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Abstract

Cooperative technology constitutes a breakthrough in the design of wireless com-

munication systems. This is due to its relatively simple implementation and its sig-

nificant performance gains in terms of link reliability, system capacity, and trans-

mission range. In cooperative communications, multiple terminals in a network

cooperate by relaying each other’s information, forming a virtual antenna array,

and, thus realizing spatial diversity in a distributed fashion. It is not surprising

that cooperative communications have become a strong candidate for many wire-

less applications, such as cellular networks, wireless local area network, mobile

ad-hoc networks, and wireless sensor networks. However, cooperative technol-

ogy is not without challenges. A major problem in this technology is the reduction

in spectral efficiency, which results from the half-duplex constraint at the relays

and orthogonal relay transmission. This has spurred researchers to investigate co-

operative strategies to recover the spectral efficiency loss. Such strategies can be

classified into three main categories.

One category supposes that each source transmits a ’superimposed’ signal,

which consists of its own data and relaying information. This superposition can

be performed in code or in modulation domain. Obviously, if the relay does not

have its own data, a full-rate transmission can not be achieved.

The second category is to employ adaptive modulation techniques where the

spectral efficiency is improved by changing modulation size with fixed symbol

rate. However, the transmitter needs to know the channel signal-to-noise (SNR)

such that the best suitable modulation is chosen and the receiver must be informed

on the used modulation in order to decode the information.
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This leads to an increased overhead in the system as compared with a fixed

modulation system, and will increase the complexity of the receiver too.

The third one utilizes two-relay, which alternatively transmit and receive. A

key feature of this category is that the source continues to transmit data, while the

two relays take turns in receiving and transmitting the data from the source. Due

to the simultaneous transmission of the data streams through both direct and one

of relay channels, harmful interference occurs at the relays and destination. The

interference occurred at the relays and destination represents a drawback in this

case, though.

According to our best knowledge, no previous research was done to develop

the optimal detectors for alternate-relaying cooperative (ARC) systems. Further,

all the previous works for ARC systems have in common that they do not exploit

any properties of the underlying error correcting codes. It is therefore necessary to

propose optimal detection techniques for uncoded and coded two-relay systems.

This motivated us to do this research. In this thesis, we proposed optimal and

suboptimal detectors to mitigate the influence of the interference signal for the un-

coded and coded decode-and-forward (DF) ARC systems.
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Chapter 1

Introduction

Wireless communications have seen a remarkably fast technological evolution. Al-

though separated by only a few years, each new generation of wireless devices

has brought significant improvements in terms of link communication speed, de-

vice size, battery life, applications, etc. One of the major challenges for reliable

transmission in wireless communications is the random and unpredictable nature

of the channel. This nature results in a phenomenon known as fading. Fading is

mainly determined by its multipath nature due to the reflections of the signals on

natural and man-made objects. Thus, at the receiver antenna, multiple of repli-

cas of the transmitted signal arrive over different paths from different directions

with different amplitudes and phases. The superposition of these replicas results

in amplitude and phase variations of the composite received signal. In addition,

as the transmitter, the receiver or the objects may move at a relative speed with

respect to each other, the paths change with time. This turns a good reception into

a signal breakdown due to a sudden extreme attenuation and vice versa. Compen-

sating for the adverse effects of fading is therefore critical to the design of wireless

communications systems with guaranteed performance.
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Diversity is an effective way to overcome the problem of fading in wireless

channels. This improves transmission performance by making use of more than

one independently faded version of the transmitted signal. If several replicas of the

signals are transmitted over multiple channels that exhibit independent fading, the

probability that all signals experience deep fading simultaneously is significantly

reduced. Diversity can be realized in different ways, including time, frequency,

and spatial diversity [1–5].

Time diversity is a diversity technique where identical signals are transmitted

during different time slots. These time slots are uncorrelated, i.e., the temporal

separation between those slots is greater than the coherence time of the wireless

channel1. The main shortcoming of this technique is that the redundancy is pro-

vided in the time domain with a penalty of a loss in spectral efficiency.

Frequency diversity uses several carrier frequencies, that are separated by at

least the coherence bandwidth of the channel, to transmit the same signal [6, 7].2

Consequently, the carrier frequencies are uncorrelated, i.e., they do not experience

the same fades. Similar to time diversity, in frequency diversity, the redundancy

is provided in the frequency domain with the penalty of a loss in the spectral effi-

ciency. Additionally, the structure of the receiver is complicated, as it must be able

to work with a number of frequencies.

Spatial diversity can be achieved with multiple-input multiple-output (MIMO)

systems by employing multiple antennas at the transmitter and/or receiver side.

MIMO systems have been widely acknowledged and adopted in various wireless

standards [3, 4, 8, 9].
1The coherence time is the period of time after which the correlation function of two samples of

the channel response taken at the same frequency drops below a certain predetermined threshold
[6, 7].

2The coherence bandwidth is a statistical measure of the range of frequencies over which the
channel passes all the spectral components with approximately equal gain and linear phase [6, 7].
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1.1. OVERVIEW OF COOPERATIVE COMMUNICATIONS

Although MIMO systems are an attractive solution to obtain diversity without

incurring any loss of the scarce resources, the use of them on compact terminals,

such as cell phones and wireless sensor nodes, is impractical due to size, power,

and price limitations. In order to overcome these limitations, a new form of real-

izing spatial diversity has been recently introduced under the name of cooperative

diversity [5, 10–14]. The basic idea behind cooperative diversity is that the signal

transmitted by the source node is overheard by other nodes, which can be defined

as relays. The source and relays can jointly process and transmit their information,

creating a virtual antenna array, although each of them is equipped with only one

antenna. Similar to physical antenna arrays, this virtual antenna array combats

fading in wireless channels by providing the receiver with essentially redundant

signals over independent channels that can be combined to average individual

channel effects. There is no doubt that cooperative diversity has found applications

in various networks such as cellular, ad-hoc, and sensor networks (see [15–17] and

the references therein). For this wide applicability of cooperative relaying, stan-

dardization bodies have also started taking interest into it. Several task groups

within the IEEE, especially, IEEE 802.11s [18], IEEE 802.15.3 [19], IEEE 802.15.4 [20],

IEEE 802.15.5 [21], and IEEE 802.16 [22] along with [23] are contributing toward the

integration of cooperative techniques in various wireless networks.

1.1 Overview of Cooperative Communications

In a typical wireless communication network, such as a cellular radio network, the

number of active nodes is much smaller than the idle ones. Thus, it is of interest to

invite idle nodes to cooperate as relays, and to exploit them as an extra dimension

to further enhance the communication reliability. Generally, there are two kinds of

3



1.1. OVERVIEW OF COOPERATIVE COMMUNICATIONS

modes: full-duplex and half-duplex.

In a full-duplex mode, a relay transmits and receives simultaneously in the

same band; however, the transmitted signal interferes at the relay with the received

signal. In theory, it is possible for the relay to cancel out the interference because

it knows the transmitted signal. However, in practice, a small error in interfer-

ence cancellation can be fatal because the transmitted signal is typically 100-150 dB

stronger than the received signal, as indicated in [11]. This error results from inac-

curate knowledge of the device characteristics or from the effects of quantization

and finite-precision processing. Therefore, the full-duplex mode is not commonly

used.

In a half-duplex mode, a relay cannot simultaneously transmit and receive. In

other words, the source and relay transmissions are orthogonal in order to elimi-

nate any potential interference. Orthogonality can be in time-domain, in frequency

domain, or using any set of signals that are orthogonal over the time-frequency

plane. A major problem of the half-duplex relaying mode is the reduction in spec-

tral efficiency [11].

To clarify the basic principles of half-duplex cooperative transmission, consider

a communication system as shown in Figure 1.1, in which there are N relays that

cooperate in the communication between source node S and destination node D.

The communication process between the source and destination is split into two

phases.3 In the first phase, the source transmits the signal to the destination and

the relays. In the second phase, N relays deal with the received signal and trans-

mits it to the destination. The second phase of transmission requires N time slots to

guarantee orthogonal transmission between relays, and then time division multi-

3It is worthy to mention that there are many other cooperative strategies in the literature, such
as cooperative space-time coding and cooperative beamforming [5, 10–14]. In this thesis, we focus
on cooperative diversity.
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1.1. OVERVIEW OF COOPERATIVE COMMUNICATIONS

R1

RN

DS

First phase

R2

.

.

.

R1

RN

DS

Second phase

R2

.

.

.

Figure 1.1: Cooperative transmission.

ple access (TDMA) is required. This is because of the half-duplex constraint, which

is the practical perspective that the relays can not simultaneously transmit and re-

ceive. Furthermore, frequency division multiple access (FDMA) or code division

multiple access (CDMA) could also be used so that the relays can transmit simul-

taneously to the destination, however at the cost of bandwidth expansion. This

implies that relays introduce a delay, i.e., the source uses only one time slot from

N+1 time slots when TDMA is used or uses one time slot from 2 time slots when

FDMA or CDMA is employed at the second phase. This leads to an decrease in the

instantaneous spectral efficiency.

The processing at the relay differs according to the employed relaying strate-

gies. Basically, the two relaying strategies analyzed in the literature are: amplify

and forward and decode and forward.

Amplify-and-Forward (AF) is one of the simplest relay strategies. In AF, each

relay simply forwards to the destination a scaled version of the received signals, in-

cluding both information and noise. By properly combining received signals from

the source and relays, the destination node makes a final decision. Since the des-
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1.1. OVERVIEW OF COOPERATIVE COMMUNICATIONS

tination receives multiple copies of signals transmitted from the source and relays

through multiple independent paths, spatial diversity can always be achieved by

the AF strategy at high signal-to-noise ratios (SNRs). Obviously the major draw-

back of AF protocols is noise amplification at the relays.

Decode-and-Forward (DF) is another commonly used strategy for eliminating

the noise effect, especially for coded systems. The relay decodes the received sig-

nals and re-encodes them before forwarding to the destination. When the channel

quality in the link between the source and relay is good, the process of decod-

ing and re-encoding provides more powerful error correcting capabilities than AF.

However, when the link from the source to the relay suffers from deep fading,

decoding errors may occur at the relay. In this case, if the relay re-encodes these

incorrect bits, error propagation will occur and lead to even worse performance.

As indicated in Figure 1.1 and the corresponding discussion, we recall that the

source remains idle during the second phase of the transmission where relays deal

with the received signal and transmits it to the destination. This leads to a a sig-

nificant reduction of the spectral efficiency. Recently, adaptive modulation [24–27],

superposition modulation [28–31], non-orthogonal relaying [32, 33], and alternate-

relaying [34–36] are considered to be promising cooperative strategies to improve

spectral efficiency of cooperative systems.4

In adaptive modulation, the spectral efficiency is improved by changing modu-

lation size with fixed symbol rate, e.g., [24–27]. The use of adaptive modulation in

the context of AF cooperative has been studied in [24,25,37], where adaptive mod-

ulation is performed only at the source. Alternatively, DF allows the source and

relays to employ different modulation schemes, and, as a consequence, increases

4The best relay scheme also improves the spectral efficiency through using only two channels
instead of N + 1 channels. The best relay is the relay that achieves the highest instantaneous channel
gain to the destination.
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the degree of freedom in multi-link adaptation [26,27]. Generally, the major disad-

vantage of adaptive modulation techniques is that the transmitter needs to know

the channel signal-to-noise (SNR); such that the best suitable modulation is chosen

and the receiver must be informed on the used modulation in order to decode the

information. This leads to an increased overhead in the system as compared with

a fixed modulation system, and will also increase the complexity of the receiver.

The superposition modulation is applicable to the scenario where two nodes are

willing to transmit to a common destination and wish to get help from each other

to provide better performance [28–31]. The main idea of superposition modulation

is that each node in the network transmits a superimposed signal containing its

own data and an overheard version of the other source data, which can improve

spectral efficiency of cooperative system.

In the non-orthogonal relaying (e.g., [32,33]), the source is active all the time. In

the first half of the transmission interval, the source sends data to a relay and des-

tination. However, since the relay is assumed to be half-duplex, the relay does not

receive what the source transmits in the second half of the transmission interval.

This results in a reduction in the diversity order of the system. Furthermore, an

additional processing is required at the destination in order to separate the signals

received simultaneously in the second half of the transmission interval.

Alternate-relaying cooperative (ARC) transmission protocols are introduced

(e.g., [34–36, 38–43]), in which the source communicates with the destination via

two relays. The basic idea behind these protocols is to use two successive relays

to mimic a full-duplex relay. More specifically, at any time slot, the source sends

its information to one of the relays and the destination, while the other relay for-

wards the information received from the source in the previous time slot to the

destination. In this way, the source can continuously transmit data and hence the

7
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spectral efficiency loss is recovered. Recently, alternate-relaying transmission pro-

tocols have been further extended to multiple relay and multiple user scenarios

(e.g., [44–48]). As being related to the direction of the thesis, next Section focuses

on the literature review related to ARC systems.

1.2 Overview of BICM-ID

Bandwidth-efficient bit-interleaved coded modulation (BICM) has been considered

as a state-of-the art coded modulation technique to extract time diversity over wire-

less fading channels [49]. The basic idea behind BICM is to concatenate a channel

encoder, such as a linear block code or a convolutional code, and a random bit

interleaver spanning over several coherence time intervals. By doing so, a diver-

sity gain that is equal to the minimum binary Hamming distance of the channel

code can be obtained. In BICM, the channel encoder and the modulator can be de-

signed independently, offering more flexibility in system design. The performance

of BICM can be further improved by applying the iterative decoding (ID) approach,

which results in BICM with iterative decoding (BICM-ID) systems [50–53]. At a

comparable decoding complexity, it is well known that BICM-ID systems can out-

perform trellis coded modulation (TCM) systems [54–57] over both faded and non-

faded channels. It is worth noting that the BICM-ID technique has already been

adopted by several wireless communications standards such as HIPERLAN/2,

IEEE 802.11a/g (WLAN), IEEE 802.16e (mobile WiMAX), 3GPP/HSDPA, DVB-S2,

and DVBT [58].

Typically, to further improve the performance of cooperative systems, joint sig-

nal design and error coding codes are performed at the source and relays. One

form of coded cooperative transmission can be implemented by transmitting the
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overall codeword in a distributed manner where different parts of the codeword

are transmitted by relays through independent wireless links (e.g. [14]). This cre-

ates additional degrees of freedom. However, this poses challenges in code con-

struction. How to combine ARC systems with BICM transmission in an effective

manner is the objective of this research.

1.3 Related Work

The vast majority of research in ARC transmission protocols focuses on

information-theoretic analysis to assess achievable rates, capacity bounds, and

diversity-multiplexing tradeoff (e.g., [38, 40, 42, 43, 59–63]). However, the major

issue associated with these protocols is how to cancel or utilize the interference,

which is caused by simultaneous transmission of the source and one of the relays

at the same time, in a simple way. Basically, the method used to treat interference

at the relays and destination depends on whether the relays employ AF or DF re-

laying strategies.

For AF alternate-relaying protocols, the authors in [38] propose successive

decoding at the destination with partial cancellation of inter-relay interference.

The authors in [40] introduce an inter-relay self interference cancellation detec-

tor, where the cancellation is performed at one of the relays; however the detec-

tion process at the destination requires high computational complexity. Recently,

the authors in [35, 39] propose a full inter-relay interference detector, where the

cancellation is performed at the destination in a simple manner; however, noise

accumulation associated with the detector limits the overall system performance.

Generally, the deployment of AF relaying strategy in alternate-relaying coopera-

tive systems is challenging, since the interference and noise accumulation which
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results from the inter-relay link degrade the overall performance. Accordingly, the

detection process at the destination has to be associated with sophisticated inter-

ference cancellation detectors. This increases the computational complexity sig-

nificantly, as shown in [40]. Due to its symbol-by-symbol decision base, DF is an

attractive relaying strategy to avoid interference accumulation at the destination

for alternate-relaying cooperative systems5.

For DF alternate-relaying protocols, it is usually assumed that the inter-relay

link is either sufficiently weak and then the interference can be treated as extra

noise, or sufficiently strong and the interference can be canceled through succes-

sive interference cancellation at the relay6 [38, 59]. However, these two extreme

scenarios may not always occur in practical systems. In [60,62], dirty paper coding

based on interference pre-subtraction at the source is proposed to cancel the inter-

relay interference. However, this requires high computational complexity and full

knowledge of channel state information of all links at the source, which is not easy

to achieve in practice. Beam-forming/smart antennas [34] and code-division mul-

tiple access (CDMA) techniques [41] are also proposed to eliminate the interference

at the relays and destination. The former technique comes at the cost of complex-

ity, whereas the latter comes at the cost of bandwidth. In [42], the authors propose

employing multiple antenna at the relays to cancel out the inter-relay interference.

However, implementing multiple antennas at the relays is impractical for some

wireless applications due to size, power, and cost constraints. The authors in [43]

rotate the signal constellation, such that there are no two symbols having the same

real or imaginary value. Real and imaginary dimensions are then assigned for the

direct and relaying paths, respectively to achieve full interference cancellation at

5DF relaying strategy can be seen simply as a particular non-linearity version of AF.
6In the successive interference cancellation detection, the strongest signal is detected first, and

then its contribution is subtracted from the received signal before detecting the other signal.
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the relays. However, the direct link is not considered and the rotated constellation

causes a dramatic decrease in the bit-error-rate (BER) performance when compared

with that of the original constellation.

1.4 Motivation and Objective of the Thesis

To the best of our knowledge, all the reported works for ARC systems have the

following in common:

• they do not provide the optimal data detection solution;

• they restrict themselves to uncoded transmission and do not exploit any

properties of the underlying error correcting codes;

These works motivated us to do this research. We can summarize the objective of

the thesis in the following main point:

• To propose novel data detection algorithms for uncoded and coded DF-ARC

systems, with a destination node supporting single and multiple antenna.

