to a limited availability of larval rearing tanks, the 0.5- 1.0 mg O3 L-1 group

was terminated at this stage. This treatment group was selected as it represented the

lowest dose of ozone and therefore the least likely treatment to exhibit ozone toxicity.

From the remaining 4 treatments (Control, PerosanTM, 1.5-2.0 mg O3 L-1 and 2.5-3.0 mg

O3 L-1) 30,000 larvae were counted in the same manner as previously described for the

larval hatch and placed into new buckets filled to ¾ with incubator water and transferred

to 500 L tanks. In the event that fewer than 30,000 larvae hatched within a treatment, the

total number of larvae present was recorded as mentioned above and all larvae were

moved. Larvae were acclimated to the tanks by slowly adding small volumes of tank

water to each bucket over the course of an hour. Once placed in the tanks, larvae were

maintained under 24 hour light at 10 ± 1°C in flow-through sea water which was

monitored daily to maintain a dissolved oxygen content of greater than 95% saturation.

Larvae were fed a diet of rotifers (Branchionus plicatilis- cultured with Ori-culture and

enriched with Ori-green (Skretting- Bayside, N.B., Canada)) three times daily at 1 a.m., 9

a.m. and 5 p.m.

Larvae were sampled at 0, 10, 20 and 30 dph, from each treatment group for

nucleic acid analysis (n=10) and standard length/myotome height (body height at the
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anus) measurements (n=10). Any equipment used for sampling was treated with

RNaseZap (Ambion) prior to larval collection. Larvae were placed on a 0.150 mm

Nitex® screen to remove excess water. Single larvae were then sampled, placed in

RNase/DNase free microcentrifuge tubes and frozen in crushed dry ice.  Tubes were

stored at -70°C until further analysis of RNA and DNA content.

At 30 dph, all the larvae were siphoned from the tank and final numbers of larvae

were determined in the same manner as at hatch.  Following sampling and counting, all

larvae were terminated with 100 mg L-1 tricaine methanesulfonate (TMS- Syndel

Laboratories, Qualicum Beach, BC, Canada).

2.2.7 Larval Morphometrics

Larval condition factor (K) was calculated from standard length (mm) and

myotome height (mm) as per Puvanendran et al. (1999) as described in Koslow et al.

(1985) where:

(K) = myotome height * standard length-1

Length-specific growth rate (SGR) was calculated according to Jobling (1994):

SGR= 100[ln (SLt2) – ln (SLt1)] * (t2-t1)-1

where SLt(x) represent standard length measurements in mm and t2-t1 represents the time

period in days.

2.2.8 Nucleic Acid Analysis

RNA and DNA concentrations were determined using a 1-dye (ethidium

bromide)/1-enzyme (RNase) assay using a fluorescent microplate reader as per Caldarone

et al. (2001). In this process, a single larva is submerged in 1% N-laurosarcosine which
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dissociates proteins from the nucleic acids. Centrifugation (14,000g, 15 minutes at room

temperature) isolates the nucleic acid of the larvae into a supernatant portion, which is

then removed and loaded into a 96-well microplate along with the fluorescent dye

ethidium bromide (EB: 3,8-diamino-6-phenyl-5-ethylphenanthridinium- Sigma-Aldrich,

St. Louis, MO, USA). EB increases the fluorescence of the nucleic acids 20-30x and the

resulting fluorescence is measured by the microplate reader and can be quantified relative

to a standard curve created using molecular grade 18S- and 28S-rRNA (bioWorld,

Dublin, OH, USA) purified from calf liver. Following enzymatic digestion of the RNA

using RNase (Sigma-Aldrich), the process is repeated to measure the DNA of the same

sample, this time relative to a DNA standard curve created using genomic ultrapure calf

thymus DNA (Sigma-Aldrich).

RNA and DNA standard solutions concentrations were determined using a

NanoDrop 2000 (Thermo-Scientific, Mississauga, ON, CA) spectrophotometer. Standard

solutions of RNA and DNA were aliquotted into RNase-DNase-free microcentrifuge

tubes in volumes of 160μL and 400 μL, respectively, and stored at -70°C until used. As

needed, tubes were removed from storage and held on ice until fully thawed. Once

thawed, solutions were either used or disposed of in the same day. All nucleic acid stock

and calibration curve solutions were held on ice at all times.

All reagents and standard solutions were prepared as per Caldarone et al. (2001).

Using RNA and DNA stock solutions, calibration curves were created daily as

shown in Table 1.
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Table 1: Nucleic acid stock solution calibration curve concentrations.

Nucleic Acid Tube
ID

μL of stock
solution

μL of 0.1%
STEB

Concentration
(ug mL-1)

RNA

R-1 1.25 240 0.148
R-2 2.5 240 0.296
R-3 5.0 240 0.592
R-4 10.1 240 1.183
R-5 20.0 240 2.367
R-6 40.0 240 4.733
R-7 80.0 240 9.467

DNA

D-1 1.0 550 0.042
D-2 2.0 550 0.084
D-3 4.0 550 0.168
D-4 8.0 550 0.336
D-5 16.0 550 0.672
D-6 32.0 550 1.344
D-7 64.0 550 2.688
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A BIO-TEK KC4 Synergy HT microplate reader capable of measuring

fluorescence was used to analyze the samples. Black 96-well microplates (Costar 3915,

Corning Incorporated Tewksbury, MA, USA) were used in the microplate reader and the

optic position of the reader was set to top reading. Excitation and emission levels were set

at 530 nm and 590 nm, respectively.

Aliquots from each dilution factor were loaded in triplicate into the plate

beginning with a blank of 0.1% sarcosil Tris-EDTA buffer and proceeding from lowest to

highest concentrations.

The plate was then transferred to the microplate reader generating a standard

calibration curve for each of the nucleic acids. Only standard curves with a R2 value of

greater than 0.98 were used.

In order to reduce reading error, larvae from all treatments within a batch at a

single age were analyzed on each 96-well plate. For every batch (n=10), 4 samples per

treatment and time (0, 10, 20 and 30 dph) were processed. Samples were loaded in

triplicate and the final nucleic acid concentration reflects a mean of three fluorescence

readings.

As larvae increased in age (and size), their nucleic acid content increased and

exceeded the range levels of the standard curve. As a result, the nucleic acid supernatant

of the larvae was diluted prior to being loaded in the well plate. By modifying the dilution

guidelines in Caldarone et al. (2001), an optimized dilution system was created as shown

in Table 2.
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Table 2: Dilution factors used for larval cod samples.

Fish Size (mm) Approximate
days post hatch

Dilution
Factor

μL of
supernatant

μL of 0.1%
STEB

< 4.7 0 0 500 -
4.7-6.0 10 1.33 750 250
6.0-7.2 20 2 500 500
7.2-8.4 30 4 250 750
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Following the DNA-attributed fluorescence reading, DNase was added to all wells

on the plate, and a third and final reading was taken. The intent was to ensure the purity

of the reagents and the standard curve solutions and was only completed once per set of

reagents and/or standard curve nucleic acid stock solutions. If fluorescence levels were

found to be negligible on the first plate they were assumed to be negligible on all

subsequent plates and the step was therefore omitted (Caldarone et al. 2003).

2.2.9 Nodavirus Detection

Total RNA was extracted from 70 ± 2 mg of Atlantic cod eggs in triplicate using

aRNeasy® Lipid Tissue Mini Kit (Qiagen Inc., Missisauga, ON, CA) as per the

manufacturer’s instructions for each of the 10 batches. The concentrations of RNA (μg

μL-1) was determined using a NanoDrop 2000 UV-Vis spectrophotometer (Thermo-

Scientific) and integrity of the RNA was assessed through electrophoresis using 1 μg of

total RNA on a 1% agarose gel (1g of agarose dissolved in 90 mL of purified water and

10 mL of 10X Tris-borate electrophoresis buffer) containing 1.3 μL EB (10 mg mL-1)

resulting in discrete bands corresponding to the 18S and 28S rRNA under UV light.

First-strand cDNA was synthesized from 1 μg RNA and oligodt primers using the

QuantiTect® Reverse Transcription kit (Qiagen Inc.) which first eliminates genomic

DNA prior to reverse transcription of the RNA to cDNA. All samples were processed as

per the manufacturer’s instructions.

