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ABSTRACT 

Offshore oil spills can lead to significantly negative impacts on socio-economy and 

constitute a direct hazard to the marine environment and human health. The response to 

an oil spill usually consists of a series of dynamic, time-sensitive, multifaceted and 

complex processes subject to various constraints and challenges. In the past decades, 

many models have been developed mainly focusing on individual processes including oil 

weathering simulation, impact assessment, and clean-up optimization. However, to date, 

research on integration of offshore oil spill vulnerability analysis, process simulation and 

operation optimization is still lacking. Such deficiency could be more influential in harsh 

environments. It becomes noticeably critical and urgent to develop new methodologies 

and improve technical capacities of offshore oil spill responses. Therefore, this proposed 

research aims at developing an integrated decision support system for supporting offshore 

oil spill responses especially in harsh environments (DSS-OSRH). Such a DSS consists 

of offshore oil spill vulnerability analysis, response technologies screening, and 

simulation-optimization coupling. The uncertainties and/or dynamics have been 

quantitatively reflected throughout the modeling processes.  

First, a Monte Carlo simulation based two-stage adaptive resonance theory mapping 

(MC-TSAM) approach has been developed. A real-world case study was applied for 

offshore oil spill vulnerability index (OSVI) classification in the south coast of 

Newfoundland to demonstrate this approach. Furthermore, a Monte Carlo simulation 

based integrated rule-based fuzzy adaptive resonance theory mapping (MC-IRFAM) 

approach has been developed for screening and ranking for spill response and clean-up 
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technologies. The feasibility of the MC-IRFAM was tested with a case of screening and 

ranking response technologies in an offshore oil spill event. A novel Monte Carlo 

simulation based dynamic mixed integer nonlinear programming (MC-DMINP) approach 

has also been developed for the simulation-optimization coupling in offshore oil spill 

responses. To demonstrate this approach, a case study was conducted in device allocation 

and oil recovery in an offshore oil spill event. Finally, the DSS-OSRH has been 

developed based on the integration of MC-TSAM, MC-IRFAM, and MC-DSINP. To 

demonstrate its feasibility, a case study was conducted in the decision support during 

offshore oil spill response in the south coast of Newfoundland.  

The developed approaches and DSS are the first of their kinds to date targeting 

offshore oil spill responses. The novelty can be reflected from the following aspects: 1) 

an innovative MC-TSAM approach for offshore OSVI classification under complexity 

and uncertainty; 2) a new MC-IRFAM approach for oil spill response technologies 

classification and ranking with uncertain information; 3) a novel MC-DMINP 

simulation-optimization coupling approach for offshore oil spill response operation and 

resource allocation under uncetainty; and 4) an innovational DSS-OSRH which consists 

of the MC-TSAM, MC-IRFAM, and MC-DMINP, supporting decision making 

throughout the offshore oil spill response processes. These methods are particularly 

suitable for offshore oil spill responses in harsh environments such as the offshore areas 

of Newfoundland and Labrador (NL). The research will also promote the understanding 

of the processes of oil transport and fate and the impacts to the affected offshore and 

shoreline area. The methodologies will be capable of providing modeling tools for other 

related areas that require timely and effective decisions under complexity and uncertainty.  
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1.1 Offshore Oil Spills  

Pollution caused by accidentally release (spillage or leakage) of pollutants such as 

offshore oil spills cannot only cause significantly negative impacts on the environment 

and socio-economy but constitutes a direct hazard to marine life and human health. It is 

reported that in the last decade over one billion gallons of oil spilled worldwide and about 

six million tonnes/year entered the oceans (OPEC, 2013). Over 20 years passed after the 

Exxon Valdez oil spill, significant efforts have been made to study oil spills and improve 

response capacities and practices (Etkin and Welch, 1997). However, it is obviously not 

enough to match the steps of oil and gas development. The recent Deepwater Horizon 

catastrophe is shaping up to be one of the largest offshore oil spills in American history 

and an ecological nightmare of epic proportions (Bly, 2011; BOEMRE/USCG, 2011; 

MMC, 2011). It resulted in a set of government penalties of US $4.5 billion and an 

estimated total liability up to US $100 billion. When the effects to the economy and 

environment are taken into account, the final cost is estimated to be twice that at $240 

million (Griggs, 2011).  

In Canada, Newfoundland and Labrador (NL) produces about 100 million barrels of 

crude oil every year, representing ten percent of national crude oil production (C-NLOPB, 

2011). Oil spills in NL offshore happen more often than environmental assessments 

predicted (Terry, 2008). Since 1997, it is estimated that roughly 2,703 barrels of drilling 

fluids and other hydrocarbons have been spilled into the ocean through the about 340 
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spills reported from NL’s offshore (Terry, 2008). In 2004, about 1,040 barrels of crude oil 

were spilled at Terra Nova, followed by a penalty of $290,000 (C-NLOPB, 2007). In 

2004, approximately 96.6 m
3
 of synthetic based mud was spilled at the surface at White 

Rose. Husky Energy pleaded guilty to two of three counts in connection with this spill, 

with a penalty of $50,000 comprised of a fine of $10,000 for each count, and $30,000 to 

the Environmental Damages Fund (C-NLOPB, 2008). Oil spills are arising more and 

more concerns in harsh environments because of significant negative impacts on the 

marine environment and eventually human health, as well as difficulties in the physical 

recovery (Chen et al., 2012b).  

The response to an oil spill is a dynamic, time-sensitive, multifaceted and complex 

process subject to various constraints and challenges. The response is dependent on a 

variety of factors including quantity and properties of the spilled product, location, 

environmental conditions, and availability and utilization of response resources at various 

degrees of oil weathering (Nordvik, 1999; Ornitz and Champ, 2003). The success and 

effectiveness of a response much rely on how efficiently the information and response 

recourses (vessels, devices, manpower, money, etc.) can be utilized and how optimally 

the decision and actions can be made (Li et al., 2012a, 2012b, 2013d). While 

technologies are 21
st
 century, emergency and post emergency response to accidental 

pollution have remained an awkward situation with an infrastructure that is now proving 

to be woefully inadequate to the response in accidental pollution events such as the 
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Deepwater Horizon oil spill (You and Leyffer, 2011). 

Meanwhile, environmental conditions always play a critical role in responses and 

any extreme or unfriendly conditions can further challenge the effectiveness (Jing et al., 

2012a, 2013b, 2013). This is especially true in the offshore areas of Arctic and Northern 

Atlantic oceans, where harsh conditions such as cold water, low temperature, limited 

visibility, rough sea, sea ice, and strong wind, are prevailing (Owens et al., 1998; 

Brandvik et al., 2006). Accidental oil spills are more problematical in harsh environments 

due to the fragile ecosystems and the logistic challenges of cleaning up spills in regions 

that less accessible for sea transport (Huntington, 2008; Turner, 2010). Besides, most 

offshore oil recoveries require support from aircrafts, vessels and trained personnel which 

can be highly hindered by harsh conditions (Fingas, 2011). Due to the fast growth of 

offshore oil and gas development and shipping operations in northern regions of Canada, 

it is noticeably urgent and critical to develop new methods and improve knowledge and 

technical capacity for ensuring more effective responses to accidental spills in harsh 

environments. 

 

1.2 Challenges in Offshore Oil Spill Response Decision Making 

A necessary and important component for supporting offshore oil spill response 

decision making is the spill risk mapping and classification, which can support the 

practice of oil spill response, impacts and options evaluation, operation cost reduction, 
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and efficiency improvement (Richard et al., 2001; Fernando et al., 2005). The risk to an 

area caused by any potential offshore oil spills can be described by the offshore oil spill 

vulnerability index (OSVI), introduced by Gundlach and Hayes (1978), instead of 

Environmental Sensitivity Index (ESI) to better describe vulnerability of a shoreline area 

that would potentially expose to oil spills. Classification approaches are able to 

categorize offshore areas into zones with different levels of OSVI based on the associated 

impacts and probability and identify the zones which can represent significantly different 

characteristics from each other (Ertekin and Rudin, 2011). In current ocean and coastal 

management practice, the existing offshore OSVI classification focuses mainly on 

ecological impacts and protection of fishery or seabirds, and offshore oil spill risks have 

not been well considered and reflected (Chen and Li, 2012). One of the key reasons is the 

lack of scientific support and insufficient knowledge about oil spill risks and the 

uncertainties due to the inherent dynamic and complex features with meteorological, 

oceanic and ecological conditions (Chen et al., 2012b).  

Furthermore, there is still a lack of risk assessment model in handling the variance of 

such vulnerabilities of different zones (i.e., local areas) (Queensland Transport, 2000). 

Once spilled into the marine environment, the fate and subsequent impact of oil on the 

environment in general and the shoreline in particular are dependent on many complex 

and interactive factors that may be nearly impossible to do any meaningful analysis of the 

subsequent outcomes (IMO, 2010). Hence a classification approach which can delineate a 
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region into different risk zones with similar vulnerability to an oil spill is significantly 

helpful to the risk assessment in an offshore oil spill event.  

A few decision support systems (DSSs) have been developed for oil spill response 

and countermeasures (Fingas, 2001; Ornitz and Champ, 2003). For example, 

Pourvakhshouri et al. (2006) developed a Geographical Information System (GIS) based 

DSS for management plans to enable the decision maker to choose the most effective 

combating method for prevention, control, and/ or cleanup way against the oil spills 

pollution in the Strait of Malacca. Meanwhile, some models were also developed to 

diagnose and alert the oil spill based on the geomatic analysis (Assilzadeh et al., 2001; 

Brimicombe, 2003). There are also developed models out of geomatic analysis, such as 

Oil Spill Information System (OSIS) (Leech et al., 1993), Oil Spill Risk Analysis (OSRA) 

model, and General National Oceanic and Atmospheric Administration (NOAA) 

Operational Modeling Environment (GNOME) (Price et al., 2003; Beegle-Krause and 

O’Connor, 2005). However, these models usually determine response technologies based 

on only experience and suggest operations without support of optimization, and few of 

them involve approaches to handle uncertainties which widely appear in and highly affect 

oil spill response decisions and actions (Wilhelm and Srinivasa, 1997; Reed et al., 1999; 

Brebbia, 2001). Challenges also remain in resources and settings optimization for 

decision support in offshore oil spill due to lack of simulation of spill transport and fate. 

Furthermore, limited attempts have been reported in coupling of response optimization 
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and offshore oil spill simulation which can effectively increase the efficiency and reduce 

the time of response (You and Leyffer, 2011).  

 

1.3 Research Objectives  

The goal of this research is to develop a DSS to support offshore oil spill response 

and countermeasures in harsh environments based on the integration of offshore OSVI 

classification, technology screening, and a simulation-based optimization under 

uncertainties. The major research tasks include: 1) to develop a set of approaches of 

multi-features classification and ranking for offshore OSVI classification and 

technologies screening/ranking under uncertainties and complexities; 2) to develop a 

simulation-based optimization approach under dynamics and uncertainties based on the 

integration of simulations of oil weathering and recovery processes, dynamic 

programming, and uncertainty analysis; 3) to develop a DSS framework by integrating 

offshore OSVI classification, technologies screening and ranking, and the 

simulation-based optimization approaches for supporting offshore oil spill response. 

 

1.4 Structure of the Thesis 

Chapter 2 mainly focuses on the comprehensive reviews of modeling and decision 

support approaches and their applications in offshore oil spills, classification, simulation, 
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simulation-optimization coupling, as well as discussion of the key challenges in cold and 

harsh environments. Specific reviews efforts are given to 1) offshore oil spills and their 

impacts as well as corresponding preparedness and contingency planning; 2) 

classification under complexity and uncertainty as well as their coexistence; and 3) 

optimization under uncertainty and its coupling with simulation to support offshore oil 

spill response. 

Chapter 3 describes the development of a Monte Carlo simulation based two-stage 

adaptive resonance theory mapping (MC-TSAM) approach for offshore OSVI 

classification and its application to a case study in the south coast of Newfoundland. This 

chapter also provides the details about the development of a Monte Carlo simulation 

based integrated rule-based fuzzy adaptive resonance theory mapping (MC-IRFAM) 

approach for response technologies screening along with a case study to test its 

feasibility. 

Chapter 4 provides the development of 1) a fuzzy-stochastic-interval linear 

programming (FSILP) approach and a Monte Carlo simulation based fuzzy programming 

(MCFP) approach for optimization under uncertainty; 2) a dynamic mixed integer 

nonlinear programming (DMINP) approach for simulation-optimization coupling; and 3) 

a Monte Carlo simulation based dynamic mixed integer nonlinear programming 

(MC-DMINP) for simulation-optimization coupling under uncertainty, based on DMINP, 

Monte Carlo simulation, and oil weathering and recovery process modeling. A case study 
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of decision support to oil recovery and devices allocation during an offshore oil spill 

response process is also discussed. 

Chapter 5 presents the development of an integrated DSS by integrating offshore 

OSVI classification, technology screening and ranking, and simulation-based 

optimization approaches. A case study in the south coast of Newfoundland is also 

provided to demonstrate the DSS. 

Chapter 6 concludes this study with summarized contribution and recommendations 

for future research. 
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2.1 Oil Spills 

2.1.1 Background of offshore oil spills 

A spill is usually described as accidental, occasional, or intentional release of oil. 

Some major spills include: the Exxon Valdez incident, the Hebei Spirit spill, the Prestige 

spill, the Deepwater Horizon oil spill, etc. The large-scale spills (>30 tonnes) account for 

merely 0.1% of incidence but make up almost 60% of the total amount of spillage (Fingas, 

2011). Spills usually happen worldwide in various types of environments such as land, 

ocean, and watershed. The composition and behaviour of spills is dependent on types of 

oil. Despite the various sources, oil contains large number of same compounds and 

molecular structures. The chemical and physical properties of a spill usually rely on the 

existence and quantity of substantive compounds in oil, leading to difficulties in the 

evaluation of toxicity (McCoy et al., 2010).  

The sources of offshore oil spills are usually varied from exploration, transportation, 

and other offshore activities, due to anthropogenic (e.g., equipment malfunctions, human 

errors) and natural (e.g., earthquakes, weather-related accidents) events. The OCEAN 

National Research Council (NRC) of Canada categorized all oceanic petroleum input into 

four categories: natural seeps, petroleum extraction, petroleum transportation, and 

petroleum consumption (NRC, 2003). Some studies estimated that 0.2~2.0×10
6
 tonnes of 

oil have naturally leaked to the global marine environment in each year, with a best 

estimation of 600,000 tonnes (Kvenvolden and Cooper, 2003; NRC, 2003; GESAMP, 
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2007). 

The world history witnessed a large number of oil spills and some of them had led to 

devastating impacts. In 1942, an alarming 484,200 tonnes of oil was reported releasing 

from torpedoed tankers in the eastern U.S. coastal area, equivalent to a weekly release of 

20,000 tonnes of oil over 6 months (Campbell et al., 1977). In-situ burning was 

conducted as one of the few offshore oil spill countermeasure practices at that era. In 

January 1969, the Union Alpha Well blowout in Santa Barbara, southern California 

resulted in a release of 14,300 tonnes crude oil into the environment. Being the largest oil 

spill in the U.S. waters at that time, the Santa Barbara oil spill raised public outrage and 

caused catholic concern in the environmental protection, prompting the founding of U.S. 

Environmental Protection Agency (EPA) (Easton, 1999). Large-scale oil spills continued 

to occur in the 1970s, such as the Arrow (1970 in Canada), the tanker Metula (Chile in 

1974), the tanker Urquiola (1977 in Spain), the Ekofisk blowout (1977 in Norway), the 

tanker Amoco Cadiz (France in 1978), the tanker Atlantic Empress (1979 in Trinidad and 

Tobago/Barbados), and the Ixtoc I well blowout (1979 in Gulf of Mexico) (Hayes, 1999). 

Despite the occurrence of large spills, the frequency of global offshore oil spills had 

significantly decreased since 1970s, mainly due to the enhancements of operation and 

prevention techniques. For example, a 46% decrease was estimated from 1988 to 1999. 

Such a decreasing trend was of significance because the offshore oil-related activities 

have remarkably increased (Etkin, 2001). Asia is the largest source of oil release with 
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over 3.4 million tonnes of spilled oil in a 50-year-period, partly due to the 1991 Gulf War 

(Etkin, 2002; Fingas 2010; Tunnell, 2011). 

In the United States, the daily usage of petroleum products is about 3 million tons 

(Fingas, 2011). The north western Gulf of U.S. contains about 3,500 platforms, over 

25,000 miles of pipeline, and about 50,000 drilling wells (Tunnell, 2011). A U.S. 

1998-2007 statistics in oil spills indicated a moderate annual spillage from tank ships 

(500 tons), compared to major spillage from inland pipelines and inland tanker trucks 

(11,000 tons and 1,300 tons, respectively). However, tank ships were and still remain a 

high risk source of large spills (Fingas, 2011). On March 24, 1989, the tank vessel Exxon 

Valdez struck the Bligh Reef of Prince William Sound, Alaska, and released 

approximately 11 million gallons of crude oil to the southwestern Prince William Sound 

and the western coast of the Gulf of Alaska (Exxon Valdez Oil Spill Trustee Council, 

1994). This incident was the largest tanker oil spill in the U.S. history at that time, and 

challenged the nation of its vulnerability when confronting large spills especially in cold 

and harsh environments (Etkin and Tebeau, 2003). More recently, the Deepwater Horizon 

spill (also known as the BP oil spill, and the Gulf of Mexico oil spill) has been identified 

as the largest marine oil spill in history (Bly, 2011; BOEMRE/U.S. Coast Guard, 2011; 

MMC, 2011). The spill was caused by an explosion of the Deepwater Horizon oil rig on 

April 20, 2010, and the subsequent sinking of the platform on April 22 in the Gulf of 

Mexico. Over 600,000 tons of crude oil were estimated to spill into the Gulf of Mexico, 
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lasted for almost three months until the Macondo well was capped on July 20 (Tunnell, 

2011). The incident had brought multitudinously catastrophic impacts to human and 

environment, marine and wildlife habitats, economy, including: 11 deaths and 17 injuries, 

over 600,000 tons (or 4.9 million barrels of oil) of oil spillage, over 400 threatened 

species the spilled area, and severer lost for fishing industry and Gulf Coast tourism 

(Robinson Jr, 2010; Vilcáez et al., 2013). 

In Canada, spills occures on land, at petroleum production facilities and wells. Most 

of offshore oil spills are from marine or refinery terminals. The Multi-State Aquatic 

Resources Information System (MARIS) database estimated that 1,048 accidents 

happened from 1980 to 2005 in the the South Coast of Newfoundland, Canada (Transport 

Canada, 2007b). In 2004, two large oil spills occurred in offshroe Sable Island of Nova 

Scotia; one spill released 4,000 litres of diesel and the other released 354,000 litres of 

drilling mud at an exploratory well (Amec, 2013). 

 

2.1.2 Impacts caused by offshore oil spills 

Offshore oil spills are of tremendous concern due to the enormous economic loss and 

the harm to ecological systems, public health, society and community they may cause. 

During the long run of oil and gas exploitation, the adverse impacts of oil spills have 

been documented in various aspects including economy, ecology and environment, public 

health and society/community. The total economic impact of oil spill could be broken 
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down into socioeconomic losses, cleanup costs, environmental damages, research costs 

and other costs (Liu and Wirtz, 2006). These costs could either be assigned with 

monetary values in a real economic world, or estimated through modeling which has been 

the primary tool to estimate environmental damages (Liu and Wirtz, 2006). 

Based on historical data on oil spill cleaning cost, important factors driving the costs 

included oil type, proximity to the shoreline, location, cleanup methodology, and spill 

size (Etkin, 2000). After normalization to the 1999 U.S. dollar, it was estimated that the 

cleanup cost per unit of spilled oil followed a sequence of No.2 diesel fuel < light crude < 

crude < heavy crude < No. 6 fuel < No.5 fuel < No. 4 fuel. Spills of more persistent 

products require expensive spill response operations, and generally, fuel requires more 

expensive treatment than crude (Etkin, 2000). Studies also concluded that the shoreline 

length oiled (Etkin, 2000) and spill size (Etkin, 1999) were positively correlated with the 

cleaning cost, while the distance (Etkin, 1998b) from the shoreline was negatively related 

to costs. On the other hand, the cleanup methods were estimated with a sequence of 

natural attenuation ($1,286.00/ton) < in-situ burning ($3,127.87/ton) < dispersants 

($5,633.78/ton) < mechanical ($9,611.97/ton) < manual (23,403.45/ton) (Etkin, 1998a). 

During the Deepwater Horizon oil spill, approximately 430 miles of marsh shorelines 

were oiled, among which 41% (176 miles) were either heavily or moderately oiled 

(Zengel and Michel, 2011). Although few quantitative data were yet available on the 

extent of vegetation impacts, recent findings for the salt marshes in the Bay Jimmy area 
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of northern Barataria Bay, Louisiana documented variable impacts depending on oiling 

intensity (Lin and Mendelssohn, 2012). Since the spill, some recovery has been noted for 

oiled marshes (Mendelssohn et al., 2011). However, as of the fall of 2011, many of the 

most heavily oiled shorelines had minimal to no recovery (Mendelssohn et al., 2012), and 

only time will tell whether these shorelines will revegetate naturally before shoreline 

erosion occurs. 

As regards to the transference of toxicity to the food chain, studies have 

demonstrated that oil-contaminated food can cause genotoxic damage to consumers 

(Lemiere et al., 2005; Chaty et al., 2008). Chaty et al. (2008) showed evidence for the 

bioaccumulation of oil compounds and their transference to the food chain in 

oil-contaminated marine food, which was agreed with Bro-Rasmussen (1996) that 

persistent chemicals might create a human hazard after bioconcentration when climbing 

the food chain. The study also demonstrated the induction of DNA damage by the 

metabolic transferred products which might be more toxic than their parent compounds 

(Chaty et al., 2008). After the Prestige oil, researchers found significantly higher DNA 

damage, but not cytogenetic damage (Laffon et al., 2006; Pérez-Cadahía et al., 2006, 

2007) or alterations in the endocrine status in relation to the exposure (Pérez-Cadahía et 

al., 2008a). They also found general increases in micronucleus frequency and decreases 

in the proliferation index in the individuals with longer time of exposure (Pérez-Cadahía 

et al., 2008c). Finally, they investigated the relationship between blood levels of heavy 
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metals and genotoxic or endocrine parameters in the individuals (Pérez-Cadahía et al., 

2008b). The authors suggested plasma levels of cortisol as a potentially relevant 

biomarker to assess the effects of exposure to heavy metals. 

 

2.1.3 Preparedness and contingency planning for offshore oil spills  

Most oil spills are accidental, so no one can know when, where, or how they will 

occur. Spills can happen on land or in water, at any time of day or night, and in any 

weather condition. Preventing oil spills is the best strategy for avoiding potential damage 

to human health and the environment. However, once a spill occurs, the best approach for 

containing and controlling the spill is to respond quickly and in a well-organized manner. 

A response will be quick and organized if response measures have been planned ahead of 

time. A management strategy/contingency plan is a set of instructions outlining the steps 

that should be taken before, during, and after an emergency. 

In June 2010, Transport Canada released a plan and a policy for preparedness and 

response, aiming to Canada’s Marine Oil Spill Preparedness and Response Regime. This 

plan indicates the roles and responsibilities of all sectors in an offshore oil spill, including 

the Transport Canada, the Canadian Coast Guard (CCG), the Environment Canada, 

certified response organizations, vessels, response facilities etc. (Vaughan, 2010). In 

addition, the Transport Canada also operates the National Aerial Surveillance Program 

and the Environment Canada’s Canadian Ice Service to detecting oil spills at sea. The 
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Canadian Coast Guard (CCG) plays an important role in the response to shop-source oil 

spills. In 2011, the CCG updated and released the National Environmental Response 

Strategy for responding to major offshore oil spill happening in national or international 

level. The strategy is to be followed by the development of a national response policy and 

plan for directing its efforts, including those related to a major incident (Fisheries and 

Oceans Canada, 2010). Furthermore, the Environment Canada’s main responsibility is to 

provide advice on potential risks and ecologically sensitive areas as well as key physical, 

biological, and cultural resources that received from Regional Environmental 

Emergencies Team (Ministry of the Environment Canada, 2012). In the case of any spill, 

the offshore operator is in charge and must activate its response plan. Operators have a 

tiered response program, with each tier providing equipment and resources appropriate to 

the size of the spill. Tier One, small spills can be dealt with immediately by the operator 

itself onsite, while others would require further outside assistance, in addition to the 

operator’s on-site resources and assets. Tier Two response will in-corporate on-site 

equipment and resources from a Tier One response. A Tier Three response will bring 

additional resources on top of the assets and personnel mobilized during Tier Two (Angus 

and Mitchell, 2010). 

In United States, before any exploration, development, or production activities, 

the offshore petroleum facility owners or operators must submit an oil spill contingency 

plan for approval according to the Bureau of Ocean Energy Management, Regulation, 
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and Enforcement (BOEMRE) (BOEMRE, 2010; Peterson and Fensling, 2011). The 

Marine Oil Spill Response and Contingency Action Plan (OSRCAP) is the most 

integrated method in offshore security, spill detection and tracking, spill management and 

mitigation, and the deployment of rapid and effective spill clean-up (Long, 2012).  

When an offshore oil spill occurs in Australia, with the activation of the National 

Plan, the incident controller (IC) or the marine pollution controller (MPC) are required to 

submit a request to the Australian Maritime Safety Authority (AMSA) from the National 

Response Team (NRT) for personnel from the other states or the Northern Territory (NT) 

to assist the response (Maritime Safety Queensland, 2011; Flinders Ports, 2012). The 

corresponding agency is required to provide details on the management of the health and 

safety of individuals where an extension of deployment is undertaken (Government of 

Australia, 2005; Brown, 2005).  

In United Kingdom, Petroleum operators are required to have Oil Pollution 

Emergency Plans (OPEPs) as required by the Offshore Installations (Emergency 

Pollution Control) Regulations 2002 (Government of United Kingdom, 2002), and the 

Merchant Shipping (Oil Pollution and Preparedness, response Co-operation Convention) 

Regulations 1998 (Government of United Kingdom, 1998; DECC, 2010). All operators 

must have OPEP test in offshore every year according to the International Convention on 

Oil Pollution Preparedness, Response and Co-operation Convention 1990 (Maritime and 

Coastguard Agency of United Kingdom, 2009; Britain, 2010; MMO, 2012).  
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In Norway, the Pollution Control Act released in 1981 describes the 

responsibilities and obligations of different corresponding sectors regard to the offshore 

oil spill in the National Contingency System (NCS) (Government of Norway, 1981). The 

municipalities also have the responsibility to assist the national government once a major 

offshore oil spill happens (Sydnes and Sydnes, 2011). The Norwegian Coastal 

Administration (NCA) is responsible for coordinating the private, municipal, and 

governmental contingency plans into a national emergency response system (Vik, 2005; 

EPPR, 2012). 

As a member of Northwest Pacific Action Plan (NOWPAP) regional contingency 

plan, China has established joint training programs with Oil Spill Response and East Asia 

Response Limited (OSRL/EARL) (Qiao et al., 2002; PEMSEA, 2008; Song, 2008). The 

Japanese Ministry of Transport, through the Oil Spill Preparedness and Response in Asia 

(OSPAR) scheme, has provided spill response equipment including boom, skimmers, 

portable storage as well as dispersant spraying equipment (Assilzadeh and Mansor, 2003). 

The Saudi Arabian Meteorology and Environmental Protection Administration (MEPA) 

acts as the national response coordinator for coordinating the offshore oil spill response 

in the marine environment and the coastline of Saudi Arabia based on available regional 

and international resources (Zaindin, 1995;). The Malaysian National Oil Spill 

Contingency Plan (NOSCP) was formulated to control oil spill occurring within 

Malaysian water, and deal with adjacent oil spill in the Straits of Malacca and bordering 
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Asean countries (Wing, 2005). 

The oil spill management strategy/contingency plan helps to minimize potential 

danger to human health and the environment by ensuring a timely and coordinated 

response. Well-designed local, state, regional, and national contingency plans can assist 

response personnel in their efforts to contain and clean up oil spills by providing 

information that the response teams will need before, during, and after spills occur. 

Developing and exercising the plan provide opportunities for the response community to 

work together as a team and develop the interpersonal relationships that can mean so 

much to the smooth functioning of a response. An effectively decision support system for 

generating such the contingency planning will significantly help improve the efficiency 

of offshore oil spill response. 

 

2.2 Classification and its Application in Offshore Oil Spill Management 

2.2.1 Conventional classification methods 

Classification methods are used, in practice, to group simulation units into clusters, 

and each cluster should represent a certain type of unit characteristics (Richard et al., 

2001). Ranking is a process that orders objects based on a proposed set of criteria. 

Sometimes, ranking can be considered to be a special process from supervised 

classification (Ertekin and Rudin, 2011). Classification and ranking are of necessity and 
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importance to support the decision making and in practice of oil spill monitoring, spill 

alert and response, helping reduce the set up and running cost and improves efficiency 

(Fernando et al., 2004). For example, it is usually time-consuming and costly to set up 

monitoring stations or trips in an offshore area potentially affected by oil spills (i.e., an 

area near offshore platform). Regions classification is able to categorize the stations or 

locations of monitoring trips and identify the ones which can sufficiently represent 

significantly different characteristics from each. However, a marine system is usually 

characterized by a large variety of meteorological, hydrological, and ecological features, 

which provides the basis for the classification and also makes it more challenging under 

the inherent complexity and uncertainty.  