11



1.5. ORGANIZATION OF THE THESIS

1.5 Organization of the Thesis

The thesis is organized into five chapters.

Chapter 2 describes the basic principles that are used throughout the thesis. It

begins with the fundamentals of detection theory. In addition, a brief overview of

convolutional codes with particular focus on Viterbi and BCJR algorithms as pow-

erful tools for decoding, is presented. Finally, the bit interleaved coded modulation

iterative decoding (BICM-ID) scheme is also highlighted.

Chapter 3 develops novel detection algorithms for uncoded ARC-DF systems.

It begins with the transmission model for uncoded ARC-DF systems. Then, the

maximum-likelihood (ML) detector at the relays is proposed. The optimal detector

at the destination supporting one antenna is also developed. Furthermore, a sub-

optimal one is introduced. In addition, this chapter discusses the receiver design

of a destination node supporting multiple antenna for uncoded ARC-DF systems.

Finally, the performance of the proposed detectors is verified through computer

simulations.

Chapter 4 develops novel detection algorithms for BICM ARC-DF systems. It

begins with the transmission model for coded ARC-DF systems. Then, a novel de-

tector at the relays is proposed.The optimal detector at the destination supporting

one antenna is developed. Furthermore, a sub-optimal one is also introduced. In

addition, this chapter discusses the receiver design of a destination node support-

ing multiple antenna for BICM ARC-DF systems. Finally, the performance of the

proposed detectors is verified through computer simulations.

The thesis is concluded in Chapter 5 and some topics for future research are

addressed.
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Chapter 2

Basic Principles

As mentioned in Chapter one, the thesis focuses on proposing new detection algo-

rithms for uncoded and coded alternate-relaying cooperative (ARC) systems. As

a prerequisite the reader should be familiar with the fundamentals of the wire-

less digital communications, such as signal detection theory and error-correcting

concepts. This chapter provides the basic principles that are used throughout the

thesis. The fundamentals of signal detection theory are presented in Section 2.1.

Comprehensive coverage of convolutional codes, including encoders, the struc-

tural properties of convolutional codes, and decoders is provided in Section 2.2.

Bit-interleaved coded modulation iterative-decoding (BICM-ID) schemes are re-

viewed in Section 2.3. Finally, the chapter is summarized in Section 2.4.

2.1 Signal Detection Theory

Signal detection theory is concerned with the analysis of received signals to de-

termine the presence or absence of the signals of interest, to classify the signals

present, and to extract information included in these signals. Generally, we are
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2.1. SIGNAL DETECTION THEORY

given a finite set of possible hypotheses about an experiment, along with observa-

tions related statistically to the previous hypotheses, and the theory provides rules

for making best decisions (according to some performance criterion) about which

hypothesis is likely to be true. The field of signal detection covers a broader range

of applications namely: radar, image processing, digital communications, etc.

In digital communications, the hypotheses are the possible messages, and the

observables are the outputs of a probabilistic channel. Suppose we have M hy-

potheses (signals), labeled by Si, i = 0, 1, · · · , M− 1, associated with a probabilistic

experiment. We also adopt prior probabilities on the hypotheses, denoted Pr (Si).

Based on the observation R, the decision maker produces Ŝi. We are interested in

the best decision-making algorithm in sense of minimizing the probability of deci-

sion error, Pr
(
Ŝi 6= Si

)
. There are basically two criteria that are widely applied to

minimize Pr
(
Ŝi 6= Si

)
: the maximum likelihood (ML) criterion and the maximum

a posteriori (MAP) criterion [64, 65]. MAP criterion exploits priori information on

the hypotheses. ML criterion is suited to problems where a priori information is

missing. Since some prior information about the hypotheses is incorporated in the

MAP criterion, the MAP criterion can improve the detection accuracy as compared

to the ML criterion.

MAP criterion

MAP criterion maximizes the a posteriori probability:

Ŝi = arg max
Si

Pr (Si|R) . (2.1)
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Using Bayes’ rule, we can write

Pr (Si|R) =
Pr (R|Si)Pr (Si)

Pr (R)
. (2.2)

However, the denominator on the right-side in (2.2) does not involve i, and maxi-

mizing (2.2) is equivalent to maximizing Pr (R|Si)Pr (Si).

ML criterion

When Pr (Si) is unknown, MAP criterion is not possible and ML is then performed.

In ML, we maximize the likelihood function

Ŝi = arg max
Si

Pr (R|Si) . (2.3)

Observe that when Si has a uniform a priori distribution over its entire domain, the

MAP criterion reduces to the ML.

Because it is the maximizing value (i.e. the argument) that is important in

ML/MAP criterion, and not the value of the maximum (the function) itself, it is

common to ignore or suppress constants in the likelihood/a posteriori function

that do not depend upon the parameter set. Also, it is more convenient to consider

the logarithm of the likelihood/a posteriori function, called log-likelihood/ log-a

posteriori function. Since the logarithm is monotonically increasing, the maximiz-

ing the log-likelihood/log-a posteriori function is equivalent to maximizing the

likelihood/a posteriori function.
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2.2 Convolutional Codes

Convolutional codes have been widely used in applications such as space and

satellite communications, cellular mobile, digital video broadcasting, etc [66, 67].

Further, convolutional codes are the building blocks for other important classes of

error correcting codes such as turbo codes and trellis coded modulation [54–57,68,

69]. Their popularity stems from their simple structure and availability of easily

implementable maximum likelihood decoding.

Convolutional codes have a long history. Elias first introduced them in 1955 [70]

as an alternative to block codes. He showed that redundancy could be introduced

into a data stream through the use of a linear shift register. In 1967 Viterbi dis-

covered an approach for decoding convolutional codes which he showed to be

“asymptotically optimal” [71, 72]. In 1973 Forney [73] showed that what is now

known as the Viterbi algorithm is actually a maximum-likelihood decoding algo-

rithm for convolutional codes.

In the following sub-sections we consider a basic structure of convolutional

codes. An emphasis is placed on decoding algorithms including the Viterbi and

BCJR algorithms. For more details, the interested reader is encouraged to consult

texts such as [67, 74].

2.2.1 Convolutional Encoders

We will use the rate 1/2 linear convolutional encoder of Figure 2.1 as a running

example to illustrate the insights into the fundamental structures of these encoders.

The rate of this encoder is established by the fact that the encoder outputs two bits
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 1 0 1 2, , , , , , ,lx x x x xX

 (0) (0) (0) (0) (0) (0)

1 0 1 2, , , , , , ,lc c c c cC

 (1) (1) (1) (1) (1) (1)

1 0 1 2, , , , , , ,lc c c c cC

Figure 2.1: A rate-1/2 convolutional encoder.

for every input bit. In Figure 2.1 the binary data stream

X = {. . . , x−1, x0, x1, x2, . . . , xl, . . . } , (2.4)

is fed into a shift register circuit consisting of a series of memory elements, where

l is a time instant. With each successive input to the shift register, the values of the

memory elements are tapped off and added according to a fixed pattern, creating

a pair of output coded data streams

C(0) =
{

. . . , c(0)−1, c(0)0 , c(0)1 , c(0)2 , . . . , c(0)l , . . .
}

, (2.5)

and

C(1) =
{

. . . , c(1)−1, c(1)0 , c(1)1 , c(1)2 , . . . , c(1)l , . . .
}

, (2.6)

where we assume that c(i)l , i = 0, 1 are binary symbols. These output streams can

be multiplexed by a commutator to create a single coded data stream

C =
{

. . . , c(0)0 c(1)0 , c(0)1 c(1)1 , c(0)2 c(1)2 , . . . , c(0)l c(1)l , . . .
}

, (2.7)
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which is the convolutional codeword.

Each element in the output streams C(0) and C(1) is a linear combination of the

elements in the input stream X. At time l the input to the encoder is xl and the

output is cl =
{

c(0)l c(1)l

}
, where

c(0)l = xi + xi−2 + xi−3, (2.8)

and

c(1)l = xi + xi−1 + xi−3, (2.9)

where + denotes modulo-2 addition.

For example, the encoder in Figure 2.1 is used to encode the information se-

quence X = {10110}. We obtain C(0) = {10001010} and C(1) = {11111110}, and

the convolutional codeword is then {11, 01, 01, 01, 11, 01, 11, 00}. Here we assume

that the shift-register contents are initialized to zero before the encoding process

begins.

The connections between the shift register elements and the modulo-2 adders

can be conveniently described by the following two generator sequences,

g(0) =
{

g(0)0 g(0)1 g(0)2 g(0)3

}
= {1011} ,

g(1) =
{

g(0)0 g(0)1 g(0)2 g(0)3

}
= {1101} , (2.10)

where g(0) and g(1) represent the lower connections, respectively, with the leftmost

entry being the connection to the leftmost stage. The term convolutional codes

comes from the observation that the ith output sequence C(i), i = 1, 2, represents
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the convolution of the input sequence and the ith generator sequence,

C(i) = X ∗ g(i), (2.11)

where * denotes the convolution operator.

As shown in Figure 2.1, the output, c(i)l , is affected by xl and the the past three

information bits. In general, the constraint length of a convolutional code is de-

fined as the number of shifts over which a single information bit can influence the

encoder output. In other way, the constraint length is usually taken to be the length

of the input shift register plus one [67, 74].

2.2.2 The Structural Properties of Convolutional Codes

Traditionally, the structure properties of convolutional codes are portrayed in

graphical form by using state and trellis diagrams.

State Diagram

Since the convolutional encoder is a sequential circuit, its operation can be de-

scribed by a state diagram. The state of the encoder is defined as the shift register

contents. The encoder shown in Figure 2.1 contains three binary memory elements

that can collectively assume any one of eight possible states. Designate these states

{S0, S1, . . . , S7} and associate them with the contents of the memory elements as

shown below
S0 ←→ (000) S4 ←→ (001)

S1 ←→ (100) S5 ←→ (101)

S2 ←→ (010) S6 ←→ (011)

S3 ←→ (110) S7 ←→ (111).
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S0 S2 S5 S7

S1

S4 S6
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1/10

1/01
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1/110/00

Figure 2.2: State diagram of the encoder shown in Figure 2.1.

The encoder moves between states in a deterministic manner. Given a current state

(λµν), the next state can be either (0λµ) corresponding to a zero input or (1λµ)

corresponding to a one input, where λ, µ, ν ∈ {0, 1}. The state diagram for the

encoder in Figure 2.1 is shown in Figure 2.2. Each branch in the state diagram has

a label of the form x/c(0)c(1), where x is the input bit that causes the state transition

and c(0)c(1) is the corresponding pair of output bits.

For example: The information sequence X = {101011} is encoded using the en-

coder shown in Figure 2.1 and its state diagram shown in Figure 2.2. This informa-

tion sequence designates the path S0, S1, S2, S5, S2, S5, S3 through the encoder state

diagram in Figure 2.2. The corresponding code word is thus {11, 01, 01, 10, 01, 01}.

We start encoding with a zero state encoder and the end state must be known, so

additional m zero bits are added to the end of the information to drive the encoder

to state zero. These additional zero bits are called the tail.
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 (0) (0) (0) (0) (0) (0)

1 0 1 2, , , , , , ,lc c c c cC

 (1) (1) (1) (1) (1) (1)

1 0 1 2, , , , , , ,lc c c c cC

 1 0 1 2, , , , , , ,lx x x x xX

Figure 2.3: A rate-1/2 convolutional encoder with m = 2.

Trellis Diagram

A trellis diagram is an extension of a convolutional code’s state diagram that explic-

itly shows the passage of time. Consider the rate-1/2 convolutional encoder with

two shift registers, m = 2, and generator sequences g(0) = {111} and g(1) = {101}

shown in Figure 2.3. The state diagram of this encoder is shown in Figure 2.4.

In Figure 2.5 the state diagram is extended in time to form a trellis diagram. The

branches of the trellis diagram are labeled with the output bits corresponding to the

associated state transitions, with the lower branch corresponding to the zero-input

bit, and the upper branch corresponding to the one-input bit.

Every codeword in a convolutional code is associated with a unique path, start-

ing and stopping at state S0, through the associated trellis diagram. Consider a rate

1/n binary convolutional encoder with total memory m. The associated trellis dia-

gram has 2m states at each stage, or time increment t. There are 2 branches leaving

each node, one branch for each possible combination of input values.

It is assumed that after the input sequence has been entered into the encoder,

m state transitions are necessary to return the encoder to state S0. Given an input

sequence of L′ bits, the trellis diagram must have (L′ + m) stages, the first and last
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S0

S3

S2 S1

0/00

1/11

1/01

1/00

0/10

0/11

0/01

1/10

Figure 2.4: State diagram of the encoder shown in Figure 2.3.

stages starting and stopping, respectively, in state S0. There are thus 2L′ distinct

paths through the general trellis, each corresponding to a convolutional codeword

of length n(L′ + m).

For example: An input sequence of length L′ = 3, X = {101} is shown in

Figure 2.6 to correspond to a five-branch path associated with the 2(3+ 2) = 10 bits

convolutional codeword C = {11, 10, 00, 10, 11}.

2.2.3 Viterbi Decoding

Let X = {x0, x1, · · · , xL} denote a message vector with length L′ including tail

bits, C =
{

c(0)0 c(1)0 , c(0)1 c(1)1 , · · · , c(0)L′ c(1)L′

}
denote the corresponding codeword and

R =
{

r(0)0 r(1)0 , r(0)1 r(1)1 , · · · , r(0)L′ r(1)L′

}
is the discrete received vector. Here we con-

sider a rate 1/2 convolutional code, generalization to any other rate is straight-

forward. Given R, the decoder is required to make an estimate X̂ of the message
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Figure 2.5: Trellis diagram for the encoder in Figure 2.3.
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Figure 2.6: Trellis diagram for inputs of length 3 to the encoder in Figure 2.3.
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vector. Since there is one-to-one correspondence between the message vector X

and the codeword C, the decoder may equivalently produce an estimate Ĉ of the

codeword. We put X̂ = X if and only if Ĉ = C. Otherwise, a decoding error is

committed in the receiver. The decoding rule for choosing the estimate C, given

the received vector, is said to be optimum when the probability of decoding er-

ror is minimized. Assuming, equiprobable messages, the probability of decoding

error is minimized if the estimate Ĉ is chosen to maximize the log-likelihood func-

tion, logPr (R|C). Here Pr (R|C) denotes the conditional probability of receiving

R, given C was sent.

The maximum likelihood decoder is described as follows: choose the estimate

Ĉ for which the logPr (R|C) is maximum. Mathematically, we can write

Ĉ = argmax
C

log Pr (R|C) . (2.12)

We assume a flat fading channel and the noise process affecting a given bit in the

received vector R is independent of the noise process affecting all of the other re-

ceived bits. Since the probability of joint, independent events is simply the product

of probabilities of the individual events [75], it follows that

Pr (R|C) =
L′−1

∏
l=0

1

∏
i=0

Pr
(

r(i)l |c
(i)
l

)
, (2.13)

where

Pr
(

r(i)l |c
(i)
l

)
=

1
πσ2 e−

∣∣∣r(i)l −h(i)l c(i)l

∣∣∣2/σ2
, (2.14)

where h(i)l is the channel coefficient and σ2 is the noise variance. The expression

1

∏
i=0

Pr
(

r(i)l |c
(i)
l

)
,
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is called the branch metric because it indicates the component of (2.13) associated

with the lth stage of the trellis. By taking the logarithm of each side of (2.13) we

obtain the log likelihood function

logPr (R|C) =
L′−1

∑
l=0

1

∑
i=0

logPr
(

r(i)l |c
(i)
l

)
. (2.15)

The log-likelihood function logPr (R|C), which we denote by G (R|C), represents

the metric associated with the sequence C. We can now define a partial path metric

for the first t stages of a path as

G (R|C)t =
t−1

∑
l=0

1

∑
i=0

logPr
(

r(i)l |c
(i)
l

)
. (2.16)

We have labeled the branches of our trellis with the output bits corresponding to a

particular input to the encoder and the encoder’s current state.

In the Viterbi algorithm, each node in the trellis is assigned a number. This

number is the partial path metric of the path that starts at state S0 at time t = 0 and

ends at that node. The assignment of the numbers to trellis nodes is routine until

we reach the point in the trellis in which more than one path enters each node. In

this case we choose as the node label the best partial path metric among the metrics

for all of the entering paths. The path with the best metric is the survivor, while the

other entering paths are non-survivors. If two or more paths share the best metric,

the survivor is randomly selected from among the best paths.

The selection of the survivors lies at the heart of the Viterbi algorithm. The

algorithm terminates when all of the nodes in the trellis have been labeled and

their entering survivors have been determined. We then go to the last node in the

trellis (state S0 at time L′) and trace back through the trellis. At any given node,

we can only continue backward on a path that survived upon entry into that node.
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Algorithm 2.1
Viterbi Algorithm
Step 1. Set the metric stored at state S0 at time t = 0 equal 0.
Step 2. At time t compute the partial path metrics for all paths entering a state
by adding the branch metric entering that state to the metric of the connecting
survivor at the preceding time unit.
Step 3. For each state, store the survivor together with its metric and eliminate all
other paths.
Step 4. If t < L′, increase t and return to step 2. Otherwise, stop.

Since each node has only one entering survivor, our trace-back operation always

yields a unique path. This path is the ML path. The following algorithm, when

applied to the received sequence R, finds the ML path through the trellis. The

algorithm processes R in an iterative manner. At each step, it compares the metrics

of all paths entering each state, and stores the survivor together with its metric.

Following the surviving branches backward through the trellis gives a path. The

path thus defined is unique and corresponding to the ML codeword. Algorithm

2.1 summarizes the Viterbi algorithm.