Nodavirus positive RNA samples were obtained from Fisheries and Oceans

Canada, Moncton, N.B, for use as a positive control. The concentrations of total RNA

from the samples were determined using a NanoDrop 2000 UV-Vis spectrophotometer
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(Thermo-Scientific) and cDNA was synthesized using a QuantiTect® Reverse

Transcription kit (Qiagen Inc.) as previously described.

Quantitative PCR primer sequences for nodavirus detection were provided by Dr.

Nellie Gagné (Department of Fisheries and Oceans, Moncton) and were internally

sourced detection sequences for in-house nodavirus detection (Table 3). However, before

use in qPCR assays, sequences were compared for similarities with other nucleotide

sequences using the Basic Local Alignment Search Tool (BLAST; nucleotide suite) as

described in Alstchul et al. (1990). Significant hits were obtained against published

piscine nodavirus sequences (E value = 0.0006) such as Lates calcarifer nervous necrosis

virus, Trachinotus ovatus nervous necrosis virus, Umbrina cirrosa nodavirus, Barfin

flounder nervous necrosis virus and others. Elongation factor 1 alpha (EF1α) was used as

the normalizer gene and the sequences of the primers used are shown in Table 3.

Amplification efficiencies were calculated for one random sample from the negative

control and positive control groups using a five point 1:9 dilution series starting with 50

ng of cDNA, with the reported value (Table 1) being the average of the two.

qPCR amplification of 2μL of 25ng/μL cDNA was completed in a 25μL/well

reaction consisting of Power SYBR Green I dye chemistry (Applied Biosystems, Foster

City, CA, USA) and 20nM of both the forward and reverse primers. The qPCR was

completed in 7500 Fast Real-time PCR system (Applied Biosystems) using the 7500

Software (version 2.0.5) in a 10 minute amplification cycle of 95°C followed by forty

cycles of: 95°C for 30 seconds, 60°C for 30 seconds and 72°C for 30 seconds.

Fluorescence was set at the 72°C stage.
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Table 3: Gene name and primer sequence for qPCR used in nodavirus detection.

Gene Name Primer
ID Sequence (5’ 3’) Gene Bank Acc.

No.

Amplication
Efficiency
(%)

Elongation
Factor 1-α

EF1α-f GAT GCA CCA CGA
GTC TCT GA

DQ40237.1 97.5
EF1α-r GGG TGG TTC AGG

ATG ATG AC

NNV-F AAT TCA GCC AAT
GTG CCC CGC AAA

91.5
NNV-R GTT CTG CTT TCC

CAC  CAT TTG GC
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2.2.10 Statistical Analysis

The age of the eggs within a batch, based on cell number, were evaluated using 1-

way ANOVAs. The effect of treatment on egg survival, larval hatch rates and larval

survival were calculated by a randomized block general linear model with one fixed

(‘treatment’) and one random (‘batch’) term. Effect of treatment on length-specific

growth rate was calculated using the same model; however the effect was measured at

each time point (10, 20 and 30 dph). Effect of treatment on larval condition factor, RNA,

DNA and RNA:DNA was calculated using a series of one-way analyses of variance

(ANOVA) with Tukey’s honestly significant difference for pairwise comparisons of

differences in treatments. If the data set failed the equal variance assumption (P ≤ 0.05), a

non- parametric Kruskal-Wallis ANOVA on ranks was performed. In all analyses,

statistical significance was set at P = 0.05. Statistical analyses were completed in

STATISTICA™ Version 10 (StatSoft Inc., Tulsa, OK, USA) and SigmaPlot 12.0 (Systat

Software Inc., Chicago, IL, USA).

2.2.11 Results

Egg quality results are based on the 2-16 cell eggs from 10 separate batches with a

fertilization rate of 49% or higher (Table 4). The ages of the eggs within each of the

batches were found to be statistically similar (P= 0.418- 0.996). There was no difference

in egg survival (P= 0.421) during the incubation stage (Figure 2). All egg batches hatched

between 92.4- 108.8 dd; hatch was synchronous in all batches except batch 1, where the

Controls hatched 11.9 dd prior to the other four treatments (Table 5). The results showed

no statistical difference in hatch rates (P= 0.280) of Atlantic cod eggs between treatments



30

despite a downward trend with increasing ozone concentration and a lower hatch rate in

the PerosanTM treatment (Figure 3).

There was also no statistically significant difference in larval length-specific

growth rate between treatments at 10, 20 or 30 dph (Figure 4). The ANOVA results of K

showed an increasing variation between treatments with time within select batches (Table

6). Statistical differences from treatment were more frequent at 30 dph than at 0, 10 or 20

dph but with no specific trend in the manner the treatments differed.

Significant differences in RNA concentration of Atlantic cod larvae as a result of

treatment were only seen in batch 10 at 0 dph (P= 0.003) and in batch 4 at 20 dph (P=

0.007); however in batch 4 this difference was no longer observed at 30dph (P= 0.072)

(Table 7). Overall RNA concentrations ranged from 3.182 ± 1.02 to 23.12 ± 10.23 μg

larva-1 between 0 and 30 dph. Differences in DNA concentration of larva as a result of

treatment were twice as frequent, with detectable differences seen in batches 1 and 4 at 0

dph (P= 0.002, P= 0.014 respectively), in batches 3 and 4 at 20 dph (P= 0.043, P= 0.004)

and batch 2 at 30 dph (P= 0.016). As with RNA, the differences observed in batch 4 were

no longer detectable at 30 dph (P= 0.109). DNA concentrations ranged from 1.07 ± 0.362

to 8.50 ± 3.70 μg larva-1. Finally, the RNA:DNA  showed statistically significant effects

of treatment at 0, 10, 20 and 30 dph and within several batches (1, 2, 3 and 10) with each

age showing a unique effect of treatment (Table 7). In most instances where differences

were found Control values (RNA, DNA, RNA:DNA) were higher than the corresponding

batch treatment values. RNA:DNA values were between 1.3 to 3.73 throughout the

experiment.
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No statistically significant difference (P = 0.480) was detected in larval survival at

30 dph among the treatment groups (Figure 5).

Results of the qPCR did not detect the presence of nodavirus in any pre-treatment

samples from any batch. Amplification of the nodavirus positive controls using the in-

house nodavirus sequences from DFO-Moncton were successful at all dilutions tested

(mean CT: 12.725 ± 0.140 at 1.5 x 102 ng to CT: 26.855 ± 0.303 at 1.5 x 10-3).
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Table 4: Fertilization rate (%) and cell stage (%) of eggs.

1 57 100 0
2 82 100 0
3 49 63 37
4 94 100 0
5 77 74 26
6 100 88 12
7 98 99 1
8 99 94 6
9 99 94 6

10 99 100 0

Batch Fertilization (%) Cell Stage (%)

2-16 16-64
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Figure 2: Mean egg survival ± st. dev. at -1 dph of Control, Perosan, 0.5- 1.0 mg O3 L-1

(Low), 1.5- 2.0 mg O3 L-1 (Standard), and 2.5- 3.0 mg O3 L-1 (High) Atlantic cod egg

batches 1-10.
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Figure 3: Mean hatch rate (%) ± st. dev. at 0dph of Control, Perosan, 0.5- 1.0 mg O3 L-1

(Low), 1.5- 2.0 mg O3 L-1 (Standard), and 2.5- 3.0 mg O3 L-1 (High) Atlantic cod egg

batches 1- 10.
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Figure 4: Mean length-specific growth rate of treatments ± st. dev. (Control, Perosan, 1.5-

2.0 mg O3 L-1 (Standard), and 2.5- 3.0 mg O3 L-1 (High)) up to 30 dph for batches 1-4.
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Figure 5: Mean larval survival ± st. dev. at 30 dph for the Control, Perosan, 1.5- 2.0 mg

O3 L-1 (Standard), and 2.5- 3.0 mg O3 L-1 (High) treatments.
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2.3 Discussion

As ozone oxidizes non-selectively, ascertaining a safe dosage for treating Atlantic

cod eggs without reaching toxicity to the embryo is very important. High ozone exposure

has been shown to reduce hatching rates in fish larvae and it has been hypothesized that

this occurs due to a reaction between the oxidants formed during ozonation with the

chorion protein polymer, leading to a resistance by the latter to the hatching enzyme

(Grotmol and Totland 2000). An ozone disinfection process needs to be developed so

that it destroys the pathogen without harming the larvae. This study attempted to evaluate

the effectiveness of salt water ozone as a safe and efficient disinfectant on Atlantic cod

eggs against the vertically transmitted virus nodavirus. To this end, we assessed several

indices of larval condition both at the morphological and cellular level in order to

determine if the disinfection was impacting normal growth, which is ultimately a major

factor in survival of larval fish (Buckley 1984).