Various classification methods have been developed in the past decades (Gopal et al., 

1999; Tso and Mather, 2001; Varshney and Arora, 2004; Hashemi et al., 2007; Oyana, 

2009). The traditional methods can be grouped into supervised classification such as 

K-Nearest Neighbor (Franco-Lopez et al., 2001), Decision Tree (Yuan and Shaw, 1995), 

and Naive Bayes (Rish, 2001) and unsupervised classification such as Maximum 

Likelihood (Santosh and Yousif, 2004) and Clustering (Ng and Han, 1994). Geographical 

information system (GIS) and expert knowledge combined with the traditional supervised 

and unsupervised methods have gained recognition in classification for some 

environmental aspects (Hashemi et al., 2007). Running et al. (1995) developed a simple 

logic for classifying global vegetation based on observable and unambiguous 
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characteristics of vegetation structure that were important to ecosystem biogeochemistry 

and could be monitored on-site for model validation purposes.  

Clustering (Bock, 1993; Jain et al., 1999) is one of the most commonly used 

traditional classification approaches. It is an exploratory data analysis method that aims 

to group a set of items into clusters such that items within a given cluster have a high 

degree of similarity, while items belonging to different clusters have a high degree of 

dissimilarity. A number of cluster analysis techniques have been developed such as 

hierarchical, partitioning, and dynamic methods (Spaeth, 1980; Gordon, 1999; Everitt et 

al., 2009). 

Hierarchical methods yield complete hierarchy, i.e., a nested sequence of partitions 

of the input data. Hierarchical methods can be either agglomerative or divisive. 

Agglomerative methods start with trivial clustering, where each item is in a unique 

cluster, and end with the trivial clustering, where all items are in the same cluster. A 

divisive method starts with all items in the same cluster and performs divisions until a 

stopping criterion is met (Kraskov, 2003). 

Partitioning methods try to obtain a single division of the input data into a fixed 

number of clusters. Often, these methods look for a partition that optimizes (usually 

locally) a criterion function. To improve the cluster quality, the algorithm is run multiple 

times with different starting points, and the best configuration obtained from all the runs 

is used as the output clustering. The partitioning methods mainly include k-means 
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clustering (Ding and He, 2004) and Fuzzy c-means clustering (Erminio and Guerrisi, 

2002). 

Dynamic cluster algorithms (Diday and Simon, 1976; Abrantes and Marques, 1998) 

are iterative two-step relocation algorithms including the construction of the clusters and 

the identification of the suitable representative of exemplar (means, exes, probability 

laws, groups of elements, etc.) of each cluster by locally optimizing an adequacy criterion 

between the clusters and their corresponding, representatives. The k-means algorithm, 

with class representatives updated after all objects have been considered for relocation, is 

a particular case of dynamical clustering with the adequacy criterion being a variance 

criterion such that the class exemplar equals the center of gravity for the cluster. 

The adaptive dynamic clusters algorithms also optimize a criterion based on a 

measure of fit between the clusters and their representation, but at each loop of iteration 

there is a different distance for the comparison of each cluster with its representative 

(Diday and Govaert, 1977; Wang et al., 2006). The idea is to associate each cluster with a 

distance which is defined according to the intra-class structure of the cluster. These 

distances are not determined once and for all, and they are different from one class to 

another. The advantage of these adaptive distances is that the clustering algorithm is able 

to recognize clusters of different shapes and sizes. 

Besides clustering approaches, statistical approaches are also most used methods in 

classification. Many times the training patterns of various classes overlap for example 
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when they are originated by some statistical distributions. In this case a statistical 

approach is appropriate, particularly when the various distribution functions of the classes 

are known. A statistical classifier must also evaluate the risk associated with every 

classification which measures the probability of misclassification. For example, the 

Bayes classifier based on Bayes formula from probability theory minimizes the total 

expected risk. This method is a fundamental statistical approach to the problem of pattern 

classification, which is based on quantifying the tradeoffs between various classification 

decisions using probability and the costs that accompany such decisions. It makes the 

assumption that the decision problem is posed in probabilistic terms, and that all of the 

relative probability values are known. To use Bayes classifier one must know the pattern 

distribution function for each class. If these distributions are not known they must be 

approximated using the training patterns. Sometimes the functional form of these 

distributions is known and one must only estimate its parameters. However, in some 

applications even the distribution’s from is unknown and must be found (Friedman and 

Kandel, 1999).  

The syntactic pattern classifications which are also traditional classification 

approaches, utilizes the structure of the patterns. Typical patterns which are subject to 

syntactic pattern classification are characters, fingerprints, chromosomes, etc. In general, 

given a specific class, a grammar whose language consists of patterns in this class is 

designed. For an unknown new pattern a syntax classifier analyzes the pattern (a string) 
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in a process called parsing and determines whether or not that string belongs to the 

language (class) (Friedman and Kandel, 1999). 

Although various classification approaches have been developed, many 

environmental problems usually feature complex topographical, hydrological, and 

ecological characteristics and dynamic interactions of the system components and will be 

further complicated by incomplete knowledge and uncertain information. Such sources 

include but are not limited to incomplete information, sampling errors, subjective 

judgment, random variations of and dynamic interactions among operating factors, 

approximations and assumptions in measurement, and changes in environmental 

conditions. These challenge effective classification in environmental engineering (Bai, 

2009). Conventional automated classification approaches tend to be less effective in the 

classification under complexity and uncertainty (Yang et. al., 2013).  

 

2.2.2 Classification under complexity 

Complexity is a property of a system which makes it difficult to characterize its 

overall behavior in a given language, even when given reasonably complete information 

about its atomic components and their interrelations (Edmonds, 1995). Complexities arise 

when the dimension of pattern features in classification increases and interactions among 

these features become more complicated. These complexities can compromise efficiency 

and reliability and increase the computation time of classification (Varshney and Arora, 
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2004; Richards and Jia, 2006).  

When the number of classes is known and when the training patterns are such that 

there is geometrical separation between the classes a set of decision functions can be 

often used to classify an unknown pattern (Friedman and Kandel, 1999). The main 

obstacles to the achievement of high-quality classification are small sample sizes and 

complex distributions. On the one hand, a too strict limitation on the class of decision 

functions poses the question of whether this class is adequately consistent with the true 

distribution; the greater the inconsistency, the poorer is the classification. On the other 

hand, the more complex the class of functions used for a small sample size, the greater is 

the classification error. Consequently, the complexity of the chosen class of functions 

must match the existing sample size. The relation between the complexity of the class of 

decision functions, the sample size, and the complexity of the distributions comprises the 

sum and substance of the statistical robustness problem for classification decision 

functions (Richard et al., 2001). 

The characters of environmental problems are complex due to a variety of features. 

Complexities develop when the number of input features in the system expands and the 

interactions in these features become intricate, as well as the influence by factors outside 

the system. The complexities can reduce the efficiency and increase the required time for 

classification process. Furthermore, complexities may also lead to low accuracy in 

classification results. How to better handle uncertainty and complexity has become more 
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prominent in watershed classification (Richards and Jia, 2006). Therefore, a classification 

method that can efficiently handle the complexity is critical and desired to support 

efficient environmental modeling and management practices. 

In order to handle complexities, artificial neural networks (ANN), which is a series 

of mathematical or computational models that are inspired by the structure and/or 

functional aspects of biological neural networks, was also introduced as an alternative to 

statistical classifiers (Carpenter and Grossberg, 2003; Jeffrey et al., 2004; Xu et al., 2009). 

For example, an unsupervised classification approach, adaptive resonance theory (ART), 

and its supervised extension, adaptive resonance theory mapping (ARTMap), are among 

the most widely recognized ANN approaches for classification/ranking (Carpenter and 

Grossberg, 2003; Tang and Yan, 2007). 

The neural network approach assumes that a set of training patterns and their correct 

classifications are given. The architecture of the net including input layer, output layer 

and hidden layers may be very complex. It is characterized by a set of weights and 

activation function which determine how any information (input signals) is being 

transmitted to the output layer. The neural network is trained by training patterns and 

adjusts the weights until the correct classifications are obtained. It is then used to classify 

arbitrary unknown patterns (Abe, 1997; Friedman and Kandel, 1999).  

Neural networks have much in common with the structures needed for pattern 

classification. Pattern classification and neural networks go back to the same roots in the 
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historic evolution of artificial intelligence (AI) techniques. The idea of neural networks is 

taken from biological systems performing pattern classification functions. It is no wonder 

that neural networks are considered to be predestined pattern classifiers. In this role they 

agree with the concepts developed in conventional pattern classification (Mandic and 

Chambers, 2001; Dunne, 2007). 

The neural network research, from the viewpoint of information processing, started 

from the neuron model proposed by McCulloch and Pitts (1943). The output of the model 

takes the values of 1 and 0 as discussed afterwards, and when the input exceeds some 

predetermined threshold, the output changes stepwise from 0 and 1. From the end of the 

1950’s to the 1960’s, Rosenblatt et al. (1962) developed preceptrons which connect the 

above neurons in layers and used them to study pattern classification. The perceptron is 

the origin of the now widely used multilayered network. Minsky and Papert (1969) 

showed the limitation of perceptrons, i.e., that they are only applicable when data 

belonging to different classes are linearly separable, interest in neural network rapidly 

shrank. 

Neural networks have been shown (Cybenko, 1989; Funahashi, 1989; Hornik et al., 

1989) to be able to approximate any continuous function arbitrarily well when 

sufficiently many hidden nodes are used. In the Bayesian context, the posterior is 

consistent (Lee, 2000). These properties make neural networks a good method for 

nonparametric regression. Thus, they do not have to choose a particular parametric form 
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for the model.  

In supervised classification tasks, a classification model is usually constructed 

according to a given training set. Once the model has been built, it can map a test data to 

a certain class in the given class set. Many classification techniques including decision 

tree (Qinlan, 1986; Freund, 1995), neural network (NN) (Lu et al., 1996), support vector 

machine (SVM) (Boser et al., 1992; Vapnik, 1995), rule based classifiers systems etc. 

have been proposed. Among these techniques, decision tree is simple and easy to be 

comprehended by human beings. SVM is a new machine learning method developed on 

the Statistical Learning Theory. SVM is gaining popularity due to many attractive 

features, and promising empirical performance. SVM is based on the hypothesis that the 

training samples obey a certain distribution which restricts its application scope. Neural 

network classification, which is supervised, has been proved to be a practical approach 

with lots of success stories in several classification tasks. However, its training efficiency 

is usually a problem, training on only the new silhouette could result in the network 

learning that pattern quite well, but forgetting previously learned patterns. Although 

retraining may not take as long as the initial training, it still could require a significant 

investment. Adaptive resonance theory (ART) was developed to solve this problem by 

using the short-term memory to storage the contrast-enhanced pattern, and the long-term 

memory to implement an arousal mechanism, whereas the STM is used to cause gradual 

changes in the long-term memory (Grossberg, 1976).  
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2.2.3 Classification under uncertainty  

Many features and their interrelationships are hardly measured or quantified 

accurately, leading to uncertainties. Uncertainty is a state of having limited knowledge 

where it is impossible to exactly describe existing state or future outcome. It can arise at 

any stage of a pattern classification process, resulting from incomplete or imprecise 

information, ambiguity or vagueness in inputs, ill-defined and/or overlapping boundaries 

among classes or regions, and indefiniteness in defining/extracting features and relations. 

It is therefore necessary in classification to make sufficient provision for representing 

uncertainties at every stage of classification so that results are associated with the least 

possible uncertainty (Richard et al., 2001; Lloyd, 2006). 

In order to deal with uncertainties, fuzzy set theory, which uses sets whose elements 

have degrees of membership, is integrated with traditional classification methods (Patino, 

2005; Bai, 2009). For example, Sauder et al. (2003) used fuzzy classification, which is a 

process of grouping elements into a fuzzy set whose membership function is defined by 

the truth value of a fuzzy propositional function, to characterize watershed heterogeneity 

with more accurate predictions than those in supervised classification. The supervised 

classification analyzes the training data and produces an inferred function to predict or 

classify the inputs into certain preset groups. Lucas et al. (2008) developed a fuzzy 

classifier as an extension of the approach in which uncertainty was represented by an 
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additional dimension in land cover classification. 

Quite often classification is performed with some degree of uncertainty. Modern 

control theory owes much in its development to mathematical models. However, when it 

is applied to real problems, difficulties are often encountered in approximating real 

controlled objects by models because of the vagueness or fuzziness of the controlled 

objects. In addition, since most control theory is based on linear systems, it is difficult to 

develop control systems with good performance when real controlled objects have strong 

nonlinearity (Friedman and Kandel, 1999). Since the fuzzy set theory is a generalization 

of the classical set theory, it has greater flexibility to capture various aspects of 

incompleteness or imperfection about real life situations (Zadeh, 1965). The significance 

of fuzzy set theory in the realm of pattern classification is effectively justified in various 

areas such as representing input patterns as an array of membership values denoting the 

degree of possession of certain properties, representing linguistically defined input 

features, representing multiclass membership of ambiguous patterns, generating rules and 

inferences in linguistic form, extracting ill-defined image regions, and describing 

relations among them (Pedrycz, 1990; Pal et al., 2000). 

 To apply fuzzy set theory to a system, experts’ knowledge on the system needs to be 

expressed explicitly in if-then fuzzy rules. When the input to the fuzzy rules is given, the 

output is determined by inference using the fuzzy rules. This process of determining the 

output from input is one method of function approximation which is one of the major 



33 
 

uses of multilayered networks. Function approximation is readily extended to pattern 

classification (Abe, 1997). Either the classification outcome itself may be in doubt, or the 

classified pattern may belong in some degree to more than one class. It is thus introduced 

fuzzy classification where a pattern is a member of every class with some grade of 

membership between 0 and 1 (Friedman and Kandel, 1999). 

 

2.2.4 Classification under coexistence of uncertainty and complexity  

Given that uncertainty and complexity coexist in real-world systems, many attempts 

have been made in the last decade to design hybrid approaches, which focus on the 

integration and complementation of different approaches to handle complex situations, to 

pattern classification by combining the merits of individual techniques (Gamba and 

Dellacqua, 2003; Qiu and Jensen, 2004). Fuzzy set theory and neural network can be 

integrated together to handle the system where complexity and uncertainty coexist. For 

example, Giles (1995) used ANN as an alternative to the statistical classifiers and 

integrated fuzzy output from a remote sensing data set that was preprocessed with 

ancillary data available in a GIS to increase the accuracy with which land cover was 

mapped. Lee et al. (1999) developed a neural-fuzzy classifier derived from the generic 

model of a 3-layer fuzzy perceptron for land cover classification and compared it with the 

maximum-likelihood classifiers. The result showed that the neural-fuzzy classifier was 

considerably more accurate in general but less accurate in some particular areas. They 
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concluded that the neural-fuzzy model could be used to classify the mixed composition 

area. Han et al. (2002) conducted a comparative evaluation of Neural-Fuzzy, Neural 

Network, and Maximum Likelihood Classifiers for land cover classification. Their results 

indicated that the neural-fuzzy classifier was the most accurate method for land cover 

classification and suitable under the condition of uncertainty and complexity. Gopal et al. 

(1999) used the adaptive resonance theory mapping (ARTMap) networks to conduct the 

classification of global land cover based on normalized difference vegetation index 

(NDVI) providing a viable technique for global land cover classification.  

Different pattern classifiers trained for the same application can be viewed as 

approximations from different directions to the same goal, just as different starting point 

are possible to reach the same peak in a mountainous territory. Therefore, different 

pattern classifiers, derived from different concepts, using different sets of measurements, 

or designed with different constellations of their basic design parameters tend to behave 

differently in the individual case, even if they may exhibit the same long-term error rates. 

Under these circumstances combining different pattern classifiers developed for the same 

task bears the promise of improving the overall performance, just as in everyday life 

more than one expert is consulted if a difficult case is to be settled. Since different pattern 

classifiers have different strengths and weaknesses, classifier combination must be led by 

the goal of making the respective strengths effective and repelling the deficiencies 

(Schurmann, 1996). Many attempts have been made in the last decades to design hybrid 
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systems for pattern classification by combining the merits of individual techniques. An 

integration of neural networks (NNs) and fuzzy set theory is one such hybrid technique 

and known as neuro-fuzzy (NF) computing (Pal and Ghosh, 1996; Pal and Mitra, 1999; 

Abe, 2001). 

Both NNs and fuzzy approaches are adaptive in the estimation of the input-output 

function without any precise mathematical model. NNs handle numeric and quantitative 

information while fuzzy approaches can handle symbolic and qualitative data. Apart from 

this, in a fuzzy classifier patterns are assigned with a degree of belonging to different 

classes. Thus the partitions in fuzzy classifiers are soft and gradual rather than hard and 

crisp. Therefore, an integration of neural network and fuzzy approaches should have the 

merits of both and enable one to build more intelligent decision making systems. Fuzzy 

set theory is found to be more suitable and appropriate to handle these situations 

reasonably (Pedrycz, 1990; Kuncheva, 2000). 

In the NF paradigm, much research effort has been made (Keller and Hunt, 1985; 

Ghosh and Pal, 1993; Pal and Ghosh, 1996; Pal and Mitra, 1999; Abe, 2001; Baraldi et 

al., 2001; Boskovitz and Guterman, 2002; Han et al., 2002; Gamba and Dellacqua, 2003; 

Qiu and Jensen, 2004). NF hybridization is done broadly in two ways: NNs that are 

capable of handling fuzzy information (named as fuzzy-neural networks, FNN), and 

fuzzy systems augmented by NNs to enhance some of their characteristics such as 

flexibility, speed and adaptability (named as neural-fuzzy systems, NFS) (Pal and Ghosh, 
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1996; Pal and Mitra, 1999).  

The NN and fuzzy approaches discussed so far can be applied to pattern 

classification and function approximation. Buckley et al. (1992) reported that fuzzy 

systems and multilayered networks were mathematically equivalent in that they are 

convertible. But since the two approaches differ, they have their own advantages and 

disadvantages. 

With multilayered networks, knowledge acquisition is done by network training. 

Namely, by gathering input-output data for pattern classification of function 

approximation and training the network using these data by the back propagation 

algorithm, the desired function is realized. On the other hand, fuzzy rules need to be 

acquired by interviewing experts. But for complicated system expert knowledge that is 

obtained intuition and experience is difficult to express in a rule format. Thus rule 

acquisition requires much time. As methods to extract fuzzy rules from numerical data, 

Wang and Mendel’s method (1992) extracts fuzzy rules directly from data and Lin and 

Lee’s method (1991) uses neural networks to train the neural network in which fuzzy 

rules were imbedded, extract fuzzy rules from the trained network, and tune the 

membership functions of extracted fuzzy rules using the same neural network.  

The major shortcoming of neural networks is represented by their low degree of 

human comprehensibility. Many attempts have been made to solve this shortcoming of 

neural networks, by compiling the knowledge captured in the topology and weight matrix 
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of a neural network, into a symbolic form; most of them into sets of ordinary if-then rules 

(Towell and Shavlik, 1993; Yoo, 1993; Craven and Shavlik, 1993), or into sets of fuzzy 

rules (Lin and Lee, 1991). The fuzzy neural networks are often used as an auto-tuning 

method for the determination and the adjustment of fuzzy rules. However, major 

challenges to existing neuro-fuzzy approaches remain: 1) complicated process in input 

data preparation and selection for fuzzy combinations and model calibration 

(Moghaddamnia et al., 2009); 2) decreasing efficiency in treating dispersive data; and 3) 

difficulties in generating fuzzy membership from insufficient information (Li et al., 

2009a, 2011; Chen et al., 2012a). 

 

2.2.5 Offshore oil spill vulnerability index (OSVI) classification in offshore oil spill 

Classification are necessary and important to support decision making and 

practice in monitoring and early warning of offshore oil spill, as well as the 

risk/vulnerability zone classification and characterization, helping to reduce the set up 

and running cost and improving efficiency (Richard et al., 2001; Fernando et al., 2004). 

For example, regions classification is able to categorize the stations or locations of 

monitoring trips and identify the ones which can represent significantly different 

characteristics from each (Ertekin and Rudin, 2011). However, a marine system is usually 

characterized by a large variety of meteorological, hydrological, and ecological features, 

which provides the basis for the classification and also makes it more challenging 
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because of the inherent complexity and uncertainty. Ranking extends conventional 

multiclass classification in the sense that it does not only predict candidates to groups but 

instead gives an ordering of all candidates. Besides, it is well-known that a number of 

other learning tasks can be formalized within the setting of ranking (Furnkranz et al., 

2008).  

Recently, classification techniques employed in offshore oil spill are mainly 

focusing on determination of the occurrence of a spill, and the type of spilled oil. Fingas 

(2001) describes the guidelines for estimating oil thickness using visual surveillance by 

the appearance of oil varying from silvery-sheen to dark brown. Usually, this visual 

detection for oil spill is not reliable because oil can be confused with many natural and 

atmospheric phenomena (e.g., sea weeds and fish sperm) which can produce dark areas in 

images similar to oil spills. The presence of these dark areas (usually referred to as 

look-alikes) is significantly challenging to the detection of oil spills (Migliaccio and 

Trangaglia, 2004; Brekke and Solberg, 2005). Therefore, classification techniques are 

usually employed to process the remote sensing information to determining an offshore 

oil spill (Ivanov and Zatyagalova, 2008; Topouzelis, 2008; Topouzelis et al., 2009).  

The application of risk assessment techniques to oil spills at sea is primarily used 

as a way by which to determine the level of the threat of an oil spill from shipping 

activities or offshore oil and gas production activities in a defined area of the coast. 

Methods of determining levels of risk/vulnerability are generally categorized as 
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Qualitative, Semi-Quantitative and Quantitative. The application of risk/vulnerability in a 

comparative way allows identification of activities which result in higher levels of risk, 

without the need to determine the absolute value of the risk. This alone dramatically 

reduces the cost of the assessment and can provide the key information needed to 

establish safety priority and thus inform the initiation of an offshore oil spill management 

system. The depth of the analysis depends on the magnitude of the risk and the details in 

classification and characterization of risk/vulnerability zones (IMO, 2010).  

Risk assessment underpins all preparation and planning for marine oil spill 

response includes the assessment of both the likelihood of a spill occurring and the 

consequences or effects of spill (Maritime New Zealand, 1992, 2006).Tremendous works 

have been made to evaluate risks due to marine oil spills in many maritime countries 

including Norway, United Kingdom, United States, Canada, and Austria (Turner, 2010). 

Many existing risk analysis tools are available to help understand the risks. One of the 

most widely used toos is the Exposure Related Dose Estimating Model (ERDEM) which 

is a physiologically-based pharmacokinetic (PBPK) and pharmacodynamic (PD) 

modeling system, developed by EPA scientists to predict how chemicals move through 

and concentrate in human tissues and body fluids. The PBPK/PD model structure in 

ERDEM consists of a series of differential mass balance equations in the physiological 

compartments of humans and laboratory animals. The system enables users to study the 

exposure and tissue dosimetry relationships and the toxicological risk metrics of interest 
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(U.S. EPA, 2004; Blancato et al., 2006; Zhang et al., 2007). The U.S. EPA has also 

provided a tool of generic ecological assessment endpoints (GEAEs) to help identify and 

specifically define assessment endpoints for particular assessments. This tool has been 

widely applied to various assessment scenarios, providing a foundation for the 

development of endpoints for specific assessments during problem formulation. It has 

also been used by risk assessors and risk managers for generic ecological assessment 

endpoints, supporting policies and precedents establishment, and improving the scientific 

basis for ecological risk management decisions (U.S. EPA, 2004; Landis and Kaminski, 

2007). In order to conduct comprehensive risk assessment for multi-pathway ecological 

by simultaneously calculating risk values for multiple chemicals, from multiple sources, 

at multiple exposure locations, an integrated system of EcoRisk View has been developed 

to fully implement the U.S. EPA guidance for evaluating ecological risk (U.S. EPA, 1999). 

By integrating with the U.S. EPA Human Health Risk Assessment Protocol (HHRAP) 

module (U.S. EPA, 1998), a BREEZE Risk Analyst modeling system was developed for 

human health and ecological risk assessment. This system was designed to conduct 

multi-pathway human health risk assessments and food-web based ecological risk 

assessment modeling with geographic information system (GIS) functions. Recently, a 

series of mechanistic risk assessment models have developed for the European Union 

(EU) such as the mechanistic effect models for ecological risk assessment of chemicals 

(MEMoRisk) (Preuss et al., 2009) and the Chemical Risk Effects Assessment Models 

http://link.springer.com.qe2a-proxy.mun.ca/search?facet-author=%22Thomas+G.+Preuss%22
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(CREAM) (Grimm et al., 2009).  

Risk assessment appears to be a natural tool for oil spill risk management. 

However, the concept of risk in the context of oil spill prevention, preparedness and 

response is complicated by the range of possible spill scenarios and of the different 

outcomes that can occur as a result of a single scenario. Although risk assessment is 

widely used, the application of risk assessment methodology to oil spills has not been 

standardized. In the absence of such a standardized methodology, it is often difficult to 

know how best to evaluate the risks associated with oil spills. Only few preliminary 

studies were conducted in the risk assessment for offshore oil spills (IMO, 2010). Such 

assessment efforts have never been linked with oil spill modeling and response decision 

making in a real-time and interactive manner (Bogdanovsky, 2005; James et al., 2006; 

Rotkin-Ellman et al., 2012; Deng et al., 2013). Therefore, there is a lack of scientific 

understanding and effective control of the influence caused by response decisions and 

actions on the risk levels in the concerned areas, and consequently it is hard to make 

real-time adjustments to mitigate any negative effects (James et al., 2006; 

Moharramnejad et al., 2010; Depellegrin and Blazauskas, 2013). The other difficulty with 

determining the relative vulnerability/risk of each region is the assessment units are based 

on regions rather than local areas. This means that each regional unit may contain areas 

of high vulnerability/risk to oil spills. There is still lack of risk assessment model in 

handling the variance of such vulnerabilities of different zones (i.e., local areas) 
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(Queensland Transport, 2000). Once spilled into the marine environment, the fate and 

subsequent impact of oil on the environment in general and the shoreline in particular are 

dependent on so many factors that it may be nearly impossible to do any meaningful 

analysis of the subsequent outcomes (IMO, 2010). Hence a classification approach which 

can delineate a region into different risk zones with similar vulnerability to an oil spill is 

significantly helpful to the risk assessment in an offshore oil spill event. The other 

challenge in the existing risk assessment models for offshore oil spill still remains in the 

dynamical linkage with the response operations (Queensland Transport, 2000). 

Spill risk maps are based on classification of the concerned offshore areas which 

are necessary and important to support decision making and practice of oil spill response, 

facilitating impacts and options evaluation, set-up and running cost reduction, and 

efficiency improvement (Richard et al., 2001; Fernando et al., 2005). Classification 

approaches are able to categorize offshore areas into zones (or risk profiles) with different 

levels of risk to oil spills based on the associated impacts and probability and identify the 

zones which can represent significantly different characteristics from each other (Ertekin 

and Rudin, 2011). The existing classification or delineation of risk zones are mainly focus 

on ecological impacts and protection of fishery or seabirds. Offshore oil spills have not 

been well considered and reflected in ocean and coastal management practice (Chen and 

Li, 2012). One of the key reasons is the lack of scientific support and insufficient 

knowledge about oil spill risks and the uncertainties due to the inherent dynamic and 
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complex features with meteorological, oceanic and ecological conditions (Chen et al., 

2012b).  

Another challenge is how to screen response technologies once an oil spill 

happens. Recent practices in screening technologies for offshore oil spill responses are 

mainly based on experiences which may cause high uncertainties to operation. There are 

only a few preliminary attempts that have been made regarding these perspectives (Li et 

al., 2013a). Therefore, classification techniques with additional consideration of 

multi-features in eco-environment and social-economy of the region are necessary to 

further support screening technologies. 

 

2.3 Optimization and Simulation-Optimization Coupling 

2.3.1 Optimization in environmental engineering 

Environmental engineering is involved with the monitoring, prevention, control, and 

remediation of contaminants, as well as the efficient, economic utilization and 

management of natural resources like water, including the preservation of its quality 

(Koutseris et al., 2010). Areas of environmental engineering which really pioneered the 

use of optimization techniques include water resource management, wastewater treatment, 

and municipal solid waste management design, operation and management (Li and Chen, 

2011; Chen et al., 2012a). Optimization tools are utilized to facilitate optimal decision 
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making in the planning, design and operation in environmental management. The use of 

optimization tools as the most important component of decision support systems are not 

confined only to the quantity aspect of resource, but also the mitigation of pollutants in a 

regional scale, operation of treatment plants and scheduling, designing of optimal 

strategies for treatment process, minimizing system cost or maximizing profit etc. (Mayer 

and Muñoz-Hernandez, 2009).  

The application of optimization techniques is most challenging in offshore oil spill 

response, due to the large number of decision variables involved, uncertain information 

of the inputs, and multiple objectives, as well as the real-time operation of a system. 

 

2.3.2 Optimization under uncertainties 

Uncertainty is one of the major hindrances in improving the efficiency of 

optimization for environmental management, which may arise from a variety of possible 

sources. Such sources include but not limited to incomplete information, errors in 

sampling, subjective judgment, random variations of and dynamic interactions among 

operating factors, approximations and assumptions in measurement, and changes of 

environmental conditions (Huang et al., 1993). The uncertainties lead to difficulties in 

developing optimization models for supporting decision making in environmental 

management and impair the confidence of decisions. Consequently traditional 

deterministic programming methods may face dilemma in supporting optimization for 
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environmental management because of their weakness in reflecting uncertain information. 

Uncertainties in environmental management can be classified into two categories - 

probabilistic and possibilistic, which are commonly represented by stochastic analysis 

and fuzzy set theory, respectively (Ramik and Vlach, 2004, Lin et al., 2009, Liu et al., 

2009).  

In previous studies, the commonly used methods for handling the above uncertainties 

include fuzzy programming (FP) (Huang et al., 1993; Chang and Lu, 1997; Ramik and 

Vlach, 2004), stochastic programming (SP) (Pereira and Pinto, 1985; Schultz, 1996; Lin 

et al., 2009), and interval programming (IP) (Huang et al., 1992; Liu et al., 2009; Lv et 

al., 2009). The FP method, which considers such uncertainty as fuzzy sets, is effective in 

reflecting ambiguity and vagueness in resource availabilities; the SP method has the 

ability to handle random input information; while the IP method uses upper and lower 

bounds to approximate uncertainties when the data are insufficient (Huang et al., 1992). 