2.2.4 BCJR Decoding

Given the received sequence R, the Viterbi algorithm finds the codeword C that

maximizes the log-likelihood function. Once the ML codeword C is determined,

its corresponding information X becomes the decoded output. Because the Viterbi

algorithm finds the most likely codeword, it minimizes the word error rate,

Pr
(
Ĉ 6= C|R

)
. In many cases, however, we are interested in minimizing the bit-

error-rate (BER), Pr (x̂l 6= xl|R) rather than the word error rate, Pr
(
Ĉ 6= C|R

)
. To

minimize the BER, the a posteriori probability Pr (x̂l = xl|R) must be maximized.

An algorithm that maximizes Pr (x̂l = xl|R) is called a maximum a posteriori prob-

ability (MAP) decoder.
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In 1974 Bahl, Cocke, Jelinek, and Raviv [76] introduced a maximum a posteriori

(MAP) decoder, called the BCJR (or MAP) algorithm that can be applied any linear

code, block or convolutional code. The BCJR algorithm shares many similarities

with the Viterbi algorithm. Both are based on the same trellis, both assign branch

metric to transitions, and both progress through the trellis recursively. However,

rather than making one pass through the trellis from start to end, as is done in

the Viterbi algorithm, the BCJR algorithm makes two phases: one forward pass

from start to end, and then a second backward pass from end to start. Therefore,

roughly speaking, the complexity of the BCJR algorithm is twice that of the Viterbi

algorithm, and thus the Viterbi decoding is preferred in the case of equally likely

information bits. When the information bits are not equally likely, however, bet-

ter performance is achieved with a MAP decoder. On the other hand, Viterbi and

BCJR algorithms differ in a fundamental way because they compute very differ-

ent quantities. The Viterbi algorithm computes hard decisions by performing se-

quence detection, while the BCJR algorithm computes soft information about the

data symbols in the form of a posteriori probabilities for each of the transmitted

symbol. Recently, the BCJR algorithm is critical to modern iteratively-decoded

error-correcting codes including turbo codes and low-density parity-check codes

as the a priori probabilities of the information bits change from iteration to itera-

tion, a MAP decoder gives the best performance [77–79].

In the following discussion we describe the BCJR algorithm for the case of con-

volutional codes used on binary-input, continuous-output AWGN channel and flat

fading. We do not assume that the information bits are equally likely. The algo-

rithm calculates the a posteriori log-likelihood ratios (L-values) as

L (xl) = log
[

Pr (xl = 1|R)

Pr (xl = 0|R)

]
, (2.17)
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called the APP L-values, of each information bit, and the decoder output is given

by

x̂l =

 1, L (xl) > 0

0, L (xl) < 0
, l = 0, 1, · · · , L′ − 1. (2.18)

In iterative decoding, the APP L-values can be taken as the decoder outputs, re-

sulting in a soft-input soft-output (SISO) decoding algorithm. The magnitude of an

APP L-value is a measure of the confidence we have in the preceding decision: the

more the L (xl) magnitude is far away from the zero threshold decision, the more

we trust in the bit estimation we have made. We write the APP value Pr (xl = 1|R)

as follows:

Pr (xl = 1|R) =
Pr (xl = 1, R)

Pr (R)
=

∑
X∈X+

Pr (R|C)Pr (X)

∑
X

Pr (R|C)Pr (X)
, (2.19)

where X+ is the set of all information sequences X such that xl = 1. Rewriting

Pr (xl = 0|R) in the same way, we can write the expression (2.17) for the APP L-

value as

L (xl) = ln
∑

X∈X+

Pr (R|C)Pr (X)

∑
X∈X−

Pr (R|C)Pr (X)
, (2.20)

where X− is the set of all information sequences X such that xl = 0. MAP decod-

ing can be achieved by computing the APP L-values L (xl), l = 0, 1, 2, · · · , L′ − 1

directly from (2.20) and then applying (2.18); however, except for very short block

trellis L′, the amount of computation required is prohibitive. For codes with trel-

lis structure and a reasonable number of states, such as short convolutional codes,

employing a recursive computational procedure based on the trellis structure of

the code considerably simplifies the process.
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First, making use of the trellis structure of the code, we can reformulate (2.19)

as follows;

Pr (xl = 1|R) =
Pr (xl = 1, R)

Pr (R)
=

∑
(s′,s)∈Υ+

l

Pr (sl = s′, sl+1 = s, R)

Pr (R)
, (2.21)

where Υ+
l is the set of all state pairs sl = s′ and sl+1 = s that correspond to the

input bit xl = 1 at time l. Reformulating the expression Pr (xl = 0|R) in the same

way, we can write (2.17) for the APP L-value as

L (xl) = log

∑
(s′,s)∈Υ+

l

Pr (sl = s′, sl+1 = s, R)

∑
(s′,s)∈Υ−l

Pr (sl = s′, sl+1 = s, R)
, (2.22)

where Υ−l is the set of all state pairs sl = s′ and sl+1 = s that correspond to the

input bit xl = 0 at time l. Equations (2.20) and (2.22) are equivalent expressions for

the APP L-value L (xl), but whereas the summations in (2.20) extend only over a

set of state pairs. Hence for a large block length L’, (2.22) is considerably simpler

to evaluate.

Now, we show how the joint probability density function (pdf), Pr (s′, s, R), in

(2.22) can be evaluated recursively. The key to the BCJR algorithm is a decompo-

sition of Pr (s′, s, R) for a transition at time l into three factors: the first depending

on only the “past” observations, rt<l = {rt : t < l}, the second depending only

on the “present” rl, and the third depending only on the “future” observations,

rt>l = {rt : t > l}. We begin by writing

Pr
(
s′, s, R

)
= Pr

(
s′, s, rt<l, rl, rt>l

)
. (2.23)
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Application of Bayes’ rule yields

Pr
(
s′, s, R

)
= Pr

(
rt>l

∣∣s′, s, rt<l, rl
)

Pr
(
s′, s, rt<l, rl

)
= Pr

(
rt>l

∣∣s′, s, rt<l, rl
)

Pr
(
s, rl

∣∣s′, rt<l
)

P
(
s′, rt<l

)
(2.24)

= Pr (rt>l |s )Pr
(
s, rl

∣∣s′ )Pr
(
s′, rt<l

)
,

where the last equality follows from the fact that the probability of the received

branch at time l depends only on the state and the input symbol at time l. Defining

αl(s′) = Pr
(
s′, rt<l

)
, (2.25)

γl(s′, s) = Pr
(
s, rl

∣∣s′ ) , (2.26)

βl+1(s) = Pr (rt>l |s ) , (2.27)

we can rewrite (2.24) as

Pr
(
s′, s, R

)
= βl+1(s)γl(s′, s)αl(s′). (2.28)

The expression for the probability αl+1(s) can be rewritten as

αl+1(s) = Pr (s, rt<l+1) = ∑
s′∈σp

Pr
(
s′, s, rt<l+1

)
= ∑

s′∈σl

Pr
(
s, rl

∣∣s′, rt<l
)
Pr
(
s′, rt<l

)
= ∑

s′∈σl

Pr
(
s, rl

∣∣s′ )Pr
(
s′, rt<l

)
= ∑

s′∈σl

γl(s′, s)αl(s′), (2.29)

where σl is the set of all states at time l. Thus, we can compute a forward metric

αl+1(s) for each state s at time l + 1 using the forward recursion (2.29). Similarly,
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we can write the expression for the probability βl(s′) as

βl(s′) = ∑
s′∈σl+1

γl(s′, s)βl+1(s), (2.30)

where σl+1 is the set of all states at time l + 1, and we can compute a backward met-

ric βl(s′) for each state s′ at time l using the backward metric (2.30). The forward

recursion begins at time l = 0 with initial condition

α0(s) =

 1, s = 0

0, s 6= 0.
(2.31)

Similarly, the backward recursion begins at time l = L′ with the initial condition

βL(s) =

 1, s = 0

0, s 6= 0.
(2.32)

We can write the branch metric γl(s′, s) as

γl(s′, s) = Pr
(
s, rl

∣∣s′ ) = Pr (s′, s, rl)

Pr (s′)

=
Pr (s′, s)
Pr (s′)

Pr (s′, s, rl)

Pr (s′, s)
= Pr

(
s
∣∣s′ )Pr

(
rl
∣∣s′, s

)
= Pr (xl)Pr (rl |cl ) , (2.33)

where cl is the output corresponding to the state transition s′ → s at time l and

Pr (rl |cl ) =
1

πσ2 exp
(
− |rl − hlcl|2 /σ2

)
(2.34)

where hl is the corresponding channel coefficients.
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Log MAP BCJR

The BCJR algorithm is in general of high complexity, and, on the other hand, sums

and products involved in its calculation can lead to underflow and overflow prob-

lems in practical implementations. These calculations also require considerable

amount of memory to store all the values, until a decoding decision is taken. A

logarithmic version of this algorithm appears to be a solution to the many calcu-

lation problems that the original version of the BCJR algorithm faces. The basic

idea is that by converting calculations into their logarithmic form, products con-

vert into sums. The logarithm of a sum of two or more terms seems to be a new

complication, but this operation is solved by using the following equation,

max∗(x, y) ≡ log (ex + ey) = max(x, y) + log
(

1 + e−|x−y|
)

, (2.35)

where the term log
(

1 + e−|x−y|
)

can be either exactly calculated, or in practical

implementations of this algorithm, obtained from a look up table.

The logarithmic version of the MAP BCJR algorithm greatly reduces the over-

flow and underflow effects in its applications. The version is known as the LOG

MAP BCJR. Another and even simpler version of the LOG MAP BCJR is the so-

called MAX LOG MAP BCJR algorithm, in which the term log
(

1 + e−|x−y|
)

is

omitted in the calculations, and (2.35) is used by simply evaluating the MAX value

of the involved quantities [80].

Defining α∗l+1(s) = log (αl+1(s)), β∗l (s
′) = log (βl(s′)), and

γ∗l (s
′, s) = log

(
γl(s′, s)

)
,

= log (Pr (xl)) + log (Pr (rl |cl )) ,

= log (Pr (xl))− |rl − hlcl|2 /σ2. (2.36)
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We exploit (2.33) and (2.34) to obtain the second and third lines of the previous

equation, respectively, and we drop 1
πσ2 of (2.34) as this is a common term in all

branches. Using (2.28) - (2.35), we can write

α∗l+1(s) = log ∑
s′∈σl

γl(s′, s)αl(s′),

= log ∑
s′∈σl

e[γ
∗
l (s
′,s)α∗l (s

′)],

= max∗s′∈σl

[
γ∗l (s

′, s) + α∗l (s
′)
]

, l = 0, 1, · · · , L′ − 1, (2.37)

and

α∗0(s) ≡ log (α0(s)) =

 0, s = 0

−∞, s 6= 0
. (2.38)

Similarly,

β∗l (s
′) = log ∑

s∈σl+1

γl(s′, s)βl+1(s),

= log ∑
s∈σl

e[γ
∗
l (s
′,s)β∗l+1(s)],

= max∗s∈σl+1

[
γ∗l (s

′, s) + β∗l+1(s)
]

, l = L′ − 1, L′ − 2, · · · , 0, (2.39)

and

β∗L′(s) ≡ log (βL′(s)) =

 0, s = 0

−∞, s 6= 0
. (2.40)

Further, we can now write the expressions for the pdf Pr (s, s′, r) and the APP L-

value L (xl) as

Pr
(
s, s′, r

)
= eβ∗l+1(s)+γ∗l (s

′,s)+α∗l (s
′) (2.41)
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Algorithm 2.2
The Log-domain BCJR algorithm
Step 1. Initialize the forward and backward metrics α∗0(s) and β∗L′(s) using (2.38)
and (2.40).
Step 2. Compute the branch metrics γ∗l (s

′, s), l = 0, 1, · · · , L′ − 1, using (2.36).
Step 3. Compute the forward metrics α∗l+1(s), l = 0, 1, · · · , L′ − 1, using (2.37).
Step 4. Compute the backward metrics β∗l (s

′), l = L′− 1, L′− 2, · · · , 0, using (2.39).
Step 5. Compute the APP L-values L (xl) l = 0, 1, · · · , L′ − 1, using (2.42).
Step 6. (Optional) Compute the hard decisions x̂l, l = 0, 1, · · · , L′ − 1, using (2.18).

and

L (xl) = log

 ∑
(s,s′)∈Υ+

l

eβ∗l+1(s)+γ∗l (s
′,s)+α∗l (s

′)


− log

 ∑
(s,s′)∈Υ−l

eβ∗l+1(s)+γ∗l (s
′,s)+α∗l (s

′)

 ,

= max∗
(s,s′)∈Υ+

l

[
β∗l+1(s) + γ∗l (s

′, s) + α∗l (s
′)
]

− max∗
(s,s′)∈Υ−l

[
β∗l+1(s) + γ∗l (s

′, s) + α∗l (s
′)
]

. (2.42)

Here, we use the fact that three-variable max∗function can be obtained by applying

the 2-variable max∗function twice as

max∗(x, y, z) ≡ log (ex + ey + ez) = max∗ (max∗(x, y), z) , (2.43)

Because using max-star function, the LOG MAP BCJR, so called the Log-domain

BCJR is considerably simpler to implement and provides greater numerical stabil-

ity than the original BCJR algorithm. The Log-domain BCJR algorithm is summa-

rized in Algorithm 2.2.
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2.3 BICM-ID

For a long time, error correcting codes and modulation have been treated as distinct

tasks in communication systems. By integrating error correcting codes and mod-

ulation, Ungerboeck in 1987 [68, 69] proposed Trellis Coded Modulation (TCM),

which is capable of achieving significant coding gains1 over different wireless

channels. Among many adaptions [54–57] suggested to improve the BER perfor-

mance of TCM schemes, bit interleaved coded modulation (BICM) proposed by

Zehavi [49] gives the largest improvement for fading channels. BICM is based on

the combination of coding, bit interleaving2, and mapping (modulation). A signifi-

cant improvement for BICM is achieved by using iterative decoding (ID) as studied

in [50–53, 81]. A soft input soft output (SISO) [82] decoder is used in the BICM-

ID scheme where the decoder’s output is fed back to the input of the demapper.

BICM-ID is flexible in allowing any type of code to be used in combination with

virtually any modulation type. BICM-ID can be used as a bandwidth efficient ap-

proach to provide excellent performance over flat Rayleigh channels, provided that

SISO channel decoding is applied.

In the following section, we present a short overview of BICM-ID. The details

about iterative probabilistic decoding can be found in many tutorials such as [58,

83, 84].

2.3.1 Encoder

Figure 2.7 shows the block diagram of a BICM-ID system. The code that is used

in this work is a convolutional code. The transmitter consists of the serial concate-
1The coding gain is the amount of additional signal to noise ratio that would be required to

provide the same bit-error-rate (BER) performance for an uncoded signal.
2The interleaver is a one-to-one mapping that rearranges the ordering of a sequence of symbols

in a deterministic manner.
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Figure 2.7: Block diagram of BICM-ID with soft feedback.

nation of the convolutional encoder, bit interleaver and the mapper. For convolu-

tional codes with rate 1/n, each input data bit at time t is encoded to the coded

output bit sequence ct =
[
c0

t , c1
t , · · · , cn−1

t

]
. We represent the output of the convo-

lutional encoder by

C =
[
c0

0, c1
0, · · · , cn−1

0 , · · · , c0
t , c1

t , · · · , cn−1
t , · · ·

]
= [c0, · · · , ct, · · · ] . (2.44)

The bit interleaver permutes the coded bits in a deterministic way to make sure

that adjacent bits are separated by several bits after interleaving. At the de-

interleaver, the permutation is inverted. The idea behind using the interleaver and

de-interleaver is to spread out bursts of channel errors in time, such that the de-

coder can handle them as if they were random errors. This improves the error

correction capabilities of coding schemes over bursty channels. The output of the

interleaver is represented by
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V =
[
v0

0, v1
0, · · · , vm−1

0 , · · · , v0
t , v1

t , · · · , vm−1
t , · · ·

]
= [v0, · · · , vt, · · · ] (2.45)

where vi
t is the ith output bit at time position t. Each m-tuple of the interleaver

output is grouped together, vt =
[
v0

t , v1
t , · · · , vm−1

t

]
, and is mapped to a complex

symbol xt chosen from an M-ary constellation Ω by a signal mapping µ

dt = µ (vt) xt ∈ Ω. (2.46)

2.3.2 Decoder

For transmission over flat fading channels, the decision variables can be written as

yt = htdt + nt (2.47)

where ht is the channel coefficient and nt is complex valued AWGN. In principle,

MAP decoding of the received sequence y = [y0, · · · yt, · · · ] can be carried out as

ûMAP = arg max
u

P (u |y, h )

where h = [h0, · · · ht, · · · ] are the channel coefficients and u = [u0, · · · ut, · · · ] is

the trial value of the transmitted information sequence. Unfortunately, due to the

presence of the bit-based interleaver, the true MAP decoding of BICM requires joint

demapping and decoding and is therefore too complex to implement in practice

[85]. In [49], Zehavi suggested a suboptimal method using two separate steps: bit

metric generation and Viterbi decoding. To improve the BER performance of a
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BICM scheme, the Viterbi decoding is replaced by a SISO3 decoder and the output

of the SISO decoder is fed back to the demapper for bit metric regeneration [53,81].

The MAP bit metrics are calculated as [85, 86]

λ
(

vi
t = b

)
= Pr

(
vi

t = b|yt, ht

)
i = 0, · · · , m− 1; b = 0, 1

= ∑
d∈ψ(i,b)

Pr (d|yt, ht) (2.48)

∝ ∑
d∈ψ(i,b)

Pr (yt|d, ht)P (d)

where the signal subset ψ (i, b) =
{

µ
([

v0
t , v1

t , · · · , vm−1
t

])
|vi

t = b
}

. The size of

each subset ψ (i, b) is 2m−1. The a priori probability Pr (d) is unavailable on the

first iteration of the demapping. Therefore, in the initialization phase it is assumed

that all d are equally probable. (2.48) is used as the input to the SISO decoder,

which then generates the a posteriori probabilities for the coded bits. From the a

posteriori probabilities for the coded bits, the extrinsic a posteriori probabilities are

extracted. This extrinsic information depends only on the redundant information

introduced by the used code.