Despite the collection of eggs from potentially nodavirus-positive broodstock,

none of the batches contained nodavirus-positive eggs pre-treatment. qPCR testing

successfully amplified nodavirus-positive control samples, however all ten egg batches

examined tested negative for the virus; consequently, we were unable to evaluate the

potential and/or efficiency of using ozone to control nodavirus. Therefore the results

presented are only representative of the toxicity of ozone disinfection in a healthy cod

population, and may not reflect the response of virus-carrying fish.

2.3.1 Egg Quality and Hatching Success

Ozone disinfection has been examined as a viable disinfectant in numerous

marine species. At the embryonic stage of development, three common side effects of
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ozone usage have been reported: reduced hatching (Buchan et al. 2003; Grotmol et al.

2003, Battaglene & Moorehead 2006, Ballagh et al. 2011), asynchronous hatch (Grotmol

& Totland 2000) and delayed hatch. Delayed hatch or reduced hatching success have

been reported as results of salt water ozone disinfection in Atlantic halibut, striped

trumpeter (Latris lineata) and Japanese flounder (Paralichthys olivaceus) eggs (Mimura

et al. 1999, Grotmol & Totland 2000, Battaglene et al. 2006). This study found that

embryos treated with ozone within 18 hours of fertilization (2- 32 cell stage) had

equivalent egg survival and hatched synchronously when compared with either the

untreated control or Perosan™- treated eggs at levels up to 2.5- 3.0 mg O3 L-1 for 1.5 min

(CT of 3.75- 4.5). There was a single outlying batch (#1) in which the treatments hatched

asynchronously; all ozone-treatments and the Perosan™- treated eggs hatched 2 days

(11.9 dd) later than the control group for batch #1 only. These results support those

previously reported by Grotmol et al. (2003) who found that when ozone was applied to

Atlantic cod eggs two days prior to expected hatch at levels of ≤ 2.2 mg O3 L-1 for 0.5

min (CT of ≤ 1.1) most ozone treated groups hatched in the same period as the control

(Grotmol et al. 2003).  The consistency in results between the two studies despite the

differences in timing of ozone disinfection suggests that Atlantic cod eggs are tolerant to

ozonation throughout their embryonic development. This observation suggests a

potential flexibility to the application of the ozone-disinfection process within a facility,

particularly at a commercial scale. In this study, the choice to ozonate eggs within hours

of fertilization coincided with the transfer of the eggs from the broodstock tanks to

hatchery, with the aim of halting transmission of disease within the hatchery.
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Ozone disinfection at levels up 2.5- 3.0 mg O3 L-1 for 1.5 min (CT of 3.75- 4.5)

applied at the 2- 32 cell stage of embryonic development did not affect hatch rate or

timing of hatch. Hatch rate was not significantly different between the control and any of

the disinfection treatments and hatching occurred within the normal range (88 dd) for this

species (Brown et al. 2003). Nonetheless, across the range of ozone concentrations used

in this study a downward slope can be observed in the number of larvae hatching as the

ozone concentration increased to the range of 2.5- 3.0 mg O3 L-1. This trend suggests that

if higher ranges of ozone were to be used, hatch rate may decline, although this would

require further testing to confirm. This observation is consistent with what is known of

the ozone tolerance of Atlantic cod eggs, and that of other marine fish species.  For

Atlantic cod, Grotmol et al. (2003) found that when ozone levels below 2 mg O3 L-1 for 2

minutes (CT of 4) were used, the result was a normal larval hatch. In Atlantic halibut, a

safe level of ozone treatment to produce normal hatch was found to be 0.3 to 1 mg O3 L-1

or 4 mg O3 L-1 for up to 0.5 minutes (CT of 0.15-0.5, 2- Grotmol & Totland 2000), while

haddock eggs will hatch normally when exposed to 3.0 mg O3 L-1 for up to 6.7 minutes

(CT of 20.1) and in striped trumpeter up to 1.0 mg O3 L-1 for as much as 5 minutes (CT

of 5) is considered safe (Battaglene & Moorehead 2006). Likewise, in each of the species

cited above higher levels or longer exposure times beyond these ranges produced a

decrease in overall hatching success.

2.3.2 Condition Indices

As the long-term effect of ozone treatment applied during the egg stage had not

been previously examined for Atlantic cod, three separate indices of larval condition were
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measured in order to accurately determine if treatment was impacting growth and

development of the larvae up to 30 dph.

The RNA:DNA is an index of growth rates in larval fish, and is one of the most

commonly used indices of nucleic acid content (Chícharo & Chícharo 2008). RNA:DNA

has been used extensively in studies to measure the impact of temperature and

nutrition/starvation on growth in cod; however, to my knowledge, this is the first instance

of its use to measure the impact of ozone disinfection on larval growth. The results of this

study found that disinfection treatment did not impact larval growth and statistically

significant differences were found in only 25% of the batch/age periods considered.

There was considerable variability in RNA:DNA between egg batches, particularly at 0

dph when RNA:DNA ranged predominantly from 1.3- 3.73, but reached as high as 6.54

in one batch.  Larval RNA:DNA variability has been observed to be high during the yolk

sac stage, which in Atlantic cod extends up to 5 dph when exogenous feeding commences

(Kjorsvik et al. 1991), and caution in extrapolating from this time period for RNA:DNA

growth models has been suggested (Westerman et al. 1994; Folkvord et al. 1996;

Caldarone et al. 2003). Individual larval growth is known to vary greatly, even within a

single treatment, leading to difficulties in establishing the mean growth patterns

(Caldarone et al. 2003). This was evident in this study.  The RNA:DNA between

treatments within a single batch was less variable than when comparing across batches.

Each batch was therefore examined as a single unit, examining the effect of disinfection

treatment relative to the Control.  No true pattern was observed at any age however

disinfection was overall negative on the RNA:DNA as compared to the untreated controls

up to 20 dph. By 30 dph there was no significant difference in any of the ozone-treated
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groups and in batch 1, the Perosan™- treated group had actually grown faster than the

Controls. Mean values of RNA:DNA for each of the four ages ranged from 2.19± 0.4 to

3.14± 1.6, with an overall mean of 2.53 ± 0.75 for all larvae in all treatments.  Nutritional

studies conducted on cold-water marine fish species have shown similar levels including

2.32 and 2.61- 2.65 at 0 dph for Walleye pollock (Theragra chalcogramma- Canino,

1994) and Atlantic cod respectively (Clemmesen et al. 2003), 2-3 (14 dph- fed Atlantic

cod– Buckley et al. 1999) and 2.75- 3.0 (20 dph fed Atlantic cod– Caldarone et al. 2003).

Thus, despite the inter-individual and inter-batch variability in RNA:DNA and the

statistical differences observed in certain batches, there is no evidence to suggest that any

of the disinfection methods negatively impacted growth up to 30 dph.

This conclusion is also supported by the absence of effect of disinfection on the

other condition indices: condition factor and length-specific growth rate.  The condition

factor measures the myotome height as compared to the total length of the animal. As

with the RNA:DNA, statistically significant differences between treatments were

infrequent, occurring in less than 25% of the comparisons and with no clear trend in

differences. Moreover, the condition factors of all the larval groups were very similar to

those of Atlantic cod larvae reared under optimum prey concentrations in a growth and

survival study (Puvanendran & Brown 1999).

Length-specific growth rates were not statistically different at any larval age.