However, each of these methods only focuses on one type of uncertainty, leading to 

difficulties in handling coexistence of uncertainties which is commonly observed in a 

environmental management system. For example, for a waste generation rate, it may have 

different levels with corresponding probabilities, and the definition for each level may 

also be uncertain due to subjective judgments or ambiguities (Huang et al., 2001). 

Consequently, FP, SP, and IP were combined together to treat the coexistence of various 

types of uncertainties in environmental management (Li et al., 2007).  
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For example, Huang et al. (2001) developed an integrated fuzzy-stochastic linear 

programming model and applied the model to environmental management, which could 

effectively communicate uncertainties into the optimization process and generate reliable 

solutions under different significance levels. As another example, Maqsood and Huang 

(2003) and Li et al. (2008) developed the mixed integer two-stage interval stochastic 

linear programming by integrating two-stage stochastic programming and chance 

constrained programming, and interval mathematical programming within an integer 

programming framework. The developed approach could reflect the dynamic, interactive, 

and uncertain characteristics of the solid waste management system, and address issues 

concerning waste diversion and landfill prolongation as deemed critical by the local 

authority. Li et al. (2006) developed an interval fuzzy two-stage stochastic mixed-integer 

linear programming method to facilitate capacity-expansion planning for 

waste-management facilities within a multi-period context, and for examining various 

policy scenarios that are associated with different levels of economic penalties when the 

promised targets are violated.  

Stochastic techniques can handle the probabilistic type of uncertainties in which the 

probability distributions are used to represent random variability of parameters (Blair et 

al., 2001; Seuntjens, 2002; Baudrit et al., 2007). Fuzzy techniques can be used to express 

the possibilistic type of uncertainties where vagueness of parameters is characterized by 

membership functions (Qin and Huang, 2008; Xu et al., 2009; Yang et al., 2010). 
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However, the definition of probability distributions is usually suffered from lack of 

sufficient data; and membership functions may lead to loss of information when some 

parameters are represented by stochastic variables and/or when inappropriate subjective 

judgment is involved (Li et al., 2007; Qin and Huang, 2008; Yang et al., 2010). 

Furthermore, the two types of uncertainties frequently coexist, so called dual 

uncertainties, in environmental systems. Consequently integration of both methods has 

been considered in the literature (Cheng et al., 2009). However, the previous studies 

usually face the difficulties ineffective linkage of these two different algorithms and 

appropriate interpretation of the relevant results. Therefore, many of these studies treat 

dual uncertainties separately instead integratively (Liu et al., 2004; Li et al., 2006; Qin 

and Huang, 2008; Yang et al., 2010).  

Although many studies on environmental management were conducted under 

uncertain conditions of fuzzy, stochastic, and interval coexistence (Guo et al., 2010), the 

solution to the programming problems of integrating fuzzy method with the other two 

was inefficient (Nguyen, 2007a, 2007b, 2007c). The commonly used approaches of 

integrating FP with SP and IP were featured by defuzzifying and derandomizing fuzzy 

random variables in a sequential (Luhandjula, 1996, 2004; Iskander, 2005) or in a 

simultaneous manner (Liu, 2001; Liu and Liu, 2002, 2005). Either defuzzification or 

derandomization could only be applied before or after the SP or IP approach, which 

limited their abilities in dynamic integration. In the sequential approaches, the 
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defuzzifying process was applied followed by the derandomizing, which led to a major 

disadvantage in generating a large number of additional constraints and variables. In the 

simultaneous approaches, both defuzzifying and derandomizing processes were 

simultaneously employed by calculating the expected value of fuzzy random variables. 

The obtained deterministic linear program was relatively simple, but the process for 

determining the expected value was complicated and time consuming (Nguyen, 2007a).  

In order to surmount these drawbacks, Nguyen (2007a, 2007b, 2007c) developed a 

new method to convert the fuzzy and fuzzy stochastic linear programming (LP) problems 

into the conventional LP models by measuring the attainment values of fuzzy numbers 

and/or fuzzy random variables as well as superiority and inferiority between triangular 

fuzzy numbers (or triangular fuzzy stochastic variables). An attainment value is a degree 

of attainment of the fuzzy goal that is considered to be a concept similar to a degree of 

satisfaction of the fuzzy decision when the fuzzy constraint is replaced by the fuzzy 

expected payoff. It can also be interpreted as a possibility of attainment of the fuzzy goal. 

Nguyen’s method finally resulted in a simple deterministic LP model, which 

contained a few additional constraints and variables and could be solved easily. However, 

this method only considered the situation when the source (right-hand-side, RHS) is a 

strict constraint demand (left-hand-side, LHS), otherwise, significant errors may occur. 

Furthermore, the uncertainty represented by interval parameter was not taken into 

account. 
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There are some attempts to deal with stochastic and fuzzy uncertainties 

simultaneously. For instance, Huang et al. (2001) proposed an integrated fuzzy-stochastic 

linear programming model which could effectively deal with different types of 

uncertainties in optimization process and could obtain reasonable and reliable solution 

under different significant levels. Guo and Huang (2009) proposed an approach to 

consider the dual uncertainties in water resource management by describing the 

parameters as probability distribution and fuzzy sets. They also proposed a concept of 

distribution with fuzzy probability to reflect the dual-uncertainty characteristics of 

parameters. Li et al. (2009b) proposed an inexact fuzzy-stochastic constraint-softened 

programming method to deal with possibilistic and probabilistic uncertainties, and 

applied to long term planning of an environmental management system. Based on a 

multistage fuzzy-stochastic integer programming model, a fuzzy-stochastic-based 

violation analysis approach was developed to help water resources management (Li et al., 

2009b). These studies propose some possible solutions to handle dual uncertainties of 

possibility and probability. However, they are significantly restrained on how to 

simultaneously deal with continuous stochastic variables and subjective information 

(presented by probability density function and fuzzy sets) (Yang et al., 2010).  

To address the limitation in treating continuous stochastic variables, Monte Carlo 

simulation can be used to generate enough required input parameters to solve the 

insufficient data problems if the probability density function can be accurately estimated 
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or subjectively selected (Freeze et al., 1991; Vose, 1996; Garthwaite et al., 2005). In 

real-world situations, the continuous stochastic variables usually include subjective and 

objective information, leading to the dual uncertainties of possibility and continuous 

probability. To handle such dual uncertainties is beyond the ability of Monte Carlo 

simulation itself (Guyonnet et al., 2003; Yang et al., 2010). The integration of fuzzy 

programming with Monte Carlo simulation can be a promising solution (Sadeghi et al., 

2010). However, due to the difficulties in integrating fuzzy programming with Monte 

Carlo simulation, only a few studies are reported and they are all used to assess health 

risk issues (Guyonnet et al., 2003; Chen et al., 2003; Liu et al., 2004; Sadeghi et al., 2010; 

Ping, 2010). In addition, because of the complex iteration in optimization algorithm, the 

integration of fuzzy programming and Monte Carlo simulation becomes challenging, and 

no such study is applied in optimization especially offshore oil spill response and 

countermeasures. 

 

2.3.3 Coupling of optimization and simulation  

Computer simulations are used extensively as models of real systems to evaluate 

output responses. Applications of simulation are widely found in many areas including 

supply chain management, finance, manufacturing, engineering design and medical 

treatment (Fu and Hu, 1995; Kim and Ding, 2005; Semini and Fauske, 2006). The choice 

of optimal simulation parameters can improve the efficiency of operation, but configuring 
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them well remains a challenging problem. Historically, the parameters are chosen by 

selecting the best from a set of candidate parameter settings (Kappa et al., 2012). 

Simulation based optimization is an emerging field which integrates optimization 

techniques into simulation analysis (Fu, 1994, 2002; Andradottir, 1998; Rubinstein and 

Melamed, 1998; Law and Kelton, 2000; Gosavi, 2003). The corresponding objective 

function is an associated measurement of an experimental or numerical simulation. 

However, due to the complexity of the simulation, the objective function may be difficult 

and expensive to evaluate. Moreover, the inaccuracy of the objective function often 

complicates the optimization process, and deterministic optimization tools may lead to 

inaccurate solutions.  

Dynamic Programming (DP) problems are a special type of simulation-based 

optimization problems with internal time stages and state transitions (Bertsekas, 2005). 

The objective function of these problems is not a single black-box output, but typically is 

a combination of intermediate costs during state transitions plus a cost measurement of 

the final state. Appropriate controls are determined at each time stage, typically in a 

sequential favor (Djennas et al., 2012). 

 

2.3.4 Offshore oil spill simulation 

After offshore oil spill, various transformation processes will occur and many of 

these processes are relating to the behavior of the oil. A series of processes regarding the 
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physical and chemical properties of the oil occur right after the oil spill, which are the 

weathering processes with the most important processes of evaporation and 

emulsification. The other important group processes are relating to the oil movement in 

offshore (Fingas, 2010). Usually the weathering and movement processes can strongly 

interact with each other in the offshore environment. These processes mainly include 

evaporation, dissolution, emulsification, dispersion, biodegradation, spreading, photolysis, 

advection, diffusion, sedimentation, and the interaction of oil slick with the shoreline 

(Gundlach and Hayes, 1978; Torgrimson, 1980; Korotenko et al., 2001). Generally, the 

oil properties, hydrodynamics, meteorological and environmental conditions play 

important roles in the physical, chemical and biological processes for the spilled oil 

transport and fate (Reed et al., 1999; Brebbia, 2001). Some of the widely used weathering 

and movement processes of offshore spilled oil are listed in Table 2.1. 

In the past three decades, many integrated models have been developed for the 

spilled oil transport and fate based on trajectory method, many of which focus on the 

surface movement of spilled oil (Mackay et al., 1980; Huang, 1983; Shen et al., 1986; 

Shen and Yapa, 1988; Yapa et al., 1994; Spaulding, 1995; Lonin, 1999; Chao et al., 2001). 

These sytems have been applied in river-lake system (Shen et al., 1986; Shen and Yapa, 

1988; Yapa et al., 1994); and seas (Lonin, 1999; Chao et al., 2001; Wang et al., 2005, 

2008). Some commercial oil spill models, such as, the Coastal Zone Oil Spill Model 

(COZOIL) (Reed et al., 1989), GNOME (Galt et al., 1991), Oil Spill Model and 
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Response System (OILMAP) (Howlett et al., 1993), World Oil Spill Model (WOSM) 

(Kolluru et al. 1994), have been used to determine the oil movement and distribution in 

the ocean. However, there only few researches focus on the transport of spilled oil 

associating with the simultaneous tidal currents, and no study is conducted in the field of 

strong tide and tidal currents (Wang et al., 2005, 2008). Furthermore, there are limited 

studies in the vertical distribution of oil droplets and the advection forces (Wang et al., 

2008; Wang and Shen, 2010). The studies in the coupling of these simulations with the 

optimization for offshore oil spill response and countermeasures are significantly rare 

(You and Leyffer, 2011; Li et al., 2012b, 2013c). 
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Table 2.1 Weathering and movement processes of offshore spilled oil 

 

Process Description of process Frequently used equations Relative reference 
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 volatile components escape from the spilled oil surface 
to the atmosphere 

 the most important weathering process  

 the primary reason of oil volume reduction in the initial 
stage of spill (about 20~50% of crude oil and over 75% 
of refined products) 

 components with boiling points that are lower than 200 
o
C will evaporate within 24 hours after spill 

 relies on the physicochemical properties of oil, 
temperature, wind, and wave 

 can increase the viscosity and density of oil 
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Mackay et al., 1980; Stiver and 

Mackay, 1984; Fingas, 1995; 

Brebbia, 2001; Wang et al., 

2005; Nazir et al., 2008; Inan 

and Balas, 2010; Galeev and 

Ponikorov, 2011; Fingas, 2011; 

Zhong and You, 2011; Berry et 

al., 2012. 
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 soluble components (light aromatic hydrocarbons 
compounds) dissolve in to the water column 

 immediately occurs after the oil spill 

 relies on the physicochemical properties of the spilled 
oil 

 more less than the evaporative amount (about 1/100 to 
1/10) 

 dissolved components can be quickly diluted 

 environmental consequences are of significance due to 
toxic effect on marine organisms 
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Cohen et al., 1980; Huang and 

Monastero, 1982; Chao et al., 

2001, 2003; Wang et al., 2005; 

Riazi and Roomi, 2008; 

Goncharov, 2009. 
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 water droplets enters the oil slick  

 unstable (30-40% of water), semi-stable (40-60% of 
water), and stable (60-80% of water) forms in the oil 
slick 

 can lead to emulsion with up to 70% of water 

 significantly changes the physicochemical properties of 
oil (i.e., density and viscosity) 

 light oil is usually not emulsified, while the crude oil is 
easily emulsified  
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Mackay et al., 1980; 

Rasmussen, 1985; Mackay and 

McAuliffe, 1988; Sebastiao 

and Sores, 1995; Wang et al., 

2005; Nazir et al., 2008; Xie et 

al., 2007; Zhong and You, 

2011; Berry et al., 2012. 
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 spilled oil is broke into small droplets and enters the 
water column due to wave or turbulence 

 relies on the oil properties and the energy from the 
surrounding environment 

 reduces the volume of spilled oil on the sea surface  

 will not change the physicochemical properties of the 
spilled oil 

 the droplets will not reenter to the surface if their sizes 
are small 

 is a major part of oil removal from the sea surface in 
practice 
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Tkalich and Chan, 2002; 

Perianez, 2007; Nazir et al., 

2008; Guo and Wang, 2009; 

Wang and Shen, 2010; Zhong 

and You, 2011; Berry et al., 

2012. 
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 pour point should be lower than the sea surface 
temperature. 

 occurs quickly after the oil spill until the slick thickness 
achieves 0.1mm or less 

 relies on the interaction of gravity, wind, current, 
inertia, viscosity, and surface tension of oil 

 stops when the slick thickness of crude oil reaches 
0.01mm or the slick thickness of light oil (i.e., 
gasoline) reaches 0.001mm.  

 significantly affect the evaporation, dispersion, and 
emulsification  
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Fay, 1971; Lehr et al., 1984; 

Reed, 1989; Korotenko et al., 

2001; French-McCay, 2004; 

Wang et al., 2005; Chen et al., 

2007; Nazir et al., 2008; Inan 

and Balas, 2010; Zhong and 

You, 2011. 
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 some compounds can be digested by micro-organisms 
or microbes  

 transforms the compounds into water soluble 
compounds and eventually carbon dioxide and water 

 highly depends on the level of nutrients, the 
temperature, and the oxygen 

 can only occur at the oil-water interface and can be 
strengthen by the dispersion and spreading 

 degradation rate is very low and difficult to be 
described by any general mathematical model in the 
marine environment 
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Bragg et al., 1994; Prince et 

al., 1994; Atlas, 1995; Venosa 

et al., 1996; Essaid et al., 

1995; Zhu et al., 2001; Wenger 

and Isaksen, 2002; 

French-McCay, 2004; Camilli 

et al., 2010. 
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 some compounds can react with oxygen by the 
promoting of sunlight 

 relies on the type of oil and the form in which it is 
exposed to sunlight 

 transforms the compounds into soluble products or 
persistent ones 

 occurs in a very low rate even with a strong sunlight 

 affects less than 1% (or 0.1% per day) of spilled oil 
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Zepp and Cline, 1977; Payne 

and Phillips, 1985; Essaid et 

al., 1995; Richard, 2003. 
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 heavy compounds with densities greater than the 
density of sea water sink to the bottom of the sea 

 usually happens due to the adhesion of particles or 
organic matter from the sea water to the oil slick 

 insignificant in the initial stage because most of the oils 
have not enough density 

 the percentage can be increase with the emulsification 
and in-situ burning 

 oil washed off from the shoreline can also sink after 
reach back to the sea 
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Chao et al., 2001; 2003; Payne 

et al., 2003; French-McCay, 

2004; Fingas, 2010. 
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 the movement of oil slick is due to the influence of 
overlying winds and/or underlying currents 

 the advection velocity of the spilled oil on the sea 
surface is considered to be a vector sum of a 
wind-induced drift and a water-current drift 
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Shen and Yapa, 1987; 

Al-Rabeh et al., 1989, 1992; 

Chao et al., 2001, 2003; 
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et al., 2008; Wang et al., 2008; 

Guo and Wang, 2009; Wang 

and Shen, 2010; Wu, 2010; 

Berry et al., 2012. 
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 the spilled oil can deposit or reenter to the sea after 
reaching the shoreline 

 mainly relies on the oil properties, types of shoreline, 
wind, and tidal 

 stranded oil often mixes with the sand  

 will sink if washed back into near-shore waters by tidal 
rise or precipitation 

 interaction with very small particles (< 4μm) can lead 
to the formation of oil–shoreline interactions 

ht

b

b

V

V /
5.01





 

 

effsss DWLQ max
 

Shen and Yapa, 1988; 

Humphrey, 1993; 

French-McCay, 2004; Wang et 

al., 2005; Guo and Wang, 

2009; Inan and Balas, 2010; 

Xiong et al., 2010. 

Note: FE is the evaporation rate, m
3
/hour/m

3
; T is the temperature, K; U is the wind speed, m/s; P is the vapor pressure, Pa; M is the molecular weight, 

g/mol; ρ is the density of oil, kg/m
3
; R is the gas constant, 8.314 m

3
∙Pa/mol/K, SOT is the slick thickness, mm; t is time; c and d are equation parameters 

for specific oil; T0 is the initial boiling point, K; TG is the gradient of the boiling point, K; θ is evaporation open factor; CA and CB are non-dimensional 

constant; KE is the mass transfer coefficient, m
3
/hour; P0 is the initial vapor pressure, Pa; CC is the constant for specific oil; A is the area of the oil slick, 

m
2
; Z is the amount of oil fraction; Sd is the total dissolution rate of the oil slick, g/hour; Kd is the dissolution mass transfer coefficient, m

3
/hour; S0 is the 

solubility for fresh oil, g/L; αd is the decay constant; Y is the fraction of water in oil; C3 is the final fraction water content; KA is the curve fitting constant 

relating to wind speed; Yw
F 

is the stable water content of the emulsion; DE is the dispersion rate, m
3
/s/m

3
 of oil; μ is the oil viscosity, cSt; st is the oil–

water interfacial tension, dyne/m; Q is the entrainment rate of oil droplets, kg/m
2
/s; Scov is the sea coverage factor of oil; d0 is the oil droplet diameter, 

mm; C0 is the oil dispersion parameter related to oil viscosity; Fwc is the fraction of the sea surface hit by breaking waves; ke is the coefficient evaluated 

from experiments; ω is the wave frequency, Hz; γ is the dimensionless damping coefficient; H is the significant wave height, m; αh is the coefficient for 

the mixing depth; Low is the vertical length-scale parameter; K1 is the constant with default value of 150 s
-1

; ρw is the density of water, kg/m
3
; Ch(t) is the 

amount of a hydrocarbon component at time t; p(t) is the polar fraction of oil; L(t) is the ratio of the average residual nitrogen concentration to oil 

loading; αb, δb, γb, and ωb fitting parameters determined from the multiple regression analysis; ε is the assumed multiplicative error term; kobs and kmax are 

the observed and maximum fist-order hydrocarbon biodegradation rate, mg/kg/day; Kn is the half-saturation concentration for a specific nutrient, mg/L; 

N is the interstitial pore water residual nutrient concentration; 
 

is the molar yield coefficient; ka is the sum of the values for all wavelengths of 
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sunlight absorbed by the PAH; PAHd is the concentration of dissolved PAH, mg/L; Qs is the total absorption capacity by sediment, m
3
; C0e is the oil 

concentration after absorption balance; ds is the sediment particle diameter, mm; Kp, and Kab are absorption parameters; 


V  is the advection or drift 

velocity, m/s; 
w  is the wind drift factor; wV



 is the wind velocity, m/s; 
c  is the current drift factor; cV



is the depth-averaged current velocity, m/s; 


'V is the turbulent fluctuation of the drift velocity/s; ΔVb is the volume of beached oil reenter to the sea, m
3
; Vb is the volume of oil on the shoreline, m

3
; 

λh is the half-life, hour; Qmax is the maximum capacity of a beach for oil, m
3
; Ls, Ws, and Ds are the length, width, and depth of sediments on the beach, m; 

and ηeff is the effective porosity of the sediments. 
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2.2.5 Optimization applications in offshore oil spill response 

As spilled oil can cause significant impacts to the marine environment and economy, 

an emergency clean-up response is inevitable to be undertaken immediately for removing 

the oil and protecting sensitive areas nearby. The clean-up response to an oil spill can be 

described as a complex combination of numerous dynamic processes. It usually consists 

of the use of dispersant chemicals, the containment and recovery of oil using boom and 

skimmers, and some other alternative techniques such as in-situ burning (Price et al., 

2003). Undoubtedly, the cross-disciplinary nature and knowledge requirement of these 

processes make it challenging to implement them at the best practice levels (Fingas, 

2011). Their effectiveness largely depends on oil properties and ambient environmental 

conditions, such as oil slick thickness, oil viscosity, air/water temperature, wave height 

and wind speed (Jing et al., 2012a, 2012b; Li et al., 2012b, 2013a, 2013c). Therefore, 

how to understand, simulate and optimize these processes under varying circumstances 

becomes vital to evaluate the possible outcomes of a clean-up response and to aid the 

decision makers in preparing an effective operation plan. 

The simulation-based optimization for emergency response has been well 

documented in the literature, ranging from public-health infrastructure (e.g., ambulance 

operations) to urban hazard and disasters (e.g., evacuation from buildings) (Peleg amd 

Pliskin, 2004; Massaguer et al., 2006; Dimakis et al., 2010). When speaking of offshore 

oil spill clean-up, spill responders usually require both fast and accurate estimates of the 

spill situation to make critical decisions about deploying skimmers, spreading dispersants 

and other response activities before, during and after events. However, the complexity of 

the fate and transport of spilled oil and the dynamics of climatic and oceanic conditions 
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can cause significant challenges in providing such information by using traditional 

physics-based models. Although a few studies have explored the possibility of simulating 

oil recovery based on empirical oil weathering models and artificial equipment 

performance settings (Buist et al., 2011; El-Zahaby et al., 2011; You and Leyffer, 2011; 

Zhong and You, 2011), there are still technical and knowledge gaps in how to obtain 

accurate and timely forecasting results under varying environmental conditions. This is 

especially true in the harsh environments where extreme weathers prevail and the 

response time window is reasonably short.  

Limited studies have been conducted to deal with the decision-making problems 

in oil spill response., but most of these studies focus on the simulation of oil transport and 

weathering process (Brebbia, 2001; Reed et al., 1999), and a few have addressed the 

decision problems in oil response planning and on-site actions (Zhong and You, 2011). A 

review of the planning models for oil spill response is given by Iakovou et al. (1994). 

Psaraftis and Ziogas (1985) developed an integer programming model for optimal 

dispatching of oil spill cleanup equipment with the objective to minimize the total 

response costs. Wilhelm and Srinivasa (1997) developed an integer programming model 

for the response of oil spill cleanup operations with the objective of minimizing the total 

response time of equipment. Limited literature exists that addresses the integration of oil 

properties, the weathering model, and the planning model (Ornitz and Champ, 2003). 

Gkonis et al. (2007) presented a mixed-integer linear programming model that considers 

the oil weathering process, an important factor for decision making in response 



61 
 

operations.  

However, most of these systems provided response operations without any 

supporting of numerical optimization, and only few of them involved necessary 

approaches to handle the dynamics which widely appear in and highly affect to the 

response and countermeasures (Wilhelm and Srinivasa, 1997; Reed et al., 1999; Brebbia, 

2001). Only a few attempts were provided in the past decade (Costa et al., 2005; Broje, 

2006; You and Leyffer, 2011). Costa et al. (2005) provided a model to locate the 

protection systems that must be deployed to the priority areas associated with spill 

scenarios immediately after a spill occurs. Broje (2006) optimized the number of 

materials and surface patterns in a mechanical oil spill recovery for various 

environmental conditions. You and Leyffer (2011) developed a mixed-integer dynamic 

optimization (MIDO) approach for oil spill response planning based on a dynamic oil 

weathering model for the complex interactions between the spreading, evaporation, 

dispersion, and emulsification processes. However, only limited attempts were reported 

on the simulation of oil weathering processes and the optimization of spill recovery 

processes (e.g., device location and transportation) to support the countermeasures of 

offshore oil spills (Li et al., 2012b). 
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2.4 Integrated Decision Support System for Supporting Offshore Oil 

Spill Response  

Management of emergencies resulting from natural or man-made disasters requires 

enough information as well as experienced responders in both technical and co-ordination 

matters. It generally means making the best decision at the right moment, which requires 

a great amount of information (Hernandez and Serrano, 2001). In offshore oil spills, 

different affected sites have different characteristics depending on various features such 

as pollutants’ properties, hydrological conditions, and a variety of physical, chemical, 

biological processes, etc. Thus, the response methods selected for different sites vary 

significantly, and the decision for a suitable method at a given site often requires 

expertise on both remediation technologies and site conditions (Geng et al., 2001).  

Decision support systems (DSSs), which are series of computer-based systems for 

solving semi-structured problems, allow decision makers to simulate many steps of the 

process of decision making, to investigate the alternative decision scenarios, and to 

improve the decision making effectiveness. Although there is no unique definition or 

standard components of a decision support system, the purpose of a DSS is to increase 

both the efficiency and effectiveness (Power, 2002). The decision making is a complex 

process, influenced by many factors, both human and non-human. Recently, many DSSs 

have been developed aiming for emergency responses to flood (Sanders and Tabuchi, 

2000; Castellet et al., 2006; Mirfenderesk, 2009), forest fire (Jaber et al., 2001; Asunción 
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et al., 2005; Bonazountas et al., 2007), tsunami (Kumar et al., 2010; Steinmetz et al., 

2010), etc. However, the effectiveness of these DSS is still challenged by the complexity 

and uncertainty which widely exist during these emergency responses.   

Compared with the DSSs for emergency responses to flood, hurricane, and tsunami, 

the DSSs for offshore oil spill responses is still immature. In recent years GIS have been 

increasingly used in conjunction with oil spill modeling tools as a mean of integrating 

and pre-processing spatial data inputs to the numerical modeling and for post-processing 

and visualization of the modeling outputs. The integration of GIS and environmental 

modeling is now widely accepted as desirable, if not essential. Of considerable discussion 

and research have been levels of coupling achievable or desirable between GIS and 

environmental models (Li, 2001). However, although classification of response 

technologies, simulation of oil spill weathering, and optimization of response operation 

can provide effective help to the decision making, there is still lack of DSS that employs 

these processes in offshore oil spill response and countermeasures. 

 

2.5 Challenges in Cold and Harsh Environments 

There are many environments which could be reasonably classified as harsh 

environments. The definition of harsh environments in this thesis is limited to offshore 

environments and specifically to the offshore area of Newfoundland, Canada. Cold and 

harsh environments are usually characterized by wide range of wind speed and direction, 
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visibility, and temperature, as well as rough seas, ice coverage, appearance of icebergs, 

etc., posing unique challenges for oil spill response. For example, in offshore 

Newfoundland, the waves are too strong to allow containment of oil slicks with booms 

from October to March. The occurrence of visibility restricted to less than 1 km could be 

as high as 30% from May to July. The daylight hours in winter are less than 9 hours in 

various areas (Rainville and Woodgate, 2009). The water surface can experience 

considerable amounts of ice during the winter months (Cleveland, 2010). Oil spill is more 

problematical in such harsh conditions because of the simple and highly seasonal 

ecosystems and the logistic challenges of cleaning up spills in remote regions.  Low 

temperature will also make hydrocarbons persist, making ice-edge communities 

particularly vulnerable (U.S. Arctic Research Commission, 2004; Turner, 2010).  

 With respect to oil spill detection, numerous difficulties are encountered. For 

example, ice is never a homogeneous material but rather incorporates air, sediment, salt, 

and water, many of which may present false oil-in-ice signals to the detection 

mechanisms. Snow on top of the ice or even incorporated into the ice adds complications. 

During freeze-up and thaw in the spring, there may not be distinct layers of water and ice. 

There are many different types of ice and different ice crystalline orientations, making oil 

spill monitoring in harsh environment more challenging (Huntington, 2008; Fingas, 

2011). Crude oils and oil products behave quite differently if spilled in the cold 

weather/water and harsh conditions, due to the variations of their physical and chemical 
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properties. These properties influence the selection of techniques and equipment 

applicable for monitoring and sampling (Hänninen and Sassi, 2010).  