On the second iteration, the extrinsic a posteriori probabilities4 Pr
(
ci

t; E
)

com-

ing out from the SISO decoder are interleaved and fed back as a priori probabilities

Pr
(
vi

t; A
)

to the demapper as shown in Figure 2.7, where A and E denote a priori

and extrinsic a posteriori respectively. Assuming that the probabilities Pr
(
v0

t ; A
)
,...,

Pr
(

vm−1
t ; A

)
are independent by using a good interleaver, the symbol a priori

3The SISO decoder of the BICM-ID scheme is actually a maximum a posterior probability (MAP)
decoder that computes the a posterior probabilities of the coded bits.

4The a priori and extrinsic a posteriori probabilities are well explained in the literature of turbo
codes [67, 87].
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probability Pr (x) can be computed as

Pr (d) = Pr (µ (vt (d) ; A))

=
m−1

∏
j=0

Pr
(

vj
t (d) = b; A

)
. (2.49)

Using (2.48) and (2.49), the extrinsic a posteriori bit probabilities for the second

pass demodulation can be written as

Pr
(

vi
t = b; E

)
=

Pr
(
vi

t = b|yt
)

Pr
(
vi

t = b; A
) (2.50)

=

∑
d∈ψ(i,b)

Pr (yt|d, ht)∏m−1
j=0 Pr

(
vj

t (d) = b; A
)

Pr
(
vi

t (d) = b; A
)

= ∑
d∈ψ(i,b)

Pr (yt|d, ht)
m−1

∏
j=0,j 6=i

Pr
(

vj
t (d) = b; A

)
.

Equation (2.50) shows that we only need the a priori probabilities Pr
(

vj
t = b; A

)
of the other bits than the considered one (i 6= j) from the same channel symbol

vt when recalculating the bit metrics. The receiver then uses (2.50) to regenerate

the bit metrics and iterates between the demapper and the decoder. After the last

iteration, the final decoded outputs are the hard decisions based on the a posteriori

probabilities.

2.4 Summary

In this chapter, a general overview of signal detection theory and convolutional

codes has been presented. First, we have briefly described the signal detection

theory with focusing on ML and MAP algorithms. Next, we have explained ba-
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sic ideas of convolutional codes. Viterbi and BCJR algorithms, as powerful tools

for decoding, have been also addressed. Finally, the chapter has covered the bit

interleaved coded modulation iterative decoding (BICM-ID) schemes.
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Chapter 3

Data Detection for Uncoded ARC

Systems

A key issue in the alternate-relaying cooperative (ARC) communication systems

is the interference which is caused by the simultaneous transmission of the source

and one of the relays at the same time. In this chapter, we propose maximum like-

lihood (ML) detectors to mitigate the interference in uncoded decode-and-forward

(DF) ARC systems. At the relays, the proposed ML detector is employed by av-

eraging out the interference signal. Furthermore, unlike previous work in which

interference cancellation is required at the destination, we exploit the interference

signal as a beneficial resource to develop the optimal detectors at the destination

equipped with single and multiple antennas. The major drawback of the proposed

optimal detectors is the delay because the destination has to receive and store the

entire frame before performing data detection. Due to the inevitable delay restric-

tion, sub-optimal detectors are developed. In contrast with the optimal detector,

the sub-optimal detectors exploit two consecutive received packets to decode one

packet. Extensive simulation results have been presented to demonstrate the effec-
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R1

R2

DS

At time p
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R2

DS

At time p+1

Figure 3.1: System model of the alternate-relaying cooperative system.

tiveness of the proposed detectors.

The chapter is organized as follows. In Section 3.1, the system model and prob-

lem formulation are presented. Then, the ML detector at the relays is introduced

in Section 3.2. The optimal and sub-optimal detectors at the destination equipped

with single and multiple antenna are proposed in Sections 3.3 and 3.4, respectively.

The performance of the proposed detectors is evaluated through computer simu-

lations in Section 3.5. Finally, we conclude the chapter in Section 3.6.

3.1 System Model and Problem Formulation

A four-node network with one source (S), one destination (D), and two relays (R1,

R2) is considered. We assume that each node is equipped only with one antenna

and the relays operate in half-duplex mode. Each link is assumed to be frequency-

flat and the fading coefficient between two nodes A and B is denoted as hAB, where

A, B ∈ {S, R1, R2, D}, A 6= B. This assumption is valid as long as the signal band-

width is less than the channel coherence bandwidth. All nodes have equal addi-

tive white Gaussian noise (AWGN) variance of σ2. The network supports frame-

based transmissions, in which each frame is composed of P packets. The pth packet

d(p) =
[
d(p)(1), d(p)(2), · · · , d(p)(Nd)

]
consists of Nd data symbols, which are ran-
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domly and independently drawn from a constellation Ω, p = 1, 2, · · · , P. Each

frame is transmitted continuously, one packet per time slot, over wireless channels

to the destination and relays. The transmission schedule for the P time slots for

each frame is described as follows (see Figure 3.1 ):

• At even time slot p: S sends d(p) and R1 (named the forwarding relay) sends

d(p−1)ψR1(p − 1), where ψR1(p − 1) is an indicator function which is unity

when the relay R1 was able to correctly detect the (p− 1)th data packet and

zero otherwise1. R2 (named the listening relay) listens to d(p) from S while

being interfered by d(p−1)ψR1(p − 1) from R1. D receives d(p−1)ψR1(p − 1)

from R1 while being interfered by d(p) from S.

• At odd time slot p + 1: S sends d(p+1) and R2 (named the forwarding re-

lay) sends d(p)ψR2(p). R1 (named the listening relay) listens to d(p+1) from S

while being interfered by d(p)ψR2(p) from R2. D receives d(p)ψR2(p) from R2

while being interfered by d(p+1) from S.

These transmission steps are then continuously repeated until P packets are trans-

mitted by the source. In practice, in order to achieve diversity for the last packet,

one additional time slot is required at the end of the transmission; S remains silent

while R1 (or R2) sends d(P). This slight loss in the rate, 1
P , is asymptotically zero for

large values of P. As one can observe from Figure 3.2, the destination receives two

copies of each packet, one from the source-destination link and the other from the

forwarding relay-destination link, if this packet was correctly detected at this relay;

otherwise, the destination receives only one copy through the source-destination

link. This implies that diversity gain can still be achieved by this protocol, while

1In order to check whether their decoded packets are correct, relays can apply different tech-
niques, such as cyclic redundancy check (CRC) code or signal-to-noise (SNR) ratio threshold. In
this work, we assume that CRC error detection is already embedded into information packets, and
is able to detect all the packet errors, as assumed in many other studies, e.g., [88, 89].
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First packet, p = 1 Last packet, p = P

First packet, p = 1 Last packet, p = P

. . .

. . .

R1-D link      

Transmit frame over direct (S-D) link       

. . .

Received frame which is the sum of direct link and relay links signals along with noise contribution       

First packet, p = 1 Last packet, p = P+1

Transmit frame over relay links       

R2-D link      R1-D link      R2-D link      R1-D link      

Figure 3.2: The detailed signal structure.

the source transmits continuously. As a result, the bandwidth efficiency is not sac-

rificed, and full-rate transmission is retained.

Based on Figure 3.1, at time slot p, the nth received symbol at the destination

y(p)
D (n), and relay R2, y(p)

R2
(n), can be respectively expressed as

y(p)
D (n) = d(p)(n)h(p)

SD(n) + d(p−1)(n)ψR1(p− 1)h(p)
R1D(n) + w(p)

D (n), (3.1)

y(p)
R2

(n) = d(p)(n)h(p)
SR2

(n) + d(p−1)(n)ψR1(p− 1)h(p)
R1R2

(n) + w(p)
R2

(n), (3.2)

where w(p)
D (n) and w(p)

R2
(n) are AWGN contributions at destination and relay R2,

respectively. Further, at time slot p + 1, the received signal at the destination and

relay R1 can be respectively written as

y(p+1)
D (n) = d(p+1)(n)h(p+1)

SD (n) + d(p)(n)ψR2(p)h(p+1)
R2D (n) + w(p+1)

D (n), (3.3)
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y(p+1)
R1

(n) = d(p+1)(n)h(p+1)
SR1

(n) + d(p)(n)ψR2(p)h(p+1)
R1R2

(n) + w(p+1)
R1

(n), (3.4)

where w(p+1)
R1

(n) is the AWGN contribution at relay R1. Our goal is to develop the

ML detectors at the relays and destination.

3.2 ML Detector at the Relays

From (3.2) and (3.4), one can observe that data received at a listening relay from

the source is interfered by data sent from the forwarding relay. This is because at

any time slot, there is always a relay transmitting data simultaneously with the

source. In this section, we propose an ML detector at the listening relay based on

averaging out the interference signal. Without loss of generality, we can write the

received signal at relay Rx (x ∈ {1, 2}) as

y(p)
Rx

(n) = d(p)(n)h(p)
SRx

(n) + d(p−1)(n)ψRy(p− 1)h(p)
RxRy

(n) + w(p)
Rx

(n), (3.5)

where y ∈ {1, 2} and x 6= y. Based on the ML principle, the detected symbol,

d(p)(n), at relay Rx can be found as

d̂(p)(n) = arg max
d(p)(n)

log Pr
(

y(p)
Rx

(n), d(p−1)(n)
∣∣∣d(p)(n), h(p)

SRx
(n), h(p)

RxRy
(n)
)

. (3.6)

Since the symbol d(p−1)(n) is not known at relay Rx, we remove its contribution by

averaging out as

Pr
(

y(p)
Rx

(n)
∣∣∣d(p)(n), h(p)

SRx
(n), h(p)

RxRy
(n)
)

= ∑
d(p−1)(n)∈Ω

Pr
(

y(p)
Rx

(n)
∣∣∣d(p)(n), d(p−1)(n), h(p)

SRx
(n), h(p)

RxRy
(n)
)
× Pr

(
d(p−1)(n)

)
,

(3.7)
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and

Pr
(

y(p)
Rx

(n)
∣∣∣d(p)(n), d(p−1)(n), h(p)

SRx
(n), h(p)

RxRy
(n)
)

= 1
πσ2 exp

(
−
∥∥∥y(p)

Rx
(n)− d(p)(n)h(p)

SRx
(n)− d(p−1)(n)ψRy(p− 1)h(p)

RxRy
(n)
∥∥∥2

/σ2
)

.

(3.8)

We assume that the transmitted symbols are equally probable; thus, Pr
(

d(p−1)(n)
)

does not affect the optimization.

3.3 Data Detection at the Destination

In the following we provide optimal and sub-optimal detectors at the destination

node.

3.3.1 Optimal Detector

From (3.1) and (3.3), one can observe that the source and relays

send their messages to the destination in a sequential form. For

illustration, let us consider that the source transmits the frame{
· · · , d(p−1), d(p), d(p+1), · · ·

}
. Accordingly, the source and relays send

their data packets as
{
· · · ,

[
d(p), d(p−1)ψRx(p− 1)

]
,
[
d(p+1), d(p)ψRy(p)

]
,[

d(p+2), d(p+1)ψRx(p + 1)
]

, · · ·
}

. Consequently, in contrast to the relays, the

destination receives each symbol in each packet two times, through the source-

destination link and the relay-destination link, only if a relay was able to correctly

detect the packet that contains this symbol; otherwise, the transmitted symbol

is received only one time through the direct link. The equivalent block diagram

of the DF alternate-relaying cooperative system can be represented as shown in

Figure 3.3. From this Figure it is obvious that the equivalent model is analogous
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to a convolutional code with a constraint length of two. Hence, one can describe

the transmitter of the equivalent system through a trellis diagram. The trellis

consists of M states, which is equal to the modulation order. There are M branches

leaving from each state corresponding to M different input patterns. For example,

the trellis diagram of a transmitter using 8-PSK modulation is shown in Figure

3.3, where {α1, α2, α3, α4, α5, α6, α7, α8} denote the 8-PSK symbols. Each branch

is labeled by αi/αiαx, where αi is the input symbol, and αiαx represent the two

symbols transmitted through the direct and relay links, respectively2. Each row

indicates the branch labels for transitions from states corresponding to the inputs

{α1, α2, α3, α4, α5, α6, α7, α8}, respectively. Accordingly, by using this equivalent

model, we can apply the Viterbi algorithm [66, 90] with a minor modification to

derive the optimal detector3.

The key idea of the proposed optimal detector is to employ Nd parallel Viterbi

algorithms, as shown in Figure 3.4. The input of the nth Viterbi algorithm is the nth

symbols from each received packet, y(n) =
[
y(1)D (n), y(2)D (n), · · · , y(P)

D (n)
]
, with

y(p)
D (n) and y(p+1)

D (n) defined in (3.1) and (3.3), respectively4. The nth Viterbi algo-

rithm chooses the sequenceD(n) =
[
d(1)(n), d(2)(n), · · · , d(P)(n)

]
that maximizes

the log-likelihood function log Pr (Y(n) |D(n),H(n) )

D̂(n) = arg max
D(n)

log Pr (Y(n) |D(n),H(n) ) , (3.9)

2Strictly speaking, since the indicator function takes one or zero, the equivalent model is analo-
gous to a punctured convolutional code.

3Note that when the information symbols are equally likely, the (ML) Viterbi algorithm provides
the optimal BER performance [66, 67, 90].

4From (3.1) and (3.3), one can observe that each transmitted symbol d(p)(n) is included in y(p)
D (n)

and y(p+1)
D (n). Accordingly, in order to provide an optimal detector for the nth symbol in each

packet we have to rely on the received sequence
[
y(1)(n), y(2)(n), · · · , y(P)(n)

]
. That is why we mix

the received packets, as shown in Figure 3.4.
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Figure 3.3: The equivalent system of the DF-ARC system, with trellis diagram for
8-PSK modulation as an example.
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Figure 3.4: The optimal receiver for the full-rate DF-ARC system.

where H(n) =
[

h(1)SD(n), h(1)RxD(n), h(2)SD(n), h(2)RyD(n), · · · , h(P)
SD (n), h(P)

RxD(n)
]

repre-

sents the channel coefficients. Since the probability of joint independent events

is simply the product of probabilities of the individual events, it follows that

Pr (Y(n) |D(n),H(n) ) =
P

∏
p=1

Pr
(

y(p)
D (n)

∣∣∣d(p)(n), h(p)(n)
)

, (3.10)

where d(p)(n) =
[
d(p)(n), d(p−1)

Rx
(n)
]

and h(p)(n) =
[

h(p)
SD(n), h(p)

RxD(n)
]

and the

transition probability Pr
(

y(p)
D (n)

∣∣∣d(p)(n), h(p)(n)
)

is defined as

Pr
(

y(p)
D (n)

∣∣∣d(p)(n), h(p)(n)
)

= 1
πσ2 exp

(
−
∣∣∣y(p)

D (n)−d(p)(n)h(p)
SD(n)−d(p−1)(n)ψRx(p− 1)h(p)

RxD(n)
∣∣∣2 /σ2

)
.

(3.11)

This yields

log Pr (Y(n) |D(n),H(n) ) =
P

∑
p=1

log Pr
(

y(p)
D (n)

∣∣∣d(p)(n), h(p)(n)
)

. (3.12)

The log-likelihood function log Pr (Y(n) |D(n),H(n) ), which we denote by
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G (Y(n) |D(n),H(n) ), represents the metric associated with the sequence D(n).

The probability Pr
(

y(p)
D (n)

∣∣∣d(p)(n), h(p)(n)
)

is referred to as the branch metric.

We can now express a partial path metric for the first t branches of a path as5

G ([Y(n) |D(n),H(n) ]t) =
t

∑
p=1

logPr
(

y(p)
D (n)

∣∣∣d(p)(n), h(p)(n)
)

. (3.13)

Implementation Aspects

• Since the Viterbi algorithm is a trace back algorithm, the end state must be

known. An additional Nd zero symbols are added at the end of the transmit-

ted frame to drive the “virtual” encoder to state zero. In the literature, these

additional zeros are referred to as the tail [66, 90]. This will result in a slight

bandwidth loss compared with the direct transmission. This loss is given by

1
P , which approaches zero for a large number of packets per frame.

• We use adaptive DF relaying where the relays forward only when they cor-

rectly detect the received packets; otherwise, relays remain idle. Relays can

apply different strategies, such as cyclic redundancy check (CRC) code or

signal-to-noise (SNR) ratio threshold, in order to check whether their de-

coded packets are correct. In this work, we assume that CRC error detection

is already embedded into information packets, and is able to detect all the

packet errors, as assumed in many other studies, e.g., [88, 89]. As such, the

destination has to receive acknowledgment from the relays about the status

of each packet. For illustration, if the destination receives a negative acknowl-

edgment for the pth packet, this implies that the relay Rx (x = 1 or 2) is unable

to decode and forward this packet.

• Unfortunately, the proposed optimal detector requires a large memory and
5For details of the Viterbi algorithm, the reader is referred to Section 2.2.3.
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delay. The destination has to receive and store the entire frame before starting

data detection. These limitations are an increasing function on the modula-

tion order (M) and the number of packets per frame (P). Accordingly, these

constraints may prevent the optimal detector from a practical implementa-

tion. This motivated us to propose the following sub-optimal detector.