Initial growth rates were low and did not increase over the sampling period. Under these

rearing conditions, expected SGRs should have commenced closer to 2.2% day-1 by 10

dph and increased in a linear manner to > 3.0 day-1.
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Finally, larval survival levels in all the treatments ranged from 21.7% to 43.3%,

with the highest survival in the two ozone-treated larval groups. Larval survival is highly

variable but Puvanendran and Brown (1999) achieved a survival rate of approximately

24% for Atlantic cod reared under similar conditions but varying prey densities (4000-

16000 prey L-1) at 14 dph and no statistical difference between survival at 14 and 42 dph.

In a later study, Puvanendran and Brown (2002) observed levels of 40% at 42 dph when

examining optimal photoperiod and light intensity were incorporated.

Egg quality and age were found to be consistent between all batches, therefore,

the results seem to indicate that the variation in larval condition in response to treatment

may be a function of the genetic differences of larvae among and within batches. Batch

effect as the strongest effect on larval survival rather than disinfection, has been shown in

spotted halibut eggs (Verasper variegatus) treated with iodophor but only in the instance

that initial egg quality in the whole batch was variable (Hirazawa et al. 1999). In the

current study, initial egg quality and cell stage were checked in every batch to ensure

consistent quality between batches and that any effect was the result of treatment and not

poor eggs. Hirazawa et al. (1999) have reported an increased sensitivity to disinfection in

eggs based on the spawning period, with eggs collected early in the spawning cycle of a

fish being less sensitive to treatment. The eggs for this study were taken from

communally spawning fish; therefore one batch may contain the genetic derivatives of

multiple parents, both female and male. This method of egg collection is the least

invasive to the animals and allows for more natural spawning of the fish, yet it renders it

impossible to identify the genetic pairing within the tank. Evidence from a single

commercial spawning event in Atlantic cod has shown that only a small portion of a
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given population actually contributes to a single egg batch event (Herlin et al. 2008) and

that from within that spawning, not all parents contribute to the same degree (Hansen et

al. 2004). Taking these two factors together, an increased sensitivity to disinfection from

one parent could greatly increase the effect of treatment within a single spawning event

(batch) yet not impact the overall production.

This study was run on a semi-commercial scale over the course of one month of

spawning to accurately assess the impact of ozone on eggs and the feasibility of the

system itself. While there were select instances of statistical differences (25% of eggs

tested) in the RNA:DNA and condition factor (< 25% of eggs tested) within batch

treatments suggesting that disinfection was impacting the eggs, there was no specific

trend to indicate one treatment was more damaging than another. Furthermore, length-

specific growth rate was found to remain consistent between all treatments and final

survivals at 30 dph were comparable between all groups including the control. These

results support the conclusion that ozone application at ≤ 3.0 mg L-1 for 1.5 minutes does

not negatively impact fertilized 2-16 cell Atlantic cod eggs and suggest ozone may be a

good candidate for the disinfection of salt water fish eggs.
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3. Safe Dosing of Ozone for Disinfection of Atlantic Salmon and

Rainbow Trout Following Exposure to Saprolegnia diclina

3.1 Introduction

Saprolegnia are a genus of ubiquitous freshwater moulds, capable of infecting

both fish and eggs, with devastating consequences. They present a major constraint to the

culturing of fish worldwide and result in extensive economic losses in aquaculture

(Meyer 1991). From the mid-1930s and for the next five decades, Saprolegnia infections

in both eggs and fish were effectively controlled within fish rearing facilities with

applications of malachite green (N-methylated diaminotriphenylmethane) (Foster and

Woodbury 1936, Culp & Beland 1996).  Malachite green was highly efficacious against

fungi (Alderman 1985), however, it has been banned in most countries including Canada,

the US, Japan, China and within the European Union since the 1980s due to findings that

is carcinogenic, mutagenic, and teratogenic. It poses a serious health risk to the human

operators, to fish-consumers and even to the fish to which it was being applied. The loss

of malachite green as fungicide prompted new interest in investigating alternate

disinfection methods.

The criteria for success of an effective fungicide to treat Saprolegnia would be to

identify a method of disinfection that would be equivalent in efficacy to malachite green,

but which is safe for the applicant, the consumer, the fish and the environment as a

whole. There is a limited list of candidate methods capable of eradicating Saprolegnia,

and of the methods identified, none have yielded the same efficacy as malachite green

(Bruno et al. 2011). Currently bronopol, hydrogen peroxide and formaldehyde have
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generated the most promising results based on the aforementioned criteria, although each

presents limitations. Bronopol (2-bromo-2-nitropropane-1,3-diol), is marketed under the

trade name Pyceze (Novartis Animal Vaccines, Braintree, UK) and is an approved

fungistatic. It is considered to be the most effective preventative treatment for mycotic

infections (Pottinger & Day 1999) but in many countries it must be administered under

veterinary direction. Hydrogen peroxide is an effective fungicide although it requires a

precise dosing for safe application (with respect to the animal), which is temperature

dependent and does not have full regulatory approval for use on food fish at any life stage

in Canada (Burka et al. 1997). Formaldehyde (or formalin in the 37% aqueous state) is

the most frequently applied fungicide at the hatchery level and is approved for use in

Canada and the United States (Burka et al. 1997). However, it prompts concerns for

health of the operator, as it is a recognized carcinogen (Marking et al. 1994, Forneris et

al. 2003).

Ozone is environmentally friendly, producing few harmful by-products, breaking

down into oxygen as end product and in a relatively short period of time (Summerfelt

1997). Unventilated, it presents a respiratory risk to the operator, as ozone gas is toxic to

humans, as it is a strong oxidizer. Ozonated water will release ozone gas during the

application process, however when administered in a properly ventilated area with the

appropriate air quality monitoring including a detector designed to measure ozone, the

risk to the operator is minimal.

Ozone has a long history in freshwater hatchery applications. It has been

employed for decades for its biocidal properties in water treatment to improve water

quality and to eliminate waterborne pathogens in inflow and effluent; ozone has been
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shown to effectively reduce aquatic viruses and bacteria by up to 99.99% (Liltved et al.

1995). Experiments focused on the application of this technology more specifically to

improving egg quality and fish health through chronic low level concentrations in system

water have been met with varied success. Chronic exposure to ozonated water resulted in

the destruction of gill lamellar epithelium and hydromineral inbalance and ultimately

death in rainbow trout (Wedemeyer et al. 1979). In contrast, a recirculating aquaculture

system incorporating ozone improved Atlantic salmon growth and survival (Sutterlin et

al. 1984) and chronic ozone application to river water supplied to summer steelhead trout

(Oncorhynchus mykiss) resulted in significantly reduced mortality as well as larger fish as

compared to those grown in untreated river water (Tipping 1988). At the egg and larval

stage, acute exposure to low levels of ozone to sockeye salmon (Oncorhynchus nerka)

throughout the incubation period extending to larval hatch resulted in high mortality up to

the eyed-stage, although the authors acknowledge that ozone levels were inconsistent and

significantly higher than originally intended (Grischkowsky et al. 1983). As a

disinfectant, ozone efficacy for the eradication of Ceratomyxa shasta in cutthroat trout

(Oncorhyncus clarki) was found to be successful at a CT of 0.84 (Tipping 1988). When

used in repeated applications of 0.01, 0.03 or 0.2 mg O3 L-1, at two-day intervals for 46-

60 days ozonated water effectively controlled saprolegniasis in brown trout (Salmo trutta)

eggs incubating in California trays (Forneris et al. 2003).

The purpose of this study was two-fold:  to determine if there were any short-term

effects on larval performance following egg ozonation and to determine ozone’s

efficiency in eradicating S. diclina. The project included the testing of ozone application

at two concentrations (0.5- 1.0 mg L-1 and 2.5- 3.0 mg L-1) on eyed Atlantic salmon and
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rainbow trout eggs using a prototype ozonation system. The efficacy of ozone was

examined as well as its performance vis-à-vis the commercial disinfectant Ovadine (10-

12 % povidone iodine- Syndel Laboratories Ltd, Qualicum Beach, BC, Canada).

Treatment success was evaluated using measures of egg and larval success (%

survival), growth (larval weight and length) and growth rate (yolk sac conversion

efficiency).