Oil spill forecasting and modeling in cold and harsh environment also face 

challenges due to the harsh environment (U.S. IMMS, 2008). Oil spill models are very 

sensitive to errors in the initial input data, such as the details of the release and the wind 

and current forecasts. Furthermore, the mathematical equations used to simulate oil 

movement are likely based on empirical approximations and assumptions and are subject 

to time step and grid limitations (Li et al., 2013c). Trajectory model uncertainty refers to 

changes in the forecast as a result of these errors. Unfortunately, quantitative assessment 

of the errors in trajectory modeling is difficult and limited. In addition, oil spills are 

notorious for usually occurring in areas where the environmental data are temporally and 

spatially incomplete. This leads to a forecast process that often relies on the forecaster’s 

subjective judgement and approximated input. Therefore, it becomes significantly 

challenging in oil spill early warning and modeling in cold and harsh environment, 

especially in winter (Chen et al., 2012b). In harsh environments, it is also extremely 

important to respond to offshore oil spills in a timely manner, and this response requires 

more reliable and effective decision making schemes considering limited access 

time/sites, equipment and man power. Unfortunately there is still no integrated DSS to 

incorporate modeling processes and support offshore oil spill response in cold and harsh 

environment (Li et al., 2013b). 
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The cold and harsh environments also significantly hinder the application of oil spill 

countermeasures and reduce their effectiveness (Keller and Clark, 2008). Presence of ice 

is a key factor affecting the ability to respond to a spill (DeCola et al., 2006). The fate 

and behavior of oil in ice-covered waters is governed by a number of important 

weathering processes have a direct bearing on oil recovery operations. The physical 

distribution and condition of spilled oil under, within or on top of the ice plays a major 

role in determining the most effective response strategies at different stages in the ice 

growth and decay cycle. Before oil spill response plans are developed or approved, it is 

necessary and imporant to understand the chemistry and physical behavior of the oil and 

how its characteristics change over time in harsh environments. Spill response operations 

in ice and open water are fundamentally different (Owens et al., 1998; Brandvik et al., 

2006). These variances must be recognized when determining the most appropriate 

strategy for dealing with oil in specific ice conditions and seasons, including freeze-up, 

winter, and break-up. Because of the vastly different ice environments and oil-in-ice 

situations, over-reliance on a single type of response will likely result in inefficient, 

ineffective clean-up after an actual spill (Angus and Mitchell, 2010). Also, each season 

presents different advantages and drawbacks for spill response (Cleveland, 2010). During 

freeze-up and break-up, drifting ice and limited site access restrict the possible response 

options and considerably reduce recovery effectiveness (Swail et al., 2006; LGL et al., 

2010). Mid-winter, although associated with long periods of darkness and cold 
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temperatures, provides a stable ice cover that not only naturally contains the oil within a 

relatively small area but also provides a safe working platform for oil recovery and 

transport (U.S. IMMS, 2008).  

In fact, the presence of ice is not the only environmental factor affecting spill 

response. Temperature affects the consistency of oil and the speed at which it degrades. 

Winds and the resulting wave action are other factors (Cleveland, 2010). High energy 

from wind and waves can help oil to disperse naturally, but it also breaks up a thick slick 

into multiple thinner slicks, which are more difficult to address. In addition, waves are 

less effective at naturally dispersing oil in broken ice (Rainville and Woodgate, 2009). 

Besides, most of the established countermeasures require the support of aircraft, vessels, 

and trained personnel to properly deploy and operate them. Remote locations and lack of 

infrastructure can impede these systems considerably. The cumulative impact of such 

limiting factors can make marine spill response operations almost impossible for long 

periods of time in cold and harsh environment. 

 

2.6 Summary 

The management of an offshore oil spill may appear complicated because it provides 

many details about the numerous steps required to prepare for and respond to spills. It 

also covers many different spill scenarios and addresses many different situations that 

may arise during or after a spill. Despite its complexity, a well-designed contingency plan 
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should be easy to follow. Although they are different in many respects, contingency plans 

usually include hazard identification, vulnerability analysis, risk assessment, and 

response actions.  

When an offshore area is affected by an oil spill, contingency plans have been 

devised to guide actions and cleanup operations. For the majority of coasts, however, no 

contingency plan exists, and available response options must be reviewed and decisions 

made in very short time frames, if interventions are to have any chance of being 

successful. Despite the existence of a large body of experience, challenges still remain in 

identifying at what point should response actions for offshore oil spills begin and 

conclude. 

Considering significant impacts caused by offshore oil spills, it becomes urgent to 

provide strategies of offshore oil spill response and countermeasures. A few models have 

been developed for oil spill response and countermeasures based on decision support 

system (DSS). However, these systems usually screen response technologies based on 

experience and suggest operations without the support of numerical optimization, and 

few of them involve approaches to handle uncertainties which widely appear and highly 

affect oil spill response. Furthermore, although approaches based on the coupling of 

optimization and simulation can effectively increase the efficiency and reduce the time of 

response, limited studies have been involved in the existing offshore oil spill DSS.  

Recently, classification techniques employed in offshore oil spill are focusing only 
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on the determination of the occurrence of a spill, and the type of spilled oil. Challenges 

are still remaining in how to screen response technologies once an oil spill happens. 

Recent practices in screening technologies for offshore oil spill responses are mainly 

based on experiences which may cause high uncertainties in operation. Furthermore, the 

risk/vulnerability zone classification and characterization based on classification of the 

concerned offshore areas is necessary and important to support decision making and 

practice of oil spill response, facilitating impacts and options evaluation, set up and 

running cost reduction, and efficiency improvement. However, few attempts have been 

made in this area and none has been found with the involvement of uncertainty and 

complexity. 

Compared with the DSSs for emergency responses to flood, hurricane, and tsunami, 

the DSSs for offshore oil spill responses is still immature. Although a few models have 

been developed for oil spill response and countermeasures, they usually separately 

consider response operations and the oil weathering process where interactions 

significantly exist. Meanwhile, oil spill cleanup activities change the volume and area of 

the oil slick and in turn affect the oil transport and weathering process, which also 

dynamically affects the oil spill response and countermeasures. Furthermore, crude oils 

and oil products behave quite differently if spilled in a cold and harsh environment such 

as offshore NL, due to the physical and chemical properties of the oil spilled. These 

properties influence the selection of response equipment and methods applicable for spill 
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cleanup. Such challenges become more significant when these influent factors are 

complex and uncertain. 

Therefore, it is critical to integrate the response planning model (i.e., optimization 

model) with the oil transport and weathering model, although this integration has not 

been addressed in the existing literature. Although classification of response technologies, 

simulation of oil spill weathering, and optimization of response operation can provide 

effective help to the decision making, there is still lack of DSS that employs these 

processes in offshore oil spill response and countermeasures. 

In order to better support offshore oil spill response and countermeasures, new 

decision making approaches and systems are desired for providing more effective support 

to stakeholders or decision makers at different levels. Risk/vulnerability zone 

classification and characterization, technology screening/ranking, and simulation-based 

optimization models that can determine the risk/vulnerability levels in the spill area, the 

best combination of technologies and allocation of resources at different response stages 

should be developed in order to achieve a most time-efficient and cost-effective response 

to an oil spill. This would be especially valuable for the areas where unpredictable 

weather conditions and harsh environments prevail.  
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CHAPTER 3  

CLASSIFICATION FOR SUPPORTING OFFSHORE OIL 

SPILL MONITORING AND RESPONSE  

 

 

 

________________ 
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1. Li P., Chen B., and Husain T. (2011). IRFAM: An integrated rule-based fuzzy adaptive 

resonance theory mapping system for watershed modeling. Journal of Hydrologic 

Engineering-ASCE, 16(1): 21-32. 

2. Chen B., Li P., and Husain T. (2012). Development of an integrated adaptive resonance 

theory mapping classification system for supporting watershed hydrological modelling. 

Journal of Hydrologic Engineering-ASCE, 17(6): 679-693. 

3. Li P., Chen B., and Husain T. (2009). Development of two-stage ART-ARTMap classification 

system for supporting watershed management. In: Proceedings of CSCE 2009 Annual 

General Conference, GC-094, May 27-30, 2009, St John’s, Canada. 

Role: I developed the model, conducted case studies and drafted manuscript. The other two 

authors are my M. Eng. Supervisors.  

 

The models presented in these papers were mainly based on my M. Eng. thesis and have 

been advanced in this thesis. 
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mapping approach for technologies screening in offshore oil spill response. In: Proceedings 

of CSCE 2013 Annual General Conference, GEN-236, May 29 to June 1, 2013, Montréal, 

Canada. 

Role: I developed the model, conducted case studies and drafted manuscript. Dr. Bing Chen 

is my PhD supervisor. Dr. Baiyu Zhang provided advice in manuscript drafting.  

 

5. Li P., Chen B., Li Z.L., Zheng X., and Wu H.J. (2013). A Monte Carlo simulation based 

two-stage adaptive resonance theory mapping approach for site classification in offshore oil 
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Role: I developed the model, conducted case studies, drafted main sections of the manuscript 

and led the student team. Zelin Li collected data for case study and drafted the introduction 

of the manuscript. Xiao Zheng collected data for case study. Hongjing Wu conducted 

statistical analysis for results and drafted part of discussion of the manuscript. Dr. Bing Chen 

is the supervisor of the students. 
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3.1 Adaptive Resonance Theory (ART) Neural Networks 

The adaptive resonance theory (ART), developed and extended to a series of 

real-time neural network models for unsupervised classification, is capable of learning 

stable recognition categories in response to arbitrary input (Grossberg, 1976, 1980). 

Usually, an ART system has two layers connected by long term memory. The input 

pattern enters one layer, classification occurs in the other. A characterization process 

begins by extracting features leading to activation in the feature representation field. 

Expectations stored in long term memory connections will then be used to translate input 

patterns to categories in the category representation field. The classification is compared 

to the network’s expectation, which resides in long term memory weights from the 

classification layer to the data entry layer. If there is a match, the expectations are 

strengthened; otherwise, the classification is rejected (Carpenter and Grossberg, 2003). 

The ART Mapping (ARTMap) approach consists of two ART modules (ARTa and ARTb) 

for processing patterns and criteria, and a map field module (Fab) for comparing patterns 

and criteria. Those patterns that need to be classified are fed to ARTa, criteria are fed to 

ARTb, and then a comparison between patterns and criteria occurs in Fab (Carpenter and 

Grossberg, 2003). 

There are two major ART paradigms distinguished by their forms of input data and 

processing. ART-1 is designed to accept only binary input vectors (Carpenter and 

Grossberg, 1987) whereas ART-2 (Carpenter and Grossberg, 1987) and Fuzzy ART 
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(Carpenter et al., 1991, 1992) can also classify analog inputs. Both models can stably 

learn to categorize input patterns presented in an arbitrary order. There are many 

variations of ART models developed in different application domains, such as geomatic 

analysis, land cover classification, and Image analysis (Carpenter et al., 1991, 1997; 

Gopal et al., 1999). 

ART models have been proposed under supervised learning conditions (Carpenter et 

al., 1991). ARTMap, a hierarchical network architecture, is able to rapidly self- organize 

stable categorical mapping between a given set of binary input vectors and binary output 

vectors while minimizing predictive error in an online setting. The Fuzzy ARTMap (FAM) 

model is an extension of ARTMAP that can learn stable recognition categories given both 

analog and binary input patterns. The ART modules of ARTMAP are replaced by Fuzzy 

ART modules in FAM. A brief description of ART that forms the basic modules in FAM 

architecture is given below. In Fuzzy ART the fuzzy logic AND connective, nun, is used 

to extend the method to real values in ART-1 (Carpenter et al., 1991).  

The ART unsupervised approach can provide an accurate classification result, but the 

number of final output groups is uncontrollable. The group number can be controlled by 

ARTMap supervised approach; however, it requires specific criteria for supervised 

learning and is incapable if the input data becomes uncertain. ART and fuzzy set theory 

can be integrated to handle the watershed classification where complexities and 

uncertainties coexist. ART can efficiently handle the system complexity and obtain a fast 
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learning speed but it is weak in handling uncertain inputs. Fuzzy set theory has high 

ability to handle uncertainties, but it will become inefficient if the system becomes 

complex. Therefore, the main objective of this study is to develop a neural fuzzy 

classification system by integrating fuzzy interface operation modules and ART Mapping 

networks in order to efficiently classify watersheds under complex and uncertain 

conditions.  

 

3.1.1 ART for unsupervised classification 

The ART, developed and extended to a series of real-time neural network models for 

unsupervised classification (Grossberg 1976, 1980), is capable of learning stable 

recognition categories in response to arbitrary input. Usually, an ART system has two 

layers connected by long term memory. The input pattern enters in one layer, 

classification occurs in the other. A characterization process begins by extracting features 

leading to activation in the feature representation field. Expectations stored in long term 

memory connections will then be used to translate input patterns to categories in the 

category representation field. The classification is compared to the network’s expectation, 

which resides in long term memory weights from the classification layer to the data entry 

layer. If there is a match, the expectations are strengthened; otherwise, the classification 

is rejected (Grossberg 1976, 1980; Carpenter and Grossberg 2003).  

The computations of fuzzy ART are the same as those of the ART neural network 
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which are functioning for the special case of binary input vectors and fast learning.  

Assume each input [I ] is an m-dimensional vector ([I1], [I2], …, [Im]). Let each category j 

correspond to a weight vector [wj] = [wj1], [wj2], …, [wjm]. The number of potential 

categories n (j = 1, 2, …, n) is arbitrary. The fuzzy ART weight vector [wj] subsumes both 

the bottom-up weight vectors and the top-down weight vectors of ART. The fuzzy ART 

algorithm, which was first introduced by Grossberg (Carpenter and Grossberg, 2003). 

Then the value of the choice function TJ is reset to -1 for the duration of the input 

presentations to prevent its persistent selection during the search. A new index J is chosen. 

The search process continues until the chosen J satisfies. 

There are two options for the fuzzy ART algorithm: the fast-commit-slow-recode 

option and the input fuzzification option. The former is used to combine fast initial 

learning with a slow rate of forgetting for efficient coding of noisy input sets in 

applications. With this option, β =1 is set when J is an uncommitted node; and β < 1 is set 

after the category is committed. The latter is to prevent a problem of category 

proliferation that could otherwise occur in some analog ART systems, when a large 

number of inputs erode the norm of weight vectors (Carpenter et al., 1991). 

 

3.1.2 ARTMap for supervised classification 

The ARTMap consists of two ART modules (ARTa and ARTb) for processing patterns 

and criteria, and a map field module (Fab) for comparing patterns and criteria. Those 
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patterns that need to be classified are fed to ARTa, criteria are fed to ARTb, and then a 

comparison between patterns and criteria occurs in Fab (Carpenter and Grossberg 2003). 

Both approaches have three control parameters in the interval [0, 1]: vigilance ρ is used to 

control the definition of classification results; choice parameter α is used to ensure that 

one category is active at a time; learning rate β determines to what extent the newly 

acquired information will override the old information (when β = 1 is called fast learning 

with consideration only on the most recent information) (Bahri and Meybodi 1999). 

Although slow learning (β < 1) may provide relatively accurate results for a noisy 

environment, an autonomous learning agent is needed to cope with unexpected events in 

an uncontrolled environment. In most applications, fast learning is used in an unfamiliar 

environment (Carpenter et al. 1992).  

At the start of each input presentation the ARTa vigilance parameter aρ equals the 

baseline vigilance a  which is the minimum matching criterion. Usually the baseline 

vigilance is set as 0a  to allow the formation of broader categories (Carpenter and 

Grossberg, 2003). The map field vigilance parameter is abρ .  

By the operation of the criteria combinations subsystem, the final criteria 

combinations for the classification are determined. If the final criteria combinations are 

not fully satisfied in some special case, based on expert knowledge and real-world 

conditions, human judgments and modifications can be applied at this stage to modify the 

membership functions for generating criteria combination generation. Then the centroid 
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determination and the criteria combination steps can be repeated until the final criteria are 

satisfied. 

 

3.2 A Monte Carlo Simulation based Two-Stage Adaptive Resonance 

Theory Mapping (MC-TSAM) Approach 

3.2.1 A two-stage adaptive resonance theory mapping (TSAM) approach 

ART unsupervised classification generates relatively large numbers of unpredictable 

results; ARTMap can generate predictable results, but it needs criteria for supervised 

learning. However, because of insufficient reference information the criteria for 

classification are not easily obtained. In order to address these challenges, a two-stage 

adaptive resonance theory mapping (TSAM) approach has been developed to feed 

ARTMap classification with criteria generated from ART unsupervised classification (Li 

et al. 2009a; Chen et al., 2012a).  
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Figure 3.1 Flow chart of the TSAM approach 
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The TSAM approach consists of an unsupervised ART module, a supervised 

ARTMap module, and centroid determination modules (Figure 3.1). It includes two 

stages: The first stage is the centroid determination subsystem which can locate the 

centroids for the expected target groups by unsupervised ART module, and use the 

determined centroid as the criteria in the second stage; and the second stage is the 

classification subsystem which can classify the normalized original input. There are three 

ART modules integrated in the TSAM which are as follows: ART1 is used for processing 

unsupervised classification for the normalized original input and generating the 

unsupervised classified groups; ART2a and ART2b are used in an ART Mapping module 

for comparing the combinations determined in the first stage and the normalized original 

inputs, and classifying them.  

The detailed steps of the approach are as follows: 

Step 1: Initialization 

Choice parameter, learning rate, and vigilance are set. Furthermore, two input 

variables are required: input data that aim to be classified (Equation 3.1) and the desired 

number of final groups (Equation 3.2).  
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where [I] is an m by n matrix; m is the number of input patterns; and n is the number of 

features for each input pattern. 
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where p is the desired number of final groups; [CRk] is the group k in the classification 

result; and [O] is the final classification result which will contain p classified groups. 

 

Step 2: Normalization  

Because the ART system can only handle data between 0 and 1, before the data is fed to 

the system it is needed to normalize the original data. The equation for normalization is 

as follows: 
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where [IN] is the normalized matrix, and v is the normalized value for features. 
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Step 3: ART classification and centroid calculation 

 [IN] is fed to ART module (ART1) for unsupervised classification. The results will be 

given as follows: 

 

 
ql ,,1
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 lu UCRO ,                   (3.4) 

 

where q is the number of classified groups, which is unsupervised and uncontrollable 

from ART; [UCRl] is the ranked group l in the classification result, where [UCR1] 

contains the most data points, and [UCRq] contains the least points. [Ou] is the 

unsupervised classification result which will contain q (q > p) classified groups. 

Subsequently, according to Equation 3.2, the first p groups in [Ou] are selected: 
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where [Oc] is the matrix containing the first p ranked groups. For each selected group 

[UCRk], the centroid is calculated as: 
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where [CTk] is a 1 by n matrix, and the centroid value for the feature j, ctj, is given by: 
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where h is the number of patterns in the group [UCRk], and vj is the normalized value for 

the feature j in the pattern. In this step, human interference can be further applied to 

adjust the generated criteria, making the classification more suitable in special cases. 

 

Step 4: ARTMap classification  

The centroids [(CTk)k=1,…,p] are fed to the ART2b module as criteria for supervised 

classification. Meanwhile, the normalized input data [IN] is also fed to ARTMap and 

compared with the criteria to generate the final classification [O] (Equation 3.2).  

Based on the automatic generation of criteria for classification, the developed TSAM 

can easily overcome difficulties in criteria generation due to insufficient information or 

complications in criteria selection in traditional classification approaches. 
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3.2.2 The MC-TSAM approach 

Considering the serious damage that could be caused by an offshore oil spill, it is of 

great significance to build a reliable spill monitoring system supported by different level 

of offshore vulnerability levels, which can promptly provide decision makers with 

accurate information. The impacts to an area caused by any potential offshore oil spills 

can be described by the offshore Oil Spill Vulnerability Index (OSVI). The OSVI was 

firstly introduced by Gundlach and Hayes (1978) instead of Environmental Sensitivity 

Index (ESI) to better describe vulnerability of a shoreline area that would be potentially 

exposed to oil spills. OSVI maps based on classifying the designated area into multiple 

different subareas are essential in oil spill responses in terms of impact evaluation, 

budgeting, and decision support. The classification first defines the local geographic 

conditions by generating grids of mesh with a certain size (Ng et al., 2008). Offshore 

environmental conditions, historical meteorological data as well as a hypothetical spill 

case would be further involved to determine the probability of any related risks (Richard 

et al., 2001; Price et al., 2003). Site classification with mapping technologies has been 

widely applied in oil spill monitoring during the recent decades (Romero et al., 2013; 

Furlan et al., 2011; Jensen et al., 1998). As a complex entity of study, a wide range of 

parameters within the site needs to be considered during the classification processes, such 

as meteorological conditions (e.g., temperature, wind, wave and current, etc.), offshore 

oil production and marine traffic, and adjacent ecosystems.  
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Therefore, a single indicator is far from sufficient to represent the characteristics of 

the spilled site (Webler and Lord, 2010). Meanwhile, to make the decision support 

systems more robust for practical applications, it is worth to note that uncertainty 

associated with each parameter should not be underestimated (Wirtz et al., 2007). The 

TSAM approaches can provide efficient and reasonable OSVI classification for a 

potential spill site with complex information. However, its capability of uncertainty 

handling still needs to be strengthened for the high uncertainties existing in offshore oil 

spill events. In order to further tackle the uncertainty, Monte Carlo simulation is 

integrated with the TSAM, forming the MC-TSAM.  

The framework of the Monte Carlo simulation based fuzzy programming 

(MC-MCFP) is shown in Figure 3.2, where N is the preset number of trials, and l is the 

index of the current trial. The inputs for the classification may include deterministic and 

uncertain information. Firstly, historical data and references are collected for uncertain 

features (e.g., wave height and wind speed in offshore area). Secondly, the collected data 

is approximated into certain distributions with the best fitness based on statistical analysis. 

According to the parameters of any fitted distribution, a series of randomized inputs are 

generated based on the Monte Carlo simulation. In each trial (e.g., trial l), the randomized 

inputs for the uncertain information are combined with the deterministic inputs and 

interpolated to the whole target area as inputs ([I] in Equation 3.1) for the TSAM 

classification.  
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Figure 3.2 Framework of the MC-TSAM approach 
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As shown in Table 3.1, the indicators for the proposed five inputs are expressively 

different in different trials, but the grouping situations are similar. Although the label of 

the category is different, some of the inputs are grouped into the same category in most of 

the trails. For example, Input 1 is classified to Groups 2, 4 5, and 3 in a 4-trials Monte 

Carlo simulation, and Input 2 is classified to Groups 3, 4 5, and 3 in the same Monte 

Carlo simulation. Although the group labels for these two inputs are different in most of 

the trials (e.g., Group 2 in the first trial and Group 4 in the second trial from Input 1), in 

most of the time these two inputs are classified into the same group in same trial (e.g., 

both belong to Group 4 in the second trial). In this case, Inputs 1 and 2 are classified to 

the same group at 75% of the time in the Monte Carlo simulation. If the trials sufficient 

are large enough (e.g., 1000), and these two inputs are classified into the same group over 

50% of the time, they can be determined to be the same group.  

 Inputs 1 and 2 actually belong to the same group due to four trials Monte Carlo 

simulation; Inputs 4 and 5 can be considered to be the same group; and Input 3 is 

significantly different from the others. Such diversities will lead to conspicuous challenge 

in determining the final classification result with large number of inputs and trials. In 

order to address this problem, the TSAM is further applied to assess the similarity of the 

grouping situation in all the trials during the Monte Carlo simulation and generate the 

final classification result. 
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Table 3.1 An example of classification indication for different trials 

 

Input 

Trial 

1 2 3 4 5 

1 2 3 1 3 3 

2 4 4 2 5 4 

3 5 5 3 2 2 

4 3 3 1 4 4 
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3.2.3 Offshore OSVI classification for the south coast of Newfoundland 

In order to test the feasibility and efficiency of the developed MC-TSAM, a case 

study of offshore OSVI classification and characterization was applied for the south coast 

of Newfoundland. As shown in Figure 3.3, the target area ranged from 53⁰ W to 60⁰ W, 

45.5⁰ N to 47.5⁰ N, which was pre-gridded based on 0.1⁰ by 0.1⁰ cells. The features that 

might affect the risk and vulnerability of the area in any potential offshore oil spill events 

were considered in the offshore OSVI classification. These features included: 

meteorological features (wind speed, m/s; wind direction, degree; sea surface temperature, 

⁰C; and pressure, mb), oceanic features (wave height, m; current speed, m/s; and current 

direction, degree), ecological features (spawning fish number, /520 m
2
; and location of 

ecological reserves), and oil relative activities features (tanker movement frequency, /year; 

other vessel movement frequency, /year; and historical oil spill frequency, /year).  
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Figure 3.3 The pre-gridded study area 
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The meteorological as well as the wave data were collected from the Fisheries and 

Oceans Canada (DFO) in nine monitoring stations/spots, containing corresponding hourly 

data from 1990 to 2012. The information for the current direction and current speed was 

collected from the National Aeronautics and Space Administration’s (NASA’s) Ocean 

Motion website where provided 5-day average data from 1992 to 2012 in eight locations 

within the target area. The information regarding the location of the ecological reserves 

was obtained from the Department of Environment and Conservation, Government of 

Newfoundland and Labrador, Canada. The information regarding the spawning fish 

distribution and the oil relative activities features was extracted from the references 

(Ollerhead et al., 2004; Transport Canada, 2007). Because these data were obtained from 

different sources via different monitoring stations, the locations for different type of data 

were different. Therefore, it would be necessary to interpolate these data to eventually 

distributed gridded cells of the target area. From the analysis, it could be determined that 

the meteorological, oceanic, and oil relative activities features were uncertain, and the 

ecological features were deterministic. 

Based on the collected data for the uncertain features, the distribution of the each 

feature in each location was approximated by the distribution with the best fitness. Two 

examples were given in Figure 3.4. Based on the distribution fittings for the wave height 

and the pressure from two different locations, the best distribution for the wave height 

was the Generalized Extreme Value (GEV) distribution (Figure 3.4a) and the one for the 
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pressure was the Weibull distribution (Figure 3.4b). Similarly, the best fitted distributions 

were applied for the other uncertain features in all the locations. The parameters for all 

the uncertain features in all the locations were shown in Tables 3.2 to 3.4. As one of the 

two deterministic features, the data of spawning fish number was obtained from 39 

locations based on reference (Ollerhead et al., 2004). Ten locations of the ecological 

reserves were also determined according to the Department of Environment and 

Conservation, Government of Newfoundland and Labrador, Canada. The ecological 

reserve affected areas were determined as the areas which were close to the ecological 

reserves (within a distance of 0.1 degree to the boundary of the reserves). The spawning 

fish distribution after interpretation and the area that might affect the ecological reserves 

were shown in Figure 3.5c. 
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Figure 3.4 Distribution fitting for (a) wave height and (b) pressure in two different 

locations 
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Table 3.2 Parameters of the fitted distributions for meteorological features and wave height 

 

Latitude 

(deg) 

Longitude 

(deg) 

Wave height (GEV) Wind direction (GEV) 
Wind speed 

(GEV) 

Pressure 

(Weibull) 

Sea surface 

temperature  

(GEV) 

k sigma mu k sigma mu k sigma mu mu sigma k sigma mu 

45.90 -51.00 1.21 0.22 0.16 -0.62 104.00 196.29 -0.07 2.81 4.64 1020.05 112.43 -0.52 6.83 8.65 

44.25 -53.62 0.15 0.88 1.81 -0.57 122.62 152.11 -0.14 3.63 5.09 1019.73 112.38 Normal 5.35 10.41 

44.32 -57.35 0.11 0.89 1.62 -0.63 122.51 169.36 -0.10 3.30 5.38 1019.26 112.88 -0.20 5.46 6.79 

42.73 -50.61 0.12 0.89 1.90 -0.50 100.03 175.41 -0.08 3.15 5.39 1020.62 113.08 Normal 6.65 10.18 

42.12 -56.13 0.20 0.89 1.79 -0.66 114.49 189.30 -0.12 3.49 4.92 1020.03 115.08 Normal 6.51 14.61 

45.89 -49.98 -0.13 1.02 2.90 -0.71 118.34 192.90 -0.13 3.53 5.61 1018.69 94.13 Normal 1.80 3.05 

46.88 -62.00 0.13 0.38 0.48 -0.30 88.57 149.63 -0.14 2.37 4.30 1019.21 127.43 -0.44 6.34 11.05 

46.44 -53.39 0.14 0.72 1.48 -0.55 99.32 183.21 -0.12 3.46 5.43 1018.43 106.40 -0.06 4.56 3.80 

47.28 -57.35 0.25 0.62 1.09 -0.57 103.75 182.03 -0.07 3.29 5.15 1017.34 109.49 -0.06 5.89 4.31 
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Table 3.3 Parameters of the fitted distributions for current speed and direction 

 

Latitude 

(deg) 

Longitude 

(deg) 

Current speed 

(GEV) 

Current direction 

(GEV) 

k sigma mu k sigma mu 

45.2 -53.2 0.009 0.016 0.048 Normal  2.966 8.263 

47.2 -53.2 0.030 0.017 0.057 -0.508 2.926 9.203 

45.2 -55.2 -0.010 0.021 0.060 Weibull  4.952 10.939 

47.2 -55.2 -0.010 0.018 0.060 -0.180 3.068 4.619 

45.2 -57.2 -0.074 0.019 0.065 Weibull  3.446 10.757 

47.2 -57.2 -0.053 0.017 0.066 0.385 1.674 2.151 

45.2 -59.2 -0.152 0.018 0.065 0.046 2.213 4.505 

47.2 -59.2 -0.055 0.023 0.066 Normal  2.388 6.972 
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Table 3.4 Parameters of the fitted distributions for oil relative activities features 

 

Latitude  Longitude  

Annual movements of 

tankers 

(Normal) 

Annual movements of 

other vessels 

(Normal) 

Spill Frequency  

(Normal) 

  

mu sigma mu sigma mu sigma 

47.7 -54.1 1276 120 7010 700 2.34 0.2 

47.2 -55.1 1276 120 7010 700 1.29 0.1 

46.8 -56 933 90 5063 500 1.43 0.1 

45.8 -59.3 590 60 3117 300 2.69 0.2 

47.8 -51.4 190 21 7070 700 1.47 0.1 
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In each loop/ trial of the Monte Carlo simulation, a series of random numbers was 

generated for the uncertain features based on the approximated distribution of the 

corresponding feature in each location. These random numbers (e.g., wave height and 

wind speed) along with the deterministic numbers (i.e., the number of spawning fish and 

the ecological reserve affected areas) were fed to the MC-TSAM. Each input feature 

(uncertain or deterministic) in all their available locations were then interpolated in to the 

0.1⁰ by 0.1⁰ grids based on the MATLAB
®
 griddata method.  