3.3.2 Sub-Optimal Detector

In this section, we use the successive interference cancellation principle to tackle

the problems associated with the optimal detector, while maintaining the diversity

gain. The key principle of the sub-optimal detector is to employ two consecutive

received packets,
{

y(p)
D (n)

}Nd

n=1
and

{
y(p+1)

D (n)
}Nd

n=1
, given in (3.1) and (3.3), re-

spectively to detect the packet
{

d(p)(n)
}Nd

n=1
. More specifically, let us remove the

contribution of
{

d(p−1)(n)
}Nd

n=1
from

{
y(p)

D (n)
}Nd

n=1
and form

z(p)
D (n) = y(p)

D (n)− d(p−1)(n)ψRx(p− 1)h(p)
RxD(n). (3.14)

Using (3.1), we can write

z(p)
D (n) = d(p)(n)h(p)

SD(n) + w(p)
D (n). (3.15)

Here we follow the common assumption associated with most of the successive

detection algorithms found in the literature (e.g., [91–93]) that the previous symbol

d̂(p−1)(n) is perfectly detected, when we perform detection for d(p)(n). This as-

sumption is necessary for the theoretical development of the sub-optimal detector;
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Table 3.1: A comparison of optimal and sub-optimal detectors.
complexity delay MS BW loss

ML detector 22M2NdP NdP NdP 1/P
Sub-optimal detector 33M2NdP + 8Nd(P− 1) Nd Nd zero

however, in the simulations, we relax this assumption. With (3.3) rewritten as

y(p+1)
D (n) = d(p+1)(n)h(p+1)

SD (n) + d(p)(n)ψRy(p)h(p+1)
RyD (n) + w(p+1)

D (n), (3.16)

our aim is to detect the symbol d(p)(n) from z(p)
D (n) and y(p+1)

D (n + 1). Based on

the ML principle, the detected symbol d̂(p)(n) can be obtained by averaging over

the symbol d(p+1)(n). Therefore, the ML detector of d̂(p)(n) is

d̂(p)(n) = arg max
d(p)(n)

∑
d(p+1)(n)∈Ω

log Pr
(

y′(p)(n)
∣∣∣d′(p)(n), h′(p)(n)

)
Pr
(

d(p+1)(n)
)

,

(3.17)

where y′(p)(n) =
[
z(p)

D (n) y(p+1)
D (n)

]T
, d′(p)(n) =

[
d(p)(n) d(p+1)(n)

]T
, and

h′(p)(n) =

 h(p)
SD(n) 0

h(p+1)
RyD (n)ψRy(p) h(p+1)

SD (n)

 , (3.18)

and

Pr
(

y′(p)(n)
∣∣∣d′(p)(n), h′(p)(n)

)
= 1

πσ2 exp
(
−
∥∥∥y′(p)(n)− h′(p)(n)d′(p)(n)

∥∥∥2
/σ2

)
.

(3.19)

After detecting
{

d(p)(n)
}Nd

n=1
, we can remove its contribution from

{
y(p+1)

D (n)
}Nd

n=1

forming z(p)
D (n + 1) = y(p+1)

D (n) − d̂(p)
Ry

(n)ψRy(p)h(p+1)
RxD (n). Similarly, from{

z(p+1)
D (n)

}Nd

n=1
and

{
y(p+2)

D (n)
}Nd

n=1
and by averaging over

{
d(p+2)(n)

}Nd

n=1
, we

can detect
{

d(p+1)(n)
}Nd

n=1
, and so on.
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A comparison between the proposed ML and sub-optimal detectors in terms of

complexity, delay, memory size (MS), and bandwidth loss (BW loss) is presented

in Table 3.1. We evaluate the computational complexity of the proposed detectors

in terms of the number of required floating point operations (see the Appendix).

One can notice that the complexity of both detectors is proportional to the number

of symbols per packet Nd, number of packets per frame P and square of the mod-

ulation order, M2. We also notice that the sub-optimal detector outperforms the

ML detectors in terms of the required delay, MS, and BW loss at the expense of a

slightly computational complexity.

3.4 Data Detection for Multiple Antenna Destination

In this section, we assume that the destination is a base station that has the capabil-

ity to support AD > 1 antennas, while the source and relays are small nodes with

limited power and few resources, thus, each of them is equipped only with one

antenna. Our aim is to perform data detection at the destination.

3.4.1 Optimal Receiver

Based on Figure 3.1, the nth received symbol of the pth and (p + 1)th received

packets at the f th antenna of the destination can be respectively expressed as

y( f ,p)
D (n) = d(p)(n)h( f ,p)

SD (n) + d(p−1)(n)ψRx(p− 1)h( f ,p)
RxD (n) + w( f ,p)

D (n), (3.20)

y( f ,p+1)
D (n) = d(p+1)(n)h( f ,p+1)

SD (n) + d(p)(n)ψRy(p)h( f ,p+1)
RyD (n) + w( f ,p+1)

D (n),

(3.21)
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Figure 3.5: System model of the DF-ARC system, with a destination supporting
multiple antenna.

where h( f ,p)
GD (n) is the channel coefficient between the antenna of node G and the

f th receive antenna of the destination, G ∈
{

S, Rx, Ry
}

, x, y ∈ {1, 2} and x 6=

y, w( f ,p)
D (n) and w( f ,p+1)

D (n) are the corresponding additive white Gaussian noise

(AWGN) at the f th antenna of the destination. Using the equivalent model as

shown in Figure 3.5, we can apply the BCJR algorithm [76] to develop the optimal

detector.

The key idea of the proposed optimal receiver is to employ AD serial BCJR-

based detectors; each is associated with one of the AD antennas. Each detector

delivers a posteriori probabilities (APPs) about the transmitted data which is used

as a priori information for the next detector, as shown in Figure 3.6. For the first

detector, we assume no prior information available. Upon completion, the APPs

provided by the last detector are used to make final decisions on the transmitted

data symbols.

Each detector employs Nd parallel BCJR algorithms, as shown in Figure 3.6. The

input of the nth BCJR algorithm is the nth symbols from each packet received on

the f th antenna, y( f )(n) =
[
y( f ,1)

D (n), y( f ,2)
D (n), · · · , y( f ,P)

D (n)
]
, with y( f ,p)

D (n) and

y( f ,p+1)
D (n) defined in (3.20) and (3.21), respectively. From (3.20) and (3.21), one can

notice that each transmitted symbol d(p)(n) is included in y( f ,p)
D (n) and y( f ,p+1)

D (n).

Accordingly, we mix the received packets on the f th antenna, as shown in Figure
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Figure 3.6: Optimal receiver for multiple receive antennas alternate-relaying DF co-
operative system. H( f ) is the vector that includes the channel coefficients between
the source and relays and the f th antenna of the destination.
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Figure 3.7: Parallel representation of the optimal detector. H( f ) is the vector that
includes the channel coefficients between the source and relays and the f th antenna
of the destination.
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3.6, in order to exploit the repetition of the transmitted symbols. The nth BCJR

algorithm of the f th detector computes the APPs of the nth symbol of the pth re-

ceived packet on the f th antenna, Pr
(

d(p)(n)
∣∣∣y( f )(n), h( f )(n)

)
, where h( f )(n) =[

h( f ,1)
SD (n), h( f ,1)

RxD (n), h( f ,2)
SD (n), h( f ,2)

RyD (n), · · · , h( f ,P)
SD (n), h( f ,P)

RxD (n)
]

represents the chan-

nel coefficients, and p = 1, · · · , P. Using (3.20) and following the principles of the

BCJR algorithm which is explained in Section 2.2.4, one can write the branch metric

between the states s′ and s for the nth symbol in the pth packet given the received

symbol y(p)
D (n) as

γ
( f ,p)
n (s′, s) = 1√

πσ2 Pr
(

d(p)(n)
)
×

exp
(
−
∣∣∣y( f ,p)

D (n)− d(p)(n)h( f ,p)
SD (n)− d(p−1)(n)ψRx(p− 1)h( f ,p)

RxD (n)
∣∣∣2 /σ2

)
,

(3.22)

where
[
d(p)(n) d(p−1)(n)

]
represents the output associated with this branch and

Pr
(

d(p)(n)
)

is the a priori probability.

Implementation Aspects

• As the proposed optimal receiver is based on sequential detection, the re-

quired processing time for data detection is AD times of the processing time

of one detector. In order to reduce the processing time by the factor AD, the

optimal receiver can be performed in a parallel fashion, as shown in Figure

3.7. Here we exploit the fact that the APPs of data symbols are the multipli-

cation of the BCJR output in the case of no a priori probabilities available and

the a priori probabilities of these data symbols (e.g., [77]).

• When the destination node has only one receive antenna, AD = 1, the opti-

mal receiver can be implemented by using Viterbi algorithms instead of the

BCJR algorithms. The reason behind this is that the BCJR and Viterbi algo-

rithms have the same bit-error-rate performance when there is no a priori
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information available about data symbols, and the computational complex-

ity of the Viterbi algorithms is approximately one-third of that of the BCJR

algorithms [67, 76].

• Since the BCJR algorithm is a backward recursion, the end state must be

known. An additional N zero symbols are included at the end of the trans-

mitted frame to drive the “virtual” encoder to state zero. In the literature,

these additional zeros are referred to as the tail [67, 90, 94]. This will lead to a

slight bandwidth loss compared with the direct transmission. This loss is 1
P ,

which approaches zero for a large number of packets per frame.

• The proposed optimal receiver requires a large memory size and delay. The

destination has to receive and store the entire frame before starting data de-

tection. These limitations are an increasing function of the modulation order

(M) and the number of packets per frame (P). Accordingly, these constraints

may prevent the optimal detector from a practical implementation. This mo-

tivates us to propose the following sub-optimal detector.

3.4.2 Sub-Optimal Detector

In this section, we employ the successive interference cancellation principle to

avoid the delay problem associated with the optimal receiver, while maintain-

ing the diversity gain. The basic idea behind the sub-optimal receiver is to use

AD sub-optimal detectors, and as shown in Figure 3.8, each detector is associ-

ated with one of the AD receive antennas. The sub-optimal receiver exploits

two consecutive received packets on each receive antenna,
{

y( f ,p)
D (n)

}Nd

n=1
and{

y( f ,p+1)
D (n)

}Nd

n=1
, f = 1, · · · , AD, given in (3.20) and (3.21), respectively to de-

tect the packet
{

d(p)(n)
}Nd

n=1
. The f th detector operates as follows. We remove the
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Figure 3.8: Sub-optimal receiver for DF alternate-relaying cooperative systems.

contribution of
{

d̂(p−1)(n)
}Nd

n=1
from

{
y( f ,p)

D (n)
}Nd

n=1
and form

z( f ,p)
D (n) = y( f ,p)

D (n)− d̂(p−1)(n)ψRx(p− 1)h( f ,p)
RxD (n). (3.23)

Using (3.20), we can write

z( f ,p)
D (n) = d(p)(n)h( f ,p)

SD (n) + w( f ,p)
D (n). (3.24)

Here we follow the common assumption associated with most of the successive

detection algorithms found in the literature (e.g., [91,92]) that the previous symbol

d̂(p−1)(n) is perfectly detected, when we perform detection for d(p)(n). This as-

sumption is necessary for the theoretical development of the sub-optimal receiver;

however, in the simulations we relax this assumption. With (3.21) rewritten as

y( f ,p+1)
D (n) = d(p+1)(n)h( f ,p+1)

SD (n) + d(p)(n)ψRy(p)h( f ,p+1)
RyD (n) + w( f ,p+1)

D (n).

(3.25)
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Therefore, we can write

Pr
(

z( f ,p)
D (n), y( f ,p+1)

D (n)
∣∣∣d(p)(n), h′( f ,p)(n)

)
=

∑
d(p+1)(n)∈Ω

Pr
(

z( f ,p)
D (n), y( f ,p+1)

D (n)
∣∣∣d(p)(n), d(p+1)(n), h′( f ,p)(n)

)
Pr
(

d(p+1)(n)
)

,

(3.26)

where

h′( f ,p)(n) =

 h( f ,p)
SD (n) 0

h( f ,p+1)
RyD (n)ψRy(p) h( f ,p+1)

SD (n)

 , (3.27)

and

Pr
(

z( f ,p)
D (n), y( f ,p+1)

D (n)
∣∣∣d(p)(n), d(p+1)(n), h′( f ,p)(n)

)
=

1
πσ2 exp

(
−
∥∥∥∥[z( f ,p)

D (n), y( f ,p+1)
D (n)

]T
− h′( f ,p)(n)

[
d(p)(n), d(p+1)(n)

]T
∥∥∥∥2

/σ2

)
,

(3.28)

where the superscript T refers to the vector transpose. Based on the channel infor-

mation provided by each sub-optimal detector and using the maximum-likelihood

criterion, the detected value of d(p)(n) can be estimated as

d̂(p)(n) = arg max
d(p)(n)

AD

∏
f=1

Pr
(

z( f ,p)
D (n), y( f ,p+1)

D (n)
∣∣∣d(p)(n), h′(p)(n)

)
.

After detecting
{

d(p)(n)
}Nd

n=1
, its contribution can be removed from{

y( f ,p+1)
D (n)

}Nd

n=1
forming z( f ,p)

D (n + 1) = y( f ,p+1)
D (n) − d(p)(n)ψRy(p)h( f ,p+1)

RyD (n).

Similarly, from
{

z(p+1)
D (n)

}Nd

n=1
and

{
y(p+2)

D (n)
}Nd

n=1
and by averaging over{

d(p+2)(n)
}Nd

n=1
, we can detect

{
d(p+1)(n)

}Nd

n=1
, and so on.

A comparison between the proposed optimal and sub-optimal detectors in

terms of complexity, delay, memory size, and bandwidth loss is shown in Table

3.2. The abbreviation MS stands for the required memory size (MS) while the BW
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Table 3.2: A comparison of optimal and sub-optimal detectors, with a destination supporting
multiple antenna.

Complexity Delay MS BW loss

Optimal 70M2NdPAD NdP NdPAD 1/P
Sub-optimal

(
33M2NdP + 8Nd(P− 1)

)
AD Nd Nd AD zero

loss refers to the bandwidth loss due to the all-zero packet sent at the end and the

delay is expressed by the number of data symbols required to store. Similar to the

analysis in the Appendix, the computational complexity of the proposed detectors

is evaluated in terms of the number of required floating point operations. One

can notice that the complexity of both detectors is proportional to the number

of symbols per packet Nd, number of packets per frame P and square of the

modulation order, M2. We also notice that the sub-optimal detector outperforms

the ML detectors in terms of the required delay, MS, and BW loss at the expense of

a slightly computational complexity.

3.5 Simulation Results

In this section, we present simulation results to illustrate the performance of the

proposed detectors. For each link, the channel is assumed to be frequency non-

selective and modeled as a zero-mean independent complex Gaussian random

variable. To capture the effect of the path loss on the performance, we consider

E
[
|hAB|2

]
= (dSD/dAB)

ε [11], where hAB, dSD, and dAB are the channel coefficient,

the distance between source and destination, and the distance between nodes A

and B, respectively, and ε is the path loss exponent. The channel coefficients re-

main constant over the packet length. A frame based transmission is assumed.

The values given here for the number of packets, the distances, and the path-loss
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Figure 3.9: BER of the proposed ML detector at the relays.

exponents are the default ones and they are the used values unless otherwise men-

tioned. Each frame has P =20 packets. The packet length is 150 information bits,

after modulation, this leads to Nd = 150/m symbols, with m as the number of bits

per symbol. The distance between the source and the two relays equals 0.4, the dis-

tance between the two relays and the destination equals 0.6208, and the distance

between the two relays is 0.2. All these distances are normalized to the source to

destination distance. Unless mentioned otherwise, 8-PSK modulation is used and

ε = 2.

At Relays

Figure 3.9 shows the BER performance of the proposed ML detector at the relays.

For the sake of comparison, we also show the performance when the interference

signal could perfectly be removed. In the sequel, this is referred to as the perfect
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interference cancellation. In addition, we show the BER performance of the suc-

cessive interference cancellation detector proposed in [38, 59], which is based on

detecting the strongest signal first, then subtracting its contributions from the re-

ceived interfered signal before detecting the other signal. As one can observe, the

detector that treats the interference as additional noise leads to unacceptable per-

formance degradation when compared with the case of perfect interference cancel-

lation. This is because the inter-relay link is not weak enough when compared with

the source to relays links. Furthermore, the performance of the sequential detector,

which is not acceptable as well, can be justified as follows. Bearing in mind that

the channel coefficients are random and all transmissions use the same transmit

power level, we can not guarantee that the instantaneous value of one of the two

terms
∣∣∣d(p)(n)h(p)

SRx
(n)
∣∣∣2 and

∣∣∣d(p−1)(n)ψRy(p− 1)h(p)
RxRy

(n)
∣∣∣2 is much greater than

the other term, although E
[∣∣∣h(p)

R1R2
(n)
∣∣∣2] = 4E

[∣∣∣h(p)
SR1

(n)
∣∣∣2] = 4E

[∣∣∣h(p)
SR2

(n)
∣∣∣2] as

we considered in the simulations. A significant improvement in performance is

achieved by applying the proposed ML-based detector, for which the BER perfor-

mance degradation reduces to about 5 dB.

Figure 3.10 shows the BER performance of the proposed detector at the relays

for different modulation orders. As one can observe, the difference between the

performance of the ML proposed detector and the case of perfect interference can-

cellation increases with the modulation order. This occurs because increasing the

modulation order yields to averaging the interference signal over a large number

of possible transmitted symbols, and thus disturbing the detector.

Figure 3.11 illustrates the BER performance of the proposed detector at the re-

lays for different values of the path-loss exponent, ε, at the relays. It turns out that

the difference between the performance of the ML proposed detector and the case

of perfect interference cancellation decreases with the path-loss exponent.
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Figure 3.10: Influence of the modulation order, M, on the BER of the proposed ML
detector at the relays.
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Figure 3.11: Influence of the path-loss exponent, ε, on the BER of the proposed ML
detector at the relays.
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Figure 3.12: Influence of the number of packets per frame on the BER of the pro-
posed detector at the relays.