3.2 Materials and Methods

Prior to the commencement of the study, a review of the handling of animals and

research protocol were met with full approval from the Institutional Animal Care

Committee of Memorial University of Newfoundland (Protocol #12-04-CC).

3.2.1 Saprolegnia diclina Source

Saprolegnia diclina (ATCC® 42061™ F11 strain isolated from Atlantic salmon)

was obtained (Cedarlane, Burlington, ON, CA) as a pure, live culture propagating on

cornmeal agar. Fresh colonies were maintained by aseptically transferring an agar plug of

S. diclina with the mycelium facing downward onto a new plate of cornmeal agar (17.0 g

Cornmeal Agar; US Biological, Swampscott, MA, USA) with 1-3 drops of sterile tap

water (STW) on the surface of the new plate as per the manufacturer’s instructions

(American Type Culture Collection, Manassas, VA, USA). These plates were incubated

at 20°C under aerobic conditions, and monitored for growth and moisture content. When

sufficient growth was achieved (on average every 48 hours), new plugs from fresh

growing ends of the colonies were excised and plated onto fresh cornmeal agar plates as

described above (Stueland et al. 2005).
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3.2.1.1 S. diclina Hyphal Cluster and Cyst Preparation

Saprolegnia hyphal clusters and cysts were prepared as per Stueland et al. (2005).

Briefly, agar plugs with hyphae-growth were excised and moved to glucose yeast broth

containing 10 g glucose (Sigma-Aldrich, St. Louis, MO, USA) and 2.5 g yeast extract

(Amresco, Solon, OH, USA) in 1 L H2O  and allowed to incubate for 2 days at 20°C,

producing bundles of hyphae. These bundles were then harvested for ozonation or

removed from the broth and washed with STW before further incubation at 20°C for 24

hours in STW. This final incubation step allowed for zoospore production to occur. The

zoospore suspension was then filtered (0.5 mm pore) into a clean glass bottle.  Cysts were

counted by volume using a haemocytometer and adjusted to create a 1.0 x 104 spores L-1

suspension no more than 3 hours prior to use (Thoen et al. 2011). Viability of the spore

suspension was checked by placing one drop into glucose yeast broth and incubating at

20°C until germination was visible.

3.2.1.2 Pre-infected Dead Egg Preparation

Pre-infected dead eggs (eggs to be infected with the pathogen and introduced into

a clean population) were used as the source of S. diclina infection. As per Stueland et al.

(2005) live eggs were immersed in 60°C water for a period of 1 minute to kill them.

Thereafter groups of eggs were placed in 1 L glass bottles containing S. diclina spores at

a concentration of 1.0 x 104 spores L-1 and incubated at 20 ± 1°C overnight. Following

this incubation period, eggs were removed and rinsed with STW then transferred to

sterilized incubator water (SIW) and incubated for a further 48 hours at 11 ± 1°C. The

eggs were inspected under a stereomicroscope both at the initial rinsing and just prior to
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introduction into the clean egg batches to ensure hyphal growth on the pre-infected dead

eggs was both present and even (Thoen et al. 2011).

Presence of S. diclina on eggs was evaluated as per Fregeneda-Grandes et al.

(2007).  Eggs were initially placed in glass vials, with one egg per vial also containing

SIW and transported from the Fisheries and Marine Institute (St. John’s NL, CA) to the

laboratory (Northwest Atlantic Fisheries Center, St. John’s NL, CA). Prior to

disinfection, eight eggs were removed from every tray housing eggs regardless of

whether they were exposed to S. diclina or not.  Then, immediately following treatment

(prior to placement in the incubation trays), 10- 15 eggs per treatment (10 for unexposed

eggs, and 15 for exposed consisting of 10 eggs and 5 pre-infected dead eggs) were

removed and placed in 250 mL of SIW. At the laboratory, eggs were handled within a

biosafety cabinet to avoid contamination. Eggs were individually rinsed three times with

SIW and then placed in a Petri dish containing 20 mL of SIW water. After 24 hours of

incubation at 20°C, eggs were examined under a stereomicroscope for fungal growth. If

fungal growth was observed, mycelia were removed and placed onto glucose-peptone

agar (Willoughby 1994) containing 200 μg mL-1 chloramphenicol. If no growth was

observed, the eggs were placed in a new Petri dish containing SIW water and the process

was repeated at 24-hour intervals for 72 hours. When present, mycelia growth on agar

would undergo successive passes on the media at 48-hour intervals to ensure growth of S.

diclina was pure. Following this final step, samples were disposed of.

3.2.1.3 Atlantic Salmon Eggs

Thirty-thousand disease-free hatchery stock eyed Atlantic salmon eggs (age 381.7

dd, diploid) were transferred from Northern Harvest Sea Farms (Stephenville, NL, CA) to
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the Fisheries and Marine Institute, Memorial University of Newfoundland (St. John’s,

NL, CA) by ground transportation in 7 ± 1 °C water. Eggs were held pre-experiment in

vertical incubation units supplied with 8°C UV-treated fresh water at a density of 5,000

eggs tray-1.

3.2.1.4 Rainbow Trout Eggs

Forty-thousand disease-free eyed rainbow trout eggs (245 dd, diploid) were

transported by air from AquaSearch ova Aps (Jelling, Denmark) to St. John’s, NL and

housed at the Fisheries and Marine Institute. Upon arrival, eggs were acclimated as per

the supplier’s instructions, which indicated that eggs should be submerged in a supply of

hatchery water adjusted to match the temperature within the shipping container using

chlorine-free crushed ice. Thereafter the temperature was raised by 1°C hour-1 by

gradually adding hatchery water to the container. Eggs were held pre-experimentally in

vertical incubation units supplied with 9.5°C UV-treated fresh water at a density of 5,000

eggs tray-1.

3.2.1.5 Salmonid Trials Infrastructure

Eggs were incubated throughout the study in 8-tray vertical incubation units. Four

units were used in this study and each was modified to create an individual water supply

to each tray, with two effluent lines, which discarded directly into the effluent sump. In

this way, water from one tray did not mix with water from another (Figure 6). This

modification controlled for the movement of S. diclina from one replicate tray to another,

as S. diclina is a waterborne contaminant (Johnson et al. 2002). As a result, the study was
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better able to replicate a semi-commercial-scale salmonid hatchery while also avoiding

cross-contamination of the replicates.

Water source for the incubation system was pathogen-free ground water, which

was degassed within the facility. All water for the incubation system within the

quarantine unit housing the vertical incubation stacks was UV-treated prior to entering

the system.

Atlantic salmon fry were raised in a single raceway containing dividers to

separate the different fish groups (Figure 6). A single water supply line provided

freshwater to the entire unit.

3.2.1.6 Ozone System

The freshwater ozonation system was a prototype system designed for plug-and-

play use. Two major differences existed in this model as compared to the saltwater

system used in the Atlantic cod experiment (Section 2.2.2). The first is the addition of a

unique fume hood for the contact chamber. This fume hood rests on top of the contact

chamber and dissipates gases out of the room and away from the user. The second

addition is a user-interface panel. This panel provides a touch-screen control of the

various mechanical components of the system including the pumps, fans and ozone

generator. The software also featured a pre-programmable option, allowing the user to set

the ozone concentration within the chamber and the contact time prior to disinfection.

The latter option was not used for the purposes of this experiment. Ozone concentrations

were instead determined by spectrophotometry using an Ozone Vacu-vials® kit

(CHEMetrics, Calverton, VA, U.S.A.) as per the manufacturer’s instructions.
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As with the saltwater system used for Atlantic cod disinfection (Chapter 2),

ozone for egg disinfection was generated using a corona-discharge ozone generator

(Pacific Ozone O-series model G11- Pacific Ozone Technologies, CA, USA). Water flow

dynamics remained the same, with fresh ozonated water flowing through the base of the

tank and overflowing out a line at the top of the contact chamber.