Interpolation is a method of constructing new data points within the range of a 

discrete set of known data points. Data interpolation is usually based on underlying 

geometric algorithms. Data may be uniform (sampling occurs over uniform intervals) or 

scattered (sampling occurs over irregular intervals). When the sample data is scattered 

(e.g., different location of stations for different features in this case), the interpolation is 

usually based on triangulation-based approach. MATLAB
®

 griddata method uses the 

Delaunay triangulation for interpolation. The Delaunay triangulation method can generate 

interpolated surfaces from many different data sources such as point data, lines, 

breaklines, and polygons (erase, replace, or clip). It can provide more accurate 

interpolation results then the other methods because the original data points are located 

exactly on the surface. Because of this flexibility and the speed of interpolation, 

triangulation has become a popular interpolation method (Hu, 1995). The method defines 

the type of surface fit to the data, producing smooth surfaces that always pass through the 
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data points and forming a uniform grid (Hajovsky et al., 2012). 

As examples, Figures 3.5a and 3.5b showed the current direction and the historical 

oil spill frequency in the target area after the interpolation based on the mean values of 

their fitted distributions. Furthermore, Figure 3.5c indicated the distribution of the 

spawning fish and the locations of the areas affected by the ecological reserves. The 

figures regarding the other parameters were shown in Figures A3.1 to A3.8 in Appendix 

A. The interpolated values of all the features in gridded cells formed the [I] (Equation 

3.1) for MC-TSAM classification (Figure 3.1). The number of trials was set to N = 500. 

After completing the classifications in all the trials preset for the Monte Carlo simulation, 

a TSAM module was further applied to handle the grouping of the classification results 

from these trials and generated the final classification results for the study area (Figure 

3.2). 
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Figure 3.5 Interpolated (a) prevailing current direction, (b) mean historical spill frequency and (c) number of spawning fish 

and ecological reserve affected areas 
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By assessing the similarities within a zone and the differences in different zones 

based on MC-TSAM, the study area was finally classified into five different zones as 

shown in Figure 3.6. Generally, Zone 1 covered the area far from the land; Zone 2 

covered the area that close to the islands located in the south of Newfoundland; Zones 3 

and 4 covered the area that may affected by the outlet of the St Lawrence River; Zone 5 

covered the shoreline area of the island. 

The comparison of the classification result (Figure 3.6) and the distribution of the 

main current direction (Figure 3.5a) indicated that the current direction in Zone 1 was 

mainly from east to west and turning to the south, flowing away from island. The current 

speed was relatively low (the length of arrows in Figure 3.5a represented the current 

speed from 0.050 to 0.066 m/s, and the distribution of the prevailing current speed was 

also shown in Figure A3.6 in the Appendix A). In contrast, the current direction in Zone 

5 was mainly from the east to the west and turning north to the island, and the current 

speed was higher than that in Zone 1. The current directions in Zones 2, 3 and 4 were 

mainly from southeast to northwest with the highest current speed in the study area. 

Figures 3.5c and 3.6 also indicated that all the areas that were vulnerable to oil spills 

were involved in Zone 5 and none was involved in the other zones. Furthermore, all the 

spawning fishes located in the eastern part of the offshore area were covered by Zone 1 

but the amount remained in a low level (< 150 spawning fish/ 520 m
2
); the area with the 

highest level of the spawning fishes (> 330 spawning fish/520 m
2
) was located in Zones 4 
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and 5; the area covered by Zone 3 was with low level of spawning fishes (<60 spawning 

fish/520m
2
); and the area covered by Zone 2 almost had no spawning fish. Furthermore, 

the tanker and vessel movement frequency in Zone 5 was significantly higher than the 

others, leading to the highest potential of offshore oil spill in all zones. The pressure and 

temperature in Zone 5 were significantly lower than the others which caused high impact 

to the oil weathering (e.g., evaporation and emulsification), leading to difficulties in 

offshore oil spill response and countermeasures. The highest wave height appeared in 

Zone 1 and then the Zone 5, which might cause effects to the oil weathering and 

difficulty to the offshore oil spill response and countermeasures. The wind speed in Zones 

1 and 5 were considerably higher than which in the other zones and the prevailing wind 

directions in the whole study area were from south to north, which meant that if any oil 

spill would happen in this area, the shoreline of the island might be endangered, 

especially which would happen in Zone 1.  

The area in Zone 5 appeared to have the highest OSVI level if any oil spill occurs in 

this area, while Zone 1 had the lowest OSVI level with the occurrence of oil spills. Oil 

spills occurring in Zones 2, 3 and 4 might not cause significant impacts to Newfoundland. 

However, as shown in Figure 5b, the historical oil spill frequency in these areas was 

significantly high than which in Zone 1 and 5 (probably because these areas were located 

in the exit of the St Laurence River from the mainland of Canada), which might also 

require high diligence in offshore oil spill monitoring and controlling. Furthermore, 
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because the spawning fish in Zone 4 was higher than which in Zone 3, and there was 

almost none in Zone 2. In addition, the location of Zone 4 was closer to Newfoundland 

than Zone 3, and Zone 2 was the farthest in all the Zones. Therefore, the Zone 5 was the 

most vulnerable area while Zone 1 was the least vulnerable one. The scales of zones (1 - 

5) indicated the OSVI levels (Figure 3.6).  
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Figure 3.6 Final classification result for the south coast of Newfoundland  
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To demonstrate the power of the proposed classification method, statistical analysis 

was conducted. The desired results were the data from five zones are significantly 

different from each other in this case. Eleven features were considered in the statistical 

analysis, including wave height, wind direction, wind speed, pressure, surface 

temperature, current direction, current speed, tanker movement, other vessel movement, 

spill frequency, and spawning fish. Because the locations of the ecological reserves were 

categorical numbers and all located in Zone 5, they were not considered in the analysis.  

In order to make all the zones comparable, the data of different features among the 

five zones was standardized, respectively. The data of the 11 features within one zone 

was added together to generate a new data set for the comparison, called typical group 

values (TGVs). Correspondingly, the TGV data for five zones could be applied to 

statistical analysis. The normality test results showed that there was no clear evidence 

that the TGV data for five zones follows certain distributions.  

The Mann-Whitney test (Mann and Whitney, 1947) was also applied in this study. 

The Mann-Whitney test is a nonparametric method and used for testing whether two 

independent sample data come from a same population. This method does not require the 

equal sample size between different zones, making it suitable for this study. If the P-value 

was smaller than the pre-set significance level (0.05 for this case), the two sample data 

were considered as significantly different from each other. Table 3.5 shows the results of 

the Mann-Whitney test for TGV data. 
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Table 3.5 Statistical analysis results by using the Mann-Whitney Test 

 

 
Null Hypothesis Sig. Decision 

1 
The Zone 1 and Zone 2 have 

same population median 
<0.000 

Reject the null 

hypothesis. 

2 
The Zone 1 and Zone 3 have 

same population median 
<0.000 

Reject the null 

hypothesis. 

3 
The Zone 1 and Zone 4 have 

same population median 
0.0015 

Reject the null 

hypothesis. 

4 
The Zone 1 and Zone 5 have 

same population median. 
<0.000 

Reject the null 

hypothesis. 

5 
The Zone 2 and Zone 3 have 

same population median 
0.0024 

Reject the null 

hypothesis. 

6 
The Zone 2 and Zone 4 have 

same population median 
0.0010 

Reject the null 

hypothesis. 

7 
The Zone 2 and Zone 5 have 

same population median 
<0.000 

Reject the null 

hypothesis. 

8 
The Zone 3 and Zone 4 have 

same population median 
<0.000 

Reject the null 

hypothesis. 

9 
The Zone 3 and Zone 5 have 

same population median. 
<0.000 

Reject the null 

hypothesis. 

10 
The Zone 4 and Zone 5 have 

same population median 
<0.000 

Reject the null 

hypothesis. 
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Table 3.5 clearly indicated that all the null hypotheses were rejected because all the 

P-value were smaller than 0.05. The data from any two zones were not from a same 

population, indicating that the data from five zones were significantly different from each 

other. Therefore, it could be concluded that the statistical analysis results agreed with the 

classification results, demonstrating the feasibility and reliability of the MC-TSAM.  

Another two nonparametric tests for independent samples (more than 2 zones) also 

were conducted to test the original data of the 11 features among 5 zones, including the 

Kruskal-Wallis test and the Jonckheere-Terpstra test. Both tests were used for 

nonparametric test with a similar null hypothesis that several independent samples were 

coming from the same population (Terpstra, 1952; Jonckheere, 1954; Helsel and Hirsch, 

2002). The pre-set significance levels were also 0.05 for these two tests. The rejection of 

the null hypothesis of the Kruskal-Wallis test indicated that at least one zone were 

different from other zones. The test results were shown in Table 3.6. The 

Jonckheere-Terpstra test was more powerful to detect the data with a priori between 

zones (Vock and Balakrishnan, 2011). Although there was no evidence for the order of 

the five different classes in this study, this method could still be used for the comparison 

test. Fail to reject the null hypothesis of the Jonckheere-Terpstra test indicated that data 

from each zone were not significantly different. The test results were shown in Table 3.7. 
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Table 3.6 Statistical analysis results by using the Kruskal-Wallis Test 

 

 
Null Hypothesis Sig. Decision 

1 
The distribution of Wind Height is the 

same across categories of Zone. 
.000 Reject the null hypothesis. 

2 
The distribution of Wind Direction is 

the same across categories of Zone. 
.000 Reject the null hypothesis. 

3 
The distribution of Wind Speed is the 

same across categories of Zone. 
.000 Reject the null hypothesis. 

4 
The distribution of Pressure is the same 

across categories of Zone. 
.000 Reject the null hypothesis. 

5 
The distribution of Surface Temp is the 

same across categories of Zone. 
.000 Reject the null hypothesis. 

6 
The distribution of Current Direction is 

the same across categories of Zone. 
.000 Reject the null hypothesis. 

7 
The distribution of Current Speed is the 

same across categories of Zone. 
.000 Reject the null hypothesis. 

8 
The distribution of Tanker movement is 

the same across categories of Zone. 
.000 Reject the null hypothesis. 

9 

The distribution of Other Vessel 

Movement is the same across 

categories of Zone. 

.000 Reject the null hypothesis. 

10 
The distribution of Spill Frequency is 

the same across categories of Zone. 
.000 Reject the null hypothesis. 

11 
The distribution of spawning fish is the 

same across categories of Zone. 
.000 Reject the null hypothesis. 
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Table 3.7 Statistical analysis results by using the Jonckheere-Terpstra Test 

 

 
Null Hypothesis Sig. Decision 

1 
The distribution of Wind Height is the 

same across categories of Zone. 
.000 Reject the null hypothesis. 

2 
The distribution of Wind Direction is 

the same across categories of Zone. 
.691 Retain the null hypothesis. 

3 
The distribution of Wind speed is the 

same across categories of Zone. 
.000 Reject the null hypothesis. 

4 
The distribution of Pressure is the 

same across categories of Zone. 
.000 Reject the null hypothesis. 

5 
The distribution of Surface Temp is the 

same across categories of Zone. 
.000 Reject the null hypothesis. 

6 
The distribution of Current Direction is 

the same across categories of Zone. 
.000 Reject the null hypothesis. 

7 
The distribution of Current Speed is 

the same across categories of Zone. 
.006 Reject the null hypothesis. 

8 
The distribution of Tanker movement 

is the same across categories of Zone. 
.308 Retain the null hypothesis. 

9 

The distribution of Other Vessel 

Movement is the same across 

categories of Zone. 

.187 Retain the null hypothesis. 

10 
The distribution of Spill Frequency is 

the same across categories of Zone. 
.000 Reject the null hypothesis. 

11 
The distribution of Spawning fish is 

the same across categories of Zone. 
.000 Reject the null hypothesis. 
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Table 3.6 shows that all the null hypotheses were rejected through the 

Kruskal-Wallis test, indicating that all the 11 features among five zones were 

significantly different from each other However, Table 3.7 indicated that the null 

hypotheses had not been rejected for wind direction, tanker movement, and other vessel 

movement through the Jonckheere-Terpstra test, indicating that there might be some 

similarity among these features in different zones. It indicated that if only single or 

limited features were considered for classification, it could lead to unreliable results. 

However, when all the effects were combined into TGV data, the difference between 

zones could be emphasized. This demonstrated that the proposed MC-TSAM could 

capture the combined effects from uncertain and complex features, showing its 

advantages over traditional methods. 

 

3.3 A Monte Carlo Simulation Based Integrated Rule-based Fuzzy 

ARTMap (MC-IRFAM) Approach 

3.3.1 An integrated rule-based fuzzy ARTMap (IRFAM) approach 

Since the ART/ARTMap system itself does not have the ability to handle 

uncertainties in supervised classification, fuzzy interface modules were integrated with 

ART and ART Mapping modules to be used as an alternative in the logic operation, 

leading to an integrated rule-based fuzzy ARTMap (IRFAM) approach. As shown in 

Figure 3.7, the IRFAM approach includes three subsystems: 1) centroid determination to 
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locate the centroids of the expected target groups by unsupervised ART; 2) criteria 

combination to generate the combined fuzzy criteria; and 3) classification to classify the 

fuzzified inputs based on rules. There are five ART modules integrated in the IRFAM 

system as follows: ART1 is used to process unsupervised classification for the fuzzified 

inputs; ART2a and ART2b are used to screen the criteria combinations into the preset target 

groups; ART3a and ART3b are used to conduct the supervised classification based on a 

comparison of the combined criteria with the inputs.  
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Figure 3.7 Flowchart of the IRFAM approach 
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Criteria combination 

A fuzzy set is a class of objects with continuous grades of membership which 

represents the degree of truth as an extension of valuation (Zadeh, 1965). Fuzzy sets 

generalize classical sets. The indicator functions of these sets are special cases of the 

membership functions of fuzzy sets for the latter only take values 0 or 1. 

Let [X] be a set of data points, with series of data points of x, therefore, [X] = {x}. A 

fuzzy set [Y] in [X] is characterized by a membership function µ(x). It can be used to 

describe the means in measuring the degree of compatibility of a data value to a fuzzy set, 

or to describe the probability that this data value belongs to a fuzzy set [Y] in the interval 

[0, 1]. The µ(x) value at x indicates the grade of membership of x in [Y]. Therefore, the 

closer the value of µ(x) to 1, the higher the grade of membership of x in [Y] appears 

(Zadeh 1968). The commonly used membership functions are triangular, trapezoidal, and 

bell shaped. A fuzzy set operation is an operation on fuzzy sets, which are a 

generalization of crisp set operations. The most widely used operations are called 

standard fuzzy set operations, which include unions, complements, and intersections 

(Dubois and Prade, 1988). 

For the triangle membership function, µi(x) can be described as follows: 
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where d is the lower bound of the i level membership function, e is the upper bound of 

the i level membership function, and c is the point where µi(x) = 1.  

The original input is formed as follows: 

 

  njpkkja xI
p ,,1;,,1)(                  (3.9) 

 

where p is the number of samples, and n is the number of features in each sample. 

Based on the membership function, the fuzzy set [Y] is given as follows: 

 

  mii xY ,,1))((                  (3.10) 

 

where m is the number of the membership levels, µm(x) is the highest level membership 

function and µ1(x) is the lowest level membership function. 

Operated by the fuzzification module, the original input [Iap] is converted to: 

 

  njokmikjia xI ,,1;,,1;,,1))((                (3.11) 

 

After the input patterns are classified by ART, the centroids are going to be located 

based on the expected target groups by the operation of the centroids locating module. 
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For m expected target groups, the first m clusters which have the most patterns in the 

clusters are selected. The centroid of each cluster is given by: 

 

  niixC ,,1)(                  (3.12) 

 

where n is the number of features of input data after fuzzification, and xi is given by: 
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where q is the number of data points in the cluster and fv is the value of the feature in 

each pattern. The outputs of centroids are going to be used as the classification criteria in 

the criteria combination subsystem. 

 

Fuzzy criteria combination 

The criteria combination is the combination of yij which has the membership function 

µ (yij) = 1, where i is the level of membership function and j is the number of the feature. 

If there are m features with p levels of membership function, the number of criteria 

combinations will be in the number of p
m
, and the criteria combination  

0bI is given by: 

 

    
mjpiijb yyI

,,2,1,,2,10  
              (3.14) 
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After being operated by the fuzzification module, the criteria combination 
0bI  is 

converted to: 

 

    
mjpiijb yyI

,,1,,1
)()(

 
 

            
(3.15) 

 

For example, for a series of input patterns with two features in each pattern (e.g., 

catchment area and elevation), and 3 levels for each parameter (e.g., low, medium, and 

high), the criteria combination [Ib] will be:  
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bI              (3.16) 

 

where [Ib] lists all the possible combinations based on 2 features with 3 membership 

levels. The number of these combinations is 3
2
 = 9, which determines the number of rows 

in [Ib]. In contrast, the number of columns in [Ib] is 3 × 2 = 6. Each row is in the sequence 

from the lowest level to the highest one for the first feature and then the second one.  
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[Ib] in Equation 3.15 and C in Equation 3.12 are used as inputs for the ART2a and 

the ART2b modules. Each input criteria combination in  
0bI  is compared with each 

centroid pattern by the operation of the ART Mapping system. Finally, the criteria 

combinations are classified into the target groups. ART2a and ART2b are linked together 

via an inter-ART module [F
ab

] called the map field.  

 

Classification  

The classification subsystem consists of two modules: the mapping module including 

ART3a, ART3b, and map field, and rule-based operation module. The mapping module is 

almost the same as the one used in the centroid determination subsystem. The only 

difference is that the vigilance for classification is higher than the one for centroid 

determination.  

[Ia] and [Ib] are used as inputs for the ART3a and the ART3b modules. The comparison 

of each input pattern with criterion is handled by the ARTMap learning to determine their 

similarity. When the ARTMap learning finishes, the final pair of input pattern and 

criterion is supposed to have the highest similarity which indicates the best match. 

Consequently, the input patterns in [Ia] are captured by certain criteria combinations in [Ib] 

after the ARTMap supervised leaning. Then by the operation of the rule-based operation 

module, the input patterns are finally classified into the target groups in the criteria 

combination subsystem.  

A set of fuzzy if-then rules are used in the form of: if a set of conditions can be 
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satisfied, then a relative set of consequences can be determined. The if-then rule is 

applied after the matching of input patterns with criteria combinations: 

 

           rasrttasr GIthenGyandyIifRRule  ,,:           (3.17) 

 

where [Ias] is the sth input pattern; [yt] is the t
th

 criteria combination; and [Gr] is the r
th

 

group. By using the rule-based operation, the input patterns in [Ia] are properly classified 

into the group set which is preset by rule Rr.  

 

3.3.2 The MC-IRFAM approach 

It is still practically difficult to directly apply a conventional IRFAM to classification 

with coexistence of complexity and uncertainty in offshore oil spill response and 

countermeasures. First, values for the features are not deterministic. For example, 

meteorological data in an oil spill area are obtained through various monitoring devices 

with time series, which lead to uncertainties resulting from sensor resolution, instrument 

errors, and dynamics. Secondly, there may be difficulty in determining the criteria for 

classification because of uncertainty and complexity of the spill site condition. The 

determination of specific criteria (i.e., what values for temperature, wave height, wind 

speed and direction, and slick thickness can be used to represent a type of common 

features in an offshore oil spill) is usually based on insufficient references and historical 
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records in the target area, which also leads to uncertainties. Furthermore, these difficulties 

will be worsened when multiple features are considered. The introduction of 

likelihoods/memberships based on fuzzy set theory becomes necessary to reflect such 

uncertainties and to resolve difficulties with the ARTMap method. 

In offshore oil spills, different affected sites have different characteristics depending 

on various features such as pollutants’ properties, hydrological conditions, and a variety 

of physical, chemical, and biological processes. Thus, the response technologies selected 

for different sites significantly vary. The classification/ranking for a suitable method at a 

given site often requires expertise on both response technologies and site conditions. 

Recently there are number of technologies developed for offshore oil spill response and 

countermeasures, however, each type of technology have its advantages or disadvantages 

in treating different types of oils. Furthermore, the site conditions (e.g., temperature, 

wave, wind, oil viscosity, and slick thickness) are usually uncertain, and the 

feasibility/efficiency of a response technology is also varied with these uncertain 

conditions. Thus, it becomes a challenge to classify/rank numerous existing technologies 

for an offshore oil spill. 

In order to address this challenge, a Monte Carlo simulation is introduced to generate 

random numbers of parameters within their feasibility range based on uniform 

distribution, leading to a Monte Carlo simulation based IRFAM (MC-IRFAM) approach. 

According to the operations shown in Figure 3.8, the available technologies are ranked 
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with highest to lowest feasibilities based on the spilled site condition. After processed by 

the MC-IRFAM approach with certain trails (e.g., N = 10,000), the information about 

overall scores for the technologies can be obtained. 

 

3.3.3 Technology screening for offshore oil spill response 

Assume a set of criteria for temperature, wave, wind, oil viscosity, and slick 

thickness as follows in Figure 3.9. Furthermore, consider an offshore oil spill with site 

conditions of temperature: about 10 
o
C, wave height: about 0.4 m, wind speed: about 10 

m/s, viscosity of spill oil: about 100 cSt, slick thickness: about 0.5 mm. There are four 

technologies (denoted as A, B, C, D) available and their feasibilities in the corresponding 

parameters are shown in Table 3.8. According to the membership functions (Figure 3.9), 

the parameters for the site conditions and the feasibility of the technologies can be 

fuzzified as in Table 3.9. 
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Figure 3.8 The MC-IRFAM approach for technology screening and ranking in an 

offshore spill 
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Figure 3.9 The membership function of (a) temperature, (b) wave height, (c) wind speed, 

(d) oil viscosity, and (e) slick thickness 
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As shown in Tables 3.8 and 3.9, the parameters presenting the feasibilities of the 

technologies are in ranges, which may lead to difficulty in matching the parameters in 

technologies with site conditions. For example, the feasibility of the Technology A in 

temperature is 5-20 
o
C and the site temperature is around 15 

o
C, which means the 

Technology A is 100% feasible in the spilled site according to temperature. However, the 

fuzzy set of the temperature in spilled site is (0.33, 0.66, 0) and for the feasibility of 

Technology A is (0.66, 1, 0.33). An overall score from the IRFAM approach which 

indicating the match of two samples (e.g., temperature of site conditions and the 

feasibility of Technology A in this case) in a range of [0, 1] (0 represents totally 

unmatched and 1 represents perfect matched) is used for the technologies ranking. The 

overall score of the site conditions and Technology A in temperature is only 0.6667 by 

direct comparison with the IRFAM, which is much lower than the one from physical 

comparison. Therefore, it may be inaccurate to classify/rank the technologies with direct 

fuzzification of the parameters.  
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Table 3.8 Parameters for the feasibilities of technologies 

 

 Temperature 

(
o
C) 

Wave height 

(m) 

Wind speed 

(m/s) 

Spill 

viscosity 

(cSt) 

Slick thickness 

(mm) 

Technology 

A 

5-20 0-0.5 >20 100-200 0.01 - 1 

Technology 

B 

20-30 0.5-2 0-5 500-1000 1-5 

Technology 

C 

>30 0-0.2 >10 >1000 >4 

Technology 

D 

10-15 0-0.3 0-10 >50 0.1-0.5 
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Table 3.9 Fuzzified parameters of the site conditions and the feasibility of the technologies 

 

 Temperature 

(
o
C) 

Wave height 

(m) 

Wind speed 

(m/s) 

Spill viscosity 

(cSt) 

Slick thickness 

(mm) 

Site 

conditions 

(0.33, 0.66, 0) (0.25, 0.75, 0) (0, 1, 0) (0, 1, 0) (0.44, 0.56, 0) 

Technology A (0.66, 1, 0.33) (1, 1, 0) (0, 0, 1) (0, 1, 0.11) (1, 1, 0) 

Technology B (0, 0.66, 1) (0, 1, 1) (1, 0.63, 0) (0, 0.56, 1) (0, 1, 1) 

Technology C (0, 0, 1) (1, 0.5, 0) (0 1 1) (0, 0, 1) (1, 1, 0.75) 

Technology D (0.33, 1, 0) (1, 0.5, 0) (1, 1, 0) (0.44, 1, 1) (1, 0.56, 0) 
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In order to address this challenge, a Monte Carlo simulation is introduced to generate 

random numbers of parameters within their feasibility range based on uniform 

distribution, leading to a Monte Carlo simulation based IRFAM (MC-IRFAM) approach. 

According to the operations shown in Figure 3.8, the available technologies are ranked 

with highest to lowest feasibilities based on the spilled site condition. After processed by 

the MC-IRFAM approach with 10,000 trials (N = 10,000), the information about overall 

scores for the technologies are obtained as in Figure 3.10. 

The ranking results indicate that the Technology D is highly feasible for responding 

to the offshore oil spill. The overall score of the Technology A is a little lower than the 

Technology D but still indicates a high feasibility of Technology A. Although the max 

and mean scores of the Technology B are close to the Technology A, the distribution of 

overall scores of Technology B tends to the lower level (Figure 3.10b). It may lead to a 

high possibility of low efficiency when this technology is applied in the spill site. In 

general, Technology C is infeasible for this spill site. 
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Figure 3.10 Overall scores for the (a) Technology A, (b) Technology B, (c) Technology C, 

and (d) Technology D 
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3.4 Summary 

This chapter firstly describes a Monte Carlo simulation-based two-stage adaptive 

resonance theory mapping (MC-TSAM) approach for unsupervised learning under 

uncertain and complex conditions. The approach can classify a site that is potentially 

affected by offshore oil spill into certain distinctive groups, representing the 

risk/vulnerability of the whole site. It is an advancement of the two-stage adaptive 

resonance theory mapping (TSAM) approach that was previously developed by the 

author. The TSAM approach is able to feed an adaptive resonance theory mapping 

(ARTMap) classification with criteria generated from adaptive resonance theory (ART) 

unsupervised classification. The TSAM can automatically process the classification 

according to the inputs. The classification results only depend on the inputs and are not 

affected by the definition of the criteria which usually require subjective judgements and 

may lead to uncertainty. In addition, by incorporating Monte Carlo simulation, the 

MC-TSAM can handle the uncertainties that widely exist in the parameters in the 

offshore environment (e.g., wind speed, wave height, temperature, etc.).  

In order to demonstrate the feasibility, the MC-TSAM was applied to classify the 

south coast of Newfoundland into five zones with different offshore OSVI under 

uncertainty and complexity. Ten uncertain features were employed as the inputs for the 

MC-TSAM, including oceanic conditions (wave height, current speed, and current 
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direction), meteorological conditions (wind speed, wind direction, pressure, and 

temperature), and offshore oil spill relative information (tanker movement frequency, 

other vessel movement frequency, and historical oil spill frequency) and two 

deterministic features (ecological reserves and spawning fish). The classification result 

indicated that Zone 5 might be most vulnerable if any oil spill occurs in this area, while 

Zone 1 might be least vulnerable. Oil spills occurring in Zones 2, 3 and 4 might not cause 

significant impact to the target area; however, the historical oil spill frequency in these 

areas was significant higher than those in Zones 1 and 5, requiring high diligence in 

offshore oil spill monitoring and response. The scales of the zones could represent the 

OSVI levels to offshore oil spills. 

Three types of statistical methods (Mann-Whitney Test, Kruskal-Wallis Test, and 

Jonckheere-Terpstra Test) were applied to analyze the differences of the classified zones 

based on the single and combine effects from features. The analyses indicated that if only 

a single feature was considered for classification, unreliable results could be generated. 

However, when all features were considered, the differences in the classified zones were 

significant. This demonstrated that the proposed MC-TSAM approach could capture the 

combined effects from uncertain and complex features, showing considerable advantages 

over other methods. 

The classification results from the MC-TSAM provided different reasonable 

scenarios in offshore OSVI classification and spill risk mapping. According to different 
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scenarios of categories, decision makers could apply limited monitoring efforts (e.g., 

stations) to wisely monitor the areas with different levels of offshore OSVI. The 

classification result could provide the least or desired number of zones which can 

sufficiently represent the environmental vulnerability as well as the situation of a 

spill/leak in the concerned area, saving time and budget in offshore oil spill monitoring 

and response. 

Furthermore, an integrated rule-based adaptive resonance theory mapping (IRFAM) 

approach was advanced by integrating with the Monte Carlo simulation approach for 

screening offshore oil spill response technologies. The IRFAM approach was previously 

developed by incorporating conventional adaptive resonance theory mapping approach 

with fuzzy set theory. The Monte Carlo simulation based IRFAM (MC-IRFAM) approach 

can handle the inputs not only with imprecise information but also ranges of uncertainties. 

It is highly helpful in classifying/ranking the distributive inputs based on some uncertain 

criteria, such as the case of response technologies screening in an offshore oil spill event. 

This approach can indicate ranks with distributions, which can help decision makers 

comprehensively analyze the feasibilities of the technologies and make sound decisions. 

Therefore, this approach can efficiently process classification under the coexistence of 

complexity and uncertainty.  

The feasibility of the MC-IRFAM approach was tested with a hypothetical case of 

technologies screening in an offshore oil spill event. The case study demonstrated that the 
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approach was able to classify and rank technologies containing uncertain information 

based on uncertain criteria. The approach could generate full fuzzy criteria combinations 

to match the site conditions as rules to rank the technologies.  

In the following chapters, the MC-TSAM and the MC-IRFAM approaches will be 

further integrated with simulation and optimization approaches in the proposed decision 

support system framework for supporting offshore oil spill responses in harsh 

environments.  
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CHAPTER 4  

SIMULATION-OPTIMIZATION COUPLING FOR 

OFFSHORE OIL SPILL RESPONSE  

 

 

 

____________________ 
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4.1 Optimization under Uncertainty 

4.1.1 Fuzzy-Stochastic-Interval Linear Programming (FSILP) 

Nguyen (2007a, 2007b, 2007c) developed a new method to convert the fuzzy and 

fuzzy stochastic linear programming (LP) problems into the conventional LP models by 

measuring the attainment values of fuzzy numbers and/or fuzzy random variables as well 

as superiority and inferiority between triangular fuzzy numbers (or triangular fuzzy 

stochastic variables). An attainment value is a degree of attainment of the fuzzy goal that 

is considered to be a concept similar to a degree of satisfaction of the fuzzy decision 

when the fuzzy constraint is replaced by the fuzzy expected payoff. It can also be 

interpreted as a possibility of attainment of the fuzzy goal. Nguyen’s method finally 

resulted in a simple deterministic LP model, which contained a few additional constraints 

and variables and could be solved easily. However, this method only considered the 

situation when the source (right-hand-side, RHS) is a strict constraint demand 

(left-hand-side, LHS), otherwise, significant errors may occur. Furthermore, the 

uncertainty represented by interval parameter was not taken into account. 