Figure 3.12 shows the BER performance of the proposed detector as a function

of the number of packets per frame at the relays. It is obvious that the BER perfor-

mance is independent of the number of packets per frame. This can be explained as

follows. At the relays, the proposed ML receiver is based on a symbol-by-symbol

detection procedure. Accordingly, the influence of the frame length on the BER

performance can be negligible provided that the number of bits per packet is kept

constant.

Figure 3.13 depicts the BER performance of the proposed detectors as a function

of the number of bits per packet at the relays. The results indicate that, at the relay,

the BER performance is independent of the number of bits per packet. This is

because the detection process is performed symbol-by-symbol as we explained in

the proceeding paragraph.
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Figure 3.13: Influence of the number of bits per packet on the BER of the proposed
detector at the relays.

Single-Antenna Destination

Figure 3.14 depicts the BER performance of the proposed detectors at the destina-

tion. The BER performance of the half-rate one relay and best-relay selection from

a set of two available relays are also shown. For a fair comparison between the

half-rate and full-rate systems, we set the same transmitted power. Furthermore,

we apply 64-PSK modulation for the half-rate systems and 8-PSK for the full-rate

systems in order to maintain the same data rate. We also show the performance

when the interference could perfectly be canceled. In other words, we assume that

the contribution of the packets (p− 1)th and (p + 1)th is perfectly removed during

detection of the pth packet. As a consequence, the pth packet can be detected by

employing the classical maximum ratio combining technique as seen in Figure 3.15.

In addition, we show the BER performance of the DF alternate-relaying proposed
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Figure 3.14: BER of the proposed ML detectors at the destination.

in [38] and the latest work on AF alternate-relaying [39]. As one can observe, the

performance of the proposed full-rate cooperative systems outperforms that of the

half-rate cooperative systems and full-rate cooperative systems proposed in [38]

and [39]. For example, at BER = 10−3, the proposed optimal detector outperforms

the half-rate best relay, DF detector [38], and AF detector [39] by 8 dB, 7 dB, and 15

dB, respectively6. Moreover, the optimal detector outperforms the sub-optimal de-

tector by around 0.25 dB. In addition, we notice that the performance of the optimal

detector coincides with the case of perfect interference cancellation.

Figures 3.16 and 3.17 show the BER performance at the destination of the pro-

posed detectors for different modulation orders and different path-loss exponent

values. As one can observe, the performance of the sub-optimal and optimal de-

6It is worthy to mention that the work in [38] does not take the direct link into account, and as
such, no diversity gain is obtained at the destination. Furthermore, the full interference cancellation
process proposed in [39] results in extra noise components that limit the BER performance.
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Figure 3.15: Perfect interference cancellation at the destination.
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Figure 3.16: Influence of the modulation order, M, on the BER of the proposed
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Figure 3.17: Influence of the path-loss exponent, ε, on the BER of the proposed
detectors at the destination.

tectors almost coincides with the case of perfect interference cancellation.

Figures 3.18 and 3.19 show the BER performance of the proposed detectors at

the destination for different numbers of packets per frame and number of bits per

packet, respectively. It is obvious that the BER performance of the proposed detec-

tors is independent of the number of packets per frame. Furthermore, one can ob-

serve that the dependency of the BER performance on the number of bits per packet

increases when Eb/No increases, although the dependency is small, as shown in

Figure 3.19. This is explained as at the high Eb/N0 the effect of noise diminishes

and this clarifies the influence of the bits per packets.

In the following discussion, we show the effect of the strength of the inter-

relay link on the overall BER performance. This can not be seen purely in a two-

dimensional geometry because if the distance between the two relays changes, the

distance between the source and the two relays and the distance between two re-
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Figure 3.18: Influence of the number of packets per frame, P, on the BER of the
proposed detectors at the destination.
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Figure 3.19: Influence of the number of bits per packet on the BER of the proposed
detector at the destination.
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Figure 3.20: BER performance of the proposed detectors at the destination, in the
presence of shadowing for the inter-relay link.

lays and destination change, as well. To overcome this problem, we consider shad-

owing in the two-relay link, while the other links are not be affected by shadowing.

For simulation purpose, we consider E
[∣∣hR1R2

∣∣2] = (dSD/dR1R2)
ε 10Γ/10, with Γ as

the shadowing term expressed by dB7. Figure 3.20 shows the effect of Γ on the over-

all BER performance at the destination, for 8-PSK modulation. One can observe

that the proposed optimal and sub-optimal detectors provide a good BER perfor-

mance for a wide range of Γ. In addition, the BER performance of the proposed

detectors improves with the increase of Γ. This is because increasing Γ enhances

the reliability of the inter-relay link, which in turn decreases the BER performance

at the relays, thus improving the overall BER performance at the destination.

7In wireless literature, the shadowing term Γ is normally modeled as a random variable drawn
from a Gaussian distribution with a mean of 0 dB. However, here we consider Γ as a constant to
clearly show the effect of the inter-relay link on the BER performance.
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Figure 3.21: BER performance of the proposed receivers.

Multiple-Antenna Destination

Figure 3.21 depicts the BER performance of the proposed receivers at the desti-

nation for AD = 1, 2, 3, and 4. We also show the performance when the inter-

ference could perfectly be canceled, i.e, the contribution of the packets (p − 1)th

and (p + 1)th is perfectly removed during detection of the pth packet. As a conse-

quence, the pth packet can be detected by employing the classical maximum ratio

combining technique. In the sequel, this is referred to as the perfect interference

cancellation scenario. This can be considered as a lower bound of the BER perfor-

mance. As one can observe, the proposed optimal and sub-optimal receivers have

approximately the same BER permanence, which is very close to the lower bound

of the BER performance.

Previous results have been restricted to the idealistic case of independent and

identically distributed (i.i.d.) channels, i.e., uncorrelated fading. However, in prac-
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Figure 3.22: Effect of the spatial correlation on the BER performance of the pro-
posed receivers for AD = 2.

tice, the channels may be dependent due to, for example, insufficient spacing be-

tween antenna elements [95,96]. The spatial correlation is known to be detrimental

for the performance of multi antenna systems as reported in many other studies

(e.g., [95, 96]). Figure 3.22 investigates the effect of spatial correlation on the pro-

posed receivers for a destination node supporting two receive antennas. For sim-

plicity, it is assumed that the following channels have the same spatial correlation

coefficient, ρ: source-destination (antenna one), source-destination (antenna two),

relays (R1 and R2)-destination (antenna one), and relays (R1 and R2)-destination

(antenna two). As one observes from the figure, the proposed receivers are robust

to spatial fading correlation, up to ρ =0.6.
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Figure 3.23: Relays positions for scenario 1, dR1R2 = 0.2.
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Figure 3.24: Relays positions for scenario 2, dSR1= dSR2 = 0.4.
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Figure 3.25: Relays positions for scenario 3, dR1D= dR2D = 0.4.
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Relays positions

In the following, we investigate the effect of relays position on the BER perfor-

mance of the DF-ARC system with a single-antenna destination. We consider three

scenarios as shown in Figures 3.23, 3.24, and 3.25. In the first scenario, the distance

between the two relays is kept constant of 0.2. In the second scenario, the distance

between the source and two relays is kept constant of 0.4. In the third scenario, the

distance between the destination and two relays is kept constant of 0.4. All these

distances are normalized to the source to destination distance. The corresponding

BER performance of the three scenarios is shown in Figures 3.26-3.31, where d is

defined as in Figure 3.23 and θ is indicated as in Figures 3.24 and 3.25. Gener-

ally, increasing the distance between the source and relays leads to source-relays

channel degradation which in turn increases the BER at the relays. This is clearly

observed in Figures 3.26 and 3.28. Figure 3.27 shows that the difference between

the BER of the proposed detector in the presence of interference and the BER when

the interference could be removed (perfect interference cancellation) increases with

θ, and the maximum of the difference occurs at θ = 90. This can easily be explained

as at this particular point the useful signal and interference components of the re-

ceived signal have the same power, thus it is difficult for the proposed detector to

extract the source information from the received signal. This observation can be

also seen in the first scenario, when d = 0 as in Figure 3.26. Figures 3.29, 3.30, and

3.31 indicate that the corresponding BER at the destination for scenarios 1, 2, and 3

does not relatively depend on the relays positions.
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Figure 3.26: BER performance at relays of scenario 1.
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Figure 3.27: BER performance at the relays of scenario 2.
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Figure 3.28: BER performance at the relays of scenario 3.
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Figure 3.29: BER performance at the destination of scenario 1.
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Figure 3.30: BER performance at the destination of scenario 2.

10 20 30 40 50 60 70 80 90
10

−4

10
−3

10
−2

10
−1

10
0

θ

B
E

R

 E
b
 / N

0
 =  20 dB

 E
b
 / N

0
 =  10 dB

Optimal detector

Prefect interference can. 

Sub−optimal detector

Figure 3.31: BER performance at the destination of scenario 3.

77



3.6. SUMMARY

3.6 Summary

In this chapter, we have proposed a maximum-likelihood detector at the relays.

This is based on averaging out the interference signal. Furthermore, unlike previ-

ous work in which interference cancellation is required at the destination, we ex-

ploit the interference signal as a beneficial resource to develop the optimal detector

at the destination. It is shown that the optimal detector can be implemented by

parallel Viterbi algorithms. The major drawback of the proposed optimal detector

is the delay because the destination has to receive and store the entire frame before

performing data detection. Due to the inevitable delay restriction, a sub-optimal

detector is developed. In contrast with the optimal detector, the sub-optimal de-

tector exploits two consecutive received packets to decode one packet.

In addition, the proposed algorithms have been extended for a new develop-

ment of a multiple antenna destination. We demonstrated that the optimal de-

tector can be performed by parallel detectors; each is based on a family of BCJR

algorithms. A sub-optimal detector has been also proposed to avoid the delay lim-

itation that is associated with the optimal one.

Generally, simulation results indicated that the performance of the optimal and

sub-optimal detectors is very close to that of the ideal case with perfect separation

of direct and relaying links. In addition, the sub-optimal detector outperforms

the optimal one in terms of the required delay, memory size, bandwidth loss, and

computational complexity.
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Appendix

In this appendix, we compute the number of floating point operations (flops) for

the optimal and the sub-optimal detectors at the destination8. We take into account

that multiplication and addition of two complex numbers require 6 and 2 flops,

respectively, and the square of the absolute value of a complex number takes 3

flops [97]. For illustration, |a1 + b1|2 = a1 × a1 + b1 × b1, where a1 × a1 is the first

flop, b1 × b2 is the second flop, and the addition is the third flop, where a1 and

b1 are real-valued. Following [67], we assume that the number of flops required

for look-up table functions, such as ea1 and log a1, is zero as the value of the input

can be directly mapped to the memory address that includes the output value. As

such, there are no flops required for such functions. Bearing this in mind, it is easy

to compute the required flops for any algorithm.

For the optimal detector, it is easy to verify that the number of flops that are

required to compute the branch metric in the log domain, in (3.11) given by

−
∣∣∣yp

D(n)− d(p)(n)h(p)
SD(n)− d(p−1)(n)ψRx(p− 1)h(p)

RxD(n)
∣∣∣2 /σ2

is 20 flops. For each trellis unit, there are M branches entering each state. With

each branch, the branch metrics are added with the corresponding previous state

metrics and we choose the path that corresponds to the largest metric. It follows

that we need 22M2 − M ' 22M2 flops for each trellis unit, where M flops are

required for choosing the largest metric [98]. As such, for the entire frame we need

22M2NdP.

In the case of the sub-optimal detector, it turns out that the number of flops

required to compute (3.19), in the log domain, is 32. Accordingly, the computation

8Floating-point operations include any operations that involve fractional numbers.
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of (3.17) can be performed as

log Pr
(

y′(p)(n)
∣∣∣d′(p)(n), h′(p)(n)

)
Pr
(

d(p+1)(n)
)

=⇒

32 flops,

∑
d(p+1)(n)∈Ω

log Pr
(

y′(p)(n)
∣∣∣d′(p)(n), h′(p)(n)

)
Pr
(

d(p+1)(n)
)

=⇒

32M + M− 1 flops,

arg max
d̃(p)(n)

∑
d(p+1)(n)∈Ω

log Pr
(

y′(p)(n)
∣∣∣d′(p)(n), h′(p)(n)

)
Pr
(

d(p+1)(n)
)

, =⇒

(32M + M− 1) M + M− 1 ≈ 33M2 flops.

In the previous equations, we assume equally-likely transmitted,

Pr
(

d(p+1)(n)
)

= 1
M . As such, we drop the multiplication factor, Pr

(
d(p+1)(n)

)
as this does not affect the maximization step in (3.17). By a closer look at the

proposed sub-optimal detector, one can notice that the previous computation is

repeated NdP times. In addition, the interference cancellation step (in (3.14) can be

accomplished with 8Nd flops per packet. Accordingly, the proposed sub-optimal

detector requires 33M2NdP + 8Nd(P− 1) flops.
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Chapter 4

Data Detection for Coded ARC

Systems

In this chapter, we propose the use of bit-interleaved coded modulation (BICM)

in decode-and-forward (DF) alternate-relaying cooperative (ARC) communication

systems. A modified BICM-ID decoder is proposed at the relay to mitigate the in-

fluence of interference resulting from simultaneous transmission of data streams

through both direct and one of relay channels. Furthermore, at the destination, we

exploit the interference signal, which results from the simultaneous transmission

of data streams through both direct and one of the relay channels, to develop an op-

timal detector. The optimal detector exchanges soft information between decoders

and MAP algorithms in an iterative way for performance improvement. The major

drawback of the proposed optimal detector is the delay, i.e., the destination has

to receive and store all received packets before performing data detection. Due to

the inevitable delay restriction, a sub-optimal detector is developed. In contrast

with the optimal one, the sub-optimal detector exploits two consecutive received

packets to decode one packet. In addition, we develop optimal and suboptimal de-
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Encoder Interleaver Mapper
( )b p ( )c p ( )v p ( )d p

Figure 4.1: Block diagram of the transmitter.

tectors for a destination node supporting multiple antenna. Extensive simulation

results are presented to demonstrate the effectiveness of the proposed detectors.

The chapter is organized as follows. In Section 4.1, the system model and prob-

lem formulation are presented. Then, the ML detector at the relays is introduced

in Section 4.2. The optimal and sub-optimal detectors at the destination equipped

with single and multiple antenna are proposed in Sections 4.3 and 4.4, respectively.

The performance of the proposed detectors is evaluated through computer simu-

lations in Section 4.5. Finally, we conclude the chapter in Section 4.6.

4.1 System Model and Problem Formulation

We consider a simple cooperative communication network composed of four

nodes: source node S, relay nodes R1 and R2, and destination node D. All the

terminals are equipped with a single antenna and relays operate in half-duplex

mode. The source transmission is divided into frames, each consisting of P

packets. Each frame is generated as follows (see Figure 4.1). The pth packet

b(p) =
[
b(p)(1), b(p)(2), · · · , b(p)(Nb)

]
of Nb information bits is encoded, result-

ing in Nc coded bits, c(p) =
[
c(p)(1), c(p)(2), · · · , c(p)(Nc)

]
. The code that is used

in this work is a convolutional code1. In order to break the sequential fading cor-

relation and increase the diversity order, the bit interleaver permutes the coded

1For the sake of simplicity, we use a convolutional code. However, the proposed detectors in
this chapter are valid for other coding schemes.
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bits in a deterministic way. Each m consecutive bits of the interleaved sequence

are grouped to form the nth vector v(p)
n =

[
v(p)

n (1), v(p)
n (2), · · · , v(p)

n (m)
]
, where

v(p)
n ( f ) is the f th bit of the nth vector of the pth packet. The output of the in-

terleaver can be represented by v(p) =
[
v(p)

1 , v(p)
2 , · · · , v(p)

Nd

]
, where Nd = Nc/m.

The modulator maps each v(p)
n to a complex transmitted symbol d(p)(n) = µ(v(p)

n )

chosen from an M-point signal constellation Ω, where µ is the labeling map and

M = 2m. Accordingly, one can describe the output of the mapper for the pth packet

as d(p) =
[
d(p)(1), d(p)(2), · · · , d(p)(Nd)

]
.

The frame is transmitted continuously, one packet per time slot, over a wire-

less channel to the destination. The transmission schedule for the P time slots for

each frame is as described in Section 3.1. As assumed in the previous chapter, the

channels are assumed to be frequency non-selective and modeled as a zero-mean

independent complex Gaussian random variable. In addition, we assume that all

nodes have equal additive white Gaussian noise (AWGN) variance of σ2. Finally,

we assume that perfect channel state information is available at the destination and

relays. For reading convenience, we rewrite the nth received symbol of the pth and

(p + 1)th packets at the relays and destination as (see Figures 3.1 and 3.2)

y(p)
D (n) = d(p)(n)h(p)

SD(n) + d(p−1)(n)ψR1(p− 1)h(p)
R1D(n) + w(p)

D (n), (4.1)

y(p)
R2

(n) = d(p)(n)h(p)
SR2

(n) + d(p−1)(n)ψR1(p− 1)h(p)
R1R2

(n) + w(p)
R2

(n), (4.2)

and

y(p+1)
D (n) = d(p+1)(n)h(p+1)

SD (n) + d(p)(n)ψR2(p)h(p+1)
R2D (n) + w(p+1)

D (n), (4.3)
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y(p+1)
R1

(n) = d(p+1)(n)h(p+1)
SR1

(n) + d(p)(n)ψR2(p)h(p+1)
R1R2

(n) + w(p+1)
R1

(n). (4.4)

Here h(p)
AB(n) is the channel coefficient between nodes A and B, w(p)

A (n) is the noise

contribution, A, B ∈ {S, D, R1, R2}, and ψx(�) is an indicator function which is

unity when the relay x, x ∈ {R1, R2}, was able to correctly detect the (�)th data

packet and zero otherwise. Our goal is to develop BICM detectors at relays and

destination.