3.2.1.7 Effect of Ozone on S. diclina Hyphae

To measure the effect of ozone on S. diclina itself, in the absence of salmonid

eggs, bundles of hyphae were harvested of pure S. diclina. Ten fresh plates of S. diclina

from source material were commenced and incubated as described previous, for 48 hours

and then excised as agar plug and placed into ten Petri dishes containing glucose-yeast

broth and further incubated for 48 hours. The resultant hyphal bundles were cut away

from the agar plugs using a sterile scalpel blade. These bundles were then weighed on an

analytical balance and separated into three portions using a sterile scalpel before being

transferred aseptically to individual histology cassettes and sealed into sterile whirl pack

bags. From each original excised agar plug, three hyphal mats in histology cassettes were

created, and these were then assigned to a treatment set: control (no treatment but similar

handling), Low O3 (0.5 -1.0 mg L-1) or High O3 (2.5 - 3.0 mg L-1). In order to avoid

desiccation of the hyphae, all treatments were used within three hours of harvesting.
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Figure 6: Salmonid trial infrastructure: a) modified vertical incubation unit and b) multi-

tray raceway for salmon fry.
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The histology cassettes containing S. diclina hyphae bundles were placed in a

Nitex® mesh bag and submerged directly into the ozonation chamber for 1.5 minutes at

the desired ozone concentration of either 0.5- 1.0 mg O3 L-1 or 2.5- 3.0 mg O3 L-1. The

same procedure was followed for the controls except that ozone concentration within the

chamber was 0.0 mg L-1. Immediately following treatment the histology cassettes

containing S. diclina hyphae bundles were removed from the chamber and submerged in

500 mL of sterile tank water. Following this rinsing, the water was drained and the

cassettes were placed in new whirl pack bags for transfer from the ozonation area to the

clean biosafety cabinet.

Following transfer, all hyphal bundles were aseptically removed from the

histology cassettes and placed into new Petri dishes containing 30 mL of glucose-yeast

broth and incubated at 20°C for 72 hours. At 24 hours intervals, bundles were removed

from the broth and any new growth was measured.  The change in mass over 24 hours

was measured as:

(Masst2 – Masst1) * (t2-t1)-1

where t(x) represents time in days.

3.2.1.8 Infection

One-half of the total quantity of eggs per species was exposed to S. diclina

through the introduction of pre-infected eggs. Twenty-four hours prior to disinfection,

pre-infected eggs were evenly dispersed across the surface of the eyed-eggs in each tray

at a ratio of 1 infected egg: 25 clean eggs. Pre-infected eggs remained in the population of

eggs throughout treatment and handling and were only removed twenty-four hours post-

disinfection when egg mortalities were collected.
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3.2.1.9 Treatment

In order to avoid any cross-contamination of the unexposed and S. diclina-

exposed eggs, unexposed eggs were always handled before exposed eggs and gloves were

changed between the groups. Each group was handled using separate equipment and were

separated spatially to opposite ends of the workstation. Prior to treatment, all trays in the

vertical incubation system containing unexposed eggs were removed and the eggs were

combined into a single bucket containing an excess of fresh water. The same procedure

was repeated for the S. diclina-exposed eggs. Immediately prior to treatment, the water

was removed from the bucket and the eggs were transferred to a graduated beaker to

determine the total volume of eggs. This volume of eggs was then subdivided into four

treatment groups of equal volume. The four volumes were then randomly assigned to one

of the treatments groups (Table 7):controls (similar handling but no chemical

disinfection), Ovadine solution, Low O3 (0.5- 1.0 mg O3 L-1) or High O3 (2.5- 3.0 mg O3

L-1).

The Ovadine treatment was completed as per the manufacturer’s instructions for

the surface disinfection of salmonid eggs, which recommends mixing a 10 mL L-1

solution of Ovadine and submerging the eggs in this solution for 10 minutes at a

minimum volume of four times that of the eggs. Eggs were then removed from the

solution by means of a strainer, dipped in a bowl containing clean hatchery water to

remove any remaining disinfectant and finally placed in a vertical incubation tray with a

supply of UV-treated fresh water to flush away any remaining solution.
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Table 5: Summary of Atlantic salmon and rainbow trout experimental groups and applied

treatments.

Treatment
#

Saprolegnia
present

Ozone
(mg L-1)

Ovadine
(mg L-1)

Contact
Time
(min)

1 Yes 0.0 100.0 10.02 No 0.0
3 Yes 0.5- 1.0

0.0 1.54 No 0.5- 1.0
5 Yes 2.5- 3.0
6 No 2.5- 3.0
7 (Control) Yes 0.0 0.0 0.08 (Control) No 0.0
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Ozone concentrations were determined by spectrophotometry using an Ozone

Vacu-vials® kit (CHEMetrics, Calverton, VA, U.S.A.) as per the manufacturer’s

instructions.

As with the salt water system, when the water within the contact chamber was at

the desired concentration of ozone, eggs to be treated with ozonated fresh water were

carefully submerged in the contact chamber using a free-floating Nitex® bag. The eggs

remained in the system for a 1.5 minute contact, which was terminated by their removal

from the system. The eggs were then transported within the Nitex® bag to the hatchery

and rinsed into a bowl containing clean hatchery water. The ozonated water and the

hatchery water were maintained at the same temperature throughout the experiments to

eliminate any temperature shock to the eggs. Eggs were then transferred to the vertical

incubation trays and maintained with a supply of UV-treated fresh water.

3.2.2 Husbandry and Sampling

3.2.2.1 Atlantic Salmon

Atlantic salmon egg and larval mortalities were counted and removed daily by

manual picking. At hatch, total larval lengths (mm) and weights (g) were measured in

each of the trays. Following hatch, egg shells were removed from the trays by passing a

handheld sieve through the trays taking care to avoid the larvae. Once the larvae had

reached 85% ± 5% yolk sac absorption, lengths (mm) and weights (g) were measured and

then a subset of the population was moved to a raceway. Salmon fry feed (0.5 mm- Corey

Nutrition, Fredericton, NB, CA) was introduced by hand from days 0-7 in the raceway,

and thereafter to excess by automated feeders.  Measurements for length and weight were

repeated at 10, 20 and 30 days post transfer. Larvae were euthanized with 100 mg L-1
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TMS (Syndel Laboratories, Qualicum Beach, BC, Canada) following measurements at 30

dph.

3.2.3 Rainbow trout

Rainbow trout egg mortality was also counted and dead eggs removed daily from

the trays. Larvae were measured for total length (mm), weight (g) and yolk sac volume

(YSV) at hatch (0 dph), midway through the endogenous feeding period (8 dph) and at

85% ± 5% yolk sac re-absorption (16 dph). Yolk sac volume was calculated as per

Koskinen et al. (2002) where YSV= π/6(yolk sac length * yolk sac height2). Rainbow

trout larvae were euthanized following the re-absorption of their yolk sac with 100 mg L-1

TMS.

3.2.4 Larval Morphometrics

Length measurements were taken at 0.7x magnification using a stereoscope to

measure total length of the larvae in millimeters (± 0.1mm). Weight was measured using

an analytical balance (± 0.0001g). Specific growth rates were derived for both length

(mm) and weight (g) as per Jobling (1994):

SGR=100 [ ln(Xt2) – ln(Xt1)](t2-t1)-1
where Xt(y) represents the morphometric measurements and  t2-t1 represents the time

period in days.

Yolk sac conversion efficiencies (YSC) were estimated as per Fraser et al. (2008):

YSC= (size at yolk re-absorption - size at hatch) (yolk sac volume)-1

where size is larval length in millimeters.
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3.2.5 Statistical Analysis

In each of the analyses below, treatment and status (exposed vs. unexposed) were

the categorical predictors for the Atlantic salmon, and only treatment was a categorical

predictor for rainbow trout. The effect of treatment on weight and length of larvae and fry

was measured with an analysis of covariance (ANCOVA). For both species, mean initial

larval weight/length was the continuous variable. The yolk sac conversion (trout) and

cumulative survival of both salmonid species was measured using a general linear model

(GLM). Cumulative percent survival was square root transformed prior to analysis as the

data set is based on proportions and all values were greater than 70%.

Change in S. diclina weight at 24, 48 and 72 hours was measured using a GLM

with treatment as the only categorical variable. Data were square root transformed prior

to analysis as the data set is based on proportions and all values were between 0- 30%.