In this section, a new fuzzy-stochastic-interval linear programming (FSILP) method 

has been developed for supporting environmental management. Nguyen’s method has 

been adapted and integrated with an interval linear programming (ILP) (Liu et al., 2009). 

The developed method can be highly capable of handling the coexistence of fuzzy, 

stochastic, and interval uncertainties, as well as economic penalties. Meanwhile, 



134 
 

significant reduction of computation time will be achieved in comparison with the 

conventional methods.  

Consider a fuzzy stochastic linear program as follows: 
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Nguyen (2007), Equation 4.1 can be converted to: 
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where   11 


m
R  and   12 


o

R are matrixes of control decision variables 

corresponding to the degree (membership grade) to which X solution fulfills the fuzzy 

constraints; and E denotes the mathematical expectation.  

The Equation 4.2 is then converted by using stochastic programming techniques. 

The corresponding deterministic model for this problem is:  
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where   11 


m
Rp  and   12 


o

Rp are matrixes of probabilities for random variables.  

Because the Nguyen’s method only considered the situation when the demands 

(left-hand-sides, LHSs) and sources (right-hand-sides, RHSs) were close, with LHSs ≤ 

RHSs in minimization problems or LHSs ≥ RHSs in maximization problems. In the 

situation that sources/RHSs are too abundant to be met by the demands/LHSs, the 

conversions from less-than signs to equal signs would lead to significant errors by 

Nguyen’s method. A simple example regarding to this problem is shown as follows: 
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Fuzzy number for X is in the form of )5.0,5.0,(
~

tt  , and the probability for the random 

number is set to 0.5, which is: 
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According to Equations 4.2 and 4.3, the solution for the problem is f = 4.25, x = 3.8. 

When the values for B increase to 1,000 and 1,200, the solution for the problem becomes 

f = 450 and x = 400, respectively. However, AX ≤ B is only a loose constraint in this 

problem, and the increasing of B is not supposed to significantly affect the optimal 

solution. 

In order to fix this problem, slack variable is added in the loosing constraint as 

follows: 

 





m

i

kk

m

i

ii ppCXfMin
1

22

1

11                 (4.6a) 

s.t. 

miBSXXA iwii

n

j

jjwij ,1,)()(
2

1 1
~

1

1

~
1 


























           (4.6b) 

okBXXA kwk

n

j

jjwkj ,1,)()(
2

1 2
~

2

1

~
2 

























            (4.6c) 

 wX kij ,0,, 21                     (4.6d) 
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where   1


m

i RS  is the matrix of slack variables. 

According to Equation 4.3 the solution for the previous problem is f = 0, x = 0. 

When the values for B increase to 1000 and 1200, the solution for the problem becomes f 

= 0 and x = 0, respectively. This is much more reasonable solution for a minimization 

problem compared with the solution from Nguyen’s method. 

Then, according to Huang et al. (1992, 1993), interval parameters are introduced as 

follows:  
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 wX kij ,0,, 21                    (4.7d) 

 

The final model includes three types of uncertainties in the input variables and 

parameters. The fuzzy uncertainty exists in the decision variable X, while the stochastic 

uncertainty exists in the resource parameter B, and the interval uncertainty exists in all 
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the variables, parameters and coefficients. The result provides optimized interval 

solutions for the decision variables, 


optjX , and objective function values, 


optf , as 

follows: 

 

  jXXXXX optjoptjoptjoptjoptj   ,,            (4.8) 

    optoptoptoptopt fffff ,,                  (4.9) 

 

In the solution process, the interval linear programming model is first transformed 

into two deterministic submodels, which correspond to the upper and lower bounds for 

the desired objective function value (Huang et al., 1992). The steps for solving a FSILP 

problem are shown as follows: 

Step 1. Formulating the original Model I (Equation 4.1). 

Step 2. Reformulating the Model I by introducing the fuzzy and stochastic 

uncertainties to formulate to Model II (Equation 4.6). 

Step 3. Reformulating the Model II by introducing the interval uncertainties to 

formulate Model III (Equation 4.7). 

Step 4. Transforming Model III into two submodels: lower bound submodel (
f ) 

and upper bound submodel (
f ). 
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Step 5. Solving the 
f  or 

f submodel and obtaining corresponding  /

optjX ,and 

 /

optf . 

Step 6. Solving the submodel of the other interval bound according to results from 

Step 5 and obtaining corresponding  /

optjX  and 
 /

optf . 

Step 7. Obtaining the values for the optimum solution: 

    optjoptjoptjoptjoptj XXXXX ,, , and 

    optoptoptoptopt fffff ,, . 

Step 8. Stop. 

 

4.1.2 Monte Carlo simulation based fuzzy programming (MCFP) 

Some approaches have been developed to simultaneously deal with possibility and 

probability in the past decade (Li et al., 2009a; Li et al., 2011; Wang et al., 2011). 

However, these approaches treat probabilistic uncertainties based on limited, discrete 

probability distributions and are unable to simultaneously handle continuous probability 

and subjective information (Yang et al., 2010; Chen et al., 2013). In practice, system 

variables usually include both subjective and objective information, leading to the 

coexistence of possibility and continuous probability (or dual uncertainties), therefore the 

incorporation of fuzzy set theory and Monte Carlo simulation becomes necessary and 

valuable (Guyonnet et al., 2003; Sadeghi et al., 2010; Yang et al., 2010). Monte Carlo 

simulation can address continuous probabilistic uncertainties by using probability density 
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functions (PDFs) (Freeze et al., 1991; Vose, 1996; Garthwaite et al., 2005). Therefore, the 

integration of fuzzy programming approaches with Monte Carlo simulation can be 

promising in addressing the limitations of treating possibilistic and continuous 

probabilistic uncertainties. However, challenges still remain in finding optimal solutions 

to the new coupled problem of the fuzzy programming and Monte Carlo simulation. This 

section attempts to integrate the Monte Carlo simulation with the fuzzy programming 

module in the developed FSILP approach, forming the Monte Carlo simulation-based 

fuzzy programming (MCFP) approach. 

In the MCFP approach, a Monte Carlo simulation approach is introduced to handle 

the probabilistic uncertainties (continuous and discrete) (Chen et al., 2013; Li et al., 

2013d). By assigning random values to the uncertain parameters, the original problem 

with dual uncertainties (coexistence of possibilistic and continuously probabilistic 

uncertainties) can be transformed into a fuzzy problem. Subsequently, the FSILP 

approach (Li and Chen, 2011) as described in the previous section is introduced to handle 

the possibilistic uncertainties, converting the fuzzy problem into a conventional linear 

problem. 

The FSILP approach can easily convert a fuzzy problem into a deterministic problem 

without conventional fuzzification and defuzzification processes, which makes it 

significantly feasible in coupling with the Monte Carlo simulation. The random values of 

the parameters are firstly assigned in each Monte Carlo simulation trial according to the 
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probability distributions of parameters, leading to a fuzzy problem in each trial. Such 

fuzzy problem is then solved by the fuzzy programming from the FSILP approach. 

Finally, a group of solutions can be collected to present the most frequently occurrences 

of results under the different kinds of uncertainties in parameters. 

Although the FSILP is capable of handling the coexistence of dual uncertainties, its 

efficiency will decrease when the number of discrete probabilities increases. Furthermore, 

when the uncertainty is described as continuous probability, integration is required when 

numerically processing the optimization, leading to difficulties. Furthermore, some of the 

distributions may be non-integrable, making the optimization unachievable. 

Monte Carlo methods are a class of computation intensive algorithms based on the 

randomization. These methods can provide equivalent results to deterministic algorithms, 

which makes it a complement to the theoretical derivations (Anderson, 1986). Monte 

Carlo methods are especially suitable for the problems with multiple probability 

distributions, and the handling of such distributions becomes complicated by using 

numerical methods. These methods are frequently used to treat uncertainties in inputs, 

especially for evaluating risks (Baeurle, 2009). 

The results of an objective function can be regarded as a stochastic one due to 

randomness of the input parameters. The occurrence of this can be predicted through 

Monte Carlo simulation based on the help of the probability concept. However, not all the 

input parameters can be characterized by using probability distributions due to 
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incomplete or insufficient information from literature and historical data as well as the 

subjective judgement when choosing values for the parameters. In many cases, the 

obtained probability distribution may be still uncertain where each data point contains a 

degree of belief, leading to dual uncertainties of possibility and continuous probability.  

As shown in Figure 4.1, a parameter X is uncertain with corresponding probability: 

 

)(1 PfXX  
              (4.10) 

 

However, sometimes the confidence of such a distribution can be impaired by 

insufficient information. Such a consequence is of a fuzzy nature which can be quantified 

by degrees of belief (e.g., membership functions) (Li et al., 2007). Each data point (Xi) 

may contain a membership function as follows: 

 

}0,),,,(;{
~~

 babatttX i              (4.11) 

 

and 
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where the scalars   baba ,0,  are called the left and right spreads of the 

membership, respectively. 

Therefore, in order to effectively tackle such coexistence of dual uncertainties, 

Monte Carlo simulation and fuzzy programming need to be integrated. The FSILP 

method can easily convert a fuzzy problem into a deterministic problem without 

traditional fuzzification and defuzzification processes which significantly obstructs the 

integration with Monte Carlo simulation. The framework of the MCFP approach is shown 

in Figure 4.2, where N is the preset number of trials, and l is the index of the current trial. 
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Figure 4.1 Dual uncertainties of possibility and contiuous probability 
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Figure 4.2 Framework of the MCFP approach 
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Consider a problem which is the same as the one in Equation 4.1. The random 

values of the parameters are firstly assigned in each Monte Carlo simulation trial 

according to their probability distributions, leading only to a fuzzy problem in each trial. 

According to the FSILP approach, in each trial the problem can be converted as follows 

(Li and Chen, 2011): 
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After N trials are finished, the sets of the results can be obtained as follows: 
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ZjMlXXff optjloptjloptl ,,1;,,1},0);({ ,,,  
          

(4.14) 

 

where M is the number of the feasible solutions after N trials of the Monte Carlo 

simulation, and Z is the number of decision variables.  

Assuming that there is no uncertainty existing in the coefficients of the objective 

function (C), the definition for the final solution can be stated as follows: 

 

Definition 1:  
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       (4.15) 

 

Proof. the corresponding objective function and decision variables are 
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Since Cj are deterministic and independent, we have the relation between the 

expected values of the optimal function and the decision variables: 

 

))(()()( ,,

1

, optjloptjl

Z

j

joptl XEfXECfE 
           

(4.18) 

 

The key steps of the solution algorithm are as follows: 

Step 1. Formulate the fuzzy model (Equation 4.1). 

Step 2. Initialize the model parameters, including probability distributions and 

membership functions. 

Step 3. Generate a set of random variables according to the probability 

distributions. 

Step 4. Transform the Equation 4.1 to Equation 4.13 according to the generated 

random variables in Step 3. 

Step 5. Solve Equation 4.13 and obtain the corresponding optjlX , , and optlf , of the 

current trial. 

Step 6. Go to Step 7 if the trial reaches the preset number of trials (l = N); 

otherwise (l < N) go to Step 3. 

Step 7. Obtain a set of feasible solutions by Equation 4.15 or declare the feasible 
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solutions are unachievable. 

Step 8. Obtain the optimal solutions by Equation 4.18:  optjloptj XEX ,,  , and 

 optlopt fEf , . 

Step 9. End. 

 

4.2 Simulation-Optimization Coupling  

Based on the integration of Monte Carlo simulation with the optimization 

programming in Section 4.1.2, another innovative development is made in the integration 

of Monte Carlo simulation with the dynamic programming. 

 

4.2.1 Dynamic Mixed Integer Nonlinear Programming (DMINP) 

Consider a linear program as follows: 
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where   n
RC




1
 is the matrix of coefficients of the objective function; and 

  nm

ij RA


  as well as   1


m

i RB are matrices of variable constraint coefficients.  

When Cj are not just constants but also functions linking with some other parameters: 

 

)(ygC jj                      (4.20) 

 

where )(yg j  
are the functions showing the relations between the coefficients C and 

parameters y, leading to a simulation-based optimization model as follows: 
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The Equation 4.21 will be a simple linear model and can be solved by linear 

programming if )(yg j  
is independent from the decision variables (Xj). However, when 
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)(yg j  
are dependent on the decision variables, the model becomes non-linear. 

Especially when )(yg j  are dynamically relating with the decision variables (usually 

with time series), the model becomes dynamic and non-linear, and cannot be easily 

solved: 
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where t and t-1 are time indicators in a time series, and the 

  jtjjtjtt XygXygff )(,)( 11   represents relations between the status from the 

previous and the current stages. For a single stage or globally continuous problem, the 

Equation 4.22 can be converted as follows: 
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
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It will be more convenient to break the time series into certain stages based on a 

controllable time interval, leading to a multiple-stage simulation based nonlinear 

programming as follows: 
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where ts is the time interval in the stage s. In some cases, )(yg j  
in the same stage can be 

assumed to be unchanged and the Equation 4.24 can be correspondingly converted to: 
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4.2.2 Monte Carlo simulation-based DMINP 

Based on DMINP approach, a Monte Carlo simulation approach is introduced to 

address the probabilistic uncertainties. Monte Carlo simulation has been a series of 

computation intensive methods based on randomization, which has been introduced in 

many modeling fields to handle uncertainty (Chen et al., 2013; Jing et al., 2012c; Li et al., 

2013c, 2013d). These methods can provide approximately equivalent results when 

compared with the analytical algorithms, leading to a complement of the theoretical 

derivations. Monte Carlo simulation is especially capable of handling multiple 

probability distributions, which is much challenging by using numerical methods. As 

shown in Figure 4.3, by assigning random values to the uncertain parameters, the 

probabilistically uncertain information becomes deterministic in a single trial (i.e., trial l) 

of Monte Carlo simulation. Consequently, the original problem becomes a deterministic 

problem in each loop. After finishing all the trials (i.e., N trials), the feasible solutions can 

be obtained for further trade-off analysis. 
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Figure 4.3 Framework of the MC-DMINP approach 
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4.2.3 Simulation-optimization coupling for supporting offshore oil spill response 

In offshore oil spill recovery, the net oil recovery rate (ORRn, defined as the amount 

of recovered oil per hour) of skimmer is usually determined by slick thickness (SOT). 

The function between ORRn and SOT are as follows: 

 

SOTbSOTaORRn  2

                
(4.26) 

 

where a and b are empirical coefficients obtained from experimental tests. 

Correspondingly, the objective function of the offshore oil spill recovery problem by 

skimmer can be expressed as follows: 

 

 
t

dtORRSKVMax nii0                 (4.27) 

 

where V is the volume of recovered oil, t is the operational time, SKi are the numbers of 

skimmer type i, and ORRni are the recovery rates of the corresponding skimmer.  

As ORRni are dynamically related with the objective value (V), the problem becomes 

dynamic and non-linear, and cannot be easily solved. It will be more convenient to break 
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the time series into multiple stages based on a controllable time interval defined as the 

minimal time required for shifting one operational condition to another. The duration of a 

stage is usually determined by the time for device deployment and allocation, resource 

arrangement, etc. This leads to a multiple-stage simulation based nonlinear programming 

as follows: 
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where N is the length of an operational period, s is the number of operational stages, 

ORRnis are net oil recovery rates for SKi at stage s, which is calculated by the slick 

thickness or the collected oil from the stage s-1: 
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where V0 is the initial volume of spilled oil, A is the area of the spilled oil, and h is the  

stage index. 
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In real-world practices, oil recovery is significantly affected by the weathering 

processes such as spreading and drift, evaporation, natural dispersion, emulsification, 

biodegradation, etc. (Fingas, 2010). In a case that spilled oil is boomed and the recovery 

is required to be done within a short period, evaporation, dispersion, and emulsification 

may play important roles in oil weathering. Therefore, these processes will also be taken 

into account in the MC-DMINP approach. According to Fingas (2011), the empirical 

equation of evaporation for oil is as follows: 

 

   
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15.273 tLnTdc
FE
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                (4.30) 

 

where c and d are equation parameters for specific oil, FE is the evaporation rate 

(m
3
/hour∙m

3
 of oil), T is temperature (K), and t is time (min).  

Furthermore, the equation for the dispersion process is as follows (Mackay et al., 

1980): 
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where DE is the dispersion rate (m
3
/ (s∙m

3
 of oil)), µo is the dynamic viscosity of the oil 

(cP), and St is the interface tension between oil and water (dyne/m).  

Emulsification is one of the key processes that could change the properties and 

characteristics of spilled oil. It can affect other weathering processes and consequently 

the oil recovery operation. Mackay et al. (1980) provided a simulation of emulsification 

by using the incorporation rate of water into an oil slick: 
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where FW is the fractional water content, Ka is the cure fitting constant that varies with 

wind speed (2 × 10
-6

), Kb is mousse viscosity constant (0.7 for crude oils and heavy fuel 

oil) (Zadeh and Hejazi, 2012), and t is time (s). 

The evaporation process, along with the emulsification process can lead to a 

significant change of oil density and viscosity as follows (Guo and Wang, 2009): 
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where w is the density of water, 
o

m 1
 is the parent oil density, 

o

m 1 is the parent oil 

viscosity, and cK is the oil-dependent constant between 1 and 10 (1 is for gasoline or 

light diesel, and 10 for crude oils). 

When considering the simulation of the oil recovery efficiency, along with the 

weathering processes, the optimization model for oil skimming can be formulated as 

follows: 
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0jSK
                                                            

(4.35h) 

 

4.3 Decision Support for Oil Recovery and Devices Allocation during an 

Offshore Oil Spill Response 

4.3.1 Background and model settings 

Consider an offshore spill of Statfjord oil with a total amount of 5,000 m
3
. After 

booms were applied, the spill area is confined to 100,000 m
2
. Three types of drum 

skimmers (SK1, SK2, and SK3) were applied in this area to collect the spilled oil. Each 

type of skimmer was located in a different warehouse and required a specific period of 

time for allocation and deployment (Table 4.1). In order to determine their efficiencies, 

ORRs and OREs of these skimmers were collected from the previous tests conducted by 

Environmental Canada and OHMSETT (Schulze, 1998). The ORRs is the oil recovery 

rate (m
3
/hour) of the skimmers, but it usually represent the hourly collection of the 

skimmer not just oil but also water. The OREs is the oil recovery efficiency (m
3
 of oil/m

3
 

of collection) of the skimmers which indicates proportion of pure oil in the collected 

oil-water mixture. According to the collected information, a series of ORRn1, ORRn2 and 

ORRn3 were generated based on calculating ORRs * OREs using different oil thickness 

with a viscosity of 1,000 cSt (Schulze, 1998). Fittings were then applied based on 

quadratic functions to generate the regression models of ORRn with the change of spilled 

oil thickness, representing the recovery efficiencies of the three types of skimmers 
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(Figure 4.4). Such change of slick thickness is usually caused by the processes of 

spreading, shifting, weathering (e.g., evaporation, dispersion, dissolution, emulsification, 

etc.), as well as oil recovery. The details about the ORRn of the skimmers as well as the 

regression models of the efficiencies are shown in Table 4.1. 

There were 10 sets of each type of skimmer in the warehouse and the capacity of 

vessels used for operation was 20 sets of skimmers. Due to the challenge of 

transportation, no more skimmers and vessels can be supplied within 48 hours. Therefore, 

the objective of the current stage was to determine the combination of the three types of 

skimmers in each stage to maximize the collected volume of spilled oil in this 48-hour 

period. 
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Table 4.1 Time of devices allocation as well as model parameters of ORRn. 

 

Types of skimmers 

Time of devices allocation 

and deployment 

(hour) 

Model parameter for ORRn 

a b 

SK1 3 0.01437 0.01602 

SK2 6 -0.00791 0.84975 

SK3 12 -0.01591 1.54975 
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Figure 4.4 Net oil recovery rates for the skimmers 
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4.3.2 Oil recovery efficiency 

According the above information, a general optimization model can be generated as 

follows: 
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s.t. 
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(4.36b) 

3,2,1100  jSK j                 
(4.36d) 

3,2,1 jintegerSK j                
(4.36e) 

 

where j is the index of skimmers, t is the point of time during the operational period, 

jSK  are the  numbers of applied skimmers, and njORR are the corresponding net oil 

recovery rates for skimmers. 

Because the spill was boomed, it can be assumed that the area of the spilled oil is 

unchanged at this stage, which was A = 100,000 m
2
. Because the initial volume of spilled 

oil was V0 = 5,000 m
3
, the initial thickness can be calculated as follows: 
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mmmAVSOT 5005.0000,100/000,5/00 
           

(4.37) 

 

and at time t, the thickness can be interpreted as follows: 

 

000,100// ttt RVARVSOT                 (4.38) 

 

where tSOT  is the spilled oil thickness at time t, and RVt is the remaining volume of 

spilled oil at time t. 

According to the regression model of ORRn (Figure 4.4) and the Equation 4.26, the 

specific regression model for SK1 efficiency is generated as follows: 
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where ORRn1t is the oil recovery rate of SK1 at time t. In addition, the specific regression 

model for SK2 efficiency is generated as follows: 
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where ORRn2t is the net oil recovery rate of SK2 at time t. Finally, the specific regression 

model for SK3 efficiency is generated as follows: 
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where ORRn3t is the net oil recovery rate of SK3 at time t. 

Accordingly, the Equation 4.36 can be converted as follows: 

 

dtVVMax t
48

0                  (4.42a) 

s.t. 
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3,2,1100  jSK j                 
(4.42d) 

3,2,1 jintegerSK j                
(4.42e) 

 

where Vt is the collected volume of spilled oil at time t, and the relation between Vt and 

RVt is as follows: 

 


t

dtVVRV tt 00                   (4.43) 

 

Accordingly, Equation 4.42 can be converted as follows: 

 

dtVVMax t
48

0                  (4.44a) 
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s.t. 
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                     (4.44b) 
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3,2,1100  jSK j                 
(4.44d) 

3,2,1 jintegerSK j                
(4.44e) 

 

This model is recursive and usually cannot be directly solved. According to 

Equation 4.35, Equation 4.44 can be divided into a multiple-stage dynamic 

programming. Assume that the controllable time interval for this case was 1 hour, and 

then the 48-hour time span can be divided into 48 stages. According to a basic 
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assumption that all parameters remained unchanged within a single stage, the Equation 

4.44 can be converted as follows: 
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3,2,1100  jSK j                 
(4.45e) 

3,2,1 jintegerSK j                
(4.45f) 

 

where m is the index of current stage from the divided 48-hour time series, Vm is the 

amount of collected spilled oil in stage m, h is the index of the stages before stage m and 

Vh is collected oil in the stage h.  

When considering the time of devices allocation and employment of skimmers from 

warehouse to the spill site, the specific type of skimmer cannot apply for the oil recovery 

before the accomplishment of its allocation and employment. Accordingly, the Equation 

4.45 can be reformulated as follows: 
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mttjbsk jjm  ;3,2,11               (4.46g) 

3,2,1 jintegerSK j                
(4.46h) 

 

where bskjm is the binary indicator for SKs in stage m to determine if the SKj is applied in 

the oil recovery in this stage and ttj is the time of devices allocation and deployment for 

SKj listed in Table 4.1.  

 

4.3.3 Oil weathering simulation and simulation-optimization coupling 

The inputs for the oil weathering processes are shown in Table 4.2. 

According to Fingas (2011) and Equation 4.30, the empirical equation of 

evaporation for the Statfjord oil is as follows: 

 

   
100

15.27306.067.2 tLnT
FE


               (4.47) 

 

According to Equations 4.31, 4.33, 4.34, and 4.47, the Equation 4.46 can be 

converted as follows: 
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48,,20  mFEVVF mm              (4.48m) 

48,,2600,30  mDEVVD mm             (4.48n)
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j

jSK

                  

(4.48o) 

3,2,1100  jSK j                 
(4.48p) 

mttjbsk sjm  ;3,2,10              (4.48q) 

mttjbsk sjm  ;3,2,11               (4.48r) 

3,2,1 jintegerSK j                
(4.48s) 

 

where
o

0  is the initial density of the spilled oil, 
o

0  is the initial viscosity of the spilled 

oil. 

Based on the assumptions that only the provided weathering processes will occur 

during an oil spill and no sedimentation will happen during the weathering, a dynamic 

mixed integer nonlinear problem can be finally formed and solved by programming 

software (i.e., MATLAB
® 

with LINDO API
®

). 
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Table 4.2 Statjord crude oil characteristics for the weathering processes of evaporation 

and dispersion 

(Nazir et al., 2008) 

Parameter Value Parameter Value 

Temperature (T) 298 K Wind speed (U) 5 m/s 

Vapor pressure (P
sat

) 10.4 Pa Molecular weight (M) 128.2 g/mol 

Density of oil (ρ
o
) 832 kg/m

3 
Gas constant (R) 8.314 m

3
∙Pa/mol∙K 

Viscosity of the oil (µ
o
) 3.03 cP 

Interface tension of oil 

and water (St) 
2000 dyne/m 
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4.3.4 Monte Carlo simulation 

In order to test the feasibility of the developed approach in handling uncertainty, slick 

area, wind speed, and temperature, which have been commonly used to represent 

uncertain features in offshore oil spill environments, were used as uncertain inputs. The 

approximate distribution of these three parameters can be generated as follows: slick area 

was normally distributed with a mean value of 100,000 m
2
 and a standard deviation of 

8,000 m
2
; wind speed was normally distributed with a mean value of 5 m/s and a standard 

deviation of 0.5 m/s; temperature was normally distributed with a mean value of 298 K 

and a standard deviation of 10 K. The total trials for the Monte Carlo simulation was set 

as N = 200. Based on the solution steps shown in Figure 4.3, the random values for these 

three parameters were assigned in each loop (set as trial l) based on their distribution 

settings. By solving Equation 4.48 with the assigned random values, the optimal 

alterative for trial l can be obtained. After finishing 200 trials, all the feasible solutions 

can be obtained for further trade-off analysis. 

 

4.3.5 Results and discussion 

Modeling without consideration of uncertainty 

The modeling results indicated that the optimal combination of skimmers is SK1 = 9 

entering the oil recovery system at the 3
rd

 hour, SK2 = 9 entering the system at the 6
th

 

hour, and SK3 = 2 entering the system at the 12
th

 hour. This yields 3,966 m
3
 collected oil 
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in the 48-hour period which means that the recovery efficiency was 79.3%. At the same 

time, 926 m
3
 (18.5%) of the spilled oil was evaporated and 107 m

3
 (2.1%) is dispersed. 

The details about the dynamic changes of ORRn, the collected, evaporated, dispersed, and 

remaining oil, and the changes of oil viscosity and density as well as slick thickness are 

shown in Figures 4.5 to 4.10. 

From Figures 4.5 and 4.6 it can be seen that at the initial stage the net oil recovery 

rates of SK1 (ORRn1) and SK3 (ORRn3) were much higher than that of SK2 (ORRn2). 

However, ORRn1 significantly decreased with time and became lower than ORRn2 after 

about 6 hours. On the other hand, ORRn2 slightly decreased in most time periods. 

Although SK3 had higher net oil recovery rate at the initial stage and ORRn3 decreased 

with a low rate in the remaining stages, the device allocation and deployment time of this 

type of skimmer (12 hours) is much longer than SK1 (3 hours) and SK2 (6 hours). 

Therefore, SK1 contributed more to the recovery in the first few hours but less in the 

remaining, while SK2 had stable and relatively high contribution after being applied. 

Although the number of applied SK3 was much lower than those of SK1 and SK2, the 

high ORRn of SK3 at low thickness led to a significant contribution during the late stages 

of the operational period (Figure 4.6). 
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Figure 4.5 Changes of ORRn of skimmers during the operational period 
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Figure 4.6 Collected and cumulative amounts of spilled oil by skimmers in each stage 
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Figure 4.7 Evaporated and cumulative amounts of spilled oil in each stage 
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Figure 4.8 Dispersed and cumulative amounts of spilled oil in each stage 
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Figure 4.9 The transport and fate of spilled oil during the operational period 
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Figure 4.10 The change of (a) dynamic viscosity, (b) density, and (c) slick thickness 

during the operational period 
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The amount of oil lost from the weathering processes (e.g., evaporation and 

dispersion) played an importation role in the oil transport and fate and therefore 

significantly affected the change of the net oil recovery rates of skimmers (Figures 4.7 

and 4.8). The total amount of collected, evaporated, and dispersed oil in the first 10 hours 

increased significantly but became stable after 20 hours (Figure 4.9). This was mainly 

due to the large amount of volatile and semi-volatile components in the oil rapidly lose 

via evaporation and dispersion. Simultaneously, the properties (e.g., viscosity and density) 

of spilled oil were also altered by the weathering processes (e.g., evaporation and 

emulsification) (Figures 4.10a and 4.10b), and vice versa (Figures 4.7 and 4.8). 

Although the rates of evaporation and dispersion still had certain percentages and kept 

decreasing, these rates present the percentages of the remaining oil from the previous 

stage /hour and therefore the lost amount after the 20
th

 hour became stable in a 

significantly low level (Figure 4.9). Therefore, in the last few stages of the operational 

period, evaporation and dispersion tended to have negligible contribution to the change of 

slick thickness and recovery efficiency. 