4.2 Decoding Technique at the Relays

In DF ARC systems, it is usually assumed that successive interference cancellation,

where the strongest signal is detected first, and then its contribution is subtracted

from the received signal before detecting the other signal, can be employed at the

relays [38, 59]. In order to provide a reliable BER performance, this requires that

the inter-relay link is either sufficiently weak or sufficiently strong when compared

with the source-relays links. However, these two extreme scenarios may not al-

ways occur in practical systems. In this section, at the relays, we modify the bit

metric generation to have a better performance in the presence of the interference

resulting from the forwarding relay transmission.

From (4.2) and (4.4), one can observe that data received at a listening relay from

the source is interfered by the data sent from the forwarding relay. This is because

at any time slot, there is always a relay transmitting data simultaneously with the

source. Without loss of generality, we can write the received signal at relay Rx

(x ∈ {1, 2}) as

y(p)
Rx

(n) = d(p)(n)h(p)
SRx

(n) + d(p−1)(n)ψRy(p− 1)h(p)
RxRy

(n) + w(p)
Rx

(n), (4.5)
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where y ∈ {1, 2} and x 6= y. The demapper takes the received symbol y(p)
Rx

(n)

and the channel coefficients h(p)(n) =
[

h(p)
SRx

(n), ψRy(p− 1)h(p)
RxRy

(n)
]

as its inputs

to compute the bit metric, λ
(

v(p)
n ( f ) = b

)
, ∀ f = 1, · · · , m and b = 0, 1, using the

maximum a posteriori criterion as [53]

λ
(

v(p)
n ( f ) = b

)
= Pr

(
v(p)

n ( f ), d(p−1)(n) | y(p)
Rx

(n), h(p)(n)
)

. (4.6)

Since the symbol d(p−1)(n) is not known at the relay Rx, we remove its contribution

by averaging out as

λ
(

v(p)
n ( f ) = b

)
= ∑

d(p−1)(n)∈Ω

Pr
(

d(p−1)(n)
)

Pr
(

v(p)
n ( f ) = b | y(p)

Rx
(n), d(p−1)(n), h(p)(n)

)
. (4.7)

We assume that the transmitted symbols are equally proba-

ble; thus, Pr
(

d(p−1)(n)
)

= M−1. Further, the probability

Pr
(

v(p)
n ( f ) = b | y(p)

Rx
(n), d(p−1)(n), h(p)(n)

)
can be computed as

Pr
(

v(p)
n ( f ) = b | y(p)

Rx
(n), d(p−1)(n), h(p)(n)

)
=

∑
a∈Ψ( f ,b)

Pr
(

y(p)
Rx

(n) | a, d(p−1)(n), h(p)(n)
)
× Pr(a),

(4.8)

where the subset Ψ( f , b) =
{

µ
([

v(p)
n (1), v(p)

n (2), · · · , v(p)
n (m)

]
| v(p)

n ( f ) = b
)}

.

The a priori probability Pr(a) is unavailable on the first iteration of the demapping.

Therefore, in the initialization phase it is assumed that all a are equally probable.

Equation (4.8) is used as the input to the SISO decoder, which then generates the a

posteriori probabilities for the coded bits. On the second iteration, these probabili-
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Demapper De-interleaver Decoder

Decoded bits

Interleaver
probabilities A posteriori probabilities A priori 

Received 

symbols 

Figure 4.2: Block diagram of BICM with iterative decoding for single-input single-
output systems.

ties are interleaved and fed back as a priori probabilities to the demapper as shown

in Figure 4.2.

4.3 Decoding Techniques at the Destination

For single-input single-output systems, Zehavi suggested a detection method us-

ing two separate steps: bit metric generation and SISO decoding, as shown in Fig-

ure 4.2 [49]. The demapper generates 2m bit metrics for each received symbol, as-

sociated with the m positions, each having binary values 0 and 1. These bit metrics

are then de-interleaved and fed to the SISO decoder. The soft information provided

by the decoder is used to enhance the bit metrics in a recursive manner.

In this section, we show how to exploit the interference signal at the destina-

tion, to develop an optimal detector for DF alternate-relaying BICM cooperative

systems.

4.3.1 Optimal Detection

The proposed optimal detector consists of three major steps, as depicted in Fig-

ure 4.3. In the first step, we apply the MAP algorithms to compute the a posteri-

ori probability of each transmitted symbol. In the second step, we forward these
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Figure 4.3: Optimal proposed detector at destination.
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probabilities to demappers to compute the bit metrics. Finally, the SISO decoders

receive these metrics and extract the a posteriori information of the transmitted

bits. The output of the decoder is fed back to the MAP algorithms for performance

improvement. As one observes, the proposed detector iterates between MAP algo-

rithms and SISO decoders.

4.3.1.1 MAP Algorithms

The key idea of the proposed optimal detector is to employ Nd parallel MAP al-

gorithms, as shown in Figure 4.3. The input of the nth MAP algorithm is the

nth symbols from each received packet, Y(n) =
[
y(1)D (n), y(2)D (n), · · · , y(P)

D (n)
]
,

with y(p)
D (n) and y(p+1)

D (n) defined in (4.1) and (4.3) respectively2. The nth MAP

algorithm calculates the a posteriori probabilities Pr
(

d(p)(n) = ϑ | Y(n), H(n)
)

for p = 1, · · · , P, and for all θ belonging to the constellation Ω, and H(n) =[
h(1)SD(n), h(1)RxD(n), h(2)SD(n), h(2)RyD(n), · · · , h(P)

SD (n), h(P)
RxD(n)

]
. Here Pr (x1|, x2, x3) is

defined as the probability density function of occurring the event x1 given the

events x2 and x3. The MAP algorithm can be implemented based on the BCJR

algorithm [76], with the transition probability3, γ
(p)
n (s′, s), as

γ
(p)
n (s′, s) = 1√

πσ2 Pr
(

d(p)(n)
)

exp
(
−
∣∣∣yp

D(n)− d(p)(n)h(p)
SD(n)− d(p−1)(n)ψRx(p− 1)h(p)

RxD(n)
∣∣∣2 /σ2

) , (4.9)

2From (3.1) and (3.3), one can observe that the symbol d(p)(n) is included in y(p)
D (n) and

y(p+1)
D (n). In addition, the symbol d(p+1)(n) is included in y(p+1)

D (n) and y(p+2)
D (n). Accordingly, in

order to provide an optimal detector for nth symbol in each packet we have to rely on the received
sequence

[
y(1)(n), y(2)(n), · · · , y(P)(n)

]
. That is why we mix received packets, as shown in Figure

4.3.
3γ

(p)
n (s′, s) represents the probability to transit from the state s′ to the state s for the nth symbol

in the pth packet given the received symbol y(p)
D (n).
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where
[
d(p)(n) d(p−1)

Rx
(n)
]

represents the output associated with this transition. The

a priori probability Pr
(

d(p)(n)
)

is unavailable at the first iteration. Therefore, in

the initialization phase it is assumed that all d(p)(n) are equally probable. Equation

(4.9) is used as the input to the demapper, which then generates the bit metrics.

4.3.1.2 Demapper

The a posteriori probabilities provided by Nd MAP algorithms can be exploited

to compute the bit metrics. Referring to Figure 4.3, after the MAP algorithms,

the decoding process can be divided into P parallel branches, where the branch

pth decodes the pth packet. Each branch contains a demapper, de-interleaver,

decoder, interleaver, and symbol a posteriori computation unit. In order to

forward each branch its corresponding a posteriori probabilities, the outputs

of MAP algorithms are de-permuted; the pth output of each MAP algorithm

is forwarded to the pth branch. Mathematically, the a posteriori probabilities{
Pr
(

dp(n) |y(p)
D (n), H(n)

)}Nd

n=1
are passed to the pth branch. Accordingly, the bit

metric, λ
(

v(p)
n ( f ) = b

)
, can be computed as4

λ
(

v(p)
n ( f ) = b

)
= ∑

d(p)(n)∈Ψ( f ,b)

Pr
(

d(p)(n) |y(p)
D (n), H(n)

)
, (4.10)

where the subset Ψ( f , b) =
{

µ
([

v(p)
n (1), v(p)

n (2), · · · , v(p)
n (m)

]
| v(p)

n ( f ) = b
)}

.

4.3.1.3 Decoder

After de-interleaving, the bit metrics is passed to the decoder to provide the a pos-

teriori probabilities of coded bits. These probabilities are then interleaved and for-

warded to the symbol a posteriori computation unit. Assuming that the probabili-

4For more details on the bit metric concept, the reader is referred to [49, 51–53, 81, 85].
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ties Pr
(

v(p)
n (1)

)
, Pr

(
v(p)

n (2)
)

, · · · , Pr
(

v(p)
n (m)

)
are independent by using a good

interleaver, the symbol a posteriori probability Pr
(

d(p)(n)
)

can be computed as

Pr
(

d(p)(n)
)
=

m

∏
f=1

Pr
(

v(p)
n ( f )

)
. (4.11)

These a posteriori symbol probabilities are provided to the MAP algorithms as a

priori information, as seen in (4.9). At the last iteration, the final decoded outputs

are the hard decisions based on the a posteriori probabilities.

Implementation Aspects

• Since the MAP algorithm is a trace back algorithm, the end state must be

known. An additional Nd zero symbols are added to the end of the transmit-

ted frame to drive the encoder to state zero. In the literature, these additional

zeros are called the tail [49, 51–53, 81, 85]. This will result in a sightly band-

width loss compared with the direct transmission. This loss is given by 1/P,

which approaches zero for a large number of packets per frame.

• We follow the common assumption used in the cooperative literature that the

relays forward the received packets only when they have been correctly de-

coded; otherwise, relays remain idle. As such, the destination has to receive

an acknowledgment from relays about the status of each packet. For illustra-

tion, if the destination receives negative acknowledgment for the pth packet,

this implies that the relay Rx (x = 1 or 2) is unable to decode and forward

this packet.

• Unfortunately, the proposed optimal detector requires a large memory and

delay. The destination has to receive and store the entire frame before starting

data detection. These limitations are an increasing function on the modula-
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Figure 4.4: Sub-optimal detector at the destination.

tion order and number of packets per frame. Accordingly, these constraints

may prevent it from practical implementation. This motivates us to propose

a sub-optimal detector.

4.3.2 Sub-Optimal Detection

Instead of computing the exact values of symbol a posteriori probabilities

Pr
(

d(p)(n) = ϑ | Y(n), H(n)
)

provided by the MAP algorithms, in the proposed

sub-optimal detector, these probabilities are calculated in an approximated way.

We employ P sub-optimal algorithms in the sub-optimal detector instead of the P

MAP algorithms in the optimal detector, as shown in Figure 4.4. Note that these

P sub-optimal algorithms are applied in a serial fashion, while in the optimal one

the P MAP algorithms are applied in a parallel fashion. The key principle of the

sub-optimal detector is to employ two consecutive received packets,
{

y(p)
D (n)

}Nd

n=1

and
{

y(p+1)
D (n)

}Nd

n=1
, given in (4.1) and (4.3) respectively, to detect the packet{

d(p)(n)
}Nd

n=1
. More specifically, let us remove the contribution of

{
d(p−1)(n)

}Nd

n=1

from
{

y(p)
D (n)

}Nd

n=1
forming
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z(p)
D (n) = y(p)

D (n)− d(p−1)(n)ψRx(p− 1)h(p)
RxD(n). (4.12)

Here we follow the common assumption associated with the most of succes-

sive detection algorithms found in the literature (e.g., [91, 92]) that the previous

symbols
{

d(p−1)(n)
}Nd

n=1
are perfectly detected, when we perform detection for{

d(p)(n)
}Nd

n=1
. This assumption is necessary for the theoretical development of the

sub-optimal detector; however, in simulations, we relax this assumption. Using

(4.1), we can write

z(p)
D (n) = d(p)(n)h(p)

SD(n) + w(p)
D (n). (4.13)

With (3.3) rewritten as

y(p+1)
D (n) = d(p+1)(n)h(p+1)

SD (n) + d(p)(n)ψRy(p)h(p+1)
RyD (n) + w(p+1)

D (n), (4.14)

and based on (4.13) and (4.14), one can write

P
(

d(p)(n)
∣∣∣y′(p)(n), h′(p)(n)

)
= ∑

d(p+1)(n)∈Ω

P
(

d′(p)(n)
∣∣∣y′(p)(n), h′(p)(n)

)
= ∑

d(p+1)(n)∈Ω

P
(

y′(p)(n)
∣∣∣d′(p)(n), h′(p)(n)

)
P
(

d(p+1)(n)
)

P
(

d(p)(n)
)

.
(4.15)

Here y′(p)(n) =
[
z(p)

D (n) y(p+1)
D (n)

]T
, d′(p)(n) =

[
d(p)(n) d(p+1)(n)

]T
,

h′(p)(n) =

 h(p)
SD(n) 0

h(p+1)
RyD (n)ψRy(p) h(p+1)

SD (n)

 , (4.16)
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Table 4.1: A comparison of the optimal and sub-optimal detectors. The abbreviation MS stands
for the required memory size and BW loss for the bandwidth loss. Delay is expressed by the number
of data symbols required to store.

Complexity Delay MS BW loss

Optimal 65M2NdP + Υ NdP NdP 1/P
Sub-optimal

(
34M2 −M

)
NdP + 8Nd(P− 1) + Υ Nd Nd zero

and

P
(

y′(p)(n)
∣∣∣d′(p)(n), h′(p)(n)

)
= 1

πσ2 exp
(
−
∥∥∥y′(p)(n)− h′(p)(n)d′(p)(n)

∥∥∥2
/σ2

)
.

(4.17)

After computing the a posteriori probabilities of the data symbols as in (4.15), (4.10)

can be applied to produce the bits metrics. As for the optimal detector, these bit

metrics are then de-interleaved and passed to the SISO detector. The soft informa-

tion provided by the decoder is fed back to (4.15) to refine the computation.

After detecting
{

d(p)(n)
}Nd

n=1
, their contribution can be removed from{

y(p+1)
D (n)

}Nd

n=1
, forming z(p)

D (n + 1) = y(p+1)
D (n) − d(p)(n)ψRy(p)h(p+1)

RyD (n).

Similarly, from
{

z(p+1)
D (n)

}Nd

n=1
and

{
y(p+2)

D (n)
}Nd

n=1
and by averaging over{

d(p+2)(n)
}Nd

n=1
, the (p + 1)th packet,

{
d(p+1)(n)

}Nd

n=1
, can be detected, and so on.

A comparison of the proposed optimal and sub-optimal detectors in terms of

complexity, delay, MS, and BW loss is shown in Table 4.1. We evaluate the com-

putational complexity of the proposed detectors in terms of the required flops per

iteration. In the table, Υ = P (MNdm + (m− 1) Nd + v) refers to the term that is

common in both detectors, where v is the number of flops that requires for one

decoder; v depends on encoder parameters such as constraint length, code rate

and generator polynomial. One can notice that the complexity of both detectors

is directly proportional to the number of symbols per packet Nd and square of the

93



4.4. DATA DETECTION FOR MULTIPLE ANTENNA DESTINATION

modulation order, M2. We also notice that the sub-optimal detector outperforms

the optimal detector in terms of the required delay, MS, and BW loss, with a lower

computational complexity.

4.4 Data Detection for Multiple Antenna Destination

In this section, we assume that the destination is a base station that has the capa-

bility to support AD > 1 antennas, while the source, and relays are small nodes

with limited power and few resources, thus, each of them is equipped only with

one antenna. Our aim is to perform data detection at the destination.

4.4.1 Proposed Optimal Receiver Structure

The proposed optimal receiver mainly consists of Nd parallel demappers which

provide the bit metrics of the transmitted frame to P parallel detectors, as shown

in Figure 4.5. The receiver iterates between the demappers and the detectors for

performance improvement.

Demappers

From (3.1) and (3.3), one can notice that each transmitted symbol d(p)(n) is in-

cluded in y( f ,p)
D (n) and y( f ,p+1)

D (n), f = 1, 2, · · · , AD. Accordingly, in order to

exploit the repetition of the transmitted symbols, we provide the nth demapper

with the nth symbols of each received packet of each receive antenna, y( f )
D (n) =[

y( f ,1)
D (n), y( f ,2)

D (n), · · · , y( f ,P)
D (n)

]
, f = 1, 2, · · · , AD, and the a priori probabilities

of the nth symbol of each packet in the frame. Each demapper employs serial

BCJR algorithms; each is associated with one unique receive antenna, as shown

in Figure 4.6. Each algorithm delivers a posteriori probabilities (APPs) about the
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Figure 4.5: Optimal receiver for multiple receive antennas DF ARC cooperative
system.
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transmitted data which is used as a priori information for the next algorithm. For

the first iteration, we assume no a prior information available for the first BCJR al-

gorithm. While in the following iterations, the APPs provided by the detectors are

employed as a priori information for the first BCJR algorithm. Upon completion,

the APPs provided by the last BCJR algorithm are used to compute the bit metrics

as follows.