Statistical significance was set at P= 0.05. In the event of a statistically significant

difference, Tukey’s HSD was used to determine the difference between treatments.

Statistical analyses were completed in STATISTICA™ Version 10 (StatSoft Inc., Tulsa,

OK, USA).

3.3 Results

The pre-infected dead eggs used to introduce S. diclina to the live Atlantic salmon

eggs all exhibited growth of S. diclina at the time of introduction into the vertical

incubation stacks. However, none of the eggs successfully infected adjacent naïve live

eggs.

The pre-infected eggs used to introduce S. diclina to the rainbow trout eggs as

well as the eggs collected from the trays pre- and post-treatment resulted in no growth in
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all treatments and all replicates within each treatment at 24, 48 and 72 hours when

incubated at 20°C. Therefore, only effect of treatment was considered for rainbow trout

(n= 15- 16 trays per treatment).

Ozonation of S. diclina hyphal mats in the absence of any salmonid eggs resulted

in a significant reduction in hyphal weight in the 0.5-1.0 mg O3 L-1 and 2.5-3.0 mg O3 L-1

treatment groups 24 hours post-treatment (P< 0.01)(Figure 7). At 48 hours post-

treatment, this reduction in weight as compared to the control was still visible in the 2.5-

3.0 mg O3 L-1 treatment (P= 0.02). However at 72 hours post-treatment the significant

difference in fungal weight between treatments (0.5- 1.0 mg O3 L-1 and 2.5- 3.0 mg O3 L-

1) and the Control was no longer present. (P= 0.100).

There was no statistically significant difference (P> 0.05) among treatments in

Atlantic salmon or rainbow trout at any life stage in terms of length (Atlantic salmon: P=

0.842; rainbow trout: P= 0.951) (Table 9, 11), weight (rainbow trout: P= 0.316) (Table

12), yolk sac absorption (rainbow trout: P= 0.783) (Table 13) or specific growth rate for

weight (rainbow trout: P= 0.472, 0.981) or SGR for length (rainbow trout: P= 0.334,

0.996,) (Table 14). There was also no difference in percent survival in Atlantic salmon

(P= 0.800) (Table 10). There was a statistically significant difference in survival in the

rainbow trout (P< 0.001) between the control and all the other treatments (Ovadine, 0.5-

1.0 mg O3 L-1 and 2.5- 3.0 mg O3 L-1). The control had a significantly higher percent

survival (81.8%) as compared to the Ovadine (74.1%), 0.5-1.0 mg O3 L-1 (74.5%) and

2.5- 3.0 mg O3 L-1 (73.6%). The survivals between the disinfection treatments were

similar within one percent (Table 15).
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Figure 7: Change in hyphal weight (g) of S. diclina at 24, 48 and 72 hours following no

treatment (Control), 0.5- 1.0 mg O3 L-1 and 2.5- 3.0 mg O3 L-1
.
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Table 6: Summary of mean final length (cm) of Atlantic salmon larvae at yolk sac

absorption.

Treatment n (larvae) Mean st.dev df F P
Control 40 2.335 0.144

3 0.28 0.842

Ovadine 40 2.330 0.136
Low 40 2.295 0.177
High 40 2.355 0.016
X-Control 40 2.318 0.139
X-Ovadine 40 2.315 0.133
X-Low 40 2.343 0.148
X-High 40 3.225 0.141
* X: live eggs exposed to pre-infected dead eggs
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Table 7:  Summary of survival (%) of Atlantic salmon larvae at 85 ± 5% yolk sac

absorption.

Treatment n(tray) Mean st.dev df F P
Control 8 84.589 4.839

3 0.33 0.800

Ovadine 8 84.741 4.089
Low 8 82.679 5.192
High 8 83.592 5.869
X-Control 8 81.156 5.916
X-Ovadine 8 82.565 3.681
X-Low 8 82.340 3.212
X-High 8 84.374 4.079
* X: live eggs exposed to pre-infected dead eggs
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Table 8: Summary of mean length (mm) of rainbow trout larvae at 85 ± 5% yolk sac

absorption.

Treatment n (tray) Mean st.dev. df F P
Control 15 26.511 0.640

3 0.115 0.951Ovadine 16 26.440 0.454
Low 16 26.355 1.005
High 16 26.486 0.719
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Table 9: Summary of mean weight (g) of rainbow trout larvae at 85 ± 5% yolk sac

absorption.

Treatment n (tray) Mean st.dev. df F P
Control 15 0.130 0.006

3 1.208 0.316Ovadine 16 0.127 0.008
Low 16 0.127 0.007
High 16 0.130 0.010
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Table 10: Summary of mean yolk sac conversion efficiency of rainbow trout larvae from

hatch to 85 ± 5% absorption.

Treatment n (tray) Mean st.dev. df F P
Control 15 0.0406 0.0108

3 0.359 0.783Ovadine 16 0.0403 0.0099
Low 16 0.3914 0.0085
High 16 0.0370 0.0131
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Table 11: Specific growth rate of larval rainbow trout at 8 and 16 dph

Specific
Growth
Rate

Age Treatment n (tray) Mean st.dev. df F P

Length

8 dph

Control 15 4.400 0.690

3 1.155 0.334
Ovadine 16 4.227 0.628
Low 16 3.945 0.860
High 16 4.242 0.571

16 dph

Control 15 2.567 0.440

3 0.019 0.996
Ovadine 16 2.617 0.612
Low 16 2.594 0.781
High 16 2.286 0.506

Weight

8 dph

Control 15 3.864 1.073

3 0.851 0.472
Ovadine 16 3.714 1.649
Low 16 3.409 1.568
High 16 4.210 1.395

16 dph

Control 15 2.805 1.119

3 0.059 0.981
Ovadine 16 2.689 1.414
Low 16 2.683 1.150
High 16 2.605 1.564
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Table 12: Summary of square root transformed trout survival.

Treatment n (tray) Mean st.dev. df F P Comments
Control 15 9.0428 0.1437

3 6.95 <0.001 Control  >
Ovadine, Low, High

Ovadine 16 8.1217 0.3465
Low 16 8.6266 0.2617
High 15 8.5647 0.4785
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3.4 Discussion

The objective of this study was to determine the effects of freshwater ozone

disinfection of eggs on early growth and survival of two salmonid species of commercial

importance to aquaculture, as well as to determine ozone’s suitability as a safe and

efficacious treatment against the mycotic infection S. diclina. The impact of ozone

application was examined vis-à-vis the predominant egg disinfection method, Ovadine

(an iodophore derivative) as well as an untreated control group. The disinfection

applications were tested at the eyed-stage of development, as this is a critical point in

salmonid hatcheries for egg movement, transport and export. Eggs were monitored daily

from eyed development up to larval yolk sac reabsorption for survival, hatching success,

growth (length, weight) and yolk sac conversion efficiency (a growth index examining

the rate at which yolk (nutrient) is converted to tissue).

The genus Saprolegnia has been historically considered to be a secondary

pathogen (Neish 1977) but more recent research indicates that it may also act as primary

pathogen including the S. diclina species, which is the predominant species identified on

salmonid eggs (Kitancharoen et al. 1997, Fregenada- Grandes et al. 2007). Live Atlantic

salmon eggs have been shown to be refractory to Saprolegnia sp. and exposure to

zoospores is insufficient to induce an infection (Thoen et al. 2011). As such, the

challenge model adopted in this study was the introduction of dead, S. diclina pre-

infected eggs into a clean population of live eggs twenty-four hours prior to disinfection.

Pre-killed healthy eggs were infected with S. diclina spores and following 72 hours of

incubation, were visually inspected prior to use to ensure infection with S. diclina.
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In the first experiment, all pre-infected Atlantic salmon eggs showed positive

growth of S. diclina when inspected under a stereomicroscope. In the rainbow trout

experiment, the inspection of pre-infected trout egg found no visible growth of S. diclina

immediately prior to introduction. This absence of mycotic infection on the pre-exposed

dead eggs was confirmed post-treatment by the follow-up sampling of egg batches 96

hours after the initial exposure infection as well as in laboratory incubation, which

continued to show zero growth of S. diclina on the unused portion of pre-exposed dead

eggs over a period of one week. Because of the increasing age of the rainbow trout eggs

and therefore their proximity to hatch, it was not possible to produce a new batch of pre-

infected dead eggs to attempt the S. diclina infection prior to hatch, making it necessary

to proceed with the ozone experiment using the zero-growth dead eggs. For this reason,

the rainbow trout eggs were considered to be pathogen-free throughout the experiment

and data collected from this group was analyzed as only four treatment groups (no

infected-state groups). Conclusions from that experiment were therefore only

representative of the effect of the disinfectant applications on rainbow trout eggs, and not

their ability to eradicate S. diclina.