In the first 3 hours of the operational period, because all skimmers were still unready, 

only evaporation and dispersion affected the transport and fate of the spilled oil. Thus, the 

amount and thickness of the remaining oil slightly decreased in the first 3 hours (Figures 

4.9 and 4.10c). At the fourth hour, 9 sets of SK1 started to collect oil. Because the 

collection rates of skimmers were higher than the evaporation rate (more than 3 times), 
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the remaining amount and slick thickness sharply dropped after the 3
rd

 hour. At the 6
th

 

hour, 9 sets of SK2 started to collect oil. However, because ORRn of SK1 had already 

significantly dropped in this stage, the addition of SK2 can only make a small difference 

in the 3
rd

 hour. Therefore, the decrease of remaining oil and slick thickness was 

accelerated in the 6
th

 hour, but not as significantly as that in the 3
rd

 hour. Similar situation 

can be observed in the 12
th

 hour when SK3 were applied for collection (Figures 4.9 and 

4.10c). 

Modeling under uncertainty 

With the uncertain inputs of slick area, temperature, and wind speed, as well as the 

pre-set trials for modeling, a series of results were obtained, including the skimmer 

combinations, the amounts of collected, evaporated, and dispersed oil, as well as the 

changes of net oil recovery rates, slick thickness, viscosity, and density. Accordingly, 

further statistical analyses were applied to assess 1) the distributions of the numbers of 

different types of skimmer (Figure 4.11); 2) the mean values and 95% confidence 

intervals for net oil recovery rates for skimmers (Figure 4.12), cumulatively collected, 

evaporated and dispersed oil, as well as the remaining oil (Figure 4.13), changes of 

density, dynamic viscosity, and slick thickness (Figure 4.14) ; 3) the changes of finally 

collected, evaporated, and dispersed oil with the changes of slick area, temperature, and 

wind speed, respectively (Figure 4.15); and 4) the changes of the numbers of different 

skimmers with the changes of slick area, temperature, and wind speed (Figure 4.16).  
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Figure 4.11 Distributions of skimmer numbers 
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Figure 4.12 Mean values and 95% confidence intervals of net oil recovery rate for 

skimmers 
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Figure 4.13 Mean values and 95% confidence intervals of cumulatively (a) collected oil, 

(b) evaporated oil, and (c) dispersed oil as well as (d) remaining oil 
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Figure 4.14 Mean values and 95% confidence intervals of (a) density, (b) viscosity, and 

(c) slick thickness 
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Figure 4.15 The change of finally collected, evaporated, and dispersed oil with the 

change of slick area, temperature, and wind speed, respectively 
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Figure 4.16 The change of skimmer numbers with the change of (a) slick area, (b) 

temperature, and (c) wind speed 
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As shown in Figure 4.11, the number of SK1 varied from 7 to 10 sets and the most 

possible number would be 9 sets under the multi-interactions of uncertain slick area, 

temperature, and wind speed. The number of SK2 varied from 8 to 10 sets and the most 

possible number would be 10 sets. While the number of SK3 varied from 0 to 3 sets and 

the most possible number would be 2 sets, however the possibility of 1 set was 

significantly close to 2 sets. Such varieties of skimmer combinations were possibly due to 

the uncertainty of slick thickness. The number of SK1 may increase when the slick area 

decreased which caused an increase of slick thickness, and vice versa. In contrast, the 

numbers of SK2 and SK3 may decrease when the slick area decreased and vice versa 

(Figure 4.16a). This may be attributed to the fact that SK1 had higher net oil recovery 

rate with increasing slick thickness (i.e., lower slick area with unchanged spill amount), 

while SK2 had lower decrease rate compared with SK1, and SK3 had the lowest decrease 

rate among all three types of skimmers (Figure 4.4). The numbers of SK1 and SK2 were 

significantly higher than the number of SK3 despite the change of slick area, which was 

due to the allocation and deployment time of SK3 (12 hours) was much longer than that 

of the other two types (3 and 6 hours, respectively). In addition, the increase of wind 

speed increased the number of SK1 and decreased the number of SK2 and SK3 (Figure 

4.16c). This was because the strong wind could strengthen the dispersion especially in the 

late stages (i.e., the dispersed oil was more and more skewed to its upper bound since 24
th

 

hour as shown in Figure 4.13c), leading to low efficiencies to the Skimmers. 
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Comparatively, the uncertainties in temperature had insignificant effect to the 

combinations of skimmers (Figure 4.16b). In addition, the net oil recovery rates for all 

types of skimmers were relatively significant in the early stages and became insignificant 

with time, and the most effect occurred in the first 6 hours (Figure 4.12). In general, it 

would be recommended to use a combination of (SK1 = 9, SK2 = 10, and SK3 = 1) if the 

slick area tended to be smaller, and a combination of (SK1 = 8, SK2 = 10, and SK3 = 2) if 

the slick area tended to be larger. 

During the 48 hour operation period, the variation of the cumulative collected oil 

were most conspicuous in the mid-stages (i.e., from 9
th

 to 20
th

 hours) and less significant 

in other stages (Figure 4.13a). The reason was possibly due to the small quantity of 

applied skimmers in the early stages and low oil recovery rate in the late stages. Despite 

of this, the variation of the cumulative collected oil was significantly less than those of 

the evaporated and dispersed oil (Figures 4.13b and 4.13c). This was attributable to the 

uncertainties in slick area and temperature that had notable but negative effects on the 

collection of oil (Figures 4.15a and 4.15d). Furthermore, the effects of wind speed were 

negligible as shown in Figure 4.15g. In contrast, although the effects of uncertain wind 

speed on evaporation were hardly noticeable (Figure 4.15h), positive effects were from 

uncertainty of slick thickness and temperature (Figures 4.15b and 4.15e). Furthermore, 

although dispersion was insignificantly affected by uncertain slick area and temperature 

(Figures 4.15c and 4.15f), it was highly and positively affected by the wind speed 
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(Figures 4.15i). However, because the collection of oil still contributed the most (about 

75% to 80%) in the oil transport and fate, it still held the most effects on the changes of 

remaining oil, slick thickness, oil viscosity, and density. The uncertainty of remaining oil, 

density, and dynamic viscosity significantly increased after the application of skimmers 

and decreased when the efficiency of skimming became low (Figures 4.13d, 4.14a, and 

4.14b). Meanwhile, the uncertainty of slick thickness significantly decreased after the 

application of skimmers (Figure 4.14c). 

The MC-DMINP approach is very helpful to the recovery of offshore oil spill in cold 

and harsh environments such as wide range of wind speed and direction, visibility, and 

temperature, as well as rough seas, ice coverage, appearance of icebergs, etc. These harsh 

conditions are always highly uncertain and dynamically changing, posing unique 

challenges for oil spill response. The MC-DMINP approach can help timely determine 

the combination of response technology with the considerations of oil recovery efficiency 

as well as device allocation and deployment to achieve the best oil recovery. Besides the 

integration of oil recovery and weathering simulation, the proposed approach can be also 

integrated with other simulation modules such as weather forecasting and ocean 

dynamics simulation to better support the clean-up of offshore oil spills. Furthermore, 

this approach is also capable of providing the most reasonable combination of skimmers 

under various uncertainties. In addition, the proposed approach has high potential in 

timely adjusting the settings of operation due to its multiple-stage optimization, which is 
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of importance in offshore oil spill recovery.  

 

4.4 Summary 

In this chapter, a fuzzy-stochastic-interval linear programming (FSILP) approach has 

been firstly developed to support decision making under multiple uncertainties. The 

developed approach is adapted from Nguyen’s method to handle possibilistic and 

probabilistic uncertainties, and integrated with interval linear programming. It can 

effectively tackle uncertainties that are presented in terms of probability density functions, 

fuzzy membership functions, and discrete intervals and incorporate a variety of uncertain 

information into a general framework. Based on the developed FSILP, a Monte Carlo 

simulation based fuzzy programming (MCFP) approach has been developed to reflect 

and quantify dual uncertainties of possibility and continuous probability in environmental 

management. Such an approach is highly capable in converting fuzzy problems to 

deterministic ones and achieving the optimal solutions with fewer additional constraints, 

leading to significant reduction of computation time. Consequently, the MCFP approach 

can effectively tackle the coexistence of possibilistic and continuously probabilistic 

uncertainties. In addition, it can provide three levels of the optimal results to help the 

decision maker effectively manage the offshore oil spill response. The first level is the 

entire distributions of objective functions and decision variables, which can provide 

decision support to general policy makers (e.g., regulating and consulting organizations) 

for long term policy making and trade-off, risk and reliability analyses of the system. The 
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second level is the range of most frequent occurrences, which can help project or plant 

managers in designing and planning the production in a medium arrangement. The third 

level is the expected value of the optimal results, which can directly provide decision 

alternatives to the plant operators for short term operating and adjusting the facility to 

minimize system cost. 

Based on the previous methods, a Monte Carlo simulation-based dynamic mixed 

integer nonlinear programming (MC-DMINP) has finally been developed based on the 

integration of Monte Carlo simulation and dynamic programming. The MC-DMINP 

approach converts the simulation model into constraints which dynamically link to the 

decision variables, and break a time series into certain stages according to controllable 

time intervals in practical manner, leading to a multiple stages dynamic programming. 

Such a programming approach is further integrated with the Monte Carlo simulation to 

handle the uncertain conditions. The MC-DMINP can be further integrated with various 

simulation processes (e.g., hydrodynamic, oil weathering, risk assessment, etc.), forming 

the simulation-based MC-DMINP approach. For example, the MC-DMINP was 

integrated with the simulation of oil weathering (i.e., evaporation, dispersion, and 

emulsification) and oil recovery. 

In the case study, regression models were developed to simulate the efficiencies for 

three types of skimmers based on the past performance evaluation tests. These skimmers 

required different times for devices allocation and deployment. The models were further 
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integrated with the optimization and the simulation of oil weathering processes 

considering evaporation, dispersion and emulsification. Both the number of skimmers 

and timing of deployment were optimized. The optimization results indicated a 79.3% of 

oil recovery efficiency; Meanwhile, 18.5% of the spilled oil was evaporated and 2.1% 

was dispersed. In addition, uncertainty handling ability of the developed model was also 

tested with the uncertainty inputs of slick area, temperature, and wind speed. Despite the 

introduction of uncertainties, the oil collection still had the major contribution to the oil 

transport and fate, holding the most effects to the changes of remaining oil, slick 

thickness, oil viscosity, and density. 

The MC-DMINP approach can represent the dynamic changes of environmental, 

spilled oil, as well as the resources conditions. In addition, the approach can also provide 

the most reasonable combination of skimmers with the consideration of uncertainties. 

Therefore, the developed approach should be helpful to the offshore oil spill recovery in 

harsh environment where unpredictable weather and oceanic environments prevail.  
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CHAPTER 5  

AN INTEGRATED DECISION SUPPORT SYSTEM FOR 

OFFSHORE OIL SPILL RESPONSES IN HARSH 

ENVIRONMENTS (DSS-OSRH)  
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5.1 Framework of the DSS-OSRH 

As shown in Figure 5.1, the proposed integrated decision support system for 

offshore oil spill response in harsh environments (DSS-OSRH) includes: 1) an updating 

database of natural and social conditions, spill prevention technologies, control and 

clean-up technologies, and expert experience; 2) a site characterization module for 

offshore oil spill vulnerability index (OSVI) classification via a Monte Carlo simulation 

based two-stage adaptive resonance theory mapping (MC-TSAM) approach for 

supporting sampling and monitoring, site characterization, risk assessment, and 

corresponding strategies of spill prevention, with an alert system to indicate the oil spill; 

3) a Monte Carlo simulation based integrated rule-based fuzzy adaptive resonance theory 

mapping (MC-IRFAM) approach for screening/ranking available technologies for 

offshore oil spill responses based on specific conditions of a spill site; and 4) a Monte 

Carlo simulation-based dynamic mixed integer nonlinear programming (MC-DMINP) 

approach based on the simulation of oil weathering and recovery as well as the 

multi-stage dynamic programming for dynamically optimizing the combination of 

response technologies and the allocation of response resources. 
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Figure 5.1 Framework of the DSS-OSRH 
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5.1.1 Databases for background information and available technologies 

Different spill sites have different characteristics depending on pollutants’ properties, 

environmental conditions, and a variety of physical, chemical, and biological processes. 

Thus, the methods selected for different sites vary significantly. The decision on a 

suitable method at a given site often requires expertise on both response technologies and 

site conditions. Management of emergencies, resulting from natural or man-made 

disasters, requires sufficient information as well as experienced responders both in 

technical and co-ordination matters. In this way, a great amount of information should be 

used to improve the management of the emergency, which generally means making the 

best decision at the right moment. In this regard, databases including all oil pollution 

records with accurate geo-referenced locations and all available response technologies 

should be developed. The databases include the attributes of each record such as spill 

volume, oil type, location, sector, source, cleanup percentage in each case, and 

environmental impacts. Thus, any new case can use the previous experience.  

 

5.1.2 Diagnosis and alert  

One major functionality of the diagnosis for rapid responding to an oil spill event is 

provision of real-time, medium-term and long-term alert information. The approach is 

based on capitalization of GIS data, remotely sensed data and other monitoring 

technologies like deployed sensors and observant systems. The management system will 
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receive information from the diagnosis as follows: 

• Offshore OSVI mapping via the MC-TSAM classification. 

• Alternatives of offshore oil spill monitoring according to the classified offshore 

OSVI levels (zones). 

• The detection and then location and spread of oil spills over both large and 

small areas.  

• The thickness distribution of an oil spill to estimate the quantity of spilled oil.  

• Risk assessment to estimate impacts of the spill site and to take appropriate 

response action.  

• Timely and valuable information to assist in response and clean-up operations.  

• Stored and time-stamped, real-time evidentiary data on any spills and response 

efforts. 

Medium- and long-term analysis including risk identification, assessment and 

monitoring which can be supported by the classification of offshore OSVI in an affected 

or potentially affected spill site. Subsequently the OSVI map functioning as long-term 

alert for oil spill risk and trajectory simulation results over this map yields medium-term 

risk alert. The real time detection and monitoring sensors provide short-term alert for oil 

spill. There will be several levels indicated by the alert system, such as the green, blue, 

yellow, orange, and red indicated in Figure 5.1. The green and blue levels indicate a 
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minor offshore oil leak and correspondingly pollution prevention strategies are then 

applied. The yellow and orange levels indicate a moderate offshore oil spill and 

correspondingly control strategies are then applied. The red level indicates serious oil 

spill and correspondingly response strategies are then applied, supporting by the 

technology screening and simulation based optimization.  

The risk assessment process provides a formal method for assessing the economic 

risk benefit of offshore oil spill response. By undertaking a formal risk assessment it is 

possible to identify areas where intervention to reduce the likelihood or consequences of 

a particular event will be most effective (IMO, 2010). In simple terms the process 

involves (Queensland Transport, 2000): 

• Hazard identification: what can go wrong and why, 

• Frequency analysis: how often can things go wrong, 

• Consequence analysis: how much harm can be caused by the event, 

• Risk calculation: frequency or likelihood combined with consequence. 

These risks can be quantified by US EPA methods (GEAE and ERDEM) based on 

monitoring data and the results of pollution and clean-up process simulation. The 

corresponding risks are quantified based on habitats, geomorphology characteristics, 

sensitivity to the oil-spills, natural persistence of oil and conditions of cleanness/removal. 

The overall risk index (ORI) is very important for the determination of the degree of 

impact and permanence of the spilled oil, as well as for the types of the employed 

clean-up procedures. The geomorphology is determinative for the type and density of 
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biological communities present in the area (Castro et al., 2006). Risk assessment 

techniques are fundamentally the same whether applied to individual offshore 

installations, ports and harbours, or even at the national or regional level. However, the 

execution and detail will vary considerably depending on the scale to which the technique 

is applied. At a national or regional level, the task is large and, if done to a sufficient level 

of detail, complex (IMO, 2010). It is thus much better to classify the large scale regions 

into certain zones with different vulnerability to the spill.  

The MC-TSAM will carry out the unsupervised learning for these uncertain 

conditions and classify a site in to certain distinctive groups representing the 

characteristics and ORI of the whole site. The classification results from the MC-TSAM 

can provide different reasonable scenarios in risk zone (vulnerability zone) classification 

and spill risk mapping. According to different scenarios of categories, decision makers 

can flexibly place the monitoring spots in some available locations or apply different 

combination of response technologies in different zones during pollution control and 

emergency response management. The classification result provides the least or desired 

number of zones which can sufficiently represent the environmental vulnerability as well 

as the situation of spill/leak in the whole site, saving time and budget in risk assessment, 

pollution control and emergency response.  

The diagnosis and alert module that support by the offshore OSVI classification 

module is dynamically linked with the technology screening and simulation based 

optimization modules to provide real-time interaction of in diagnosis, alert, and response 
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to offshore oil spill. As the other important component in the diagnosis and alert module, 

the risk assessment will be conducted by existing methods (e.g., GEAE and ERDEM) in 

the future study. 

 

5.1.3 Response technology screening  

Once an oil spill is determined by the diagnosis, the screening process is then applied 

to determine the available technologies according to the situation of oil spill and polluted 

marine system based on the developed database and the MC-IRFAM model. This system 

is developed by integrating Monte Carlo simulation, fuzzy set theory, and rule-based 

operation with a conventional Adaptive Resonance Theory (ART) Mapping model. Five 

ART modules are included to carry out the unsupervised learning for cluster centroid 

calculation, supervised learning for criteria combination, and fuzzified original input 

classification in each trial of the Monte Carlo simulation. This system can efficiently 

handle the screening under uncertainty and complexity. By setting the criteria 

corresponding to the situation of the pollution and the condition (e.g. spill amount and 

temperature) available technologies are screened from the database for optimization. 

 

5.1.4 Integration of spill simulation and response optimization 

In the initial stage of the emergency management system, the simulation of pollutant 

transport and fate is firstly processed based on the hydro-dynamic process, mechanical 
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spreading, evaporation, dissolution, and shoreline deposition. The simulation results 

show the situation of pollution in the affected area in spatio-temporal base, followed by 

risk and impact assessment.  

Based on the results from simulation and risk assessment, screened technologies, 

resources and constraints (e.g., budgeting, manpower, policy and regulation), the 

optimization is applied to provide the best combination from these screened technologies 

with allocation of existing resources. The MC-DMINP is developed to process this 

optimization and provide decision support for the oil spill site clean-up strategies. The 

MC-DMINP consists of a Monte Carlo simulation model to handle the coexistence of 

uncertainties and an agent based model to handle dynamics in the system. This method 

can effectively tackle uncertainties that are presented in terms of probability density 

functions and discrete intervals and incorporate a variety of uncertain information into a 

general framework. Through the developed model, interactive relationships between 

different system objectives/constraints will be effectively reflected, potential conflicts 

and compromises between different system components will be highlighted, and complex 

features of the study system will be reflected.  

The optimal solution for each oil spill clean-up strategy is obtained via the 

completion of each routine of simulation - risk assessment - optimization. If the risk from 

the assessment is acceptable, the simulation based optimization is stopped and provides 

the optimal solutions for all strategies of the offshore oil spill clean-up, otherwise, the 
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simulation based optimization will repeat until the risk meets the requirement. When the 

clean-up actions are applied, the diagnosis is kept running to evaluate the efficiency of 

the actions. If the efficiency underperforms, corresponding changes and rerunning may be 

needed for the system. 

 

5.2 Integration of Classification, Simulation and Optimization for 

Offshore Oil Spill Response 

The integration of the risk/vulnerability classification, technologies screening, oil 

weathering simulation, and response optimization approaches is an essential of the 

DSS-OSRH. The details regarding such integration are shown in Figure 5.2.  

The MC-TSAM is firstly applied to assess risk/vulnerability of the target area based 

on meteorological, oceanic, environmental, and ecological conditions, oil relative 

activities in a target offshore area under various types of uncertainties. Once an oil spill 

happens, the classified zones from the MC-TSAM can provide the specific site conditions 

for the technology screening module (i.e., MC-IRFAM) and the constraints in the 

simulation-based optimization (i.e., MC-DMINP). 

Parameters including temperature, wave height, wind speed, spill viscosity, slick 

thickness, etc. are used to represent site conditions, feasibilities of available technologies, 

and the proposed membership functions. The MC-IRFAM is applied to screen the 

available technologies corresponding to the site conditions and the series alternatives can 
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be consequently determined.  

The operational parameters of the selected technologies such as manpower 

requirements, operational costs, and efficiencies are determined with probabilistic 

uncertainties and randomized with stochastic simulation. Meanwhile, according to the 

uncertain site conditions, the simulations of oil weathering and recovery are conducted in 

each trial of Monte Carlo simulation. The simulation results, the randomized operational 

parameters, and the resources/limitations (e.g., manpower, finance, and regulation) form 

the constraints of the simulation-based optimization model. Then according to the 

MC-DMINP, a simulation-based optimization approach is generated and solved for one 

trial (e.g., trial l3) until the number of trials achieves the preset number (e.g., N3). Finally 

a series of decision alternatives are generated according to the optimization results. A 

decision alternative may include the combination of technologies (e.g., types and number 

of devices) in each operational stage, allocation of man power and finance, corresponding 

cost and environmental effects, etc.  
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Figure 5.2 Integration of the offshore OSVI classification, technologies screening, 

simulations of oil weathering and recovery, and optimization 
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5.3 A Case Study 

5.3.1 Background 

In order to test the feasibility and efficiency of the developed DSS-OSRH, a case 

study was conducted for decision support to an offshore oil spill response in the south 

coast of Newfoundland. The setting of the target area was the same as which was used in 

Section 3.2.3 (Figure 3.3), which was from 53⁰ W to 60⁰ W, 45.5⁰ N to 47.5⁰ N with 

pre-gridded 0.1⁰ by 0.1⁰ cells. The features for the classification were the same as which 

were used in Section 3.2.3. Therefore, the risk/vulnerability classification result would be 

the same as which in Section 3.2.3.  

 

5.3.2 Offshore OSVI classification 

According to the analysis of the classification result, the distribution of uncertain 

features in each zone which held similar offshore OSVI could be generated, including 

wave height, wind speed, wind direction, pressure, sea surface temperature, current speed, 

current direction, annual movement of tankers and other vessels, and the historically 

annual oil spill frequency (Figures A5.1 to A5.10 in Appendix B). The analyses and 

summaries of the site condition of classified zones would be applied as the inputs to the 

technology screening module (MC-IRFAM) and the simulation module as constraints in 

the simulation-optimization (MC-MSINP). 
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Considered an offshore spill of Statfjord oil occurs in the south coast of 

Newfoundland in the location of 55.7⁰ W and 46.3⁰ N with a total amount of 5,000 m
3
, 

leading to an initial oil slick thickness of 50 mm. The properties of the spilled oil were 

listed in Table 4.2 in Section 4.3.3. After booms were applied, the spill area was confined 

to 100,000 m
2
.  

 

5.3.3 Simulation of oil slick movement 

A model was developed to simulate the advection of the oil slick. According to the 

advection models listed in Section 2.3.4, the following model was selected to simulate 

the oil slick movement (Shen and Yapa, 1987; Wang et al., 2005): 

 



 'VVV c                    (5.1) 

 

where 


V  is the advection or drift velocity (m/s) during each time step; cV


 is the mean 

drift velocity (m/s), representing the surface drift due to the combined effect of wind or 

ice cover and current; and 


'V  is the turbulent fluctuation of the drift velocity (m/s), 

simulating the horizontal diffusion of the oil slick. In order to simplify the model, an 

assumption was made that there was no affect from turbulent fluctuation and wind drift. 

Therefore, the drift velocity of the surface oil advection was expressed as follows 

(Al-Rabeh et al., 1989, 1992; Chao et al., 2001, 2003): 



214 
 

 

cVV


                       (5.2) 

 

The initial location of the spill was 55.7⁰ W and 46.3⁰ N, which was x0 = -55.7 and 

y0 =46.3, respectively. The time step set for the simulation was set to 1 min. Therefore, 

the location of oil slick can be described as follows: 
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xx tt
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
                  (5.3) 
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yy tt
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1


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
                  (5.4) 

 

where xt indicates the location of oil slick in latitudinal direction at time t (degree); yi 

indicates the location of oil slick in longitudinal direction at time t (degree); xt-1 is the 

location of oil slick in latitudinal direction at the previous time step (degree); yi-1 is the 

location of oil slick in longitudinal direction at the previous time step (degree); cdt-1 is the 

current direction at time step t-1 (degree); cst-1 is the current direction at time step t-1 

(m/s); LX is the length of 1º longitude in the study area which is about 7,724 m; and LY 

is the length of 1º latitude in the study area which is about 11,120 m (OGP, 2013). Based 

on the prevailing current speed (Figure A3.6 in Appendix A) and direction (Figure 3.5a 

in Section 3.2.3), the movement of oil slick was simulated. The simulation result 
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indicated that the oil slick would reach the shoreline of Newfoundland at the Seal Cove 

after 60 hours if no response application was applied. Figure 5.3 illustrates the 

movement of oil slick in 1-min time steps and Table 5.1 indicates the location of oil slick 

in 1-hour time steps. 
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Figure 5.3 The movement of spilled oil in 60 hours 
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Table 5.1 Locations of oil slick in 60 hours 

 

Time 

(hour) 

Oil slick location 

Longitude 

(degree) 

Latitude 

(degree) 

0 -55.700 46.300 

1 -55.718 46.316 

2 -55.735 46.331 

3 -55.753 46.347 

4 -55.770 46.363 

5 -55.787 46.379 

6 -55.804 46.395 

7 -55.820 46.412 

8 -55.837 46.428 

9 -55.853 46.445 

10 -55.869 46.462 

11 -55.885 46.478 

12 -55.900 46.496 

13 -55.915 46.513 

14 -55.930 46.530 

15 -55.945 46.547 

16 -55.959 46.565 

17 -55.973 46.583 

18 -55.987 46.600 

19 -56.000 46.618 

20 -56.013 46.637 

21 -56.026 46.655 

22 -56.039 46.673 

23 -56.050 46.691 

24 -56.062 46.710 

25 -56.074 46.729 

26 -56.085 46.747 

27 -56.095 46.766 

28 -56.106 46.785 

29 -56.115 46.805 

30 -56.123 46.824 

31 -56.132 46.844 

32 -56.141 46.863 

33 -56.149 46.883 
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34 -56.156 46.902 

35 -56.164 46.922 

36 -56.169 46.942 

37 -56.175 46.962 

38 -56.179 46.983 

39 -56.183 47.003 

40 -56.187 47.023 

41 -56.190 47.044 

42 -56.192 47.064 

43 -56.195 47.084 

44 -56.196 47.105 

45 -56.198 47.125 

46 -56.199 47.146 

47 -56.199 47.166 

48 -56.199 47.187 

49 -56.198 47.207 

50 -56.197 47.228 

51 -56.195 47.248 

52 -56.194 47.269 

53 -56.191 47.289 

54 -56.189 47.309 

55 -56.186 47.330 

56 -56.182 47.350 

57 -56.178 47.370 

58 -56.174 47.391 

59 -56.169 47.411 

60 -56.164 47.431 
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5.3.4 Technology screening 

Figure 5.3 indicates that the offshore oil spill initially occurred in the area classified 

as offshore OSVI Zone 1. Along with the movement of oil slick, the spill oil would move 

to the area covered by Zone 5 after about 2 hours and toward to the shoreline of 

Newfoundland after about 60 hours. Therefore, the oil recovery might most probably be 

applied in these two zones. Assume that the technological feasibilities of oil skimming 

mainly relied on temperature, wave, wind, oil viscosity, and slick thickness. The fuzzy 

criteria for these features are shown in Figure 3.9 in Section 3.3.3. Assume there were 7 

types of skimmers available in the database that could applied for the oil recovery in the 

target area including the three types of skimmer that used in Section 4.3.1. According to 

the analyses (e.g., mean and 95% confidence interval) of distributions of the 

corresponding features in Zone 1 and Zone 5 (Figures A5.1, A 5.2, and A5.5 in 

Appendix B) and the oil properties of the spilled oil, the site conditions for these two 

zones could be summarized. The site conditions and the parameters for the feasibilities of 

technologies are shown in Table 5.2. Based on the fuzzy criteria of the corresponding 

features, the fuzzy numbers of site conditions and technology feasibilities could be 

generated as the inputs to the MC-IRFAM classification approach. The overall score of 

feasibility ranged from 0 to 1, where 0 indicated completely unfeasible, 1 indicated 

perfectly feasible, and 0.5 reasonably feasible. The total trials for the Monte Carlo 

simulation was set as N2 = 10,000.  
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Table 5.2 Parameters for site conditions and feasibilities of skimmers 

 

 Temperature 
o
C 

Wave 

height 

m 

Wind speed 

m/s 

Spill 

viscosity 

cP 

Slick thickness 

mm 

Zone 1 0 - 15 0.5 - 5 3 - 13 > 3.03 < 50 

Zone 5 -5 - 20 0.2 - 4 0.5 - 15 > 3.03 < 50 

Skimmer 1 > -10 0 - 3 0 - 20 > 10 5 - 50 

Skimmer 2 -10 - 20 0 - 2.5 0 - 15 > 5 1 - 50 

Skimmer 3 -5 - 15 0 - 2 0 - 12 > 2 0 - 50 

Skimmer 4 5 - 20 0 - 0.5 > 20 10 - 200 0.01 - 1 

Skimmer 5 20 - 30 0.5 - 2 0 - 5 50 - 1000 1 - 5 

Skimmer 6 >30 0 - 0.2 > 10 > 1000 >4 

Skimmer 7 10 - 15 0 - 0.3 0 - 10 > 50 0.1 - 0.5 
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The screening results are shown in Tables 5.3 and 5.4, including the means, medians, 

minimum and maximum values, and 95% conference intervals (CI) of the overall scores 

for the 7 potential types of skimmers to the areas covered by Zone 1 and Zone 5 of the 

study area. The detailed distributions of the overall scores are shown in Figures A5.11 to 

A5.24 in Appendix C. 