The f th BCJR algorithm computes the APPs of the nth symbol of each re-

ceived packet on the f th antenna, Pr
(

d(p)(n)
∣∣∣y( f )(n), h( f )(n)

)
, where h( f )(n) =[

h( f ,1)
SD (n), h( f ,1)

RxD (n), h( f ,2)
SD (n), h( f ,2)

RyD (n), · · · , h( f ,P)
SD (n), h( f ,P)

RxD (n)
]

represents the chan-

nel coefficients and p = 1, · · · , P. Using (3.1) and following the principles of the

BCJR algorithm which is explained in Section 2.2.4, one can write the branch metric

between the states s′ and s for the nth symbol in the pth packet given the received

symbol y( f ,p)
D (n), is defined as

γ(s′, s) = 1√
πσ2 Pr

(
d(p)(n)

)
×

exp
(
−
∣∣∣y( f ,p)

D (n)− d(p)(n)h( f ,p)
SD (n)− d(p−1)

Rx
(n)ψRx(p− 1)h( f ,p)

RxD (n)
∣∣∣ /σ2

) ,

(4.18)

where
[
d(p)(n) d(p−1)

Rx
(n)ψRx(p− 1)

]
represents the output associated with

this branch and Pr
(

d(p)(n)
)

is the a priori probability. The APPs,

Pr
(

d(p)(n)
∣∣∣y(AD)(n), h(AD)(n)

)
, provided by the last BCJR algorithm, are used

to compute the bit metrics λ
(

v(p)
n (k) = b

)
as

λ
(

v(p)
n (k) = b

)
= ∑

d(p)(n)∈Ψ(k,b)

P
(

d(p)(n) | y(AD)
D (n), h(AD)(n)

)
, (4.19)

where the subset Ψ(k, b) =
{

µ
([

v(p)
n (1), v(p)

n (2), · · · , v(p)
n (m)

]
| v(p)

n (k) = b
)}

.
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Detectors

The bit metrics is passed to the decoder to provide the a posteriori probabilities

of coded bits. These probabilities are then interleaved and forwarded to the sym-

bol a posteriori computation unit. Assuming that the probabilities P
(

v(p)
n (1)

)
,

P
(

v(p)
n (2)

)
, · · · , P

(
v(p)

n (m)
)

are independent by using a good interleaver, the

symbol a posteriori probability P
(

d(p)(n)
)

can be computed as

P
(

d(p)(n)
)
=

m

∏
u=1

P
(

v(p)
n (u)

)
. (4.20)

These a posteriori symbol probabilities are provided to the demappers as a priori

information, as seen in (4.18). At the last iteration, the final decoded outputs are

the hard decisions based on the a posteriori probabilities.

Implementation Aspects

• Since the BCJR algorithm is a trace back algorithm, the end state must be

known. An additional Nd zero symbols are added to the end of the transmit-

ted frame to drive the encoder to state zero. In the literature, these additional

zeros are called the tail [49, 51–53, 81, 85]. This will result in a sightly band-

width loss compared with the direct transmission. This loss is given by 1/P,

which approaches zero for a large number of packets per frame.

• The proposed optimal receiver requires a large memory and delay. The desti-

nation has to receive and store the entire frame before starting data detection.

These limitations are an increasing function on the modulation order and

number of packets per frame. Accordingly, these constraints may prevent

it from practical implementation. This motivates us to propose a sub-optimal

detector.
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4.5 Sub-Optimal Receiver

In this section, we employ the successive interference cancellation principle to

avoid the delay problem associated with the optimal receiver, while maintaining

the diversity gain. The basic idea behind the sub-optimal receiver is to use AD

sub-optimal algorithms to compute the bit metrics of the the transmitted frame, as

shown in Figure 4.7; each algorithm is associated with one unique receive antenna.

The sub-optimal receiver exploits two consecutive received packets on each receive

antenna,
{

y( f ,p)
D (n)

}Nd

n=1
and

{
y( f ,p+1)

D (n)
}Nd

n=1
, f = 1, · · · , AD, given in (3.1) and

(3.3), respectively to detect the packet
{

d(p)(n)
}Nd

n=1
. The f th algorithm operates as

follows. We remove the contribution of
{

d̂(p−1)(n)
}Nd

n=1
from

{
y( f ,p)

D (n)
}Nd

n=1
and

form

z( f ,p)
D (n) = y( f ,p)

D (n)− d(p−1)(n)ψRx(p− 1)h( f ,p)
RxD (n). (4.21)

Using (3.1), we can write

z( f ,p)
D (n) = d(p)(n)h( f ,p)

SD (n) + w( f ,p)
D (n). (4.22)

Here we follow the common assumption associated with most of the successive

detection algorithms found in the literature (e.g., [91,92]) that the previous symbol

d̂(p−1)(n) is perfectly detected, when we perform detection for d(p)(n). This as-

sumption is necessary for the theoretical development of the sub-optimal receiver;

however, in the simulations we relax this assumption. With (3.3) rewritten as

y( f ,p+1)
D (n) = d(p+1)(n)h( f ,p+1)

SD (n) + d(p)(n)ψRy(p)h( f ,p+1)
RyD (n) + w( f ,p+1)

D (n).

(4.23)
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Figure 4.7: Sub-optimal receiver for DF ARC systems.
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Therefore, we can write

Pr
(

d(p)(n)
∣∣∣z( f ,p)

D (n), y( f ,p+1)
D (n), h′( f ,p)(n)

)
=

∑
d(p+1)(n)∈Ω

Pr
(

z( f ,p)
D (n), y( f ,p+1)

D (n)
∣∣∣d(p)(n), d(p+1)(n), h′( f ,p)(n)

)
×Pr

(
d(p)(n)

)
Pr
(

d(p+1)(n)
)

,

(4.24)

where

h′( f ,p)(n) =

 h( f ,p)
SD (n) 0

h( f ,p+1)
RyD (n)ψRy(p) h( f ,p+1)

SD (n)

 , (4.25)

and

Pr
(

z( f ,p)
D (n), y( f ,p+1)

D (n)
∣∣∣d(p)(n), d(p+1)(n), h′( f ,p)(n)

)
=

1
πσ2 exp

(
−
∥∥∥∥[z( f ,p)

D (n), y( f ,p+1)
D (n)

]T
− h′( f ,p)(n)

[
d(p)(n), d(p+1)(n)

]T
∥∥∥∥2

/σ2

)
,

(4.26)

where the superscript T refers to the vector transpose. After computing the a pos-

teriori probabilities of the data symbols as in (4.24), (4.19) can be applied to pro-

duce the bits metrics. As for the optimal detector, these bit metrics are then de-

interleaved and passed to the SISO detector. The soft information provided by the

decoder is fed back to (4.24) to refine the computation.

After detecting
{

d(p)(n)
}Nd

n=1
, its contribution can be removed from{

y( f ,p+1)
D (n)

}Nd

n=1
forming z( f ,p)

D (n + 1) = y( f ,p+1)
D (n) − d(p)(n)ψRx(p)h( f ,p+1)

RxD (n).

Similarly, from
{

z( f ,p+1)
D (n)

}Nd

n=1
and

{
y( f ,p+2)

D (n)
}Nd

n=1
and by averaging over{

d(p+2)(n)
}Nd

n=1
, we can detect

{
d(p+1)(n)

}Nd

n=1
, and so on.

Table 4.2: A comparison of the optimal and sub-optimal detectors.
Complexity Delay MS BW loss

Optimal 70M2NPAD + Υ NP NPAD 1/P
Sub-optimal

(
33M2NP + 8N(P− 1)

)
AD + Υ N NAD zero
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A comparison between the proposed optimal and sub-optimal detectors in

terms of complexity, delay, MS, and BW loss is provided in Table 4.2. The com-

putational complexity of the proposed detectors is evaluated in terms of the num-

ber of required flops per iteration. In the table, Υ = P (MNdm + (m− 1) Nd + v)

refers to the term that is common in both detectors, where v is the number of flops

that requires for one decoder; v depends on encoder parameters such as constraint

length, code rate and generator polynomial. One can notice that the complexity of

both detectors is proportional to the number of symbols per packet Nd, number of

packets per frame P and square of the modulation order, M2. We also notice that

the sub-optimal detector outperforms the ML detectors in terms of the required

delay, MS, and BW loss at the expense of a slightly computational complexity.

4.6 Simulation Results

In this section, we validate the proposed detectors through Monte Carlo computer

simulations. We consider an alternate-relaying DF cooperative communication

system, using a convolutional code with constraint length 5, rate 1/2 and poly-

nomial generators (23)8 and (35)8. The BCJR algorithm [76] is used for decoding.

A frame based transmission is assumed; each has 20 packets. A packet length of Nb

= 150 information bits is chosen, leading to Nc = 300 coded bits. The coded bits are

set partition-mapped on a 8-PSK constellation, resulting in Nd= 100 symbols. The

channel coefficients are modeled as zero-mean complex Gaussian random vari-

ables with variances, σ2
SD = 1, σ2

SR1
= σ2

SR2
= 6.25, and σ2

R1D = σ2
R2D = 2.8.

Figure 4.8 shows the BER performance of the proposed detector at the relays

as a function of Eb/N0. For the sake of comparison, we show the performance

when the interference signal can be treated as additional noise, and this is referred
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Figure 4.8: BER performance of the proposed detector, detector 1, and detector 2 as
a function of Eb/N0, at the relays.

to as detector 1. In addition, we show the BER performance of the successive in-

terference cancellation detector proposed in [38, 59], which is based on detecting

the strongest signal first, then subtract its contributions from the received inter-

fered signal before detecting the other signal. In the sequel, this is referred to as

detector 2. As one can observe, both detector 1 and detector 2 lead to an unac-

ceptable performance. We also notice that the proposed detector achieves a strong

improvement of the performance after only two iterations. In addition, there is no

significant improvement in the performance after three iterations for any Eb/N0

values.

Figures 4.9 and 4.10 respectively depict the BER performance of the proposed

optimal and sub-optimal detectors at the destination with single antenna as a func-

tion of Eb/N0, where Eb and N0 are the energy per bit and noise power spectral

density, respectively. Since two relays are used in the alternate-relaying coopera-

102



4.6. SIMULATION RESULTS

0 1 2 3 4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
 / N

0
 (dB)

B
E

R

Iterations 1−5

Full−rate system

Half−rate systems, one relay − solid lines, best relay − dashed lines,

Figure 4.9: BER performance of the DF ARC cooperative system with the optimal
detector and half-rate cooperative systems as a function of Eb/N0, at the destina-
tion.

tive systems, the BER performance of the half-rate one relay and best relay from

a set of two relays are also shown. For a fair comparison between the half-rate

and full-rate (alternate-relaying) systems, we keep the same data rate and trans-

mitted power for both systems. Hence, we use 64-PSK modulation for the half-rate

systems and 8-PSK for the full-rate systems. As one can observe, for the full-rate

cooperative systems, iterative processing achieves a significant performance im-

provement for the proposed optimal and sub-optimal detectors. Furthermore, it

is seen that the performance of the proposed full-rate cooperative systems outper-

forms that of the half-rate cooperative systems.

Figure 4.12 shows the BER performance of the proposed optimal and subopti-

mal detectors with different relays’ positions, while the distance between the two

relays is kept constant. As one can observe, the BER at the destination degrades
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Figure 4.10: BER performance of the DF ARC system with the sub-optimal detector
and half-rate cooperative systems as a function of Eb/N0, at the destination. Note
that the first iteration of the alternate-relaying system locates in the region of the
half-rate system.
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Figure 4.11: BER performance of the DF ARC system with the optimal and sub-
optimal detectors as a function of the number of iterations, at the destination.
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Figure 4.12: BER performance at the destination with different relays’ positions.
Here we set dR1R2 to 0.2 and dR1D and dR2D are changed accordingly.
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Figure 4.13: BER performance of the optimal and sub-optimal detectors for a des-
tination supporting two antennas.

with dSR1 and dSR2 . It is because the BER at the relays increases with dSR1 and dSR2 ;

this, in turn, increases the BER at the destination.

Figures 4.11, 4.13, and 4.14 compare the BER performance of the proposed opti-

mal detector with that of the proposed sub-optimal detector for a destination sup-

porting one, two, and three antennas, respectively. As one can observe, at the

first iteration the performance of the sub-optimal detector is much worse than that

of the optimal one. However, by increasing the number of iterations, the perfor-

mance difference between the sub-optimal and optimal detectors reduces. This

occurs because at the first iteration the a posteriori probabilities provided by the

sub-optimal algorithm are not reliable to initialize the SISO decoder. With the aid

of iterative processing, the reliability of the sub-optimal detector increases, and its

performance approaches the performance of the optimal detector.
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Figure 4.14: BER performance of the optimal and sub-optimal detectors for a des-
tination supporting three antennas.

4.7 Summary

In this chapter, we propose the use of bit-interleaved coded modulation (BICM) in

DF-ARC systems. A modified BICM decoder has been developed at the relays to

mitigate the influence of the interference signal. Furthermore, at the destination,

we exploit the interference signal, which results from the simultaneous transmis-

sion of data streams through both direct and one of the relay channels, to develop

an optimal detector. It is shown that the proposed detector can be implemented by

parallel concatenating maximum a posteriori (MAP) algorithms and demappers to

the decoders. The detector exchanges soft information between decoders and MAP

algorithms in an iterative way for performance improvement. The major drawback

of the proposed optimal detector is the delay, i.e., the destination has to receive and

store all received packets before performing data detection. Due to the inevitable

delay restriction, a sub-optimal detector is developed. In contrast with the optimal
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one, the sub-optimal detector exploits two consecutive received packets to decode

one packet.

In addition, the proposed algorithms have been extended for a new develop-

ment of a multiple antenna destination. It is shown that the optimal receiver can

be implemented by parallel demappers, each is based on a family of the BCJR al-

gorithms, connected with parallel detectors in an iterative way. Unlike the optimal

detector which requires to receive and store the entire packets before performing

data detection, the sub-optimal one exploits two consecutive received packets to

decode one packet.

The performance of the proposed receivers is assessed via Monte Carlo simula-

tions, and the results illustrate their effectiveness. It turns out that the sub-optimal

receiver outperforms the optimal one in terms of the required memory size, delay,

bandwidth loss, and computational complexity.
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Chapter 5

Conclusions and Future Work

Cooperative communications has recently received wide recognition as a simple

way to improve system error rate performance and capacity. The key idea is that

multiple terminals in a wireless network cooperate by relaying each other’s infor-

mation, forming a virtual antenna array and thus realizing spatial diversity in a

distributed fashion. These cooperative techniques take advantage of the broadcast

nature of the wireless channel by using the fact that a source signal intended for a

particular destination can be overheard at neighboring nodes. It has been shown

that cooperative communications bring several network enhancements such as im-

proved coverage, increased capacity, and improved reliability in terms of diversity

gain. Cooperative communications has found applications in various networks

such as cellular, ad hoc, and sensor networks [15–17].

Cooperative communications have brought forth many interesting issues, chal-

lenges and open questions. One of the most important challenges is the reduc-

tion in spectral efficiency, which results from half duplex constraint at the re-

lays and orthogonal relay transmission. Among various cooperative systems pro-

posed to recover spectral efficiency, it was shown that alternate-relaying coop-
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erative (ARC) system can recover a significant portion of the spectral efficiency

loss [34–36, 38–43]). A key feature of this system is that the source continues to

transmit data, while one of two relays receives and transmits the data from the

source in turn. Due to simultaneous transmission of data streams through both di-

rect and one of relay channels, harmful interference occur. This represents a major

drawback for this system.

To the best of our knowledge, all the reported works for ARC systems have in

common that they do not provide the optimal data detection solution and they re-

strict themselves to uncoded transmission and do not exploit any properties of the

underlying error correcting codes. In this thesis, we have proposed novel data de-

tection algorithms for uncoded and coded decode-and-forward (DF) ARC systems,

with a destination node supporting single and multiple antenna.

In Chapter 3, we have proposed a maximum-likelihood detector at the relays.

This is based on averaging out the interference signal. Furthermore, unlike previ-

ous work in which interference cancellation is required at the destination, we ex-

ploit the interference signal as a beneficial resource to develop the optimal detector

at the destination. It is shown that the optimal detector can be implemented by

parallel Viterbi algorithms. The major drawback of the proposed optimal detector

is the delay because the destination has to receive and store the entire frame before

performing data detection. Due to the inevitable delay restriction, a sub-optimal

detector is developed. In contrast with the optimal detector, the sub-optimal de-

tector exploits two consecutive received packets to decode one packet.

In addition, the proposed algorithms have been extended for a new develop-

ment of a multiple antenna destination. We demonstrated that the optimal de-

tector can be performed by parallel detectors, each is based on a family of BCJR

algorithms. A sub-optimal detector has been also proposed to avoid the delay lim-
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itation that is associated with the optimal one.

Generally, simulation results have been indicated that the performance of the

optimal and sub-optimal detectors is very close to that of the ideal case with perfect

separation of direct and relaying links. In addition, the sub-optimal detector out-

performs the optimal one in terms of the required delay, memory size, bandwidth

loss, and computational complexity.

In Chapter 4, we propose the use of bit-interleaved coded modulation (BICM)

in DF-ARC systems. A modified BICM decoder has been developed at the relays

to mitigate the influence of the interference signal. Furthermore, at the destination,

we exploit the interference signal, which results from the simultaneous transmis-

sion of data streams through both direct and one of the relay channels, to develop

an optimal detector. It is shown that the proposed detector can be implemented by

parallel concatenating maximum a posteriori (MAP) algorithms and demappers to

the decoders. The detector exchanges soft information between decoders and MAP

algorithms in an iterative way for performance improvement. The major drawback

of the proposed optimal detector is the delay, i.e., the destination has to receive and

store all received packets before performing data detection. Due to the inevitable

delay restriction, a sub-optimal detector is developed. In contrast with the optimal

one, the sub-optimal detector exploits two consecutive received packets to decode

one packet.

In addition, the proposed algorithms have been extended for a new develop-

ment of a multiple antenna destination. It is shown that the optimal receiver can

be implemented by parallel demappers, each is based on a family of the BCJR al-

gorithms, connected with parallel detectors in an iterative way. Unlike the optimal

detector which requires to receive and store the entire packets before performing

data detection, the sub-optimal one exploits two consecutive received packets to
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decode one packet.

The performance of the proposed receivers is assessed via Monte Carlo simula-

tions, and the results illustrate their effectiveness. It turns out that the sub-optimal

receiver outperforms the optimal one in terms of the required memory size, delay,

bandwidth loss, and computational complexity.

Possible extensions of the work

• Developing optimal data detection algorithms for uncoded and coded ARC

cooperative systems over frequency-selective channels.

• Developing new interference cancellation algorithms at the relays.

• Proposing parameters estimation algorithms for uncoded and coded ARC

cooperative transmission.
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