In both Atlantic salmon and rainbow trout eggs, hatching success was comparable

among all of the treatments. For Atlantic salmon, these results showed no effect of S.

diclina exposure on hatching success. There was no significant effect at 0.5- 1.0 mg O3 L-

1, 2.5- 3.0 mg O3 L-1 or in the Ovadine application as compared to the untreated Control.

Hatching success of both salmonids was also comparable with optimal hatching levels for

the respective species in an industry-scale setting. This result indicates that at < 3.0 mg

O3 L-1 for up to 1.5 minutes, ozonated freshwater can be applied at the eyed-stage of
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development and will not result in delayed or decreased hatch, a reported side-effect of

ozone toxicity in some marine fish species (Mimura et al. 1999, Grotmol & Totland

2000, Battaglene et al. 2006). Safe application of ozone at this crucial hatchery stage

could allow for further development of ozone as a disinfectant against pathogens as ozone

is capable of destroying and bacteria and therefore aid in the reduction of disease transfer

(Liltved et al. 1995).

The effect of ozone treatment on larval success was measured in terms of larval

growth. Atlantic salmon larval growth was measured for total length up to 85 % yolk sac

depletion. There was no impact of disinfection on total length of Atlantic salmon larvae.

Rainbow trout larval growth was measured in three different ways: length, weight and

yolk sac conversion efficiency. All three disinfection applications yielded results that

were similar to the control group. As with the salmon, growth of larval rainbow trout was

comparable to levels normally achieved for this species under similar hatchery

conditions.

Atlantic salmon survival was above 81% in all treatments and there was no effect

of treatment up to 85% yolk sac reabsorption. Survival in rainbow trout up to 85% yolk

sac reabsorption resulted in the only measureable difference between the control and

disinfection treatments in either experiment; there was a significant decrease in survival

in all the disinfection treatments (73.5- 74.5%) as compared to the Control (81.8%).

However larval survival between eggs treated with 0.5- 1.0 mg O3 L-1, 2.5- 3.0  mg O3 L-1

or Ovadine (100 mg L-1) varied by only one-percent, suggesting the impact of

disinfection on the trout is equivalent. These results are supported by the limited data

available on ozone disinfection in salmonid eggs: when treated with continuous, low
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levels of ozone throughout the egg development stages, sockeye salmon eggs achieved a

hatch rate of 78.6% (Grischkowsky et al. 1983). Similarly, freshwater application of

ozone in sturgeon (Acipenser persicus) eggs at 0.15 mg O3 L-1 yielded hatch rates of

76.4% (Ghomi et al. 2007). Overall, survival in both species was satisfactory during the

endogenous feeding period.  The reduction in hatching success due to disinfection does

not outweigh the long-term benefits of halting disease transmission within a population.

Though, further research is necessary to ensure ozonation efficacy in stopping specific

pathogen (fungus, virus, bacteria) transmission in eggs.

Rainbow trout larvae were terminated once the treatment had reached >85% yolk

sac reabsorption. However, Atlantic salmon larval growth and survival was carried

through to the first 30 days of exogenous feeding, housed in individual trays within one

raceway. This raceway had a single water source, with water passing from the first tank

to the second and so on until it exited at the drain. The raceway was not located within

the quarantine facility, but in an open aquatic facility which houses other salmonids at

various life stages. The communal nature of the lab resulted in an outbreak of a white,

cotton-like mold presumed to be a Saprolegnia. Despite intervening measures, it was not

possible to eradicate the growth without compromising the study. This infection resulted

in high rates of mortality within all of the treatment trays, but particularly impacting the

trays furthest from the water source where water quality was lowest and build-up of

organic material was highest. Therefore, while it was possible to maintain many of the

Atlantic salmon fry for an additional 30 days of exogenous feeding, the resultant data

were too severely compromised to allow for any conclusions to be drawn. This outbreak

within the raceway, although detrimental to the study, only served to highlight the
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extremely aggressive and devastating impact Saprolegnia sp. can have within an aquatic

facility.

The effect of ozone treatment on S. diclina indicated that 0.5 -1.0 mg O3 L-1 and

2.5 - 3.0 mg O3 L-1 for 1.5 minutes both significantly impacted the growth of this species.

The oxidation of the hyphal mats resulted in a reduction in mass and therefore a

decreased rate of growth twenty-four hours post-treatment. In the lower concentration

applied, 0.5 -1.0 mg O3 L-1, S. diclina recovered growth rates comparable with the control

(0.0 mg O3 L-1) within 48 hours. The S. diclina exposed to 2.5 - 3.0 mg O3 L-1 also

recovered as compared to the control, but required 72 hours post-treatment to return to

comparable levels of growth. Ozone treatment of 0.01, 0.03 or 0.2 mg L-1 to brown trout

(Salmo trutta fario) infected with Saprolegnia resulted in a lack of visible hyphal growth

for a period of approximately one week (Forneris et al. 2003). The difference in

Saprolegnia recovery time between the studies may be due to differences in the extent of

the Saprolegnia infection rather than efficiency of the treatment method. The hyphal mats

tested within this study exceed the hyphal mass normally found on individual eggs

especially if manual picking of dead or visibly-infected eggs occurs pre-treatment, which

is the most effective method of fungal control in the hatchery (Ghomi et al. 2007).

Therefore as there seems to be no discernible differences in toxicity towards Atlantic

salmon or rainbow trout eggs at either of the ozone levels tested as a single dose, it is

recommended that the higher dose of 2.5 - 3.0mg O3 L-1 for 1.5 min be applied in the

control of S. diclina infections in vertical incubation trays.
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4. Summary

The purpose of ozone application to fish eggs is that the treatment be developed as

an alternate method of disinfection against disease to those currently in use in aquaculture

today. To be effective, ozone must eradicate the target pathogen while not rendering harm

(either immediate or long term) to the eggs themselves. The intent of this research was to

investigate these aspects of ozone efficacy and safety in three species of interest to

aquaculture. The applications were focused at specific stages in egg development, which

corresponded with hatchery handling or transport points during production for the

respective species. Although neither portions of the research were successful in

establishing any results in the context of ozone efficacy against nodavirus (Atlantic cod)

or S. diclina (Atlantic salmon, rainbow trout), the aspect of applying ozone safely yielded

largely positive results.

The treatment of recently fertilized Atlantic cod eggs with 0.5- 1.0, 1.5- 2.0 or 2.5-

3.0 mg O3 L-1 vis-à-vis the commercial disinfectant Perosan™ (0.004 mg L-1) and an

untreated control revealed no trend or changes in either egg quality or larval condition,

which would have suggested a negative impact of treatment on the eggs or the resultant

larvae up to 30 dph.

Similarly, treatments of Atlantic salmon and rainbow trout eggs at the eyed-stage

of development with ozonated freshwater suggest that at ≤ 3.0 mg O3 L-1 for 1.5 minutes

(CT ≤ 4.5) ozonation does not negatively impact the growth or survival of eggs as

compared to the commercial disinfectant Ovadine (100 mg L-1).  Rainbow trout were
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found to be more sensitive to both disinfection methods, showing equivalent levels of

hatch in disinfected batches but lower but as compared to the untreated control.

These results support the conclusion that ozone can be applied safely to both

Atlantic cod (a saltwater model species) as well as Atlantic salmon and rainbow trout

(freshwater) when the correct concentration and contact time were evaluated. This study

concluded that there is no negative effect of ozonation at < 3.0 mg O3 L-1 for 1.5 min. The

efficacy of the application in eradicating vertically transmitted pathogens will require

more research.
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