Skimmers 1, 2 and 3 held similar distributions of overall scores in terms of the 

feasibility to the area covered by Zone 1. Furthermore, the statistics (mean, median, and 

95% CI) of them were also very close. Most of the scores were higher than 0.5, indicating 

high feasibility. Comparatively, the scores of Skimmer 3 more tended to higher values, 

while the scores of Skimmer 1 more tended to lower, and the tendencies of scores for 

Skimmer 2 was not as significant as the other two. The feasibility of Skimmer 5 was 

lower than Skimmers 1 to 3, but still higher than 0.5. The feasibility of Skimmers 4 and 7 

held similar distributions of the overall scores; however, the scores of Skimmer 7 tended 

to be higher than those of Skimmer 4, indicating that Skimmer 7 was more feasibility. In 

general, Skimmer 6 was not feasible in this case, although it had some scores higher than 

0.5 during the Monte Carlo simulation. Therefore, the ranks for the feasibilities of 

Skimmers to Zone 1 was Skimmer 3 > Skimmer 2 > Skimmer 1 > Skimmer 5 > Skimmer 

7 > Skimmer 4 > Skimmer 6. 

The ranking of the feasibilities for the skimmers in Zone 5 was similar to which in 

Zone 1. One of the differences was that the Skimmer 2 appeared the highest feasibility, 
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and then the Skimmer 1, then Skimmer 3. The other difference was that the feasibility of 

Skimmer 5 to 7 had increased. The ranks for the feasibilities of Skimmers to Zone 5 was 

Skimmer 2 > Skimmer 1 > Skimmer 3 > Skimmer 5 > Skimmer 7 > Skimmer 4 > 

Skimmer 6. 
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Table 5.3 Statistics of the overall scores for skimmers to the spill site in Zone 1 

 

 Mean Median Minimum 

value 

Maximum 

value 

Lower bound of 

95% CI 

Upper bound of 

95% CI 

Skimmer 1 0.674 0.660 0.414 0.881 0.533 0.867 

Skimmer 2 0.699 0.667 0.413 0.933 0.546 0.867 

Skimmer 3 0.669 0.653 0.356 1.000 0.535 0.853 

Skimmer 4 0.544 0.544 0.399 0.666 0.467 0.624 

Skimmer 5 0.616 0.624 0.528 0.667 0.540 0.667 

Skimmer 6 0.515 0.533 0.400 0.600 0.470 0.600 

Skimmer 7 0.588 0.593 0.428 0.824 0.486 0.680 
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Table 5.4 Statistics of the overall scores for skimmers to the spill site in Zone 5 

 

 Mean Median Minimum 

value 

Maximum 

value 

Lower bound of 

95% CI 

Upper bound of 

95% CI 

Skimmer 1 0.716 0.730 0.467 0.921 0.548 0.867 

Skimmer 2 0.698 0.667 0.467 0.933 0.569 0.867 

Skimmer 3 0.659 0.653 0.364 0.933 0.543 0.800 

Skimmer 4 0.542 0.543 0.414 0.661 0.475 0.607 

Skimmer 5 0.750 0.800 0.528 0.800 0.609 0.800 

Skimmer 6 0.549 0.567 0.433 0.667 0.500 0.637 

Skimmer 7 0.592 0.602 0.458 0.809 0.504 0.649 
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5.3.5 Device allocation and oil recovery 

According to the ranking results from the technology screening, the top three feasible 

types of skimmers were selected for the oil recovery in this case. The oil recovery 

efficiencies of these three types of skimmers and parameters for corresponding simulation 

were shown in Figure 4.4 and Table 4.1 in Section 4.3.1. There were 8 sets of each type 

of skimmer in the warehouse and the capacity of vessels used for operation was 20 sets of 

skimmers. However, because different types of skimmers were located in different 

locations, different time periods were required for devices allocation and deployment. 

Assume that the Skimmer 1 (or SK1) was located in the responder’s warehouse in Saint 

Lawrence, Newfoundland, which required 3 hours for devices allocation and deployment; 

Skimmer 2 (or SK2) was located in St Mary’s, Newfoundland, which required 6 hours for 

devices allocation and deployment; the Skimmer 3 (or SK3) was located in St John’s, 

Newfoundland, which required 12 hours for devices allocation and deployment. 

According to the advection simulation in Section 5.3.3, without any application of 

offshore oil spill response, the oil slick would reach the shoreline of Newfoundland (near 

Seal Cove) after 60 hours (Figure 5.3). Therefore, the objective of the offshore oil spill 

response was to maximize the spilled oil collection in this 60-hour period. Due to the 

challenge of transportation, no more skimmers and vessels would be further applied in 

the coming 60 hours. 

The model settings for the MC-DMINP were similar to the one used in Session 4.5. 
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The uncertain parameters including wind speed and temperature in Zones 1 and 5 were 

different and characterized by the MC-TSAM. Due to the distribution of wind speed and 

temperature of these two zones (Figures A5.2 and A5.5 in Appendix B), the distributions 

for these parameters could be generated for the Monte Carlo simulation. The parameters 

for the corresponding distributions are list in Table 5.5. Furthermore, uncertainty was 

also assigned to the slick area as normally distributed with a mean value of 100,000 m
2
 

and a standard deviation of 8,000 m
2
. The total trials for the Monte Carlo simulation was 

set as N3 = 200. In each trial, the simulation-based optimization model for device 

combination and allocation is as follows: 
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where V is total collected oil in the 60-hour operational period (m
3
); Vm and Vh is 

collected oil in each 1-hour time period (m
3
); m indicates time steps; SKj is number of 

skimmer (set); j indicates type of skimmer; ORRn is net oil recovery rate defined in 

Sections 4.2.3 and 4.3.1 (m
3
/hour); bskjm is binary indicator for SKj in stage m to 

determine if the SKj is applied in the oil recovery in this stage; V0 is initial volume of 

spilled oil (m
3
); h indicates time steps before m; A is area of the spilled oil (m

2
); FE is 

evaporation rate (m
3
/hour∙m

3
 of oil); T is temperature (K); DE is dispersion rate (m

3
/ 

(s∙m
3
 of oil)); µo is dynamic viscosity of the oil (cP); and St is interface tension between 
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oil and water (dyne/m); U is wind speed (m/s); VF is evaporated oil in each stage 

(m
3
/hour); VD is dispersed oil in each stage (m

3
/hour); FW is fractional water content; Ka 

is cure fitting constant that varies with wind speed (2 × 10
-6

); Kb is mousse viscosity 

constant (0.7 for crude oils and heavy fuel oil) (Zadeh and Hejazi, 2012); w is density of 

water (kg/m
3
); 

o is oil density (kg/m
3
); 

o is oil viscosity (cP); and cK is oil-dependent 

constant between 1 and 10 (1 is for gasoline or light diesel, and 10 for crude oils); and ttj 

is the time of devices allocation and deployment for SKj. 

The modeling results indicated that the numbers of SK1 and SK2 were most probably 

8 sets; and the number of SK3 significantly relied on the numbers of SK1 and SK2 

(Figure 5.4). Because the maximum number of each type of skimmer was 8 sets, the 

optimal combination for skimmers would be 8 sets of SK1, 8 sets of SK2, and 4 sets of 

SK3. Based on the advection simulation and the simulation-based optimization, it was 

estimated that all of the spilled oil was gone after about 45 hours before the oil slick 

reached the shoreline of the Newfoundland (60 hours) (Figure 5.5). The mean value of 

the collected oil was 4,096 m
3
 (82%), evaporated oil was 724 m

3
 (14.4%), and dispersed 

oil was 180 m
3
 (3.6%), respectively. The details about the dynamic changes of ORRn, the 

collected, evaporated, dispersed, and remaining oil, and the changes of oil viscosity and 

density as well as slick thickness are shown in Figures 5.6 to 5.12.  
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Table 5.5 Parameters of fitted distributions for wind speed and temperature 

 

 
Wind speed 

(GEV) 

Temperature 

(GEV) 

 

k sigma mu k sigma mu 

Group 1 -0.112157 2.70999 6.09027 -0.14613 3.99207 4.96715 

Group 5 -0.0872002 3.10937 5.6712 -0.107261 5.3761 3.84801 
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Figure 5.4 Distribution of potential skimmer numbers
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Figure 5.5 The movement and volume change of the spilled oil with the optimal skimmer combination 

 



233 
 

 

Figure 5.6 Mean values and 95% confidence intervals of net oil recovery rates of skimmers 
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Figure 5.7 Mean values and 95% confidence intervals of oil density, viscosity, and slick thickness 
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Figure 5.8 Mean values and 95% confidence intervals of cumulatively collected oil, evaporated oil, and dispersed oil as well 

as remaining oil 
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Figure 5.9 The change of skimmer numbers with the variations of slick coverage 
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Figure 5.10 The change of skimmer numbers with the variations of wind speed 
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Figure 5.11 The change of skimmer numbers with the variations of temperature 
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Figure 5.12 The change of finally collected, evaporated, and dispersed oil with the 

change of slick coverage, temperature, and wind speed, respectively 
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The uncertainties in features were significantly higher than those in the case in 

Section 4.3. This was because the site condition in this case was from the 

risk/vulnerability zone characterization by the MC-TSAM. Such characterization was 

based on the real-world data with high uncertainty and complexity.  

The number of SK1 and SK2 might increase when the initial slick coverage increase 

which caused an increase of initial slick thickness, and vice versa. In contrast, the 

numbers of SK3 might slightly decrease when the initial slick coverage decreased and 

vice versa (Figure 5.9). In addition, the increase of wind speed increased the number of 

SK2 and decreased the number SK3; and the change of SK1 was insignificant (Figure 

5.10). This was because the strong wind could strengthen the dispersion especially in the 

late stages (Figure 5.8), leading to low efficiencies to the Skimmers. Therefore, the 

skimmers which required relatively short time for allocation and deployment (e.g., SK1 

and SK2) would be preferred. The uncertainty in temperature had significantly negative 

effects on SK3 and SK2, and insignificantly negative effects on SK1. This was probably 

because the increase of temperature would significantly promote evaporation and thus 

affected the oil collection. Because the oil recovery rates of SK2 and SK3 were more 

sensitive to the uncertainty (Figure 5.6) than those of SK1, the effects on the two 

skimmers were more significant. 

In addition, the changes of net oil recovery rates for all types of skimmers were 

relatively significant in the early stages and became insignificant with time, and the 
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intensest change occurred in the first 24 hours (Figure 5.6). In general, the uncertainty of 

oil recovery rates for all the skimmers increased with rising uncertainty in slick coverage, 

wind speed, and temperature. The wind and temperature in Zones 1 and 5 followed the 

Generalized Extreme Value (GEV) distributions, leading to significant effects on the 

weathering processes and consequently the oil recovery rates. As shown in Figure 5.12, 

the increasing values of all the uncertain parameters (slick area, temperature, and wind 

speed) would lead to significant increase of evaporation. The uncertainty in wind speed 

caused the most negative effect on oil recovery, and positive effects on evaporation and 

dispersion. While the direct effect from temperature on oil recovery were not significant, 

but the negative effect on dispersion and positive effect on evaporation were significant, 

eventually influencing the oil recovery. The uncertainty in slick coverage had positive 

effects on evaporation and dispersion but negative effect on oil recovery. 

The optimal combination (SK1 = 8, SK2 = 8, and SK3 = 4) was also compared with 

the other two combinations, which were Combination 1 (SK1 = 4, SK2 = 8, and SK3 = 8) 

and Combination 2 (SK1 = 8, SK2 = 4, and SK3 = 8). The comparisons in collected and 

remaining oil based on these three combinations are shown in Figures 5.13 and 5.14. The 

comparison indicated that the final collected oil based on the optimal combination (4,096 

m
3
) was slightly higher than which based on the other two combinations (4,086 and 4,087 

m
3
). However, the collected oil from the optimal combination was significantly higher 

than the other two in the first 15 hours (Figure 5.13). Although all the three combination 



242 
 

could lead to the elimination of the spilled oil from the sea surface in about 40 to 45 

hours, the decrease of remaining oil was more significant in the first 15 hours due to the 

optimal combination compared with those were due to the other two combinations 

(Figures 5.14). Furthermore, based on the advection simulation, the oil slick became 

close to some islands (e.g., Saint-Pierre, France) and peninsulas (e.g., the Burin Peninsula, 

Newfoundland, Canada) around 15 hours after spill, which critically required effective oil 

recovery before the approaching. Therefore, the optimal combination would be most 

preferred for this case. 
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Figure 5.13 Comparison of collected oil based on the optimal combination and other two 

combinations 
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Figure 5.14 Comparison of remaining oil based on the optimal combination and other 

two combinations 
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5.4 Summary 

This chapter has firstly developed a framework of an integrated decision support 

system for offshore oil spill response in harsh environment (DSS-OSRH). The proposed 

decision support system includes an updating database for various information; a 

diagnosis module consisting of offshore OSVI classification through a Monte Carlo 

simulation based two-stage adaptive resonance theory mapping (MC-TSAM) approach 

and offshore monitoring; a technology screening module (MC-IRFAM) to determine the 

most feasible technologies for offshore oil spill response based on integration of Monte 

Carlo simulation and rule-based fuzzy adaptive resonance theory mapping; and a 

simulation-based optimization module (MC-DMINP) to support device allocation and oil 

recovery by integration of Monte Carlo simulation, dynamic mixed integer nonlinear 

programming, and spill weathering simulation.  

As three key modules in the DSS-OSRH, the MC-TSAM, MC-IRFAM, and 

MC-DMINP and their integration are of importance. The MC-TSAM is firstly applied to 

assess the offshore OSVI based on various conditions with uncertainties of a targeted 

offshore area, providing the specific site conditions for technology screening by 

MC-IRFAM. The most feasible technologies determined by the MC-IRFAM to form the 

initial settings for the simulation-based optimization by MC-DMINP. Furthermore, the 

site conditions characterized by the MC-TSAM are applied as inputs to the simulations in 

the MC-DMINP. Finally, the MC-DMINP generates a series of decision alternatives 
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considering combinations of technologies (e.g., types and number of devices) in each 

operational stage, allocations of man power and finance, corresponding cost and 

environmental effects, etc. 

In order to demonstrate the feasibility and efficiency of the developed DSS-OSRH, a 

case study was conducted for supporting an offshore oil spill response process in the 

south coast of Newfoundland. A set of modeling results were provided, including the 

offshore OSVI classification with specific site conditions, a list of feasible technologies 

with ranking scores, and the best combination of technologies as well as optimized 

operational option to achieve the maximum oil recovery. The results indicated that more 

than 50% of the spilled oil could be collected within 12 hours, and over 90% would be 

removed with 24 hours, demonstrating high feasibility and efficiency of the proposed 

decision support system. 

The DSS-OSRH could provide support to on-site decision making and 

implementation during offshore oil spill emergency response in an timely and 

cost-efficient manner. Therefore, the system should be particularly suitable for offshore 

oil spill response in harsh environments such as the offshore areas in North Atlantic and 

Arctic oceans. This system could not only advance the knowledge and fill the technical 

gaps but deliver expeditious and powerful tools for industry and regulators respond to 

offshore oil spill events under harsh environmental conditions. It would help operators 

and managers in health, safety and environmental departments (HSE) managers timely 
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assess risk and impacts, choose suitable technology and make sound and quick decisions 

to mitigate the negative effects and save time and costs. The proposed DSS-OSRH would 

bring significant short-/long-term benefits to offshore industry, governmental authorities 

and coastal communities by improving their knowledge and capacities in responding to 

oil spills and reducing the associated impacts on the marine environment and society. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 
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6.1 Summary 

This thesis research has developed a decision support system (DSS) for supporting 

offshore oil spill response in harsh environments. Such a system consists of a set of novel 

concepts and modeling approaches including: 1) a framework of offshore management 

system by dynamically integrating of oil spill database, diagnosis and alert, technologies 

screening, simulation-based optimization modules; 2) two Monte Carlo simulation based 

fuzzy-neuro approaches for offshore oil spill vulnerability index (OSVI) classification 

and technologies screening under uncertainty and complexity; 3) a simulation 

optimization coupling approach under dynamics and uncertainties based on the 

integration of simulations of oil weathering and recovery processes, dynamic 

programming, and uncertainty analysis approach; 4) the integration of offshore OSVI 

classification, technologies screening, and the simulation-optimization coupling 

approaches. 

A comprehensive review has firstly been made in offshore oil spills including 

background, impacts, as well as preparedness and contingency planning. Reviews have 

also given in classification/ranking especially in classification and ranking under 

complexity and uncertainty as well as their coexistence which widely exists in offshore 

oil spills. Accordingly, classification and ranking in supporting offshore oil spill response 

have been reviewed. Further discussions have been given on optimization approaches in 

environmental engineering under uncertainty and dynamics, and especially in the field of 
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offshore oil spill responses. Correspondingly, the utilizations of decision support 

approaches including classification, simulation, and optimization for supporting offshore 

oil spill response are examined. Finally, the challenges in offshore oil spill response in 

cold and harsh environments have been discussed.  

Targeting the disclosed knowledge gaps and technological needs, a Monte Carlo 

simulation-based two-stage adaptive resonance theory mapping (MC-TSAM) approach 

has been developed based on the integration of Monte Carlo simulation and the 

previously developed two-stage adaptive resonance theory mapping (TSAM) approach. 

The approach can carry out unsupervised learning under uncertain and complex 

conditions, classifying a concerned offshore area that is threatened or affected by offshore 

oil spills into a desired number of distinctive zones, representing the offshore oil spill 

vulnerability levels. In order to demonstrate its feasibility, the MC-TSAM has been 

applied to classify the south coast of the Newfoundland into five offshore zones with 

different offshore OSVI due to potential offshore oil spills. Ten uncertain features in 

oceanic conditions, meteorological conditions, and spill information as well as two 

features reflecting ecological concerns have been considered and used as inputs. The 

results provided vulnerability zones with corresponding characteristics under different 

scenarios to support offshore oil spill monitoring. 

Furthermore, a previously developed integrated rule-based adaptive resonance theory 

mapping (IRFAM) approach has been advanced by incorporating Monte Carlo (MC) 
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simulation to form a MC simulation based IRFAM (MC-IRFAM) approach for 

technology screening in offshore oil spill responses. The developed approach was tested 

with a hypothetical case of technologies screening in an offshore oil spill event. The 

results demonstrated that the provided approach was capable in classifying/ranking the 

technologies based on uncertain inputs (feasibilities) and criteria (site conditions). 

In order to reflect uncertainties into optimization process, a new 

fuzzy-stochastic-interval linear programming (FSILP) approach has been developed. 

Meanwhile, a Monte Carlo simulation based fuzzy programming (MCFP) approach has 

been introduced to handling the coexistence of possibility and continuous probability. 

Based on these two approaches, a simulation based dynamic mixed integer nonlinear 

programming (MC-DMINP) approach has been developed to reflect both dynamics and 

uncertainties in offshore oil spill responses. A case study was conducted to support device 

allocation and oil recovery in an offshore oil spill event. The optimization of response 

processes and the simulations of oil weathering (evaporation, dispersion and 

emulsification) and recovery have been further integrated. The modeling results 

represented the dynamic and uncertain features with the spilled oil, response resources, 

and environmental impacts. The results also provided the optimal option of device 

allocation and response operation. 

A framework of the integrated decision support system for offshore oil spill response 

in harsh environments (DSS-OSRH) has been proposed based on the integration of the 
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developed approaches, including offshore OSVI classification (MC-TSAM), the 

technology screening (MC-IRFAM), and the simulation-optimization coupling 

(MC-DMINP). In the system, the MC-TSAM is firstly applied to assess the offshore 

OSVI based on various uncertain conditions in a targeted offshore area, providing the 

specific site conditions for technology screening by MC-IRFAM. Correspondingly, the 

most feasible technologies determined by the MC-IRFAM form the initial settings for the 

MC-DMINP. In addition, the classified zones from the MC-TSAM provide site 

conditions as inputs to the simulations in the MC-DMINP. Finally, the MC-DMINP 

generates a set of optimal options considering combinations of technologies in each 

operational stage, allocations of man power and resources, corresponding cost and 

environmental effects, etc. In order to demonstrate the feasibility of the developed 

DSS-OSRH, a case study was conducted for supporting an offshore oil spill response 

process in the south coast of Newfoundland. A set of modeling results were provided, 

including the offshore OSVI classification with specific site conditions, a list of feasible 

technologies with ranking scores, and the best combination of technologies as well as the 

optimized option for response operation to achieve the maximum oil recovery. 

 

6.2 Research Contributions 

This research has led to the following major contributions: 

1. A novel Monte Carlo simulation-based two-stage adaptive resonance theory 
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mapping (MC-TSAM) approach has been developed for the offshore OSVI 

classification in any concerned area with potential or existing oil leaks/spills. 

The developed approach can automatically process the classification according 

to the inputs with uncertain and complex features. The results only depend on 

the inputs and can avoid the uncertainty from criteria definition. The approach 

has been applied to the offshore OSVI classification in the south coast of 

Newfoundland. It demonstrated the practical significance by giving decision 

support in delineating sensitive zones to oil spills. According to different 

scenarios of categories, decision makers can flexibly determine plans for the 

following monitoring and response actions. 

2. A new Monte Carlo simulation based integrated rule-based adaptive resonance 

theory mapping (MC-IRFAM) approach has been developed for classifying and 

ranking response technologies in offshore oil spill events. The proposed 

approach can effectively handle the inputs with imprecise information and 

uncertainty ranges which widely exist in offshore oil spill responses. 

Furthermore, this approach can not only rank the technology according to 

feasibility, but also provide the degree of the feasibility. 

3. Three new optimization approaches including fuzzy-stochastic-interval linear 

programming (FSILP), Monte Carlo simulation based fuzzy programming 

(MCFP), and dynamic mixed integer nonlinear programming (DMINP) have 
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been developed, and further led to a novel simulation-optimization coupling 

approach, the Monte Carlo simulation-based dynamic mixed integer nonlinear 

programming (MC-DMINP) approach. The MC-DMINP can convert simulation 

model into constraints which dynamically link to the decision variables, and 

break a time series into stages according to controllable time intervals in a 

practical manner, leading to a multiple stages dynamic programming. Such 

programming is further integrated with the Monte Carlo simulation to handle 

the uncertain conditions. The MC-DMINP approach has been further integrated 

with the weathering simulation, providing an innovative 

simulation-optimization coupling means for offshore oil spill response. A case 

study demonstrated the feasibility and capability in representing the dynamics 

of environmental conditions, spilled oil properties, and changes of resources. It 

indicated significantly practical values to the offshore oil spill recovery in harsh 

environments where unpredictable weather and oceanic conditions exist. 

4. An integrated decision support system for offshore oil spill response in harsh 

environments (DSS-OSRH) has been developed. The key components of the 

proposed DSS-OSRH include the newly developed MC-TSAM, MC-IRFAM, 

and MC-DMINP approaches and their integration. The proposed system is the 

first of its kind to date. It can provide a series of decisions in risk/vulnerability 

zone classification and characterization, technology screening, and device 
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allocation and response operation in offshore oil spill management under 

uncertainty and complexity. A case study of an offshore oil spill response in the 

south coast of Newfoundland proved the feasibility and efficiency of the 

proposed DSS-OSRH. This system will not only advance the knowledge and fill 

the technical gaps but also deliver expeditious and powerful tools for industry 

and regulators to control and response to offshore oil spill events under harsh 

environmental conditions. It can help operators and spill responders timely and 

effectively assess risk and impacts, choose suitable technologies, and make 

sound and quick decisions to mitigate the negative effects and save costs. The 

proposed DSS-OSRH will bring significant short-/long-term benefits to industry, 

government and communities and help reduce the risks posed by oil spills to the 

marine and coastal ecosystems. 

5. The developed approaches and DSS are the first of their kinds to date targeting 

offshore oil spill responses. These methods are particularly suitable for offshore 

oil spill responses in harsh environments such as the offshore areas of 

Newfoundland and Labrador (NL) where cold water/weather, strong wind, 

rough wave, and sea ice exist. The research will also promote the understanding 

of the processes of oil transport and fate and the short-/long-term impacts to the 

affected offshore and shoreline area. The developed methodologies will be 

capable of providing modeling tools for other related areas that require timely 
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and effective decisions under complexity and uncertainty. 
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6.4 Recommendations for Future Research 

1. The proposed MC-TSAM provides the classification and characterization of 

vulnerability zones in an area that is affected or potentially affected by offshore 

oil leaks/spills. It can only provide a roughly qualification of risk in the area, 

which may not be enough for responses to offshore oil spills occurring in 

environmentally or ecologically sensitive areas. The integration of MC-TSAM 

with risk quantification models, such as the exposure related dose estimating 

model (ERDEM) (U.S. EPA, 2004; Blancato et al., 2006; Zhang et al., 2007) and 

the generic ecological assessment endpoints (GEAEs) model (U.S. EPA, 2004; 

Landis and Kaminski, 2007) provided by the U.S. Environmental Protection 

Agency (U.S. EPA), would help improve the applicability and efficiency of the 

MC-TSAM. 

2. The simulation module in the MC-DSINP has considered some important 

processes in oil weathering processes including evaporation, dispersion, and 

emulsification. However, other weathering processes such as dissolution, 

spreading, biodegradation, photolysis, sedimentation, advection, and oil-shoreline 
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interaction, may also cause influence to the weathering simulation. Further 

consideration of these processes will help improve the simulation function of the 

approach. 

3. A simple model was used for the oil slick movement with the assumption that the 

only driven factor is ocean current. This simplification can help demonstrate the 

developed DSS-OSRH but compromises its real-world applicability. The 

integration of hydrodynamic simulation models such as MEDSLIK-II (De 

Dominicis et al, 2013) will help improve the real-world applicability of the DSS. 

4. Offshore oil spills and the corresponding response actions are affected by many 

complex factors and their interactions, including meteorological, oceanic, and 

ecological conditions, oil properties, transport and fate, human activities, 

ecological and social issues, etc. Not all of these factors were considered in this 

research. The considerations of more features would help improve the 

applicability and commonality of the proposed DSS.  

5. During the development of all the new approaches in this research, continuous 

communications and consultations have been kept with the relevant government, 

industry, and communities such as Fisheries and Oceans Canada (DFO), 

Environment Canada (EC), Eastern Canada Response Corporation (ECRC), 

Canadian Coast Guard (CCG), Suncor Energy, and American Bureau of Shipping 

(ABS). Their advice and inputs have been well considered and reflected in the 
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models. However, the developed approaches need to be further tested and 

demonstrated by more real-world case studies. This can be achieved by the 

existing collaborations with local oil spill responders such as the ECRC and the 

CCG to test the proposed DSS in their oil spill response training and exercises.  
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APPENDICES 

Appendix A: Figures of Interpolated Parameters in the South Coast of 

Newfoundland for Offshore OSVI Classification 
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Figure A3.1 Interpolated prevailing wave height in the south coast of Newfoundland  

 



266 
 

 

 

Figure A3.2 Interpolated prevailing wind speed in the south coast of Newfoundland 
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Figure A3.3 Interpolated prevailing wind direction in the south coast of Newfoundland 
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Figure A3.4 Interpolated prevailing pressure in the south coast of Newfoundland 
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Figure A3.5 Interpolated prevailing sea surface temperature in the south coast of Newfoundland 
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Figure A3.6 Interpolated prevailing current speed in the south coast of Newfoundland 
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Figure A3.7 Interpolated prevailing tanker movement in the south coast of Newfoundland 
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Figure A3.8 Interpolated prevailing other vessels movement in the south coast of Newfoundland 
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Appendix B: Figures of Parameter Distributions in Zones Classified by 

MC-TSAM 

 

Figure A5.1 Distributions of wave height in zones classified by MC-TSAM 
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Figure A5.2 Distributions of wind speed in zones classified by MC-TSAM 
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Figure A5.3 Distributions of wind direction in zones classified by MC-TSAM 
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Figure A5.4 Distributions of pressure in zones classified by MC-TSAM 
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Figure A5.5 Distributions of sea surface temperature in zones classified by MC-TSAM 
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Figure A5.6 Distributions of current direction in zones classified by MC-TSAM 
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Figure A5.7 Distributions of current speed in zones classified by MC-TSAM 
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Figure A5.8 Distributions of annual movement of tankers in zones classified by 

MC-TSAM 
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Figure A5.9 Distributions of annual movement of other vessels in zones classified by 

MC-TSAM 
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Figure A5.10 Distributions of historically annual spill frequency in zones classified by 

MC-TSAM 
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Appendix C: Figures of Overall Score Distributions of Skimmers 

 

 

Figure A5.11 Distributions of overall scores of Skimmer 1 to Zone 1 ranked by 

MC-IRFAM 
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Figure A5.12 Distributions of overall scores of Skimmer 2 to Zone 1 ranked by 

MC-IRFAM 
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Figure A5.13 Distributions of overall scores of Skimmer 3 to Zone 1 ranked by 

MC-IRFAM 
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Figure A5.14 Distributions of overall scores of Skimmer 4 to Zone 1 ranked by 

MC-IRFAM 
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Figure A5.15 Distributions of overall scores of Skimmer 5 to Zone 1 ranked by 

MC-IRFAM 
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Figure A5.16 Distributions of overall scores of Skimmer 6 to Zone 1 ranked by 

MC-IRFAM 
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Figure A5.17 Distributions of overall scores of Skimmer 7 to Zone 1 ranked by 

MC-IRFAM 
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Figure A5.18 Distributions of overall scores of Skimmer 1 to Zone 5 ranked by 

MC-IRFAM 
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Figure A5.19 Distributions of overall scores of Skimmer 2 to Zone 5 ranked by 

MC-IRFAM 
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Figure A5.20 Distributions of overall scores of Skimmer 3 to Zone 5 ranked by 

MC-IRFAM 
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Figure A5.21 Distributions of overall scores of Skimmer 4 to Zone 5 ranked by 

MC-IRFAM 
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Figure A5.22 Distributions of overall scores of Skimmer 5 to Zone 5 ranked by 

MC-IRFAM 
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Figure A5.23 Distributions of overall scores of Skimmer 6 to Zone 5 ranked by 

MC-IRFAM 
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Figure A5.24 Distributions of overall scores of Skimmer 7 to Zone 5 ranked by 

MC-IRFAM 
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